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Preface

Since the discovery of its fundamentals by Heisenberg, Born, Jordan, Schröd-
inger, and Dirac, quantum mechanics turned out to be one of the most suc-
cesssful theories of modern science. One of its cornerstones, the many-body
Schrödinger equation with Coulomb interactions, was applied successfully to
explain various properties of matter, such as the properties of light atoms.

In addition to its triumph as a physical theory, quantum mechanics has
been mathematically formulated and many of its most basic statements have
been proven, e.g., the self-adjointness of atomic and molecular Hamiltonians,
asymptotic completeness, and the stability of matter. Various effective one-
particle models – such as the Thomas-Fermi and the Hartree-Fock theory –
were shown to be limiting models of fully interacting Coulomb systems.

Soon after its discovery, however, physicists realized that it is difficult to
formulate a consistent and relativistic theory of matter interacting with the
electromagnetic field. These difficulties have been skillfully treated by the
great masters of physics belonging to the middle of the last century, e.g.,
Feynman, Dyson, Schwinger and Tomonaga. In fact, quantum electrodynam-
ics (QED), the theory developed by them, has an admirable quantitative
predictive power.

Nevertheless, this contrasts with the mathematical status of QED: its
consistent mathematical formulation is unknown. In fact, not even a generally
acknowledged multiparticle theory of relativistic electrons is available.

In recent years a renewed interest in these fundamental questions arose.
Even if a fully satisfactory mathematical formulation of QED is so far un-
available, various effective models based on QED are within the reach of
mathematical methods and generate numerous new and interesting results.

One of the activities in the field is the IHP-network “Analysis and Quan-
tum” financed by the European Union. To introduce young postdocs into the
field, it organized the summer school “Large Quantum Systems – QED” in
Nordfjordeid, Norway, August 11–18, 2003. The present collection of reviews
is based on the lecture notes of this school. In addition, one of the reviews is
based on lectures from the summer school “Quantum Field Theory – from a
Hamiltonian point of view” held in Sandbjerg Manor, Denmark, 2–9, August
2000, which was organized by the EU Network “PDE and Applications Quan-
tum Mechanics”.



VI Preface

We hope that this collection of reviews will be well received by all those
interested in these developments.

Warsaw and Munich Jan Dereziński
November 2005 Heinz Siedentop
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1 Introduction

A new method of spectral analysis of Hamiltonians deriving from quantum
field theoretic models has been defined by the Feshbach Map in [2–5] and,
more recently, by the Smooth Feshbach Map in [1]. The main goals of those
papers were the following:

– The introduction of an appropriate Banach space W of operators (in
physics often referred to as the “space of theories”),

– which contains a small ball D ⊂ W that is the domain of definition of
– the renormalization group map Rρ : D → D that assigns to each Hamil-

tonian operator H ∈ D a new, renormalized operator Rρ(H) in D.
– The first key property of Rρ is its isospectrality it inherits from the Smooth

Feshbach Map. It guarantees that the spectral properties ofH are preserved
under the application of Rρ.

– The second key property of Rρ is its codimension-1 contractivity on D.
This contractivity insures that the iterative application of Rρ generates
a (time-discrete) dynamical system on D with a fixed point manifold of
dimension 1.

– It turns out that the limiting operator H∞(H) := limn→∞Rn
ρ (H) can be

explicitly diagonalized. By the isospectrality, its spectral properties are the
same as those of H, and the goal of the spectral analysis of H is achieved.

V. Bach: A Tutorial Approach to the Renormalization Group and the Smooth Feshbach Map,
Lect. Notes Phys. 695, 1–14 (2006)
www.springerlink.com



2 V. Bach

The purpose of the present notes is to illustrate the character of the renormal-
ization group map Rρ. More specifically, We present a concrete computation
of some terms (in an infinite series of terms) contributing to the image Rρ(H)
of H under the renormalization group map Rρ. Although not a mathemat-
ically rigorous proof, this sample computation should clarify two important
points:

– Three decades after the introduction of the renormalization group by Wil-
son there exists a diversity of concrete implementations. Yet, they are all
based on the same renormalization group idea.

– The verification that the image Rρ(H) of H under this map belongs again
to D is technically rather involved. Yet, the idea implemented by the renor-
malization group map Rρ is conceptually simple.

2 Spin-Boson Model

We start by introducing the model whose spectral properties are to be an-
alyzed. The simplest, nontrivial model is the spin-boson model. It describes
the dynamics of a two-level atom which is coupled to a quantized boson field.
The Hilbert space containing the states of this system is the tensor product

H := Hel ⊗F = C
2 ⊗F [L2(R3)] , (1)

of the state space Hel = C
2 of the two-level atom and F := F [L2(R3)] is the

boson Fock space over the one-boson Hilbert space L2(R3)] of a quantized
scalar field. Note that

(
0
1

)
∈ C

2 is the wave function of the atomic ground
state, with zero groundstate energy, and

(
1
0

)
∈ C

2 represents the wave func-
tion of the first (and only) excited atomic level at energy = 2. The Fock space
F is given by F =

⊕∞
n=0 F (n), where the so-called n-boson sectors F (n) are

defined by

F (n) = {ψn ∈ ⊗nL2 | ∀π : ψn(k1, . . . , kn) = ψn(kπ(1), . . . , kπ(n))} , (2)

for n ≥ 1, and F (0) := CΩ is called the vacuum sector with vacuum vector
Ω. On F , we have creation and annihilation operators obeying the usual
canonical commutation relations (CCR)

[a(k), a(k′)] = [a∗(k), a∗(k′)] = 0 , [a(k), a∗(k′)] = δ(k−k′) , a(k)Ω = 0 ,
(3)

for all k, k′ ∈ R
3.
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The dynamics is generated by the Hamiltonian

Hg := H0 + gW (4)
H0 := Hel ⊗ 1 + 1⊗Hf , (5)

Hel :=
(

2 0
0 0

)
, (6)

Hf :=
∫
d3k a∗(k)ω(k) a(k) , (7)

and to be as simple as possible, the interaction is assumed to be of the form

W :=
(

0 1
1 0

)
⊗
[
a∗(G) + a(G)

]
, (8)

a∗(G) :=
∫
d3k G(k) a∗(k) , (9)

a(G) :=
∫
d3k G(k) a(k) , (10)

where we assume the coupling functions G : R
3 → B[Hel] to be bounded

operators G(k) on Hel, pointwise in k ∈ R
3, obeying

Hypothesis 1.

Λ1 :=
(∫

d3k
(
1 + ω(k)−1

)
‖G(k)‖2

)1/2

< ∞ , (11)

Λ5 := sup
k∈R3

{
ω(k)1/2−µ/2‖G(k)‖

}
< ∞ , (12)

for some µ > 0, where ‖G(k)‖ denotes the operator norm.

We remark that often µ = 0 in (12) in physical applications, which is not
covered by Hypothesis 1.

2.1 Relative Bounds on the Interaction

Our first task is to show that W is a relative H0 form bounded perturbation.
This justifies viewing Hg as a small deviation from H0. Here and henceforth,
we leave out trivial tensor factors and simply write A and B instead of 1⊗A
and B ⊗ 1, respectively.

Lemma 1. ∥
∥(Hf + 1)−1/2 W (Hf + 1)−1/2

∥
∥ ≤ 2Λ1 . (13)

Proof: Pick ϕ,ψ ∈ H. Then, by Schwarz’ inequality,
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∣
∣
∣
〈
ϕ
∣
∣
∣ (Hf + 1)−1/2 a(G) (Hf + 1)−1/2 ψ

〉∣∣
∣ (14)

=
∣
∣
∣
∣

∫
dk
〈
ϕ
∣
∣
∣ (Hf + 1)−1/2G∗(k)⊗ a(k) (Hf + 1)−1/2 ψ

〉∣∣
∣
∣

≤ ‖ϕ‖
∫
dk‖G(k)‖

∥
∥a(k)) (Hf + 1)−1/2 ψ

∥
∥

≤ ‖ϕ‖
(∫

dk
‖G(k)‖2
ω(k)

)1/2(∫
dk ω(k)

∥
∥a(k)) (Hf + 1)−1/2 ψ

∥
∥2
)1/2

≤ Λ1 ‖ϕ‖
∥
∥Hf

1/2 (Hf + 1)−1/2 ψ
∥
∥

≤ Λ1 ‖ϕ‖ ‖ψ‖ . 
�

2.2 The Feshbach Map and Pull-Through Formula

In this section we describe the Smooth Feshbach Map introduced in [1] in a
particular situation which allows us to keep the exposition simple.

Let H be a Hilbert space, T ≥ ε · 1 a positive selfadjoint operator on
H, with ε > 0, and W a relatively form-bounded perturbation such that
‖T−1/2WT−1/2‖op < ∞. Suppose that θ : R

+
0 → [0, 1] is Borel measurable

and set θ̄ :=
√

1− χ2. By functional calculus, define χ := θ(T ) and χ̄ := θ̄(T ),
and note that χ, χ̄, and T commute. We set

H := T +W , Wχ := χW χ , Wχ̄ := χ̄W χ̄ , (15)
Hχ := T + χW χ , Hχ̄ := T + χ̄W χ̄ . (16)

Denoting by P and P the projections onto Ranχ and Ran χ̄, respectively, we
assume that, for some ε > 0,

P Hχ P ≥ ε · P , (17)

so that the restriction of Hχ onto Ran χ̄ is invertible. This is the key assump-
tion for the following definition of the smooth Feshbach map Fχ,

Fχ(H,T ) := Hχ − χW χ̄H−1
χ̄ χ̄W χ , (18)

Qχ(H,T ) := χ − χ̄H−1
χ̄ χ̄W χ . (19)

Note that if θ is a characteristic function of some Borel set, then χ = P is
the spectral projection of T onto that set, and

FP (H,T ) = P H P − P H P
(
P H P

)−1
P H P (20)

reduces to the usual effective Hamiltonian on RanP known from the Feshbach
projection method.

Lemma 2 (Smooth Feshbach Map). Assume that ‖T−1/2WT−1/2‖op <
∞ and (17), and denote F := Fχ(H,T ) and Q := Qχ(H,T ). Then
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H is invertible on H ⇔ F is invertible on PH ; (21)
Hψ = 0 and ψ = 0 ⇒ χψ = 0 and F (χψ) = 0 ; (22)

Fϕ = 0 and ϕ = Pϕ = 0 ⇒ H (Qϕ) = 0 and Qϕ = 0 . (23)

We refer the reader to [1] for the proof of Lemma 2 and further details.
Another important ingredient of our analysis is the following Pull-Through
formula.

Lemma 3 (Pull-Through). Let F : R
+
0 → C, F (r) = O(r = 1). Then

F [Hf ] is defined on D(Hf ) and

a(k)F [Hf ] = F [Hf + ω(k)]a(k) , (24)
F [Hf ]a∗(k) = a∗(k)F [Hf + ω(k)] . (25)

Proof: Let ψ =
∏N

j=1 a
∗(kj)Ω. Then

F [Hf ] a∗(k)ψ = F
[
ω(k) +

N∑

j=1

ω(kj)
]
a∗(k)ψ (26)

= a∗(k)F
[
ω(k) +

N∑

j=1

ω(kj)
]
ψ = a∗(k)F [ω(k) +Hf ]ψ

in the sense of operator-valued distributions. Integrating this identity against
suitable test functions finishes the proof. 
�

2.3 Elimination of High-Energy Degrees of Freedom

As a first application of the Smooth Feshbach map, we use it to eliminate
the high-energy degrees of freedom of our spectral problem. To this end, we
choose T := H0 and theta to be the characteristic function onto [0, 1), such
that χ = θ(T ) equals the projection

P (0) := χ[H0 < 1] = Pel ⊗ χ[Hf < 1] , (27)

where

Pel :=
(

0 0
0 1

)
= |ϕel〉〈ϕel| , with ϕel :=

(
0
1

)
(28)

being the atomic ground state vector.
Now, we check the positivity of P

(0)
HgP

(0) − λ on Ran P
(0)

, noting that

P
(0)

= χ[H0 ≥ 1]. Observe that 〈ϕel⊗Ω |Hg(ϕel⊗Ω)〉 = 0, thus E0(g) ≤ 0,
and we may assume λ ≤ 1

2 henceforth. Therefore,

P
(0)

(H0 + gW − λ)P (0) ≥ (1− λ− 2gΛ1)P
(0) ≥ 1

4
P

(0)
, (29)
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for |g| � 1, employing Lemma 1. Moreover,

0 ≤ (H0 + 1)P
(0)

H0 − λ
≤ 2P

(0)

1− λ ≤ 4P
(0)
. (30)

We construct the inverse of P
(0)
HgP

(0)−λ on Ran P
(0)

by a Neumann series
expansion,

(H0 + 1)1/2 P
(0) (

P
(0)
HgP

(0) − λ
)−1

P
(0)

(H0 + 1)1/2

=
∞∑

L=0

(
(H0 + 1)1/2 P

(0)

H0 − λ

){
− gW

( P
(0)

H0 − λ
)}L

(31)

=
∞∑

L=0

(
(H0 + 1)P

(0)

H0 − λ

)

︸ ︷︷ ︸
‖·‖≤4

·
{
[
(H0 + 1)−1/2(−gW )(H0 + 1)−1/2

]

︸ ︷︷ ︸
‖·‖≤2 g Λ1

( (H0 + 1)P
(0)

H0 − λ
)

︸ ︷︷ ︸
‖·‖≤4

}L
.

Thus the series is norm-convergent and

∥
∥(H0 + 1)1/2P

(0)(
P

(0)
HgP

(0) − λ
)−1

P
(0)

(H0 + 1)1/2
∥
∥ ≤ 4

∞∑

L=0

(8gΛ1)L

≤ 4 +O(g) . (32)

As a result, Lemma 2 implies

Lemma 4. Let Pρ := 1[Hf < ρ], for ρ > 0, and denote

Hred := Ran(P1) = 1[Hf < 1]F . (33)

Then Hg − λ is invertible iff H(0)[λ] is, where

Pel ⊗
(
H(0)[λ]− λ

)
:= FP (0)(Hg − λ) , (34)

so H(0)[λ] is the following operator ∈ B[Hred] ,
(
H(0)[λ]− λ

)
= P1(Hf − λ+ g〈W 〉el)P1 (35)

−P1

〈
gW P

(0)
(P

(0)
HgP

(0) − λ)−1 P
(0)
gW
〉

el
P1 ,

where 〈 · 〉el := 〈ϕel| · ϕel〉. Moreover, H(0)[λ] can be expanded in a norm-
convergent series,



The Renormalization Group and the Smooth Feshbach Map 7

H(0)[λ] = P1(Hf − λ) + gP1 〈W 〉el P1 − g2P1

〈

W

(
P

(0)

H0 − λ

)

W

〉

el

P1

+ g3P1

〈

W

(
P

(0)

H0 − λ

)

W

(
P

(0)

H0 − λ

)

W

〉

el

P1 − . . . . (36)

2.4 Normal form of Hamiltonians

Our next goal is to write (recall P1 ≡ P1(Hf ) = [Hf < 1])

H(0)[λ] = P1

(
E(0)[λ] + T(0)[λ;Hf ] + W(0)[λ]

)
P1 , (37)

where E(0)[λ] ∈ C is an energy shift, T(0)[λ;Hf ] is the new, renormalized,
free (=unperturbed) Hamiltonian, and

W(0)[λ] :=
∑

M+N≥1

W
(0)
M,N [λ] , (38)

W
(0)
M,N :=

∫
dk(µ)dk̃(N) a∗(k(µ))

︸ ︷︷ ︸
∏µ

j=1 a
∗(kj)

w
(0)
M,N [λ;Hf ; k(µ); k̃(N)] a(k̃(N)] (39)

where the operators T(0)[λ;Hf ], w
(0)
M,N [λ;Hf ; k(µ); k̃(N)] are defined pointwise,

for each λ, k(µ), and k̃(N), by the spectral theorem (functional calculus) for
Hf .

Looking at H0 + gW − λ, we see that

E(0)[λ] = ∆E(0)[λ] , (40)
T(0)[λ;Hf ] = Hf +∆T(0)[λ;Hf ] , (41)
W(0)[λ] = gW +∆W(0)[λ] , (42)

where ∆E(0)[λ], ∆T(0)[λ;Hf ], and ∆W(0)[λ] =
∑

M+N≥1∆W(0)[λ] are gen-
erated from H(0)[λ] as given in the Neumann series (36).

To illustrate the method of deriving ∆E(0),∆T(0), and ∆W(0), we do a
sample computation. In order g2, we have
〈
W

(
χ[H0 ≥ 1]
H0 − λ

)
W

〉

el

(43)

=
〈
a∗(G)

(
χ[H0 ≥ 1]
H0 − λ

)
a∗(G)

〉

el︸ ︷︷ ︸
=:X1

+
〈
a∗(G)

(
χ[H0 ≥ 1]
H0 − λ

)
a(G)
〉

el

+
〈
a(G)

(
χ[H0 ≥ 1]
H0 − λ

)
a(G)
〉

el

+
〈
a(G)

(
χ[H0 ≥ 1]
H0 − λ

)
a∗(G)

〉

el︸ ︷︷ ︸
=:X4

.
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and we restrict our attention to X1 and X4. Due to Lemma 3, F [H0]a∗(k) =
a∗(k)F [H0 + ω(k)]. Thus

X1 =
∫
dk dk′

〈
G(k)⊗ a∗(k)

(
χ[H0 ≥ 1]
H0 − λ

)
G(k′)⊗ a∗(k′)

〉

el

=
∫
dk dk′

〈
G(k)⊗ a∗(k)a∗(k′)

(
χ[H0 + ω(k′) ≥ 1]
H0 + ω(k′)− λ

)
G(k′)⊗ 1

〉

el

=
∫
dk dk′ a∗(k)a∗(k′) w̃2,0[Hf ;λ, k, k′] , (44)

where the integral kernel w̃2,0[r;λ, k, k′] is given by

w̃2,0[r;λ, k, k′] :=
〈
G(k)

(
χ[Hel + r + ω(k′) ≥ 1]
Hel + r + ω(k′)− λ

)
G(k′)

〉

el

(45)

Thus, we recognize X1 as an additive contribution to W (0)
2,0 [λ].

Similarly, additionally using the CCR, we convert X4,

X4 =
∫
dk dk′

〈
G(k)⊗ a(k)

(
χ[H0 ≥ 1]
H0 − λ

)
G(k′)⊗ a∗(k′)

〉

el

=
∫
dk dk′

〈
G(k)⊗ a(k)a∗(k′)

(
χ[H0 + ω(k′) ≥ 1]
H0 + ω(k′)− λ

)
G(k′)⊗ 1

〉

el

=
∫
dk dk′

〈
G(k)⊗

(
δ(k − k′) + a∗(k′)a(k)

)

×
(
χ[H0 + ω(k′) ≥ 1]
H0 + ω(k′)− λ

)
G(k′)⊗ 1

〉

el

=
∫
dk

〈
G(k)⊗ 1

(
χ[H0 + ω(k) ≥ 1]
H0 + ω(k)− λ

)
G(k)⊗ 1

〉

el

+
∫
dk dk′

〈
G(k)⊗ a∗(k′)

(
χ[H0 + ω(k) + ω(k′) ≥ 1]
H0 + ω(k) + ω(k′)− λ

)
G(k′)⊗ a(k)

〉

el

= ∆e(0)[λ] + ∆t(0)[Hf ;λ] +
∫
dk dk′ a∗(k′) w̃1,1[Hf ;λ, k, k′] a(k) , (46)

where

∆e(0)[λ] :=
∫
dk

〈
G(k)

(
χ[Hel + ω(k) ≥ 1]
Hel + ω(k)− λ

)
G(k)

〉

el

, (47)

is a number that contributes additively to ∆E(0)[λ],

∆t(0)[r;λ] := (48)
∫
dk

〈
G(k)

(
χ[Hel + r + ω(k) ≥ 1]
Hel + r + ω(k)− λ − χ[Hel + ω(k) ≥ 1]

Hel + ω(k)− λ

)
G(k)

〉

el

,
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is a function contributing to ∆T(0)[λ], having the property that

∆t(0)[0;λ] = 0 and ‖∂r∆t(0)[r;λ]‖∞ < ∞ . (49)

Finally

w̃1,1[r;λ, k, k′] :=
〈
G(k)

(
χ[Hel + r + ω(k) + ω(k′) ≥ 1]
Hel + r + ω(k) + ω(k′)− λ

)
G(k′)

〉

el
(50)

is an additive contribution to ∆W (0)
1,1 [λ]. We now appeal to the reader’s imag-

ination, that this normal-ordering – demonstrated on the examples of X1 and
X4 – can be systematically carried out for all terms in the Neumann series
expansion (36).

2.5 Banach Space of Operators

We systematize the normal-ordering by introducing a Banach space of Hamil-
tonians as follows. Let

Hred := Ran1[Hf < 1] ≡ 1[Hf < 1]F ⊆ F (51)

be the spectral subspace corresponding to photon energies less than 1. Our
goal is to study Hamiltonians H ∈ B[Hred] of the form (37), i.e.,

H = T [Hf ] + W − E · 1 , (52)

where E ∈ C is a complex number, T ∈ C1(I) is a continuously differentiable
function on I := [0, 1] with T [0] = 0, and T [Hf ] ∈ B[Hred] is defined by
functional calculus. Moreover, W =

∑
m+n≥1Wm,n, with

Wm,n ≡ Wm,n[wm,n] (53)

:= Pred

∫

Bm+n
1

dK(m,n)

|K(m,n)|1/2 a
∗(k(m))wm,n

[
Hf ;K(m,n)

]
a(k̃(n)) Pred ,

where B1 denotes the unit ball in R
d, and Pred is a shorthand for 1[Hf < 1].

We use the notation

k(m) := (k1, . . . , km) ∈ R
dm , k̃(n) := (k̃1, . . . , k̃n) ∈ R

dn , (54)
K(m,n) := (k(m), k̃(n)) , dK(m,n) :=

∏m
i=1 d

dki
∏n

i=1 d
dk̃i , (55)

a∗(k(m)) :=
∏m

i=1 a
∗(ki) , a(k̃(n)) :=

∏n
i=1 a(k̃i) , (56)

|K(m,n)| := |k(m)| · |k̃(n)| , |k(m)| := |k1| · · · |km| , (57)
Σ[k(m)] := |k1|+ . . .+ |km| . (58)

The function wm,n[ · ,K(m,n)] ∈ C1(I) is continuously differentiable on I,
pointwise, for almost every K(m,n) ∈ B(m+n)

1 , its derivative is denoted by



10 V. Bach

∂rwm,n. As a function of K(m,n), it is totally symmetric w. r. t. the variables
k(m) = (k1, . . . , km) and k̃(n) = (k̃1, . . . , k̃n) and obeys the L2-norm bound

‖wm,n‖#µ := ‖wm,n‖µ + ‖∂rwm,n‖µ < ∞ , (59)

where

‖wm,n‖µ :=
(∫

Bm+n
1

dK(m,n)

∣
∣K(m,n)

∣
∣3+2µ sup

r∈I

∣
∣wm,n[r;K(m,n)]

∣
∣2
)1/2

, (60)

for some µ > 0. The Banach space of these functions is denoted by W#
m,n.

Moreover,Wm,n[wm,n] stresses the dependence ofWm,n on wm,n. For a family
{wm,n}m+n≥1 we write w := {wm,n}m+n≥1.

Further introducing

W#
µ := C⊕ T ⊕




⊕

M+N≥1

W#
µ (M,N)



 , (61)

with
T :=

{
T : [0, 1] → C

∣
∣ ‖∂rT‖∞ <∞, T (0) = 0

}
, (62)

and, with Bρ := {|k| < ρ},

W#
µ (M,N) :=

{
wM,N : [0, 1]×BM

1 ×BN
1 → C

∣
∣ ‖wM,N‖#µ <∞

}
, (63)

we observe that W#
µ is a Banach space with norm

∥
∥(E, T,w)

∥
∥#
µ

:= max
{
|E| , ‖∂rT‖∞ , sup

M+N≥1
‖wM,N‖#µ

}
. (64)

To every element (E, T,w) ∈ W#
µ corresponds an operator H ∈ B(Hred) in

normal form,

H = P1 (E + T [Hf ] + W )P1 , W =
∑

M+N≥1

WM,N [wM,N ] , (65)

WM,N =
∫
dK(M,N) a∗(k(µ)) wM,N [Hf ; k(µ); k̃(N)] a(k̃(N)) . (66)

Conversely, the effective Hamiltonian H(0)[λ] uniquely determines an element
(E(0)[λ], T(0)[λ], w(0)[λ]) ∈ W#

µ such that

H(0)[λ] = P1

(
E(0)[λ] + T(0)[λ;Hf ] + W(0)[λ]

)
P1 , (67)

as desired in (37). (Of course, it remains to be checked that the norms of
T(0)[λ] and w(0)[λ]) are all uniformly bounded – we take this for granted,
here.) We identify H ≡ (E, T,w).
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Let D1/2 := {z ∈ C | |z| < 1/2}.

Wµ :=
{
H[·] : D1/2 →W#

µ

∣
∣ z �→ H[z] is analytic, (68)

‖H[·]‖µ := sup
z∈D1/2

‖H[z]‖#µ <∞
}
.

From (40)–(42) we conclude that

H(0)[·] ∈ Wµ (69)

and that

‖H(0)[z]−Hf‖#µ =
∥
∥(E(0)[z], T(0)[z, r]− r, w(0))

∥
∥ ≤ O(g) . (70)

Defining, for 1
16 > δ, ε > 0 , a polydisc in Wµ , by

B(δ, ε) :=
{
(E, T,w)[·] ∈ Wµ

∣
∣ (71)

‖∂rT [z]− 1‖∞ ≤ δ, |E[z]| ≤ ε, ‖w[z]‖#µ ≤ ε
}
,

Equation (70) may be expressed as

H(0)[z] ∈ B(cg, cg) . (72)

2.6 The Renormalization Map Rρ

Let δ > 0, 0 < ε < 1, ρ ≤ 1
16 , and (E, T,w) ∈ B(δ, ε). Let furthermore

θ ∈ C∞
0 ([0, 3

4 ); [0, 1]) be such that θ′ ≤ 0, that θ ≡ 1 on [0, 1
2 ], and that

θ̄ =
√

1− θ2 ∈ C∞. For τ > 0, denote

χτ := θ[Hf/τ ] , χ̄τ =
√

1− χ2
τ , (73)

and assume that |z − E[z]| ≤ ρ/2 .

Lemma 5. ∥
∥
∥
∥

(Hf + ρ)
T [Hf ; z] + E[z]− z

∥
∥
∥
∥ ≤ 8 . (74)

Proof: Since |∂rT − 1| ≤ δ ≤ 1
16 , T [0; z] = 0

⇔ |T [z; r] +E[z]− z| ≥ (1− δ) · r − ρ
2
≥
(

1− δ − 1
2

)(
r + ρ

2

)
. � (75)

Lemma 6. If ‖w‖#µ ≤ ε then
∥
∥
∥(Hf + ρ)−1/2P1[Hf ]WM,NP1[Hf ](Hf + ρ)−1/2

∥
∥
∥ (76)

≤ ε · εM+N ·
(
CdΓ (1 + µ)

)M+N · ρ−δM,0 · ρ−δN,0(M !)−1/2(N !)−1/2 .
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Proof: Similar to Lemma 1.

Lemma 7. χρH[z]χρ − z is invertible on Ran χρ .

Proof: By Lemma 6,

∥
∥
∥(Hf + ρ)−1/2P1WP1(Hf + ρ)−1/2

∥
∥
∥ ≤

(
1 +O(ξ)

)
(
ε

ρ1/2

)
. (77)

Hence, Lemma 5 implies the norm-convergence of the Neumann series,
∥
∥(χρHχρ − z)−1χρ

∥
∥ (78)

=
∞∑

L=0

∥
∥
∥
∥
( χ̄ρ

(Hf + ρ)

)

×
[( χ̄ρ · (Hf + ρ)1/2

T [Hf ; z] +E[z]− z
)
·
(
(Hf + ρ)1/2 P1 (−W )P1 (Hf + ρ)1/2

)]L

×
( χ̄ρ · (Hf + ρ)1/2

T [Hf ; z] + E[z]− z
)∥∥
∥
∥

≤
∞∑

L=0

8
2ρ
·
[
8ε(1 +O(ξ)

ρ1/2

]L
≤ 4
ρ

(
1 +O(ερ−1/2)

)
. �

Lemma 7 tells us that we may apply Fχρ
to H[z]− z :

H̃[z]− z := Fχρ
[H[z]− z] . (79)

We then apply a normal-ordering procedure as in Sect. 2.4 to obtain

H̃[z]− z := χρ

(
Ẽ[z]− z + T̃ (z,Hf ) + W̃ [z]

)
χρ , (80)

W̃ [z] =
∑

M+N≥1

W̃M,N [z] , (81)

W̃M,N [z] =
∫
dk(µ)dk̃(N) a∗

(
k(µ)
)
w̃M,N

[
z;HF ; k(µ); k̃(N)

]
a
(
k̃(N)
)
, (82)

with
∣
∣
∣W̃M,N

[
z; r; k(µ); k̃(N)

]∣∣
∣

≤ ε
(
1 +O(ε/ρ1/2)

)
· gM+N ·

∏M
j=1 ω(kj)−1/2+µ/2

∏N
j=1 ω(k̃j)−1/2+µ/2 ,

(83)
using ‖wM,N‖(∞)

∆ ≤ ε. To get back toHred = Ran P1 from Ran χρ, we rescale
the photon momenta, k → ρk, by means of a unitary Γρ, so
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1
ρ
ΓρHf Γ

∗
ρ = Hf (84)

⇒ Γρ χρ Γ
∗
ρ = Γρ θ

[Hf

ρ

]
Γ ∗
ρ = θ[Hf ] = χ1 .

One easily checks that

W(1) :=
1
ρ
Γρ W̃ Γ ∗

ρ =
∑

M+N≥1

W
(1)
M,N ,

with coupling functions

w
(1)
M+N

[
z; r, k(µ), k̃(N)

]
:= ρ3/2(M+N)−1w̃M+N

[
z; ρHf , ρk

(µ), ρk̃(N)
]
. (85)

The key point about assuming µ > 0 is that
∣
∣w(1)

M+N [z; r; k(µ); k̃(N)]
∣
∣ (86)

≤ ε
[
1 +O(ερ−1/2)

]
gM+N · ρ3/2(M+N)−1 ·

M∏

i=1

ω(ρki)−1/2+µ/2
N∏

j=1

ω(ρk̃j)−1/2+µ/2

= ε
[
1 +O(ερ−1/2)

]
gM+N ρ(1+

µ
2 )(M+N)−1

︸ ︷︷ ︸
≤ρµ/2, since M+N≥1

=
M∏

i=1

ω(ki)−1/2+µ/2
N∏

j=1

ω(k̃j)−1/2+µ/2 ,

implying that

‖w(1)
M+N [z]‖#µ ≤ ε · ρµ/2 ·

[
1 +O

(
ερ−1/2

)]
.

︸ ︷︷ ︸
≤2

(87)

We now define the renormalization map

Rρ : Wµ →Wµ , (88)

by

H[z] �→ Rρ(H)[z] :=
1
ρ
Γρ Fχρ

(
H
[
Z−1(z)

]
− Z−1(z)

)
Γ ∗
ρ − z , (89)

where Z : {|z − E[z]| < ρ/2} → D1/2, Z(ζ) := 1
ρ (ρ − E[ζ]) is a suitable

rescaling of the spectral parameter, z, to project out an unstable direction of
the flow generated by R. Observe that Rρ has the isospectral property:

H
[
Z−1(z)

]
−Z−1(z) invertible on Hred ⇔ Rρ(H)[z]−z invertible on Hred .

(90)
The main fact about Rρ is its contraction property:
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Theorem 1. Rρ is defined on B(δ, ε) , for 0 < δ, ε ≤ 1/16, and, for ρµ < 1/2,

Rρ : B(δ, ε) → B
(
δ +

ε

2
,
ε

2

)
. (91)

To apply Rρ iteratively, we define H(n)[z] := Rn(H(0))[z]. According to
Theorem 1, we have

H(0) ∈ B(cg, cg) ⇔ H(1) ∈ B
(
cg +

cg

2
,
cg

2
)

⇔ H(2) ∈ B
(
cg +

cg

2
+
cg

4
,
cg

4
)

(92)

⇔ · · · ⇔ H(n) ∈ B
(
cg

n∑

k=0

2−k, cg2−n
)
.

Since we have chosen an appropriate topology, the intersection

{z∗} :=
∞⋂

n=1

(
Z−1

1 ◦ . . . ◦ Z−1
n

)
[D1/2] (93)

defines a number z∗ ∈ R which turns out to be the perturbed eigenvalue
sought for. Indeed, H(n) converges in the sense of (92), and the limit contains
no interaction term anymore,

H(n)
‖·‖∆→ H(∞)[z∗] = E(∞)[z∗] + T(∞)(Hf ; [z∗]) . (94)

This implies, in particular, that the vacuum vector is an eigenvector of
H(∞)[z∗],

H(∞)[z∗]Ω = E(∞)[z∗]Ω . (95)

We can now recover the original eigenvector of Hg − z∗ by successively ap-
plying the operator Sχρ

from Lemma 2(d).
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1 Introduction

These notes contain an extended version of lectures given at the “Summer
School on Large Coulomb Systems” in Nordfjordeid, Norway, in august 2003.
They furnish a short introduction to some of the most basic aspects of the
theory of quantum systems that have a dynamics generated by an equation
of the form

q̈ = −Ω2q

where Ω is a self-adjoint, positive, invertible operator on a dense domain
D(Ω) in a real Hilbert space K.

Such systems are usually referred to as free bose fields. They are really just
harmonic systems and I will occasionally use the term oscillator fields since I
will also discuss their classical counterparts and because I want to stress the
instructive analogy with finite systems of coupled oscillators, which is very
helpful when one tries to understand the underlying physical interpretation
of the theory.

Many of the simplest systems of classical and quantum mechanics obey
an equation of this form. Examples include (see Sect. 2.2):

(i) Finite dimensional systems of coupled oscillators, where K = R
n and Ω

is a positive definite matrix.
(ii) Lattices or chains of coupled oscillators, where K = �2(Zd,R) and Ω is

usually a bounded operator with a possibly unbounded inverse. Those
are used to model lattice vibrations in solid state physics.

(iii) The wave equation, where K = L2(K,R), K ⊂ R
d and Ω2 = −∆ with

suitable boundary conditions.
(iv) The massive or massless Klein-Gordon equation on static spacetimes.

These are a popular paradigm for studying quantum field theory on
curved spacetimes.

Despite their supposed simplicity, these systems are interesting for at
least two reasons. First, they provide examples where the basic concepts and
methods of quantum field theory can be explained, understood and tested.
Second, they provide the building blocks for the study of more complicated
systems in quantum field theory and (non-equilibrium) statistical mechanics,
where one or more such fields are (nonlinearly) coupled to each other or
to other, possibly finite dimensional systems. Bose fields are for example a
popular tool for modelling heath baths. The much studied spin-bose model
and more generally the Pauli-Fierz models are all of this type.

In Sect. 2, I shall first briefly describe the classical mechanics of such
systems in a unified way. This will then allow us in Sect. 3 to write down
the corresponding quantum mechanical systems – the free bose fields – in
a straightforward manner, for both infinite and finite dimensional systems.
In particular, if you are familiar with the quantum mechanical description
of finite dimensional systems, you should conclude after reading these two
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sections that the description of the infinite dimensional systems can be done
quite analogously.

At that point, we will be ready to start studying the systems constructed,
and to analyze their physical properties. The only issue I will address here, in
Sect. 4, is not one that features prominently in quantum field theory books,
but it has generated a fair amount of debate and even controversy. It is
the one of local observables, and of local states, essential for the physical
interpretation of the theory. Other topics will be discussed in [6]. I will adopt
the definition of Knight of “strictly local excitation of the vacuum” (Definition
4), that I will refer to as a strictly local or a strictly localized state for brevity.
I will then state and prove a generalization of Knight’s Theorem [16] (Sect.
4.5) which asserts that finite particle states cannot be perfectly localized. It
will furthermore be explained how Knight’s a priori counterintuitive result
can be readily understood if one remembers the analogy between finite and
infinite dimensional harmonic systems alluded to above. I will also discuss
the link between the above result and the so-called Newton-Wigner position
operator thereby illuminating, I believe, the difficulties associated with the
latter (Sect. 4.7). I will in particular argue that those difficulties do not
find their origin in special relativity or in any form of causality violation, as
is usually claimed. It will indeed be seen that the Newton-Wigner position
operator has an immediate analog for a finite or infinite system of oscillators,
and that it makes absolutely no sense there since it is at odds with basic
physical intuition and since it is not compatible with the physically reasonable
definition of Knight. The conclusion I will draw is that the Newton-Wigner
operator does not provide an appropriate tool to describe the strict localization
properties of the states of extended systems of the type discussed here. It
shows up only because of an understandable but ill-fated desire to force too
stringent a particle interpretation with all its usual attributes on the states
of a field. The right notion of a (strictly) localized state is the one given by
Knight. These issues have generated some debate in the context of relativistic
quantum field theory over the years, upon which I shall comment in Sect. 4.7.

The text is written at the graduate level and is aimed at an audience
of mathematicians with a taste for physics and of physicists with a taste
for mathematics. A background in the classical and quantum theory of finite
dimensional systems is assumed, although the text is basically self-contained.
The approach to the subject chosen here differs both from the usual “second
quantization” and “canonical quantization” treatments of quantum field the-
ory prevalent in the physics literature (although it is very close to the latter).
It is not axiomatic either. I feel it is fruitful because it allows one to apply the
intuition gained from the study of finite dimensional systems in the infinite
dimensional case. This helps in developing a good understanding of the basic
physics of quantum field theory, and in particular to do away with some of
the confusion surrounding even some of the simplest aspects of this theory,
as I hope to illustrate with the discussion of “localization” in this context.



18 S. De Bièvre

Although my approach here is resolutely non-relativistic, I hope to show it
still sheds an interesting and illuminating light on relativistic theories as well.
Indeed, the main feature of the systems under consideration is their infinite
spatial extension, and it is this feature that distinguishes them from systems
with a finite number of particles such as atomic or molecular systems, that
have a finite spatial extension.

Related topics will be discussed in a much extended version of this man-
uscript, which is in preparation [6].

2 Classical Free Harmonic Systems

2.1 The Hamiltonian Structure

Let us now turn to the systems described briefly in the Preface. My first goal
is to describe in detail the Hamiltonian structure underlying

q̈ +Ω2q = 0 . (1)

For finite dimensional systems, it is well known how to view (1) as a Hamil-
tonian system, and we will now show how to do this for infinite dimensional
systems using as only ingredient the positive operator Ω2 on D(Ω2) ⊂ K. We
need to identify a phase space on which the solutions to this equation define
a Hamiltonian flow for a suitable Hamiltonian. For that purpose, note that,
formally at least, (1) is equivalent to

q̇ = p, ṗ = −Ω2q ,

which are Hamilton’s equations of motion for the Hamiltonian (X = (q, p))

H(X) =
1
2
p · p+

1
2
q ·Ω2q , (2)

with respect to the symplectic structure

s(X,X ′) = q · p′ − q′ · p .

Note that I use · for the inner product on K. The Poisson bracket of two
functions f and g on K ⊕K is neatly expressed in terms of s by

{f, g} = s(∇Xf,∇Xg) ,

where ∇Xf = (∇qf,∇pf). Solving Hamilton’s equations of motion one ob-
tains the Hamiltonian flow which in this case can simply be written

Φt = cosΩtI2 − sinΩtJ , (3)

where
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I2 =
(

1 0
0 1

)
, J =

(
0 −Ω−1

Ω 0

)
. (4)

For later purposes, we remark that the corresponding Hamiltonian vector
field XH defined by

dΦt
dt

= XHΦt . (5)

can be written
XH = −JΩ . (6)

Of course, this is sloppy, because whereas s defines a symplectic structure
onK⊕K, the operator J is not a bounded operator onK⊕K, so that the flow is
not globally defined on this space! In other words, in the infinite dimensional
case, we have to remember that bothΩ andΩ−1 may be unbounded operators
(think of the wave equation, for example) and therefore we have to carefully
identify a suitable phase space on which both the symplectic structure and
the flow Φt are globally well-defined. For that purpose, we introduce the scale
of spaces (λ ∈ R):

Kλ = [D(Ωλ)] .

Here the notation [ ] means that we completed D in the topology induced
by ‖ Ωλq ‖ where ‖ · ‖ is the Hilbert space norm of K: note that we have
supposed that Ω has a trivial kernel, so that ‖ Ωλq ‖ defines a norm (and
not just a semi-norm). Explicit examples are developed in Sect. 2.2.

It is easy to check that J and hence Φt are globally well defined on

H = K1/2 ⊕K−1/2 .

Moreover, the symplectic form can also defined on this space via

s(X,X ′) = Ω1/2q ·Ω−1/2p′ −Ω1/2q′ ·Ω−1/2p . (7)

Actually, it can be checked that H is the only space of the form Kλ ⊕ Kµ
with these properties. In what follows, I shall refer to H as the (real) phase
space of the system. Note that, from now on, whenever w ∈ Kλ, w′ ∈ K−λ,
we will write w · w′ = Ωλw ·Ω−λw′. With these notations, one easily checks
that, for a ∈ K1/2, b ∈ K−1/2,

{b · q, a · p} = a · b . (8)

Here {·, ·} denotes the Poisson bracket.
Note that the phase space H may depend on Ω, for fixed K. As long as

both Ω and Ω−1 are bounded operators, one has clearly H(Ω) = K⊕K. This
is of course always the case when K is finite dimensional. So for systems with
a finite number of degrees of freedom, the phase space is fixed a priori to
be K ⊕ K, and the dynamics can be defined a posteriori on this fixed phase
space. However, whenever either Ω or Ω−1 are unbounded, H(Ω) differs from
K ⊕ K and depends explicitly on Ω. In other words, one cannot first choose
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the phase space, and then study various different dynamics on it. Instead, the
phase space and the dynamics are intimately linked: changing the dynamics
on a given fixed phase space may not make sense.

To conclude, so far, we have shown how the solutions of (1) define a
(linear) Hamiltonian flow Φt on a (real) symplectic vector space (H, s).

As far as the classical mechanics of the system is concerned, this is re-
ally all we need. In order to construct the corresponding quantum theory
(Sect. 3), and in particular the quantum Hilbert space, we do however need
to exploit the structures underlying the classical theory some more. This I
will do in Sect. 2.3. If we were only interested in the finite dimensional case,
this would be of some interest, but not necessary. For the infinite dimen-
sional case it is essential. Indeed, for finite dimensional harmonic systems,
the usual Schrödinger quantum mechanics is of course perfectly adequate,
and the formalism developed here is quite useless. It is however not possible
to straightforwardly adapt the Schrödinger formulation to the infinite dimen-
sional situation, and so we need to exploit the additional structures a little
more. To understand the following developments, it is helpful to have some
examples in mind.

2.2 Examples

Coupled Oscillators: Finite Dimension

Systems of point masses connected by springs have Hamiltonians of the type

H(X) =
1
2
(p2 + q ·Ω2q)

where X = (q, p) ∈ R
2n, so that here K = R

n, and Ω2 is a positive definite
n × n matrix. More generally, this Hamiltonian arises when linearizing any
potential about a stable equilibrium point. An instructive example is the

Fig. 1. A schematic representation of a chain of 8 oscillators moving horizontally.
Linking the first to the last, you get a ring. The tick marks indicate their equilibrium
positions. In the figure ωw = 0

finite oscillator chain with periodic boundary conditions (see Fig. 1). There,
n particles, constrained to move in one dimension only, are placed on a ring.
They interact with their nearest neighbours only, through a force that is
linear in the relative displacement of the particles and that is characterized
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by a frequency ωn. In addition they are each subjected to a harmonic force
with frequency ωw. Assuming all the particles have identical masses, set equal
to 1, the Hamiltonian for this system reads

H(X) =
1
2

(
n∑

i=1

(p(i)2 + ω2
wq(i)

2 + ω2
n(q(i+ 1)− q(i))2

)

.

Note that in the sum the index is to be taken periodically, so that q(n+1) =
q(1), etc. I have adopted here and will continue to use the somewhat unusual
notation v(i) for the ith component of a vector v ∈ R

n or C
n. This will prove

very convenient later on. Introducing ω2
0 = ω2

w + 2ω2
n > 0 and

0 ≤ ν =
ω2

n

ω2
0

≤ 1/2 ,

the equation of motion is, for all j = 1, . . . n,

q̈(j) = −ω2
0 [q(j)− ν(q(j + 1) + q(j − 1))] = −(Ω2q)(j) . (9)

One readily finds the eigenvalues of Ω2: they are given by

ω2(k) = ω2
0 [1− 2ν cos 2πk] k = 1/n, 2/n, . . . 1 .

Note that the eigenvalues are indeed positive, but, in order to make sure
that 0 is not an eigenvalue, we have to impose ν < 1/2, which amounts to
requiring that ωw = 0. This is intuitively clear: if ωw = 0, the system allows
for stationary solutions in which all oscillators are displaced by the same
amount, so that the springs between the oscillators are not stretched. These
are are referred to as a “zero modes”. The above Hamiltonian provides the
simplest model possible for a harmonic crystal, and is discussed in all books
on solid state physics both from the classical and the quantum mechanical
point of view.

Oscillator Chains and Lattices

Having understood the finite oscillator chain, it is easy to understand the first
infinite dimensional system we shall consider, which is an infinite linear chain
of oscillators, each one linked to its neighbours and to a wall with identical
springs, so that the system is translationally invariant. The Hamiltonian and
equation of motion of this system are the same as in the case of the ring,
except that the sums now run over Z. We now have K = �2(Z,R) and Ω2,
defined precisely as in (9) is a bounded operator. It has a purely absolutely
continuous spectrum {ω2(k) | k ∈ [0, 1]}, for all values of ν ∈ [0, 1/2]. Indeed,
even if ν = 1/2, 0 is not an eigenvalue of Ω2, since η0 does not belong to
�2(Z,R).
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It is instructive to identify the spaces Kλ explicitly in this case. For that
purpose, note that the Fourier series transform

q̂(k) =
∑

j∈Z

q(j)e−i2πjk

identifies the real Hilbert space �2(Z,R) with the real subspace of the complex
Hilbert space L2(R/Z, dk,C) for which q̂(k) = q̂(−k). It follows that Kλ
can be identified with the space of locally integrable functions q̂ for which
q̂(k) = q̂(−k) and, more importantly, ω(k)λq̂(k) belongs to L2(R/Z, dk,C).

First of all, consider 0 ≤ ν < 1/2. Then the spectrum is bounded away
from zero, which means that both ω(k) and ω(k)−1 are bounded functions
of k. As a result, then, for all λ ∈ R, Kλ = �2(Z,R). In particular, then
H = �2(Z,R)× �2(Z,R) and does not depend on the value of ν in the range
considered.

Something interesting happens, however, if we consider the case ν = 1/2.
Remember that this corresponds to setting ωw = 0, which was not allowed
in the finite ring because of the existence of the zero mode. Some remnant of
this problem shows up here. Indeed, consider Kλ, for λ < 0. Since

ω2(k) = (2πω0)2k2 + o(k2) ,

q ∈ Kλ if and only if |k|λq̂(k) belongs to L2(R/Z, dk,C) (and of course satisfies
q̂(k) = q̂(−k)). But, for λ = −1/2, this is not true for all q ∈ �2(Z,R). As a
result, K = �2(Z,R) is not a subspace of K−1/2 and similarly K1/2 is not a
subspace of K = �2(Z,R). Hence the phase space H is now different, as a set,
from the phase space when ν = 1/2 and in addition, one phase space is not
included in the other. To see this has noticeable physical consequences, note
the following. It seems like a reasonable thing to wish to study the motion
of the chain when initially only one of the degrees of freedom is excited.
Suppose therefore you wish to pick the initial condition q(i) = p(i) = 0,
for all i = 0, q(0) = 0 = p(0). In other words, the oscillator at the origin
starts from its equilibrium position with a non-zero initial speed, while all
other oscillators are at rest at their equilibrium positions. The trouble is that,
when ν = 1/2, this initial condition does not belong to the phase space! So
it should be remembered that the choice of phase space I made here, which
is reasonable from many a point of view, seems to nevertheless be somewhat
too restrictive in this particular case, since it excludes certain very reasonable
initial conditions from the state space of the system. This is one aspect of
the so-called infrared problem and it will be relevant when discussing local
observables in Sect. 4.

The generalization of the preceding considerations to d-dimensional trans-
lationally invariant lattices of oscillators is immediate. One has K = �2(Zd,R)
and, for all j ∈ Z

d,

(Ω2q)(j) = ω2
wq(j)− ω2

n

∑

i∈nn(j)

(q(i)− q(j)) = ω2
0q(j)− ω2

n

∑

i∈nn(j)

q(i) , (10)
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where nn(j) designates the set of nearest neighbours of j and where this time

ω2
0 = ω2

w + 2dω2
n and 0 ≤ ν =

ω2
n

ω2
0

≤ 1
2d
.

Using the Fourier transform to diagonalize Ω2 one finds the dispersion rela-
tion

ω(k)2 = ω2
0

[

1− 2ν

(
d∑

i=1

cos 2πki

)]

.

This time the critical value of ν is 1/2d but it leads to less severe infrared
behaviour. Indeed, if ν = 1/2d, then

ω(k)2 = ω2
0

1
d

d∑

i=1

(2πki)2 + o(|k|2) =
(2πω0)2

d
|k|2 + o(|k|2) .

But now all compactly supported q belong to Kλ, for all −d/2 < λ, as is eas-
ily checked. As a result, this time the phase space H contains all such initial
conditions as soon as d ≥ 2. We shall refer to them as strictly local perturba-
tions from equilibrium and study their quantum analogues in Sect. 4. To be
more precise, if d ≥ 2, and if we denote by Cc(Zd) the space of compactly
supported sequences, then Cc(Zd)×Cc(Zd) ⊂ H, for all possible values of ν.
If X = (q, p) ∈ Cc(Zd) × Cc(Zd), then X describes an initial state in which
only a finite number of oscillators is displaced from their equilibrium position
and/or moving. So for this rather large and very natural class of initial con-
ditions, the dynamics can be investigated as a function of ν, for all possible
values of ν.

Lattices of oscillators are used to describe the thermal and acoustic prop-
erties of various solids, such as metals, crystals of all sorts, amorphous mate-
rials etc. Putting ωn = 0 in the expressions above, one obtains the so-called
Einstein model, in which the oscillators representing the ions of the solid are
not coupled. The case where ωn = 0 is the Debye model. In more sophisti-
cated models still, different geometries may appear (hexagonal lattices, body
or face centered cubic lattices etc.), and the spring constants may vary from
site to site in periodic, quasi-periodic or random ways.

Wave and Klein-Gordon Equations

The wave equation
∂2
t q(x, t) = ∆q(x, t)

on a domain K ⊂ R
d with Dirichlet boundary conditions is another example

of a free oscillator field where K = L2(K,R) and D(Ω) is the domain of
the square root of the Dirichlet Laplacian. When K is a bounded set, the
spectrum of the Dirichlet Laplacian is discrete. No infrared problem then
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arises, reflecting the fact that no arbitrary long wavelengths can occur in the
system.

The case where K = R
d is instructive and easy to work out thanks to its

translational invariance. The situation is completely analogous with the one
in Sect. 2.2. Writing ω(k) =

√
k2, the space Kλ is for each real λ naturally

isomorphic to the real subspace of L2(Rd, ω(k)2λdk,C) given by the condition
q̂(k) = q(−k). If d ≥ 2, the Schwartz space is a subspace of K± 1

2
.

One can also consider the more general case where K is a Riemannian
manifold with metric γ and −∆ the corresponding Laplace-Beltrami oper-
ator. Replacing −∆ by −∆ + m2 (m > 0) in the above, one obtains the
Klein-Gordon equation. It plays an important role in the relativistic quan-
tum field theory on flat or curved spacetimes.

2.3 A Preferred Complex Structure
on the Real Classical Phase Space H

The simple linear systems we are dealing with here have some extra structure
that is encoded in the matrix J defined in (4). Noticing that J2 = −I2,
one sees J defines an s-compatible (i.e. s(JX, JY ) = s(X,Y )) and positive
definite (i.e. s(X,JX) ≥ 0 and s(X,JY ) = 0,∀Y ∈ H implies X = 0)
complex structure on H. As a result, H can first of all be viewed as a real
Hilbert space, with inner product

gΩ(X,Y ) def= s(X,JY ) =
√
Ωq ·

√
Ωq′ +

√
Ω

−1
p ·
√
Ω

−1
p′ , (11)

where Y = (q′, p′). Of course, we recognize here the natural inner product on
H = K1/2 ⊕K−1/2, written in terms of the symplectic form and J .

In addition, J can be used to equip H with a complex Hilbert space
structure, where multiplication with the complex number a+ib ∈ C is defined
by

(a+ ib)X def= (a+ bJ)X, ∀X ∈ H
and with the inner product

〈X,Y 〉+ =
1
2
(gΩ(X,Y ) + is(X,Y )) . (12)

Note that, when H has 2n real dimensions, the complex vector space (H, J)
has only n complex dimensions.

Since Φt is symplectic and commutes with J , one easily checks that

gΩ(ΦtX,ΦtY ) = gΩ(X,Y ) and 〈ΦtX,ΦtY 〉+ = 〈X,Y 〉+ ,

so that Φt is a unitary operator on the complex Hilbert space (H, J, 〈·, ·〉+). As
a result, XH = −JΩ, the generating Hamiltonian vector field is necessarily
anti-self-adjoint and one can check that in addition
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i〈X,XHX〉+ = H(X) . (13)

It is natural to wonder if there exist many complex structures on H
with these properties. In fact, J is the unique s-compatible, positive complex
structure on H so that Φt is unitary on the corresponding complex Hilbert
space [6]. In other words, the phase space H of an oscillator field, which is a
real symplectic space, carries a natural, flow-invariant complex Hilbert space
structure!

The ensuing complex Hilbert space seems a somewhat abstract object, but
it can be naturally identified with KC, the complexification of K, as I now
explain. In the following, whenever V is a real vector space, V C = V ⊕ iV will
denote its complexification. In the concrete examples I have in mind, where
V = K = R

n, �2(Zd,R) or L2(Rd,R), one finds V C = KC = C
n, �2(Zd,C) or

L2(Rd,C), respectively. The identification goes as follows :

zΩ : X = (q, p) ∈ H �→ zΩ(X) =
1√
2

(√
Ωq + i

1√
Ω
p

)
∈ KC . (14)

The following proposition is then easily proven.

Proposition 1. The map zΩ defines an isomorphism between the complex
Hilbert spaces (H, J, 〈·, ·〉+) and KC, intertwining the dynamics Φt with e−iΩt.
More precisely,

zΩ(JX) = izΩ(X) zΩ(X) · zΩ(X ′) = 〈X,X ′〉+ . (15)

and
zΩ(ΦtX) = e−iΩtzΩ(X) . (16)

Note that · has been extended to KC by linearity in each variable so that the
inner product on KC is given by z̄ ·z′, for z, z′ ∈ KC. The choice of the unnat-
ural looking factor 1/

√
2 in the definition of zΩ and of the matching factor

1/2 in 〈X,X ′〉+ are conventions chosen to make comparison to the physics
literature simple, as we will see further on. Similarly, for later purposes, we
define

z†Ω : X = (q, p) ∈ H �→ z†Ω(X) =
1√
2
(
√
Ωq − i

1√
Ω
p) ∈ KC , (17)

which is complex anti-linear

z†Ω(JX) = −iz†Ω(X) (18)

and
z†Ω(X) · z†Ω(X ′) = 〈X,X ′〉+ . (19)

The linear map zΩ is readily inverted and one has, in obvious notations

q =
1√
2Ω

(zΩ(X) + z†Ω(X)) and p =
√
Ω

i
√

2
(zΩ(X)− z†Ω(X)) , (20)
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and
H(X) = zΩ(X)† ·ΩzΩ(X) . (21)

In conclusion, we established that, having started with a real Hilbert
space K and a positive self-adjoint operator Ω, the classical phase space H of
the corresponding oscillator equation q̈ = −Ω2q can be identified naturally
with the complex Hilbert space KC, on which the dynamics is simply the
unitary group generated by Ω, the symplectic structure is the imaginary
part of the inner product and the Hamiltonian is given by H(z) = z ·Ωz. We
therefore ended up with a mathematically completely equivalent description
of the original phase space H, its symplectic structure and the dynamics Φt
generated by the Hamiltonian H in (2).

It is however important to understand that the physical interpretation of
this new formulation should be done carefully, as I explain in Sect. 2.4.

2.4 Physical Interpretation

It is instructive to first look at what the formalism of the Sect. 2.3 yields for
finite dimensional systems of coupled oscillators, such as the oscillator ring.
In that case K = R

n and hence KC = C
n. Note however that the identification

of R
2n with C

n depends in a non-trivial way on Ω which makes a direct in-
terpretation of points of C

n difficult. In particular, let X = (q, p) ∈ R
2n = H.

Then the components of q and p have a direct physical interpretation as the
displacements and momenta of the different oscillators. The ith component of
the corresponding vector z = zΩ(X) ∈ C

n does not have such a direct simple
interpretation since it is not a function of the diplacement qi and momentum
pi of the ith oscillator alone, but it is a function of the diplacements qj and
momenta pj of all the oscillators. This is so because in general, the matrix
Ω1/2 has no (or few) zero off-diagonal entries, even if Ω2 is tri-diagonal, as
in the oscillator chain. Indeed, in that case, Ω2 is a difference operator, but
Ω1/2 is not. Conversely, as is clear from (20), qi and pi depend on all compo-
nents of zΩ(X), not only on the ith one. This explains why the alternative
formulation of the problem in terms of the complex space KC = C

n is not
found in classical mechanics textbooks. Indeed, one is typically interested in
questions concerning the displacements of the different oscillators, the energy
distribution over the oscillators when the system is in a normal mode, energy
propagation along the oscillators when originally only one oscillator is ex-
cited, etc. Such questions are obviously more easily addressed in the original
formulation.

Another way to see why the alternative formulation leads to interpreta-
tional problems is as follows. Suppose we are studying two oscillator systems,
one with potential 1

2q ·Ω2q and another with 1
2q ·Ω′2q, where Ω2 = Ω′2. To

fix ideas, we can think of Ω′2 as being a perturbation of Ω2 which is obtained
by changing just one spring constant. Suppose now that the state of the first
system is z ∈ KC, and of the second is z′ ∈ KC. Suppose z = z′ = z0 ∈ C

n.
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Would you say the two systems are in the same state? Certainly not in gen-
eral! Indeed, as a result of what precedes, and in particular of (20), the same
point z0 ∈ KC yields entirely different values for the displacements qi, q′i and
the momenta pi, p′i of the two oscillator systems! Indeed, we would normally
say that the two systems are in the same state if the positions qi, q′i and
momenta pi, p′i of the different degrees of freedom take the same values, that
is to say if X = X ′. But that is not the same as saying z = z′. In other
words, if you decide to say KC is the phase space of your system, you should
always remember that the physical interpretation of its points depends on the
dynamics, i.e. on Ω. A similar phenomenon produces itself in the quantum
mechanical description of oscillator systems as we will see in Sect. 3.3.

Suppose now we deal with an infinite dimensional oscillator field, such
as an oscillator chain or a wave equation. As in the finite dimensional case,
the elements of H then have a direct interpretation in terms of oscillator
displacements, wave propagation etc., whereas those of KC don’t. But now
an additional complicating phenomenon that we already pointed out occurs:
starting with a fixed K, different choices of Ω may lead to different phase
spaces H! We gave an example for the oscillator chain in Sect. 2.2. Talking
about “the same state” for different systems now becomes very difficult, since
the state space H depends on the system considered. It is then tempting to
prefer the alternative formulation where the phase space KC is independent
of the dynamics, but at that point it should always be remembered that the
same point in KC has a different interpretation depending on which system
you consider.

In spite of those interpretational difficulties, the alternative formulation
of the classical mechanics of oscillator systems will turn out to be useful (and
even crucial) in the quantum mechanical description of oscillator fields. In-
deed, the quantum Hilbert space for the free oscillator field will be seen to be
the symmetric Fock space over (H, J, 〈·, ·〉+) (see Section 3). But identifying
the latter with KC allows one to conveniently identify the quantum Hilbert
space as the symmetric Fock space over KC. This way, one can work on a
fixed Hilbert space, while changing the dynamics by perturbing Ω, for exam-
ple. This is very convenient. Still, the rather obvious, seemingly trivial and
innocuous remarks above concerning the interpretation of the classical field
theory are at the origin of further, more subtle interpretational difficulties
with the quantum field theory of infinite dimensional oscillator fields as well,
to which I shall come back in Sects. 3.3 and 3.5.

2.5 Creation and Annihilation Functions on H

For the purposes of quantum mechanics, it will turn out to be convenient to
develop the previous considerations somewhat further. Everybody is familiar
with creation and annihilation operators in quantum mechanics. These ob-
jects are usually described as typically quantum mechanical in nature, but
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they have a perfectly natural classical analog, that I will call the creation and
annihilation functions, and that are defined as follows.

For all ξ ∈ KC,

ac(ξ) : X ∈ H �→ ξ̄ · zΩ(X) ∈ C ,

and
a†c(ξ) : X ∈ H �→ ξ · z†Ω(X) ∈ C .

Note that ac(ξ) is anti-linear in ξ, whereas a†c(ξ) is linear. The index “c”
stands for “classical”, so that the notation distinguishes between the clas-
sical creation/annihilation functions and the quantum creation/annihilation
operators, to be introduced later. A direct computation now yields

{ac(ξ1), a†c(ξ2)} = −iξ̄1 · ξ2

and
ac(ξ) ◦ Φt = ac(eiΩtξ), a†c(ξ) ◦ Φt = a†c(e

iΩtξ) .

Also, for all η ∈ KC

−1/2

η · q =
1√
2
(ac(Ω−1/2η̄) + a†c(Ω

−1/2η)) =
−i√

2
(a†c(iΩ

−1/2η)− ac(iΩ−1/2η̄)) ,

(22)
and, similarly, for all η ∈ KC

1/2

η · p =
i√
2
(a†c(Ω

1/2η)− ac(Ω1/2η̄)) . (23)

In the language of the physics literature, these two equations express the
oscilator field η · q and its conjugate field η · p viewed as functions on phase
space in terms of the creation and annihilation functions.

It is finally instructive to write H explicitly in terms of the annihilation
and creation functions. This is easily done when Ω has pure point spectrum,
i.e. when there exists a basis of normalized eigenvectors for Ω on KC:

Ωηi = ωiηi, i ∈ N .

Then, from (21)

H =
1
2

∑

i

ωi
(
a†c(ηi)ac(ηi) + ac(η̄i)a†c(η̄i)

)
. (24)

Note that both sides of this equation are functions on (a suitable subset of)
H. Correspondingly, in quantum mechanics, both sides will be operators on
the quantum Hilbert space of states.
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3 The Quantum Theory of Free Harmonic Systems

3.1 Finite Dimensional Harmonic Systems:
The Schrödinger Representation

How to give a quantum mechanical description of the classical free oscillator
fields studied in Sect. 2? I shall proceed in two steps. I will first recall the
quantum description of a system of a finite number of coupled oscillators,
and then rewrite it in a manner suitable for immediate adaptation to infinite
dimension.

The quantum Hamiltonian for a system with n degrees of freedom having
a classical Hamiltonian given by

H =
1
2
p2 + V (q) ,

where the potential V is a (smooth) real-valued function on R
n is, in the

so-called position (or Schrödinger) representation given by

H =
1
2
P 2 + V (Q) ,

where P = −i∂/∂x and Q = x are the usual momentum and position oper-
ators which are self-adjoint on there natural domains in the “quantum state
space” L2(Rn,dx). Note that, just as in the classical description, the state
space is independent of the dynamics, which makes it easy to compare the
dynamics generated by two different Hamiltonians H and H ′, with poten-
tials V and V ′. To put it differently, just as a given point X in the classical
phase space R

2n corresponds to the same state of the system, whatever its
dynamics, so a given ψ in L2(Rn) yields the same position and momentum
distributions for the system, whatever the dynamics to which it is subjected.

Consequently, for an n-dimensional system of coupled oscillators with
classical configuration space K = R

n and phase space H = R
2n the quantum

Hamiltonian reads
H =

1
2
(P 2 +Q ·Ω2Q) .

Unfortunately, these expressions stop making sense when K is an infinite di-
mensional space, in particular since it is not possible to make sense out of
L2(K) in that case. So to describe the quantum mechanics of infinite dimen-
sional harmonic systems, I will first rewrite the above Hamiltonian differently,
in a manner allowing for immediate generalization to infinite dimension. This
rewriting is, as we shall see, very analogous to the rewriting of the classical
mechanics on KC = C

n, explained in Sect. 2.3, and is therefore also affected
by the interpretational difficulties mentioned in Sect. 2.4. It is nevertheless
very efficient and essential.

Let’s define, for any ξ ∈ KC = C
n, the so-called creation and annihilation

operators
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ã(ξ) = ξ · 1√
2
(Ω1/2Q+iΩ−1/2P ), ã†(ξ) = ξ · 1√

2
(Ω1/2Q− iΩ−1/2P ) . (25)

Note that those are first order differential operators, and that they depend
on Ω, although the notation does not bring this dependence out. One checks
easily that [

ã(ξ), ã†(ξ′)
]

= ξ · ξ′ , (26)

all other commutators vanishing. In addition, for any η ∈ C
n,

η ·Q =
1√
2
(ã(Ω−1/2η̄) + ã†(Ω−1/2η)) , (27)

and, similarly,

η · P =
i√
2
(ã†(Ω1/2η)− ã(Ω1/2η̄)) . (28)

The analogy of this and of the rest of this section with the developments of
Sect. 2.5 should be self-evident. In particular, it is clear that the creation and
annihilation operators are the “quantization” of the creation and annihilation
functions ac, a

†
c introduced earlier.

Furthermore, let ηi ∈ KC = C
n, i = 1 . . . n be an orthonormal basis of

eigenvectors of Ω2 with eigenvalues ω2
1 ≤ ω2

2 ≤ · · · ≤ ω2
n. Then it is easily

checked that

H =
1
2

n∑

i=1

ωi
(
ã†(ηi)ã(ηi) + ã(η̄i)ã†(η̄i)

)
=

n∑

i=1

ωiã
†(ηi)ã(ηi) +

1
2

n∑

i=1

ωi .

The spectral analysis ofH is now straightforwardly worked out, and described
in any textbook on quantum mechanics. Let me recall the essentials.

It is first of all readily checked that there exists a unit vector |0, Ω〉 in
L2(Rn) (unique up to a global phase), for which

ã(ξ)|0, Ω〉 = 0,∀ξ ∈ C
n .

This common eigenvector of all the annihilation operators ã(ξ) is called the
“vacuum”. Remark that, as a vector in L2(Rn), the vacuum |0, Ω〉 obviously
depends on Ω. One has indeed very explicitly

〈x|0, Ω〉 =
(detΩ)1/4

πn/4
exp−1

2
x ·Ωx . (29)

Clearly H|0, Ω〉 = 1
2

∑n
i=1 ωi|0, Ω〉, so that the vacuum |0, Ω〉 is actually

the ground state of H. Writing for brevity ãi = ã(ηi), ã
†
i = ã†(ηi) it follows

(after some work) that the vectors

1√
m1!m2!m3! . . .mn!

(
ã†1

)m1
(
ã†2

)m2
(
ã†3

)m3

. . .
(
ã†n
)mn |0, Ω〉 , (30)
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for all possible choices (m1, . . . ,mn) ∈ N
n form an orthonormal basis of

eigenvectors for H.
Note that the position and momentum distributions of the ground state

evidently depend on Ω and are in fact not totally trivial to compute, despite
the apparent simplicity of the Gaussian expression above. Indeed, if you want
to know, for example, 〈0, Ω|Q2

7|0, Ω〉 you actually need to be able to diago-
nalize Ω2 explicitly, and you need in particular an explicit description of the
normal modes. This can be done in simple cases, such as the oscillator ring,
but not in general.

One can also introduce the “number operator”

Ñ =
n∑

i=1

ã†i ãi ,

which commutes with H. The spectrum of Ñ is easily seen to equal to N.
Writing Em for the eigenspace of Ñ with eigenvalue m, one has evidently

L2(Rn) =
⊕∑

m∈N

Em . (31)

Each vector in (30) is readily checked to be an eigenvector of Ñ with eigen-
value

∑n
k=1mk. The preceding considerations will be the starting point for

an equivalent reformulation of the quantum theory of finite dimensional oscil-
lator systems in a manner suitable for generalization to infinite dimensional
systems. This reformulation is based in an essential manner on the notion of
Fock space, which I therefore first briefly recall in the next section.

3.2 Fock Spaces

The basic theory of symmetric and anti-symmetric Fock spaces can be found
in many places ([2,23] are two examples) and I will not detail it here, giving
only the bare essentials, mostly for notational purposes. More information on
this subject can also be found in the contribution of Jan Dereziński in this
volume [4].

Let V be a complex Hilbert space, then the Fock space F(V) over V is

F(V) = ⊕m∈NFm(V) ,

where Fm(V) is the m-fold tensor product of V with itself. Moreover F0(V) =
C. An element ψ ∈ F(V) can be thought of as a sequence

ψ = (ψ0, ψ1, . . . , ψm, . . . ),

where ψm ∈ Fm(V). I will also use the notation Ffin(V) = ⊕m∈NFm(V),
which is the dense subspace of F(V) made up of elements of the type
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ψ = (ψ0, ψ1, . . . , ψN , 0, 0, . . . )

for some integer N ≥ 0. Elements of Ffin(V) will be referred to as states with
a finite number of quanta, a terminology that I will explain later.

I will freely use the Dirac notation for Hilbert space calculations. So I will
write |ψ〉 ∈ F(V) as well as ψ ∈ F(V), depending on which one seems more
convenient at any given time. Also, when no confusion can arise, I will write
Fm = Fm(V).

Let Pm be the permutation group of m elements, then for each σ ∈ Pm,
we define the unitary operator σ̂ on Fm(V) by

σ̂ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξm = ξσ−1(1) ⊗ ξσ−1(2) ⊗ · · · ⊗ ξσ−1(m) ,

(ξj ∈ C
n, j = 1, . . . ,m) and the projectors

P+,m =
1
m!

∑

σ∈Pm

σ̂, P−,m =
1
m!

∑

σ∈Pm

sgn(σ)σ̂ .

Now we can define the (anti-)symmetric tensor product as

F±
m(V) = P±,mFm(V)

whereas the (anti-)symmetric Fock space F±(V) over V is

F±(V) = ⊕m∈NF±
m(V) .

Introducing the projector P± =
∑

m∈N
P±,m, we also have

F±(V) = P±F(V) and Ffin,±(V) = P±F fin(V) .

One refers to F+(V) as the symmetric or bosonic Fock space and to F−(V) as
the anti-symmetric or fermionic Fock space. I will only deal with the former
here.

Computations in Fock space are greatly simplified through the use of
“creation” and “annihilation” operators, which are abstract versions of the
operators ã(ξ) and ã†(ξ) introduced in Sect. 3.1.

Define, for any ξ ∈ V,

d(ξ)ξ1 ⊗ ξ2 · · · ⊗ ξm = (ξ · ξ1) ξ2 ⊗ · · · ⊗ ξm .

This extends by linearity and yields a well-defined bounded operator from
Fm to Fm−1 which extends to a bounded operator on all of F(V), denoted
by the same symbol.

Note that I use the notation ξ · η for the inner product on the abstract
space V because in the applications in these notes V will be KC, in which case
this notation is particularly transparent. Of course, on a general abstract V,
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there is no natural definition of “the complex conjugate ξ”, but that does not
mean we can’t use ξ · η as a notation for the inner product.

One has ‖ d(ξ) ‖=‖ ξ ‖. Similarly, define

c(ξ)ξ1 ⊗ ξ2 · · · ⊗ ξm = ξ ⊗ ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξm .

This again yields a well-defined bounded operator from Fm to Fm+1 which
extends to a bounded operator on all of F(V), denoted by the same symbol.
One has ‖ c(ξ) ‖=‖ ξ ‖ and d(ξ)∗ = c(ξ).

Introducing the self-adjoint “number operator” N by

Nψ = (0, ψ1, 2ψ2, . . .mψm . . . ) ,

we can then define, on Ffin,

a±(ξ) = P±
√
N + 1d(ξ)P±, and a†±(ξ) = P±

√
Nc(ξ)P± .

The a±(ξ) are called “annihilation operators” and the a†±(ξ) creation opera-
tors. I will think of a−(ξ) as an operator on F− and of a+(ξ) as an operator
on F+. Direct computation (on F fin, for example) yields the following crucial
commutation and anti-commutation relations between those operators:

[a+(ξ1), a+(ξ2)] = 0 = [a†+(ξ1), a
†
+(ξ2)], [a+(ξ1), a

†
+(ξ2)] = ξ1 · ξ2 , (32)

Those are referred to as the canonical commutation relations or CCR. You
should compare (32) to (26) and be amazed.

Working in the bosonic Fock space F+ and using the above relations one
establishes through direct computation that

√
m!P+ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξm = a†+(ξ1)a

†
+(ξ2) . . . a

†
+(ξm)|0〉 .

Here I introduced the notation |0〉 = (1, 0, 0, . . . ) ∈ F0 ⊂ F . This vector is
usually referred to as the Fock vacuum or simply as the vacuum. It can be
characterized as being the unique vector in F+ for which

a+(ξ)|ψ〉 = 0, ∀ξ ∈ V .

For explicit computations and in order to understand the physics literature,
it is a Good Thing to have a convenient basis at hand. So suppose you have an
orthonormal basis ηj of V (with j = 1, 2, . . . dimV). Then you can define, for
any positive integer k ≤ dimV and for any choice of (m1,m2,m3, . . . ,mk) ∈
N
k, the vector

|m1,m2,m3, . . . ,mk〉 := (m1!m2! . . .mk!)−1/2

(33)

×
(
a†+(η1)

)m1
(
a†+(η2)

)m2
(
a†+(η3)

)m3

. . .
(
a†+(ηk)

)mk

|0〉 .



34 S. De Bièvre

Those vectors are now easily checked to form an orthonormal basis of F+.
The numbers mj are often referred to as the “occupation numbers” of the
states ηj . Note that each of them is an eigenvector of the number operator
with eigenvalue given by

∑k
j=1mj .

It is a good exercise to prove that N+ = P+NP+, the restriction of the
number operator to F+ can be written

N+ =
∑

j

a†+(ηj)a+(ηj) .

If U is a unitary operator on V, the unitary operator Γ (U) on F+ is
defined as ⊗mk=1U when restricted to F+

m. When A is a self-adjoint operator
on V, dΓ (A) is the self-adjoint operator on F+ defined as

A⊗ 1l⊗ · · · ⊗ 1l + 1l⊗A⊗ · · · ⊗ 1l + · · ·+ 1l⊗ · · · ⊗ 1l⊗A

on (a suitable domain) in F+
m, for each m > 0. Also dΓ (A)F+

0 = 0. It is a
good exercise to check that, if A has a basis of eigenvectors

Aηj = αjηj

then
dΓ (A) =

∑

i

αi a
†
+(ηi)a+(ηi) .

3.3 The Fock Representation: Finite Dimensional Fields

It is now straightforward to reformulate the quantum description of the os-
cillator system in Sect. 3.1 as follows. First of all, in view of (31) and the
considerations of the previous section, it is clear that there exists a unitary
map TΩ

TΩ : L2(Rn) → F+(Cn)

satisfying

TΩEm = F+
m(Cn), TΩHT

−1
Ω = dΓ (Ω) +

1
2

n∑

i=1

ωi ,

and
TΩ ã(ξ)T−1

Ω = a+(ξ) ,

for all ξ ∈ C
n. In fact, quite explicitly, one has, for all ξ1, ξ2, . . . ξm ∈ C

n,

TΩ : ã†(ξ1) . . . ã†(ξm)|0, Ω〉 ∈ Em ⊂ L2(Rn)

�→ a†+(ξ1) . . . a
†
+(ξm)|0〉 ∈ F+

m(Cn) ⊂ F+(Cn) .
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The unitary map TΩ transports each object of the theory from L2(Rn) to
the symmetric Fock space over C

n and provides in this manner an equivalent
quantum mechanical description of the oscillator system, that goes under the
name of Fock representation.

Note that in the left hand side of the above equations, the operators ã(ξ)
or ã†(ξ) are the concrete differential operators on L2(Rn) that were defined
in (25) and that depend explicitly on Ω. In the right hand side, you find the
abstract creation and annihilation operators defined in Sect. 3.2. Note that
those do not depend on Ω at all. Similarly, the ground state vector |0, Ω〉
of H appearing in the left hand side is of course Ω-dependent, whereas the
Fock vacuum |0〉 in the right hand side is not. This is somewhat paradoxical.
Indeed, since the vacuum is the ground state of the Hamiltonian, should it
not depend on this Hamiltonian? The answer to this conundrum goes as
follows, and is very similar to the discussion in Sect. 2.4 in the classical
context. Recall that it is customary to say that each physical state of the
system is represented by a vector in a Hilbert space. Consider for example
the vacuum vector |0〉 in Fock space. To find out to which physical state
of the system it corresponds, one has to compute the expectation value of
physical observables in this state. Now, for a system of coupled oscillators,
the most relevant observables are arguably the coordinates of position and
momentum. In view of (27) and (28) it is now clear that

TΩη ·QT−1
Ω =

1√
2
(a+(Ω−1/2η) + a†+(Ω−1/2η)) , (34)

and, similarly,

TΩη · PT−1
Ω =

i√
2
(a†+(Ω1/2η)− a+(Ω1/2η)) . (35)

I will in the following not hesitate to write TΩη · QT−1
Ω = η · Q and TΩη ·

PT−1
Ω = η · P , in agreement with the usual convention that consists of not

making the identification operator TΩ notationally explicit. But it is now
clear that, contrary to what happens on L2(Rn), the explicit expression of
the position and momentum observables as operators on Fock space depends
on the dynamics, via Ω! Hence the expectation values of those operators,
and of polynomial expressions in these operators will also depend on Ω. In
this sense, the same mathematical object, namely the vector |0〉 ∈ F+(Cn)
corresponds to a different physical state of the system of n coupled oscillators
for different choices of Ω, i.e. of the spring constants. Also, the same physical
quantity, such as the displacement of the seventh oscillator, is represented by
a different mathematical operator, namely the operator in the right hand side
of (34), with η(j) = δj7. In particular, if you are interested in the mean square
displacement of the seventh oscillator when the system is in the ground state,
i.e. 〈0|Q2

7|0〉, you will need a detailed spectral analysis of Ω and in particular
a good understanding of the spatial distribution of its normal modes over the
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n degrees of freedom of the system, as I already pointed out. The result you
find will of course depend on Ω.

In the same manner, any other given fixed vector in the Fock space, such
as for example a state of the form a†+(ξ)|0〉, for some fixed choice of ξ ∈ C

n,
represents a different physical state depending on Ω.

In short, the interpretation of a given vector in Fock space as a state of
a physical system depends on the dynamics of the system under considera-
tion because the representation of the physical observables of the system by
operators on Fock space is dynamics dependent.

To avoid confusion, these simple remarks need to be remembered when
dealing with the infinite dimensional theory, where only the Fock represen-
tation survives. In particular, the name “vacuum vector” or “vacuum state”
given to the Fock vacuum conveys the wrong idea that, somehow, when the
system state is represented by this vector, space is empty, there is “noth-
ing there” and therefore this state should have trivial physical properties
that in fact should be independent of the system under consideration and in
particular of the dynamics.

3.4 The Fock Representation: General Free Fields

Summing up, we have now reformulated the quantum mechanical description
of a finite dimensional coupled oscillator system in a way that will be seen
to carry over immediately – with only one moderate change – to the infinite
dimensional case. Indeed, given a free oscillator field determined by K and
Ω, it is now perfectly natural to choose as the quantum Hilbert space of
such a system the Fock space F+(KC), and as quantum Hamiltonian H =
dΓ (Ω). Note that this is a positive operator and that the Fock vacuum is
its ground state, with eigenvalue 0. Proceeding in complete analogy with
the finite dimensional case, the quantization of the classical creation and
annhilition functions ac(ξ), a†c(ξ) are the creation and annihilation operators
a+(ξ), a†+(ξ). In terms of those the quantized fields and their conjugates are
then defined precisely as before (η ∈ KC

−1/2):

η ·Q :=
1√
2
(a+(Ω−1/2η) + a†+(Ω−1/2η)) , (36)

and, similarly (η ∈ KC

1/2),

η · P :=
i√
2
(a†+(Ω1/2η)− a+(Ω1/2η)) . (37)

It is often convenient to think of “the field Q” as the map that associates to
each η ∈ K−1/2 the self-adjoint operator in the right hand side of (36), and
similarly for “the conjugate field P”, defined on K1/2. With this language,
the field operator η ·Q is the value of the field Q at η ∈ K−1/2. This notation
is reasonable since the field is a linear function of its argument.
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The moderate change to which I referred to above is the fact that, if I
compare the above quantization prescription for the case K = R

n to the
one of Sect. 3.1 and Sect. 3.3, then it is clear that I substracted from the
Hamiltonian the “zero-point energy”,

∑n
i=1 ωi. It is argued in all quantum

field theory texts that this constitutes an innocuous change, for two distinct
reasons. First, adding a constant to the Hamiltonian does not change the
dynamics in any fundamental way. Second only energy differences count in
physics, so tossing out an additive constant in the definition of the energy
should not change anything fundamentally. As a result, since the expression∑n

i=1 ωi makes no sense in general in infinite dimensions, where it is formally
typically equal to +∞, it seems like a good idea to toss it out from the
very beginning! This means you calibrate the energy so that the ground
state of the system, which is represented by the Fock vacuum, has zero total
energy, independently of Ω, and leads to the choice of H = dΓ (Ω) as the
Hamiltonian.

While this is the reasoning found in all physics and mathematical physics
texts the tossing out of the zero-point energy is not such an innocent operation
after all. For the physics of the zero-point energy, I refer to [20]. See also [6]
for further comments.

It is instructive to compute the evolution of the field and the conjugate
field under the dynamics. Since

e−iHt = Γ (e−iΩt) ,

it is easy to check that

eiHta+(ξ)e−iHt = a+(eiΩtξ) .

Define then the evolved field Q(t) as the map that associates to each η ∈
K−1/2 the self-adjoint operator η ·Q(t) defined as follows:

η ·Q(t) ≡ eiHt(η ·Q)e−iHt .

A simple computation then yields

η ·Q(t) =
1√
2
(a+(Ω−1/2eiΩtη) + a†+(Ω−1/2eiΩtη)) .

Hence
d2

dt2
η ·Q(t) = −Ω2η ·Q(t) .

One defines similarly η ·P (t), which obeys the same equation. In fact, η ·Q(t)
and η · P (t) are operator-valued solutions of this with η ·Q(t) satisfying the
equal time commutation relations. They are called the Heisenberg field and
conjugate field in the physics literature.

We are now in a position to further study these systems, a task I turn to
next. First, a word on the “particle interpretation of the field states” is in
order.
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3.5 Particle Interpretation of the Field States

Physicists refer to Fm as the m particle sector of the Fock space (m ≥ 1)
and to F0 as the vacuum sector. This terminology comes from the following
remark. As any beginners’ text in quantum mechanics will tell you, whenever
the quantum Hilbert space of a single particle (or a single system) is V, the
Hilbert space of states for m (identical) particles (or systems) is the m-fold
tensor product of V. The simplest case is the one where V = L2(Rd). Then
the m-fold tensor product can be naturally identified with L2(Rd×· · ·×R

d =
R
dm), which is isomorphic to ⊗mV. The same quantum mechanics course will

teach you that, when the particles are indistinguishable, the state space needs
to be restricted either to the symmetric or anti-symmetric tensor product. In
the first case, which is the one we are dealing with here, the particles are said
to be bosons, otherwise they are fermions. In the case where V = L2(Rd), the
m-fold symmetric tensor product of V consists of all symmetric L2-functions
of m variables.

The above considerations suggest that, conversely, whenever the quantum
state space of a physical system turns out to be a Fock space over some Hilbert
space V, one may think of V as a one-particle space, and of Fm(V) as the
corresponding m-particle space. An arbitrary state of the system can then
be thought of as a superposition of states with 0, 1, 2, . . .m, . . . particles.
These ideas emerged very quickly after the birth of quantum mechanics, as
soon as physicists attacked the problem of analyzing the quantum mechanical
behaviour of systems with an infinite number of degrees of freedom, such
as the electromagnetic field. The Fock space structure of the Hilbert space
of states describing the field immediately lead to such an interpretation in
terms of particles. For the electromagnetic field, the particles were baptized
“photons”, and in complete analogy, the quantum mechanical description
of lattice vibrations in solid state physics lead to the notion of “phonons”.
The idea that one can associate a particle interpretation to the states of a
Fock space is further corroborated by the observation that those states carry
energy and momentum in “lumps”. This can be seen as follows. Suppose, in
our notations, that Ω has a pure point spectrum:

Ωηj = ωjηj , j ∈ N .

Then the quantum Hamiltonian is

H = dΓ (Ω) =
∑

j

ωja
†
jaj ,

where I wrote a†j = a†(ηj). Note that I have dropped the index + on the
creation and annihilation operators, a practice that I shall stick to in what
follows since I will at any rate be working on the symmetric Fock space all
the time. Now consider for example the state

a†1(a
†
5)

3a†10|0〉 .
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This is a 5-particle state, and an eigenvector of the Hamiltonian with eigen-
value ω1 + 3ω5 + ω10. It is natural to think of it intuitively as being a state
“containing” 3 particles of energy ω5, and one particle of energy ω1 and ω10

each. Similarly, in translationally invariant systems, such states can be seen
to carry a total momentum which is the sum of “lumps” of momentum corre-
sponding to its individual constituents. Of course, the particle interpretation
of the states of the field is a very important feature of the theory since it
is essential for the interpretation of high energy experiments, and so it has
quite naturally received a lot of attention.

Despite its undeniable value, the suggestive interpretation of the states
of Fock space in terms of particles may lead (and has lead) to some amount
of confusion and has to be taken with a (large) grain of salt. Some of those
problems seem to have been brought out clearly only when physicists started
to investigate quantum field theory on curved space-times. A critical discus-
sion of this issue can be found throughout [10]. Although Fulling does adopt
the second quantization viewpoint, he stresses repeatedly the need to escape
“from the tyranny of the particle concept” in order to “come to a completely
field theoretic understanding of quantum field theory.” Similarly, Wald, who
does indeed adopt a field theoretic viewpoint throughout in [29], gives a crit-
ical analysis of the merits and limitations of the particle concept in quantum
field theory. He actually stresses the need to “unlearn” some of the familiar
concepts of quantum field theory on flat space times to understand the curved
space time version of the theory.

There are in fact several sources of problems with the particle interpreta-
tion of the states in quantum field theory. The first one was already hinted
at in Sect. 3.3: the use of the word “vacuum” to describe the ground state of
the system invites one to think that when the system is in this state, there
is “nothing there”. Actually, one may be tempted to think the system itself
is simply not there! But to see that makes no sense, it is enough to think
of an oscillator lattice. Certainly, when this system is in its ground state, all
oscillators are there! It is just that the system is not excited, so there are
no “particles” in the above (Fock space) sense of the word, and this in spite
of the fact that the mechanical particles making up the lattice are certainly
present. Also, if one thinks of the vacuum state as empty space, it becomes
impossible to understand how its properties can depend on the system con-
sidered via Ω. In fact, it is quite baffling to think “empty space” could have
any properties at all. In particular, the mean square displacement of the field,
for example, given by

〈0|(η ·Q)2|0〉
is a function of Ω, as is easily seen even in finite dimensional oscillator sys-
tems. This quantity is an example of a so-called “vacuum fluctuation”. Of
course, for systems with a finite number of degrees of freedom, we find this
phenomenon perfectly natural, but if you study the Klein-Gordon field, for
example, and call the ground state the vacuum, you end up being surprised
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to see vacuum expectation values depend on the mass of particles that are
not there!

A second source of confusion is that the notion of “particle” evokes a lo-
calized entity, carrying not only momentum and energy, but that one should
also be able to localize in space, preferably with the help of a position opera-
tor. I will show in Sect. 4 that there is no reasonable notion of “position” that
can be associated to the one-particle states of Fock space, contrary to what
happens in the usual non-relativistic quantum mechanics of systems with a
finite number of particles. In particular, there is no reasonable “position oper-
ator”. This has nothing to do with relativity, but is true for large classes of Ω
and in particular for all examples given so far. So even if the particles of field
theory share a certain number of properties with the usual point particles
of classical and quantum mechanical textbooks, they have some important
features that make them quite different. They are analogous objects, but not
totally similar ones. This, I will argue, has nothing to do either with special
or general relativity, but is clear if one remembers systematically the analogy
with finite dimensional oscillator systems.

As a constant reminder of the fact that the so-called particles of quantum
field theory are nothing but excitations of its ground state, it is a good idea
to use the older physics terminology and to talk systematically of “quasi-
particles”, “quanta”, “field quanta” or of “elementary excitations of the field”
rather than simply of particles when describing the states of Fock space. I
will adhere as much as possible to this prudent practice.

Moreover, when testing your understanding of a notion in quantum field
theory, try to see what it gives for a finite system of oscillators. If it looks
funny there, it is likely to be a bad idea to use it in the infinite dimensional
case.

The remaining parts of this section develop material that will be needed
in Sect. 4. It is perhaps a good idea to start reading the latter, coming back
to this material only as I refer to it.

3.6 Weyl Operators and Coherent States

Given a Hilbert space V and the corresponding symmetric Fock space F+(V),
we can first define, for any ξ ∈ V, the Weyl operator

WF(ξ) = ea
†(ξ)−a(ξ) .

A coherent state is then defined as a vector of F+(V) of the form

|ξ〉 def= WF(ξ)|0〉 ,

for some ξ ∈ V. Note that the map

ξ ∈ V �→ |ξ〉 ∈ F+(V)
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provides a nonlinear imbedding of V into F+(V) which is not to be confused
with the trivial linear imbedding V ∼= F1(V) ⊂ F+(V). Given an arbitrary
0 = ψ ∈ V, one can likewise consider the family WF(ξ)ψ, and those vectors
are also referred to as a family of coherent states.

Coherent states play an important role in the semi-classical analysis of
quantum systems and in various branches of theoretical physics [17, 22]. We
describe them here in the abstract context of symmetric Fock spaces. They
are very simple objects to define but nevertheless have an seemingly inex-
haustable set of interesting properties. I will only mention those I need.

To compute with the coherent states, we need a number of formulas that
are listed below and that can all be obtained easily, if one remembers first
of all that, if A and B are bounded operators so that C = [A,B] commutes
with both A and B, then

eA+B = eAeBe−
C
2 , C = [A,B] .

Computing with a†(ξ) and a(ξ) as if they were bounded operators, all for-
mulas below follow from this and some perseverance in computing. Taking
care of the domain problems to make them completely rigorous is tedious
but character building and can be done using the techniques described in [3]
or [23]. First of all, we have, for all ξ1, ξ2 ∈ V,

WF(ξ1)WF(ξ2) = WF(ξ1 + ξ2)e−iIm(ξ1·ξ2) .

As a result
WF(ξ1)WF(ξ2) = WF(ξ2)WF(ξ1)e−2iIm(ξ1·ξ2) ,

and
[WF(ξ),WF(ξ′)] = WF(ξ′)WF(ξ)

(
ei2Im(ξ

′·ξ) − 1
)
.

Furthermore

WF(sξ)WF(ξ′)WF(tξ) = WF((s+ t)ξ)WF(ξ′)e2itIm(ξ·ξ′)

and hence
WF(−ζ)WF(ξ)WF(ζ) = WF(ξ)ei2Im(ζ·ξ) ,

or
WF(−ζ)WF(ξ)WF(ζ) = e[(a

†(ξ)+ξ·ζ)−(a(ξ)+ξ·ζ)] .

One then finds

WF(−ζ)
[
a†(ξ)

]n
WF(ζ) = (a†(ξ)+ξ·ζ)n, WF(−ζ)an(ξ)WF(ζ) = (a(ξ)+ξ·ζ)n .

It is often convenient to write

WF(ξ) = ea
†(ξ)e−a(ξ)e−

1
2‖ξ‖

2
= e−a(ξ)ea

†(ξ)e
1
2‖ξ‖

2
.

Also, remark that, for all ξ = 0,
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‖WF(ξ)− 1l ‖= 2 and s− lim
t→0

WF(tξ) = 1l .

Using what precedes, one easily finds the following formulas involving the
vacuum.

|ξ〉 = e−
1
2‖ξ‖

2
ea

†(ξ)|0〉 , (38)

〈0|an(ξ)|ξ′〉 = e−
1
2‖ξ

′‖2
(ξ · ξ′)n , (39)

and
〈ζ|WF(ξ)|ζ〉 = e−

1
2‖ξ‖

2
ei2Im(ζ·ξ) . (40)

3.7 Observables and Observable Algebras

Physically measurable quantities of a system are, in its classical description,
represented by functions on phase space. Consider first finite dimensional
systems. An example, in the case of an oscillator ring, is “the displacement
of the ninth oscillator”, represented by q9 : X = (q, p) ∈ H → q9 ∈ R.
Some interesting observables are represented by linear functions (such as
position and momentum) or by quadratic functions (such as energy or angular
momentum). More generally, they may be polynomial. To discuss the linear
functions, it is helpful to notice that the topological dual space of H can
conveniently be identified with H itself using the symplectic form: to each
Y ∈ H, we associate the linear map

X ∈ H �→ s(Y,X) ∈ R .

One has, from (8), for every Y1, Y2 ∈ H,

{s(Y1, ·), s(Y2, ·)} = s(Y1, Y2) . (41)

It is then convenient to introduce

Vc(Y ) = e−is(Y,·) (42)

which serves as a generating function for monomials of the type

s(Y1, ·)s(Y2, ·) . . . s(Yn, ·) =
(i∂)n

∂t1∂t2 . . . ∂tn
Vc(t1Y1 + . . . tnYn)|t1=0=t2···=tn .

It is immediate from the definition of the Vc(Y ) that

Vc(Y ) ◦ Φt = Vc(Φ−tY ) .

Working in the Schrödinger representation, the quantum mechanical ana-
logues of the Vc(Y ) are the Weyl operators

V (Y ) = e−i(a·P−b·Q), where Y = (a, b) ∈ H . (43)
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The V (Y ) are clearly unitary operators on L2(Rn) and satisfy the so-called
Weyl relations

V (Y1)V (Y2) = e−
i
2 s(Y1,Y2)V (Y1 + Y2), ∀ Y1, Y2 ∈ H .

In a Fock representation (determined by a choice of Ω), one has, with the
notation of Sect. 3.3

TΩV (Y )T−1
Ω = WF(zΩ(Y )) .

Here the WF(zΩ(Y )) are the Weyl operators on the symmetric Fock space
F+(Cn), as introduced in Sect. 3.6.

In the algebraic approach to quantum theory, one postulates that the
interesting observables of the theory include at least those that can be written
as finite sums of V (Y ). One therefore considers the algebra

CCR0(R2n) = span {WF(zΩ(Y )) | Y ∈ R
2n} = span {WF(ξ) | ξ ∈ C

n} .

This algebra is irreducible. This means that the only closed subspaces of
L2(Rn) ∼= F+(Cn) invariant under the above algebra are the trivial ones and
is equivalent, via Schur’s Lemma, to the statement that the only bounded
operators that commute with all F in the algebra are the multiples of the
identity. For a simple proof of these facts one may consult [5]. This implies
via a well known result in the theory of von Neumann algebras (see [2],
for example) that its weak closure is all of B(F+(Cn)): in this sense, “any
bounded operator on Fock space can be approximated (in the weak topology!)
by a function of Q and P .” This is clearly a way of saying that the original
algebra is quite large. Note nevertheless that its operator norm closure (called
the CCR-algebra over R

2n and denoted by CCR(R2n)) is much smaller, since
it contains no compact operators. For the purposes of these notes, I will
consider CCR(R2n) or CCR0(R2n) as “the” observable algebra of the systems
considered.

Remark that these algebras do, as sets, not depend on Ω. But again, in
close analogy to what we observed in Sect. 3.3, given an operator on Fock
space belonging to one of these algebras, its expression in terms of Q and
P does depend on Ω, and so does therefore its physical interpretation as an
observable. So it is not only the identification of the appropriate observable
algebra which is important, but the labeling, within this algebra, of the el-
ements that describe the relevant physical observables. This will be crucial
once we discuss local observables in Section 4, and become hopefully quite a
bit clearer then too.

It is obviously not of much interest to discuss observable algebras if one
is not going to say how the observables evolve in time. In finite dimensional
systems, one is given a Hamiltonian H, which is a self-adjoint operator on
L2(Rn) ∼= F+(Cn). It generates the so-called Heisenberg evolution of each
observable F , which is defined by αt(F ) = eiiHtF e−iHt. It has to be checked
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that the algebra of observables and H are such that this defines an automor-
phism of the algebra (i.e. so that eiHtF e−iHt still belongs to the algebra if F
does).

That αt is an automorphism of the CCR algebra is not true in general.
For example, it is proven in [11] that, when H(λ) = 1

2P
2 + λV , with V a

bounded L1 function, then the Heisenberg evolution leaves the CCR algebra
invariant for all values of t and of λ if and only if V = 0. In other words, the
CCR algebra cannot possibly be a suitable algebra to describe most standard
quantum mechanical systems with a finite number of degrees of freedom.

An exception to this rule are systems described by quadratic hamiltonians,
which are precisely the ones we are interested in here. An easy example is
provided by quadratic Hamiltonians of the type H = 1

2P
2 + 1

2Q ·Ω2Q in view
of

eidΓ (Ω)tWF(ξ)e−idΓ (Ω)t = WF(e−iΩtξ), ∀ξ ∈ KC ,

which follows immediately from the discussion in Sect. 3.4. This clearly im-
plies that the dynamics leaves the CCR algebra CCR(R2n) invariant. Note
that this will work in infinite dimensional systems just as well as in finite
dimensional ones.

The discussion carries over to the infinite dimensional case without
change. One defines the algebra of observables in the quantum theory to
be

CCR0(H) = span {WF(zΩ(Y )) | Y ∈ H} = span {WF(ξ) | ξ ∈ KC} .

Again, this algebra is independent of Ω and turns out to be irreducible [2], so
that its weak closure is the algebra of all bounded operators on Fock space.
Its norm closure, which is much smaller, is the so-called CCR-algebra over
H, for which I will write CCR(H). Since we will only work with quadratic
Hamiltonians, this algebra is adequate for the description of such systems
since it is then invariant under the dynamics. Here also, to no one’s surprise
by now, I hope, the interpretation of a given operator in the algebra as an
observable will depend on Ω, as we will see in more detail in Section 4.

For further reference, let me define also the algebra

CCR0(M) = span {WF(zΩ(Y ))|Y ∈M} ,

wheneverM is a vector subspace of H (even ifM is not symplectic). In many
situations it is natural and elegant not to work with the norm closure of the
CCR0(M), but with their weak closure, for which I shall write CCRw(M).
Further developments concerning the CCR can be found in the contribution
of J. Dereziński in this volume [4].
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4 Local Observables and Local States

4.1 Introduction

The issue of what are local observables, local states and local measurements
has attracted a fair amount of attention and has generated some surprises and
even some controversy in the mathematical physics literature on relativistic
quantum field theory. The controversy has centered on the question of particle
localization, of possible causality violations and of relativistic invariance. I
will address these issues in the present section within the restricted context
of the free oscillator fields under study here, some of which are relativistically
invariant, while others are not. I will argue that there is not much reason to
be surprised and certainly no ground for controversy.

After defining what is meant by a local observable (Sect. 4.2) and giving
some examples (Sect. 4.3), the notion of “strictly local excitation of the vac-
uum” is introduced in Sect. 4.4. I will then state a generalization of a theorem
of Knight asserting that, if Ω is a non-local operator, then states with a finite
number of field excitations cannot be strictly local excitations of the vacuum
(Sect. 4.5). It will be shown through examples (Sect. 4.6) that the above con-
dition on Ω is typically satisfied in models of interest and I will explain the
link between the above notion of localized excitation of the vacuum and the
so-called Newton-Wigner localization (Sect. 4.7). It will be argued that the
latter is not a suitable notion to discuss the local properties of the states of
oscillator fields. The actual proof of Knight’s theorem is deferred to Sect. 4.8.

4.2 Definition of a Local Structure

Among the interesting observables of the oscillator systems we are studying
are certainly the “local” ones. I will give a precise definition in a moment,
but thinking again of the oscillator chain, “the displacement q7 of the seventh
oscillator” is certainly a “local” observable. In the same way, if dealing with
a wave equation, “the value q(x) of the field at x” is a local observable. The
Hamiltonian is on the other hand not a local observable, since it involves sums
or integrals over all oscillator displacements and momenta. Generally, “local
observables” are functions of the fields and conjugate fields in a bounded
region of space. Of course, this notion does not make sense for all harmonic
systems, defined by giving a positive operator Ω2 on some abstract Hilbert
space K. So let me reduce the level of abstractness of the discussion, therefore
hopefully increasing its level of pertinence, and define what I mean by a
system with a local structure.

In view of what precedes, I will limit my attention to free oscillator fields
over a real Hilbert space K of the form K = L2

R
(K,dµ), where K is a topo-

logical space and µ a Borel measure on K. Here the subscript “R” indicates
that we are dealing with the real Hilbert space of real-valued functions. In
fact, all examples I have given so far are of the above type.
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Definition 1. A local structure for the oscillator field determined by Ω and
K = L2

R
(K,dµ) is a subspace S of K with the following properties:

1. S ⊂ K1/2 ∩ K−1/2;

2. Let B be a Borel subset of K, then SB ≡ S ∩ L2
R
(B,dµ) is dense in

L2
R
(B,dµ).

This is a pretty strange definition, and I will give some examples in a second,
but let me first show how to use this definition to define what is meant by
“local observables”. Note that, thanks to the density condition above,

H(B,Ω) def= SB × SB

is a symplectic subspace of H so that the restriction of WF ◦ zΩ to H(B,Ω)
is a representation of the CCR over H(B,Ω).

Definition 2. Let K = L2
R
(K,dµ), Ω,S be as above and let B be a Borel

subset of K. The algebra of local observables over B is the algebra

CCR0(H(B,Ω)) = span {WF(zΩ(Y )) | Y ∈ SB × SB} .

Note that Ω plays a role in the definition of S through the appearance of
the spaces Kλ. The first condition on S guarantees that S × S ⊂ H so that,
in particular, for all Y ∈ S × S, s(Y, ·) is well defined as a function on H
which is important for the definition of the local observables to make sense. In
practice, one wants to be able to use the same spatial structure S for various
choices of Ω, in order to be able to compare different systems built over the
same space K = L2

R
(K,dµ). Note nevertheless that even then, the algebras of

local and of quasi-local observables, which are algebras of bounded operators
on the Fock space F+(KC) do, as sets, depend on Ω. This is in contrast to
the algebra of “all” observables,

CCR0(H) = span {WF(zΩ(Y )) | Y ∈ H} = span {WF(ξ) | ξ ∈ KC} ,

which is, as a set, independent of Ω, as pointed out before. In other words,
some of the physics is hidden in the way the local algebras are imbedded in
the CCR algebra over H.

4.3 Examples of Local Structures

Oscillator Lattices – Klein-Gordon Equations

In the case of the translationally invariant oscillator lattices in dimension 2
or higher presented in Sect. 2.2, S can be taken to be the space of sequences q
of finite support, even in the massless case, as is easily checked. Alternatively,
you could take S to be the larger space of sequences of fast decrease. This has
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the advantage that then S ×S is dynamics invariant. Note that in neither of
these examples S×S is J invariant, though, so that S×S will not be a complex
vector subspace of (H, J), just a real one. This is also true for SB × SB and
will be crucial when discussing “local excitations of the vacuum” in quantum
field theory.

Exercise 1. Check all of the above statements in detail.

As an example of a local observable, we have, with η ∈ S of bounded
support in some set B ⊂ Z

d,

eiη·Q = WF

(
i√
2
Ω−1/2η

)
.

Very explicitly, one may think of taking η(j) = δj,k and then this is eiQ(k),
a simple function of the displacement of the oscillator at site k ∈ Z

d. At the
risk of boring the wits out of you, let me point out yet again that this fixed
observable is represented on Fock space by a different operator for different
choices of Ω.

Similarly

eiη·P = WF

(
− 1√

2
Ω1/2η

)

is a function of the momenta of the oscillators in the support of η.
In the one-dimensional translationally invariant lattice a spatial structure

does not exist when ν = 1/2 because of the strong infrared singularity. Indeed,
due to the density condition in the definition of the local structure, it is clear
that S must contain all sequences of finite support, and those do not belong
to K−1/2 in dimension 1, as we already pointed out in Sect. 2.2.

Similarly, the wave and Klein-Gordon equations on R
d admit for example

C0(Rd) or the space of Schwartz functions as a spatial structure in dimension
2 or higher, as follows from the discussion in Sect. 2.2.

The Finite Dimensional Case

I find this example personally most instructive. It forces one into an unusual
point of view on a system of n coupled oscillators that is well suited to the
infinite dimensional case. Think therefore of a system of n oscillators charac-
terized by a positive n by n matrix Ω2, as in Sect. 2.2. A local observable of
such a system should be a function of the positions and momenta of a fixed
finite set of oscillators. Does the definition given above correctly incorporate
this intuition? Let’s check.

In this case, K = R
n, which I view as L2

R
(K), where K is simply the set

of n elements. Indeed, q ∈ R
n can be seen as a function q : j ∈ {1, . . . n} �→

q(j) ∈ R, obviously square integrable for the counting measure. I already
explained in detail the identification between the quantum state space L2(Rn)
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and F+(Cn) (Sect. 3.3). Here C
n is the complexification of R

n, and as such
naturally identified with L2(K,C). So, finally

L2(Rn) ∼= F+(L2(K,C)) .

Consider now a subset B of K, say B = {1, 6, 9}(n ≥ 9). It is an excellent
exercise to convince oneself that, unraveling the various identifications, a local
observable over B is a finite linear combination of operators on L2(Rn) of the
form (aj , bj ∈ R, j ∈ B):

exp−i




∑

j∈B
(ajPj − bjQj)



 .

Better yet, if you write (with �B denoting the cardinality of the set B)

L2(Rn) ∼= L2(R�B ,
∏

j∈B
dxj)⊗ L2(Rn−�B

∏

j 
∈B
dxj) ,

then it is clear that the weak closure of the above algebra is

B(L2(R�B ,
∏

j∈B
dxj))⊗ 1l .

So, indeed, a local observable is clearly one that involves only the degrees of
freedom indexed by elements of B.

Exercise 2. Convince yourself all of this is true.

Unbounded Local Observables

To make contact with the physics literature, it will be convenient on oc-
casion in the following to refer to polynomials in d

dtW (zΩ(tY ))|t=0 with
Y ∈ H(B,Ω) as local observables over B as well. These are sums of ex-
pressions of the form

ΠS(zΩ(Y1))ΠS(zΩ(Y2)) . . . ΠS(zΩ(Yn))

where each Yj ∈ H(B,Ω). Alternatively and perhaps more suggestively, these
are sums of expressions of the form

(η1 ·Q) . . . (ηm ·Q) and (η1 · P ) . . . (ηm · P ) ,

or of products thereof, where each ηj ∈ SB . Again, for lattices, these are
polynomials in the positions and momenta of the individual oscillators in
some subset B of the lattice Z

d.
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4.4 Strictly Localized Vacuum Excitations

I now want to give meaning to the notion of “local excitation of the vacuum”
for general free oscillator fields with a local structure S. So in this section
K = L2

r (K,dµ), and S satisfies the conditions of Definition 1.
The equivalent classical notion is readily described and was already dis-

cussed in Sect. 2.2. The vacuum, being the ground state of the system, is
the quantum mechanical equivalent of the global equilibrium X = 0, which
belongs of course to the phase space H, and a local perturbation of this equi-
librium is an initial condition X = (q, p) ∈ S × S with the support of q
and of p contained in a (typically bounded) subset B of K. An example of
a local perturbation of an oscillator lattice is a state X ∈ H where only q0
and p0 differ from 0. In the classical theory, local perturbations of the equi-
librium are therefore states that differ from the equilibrium state only inside
a bounded subset B of K. It is this last formulation that is readily adapted
to the quantum context, through the use of the notion of “local observable”
introduced previously.

For that purpose, we first introduce the following notion, which is due to
Knight [16].

Definition 3. Let ψ,ψ′ ∈ F+(KC). We will say that ψ and ψ′ are indistin-
guishable inside a Borel set B ⊂ K if, for all X ∈ H(B,Ω),

〈ψ|WF(zΩ(X))|ψ〉 = 〈ψ′|WF(zΩ(X))|ψ′〉 . (44)

Note that, given ψ and B, it is easy to construct many states that are locally
indistinguishable from ψ in B. Indeed, one may consider WF(zΩ(X))|ψ〉, for
any X ∈ H(Bc, Ω).

We are now ready to define what we mean by a strictly local excitation
of the vacuum.

Definition 4. If B is a Borel subset of K, a strictly local excitation of the
vacuum with support in B is a normalized vector ψ ∈ F+(KC), different from
the vacuum itself, which is indistinguishable from the vacuum outside of B.
In other words,

〈ψ|WF(zΩ(Y ))|ψ〉 = 〈0|WF(zΩ(Y ))|0〉 (45)

for all Y = (q, p) ∈ H(Bc, Ω).

For brevity, I will occasionally call such states “local states”, although
this terminology conjures up images that are misleading. In view of what
precedes, the coherent statesWF(zΩ(X))|0〉, for anyX ∈ H(B,Ω) are strictly
local excitations of the vacuum in B. The use of the adjective “strictly” is
motivated by the possibility of relaxing condition (45) to allow for states
that are only approximately localized in B, but for which the expectation
values of observables located far from B converge more or less rapidly to the
corresponding vacuum expectation values. I refer to [6] for details.
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4.5 Knight’s Theorem Revisited

Recall that states with a finite number of field quanta, i.e. states belonging
to Ffin,+(KC), are interpreted as states describing a finite number of quasi-
particles (see Sect. 3.5). Hence one natural question is whether such a state
can be a strictly local excitation of the vacuum in a set B. Theorem 1 below
gives a necessary and sufficient condition for this to happen.

First, I need a definition:

Definition 5. Ω is said to be strongly non-local on B if there does not exist a
non-vanishing h ∈ K1/2 with the property that both h and Ωh vanish outside
B.

Here I used the further definition:

Definition 6. Let h ∈ K±1/2 and B ⊂ K. Then h is said to vanish in B if
for all η ∈ SB, η · h = 0. Similarly, it is said to vanish outside B, if for all
η ∈ SBc , η · h = 0.

Note that this definition uses the density of SB in L2(B) implicitly, because
without this property, it would not make much sense. Intuitively, a strongly
non-local operator is one that does not leave the support of any function h
invariant.

Theorem 1. Let B be a Borel subset of K. Then the following are equivalent:
(i) Ω is strongly non-local on B;
(ii) There do not exist states in Ffin,+(KC) which are strictly strictly

local excitations of the vacuum with support in B ⊂ K;

I will give the proof of this result in Sect. 4.8.
Statement (i) of the theorem gives a more or less easily checked neccessary

and sufficient condition for the non-existence of states with a finite number
of field quanta that are localized in a region B. I will show in the examples
developed in the following sections that this condition is so to speak always
satisfied when B is a bounded set: I mean, it is satisfied in the various models
that are typically studied in solid state physics, in relativistic quantum field
theory, or in the theory of free quantum fields on curved space-times. Indeed,
in these examples,Ω2 is a finite difference or (second order elliptic) differential
operator, so that it is local: it preserves the support. But its positive square
root, Ω, is more like a pseudo-differential operator, and therefore does not
preserve supports. This will be shown in several cases below. The upshot is
that states with a finite number of particles, and a fortiori, one-particle states,
are never strictly localized in a bounded set B. This gives a precise sense in
which the elementary excitations of the vacuum in a bosonic field theory
(relativistic or not) differ from the ordinary point particles of non-relativistic
mechanics: their Hilbert space of states contains no states in which they are
perfectly localized.
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So, to sum it all up, you could put it this way. To the question

Why is there no sharp position observable for particles?

the answer is

It is the non-locality of Ω, stupid!

Should all this make you feel uncomfortable, I hope the further discus-
sion in Sects. 4.7 of the history of the quest for a “position observable” in
relativistic field theory will be of some help.

4.6 Examples

As a warm-up, here is my favourite example.

Exercise 3. Let K = R
2 so that Ω2 is a two by two matrix and, as explained

in Sect. 4.3,K = {1, 2}. Show that in this case, a state with a finite number of
quanta can be a strictly localized excitation of the vacuum on B = {1} only
if Ω2 is diagonal. In other words, this can happen only if the two oscillators
are not coupled.

For typical translationally invariant systems, it is easy to see Ω is strongly
non-local over bounded sets, so that we can conclude there are no strictly
localized finite particle states. This is the content of the following results.

Theorem 2. Let K = L2
R
(Rd,dx) and let ω be a positive function belonging

to L∞
loc(R

d,dk) with ω−1 ∈ L1
loc(R

d,dk). Suppose both ω and ω−1 are poly-
nomially bounded at infinity. Let Ω = ω(|∇|). Then S = S(Rd) is a local
structure for this system. If ω does not extend to a holomorphic function on
the complex plane, then Ω is strongly non-local on any bounded open set B.
Consequently, there exist no states with a finite number of quasi-particles that
are strictly localized excitations of the vacuum in such a set B.

The proof is a simple application of the Paley-Wiener theorem together
with Theorem 1. Note that the theorem applies to the Klein-Gordon equation:
so we recover in this way Knight’s original result. Pushing the use of the
Paley-Wiener theorem a little further, one can also prove:

Theorem 3. Let K = L2
R
(Rd,dx) and Ω2 = −∆+m2, with d ≥ 1,m > 0, or

d ≥ 2,m ≥ 0. Then S = S(Rd) is a local structure for this system and there
exist no states with a finite number of quasi-particles that are strictly localized
excitations of the vacuum in any set B with non-empty open complement.

The result one needs here is proven in [26]: for Ω =
√
−∆+m2, h and

Ωh cannot both vanish on the same open set. Via Theorem 1 this implies the
above result.

An analogous result holds for the translationally invariant lattices dis-
cussed in Sect. 2.2. In particular, with Ω2 as in (10), it is very easy to see
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that there are no states with a finite number of quanta that are perfectly
localized perturbations of the vacuum on a finite number of lattice sites. The
spatial structure is given here by the sequences of finite support, as discussed
in Sect. 4.3.

Similarly, for the wave and Klein-Gordon equations the operator Ω is
typically also strictly non-local, but I will not go into this here.

It is clear from these examples that Knight’s theorem has less to do with
relativity than with coupled oscillators, which is the point I wanted to make
all along.

4.7 Newton-Wigner Localization

Knight’s result appears counterintuitive. Indeed, we argued first that the Fock
space structure of the Hilbert space of states of the field invites a particle
interpretation (Sect. 3.5), we then introduced what looks like a perfectly rea-
sonable notion of “strictly localized excitation of the vacuum”, only to end
up discovering that states with a finite number of particles cannot be strictly
localized. Since the notion of a particle evokes an entity that is localized in
space, this may seem paradoxical. My point of view is simple: the way out
of this paradox is, as I have suggested before (Sect. 3.5), that one has to
keep in mind that the particles under discussion here are just excited states
of an extended system and that, just like in an oscillator ring, chain, or lat-
tice, the analogy with the point particles of elementary classical or quantum
mechanics courses should not be pushed too far. Calling those excitations
particles amounts to nothing more than an occasionally confusing abuse of
language. The lesson to be learned from Knight’s result is therefore that such
field quanta may carry momentum and energy, but they cannot be perfectly
localized. Viewed from the angle I have chosen, this is not even surprising.
The examples showed indeed this statement is true in a system with two
oscillators, and in oscillator lattices. One should in particular not hope to
associate a position operator with those quanta, having all the usual proper-
ties familiar from the description of point particles in ordinary Schrödinger
quantum mechanics.

I could end the story there. But a very different point of view, based
precisely on the use of a position operator (the so-called Newton-Wigner
position operator) to locate the particles, was developed well before Knight’s
work, in the context of (free) relativistic quantum field theory of which the
Klein-Gordon field is a particular example. Since this alternative point of
view has met with a certain amount of popularity, it cannot be dismissed
too lightly. Below I will explain it has an obvious analog for the oscillator
systems under study here and I will show why, although it seems at first sight
perfectly natural, it is clearly ill-conceived. The implication of this remark
for the debate about supposed causality problems in relativistic quantum
field theory and a further overview of some other issues related to “particle
localization” in that context will also be given.
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Newton-Wigner Localization: The Definition

Let us therefore turn again to an oscillator field with spatial structure so
that KC = L2(K,dµ,C). The state space of this system is the bosonic Fock
space F+(KC) of which KC = L2(K,dµ,C) represents the one-particle sector.
Now, if the system is in the state ψ ∈ KC ⊂ F+(KC), it is in view of the
particle interpretation of the field states explained in Sect. 3.5 very tempting
to interpret | ψ |2 (y)dµ as the probability for finding the “particle” in a
volume dµ around y, or in a preciser manner, to say that the probability for
finding the particle in B ⊂ K is given by

∫

B

| ψ |2 (y)dµ .

This seems like a quite reasonable thing to do because it is completely anal-
ogous to what is done in the non-relativistic Schrödinger quantum mechan-
ics of particle systems. I will call the projection valued measure B �→ χB ,
where χB is the operator of multiplication by the characteristic function of
B the Newton-Wigner position observable. If ψ ∈ L2(K,dµ,C) is supported
in B ⊂ K, we say ψ is “Newton-Wigner localized in B”. This terminology
is inspired by the observation that, when considering the particular example
of an oscillator field given by the wave or Klein-Gordon equation, one has
K = L2(R3,dx,C) and in that case the above measure is indeed the joint
spectral measure of the usual Newton-Wigner position operator of relativis-
tic quantum field theory [21]. This choice of position observable may seem
reasonable, but it is only based on an analogy, and as I will now show, it is
not reasonable at all.

For that purpose, let us go back to the particular example of the oscillator
ring treated before (Sects. 2.2 and 4.3) and see what the Newton-Wigner
position operator means in that case. Remember, this is just a system of n
coupled oscillators. So the quantum Hilbert space can on the one hand be seen
as L2(Rn,dx) (Schrödinger representation) and the system can be studied
through the displacements and momenta of those oscillators. This is the usual
point of view. Alternatively, it can be identified with the bosonic Fock space
F+(KC) (Fock representation), where now the one-particle subspace is KC =
C
n. The latter, as explained in Sect. 4.3, can be thought of as L2(Z/nZ,C).

In other words, it is tempting to interpret ψ ∈ KC as the quantum mechanical
state of a “particle” hopping along n sites! Its probability of being at site i
is then given by |ψ(i)|2. More generally, any state of the n oscillators can be
seen as a superposition of 0, 1, 2, . . . “particle” states, where now “particle”
refers to an imagined entity hopping along the sites of the chain. Speaking
like this, we are pushing the particle interpretation maximally. The state
a†(δi)|0〉 is then thought of as particle perfectly localized on the site i.

But does this make sense? Certainly, whatever picture used, the mean
square displacement of the oscillator at site j is a relevant physical observable
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in this system. The problem is that this mean square displacement will differ
from its vacuum value if j = i:

〈0|a(δi)Q2
ja

†(δi)|0〉 = 〈0|Q2
j |0〉 .

So the idea that the system contains only one particle, and that the latter
is localized perfectly at i, the rest of the sites being “empty”, is not tenable.
Indeed, if the particle is at site i, and if space (here represented by the n
sites) is otherwise “empty”, how can any observable at site j take a value
different from its vacuum value? The problem is of course readily solved if
one stops trying to interpret the quantity |ψ(i)|2 as a probability of presence
for a particle.

The same analysis carries immediately over to the oscillator chains or
lattices discussed before. It is perhaps even more telling there. Now the one
particle space is �2(Zd,C) and so the idea of thinking of states in this space
as describing a particle hopping on the sites of the lattice Z

d may seem
even more reasonable. Models of this type are used in solid state physics to
describe lattice vibrations, and the quanta are then called phonons. They are
excitations of the oscillator lattice and – as Knight’s theorem tells us – cannot
be perfectly localized in the sense that, if the system is in a one-phonon state
ψ ∈ �2(Zd), then it cannot coincide with the vacuum outside a finite subset of
the lattice. This does not lead to any interpretational difficulties, as long as
one does not try to interpret |ψ(i)|2 as the probability of finding the particle
at site i of the lattice.

Finally, without any change whatsoever, the same analysis carries over
to the Klein-Gordon equation. Let B be a bounded subset of R

3 and
ψ ∈ L2(R3,dx,C) be supported in B. As Knight’s theorem tells us, the cor-
responding one-particle state of the field is not an excitation of the vacuum
localized inside B.

The conclusion I draw from all this is that the Newton-Wigner operator
does not provide an appropriate tool to describe the strict localization prop-
erties of the states of extended systems of the type discussed here. It shows
up only because of an understandable but ill-fated desire to force a particle
interpretation with all its usual attributes on the states of a field. The right
notion of a (strictly) localized state is the one given by Knight (Definition
4). This has lead to some debate in the context of relativistic quantum field
theory, upon which I shall comment below. Anticipating on the discussion
there, I would like to stress that my line of argument here, and in particular
my criticism of the use of the Newton-Wigner operator has nothing to do
with relativity, or with causality, but is related instead to the fact that we
are dealing with extended systems.

Causality Problems

In the early days of relativistic quantum field theory, and well before anything
like Knight’s theorem was formulated or proven, the particle interpretation
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of the field states made it perfectly natural to search for a position operator
with the usual properties familiar from non-relativistic quantum mechanics.
In other words, if the field quanta are particles, one would want to answer
the question: “Where is the particle?” It should therefore not come as a
surprise that a fair amount of literature was devoted to this problem. The
theory received its definite form in [21] and a slightly more rigorous treatment
was subsequently given in [30]. References to earlier work can be found in
those two papers and in [25]. The discussion in [21] centers on the question
how to identify, inside a relativistic elementary system (i.e. inside a unitary
irreducible representation of the Poincaré group), a “position operator x̂ =
(x̂1, x̂2, x̂3)”, using only natural requirements – formulated as axioms – on the
transformation properties of this operator under rotations and translations.
The upshot of this analysis is that such an operator exists (for most values of
spin and mass) and that it is unique. It is called the Newton-Wigner position
operator in the literature. As an example, there exists such an operator in the
one field quantum sector of the quantized Klein-Gordon field, which carries an
irreducible representation of the Poincaré group of zero spin and it is precisely
the one discussed in the previous subsection. Now, the joint spectral measure
of the three components of x̂ defines a projection valued measure PB, where
B is a Borel subset of R

3. If the interpretation of x̂ as a position operator
along the lines of the usual interpretational rules of quantum mechanics is to
make sense, then eigenstates of PB with eigenvalue 1 are to be thought of as
states “perfectly localized inside B”. This is referred to as NW-localization.
This is precisely the interpretation given to the Newton-Wigner operator in
the literature which is, as explained before, at odds with Knight’s notion of
local excitation of the vacuum. Nevertheless, the axiomatic derivation of the
Newton-Wigner operator, and its perfect analogy with the familiar situation
in the quantum mechanics of non-relativistic particles gives it something very
compelling, which probably explains its success. As a result, some authors
have written that the Newton-Wigner operator is the only possible position
operator for relativistic quantum particles. In [30], one reads the following
claim: “I venture to say that any notion of localizability in three-dimensional
space which does not satisfy [the axioms] will represent a radical departure
from present physical ideas.” Newton and Wigner say something similar, but
do not put it so forcefully: “It seems to us that the above postulates are a
reasonable expression for the localization of the system to the extent that one
would naturally call a system unlocalizable if it should prove to be impossible
to satisfy these requirements. In [25] one can read: “One either accepts the
Newton-Wigner position operator when it exists, or abandons his axioms. We
believe the first alternative is well worth investigation and adopt it here.” I of
course have argued above that one should abandon it, and that this neither
constitutes a departure from standard physical ideas, nor means that one
abandons the notion of localizability.
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Still, even among those that have advocated the use of Newton-Wigner
localization, this notion has stirred up a fair amount of debate, since it violates
causality, as I now briefly explain.

Indeed, first of all, a one-particle state of the Klein-Gordon field perfectly
NW-localized in some bounded set B at an initial time, is easily seen to
have a non-zero probability to be found arbitrarily far away from B, at any
later time, violating causality. Since the theory is supposed to be relativistic,
this is a real problem that has received much attention. Actually, replacing
the projection operators PB of the NW-position operator by any other pos-
itive operators transforming correctly under space translations, Hegerfeldt
proved that the causality problem remains (see [13,14] and for a more recent
overview, [15]). In addition, and directly linked to the previous observation,
a state perfectly localized in one Lorentz frame is not in another one. These
difficulties, while well known and widely stressed, are often dismissed with
a vague appeal to one of the following somewhat related ideas. Although
the Newton-Wigner derivation does not refer to any underlying field theory,
these arguments all involve remembering that the “particles” in relativistic
field theory are excitations of the field.

The first such argument goes as follows. In a field theory a position mea-
surement of a particle would lead to pair creation (see [25]) and so the ap-
pearance of particles far away is not paradoxical. This line of reasoning is not
very satisfactory (as already pointed out in [21]), since it seems to appeal to
a (non-specified) theory of interacting fields to deal with the a priori simple
non-interacting field. An alternative argument stresses that in a theory which
allows for multi-particle states, the observation of exactly one particle inside
a bounded set B entails the observation of the absence of particles everywhere
else, and is therefore not really a local measurement. As such, the appear-
ance later on of particles far away does not violate causality (see [10]). This
argument is certainly correct. But it is again qualitative and nothing guar-
antees that it can correctly account for the “amount” of causality violation
generated by the Newton-Wigner position.

All in all, it seems considerably simpler to adopt the notion of “strictly lo-
calized vacuum excitation” introduced by Knight, which is perfectly adapted
to the study of the extended systems under consideration here and to accept
once and for all that the particles of field theory are elementary excitations
of the system (or field quanta) that do not have all the usual attributes of
the point particles of our first mechanics and quantum mechanics courses.
This seems to be the point of view implicitly prevalent among physicists,
although it is never clearly spelled out in the theoretical physics textbooks
for example, as I will discuss in more detail in [6]. It also has the advantage
that no causality problems arise. Although traces of this argument can oc-
casionally be found in the more mathematically oriented literature, Knight’s
definition of a strictly local excitation of the vacuum and his result on the
non-localizability of finite particle states seem to be mostly ignored in dis-
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cussions of the issue of the localizability of particles in field theory, of which
there continue to be many [1,7, 8, 12,27,28].

Having advocated Knight’s definition of “local state”, it remains to prove
the extension of his theorem given above.

4.8 Proof of Theorem 1

The theorem is reduced to abstract nonsense through the following propo-
sition. Note that, for any subset M of a Hilbert space V, M⊥ denotes its
orthogonal complement, which is a complex subspace of V.

Proposition 2. Let K = L2
R
(K,dµ), Ω and S be as before. Let B ⊂ K. Then

the following statements are equivalent.
(i) Ω is strongly non-local over B.
(ii) (zΩ(H(Bc, Ω)))⊥ = {0} or, equivalently,

(span
C
zΩ(H(Bc, Ω)))⊥ = {0} . (46)

Indeed, that Theorem 1 (i) and (ii) are equivalent now follows from The-
orem 4 below.

Proof. (Proposition 2) It is easy to see that ξ ∈ (zΩ(H(Bc, Ω)))⊥ if and only
if

ξ ·Ω1/2η = 0 = ξ ·Ω−1/2η ,

for all η ∈ SBc . We can suppose without loss of generality that ξ is real. Now,
if ξ ∈ K, then Ω1/2ξ ∈ K−1/2 and hence

0 = ξ ·Ω1/2η = Ω1/2ξ · η

which proves Ω1/2ξ vanishes outside B. Similarly Ω−1/2ξ vanishes outside B.
Setting h = Ω−1/2ξ the result follows.

Theorem 4. Let W be a real subspace of V.
(i) If ψ ∈ F+((span

C
W)⊥) ⊂ F+(V), ‖ ψ ‖= 1, then

〈ψ|WF(ξ)|ψ〉 = 〈0|WF(ξ)|0〉, ∀ξ ∈ W . (47)

(ii) If span
C
W is dense in V then there exist no ψ ∈ Ffin,+(V) other than

|0〉 itself so that (47) holds.

Clearly, the equivalence of (i) and (ii) in Theorem 1 is obtained by taking
W = zΩ(H(Bc, Ω)) in the above theorem and applying Proposition 2.

Proof. As a warm-up, let us prove that, if |ψ〉 = a†(ξ′)|0〉, for some ξ′ ∈ V,
then (47) holds if and only if ξ′ ∈ (span

C
W)⊥ and ‖ ξ′ ‖= 1. Indeed, for all

ξ ∈ W,
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〈ψ|WF(ξ)|ψ〉 = 〈0|a(ξ′)[1l + a†(ξ)][1l− a(ξ)]a†(ξ′)|0〉e− 1
2‖ξ‖

2

= 〈0|WF(ξ)|0〉 ‖ ξ′ ‖2 −〈0|a(ξ′)a†(ξ)a(ξ)a†(ξ′)|0〉e− 1
2‖ξ‖

2

= 〈0|WF(ξ)|0〉
[
‖ ξ′ ‖2 −(ξ

′ · ξ)(ξ · ξ′)
]
.

Supposing (47) holds, this clearly implies ‖ ξ′ ‖= 1 and ξ′ ∈ (span
C
W)⊥. The

converse is equally obvious. This proves the theorem for the very particular
case of states containing exactly one quantum. Note that this completely
characterizes the states with exactly one field quantum that are “localized”.

To prove part (i), we can now proceed as follows. Recall that

WF(ξ) = e−
1
2‖ξ‖

2
ea

†(ξ)e−a(ξ) .

Let ξ ∈ W. Suppose ψ = (ψ0, ψ1, ψ2, . . . , ψN , 0, 0, . . . ) ∈ Ffin,+((span
C
W)⊥).

Then
〈ψ|WF(ξ)|ψ〉 = e−

1
2‖ξ‖

2〈ψ,ψ〉 = 〈0|WF(ξ)|0〉 .
Indeed, as a result of the fact that ξ ∈ W and ψ ∈ Ffin,+((span

C
W)⊥), it

follows that a(ξ)ψ = 0 so that e−a(ξ)ψ = ψ. From this one can conclude as
follows. For any ψ = (ψ0, . . . , ψn, . . . ) ∈ F+((span

C
W)⊥) and for any N ∈ N,

we can write
ψ = ψ<N + ψ>N

where ψ<N = (ψ0, . . . , ψN , 0, . . . , ). Then, for any ε > 0, there exists Nε ∈ N

so that

〈ψ|WF(ξ)|ψ〉 = 〈ψ<Nε
|WF(ξ)|ψ<Nε

〉+O(ε) = 〈0|WF(ξ)|0〉+O(ε) ,

where the error term is uniform in ξ. Taking ε to 0, the result now follows.
In order to prove part (ii), I start with the following preliminary compu-

tation. Let N ∈ N and consider ψ = (ψ0, ψ1, ψ2, . . . , ψN , 0, 0, . . . ) ∈ Ffin,+(V)
with ψN = 0. We wish to compute, for any t ∈ R, for any ξ ∈ W,

〈ψ|WF(tξ)|ψ〉 =
N∑

n,m=0

〈ψn|WF(tξ)|ψm〉 .

We will first establish that

〈ψ|WF(tξ)|ψ〉e 1
2 t

2‖ξ‖2

is a polynomial of degree at most 2N in t, for fixed ξ. For that purpose, it is
enough to notice that any term of the type

〈ψn|WF(tξ)|ψm〉e
1
2 t

2‖ξ‖2

is a polynomial of degree at most n+m. This follows from
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〈ψn|WF(tξ)|ψm〉e
1
2 t

2‖ξ‖2
= 〈ψn|ea

†(tξ)e−a(tξ)|ψm〉

=
n∑

�1=0

m∑

�2=0

1
�1!�2!

〈ψn|(a†(tξ))�1(−a(tξ))�2 |ψm〉

It is clear that this is a polynomial of degree at most n +m. Also, the sum
can actually be restricted to those �1, �2 for which

m− �2 = n− �1 .

The term of degre 2N of the above polynomial is now easily identified:

〈ψN |WF(tξ)|ψN 〉e
1
2‖tξ‖

2
= 〈ψN |ea

†(tξ)e−a(tξ)|ψN 〉

=
N∑

�1,�2=0

1
�1!�2!

〈ψN |(a†(tξ))�1(−a(tξ))�2 |ψN 〉

=
(−1)N t2N

N !N !
〈ψN |(a†(ξ))N (a(ξ))N |ψN 〉+O(t2N−1) .

Suppose now (47) holds for ψ. Then this polynomial actually has to be a
constant, so, if N ≥ 1,

(a(ξ))N |ψN 〉 = 0

for all ξ ∈ W. Now let ξ1 . . . ξN ∈ W and consider the polynomial

(a(t1ξ1 + · · ·+ tNξN ))N |ψN 〉 = 0

in the variables t1, . . . , tN ∈ R. Since each of its coefficients must vanish, we
conclude that

a(ξ1)a(ξ2) . . . a(ξN )|ψN 〉 = 0 ,

for any choice of the ξ1 . . . ξN ∈ W. Consequently, this is also true for any
choice of ξ1 . . . ξN ∈ span

C
W. Introduce now an orthonormal basis ηi, i ∈ N,

of V, with each ηi ∈ span
C
W. Then, in view of the above,

a(ηi1)a(ηi2) . . . a(ηiN )|ψN 〉 = 0 ,

for any choice i1 . . . iN ∈ N. It is then clear that ψN = 0. Since by hypothesis
ψN = 0, it follows that N = 0, so that ψ belongs to the zero-particle subspace
F+

0 (V).

References

1. H. Bacry, Localizability and space in quantum physics, Lecture Notes in Physics
308, Springer Verlag (1988).

2. O. Bratteli, D.W. Robinson, Operator algebras and quantum statistical mechan-
ics, Vol. 1, Springer-Verlag (1987).



60 S. De Bièvre
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Harré, Clarendon Press Oxford, 137–148 (1988).



Local States of Free Bose Fields 61

28. P. Teller, An interpretive introduction to quantum field theory, Princeton Uni-
versity Press (1995).

29. R.M. Wald, Quantum field theory in curved spacetime and black hole thermody-
namics, University of Chicago Press, Chicago Lecture Notes in Physics (1994).

30. A.S. Wightman, On the localizability of quantum mechanical systems, Rev.
Mod. Phys. 34, 1, 845–872 (1962).



Introduction to Representations
of the Canonical Commutation
and Anticommutation Relations

J. Dereziński
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1 Introduction

Since the early days of quantum mechanics it has been noted that the position
operator x and the momentum operator D := −i∇ satisfy the following
commutation relation:

[x,D] = i . (1)

Similar commutation relation hold in the context of the second quantization.
The bosonic creation operator a∗ and the annihilation operator a satisfy

[a, a∗] = 1 . (2)

If we set a∗ = 1√
2
(x − iD), a = 1√

2
(x + iD), then (1) implies (2), so we see

that both kinds of commutation relations are closely related.
Strictly speaking the formulas (1) and (2) are ill defined because it is

not clear how to interpret the commutator of unbounded operators. Weyl
proposed to replace (1) by

eiηxeiqD = e−iqηeiqDeiηx, η, q ∈ R, (3)

which has a clear mathematical meaning [75]. Equation (1) is often called
the canonical commutation relation (CCR) in the Heisenberg form and (3)
in the Weyl form.

It is natural to ask whether the commutation relations fix the operators
x and D uniquely up to the unitary equivalence. If we assume that we are
given two self-adjoint operators x and D acting irreducibly on a Hilbert space
and satisfying (3), then the answer is positive, as proven by Stone and von
Neumann [51], see also [68].
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It is useful to generalize the relations (1) and (2) to systems with many
degrees of freedom. They were used by Dirac to describe quantized electro-
magnetic field in [30].

In systems with many degrees of freedom it is often useful to use a
more abstract setting for the CCR. One can consider n self-adjoint operators
φ1, . . . , φn satisfying relations

[φj , φk] = iωjk , (4)

where ωjk is an antisymmetric matrix. Alternatively one can consider the
Weyl (exponentiated) form of (4) satisfied by the so-called Weyl operators
ei(y1φ1+···+ynφn), where (y1, . . . , yn) ∈ R

n.
The Stone-von Neumann Theorem about the uniqueness can be extended

to the case of regular representations of the CCR in the Weyl form if ωjk is
a finite dimensional symplectic matrix. Note that in this case the relations
(4) are invariant with respect to the symplectic group. This invariance is im-
plemented by a projective unitary representation of the symplectic group, as
has been noted by Segal [63]. It can be expressed in terms of a representation
of the two-fold covering of the symplectic group – the so-called metaplectic
representation, [61,74].

The symplectic invariance of the CCR plays an important role in many
problems of quantum theory and of partial differential equations. An interest-
ing and historically perhaps first nontrivial application is due to Bogolubov,
who used it in the theory of superfluidity of the Bose gas [15]. Since then, the
idea of using symplectic transformations in bosonic systems often goes in the
physics literature under the name of the Bogolubov method, see e.g. [34].

The Canonical Anticommutation Relations (CAR) appeared in mathe-
matics before quantum theory in the context of Clifford algebras [19]. A
Clifford algebra is the associative algebra generated by elements φ1, . . . , φn
satisfying the relations

[φi, φj ]+ = 2δij , (5)

where [·, ·]+ denotes the anticommutator. It is natural to assume that the
φi are self-adjoint. It is not difficult to show that if the representation (5) is
irreducible, then it is unique up to the unitary equivalence for n even and
that there are two inequivalent representations for an odd n.

In quantum physics, the CAR appeared in the description of fermions [45].
If a∗1, . . . , a

∗
m are fermionic creation and a1, . . . , am fermionic annihilation

operators, then they satisfy

[a∗i , a
∗
j ]+ = 0, [ai, aj ]+ = 0, [a∗i , aj ]+ = δij .

If we set φ2j−1 := a∗j + aj , φ2j := −i(a∗j − aj), then we see that they satisfy
the relations (5) with n = 2m.

Another application of the CAR in quantum physics are Pauli [52] and
Dirac [31] matrices used in the description of spin 1

2 particles.
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Clearly, the relations (5) are preserved by orthogonal transformations
applied to (φ1, . . . , φn). The orthogonal invariance of the CAR is implemented
by a projective unitary representation. It can be also expressed in terms of
a representation of the double covering of the orthogonal group, called the
Pin group. The so-called spinor representations of orthogonal groups were
studied by Cartan [18], and Brauer and Weyl [12].

The orthogonal invariance of the CAR relations appears in many disguises
in algebra, differential geometry and quantum physics. In quantum physics
it is again often called the method of Bogolubov transformations. A partic-
ularly interesting application of this method can be found in the theory of
superfluidity (a version of the BCS theory that can be found e.g. in [34]).

The notion of a representation of the CCR and CAR gives a convenient
framework to describe Bogolubov transformations and their unitary imple-
mentations. Analysis of Bogolubov transformations becomes especially inter-
esting in the case of an infinite number of degrees of freedom. In this case
there exist many inequivalent representations of the CCR and CAR, as no-
ticed in the 50’s, e.g. by Segal [64] and Gaarding and Wightman [38].

The most commonly used representations of the CCR/CAR are the so-
called Fock representations, defined in bosonic/fermionic Fock spaces. These
spaces have a distinguished vector Ω called the vacuum killed by the anni-
hilation operators and cyclic with respect to creation operators. They were
introduced in quantum physics by Fock [35] to describe systems of many
particle systems with the Bose/Fermi statistics. Their mathematical struc-
ture, and also the essential self-adjointness of bosonic field operators, was
established by Cook [21].

The passage from a one particle system to a system with an arbitrary
number of particles subject to the Bose/Fermi statistics is usually called sec-
ond quantization. Early mathematical research on abstract aspects of second
quantization was done by Friedrichs [37] and Segal [63,64].

In the case of an infinite number of degrees of freedom, the symplec-
tic/orthogonal invariance of representations of the CCR/CAR becomes much
more subtle. The unitary implementability of symplectic/orthogonal trans-
formations in the Fock space is described by the Shale/Shale-Stinespring The-
orem. These theorems say that implementable symplectic/orthogonal trans-
formation belong to a relatively small group Sp2(Y)/O2(Y), [61]/ [62]. In the
case of an infinite number of degrees of freedom there also exists an analogue
of the metaplectic/Pin representation. This seems to have been first noted
by Lundberg [49].

Among early works describing these results let us mention the book by
Berezin [14]. It gives concrete formulas for the implementation of Bogolubov
transformations in bosonic and fermionic Fock spaces. Related problems were
discussed, often independently, by other researchers, such as Ruijsenaars [59,
60].
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As stressed by Segal [64], it is natural to apply the language of C∗-algebras
in the description of the CCR and CAR. This is easily done in the case
of the CAR, where there exists an obvious candidate for the C∗-algebra of
the CAR over a given Euclidean space [17]. If this Euclidean space is of
countably infinite dimension, the C∗-algebra of the CAR is isomorphic to
the so called UHF (2∞) algebra studied by Glimm. Using representations of
this C∗-algebra one can construct various non-isomorphic kinds of factors
(W ∗-algebras with a trivial center), studied in particular by Powers [54] and
Powers and Stœrmer [55].

In the case of the CCR, the choice of the corresponding C∗-algebra is less
obvious. The most popular choice is the C∗-algebra generated by the Weyl
operators, studied in particular by Slawny [66]. One can, however, argue that
the “Weyl algebra” is not very physical and that there are other more natural
choices of the C∗-algebra of the CCR. Partly to avoid discussing such (quite
academic) topics, in our lecture notes we avoid the language of C∗-algebras.
On the other hand, we will use the language of W ∗-algebras, which seems
natural in this context.

One class of representations of the CCR and CAR – the quasi-free repre-
sentations – is especially widely used in quantum physics. In mathematical
literature they have been first identified by Robinson [58] and Shale and Stine-
spring [62]. Quasi-free representations were extensively studied, especially by
Araki [2, 4, 5, 7, 10] and van Daele [22].

A concrete realization of quasi-free representations is furnished by the
so-called Araki-Woods representations [8] in the bosonic and Araki-Wyss
representations [9] in the fermionic case. We describe these representations
in detail. From the physical point of view, they can be viewed as a kind of
a thermodynamical limit of representations for a finite number of degrees
of freedom. From the mathematical point of view, they provide interesting
and physically well motivated examples of factors of type II and III. It is
very instructive to use the Araki-Woods and Araki-Wyss representations as
illustrations for the Tomita-Takesaki theory and for the so-called standard
form of a W ∗-algebra [42] (see also [4, 16, 20, 29, 67]). They are quite often
used in recent works on quantum statistical physics, see e.g. [27,44].

It is interesting to note that the famous paper of Haag, Hugenholtz and
Winnink [41] about the KMS condition was directly inspired by the Araki-
Woods representation.

Araki-Woods/Araki-Wyss representations can be considered also in the
case of a finite number of degrees of freedom. In this case, they are equivalent
to a multiple of the usual representations of the CCR/CAR. This equivalence
can be described by the GNS representation with respect to a quasi-free state
composed with an appropriate unitarily implemented Bogolubov transforma-
tion. We discuss this topic in the section devoted to “confined” Bose/Fermi
gas.
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It is easy to see that real subspaces of a complex Hilbert space form
a complete complemented lattice, where the complementation is given by
the symplectic orthogonal complement. It is also clear that von Neumann
algebras on a given Hilbert space form a complete complemented lattice with
the commutant as the complementation. It was proven by Araki [1] (see
also [32]) that von Neumann algebras on a bosonic Fock space associated to
real subspaces of the classical phase space also form a complemented complete
lattice isomorphic to the corresponding lattice of real subspaces. We present
this result, used often in algebraic quantum field theory. We also describe the
fermionic analog of this result (which seems to have been overlooked in the
literature).

In the last section we describe a certain class of operators that we call
Pauli-Fierz operators, which are used to describe a small quantum system
interacting with a bosonic reservoir, see [11, 25–27] and references therein.
These operators have interesting mathematical and physical properties, which
have been studied in recent years by various authors. Pauli-Fierz operators
provide a good opportunity to illustrate the use of various representations of
the CCR.

The concepts discussed in these lectures, in particular representations of
the CCR and CAR, constitute, in one form or another, a part of the stan-
dard language of mathematical physics. More or less explicitly they are used
in any textbook on quantum field theory. Usually the authors first discuss
quantum fields “classically” – just the relations they satisfy without specify-
ing their representation. Only then one introduces their representation in a
Hilbert space. In the zero temperature, it is usually the Fock representation
determined by the requirement that the Hamiltonian should be bounded from
below, see e.g. [24]. In positive temperatures one usually chooses the GNS
representation given by an appropriate thermal state.

The literature devoted to topics contained in our lecture notes is quite
large. Let us mention some of the monographs. The exposition of the C∗-
algebraic approach to the CCR and CAR can be found in [17]. This mono-
graph provides also extensive historical remarks. One could also consult
an older monograph [33]. Modern exposition of the mathematical formal-
ism of second quantization can be also found e.g. in [13, 39]. We would
also like to mention the book by Neretin [50], which describes infinite di-
mensional metaplectic and Pin groups, and review articles by Varilly and
Gracia-Bondia [72, 73]. A very comprehensive article devoted to the CAR
C∗-algebras was written by Araki [6]. Introductions to Clifford algebras can
be found in [47,48,71]. In this collection of lecture notes De Bièvre discusses
the localizability for bosonic fields [24].

The theory of the CCR and CAR involves a large number of concepts
coming from algebra, analysis and physics. This is why the literature about
this subject is very scattered and uses various conventions, notations and
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terminology. Even the meaning of the expressions “a representation of the
CCR” and “a representation of the CAR” depends slightly on the author.

In our lectures we want to stress close analogies between the CCR and
CAR. Therefore, we tried to present both formalisms in a possibly parallel
way.

We also want to draw the reader’s attention toW ∗-algebraic aspects of the
theory. They shed a lot of light onto some aspects of mathematical physics.
The CAR and CCR are also a rich source of illustrations for various concepts
of the theory of W ∗-algebras.

We often refrain from giving proofs. Most of them are quite elementary
and can be easily provided by the interested reader.
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2 Preliminaries

In this section we review our basic notation, mostly about vector spaces and
linear operators.

2.1 Bilinear Forms

Let α be a bilinear form on a vector space Y. The action of α on a pair of
vectors y1, y2 ∈ Y will be written as y1αy2. We say that a linear map r on Y
preserves α iff

(ry1)α(ry2) = y1αy2, y1, y2 ∈ Y.
We say that α is nondegenerate, if for any non-zero y1 ∈ Y there exists y2 ∈ Y
such that y2αy1 = 0.

An antisymmetric nondegenerate form is called symplectic. A symmetric
nondegenerate form is called a scalar product.
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2.2 Operators in Hilbert Spaces

The scalar product of two vectors Φ, Ψ in a Hilbert space will be denoted by
(Φ|Ψ). It will be antilinear in the first argument and linear in the second.

If H1,H2 are Hilbert spaces, then B(H1,H2), resp. U(H1,H2) denotes
bounded, resp. unitary operators from H1 to H2.
A∗ denotes the hermitian adjoint of the operator A.
An operator U : H1 → H2 is called antiunitary iff it is antilinear, bijective

and (UΦ|UΨ) = (Φ|Ψ).
B2(H1,H2) denotes Hilbert-Schmidt operators fromH1 toH2, that is A ∈

B2(H1,H2) iff TrA∗A < ∞. Note that B2(H1,H2) has a natural structure
of the Hilbert space with the scalar product

(A|B) := TrA∗B .

B1(H1,H2) denotes trace class operators from H1 to H2, that is A ∈
B1(H1,H2) iff Tr(A∗A)1/2 <∞.

For a single space H, we will write B(H) = B(H,H), etc. Bh(H) will
denote bounded self-adjoint operators on H (the subscript h stands for “her-
mitian”). B+(H) denotes positive bounded operators on H. Similarly, B2

+(H)
and B1

+(H) stand for positive Hilbert-Schmidt and trace class operators on
H respectively.

By saying that A is an operator from H1 to H2 we will mean that the
domain of A, denoted by DomA is a subspace of H1 and A is a linear map
from DomA to H2.

The spectrum of an operator A is denoted by spA.

2.3 Tensor Product

We assume that the reader is familiar with the concept of the algebraic tensor
product of two vector spaces. The tensor product of a vector z ∈ Z and a
vector w ∈ W will be, as usual, denoted by z ⊗ w.

Let Z and W be two Hilbert spaces. The notation Z ⊗W will be used to
denote the tensor product of Z and W in the sense of Hilbert spaces. Thus
Z ⊗W is a Hilbert space equipped with the operation

Z ×W � (z, w) �→ z ⊗ w ∈ Z ⊗W ,

and with a scalar product satisfying

(z1 ⊗ w1|z2 ⊗ w2) = (z1|z2)(w1|w2) . (6)

Z ⊗W is the completion of the algebraic tensor product of Z and W in the
norm given by (6).
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2.4 Operators in a Tensor Product

Let a and b be (not necessarily everywhere defined) operators on Z and W.
Then we can define a linear operator a ⊗ b with the domain equal to the
algebraic tensor product of Dom a and Dom b, satisfying

(a⊗ b)(z ⊗ w) := (az)⊗ (bw) .

If a and b are densely defined, then so is a⊗ b.
If a and b are closed, then a ⊗ b is closable. To see this, note that the

algebraic tensor product of Dom a∗ and Dom b∗ is contained in the domain
of (a⊗ b)∗. Hence (a⊗ b)∗ has a dense domain.

We will often denote the closure of a⊗ b with the same symbol.

2.5 Conjugate Hilbert Spaces

Let H be a complex vector space. The space H conjugate to H is a complex
vector space together with a distinguished antilinear bijection

H � Ψ �→ Ψ ∈ H . (7)

The map (7) is called a conjugation on H. It is convenient to denote the
inverse of the map (7) by the same symbol. Thus Ψ = Ψ .

Assume in addition that H is a Hilbert space. Then we assume that H is
also a Hilbert space and (7) is antiunitary, so that the scalar product on H
satisfies

(Φ|Ψ = (Φ|Ψ) .

For Ψ ∈ H, let (Ψ | denote the operator in B(H,C) given by

H � Φ �→ (Ψ |Φ) ∈ C .

We will write |Ψ) := (Ψ |∗.
By the Riesz lemma, the map

H � Ψ �→ (Ψ | ∈ B(H,C)

is an isomorphism between H and the dual of H, that is B(H,C).
If A ∈ B(H), then A ∈ B(H) is defined by

H � Ψ �→ A Ψ := AΨ ∈ H .

We will identify B(H) with B(H).
If H is a real vector space, we always take Ψ �→ Ψ to be the identity.
Let Z,W be Hilbert spaces. We will often use the identification of the

set of Hilbert-Schmidt operators B2(Z,W) with W ⊗ Z, so that |Φ)(Ψ | ∈
B2(Z,W) corresponds to Φ⊗ Ψ ∈ W ⊗Z.
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We identify Z ⊗W with W ⊗Z.
If A ∈ B(Z,W), then A# ∈ B(W,Z) is defined as A# := A

∗
(recall that

∗ denotes the hermitian conjugation). A# is sometimes called the transpose
of A.

This is especially useful if A ∈ B(Z,Z). Then we say that A is symmetric
iff A# = A and antisymmetric if A# = −A. In other words, A is symmetric if

(z1|Az2) = (z2|Az1), z1, z2 ∈ Z ;

antisymmetric if

(z1|Az2) = −(z2|Az1), z1, z2 ∈ Z .

The space of symmetric and antisymmetric bounded operators from Z to
Z is denoted by Bs(Z,Z) and Ba(Z,Z) resp. The space of Hilbert-Schmidt
symmetric and antisymmetric operators from Z to Z is denoted by B2

s (Z,Z)
and B2

a(Z,Z) resp.

Remark 1. Note that, unfortunately, in the literature, e.g. in [56], the word
“symmetric” is sometimes used in a different meaning (“hermitian but not
necessarily self-adjoint”).

2.6 Fredholm Determinant

Let Y be a (real or complex) Hilbert space.
Let 1+B1(Y) denote the set of operators of the form 1+a with a ∈ B1(Y).

Theorem 1. There exists a unique function 1 + B1(Y) � r �→ det r that
satisfies

1) If Y = Y1 ⊕ Y2 with dimY1 < ∞ and r = r1 ⊕ 1, then det r = det r1,
where det r1 is the usual determinant of a finite dimensional operator
r1;

2) 1 +B1(Y) � r �→ det r is continuous in the trace norm.

det r is called the Fredholm determinant of r, see e.g. [57] Sect. XIII.17.

3 Canonical Commutation Relations

In this section we introduce one of the basic concept of our lectures – a
representation of the canonical commutation relations (CCR). We choose the
exponential form of the CCR – often called the Weyl form of the CCR.

In the literature the terminology related to CCR often depends on the
author, [13, 17, 25, 33]. What we call representations of the CCR is known
also as Weyl or Heisenberg-Weyl systems.
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3.1 Representations of the CCR

Let Y be a real vector space equipped with an antisymmetric form ω. (Note
that ω does not need to be nondegenerate). Let H be a Hilbert space. Recall
that U(H) denotes the set of unitary operators on H. We say that a map

Y � y �→Wπ(y) ∈ U(H) (8)

is a representation of the CCR over Y in H if

Wπ(y1)Wπ(y2) = e−
i
2y1ωy2Wπ(y1 + y2), y1, y2 ∈ Y. (9)

Note that (9) implies

Theorem 2. Let y, y1, y2 ∈ Y. Then

Wπ(y1)Wπ(y2) = e−iy1ωy2Wπ(y2)Wπ(y1) , (10)

Wπ∗(y) = Wπ(−y), Wπ(0) = 1 , (11)

Wπ(t1y)Wπ(t2y) = Wπ((t1 + t2)y), t1, t2 ∈ R . (12)

Equation (10) is known as the canonical commutation relation in the Weyl
form.

We say that a subset K ⊂ H is cyclic for (8) if

Span{Wπ(y)Ψ : Ψ ∈ K, y ∈ Y}

is dense in H. We say that Ψ0 ∈ H is cyclic if {Ψ0} is cyclic.
We say that the representation (8) is irreducible if the only closed subspace

of H preserved by Wπ(y) for all y ∈ Y is {0} and H. Clearly, in the case of
an irreducible representation, all nonzero vectors in H are cyclic.

Suppose we are given two representations of the CCR over the same space
(Y, ω):

Y � y �→Wπ1(y) ∈ U(H1) , (13)

Y � y �→Wπ2(y) ∈ U(H2) . (14)

We say that (13) is unitarily equivalent to (14) iff there exists a unitary
operator U ∈ U(H1,H2) such that

UWπ1(y) = Wπ2(y)U, y ∈ Y .

Clearly, given a representation of the CCR (8) and a linear transformation
r on Y that preserves ω,
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Y � y �→Wπ(ry) ∈ U(H)

is also a representation of the CCR.
If we have two representations of the CCR

Y1 � y1 �→Wπ1(y1) ∈ U(H1),

Y2 � y2 �→Wπ2(y2) ∈ U(H2),

then
Y1 ⊕ Y2 � (y1, y2) �→Wπ1(y1)⊗Wπ2(y2) ∈ U(H1 ⊗H2)

is also a representation of the CCR.
By (12), for any representation of the CCR,

R � t �→Wπ(ty) ∈ U(H) (15)

is a 1-parameter group. We say that a representation of the CCR (8) is regular
if (15) is strongly continuous for each y ∈ Y. Representations of the CCR
that appear in applications are usually regular.

3.2 Schrödinger Representation of the CCR

Let X be a finite dimensional real space. Let X# denote the space dual to X .
Then the form

(η1, q1)ω(η2, q2) = η1q2 − η2q1 (16)

on X# ⊕X is symplectic.
Let x be the generic name of the variable in X , and simultaneously the

operator of multiplication by the variable x in L2(X ). More precisely for any
η ∈ X# the symbol ηx denotes the self-adjoint operator on L2(X ) acting on
its domain as

(ηxΨ)(x) := (ηx)Ψ(x) .

Let D := 1
i∇x be the momentum operator on L2(X ). More precisely, for

any q ∈ X the symbol qD denotes the self-adjoint operator on L2(X ) acting
on its domain as

(qDΨ)(x) :=
1
i
q∇xΨ(x) .

It is easy to see that

Theorem 3. The map

X# ⊕X � (η, q) �→ ei(ηx+qD) ∈ U(L2(X )) (17)

is an irreducible regular representation of the CCR over X# ⊕X in L2(X ).
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Equation (17) is called the Schrödinger representation.
Conversely, suppose that Y is a finite dimensional real vector space

equipped with a symplectic form ω. Let

Y � y �→Wπ(y) ∈ U(H) (18)

be a representation of the CCR. There exists a real vector space X such that
the symplectic space Y can be identified with X# ⊕ X equipped with the
symplectic form (16). Thus we can rewrite (18) as

X# ⊕X � (η, q) �→Wπ(η, q) ∈ U(H)

satisfying

Wπ(η1, q1)Wπ(η2, q2) = e−
i
2 (η1q2−η2q1)Wπ(η1 + η2, q1 + q2) .

In particular,
X# � η �→Wπ(η, 0) ∈ U(H) , (19)

X � q �→Wπ(0, q) ∈ U(H) (20)

are unitary representations satisfying

Wπ(η, 0)Wπ(0, q) = e−iηqWπ(0, q)Wπ(η, 0) .

If (18) is regular, then (19) and (20) are strongly continuous.
The following classic result says that a representation of the CCR over

a symplectic space with a finite number of degrees of freedom is essentially
unique up to the multiplicity (see e.g. [17,33]):

Theorem 4 (The Stone–von Neumann theorem). Suppose that (Y, ω)
is a finite dimensional symplectic space and (18) a regular representation of
the CCR. Suppose that we fix an identification of Y with X#⊕X . Then there
exists a Hilbert space K and a unitary operator U : L2(X )⊗K → H such that

Wπ(η, q)U = U
(
ei(ηx+qD) ⊗ 1K

)
.

The representation of the CCR (18) is irreducible iff K = C.

Corollary 1. Suppose that Y is a finite dimensional symplectic space. Let
Y � y �→ Wπ1(y) ∈ U(H) and Y � y �→ Wπ2(y) ∈ U(H) be two regular
irreducible representations of the CCR. Then they are unitarily equivalent.

3.3 Field Operators

In this subsection we assume that we are given a regular representation Y �
y �→ Wπ(y) ∈ U(H). Recall that R � t �→ Wπ(ty) is a strongly continuous
unitary group. By the Stone theorem, for any y ∈ Y, we can define its self-
adjoint generator

φπ(y) := −i
d
dt
Wπ(ty)

∣
∣
∣
t=0

.

φπ(y) will be called the field operator corresponding to y ∈ Y.
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Remark 2. Sometimes, the operators φπ(y) are called Segal field operators.

Theorem 5. Let y, y1, y2 ∈ Y.
1) Let Ψ ∈ Dom φπ(y1) ∩Dom φπ(y2), c1, c2 ∈ R. Then

Ψ ∈ Dom φπ(c1y1 + c2y2),

φπ(c1y1 + c2y2)Ψ = c1φ
π(y1)Ψ + c2φπ(y2)Ψ.

2) Let Ψ1, Ψ2 ∈ Dom φπ(y1) ∩Dom φπ(y2). Then

(φπ(y1)Ψ1|φπ(y2)Ψ2)− (φπ(y2)Ψ1|φπ(y1)Ψ2) = iy1ωy2(Ψ1|Ψ2) . (21)

3) φπ(y1) + iφπ(y2) is a closed operator on the domain

Dom φπ(y1) ∩Dom φπ(y2) .

Equation (21) can be written somewhat imprecisely as

[φπ(y1), φπ(y2)] = iy1ωy2 (22)

and is called the canonical commutation relation in the Heisenberg form.

3.4 Bosonic Bogolubov Transformations

Let (Y, ω) be a finite dimensional symplectic space. Linear maps on Y pre-
serving ω are then automatically invertible. They form a group, which will
be called the symplectic group of Y and denoted Sp(Y).

Let Y � y �→ W (y) ∈ U(H) be a regular irreducible representation of
canonical commutation relations. The following theorem is an immediate con-
sequence of Corollary 1:

Theorem 6. For any r ∈ Sp(Y) there exists U ∈ U(H), defined uniquely up
to a phase factor (a complex number of absolute value 1), such that

UW (y)U∗ = W (ry) . (23)

Let Ur be the class of unitary operators satisfying (23). Then

Sp(Y) � r �→ Ur ∈ U(H)/U(1)

is a group homomorphism, where U(1) denotes the group of unitary scalar
operators on H.

One can ask whether one can fix uniquely the phase factor appearing in
the above theorem and obtain a group homomorphism of Sp(Y) into U(H)
satisfying (23). This is impossible, the best what one can do is the following
improvement of Theorem 6:
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Theorem 7. For any r ∈ Sp(Y) there exists a unique pair of operators
{Ur,−Ur} ⊂ U(H) such that

UrW (y)U∗
r = W (ry) ,

and such that we have a group homomorphism

Sp(Y) � r �→ ±Ur ∈ U(H)/{1,−1} . (24)

The representation (24) is called the metaplectic representation of Sp(Y).
Note that the homotopy group of Sp(Y) is Z. Hence, for any n ∈

{1, 2, . . . ,∞}, we can construct the n-fold covering of Sp(Y). The image of
the metaplectic representation is isomorphic to the double covering of Sp(Y).
It is often called the metaplectic group.

In the physics literature the fact that symplectic transformations can be
unitarily implemented is generally associated with the name of Bogolubov,
who successfully applied this idea to the superfluidity of the Bose gas. There-
fore, in the physics literature, the transformations described in Theorems 6
and 7 are often called Bogolubov transformations.

The proofs of Theorems 6 and 7 are most conveniently given in the Fock
representation, where one has simple formulas for Ur (see e.g. [14, 36]). We
will describe these formulas later on (in the more general context of an infinite
number of degrees of freedom).

4 Canonical Anticommutation Relations

In this section we introduce the second basic concept of our lectures, that of
a representation of the canonical anticommutation relations (CAR). Again,
there is no uniform terminology in this domain [13, 17, 33]. What we call a
representation of the CAR is often called Clifford relations, which is perhaps
more justified historically. Our terminology is intended to stress the analogy
between the CCR and CAR.

4.1 Representations of the CAR

Let Y be a real vector space with a positive scalar product α. Let H be
a Hilbert space. Recall that Bh(H) denotes the set of bounded self-adjoint
operators on H. We say that a linear map

Y � y �→ φπ(y) ∈ Bh(H) (25)

is a representation of the CAR over Y in H iff φπ(y) satisfy

[φπ(y1), φπ(y2)]+ = 2y1αy2, y1, y2 ∈ Y . (26)

We will often drop π, and write |y|α := (yαy)1/2.
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Remark 3. The reason of putting the factor 2 in (26) is the identity φ(y)2 =
yαy. Note, however, that in (22) there is no factor of 2, and therefore at some
places the treatment of the CCR and CAR will be not as parallel as it could
be.

Theorem 8. 1) sp φ(y) = {−|y|α, |y|α}.
2) Let t ∈ C, y ∈ Y. Then ‖t+ φ(y)‖ = max{|t+ |y|α|, |t− |y|α|}.
3) eiφ(y) = cos |y|α + i sin |y|α

|y|α φ(y).
4) Let Ycpl be the completion of Y in the norm | · |α. Then there exists a

unique extension of (25) to a continuous map

Ycpl � y �→ φπ
cpl

(y) ∈ Bh(H) . (27)

Moreover, (27) is a representation of the CAR.

Motivated by the last statement, henceforth we will assume that Y is
complete – that is, Y is a real Hilbert space.

By saying that (φ1, . . . , φn) is a representation of the CAR on H we
will mean that we have a representation of the CAR R

n � y �→ φ(y) ∈
Bh(H), where R

n is equipped with the canonical scalar product, ei is the
canonical basis of R

n and φi = φπ(ei). Clearly, this is equivalent to the
relations [φi, φj ]+ = 2δij .

We say that a subsetK ⊂ H is cyclic for (25) if Span{φπ(y1) · · ·φπ(yn)Ψ :
Ψ ∈ K, y1, . . . , yn ∈ Y, n = 1, 2, . . . } is dense in H. We say that Ψ0 ∈ H is
cyclic for (25) if {Ψ0} is cyclic.

We say that (25) is irreducible if the only closed subspace of H preserved
by φπ(y) for all y ∈ Y is {0} and H. Clearly, in the case of an irreducible
representation, all nonzero vectors in H are cyclic.

Suppose we are given two representations of the CAR over the same space
(Y, α):

Y � y �→ φπ1(y) ∈ Bh(H1) , (28)

Y � y �→ φπ2(y) ∈ Bh(H2) , (29)

then we say that (28) is unitarily equivalent to (29) iff there exists a unitary
operator U ∈ U(H1,H2) such that

Uφπ1(y) = φπ2(y)U, y ∈ Y .

Let Y1, Y2 be two real Hilbert spaces. Suppose that I is a self-adjoint
operator on H1 and

Y1 ⊕ R � (y1, t) �→ φπ1(y1) + tI ∈ Bh(H1) ,

Y2 � y2 �→ φπ2(y2) ∈ Bh(H2)
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are representations of the CAR. Then

Y1 ⊕ Y2 � (y1, y2) �→ φπ1(y1)⊗ 1 + I ⊗ φπ2(y2) ∈ B(H1 ⊗H2)

is a representation of the CAR.
If r ∈ B(Y) preserves the scalar product (is isometric), and we are given

a representation of the CAR (25), then

Y � y �→ φπ(ry) ∈ Bh(H)

is also a representation of the CAR.
Most of the above material was very similar to its CCR counterpart. The

following construction, however, has no analog in the context of the CCR:

Theorem 9. Suppose that R
n � y �→ φ(y) is a representation of the CAR.

Let y1, . . . , yn be an orthonormal basis in R
n. Set

Q := in(n−1)/2φ(y1) · · ·φ(yn) .

Then the following is true:
1) Q depends only on the orientation of the basis (it changes the sign under

the change of the orientation).
2) Q is unitary and self-adjoint, moreover, Q2 = 1.
3) Qφ(y) = (−1)nφ(y)Q, for any y ∈ Y.
4) If n = 2m, then Q = imφ(y1) · · ·φ(y2m) and

R
2m+1 � (y, t) �→ φ(y)± tQ

are two representations of the CAR.
5) If n = 2m+1, then Q = (−i)mφ(y1) · · ·φ(y2m+1) and H = Ker(Q−1)⊕

Ker(Q + 1) gives a decomposition of H into a direct sum of subspaces
preserved by our representation.

4.2 Representations of the CAR in Terms of Pauli Matrices

In the space C
2 we introduce the usual Pauli spin matrices σ1, σ2 and σ3.

This means

σ1 =
[

0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
.

Note that σ2
i = 1, σ∗i = σi, i = 1, 2, 3, and

σ1σ2 = −σ2σ1 = iσ3,

σ2σ3 = −σ3σ2 = iσ1

σ3σ1 = −σ1σ3 = iσ2.

(30)
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Moreover, B(C2) has a basis (1, σ1, σ2, σ3). Clearly, (σ1, σ2, σ3) is a represen-
tation of the CAR over R

3.
In the algebra B(⊗nC

2) we introduce the operators

σ
(j)
i := 1⊗(j−1) ⊗ σi ⊗ 1⊗(n−j), i = 1, 2, 3, j = 1, . . . , n .

Note that σ(j)
i satisfy (30) for any j and commute for distinct j. Moreover,

B(⊗nC
2) is generated as an algebra by {σ(j)

i : j = 1, . . . , n, i = 1, 2}.
Set Ij := σ

(1)
3 · · ·σ(j)

3 . In order to transform spin matrices into a representa-
tion of the CAR we need to apply the so-called Jordan-Wigner construction.
According to this construction,

(
σ

(1)
1 , σ

(1)
2 , I1σ

(2)
1 , I1σ

(2)
2 , . . . , In−1σ

(n)
1 , In−1σ

(n)
2

)

is a representation of the CAR over R
2n. By adding ±In we obtain a repre-

sentation of the CAR over R
2n+1.

The following theorem can be viewed as a fermionic analog of the Stone-
von Neumann Theorem 4. It is, however, much easier to prove and belongs
to standard results about Clifford algebras [47].

Theorem 10. 1) Let (φ1, φ2, . . . , φ2n) be a representation of the CAR over
R

2n in a Hilbert space H. Then there exists a Hilbert space K and a
unitary operator

U : ⊗n
C

2 ⊗K → H
such that

U
(
Ij−1σ

(j)
1 ⊗ 1K

)
= φ2j−1U,

U
(
Ij−1σ

(j)
2 ⊗ 1K

)
= φ2jU, j = 1, . . . , n.

The representation is irreducible iff K = C.
2) Let (φ1, φ2, . . . , φ2n+1) be a representation of the CAR over R

2n+1 in
a Hilbert space H. Then there exist Hilbert spaces K− and K+ and a
unitary operator

U : ⊗nC
2 ⊗ (K+ ⊕K−) → H

such that

U
(
Ij−1σ

(j)
1 ⊗ 1K+⊕K−

)
= φ2j−1U,

U
(
Ij−1σ

(j)
2 ⊗ 1K+⊕K−

)
= φ2jU, j = 1, . . . , n,

U
(
In ⊗ (1K+ ⊕−1K−)

)
= φ2n+1U.

Corollary 2. Suppose that Y is an even dimensional real Hilbert space. Let
Y � y �→ φπ1(y) ∈ Bh(H) and Y � y �→ φπ2(y) ∈ Bh(H) be two irreducible
representations of the CAR. Then they are unitarily equivalent.



82 J. Dereziński

4.3 Fermionic Bogolubov Transformations

Let (Y, α) be a finite dimensional real Hilbert space (a Euclidean space).
Linear transformations on Y that preserve the scalar product are invertible
and form a group, which will be called the orthogonal group of Y and denoted
O(Y).

Let
Y � y �→ φ(y) ∈ Bh(H) (31)

be an irreducible representation of the CAR. The following theorem is an
immediate consequence of Corollary 2:

Theorem 11. Let dimY be even. For any r ∈ O(Y) there exists U ∈ U(H)
such that

Uφ(y)U∗ = φ(ry) . (32)

The unitary operator U in (32) is defined uniquely up to a phase factor. Let
Ur denote the class of such operators. Then

O(Y) � r �→ Ur ∈ U(H)/U(1)

is a group homomorphism.

One can ask whether one can fix uniquely the phase factor appearing in
the above theorem and obtain a group homomorphism of O(Y) into U(H)
satisfying (32). This is impossible, the best one can do is the following im-
provement of Theorem 11:

Theorem 12. Let dimY be even. For any r ∈ O(Y) there exists a unique
pair {Ur,−Ur} ⊂ U(H) such that

Urφ(y)U∗
r = φ(ry) ,

and such that we have a group homomorphism

O(Y) � r �→ ±Ur ∈ U(H)/{1,−1} . (33)

The map (33) is called the Pin representation of O(Y).
Note that for dimY > 2, the homotopy group of O(Y) is Z2. Hence

the double covering of O(Y) is its universal covering. The image of the Pin
representation in U(H) is isomorphic to this double covering and is called the
Pin group.

In the physics literature the fact that orthogonal transformations can
be unitarily implemented is again associated with the name of Bogolubov
and the transformations described in Theorems 11 and 12 are often called
(fermionic) Bogolubov transformations. They are used e.g. in the theory of
the superconductivity.
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Theorems 11 and 12 are well known in mathematics in the context of
theory of Clifford algebras. They are most conveniently proven by using,
what we call, the Fock representation, where one has simple formulas for Ur.
We will describe these formulas later on (in a more general context of the
infinite number of degrees of freedom).

5 Fock Spaces

In this section we fix the notation for bosonic and fermionic Fock spaces.
Even though these concepts are widely used, there seem to be no universally
accepted symbols for many concepts in this area.

5.1 Tensor Algebra

Let Z be a Hilbert space. Let ⊗nZ denote the n-fold tensor product of Z.
We set

⊗Z =
∞
⊕
n=0

⊗nZ .

Here ⊕ denotes the direct sum in the sense of Hilbert spaces, that is the
completion of the algebraic direct sum. ⊗Z is sometimes called the full Fock
space. The element 1 ∈ C = ⊗0Z ⊂ ⊗Z is often called the vacuum and
denoted Ω.

Sometimes we will need ⊗finZ which is the subspace of ⊗Z with a finite
number of particles, that means the algebraic direct sum of ⊗nZ.
⊗Z and ⊗finZ are associative algebras with the operation ⊗ and the

identity Ω.

5.2 Operators dΓ and Γ in the Full Fock Space

If p is a closed operator from Z1 to Z2, then we define the closed operator
Γn(p) from ⊗nZ1 to ⊗nZ2 and Γ (p) from ⊗Z1 to ⊗Z2:

Γn(p) := p⊗n,

Γ (p) :=
∞
⊕
n=0

Γn(p) .

Γ (p) is bounded iff ‖p‖ ≤ 1. Γ (p) is unitary iff p is.
Likewise, if h is a closed operator on Z, then we define the closed operator

dΓn(h) on ⊗nZ and dΓ (h) on ⊗Z:

dΓn(h) =
n∑

j=1

1⊗(j−1)
Z ⊗ h⊗ 1⊗(n−j)

Z ,
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dΓ (h) :=
∞
⊕
n=0

dΓn(h) .

dΓ (h) is self-adjoint iff h is.
The number operator is defined as N = dΓ (1). The parity operator is

I := (−1)N = Γ (−1) . (34)

Let us give a sample of properties of operators on full Fock spaces.

Theorem 13. 1) Let h, h1, h2 ∈ B(Z), p1 ∈ B(Z,Z1), p2 ∈ B(Z1,Z2),
‖pi‖ ≤ 1. We then have

Γ (eih) = exp(dΓ (ih)) , (35)

Γ (p2)Γ (p1) = Γ (p2p1) ,

[dΓ (h1),dΓ (h2)] = dΓ ([h1, h2]) .

2) Let Φ, Ψ ∈ ⊗finZ, h ∈ B(Z), p ∈ B(Z,Z1). Then

Γ (p) (Φ⊗ Ψ) = (Γ (p)Φ)⊗ (Γ (p)Ψ) ,

dΓ (h) (Φ⊗Ψ) = (dΓ (h)Φ)⊗ Ψ + Φ⊗ (dΓ (h)Ψ) .

Of course, under appropriate technical conditions, similar statements are
true for unbounded operators. In particular (35) is true for any self-adjoint
h.

5.3 Symmetric and Antisymmetric Fock Spaces

Let Sn � σ �→ Θ(σ) ∈ U(⊗nZ) be the natural representation of the permu-
tation group Sn given by

Θ(σ)z1 ⊗ · · · ⊗ zn := zσ−1(1) ⊗ · · · ⊗ zσ−1(n) .

We define
Θn

s :=
1
n!

∑

σ∈Sn

Θ(σ) ,

Θn
a :=

1
n!

∑

σ∈Sn

(sgnσ)Θ(σ) .

Θn
s and Θn

a are orthogonal projections in ⊗nZ.
We will write s/a as a subscript that can mean either s or a. We set

Θs/a :=
∞
⊕
n=0

Θn
s/a .

Clearly, Θs/a is an orthogonal projection in ⊗Z.
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Define
Γns/a(Z) := Θn

s/a

(
⊗nZ

)
,

Γs/a(Z) := Θs/a

(
⊗Z
)

=
∞
⊕
n=0

Γns/a(Z).

Γs/a(Z) is often called the bosonic/fermionic or symmetric/antisymmetric
Fock space.

We also introduce the finite particle Fock spaces

Γ fin
s/a(Z) =

(
⊗finZ

)
∩ Γs/a(Z) .

Γs/a(Z) is a Hilbert space (as a closed subspace of ⊗Z).
Note that Γ 0

s/a(Z) = C and Γ 1
s/a(Z) = Z. Z is often called the 1-particle

space and Γs/a(Z) the second quantization of Z.
The following property of bosonic Fock spaces is often useful:

Theorem 14. The span of elements of the form z⊗n, z ∈ Z, is dense in
Γns (Z).

5.4 Symmetric and Antisymmetric Tensor Product

If Ψ,Φ ∈ Γ fin
s/a(Z), then we define

Ψ ⊗s/a Φ := Θs/a

(
Ψ ⊗ Φ

)
∈ Γ fin

s/a(Z) .

Γ fin
s/a(Z) is an associative algebra with the operation ⊗s/a and the identity Ω.

Note that z⊗n = z⊗sn.
Instead of ⊗a one often uses the wedge product, which for Ψ ∈ Γ pa (Z),

Φ ∈ Γ ra (Z) is defined as

Ψ ∧ Φ :=
(p+ r)!
p!r!

Ψ ⊗a Φ ∈ Γ fin
a (Z) .

It is also an associative operation. Its advantage over ⊗a is visible if we
compare the following identities:

v1 ∧ · · · ∧ vp =
∑

σ∈Sp

(sgnσ) vσ(1) ⊗ · · · ⊗ vσ(p),

v1 ⊗a · · · ⊗a vp = 1
p!

∑

σ∈Sp

(sgnσ) vσ(1) ⊗ · · · ⊗ vσ(p), v1, · · · , vp ∈ Z.

The advantage of ⊗a is that it is fully analogous to ⊗s.

5.5 dΓ and Γ Operations

If p is a closed operator from Z to W, then Γn(p), defined in Subsect. 5.2,
maps Γns/a(Z) into Γns/a(W). Hence Γ (p) maps Γs/a(Z) into Γs/a(W). We will
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use the same symbols Γn(p) and Γ (p) to denote the corresponding restricted
operators.

If h is a closed operator on Z, then dΓn(h) maps Γns/a(Z) into itself.
Hence, dΓ (h) maps Γs/a(Z) into itself. We will use the same symbols dΓn(h)
and dΓ (h) to denote the corresponding restricted operators.
Γ (p) is called the 2nd quantization of p. Similarly, dΓ (h) is sometimes

called the 2nd quantization of h.

Theorem 15. Let p ∈ B(Z,Z1), h ∈ B(Z), Ψ,Φ ∈ Γ fin
s/a(Z). Then

Γ (p)
(
Ψ ⊗s/a Φ

)
= (Γ (p)Ψ)⊗s/a (Γ (p)Φ) ,

dΓ (h)
(
Ψ ⊗s/a Φ

)
= (dΓ (h)Ψ)⊗s/a Φ+ Ψ ⊗s/a (dΓ (h)Φ) .

5.6 Tensor Product of Fock Spaces

In this subsection we describe the so-called exponential law for Fock spaces.
Let Z1 and Z2 be Hilbert spaces. We introduce the identification

U : Γ fin
s/a(Z1)⊗ Γ fin

s/a(Z2) → Γ fin
s/a(Z1 ⊕Z2)

as follows. Let Ψ1 ∈ Γns/a(Z1), Ψ2 ∈ Γms/a(Z2). Let ji be the imbedding of Zi
in Z1 ⊕Z2. Then

U(Ψ1 ⊗ Ψ2) :=
√

(n+m)!
n!m! (Γ (j1)Ψ1)⊗s/a (Γ (j2)Ψ2) . (36)

Theorem 16. 1) U(Ω1 ⊗Ω2) = Ω.
2) U extends to a unitary operator Γs/a(Z1)⊗ Γs/a(Z2) → Γs/a(Z1 ⊕Z2).
3) If hi ∈ B(Zi), then

U
(
dΓ (h1)⊗ 1 + 1⊗ dΓ (h2)

)
= dΓ (h1 ⊕ h2)U.

4) If pi ∈ B(Zi), then

U (Γ (p1)⊗ Γ (p2)) = Γ (p1 ⊕ p2)U.

5.7 Creation and Annihilation Operators

Let Z be a Hilbert space and w ∈ Z. We consider the bosonic/fermionic Fock
space Γs/a(Z).

Let w ∈ Z. We define two operators with the domain Γ fin
s/a(Z). The cre-

ation operator is defined as

a∗(w)Ψ :=
√
n+ 1w ⊗s/a Ψ, Ψ ∈ Γns/a(Z)
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In the fermionic case, a∗(w) is bounded. In the bosonic case, a∗(w) is densely
defined and closable. In both cases we define denote the closure of a∗(w) by
the same symbol. Likewise, in both cases we define the annihilation operator
by

a(w) := a∗(w)∗ .

Note that
a(w)Ψ =

√
n
(
(w| ⊗ 1

)
Ψ, Ψ ∈ Γns/a(Z) .

Theorem 17. 1) In the bosonic case we have

[a∗(w1), a∗(w2)] = 0, [a(w1), a(w2)] = 0,

[a(w1), a∗(w2)] = (w1|w2).

2) In the fermionic case we have

[a∗(w1), a∗(w2)]+ = 0, [a(w1), a(w2)]+ = 0,

[a(w1), a∗(w2)]+ = (w1|w2).

In both bosonic and fermionic cases the following is true:

Theorem 18. Let p, h ∈ B(Z) and w ∈ Z. Then
1) Γ (p)a(w) = a(p∗−1w)Γ (p),
2) [dΓ (h), a(w)] = −a(h∗w),
3) Γ (p)a∗(w) = a∗(pw)Γ (p),
4) [dΓ (h), a∗(w)] = a∗(hw).

The exponential law for creation/annihilation operators is slightly differ-
ent in the bosonic and fermionic cases:

Theorem 19. Let Z1 and Z2 be Hilbert spaces and (w1, w2) ∈ Z1 ⊕Z2. Let
U be the defined for these spaces as in Theorem 16.

1) In the bosonic case we have

a∗(w1, w2)U = U(a∗(w1)⊗ 1 + 1⊗ a∗(w2)) ,

a(w1, w2)U = U(a(w1)⊗ 1 + 1⊗ a(w2)) .

2) In the fermionic case, if I1 denotes the parity operator for Γa(Z1) (see
(34)), then

a∗(w1, w2)U = U(a∗(w1)⊗ 1 + I1 ⊗ a∗(w2)) ,

a(w1, w2)U = U(a(w1)⊗ 1 + I1 ⊗ a(w2)) .
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Set
Λ := (−1)N(N−1)/2. (37)

The following property is valid both in the bosonic and fermionic cases:

Λa∗(z)Λ = −Ia∗(z) = a∗(z)I,

Λa(z)Λ = Ia(z) = −a(z)I.
(38)

In the fermionic case, (38) allows to convert the anticommutation relations
into commutation relations

[Λa∗(z)Λ, a∗(w)] = [Λa(z)Λ, a(w)] = 0,

[Λa∗(z)Λ, a(w)] = I(w|z).

Theorem 20. Let the assumptions of Theorem 19 be satisfied. Let Ni, Ii, Λi
be the operators defined as above corresponding to Zi, i = 1, 2. Then

1) ΛU = U(Λ1 ⊗ Λ2)(−1)N1⊗N2 .
2) In the fermionic case,

Λa∗(w1, w2)Λ U = U(a∗(w1)I1 ⊗ I2 + 1⊗ a∗(w2)I2),

Λa(w1, w2)Λ U = U(−a(w1)I1 ⊗ I2 − 1⊗ a(w2)I2).

Proof. To prove 2) we use 1) and (−1)N1⊗N2a(w)⊗1(−1)N1⊗N2 = a(w)⊗I2.
�

5.8 Multiple Creation and Annihilation Operators

Let Φ ∈ Γms/a(Z). We define the operator of creation of Φ with the domain
Γ fin

s/a(Z) as follows:

a∗(Φ)Ψ :=
√

(n+ 1) · · · (n+m)Φ⊗s/a Ψ, Ψ ∈ Γns/a .

a∗(Φ) is a densely defined closable operator. We denote its closure by the
same symbol. We set

a(Φ) := (a∗(Φ))∗ .

a(Φ) is called the operator of annihilation of Φ. For w1, . . . , wm ∈ Z we have

a∗(w1 ⊗s/a · · · ⊗s/a wm) = a∗(w1) · · · a∗(wm) ,

a(w1 ⊗s/a · · · ⊗s/a wm) = a(wm) · · · a(w1) .

Recall from Subsect. 2.5 that we can identify the space B2(Z,Z) with
⊗2Z. Hence, we have an identification of B2

s/a(Z,Z) with Γ 2
s/a(Z).

Thus if c ∈ B2
s/a(Z,Z), then by interpreting c as an element of Γ 2

s/a(Z),
we can use the notation a∗(c) / a(c) for the corresponding two-particle cre-
ation/annihilation operators.
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6 Representations of the CCR in Fock Spaces

6.1 Field Operators

Let Z be a (complex) Hilbert space. Define the real vector space

Re(Z ⊕ Z) := {(z, z) : z ∈ Z} . (39)

Clearly, Re(Z⊕Z) is a real subspace of Z⊕Z. For shortness, we will usually
write Y for Re(Z ⊕Z). In this section we will treat Y as a symplectic space
equipped with the symplectic form

(z, z)ω(w,w) = 2Im(z|w) .

Consider the creation/annihilation operators a∗(z) and a(z) acting on the
bosonic Fock space Γs(Z). For y = (w,w) ∈ Y we define

φ(y) := a∗(w) + a(w) .

Note that φ(y) is essentially self-adjoint on Γ fin
s (Z). We use the same

symbol φ(y) for its self-adjoint extension.
We have the following commutation relations

[φ(y1), φ(y2)] = iy1ωy2, y1, y2 ∈ Y ,

as an identity on Γ fin
s (Z).

It is well known that in every bosonic Fock space we have a natural
representation of the CCR:

Theorem 21. The map

Y � y �→W (y) := eiφ(y) ∈ U(Γs(Z)) (40)

is a regular irreducible representation of the CCR.

(40) is called the Fock representation of the CCR.
One often identifies the spaces Y and Z through

Z � z �→ 1√
2
(z, z) ∈ Y . (41)

With this identification, one introduces the field operators for w ∈ Z as

φ(w) :=
1√
2

(a∗(w) + a(w)) .

The converse identities are

a∗(w) = 1√
2

(φ(w)− iφ(iw)) ,

a(w) = 1√
2

(φ(w) + iφ(iw)) .
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Note that in the fermionic case a different identification seems more conve-
nient (see (54)). In this section we will avoid to identify Z with Y.

Note that the physical meaning of Z and Y is different: Z is the one-
particle Hilbert space of the system, Y is its classical phase space and Z ⊕Z
can be identified with the complexification of the classical phase space, that
is CY. For instance, if we are interested in a real scalar quantum field theory,
then Z is the space of positive energy solutions of the Klein-Gordon equation,
Y is the space of real solutions and Z ⊕Z is the space of complex solutions.
See e.g. [24] in this collection of lecture notes, where this point is dicussed in
more detail.

6.2 Bosonic Gaussian Vectors

Let c ∈ B2
s (Z,Z). Recall that c can be identified with an element of Γ 2

s (Z).
Recall from Subsect. 5.8 that we defined an unbounded operator a∗(c) on
Γs(Z) such that for Ψn ∈ Γns (Z)

a∗(c)Ψn :=
√

(n+ 2)(n+ 1) c⊗s Ψn ∈ Γn+2
s (Z). (42)

Theorem 22. Assume that ‖c‖ < 1.
1) e

1
2a

∗(c) is a closable operator on Γ fin
s (Z).

2) det(1− cc∗) > 0, so that we can define the vector

Ωc := (det(1− cc∗))
1
4 exp

(
1
2a

∗(c)
)
Ω (43)

It is the unique vector in Γs(Z) satisfying

‖Ωc‖ = 1, (Ωc|Ω) > 0, (a(z)− a∗(cz))Ωc = 0, z ∈ Z .

In the Schrödinger representation the vectorsΩc are normalized Gaussians
with an arbitrary dispersion – hence they are often called squeezed states.

6.3 Complex Structures Compatible with a Symplectic Form

Before analyzing Bogolubov transformations on a Fock space it is natural to
start with a little linear algebra of symplectic vector spaces.

We can treat Y as a real Hilbert space. In fact, we have a natural scalar
product

(z, z)α(w,w) := Re(z|w) .

This scalar product will have a fundamental importance in the next sec-
tion, when we will discuss fermions. In this section we need it only to define
bounded and trace class operators.

We define Sp(Y) to be the set of all bounded invertible linear maps on Y
preserving ω. (This extends the definition of Sp(Y) from the case of a finite
dimensional symplectic space Y to the present context).
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A linear map j is called a complex structure (or an antiinvolution) iff
j2 = −1. We say that it is compatible with a symplectic form ω iff j ∈ Sp(Y)
and the symmetric form y1ωjy2, where y1, y2 ∈ Y, is positive definite. (One
also says that j is Kähler with respect to ω).

On Y we introduce the linear map

j(z, z) := (iz,−iz) .

It is easy to see that j is a complex structure compatible with ω.
Note that fixing the complex structure j on the symplectic space Y

compatible with the symplectic form ω is equivalent to identifying Y with
Re(Z ⊕ Z) for some complex Hilbert space Z.

Let r ∈ B(Y). We can extend r to Z ⊕Z by complex linearity. On Z ⊕Z
we can write r as a 2 by 2 matrix

r =
[
p q
q p

]
,

where p ∈ B(Z,Z), q ∈ B(Z,Z). Now r ∈ Sp(Y) iff

p∗p− q#q = 1, p#q − q∗p = 0,

pp∗ − qq∗ = 1, pq# − qp# = 0.

We have
pp∗ ≥ 1, p∗p ≥ 1 .

Hence p−1 exists and ‖p−1‖ ≤ 1.
We define the operators c, d ∈ B(Z,Z)

c := p−1q = q#(p#)−1, d := qp−1 = (p∗)−1q# .

Note that d, c are symmetric (in the sense defined in Sect. 2), ‖d‖ ≤ 1,
‖c‖ ≤ 1,

r =
[

1 d
0 1

] [
(p∗)−1 0

0 p

] [
1 0
c 1

]
, (44)

1− cc∗ = (p∗p)−1, 1− dd∗ = (p∗p)−1 .

The decomposition (44) plays an important role in the description of Bogol-
ubov transformations.

In the following theorem we introduce a certain subgroup of Sp(Y), which
will play an important role in Shale’s Theorem on the implementabilty of
Bogolubov transformations.

Theorem 23. Let r ∈ Sp(Y). The following conditions are equivalent:

0) j − rjr−1 ∈ B2(Y), 1) rj − jr ∈ B2(Y),

2) Trq∗q <∞, 3) Tr(pp∗ − 1) <∞,

4) d ∈ B2(Z,Z), 5) c ∈ B2(Z,Z).
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Define Sp2(Y) to be the set of r ∈ Sp(Y) satisfying the above conditions.
Then Sp2(Y) is a group.

6.4 Bosonic Bogolubov Transformations
in the Fock Representation

Consider now the Fock representation Y � y �→W (y) ∈ U(Γs(Z)) defined in
(40).

The following theorem describes when a symplectic transformation is
implementable by a unitary transformation. Part 1) was originally proven
in [61]. Proof of 1) and 2) can be found in [14,60].

Theorem 24 (Shale Theorem).
1) Let r ∈ Sp(Y). Then the following conditions are equivalent:

a) There exists U ∈ U(Γs(Z)) such that

UW (y)U∗ = W (ry), y ∈ Y . (45)

b) r ∈ Sp2(Y).
2) If the above conditions are satisfied, then U is defined uniquely up to a

phase factor. Moreover, if we define

U j
r = |det pp∗|− 1

4 e−
1
2a

∗(d)Γ ((p∗)−1)e
1
2a(c) , (46)

then U j
r is the unique unitary operator satisfying (45) and

(Ω|U j
rΩ) > 0 . (47)

3) If Ur = {λU j
r : λ ∈ C, |λ| = 1}, then

Sp2(Y) � r �→ Ur ∈ U(Γs(Z))/U(1)

is a homomorphism of groups.

6.5 Metaplectic Group in the Fock Representation

r �→ U j
r is not a representation of Sp(Y), it is only a projective representa-

tion. By taking a certain subgroup of Sp2(Y) we can obtain a representation
analogous to the metaplectic representation described in Theorem 7.

Define Sp1(Y) := {r ∈ Sp(Y) : r − 1 ∈ B1(Y)}. (Recall that B1(Y) are
trace class operators).

Theorem 25. 1) Sp1(Y) is a subgroup of Sp2(Y).
2) r ∈ Sp1(Y) iff p− 1 ∈ B1(Z).
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For r ∈ Sp1(Y), define

± Ur = ±(det p∗)−
1
2 e−

1
2a

∗(d)Γ ((p∗)−1)e
1
2a(c) . (48)

(We take both signes of the square root, thus ±Ur denotes a pair of operators
differing by a sign).

Theorem 26. 1) ±Ur ∈ U(Γs(Z))/{1− 1};
2) UrW (y)U∗

r = W (ry).
3) The following map is a group homomorphism.

Sp1(Y) � r �→ ±Ur ∈ U(H)/{1,−1} . (49)

Clearly, the operators ±Ur differ by a phase factor from U j
r from Theorem

24.

6.6 Positive Symplectic Transformations

Special role is played by positive symplectic transformations. It is easy to
show that r ∈ Sp2(Y) is a positive self-adjoint operator on Y iff it is of the
form

r =
[

(1− cc∗)−1/2 (1− cc∗)−1/2c
(1− c∗c)−1/2c∗ (1− c∗c)−1/2

]
, (50)

for some c ∈ B2
s (Z,Z).

The following theorem describes Bogolubov transformations associated
with positive symplectic transformations.

Theorem 27. 1) The formula

Rc := det(1− cc∗) 1
4 exp

(
− 1

2a
∗(c)
)
Γ
(
(1− cc∗) 1

2

)
exp
(

1
2a(c)

)
(51)

defines a unitary operator on Γs(Z).
2) If Ωc is defined in (43), then Ω = RcΩc.
3)

Rca
∗(z)R∗

c = a∗
(
(1− cc∗)−1/2z

)
+ a
(
(1− cc∗)−1/2cz

)
,

Rca(z)R∗
c = a∗

(
(1− cc∗)−1/2cz

)
+ a
(
(1− cc∗)−1/2z

)
.

4) If r is related to c by (50), then Rc coincides with U j
r defined in (46).

5) Rc coincides with Ur defined in (48), where we take the plus sign and
the positive square root.
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7 Representations of the CAR in Fock Spaces

7.1 Field Operators

Let Z be a Hilbert space. As in the previous section, let Y := Re(Z ⊕ Z).
This time, however, we treat it as a real Hilbert space equipped with the
scalar product

(z, z)α(w,w) = Re(z|w) .

For w ∈ Z, consider the creation/annihilation operators a∗(w) and a(w)
acting on the fermionic Fock space Γa(Z). For y = (w,w) ∈ Y we define

φ(y) := a∗(w) + a(w) .

Note that φ(y) are bounded and self-adjoint for any y ∈ Y. Besides,

[φ(y1), φ(y2)]+ = 2y1αy2, y1, y2 ∈ Y .

Thus we have

Theorem 28.
Y � y �→ φ(y) ∈ Bh(Γa(Z)) (52)

is an irreducible representation of the CAR over the space (Y, α).

The map (52) is called the Fock representation of the CAR.
Let w1, . . . , wm be an orthonormal basis of the complex Hilberts space Z.

Then
(w1, w1), (−iw1, iw1), . . . (wm, wm), (−iwm, iwm) (53)

is an orthonormal basis of the real Hilbert space Y = Re(Z⊕Z). It is easy to
see that the orientation of (53) does not depend on the choice of w1, . . . , wm.

The operator Q defined as in Theorem 9 for this orientation equals the
parity operator I = Γ (−1) = (−1)N . In fact, using Theorem 9 4), we can
compute

Q = im
m∏

j=1

φ(wj , wj)φ(−iwj , iwj)

=
m∏

j=1

(−a∗(wj)a(wj) + a(wj)a∗(wj)) = Γ (−1).

In the fermionic case, one often identifies the spaces Y and Z through

Z � w �→ (w,w) ∈ Y . (54)

With this identification, one introduces the field operators for w ∈ Z as

φ(w) := a∗(w) + a(w) .

The converse identities are
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a∗(w) = 1
2 (φ(w)− iφ(iw)) ,

a(w) = 1
2 (φ(w) + iφ(iw)) .

Using these identifications, we have for z, w ∈ Z the identities

[φ(z), φ(w)]+ = 2Re(w|z),

Λφ(w)Λ = −iφ(iw)I = iIφ(iw),

[Λφ(z)Λ, φ(w)] = 2Im(w|z)I,

where I is the parity operator and Λ was introduced in (37).
Note that the identification (54) is different from the one used in the

bosonic case (41). In this section we will avoid identifying Z with Y.

7.2 Fermionic Gaussian vectors

Let c ∈ Γ 2
a (Z). Note that it can be identified with an element of B2

a(Z,Z).
cc∗ is trace class, so det(1 + cc∗) is well defined.

Theorem 29. Define a vector in Γa(Z) by

Ωc := (det(1 + cc∗))−
1
4 exp

(
1
2a

∗(c)
)
Ω. (55)

It is the unique vector satisfying

‖Ωc‖ = 1, (Ωc|Ω) > 0, (a(z) + a∗(cz))Ωc = 0, z ∈ Z .

Vectors of the form Ωc are often used in the many body quantum the-
ory. In particular, they appear as convenient variational states in theory of
superconductivity that goes back to the work of Bardeen-Cooper-Schrieffer,
see e.g. [34].

7.3 Complex Structures Compatible with a Scalar Product

Similarly as for bosons, it is convenient to study some abstract properties of
orthogonal transformations on a real Hilbert space as a preparation for the
analysis of fermionic Bogolubov transformations.

Let O(Y) denote the group of orthogonal transformations on Y.
We say that a complex structure j is compatible with the scalar product

α (or is Kähler with respect to α) if j ∈ O(Y).
Recall that on Y we have a distinguished complex structure

j(z, z) := (iz,−iz) .

It is easy to see that j is compatible with α.
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Note that fixing the complex structure j on a real Hilbert space Y compat-
ible with the scalar product α is equivalent with identifying Y with Re(Z⊕Z)
for some complex Hilbert space Z.

Let r ∈ B(Y). Recall that we can extend r to Z ⊕Z by complex linearity
and write it as

r =
[
p q
q p

]
,

where p ∈ B(Z,Z), q ∈ B(Z,Z). Now r ∈ O(Y) iff

p∗p+ q#q = 1, p#q + q∗p = 0,

pp∗ + qq∗ = 1, pq# + qp# = 0.

It is convenient to distinguish a certain class of orthogonal transformations
given by the following theorem:

Theorem 30. Let r ∈ O(Y). Then the following conditions are equivalent:
1) Ker(rj + jr) = {0};
2) Ker(r∗j + jr∗) = {0};
3) Ker p = {0};
4) Ker p∗ = {0}.

If the conditions of Theorem 30 are satisfied, then we say that r is j-
nondegenerate. Let us assume that this is the case. Then p−1 and p∗−1 are
densely defined operators. Set

d = qp−1 = −(p∗)−1q#, c = p−1q = −q#(p#)−1 ,

and assume that they are bounded. Then d, c ∈ Ba(Z,Z). The following
factorization of r plays an important role in the description of fermionic
Bogolubov transformations:

r =
[

1 d
0 1

] [
(p∗)−1 0

0 p

] [
1 0
c 1

]
.

We also have
1 + cc∗ = (p∗p)−1, 1 + d∗d = (pp∗)−1 .

The following group will play an important role in the Shale-Stinespring
Theorem on the implementability of fermionic Bogolubov transformations:

Proposition 1. Let r ∈ O(Y). The following conditions are equivalent:
1) j − rjr−1 ∈ B2(Y),
2) rj − jr ∈ B2(Y),
3) q ∈ B2(Z,Z) .

Define O2(Y) to be the set of r ∈ O(Y) satisfying the above conditions. Then
O2(Y) is a group.

Note that if r is j-nondegenerate, then it belongs to O2(Y) iff c ∈
B2(Z,Z), or equivalently, d ∈ B2(Z,Z).
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7.4 Fermionic Bogolubov Transformations
in the Fock Representation

Consider now the Fock representation of the CAR, Y � y �→ φ(y) ∈
Bh(Γa(Z)).

Theorem 31. 1) Let r ∈ O(Y). Then the following conditions are equiva-
lent:
a) There exists U ∈ U(Γa(Z)) such that

Uφ(y)U∗ = φ(ry), y ∈ Y . (56)

b) r ∈ O2(Y)
2) For r ∈ O2(Y), the unitary operator U satisfying (56) is defined uniquely

up to a phase factor. Let Ur denote the class of these operators. Then

O2(Y) � r �→ Ur ∈ U(Γa(Z))/U(1)

is a homomorphism of groups.
3) Let r ∈ O2(Y) be j-nondegenerate. Let p, c, d be defined as in the previous

subsection. Set

U j
r = |det pp∗| 14 e

1
2a

∗(d)Γ ((p∗)−1)e−
1
2a(c) . (57)

Then U j
r is the unique unitary operator satisfying (56) and

(Ω|U j
rΩ) > 0 . (58)

7.5 Pin Group in the Fock Representation

Define O1(Y) := {r ∈ O(Y) : r − 1 ∈ B1(Y)}.
Theorem 32. 1) O1(Y) is a subgroup of O2(Y).

2) r ∈ O1(Y) iff p− 1 ∈ B1(Z).

The following theorem describes the Pin representation for an arbitrary
number of degrees of freedom:

Theorem 33. There exists a group homomorphism

O1(Y) � r �→ ±Ur ∈ U(Γa(Z))/{1,−1} (59)

satisfying Urφ(y)U∗
r = φ(ry).

In order to give a formula for ±Ur, which is analogous to the bosonic for-
mula (48), we have to restrict ourselves to j-nondegenerate transformations.

Theorem 34. Suppose that r ∈ O1(Y) is j-nondegenerate. Then

± Ur = ±(det p∗)
1
2 e

1
2a

∗(d)Γ ((p∗)−1)e−
1
2a(c). (60)

Similarly as in the bosonic case, it is easy to see that the operators ±Ur
differ by a phase factor from U j

r from Theorem 31.
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7.6 j-Self-Adjoint Orthogonal Transformations

Special role is played by r ∈ O2(Y) satisfying rj = j∗r. Such transformations
will be called j-self-adjoint.

One can easily show that r ∈ O2(Y) is j-self-adjoint if

r =
[

(1 + cc∗)−1/2 (1 + cc∗)−1/2c
−(1 + c∗c)−1/2c∗ (1 + c∗c)−1/2

]
(61)

for some c ∈ B2
a(Y).

Theorem 35. 1) The formula

Rc := det(1 + cc∗)−
1
4 exp

(
1
2a

∗(c)
)
Γ ((1 + cc∗)−

1
2 ) exp

(
− 1

2a(c)
)

(62)

defines a unitary operator on Γa(Z).
2) If Ωc is defined in (55), then Ω = RcΩc.
3)

Rca
∗(z)R∗

c = a∗
(
(1 + cc∗)−1/2z

)
+ a
(
(1 + cc∗)−1/2cz

)
,

Rca(z)R∗
c = a∗

(
(1 + cc∗)−1/2cz

)
+ a
(
(1 + cc∗)−1/2z

)
.

4) If r and c are related by (61), then the operator Rc coincides with the
operator U j

r defined in (57).
5) Rc coincides with Ur defined in (34) with the plus sign and the positive

square root.

8 W ∗-Algebras

In this section we review some elements of the theory of W ∗-algebras needed
in our paper. For more details we refer the reader to [29], and also [16,17,67,
69,70].

M is a W ∗-algebra if it is a C∗-algebra, possessing a predual. (This means
that there exists a Banach space Y such that M is isomorphic as a Banach
space to the dual of Y. This Banach space Y is called a predual of M).

One can show that a predual of a W ∗-algebra is defined uniquely up to
an isomorphism. The topology on M given by the functionals in the predual
(the ∗-weak topology in the terminology of theory of Banach spaces) will be
called the σ-weak topology. The set σ-weakly continuous linear functionals
coincides with the predual of M.

R � t �→ τ t is called a W ∗-dynamics if it is a 1-parameter group with
values in ∗-automorphisms of M and, for any A ∈ M, t �→ τ t(A) is σ-weakly
continuous. The pair (M, τ) is called a W ∗-dynamical system.
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M ∩M′ := {B ∈M : AB = BA, A ∈M}

is called the center of the algebra M. A W ∗-algebra with a trivial center is
called a factor.

If A is a subset of B(H) for some Hilbert space H, then

A′ := {B : AB = BA, A ∈ A}

is called the commutant of A.

8.1 Standard Representations

We say that H+ is a self-dual cone in a Hilbert space H if

H+ = {Φ ∈ H : (Φ|Ψ) ≥ 0, Ψ ∈ H+} .

We say that a quadruple (π,H, J,H+) is a standard representation of
a W ∗-algebra M if π : M → B(H) is an injective σ-weakly continuous ∗-
representation, J is an antiunitary involution on H and H+ is a self-dual
cone in H satisfying the following conditions:

1) Jπ(M)J = π(M)′;
2) Jπ(A)J = π(A)∗ for A in the center of M;
3) JΨ = Ψ for Ψ ∈ H+;
4) π(A)Jπ(A)H+ ⊂ H+ for A ∈M.

Every W ∗-algebra has a unique (up to the unitary equivalence) standard
representation, [42] (see also [4, 17,20,29,70]).

The standard representation has several important properties. First, every
σ-weakly continuous state ω has a unique vector representative in H+ (in
other words, there is a unique normalized vector Ω ∈ H+ such that ω(A) =
(Ω|π(A)Ω)). Secondly, for every ∗-automorphism τ of M there exists a unique
unitary operator U ∈ B(H) such that

π(τ(A)) = Uπ(A)U∗, UH+ ⊂ H+ .

Finally, for everyW ∗-dynamics R � t �→ τ t on M there is a unique self-adjoint
operator L on H such that

π(τ t(A)) = eitLπ(A)e−itL, eitLH+ = H+. (63)

The operator L is called the standard Liouvillean of t �→ τ t.
Given a standard representation (π,H, J,H+) we also have the right rep-

resentation πr : M → B(H) given by πr(A) := Jπ(A)J . Note that the image
of πr is π(M)′. We will often write πl for π and call it the left representation.
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8.2 Tomita-Takesaki Theory

Let π : M→ B(H) be an injective σ-weakly continuous ∗-representation and
Ω a cyclic and separating vector for π(M). One then proves that the formula

Sπ(A)Ω = π(A)∗Ω

defines a closable antilinear operator S on H. The modular operator ∆ and
the modular conjugation J are defined by the polar decomposition of S:

S = J∆1/2 .

If we set
H+ = {π(A)Jπ(A)Ω : A ∈M}cl ,

then (π,H, J,H+) is a standard representation of M. Given M, π and H, it
is the unique standard representation with the property Ω ∈ H+.

8.3 KMS States

Let (M, τ) be aW ∗-dynamical system. Let β be a positive number (having the
physical interpretation of the inverse temperature). A σ-weakly continuous
state ω on M is called a (τ, β)-KMS state (or a β-KMS state for τ) iff for
all A,B ∈ M there exists a function FA,B , analytic inside the strip {z : 0 <
Imz < β}, bounded and continuous on its closure, and satisfying the KMS
boundary conditions

FA,B(t) = ω(Aτ t(B)), FA,B(t+ iβ) = ω(τ t(B)A).

A KMS-state is τ -invariant. If M is a factor, then (M, τ) can have at most
one β-KMS state.

If M ⊂ B(H) and Φ ∈ H, we will say that Φ is a (τ, β)-KMS vector iff
(Φ| · Φ) is a (τ, β)-KMS state.

The acronym KMS stands for Kubo-Martin-Schwinger.

8.4 Type I Factors – Irreducible Representation

The most elementary example of a factor is the so-called type I factor –
this means the algebra of all bounded operators on a given Hilbert space. In
this and the next two subsections we describe various concepts of theory of
W ∗-algebras on this example.

The space of σ-weakly continuous functionals on B(H) (the predual of
B(H)) can be identified with B1(H) (trace class operators) by the formula

ψ(A) = TrγA, γ ∈ B1(H), A ∈ B(H) . (64)
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In particular, σ-weakly continuous states are determined by positive trace
one operators, called density matrices. A state given by a density matrix γ
is faithful iff Kerγ = {0}.

If τ is a ∗-automorphism of B(H), then there exists W ∈ U(H) such that

τ(A) = WAW ∗, A ∈ B(H) . (65)

If t �→ τ t is a W ∗-dynamics, then there exists a self-adjoint operator H on H
such that

τ t(A) = eitHAe−itH , A ∈ B(H) .

See e.g. [16].
A state given by (64) is invariant with respect to the W ∗-dynamics (65)

iff H commutes with γ.
There exists a (β, τ)–KMS state iff Tr e−βH < ∞, and then it has the

density matrix e−βH/Tr e−βH .

8.5 Type I Factor – Representation in Hilbert-Schmidt Operators

Clearly, the representation of B(H) in H is not in a standard form. To con-
struct a standard form of B(H), consider the Hilbert space of Hilbert-Schmidt
operators on H, denoted B2(H), and two injective representations:

B(H) � A �→ πl(A) ∈ B(B2(H)), πl(A)B := AB, B ∈ B2(H) ;

B(H) � A �→ πr(A) ∈ B(B2(H)), πr(A)B := BA∗, B ∈ B2(H) .
(66)

Set JHB := B∗, B ∈ B2(H). Then JHπl(A)JH = πr(A) and

(πl, B2(H), JH, B2
+(H))

is a standard representation of B(H).
If a state on B(H) is given by a density matrix γ ∈ B1

+(H), then its
standard vector representative is γ

1
2 ∈ B2

+(H). The standard implementation
of the ∗-authomorphism τ(A) = WAW ∗ equals πl(W )πr(W ). If the W ∗-
dynamics t �→ τ t is given by a self-adjoint operator H, then its standard
Liouvillean is πl(H)− πr(H).

8.6 Type I Factors – Representation in H ⊗ H

An alternative formalism, which can be used to describe a standard form of
type I factors, uses the notion of a conjugate Hilbert space.

Recall that B2(H) has a natural identification with H ⊗ H. Under the
identification the representations (66) become

B(H) � A �→ A⊗ 1H ∈ B(H⊗H) ;

B(H) � A �→ 1H ⊗A ∈ B(H⊗H) .
(67)
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(Abusing the notation, sometimes the above representations will also be de-
noted by πl and πr).

Note that the standard unitary implementation of the automorphism
τ(A) = WAW ∗ is then equal to W ⊗ W . The standard Liouvillean for
τ t(A) = eitHAe−itH equals L = H ⊗ 1− 1⊗H. The modular conjugation is
JH defined by

JH
(
Ψ1 ⊗ Ψ2

)
:= Ψ2 ⊗ Ψ1 . (68)

The positive cone is then equal to

(H⊗H)+ := Conv{Ψ ⊗ Ψ : Ψ ∈ H}cl ,

where Conv denotes the convex hull.

8.7 Perturbations of W ∗-Dynamics and Liouvilleans

The material of this subsection will be needed only in the last section devoted
to Pauli-Fierz systems.

Let τ be a W ∗-dynamics on a W ∗-algebra M and let (π,H, J,H+) be a
standard representation of M. Let L be the standard Liouvillean of τ .

The following theorem is proven in [29]:

Theorem 36. Let V be a self-adjoint operator on H affiliated to M. (That
means that all spectral projections of V belong to π(M)). Let L+V be essen-
tially self-adjoint on Dom(L)∩Dom(V ) and LV := L+V −JV J be essentially
self-adjoint on Dom(L) ∩Dom(V ) ∩Dom(JV J). Set

τ tV (A) := π−1
(
eit(L+V )π(A)e−it(L+V )

)
.

Then t �→ τ tV is a W ∗-dynamics on M and LV is its standard Liouvillean.

9 Quasi-Free Representations of the CCR

9.1 Bosonic Quasi-Free Vectors

Let (Y, ω) be a real vector space with an antisymmetric form. Let

Y � y �→W (y) ∈ U(H) (69)

be a representation of the CCR. We say that Ψ ∈ H is a quasi-free vector for
(69) iff there exists a quadratic form η such that

(Ψ |W (y)Ψ) = exp
(
− 1

4yηy
)
. (70)

Note that η is necessarily positive, that is yηy ≥ 0 for y ∈ Y.
A representation (69) is called quasi-free if there exists a cyclic quasi-free

vector in H.
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The following fact is easy to see:

Theorem 37. A quasi-free representation is regular.

Therefore, in a quasi-free representation we can define the corresponding
field operators, denoted φ(y).

If m is an integer, we say that σ is a pairing of {1, . . . , 2m} if it is a
permutation of {1, . . . , 2m} satisfying

σ(1) < σ(3) < · · · < σ(2m− 1), σ(2j − 1) < σ(2j), j = 1, . . . ,m .

P (2m) will denote the set of pairings of {1, . . . , 2m}.

Theorem 38. Suppose we are given a regular representation of the CCR

Y � y �→ eiφ(y) ∈ U(H) .

Let Ψ ∈ H. Then the following statements are equivalent:
1) For any n = 1, 2, . . . , y1, . . . yn ∈ Y, Ψ ∈ Dom (φ(y1) · · ·φ(yn)), and

(Ψ |φ(y1) · · ·φ(y2m−1)Ψ) = 0,

(Ψ |φ(y1) · · ·φ(y2m)Ψ) =
∑

σ∈P (2m)

m∏

j=1

(Ψ |φ(yσ(2j−1))φ(yσ(2j))Ψ).

2) Ψ is a quasi-free vector.

Theorem 39. Suppose that Ψ is a quasi-free vector with η satisfying (70).
Then

1) y1
(
η + i

2ω
)
y2 = (Ψ |φ(y1)φ(y2)Ψ);

2) |y1ωy2| ≤ 2|y1ηy1|1/2|y2ηy2|1/2, y1, y2 ∈ Y.

Proof. Note that (Ψ |φ(y)2Ψ) = yηy. This implies

1
2

(
(Ψ |φ(y1)φ(y2)Ψ) + (Ψ |φ(y2)φ(y1)Ψ)

)
= y1ηy2 .

From the canonical commutation relations we get

1
2

(
(Ψ |φ(y1)φ(y2)Ψ)− (Ψ |φ(y2)φ(y1)Ψ)

)
=

i
2
y1ωy2 .

This yields 1).
From

‖(φ(y1)± iφ(y2))Ψ‖2 ≥ 0 .

we get
|y2ωy1| ≤ y1ηy1 + y2ηy2 . (71)

This implies 2). �
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9.2 Classical Quasi-Free Representations of the CCR

Let us briefly discuss quasi-free representations for the trivial antisymmetric
form. In this case the fields commute and can be interpreted as classical
random variables, hence we will call such representations classical.

Consider a real vector space Y equipped with a positive scalar prod-
uct η. Consider the probabilistic Gaussian measure given by the covari-
ance η. That means, if dimY = n < ∞, then it is the measure dµ =
(det η)1/2(2π)−n/2e−yηy/2dy, where dy denotes the Lebesgue measure on Y.
If dimY = ∞, see e.g. [65].

Consider the Hilbert space L2(µ). Note that a dense subspace of of L2(µ)
can be treated as functions on Y. For y ∈ Y, let φ(y) denote the function
Y � v �→ yηv ∈ R. φ(y) can be treated as a self-adjoint operator on L2(µ).

We equip Y with the antisymmetric form ω = 0. Then

Y � y �→ eiφ(y) ∈ U(L2(µ)) (72)

is a representation of the CCR.
Let Ψ ∈ L2(µ) be the constant function equal to 1. Then Ψ is a cyclic

quasi-free vector for (72).
In the remaining part of this section we will discuss quasi-free representa-

tions that are fully “quantum” – whose CCR are given by a non-degenerate
antisymmetric form ω.

9.3 Araki-Woods Representation of the CCR

In this subsection we describe the Araki-Woods representations of the CCR
and the corresponding W ∗-algebras. These representations were introduced
in [8]. They are examples of quasi-free representations. In our presentation
we follow [27].

Let Z be a Hilbert space and consider the Fock space Γs(Z ⊕Z). We will
identify the symplectic space Re

(
(Z ⊕Z)⊕ (Z ⊕ Z)

)
with Z ⊕Z, as in (41).

Therefore, for (z1, z2) ∈ Z ⊕ Z, the operator

φ(z1, z2) :=
1√
2

(
a∗(z1, z2) + a(z1, z2)

)

is the corresponding field operator and W (z1, z2) = eiφ(z1,z2) is the corre-
sponding Weyl operator.

We will parametrize the Araki-Woods representation by a self-adjoint
operator γ on Z satisfying 0 ≤ γ ≤ 1, Ker(γ − 1) = {0}. Another important
object associated to the Araki-Woods representation is a positive operator ρ
on Z called the “1-particle density”. It is related to γ by

γ := ρ(1 + ρ)−1, ρ = γ(1− γ)−1 . (73)

(Note that in [27] we used ρ to parametrize Araki-Woods representations).
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For z ∈ Dom(ρ
1
2 ) we define two unitary operators on Γs(Z ⊕ Z) as:

WAW
γ,l (z) := W

(
(ρ+ 1)

1
2 z, ρ

1
2 z
)
,

WAW
γ,r (z) := W

(
ρ

1
2 z, (ρ+ 1)

1
2 z
)
.

We denote by MAW
γ,l and MAW

γ,r the von Neumann algebras generated by
{WAW

γ,l (z) : z ∈ Dom(ρ
1
2 )} and {WAW

γ,r (z) : z ∈ Dom(ρ
1
2 )} respectively. We

will be call them respectively the left and the right Araki-Woods algebra. We
drop the superscript AW until the end of the section.

The operators τ and ε, defined by

Z ⊕ Z � (z1, z2) �→ τ(z1, z2) := (z2, z1) ∈ Z ⊕ Z , (74)

Z ⊕ Z � (z1, z2) �→ ε(z1, z2) := (z2, z1) ∈ Z ⊕ Z , (75)

will be useful. Note that τ is linear, ε antilinear, and

ε(z1, z2) = τ(z1, z2). (76)

In the following theorem we will describe some basic properties of the
Araki-Woods algebras.

Theorem 40. 1) Z ⊃ Dom(ρ
1
2 ) � z �→ Wγ,l(z) ∈ U(Γs(Z ⊕ Z)) is a

regular representation of the CCR. In particular,

Wγ,l(z1)Wγ,l(z2) = e−
i
2 Im(z1|z2)Wγ,l(z1 + z2) .

It will be called the left Araki-Woods representation of the CCR associ-
ated to the pair (Z, γ). The corresponding field, creation and annihilation
operators are affiliated to Mγ,l and are given by

φγ,l(z) = φ
(
(ρ+ 1)

1
2 z, ρ

1
2 z
)
,

a∗γ,l(z) = a∗
(
(ρ+ 1)

1
2 z, 0
)

+ a
(
0, ρ

1
2 z
)
,

aγ,l(z) = a
(
(ρ+ 1)

1
2 z, 0

)
+ a∗
(
0, ρ

1
2 z
)
.

2) Z ⊃ Dom(ρ
1
2 ) � z �→Wγ,r(z) ∈ U(Γs(Z⊕Z)) is a regular representation

of the CCR. In particular

Wγ,r(z1)Wγ,r(z2) = e−
i
2 Im(z1|z2)Wγ,r(z1+z2) = e

i
2 Im(z1|z2)Wγ,r(z1+z2) .

It will be called the right Araki-Woods representation of the CCR associ-
ated to the pair (Z, γ). The corresponding field, creation and annihilation
operators are affiliated to Mγ,r and are given by
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φγ,r(z) = φ
(
ρ

1
2 z, (ρ+ 1)

1
2 z
)
,

a∗γ,r(z) = a
(
ρ

1
2 z, 0
)

+ a∗
(
0, (ρ+ 1)

1
2 z
)
,

aγ,r(z) = a∗
(
ρ

1
2 z, 0
)

+ a
(
0, (ρ+ 1)

1
2 z
)
.

3) Set
Js = Γ (ε) (77)

Then we have

JsWγ,l(z)Js = Wγ,r(z),

Jsφγ,l(z)Js = φγ,r(z),

Jsa
∗
γ,l(z)Js = a∗γ,r(z),

Jsaγ,l(z)Js = aγ,r(z).

4) The vacuum Ω is a bosonic quasi-free vector for Wγ,l, its expectation
value for the Weyl operators (the “generating function”) is equal to

(
Ω|Wγ,l(z)Ω

)
= exp

(
− 1

4 (z|z)− 1
2 (z|ρz)

)
= exp

(
− 1

4

(
z| 1+γ1−γ z

))

and the “two-point functions” are equal to
(
Ω|φγ,l(z1)φγ,l(z2)Ω

)
= 1

2 (z1|z2) + Re(z1|ρz2),
(
Ω|aγ,l(z1)a∗γ,l(z2)Ω

)
= (z1|(1 + ρ)z2) = (z1|(1− γ)−1z2),

(
Ω|a∗γ,l(z1)aγ,l(z2)Ω

)
= (z2|ρz1) = (z2|γ(1− γ)−1z1),

(
Ω|a∗γ,l(z1)a∗γ,l(z2)Ω

)
= 0,

(
Ω|aγ,l(z1)aγ,l(z2)Ω

)
= 0.

5) Mγ,l is a factor.
6) Kerγ = {0} iff Ω is separating for Mγ,l iff Ω is cyclic for Mγ,l. If this

is the case, then the modular conjugation for Ω is given by (77) and the
modular operator for Ω is given by

∆ = Γ
(
γ ⊕ γ−1

)
. (78)

7) We have
M′

γ,l = Mγ,r . (79)
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8) Define
Γ+

s,γ(Z ⊕ Z) := {AJsAΩ : A ∈Mγ,l}cl . (80)

Then (Mγ,l, Γs(Z⊕Z), Js, Γ
+
s,γ(Z⊕Z)) is a W ∗-algebra in the standard

form.
9) If γ has some continuous spectrum, then Mγ,l is a factor of type III1 [69].

10) If γ = 0, then Mγ,l is a factor of type I.
11) Let h be a self-adjoint operator on Z commuting with γ and

τ t(Wγ,l(z)) := Wγ,l(eithz) .

Then t �→ τ t extends to a W ∗-dynamics on Mγ,l and

L = dΓ (h⊕ (−h))

is its standard Liouvillean.
12) Ω is a (τ, β)-KMS vector iff γ = e−βh.

Proof. 1)–4) follow by straightforward computations.
Let us prove 5). We have

Wγ,l(z1)Wγ,r(z2) = Wγ,r(z2)Wγ,l(z1), z1, z2 ∈ Domρ
1
2 .

Consequently, Mγ,l and Mγ,r commute with one another.
Now
(
Mγ,l ∪M′

γ,l

)′ ⊂
(
Mγ,l ∪Mγ,r

)′

=
{
W ((ρ+ 1)

1
2 z1 + ρ

1
2 z2, ρ

1
2 z1 + (ρ+ 1)

1
2 z2
)

: z1, z2 ∈ Z
}′

= {W (w1, w2) : w1, w2 ∈ Z}′ = C1 ,

because

{
(
(ρ+ 1)

1
2 z1 + ρ

1
2 z2, ρ

1
2 z1 + (ρ+ 1)

1
2 z2
)

: z1, z2 ∈ Z
}

is dense in Z ⊕Z, and Weyl operators depend strongly continuously on their
parameters and act irreducibly on Γs(Z ⊕ Z). Therefore,

(
Mγ,l ∪M′

γ,l

)′ = C1 ,

which means that Mγ,l is a factor and proves 5).
Let us prove the⇒ part of 6). Assume first that Kerγ = {0}. Set τ t(A) :=

Γ (γ, γ−1)itAΓ (γ, γ−1)−it. We first check that τ t preseves Mγ,l. Therefore, it
is a W ∗-dynamics on Mγ,l.

Next we check that (Ω| · Ω) satisfies the (τ,−1)-KMS condition. This is
straightforward for the Weyl operators Wγ,l(z). Therefore, it holds for the
∗−algebra Mγ,l,0 of finite linear combinations of Wγ,l(z). By the Kaplansky
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Theorem, the unit ball of Mγ,l,0 is σ-weakly dense in the unit ball of Mγ,l.
Using this we extend the KMS condition to Mγ,l.

A KMS state on a factor is always faithful. By 5), Mγ,l is a factor. Hence
Ω is separating.

Let H be the closure of Mγ,lΩ. H is an invariant subspace for Mγ,l,
moreover Ω is cyclic and separating for Mγ,l on H. Let us compute the
operators S, ∆ and J of the modular theory for Ω on H.

Clearly H is spanned by vectors of the form Ψz := eia∗
(
(1+ρ)

1
2 z,ρ

1
2 z
)

Ω.
Let us compute:

Γ (γ, γ−1)
1
2Ψz = eia∗

(
ρ

1
2 z,(1+ρ)

1
2 z
)

Ω ,

SΨz = e−ia∗
(
(1+ρ)

1
2 z,ρ

1
2 z
)

Ω

= JsΓ (γ, γ−1)
1
2Ψz .

We have
Γ (γ, γ−1)itΨz = Ψγitz .

Hence Γ (γ, γ−1) preserves H and vectors Ψz form an essential domain for its
restriction to H. Besides, Γ (γ, γ−1)H is dense in H and S preserves H as
well. Therefore, Js preserves H. Thus

S = Js

∣
∣
∣
H
Γ (γ, γ−1)

∣
∣
∣
H

is the the polar decomposition of S and defines the modular operator and
the modular conjugation. Next we see that

Wγ,l(z1)JsWγ,l(z2)Ω = W ((ρ+ 1)
1
2 z1 + ρ

1
2 z2, ρ

1
2 z1 + (ρ+ 1)

1
2 z2
)
Ω.

Therefore, Mγ,lJsMγ,lΩ is dense in Γs(Z⊕Z). But Mγ,lJsMγ,lΩ ⊂ H. Hence
H = Γs(Z ⊕ Z) and Ω is cyclic. This proves the ⇒ part of 6).

To prove 7), we first assume that Kerγ = {0}. By 6), we can apply the
modular theory, which gives M′

γ,l = JsMγ,lJs. By 3) we have JsMγ,lJs =
Mγ,r.

For a general γ, we decompose Z = Z0⊕Z1, where Z0 = Kerγ and Z1 is
equipped with a nondegenerate γ1 := γ

∣
∣
Z1

. We then have Mγ,l  B(Γs(Z0))⊗
Mγ1,l and Mγ,r  B(Γs(Z0)) ⊗Mγ1,r. This implies that M′

γ,l = Mγ,r and
ends the proof of 7).

From the decomposition Mγ,l  B(Γs(Z0))⊗Mγ1,l we see that if Kerγ =
Z0 = {0}, then Ω is neither cyclic nor separating. This completes the proof
of 6) [32]. �
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9.4 Quasi-Free Representations of the CCR
as the Araki-Woods Representations

A large class of quasi-free representation is unitarily equivalent to the Araki-
Woods representation for some γ.

Theorem 41. Suppose that we are given a representation of the CCR

Y0 � y �→W (y) ∈ U(H) , (81)

with a cyclic quasi-free vector Ψ satisfying (Ψ |W (y)Ψ) = e−
1
4yηy. Suppose

that the symmetric form η is nondegenerate. Let Y be the completion of Y0

to a real Hilbert space with the scalar product given by η. By Theorem 39 2),
ω extends to a bounded antisymmetric form on Y, which we denote also by
ω. Assume that ω is nondegenerate on Y. Then there exists a Hilbert space Z
and a positive operator γ on Z, a linear injection of Y0 onto a dense subspace
of Z and an isometric operator U : H → Γs(Z ⊕ Z) such that

UΨ = Ω ,

UW (y) = Wγ,l(y)U, y ∈ Y0.

Proof. Without loss of generality we can assume that Y0 = Y.
Working in the real Hilbert space Y equipped with the scalar product

η and using Theorem 39 2), we see that ω is a bilinear form bounded by
2. Therefore there exist a bounded antisymmetric operator µ with a trivial
kernel, ‖µ‖ ≤ 1, such that

y1ωy2 = 2y1ηµy2 .

Consider the polar decomposition

µ = |µ|j = j|µ| .

Then j is an orthogonal operator satisfying j2 = −1.
Let Z be the completion of Y with respect to the scalar product η|µ|. Then

j maps Z into itself and is an orthogonal operator for the scalar product η|µ|
satisfying j2 = −1. We can treat Z as a complex space, identifying −j with
the imaginary unit. We equip it with the (sesquilinear) scalar product

(y1|y2) := y1η|µ|y2 + iy1ηµy2 = y1ωjy2 + iy1ωy2 .

ρ := |µ|−1 − 1 defines a positive operator on Z such that Y = Domρ
1
2 . Now

(Ψ |φ(y1)φ(y2)Ψ) = y1ηy2 + i
2y1ωy2

= y1η|µ|y2 + iy1ηµy2 + y1η|µ|(|µ|−1 − 1)y2

= (y1|y2) + Re(y1|ρy2)

= (Ω|φγ,l(y1)φγ,l(y2)Ω),
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for γ as in (73). Therefore,

UW (y)Ψ := Wγ,l(y)Ω

extends to an isometric map from H to Γs(Z ⊕ Z) that intertwines the rep-
resentation (81) with the Araki-Woods representation for (Z, γ). �

10 Quasi-Free Representations of the CAR

10.1 Fermionic Quasi-Free Vectors

Let (Y, α) be a real Hilbert space. Let

Y � y �→ φ(y) ∈ Bh(H) (82)

be a representation of the CAR. We say that Ψ ∈ H is a quasi-free vector for
(82) iff

(Ψ |φ(y1) · · ·φ(y2m−1)Ψ) = 0 ,

(Ψ |φ(y1) · · ·φ(y2m)Ψ) =
∑

σ∈P (2m)

sgnσ
m∏

j=1

(Ψ |φ(yσ(2j−1))φ(yσ(2j))Ψ) .

We say that (82) is a quasi-free representation if there exists a cyclic
quasi-free vector Ψ in H.

Define the antisymmetric form ω

y1ωy2 :=
1
i
(Ψ |[φ(y1), φ(y2)]Ψ) . (83)

Theorem 42. 1) (Ψ |φ(y1)φ(y2)Ψ) = y1αy2 + i
2y1ωy2;

2) |y1ωy2| ≤ 2|y1αy1|
1
2 |y2αy2|

1
2 .

10.2 Araki-Wyss Representation of the CAR

In this subsection we describe Araki-Wyss representations of the CAR [9],
see also [44]. They are examples of quasi-free representations of the CAR.

Let Z be a Hilbert space and consider the Fock space Γa(Z ⊕Z). We will
identify the real Hilbert space Re

(
(Z⊕Z)⊕(Z ⊕ Z)

)
with Z⊕Z, as in (54).

Therefore, for (z1, z2) ∈ Z ⊕ Z,

φ(z1, z2) := a∗(z1, z2) + a(z1, z2)

are the corresponding field operators.
We will parametrize Araki-Wyss representation by a positive operator γ

on Z, possibly with a non-dense domain. We will also use the operator χ,
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called the “1-particle density”, which satisfies 0 ≤ χ ≤ 1. The two operators
are related to one another by

γ := χ(1− χ)−1, χ = γ(γ + 1)−1. (84)

For z ∈ Z we define the Araki-Wyss field operators on Γa(Z ⊕ Z) as:

φAW
γ,l (z) := φ

(
(1− χ)

1
2 z, χ

1
2 z
)
,

φAW
γ,r (z) := Λφ

(
χ

1
2 z, (1− χ)

1
2 z
)
Λ = iIφ

(
iχ

1
2 z, i(1− χ)

1
2 z
)
,

where recall that Λ = (−1)N(N−1)/2 and I = (−1)N = Γ (−1). The maps
z �→ φγ,l(z), z �→ φγ,r(z), are called respectively the left and the right Araki-
Wyss representation of the CAR associated to the pair (Z, γ). We denote by
MAW

γ,l and MAW
γ,r the von Neumann algebras generated by {φγ,l(z) : z ∈ Z}

and {φγ,r(z) : z ∈ Z}. They will be called respectively the left and the right
Araki-Wyss algebra.

We drop the superscript AW until the end of the section.
In the following theorem we will describe some basic properties of the

Araki-Wyss algebras.

Theorem 43. 1) Z � z �→ φγ,l(z) ∈ Bh(Γa(Z ⊕Z)) is a representation of
the CAR. In particular,

[φγ,l(z1), φγ,l(z2)]+ = 2Re(z1|z2) .

The corresponding creation and annihilation operators belong to Mγ,l

and are given by

a∗γ,l(z) = a∗
(
(1− χ)

1
2 z, 0
)

+ a
(
0, χ

1
2 z
)
,

aγ,l(z) = a
(
(1− χ)

1
2 z, 0
)

+ a∗
(
0, χ

1
2 z
)
.

2) Z � z �→ φγ,r(z) ∈ Bh(Γa(Z ⊕ Z)) is a representation of the CAR. In
particular

[φγ,r(z1), φγ,r(z2)]+ = 2Re(z1|z2) .
The corresponding creation and annihilation operators belong to Mγ,r

and are given by

a∗γ,r(z) = Λ
(
a
(
χ

1
2 z, 0
)

+ a∗
(
0, (1− χ)

1
2 z
))
Λ,

aγ,r(z) = Λ
(
a∗
(
χ

1
2 z, 0
)

+ a
(
0, (1− χ)

1
2 z
))
Λ.

3) Set
Ja := ΛΓ (ε) . (85)

We have
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Jaφγ,l(z)Ja = φγ,r(z) ,

Jaa
∗
γ,l(z)Ja = a∗γ,r(z) ,

Jaaγ,l(z)Ja = aγ,r(z).

4) The vacuum Ω is a fermionic quasi-free vector, the “two-point func-
tions” are equal

(Ω|φγ,l(z1)φγ,l(z2)Ω) = (z1|z2)− i2Im(z1|χz2),
(
Ω|aγ,l(z1)a∗γ,l(z2)Ω

)
= (z1|(1− χ)z2) = (z1|(1 + γ)−1z2) ,

(
Ω|a∗γ,l(z1)aγ,l(z2)Ω

)
= (z2|χz1) = (z2|γ(γ + 1)−1z1) ,

(
Ω|a∗γ,l(z1)a∗γ,l(z2)Ω

)
= 0 ,

(
Ω|aγ,l(z1)aγ,l(z2)Ω

)
= 0.

5) Mγ,l is a factor.
6) Kerγ = Kerγ−1 = {0} (equivalently, Kerχ = Ker(1− χ) = {0}) iff Ω is

separating for Mγ,l iff Ω is cyclic for Mγ,l. If this is the case, then the
modular conjugation for Ω is given by (85) and the modular operator
for Ω is given by

∆ = Γ
(
γ ⊕ γ−1

)
. (86)

7) We have
M′

γ,l = Mγ,r . (87)

8) Set
Γ+

a,γ(Z ⊕ Z) := {AJaAΩ : A ∈ Mγ,l}cl . (88)

Then (Mγ,l, Γa(Z⊕Z), Ja, Γ
+
a,γ(Z⊕Z)) is a W ∗-algebra in the standard

form.
9) If γ has some continuous spectrum, then Mγ,l is a factor of type III1.

10) If Z is an infinite dimensional Hilbert space and γ = λ or γ = λ−1 with
λ ∈]0, 1[, then Mγ,l is a factor of type IIIλ, [70].

11) If Z is an infinite dimensional Hilbert space and γ = 1 (equivalently,
χ = 1

2), then Mγ,l is a factor of type II1.
12) If γ = 0 or γ−1 = 0, (equivalently, χ = 0 or χ = 1), then Mγ,l is a

factor of type I.
13) Let h be a self-adjoint operator on Z commuting with γ and

τ t(φγ,l(z)) := φγ,l(eithz) .

Then t �→ τ t extends uniquely to a W ∗-dynamics on Mγ,l and

L = dΓ (h⊕ (−h))

is its standard Liouvillean.
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14) Ω is a (τ, β)-KMS vector iff γ = e−βh.

Proof. 1)–4) follow by direct computations.
The proof of 5) will be divided into a number of steps.

Step 1. We have

φγ,l(z1)φγ,r(z2) = φγ,r(z2)φγ,l(z1) .

Consequently, Mγ,l and Mγ,r commute with one another.
Step 2. For simplicity, in this step we assume that Z is separable and 0 ≤
χ ≤ 1

2 ; the generalization of the proof to the general case is easy. By a well
known theorem (see e.g. [69], Ex. II.1.4), for any ε > 0, we can find a self-
adjoint operator ν such that Tr(χ

1
2 −ν 1

2 )∗(χ
1
2 −ν 1

2 ) < ε2 and there exists an
orthonormal basis w1, w2, . . . of eigenvectors of ν. Let νwi = νiwi, νi ∈ R.

Introduce the operators

Aj := φ
(
(1− νj)

1
2wj , ν

1
2
j wj

)
φ
(
i(1− νj)

1
2wj ,−iν

1
2
j wj

)

×Λφ
(
ν

1
2
j wj , (1− νj)

1
2wj

)
φ
(
iν

1
2
j wj ,−i(1− νj)

1
2wj

)
Λ

:= φ
(
(1− νj)

1
2wj , ν

1
2
j wj

)
φ
(
i(1− νj)

1
2wj ,−iν

1
2
j wj

)

×φ
(
iν

1
2
j wj , i(1− νj)

1
2wj

)
φ
(
−ν

1
2
j wj , (1− νj)

1
2wj

)

= (2a∗(wj , 0)a(wj , 0)− 1)
(
2a∗(0, wj)a(0, wj)− 1

)
.

Note that Aj commute with one another and
∞∏

j=1

Aj converges in the σ-weak

topology to I.
Introduce also

Bj := φγ,l(wj)φγ,l(iwj)φγ,r(wj)φγ,r(iwj)

=
(
2a∗
(
(1− χ)

1
2wj , χ

1
2wj

)
a
(
(1− χ)

1
2wj , χ

1
2wj

)
− 1
)

×
(
2a∗
(
−χ 1

2wj , (1− χ)
1
2wj

)
a
(
−χ 1

2wj , (1− χ)
1
2wj

)
− 1
)

Note that Bj belongs to the algebra generated by Mγ,l and Mγ,r and
∥
∥
∥
∥
∥
∥

n∏

j=1

Aj −
n∏

j=1

Bj

∥
∥
∥
∥
∥
∥
≤ cε .

This proves that
I ∈
(
Mγ,l ∪Mγ,r

)′′
. (89)

Step 3. We have
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(
Mγ,l ∪ M′

γ,l

)′ ⊂
(
Mγ,l ∪ Mγ,r

)′ =
(
Mγ,l ∪ Mγ,r ∪ {I}

)′

= {φ((1− χ)
1
2w1 − χ

1
2w2, χ

1
2w1 + (1− χ)

1
2w2) : w1, w2 ∈ Z}′

= {φ(w1, w2) : w1, w2 ∈ Z}′ = C1 ,

where at the beginning we used Step 1, then (89), next we used

φγ,r(z) = iφ(−χ 1
2 iz,−(1− χ)

1
2 iz)I ,

{(1− χ)
1
2w1 − χ

1
2w2, χ

1
2w1 + (1− χ)

1
2w2) : w1, w2 ∈ Z} = Z ⊕ Z ,

and finally the irreducibility of fermionic fields. This shows that
(
Mγ,l ∪

M′
γ,l

)′ = C1, which means that Mγ,l is a factor and ends the proof of 5).
The proof of the ⇒ part of 6) is similar to its bosonic analog. Assume

that Kerγ = {0}. Set

τ t(A) := Γ (γ, γ−1)itAΓ (γ, γ−1)−it .

We first check that τ t preserves Mγ,l. Therefore, it is a W ∗-dynamics on
Mγ,l.

Next we check that (Ω| · Ω) satisfies the (τ,−1)-KMS condition. This is
straightforward for the Weyl operators φγ,l(z). Therefore, it holds for the
∗−algebra Mγ,l,0 of polynomials in φγ,l(z). By the Kaplansky Theorem, the
unit ball of Mγ,l,0 is σ-weakly dense in the unit ball of Mγ,l. Using this we
extend the KMS condition to Mγ,l.

A KMS state on a factor is always faithful. By 5), Mγ,l is a factor. Hence
Ω is separating.

LetH be the closure of Mγ,lΩ.H is invariant for Mγ,l, moreoverΩ is cyclic
and separating for Mγ,l on H. Computing on polynomials in φγ,l(z) acting
on Ω, we check that Γ (γ, γ−1) and Ja preserve H, the modular conjugation
for Ω is given by Ja

∣
∣
∣
H

and the modular operator equals Γ (γ, γ−1)
∣
∣
∣
H

. Now

φγ,l(z1) · · ·φγ,l(zn)Jaφγ,l(z′1) · · ·φγ,l(z′m)Ω

= φγ,l(z1) · · ·φγ,l(zn)φγ,r(z′1) · · ·φγ,r(z′m)Ω .

Thus, Mγ,lJaMγ,lΩ is dense in Γa(Z ⊕Z). But Mγ,lJaMγ,lΩ ⊂ H. Hence Ω
is cyclic and H = Γa(Z ⊕ Z). This proves 6).

In this section, we will prove 7) only under the assumption Kerγ =
Kerγ−1 = {0}. By 5) this implies that (Ω| · Ω) is faithful and we can
apply the modular theory, which gives JaMγ,lJa = M′

γ,l. By 3) we have
JaMγ,lJa = Mγ,r.

7) for a general γ will follow from Theorem 55, proven later. �
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10.3 Quasi-Free Representations of the CAR
as the Araki-Wyss Representations

There is a simple condition, which allows to check whether a given quasi-free
representation of the CAR is unitarily equivalent to an Araki-Wyss represen-
tation:

Theorem 44. Suppose that (Y, α) is a real Hilbert space,

Y � y �→ φ(y) ∈ Bh(H) (90)

is a representation of the CAR and Ψ a cyclic quasi-free vector for (90).
Let ω be defined by (83). Suppose that Kerω is even or infinite dimensional.
Then there exists a complex Hilbert space Z, an operator γ on Z satisfying
0 ≤ γ ≤ 1, and an isometric operator U : H → Γa(Z ⊕ Z) such that

UΨ = Ω ,

Uφ(y) = φγ,l(y)U, y ∈ Y.
Z equipped with the real part of its scalar product coincides with (Y, α).

Proof. By Theorem 42 2), there exists an antisymmetric operator µ such
that ‖µ‖ ≤ 1 and

y1ωy2 = 2y1αµy2 .

Let Y0 := Kerµ and Y1 be its orthogonal complement. On Y1 we can make
the polar decomposition

µ = |µ|j = j|µ| ,
j is an orthogonal operator such that j2 = −1. Thus j is a complex structure.
If dimY0 is even or infinite, then we can extend j to a complex structure on
Y. Interpreting −j as the complex structure, we convert Y into a complex
space, which will be denoted by Z, and equip it with the (sesquilinear) scalar
product

(y1|y2) := y1αy2 + iy1αjy2 .

Now χ := 1
2 (1 − |µ|) and γ := χ(1 − χ)−1 define operators on Z such that

0 ≤ χ ≤ 1
2 and 0 ≤ γ ≤ 1. We have

(Ψ |φ(y1)φ(y2)Ψ) = y1αy2 + i
2y1ωy2

= y1αy2 + iy1αjy2 + iy1αj(|µ| − 1)y2

= (y1|y2)− 2iIm(y1|χy2)

= (Ω|φγ,l(y1)φγ,l(y2)Ω).

Now we see that
Uφ(y)Ψ := φγ,l(y)Ω

extends to an isometric operator intertwining the representation (90) with
the Araki-Wyss representation for (Z, γ). �
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10.4 Tracial Quasi-Free Representations

Tracial representations of the CAR are the fermionic analogs of classical qua-
sifree representations of the CCR.

Consider a real Hilbert space V. Let W = V ⊕ iV be its complexification.
Let κ denote the natural conjugation on W, which means κ(v1 + iv2) :=
v1 − iv2, v1, v2 ∈ V. Consider the pair of representations of the CAR

V � v �→ φV,l(v) := φ(v) ∈ Bh(Γa(W)) ,

V � v �→ φV,r(v) := Λφ(v)Λ ∈ Bh(Γa(W)).
(91)

Let MV,l and MV,r be the von Neumann algebras generated by {φV,l(v) :
v ∈ V} and {φV,r(v) : v ∈ V} respectively.

Theorem 45. 1) (91) are two commuting representations of the CAR:

[φV,l(v1), φV,l(v2)]+ = 2(v1|v2) ,

[φV,r(v1), φV,r(v2)]+ = 2(v1|v2) ,

[φV,l(v1), φV,r(v2)] = 0.

2) Set
Ja := ΛΓ (κ) . (92)

We have
JaφV,l(v)Ja = φV,r(v) .

3) Ω is a quasi-free vector for (91) with the 2-point function

(Ω|φV,l(v1)φV,l(v2)Ω) = (v1|v2) .

4) Ω is cyclic and separating on MV,l. (Ω| ·Ω) is tracial, which means

(Ω|ABΩ) = (Ω|BAΩ), A,B ∈MV,l .

The corresponding modular conjugation is given by (92) and the modular
operator equals ∆ = 1.

5) We have MV,r = M′
V,l.

6) If dimV is even or infinite, then the tracial representations of the CAR
are unitarily equivalent to the Araki-Wyss representations with γ = 1
(equivalently, χ = 1

2).
7) If dimV is odd, then the center of MV,l is 2-dimensional: it is spanned

by 1 and Q introduced in Theorem 9.
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10.5 Putting Together an Araki-Wyss
and a Tracial Representation

A general quasifree representation of the CAR can be obtained by putting
together an Araki-Wyss representation and a tracial representation. Actually,
one can restrict oneself to a tracial representation with just one dimensional
V, but we will consider the general case.

Let Z, γ be as in the subsection on Araki-Wyss representations and V,W
be as in the subsection on tracial representations. Define the following oper-
ators on Γa(Z ⊕ Z ⊕W)

Z ⊕ V � (z, v) �→ φAW
V,γ,l(z, v) := φ

(
(1− χ)

1
2 z, χ

1
2 z, v
)
,

Z ⊕ V � (z, v) �→ φAW
V,γ,r(z, v) := Λφ

(
χ

1
2 z, (1− χ)

1
2 z, v
)
Λ ,

(93)

(We drop the superscript AW in what follows).

Theorem 46. 1) (93) are two commuting representations of the CAR:

[φV,γ,l(z1, v1), φV,γ,l(z2, v2)]+ = 2Re(z1|z2) + 2(v1|v2) ,

[φV,γ,r(z1, v1), φV,γ,r(z2, v2)]+ = 2Re(z1|z2) + 2(v1|v2) ,

[φV,γ,l(z1, v1), φV,γ,r(z2, v2)] = 0.

2) Set
Ja := ΛΓ (ε⊕ κ). (94)

We have
JaφV,γ,l(v)Ja = φV,γ,r(v) .

3) Ω is a quasi-free vector for with the 2-point function

(Ω|φV,γ,l(z1, v1)φV,γ,l(z2, v2)Ω) = (z1|z2)− 2iIm(z1|χz2) + (v1|v2) .

4) Kerγ = Kerγ−1 = {0} (equivalently, Kerχ = Ker(1 − χ) = {0}) iff
Ω is separating on MV,γ,l iff Ω is cyclic on MV,γ,l. If this is the case,
the corresponding modular conjugation is given by (94) and the modular
operator equals ∆ = Γ (γ ⊕ γ−1 ⊕ 1).

5) MV,γ,r = M′
V,γ,l.

6) If dimV is even or infinite, then the representations (93) are unitarily
equivalent to the Araki-Wyss representations.

7) If dimZ is finite and dimV is odd, then the center of MV,l is 2-
dimensional: it is spanned by 1 and Q introduced in Theorem 9.
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11 Confined Bose and Fermi Gas

Sometimes the Araki-Woods representation of the CCR and the Araki-Wyss
representations of the CAR are equivalent to a multiple of the Fock repre-
sentation and the corresponding W ∗-algebra is type I. This happens e.g. in
the case of a finite number of degrees of freedom. More generally, this holds
if

Trγ <∞ . (95)

Representations satisfying this condition will be called “confined”.
Let us explain the name “confined”. Consider free Bose or Fermi gas with

the Hamiltonian equal to dΓ (h), where h is the 1-particle Hamiltonian. One
can argue that in the physical description of this system stationary quasi-free
states are of special importance. They are given by density matrices of the
form

Γ (γ)/TrΓ (γ) , (96)

with γ commuting with h. In particular, γ can have the form e−βh, in which
case (96) is the Gibbs state at inverse temperature β.

For (96) to make sense, TrΓ (γ) has to be finite. As we will see later on,
TrΓ (γ) <∞ is equivalent to (95).

A typical 1-particle Hamiltonian h of free Bose or Fermi gas is the Lapla-
cian with, say, Dirichlet boundary conditions at the boundary of its domain.
If the domain is unbounded, then, usually, the spectrum of h is continuous
and, therefore, there are no non-zero operators γ that commute with h and
satisfy (95). If the domain is bounded (“confined”), then the spectrum of h
is discrete, and hence many such operators γ exist. In particular, γ = e−βh

has this property. This is the reason why we call “confined” the free Bose or
Fermi gas satisfying (95).

In this section we will show how Araki-Woods and Araki-Wyss represen-
tations arise in confined systems. We will construct a natural intertwiner be-
tween the Araki-Woods/Araki-Wyss representations and the Fock represen-
tation. We will treat the bosonic and fermionic case parallel. Whenever possi-
ble, we will use the same formula to describe both the bosonic and fermionic
case. Some of the symbols will denote different things in the bosonic/fermionic
cases (e.g. the fields φ(z)); others will have subscripts s/a indicating the two
possible meanings. Sometimes there will be signs ± or ∓ indicating the two
possible versions of the formula, the upper in the bosonic case, the lower in
the fermionic case.

11.1 Irreducible Representation

In this subsection we consider the W ∗-algebra B(Γs/a(Z)) acting in the obvi-
ous way on the Hilbert space Γs/a(Z). Recall that the W ∗-algebra B(Γs(Z))
is generated by the representation of the CCR
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Z � z �→W (z) = eiφ(z) ∈ U(Γs(Z))

and the W ∗-algebra B(Γa(Z)) is generated by the representation of CAR

Z � z �→ φ(z) ∈ Bh(Γa(Z)) .

In both bosonic and fermionic cases we will also use a certain operator γ
on Z.

Recall that in the bosonic case, γ satisfies 0 ≤ γ ≤ 1, Ker(1 − γ) = {0},
and we introduce the 1-particle density operator denoted ρ, as in (73).

In the fermionic case, γ is a positive operator, possibly with a non-dense
domain, and we introduce the 1-particle density denoted χ, as in (84).

Throughout the section we assume that γ is trace class. In the bosonic
case it is equivalent to assuming that ρ is trace class. We have

TrΓ (γ) = det(1− γ)−1 = det(1 + ρ) .

In the fermionic case, if we assume that Kerγ−1 = {0} (or Ker(χ− 1) =
{0}), γ is trace class iff χ is trace class. We have

TrΓ (γ) = det(1 + γ) = det(1− χ)−1 .

Define the state ωγ on the W ∗-algebra B(Γs/a(Z)) given by the density
matrix

Γ (γ)/TrΓ (γ) .

Let h be another self-adjoint operator on Z. Define the dynamics on
B(Γs/a(Z)):

τ t(A) := eitdΓ (h)Ae−itdΓ (h) , A ∈ B(Γs(Z)) .

Clearly, ωγ is τ -invariant iff h commutes with γ.
The state ωγ is (β, τ)-KMS iff γ is proportional to e−βh.

11.2 Standard Representation

We need to identify the complex conjugate of the Fock space Γs/a(Z) with
the Fock space over the complex conjugate Γs/a(Z). In the bosonic case this
is straightforward. In the fermionic case, however, we will not use the naive
identification, but the identification that “reverses the order of particles”,
consistent with the convention adopted in Subsect. 2.3. More precisely, if
z1, . . . , zn ∈ Z, then the identification looks as follows:

Γna (Z) � z1 ⊗a · · · ⊗a zn �→ V z1 ⊗a · · · ⊗a zn

:= zn ⊗a · · · ⊗a z1 ∈ Γna (Z).
(97)
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(Thus the identification V : Γa(Z) → Γa(Z) equals Λ times the naive, “non-
reversing”, identification).

Using (97) at the second step and the exponential law at the last step, we
have the identification

B2(Γs/a(Z))  Γs/a(Z)⊗ Γs/a(Z)

 Γs/a(Z)⊗ Γs/a(Z)  Γs/a(Z ⊕ Z).
(98)

As before, define

Js := Γ (ε), Ja := ΛΓ (ε) .

Theorem 47. In the bosonic/fermionic case, under the above identification,
the hermitian conjugation ∗ becomes Js/a.

Proof. We restrict ourselves to the fermionic case. Consider

B = |z1 ⊗a · · · ⊗a zn)(w1 ⊗a · · · ⊗a wm| ∈ B2(Γa(Z)) .

It corresponds to
√

(n+m)!z1 ⊗a · · · ⊗a zn ⊗a w1 ⊗a · · · ⊗a wm

=
√

(n+m)!z1 ⊗a · · · ⊗a zn ⊗a wm ⊗a · · · ⊗a w1 ∈ Γa(Z ⊕ Z).

On the other hand,

B∗ = |w1 ⊗a · · · ⊗a wm)(z1 ⊗a · · · ⊗a zn|

corresponds to
√

(n+m)!w1 ⊗a · · · ⊗a wm ⊗a z1 ⊗a · · · ⊗a zn

=
√

(n+m)!w1 ⊗a · · · ⊗a wm ⊗a zn ⊗a · · · ⊗a z1

= (−1)
n(n−1)

2 +
m(m−1)

2 +nm
√

(n+m)!z1 ⊗a · · · ⊗a zn ⊗a wm ⊗a · · · ⊗a w1

= ΛΓ (ε)
√

(n+m)!z1 ⊗a · · · ⊗a zn ⊗a wm ⊗a · · · ⊗a w1 ,

where at the last step we used Γ (ε)zi = zi, Γ (ε)wi = wi and

n(n−1)
2 + m(m−1)

2 + nm = (n+m)(n+m−1)
2 .

�

The W ∗-algebras B(Γs/a(Z)) and B(Γs/a(Z)) have a natural standard
representation in the Hilbert space B2(Γs/a(Z)), as described in Subsect. 8.5.



Introduction to Representations of the CCR and CAR 121

They have also a natural representation in the Hilbert space Γs/a(Z)⊗Γs/a(Z),
as described in Subsect. 8.6. Using the identification (98) we obtain the rep-
resentation θl of B(Γs/a(Z)) and θr of B(Γs/a(Z)) in the space Γs/a(Z⊕Z).

Let us describe the last pair of representations in detail. Let

U : Γs/a(Z)⊗ Γs/a(Z) → Γs/a(Z ⊕ Z) (99)

be the unitary map defined as in (36). Let V be defined in (97). Then

B(Γs/a(Z)) � A �→ θl(A) := U A⊗1Γs/a(Z) U
∗ ∈ B(Γs/a(Z ⊕ Z)) ,

B(Γs(Z)) � A �→ θr(A) := U 1Γs(Z)⊗A U∗ ∈ B(Γs(Z ⊕ Z)) ,

B(Γa(Z)) � A �→ θr(A) := U 1Γa(Z)⊗(V AV ∗) U∗ ∈ B(Γa(Z ⊕ Z)).
(100)

We have 2 commuting representations of the CCR

Z � z �→W (z, 0) = θl(W (z)) ∈ U(Γs(Z ⊕ Z)), (101)

Z � z �→W (0, z) = θr(W (z)) ∈ U(Γs(Z ⊕ Z)) . (102)

The algebra θl(B(Γs(Z))) is generated by the image of (101) and the algebra
θr(B(Γs(Z))) is generated by the image of (102).

We have also 2 commuting representations of the CAR

Z � z �→ φ(z, 0) = θl(φ(z)) ∈ Bh(Γa(Z ⊕ Z)), (103)

Z � z �→ Λφ(0, z)Λ = θr(φ(z)) ∈ Bh(Γa(Z ⊕ Z)). (104)

The algebra θl(B(Γa(Z))) is generated by the image of (103) and the algebra
θr(B(Γa(Z))) is generated by the image of (104).

Let Γ+
s/a(Z ⊕ Z) be the image of B2

+(Γs/a(Z)) under the identification
(98).

Theorem 48. 1)
(
θl, Γs/a(Z ⊕Z), Js/a, Γ

+
s/a(Z ⊕Z)

)
is a standard repre-

sentation of B(Γs/a(Z)).
2) Js/aθl(A)Js/a = θr(A).
3) dΓ (h⊕(−h)) is the standard Liouvillean of t �→ τ t in this representation
4) The standard vector representative of ωγ in this representation is

Ωγ := det(1∓ γ)± 1
2 exp

(
1
2
a∗
([

0 γ
1
2

±γ 1
2 0

]))
Ω. (105)

Proof. 1), 2) and 3) are straightforward. Let us prove 4), which is a little
involved, since we have to use various identifications we have introduced.

In the representation of Subsect. 8.5, the standard vector representative
of ωγ equals
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(TrΓ (γ))−
1
2Γ (γ

1
2 )

= (TrΓ (γ))−
1
2

∞∑

n=0
Θn

s/a(γ
1
2 )⊗nΘn

s/a ∈ B2(Γs/a(Z)).

(Recall that Θn
s/a denotes the orthogonal projection onto Γns/a(Z)).

Clearly, γ1/2 ∈ B2(Z) corresponds to a certain vector Ψ ∈ Z ⊗ Z.
Let σ be the permutation of (1, . . . , 2n) given by

σ(2j − 1) = j, σ(2j) = 2n− j + 1, j = 1, . . . , n .

This permutation defines the unitary transformation

Θ(σ) : (Z ⊗ Z)⊗n → (⊗nZ)⊗
(
⊗nZ

)
.

Now (γ1/2)⊗n can be interpreted in two fashions. It can be interpreted
as an element of ⊗nB2(Z), and then it corresponds to the vector Ψ⊗n ∈
(Z ⊗Z)⊗n. It can be also interpreted as an element of B2(Z⊗n) and then it
corresponds to

Θ(σ)Ψ⊗n ∈ (⊗nZ)⊗
(
⊗nZ

)
 ⊗nZ ⊗

(
⊗nZ

)
.

(Note that we have taken into account the convention about the complex
conjugate of the tensor product adopted in Subsect. 2.3).

Now Θn
s/a(γ

1/2)⊗nΘn
s/a ∈ B2(Γns/a(Z)) corresponds to

(
Θn

s/a ⊗Θn
s/a

)
Θ(σ) Ψ⊗n ∈ Γns/a(Z)⊗ Γns/a(Z) . (106)

The identification

U : Γns/a(Z)⊗ Γns/a(Z) → Γ 2n
s/a(Z ⊕ Z)

is obtained by first treating Γns/a(Z)⊗ Γns/a(Z) as a subspace of ⊗2n(Z ⊕Z)

and then applying
√

(2n)!

n! Θ2n
s/a. Therefore, (106) is identified with

√
(2n)!

n! Θ2n
s/a

(
Θn

s/a⊗ Θn
s/a

)
Θ(σ) Ψ⊗n

=
√

(2n)!

n! Θ2n
s/a

(
Θ2

s/aΨ
)⊗n

=
√

(2n)!

n!

(
Θ2

s/aΨ
)⊗s/an

∈ Γns/a(Z ⊕ Z) ,
(107)

where we used the fact that

Θ2n
s/a

(
Θn

s/a ⊗Θn
s/a

)
Θ(σ) = Θ2n

s/a

= Θ2n
s/a

(
Θ2

s/a⊗ · · ·⊗Θ2
s/a

)
.

(108)
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(In the fermionic case, to see the first identity of (108) we need to note
that the permutation σ is even). Now, if τ denotes the transposition, then
Θ2

s/aΨ = 1
2 (Ψ ±Θ(τ)Ψ). Recall that Ψ ∈ Z⊗Z corresponds to γ1/2 ∈ B2(Z).

Therefore, Θ(τ)Ψ corresponds to (γ1/2)# = γ1/2. Hence, Θ2
s/aΨ ∈ Γ 2

s/a(Z⊕Z)
is identified with

1
2
c =

1
2

[
0 γ

1
2

±γ 1
2 0

]
∈ B2

s/a(Z ⊕ Z,Z ⊕ Z). (109)

Thus, (107) corresponds to

(n!)−1

(
1
2
a∗ (c)

)n
Ω ∈ Γ 2n

s/a(Z ⊕ Z) .

So, finally, Γ (γ
1
2 ) corresponds to

exp
(

1
2a

∗ (c)
)
Ω.

Clearly,

cc∗ =
[

0 γ
1
2

±γ 1
2 0

] [
0 ±γ 1

2

γ
1
2 0

]
=
[
γ 0
0 γ

]
.

Therefore,
det(1∓ cc∗)∓ 1

2 = det(1∓ γ)∓1 = TrΓ (γ) .

�

Note that the vector Ωγ is an example of a bosonic/fermionic Gaussian
state considered in (43) and (55), where it was denoted Ωc:

Ωγ = det(1∓ cc∗)± 1
4 exp

(
1
2a

∗(c)
)
Ω.

11.3 Standard Representation
in the Araki-Woods/Araki-Wyss Form

Define the following transformation on Γs/a(Z ⊕ Z):

Rγ := det(1∓ γ)± 1
2 exp

(
∓1

2
a∗
([

0 γ
1
2

±γ 1
2 0

]))

×Γ
(
(1∓ γ)⊕ (1∓ γ)

)± 1
2 exp

(
±1

2
a

([
0 γ

1
2

±γ 1
2 0

]))
.

(110)

Theorem 49. Rγ is a unitary operator satisfying

Rγφ(z1, z2)R∗
γ

= φ((1∓ γ)± 1
2 z1 ± (γ ∓ 1)±

1
2 z2, (γ ∓ 1)±

1
2 z1 + (1∓ γ)± 1

2 z2).
(111)
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Proof. Let c be defined as in (109). Using

Γ (1∓ cc∗) = Γ ((1∓ γ)⊕ (1∓ γ)) ,

we see that

Rγ := det(1∓ cc∗)± 1
4 exp

(
∓ 1

2a
∗(c)
)
Γ (1∓ cc∗)± 1

2 exp
(
± 1

2a(c)
)
.

Thus Rγ is in fact the transformation Rc considered in (51) and (62). �

Let φγ,l(z), φγ,r(z), Γ+
s/a,γ(Z ⊕Z), etc. be defined as in Theorems 40 and

43.
Rγ intertwines between the usual left/right representations and the

left/right Araki-Woods/Araki-Wyss representations, which is expressed by
the following identities:

Rγφ(z, 0))R∗
γ = φγ,l(z) ,

Rγφ(0, z)R∗
γ = φγ,r(z), in the bosonic case ,

RγΛφ(0, z)ΛR∗
γ = φγ,r(z), in the fermionic case ,

Rγθl(B(Γs/a(Z)))R∗
γ = Mγ,l ,

Rγθr(B(Γs/a(Z)))R∗
γ = Mγ,r ,

RγJs/aR
∗
γ = Js/a ,

RγΓ
+
s/a(Z ⊕ Z) = Γ+

s/a,γ(Z ⊕ Z) ,

RγΩγ = Ω ,

RγdΓ (h,−h)R∗
γ = dΓ (h,−h).

For A ∈ B(Γs/a(Z)), set

θγ,l(A) := Rγθl(A)R∗
γ ∈ B(Γs/a(Z ⊕ Z)) ,

θγ,r(A) := Rγθr(A)R∗
γ ∈ B(Γs/a(Z ⊕ Z)).

(112)

Finally, we see that in the confined case the algebra Mγ,l is isomorphic
to B(Γs/a(Z)):

Theorem 50. 1)
(
θγ,l, Γs/a(Z⊕Z), Js/a, Γ

+
s/a,γ(Z⊕Z)

)
is a standard rep-

resentation of B(Γs/a(Z)).
2) Js/aθγ,l(A)Js/a = θγ,r(A).
3) dΓ (h⊕(−h)) is the standard Liouvillean of t �→ τ t in this representation.
4) Ω is the standard vector representative of ωγ in this representation.
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12 Lattice of von Neumann Algebras in a Fock Space

Let Z be a Hilbert space. With every real closed subspace of Z we can
naturally associate a certain von Neumann subalgebra of B(Γs/a(Z)), both
in the bosonic and fermionic case. These von Neumann subalgebras form a
complete lattice. Properties of this lattice are studied in this section. They
have important applications in quantum field theory.

12.1 Real Subspaces in a Complex Hilbert Space

In this subsection we analyze real subspaces in a complex Hilbert space.
(For a similar analysis of two complex subspaces in a complex Hilbert space
see [28,43].) This analysis will be then used both in the bosonic and fermionic
case. We start with a simple fact which is true both in the complex and real
case.

Lemma 1. Let V1,V2 be closed subspaces of a (real or complex) Hilbert space.
Let p1, p2 be the corresponding orthogonal projections. Then

V1 ∩ V2 + V⊥
1 ∩ V⊥

2 = Ker(p1 − p2) .

Proof. Let (p1−p2)z = 0. Then z = p1z+(1−p1)z, where p1z = p2z ∈ V1∩V2

and (1− p1)z = (1− p2)z ∈ V⊥
1 ∩ V⊥

2 . �

Next suppose that W is a complex Hilbert space. Then it is at the same
time a real Hilbert space with the scalar product given by the real part of
the original scalar product. If K ⊂ W, then K⊥ will denote the orthogonal
complement of K in the sense of the complex scalar product and Kperp will
denote the orthogonal complement with respect to the real scalar product.
That means

Kperp := {z ∈ Z : Re(v|z) = 0, v ∈ K} .
Moreover,

iKperp = {z ∈ Z : Im(v|z) = 0, v ∈ K} ,
so iKperp can be called the symplectic complement of K. Note that if V is a
closed real subspace of W, then (Vperp)perp = V and i(iVperp)perp = V.

Theorem 51. Let V be a closed real subspace of a complex Hilbert space W.
Let p, q be the orthogonal projections onto V and iV respectively. Then the
following conditions holds:

1) V ∩ iV = Vperp ∩ iVperp = {0} ⇔ Ker(p− q) = {0};
2) Vperp ∩ iV = {0} ⇔ Ker(p+ q − 1) = {0}.

Proof. By the previous lemma applied to the real Hilbert space W and its
subspaces V, iV we get

V ∩ iV + Vperp ∩ iVperp = Ker(p− q) .
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This gives 1). Applying this lemma to V, iVperp yields

V ∩ iVperp + Vperp ∩ iV = Ker(p+ q − 1) .

Using V ∩ iVperp = i(Vperp ∩ iV) we obtain 2). �

We will say that a real subspace V of a complex Hilbert space is in a
general position if it satisfies both conditions of the previous theorem. The
following fact is immediate:

Theorem 52. Let V be a closed real subspace of a complex Hilbert space W.
Set

W+ := V ∩ iV, W− := Vperp ∩ iVperp ,

W1 := V ∩ iVperp + iV ∩ Vperp, W0 := (W+ +W− +W0)⊥,

Then W−,W+,W0,W1 are complex subspaces of W and

W = W+ ⊕W0 ⊕W1 ⊕W− .

We have
W+ = V ∩W+, {0} = V ∩W− .

Set
V0 := V ∩W0, V1 := V ∩W1 = V ∩ iVperp .

Then V0 is a subspace of W0 in a general position and

V =W+ ⊕ V0 ⊕ V1 ⊕ {0} ,

iVperp = {0} ⊕ iVperp
0 ⊕ V1 ⊕W− ,

(where Vperp
0 is the real orthogonal complement of V0 taken inside W0).

Theorem 53. Let V be a closed real subspace of a complex Hilbert space W
in a general position. Then the following is true:

1) There exists a closed complex subspace Z of W, a antiunitary operator
ε on W and a self-adjoint operator χ such that ε2 = 1, εZ = Z⊥,
0 ≤ χ ≤ 1

2 , Kerχ = Ker(χ− 1
2 ) = {0} and

{(1− χ)
1
2 z + εχ

1
2 z : z ∈ Z} = V ,

{χ 1
2 z + ε(1− χ)

1
2 z : z ∈ Z} = iVperp.

2) Set ρ := χ(1−2χ)−1. Then ρ is a positive operator on Z with Kerρ = {0}
and

{(1 + ρ)
1
2 z + ερ

1
2 z : z ∈ Domρ1/2} is dense in V ,

{ρ 1
2 z + ε(1 + ρ)

1
2 z : z ∈ Domρ1/2} is dense in iVperp.
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Proof. Let p, q be defined as above. Clearly, q = ipi−1.
Define the self-adjoint real-linear operators m := p + q − 1, n := p − q.

Note that
n2 = 1−m2 = p+ q − pq − qp ,

mn = −nm = qp− pq,

im = mi, in = −ni ,

Kerm = {0}, Ker n = {0} ,

Ker(m± 1) = {0}, Ker(n± 1) = {0} ,

−1 ≤ m ≤ 1, −1 ≤ n ≤ 1.

We can introduce their polar decompositions

n = |n|ε = ε|n|, m = w|m| = |m|w .

Clearly, ε and w are orthogonal operators satisfying

w2 = ε2 = 1, wε = −εw ,

wi = iw, iε = −iε.

Set
Z := Ker(w − 1) = Ran1]0,1[(m) .

Let 1Z denote the orthogonal projection from W onto Z.
We have

εZ = Ker(w + 1) = Ran1]−∞,0[(m) ,

Clearly, we have the orthogonal direct sum W = Z ⊕ εZ.
Using p = m+n+1

2 we get

1Zp1Z = m+1
2 1Z ,

ε1Zεp1Z = ε1Zεn2 1Z = ε
√

1−m2

2 1Z .

Therefore,
p1Z = m+1

2 1Z + ε
√

1−m2

2 1Z .

Set χ := 1
21Z(1−m). Then

{(1− χ)
1
2 z + εχ

1
2 z : z ∈ Z} = {pz : z ∈ Z} ⊂ V . (113)

Suppose now that v ∈ V ∩ {pz : z ∈ Z}perp. Then

0 = Re(v|p1Zv) = Re(v|1Zv) = ‖1Zv‖2 .

Hence, v ∈ Z⊥ = εZ. Therefore, using q = m+ 1− p we obtain
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Re(v|qv) = Re(v|mv) ≤ 0 .

Hence qv = 0. Thus v ∈ iVperp ∩ V, which means that v = 0. Therefore, the
left hand side of (113) is dense in V.

To see that we have an equality in (113), we note that the operator

(1− χ)1/21Z + εχ1/21Z (114)

is an isometry from Z to W. Hence the range of (114) is closed. This ends
the proof of 1).

2) follows easily from 1). �

Note that εZ can be identified with Z. Thus W can be identified with
Z ⊕ Z. Under this identification, the operator ε coincides with ε defined in
(75).

Theorem 53 gives 2 descriptions of a real subspace V. The description
2) is used in the Araki-Woods representations of the CCR and 1) in the
Araki-Wyss representations of the CAR.

12.2 Complete Lattices

In this subsection we recall some definitions concerning abstract lattices (see
e.g. [53]). They provide a convenient language that can be used to express
some properties of a class of von Neumann algebras acting on a Fock space.

Suppose that (X,≤) is an ordered set. Let {xi : i ∈ I} be a nonempty
subset of X.

We say that u is a largest minorant of {xi : i ∈ I} if
1) i ∈ I implies u ≤ xi;
2) u1 ≤ xi for all i ∈ I implies u1 ≤ u.

If {xi : i ∈ I} possesses a largest minorant, then it is uniquely defined.
The largest minorant of a set {xi : i ∈ I} is usually denoted

∧
i∈I
xi .

Analogously we define the smallest majorant of {xi : i ∈ I}, which is
usually denoted by

∨
i∈I
xi .

We say that (X,≤) is a complete lattice, if every nonempty subset of X
possesses the largest minorant and the smallest majorant. It is then equipped
with the operations ∧ and ∨.

We will say that the complete lattice is complemented if it is equipped
with the operation X � x �→∼ x ∈ X such that

1) ∼ (∼ x) = x;
2) x1 ≤ x2 implies ∼ x2 ≤∼ x1;
3) ∼ ∧

i∈I
xi = ∨

i∈I
(∼ xi).
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The operation ∼ will be called the complementation.
Let W be a topological vector space. For a family {Vi}i∈I of closed sub-

spaces of W we define

∨
i∈I
Vi :=

(
∑

i∈I
Vi
)cl

.

Closed subspaces of W form a complete lattice with the order relation ⊂
and the operations ∩ and ∨. If in addition W is a (real or complex) Hilbert
space, then taking the orthogonal complement is an example of a comple-
mentation. In the case of a complex Hilbert space (or a finite dimensional
symplectic space), taking the symplectic complement is also an example of a
complementation.

Let H be a Hilbert space. For a family of von Neumann algebras Mi ⊂
B(H), i ∈ I, we set

∨
i∈I

Mi :=
(
⋃

i∈I
Mi

)′′
.

(Recall that the prime denotes the commutant). Von Neumann algebras in
B(H) form a complete lattice with the order relation ⊂ and the operations
∩ and ∨. Taking the commutant is an example of a complementation.

12.3 Lattice of Von Neumann Algebras in a Bosonic Fock Space

In this subsection we describe the result of Araki describing the lattice of von
Neumann algebras naturally associated to a bosonic Fock space [1,32]. In the
proof of this result it is convenient to use the facts about the Araki-Woods
representation derived earlier.

Let W be a complex Hilbert space. We will identify Re(W⊕W) with W.
Consider the Hilbert space Γs(W) and the corresponding Fock representation
W � w �→W (w) ∈ B(Γs(W)).

For a real subspace V ⊂ W we define the von Neumann algebra

M(V) := {W (w) : w ∈ V}′′ ⊂ B(Γs(W)) .

First note that it follows from the strong continuity of W � w �→W (w) that
M(V) = M(Vcl). Therefore, in what follows it is enough to restrict ourselves
to closed subspaces of W.

The following theorem was proven by Araki [1], and then a simpler proof
of the most difficult statement, the duality (6), was given by Eckmann and
Osterwalder [32]:

Theorem 54. 1) M(V1) = M(V2) iff V1 = V2.
2) V1 ⊂ V2 implies M(V1) ⊂ M(V2).
3) M(W) = B(Γs(W)) and M({0}) = C1.
4) M

(
∨
i∈I
Vi
)

= ∨
i∈I

M(Vi).
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5) M

( ⋂

i∈I
Vi
)

=
⋂

i∈I
M(Vi).

6) M(V)′ = M(iVperp).
7) M(V) is a factor iff V ∩ iVperp = {0}.

Proof. To prove 1), assume that V1 and V2 are distinct closed subspaces. It
is enough to assume that V2 ⊂ V1. Then we can find w ∈ iVperp

1 \iVperp
2 . Now

W (w) ∈M(V1)′\M(V2)′. This implies M(V1)′ = M(V2)′, which yields 1).
2) and 3) are immediate. The inclusion ⊂ in 4) and the inclusion ⊃ in 5)

are immediate. The inclusion ⊃ in 4) follows easily if we invoke the strong
continuity of W � w �→W (w).

If we know 6), then the remaining inclusion ⊂ in 5) follows from ⊃ in 4).
7) follows from 1), 5) and 6).

Thus what remains to be shown is (6). Its original proof was surprisingly
involved, see [1]. We will give a somewhat simpler proof [32], which uses
properties of the Araki-Woods representations, which in turn are based on
the Tomita-Takesaki theory.

First, assume that V is in general position in W. Then, according to
Theorem 53 2), and identifying εZ with Z, we obtain a decomposition V =
Z ⊕ Z and a positive operator ρ such that

{(1 + ρ)
1
2 z + ρ

1
2 z : z ∈ Z} is dense in V .

Then we see that M(V) is the left Araki-Woods algebra MAW
ρ,l . By Theorem

40, the commutant of MAW
ρ,l is MAW

ρ,r . But

{ρ 1
2 z + (1 + ρ)

1
2 z : z ∈ Z} is dense in iVperp .

Therefore, MAW
ρ,r coincides with M(iVperp). This ends the proof of 6) in the

case of V in a general position.
For an arbitrary V, we decompose W = W+ ⊕ W0 ⊕ W1 ⊕ W− and

V =W+ ⊕ V0 ⊕ V1 ⊕ {0}, as in Theorem 52. Then we can write

B(Γs(W))  B(Γs(W+))⊗B(Γs(W0))⊗B(Γs(W1))⊗B(Γs(W−)) ,

M(V)  B(Γs(W+))⊗M(V0)⊗M(V1)⊗ 1.

Clearly, iVperp = {0}⊕ iVperp
0 ⊕V1⊕W− and the commutant of M(V) equals

M(V)′  1⊗M(V0)′ ⊗M(V1)⊗B(Γs(W−))

= 1⊗M(iVperp
0 )⊗M(V1)⊗B(Γs(W−))

 M(iVperp).

�
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Note that the above theorem can be interpreted as an isomorphism of the
complete lattices of closed real subspaces of the complex Hilbert space W
with the symplectic complement as the complementation, and the lattice of
von Neumann algebras M(V) ⊂ B(Γs(W)), with the complementation given
by the commutant.

12.4 Lattice of Von Neumann Algebras in a Fermionic Fock Space

In this subsection we describe the fermionic analog of Araki’s result about
the lattice of von Neumann algebras in a bosonic Fock space.

Again, consider a complex Hilbert space W. We will identify Re(W ⊕
W) with W. Consider the Hilbert space Γa(W) and the corresponding Fock
representation W � w �→ φ(w) ∈ B(Γa(W)).

Consider the Hilbert space Γa(W) and the corresponding Fock represen-
tation. We will identify Re(W ⊕W) with W. For a real subspace V ⊂ W we
define the von Neumann algebra

M(V) := {φ(z) : z ∈ V}′′ ⊂ B(Γa(W)) .

Let the operator Λ defined in (37).
First note that it follows from the norm continuity ofW � w �→ φ(w) that

M(V) = M(Vcl). Therefore, in what follows it is enough to restrict ourselves
to closed real subspaces of W.

Theorem 55. 1) M(V1) = M(V2) iff V1 = V2.
2) V1 ⊂ V2 implies M(V1) ⊂ M(V2).
3) M(W) = B(Γa(W)) and M({0}) = C1.
4) M

( ⋂

i∈I
Vi
)

=
⋂

i∈I
M(Vi).

5) M

(
∨
i∈I
Vi
)

= ∨
i∈I

M(Vi).
6) M(V)′ = ΛM(iVperp)Λ.

The proof of the above theorem is very similar to the proof of Theorem
54 from the bosonic case. The main additional difficulty is the behavior of
fermionic fields under the tensor product. They are studied in the following
theorem.

Theorem 56. Let Wi, i = 1, 2 be two Hilbert spaces and W = W1 ⊕ W2

Let Ni be the number operators in Γa(Zi), i = 1, 2, Ii := (−1)Ni and Λi :=
(−1)Ni(Ni−1)/2. We identify the operators on Γa(W) with those on Γa(W1)⊗
Γa(W2) using U defined in (36). This identification is denoted by  . Let Vi,
i = 1, 2 be real closed subspaces of Wi, i = 1, 2 resp. Then

M(V1 ⊕ V2)  
(
M(V1)⊗ 1 + (−1)N1⊗N21⊗M(V2)(−1)N1⊗N2

)′′
, (115)
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M(V1 ⊕ {0})  M(V1)⊗ 1 ,

M(W1 ⊕ V2)  B(Γa(W1))⊗M(V2) ,
(116)

ΛM(V1 ⊕W2)Λ  Λ1M(V1)Λ1 ⊗B(Γa(W2)) ,

ΛM({0} ⊕ V2)Λ  1⊗ Λ2M(V2)Λ2 .
(117)

Proof. Let v ∈ V2. Then, by Theorem 19 2), we have the identification

φ(0, v)  (−1)N1 ⊗ φ(v) = (−1)N1⊗N2 1⊗ φ(v) (−1)N1⊗N2 .

Therefore, the von Neumann algebra generated by φ(0, v), v ∈ V2, equals
(−1)N1⊗N21⊗M(V2)(−1)N1⊗N2 .

Clearly, the von Neumann algebra generated by φ(v, 0), v ∈ V1, equals
M(V1)⊗ 1. This implies (115).

Equation (115) implies immediately (116). It also implies

M(V1 ⊕W2)  (−1)N1⊗N2M(V1)⊗B(Γa(W2))(−1)N1⊗N2 ,

M({0} ⊕ V2)  (−1)N1⊗N2 1⊗M(V2) (−1)N1⊗N2 ,
(118)

from which (117) follows by Theorem 20 1). �

Proof of Theorem 55. Let us first prove 1). Assume that V1 and V2 are
distinct closed subspaces. It is enough to assume that V2 ⊂ V1. Then we
can find w ∈ iVperp

1 \iVperp
2 . Now Λφ(w)Λ ∈ M(V1)′\M(V2)′. Thus M(V1)′ =

M(V2)′, which yields 1).
Similarly as in the proof of Theorem 54 the only difficult part is a proof

of 6).
Assume first that V satisffies V ∩ iV = Vperp ∩ iVperp = {0}. By Theorem

52, we can write W = W0 ⊕ W1 and V = V0 ⊕ V1 where V0 is in general
position in W0 and Vperp

1 = iV1 inside W1. By Theorem 53, we can find a
complex subspace Z ofW0, an antilinear involution ε onW0 and a self-adjoint
operator 0 ≤ χ ≤ 1

2 such that εZ = Z⊥, Kerχ = Ker(χ− 1
2 ) = {0} and

{(1− χ)
1
2 z + εχ

1
2 z : z ∈ Z} ⊕ V1 = V ,

{χ 1
2 z + ε(1− χ)

1
2 z : z ∈ Z} ⊕ V1 = iVperp.

We can identify εZ with Z, using ε as the conjugation. Then we are precisely
in the framework of Theorem 46, which implies that M(V)′ = ΛM(iVperp)Λ.

For an arbitrary V, we decompose W = W+ ⊕ W0 ⊕ W1 ⊕ W− and
V =W+ ⊕ V0 ⊕ V1 ⊕ {0} as in Theorem 52. Then we can write

B(Γa(W))  B(Γa(W+))⊗B(Γa(W0 ⊕W1))⊗B(Γa(W−)) ,

M(V)  B(Γa(W+))⊗M(V0 ⊕ V1)⊗ 1



Introduction to Representations of the CCR and CAR 133

LetN01 be the number operator on Γa(W0⊕W1) and Λ01 := (−1)N01(N01−1)/2.
The commutant of M(V) equals

M(V)′  1⊗M(V0 ⊕ V1)′ ⊗B(Γa(W−)) ,

= 1⊗ Λ01M(i(V0 ⊕ V1)perp)Λ01 ⊗B(Γa(W−))

 ΛM(iVperp)Λ ,

where in the last step we used Theorem 56. �

13 Pauli-Fierz Systems

In this section we discuss the following setup. We start from a certain phys-
ically well motivated quantum system describing a small system interacting
with the Bose gas. The Hamiltonian that generates the dynamics is a certain
self-adjoint operator, bounded from below, partly expressed in terms of the
usual creation and annihillation operators.

Suppose that we want to consider the same system in the thermodynam-
ical limit corresponding to a nonzero density ρ (and the corresponding γ
defined by (73)). For instance, we are interested in the density given by the
Planck law at inverse temperature β. We can do this as follows: we change
the representation of the CCR from the original Fock representation to the
Araki-Woods representation at γ. We still assume that the dynamics is for-
mally generated by the same expression.

To make this idea rigorous, it is convenient to use the framework of W ∗-
dynamical systems. In fact, what we obtain is a family of W ∗-dynamical
systems (Mγ , τγ) depending on γ, in general non-isomorphic to one another.

Even if we fix γ, then we can consider various unitarily non-equivalent rep-
resentations of the W ∗-dynamical system (Mγ , τγ). In fact, in the literature
such systems are considered in at least two different representations.

The first one is what we call the semistandard representation. It was used
mostly in the older literature, e.g. by Davies [23]. It is quite simple: the small
system is assumed to interact with positive density Araki-Woods fields. In
this representation, the dynamics has a unitary implementation given by the
unitary group generated by, what we call, the semi-Liouvillean.

The second one is the standard representation. It is commonly used in
the more recent literature [11,27]. One can argue that it is the most natural
representation from the point of view of theory of W ∗-algebras. In any case,
it is a useful tool to study various properties of (Mγ , τγ). On the other hand,
it is more complicated than the semistandard representation. The natural
implementation of the dynamics in this representation is generated by the
standard Liouvillean.
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If the bosons are confined in the sense of Subsects. 11.1, then (Mγ , τγ) are
for various γ isomorphic. In this case, the algebra Mγ has also a third useful
representation: the irreducible one, which is not available in the general case.

The main goal of this section is to illustrate the above ideas with the
so-called Pauli-Fierz systems. We will use the name a Pauli-Fierz operator
to denote a self-adjoint operator describing bosons interacting with a small
quantum system with an interaction linear in fields. We reserve the name
a Pauli-Fierz Hamiltonian to Pauli-Fierz operators with a positive disper-
sion relation. This condition guarantees that they are bounded from below.
(Note that Pauli-Fierz Liouvilleans and semi-Liouvilleans are in general not
bounded from below).

Pauli-Fierz Hamiltonians arise in quantum physics in various contexts
and are known under many names (e.g. the spin-boson Hamiltonian). The
Hamiltonian of QED in the dipole approximation is an example of such an
operator.

Several aspects of Pauli-Fierz operators have been recently studied in
mathematical literature, both because of their physical importance and be-
cause of their interesting mathematical properties, see [11, 25–27] and refer-
ences therein.

The plan of this section is as follows. First we fix some notation useful
in describing small quantum systems interacting with Bose gas (following
mostly [27]). Then we describe a Pauli-Fierz Hamiltonian. It is described
by a positive boson 1-particle energy h, small system Hamiltonian K and a
coupling operator v. (Essentially the only reason to assume that h is positive
is the fact that such 1-particle energies are typical for physical systems).
The corresponding W ∗-algebraic system is just the algebra of all bounded
operators on the Hilbert space with the Heisenberg dynamics generated by
the Hamiltonian.

Given the operator γ describing the boson fields (and the corresponding
operator ρ describing the boson density, related to γ by (73)) we construct the
W ∗-dynamical system (Mγ , τγ) – the Pauli-Fierz system corresponding to γ.
The system (Mγ , τγ) is described in two representations: the semistandard
and the standard one.

Parallel to the general case, we describe the confined case. We show, in
particular, that in the confined case the semi-Liouvilleans and Liouvilleans
are unitarily equivalent for various densities γ.

The constructions presented in this section are mostly taken from [27].
The only new material is the discussion of the confined case, which, even if
straightforward, we believe to be quite instructive.

Remark 4. In all our considerations about Pauli-Fierz systems we restrict our-
selves to the W ∗-algebraic formalism. It would be tempting to apply the C∗-
algebraic approach to describe Pauli-Fierz systems [17]. This approach pro-
poses that a quantum system should be described by a certain C∗-dynamical
system (a C∗-algebra with a strongly continuous dynamics). By considering
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various representations of this C∗-dynamical system one could describe its
various thermodynamical behaviors.

Such an approach works usually well in the case of infinitely extended
spin or fermionic systems, because in a finite volume typical interactions are
bounded [17], and in algebraic local quantum field theory, because of the
finite speed of propagation [40]. Unfortunately, for Pauli-Fierz systems the
C∗-approach seems to be inappropriate – we do not know of a good choice
of a C∗-algebra with the C∗-dynamics generated by a non-trivial Pauli-Fierz
Hamiltonian. The problem is related to the unboundedness of bosonic fields
that are involved in Pauli-Fierz Hamiltonians.

13.1 Creation and Annihilation Operators in Coupled Systems

Suppose that W is a Hilbert space. Consider a bosonic system described
by the Fock space Γs(W) interacting with a quantum system described by
a Hilbert space E . The composite system is described by the Hilbert space
E ⊗ Γs(W). In this subsection we discuss the formalism that we will use to
describe the interaction of such coupled systems.

Let q ∈ B(E , E ⊗W). The annihilation operator a(q) is a densely defined
operator on E ⊗Γs(W) with the domain equal to the finite particle subspace
of E ⊗ Γs(W). For Ψ ∈ E ⊗ Γns (W) we set

a(q)Ψ :=
√
nq∗⊗1⊗(n−1)

W Ψ ∈ E ⊗ Γn−1
s (W) . (119)

(E ⊗Γns (W) can be viewed as a subspace of E ⊗W⊗n. Moreover, q∗⊗1⊗(n−1)
W

is an operator from E ⊗W⊗n to E ⊗W⊗(n−1), which maps E ⊗ Γns (W) into
E ⊗ Γn−1

s (W). Therefore, (119) makes sense).
The operator a(q) is closable and we will denote its closure by the same

symbol. The creation operator a∗(q) is defined as

a∗(q) := a(q)∗ .

Note that if q = B ⊗ |w), for B ∈ B(E) and w ∈ W, then

a∗(q) = B⊗a∗(w), a(q) = B∗⊗a(w) ,

where a∗(w)/a(w) are the usual creation/annihilion operators on the Fock
space Γs(W).

13.2 Pauli-Fierz Hamiltonians

Throughout this section we assume thatK is a self-adjoint operator on a finite
dimensional Hilbert space K, h is a positive operator on a Hilbert space Z
and v ∈ B(K,K ⊗Z). The self-adjoint operator

Hfr := K ⊗ 1 + 1⊗ dΓ (h)
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on K ⊗ Γs(Z) will be called a free Pauli-Fierz Hamiltonian. The interaction
is described by the self-adjoint operator

V = a∗(v) + a(v) .

The operator
H := Hfr + V

is called a full Pauli-Fierz Hamiltonian.
If

h−
1
2 v ∈ B(K,K ⊗Z) , (120)

then H is self-adjoint on Dom(Hfr) and bounded from below, see e.g [27].(
B(K ⊗ Γs(Z)), eitH · e−itH

)
will be called a Pauli-Fierz W ∗-dynamical

system at zero density.

Remark 5. We will usually drop 1K⊗ in formulas, so that h−
1
2 v above should

be read (h−
1
2⊗1K)v.

Remark 6. Self-adjoint operators of the form of a Pauli-Fierz Hamiltonian,
but without the requirement that the boson energy is positive, will be called
Pauli-Fierz operators.

13.3 More Notation

In order to describe Pauli-Fierz systems at a positive density in a compact
and elegant way we need more notation.

Let K and Z be Hilbert spaces. Remember that we assume K to be finite
dimensional. First we introduce a certain antilinear map # from B(K,K⊗Z)
to B(K,K ⊗Z).

Let v ∈ B(K,K⊗Z). We define v� ∈ B(K,K⊗Z) such that for Φ, Ψ ∈ K
and w ∈ Z,

(Φ⊗w | vΨ)K⊗Z = (v�Φ|Ψ ⊗ w)K⊗Z .

It is easy to see that v� is uniquely defined. (Note that # is different from ∗
denoting the Hermitian conjugation).

Remark 7. Given an orthonormal basis {wi : i ∈ I} in Z, any v ∈ B(K,K⊗
Z) can be decomposed as

v =
∑

i∈I
Bi ⊗ |wi) , (121)

where Bi ∈ B(K), then
v� :=

∑

i∈I
B∗
i ⊗ |wi) .
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Next we introduce the operation ⊗̌, which can be called tensoring in the
middle. Let H1, H2 be Hilbert spaces. If B ∈ B(K), A ∈ B(K⊗H1,K⊗H2),
we define

B⊗̌A := (θ−1⊗1H2) (B⊗A) (θ⊗1H1) ∈ B(K⊗K⊗H1,K⊗K⊗H2) , (122)

where θ : K ⊗K → K⊗K is defined as θ Ψ1⊗Ψ2 := Ψ2⊗Ψ1.

Remark 8. If C ∈ B(K), A ∈ B(H1,H2), then B ⊗̌ (C⊗A) := C ⊗B ⊗A.

13.4 Pauli-Fierz Systems at a Positive Density

In this subsection we introduce Pauli-FierzW ∗-dynamical systems. They will
be the main subject of the remaining part of this section.

Let ρ be a positive operator commuting with h having the interpretation
of the radiation density. Let γ be the operator related to ρ as in (73). Let
MAW

γ,l ⊂ B(Γs(Z⊕Z)) be the left Araki-Woods algebra introduced in Subsect.
9.3. The Pauli-Fierz algebra corresponding to γ is defined by

Mγ := B(K)⊗MAW
γ,l . (123)

The identity map

Mγ → B(K ⊗ Γs(Z ⊕ Z)) (124)

will be called the semistandard representation of Mγ . (The bosonic part of
(124) is already standard, the part involving K is not – hence the name).

Proposition 2. Assume that

(1 + ρ)1/2v ∈ B(K,K ⊗Z) . (125)

Let
Vγ := a∗

(
(1 + ρ)

1
2 v, ρ

1
2 v�
)

+ a
(
(1 + ρ)

1
2 v, ρ

1
2 v�
)
.

Then the operator Vγ is essentially self-adjoint on the space of finite particle
vectors and affiliated to Mγ .

The free Pauli-Fierz semi-Liouvillean is the self-adjoint operator on
K ⊗ Γs(Z ⊕ Z) defined as

Lsemi
fr := K ⊗ 1 + 1⊗ dΓ (h⊕ (−h)).

The full Pauli-Fierz semi-Liouvillean corresponding to γ is

Lsemi
γ := Lsemi

fr + Vγ . (126)

Let us formulate the following assumption:

(1 + h)(1 + ρ)1/2v ∈ B(K,K ⊗Z). (127)

Using Theorem 3.3 of [29] we obtain
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Theorem 57. 1)
τ tfr(A) := eitLsemi

fr Ae−itLsemi
fr

is a W ∗-dynamics on Mγ .
2) Suppose that (127) holds. Then Lsemi

γ is essentially self-adjoint on
Dom(Lsemi

fr ) ∩Dom(Vγ) and

τ tγ(A) := eitLsemi
γ Ae−itLsemi

γ

is a W ∗-dynamics on Mγ .

The pair
(
Mγ , τγ

)
will be called the Pauli-Fierz W ∗-dynamical system

corresponding to γ.

13.5 Confined Pauli-Fierz Systems – Semistandard
Representation

In this subsection we make the assumption Trγ <∞. As before, we will call
it the confined case.

We can use the identity representation for B(K) and the Araki-Woods
representation θγ,l for B(Γs(Z)). Thus we obtain the faithful representation

πsemi
γ : B(K ⊗ Γs(Z)) → B(K ⊗ Γs(Z ⊕ Z)) ,

which will be called the semistandard representation of B(K ⊗ Γs(Z)). In
other words, πsemi

γ is defined by

πsemi
γ (A) = U semi

γ A⊗1Γs(Z)U
semi∗
γ A ∈ B(K ⊗ Γs(Z)) ,

where
U semi
γ := 1K⊗RγU ,

and U was defined in (36) and Rγ in (110).

Theorem 58.

πsemi
γ

(
B
(
K ⊗ Γs(Z)

))
= Mγ ,

πsemi
γ

(
eitHAe−itH

)
= τ tγ

(
πsemi
γ (A)

)
, A ∈ B(K ⊗ Γs(Z)) ,

Lsemi
γ = U semi

γ

(
H ⊗ 1Γs(Z) − 1K⊗Γs(Z) ⊗ dΓ (h)

)
U semi∗
γ .

Let us stress that in the confined case the semi-Liouvilleans Lsemi
γ and the

W ∗-dynamical systems (Mγ,l, τγ) are unitarily equivalent for different γ.
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13.6 Standard Representation of Pauli-Fierz Systems

In this subsection we drop the assumption Trγ < ∞ about the confinement
of the bosons and we consider the general case again.

Consider the representation

π : Mγ → B(K ⊗K ⊗ Γs(Z ⊕ Z))

defined by
π(A) := 1K⊗̌A, A ∈Mγ ,

where ⊗̌ was introduced in (122). Clearly,

π(Mγ) = B(K)⊗ 1K ⊗MAW
γ,l .

Set J := JK ⊗ Γ (ε), where

JKΨ1 ⊗ Ψ2 := Ψ2 ⊗ Ψ1, Ψ1, Ψ2 ∈ K , (128)

and ε was introduced in (75). Note that

J B(K)⊗ 1K ⊗MAW
γ,l J = 1K ⊗B(K)⊗MAW

γ,r ,

and if A ∈ B(K)⊗MAW
γ,l , then

Jπ(A)J = 1K ⊗
(
1K ⊗ Γ (τ) A 1K ⊗ Γ (τ)

)
,

where τ was introduced in (74).

Proposition 3.
(
π, K ⊗K ⊗ Γs(Z ⊕ Z), J, H+

γ

)

is a standard representation of Mγ , where

H+
γ := {π(A)Jπ(A) B⊗Ω : B ∈ B2

+(K), A ∈ Mγ}cl .

Set

Lfr := K ⊗ 1⊗ 1− 1⊗K ⊗ 1 + 1⊗ 1⊗ dΓ (h⊕ (−h)) .

Proposition 4. Assume (125). Then

π(Vγ) := 1K ⊗̌ Vγ

= 1K ⊗̌ a∗
(
(1 + ρ)

1
2 v, ρ

1
2 v�
)

+ 1K ⊗̌ a
(
(1 + ρ)

1
2 v, ρ

1
2 v�
)

is essentially self-adjoint on finite particle vectors of K⊗K⊗Γs(Z ⊕Z) and
is affiliated to the W ∗-algebra B(K)⊗ 1K ⊗MAW

γ,l . Moreover,

Jπ(Vγ)J := 1K ⊗
(
1K ⊗ Γ (τ) Vγ 1K ⊗ Γ (τ)

)

= 1K ⊗ a∗
(
ρ

1
2 v�, (1 + ρ)

1
2 v
)

+ 1K ⊗ a
(
ρ

1
2 v�, (1 + ρ)

1
2 v
)
.
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Set
Lγ := Lfr + π(Vγ)− Jπ(Vγ)J . (129)

Theorem 59. 1) Lfr is the standard Liouvillean of the free Pauli-Fierz sys-
tem (Mγ , τfr).

2) Suppose that (127) holds. Then Lγ is essentially self-adjoint on
Dom(Lfr) ∩Dom(π(Vγ)) ∩Dom(Jπ(Vγ)J) and is the Liouvillean of the
Pauli-Fierz system (Mγ , τγ).

13.7 Confined Pauli-Fierz Systems – Standard Representation

Again we make the assumption Trγ < ∞ about the confinement of the
bosons.

We can use the standard representation πl for B(K) in B(K⊗K) (in the
form of Subsect. 8.6) and the Araki-Woods representation θγ,l for B(Γs(Z))
in B(Γs(Z ⊕ Z)). Thus we obtain the representation

πγ,l : B(K ⊗ Γs(Z)) → B(K ⊗K ⊗ Γs(Z ⊕ Z))

defined by

πγ,l(A1 ⊗A2) = A1 ⊗ 1K ⊗ θγ,l(A2), A1 ∈ B(K), A2 ∈ B(Γs(Z)) .

Note that

πγ,l(A) := 1K⊗̌πsemi
γ (A), A ∈ B(K ⊗ Γs(Z)) .

One can put it in a different way. Introduce the obvious unitary identification

Ũ : K ⊗ Γs(Z)⊗K ⊗ Γs(Z) → K⊗K ⊗ Γs(Z ⊕ Z) .

Set
Uγ := 1K⊗K⊗Rγ Ũ .

Then
πγ,l(A) = Uγ A⊗1K⊗Γs(Z) U

∗
γ , A ∈ B(K ⊗ Γs(Z)) .

Theorem 60.

πγ,l
(
B
(
K ⊗ Γs(Z)

))
= π(Mγ) ,

πγ,l

(
eitHAe−itH

)
= π
(
τ tγ(π

semi
γ (A))

)
, A ∈ B(K ⊗ Γs(Z)) ,

Lγ = Uγ

(
H ⊗ 1K⊗Γs(Z) − 1K⊗Γs(Z) ⊗H

)
U∗
γ .

Let us stress that in the confined case the Liouvilleans Lγ are unitarily
equivalent for different γ.
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1 Introduction

In these lectures we shall study an “atom”, S, described by finitely many
energy levels, coupled to a “radiation field”, R, described by another set
(typically continuum) of energy levels. More precisely, assume that S and R
are described, respectively, by the Hilbert spaces hS , hR and the Hamiltonians
hS , hR. Let h = hS ⊕ hR and h0 = hS ⊕hR. If v is a self-adjoint operator on
h describing the coupling between S and R, then the Hamiltonian we shall
study is hλ ≡ h0 + λv, where λ ∈ R is a coupling constant.

For reasons of space we shall restrict ourselves here to the case where S
is a single energy level, i.e., we shall assume that hS ≡ C and that hS ≡ ω is
the operator of multiplication by a real number ω. The multilevel case will
be considered in the continuation of these lecture notes [41]. We will keep
hR and hR general and we will assume that the interaction has the form
v = w + w∗, where w : C → hR is a linear map.

With a slight abuse of notation, in the sequel we will drop ⊕ whenever
the meaning is clear within the context. Hence, we will write α for α ⊕ 0, g
for 0⊕ g, etc. If w(1) = f , then w = (1| · )f and v = (1| · )f + (f | · )1.

In physics literature, a Hamiltonian of the form

hλ = h0 + λ((1| · )f + (f | · )1) , (1)

with λ ∈ R is sometimes called the Wigner-Weisskopf atom (abbreviated
WWA) and we will adopt that name. Operators of the type (1) are also often
called Friedrichs Hamiltonians [28]. The WWA is a toy model invented to
illuminate various aspects of quantum physics; see [2, 4, 5, 9, 13, 14, 17, 24, 28,
29,34,46,49,53].

Our study of the WWA naturally splits into several parts. Non-perturbative
and perturbative spectral analysis are discussed respectively in Sects. 2 and
3. The fermionic second quantization of the WWA is discussed in Sects. 4
and 5.

In Sect. 2 we place no restrictions on hR and we obtain qualitative infor-
mation on the spectrum of hλ which is valid either for all or for Lebesgue
a.e. λ ∈ R. Our analysis is based on the spectral theory of rank one per-
turbations [37, 59]. The theory discussed in this section naturally applies to
the cases where R describes a quasi-periodic or a random structure, or the
coupling constant λ is large.

Quantitative information about the WWA can be obtained only in the
perturbative regime and under suitable regularity assumptions. In Sect. 3.2
we assume that the spectrum of hR is purely absolutely continuous, and
we study spectral properties of hλ for small, non-zero λ. The main subject
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of Sect. 3.2 is the perturbation theory of embedded eigenvalues and related
topics (complex resonances, radiative life-time, spectral deformations, weak
coupling limit). Although the material covered in this section is very well
known, our exposition is not traditional and we hope that the reader will learn
something new. The reader may benefit by reading this section in parallel
with Complement CIII in [13].

The second quantizations of the WWA lead to the simplest non-trivial
examples of open systems in quantum statistical mechanics. We shall call
the fermionic second quantization of the WWA the Simple Electronic Black
Box (SEBB) model. The SEBB model in the perturbative regime has been
studied in the recent lecture notes [2]. In Sects. 4 and 5 we extend the analysis
and results of [2] to the non-perturbative regime. For additional information
about the Electronic Black Box models we refer the reader to [3].

Assume that hR is a real Hilbert space and consider the WWA (1) over
the real Hilbert space R⊕ hR. The bosonic second quantization of the wave
equation ∂2

t ψt+hλψt = 0 (see Sect. 6.3 in [10] and the lectures [18,19] in this
volume) leads to the so called FC (fully coupled) quantum oscillator model.
This model has been extensively discussed in the literature. The well-known
references in the mathematics literature are [5, 14, 30]. For references in the
physics literature the reader may consult [7, 47]. One may use the results of
these lecture notes to completely describe spectral theory, scattering theory,
and statistical mechanics of the FC quantum oscillator model. For reasons of
space we shall not discuss this topic here (see [41]).

These lecture notes are on a somewhat higher technical level than the
recent lecture notes of the first and the third author [2,37,51]. The first two
sections can be read as a continuation (i.e. the final section) of the lecture
notes [37]. In these two sections we have assumed that the reader is familiar
with elementary aspects of spectral theory and harmonic analysis discussed
in [37]. Alternatively, all the prerequisites can be found in [42, 44, 54–58]. In
Sect. 2 we have assumed that the reader is familiar with basic results of the
rank one perturbation theory [37,59]. In Sects. 4 and 5 we have assumed that
the reader is familiar with basic notions of quantum statistical mechanics
[8–10, 32]. The reader with no previous exposure to open quantum systems
would benefit by reading the last two sections in parallel with [2].

The notation used in these notes is standard except that we denote the
spectrum of a self-adjoint operator A by sp(A). The set of eigenvalues, the
absolutely continuous, the pure point and the singular continuous spectrum
of A are denoted respectively by spp(A), spac(A), sppp(A), and spsc(A). The
singular spectrum of A is spsing(A) = sppp(A) ∪ spsc(A). The spectral sub-
spaces associated to the absolutely continuous, the pure point, and the sin-
gular continuous spectrum of A are denoted by hac(A), hpp(A), and hsc(A).
The projections on these spectral subspaces are denoted by 1ac(A), 1pp(A),
and 1sc(A).
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2 Non-Perturbative Theory

Let ν be a positive Borel measure on R. We denote by νac, νpp, and νsc the
absolutely continuous, the pure point and the singular continuous part of ν
w.r.t. the Lebesgue measure. The singular part of ν is νsing = νpp + νsc. We
adopt the definition of a complex Borel measure given in [37,58]. In particular,
any complex Borel measure on R is finite.

Let ν be a complex Borel measure or a positive measure such that
∫

R

dν(t)
1 + |t| <∞ .

The Borel transform of ν is the analytic function

Fν(z) ≡
∫

R

dν(t)
t− z , z ∈ C \ R .

Let ν be a complex Borel measure or a positive measure such that
∫

R

dν(t)
1 + t2

<∞ . (2)

The Poisson transform of ν is the harmonic function

Pν(x, y) ≡ y
∫

R

dν(t)
(x− t)2 + y2

, x+ iy ∈ C+ ,

where C± ≡ {z ∈ C | ± Im z > 0}.
The Borel transform of a positive Borel measure is a Herglotz function,

i.e., an analytic function on C+ with positive imaginary part. In this case

Pν(x, y) = ImFν(x+ iy) ,

is a positive harmonic function. The G-function of ν is defined by

Gν(x) ≡
∫

R

dν(t)
(x− t)2 = lim

y↓0

Pν(x, y)
y

, x ∈ R .
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We remark that Gν is an everywhere defined function on R with values in
[0,∞]. Note also that if Gν(x) <∞, then limy↓0 ImFν(x+ iy) = 0.

If h(z) is analytic in the half-plane C±, we set

h(x± i0) ≡ lim
y↓0
h(x± iy) ,

whenever the limit exist. In these lecture notes we will use a number of
standard results concerning the boundary values Fν(x ± i0). The proofs of
these results can be found in [37] or in any book on harmonic analysis. We
note in particular that Fν(x± i0) exist and is finite for Lebesgue a.e. x ∈ R.
If ν is real-valued and non-vanishing, then for any a ∈ C the sets {x ∈
R |Fν(x± i0) = a} have zero Lebesgue measure.

Let ν be a positive Borel measure. For later reference, we describe some
elementary properties of its Borel transform. First, the Cauchy-Schwartz in-
equality yields that for y > 0

ν(R) ImFν(x+ iy) ≥ y |Fν(x+ iy)|2 . (3)

The dominated convergence theorem yields

lim
y→∞

y ImFν(iy) = lim
y→∞

y |Fν(iy)| = ν(R) . (4)

Assume in addition that ν(R) = 1. The monotone convergence theorem
yields

lim
y→∞

y2
(
y ImFν(iy)− y2 |Fν(iy)|2

)

= lim
y→∞

y4

2

∫

R×R

(
1

t2 + y2
+

1
s2 + y2

− 2
(t− iy)(s+ iy)

)
dν(t) dν(s)

= lim
y→∞

1
2

∫

R×R

y2

t2 + y2

y2

s2 + y2
(t− s)2dν(t) dν(s)

=
1
2

∫

R×R

(t− s)2dν(t) dν(s).

If ν has finite second moment,
∫

R
t2dν(t) <∞, then

1
2

∫

R×R

(t− s)2dν(t) dν(s) =
∫

R

t2dν(t)−
(∫

R

tdν(t)
)2

. (5)

If
∫

R
t2dν(t) = ∞, then it is easy to see that the both sides in (5) are also

infinite. Combining this with (4) we obtain

lim
y→∞

y ImFν(iy)− y2 |Fν(iy)|2
|Fν(iy)|2

=
∫

R

t2dν(t)−
(∫

R

tdν(t)
)2

, (6)

where the right hand side is defined to be ∞ whenever
∫

R
t2dν(t) =∞.

In the sequel |B| denotes the Lebesgue measure of a Borel set B and δy
the delta-measure at y ∈ R.
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2.1 Basic Facts

Let hR,f ⊂ hR be the cyclic space generated by hR and f . We recall that hR,f

is the closure of the linear span of the set of vectors {(hR−z)−1f | z ∈ C\R}.
Since (C⊕ hR,f )⊥ is invariant under hλ for all λ and

hλ|(C⊕hR,f )⊥ = hR|(C⊕hR,f )⊥ ,

in this section without loss of generality we may assume that hR,f = hR,
namely that f is a cyclic vector for hR. By the spectral theorem, w.l.o.g. we
may assume that

hR = L2(R,dµR) ,

and that hR ≡ x is the operator of multiplication by the variable x. We will
write

FR(z) ≡ (f |(hR − z)−1f) .

Note that FR = Ff2µR . Similarly, we denote PR(x, y) = ImFR(x+ iy), etc.
As we shall see, in the non-perturbative theory of the WWA it is very

natural to consider the Hamiltonian (1) as an operator-valued function of
two real parameters λ and ω. Hence, in this section we will write

hλ,ω ≡ h0 + λv = ω ⊕ x+ λ ((f | · )1 + (1| · )f) .

We start with some basic formulas. The relation

A−1 −B−1 = A−1(B −A)B−1 ,

yields that

(hλ,ω − z)−11 = (ω − z)−11− λ(ω − z)−1(hλ,ω − z)−1f ,

(hλ,ω − z)−1f = (hR − z)−1f − λ(f |(hR − z)−1f)(hλ,ω − z)−11.
(7)

It follows that the cyclic subspace generated by hλ,ω and the vectors 1, f , is
independent of λ and equal to h, and that for λ = 0, 1 is a cyclic vector for
hλ,ω. We denote by µλ,ω the spectral measure for hλ,ω and 1. The measure
µλ,ω contains full spectral information about hλ,ω for λ = 0. We also de-
note by Fλ,ω and Gλ,ω the Borel transform and the G-function of µλ,ω. The
formulas (7) yield

Fλ,ω(z) =
1

ω − z − λ2FR(z)
. (8)

Since Fλ,ω = F−λ,ω, the operators hλ,ω and h−λ,ω are unitarily equivalent.
According to the decomposition h = hS ⊕ hR we can write the resolvent

rλ,ω(z) ≡ (hλ,ω − z)−1 in matrix form

rλ,ω(z) =




rSS
λ,ω(z) rSR

λ,ω(z)

rRS
λ,ω(z) rRR

λ,ω (z)



 .
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A simple calculation leads to the following formulas for its matrix elements

rSS
λ,ω(z) = Fλ,ω(z),
rSR
λ,ω(z) = −λFλ,ω(z)1(f |(hR − z)−1 · ),
rRS
λ,ω(z) = −λFλ,ω(z)(hR − z)−1f(1| · ),
rRR
λ,ω (z) = (hR − z)−1 + λ2Fλ,ω(z)(hR − z)−1f(f |(hR − z)−1 · ).

(9)

Note that for λ = 0,

Fλ,ω(z) =
Fλ,0(z)

1 + ωFλ,0(z)
.

This formula should not come as a surprise. For fixed λ = 0,

hλ,ω = hλ,0 + ω(1| · )1 ,

and since 1 is a cyclic vector for hλ,ω, we are in the usual framework of the
rank one perturbation theory with ω as the perturbation parameter! This
observation will allow us to naturally embed the spectral theory of hλ,ω into
the spectral theory of rank one perturbations.

By taking the imaginary part of Relation (8) we can relate the G-functions
of µR and µλ,ω as

Gλ,ω(x) =
1 + λ2GR(x)

|ω − x− λ2FR(x+ i0)|2 , (10)

whenever the boundary value FR(x + i0) exists and the numerator and de-
nominator of the right hand side are not both infinite.

It is important to note that, subject to a natural restriction, every rank
one spectral problem can be put into the form hλ,ω for a fixed λ = 0.

Proposition 1. Let ν be a Borel probability measure on R, f(x) = 1 for all
x ∈ R, and λ = 0. Then the following statements are equivalent:

1. There exists a Borel probability measure µR on R such that the corre-
sponding µλ,0 is equal to ν.

2.
∫

R
tdν(t) = 0 and

∫
R
t2dν(t) = λ2.

Proof. (1) ⇒ (2) Assume that µR exists. Then hλ,01 = λf and hence
∫

R

tdν(t) = (1|hλ,01) = 0 ,

and ∫

R

t2dν(t) = ‖hλ,01‖2 = λ2 .

(2) ⇒ (1) We need to find a probability measure µR such that



152 V. Jakšić et al.

FR(z) = λ−2

(
−z − 1

Fν(z)

)
, (11)

for all z ∈ C+. Set

Hν(z) ≡ −z −
1

Fν(z)
.

Equation (3) yields that C+ � z �→ λ−2 ImHν(z) is a non-negative harmonic
function. Hence, by a well-known result in harmonic analysis (see e.g. [37,44]),
there exists a Borel measure µR which satisfies (2) and a constant C ≥ 0 such
that

λ−2 ImHν(x+ iy) = PR(x, y) + Cy , (12)

for all x+ iy ∈ C+. The dominated convergence theorem and (2) yield that

lim
y→∞

PR(0, y)
y

= lim
y→∞

∫

R

dµR(t)
t2 + y2

= 0 .

Note that

y ImHν(iy) =
y ImFν(iy)− y2 |Fν(iy)|2

|Fν(iy)|2
, (13)

and so (6) yields

lim
y→∞

ImHν(iy)
y

= 0 .

This fact and (12) yield that C = 0 and that

FR(z) = λ−2Hν(z) + C1 , (14)

where C1 is a real constant. From (4), (13) and (6) we get

µR(R) = lim
y→∞

y ImFR(iy)

= λ−2 lim
y→∞

y ImHν(iy)

= λ−2

(∫

R

t2dν(t)−
(∫

R

tdν(t)
)2
)

= 1 ,

and so µR is probability measure. Since

ReHν(iy) = −ReFν(iy)
|Fν(iy)|2

,

Equation (14), (4) and the dominated convergence theorem yield that

λ2C1 = − lim
y→∞

ReHν(iy)

= lim
y→∞

y2ReFν(iy)

= lim
y→∞

∫

R

ty2

t2 + y2
dν(t)

=
∫

R

tdν(t) = 0 .
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Hence, C1 = 0 and (11) holds. �

2.2 Aronszajn-Donoghue Theorem

For λ = 0 define

Tλ,ω ≡ {x ∈ R |GR(x) <∞, x− ω + λ2FR(x+ i0) = 0} ,

Sλ,ω ≡ {x ∈ R |GR(x) =∞, x− ω + λ2FR(x+ i0) = 0} ,

L ≡ {x ∈ R | ImFR(x+ i0) > 0} .

(15)

Since the analytic function C+ � z �→ z − ω + λ2FR(z) is non-constant and
has a positive imaginary part, by a well known result in harmonic analysis
|Tλ,ω| = |Sλ,ω| = 0. Equation (8) implies that, for ω = 0, x− ω + λ2FR(x+
i0) = 0 is equivalent to Fλ,0(x + i0) = −ω−1. Moreover, if one of these
conditions is satisfied, then (10) yields

ω2Gλ,0(x) = 1 + λ2GR(x) .

Therefore, if ω = 0, then

Tλ,ω = {x ∈ R |Gλ,0(x) <∞, Fλ,0(x+ i0) = −ω−1} ,

Sλ,ω = {x ∈ R |Gλ,0(x) = ∞, Fλ,0(x+ i0) = −ω−1} .
The well-known Aronszajn-Donoghue theorem in spectral theory of rank

one perturbations (see [37, 59]) translates to the following result concerning
the WWA.

Theorem 1. 1. Tλ,ω is the set of eigenvalues of hλ,ω. Moreover,

µλ,ωpp =
∑

x∈Tλ,ω

1
1 + λ2GR(x)

δx . (16)

If ω = 0, then also

µλ,ωpp =
∑

x∈Tλ,ω

1
ω2Gλ,0(x)

δx .

2. ω is not an eigenvalue of hλ,ω for all λ = 0.
3. µλ,ωsc is concentrated on Sλ,ω.
4. For all λ, ω, the set L is an essential support of the absolutely continuous

spectrum of hλ,ω. Moreover spac(hλ,ω) = spac(hR) and

dµλ,ωac (x) =
1
π

ImFλ,ω(x+ i0) dx .

5. For a given ω, {µλ,ωsing |λ > 0} is a family of mutually singular measures.
6. For a given λ = 0, {µλ,ωsing |ω = 0} is a family of mutually singular mea-

sures.
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2.3 The Spectral Theorem

In this subsection λ = 0 and ω are given real numbers. By the spectral
theorem, there exists a unique unitary operator

Uλ,ω : h → L2(R,dµλ,ω) , (17)

such that Uλ,ωhλ,ω(Uλ,ω)−1 is the operator of multiplication by x on the
Hilbert space L2(R,dµλ,ω) and Uλ,ω1 = 1l, where 1l(x) = 1 for all x ∈ R.
Moreover,

Uλ,ω = Uλ,ω
ac ⊕ Uλ,ω

pp ⊕ Uλ,ω
sc ,

where
Uλ,ω

ac : hac(hλ,ω) → L2(R,dµλ,ωac ) ,

Uλ,ω
pp : hpp(hλ,ω) → L2(R,dµλ,ωpp ) ,

Uλ,ω
sc : hsc(hλ,ω) → L2(R,dµλ,ωsc ) ,

are unitary. In this subsection we will describe these unitary operators. We
shall make repeated use of the following fact. Let µ be a positive Borel mea-
sure on R. For any complex Borel measure ν on R denote by ν = νac+νsing the
Lebesgue decomposition of ν into absolutely continuous and singular parts
w.r.t. µ. The Radon-Nikodym derivative of νac w.r.t. µ is given by

lim
y↓0

Pν(x, y)
Pµ(x, y)

=
dνac
dµ

(x) ,

for µ-almost every x (see [37]). In particular, if µ is Lebesgue measure, then

lim
y↓0

Pν(x, y) = π
dνac
dx

(x) , (18)

for Lebesgue a.e. x. By (8),

ImFλ,ω(x+ i0) = λ2 |Fλ,ω(x+ i0)|2 ImFR(x+ i0) , (19)

and so (18) yields that

dµλ,ωac

dx
= λ2|Fλ,ω(x+ i0)|2|f(x)|2 dµR,ac

dx
. (20)

In particular, since Fλ,ω(x + i0) = 0 for Lebesgue a.e. x and f(x) = 0 for
µR-a.e. x, µλ,ωac and µR,ac are equivalent measures.

Let φ = α⊕ ϕ ∈ h and

M(z) ≡ 1
2i

[
(1|(hλ,ω − z)−1φ)− (1|(hλ,ω − z)−1φ)

]
, z ∈ C+ .

The formulas (7) and (9) yield that
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(1|(hλ,ω − z)−1φ) = Fλ,ω(z)
(
α− λ(f |(hR − z)−1ϕ)

)
, (21)

and so

M(z) = ImFλ,ω(z)
(
α− λ(f |(hR − z)−1ϕ)

)

− λFλ,ω(z)
(
y (f |((hR − x)2 + y2)−1ϕ)

)

= ImFλ,ω(z)
(
α− λ(f |(hR − z)−1ϕ)

)

− λFλ,ω(z) y
∫

R

f(t)ϕ(t)
(t− x)2 + y2

dµR(t).

This relation and (18) yield that for µR,ac-a.e. x,

M(x+ i0) = ImFλ,ω(x+ i0)
(
α− λ(f |(hR − x− i0)−1ϕ)

)

− λFλ,ω(x− i0)f(x)ϕ(x)π
dµR ac

dx
(x).

(22)

On the other hand, computing M(z) in the spectral representation (17)
we get

M(z) = y

∫

R

(Uλ,ωφ)(t)
(t− x)2 + y2

dµλ,ω(t) .

This relation and (18) yield that for Lebesgue a.e. x,

M(x+ i0) = (Uλ,ω
ac φ)(x)π

dµλ,ωac

dx
(x) .

Since µR,ac and µλ,ωac are equivalent measures, comparison with the expression
(22) and use of (8) yield

Proposition 2. Let φ = α⊕ ϕ ∈ h. Then

(Uλ,ω
ac φ)(x) = α− λ(f |(hR − x− i0)−1ϕ)− ϕ(x)

λFλ,ω(x+ i0)f(x)
.

We now turn to the pure point part Uλ,ω
pp . Recall that Tλ,ω is the set of

eigenvalues of hλ,ω. Using the spectral representation (17), it is easy to prove
that for x ∈ Tλ,ω

lim
y↓0

(1|(hλ,ω − x− iy)−1φ)
(1|(hλ,ω − x− iy)−11)

= lim
y↓0

F(Uλ,ωφ)µλ,ω (x+ iy)
Fλ,ω(x+ iy)

= (Uλ,ωφ)(x) . (23)

The relations (21) and (23) yield that for x ∈ Tλ,ω the limit

Hϕ(x+ i0) ≡ lim
y↓0

(f |(hR − x− iy)−1ϕ) , (24)

exists and that (Uλ,ωφ)(x) = α− λHϕ(x+ i0). Hence, we have:
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Proposition 3. Let φ = α⊕ ϕ ∈ h. Then for x ∈ Tλ,ω,

(Uλ,ω
pp φ)(x) = α− λHϕ(x+ i0) .

The assumption x ∈ Tλ,ω makes the proof of (23) easy. However, this
formula holds in a much stronger form. It is a deep result of Poltoratskii [52]
(see also [37,38]) that

lim
y↓0

(1|(hλ,ω − x− iy)−1φ)
(1|(hλ,ω − x− iy)−11)

= (Uλ,ωφ)(x) for µλ,ωsing − a.e. x . (25)

Hence, the limit (24) exists and is finite for µλ,ωsing-a.e. x. Thus, we have:

Proposition 4. Let φ = α⊕ ϕ ∈ h. Then,

(Uλ,ω
singφ)(x) = α− λHϕ(x+ i0) ,

where Uλ,ω
sing = Uλ,ω

pp ⊕ Uλ,ω
sc .

We finish this subsection with the following remark. There are many uni-
taries

W : h → L2(R,dµλ,ω) ,

such that Whλ,ωW−1 is the operator of multiplication by x on the Hilbert
space L2(R,dµλ,ω). Such unitaries are completely determined by their action
on the vector 1 and can be classified as follows. The operator

Uλ,ωW−1 : L2(R,dµλ,ω) → L2(R,dµλ,ω) ,

is a unitary which commutes with the operator of multiplication by x. Hence,
there exists θ ∈ L∞(R,dµλ,ω) such that |θ| = 1 and

W = θUλ,ω .

We summarize:

Proposition 5. Let W : h → L2(R,dµλ,ω) be a unitary operator. Then the
following statements are equivalent:

1. Whλ,ωW−1 is the operator of multiplication by x on the Hilbert space
L2(R,dµλ,ω).

2. There exists θ ∈ L∞(R,dµλ,ω) satisfying |θ| = 1 such that

(Wφ)(x) = θ(x)(Uλ,ωφ)(x) .
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2.4 Scattering Theory

Recall that hR is the operator of multiplication by the variable x on the space
L2(R,dµR). Uλ,ωhλ,ω(Uλ,ω)−1 is the operator of multiplication by x on the
space L2(R,dµλ,ω). Set

hR,ac ≡ hR|hac(hR), hλ,ω,ac ≡ hλ,ω|hac(hλ,ω) .

Since hac(hR) = L2(R,dµR,ac),

hac(hλ,ω) = (Uλ,ω
ac )−1L2(R,dµλ,ωac ) ,

and the measures µR,ac and µλ,ωac are equivalent, the operators hR,ac and
hλ,ω,ac are unitarily equivalent. Using (20) and the chain rule one easily
checks that the operator

(Wλ,ωφ)(x) =

√
dµλ,ωac

dµR,ac
(x) (Uλ,ω

ac φ)(x) = |λFλ,ω(x+ i0)f(x)|(Uλ,ω
ac φ)(x) ,

is an explicit unitary which takes hac(hλ,ω) onto hac(hR) and satisfies

Wλ,ωhλ,ω,ac = hR,acW
λ,ω .

Moreover, we have:

Proposition 6. Let W : hac(hλ,ω) → hac(hR) be a unitary operator. Then
the following statements are equivalent:

1. W intertwines hλ,ω,ac and hR,ac, i.e.,

Whλ,ω,ac = hR,acW . (26)

2. There exists θ ∈ L∞(R,dµR,ac) satisfying |θ| = 1 such that

(Wφ)(x) = θ(x)(Wλ,ωφ)(x) .

In this subsection we describe a particular pair of unitaries, called wave op-
erators, which satisfy (26).

Theorem 2. 1. The strong limits

U±
λ,ω ≡ s− lim

t→±∞
eithλ,ωe−ith01ac(h0) , (27)

exist and RanU±
λ,ω = hac(hλ,ω).

2. The strong limits

Ω±
λ,ω ≡ s− lim

t→±∞
eith0e−ithλ,ω1ac(hλ,ω) , (28)

exist and RanΩ±
λ,ω = hac(h0).
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3. The maps U±
λ,ω : hac(h0) → hac(hλ,ω) and Ω±

λ,ω : hac(hλ,ω) → hac(h0) are
unitary. U±

λ,ωΩ
±
λ,ω = 1ac(hλ,ω) and Ω±

λ,ωU
±
λ,ω = 1ac(h0). Moreover, Ω±

λ,ω

satisfies the intertwining relation (26).
4. The S-matrix S ≡ Ω+

λ,ωU
−
λ,ω is unitary on hac(h0) and commutes with

h0,ac.

This theorem is a basic result in scattering theory. The detailed proof can
be found in [42,56].

The wave operators and the S-matrix can be described as follows.

Proposition 7. Let φ = α⊕ ϕ ∈ h. Then

(Ω±
λ,ωφ)(x) = ϕ(x)− λf(x)Fλ,ω(x± i0)(α− λ(f |(hR − x∓ i0)−1ϕ)) . (29)

Moreover, for any ψ ∈ hac(h0) one has (Sψ)(x) = S(x)ψ(x) with

S(x) = 1 + 2πiλ2Fλ,ω(x+ i0)|f(x)|2 dµR,ac

dx
(x) . (30)

Remark. The assumption that f is a cyclic vector for hR is not needed in
Theorem 2 and Proposition 7.
Proof. We will compute Ω+

λ,ω. The case of Ω−
λ,ω is completely similar. Let

ψ ∈ hac(h0) = hac(hR). We start with the identity

(ψ|eith0e−ithλ,ωφ) = (ψ|φ)− iλ
∫ t

0

(ψ|eish0f)(1|e−ishλ,ωφ) ds . (31)

Note that (ψ|φ) = (ψ|ϕ), (ψ|eish0f) = (ψ|eishRf), and that

lim
t→∞

(ψ|eith0e−ithλ,ωφ) = lim
t→∞

(eithλ,ωe−ith0ψ|φ)

= (U+
λ,ωψ|φ)

= (ψ|Ω+
λ,ωφ).

Hence, by the Abel theorem,

(ψ|Ω+
λ,ωφ) = (ψ|ϕ)− lim

y↓0
iλL(y) , (32)

where
L(y) =

∫ ∞

0

e−ys(ψ|eish0f)(1|e−ishλ,ωφ) ds .

Now,
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L(y) =
∫ ∞

0

e−ys(ψ|eish0f)(1|e−ishλ,ωφ) ds

=
∫

R

ψ(x)f(x)
[∫ ∞

0

(1|eis(x+iy−hλ,ω)φ)ds
]

dµR,ac(x)

= −i
∫

R

ψ(x)f(x)(1|(hλ,ω − x− iy)−1φ) dµR,ac(x)

= −i
∫

R

ψ(x)f(x)gy(x) dµR,ac(x) ,

(33)

where
gy(x) ≡ (1|(hλ,ω − x− iy)−1φ) .

Recall that for Lebesgue a.e. x,

gy(x) → g(x) ≡ (1|(hλ,ω − x− i0)−1φ) , (34)

as y ↓ 0. By the Egoroff theorem (see e.g. Problem 16 in Chap. 3 of [58], or
any book on measure theory), for any n > 0 there exists a measurable set
Rn ⊂ R such that |R \Rn| < 1/n and gy → g uniformly on Rn. The set

⋃

n>0

{ψ ∈ L2(R,dµR,ac) | suppψ ⊂ Rn} ,

is clearly dense in hac(hR). For any ψ in this set the uniform convergence
gy → g on suppψ implies that there exists a constant Cψ such that

|ψf(gy − g)| ≤ Cψ|ψf | ∈ L1(R,dµR,ac) .

This estimate and the dominated convergence theorem yield that

lim
y↓0

∫

R

ψ f(gy − g)dµR,ac = 0 .

On the other hand, (32) and (33) yield that the limit

lim
y↓0

∫

R

ψ fgydµR ,

exists, and so the relation

(ψ|Ω+
λ,ωφ) = (ψ|ϕ)− λ

∫

R

ψ(x)f(x)(1|(hλ,ω − x− i0)−1φ)dµR,ac(x) ,

holds for a dense set of vectors ψ. Hence,

(Ω+
λ,ωφ)(x) = ϕ(x)− λf(x)(1|(hλ,ω − x− i0)−1φ) ,

and the formula (21) completes the proof.
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To compute the S-matrix, note that by Proposition 6, Ω±
λ,ω = θ±W

λ,ω,
where

θ±(x) =
(Ω±

λ,ω1)(x)
(Wλ,ω1)(x)

= − λFλ,ω(x± i0)f(x)
|λFλ,ω(x+ i0)f(x)| .

Since

S = Ω+
λ,ωU

−
λ,ω = Ω+

λ,ω(Ω−
λ,ω)∗ = θ+W

λ,ω(Wλ,ω)∗θ− = θ+θ− ,

we see that (Sψ)(x) = S(x)ψ(x), where

S(x) = θ+(x)θ−(x) =
Fλ,ω(x+ i0)
Fλ,ω(x− i0)

=
ω − x− λ2FR(x− i0)
ω − x− λ2FR(x+ i0)

.

Hence,
S(x) = 1 + 2iλ2Fλ,ω(x+ i0)ImFR(x+ i0)

= 1 + 2πiλ2Fλ,ω(x+ i0)|f(x)|2 dµR,ac

dx
(x) .

�

2.5 Spectral Averaging

We will freely use the standard measurability results concerning the measure-
valued function (λ, ω) �→ µλ,ω. The reader not familiar with these facts may
consult [11,12,37].

Let λ = 0 and

µλ(B) =
∫

R

µλ,ω(B) dω ,

where B ⊂ R is a Borel set. Obviously, µλ is a Borel measure on R. The
following (somewhat surprising) result is often called spectral averaging.

Proposition 8. The measure µλ is equal to the Lebesgue measure and for all
g ∈ L1(R,dx),

∫

R

g(x)dx =
∫

R

[∫

R

g(x)dµλ,ω(x)
]

dω .

The proof of this proposition is elementary and can be found in [37,59].
One can also average with respect to both parameters. It follows from

Proposition 8 that the averaged measure

µ(B) =
1
π

∫

R2

µλ,ω(B)
1 + λ2

dλdω ,

is also equal to the Lebesgue measure.
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2.6 Simon-Wolff Theorems

Recall that x + λ2FR(x + i0) and Fλ,0(x + i0) are finite and non-vanishing
for Lebesgue a.e. x. For λ = 0, (10) gives that for Lebesgue a.e x,

Gλ,0(x) =
1 + λ2GR(x)

|x+ λ2FR(x+ i0)|2 = |Fλ,0(x+ i0)|2(1 + λ2GR(x)) .

These observations yield:

Lemma 1. Let B ⊂ R be a Borel set and λ = 0. Then GR(x) < ∞ for
Lebesgue a.e. x ∈ B iff Gλ,0(x) <∞ for Lebesgue a.e. x ∈ B.

This lemma and the Simon-Wolff theorems in rank one perturbation the-
ory (see [37,59,61]) yield:

Theorem 3. Let B ⊂ R be a Borel set. Then the following statements are
equivalent:

1. GR(x) <∞ for Lebesgue a.e. x ∈ B.
2. For all λ = 0, µλ,ωcont(B) = 0 for Lebesgue a.e. ω ∈ R. In particular,
µλ,ωcont(B) = 0 for Lebesgue a.e. (λ, ω) ∈ R

2.

Theorem 4. Let B ⊂ R be a Borel set. Then the following statements are
equivalent:

1. ImFR(x+ i0) = 0 and GR(x) =∞ for Lebesgue a.e. x ∈ B.
2. For all λ = 0, µλ,ωac (B) + µλ,ωpp (B) = 0 for Lebesgue a.e. ω ∈ R. In

particular, µλ,ωac (B) + µλ,ωpp (B) = 0 for Lebesgue a.e. (λ, ω) ∈ R
2.

Theorem 5. Let B ⊂ R be a Borel set. Then the following statements are
equivalent:

1. ImFR(x+ i0) > 0 for Lebesgue a.e. x ∈ B.
2. For all λ = 0, µλ,ωsing(B) = 0 for Lebesgue a.e. ω ∈ R. In particular,
µλ,ωsing(B) = 0 for Lebesgue a.e. (λ, ω) ∈ R

2.

Note that while the Simon-Wolff theorems hold for a fixed λ and for a.e.
ω, we cannot claim that they hold for a fixed ω and for a.e. λ – from Fubini’s
theorem we can deduce only that for a.e. ω the results hold for a.e. λ. This
is somewhat annoying since in many applications for physical reasons it is
natural to fix ω and vary λ. The next subsection deals with this issue.
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2.7 Fixing ω

The results discussed in this subsection are not an immediate consequence of
the standard results of rank one perturbation theory and for this reason we
will provide complete proofs.

In this subsection ω is a fixed real number. Let

µω(B) =
∫

R

µλ,ω(B)dλ ,

where B ⊂ R is a Borel set. Obviously, µω is a positive Borel measure on R

and for all Borel measurable g ≥ 0,
∫

R

g(t)dµω(t) =
∫

R

[∫

R

g(t)dµλ,ω(t)
]

dλ ,

where both sides are allowed to be infinite.
We will study the measure µω by examining the boundary behavior of its

Poisson transform Pω(x, y) as y ↓ 0. In this subsection we set

l(z) ≡ (ω − z)FR(z) .

Lemma 2. For z ∈ C+,

Pω(z) =
π√
2

√
|l(z)|+ Re l(z)

|l(z)| .

Proof. We start with

Pω(x, y) =
∫

R

[∫

R

y

(t− x)2 + y2
dµλ,ω(t)

]
dλ

= Im
∫

R

Fλ,ω(x+ iy) dλ .

Equation (8) and a simple residue calculation yield
∫

R

Fλ,ω(x+ iy)dλ =
−πi

FR(z)
√

ω−z
FR(z)

,

where the branch of the square root is chosen to be in C+. An elementary
calculation shows that

Pω(x, y) = Im
iπ

√
l(x+ iy)

,

where the branch of the square root is chosen to have positive real part,
explicitly

√
w ≡ 1√

2

(√
|w|+ Rew + i sign(Imw)

√
|w| − Rew

)
. (35)

This yields the statement. �
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Theorem 6. The measure µω is absolutely continuous with respect to Le-
besgue measure and

dµω

dx
(x) =

√
|l(x+ i0)|+ Re l(x+ i0)√

2 |l(x+ i0)|
. (36)

The set

E ≡ {x | ImFR(x+ i0) > 0} ∪ {x | (ω − x)FR(x+ i0) > 0} ,

is an essential support for µω and µλ,ω is concentrated on E for all λ = 0.

Proof. By Theorem 1, ω is not an eigenvalue of hλ,ω for λ = 0. This implies
that µω({ω}) = 0. By the theorem of de la Vallée Poussin (for detailed proof
see e.g. [37]), µωsing is concentrated on the set

{x |x = ω and lim
y↓0
Pω(x+ iy) =∞} .

By Lemma 2, this set is contained in

S ≡ {x | lim
y↓0
FR(x+ iy) = 0} .

Since S ∩ Sλ,ω ⊂ {ω}, Theorem 1 implies that µλ,ωsing(S) = 0 for all λ = 0.
Since |S| = 0, µλ,ωac (S) = 0 for all λ. We conclude that µλ,ω(S) = 0 for all
λ = 0, and so

µω(S) =
∫

R

µλ,ω(S) dλ = 0 .

Hence, µωsing = 0. From Theorem 1 we now get

dµω(x) = dµωac(x) =
1
π

ImFω(x+ i0) dx ,

and (36) follows from Lemma 2. The remaining statements are obvious. �

We are now ready to state and prove the Simon-Wolff theorems for fixed
ω.

Theorem 7. Let B ⊂ R be a Borel set. Consider the following statements:

1. GR(x) <∞ for Lebesgue a.e. x ∈ B.
2. µλ,ωcont(B) = 0 for Lebesgue a.e. λ ∈ R.

Then (1) ⇒ (2). If B ⊂ E, then also (2) ⇒ (1).

Proof. Let A ≡ {x ∈ B |GR(x) = ∞} ∩ E .
(1)⇒(2) By assumption, A has zero Lebesgue measure. Theorem 6 yields that
µω(A) = 0. Since GR(x) <∞ for Lebesgue a.e. x ∈ B, ImFR(x+i0) = 0 for
Lebesgue a.e. x ∈ B. Hence, for all λ, ImFλ,ω(x + i0) = 0 for Lebesgue a.e.
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x ∈ B. By Theorem 1, µλ,ωac (B) = 0 and the measure µλ,ωsc |B is concentrated
on the set A for all λ = 0. Then,

∫

R

µλ,ωsc (B) dλ =
∫

R

µλ,ωsc (A) dλ ≤
∫

R

µλ,ω(A) dλ = µω(A) = 0 .

Hence, µλ,ωsc (B) = 0 for Lebesgue a.e λ.
(2)⇒(1) Assume that the set A has positive Lebesgue measure. By Theorem
1, µλ,ωpp (A) = 0 for all λ = 0, and

∫

R

µλ,ωcont(A) dλ =
∫

R

µλ,ω(A) dλ = µω(A) > 0 .

Hence, for a set of λ’s of positive Lebesgue measure, µλ,ωcont(B) > 0. �

Theorem 8. Let B ⊂ R be a Borel set. Consider the following statements:

1. ImFR(x+ i0) = 0 and GR(x) =∞ for Lebesgue a.e. x ∈ B.
2. µλ,ωac (B) + µλ,ωpp (B) = 0 for Lebesgue a.e. λ ∈ R.

Then (1) ⇒ (2). If B ⊂ E, then also (2) ⇒ (1).

Proof. Let A ≡ {x ∈ B |GR(x) <∞} ∩ E .
(1)⇒(2) Since ImFR(x+i0) = 0 for Lebesgue a.e. x ∈ B, Theorem 1 implies
that µλ,ωac (B) = 0 for all λ. By Theorems 1 and 6, for λ = 0, µλ,ωpp |B is
concentrated on the set A. Since A has Lebesgue measure zero,

∫

R

µλ,ωpp (A) dλ ≤ µω(A) = 0 ,

and so µλ,ωpp (B) = 0 for Lebesgue a.e. λ.
(2)⇒(1) If ImFR(x+i0) > 0 for a set of x ∈ B of positive Lebesgue measure,
then, by Theorem 1, µλ,ωac (B) > 0 for all λ. Assume that ImFR(x+i0) = 0 for
Lebesgue a.e. x ∈ B and that A has positive Lebesgue measure. By Theorem
1, µλ,ωcont(A) = 0 for all λ = 0 and since A ⊂ E , Theorem 6 implies

∫

R

µλ,ωpp (A) dλ =
∫

R

µλ,ω(A) dλ = µω(A) > 0 .

Thus, we must have that µλ,ωpp (B) > 0 for a set of λ’s of positive Lebesgue
measure. �

Theorem 9. Let B ⊂ R be a Borel set. Consider the following statements:

1. ImFR(x+ i0) > 0 for Lebesgue a.e. x ∈ B.
2. µλ,ωsing(B) = 0 for Lebesgue a.e. λ ∈ R.

Then (1) ⇒ (2). If B ⊂ E, then also (2) ⇒ (1).
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Proof. (1)⇒(2) By Theorem 1, for λ = 0 the measure µλ,ωsing|B is concentrated
on the set A ≡ {x ∈ B | ImFR(x + i0) = 0} ∩ E . By assumption, A has
Lebesgue measure zero and

∫

R

µλ,ωsing(A) dλ ≤
∫

R

µλ,ω(A) dλ = µω(A) = 0 .

Hence, for Lebesgue a.e. λ ∈ R, µλsing(B) = 0.
(2)⇒(1) Assume that B ⊂ E and that the set

A ≡ {x ∈ B | ImFR(x+ i0) = 0} ,

has positive Lebesgue measure. By Theorem 1, µλ,ωac (A) = 0 for all λ, and
∫

R

µλ,ωsing(A) dλ =
∫

R

µλ,ω(A) dλ = µω(A) > 0 .

Hence, for a set of λ’s of positive Lebesgue measure, µλ,ωsing(B) > 0. �

2.8 Examples

In all examples in this subsection hR = L2([a, b],dµR) and hR is the operator
of multiplication by x. In Examples 1–9 [a, b] = [0, 1]. In Examples 1 and 2
we do not assume that f is a cyclic vector for hR.

Example 1. In this example we deal with the spectrum outside ]0, 1[. Let

Λ0 =
∫ 1

0

|f(x)|2
x

dµR(x), Λ1 =
∫ 1

0

|f(x)|2
x− 1

dµR(x) .

Obviously, Λ0 ∈ ]0,∞] and Λ1 ∈ [−∞, 0[. If λ2 > ω/Λ0, then hλ,ω has a
unique eigenvalue e < 0 which satisfies

ω − e− λ2

∫ 1

0

|f(x)|2
x− e dµR(x) = 0 . (37)

If λ2 < ω/Λ0, then hλ,ω has no eigenvalue in ]−∞, 0[. 0 is an eigenvalue of
hλ,ω iff λ2 = ω/Λ0 and

∫ 1

0
|f(x)|2x−2dµR(x) <∞. Similarly, if

(ω − 1)/Λ1 < λ
2 ,

then hλ,ω has a unique eigenvalue e > 1 which satisfies (37), and if

(ω − 1)/Λ1 > λ
2 ,

then hλ,ω has no eigenvalue in ]1,∞[. 1 is an eigenvalue of hλ,ω iff
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(ω − 1)/Λ1 = λ2 ,

and
∫ 1

0
|f(x)|2(x− 1)−2dµR(x) <∞.

Example 2. Let dµR(x) ≡ dx|[0,1], let f be a continuous function on ]0, 1[,
and let

S = {x ∈ ]0, 1[ | f(x) = 0} .
The set S is open in ]0, 1[, and the cyclic space generated by hR and f is
L2(S,dx). The spectrum of

hλ,ω|(C⊕L2(S,dx))⊥ ,

is purely absolutely continuous and equal to [0, 1] \ S. Since for x ∈ S,
limy↓0 ImFR(x + iy) = π|f(x)|2 > 0, the spectrum of hλ,ω in S is purely
absolutely continuous for all λ = 0. Hence, if

S =
⋃

n

]an, bn[ ,

is the decomposition of S into connected components, then the singular spec-
trum of hλ,ω inside [0, 1] is concentrated on the set ∪n{an, bn}. In particular,
hλ,ω has no singular continuous spectrum. A point e ∈ ∪n{an, bn} is an
eigenvalue of hλ,ω iff

∫ 1

0

|f(x)|2
(x− e)2 dx <∞ and ω − e− λ2

∫ 1

0

|f(x)|2
x− e dx = 0 . (38)

Given ω, for each e for which the first condition holds there are precisely two
λ’s such that e is an eigenvalue of hλ,ω. Hence, given ω, the set of λ’s for
which hλ,ω has eigenvalues in ]0, 1[ is countable. Similarly, given λ, the set of
ω’s for which hλ,ω has eigenvalues in ]0, 1[ is countable.

Let
Z ≡ {x ∈ [0, 1] | f(x) = 0} ,

and g ≡ supx∈Z GR(x). By (16), the number of eigenvalues of hλ,ω is bounded
by 1 + λ2g. Hence, if g < ∞, then hλ,ω can have at most finitely many
eigenvalues. If, for example,

|f(x)− f(y)| ≤ C|x− y|δ ,

for all x, y ∈ [0, 1] and some δ > 1/2, then

g = sup
x∈Z

∫ 1

0

|f(t)|2
(t− x)2 dt = sup

x∈Z

∫ 1

0

|f(t)− f(x)|2
(t− x)2 dt

≤ sup
x∈Z

∫ 1

0

C

(t− x)2(1−δ) dt <∞ ,
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and hλ,ω has at most finitely many eigenvalues. On the other hand, given
λ = 0, ω, and a finite sequence E ≡ {e1, . . . , en} ∈]0, 1[, one can construct a
C∞ function f with bounded derivatives such that E is precisely the set of
eigenvalues of hλ,ω in ]0, 1[.

More generally, let E ≡ {en} ⊂]0, 1[ be a discrete set. (By discrete we
mean that for all n, infj 
=n |en − ej | > 0 – the accumulation points of E are
not in E). Let λ = 0 and ω be given and assume that ω is not an accumulation
point of E. Then there is a C∞ function f such that E is precisely the set of
eigenvalues of hλ,ω in ]0, 1[. Of course, in this case f ′(x) cannot be bounded.
The construction of a such f is somewhat lengthy and can be found in [45].

In the remaining examples we assume f = 1l. The next two examples are
based on [36].

Example 3. Let µR be a pure point measure with atoms µR(xn) = an. Then

GR(x) =
∞∑

n=1

an
(x− xn)2

.

If
∑

n

√
an <∞, then GR(x) <∞ for Lebesgue a.e. x ∈ [0, 1] (see Theorem

3.1 in [36]). Hence, by Simon-Wolff theorems 3 and 7, for a fixed λ = 0
and Lebesgue a.e. ω, and for a fixed ω and Lebesgue a.e. λ, hλ,ω has only a
pure point spectrum. On the other hand, for a fixed λ = 0, there is a dense
Gδ set of ω ∈ R such that the spectrum of hλ,ω on ]0, 1[ is purely singular
continuous [25,31].

Example 4 (continuation). Assume that xn = xn(w) are independent random
variables uniformly distributed on [0, 1]. We keep the an’s deterministic and
assume that

∑√
an = ∞. Then, for a.e. w, GR,w(x) = ∞ for Lebesgue a.e.

x ∈ [0, 1] (see Theorem 3.2 in [36]). Hence, by Simon-Wolff theorems 4 and
8, for a fixed λ = 0 and Lebesgue a.e. ω, and for a fixed ω and Lebesgue a.e.
λ, the spectrum of hλ,ω(w) on [0, 1] is singular continuous with probability
1.

Example 5. Let ν be a probability measure on [0, 1] and

dµR(x) =
1
2
(
dx|[0,1] + dν(x)

)
.

Since for all x ∈]0, 1[,

lim inf
y↓0

ImFR(x+ iy) ≥ π

2
,

the operator hλ,ω has purely absolutely continuous spectrum on [0, 1] for all
λ = 0. In particular, the singular spectrum of h0 associated to νsing disappears
under the influence of the perturbation for all λ = 0.
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Example 6. This example is due to Simon-Wolff [61]. Let

µn = 2−n
2n
∑

j=1

δj2−n ,

and µR =
∑

n anµn, where an > 0,
∑

n an = 1 and
∑

n 2nan = ∞. The
spectrum of h0,ω is pure point and equal to [0, 1] ∪ {ω}. For any x ∈ [0, 1]
there is jx such that |jx/2n − x| ≤ 2−n. Hence, for all n,

∫

R

dµn(t)
(t− x)2 ≥ 2n ,

and GR(x) = ∞ for all x ∈ [0, 1]. We conclude that for all λ = 0 and all ω
the spectrum of hλ,ω on [0, 1] is purely singular continuous.

Example 7. Let µC be the standard Cantor measure (see [54]). Set

νj,n(A) ≡ µC(A+ j2−n) ,

and

µR ≡ c χ[0,1]

∞∑

n=1

n−2
2n
∑

j=1

νj,n ,

where c is the normalization constant. Then GR(x) =∞ for all x ∈ [0, 1] (see
Example 5 in Sect. II.5 of [60]), and the spectrum of hλ,ω on [0, 1] is purely
singular continuous for all λ, ω.

Example 8. The following example is due to del Rio and Simon (Example
7 in Sect. II.5 of [60]). Let {rn} be the set of rationals in ]0, 1/2[, an =
min(3−n−1, rn, 1/2− rn),

In =]rn − an, rn + an[ ∪ ]1− rn − an, 1− rn + an[ ,

and S = ∪nIn. The set S is dense in [0, 1] and |S| ≤ 2/3. Let dµR =
|S|−1χSdx. The spectrum of hR is purely absolutely continuous and equal
to [0, 1]. The set S is the essential support of this absolutely continuous
spectrum. Clearly, for all λ, ω, spac(hλ,ω) = [0, 1]. By Theorem 5, for any
fixed λ = 0, hλ,ω will have some singular spectrum in [0, 1] \ S for a set of
ω’s of positive Lebesgue measure. It is not difficult to show that GR(x) <∞
for Lebesgue a.e. x ∈ [0, 1] \ S (see [60]). Hence, for a fixed λ, hλ,ω will have
no singular continuous spectrum for Lebesgue a.e. ω but it has some point
spectrum in [0, 1] \ S for a set of ω’s of positive Lebesgue measure.
For a given ω, hλ,ω has no singular continuous spectrum for Lebesgue a.e.
λ. Note that for Lebesque a.e. x ∈ R \ S, FR(x + i0) = ReFR(x + i0) = 0.
Since the set S is symmetric with respect to the point 1/2, we have that for
all z ∈ C±, ReFR(z) = −ReFR(−z + 1/2). Hence,
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ReFR(x) = −ReFR(−x+ 1/2) , (39)

and if |ω| ≥ 1, then the set

{x ∈ [0, 1] \ S | (ω − x)FR(x) > 0} , (40)

has positive Lebesgue measure. Theorem 9 yields that for a given ω ∈ ]0, 1[,
hλ,ω will have some point spectrum in [0, 1] \ S for a set of λ’s of positive
Lebesgue measure. If ω ∈ ]0, 1[, the situation is more complex and depends on
the choice of enumeration of the rationals. The enumeration can be always
chosen in such a way that for all 0 < ε < 1, |S∩ [0, ε]| < ε. In this case for any
given ω the set (40) has positive Lebesgue measure and hλ,ω will have some
singular continuous spectrum in [0, 1] \S for a set of λ’s of positive Lebesgue
measure.

Example 9. This example is also due to del Rio and Simon (Example 8 in
Sect. II.5 of [60]). Let

Sn =
2n−1⋃

j=1

]
j

2n
− 1

4n22n
,
j

2n
+

1
4n22n

[
,

and S = ∪nSn. The set S is dense in [0, 1] and |S| < 1. Let dµR = |S|−1χS dx.
Then the absolutely continuous spectrum of hλ,ω is equal to [0, 1] for all λ, ω.
One easily shows that GR(x) = ∞ on [0, 1] (see [60]). Hence, for a fixed λ,
hλ,ω will have no point spectrum on [0, 1] for Lebesgue a.e. ω but it has some
singular continuous spectrum in [0, 1] \S for a set of ω’s of positive Lebesgue
measure.

For a given ω, hλ,ω will have no point spectrum inside [0, 1] for Lebesgue
a.e. λ. The set S is symmetric with respect to 1/2 and (39) holds. Since for
any 0 < ε < 1, |S ∩ [0, ε]| < ε, for any given ω the set

{x ∈ [0, 1] \ S | (ω − x)FR(x) > 0} ,

has positive Lebesgue measure. Hence, Theorem 9 yields that for a given ω,
hλ,ω will have some singular continuous spectrum in [0, 1] \ S for a set of λ’s
of positive Lebesgue measure.

Example 10. Proposition 1 and a theorem of del Rio and Simon [DS] yield
that there exist a bounded interval [a, b], a Borel probability measure µR on
[a, b] and λ0 > 0 such that:

1. spac(hλ,ω) = [a, b] for all λ, ω.
2. for a set of ω’s of positive Lebesgue measure, hλ0,ω has embedded point

spectrum in [a, b].
3. for a set of ω’s of positive Lebesgue measure, hλ0,ω has embedded singular

continuous spectrum in [a, b].
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Example 11. Proposition 1 and a theorem of del Rio-Fuentes-Poltoratskii [22]
yield that there exist a bounded interval [a, b], a Borel probability measure
µR on [a, b] and λ0 > 0 such that:

1. spac(hλ,ω) = [a, b] for all λ, ω.
2. for all ω ∈ [0, 1], the spectrum of hλ0,ω is purely absolutely continuous.
3. for all ω ∈ [0, 1], [a, b] ⊂ spsing(hλ0,ω).

2.9 Digression: the Semi-Circle Law

In the proof of Proposition 1 we have solved the equation (11) for µR. In this
subsection we will find the fixed point of the (11). More precisely, we will
find a finite Borel measure ν whose Borel transform satisfies the functional
equation

H(z) =
1

−z − λ2H(z)
,

or, equivalently
λ2H(z)2 + zH(z) + 1 = 0 . (41)

The unique analytic solution of this equation is

H(z) =
√
z2 − 4λ2 − z

2λ2
,

a two-valued function which can be made single valued by cutting the complex
plane along the line segment [−2|λ|, 2|λ|]. Only one branch has the Herglotz
property H(C+) ⊂ C+. This branch is explicitly given by

H(z) =
1
|λ|
ξ − 1
ξ + 1

, ξ ≡
√
z − 2|λ|
z + 2|λ| ,

where the branch of the square root is determined by Re ξ > 0 (the so-called
principal branch). In particular, H(x+ iy) ∼ iy−1 as y → +∞, and by a well
known result in harmonic analysis (see e.g. [37]) there exists a unique Borel
probability measure ν such that Fν(z) = H(z) for z ∈ C+. For all x ∈ R,

lim
y↓0

ImFν(x+ iy) = sλ(x) ,

where

sλ(x) =






√
4λ2 − x2

2λ2
if |x| ≤ 2|λ| ,

0 if |x| > 2|λ| .
We deduce that the measure ν is absolutely continuous w.r.t. Lebesgue mea-
sure and that

dν(x) = π−1sλ(x)dx .



Mathematical Theory of the Wigner-Weisskopf Atom 171

Of course, ν is the celebrated Wigner semi-circle law which naturally arises
in the study of the eigenvalue distribution of certain random matrices, see
e.g. [48]. The result of this computation will be used in several places in the
remaining part of our lectures.

3 The Perturbative Theory

3.1 The Radiating Wigner-Weisskopf Atom

In this section we consider a specific class of WWA models which satisfy the
following set of assumptions.

Assumption (A1) hR = L2(X,dx;K), where X = (e−, e+) ⊂ R is an open
(possibly infinite) interval and K is a separable Hilbert space. The Hamil-
tonian hR ≡ x is the operator of multiplication by x.

Note that the spectrum of hR is purely absolutely continuous and equal
to X. For notational simplicity in this section we do not assume that f is a
cyclic vector for hR. This assumption is irrelevant for our purposes: since the
cyclic space h1 generated by hλ and 1 is independent of λ for λ = 0, so is
h⊥
1 ⊂ hR and hλ|h⊥

1
= hR|h⊥

1
has purely absolutely continuous spectrum.

Assumption (A2) The function

g(t) =
∫

X

e−itx‖f(x)‖2K dx ,

is in L1(R,dt).

This assumption implies that x �→ ‖f(x)‖K is a bounded continuous func-
tion on X. Note also that for Im z > 0,

FR(z) =
∫

X

‖f(x)‖2K
x− z dx = i

∫ ∞

0

eizsg(s) ds .

Hence, FR(z) is bounded and continuous on the closed half-plane C+. In
particular, the function FR(x + i0) is bounded and continuous on R. If in
addition tng(t) ∈ L1(R,dt) for some positive integer n, then ‖f(x)‖2K and
FR(x+ i0) are n-times continuously differentiable with bounded derivatives.

Assumption (A3) ω ∈ X and ‖f(ω)‖K > 0.

This assumption implies that the eigenvalue ω of h0 is embedded in its
absolutely continuous spectrum.
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Until the end of this section we will assume that Assumptions (A1)–(A3)
hold. We will call the WWA which satisfies (A1)–(A3) the Radiating Wigner-
Weisskopf Atom (abbreviated RWWA).

In contrast to the previous section, until the end of the paper we will keep
ω fixed and consider only λ as the perturbation parameter. In the sequel we
drop the subscript ω and write Fλ for Fλ,ω, etc.

Since ‖f(x)‖K is a continuous function of x, the argument of Example
2 in Subsect. 2.8 yields that hλ has no singular continuous spectrum for all
λ. However, hλ may have eigenvalues (and, if X = R, it will certainly have
them for λ large enough). For λ small, however, the spectrum of hλ is purely
absolutely continuous.

Proposition 9. There exists Λ > 0 such that for 0 < |λ| < Λ the spectrum
of hλ is purely absolutely continuous and equal to X.

Proof. By Theorem 1, the singular spectrum of hλ is concentrated on the
set

S = {x ∈ R |ω − x− λ2FR(x+ i0) = 0} .
Since ImFR(ω + i0) = π‖f(ω)‖2K > 0, there is ε > 0 such that

ImFR(x+ i0) > 0 ,

for |x − ω| < ε. Let m ≡ maxx∈R |FR(x + i0)| and Λ ≡ (ε/m)1/2. Then, for
|λ| < Λ and x ∈ ]ω − ε, ω + ε[, one has |ω − x| > λ2|FR(x + i0)|. Hence, S
is empty for 0 < |λ| < Λ, and the spectrum of hλ|h1 is purely absolutely
continuous. �

We finish this subsection with two examples.

Example 1. Assume that hR = L2(Rd,ddx) and let hR = −∆, where ∆ is
the usual Laplacian in R

d. The Fourier transform

ϕ̃(k) =
1

(2π)d/2

∫

Rd

e−ik·xϕ(x) dx ,

maps unitarily L2(Rd,ddx) onto L2(Rd,ddk) and the Hamiltonian hR be-
comes multiplication by |k|2. By passing to polar coordinates with r = |k| we
identify L2(Rd,ddk) with L2(R+, r

d−1dr;K), where K = L2(Sd−1,dσ), Sd−1

is the unit sphere in R
d, and dσ is its surface measure. The operator hR

becomes multiplication by r2. Finally, the map

ϕ#(x) = 2−1/2x
d−2
4 ϕ̃(

√
x) ,

maps L2(Rd,ddx) unitarily onto L2(X,dx;K) with X = (0,∞), and

(hRϕ)#(x) = xϕ#(x) .
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This representation of hR and hR (sometimes called the spectral or the energy
representation) clearly satisfies (A1).

The function f# satisfies (A2) iff the function g(t) = (f |e−ithRf) is in
L1(R,dt). If f ∈ L2(Rd,ddx) is compactly supported, then g(t) = O(t−d/2),
and so if d ≥ 3, then (A2) holds for all compactly supported f . If d = 1, 2,
then (A2) holds if f is in the domain of |x|2 and its Fourier transform vanishes
in a neighborhood of the origin. The proofs of these facts are simple and can
be found in [9], Example 5.4.9.

Example 2. Let hR = �2(Z+), where Z+ = {1, 2, · · · }, and let

hR =
1
2

∑

n∈Z+

(
(δn| · )δn+1 + (δn+1| · )δn

)
,

where δn is the Kronecker delta function at n ∈ Z+. hR is the usual discrete
Laplacian on �2(Z+) with Dirichlet boundary condition. The Fourier-sine
transform

ϕ̃(k) ≡
√

2
π

∑

n∈Z+

ϕ(n) sin(kn) ,

maps �2(Z+) unitarily onto L2([0, π],dk) and the Hamiltonian hR becomes
multiplication by cos k. Finally, the map

ϕ#(x) = (1− x2)−1/4ϕ̃(arccosx) ,

maps �2(Z+) unitarily onto L2(X,dx), where X = (−1, 1) and

(hRϕ)#(x) = xϕ#(x) .

If f has bounded support in Z+, then |f#(x)|2 = (1 − x2)1/2Pf (x), where
Pf (x) is a polynomial in x. A simple stationary phase argument yields that
g(t) = O(|t|−3/2) and Assumption (A2) holds.

3.2 Perturbation Theory of Embedded Eigenvalue

Until the end of this section Λ is the constant in Proposition 9.
Note that the operator h0 = ω⊕ x has the eigenvalue ω embedded in the

absolutely continuous spectrum of x. On the other hand, for 0 < |λ| < Λ the
operator hλ has no eigenvalue – the embedded eigenvalue has “dissolved” in
the absolutely continuous spectrum under the influence of the perturbation.
In this subsection we will analyze this phenomenon. At its heart are the
concepts of resonance and life-time of an embedded eigenvalue which are of
profound physical importance.

We set D(w, r) ≡ {z ∈ C | |z − w| < r}. In addition to (A1)–(A3) we will
need the following assumption.
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Assumption (A4) There exists ρ > 0 such that the function

C+ � z → FR(z) ,

has an analytic continuation across the interval ]ω − ρ, ω + ρ[ to the region
C+ ∪D(ω, ρ). We denote the extended function by F+

R(z).

It is important to note that F+
R(z) is different from FR(z) for Im z < 0.

This is obvious from the fact that

ImFR(x+ i0)− ImFR(x− i0) = 2π‖f(x)‖2K > 0 ,

near ω. In particular, if (A4) holds, then ρmust be such that ]ω−ρ, ω+ρ[⊂ X.
Until the end of this subsection we will assume that Assumptions (A1)–

(A4) hold.

Theorem 10. 1. The function Fλ(z) = (1|(hλ − z)−11) has a meromor-
phic continuation from C+ to the region C+ ∪ D(ω, ρ). We denote this
continuation by F+

λ (z).
2. Let 0 < ρ′ < ρ be given. Then there is Λ′ > 0 such that for |λ| < Λ′

the only singularity of F+
λ (z) in D(ω, ρ′) is a simple pole at ω(λ). The

function λ �→ ω(λ) is analytic for |λ| < Λ′ and

ω(λ) = ω + a2λ
2 +O(λ4) ,

where a2 ≡ −FR(ω + i0). In particular, Im a2 = −π‖f(ω)‖2K < 0.

Proof. Part (1) is simple – Assumption A4 and (8) yield that

F+
λ (z) =

1
ω − z − λ2F+

R(z)
,

is the mermorphic continuation of C+ � z �→ Fλ(z) to C+ ∪D(ω, ρ).
For a given ρ′, choose Λ′ > 0 such that

ρ′ > |Λ′|2 sup
|z|=ρ′

|F+
R(z)| .

By Rouché’s theorem, there is an ε > 0 such that for |λ| < Λ′ the function
ω− z − λ2F+

R(z) has a unique simple zero ω(λ) inside D(ω, ρ′ + ε) such that
|ω(λ) − ω| < ρ′ − ε. This yields that F+

λ (z) is analytic in C+ ∪D(ω, ρ′ + ε)
except for a simple pole at ω(λ). The function

P (λ) ≡
∮

|ω−z|=ρ′
zF+

λ (z)dz =
∞∑

n=0

λ2n

∮

|ω−z|=ρ′
z

(
F+
R(z)
ω − z

)n
dz
ω − z ,

is analytic for |λ| < Λ′. Similarly, the function
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Q(λ) ≡
∮

|ω−z|=ρ′
F+
λ (z)dz =

∞∑

n=0

λ2n

∮

|ω−z|=ρ′

(
F+
R(z)
ω − z

)n
dz
ω − z , (42)

is analytic and non-zero for |λ| < Λ′. Since

ω(λ) =
P (λ)
Q(λ)

,

we see that ω(λ) is analytic for |λ| < Λ with the power series expansion

ω(λ) =
∞∑

n=0

λ2na2n .

Obviously, a0 = ω and

a2 = − 1
2πi

∮

|ω−z|=ρ′

F+
R(z)
z − ω dz = −F+

R(ω) = −FR(ω + i0) .

The same formula can be obtained by implicit differentiation of

ω − ω(λ)− λ2F+
R(ω(λ)) = 0 ,

at λ = 0. �

Theorem 10 explains the mechanism of “dissolving” of the embedded
eigenvalue ω. The embedded eigenvalue ω has moved from the real axis to
a point ω(λ) on the second (improperly called “unphysical”) Riemann sheet
of the function Fλ(z). There it remains the singularity of the analytically
continued resolvent matrix element (1|(hλ − z)−11), see Fig. 1.

We now turn to the physically important concept of life-time of the em-
bedded eigenvalue.

Theorem 11. There exists Λ′′ > 0 such that for |λ| < Λ′′ and all t ≥ 0

(1|e−ithλ1) = e−itω(λ) +O(λ2) .

Proof. By Theorem 9 the spectrum of hλ is purely absolutely continuous
for 0 < |λ| < Λ. Hence, by Theorem 1,

dµλ(x) = dµλac(x) =
1
π

ImFλ(x+ i0) dx =
1
π

ImF+
λ (x) dx .

Let Λ′ and ρ′ be the constants in Theorem 10, Λ′′ ≡ min(Λ′, Λ), and suppose
that 0 < |λ| < Λ′′. We split the integral representation

(1|e−ithλ1) =
∫

X

e−itxdµλ(x) , (43)

into three parts as
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2nd Riemann sheet

ω(λ)

ω

ρ′

physical Riemann sheet

Fig. 1. The resonance pole ω(λ)

∫ ω−ρ′

e−

+
∫ ω+ρ′

ω−ρ′
+
∫ e+

ω+ρ′
.

Equation (8) yields

ImF+
λ (x) = λ2 ImF+

R(x)
|ω − x− λ2F+

R(x)|2
,

and so the first term and the third term can be estimated as O(λ2). The
second term can be written as

I(t) ≡ 1
2πi

∫ ω+ρ′

ω−ρ′
e−itx

(
F+
λ (x)− F+

λ (x)
)

dx .

The function z �→ F+
λ (z) is meromorphic in an open set containing D(ω, ρ)

with only singularity at ω(λ). We thus have

I(t) = −R(λ) e−itω(λ) +
∫

γ

e−itz
(
F+
λ (z)− F+

λ (z)
)

dz ,

where the half-circle γ = {z | |z−ω| = ρ′, Im z ≤ 0} is positively oriented and

R(λ) = Resz=ω(λ)F
+
λ (z) .

By (42), R(λ) = Q(λ)/2πi is analytic for |λ| < Λ′′ and

R(λ) = −1 +O(λ2) .
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Equation (8) yields that for z ∈ γ

F+
λ (z) =

1
ω − z +O(λ2) .

Since ω is real, this estimate yields

F+
λ (z)− F+

λ (z) = O(λ2) .

Combining the estimates we derive the statement. �

If a quantum mechanical system, described by the Hilbert space h and the
Hamiltonian hλ, is initially in a pure state described by the vector 1, then

P (t) = |(1|e−ithλ1)|2 ,

is the probability that the system will be in the same state at time t. Since
the spectrum of hλ is purely absolutely continuous, by the Riemann-Lebesgue
lemma limt→∞ P (t) = 0. On physical grounds one expects more, namely an
approximate relation

P (t) ∼ e−tΓ(λ) , (44)

where Γ(λ) is the so-called radiative life-time of the state 1. The strict ex-
ponential decay P (t) = O(e−at) is possible only if X = R. Since in a typical
physical situation X = R, the relation (44) is expected to hold on an in-
termediate time scale (for times which are not “too long” or “too short”).
Theorem 11 is a mathematically rigorous version of these heuristic claims
and Γ(λ) = −2 Imω(λ). The computation of the radiative life-time is of
paramount importance in quantum mechanics and the reader may consult
standard references [13,34,49] for additional information.

3.3 Complex Deformations

In this subsection we will discuss Assumption (A4) and the perturbation
theory of the embedded eigenvalue in some specific situations.

Example 1. In this example we consider the case X =]0,∞[.
Let 0 < δ < π/2 and A(δ) = {z ∈ C |Re z > 0, |Arg z| < δ}. We de-

note by H2
d(δ) the class of all functions f : X → K which have an analytic

continuation to the sector A(δ) such that

‖f‖2δ = sup
|θ|<δ

∫

X

‖f(eiθx)‖2Kdx <∞ .

The class H2
d(δ) is a Hilbert space. The functions in H2

d(δ) are sometimes
called dilation analytic.

Proposition 10. Assume that f ∈ H2
d(δ). Then Assumption (A4) holds in

the following stronger form:
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1. The function FR(z) has an analytic continuation to the region C+∪A(δ).
We denote the extended function by F+

R(z).
2. For 0 < δ′ < δ and ε > 0 one has

sup
|z|>ε,z∈A(δ′)

|F+
R(z)| <∞ .

Proof. The proposition follows from the representation

FR(z) =
∫

X

‖f(x)‖2K
x− z dx = eiθ

∫

X

(f(e−iθx)|f(eiθx))K

eiθx− z dx , (45)

which holds for Im z > 0 and −δ < θ ≤ 0. This representation can be proven
as follows.

Let γ(θ) be the half-line eiθ
R+. We wish to prove that for Im z > 0

∫

X

‖f(x)‖2K
x− z dx =

∫

γ(θ)

(f(w)|f(w))K

w − z dw .

To justify the interchange of the line of integration, it suffices to show that

lim
n→∞

rn

∫ 0

θ

|(f(rne−iϕ)|f(rneiϕ))K|
|rneiϕ − z| dϕ = 0 ,

along some sequence rn →∞. This fact follows from the estimate
∫

X

[∫ 0

θ

x|(f(e−iϕx)|f(eiϕx))K|
|eiϕx− z| dϕ

]
dx ≤ Cz‖f‖2δ .

�

Until the end of this example we assume that f ∈ H2
d(δ) and that Assump-

tion (A2) holds (this is the case, for example, if f ′ ∈ H2
d(δ) and f(0) = 0).

Then, Theorems 10 and 11 hold in the following stronger forms.

Theorem 12. 1. The function

Fλ(z) = (1|(hλ − z)−11) ,

has a meromorphic continuation from C+ to the region C+ ∪ A(δ). We
denote this continuation by F+

λ (z).
2. Let 0 < δ′ < δ be given. Then there is Λ′ > 0 such that for |λ| < Λ′ the

only singularity of F+
λ (z) in A(δ′) is a simple pole at ω(λ). The function

λ �→ ω(λ) is analytic for |λ| < Λ′ and

ω(λ) = ω + λ2a2 +O(λ4) ,

where a2 = −FR(ω + i0). In particular, Im a2 = −π‖f(ω)‖2K < 0.
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Theorem 13. There exists Λ′′ > 0 such that for |λ| < Λ′′ and all t ≥ 0,

(1|e−ithλ1) = e−itω(λ) +O(λ2t−1) .

The proof of Theorem 13 starts with the identity

(1|e−ithλ1) = λ2

∫

X

e−itx‖f(x)‖2K |F+
λ (x)|2 dx .

Given 0 < δ′ < δ one can find Λ′′ such that for |λ| < Λ′′

(1|e−ithλ1) = e−itω(λ) + λ2

∫

e−iδ′R+

e−itw(f(w)|f(w))K F
+
λ (w)F+

λ (w) dw ,

(46)
and the integral on the right is easily estimated by O(t−1). We leave the
details of the proof as an exercise for the reader.

Example 2. We will use the structure of the previous example to illustrate
the complex deformation method in study of resonances. In this example we
assume that f ∈ H2

d(δ).
We define a group {u(θ) | θ ∈ R} of unitaries on h by

u(θ) : α⊕ f(x) �→ α⊕ eθ/2f(eθx) .

Note that hR(θ) ≡ u(−θ)hRu(θ) is the operator of multiplication by e−θx.
Set h0(θ) = ω ⊕ hR(θ), fθ(x) = u(−θ)f(x)u(θ) = f(e−θx), and

hλ(θ) = h0(θ) + λ ((1| · )fθ + (fθ| · )1) .

Clearly, hλ(θ) = u(−θ)hλu(θ).
We set S(δ) ≡ {z | |Im z| < δ} and note that the operator h0(θ) and the

function fθ are defined for all θ ∈ S(δ). We define hλ(θ) for λ ∈ C and
θ ∈ S(δ) by

hλ(θ) = h0(θ) + λ
(
(1| · )fθ + (fθ| · )1

)
.

The operators hλ(θ) are called dilated Hamiltonians. The basic properties of
this family of operators are:

1. Dom (hλ(θ)) is independent of λ and θ and equal to Dom (h0).
2. For all φ ∈ Dom (h0) the function C×S(δ) � (λ, θ) �→ hλ(θ)φ is analytic.
3. If Im θ = Im θ′, then the operators hλ(θ) and hλ(θ′) are unitarily equiv-

alent, namely

h0(θ′) = u(−(θ′ − θ))h0(θ)u(θ′ − θ) .

4. spess(h0(θ)) = e−θR+ and spdisc(h0(θ)) = {ω}, see Fig. 2.



180 V. Jakšić et al.

Fig. 2. The spectrum of the dilated Hamiltonian hλ(θ)

The important aspect of (4) is that while ω is an embedded eigenvalue
of h0, it is an isolated eigenvalue of h0(θ) as soon as Im θ < 0. Hence, if
Im θ < 0, then regular perturbation theory can be applied to the isolated
eigenvalue ω. Clearly, for all λ, spess(hλ(θ)) = sp(h0(θ)) and one easily shows
that for λ small enough spdisc(hλ)(θ) = {ω̃(λ)} (see Fig. 2). Moreover, if
0 < ρ < min{ω, ω tan θ}, then for sufficiently small λ,

ω̃(λ) =

∮

|z−ω|=ρ
z(1|(hλ(θ)− z)−11) dz

∮

|z−ω|=ρ
(1|(hλ(θ)− z)−11) dz

.

The reader should not be surprised that the eigenvalue ω̃(λ) is precisely the
pole ω(λ) of F+

λ (z) discussed in Theorem 10 (in particular, ω̃(λ) is indepen-
dent of θ). To clarify this connection, note that u(θ)1 = 1. Thus, for real θ
and Im z > 0,

Fλ(z) = (1|(hλ − z)−11) = (1|(hλ(θ)− z)−11) .

On the other hand, the function R � θ �→ (1|hλ(θ)− z)−11) has an analytic
continuation to the strip −δ < Im θ < Im z. This analytic continuation is a
constant function, and so

F+
λ (z) = (1|(hλ(θ)− z)−11) ,

for −δ < Im θ < 0 and z ∈ C+ ∪ A(|Im θ|). This yields that ω(λ) = ω̃(λ).
The above set of ideas plays a very important role in mathematical

physics. For additional information and historical perspective we refer the
reader to [1, 6, 11,20,57,60].

Example 3. In this example we consider the case X = R.
Let δ > 0. We denote by H2

t (δ) the class of all functions f : X → K which
have an analytic continuation to the strip S(δ) such that
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‖f‖2δ ≡ sup
|θ|<δ

∫

X

‖f(x+ iθ)‖2K dx <∞ .

The class H2
t (δ) is a Hilbert space. The functions in H2

t (δ) are sometimes
called translation analytic.

Proposition 11. Assume that f ∈ H2
t (δ). Then the function FR(z) has an

analytic continuation to the half-plane {z ∈ C | Im z > −δ}.

The proposition follows from the relation

FR(z) =
∫

X

‖f(x)‖2K
x− z dx =

∫

X

(f(x− iθ)|f(x+ iθ))K

x+ iθ − z dx , (47)

which holds for Im z > 0 and −δ < θ ≤ 0. The proof of (47) is similar to the
proof of (45).

Until the end of this example we will assume that f ∈ H2
t (δ). A change

of the line of integration yields that the function

g(t) =
∫

R

e−itx‖f(x)‖2K dx ,

satisfies the estimate |g(t)| ≤ e−δ|t|‖f‖2δ , and so Assumption (A2) holds.
Moreover, Theorems 10 and 11 hold in the following stronger forms.

Theorem 14. 1. The function

Fλ(z) = (1|(hλ − z)−11) ,

has a meromorphic continuation from C+ to the half-plane

{z ∈ C | Im z > −δ} .

We denote this continuation by F+
λ (z).

2. Let 0 < δ′ < δ be given. Then there is Λ′ > 0 such that for |λ| < Λ′

the only singularity of F+
λ (z) in {z ∈ C | Im z > −δ′} is a simple pole at

ω(λ). ω(λ) is analytic for |λ| < Λ′ and

ω(λ) = ω + λ2a2 +O(λ4) ,

where a2 = −FR(ω + i0). In particular, Im a2 = −π‖f(ω)‖2K < 0.

Theorem 15. Let 0 < δ′ < δ be given. Then there exists Λ′′ > 0 such that
for |λ| < Λ′′ and all t ≥ 0

(1|e−ithλ1) = e−itω(λ) +O(λ2e−δ
′t) .
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In this example the survival probability has strict exponential decay.
We would like to mention two well-known models in mathematical physics

for which analogs of Theorems 14 and 15 holds. The first model is the Stark
Hamiltonian which describes charged quantum particle moving under the
influence of a constant electric field [35]. The second model is the spin-boson
system at positive temperature [39,40].

In the translation analytic case, one can repeat the discussion of the pre-
vious example with the analytic family of operators

hλ(θ) = ω ⊕ (x+ θ) + λ
(
(1| · )fθ + (fθ| · )1

)
,

where fθ(x) ≡ f(x+ θ) (see Fig. 3). Note that in this case

spess(hλ(θ)) = spess(h0(θ)) = R + i Im θ .

Fig. 3. The spectrum of the translated Hamiltonian hλ(θ)

Example 4. Let us consider the model described in Example 2 of Subsect. 3.1
where f ∈ �2(Z+) has bounded support. In this case X =]− 1, 1[ and

FR(z) =
∫ 1

−1

√
1− x2

x− z Pf (x) dx , (48)

where Pf (x) is a polynomial in x. Since the integrand is analytic in the cut
plane C \ {x ∈ R | |x| ≥ 1}, we can deform the path of integration to any
curve γ joining −1 to 1 and lying entirely in the lower half-plane. This shows
that the function FR(z) has an analytic continuation from C+ to the entire
cut plane C \ {x ∈ R | |x| ≥ 1}. Assumption (A4) holds in this case.
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3.4 Weak Coupling Limit

The first computation of the radiative life-time in quantum mechanics goes
back to the seminal papers of Dirac [23] and Wigner and Weisskopf [64].
Consider the survival probability P (t) and assume that P (t) ∼ e−tΓ(λ) where
Γ(λ) = λ2Γ2 + O(λ3) for λ small. To compute the first non-trivial coeffi-
cient Γ2, Dirac devised a computational scheme called time-dependent per-
turbation theory. Dirac’s formula for Γ2 was called Golden Rule in Fermi’s
lectures [27], and since then this formula is known as Fermi’s Golden Rule.

One possible mathematically rigorous approach to time-dependent per-
turbation theory is the so-called weak coupling (or van Hove) limit. The idea
is to study P (t/λ2) as λ → 0. Under very general conditions one can prove
that

lim
λ→0

P (t/λ2) = e−tΓ2 ,

and that Γ2 is given by Dirac’s formula (see [15,16]).
In this section we will discuss the weak coupling limit for the RWWA. We

will prove:

Theorem 16. Suppose that Assumptions (A1)–(A3) hold. Then

lim
λ→0

∣
∣
∣(1|e−ithλ/λ

2
1)− e−itω/λ2

eitFR(ω+i0)
∣
∣
∣ = 0 ,

for any t ≥ 0. In particular,

lim
λ→0

|(1|e−ithλ/λ
2
1)|2 = e−2π‖f(ω)‖2

Kt .

Remark. If in addition Assumption (A4) holds, then Theorem 16 is an im-
mediate consequence of Theorem 11. The point is that the leading contribu-
tion to the life-time can be rigorously derived under much weaker regularity
assumptions.

Lemma 3. Suppose that Assumptions (A1)–(A3) hold. Let u be a bounded
continuous function on X. Then

lim
λ→0

∣
∣
∣
∣λ

2

∫

X

e−itx/λ2
u(x)|Fλ(x+ i0)|2 dx− u(ω)

‖f(ω)‖2
K

e−it(ω/λ2−FR(ω+i0))

∣
∣
∣
∣ = 0 ,

for any t ≥ 0.

Proof. We set lω(x) ≡ |ω − x− λ2FR(ω + i0)|−2 and

Iλ(t) ≡ λ2

∫

X

e−itx/λ2
u(x)|Fλ(x+ i0)|2 dx .

We write u(x)|Fλ(x+ i0)|2 as
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u(ω)lω(x) + (u(x)− u(ω))lω(x) + u(x)
(
|Fλ(x+ i0)|2 − lω(x)

)
,

and decompose Iλ(t) into three corresponding pieces Ik,λ(t). The first piece
is

I1,λ(t) = λ2 u(ω)
∫ e+

e−

e−itx/λ2

(ω − x− λ2ReFR(ω + i0))2 + (λ2ImFR(ω + i0))2
dx .

The change of variable

y =
x− ω + λ2ReFR(ω + i0)

λ2ImFR(ω + i0)
,

and the relation ImFR(ω + i0) = π‖f(ω)‖2K yield that

I1,λ(t) = e−it(ω/λ2−ReFR(ω+i0)) u(ω)
‖f(ω)‖2

K

1
π

∫ e+(λ)

e−(λ)

e−itImFR(ω+i0)y

y2 + 1
dy ,

where

e±(λ) ≡ λ−2 e± − ω
π‖f(ω)‖2

K

+
ReFR(ω + i0)
π‖f(ω)‖2

K

→ ±∞ ,

as λ→ 0. From the formula

1
π

∫ ∞

−∞

e−itImFR(ω+i0)y

y2 + 1
dy = e−tImFR(ω+i0) ,

we obtain that

I1,λ(t) =
u(ω)

‖f(ω)‖2
K

e−it(ω/λ2−FR(ω+i0)) (1 + o(1)) , (49)

as λ→ 0.
Using the boundedness and continuity properties of u and lω, one easily

shows that the second and the third piece can be estimated as

|I2,λ(t)| ≤ λ2

∫

X

∣
∣u(x)− u(ω)

∣
∣lω(x) dx,

|I3,λ(t)| ≤ λ2

∫

X

|u(x)|
∣
∣|Fλ(x+ i0)|2 − lω(x)

∣
∣ dx .

Hence, they vanish as λ → 0, and the result follows from (49). �Proof of

Theorem 16. Let Λ be as in Proposition 9. Recall that for 0 < |λ| < Λ the
spectrum of hλ is purely absolutely continuous. Hence, for λ small,

(1|e−ithλ/λ
2
1) =

1
π

∫

X

e−itx/λ2
ImFλ(x+ i0)dx

=
1
π

∫

X

e−itx/λ2 |Fλ(x+ i0)|2ImFR(x+ i0)dx

= λ2

∫

X

e−itx/λ2‖f(x)‖2K |Fλ(x+ i0)|2dx ,

where we used (19). This formula and Lemma 3 yield Theorem 16. �
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The next result we wish to discuss concerns the weak coupling limit for
the form of the emitted wave. Let pR be the orthogonal projection on the
subspace hR of h.

Theorem 17. For any g ∈ C0(R),

lim
λ→0

(pRe−ithλ/λ
2
1|g(hR)pRe−ithλ/λ

2
1) = g(ω)

(
1− e−2π‖f(ω)‖2

Kt
)
. (50)

Proof. Using the decomposition

pRg(hR)pR = (pRg(hR)pR − g(h0)) + (g(h0)− g(hλ)) + g(hλ)
= −g(ω)(1| · )1 + (g(h0)− g(hλ)) + g(hλ) ,

we can rewrite (pRe−ithλ/λ
2
1|g(hR)pRe−ithλ/λ

2
1) as a sum of three pieces.

The first piece is equal to

− g(ω)|(1|e−ithλ/λ
2
1)|2 = −g(ω)e−2π‖f(ω)‖2

Kt . (51)

Since λ �→ hλ is continuous in the norm resolvent sense, we have

lim
λ→0

‖g(hλ)− g(h0)‖ = 0 ,

and the second piece can be estimated

(e−ithλ/λ
2
1|(g(h0)− g(hλ))e−ithλ/λ

2
1) = o(1) , (52)

as λ→ 0. The third piece satisfies

(e−ithλ/λ
2
1|g(hλ)e−ithλ/λ

2
1) = (1|g(hλ)1)

= (1|g(h0)1) + (1|(g(hλ)− g(h0))1)

= g(ω) + o(1) ,

(53)

as λ→ 0. Equation (51), (52) and (53) yield the statement. �

Needless to say, Theorems 16 and 17 can be also derived from the general
theory of weak coupling limit developed in [15,16]. For additional information
about the weak coupling limit we refer the reader to [15,16,21,29,33,62].

3.5 Examples

In this subsection we describe the meromorphic continuation of

Fλ(z) = (1|(hλ − z)−11) ,

across spac(hλ) in some specific examples which allow for explicit computa-
tions. Since Fλ(z) = F−λ(z), we need to consider only λ ≥ 0.
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Example 1. Let X =]0,∞[ and

f(x) ≡ π−1/2(2x)1/4(1 + x2)−1/2 .

Note that f ∈ H2
d(δ) for 0 < δ < π/2 and so f is dilation analytic. In

this specific example one can evaluate FR(z) directly and describe the entire
Riemann surface of Fλ(z), thus going far beyond the results of Theorem 12.

For z ∈ C \ [0,∞) we set w ≡
√
−z, where the branch is chosen so that

Rew > 0. Then iw ∈ C+ and the integral

FR(z) =
1
π

∫ ∞

0

√
2t

1 + t2
dt
t− z =

√
2
π

∫ ∞

−∞

t2

1 + t4
dt

t2 + w2
,

is easily evaluated by closing the integration path in the upper half-plane and
using the residue method. We get

FR(z) =
1

w2 +
√

2w + 1
.

Thus FR is a meromorphic function of w with two simple poles at w = e±3iπ/4.
It follows that FR(z) is meromorphic on the two-sheeted Riemann surface of√
−z. On the first (physical) sheet, where Rew > 0, it is of course analytic.

On the second sheet, where Rew < 0, it has two simple poles at z = ±i.
In term of the uniformizing variable w, we have

Fλ(z) =
w2 +

√
2w + 1

(w2 + ω)(w2 +
√

2w + 1)− λ2
.

For λ > 0, this meromorphic function has 4 poles. These poles are analytic
functions of λ except at the collision points. For λ small, the poles form two
conjugate pairs, one near ±i

√
ω, the other near e±3iπ/4. Both pairs are on the

second sheet. For λ large, a pair of conjugated poles goes to infinity along the
asymptote Rew = −

√
2/4. A pair of real poles goes to ±∞. In particular, one

of them enters the first sheet at λ =
√
ω and hλ has one negative eigenvalue

for λ >
√
ω. Since

GR(x) =
1
π

∫ ∞

0

√
2

1 + t2
dt

(t− x)2 ,

is finite for x < 0 and infinite for x ≥ 0, 0 is not an eigenvalue of hλ for
λ =

√
ω, but a zero energy resonance. Note that the image of the asymptote

Rew = −
√

2/4 on the second sheet is the parabola {z = x + iy |x = 2y2 −
1/8}. Thus, as λ → ∞, the poles of Fλ(z) move away from the spectrum.
This means that there are no resonances in the large coupling limit.
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Fig. 4. Trajectories of the poles of Fλ(z) in w-space for various values of ω in
Example 1. Notice the simultaneous collision of the two pairs of conjugate poles
when ω = λ = 1/2. The second Riemann sheet is shaded

The qualitative trajectories of the poles (as functions of λ for fixed values
of ω) are plotted in Fig. 4.

Example 2. Let X = R and

f(x) ≡ π−1/2(1 + x2)−1/2 .

Since f ∈ H2
t (δ) for 0 < δ < 1, the function f is translation analytic. Here

again we can compute explicitly FR(z). For z ∈ C+, a simple residue calcu-
lation leads to

FR(z) =
1
π

∫ ∞

−∞

1
1 + t2

dt
t− z = − 1

z + i
.

Hence,
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Fλ(z) =
z + i

λ2 − (z + i)(z − ω)
,

has a meromorphic continuation across the real axis to the entire complex
plane. It has two poles given by the two branches of

ω(λ) =
ω − i +

√
(ω + i)2 + 4λ2

2
,

which are analytic except at the collision point ω = 0, λ = 1/2. For small λ,
one of these poles is near ω and the other is near −i. Since

ω(λ) = − i
2

+
(ω

2
± λ
)

+O(1/λ) ,

as λ→∞, hλ has no large coupling resonances. The resonance curve ω(λ) is
plotted in Fig. 5.

Fig. 5. The poles of Fλ(z) for Example 2

Clearly, sp(hλ) = R for all ω and λ. Note that for all x ∈ R, GR(x) = ∞
and

ImFλ(x+ i0) =
λ2

(x− ω)2 + (λ2 − x(x− ω))2
.

Hence, the operator hλ has purely absolutely continuous spectrum for all ω
and all λ = 0.

Example 3. Let X =]− 1, 1[ and

f(x) ≡
√

2
π

(1− x2)1/4 .

(Recall Example 2 in Subsect. 3.1 and Example 4 in Subsect. 3.3 – hR and
hR are �2(Z+) and the discrete Laplacian in the energy representation and
f = δ#1 .) In Subsect. 2.9 we have shown that for z ∈ C \ [−1, 1],

FR(z) =
2
π

∫ 1

−1

√
1− t2
t− z dt = 2

ξ − 1
ξ + 1

, (54)
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where

ξ =

√
z − 1
z + 1

.

The principal branch of the square root Re ξ > 0 corresponds to the first
(physical) sheet of the Riemann surface R of FR(z). The branch Re ξ < 0
corresponds to the second sheet of R. In particular,

FR(x+ i0) = 2(−x+ i
√

1− x2) .

To discuss the analytic structure of the Borel transform Fλ(z), it is convenient
to introduce the uniformizing variable

w ≡ − 2
FR(z)

=
1 + ξ
1− ξ ,

which maps the Riemann surface R to C \ {0}. Note that the first sheet of
R is mapped on the exterior of the unit disk and that the second sheet is
mapped on the punctured disk {z ∈ C | 0 < |z| < 1} (see Fig. 6). The inverse
of this map is

z =
1
2

(
w +

1
w

)
.

For z ∈ C \ [−1, 1] the function Fλ(z) is given by

Fλ(z) =
−2w

w2 − 2ωw + 1− 4λ2
,

and thus has a meromorphic continuation to the entire Riemann surface R.
The resonance poles in the w-plane are computed by solving

Fig. 6. Mapping the cut plane C \ [−1, 1] to the exterior of the unit disk
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Fig. 7. The trajectories of the poles of Fλ in the w-plane. The second sheet is
shaded

w2 − 2ωw + 1− 4λ2 = 0 ,

and are given by the two-valued analytic function

w = ω +
√

4λ2 + ω2 − 1 .

We will describe the motion of the poles in the case ω ≥ 0 (the case ω ≤ 0
is completely symmetric). For 0 < λ <

√
1− ω2/2 there are two conjugate

poles on the second sheet which, in the w-plane, move towards the point ω
on a vertical line. After their collision at λ =

√
1− ω2/2, they turn into a

pair of real poles moving towards ±∞ (see Fig. 7). The pole moving to the
right reaches w = 1 at λ =

√
(1− ω)/2 and enters the first sheet of R. We

conclude that hλ has a positive eigenvalue

ω+(λ) =
1
2

(
ω +
√

4λ2 + ω2 − 1 +
1

ω +
√

4λ2 + ω2 − 1

)
,

for λ >
√

(1− ω)/2. The pole moving to the left reaches w = 0 at λ = 1/2.
This means that this pole reaches z = ∞ on the second sheet of R. For
λ > 1/2, the pole continues its route towards w = −1, i.e., it comes back from
z = ∞ towards z = −1, still on the second sheet of R. At λ =

√
(1 + ω)/2,

it reaches w = −1 and enters the first sheet. We conclude that hλ has a
negative eigenvalue

ω−(λ) =
1
2

(
ω −
√

4λ2 + ω2 − 1 +
1

ω −
√

4λ2 + ω2 − 1

)
,

for λ >
√

(1 + ω)/2. The trajectory of these poles in the z cut-plane is shown
on Fig. 8. For clarity, only one pole of the conjugate pair is displayed.
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Fig. 8. The trajectories of the poles of Fλ in the z-plane. Dashed lines are on the
second sheet

Example 4. In Examples 1–3 there were no resonances in the large cou-
pling regime, i.e., the second sheet poles of Fλ kept away from the con-
tinuous spectrum as λ → ∞. This fact can be understood as follows. If a
resonance ω(λ) approaches the real axis as λ → ∞, then it follows from
(8) that ImFR(ω(λ)) = o(λ−2). Since under Assumptions (A1) and (A2)
FR is continuous on C+, we conclude that if limλ→∞ ω(λ) = ω ∈ R, then
ImFR(ω + i0) = 0. Since ‖f(x)‖K is also continuous on X, if ω ∈ X, then
we must have f(ω) = 0. Thus the only possible locations of large coupling
resonances are the zeros of f in X. We finish this subsection with an example
where such large coupling resonances exist.

Let again X = ]− 1, 1[ and set

f(x) ≡
√

1
π
x(1− x2)1/4 .

The Borel transform

FR(z) =
1
π

∫ 1

−1

x2
√

1− x2

x− z dx ,

is easily evaluated by a residue calculation and the change of variable

x = (u+ u−1)/2 .

Using the same uniformizing variable w as in Example 3, we get

FR(z) = −1
4

(
1 +

1
w2

)
1
w
, (55)

and

Fλ(z) =
−4w3

2w4 − 4ωw3 + (2− λ2)w2 − λ2
. (56)

We shall again restrict ourselves to the case 0 < ω < 1. At λ = 0 the
denominator of (56) has a double zero at w = 0 and a pair of conjugated
zeros at ω ± i

√
1− ω2. As λ increases, the double zero at 0 splits into a pair

of real zeros going to ±∞. The right zero reaches 1 and enters the first sheet
at λ =

√
2(1− ω). At λ =

√
2(1 + ω), the left zero reaches −1 and also

enters the first sheet. The pair of conjugated zeros move from their original
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positions towards ±i (of course, they remain within the unit disk). For large
λ they behave like

w = ±i +
2ω
λ2
− 2ω(2± 5iω)

λ4
+O(λ−6) .

Thus, in the z plane, Fλ has two real poles emerging from ±∞ on the second
sheet and traveling towards ±1. The right pole reaches 1 at λ =

√
2(1− ω)

and becomes an eigenvalue of hλ which returns to +∞ as λ further increases.
The left pole reaches −1 at λ =

√
2(1 + ω), becomes an eigenvalue of hλ,

and further proceeds towards −∞. On the other hand, the eigenvalue ω of h0

turns into a pair of conjugated poles on the second sheet which, as λ → ∞,
tend towards 0 as

ω(λ) =
2ω
λ2
− 4ω(1± 2iω)

λ4
+O(λ−6) ,

see Fig. 9. We conclude that hλ has a large coupling resonance approaching
0 as λ→∞.

Fig. 9. The trajectories of the poles of Fλ in the z-plane. Dashed lines are on the
second sheet

4 Fermionic Quantization

4.1 Basic Notions of Fermionic Quantization

This subsection is a telegraphic review of fermionic quantization. For addi-
tional information and references the reader may consult Sect. 5 in [2].

Let h be a Hilbert space. We denote by Γ(h) the fermionic (antisymmet-
ric) Fock space over h, and by Γn(h) the n-particle sector in h. Φh denotes the
vacuum in Γ(h) and a(f), a∗(f) the annihilation and creation operators as-
sociated to f ∈ h. In the sequel a#(f) represents either a(f) or a∗(f). Recall
that ‖a#(f)‖ = ‖f‖. The CAR algebra over h, CAR(h), is the C∗-algebra of
bounded operators on Γ(h) generated by {a#(f) | f ∈ h}.

Let u be a unitary operator on h. Its second quantization

Γ(u)|Γn(h) ≡ u⊗ · · · ⊗ u = u⊗n ,

defines a unitary operator on Γ(h) which satisfies
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Γ(u)a#(f) = a#(uf)Γ(u) .

Let h be a self-adjoint operator on h. The second quantization of eith is
a strongly continuous group of unitary operators on Γ(h). The generator of
this group is denoted by dΓ(h),

Γ(eith) = eitdΓ(h) .

dΓ(h) is essentially self-adjoint on Γ(Domh), where Domh is equipped with
the graph norm, and one has

dΓ(h)|Γn(Domh) =
∑n

k=1 I ⊗ · · · ⊗ I︸ ︷︷ ︸ ⊗h⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸ .

k − 1 n− k

The maps

τ t(a#(f)) = eitdΓ(h)a#(f)e−itdΓ(h) = a#(eithf) ,

uniquely extend to a group τ of ∗-automorphisms of CAR(h). τ is often called
the group of Bogoliubov automorphisms induced by h. The group τ is norm
continuous and the pair (CAR(h), τ) is a C∗-dynamical system. We will call it
a CAR dynamical system. We will also call the pair (CAR(h), τ) the fermionic
quantization of (h, h).

If two pairs (h1, h1) and (h2, h2) are unitarily equivalent, that is, if there
exists a unitary u : h1 → h2 such that uh1u

−1 = h2, then the fermionic
quantizations (CAR(h1), τ1) and (CAR(h2), τ2) are isomorphic – the map
σ(a#(f)) = a#(uf) extends uniquely to a ∗-isomorphism such that σ ◦ τ t1 =
τ t2 ◦ σ.

4.2 Fermionic Quantization of the WWA

Let hλ be a WWA on h = C ⊕ hR. Its fermionic quantization is the pair
(CAR(h), τλ), where

τ tλ(a
#(φ)) = eitdΓ(hλ)a#(φ)e−itdΓ(hλ) = a#(eithλφ) .

We will refer to (CAR(h), τλ) as the Simple Electronic Black Box (SEBB)
model. This model has been discussed in the recent lecture notes [2]. The
SEBB model is the simplest non-trivial example of the Electronic Black Box
model introduced and studied in [3].

The SEBB model is also the simplest non-trivial example of an open
quantum system. Set

τ tS(a#(α)) = a#(eitωα), τ tR(a#(g)) = a#(eithRg) .

The CAR dynamical systems (CAR(C), τS) and (CAR(hR), τR) are natu-
rally identified with subsystems of the non-interacting SEBB (CAR(h), τ0).
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The system (CAR(C), τS) is a two-level quantum dot without internal
structure. The system (CAR(hR), τR) is a free Fermi gas reservoir. Hence,
(CAR(hλ), τλ) describes the interaction of a two-level quantum system with
a free Fermi gas reservoir.

In the sequel we denote Hλ ≡ dΓ(hλ), HS ≡ dΓ(ω), HR ≡ dΓ(hR), and

V ≡ dΓ(v) = a∗(f)a(1) + a∗(1)a(f) .

Clearly,
Hλ = H0 + λV .

4.3 Spectral Theory

The vacuum of Γ(h) is always an eigenvector of Hλ with eigenvalue zero. The
rest of the spectrum of Hλ is completely determined by the spectrum of hλ
and one may use the results of Sects. 2 and 3.2 to characterize the spectrum
of Hλ. We mention several obvious facts. If the spectrum of hλ is purely
absolutely continuous, then the spectrum of Hλ is also purely absolutely
continuous except for a simple eigenvalue at zero. Hλ has no singular contin-
uous spectrum iff hλ has no singular continuous spectrum. Let {ei}i∈I be the
eigenvalues of hλ, repeated according to their multiplicities. The eigenvalues
of Hλ are given by

spp(Hλ) =

{
∑

i∈I
niei
∣
∣ni ∈ {0, 1},

∑

i∈I
ni <∞

}

∪ {0} .

Until the end of this subsection we will discuss the fermionic quantization
of the Radiating Wigner-Weisskopf Atom introduced in Sect. 3.2. The point
spectrum of H0 consists of two simple eigenvalues {0, ω}. The corresponding
normalized eigenfunctions are

Ψn = a(1)nΦh, n = 0, 1 .

Apart from these simple eigenvalues, the spectrum of H0 is purely absolutely
continuous and spac(H0) is equal to the closure of the set

{

e+
n∑

i=1

xi
∣
∣xi ∈ X, e ∈ {0, ω}, n ≥ 1

}

.

Let Λ be as in Theorem 9. Then for 0 < |λ| < Λ the spectrum of Hλ is purely
absolutely continuous except for a simple eigenvalue 0.

Note that

(Ψ1|e−itHλΨ1) = (a(1)Φh|e−itHλa(1)Φh)

= (a(1)Φh|a(e−ithλ)Φh) = (1|e−ithλ1) .
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Similarly,
(Ψ1|(Hλ − z)−1Ψ1) = (1|(hλ − z)−11) .

Hence, one may use directly the results (and examples) of Section 3 to de-
scribe the asymptotic of (Ψ1|e−itHλΨ1) and the meromorphic continuation
of

C+ � z �→ (Ψ1|(Hλ − z)−1Ψ1) . (57)

4.4 Scattering Theory

Let hλ be a WWA on h = C⊕ hR. The relation

τ−t0 ◦ τ tλ(a#(φ)) = a#(e−ith0eithλφ) ,

yields that for φ ∈ hac(hλ) the limit

lim
t→∞

τ−t0 ◦ τ tλ(a#(φ)) = a#(Ω−
λ φ) ,

exists in the norm topology of CAR(h). Denote

τλ,ac ≡ τλ|CAR(hac(hλ)), τR,ac ≡ τR|CAR(hac(hR)) .

By the intertwining property (26) of the wave operator Ω−
λ , the map

σ+
λ (a#(φ)) ≡ a#(Ω−

λ φ) ,

satisfies σ+
λ ◦ τ tλ,ac = τ tR,ac ◦ σ+

λ . Hence, σ+
λ is a ∗-isomorphism between the

CAR dynamical systems (CAR(hac(hλ)), τλ,ac) and (CAR(hac(hR)), τR,ac).
This isomorphism is the algebraic analog of the wave operator in Hilbert
space scattering theory and is often called the Møller isomorphism.

5 Quantum Statistical Mechanics of the SEBB Model

5.1 Quasi-Free States

This subsection is a direct continuation of Subsect. 4.1. A positive linear func-
tional η : CAR(h) → C is called a state if η(I) = 1. A physical system P is
described by the CAR dynamical system (CAR(h), τ) if its physical observ-
ables can be identified with elements of CAR(h) and if their time evolution
is specified by the group τ . The physical states of P are specified by states
on CAR(h). If P is initially in a state described by η and A ∈ CAR(h) is
a given observable, then the expectation value of A at time t is η(τ t(A)).
This is the usual framework of the algebraic quantum statistical mechanics
in the Heisenberg picture. In the Schrödinger picture one evolves the states
and keeps the observables fixed, i.e., if η is the initial state, then the state
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at time t is η ◦ τ t. A state η is called τ -invariant (or stationary state, steady
state) if η ◦ τ t = η for all t.

Let T be a self-adjoint operator on h such that 0 ≤ T ≤ I. The map

ηT (a∗(fn) · · · a∗(f1)a(g1) · · · a(gm)) = δn,mdet{(gi|Tfj)} , (58)

uniquely extends to a state ηT on CAR(h). This state is usually called the
quasi-free gauge-invariant state generated by T . The state ηT is completely
determined by its two point function

ηT (a∗(f)a(g)) = (g|Tf) .

Note that if A ≡
∑

j fj(gj | · ) is a finite rank operator on h, then

dΓ(A) =
∑

j

a∗(fj)a(gj) ,

and
ηT (dΓ(A)) = Tr (TA) =

∑

j

(gj |Tfj) . (59)

Let (CAR(h), τ) be the fermionic quantization of (h, h). The quasi-free
state ηT is τ -invariant iff eithT = T eith for all t ∈ R. In particular, the
quasi-free state generated by T = $(h), where $ is a positive bounded Borel
function on the spectrum of h, is τ -invariant. The function $ is the energy
density of this quasi-free state. Let β > 0 and µ ∈ R. Of particular importance
in quantum statistical mechanics is the quasi-free state associated with T =
$βµ(h), where the energy density $βµ is given by the Fermi-Dirac distribution

$βµ(ε) ≡ 1
eβ(ε−µ) + 1

. (60)

We denote this state by ηβµ. The pair (CAR(h), τ) and the state ηβµ describe
free Fermi gas in thermal equilibrium at inverse temperature β and chemical
potential µ.

5.2 Non-Equilibrium Stationary States

In this subsection we assume that hλ has purely absolutely continuous spec-
trum. We make this assumption in order to ensure that the system will
evolve towards a stationary state. This assumption will be partially relaxed
in Subsect. 5.5, where we discuss the effect of eigenvalues of hλ. We do not
make any assumptions on the spectrum of hR.

Let ηT be a quasi-free state on CAR(C⊕ hR) generated by T = α⊕ TR.
We denote by ηTR the quasi-free state on CAR(hR) generated by TR. We
assume that ηTR is τR-invariant and denote by TR,ac the restriction of TR to
the subspace hac(hR).
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Let φ1, . . . , φn ∈ h and

A = a#(φ1) · · · a#(φn) . (61)

Since ηT is τ0-invariant,

ηT (τ tλ(A))) = ηT (τ−t0 ◦ τ tλ(A))

= ηT (a#(e−ith0eithλφ1) · · · a#(e−ith0eithλφn)) ,

hence
lim
t→∞

ηT (τ tλ(A)) = ηT (a#(Ω−
λ φ1) · · · a#(Ω−

λ φn)) .

Since the set of observables of the form (61) is dense in h, we conclude that
for all A ∈ CAR(h) the limit

η+
λ (A) = lim

t→∞
ηT (τ tλ(A)) ,

exists and defines a state η+
λ on CAR(h). Note that η+

λ is the quasi-free state
generated by T+

λ ≡ (Ω−
λ )∗TΩ−

λ . Since RanΩ−
λ = hac(h0) = hac(hR), we have

T+
λ = (Ω−

λ )∗TR,acΩ
−
λ , (62)

and so
η+
λ = ηTR,ac ◦ σ+

λ ,

where σ+
λ is the Møller isomorphism introduced in Subsect. 4.4. Obviously, η+

λ

does not depend on the choice of α and on the restriction of TR to hsing(hR).
Since

eithλT+
λ e−ithλ = (Ω−

λ )∗eithRTR,ace−ithRΩ−
λ = T+

λ ,

η+
λ is τλ-invariant.

The state η+
λ is called the non-equilibrium stationary state (NESS) of the

CAR dynamical system (CAR(h), τλ) associated to the initial state ηT . Note
that if A ≡

∑
j φj(ψj | · ), then, according to (59),

η+
λ (dΓ(A)) = Tr (TΩ−

λ AΩ
−
λ

∗
) =
∑

j

(Ω−
λ ψj |TΩ

−
λ φj) . (63)

By passing to the GNS representation associated to ηT one can prove the
following more general result. Let N be the set of states on CAR(h) which
are normal with respect to ηT (the set N does not depend on the choice of
α). Then for any η ∈ N and A ∈ CAR(h),

lim
t→∞

η(τ tλ(A)) = η+
λ (A) .

If TR = $(hR) for some bounded Borel function $ on the spectrum of hR,
then the intertwining property of the wave operator implies that T+

λ = $(hλ)
and hence η+

λ = η�(hλ). In particular, if the reservoir is initially in thermal
equilibrium at inverse temperature β > 0 and chemical potential µ ∈ R, then
η+
λ is the quasi-free state associated to (eβ(hλ−µ) +1)−1, which is the thermal

equilibrium state of (CAR(h), τλ) at the inverse temperature β and chemical
potential µ. This phenomenon is often called return to equilibrium.
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5.3 Subsystem Structure

In the rest of these lecture notes we assume that hR is multiplication by x on
hR = L2(X,dµ;K), where X ⊂ R is an open set and K is a separable Hilbert
space. The internal structure ofR is specified by an orthogonal decomposition
K = ⊕Mk=1Kk. We set hRk

= L2(X,dµ;Kk) and denote by hRk
the operator

of multiplication by x on hRk
. Thus, we can write

hR =
M⊕

k=1

hRk
, hR =

M⊕

k=1

hRk
. (64)

We interpret (64) as a decomposition of the reservoir R into M indepen-
dent subreservoirs R1, · · · ,RM .

According to (64), we write f = ⊕Mk=1fk and we split the interaction v as
v =
∑M

k=1 vk, where
vk = (1| · )fk + (fk| · )1 .

The wave operators Ω±
λ and the scattering matrix S have the following form.

Proposition 12. Let φ = α⊕ ϕ ∈ h. Then

(Ω±
λ φ)(x) = ϕ(x)− λf(x)Fλ(x± i0)(α− λ(f |(hR − x∓ i0)−1ϕ)) . (65)

Moreover, for any ψ ∈ L2(X,dµac;K) one has (Sψ)(x) = S(x)ψ(x) where
S(x) : K → K has the form

(Sψ)(x) = ψ(x) + 2πiλ2Fλ(x+ i0)
dµac

dx
(x)(f(x)|ψ(x))Kf(x) . (66)

This result is deduced from Proposition 7 as follows. Let hR,f be the cyclic
space generated by hR and f and dµR(x) = ‖f(x)‖2Kdµ(x) the spectral mea-
sure for hR and f . Let U : hR,f → L2(R,dµR) be defined by U(Ff) = F ,
F ∈ L2(R,dµR). U is unitary, h̃R = UhRU

−1 is the operator of multiplica-
tion by x, and Uf = 1l. We extend h̃R to h̃R = L2(R,dµR)⊕h⊥

R,ψ by setting
h̃R = hR on h⊥

R,f . Proposition 7 applies to the pair of operators h̃0 = ω⊕ h̃R
and

h̃λ = h̃0 + λ((1| · )1l + (1l| · )1) ,

acting on C⊕ h̃R. We denote the corresponding wave operators and S-matrix
by Ω̃±

λ and S̃. We extend U to h = C ⊕ hR,f ⊕ h⊥
R,f by setting Uψ = ψ on

C⊕ h⊥
R,f . Clearly,

Ω±
λ = U−1Ω̃±

λ U, S = U−1S̃U ,

and an explicit computation yields the statement. We leave the details of this
computation as an exercise for the reader.

The formula (65) can be also proven directly following line by line the
proof of Proposition 7.
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5.4 Non-Equilibrium Thermodynamics

In the sequel we assume that f ∈ DomhR. In this subsection we also assume
that hλ has purely absolutely continuous spectrum. The projection onto the
subspace hRk

is denoted by 1Rk
. Set

fk ≡ −
d
dt

eithλhRk
e−ithλ

∣
∣
t=0

= −i[hλ, hRk
] = −i[hS +

∑
j

(
hRj

+ λvj
)
, hRk

]

= λi[hRk
, vk]

= λi ((1| · )hRk
fk − (hRk

fk| · )1) ,

(67)

and
jk ≡ −

d
dt

eithλ1Rk
e−ithλ

∣
∣
t=0

= −i[hλ, 1Rk
] = −i[hS +

∑
j

(
hRj

+ λvj
)
, 1Rk

]

= λi[1Rk
, vk]

= λi ((1| · )fk − (fk| · )1) .

(68)

The observables describing the heat and particle fluxes out of the k-th sub-
reservoir are

Fk ≡ dΓ(fk) = λi(a∗(hRk
fk)a(1)− a∗(1)a(hRk

fk)) ,

Jk ≡ dΓ(jk) = λi(a∗(fk)a(1)− a∗(1)a(fk)) .

We assume that the initial state of the coupled system S+R is the quasi-
free state associated to T ≡ α⊕ TR, where

TR =
M⊕

k=1

TRk
=

M⊕

k=1

$k(hRk
) ,

and the $k are bounded positive Borel functions on X.
Let η+

λ be the NESS of (CAR(h), τλ) associated to the initial state ηT . Ac-
cording to (62) and (59), the steady state heat current out of the subreservoir
Rk is

η+
λ (Fk) = Tr (T+

λ fk) = Tr (TRΩ−
λ fk(Ω−

λ )∗)

=
M∑

j=1

Tr ($j(hRj
)1Rj

Ω−
λ fk(Ω−

λ )∗1Rj
) .

Using (67) we can rewrite this expression as
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η+
λ (Fk) = 2λ

M∑

j=1

Im (1Rj
Ω−
λ hRk

fk|$j(hRj
)1Rj

Ω−
λ 1) .

Equation (65) yields the relations

($j(hRj
)1Rj

Ω−
λ 1)(x) = −λ$j(x)Fλ(x− i0)fj(x) ,

(1Rj
Ω−
λ hRk

fk)(x) =
(
δkj x+ λ2Fλ(x− i0)Hk(x− i0)

)
fj(x) ,

where we have set

Hk(z) ≡
∫

X

x‖fk(x)‖2Kk

x− z dµ(x) .

Since RanΩ−
λ = hac(hR), it follows that (1Rj

Ω−
λ hRk

fk|$j(hRj
)1Rj

Ω−
λ 1) is

equal to

λ

∫

X

(
δkjxFλ(x+ i0)− λ2|Fλ(x+ i0)|2Hk(x+ i0)

)
‖fj(x)‖2Kj

$j(x) dµac(x) .

From (18) we deduce that

ImHk(x+ i0) = πx‖fk(x)‖2Kk

dµac

dx
(x) ,

for Lebesgue a.e. x ∈ X. Equation (19) yields

ImFλ(x+ i0) = πλ2|Fλ(x+ i0)|2‖f(x)‖2K
dµac

dx
(x) .

It follows that Im (1Rj
Ω−
λ hRk

fk|$j(hRj
)1Rj

Ω−
λ 1) is equal to

λ3π

∫

X

(
δkj‖f(x)‖2K − ‖fk(x)‖2Kk

)
‖fj(x)‖2Kj

|Fλ(x+i0)|2 x$j(x)
(

dµac

dx
(x)
)2

dx .

Finally, using the fact that ‖f(x)‖2K =
∑

j ‖fj(x)‖2Kj
, we obtain

η+
λ (Fk) =

M∑

j=1

∫

X

x($k(x)− $j(x))Dkj(x)
dx
2π
, (69)

where

Dkj(x) ≡ 4π2λ4‖fk(x)‖2hk
‖fj(x)‖2hj

|Fλ(x+ i0)|2
(

dµac

dx
(x)
)2

. (70)

Proceeding in a completely similar way we obtain the formula for the steady
particle current
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η+
λ (Jk) =

M∑

j=1

∫

X

($k(x)− $j(x))Dkj(x)
dx
2π
. (71)

The functions Dkj can be related to the S-matrix associated to Ω±
λ . Ac-

cording to the decomposition (64), the S-matrix (66) can be written as

(1Rk
Sψ)(x) =

M∑

j=1

Skj(x)(1Rj
ψ)(x) ≡ (1Rk

ψ)(x) +
M∑

j=1

tkj(x)(1Rj
ψ)(x) ,

where
tkj(x) = 2πiλ2 dµac

dx
(x)Fλ(x+ i0)fk(x)(fj(x)| · )Kj

,

and we derive that

Dkj(x) = Tr Kj

(
tkj(x)∗tkj(x)

)
. (72)

Equation (69), (71) together with (72) are the well-known Büttiker-Landauer
formulas for the steady currents.

It immediately follows from (69) that

M∑

k=1

η+
λ (Fk) = 0 ,

which is the first law of thermodynamics (conservation of energy). Similarly,
particle number conservation

M∑

k=1

η+
λ (Jk) = 0 ,

follows from (71).
To describe the entropy production of the system, assume that the k-th

subreservoir is initially in thermal equilibrium at inverse temperature βk > 0
and chemical potential µk ∈ R. This means that

$k(x) = F (Zk(x)) ,

where F (t) ≡ (et + 1)−1 and Zk(x) ≡ βk(x − µk). The entropy production
observable is then given by

σ ≡ −
M∑

k=1

βk(Fk − µkJk) .

The entropy production rate of the NESS η+
λ is

Ep(η+
λ ) = η+

λ (σ) =
1
2

M∑

k,j=1

∫

X

(Zj − Zk)(F (Zk)− F (Zj))Dkj
dx
2π
. (73)
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Since the function F is monotone decreasing, Ep(η+
λ ) is clearly non-negative.

This is the second law of thermodynamics (increase of entropy). Note that
in the case of two subreservoirs with µ1 = µ2 the positivity of the entropy
production implies that the heat flows from the hot to the cold reservoir. For
k = j let

Fkj ≡ {x ∈ X | ‖fk(x)‖hk
‖fj(x)‖hj

> 0} .
The subreservoirs Rk and Rj are effectively coupled if µac(Fkj) > 0. The
SEBB model is thermodynamically trivial unless some of the subreservoirs
are effectively coupled. If Rk and Rj are effectively coupled, then Ep(η+

λ ) > 0
unless βk = βj and µk = µj , that is, unless the reservoirs Rk and Rj are in
the same thermodynamical state.

5.5 The Effect of Eigenvalues

In our study of NESS and thermodynamics in Subsects. 5.2 and 5.4 we have
made the assumption that hλ has purely absolutely continuous spectrum.
If X = R, then this assumption does not hold for λ large. For example, if
X = ]0,∞[, ω > 0, and

λ2 > ω

(∫ ∞

0

‖f(x)‖2h x−1dµ(x)
)−1

,

then hλ will have an eigenvalue in ]−∞, 0[. In particular, if
∫ ∞

0

‖f(x)‖2h x−1dµ(x) = ∞ ,

then hλ will have a negative eigenvalue for all λ = 0. Hence, the assumption
that hλ has empty point spectrum is very restrictive, and it is important to
understand the NESS and thermodynamics of the SEBB model in the case
where hλ has some eigenvalues. Of course, we are concerned only with point
spectrum of hλ restricted to the cyclic subspace generated by the vector 1.

Assume that λ is such that sppp(hλ) = ∅ and spsc(hλ) = ∅. We make
no assumption on the structure of sppp(hλ) (in particular this point spec-
trum may be dense in some interval). We also make no assumptions on the
spectrum of hR.

For notational simplicity, in this subsection we write hac for hac(hλ), 1ac

for 1ac(hλ), etc.
Let T and ηT be as in Subsect. 5.2 and let φ, ψ ∈ h = C⊕ hR. Then,

ηT (τ tλ(a
∗(φ)a(ψ))) = (eithλψ|T eithλφ) =

3∑

j=1

Nj(eithλψ, eithλφ) ,

where we have set
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N1(ψ, φ) ≡ (1acψ|T1acφ) ,

N2(ψ, φ) ≡ 2Re (1ppψ|T1acφ) ,

N3(ψ, φ) ≡ (1ppψ|T1ppφ) .

Since e−ith0T = T e−ith0 , we have

N1(eithλψ, eithλφ) = (e−ith0eithλ1acψ|T e−ith0eithλ1acφ) ,

and so
lim
t→∞

N1(eithλψ, eithλφ) = (Ω−
λ ψ|TΩ

−
λ φ) .

Since h is separable, there exists a sequence Pn of finite rank projections
commuting with hλ such that s− lim Pn = 1pp. The Riemann-Lebesgue
lemma yields that for all n

lim
t→∞

‖PnT eithλ1acφ‖ = 0 .

The relation

N2(eithλψ|eithλφ) = (eithλ1ppψ|PnT eithλ1acφ)
+ (eithλ(I − Pn)1ppψ|T eithλ1acφ) ,

yields that
lim
t→∞

N2(eithλψ, eithλφ) = 0 .

Since N3(eithλψ, eithλφ) is either a periodic or a quasi-periodic function
of t, the limit

lim
t→∞

ηT (τ tλ(a
∗(φ)a(ψ))) ,

does not exist in general. The resolution of this difficulty is well known –
to extract the steady part of a time evolution in the presence of a (quasi-)
periodic component one needs to average over time. Indeed, one easily shows
that

lim
t→∞

1
t

∫ t

0

N3(eishλψ, eishλφ)ds =
∑

e∈spp(hλ)

(Peψ|TPeφ) ,

where Pe denotes the spectral projection of hλ associated with the eigenvalue
e. Hence,

lim
t→∞

1
t

∫ t

0

ηT (τsλ(a∗(φ)a(ψ)))ds =
∑

e∈spp(hλ)

(Peψ|TPeφ) + (Ω−
λ ψ|TΩ

−
λ φ) .

In a similar way one concludes that for any observable of the form

A = a∗(φn) · · · a∗(φ1)a(ψ1) · · · a(ψm) , (74)
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the limit

lim
t→∞

1
t

∫ t

0

ηT (τsλ(A))ds = δn,m lim
t→∞

1
t

∫ t

0

det
{
(eishλψi|T eishλφj)}ds ,

exists and is equal to the limit

lim
t→∞

1
t

∫ t

0

det
{
(eishλ1ppψi|T eishλ1ppφj) + (Ω−

λ 1acψi|TΩ−
λ 1acφj)

}
ds ,

(75)
see [43] Sect. VI.5 for basic results about quasi-periodic function on R. Since
the linear span of the set of observables of the form (74) is dense in h, we
conclude that for all A ∈ CAR(h) the limit

η+
λ (A) = lim

t→∞

1
t

∫ t

0

ηT (τsλ(A))ds ,

exists and defines a state η+
λ on CAR(h). By construction, this state is τλ-

invariant. η+
λ is the NESS of (CAR(h), τλ) associated to the initial state ηT .

Note that this definition reduces to the previous if the point spectrum of hλ
is empty.

To further elucidate the structure of η+
λ we will make use of the decom-

position
h = hac ⊕ hpp . (76)

The subspaces hac and hpp are invariant under hλ and we denote the restric-
tions of τλ to CAR(hac) and CAR(hpp) by τλ,ac and τλ,pp. We also denote
by η+

λ,ac and η+
λ,pp the restrictions of η+

λ to CAR(hac) and CAR(hpp). η+
λ,ac is

the quasi-free state generated by T+
λ ≡ (Ω−

λ )∗TΩ−
λ . If A is of the form (74)

and φj , ψi ∈ hpp, then

η+
λ,pp(A) = δn,m lim

t→∞

1
t

∫ t

0

det{(eishλψi|T eishλφj)}ds .

Clearly, η+
λ,ac is τλ,ac invariant and η+

λ,pp is τλ,pp invariant. Expanding the
determinant in (75) one can easily see that η+

λ,ac and η+
λ,pp uniquely determine

η+
λ .

While the state η+
λ,pp obviously depends on the choice of α and on

TR|hsing(hR) in T = α ⊕ TR, the state η+
λ,ac does not. In fact, if η is any

initial state normal w.r.t. ηT , then for A ∈ CAR(hac),

lim
t→∞

η(τ tλ(A)) = η+
λ,ac(A) .

For a finite rank operator A ≡
∑

j φj(ψj | · ) one has

η+
λ (dΓ(A)) =

∑

j

η+
λ (a∗(φj)a(ψj)) ,
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and so

η+
λ (dΓ(A)) =

∑

j




∑

e∈spp(hλ)

(Peψj |TPeφj) + (Ω−
λ ψj |TΩ

−
λ φj)



 .

The conclusion is that in the presence of eigenvalues one needs to add the
term ∑

j

∑

e∈spp(hλ)

(Peψj |TPeφj) ,

to (63), i.e., we obtain the following formula generalizing (63),

η+
λ (dΓ(A)) = Tr





T




∑

e∈spp(hλ)

PeAPe +Ω−
λ AΩ

−
λ

∗









. (77)

Note that if for some operator q, A = i[hλ, q] in the sense of quadratic
forms on Domhλ, then PeAPe = 0 and eigenvalues do not contribute to
η+
λ (dΓ(A)). This is the case of the current observables dΓ(fk) and dΓ(jk) of

Subsect. 5.4. We conclude that the formulas (69) and (71), which we have
previously derived under the assumption spsing(hλ) = ∅, remain valid as long
as spsc(hλ) = ∅, i.e., they are not affected by the presence of eigenvalues.

5.6 Thermodynamics in the Non-Perturbative Regime

The results of the previous subsection can be summarized as follows.
If spsc(hλ) = ∅ and sppp(hλ) = ∅ then, on the qualitative level, the

thermodynamics of the SEBB model is similar to the case spsing(hλ) = 0.
To construct NESS one takes the ergodic averages of the states ηT ◦ τ tλ. The
NESS is unique. The formulas for steady currents and entropy production are
not affected by the point spectra and are given by (69), (71), (73) and (70)
or (72) for all λ = 0. In particular, the NESS and thermodynamics are well
defined for all λ = 0 and all ω. One can proceed further along the lines of [2]
and study the linear response theory of the SEBB model (Onsager relations,
Kubo formulas, etc.) in the non-perturbative regime. Given the results of the
previous subsection, the arguments and the formulas are exactly the same as
in [2] and we will not reproduce them here.

The study of NESS and thermodynamics is more delicate in the presence
of singular continuous spectrum and we will not pursue it here. We wish
to point, however, that unlike the point spectrum, the singular continuous
spectrum can be excluded in “generic” physical situations. Assume that X
is an open set and that the absolutely continuous spectrum of hR is “well-
behaved” in the sense that ImFR(x+i0) > 0 for Lebesgue a.e. x ∈ X. Then,
by the Simon-Wolff theorem 5, hλ has no singular continuous spectrum for
Lebesgue a.e. λ ∈ R. If f is a continuous function and dµR = dx, then hλ
has no singular continuous spectrum for all λ.



206 V. Jakšić et al.

5.7 Properties of the Fluxes

In this subsection we consider a SEBB model without singular continuous
spectrum, i.e, we assume that spsc(hλ) = ∅ for all λ and ω. We will study
the properties of the steady currents as functions of (λ, ω). For this reason,
we will again indicate explicitly the dependence on ω.

More precisely, in this subsection we will study the properties of the func-
tion

(λ, ω) �→ η+
λ,ω(F) , (78)

where F is one of the observables Fk or Jk for a given k. We assume that
(A1) holds. For simplicity of exposition we also assume that the functions

gj(t) ≡
∫

X

e−itx‖fj(x)‖2Kj
dx ,

are in L1(R,dt), that ‖f(x)‖K is non-vanishing onX, that the energy densities
$j(x) of the subreservoirs are bounded continuous functions on X, and that
the functions (1 + |x|)$j(x) are integrable on X. According to (69), (71) and
(70), one has

η+
λ,ω(F) = 2πλ4

M∑

j=1

∫

X

‖fk(x)‖2Kk
‖fj(x)‖2Kj

|Fλ(x+i0)|2xn($k(x)−$j(x)) dx ,

where n = 0 if F = Jk and n = 1 if F = Fk.
Obviously, the function (78) is real-analytic on R×R \X and for a given

ω ∈ X,
η+
λ,ω(F) = O(λ4) , (79)

as λ→ 0. The function (78) is also real-analytic on R \ {0} × R. For ω ∈ X,
Lemma 3 shows that

lim
λ→0

λ−2η+
ω,λ(F) = 2π

M∑

j=1

‖fk(ω)‖2Kk
‖fj(ω)‖2Kj

‖f(ω)‖2
K

ωn($k(ω)− $j(ω)) . (80)

Comparing (79) and (80) we see that in the weak coupling limit we can
distinguish two regimes: the “conducting” regime ω ∈ X and the “insulating”
regime ω ∈ X. Clearly, the conducting regime coincides with the “resonance”
regime for hλ,ω and, colloquially speaking, the currents are carried by the
resonance pole. In the insulating regime there is no resonance for small λ and
the corresponding heat flux is infinitesimal compared to the heat flux in the
“conducting” regime.

For x ∈ X one has

λ4|Fλ(x+ i0)|2 =
λ4

(ω − x− λ2ReFR(x+ i0))2 + λ4π2‖f(x)‖4
K

.
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Hence,

sup
λ∈R

λ4|Fλ(x+ i0)|2 =



π
M∑

j=1

‖fj(x)‖2Kj





−2

, (81)

and so
λ4‖fk(x)‖2Kk

‖fj(x)‖2Kj
|Fλ(x+ i0)|2 ≤ 1

4π2
.

This estimate and the dominated convergence theorem yield that for all ω ∈
R,

lim
|λ|→∞

η+
λ,ω(F) = 2π

M∑

j=1

∫

X

‖fk(x)‖2Kk
‖fj(x)‖2Kj

|FR(x+ i0)|2 xn($k(x)− $i(x)) dx . (82)

Thus, the steady currents are independent of ω in the strong coupling limit.
In the same way one shows that

lim
|ω|→∞

η+
λ,ω(F) = 0 , (83)

for all λ.
The cross-over between the weak coupling regime (80) and the large cou-

pling regime (82) is delicate and its study requires detailed information about
the model. We will discuss this topic further in the next subsection.

We finish this subsection with one simple but physically important re-
mark. Assume that the functions

Cj(x) ≡ 2π‖fk(x)‖2Kk
‖fj(x)‖2Kj

xn($k(x)− $j(x)) ,

are sharply peaked around the points xj . This happens, for example, if all
the reservoirs are at thermal equilibrium at low temperatures. Then, the flux
(78) is well approximated by the formula

η+
λ,ω(F)  

M∑

j=1

λ4|Fλ(xj)|2
∫

X

Cj(x) dx ,

and since the supremum in (81) is achieved at ω = x+ λ2ReFλ(x+ i0), the
flux (78) will be peaked along the parabolic resonance curves

ω = xj + λ2ReFλ(xj + i0) .

5.8 Examples

We finish these lecture notes with several examples of the SEBB model which
we will study using numerical calculations. For simplicity, we will only con-
sider the case of two subreservoirs, i.e., in this subsection K = C

2 = C ⊕ C.
We also take
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f(x) = f1(x)⊕ f2(x) ≡
1√
2

(
f0(x)

0

)
⊕ 1√

2

(
0

f0(x)

)
,

so that
‖f1(x)‖2K1

= ‖f2(x)‖2K2
=

1
2
‖f(x)‖2K =

1
2
|f0(x)|2 .

Example 1. We consider the fermionic quantization of Example 1 in Subsect.
3.5, i.e., hR = L2(]0,∞[,dx; C2) and

f0(x) = π−1/2(2x)1/4(1 + x2)−1/2 .

We put the two subreservoirs at thermal equilibrium

$j(x) =
1

1 + eβj(x−µj)
,

where we set the inverse temperatures to β1 = β2 = 50 (low temperature)
and the chemical potentials to µ1 = 0.3, µ2 = 0.2. We shall only consider the
particle flux (n = 0) in this example. The behavior of the heat flux is similar.
The function

C2(x) = 2π‖f1(x)‖2K1
‖f2(x)‖2K2

($1(x)− $2(x)) =
x($1(x)− $2(x))
π(1 + x2)2

,

plotted in Fig. 10, is peaked at x  0.25. In accordance with our discussion
in the previous subsection, the particle current, represented in Fig. 11, is
sharply peaked around the parabola ω = x+ 2λ2(1−x)/(1 +x2) (dark line).
The convergence to an ω-independent limit as λ→∞ and convergence to 0
as ω →∞ are also clearly illustrated.

Example 2. We consider now the heat flux in the SEBB model corresponding
to Example 2 of Subsect. 3.5. Here hR = L2(]− 1, 1[,dx; C2),

f0(x) =

√
2
π

(1− x2)1/4 ,

and we choose the high temperature regime by setting β1 = β2 = 0.1, µ1 = 0.3
and µ2 = 0.2. Convergence of the rescaled heat flux to the weak coupling limit
(80) is illustrated in Fig. 12. In this case the function C2 is given by

C2(x) =
2
π
x(1− x2)($1(x)− $2(x)) ,

and is completely delocalized as shown in Fig. 13.
Even in this simple example the cross-over between the weak and the

strong coupling regime is difficult to analyze. This cross-over is non trivial,
as can be seen in Fig. 14. Note in particular that the function λ �→ η+

λ,ω(F) is
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Fig. 10. The function C2(x) in Example 1

Fig. 11. The particle flux in Example 1

not necessarily monotone and may have several local minima/maxima before
reaching its limiting value (82) as shown by the section ω = 0.5 in Fig. 14.

Example 3. In this example we will discuss the large coupling limit. Note that
in the case of two subreservoirs (82) can be written as

lim
|λ|→∞

η+
λ,ω(F) =

1
2π

∫

X

sin2 θ(x)xn($1(x)− $2(x)) dx , (84)
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Fig. 12. The rescaled heat flux (weak coupling regime) in Example 2

−1 0 1

−2

0

2

x 10
−3

x

C
2

Fig. 13. The function C2(x) in Example 2

where θ(x) ≡ Arg(FR(x + i0)). Therefore, large currents can be obtained if
one of the reservoir, say R1, has an energy distribution concentrated in a
region where ImFR(x+ i0) % ReFR(x+ i0) while the energy distribution of
R2 is concentrated in a region where ImFR(x+ i0) � ReFR(x+ i0).
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Fig. 14. The heat flux in Example 2

As an illustration, we consider the SEBB model corresponding to Example
3 of Subsect. 3.5, i.e., hR = L2(]− 1, 1[,dx; C2) and

f0(x) =

√
1
π
x(1− x2)1/4 .

From (55) we obtain that

FR(x+ i0) = −x
(
x2 − 1

2

)
+ ix2

√
1− x2 .

Hence,
sin2 θ(x) = 4x2(1− x2) ,

reaches its maximal value 1 at energy x = ±1/
√

2.
We use the following initial states: the first subreservoir has a quasi-

monochromatic energy distribution

$1(x) ≡ 3 e−1000(x−Ω)2 ,

at energy Ω ∈ [−1, 1]. The second subreservoir is at thermal equilibrium
at low temperature β = 10 and chemical potential µ2 = −0.9. Thus, $2 is
well localized near the lower band edge x = −1 where sin θ vanishes. Figure
15 shows the limiting currents (84) as functions of Ω, with extrema near
±1/

√
2  ±0.7 as expected.

Another feature of Fig. 15 is worth a comment. As discussed in Example
4 of Subsect. 3.5, this model has a resonance approaching 0 as λ → ∞.
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Fig. 15. The limiting particle and heat fluxes in Example 3

However, since sin θ(0) = 0, the large coupling resonance near zero does not
lead to a noticeable flux enhancement. This can be seen in Fig. 15 by noticing
that the fluxes at the resonant energy Ω = 0 are the same as at the band
edges Ω = ±1. It is a simple exercise to show that this phenomenon is related
to the fact that the resonance pole of Fλ approaches 0 tangentially to the
real axis (see Fig. 9).

In fact, the following argument shows that this behavior is typical. Assume
that FR(z) has a meromorphic continuation from the upper half-plane across
X with a zero at ω ∈ X (we argued in our discussion of Example 3 in Subsect.
3.5 that this is a necessary condition for ω to be a large coupling resonance).
Since ImFR(x+ iy) ≥ 0 for y ≥ 0, it is easy to show, using the power series
expansion of FR around ω, that (∂zFR)(ω) > 0. Combining this fact with
the Cauchy-Riemann equations we derive

∂xReFR(x+ i0)|x=ω > 0, ∂xImFR(x+ i0)|x=ω = 0 ,

and so
sin θ(ω) = 0 .

Thus, in contrast with the weak coupling resonances, the strong coupling
resonances do not induce large currents.
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1 Introduction

An atom or molecule in an excited state with energy below the ionization
threshold will eventually relax to its ground state by dissipating excess en-
ergy in the form of radiation. This process of relaxation to the ground state
is one of the basic phenomena responsible for the production of all visible
light. It involves a range of energies within a few electron volts; a scale where
the electron-positron pair creation and the production of ultraviolet radi-
ation is highly suppressed. In a first mathematical study of relaxation to
the ground state it is therefore reasonable and legitimate to work with a
model where the electron-positron pair creation is entirely neglected and an
ultraviolet cutoff is imposed on the electron-photon interaction. These sim-
plifying assumptions lead to a mathematically well defined model of matter,
often called standard-model of non-relativistic quantum electrodynamics, or
Pauli-Fierz model. Since the numerical predictions of this model are in good
agreement with measurement data it is a viable physical model. Yet, only
little mathematically rigorous work on this model had been done before the
middle of the 1990s, when several groups of researchers started to investigate
various of its aspects. Most influential, perhaps, were the papers of Hübner
and Spohn [33–35] on spectral and scattering theory, of Bach et al. on spec-
tral analysis [7–10], of Dereziński and Gérard on scattering theory [14, 15],
and of Jakšić and Pillet on thermal relaxation [37–40]. The present article
reviews recent work on the phenomenon of relaxation to the ground state
for states with total energy below the threshold energy for ionization. It is
guided by papers of Lieb, Loss and Griesemer, and of Fröhlich, Schlein and
Griesemer [17,18,24,25]. The focus is on the existence of an ionization thresh-
old and the localization of the electrons below this energy, the existence of a
ground state, and the existence and completeness of many-photon scattering
states (asymptotic completeness of Rayleigh scattering).

The results to be discussed on existence of a ground state and on the
localization of photons with energy below the ionization threshold, unlike
previous results, hold for all values of the physical parameters such as the
fine structure constant and the ultraviolet cutoff. This is crucial for moving
on to physically more realistic models without ultraviolet regularization. The
analysis of electron-photon scattering is based on methods and ideas from
the scattering theory of N -body quantum systems [22,23,50,55]. On the one
hand the electron-photon dynamics is easier to analyze than the full N -body
problem since there is no photon-photon interaction. On the other hand the
number of photons is not constant! In fact, it might even diverge as time
t → ∞. This divergence is avoided by imposing a cutoff on the interaction
between electrons and low-energy photons (infrared-cutoff). It is one of the
main open challenges in the mathematical analysis of matter interacting with
quantized radiation to prove asymptotic completeness for Rayleigh scattering
without this infrared-cutoff.
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This article is organized as follows. In Sect. 2.1 we begin with the de-
scription of a simple, but non-trivial model of matter and radiation. There
is only one electron, besides the static nuclei, and the radiation is described
by scalar bosons.

Sections 2.4, 2.5, 2.7, and 2.8 describe the main results of the papers
[17,24,25] and [18], respectively. Sections 2.2 and 2.3 summarize mathematical
and physical background, and Sects. 2.9 and 2.10 are devoted to side issues
in the aforementioned papers.

Section 3 outlines the modification of results and proofs that are neces-
sary to accommodate N > 1 electrons, and Sect. 4 ends this review with
concluding remarks and a discussion of selected open problems.

There is a self-contained appendix on the standard model of non-relativistic
QED.

Acknowledgments

Most of the content of this review article I learned from my collaborators Jürg
Fröhlich, Elliott H. Lieb, Michael Loss, and Benjamin Schlein. I am indebted
to all of them. I thank David Hasler for his careful proofreading.

2 Matter and Radiation

All electrons of an atom or molecule are well localized near the nuclei if
the total energy is below the ionization threshold. Therefore the number of
electrons is inessential for the phenomena to be described mathematically in
this section. To simplify notation and presentation we restrict ourselves to
one-electron systems; the generalization to N > 1 electrons is described in
Sect. 3.

2.1 A Simple Mathematical Model

The main features of quantum electrodynamics that are responsible for the
phenomena to be studied, are the peculiar form of interaction between light
and matter, through creation and annihilation of photons, and the fact that
photons are massless relativistic particles. The spin of the electron and the
helicity of the photons do not play an essential role in most of our analysis.
For the purpose of this introduction we therefore neglect these subtleties and
present a caricature of QED which only retains the aforementioned main
features. The full-fledged standard model is described in the appendix.

We first introduce our models for matter and radiation separately before
describing the composed system and the interaction.
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A (pure) state of a quantum particle, henceforth called electron, is de-
scribed by a normalized vector ψ ∈ L2(R3,C),

∫
A
|ψ(x)|2dx being the proba-

bility to find the particle in the region A ⊂ R
3. Its time evolution is generated

by a Schrödinger operator

Hat = −∆+ V (1)

where −∆ is the positive Laplacian and V is the operator of multiplication
with a real-valued function V (x), x ∈ R

3. We assume that V ∈ L2
loc(R

3) and
that there exist constants α < 1 and β such that

〈ϕ, V−ϕ〉 ≤ α〈ϕ, (−∆)ϕ〉+ β〈ϕ,ϕ〉 (2)

for all ϕ ∈ C∞
0 (R3), where V− = max(−V, 0). Hence the operator −∆+ V is

symmetric and bounded from below, which allows us to define a self-adjoint
Hamiltonian Hat by the Friedrichs’ extension of −∆+ V .

We shall be most interested in the case where

V (x) = VZ(x) := −
K∑

j=1

Zj
|x−Rj |

, (3)

Zj , j = 1 . . .K, are positive integers, and Rj ∈ R
3. The function (3) is the

potential energy (or the scalar potential in Coulomb gauge) of one electron
at x ∈ R

3 in the field of K nuclei with positions R1, . . . , RK and atomic
numbers Z1, . . . , ZK .

The Hamiltonian (1) with V given by (3) describes a molecule with one
electron and static nuclei in units where the unit of length is �

2/(2me2) =
rB/2 and the unit of energy is 2e2/rB = 4 Ry (see Appendix A). Here
rB = �

2/(me2) is the Bohr radius, −e is the charge of the electron and m
is its mass. This Hamiltonian is self-adjoint with domain D(Hat) = H2(R3),
the Sobolev space of twice weakly differentiable L2-functions [41,47].

A pure state of the radiation field is described by a normalized vector in
the bosonic Fock space over L2(R3). This is the space

F =
⊕

n≥0

SnL2(R3n; C)

where S0L
2(R0) := C, and Sn denotes the orthogonal projection onto the

subspace of square integrable functions f(k1, . . . , kn) that are symmetric with
respect to permutations of the n arguments k1, . . . , kn ∈ R

3. Such a function
describes a state of n bosons, henceforth called photons, with wave vectors
k1, . . . , kn. The vector |vac〉 = (1, 0, 0, . . .) ∈ F is called the vacuum vector.
With Ffin we denote the subspace of sequences ϕ = (ϕ)n≥0 ∈ F with ϕn = 0
for all but finitely many n ∈ N.

The energy of a state ϕ = (ϕn)∞n=0 ∈ F is measured by the Hamiltonian
Hf defined by
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(Hfϕ)0 = 0

(Hfϕ)n(k1, . . . , kn) =
n∑

j=1

ω(kj)ϕn(k1, . . . , kn) , n ≥ 1 ,
(4)

where ω(k) = |k|. The domain of Hf is the largest set of vectors for which
(4) defines a vector in F .

The interaction between photons and electrons comes about in a process of
creation and annihilation of photons. To describe it mathematically, creation
and annihilation operators are needed. Given h ∈ L2(R3) and ϕ ∈ Ffin we
define a∗(h)ϕ by

[a∗(h)ϕ]n =
√
nSn(h⊗ ϕn−1) .

The operator a∗(h) is called a creation operator. It adds a photon with wave
function h to the state ϕ. The annihilation operator a(h) is the adjoint of the
closure of a∗(h). These operators satisfy the canonical commutation relations

[a(g), a∗(h)] = (g, h) , [a�(g), a�(h)] = 0 , (5)

where a�(·) stands for either a(·) or a∗(·).
A further important operator on F is the number operator Nf , defined

by
(Nfϕ)n = nϕn

and D(Nf ) = {ϕ ∈ F :
∑
n2‖ϕn‖2} <∞.

A state of the composed system of electron and photons is described by
a vector Ψ ∈ Hat ⊗ F , that is, by a sequence (ψn)∞n=0 where ψn is a square
integrable function

ψn(x, k1, . . . , kn) ,

describing a state of one electron and n photons. It is often helpful to use
that Hat ⊗F  L2(R3;F) and to consider Ψ as a square integrable function
x �→ Ψ(x) with values in F . Then ‖Ψ(x)‖2F is the probability density for
finding the electron at position x ∈ R

3.
For the generator of the time-evolution t �→ Ψt we choose the Hamiltonian

H ≡ Hg = Hat ⊗ 1 + 1⊗Hf + gHint , (6)

the interaction Hint being given by

(HintΨ)(x) = [a(Gx) + a∗(Gx)]Ψ(x)

Gx(k) = e−ik·xκ(k) ,

where g ∈ R and κ ∈ C∞
0 (R3). It is easy to prove that Hint is operator-

bounded with respect to Hg=0 with bound zero, and hence, for every g ∈ R,
Hg is bounded below and self-adjoint on the domain of Hg=0 by the Kato-
Rellich theorem [47].
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Both g and κ measure the strength of interaction between electron and
photons. Given κ, some of the results in the following sections hold for |g|
small enough only, others for small |g| = 0. The value κ(k) of the form-factor
κ measures the strength of interaction between electron and radiation with
wave vector k. There is no interaction for k outside the support of κ, which is
the case, e.g., for |k| larger than the ultraviolet cutoff Λ := sup{|k| : κ(k) =
0}.

We reiterate that this model is a caricature of the standard model of
quantum electrodynamics for atoms and molecules interacting with quantized
radiation. With QED it has in common that it describes a non-relativistic
particle, the electron, interacting with massless relativistic bosons in a mo-
mentum conserving process of creation and annihilation of such bosons.

It would make our toy model physically more realistic if we assumed
κ(k) ∼ |k|−1/2 for small |k|. But then H has no ground state [44], a problem
that does not occur in the standard model of non-relativistic QED. Therefore
we assume that κ is non-singular near k = 0.

2.2 Spectrum and Eigenfunctions of Hat

As a preparation for the following sections we recall a few facts concerning
the spectrum of Schrödinger operators Hat = −∆+V and the decay of their
eigenfunctions.

Suppose that V satisfies assumption (2) and let Hat be defined in terms
of the Friedrichs’ extension of the symmetric operator −∆+ V on C∞

0 (R3).
Let DR = C∞

0 (|x| > R), the space of smooth, compactly supported functions
with support outside the ball BR(0), and let

Σat := lim
R→∞

(
inf

ϕ∈DR, ‖ϕ‖=1
〈ϕ,Hatϕ〉

)
. (7)

By a theorem due to Arne Persson [2, 46]

Σat = inf σess(Hat) (8)

where σess(Hat) denotes the essential spectrum of Hat, i.e. the complement,
within the spectrum, of the isolated eigenvalues of finite multiplicity. For
the Coulomb potential (3), VZ(x) → 0 as |x| → ∞ and hence Σat = 0.
Furthermore σess(Hat) = [0,∞), and by a simple variational argument, Hat

has infinitely many eigenvalues below 0 [48].
Eigenfunctions of Hat with energy below Σat decay exponentially with

increasing |x|: for every eigenvalue E < Σat and every β > 0 with E + β2 <
Σat there exists a constant Cβ such that

|ψ(x)| ≤ Cβe−β|x| , a.e. on R
3 (9)

for all normalized eigenfunctions that belong to E. Of course, the actual
decay of ψ will not be isotropic unless V is spherically symmetric. There
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is the better, but non-explicit, bound |ψ(x)| ≤ Cεe−(1−ε)ρ(x) where ρ(x) is
the geodesic distance from x to the origin with respect to a certain metric
ds2 = cE(x/|x|)dx2 in R

3 [2]. Since cE(x/|x|) ≥ Σat − E (if Σat < ∞), the
isotropic bound (9) follows from this stronger result.

For proving (9) it suffices to show that

eβ|·|ψ ∈ L2(R3) (10)

whenever E+β2 < inf σess(Hat). The point-wise bound (9) then follows from
a general result on point-wise bounds for (weak) solutions of second order
elliptic equations [2, 21]. The L2-bound (10), in turn, is easily derived from
the characterization (7), (8) for inf σess(Hat) [36].

We now turn again to Hg, the Hamiltonian (6) describing matter and
radiation. Most properties of Hg to be discussed in the following sections
hold for all g ∈ R, including g = 0. Hence they generalize properties of

Hg=0 = Hat ⊗ 1 + 1⊗Hf .

By general spectral theory σ(H0) = σ(Hat) + σ(Hf ). Furthermore, it is easy
to see from the definition of Hf that σ(Hf ) = [0,∞) and that 0 is the
only eigenvalue of Hf , the vacuum |vac〉 being its eigenvector. It follows that
σ(H0) = [inf σ(Hat),∞) and that H0 and Hat have the same eigenvalues.
The corresponding eigenvectors are the products ψ ⊗ |vac〉, where ψ is an
eigenvector of Hat.

2.3 Physical Phenomena and Mathematical Description

The experimental evidence on isolated atoms in contact with radiation is
easiest described in an idealized setup or “Gedankenexperiment”. Consider
an atom in a universe that is otherwise free of matter. For simplicity, we
assume that the atom has only one electron. There may be radiation near
the atom initially but no “external fields” or sources of radiation shall be
present. Independent of its initial state, this system of atom and radiation
will eventually approach one of only two qualitatively distinct final states:
the “bound state” or the “ionized state”.

In the bound state the atom is in its ground state, the state of least energy,
where the electron is confined to within a small neighborhood of the nucleus.
All excess energy has been radiated off. This radiation is very far away from
the atom and escaping at the speed of light.

In the ionized state the electron and the nucleus are spatially separated
with increasing distance. In addition, there may be radiation going off to
infinity.

Of course, the ionized state can only be attained if the total energy of
matter and radiation initially is hight enough to overcome the attraction
between nucleus and electron. High energy however, does not guarantee ion-
ization, as the excess energy may just as well turn into radiation. On the
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other hand, if the total energy initially is not sufficient for ionization, then
the atom will certainly relax to its ground state. Other conceivable scenar-
ios, like relaxation to a stationary state with non-minimal energy, or the
permanent radiation without total loss of the excess energy have never been
observed. Bohr’s stationary states, with the exception of the ground state, are
unstable, and radiation is only emitted in the very short period of transition
to the ground state.

The goal is to give a proof of the phenomenon of relaxation to the ground
state in the model introduced in the previous section. In view of the experi-
mental evidence described above, we expect that this model has the following
mathematical properties.

Existence of the ionization threshold. There exists a threshold energy Σ ≥
inf σ(H), such that the electrons described by states in the spectral sub-
space E(−∞,Σ)(H)H are well localized near the nuclei, while states with
energy above Σ may be ionized.

Existence of a ground state. There exists a state of least energy (ground
state), or, equivalently, inf σ(H) is an eigenvalue of H.

Absence of excited stationary states. The operatorH has no eigenvalues above
inf σ(H).

Asymptotic completeness of Rayleigh scattering (ACR). In the limit t → ∞
the time evolution e−iHtΨ of every state Ψ ∈ E(−∞,Σ)(H)H is well ap-
proximated by a superposition of states of the form

a∗(h1,t) · · · · · a∗(hn,t)e−iE0tΨ0 , (11)

where hi,t(k) = e−i|k|thi(k), Ψ0 is a normalized ground state of H and
E0 is its energy. The vector (11) describes a state composed of the atom
in its ground state and n freely propagating photons with wave functions
h1,t, . . . , hn,t. In the limit t→∞ they will be far away from the atom.

The papers [17,18,24,25] are devoted to proving the above four properties
for the standard model of QED was well as for the model introduced in
Sect. 2.1. One exception is asymptotic completeness for Rayleigh scattering
where the results concern the model of Sect. 2.1 only, with the additional
important simplification that κ(k) = 0 for |k| ≤ σ where σ > 0 is arbitrarily
small but positive. This assumptions that photons with energy near zero
don’t interact with the electron is usually referred to as an infrared cutoff,
IR-cutoff, for short. Sometimes the constant σ is called infrared cutoff as
well. The significance of the IR-cutoff is that it allows us to control the
number of bosons that are being produced in the course of time: the number
of bosons with energy below σ stays constant and the number of bosons with
energy above σ can be bounded from above in terms of the total energy. The
assumption of an IR-cutoff is not expected to be necessary for the validity of
asymptotic completeness of Rayleigh scattering as formulated above; but as of
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now, no convincing mathematical argument is known that would substantiate
this belief.

The above list of physical phenomena is limited to the coarsest properties
of atoms interacting with radiation. Even below the ionization threshold,
there are many other phenomena that are worth rediscovering in the standard
model, and in part this has already been done. Most important, perhaps,
are the occurrence of sharp lines in the spectrum of the emitted radiation
(Bohr frequencies), the resonances in lieu of Bohr’s stationary state and their
extended life time, and the correspondence principle at energies near the
ionization threshold. We shall come back to some of these phenomena in
later sections, when we review known results or comment on open problems.
One must keep in mind, however, the limitations of our model. Quantitative
predictions will be of limited accuracy when relativity or high-energy photons
play a significant role.

2.4 Exponential Decay and Ionization Threshold

The ionization threshold Σ of an atom or molecule with only one electron is
the least energy that this system can achieve in a state where the electron
has been moved “infinitely far away” from the nuclei. The electron is outside
the ball |x| < R with probability one, if its wave function Ψ(x) vanishes in
this ball. Therefore we define

Σ = lim
R→∞

(
inf

Ψ∈DR,‖Ψ‖=1
〈Ψ,HΨ〉

)
(12)

where
DR = {Ψ ∈ D(H)|Ψ(x) = 0 if |x| < R} .

Note the analogy with Persson’s characterization (7) of inf σess(Hat). Here,
however, Σ = inf σess(H) unless Σ = inf σ(H). In general Σ ≥ inf σ(H) and,
if V (x) → 0 as |x| → ∞, then Σ = inf σ(H − V ), which is greater than
inf σ(H) for V = VZ [25] (see also Sect. 2.5).

According to (12), the electron described by a state Ψ with energy below
Σ cannot be arbitrarily far away from the origin. In fact, by [24], for all
λ, β ∈ R with λ+ β2 < Σ

∥
∥(eβ|x| ⊗ 1)Eλ(H)

∥
∥ <∞ . (13)

This shows that the probability(-density) ‖Ψ(x)‖2F to find the electron at the
point x decays exponentially fast, as |x| → ∞, at least in the averaged sense

∫
e2β|x|‖Ψ(x)‖2F dx <∞ . (14)

There is an obvious similarity between (14) and (10) that is not accidental.
In [24] the bound (13) is derived from an abstract result for semi-bounded
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self-adjoint operators H in Hilbert spaces of the form L2(Rn) ⊗ F , where
F is an arbitrary complex Hilbert space. The only assumptions are that
fD(|H|1/2) ⊂ D(|H|1/2) and that

f2H +Hf2 − 2fHf = −2|∇f |2 (15)

for smooth, bounded functions f(x) with bounded first derivatives. Equa-
tion (15) holds for H = −∆⊗ 1 and since the left-hand side of (15) formally
equals [f, [f,H]], it follows that (15) holds for are large class of self-adjoint
operators H whose principal symbol is given by the Laplacian. The result
(10) thus emerges as a special case of (13).

Even though the above assumptions on H are largely independent of
Hf and gHint, the result depends on these operators! The binding energy
Σ − inf σ(H) depends of g and hence so does the decay rate one obtains for
the ground state.

It is well known, since the work of Agmon [2], that eigenfunctions of
second order elliptic equations decay exponentially in energetically forbidden
regions, that is, in regions where the differential operator, as a quadratic form,
is strictly larger than the eigenvalue [2]. The result (13) shows that this idea
can be brought to bear in a much more general framework, including many
models of non-relativistic QED. It is clear that our proof of (13) can be
generalized, along the lines of [2], to yield non-isotropic bounds, as well as
exponential bounds for QED-models where Hat is a more general, uniformly
elliptic second order differential operator.

We owe the strategy for proving (13) to Bach et al. [7], where this bound
is established for |g| sufficiently small and λ+ β2 < Σat − const|g|.

2.5 Existence of a Ground State

By the main result of [25], inf σ(H) is an eigenvalue of H whenever

inf σ(H) < Σ . (16)

This reduces a difficult spectral problem to a variational problem: the prob-
lem of finding a state Ψ ∈ D(H) with 〈Ψ,HΨ〉 < Σ〈Ψ, Ψ〉. There are two
important classes of potentials V for which this variational problem can be
solved without much effort: if V (x) →∞ as |x| → ∞, then obviously Σ =∞
and hence inf σ(H) < Σ. On the other hand, if V (x) → 0 as |x| → ∞
then Σ = inf σ(H − V ) where the nuclei are removed in H − V . Using the
translation invariance of H − V one shows that

inf σ(H) ≤ inf σ(H − V ) + inf σ(−∆+ V ) .

It follows that inf σ(H) < Σ whenever V (x) → 0, (|x| → ∞) and inf σ(−∆+
V ) < 0. Since this is the case for the Coulomb potential V = VZ , all one-
electron atoms and molecules have a ground state.
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We next sketch the proof that (16) guarantees existence of a ground state.
To begin with we recall that a hypothetical eigenvector Ψ of H, with eigen-
value inf σ(H), minimizes the quadratic form Ψ �→ 〈Ψ,HΨ〉 subject to the
constraint ‖Ψ‖ = 1. It is thus natural to establish existence of Ψ by proving
relative compactness for a suitable minimizing sequence. The problem with
this approach is that a generic minimizing sequence will tend weakly to zero.
The fact that inf σ(H) belongs to the essential spectrum alone implies that
there are infinitely many energy minimizing sequences with this defect. Our
task is thus, first, to choose a suitable minimizing sequence, and second, to
prove its relative compactness.

We choose the elements of our minimizing sequence to be the ground
states Ψm of modified Hamiltonians Hm (m→ 0) in which the photon energy
ω(k) is altered to be ωm(k) =

√
k2 +m2. That is, we give the photons a

positive massm. Form small enough the binding assumption (16) is inherited
by Hm, which we use to show that inf σ(Hm) is indeed an eigenvalue. As a
matter of fact, inf σ(Hm) is separated from the essential spectrum of Hm by
a gap of size m [18]. The sequence of ground states (Ψm)m>0 is a minimizing
sequence for H that can be assumed to be weakly convergent. It remains to
show that the weak limit is not the zero vector in H.

We first argue that it suffices to prove relative compactness of the sequence
of L2-functions ψm,n(x, k1, . . . , kn) restricted to large balls B ⊂ R

(3+3n). This
follows from the exponential decay w.r.to x, from ψm,n(x, k1, . . . , kn) = 0 if
|ki| > Λ, and from the bound supm 〈Ψm, NfΨm〉 < ∞. Then we use the
compactness of the embedding

W 1,p(B) ↪→ L2(B) , for 2 > p >
2 · (3 + 3n)
2 + (3 + 3n)

due to Rellich-Kondrachov [1]. We thus need to show that supm ‖∇ψm,n‖p <
∞, which we derive from a refinement of the argument that we used to prove
the bound on 〈Ψm, NfΨm〉, and from the H-boundedness of −∆x.

There was a large number of previous papers on the existence of a ground
state for models similar to the one discussed here [4, 5, 7, 9, 19, 30, 31, 52].
Among these, the best result is due to Bach et al [9]. It established existence
of a ground state when inf σ(Hat,N ) is an isolated eigenvalue and the fine-
structure constant α is small enough. Most importantly, in this paper for the
first time existence of a ground state is proven in the standard model without
an IR-regularization.

2.6 Relaxation to the Ground State is a Scattering Phenomenon

As discussed in Sect. 2.3 every state Ψ ∈ RanE(−∞,Σ)(H) is expected to
“relax to the ground state by emission of photons”. In mathematical terms,
this means that e−iHtΨ , in the distant future, t → ∞, is well approximated
in norm by a linear combination of vectors of the form
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a∗(h1,t) . . . a∗(hn,t)e−iE0tΨ0 (17)

where hi,t(k) = e−iωthi(k), Ψ0 is the ground state, and E0 is its energy. This
has a chance to be correct only if H has no other eigenvalues below Σ. If it
has, then relaxation to a bound state may occur, which means that Ψ0 in (17)
may be any eigenvector of H with eigenvalue below Σ. In this weaker form,
the above assertion is called Asymptotic Completeness for Rayleigh scattering.
The problem of proving absence of excited eigenvalues is independent of the
scattering problem and its discussion is deferred to a later section.

Before proving completeness of the scattering states one needs to address
the problem of their existence. An example of a scattering state is a vector
Ψ+ ∈ H for which there exist n ≥ 1 photons h1, . . . , hn and an eigenvector
Ψ , HΨ = EΨ such that

e−iHtΨ+  a∗(h1,t) . . . a∗(hn,t)e−iEtΨ , t→∞

in the sense that norm of the difference vanishes in the limit t → ∞. The
scattering state Ψ+ is said to exists if the limit

Ψ+ = lim
t→∞

eiHta∗(h1,t) . . . a∗(hn,t)e−iEtΨ t→∞ (18)

exists. Let H+ denote the closure of the space spanned by vectors Ψ+ of the
form (18). All elements of H+ are called scattering states and asymptotic
completeness of Rayleigh scattering is the property that

H+ ⊃ RanE(−∞,Σ)(H) . (19)

Existence of scattering states is established in [17], and (19) is proven in [18]
for the model introduced in Sect. 2.1, assuming either an infrared cutoff on
the interaction or that the photon dispersions relation ω(k) is bounded from
below by a positive constant, which excludes ω(k) = |k|. The latter assump-
tion serves the same purpose as the infrared cutoff, and it is satisfied, e.g.,
for massive bosons where ω(k) =

√
k2 +m2 with m > 0. As of today, there

is no proof of (19) without a form of infrared cutoff or another drastically
simplifying assumption [3, 51].

2.7 Existence of Scattering States

Generalizing (18), we ask whether the limits

Ψ+ = lim
t→∞

eiHta�(h1,t) . . . a�(hn,t)e−iHtΨ (20)

exist for given Ψ ∈ H, and hi ∈ L2(R3), where a�(hi,t) is a creation or an
annihilation operator. The scattering states Ψ− obtained in the limit t →
−∞ are physically interesting as well, but the problem of their existence is
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mathematically equivalent to the existence of (20). Beginning with the easiest
case, n = 1, let us ask whether the limits

a�+(h)Ψ = lim
t→∞

eiHta�(ht)e−iHtΨ (21)

exist. If the photons are massless, as they are in nature, the answer depends
on the electron dispersion relation and on the energy distribution of Ψ . For
massive photons, however, a�+(h)Ψ exists for all Ψ ∈ D(H) and all h ∈
C∞

0 (R3), and the proof is short and easy [32]: by the Cauchy criterion the
limit (21) exists if the time derivative of the right-hand side is (absolutely)
integrable. A straightforward computation using a∗(ht) = e−iHf ta∗(h)eiHf t

and (5) shows that
∫ ∞

1

∥
∥
∥
∥
d

dt
eiHta∗(ht)e−iHtΨ

∥
∥
∥
∥dt =

∫ ∞

1

∥
∥(Gx, ht)e−iHtΨ

∥
∥dt (22)

where
(Gx, ht) =

∫
eik·x−iωtκ(k)h(k) dk (23)

and ω(k) =
√
k2 +m2. Since the Hessian of ω is strictly positive,

sup
x
|(Gx, ht)| ≤ const t−3/2 , t ≥ 1

by a standard result on oscillatory integrals [49]. Hence ‖(Gx, ht)e−iHtΨ‖ ≤
const t−3/2 and (22) is finite which proves the existence of a∗+(h)Ψ . For mass-
less photons, however,

sup
x
|(Gx, ht)| ∼ const t−1 , t ≥ 1

which is not integrable and we need to estimate the integrand of (22) more
carefully. To begin with, we note that the phase in (23) is non-stationary
away from the “wave front” |x| = t. Hence

sup
x:||x|/t−1|≥ε

|(Gx, ht)| ≤
Cn
tn
, t ≥ 1

for every integer n [49], and it remains to estimate
∫ ∞

0

dt
t

∥
∥χ[1−ε,1+ε](|x|/t)e−iHtΨ

∥
∥ . (24)

Finiteness of (24) requires, in particular, that the electrons do not propagate
at the speed of light, which is true in nature, but not precluded for the
dynamics generated by the non-relativistic Schrödinger operator Hat. The
easiest case occurs when the electrons are in a bound state Ψ ∈ RanEλ(H),
λ < Σ, where, by (13),
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sup
t
‖eβ|x|e−iHtΨ‖ ≤

∥
∥
∥eβ|x|Eλ(H)

∥
∥
∥ <∞ (25)

for some β > 0. Then obviously the integrand in (24) decays exponentially
in time, and hence the limit (21) exists. If Ψ is not in a bound state but its
energy is insufficient for an electron to reach the speed 1 − ε, then (24) is
still finite, at least if H is the Hamiltonian (37) of the standard model [17].
More precisely, (24) is finite for all Ψ in a dense subspace of RanEλ(H) with
λ < Σ+m/2, and for ε in (24) small enough. Here m/2 = mc2/2 is the non-
relativistic kinetic energy of a particle at the speed of light. The assumption
λ < Σ +m/2 thus ensures that no electron can reach the speed of light.

The asymptotic field operators have the important property that

a∗+(g)RanEλ(H) ⊂ RanEλ+M (H)
a+(h)RanEλ(H) ⊂ RanEλ−m(H)

(26)

if supp(g) ⊂ {k : |k| ≤M} and supp(h) ⊂ {k : |k| ≥ m}. Using (26) and the
existence of the limit (21) we prove existence of the limit (20) and that

lim
t→∞

eiHta�(h1,t) . . . a�(hn,t)e−iHtΨ = a�+(h1) . . . a
�
+(hn)Ψ (27)

if ψ ∈ RanEλ(H), λ +
∑

jMj < Σ, where Mj = sup{|k| : hj(k) = 0}
and the sum

∑
jMj extends over all creation operators in (27). The main

technical difficulty in this last step is the unboundedness of the asymptotic
field operators (21).

From the above discussion it is clear that it is physically more sensible to
describe the time evolution of the electron by a relativistic Hamiltonian such
as

Hrel
at =

√
−∆+ 1 + V (X) , (28)

in place of (1). Then (24) is finite for all Ψ in any spectral subspace Eλ(H)H
with λ <∞. Hence the asymptotic operators a�+(h) exist on a dense subspace
ofH. The main results in [16–18] apply to both electron-Hamiltonian, (1) and
(28).

To conclude this discussion of scattering states we remark that for
Rayleigh scattering it suffices to prove existence of the asymptotic field-
operators a�+(h) on RanE(−∞,Σ)(H), which follows from (25). The improved
results discussed thereafter are important in the study of photon scattering
at a free electron (Compton scattering) [16].

2.8 Asymptotic Completeness

A characterization of ACR that is mathematically more convenient than (19)
is achieved by mapping the freely propagating photons hi,t in (18) into an
auxiliary Fock space F . We attach F to the Hilbert space H by defining an
extended Hilbert space H̃ = H⊗F . The appropriate time evolution on H̃ is
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generated by the extended Hamiltonian H̃ = H ⊗ 1 + 1 ⊗Hf . Furthermore
we define an identification operator I : D ⊂ H̃ → H on a dense subspace D
of H̃ by

I Ψ ⊗ |vac〉 = Ψ

I Ψ ⊗ a∗(h1) · · · a∗(hn)|vac〉 = a∗(h1) · · · a∗(hn)Ψ

and linear extension. Since e−iHf t|vac〉= |vac〉 and a∗(ht)=e−iHf ta∗(h)eiHf t

we can use I to write

a∗(h1,t) · · · a∗(hn,t)e−iHtΨ = Ie−iH̃t
[
Ψ ⊗ a∗(h1) · · · a∗(hn)|vac〉

]
.

If Ψ is an eigenvector of H and PB denotes the orthogonal projection onto
the closure of the span of all eigenvectors, it follows that

a∗+(h1) · · · a∗+(hn)Ψ = lim
t→∞

eiHta∗(h1,t) · · · a∗(hn,t)e−iHtΨ

= Ω+

[
Ψ ⊗ a∗(h1) · · · a∗(hn)|vac〉

]

where
Ω+ = s− lim

t→∞
eiHtIe−iH̃tPB ⊗ 1

is the wave operator. Thus existence of scattering states becomes equivalent
to existence of the wave operator Ω+, and, since RanΩ+ = H+, asymptotic
completeness as defined in (19) becomes

E(−∞,Σ)(H) ⊂ RanΩ+ . (29)

(It turns out that Ω+ is a partial isometry and hence RanΩ+ is closed.)
The reader familiar with quantum mechanical scattering theory is cau-

tioned not to think of ACR as a form of asymptotic completeness for potential
scattering. The comparison dynamics generated by H̃ is not the free dynamics
for all bosons. The bosons in the first factor of H̃ still fully interact with the
electrons. Rayleigh scattering is more similar to N -body quantum scattering
with the additional complication that the number of particles is fluctuating.

Asymptotic completeness of Rayleigh scattering, as described in Sect. 2.6,
makes two assertions. First, any initial state Ψ ∈ RanE(−∞,Σ)(H), that is not
an eigenvector of H, in the course of time will relax to a bound state by emis-
sion of photons. Second, the asymptotic dynamics of the emitted radiation is
well approximated by the free photon dynamics. Our proof of ACR contains
two main technical ingredients that address these issues. In both of them we
need to assume that either the photons are massive, i.e., ω(k) =

√
k2 +m2,

or that an infrared cutoff σ > 0 is imposed on the interaction. In the second
case m = σ/2 in the following.

Our first main ingredient is an estimate on the ballistic spacial expansion
of the system for states with energy distribution away from S = σpp(H)+Nm.
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We show that S is closed and countable and that for each λ ∈ R\S there is
an open interval ∆ � λ and a positive constant Cλ such that

〈Ψt,dΓ(y2)Ψt〉 ≥ Cλt2 , t→∞ (30)

for all Ψ ⊂ RanE∆(H). The proof is based on the positivity of the com-
mutator obtained by differentiating the left hand side twice with respect to
time. This positive commutator estimate, often called Mourre estimate, is
proven by induction in energy steps of size m along a strategy very similar
to the proof of the Mourre estimate for N -body Schrödinger operators [36].
We generalize the Mourre estimate in [14] to accommodate our model.

The second main ingredient is a propagation estimate for the asymptotic
dynamics of escaping photons. Explicitly we show that

∫ ∞

1

dt
t
〈Ψt, fFdΓ(Pt)FfΨt〉 ≤ C‖Ψ‖2 (31)

for all Ψ ∈ H, where

Pt = (∇ω − y/t) · χ(|y| ≥ tδ)(∇ω − y/t)

and 0 < δ < 1. Here f is an energy cutoff, F = F (dΓ(y2/t2λ2)) a space cutoff,
and λ > 0 a parameter that is chosen sufficiently large eventually. The left-
hand side of (31) compares the average photon velocity, y/t, with the group
velocity, ∇ω, for photons in the region {|y| ≥ tδ}. This includes all photons
that escape the electron ballistically. The finiteness of C thus confirms that
the dynamics of outgoing radiation is approaching the free photon dynamics
in the limit t→∞.

Asymptotic completeness had previously been established for a model
with Σ = ∞ (confined electrons), and massive photons ω(k) =

√
k2 +m2,

m > 0, by Dereziński and Gérard [14]. The methods in [14] could probably
be extended to prove ACR for our system. Instead of doing so, we chose to
give an entirely new prove of AC based on the relatively elementary propa-
gation estimate (31), and using (30) as the only dynamical consequence of
the Mourre estimate. Our work is inspired by the Graf-Schenker proof of
asymptotic completeness for N -body quantum systems [22].

2.9 Absence of Excited States

At present the knowledge on absence of eigenvalues above inf σ(Hg) is far
less complete then, e.g., our knowledge regarding existence of a ground state.
Known results on absence of eigenvalues are derived under the assumption
that g > 0 is small enough [7, 8, 10], and to ensure that no new eigenvalues
emerge near inf σ(H) an infrared cutoff is imposed [18]. There is a further
assumption, the Fermi golden rule condition, which ensures that eigenvalues
of Hg=0 dissolve for g = 0. This assumption can be checked in any explicitly
given model.
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For the model introduced in Sect. 2.1, with the assumption of an infrared
cutoff, the following results hold true. For any given ε > 0 and for |g| > 0
small enough, depending on ε,

σpp(Hg) ∩ (inf σ(Hg), Σat − ε) = ∅ ,
where Σat = inf σ(Hat) [10, 18]. This result, combined with ACR from the
previous section implies that RanΩ+ ⊃ RanE(inf σ(H),Σat−ε)(H) where the
projector PB in the definition of Ω+ is the projector onto the ground state.
That is, every ψ ∈ RanE(inf σ(H),Σat−ε)(H) relaxes to the ground state in the
sense of Sect. 2.6, (17).

It has been asserted in [8] that the methods of [7,10] can be used to show
absolute continuity of the spectrum of H above and away from Σat for small
|g|. This is presumably correct but a proof is missing.

The strategy for proving absence of eigenvalues in a given spectral interval
∆ ⊂ R is clear and simple: One tries to find a symmetric operator A on H,
such that

E∆(H)[iH,A]E∆(H) ≥ CE∆(H)

with a positive constant C. Since, formally, 〈Ψ, [iH,A]Ψ〉 = 0 for every eigen-
vector Ψ of H, it immediately follows that σpp(H) ∩∆ = ∅. The main prob-
lems, of course, are to find a suitable conjugate operator A, and to make
these formal arguments rigorous.

2.10 Relaxation to the Ground State

An important consequence of AC for Rayleigh scattering and the absence
of eigenvectors besides a unique ground state Ψ0, is relaxation to the ground
state. To explain this let A denote the C∗-algebra generated by all operators
of the form

B ⊗ eiφ(h) , B ∈ B(Hat), h ∈ C∞
0 (R3) ,

where φ(h) = a(h) + a∗(h). We say that Ψt = e−iHtΨ relaxes to the ground
state Ψ0, if

lim
t→∞

〈Ψt, AΨt〉 = 〈Ψ0, AΨ0〉〈Ψ, Ψ〉 (32)

for all A ∈ A. Suppose H has a unique ground state Ψ0 and let H+ denote
the space of scattering states over Ψ0. That is, H+ is the closure of the span
of all vectors of the form

a∗+(h1) · · · a∗+(hn)Ψ0 .

Then, by a short computation, all states in H+ relax to the ground state
Ψ0 [17]. Since the assumptions of Sect. 2.9 imply AC in the form

H+ ⊃ RanE(inf σ(H),Σat−ε)(Hg)

for given ε > 0 and small enough coupling |g|, it follows that all states
in RanE(inf σ(H),Σat−ε)(Hg) relax to the ground state in the sense of Equa-
tion 32.
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3 N-Electron Atoms and Molecules

We now briefly describe how the results of the previous sections are general-
ized to the case of N > 1 electrons. For simplicity we neglect spin and Pauli
principle. A (pure) state of N electrons is described by a vector ψ ∈ L2(R3N ),
and the Schrödinger operator for N electrons in the field of K static nuclei
is given by

Hat,N =
N∑

j=1

(
−∆xj

+ VZ(xj)
)

+
∑

i<j

1
|xi − xj |

where xj ∈ R
3 is the position of the jth electron. The coupling of the electrons

to the radiation field is done by a straightforward generalization of (6). The
Hamiltonian of the entire system is given by

Hg,N = Hat,N ⊗ 1 + 1⊗Hf + gHint

Hint =
N∑

j=1

[
a(Gxj

) + a∗(Gxj
)
]
, Gxj

(k) = e−ik·xjκ(k)

and acts on L2(R3N )⊗F . Again, Hg is self-adjoint on D(Hg=0).

Spectrum and Eigenfunctions of Hat,N

Like Hat, Hat,N is a Schrödinger operator of the general form −∆+ V , and
hence inf σess(Hat,N ) is given by Persson’s theorem:

inf σess(Hat,N ) = lim
R→∞

(
inf

ϕ∈DR, ‖ϕ‖=1
〈ϕ,Hat,Nϕ〉

)
=: Σat,N

where DR = C∞
0 (|X| > R). Using the decay of the two-body potentials and

the electron-electron repulsion one shows that Σat,N = inf σ(Hat,N−1), which
leads to

inf σess(Hat,N ) = inf σ(Hat,N−1) , (33)

a special case of the more general HVZ-Theorem [36, 48]. For Z > N − 1
the system described by Hat,N−1 has a net positive charge and can bind at
least one more electron. It follows, by a simple variational argument, that
inf σ(Hat,N ) < inf σ(Hat,N−1), which, by (33) implies that inf σ(Hat,N ) is an
eigenvalue of Hat,N . In fact, Hat,N has infinitely many (discrete) eigenvalues
below inf σess(Hat,N ) [48]. The continuous part of the spectrum ofHat,N is the
interval [inf σess(Hat,N ),∞), and this interval may contain further eigenvalues
below 0 [54]. For a discussion of the structure of the continuous spectrum,
the reader is referred to [36].

The results (9), (10) on the decay of eigenfunctions hold for Schrödinger
operators in arbitrary dimensions, hence in particular for Hat,N . Better, non-
isotropic exponential bounds are known too, but they are expressed in terms
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of a geodesic distance ρ(X) w.r.to a metric in R
3N that depends on the

spectra of the Hamiltonians Hat,k, for k < N [2, 36]. Explicit expressions for
ρ are known for N ≤ 3, and for atoms under the (unproven) assumption that
the ionization energy increases monotonically as the electrons, one by one,
are removed from the atom [12].

This concludes our discussion of Hat,N and we return to the composed
system of N electrons and radiation.

Exponential Decay and Ionization Thresholds

The ionization threshold Σ is the least energy that an atom or molecule can
achieve in a state where one or more electrons have been moved “infinitely
far away” from the nuclei. In an N -particle configuration X ∈ R

3N , one or
more electrons are far away from the (static) nuclei if and only if |X| is large.
In this respect there is no difference between N = 1 and N > 1 besides
the dimension of the configuration space. Since this dimension is irrelevant
for the proof of (13), our result on exponential decay for N > 1 and its
proof are straightforward generalizations of result and proof for N = 1. Let
DR := {Ψ ∈ D(H)|Ψ(X) = 0 if |X| < R} and let

ΣN = lim
R→∞

(
inf

Ψ∈DR,‖ψ‖=1
〈Ψ,HNΨ〉

)
. (34)

Then for all real numbers λ and β with λ+ β2 < Σ,
∥
∥(eβ|X| ⊗ 1)Eλ(HN )

∥
∥ <∞ . (35)

In the case of only one electron subject to an external potential V that
vanishes at infinity, such as VZ , we saw that ΣN=1 = inf σ(H1 − V ). The
proper generalization to N > 1 is analog to the HVZ theorem for N -particle
Schrödinger operators. We show that

ΣN = min
N ′≥1

{EV
N−N ′ + E0

N ′} (36)

where E0
N ′ is the least energy of N ′ electrons with no nuclei present, Z = 0

[24]. Like the HVZ theorem, (33), for the bottom of the essential spectrum
of Hat,N , (36) requires the decay of the interaction between material parti-
cles with increasing spacial separation. While this decay is obvious for the
instantaneous Coulomb interaction, it is more tedious to quantify for the in-
teraction mediated trough the quantized radiation field. The main problem
in proving (36), however, is to control the error which arises when the field
energy is split up into two parts, one associated with the N ′ electrons far out
and one with the other N − N ′ electrons. This error is proportional to the
number of photons, as measured by the number operator Nf , which in turn
is not bounded with respect to the total energy and thus not under control.
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To deal with this problem we first prove (36) with an IR-cutoff σ > 0 in the
interaction and then we show that (36) is obtained in the limit σ → 0 [24,25].

The characterization (36) of the ionization threshold is important for prov-
ing that ΣN > inf σ(HN ).

Existence of a Ground State

The dimension of the electron configuration space is inessential for proving
that (16) guarantees the existence of a ground state. Therefore inf σ(HN ) is
an eigenvalue of HN whenever

inf σ(HN ) < ΣN .

However, it is much harder to verify this condition for N > 1. The only easy
case occurs for spatially confining external potentials where ΣN = ∞. In a
tour de force Lieb and Loss recently showed that

EZ
N < min

N ′≥1
{EZ

N−N ′ + E0
N ′}

for all atoms and molecules with Z > N − 1 [43]. Combined with (36) this
proves that EZ

N < ΣN and hence that EZ
N is an eigenvalue of HZ

N indeed.

4 Concluding Remarks and Open Problems

The results we have described on localization of the electron, existence of a
ground state and existence of scattering states are established in [17, 24, 25]
within the standard model of QED for non-relativistic electrons (see Appen-
dix A). Asymptotic completeness is proved for the dipole approximation of
that model, Hamiltonian (59), an approximation that is physically reasonable
for confined electrons [18]. We don’t expect serious obstacles in proving ACR
for the standard model (with IR cutoff), but to do so appears prohibitive in
view of the additional work due to the interaction terms quadratic in cre-
ation and annihilation operators. The most important and most interesting
open problem in connection with Rayleigh scattering is to prove completeness
without IR cutoff. This has been done so far only for the explicitly soluble
model of a harmonically bound electron coupled to radiation in dipole ap-
proximation [3], and for perturbations thereof [51]. Steps toward ACR for
more general electron Hamiltonians have been undertaken by Gérard [20].

The problem of the emitted low energy radiation can be understood as
one aspect of the more general question of the intensity of the radiation
in Rayleigh scattering as a function of the frequency. Experimentally, sharp
spectral lines with frequencies ω given by Bohr’s condition are observed. This
condition says that �ω is the difference between the energies of two stationary
states, that is, between two eigenvalues of Hat. From quantum theory this
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phenomenon is expected to be a consequence of the smallness of α, which
allows one to compute transition amplitudes in leading order perturbation
theory. Rigorous work in this direction is currently being done by Bach,
Fröhlich and Pizzo [6]. One also expects that eigenvalues of Hat show up
as resonances in the spectrum of Hg and that the eigenvectors of Hg=0 are
meta-stable states for the dynamics generated byHg, if g > 0, with a life-time
inversely proportional to the resonance width. Both these expectations have
been confirmed by work of Bach et al, and by Mück [9,45]. While the existence
of resonances and meta-stable states is consistent with the experimentally
observed spectral lines, it does not fully account for them. It remains to be
shown that, for small α, first order transitions between meta-stable states
dominate the process of relaxation to the ground state and hence that the
intensity is largest for radiation obeying Bohr’s frequency condition. A related
question is the one about a confirmation of the correspondence principle
within QED. By the correspondence principle, the frequency of radiation
emitted by a highly excited atom agrees with the angular frequency of a
classical point charge on the corresponding Bohr orbit. This principle together
with Bohr’s frequency condition determines the distribution of eigenvalues of
highly excited states. A rigorous derivation of the correspondence principle
would therefore confirm – but not prove – the domination of Bohr frequencies
at least in the low energy spectrum.

Many further questions arise once we allow for total energies above the
ionization threshold Σ. Then the atom can become ionized and the dynamics
of the removed electrons is close to the free one. The first task is thus to study
the scattering of photons at a freely moving electron, the so-called Compton
scattering. This has been done in [16], where we established asymptotic com-
pleteness for Compton scattering for energies below a threshold energy that
limits the speed of the electron from above to one-third of the speed of light.
To do so, we had to impose an infrared cutoff, for otherwise no dresses one-
electron states exist.

The natural next step is to combine Rayleigh with Compton scattering
to obtain a complete classification of the long time asymptotics of matter
coupled to radiation. This would include the photo effect as well as the oc-
currence of Bremsstrahlung.

There are also very interesting and difficult open questions related to the
binding energy Σ − EN even for N = 1. From Sect. 2.5 we know that

EN=1 ≤ Σ + inf σ(−∆+ V ) .

That is, if V → 0, the binding energy Σ −EN=1 with coupling to the radia-
tion field is at least as large as the binding energy − inf σ(−∆+ V ) without
radiation. Physical intuition tells us that this binding energy should actually
increase due to the coupling to radiation: the radiation field accompanying the
electron, by the energy-mass equivalence, adds to the inertia of the electron,
that is, makes it heavier and thus easier to bind. This mass renormaliza-
tion can explicitly be computed in the dipole approximation and this has
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been used to prove enhanced binding by Hiroshima and Spohn [29]. Without
dipole approximation the mass renormalization is not known explicitly and
enhanced binding has been established so far only for small α [26,27]. It is an
interesting and challenging problem to establish enhanced binding without
dipole approximation and for arbitrary α and Λ.

Once there are two or more electrons, one would like to know, first of all,
whether two electrons attract or repel each another in our model of matter.
Of course, equal charges repel each other but this argument neglects the effect
of the quantized radiation field, which is attractive. Two charges close to each
other will share part of their radiation field. Since this reduces the energy to
produce it, binding is encouraged. The questions is thus whether this binding
effect may overcome the Coulomb repulsion.

A Non-Relativistic QED of Atoms and Molecules

The purpose of this appendix is to describe atoms and molecules within UV-
regularized, non-relativistic quantum electrodynamics in Coulomb gauge. We
shall also comment on suitable choices of units, on representations of the
theory that avoid the use of polarization vectors, and on the dipole approxi-
mation. For further information the reader is referred to [7, 11,13,53].

A.1 Formal Description of the Model

To write down the model quickly and in a form familiar from physics books
we shall be somewhat formal at first, using operator-valued distributions and
avoiding domain questions.

The Hilbert space of pure states of N electrons and an arbitrary number
of transversal photons is the tensor product H = Hat ⊗F where

Hat := ∧Ni=1L
2(R3; C2) , F := ⊕∞

n=0 ⊗ns L2(R3; C2) ,

⊗n=0
s L2 := C, and where ⊗nsL2(R3; C2), n ≥ 1, stands for the symmetrized

tensor product of n copies of L2(R3; C2). The vector Ω := (1, 0, 0, . . .) ∈ F is
called vacuum. The one-particle wave functions in Hat and F are C

2-valued
to account for the two spin and the two polarization states of the electrons
and transversal photons, respectively.

The Hamiltonian of an atom or molecule with static nuclei is a self-adjoint
operator in H of the form

H =
N∑

j=1

1
2m
[
σj · (−i∇xj

+
√
αAΛ(xj))

]2 + αVR ⊗ 1 + 1⊗Hf , (37)

where σj = (σj,x, σj,y, σj,z) denotes the triple of Pauli matrices acting on the
spin degrees of freedom of the jth electron and xj ∈ R

3 is the position of
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the jth electron. The constant m > 0 is the (bare) mass of an electron and
α = e2/(�c) = e2 is the fine structure constant. In our units � = 1 = c.
Another common form of H is obtained by using that

[
σ · (−i∇x +

√
αAΛ(x))

]2 = (−i∇x +
√
αAΛ(x))2 +

√
ασ ·B(x) (38)

where B(x) = curlA(x).
The operator VR acts by multiplication with the electrostatic potential

VR(x) = −
K∑

j=1

N∑

i=1

Zj
|xi −Rj |

+
∑

i<j

1
|xi − xj |

(39)

of the electrons in the field of K static nuclei with positions R1, . . . , RK ∈
R

3 and atomic numbers Z1, . . . , ZK ∈ Z+. We use the short-hands x =
(x1, . . . , xN ) and R = (R1, . . . , RN ).

The operators Hf and AΛ(x), for fixed x ∈ R
3, are operators on Fock

space. Hf has been defined in Sect. 2.1 and AΛ(x) can be expressed in the
form

AΛ(x)=(2π)−3/2
∑

λ=1,2

∫

|k|≤Λ

d3k
√

2|k|
{
ελ(k)∗eik·xaλ(k) + ελ(k)e−ik·xa∗λ(k)

}
.

(40)
The polarization vectors ελ(k) ∈ C

3, λ ∈ {1, 2}, are orthogonal to the wave
vector k and normalized

ε∗λ(k) · εµ(k) = δλµ , ελ(k) · k = 0 . (41)

In addition we assume that ελ(tk) = ελ(k) for all t > 0. The operators
a∗λ(k) and aλ(k) are creation- and annihilation operators in F . These are
operator-valued distributions, formally defined by aλ(k)Ω = 0 for all k ∈ R

3,
λ ∈ {1, 2}, and by the canonical commutation relation

[aλ(k), a∗µ(q)] = δλµδ(k − q) , [a�λ(k), a
�
µ(q)] = 0 . (42)

A rigorous definition of AΛ(x) will be given in the next section. The con-
stant Λ > 0 in (40) is the ultraviolet cutoff. Photons with |k| > Λ do
not interact with the electrons under the dynamics generated by H. This
is nonphysical but necessary to define AΛ,i(x) on a dense subspace of F .
For Λ = ∞ not even the vacuum would be in the domain of A(x). In
fact, by a formal computation using the properties of aλ(k) and a∗λ(k),
‖Ai(x)Ω‖2 = const

∫
|k|≤Λ |k|−1d3k →∞ as Λ→∞.

In the QED of Feynman, Schwinger and Tomanaga, removing the UV cut-
off requires a renormalization of mass, charge and field strength, a procedure
that is mathematically not sufficiently well understood yet.
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A.2 Atomic Units and Perturbation Theory

To work in the small-α regime it is convenient to choose the UV-cutoff Λ
and the nuclear positions Ri ∈ R

3 fixed on scales of energy and length where
the units are proportional to the Rydberg energy mα2/2 = mc2α2/2 and
the Bohr radius 1/(mα) = �

2/me2. We shall therefore rewrite the Hamil-
tonian in these units. It is instructive to begin by first scaling electron po-
sition and photon momentum independently. Let U : H → H be defined by
(Uϕ)n(x, k1, . . . , kn) = η3/2µ3n/2ϕn(ηx, µk1, . . . , µkn). Then

µ−1UHU∗ =
N∑

j=1

1
2mη2µ

[
σj · (−i∇xj

+
√
αηµAΛ/µ(ηµxj))

]2

+
α

ηµ
VR/η ⊗ 1 + 1⊗Hf ,

(43)

which is most easily verified using the definition of AΛ(x) given in the next
section. In order that 2mη2µ = 1 and ηµ = α we choose η = (2mα)−1 and
µ = 2mα2. Next we express the UV cutoff and the nuclear positions in these
units, that is we replace

Λ/µ→ Λ , R/η → R , (44)

a non-unitary change of the Hamiltonian! Thus in the new units the Hamil-
tonian reads

N∑

i=1

[
σi · (−i∇i + α3/2AΛ(αxi))

]2
+ VR ⊗ 1 + 1⊗Hf (45)

where the dependence on α is concentrated in electron-photon interaction
α3/2AΛ(αx). The papers by Bach et al. concern the Hamiltonian (45), many
others concern (37). When comparing results that are valid for small α only,
one must keep in mind that these Hamiltonians are not equivalent, not even
for atoms: the substitution Λ → Λα2, which occurs in (44), corresponds
to the change m �→ m/α2 of the electron mass, as follows from (43) with
η = µ−1 = α2.

A.3 Fock-Spaces, Creation- and Annihilation Operators

We next give a rigorous definition of the quantized vector potential AΛ(x)
and we shall comment on the self-adjointness of H. In order to prepare the
ground for the next section we define Fock space, creation- and annihilation
operators in larger generality then needed here. A good reference for this
section is [11].

Given a complex Hilbert space h the bosonic Fock space over h,

F = F(h) = ⊕n≥0Sn(⊗nh) (46)
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is the space of sequences ϕ = (ϕn)n≥0, with ϕ0 ∈ C, ϕn ∈ Sn(⊗nh), and∑
n≥0 ‖ϕn‖2 <∞. Here Sn denotes the orthogonal projection onto the sub-

space of symmetrized tensor products of n vectors in h. The inner product
in F is defined by

〈ϕ,ψ〉 =
∑

n≥0

(ϕn, ψn) ,

where (ϕn, ψn) denotes the inner product in ⊗nh. We use Ffin to denote the
dense subspace of vectors ϕ ∈ F with ϕn = 0 for all but finitely many n ∈ N.

Given h ∈ h the creation operator a∗(h) : Ffin ⊂ F → F is defined by

[a∗(h)ϕ]n =
√
nSn(h⊗ ϕn−1) (47)

and the annihilation operator a(h) : Ffin ⊂ F → F is the restricted to Ffin

of the adjoint of a∗(h). The operators a(h) and a∗(h) satisfy the canonical
commutation relations (CCR)

[a(g), a∗(h)] = (g, h) , [a�(g), a�(h)] = 0 .

In particular, [a(h), a∗(h)] = ‖h‖2 which implies that ‖a(h)ϕ‖ + ‖ϕ‖ and
‖a∗(h)ϕ‖ + ‖ϕ‖ are equivalent norms. It follows that the closures of a(h)
and a∗(h) have the same domain. On this domain a∗(h) is the adjoint of
a(h) [11, Theorem 5.2.12]. The operator

φ(h) =
1√
2
(a(h) + a∗(h)) (48)

is essentially self-adjoint on Ffin [11]. It is useful to note that

[φ(g), φ(h)] = i Im(g, h) .

In the case of QED, h = L2(R3; C2) with inner product (g, h) =∑
λ=1,2

∫
gλ(k)hλ(k) d3k and Ai(x) = φ(Gx,i), Gx,i ∈ h, i = 1, 2, 3, being

the components of

Gx(k, λ) =
κ(k)
|k|1/2 ελ(k)e

−ik·x , (49)

where κ(k) = (2π)−3/2χ|k|≤Λ(k). More generally we may allow κ to be any
real-valued, spherically symmetric function with κ/

√
ω ∈ L2(R3). In partic-

ular |κ(−k)| = |κ(k)| which implies that [Ai(x), Aj(y)] = 0 for all x, y ∈ R
3

and i, j ∈ {1, 2, 3}.
The Hamiltonian (37) is defined and symmetric on the dense subspace

D =
[
∧Ni=1 C

∞
0 (R3; C2)

]
⊗Ffin(C∞

0 (R3; C2)) (50)

where Ffin(C∞
0 (R3; C2)) is the space of vectors ϕ = (ϕn)n≥0 ∈ Ffin with

ϕn ∈ ⊗nC∞
0 (R3; C2). Let H0 = −∆ ⊗ 1 + 1 ⊗ Hf . Then H0 is essentially

self-adjoint on D, self-adjoint on D(H0) = D(−∆ ⊗ 1) ∩ D(1 ⊗ Hf ), and
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H − H0 is bounded relative to H0. It follows that the closure of H |̀ D is
defined on D(H0) and symmetric on this domain. Since H is self-adjoint
on D(H0), according to Hiroshima [28], we conclude that H is essentially
self-adjoint on D. Alternatively, the Hamiltonian (37) may be self-adjointly
realized in terms of the Friedrichs’ extension of H |̀ D, since this operator is
bounded from below, or, by using the theorem of Kato-Rellich for Λ/α small
enough [9]. (αΛ small enough for the Hamiltonian (45).)

A.4 Avoiding Polarization Vectors

The fact that the polarization vectors are necessarily discontinuous as func-
tions of k̂ = k/|k| ∈ S2, by a well-known result of H. Hopf, may lead to an-
noying technical problems [25]. To show how these problems can be avoided
we construct a representation of H that does not depend on a choice of po-
larization vectors [18, 42]. This representation is based on a description of
single-photon states by vectors in

hT := {h ∈ L2(R3; C3)|h(k) · k = 0 for all k} , (51)

the space of transversal photons. Let u : L2(R3; C2) → hT be the unitary
map

u : (h1, h2) �→
∑

λ=1,2

hλε
∗
λ (52)

where {ελ}λ=1,2 are the polarization vectors employed in the definition of H,
an let U : F → F(hT ) be defined by

Ua∗(h)U∗ = a∗(uh) , UΩ = Ω .

It follows that UAi(x)U∗ = φ(uGx,i) where

(uGx,j)(k) =
∑

λ=1,2

κ(k)
|k|1/2 e−ik·xελ(k)jελ(k)∗

=
κ(k)
|k|1/2 e−ik·x(ej − k̂(k̂ · ej)) , (53)

{e1, e2, e3} being the canonical basis of R
3. Note that φ(uGx,j) is one operator

and not a triple of operators even though k �→ uGx,j(k) is a vector-valued
function.

The Hamilton operator HT = UHU∗ is the desired new representation of
H. It has the form of H in (37) with the only difference that the form-factor
of A(x) is now given by (53), a function in C∞(R3\{0}).

By choosing other unitary mappings u from L2(R3; C2) onto hT one may
define more equivalent representations of QED. For example the map

u2 : (h1, h2) �→
∑

λ=1,2

hλε
∗
λ ∧ k̂ (54)
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leads to the representation of H where the quantized vector potential is de-
fined in terms of the form factor

(u2Gx,i)(k) =
κ(k)
|k|1/2 e−ik·x(ei ∧ k̂) , (55)

the choice preferred in [42].
For the mathematical analysis of systems of electrons interacting with

photons it is often necessary to localize the photons in their position space.
That is, the photon wave function h ∈ hT is mapped to J(i∇k)h where
J ∈ C∞

0 (R3). Now J(i∇k)h ∈ hT unless J = 0 or h = 0, and project-
ing J(i∇k)h back to hT would destroy the localization accomplished by the
operator J(i∇k). The solution to this problem is to work on the enlarged
one-boson Hilbert space hext = L2(R3; C3) = hT ⊕hL which also includes the
space of longitudinal photons hL = {h|k ∧ h(k) = 0}. The Hilbert space for
the entire system becomes Hext = Hat ⊗F(h)  H⊗F(hL) and we define a
Hamiltonian on Hext by

Hext = HT ⊗ 1 + 1⊗Hf,L

=
N∑

j=1

1
2m

[σj · (−i∇xj
+ α1/2A(x))]2 + αVR +Hf

where Aj(x) = φ(uGx,j) as above, but now uGx,j is considered as an element
of hext = L2(R3; C3). The fake longitudinal bosons from hL do not interact
with the electrons and hence do not affect the dynamical properties of the
system. However, by definition of Hext they contribute additively to the total
energy and need to be projected out at the end of any analysis of the energy
spectrum.

To conclude this section we return to a more formal representation of
A(x) by expanding photon wave functions in terms of δ-distributions. Let
δk(q) = δ(q − k). We define, formally,

a�j(k) = a�(ejδk) , a�(k) = (a�1(k), a
�
2(k), a

�
3(k)) .

From the expansion h(k) =
∑3

j=1

∫
hj(q)ejδk(q) d3q and the (semi)-linearity

of a�(h) we obtain

a(h) =
3∑

j=1

∫
hj(k)aj(k) d3k =

∫
h(k) · a(k) d3k

a∗(h) =
3∑

j=1

∫
hj(k)a∗j (k) d3k =

∫
h(k) · a∗(k) d3k .

In particular, in the representation defined by (53),
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A(x) =
∫
κ(k)
|k|1/2P (k)

{
eik·xa(k) + e−ik·xa∗(k)

}
d3k

where P (k) denotes the orthogonal projection onto the plane perpendicular
to k. If (55) is used then

A(x) =
∫
κ(k)
|k|1/2 k̂ ∧

{
eik·xa(k) + e−ik·xa∗(k)

}
d3k .

A.5 The Dipole Approximation

In the dipole approximation of QED the quantized vector potential A(x) in
the Hamilton (37) is replaced by A(0). By (38) the Hamiltonian (37) then
reduces to

Hdip =
N∑

j=1

1
2m

(−i∇xj
+ α1/2A(0))2 + αVR +Hf (56)

where the interaction with the electron spin has dropped out. Without loss of
generality we may now describe the electrons by vectors in the smaller space
Hat = ∧Ni=1L

2(R3) of spin-less N -fermion systems.
The “constant” vector potential in (56) may be gauged away with the

help of the operator-valued gauge transformation

U = exp

(

α1/2
N∑

i=1

xi ·A(0)

)

, (57)

also known as Pauli-Fierz transformation. Since U(−i∇xj
)U∗ = −i∇xj

−
α1/2A(0), UA(0)U∗ = A(0), and

UHfU
∗ = Hf +

√
α

N∑

j=1

xj · E(0) + α‖κ‖2



N∑

j=1

xj





2

where E(0) = −i[Hf , A(0)] is the quantized electric field, we arrive at

UHdipU
∗ =

N∑

j=1

(
− 1

2m
∆xj

+
√
αxj · E(0)

)

+ αVR +Hf + α‖κ‖2



N∑

j=1

xj





2

.

(58)

The dipole approximation seems justified when all electrons are localized in
a small neighborhood of the origin x = 0, that is, when the total energy is
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below the ionization threshold. It then seems equally justified to drop the last
term in (58) and to multiply x · E(0) with a space cutoff g ∈ C∞

0 (R3); the
later serves to ensure that the Hamiltonian H remains semi-bounded (after
dropping the last term). This leads us to

H̃dip =
N∑

j=1

(
− 1

2m
∆xj

+
√
αg(xj)xj · E(0)

)
+ αVR +Hf , (59)

which is also called dipole approximation of (37). It has the advantage, over
(56), to be linear in creation and annihilation operators, which may simplify
the analysis.

The Pauli-Fierz transformation (57) is very useful in the analysis of the
original Hamiltonian (37) as well. Its effect is to replace A(x) by A(x)−A(0) =
φ(Gx −G0) where

|Gx(k)−G0(k)| =
∣
∣
∣
∣
∣
κ(k)
√
|k|

(eik·x − 1)

∣
∣
∣
∣
∣
≤ |k|1/2|κ(k)||x| .

Thus the IR-singularity of the form-factor in UHU∗ is reduced by one power
of |k| at the expense of the unbounded factor |x|. This factor, however, is
compensated by the exponential decay whenever the total energy is below
the ionization threshold (see Sect. 2.4).
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9. Volker Bach, Jürg Fröhlich, and Israel Michael Sigal. Spectral analysis for
systems of atoms and molecules coupled to the quantized radiation field. Comm.
Math. Phys., 207(2):249–290, 1999.
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20. Christian Gerard. On the scattering theory of massless nelson models. mp-arc
01-103, March 2001.

21. David Gilbarg and Neil S. Trudinger. Elliptic partial differential equations of
second order. Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint
of the 1998 edition.

22. Gian Michele Graf and Daniel Schenker. Classical action and quantum N -body
asymptotic completeness. In Multiparticle quantum scattering with applications
to nuclear, atomic and molecular physics (Minneapolis, MN, 1995), pp. 103–
119. Springer, New York, 1997.

23. G.M. Graf. Asymptotic completeness for N-body short-range quantum systems:
A new proof. Comm. Math. Phys., 132:73–102, 1990.

24. M. Griesemer. Exponential decay and ionization thresholds in non-relativistic
quantum electrodynamics. J. Funct. Anal., 210(2):321–340, 2004.

25. Marcel Griesemer, Elliott H. Lieb, and Michael Loss. Ground states in non-
relativistic quantum electrodynamics. Invent. Math., 145(3):557–595, 2001.

26. Christian Hainzl. Enhanced binding through coupling to a photon field. In
Mathematical results in quantum mechanics (Taxco, 2001), volume 307 of Con-
temp. Math., pp. 149–154. Amer. Math. Soc., Providence, RI, 2002.

27. Christian Hainzl, Vitali Vougalter, and Semjon A. Vugalter. Enhanced binding
in non-relativistic QED. Comm. Math. Phys., 233(1):13–26, 2003.



Non-Relativistic Matter and Quantized Radiation 247

28. F. Hiroshima. Self-adjointness of the Pauli-Fierz Hamiltonian for arbitrary
values of coupling constants. Ann. Henri Poincaré, 3(1):171–201, 2002.
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1 Introduction

The recent experimental success in creating Bose-Einstein condensates of
alkali atoms, honored by the Nobel prize awards in 2001 [1,5], led to renewed
interest in the mathematical description of interacting Bose gases. These
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lectures will give a detailed account of part of the author’s joint work with
E.H. Lieb and J. Yngvason in this field [10, 12]. In particular, a complete,
self-contained proof of Bose-Einstein condensation (BEC) for dilute gases in
traps will be given.

1.1 The Model

The Hilbert space under consideration is the subspace of totally symmetric
functions in

⊗N
i=1 L

2(R3,dxi), which we denote by HN . The Hamiltonian,
acting on this space, is given by

HN,a =
N∑

i=1

(
−∆i + V (xi)

)
+
∑

1≤i<j≤N
v(xi − xj) . (1)

Units are chosen such that � = 2m = 1, where � denotes Planck’s constant
divided by 2π, and m is the particle mass. The external potential is a real-
valued, locally bounded function V ∈ L∞

loc(R
3), satisfying lim|x|→∞ V (x) =

∞. It is then no restriction to assume V ≥ 0. The interaction potential v is
assumed to be positive (i.e., repulsive), radial and of compact support. We
do not demand it to be integrable, it is allowed to have a hard core, which
reduces the domain of definition of HN,a to wave functions in HN that vanish
whenever two particles are closer together then the size of the hard core. The
parameter a in the Hamiltonian is the scattering length of v, which we define
next.

1.2 Scattering Length; Length Scales

The scattering length of v is defined via the zero-energy scattering equation

−∆f(x) + 1
2v(x)f(x) = 0 . (2)

The factor 1
2 in front of v is due to the reduced mass of the two-body problem.

The solution to (2), if normalized by f(x) → 1 as |x| → ∞, equals 1− a/|x|
for |x| ≥ R0, the range of v. The positive number a is called the scattering
length. It is a measure of the effective range of the interaction v.

Example. If v is the potential for hard spheres, i.e., v(x) = ∞ for |x| ≤ a
and v(x) = 0 for |x| > a, then the solution to (2) is given by f(x) =
max{1− a/|x|, 0}, and a is the scattering length of v.

The scattering length a can also be obtained from a variational principle
(see the Appendix of [18]). From this it follows that a < (8π)−1

∫
v(x)dx,

where the right side need not be finite, of course.
In the following, we want to change a with N in order to have a dilute

system, meaning that the mean particle distance is much bigger that the
range of the interaction, measured by a. To this end we write v as
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v(x) =
(a1

a

)2
v1(a1x/a) (3)

for a given v1 with scattering length a1. Then v has scattering length a, which
is now a parameter that can be varied, keeping v1 and a1 fixed. This explains
also the notation HN,a of our Hamiltonian above.

The fact that (3) is the physically relevant scaling can also be seen from
the following argument. Consider the particles confined in a box of side length
L, and interacting via v. The Hamiltonian is unitarily equivalent, via scaling
x → Lx, to L−2 times the Hamiltonian in a box of side length 1, but with
interaction potential L2v(Lx). Making the system dilute means making L
big, which is the same as making a small in (3).

Despite the fact that we are considering dilute systems, or actually because
of that, perturbation theory is not applicable! This can immediately be seen
from the scaling (3). Since a is going to be small, v is a very hard potential
of short range. This is the opposite of a mean-field limit, where perturbation
theory would apply. In the case considered here, the interaction energy is
mostly kinetic energy!

Now what can we expect for the ground state energy of a gas ofN particles
in a box of side length L? One might guess that it is roughly the lowest energy
of a pair of particles, which can easily be computed to be 8πa/L3 for a/L� 1,
times the number of pairs, 1

2N(N − 1). This gives

(N − 1)4πaρ , (4)

where ρ = N/L3 is the density. Equation (4) was first obtained by Lenz [6]
who considered the case of a particle interacting with fixed scatterers of
diameter a. Note that perturbation theory with a constant trial function
would give 1

2 (N − 1)ρ
∫
v, which, even if finite, is always larger than the

expected energy (N − 1)4πaρ since
∫
v > 8πa as mentioned above.

1.3 Quantities of Interest

The main quantities we are interested in are the following.

• Ground state energy, defined by

EQM(N, a) = inf spec HN,a . (5)

Besides N and a it depends on V and v1, of course, but these potentials
are assumed to be fixed once and for all. The ground state wave function,
Ψ0, is determined by Schrödinger’s equation

HN,aΨ0 = EQM(N, a)Ψ0 . (6)

It is unique, up to constant phase factor, which can be chosen such that
Ψ0 ≥ 0.
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• Ground state density matrix, defined by the kernel

γ
(1)
N (x,x′)

= N

∫
Ψ0(x,x2, . . . ,xN )Ψ0(x′,x2, . . . ,xN )∗dx2 · · · dxN . (7)

The ∗ denotes complex conjugation. The kernel (7) defines a positive trace
class operator on L2(R3,dx), also denoted by γ(1)

N , with Tr[γ(1)
N ] = N .

Definition of Bose-Einstein condensation [19]: BEC (in the ground state)
means that the largest eigenvalue, λmax, of γ(1)

N is of order N as N →
∞. The eigenvalues of γ(1)

N are interpreted as occupation numbers of the
corresponding eigenstates, and an eigenvalue of order N means that the
state is macroscopically occupied. If there is one eigenvalue of order N ,
and all the others are of lower order, than the eigenfunction corresponding
to λmax is called the “condensate wave function”. If λmax/N → 1 as
N →∞, we say that there is complete BEC.

The definition of BEC above is readily generalized to positive tempera-
ture states, but here we consider only the zero temperature case, i.e., the
ground state. (See the remark after Corollary 2, however.)

• Ground state density, given by the diagonal

ρQM(x) = γ
(1)
N (x,x) , (8)

and momentum density, given by the Fourier transform

ρ̃QM(k) = (2π)−3

∫
γ

(1)
N (x,x′)eik·(x−x′)dxdx′ . (9)

2 The Gross-Pitaevskii Functional

In order to be able to state our results on properties of the quantities de-
scribed above, we first have to introduce the Gross-Pitaevskii (GP) model
[4,20]. This model is commonly used as an approximation to the complicated
many-body problem described above [2]. It is the purpose of this presenta-
tion to rigorously justify the use of this approximation and clarify under what
circumstances it can be expected to yield reliable results.

We start by introducing the GP functional, and state the main properties
of its minimizer.
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2.1 Definition; Existence and Uniqueness of a Minimizer

For φ ∈ H1(R3,dx) and g ∈ R, define the Gross-Pitaevskii functional by

EGP
g [φ] =

∫

R3

[
|∇φ(x)|2 + V (x)|φ(x)|2 + g|φ(x)|4

]
dx . (10)

The corresponding ground state energy is given by

EGP(g) = inf
{
EGP
g [φ] : ‖φ‖2 = 1

}
. (11)

It is finite for g ≥ 0. We have the following existence and uniqueness result
for the minimization problem (11).

Proposition 1 (Minimizers of EGP
g ) For each g ≥ 0 there exists a unique

(up to a constant phase) minimizing function for (10) under the condition
‖φ‖2 = 1, denoted by φGP. It fulfills the non-linear Schrödinger equation

−∆φ(x) + V (x)φ(x) + 2g|φ(x)|2φ(x) = µGP
g φ(x) , (12)

where µGP
g is the chemical potential, given by

µGP
g = EGP(g) + g

∫
|φGP(x)|4dx . (13)

Proof. The proof of Prop. 1 is fairly standard. Any minimizing sequence
φn with ‖φn‖2 = 1 fulfills

∫ [
|∇φn(x)|2 + V (x)|φn(x)|2

]
dx < C (14)

for some C > 0 independent of n. Since −∆+V has a compact resolvent [21,
Thm. XIII.65], (14) implies that the sequence φn lies in a compact subset of
L2(R3). It therefore converges strongly to some φ ∈ L2(R3), which minimizes
EGP
g because of weak lower-semicontinuity of this functional.

The variational (12) follows from stationarity of

EGP
g [φ+ εf ] + µ‖φ+ εf‖22 (15)

at ε = 0 for an appropriate Lagrange multiplier µ, which satisfies (13), as
can be seen from multiplying (12) by φ and integrating.

We are left with proving uniqueness. Actually, uniqueness of |φ| follows
from strict convexity of |φ|2 �→ EGP

g [|φ|]. To see that also φ is unique, note
that EGP

g [|φ|] ≤ EGP
g [φ], hence if φ is a minimizer, so is |φ|. Hence |φ| satisfies

(12), and since it is positive, it must be the ground state of −∆+V +2g|φ|2,
which is unique [21, Thm. XIII.47]. Since we already know that |φ| is unique,
it follows that φ = |φ| up to a constant phase factor. 
�

We suppress the dependence on g in φGP for simplicity of notation.
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2.2 Properties of the Minimizer

Proposition 2 (Properties of φGP) The arbitrary phase factor in the
minimizer of EGP

g can be chosen such that φGP > 0. We have φGP ∈ C1

and et|·|φGP ∈ L∞ for all t ∈ R. Moreover,

‖φGP‖2∞ ≤
µGP
g

2g
. (16)

Proof. The strict positivity follows from the fact that φGP is the ground
state of −∆ + V + 2g|φGP|2 [21, Thm. XIII.47]. From elliptic regularity [9,
Thm. 10.2] we infer that φGP ∈ C1. The exponential decay is standard (see,
e.g., [12, Lemma A.5]).

The bound (16) follows from the maximum principle: let B ⊂ R
3 denote

the set where |φGP(x)|2 > µGP
g /(2g). Since V > 0, the GP equation implies

that ∆φGP > 0 on B, i.e., φGP is subharmonic there. Hence it achieves its
maximum on the boundary of B, where φGP = µGP

g /(2g), so B is empty. 
�

In the following, we will always assume that the arbitrary phase factor in
φGP is chosen such that φGP > 0.

The following property concerning the linearized problem has been used
in the proofs above. It will be important later, so we emphasize it in the
following Corollary.

Proposition 3 (Linearized problem) The minimizer φGP is the unique
ground state of the operator

−∆+ V (x) + 2g|φGP(x)|2 , (17)

with ground state energy µGP
g .

2.3 Thomas-Fermi Limit

The GP functional has a well-defined limit as g →∞, at least if the external
potential V is reasonably well behaved at infinity. This is usually referred to as
the Thomas-Fermi (TF) limit, because of a formal analogy with the Thomas-
Fermi functional for atoms and molecules, which also has no gradient term.
Consider, for simplicity, the case when V is homogeneous of some order s > 0,
i.e., V (λx) = λsV (x) for all λ > 0. A simple scaling shows that, for

φ̃(x) = g3/(s+3)φ(g1/(s+3)x) , (18)

we have

EGP
g [φ]

= gs/(s+3)

∫

R3

[
g−(s+2)/(s+3)|∇φ̃(x)|2 + V (x)|φ̃(x)|2 + |φ̃(x)|4

]
dx . (19)
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This shows that for large g the gradient term in the GP functional is negligible
and the functional simplifies in this case to

φ �→
∫

R3

[
V (x)|φ(x)|2 + g|φ(x)|4

]
dx , (20)

called the TF functional. Its ground state energy, ETF(g), has the simple
scaling property ETF(g) = gs/(s+3)ETF(1).

3 Main Results

3.1 Convergence of Energy and Density Matrix

With the preliminaries of the previous section in hand, we can now state our
main results. We are interested in the ground state energy EQM(N, a) of the
N -particle Hamiltonian (1), for large N and small a. In fact, as it will turn
out below, a ∼ N−1 is the case of interest. That is, for some fixed g > 0, we
will set a = (4π)−1gN−1, or, more generally, we will assume that 4πNa→ g
as N → ∞. (The factor 4π is chosen for convenience.) Moreover, we will
also derive results for the corresponding ground states or, more generally, for
approximate ground states. For fixed g ≥ 0 we call a sequence ΨN ∈ HN an
approximate ground state if ‖ΨN‖2 = 1 and

lim
N→∞, 4πNa→g

〈ΨN |HN,a ΨN 〉EQM(N, a)−1 = 1 . (21)

Given such an approximate ground state, we define its reduced n-particle
density matrix in analogy with (7) by the kernel

γ
(n)
N (x1, . . . ,xn,y1, . . . ,yn)

=
(
N

n

)∫

R3(N−n)
ΨN (x1, . . . ,xN )Ψ∗

N (y1, . . . ,yn,xn+1, . . . ,xN )
N∏

j=n+1

dxj .

(22)

Note that since ΨN is totally symmetric in the particle coordinates, it doesn’t
matter over which variables we integrate. The γ(n)

N defined in (22) are trace
class operators on Hn, and the normalization is chosen such that Tr[γ(n)

N ] =(
N
n

)
. Our main results are the following:

Theorem 1 (Convergence of the energy). If 4πNa → g as N → ∞,
then

lim
N→∞

1
N
EQM(N, a) = EGP(g) . (23)

We stated Theorem 1 for bounded Na, but it can actually be extended
to the TF limit Na → ∞, as long as a3ρ → 0, where ρ denotes the mean
density. See [13] for details.
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Theorem 2 (Convergence of one-particle density matrix). For given
g ≥ 0 let φGP be the unique minimizer of EGP

g , and let γ(1)
N denote the one-

particle reduced density matrix of an approximate ground state of HN,a. If
4πNa→ g as N →∞, then

lim
N→∞

1
N
γ

(1)
N = |φGP〉〈φGP| (24)

in trace class norm.

Note that Theorem 2 proves complete BEC for the ground state in the
dilute limit considered. The density matrix factorizes into a product, like for
non-interacting systems, but this does not mean that there are no significant
interactions taking place. In fact, φGP depends on g ∼ 4πNa. This is a truly
remarkable feature. As a consequence of the diluteness of the system, the
results are independent of the v1 in (3), the scattering length is the only
relevant quantity.

The proof of these two theorems will be given in Sect. 4. Theorem 1 was
proved in [12], and Theorem 2 in [10]. For both proofs the methods and
results of [17] are of substantial importance.

3.2 Corollaries

The following is easily deduced from Thm. 2 [10].

Corollary 1 (Convergence of densities) If 4πNa→ g as N →∞, then

lim
N→∞

1
N
ρQM(x) = |φGP(x)|2 (25)

and
lim
N→∞

1
N
ρ̃QM(k) = |φ̂GP(k)|2 (26)

strongly in L1(R3). Here φ̂GP denotes the Fourier transform of φGP.

Moreover, Thm. 2 can be readily extended to n-particle density matrices
for n > 1 [10].

Corollary 2 (n-particle density matrices) If 4πNa → g as N → ∞,
then

lim
N→∞

(
N

n

)−1

γ
(n)
N = |φGP〉〈φGP| ⊗ · · · ⊗ |φGP〉〈φGP|

︸ ︷︷ ︸
n times

(27)

in trace class norm.
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Remark. Cor. 2 shows that there is complete BEC of all n-particle density
matrices. This is true not only for the ground state, but for any approxi-
mate ground state. Moreover, instead of vector states one may consider more
general states, given by N -particle density matrices, as approximate ground
states. In particular, the assertions above are true for all Gibbs states

ΓβN,a :=
exp(−βHN,a)

Tr[exp(−βHN,a)]
, (28)

where β = 1/T > 0 is the inverse temperature. Here we assumed that the
trace in the denominator is finite, which is guaranteed for external potentials
V that increase at least logarithmically in |x| at infinity. One can show [23]
that, if 4πNa→ g for some g ≥ 0, then

lim
N→∞

1
N

(
Tr[HN,aΓ

β
N,a]− EQM(N, a)

)
= 0 (29)

for all fixed β > 0, i.e., (28) is an approximate ground state in the sense
defined above. Cor. 2 thus implies complete BEC of the reduced density ma-
trices of (28), i.e., they converge to the right hand side of (27). It is important
to note, however, that if we take the N →∞ limit in a fixed trap potential V
(as we do), then the (mean) density and hence also the relevant temperature
scale goes to infinity. Measured on this scale, any fixed T becomes infinitesi-
mally small as N →∞. Fixing β thus really amounts in our case to taking a
zero-temperature limit. To obtain a true effect of the temperature one has to
scale it appropriately with N . E.g., for a harmonic trap potential the relevant
temperature scale would be T ∼ N1/3 [2].

Note that for (29) to hold true it is essential to restrict ourselves to the
bosonic subspace in (28), as we do here. Without this restriction (29) will
not be true, as can be seen from the non-interacting case g = 0.

4 The Proof

In the following, we will give a complete and self-contained proof of Theo-
rems 1 and 2 above. We follow the ideas in the original proofs in [10,12,17],
but present various simplifications.

4.1 Heuristics and Ideas

The main point that has to be understood is a separation of scales. The range
of the interaction, which is of order a ∼ N−1, is much smaller than the mean
particle distance, which is ∼ N−1/3 in a fixed volume. To explain the main
idea, let us for the moment double the kinetic energy, and add and subtract
a term

∑
j φ

GP(xj)2 to the Hamiltonian. We then split it into two parts,
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H(1) =
N∑

j=1

(
−∆j + V (xj) + 2gφGP(xj)2

)
, (30)

and

H(2) = −
N∑

j=1

∆j +
∑

1≤i<j≤N
v(xi − xj)− 2g

N∑

j=1

φGP(xj)2 . (31)

Now let us try to minimize these two operators separately. The ground state
energy of H(1) is, according to Prop. 3, NµGP

g , and in order to have an
approximate ground state, the one-particle density matrix must be given by
N |φGP〉〈φGP| to leading order. This is exactly what we claim in Theorem 2.

What can one expect for the ground state energy of H(2)? Assuming that
the gas is locally homogeneous and following the heuristics in Subsect. 1.2,
the ground state energy of the first two terms in (31) should approximately
equal N4πaρ, with ρ being the density. This density will not be constant,
however, because of the last term in (31). We can thus expect the ground
state energy of H(2) to be equal to

4πa
∫
ρ(x)2dx− 2g

∫
ρ(x)φGP(x)2dx . (32)

If g = 4πNa, (32) gives exactly −Ng
∫
|φGP|4 when minimized over ρ. Adding

this to the ground state energy of H(1) we obtain the desired result.
The main problem in the preceding argumentation is that we used the

kinetic energy twice. However, because of the different relevant scales men-
tioned above, it turns out that in order to get the right energy for H(2) it
suffices to consider only the part of a particle’s kinetic energy when it is very
close to at least one other particle, in fact much closer than the mean particle
distance. The remaining part, when the particle is sufficiently far away from
all the other particles, is used in H(1).

4.2 Splitting of the Energy

We are now going to make the above ideas precise. Fix some R > 0 and
0 < ε < 1. They will be chosen later to depend on N in a definite way. We
introduce the short hand notation

Xi = (x1, . . . ,xi−1,xi+1, . . . ,xN ) (33)

and

dXi =
N∏

j=1, j 
=i
dxj . (34)

For fixed Xj , let Oj ⊂ R
3 denote the set
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Oj =
{

xj ∈ R
3 : min

k, k 
=j
|xj − xk| ≤ R

}
, (35)

and let Oc
j denote its complement. Given any Ψ ∈ HN with ‖Ψ‖2 = 1, we

can write the expectation value of our Hamiltonian (1) as

〈Ψ |HN,a|Ψ〉 = E
(1)
Ψ + E(2)

Ψ , (36)

where

E
(1)
Ψ =

N∑

j=1

∫

R3(N−1)
dXj

[

(1− ε)
∫

Oc
j

dxj |∇jΨ |2 +
ε

2

∫

R3
dxj |∇jΨ |2

+
∫

R3
dxj
(
V (xj) + 2gφGP(xj)2

)
|Ψ |2
]

(37)

and

E
(2)
Ψ =

N∑

j=1

∫

R3(N−1)
dXj

[

(1− ε)
∫

Oj

dxj |∇jΨ |2 +
ε

2

∫

R3
dxj |∇jΨ |2

+
∫

R3
dxj

(
1
2

N∑

i=1, i 
=j
v(xi − xj)− 2gφGP(xj)2

)
|Ψ |2
]

. (38)

In the following two subsections, we will investigate the two terms (37) and
(38) separately. It is always understood that, for a given fixed g, 4πNa− g =
o(1) as N →∞.

4.3 Part I. A generalized Poincaré Inequality

We are going to need the following Lemma. It is related to the generalized
Poincaré inequalities studied in [15], and was used in [23] in the case of mag-
netic fields. For a measurable set O ⊂ R

3 we denote by Oc its complement,
and by |O| its Lebesgue measure.

Lemma 1. Let V ∈ L∞
loc(R

3; R), and assume that lim|x|→∞ V (x) =∞. Let

E = inf spec
[
−∆+ V (x)

]
, (39)

and let P denote the projector in H = L2(R3,dx) onto the corresponding
ground state. Let

∆E = inf spec
[
−∆+ V (x)

]
�(1−P )H −E (40)

denote the gap in the spectrum above the ground state energy, which is positive
because of the discrete spectrum of the operator under consideration.
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For all ε > 0 there exists a δ > 0 such that for all O ⊂ R
3 with |Oc| < δ

and for all f ∈ H1(R3)

ε

∫

R3
|∇f |2+

∫

O
|∇f |2+

∫

R3
V |f |2 ≥ E ‖f‖2L2(R3)+∆E ‖f−Pf‖2L2(R3) . (41)

Proof. It is no restriction to assume that V ≥ 0. As in [15] we will use a
compactness argument. Suppose that the Lemma is wrong. Then there exists
an ε0 > 0 and a sequence of pairs (fn,On), such that limn→∞ |Oc

n| = 0,
‖fn‖L2(R3) = 1, and

lim
n→∞

[
ε0

∫

R3
|∇fn|2 +

∫

On

|∇fn|2 +
∫

R3
V |fn|2 −∆E ‖fn − Pfn‖2L2(R3)

]

≤ E . (42)

Now both ∇fn and fn are bounded sequences in L2(R3), so we can pass to a
subsequence that converges weakly in L2(R3) to ∇f and f , respectively. We
may also assume that

∑
n |Oc

n| is finite. Defining ΣN by ΣN = R
3 \
⋃
n≥N Oc

n

we have ΣN ⊂ On for n ≥ N . Using weak lower semicontinuity of the norms
in question, we therefore get

lim inf
n→∞

[
ε0

∫

R3
|∇fn|2 +

∫

On

|∇fn|2 +
∫

R3
V |fn|2

]

≥ sup
N

[
ε0

∫

R3
|∇f |2 +

∫

ΣN

|∇f |2 +
∫

R3
V |f |2

]

=
[
(1 + ε0)

∫

R3
|∇f |2 +

∫

R3
V |f |2

]
> E

∫

R3
|f |2 . (43)

Now since V goes to infinity at infinity, −∆+V has a compact resolvent (cf.,
e.g., [21, Thm. XIII.65]). Since

∫

R3

(
|∇fn|2 + V |fn|2

)
< C (44)

for some C <∞ independent of n, we can conclude that fn is contained in a
compact subset of L2(R3), and thus fn → f strongly in L2(R3). This implies
that ‖f‖2 = 1, and also

lim
n→∞

‖fn − Pfn‖L2(R3) = ‖f − Pf‖L2(R3) . (45)

Together with (43) this contradicts (42). 
�

Using more sophisticated methods, as in [15], it is possible to investigate
the relation between ε and δ. This is needed to get precise error estimates,
but we shall not do this here.
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We now derive a lower bound on E(1)
Ψ . For fixed Xj define fj by

fj(xj) = Ψ(x1, . . . ,xj , . . . ,xN ) , (46)

and let
W (x) = V (x) + 2gφGP(x)2 . (47)

Note that W ≥ 0. We have

E
(1)
Ψ ≥

N∑

j=1

(1− ε)
∫

R3(N−1)
dXjFj , (48)

with
Fj =

∫

Oj

|∇fj |2 +
ε

2

∫

R3
|∇fj |2 +

∫

R3
W |fj |2 . (49)

We now apply Lemma 1 to Fj . Note that |Oc
j | ≤ N 4π

3 R
3, and that

N∑

j=1

∫

R3(N−1)
dXj‖fj − Pfj‖22 = Tr

[
γ

(1)
Ψ

(
1− |φGP〉〈φGP|

)]
, (50)

where γ(1)
Ψ denotes the one-particle density matrix of Ψ . Thus, if R� N−1/3,

we can choose ε = o(1) as N →∞ such that

E
(1)
Ψ ≥ N

(
µGP
g + CTr

[
1
N γ

(1)
Ψ

(
1− |φGP〉〈φGP|

)])
(1− o(1)) . (51)

The constant C > 0 is then given by the spectral gap of the operator (17)
above its ground state energy.

4.4 Part II. Dyson Lemma, Box Method, Temple’s Inequality

To obtain a lower bound on E(2)
Ψ , we start with a lemma that was originally

proved by Dyson for the case of hard spheres [3], and later generalized by
Lieb and Yngvason [11, 17] to the case of arbitrary repulsive potentials with
finite range. It allows us to replace v by a “soft” potential, at the cost of
sacrificing kinetic energy and increasing the range.

Lemma 2. Let v(x) ≥ 0 be radial, with finite range R0. Let U(x) ≥ 0 be
any radial function satisfying

∫
U(x)dx ≤ 4π and U(x) = 0 for |x| < R0.

Let B ⊂ R
3 be a set that is star-shaped with respect to 0 (e.g., convex with

0 ∈ B). Then for all functions ψ ∈ H1(B)
∫

B

[
|∇ψ(x)|2 + 1

2v(x)|ψ(x)|2
]
dx ≥ a

∫

B
U(x)|ψ(x)|2dx . (52)
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Proof. Actually, we will show that (52) holds with |∇ψ(x)|2 replaced by the
(smaller) radial kinetic energy, |∂ψ(x)/∂r|2, with r = |x|. Hence it suffices
to prove the analog of (52) for the integral along each radial line with fixed
angular variables. Along such a line we write ψ(x) = u(r)/r with u(0) = 0.
We consider first the special case when U is a delta-function at some radius
R ≥ R0, i.e.,

U(x) =
1
R2
δ(|x| −R) . (53)

For such U the analog of (52) along the radial line is

∫ R1

0

[
(u′(r)− u(r)/r)2 + 1

2v(r)|u(r)|
2
]
dr ≥

{
0 if R1 < R

a|u(R)|2/R2 if R1 ≥ R ,
(54)

where R1 is the length of the radial line segment in B. The case R1 < R is
trivial, because v ≥ 0 by assumption. If R ≤ R1 we consider the integral on
the the left side of (54) from 0 to R instead of R1 and minimize it under
the boundary condition that u(0) = 0 and u(R) = fixed constant. Since
everything is homogeneous in u we may normalize this value to u(R) = R−a.
This minimization problem leads to the zero energy scattering (2). Because
v(r) = 0 for r > R0 the solution, u0, satisfies u0(r) = r − a for r > R0. By
partial integration,

∫ R

0

[
(u′0(r)− u0(r)/r)2 + 1

2v(r)|u0(r)|2
]
dr

= a|R− a|/R ≥ a|R− a|2/R2 . (55)

But |R − a|2/R2 is precisely the right side of (54) if u satisfies the normal-
ization condition. This proves (54).

The derivation of (52) for the special case (53) implies the general case,
because every U can be written as a superposition of δ-functions, and∫
U(x)dx ≤ 4π by assumption. 
�

Now consider, for fixed Xj in the square bracket in (38), the Voronoi cells
Ωi around xi, i = j. I.e.,

Ωi = {x ∈ R
3 : |x− xi| ≤ |x− xk| for all k = j} . (56)

In each cell Ωi, intersected with a ball of radius R centered at xi, we will
use Lemma 2 for the xj integration. Assuming that U has a range ≤ R, this
gives the lower bound

E
(2)
Ψ ≥

N∑

j=1

∫

R3(N−1)
dXj

[
ε

2

∫

R3
dxj |∇jΨ |2

+
∫

R3
dxj
[
a(1− ε)U(xj − xk(j))− 2gφGP(xj)2

]
|Ψ |2
]
. (57)
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Here xk(j) denotes the nearest neighbor of xj among the points xk, k = j,
and we neglected the interaction between non-nearest neighbors, which is
alright for a lower bound.

Hence we converted the “hard” potential v into a “soft” potential U , at
the expense of the local kinetic energy inside Oj and the neglect of other than
nearest neighbor interaction. Note that the right side of (57), with Ψ of the
form

∏
j φ

GP(xj), would now give the desired answer for the energy. Hence
we can hope that some kind of perturbation theory might be applicable now.
One way to make perturbation theory precise is Temple’s inequality [25] (see
also [21, Thm. XIII.5]). However, this is only useful if the particle number
is not too large. To ensure this condition, we have to break up space into
small boxes. This has also the advantage that φGP in the last term in (57)
can be approximated by a constant in each box, so we have effectively a
homogeneous system.

We proceed by applying the box method, as in [12, 17]. More precisely,
we divide R

3 into boxes of side length �, labeled by α, and distribute our N
particles over these boxes. Taking Neumann boundary conditions in each box
and minimizing the energy with respect to all distributions of the particles,
this can only lower the energy.

Let
ρα = sup

x∈α
φGP(x)2 , (58)

and let Eε(n, �) denote the ground state energy of

n∑

i=1

(
−ε

2
∆i + a(1− ε)U(xi − xk(i))

)
(59)

with Neumann boundary conditions on L2([0, �]3n), i.e., for all particles con-
fined to a box of side length �. Neglecting the (positive) interaction among
particles in different boxes, we obtain

E
(2)
Ψ ≥ inf

{nα}

∑

α

(Eε(nα, �)− 2gραnα) , (60)

where the infimum is taken over all distribution of the N particles into the
boxes α. Each box contains nα particles, and

∑
α nα = N . We now need a

lower bound on Eε(n, �). We follow closely [17], and choose U to be

U(x) =

{
3(R3 −R3

0)
−1 for R0 < |x| < R ,

0 otherwise .
(61)

The result is:

Lemma 3. If � > 2R and επ2 > 8πan(n− 1)/�, then
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Eε(n, �) ≥ (1− ε)4πan(n− 1)
�3

(
1− 2R

�

)3(
1− (n− 2)

4π
3

(2R)3

�3

)

·
(

1− 6na�2

(R3 −R0)3 (επ2 − 8πan(n− 1)/�)

)
. (62)

Proof. We start by recalling Temple’s inequality [21,25] for the expectation
value of an operator H = H0+W in the ground state 〈·〉0 of H0. It is a simple
consequence of the operator inequality

(H − E0)(H − E1) ≥ 0 (63)

for the two lowest eigenvalues, E0 < E1, of H and reads

E0 ≥ 〈H〉0 −
〈W 2〉0 − 〈W 〉20
E1 − 〈H〉0

(64)

provided E1 − 〈H〉0 > 0. Furthermore, if W ≥ 0 we may replace E1 in (64)
by the second lowest eigenvalue of H0. We can also neglect the second term
in the numerator, 〈W 〉20, for a lower bound.

We now apply this to the operator in (59), with H0 = − 1
2ε
∑

i∆i. The
ground state energy of H0 is zero because of the Neumann boundary condi-
tions, and the second lowest eigenvalue is 1

2ε(π/�)
2. We will use the bound

〈W 2〉0 ≤
3na

R3 −R3
0

〈W 〉0 (65)

which follows from U2 = 3(R3 −R3
0)

−1U together with the Cauchy-Schwarz
inequality. This gives

Eε(n, �) ≥ 〈W 〉0
(

1− 3na
R3 −R3

0

2
επ2/�2 − 2〈W 〉0

)
. (66)

To proceed we need upper and lower bounds on

〈W 〉0 =
(1− ε)a
�3n

n∑

j=1

∫

[0,�]3n

U(xj − xk(j))dx1 · · · dxn . (67)

Since
∫
U(x)dx = 4π, an upper bound is obviously

〈W 〉0 ≤
4πa
�3
n(n− 1) . (68)

For the lower bound, we have to take into account the boundary of the box
and the fact that the interaction is only among nearest neighbors. We have
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〈W 〉0
[
(1− ε) a

�3n

]−1

≥
∑

i
=j

∫

[0,�]3n

U(xj − xi)
∏

k, k 
=(i,j)

θ(|xk − xj | − 2R)dx1 · · · dxn

≥
∑

i
=j

∫

[0,�]3n

U(xj − xi)



1−
∑

k, k 
=(i,j)

θ(2R− |xk − xj |)



 dx1 · · · dxn .

(69)

Considering only the integration over xj ∈ [R, � − R]3, this gives as a lower
bound

〈W 〉0 ≥ (1− ε)4πa
�3
n(n− 1)

(
1− 2R

�

)3(
1− (n− 2)

4π
3

(2R)3

�3

)
. (70)

Inserting (68) and (70) into (66) proves (62). 
�

Now fix some η > 0, and suppose that n ≤ ηN�3. We are going to choose
R = N−δ and � = N−γ , with 1/5 < 3δ/5 < γ < 1/3. Since a ∼ N−1 this
ensures that a/R and R/� are o(1) as N → ∞, and also that all the other
error terms in (62) are small, provided n satisfies the bound mentioned above.
Namely,

– n(R/�)3 ≤ ηNR3 = ηN1−3δ

– na�2/R3 ≤ ηNa�5/R3 = ηNaN5δ−3γ

– n2a/� ≤ η2NaN�5 = η2NaN1−5γ

Note that δ > 1/3 means that NR3 = o(1), which is exactly the condition
we needed in the previous subsection.

Let nα be a minimizing configuration of the nα’s in (60). Let Λη denote
the collection of those boxes α where nα ≤ ηN�3. We choose ε = o(1),
but not too small, namely ε > (8/π)η2NaN1−5γ to ensure positivity in the
denominator in (62). Then we can use (62) to estimate, for α ∈ Λη,

Eε(nα, �)− 2gραnα ≥ 4πa
nα(nα − 1)

�3
(1− o(1))− 2gραnα

≥ −Ngρ2α�3
(

1 +
1

N�3ρα

)2

(1 + o(1)) , (71)

where we also used that g−4πNa = o(1) by assumption. Note that (N�3)−1 =
o(1) by our choice of �.

For α ∈ Λη, we use superadditivity of Eε(n, �) in n, i.e., that Eε(n +
m, �) ≥ Eε(n, �)+Eε(m, �), which follows from the positivity of the interaction
potential U . It implies that

Eε(n, �) ≥
[
n

ηN�3

]
Eε(ηN�3, �) ≥

n

2ηN�3
Eε(ηN�3, �) , (72)



266 R. Seiringer

where [ · ] denotes the integer part. We can now use again (62). Since the
effective particle number is now ηN�3, we can use the same arguments as
above, together with (N�3)−1 = o(1), to obtain

(72) ≥ 1
2ngη(1− o(1)) . (73)

This implies that if we choose η such that

1
2gη > 2g sup

α
ρα , (74)

or equivalently
η > 4‖φGP‖2∞ , (75)

then the contribution to (60) from boxes with n ≥ ηN�3 is positive (for
N large enough) and can be neglected for a lower bound. We might even
estimate it from below by (71), which is negative. We thus obtain

E
(2)
Ψ ≥

∑

α

−Ngρ2α�3
(

1 +
1

N�3ρα

)2

(1 + o(1)) , (76)

where the sum is now over all boxes. Now N�3 →∞ as N →∞, and

∑

α

ρ2α�
3 =
∫
|φGP(x)|4dx(1 + o(1)) (77)

because the sum is a Riemann sum for the corresponding integral.
The small problem with small ρα in the denominator in (76) can be

avoided by applying the above method only to boxes with ρα > ε̂ for some
ε̂ > 0, and estimating the contribution from the other boxes to (60) simply
by −2Ngε̂. With ε̂ = o(1) appropriately chosen, this shows that

E
(2)
Ψ ≥ −Ng

∫
|φGP(x)|4dx (1 + o(1)) . (78)

4.5 Upper Bound to the Energy

It remains to derive an upper bound to the ground state energy of (1). We
use the variational principle. As N -particle trial function we choose

Ψ(x1, . . . ,xN ) = F (x1, . . . ,xN )
N∏

i=1

φGP(xi) , (79)

where φGP is the minimizer of (10), for some fixed g ≥ 0 such that 4πNa→ g
as N →∞. Here F is the Dyson wave function defined in [12]. It is given by

F (x1, . . . ,xN ) =
N∏

i=1

Fi(x1, . . . ,xi) , (80)
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with
Fi(x1, . . . ,xi) = f(ti(x1, . . . ,xi)) . (81)

Here ti = min{|xi − xj |, 1 ≤ j ≤ i − 1} is the distance of xi to its nearest
neighbor among the points x1, . . . ,xi−1, and f is a function of t ≥ 0. It is
chosen to be

f(t) =
{
f0(t)/f0(b) for t < b

1 for t ≥ b , (82)

where f0 is the solution of the zero energy scattering equation (2) for the
interaction potential v, and b is some cut-off parameter of the order of the
mean particle distance, b ∼ N−1/3. Note that f is a monotone increasing
function [18]. The function F is a suitable generalization of the function
Dyson used in [3] to obtain an upper bound on the ground state energy of
a homogeneous Bose gas of hard spheres. The calculation of the expectation
value of the Hamiltonian with the trial function (79), or rather of a good
upper bound on it, was given in [12] and is presented here.

Note that our trial function (79) is not symmetric in the particle coor-
dinates. The expectation value 〈Ψ |HN,a|Ψ〉/〈Ψ |Ψ〉 is still an upper bound to
the bosonic ground state energy, however, since the Hamiltonian is symmetric
and has a unique, positive, ground state wave function. This implies that the
bosonic ground state energy is equal to the absolute ground state energy [3,7],
i.e., the ground state energy without symmetry restrictions.

We start by computing the kinetic energy of our trial state. Using partial
integration, one easily sees that
∫

R3N

Ψ∆kΨ =
∫

R3N

|Ψ |2φGP(xk)−1∆kφ
GP(xk)−

∫

R3N

|Ψ |2F−2|∇kF |2 .
(83)

Now define εik(x1, . . . ,xN ) by

εik =






1 for i = k ,
−1 for ti = |xi − xk| ,
0 otherwise .

(84)

Let ni be the unit vector in the direction of xi − xj(i), where xj(i) denotes
the nearest neighbor of xi among the points (x1, . . . ,xi−1). Then

F−1∇kF =
∑

i

F−1
i εiknif

′(ti) , (85)

and after summation over k we obtain

F−2
∑

k

|∇kF |2 =
∑

i,j,k

εikεjk(ni · nj)F−1
i F−1

j f ′(ti)f ′(tj)

≤ 2
∑

i

F−2
i f ′(ti)2 + 2

∑

k≤i<j
|εikεjk|F−1

i F−1
j f ′(ti)f ′(tj) . (86)
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The expectation value of the Hamiltonian can thus be bounded as follows:

〈Ψ |HN,a|Ψ〉
〈Ψ |Ψ〉 ≤ 2

N∑

i=1

∫
|Ψ |2F−2

i f ′(ti)2∫
|Ψ |2 +

∑

j<i

∫
|Ψ |2v(xi − xj)∫

|Ψ |2

+2
∑

k≤i<j

∫
|Ψ |2|εikεjk|F−1

i F−1
j f ′(ti)f ′(tj)∫

|Ψ |2

+
N∑

i=1

∫
|Ψ |2
(
−φGP(xi)−1∆iφ

GP(xi) + V (xi)
)

∫
|Ψ |2 . (87)

For i < p, let Fp,i be the value that Fp would take if the point xi were
omitted from consideration as a possible nearest neighbor. Note that Fp,i is
independent of xi. Analogously we define Fp,ij by omitting xi and xj . The
functions Fi occur both in the numerator and the denominator so we need
estimates from below and above. Since f is monotone increasing,

Fp = min{Fp,ij , f(|xp − xj |), f(|xp − xi|)} , (88)

and we have, using 0 ≤ f ≤ 1,

F 2
p,ijf(|xp − xi|)2f(|xp − xj |)2 ≤ F 2

p ≤ F 2
p,ij . (89)

Hence, for j < i, we have the upper bound

F 2
j+1 · · ·F 2

i−1F
2
i+1 · · ·F 2

N ≤ F 2
j+1,j · · ·F 2

i−1,jF
2
i+1,ij · · ·F 2

N,ij , (90)

and the lower bound

F 2
j · · ·F 2

N ≥ F 2
j+1,j · · ·F 2

i−1,jF
2
i+1,ij · · ·F 2

N,ij (91)


1−
N∑

k=1, k 
=i,j
(1− f(|xj − xk|)2)







1−
N∑

k=1, k 
=i
(1− f(|xi − xk|)2)



 .

We now consider the first two terms on the right side of (87). In the numerator
of the first term we use, for each fixed i, the estimate

f ′(ti)2 ≤
i−1∑

j=1

f ′(xi − xj)2 , (92)

and in the second term we use Fi ≤ f(|xi − xj |). For fixed i and j we can
eliminate xi and xj from the rest of the integrand by using the bound (90) in
the numerator and (91) in the denominator to do the xi and xj integrations.
Note that, using partial integration, (2) implies that

∫ (
f ′(|x|)2 + 1

2v(|x|)f(|x|)
2
)
dx = 4πa(1− a/b)f0(b)−2 (93)
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for b ≥ R0. Now, for N large, b % a and in particular b ≥ R0, and hence
f0(b) = 1 − a/b = 1 − O(N−2/3). Using the Cauchy-Schwarz inequality, we
obtain
∫ (

2f ′(xi − xj)2 + v(xi − xj)f(xi − xj)2
)
φGP(xi)2φGP(xj)2dxidxj

≤ 8πa
∫
φGP(x)4dx

(
1 +O(N−2/3)

)
. (94)

In the denominator, we estimate

∫


1−
N∑

p=1, p
=i
(1− f(|xp − xi|)2)



φGP(xi)2dxi ≥ 1−N‖φGP‖2∞I , (95)

where we set I =
∫

(1−f(|x|)2)dx. Using that f(|x|) ≥ [1−a/|x|]+ (see [18]),
we get that I ≤ (4π/3)ab2. Moreover, ‖φGP‖∞ is bounded uniformly in g, by
Proposition 2. The same factor comes from the xj-integration. The remaining
factors are identical in numerator and denominator and hence we conclude
that the first and second term in (87) are above bounded by

N∑

i=1

(i− 1)8πa
∫
φGP(x)4dx

(
1 +O(N−2/3)

)

≤ 4πaN2

∫
φGP(x)4dx

(
1 +O(N−2/3)

)
. (96)

A similar argument is now applied to the third term of (87). We omit the
details. The result is an upper bound

2
3
N3 K2‖φGP‖4∞

(1−N‖φGP‖2∞I)2
, (97)

with K given by K =
∫
f(|x|)f ′(|x|)dx. Using again that [1 − a/|x|]+ ≤

f(|x|) ≤ 1 as well as partial integration, we can estimate K ≤ 4πab(1 +
O(a/b)), hence (97) is, for bounded Na, bounded by Nb2 ∼ N1/3.

Finally, consider the last term on the right side of (87). The GP equation
(12) implies that it is equal to

N∑

i=1

∫
|Ψ |2
(
µGP
g − 2g|φGP(xi)|2

)
∫
|Ψ |2 . (98)

Moreover, by Prop. 2, µGP
g − 2g|φGP(xi)|2 is positive, and hence we can

proceed as above. After eliminating xi from the integrands in the numerator
and the denominator and we get the upper bound

(98) ≤ N
(
µGP
g − 2g

∫
φGP(x)4dx

) (
1 +O(N−2/3)

)
. (99)
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Collecting all the estimates, we thus obtain, using (13),

EQM(N, (4πN)−1g) ≤ NEGP(g)
(
1 +O(N−2/3)

)
, (100)

uniformly in g on compact intervals.

4.6 Putting Everything Together

We now show how the results of the previous subsections lead to a proof of
Theorems 1 and 2. Inserting the lower bounds (51) and (78) to E(1)

Ψ and E(2)
Ψ

in (36) we obtain, for some constant C > 0 (depending only on g),

1
N
〈Ψ |HN,a|Ψ〉 ≥

(
EGP(g) + C Tr

[
1
N γ

(1)
N

(
1− |φGP〉〈φGP|

)])
(1− o(1))

(101)
as N → ∞, if 4πNa → g. Here we have also used (13). Together with the
upper bound (100) this implies that

lim
N→∞

1
N
EQM(N, (4πN)−1g) = EGP(g) , (102)

uniformly in g on compact intervals, and also that

lim
N→∞

1
N
〈φGP|γ(1)

N |φGP〉 = 1 (103)

for γ(1)
N the reduced one-particle density matrix of an approximate ground

state in the sense described in the beginning of Subsect. 3.1.
Equation (102) proves Theorem 1. Moreover, since 1

N γ
(1)
N is a positive

trace class operator with trace 1, general arguments show that (103) implies
(24) (see, e.g., [24, Thm. 2.20]). We show this directly, using the following
simple lemma.

Lemma 4. Let 0 ≤ γ ≤ 1, with Tr[γ] = 1, and let P = |w〉〈w| be a rank-one
projection. Then

‖γ − P‖1 ≤
(
1 +

√
2
) (

1− 〈w|γ|w〉
)1/2

. (104)

Proof. LetQ = 1−P . Using the triangle inequality and the Cauchy-Schwarz
inequality,

‖γ − P‖1 ≤ ‖(γ − P )P‖1 + ‖(γ − P )Q‖1 = ‖(γ − P )P‖1 + ‖γQ‖1
≤ ‖γ − P‖2‖P‖2 + ‖γ1/2‖2‖γ1/2Q‖2 = ‖γ − P‖2 + ‖QγQ‖1/21

=
(
1 + Tr[γ2]− 2Tr[γP ]

)1/2
+ (1− Tr[γP ])1/2

≤
(√

2 + 1
) (

1− Tr[γP ]
)1/2

. (105)


�
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Since, by (103), 1 − 〈φGP| 1
N γ

(1)
N |φGP〉 → 0 as N → ∞, this implies that

1
N γ

(1)
N → |φGP〉〈φGP| in trace class norm, as claimed in Theorem 2.

Remark. The proof of complete BEC can be extended to the TF case, e.g.,
the case when g = 4πNa→∞ as N →∞, as long as g grows slowly enough
withN . More precisely, the proof above shows that Tr

[
γ

(1)
N

(
1− |φGP〉〈φGP|

)]

can be bounded from above by the difference in the upper and lower bound
to the ground state energy of HN,a (which was shown to be o(N) for fixed
g) divided by the gap above the ground state energy of the operator in (17),
which also depends on g. Hence, if g grows slowly enough to ensure that this
quantity is still o(N), this proves complete BEC.

5 Extensions

Using (and extending) the methods presented in this paper, a number of
additional and more complicated problems have been addressed successfully.
We describe them here briefly.

5.1 The Bose Gas in Two Dimensions

The same questions as above can be asked for bosons confined to a two-
dimensional plane instead of moving in three-dimensional space. The problem
is a little bit more complicated than in three dimensions, mainly because the
formula for the ground state energy per particle of a dilute gas, 4πaρ in three
dimensions (see (4)), is more complicated in two dimensions. It is given by

4πρ
| ln(a2ρ)| , (106)

where ρ and a are now the two-dimensional density and scattering length,
respectively. In particular, the ground state energy is much bigger that just
the energy of a pair of particles times the number of pairs, so the same
reasoning as on page 251 does not lead to the right formula. Nevertheless, a
proof of (106) can be found in [18].

The extension to inhomogeneous systems was done in [13]. The corre-
sponding Gross-Pitaevskii theory in two dimensions is essentially the same
as in three-dimensions, the only difference is that the coupling parameter g
has to be chosen differently and, in particular, depending non-trivially on the
density.

5.2 The Rotating Gas and Superfluidity

Particles in a rotating trap can be described by a Hamiltonian similar to (1).
If the angular velocity vector is given by some Ω ∈ R

3, the one-particle part
of the Hamiltonian, −∆+ V (x), has to be replaced by
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−∆−Ω ·L + V (x) , (107)

where L = −ix ∧∇ denotes the angular momentum operator. Here we as-
sume that V is axially symmetric, i.e., it commutes with Ω ·L. In the same
way, one can define a modified GP functional for rotating systems. One big
difference to the case of non-rotating systems can already by observed in the
GP functional: for large enough g there will not be a unique minimizer any-
more [22]. This is true for any Ω = 0. The reason for this non-uniqueness is
the appearance of quantized vortices which, when more than one, necessarily
break the axial symmetry present in the system.

It is conjectured that the GP functional also correctly describes the
ground state properties of dilute, rotating Bose gases. This, however, has
so far been proved only in the case of small enough |Ω| (for fixed g), where
there is no symmetry breaking and no vortices are present. This result has a
natural interpretation as superfluidity of the system [14]. For larger rotation
speeds, the problem is still open.

One new feature that arises in the study of rotating systems is the fact
that it becomes essential to restrict to the symmetric subspace of the total
Hilbert space, e.g., to consider bosons. This did not really matter for non-
rotating systems, because in this case the absolute ground state (i.e., without
symmetry restrictions) agrees with the bosonic one. This need not be the case
for rotating systems and, in fact, it is not for a certain range of the parameters
N , Ω and a where the above mentioned symmetry breaking occurs. In [23]
it is shown that the absolute ground state can differ significantly from the
bosonic one. It is also shown that the absolute ground state of dilute, rotating
systems cannot in general be described by the GP functional, but rather by a
modified GP density matrix functional, which depends on one-particle density
matrices rather than single wave functions.

5.3 One-Dimensional Behavior of Bose Gases in Elongated Traps

Recently it has become experimentally feasible to create trap potentials that
are highly elongated in one direction. In this way, it has become possible
to observe properties of gases that are typical for one-dimensional systems.
In order to describe this situation, we can think of our trap potential as
consisting of two parts,

V (x) =
1
r2
V ⊥(x⊥/r) +

1
L2
V ‖(z/L) (108)

where x = (x⊥, z), and r and L denote the length scales of the confinement
in perpendicular and longitudinal direction. It is then possible to study the
limit r � L. In [16] it is shown that under certain conditions on the pa-
rameters, this system can be well described by a one-dimensional Bose gas
with repulsive δ-function interaction. This one-dimensional system is an ex-
actly solvable model which was first studied in [8]. E.g., the motion in the
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perpendicular directions is frozen because of the energy gap in the strong
confinement, and the system behaves essentially one-dimensional. We refer
to [16] for details.
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1 Introduction

Experimental investigations of heavy few-electron ions (see, e.g., [1]) have
triggered a great interest to accurate quantum electrodynamic (QED) cal-
culations of these systems. At present, such calculations are feasible only by
perturbation theory in two small parameters α and 1/Z, where α ≈ 1/137 is
the fine structure constant and Z is the nuclear charge number. For heavy
few-electron ions, the parameters α and 1/Z characterize the QED and
interelectronic-interaction corrections, respectively. To derive formal expres-
sions for these corrections in a systematic way one needs to employ special
methods. One of such methods was first developed by Gell-Mann and Low [2]
and Sucher [3]. This method is based on introducing an adiabatically damped
factor, exp (−λ|t|), in the interaction Hamiltonian and expressing the energy
shift in terms of so-called adiabatic Sλ matrix elements. The Gell-Mann–Low–
Sucher formula for the energy shift of a single level gained wide spreading
in the literature related to high-Z few-electron atoms [4–9]. This is mainly
due to a simple formulation of the method. However, practical calculations
showed that the presence of the adiabatic factor strongly complicates deriva-
tions of formal expressions for the energy shift in second and higher orders

V.M. Shabaev: Perturbation Theory for QED Calculations of High-Z Few-electron Atoms,
Lect. Notes Phys. 695, 275–295 (2006)
www.springerlink.com
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of the perturbation theory. In addition, this method requires special investi-
gation of the renormalization procedure since the adibatic Sλ-matrix suffers
from ultraviolet divergences. This is due to the fact that the adiabatically
damped factor, exp (−λ|t|), is non-covariant and, therefore, the ultraviolet
divergences can not be removed from Sλ if λ = 0. For the case of a single
level, this problem can be disregarded since, from the physical point of view,
one may expect the divergenes to cancel each other in the expression for the
energy shift. However, this is not the case if one considers degenerate lev-
els. We can not expect that the standard renormalization procedure makes
the secular operator finite in the ultraviolet limit [5, 6]. Similar difficulties
occur in the evolution operator method developed in [10–14]. Some modifica-
tions of these methods gaining on their extention to quasidegenerate states
were recently considered in [15, 16]. We note also that at present there is
no formalism based on the Gell-Mann–Low–Sucher or the evolution operator
method which would be suitable for calculation of the transition or scattering
amplitudes.

In this paper we consider another method to construct the perturbation
theory for high-Z few-electron systems. This method, which was developed
in [17–21] and described in details in [22], provides a solution of all the prob-
lems appearing in the other formalisms indicated above. In particular, it is
equally suitable for calculations energy levels of single, degenerate, and qua-
sidegenerate states as well as for calculations of the transition and scattering
amplitudes. It was successfully employed in many practical calculations (see,
e.g., [22–30] and references therein). Since one of the key elements of the
method consists in using two-time Green functions, in what follows we will
call it the two-time Green function (TTGF) method.

It should be noted that there are also some other methods employing
Green functions. In particular, in [6, 31, 32] two-time Green functions were
used to construct quasipotential equations for high-Z few-electron systems.
This corresponds to the perturbation theory in the Brillouin-Wigner form.
In contrast to that, the method considered here yields the perturbation the-
ory in the Rayleigh-Schrödinger form, which is much more convenient for
calculations of high-Z few-electron atoms.

Below we formulate the basic principles of the TTGF method. The rela-
tivistic unit system (� = c = 1) and the Heaviside charge unit (α = e2

4π , e < 0)
are used in the paper.

2 Energy Levels

In high-Z few-electron atoms the number of electrons, denoted by N , is much
smaller than the nuclear charge number Z. For this reason, the interaction of
the electrons with each other and with the quantized electromagnetic field is
much smaller (by factors 1/Z and α, respectively) than the interaction of the
electrons with the Coulomb field of the nucleus. Therefore, we can assume
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that in zeroth approximation the electrons interact only with the Coulomb
field of the nucleus and obey the Dirac equation

(−iα ·∇ + βm+ VC(x))ψn(x) = εnψn(x) . (1)

The interaction of the electrons with each other and with the quantized elec-
tromagnetic field is accounted for by perturbation theory. In this way we ob-
tain quantum electrodynamics in the Furry picture. We note that we could
start also with the Dirac equation with an effective potential Veff(x) (e.g.,
a local version of the Hartree-Fock potential) which approximately accounts
for the interelectronic interaction. Then the interaction with the potential
δV (x) = VC(x) − Veff(x) must be accounted for by perturbation theory.
However, for simplicity, in what follows we will consider that in zeroth ap-
proximation the electrons interact only with the Coulomb field of the nucleus.

We will consider the perturbation theory with the standard QED vac-
uum. The transition to the formalism in which closed shells are regarded as
belonging to the vacuum can be performed in a usual manner (see, e.g., [22]).

Before to introduce the two-time Green function and formulate the pertur-
bation theory, we consider standard equations for the 2N -time Green function
in quantum electrodynamics.

2.1 2N-Time Green Function

In principle, the complete information about the energy levels of an N -
electron atom can be derived from the Green function defined as

G(x′1, . . . x
′
N ;x1, . . . xN ) = 〈0|Tψ(x′1) · · ·ψ(x′N )ψ(xN ) · · ·ψ(x1)|0〉 , (2)

where ψ(x) is the electron-positron field operator in the Heisenberg repre-
sentation, ψ(x) = ψ†γ0, and T is the time-ordered product operator. It can
be shown (see, e.g., [33,34]) that in the interaction representation the Green
function is given by

G(x′1, . . . x
′
N ;x1, . . . xN )

=
〈0|Tψin(x′1) · · ·ψin(x′N )ψin(xN ) · · ·ψin(x1) exp {−i

∫
d4z HI(z)}|0〉

〈0|T exp {−i
∫

d4z HI(z)}|0〉

=
{ ∞∑

m=0

(−i)m

m!

∫
d4y1 · · · d4ym 〈0|Tψin(x′1) · · ·ψin(x′N )

×ψin(xN ) · · ·ψin(x1)HI(y1) · · ·HI(ym)|0〉
}

×
{ ∞∑

l=0

(−i)l

l!

∫
d4z1 · · · d4zl 〈0|THI(z1) · · ·HI(zl)|0〉

}−1

(3)

where
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HI(x) =
e

2
[ψin(x)γµ, ψin(x)]Aµin(x)− δm

2
[ψin(x), ψin(x)] (4)

is the interaction Hamiltonian. The commutators in (4) refer to operators
only. The first term in (4) describes the interaction of the electron-positron
field with the quantized electromagnetic field and the second one is the mass
renormalization counterterm. It is assumed that the interaction of the elec-
trons with the Coulomb field of the nucleus is included in the unperturbed
Hamiltonian, i.e. the Furry picture is used.

The Green function G is constructed by perturbation theory according to
(3) with the aid of the Wick theorem (see, e.g., [33]). The individual terms
of the perturbation series are conveniently represented by so-called Feyn-
man diagrams. Some of these diagrams contain ultraviolet divergences and,
therefore, must be regularized. It can be shown that in calculation of any
physical quantity the divergent parts either cancel each other or incorporate
into the renormalized (physical) values of the electron charge and mass. Al-
ternatively, from the very beginning one can formulate the theory in terms of
the renormalized field operators, the renormalized electron charge, and the
renormalized Green functions. It results in appearing additional countert-
erms in the Feynman rules. Both schemes can easily be adopted within the
approach considered here.

The spectral representation for G shows that it contains the complete
information about the energy levels of the atomic system. However, it is a
hard task to extract this information directly from G because it depends on
2(N − 1) relative times. It is much more convenient to employ the two-time
Green function

G̃(t′, t) ≡ G(t′1 = t′2 = · · · t′N ≡ t′; t1 = t2 = · · · tN ≡ t) , (5)

which also contains the complete information about the energy levels.

2.2 Two-Time Green Function and Its Analytical Properties

Let us introduce the Fourier transform of the two-time Green function by

G(E;x′
1, . . .x

′
N ;x1, . . .xN )δ(E − E′)

=
1

2πi
1
N !

∫ ∞

−∞
dx0dx′0 exp (iE′x′0 − iEx0)

×〈0|Tψ(x′0,x′
1) · · ·ψ(x′0,x′

N )ψ(x0,xN ) · · ·ψ(x0,x1)|0〉 , (6)

where, as in (2), the Heisenberg representation for the electron-positron field
operators is used. Defined by (6) for real E, the Green function G can be
continued analytically to the complex E plane. Analytical properties of this
type of Green functions in the complex E plane were studied in various
fields of physics (see, e.g., [35–38]). To consider these properties we derive
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the spectral representation for G. Using the time-shift transformation rule
for the Heisenberg operators

ψ(x0,x) = exp (iHx0)ψ(0,x) exp (−iHx0) (7)

and the equations

H|n〉 = En|n〉 ,
∑

n

|n〉〈n| = I , (8)

where H is the Hamiltonian of the system in the Heisenberg representation,
we find

G(E;x′
1, . . . ,x

′
N ;x1, . . . ,xN )δ(E − E′)

=
1

2πi
1
N !

∫ ∞

−∞
dx0dx′0 exp (iE′x′0 − iEx0)

×
{
θ(x′0 − x0)

∑

n

exp [i(E0 − En)(x′0 − x0)]〈0|ψ(0,x′
1) · · ·ψ(0,x′

N )|n〉

×〈n|ψ(0,xN ) · · ·ψ(0,x1)|0〉+ (−1)N
2
θ(x0 − x′0)

×
∑

n

exp [i(E0 − En)(x0 − x′0)]〈0|ψ(0,xN ) · · ·ψ(0,x1)|n〉

×〈n|ψ(0,x′
1) · · ·ψ(0,x′

N )|0〉
}
. (9)

Assuming, for simplicity, E0 = 0 (it corresponds to choosing the vacuum
energy as the origin of reference) and taking into account that

∫ ∞

−∞
dx0dx′0 θ(x′0 − x0) exp [−iEn(x′0 − x0)] exp [i(E′x′0 −Ex0)]

= 2πδ(E′ − E)
i

E − En + i0
, (10)

∫ ∞

−∞
dx0dx′0 θ(x0 − x′0) exp [−iEn(x0 − x′0)] exp [i(E′x′0 −Ex0)]

= −2πδ(E′ − E)
i

E + En − i0
, (11)

we obtain

G(E) =
∑

n

ΦnΦn
E − En + i0

− (−1)N
∑

n

ΞnΞn

E + En − i0
, (12)

where the variables x′
1, . . . ,x

′
N ,x1, . . . ,xN are implicit and

Φn(x1, . . .xN ) =
1√
N !
〈0|ψ(0,x1) · · ·ψ(0,xN )|n〉 , (13)

Ξn(x1, . . .xN ) =
1√
N !
〈n|ψ(0,x1) · · ·ψ(0,xN )|0〉 . (14)
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In (12) the summation runs over all bound and continuum states of the system
of the interacting fields. Let us introduce the functions

A(E;x′
1, . . . ,x

′
N ;x1, . . . ,xN ) =

∑

n

δ(E − En)

×Φn(x′
1, . . . ,x

′
N )Φn(x1, . . . ,xN ) , (15)

B(E;x′
1, . . . ,x

′
N ;x1, . . . ,xN ) =

∑

n

δ(E − En)

×Ξn(x′
1, . . . ,x

′
N )Ξn(x1, . . . ,xN ) . (16)

These functions satisfy the conditions
∫ ∞

−∞
dE A(E;x′

1, . . . ,x
′
N ;x1, . . . ,xN ) =

1
N !
〈0|ψ(0,x′

1) · · ·ψ(0,x′
N )

×ψ(0,xN ) · · ·ψ(0,x1)|0〉 , (17)
∫ ∞

−∞
dE B(E;x′

1, . . . ,x
′
N ;x1, . . . ,xN ) =

1
N !
〈0|ψ(0,xN ) · · ·ψ(0,x1)

×ψ(0,x′
1) · · ·ψ(0,x′

N )|0〉 . (18)

In terms of these functions, (12) has the form

G(E) =
∫ ∞

0

dE′ A(E′)
E − E′ + i0

− (−1)N
∫ ∞

0

dE′ B(E′)
E + E′ − i0

, (19)

where we have omitted the variables x1, . . . ,xN ,x′
1, . . . ,x

′
N and have taken

into account that A(E′) = B(E′) = 0 for E′ < 0 since En ≥ 0. In fact, due
to charge conservation, only states with an electric charge of eN contribute
to A in the sum over n in the right-hand side of (15) and only states with an
electric charge of −eN contribute to B in the sum over n in the right-hand
side of (16). This can easily be shown by using the following commutation
relations

[Q,ψ(x)] = −eψ(x) , [Q,ψ(x)] = eψ(x) , (20)

where Q is the charge operator in the Heisenberg representation. Therefore,
(19) can be written as

G(E) =
∫ ∞

E
(+)
min

dE′ A(E′)
E − E′ + i0

− (−1)N
∫ ∞

E
(−)
min

dE′ B(E′)
E + E′ − i0

, (21)

where E(+)
min is the minimal energy of states with electric charge eN and E(−)

min

is the minimal energy of states with electric charge −eN . So far we considered
G(E) for real E. Equation (21) shows that the Green function G(E) is the

sum of Cauchy-type integrals. Using the fact that the integrals
∫ ∞

E
(+)
min

dE A(E)
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E

−E
(−)
min E

(+)
min

Fig. 1. Singularities of the two-time Green function in the complex E plane

and
∫ ∞

E
(−)
min

dE B(E) converge (see (17), (18)), one can show with the help of

standard mathematical methods that the equation

G(E) =
∫ ∞

E
(+)
min

dE′ A(E′)
E − E′ − (−1)N

∫ ∞

E
(−)
min

dE′ B(E′)
E + E′ (22)

defines an analytical function of E in the complex E plane with the cuts
(−∞,−E(−)

min] and [E(+)
min,∞) (see Fig. 1). This equation provides the analyti-

cal continuation of the Green function to the complex E plane. According to
(21), to get the Green function for real E we have to approach the right-hand
cut from the upper half-plane and the left-hand cut from the lower half-plane.

In what follows we will be interested in bound states of the system. Ac-
cording to (12)–(22), the bound states correspond to the poles of the function
G(E) on the right-hand real semiaxis. If the interaction between the electron-
positron field and the electromagnetic field is switched off, the poles corre-
sponding to bound states are isolated. Switching on the interaction between
the fields transforms the isolated poles into branch points. This is caused by
the fact that due to zero photon mass the bound states are no longer isolated
points of the spectrum. Disregarding the instability of excited states, the
singularities of the Green function G(E) are shown in Fig. 2. The poles cor-
responding to the bound states lie on the upper boundary of the cut starting

E

Fig. 2. Singularities of the two-time Green function in the bound-state region,
disregarding the instability of excited states
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E

Fig. 3. Singularities of the two-time Green function in the bound-state region if the
cuts are turned down, to the second sheet of the Riemann surface. The instability
of excited states is taken into account

from the pole corresponding to the ground state. It is natural to assume that
G(E) can be continued analytically under the cut, to the second sheet of the
Riemann surface. As a result of this continuation the singularities of G(E)
can be turned down. In fact due to instability of excited states the energies
of these states have small imaginary components and, therefore, the related
poles lie slightly below the right-hand real semiaxis (Fig. 3). However, in cal-
culations of the energy levels and the transition and scattering amplitudes of
non-resonance processes we can neglect the instability of excited states and,
therefore, assume that the poles lie on the real axis. The imaginary parts of
the energies must be taken into account if one considers resonance scattering
processes.

To formulate the perturbation theory for calculations of the energy lev-
els and the transition and scattering amplitudes we will need to isolate the
poles corresponding to the bound states from the related cuts. It can be done
by introducing a non-zero photon mass µ which is generally assumed to be
larger than the energy shift (or the energy splitting) of the level (levels) under
consideration and much smaller than the distance to other levels. The singu-
larities of G(E) with non-zero photon mass, including one- and two-photon
spectra, are shown in Fig. 4. As one can see from this figure, introducing
the photon mass makes the poles corresponding to the bound states to be
isolated.

In every finite order of perturbation theory the singularities of the Green
function G(E) in the complex E-plane are defined by the unperturbed Hamil-
tonian. It can be shown (see [22] and references therein) that to n-th order
of perturbation theory the Green function has poles of all orders till n+ 1 at
the unperturbed positions of the bound state energies.

2.3 Energy Shift of a Single Level

In this section we derive the energy shift ∆Ea = Ea−E(0)
a of a single isolated

level a of an N -electron atom due to the perturbative interaction. The un-
perturbed energy E(0)

a is equal to the sum of the one-electron Dirac-Coulomb
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Fig. 4. Singularities of the two-time Green function in the bound state region for
a non-zero photon mass, including one- and two-photon spectra, if the cuts are
turned down, to the second sheet of the Riemann surface. The instability of excited
states is disregarded

energies

E(0)
a = εa1 + · · ·+ εaN

, (23)

which are defined by the Dirac equation (1). In the simplest case the unper-
turbed wave function ua(x1, . . . ,xN ) is a one-determinant function

ua(x1, . . . ,xN ) =
1√
N !

∑

P

(−1)PψPa1(x1) · · ·ψPaN
(xN ) , (24)

where ψn are the one-electron Dirac wave functions defined by (1) and P is
the permutation operator. In the general case the unperturbed wave function
is a linear combination of the one-determinant functions

ua(x1, . . . ,xN ) =
∑

b

Cb
a

1√
N !

∑

P

(−1)PψPb1(x1) · · ·ψPbN
(xN ) . (25)

We introduce the Green function gaa(E) by

gaa(E) = 〈ua|G(E)γ0
1 · · · γ0

N |ua〉

≡
∫

dx1 · · · dxNdx′
1 · · · dx′

N u
†
a(x

′
1, . . . ,x

′
N )

×G(E,x′
1, . . . ,x

′
N ;x1, . . . ,xN )γ0

1 · · · γ0
Nua(x1, . . . ,xN ) . (26)

From the spectral representation for G(E) (see (12)–(22)) we have

gaa(E) =
Aa

E − Ea
+ terms that are regular at E ∼ Ea , (27)

where

Aa=
1
N !

∫
dx1· · · dxNdx′

1· · · dx′
N u

†
a(x

′
1, . . . ,x

′
N )〈0|ψ(0,x′

1)· · ·ψ(0,x′
N )|a〉

×〈a|ψ†(0,xN ) · · ·ψ†(0,x1)|0〉ua(x1, . . . ,xN ) . (28)
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Γ

Fig. 5. The contour Γ surrounds the pole corresponding to the level under con-
sideration and keeps outside all other singularities. For simplicity, only one- and
two-photon spectra are displayed

We assume here that a non-zero photon mass µ is introduced to isolate the
pole corresponding to the bound state a from the related cut. We consider
that the photon mass is larger than the energy shift under consideration and
much smaller than the distance to other levels. To generate the perturbation
series for Ea it is convenient to use a contour integral formalism developed
first in operator theory by Szökefalvi-Nagy and Kato [39–42]. Choosing a
contour Γ in the complex E plane in a way that it surrounds the pole corre-
sponding to the level a and keeps outside all other singularities (see Fig. 5),
we have

1
2πi

∮

Γ

dE Egaa(E) = EaAa , (29)

1
2πi

∮

Γ

dE gaa(E) = Aa . (30)

Here we have assumed that the contour Γ is oriented anticlockwise. Dividing
(29) by (30), we obtain

Ea =

1
2πi

∮

Γ

dE Egaa(E)

1
2πi

∮

Γ

dE gaa(E)
(31)

It is convenient to transform (31) to a form that directly yields the energy
shift ∆Ea = Ea − E(0)

a . To zeroth order, substituting the operators

ψin(0,x) =
∑

εn>0

bnψn(x) +
∑

εn<0

d†nψn(x) , (32)

ψin(0,x) =
∑

εn>0

b†nψn(x) +
∑

εn<0

dnψn(x) (33)

into (13) and (14) instead of ψ(0,x) and ψ(0,x), respectively, and considering
the states |n〉 in (13) and (14) as unperturbed states in the Fock space, from
(12)–(14) and (26) we find
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g(0)aa =
1

E − E(0)
a

. (34)

Denoting ∆gaa = gaa − g(0)aa , from (31) we obtain the desired formula [17]

∆Ea =

1
2πi

∮

Γ

dE (E − E(0)
a )∆gaa(E)

1 +
1

2πi

∮

Γ

dE ∆gaa(E)
. (35)

The Green function ∆gaa(E) is constructed by perturbation theory

∆gaa(E) = ∆g(1)aa (E) +∆g(2)aa (E) + · · · , (36)

where the superscript denotes the order in a small parameter (for instance,
α). If we represent the energy shift as a series

∆Ea = ∆E(1)
a +∆E(2)

a + · · · , (37)

formula (35) yields

∆E(1)
a =

1
2πi

∮

Γ

dE ∆E∆g(1)aa (E) , (38)

∆E(2)
a =

1
2πi

∮

Γ

dE ∆E∆g(2)aa (E)

−
(

1
2πi

∮

Γ

dE ∆E∆g(1)aa (E)
) (

1
2πi

∮

Γ

dE ∆g(1)aa (E)
)
, (39)

where ∆E ≡ E − E(0)
a .

Deriving (31) and (35) we have assumed that a non-zero photon mass
µ is introduced. This allows taking all the cuts outside the contour Γ as
well as regularizing the infrared singularities of individual contributions. As
was noted in the previous subsection, the singularities of the two-time Green
function in the complex E plane are defined by the unperturbed Hamiltonian
if it is constructed by perturbation theory. In particular, it means that in
n-th order of perturbation theory gaa(E) has poles of all orders till n+ 1 at
the position of the unperturbed energy level under consideration. Therefore,
in calculations by perturbation theory it is sufficient to consider the photon
mass as a very small parameter which provides a separation of the pole from
the related cut. At the end of the calculations after taking into account a
whole gauge invariant set of Feynman diagrams we can put µ → 0. The
possibility of taking the limit µ→ 0 follows, in particular, from the fact that
the contour Γ can be shrunk continuosly to the point E = E

(0)
a (see Fig. 5).

Generally speaking, the energy shift of an excited level derived by formula
(35) contains an imaginary component which is caused by its instability.
This component determines the width of the spectral line in the Lorentz
approximation.
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2.4 Perturbation Theory for Degenerate
and Quasidegenerate Levels

We are interested in the atomic levels with energies E1, . . . , Es arising from
unperturbed degenerate or quasidegenerate levels with energiesE(0)

1 , . . . , E
(0)
s .

As usual, we assume that the energy shifts of the levels under consideration or
their splitting caused by the interaction are much smaller than the distance
to other levels. The unperturbed eigenstates form an s-dimensional subspace
Ω. We denote the projector on Ω by

P (0) =
s∑

k=1

P
(0)
k =

s∑

k=1

uku
†
k , (40)

where {uk}sk=1 are the unperturbed wave functions which, in a general case,
are linear combinations of one-determinant functions (see (25)). We project
the Green function G(E) on the subspace Ω

g(E) = P (0)G(E)γ0
1 . . . γ

0
NP

(0) , (41)

where, as in (26), the integration over the electron coordinates is implicit. As
in the case of a single level, to isolate the poles of g(E) corresponding to the
bound states under consideration, we introduce a non-zero photon mass µ. We
assume that the photon mass µ is larger than the energy distance between the
levels under consideration and much smaller than the distance to other levels.
In this case we can choose a contour Γ in the complex E plane in a way that
it surrounds all the poles corresponding to the considered states (E1, . . . Es)
and keeps outside all other singularities, including the cuts starting from the
lower-lying bound states (see Fig. 6). In addition, if we neglect the instability
of the states under consideration, the spectral representation (see (12)–(22))
gives

g(E) =
s∑

k=1

ϕkϕ
†
k

E − Ek
+ terms that are regular inside of Γ , (42)

where

ϕk = P (0)Φk , ϕ†
k = Φ†

kP
(0) . (43)

As in the case of a single level, in zeroth approximation one easily finds

g(0)(E) =
s∑

k=1

P
(0)
k

E − E(0)
k

. (44)

We introduce the operators K and P by

K ≡ 1
2πi

∮

Γ

dE Eg(E) , (45)

P ≡ 1
2πi

∮

Γ

dE g(E) . (46)
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Γ

Fig. 6. The contour Γ surrounds the poles corresponding to the quasidegenerate
levels under consideration and keeps outside all other singularities. For simplicity,
only one-photon spectra are displayed

Using (42), we obtain

K =
s∑

i=1

Eiϕiϕ
†
i , (47)

P =
s∑

i=1

ϕiϕ
†
i . (48)

We note here that, generally speaking, the operator P is not a projector (in
particular, P 2 = P ). If the perturbation goes to zero, the vectors {ϕi}si=1 ap-
proach the correct linearly independent combinations of the vectors {ui}si=1.
Therefore, it is natural to assume that the vectors {ϕi}si=1 are also linearly
independent. It follows that one can find such vectors {vi}si=1 that

ϕ†
ivk = δik . (49)

Indeed, let

ϕi =
s∑

j=1

aijuj , vk =
s∑

l=1

xklul . (50)

The biorthogonality condition (49) gives

s∑

j=1

aijxkj = δik . (51)

Since the determinant of the matrix {aij} is nonvanishing due to the linear
independence of {ϕi}si=1, the system (51) has a unique solution for any fixed
k = 1, . . . , s. From (47)–(49) we have

Pvk =
s∑

i=1

ϕiϕ
†
ivk = ϕk , (52)

Kvk =
s∑

i=1

Eiϕiϕ
†
ivk = Ekϕk . (53)
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Hence we obtain the equation for vk, Ek [17]

Kvk = EkPvk . (54)

According to (49) the vectors vk are normalized by the condition

v†k′Pvk = δk′k . (55)

The solvability of (54) yields an equation for the atomic energy levels

det (K − EP ) = 0 . (56)

The generalized eigenvalue problem (54) with the normalization condition
(55) can be transformed by the substitution ψk = P

1
2 vk to the ordinary

eigenvalue problem (“Schrödinger-like equation”) [21]

Hψk = Ekψk (57)

with the ordinary normalization condition

ψ†
kψk′ = δkk′ , (58)

where H ≡ P− 1
2 (K)P− 1

2 .
The energy levels are determined from the equation

det(H − E) = 0 . (59)

Generally speaking, the energies determined by this equation contain imagi-
nary components which are due to the instability of excited states. In the case
when the imaginary components are much smaller than the energy distance
between the levels (or the levels have different quantum numbers), they define
the widths of the spectral lines in the Lorentz approximation. In the opposite
case, when the imaginary components are comparable with the energy dis-
tance between the levels which have the same quantum numbers, the spectral
line shape depends on the process of the formation of the states under con-
sideration even in the resonance approximation (see [22,24] for details). If the
instability of excited states can be disregarded, we assume H ≡ (H +H†)/2
in (57), (59).

The operators K and P are constructed by formulas (45) and (46) using
perturbation theory

K = K(0) +K(1) +K(2) + · · · , (60)
P = P (0) + P (1) + P (2) + · · · , (61)

where the superscript denotes the order in a small parameter. The operator
H is

H = H(0) +H(1) +H(2) + · · · , (62)
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where

H(0) = K(0) , (63)

H(1) = K(1) − 1
2
P (1)K(0) − 1

2
K(0)P (1) , (64)

H(2) = K(2) − 1
2
P (2)K(0) − 1

2
K(0)P (2)

−1
2
P (1)K(1) − 1

2
K(1)P (1)

+
3
8
P (1)P (1)K(0) +

3
8
K(0)P (1)P (1)

+
1
4
P (1)K(0)P (1) . (65)

It is evident that in zeroth order

K
(0)
ik = E

(0)
i δik , (66)

P
(0)
ik = δik , (67)

H
(0)
ik = E

(0)
i δik . (68)

To derive (54)–(57) we have introduced a non-zero photon mass µ which
was assumed to be larger than the energy distance between the levels under
consideration and much smaller than the distance to other levels. At the end
of the calculations after taking into account a whole gauge invariant set of
Feynman diagrams, we can put µ → 0. The possibility of taking this limit
in the case of quasidegenerate states follows from the fact that the cuts can
be drawn to the related poles by a deformation of the contour Γ as shown in
Fig. 7.

3 Transition Probabilities

Let us consider the transition of an atom from an initial state a to a final
state b with the emission of a photon with momentum kf and polarization
εf . The transition probability is given as

Γ

Fig. 7. A deformation of the contour Γ that allows drawing the cuts to the related
poles in the case of quasidegenerate states when µ → 0. For simplicity, only one-
photon spectra are displayed
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dW = 2π|τγf ,b;a|2δ(Eb + k0
f − Ea)dkf , (69)

where τγf ,b;a is the transition amplitude which is connected with the S-matrix
element by

Sγf ,b;a = 2πiτγf ,b;aδ(εb + k0
f − εa) (70)

and k0
f ≡ |kf |. According to the standard reduction technique (see, e.g.,

[33, 34]), the transition amplitude is

Sγf ,b;a = −iZ− 1
2

3

∫
d4y

εν∗f exp (ikf · y)
√

2k0
f (2π)3

〈b|jν(y)|a〉 . (71)

Here jν(y) is the electron-positron current operator in the Heisenberg rep-
resentation, |a〉 and |b〉 are the vectors of the initial and final states in the
Heisenberg representation, Z3 is a renormalization constant, a · b ≡ aνb

ν ,
εf = (0, εf ), and kf = (k0

f ,kf ). Employing the equation

jν(y) = exp (iHy0)jν(0,y) exp (−iHy0) , (72)

we obtain

Sγf ,b;a = −iZ− 1
2

3

∫
d4y exp [i(Eb + k0

f − Ea)y0]Aν∗f (y)〈b|jν(0,y)|a〉

= −2πiZ− 1
2

3 δ(Eb + k0
f − Ea)

∫
dy Aν∗f (y)〈b|jν(0,y)|a〉 , (73)

where

Aνf (x) =
ενf exp (ikf · x)
√

2k0
f (2π)3

(74)

is the wave function of the emitted photon. Since |a〉 and |b〉 are bound states,
(73) as well as the standard reduction technique [33, 34] cannot be used for
a direct evaluation of the amplitude. The desired calculation formula can be
derived within the TTGF formalism [18–20].

To formulate the method for a general case, we assume that in zeroth
approximation the state a belongs to an sa-dimensional subspace of unper-
turbed degenerate states Ωa and the state b belongs to an sb-dimensional
subspace of unperturbed degenerate states Ωb. We denote the projectors onto
these subspaces by P (0)

a and P (0)
b , respectively. We denote the exact states

originating from Ωa by |na〉 and the exact states originating from Ωb by |nb〉.
We also assume that on an intermediate stage of the calculations a non-zero
photon mass µ is introduced. It is considered to be larger than the energy
splitting of the initial and final states under consideration and much smaller
than the distance to other levels.
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We introduce

Gγf
(E′, E;x′

1, . . .x
′
N ;x1, . . .xN )δ(E′ + k0 − E)

=
1

2πi
1
2π

1
N !

∫ ∞

−∞
dx0dx′0

∫
d4y exp (iE′x′0 − iEx0) exp (ik0y0)

×Aν∗f (y)〈0|Tψ(x′0,x′
1) · · ·ψ(x′0,x′

N )

×jν(y)ψ(x0,xN ) · · ·ψ(x0,x1)|0〉 , (75)

where, as in the previous section, ψ(x) is the electron-positron field operator
in the Heisenberg representation. Let us investigate the singularities of Gγf

in the region E′ ∼ E(0)
b and E ∼ E(0)

a . Using the transformation rules

ψ(x0,x) = exp (iHy0)ψ(x0 − y0,x) exp (−iHy0) ,
j(y0,y) = exp (iHy0)j(0,y) exp (−iHy0) , (76)

we obtain

Gγf
(E′, E;x′

1, . . .x
′
N ;x1, . . .xN )δ(E′ + k0 − E)

=
1

2πi
1
2π

1
N !

∫ ∞

−∞
dtdt′

∫
d4y exp (iE′t′ − iEt) exp [i(E′ + k0 − E)y0]

×Aν∗f (y)〈0|Tψ(t′,x′
1) · · ·ψ(t′,x′

N )

×jν(0,y)ψ(t,xN ) · · ·ψ(t,x1)|0〉

=
1

2πi
δ(E′ + k0 − E)

1
N !

∫ ∞

−∞
dtdt′

∫
dy exp (iE′t′ − iEt)

×Aν∗f (y)〈0|Tψ(t′,x′
1) · · ·ψ(t′,x′

N )

×jν(0,y)ψ(t,xN ) · · ·ψ(t,x1)|0〉 . (77)

Using again the time-shift transformation rules, we obtain

Gγf
(E′, E;x′

1, . . .x
′
N ;x1, . . .xN )

=
1

2πi
1
N !

∫ ∞

−∞
dtdt′

∫
dy exp (iE′t′ − iEt)

∑

n1,n2

Aν∗f (y)

× exp (−iEn1t
′) exp (iEn2t)θ(t

′)θ(−t)〈0|Tψ(0,x′
1) · · ·ψ(0,x′

N )|n1〉
×〈n1|jν(0,y)|n2〉〈n2|ψ(0,xN ) · · ·ψ(0,x1)|0〉+ · · · . (78)

Here we have assumed E0 = 0, as in the previous section. Taking into account
the identities

∫ ∞

0

dt exp [i(E′ − En1)t] =
i

E′ − En1 + i0
,

∫ 0

−∞
dt exp [i(−E + En2)t] =

i
E − En2 + i0

, (79)
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we find

Gγf
(E′, E;x′

1, . . .x
′
N ;x1, . . .xN )

=
i

2π
1
N !

∑

n1,n2

∫
dy Aν∗f (y)

1
E′ − En1 + i0

1
E − En2 + i0

×〈0|Tψ(0,x′
1) · · ·ψ(0,x′

N )|n1〉〈n1|jν(0,y)|n2〉
×〈n2|ψ(0,xN ) · · ·ψ(0,x1)|0〉+ · · · . (80)

We are interested in the analytical properties of Gγf
as a function of the two

complex variables E′ and E in the region E′ ∼ E(0)
b , E ∼ E(0)

a . These prop-
erties can be studied using the double spectral representation of this type
of Green function (see [22, 38]). As it follows from the spectral representa-
tion, the terms which are omitted in (80) are regular functions of E′ or E
if E′ ∼ E

(0)
b and E ∼ E

(0)
a , and, for a non-zero photon mass µ, the Green

function Gγf
(E′, E) has isolated poles in the variables E′ and E at the points

E′ = Enb
and E = Ena

, respectively. Let us now introduce a Green function
gγf ,b;a(E

′, E) by

gγf ,b;a(E
′, E) = P

(0)
b Gγf

(E′, E)γ0
1 · · · γ0

NP
(0)
a , (81)

where, as in (26), the integration over the electron coordinates is implicit. It
can be written as

gγf ,b;a(E
′, E) =

i
2π

sa∑

na=1

sb∑

nb=1

1
E′ − Enb

1
E − Ena

×ϕnb

∫
dy Aν∗f (y)〈nb|jν(0,y)|na〉ϕ†

na

+ terms that are regular functions of E′ or E if E′ ∼ E(0)
b

and E ∼ E(0)
a , (82)

where the vectors ϕk are defined by (43). Let the contours Γa and Γb sur-
round the poles corresponding to the initial and final levels, respectively, and
keep outside other singularities of gγf ,b;a(E

′, E) including the cuts starting
from the lower-lying bound states. Comparing (82) with (73) and taking into
account the biorthogonality condition (49), we obtain the desired formula [18]

Sγf ,b;a = Z
−1/2
3 δ(Eb + k0

f − Ea)
∮

Γb

dE′
∮

Γa

dE v†bgγf ,b;a(E
′, E)va , (83)

where by a we imply one of the initial states and by b one of the final states
under consideration. The vectors vk are determined from (54)–(55).

In the case of a single initial state (a) and a single final state (b), the
vectors va and vb simply become normalization factors. So, for the initial
state,
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v∗aPava = v∗a
1

2πi

∮

Γa

dE gaa(E)va = 1 (84)

and, therefore,

|va|2 =
[ 1
2πi

∮

Γa

dE gaa(E)
]−1

. (85)

Choosing

va =
[ 1
2πi

∮

Γa

dE gaa(E)
]−1/2

, vb =
[ 1
2πi

∮

Γb

dE gbb(E)
]−1/2

, (86)

we obtain

Sγf ,b;a = Z
−1/2
3 δ(Eb + k0

f − Ea)
∮

Γb

dE′
∮

Γa

dE gγf ,b;a(E
′, E)

×
[ 1
2πi

∮

Γb

dE gbb(E)
]−1/2[ 1

2πi

∮

Γa

dE gaa(E)
]−1/2

. (87)

The Green function gγf ,b;a is constructed by perturbation theory after
the transition in (75) to the interaction representation and using the Wick
theorem [22].

4 Conclusion

We have formulated the perturbation theory for calculations of the energy
levels and the transitions probabilities in high-Z few-electron atoms. The
TTGF method can also be used for calculations of scattering processes. The
corresponding formulas for the photon scattering by an atom and for the
radiative recombination of an electron with an atom are presented in [22].
Application of the method to resonance scattering processes yields a system-
atic theory for the spectral line shape. For a detailed consideration of these
processes within the TTGF method we refer to [22].
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Abstract. We give an overview over recent investigations concerning the relativis-
tic electron-positron field. Starting from basic definition, we review the derivation
of the Lamb shift and the Hartree-Fock approximation.

1 Introduction

Atoms, molecules, and solid states containing nuclei with high positive charge
eZ show certain effects that can only be explained in the context of relativistic
quantum mechanics. Of course, this is well known to spectroscopists: the spec-
tral lines of hydrogen have a fine structure that is not seen in non-relativistic
quantum mechanics. However, sometimes such differences would be obvious
in daily life: neither would gold have the shiny golden appearance that it has,
nor would we be able to start our cars with the usual lead accumulator, if
they behaved as non-relativistic quantum mechanics predicts. A relativistic
treatment of these systems is warranted.

On the other hand, the treatment of relativistic multi-particle quantum
systems is notoriously difficult. Even the naive Hamiltonian D0 ⊗ 1 + 1⊗D0

of two non-interacting free Dirac particles has the whole line as spectrum,
a situation that is unchanged when adding the interaction with nuclei and
among the particles. The concept of bound states is lost. One speaks of
continuum dissolution or the Brown-Ravenhall disease (Brown and Ravenhall
[4]). We will attempt to present some progress that has been made over the
years to overcome this problem and to formulate a mathematically consistent
relativistic quantum mechanics.

2 The Basic Notation

2.1 The Basic Hilbert Space and the Dirac Operator

The basic Hilbert space is

H := L2(G,dx) , (1)

i.e., the square integrable functions of the space-spin variable

x := (x, σ) ∈ G := R
3 × {1, . . . , 4} .

In the following we will consider Dirac operators

Dϕ,A := cα ·
(

�

i
∇+

e

c
A

)
+mc2β − eϕ

for a particle of charge −e in an electric field −e∇ϕ and a magnetic field
∇× A. The 4× 4 matrices α and β are the four Dirac matrices
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β =
(

1 0
0 −1

)
, α =

(
0 σ
σ 0

)

in standard representation where σ = (σ1, σ2, σ3) are the three Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

We will make the following basic assumptions about the electric and mag-
netic potential ϕ and A:

1. The quadratic form domain Q(Dϕ,A) of Dϕ,A is equal to Q(D0) =
H1/2(G), the one of the free Dirac operator D0.

2. The resolvent difference (i +Dϕ,A)−1 − (i +D0)−1 is compact.

The latter assumption implies according to Weyl that the essential spectra
of the free Dirac operator and the one with the electro-magnetic field agree,
i.e., we have

σess(Dϕ,A) = (−∞,−mc2] ∪ [mc2,∞) . (2)

An important class of examples that exhibits these properties is given by
Dirac operators DZ := DeZ/|·|,0 of one-electron atoms and ions with e2Z <
2/π. This follows from a simple application of Kato’s inequality (Kato [16])

|∇| ≥ (2/π)| · |−1 .

(Nenciu [21] proved that these Dirac operators have a distinguished self-
adjoint realization in H, if Ze2 < 1.) Physically Z is the atomic number, −e
is the electron charge. The constant α := e2/(�c) is called the Sommerfeld
fine structure constant. It has the approximate value 1/137.

2.2 The Electron and Positron Subspace

As opposed to non-relativistic quantum mechanics the state space of an elec-
tron is not a concept that can be defined independently of the environment
of the electron. It rather depends on the electromagnetic potential ϕq,Aq

in which it moves. We will, however, suppress – for notational simplicity –
the dependence on the magnetic potential whenever we consider the purely
electric case. This does not mean that the magnetic field is irrelevant. In
fact many properties crucially depend on it (see, e.g., Lieb, Siedentop, and
Solovej [17]). We emphasize that ϕq and Aq are not necessarily the external
potentials only; in fact these potentials might also take into account other
electrons and positrons. Given ϕq and Aq, we define the one electron space
as

He := H+ := Λ+(H) = [χ[0,∞)(Dϕq,Aq
)](H) . (3)

The one positron space is
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Hp := CH− := CΛ−(H) = C(1− Λ+)(H) (4)

where C is the charge conjugation operator (Cψ)(x) = iβα2ψ(x).
The positron and the electron can be distinguished by the charge. Corre-

spondingly the Fock space is

F :=
⊕

n,m∈N0

Fn,m :=
⊕

n,m∈N0

(
n∧

ν=1

He

)

⊗
(

m∧

µ=1

Hp

)

︸ ︷︷ ︸
=:Fn,m

(5)

where we set
∧0
ν=1 He :=

∧0
ν=1 := C. We emphasize again that this con-

struction depends on the potential. Therefore, also the electron creation and
annihilation operators a∗ and a and the corresponding positron operators
b∗ and b will depend on the electromagnetic potential ϕq,Aq as we see in
Subsect. 2.3.

The question which electric potential ϕq and which magnetic vector po-
tential Aq (and thus H+) should be used is not settled in the physics literature.
If the free Dirac operator is used one speaks of the free picture; if the external
field is included one speaks of the Furry picture. We refer to Sucher [26–28]
for this terminology and details of these choices. Mittleman [19] stated that
the potential that gives the highest ground state energy should be used.

2.3 Creation and Annihilation Operators

We will define these operators explicitly for given f ∈ L2(R3)⊗C
4. It suffices

to do this component wise.

Electron Annihilation Operators a(f)

On the subspace F(n+1,m) it acts as

(a(f)ψ)(n,m)(x1, . . . , xn; y1, . . . , ym)

=
√
n+ 1

∫

G

dx (Λ+f)(x)ψ(n+1,m)(x, x1, . . . , xn; y1, . . . , ym) . (6)

Electron Creation Operators a∗(f)

On the subspace F(n−1,m) into F(n,m) it acts as

(a∗(f)ψ)(n,m)(x1, . . . , xn; y1, . . . , ym)

=
1√
n

n∑

j=1

(−1)j+1Λ+f(xj)ψ(n−1,m)(x1, . . . , x̂j , . . . , xn; y1, . . . , ym) . (7)

As usual the hat indicates that the corresponding argument is omitted. The
operator a∗(f) is the adjoint of a(f) and the map f �→ a∗(f) is linear.



The Relativistic Electron-Positron Field 301

Positron Annihilation Operators b(f)

On the subspace F(n,m+1) it acts as

(b(g)ψ)(n,m)(x1, . . . , xn; y1, . . . , ym)

= (−1)n
√
m+ 1

∫

G

dy[CΛ−g](y)ψ(n,m+1)(x1, . . . , xn; y, y1, . . . , ym) . (8)

Positron Creation Operators b∗(f)

On the subspace F(n,m−1) it acts as

(b∗(g)ψ)(n,m)(x1, . . . , xn; y1, . . . , ym)

=
(−1)n√
m

m∑

k=1

(−1)k+1[CΛ−g](yk)ψ(n,m−1)(x1, . . . , xn; y1, . . . , ŷk, . . . , ym) .

(9)

We observe that, due to the anti-linearity of C, the map g �→ b(g) is linear
and the map g �→ b∗(g) is anti-linear.

The Canonical Anti-Commutation Relations

These operators fulfill the canonical anti-commutation relations

{a(f), a(g)} = {a∗(f), a∗(g)} = 0 , (10)
{a(f), a∗(g)} = (f, Λ+g) , (11)
{b(f), b(g)} = {b∗(f), b∗(g)} = 0 , (12)
{b∗(f), b(g)} = (f, Λ−g) , (13)

{b#(f), a#(g)} = 0 (14)

where a # indicates a starred or unstarred operator.

The Field Operators

The field operators of the electron-positron field are defined as

Ψ(f) := a(f) + b∗(f) . (15)

They fulfill

{Ψ(f1), Ψ(f2)} = {Ψ∗(f1), Ψ∗(f2)} = 0 , (16)
{Ψ(f1), Ψ∗(f2)} = (f1, f2)1 , (17)

for f1, f2 ∈ H.
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We have also

‖Ψ(f)ψ‖2 + ‖Ψ∗(f)ψ‖2 = (ψ, {Ψ(f), Ψ∗(f)}ψ)F = ‖f‖2‖ψ‖2 , (18)

and hence, after some computation,

‖Ψ(f)‖ = ‖Ψ∗(f)‖ = ‖f‖ . (19)

We remark that the vacuum vector |0〉 := 1 ∈ F(0,0) = C satisfies the equa-
tions

Ψ(f)|0〉 = 0, ∀f ∈ H+ , (20)

and
Ψ∗(f)|0〉 = 0, ∀f ∈ H− . (21)

This also characterizes the vacuum state up to a constant of modulus one.

3 The Hamiltonian

3.1 The Unrenormalized Hamiltonian

It is convenient to pick an orthonormal basis . . . , e−2, e−1, e1, e2, . . . ∈ H1(G)
where we assume that positive indices refer to elements in H+ and negative
indices refer to H−, although the following construction will not depend on
the choice. The formal or unrenormalized Hamiltonian of the Dirac field of
electrons interacting via Coulomb forces with the nucleus and with each other
is

Hur :=
∑

m,n

Dm.nΨ(em)∗Ψ(en) +
α

2

∑

k,l,m,n

Wk,l;m,nΨ
∗(ek)Ψ(el)Ψ∗(em)Ψ(en)

(22)
where

Dm,n := (em,Dϕen)

and
Wk,l;m,n :=

∫

G

dx
∫

G

dyek(x)el(y)em(x)en(y)|x− y|−1 .

Although the Hamiltonian (22) looks superficially as the one of the non-
relativistic electron field, it is very much different since Dm,n is the matrix
of an operator which is unbounded from below; in particular, a ground state
does not exist. The purpose of these notes is to replace this formal expression
with an expression that has a definite meaning in the no-particle setting,
in the one-particle setting, and for so called quasi-free states in the general
setting.

It is common to write a(x) :=
∑

n a(en)en(x), a∗(x) :=
∑

n a
∗(en)en(x),

b(x) :=
∑

n b(en)en(x), and b∗(x) :=
∑

n b
∗(en)en(x). Analogously one de-

fines
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Ψ(x) := a(x) + b∗(x) =
∑

n

(a(en) + b∗(en))en(x) .

With the help of this definition, one can write a second quantized integral
operator A on H with kernel A(x, y) as follows

Aur =
∑

m,n

(em, Aen)Ψ∗(em)Ψ(en)

=
∫

G

dx
∑

m,n

∫

G

dyem(x)A(x, y)en(y)Ψ∗(em)Ψ(en)

=
∫

G

dx
∫

G

dyA(x, y)Ψ∗(x)Ψ(y) .

(23)

Local operators such as multiplication and differential operators are brought
in this form using the delta function and yields for the unrenormalized Hamil-
tonian

Hur :=
∫

R3
dxΨ∗(x)Dϕ,xΨ (x) + α

1
2

∫

R3
dx

∫

R3
dy

Ψ∗(x)Ψ (x)Ψ∗(y)Ψ (y)
|x− y|

︸ ︷︷ ︸
=:Wur

(24)

where Ψ(x) = (Ψ(x, 1), . . . , Ψ(x, 4))t.

3.2 The Normal Ordered Hamiltonian

The normal or Wick ordered Hamiltonian H is obtained from the unordered
one by writing all field operators in terms of electron-positron annihilation-
creation operators and anti-commuting all starred terms to the left of un-
starred ones.

One-Particle Operators

The above rule gives

: Ψ∗(f)Ψ(g) : = : (a∗(f) + b(f))(a(g) + b∗(g)) :
= a∗(f)a(g) + a∗(f)b∗(g) + b(f)a(g)− b∗(g)b(f) .

(25)

Thus,
∫

R3
Ψ∗(x)Dϕ,xΨ(x)dx = Dϕ +

∑

σ,τ

[Dϕ,x,σ,τΛ−(x′, σ; x, τ)]
x′=x

dx , (26)

i.e., the normal ordered Hamiltonian

Dϕ :=
∫

R3
: Ψ∗(x)Dϕ,xΨ (x) : (27)

differs from the unordered one by a physically uninteresting constant.
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Two-Particle Operators

The above general rule gives

Wur = W +
1
2

∫

G

dx
∫

G

dy : Ψ∗(x)Ψ(y) :
Λ+(x, y)− Λ−(x, y)

|x− y|
︸ ︷︷ ︸

=:−2Xϕq (x,y)

+
∫

G

dx : Ψ∗(x)Ψ(x) :
∫

R3
dy|x− y|−1

∑

τ

Λ−(y, τ ; y, τ)

︸ ︷︷ ︸
=:ρϕq (y)

+
1
2

∫

G

dx
∫

G

dy
Λ+(x, y)Λ−(x, y)

|x− y| +
1
2

∫

G

dx
∫

G

dy
Λ−(x, x)Λ−(y, y)

|x− y| ,

(28)

where W :=
∫

R3 dx
∫

R3 dy : ψ∗(x)ψ(x)ψ∗(y)ψ(y) : |x − y|−1 is the totally
normal ordered interaction. The last two terms are unimportant constants.
The second term on the right is the exchange energy of the electron-positron
field with the Dirac sea and its complement; the third term is the electrostatic
interaction energy with the Dirac sea. (Λ− is the density matrix of the Dirac
sea electrons and ρϕq is its density.)

Thus, modulo physically unimportant constants, we have

Hur = Dϕ + αW + α
∫

R3
dx| · |−1 ∗ ρϕq (x) : Ψ∗(x)Ψ (x) :

− α
∫

G

dx
∫

G

dyXϕq (x, y) : Ψ∗(x)Ψ(y) : . (29)

The last two terms are one particle operators. They will influence the fine
structure of spectral lines of single particles. Their effect will be investigated
in Chap. 4. The many body character of the theory is contained solely in the
last term of the first line. Its behavior is far from being understood. The last
two terms of the right hand will be responsible for the vacuum polarization.
We will discuss this effect in Sect. 4 in a one-body context. Since it affects
the fine details of spectral lines only, one may – as we will do in Sect. 5 –
consider a model without these terms and concentrate on the expectations of
the first line in quasi-free states.

3.3 Physical Principles for Manipulating Hamiltonians

We will use three guiding principles to transform expressions for the energy
into other physically equivalent ones as formulated and justified by Weisskopf
[30], p. 6: “The following three properties of the vacuum electrons are assumed
to be irrelevant:

W1 The energy of the vacuum electrons in field free space.
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W2 The charge and current density of the vacuum electrons in field free
space.

W3 A field independent electric and magnetic polarizability that is constant
in space and time.”

These principles can be viewed as a condensate of previous results that started
with the work of Dirac [8, 9] and Heisenberg [14].

4 The Vacuum Polarization of a Nucleus

4.1 One Electron in the Field of a Nucleus

In this chapter we will consider expectations of D+αW in one-electron states.
We wish to show that this quadratic form defines a self-adjoint Hamiltonian
that is bounded from below.

Throughout this chapter we will assume that the nuclear electric potential
ϕ = | · |−1 ∗n is given by a nonnegative spherically symmetric charge density
n ∈ L1(R3) ∩ L3/2+δ(R3) for some positive δ. For technical convenience we
will also assume that n̂ ∈ C∞

0 (R3). As usual we call
∫
n = eZ the total charge

of the nucleus and Z its atomic number.
This assumption implies immediately corresponding integrability proper-

ties for the electric potential.

Lemma 1. The nuclear potential fulfills ϕ ∈ L3+ε(R3)∩L∞(R3) for all pos-
itive ε and is spherically symmetric.

Proof. To show this, we decompose the Coulomb kernel and set

I := χBR(0)| · |−1, A := | · |−1 − I .

Boundedness: using the above decomposition we have

|| · |−1 ∗ n(x)| = I ∗ n(x) +A ∗ n(x) ≤ cδ,R‖n‖3/2+δ + eZ/R. (30)

We remark for later purposes that cδ,R → 0 as R→ 0.
L3+ε-property: we estimate

‖|·|−1∗n‖3+ε ≤ ‖I∗n‖3+ε+‖A∗n‖3+ε ≤ c(‖I‖ ε+3
ε+1
‖n‖1+ ε

3
+‖A‖3+ε‖n‖1) (31)

using again the above decomposition and Young’s inequality. �

Equipped with the three principles W1 through W3 of Weisskopf we begin
to modify the one particle interaction of the Hamiltonian. In a first step we
will subtract the potential | · |−1 ∗ ρ0 and the exchange energy X0 of the free
Dirac operator. This yields the Hamiltonian
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Dϕ + αW + α
∫

R3
dx| · |−1 ∗ (ρϕq − ρ0)(x) : Ψ∗(x)Ψ (x) :

− α
∫

G

dx
∫

G

dy (Xϕq (x, y)−X0(x, y))
︸ ︷︷ ︸

X(x,y):=

: Ψ∗(x)Ψ(y) : . (32)

The subtraction from ρϕq can be viewed as a (pre-)charge renormalization;
the subtraction from Xϕq is called a mass renormalization.

We now choose ϕq := ϕ. In this case the mass renormalized exchange en-
ergy operator X turns out to be well defined. However, the density difference
ρϕ − ρ0 is still pointwise infinite. To proceed we will renormalize the charge
once more in a way that does not change the physics by subtracting a field
independent counter term γc of the difference Qϕ := Λϕ− − Λ0

−. To this end,
we write γc as a function of ξ := x−y as the first variable and η := (x+y)/2 as
the second variable and Fourier transform in the second variable with Fourier
variable k. We call the resulting integral kernel γ̃c(ξ, k). It is

γ̃c(ξ, k) := ϕ̂(k)k2F0(ξ, k/|k|) ; (33)

formally,

F0(ξ, k/|k|) = − 1
16π3

∫

R3
dp

1 + p2 sin2 θ

(1 + p2)5/2
eip·ξ , (34)

where θ is the angle between k and p. This density matrix is – for ξ = 0 –
obviously translationally invariant and not time dependent and can therefore
be subtracted according to W3. It is also obvious that it diverges on the
diagonal.

The fully charge renormalized density matrix of the polarized Dirac sea
is Λϕ− − Λ0

− − γc and its density is

ρ(x) := trC4(Λϕ− − Λ0
− − γc)(x, x) . (35)

Thus, the completely one-particle renormalized Hamiltonian is

H :=Dϕ + α
∫

R3
dx| · |−1 ∗ ρ(x) : Ψ∗(x)Ψ (x) :

− α
∫

G

dx
∫

G

dyX(x, y) : Ψ∗(x)Ψ(y) : +αW .

(36)

Our interest is to show that the quadratic form

E1 := H+(G) ∩H1(G) →R

ψ �→(ψ,Hψ) =
(
ψ, (Dϕ + α| · |−1 ∗ ρ− αX)ψ

) (37)

is well defined and bounded from below, since this will define a distinguished
self-adjoint Hamiltonian in the one-electron sector. This will follow from
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Theorem 1 (Hainzl and Siedentop [13]). The operators | · |−1 ∗ ρ and X
are relatively bounded with respect to the form (ψ,Dϕψ) on H+(G) ∩H1(G)
with form bound zero.

We will prove the theorem in a sequence of Lemmata showing the claim
for X and pieces of | · |−1 ∗ ρ separately. These pieces come naturally when
analyzing the singular structure of Qϕ := Λϕ−−Λ0

−: using the Cauchy formula
(Kato [16]) and the resolvent equation we obtain

Qϕ =
1
2π

∫ ∞

−∞
dη
(

1
Dϕ + iη

− 1
D0 + iη

)
=

4∑

n=1

αnQn , (38)

where the index n indicates the number of ϕ’s in the expression, i.e.,

Qn :=






1
2π

∫∞
−∞ dη 1

D0+iη

(
ϕ 1
D0+iη

)n
n ≤ 3

1
2π

∫∞
−∞ dη 1

D0+iηϕ
1

D0+iηϕ
1

Dϕ+iηϕ
1

D0+iηϕ
1

D0+iη n = 4
(39)

We remark that the density of Q2 vanishes: the terms linear in the Dirac
matrices vanish after summation over the spin variable σ, since the Dirac
matrices are traceless; the remaining terms are odd in η and vanish after
integration over η. Thus, Q2 does not contribute to the vacuum polarization
density. The two terms

ρ3(x) := trC4Q3(x, x), ρ4(x) := trC4Q4(x, x) (40)

will turn out to be well defined and yields an electric potential which is form
bounded with respect to (f,Dϕf) with form bound zero.

Lemma 2. The quadratic form P4[ψ] := tr(χQ4) is bounded relative to
(ψ,Dϕψ) on H+ ∩H1(G) with form bound zero, where χ := | · |−1 ∗ ψ2, i.e.,
for every ε > 0 there exists a constant M such that for all ψ ∈ H+ ∩H1(G)
we have

|P4[ψ]| ≤ ε(ψ,Dϕψ) +M(ψ,ψ) .

Proof. We have

| tr(χQ4)| ≤
1
2π

∫

R

dη
∥
∥
∥
∥χ

1
D0 + iη

∥
∥
∥
∥

5

∥
∥
∥
∥ϕ

1
D0 + iη

∥
∥
∥
∥

3

5

∥
∥
∥
∥ϕ

1
Dϕ + iη

∥
∥
∥
∥

5

≤ 1
2π

∫

R

dη
∥
∥
∥
∥χ

1
D0 + iη

∥
∥
∥
∥

5

∥
∥
∥
∥ϕ

1
D0 + iη

∥
∥
∥
∥

4

5

∥
∥
∥
∥(D0 + iη)

1
Dϕ + iη

∥
∥
∥
∥
∞
.

(41)

The last factor is bounded by 1 + ‖eϕ(Dϕ + iη)−1‖ which is finite, since ϕ
is bounded and 0 ∈ σ(Dϕ). Thus, according to Hölder, it suffices to bound∫

R
dη‖χ(D0 + iη)−1‖55 and

∫
R

dη‖ϕ(D0 + iη)−1‖55. By an inequality of Seiler
and Simon [25] we have
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∫

R

dη
∥
∥
∥
∥ϕ

1
D0 + iη

∥
∥
∥
∥

5

5

≤
∫

R

dη

∥
∥
∥
∥
∥
ϕ

1
√
−∆+m2 + η2

∥
∥
∥
∥
∥

5

5

≤c‖ϕ‖55
∫

R4

dk
√

k2 +m2
5

(42)
which is finite since ϕ ∈ L5(R3) (see (30) and (31)).

To estimate
∫

R
dη‖χ(D0+iη)−1‖55 we proceed as in (42) and then use (30)

with ε = 6 followed by the Sobolev inequality

‖| · |−1 ∗ ψ2‖ ≤ c‖I‖9/7‖ψ‖23 + c‖A‖9‖ψ‖22 ≤ cR(ψ, |p|ψ) + c‖A‖9‖ψ‖22 , (43)

where cR → 0 as R → 0. This proves that P4 is relatively form bounded
with respect to |Dϕ| with form bound 0, since for bounded potential |p| ≤
c(|Dϕ|+ 1). �

Lemma 3. The quadratic form P3[ψ] := tr(χQ3) is bounded.

Proof. We have

(χ, ρ3)= (χ̂, ρ̂3) = (2π)−3/2

∫

R3
dp1

∫

R3
dp2

4∑

σ=1

χ̂(p1−p2)Q̂3(p1, σ; p2, σ) , (44)

where ρ3 is defined by (39) and (40). The “eigenfunctions” of the free Dirac
operator in momentum space are

uτ (p) :=






1
N+(p)

(
σ · peτ

−(1− E(p))eτ

)

τ = 1, 2 ,

1
N−(p)

(
σ · p eτ

−(1 + E(p))eτ

)

τ = 3, 4 .

with eτ := (1, 0)t for τ = 1, 3 and eτ := (0, 1)t for τ = 2, 4 and

N+(p) =
√

2E(p)(E(p)− 1), N−(p) =
√

2E(p)(E(p) + 1) . (45)

The indices 1 and 2 refer to positive “eigenvalue” E(p) and the indices 3 and
4 to negative −E(p). (See, e.g., Evans et al. [10].) Using Plancherel’s theorem
we get

(ψ, P3ψ) =
1

(2π)7

∫

R3
dp1

∫

R3
dp2

∫

R3
dp3

∫

R3
dp4

4∑

τ1,τ2,τ3,τ4=1

χ̂(p1 − p2)ϕ̂(p2 − p3)ϕ̂(p3 − p4)ϕ̂(p4 − p1)×
× 〈uτ1(p1)|uτ2(p2)〉〈uτ2(p2)|uτ3(p3)〉〈uτ3(p3)|uτ4(p4)〉〈uτ4(p4)|uτ1(p1)〉

×
∫ ∞

−∞
dη

1
(iaτ1E(p1)− η)(iaτ2E(p2)− η)(iaτ3E(p3)− η)(iaτ4E(p4)− η)

(46)
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with aτ = 1 for τ = 1, 2 and aτ = −1 for τ = 3, 4. The integral over η is seen
to vanish by Cauchy’s theorem, if all four aτj

have the same sign. In fact we
have to distinguish only two cases, namely three of the aτj

are equal and two
of the aτj

are equal.
Therefore, we will only treat two different cases in the following. The

remaining ones work analogously.
We begin with aτ1 = −1 and aτ2 = aτ3 = aτ4 = 1. In that case the first

factor in (46) reads

∑

τ1=3,4

〈uτ1(p1)|uτ2(p2)〉
∑

τ2=1,2

〈uτ2(p2)|uτ3(p3)〉

×
∑

τ3=1,2

〈uτ3(p3)|uτ4(p4)〉
∑

τ4=1,2

〈uτ4(p4)|uτ1(p1)〉 =

trC2

[σ · p1σ · p2 + (1 + E(p1))(1− E(p2))
N−(p1)2N+(p2)2N+(p3)2N+(p4)2

[
σ·p2σ·p3+(1−E(p2))(1−E(p3))

]

×
[
σ ·p3σ ·p4+(1−E(p3))(1−E(p4))

][
σ ·p4σ ·p1+(1−E(p4))(1+E(p1))

]]
.

(47)

We estimate the modulus of (47) and obtain

|(47)| ≤ c
trC2 |σ · p4σ · p1 + (1− E(p4))(1 + E(p1))|

N−(p1)N+(p4)

≤ c
|p4 · p1 − (E(p4)− 1)(1 + E(p1))|+ |p4 ∧ p1|

N−(p1)N+(p4)
.

(Here and in the following c is a generic positive constant.) Since

− 1
2π

∫ ∞

−∞
dη

1
(−iE(p1)− η)(iE(p2)− η)(iE(p3)− η)(iE(p4)− η)

=
1

(E(p2) +E(p1))(E(p3) + E(p1))(E(p4) + E(p1))

our term of interest (46) is bounded by a constant times

∫

R3
dp1

∫

R3
dp2

∫

R3
dp3

∫

R3
dp4|χ̂(p1 − p2)ϕ̂(p2 − p3)ϕ̂(p3 − p4)ϕ̂(p4 − p1)|

× |p4 · p1 − (E(p4)− 1)(E(p1) + 1)|+ |p4 ∧ p1|
N−(p1)N+(p4)(E(p2) + E(p1))(E(p3) + E(p1))(E(p4) + E(p1))

. (48)

Substituting p2 → p1 + p2 turns (48) into
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∫

R3
dp1

∫

R3
dp2

∫

R3
dp3

∫

R3
dp4

|χ̂(−p2)|
|ϕ̂(p2 + p1 − p3)ϕ̂(p3 − p4)ϕ̂(p4 − p1)|

N−(p1)N+(p4)

× |p4 · p1 − (E(p4)− 1)(E(p1) + 1)|+ |p4 ∧ p1|
(E(p2 + p1) + E(p1))(E(p1) + E(p3))(E(p4) + E(p1))

=
∫

R3
dp2|χ̂(−p2)|f(p2), (49)

where we introduce f to be the remaining integrand. We will now estimate
f . Substituting p1 → p1 + p4, p3 → p3 + p4 we get

f(p2) =
∫

R3
dp1

∫

R3
dp3

∫

R3
dp4|ϕ̂(p2 + p1 − p3)ϕ̂(p3)ϕ̂(p1)|

× |p4 · (p1 + p4)− (E(p4)− 1)(1 + E(p1 + p4))|+ |p4 ∧ p1|
N−(p1 + p4)N+(p4)(E(p2 + p1 + p4) + E(p4 + p1))

× 1
(E(p1 + p4) + E(p3 + p4))(E(p4 + p1) + E(p4))

.

Since E(p1 + p4) = E(p4) + µp4 · p1/E(p4) for some µ ∈ [0, 1], we see that

|p4 · (p1 + p4)− (E(p4)− 1)(E(p1 + p4) + 1)|+ |p4 ∧ p1| ≤ 4|p1||p4| .

Notice that we can bound
∫

R3
dp4

|p4|
E(p3 + p4)E(p4)2N+(p1 + p4)

≤ c

independently of p1 and p3. Therefore,

f(p2) ≤ c
∫

R3
dp1

∫

R3
dp3|ϕ̂(p2 + p1 − p3)ϕ̂(p3)ϕ̂(p1)||p1| .

Since ϕ̂(k) = 4πn̂(k)/k2, we have that f is bounded and compactly supported
since n̂ is compactly supported, p1 and p2 are bounded. Thus,
∫

R3
dp2|χ̂(−p2)|f(p2) ≤ 4π‖ψ̂2‖1‖f‖∞

∫

suppf

|p|−2dp ≤ cϕ(ψ,ψ) (50)

for a constant cϕ depending on ϕ.
Next, we take a peek at the case aτ1 = aτ2 = 1 and aτ3 = aτ4 = −1. The

corresponding integral over η gives

1
2π

∫ ∞

−∞
dη

1
(iE(p1)− η)(iE(p2)− η)(−iE(p3)− η)(−iE(p4)− η)

=
1

(E(p2) +E(p3))(E(p2) + E(p4))(E(p1) + E(p4))

+
1

(E(p2) + E(p3))(E(p1) + E(p3))(E(p1) + E(p4))
.
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Observe now that the corresponding first factor in (46) can be bounded by

c · 4|p2||p3|/N+(p2)N−(p3)) .

Now, we do similar variable transforms as above and arrive at an analog of
(50). �

We set ρ1,r(x) := trC4 (αQ1 − γc) (x, x). Its electric potential U := |·|−1∗ρ1
is called the Uehling potential.

Lemma 4. The Uehling potential is bounded.

Proof. It will be useful to introduce the function C

C(y) :=
1
2
y2

∫ 1

0

dx(1− x2) log[1 + y2(1− x2)/4]

=
1
3
y2

[(
1− 2

y2

)√
1 +

4
y2

log

√
1 + 4/y2 + 1
√

1 + 4/y2 − 1
+

4
y2
− 5

3

] (51)

(Serber [24] and Uehling [29]).
The kernel Q̂1(p, q) of Q1 in momentum space is

Q̂1(p, q) = (2π)−5/2

∫ ∞

−∞
dη

α · p + β − iη
p2 + 1 + η2

ϕ̂(p− q)
α · q + β − iη
q2 + 1 + η2

, (52)

which leads to

trC4Q̂1(p, q) = 2−1/2π−3/2ϕ̂(p− q)
p · q + 1− E(p)E(q)
E(p)E(q)(E(p) + E(q))

(53)

by a straightforward calculation with E(p) =
√

p2 + 1. In configuration space
we obtain introducing r = p− k/2 and q = p + k/2

trC4Q1(x, y) = (2π)−3

∫

R3
dr

∫

R3
dqeir·xtrC4Q̂1(r, q)e−iq·y

= (2π)−3

∫
dp

∫
dktrC4Q̂1(p− k/2, p + k/2)eip·(x−y)e−ik·(x+y)/2

=: Q̃
(

x− y,
x + y

2

)
. (54)

Setting ξ := x − y we remark: the “limits” limy→x trC4Q1(x, y) and

limξ→0 Q̃(ξ, x) are formally the same. Define ˆ̃Q(ξ, ·) to be the Fourier trans-
form of Q̃ with respect to the second variable for fixed ξ = 0, i.e., formally

ˆ̃Q(ξ, k) = (2π)−3/2

∫

R3
dp trC4Q̂1(p− k/2, p + k/2)eip·ξ

=
1

4π3
ϕ̂(k)
∫

R3
dp

p2 − k
2

4 + 1− E(p− k

2 )E(p + k

2 )
E(p− k

2 )E(p + k

2 )
(
E(p− k

2 ) + E(p + k

2 )
)eip·ξ. (55)
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We note that the integral (55) is logarithmically divergent at ξ = 0 inde-
pendently of the form of the external potential ϕ. This shows – as already
remarked above – that the limit limy→x trC4Qϕ(x, y) only exists, if ϕ vanishes.

According to Pauli and Rose [22], (5)–(9), we can separate ˆ̃Q into two
terms

ˆ̃Q(ξ, k) = F1(ξ, k) + ϕ̂(k)k2F0(ξ, k/|k|) , (56)

with F0 as defined in (34). F1 is finite at ξ = 0. We have

ρ̂1,r(k) = F1(0, k)

=
ϕ̂(k)
4π3

∫

R3

p2 − k2/4 + 1− E(p− k

2 )E(p + k

2 )
E(p− k

2 )E(p + k

2 )
(
E(p− k

2 ) + E(p + k

2 )
) + k2

p2 sin2 θ + 1
4E(p)5

dp

=
1

4π2
ϕ̂(k)C(k) , (57)

where C is the function defined in (51). While all summands in the latter
formula decreases like |p|−3 for large |p| and therefore the corresponding
parts of the integral are logarithmically divergent, the integrand decreases as
|p|−5.

The Uehling potential is obviously the relevant part of | · |−1 ∗ ρ1. Recall
that the nuclear potential is ϕ = | · |−1 ∗ n; consequently ϕ̂(k) = 4πn̂(k)/k2.
Thus the Fourier transform of the vacuum polarization potential using (57)
gives

Û(k) =
ϕ̂(k)C(k)
π|k|2 = 4

n̂(k)C(k)
|k|4 (58)

which is spherically symmetric and compactly supported under our assump-
tions on the charge distributions of the nucleus.

Under our general assumptions on the nuclear charge density the Uehling
potential U is bounded, continuous, and decreasing exponentially at infinity.
Thus, it is plainly bounded. �

Eventually we need to bound the exchange operator X. To formulate the
next result we fix the following notation: let Cp,q be the optimal constant in
the generalized Young inequality, i.e., ‖f ∗g‖r ≤ Cp,q‖f‖p,w‖g‖q, 1 < p, q, r <
∞, r−1 + 1 = p−1 + q−1.

Lemma 5. Let ψ ∈ L3(G) ∩ L2(G). Then
∣
∣
∣
∣
∣

∫
dx
∫

dy
ψ(x)X(x, y)ψ(y)

|x− y|

∣
∣
∣
∣
∣
≤
√
C3/2,3/2‖1/| · |2‖3/2,w‖Qϕ‖2‖ψ‖23 , (59)

and for every ε > 0 there exists a constant Cε > 0 such that
∣
∣
∣
∣
∣

∫
dx
∫

dy
ψ(x)Qϕ(x, y)ψ(y)

|x− y|

∣
∣
∣
∣
∣
≤ ε‖ψ‖23 + Cε‖ψ‖22 . (60)
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We note that Lemma 5 implies by Sobolev’s inequality that the form (ψ,Xψ)
is relatively bounded to (ψ,Dϕψ) with form bound zero.
Proof. We first note that X(x, y) = Qϕ(x, y)/|x−y|. Since Qϕ is a Hilbert-
Schmidt operator we get using the Schwarz inequality

L :=

∣
∣
∣
∣
∣

∫
dx
∫

dy
ψ(x)Qϕ(x, y)ψ(y)

|x− y|

∣
∣
∣
∣
∣

≤
(∫

dx
∫

dy
|ψ(x)|2|ψ(y)|2
|x− y|2

)1/2(∫
dx
∫

dy|Qϕ(x, y)|2
)1/2

. (61)

The second factor of the right hand side is the Hilbert-Schmidt norm ‖Qϕ‖2
of Qϕ.

To estimate the first factor we decompose the kernel into two functions
f(x) := χBR(0)(x)/|x|2 and the rest g, i.e., 1/|x|2 = f(x) + g(x).

Thus, using inequality (61) we get

L ≤
[
(|ψ|2 ∗ f, |ψ|2)1/2 + (|ψ|2 ∗ g, |ψ|2)1/2

]
‖Qϕ‖2 . (62)

The first summand yields by the Hölder and the generalized Young in-
equality (see, e.g., Reed and Simon II, p. 32)

(|ψ|2 ∗ f, |ψ|2) ≤ C3/2,3/2‖ψ2‖23/2‖f‖3/2,w , (63)

where w indicates the weak-norm.
Picking the radius R =∞, i.e., g = 0, yields immediately (59).
To prove (60) we also use (63) but pick the radius R > 0 sufficiently small:

in this case we need to bound also the second summand containing g; we use
again Hölder’s inequality now followed by using Young’s inequality

(|ψ|2 ∗ g, |ψ|2) ≤ ‖ψ2‖21‖g‖∞ . (64)

Thus, the first factor on the right side of (33) is bounded by
√
C3/2,3/2‖ψ2‖3/2‖f‖1/23/2,w + ‖ψ2‖1‖g‖1/2∞ .

Since ‖f‖3/2,w tends to zero as R tends to zero, the claimed inequality follows.

Taken together these Lemmata prove Theorem 1.

5 The Many Electron-Positron Problem

To simplify matters we drop all the renormalization terms of the previous
chapter and simply consider the fully normal ordered Hamiltonian H = Dϕ+
αW with the electron space to be specified.
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5.1 The One-Particle Density Matrix

For later purposes (suggested by (87)) it will be useful to introduce certain
operators γ and Υ in H with kernels

γρ(x, y) := ρ(: ψ∗(x)ψ(y) :) (65)
Υρ(x, y) := ρ(: ψ(y)ψ(x) :) , (66)

where ρ is any given state. The operator γ is called the one-particle density
matrix (1-pdm) of the state ρ. It has the property

−Λ− ≤ γ ≤ Λ+ , (67)
D0γ ∈ S1(H), (68)

if ρ has finite kinetic energy. We write Sϕ for the set of states fulfilling (67)
and (68). The trace q := −e tr γ is called the charge of γ.

As we will see, these operators will allow us to express one-particle expec-
tations in a non-field theoretic way similar to expressions known from atomic
physics.

5.2 Unboundedness for Dilatationally Invariant
Electron Subspaces

We will suppose that H
ϕq

± are invariant under dilatations and assume van-
ishing mass, i.e., m = 0. Otherwise no specific requirements on H

ϕq

± and the
associated orthogonal projections Λ± are made. Solovej suggested to consider

f :=
√

1− ε2|0〉+ ε|+ +−−〉 , (69)

where | + + − −〉 is a two-electron-two-positron state with non-vanishing
matrix element Re 〈0|W|+ +−−〉 = 0. We get

(f,Hf) = 2εRe 〈0|W|+ +−−〉+O(ε2) (70)

for ε→ 0. Thus, choosing the sign of ε and picking ε close to 0, we can make
(f,Hf) < 0. Then, dilating the state multiplies the energy by a common
positive factor that can be chosen arbitrarily which means that the energy is
unbounded from below.

5.3 The Hartree-Fock Approximation

Hartree-Fock States

We consider the set H of states ρ ∈ B(F)′ with the following properties
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– For any product of an odd number of creation and annihilation operators
d1, d2, · · · d2k−1

ρ(d1 · · · d2k−1) = 0 (71)

– For any four creation and annihilation operators a, b, c, d

ρ(abcd) = ρ(ab)ρ(cd)− ρ(ac)ρ(bd) + ρ(ad)ρ(bc) (72)

– The kinetic energy ρ(T) (with quantization with respect to the free Dirac
operator, i.e., ϕq = 0, is finite.

We call the elements in H Hartree-Fock states or quasi-free states.
An example of Hartree-Fock states are the well known Slater determi-

nants:

Lemma 6. Let e1, . . . , en ∈ H+ ∩H1(G) be n orthonormal spinors,

s := (n!)−1/2e1 ∧ · · · ∧ en = a∗(e1) · · · a∗(en)|0〉
the corresponding Slater determinant, and ρs its state, i.e.,

ρs(A) := (s,As) .

Proof. 1. Take 2k − 1 creation and annihilation operators d1, · · · , d2k−1.
Then

ρs(d1 · · · d2k−1) = 〈0|a(en) · · · a(e1)d1 · · · d2k−1a
∗(e1) · · · a∗(en)|0〉

is the vacuum expectation of an odd number of creation and annihilation
operators and thus vanishing.

2. Let a, b, c, and d be four creation or annihilation operators. We can –
modulo ordering – either have two positron creation and two positron annihi-
lation operators, or one of each kind, or two electron creation and two electron
creation operators. In all other cases both sides of the claimed inequality are
vanishing trivially. The cases when positron operators are present are easy,
since they anticommute with electron operators. We therefore concentrate on
the case of two electron creators and two electron annihilators and assume
f, g, h, i ∈ H+. (We will also assume that the product d1, . . . , d4 is already
normal ordered, since the other cases differ from this one by only two simple
additional terms, a term that is quadratic in the operators a, b, c, d and a con-
stant.) We write f =

∑
ν ανeν , g =

∑
ν βνeν ,h =

∑
ν γνeν ,and i =

∑
ν δνeν .

Then the claimed inequality is

〈0|a(en) · · · a(e1)a∗(f)a∗(g)a(h)a(i)a∗(e1) · · · a∗(en)|0〉 (73)
= 〈0|a(en) · · · a(e1)a∗(f)a∗(g)a∗(e1) · · · a∗(en)|0〉 (74)

× 〈0|a(en) · · · a(e1)a(h)a(i)a∗(e1) · · · a∗(en)|0〉 (75)
−〈0|a(en) · · · a(e1)a∗(f)a(h)a∗(e1) · · · a∗(en)|0〉 (76)
× 〈0|a(en) · · · a(e1)a∗(g)a(i)a∗(e1) · · · a∗(en)|0〉 (77)

+〈0|a(en) · · · a(e1)a∗(f)a(i)a∗(e1) · · · a∗(en)|0〉 (78)
× 〈0|a(en) · · · a(e1)a∗(g)a(h)a∗(e1) · · · a∗(en)|0〉 . (79)
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Lines (74) and (75) vanish, since the number of creation operators and the
number of annihilation operators is not equal. Thus the claim is equivalent
to

〈0|a(en) · · · a(e1)a∗(f)a∗(g)a(h)a(i)a∗(e1) · · · a∗(en)|0〉 (80)
= −〈0|a(en) · · · a(e1)a∗(f)a(h)a∗(e1) · · · a∗(en)|0〉 (81)

× 〈0|a(en) · · · a(e1)a∗(g)a(i)a∗(e1) · · · a∗(en)|0〉 (82)
+〈0|a(en) · · · a(e1)a∗(f)a(i)a∗(e1) · · · a∗(en)|0〉 (83)
× 〈0|a(en) · · · a(e1)a∗(g)a(h)a∗(e1) · · · a∗(en)|0〉 . (84)

Inserting the expansion and observing that the summands that contain an
index κ, λ, µ, and ν that is bigger than n, vanish we get

(73) =
∑

κ,λ,µ,ν∈{1,...n}
ακβλγµδν

〈0|a(en) · · · a(e1)a∗(eκ)a∗(eλ)a(eµ)a(eν)a∗(e1) · · · a∗(en)|0〉
=

∑

κ,λ∈{1,...n}
ακβλ(γλδκ − γκδλ)

〈0|a(en) · · · a(e1)a∗(eκ)a∗(eλ)a(eλ)a(eκ)a∗(e1) · · · a∗(en)|0〉
=

∑

κ,λ∈{1,...n}
ακβλ(γκδλ − γλδκ) .

(85)

On the other hand

(81) + . . .+ (84) =
∑

κ,λ∈{1,...n}
(−ακβλγκδλ + ακδκβλγλ)

〈0|a(en) · · · a(e1)a∗(eκ)a(κ)a∗(e1) · · · a∗(en)|0〉
〈0|a(en) · · · a(e1)a∗(λ)a(λ)a∗(e1) · · · a∗(en)|0〉

=
∑

κ,λ∈{1,...n}
(−ακβλγκδλ + ακδκβλγλ) (86)

which equals (85). �

The interaction energy in a quasi-free state ρ is
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ρ(W) =
1
2

∫

R3
dx

∫

R3
dy
ρ(: ψ∗(x)ψ(x)ψ∗(y)ψ(y)) :

|x− y|
=WD +WP −WX

:=
1
2

∫

R3
dx

∫

R3
dy
ρ(: ψ∗(x)ψ(x) :)ρ(: ψ∗(y)ψ(y)) :)

|x− y|

+
1
2

∫

R3
dx

∫

R3
dy
ρ(: ψ∗(x)ψ∗(y) :)ρ(: ψ(y)ψ(x)) :)

|x− y|

− 1
2

∫

R3
dx

∫

R3
dy
ρ(: ψ∗(x)ψ(y) :)ρ(: ψ∗(y)ψ(x)) :)

|x− y| ,

(87)

where we use that the normal ordering distributes according to the rules of
the Hartree-Fock states, a fact due to Hundertmark (see [23]).

Note: all three integrals, WD, the direct energy, WP , the pairing energy,
and WX , the exchange energy, are positive.

The Hartree-Fock Functional

Using the above, the energy in Hartree-Fock states ρ is

ρ(H) = tr(Dϕγρ) +
α

2

∫

G

dx
∫

G

dy
γρ(x, x)γρ(y, y)− |γρ(x, y)|2

|x− y|
︸ ︷︷ ︸

αQ(γρ):=αD(γρ,γρ)−αX(γρ,γρ):=
︸ ︷︷ ︸

E(γρ):=

+
α

2

∫

G

dx
∫

G

dy
Υρ(x, y)Υρ(x, y)

|x− y| (88)

We can define E on Sϕ and call it the relativistic Hartree-Fock func-
tional.

Positivity of the Energy

For any Hartree-Fock state ρ there exists a Hartree-Fock state σ such that
γρ = γσ and Υσ = 0. Moreover, for any γ ∈ Sϕ, there exists a Hartree Fock
state ρ such that γρ = γ and Υρ = 0. Thus, the minimization of Hartree-Fock
states is equivalent to the minimization of ρ(H) over Hartree-Fock states.

Since −Λ− ≤ γ ≤ Λ+ is equivalent to 0 ≤ Γ := Λ− + γ ≤ 1 we have

Γ2 ≤ Γ (89)

Introducing Γ++ := Λ+ΓΛ+, Γ+− := Λ+ΓΛ−, Γ−+ := Λ−ΓΛ+, and Γ−− :=
Λ−ΓΛ− (and analogously for other operators) Inequality (89) implies

γ2
++ + γ+−γ−+ = Γ2

++ + Γ+−Γ−+ ≤ Γ++ = γ++ (90)
γ2
−− + 2γ−− + γ−+γ+− = Γ2

−− + Γ−+Γ+− ≤ Γ−− = γ−− + Λ− (91)
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or equivalently

γ2
++ + γ+−γ−+ ≤ γ++ (92)
γ2
−− + γ−+γ+− ≤ −γ−− . (93)

With the inequalities (92) and (93), picking ϕq = ϕ and the fact that the
direct part is non-negative we have

E(γ) ≥ tr(Dϕγ)− αX(γ, γ) ≥ tr(|Dϕ|γ2)− αX(γ, γ) . (94)

X(γ, γ) =
1
2

∫

G

dx
∫

G

dy|γ(x, y)|2|x− y|−1

≤ π

4

∫

G

dy(γ(·, y), |p|γ(·, y)) ≤ π

4
tr(|D0|γ2) . (95)

This shows in the case ϕq = ϕ = 0 that the critical fine structure constant is
at least π/4. In fact this value is sharp. One can prove

Theorem 2 (Bach et al. [3], Hundertmark et al. [15]). Assume ϕq =
ϕ = 0. Then ∀γ∈Sϕ

E(γ) ≥ 0 if and only if 0 ≤ α ≤ 4/π.

This result – with a constant that is not sharp – was heuristically derived
by Chaix and Iracane [6] and Chaix et al. [7]. The above proof that the critical
constant is at least 4/π which is due to Bach et al. [3]; the reverse direction is
a variational calculation due to Hundertmark et al. [15] which partly follows
an idea of Evans et al. [10].

Inequalities (94) and (95) can be also useful for showing positivity for
general ϕ = ϕq. However, in this case, one needs to compare |D0| and |Dϕ|.
This can in fact be done in some physically important cases. We will treat
here the case ϕ = eZ/| · | with a robust proof giving a positivity result for
small Z.

We need an inequality of the type |D0| ≤ c|DZ |, where DZ = Dϕ for
some nonnegative c. This is implied by |D0|2 ≤ c2|DZ |2, since taking roots
is operator monotone. This is equivalent to ‖D0ψ‖ ≤ c‖DZψ‖ for all ψ ∈
H1(G). Therefore, we have

‖DZψ‖ ≥ ‖D0ψ‖ − αZ‖ψ| · |−1‖ ≥ (1− 2αZ)‖D0ψ‖ . (96)

Thus the desired inequality holds, if αZ ≤ 1/2. In fact one can show

Theorem 3 (Brummelhuis et al. [5]). Assume ϕ = ϕq =
√
αZ/| · |. If

α ≤ (4/π)(1− g2)1/2(
√

4g2 + 9− 4g)/3. Then E(γ) ≥ 0 for all γ ∈ Sϕ.

In fact, this has been further generalized. We now set Dg for the operator
−iα · ∇+mβ − g/| · |:
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Theorem 4 (Morozov [20]). For all a, b ∈ (3/2, 3/2) and for all m ≥ 0 we
have

D2
a ≥ νa,bD2b ,

where νa,b is the maximal value of ν satisfying the two inequalities

ν +
C2
a,b(a− νb)2

(C2
a,b − ν)C2

a,a−νb
≤ 1 and 0 ≤ ν ≤ C2

a,b

with

Ca,b :=
1

3− 4b2
(
−4|b− a|+

√
16(b− a)2 + (3− 4b2)(3− 4a2)

)
.

We would like to mention at this case, that the choice of the Furry picture,
i.e., picking the quantization potential ϕq to be the external potential ϕ, is
not arbitrary. In fact this choice gives the most stable ground state energy,
a choice suggested by Mittleman [19]. We prove here a variant of a Theorem
of Bach et al. [3].

It is also possible to include the case of several nuclei and of a magnetic
field (Bach et al. [2]). In this case Aq := A and

ϕ(x) :=
K∑

κ=1

eZκ
|x−Rκ|

, (97)

whereZ1, . . . , ZK are the atomic numbers of the involved nuclei and R1, . . . ,Rκ

are their positions. A convenient quantization potential ϕq is given by through
the help of a Voronoi decomposition and includes also the magnetic vector
potential:

ϕq(x) := −
K∑

κ=1

eZκχΥκ
(x)

|x−Rκ|
. (98)

Here Υκ := {x ∈ R
3 : |x − Rκ| ≤ |x − Rk|,∀k = 1, . . . ,K} denotes the

κ-th Voronoi cell and χM is the characteristic function of the set M , and
Z := max{Z1, . . . ZK}. The result, also called stability of matter for this
model, is

Theorem 5. Pick H+ := [χ[0,∞)(Dϕq,A)](H) as electron subspace. Let L1/2,3

be the constant in the Lieb-Thirring inequality2 for moments of order 1/2. If
ε ∈ (0, 1), α ∈ [0, 4/π] and Z ∈ [0,∞) are such that

1− ε− π2α2/16− 4(1/ε− 1)α2Z2 > 0 ,

and
26296πL1/2,3(1/ε− 1)2

105(1− ε− π2α2/16− 4(1/ε− 1)α2Z2)3/2
α3Z2 ≤ 1 ,

2See Appendix A.1.
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R1, . . . ,RK ∈ R
3 pairwise different, and |∇ × A| ∈ L2(R3) then

E(γ) +
∑

1≤κ<λ≤K

αZκZλ
|Rκ −Rλ|

+
1
8π

∫

R3
|∇ × A(x)|2dx ≥ 0

for all γ ∈ Sϕq,A.

Note also that ε is a free parameter that we can use to optimize the value of α
and Z. Numerical evaluation gives for the physical value α ≈ 1/137.0359895
stability up to αZ ≈ 0.489576, i.e., Z ≈ 67.089649.

The Optimal Quantization

We define S to be the set of all orthogonal projections Λ such that Λ and Λ⊥

leaves the domain of Dϕ invariant. We consider

EΛ := inf
−Λ≤γ≤Λ⊥

E(γ) . (99)

Theorem 6 (Bach et al. [3]). Consider Dϕ, where the electric potential is
generated by an electric charge of finite self-interaction. For any Λ in S that
is not equal to Λϕ := χ(−∞,0)(Dϕ) we get

E(Λ) < E(Λϕ) = 0 . (100)

Note, that this result can be strengthened in many ways (see, e.g., the original
result [3]).

The Selfconsistent Vacuum Polarization
in the Mean Field Picture

Recently Hainzl, Lewin, and Séré [11, 12] have treated the vacuum polariza-
tion of the Electron-Positron field in the mean-field approximation. Firstly,
we will review their result partly using our language. Secondly, we would like
to show that the self-consistency requirement of Hainzl et al. is in fact noth-
ing but a different formulation of the minmax requirement of Mittleman [19]
when the vacuum polarization term is included.

The Minimization of the Energy in the Free Picture

In order to treat the vacuum polarization the model is regularized by in-
troducing a form factor for the nucleus and an ultra-violet cutoff for the
electron-positron field at momentum |p| ≤ a. In particular one requires that
the Coulomb normD(n, n) of the charge distribution n of the nucleus is finite.
We use – as before – the following notation: Γ is the unrenormalized density
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matrix and γ is the charge density matrix with respect to the free quanti-
zation. Equipped with the above regularization we can go out and think of
minimizing E(Γ− Λ0), since we have using (94) and (95)

E(γ) = tr(|D0||γ|)− αX(γ, γ)− αD(n, ργ) +D(ργ , ργ)
≥ α (D(ργ − n, ργ − n)−D(n, n)) ≥ −αD(n, n) , (101)

i.e., the energy is bounded from below. With this starting point, however, it
cannot be expected that the minimizer γ is a trace class operator. In partic-
ular, the energy will be negative implying that γ = 0 is not the minimizer.
Hainzl et al. show that the minimizer Γ fulfills the equation

Γ = χ(−∞,0)(Dϕ + αWγ)) , (102)

where Wγψ = ργ ∗ | · |−1ψ −Xγψ. Here Xγ is the exchange operator of the
density matrix γ which has the integral kernelXγ(x, y) := γ(x, y)/|x−y|. This
Γ = Λ0 + γ should then be viewed as the density of the polarized vacuum.
Of course – to connect with the usual normalization – the energy should be
shifted such that the energy for the minimizing Γ is vanishing.

Equation (102) can indeed be solved as Hainzl et al. show. In [12] the
equation is solved for small fine structure constant α and momentum cutoff
a by a fixed point argument. In [11] the equation is solved variationally for
all values of α and a.

The Optimal Quantization of the Electron-Positron Field
in Hartree-Fock Approximation: Implementing
the Minimax Procedure of Mittleman [19]

As described in Sect. 4.1 the vacuum polarization is mathematically stem-
ming from the one-particle operators that occur in the difference of the non-
normal ordered and normal ordered selfinteraction of the electron-positron
field with the subtraction of the free quantities, i.e., the operators in the last
line of Equation (32). Thus, the corresponding Hartree-Fock functional is the
functional E of (88) plus the trace of the one-particle vacuum polarization
potential, i.e.,

Evpq:(γ) := E(γ) + α tr(Pϕq
γ) , (103)

where
P0 := | · |−1 ∗ trC4(Λϕq

− − Λ0
−)−XΛ

ϕq
− −Λ0

−
. (104)

As remarked earlier, the operator P0 is not well defined as it stands, since
Λ
ϕq

− − Λ0
−) is infinite on the diagonal.

If we disregard this problem for the moment and follow the suggestion
of Mittleman [19] to search for the projection Λ− that gives the most stable
quantization. By using the optimality result, Theorem 6 of Bach, Barbaroux,
Helffer, Siedentop the maximal ground state energy is obtained when the
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the quantization is taken with respect to the negative spectral subspace of
the one-particle terms of the Hamiltonian. Using this fact the optimal Λ− is
determined by

Λ− = χ(−∞,0)

(
Dϕ + α| · |−1 ∗ trC4(Λ− − Λ0

−)− αXΛ−−Λ0
−

)
. (105)

This (102) has been also obtained by Hainzl, Lewin, and Séré [11, 12] for
minimizing the total energy including the Dirac sea.

In order to make the expressions meaningful, we need to manipulate these
terms once more. There are several ways of doing this. Here we will discuss
two ways: (i) An ultra-violet cutoff, i.e., straight forward ad hoc regularization
of the problem and (ii) charge renormalization, i.e., adding a counting term
on the diagonal following the physical principle W3 of Weisskopf.

Ultra-Violet Cutoff: In this case we can immediately use the results by
Hainzl et al. [11, 12]. They show that the equation has a (unique) solution
by two methods: a variational method provided the cutoff is small enough,
and a variational method. In particular the solution of this equation is not
only the minimizer of the energy in the ultra-violet cutoff free picture; it
also maximizes the energy in the sense of Mittleman and the corresponding
Hartree-Fock ground state energy is zero.

Charge Renormalization: Instead of introducing an ad hoc ultra-violet
cutoff, we can follow the principle of Weisskopf and apply W3. The treat-
ment of the vacuum polarization as treated in Sect. 4 shows, that the charge
renormalization introduced there makes the vacuum potential finite as well.
Using again the optimality result (Theorem 6), (36) suggests the following
choice of the quantization

Λ
ϕq

− = χ(−∞,0)

(
Dϕ + α| · |−1 ∗ ρ− αX

)
, (106)

where, as before, ρ(x) = trC4(Λϕq

− − Λ0
− − γc)(x, x). Note that this deviates

from the one in the previous subsection by the extra regularizing term on the
direct part. Hainzl et al. obtain this (in cut-off version) from the non-charge
regularized equation by redefining the coupling constants (apart from a sign
in C ([12, Formula (21)]).

A Appendix

A.1 The Lieb-Thirring Inequality

(d = 3, γ = 1/2) Given a positive constant µ, a real vector field A with
square integrable gradients, and a real valued function V in L2(R3), we have
for V+ := (|V |+ V )/2

tr
{[

(−iµ∇−A)2 − V
]1/2
−

}
≤
L1/2,3

µ3

∫

R3
V 2

+

(see Lieb and Thirring [18] for the case A = 0 and Avron, Herbst, and
Simon [1] for the general case).
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