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FOREWORD

I feel very honored that I have been asked to write a Foreword to this book. The
subject of the book – “Coupled cluster theory” – has been around for about half a
century. The basic theory and explicit equations for closed-shell ground states were
formulated before 1970. At the beginning of the seventies the first ab initio calcula-
tion were carried out. At that time speed and memory of computers were very limited
compared to today’s standards. Moreover, the size of one-electron bases employed
was small, so that it was only possible to achieve an orientation in methodical aspects
rather than to generate new significant results. Extensive use of the coupled-cluster
method started at the beginning of the eighties. With the help of more powerful
computers the results of coupled-cluster approaches started to yield more and more
interesting results of relevance to the interpretation of experimental data. New ideas
in methodology kept appearing and computer codes became more and more efficient.
This exciting situation continues to this very day. Remarkably enough, even the re-
quired equations can now be generated by a computer with the help of symbolic
languages. The size of this monograph and the rich variety of articles it contains
attests to the usefulness and viability of the couple-cluster formalism for the han-
dling of many-electron correlation effects. This represents a vivid testimony of a
tremendous work that has been accomplished in coupled-cluster methodology and
its exploitation.

Jiří Čížek

v





PREFACE

Coupled-cluster approaches to the many-electron correlation problem that are based
on the exponential Ansatz for the wave operator represent nowadays widely used
techniques in molecular electronic structure calculations thanks to their accuracy
and reliability. Moreover, the linear scaling of the coupled-cluster energy with the
electron number, the so-called size-extensivity, represents an important aspect in
handling of dissociative or associative phenomena and is absolutely essential in
a description of extended systems, such as polymers and solids. It was precisely
this size-extensive nature of the exponential cluster Ansatz, first realized by nuclear
physicists, that led to a widespread exploitation of the coupled-cluster formalism
in the modeling of many-electron systems, as witnessed by a plethora of various
coupled-cluster methods and a number of standard approaches that are available in
most quantum-chemistry software packages. Applications range from small molec-
ular systems involving 4–20 electrons, in which case large basis sets enable one to
generate highly accurate results, to relatively large systems, such as benzene dimers,
naphthyne diradicals, nucleic acid bases or DNA base pairs, and the like. Likewise,
the range of both the energetic and non-energetic properties that are accessible via
coupled-cluster approaches is steadily expanding.

In particular the so-called CCSD(T) method (coupled clusters with singles and
doubles perturbatively corrected for triples) that enjoys a very extensive usage by
both theoretical and experimental chemists and physicists, thanks to its universality
and a favorable accuracy-to-cost ratio, is often refered to as the “gold standard”
of quantum chemistry. Yet, it is well known that its applicability is restricted to
non-degenerate states, thus preventing its exploitation in situations involving highly-
stretched genuine chemical bonds and open-shell systems in general. Even in appli-
cations where the use of CCSD(T) is justified, the cost of calculations prohibitively
increases with the size of the molecular system considered, so that the requirements
of many problems of contemporary chemistry and physics cannot be satisfied. Hence,
the efforts to improve the accuracy and to reduce the cost of the coupled-cluster-
based software continue to represent a very topical subject of current research activ-
ities, many of them focusing on multi-reference-type approaches.

In recent years a number of novel approaches that exploit the exponential cluster
Ansatz has been proposed and tested. These developments are often highly technical
and thus difficult to evaluate and to exploit by a casual user, or even by quantum
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viii Preface

chemists working in other areas of the field. Although a number of excellent reviews
on the subject of coupled-cluster methodology is available in the literature (for recent
ones, see, e.g., [1–12], for a quasi-historical account see [13, 14] and authoritative
monograph by Shavitt and Bartlett [15]), there is a definite need for a synoptic ac-
count of the most recent developments in the field, last time brought about by the
volume “Recent Advances in Coupled-Cluster Methods” [16] more than a decade
ago. This is precisely the goal of this volume whose 22 chapters written by the
experts who substantially contributed to recent developments of the coupled-cluster
theory and its applications represent a contemporary stage in the development of
the theory and its exploitation, outline several “hot” topics in this field, and point
out to future developments. We thus believe that this monograph will prove to be
helpful in this regard and will become a useful source of information not only for
those scientists who actively participate in the development of quantum chemical
computational methods, but also for all kind of actual users of quantum chemical
software of computational chemistry and physics, material science, nanotechnology,
and drug design.

Prague, Czech Republic Petr Čársky
Waterloo, ON Josef Paldus
Prague, Czech Republic Jiří Pittner

REFERENCES

1. J. Paldus, in Methods in Computational Molecular Physics, NATO ASI Series B: Physics, vol. 293,
Eds. S. Wilson, G. H. F. Diercksen (Plenum, New York, 1992), pp. 99–194

2. R. J. Bartlett, J. F. Stanton, in Reviews in Computational Chemistry, vol. 5, Eds. K. B. Lipkowitz,
D. B. Boyd (VCH Publishers, New York, 1994), pp. 65–169

3. J. Paldus, in Relativistic and Correlation Effects in Molecules and Solids, NATO ASI Series B:
Physics, vol. 318, Ed. G. L. Malli (Plenum, New York, 1994), pp. 207–282

4. R. J. Bartlett, in Modern Electronic Structure Theory, Ed. D. R. Yarkony (World Scientific, Singapore,
1995), pp. 1047–1131

5. J. Gauss, in The Encyclopedia of Computational Chemistry, Eds. by P. v. R. Schleyer, N. L. Allinger,
T. Clark, J. Gasteiger, P. A. Kollman, H. F. Schaefer III, P. R. Scheiner (Wiley, Chichester, 1998),
pp. 615–636

6. J. Paldus, X. Li, Adv. Chem. Phys. 110, 1 (1999)
7. J. Paldus, in Handbook of Molecular Physics and Quantum Chemistry, vol. 2, Ed. S. Wilson (Wiley,

Chichester, 2003), pp. 272–313
8. T. D. Crawford, H. F. Schaefer III, in Reviews in Computational Chemistry, vol. 14, Eds.

K. B. Lipkowitz, D. B. Boyd (Wiley, Ney York, 2000), pp. 33–136
9. J. F. Stanton, J. Gauss, Int. Rev. Phys. Chem. 19, 61 (2000)

10. P. Piecuch, K. Kowalski, I. S. O. Pimienta, M. J. McGuire, Int. Rev. Phys. Chem. 21, 527 (2002)
11. P. Piecuch, K. Kowalski, I. S. O. Pimienta, P.-D. Fan, M. Lodriguito, M. J. McGuire, S. A. Kucharski,
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10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
10.2 Notation and Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
10.3 Outline of the MR BW-CC Method . . . . . . . . . . . . . . . . . . . . . . . . . . 254
10.4 MR CC-R12 Ansatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

10.4.1 Working Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
10.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
10.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

11 Coupled Cluster Treatment of Intramonomer Correlation Effects
in Intermolecular Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
Tatiana Korona
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
11.2 Low-Order SAPT Terms and Their Relation to Monomer

Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
11.3 Polarization Energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

11.3.1 Electrostatic Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
11.3.2 Induction Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
11.3.3 Dispersion Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

11.4 Exchange Energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
11.4.1 First-Order Exchange Energy . . . . . . . . . . . . . . . . . . . . . . . 281
11.4.2 Second-Order Exchange-Induction Energy . . . . . . . . . . . 284
11.4.3 Second-Order Exchange-Dispersion Energy . . . . . . . . . . 287



xvi Contents

11.5 Total SAPT(CCSD) Interaction Energy . . . . . . . . . . . . . . . . . . . . . . 288
11.5.1 Accuracy of SAPT(CCSD) – Theoretical Considerations 289
11.5.2 Numerical Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

11.6 Performance of SAPT(CCSD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
11.6.1 Be· · ·H2 Complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
11.6.2 Dimers of HF, CO, and Ne . . . . . . . . . . . . . . . . . . . . . . . . . 292

11.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

12 Unconventional Aspects of Coupled-Cluster Theory . . . . . . . . . . . . . 299
Werner Kutzelnigg
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
12.2 The Fock Space Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

12.2.1 Excitation Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
12.2.2 Inversion of a Commutator . . . . . . . . . . . . . . . . . . . . . . . . . 303
12.2.3 Particle-Hole Picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
12.2.4 Generalized Wick Theorem . . . . . . . . . . . . . . . . . . . . . . . . 305
12.2.5 Fock Space Hamiltonian in Particle-Hole Picture . . . . . . 306
12.2.6 Definition of Diagonal for Closed-Shell States . . . . . . . . 307

12.3 The Separation Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
12.4 Short History of Electron Pair Theory . . . . . . . . . . . . . . . . . . . . . . . . 310
12.5 Many-Body Aspects of MBPT and CC Theory . . . . . . . . . . . . . . . . 313

12.5.1 Similarity Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 313
12.5.2 Two Possible Choices of H0 . . . . . . . . . . . . . . . . . . . . . . . . 314
12.5.3 Connected-Diagram Theorem . . . . . . . . . . . . . . . . . . . . . . 315
12.5.4 Perturbation Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
12.5.5 The Arponen Functional and Related Functionals . . . . . . 317
12.5.6 Infinite Summation of Classes of MBPT Diagrams . . . . . 319

12.6 Traditional Coupled Cluster Theory (TCC) . . . . . . . . . . . . . . . . . . . 322
12.6.1 Coupled-Cluster Theory with Double Excitations (CCD) 322
12.6.2 Coupled-Cluster Theory with Single and Double

Excitations (CCSD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
12.6.3 Coupled-Cluster with Doubles and Triples (CCDT) . . . . 325
12.6.4 Coupled-Cluster with Singles, Doubles and Triples

(CCSDT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
12.7 Towards Variational CC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

12.7.1 Why Should One Care for Variational CC? . . . . . . . . . . . 329
12.7.2 The Expectation Value of a CC Ansatz

in Intermediate Normalization . . . . . . . . . . . . . . . . . . . . . . 330
12.7.3 Almost Variational CC Theory . . . . . . . . . . . . . . . . . . . . . . 331
12.7.4 Extended Coupled Cluster Theory (ECC) . . . . . . . . . . . . . 333

12.8 Advanced CC Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
12.8.1 Change of Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333



Contents xvii

12.8.2 Unitary Invariance and Linear Scaling . . . . . . . . . . . . . . . 334
12.8.3 From CCD to CEPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
12.8.4 The Variational CCD Corrections and CEPA . . . . . . . . . . 344
12.8.5 Beyond CEPA. Electron Triple Approximations . . . . . . . 345

12.9 A Closed Shell Reference State in Unitary Normalization . . . . . . . 346
12.9.1 Formulation of the Problem . . . . . . . . . . . . . . . . . . . . . . . . 346
12.9.2 Perturbation Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
12.9.3 Linearized Unitary Coupled-Cluster Theory . . . . . . . . . . 348
12.9.4 EPV Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
12.9.5 Partial Summation of the Hausdorff Expansion

to Infinite Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
12.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

13 Coupled Clusters and Quantum Electrodynamics . . . . . . . . . . . . . . . . 357
Ingvar Lindgren, Sten Salomonson, and Daniel Hedendahl
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
13.2 Time-Independent Perturbation Procedure . . . . . . . . . . . . . . . . . . . . 358

13.2.1 Linked-Diagram Expansion . . . . . . . . . . . . . . . . . . . . . . . . 358
13.2.2 All-Order and Coupled-Cluster Approaches . . . . . . . . . . . 360
13.2.3 Versions of MBPT/CCA . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
13.2.4 Standard Relativistic MBPT: Definition of QED Effects 363
13.2.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364

13.3 Covariant Evolution Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
13.3.1 Single-Photon Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
13.3.2 Connection to MBPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
13.3.3 QED Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

13.4 Coupled-Cluster-QED Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
13.5 Implementation and Future Outlook . . . . . . . . . . . . . . . . . . . . . . . . . 371
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

14 On Some Aspects of Fock-Space Multi-Reference
Coupled-Cluster Singles and Doubles Energies and
Optical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
Prashant Uday Manohar, Kodagenahalli R. Shamasundar, Arijit Bag,
Nayana Vaval, and Sourav Pal
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
14.2 Fock-Space Multi-Reference Coupled-Cluster Method . . . . . . . . . 379
14.3 FSMRCC Linear Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

14.3.1 The Explicit Differentiation Method . . . . . . . . . . . . . . . . . 381
14.3.2 The Z-vector Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
14.3.3 The Constrained-Variation Method . . . . . . . . . . . . . . . . . . 384



xviii Contents

14.4 Implementations and Results and Discussions . . . . . . . . . . . . . . . . . 389
14.4.1 Ionized and Electron Attached States . . . . . . . . . . . . . . . . 390
14.4.2 Excited State Dipole Moment and Polarizabilities . . . . . . 390

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

15 Intermediate Hamiltonian Formulations of the Fock-Space
Coupled-Cluster Method: Details, Comparisons, Examples . . . . . . . 395
Leszek Meissner and Monika Musiał
15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
15.2 Multi-Reference Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
15.3 Multi-Reference Fock-Space Coupled-Cluster Method . . . . . . . . . 402
15.4 Intermediate Hamiltonian Formulations

of the Fock-Space CC Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
15.5 Canonical Form of the FS-CCSD Effective Hamiltonian

Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
15.6 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
15.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

16 Coupled Cluster Calculations: OVOS as an Alternative Avenue
Towards Treating Still Larger Molecules . . . . . . . . . . . . . . . . . . . . . . . . . 429
Pavel Neogrády, Michal Pitoňák, Jaroslav Granatier,
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Abstract: In this work we analyze hermitian aspects of methods which can offer improved numeri-
cal approximations, simpler computational evaluations or other benefits. There is a route
toward approximations to the correlation problem that is neither purely perturbative, nor
infinite order as is Coupled Cluster (CC), and this has certain hermitian aspects that are of
interest. As perturbation theory (PT) is hermitian, we consider CCPT. The CCPT approach
might be offered as an alternative to the infinite order CC approach for the reference state
correlation problem itself with some advantages like, potentially, e.g., a more rapid conver-
gence to a satisfactory answer in low order. The CCPT methods up to fifth order with the
inclusion of the connected quadruple excitations have been formulated and implemented.
We illustrate its results by comparison with several full configuration interaction values.
For comparison purposes we also compare our new results with results obtained using
the standard CC and MBPT variants like: CCSD, CCSD(T), CCSDT, CCSDTQ, MBPT2,
MBPT3, MBPT4, MBPT5 and MBPT6.

Keywords: Hermitian coupled cluster, Coupled cluster perturbation theory, Hermitian theories

1.1. INTRODUCTION

Before coupled-cluster (CC) theory virtually all methods in quantum chemistry were
built upon hermitian forms. As we know, operators have to be hermitian to en-
sure real eigenvalues. Expectation values, 〈O〉, were given by the symmetric forms,
〈Ψ |O|Ψ 〉/〈Ψ |Ψ 〉, and for the energy in particular, 〈H〉 ≥ Eexact. The best possible
many-particle wave function was the complete CI, and in a basis set, the full CI,
|ΨFCI〉 = (1 + ̂C)|0〉, with |0〉 a Fermi vacuum defined from some independent
particle reference function. Hence,

E = 〈0|(1+̂C†)H(1+̂C)|0〉/〈0|(1+̂C†)(1+̂C)|0〉 ≥ Eexact (1-1)

= 〈0|H(1+̂C)|0〉 (1-2)

1
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The prevalence of symmetric, hermitian forms have dramatically colored the field.
However, now it is well-known that any CI truncation of ̂C in such a wave function
fails to give an extensive result for the energy [1], which means it cannot be used
for infinite systems like the electron gas, or for crystalline solids, or even to provide
a table of pre-computed energies to employ in freshman chemistry evaluations of
heats of reactions from computed heats of formation. The latter is a manifestation
that without extensivity even the relative energies along a potential energy surface
will not be accurate, which is as fundamental as chemistry itself. However to satisfy
the property of size-extensivity usually prohibits the variational bound in Eq. (1-1)
until the FCI is reached. For quantum chemists of the previous generation, such a
variational bound was de rigor, and it was felt it should never be compromised. Be-
sides, it was exceedingly useful as a tool to develop approximate wave functions. Yet,
a bound on the total energy means little as the quantities of interest in chemistry like
structures, excitation energies, dissociation energies, activation barriers, vibrational
frequencies, etc, do not correspond to bounded quantities anyway. Except maybe for
potential energy surfaces, an upper bound on the total energy is really only useful if
there is a corresponding lower bound. So many-body methods that ensure extensivity
like coupled-cluster theory, but compromise some of the hermitian aspects discussed
above, have emerged as offering the best approximations for the largest number of
problems in the field [2].

However, there are also situations where hermitian forms would be useful in CC
theory instead of contending with unsymmetric expressions for the energy, density
matrices and first-order properties. In particular for second-order properties two ex-
pressions can be derived and each have their justification, but they are not numer-
ically equal [3]. In a hermitian theory this could not happen [4]. In this chapter
we raise the question of whether hermitian forms in CC theory can offer improved
numerical approximations, simpler computational evaluations, or other benefits in
addition to the essential extensivity properties built into many-body methods.

1.2. COUPLED-CLUSTER METHODS

Coupled-cluster theory [1, 5, 6] built upon the wave function,

|ΨCC〉 = exp (T)|0〉
T = T1 + T2 + T3 + ...

Tm = 1

m!
∑

i,j,...a,b,...

tab...
ij... {a†b†...ji} (1-3)

with |0〉 the Fermi vacuum, provides the best, ab initio results for the largest number
of problems in quantum chemistry [2]. Much of this success stems from the similarity
transformed Hamiltonian in the Schrödinger equation,
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exp (− T)H exp (T)|0〉 = E |0〉
H|0〉 = E |0〉 (1-4)

where in normal-ordered form,

H = 〈0|H|0〉 +
∑

p,q

fpq{p†q} + 1

4

∑

p,q,r,s

〈pq||rs〉{p†q†sr} (1-5)

The transformed Hamiltonian

H = H + [H, T]+ 1

2
[[H, T]T]+ 1

3! [[[H, T]T]T]+ 1

4! [[[[H, T]T]T]T] (1-6)

naturally terminates after four T operators, giving the energy and amplitude equa-
tions in closed form,

EP = PHP = 〈0|H|0〉 +ΔE (1-7)

QHP = 0 (1-8)

Q = 1− P =
∑

(|ai 〉〈ai | + |ab
ij 〉〈ab

ij | + ...) (1-9)

= Q1 + Q2 + Q3 + ...

Obviously, i,j,k. . . indicate spin orbitals occupied in |0〉 and a,b,c. . . those unoccu-
pied; p,q,r,... are unspecified. Q consists of all excited (spin-orbital) determinants
with the same Sz value. Obviously E is linked and T is connected. Properly han-
dled, all related quantities of interest, like density matrices, analytical gradients, and
excited states are also evaluated from closed form equations.

That is, for an atomic displacement, dXα ,

∂E/∂Xα = 〈0|(1+Λ) exp (− T)∂H/∂Xα exp (T)|0〉 (1-10)

where

Λ = PHQ(ΔE − H)−1Q

= PH R (1-11)

For density matrices,

γpq = 〈0|(1+Λ) exp (− T)p†q exp (T)|0〉 (1-12)



4 R.J. Bartlett et al.

For excited states the ansatz,

Ψk = RkΨCC (1-13)

[Rk, T] = 0

provides the EOM-CC equations [7],

[H,Rk]|0〉 = ωkRk|0〉 (1-14)

〈0|LkH = 〈0|Lkωk (1-15)

〈0|LkRl|0〉 = δkl (1-16)

where the Lk is the left-hand eigenfunction of H, and the transition density matrices,

γ kl
pq = 〈0|Lk exp (− T)p†q exp (T)Rl|0〉 (1-17)

For the ground (or reference state), L0 = (1 + Λ) and R0 = 1, while for excited
states, these are naturally generalized to Lk and Rk respectively.

1.3. ORIGIN OF THE CC FUNCTIONAL

The CC functional most obviously arises from the simple expedient of considering
properties in addition to the energy in CC theory. The energy and amplitudes are ob-
tained in one-CC calculation, yet for N atoms, we require ~3N derivatives, ∂T/∂Xα .
A straight-forward approach would thus necessitate doing ~3N calculations for ~3N
displacements. Without solving this problem, CC theory would never have been any-
thing but a curiosity in quantum chemistry, since “chemistry” requires moving atoms
in molecules.

The solution is rather straight-forward once the right question is asked. Since

EP = PHP (1-18)

EαP = ∂E/∂XαP = P∂H/∂XαP (1-19)

Separating the H derivative,

∂H/∂Xα = e−T{[H, ∂T/∂Xα]+ ∂H/∂Xα]}eT (1-20)

= [(HTα)C + H
α

] (1-21)

It helps to realize that the first-order perturbed wave function in CC theory is

|Ψ α〉 = TαeT |0〉 (1-22)
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Hence, inserting it into the usual inhomogeneous equations of perturbation theory,

(E − H)|Ψ α〉 = (Hα − Eα)|ΨCC〉 (1-23)

after left-multiplication by e−T and Q,

Q(E − H)Tα|0〉 = Q(H
α − Eα)|0〉 (1-24)

In terms of the resolvent operator, we have the expression

Tα|0〉 = R(H
α − Eα)|0〉 (1-25)

R = (E − H)−1Q (1-26)

Hence, once again using the expression for Eα ,we have from Eq. (1-19)

EαP = PH
α

P+ PHRH
α

P (1-27)

Introducing the perturbation independent quantity,

Λ = PHR (1-28)

Eα = 〈0|(1+Λ)H
α|0〉 (1-29)

This provides all ~3N derivatives at the cost of solving the Λ equations in addi-
tion to the CC ones. By natural extension, we also have the density matrices as in
Eq. (1-12) for any approximation to CC, regardless of whether it corresponds to a
wave function or not. In fact, since most CC densities obtained from a wave function
would require a non-terminating form like eT†

eT , such a quantity does not suit the
treatment of properties in CC theory. Instead, the concept of a “response” density
was introduced [8] along with its generalization to a “relaxed” form by allowing the
orbitals in the reference determinant to change to accommodate the perturbation [9].
These new concepts for density matrices are another critical part of the fabric of CC
theory.

Integration of Eq. (1-29) obviously provides the CC functional

E = 〈0|(1+Λ)H|0〉 (1-30)

whose stationarity with respect to Λ provides the CC equations, Eq. (1-8), and sta-
tionarity to T provides the Λ equations, Eq. (1-11).
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Obviously, if we were able to maintain Hermitian symmetry in CC theory we
would have no need for Λ. This de-excitation CI-like operator,

Λ = Λ1 +Λ2 + ... (1-31)

Λ1 =
∑

i,a

λa
i {̂i†̂a} (1-32)

Λ2 = 1

4

∑

i,j,a,b

λab
ij {̂i† â̂j†̂b} (1-33)

... (1-34)

which is not connected in Λ2 and higher terms, arises from the requirement that
QHP �= PHQ.This causes Λ to have a residual role in any analysis of properties,
but not necessarily for energies. As such,Λ is a step toward an hermitian theory, and
we will see some of its consequences later. One worth mentioning in passing is that
Eq. (1-30) is CI from the left and CC from the right. In the limit, either will give the
exact result, while the former is bounded from below but not extensive. Hence, the
functional is a kind of geometric mean of the two methods.

1.4. HERMITIAN THEORIES

If we actually had an hermitian CC theory, the most satisfactory realization would
probably be a unitary form where τ = T − T†, and t abc...

ijk... = (t abc...
ijk... )∗,

|ΨUCC〉 = exp (τ )|0〉 (1-35)

τ = τ1 + τ2 + τ3 + ... (1-36)

τ1 =
∑

a,i

(〈a|τ |i〉[{a†i} − {i†a}] (1-37)

τ2 =
∑

i,j,a,b

(〈ab|τ |ij〉A[{a†ib†j} − {i†aj†b}] (1-38)

... (1-39)

Then from the ansatz, we immediately have

˜H = e−τHeτ = eτ†Heτ = (Heτ )C (1-40)

˜H|0〉 = E|0〉 (1-41)

〈0|˜H|0〉 = E ≥ Eexact (1-42)

γpq = 〈0|e−τp†qeτ |0〉 = 〈0|(p†qeτ )C|0〉 (1-43)
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The equations for the amplitudes would follow from the variational principle, but
once optimum, it follows that the projected condition has to hold,

Q˜HP = 0 (1-44)

All properties would be just as we would want them to be, except for the lack of
termination of ˜H. This, of course, is the overwhelming problem of UCC. Because
it fails to terminate, we are forced to truncate. The obvious methods to do so have
to exploit some form of perturbation theory [10] or equivalently orders in H or T
[11]. Such truncations through UCC(5) have been implemented and explored, even
including analytical gradients [10, 12]. More recently, MR-UCC truncations have
been considered [13]. Once truncation is enforced, however, much of the infinite-
order power of CC might be compromised.

Perhaps the most important aspect of UCC for single-reference cases, if it could
be done with truncation, would be to at least maintain some quasi-variational bound
related to the above. This would tend to eliminate any “turnover” of the sort that
occurs for molecules as they dissociate, when trying to use an incorrectly separating
RHF reference function in CC calculations. Frequently the problem can be allevi-
ated at separation, though not completely eliminated in the spin-recoupling region
of the curve, by using an unrestricted reference function [2]. However, note the poor
behavior of CCSD(T) for F2 when using an RHF reference function in Figure 1-1
[14].

However, it is much improved once ΛCCSD(T) is used [15].This method simply
replaces T† which is used in CCSD(T) with the CI-like Λ that was first introduced
in CC gradient theory [8, 9, 16]. The method is still perturbative and has the same
computational scaling but requires Λ in addition to T, adding a factor of two to

Figure 1-1. Potential energy curves for the F2 molecule using CCSD(T), ΛCCSD(T) and CCSDT
methods
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Figure 1-2. Potential energy curves for the CO molecule using CCSD(T) and ΛCCSD(T) methods

the computation. The improved curve for CO in Figure 1-2 is even more impres-
sive, though more detailed analysis shows it is not correctly separating to the right
limit [14]. Even though there is no bound on these energies, it appears that the CC
functional with its natural mix of CC and CI, benefits from better behavior. For N2
however, it will still fail [14].

In other cases some benefit can accrue due to other choices of reference single
determinants, like the Brueckner determinant that has maximum overlap with the
exact wave function [14]. We have also explored the first natural determinant as a
reference, and the Kohn-Sham determinant [17] which is supposed to provide the
exact correlated density.

The results forΛCCSD(T) tend to suggest that moving toward a hermitian theory,
even with approximations might pay dividends. But we insist that any such approach
be extensive.

A second equally important condition on suitable CC approximations is that they
also be invariant to rotations among the occupied and unoccupied orbitals. This is
a common failure of many approximations including CEPA [18], which also do
not correspond to an exponential wave function and hence, do not satisfy exten-
sivity. In fact, the proof that extensivity is satisfied, ΨAB = exp (TA + TB)|AB〉 =
exp (TA)|A〉 exp (TB)|B〉 for A and B far apart, follows from the evaluation of only
linked diagrams which, because they are individually invariant to orbital localization,
transparently proves the theorem in the non-interacting limit.

However, beyond potential bounding properties, such hermitized methods might
well offer a superior rate of convergence to the exact solution than the normal,

CCD < CCSD < CCSD(T) < CCSDT < CCSDT(Q) < CCSDTQ

sequence of improving approximations.
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For example, we know that properties and density matrices can be obtained from
γpq = 〈0|eT†

p†qeT |0〉C [19, 20]. In fact, this kind of an expression leads to very rapid
convergence for a one-electron property. However, since it does not terminate, it is
not suited to analytical gradients where the exact critical point has to be identified,
like the unsymmetricΛ based expressions above. Can the same apply for the energy?
In other words, what if we arrange to enforce more hermitian symmetry? Can we
identify a sequence that shows better convergence to the ultimate answer than the
normal CC one? Such a sequence might be expected to include the adjoints of any
diagrams that occur in a given order, for example, unlike CC theory. Also any such
approach that makes T† = T will eliminate the need to determine both Λ and T .

1.5. THE ALTERNATIVE OF GENERALIZED CC
PERTURBATION THEORY

Perturbation theory begins with the separation of a Hamiltonian, H, into an unper-
turbed part, H0, preferably easy to solve, and a perturbation, V , that will ultimately
dictate the effort and order required to obtain satisfactory solutions. Once this separa-
tion is made, the linked diagram theorem of many-body perturbation theory (MBPT)
provides the energy and wave function via the familiar, intermediately normalized
formulae,

E = 〈0|H +
∞
∑

k=1

H(R0H)k|0〉L (1-45)

Ψ = |0〉 +
∞
∑

k=1

(R0H)k|0〉L (1-46)

= |0〉 + ψ (1) + ψ (2) + ... (1-47)

E = 〈0|H|Ψ 〉L (1-48)

At any order, the MBPT equations are Hermitian and provide the usual 2m + 1 and
2m rules,

E(2m+1) = 〈ψ (m)|V|ψ (m)〉L (1-49)

E(2m) = 〈ψ (m)|E0 − H0|ψ (m)〉L (1-50)

We limit ourselves to non-degenerate problems for n electrons, with n+N functions.
The L indicates the limitation to linked diagrams, |0〉, is a Fermi vacuum that corre-
sponds to some single determinant, Φ0, like that of Kohn-Sham (KS), Hartree-Fock
(HF), Brueckner (B), the natural determinant (N) etc. and the resolvent operator,

R0 = Q(E0 − H0)−1Q (1-51)

Q = 1− P = 1− |0〉〈0| (1-52)
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Subject to

H0 =
∑

i

heff(i) (1-53)

heff(1)φp(1) = εpφp(1) (1-54)

E0 =
n
∑

i

εi (1-55)

R0|ab...
ij... 〉 = (εi + εj + ...− εa − εb...)−1|ab...

ij... 〉 (1-56)

R0 = R0
S + R0

D + R0
T + ... = R0

1 + R0
2 + R0

3 + ... (1-57)

The last form of the resolvent indicates its single, double, triple, etc excitation com-
ponents. For a diagonal (or block diagonal) resolvent, this separation pertains.

Hence, basing PT upon a mean-field single determinant approximation lends itself
to a straightforward MBPT expansion for each order in V

E = E0 + E(1) + E(2) + ... (1-58)

Ψ = Φ0 + ψ (1) + ψ (2) + .... (1-59)

E(m+1) = 〈0|V(R0V)m|0〉L (1-60)

ψ (m) = (R0V)m|0〉L (1-61)

which has been extensively pursued for the correlation problem in atoms [21] and
for molecules [22, 23] for about 40 years. Note the lack of the familiar Rayleigh-
Schrödinger renormalization terms in the energy and wave function of each order.
This leads to MBPTm [22], frequently also called MPm when based upon a HF
mean-field [24]. The formal development of the latter avoided the elegant simplicity
of a second-quantized based MBPT in favor of a tedious Slater rule treatment based
upon determinantal matrix elements. Of course, once the latter is accomplished, and
the simplifications that are readily apparent in the second-quantized based treatment
but hidden in the determinantal approach are identified, which becomes difficult in
fourth-order [25]; the actual computational formulae are the same for the HF case.

The difficulties with straight-forward PT based on a mean-field single determinant
are well known. From the inception of MBPT, it was apparent that order-by-order
PT will frequently diverge for some cases like the high-density electron gas [26], the
hard-sphere potential then used for nuclei [26] , and, more recently, such divergence
has been demonstrated for molecular problems [27]. However, in the latter case, vir-
tually any resummation of the diverging terms such as the use of Pade’ approximants
easily provides the correct answer [28], so the divergence is not fundamental. The
most attractive and powerful resummation technique is offered by coupled-cluster
theory [1, 2, 5, 6].
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Coupled-cluster theory begins with the recognition that the linked MBPT wave
function can be written to all orders as in Eq. (1-3) in terms of a connected T operator
that ensures that exp(T)|0〉 is “linked” [2]. Instead of PT, the “connected” CC approx-
imations are defined to be infinite-order in categories of Tp, as CCSD means include
all contributions from T1 and T2 into the wave function, |Ψ 〉CCSD =exp(T1 + T2)|0〉
CCSDT adds T3. But because it is more expensive, scaling as ~n3N5, instead
of ~n2N4 as does CCSD; perturbative corrections for T3 like CCSD(T) [29] and
�CCSD(T) [14, 15], that scale only as ~n3N4 are very popular in practice [2].

There is another route toward such approximations to the correlation problem
that is neither purely perturbative, nor infinite order as is CC theory. This is CC
perturbation theory [30]. CCPT is often used in treating properties in CC theory
[8, 9], where H0 = H, E0 = ECC, would correspond to the CC solution and V
would be a perturbing electric [31], or magnetic field [32], or other combinations as
in NMR coupling constants [33]. This is also true for analytical derivatives where
the perturbations are the atomic displacements in a molecule, and basis function
changes are required to be in the equations [8, 9, 16]. Essentially everything one
wants to compute can be obtained from the theory with these perturbative additions.

However, the CCPT approach can also be offered as an alternative to the infinite-
order CC approach for the reference state correlation problem itself, and this has
some potential advantages in computational strategies, including, perhaps, a more
rapid convergence to a satisfactory answer in low order. It also might offer some new
insights into the relationship between various Tp operators.

The following treatment of CCPT will be tied to the convenient mean-field start-
ing point, but the particular choice of H0 will result in the first-order solution for
the double excitation wave function being that for linearized CCD, ΨLinCCD, (also
known as LCCD, CEPA0 and D-MBPT(∞))

ELinCCD = 〈0|H|0〉 + 〈0|H|ΨLinCCD〉 = E0 + E(1) +ΔE(2)
D (1-62)

ΔE(2)
D = 1

4

∑

i,j,a,b

〈ij||ab〉tab(1)
ij (1-63)

whose energy, defined to be second-order in CCPT, is already correct through
third-order compared to orders of conventional MBPT, and will have certain terms
summed to infinite-order. Its solution is given by the linear equation,

M22t(1)
2 = v(1)

2 (1-64)

M22 = 〈2|H − E0|2〉 (1-65)

v2 = 〈2|H|0〉 (1-66)

where |2〉 represents the vector of all distinct double excitations. E0 = ∑

i εi,

and (M22)−1 = −R(0)
2 , is the double excitation component of the resolvent ma-

trix for CCPT. LinCC methods result in symmetric Hamiltonian matrices, ensuring
that all Hermitian adjoints of terms are included along with their counterparts. The
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Hermitian property also makes LinCC analytical gradients easy to evaluate, since
the left-hand eigenvector, Λ, introduced in CC analytical gradient theory [9] cor-
responds to T†. When M is singular, LinCCD will immediately fail, unless some
kind of singular value decomposition (generalized inverse) is used to overcome the
problem [34]. This will typically happen when quasidegeneracies are encountered
due to open shell complications or bond breaking. Such studies have been made by
Paldus and co-workers [35].

To introduce CCPT, consider the usual normal-ordered Hamiltonian
H={H}+〈0|H|0〉 of Eq. (1-4). We have already exploited the fact that if our
choice of orbitals has the off-diagonal fij and fab non-vanishing (like KS orbitals),
we subject them to a semi-canonical transformation that makes fij = fiiδij,and
fab = faaδab.This degree of freedom cannot change any results, since any proper
correlated method is invariant to transformations among just the occupied or
unoccupied orbitals. Of course, fai remains in the perturbation, V.

From observation of the exceptional results often obtained by LinCCD
(Tables 1-1 and 1-2) [34, 36] we choose to separate the full one-particle and two-
particle Hamiltonian into terms that correspond to a zero excitation level and the
others that will change the excitation by one or two [36, 37].

Table 1-1. Total energies (Hartree) for some small molecules at their equilibrium geometrya and cc-pVQZ
basis set

Molecule MBPT2 CCSD CCSD(T) CCPT2SD≡ LinCCD

HF −100.396686 −100.397200 −100.405232 −100.400475
H2O −76.378126 −76.381861 −76.391086 −76.386615
NH3 −56.504675 −56.515257 −56.524215 −56.521021
CH4 −40.454994 −40.473974 −40.481152 −40.479531
N2 −109.446817 −109.443011 −109.463748 −109.454037
CO −113.225769 −113.227116 −113.246075 −113.235350
HCN −93.337852 −93.340065 −93.360033 −93.351033
CO2 −188.454966 −188.443290 −188.475063 −188.453231
C2H2 −77.238538 −77.249087 −77.267427 −77.260313
CH2O −114.402262 −114.410145 −114.428973 −114.419642
HNO −130.373121 −130.375951 −130.398427 −130.389709
N2H2 −110.541198 −110.550317 −110.571755 −110.564223
O3 −225.278459 −225.241996 −225.292632 −225.270213
C2H4 −78.481161 −48.503769 −78.520651 −78.515746
F2 −199.399105 −199.399679 −199.421743 −199.414999
HOF −175.429226 −175.431803 −175.452997 −175.443345
H2O2 −151.444435 −151.448191 −151.469785 −151.460277
HCl −460.343089 −460.361297 −460.369653 −460.368439
CH4O −40.427655 −40.448457 −40.454938 −40.453756
C2H6 −79.384824 −79.412422 −79.428623 −79.424028
SiH4O −291.463161 −291.493110 −291.498026 −291.497647

a The equilibrium geometries were determined at the CCPT2SD level except for HCl, CH4O, C2H6, and
SiH4O where the experimental equilibium geometries were used.
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Table 1-2. Deviations of calculated equilibrium geometries (pm) from
experiment for molecules from Table 1-1

Method Δ̄ Δ̄abs Δstd Δmax

MBPT2 −0.26 0.54 0.67 1.67
MBPT3 −1.30 1.30 1.04 4.24
MBPT4 0.24 0.41 0.54 1.48
CCSD −0.89 0.89 0.79 3.07
CCSD(T) −0.19 0.22 0.30 1.20
CISD −1.80 1.80 1.48 5.72
CCPT2SD −0.39 0.52 0.61 1.92

This procedure, which underlies our easily applied diagrammatic approach
[2, 25], offers a natural dichotomy that in principle, provides a much better unper-
turbed Hamiltonian than the usual sum of one-particle operators. The diagrammatic
expressions are more transparent and shown in Figures 1-3, 1-4, 1-5, 1-6, 1-7, 1-8,
1-9, and 1-10. We also present the algebraic treatment below along with the discus-
sion that pertains to either.

Hence we separate the Hamiltonian into the following parts:

{H} = {F[0]} + {W[0]} + {F[±1]} + {W[±1]} + {W[±2]} (1-67)

{H[0]} = {F[0]} + {W[0]} (1-68)

{V} = {F[±1]} + {W[±1]} + {W[±2]} (1-69)

where the [±k] superscript specifies what effect the operator has in terms of particle
number. [0] means it does not change the particle number, up or down, while [+1]
means it introduces an excitation while [ − 1] is a de-excitation, while [±2] means
the operator causes a net of two excitations or deexcitations. These operators are
shown in Figure 1-3. Orders, however, are still specified by order in the combined
perturbation, V. That is, T(1)

2 means the first-order in V correction to T2. Clearly
we could further separate the perturbation into just excitations or deexcitations, or
single versus double excitations, or rings, or ladders, or could isolate different kinds
of spin contributions, and even separate coulomb terms from exchange terms; if any
of those separations aid us in arranging for the best zeroth-order approximation to
a problem (We might add the last would have the advantage that the largest per-
turbation, the Coulomb perturbation, might be selectively summed to high orders
before introducing the exchange, whose effect might then correspond to a smaller
and shorter range perturbation). This is further discussed in the Summary. However,
we insist that the choice made still makes the results invariant to occupied–occupied
and virtual–virtual orbital rotations, which requires full diagrams. Hence, a choice
that would separate MBPT diagrams into diagonal and off-diagonal terms, like the
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F:

Δ = −1 Δ = 0 Δ = 0 Δ = +1

Δ = –1Δ = –1Δ = –2

Δ = 0 Δ = 0 Δ = 0

Δ = +2Δ = +1Δ = +1

W:

Figure 1-3. Diagrammatic form of the F and W operators

well-known Epstein-Nesbet choice [38], does not satisfy orbital invariance and is not
recommended.

To relate to the usual perturbation, {F[0]} would define the unperturbed problem,
following the semi-canonical transformation. This is the choice made in generalized
MBPT (GMBPT) [39] which means it is applicable to any single determinant refer-
ence function unlike the usual Hartree-Fock based method. Here, however, we prefer
to augment the choice of {F[0]},which is a one-particle operator with {W[0]},which
are the most important parts of the two-particle operator.

The specific algebraic definition of the second-quantized operators then become,

{H0} = {F[0]} + {W[0]} (1-70)

=
∑

p

fpp{p†p} + 1

4

∑

a,b,c,d

〈ab||cd〉{a†b†dc} + 1

4

∑

i,j,k,l

〈ij||kl〉{i†j†lk} (1-71)

+
∑

a,b,i,j

〈aj||bi〉{a†j†ib} (1-72)

which consist of the particle–particle ladder term, the hole–hole ladder, and the hole–
particle (ring) interaction. As each corresponds to full diagrams, any of the three
could define another suitable {H0} if useful. Then the perturbation,
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{V} = {F[±1]} + {W[±1]} + {W[±2]} (1-73)

{F[±1]} =
∑

i,a

fia{a†i+ i†a} (1-74)

{W[±1]} = +1

2

∑

a,b,c,i

[〈ab||ic〉{a†b†ci} + 〈ia||cb〉{i†a†bc} (1-75)

〈ak||ij〉{a†k†ji} + 〈kj||ai〉{k†j†ia}] (1-76)

{W[±2]} = +1

4

∑

i,j,a,b

〈ab||ij〉{a†b†ji} + 1

4

∑

i,j,a,b

〈ij||ab〉{i†j†ba} (1-77)

All terms are presented diagrammatically in Figure 1-3. Undirected lines are used in
short-hand notation when there is no confusion.

It then follows that the general form of the CCPT equations for first order in V
(all products connected) are

1st Order (1-78)

0 = 〈ai |(F[0] +W[0])T (1)
1 + F[+1]|0〉C (1-79)

0 = 〈ab
ij |(F[0] +W[0])T (1)

2 +W[+2]|0〉C (1-80)

In perturbation theory form,

t(1)
1 = 〈1|T (1)

1 |0〉 = R(0)
1 〈1|F[+1]|0〉 = R(0)

1 v(1)
1 (1-81)

t(1)
2 = 〈2|T (1)

2 |0〉 = R(0)
2 〈2|W[+2]|0〉 = R(0)

2 v(1)
2 (1-82)

where (R(0)
1 )−1 = 〈1|(E0−H0)|1〉 = −〈1|(F[0]+W[0])|1〉,with |1〉meaning the vec-

tor of all single excitations, and the same for (R(0)
2 )−1 = −〈2|(F[0]+W[0])|2〉, where

|2〉 means double excitations. The operator form for R= |1〉R(0)
1 〈1|+|2〉R(0)

2 〈2|, and
will be extended to any level of excitation as required, later. The form using v, above,
recognizes that out of all the terms that constitute the perturbation V, only very spe-
cific ones have non-vanishing contributions to the matrix element. See the diagrams
in Figure 1-4.

The first-order singles equation, T (1)
1 , is identically zero when HF orbitals are

used, since F[+1] would vanish for that case, but to allow for any choice of or-
bitals it will be retained in all (algebraic) equations. The first-order T (1)

2 gives the
LinCCD solution, as discussed in Eq. (1-80) above. That is, it typically requires an
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1st order CCPT: amplitude equations

= 0

= 0

= + + +

= 0

energy expression for CCPT2:

(1)
or

(1)

(1)

Figure 1-4. Diagrammatic form (in the antisymmetrized formalism) of the CCPT2 model

iterative solution of the linear equation since the (M22)−1 = −R(0)
2 matrix has rank,

~n2N2,and is non-diagonal, unlike that in ordinary MBPT.
The non-HF single-excitation equation for T (1)

1 is also linear, and is decoupled

from the equation for the T (1)
2 . Notice that despite the semi-canonical transformation

that R(0)
1 is not diagonal as single excitations couple across W[0].

The second-order energy is

ΔE(2) = 1

4

∑

i,j,a,b

〈ij||ab〉tab(1)
ij +

∑

i,a

fiat(1)
ia (1-83)

ΔE(2) = 〈0|V|ψ (1)〉 = 〈0|V(Q1R(0)
1 + Q2R(0)

2 )V|0〉L (1-84)

= 〈ψ (1)
S |(R(0)

1 )−1|ψ (1)
S 〉L + 〈ψ (1)

D |(R(0)
2 )−1|ψ (1)

D 〉L (1-85)

= ΔE(2)
D +ΔE(2)

S (1-86)

and in the HF case reduces to just LinCCD. The resolvent operator R(0)
2 = |2〉〈2|E0−

H0|2〉−1〈2| which is−Q2{H0}−1Q2 = −Q2{F(0)+W[0])Q2. The computational role
for W[0] will arise from the non-diagonal part of the resolvent operator.
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2nd order CCPT: amplitude equations

= + +

= 0

= + +

+ +

= + +

+ + +

Figure 1-5. Diagrammatic form (in the antisymmetrized formalism) of the CCPT3 model

Continuing to the second-order wave function (the diagrams drawn are limited to
HF orbitals in Figure 1-5),

2nd Order (1-87)

0 = 〈ai |(F[0] +W[0])T (2)
1 + (V [−1])T (1)

2 |0〉C (1-88)

0 = 〈ab
ij |(F[0] +W[0])(T (2)

2 + T (1)2

1 /2)+W[+1]T (1)
1 |0〉C (1-89)

0 = 〈abc
ijk |(F[0] +W[0])(T (2)

3 + T (1)
1 T (1)

2 )+W[+1]T (1)
2 |0〉C (1-90)

0 = 〈abcd
ijkl |(F[0] +W[0])(T (2)

4 + T (1)2

2 /2)|0〉C (1-91)

The equations now couple the single and double excitation parts of the equations.
With a Hartree-Fock reference, T (1)

1 = 0, eliminating several terms. For that choice,

T (2)
2 = 0, while T (2)

1 will be the first non-vanishing contribution to T1. For non-HF
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cases to avoid the inversion we would return to the linear equation to obtain the T (2)
2

increment, which is

Q2T (2)
2 |0〉C = Q2R(0)

2 [(W[0])(T (2)
3 + T (1)2

1 /2)+ (V [1]T (1)
1 )]|0〉C (1-92)

The third-order energy in CCPT is

ΔE(3) = 1

4

∑

i,j,a,b

[〈ij||ab〉(tab(2)
ij + ta

(1)

i tb
(1)

j − ta
(1)

j tb
(1)

i )]+
∑

i,a

fiat(2)
ia (1-93)

ΔE(3) = 〈0|V|ψ (2)〉C = 〈0|V|1〉T(2)
1 + 〈0|V|2〉C(2)

2 (1-94)

where C(2)
2 = T (2)

2 + T (1)
1 T (1)

1 /2. For the HF case, T (2)
2 = 0, T (1)

1 = 0, and F[±1] = 0,

so ΔE(3) = 0. Hence, ΔE(2)
D = ΔELinCCD, is obviously correct through third-order

in the HF case. For non-HF, ΔE(3) consists of the usual non-HF third-order single-
excitation terms.

Note the incremental nature of these equations. For non-HF cases, the determina-

tion of T (2)
2 depends upon its increment relative to T (1)2

1 /2. Also, T (2)
3 is the increment

relative to T (1)
1 T (1)

2 and T (2)
4 that relative to T (1)2

2 /2.
This incremental property is a characteristic of the CCPT equations, as all

T (m)
p will be increments relative to a fixed, known combination of T-products, sug-

gesting that for some value of m and p, the increment should eventually become
vanishingly small. At that point the equations will decouple, which would then im-
pose the condition that the right side would vanish. Once that happens, there will
be relationships between different cluster operators that might be useful in devising
additional approximations.

The triple excitation terms first appear in the second-order wave function, just
as in ordinary MBPT. Also since T (2)

3 has no effect on T (2)
2 or T (2)

1 and all energy
corrections have to come through updated T2 and T1 operators, the actual effects
of triples will first occur in the fourth-order energy. The most notable new element
is that the straight-forward evaluation of triples would require the W[0]T (2)

3 term,

which is computationally ~n4N4, compared to the W[+1]T (1)
2 term, which is ~n3N4.

Including this term in a low-order of perturbation theory might seem to be a step in
the wrong direction. but the CCPT theory suggests that perhaps the combination of
this term with the latter is actually a better measure of the correct inclusion of triple
excitations.

There are also alternative approaches that might improve upon the solution of
these very-high rank linear equations, like a Cholesky decomposition of the negative
definite resolvent operator. Finally, considering the underlying MBPT which would
make the W[0]T [2]

3 term fifth-order while the W[+1]T (1)
2 is fourth could be invoked in

approximations. Limiting the W[0] operator to just diagonal terms would make these
computations very easy, as that would simply correspond to a denominator shift, but
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that is an Epstein-Nesbet choice which can violate orbital invariance. In this first
study we prefer not to make such approximations as we want to assess the full effect
of W[0] in the CCPT equations.

Paying attention to the resolvent operator,

Rp = −Qp({F(0)} + {W(0)})−1

= −Qp[{F(0)}−1 − {F(0)}−1{W[0]}]Rp (1-95)

= −R(0)
p + R(0)

p {W[0]}Rp (1-96)

we have

R(0)
p {W[0]} = (Rp + R(0)

p )R−1
p

Hence, using the non-diagonal form of the resolvent, Rp, the above equations can be
expressed as

T (2)
1 |0〉 = R1V [−1]T (1)

2 |0〉C (1-97)

T (2)
2 |0〉 = R2[W[0]T (1)2

1 /2+W[+1]T (1)
1 ]|0〉C (1-98)

T (2)
3 |0〉 = R3[W[0]T (1)

1 T (1)
2 +W[+1]T (1)

2 ]|0〉C (1-99)

T (2)
4 |0〉 = R4[W[0]T (1)2

2 /2|0〉C (1-100)

This form emphasizes that the usual diagrammatic expressions for T amplitudes can
be regained with most of the effect of W[0] being relegated to the resolvent. This
exploits the fact that the choice of {H0} does not change particle number.

Continuing on to the third-order wave function,

3rd Order (1-101)

0 = 〈ai |(F[0] +W[0])T (3)
1 + (F[−1] +W[−1])(T (2)

2 + T (1)
1 T (1)

1 /2)

+W[−2](T (1)
1 T (1)

2 + T (2)
3 )|0〉C (1-102)

0 = 〈ab
ij |(F[0] +W[0])T (3)

2 +W[0]T (2)
1 T (1)

1 +W[+1]T (2)
1 + (F[−1] +W[−1])×

(T (1)
1 T (1)

2 + T (2)
3 )+W[−2](T (1)

2 T (1)
2 /2+ T (2)

4 )|0〉C (1-103)

0 = 〈abc
ijk |(F[0] +W[0])T (3)

3 +W[0](T (2)
1 T (1)

2 + T (1)
1 T (2)

2 )+W[+1]T (2)
2

+W[−1](T (1)2

2 /2+ T (2)
4 )+ F[−1]T (2)

4 |0〉C (1-104)
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0 = 〈abcd
ijkl |(F[0] +W[0])T (3)

4 +W[0](T (1)
2 T (2)

2 + T (1)2

1 T (1)
2 /2+ T (1)

1 T (2)
3 )

+W[+1]T (2)
3 |0〉C (1-105)

0 = 〈abcde
ijklm |(F[0] +W[0])T (3)

5 +W[0](T (1)
2 T (2)

3 + T (2)
2 T (1)

3 + T (1)
1 T (2)

4 )

+W[+1]T (2)
4 |0〉C (1-106)

0 = 〈abcdef
ijklmn |(F[0] +W[0])T (3)

6 +W[0](T (1)
2 T (2)

4 )|0〉C (1-107)

The third-order, T(3)
2 , T (3)

1 , T (3)
3 , T (3)

4 , T (3)
5 , T (3)

6 all depend upon quantities that are
already known at this point. Such a boot-strap approach is customary in perturbation
theory, avoiding any need for a direct, infinite-order solution of the non-linear CC
equations. Because of the quantities being known from prior orders, the equations for
the new amplitudes are all linear, and this will continue to any order. We now have a
need for T (2)

3 to obtain updated T (3)
1 and T (3)

2 amplitudes, and they will then introduce

an energy correction from T (2)
3 . We also have the effect of T (2)

4 now contributing to

T (3)
2 and consequently the energy. Neither T (3)

4 or T (3)
3 have any effect on the energy

yet.
The diagrams for the 3rd order wave function through quadruple excitations and

HF orbitals are shown in Figures 1-6 and 1-7.
The fourth-order CCPT energy is

ΔE(4) = 1

4

∑

i,j,a,b

[〈ij||ab〉[tab(3)
ij + 2(ta

(2)

i tb
(1)

j − ta
(2)

j tb
(1)

i )]+
∑

i,a

fiat(3)
ia (1-108)

ΔE(4) = 〈0|V|ψ (3)〉C = 〈0|V|1〉T(3)
1 + 〈0|V|2〉C(3)

2 (1-109)

C(3)
2 = T (3)

2 + T (1)
1 T (2)

1 . The energy is composed of contributions from the C-type
grouping of single, double, triple, and quadruple excitations. For the first term, we
have

ΔE(4)
a = 〈0|F[−1]R(0)

1 [W[0]T (3)
1 + V [−1]C(3)

2 +W[−2]C(3)
3 ]|0〉 (1-110)

The second term is

ΔE(4)
b = 〈0|W[−2]R(0)

2 [W[0]T (3)
2 +W[0]T (2)

1 T (1)
1 +W[+1]C(2)

1

+V [−1]C(2)
3 +W[−2]C(2)

4 ]|0〉 (1-111)
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3rd order CCPT: amplitude equations

= 0

= + + + +

+ +

+ +

+ + +

Figure 1-6. Diagrammatic form (in the antisymmetrized formalism) of the CCPT4 model
(T1 and T2 amplitudes)

Isolating the individual contributions from different categories of excitations,

ΔE(4)
S = 〈0|W[−2]R(0)

2 W[+1]C(2)
1 |0〉C + 〈0|F[−1]R(0)

1 [W[0]T (2)
1 ]|0〉C (1-112)

ΔE(4)
D = 〈0|W[−2]R(0)

2 [W[0]C(3)
2 ]|0〉C + 〈0|F[−1]R(0)

1 [V [−1]C(2)
2 ]|0〉C (1-113)

ΔE(4)
T = 〈0|W[−2]R(0)

2 [V [−1]C(2)
3 ]|0〉C + 〈0|F[−1]R(0)

1 [W[−2]C(2)
3 ]|0〉C (1-114)

ΔE(4)
Q = 〈0|W[−2]R(0)

2 W[−2]C(2)
4 ]|0〉C (1-115)

These are similar to the usual terms in MBPT4, except in every case the W[0]Cp

term has a role, as shown explicitly in the singles and doubles equations, and implic-
itly in C(2)

3 and C(2)
4 .

As discussed in Eqs. (1-95) and (1-96), the third-order amplitudes can be defined
relative to the combined, non-diagonal resolvents, Rp instead of R(0)

p . In this form,

it is readily apparent that the vertices in the ΔE(4) expressions such as 〈0|W[−2]R(0)
2

become 〈0|W[−2]R2, which emphasize that the L in CCD effects are incorporated into
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Figure 1-7. Diagrammatic form (in the antisymmetrized formalism) of the CCPT4 model
(T3 and T4 amplitudes along with the fourth-order energy expression)

them, as well as in all intermediate Rp’s hidden in the other amplitudes. However,
these expressions are numerically the same. They just differ, conceptually, in how
the solution was obtained using the standard CC approach or from a direct solution
of the linear equation. The former has R(0)

p W[0]Tp terms in its expression instead of
their elimination from the energy (and amplitude) expressions in favor of Rp.

As an illustration, the energy change ΔE(4)
T from Eq. (1-114) can be written
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ΔE(4)
T = 〈0|T (1)†

1 {W[−2]R(0)
3 [W[0](T (2)

3 + T (2)
1 T (1)

1 )+W[+1]T (2)
2 ]}|0〉C (1-116)

+ 〈0|T (1)†
2 {V [−1]R(0)

3 [W[0](T (2)
3 + T (2)

1 T (1)
1 )+W[+1]T (2)

2 ]|0〉C (1-117)

where the complex conjugate was introduced in both expressions. Temporarily dis-
regarding the W[0] term, the 〈0|T(1)†

1 W[−2]R(0)
3 is a disconnected triple de-excitation

amplitude, and 〈0|T (1)†
2 V [−1]R(0)

3 is connected for W[−1] and disconnected for F[−1].
The term

〈0|T (1)†
2 W[−1]R(0)

3 W[+1]T (2)
2 ]|0〉C = 〈0|T (2)†

3 R(0)
3 T (2)

3 ]|0〉C (1-118)

is the usual fourth-order MBPT term that arises from W[+1]T (1)
2 , except that T (1)

2
now comes from LinCCD. This makes it a linear doubles approximation instead
of CCSD to T(CCSD)=[T] [40], T(1)

1 and F[±1] will not appear for HF cases

but would for non-HF examples. The terms, 〈0|T (1)†
1 W[−2]R(0)

3 W[+1]T (2)
2 )]|0〉C, and

〈0|T(1)†
2 F[−1]R(0)

3 W[+1]T (2)
2 )]|0〉C then give the other two diagrams for the general-

ized (T) [2]. The new term

〈0|T (2)†
3 R(0)

3 [W[0](T (0)
3 + T (2)

1 T (1)
1 )]|0〉C (1-119)

has to be computed in this version of CCPT. The quadratic term disappears for HF
cases. Changing R0

3 to R3 would have the effect of also eliminating the W[0]T (0)
3 in

this expression as the effect is in the R3 resolvent.
Following the same simplification as in the triples case, for quadruple excitation

energy contributions we obtain

ΔE(4)
Q = 〈0|(T (1)

2 )†{W[−2]R(0)
4 [W[0](T (2)

4 + T (1)2

2 /2)+ T (1)2

2 /2]}|0〉C (1-120)

The last term accounts for all the normal linked quadruple excitation diagrams in
fourth-order, but now modified to include the infinite-order effects of LCCD through
T (1)

2 .

The new terms arise from T (2)
4 and T (1)2

2 /2. The latter has a particularly interesting

form. Expanding notation a bit, [R(0)
4 ]−1 	⇒ (εi+εj+εk+εl−εa−εb−εc−εd) =

[R(0)
2 ]−1(ijab) + [R(0)′

2 ]−1(klcd), is an eight index denominator that is characteristic
of quadruple excitations, and typically leads to an ~n4N6 computational procedure.

Using the ’ to indicate the two different R(0)
2 ’s and W[−2] = T (1)′

2 [R(0)′
2 ]−1, it follows

that this term becomes

= 〈0|(T(1)
2 )†(T (1)′

2 )†[R(0)′
2 ]−1R(0)

4 W[0]T (1)2

2 /2|0〉 (1-121)

Without restriction we can simply relabel this term with the opposite choice of the
(ie indices) and take one half of the equivalent expressions, to give
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4th order CCPT: amplitude equations

= + + +

+ + +

= + +

+ + +

+ + + +

+ +

+ + +

Figure 1-8. Diagrammatic form (in the antisymmetrized formalism) of the CCPT5 model
(T1 and T2 amplitudes)

1

2
〈0|(T (1)

2 )†(T (1)′
2 )†W[0]T (1)2

2 /2|0〉 (1-122)

This eliminates the eight index denominator in favor of the product of two, four
index ones. The resulting computation is reduced to ~N6 or alternatively, ~n2N5, an
enormous savings [41]. This kind of factorization is not customary in CC theory,
since all connected Tp should not be further reduced. However, we see here that
a characteristic of this more general factorization is that half of the diagram arises
from disconnected terms. The same situation will pertain to other occurrences of this
structure.

The last term contributing to fourth-order quadruples is
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4th order CCPT: amplitude equations

= + +

+ +

+ +

+ +

+ +

+ +

+

Figure 1-9. Diagrammatic form (in the antisymmetrized formalism) of the CCPT5 model(T3 amplitude)

〈0|(T (1)
2 )†(T (1)′

2 )†[R(0)′
2 ]−1R(0)

4 [W[0](T (2)
4 )]|0〉C (1-123)

Allowing for the same factorization trick, we obtain

1

2
〈0|(T (1)

2 )†(T (1)′
2 )†[W[0](T (2)

4 )]|0〉C (1-124)

Here, however, though the last R(0)
4 is removed, there are still equivalent computa-

tional demands because of the requirement of computing W[0]T (2)
4 . The only way to

remove this term is to replace the R(0)
4 by its full analog, R4.



26 R.J. Bartlett et al.

4th order CCPT: amplitude equations

= + +

+ +

+ +

+ +

+ +

+ +

+ +

energy expression for CCPT5:

(4)
+

(2)(2)

Figure 1-10. Diagrammatic form (in the antisymmetrized formalism) of the CCPT5 model
(T4 amplitude along with the fifth-order energy expression)
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It is worth noting that the removal of the “long” denominator is a necessary but
not sufficient condition for obtaining an efficient computational scheme. The latter
can be obtained if – additionally – the terms contributing to T4 contain amplitudes
of the lower cluster rank, e.g. T2 or T3. Having a T4 to T4 component (see first three
contributions to T4 in Figure 1-5) prevents us from benefiting from the factorization
theorem.

Although we report results through fifth-order, at this point we depend upon the
diagrams rather than any further algebraic discussion. The diagrams for the fourth-
order wave function through quadruple excitations and HF orbitals are shown in
Figures 1-8, 1-9, and 1-10 along with the fifth-order energy expressions.

1.6. RESULTS AND DISCUSSION

The results obtained with the variants introduced in the previous section are collected
in Tables 1-3,1-4,1-5, and 1-6

All calculations are done using the ACES II [42] program system supplemented
with the CCPT methods. The main goal of computational tests is to compare
the correlation corrections obtained with new methods with reference data pro-
vided by the full configuration interaction (FCI) scheme. We selected five sys-
tems: the molecules HF, H2O and SiH2 in the DZP basis set, H2O in the DZ ba-
sis set, and N2 in the cc-pVDZ basis set for which the FCI values are available
[43–46].

Adopting the same geometry we are able to assess the performance of the newly
constructed approximations. For some systems we considered also the geometry with
stretched bonds to test the sensitivity of the method with respect to the increased
multiconfigurational character of the reference function.

In Table 1-3 we list standard CC models with full inclusion of the relevant clus-
ters, i.e., CCSD, CCSDT and CCSDTQ and compare their results with those ob-
tained by the respective CCPT schemes. The comparison shows that the new SD
scheme which is simply LinCCD provides better agreement with the exact data than
does the standard CCSD approach. However, the incorporation of the higher clusters
T3 and T4 generally works better for standard CC than for the CCPT ones. The
notable exception is the water molecule in both basis sets for which the CCPT4SDT
method shows lower deviations from the exact values than does the CCSDT. At the
quadruple level the standard scheme is significantly better than the new one. We
also quote the results obtained with the approximate scheme, CCSD(T), which is
known to provide values comparable in accuracy with the full CCSDT scheme. For
the cases studied in this paper this is more or less true except for the SiH2 system for
which the CCSD(T) scheme is worse by more than an order of magnitude. However,
in an absolute error sense, the approximate CCPT4SDT model performs noticeably
better than the noniterative CCSD(T) approach but the appearance of several negative
values point to future difficulties.
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Table 1-3. Correlation corrections with various CC and CCPT methods relative to FCIa values
(mHartree)

CCb CCPT

SD SDT SDTQ SD(T) 2SD 4SDT 5SDTQ

HF(DZP) Re 3.006 0.266 0.018 0.360 2.041 −0.359 0.106
1.5Re 5.099 0.646 0.041 1.069 3.208 −0.692 0.089
2.0Re 10.181 1.125 0.062 2.745 4.026 −5.325 −2.229

H2O(DZ) Re 1.790 0.434 0.015 0.574 2.422 0.028 0.036
1.5Re 5.590 1.473 0.141 1.465 2.899 −0.285 0.412

H2O(DZP) Re 4.122 0.531 0.023 0.766 1.819 0.001 0.044
1.5Re 10.158 1.784 0.139 2.861 0.997 0.147 0.821

SiH2(DZP) Re 2.843 0.100 0.002 1.234 −0.950 −0.075 0.070
1.5Re 6.685 0.058 −0.015 3.175 −0.299 −1.680 −0.436

N2(pVDZ) Re 13.465 1.626 0.192 1.235 6.694 −1.079

a References [43–46].
b References [15, 47, 48].

In Table 1-4 we compare the correlation corrections obtained with the various
MBPTn schemes up to n = 6. The superiority of the CCPT schemes is evident, in
particular for the cases in which we have multiconfigurational character. We see that
even the crudest approximation, i.e. CCPT2SD is better than, e.g., the MBPT5. The
failure of the standard single reference MBPT methods for multireference problems
is well known, but it is worth noticing that the CCPT scheme treats such cases better
due to the infinite summation of certain classes of diagrams.

As we have shown in the previous sections the assumed strategy of generating
the CCPT methods allows for a number of variants. In Table 1-5 we study the

Table 1-4. Correlation corrections with various MBPT and CCPT variants relative to FCIa values
(mHartree)

MBPTb CCPT

(2) (3) (4) (5) (6) 2SD 4SDT 5SDTQ

HF(DZP) Re 7.804 5.438 −0.264 0.859 −0.229 2.041 −0.359 0.106
1.5Re 10.639 11.852 0.768 2.797 −0.407 3.208 −0.692 0.089
2.0Re 24.045 26.959 4.840 8.103 −1.132 4.026 −5.325 −2.229

H2O(DZ) Re 8.550 7.159 0.990 0.810 0.087 2.422 0.028 0.036
1.5Re 19.945 25.130 6.126 4.750 1.910 2.899 −0.285 0.412

H2O(DZP) Re 12.964 7.222 0.919 0.703 0.077 1.819 0.001 0.044
1.5Re 23.310 26.361 5.764 4.984 1.816 0.997 0.147 0.821

SiH2(DZP) Re 29.423 9.701 3.658 1.617 −0.950 −0.075 0.070
1.5Re 48.582 23.353 11.033 5.456 −0.299 −1.680 −0.436

N2(pVDZ) Re 16.687 20.726 −1.450 6.694 −1.079

a References [43–46].
b References [49, 50].
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performance of some of them. The columns headed with the 2SD, 4SD and 5SD
acronyms represent the SD model at various levels of sophistication of the T2 equa-
tion, see Figures 1-4, 1-5, 1-6, 1-7, 1-8, 1-9, and 1-10. Note that these models
neglect the T3 and T4 clusters.The general conclusion is that the simplest model
works best which means that making the T2 equation more complex generates some
misbalance when ignoring higher clusters. The same is generally true for the mod-
els which include the T3 operator, see columns with 4SDT and 5SDT. The only
exception is the SDTQ model where the best results are obtained for the 5SDTQ
model.

In Table 1-5 we also include variants based on the nCC approach [51, 52], see the
columns with headers SDn, SDTn and SDTQn. The detailed analysis of this class
of approximations is given elsewhere [51, 52]. Here we compare only the respective
values. A general feature of nCC models is their more stable character with respect to
multireference situations albeit with less work. The deviations from the exact values
are larger, however, but less affected by the distorted geometry of the molecules
investigated.

In Table 1-6 we investigate the sub-models of the CCPTSDT scheme based on
the noniterative inclusion of the T3 operator. Each noniterative T3 contribution is
obtained in a different manner depending upon the energy expression involving the
T3 operator. The energy expression is obtained by “closing” the T3 operator with
the product of T2W[+1] taken in such a way that it generates triple excitation (in
fact it will be used in the deexcitation form). Contrary to our usual notation, here
T [1]

2 represents the pure first MBPT order, while T (1)
2 is the amplitude obtained by

solving the first order CCPT T2 equation (ie LCCD). Finally, the T(3)
3 (const.) rep-

resents the T3 operator obtained with the T3 amplitude which neglects the T3 to T3
contribution (see Figures 1-7 and 1-9 for amplitude equations). The small change
due to the latter approximation suggests that the computationally involved step can
often be eliminated, though it is an essential part of the theory as presented in this
first study.

Surprisingly some of the noniterative schemes give quite good results. E.g. the
approaches denoted as T[1]

2 W[+1] and T (1)
2 W[+1] give values which are close to each

other and in some cases better than the parent model. In particular the HF results are
significantly improved with the error reduced nearly 3 times. The same is true for
SiH2 and N2 systems, where the mentioned noniterative scheme works better than
the parent scheme.

1.7. SUMMARY

The problem with CC theory and symmetry is that all correlation information is
summed into the amplitude equations from the bottom. This leads to beautiful,
connected equations and very powerful, infinite-order summation methods. But its
weakness is that a truncation of the latter to CCSD, eg., will miss terms that are
hermitian conjugates that only arise from higher connected cluster operators like T4.
The Kucharski-Bartlett [2, 15, 41] factorized inclusion of T4 in fifth-order MBPT,
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which arises in 4th order here,

E(4)
Q = 〈0|[T (1)†

2 ]2W[0]T (2)
4 |0〉 =

1

2
〈0|[T (1)†

2 ]2W[0][T (1)2

2 ]|0〉, (1-125)

is an illustration. First, it arises from T4 in standard CC theory. Yet aided by de-
nominator factorization it becomes a symmetric expression that reduces an other-
wise, ~n4N5 computation if the 8 index denominator in T (2)

4 had to be included,
to ~n2 N5 while only requiring consideration of T2 operators. Such terms nat-
urally arise in symmetric formulations of PT [53] based upon the expectation
value, 〈0| exp (T†)H exp (T)|0〉L, while only retaining T2 operators This is part of
the driving force for finding more symmetric, or hermitian forms for the equations.
However, it has been discussed that using such symmetric formulations, whether
UCC, XCC, SXCC and even the proposed SC-XCC, all have their weaknesses,
too [54].

Here we show that such quadruple diagrams arise in CCPT but not until after
simplification as in Eqs. (1-121) and (1-122), due to their symmetry, that tells us
only T2 is required in the computation. That is because CCPT is still built upon
“connected” terms just as is CC theory itself. To achieve the full benefit of symmetric
forms “connected” has to be relaxed to “linked” as that will enable the symmetric 2m
formulae to be used routinely to derive expansions. This extension will be presented
elsewhere. However, the first useful step toward this goal is the CCPT presented
here, with the understanding that the fully symmetric route to approximations [54]
still will be more hermitian than CCPT.

The nice thing about perturbation theory is that it is innately hermitian, albeit at
the cost of being limited to finite order instead of the infinite-order analogs offered by
CC theory. So the potential compromise is that we sum much more into the pertur-
bation theory by defining a new H0, but still retain the underlying hermitian aspects
and whatever benefits might accrue.

In CCPT we pursue the full CI solution order-by-order in terms of a generalized
PT. MBPT would formally accomplish the same thing but with the standard choice
of H0 = F[0]. Rather than pursuing the standard MBPT route, we introduce an al-
ternative choice of H0 that includes infinite-order sums of selected double excitation
operators from the beginning. This is a hermitian choice and it provides the LinCCD
result in even the lowest order wave function, at the cost of using a non-diagonal
resolvent. We also know that barring singularities, that approximation is really quite
good [34, 36]. The latter, however, remains computationally attractive, as it only
requires the solution to a linear equation, analogous to how EOM-CC second-order
properties are evaluated [31] and lends itself to convenient massively parallel evalua-
tion, which is important to ACES III [55]. Further simplifications should be possible
by subjecting such high-rank linear equations to procedures that provide an effective
lower rank, like that due to Cholesky [56] or singular value decomposition [57],
to enable to be able to solve these equations efficiently, if the accuracy obtained
warrants it.
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CCPT could be viewed as simply an alternative iterative solution of the CC equa-
tions starting from the LinCCD approximation, long used as a first approximation to
solve CC equations [6]. However, here, it intentionally differs from an iterative so-
lution of the CC equations because we want to have the PT symmetry. Furthermore,
we want to have all contributions of a given excitation level in the particular order.
In other words, what really distinguishes MBPT from CI perturbation theory is the
insistence on including all excitations for a given order. In that way, all unlinked
diagrams disappear. The linked diagram theorem cancels them from the beginning,
leading to linked and eventually to the connected equations of CC, but the fact they
can also be removed from CI by this expedient, tells us that a hermitian formulation
can be recovered in finite order.

Another potential advantage of this approach is what it might tell us about the role
of triple, quadruple, and higher excitations. Relationships that relate different cluster
operators might be obtained, somewhat similar to the Kucharski-Bartlett expression,
once a threshold is reached toward convergence, e.g. We would hope that by putting
more infinite-order correlation into the unperturbed H0, that we can obtain a more
rapidly converging sequence of approximations for molecular applications. We also
want the flexibility to hide some kinds of correlation effects into correlated orbitals
[58], thereby potentially alleviating the need to have to consider those effects else-
where in the calculations. In particular, the implementation of such higher excitation
methods demand a much more severe scaling than that of CCSD. As the equations
show, in terms of the new orders of CCPT, their appearance occurs in higher-order,
and has the interesting feature of PT in that their first appearance in the wave function
does not actually change the energy until the next order.

The numerical results are limited so far, but as one would expect, CCPT has to
offer superior convergence to ordinary MBPT, unless we encounter singularities that
are not removed by higher-order terms. For those situations, the singularity free vari-
ant [34] would be preferred. However, the latter mostly fixes LinCCSD so that it
becomes virtually CCSD, which is not always the optimum approach. Further work
will address what hermitian methods can offer beyond the simple examples illus-
trated here.

One other hermitian model is worthy of mention as an illustration of symmetric
expressions and limiting H0 to only Coulomb terms. This is the ancient one of the
sum of just the ring diagrams for the correlation without any exchange. It is known
that it is exact for the high-density electron gas [26], unlike the finite sum of MBPT
diagrams. Any such infinite summation of ring diagrams can be extracted from CC
theory by simplifying the CCD equations in such a way that only the repeated pair
bubbles are produced, with no “ladder” type interactions anywhere in the analysis.
Such ring CCD (r-CCD) methods have become of interest in DFT circles because
of the viewpoint that exchange is put elsewhere in DFT and the only other term of
interest is the Coulomb part of the correlation [59]. This pertains to the so-called GW
theory [60], and in the recent work on van der Waals’ interactions in DFT [61, 62].
The sum of ring diagrams can be written in terms of a Coulomb only T2 set of
amplitudes, assuming Goldstone diagrams, by the expression
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+ +

⊗
+ = 0

which can be written in matrix form as ([61]):

B+ AT2+T2A+ T2BT2= 0 (1-126)

where the A and B matrices are the usual ones familiar from TDHF or RPA. A
is also the matrix that accounts for CIS’ approximations to excited states, while B
introduces the single de-excitation term. It has been shown [61] that the solution of
this equation may also be obtained from the RPA equations

(

A B
−B −A

) (

X
Y

)

=
(

X
Y

)

⎛

⎜

⎝

ω1 0
. . .

0 ωn

⎞

⎟

⎠
(1-127)

and constructing T2 as T = YX−1. See [25, 63] for a derivation of the RPA equations
with exchange from the expectation value of exp(T1). With or without exchange this
equation is obviously hermitian, making T†

2 = T2. So it could be used as another
choice to define a hermitian H0.

A calculation of the r-CCD correlation energy without exchange for five small
systems (N2, F2, C2, O3, and HF) around their equilibrium geometries gives 0.031
H of average differences with the CCSD correlation energy, compared to a CCD
value of −0.007 H. If we use Brueckner orbitals taken from CCSD in such a ring
approximation, we obtain 0.036 H. This work will be published elsewhere [64].
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5. J. Čížek, J. Chem. Phys. 45, 4256, (1966)
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CHAPTER 2

REDUCED-SCALING COUPLED-CLUSTER THEORY
FOR RESPONSE PROPERTIES OF LARGE MOLECULES

T. DANIEL CRAWFORD
Department of Chemistry, Virginia Tech, Blacksburg, VA, USA, e-mail: crawdad@vt.edu

Abstract: The current state of locally correlated coupled cluster theory is reviewed, with an emphasis
on recent developments applicable to response properties. The “correlation domain” selec-
tion schemes that have yielded great success for computations of ground-state energies are
found to be inadequate for field-response properties, including polarizabilities, excitation
energies, and transition probabilities. Alternative approaches for expanding the venerated
Boughton–Pulay orbital domains are considered, including the use of the first-order orbital
response via the coupled-perturbed Hartree–Fock equations. Applications of these selec-
tion schemes to frequency-dependent dipole-polarizabilities and optical rotation in chiral
species demonstrate that local correlation methods have great promise for such properties
for large molecules.

Keywords: Response properties, Locally correlated coupled cluster, Large molecules

2.1. INTRODUCTION

One of the great triumphs of modern quantum chemistry is its ability to provide
reliable predictions of a wide variety of molecular properties [1], including those
associated with the response of a molecule to external electromagnetic fields via
scattering, refraction, and absorption [2–4]. Quantum chemical models are now
routinely employed to compute absorption properties such as excitation energies
[5–8], oscillator strengths [9, 10], and circular dichroism rotational strengths
[11–17], as well as non-absorption properties such as static and frequency-dependent
dipole (hyper)polarizabilities and magnetizabilities [18–23], and mixed-field pertur-
bations, such as those related to chiroptical response [11, 13–17].

Among the wide array of electronic structure models used to compute response
properties is coupled cluster theory [24–26], often referred to in the chemical lit-
erature as the “gold standard” of quantum chemistry for its exceptional accuracy
compared to experiment for common properties such as molecular structure and
thermodynamic constants [27, 28]. The first extension of coupled cluster theory to
response properties was reported in 1977 by Monkhorst [29], who demonstrated that
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the use of an exponential Ansatz for both the perturbed and unperturbed wave func-
tions leads to expressions for second- and higher-order properties that are at least
quadratic in the perturbed amplitudes. Two years later, Mukherjee and Mukherjee
[30] presented the theory behind computation of transition energies using the cou-
pled cluster approach, including equations for the necessary matrix elements. The
first chemical tests of coupled cluster response methods appeared in 1984 with the
work of Sekino and Bartlett [5], who also considered orbital relaxation effects and
reported excitation energies of ethylene. In 1990, Koch and Jørgensen presented an
alternative derivation of coupled cluster response theory based on a time-dependent
Lagrangian formalism [31], including application to excitation energies [6]. A few
years later, Stanton and Bartlett [7] discussed the application of the closely related
equation-of-motion coupled cluster (EOM-CC) method to excitation energies, tran-
sition probabilities, and other properties. The Lagrangian approach to CC response
properties pioneered by the Danish and Norwegian groups has continued to flourish
with the efficient implementation of linear response functions for excitation ener-
gies [32, 33], frequency-dependent dipole-polarizabilities [21, 34], and transition
probabilities [10], as well as the development of a hierarchical series of methods,
including CC2 [35] as an approximation to CCSD (coupled cluster singles and dou-
ble), and CC3 [34, 36–38] as an approximation to CCSDT (coupled cluster singles,
doubles, and triples). More recently, several groups have reported the application
of CC response theory to chiroptical properties, including optical rotation and cir-
cular dichroism spectra, with the ultimate goal of producing computational tools
for the identification of absolute stereochemical configurations of chiral molecules
[12, 39–46].

The Achilles’ heel of conventional coupled cluster theory is its high-order scaling
with molecular size – O(N6) or worse. This so-called “polynomial scaling wall”
prevents the routine application of coupled cluster methods to larger, more chem-
ically significant molecules. While many implementations of coupled cluster re-
sponse theory on high-performance computing hardware are known for their effi-
ciency (including NWChem [47], CFOUR [48], ACESIII [49], DALTON [50], and
PSI [51]), they still require substantial resources – both in terms of computing time
and memory/disk storage – and are typically limited to response computations on
molecules containing 10–12 non-hydrogen atoms (in the absence of symmetry). To
overcome this deficiency, a number of research groups have recently pursued the de-
velopment of reduced-scaling coupled cluster models based on the local correlation
approach first suggested by Pulay and Saebø in the 1980s [52–63]. The central as-
sumption of this idea is that, by adopting well-localized forms of the MOs which are
used to construct the determinantal expansion of the wave function, the parameters
associated with interactions of electrons in spatially distant MOs should be negligi-
ble and may therefore be ignored. This approach has been utilized extensively for
ground-state energies by Werner, Schütz, and co-workers, who have demonstrated
that it is possible to obtain CC ground-state energies (including perturbative triple
excitations) for chains of up to 16 glycine molecules in a matter of hours using
desktop workstations [61, 62].
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The extension of the local correlation concept to response properties, however, has
been more difficult than for ground-state energies for several reasons. First, even in
a well-localized orbital basis, the sparsity of the perturbed wave functions is reduced
relative to their unperturbed counterparts, resulting in cross-over points between
canonical and localized algorithms at larger molecules for response properties than
for energies. Second, the construction of the most effective scheme for partitioning
the wave function in the localized orbital basis (i.e. the construction of reliable orbital
domains) for different types of external-field perturbations is much more involved for
perturbed wave functions and response functions. Third, while the implementation
of efficient locally correlated CC energies is a significantly more complicated task
than canonical-orbital energies, the level of complexity of the code increases further
for response properties, thus impeding the development of new software.

This chapter will review the current state of reduced-scaling coupled cluster meth-
ods for molecular response properties. We will begin with an overview of the relevant
theoretical methods, including EOM-CC and response formalisms, before focusing
on the various factors that arise when extending the Pulay–Sæbø local-correlation
approach to response properties. Finally, we will consider possible future develop-
ments that may allow computations of molecules containing dozens of atoms using
some of the most reliable quantum chemical models.

2.2. LOCAL COUPLED CLUSTER THEORY

The coupled cluster energy functional is given by [24]

ECC = 〈0| (1+Λ) e−TH0eT |0〉 = 〈0| (1+Λ) H̄0|0〉 = E(0), (2-1)

where |0〉 is a single-determinant reference wave function (typically a Hartree–Fock
wave function), and H0 is the electronic Hamiltonian. The cluster excitation, T , and
de-excitation, Λ, operators are determined, respectively, from the stationary condi-
tions [64]

(

∂ECC

∂Λφ

)

T
= 〈φ|H̄0|0〉 = 0 (2-2)

and
(

∂ECC

∂Tφ

)

Λ

= 〈0|(1+Λ)
(

H̄0 − E(0))|φ〉 = 0, (2-3)

where |φ〉 represents the set of excited determinants generated by T from |0〉 [e.g.,
for the coupled cluster singles and doubles (CCSD) [65] model, T = T1 + T2].

Unfortunately, the computational scaling of the coupled cluster model – both in
terms of storage and CPU time – is high-degree polynomial. For the CCSD method,
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the T2 amplitudes require nominally O(N4) storage and (iterative) O(N6) CPU,
where N is a measure of the size of the molecule (i.e. a function of the number of
occupied and virtual molecular orbitals). Triples may be included using non-iterative
(CCSD(T) [66, 67]) or iterative (CCSDT-n [68] or CC3 [36]) algorithms with O(N7)
scaling that avoid explicit storage of the O(N6) T3 amplitudes and the O(N8) scaling
of the full CCSDT approach. In practical terms, these scalings imply that doubling
the size of the molecule of interest leads to a factor of 32–64 increase is amplitude
storage and a factor of 64–128 (or worse) increase in the CPU time. Clearly such
costs are prohibitive for applications involving molecules beyond a dozen or so non-
hydrogen atoms (depending on the molecular symmetry).

The underlying reason for this polynomial scaling is the use of canonical molec-
ular orbitals (MOs), which, although mathematically convenient, tend to yield little
sparsity and large numbers of non-negligible determinantal wave function contribu-
tions. There exist a number of schemes under active development for reducing the
scaling of the coupled cluster method, including atomic-orbital [69] and projected-
orbital [70] basis techniques, fragment-molecular-orbital methods [71], transferable-
amplitude concepts [72], and more [73, 74]. The fundamental concept underlying all
of these approaches is the idea that the electronic wave function may be partitioned
in some a priori manner that allows the systematic neglect of vast numbers of small
(or, ideally, vanishing) contributions. In the reduced-scaling approach pioneered by
Pulay and Sæbø in the 1980s [52–56], this partitioning hinges on the localization
of the molecular orbitals that underlie the determinantal expansion of the wave
function.

In most applications of the Pulay–Sæbø scheme, the occupied orbitals are first
subjected to a localization criterion such as the minimization of the orbital spatial-
extent used by Boys [75, 76] or the charge localization approach of Pipek and
Mezey [77]. The unoccupied/virtual orbitals, however, are typically much more dif-
ficult to localize directly, and are thus taken to be the virtual-space projection of
the atomic-orbital basis set. This maintains the necessary orthogonality between the
occupied and unoccupied orbital subspaces, at the expense of the introduction of
redundancy (linear dependence) in the virtual space and the loss of orthogonality
among the virtual orbitals themselves. Next, for each localized occupied orbital,
φi, a subset of the virtual orbitals is identified as a single-excitation “domain”,
denoted [i], into which determinantal substitutions will be allowed in the correlated
wave function. If the atomic-orbital basis functions are atom-centered, which is by
far the most common choice, the projected atomic orbitals (PAOs) that comprise
the virtual orbitals will likewise be atom-centered. Thus, the correlation domain
of a given occupied orbital consists of all PAOs associated with a given set of
atoms.

The selection of the orbital domains is pivotal to the success or failure of the
Pulay–Sæbø approach, and much effort has been expended on their construction for
various applications [63]. For ground-state wave functions, the most common choice
for the single-excitation domains is based on the Boughton-Pulay “completeness”
criterion:
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fi(C′) = min

{∫

(φi − φ′)2dτ

}

= 1−
∑

μ∈[i]

∑

ν

C′iμSμνC
i
ν , (2-4)

where φ′ is the approximation to occupied molecular orbital φi for the chosen
set of atomic orbitals, with associated coefficients C′iμ and Ci

μ, respectively. The
overlap matrix in the atomic orbital basis is given by Sμν . To compute the com-
pleteness function for a given occupied orbital, the atoms are first organized into
decreasing order of importance (often based on contributions to the orbital’s total
population, for example). The first atom (or group of symmetry equivalent atoms)
and its associated PAOs is selected for the domain, and the value of the com-
pleteness function fi is computed. If the value falls below a chosen cutoff, the
domain for the orbital is sufficiently complete; if not, the set of PAOs on subse-
quent atoms in the list is added to the domain until the cutoff is reached. A typical
value of the completeness criterion for ground-state local-MP2 and local-CCSD
computations is 0.02, which preserves bonded atoms in well-localized systems and
yields domains that are compact – typically consisting only of bonded atoms, lone
pairs, etc.

Once the single-excitation domains have been selected, double- and higher-
excitation domains must also be considered. The single-excitation domain structure
described above yields linear scaling of the number of T1 cluster amplitudes with
the size of the molecular system, and such scaling is sought for the doubles and
higher amplitudes, as well. However, if one were to choose the simple union of the
single-excitation domains, [i]∪ [j], for the two occupied orbitals, φi and φj, involved
in a given double excitation, this would result in quadratic scaling in the number of
T2 amplitudes. On the other hand, limiting the pair-excitation domain to disjoint
excitations such that excitations from φi are limited to the domain [i] and those
from φj to [j] ignores essential correlation contributions (including dispersion). For
these reasons, Pulay and Sæbø suggested partitioning the doubles amplitudes based
on the distance between the corresponding occupied-orbital pair: strong, weak, and
distant pairs. The strong pairs are treated with no approximation, while weak pairs
may be treated at a lower level of theory (e.g. local-MP2), and distant pairs may
be neglected entirely. The number of strong and weak pairs increases linearly with
the size of the molecule, as desired, and the loss of accuracy in energies is typically
small [57].

Numerous applications of the local-CC method for ground-state energetics have
been presented, with Werner, Schütz, and co-workers providing the most impressive
results to date. For example, upon coupling their local-CC methodology to emerging
density-fitting (DF) techniques for rapid evaluation of important two-electron inte-
grals, Schütz and Manby reported local-CCSD computations on chains containing
up to 16 glycine molecules and well over 1,000 basis functions that required only a
few hours of CPU time (whereas canonical-orbital CCSD algorithms would require
years to complete). Such new technology has enabled applications of coupled cluster
theory to realistic chemical systems, including the reaction barriers in enzymes [78].
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2.3. LOCAL COUPLED CLUSTER FOR GROUND-STATE
MOLECULAR RESPONSE PROPERTIES

In the development of a local-correlation approach to molecular response properties,
there are a number of desirable characteristics of the canonical approach we should
try to retain in the reduced-scaling formulation:

1. The approach should be applicable to both static and dynamic response functions.
A method that is not extensible to frequency-dependent properties is limited in
value.

2. Localization criteria – including the selection of orbital domains – must be iden-
tical for both perturbed and unperturbed wave functions. If this condition is not
met, e.g. if one chose to use smaller orbital domains for the ground-state wave
function for efficiency and then to expand those domains when computing the
perturbed wave functions and response function, the resulting property would not
be equivalent to that obtained via a finite-field computation, for example.

3. The localization approach should not change the pole structure of the response
function. In most applications of CC response property computations, orbital re-
laxation is not explicitly included, in part because the resulting dispersion curves
would exhibit an artifactual pole structure – second-order poles arising from or-
bital Hessian singularities, and first order poles arising from the correlated wave
functions. The exclusion of orbital relaxation contributions yields the correct,
first-order pole structure, and thus they should also be excluded in the locally
correlated model.

4. For the balanced treatment of excited states, all states of interest should be treated
using the same overall domain structure, including the ground state. If, for exam-
ple, one were to solve the ground-state CC amplitude equations with one choice of
domains, but then modify them for the construction of the similarity-transformed
Hamiltonian, this would change the ground-state energy, which is implicitly the
lowest eigenvalue of this matrix.

5. The canonical-MO coupled cluster equations are invariant to the choice of
factorization used to reduce the overall computational cost of their solution.
Many such factorizations exist [79–82], and their respective efficiencies depend
somewhat on the molecule in question and the computer architecture employed.
Thus, the local-CC scheme employed should be similarly invariant, for both
practical and philosophical reasons.

Keeping the above issues in mind, our first step in the development of a lo-
cally correlated coupled cluster method to molecular properties is the choice of
formulation.

2.3.1. The Equation-of-Motion and Response Theory Formulations

The two most widely used approaches for determining the molecular response to
a (presumably) small perturbation, V are coupled cluster response (CCR) theory
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[29, 30, 83, 84] and equation-of-motion coupled cluster (EOM-CC) theory, which
are distinguished primarily by their choice of parametrization of the perturbed
wave functions. In the EOM-CC approach, the Hamiltonian is partitioned using its
similarity-transformed representation, viz.

H̄ = e−THeT = e−TH0eT + e−TVeT = H̄0 + V̄ , (2-5)

and the perturbed wave functions are expanded in a linear, CI-like ansatz through the
cluster operators:

|ψEOM−CC〉 =
(

1+ T(1) + T (2) + . . . )|0〉, (2-6)

where the superscripts indicate the order of the perturbation and the cluster operators,
T (n), produce the same set of determinants from the reference determinant |0〉 as
the unperturbed cluster operator T ≡ T(0). As a result, the natural choice for the
EOM-CC zeroth-order right- and left-hand wave functions are

|ψ (0)〉 = |0〉, (2-7)

and

〈ψ (0)| = 〈0| (1+Λ) , (2-8)

respectively, while the right-hand nth-order perturbed wave functions may be
written simply as

|ψ (n)〉 = T (n)|0〉. (2-9)

In the CCR approach, the Hamiltonian is partitioned in its untransformed represen-
tation,

H = H0 + V , (2-10)

and the perturbed wave function is expressed in terms of an exponential parametriza-
tion,

|ψCCR〉 = eT(0)+T(1)+T(2)+...|0〉. (2-11)

In this case, the CC right- and left-hand zeroth-order wave functions are naturally
chosen to be

|ψ (0)〉 = eT |0〉, (2-12)

and

〈ψ (0)| = 〈0| (1+Λ) e−T , (2-13)
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respectively, and the right-hand first- and second-order wave functions may be writ-
ten as

|ψ (1)〉 = eTT (1)|0〉, (2-14)

and

|ψ (2)〉 = eT
[

1

2

(

T (1))2 + T (2)
]

|0〉. (2-15)

In order to determine molecular properties by these approaches, we employ
Rayleigh–Schrödinger perturbation theory. In this formalism, the Schrödinger equa-
tion in first, second, and third order, becomes, respectively,

(

E(0) − H0
)|ψ (1)〉 = (

V − E(1))|ψ (0)〉, (2-16)

E(2)|ψ (0)〉 = (

V − E(1))|ψ (1)〉 + (

H0 − E(0))|ψ (2)〉, (2-17)

and

E(3)|ψ (0)〉 = (

V − E(1))|ψ (2)〉 + (

H0 − E(0))|ψ (3)〉 − E(2)|ψ (1)〉. (2-18)

By inserting the definition of the partitioned Hamiltonian and perturbed wave func-
tions into the above expressions, followed by projection onto the corresponding
zeroth-order wave function, we may obtain expressions for the perturbed energies
within the EOM-CC and CCR models. In first-order, both approaches yield the same
result:

E(1) = 〈0|e−TVeT |0〉 = 〈0|V̄|0〉, (2-19)

which is identical to that obtained by the derivative formulation. In second-order,
however, the two approaches differ. In EOM-CC, we obtain

E(2)
EOM−CC = 〈ψ (0)|(V̄ − E(1))|ψ (1)〉 − 〈ψ (0)|(E(0) − H̄0

)|ψ (2)〉
= 〈0| (1+Λ) (V̄ − E(1))T (1)|0〉 − 〈0| (1+Λ) (E(0) − H̄0

)

T (2)|0〉
= 〈0| (1+Λ) (V̄ − E(1))T (1)|0〉, (2-20)

where we have recognized that T(2) can generate only those determinants in the
same space as T , and thus the stationary conditions for Λ in Eq. (2-3) eliminate
the second term on the right-hand side. The first-order cluster operators required
for the above equation may be determined by projecting the first-order EOM-CC
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Schrödinger equation onto the set of determinants generated by T|0〉, resulting in a
set of linear equations:

〈φ|(E(0) − H̄0
)

T (1)|0〉 = 〈φ|V̄|0〉. (2-21)

Although the form of Eq. (2-20) is appealing in its simplicity, it is not size-
extensive unless the perturbed and unperturbed cluster operators include all possible
excitations.

The CCR second-order Rayleigh–Schrödinger equation projected onto the zeroth-
order left-hand wave function gives a somewhat different result:

E(2)
CCR = 〈ψ (0)|(V − E(1))|ψ (1)〉 − 〈ψ (0)|(E(0) − H0

)|ψ (2)〉
= 〈0| (1+Λ) e−T(V − E(1))eTT (1)|0〉 −

〈0| (1+Λ) e−T(E(0) − H0
)

eT
[

1

2

(

T(1))2 + T (2)
]

|0〉

= 〈0| (1+Λ) (V̄ − E(1))T (1)|0〉 −

〈0| (1+Λ) (E(0) − H̄0
)

[

1

2

(

T(1))2
]

|0〉. (2-22)

The first term on the right-hand side above is identical to its EOM-CC counterpart,
but the second term is unique to CCR. As before, the term containing T(2) in the
above equation is zero because Eq. (2-3) is satisfied in the space of determinants

generated by T|0〉. However,
(

T (1)
)2

generates higher determinants, and thus may
yield non-zero contributions. It may be shown [85] that the unlinked diagrams gen-
erated by the first term on the right-hand side of Eq. (2-22) are exactly canceled by
corresponding terms arising from the second, quadratic term. Thus, Eq. (2-22) may
be written in its more common form as [86]

E(2) = 〈0| (1+Λ) ([V̄ , T (1)]+ 1

2

[[

H̄0, T (1)], T (1)])|0〉. (2-23)

The appearance of commutators between T(1) and both V̄ and H̄0 in this expres-
sion emphasizes the size-extensive/intensive nature of CCR properties. However,
the quadratic terms also increase the computational expense of the CCR approach
relative to EOM-CC, and modifications of the EOM-CC approach that result in size-
extensive properties have been considered [85, 87].

The corresponding EOM-CC and CCR equations for the time-/frequency-de-
pendent case may be derived in multiple ways, but the practical changes to the above
time-independent formulas are relatively small, with the external field frequency
appearing both in the perturbed wave functionequations and in the expression for
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the perturbed energies. However, since the frequency-dependent expressions are not
essential to our present discussion of local correlation, we will avoid presenting them
explicitly here and merely direct the reader to the relevant references [3, 29–31, 85].

2.3.2. Localized Orbital Domains and Response Properties

The first complication in formulating a local-CC approach within either the CCR
or EOM-CC frameworks is that the sparsity of the perturbed wave functions deter-
mined using Eq. (2-21) is reduced relative to that of the unperturbed wave func-
tions in Eq. (2-2), even when expressed in a localized-orbital basis. For example,
Figure 2-1 plots the distribution of double-excitation amplitudes in n-octane at the
CCSD/6-31G* level of theory. The perturbed amplitudes in this case correspond to
the solution of Eq. (2-21) for a static electric field polarized along the long axis of the
molecule; the occupied space corresponds to the Pipek–Mezey [77] orbitals, while
the virtual space is the projected atomic-orbital basis of Pulay and Sæbø. Both distri-
butions appear to be statistically normal, but with different peak positions. While the
unperturbed amplitudes exhibit a maximum at around 10−6, the perturbed amplitude
distribution is shifted up by nearly two orders of magnitude, just above 10−4. Hence,
the wave function’s response to the external field leads to reduced sparsity, which

Figure 2-1. Statistical distribution of CCSD/6-31G* double-excitation amplitudes for n-octane in a
localized orbital basis. The perturbed T2 amplitudes correspond to the solution to Eq. (2-21) for a static
electric field perturbation along the A axis of the molecule
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means that the orbital domains used for the ground state will be inadequate for the
perturbed state, for which more computational effort will be required. (It should be
noted, however, that the sparsity reduction is in the perturbed wave function; the
wave function computed in the presence of a weak external field should have similar
sparsity to the field-free wave function.) The question then arises as to how to predict
this sparsity a priori, i.e., what changes to the Pulay–Sæbø orbital domain structure
would be effective for the locally correlated response?

The first application of local-CC theory to response properties was published in
2004 by Korona et al. [88], who reported benchmark computations using a pilot
local-CCSD program for dipole moments and static dipole polarizabilities. They
found that, indeed, the usual Boughton–Pulay domains are not sufficient for molec-
ular property calculations, and proposed to expand them based on bond-connectivity
criteria, where bonds between atoms were assumed to depend on the covalent radii
of the atoms in question. They found that the effect of orbital relaxation on the com-
puted properties was larger for the local-CC case than for canonical-MO CC, and
they were able to reduce the localization errors on polarizabilities, for example, to
less than 1% when such orbital response was included.

In our own work in this area, we sought a different approach to the domain-
selection scheme that avoided problems associated with orbital relaxation effects. In
the spirit of the Boughton–Pulay completeness approach, in which the ground-state
orbitals themselves provide information on the correlated wave function sparsity, we
have formulated a domain-selection scheme that utilizes the response of the ground-
state orbitals to external perturbations [89, 90]. Within Hartree–Fock theory, a single
component of the dipole-polarizability tensor may be written as

αxy =
occ
∑

i

vir
∑

a

Ux
aiμ

y
ai, (2-24)

where a and i denote virtual and occupied MOs, respectively, the μy
ai are electric-

dipole integrals in the MO basis, and the Ux
ai are solutions to the electric-dipole

coupled-perturbed Hartree–Fock (CPHF) equations, i.e. the first-order response of
the MOs to the external electric field. The summation over virtual orbitals may be
converted to a summation over atomic orbitals (identified by Greek indices) to give

αxy =
occ
∑

i

AO
∑

ρ

Ux
ρiμ

y
ρi. (2-25)

If the AOs are grouped by atom, then the two summations may be decomposed – the
sum over i into (localized) atomic orbitals and the sum over μ into atoms to obtain

αiA
xy =

AO
∑

ρ∈A

Ux
ρiμ

y
ρi, (2-26)
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where the notation ρ ∈ A indicates that only those basis function on center A
are included in the summation. To account for the varying signs associated with
individual contributions to this “pseudo-polarizability,” we use the above equation to
define a new completeness check:

εi
xy =

AO
∑

ρ

∣

∣Ux
ρiμ

y
ρi

∣

∣−
AO
∑

ρ∈[i]

∣

∣Ux
ρiμ

y
ρi

∣

∣, (2-27)

where the notation ρ ∈ [i] indicates that the summation includes only those AOs
on atoms within the current guess at the domain associated with occupied orbital, i.
This provides a simple algorithm for extending the domains based on the magnitudes
of the polarizability completeness cutoff, εi

xy: starting from the Boughton– Pulay
domains for the unperturbed orbitals, additional groups of PAOs are added to the
domain for a given occupied orbital, i, until the value of εi

xy falls below a chosen
threshold: the smaller the threshold, the larger the domains.

Using a pilot local-CCR implementation applied to a number of benchmark sys-
tems – including He-atom chains, linear alkanes, and non-saturated molecules up to
N-acetylglycine – we found that we could reproduce canonical-MO CCSD dipole
polarizabilities to within 1% using the CPHF domain-selection scheme above and
without the need to include orbital relaxation effects [89]. Given that our CPHF-
based scheme is readily applicable to both static and frequency-dependent response
properties, the avoidance of explicit inclusion of orbital relaxation effects is impor-
tant because, as noted in desiderata 1–3 above, this localization approach avoids
corruption of the pole structure of the frequency-dependent response function. The
primary drawback to the expansion of the orbital domains, of course, is that the cost
of the computation increases significantly. While the Boughton–Pulay domains yield
compact CCSD wave functions, the CPHF-based domains are significantly larger.
Of course, even with larger domains, the number of strong-pair double-excitation
amplitudes will scale linearly with the size of the system, as long as appropriate
weak-pair treatments are used to avoid significant loss of accuracy.

In a more recent application of the CPHF-based domain selection scheme, we
considered the frequency-dependent mixed electric-dipole/magnetic-dipole polariz-
ability tensor that is related to optical rotation and circular dichroism spectra in chiral
molecules [90]. In this case, we found it necessary to include both electric-field and
magnetic-field contributions in the CPHF scheme, leading to an additional complete-
ness check, viz.

εi
xy =

AO
∑

ρ

∣

∣Mx
ρim

y
ρi

∣

∣−
AO
∑

ρ∈[i]

∣

∣Mx
ρim

y
ρi

∣

∣, (2-28)

where the Mx
ρi are the solutions to the magnetic-field CPHF equations and the my

ρi
are the corresponding magnetic dipole integrals. Thus, the orbital domains would
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naturally expand, based on the proposed CPHF cutoffs, to accommodate both rel-
evant perturbations. We found that the chiroptical response is much more sensitive
to the structure of the orbital domains than dipole polarizabilities, and that smaller
cutoffs for the CPHF completeness check were necessary to achieve similar accuracy
as compared to canonical-MO computations. Although the resulting local-CCSD
wave functions (perturbed and unperturbed) were reasonably compact for linear
molecules (e.g., H2 polymers, fluoroalkanes, and triangulanes [91]), the more three-
dimensional the molecular structure (e.g. norbornenones) the larger the domains
and the further out the cross-over point between the local-CC and canonical-CC
algorithms.

2.4. LOCAL COUPLED CLUSTER THEORY AND ELECTRONICALLY
EXCITED STATES

The high accuracy of CC theory for electronically excited states is well documented.
For states dominated by a single excitation relative to the ground-state, the CCSD
approximation typically yields transition energies accurate to within 0.2 eV [7]; for
higher excitations, at least triple excitations are necessary in the excited-state wave
function parametrization [92–94]. The determination of electronic excitation ener-
gies in coupled cluster theory involves the computation of eigenvalues of the matrix
on the left-hand side of Eq. (2-21), namely the similarity-transformed Hamiltonian.
This task is normally accomplished via the Davidson approach [95] and its gen-
eralization to non-symmetric matrices by Hirao and Nakatsuji [96]. From a local-
correlation perspective, the key step in the Davidson algorithm is the formation of
the so-called σ vector, viz.

σm ≡ H̄Bm, (2-29)

where Bm is an approximation to the true m-th eigenvector of H̄. In the CC method,
the guess eigenvectors are represented as a CI-like (linear) expansion of excited
determinants involving a set of cluster operators analogous to the Tn operators of
the ground-state wave function. Thus, for the CCSD method, for which the com-
putation of σ for a given state scaled nominally as O(N6), the introduction of a
local-correlation approach involves truncation of the cluster expansion using similar
orbital-domain arguments as those described above for perturbed wave functions.
However, the difficulty in designing an effective local-CC approach to excited states
rests in the inherently delocalized nature of many states, such as that arising from
strong Rydberg character or perhaps charge-transfer.

In the first published approach to locally correlated excited-states in CC theory
[97], we examined a series of organic molecules ranging from ethanal to glycine
using a pilot local-EOM-CCSD program and compared canonical-MO CCSD exci-
tation energies to those computed using simple Boughton–Pulay orbital domains for
both the ground and excited states. We found that these domains – when used in



50 T.D. Crawford

conjunction with reasonable basis sets, including molecule-centered Rydberg func-
tions – were sufficient for some localized valence transitions, but too small for many
other types of excitations. In addition, we developed a weak-pair correction analo-
gous to that developed by Werner and co-workers for ground-state energies based
on local-MP2 theory. Specifically, we considered the well-known (D) correction of
Head-Gordon and co-workers [98–100] for excited states within the configuration
interactions singles (CIS) approximation, which takes the form

ω(D) = 1

4

∑

ijab

bab
ij 〈ab

ij |
(

H̄[1]Û1
)

C|0〉 +
∑

ia

ba
i 〈ai |

(

H̄[2]Û1
)

C|0〉, (2-30)

where ba
i is an excited state amplitude which parameterizes the CIS excitation

operator Û1 and H̄[n] is the n-order contribution to the CCSD H̄. In our approach,
the corresponding excited-state weak-pair correction involves only the first term of
Eq. (2-30), and the summation is limited only to the weak-pair components. In the
localized-orbital basis, the requisite double-excitation amplitudes are computed iter-
atively, much like the first-order wave function amplitudes in LMP2:

bab
ij ω = 〈ab

ij |
(

H̄[1]Û1
)

C|0〉 + facbcb
ij + fcbbac

ij − fkib
ab
kj − fkjb

ab
ik , (2-31)

where the intermediate 〈ab
ij |

(

H̄[1]Û1
)

C|0〉 depends on the CIS excited state wave-
function amplitudes ba

i and is given by

〈ab
ij |

(

H̄[1]Û1
)

C|0〉 = 〈ab||cj〉bc
i − 〈ab||ci〉bc

j + 〈ka||ij〉bb
k − 〈kb||ij〉ba

k . (2-32)

Although the weak-pair (D) correction yielded some reduction in the localization
errors, it could not overcome the lack of flexibility in the Boughton–Pulay domains
for certain excited states.

Korona and Werner [101] implemented an alternative approach whereby the or-
bital domain structure for a given excited state is based on the weights of the corre-
sponding CIS wave function, thus defining the localization structure independently
for each excited state. Using a pilot local-EOM-CCSD programs, they were able
to obtain much smaller localization errors – on average less than 0.1 eV – than the
fixed-domain scheme. This domain-selection approach has also been utilized by Kats
et al. [102] more recently for the first production-level implementation of excitation
energies at the CC2 level of theory in conjunction with DF methods. By choos-
ing to limit only the pair domains and leave the singles untruncated, the resulting
program performed well – yielding localization errors of less than 0.05 eV – and
highly efficient, as demonstrated on benchmark computations on molecules contain-
ing up to several dozen non-hydrogen atoms. One drawback of this CIS domain-
selection approach is that the ground-state T amplitudes are solved in a different
domain than that used to construct H̄for the subsequent eigenvalue computation.
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Thus, the ground-state energy (defined as the lowest eigenvalue of H̄) implicitly
shifts for each excited state, and, although reasonable excitation energies result, it
remains unclear whether the corresponding excited-state wave function will yield
accurate transition probabilities or excited-state properties. Indeed, Kats et al. [103]
reported the need to enlarge the CIS-based excited-state domains using a CPHF-
based scheme with some similarities to that described above for polarizabilities and
optical rotation.

2.5. CONCLUSIONS AND FUTURE DIRECTIONS

The application of local-correlation idea pioneered by Pulay and Sæbø to coupled
cluster theory has yielded much fruit for high-accuracy computations of ground-
state energetics of large molecules. The use of compact orbital domain struc-
tures for partitioning the correlated wave function into more tractable compo-
nents has enabled truly impressive production-level CC computations on molecules
containing dozens of atoms and thousands of basis functions [62]. However, for
molecular response properties, the sparsity of the perturbed wave function is
significantly reduced relative to the unperturbed wave function. Thus, the usual
orbital-domain selection schemes are not sufficient, and new approaches must be
devised.

For electric- and magnetic-field perturbations, we have found that a domain-
selection approach based on the CPHF equations provides reasonably robust
results for static and dynamic dipole polarizabilities and optical rotation, espe-
cially for strongly linear molecular structures. For cage-like structures, however,
the orbital domains must be expanded significantly, leading to much less ideal
cross-over points between the canonical-MO and local-MO algorithms. For excited
states, the simple ground-state orbital domains have been found to be inadequate
to retain the accuracy of the local-EOM-CC method, but domain selection based
on CIS states, while yielding robust excitation energies, are not apparently suf-
ficient to provide correspondingly robust transition probabilities and excited-state
properties.

Within the confines of the Pulay–Sæbø local-correlation approach, there is
much work remaining before the coupled cluster method will be routinely appli-
cable to response properties of large molecules. Some of this work involves the
development of efficient production-level programs that take every technological
advantage, from integral pre-screening and density fitting, to implementation
on parallel computing architectures. Other aspects will involve new scientific
advances, including the development of reduced-scaling methods that are applicable
extended systems such as polyenes or surfaces with much more complicated
electronic structure characteristics than simple, isolated organic molecules. Suc-
cess in both areas – artful programming and clever science – will be necessary
to achieve the final goal of reliable quantum chemical computations on large
molecules.
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Abstract: In this chapter, two useful non-perturbative approximants to the state specific multi-
reference coupled cluster theory (SS-MRCC) of Mukherjee et al. are developed and pilot
numerical applications are presented. The parent formulation is rigorously size-extensive
and the use of a complete active space leads to a size-consistent theory as well when lo-
calized orbitals are used. The redundancy of cluster amplitudes, which is customary when
the Jeziorski-Monkhorst wave-operator is used in a state-specific theory is bypassed by
employing strict requirements of size-extensivity of energy and the avoidance of intruders,
thus rendering the parent SS-MRCC theory rigorously size-extensive as well as intruder-
free when the desired state is well separated from virtual functions. In the working equa-
tions, the cluster amplitudes for the operators acting on the different model functions are
coupled. In addition, the state-specific nature of the formalism leads to a lot of redundant
cluster amplitudes. The equations are thus rather complex with both coupling terms and
requiring sufficiency conditions to eliminate redundancy. The two approximants discussed
in this chapter are designed to reduce the complexity of the working equations mentioned
above via well-defined non-perturbative approximations in two different ways. In the first
variant, to be called the uncoupled state-specific MRCC(UC-SS-MRCC), we use an ana-
logue of the anonymous parentage approximation in the coupling term, which leads to
considerable simplification of the working equations, yet with very little deterioration of
the quality of the computed energy. In the second one, named internally contracted inactive
excitations in SS-MRCC(ICI-SS-MRCC), the cluster amplitudes for all the inactive double
excitations are regarded as independent of the model functions. Since the all-inactive dou-
ble excitation amplitudes are the most numerous, this variant leads to a dramatic reduction
in the total number of cluster amplitudes. The ICI-SS-MRCC, unlike analogous theories,
such as IC-MRCISD or CASPT2, uses relaxed coefficients for the model functions and
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at the same time employs projection manifolds for the virtuals obtained from inactive n
hole-n particle (nh-np) excitations on the relaxed multi-reference combinations. Our pilot
numerical applications on a few important test cases indicate that the ICI-SS-MRCC per-
forms remarkably well, closely paralleling the performance of the full-blown SS-MRCC.

Keywords: Multireference coupled cluster, State-specific, Uncoupled approximation, Anonymous
parentage, Jeziorski – Monkhorst ansatz

3.1. INTRODUCTION

The coupled cluster approach for treating electron correlation for studying small
to medium sized molecules has become the standard tool in quantum chemistry, in
particular when the reference function is a single determinant [1–9]. Inspired by this
success, multi-reference generalizations has been attempted to encompass situations
which warrants a multi-reference (MR) starting description. The generalization of
SR exponential ansatz to MR case has resulted in several different formulations
which emphasize different aspects of electron correlation which are special to the
MR case. For example, there are two distinct Effective Hamiltonian Formulations
viz. valence universal MRCC (VU-MRCC) [10, 11] and state-universal MRCC (SU-
MRCC) [12, 13] theories. They differ in the forms of the wave operators used to
generate the CC wave function and have been widely used over the last two decades
for treating strong dynamical as well as non-dynamical electron correlation effects
in a group of states which are quasi-degenerate in energy.

Effective hamiltonian methodology [14] works within the relevant subspace,
spanned by the corresponding quasi-degenerate model functions {φμ}. It proceeds
through projections of some exact wave functions into the model space, and folds
via the Bloch Equation [15] the effects of the virtual functions onto the effective
hamiltonian (Heff).

Just as in the SRCC method, which unlike the SR-CI, preserves size-extensivity,
the various effective hamiltonian based MRCC methods also guarantee size-
extensivity, provided a CAS is used.

Although formally elegant,the Effective Hamiltonian methods based on CAS suf-
fer from some serious limitations:

1. they often suffer from the ubiquitous intruder state problems [16]. In a CAS based
strategy, involving well-spread out valence orbitals, some virtual space deter-
minants are almost always close in energy to some model space determinants,
resulting in a strong mixing of such virtual space determinants (intruder states)
with the model space determinants leading to the divergence in the perturbation
series for Heff or ill-conditioning of the MRCC equations;

2. the need to calculate more states than possibly desired simultaneously for both
VU and SU case as there are more unknown parameters than can be fixed by
projection onto elements of P and Q, greatly complicate a practical and useful
exploitation of these methods;
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3. the multiplicity of the solutions and in the VU case, their genealogy, greatly com-
plicate a practical and useful exploitation of these methods;

4. the SU/VU MRCC methods that use only one- and two-body cluster amplitudes
often provide rather unsatisfactory results than the SRCC method in the regions
of non-degeneracy. For the states at fixed geometries, the problem of intruder can
be avoided using a judicious choice of incomplete active space (IAS) [17–19].
But to generate the PES over the wide range of geometries, this approach is not
satisfactory, since there is no unique and also natural choice of an IAS to avoid
the intruders at all points [19].

One way-out to avoid intruders suggested long ago was to exclude the offending
model function in the active space, so that intruders are avoided. Ways to guarantee
size-extensivity in such choices of active space has been suggested by Mukherjee
[17, 18], Kutzelnigg et al. [20] and Lindgren [21]. Though this strategy works for
states at limited geometries, this usually doesn’t work for computing potential energy
surfaces (PES), since this requires different IAS in the different regions of PES.

Another approach, first introduced by Kirtman [22], and later considerably
expanded in its scope by Malrieu et al. [23], Mukherjee et al. [24, 25] and
Kaldor et al. [26] abandoned the idea of using an effective hamiltonian altogether
and concentrated on fewer roots M for diagonalization of an N-dimensional effective
operator (M < N). This relaxation of having to generate N eigenvalues for an effec-
tive operator can be exploited to bypass intruders. Maintenance of size-extensivity is
considerably more difficult to guarantee in such formalisms.

As an extreme example of the intermediate hamiltonian formalism, one may en-
vision a targeting just one-root of interest for the target function, though one works
with an N-dimensional effective operator in a model space. Such “state-specific”
formulations will automatically eliminate intruders as long as the target state energy
remains well separated from the energies of the virtual space functions. These state-
specific formulations have become promising methods of choice over the last decade
or so. Methods of immediate relevance in this context are the dressed MR-CISD for-
mulation of Malrieu et al. [27–29], the single-root multi-reference Brillouin Wigner
CC theory (sr-MRBWCC) of Hubač, Pittner and Čársky [30–32], the state-specific
MRCC(SS-MRCC) theories of Mukherjee et al. [33–35] and the allied methodolo-
gies of Evangelista et al. [36, 37], the MRexp(T) theory of Hanrath [38], and the
state-specific equation of motion method of Nooijen et al. [39].

In this chapter, we will focus on the development and preliminary molecular ap-
plications of certain non-perturbative approximants to the parent SS-MRCC methods
of Mukherjee et al. [40–42].

The chapter is organized as follows:

(a) in Section 3.2, we will motivate towards the development of non-perturbative
approximants by a succinct summary of the parent SS-MRCC

(b) Section 3.3 discusses the development of the Uncoupled SS-MRCC (UC-SS-
MRCC) where simplification of the so-called coupling terms of working equa-
tions of the parent theory leads to their simpler structure
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(c) in Section 3.4, we introduce another non-perturbative approximant, where an
entire combination Ψ0 =∑

μ φμCμ of the model functions {φμ} is used to gen-

erate composite virtual functions |χl〉 = Y†
l |Ψ0〉, which involves various nh-np

inactive excitations on Ψ0.This approach is thus the non-perturbative analogue
of the internally contracted MR-CI [43–45] or similar perturbative versions,
such as CASPT2 [46, 47] or MRMP2 [48]. There is an important difference,
however. In the internal contraction of the inactive excitations in SS-MRCC
(ICI-SS-MRCC) scheme, the coefficients Cμ of φμ in Ψ0 are relaxed as they
should be in the exact function Ψ and not frozen at some predetermined values,
as e.g. obtained from CAS-CI calculation. Thus ICI-SS-MRCC entails relax-
ation of the coefficients Cμ in presence of dynamical correlations, although the
virtual functions {χl} for the inactive excitations are generated by the action of
various nh-np excitations

{

Y†
l

}

acting on a relaxed Ψ0
(d) in Section 3.5, molecular application to four prototypical systems with strong

quasi-degeneracy are presented. The encouraging results for both the for-
malisms prove their efficacy.

3.2. A BRIEF RESUME OF THE PARENT SS-MRCC THEORY

3.2.1. Structure of the Working Equations

In the parent SS-MRCC theory [33–35], the wave function is represented as a su-
perposition of exponential excitation operators exp (Tμ) acting on the respective
model functions φμ. The model functions are assumed to span a CAS. The exact
wave-function ψ thus is written as

ψ =
∑

μ

exp (Tμ)φμcμ (3-1)

Following the traditional nomenclature of the multi-reference formalisms, we will
call the doubly occupied orbitals common to all the model functions as inactive holes,
the empty orbitals in the model functions as inactive particles, and partially occupied
orbitals as active. The cluster operators Tμ’s acting on the respective model space
determinants φμ, generate the various virtual functions {χl} by exciting the electrons
in orbitals occupied in φμ to another set which are unoccupied in φμ. Tμ’s have
the property that at least one orbital involved in it must be inactive, thus none of
the Tμ operators can produce excitations within the model space. Since each χl can
be reached from the different φμ’s, there is a redundancy in the number of cluster
amplitudes. This flexibility was exploited in the SS-MRCC formalism to achieve
the two desirable objectives: (a) to bypass intruders naturally and (b) to guarantee
size-extensivity rigorously. Without going into the details of derivation, we present
below the working equations of the formalism:

〈χl|Hμ|φμ〉cμ +
∑

ν

〈χl| exp (− Tμ) exp (Tν)|φμ〉H̃μνcν = 0∀l,μ (3-2)

(termI) (termII)
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where

H̄μ = exp (− Tμ)H exp (Tμ) (3-3)

and

H̃μν = 〈φμ|H̄ν |φν〉 (3-4)

In SS-MRCC theory, we have the flexibility of either using certain frozen combin-
ing coefficients {cμ} determined from a CI or CAS-SCF calculation (the unrelaxed
description), or of updating the coefficients to the values they should have in the
presence of the virtual functions (the relaxed description). In what follows, we will
consider only the latter, since it is more general. The unrelaxed formalism follows
trivially if we freeze the coefficients to some preassigned values.

In the relaxed description, the coefficients and the energy of the target state are
obtained by diagonalizing the matrix H̃μν defined in CMS:

∑

ν

H̃μνcν = Ecμ (3-5)

with E as the desired eigenvalue.
Equation (3-2) are coupled non-linear equations involving the cluster amplitudes

of various Tμ’s and the cμ’s. The first term in Eq. (3-2), the “direct” one (term I) just
looks like that of the SRCC equation, except that, for each model function,φμ there
is a separate matrix-element involving H̄μ. This term for each φμ contains only the
operator Tμ. The second term (Term II), the “coupling” one, couples the amplitudes
of various other model functions φν’s. Apart from the couplings appearing via H̃μν ,
there is the factor 〈χl|e−TμeTν |φμ〉,where Tνs, defined as excitations from φν , acts
on φμ in this term. In the term H̃μν , however Tν acts on φν . Thus there is a strong
coupling of T’s in the second term.

Proving the size-extensivity of both cluster amplitudes and the energy E is a
rather involved exercise, and we refer to the original papers for details [33–35].
The SS-MRCC theory is invariant with respect to separate unitary transformation
among inactive holes and particle orbitals separately. It is not invariant with respect
to transformation among the active orbitals. However, using localized inactive and
active orbitals, the theory is rigorously size-consistent with respect to fragmentation.

At this point, we want to emphasize the important aspects of arriving at the proof
of size-extensivity of Eq. (3-2). This will serve two purposes:

(a) to emphasize the importance of the coupling term, and
(b) to underline our non-perturbative approximants

to the SS-MRCC (vide-infra) will require a similar analysis to ensure extensivity
Since the first term (the “direct” term) involving Tμ and H of Eq. (3-2) has mani-
festly connected expression via the multi-commutator expansion if Tμ is connected,
it is enough to show that the second term produces disconnected terms Yμν H̃μν is
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manifestly connected and it is enough to establish that YμνH̃μν is connected, where
Yμν=〈χl|

[

exp (− Tμ) exp (Tν)
] |φμ〉. The first factor, Yμν , unlike the analogous one

in the SUMRCC [12, 13], has an interesting simpler structure. Since exp (Tν) acts on
φμ, only that subset of Tνs gives non-zero contributions on their action on φμ which
have the same excitation structure as those of Tμ. Let us denote these set from Tν as
Tν′. Tν thus can involve those orbitals which are common to both φν and φμ. Thus
Tν′ also commutes with Tμ. The expression for Yμν can thus be simplified as

Yμν = 〈χl| exp−[Tμ − Tν′]|φμ〉 (3-6)

where both Tμ and Tν′ are included in the single exponential using their commuta-
tivity.

The proof of the connectivity of YμνH̃μν follows from the two following impor-
tant properties:

(a) H̃μν has explicit functional dependence on all the active orbitals which distin-
guish φμ and φν ,

(b) the difference (Tμ−Tν′) is implicitly dependent functionally on some or all the
active orbitals distinguishing φμ and φν .

The property (b) arises because Tμ and Tν′ have the same implicit functional de-
pendence on the respective set of orbitals occupied in φμ and φν . Since Tμ and Tν′
have the same set of orbitals occupied in φμ and φν , the difference between them
can only depend on all or some of the active orbitals which distinguish φμ and φν .
Hence 〈χl| exp

(−Tμ + Tν′
) |φμ〉H̃μν is a connected entity. In the UC-SS-MRCC to

be discussed in Section 3.3, we will invoke suitable uncoupling approximations to
the coupling term II. The insight gleaned above in (a) and (b) will be used to satisfy
size-extensivity.

3.3. THE UNCOUPLED STATE-SPECIFIC MRCC THEORY

3.3.1. Discussion of the Simplification Leading to UC-SS-MRCC

In the uncoupled state-specific MRCC (UC-SS-MRCC) [40, 41] theory we use
Jeziorski-Monkhorst Ansatz: Ω =∑

μ exp (Tμ)|φμ〉〈φμ| involving a different clus-
ter operator exp (Tμ) acting on its corresponding model function φμ as in SS-MRCC
theory and we replace the rigorous coupling term of SS-MRCC by a modified form
where Tν’s does not appear at all in the factor Yμν . Only the cluster amplitudes of
Tμ enter in the coupling term.

To arrive at the uncoupled approximant to the parent SS-MRCC theory, we re-
place the explicit coupling term Yμν = 〈χl| exp (− Tμ + Tν′|φμ〉 by a simpler
expression containing Tμ only:

Yμν → YUC
μν = 〈χl| exp (− Tμ + Tμ′(ν)|φμ〉 (3-7)
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where Tμ′(ν)s denote the subset of Tμ which have the same excitation structure of
Tν′. These terms are characterized by explicit appearance of creation-annihilation
of either holes or particles and/or of those active orbitals which are occupied or
unoccupied in both φμ and φν . They thus contain all orbitals common in φμ and φν .
In this case then, the difference [ − Tμ + Tμ′(ν)] ≡ [ − T

μ
(ν)] contain only those

excitations which contain active orbitals distinguishing φμ and φν . Hence YUC
μν H̃μν

will still be a connected entity. With this small but significant change, the UC-SS-
MRCC equations take the form

〈χl|Hμ|φμ〉cμ +
∑

ν �=μ
〈χl| exp (− T

μ
(ν)|φμ〉H̃μνcμ = 0 (3-8)

This can be simplified further to yield

〈χl|Hμ|φμ〉cμ +
∑

ν �=μ
〈χl|

[

− T
μ

(ν)+ 1

2
T
μ2

(ν)
]

|φμ〉H̃μνcμ = 0 (3-9)

for the truncation of Tμ up to doubles.
It may be instructive to emphasize here that, since T

μ
(ν) is labeled by active

orbitals distinguishing φμ and φν , T
μ

(ν) annihilate all |φν〉 for ν �= μ:

T
μ

(ν)|φν〉 = 0 (3-10)

For the SD truncation scheme, Eq. (3-8) can be written as

〈χl1|[Hμ]1|φμ〉cμ +
∑

ν �=μ
〈χl1| − T

μ

1 (ν)|φμ〉H̃μνcν = 0 (3-11)

for the single excitation projections on to 〈χl1|. [H̄μ]1 are the one body excitations of
H̄μ. Likewise, for the doubles excitations, projections onto the double excited states
〈χl2| reached from φμ lead us to

〈χl2|[Hμ]2|φμ〉cμ +
∑

ν �=μ
〈χl2|

[

− T
μ

2 (ν)+ 1

2
T
μ

1
2
(ν)

]

|φμ〉H̃μνcν = 0 (3-12)

The Eqs. (3-11) and (3-12) are the working equations for uncoupled state-specific
MRCC (UC-SS-MRCC) theory. They are simpler in structure as compared to the rig-
orously size-extensive SS-MRCC theory containing genuine coupling term. Though
by this modification the scaling with respect to the orbitals is not altered, we get a
simpler coupling term. The main purpose for suggesting this uncoupling approxima-
tion is not to counterpose this approximate version against the rigorous SSMRCC
formulation, but to establish that an essential simplification of the coupling term is
possible which, as the results discussed in Section 3.5 would indicate, does not lead
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to deterioration of the quality of computed energies as the result of the uncoupling
approximation.

3.3.2. Relation Between sr-MRBWCCSD and UC-SS-MRCC

The Hubač – Čársky – Pittner single root (sr) multi-reference Brillouin – Wigner cou-
pled cluster [30–32] theory (sr-MRBWCC) is also an intruder free state-specific the-
ory where the coupling term is simpler than in the SS-MRCC. The coupling appears
indirectly via the energy E, the only problem being its manifest size-inextensivity.
Though both SS-MRCC and sr-MRBWCC theory use the Jeziorski – Monkhorst
cluster Ansatz [10] in the wave-function, they are built on different sufficiency con-
ditions. Each corresponds to a projection on to a virtual function χl reached from
a model function φμ as equal to zero. As has been discussed in Section 3.2, in
SS-MRCC there are two sets of terms in the working equations. The first set, the
“direct” term contains only powers of Tμ for the excitations from φμ.The second set,
the “coupling” term, where other Tνs (μ �= ν) also figure in the term. The coupling
term is crucial for the twin desirable goals of the formulation, viz. (1) avoidance of
intruders and (2) maintenance of rigorous size-extensivity. We replace the operators
Tν′ in the coupling term in the UC-SS-MRCC theory by Tμ′, thereby empirically
eliminating the couplings. In contrast, in the sr-MRBWCC theory the “direct” term
is rather analogous to the one in SS-MR theory, while in place of the “coupling” term
there is a simpler looking expression containing the target energy E itself multiplied
by certain expressions containing just the amplitudes of the same Tμ for each φμ.
The working equations look like

〈χl|H exp Tμ|φμ〉 = 〈χl| exp Tμ|φμ〉E ∀l,μ (3-13)

Unfortunately, despite the simpler structure of the sr-MRBWCC theory, it is not man-
ifestly size-extensive. Attempts have been made [32, 49] by reverting to a Rayleigh-
Schrödinger like expansion of E, but this runs into the danger of entailing intruders.
The UC-SS-MRCC, in contrast, is manifestly size-extensive, though here the simpli-
fication of the coupling term is achieved by an empirical replacement of Tν′ by Tμ′.
In sr-MRBWCC, the coupling of the various Tμs with different φμs is thus implicit,
appearing via E, since E involves all the cluster operators with different Tνs. Due
to the absence of explicit couplings of the various Tμs, the working equation in
sr-MRBWCC is simpler in structure as compared to that of SS-MRCC and this is
why we could characterize sr-MRBWCC as an uncoupled MRCC approach.

We also want to emphasize that the UC-SS-MRCC is not only completely size
extensive, but also – as will be exemplified by numerical results presented in Sec-
tion 3.5 – capable of providing potential energy surface with almost no deterioration
of the quality of the computed energies vis-a-vis the parent SS-MRCC.

To summarize, we have developed in this section a formalism which emerges from
the rigorous SSMRCC formulation of Mukherjee et al., where the coupling term of
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the parent formalism is simplified in a way that for excitations from a model function
φμ to a virtual function χl, only Tμs appear. Since the simplifying approximations
in UC-SS-MRCC consists in replacing the nontrivial Tν′ operators appearing in the
coupling term Yμν = 〈χl| exp

(−Tμ + Tν′
) |φμ〉 by the corresponding Tμ′ opera-

tors, this is somewhat like invoking an anonymous parentage approximation while
evaluating the coupling terms. When φμ and φν are widely separated in energy, it
is not immediately obvious that the use of anonymous parentage approximation will
be a good one. As will be illustrated with numerical applications in Section 3.5, the
excellent performance of the UC-SS-MRCC as compared to that from sr-MRBWCC
implies that maintenance of size-extensivity may very well compensate for the er-
ror due to the anonymous parentage approximation. Some insight into this asser-
tion can be gleaned by looking at the PES of Li2 presented in Section 3.5, where
the UC-SS-MRCC performs as well as the SSMRCC at large internuclear distance
(where the model functions are practically degenerate), while the performance of
the sr-MRBWCC gets increasingly inferior at large internuclear separation. For-
mulation and discussion of the merits of UC-SS-MRCC is not meant to advocate
replacement of the parent SSMRCC with the UC-SS-MRCC generally, since one
does not gain much improvement in scaling behavior with respect to orbital basis.
Rather it is meant to throw light on the role of maintaining size-extensivity in the
simplified treatment of the coupling term. The UC-SS-MRCC is likely to turn out to
be computationally useful in SSMRCEPA like approximations, where an eigenvalue
equation like structure can emerge with diagonal dressing of the MR-CISD matrix
in the UC-SS-MRCC. (Pathak et al. to be published)

3.4. DEVELOPMENT OF SIZE-EXTENSIVE APPROXIMANT
TO THE SS-MRCC WITH MODEL-SPACE INDEPENDENT
INACTIVE EXCITATIONS

3.4.1. Motivations and Insights for an Internally Contracted Inactive
Excitation Scheme (ICI-SS-MRCC)

We are going to present in this section in the same spirit as in the internally contracted
MRCI (IC-MRCI) method [43–45], a size-extensive state-specific MRCC method,
where for the inactive excitations are taken to be independent of the model space
function φμ they act upon. To motivate towards this formulation, we adduce simple
perturbative arguments to see why and where the inactive excitations can be taken
to be independent of μ. An analogous exercise was done for the contracted MR-CI
scheme too, long time ago [43, 44]. In particular, the inactive double excitation of
the type ij→ ab are the most numerous, and there will be dramatic simplification if
these cluster amplitudes have really weak dependence on μ. In a contracted MR-CI,
the multi-configurational reference function ψ0 = ∑

μ φμcμ, is treated as a single
contracted reference configuration, and excited configurations are generated by the
application of inactive excitation operators {Y†

l } to this contracted function. Each
excited configuration is then a linear combination of many ordinary configuration
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state functions, with the linear coefficients fixed by the reference wave function. As
a result, the number of independently varied coefficients is similar to the number of
terms in a SR calculation. For given number of orbitals and electrons, the length of
an uncontracted MRCISD expansion is approximately proportional to the number
of reference configurations. Therefore, internal contraction can provide a drastic
reduction in the length of the CI vector and allow the use of substantially larger
reference spaces than would be practical in uncontracted calculation, making the use
of CMS more affordable. At the same time it should be noted that the reduction in
the computational effort is not as drastic as in the length of the CI vector, since the
Hamiltonian matrix in contracted CI is not near as sparse as for the uncontracted
expansions. Multi-reference perturbation theories using the concept of IC configura-
tions have also been appeared in the literature [46].

In the same spirit as in the contracted MR-CI, we develop the corresponding con-
tracted version of the SS-MRCC method, where the inactive excitations are indepen-
dent of μ. We propose the ICI-SS-MRCC Ansatz as:

ψ = exp (Ti)
∑

μ

exp (Tμ)|φμ〉cμ (3-14)

in which only the cluster operators Ti causing pure inactive excitations from the
reference functions ψ0 =∑

μ |φμ〉cμ, are independent of model space determinants.
Thus, the reduction of the cluster amplitudes is obvious from our proposed theory.

In the development stage of ICI-SS-MRCC, we have tried two different variants
of ICI-SS-MRCC formalism. One is ICI-SS-MRCC(1), where only the pure two-
body inactive excitations were made model function independent and the other is
ICI-SS-MRCC(2), where both the one- and two-body pure inactive excitations were
made reference determinant independent. We have presented applications of these
two variants in Section 3.5.

From an estimate of the cluster amplitudes from the first order perturbation theory
we know that cluster amplitudes causing double excitation, involve the two-body
portion of H in the numerator depending only on the orbitals involved in the excita-
tion. The denominator is roughly of the order of the energy differences of the doubly
occupied and the virtual orbitals and a shift which could be weakly dependent on φμ.

tab
ij (μ) � Vab

ij

ΔEμshift + εi + εj − εa − εb
(3-15)

The two-body cluster inactive amplitudes can thus be assumed to be φμ independent
without any significant loss of accuracy.

On the other hand, the cluster amplitudes causing single excitations from a given
φμ involve Fock-operator fμ in the numerator which is strongly μ-dependent and
hence it does not appear to be a good approximation at all to make the one-body
cluster amplitudes μ-independent. In what follows, we will develop the ICI-SS-
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MRCC formalism in a way that allows some inactive excitations to be μ-dependent,
if we so wish. The version ICI-SS-MRCC(1) involves only T2is which are μ-
independent, while the version ICI-SS-MRCC(2) involves both T1is and T2is which
are μ-independent. Since the assumption of T1i may not be a good one, the version
(2) is not expected to perform as well as the other version. This is shown to be the
case, as exemplified in Section 3.5.

3.4.2. Development of the General ICI-SS-MRCC Formalism

We now describe the theoretical development of our ICI-SS-MRCC approximation.
The μ-independent excitations containing inactive orbitals only are generally de-
noted from now on as Ti. The rest, μ-dependent excitations are denoted by Tμ We
posit on the exact state |ψ〉, spanning the target space, the following Ansatz:

ψ = exp (Ti)
∑

μ

exp (Tμ)|φμ〉cμ (3-16)

As discussed in Section 3.4.1, such type of Ansatz reduces the number of inactive
cluster amplitudes enormously. The cluster operator Ti is taken to be independent of
μ will finally be restricted to purely inactive double excitations, but for the general
development, we will not necessarily assume this to be the case. The excitations in-
duced by the other set of cluster operator Tμ involve the complements of all possible
excitations left out by Ti. Again, in our applications we will advocate inclusion of
single excitations of all types and the double excitations involving at least one active
orbital in the set {Tμ} for all μ.

We will denote the space functions reached by Ti on ψ0 as Qi, while the comple-
mentary projector spanned by the space of functions reached by the set {Tμ} on φμ’s
will be denoted by Qa. The union Qi + Qa for all distinct functions is denoted by the
projector Q. The projector for the model space is denoted by P.

To derive the working equations, for ICI-SS-MRCC, we use the Ansatz
Eq. (3-16), in the Schrödinger Equation, and invoke certain sufficiency conditions
using the projection on virtual functions reached by Ti and Tμ.

To arrive at these equations, it is convenient to introduce the following compos-
ites:

H = exp (− T)H exp (T) (3-17)

Hν = H exp (Tν) (3-18)

Using the composite H as defined in Eq. (3-17), write the Schrödinger Equation as:

H exp (T)
∑

μ

exp (Tμ)|φμ〉cμ = E exp (T)
∑

μ

exp (Tμ)|φμ〉cμ (3-19)
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and obtain

H
∑

μ

exp (Tμ)|φμ〉cμ = E
∑

μ

exp (Tμ)|φμ〉cμ (3-20)

using the definition of Eq. (3-18), we can simplify Eq. (3-20) even further:

∑

μ

exp (Tμ)Hμ|φμ〉cμ = E
∑

μ

exp (Tμ)|φμ〉cμ (3-21)

Using the resolution of identity, I = P+ Q, we have

∑

μ

exp (Tμ)(P+ Q)Hμ|φμ〉cμ = E
∑

μ

exp (Tμ)|φμ〉cμ (3-22)

We now introduce the subscripts i and a for an operator X, viz. Xi and Xa to denote
excitations of the type induced by Ti’s and Tμ’s respectively. We also denote Xex, the
general excitations components of X, leading to the Q space.

Using the expressions for Q and P and using Q = Qi + Qa, we get

∑

μ

exp (Tμ)Hμ ex|φμ〉cμ +
∑

μν

exp (Tμ)|φν〉〈φν |Hμ|φμ〉cμ

= E
∑

μ

exp (Tμ)|φμ〉cμ (3-23)

Inspired by the manipulations leading to the parent SS-MRCC [33–35] theory, we
interchange μ and ν in Eq. (3-23) on the second term on its left hand side and obtain:

∑

μ

exp (Tμ)Hμ ex|φμ〉cμ +
∑

μν

exp (Tν)|φμ〉˜˜Hμνcν

= E
∑

μ

exp (Tμ)|φμ〉cμ (3-24)

where,
˜
˜Hμν = 〈φμ|Hν |φν〉 (3-25)

We now separate the “i” and “a” components of the entire space of excitation com-
ponent.

∑

μ

exp (Tμ)Hμ i|φμ〉cμ +
∑

μ

exp (Tμ)Hμ a|φμ〉cμ +
∑

μν

exp (Tν)|φμ〉˜˜Hμνcν

= E
∑

μ

exp (Tμ)|φμ〉cμ (3-26)
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Following the ideas introduced in the parent MRCC theory, we write the resolution
of identity in the following manner:

I = exp(Tμ)(P+ Qi + Qa)exp(− Tμ)

= Pμ + Qμi + Qμa (3-27)

Equation (3-26) can then be rewritten as

∑

μ

exp (Tμ)QiHμ i|φμ〉cμ +
∑

μ

exp (Tμ)QaHμ a|φμ〉cμ

+
∑

μν

exp (Tμ)(Qi + Qa) exp (− Tμ) exp (Tν)|φμ〉˜˜Hμνcν = 0 (3-28)

where we made use of the relations

QaXi = QiXa = 0 (3-29)

and

(Qμi + Qμa) exp (Tμ)|φμ〉 = exp (Tμ)(Qi + Qa)|φμ〉 = 0 (3-30)

We now use two different kinds of projection manifolds for the virtual functions
to arrive at the equations for the cluster amplitudes. For the inactive excitations
involving internally contracted functions, we introduce Qi = ∑

li |χli〉〈χli | with
|χli〉 = Yli |Ψ0〉 and use projections Qμi = exp(Tμ)Qiexp(− Tμ) obtained therefrom.
For every excitation Tli = tliY

†
li

, Tli ∈ Ti, there is always a projection coming from
exp(Tμ)|χli〉〈χli |exp(− Tμ). From Eq. (3-28), for every χli we get a set of equations

∑

μ

〈χli | exp (Tμ)QiHμ i|φμ〉cμ = 0∀li ∈ Qi

or
∑

μλ

Cλ〈φλ|Y†
l exp (Tμ)Hμ i|φμ〉cμ = 0∀li ∈ Qi (3-31)

These equations are the ones determining the cluster amplitudes of Ti = ∑

li Tli =
∑

li tliY
†
li

. They consist of connected terms only, though it may not be immediately
obvious. We do not have the space to discuss the proof here, which will form the sub-
ject of a forthcoming, comprehensive communication [42]. Here we merely sketch
the essentials.

For every μ, we can rewrite Eq. (3-31) as

∑

μ

cμ
2
∑

λ

Cλ
cμ
〈φλ|Y†

l exp (Tμ)Hμ i|φμ〉cμ = 0 (3-32)
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The ratio Cλ
cμ

can be expressed in terms of a cluster expansion from 〈φμ| with a

de-excitation operator σ †
μ involving de-excitations with active orbitals only.

Cλ
cμ
= 〈φμ| exp (σ †

μ)|φλ〉 (3-33)

For a CAS, σ †
μ is a connected operator. Using Eq. (3-33), Eq. (3-32) can be cast in

the form

∑

μ

cμ
2
∑

λ

〈φμ|[ exp (σ †
μ)]

λ

μ
Y†

l exp (Tμ)Hμ i|φμ〉 = 0 (3-34)

Since Y†
l has only de-excitations with inactive labels and Hμ i has excitations involv-

ing inactive labels, they must connect among themselves for a non-zero contribution
of 〈φμ| · · · |φμ〉. Also since σ †

μ has active de-excitations, they must contract with

active excitations stemming from exp (Tμ). Thus some inactive lines of Y†
l are con-

nected to some inactive lines of exp (Tμ), and the remaining active must be joined

between those in
[

exp
(

σ †
μ

)]λ

μ
and exp (Tμ). For the Tμ operators, we use the suffi-

ciency conditions of the same type as invoked in the parent theory to arrive at

〈χl|Hμ|φμ〉cμ +
∑

ν

〈χl| exp (− Tμ) exp (Tν)|φμ〉˜˜HμνCν = 0 (3-35)

which can be shown to be manifestly size-extensive. The energy is obtained from

∑

ν

˜
˜HμνCν = Ecμ (3-36)

Equations (3-34), (3-35), and (3-36) are all coupled and they are solved by a nested
macro- and micro-iteration with the {cμ} computed from Eq. (3-36) in the macro-
loop and Tli and Tl

μ solved in the micro-loop.
The use of Eq. (3-34) equivalently of Eq. (3-31) is the most crucial, since it

demonstrates clearly the dramatic reduction of the number of the cluster-amplitudes
for inactive excitations. In our preliminary applications, we shall use two schemes:

a. in one, to be called ICI-SS-MRCC(1), we take the inactive T2’s to be μ-
independent, and

b. in the other, to be called ICI-SS-MRCC(2), we take both T1 and T2 for the
inactive excitations to be μ-independent.

It turns out that the latter is a poorer approximation compared to the former.
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3.5. RESULTS AND DISCUSSION

In this section we present application of both the UC-SS-MRCC and ICI-SS-MRCC
theory to four prototypical systems. Since we wanted to work with spin-adapted
formulations as far as feasible, we deliberately choose only those molecular elec-
tronic states which are described well in their model representation in terms of
closed-shell determinants only. The spin-adaptation of the working equations both
for the parent SS-MRCC, and the approximants we are considering in this article
becomes a straightforward exercise in this situation. We simply replace, exactly as
is done in the SRCC theory, the spin-orbital indices with the orbital indices, and
assign a factor 2 for each loop. This stratagem has been followed in all of our
applications.

For our system studies, we have looked at the full potential energy surface (PES)
of the ground state of BeH2 model system, Li2, and the single point energy on lowest
singlet state of CH2, and O3 at their equilibrium geometry.

All the states considered, encounter severe intruder problems if treated in the
effective hamiltonian formalism, but our applications in the state-specific context do
not display presence of intruders at all. For systems such as BeH2, the highest lying
valence orbitals cross each other, demanding a state-specific theory where all model
functions are treated on the same footing. The performance of our method has been
assessed against the corresponding FCI values and we have also shown results from
the rigorous SS-MRCC [33–35] formalism.

All the systems studied by us are described well by two determinant model
spaces whose model functions are described generically by the closed-shell func-
tions φ1=[core]a2 and φ2=[core]b2 with two active orbital “a” and “b” belonging to
different symmetries. The model space used in our applications is thus complete.
In all our calculations we have used (2,2) CASSCF orbitals. The CASSCF and FCI
calculations were performed using the US-GAMESS electronic package of 2007.

In this section we have also presented results from another version of ICI-SS-
MRCC theory where in addition to 2h − 2p type pure inactive excitation, 1h − 1p
type pure inactive excitations have also made independent of reference determinants.
Results corresponding to this theory is referred to as results from ICI-SS-MRCC(2),
whereas results corresponding to ICI-SS-MRCC with T=T2 is referred to as results
from ICI-SS-MRCC(1).

3.5.1. PES of Perpendicular Insertion of Be into H2

As the first system, we present here C2v insertion reaction of Be to H2 to form the
BeH2 molecule. Since, in the Be atom, the 2s and 2p orbitals are quasi-degenerate,
and its insertion into the H2 molecule requires breaking of the H2 bond, it makes both
the 1σ 2

g and 1σ 2
u configurations equally important. In the CI description of the com-

posite system at the bond-breaking geometry, both configurations are equally im-
portant. Thus the PES studies of the insertion reaction warrants a two-configuration
reference description.
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Figure 3-1. Difference energy curve for the perpendicular insertion of Be into H2 of SS-MRCC, UC-SS-
MRCC, ICI-SS-MRCC(1), ICI-SS-MRCC(2) with respect to FCI

The insertion path displays avoided crossings as the distance of approach R, of Be
atom to the two hydrogen atoms in H2 is varied. The system has been widely studied
both at the geometries where the two configurations are equally important [50] and
for the reaction path at other geometries as well [50, 51]. We have followed exactly
the same points of the sample path as studied by Purvis et al. [50]. The arrangements
of Be and the two H atoms for the various H-H distances and R for all sample points
are shown in Fig. 1 of Ref. [35].

Beyond the sample point E, the dominant configuration is 1a2
12a2

13a2
1, which in

our study has been taken as φ2. However, for sample points A, B, C, and D, the
determinant 1a2

12a2
11b2

2 is seen to have a lower energy, we have considered this
configuration as φ1. Corresponding to the sample point E both these configurations
are seen to be equally weighted. We have used the lowest root of (2, 2)CAS and
have used the CASSCF natural orbitals from GAMESS(US)-2007 electronic pack-
age. The success of UC-SS-MRCC and ICI-SS-MRCC(1) like SS-MRCC [34] over
the entire range of R is a stringent test of the formulations. A comparison with the
FCI results indicates a very good global behavior for our UC-SS-MRCC as well as
ICI-SS-MRCC(1) theory as is evident from Table 3-1 and Figure 3-1.

3.5.2. Ground State PES of Li2 Molecule

The second system we present here is the study on ground state of Li2 molecule,
which has also been studied by many workers in great details [34, 52–54]. A very
detailed calculation involving the first nine excited states of this system has already
been carried out by Kaldor [52], using a rather large basis involving 74 Gaussian type
orbitals using the VU-MRCC theory in an incomplete model space(IMS). Figure 1
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Table 3-1. Absolute energy (Eh) from various MRCC based methods and FCI for ground state of BeH2.
(Basis and geometry: Second entry of Ref. [59]; configuration for φ1 : 1a2

12a2
11b2

2)

Coordinates SS-MR UC-SS-MR ICI-SS-MR(1) ICI-SS-MR(2)
Geometry (y,R)(a.u.) CC CC CC CC FCI

A 2.540,0.000 −15.778776 −15.778779 −15.778775 −15.778754 −15.779172
B 2.080,1.000 −15.736753 −15.736750 −15.736752 −15.736737 −15.737225
C 1.620,2.000 −15.674238 −15.674242 −15.674232 −15.674186 −15.674818
D 1.390,2.500 −15.622598 −15.622620 −15.622566 −15.622416 −15.622884
E 1.275,2.750 −15.603564 −15.603607 −15.603525 −15.602803 −15.602919
F 1.160,3.000 −15.626162 −15.626210 −15.625882 −15.624932 −15.624964
G 0.930,3.500 −15.692963 −15.692969 −15.692942 −15.692885 −15.693195
H 0.700,4.000 −15.736537 −15.736538 −15.736534 −15.736534 −15.736688
I 0.700,6.000 −15.760849 −15.760850 −15.760849 −15.760848 −15.760878

in Ref. [52] makes it clear that Li2 has a wealth of low-lying excited functions, which
mix strongly with the model space functions, especially at the equilibrium geometry
[52] and also around R = 8.5 a.u. Hence it is a good choice for testing the efficacy
of any theory designed to bypass intruders.

In our calculation the determinants φ1 = 1σ 2
g 1σ 2

u 2σ 2
g and φ2 = 1σ 2

g 1σ 2
u 2σ 2

u com-
prise the two reference determinants that make up our active space. We have used
basis cc-pVDZ from http://www.emsl.pnl.gov/forms/basisform.html and D2h point
group in our calculation. The orbitals used are CAS-SCF orbitals for the lowest root
of the (2, 2)CAS.

In Table 3-2, we present absolute energies in Eh for the ground state of the
Li2 molecule obtained from SS-MRCC, UC-SS-MRCC, ICI-SS-MRCC(1), ICI-SS-
MRCC(2) and FCI.

Analyzing Figure 3-2 as well as Table 3-2 ,we conclude that UC-SS-MRCC and
ICI-SS-MRCC(1) shows a very good global behavior. In low internuclear distances
ICI-SS-MRCC(2) deviates more from FCI.

3.5.3. The Lowest 1A1 State of CH2 at Equilibrium Geometry

The lowest 1A1 state of CH2 at equilibrium geometry has already been stud-
ied systematically by many workers [33, 34, 55–57] as a typical system which,
even at equilibrium geometry, possesses pronounced MR character. Hence for a
qualitative description, both the model space functions φ1 = 1a2

1 2a2
1 1b2

2 3a2
1 and

φ2 = 1a2
1 2a2

1 1b2
2 1b2

1 are required.
In our computations we have used standard Huzinaga – Dunning triple-ζ basis

(from GAMESS BASIS SET LIBRARY) augmented with a set of six-d type po-
larization functions on carbon [αd=1.50] and one set of p-polarization function on
each hydrogen [αp(H)=1.50]. We have kept 1s orbital of C and the highest virtual
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Table 3-2. Absolute energies (Eh) from different MRCC based methods and FCI for the ground state of
the Li2 molecule at various internuclear distances(a.u.) using cc-pVDZ basis

R SS-MRCC UC-SS-MRCC ICI-SS-MRCC(1) ICI-SS-MRCC(2) FCI

4.50 −14.900697 −14.900698 −14.900696 −14.900680 −14.900797
5.00 −14.903945 −14.903946 −14.903945 −14.903929 −14.904022
5.1696 −14.903929 −14.903930 −14.903928 −14.903913 −14.904000
5.50 −14.902785 −14.902786 −14.902785 −14.902770 −14.902848
6.00 −14.899192 −14.899193 −14.899192 −14.899178 −14.899245
6.50 −14.894439 −14.894440 −14.894439 −14.894426 −14.894486
7.00 −14.889368 −14.889369 −14.889368 −14.889356 −14.889411
7.50 −14.884535 −14.884535 −14.884535 −14.884523 −14.884576
8.00 −14.880276 −14.880277 −14.880276 −14.880266 −14.880317
8.50 −14.876755 −14.876756 −14.876755 −14.876746 −14.876796
9.00 −14.873995 −14.873996 −14.873995 −14.873987 −14.874038
9.50 −14.871926 −14.871927 −14.871926 −14.871920 −14.871970

10.00 −14.870429 −14.870429 −14.870429 −14.870424 −14.870474
10.50 −14.869372 −14.869372 −14.869372 −14.869368 −14.869418
11.00 −14.868637 −14.868637 −14.868637 −14.868634 −14.868685
12.00 −14.867780 −14.867780 −14.867780 −14.867778 −14.867828
14.00 −14.867160 −14.867160 −14.867160 −14.867159 −14.867208

orbital frozen. The equilibrium geometry has been taken from the work done by
Sherrill et al. [57].

In Table 3-3, we have presented deviations of the various MRCC approaches (SS-
MRCC, UC-SS-MRCC, ICI-SS-MRCC(1), ICI-SS-MRCC(2)) with respect to the
FCI. The deviation of the result in ICI-SS-MRCC(2) with respect to FCI is large,
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Figure 3-2. Difference Energy plot for the Ground State of Li2 of SS-MRCC, UC-SS-MRCC, ICI-SS-
MRCC(1), ICI-SS-MRCC(2) w.r.t. FCI
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Table 3-3. Total energies (Eh) of 11A1 state of the
CH2 at equilibrium geometry

Methods Energies

SS-MRCC −39.011598
UC-SS-MRCC −39.011708
ICI(1)-SS-MRCC −39.011501
ICI(2)-SS-MRCC −39.011006
FCI −39.013938

while that in UC-SS-MRCC and ICI-SS-MRCC(1) is comparable with the rigorous
SSMRCC value.

3.5.4. Ground State of O3 at Equilibrium Geometry

At last we are going to present state energy calculation of O3 ground state at
minimum energy(equilibrium) geometry, which like lowest 1A1 state of CH2,
also possess a pronounced MR character due to considerable mixing between the
[core....]4b2

26a2
11a2

2 and [core....]4b2
26a2

12b2
1 configurations [58]. We thus have taken

these two configurations in our model space.
In our calculation we have used DZP(Dunning) basis set from “http://

www.emsl.pnl.gov/forms/basisform.html” which have been contracted with a set of
six-d type polarization functions on oxygen[αd=1.211]. The minimum energy geom-
etry is taken from experimental result [58].

In Table 3-4, we have presented state energies with various MRCC approaches
(SSMRCC, UC-SS-MRCC, ICI-SS-MRCC(1), ICI-SS-MRCC(2)) at minimum en-
ergy geometry of O3 molecule. From the table we could conclude that ICI-SS-
MRCC(1) seems to be comparable with SS-MRCC whereas ICI-SS-MRCC(2) is
deviated more from SS-MRCC.

Table 3-4. Total molecular energies (Eh) of O3
with various MRCCSD theory at minimum en-
ergy geometry

Methods Energies

SS-MRCC –224.923955
UC-SS-MRCC –224.925052
ICI(1)-SS-MRCC –224.923758
ICI(2)-SS-MRCC –224.919734
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3.6. CONCLUSION

In this chapter, we have presented developments and pilot numerical applications
of two outcomes of the search for viable size-extensive methods which are compu-
tationally tractable and stable over a wide range of nuclear geometries, including
quasi-degeneracies leading to avoided crossings process. These are non-perturbative
approximants UC-SS-MRCC and ICI-SS-MRCC of rigorously size-extensive SS-
MRCC theory [33–35]. Our discussions and numerical applications clearly show
that though there is considerable simplification of the working equations, as in the
case of UC and drastic reduction in the number of cluster amplitudes, as in the case
of ICI, there has been no significant compromise as far as accuracy is concerned.
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Abstract: The SAC-CI general-R method has enabled the accurate theoretical spectroscopy of the
multi-electron processes. In this article, we review the development and some recent ap-
plications of the SAC-CI general-R method. We first explain the theoretical background
of the general-R method and its analytical energy gradients. We overview some recent
applications of the method to the molecular spectroscopies where the multi-electronic pro-
cesses play an essential role. The inner-valence ionization spectra and doubly excited states
of butadiene, acrolein, and glyoxal are introduced. Theoretical studies of the excited-state
geometries and adiabatic properties of the multi-electron processes are shown for CH+,
NH+, acetylene and N3. The high precision calculations of the core-electron processes,
the g-u splitting of the main line and the vibrational spectra of the shake-up satellites of
N2 are reviewed. The relativistic effect of the K-shell ionization of second-row atoms is
also described.

Keywords: SAC-CI, General-R SAC-CI, SAC-CI analytic gradients, Theoretical spectroscopy

4.1. INTRODUCTION

Development of the accurate state-of-the-art theoretical methods has made us possi-
ble to obtain the precise knowledge of the excited and ionized states of molecules.
Theoretical information on these states is indispensable to interpret the recent high-
resolution molecular spectroscopy. Theory can predict the fine details of the excita-
tion and ionization processes and even support to design the new experiment. Thus,
the interplay between theory and experiment has become standard in the modern
excited-state chemistry so that the predicting ability of theory is an essential issue.

The SAC[1]/SAC-CI(symmetry-adapted cluster configuration interaction)
method [1–6] was developed in the dawn of the theoretical chemistry for the
molecular excited states in 1978 by Nakatsuji. Theory was formulated as the
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general expansion for the excited, ionized, and electron-attached states in any spin
multiplicity. The method was first implemented at the SD level where the excitation
operators in the expansion are included up to singles and doubles. This method is
useful for the ordinary single-electron processes and has been established as the
reliable methodology in many successful applications [5–8] of wide varieties of the
excited-state chemistry like molecular spectroscopy [8–16], biological chemistry
[17–23], and surface chemistry [24–26]. The multi-reference SAC theory [27] and
exponentially generated CI (EGCI) theory [28–30] were proposed and implemented
for investigating the multi-electronic processes and the quasi-degenerate systems in
1985. The method was shown to be useful for the multiply excited states and bond
dissociation.

In 1991, the SAC-CI general-R method [31] was proposed and implemented for
accurately investigating the multi-electron processes. The potential usefulness and
applicability of the method were demonstrated by the applications to the excited and
ionized states of C2, CO and N2 [31, 32]. The exponential generation algorithm was
shown to be useful for generating the higher-order operators. It was also shown that
the general-R method is useful for the excited states of open-shell systems, since
they are often described by the two-electron processes from the closed-shell SAC
state [33].

We have applied the general-R method to wide varieties of the theoretical spec-
troscopy of the multi-electronic processes [7, 33]. In one of such applications we
have investigated the inner-valence ionization spectra where the many shake-up
satellites appear. Since large number of states should be calculated for the ionization
spectra, the general-R method has an advantage: the computational dimension of the
general-R method is much smaller than the ordinary CI approaches. We have demon-
strated the accuracy and efficiency of the method by the applications to the spectra
of N2 and CO by comparison with the full CI calculations [32]. We investigated the
inner-valence ionization spectra of HCl [34], ethylene [35], CO2 [36], XONO2(X=F,
Cl, Br, I) [37], H2X(X=O, S, Se) [38], H3X(X=N, P, As) [39], cyclopentadiene
[40], pyridine [41], furan, thiophene, pyrrole [42], N2O, HN3 [43], Cl2O, ClOOCl,
F2O [44], CS2, OCS [45], butadiene, acrolein, glyoxal, and methylenecyclopropene
[46] and of other species. We have also investigated some doubly excited states of
butadiene, acrolein, glyoxal [47], and trans stilbene [48] etc.

The general-R method is also useful for the inner-shell electronic processes. For
the core-electronic processes, theory should describe both the orbital relaxation and
electron correlations. We have investigated various kinds of core-electronic pro-
cesses using the general-R method [49–62], like the core-electron binding energies
[50], inner-shell shake-up satellite spectra [50, 51, 54–56], vibrational spectra and
geometry relaxation of satellites [52, 54, 56], g-u splitting [54, 62], valence-Rydberg
coupling [58, 60] and its vibration-induced suppression [63]. We also examined the
relativistic effect of the K-shell ionization energy using the scalar relativistic SAC-CI
method based on DK2 Hamiltonian [61]. These series of studies clarified the essence
of the core-electron processes.
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The geometry optimization of the excited states is also an important issue in the
theoretical chemistry of molecular excited states. The analytical energy gradient of
the SAC-CI method has been formulated and implemented at the SD level in 1997
[64, 65]. The method was extended to the SAC-CI general-R method [33, 66, 67] and
also to the SAC-CI method for the high-spin multiplicity [68]. In order to perform
stable geometry optimization, the Minimum Orbital-Deformation (MOD) method
has also been developed [69, 70]. The analytical energy gradient of the general-R
method has provided a useful tool for the accurate calculations of the spectroscopic
properties such as geometry, vibrational frequency, and adiabatic excitation energies
of the multi-electron processes in the excited, ionized, and electron-attached states.
The method has been applied to the spectroscopy of the molecular excited states of
CH+, OH, C2, N2, acetylene, CNC, N3 and other species [67].

As the theory for the molecular excited states based on the cluster expansion,
coupled cluster linear response theory (CC-LRT) was also formulated by Monkhorst
et al. [71, 72] and Mukherjee et al. [73]. Later, the CC-LRT theory was reformu-
lated [74, 75] and the equation-of-motion coupled-cluster (EOM-CC) method was
proposed [76–79]. The CC-LRT and EOM-CC methods are theoretically identical to
the SAC-CI method. These three methodologies have been utilized for investigating
the molecular excited states and established as the standard. This shows the SAC-CI
method developed in 1978 has already achieved the essence for the theory of the
molecular excited states. The general-R method which is the extension to include
the higher-order operators is also related to the higher approximations of the EOM-
CCSDT [80]/SDTQ [81, 82] or response theory CC3 [83].

For investigating the quasi-degenerate system and bond dissociation region, vari-
eties of multi-reference cluster expansion theories have been developed [27, 84–93]
from the work of Jeziorski and Monkhorst [84]. Theoretical studies of the excited
states are possible with these methods, for example, MR-SAC by Nakatsuji [27],
state-specific multi-reference couple cluster (SS-MRCC) by Mukherjee and cowork-
ers [87, 88], Reduced MRCC by Li and Paldus [89, 90], and MR Brillouin-Wigner
CC by Hubač, Pittner, Čársky and co-workers [91–93].

Recently, we have implemented the active-space method in the framework of
the SAC-CI method [94, 95]. The method has originally developed by Piecuch,
Adamowicz and their coworkers [96–103]. In this method, the higher operators are
restricted to only those including the active-space MOs. The method was shown to
be accurate and efficient for the multiply excited states even in the bond dissociation
region. We have demonstrated that the active-space method describes the potential
energy curves of the multi-electron processes accurately for OH and CH+ [94]. We
also have investigated the excited-state geometries and adiabatic properties of CNC,
C2N, NCO, and N3 with the active-space method [95].

In this article, we briefly introduce the SAC/SAC-CI method [2–4] and in par-
ticular, we focus on the development of the SAC-CI general-R method [31, 32] and
its analytical energy gradients [66, 67] in Section 4.2. In Section 4.3, we review
some recent applications of the general-R method to the theoretical fine spectroscopy.
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First, we explain the inner-valence ionization spectra of 4π -electronic molecules,
butadiene, acrolein, and glyoxal, examining the low-lying shake-up satellites [46].
We also show the doubly excited states of butadiene and glyoxal [47]. Then, we
introduce the geometry optimization of the multi-electronic processes for the di-
atomic molecules, CH+ and NH+, and also for the polyatomic molecules, acety-
lene and N3 [67]. Finally, we show some of our recent progresses in the study of
the inner-shell electronic processes; g-u splitting [54], vibrational spectra of the
inner-shell satellites of N2 [54], and relativistic effect for K-shell ionization [62].
Section 4.4 summarizes the development and applications of the SAC-CI general-R
method.

4.2. THEORY

4.2.1. SAC/SAC-CI Theory

First, we explain the SAC/SAC-CI theory. The SAC wave function describes the
ground state and is defined as,

Ψ SAC
g = exp

(
∑

I

CIS
†
I

) |0〉 (4-1)

where |0〉 is the Hartree-Fock and S†
I is the spin-symmetry and space-symmetry

adapted excitation operator. The SAC expansion can also be defined for the higher-
symmetries [1].

In the SAC method, the unknown variables CI are associated to the excitation
operator S†

I so that for solving CI we require that the Schrödinger equation is satisfied
within the configuration space of

{|0〉 , S†
I |0〉

}

as,

〈0|H − Eg
∣

∣Ψ SAC
g

〉 = 0 (4-2)

〈0|SI(H − Eg)
∣

∣Ψ SAC
g

〉 = 0. (4-3)

This SAC equation is called as non-variational method.
The variational method is also possible in the SAC method by applying the vari-

ational principle to the SAC wave function and we obtain,

〈

Ψ SAC
g |H − Eg|Ψ SAC

g

〉 = 0 (4-4)
〈

Ψ SAC
g |SI(H − Eg)|Ψ SAC

g

〉 = 0. (4-5)

The variational solution is more difficult than the non-variational one, since it in-
cludes the integrals between product terms and the integrals do not terminate even
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if S†
I is approximated as singles and doubles. Variational CCD solution was investi-

gated by Voorhis et al. [104] and shown to behave properly even up to dissociation
limit.

The SAC theory defines not only the SAC wave function for the ground state, but
also the excited functions which span the basis for the excited states [2–4]. Using the
correlated ground-state SAC wave function, we define the excited functions {ΦK} as

ΦK = PS†
K

∣

∣Ψ SAC
g

〉

(4-6)

where P is an projector which projects out the ground state,

P = 1− ∣

∣Ψ SAC
g

〉〈

Ψ SAC
g

∣

∣. (4-7)

These functions {ΦK} satisfy the orthogonality and Hamiltonian orthogonality rela-
tions to the ground-state SAC wave function as,

〈

ΦK
∣

∣Ψ SAC
g

〉 = 0 (4-8)

〈ΦK |H
∣

∣Ψ SAC
g

〉 = 0 (4-9)

which means that the functions {ΦK} constitute a basis for excited state. Therefore,
we describe the excited state by a linear combination of these functions as,

Ψ SAC-CI
e =

∑

K

dKΦK (4-10)

which is the SAC-CI expansion.
Applying the variational principle for solving the SAC-CI wave function, we ob-

tain,

〈ΦK |H
∣

∣Ψ SAC-CI
e

〉 = 0. (4-11)

The SAC-CI wave function automatically satisfies the orthogonality and Hamiltonian
orthogonality with the ground state and with different excited states.

The SAC-CI wave function can also be defined for the excited states having differ-
ent symmetries and also for the ionized and electron-attached states. We generalize
Eq. (4-6) as

ΦK = PR†
K

∣

∣Ψ SAC
g

〉

(4-12)

where
{

R†
K

}

represents a set of the excitation, ionization and electron-attachment
operators.
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The non-variational SAC-CI solution is obtained by projecting the Schrödinger
equation to the

{

R†
K |0〉

}

configuration spaces,

〈0|RK (H − Ee)
∣

∣Ψ SAC-CI
e

〉 = 0. (4-13)

In the case of the totally symmetric singlet excited states, the non-variational SAC-CI
formulation including the SAC solution is written as,

( 〈0| (H − Ee) eS |0〉 〈0| (H − Ee)R†
KeS |0〉

〈0|RK (H − Ee) eS |0〉 〈0|RK (H − Ee)R†
KeS |0〉

)

= 0. (4-14)

The SAC-CI theory utilizes the transferability of correlations between ground and
excited states. This can be understood by writing the SAC-CI wave function as,

Ψ SAC-CI
e = �Ψ SAC

g (4-15)

where the excitation operator � is defined as,

� =
∑

K

dKR†
K . (4-16)

For totally symmetric states, we may include identity operator within
{

R†
K

}

to en-
sure the orthogonality of the excited states to the ground state. The electron cor-
relation of the ground state is well described by the SAC wave function and the
excitation operator describes a modification of the electron correlation by excitation:
this is much faster than calculating all the correlations of the excited states from the
beginning.

For evaluating the one-electron properties of the ground and excited states and the
transition properties among them, the density matrix and transition density matrix
between the SAC-CI states are calculated. The method for calculating these matri-
ces has already been formulated [105]. Another useful method is also possible as
follows.

Let Q be a spin-independent one-electron operator,

Q =
∑

ν

q(ν). (4-17)

Neglecting some less important product terms, density matrix and transition density
matrix between the SAC-CI states are calculated by the similar expression to the
SAC-CI energy,
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〈Q〉pq = 〈

ψ
L(p)
SAC-CI

∣

∣Q
∣

∣ψ
R(q)
SAC-CI

〉

=
∑

M

∑

N

dL(p)
M dR(q)

N

(

QMN +
∑

I

CIQM,NI

)

(4-18)

where QMN and QM,NI are the density matrices defined by 〈0|RMQR†
N |0〉 and

〈0|RMQR†
NS†

I |0〉, respectively, dL(p)
M and dR(q)

N are the SAC-CI left- and right-vectors
of p-th and q-th solutions, and CI is the SAC coefficients. The density matrix
and transition density matrix are given by p = q and p �= q , respectively.
Note that this expression avoids the calculations between the product terms like
〈0| SIRMQR†

NS†
J |0〉. Then, the dipole strength is calculated by

〈D〉pq = 〈Q〉pq 〈Q〉qp . (4-19)

The formula of the approximate SAC-CI-V is given by replacing dL(p)
M = d(p)

M and

dR(q)
N = d(q)

N in Eq. (4-18).

4.2.2. SAC-CI General-R Method

There are two standards in the SAC-CI method with respect to the R operators. The
SAC-CI SD-R method is to include single and double excitation operators within the
R operators, for example, the SD-R wave function for the singlet excited states is
given by,

Ψ SAC-CI
SD-R =

(
∑

ia

da
i Ra

i +
∑

ijab

dab
ij Rab

ij

)

exp
(
∑

I

CISI

)

|0〉 . (4-20)

This method is accurate and efficient for the one-electron processes of the excitations
and ionizations. The method has been established through the successful applications
to molecular spectroscopy, biological chemistry, and surface chemistry.

The other choice is to include not only single and double excitation operators, but
also triple- and quadruple- and higher-excitation operators within the R operators.
This method is called as SAC-CI general-R method and is necessary for investigating
the multi-electron processes in the excitation and ionization phenomena. The
general-R wave function is written as,

Ψ general-R =
(
∑

ia

da
i Ra

i +
∑

ijab

dab
ij Rab

ij +
∑

ijkabc

dabc
ijk Rabc

ijk +
∑

ijklabcd

dabcd
ijkl Rabcd

ijkl + · · ·
)

× exp
(
∑

I

CISI

)

|0〉 (4-21)

For generating the triple-, quadruple- and higher-excitation operators in the
general-R method, the exponential generation algorithm [28–30] is useful for high



86 M. Ehara and H. Nakatsuji

performance. This generation algorithm combined with the perturbation selection is
accurate and efficient. The algorithm to generate all the triples and quadruple op-
erators followed by the perturbation selection is also possible for small systems. In
the present program system, both of these algorithms are possible and this general-R
method can be applied to various electronic states, singlet and triplet excited states,
double ionized and electron-attached states, and high-spin states from quartet to
septet states. The possible R operators in the present program system are summarized
in Table 4-1 [33, 67].

The SAC-CI general-R method has the following feature.

1. The method is applicable to the various electronic states of the multi-electron
processes of singlet to septet spin multiplicity as shown in Table 4-1.

2. It is applicable to solve the large number of the excited and ionized states simul-
taneously up to higher energy region.

3. It is useful to calculate the excited states of open-shell systems since their excited
states are often described by the two-electron processes from the closed-shell
SAC state.

4. It is applicable to investigate the excited-state chemical reaction and relaxation
processes since the multi-electron processes may appear in those processes.

On the other hand, the general-R method is based on the SAC method and there-
fore, it may fail in the bond dissociation region. In such cases, the multi-reference
SAC/SAC-CI and EGCI methods are useful.

The general-R method can also be applied to the inner-shell electronic processes
[49, 50]. In this case, the higher-order R operators such as triples and quadruples
are necessary for describing both orbital relaxation and electron correlations of
the core-electronic processes. Although the SD-R method is accurate for the one-
electron processes of the valence excitations and ionizations, higher-order operators
are indispensable for the core-electronic processes. For example, for calculating
the core-electron binding energy, R operators up to triples are necessary and for
the shake-up satellite states, the SDTQ-R calculations are required [50]. One-rank
higher operator is necessary for describing large orbital relaxation in the calculation
of the core-electronic processes. Thus, this method is simple and accurate, but, its
computational cost is relatively high since it usually includes higher operators for
the accurate calculations. Nonetheless, this method is useful since it can be applied
to the general core-electronic processes like the g-u splitting in the molecules with
equivalent atoms.

The other approach for studying the core-electronic processes is the open-shell
reference (OR) SAC-CI method [106], in which the core-ionized ROHF is used for
the reference;

Ψ OR-SAC-CI =
(
∑

ia

da
i Ra

i +
∑

ijab

dab
ij Rab

ij

)

Ψ OR−SAC (4-22)
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Ψ OR-SAC = exp
(
∑

I

CISI

)

exp
(
∑

J

C
′
JS
′
J

)

OK |0〉 (4-23)

where OK |0〉 represents the core-hole ROHF. The S and S′ operators are the excita-
tion and de-excitation operators, respectively. Since the OR-SAC-CI method starts
from the core-hole state, the SD-R method is sufficient for describing the core-hole
state. However, it introduces the complex expansion due to the de-excitation opera-
tors. For applying the g-u splitting of the molecules with equivalent atoms, the ac-
curate calculations including higher-order product terms are necessary since it starts
from the different reference functions for g- and u- states.

4.2.3. Analytical Energy Gradients of SAC/SAC-CI

The analytical energy gradients for the SAC/SAC-CI method was formulated by
Nakajima and Nakatsuji in 1997 [64, 65] and implemented in the SAC/SAC-CI
program system. Later, the method was implemented in the Gaussian03 suite of pro-
grams [107]. We briefly review the analytical energy gradients of the SAC/SAC-CI
method in particular its extension to the general-R method [66, 67].

4.2.3.1. Analytical Energy Gradients of SAC

The SAC Eqs. (4-2) and (4-3) can be rewritten as

ΔESAC =
∑

I

CIH0I , (4-24)

and

HK0 +
∑

I

CI (HKI −ΔESACSKI)+ 1

2

∑

I

∑

J

CICJHK,IJ = 0 (4-25)

whereΔESAC = ESAC−EHF and SIJ represents the overlap matrix, 〈0| SIS
+
j |0 〉. H0I ,

HIJ and HI,JK are the Hamiltonian matrices defined by 〈0|HS+I |0 〉, 〈0| SIHS+J |0 〉
and 〈0| SIHS+J S+K |0 〉, respectively.

The first derivative of the SAC correlation energy with respect to the external
parameter a is given as [64, 65],

∂ΔESAC

∂a
=
∑

I

[{

1+
(
∑

K

∑

J

ZSAC
K CJSKJ

)}

CI − ZSAC
I

]∂H0I

∂a

−
∑

K

∑

I

ZSAC
K CI

∂HKI

∂a
− 1

2

∑

K

∑

I

∑

J

ZSAC
K CICJ

∂HK,IJ

∂a
(4-26)
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where ZSAC
K is a component of the SAC Z-vector and is calculated from the following

simultaneous linear equation [65],

∑

K

{

HKI −
(
∑

J

CJSKJ

)

H0I −ΔESACSKI +
∑

J

CJHK,IJ

}

ZSAC
K = H0I (4-27)

Explicit calculation of the first derivatives of the SAC coefficients ∂CI
/

∂a is circum-
vented by using the interchange technique [108] or the so-called Z-vector method
[109].

In Eq. (4-26), the first derivatives of the Hamiltonian matrix element are expressed
in terms of one- and two-electron coupling constants as

∂HXY

∂a
=

MO
∑

ij

γ XY
ij
∂fij
∂a
+

MO
∑

ijkl

�XY
ijkl
∂ (ij |kl )

∂a
(4-28)

where the i, j, k, l refer to the orbitals, and fij and (ij |kl ) denote Fock matrix element
and two-electron MO integral, respectively. The matrix elements γ XY

ij and �XY
ijkl are

the one- and two-electron coupling constants between configuration functions ΦX

and ΦY and are independent of the parameter a, where X and Y correspond to I, J
for the SAC wave function and to M, N for the SAC-CI wave function.

Using Eq. (4-28), we can rewrite Eq. (4-26) in an MO representation in terms of
effective density matrices (EDMs) for the SAC wave function as,

∂ΔESAC

∂a
=

MO
∑

ij

γ SAC
ij

∂fij
∂a
+

MO
∑

ijkl

�SAC
ijkl
∂ (ij|kl)

∂a
. (4-29)

The matrix elements γ SAC
ij and �SAC

ijkl of the EDMs are given by

γ SAC
ij ≡

∑

I

[{

1+
(
∑

K

∑

J

ZSAC
K CJSKJ

)}

CI − ZSAC
I

]

γ 0I
ij

−
∑

K

∑

I

ZSAC
K CIγ

KI
ij −

1

2

∑

K

∑

I

∑

J

ZSAC
K CICJγ

K,IJ
ij (4-30)

and

�SAC
ijkl ≡

∑

I

[{

1+
(
∑

K

∑

J

ZSAC
K CJSKJ

)}

CI − ZSAC
I

]

�0I
ijkl

−
∑

K

∑

I

ZSAC
K CI�

KI
ijkl −

1

2

∑

K

∑

I

∑

J

ZSAC
K CICJ�

K,IJ
ijkl , (4-31)
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respectively [64, 65]. Thus, the first derivative of the SAC energy is evaluated from
Eqs. (4-27), (4-29), (4-30), and (4-31).

4.2.3.2. Analytical Energy Gradients of SAC-CI

Next, we summarize the analytical energy gradient of the SAC-CI method, which
were first formulated and implemented at the SD-R method [64, 65] and then ex-
tended to the general-R method [66, 67].

The SAC-CI wave function is generated from the correlated SAC ground state as,

Ψ
p
SAC-CI =

∑

K

dp
KR†

KΨSAC (4-32)

where
{

R+K
}

represents a set of excitation, ionization and/or electron-attachment op-
erators, and

{

dp
K

}

is its coefficients for the p-th excited state.
By using the non-variational SAC-CI equation (4-13) and neglecting some

less important unlinked integrals, the SAC-CI energy relative to the HF energy,
ΔEp

SAC-CI, is derived as

ΔEp
SAC−CI =

∑

M

∑

N

dL(p)
M dR(p)

N

(

HMN +
∑

I

CIHM,NI

)

(4-33)

where ΔEp
SAC-CI = Ep

SAC-CI − EHF , HMN and HM,NI are the Hamiltonian matrices
defined by 〈0|RMHR+N |0〉 and 〈0|RMHR+N S+I |0〉, respectively, dL

M and dR
N are the SAC-

CI left- and right-vectors.
The first derivative of the SAC-CI correlation energy is given in the Hamiltonian

matrix form as [65],

∂ΔESAC-CI

∂a
=
∑

I

{

∑

K

ZSAC-CI
K

(

∑

J

CJSKJ

)

CI − ZSAC-CI
I

}

∂H0I

∂a

+
∑

M

∑

N

dL
MdR

N
∂HMN

∂a
−
∑

K

∑

I

ZSAC-CI
K CI

∂HKI

∂a
(4-34)

+
∑

M

∑

N

∑

I

dL
MdR

NCI
∂HM,NI

∂a
− 1

2

∑

K

∑

I

∑

J

ZSAC-CI
K CICJ

∂HK,IJ

∂a

where ZSAC-CI
K is a component of the SAC-CI Z-vector and is calculated from the

SAC-CI Z-vector equation [65],
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∑

K

{

HKI −
(
∑

J

CJSKJ

)

H0I −ΔESACSKI +
∑

J

CJHK,IJ

}

ZSAC-CI
K

=
∑

M

∑

N

dL
MdR

NHM,NI . (4-35)

By using Eq. (4-28), Eq. (4-34) is rewritten in an MO representation in term of
EDMs for the SAC-CI wave function,

∂ΔESAC-CI

∂a
=

MO
∑

ij

γ SAC-CI
ij

∂fij
∂a
+

MO
∑

ijkl

�SAC-CI
ijkl

∂ (ij |kl )

∂a
. (4-36)

The matrix elements of the EDMs γ SAC-CI
ij and �SAC-CI

ijkl are represented as

γ SAC-CI
ij ≡

∑

I

{
∑

K

ZSAC-CI
K

(
∑

J

CJSKJ

)

CI − ZSAC-CI
I

}

γ 0I
ij

+
∑

M

∑

N

dL
MdR

Nγ
MN
ij −

∑

K

∑

I

ZSAC-CI
K CIγ

KI
ij (4-37)

+
∑

M

∑

N

∑

I

dL
MdR

NCIγ
M,NI
ij − 1

2

∑

K

∑

I

∑

J

ZSAC-CI
K CICJγ

K,IJ
ij

and

�SAC-CI
ijkl ≡

∑

I

{
∑

K

ZSAC-CI
K

(
∑

J

CJSKJ

)

CI − ZSAC-CI
I

}

�0I
ijkl

+
∑

M

∑

N

dL
MdR

N�
MN
ijkl −

∑

K

∑

I

ZSAC-CI
K CI�

KI
ijkl (4-38)

+
∑

M

∑

N

∑

I

dL
MdR

NCI�
M,NI
ijkl − 1

2

∑

K

∑

I

∑

J

ZSAC-CI
K CICJ�

K,IJ
ijkl

respectively [64, 65].
In the SAC-CI general-R method, the analytical energy gradient is calculated by

Eq. (4-36) using the SAC-CI Z-vector equation (4-35) and the EDMs of Eqs. (4-37)
and (4-38) for the general-R wave function. In the implementation, the unlinked
terms that are redundant with the linked terms are neglected in Eqs. (4-35), (4-37)
and (4-38). The SAC-CI general-R energy gradient code was implemented in the
GAUSSIAN03 suite of programs [107] and the algorithm is summarized as follows
[66, 67]:

1. The SCF calculation is performed and the derivatives of the one- and two-electron
AO integrals are calculated.
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2. The SAC and SAC-CI general-R calculations are carried out.
3. The CPSAC Z-vector equations (4-27) or (4-35) are solved using Pulay’s direct

inversion in the iterative subspace (DIIS) method [110]. In the SAC-CI general-R
calculations, the right term of Eq. (4-28) are evaluated not only for the single and
double R operators but also for the triple, quadruple, and higher R operators.

4. The MO EDMs for the SAC-CI general-R wave function given by Eqs. (4-37)
and (4-38) are constructed and stored.

5. The first derivatives of energy are evaluated by summing up the products between
the AO integral derivatives and the corresponding coefficients which are obtained
via back-transformation of the EDMs [65] and solving linear equations for CPHF,
as usual [111–116]. In addition, the CPMOD equations are solved in GAUS-
SIAN03 if the MOD method is used for calculation [69, 70]. In evaluation of the
forces on N atoms, explicit determination of the 3N sets of the first derivatives
of MO coefficients are circumvented by the interchange technique [108, 109], as
well as the SAC coefficient derivatives.

4.3. APPLICATIONS OF SAC-CI GENERAL-R METHOD

We have applied the SAC-CI general-R method to wide varieties of the theoreti-
cal spectroscopy of the multi-electronic processes such as inner-valence ionization
spectra, doubly excited states of π -conjugated molecules, excited-state geometry and
adiabatic properties of the multiply excited states, and the core-electron processes,
etc.

4.3.1. Inner-Valence Ionization Spectra and Doubly Excited States

We have investigated the inner-valence ionization spectra where many shake-up
satellite states appear as mentioned in Section 4.1. In the present section, we show the
general-R results for the valence ionization spectra of butadiene, acrolein, glyoxal,
methylenecyclopropene, and methylenecyclopropane [46]. We also briefly note the
doubly excited states of butadiene, acrolein, and glyoxal [47].

4.3.1.1. Butadiene, Acrolein, and Glyoxal

Satellite states reflect the electron correlations of molecules [117, 118]. Low-lying
satellites of π -conjugated molecules are attributed to the two-electron processes ac-
companied by the ππ* transition. Trans-butadiene constitutes a fundamental linear
π -conjugation unit and its valence ionization spectrum has been extensively investi-
gated [46, 119]. Another possibility for the low-lying satellites can be found in sys-
tems with lone pair electrons in π -conjugation. The nπ* transition is usually as low
as ππ* transition and therefore, low-lying n−1π−1π* and n−2π* shake-up states
may appear. Acrolein and glyoxal are isoelectronic system to butadiene and have
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oxygen atoms in π -conjugation and therefore, their ionization spectra are candidates
for the low-lying satellites.

First, we explain the valence ionization spectrum of butadiene. The valence orbital
sequence of trans butadiene is,

(core)8(3bu)2(3ag)2(4ag)2(4bu)2(5bu)2(5ag)2(6ag)2(6bu)2(7ag)2(1au)2(1bg)2,

where 1au and 1bg MOs are π orbitals and 4bu to 7ag MOs describe the C-H and CC
σ -bonding. The 3bu, 3ag, and 4ag MOs correspond to 2s orbitals and the ionizations
from these orbitals appear in the inner-valence region. In Figure 4-1, the SAC-CI
general-R spectrum was compared with the He I photoelectron spectra (PES) [120]
and X-ray photoelectron spectra (XPS) [121]. Theory reproduced the experimental
spectra satisfactorily and gave the detailed assignments.

Figure 4-1. Valence ionization spectra of 1, 3-trans butadiene by He I PES [120], (b) XPS [121] and
(c) SAC-CI general-R method [46]
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The thirteen peaks were measured by XPS. In the energy region up to ∼14 eV,
the peaks are in the order of Koopmans’ states and the lowest shake-up state, π−2π*
(1b−2

g 1au), was calculated at 13.98 eV with the pole strength of 0.16. The intensity
is distributed by the interaction with the ionization from next-HOMO. In XPS [121],
peak 6 was observed as the shoulder of the higher energy side of peak 5; this shake-up
state is one candidate of this shoulder.

Peaks 7 and 8 were observed as the continuous asymmetric band. These peaks
correspond to the ionizations from 5ag and 5bu MOs. In the SAC-CI results, the 5bu

state splits into two peaks by the interaction with the σ−1π−1π* shake-up state; this
splitting explains the asymmetric shape of the observed band. Peaks 9 and 10 are
the ionizations from the 4bu and 4ag MOs. Many shake-up states appear from this
energy region. In particular, the intensity due to 4ag component distributes to many
shake-up states through final-ionic-state interaction. In the higher-energy region of
these two peaks, the shake-up states whose intensities are due to 4ag MOs continue
up to ∼ 25 eV. These shake-up states are dominantly characterized as σ−1π−1π*
states. The orbital picture is not valid for peaks 11 and 12 and many shake-up states
exist that are characterized as the ionizations from 3ag or 3bu MOs accompanied by
the ππ* transition.

Next, we show the ionization spectra of s-trans acrolein and s-trans glyoxal.
These molecules have the lone pairs of O atom, and therefore, their ioniza-
tion spectra may have the low-lying satellites accompanied by the nπ* transi-
tion. Figures 4-2 and 4-3 compare the SAC-CI theoretical spectra with the ex-
perimental photoelectron spectra [120, 122] for acrolein and glyoxal, respectively.
Theory reproduced the experimental spectra satisfactorily and gave the quantita-
tive assignments. In this article, we explain only the low-energy region of these
molecules.

The Hartree-Fock orbital sequence of s-trans acrolein is,

(core)8(5a′)2(6a′)2(7a′)2(8a′)2(9a′)2(10a′)2(11a′)2(12a′)2(1a′′)2(13a′)2(2a′′)2,

where two a′′ orbitals are π MOs and 13a′ MO is due to the lone pairs of O atom.
The 5a′ to 7a′ MOs correspond to 2s orbitals of C and other MOs represent CH, CC,
and CO σ -bonding. In the valence ionization spectrum of acrolein, the low-lying
peaks up to ∼15 eV can be regarded as main peaks. The first two peaks observed at
10.10 and 10.92 eV [120] are 13a′ and 2a′′ states, respectively. Koopmans’ ordering
reverses for these peaks. In the ionized states, the effect of electron correlation origi-
nating from the n orbital is larger than from the π orbital. This feature was also found
in other π -conjugated systems including lone pair electrons like p-benzoquinone
[123]. For the next overlapping peaks 3 and 4 at 13.7 eV, the 1a′′ and 12a′ states
were assigned, respectively. At the foot of 12a′ state, the lowest shake-up state was
calculated at 13.74 eV, however, the intensity was very small as 0.02 [46]. This state
is characterized as n−1π−1π* (13a′−13a′′2a′′−1). The neutral acrolein has the nπ*
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Figure 4-2. Valence ionization spectra of s-trans acrolein by He I PES [120], (b) He II PES [122] and
(c) SAC-CI general-R method [46]

excited state at 3.29 eV. The 11a′ state was obtained at 14.71 eV in accordance with
peak 5 observed at 14.60 eV [120].

The s-trans glyoxal has two O atoms in π conjugation and its Hartree-Fock orbital
sequence is written as,

(core)8(3ag)2(3bu)2(4ag)2(4bu)2(5ag)2(5bu)2(6ag)2(1au)2(6bu)2(1bg)2(7ag)2,

where 1bg and 1au orbitals are π MOs, 7ag and 6bu orbitals correspond to the lone
pairs of O atoms. The peaks in the outer-valence region up to ∼17 eV of glyoxal
are main peaks. The electron correlations of the ionized states due to n orbitals were
also calculated to be large as in acrolein; Koopmans’ ordering reversed between
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Figure 4-3. Valence ionization spectra of s-trans acrolein by (a) He I PES [120], (b) He II PES [122] and
(c) SAC-CI general-R method [46]

6bu and 1bg states. The first two peaks were ionizations from n orbitals, 7ag and
6bu states. The π orbitals exist in higher energy region compared with butadiene
and acrolein. The vibrational structure is remarkable in the observed peaks 2 and 3;
the structure relaxation of these states is characteristic. The overlapping bands were
observed at ∼16.9 eV are assigned to the 5ag and 5bu states. Some shake-up states
were calculated in the energy region of 13 ∼ 17 eV, though their intensities were
small. The lowest shake-up state was calculated at 12.91 eV and was characterized
as n−2π* [46]. On the other hand, the lowest n−1π−1π* and π−2π* shake-up states
were obtained at 14.14 and 17.96 eV, respectively [46].

4.3.1.2. Outermost Shake-Up Satellites

The position and intensity of the low-lying shake-up states of 4π -electron molecules,
butadiene, acrolein, and glyoxal are of interest, since they have characteristic



Development of SAC-CI General-R Method 97

Figure 4-4. Comparison of the main peaks and outermost satellites of the π -conjugated molecules

π -conjugation. In Figure 4-4, the calculated IPs of the valence ionized states of these
molecules are compared; main peaks and outermost satellites are shown [46].

In Figure 4-4, we can see the effect of the pattern of π -conjugation and the
nπ* transitions on the position and intensity of the satellite peaks. First, as the
π -conjugation becomes longer, the IP of the outermost satellite peak becomes lower.
The calculated IPs of the outermost satellites were 17.55, 13.98, and 11.92 eV, for
ethylene, 1,3 trans butadiene, and 1,3,5-trans hexatriene, respectively. The intensity
of these satellites is dominantly due to the final-ionic-state interaction with the next-
HOMO for butadiene and hexatriene. The intensity of these satellites becomes larger
as the π -conjugation becomes longer; monopole intensities were calculated as 0.01,
0.16, and 0.20, respectively [46].

The nπ* transition is usually as low as ππ* transition in the excitation spectra
of molecules, and therefore, lower satellites accompanied by the nπ* transitions are
expected for the π -conjugated molecules with lone-pair electrons. The outermost
satellites of acrolein and glyoxal were lower than butadiene, 13.76 and 12.91 eV,
respectively. However, the intensities of these states were very small such as 0.02
and 0.00. This is because these shake-up states do not effectively interact with the
main peaks. The outermost satellite of glyoxal is Au state at 12.91 eV and the main
peak of Au symmetry exists at 15.54 eV.

4.3.1.3. 2Ag State

The doubly excited state, so called 21Ag state of butadiene, acrolein, and glyoxal
were investigated by the general-R method [47]. The energy spectra of the excited
states of these molecules are compared in Figure 4-5. For butadiene, vertical exci-
tation of the 21Ag state has been studied by some theoretical works [124–126]. The



98 M. Ehara and H. Nakatsuji

2

3

4

5

6

7

8

2

3

4

5

6

7

8

Butadiene (C
4
H

6
)      Acrolein (C

3
H

4
O)      Glyoxal (C

2
H

2
O

2
)

E
xc

ita
tio

n 
en

er
gy

 (
eV

)

21A
g
(V)

11B
u
(V)

13A
g
(V)

13B
u
(V)

21A''(V)

21A'(V)

23A'(V)

13A'(V)
11A''(V)
13A''(V)

13A
g
(V)

13B
u
(V)

11B
g
(V)

13B
g
(V)

11A
u
(V)

13A
u
(V)

2A
g
 state

π–π*

n–π*
*π–π

n–π*π–π*

π–π*

π+ π*–

n+2
π*2

–
π π–– *

πn+
– *

π*n–
–

π*n+
–

πn+
– *

Figure 4-5. Calculated energy levels of the excited states of butadiene, acrolein, and glyoxal [47]

general-R method calculated the vertical transition energy of 6.56 eV [47], in agree-
ment with other theoretical calculations. It is important to include up to quadruple
excitation operators in the general-R calculation. For acrolein, this state was located
in the higher energy region at 8.16 eV. The 21Ag states of butadiene and acrolein
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were characterized as the ππ* transition with moderate contributions by doubles
whose SAC-CI coefficients are ∼0.3. On the other hand, the 21Ag state of glyoxal
is characterized as pure (nO+,nO+ → π*,π*) double excitation [47]. This is be-
cause there is no singly excited state interacting with this state in the same energy
region. This 21Ag state of glyoxal was predicted to be very low at 5.66 eV, which is
reasonable if we consider the 13Au state, nO+ → π*, exist at 2.63 eV.

The equilibrium structures of these 21Ag states for butadiene and glyoxal were
obtained by the general-R geometry optimization [47]. The geometries are displayed
in Figure 4-6. For butadiene, the CC bond length of the 21Ag state increases by 0.102
Å, which is much larger than other singlet states. The same is true for the CO bond
length of glyoxal: the CO bond elongation was calculated to be 0.117 Å, while the
CC bond length of this state shrinks by 0.156 Å. The relaxation energies of these
states were calculated to be very large, 1.18 and 1.77 eV for butadiene and glyoxal,
respectively, which are much larger than other singly excited states [47].

4.3.2. Excited-State Geometry of Two-Electron Processes

The analytical energy gradient of the SAC-CI general-R method enables the ac-
curate investigation of the molecular structures, spectroscopic constants, chemical
reactions, and energy relaxation in particular for the multi-electron processes. It is
also useful for the excited states of open-shell systems. The method has been ap-
plied to some diatomic molecules, CH+, NH+, C2, CO+, NO, N+2 , N2, and also to
polyatomic molecules as acetylene, CNC, and N3 [66, 67].

4.3.2.1. Singlet and Triplet States of CH+ and Doublet States of NH+

First, we show the SAC-CI general-R applications to the singlet and triplet ex-
cited states of CH+ and to the doublet states of NH+ [67]. Both the SD-R and
general-R methods were performed without doing perturbation selection using the
cc-pVTZ [127, 128] without f function for C and N and without d function for H,
(10s5p2d/5s2p)/[4s3p2d/3s2p]. In the general-R calculations, systematic calcula-
tions were performed using SDT and SDTQ R operators in order to examine the
effect of the R operators in different orders. Table 4-2 shows the SAC-CI results of
re, ωe, and Te, compared with the experiments [129]. The excitation level denotes
the number of electrons involved in the excitation process. The values of ωe were
numerically calculated using the analytical first derivatives.

The low-lying A1Π state of CH+ is described essentially by the one-electron
excitation from the ground state, while the b3Σ− and B1Δ states are described by
the two-electron excitations from the ground state. For the ground state of CH+,
the experimental re was well reproduced by the SAC method. For the one-electron
process, the SD-R and general-R methods gave very similar results in agreement with
experiments, but for the two-electron processes, the general-R method gave consid-
erably better results than the SD-R method, especially for Te; the average deviations
of the general-R(SDTQ) result from the experimental values were 0.004 Å, 53 cm−1,
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Table 4-2. Spectroscopic constants for the singlet and triplet states of CH+ and the dou-
blet states of NH+

Excitation re ωe Te

State Method level (Å) (cm−1) (eV)

CH+
X1Σ+ SAC 0 1.128 2, 848 –

Exptl.a 1.131 2, 740 –

A1Π SD-R 1 1.238 1, 818 3.101
SDT-R 1 1.249 1, 729 2.998
SDTQ-R 1 1.251 1, 715 2.988
Exptl.a 1.234 1, 865 2.989

b3Σ− SD-R 2 1.211 2, 273 5.952
SDT-R 2 1.246 2, 034 4.754
SDTQ-R 2 1.250 2, 013 4.696
Exptl.a 1.245 1, 939 4.736

B1Δ SD-R 2 1.210 2, 224 7.780
SDT-R 2 1.232 2, 070 6.700
SDTQ-R 2 1.236 2, 044 6.641
Exptl.a 1.233 2, 076 6.513

NH+
X2Π SD-R 1 1.064 3, 122 –

SDT-R 1 1.070 3, 041 –
SDTQ-R 1 1.070 3, 029 –
Exptl.a 1.070 2, 922 –

A2Σ− SD-R 2 1.123 2, 574 6.564
SDT-R 2 1.232 1, 811 2.948
SDTQ-R 2+3 1.261 1, 627 2.746
Exptl.a 1.251 1, 585 2.752

B2Δ SD-R 2 1.073 2, 921 5.673
SDT-R 2 1.128 2, 422 3.053
SDTQ-R 2 1.136 2, 331 3.004
Exptl.a (1.152) 2, 280 2.889

C2Σ+ SD-R 2 1.092 2, 743 6.623
SDT-R 2 1.148 2, 285 4.555
SDTQ-R 2 1.152 2, 239 4.506
Exptl.a 1.163 2, 151 4.339

a Reference [129].

and 0.08 eV for re, ωe, and Te, respectively. The effect of including up to quadruples
amounts up to c.a. 1.2 eV for Te. Thus, for the two-electron processes, we should use
the general-R method for obtaining quantitatively reliable results.

The ground state of NH+ is described by the one-electron process, while the
other excited states, A2Σ−, B2Δ, and C2Σ+, are represented by the two-electron
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processes. For the ground state, both SD-R and general-R methods gave good bond
distance and the ωe was improved by 93 cm−1 with the general-R method. For the
other states, the general-R method greatly improves the results of the SD-R method,
especially for Te. The effects of including triples in the R operators are as large as
0.06–0.11 Å, 500–760 cm−1, and 2.1–3.6 eV for re, ωe, and Te, respectively. The
effect of including up to quadruples is prominent for the A2Σ− state and the re-
sults are improved by 0.03 Å (re), 180 cm−1 (ωe), and 0.20 eV (Te). This is because
the three-electron processes such as (3σ−31π2) considerably mix to this state. The
agreements of the general-R results with the experimental values were satisfactory
regardless of the excitation levels of the states.

4.3.2.2. Trans-Bent Structures in Excited States of Acetylene

Acetylene has trans-bent structure in the excited states. The lowest excited (A1Au)
state of acetylene has been extensively studied both experimentally and theoreti-
cally. The EOM-CCSD calculation [130] has investigated the trans-bent structure in
the A1Au state and reproduced the experimental structure. In 1992, the trans-bent
structure in the C′1Ag state of C2H2 has been measured by Lundberg et al. [131].
The A1Au state is described by the one-electron process, while the C′1Ag state is de-
scribed by the two-electron process. Therefore, the spectroscopic constants of these
excited states are of interest in particular for the C′1Ag state. Table 4-3 summa-
rizes the SD-R and general-R results for the ground and excited states of C2H2, in
comparison with the experiments [131–133]. The SAC method for the ground state
well reproduced the experimental geometries [132]. For the A1Au state, both SD-R
and general-R methods gave the results of the same quality. For the C′1Ag state, the
general-R method drastically improves the results of the SD-R method, especially for

Table 4-3. Spectroscopic constants of ground and excited states of acetylene

Excitation RCH RCC θCCH Te
State Method level (Å) (Å) (degree) (eV)

X1Ag SAC – 1.068 1.219 180 –
(linear) Exptl.a 1.063 1.203 180 –

A1Au SD-R 1 1.098 1.377 122.6 5.485
(trans) General-R 1 1.097 1.385 121.7 5.329

Exptl.b 1.097 1.375 122.5 5.232

C′1Ag SD-R 2 1.105 1.634 103.8 10.098
(trans) General-R 2 1.111 1.643 103.0 7.844

Exptl.c 1.14 1.65 103 7.723

a Reference [132].
b Reference [133].
c Reference [131].
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Table 4-4. Spectroscopic constants of the ground and excited states of N3

Excitation RNN θ Te
State Method level (Å) (degree) (eV)

X2Πg SD-R 1 1.191 180 -
(D∞h) General-R 1 1.188 180 -

CASCIb 1.170 180 -
UMP2b 1.185 180 -
Exptl.a 1.182 180 -

4B1 SAC-CI DT-R 2 1.273 118.3 2.108
(C2v) SAC-CI DTQ-R 2 1.275 118.0 1.754

CASCIb 1.265 118.9 1.76
UMP2b 1.258 118.5 2.45

a4Πu SAC-CI DT-R 2 1.271 180 4.013
(D∞h) SAC-CI DTQ-R 2 1.275 180 3.705

CASCIb 1.259 180 3.85
UMP2b 1.257 180 4.58

a Reference [134].
b Reference [135].

Te. The optimized geometries are in excellent agreement with experimental values;
the deviations are within 0.02 Å and 0.03◦. The A1Au and C′1Ag states are described
as 1a−1

u 4ag and 1a−2
u 4a2

g, respectively, in which 1au orbital corresponds to valence
1πu orbital for the liner structure. Thus, trans-bent structures become stable in these
excited states by the single or double excitation from 1πu orbital.

4.3.2.3. Lowest Doublet and Quartet States of N3 Radical

The azide free radical N3 has been extensively studied experimentally as well as
theoretically. The ground state of N3 has been recognized as the doublet state,
X2Πg, in the linear structure which has been spectroscopically determined by Dou-
glas et al. [134]. Though there are no experimental data for the quartet states, the
lowest quartet state has been theoretically studied using the CASCI, UMP2 [135]
and MRD-CI [136] methods: the former work predicted that the bent 4B1 state is
more stable than linear a4Πu state. We calculated these doublet and quartet states
of N3 by the SAC-CI general-R energy gradient method. For the quartet state,
both linear and bent structures were examined. The doublet and quartet states of
N3 were obtained by the ionization from the closed-shell N−3 . Table 4-4 summa-
rizes the optimized geometries, adiabatic excitation energies for the lowest doublet
and quartet states of N3, compared with experimental [134] and other theoretical
results [135].

The ground state, X2Πg, is described by the one-electron process from the closed-
shell state. Both SD-R and general-R (SDT) methods gave excellent results in com-
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parison with the experiment within 0.008 Å for RNN . For the lowest quartet state,
the SAC-CI results are close to those of the CASCI method and show that the bent
4B1 state is energetically stable relative to the linear a4Πu state. For Te, the DTQ-R
method improves the values by including quadruple R operators: the difference be-
tween the DT-R and DTQ-R results are 0.004 Å, 0.3◦ and 0.33 eV for RNN , θ and Te,
respectively.

4.3.3. Inner-Shell Electronic Processes

We have applied the general-R method to wide varieties of the core-electron pro-
cesses; the core-electron binding energies [50], the inner-shell ionization satellite
spectra of CH4, NH3 [50], H2O [55], formaldehyde [51], and the vibrational spec-
trum of the core-hole state of H2O [49]. The g-u splitting of homonuclear molecules
like N2 [54, 63], C2H2, C2H4, and C2H6 [50] was well predicted. The overlapping
vibrational spectra of the low-lying ππ*/σπ* shake-up satellite states of CO [52, 56]
and N2 [54] were also successfully interpreted by the present method. Geometry
relaxation in the core-excited and ionized states were examined for CH4, NH3, H2O,
HF, N2O, and CO2 [53, 57, 59, 61]. The unusual vibrational progression observed in
the O1s excitations of N2O was analyzed in terms of the valence-Rydberg coupling
[58]. The vibration-induced suppression of the intensity in the nsσ excitations of
N2O was also clarified [60]. We also examined the relativistic effect of the K-shell
ionization energy using based on DK2 Hamiltonian [62]. In this section, we intro-
duce the g-u splitting of N2, vibrational spectra of ππ*/σπ* shake-up satellites of
N2 [54] and the relativistic effect of the K-shell ionizations of the second-row atoms
[62].

4.3.3.1. g-u Splitting

In the molecules with two equivalent atoms, each of the main line and satellite states
splits into closely-separated gerade and ungerade states. The energy separation be-
tween the mainline gerade and ungerade states is only 100 meV but still one can
experimentally separate these states. So far, the g-u splitting have been observed in
acetylene and N2 molecules. Hergenhahn et al. [137] noted that different Franck-
Condon (FC) factors were necessary for the two different states of N2.

Figure 4-7 compares the N 1s photoelectron spectrum and the calculated SAC-
CI spectrum [54]. Experimentally, the FC ratio I(v′ = 1)/I(v′ = 0) for the gerade
and ungerade states were estimated as 0.146(8) and 0.079(5), respectively. From the
SAC-CI SDT-R potential energy curves, the geometry relaxation is larger in the 1σu

state than the 1σg state. The FC factors were calculated from the vibrational wave
functions based on ab initio potential curves and the SAC-CI I(v′ = 1)/I(v′ = 0)
ratios were 0.168 and 0.122 for the for 1σu and 1σg states, respectively, in good
agreement with the experimental values [54].
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Figure 4-7. Vibrational spectra of the 1σg and 1σu ionized states of N2. Upper and lower panels are
experimental and SAC-CI spectra, respectively [54]

4.3.3.2. Vibrational Spectra of Inner-Shell Satellites

The geometry relaxation and vibrational spectra can be observed for the inner-shell
shake-up satellite states. Those of ππ* and σπ* shake-up satellites are analyzed in
details for CO [52, 56] and N2 [54] by the experiment and theory. The low-lying
shake-up satellite states of N2 have electron configurations 1σ−1

u 1π−1
u 1πg(2Σ+g ),

1σ−1
g 1π−1

u 1πg(2Σ+u ), 1σ−1
g 3σ−1

g 1πg(2Πg), and 1σ−1
u 3σ−1

g 1πg(2Πu). The correla-
tion satellites [117, 118] can be classified into two groups phenomenologically [138].
The first group includes satellites whose excitation cross sections relative to the
single-hole ionization cross section stay constant, while the second group includes
those whose excitation cross sections sharply decrease with an increase in energy.
These two different types of energy dependence have been attributed to the two
lowest-order correlation terms, often called the direct and conjugate shake-up terms
[139]. In the case of low-lying ππ* and σπ* shake-up states of N2, the transitions
leading to the 2Σ+g and 2Σ+u states are dominated by the direct shake-up term and

the transitions leading to the 2Πg and 2Πu states are dominated by the conjugate
shake-up contribution.

The SAC-CI potential energy curves of the N 1s shake-up states in the energy
region of ππ* and σπ* satellites are shown in Figure 4-8 [54]. The potential curves
of the counterpart ungerade states, almost overlap with the corresponding gerade
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Figure 4-8. Calculated potential energy curves of the N1s shake-up satellite 2Σ+g , 2Πg, 2Σ−g , and Δg
states of N2

states. The geometry relaxation by the shake-up ionization of N2 is large for the 2Σ+g
state, and the calculated value of re is 1.259 Å, 0.164 Å longer than that of the ground
state. Since the gerade state 2Σ+g has a hole in the 1σu orbital, it is located slightly

lower in energy than the ungerade state 2Σ+u . The calculated g-u splitting for these
satellites is∼40 meV, much smaller than that of the single-hole state of 101 meV. The
geometry relaxation for the 2Πg,u states is much smaller than for the 2Σ+g,u states: the

equilibrium distances of the lower and higher 2Πg states are re = 1.161 and 1.186
Å, respectively. The geometry change of these states, 0.066 and 0.091 Å are larger
than the corresponding changes for CO of 0.042 and 0.068 Å [56]. This is because
the 2Πg,u states of N2 have the character of σπ* transitions and the 2Π states of CO
are nπ* transitions.

The SAC-CI theoretical spectra for the 2Σ+g and 2Σ+u states are compared with
the experimental photoelectron satellite spectra in Figure 4-9 [54]. The theoretical
spectrum for 2Σ+g,u has a maximum intensity at v′ = 6, reproducing the shape of
the experimental spectrum. The activation of the high vibrational states is due to the
large geometry relaxation. Figure 4-10 compares the SAC-CI spectra for the 2Πg,u
states with the experimental spectra, where the 90◦ spectrum dominantly represents
the Π component [54]. For the lower 2Πg band, the vibrational levels of v′ = 0
and v′ = 1 have almost the same intensity and the higher levels are populated in
the gerade state. In the higher Π band, v′ = 2 has the maximum intensity. Since
the 2Πg state has a hole in the 1σg orbital, the geometry relaxation of the 2Πg state
is larger than that of the 2Πu state and the theoretical spectra reflect this difference
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Figure 4-9. Experimental and SAC-CI vibrationally resolved spectra of the N1s satellite bands of N2 in
Σ symmetry [54]

of geometry change. The higher vibrational levels are more strongly populated than
for CO, since the satellites of N2 are populated by σπ* transitions, as noted above.
The higher 2Σ+g,u states (singlet satellites) are repulsive in the FC region and have

shallow minimum at about 1.57 ∼ 1.59 Å; no vibrational structure is expected for
these states.

4.3.3.3. Relativistic Effect in K-Shell IPs of Second-Row Atoms

The relativistic effect of the K-shell IPs of molecules containing second-row atoms,
SiH4, PH3, H2S, OCS, and CH3Cl was investigated [62]. The Si, P, S, and Cl 1s
IPs are presented in Table 4-5 along with the experimental values [140–143]. The
non-relativistic SAC-CI calculations underestimated the core-electron binding ener-
gies (CEBE) compared with the experimental values; the deviations are large about
3–6 eV. The relativistic SAC-CI calculations improved the CEBEs but slightly over-
estimated the values. The relativistic effect amounted to 4–9 eV for the CEBEs of
these molecules. For example, the S 1s CEBE of H2S was measured as 2,478.5 eV
[142] and our theoretical values were 2,479.51 and 2,472.98 eV with and without rel-
ativistic effect, respectively. The deviations from the experimental values were about
1 eV for the molecules containing Si, P, and S. These errors amount to 0.03–0.06%
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Figure 4-10. Experimental and SAC-CI vibrationally resolved spectra of the N1s satellite bands of N2 in
Π symmetry [54]

of the absolute values of the CEBEs. The CASPT2 calculations also gave the same
order of deviations [144]; the errors were large for the inner-shell ionizations of the
heavy elements. These errors may be attributed to the crudeness of the basis sets, the
higher-order relativistic effects, and/or insufficiency of describing orbital relaxation.
Kotsis and Staemmler [145] discussed the difficulty of the basis set selection for

Table 4-5. Calculated and observed Si, P, S, and Cl 1s core-electron binding energies (eV)

Relativistic Non-relativistic Relativistic effect (eV)

Molecule Exptl. SAC-CI SAC-CI SAC-CI e Koopmans’ theorem

SiH4 1, 847.1a 1,848.24 1,843.96 4.28 3.97
PH3 2, 150.5b 2,151.25 2,146.32 4.93 5.30
H2S 2, 478.5c 2,479.51 2,472.98 6.53 6.94
OCS 2, 480.3a 2,481.84 2,475.06 6.78 6.93
CH3Cl 2, 829.4d 2,832.15 2,823.35 8.80 8.95

a Reference [141].
b Reference [140].
c Reference [142].
d Reference [143].
e ΔE =E(Non-Relativistic SAC-CI)-E(Relativistic SAC-CI).
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the balanced description of the core and valence electron correlations. The effect
of electron correlations is very small compared with the relativistic effect in those
molecules containing the second-row atoms.

4.4. SUMMARY

Theoretical fine spectroscopy of the multi-electron processes has been achieved by
the SAC-CI general-R method. In this article, we review the development and some
recent applications of the general-R method.

First, we explained the theoretical background of the SAC-CI method, in partic-
ular the general-R method. Some advantages and features of the general-R method
as well as the possible R operators in the present program were described. Theory
and computational algorithm of the analytical energy gradient of the SAC-CI method
were also briefly reviewed.

We also introduced some recent applications of the general-R method to the
molecular spectroscopies where the multi-electronic processes play an essential role.
Theoretical spectroscopy of the inner-valence ionization spectra was explained for
the applications to 4π -electron molecules, butadiene, acrolein and glyoxal and the
low-lying shake-up satellites were discussed. The doubly excited states of these
molecules were also compared. Theoretical study of the excited-state geometries
and adiabatic properties of the multi-electron processes and open-shell systems by
the analytical energy gradient of the general-R method were shown for the diatomic
molecules CH+ and NH+, and also for the polyatomic molecules, acetylene and N3.
The accuracy of the methods was examined with the systematic calculations of in-
cluding the higher-order R operators for the diatomic molecules. The high precision
calculations of the inner-shell electronic processes, the g-u splitting of the main line
and the geometry relaxation of the inner-shell shake-up satellites of N2 appearing in
the vibrational spectra were reviewed. The relativistic effect of the K-shell ionization
of the second-row atoms was also described.
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93. I. Hubač, J. Pittner, P. Čársky, J. Chem. Phys. 112, 8779 (2000)
94. Y. Ohtsuka, P. Piecuch, J. R. Gour, M. Ehara, H. Nakatsuji, J. Chem. Phys. 126, 164111 (2007)
95. M. Ehara, J. R. Gour, P. Piecuch, Mol. Phys. 107, 871 (2009)
96. J. R. Gour, P. Piecuch, M. Wloch, J. Chem. Phys. 123, 134113 (2005)
97. J. R. Gour, P. Piecuch, M. Wloch, Int. J. Quantum Chem. 106, 2854 (2006)
98. J. R. Gour, P. Piecuch, J. Chem. Phys. 125, 234107 (2006)
99. N. Oliphant, L. Adamowicz, J. Chem. Phys. 94, 1229 (1991)

100. P. Piecuch, N. Oliphant, L. Adamowicz, J. Chem. Phys. 99, 1875 (1993)
101. P. Piecuch, S. A. Kucharski, R. J. Bartlett, J. Chem. Phys. 110, 6103 (1999)
102. K. Kowalski, P. Piecuch, J. Chem. Phys. 115, 643 (2001)
103. K. Kowalski, P. Piecuch, Chem. Phys. Lett. 347, 237 (2001)
104. T. V. Voohis, M. Head-Gordon, P. Jorgensen, J. Chem. Phys. 113, 8873 (1999)
105. H. Nakatsuji, K. Hirao, Intern. J. Quantum Chem. 20, 1301 (1981)
106. Y. Ohtsuka, H. Nakatsuji, J. Chem. Phys. 124, 054110 (2006)
107. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. J.

A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi,
V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada,
M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai,
M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts,
R. E. Stratmann, O. Yazyev, R. Cammi, C. Pomelli, J. Ochterski, P. Y. Ayala, K. Morokuma, W. L.
Hase, G. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C.
Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui,
A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Ko-
maromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M.
Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian
Development Version, Revision A.03 (Gaussian, Inc., Pittsburgh PA, 2003)

108. A. Dalgarno, A. L. Stewart, Proc. R. Soc. Lond. Ser. A 247, 245 (1968)
109. N. C. Handy, H. F. Schaefer_III, J. Chem. Phys. 81, 5031 (1984)
110. P. Pulay, Chem. Phys. Lett. 73, 393 (1980)
111. Y. Yamaguchi, Y. Osamura, J. D. Goddard, H. F. Schaefer III, A New Dimension to Quantum

Chemistry: Analytic Derivative Methods in Ab Initio Molecular Electronic Structure Theory (Oxford
University Press, New York, 1994)

112. P. Jorgensen, J. Simons, Geometrical Derivatives of Energy Surfaces and Molecular Properties

(Reidel, Dordrecht, 1986)
113. J. Gerratt, I. M. Mills, J. Chem. Phys. 49, 1719 (1968)
114. P. Pulay, J. Chem. Phys. 78, 5043 (1983).



112 M. Ehara and H. Nakatsuji

115. J. A. Pople, R. Krishan, H. B. Schlegel, J. S. Binkley, Int. J. Quantum. Chem. Symp. 13, 225 (1979)
116. N. C. Handy, R. D. Amos, J. F. Gaw, J. E. Rice, E. D. Simandiras, Chem. Phys. Lett. 120, 151 (1985)
117. L. S. Cederbaum, W. Domcke, J. Schirmer, W. von Niessen, Adv. Chem. Phys. 65, 115 (1986)
118. A. D. O. Bawagan, E. R. Davidson, Adv. Chem. Phys. 110, 215 (1999)
119. M. S. Deleuze, L. S. Cederbaum, Adv. Quantum Chem. 35, 77 (1999)
120. K. Kimura, S. Katsumata, Y. Achiba, T. Yamazaki, S. Iwata, Handbook of He I Photoelectron

Spectra of Fundamental Organic Molecules (Japan Scientific, Tokyo, 1981)
121. M. P. Kaene, A. N. d. Brito, N. Correia, S. Svensson, L. Karlsson, B. Wannberg, U. Gelius,

S. Lunell, W. R. Salaneck, M. Logdlund, D. B. Swanson, A. G. MacDiarmid, Phys. Rev. B 45,
6390 (1992)

122. W. von Niessen, G. Bieri, L. Asbrink, J. Electron Spectrosc. Relat. Phenom. 21, 175 (1980)
123. Y. Honda, M. Hada, M. Ehara, H. Nakatsuji, J. Phys. Chem. 106, 3838 (2002)
124. L. Serrano-Andres, J. Sanchez-Mann, I. Nebot-Gil, J. Chem. Phys. 97, 7499 (1992)
125. J. Lappe, R. J. Cave, J. Phys. Chem. A 104, 2294 (2000)
126. M. Dallos, H. Lischka, Theor. Chem. Acc. 112, 16 (2004)
127. T. H. Dunning Jr, J. Chem. Phys. 90, 1007 (1989)
128. D. E. Woon, T. H. Dunning Jr., J. Chem. Phys. 98, 1358 (1993)
129. K. P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure, IV. Constants of Diatomic

Molecules (Van Nostrand, New York, 1979)
130. J. F. Stanton, C. M. Huang, P. G. Szalay, J. Chem. Phys. 101, 356 (1994)
131. J.-K. Lundberg, Y. Chen, J.-P. Pique, R. W. Field, J. Mol. Spectrosc. 156, 104 (1992)
132. R. J. Berry, M. D. Harmony, Struct. Chem. 1, 49 (1990)
133. T. R. Huet, M. Godefroid, M. Herman, J. Mol. Spectrosc. 144, 32 (1990)
134. A. E. Douglas, W. J. Jones, Can. J. Phys. 43, 2216 (1965)
135. J. Wasilewski, J. Chem. Phys. 105, 10969 (1996)
136. C. Petrongolo, J. Mol. Struct. 175, 215 (1988)
137. U. Hergenhahn, O. Kugeler, A. Rueel, E. E. Rennie, A. M. Bradshaw, J. Phys. Chem. A 105, 5704

(2001)
138. U. Becker, D. A. Shirley, Phys. Scr. T31, 56 (1990)
139. L. Ungier, T. D. Thomas, Phys. Rev. Lett. 53, 435 (1984)
140. A. A. Bakke, A. W. Chen, W. L. Jolly, J. Electron Spectrosc. Relat. Phenom. 20, 333 (1980)
141. A. A. Potts, H. F. Fhadil, J. M. Benson, I. H. Hiller, Chem. Phys. Lett. 230, 543 (1994)
142. O. Keski-Rahkonen, M. O. Krause, J. Electron Spectrosc. Relat. Phenom. 9, 371 (1976)
143. A. W. Potts, H. F. Fhadil, J. M. Benson, I. H. Hiller, A. A. MacDowell, S. Jones, J. Phys. B 27, 473

(1994)
144. M. Barysz, J. Leszcynski, J. Chem. Phys. 126, 154106 (2007)
145. K. Kotsis, V. Staemmler, Phys. Chem. Chem. Phys. 8, 1490 (2006)



CHAPTER 5

RELATIVISTIC FOUR-COMPONENT MULTIREFERENCE
COUPLED CLUSTER METHODS: TOWARDS A COVARIANT
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Abstract: Four-component relativistic all-order methods are the most accurate available for heavy
atoms and molecules, and are used extensively in benchmark calculations of these sys-
tems. Their current status and perspectives for further development are reviewed, and
representative applications are shown. Benchmarking requires continued improvement of
the relativistic Hamiltonian towards the goal of a fully covariant description, as well as the
development of sophisticated all-order correlation methods suitable for general open shell
systems. One of the best relativistic many-body approaches available for the purpose is the
multiroot, multireference Fock space coupled cluster (FSCC) method. It is size extensive,
and usually gives the most accurate results within the 4-component no-virtual-pair approx-
imation (NVPA). The relativistic FSCC method and its recent applications are described.
Relativistic effects beyond NVPA may be studied using quantum electrodynamics (QED).
We discuss the challenges of introducing covariant many-body QED methods suitable for
use in quantum chemical calculations of general open shell systems. The mathematical and
physical foundations for merging the infinite order multireference many-body approach
with an all-order QED treatment are presented. A promising technique is the double-Fock-
space CC scheme, based on Lindgren’s covariant evolution operator method, implemented
within a generalized Fock space scheme with variable numbers of electrons and uncon-
tracted virtual photons. A brief description of this scheme, a covariant multireference
multiroot many-body QED approach, concludes this chapter.

Keywords: Relativistic coupled cluster, Four-component coupled cluster, Multireference coupled
cluster, Fock space coupled cluster, Intermediate Hamiltonian, Quantum electrodynamics

5.1. INTRODUCTION

The chapter starts with a description of the relativistic four-component methodol-
ogy based on the QED many-body Hamiltonian (Section 5.1.2) and its no-virtual
pair approximation (Section 5.1.3). We then proceed to describe the relativis-
tic Fock-space coupled cluster (Section 5.2.1) and intermediate Hamiltonian

113
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(Section 5.2.2) approaches, followed by applications to heavy (Section 5.3) and
superheavy (Section 5.4) atoms. The methods described have also been used to
study heavy molecules such as UO2 (Section 5.3), nuclear quadrupole moments
(Section 5.3.3) and emission spectra of the superheavy elements No (Z = 102) and
Lr (Z = 103) (Section 5.4.4). Because of space limitations, only a brief description
of applications is given; the interested reader is referred to our recent review [1] and
to the original publications. The last part (Section 5.5) delineates directions under
development which promise, in our opinion, exciting progress in the foreseeable
future.

5.1.1. Relativistic Many-Body Theory and QED

A relativistically covariant (Lorentz invariant) quantum description of many-body
micro-world phenomena is possible only if matter (electrons), the radiation field
(photons) and their interactions are described on equal footing. Fundaments of the
theory based on these principles were introduced by Feynman, Dyson, Schwinger,
Tomonaga and others in the late 1940s [2–5]. The theory is commonly called quan-
tum electrodynamics (QED), a relativistically consistent quantum description of
all electromagnetic processes, neglecting the other fundamental interactions (weak,
strong and gravitational). QED is probably the most successful fundamental physical
theory developed to date. It can describe almost all observed microscopic events
of size greater than 10−13 cm, and may thus be regarded as a natural basis for the
development of relativistic quantum chemistry. The use of properly formulated
covariant many-body-QED methods can be very important for the study of the
chemistry and physics of heavy and super-heavy elements, in particular their
highly charged ions. However, the impact of QED on the development of quantum
chemistry has been rather limited. This is due to the high cost of applying QED,
which involves four-component electronic wave functions and photonic degrees of
freedom; in addition, the very physical interpretation of wave functions described
by relativistic equations and, consequently, the methodology of solving these
equations in QED, are substantially different from the many-body techniques used in
quantum chemistry. QED is, in principle, an infinite-body theory; it describes
systems with infinite numbers of degrees of freedom, namely fields, which are rel-
ativistically and gauge invariant. In order to cover the methodological gap between
the two approaches, quantum field theory, a system of mathematical tools developed
especially for solving QED and other gauge theory problems, must be properly
adapted to the objects of quantum chemistry, which are finite size atomic and
molecular systems in stationary states. This adaptation, which is still far from com-
plete, should be regarded as a necessary step in a consistent merging of the special
theory of relativity and quantum chemistry. The next subsection gives a very brief
presentation of the QED Hamiltonian in a form suitable for developing a covariant
many-body procedure, with the aim of applying this procedure later in molecular
electronic structure calculations.
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5.1.2. The QED Hamiltonian

The starting point for QED field theory is the covariant Lagrangian formalism, which
allows the correct identification of conjugate momenta appearing in the Hamiltonian
[6]. Below we present a very brief introduction of the QED Lagrangian and Hamilto-
nian formalisms. The covariant (Lorentz invariant) Lagrangian density for interacting
electromagnetic and fermionic fields has the form

LQED = Lrad + Lmat + Lint . (5-1)

The first term describes the electromagnetic degrees of freedom,

Lrad = − 1

16π
FμνFμν , (5-2)

where Fμν = ∂μAν − ∂νAμ is the antisymmetric electromagnetic field tensor, and
Aμ = (A, i

cφ) is the 4-potential. The scalar φ and vector A potentials define the
electric (E) and magnetic (B) fields by the Maxwell equations. The second term
Lmat is the Dirac 4-spinor matter (fermionic) field ψ ,

Lmat = ψ
(

iγμ∂
μ − mc

)

ψ , (5-3)

where γμ are related to the Dirac α and β matrices, γμ = β (α , iI4), and the four-

gradient ∂μ is
(

∇,− i

c

∂

∂t

)

. ψ = ψ+γ0 =
(

ψ∗1 ,ψ∗2 ,−ψ∗3 ,−ψ∗4
)

is the adjoint

4-component spinor. The last term Lint describes the interaction between the
fermionic and electromagnetic fields as the product of the 4-current jμ = ( j, icρ)
and the 4-potential Aμ, Lint = jμAμ. This term was first proposed by Schwarzschild
[7] to satisfy Lorentz covariance and the local gauge invariance. The 4-current jμ is
defined by

jμ = −ecψ†βγμψ ; ρ = −eψ†I4ψ ; j = −ecψ†αψ . (5-4)

The Lagrangian LQED describes both the electromagnetic and fermionic degrees
of freedom, as well as interactions between them, simultaneously and on equal foot-
ing as dynamic variables. The Lagrangian has all the necessary symmetry properties
for correctly formulated Abelian one dimensional U(1) gauge invariant and Lorentz
covariant theory. The least action principle, δS = δ ∫ d4x LQED = 0 under arbitrary
infinitesimal variations of the dynamic field variables Aμ and ψ , yields the coupled
equations of motion

∂μFμν = 4π jν (5-5)
(

iγμ∂
μ − mc

)

ψ = eγμAμψ .
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The first of these equations is the most general covariant form of the inhomogeneous
Maxwell equations. It implies directly the continuity equation ∂μjμ = 0. The sec-
ond equation in (5-5) is the covariant Dirac equation in the presence of an external
electromagnetic field. A more familiar form of the Dirac equation is obtained upon
multiplication by βc from the left,

(

ĥD; Aμ − i
∂

∂t

)

ψ = 0, ĥD; Aμ = βmc2 + α · (− i∇ − eA)− eφ , (5-6)

where ĥD; Aμ is the Dirac Hamiltonian of a single electron in an external field. Dirac’s
α matrices have been introduced here for convenience, α =γ 0γ . Note that the Dirac
equation has been derived here from the least action principle, and is thus interpreted
as an Euler-Lagrange equation for the spinor field ψ rather than a quantum
mechanical wave equation for a single electron. Detailed accounts of the
mathematical properties and physical interpretation of the Dirac equation, important
for quantum chemistry, may be found in several recently published books [8–14],
and will not be repeated here; some pertinent points will be addressed below. The
operators appearing in the Dirac equation (5-6) are 4 × 4 matrix operators, and the
corresponding wave function is therefore a 4-component vector function ψ . The
upper and lower two components are generally referred to as the large and small
components, respectively. The four degrees of freedom reflect the fact that the Dirac
equation describes both electrons and positrons and explicitly includes spin. For a
given external potential and the chosen charge q = −e, both the positive energy
and negative energy solutions correspond to electronic states. For the same potential,
the negative energy branch of the spectrum gives the positronic solutions indirectly,
either by charge conjugation of the electronic solutions (see, e.g., [14, 15]) or,
following the original idea of Dirac, by filling all negative energy continuum states
with electrons using the Pauli principle (Dirac’s filled sea) and then regarding the
positrons as hole states in this electron-filled continuum.

In molecular electronic structure theory we employ ĥD;V , the Dirac operator in
the nuclear field. It corresponds to the introduction of the 4-potential

φ(ri) =
∑

A

ZAe

|ri − RA| ; A(ri) = 0, (5-7)

where ZAe and RA are the charge and position of nucleus A. The nuclei are treated
as sources of external scalar potentials, and nuclear spins are ignored. This “clamped
nucleus” approximation is essentially the Born and Oppenheimer picture [16] in non-
relativistic theory, in which the main assumption is that electrons follow the slower
movements of nuclei adiabatically.

Our next step is the transition of the QED theory from Lagrangian to Hamiltonian
formulation, using the Legendre transformation. This step requires the definition of
the conjugate momenta
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π = ∂LQED

∂
.
ψ

= iψ , Πμ = ∂LQED

∂
.

Aμ
= 1

4c
Fμ0. (5-8)

After some tedious mathematical manipulations, the final QED Hamiltonian density
is given by

�QED = Πμ
.

Aμ + π .
ψ − LQED =

1

8
(E2 + B2)+ 1

4
E ·∇ϕ − ψ(iγμ∂

μ − mc)ψ − eψγμψAμ. (5-9)

This expression for the Hamiltonian density is no longer manifestly Lorentz or gauge
invariant. However, all physical observables, including energies, field gradients, tran-
sition amplitudes, etc., which may be deduced from this Hamiltonian density, are
Lorentz and gauge invariant. After integration over all space, using partial integration
in the second term of (5-9) and the Gauss law, the QED Hamiltonian is obtained,

HQED =
∫

dr3�QED =
∫

dr3
{1

8
(E2 + B2)+ ψ+[α · (− i∇ − eA)+ βmc− eϕ]ψ

}

. (5-10)

Expression (5-10) is the Hamiltonian of the U(1) gauge field theory of interacting
dynamic electromagnetic and fermionic fields, written in a particular gauge indepen-
dent form. In the second quantized form of (5-10) all fields have been upgraded to
field operators, acting on occupation number vectors in an appropriate Fock space
with variable numbers of electrons/positrons and photons. One of the options in this
canonical formalism is to express all physical observables by particle-antiparticle
creation/destruction operators arranged in normal order, renormalizing the vacuum
energy to zero. The problem of negative energy states is completely removed, since
both electrons and positrons have positive energies due to normal ordering.

Unfortunately the expression (5-10), where the photonic degrees of freedom
are involved explicitly, does not lead to analytical closed form electron–electron
potential. Standard QED methods, such as Green’s functions and S-matrix, use time-
dependent Feynman diagram techniques to integrate over the photonic degrees of
freedom and express the electron–photon exchange in a perturbation series. The
main drawback of existing QED methods from the point of view of quantum chem-
istry is their ability to calculate just the first order energy correction, but not wave
function corrections. Another important point is that most QED methods (with some
exceptions, see [17, 18]) cannot treat degenerate or quasi-degenerate configurations,
which are common in open shell heavy species. In quantum chemistry, the deriva-
tion of the Hamiltonian is distinct from solving for its eigenvalues; in contrast, the
same QED approach is used both for deriving the potential (integrating over photonic
degrees of freedom) and calculating the energy shift it causes. A novel powerful QED
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method, with structure resembling that of stationary many-body approaches, has
been developed recently by Lindgren and coworkers [18–23]. It offers the possibility
of being merged with quantum chemical machinery based on the Bloch equation to
provide a unified tool suitable for application to general quasidegenerate atomic and
molecular configurations. This so-called covariant evolution operator (CEO) method
is free of the computational drawbacks discussed above; it is described briefly in
Section 5.5.1. The total number of particles in QED is not conserved, and electron–
positron pair creation processes should be included in calculations. The number of
photons is also variable, depending on the particular process. The CEO method has
a particularly simple form when formulated in generalized Fock space with variable
numbers of fermions and so-called uncontracted virtual photons. This is why we
consider it a natural framework for implementing Fock-space many-body quantum
chemical approaches, capable of describing systems with a variable number of par-
ticles. In particular, the relativistic Fock-space coupled cluster (FSCC) approach,
which is an all-order, size extensive, multiroot, multireference method (for a recent
review see [24]), is an ideal candidate for merging with CEO. We shall see below
(Section 5.5) that the FSCC method may be used to derive the potential energy
terms from a fully covariant relativistic many-body QED approach and solve this
potential in an efficient and accurate manner. The relativistic FSCC method and its
recent applications in the effective and intermediate Hamiltonian formulations are
described in Sections 5.2, 5.3, and 5.4. In the last Section we present briefly an
efficient way of simultaneously including the most important correlation and QED
effects in all-order and size-extensive fashion, using summation of the many electron
and photon contributions in a double (electronic and photonic) Fock space coupled
cluster procedure based on the CEO method.

5.1.3. The No-Virtual-Pair Approximation

The very philosophy and structure of existing relativistic quantum chemistry meth-
ods, mostly adapted from the non-relativistic realm, are different from those of QED.
Atomic and molecular systems are described in chemistry as systems with a fi-
nite number of particles interacting via instantaneous, energy independent two-body
potentials. This picture, based on relativistic and quantum description of electrons
and approximate (e.g. semi-classical) consideration of electromagnetic fields, ig-
nores partially or fully some fundamental phenomena, such as the existence of the
negative energy state continuum, radiative effects and retardation of the interparticle
interactions, which are important for a fully covariant description. Fortunately, many
of these QED corrections are numerically small for real atomic and molecular sys-
tems, explaining the relative success of rather simple semiclassical approximations
of photonic fields. The most straightforward derivation of relativistic many-body
Hamiltonians from the generic HQED (5-10) ignores the multiphotonic quantum
effects of radiation and electron–positron pair creation and adopts instead the so
called zero frequency single photon exchange approximation for the electromagnetic
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field, leading to interparticle two-body “classical” instantaneous potentials. The most
advanced such 4-component time- (or energy-) independent Hamiltonian is the pro-
jected Dirac-Coulomb-Breit (DCB) electronic Hamiltonian

Ĥ+DCB =
∑

i

ĥD;V (i)+ 1

2

∑

i�=j

Λ+i {ĝCoulomb(i, j)+ ĝBreit(i, j)}Λ+j (5-11)

Λ+i =
+
∑

n

ψ+n (xi)ψn(xi), (5-12)

where ĥD;V (i) are the one-electron 4-component Dirac operators in the molecular
field. The interelectronic potential consists of two parts, the electrostatic Coulomb
term ĝ Coulomb(i, j) = e2/rij and the Breit interaction, which includes leading mag-
netostatic and retardation effects [25],

ĝBreit(1, 2) = − e2

2c2r12

[

(cα1 · cα2)+ 1

r2
12

(cα1 · r12)(cα2 · r12)
]

. (5-13)

The Breit term may be derived as the low-frequency limit of the single virtual photon
exchange interaction in the Coulomb gauge (∇A = 0) as described by QED (see
Section 5.5.1). The projection operators onto the positive energy spectrum, Λ+,
are used to exclude the so-called “continuum dissolution determinants”, which
include electron–positron pairs, from the correlation part of the wave-function [26].
H+DCB gives the no virtual pair approximation (NVPA). The H+DCB Hamiltonian is not
unique, since the distinction between electron and positron creation and annihilation
operators, as well as the operators Λ+, depend on the orbital set in which the field
operators are expanded. The most popular choice is the solutions of the Dirac equa-
tion in the molecular bare nucleus or SCF field (5-7), leading to the Furry picture
[27].

H+DCB is correct to second order in the fine-structure constant α, but is not
covariant. Properly designed 4-component many-electron NVPA methods are cur-
rently the most accurate approaches for neutral and weakly-ionized atoms and
molecules [28], and are used for benchmark calculations. Most of the many-body
approaches implemented were adapted from the non-relativistic realm by using
relativistically invariant double point groups, as well as Kramers (time-reversal) sym-
metry when applicable. In the atomic case, the high symmetry allows the separation
of radial and angular degrees of freedom. The angular part may be solved analytically
with the help of Racah algebra [29], whereas the radial equations may be solved by
finite difference methods. In molecular calculations one has to resort to the algebraic
approximation, the use of finite basis set expansions. This approximation is often
used for atoms too.

The coupled cluster (CC) approach is the most powerful and accurate of elec-
tron correlation methods. This has been shown in many benchmark applications
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of 4-component relativistic CC methods to atoms [30–36] and molecules [37–43].
The CC method is an all-order, size-extensive and systematic many-body approach.
Multireference variants of relativistic 4-component CC methods capable of handling
quasidegeneracies, which are important for open-shell heavy atomic and molecu-
lar systems, have been developed in recent years [34–37, 39, 43]. In particular, the
multireference FSCC scheme is applicable to systems with a variable number of
particles [44, 45], and is an ideal candidate for merging with QED theory to create
an infinite-order size-extensive covariant many-body method applicable to systems
with variable numbers of paricles and photons.

5.2. THE NVPA MULTIROOT MULTIREFERENCE FOCK-SPACE
COUPLED CLUSTER METHOD

Here we describe the FSCC method, followed by the more recent and powerful inter-
mediate Hamiltonian approach. The latter is illustrated by representative applications
demonstrating its capabilities.

5.2.1. Basic FSCC Method

The NVPA Dirac-Coulomb-Breit Hamiltonian H+DCB may be rewritten in second-
quantized form [46, 47] in terms of normal-ordered products of spinor creation and
annihilation operators

{

a+r as
}

and
{

a+r a+s auat
}

, corresponding to the Furry picture,

H = H+DCB − 〈0|H+DCB|0〉 =
∑

rs

frs{a+r as} + 1

4

∑

rstu

〈rs||tu〉{a+r a+s auat}. (5-14)

Here frs and 〈rs||tu〉 are, respectively, elements of the one-electron Dirac-Fock-Breit
and antisymmetrized two-electron Coulomb-Breit interaction matrices over Dirac
four-component spinors. The effect of the projection operatorsΛ+ is now taken over
by normal ordering, denoted by the curly braces in (5-14), which requires annihila-
tion operators to be moved to the right of creation operators as if all anticommutation
relations vanish. The Fermi level is set at the top of the highest occupied positive
energy state, and the negative energy states are ignored.

The development of a general multiroot multireference scheme for treating elec-
tron correlation effects usually starts from consideration of the Schrödinger equation
for a number (d) of target states,

HΨ α = EαΨ α , α = 1, ..., d. (5-15)

The physical Hamiltonian is divided into two parts, H = H0+V , so that V is a small
perturbation to the zero-order Hamiltonian H0, which has known eigenvalues and
eigenvectors, H0|μ〉 = Eμ0 |μ〉.
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The case of exact or quasi-degeneracy, occurring in many open shell heavy com-
pound systems, involves the equality or near equality of some energy values Eα0 . By
adopting the NVPA approximation, a natural and straightforward extension of the
nonrelativistic open-shell CC theory emerges. The multireference valence-universal
Fock-space coupled-cluster approach is presented here briefly; a fuller description
may be found in [44, 45]. FSCC defines and calculates an effective Hamiltonian in
a d-dimensional model space P = ∑ |μ〉 〈μ| , μ = 1, .., d, comprising the most
strongly interacting zero order many electron wave functions. All other functions are
in the complementary Q-space, so that P+Q = 1. All d eigenvalues of Heff coincide
with the relevant eigenvalues of the physical Hamiltonian,

HeffΨ
α
0 = EαΨ α0 , α = 1, ..., d. (5-16)

There is no summation over the index α, andΨ α0 = Ca
μ|μ〉, α = 1, ..., d describes the

projection PΨ α , which constitutes the major part of Ψ α . The effective Hamiltonian
has the form [30, 48]

Heff = PHΩP , Heff = H0 + Veff. (5-17)

Ω is the normal-ordered wave operator, mapping the eigenfunctions of the effective
Hamiltonian onto the exact ones, ΩΨα0 = Ψ α , α = 1, ..., d. It satisfies intermediate
normalization, PΩP = P. The effective Hamiltonian and wave operator are con-
nected by the generalized Bloch equation, which for a complete model space P may
be written in the compact linked form [48]

Q[Ω , H0]P = Q(VΩ −ΩHeff )linkedP. (5-18)

Ω is parameterized exponentially in the coupled cluster method. A particularly com-
pact form is obtained with the normal ordered form Ω = {exp (S)}.

The Fock-space approach starts from a reference state (closed-shell in our appli-
cations, but other single-determinant functions may also be used), correlates it, then
adds and/or removes electrons one at a time, recorrelating the whole system at each
stage. The sector (m, n) of the Fock space includes all states obtained from the refer-
ence determinant by removing m electrons from designated occupied orbitals, called
valence holes, and adding n electrons in designated virtual orbitals, called valence
particles. The practical limit is m + n ≤ 2, although higher sectors have also been
tried [49]. The excitation operator S, defined by the exponential parameterization
of Ω , is partitioned into sector operators S = ∑

m≥0
∑

n≥0 S(m,n). This partitioning
allows for partial decoupling of the open-shell CC equations according to the so
called subsystem embedding condition [44]. The equations for the (m, n) sector
involve only S elements from sectors (k, l) with k ≤ m and l ≤ n, so that the very large
system of coupled nonlinear equations is separated into smaller subsystems, which
are solved consecutively: first, the equations for S(0,0) are iterated to convergence;
the S(1,0) (or S(0,1)) equations are then solved using the known S(0,0), and so on.
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This separation, which is exact, reduces the computational effort significantly. The
effective Hamiltonian (5-17) is also partitioned by sectors. An important advantage
of the method is the simultaneous calculation of a large number of states.

Each sector excitation operator is, in the usual way, a sum of virtual excitations
of one, two, . . . , electrons, normally truncated at some point. The level of truncation
reflects the quality of the approximation, i.e., the extent to which the complementary
Q space is taken into account in the evaluation of the effective Hamiltonian. The
applications described below are truncated at the CCSD level, and involve the
fully self-consistent, iterative calculation of all one- and two-body virtual excitation
amplitudes, with all relevant diagrams summed to infinite order. The FSCC equations
for a particular (m, n) sector of the Fock space are derived by inserting the normal-
ordered wave operator into the Bloch equation (5-18). The final form of the FSCC
equation for a complete model space includes only connected terms [30, 48],

Q[S(m,n)
l , H0]P = Q{(VΩ −ΩHeff )

(m,n)
l }connP, (5-19)

H(m,n)
eff = P(HΩ)(m,n)

conn P . (5-20)

As negative energy states are excluded from the Q space, the diagrammatic sum-
mations in the CC equations are carried out only within the subspace of the positive
energy branch of the DF spectrum. After converging the FSCC equation (5-19), the
effective Hamiltonian (5-20) is diagonalized, yielding directly transition energies.
The effective Hamiltonian in the FSCC approach has “diagonal” structure with re-
spect to the different Fock-space sectors. From (5-20) it follows that two Fock space
sectors belonging to a common Hilbert space (with the same number of particles)
do not mix even if they have strongly interacting states. This means that important
nondynamic correlation effects are approximated. The mixed-sector CC presented
below avoids this problem.

The FSCC equation (5-19) is solved iteratively, usually by the Jacobi algorithm.
As in other CC approaches, denominators of the form (EP

0 − EQ
0 ) appear, originating

in the left-hand side of the equation. The well-known intruder state problem, appear-
ing when some Q states are close to and strongly interacting with P states, may lead
to divergence of the CC iterations. The intermediate Hamiltonian method avoids this
problem in many cases and allows much larger and more flexible P spaces.

5.2.2. The Intermediate Hamiltonian CC Method

5.2.2.1. Need and Formulation

The accuracy and convergence of the Fock-space coupled cluster method depend on
an appropriate partitioning of the function space into P and Q subspaces. Ideally, the
P space should include all functions important to the states considered, since the
effective Hamiltonian is diagonalized in P, whereas Q-space contributions are
included approximately. On the other hand, convergence of the coupled cluster
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iterations is enhanced by maximal separation and minimal interaction between P
and Q. These requirements are not always easy to reconcile. Relatively high P func-
tions have often strong interaction with or are energetically close to Q states, making
convergence slow or impossible. The offending functions are usually included in P
because of their significant contribution to the lower P states, and we may not be par-
ticularly interested in the correlated states generated from them by the wave operator;
however, the FSCC is an all-or-nothing method, and lack of convergence means that
no states at all are obtained. The intermediate Hamiltonian coupled cluster method
developed recently [50] addresses this problem, making possible larger and more
flexible P spaces, thereby extending the scope of the coupled cluster method and
increasing its accuracy.

An additional advantage of the ability to use extended model spaces may be
reducing the need for including high excitation levels in the formalism. The need
for high excitations (triple and higher) is usually limited to a small group of vir-
tual orbitals. If such orbitals are brought into P, all excitations involving them
are included to infinite order by diagonalizing the effective Hamiltonian, avoiding
the need for the (usually expensive) treatment of their contribution to dynamical
correlation.

The intermediate Hamiltonian method has been proposed by Malrieu [51] in the
framework of degenerate perturbation theory. The P space is partitioned into the
main Pm subspace, which includes all the states of interest, and the intermediate Pi

subspace, serving as a buffer between Pm and the rest of the functional space Q. The
corresponding operators satisfy the equations

Pm + Pi = P , P+ Q = 1 . (5-21)

The rationale for this partitioning is the following: the relatively high states in P con-
tribute significantly to the states of interest, which evolve from the lower P states,
but couple strongly with intruders from Q and spoil the convergence of the itera-
tions; they should therefore be treated differently from the lower states. This goal
is achieved by partitioning P and allowing more approximate treatment of Pi states.
The intermediate Hamiltonian HI is constructed in P according to the same rules as
the effective Hamiltonian,

HI = PHΩP , (5-22)

but only |Ψm〉 states with their largest part in Pm are required to have energies Em

closely approximating those of the physical Hamiltonian,

HIP|Ψm〉 = EmP|Ψm〉 . (5-23)

The other eigenvalues, which correspond to states |Ψi〉with the largest components in
Pi, may be more or less accurate. This leads to some freedom in defining the relevant
eigenfunctions and eigenvalues, and, therefore, in the evaluation of problematic QSPi
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Figure 5-1. Model spaces in the modified intermediate Hamiltonian method

matrix elements. To limit this freedom and make the approach more general and
flexible, we also use the partitioning

Q = Qi + Qm. (5-24)

This additional partitioning narrows the overlap of the P and Q energies, which
becomes limited to Pi and Qi subspaces (see Figure 5-1), reducing the number of
problematic amplitudes, now QiSPi.

Partitioning the P and Q projectors of the FSCC equation (5-19) into the main and
intermediate parts by formulas (5-21, 5-24) yields four coupled CC equations,

Qm[S, H0]Pm = Qm{VΩ −ΩHeff}connPm (5-25)

Qi[S, H0]Pm = Qi{VΩ −ΩHeff}connPm (5-26)

Qm[S, H0]Pi = Qm{VΩ −ΩHeff}connPi (5-27)

Qi[S, H0]Pi = Qi{VΩ −ΩHeff}connPi. (5-28)

Only the last of these can cause convergence problems. Successful replacement of
this equation by another, based on physical considerations, is the central point of
the IH method. The new equation to be used instead of (5-28) will be called the IH
condition (IHC). Ideally, it should satisfy the following demands:

• be free of convergence problems;
• have minimal impact on the other coupled equations (5-25), (5-26), and (5-27).

Subject to these demands, the IHC should be as close to (5-28) as possible.
Several IH FSCC methods have been developed and applied recently, based on

different IH conditions. The first such approach [50], denoted IH1, uses the condition

QiΩPmHΩPi = QiHΩPi, (5-29)

which is similar to the equation proposed by Malrieu and applied up to the 3rd

order of degenerate perturbation theory [51]. While Malrieu’s scheme could not go
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beyond 3rd order because terms with small denominators appear, the IH CC vari-
ants developed in our group are all-order and may be used in the framework of any
multireference CC formulation.

The next IH FSCC scheme (IH2) is based on the perturbation expansion of the
problematic QiSPi amplitudes. In the lowest order we simply take

QiSPi = 0. (5-30)

This type of IH condition has also been used for developing a new type of hybrid
multireference coupled cluster schemes, including the mixed sector CC presented
below.

Another IH condition leads to the most flexible and useful scheme, the extrapo-
lated IH (XIH) [52, 53], which can yield correct solutions both for Pm and Pi, thus
recovering the whole effective Hamiltonian spectrum in the extended model space
P. This can be accomplished even when the standard FSCC approach using the same
model space P has intruder states leading to divergence. The IH condition for the
XIH approach has the form

Qi[S, H0 + PiΔPi]Pi = Qi{βΔS+ VΩ −ΩHeff}connPi. (5-31)

Δ is an energy shift parameter, correcting small energy denominators for the prob-
lematic intruder states. A compensation term with the multiplicative parameter β
(β ≤ 1) is added on the right-hand side. For β = 1, the PiΔPi term on the left-hand
side is fully compensated, so that (5-31) is equivalent to (5-28). Proper choice of the
two parameters makes it possible to reach convergence in (5-31) and thus in the non-
problematic equations (5-25), (5-26), and (5-27). Several calculations with different
values of the parameters allow extrapolation of both Pm and Pi level energies to the
limit Δ → 0 or β → 1. This extrapolation was found to be robust, in most cases
linear for Pm states and quadratic for states in Pi. In the extrapolation limit the IH
method transforms into the effective Hamiltonian approach. The XIH approach is
asymptotically size extensive and in many cases size consistent, even for incomplete
Pm, requiring only that the entire model space P is complete. A somewhat similar
IH FSCC scheme has been proposed by Mukhopadhyay et al. [54], but to the best of
our knowledge has never been implemented.

The intermediate Hamiltonian approaches presented here may be applied within
any multiroot multireference infinite order method. Recently [55] we implemented
the XIH scheme to another all-order relativistic multiroot multireference approach,
the Hilbert space or state universal CC, which is the main alternative to and competi-
tor of Fock-space CC. The HSCC is based on the Jeziorski-Monkhorst parameteri-
zation of the wave operator [56], which in the normal ordered form is

Ω =
d
∑

μ=1

Ωμ =
d
∑

μ=1

{exp (Sμ)}Pμ; Pμ = |μ〉 〈μ| . (5-32)
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Here every determinant μ belonging to the P space serves as a reference state (Fermi
vacuum), and the excitation operators Sμ are vacuum dependent. The nature of the
determinants in the model space may be general; the only requirement is that all
determinants belong to the same Hilbert space. The most useful scheme is probably
the HSCC approach with a model space built of general MCSCF solutions. This
will make the HSCC method suitable for global potential surface calculations. The
XIH-HSCC equation in the case of complete model space P is

[Sμ, H0 + PiΔPi]P
μ =

{βΔSμPiP
μ + V{exp (Sμ)}Pμ − {exp (Sν)}PνHeff P

μ}conn

PνHeff P
μ = Pν(H{exp (Sμ)})connPμ. (5-33)

The HSCC effective Hamiltonian (5-33), unlike the FSCC effective Hamiltonian,
has non-diagonal structure, coupling different Fock-space sectors belonging to the
same Hilbert space. This leads to better treatment of nondynamic correlation. A
mixed sector coupled cluster (MSCC), which may be regarded as a hybrid approach
combining the advantages of FSCC and HSCC, has recently been derived [57] within
the IH2 method based on IHC (5-30). The MSCC exponential parameterization of
the wave operatorΩ and the working equation are formally similar to those of FSCC
(5-19), but the subsystem embedding condition is now relaxed and several sectors of
Fock space belonging to the same Hilbert space mix and are diagonalized together.
MSCC may thus yield the most balanced inclusion of dynamic and nondynamic
correlation effects. Implementation of the XIH method to higher sectors (up to six
valence electrons/holes [49]) of the Fock space is also in progress [58]. All the mul-
tireference multiroot CC methods described above may be used for the challenging
task of benchmark calculations for heavy quasidegenerate systems with more than
two electrons/holes in the valence open shell.

Summing up, we conclude that the IH method is an efficient and universal tool,
applicable to all multiroot multireference methods. It avoids intruder states, while at
the same time allowing the use of large, complete model spaces, improving signifi-
cantly the accuracy of the calculation.

5.2.2.2. Demonstrating the Power of IH Methods

A major advantage of the intermediate Hamiltonian approach is the flexibility in
selecting the model space. This has been a major problem in applying the Fock-space
scheme, as noted at the beginning of this section. While in the Fock-space coupled
cluster method one may consider oneself lucky to find any partitioning of the func-
tion space into P and Q with convergent CC iterations, the intermediate Hamiltonian
method makes it possible for the first time to vary the model space systematically and
study the effect upon calculated properties. An example is provided by the calcula-
tion of the electron affinity of alkali atoms by the IH1 method [59]. The Pm and Pi

spaces were increased until the EAs converged to 1 meV, giving agreement of 5 meV
or better with experimental values [60].
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Another benefit of the IH approach is its increased scope of applicability in terms
of states amenable to calculation, determined primarily by the model space selected.
Two examples demonstrate this point:

• Excited states of Ba and Ra were calculated by FSCC, starting from the M2+
reference and adding two electrons [61]. The only model space giving convergence
for Ba included all states with two electrons in the 5d, 6s and 6p orbitals, excluding
the 6p2 states. The IH method made possible larger model spaces, giving many
more states as well as higher accuracy [62]. All states used in FSCC, plus 6p2,
were put in Pm; Pi was defined by adding states with occupied 7s–10s, 7p–10p,
6d–9d, and 4f –6f orbitals, yielding a very large P (= Pm + Pi) space. The mean
absolute error in states accessible to both methods was reduced by a factor of 5,
from 742 cm−1 (relative error 3.11%) for FSCC to 139 cm−1 (relative error 0.69%)
for IH. In addition, many more states, including those belonging to the 6p2 term,
were obtained [62]. Similar results were obtained for Ra.

• In the rare gases Xe and Ar, the neutral closed-shell atoms provide a natural choice
for reference state, and the excited states are therefore in the 1-hole 1-particle sec-
tor. The excitation energies are relatively high and not too far apart, and we could
not find any partitioning leading to convergence of the Fock-space coupled cluster
iterations. The improved convergence properties of the intermediate Hamiltonian
approach solved this problem [63]. Over 20 excitation energies of each atom were
obtained, with an average error of 0.06 eV (0.6%). The original publication may
be consulted for details.

5.3. APPLICATIONS: HEAVY ELEMENTS

Quantitative description of heavy atoms requires high-level inclusion of both rel-
ativity and correlation. These two effects are non-additive, as demonstrated in our
early work on the gold atom [34]. The reasons are obvious: the spatial distribution of
the relativistic orbitals differs significantly from that of non-relativistic counterparts
(s and p orbitals undergo contraction, whereas d and f orbitals expand), leading to
correlation energy changes.

Representative applications of the NVPA Fock-space CC method to heavy atoms
are listed below. These are just a small fraction of the many calculations carried out
over the last 15 years, addressing various atomic systems with dozens of transition
energies calculated per atom. Most results agreed with experiment within a few hun-
dredths of an eV. A fuller description may be found in the original publications and
in our recent review [1].

The spherical symmetry of atoms, which leads to angular decomposition of the
wave function and coupled cluster equations, is used at both the Dirac-Fock-Breit
[46] and CC [34, 64] stages of the calculation. The energy integrals and CC
amplitudes, which appear in the Goldstone-type diagrams defining the CC equations,
are decomposed in terms of vector coupling coefficients, expressed by angular
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momentum diagrams, and reduced Coulomb-Breit or S matrix elements, respec-
tively. The reduced equations for single and double excitation amplitudes are derived
using the Jucys-Levinson-Vanagas theorem [30] and solved iteratively. This tech-
nique makes possible the use of large basis sets with high l values, as a basis orbital
gives rise to two functions at most, with j = l±1/2, whereas in Cartesian coordinates
the number of functions increases rapidly with l. Typically we go up to h (l = 5) or
i (l = 6) orbitals, but higher orbitals (up to l = 8) have been used. To account for
core-polarization effects, which may be important for many systems, we correlate
at least the two outer shells, usually 20–50 electrons, but as many as 119 electrons
were correlated for the anion of element 118 (Section 5.4.3). Finally, uncontracted
Gaussians are used, since contraction leads to problems in satisfying kinetic balance
and correctly representing the small components. On the other hand, it has been
found that high-energy virtual orbitals have little effect on the transition energies
we calculate, since these orbitals have nodes in the inner regions of the atom and
correlate mostly the inner-shell electrons, which we do not correlate anyway. These
virtual orbitals, with energies above 80 or 100 hartree, are therefore eliminated from
the CC calculation, constituting in effect a post-SCF contraction.

The Fock-space coupled cluster and its intermediate Hamiltonian extension have
been incorporated into the DIRAC package [65], opening the way to molecular
applications. The heavy species NpO+2 , NpO2+

2 , and PuO2+
2 were calculated, giving

access to the ground and many excited states and leading to reassignment of some of
the observed spectroscopic peaks [41]. A later application addressed UO2 and UO+2
[42], with less conclusive results, due to the highly complicated open-shell character
of these species.

Most of the applications involved heavy atomic systems, and proved the power
of the method. A few examples are described in the current section. These successes
make the FSCC and IH approaches a useful tool for predicting properties of super-
heavy elements, not easy to access experimentally. Applications to these elements
may be found in Section 5.4.

5.3.1. Ionization Potentials and Electron Affinities of Alkali Atoms:
1 meV Accuracy

Alkali atoms are basically one-valence-electron systems, and correlation would
therefore not be expected to play a major role in the determination of proper-
ties such as ionization potentials. Nevertheless, a Hartree-Fock (or, for the heavier
alkali atoms, Dirac-Fock) calculation gives sizable errors for this property. If accu-
racy below the 1% level is desired, as would be needed, for example, in studies of
parity nonconservation effects [66], high-level treatment of correlation is essential.
The Fock-space CC method was applied to all alkali atom IPs [64] using extensive,
converged basis sets. The results, with 0.02–0.11% deviation from experiment, were
better than any previous calculation. Further improvement was given by the XIH
method, which gave agreement of 1 meV for all alkali atoms [53]. Similar accuracy
was obtained for the electron affinities of the alkali atoms [52] and for transition
energies of alkaline earth atoms [67].
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5.3.2. The f 2 Levels of Pr3+: Dynamic Correlation

Lanthanides and actinides possess open f shells, which give rise to large manifolds of
closely spaced states. As an example of these systems we discuss the energy levels of
the Pr3+ ion, which has an f 2 ground state configuration. The spectrum is well char-
acterized experimentally [68] and provides a good test for high-accuracy methods
incorporating relativity and correlation. The system has been studied by both MCDF
and Fock-space CC, and comparison between these methods can therefore be made.

The MCDF calculations [69] involved between 354 and 1,708 CSFs for the differ-
ent J states. The number of CSFs was much larger in the CC calculations [70], since
all excitations from the 4spdf 5sp orbitals to virtual orbitals with energies up to 100
hartree, as well as excitations from 4spd5sp to the partially filled 4f , were included.
Thus, a much larger part of dynamic correlation was accounted for. The Pr5+ closed
shell state served as reference, and two electrons were added in the 4f shell to obtain
the levels of interest. Three basis sets were used, with l going up to 4, 5 and 6, giving
mean absolute errors of 394, 245 and 222 cm−1, respectively. This may be compared
with the 853 cm−1 MAE of the MCDF calculation.

5.3.3. Properties: Nuclear Quadrupole Moments

Nuclear quadrupole moments (NQM) are of considerable interest in chemical spec-
troscopy. They are also required in nuclear physics for testing nuclear models. One
of the best ways to determine the nuclear quadrupole moment Q is by combining
the experimental nuclear quadrupole coupling constant B, also known as the electric
quadrupole hyperfine interaction constant, with accurate calculations of the electric
field gradient (EFG) at the nucleus, q. The nuclear quadrupole coupling constant is
given by the relation B = −eqQ/h, where e is the absolute value of the electron
charge and h is Planck’s constant.

Atomic and molecular properties, such as the nuclear quadrupole moment, are
usually observed via the energy shifts generated by coupling to an external field.
The desired property is the derivative of the energy with respect to the external field.
We used the finite field method [71] to calculate the EFG at the relevant nuclei.
The interaction with an arbitrary NQM Q is added to the Hamiltonian Ĥ0, giving
Ĥ(Q) = Ĥ0 − eqQ/h. The Dirac-Coulomb Hamiltonian for the atom served as Ĥ0.
The energy, which is the expectation value of Ĥ(Q), may be expanded as a power
series in Q, and the EFG is obtained by

dE(Q)

dQ

∣

∣

∣

∣

Q=0
= − e

h
〈Ψ0|q̂zz|Ψ0〉. (5-34)

Conflicting considerations determine the value of Q used in practice. The energy
change must be large enough not to disappear in the precision of the calculations,
but too large a perturbation may go beyond the linear regime and introduce errors in
the derivative. Linearity is therefore monitored throughout the application.
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The calculations were carried out using the DIRAC relativistic ab initio electronic
structure program [65]. Nuclei were described by the Gaussian finite nucleus model,
and the uncontracted well tempered basis set of Huzinaga and Klobukowski [72]
was employed; it was systematically extended until the calculated EFG converged
to 0.1%. The Hamiltonian used includes the external field from the start, so that the
Dirac-Hartree-Fock orbitals already see it. Previous attempts of adding the field at
the perturbative (coupled cluster) step were less satisfactory.

The first application addressed the halogen atoms Cl, Br and I [73]. The elec-
tric field splits the P3/2 atomic levels into two sublevels separated by 2B, and
the size of the splitting as function of Q gives the required derivative, from
which the electric field gradient is calculated. Using the splitting rather than the
energy shift of individual levels has the advantage that the second-derivative term
in the series expansion of E(Q) cancels out, and deviation from linearity starts
with the cubic term. An additional advantage is that the splitting vanishes iden-
tically for Q = 0. The effect of the Gaunt term, the major part of the Breit
interaction, is obtained at the Dirac-Hartree-Fock level by taking the expectation
value of the relevant operator. The total size of the effect is small, well below 1%,
and the neglect of interaction between Gaunt and correlation contributions is not
significant.

Using the calculated EFG values and the experimental B values [74–76], the fol-
lowing NQM values are obtained: Q(35Cl) = −81.1(1.2) mb, Q(79Br) = 302(5) mb,
and Q(127I) = −680(10) mb. The Q of Cl agrees with the previous reference value of
−81.65(80) mb [77], while that of Br differs somewhat from the accepted 313(3) mb.
Iodine shows the largest correction to the previous −710(10) mb, in line with the
−696(12) mb obtained from molecular calculations [78]. A more detailed discussion
may be found in [73].

An even more interesting case is that of 179Au, where the long accepted muonic
value of 547(16) mb [77] had been challenged [79]. Gold presents a particularly
tough case, possibly because of relatively small EFG at its nucleus. Experimentally,
the EFG is highly sensitive to the molecular environment, as shown by the large
NQCC differences between AuCl (9.6 MHz) and its noble gas complexes (−259.8
for Ar-AuCl, −349.9 MHz for Kr-AuCl) [80]. Computationally, very strong depen-
dence on the gold-containing molecule and the particular method used has been ob-
served [81], with the EFG varying between −0.374 and +0.746 a.u. for the AuX
molecules (X=F,Cl,Br,I) calculated with the Dirac-Coulomb and Douglas-Kroll
Hamiltonians at the CCSD(T) level, yielding NQM values from −1.51 to +0.65 b.
A recent molecular calculation [82] obtained 510(15) mb.

We applied the finite-field FSCC method [83] using both the well-tempered [72]
and universal [84] basis sets. An intrinsic check is provided by the availability of two
independent sets of quadrupole coupling constants for the 2D5/2 and 2D3/2 states [85].
The difference between NQMs calculated for the two states was ∼1% for medium
size basis sets, going down to 0.1% for the largest sets. Our final result is Q(197Au) =
521(7) mb, in good agreement with the molecular 510(15) mb [82].

More recently, the NQMs of Ga and In were calculated [86].
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5.4. APPLICATIONS: SUPER-HEAVY ELEMENTS

As may be expected, the effect of relativity increases when we go to super-heavy
elements. This term is usually applied to elements with atomic number above 100
(trans-fermium elements). The chemistry of some of these elements has been stud-
ied [87, 88]. An important relativistic effect involves changes in the level ordering,
leading sometimes to a ground state configuration which differs from that of lighter
atoms in the same group and, consequently, to different chemistry.

5.4.1. Ground States of Rutherfordium and Roentgenium

The ground state configuration of an element is the main determining factor of its
chemistry. The deviation of superheavy elements from the ground state of the lighter
homologues is therefore a most interesting question. Here we briefly discuss this
problem in two cases, Rf (element 104) and Rg (element 111).

The nature of the rutherfordium ground state has been a subject of interest for
a long time. Rutherfordium is the first atom after the actinide series, and in anal-
ogy with the lighter group-4 elements it should have the ground-state configuration
[Rn]5f 146d27s2. Keller [89] suggested that the relativistic stabilization of the 7p1/2
orbital would yield a 7s27p2

1/2 ground state. MCDF calculations [90, 91] found that

the 7p2 state was rather high; they indicated a 6d7s27p ground state, with the lowest
state of the 6d27s2 configuration higher by 0.5 [90] or 0.24 eV [91]. The two cal-
culations are similar, using numerical MCDF [92] in a space including all possible
distributions of the four external electrons in the 6d, 7s and 7p orbitals, and the
difference may be due to the different programs used or to minor computational
details. These MCDF calculations take into account nondynamic correlation only,
which is due to near-degeneracy effects and can be included by using a small num-
ber of configurations. A similar approach by Desclaux and Fricke [93] gave errors of
0.4–0.5 eV for the energy differences between (n−1)d and np configurations of Y, La
and Lu, with the calculated np energy being too low. Desclaux and Fricke corrected
the corresponding energy difference in Lr by a similar amount [93]. A similar shift in
the MCDF results for Rf would reverse the order of the two lowest states. A careful
study of electron correlation has therefore been undertaken, increasing gradually the
number of correlated electrons and the space of virtual orbitals [94]. It was found that
including correlation at the level adopted by the MCDF calculations leads, indeed,
to a 6d7p ground state. However, improving the correlation treatment by increasing
the number of correlated electrons and/or the space of virtual orbitals favors the
6d2 configuration, and the converged result showed it was 0.3 eV lower than the
6d7p. The final basis included 34s24p19d13f 8g5h4i G-spinors, and the external 36
electrons were correlated. The details may be found in the original publication [94].

This example shows the intricate interplay of relativity and correlation. It is well
known that relativity stabilizes p vs. d orbitals, and correlation has the opposite
effect. When both effects are important and the result not obvious a priori, one
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must apply methods, such as relativistic CC, which treat relativity and correlation
simultaneously to high order.

A simpler case is that of Rg. The electron configuration of the coinage metals Cu,
Ag and Au is (n − 1)d10ns1. It was suspected that the strong stabilization of s vs. d
orbitals may lead to a (n− 1)d9ns2 ground state for Rg. This stabilization leads to a
substantial reduction of the (n − 1)d → ns transition energy in Au relative to what
is expected by extrapolating the corresponding energies in Cu and Ag, a reduction
responsible for many of the interesting properties of gold. Our first application of
FSCC to superheavy elements was aimed therefore at Rg [95]. It was indeed found
that the ground state of Rg was 6d97s2, which lies 3 eV below 6d107s1.

5.4.2. Electronic Spectrum of Nobelium (Z = 102) and Lawrencium
(Z = 103)

The spectroscopic study of super-heavy atoms presents a severe challenge to the
experimentalist. While certain chemical properties of these elements may be eluci-
dated in single-atom experiments [87, 88], spectra can be measured only in sizable
samples. The first such study of a superheavy atom [96] used 2.7 × 1010 atoms
of 255Fm with a half life of 20.1 h, and was accompanied and guided by MCDF
predictions of spectral energies. No and Lr have shorter lifetimes, on the order of
seconds, and spectroscopic measurements for them were undertaken by a collab-
oration based at GSI [97]. The low production rates of the atoms and their short
lifetimes necessitate reliable prediction of the position of transition lines, to avoid
the need for broad wavelength scans. Theoretical studies are also crucial for line
identification. Four-component FSCC calculations were carried out for No [98] and
Lr [99]. The accuracy of the predicted spectra for these elements was estimated by
applying the same method to ytterbium [98] and lutetium [99], their lighter homo-
logues, where experimental transition energies are available. Large, converged basis
sets (37s31p26d21f 16g11h6i) and P spaces (up to 8s6p6d4f 2g1h) were used in the
framework of the IH-FSCC method. Many electrons (42 for No, 43 for Lr) were
correlated, so that any core polarizations effects were included. The mean absolute
error for the 20 lowest excitation energies was 0.04 eV for Yb, 0.05 eV for Lu. The
calculated IP of No was 6.632 eV, in agreement with the semiempirically extrap-
olated value of 6.65(7) eV [100]. The simulated spectra of the two atoms may be
seen in Refs. [98, 99]. The salient feature of the No spectrum is a strong line at
30,100±800 cm−1, with an amplitude A = 5× 108s−1. Other lines have amplitudes
at least one order of magnitude lower. Lr is predicted to have two strong lines in the
prime observation range (20,000–30,000 cm−1), at 20,100 and 28,100 cm−1.

5.4.3. Can a Rare Gas Atom Bind an Electron?

One of the most dramatic effects of relativity is the contraction and concomitant
stabilization of s orbitals. An intriguing question is whether the 8s orbital of element
118, the next rare gas, would be stabilized sufficiently to give the atom a positive
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electron affinity. Using the neutral atom Dirac-Fock orbitals as a starting point raises
a problem, since the 8s orbital has positive energy and tends to “escape” to the most
diffuse basis functions. This may be avoided by calculating the unoccupied orbitals
in an artificial field, obtained by assigning partial charges to some of the occupied
shells. The nonphysical fields are compensated by including an appropriate correc-
tion in the perturbation operator. A series of calculations with a variety of fields gave
electron affinities differing by a few wave numbers [101], from which an electron
affinity of 0.056(10) eV was deduced. More recently, the issue of possible quantum
electrodynamic effects on this quantity was raised. The impetus was a calculation of
QED effects on the ionization potential of E119, which was estimated at 0.0173 eV
[102], of the same order as the calculated EA of 118. Thus, QED effects could change
the EA significantly, and their treatment was undertaken [103].

An improved basis set with 36s32p24d22f 10g7h6i uncontracted Gaussian-type
orbitals was used and all 119 electrons were correlated, leading to a better estimate
of the electron affinity within the Dirac-Coulomb-Breit Hamiltonian, 0.064(2) eV
[103]. Since the method for calculating the QED corrections [102] is based on the
one-electron orbital picture, the 8s orbital of E118 was extracted by projecting the
119-electron CC correlated function of the anion onto the 118-e correlated function
of the neutral species. Using the resulting orbital and the total electron density, the
self-energy and vacuum polarization terms were calculated, giving a total QED effect
of 0.0059(5) eV, thereby reducing the electron affinity by 9% (for details see Ref.
[103]). This is the largest QED effect found so far for neutral or weakly ionized
species, confirming the importance of QED corrections for superheavy elements.

It should be noted that correlated nonrelativistic or relativistic uncorrelated cal-
culations yield no electron affinity for element 118. The Rn atom does not show a
bound state of the anion even at the relativistic CC level.

5.4.4. Adsorption of Super-Heavy Atoms on Surfaces – Identifying
and Characterizing New Elements

One of the exciting fields in nuclear physics is the production of new super-heavy
elements. The newly produced atoms coming out of the accelerator must be separated
from other reaction products and identified to establish their atomic number. Identi-
fication is relatively easy if the nucleus decays by a series of α emissions. However,
many of the neutron-rich isotopes, which have relatively long lifetimes and may
therefore be amenable to chemical studies, decay by spontaneous fission to unknown
products. This is the case for the recently produced 283112 (t1/2 = 3.8 s), 287114
(t1/2 = 0.5 s), and 288114 (t1/2 = 0.5 s) [104] , as well as 284113 (t1/2 = 0.48 s)
[105]. Elements 112 and higher are expected to be volatile, and their adsorption
behavior can be used in gas-phase chromatography, whereby atoms are deposited on
detectors located along a chromatography column according to their volatility. The
deposition temperatures are measured and associated with the adsorption enthalpies
ΔHads. Transition metals, mainly gold, are generally used as detector surfaces, since
they stay clean of oxide layers.
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The volatility of element 112 relative to that of Hg was studied by this tech-
nique [106]. The two elements showed similar behavior on gold-covered detectors.
The adsorption behavior of element 114 relative to Pb is currently being studied,
and similar experiments may be expected for element 113 and others. Prediction of
the adsorption behavior of these elements and their lighter homologues on different
surfaces is important in designing the experiments, choosing appropriate adsorption
surfaces, etc. Calculations pertaining to elements 112–114 and 118 have recently
been carried out [107–109]. Required atomic properties, in particular polarizabili-
ties, were calculated by the finite field method (see Section 5.3.3). Adding a static
uniform electric field F to the Hamiltonian gives the energy as a power series in F,
where the first derivative is the atomic dipole moment, which vanishes. For a uniform
field F = Fz in the z direction, the second derivative gives the polarizability α.

We calculated the polarizabilities of Hg, Pb, Rn, and elements 112, 114 and 118
[107–109]. Experimental values are available for Hg and Pb [110, 111]. The cal-
culated α for Hg was 34.15 a.u., close to the experimental 33.91 a.u., and similar
agreement was obtained for Pb (46.96 and 45.89 a.u., respectively). The calculated
values were used in a physisorption model to obtain adsorption enthalpies. It was
found that the ΔHads values of Hg and 112 on inert surfaces (quartz, ice, Teflon)
were too close (∼2 kJ/mol differences) to distinguish between the two elements ex-
perimentally. The differences between Pb and 114 are somewhat larger, 7 kJ/mol on
quartz and ice, 3 kJ/mol on Teflon. Element 118 is also problematic, giving adsorp-
tion enthalpies very close to those of Rn both on noble metals and inert surfaces.
A possible candidate for separating these two elements is charcoal; further studies
are needed to explore this possibility.

5.5. DIRECTIONS FOR FUTURE DEVELOPMENT

The methods and applications described above show that much progress has taken
place in the field. Still, there are many open problems, and we are far from being
able to apply relativistic quantum chemistry routinely to systems with significant
QED effects. Recent developments by Lindgren and coworkers [18–23] show great
promise for overcoming at least some of these problems. These developments are
described briefly in the current section; the full details may be found in the origi-
nal publications. Based on these novel schemes, we propose in Section 5.5.2 a new
double Fock-space formalism, with variable numbers of electrons and photons.

5.5.1. Beyond NVPA: QED Many-Body Description and the Covariant
Evolution Operator Approach

The QED description is fully covariant and, in principle, time dependent. To make
connection between stationary infinite order many-body NVPA and QED, let us con-
sider a time dependent perturbation theory approach, which provides a convenient
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way to get rid of time dependence in a rigorous and elegant manner, following
[18–23].

The QED Hamiltonian may be written as ̂HQED =̂H0 +̂V . Here ̂H0 includes the
sum of the noninteracting quantized electronic and photonic field densities,

̂H0 = 1

8
(E2 + B2)− ψ(iγμ∂

μ − mc)ψ , (5-35)

and the perturbation

̂V = −eψγμAμψ (5-36)

represents the electron interaction with the electromagnetic field Aμ.
The basic tool in time-dependent perturbation theory is the time-evolution opera-

tor, which in the interaction picture defines the evolution of the field operators,

|Ψ (t)〉 = ̂U(t, t0) |Ψ (t0)〉 , (t > t0). (5-37)

Perturbative description of the evolution operator ̂U(t, t0) leads to the expansion

̂U(t, t0) =
∞
∑

n=0

(− i)n

n!
t
∫

t0

dx1 ...

t
∫

t0

dxn T[̂V(x1 )...̂V(xn)]. (5-38)

T is the time-ordering operator. The contraction of two ̂V interactions using
Wick’s theorem [112] corresponds to the exchange of a single retarded photon. The
operator (5-38) is non-covariant, since only positive energy states are involved, and
time moves only in the positive direction (Figure 5-2, left). It can be made covariant
by inserting electron propagators SF on the in- and outgoing lines. By definition,
operators act to the right on unperturbed model states, which implies that with adi-
abatic damping we can set the initial time t0 = −∞, so that no propagators on
incoming lines are needed. Time can then flow in both directions on outgoing lines,

Figure 5-2. The non-covariant and covariant evolution operators for single-photon exchange
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and both positive and negative energy states are accounted for (Figure 5-2, right).
The covariant evolution operator for single-photon exchange is now expressed by

̂UCov(t,−∞) = −
∫ ∫

d3xd3x′̂ψ†(x)̂ψ†(x′) (5-39)

×
∫ ∫

d4x1 d4x2 SF(x;x1 )SF(x′;x2 )Vsp(x1 ;x2 )̂ψ(x1 )̂ψ(x2 ).

The energy-dependent single photon potential Vsp is given in the Fourier transform
by

〈rs|Vsp(E)|tu〉 = 〈rs|
∞
∫

0

dkf (k)
( 1

E − εt − εu − sgn(εt)(k − iγ )

+ 1

E − εs − εr − sgn(εs)(k − iγ )

)

|tu〉, (5-40)

where E is the total energy and ε is the orbital energy. Orbitals are generated by
the Dirac equation in the nuclear field or by the SCF procedure (Furry picture). k is
the photon momentum, and f (k) is a known gauge-dependent function [18]. The
expression for the interaction potential Vsp is valid even when energy is not
conserved between initial and final states. This feature is needed for treating
quasidegeneracy with the extended model space technique, based on the effective
or intermediate Hamiltonians described in Sections 5.2.1 and 5.2.2.

The covariant evolution operator is generally singular, due to intermediate model
space states. Eliminating the singularities leads to the Green’s operator ̂G [20].
Green’s operator is closely related to the field theoretical Green’s function, used
extensively in QED (see e.g. [17]). The Green’s function is just the zero-body term
in the second-quantized representation of the Green’s operator.

The Green’s operator is separated into open and closed parts, ̂G = 1+ Q̂GopP+
P̂GclP, where ̂Gop operates outside and ̂Gcl inside the model space, as indicated
explicitly by the projection operators P and Q. ̂Gop is essentially the wave opera-
tor, used in the many-body approaches in quantum chemistry and presented in Sec-
tion 5.2.1, and ̂Gcl yields the effective Hamiltonian [18, 20]

Ω = P+ Q̂GopP (5-41)

̂Veff = P
(

i
∂

∂t
̂Gcl(t)

)

t=0
P. (5-42)

The Green’s operator can be applied also to energy–dependent interactions of the
QED type and forms therefore a link between many-body electronic structure and
quantum field theory. Eliminating the singularity from the covariant evolution oper-
ator leaves some finite residuals [18–20],
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Figure 5-3. The two-body part of the effective potential ̂W in the Bethe-Salpeter-Bloch equation (5-46)
contains all irreducible two-body potential diagrams, including the Coulomb interaction as well as all
retardation and radiative effects

̂G(t) = ̂G0(t)+
∑ δn

̂G0(t)

δEn
(̂Veff)

n, (5-43)

where ̂G0(t) represents the Green’s operator without any intermediate model-space
states,

̂G0 = 1+ RQ̂W + RQ̂WRQ̂W + ...; RQ = Q

E0 − H0
. (5-44)

̂W is the sum of all irreducible multiphoton interactions (Figure 5-3), and RQ is the
zero order resolvent operator. The difference ratios transform into derivatives in the
case of complete degeneracy. These terms represent the model-space contributions
and are analogous to the folded diagrams of open-shell FSCC (see Section 5.2.1), but
also contain energy derivatives (difference ratios) of the energy-dependent interac-
tion. Summing the contributions to all orders gives the generalized Bethe-Salpeter
(BS) equation in the form of the Schrödinger equation with energy dependent
potential,

(

E − ̂H0
) |Ψ 〉 = ̂W(E) |Ψ 〉 . (5-45)

A similar covariant equation has been derived in 1951 by Bethe and Salpeter for
the complete solution of the two-body relativistic problem [113]. The BS equation
may be solved self-consistently, using, e.g., the Brillouin-Wigner perturbation the-
ory. In order to maintain the size-extensivity [48], important to heavy multielectronic
systems, we prefer to work with the Rayleigh-Schrödinger theory and the linked-
diagram representation. This may be achieved by transforming the BS equation to
the corresponding Bloch equation (5-18)

(

E0 − ̂H0
)

̂ΩP = (̂W(E)̂Ω − ̂Ω̂Weff (E))linkedP, ̂Weff = P̂W ̂ΩP, (5-46)

referred to as the generalized Bethe-Salpeter-Bloch (BSB) equation. The Bloch
equation (5-46) may be used to generate a perturbative expansion of the wave op-
erator for energy–dependent interactions. The difficulty here is in evaluating the
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Figure 5-4. The wave function with uncontracted photons lies in an extended Fock space

energy derivatives of the (multiphoton) perturbation ̂W(E), which is itself calculated
numerically. This difficulty can be overcome by developing efficient all-order (CC-
like) methods in the extended Fock space with variable numbers of so called uncon-
tracted virtual photons (Figure 5-4). These photons may be described by Feynman
diagrams corresponding to the time after they have been radiated by one electron but
not yet absorbed by another (or the same) electron. Matrix elements describing these
diagrams are derived using CEO. These matrix elements are energy independent
[18], and the standard many-body machinery may therefore be used. If the virtual
photon is absorbed by the same electron it has been radiated from, we get radiative
effects, which should be properly renormalized [18].

The photonic Fock space treatment may be combined with consideration of
electron (and positron) processes and interactions, using the fermionic Fock space
formalism presented in Section 5.2.1. A generalized (“double”) Fock space CC
approach, which treats the electronic and photonic degrees of freedom on equal
footing, thereby ensuring covariance, is presented below.

5.5.2. Generalized Fock Space: Double Fock-Space CC

With the uncontracted interactions (5-36), the wave function lies in an extended Fock
space with a variable number of (virtual) photons or photonic Fock-space sectors
(Figure 5-4). The Bloch equation (5-18) will have a particularly simple structure,

[̂Ω , H0]P = (̂V ̂Ω − ̂Ω̂Veff )linkedP, ̂Veff = P̂V ̂ΩP. (5-47)

̂V is the energy-independent perturbation (5-36), which may be divided according to
the number of uncontracted virtual photons,

̂V =
∑

μ≥0

(μ)
̂V(k1l1, ..., kμlμ). (5-48)

(μ) is the number of retarded uncontracted photons, kν and lν stand for the energy
and momentum of photon ν. Expressions for (μ)

̂V(k1l1, ..., kμlμ) are derived using
CEO [18], and are not shown here.
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We consider here explicitly for the first time the exponential form of the wave
operator ̂Ω = {exp (̂S)} in the generalized Fock space with a variable number of
uncontracted virtual photons and electrons/positrons. This parametrization leads to
the double Fock-space CC method, presented below. The double Fock-space excita-
tion amplitudes have the structure

̂S =
∑

m≥0

∑

n≥0

∑

μ≥0

(μ)̂S(m,n)(k1l1, ..., kμlμ), (5-49)

where (m, n) is the electronic valence sector, and (μ) is the number of retarded
uncontracted photons (photonic sectors). The double FSCC equation is

Q[(μ)S(m,n)
l , H0]P = Q{(μ)(VΩ −ΩVeff )

(m,n)
l }connP. (5-50)

The Fock-space excitation operator (μ)S(m,n)
l and resolvent (μ)RQ are divided into

components acting in subspaces with μ = 0, 1, · · · uncontracted photons. The gen-
eralized double FSCC equation (for μ = 0, 1, 2) may then be separated into

(0)S(m,n)
l =(0) R(m,n)

l,Q

{(0)
V (0)Ω +

︷ ︸︸ ︷

(1)V (1)Ω +
︷ ︸︸ ︷

︷ ︸︸ ︷

(2)V (2)Ω −(0)ΩVeff )
(m,n)
l

}

connP,

(1)S(m,n)
l = (5-51)

(1)R(m,n)
l,Q

{(1)
V (0)Ω +(0) V (1)Ω +

︷ ︸︸ ︷

(2)V (1)Ω +
︷ ︸︸ ︷

(1)V (2)Ω −(1)ΩVeff )
(m,n)
l

}

connP,

(2)S(m,n)
l =

(2)R(m,n)
l,Q

{(2)
V (0)Ω +(0) V (2)Ω +(1) V (1)Ω +

︷ ︸︸ ︷

(2)V (2)Ω −(2)ΩVeff )
(m,n)
l

}

connP.

The upper curly brackets stand for numerical integration over the photonic energy
k and momentum l. Thus, multiphotonic retarded energy–dependent interactions are
evaluated numerically in the generalized Fock-space by contraction of the photonic
uncontracted lines of (μ)

̂V with those of (μ)̂S(m,n) in all possible ways. Note that an
exponential form of ̂Ω will introduce powers of̂S in (5-51); the integration (unlike
the more familiar contraction) is carried out over V and the first S in the term. Mul-
tiphotonic terms describing the interelectronic potential are evaluated by an efficient
all-order CC procedure. The effective potential derived by iterative solution of the
FSCC equations in the photonic sectors is used in the equation for the electronic sec-
tors. The energy dependence is introduced either by the energy denominators or by
the folded diagrams with a double energy denominator. After reaching convergence
in the double FSCC equations (5-51), the effective (or intermediate) Hamiltonian in
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the pure electronic valence sectors, Heff = H0+Veff , is diagonalized to yield directly
electronic transition energies.

The double Fock-space CC approach presented here is under development. More
details and applications will be reported in a future publication [114].

5.6. SUMMARY AND CONCLUSION

The no-virtual-pair Dirac-Coulomb-Breit Hamiltonian, correct to second order in the
fine-structure constant α, provides the framework for four-component methods, the
most accurate approximations in electronic structure calculations. The status, fea-
tures and perspectives for further development of benchmark NVPA multireference
CC methods have been reviewed. When applied within the effective or intermediate
Hamiltonian technique, these methods give remarkably high-quality results for the
most complicated cases of dense quasidegenerate open shell levels in heavy atomic
and molecular systems. The IH Fock-space coupled cluster method has structure
and features highly suitable for benchmark calculation within NVPA, as well as for
extrapolations transcending NVPA towards proper merging with QED theory. Rep-
resentative calculations included in this review demonstrate the power and reliability
of the NVPA-FSCC method.

While NVPA correlated four-component methods provide excellent results where
applicable, they are less accurate for highly ionized heavy and super-heavy sys-
tems, due to large QED effects. Most current QED approaches can only be applied
in single-particle approximations, and cannot incorporate electron correlation and
quasidegeneracy effects to high order. The recently developed covariant evolution
operator method of Lindgren [18] is free of these drawbacks, and opens new per-
spectives for deriving truly covariant many-body schemes. As an example of such
approaches, we presented a double Fock-space CC method, which couples elec-
tronic and photonic degrees of freedom in rigorous manner. QED four-component
benchmark calculations for carefully selected systems will be necessary to test the
approaches under development.
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BLOCK CORRELATED COUPLED CLUSTER THEORY
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Abstract: We have presented in this chapter the general formalism of block correlated coupled cluster
method with a CASSCF reference function (CAS-BCCC in short) and a number of its ap-
plications for electronic structure calculations of molecules with multireference character.
The CAS-BCCC method has the following features: (1) free of the intruder states; (2)
invariant with respect to orbital rotations within separated orbital subspaces (occupied, ac-
tive, and virtual); (3) cost-effective; (4) core-extensive, but not size-extensive with respect
to the total number of electrons. With the cluster operator truncated up to the four-block
correlation level, the approximate CAS-BCCC method is named as CAS-BCCC4. The
CAS-BCCC4 method is applied to investigate a number of chemical problems such as
bond breaking potential energy surfaces, singlet-triplet gaps of diradicals, reaction barri-
ers, spectroscopic constants of diatomic molecules, and low-lying excited states. Compar-
isons between results from CAS-BCCC4 and those from FCI or other theoretical methods
demonstrate that the CAS-BCCC4 approach provides very accurate descriptions for all
problems under study. The overall performance of CAS-BCCC4 is illustrated to be better
than that of CASPT2 and MR-CISD methods.

Keywords: Block correlated coupled cluster, CAS reference

6.1. INTRODUCTION

The coupled cluster singles and doubles (CCSD) [1–3], and CCSD(T) [4] (with
perturbative triples), have become the standard theoretical methods for computing
ground-state electronic structures of molecules at their equilibrium structures. How-
ever, the accuracy of CCSD or CCSD(T) deteriorates for molecules with significantly
stretched bonds or radical character, since the Hartree-Fock (HF) reference determi-
nant is not a good zeroth-order wave function. In such cases, frontier orbitals are
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usually degenerate or quasi-degenerate so that a number of determinants may be
as important as the HF determinant. Thus, a multiconfigurational function (a linear
combination of several determinants) is required to provide a qualitatively correct
description.

Within the single reference CC framework, a number of approaches have been
suggested to treat electronic states with strong multiconfigurational character. The
most straightforward one is to improve the CCSD scheme with full triples (CCSDT)
[5–7] or with full triples and quadruples (CCSDTQ) [8, 9]. Such schemes can in-
deed deal with some problems with multiconfigurational character [10] (such as
some bond-breaking processes). Nevertheless, they are all computationally very ex-
pensive, and have not been used very much. Another simple approach is to use
CCSD or CCSD(T) based on the unrestricted HF (UHF) reference function [11].
The UHF-based CCSD and CCSD(T) methods [12] can usually provide quite good
descriptions for certain problems (such as bond breaking potential energy surfaces).
However, it has been found that these methods can not provide balanced descriptions
for different regions of potential energy surfaces, due to the spin contamination of
the UHF reference function [13, 14]. Besides these two approaches, other effec-
tive approaches have also been proposed, which include: the reduced multireference
CCSD [15–24], the spin-flip method [25–32], the orbital-optimized CC approach
[33–40], the completely renormalize CC approaches [41–49], active-space CC ap-
proaches [50–63], and tailored coupled cluster approach [64], etc. The common
feature of most of these approaches is to include higher-than-double excitations
through some approximate or perturbative ways. It should be mentioned that the
reduced multireference CCSD [15–24] may be considered as an elegant combina-
tion of the CCSD method with the multireference configuration interaction singles
and doubles (MR-CISD) method. In this approach, the important triple and quadru-
ple amplitudes are obtained by the cluster analysis of the corresponding MR CISD
wave function, and then the correlation energy is obtained by solving the externally
corrected CCSD equations. This approach and other approaches have been demon-
strated to provide accurate descriptions on quasidegenerate electronic states in many
cases. Nevertheless, when the dominant configuration changes dramatically in some
regions of potential energy surfaces, the accuracy of these approaches may decrease
significantly.

Another direction for treating quasidegenerate electronic states is to develop the
multireference coupled cluster (MRCC) methods [65–103] based on a genuine mul-
ticonfigurational reference function. However, the development of MRCC methods
is neither straightforward nor unique. Based on the effective Hamiltonian spanned
by the reference determinants (the model space), a number of MRCC methods have
been established, which consists of three broad types: valence-universal (VU) ap-
proach [65–74], the Hilbert-space or state-universal (SU) approach [75–86], and the
state-specific, state-selective (SS) approach [87–103]. In the VU approach, one uni-
versal wave operator is employed for all sectors of Fock space. This method can
provide direct predictions for energy differences of spectroscopic interest in a single
computation [65–74]. In the SU approach, the wave operator is described by a set of
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exponential operators, each of which acts on a specific determinant in the reference
space. This method is designed to treat a set of electronic states within a single
computation [75–86]. However, both VU- and SU-MRCC methods suffer from the
intruder state problem [104, 105], and thus their application are still limited. To avoid
the intruder states, the SS-MRCC approach [87–103], which treats one state at a time
with a state-specific wave operator, has been developed. Existing SS-MRCC methods
include, for example, Mk-CCSD [78–95], single-root MR BWCCSD [96–101], and
MRexpT [102, 103]. These methods have been shown to give quite accurate descrip-
tions for electronic structures of molecules with strong multireference character. It
should be mentioned that the computational cost of these methods roughly scales as
the number of determinants in the model space times the cost of one single-reference
CCSD calculation.

Besides SS-MRCC methods mentioned above, some state-specific MRCC meth-
ods [106–110] are based on the following exponential ansatz for the wave function,

|�〉 = eS�0. (6-1)

where �0 is a multiconfigurational reference function and the cluster operator S is
defined with respect to the entire function�0.�0 is usually chosen to be a complete
active-space self-consistent-field (CASSCF) function so that nondynamical correla-
tion is incorporated. The exponential operator eS is designed to take care of the re-
maining dynamical correlation. The main difficulty faced by MRCC methods based
on the ansatz (6-1) is that the excitation operators included in the cluster operator do
not always commute with each other [110], unlike in the single reference CC case
(in which�0 is a single determinant). Thus, simplifications should be made to avoid
this problem. In the approach proposed by Banerjee and Simons [106, 107], only va-
lence excitations (from valence orbitals to virtual orbitals) are included in the cluster
operator. Clearly, this approximation is not justified in many cases. Later, in the MR
linearized coupled cluster method (MR-LCCM) advocated by Bartlett and coworkers
[108, 109], all excitations (excluding internal excitations) are included, but their con-
tributions are all treated at the linearized level (i.e., the Baker-Campbell-Hausdorff
expansion truncated at the first commutator). The MR-LCCM results were found to
be very similar to the traditional MR-CISD results [109]. In some related approaches
based on the ansatz (1), an anti-Hermitian cluster operator S is employed, and differ-
ent ways of determining the excitation amplitudes have been suggested. These ap-
proaches include the unitary coupled cluster method by Hoffmann and Simons [111]
and the canonical transformation method by Chan and Yanai [112, 113]. In addi-
tion, Mukherjee and coworkers proposed a normal order exponential ansatz [87, 88]
built on a CASSCF reference function, which is supposed to be size-extensive and
devoid of the intruder state problem. As the cluster operators within the normal
products commutate with each other, various types of excitations can be included.
With the extended Wick’s theorem [114, 115], a practical procedure for solving
the amplitudes has been suggested, but no implementation of this method has been
reported.
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Another type of MR CC approach (called as CASCCSD) proposed by
Adamowicz and his co-workers [116–122] employs the following exponential ansatz
for the wave function,

|�〉 = eS(ext)(1+ C(int))|0〉, (6-2)

where |0〉 is a formal reference determinant, and a CI-like operator (1+C(int)) acting
on |0〉 produces the CASSCF function, and the CC operator S(ext) includes external
and semiexternal excitations from the Fermi vacuum determinant. Test applications
have showed a very good performance of this approach in describing ground and
excited electronic states with strong multireference character [120–122]. However,
this approach computationally scales as the seventh power of the system size, and
thus applications may be limited to quite small systems.

In 2004, we have developed an alternative MR CC approach, called block-
correlated coupled cluster (BCCC) [123], to deal with near-degenerate electronic
states. Assume that orthonormal orbitals in a system can be divided into a set of
blocks containing several near-degenerate orbitals, it is well known that a good
reference function of this system could be expressed as the tensor product of the
most important state in each block. Such block-based reference functions include
the separated electron pair wave function [124], the generalized valence bond-perfect
pairing (GVB in short) wave function [125], and even the complete active-space self-
consistent-field (CASSCF) function (as a special case), depending on the definition
of blocks. These reference functions can provide a qualitatively correct description
for single-bond bond breaking processes or electronic structures of diradical sys-
tems, and offer a natural way to incorporate intra-block correlation (or nondynamic
correlation). Apparently, the single reference CC method cannot be generalized in a
straightforward manner to deal with these reference functions. To include remaining
dynamic correlation among blocks, which is essential for quantitative descriptions,
we have suggested an exponential ansatz with the cluster operators defined in terms
of block states (a spin orbital may be considered as a single-orbital block) [123].
Depending on the definition of blocks, the BCCC formalism may return back to
single reference CC (each block is a spin orbital), GVB-based BCCC (each block is
an electron pair), and CAS-BCCC, which employs the CASSCF wave function as a
reference.

Very recently, we have developed the general formalism of CAS-BCCC for gen-
erate active spaces [126, 127], and reported its efficient implementation for ground-
state and excited-state calculations [126–133]. In the CAS-BCCC method, a multi-
orbital block is defined to contain all active orbitals in the active space, and all other
blocks involve just a single spin orbital (occupied or virtual). When the cluster opera-
tors are truncated up to the four-block correlation level, the approximate CAS-BCCC
approach is named as the CAS-BCCC4 scheme. The CAS-BCCC approach employs
the same ansatz as shown in Eq. (6-1) for the wave function, but the definitions of
the cluster operators in CAS-BCCC are very different from those adopted in other
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methods. The inherent relationship between CAS-BCCC and other related methods
will be analyzed later in the next section. The CAS-BCCC4 method has been applied
to study a number of chemical problems [126–133], including the bond breaking
potential energy surfaces (PESs), the singlet-triplet gaps for diradicals, activation
barriers, spectroscopic constants for diatomic molecules, and low-lying excitation
energies. Comparisons between CAS-BCCC4 results and those from full configura-
tion interaction (FCI) or other multireference approaches have demonstrated that the
CAS-BCCC4 approach provides highly accurate descriptions for chemical problems
under study.

In this review, we will first introduce the general formalism of CAS-BCCC, and its
implementation details in Section 6.2. The strengths and drawbacks of this method,
and its relationship with other related methods will also be discussed in this section.
Then, in Section 6.3 CAS-BCCC4 will be applied to study a number of chemical
problems, and its performance will be assessed with the results from FCI or other
multireference approaches. In Section 6.4, we will give a brief summary and some
perspectives on the CAS-BCCC approach.

6.2. CAS-BCCC METHOD

6.2.1. The CAS-BCCC Wave Function

The wave function in the CAS-BCCC framework is formulated as [126]:

|�〉 = eT |�0〉, (6-3)

where the CASSCF reference function |�0〉 can be expressed in the second-
quantized form below,

|�0〉 = A0
+i+j+ · · · |0〉. (6-4)

Here A+0 represents the creation operator for the reference state of block A, which
contains all active orbitals in the active space, and i+ stands for the creation operator
in the i th occupied spin orbital. Hereafter, we will use i, j, k, · · · , for occupied orbitals
(always occupied in the reference function), a, b, c, · · · , for virtual orbitals (always
unoccupied in the reference function), and r, s, t, · · · , for active orbitals (partially
occupied in the reference function). The multi-orbital block A has a one-to-one cor-
respondence to the active space, which can be signified as (N0, M) (N0 electrons
in M spatial orbitals). Once a CASSCF(N0, M) calculation is done, the reference
state of block A is automatically defined, which corresponds to the lowest energy
state in the N0-electron subspace, if the ground state is the target state. On the other
hand, distributing N0 electrons into M spatial orbitals will lead to many N0-electron
determinants (the total number of determinants in this subspace is denoted by P),
and a full CI within this N0-electron subspace (in the Coulomb field of all doubly
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occupied electrons) will yield the reference state and (P−1) other N0-electron block
states. These (P − 1) block states (orthogonal to the reference state) and the block
states within various Fock spaces (with different numbers of electrons), will also be
included in the definition of the cluster operators, and they together are called as
“excited” block states for convenience [126]. Except for block A, each of the other
blocks is defined to be a spin orbital (occupied or virtual), and a single spin orbital
is also called as a block for convenience in some cases. It is worth pointing out that
a spin orbital has only two states, occupied or vacuum. Thus, the CASSCF reference
function can also be considered as the tensor product of the most important state of
all block states. All orbitals defined for all blocks in CAS-BCCC are from a CASSCF
calculation.

Now we turn to the cluster operators. Here the cluster operators are defined in
terms of both block states (of block A) and spin orbitals. Depending on how many
blocks are involved (here a spin orbital is also called as a block), the cluster operators
may be called n-block correlation operators. For example, all cluster operators up to
the four-block correlation level can be explicitly expressed as below [126],

T1 =
N0
∑

U

T1 (U) =
N0
∑

U

A+UA−0 t1 (U) (6-5)

T2 = T2A + T2B + T2C (6-6)

T2A =
N0−1
∑

U

vir
∑

a

T2A (U, a) =
N0−1
∑

U

vir
∑

a

A+UA0
−a+t2A (U, a) (6-7)

T2B =
N0+1
∑

U

occ
∑

i

A+UA0
−i−t2B (U, i) (6-8)

T2C =
occ
∑

i

vir
∑

a

a+i−t2C (i, a) (6-9)

T3 = T3A + T3B + T3C (6-10)

T3A = 1

2

N0−2
∑

U

vir
∑

a,b

A+UA0
−a+b+t3A (U, a, b) (6-11)

T3B = 1

2

N0+2
∑

U

occ
∑

i,j

A+UA0
−i−j−t3B (U, i, j) (6-12)
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T3C =
N0
∑

U

occ
∑

i

vir
∑

a

A+UA−0 a+i−t3C (U, i, a) (6-13)

T4 = T4A + T4B + T4C + T4D + T4E (6-14)

T4A = 1

2

N0−1
∑

U

vir
∑

a,b

occ
∑

i

A+UA0
−i−a+b+t4A (U, i, a, b) (6-15)

T4B = 1

2

N0+1
∑

U

occ
∑

i,j

vir
∑

a

A+UA0
−a+i−j−t4B (U, a, i, j) (6-16)

T4C = 1

4

occ
∑

i,j

vir
∑

a,b

a+b+i−j−t4C (i, j, a, b) (6-17)

T4D = 1

3!
N0−3
∑

U

vir
∑

a,b,c

A+UA0
−a+b+c+t4D (U, a, b, c) (6-18)

T4E = 1

3!
N0+3
∑

U

occ
∑

i,j,k

A+UA0
−i−j−k−t4E (U, i, j, k). (6-19)

Here the capital letter U represents various block states of block A, which may be-
long to Fock subspaces with different numbers of electrons. For example, the sum-
mation over U in Eq. (6-7) runs over only the subspace with (N0−1) electrons. A+UA−0
denotes a replacement operator that replaces the reference state of block A with the
U-th “excited” state of block A when acting on the CASSCF reference function,
t1(U), t2A(U, a) (and so on) are the excitation amplitudes to be determined in CAS-
BCCC calculations. In general, the n-block correlation operators can be divided into
three types. The first type describes core excitations (from doubly occupied orbitals
to virtual orbitals), such as T2C and T4C. In fact, T2C and T4C are just the single and
double excitation operators, respectively, in the single-reference CC methods. The
second type includes only T1, which involves active orbitals only. This operator is
responsible for internal excitations (or the relaxation effect), which allow the relative
weights of different determinants in the CASSCF function to be relaxed. The third
type contains the remaining operators, which describes semi-internal excitations be-
tween block A and spin orbitals (occupied or virtual, or both). Let us take one of the
semi-internal excitation type, T3A, to illustrate its qualitative electron correlation pic-
ture. When acting on the CASSCF reference function, this operator will transfer two
electrons from block A to two virtual spin orbitals, producing “excited” configuration
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functions, in which block A is in the ionized states with (N0 − 2) electrons and two
virtual spin orbital are occupied.

Similarly, one can write down explicit expressions for higher n-block correlation
operators (n > 4). However, to make computations feasible, we need to truncate the
cluster operator T to a certain level. The first reasonable approximation is to truncate
T up to the four-block correlation level, i.e.,

T ≈ T1 + T2 + T3 + T4, (6-20)

the resulting approximate CAS-BCCC method is abbreviated as CAS-BCCC4.
This approximation is reasonable, because “excited” configuration functions pro-
duced by higher Tn (n ≥ 5) operators will not interact with �0 directly
(e.g., 〈�0|H |Tn�0〉 = 0 (n ≥ 5)). In more accurate CAS-BCCCn methods
(beyond CAS-BCCC4), these Tn (n ≥ 5) operators will make indirect contributions.

6.2.2. CAS-BCCC4 Equations

To determine the excitation amplitudes, one can project the corresponding
Schrödinger equation onto the reference function (�0) and all excited configuration
functions to obtain a set of coupled nonlinear equations [126] listed below,

〈�0|H |�BCCC〉 = EBCCC〈�0 |�BCCC〉 = EBCCC, (6-21)

〈�V |H|�BCCC〉 = EBCCC〈�V |�BCCC〉, (6-22)

〈�V ,a|H|�BCCC〉 = EBCCC〈�V ,a |�BCCC〉, (6-23)

......
Here �V = A+V A−0 �0,�V ,a = A+V A−0 a+�0, etc, are excited configuration functions.
Substituting Eq. (6-21) into Eqs. (6-22), (6-23) (and so on) will lead to equations
involving only excitation amplitudes. Since the number of unknown amplitudes is
equal to the number of equations, the amplitudes can be unambiguously determined
in an iterative way. With the amplitudes, the CAS-BCCC energy is computed from
Eq. (6-21).

It is very challenging to derive the working equations for various excitation ampli-
tudes. A computer program has been written for this purpose. The details have been
described previously [126–130]. It should be noted that in substituting the CAS-
BCCC4 wave function into the left-hand side of Eqs. (6-22), (6-23) (and so on),
the exponential expansion will terminate after several terms, due to the rule that the
Hamiltonian matrix element between any two configuration functions vanishes when
these two functions differ by more than four block indices [123]. In addition, we want
to point out that the products of any operators involving block A two (or more times)
are not allowed by their definitions described above, since the reference state of block
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A can not be annihilated twice (or more). For instance, T2AT3C = 0, T2AT4A = 0,
etc. We will discuss this issue in more details later in this section.

The non-linear equations for excitation amplitudes can be solved in the iterative
manner with the updated equation proposed by Hirata and Bartlett [134],

t(u)k+1 = t(u)k − 〈Φ(u)|H |ΨBCCC〉 − EBCCC 〈Φ(u) | ΨBCCC〉
 Eshift + 〈Φ(u)|H |Φ(u)〉 − EBCCC

. (6-24)

Here a compound index u is used for simplicity to represent a set of indices that de-
fine a particular excitation amplitude. Correspondingly,�(u) is a shorthand notation
for a given “excited” configuration function. A positive value,  Eshift, is added in
the denominator to improve the convergence (in some cases). For the ground state,
the converged amplitudes can always be obtained, since the energy difference in
the denominator (excluding  Eshift) of Eq. (6-24) is always a positive value, due to
the variational nature of the CASSCF function. Thus, the CAS-BCCC approach is
devoid of the intruder state problem for the ground state.

6.2.3. Implementation Details

To implement the CAS-BCCC4 method efficiently, we have to transform the spin or-
bital formulations into the spatial orbital formulations, then rewrite all formulations
with a number of intermediate arrays, and transform very complicated equations
to an efficient computer program. Fortunately, a computer program can be devised
to achieve all these processes automatically. Some details for implementation have
been discussed in our previous work [126–128]. It is worthwhile to mention the
computational cost of CAS-BCCC4 calculations. One can get a rough idea about the
computational scaling of CAS-BCCC4 by analyzing the number of amplitudes. In
fact, for relatively large systems with small active spaces (say, no more than (6,6)),
the number of t4C amplitudes in CAS-BCCC4 is much larger than other type of
amplitudes, being similar to that in the corresponding CCSD. While in most MRCC
methods the total number of amplitudes is the number of the reference determinants
in the active space times the number of amplitudes in the corresponding CCSD. As
a result, the computational cost of CAS-BCCC4 should be much less expensive than
that of most genuine MRCC methods. For large molecules with small active spaces,
the CAS-BCCC4 approach shares the same computational scaling as the traditional
CCSD method. Nevertheless, for small systems, CAS-BCCC4 is usually computa-
tionally more demanding than the single reference CCSD, since the dominant ampli-
tudes may be not t4C amplitudes. A somewhat detailed analysis on the computational
scaling of CAS-BCCC4 has been reported elsewhere [127]. From discussions above,
one can conclude that for small active spaces CAS-BCCC4 calculations are afford-
able for medium-sized molecules with moderate basis sets.

As shown by equations from (6-5) to (6-19), all electronic states of block A within
a certain Fock subspace are included in the definition of a certain type of the cluster
operator. The unique definitions of these cluster operators and the variational nature
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of the CASSCF reference function ensure that the CAS-BCCC4 wave function is in-
variant with respect to the orbital rotations in occupied, active, and virtual subspaces,
respectively. Thus, any orbitals (canonical, natural, or localized) from CASSCF cal-
culations can be employed for CAS-BCCC4 calculations.

6.2.4. Excited States

In all discussions above, the CAS-BCCC4 method is assumed to treat the electronic
state of the ground state. However, the exponential ansatz, Eq. (6-3), is also a good
approximation to some low-lying excited states, if the CASSCF reference function
is a good zeroth-order wave function for the excited state of interest. If the target
state is an excited state, the reference state of block A corresponds to the CASSCF
wave function for the corresponding excited state. Obviously, some “excited” states
within the N0-electron subspace may have lower energies than the reference block
state defined above.

In defining the CAS-BCCC4 equations for an excited state, we need to slightly
modify the definition of the T1 operator, which allows the CASSCF reference func-
tion to mix with all “excited” block states within the N0-electron subspace. The key
point is to remove some components of the T1 operator, which correspond to those
“excited” block states that are lower in energy than the reference block state. By
doing so, the denominator in the updated equation, Eq. (6-24), will be ensured to be
positive, thus the iteration procedure for retained t1(U) amplitudes will lead to con-
verged results. The neglect of these “excited” block states will have a minor effect on
the low-lying excited states, since the number of block states excluded is relatively
small, compared to the total number of block states within the N0-electron subspace.
On the other hand, the CASSCF function itself is optimized for the excited state
under study so that the relaxation effect of the CASSCF function is usually small.
Thus, with this simple strategy the CAS-BCCC4 method can also be applied to treat
some low-lying excited states [129]. The accuracy of the CAS-BCCC4 approach for
excited states significantly depends on the quality of the CASSCF reference function.
If orbitals are fully optimized from single-state CASSCF calculations, the CAS-
BCCC4 approach usually provides quite accurate excitation energies. However, if
state-averaged orbitals have to be used, the weight of the state of interest in the
CASSCF calculation should be as large as possible. It should be noted that a more
general method for treating excited states within the CAS-BCCC framework is to
develop a linear response [91, 135–138], SAC-CI [139–142] or equation-of-motion
[143–146] type approach based on the ground-state CAS-BCCC wave function.

6.2.5. Comparison with Related MRCC Methods

As described earlier, the CAS-BCCC4 method employs the same exponential ansatz
as other MRCC methods such as MR-LCCM [108–109] and that proposed by Baner-
jee and Simons [106, 107]. Clearly, these methods mainly differ from each other in
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the definition of the cluster operators. In Section 6.2.1, we mention that the prod-
ucts of the cluster operators involving block A are prohibited, since the reference
state of block A can not be annihilated twice (or more). With this restriction, the
CAS-BCCC4 wave function can be reformulated into another identical form,

|�〉 = (1+ T1 + T̄2 + T3 + T̄4)eT2C+T4C |�0〉, (6-25)

with
T̄2 = T2 − T2C = T2A + T2B, (6-26)

T̄4 = T4 − T4C = T4A + T4B + T4D + T4E. (6-27)

Thus, one can see that the core excitations (T2C, T4C) (from occupied orbitals to
virtual orbitals) are described with an exponential expansion structure, while the
internal excitations and semi-internal excitations are described with a linear combi-
nation of the corresponding operators, as in an ordinary CI. Thus, in some sense,
the CAS-BCCC4 approach may be considered as a combined CC/CI approach. It
should be noticed that the internal excitations are fully incorporated here by using
the T1 operator, since all “excited” block states within the N0-electron subspace are
included in the definition of the T1 operator for the ground state (or almost all for an
excited state). Nevertheless, a linear CI-like expansion for describing semi-internal
excitations constitutes an approximation. This strategy works well for small active
spaces, but will become less effective with increasing the size of the active space. The
above analysis shows that among three types of excitations (internal, semi-internal,
and core), core and internal excitations are fully incorporated in the CAS-BCCC4
wave function, but semi-internal excitations are approximately taken into account
via a CI-like expansion. In the MRCC method of Banerjee and Simons [106, 107],
internal and core excitations are totally ignored, and only part of semi-internal excita-
tions (from active orbitals to virtual orbitals) are fully considered. While in the MR-
LCCM approach [108–109], only semi-internal and core excitations are included,
and their contributions are considered at the linear level. Hence, these two methods
are expected to be less accurate than the CAS-BCCC4 method.

As revealed from the discussions above, the CAS-BCCC4 method is not size
extensive, but it is core-extensive [110], like the state specific equation-of-motion
coupled cluster method [147]. Clearly, the size-extensivity error of CAS-BCCC4
originates from the CI-like expansion for semi-internal excitations [129]. If a su-
permolecule consists of two separated fragments, one single reference fragment and
another multireference fragment (which contains block A), then the CAS-BCCC4
energy is size-extensive. But if a molecule dissociates into two fragments by break-
ing one (or more) chemical bond, and the active space (or block A) is across two
fragments, the CAS-BCCC4 energy will not be size-extensive. Due to the core-
extensivity, the size-extensivity error of CAS-BCCC4 does not increase with increas-
ing the total number of core (or doubly occupied) electrons, but mainly depends on
the size of the active space.
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6.3. SOME APPLICATION EXAMPLES

6.3.1. Ground-State Bond Breaking Potential Energy Surfaces

The potential energy surfaces (PESs) for bond breaking processes provide stringent
tests for various electronic structure methods. The CAS-BCCC4 method has been
applied to investigate the potential energy surfaces for single-bond and multi-bond
dissociation processes in a series of molecules including HF, BH, F2, C2, N2, CH4,
H2O, C2H4, etc. [126, 127, 133] In the CAS-BCCC4 calculation, a minimum active
space is usually chosen according to the nature of the broken bond. The correspond-
ing CASSCF calculation is carried out with the GAMESS package [148]. Then, with
the CASSCF orbitals and integrals from the GAMESS package, our program is em-
ployed to perform subsequent CAS-BCCC4 calculations. In most cases, the results
from FCI are used to validate the performance of CAS-BCCC4, as well as the inter-
nally contracted MR-CISD [149–152], and the CASSCF second-order perturbation
theory (CASPT2) [153, 154]. The MOLPRO package [155] is employed for carrying
out MR-CISD and CASPT2 calculations. For approximate theoretical methods, the
maximum absolute error (MAE) with respect to the FCI value, and the nonparallelity
error (NPE) (the difference of the maximum deviation and the minimum deviation
along the whole PES) will be used to describe the deviation of their PESs with respect
to the FCI PES.

In the following, we will only show the results of various theoretical methods for
two typical molecules, F2 and H2O. For F2, its bond-breaking PES has been studied
extensively [14, 23, 27, 90, 119, 156]. In CAS-BCCC4 calculations, a double-zeta
(DZ) basis set [157, 158] is employed, and two core orbitals are frozen. The min-
imum active space (2,2) is selected to contain the 3σg and 3σu orbitals. With the
same basis set, the FCI PES (with two core orbitals and their corresponding virtual
orbitals frozen) of this molecule is available [23] for comparison. The results from
FCI, CAS-BCCC4, MR-CISD, and CASPT2 calculations are listed in Table 6-1. It
can be observed that CAS-BCCC4 gives a uniformly good description for the PES
over the entire range, with the MAE of 4.1 millihartree (mH) and the NPE of 1.8 mH.

Table 6-1. Comparison of ground-state energies from CAS-BCCC4, MR-CISD, and CASPT2
with FCI values for single bond dissociation in F2. FCI energies are in a.u. The values for other
methods are the deviations with respect to FCI values in mH. Re = 2.66816 Bohr

RFF(Re) FCI CASPT2 MR-CISD CAS-BCCC4

1.0 –198.968128 8.81 10.51 4.09
1.1 –198.976458 8.56 10.42 3.97
1.2 –198.972125 8.39 10.02 3.68
1.5 –198.952558 8.60 8.62 2.83
2.0 –198.945201 8.95 8.03 2.51
3.0 –198.944819 8.86 7.86 2.36
4.0 –198.944831 8.81 7.82 2.31
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Table 6-2. Comparison of ground-state energies from CAS-BCCC4, MR-CISD, and CASPT2
with FCI values for simultaneous bond dissociation in H2O. FCI energies are in a.u. The values
for other methods are the deviations with respect to FCI values in mH. The bond angle is fixed
at � HOH = 109.57◦, and Re =0.9929Å

ROH(Re) FCI CASPT2 MR-CISD CAS-BCCC4

1.0 −76.238850 13.56 5.67 3.51
1.4 −76.099020 12.32 5.44 3.47
1.8 −75.978140 9.43 4.36 2.70
2.2 −75.927220 8.30 3.44 2.07
2.6 −75.913410 8.38 3.06 1.84
3.0 −75.910030 8.48 2.95 1.78
3.4 −75.909080 8.51 2.92 1.76
3.8 −75.908780 8.52 2.91 1.75

For MR-CISD, the MAE is much larger than that of CAS-BCCC4, and the NPE is
2.7 mH. The CASPT2 method provides the smallest NPE (0.6 mH) in this molecule,
although the absolute deviation is considerably larger than that of CAS-BCCC4.

The simultaneous dissociation in H2O is a typical double-bond breaking model,
which has been widely investigated [40, 45, 112, 113, 118, 159, 160]. In our calcula-
tions, we fix the bond angle at 109.57◦, and stretch two O H bonds symmetrically
to the dissociation limit. The cc-pVDZ basis set [161] (with spherical d functions)
is used, and the core orbital of the oxygen atom is frozen in all calculations. The
minimum active space (4,4) contains two σ bonding orbitals and the correspond-
ing anti-bonding orbitals. The results obtained from CAS-BCCC4, MR-CISD, and
CASPT2 are listed in Table 6-2, together with the FCI data from the literature [112].
One can see that CASPT2 has much larger MAE and NPE than MR-CISD and CAS-
BCCC4. The MAE and NPE are 5.7 and 2.8 mH for MR-CISD, 3.5 and 1.8 mH for
CAS-BCCC4. Thus, the performance of CAS-BCCC4 is slightly better than that of
MR-CISD.

The performance of the CAS-BCCC4 method for other systems has been dis-
cussed in detail in previous studies [126, 127, 133]. From the results presented here
and previously, we can conclude that with the minimum active space for the broken
bond, the CAS-BCCC4 approach provides quite accurate and balanced descriptions
for the ground-state PESs of single-bond or multi-bond breaking processes. In most
cases, the CAS-BCCC4 results are more accurate to some extent than those from the
widely used CASPT2 and MR-CISD methods.

6.3.2. Spectroscopic Constants of Diatomic Molecules

The spectroscopic constants of diatomic molecules have been extensively studied
with various theoretical methods. Here we show the performance of the CAS-
BCCC4 method for three single-bond molecules (LiH, HF and F2) and three
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Table 6-3. Exact equilibrium distances (Re), dissociation energies (De), and harmonic vibrational fre-
quencies (ωe) for the ground state of six diatomic molecules, and the corresponding deviations calculated
by different theoretical methods with the 6-311G++(3df , 3p) basis set

Method LiH HF F2 C2 N2 O2 MAE

Expt.a 1.596 0.917 1.412 1.243 1.098 1.208
CASSCF 0.039 –0.002 0.058 0.005 0.005 0.006 0.019

Re (Å) CAS-BCCC4 –0.002 –0.002 0.006 0.007 0.006 0.003 0.004
CASPT2 0.018 0.000 0.012 0.007 0.006 0.004 0.008
MR-CISD 0.012 –0.001 0.006 0.006 0.005 0.002 0.005

ωe (cm−1) Expt.a 1.406 4.138 917 1.855 2.359 1.580
CASSCF –115 –1 –273 –184 –15 –25 102
CAS-BCCC4 11 35 –52 –24 –31 2 26
CASPT2 –45 27 –68 –24 –44 –8 36
MR-CISD –23 28 –56 –18 –28 4 26
Expt.a 57.7 141.3 38.2 146.0 228.5 120.3
CASSCF –13.2 –26.7 –22.8 2.0 –23.6 31.5 20.5

De (kcal/mol) CAS-BCCC4 –0.8 –4.8 –6.5 –1.7 -10.3 –5.8 5.0
CASPT2 –4.5 –3.8 –5.6 5.3 –18.8 –1.1 6.5
MR-CISD –4.5 –6.0 –7.9 –2.6 –10.4 –8.3 6.6

a References [162–166].

multi-bond molecules (C2, N2 and O2), in which both nondynamic and dynamic
correlation energies are important for quantitative descriptions. For single-bond
molecules, the CASSCF function with the minimum active space (2,2) is sufficient
for CAS-BCCC4 calculations. While for C2, N2 and O2, the active spaces (4,6),
(6,6), and (8,6), respectively, are used. The 6-311G+ + (3df , 3p) basis set is em-
ployed for all these molecules. The values of the equilibrium bond distance (Re)
and the harmonic vibrational frequency (ωe) are obtained by fitting 16 points on
the PESs around the equilibrium bond length to a cubic polynomial potential. The
dissociation energy (De) is calculated by subtracting the energy at a large interatomic
at a large interatomic distance (20Å) from that at Re. As shown in Table 6-3, the mean
absolute errors for Re, ωe, De predicted from CAS-BCCC4 calculations (with respect
to the corresponding experimental values) are, respectively, 0.004 Å, 26 cm−1, and
5.0 kcal/mol, which are comparable to the MR-CISD results (0.005 Å, 26 cm−1, and
6.6 kcal/mol), and the CASPT2 results (0.008 Å, 36 cm−1, and 6.5 kcal/mol). Thus,
for these simple diatomic molecules, the CAS-BCCC4 method performs equally well
as the widely used CASPT2 and MR-CISD methods.

6.3.3. Reaction Barriers

The prediction of reliable reaction barriers is very challenging for electronic structure
methods since the transition states usually have strong multireference character. Sev-
eral isomerization reactions have been studied with the CAS-BCCC4 method [130].



The General Formalism and Applications 159

Figure 6-1. Geometric parameters of stationary points in the two isomerization reactions (Å for bond
lengths and deg. for angles). The data related to the first reaction are from Ref. [175], and those related to
the second reaction are from Ref. [178]

Here we will focus on two typical reactions, one is the isomerization of cyclobutene
to butadiene, another is the automerization reaction of cyclobutadiene (CBD). For
the first reaction, we perform single point CAS-BCCC4 calculations for all station-
ary points, whose structures (shown in Figure 6-1) are taken as those obtained at the
B3LYP/6-31G(d) level [167]. The 6-311G++(d,p) basis set and the minimum active
space (4,4) are used for CAS-BCCC4 calculations. The orbitals in the active space
include four π orbitals for the transition state and the product, but two π orbitals plus
two σ orbitals (in the breaking C C bond) for the reactant.

As shown in Table 6-4, the calculated CAS-BCCC4 barrier height (with the zero-
point energy corrections calculated at the B3LYP/6-31G(d) level) is 34.12 kcal/mol

Table 6-4. Total energies of the reactant and relative energies of the transition state, and the prod-
uct (relative to the reactant) in the ring-opening reaction of cyclobutene calculated using different
methods with the 6-311G++(d, p) basis set

Method Reactant (a.u.) Ea
a (kcal/mol) Product (kcal/mol)

CASSCF −154.982313 36.12 (34.41) −20.85 (− 21.77)
CAS-BCCC4 −155.547738 35.83 (34.12) −12.87 (− 13.79)
CASPT2 −155.520442 32.69 (30.98) −11.51 (− 12.43)
MR-CISD −155.483865 35.70 (33.99) −14.60 (− 15.52)
MR-CISD+Q −155.562106 34.98 (33.27) −12.56 (− 13.48)
Expt.b 31.9±0.2

a Energy barriers with ZPE corrections (as described in the text) are included in the parenthesis.
b Reference [167].
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Table 6-5. Total energies of the reactant and relative energies of the transition
state (relative to the reactant) in the automerization reaction of cyclobutadiene
calculated using different methods with the cc-pVTZ basis set

Method Rectangle (a.u.) Ea (kcal/mol)a

CASSCF −153.761908 7.38 (4.88)
CAS-BCCC4 −154.353314 8.71 (6.21)
CASPT2 −154.341082 3.75 (1.25)
MR-CISD −154.290699 8.45 (5.95)
MR-CISD+Q −154.371872 8.99 (6.49)
MR-AQCCb 8.90 (6.40)
Expt.c 1.6–10

a Energy barriers with ZPE corrections (as described in the text) are included
in the parenthesis.
b Reference [170].
c Reference [168, 169].

[167], reasonably close to the experimental value 31.9±0.2 kcal/mol. The energy
barriers from CASPT2, MR-CISD, and MR-CISD+Q are also comparable to the
CAS-BCCC4 value. In the automerization reaction of CBD, the transition state has a
square structure (D4h symmetry), which is an open shell diradical. The structures and
energetics of this reaction have been studied with a number of theoretical methods.
The energy barrier estimated from the experiment [168, 169] has a large uncertainty,
being in the range of 1.6–10 kcal/mol. Our single point CAS-BCCC4 calculations
are performed at the optimized geometries (shown in Figure 6-1) obtained with the
multireference average-quadratic coupled cluster (MR-AQCC) method [170], and
the active space contains four π electrons in four π orbitals (two π and two π∗), as
used in the corresponding MR-AQCC calculations. The cc-pVTZ basis set is em-
ployed. The calculated energy barriers without and with ZPE corrections (the ZPE
corrections at the MR-AQCC/cc-pVDZ level is −2.5 kcal/mol [170]) are listed in
Table 6-5. The barrier height from CAS-BCCC4 calculations is 6.21 kcal/mol, quite
close to the corresponding MR-AQCC value (6.4 kcal/mol) and MR-CISD+Q value
(6.49 kcal/mol). However, the CASPT2 barrier height (1.25 kcal/mol) is considerably
smaller than the barriers from other theoretical methods. On the other hand, for the
closed-shell reactant (D2h symmetry), the CCD energy (−154.35314 a.u) should also
be a good estimate for its total energy. One can see that this value is almost identical
to the CAS-BCCC4 energy, −154.35331 a.u. (CAS-BCCC4 without T2C should be
comparable to CCD for closed – shell molecules).

6.3.4. Singlet-Triplet Gaps of Diradicals

The CAS-BCCC4 method has been employed to study the singlet-triplet (S-T) gaps
[128, 130, 131] for a number of typical diradicals including methylene (CH2) and its
isovalent species, substituted carbenes, benzyne isomer, and trimethylenemethane
(TMM), etc. Here the adiabatic S-T gaps for methylene, halocarbenes (CF2, CCl2,
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and CBr2), and TMM calculated with the CAS-BCCC4 method are listed in
Table 6-6, together with the corresponding values from CASPT2, MR-CISD, and
MR-CISD+Q. For CH2, the ground state is the triplet state (X̃3B1), and the first
excited state is a singlet state (ã1A1). However, each halocarbene has a singlet ground
state (X̃1A1) and the triplet state (ã3B1) as the first excited state. For TMM, its
ground state is a triplet state

(

3A2
′) with D3h symmetry, and its lowest two singlet

excited states (1A1 and 1B1) are predicted to be of C2v symmetry (not degenerate,
due to the Jahn – Teller effect) [31, 171, 172]. In our CAS-BCCC4 calculations, the
equilibrium structures in the ground- and lowest-excited states are from FCI/TZ2P
optimizations [173] for CH2, from CASSCF(18,12)/cc-pVTZ optimizations [174]
for halocarbenes, and from SF-DFT/6-31G(d) optimizations [31] for TMM. The ge-
ometrical parameters of these molecules are displayed in Figure 6-2. For methylene
and three halocarbenes, we employ the cc-pVTZ basis set and the CASSCF(2,2) ref-
erence function for CAS-BCCC4 calculations. For TMM, CAS-BCCC4 calculations
are carried out with the active space (4,4) (four electrons in four π orbitals 1b1, 2b1,
1a2, and 3b1) and the DZP basis set (with five Cartesian d-like functions).

From Table 6-6, one can see that CAS-BCCC4 energies are always lower than
MR-CISD values, and CASPT2 values (except for CF2), implying that CAS-BCCC4
usually recovers more dynamical correlation energies than MR-CISD or CASPT2.
Nevertheless, MR-CISD+Q energies are even lower than CAS-BCCC4 energies.
In order to compare the energy gaps calculated at different theoretical levels with
the experimental values, we need to add the zero-point energy (ZPE) difference
between the ground state and its lowest excited state to the calculated electronic
energy difference. The ZPE corrections obtained at the same level as in the geome-
try optimizations for these molecules are available from previous studies, and they
will be employed to derive ZPE-corrected adiabatic S-T gaps (which will be used
in the following discussions). The ZPE difference between the ground state and its
lowest excited state was estimated to be −0.48,−0.10, 0.22, and 0.20 kcal/mol, re-
spectively, for CH2, CF2, CCl2, and CBr2 [173, 174]. For TMM, the ZPE corrections
at the SF-DFT/6-31G(d) level for the two lowest singlet excited states are−0.97 and
−2.03 kcal/mol [31].

For CH2, the ZPE-corrected S-T gaps from CAS-BCCC4, MR-CISD, MR-
CISD+Q, and CASPT2 are 9.12, 9.32, 9.20, and 13.88 kcal/mol, respectively. Thus,
the results from CAS-BCCC4, MR-CISD, and MR-CISD+Q are much closer to the
experimental data (8.998±0.014 kcal/mol [175]) than the CASPT2 value.

For each halocarbene, the S-T gaps from different theoretical methods are al-
ways in the order: CAS-BCCC4 > MR-CISD > CASPT2. For three halocarbenes,
CAS-BCCC4 values are always very close to MR-CISD+Q values. For CF2, the
S-T gaps from four methods seem to be fairly close to each other and in good
agreement with the experimental data (54±3 kcal/mol [176]). For CCl2 and CBr2,
the S-T separations predicted from all four methods used here are quite different
from the experimental data [177] (3±3 and −2±3 kcal/mol, respectively). So our
results will be compared with theoretical estimates obtained at the CCSD(T)/cc-
pVQZ//CCSD(T)/cc-pVTZ level [174], which are 20.9 kcal/mol for CCl2, and
16.6 kcal/mol for CBr2. For these two molecules, it is clear that CAS-BCCC4 S-T
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gaps are much closer to the CCSD(T) results than MR-CISD or CASPT2 values.
Especially, the S-T gaps from CASPT2 are significantly smaller than those from
CCSD(T) or CAS-BCCC4. For TMM, the calculated energy gaps for both singlet
states (with respect to the ground triplet state) from four methods used here are
comparable to each other, and the 3A2

′ −1A1 gaps from all methods are quite
consistent with the experimental value (16.1±0.1 kcal/mol) [178]. To conclude from
the results presented here and in previous studies [128, 130, 131], one can find that
the overall performance of CAS-BCCC4 and MR-CISD+Q methods are very com-
petitive in predicting the singlet-triplet gaps of diradicals, significantly better than
CASPT2 and MR-CISD. The performance of the CASPT2 method is even inferior
to that of the MR-CISD method.

Figure 6-2. Geometric parameters for the ground states and lowest singlet (or triplet) states (the values in
the parenthesis) of selected diradicals (Å for bond lengths and deg. for angles)
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Table 6-6. The ground-state energies (a.u.) and adiabatic singlet-triplet gaps (kcal/mol) for
several diradicals calculated with different methods

Species Method X̃3B1 ã1A1
a Expt.b

CASSCF −38.932325 10.66(10.18)
CAS-BCCC4 −39.073554 9.60(9.12)

CH2 CASPT2 −39.063919 14.36(13.88) 8.998±0.014
MR-CISD −39.071035 9.80(9.32)
MR-CISD+Q −39.078580 9.68(9.20)

X̃1A1 ã3B1
a Expt.c

CASSCF −236.777249 48.61(48.52)
CAS-BCCC4 −237.396886 55.78(55.68)

CF2 CASPT2 −237.399631 51.28(51.18) 54±3
MR-CISD −237.347418 54.29(54.20)
MR-CISD+Q −237.450219 55.62(55.52)
CASSCF −956.828012 13.16(13.38)
CAS-BCCC4 −957.359421 19.16(19.38)

CCl2 CASPT2 −957.332392 12.43(12.65) 20.9
MR-CISD −957.295676 16.97(17.20)
MR-CISD+Q −957.458818 18.21(18.43)
CASSCF −5182.706556 7.78(7.99)
CAS-BCCC4 −5183.181327 13.96(14.16)

CBr2 CASPT2 −5183.157426 7.26(7.46) 16.6
MR-CISD −5183.124783 11.76(11.97)
MR-CISD+Q −5183.191826 14.07(14.27)

3A2
′ 1B1

a 1A1
a

CASSCF −154.936880 14.80(13.83) 19.44 (17.41)
CAS-BCCC4 −155.449617 15.59(14.62) 19.05 (17.02)
CASPT2 −155.420386 15.38(14.41) 19.74 (17.71)

TMM MR-CISD −155.394006 15.20(14.23) 19.46 (17.43)
MR-CISD+Q −155.460780 15.05(15.08) 19.17 (17.14)
MCQDPT2d −155.423414 15.59(14.62) 19.90 (17.87)
Expt.e 16.1±0.1

a Energy gaps with zero-point corrections (as described in the text) are included in the paren-
thesis.
b Reference [175].
c Reference [176] for CF2, and theoretical estimates for CCl2 and CBr2 from Reference [174].
d Reference [31].
e Reference [178].

6.3.5. Low-Lying Excited States

The applicability of the CAS-BCCC4 approach for treating low-lying excited states
has been demonstrated recently for several small molecules [129]. Here the results
for excited-state PESs of HF and vertical excitation energies of N2 will be presented.
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In CAS-BCCC4 calculations for HF, core excitations (T2C) and semi-internal exci-
tations (T4E and T4D) are neglected since they contribute little to the CAS-BCCC4
energies. For these two molecules, we compare our results with the corresponding
full CI values. For comparison, MR-CISD and CASPT2 results are also reported.

For HF, we have studied its five PESs, which include the X1! ground state, the
lowest single and triple ! excited states, and the lowest single and triple " ex-
cited states. The Dunning-Hay DZV basis [179] is employed in all calculations. The
CASSCF(2,2) reference functions are employed for all states, but the orbitals in the
active space are different. For ! states, the active space includes bonding σ and
anti-bonding σ∗ orbitals, while for " states, the active space is composed of one
bonding π orbital and one anti-bonding σ∗ orbital. For the 1! excited state, orbitals
for CAS-BCCC4 calculations are from state-average CASSCF calculations (the tar-
get excited state and the ground state have the weights of 0.9 and 0.1, respectively).
For all other states, the CASSCF orbitals are from single-state CASSCF calculations
for the state of interest. In Tables 6-7 and 6-8, we have listed the FCI energies [121],
and the deviations of CAS-BCCC4 and several other methods with respect to the
FCI values. Among all methods, CAS-CCSD [121] (which is the most computation-
ally expensive) provides the smallest absolute deviation, but CAS-BCCC4 gives the
smallest NPE. The results from MR-CISD, CASPT2, and CR-EOM-CCSD(T) [180]
are also quite comparable to the CAS-BCCC4 results. Among all five PESs, the PES
of the 1! excited state should be emphasized here, as all methods give the largest
absolute deviation and NPE for this PES. The NPE is about 3.0 mH for CAS-BCCC4,
3.8 mH for CAS-CCSD, and even higher for other methods.

The vertical excitation energies of N2 (at equilibrium distance= 2.068 Bohr) from
FCI calculations with the cc-pVDZ basis set [161] have been reported [181]. To com-
pare with the FCI results, our CAS-BCCC4 calculations are performed with the same
basis set at the same geometry. The CASSCF(6,6) reference function is employed,
where the active space consists of six valence orbitals (3σg, 1πu, 2πu, 1πg, 2πg,
and 3σu). Vertical excitation energies for 1"g, 1!−u , and 1 u have been obtained
with CAS-BCCC4, CASPT2, MR-CISD, and MR-CISD+Q methods. Frozen core
approximation is used in all these post-CASSCF calculations. Results from these
four different methods are listed in Table 6-9, with the results from EOM-CCSD,
and CR-EOM-CCSD(T) reported previously [181, 182]. Among all these methods,
CR-EOM-CCSD(T) gives the best performance, but it is also computationally the
most expensive. CASPT2 gives less accurate descriptions for the 1!−u state. Both
MR-CISD and MR-CISD+Q methods give significant errors on the 1"g state. The
overall performance of CAS-BCCC4 is somewhat better than those of CASPT2,
MR-CISD, and EOM-CCSD, and is comparable to that of MR-CISD+Q.

The results presented above and elsewhere have shown that the CAS-BCCC4
approach can give satisfactory descriptions for low-lying electronic excited states.
It should be emphasized that, for excited state calculations, the accuracy of the
CAS-BCCC4 approach is to some extent dependent on the quality of the CASSCF
reference function. If the orbitals are from a single-state CASSCF calculation, the
CAS-BCCC4 method usually gives quite accurate excitation energy for the state of
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Table 6-8. Comparison of triplet state energies from CAS-CCSD, MR-CISD, CASPT2, and CAS-
BCCC4, with FCI values for bond dissociation in HF. FCI energies are given as (E + 99) in a.u. The
values (in mH) for all other methods are the deviations with respect to FCI values

RH−F (bohr) 1.40 1.733 2.50 3.40 4.175 5.00 6.00

3"

FCI −0.604984 −0.761286 −0.905506 −0.955002 −0.966264 −0.969452 −0.970218
CAS-BCCC 1.72 2.00 2.00 1.81 1.79 1.79 1.79
CAS-CCSDa 0.94 1.11 1.11 1.13 1.18 1.20 1.21
MR-CISDa 2.21 2.62 2.81 2.62 2.55 2.53 2.53
CASPT2 4.98 4.19 3.90 4.35 4.48 4.52 4.53

3!

FCI −0.436232 −0.642808 −0.869191 −0.947667 −0.964545 −0.969077 −0.970142
CAS-BCCC 2.06 2.08 1.86 1.79 1.78 1.78 1.78
CAS-CCSDa 1.26 1.51 1.67 1.64 1.64 1.65 1.65
MR-CISDa 2.45 2.71 2.59 2.52 2.52 2.52 2.52
CASPT2 4.63 4.35 4.50 4.55 4.55 4.54 4.53

a Reference [121].

Table 6-9. Vertical excitation energies of N2 from CAS-BCCC4, EOM-CCSD, MR-CISD, MR-CISD+Q,
CASPT2, CR-EOM-CCSD(T), and FCI calculations. The FCI values are in eV, and the values (in eV) for
all the other methods are the deviations with respect to FCI values

EOM- CR-EOM-
State FCIa CCSDb CCSD(T)c MR-CISD MR-CISD+Q CASPT2 CAS-BCCC4

1"g 9.584 −0.081 0.143 0.311 −0.206 −0.115 0.110
1!u

− 10.329 −0.136 0.013 0.076 0.003 −0.202 0.027
1 u 10.718 −0.180 0.033 0.144 −0.022 −0.091 0.097

a Reference [181].
b Reference [182].
c Reference [180].

interest. If the orbitals are from a state-average CASSCF calculation, the relative
weight of the state under study in the CASSCF calculation should be as large as
possible.

6.3.6. Size-Extensivity Errors

As mentioned in the previous section, the CAS-BCCC4 approach is core- extensive,
but not size-extensive with respect to the total number of electrons. To illustrate
the core-extensivity of CAS-BCCC4, we perform a CAS-BCCC4 calculation for
a model system, which contains two HF molecules separated from each other by
100 Å, with both H F bond lengths of 1.0 Å. The 6-311 + +G∗∗ basis set is em-
ployed, and all operators up to the four-block correlation level are included in the
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CAS-BCCC4 calculation. For this combined system, the active space includes the σ

and σ∗ orbitals on one HF fragment. The CAS-BCCC4 energy is −200.600960 a.u.
This value is equal to the sum of the CAS-BCCC4 energy (−100.300806 a.u.) for
the HF with the same active space as in the combined system, and the CCSD energy
(−100.300153 a.u.) for another HF. Hence, the CAS-BCCC4 method satisfies the
core-extensivity.

However, CAS-BCCC4 is not fully size-extensive, and its size-extensivity error
usually increases with increasing the size of the active space [130]. Here we take
four diatomic molecules (C2, N2, O2 and F2) and four hydrocarbons (ethane, ethene,
2,3-dimethyl-butane, and 2,3-dimethyl-2-butene, as shown in Figure 6-3) as exam-
ples to demonstrate the size-extensivity errors for CAS-BCCC4, and other widely
used multireference methods (CASPT2, MR-CISD, and MR-CISD+Q). For each
molecule, the size-extensivity error is defined to be the energy difference between
the energy calculated for the combined system containing two fragments by break-
ing a chemical bond (a central bond for polyatomic molecules) and the sum of en-
ergies obtained for two separated fragments. The 6-311G++(3df , 3p) basis set is
employed for diatomic molecules and 6-31G∗∗ for hydrocarbons. In CAS-BCCC4
calculations, operators T2C, T4E and T4D are ignored to reduce the computation
cost. For each molecule, the active space is chosen to be the minimum active space
required for a qualitatively correct description of the broken bond. Some compu-
tational details were discussed previously [126, 128]. The size-entensivity errors
obtained with four theoretical methods are listed in Table 6-10. It can be seen that
the size-entensivity errors for CASPT2 are always close to zero, with the largest
one being 0.08 kcal/mol for C2. For CAS-BCCC4, the size-extensivity error for F2

Figure 6-3. Schematic structures of the four studied hydrocarbons. (a) ethane; (b) 2,3-dimethyl- butane;
(c) ethylene; d. 2,3-dimethyl-2-butene
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Table 6-10. Size-extensivity errors (kcal/mol) of several molecules calculated with different
theoretical methods

Molecule Active space CAS-BCCC4 CASPT2 MR-CISD MR-CISD+Q

C2 (6,6) 4.52 −0.08 5.36 1.11
N2 (6,6) 4.17 −0.06 5.02 0.77
O2 (8,6) 6.61 −0.01 7.26 1.18
F2 (2,2) 0.87 0.01 −8.93 1.39
C2H6 (2,2) −0.77 −0.01 8.65 1.62
C6H14 (2,2) 0.31 −0.01 48.85 19.09
C2H4 (4,4) 1.89 −0.01 5.69 0.95
C6H12 (4,4) 3.67 −0.04 43.91 16.74

with a small active space (2,2) is only 0.87 kcal/mol. Nevertheless, for O2 with the
larger active space (8,6), this value increases to 6.61 kcal/mol. The overall trend is
that the size-extensivity error of the CAS-BCCC4 method increases with the size of
the active space. However, due to the core-extensivity, the size-extensivity error of
CAS-BCCC4 does not necessarily increase with the total number of electrons (or the
size of the molecule). For instance, the size-extensivity error does not increase from
ethane to 2,3-dimethyl-butane. For MR-CISD, the size-entensivity errors are always
the largest among these methods, and increase rapidly with increasing the total num-
ber of electrons. The MR-CISD+Q method usually has very small size-entensivity
errors for small molecules, regardless of the size of the active space. However, for
relatively large molecules like 2,3-dimethyl-butane and 2,3-dimethyl-2-butene, the
errors are 19.09 and 16.74 kcal/mol, respectively. Thus, the size-entensivity error of
MR-CISD+Q increases also noticeably with the system size. It is expected that for
relatively large molecules (with small active spaces) CAS-BCCC4 will have much
smaller size-extensivity errors than MR-CISD+Q.

6.4. CONCLUDING REMARKS

In this chapter, we have presented the general formalism of block correlated coupled
cluster method with a CASSCF reference function and a number of applications of
this method for ground- and excited electronic states of molecules with multirefer-
ence character. The CAS-BCCC4 method has several desirable properties: (1) free
of the intruder state problem; (2) invariant with respect to orbital rotations within
separated orbital subspaces (occupied, active, and virtual); (3) cost-effective, being
much less expensive that most MRCC methods. Nevertheless, this method is only
core-extensive, not size-extensive with respect to the total number of electrons. This
drawback makes the CAS-BCCC4 method to be most applicable for systems with
small active spaces. To assess the performance of the CAS-BCCC4 method, we have
applied this method to investigate a number of chemical problems, which include
bond breaking potential energy surfaces, singlet-triplet gaps of diradicals, reaction



The General Formalism and Applications 169

barriers, spectroscopic constants of diatomic molecules, and low-lying excited states.
Comparisons between CAS-BCCC4 results and those from FCI or other highly accu-
rate theoretical methods demonstrate that the CAS-BCCC4 approach provides very
accurate descriptions for all problems under study. The overall performance of CAS-
BCCC4 is illustrated to be better than that of CASPT2 and MR-CISD methods. For
small systems, the performance of CAS-BCCC4 and MR-CISD+Q is very com-
petitive, but CAS-BCCC4 is expected to be even better than MR-CISD+Q when
the system becomes relatively large, due to the core-extensivity of the CAS-BCCC4
method.

The future development of the CAS-BCCC method may proceed in several di-
rections. One is to develop CAS-BCCCn with higher n-block correlation operators.
The inclusion of perturbative triple excitations (only for core excitations) should be
readily implemented within the CAS-BCCC framework, following a similar idea as
in CCSD(T). Another is to develop a linear response or equation-of-motion CAS-
BCCC4 method for treating more general excited states. This approach would allow
more low-lying excited states to be treated in a more balanced way. On the other
hand, as described above, the effectiveness of the CAS-BCCC4 approach will de-
crease with increasing the size of the active space. Thus, a more accurate way for
treating systems with large active spaces is to use two (or more) smaller multi-orbital
blocks instead a large multi-orbital block. If an electron pair is chosen as a block, then
a GVB-based BCCC is expected to be more accurate than the CAS-BCCC method
with a large active space. Our development along these directions is under progress.
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CHAPTER 7

A POSSIBILITY FOR A MULTI-REFERENCE
COUPLED-CLUSTER: THE MRexpT ANSATZ

MICHAEL HANRATH
Institute for Theoretical Chemistry, University of Cologne, 50939 Cologne, Germany,
e-mail: Michael.Hanrath@uni-koeln.de

Abstract: This contribution describes the derivation and analysis of the MRexpT ansatz. After a brief
discussion of the fundamental difficulties with the generalization of the single-reference
coupled-cluster ansatz to the multi-reference case (despite a significant number of research
activities in various groups this process is to be considered still unfinished) this chapter
gives a brief overview of the literature and shortly discusses a few selected approaches.
Subsequently the MRexpT ansatz is introduced and theoretical properties are discussed
in some detail. Apart from its lack of core/valence connectivity MRexpT offers many
beneficial properties and shows a high numerical accuracy. The latter is illustrated by a
number of selected applications.

Keywords: Multireference coupled cluster, MRexpT ansatz

7.1. INTRODUCTION

7.1.1. The Single-Reference Case

The single-reference coupled-cluster (SRCC) ansatz [1, 2] uses the ansatz

|ΨCC〉 = eT̂ |0〉 (7-1)

with |0〉 the Fermi vacuum and the cluster operator T̂ =∑M
ν=1 T̂ν and

T̂ν =
∑

i1<i2<...<iν

a1<a2<...<aν

ta1...aν
i1...iν

â†
a1
. . . â†

aν âiν . . . âi1 (7-2)

where we used the common convention iν ∈ O and aν ∈ V with O and
V the occupied and virtual orbitals with respect to the Fermi vacuum |0〉,
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respectively. The choice of the creator and annihilator orbital sets is motivated by
the observation

â†
i |0〉 = 0 â†

a|0〉 �= 0

âi|0〉 �= 0 âa|0〉 = 0.
(7-3)

The amplitudes t...... within the cluster operator T̂ allow to span the many-particle
space. Inserting equation Eq. (7-1) into the Schrödinger equation, multiplication
from left by e−T̂ , and projection onto the Fermi vacuum and substituted determinants
α delivers the common energy and amplitude equations

〈0|e−T̂ ĤeT̂ |0〉 = E (7-4)

〈α|e−T̂ ĤeT̂ |0〉 = 0, (7-5)

respectively.
The SRCC ansatz is potentially complete (for an untruncated cluster operator) and

invariant with respect to occupied – occupied and virtual – virtual transformations.
The crucial property for the success of the SRCC approach is however the size ex-
tensivity of the ansatz. It ensures the independence of the accuracy from the size of
the system. Other methods like e.g. configuration interaction (CI) show a decreasing
accuracy with growing system size.

The property of size extensivity (= connectivity) of the SRCC ansatz is often
related to its exponential ansatz. However, it must be pointed out that the exponential
ansatz itself does not guarantee size extensivity. In order for size extensivity to hold
the cluster operators inserted into the exponential have to be connected themselves.
This property of connectivity is sometimes also called irreducible. The term “con-
nectivity” originates from the diagrammatic representation of the equations. The di-
agrammatic techniques introduced by Feynman are really genius since they allow for
a very illustrative representation of very involved formulas. Although easily “seen”
within a diagrammatic representation the practical meaning of connectivity is not
quite obvious. Practically, connectivity relates to the statistical binding (locality) of
indices.

After this discussion it should be obvious that the amplitudes may not be obtained
arbitrarily. In order for the cluster operators to be connected (that is the amplitudes
within them are connected) they must be obtained within the CC framework itself. It
can be shown that the above mentioned projection technique insures the connectivity
of the amplitudes. In contrast to this using e.g. adapted (disconnected) CI coefficients
as cluster amplitudes fails to deliver a size extensive energy.

We discussed the connectivity issue in some detail since it turns out to be one of
the crucial difficulties upon the generalization of the single-reference to the multi-
reference approach.
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7.1.2. The Multi-Reference Case

Turning to the multi-reference (MR) case there is no longer a unique Fermi vacuum
|0〉 consisting of a single determinant. It has to be replaced by a linear combination
of determinants

|0̃〉 =
∑

μ

cμ|μ〉. (7-6)

7.1.2.1. Straightforward Generalization

Naively writing equation Eq. (7-1) with the reference function from Eq. (7-6) yields

|ΨMRCC1〉 = eT̂
∑

μ

cμ|μ〉. (7-7)

Equation Eq. (7-7) contains a single cluster operator for all references {μ}. However,
it is not entirely clear how T̂ should be assembled since there is no unique Fermi
vacuum dividing the set of orbitals into an occupied and virtual set. In the SR case
the creators were chosen from the set of virtual orbitals while the annihilators used
the occupied orbitals. This was motivated by the observation that any other choice
yields 0 (if only non-product terms are considered). Due to the MR structure of
the reference the orbitals may now be classified into three distinct sets: inactive I

(orbitals occupied in all reference determinants), virtual V (orbitals occupied in no
reference determinant), and active A (the remaining ones). It can easily be seen that
the inactive and virtual orbitals of the MR case map onto the occupied and virtual
orbitals of the SR case in the sense that

â†
i |0̃〉 = 0 â†

a|0̃〉 �= 0 â†
p|0̃〉 �= 0

âi|0̃〉 �= 0 âa|0̃〉 = 0 âp|0̃〉 �= 0
(7-8)

with i ∈ I, a ∈ V, p ∈ A. Equation Eq. (7-8) suggests the active orbitals to be treated
differently from the others with respect to their association to creators or annihila-
tors. More precisely following the previous arguments for the single reference case
equation Eq. (7-8) suggests creators and annihilators to be taken from active orbitals
in the sense

T̂ν =
∑

i′1<i′2<...<i′ν
a′1<a′2<...<a′ν

t
a′1...a′ν
i′1...i′ν

â†
a′1
. . . â†

a′ν
âi′ν . . . âi′1 (7-9)

with i′ν ∈ I∪A and a′ν ∈ V∪A. This setup is in principle possible but there is a signifi-
cant conceptual problem: The number of linear independent projections arising from
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the application of the substitutions within the cluster operator onto the reference |0̃〉
and the number of independent amplitudes do no longer match in general. Another
technical complication is that of the non-commuting algebra from the overlapping
creator and annihilator sets.

A rather simple cure for this problem is to neglect all active orbitals from the
association to creators and annihilators. That is setting i′ν ∈ I and a′ν ∈ V. However,
this is a very poor ansatz as it does not span the full function space. Especially the
important active space is described insufficiently.

7.1.2.2. The Fock Space (Valence Universal) Approach

The Fock space (or valence universal (VUMRCC)) approach [3–8] reintroduces a
unique Fermi vacuum |0〉. In order to set up a sufficient set of equations VUMRCC
considers several states (indexed by i) and sectors (n, m) at once. The ordered pairs
(n, m) classify the sectors by the number of particles n and holes m with respect to
the formal Fermi vacuum |0〉. The VUMRCC wave function is given by

|Ψ (m,n)
i 〉 = {eŜ}|Ψ (m,n)

i0 〉 (7-10)

with the curly braces denoting normal ordering and the reference states given by

|Ψ (m,n)
i0 〉 =

∑

μ

ciμ|μ(m,n)〉 (7-11)

and the valence universal cluster operator

Ŝ =
m
∑

k=0

n
∑

l=0

T̂ (k,l) (7-12)

and T̂ (k,l) =∑M
ν=1 T̂ (k,l)

ν the cluster operators in the individual sectors. In contrast to a
common T̂ (0,0) operator the T̂ (0,1) contains for instance one hole orbital as a creator.
The sector (0, 1) corresponds to a to a singly ionized state while the (1, 0) sector
corresponds to singly electron attached states. Naturally, the (1, 1) and (2, 2) sectors
correspond to single and doubly excited states respectively and it is |μ(0,0)〉 = |0〉.
The reason for the introduction of the sectors lies in the fact that a direct determi-
nation of the amplitudes for an e.g. (2, 2) doubly excited state is not possible as it
relies on amplitudes from sectors below. Actually, using the normal ordered form of
the exponential in equation Eq. (7-10) avoids contractions within the active orbitals
and insures that higher sectors depend only on lower sectors (and not the other way
round) [9, 10]. This allows for a sector-wise construction of the solutions starting
from the (0, 0) sector which corresponds to a usual single-reference coupled-cluster
calculation. The actual determination of the coefficients involves the Bloch equa-
tion and shall not be discussed here in detail. It is important to note that although
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VUMRCC introduces a formal Fermi vacuum all references in the desired sector
are treated on the same footing. This is different from other formally single Fermi
vacuum ansätze to be discussed later.

7.1.2.3. The Hilbert Space (State Universal) Approach

The Hilbert space (or state universal (SUMRCC)) approach [11] see also [12–16] is
given by

|Ψλ〉 =
∑

μ

cλμeT̂(μ)|μ〉, ∀λ (7-13)

with the state label λ and the reference specific cluster operator

T̂(μ) =
∑

τ̂ (μ)∈T(μ)

tτ̂ (μ)(μ)τ̂ (μ). (7-14)

Equation (7-13) contains more variables than can be fixed by considering a single
state only leading to similar problems as with the previous VUMRCC ansatz. The
solution is similar: the SUMRCC ansatz considers several states at once. As these
states consist of a single number of electrons only the ansatz is called Hilbert space
ansatz. The state universal ansatz overcomes the problem of under-determinedness
of the equations by employing the Bloch equation and considering as many states
simultaneously as there are references. Since Eq. (7-13) is valid for all λ and the
individual states |Ψλ〉 are distinguished by the coefficients cλμ only the set of cluster
operators {T̂(μ)} is state universal.

7.1.2.4. Variants and Additional Methods from the Literature

Both previously described approaches employ the Bloch equation and suffer (in their
original formulation) from various limitations, mostly intruder states [12, 17]. The
VUMRCC is related to later intermediate Hamiltonian IM-FSMRCC [18, 19], EOM-
CC [20–22] (for details see [23, 24] presenting also new results) and ST-EOM-CC
[25, 26] approaches. Very recent work [27] addresses the problem of the usually
necessary completeness of the model space by the introduction of a suitably chosen
normalization. The SUMRCC ansatz got further developed to general model space
(GMS) SUMRCC variants [28, 29].

Since the “(state) universality” finally became less preferred the development of
state selective methods started. Actually, a universal method has to treat several
states at the same time with a limited number of amplitudes. In comparison to a
state selective method the number of amplitudes per state is therefore smaller. This
argumentation is not of a rigorous nature but the state selective methods proved to
be typically more accurate in practice. The SUMRCC approach parents three state
specific variants: (MkMRCC) [30–35], Brillouin-Wigner based ansätze (BWMRCC)
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[36–40], and the multi-reference exponential (MRexpT) ansatz [41, 42] to be dis-
cussed in detail in the next section.

Since there are still various conceptual difficulties with the true multi-reference
coupled cluster ansätze mentioned above another branch of approaches emerged.
To circumvent the theoretical problems of the true MR approaches these ansätze
rely on the single-reference ansatz and may be seen as some kind of augmenta-
tion of it. The first approach of this kind is the single-reference formalism based
multi-reference coupled cluster approach (SRMRCC) [43]. Later it got extended to
more general model spaces [44]. There are very similar variants of this approach
in the literature: The CCSDt. . . family of methods [45, 46] and CASCC family
of methods [47–49] and their excited state variants [50, 51]. For a recent review
of these methods see [52]. Similarly, the method of moment (MM-CC) [53, 54]
and completely renormalized (CR-CC) [55] ansätze rely on the SR ansatz as well.
Another SR formalism based ansatz is the reduced MRCC (RMRCC) approach
[56–58] which exists also in partially linearized form [59, 60]. Finally, Λ-CCSD
[61, 62] improves SRCC with respect to MRCC type situations by the inclusion
of de-excitation operators (Λ-equations). All single-reference formalism based ap-
proaches share the same problem: They are symmetry broken and not Fermi vacuum
invariant.

7.2. THE MREXPT APPROACH

Similar to BWMRCC and MkMRCC the MRexpT ansatz [41, 42] is a state selective
modification of the SUMRCC approach.

7.2.1. Ansatz

The main deficiency of the state and valence universal approaches is their need to
calculate more states than desired simultaneously and the appearance of intruder
states. The necessity to consider several states arises because a single substituted de-
terminant may be reached from several references by distinct substitutions. In search
for an ansatz which insures the match of free parameters and linear independent
projections we require that for every amplitude tj there must be a corresponding
projection |β〉 ∈ Q. From the point of view of sufficiency it seems to be natural to
use |β〉 to index the amplitudes t

tj: = t|β〉. (7-15)

Thereby we replace the excitation and reference related amplitude indexing of the
state universal ansatz by an indexing which is based on excited determinants:

tτ̂ (μ)(μ) −→ tτ̂ (μ)|μ〉. (7-16)
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However there is still a sign to be fixed. Considering â†
aâp|pi〉 = |ai〉 and â†

aâq|iq〉 =
|ia〉 we find the two substitution processes to yield the negative of each other. For
symmetry reasons we define

t−|β〉 = −t|β〉. (7-17)

Finally, there is another sign issue that needs to be fixed. As the amplitudes are
bound to the outcome of an excitation due to Eq. (7-16) and the reference coefficients
enter the wave function directly it may happen that opposite signs of the references
cause the coefficient of the resulting substituted determinant to vanish. In order to fix
this problem the MRexpT ansatz introduces a reference phase compensation factor
φ(z) = e−i arg z, z ∈ C, inside the exponential:

|Ψ 〉 =
∑

μ

cμ exp
(

φ(cμ)
∑

τ̂i(μ)∈Tμ
tτ̂i(μ)|μ〉τ̂i(μ)

)

|μ〉. (7-18)

Upon linearization of the exponential series (not linearization of the equations!)
ansatz Eq. (7-18) is equivalent to an MRCI type wave function in a non standard
parameterization.

Finally we note that the excitation operators associated to a particular reference μ
commute

[τ̂|α〉(μ), τ̂|β〉(μ)] = 0. (7-19)

Summarizing the MRexpT wave function is given by

|Ψ 〉 =
∑

μ

cμeT̂(μ)|μ〉 (7-20)

with the cluster operator

T̂(μ) = φ(cμ)
∑

τ̂i(μ)∈Tμ
tτ̂i(μ)|μ〉τ̂i(μ). (7-21)

Inserting Eq. (7-20) into the Schrödinger equation we get

Ĥ
∑

μ

cμeT̂(μ)|μ〉 = E
∑

μ

cμeT̂(μ)|μ〉. (7-22)

Projecting Eq. (7-22) from the left onto 〈ρ| ∈ P
† ∪ Q

† we obtain a system of
equations linear in the reference coefficients cμ and non linear in the amplitudes t|i〉

∑

μ

cμ〈ρ|(Ĥ − E)eT̂(μ)μ〉 = 0. (7-23)
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Since E enters Eq. (7-23) as an additional unknown explicitly there is still one equa-
tion missing. It may be easily obtained by the normalization of the reference weights

∑

μ

|cμ|2 = 1. (7-24)

7.2.2. Theoretical and Technical Properties

At this place we shall briefly reiterate the crucial steps in the proofs of two major
theoretical properties: size consistency and size extensivity.

7.2.2.1. Consistency

The algebraic proof of size consistency given in [41] relies on two major properties

1. the exponential law eÂ+B̂ = eÂeB̂ for commuting operators Â and B̂
2. unique amplitude mapping from the fragments A and B to the compound system

AB

The latter point is not trivial and different from the standard singe-reference
coupled-cluster size consistency proof due to the changed amplitude indexing ac-
cording to equation Eq. (7-16). It could be shown that the coefficient spaces for the
fragments A and B map onto AB without any conflicts due to the assumption that
there is no excitation generating one reference from another (〈λ|T̂μμ〉 = 0, ∀λ�=μ).
It is important to notice that the latter assumption does not impose any restriction
on the function space. Instead this assumption arises naturally from the necessity
to create no redundant substitutions. The latter would result in an underdetermined
equation system.

7.2.2.2. Connectivity

The proof of core connectivity of the MRexpT approach [63] shall be briefly sum-
marized. The proof proceeds as follows: (i) elimination of E from the MRexpT
working equations, (ii) setup of a perturbative cluster expansion, (iii) introduction
of core/valence separation, (iv) processing of applicable simplifications.

After solving of Eq. (7-23) for E and reinsertion into Eq. (7-23) (for disjoint
projections) we obtain

0 =
∑

μ

cμ
[〈α|e−T̂μĤeT̂μμ〉 − Bμ + Cμ

]

(7-25)

with the abbreviations

Bμ: = 〈α|eT̂μμ〉
∑

μ′ �=μ

cμ′

cμ
〈μ|ĤeT̂μ′μ′〉 (7-26)
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and

Cμ: =
∞
∑

i=1

∞
∑

j=1

∑

|ω〉∈Qμj

1

i! 〈α|T̂
i
μω〉〈ω|e−T̂μĤeT̂μμ〉 (7-27)

and 〈α| projections from Q.
A partitioning according to Ĥ = Ĥ0 + V̂ yields

0 =
∑

μ∈Pα
|cμ| t|α〉(ε|α〉 − ε|μ〉)+

∑

μ

cμ
[〈α|e−T̂μ V̂eT̂μμ〉 − Bμ + Cμ

]

(7-28)

introducing Pα = {μ ∈ P | α ∈ Qμ} constituting those references which may lead
to substitution α. Solving Eq. (7-28) for T̂λ yields

T̂λ
φ(cλ)

=
∑

|α〉∈Qλ

∑

μ

cμ
[〈α|e−T̂μ V̂eT̂μμ〉 − Bμ + Cμ

]

∑

μ∈Pα
|cμ|(ε|μ〉 − ε|α〉) τ̂|λ〉→|α〉 (7-29)

In deriving Eq. (7-29) there has been no approximation so far. We note: since the
term Bμ in Eq. (7-29) is obviously disconnected, also T̂ will be disconnected.

In the following we split the Hamiltonian and the cluster operator into their core
(carrying no active orbital) and valence (carrying some active orbital) part

Ĥ = Ĥv + Ĥv (7-30)

T̂ = T̂v + T̂v. (7-31)

and restrict the further analysis to the core Hamiltonian. After some manipulation
[63] one arrives at

T̂v
λ =

∑

|α〉∈Qv
λ

〈α|e−T̂λ V̂veT̂λλ〉
(

εv|λ〉 − εv|α〉
) τ̂|λ〉→|α〉 (7-32)

showing the core part of the cluster operator to be connected iff Q is closed with
respect to de-excitations from T

†, that is τ̂ †|α〉 ∈ Q, ∀τ̂∈T,|α〉∈Q. A sufficient con-
dition for the latter is that T̂ contains a consecutive sequence of excitation levels
(e.g. S, SD, SDT, . . .).

The core connectivity is an important result as it guarantees the size extensivity
of MRexpT with the number of core electrons which is very likely to become large.
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7.2.2.3. Summary

The following enumeration summarizes the beneficial theoretical and technical prop-
erties of the MRexpT approach:

1. potential exactness (it converges to full CI with an untruncated cluster operator)
2. Fermi vacuum invariance (no particular reference)
3. size consistent [41, 42]
4. core (=inactive, doubly occupied) connected [63, 64]
5. properly corresponds to a projection of the Schrödinger equation (this issue was

first mentioned in [65] and later analyzed in [66])
6. not symmetry broken
7. numerically very accurate
8. applicable to very difficult problems (e.g. dissociation of N2 including excited

states [67, 68])

Since MRexpT is not the “ultimate” solution (as none of currently existing proposals
for MRCC ansätze is) there are also a few drawbacks:

1. not invariant with respect to active↔active unitary transformations
2. not core-valance connected [63, 64]
3. computationally more expensive than e.g. BWMRCC and MkMRCC (compara-

ble to SRMRCC)

The lack of valence connectivity is the major bug of MRexpT. This error is present
in any calculation but is typically of modest order as the size of the valence space is
usually limited. However, for the core (=inactive) electrons MRexpT scales correctly.
Molecular applications show the core space to grow much more rapidly and MRexpT
should be a reasonable compromise.

7.3. SELECTED RECENT APPLICATIONS

Apart from other recent work [69, 70] we shall select a few applications from our
recent research for a more detailed presentation in this section.

7.3.1. N2

The nitrogen molecule dissociation including ground and excited states is a very
difficult test case for any multi-reference theory. It offers a lot of spin and spatial
symmetry properties and requires a balanced treatment of static and dynamic cor-
relation. Due to the large amount of data the results on the nitrogen molecule were
presented in two publications. Reference [67] reports on the correlation energy and
degeneracy errors while [68] considers spin projection errors. For technical details
please refer to these publications.

7.3.1.1. Correlation Energy Errors

In order to get an impression of the considered states Figure 7-1 shows the full CI
potential surfaces including the dissociation channels. Figure 7-2 shows the actual
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Figure 7-1. The full CI N2 potential surface for ground and excited states

correlation energy errors with respect to full CI obtained with SRMRCC [43] and
MRexpT approaches. Both approaches show errors of about 0.3 mEh. The behavior
of the errors along the surface is very similar. The errors become largest in the vicin-
ity of the equilibrium. For the dissociation the calculations become more accurate as
the effective number of electrons to be correlated decreases. At very small distances
both approaches tend to overestimate the correlation energy for a few states. This
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Figure 7-2. Energy differences of SRMRCC and MRexpT with respect to FCI
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is due to the fact that the reference space description of these states becomes rather
poor at short distances. Finally we note that the errors of the MRCC approaches are
one order of magnitude smaller that for MRCI (results not shown here). This relation
is likely to improve dramatically in favor of the MRCC methods for larger systems.

Due to the high symmetry of the nitrogen molecule the calculation has to meet
several degeneracy criteria. They may be divided into two classes:

• Δ-state degeneracy: Among the 12 distinct states of the legend there are two Δ
states. EachΔ state splits up into two irreducible representations of D2h (the point
group the calculation was carried out with) since the full symmetry of the molecule
is D∞h. Nevertheless the two components should be perfectly degenerate. How-
ever, neither SRMRCC nor MRexpT reproduce this degeneracy exactly. A modest
error of the order 10−5–10−4 Eh remains.

• R →∞ degeneracy: There are two possibilities for the occurrence of R →∞ de-
generacy: Upon dissociation the symmetry of the isolated atoms becomes the full
rotation group. As this symmetry is larger than that of D∞h there are several states
ending in the same dissociation channel as shown in Figure 7-1. Additionally, there
are different possible spin couplings of the atoms assembling a certain spin state
of the molecule. For separated atoms these differing coupling patterns become
degenerate. As before SRMRCC and MRexpT fail to reproduce this degeneracy
exactly and the errors are of the same order of magnitude (10−5–10−4 Eh).

7.3.1.2. Spin Projections Errors

Figure 7-3 shows the spin projection errors ε of SRMRCC and MRexpT. The spin
projection error ε is given by ε = √

1− 〈Ψ S,Sz |Ψ S,Sz〉 with |Ψ S,Sz〉 = P̂S,Sz
CSF|ΨMRCC〉.

P̂S,Sz
CSF projects onto the spin eigenfunctions associated with S and Sz while |ΨMRCC〉

is the normalized MRCC coupled cluster wave function in determinantal basis.
Consequently, any deviation of 〈Ψ S,Sz |Ψ S,Sz〉 from one measures the presence of
spin components different from the desired S and Sz value. Therefore, it is ε = 0
⇔ ΨMRCC is a spin eigenfunction. Please note that the alternative error criterion
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ε̃ = 〈ΨMRCC|Ŝ2ΨMRCC〉 − S(S + 1) = 0 (although much simpler to evaluate) is not
sufficient for ΨMRCC to be a spin eigenfunction.

According to Figure 7-3 MRexpT shows significantly smaller spin projection
errors than SRMRCC. This is due to the symmetry breaking within SRMRCC caused
by the arbitrarily selected particular Fermi vacuum. Especially in case of degeneracy
the error becomes rather large.

7.3.2. Wave Function Quality and Variance

The previous results regarding the spin projection errors already gave some idea of
the quality of the wave function. In this subsection we consider this quality more
explicitly. The introduction of the error criterion ΔFCI = 1 − 〈ΨFCI|Ψx〉 consti-
tutes a natural measurement of the quality of the wave function as it vanishes iff
the trial wave function (in this case the MRCC wave function) becomes the full
CI wave function itself. Alternatively, we may consider the wave function variance
σ 2 = 〈Ψx|Ĥ2|Ψx〉 − 〈Ψx|Ĥ|Ψx〉2. Similarly to ΔFCI, σ 2 vanishes for Ψx = ΨFCI.
However, the variance is not state selective in the sense that it compares in relation
to a certain state. Any eigenfunction |Ψx〉 will result in σ 2 = 0. Especially in case of
degeneracies this has to be taken into account.

Figure 7-4 shows the results from the calculations [71] on the H4 model [72].
Additionally to the wave function error ΔFCI and the variance σ 2 Figure 7-4 reports
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the projective and variational energy errors with respect to full CI (if applicable). The
results for the Fermi vacuum dependent approaches (single-reference coupled-
cluster and single-reference formalism based multi-reference coupled-cluster (SRM-
RCC)) are reported for both possible Fermi vacua.

Obviously, the individual error criteria show a very strong correlation for any of
the considered methods. As expected, being a single-reference method SRCC shows
the largest errors, especially, if the non dominant reference determinant is taken
as Fermi vacuum. MRCI behaves smoothly although the absolute errors are larger
than for the MRCC approaches. SRMRCC for the dominating Fermi vacuum and
MRexpT show a very good performance. Using SRMRCC with the “wrong” Fermi
vacuum is usually still more accurate than SRCC although the absolute accuracy
deteriorates significantly.

7.4. CONCLUSIONS

The conceptual difficulties of the generalization of the single-reference coupled-
cluster ansatz to the multi-reference case were discussed and a few approaches from
the literature were presented. After the derivation and motivation of the MRexpT
approach its theoretical properties were analyzed. The most important features of
MRexpT are its size consistency and core connectivity. The latter guarantees the
correct scaling of the energy with the system size ensuring a high accuracy of the
method. However, MRexpT does not scale properly with the number of valence
electrons. This deficiency is subject to future research.
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Abstract: An eclectic combination of cluster, perturbation, and linear expansions often provides the
most compact mathematical descriptions of molecular electronic wave functions. A gen-
eral theory is introduced to define a hierarchy of systematic electron-correlation approx-
imations that use two or three of these expansion types. It encompasses coupled-cluster
and equation-of-motion coupled-cluster methods and generates various perturbation cor-
rections thereto, which, in some instances, reduce to the standard many-body perturbation
methods. Some of these methods are also equipped with the ability to use basis functions
of interelectronic distances via the so-called R12 and F12 schemes. Two computer alge-
braic techniques are devised to dramatically expedite implementation, verification, and
validation of these complex electron-correlation methods. Numerical assessments support
the unmatched utility of the proposed approximations for a range of molecular problems.

Keywords: Coupled cluster, Equation-of-motion coupled cluster, Perturbation corrections, Explicitly
correlated, Automated derivation and implementation

8.1. INTRODUCTION

Once a set of one-electron basis functions is chosen, it also defines a set of Slater
determinants that constitutes a many-electron basis for a molecular electronic wave
function. The task of electron-correlation theories is, therefore, to determine the
coefficients (amplitudes) multiplying the Slater determinants that expand the wave
function. There are three such expansions of fundamental significance – cluster, per-
turbation, and linear expansions. When used individually, they engender coupled-
cluster (CC) theory [1, 2], many-body perturbation theory (MBPT) [2, 3], and
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configuration-interaction (CI) theory [4], respectively, which are often viewed as
competing methods. When used in combinations, however, they can lead to meth-
ods that are more accurate and economical than those based on just one expansion
[5]. In fact, many popular methods for electron correlation occur at the intersections
of two of these expansion types. The examples include coupled-cluster singles and
doubles (CCSD) with noniterative triples [CCSD(T)] [6, 7] that combines cluster and
perturbation expansions in this order, multireference perturbation theories [8, 9] that
perform linear expansions followed by perturbation corrections, and equation-of-
motion CC (EOM-CC) theory [10] (see also [11–17]), which is a joint cluster-linear
expansion approach. Combining the three expansion types is, therefore, a fruitful
technique that spawns a whole new array of useful and systematic approximations of
wave functions.

To combine them effectively, one must recognize different physical processes
that these expansions are well-suited to describe. A wave function � in a cluster
or perturbation expansion is written as

� = exp
(

T̂
)

� = (

1+ T̂ + 1
2! T̂

2 + 1
3! T̂

3 + · · ·)�, (8-1)

where T̂ is an excitation operator and � is a reference determinant. Owing to the
property of the exponential function, this wave function and its associated total en-
ergy can scale asymptotically correctly with size (size-extensive). The exponential
structure also implies that the amplitudes in T̂ must be small (weak electron cor-
relation). This is the basis on which a perturbation theory can be used to evaluate
the amplitudes in T̂ . CC theory, on the other hand, determines these amplitudes by
solving nonlinear equations and thus remains valid even when a perturbation treat-
ment of T̂ is no longer adequate. Nonetheless, it is fair to say that the applicable
domain of cluster and perturbation expansions is fundamentally limited to weak (i.e.,
dynamical) electron correlation and to thermodynamically extensive quantities such
as total energies.

In a linear expansion, a wave function is approximated by a linear combination of
Slater determinants:

� = R̂�, (8-2)

where R̂ is an excitation operator just like T̂ . Unlike T̂ , however, R̂ can have a large
amplitude since the amplitude does not affect the weights of any Slater determinants
other than the one linked to that particular amplitude. Therefore, a linear expansion
can describe massive changes in a wave function such as excitations, ionizations, and
electron attachments as well as chemical reactions including bond breaking. Note
that these changes, no matter how large, are spatially confined in a local area of a
molecule and their associated energy changes are usually asymptotically independent
of size (size-intensive). Therefore, a linear expansion is well-suited to describe strong
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(i.e., nondynamical) electron correlation in thermodynamically intensive quantities
such as those listed above.

One effective way of combining the three expansion types proceeds as follows.
A cluster expansion is used to describe weak, size-extensive electron correlation in
the wave function of a molecule in its ground state. A linear expansion is then in-
troduced to characterize strong, size-intensive electron reorganization (if applicable)
associated with an excitation, ionization, etc. Finally, a perturbation expansion is em-
ployed to capture the small remainder of electron correlation. In fact, a combination
of cluster and linear expansions, in this order, arises naturally from an application of
time-dependent linear response theory to a ground-state wave function described by
CC theory [13–15]. It has been established as EOM-CC theory [10], which yields
size-extensive total energies and size-intensive transition energies. In this chapter,
therefore, we describe a general perturbation theory [18, 19] that defines converg-
ing series of corrections to the energies and wave functions of CC for the ground
state and EOM-CC for excited states. Low-cost members of this hierarchy are of
particularly interest [20–22] as they can potentially outperform today’s most use-
ful electron-correlation methods such as CCSD(T) by virtue of being derived more
rigorously.

While the general theory is simple, it defines series of increasingly complicated
perturbation expressions to CC and EOM-CC at various ranks. Characterizing the
whole series requires a computer-assisted strategy [23] for implementing, verifying,
and validating a large number of complex electron-correlation methods in a reason-
able timeframe. We have introduced two such schemes – the determinant-based al-
gorithm [24–26] and the computer algebra for electron correlation [27] (see a closely
related approach of Kállay and Surján [28]). The determinant-based algorithm can
implement any electron-correlation method with a well-defined determinantal wave
function without having to first derive the algebraic equations, but sacrificing the
intrinsic efficiency of the method. Efficient implementations of promising methods
can then be realized expediently by computer algebra, which automates the entire de-
velopment process – the formula derivation, algebraic transformation, and computer
code synthesis – of a method definable by second quantization.

For total and correlation energies of most any molecules in the ground state, the
perturbation corrections to CC are rapidly convergent toward full CI solutions within
a basis set. However, these full CI limits are usually still far from the exact solutions
of the Schrödinger equations because of the rather slow convergence of correlation
energies with respect to basis-set size. Considerable advances have been made re-
cently to accelerate the basis-set convergence via the so-called explicitly correlated
(R12 and F12)1 technique [29–32]. This technique introduces basis functions of

1 The R12 and F12 methods refer to explicitly correlated methods that make use of linear and nonlin-
ear functions of interelectronic distances, respectively, the latter performing considerably better than the
former. The methods discussed in this chapter can use either and the terms “R12” and “F12” are used
interchangeably in this chapter.
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interelectronic distances within the framework of the existing electron-correlation
theories and improves the convergence rate dramatically [29, 30]. This chapter also
addresses the R12 extensions to the combination methods [33–39] as well as to the
standard CC [33–53] and MBPT [54–66]. However, the details of the R12 technique
itself are delegated to our review [32] and other chapters and will not be discussed
in depth here. The resulting methods have perhaps the highest accuracy-versus-cost
performance for energies and structures of molecules in the ground states whose
wave functions are dominated by single reference determinants.

8.2. THEORY

This section reviews CC, EOM-CC, and the general perturbation theory [18, 19] that
spawns the series of approximations that combine cluster, linear, and perturbation
expansions. It also examines the most important, low-rank members of the series
that have been implemented in efficient programs. See Table 8-1 for the definitions
of many of the acronyms that appear in the following.

Table 8-1. CC, MBPT, and CI and their combinations implemented by computer algebra

Acronym Definition Costa References

CCD CC doubles m6 [27]
LCCD Linearized CCD m6 [27]
CCSD CC singles and doubles m6 [27]
LCCSD Linearized CCSD m6 [27]
QCISD Quadratic CI singles and doubles m6 [27]
CCSDT CC singles, doubles, and triples m8 [27]
CCSDTQ CC singles, doubles, triples, and quadruples m10 [27]
CCSDt CCSD with active-space triples m6 [67]
CCSDtq CCSD with active-space triples and quadruples m6 [67]
CCSDTq CCSDT with active-space quadruples m8 [67]
CCSD-R12 Explicitly correlated CCSD m6 [51]
CCSDT-R12 Explicitly correlated CCSDT m8 [53]
CCSDTQ-R12 Explicitly correlated CCSDTQ m10 [53]
CCSD(R12) Explicitly correlated CCSD m6 [39]
MBPT(2) Second-order MBPT m5 [27]
MBPT(3) Third-order MBPT m6 [27]
MBPT(4) Fourth-order MBPT m7 [27]
MBPT(2)-R12 Explicitly correlated MBPT(2) m6 [51]
CIS CI singles m4 [21]
CISD CI singles and doubles m6 [27]
CISDT CI singles, doubles, and triples m8 [27]
CISDTQ CI singles, doubles, triples, and quaduples m10 [27]
EOM-CCSD EOM-CC singles and doubles m6 [16]
EOM-CCSDT EOM-CC singles, doubles, and triples m8 [16]
EOM-CCSDTQ EOM-CC singles, doubles, triples, and quadruples m10 [16]
IP-EOM-CCSD Ionization-potential EOM-CCSD m6 [68]
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Table 8-1. (Continued)

Acronym Definition Costa References

IP-EOM-CCSDT Ionization-potential EOM-CCSDT m8 [68]
IP-EOM-CCSDTQ Ionization-potential EOM-CCSDTQ m10 [68]
EA-EOM-CCSD Electron-affinity EOM-CCSD m6 [69]
EA-EOM-CCSDT Electron-affinity EOM-CCSDT m8 [69]
EA-EOM-CCSDTQ Electron-affinity EOM-CCSDTQ m10 [69]
EOM-CCSDt EOM-CCSD with active-space triples m6 [70]
EOM-CCSDtq EOM-CCSD with active-space triples and quadruples m6 [70]
EOM-CCSDTq EOM-CCSDT with active-space quadruples m8 [70]
CCSD(T) CCSD with a noniterative triples correction m7 [20]
CCSD[T] CCSD with a noniterative triples correction m7 [20]
CR-CCSD(T) Completely renormalized CCSD(T) m7 [20]
CCSD(2)T CCSD with a second-order triples correction m7 [20]
CCSD(2)TQ CCSD with a second-order correction m9 [20]
CCSD(3)T CCSD with a third-order triples correction m8 [22]
CCSD(3)TQ CCSD with a third-order triples and quadruples

correction
m10 [22]

CCSDT(2)Q CCSDT with a second-order quadruples correction m10 [20]
CCSD(T)-R12 Explicitly correlated CCSD(T) m7 [39]
CCSD(2)T -R12 Explicitly correlated CCSD(2)T m7 [39]
CCSD(2)TQ-R12 Explicitly correlated CCSD(2)TQ m9 [39]
CCSD(3)T -R12 Explicitly correlated CCSD(3)T m8 [39]
CCSDT(2)Q-R12 Explicitly correlated CCSDT(2)Q m10 [39]
CCSD(2)T (R12) Explicitly correlated CCSD(2)T m7 [39]
CCSD(2)TQ(R12) Explicitly correlated CCSD(2)TQ m9 [39]
CIS(D) CIS with a doubles correction m5 [21]
CIS(3) CIS with a third-order correction m6 [21]
CIS(4)P CIS with a partial fourth-order correction m6 [21]
EOM-CCSD(2)T EOM-CCSD with a second-order triples correction m7 [22]
EOM-CCSD(2)TQ EOM-CCSD with a second-order correction m9 [22]
EOM-CCSD(3)T EOM-CCSD with a third-order triples correction m8 [22]

a Polynomial dependence of cost on the number of orbitals (m).

8.2.1. Coupled-Cluster Theory

The effective (similarity-transformed) Hamiltonian H̄ of the rank-n CC method [1]
(n = 2 for CCSD, n = 3 for CCSDT, n = 4 for CCSDTQ, and so forth) is defined by

H̄ = exp (−T̂)Ĥ exp (T̂) = [

Ĥ exp (T̂)
]

C, (8-3)

where T̂ is the sum of one- through n-electron excitation operators, “C” means that
the operators are diagrammatically connected, and Ĥ is the electronic Hamiltonian
minus the reference energy,
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Ĥ = f̂ + v̂ =
∑

p,q

f p
q

{

p†q
}+ 1

4

∑

p,q,r,s

vpq
rs

{

p†q†sr
}

. (8-4)

Here, f and v are Fock and antisymmetrized two-electron integral matrices, p, q,
r, and s label either occupied or virtual orbitals of the reference determinant, and
brackets bring the second-quantized creation and annihilation operators in the normal
order. The rank-n CC method is defined with H̄ by

P̂mH̄ |�〉 = P̂mE(0)
0 |�〉 ,∀m = 0, . . . , n, (8-5)

where E(0)
0 is the correlation energy2 and P̂k is a projector on the set of all k-electron

excited determinants. Using i and j (and later k, l, m, and n also) for occupied orbitals
and a and b (as well as c, d, and e) for virtual orbitals, P̂2, for instance, is written as

P̂2 =
∑

i<j

∑

a<b

∣

∣�ab
ij

〉〈

�ab
ij

∣

∣, (8-6)

where �ab
ij is a two-electron excited determinant. The diagrammatic connectedness

of Eq. (8-5), which is a result of Eq. (8-3), ensures the size-extensivity of E(0)
0 .

8.2.2. Equation-of-Motion Coupled-Cluster Theory

The rank-n EOM-CC method [10, 16, 71] can be regarded as an application of rank-n
CI using rank-n CC effective Hamiltonian, H̄, instead of Ĥ. Let R̂(0)

k be the linear
excitation operator of this CI corresponding to the kth excited state. It must satisfy

P̂mH̄R̂(0)
k |�〉 = P̂mE(0)

k R̂(0)
k |�〉 ,∀m = 0, . . . , n, (8-7)

where Ek is the correlation energy of the kth state. Comparing Eqs. (8-7) and (8-5),
we notice that R̂(0)

0 = 1. Since H̄ is not Hermitian, its matrix representation has

distinct left and right eigenvectors. Let L̂(0)
k be the linear de-excitation operator cor-

responding to R̂(0)
k . It is a solution of the following equation,

〈�| L̂(0)
k H̄P̂m = 〈�| L̂(0)

k E(0)
k P̂m,∀m = 0, . . . , n (8-8)

and

〈�| L̂(0)
k R̂(0)

l |�〉 = δkl, (8-9)

2 The subscript indicates an electronic state and the superscript in the parenthesis is the order in a pertur-
bation expansion.
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where δkl is Kronecker’s delta. These equations can be cast into the following equiv-
alent expressions that underscore the size-intensivity of the EOM-CC excitation en-
ergy, ω(0)

k = E(0)
k − E(0)

0 :

P̂m
(

H̄R̂(0)
k

)

C|�〉 = P̂mω
(0)
k R̂(0)

k |�〉, ∀m = 0, . . . , n, (8-10)

〈�|(L̂(0)
k H̄

)

LP̂m = 〈�|L̂(0)
k ω

(0)
k P̂m,∀m = 0, . . . , n, (8-11)

where “L” means that the operators are diagrammatically linked. Setting n = 1 and
using the Hartree–Fock (HF) wave function as the reference, we arrive at the CIS
method [72] because the rank-1 CC method has the trivial solution, T̂ = 0 and
E(0)

0 = 0, and thus H̄ = Ĥ. When R̂(0)
k is a linear ionization (electron-attachment)

operator and L̂(0)
k is its adjoint, the above equations define the rank-n ionization-

potential (electron-affinity) EOM-CC method [68, 69, 73, 74]. In that case, P̂m

should be understood to designate the projector on the manifold of the corresponding
ionized (electron-attached) determinants.

8.2.3. General Perturbation Theory

We now define the whole series of perturbation corrections to CC and EOM-CC
energies and wave functions [18] (see also [75–85]) using the standard Rayleigh–
Schrödinger perturbation theory with the following partitioning of the Hamiltonian,

H̄ = Ĥ(0) + V̂ (1), (8-12)

where V̂ (1) is the perturbation (fluctuation potential). The zeroth-order part, Ĥ(0), is
given by

Ĥ(0) = P̂H̄P̂+ Q̂
(

E(0)
0 + f̂ (0))Q̂ (8-13)

and

f̂ (0) = f̂ −
∑

a,i

f a
i

{

a†i
}−

∑

i,a

f i
a

{

i†a
}

. (8-14)

Here P̂ = P̂0 + . . . + P̂n and Q̂ = 1 − P̂ = P̂n+1 + . . . + P̂N (N is the number of
electrons). We also require that

Q̂R̂(0)
k |�〉 = 〈�|L̂(0)

k Q̂ = 0. (8-15)

It should be understood that, because H̄ has the identical eigenvalues as Ĥ, the pertur-
bation series must converge at the corresponding full CI results (unless they diverge)
regardless of the rank of the reference CC or EOM-CC method. This definition of
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Ĥ(0) also ensures that the invariance of the CC and EOM-CC energies and wave
functions be maintained with respect to a unitary transformation among occupied
orbitals or among virtual orbitals (but not across these two sets).

Expanding the exact (full CI) energy and wave function of the kth state in series

Ek = E(0)
k + E(1)

k + E(2)
k + · · · , (8-16)

R̂k |�〉 = R̂(0)
k |�〉 + R̂(1)

k |�〉 + R̂(2)
k |�〉 + · · · , (8-17)

and substituting them into the Schrödinger equation

(

Ĥ(0) + V̂ (1))R̂k|�〉 = EkR̂k|�〉 (8-18)

as well as separating terms according to their overall perturbation orders, we arrive
at a recursive relation for R̂(i)

k :

(

E(0)
k − Ĥ(0))R̂(i)

k |�〉 = V̂ (1)R̂(i−1)
k |�〉 −

i
∑

j=1

E(j)
k R̂(i−j)

k |�〉, ∀i ≥ 1. (8-19)

We furthermore impose the intermediate normalization on the exact wave function,
which can be expressed as

〈�| L̂(0)
k R̂k |�〉 = 1, (8-20)

implying

〈�| L(0)
k R(i)

k |�〉 = 0,∀i ≥ 1. (8-21)

Using this relation and also Eq. (8-15), we can show that the perturbation corrections
to the energy are simply,

E(i)
k = 〈�| L̂(0)

k V̂ (1)R̂(i−1)
k |�〉 . (8-22)

Apart from the special cases to be individually discussed below, the above expression
generally has nonphysical size dependence. Our criterion for the correct size depen-
dence of a perturbation correction to an excited-state total energy is as follows: the
correction must consist of size-extensive and intensive parts and the size-extensive
part must be equal to the correction in the ground state obtained by substituting k = 0
to the perturbation expression. See [86] for an in-depth discussion on other criteria
for correct size dependence.
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8.2.4. Low-Order Energy Corrections

The uncorrected (zeroth-order) correlation energies are, by construction, the energies
of the parent CC or EOM-CC method. The first-order corrections vanish because of
P̂V̂ (1)P̂ = 0 and Eq. (8-15). The first meaningful (nonvanishing) correction, there-
fore, occurs at the second order and can be expressed as

E(2)
k = 〈�| L̂(0)

k V̂ (1)Q̄V̂ (1)R̂(0)
k |�〉 (8-23)

with the resolvent operator defined by its components,

Q̄ = Q̂
(

ω
(0)
k − Ĥ(0))−1

Q̂ =
N
∑

m=n+1

Q̄k, m, (8-24)

and

Q̄k,m =
∣

∣�
a1···am
i1···im

〉〈

�
a1···am
i1···im

∣

∣

ω
(0)
k + ei1 + · · · + eim − ea1 − · · · − eam

. (8-25)

Equation (8-25) assumes a canonical HF reference and eim and eam are its occupied
and virtual orbital energies, respectively. This second-order expression is always
size-extensive for the ground state (k = 0). This can be understood as follows.
For Eq. (8-23) to be diagrammatically unlinked, it must have at least two pairs of
excitation and de-excitation operators (vertexes), each forming a closed disconnected
diagram. However, R̂(0)

0 = 1 and cannot be a part of a closed diagram. There are only

three operators, L̂(0)
0 , V̂ (1), and V̂ (1) and Eq. (8.23) with k = 0 cannot be disconnected

and, therefore, is size-extensive. Note that V̂(1) is by itself connected because of
Eq. (8-3).

Similarly, the third-order energy correction can be written in the following gen-
eral form:

E(3)
k = 〈�| L̂(0)

k V̂ (1)Q̄V̂ (1)Q̄V̂ (1)R̂(0)
k |�〉 . (8-26)

This expression can also be shown to be size-extensive for the ground state (k = 0) as
follows. For Eq. (8-26) to be unlinked, L̂(0)

0 and V̂ (1) must form a closed disconnected
diagram and V̂ (1) and V̂ (1) another. Since V̂ (1) can de-excite only up to two electrons
and P̂V̂ (1)P̂ = 0, two V̂ (1) can form a closed diagram only when n ≤ 1. However, if
n ≤ 1, L̂(0)

0 = 1 (assuming a HF reference) and there are too few operators to form
two closed disconnected diagrams. Hence, Eq. (8-26) is always connected for k = 0
and size-extensive.
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8.2.5. MBPT

When applied to a HF reference by setting n = 0 (rank-0 CC) and k = 0 (the ground
state), the perturbation series (i ≥ 2) introduced above reduces, order-by-order, to
MBPT with the Møller–Plesset partitioning, which is size-extensive. For instance,
the second- and third-order corrections in the canonical HF reference are

EMBPT(2)
0 = 〈�| ĤQ̄0,2Ĥ |�〉 (8-27)

and

EMBPT(3)
0 = 〈�| ĤQ̄0,2V̂ (1)Q̄0,2Ĥ |�〉 . (8-28)

The same results can be obtained by using CC singles (CCS) based on a canonical
HF reference (n = 1). The CCS equation can be satisfied by T̂ = 0 and thus H̄ = Ĥ.
Therefore, the only difference between the HF (n = 0) and CCS (n = 1) cases is
the definition of P̂: P̂ = P̂0 in the former and P̂ = P̂0 + P̂1 in the latter. However,
this difference does not affect the perturbation expressions because of the Brillouin
condition,

P̂1Ĥ |�〉 = 0, (8-29)

when the HF reference is used.

8.2.6. Properties of Perturbation Series

Important general properties of the perturbation corrections can at this point be sum-
marized as follows:

1. At each order, the wave function is well defined by Eq. (8.19).
2. The zeroth-order energies and wave functions are those of the parent CC and

EOM-CC methods.
3. The first-order energy corrections are zero.
4. The second- and third-order corrections to ground-state energies are size-

extensive.
5. The higher-order corrections to ground-state energies are generally not size-

extensive.
6. The corrections to excited-state energies have nonphysical size dependence.
7. The perturbation series is convergent at the full CI limit.
8. The orbital invariance of the parent CC or EOM-CC method is maintained.
9. The perturbation theory with the rank-0 or rank-1 CC reference based on a canon-

ical HF reference reproduces MBPT with the Møller–Plesset partitioning, which
is size-extensive at any order.
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The whole perturbation series based on the CC or EOM-CC method of any rank
have been implemented by the determinant-based algorithm and their performance
has been characterized (see Section 8.3). In the remainder of this section, we discuss
the formalisms of some of the important members that have been implemented into
efficient programs after some adjustments have been made (if necessary) to make
them size-extensive or intensive.

8.2.7. Second-Order Corrections to CCSD

The second-order correction to CCSD [20] consists of two terms, each of which is
size-extensive:

ECCSD(2)
0 = 〈�| L̂(0)

0 H̄Q̄0,3H̄ |�〉 + 〈�| L̂(0)
0 H̄Q̄0,4H̄ |�〉 , (8-30)

where V̄ (1) is replaced by the CCSD effective Hamiltonian H̄ and L̂(0)
0 is the left

eigenvector of H̄ for the ground state. Five-electron and higher-rank excited deter-
minants do not appear because H̄ can de-excite only up to two electrons and L̂(0)

0 is

an overall double de-excitation operator, allowing L̂(0)
0 H̄ to couple three- and four-

electron excited determinants with the reference. We define two methods CCSD(2)T

and CCSD(2)TQ by

ECCSD(2)T
0 = 〈�| L̂(0)

0 H̄Q̄0,3H̄ |�〉 , E
CCSD(2)TQ
0 = ECCSD(2)

0 . (8-31)

Both methods are size-extensive and their operation costs depend on the number
of orbitals (m) as O(m7) and O(m9) asymptotically. A closely related method was
proposed independently by Gwaltney and Head-Gordon [82, 84].

The widely used CCSD(T) [6, 7] and CCSD[T] [87] methods, both having the
cost scaling of O(m7), can be viewed as diagrammatic simplifications of CCSD(2)T .
Approximating L̂(0)

0 by 1+ T̂†
1 + T̂†

2 , where T̂i is an i-electron excitation operator, and
retaining only the most important factors consisting of no more than two operators,
we obtain the (T) correction to CCSD,

ECCSD(T)
0 = 〈�| (T̂1 + T̂2

)†
ĤQ̄0,3

(

ĤT̂2
)

C |�〉 . (8-32)

The CCSD[T] method is a further approximation of this method obtained by setting
T̂1 = 0. Its energy correction is, therefore,

ECCSD[T]
0 = 〈�| (ĤT̂2

)†
CQ̄0,3

(

ĤT̂2
)

C |�〉 , (8-33)

assuming a canonical HF reference.
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8.2.8. Second-Order Correction to CCSDT

The second-order correction to CCSDT [20] also consists of two terms involving
four- and five-electron excited determinants:

ECCSDT(2)
0 = 〈�| L̂(0)

0 H̄Q̄0,4H̄ |�〉 + 〈�| L̂(0)
0 H̄Q̄0,5H̄ |�〉 , (8-34)

where H̄ is the CCSDT effective Hamiltonian and L̂(0)
0 is the corresponding left

eigenvector for the ground state. We have reported an efficient implementation of
CCSDT(2)Q, which retains only the first term of Eq. (8.34) and is size-extensive:

E
CCSDT(2)Q
0 = 〈�| L̂(0)

0 H̄Q̄0,4H̄ |�〉 . (8-35)

Its operation cost is O(m10).3

8.2.9. Third-Order Corrections to CCSD

As many as seven individually size-extensive terms arise in the third-order correction
to CCSD [22] according to Eq. (8.26).

ECCSD(3)
0 = 〈�| L̂(0)

0 H̄Q̄0,3V̂ (1)Q̄0,3H̄ |�〉 + 〈�| L̂(0)
0 H̄Q̄0,3V̂ (1)Q̄0,4H̄ |�〉

+ 〈�| L̂(0)
0 H̄Q̄0,4V̂ (1)Q̄0,3H̄ |�〉 + 〈�| L̂(0)

0 H̄Q̄0,4V̂ (1)Q̄0,4H̄ |�〉
+ 〈�| L̂(0)

0 H̄Q̄0,3V̂ (1)Q̄0,5H̄ |�〉 + 〈�| L̂(0)
0 H̄Q̄0,4V̂ (1)Q̄0,5H̄ |�〉

+ 〈�| L̂(0)
0 H̄Q̄0,4V̂ (1)Q̄0,6H̄ |�〉 . (8-36)

Among them, we expect the first term to be numerically more important than the oth-
ers. This term defines the CCSD(3)T method, whose operation cost scales as O(m8).
The CCSD(3)TQ correction, on the other hand, is the sum of the first four terms of
Eq. (8-36) that involve only the three- and four-electron excited determinants. The
evaluation of these four terms requires O(m10) arithmetic operations.

8.2.10. Second-, Third-, and Fourth-Order Corrections to CIS

For an excited state, our perturbation corrections generally have nonphysical size
dependence. However, the application of an approximation introduced by Head-
Gordon et al. [88] to these corrections has been shown to make them recover correct
size dependence and at the same time reduce the computational cost. Let us consider
the second-order correction to CIS. According to Eq. (8-23), it is

ECIS(2)
k = 〈�| L̂(0)

k ĤQ̄k,2ĤR̂(0)
k |�〉 + 〈�| L̂(0)

k ĤQ̄k,3ĤR̂(0)
k |�〉 (8-37)

3 The original paper reported the scaling incorrectly as O(m9).
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in a HF reference, where L̂(0)†
k = R(0)

k is the one-electron excitation operator whose
amplitudes are determined by CIS. This is indeed the correction to a CIS total energy
proposed by Foresman et al. [72] under the name CIS-MP2. The inspection of the
terms shows that the first term is size-intensive and evaluated at an O(m5) cost, but the
second term has ambiguous size dependence and its evaluation necessarily involves
O(m6) operations because of the six-index denominator in Q̄k,3. The lack of size-
intensivity in the second term can be explained diagrammatically [19, 21]: L̂(0)

k and

R̂(0)
k can form a closed disconnected diagram and Ĥ and Ĥ another, making this term

contain an unlinked diagram. This observation suggests the following approximation
for the unlinked term (subscript “U”) of Eq. (8-37):

〈�| L̂(0)
k ĤQ̄k,3ĤR̂(0)

k |�〉U ≈ 〈�| L̂(0)
k R̂(0)

k |�〉 〈�| ĤQ̄0,2Ĥ |�〉 = EMBPT(2)
0 , (8-38)

where the orthonormality of CIS vectors 〈�| L̂(0)
k R̂(0)

l |�〉 = δkl and Eq. (8-27) are
used in the second equality. Incorporating this approximation into Eq. (8-37), we
arrive at a more satisfactory second-order correction to CIS:

ECIS(D)
k = 〈�| L̂(0)

k ĤQ̄k,2ĤR̂(0)
k |�〉 + 〈�| L̂(0)

k ĤR̂(0)
k Q̄0,2Ĥ |�〉

= 〈�| L̂(0)
k ĤQ̄k,2ĤR̂(0)

k |�〉 + 〈�| L̂(0)
k ĤR̂(0)

k Q̄0,2Ĥ |�〉L + EMBPT(2)
0 ,

(8-39)
which consists of the size-intensive corrections (the first two terms) to the CIS excita-
tion energy and the size-extensive correction to the correlation energy in the ground
state, which coincides with the MBPT(2) correction. Also, the elimination of the
six-index denominator (i.e., Q̄k,3) permits the whole expression to be evaluated at an
O(m5) cost. This method, proposed by Head-Gordon et al. [88] as CIS(D), can be
viewed as an excited-state counterpart to MBPT(2).

The approximation of Head-Gordon et al. can be applied to higher-order cor-
rections [21], awarding them correct size dependence and a considerably smaller
computational cost. The third-order correction to CIS energy can be modified by this
approximation as follows:

ECIS(3)
k = 〈�| L̂(0)

k ĤQ̄k,2V̂ (1)Q̄k,2ĤR̂(0)
k |�〉 + 〈�| L̂(0)

k ĤQ̄k,2V̂ (1)Q̄k,3ĤR̂
(0)
k |�〉

+ 〈�| L̂(0)
k ĤQ̄k,3V̂ (1)Q̄k,2ĤR̂(0)

k |�〉 + 〈�| L̂(0)
k ĤQ̄k,3V̂ (1)Q̄k,3ĤR̂

(0)
k |�〉

≈ 〈�| L̂(0)
k ĤQ̄k,2V̂ (1)Q̄k,2ĤR̂(0)

k |�〉 + 2 〈�| L̂(0)
k ĤQ̄k,2V̂ (1)R̂(0)

k Q̄0,2Ĥ |�〉
+ 〈�| ĤQ̄0,2L̂(0)

k V̂ (1)R̂(0)
k Q̄0,2Ĥ |�〉L + EMBPT(3)

0 ,
(8-40)

where we have used the fact that the second and third terms in the right-hand side of
the first equality are complex conjugate of each other and

〈�| ĤQ̄0,2L̂(0)
k V̂ (1)R̂(0)

k Q̄0,2Ĥ |�〉U
= 〈�| L̂(0)

k R̂(0)
k |�〉 〈�| ĤQ̄0,2V̂ (1)Q̄0,2Ĥ |�〉 = EMBPT(3)

0 .
(8-41)
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Note that the approximate expression in Eq. (8-40) is the sum of size-intensive
corrections to the excitation energy (the first three terms) and the size-extensive
MBPT(3) correction to the ground-state energy (the last term). It can be evaluated
by an O(m6) cost as opposed to an O(m8) cost without the approximation.

Similarly, a partial fourth-order correction to CIS [21] that consists of size-
intensive corrections to the excitation energy and the size-extensive MBPT(4) cor-
rection to the ground-state energy can be defined by

ECIS(4)P
k = 〈�| L̂(0)

k ĤQ̄k,2V̂ (1)P̄k,0V̂ (1)Q̄k,2ĤR̂
(0)
k |�〉

+ 〈�| L̂(0)
k ĤQ̄k,2V̂ (1)P̄k,1V̂ (1)Q̄k,2ĤR̂

(0)
k |�〉

+ 〈�| L̂(0)
k ĤQ̄k,2V̂ (1)P̄k,1

(

V̂ (1)R̂(0)
k Q̄0,2Ĥ

)

L |�〉
+ 〈�| (ĤQ̄0,2L̂(0)

k V̂ (1)
)

LP̄k,1V̂ (1)Q̄k,2ĤR̂(0)
k |�〉

+ 〈�| (ĤQ̄0,2L̂(0)
k V̂ (1)

)

LP̄k,1
(

V̂ (1)R̂(0)
k Q̄0,2Ĥ

)

L |�〉 + EMBPT(4)
0 ,

(8-42)

where the resolvent operators P̄k,0 and P̄k,1 are given by

P̄k,0 = |�〉 〈�|
ω

(0)
k

, P̄k,1 =
∑

j∈#

R̂(0)
j |�〉 〈�| L̂(0)

j

ω
(0)
k − ω(0)

j

. (8-43)

Here # represents a set of all CIS roots minus the ground-state and the kth excited-
state roots as well as their degenerate roots (if any). The size-intensive corrections
(the first five terms) in Eq. (8-42) can be evaluated at an O(m5) cost.

8.2.11. Second- and Third-Order Corrections to EOM-CCSD

It is straightforward to identify unlinked terms in the second- and third-order cor-
rections to EOM-CCSD [19, 22] (see related studies by Watts and Bartlett [89, 90]
and by Włoch et al. [91]). They contain closed disconnected diagrams resembling
size-extensive corrections to the ground-state energy, as in the corrections to CIS.
We replace them by the closest size-extensive diagrammatic analogues, which, in this
case, are the corresponding approximations of ECCSD(2)

0 and ECCSD(3)
0 . For instance,

we define the second-order triples correction to EOM-CCSD by

ECCSD(2)T
k = 〈�| L̂(0)

k H̄Q̄k,3H̄P̂2R̂(0)
k |�〉 + 〈�| L̂(0)

k H̄Q̄k,3H̄P̂1R̂(0)
k |�〉 + ECCSD(2)T

0 ,
(8-44)

where H̄ is the CCSD effective Hamiltonian, L̂(0)
k and R̂(0)

k are its left and right eigen-
vectors for the kth excited state, and we have used

〈�| L̂(0)
k H̄Q̄k,3H̄P̂0R̂(0)

k |�〉 ≈ ECCSD(2)T
0 . (8-45)
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The first two terms in Eq. (8-44) are size-intensive (see [22] for a proof) and
ECCSD(2)T

0 is size-extensive. Equation (8-44) is in fact the definition of the EOM-
CCSD(T̃) method proposed earlier by Watts and Bartlett [90]. The excited-state
counterparts of CCSD(2)TQ and CCSD(3)T are defined by

E
CCSD(2)TQ
k = 〈�| L̂(0)

k H̄Q̄k,4H̄P̂2R̂(0)
k |�〉 + 〈�| L̂(0)

k H̄Q̄k,4H̄P̂1R̂(0)
k |�〉

+ 〈�| L̂(0)
k H̄Q̄k,3H̄P̂2R̂(0)

k |�〉 + 〈�| L̂(0)
k H̄Q̄k,3H̄P̂1R̂(0)

k |�〉
+E

CCSD(2)TQ
0 , (8-46)

ECCSD(3)T
k = 〈�| L̂(0)

k H̄Q̄k,3V̂ (1)Q̄k,3H̄P̂2R̂(0)
k |�〉

+ 〈�| L̂(0)
k H̄Q̄k,3V̂ (1)Q̄k,3H̄P̂1R̂(0)

k |�〉 + ECCSD(3)T
0 . (8-47)

Again, they sum size-extensive and intensive corrections. The size dependence of
their computational costs can be found in Table 8-1.

8.3. EXPLICITLY CORRELATED EXTENSIONS

8.3.1. Explicitly Correlated CC and EOM-CC

The slow basis-set convergence of correlation energies is caused by the inability
of the products of one-electron basis functions to describe qualitatively correctly
the cusps of the exact wave functions at electron-electron coalescence (r12 = 0),
where the Coulomb operator

(

r−1
12

)

is divergent. The R12 scheme of Kutzelnigg [29]
allows a basis function of interelectronic distances – the correlation factor (f12) – to
be incorporated into virtually any electron-correlation method [31, 32]. A carefully
chosen, but universal, correlation factor can dramatically improve the description
of the wave functions near these cusps and thereby reduce the basis-set truncation
errors.

The R12 scheme introduces a two-electron excitation operator that promotes elec-
trons from occupied orbitals spanned by a finite basis set (an orbital basis set or
OBS) to virtual orbitals (α and β) spanned by a complete thus infinite set of basis
functions. In the context of CC theory [33–53], T̂ is replaced by T̂ + T̂2 in the R12
scheme, where

T̂2 =
∑

α<β

∑

i<j

tαβij

{

α†β†ji
} =

∑

α<β

∑

i<j

∑

k<l

Fαβkl tkl
ij

{

α†β†ji
}

. (8-48)

Here Fαβkl is an antisymmetrized two-electron integral of the correlation factor, which

must satisfy Fab
kl = 0 to avoid double counting of correlation. Hence, T̂2 is to cap-

ture a complete-basis two-electron excitation effect with a relatively small number
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of unknown coefficients
{

tkl
ij

}

[92]. Let P̂2 be a projector on the determinant space

accessible by T̂2:

P̂2 =
∑

i<j

∑

k<l

∑

m<n

∣

∣�kl
ij

〉(

X−1)mn
kl

〈

�mn
ij

∣

∣, (8-49)

where

∣

∣�kl
ij

〉 =
∑

α<β

Fαβkl

{

α†β†ji
}|�〉 (8-50)

and its metric,

(X)kl
mn =

〈

�kl
ij

∣

∣�mn
ij

〉 =
∑

α<β

Fαβ∗kl Fαβmn. (8-51)

Using this projector, the rank-n CC-R12 and EOM-CC-R12 methods [48] are defined
by Eqs. (8-7) and (8-8) as well as the following:

P̂2H̄R̂(0)
k |�〉 = P̂2E(0)

k R̂(0)
k |�〉 , (8-52)

〈�| L̂(0)
k H̄P̂2 = 〈�| L̂(0)

k E(0)
k P̂2, (8-53)

where H̄ = [

Ĥ exp
(

T̂ + T̂2
)]

C and R̂(0)
k and L̂(0)

k now have contributions in the space

accessible by P̂2.
Once these second-quantized expressions are evaluated [48], we arrive at equa-

tions that contain terms such as

∑

α<β

vpq
αβFαβij = ∑

κ<λ

vpq
κλFκλij −

∑

r<s
vpq

rs Frs
ij −

∑

k,ᾱ
vpq

kᾱFkᾱ
ij

≈ (

r−1
12 f12

)pq
ij −

∑

r<s
vpq

rs Frs
ij −

∑

k,ā
vpq

kāFkā
ij ,

(8-54)

where κ or λ labels an occupied orbital or one of infinitely many virtual orbitals
and ᾱ labels a virtual orbital not contained in the set of virtual orbitals expanded
by the OBS. The first sum in the right-hand side is taken over the infinite, complete
space and is thus equal to the integral of the product of two operators r−1

12 and f12
because such summation constitutes resolution of the identity. If the form of f12 is
chosen appropriately, the singularity of r−1

12 and hence the source of the slow basis-set
convergence of correlation can be canceled analytically in this product. It is, there-
fore, essential that the two-electron integrals of r−1

12 f12 are evaluated analytically.
Other sums over infinite set of indexes in Eq. (8-54) are less important and can be
approximated by replacing an infinite, incomplete set of virtual orbitals (labeled ᾱ)
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by a large, finite auxiliary basis set (labeled ā) [55, 58]. In this way, equations of
the CC-R12 methods can be obtained that no longer involve an infinite set and are
computationally tractable.

8.3.2. Explicitly Correlated MBPT

MBPT-R12 can be derived by setting H̄ = Ĥ or T̂ + T̂2 = 0 in our general perturba-
tion theory and using the following partitioning:

P̂ = P̂0, Q̂ = P̂2 + P̂1 + . . .+ P̂N . (8-55)

Notice that the complete space (1 = P̂ + Q̂) has been extended by the space acces-
sible by P̂2 and Ĥ is formally defined by an infinite set of creation and annihilation
operators. Taking MBPT(2)-R12 [54–66] as an example, Eq. (8-19) becomes

− (

P̂2 + P̂2
)

f̂ (0)(P̂2 + P̂2
)

R̂(1)
0 |�〉 = (

P̂2 + P̂2
)

Ĥ |�〉 , (8-56)

which has the formal solution

P̂2R̂(1)
0 |�〉 = Q̄0,2

(

Ĥ − f̂ (0)P̂2R̂(1)
0

) |�〉 , (8-57)

P̂2R̂(1)
0 |�〉 = −P̂2

(

f̂ (0) + f̂ (0)Q̄0,2 f̂ (0))−1P̂2
(

Ĥ + f̂ (0)Q̄0,2Ĥ
) |�〉 .

(8-58)

Substituting these into Eq. (8-22), we obtain

EMBPT(2)−R12
0 = 〈�| Ĥ(

P̂2 + P̂2
)

R(1)
0 |�〉 = 〈�| ĤQ̄0,2Ĥ |�〉

− 〈�| (Ĥ + f̂ (0)Q̄0,2Ĥ
)†P̂2

(

f̂ (0) + f̂ (0)Q̄0,2 f̂ (0)
)−1P̂2

(

Ĥ + f̂ (0)Q̄0,2Ĥ
) |�〉 .

(8-59)

The first term in the right-hand side can be identified as EMBPT(2)
0 and the second term

as an R12 correction that compensates for the basis-set incompleteness of EMBPT(2)
0 .

8.3.3. Perturbation Corrections to Explicitly Correlated CC

Perturbation corrections [39] to the rank-n CC-R12 method are defined by setting

P̂ = P̂2 + P̂0 + . . .+ P̂n, Q̂ = P̂n+1 + . . .+ P̂N , (8-60)

and using the CC-R12 effective Hamiltonian in our general perturbation theory. By
virtue of including the R12 effects completely in the iterative CC step, these cor-
rections need to capture only the higher-rank connected excitation effects. They are
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thus defined by the identical expressions as the non-R12 counterparts, although they
are different numerically because of the different H̄ used. Equation (8-31) gives the
second-order corrections in CCSD(2)T -R12 and CCSD(2)TQ-R12 [39]. Likewise, the
corrections in CCSD(T)-R12 [33–39], CCSDT(2)Q-R12 [39], and CCSD(3)T -R12
[39] are obtained by evaluating Eqs. (8-32), (8-35) and the first term of Eq. (8-36),
respectively. The cost scaling of each method remains the same as the corresponding
non-R12 method. The approximate CC-R12 method called CC(R12) proposed by
Fliegl et al. [43] can also be used to define H̄, leading to the CCSD(2)T (R12) and
CCSD(2)TQ(R12) methods [39].

Alternatively, perturbation corrections can be used to evaluate both higher-rank
excitation and R12 effects on the non-R12 CC method. For the rank-n CC method,
the partitioning of the Hamiltonian is as follows:

P̂ = P̂0 + . . .+ P̂n, Q̂ = P̂2 + P̂n+1 + . . .+ P̂N . (8-61)

The second-order correction to CCSD consists of the higher-rank excitation terms
and the R12 term that are now completely decoupled:

ECCSD(2)R12
0 = 〈�| L̂(0)

0 H̄Q̄0,3H̄ |�〉 + 〈�| L̂(0)
0 H̄Q̄0,4H̄ |�〉

+ 〈�| L̂(0)
0 H̄P̂2

(

f̂ (0)
)−1P̂2H̄ |�〉 ,

(8-62)

where H̄ is the non-R12 CCSD effective Hamiltonian and L̂(0)
0 is the corresponding

left eigenvector. The first and second terms of Eq. (8-62) are not just formally but
also numerically identical to the corresponding terms in Eq. (8-30). The third term is
an R12 correction. This method was originally proposed by Valeev et al. [47, 49, 50]
and implemented as CCSD(T)R12. The complete CCSD(2)R12 method, as defined
above, has yet to be implemented.

8.4. COMPUTER ALGEBRA

8.4.1. Determinant-Based Algorithms

The determinant-based algorithm [24–26] allows CI, CC, and MBPT at any rank and
their various combinations [18] to be implemented into a single general computer
code without having to derive algebraic formulas of individual methods. This algo-
rithm manipulates higher mathematical constructs such as Slater determinants and
electron creation and annihilation rather than just numbers and simple arithmetic. A
determinant is computationally stored as a string of bits with each bit representing the
occupancy of a spinorbital [93]. The action of a creation or annihilation operator on
a determinant becomes a bit operation. Combinations of these algorithmic elements
allow any electron-correlation theory that has a well-defined determinantal wave
function to be implemented easily. However, a determinant-based implementation
tends to incur a much greater computational cost. For instance, the scaling of the
cost of rank-n CC is O(m2n+4) in this algorithm instead of O(m2n+2) of an optimal
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algebraic implementation. Hence, a determinant-based implementation is ideal for an
initial assessment of a whole hierarchy of approximations and generating benchmark
data for the verification of more efficient implementations. It has been used for these
purposes for many of the methods mentioned above including general-order CI [93],
CC [24], MBPT [24, 94, 95], EOM-CC [96], IP-EOM-CC [97], EA-EOM-CC [97],
and combined CI, CC, and MBPT [18].

8.4.2. Automated Formula Derivation and Implementation

An efficient implementation of an electron-correlation method entails the derivation
of algebraic formulas from the expectation values of second-quantized operators, the
determination of computational sequences, and the code synthesis. All of these are
daunting tasks of symbol manipulations, taking many months to complete for one
method. However, these manipulations are systematic and can be computerized to
expedite the developments and at the same time improve the quality of the codes
[23]. We have devised such computer algebra systems – TCE (Tensor Contraction
Engine) and SMITH (Symbolic Manipulation Interpreter for Theoretical Chemistry) –
[27, 48] that automate much of the entire development process of all of the electron-
correlation methods discussed in this chapter including the R12 methods.

Given the definition expressed with expectation values of normal-ordered second-
quantized operators in a determinant, the computer algebra systems transform them
into sum-of-product matrix expressions by performing contractions of operators ac-
cording to Wick’s theorem, sometimes invoking diagrammatic techniques also. They
subsequently determine the optimal order of multiplication for each of the matrix
products and identify common multiplications in the sums of products and factor
them. Then they find common subexpressions that can be precomputed, stored, and
reused. Finally, the resulting computational sequences are translated into efficient
codes that take into account the spin, spatial, and index-permutation symmetries and
can adjust the maximum memory consumption at runtime. Many of these codes are
also massively-parallel executable. With the aid of the computer algebra systems, an
electron-correlation method can be developed within days.

Table 8-1 lists all the methods implemented by the computer algebra systems.
Many of them, as stated earlier, have been verified by the determinant-based imple-
mentations. The formulas of the R12 methods in Table 8-1 have been derived and
documented in our previous work [48]. In practical codes, the triples (quadruples)
perturbation corrections are implemented so that a large array of triple (quadruple)
excitation amplitudes needs not be stored; they are instead computed and discarded
after their one-time use. The codes synthesized by the computer algebra systems also
utilize this algorithmic optimization [20].

8.5. COMPARATIVE CALCULATIONS

Figure 8-1 shows the convergence of correlation energy of H2O obtained by com-
bined CC and MBPT (implemented in the determinant-based algorithms) as the rank
of CC and/or the order of perturbation theory is raised [18]. The convergence is
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Figure 8-1. The errors (in mEh) from full CI in correlation energies of H2O obtained by CC, MBPT, and
combined CC and MBPT [18]

monotonic and rapid. An order of magnitude reduction in errors is achievable by
second-order perturbation corrections. MBPT shows the well-known staircase con-
vergence. A similar trend can be observed in CCSD with perturbation corrections,
suggesting that even-order corrections are particularly useful. Indeed, apart from
MBPT(2), CCSD(2) and CCSDT(2) seem appealing and have been implemented
into efficient codes by the computer algebra system TCE. Remarkably, CCSD(2)
[CCSD(2)TQ] achieves a noticeably smaller error than CCSDT or its approximations
such as CCSDT-1a [98] or CCSD(T). This is because the former include the effect
of connected quadruple excitations, which is neglected in the latter. CCSD(TQ) [75–
77], on the other hand, yields a similar result as CCSD(2).

Perturbation corrections are not intended to work for strong correlation such as
those encountered in broken bonds. Nonetheless, CCSD(2)T , by virtue of its com-
plete inclusion of all diagrammatic terms that are second order and evaluated at an
O(m7) cost or less, has been found to resist a severe breakdown such as those seen
in CCSD and CCSD(T). Figure 8-2 (obtained by the efficient computer-synthesized
codes) demonstrates that the potential energy curves of HCl [99] computed by CCSD
and CCSD(T) (both with a restricted HF reference) approach the wrong dissociation
limits. The potential energy curve of CCSD(2)T , in contrast, is within 4 mEh of the
CCSDT curve. Note that this error is smaller than that obtained by CR-CCSD(T)
[83, 85], which is not size-extensive.

Even in the case of two simultaneous single-bond stretch of H2O, the pertur-
bation corrections to CCSD and CCSDT largely remain an improvement over the
respective parent methods, as shown in Figure 8-3 (obtained with the computer-
synthesized codes) [20, 22]. Since the higher-rank connected excitation effects
may not be a small perturbation in such situations, third-order corrections are
more important in stretched geometries than in the equilibrium geometry. How-
ever, the CCSD(3)TQ result of this figure hints that the perturbation series may be
divergent.



Eclectic Electron-Correlation Methods 211

Figure 8-2. The dissociation curves of HCl obtained by CC and combined CC and MBPT with the aug-
cc-pVDZ basis set in the frozen core approximation [99]

Figure 8-4 characterizes the whole hierarchy of combined EOM-CC and MBPT
for CH+ excitation energies [18] obtained with the determinant-based implementa-
tions. The additional approximations discussed above to make some of these meth-
ods size-intensive are not used here; the perturbation corrections to excitation en-
ergies have been obtained as the differences in corrections between the ground and
excited states. While none of the corrected excitation energies are size-intensive, they
are convergent at full CI. The convergence behavior is roughly exponential but is not
as rapid as in ground states. Indeed, it takes four orders of perturbation corrections

Figure 8-3. The errors (in mEh) from full CI in correlation energies of H2O at three bond lengths obtained
by CC and combined CC and MBPT [20, 22]. The errors in CCSD are outside the range
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Figure 8-4. The errors (in eV) from full CI in excitation energies of CH+ obtained by CIS, EOM-CC,
and combined EOM-CC and MBPT [18]

for CIS to reach EOM-CCSD and more than five orders for EOM-CCSD to approach
EOM-CCSDT. This observation may simply reflect the fact that the higher-order
excitations are more important in excited states than in ground states.

Efficient implementations of size-intensive variants of CIS(2), CIS(3), and CIS(4)
[21] as well as EOM-CCSD(2) and EOM-CCSD(3) [22] have been realized by the
computer algebra system TCE. CIS with perturbation corrections have been applied
to two representative cases: ethylene and formaldehyde [21]. The excited states of
ethylene are reasonably well described by CIS and the perturbation corrections are
expected to also work well. This expectation is substantiated by Figure 8-5 (entries
labeled ET), in which gratifying convergence of the perturbation series toward EOM-
CCSD can be seen. Considering the fact that these corrections can be evaluated at
a noniterative O(m6) cost on a state-by-state basis, we consider them useful when
EOM-CCSD is too cumbersome to apply. The results for formaldehyde (labeled FA)

Figure 8-5. The excitation energies (in eV) of ethylene (labeled ET) and formaldehyde (labeled FA)
obtained by CIS, EOM-CCSD, and combined CIS and MBPT [21]
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Figure 8-6. The potential energy curves of CH+ obtained by EOM-CC and combined EOM-CC and
MBPT [22]

reveal a problematic side of the perturbation series. CIS can no longer provide a good
reference wave function for excited states of this molecule. For the two lowest-lying
excited states, the corrections nonetheless manage to approach the respective EOM-
CCSD results in an oscillatory fashion. For the third state, the series seems divergent.
This result underscores the importance of having not just the second-order correction
[CIS(D)] but also CIS(3) and CIS(4)P so that the convergence of the results can be
checked.

Figure 8-6 plots the potential energy curves of CH+ obtained by EOM-CCSD,
EOM-CCSD(2)T , and EOM-CCSDT, all implemented into efficient codes by the
computer algebra system [22]. In the ground and first excited states, the EOM-CCSD
and CCSDT curves are very close until the bond is significantly stretched, where
EOM-CCSD(2)T is an improvement over EOM-CCSD. For the second and third
excited states, the EOM-CCSD curves are visibly displaced from the EOM-CCSDT
curves. The second-order triples correction can account for the majority of the dif-
ferences between these two curves.

The R12 extension and a perturbation correction for higher-rank excitation effects
are orthogonal – sometimes additive – enhancements and together lead to the most
rapidly converging series of approximations with respect to both the excitation rank
and basis-set size. Figure 8-7 plots the valence correlation energies of FH obtained
by R12 and non-R12 methods as a function of the basis set [39, 53]. It is a strik-
ing demonstration of the dramatic improvement in the basis-set convergence of any
correlation method achieved by the R12 extension. In this particular application,
CCSD(2)T -R12/aug-cc-pVTZ is the most economical model, yielding the correla-
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Figure 8-7. Basis-set dependence of the valence correlation energy of FH obtained by CC, CC-R12, and
combined CC-R12 and MBPT [39, 53], where “aXZ” stands for the aug-cc-pVXZ basis set

tion energies obtained by CCSDT-R12/aug-cc-pV5Z and CCSD(2)TQ-R12/aug-cc-
pV5Z within 5 mEh. The latter values are demonstratively converged within 1 mEh
of the exact valence correlation energy of FH at its equilibrium geometry [39].
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CHAPTER 9

ELECTRONIC EXCITED STATES IN THE STATE –
SPECIFIC MULTIREFERENCE COUPLED CLUSTER
THEORY WITH A COMPLETE-ACTIVE-SPACE
REFERENCE
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Abstract: The multireference state specific coupled cluster theory with CAS reference (CASCCSD)
is generalized for calculations of electronically excited states. Test calculations have
demonstrated high effectivity of the approach in comparison with other approximate ap-
proaches and with the full configuration interaction method.

Keywords: Multireference coupled cluster, Single Fermi vacuum, CAS reference, Excited states

9.1. INTRODUCTION

The success of the standard single-reference coupled cluster (CC) theory [1–5] in de-
scribing the ground states of molecular systems at their equilibrium structures and at
geometries not much displaced from the equilibria has stimulated the search for a CC
approach that is capable of describing molecules at non-equilibrium geometries and
in electronically excited states. The inability of the standard CC theory to describe
such important classes of chemical problems as open-shell systems and radicals,
bond breaking and formation processes, etc., has limited the application of the CC
method to studies of a rather narrow range of issues. Problems with configurational
(determinantal) quasidegeneracies have been out of reach for the CC calculations.
These types of quasidegeneracies are inherent to most of atomic and molecular elec-
tronically excited states rendering the single-reference CC theory inadequate and
unable to correctly describe these states even at the lowest order of approximation.

There has been a considerable number of works devoted to the development of
methods for describing electronic excited states (for a comprehensive review see, for
example [6]). Both variational and non-variational (perturbational) approaches have
been employed. There have also been a number of works devoted to the use of CC
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methods in excited state calculations. A review of the single-reference (SR) CC and
the multireference (MR) CC theories can be found, for instance, in [5].

A qualitatively correct description of a general excited state quasidegenerate sit-
uation can be achieved by using a MRCC approach where the ground state CC wave
function is used to generate the excited states wave functions by applying excitation
operators. If the exact ground-state wave function is used and if the set of the ex-
citations is complete, in principle, exact solutions of the Schrödinder equation can
be achieved for the excited states. However, if an approximate form of the ground
state wave function is used and if an incomplete set of the excitations are included,
the accuracy of the description of the excited states varies from state to state. For
example, the equation-of-motion CC approach with singles and doubles excitations
(EOM-CCSD), which is one of the MRCC theories based on the above-described
approaches, produces very good results for excited states dominated by single elec-
tron excitations from the ground state wave function, but it fails to describe excited
states with significant contributions from double excitations. It should be mentioned
that the EOM-CCSD approach, as well as the other similar approaches, are multi-
state methods, i.e. several excited states are determined in a single EOM-CCSD
calculation.

In view of the above-described problems an approach that can bring a definite ad-
vantage over a multi-state MRCC approach, like EOM-CCSD, is the state – specific
MRCC (SSMRCC) approach. The SSMRCC method by focusing on a single “target”
state at a time provides the possibility of reaching high accuracy in describing that
state. Our results, which we describe in this review, show that the SSMRCC approach
fulfills these expectations.

9.2. STATE SPECIFIC MULTIREFERENCE COUPLED CLUSTER
APPROACH WITH THE CAS REFERENCE

Let us start by shortly describing the standard CC theory. The CC wave function is
represented as an exponential operator acting on a reference one-determinantal wave
function (the so-called exponential ansatz):

|�CC〉 = eT̂|0〉, (9-1)

where the CC T̂ operator generates a superposition of electronic excitations of dif-
ferent levels. The determinant |0〉 is the reference wave function. From this func-
tion all necessary excitations are generated. In the single reference CC theory the
determinant |0〉 is usually the Hartree–Fock wave function. The T̂ operator can be
represented as the following expansion:

T̂ = T̂1 + T̂2 + T̂3 + . . . , (9-2)
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where the T̂k term generates a superposition of k – fold excitations from |0〉. The CC
method with the T̂ operator including only single and double excitations:

T̂ ≈ T̂1 + T̂2, (9-3)

is termed the CCSD (CC with singles and doubles) approach.
One of the possible generalizations of Eq. (9-1) ansatz to a multireference case

was proposed by Adamowicz and coworkers [7]. The approach was based on repre-
senting the wave MRCC wave function in a bi-exponential form:

|�MRCC〉 = eT̂(ext)
eT̂(int) |0〉 = eT̂(ext)+T̂(int) |0〉. (9-4)

In Eq. (9-4) the exponential ansatz is separated into two parts. The first part called
“internal”, (T̂(int)), generates a multi-determinantal reference function being a su-
perposition of the determinants from the reference space. The second part called
“external”, (T̂(ext)), generates excitations from outside the reference space. The role
of exp (T(ext)) is to describe the dynamic electron correlation, while the role of
exp (T(int)) is to describe the nondynamic correlation (i.e. the correlation associated
with electrons separating from each other not because of the repulsion but because,
for example, in a dissociation of a diatomic molecule some of them follow the first
nucleus and the other follow the second nucleus). In the original papers the approach
based on Eq. (9-4) wave function was called the state – specific (SS) multireference
coupled cluster theory (SSMRCC).

Two essential features of the SSMRCC theory are focusing on one state at a time
and building the CC wave function for that state from a single reference determinant,
|0〉, specific to the state. Choosing an appropriate “formal reference” determinant is
key for the SSMRCC calculation. In Eq. (9-4) both cluster operators, T̂(int) and T̂(ext),
act on the formal reference |0〉 to generate the complete SSMRCC wave function.
As the two operators comprise separate sets of excitations from the formal reference
determinant they commute:

[T(int), T(ext)] = 0. (9-5)

It should be mentioned that in the SSMRCC theory some excitations from the refer-
ence determinants are generated as the higher level “external” excitations (i.e. higher
than double excitations) from the formal reference determinant.

In some situations it is convenient to represent the SSMRCC wave function (9-4)
in a semi–linear form [8]:

|�MRCC〉 = eT̂(ext)
(1+ Ĉ(int))|0〉, (9-6)

where Ĉ(int) is a configuration-interaction type operator that generates a linear super-
position of reference determinants. The T̂(ext) operator, as before, generates external
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excitations from all reference determinants. Hence, the internal part of the CC op-
erator in Eq. (9-6), (1 + C(int)), generates the reference-space representation of the
wave function of the considered state. The determinants forming this representation
are single, double, etc. excitations from the formal reference determinant |0〉:

|0〉 |AI 〉 |AB
I J 〉 |ABC

I J K〉 . . . . (9-7)

Here the capital letters I,J,K,. . . designate the spin-orbitals which are occupied in |0〉
and letters A,B,C,. . . designate the unoccupied (vacant) spin-orbitals. |AI 〉 designates
the determinant where an electron is excited from the spin-orbital I to the spin-orbital
A.

∣

∣
AB
I J

〉

designates a doubly excited determinant where the two electrons occupying
the I and J spin-orbitals are excited to the A and B spinorbitals, etc.. The most im-
portant spin-orbitals in the wave function of the state under consideration constitute
the so-called active orbital space.

The active orbital space in the SSMRCC approach is selected in the standard way
schematically explained in Figure 9-1. As usual, the orbitals, which are occupied
in all determinants, are called core orbitals. The orbitals which are not occupied
in all reference determinants, but are important in describing the wave function of
the state under consideration, are called active (valence) orbitals. As stated, these
orbitals are designated by capital letters. The orbitals, which are either occupied in
all determinants in the reference space or occupied in none of the reference-space
determinants are called non-active orbitals and they are designated by small letters.
Letters i, j, k, . . . are used for occupied orbitals and letters a, b, c, . . . are used
for unoccupied orbitals. Arbitrary orbitals/spin – orbitals (active or non-active) are
designated by italic style letters: i, j, k,... for the occupied orbitals and a, b, c,... for
the vacant orbitals.

The SSMRCC method was implemented in our works in its most expeditious form
termed the complete active space coupled cluster singles and doubles (CASCCSD)
approach. All the necessary equations for the energy and the CC amplitudes in the
CASCCSD method were derived using our automated computer program called

Figure 9-1. Partitioning of the orbital (spin-orbital) space used in the MRCC theory. The choice of the
valence (active) orbitals is essential in correctly describing the state being the subject of the MRCC cal-
culation



Excited States in SSMRCC 223

“CLUSTER” [9, 10]. In addition to generating the computational algorithms for
the CASCCSD method the program also generated a computer code for calculat-
ing them. The CASCCSD code was interfaced with the quantum-chemical package
GAMESS [11]. The results presented in this review have been obtained with this
code.

As it was noted, all the excitations in the SS theory are represented as excitations
from a single formal reference determinant. Let us describe in more detail how this
works in the case where the active space contains four electrons distributed among
four orbitals (4,4). This is a minimal active space that one needs to use to describe the
dissociation process of a double covalent bond or a simultaneous dissociation of two
single bonds [10]. The CASCCSD method which a (4,4) active space is designated
as CAS(4,4)CCSD in our terminology. The CAS(4,4)CCSD reference space includes
the following five types of configurations, which are distinct by their excitation levels
from the formal reference determinant |0〉:

|0〉, |AI 〉, |AB
I J 〉, |ABC

I J K 〉, |ABCD
I J K L〉. (9-8)

All these determinants generated as one-, two-, three-, and four-electron excitations
from the formal reference |0〉 are needed to describe the nondynamic electron corre-
lation effects in the system. A correct description of the dynamic electron correlation
requires including in the T̂(ext) operator in the CAS(4,4)CCSD wave function all
single and double excitations from all reference determinants. As for the excitations
contained in the (1 + C(int)) operator, the T̂(ext) excitations are also represented as
excitations from the formal reference determinant. As the highest level of excita-
tions from the formal reference determinant among the reference determinants is
four (|ABCD

I J K L〉), the highest excitation level in the T̂(ext) operator has to be six. Thus
the complete CAS(4,4)CCSD wave function has the following form:

|�CAS(4,4)CCSD〉 = e
T̂1+T̂2+T̂3

(abC

I j k

)

+T̂4

(abCD

I J j k

)

+T̂5

(abCDE

I J K j k

)

+T̂6

(abCDEF

I J K L j k

)

(1+ Ĉ1 + Ĉ2 + Ĉ3 + Ĉ4)|0〉. (9-9)

The set of the excited determinants in the CASCCSD wave function can be sepa-
rated into two subsets. The first subset, which we term the “iterative space”, contains
the determinants whose contributions to the CASCCSD wave function include linear
terms (i.e. single CC amplitudes). Thus, the “iterative space” includes the reference
space and all single and double excitations from the reference determinants. All other
determinants in the CASCCSD wave function (9-6) form the complementary “non-
iterative” space. The contributions from these determinants to the wave function do
not include linear terms but only terms which are products of amplitudes of the deter-
minants from the “iterative space”. As one can see, each important excitation in the
CASCCSD wave function has a separate CC amplitude, while all other excitations
are not assigned separate amplitudes.
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The test calculations performed with the CASCCSD method on some quasidegen-
erate situations that occur in the ground states of molecular systems distorted from
their equilibrium geometries demonstrated high accuracy of the method [10, 12]. The
efficiency of the CASCCSD method to deal with inherently multireference problems
encouraged us search for a generalized form of the method to calculate electronically
excited states. In this generalization we had to address new issues such as dealing
with open-shell electronic configurations and dealing with the spin adaptation of the
CASCCSD wave function.

9.3. ELECTRONICALLY EXCITED STATES IN THE COUPLED
CLUSTER THEORY

The major complication in describing electronic excited states is related with the
inherent and usually significant multiconfigurationality of their wave functions. Thus
the methods, which are capable of describing these states and the spectral transitions
between them, must properly address the multireference character of their wave func-
tions.

In this section we will briefly review the CC approaches developed for calculat-
ing excited states and for determining the transition energies associated with excit-
ing/deexciting the system between the different states. First, it is important to note
that most of these approaches (unlike the methods developed for the ground-state
calculations) are not state-specific methods, i.e. many states are considered in a single
calculation and the excited states are obtained as a “side-product” of the calculation
of the wave function and the energy of the ground state. In the early 1990th Foresman
et al. [13] suggested that the modern theories for excited state calculations can be
grouped into two possible classes. The focus of the first class of methods is a direct
calculation of the transition energies between different pairs of states (say a ground
state and an excited state). The focus of the second group of methods is to calcu-
late the excited state energies and their wave functions and from them determine
the transition energies. First group is often referred to as “spectroscopy oriented”
and the second group is referred to a “photophysically oriented”. This terminology
emphasizes the purpose of the method being either the calculation of the transition
energies or the state energies.

Among the methods which are based on the CC ansatz we should first mention the
Random Phase Approximation (RPA) approach [14–17], which can also be viewed
as a generalization of the configuration interaction method with singles (CIS).1 The
RPA wave function can be expressed in the standard CC form as:

|�RPA〉 = eT̂1 |0〉, (9-10)

1 sometimes also called the Tamm-Dankov approximation; TDA
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where the T̂1 generates single electron excitations from the reference |0〉. Different
variants of RPA can be obtained from Eq. (9-10). Usually the T̂2

1 term resulting from
expanding the exponent in Eq. (9-10) is included in the calculations. Naturally, the
RPA method, while simple, is a very approximate approach that can only provide a
qualitative representation of the spectral transitions. This is mainly due to the method
not accounting for the electron correlation effects (for a discussion on this point see,
for example [18]).

The standard way of accounting for the electron correlation effects in excited
states is to include higher excitations in the CIS method. By including only doubles
one gets the configuration interaction singles and doubles method (CISD). Some
practical calculations of excited states and the corresponding transition energies us-
ing the CISD approach have demonstrated low effectivity of this method. As the or-
bitals in the CISD calculation come from the ground-state Hartree–Fock calculation,
the excited states are usually significantly “under-correlated” in comparison to the
ground state. As a result the spectral transition energies obtained from a CISD cal-
culation are overestimated. To remedy this problem higher level excitations (triple,
quadruple, etc.) can be included in the CI calculation resulting in a hierarchy of
methods:

CIS → CISD → CISDT → . . .→ FCI, (9-11)

where the full CI (FCI) method includes all excitations that can be generated within
the given set of orbitals. However, the practical application of CI methods that in-
clude higher excitations is very limited due to high computational costs.

The development of non-variational methods for calculating excited states started
in the middle 1980th. Among the approaches that were proposed we should mention
the methods based on the one- and two-particle Green functions (e.g. the polarization
propagator (PP) methods). Incorporating the cluster ansatz within the PP method
gave rise to such methods as the coupled-cluster polarization propagator approach
(CCPPA) and the second-order PP (SOPPA) approach [19]. These approaches have
been the forerunners for the development of more general methods based on the
CC theory. These methods are currently gaining grounds in the electronic structure
calculations of excited states, transition energies, ionized states, etc. The formalism
of most of the methods is based on the equation-of-motion (EOM) framework [20].
Thus, the approaches are a multi-state type (not state specific). It should be noted
that the original formulation of the EOM theory is very general and includes a wide
spectrum of different methods. The EOM-CC wave function can be written in the
following form:

|�EOM–CC〉 = R̂ eT̂|0〉, (9-12)

where eT̂|0〉 is the ground-state CC wave function and the R̂ operator generates exci-
tations from it. R̂ can be expressed in terms of spinorbital creation and annihilation
operators as:
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R̂ =
∑

i,a

Ra
ia
+
a ai +

∑

i>j
a>b

Rab
i ja
+
a aia

+
b aj + · · · . (9-13)

In Eq. (9-13) Ra
i and Rab

i j are the amplitudes of the corresponding determinants. An
EOM-CCSD calculation requires solving the non-hermitian eigenvalue problem:

HR = λR, (9-14)

where the right eigenvector R contains the following amplitudes:

R =
⎛

⎜

⎝

Ra
i

Rab
i j
. . .

⎞

⎟

⎠ , (9-15)

and

H = e−T H eT. (9-16)

A large array of calculations has demonstrated effectiveness of the EOM method
with singles and doubles excitations (EOM-CCSD) in describing some classes of
excited states. A detailed description of the EOM-CC approaches and examples of
using them in molecular calculations can be found in [21]. Some of the EOM-CC
methods are implemented in the GAMESS package [22].

There are some other methods that are related to the EOMCC approach and
should be mentioned here. One of them is the so-called symmetry-adapted cluster
CI approach (SAC-CI) developed by Nakatsuji in the late 1970th [23]. The method
employs the (9-12) wave function adapted for the spin and spatial symmetry of the
state under consideration. The theoretical foundations of the EOM-CC and SAC-
CI are very similar and the differences are in dealing with certain nonlinear terms
in the CC components of the working equations (either ignoring or not ignoring
them).

Another method with a close relation to EOMCC is the linear response (LR) CC
theory approach (LRCC). The approach is derived based on the CC time-dependent
theory. A general description of the time-dependent perturbation theory and its use
in formulating the LR approach can be found in the paper by Langhoff et al. [24].
The CC implementations of the LR theory can be found in Refs. [25, 26]. A dia-
grammatic technique for the LRCC approach was developed by Sekino and Bartlett
[27]. In general, it should be recognized that the LRCC and EOMCC approaches are
virtually identical methods with some minor differences in their implementations.
Same should be said about the SAC-CI approach, which is essentially identical to
both the LRCC and EOMCC method with only a small difference concerning some
nonlinear terms which SAC-CI neglects.
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The more recent development of the EOMCC theory has involved the so-called
similarity transformation (ST) of the Hamiltonian. In the method called STEOM-
CCSD [28] a secondary transformation of the similarity transformed Hamiltonian
is performed in order decrease the connectivity between the different blocks of the
Hamiltonian matrix. As a result, in the doubly-transformed Hamiltonian matrix the
blocks corresponding to different levels of excitations are approximately decou-
pled and the matrix is almost block-diagonal. Also, after the double transformation,
the block corresponding to the single excitations contains some contributions from
higher excitations. At the end the excited state energies are obtained by the diagonal-
ization of the Hamiltonian block corresponding to the singly excited determinants. In
general, the STEOMCCSD is a low-cost computational method that can be applied to
relatively large systems (for example, see the calculations of the electronic spectrum
of porphine [29]).

A shortcoming of the STEOMCCSD method (as well as with the EOM-CCSD
method) is that only excited states dominated by single-electron excitations can be
determined with a good accuracy in the STEOMCCSD calculations. States with sig-
nificant contributions from doubly excited determinants are usually poorly described
with the EOM-CCSD approach (a typical error in the estimation of the transition
energies is about 1 eV or even higher). Even though there are fundamental reasons
why the STEOMCCSD method is unable to describe transitions to double excited
states, some progress has been made by the development of extended versions of
the STEOMCC (ext-STEOMCC) approach [30]. The extension involves including
higher order excitations (for example, this is done in the EOM-CCSDT method).
However then the computational cost of the calculation significantly increases.

One should mention that Piecuch and Bartlett [31] proposed a variant of the
EOMCC approach (called EOMXCC) where an additional transformation of the
Hamiltonian is performed, which, according to the authors, allows for a better de-
scription of the effects due to higher excitations. Unfortunately the EOMXCC has
not been developed beyond the prototype level.

An alternative to including the triple excitations on equal footing with sin-
gle and double excitations is to use a non-iterative perturbative procedure devel-
oped by Piecuch et al. and termed the completely renormalized EOM-CCSD (CR-
EOM-CCSD) approach [33]. The CR-EOM-CCSD(T) method is implemented in the
GAMESS package [11]. The GAMESS package also includes other variants of the
renormalized EOM-CCSD method differing from the original version of the method
in the way the vertical transformation in the method is performed (see the GAMESS
manual for a more detail description).

An option of combining the multireference SS method with the EOMCC approach
was investigated by Piecuch [34]. In Piecuch’s EOM-CCSDt method the triple ex-
citations are only partially taken into account and limited to the determinants of the
|Abc

i j I 〉 type. This is consistent with the spirit of the SS approach where the selection
of the most important subsets of higher excitations (triple, quadruple, etc.) is a key
element of the calculation. Such a selection is usually not difficult when only one
state is being calculated, but it may become more complicated if the calculation



228 V.V. Ivanov et al.

targets several states (as it is done in non-state specific approaches). Unusually in a
multi-state calculation the active space has to be widened to facilitate an adequate
description of all the considered states.

An interesting variant of the EOMCC method was recently proposed by Nooijen
[35]. The method combines the SS approach with the EOM theory and was termed
the Complete State Selective EOMCC (CSS-EOMCC) method. The CSS-EOMCC
results obtained for some low-lying states of O2 and F2 molecules show some re-
markable accuracy.

Finally, it is in order to mention “classical” multireference methods for the excited
state calculations. Several papers provide comprehensive reviews of these methods
(see, for example, [5]) and we will only briefly mention them in this review. In
the so-called “Hilbert-space” (or state-universal (SU)) methods the ground-state is
calculated along with a set of excited states. The energies of all these states are
the result of the diagonalization of an effective Hamiltonian. The “Hilbert-space”
MRCC theory is, in principle, flexible enough to describe any excited state. How-
ever, the well known “intruder state” often appears in the calculations and removing
it is not an easy task especially if higher excited states are calculated. In addition
to excited states also ionized states can be calculated using the so-called valency-
universal (VU) method. Due to the complicated nature of both the “Hilbert-space”
and valency-universal MRCC methods their popularity has been low. However, this
can change with the development of such approaches as the one proposed by Chat-
topadhyay where the SU method was combined with the linear response theory [36].
Also Musiał et al. have recently developed a new approach for excited state cal-
culations based on the VU method [37]. It utilizes the “intermediate Hamiltonian”
technique to calculate the state energies. According to the authors [37] the “intruder
state” problem was successfully overcame in their approach.

In conclusion, let us mention some important common features of the above-
described CC theories for the excited state calculations.

1. The methods share many common features. The difference between them are
mainly due to technical details related to their implementations and due to ignor-
ing certain terms in the energy and/or amplitude equations to make the calcula-
tions simpler and less time consuming.

2. The methods (especially those EOMCC-based) are “Black-Box” approaches.
Whether this should be perceived as a merit or a demerit depends on the point of
view. “Black Box” approaches are usually successful in simple situations. How-
ever more complicated excited state problems usually necessitate a more detailed
analysis of their nature and their treatment usually requires going beyond the
“Black Box” approach.

3. An adequate accurate description of an arbitrary excited state can be attained
only if higher-level excitations are included in the calculation. For example, the
connected triple excitations (at least) are needed to adequately describe states in
which two-electron excitations dominate.
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In the next section we describe how the above mentioned features incorporated
in the SSMRCC theory we developed to calculate excited states. For instance, our
SSMRCC (CASCCSD) theory is not a “Black Box” approach. There are also dif-
ferences in how the CASCCSD method approaches the single-excited and double-
excited states because the calculations of these two types of states require the use of
different reference spaces.

9.4. STATE SPECIFIC COUPLED CLUSTER APPROACH
FOR EXCITED STATES

As mentioned, the standard existing CC theories for calculating excited states are
not SS theories, i.e. the calculation is not focused on a single state. We will now
discuss how a SSCC theory for calculating excited states can be formulated based
the multireference method developed by us to describe bond dissociation processes
and mentioned in the previous section. Naturally, a generalization of our method to
excited states will have to involve a separate CC calculation of the ground state and
each of the excited states. In these calculations different formal reference determi-
nants can, in principle, be used. There is a certain advantage of using different formal
references for different states which rests in making the treatment of all states more
equivalent. Thus, there is no bias in the calculations towards a selected state; this
usually being the ground state as it, for example, happens in the valence-universal
MRCC approach. In general, if a theory relies on the results of the ground state
calculation in describing the excited states (for example, if orbitals used to construct
the excited-state wave functions come from the ground-state calculation), some
perceptible errors often occur in the values of the spectral transitions. Even methods
with high percentages of accounting for the electronic correlation effects, such as
the CISD method, can significantly overestimate excitation energies by as much as
≈1–2 eV.

In general, even in calculating the simplest excited states, e.g. those dominated
by single excitations, a one-determinant reference space is insufficient. The CC ap-
proach that works for the ground state of a closed-shell molecule is not applicable
to excited states. The simplest, often appearing situation is when the excited state is
dominated by two singly excited configurations with equal (or almost equal) weights:

|�∗〉 ≈ 1√
2

(|a1
i1
〉 ± |a2

i2
〉). (9-17)

A more difficult case appears when an electronically excited molecule undergoes a
structural transformation (a photodissociation or a photochemical process). In such
a situation a more general wave function has to be applied to obtain a correct “zero-
order” description of the state under consideration along the whole PES:
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|�∗diss〉 ≈ α
∑

i1,a1

±|a1
i1
〉 + β

∑

i1>i2
a1>a2

±|a1a2
i1i2
〉 + . . . , (9-18)

where the α and β coefficients are large and comparable in values. In Eqs. (9-17) and
(9-18) all the determinants are excitations from a single reference determinant (for
example, the Hartree–Fock determinant). In order to construct a CC wave function
for such a case a superposition of determinants (9-17) (or even (9-18)) has to be used
as the reference.

One way of generalizing Eq. (9-1) to a multireference case is by using a multidi-
mensional model space. With the general reference function (9-18) the MRCC wave
function can be represented as:

|�MRCC〉 = eT̂(α
∑

i1,a1

±|a1
i1
〉 + β

∑

i1>i2
a1>a2

±|a1a2
i1i2
〉 + . . . ), (9-19)

where the T̂ is an coupled cluster operator which generates excitations from de-
terminants |a1

i1
〉 and |a1a2

i1i2
〉, etc. Some possible variants of the implementation of the

wave function (9-19) in the SSMRCC framework were described in our recent papers
[38, 39].

We will now describe our SSMRCC approach to excited states. In the first
step one needs to assess the level of quasidegeneracy of the considered state (in
some states an exact degeneracy may occur). Then, in order to apply the SSMRCC
approach (or more specifically, its CASCCSD version) to calculate the state energy
and the wave function, the following points need to be addressed:

1. An appropriate reference space needs to be defined. The space should include a
minimal number of configurations to construct a good first-order representation of
the wave function of the state under consideration. For excited states, the proce-
dure for selecting adequate reference spaces is often not as straightforward as for
the ground state where the selection is made based on clear physical principles.

2. In the ground state CASCCSD calculation a closed-shell determinant can be usu-
ally chosen as the formal reference determinant. However for excited states it
may often happen that, due to symmetry reasons, closed-shell determinants do
not contribute to the wave function or such determinants may give very small
contributions. In such a case an open-shell determinant has to be chosen as the
formal reference.

3. Choosing the formal reference determinant in the ground state calculation is usu-
ally simple. The reference determinant with the dominant contribution to the wave
function is the obvious choice. In an excited state calculation several reference
determinants, open- and/or closed-shell, may provide significant contributions.
In principle, each of these determinants can be chosen as the formal reference.
Thus, there is a certain degree of arbitrariness in choosing the formal reference in
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such a situation. However, as the CASCCSD approach is a very accurate method,
any of the choices should lead to an almost equally good result.

4. An exact configurational degeneracy rarely happens in the ground-state calcu-
lation, but it is often encountered in calculations of excited states. Also some
excited states may be degenerate within a particular term. For example, "- and
 - states for a diatomic molecule may be degenerate. Also the states belonging to
different terms may become degenerate or quasidegenerate at larger internuclear
separations. The appearance of degeneracy may lead to a slow convergence (or
lack of it) in solving the CC nonlinear equations.

5. The CASCCSD wave functions generated for different states in independent cal-
culations are usually not strictly orthogonal. This may have some effect on the
results and on their interpretation.

6. Not maintaining the strict orthogonality between the wave functions of different
states can lead to root switching or even collapsing of an excited state to the
ground state. This can happen when both states have the same spatial and spin
symmetry.

7. Excited configurations of a certain level (say doubles) obtained for different
(degenerate) reference determinants may have different excitation levels from
the “formal reference” state. In order for the total CASCCSD wave function to
represent a state with a certain spin multiplicity, the coefficients of some of these
excited configurations should be coupled by spin-symmetry constraints. These
constrains have to be implemented in the CASCCSD wave function at least for
the most important configurations. This procedure is called the spin-adaptation
and can be performed at various levels. It is relatively straightforward to apply
it to the configurations from the iterative subspace, but its application to other
configurations is not as simple because the amplitudes of those configurations
are products of amplitudes of some iterative subspace configurations.

The above mentioned points (in particular 5 and 6) are more or less difficult to
handle depending on the level of approximation used in the particular implementa-
tion of the CASCCSD method. For example, the nonorthogonality of the CASCCSD
wave functions of different states can be a problem for a more approximate approach
than for a more rigorous approach. In our view a SSMRCC calculation of an excited
state is more justifiable if fewer approximations are made and the results have a high
degree of absolute exactness (i.e. they are close to the FCI results). In such a case the
nonorthogonality effects are insignificant and the convergence of the iterative proce-
dure of solving the CASCCSD amplitude equations is usually faster provided a good
initial guess for the configurational amplitudes is used. Also a good guess prevents
the excited state roots to collapse to the ground state. One of the best possible initial
guesses for the CASCCSD wave function is a renormalized multireference CI wave
function.

We will now describe some model applications of the CASCCSD method to cal-
culate excited states. The simplest model cases are lowest lying singlet and triplet
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Figure 9-2. Distribution of two electrons among the two active orbitals

excited states of a closed-shell system. In these cases the active space comprises
two electrons distributed among two molecular orbitals; the (2,2) space. There are
four determinants in the (2,2) space. Two of them are closed-shell and two are open-
shell determinants (Figure 9-2). In some cases one of the two closed-shell deter-
minants can be chosen as the formal reference, |0〉. As before the capital letters
are used to designate the active spin – orbitals; I, J, K, ... are used for the holes
and A, B, C, ... for the particles. The four determinants of the (2,2) reference space
which arise from all different distributions of two electrons among two orbitals (four
spin-orbitals) are:

|0〉, |AA
I I
〉 |AI 〉, |A

I
〉. (9-20)

In general, the complete model space can contain determinants which are trans-
formed differently with respect to the molecular symmetry elements of the system. In
particular, the closed-shell determinants are always fully symmetric configurations.
However, we should note that different linear combinations of such determinants
can belong to terms with different projections of the electronic angular momentum
of the system on the z axis (e.g. and! states in homonuclear diatomic molecules).
Also the determinants |AI 〉 and |A

I
〉 can belong to representations which are not fully

symmetric. If the symmetry of the state under consideration is the same as that of the
|AI 〉 determinant (and |A

I
〉), but different from the symmetry of |0〉 and |AA

I I
〉 determi-

nants, the last two determinants should be excluded from the reference space. Thus
the reference space for some states (non-fully symmetric singlets and triplets) will
reduce to two determinants:

|AI 〉, |A
I
〉. (9-21)

In general, the total wave function of the XCASCCSD approach for the (2,2)
active space is represented in the following form:

|�XCASCCSD〉 = eT̂(δ + λ (a+AaI ± a+
A

aI

)+ γ a+AaIa
+
A

aI

) |0〉, (9-22)

where, as before, a+A and aI are second quantized operators. Depending on the sym-
metry of the state, the δ, γ , and λ coefficients can have different values. δ �= 0 and
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γ �= 0 in Eq. (9-22) correspond to a fully symmetric singlet state, and δ = γ = 0
corresponds to a non-fully symmetric singlet or triplet state. In the latter cases (9-22)
simplifies to:

|�s=0,1
CASCCSD〉 = eT̂(a+AaI ± a+

A
aI)|0〉, (9-23)

or alternatively to:

|�s=0,1
CASCCSD〉 = eT̂(|AI 〉 ± |AI 〉). (9-24)

If the sign in the expressions (9-22), (9-23), and (9-24) is “minus”, the wave func-
tion represents a triplet state with a zero Sz. The values of δ and γ can be calculated
in the CASCCSD frameworks by using the standard spin-projection scheme or it
can be taken from CASSCF, MRCI, CI, or perturbation theory calculations. As usual
in the MRCC theory, the operator T̂ should include singles and doubles excitations
from the reference determinants. All these excitations (external and semiexternal) in
Eqs. (9-22), (9-23), and (9-24) are expressed as excitations from the formal reference
determinant. The structure of the wave function (9-22) for the singlet state can be
written in a more compact form as:

|�s=0
XCAS(2,2)CCSD〉 = eT̂1+T̂2 (δ + λEAI + γE2

AI)|0〉, (9-25)

where EAI = a+AαaIα + a+Aβ aIβ is a unitary group generator.
When δ = γ = 0 in Eq. (9-23) a closed-shell determinant cannot be chosen as

the formal reference. In this case one of the open-shell determinants, |AI 〉 or |A
I
〉, can

be used as the formal reference. The other reference determinant is then generated
as a double electron excitation from the first determinant by a spin-flip excitation,
|AI 〉 ←→ |A

I
〉 (Figure 9-3). All the single and double excitations from the second

reference determinant can be generated as single and double excitations (T̂1 + T̂2),
as well as some selected triple and quadruple excitations, from the formal reference
determinant. If one chooses |AI 〉 as the formal reference then the structure of the (2,2)
active space can be represented in the form shown in Figure 9-4. The corresponding
XCASCCSD wave function is:

|�XCASCCSD〉 = e
T̂1+T̂2+T̂3

(IAa

IA i

)

+T̂4

(IAab

IA i j

)

(

1± a+I aIa
+
A

aA
)|AI 〉, (9-26)

where indices i, j and a, b designate the occupied and vacant spin – orbitals, respec-
tively. The orbital type (occupied or vacant) is determined with respect to the for-
mal reference determinant. We should note that the reference function in Eq. (9-26)
corresponds to either the singlet or the triplet state (depending on the sign), but no
particular spin symmetry is implemented in the CC operator T̂. Thus, while the linear
combination of the reference part of the wave function is spin adapted, the CC part
is not.
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Figure 9-3. The second reference determinant can be generated as a double electron excitation from the
“formal reference” determinant

We will now show some applications of the CASCCSD method in calculations of
excited states. In the first example the calculations concerned fully symmetric states
[38]. The configuration coefficients of the reference determinants were taken from
a CASSCF calculation and, after the necessary renormalization, there values were
kept constant during the XCASCCSD calculations. This type of approach is called
“externally corrected” according to the terminology used by Paldus [40].

In the next example [39] we allow for the reference determinant coefficients to
vary during the CASCCSD calculation. The initial values of the coefficients are taken
from a MRCI (CASCISD) calculation. The renormalized CASCISD wave function
can be written as the following expansion based on the single formal reference de-
terminant |0〉:

|�CASCISD〉 = (1+ Ĉ(ext)
1 + Ĉ(ext)

2 )(1+ Ĉ(int))|0〉, (9-27)

where the operators (1 + Ĉ(int)) generates the reference wave function being a su-
perposition of the reference determinants and (Ĉ(ext)

1 + Ĉ(ext)
2 ) generates single and

double excitations from the reference determinants. In this form the CASCISD wave
function (9-27) resembles the CASCCSD wave function of CASCCSD. The dif-
ference between the two methods rests in the treatment of the external excitations.

Figure 9-4. The active space for the (9-24) wave function



Excited States in SSMRCC 235

In the CASCISD wave function they are included in the linear form and in the
XCASCCSD wave function the external excitation operators are exponentiated. Ex-
panding the external excitation exponent generates strings of excitation operators
which, when operating on the formal reference |0〉, generate higher order excitations.
These higher-order excitations are not present in the CASCISD wave function. Due
to the exponential form of wave function, the XCASCCSD method is size-extensive,
as is the single-reference CC theory (e.g. CCSD), but the CASCISD method
is not.

There is one point that needs to be mentioned regarding the dependency of the
results of the CASCISD and XCASCCSD methods upon the choice of the formal ref-
erence determinant. The CASCISD method is invariant upon this choice. However,
the results of the XCASCCSD method may depend on which reference determinant
is chosen at the formal reference. This dependency is inherent to the CC theory. In
our the XCASCCSD approach, for example, there are certain limits for the active
indices. They lead to some asymmetry in the treatment of the determinants from the
noniterative subspace. For example, there is a subset of triple excitations generated
by the T̂(ext) operator with the linear amplitudes t3(abC

I i j ) (connected terms). How-
ever, the corresponding triple excitations from the second determinants do not have
linear amplitudes, but their amplitudes are generated as products of “lower level”
amplitudes −t2 (ab

I i)t1(C
j ) + 1

3! t1(a
I)t1(b

i)t1(C
j ) (disconnected terms). This brings some

asymmetry to the approach. It can cause discontinuities in the CASCCSD solutions
particularly when one calculates the potential energy surface for the system. In such
calculations different reference determinants may be used as the formal references
in different parts of the surface because the relative contributions of the reference
determinants to the total wave function usually vary when the structure of the system
is transformed. However, as the CASCCSD approach is a very accurate method and
its absolute error relatively to FCI does not exceed ≈1–3 mHartree (as show by
the calculations) the choice of the formal reference and its switching in the PES
calculation is not a significant issue.

Also there is a possibility of spin contamination in the CASCCSD calculation.
When a complete spin adaptation is perform of the CASCCSD wave function the
configurational coefficients of some determinants with different levels of excitations
from the formal reference determinant may need to be coupled to produce a spin-
clean wave function (see, for example, Figure 9-3). When a partial spin-adaptation is
performed, the spin-coupling of different determinants may be not strictly enforces
and this is a situation when a spin contamination may arise. In the same way some
spatial symmetry contamination of the wave function may also occur.

In order to eliminate (reduce) the symmetry contamination problem it is nec-
essary to perform a complete or a partial symmetry adaptation of the CASCCSD
wave function by imposing the appropriate coupling of configurational amplitudes.
This can be achieved by a procedure involving parametrization of the cluster op-
erators. The CC operators generated this way operate in the space of symmetry-
adapted superpositions of determinants. However, such a scheme generally leads to
a very complicated computational procedure and runs contradictory to the purpose
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of our SS method which is to make the calculation as simple and time-efficient as
possible.

To achieve this goal we use the following spin-adaptation approach in the
CASCCSD calculation:
1. We first perform a RHF calculation or a CASSCF(n,m) calculation with the min-

imal active space adequate for the state under consideration.
2. Next we perform a CAS(n,m)CISD calculation to produce a good initial guess

for the CC amplitudes of the XCASCCSD(n,m) wave function.
3. The determinant with the dominant contribution to the CAS(n,m)CISD wave

function is selected as the formal reference. The CAS(n,m)CISD wave function
is renormalized (by dividing all configurational amplitudes by the amplitude of
the formal reference determinant) and transformed to the exponential form of the
CAS(n,m)CCSD wave function.

4. The XCASCCSD(n,m) nonlinear amplitude equations are solved using the iter-
ative procedure. A symmetry (spin and spatial) adaptation of the XCASCCSD
wave function is performed in each iteration. This adaptation may be applied to
only the reference determinants or may also involve determinants from outside
the reference space.
In the iterative solution of the CC equations we use the standard procedure de-

veloped for the single-reference CC calculations. The symmetry adaptation step per-
formed in each iteration is the only difference between the ground and excited state
calculations.

Let us explain in more details how the symmetry adaptation works in a
CAS(2,2)CCSD calculation. In this case there is a set of four equations to be solved
obtained from projecting the Schrödinger equation on determinants with different
excitation levels with respect to the formal reference:

〈ai |(Ĥ− E)eT̂(ext)
eT̂(int) |0〉C = 0, (9-28)

〈ab
i j |(Ĥ− E)eT̂(ext)

eT̂(int) |0〉C = 0, (9-29)

〈Aab
i j I |(Ĥ− E)eT̂(ext)

eT̂(int) |0〉C = 0, (9-30)

〈ABab
i j I J |(Ĥ− E)eT̂(ext)

eT̂(int) |0〉C = 0, (9-31)

where the index C means that in the equations only connected terms are included. In
each iterative step an amplitude symmetrization is performed. For the (2,2) reference
space there are four types of CC amplitudes in the CASCCSD calculation:

t1, t2, t
′
3, t

′
4, (9-32)

where the prime indicates by t
′
n that only a subset of excitations at that particular level

is include in the wave function. In the first step of the symmetrization the following
standard T → C transformation is performed:
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c1 = t1, (9-33)

c2 = 1

2
t1t1 + t2, (9-34)

c
′
3 =

1

6
t1t1t1 + t2t1 + t

′
3, (9-35)

c
′
4 =

1

24
t1t1t1t1 + 1

2
t2t2 + 1

2
t2t1t1 + t

′
3t1 + t

′
4. (9-36)

Using c’s (not t’s) the wave function can be represented in the linear form:

|�XCASCCSD〉 = (1+ Ĉ1 + Ĉ2 + Ĉ
′
3 + Ĉ

′
4 + Q̂)|0〉, (9-37)

where the CI-like Q̂ operator generates all remaining excitations (i.e. excitations
from the non-iterative subspace). The linearized form of the XCASCCSD wave
function (9-37) allow for an easier symmetry adaptation. After this is done a reverse
C → T transformation is performed and the wave function is re-transformed back
to the exponential form. The whole symmetrization procedure can be symbolically
described with the following equation:

〈�1 ±�2|(Ĥ− E)eT̂(ext)
eT̂(int) |0〉 = 0. (9-38)

In this equation the configurations �1 and �2 that need to be included in the wave
function with equal weights, have different excitation levels. In the case of the (2,2)
active space these can be double and quadruple excitations from the formal refer-
ence determinant. The amplitude symmetrization can be more or less complete. The
simplest approach is to only symmetry adapt the configurational coefficients of the
reference determinants. We denote such an approach as XSrCAS(n,m)CCSD. In a
more complete case the symmetrization is also applied to the amplitudes of the
determinants from the iterative subspace (i.e. the determinants with linear ampli-
tudes). Such method is designated as XScCAS(n,m)CCSD. Another variant of the
symmetry adaptation method involves taking symmetrized amplitudes of the refer-
ence determinants from a non-CASCCSD calculation and not changing them during
the CASCCSD calculation. We designate such an approach as Xf CAS(n,m)CCSD.
A non-CASCCSD source of the amplitudes may be a CASSCF or CASCISD calcu-
lation. Other possibilities, such as the single reference or multireference perturbation
theory, can also be considered.

The algorithms for solving the XCAS(n,m)CCSD equations have been imple-
mented in our computer program called CLUSTER. CLUSTER is interfaced with
the popular quantum chemistry package GAMESS [11].

In conclusion, some comments are in order regarding the computational cost
of the XCASCCSD calculations. This cost strongly depends on the way the
XCASCCSD algorithms are implemented especially if the code runs on a paral-
lel computer with a shared or distributed memory. Regardless of the platform, the
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overall computational cost for the XCASCCSD calculations scales as O(n2
on4

v) when
no higher than fivefold excitations from the formal reference are included.2 For com-
parison, the standard CCSD also has the same asymptotic scaling, but, obviously, the
proportionality coefficient is smaller in this case.

9.5. NUMERICAL EXAMPLES

In this section we will describe some examples of excite-state XCASCCSD
calculations.

9.5.1. Excited States of the Water Molecule

The calculations were performed at the equilibrium ground-state geometry of the
water molecule with the internuclear distance equal to Re = 0.95 Å and the an-
gle equal to � = 104.5◦. All the calculations were performed with a double-zeta
valence base set (Dunning-Hay, DZV [41], incorporated in the GAMESS package).
We used this basis in order to be able to compare the XCASCCSD results with the
FCI calculations available in the literature.

Choosing the active space is starting point of the XCASCCSD calculation. At first
we will write down the symmetries of the Hartree–Fock (HF) molecular orbitals of
the water molecule. If the C2 symmetry axis is the z axis and the molecule is placed
in the yz plane, the orbitals (ordered by increasing energy) are:

1a2
12a2

11b2
23a2

11b2
1 || 4a12b22b15a13b24b26a17a1, (9-39)

where the double vertical line separates the occupied and vacant orbitals. We use
the natural orbital (NO) expansion obtained from a restricted CI calculation (CIS
or CISD) for selecting the most important orbitals to form the active space for the
XCASCCSD calculations of the state under consideration.

The occupation numbers and the symmetries of the natural orbitals obtained from
the CI wave functions for some singlet and triplet excited states of the A1 and A2
symmetries considered in the present calculations are shown in Table 9-1. For the
sake of comparison, we show the CIS, CISD, and FCI results in the table. The first
two columns in the table describe the water ground state at the equilibrium geom-
etry. Since the ground state is closed – shell, all highest occupied natural orbitals
have occupation numbers (ON) equal to two. All other natural orbitals (4a1 – 3b2
orbitals) have small ONs because they are involved in the part of the wave function
that describes the electron correlation.

For the lowest 1A1 excited state the 3a1 and 4a1 orbitals are singly – occupied
and their ONs are close to one. Thus, the model space needed for describing the

2 In the expression no and nv are the numbers of the occupied and vacant orbitals, respectively.
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Table 9-1. Occupation numbers of natural orbitals for the A1 and A2 excited singlet states of the water
molecule obtained by different methods. Occupation numbers of singly occupied orbitals are underlined

X1A1
1A1

1A2
Orbitals CISD FCI CIS CISD FCI CIS CISD FCI

1a1 2 2 2 2 2 2 2 2
2a1 1.9895 1.9878 1.9997 1.9960 1.9868 2 1.9982 1.9889
1b2 1.9729 1.9682 1.9889 1.9810 1.9602 2 1.9949 1.9778
3a1 1.9757 1.9713 1.0166 1.1001 1.1095 2 1.9918 1.9692
1b1 1.9819 1.9783 1.9948 1.9942 1.9785 1 0.9990 0.9942

4a1 0.0227 0.0266 0.9834 0.8925 0.8803 0 0.0130 0.0338
2b2 0.0240 0.0280 0.0111 0.0211 0.0384 1 0.9921 0.9946
2b1 0.0171 0.0206 0.0052 0.0054 0.0202 0 0.0017 0.0069
5a1 0.0111 0.0130 0.0003 0.0048 0.0114 0 0.0017 0.0120
3b2 0.0026 0.0031 0.0 0.0015 0.0034 0 0.0055 0.0140
4b2 0.0004 0.0005 0.0 0.0005 0.0026 0 0.0011 0.0036
6a1 0.0019 0.0021 0.0 0.0020 0.0064 0 0.0007 0.0028
7a1 0.0002 0.0004 0.0 0.0009 0.0023 0 0.0004 0.0021

1A1 state is a (2,2) space comprising determinants with all possible different occu-
pations by two electrons of the 3a1 and 4a1 orbitals and includes the following four
determinants:

|0〉, |4a1
3a1
〉, |4a1

3a1
〉, |4a14a1

3a13a1
〉.

The ansatz for the CASCCSD wave function for this state is:

|�XCAS(2,2)CCSD[1A1]〉 = eT̂(δ|0〉 + γ |4a14a1

3a13a1
〉 + |4a1

3a1
〉 + |4a1

3a1
〉), (9-40)

where δ and γ are the CI coefficients. As it was pointed out in the previous section,
these coefficients can be either calculated by solving the CC amplitude equations or
taken from a non–CC calculation. In the present work we used the latter option and
we took the values of δ and γ from a CASSCF calculation. Such an approach can be
called unrelaxed and we designate it as Xf CASCCSD.

The CAS(2,2)CCSD calculation for the A1 triplet state can be carried out in a
similar way as for the corresponding singlet state. The calculation requires that the

signs of the CI coefficients of the two reference determinants, |4a1
3a1
〉 and |4a1

3a1
〉 are

opposite:

|�XCAS(2,2)CCSD[3A1]〉 = eT̂(|4a1
3a1
〉 − |4a1

3a1
〉), (9-41)
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(closed – shell model – space determinants |0〉 and |4a14a1

3a13a1
〉 do not contribute to the

triplet state). Here again we used the |4a1
3a1
〉 determinant as the formal reference and

we included all single and double excitations from both reference determinants in the
T̂ operator. This excitations are defined as single, double and some selected higher
excitations from the formal reference determinant |4a1

3a1
〉.

The major contribution to the wave function of the 1A2 state is the 1b1 → 2b2
one–electron excitation. Hence, the complete model space in this case contains two
determinants:

|2b2
3b1
〉, |2b2

3b1
〉.

The determinants with double occupations of the 1b1 and 2b2 orbitals (i.e., de-

terminants |0〉 and |2b22b2

1b11b1
〉) do not contribute for the symmetry reason. Thus the

XCASCCSD wave functions for the 1,3A2 states have the following form:

|�XCAS(2,2)CCSD[1,3A2]〉 = eT̂(|2b2
3b1
〉 ± |2b2

3b1
〉), (9-42)

where the plus sign corresponds to the singlet state and the minus sign corresponds
to the triplet. Here we used the |2b2

3b1
〉 determinant as the formal reference and in the T̂

operator we included all single and double excitations from both reference determi-
nants defined as single, double, and some selected triple and quadruple excitations
from the formal reference determinant |2b2

3b1
〉.

In constructing the following XCAS(2,2)CCSD wave function for the 1,3B1 sin-
glet and triplet states we used the NO expansion:

|�XCAS(2,2)CCSD[1,3B1]〉 = eT̂(|4a1
1b1
〉 ± |4a1

1b1
〉). (9-43)

For the 1,3B2 states the analogical procedure produced the following XCAS(2,2)
CCSD wave functions:

|�XCAS(2,2)CCSD[1,3B2]〉 = eT̂(|2b2
3a1
〉 ± |2b2

3a1
〉). (9-44)

The XCASCCSD results for the 1,3A1,2 states are presented in the Table 9-2.
The table contains FCI energies (in a.u.) and the differences between the FCI and
XCASCCSD.3 Among the methods compared in the table, XCASCCSD produces

3 for the 3A1, 1A2, 3A2 states XCASCCSD is equivalent to XSrCASCCSD while for the 1A1 state
XCASCCSD ≡ XfCASCCSD
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Table 9-2. FCI energies (in a.u.; the sign is reversed) and absolute errors (in mHartree) of different meth-
ods relative to FCI for the different states of the water molecule. DZV basis set and the equilibrium
geometry were used in the calculations

Method 1A1
3A1

1A2
3A2

FCI 75.730738 75.764810 75.742054 75.759576
CIS 163.11 143.86 155.08 149.96
CISD 67.36 68.45 68.10 69.40
CISDT 10.18 – 9.24 –
CASSCF(2,2) 115.54 104.97 104.29 106.41
MCQDPT 5.92 9.09 9.61 9.52
CCSD(s=sz=1) – 3.39 – 3.23
EOM-CCSD −2.71 – −2.13 –
XSrCASCCSD 0.91 1.35 1.33 1.35

results matching the FCI energies the best. The CASCCSD results are even bet-
ter than the results of the CI method that includes up to three-electron excitations
(CISDT). The comparison of the CASCCSD with the multi – configurational quasi –
degenerate perturbation theory (MCQDPT)4 was especially interesting for us, be-
cause that method has been described as being very accurate. The results presented in
the table demonstrate that MCQDPT is significantly less exact than the XCASCCSD
approach.

The calculations of the B1 and B2 states (shown in Table 9-3) also demonstrate
high accuracy of XCASCCSD in comparison with FCI and are noticeably better than
the CI and MCQDPT results. More detailed description of the calculations of excited
states water molecule can be found in [38].

Table 9-3. A comparison of total energies (in a.u.; signs are reversed) and relative energies (in mHartrees)
with respect to the FCI energy of various methods including the XCASCCSD method for the two lowest
excited singlet and triplet states of the B1 and B2 symmetries of the water molecule

Method 1B1
3B1

1B2
3B2

FCI 75.818262 75.846183 75.643402 75.690767
CIS 165.06 156.54 152.67 132.01
CISD 69.35 69.95 65.69 68.56
CISDT 10.19 N/A 9.09 N/A
CASSCF(2,2) 105.93 105.83 101.30 106.02
MCQDPT 10.08 8.45 10.16 11.19
XSrCAS(2,2)CCSD 1.31 1.39 1.64 2.62

4 Implemented in GAMESS
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9.5.2. Excited States in Hydrogen Fluoride Molecule

Hydrogen Fluoride (HF) is another test example. For the sake of comparison of the
XCASCCSD results with FCI we again use the small DZV basis set. The ground-
state orbital ordering for the HF molecule is (at the equilibrium structure with
Re=1.733 a.u.):

(1σ22σ2)3σ21π4||4σ2π5σ6σ7σ. (9-45)

The two core orbitals are in parentheses.
Before starting the XCASCCSD calculations we examine the structure of the

wave functions for the different states considered in the study at different internuclear
separations (R=Re, 1.4, 2.50, 3.40, 4.175, 5.0, and 6 a.u.). The examination showed
that the wave functions considerably change with the internuclear distance. To gener-
ate the initial wave-function guesses for the XCAS(2,2)CCSD calculations we used
the CAS(2,2)CISD method. The analysis of the CAS(2,2)CISD wave function, is
shown in the Table 9-4.

As one can see, the structure of the wave function strongly depends on
the state. The reference functions (determinant) for the XCASCCSD calculation
can be chosen based on the CASCISD results. The dominant reference deter-
minant (or one of two degenerate determinants) can be selected as the formal
reference.

In the calculation of the PES the formal reference determinant can change as
the structure of the system is altered because the weights of the reference deter-
minants usually vary with the structural transformations. As the formal reference
determinant changes, all the excitation operators in the XCASCCSD wave function
also change because they are defined with respect to this determinant. This may
affect the accuracy of the PES calculation. A detailed analysis of the accuracy of
the XCASCCSD method and of its performance in PES calculations was presented
in [39].

Table 9-4. Dominant determinants for different states of the HF molecule as obtained from
CAS(2,2)CISD calculations (with CASSCF orbitals). 1σ2 and 2σ2 are the core orbitals

State Active orbitals R(a.u.) Reference function

X1! 3σ,4σ <4.175 |1π2
x 1π2

y 3σ2〉
>4.175 |1π2

x 1π2
y 3σ1(α)4σ1(β)〉 − |1π2

x 1π2
y 3σ1(β)4σ1(α)〉

1! 3σ,4σ <3.4 |1π2
x 1π2

y 3σ1(α)4σ1(β)〉 − |1π2
x 1π2

y 3σ1(β)4σ1(α)〉
>3.4 |1π2

x 1π2
y 3σ2〉

3! 3σ,4σ Whole interval |1π2
x 1π2

y 3σ1(α)4σ1(β)〉 + |1π2
x 1π2

y 3σ1(β)4σ1(α)〉
3" 1π ,4σ Whole interval |1π2

x 1π1
y (α)3σ24σ1(β)〉 + |1π2

x 1π1
y (β)3σ24σ1(α)〉

1" 1π ,4σ Whole interval |1π2
x 1π1

y (α)3σ24σ1(β)〉 − |1π2
x 1π1

y (β)3σ24σ1(α)〉
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Table 9-5. Non-parallelity errors (first row) and maximal absolute deviation (second row) in mHartrees
for the PES of different states HF molecule

Method X1! 1! 3! 3Π 1Π

CAS(2,2)CISD 0.373 4.787 1.894 0.521 0.506
5.364 9.674 5.211 2.692 2.518

XScCAS(2,2)CCSD 2.577 4.514 0.391 0.201 0.213
1.770 2.326 1.787 1.225 1.231

XSrCAS(2,2)CCSD 2.440 3.851 0.404 0.265 0.258
1.633 1.663 1.665 1.208 1.208

Xf CAS(2,2)CCSD 2.610 3.634 0.404 0.265 0.258
1.740 1.862 1.665 1.208 1.208

EOM-CCSD 10.607 36.894 N/A N/A 22.674
11.976 29.939 N/A N/A 14.546

CR-EOM-CCSD(T),III 2.047 4.449 N/A N/A 3.262
2.139 2.707 N/A N/A 2.100

A useful tool to examine the accuracy of the PES calculation is the so-called non-
parallelity error (NPE) [42]. It is determined based on the comparison of the PES
calculated with a particular method and the FCI PES (see Table 9-5). It is interesting
to examine how enforcing of the spin symmetry in the XCASCCSD wave function
affects the NPE. The different variants of the CASCCSD method we proposed have
different level of the spin adaptation (see Section 9.4). The maximal deviation from
the FCI value in our XCASCCSD method is only 2.326 mHartree (≈1.46 kcal/mol).
Interestingly, the Xf variant of the CASCCSD method shows a rather good perfor-
mance for the (1Σ) state, while the error in the EOM-CCSD data is rather significant.
The situation is noticeable improved when the completely renormalized method is
applied [33].

9.5.3. Excited States in C2 Molecule

The XCASCCSD calculations of the C2 molecule are compared here with the re-
cent FCI results for the PES’s of the ground X1!+g state and two excited B1 g and

B′1!g states of Abrams and Sherrill [43]. The 6-31G* basis set was used in our
and their calculations. Abrams and Sherrill showed that all the three states of C2
are essentially multireference with the wave functions either showing a strong mix-
ing of the primary configuration |(core)2σ2

g2σ2
u1π2

ux
1π2

uy
〉 with some doubly excited

configurations or being dominated by those double excitations. Moreover the B1 g

excited state crosses the ground X1!+g state PES near ≈1.80 Å, whereas the B′1!+g
and X1!+g states have an avoided crossing near ≈1.60 Å. All these features pose
high demands on the method used in the PES calculation to obtain quantitatively
correct description of all three states at all internuclear separations. Apart from the
comparison of our results with the FCI results we are also comparing the with the
results of other methods taken from the work of Sherrill and Piecuch [44].
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In the XCASCCSD calculations of the X1!+g and B′1!+g states we used the
equally-weighted “state-averaged” CASSCF orbitals also used in the work of Sherrill
and Piecuch [44]. The active space in the CASSCF calculation consisted of eight ac-
tive molecular orbitals occupied by eight electrons. In the calculations of the B1 g
state we also used eight active orbitals (occupied by eight electrons) determined
in state-specific CASSCF calculations performed for that state. As it was shown
in the works of Abrams and Sherrill [43], the minimal active space needed for a
post-CASSCF calculation to produce a quantitative description of the states of C2
considered in the present calculations should contain at least six electrons and the
following seven molecular orbitals (a (6,7) active space): 2σu, 1πux , 1πuy , 3σg, 1πgx ,
1πgy and 3σu. Note that the 2σg orbital is not included in the active space. We used
this active space in the XCAS(6,7)CCSD calculations. In all calculations the elec-
trons occupying the lowest two molecular orbitals were not correlated. Details of our
calculations were presented in the Ref. [39]. Here we provide a summary of those
results and a comparison with other methods.

Table 9-6 shows the NPEs and the maximal absolute value deviation from the FCI
results. As one can notice, the XCAS(6,7)CCSD methods produce the most accurate

Table 9-6. NPE. (1st row) and maximal absolute value deviation (2nd row) for
three electronic states of the C2 molecule obtained with different methods with
respect to the FCI results. The values are in mHartrees

Method X1!+g B1 g B′1!+g

CAS(6,7)CISD 0.437 0.666 0.890
2.827 2.963 3.284

XSc CAS(6, 7)CCSD8 0.080 0.329 0.427
0.844 0.797 1.117

XSr CAS(6, 7)CCSD8 0.168 0.370 0.237
0.788 0.709 0.927

XfCAS(6, 7)CCSD8 0.213 0.328 1.167
0.427 0.552 1.085

XSc CAS(6, 7)CCSD6 0.193 0.403 0.383
0.951 0.863 1.114

XSr CAS(6, 7)CCSD6 0.186 0.373 0.164
0.791 0.765 0.895

CR− EOM− CCSD(T), III 18.426 43.585 31.504
25.714 57.284 39.575

EOM-CCSD 37.997 49.792 35.220
66.028 151.698 124.506

MCQDPT2 6.022 1.845 2.747
11.813 12.284 11.162
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results among all the methods compared in the table. However, it should be said that
the XCAS(6,7)CCSD approach is also the most computationally demanding in this
case (scales as O(N7) with a relatively large prefactor). The CAS(6,7)CISD approach
produces results that have noticeably a higher absolute deviation because of the lack
of the size-extensivity of this method. As it can be expected, the EOM methods
produce much larger errors for C2 than for the FH molecule because all three C2
electronic states have “doubly excited multireference” character. It is more difficult
to describe such states with the standard EOM schemes than states dominated by
single excitations. An active-space based EOM approach would be more adequate in
this situation.

The sextuple-limited XCAS(6,7)CCSD6 approximation (i.e. the XCAS(6,7)
CCSD approach with the excitations from the formal reference limited to not higher
than six-fold excitations) produces results only slightly worse than the results pro-
duced by the complete XCAS(6,7)CCSD8 approach. This indicates that the contri-
butions from sevenfold and eightfold excited clusters can be very well approximated
by products of lower-level clusters. Thus, an explicit account of the fully connected
contributions from the t7 and t8 excited clusters is not very essential in this case.

9.5.4. Vertical Excitations in Formaldehyde

In this section we describe our XCASCCSD calculations of some vertical electronic
excitations of the formaldehyde molecule (H2CO). The electronic excited states of
formaldehyde are rather typical for an organic molecule of this size. There have been
a number of works describing these states both experimentally and theoretically (see,
for example, Foresman et al. [13] and Moor et al. [45]).

In our calculations we used the experimental (C2v) geometry of the formaldehyde
molecule [46] with the bond lengths RC=O=1.203 Å and RC-H = 1.099 Å and the
bond angle � HCO=116.5◦. The calculations were performed with the cc-pVTZ basis
set [51]. In all calculations the lowest two occupied orbitals and the highest two
virtual orbitals were frozen (i.e. not used in the calculation of the correlation energy).
The following six electronic states of formaldehyde were considered: the ground
X1A1 state and the 3(nπ∗), 1(nπ∗), 3(ππ∗), 1(σπ∗), and 1(ππ∗) excited states. In
the Table 9-7 the excitation energies calculated for these states are presented. In the
first step CASSCF calculations were performed with the active space comprising two
electrons and the following pairs of orbitals: (σ, σ∗) for the ground state and (n,π∗),
(π ,π∗) and (σπ∗) for the corresponding excited states. The CASSCF(2,2) orbitals
were subsequently used in the CAS(2,2)CISD, MCQDPT2, and XScCAS(2, 2)CCSD
calculations. The EOM calculations were performed with the Hartree–Fock orbitals.
All results, except the XCASCCSD ones, were obtained with the 2006 version of
the GAMESS package [11] which does not allow for EOM computations for triplet
states.

As one can see from Table 9-7 there are noticeable differences in the to-
tal XCASCCSD and CASCISD electronic energies. These differences are in the
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range of 22-36 mHartree and should be attributed to the size-extensivity of the
XCASCCSD method and lack of it in the CASCISD method.

9.6. CONCLUSION

In this article we review our state-specific coupled-cluster approach with the
CASSCF reference for calculating electronically excited states (XCASCCSD). The
method is a generalization of the CASCCSD approach we developed for ground state
calculations. The key feature of the method, that is consistent with the SS approach,
is the use of different reference functions for different states. The XCASCCSD calcu-
lations show high accuracy in comparison with the FCI results. We estimate that the
average accuracy of the XCASCCSD method is only around 1–2 mHartree for states
with the wave functions dominated by single excitations from the Hartree–Fock de-
terminant, as well as for state dominated by double excitations. The XCASCCSD is
not strictly invariant with respect to the choice of the formal reference. This, however,
as shown by our calculations as well as by calculations performed by Kállay and
Surján [52], causes only insignificant discontinuities of the energy. Thus, in general,
the CASCCSD method can be used to calculate electronically excited states with dif-
ferent multiconfigurational characters with very high accuracy. The high efficiency
of the method is due to it being based on the CASSCF reference and due to including
all single and double excitations from the CAS configurations in the CC exponential
operator that facilitates the size-extensivity of the results.
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Abstract: In order to account for static electron correlation, the explicitly correlated coupled cluster
(CC) theory based on the R12 Ansatz is formulated with respect to a multi-determinantal
reference using the Brillouin – Wigner (BW) approach. Though the latter avoids appear-
ance of the intruder states, one pays for this desired feature by the loss of size extensivity.
However, to some extent this can be remedied by an a posteriori correction. Since the
BW-CC method offers simplest form of amplitude equations among Hilbert space MR CC
ones, we have chosen it as the first step when developing MR CC-R12 approaches. It is
shown that introducing of the basis set incompleteness correction via an explicit inclusion
of the correlation factor into the wave function, separately for each reference, is easily
realizable. Test calculations for the H4 model using the R12 optimized 9s6p4d3f basis
and its subsets with increasing highest angular momentum show the potential of the MR
CC-R12 approach. R12 results with mere sp functions are very close to values obtained
by using a conventional approach and the full 9s6p4d3f basis set. We stress, however,
that care must be taken to treat the R12 corrections with comparable accuracy for all the
reference determinants.

Keywords: Multireference coupled cluster, Hilbert space, R12 approach, Explicitly correlated,
Brillouin – Wigner coupled cluster

10.1. INTRODUCTION

Undoubtedly, the R12 Ansatz for the wave function, suggested a quarter of century
ago by Kutzelnigg [1], launched an intensive and successful research leading to a
number of approaches that treat the dynamical electron correlation by explicit in-
clusion of terms that are (at least in the leading term) linear in the inter-electronic
coordinate (r12) into the wave function. If L is the highest angular momentum in-
volved in the one-particle orbital basis set, such approach can improve the formal
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∝ (L + 1)−3 dependence of the conventional configuration interaction expansion
error [2] to ∝ (L+ 1)−7 [3].

The basic idea is to extend a configuration interaction type expansion by r12
containing part resulting from the action of an operator R̂ onto the reference (Φ)
resulting from the one-particle approximation solution.

|Ψ 〉 = R̂|Φ〉 + |ΨCI−type〉. (10-1)

R̂ is related to a (at this moment not necessarily specified) correlation factor F̂ .
While in the early development the correlation factor F̂ was simply an operator of the
inter-electronic coordinate [4–6], the Slater type geminal (STG) plays the dominant
role during the latest few years [7–20]. The former development has been recently
reviewed by Klopper et al. [21].

Combination of the single reference coupled cluster (CC) theory with the idea of
the R12 Ansatz gives rise to a more general description of the wave function than
Eq. (10-1). Namely, R̂ becomes an integral part of the exponential wave operator

|Ψ 〉 = Ω̂|Φ〉 = exp (T̂ + R̂)|Φ〉 . (10-2)

The operator R̂ can be expressed within the second quantized formalism and conse-
quently the working CC-R12 equations using the diagrammatic techniques [22, 23]
can be relatively easily derived. Unlike the early implementations, the latest ones do
not strictly use an approximation that is known as “standard” and whose basic idea
is derived from the fact that it is much easier to saturate the basis set at one particle
level than at two-particle level [3]. Hence, if the basis set is close to saturation at
the one-particle level, one can replace the exact one-particle resolution of identity
by the projector into the space spanned by that one-particle basis set. In recent
implementations, the exact one-particle resolution of identity is approximated by
one described in an auxiliary basis set that can be substantially more extended than
the main computational basis. More detailed overview of the latest development is
summarized elsewhere in this book (Chapters 20 and 21).

As mentioned, the R12 approach treats the problem of the dynamical electron
correlation (the proper description of the coulomb hole), and, in no case it can replace
the need for treating the effect that is known as the non-dynamical electron correla-
tion. The latter is related to a priori multireference character of the wave function in
many situations (e.g. far from the equilibrium geometries). Combination of the MR
CI with R12 [24, 25] has been announced soon after the CC-R12 [6], but the actual
applications since are scarce. A simple F12 geminal correction in multi-reference
perturbation theory has been recently proposed by Ten-no [26]. Irrespectively, it is
highly desirable to introduce the R12 approach also within the MR CC theories.

There are basically two types of genuine MR CC methods, where the word “gen-
uine” implies the use of the truly multi-reference wave operator formalism, namely,
the Fock-space or valence universal MR CC approaches (see, e.g., [27, 28], and
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references therein) and the Hilbert-space or state-universal (SU) MR CC schemes
[29–34], which are based on the Jeziorski – Monkhorst (JM) Ansatz [29]. This work
is based on the latter approach and employs the JM Ansatz with a cluster operator
augmented by the R12 excitations to the complementary orbital basis. Nevertheless,
it is a state-specific (SS) method. The SS methods employ formally the same defini-
tion of the effective Hamiltonian as SU methods, however, merely a single root of the
effective Hamiltonian has a physical meaning in the SS context. So far, there have
been three flavors of SS Hilbert-space MR CC suggested – the Brillouin-Wigner
CC (BW-CC) [35–41], Mukherjee’s CC method (MkCC) [42–45], and Hanrath’s
determinantal indexing approach (MRexpT) [46, 47]. The BW-CC method has the
disadvantage that it is not exactly size-extensive, which makes a posteriori or iterative
corrections necessary [40, 48]. On the other hand, it was able to yield results suffi-
ciently accurate for practical purposes [49–62] and, from a practical point of view,
it has the simplest form of amplitude equations among the three aforementioned
SS approaches, coupled only via the eigenvalue of the effective Hamiltonian. This
simplicity makes it an excellent candidate for the first step of the merger of MR
CC and R12 theories, leaving the more complicated methods for future work. For
simplicity, we also confine ourselves to the complete model space (CMS) through-
out this work, acknowledging that an extension to general model spaces should be
possible employing the C-conditions technique [63–66] developed already for the
MR BW-CC method [67].

10.2. NOTATION AND CONVENTIONS

In the following, we shall use letters i, j, m, n to denote occupied spin-orbitals, a, b, c,
d to denote virtual spin-orbitals and p, q, r, s to denote spin-orbitals from a unification
of both these spaces. This indexing will always be related to a particular reference
determinant |Φμ〉which will be denoted in parenthesis following the pertinent matrix
elements and/or operators. In the R12 theory, one works with a complete orthogonal
complement to the aforementioned spin-orbital space. Referring to this complemen-
tary space is denoted by α, β, γ , δ. Whenever this complete complementary basis
will be replaced by a finite auxiliary set of spin orbitals, we shall use p′′, q′′, r′′,
s′′, while p′, q′, . . . refer to p′ ∈ p ∪ p′′. Spin-orbitals within this unified space are

assumed to be orthonormal, i.e. |p′q′〉 = δ
q′
p′ . This corresponds to the concept of

complementary auxiliary basis set (CABS) [68].
In our previous derivations of the (single reference) CC-R12 approach, it was

convenient to work with second quantized normal ordered operators with respect
to that reference used as a Fermi vacuum. With several reference determinants, any
normal ordered n-body operator is expressed in terms of matrix elements and n-body
replacement operators [69] related to a pertinent reference. Here, we shall only use
one- and two-particle operators

ãp1
q1

(μ) = {

a†
p1

aq1

}

μ
; ãp1p2

q1q2
(μ) = {

a†
p1

a†
p2

aq2 aq1

}

μ
, (10-3)
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where a†
p and aq are the creation and annihilation operators, respectively. The braces

in Eq. (10-3) denote the normal ordering with respect to |Φμ〉.
A tensor notation will be used for integrals over any n-body operator ôn,

oq1
p1
= 〈p1|ô1|q1〉 ; oq1q2

p1p2
= 〈p1p2|ô2|q1q2〉, (10-4)

as well as for integral products. Einstein summation convention is considered
throughout. Irrespectively of the particular correlation factor F̂ , its matrix elements
will be denoted by Fq1q2

p1p2 .
The exact second quantized non-relativistic Hamiltonian (Ĥ) comprises its part

that is fully describable through the computational basis set (Ĥao) and a comple-
mentary part (Ĥcomp) that must be expressed in terms of the complete orthogonal
complement to that basis [70]. Accordingly, the normal ordered Hamiltonian with
respect to |Φμ〉 reads:

ĤN(μ) = Ĥ − 〈

Φμ
∣

∣Ĥ
∣

∣Φμ
〉 = Ĥao

N (μ)+ Ĥcomp
N (μ) (10-5)

Ĥao
N (μ) = f q

p (μ)ãp
q(μ)+ 1

4 ḡrs
pqãpq

rs (μ) , (10-6)

Ĥcomp
N (μ) = f αp (μ)ãp

α(μ)+ f p
α (μ)ãαp (μ)+ f αβ (μ)ãβα

+ 1
2

[

ḡrs
αqãαq

rs (μ)+ ḡαs
pqãpq

αs(μ)+ ḡγ s
αβ ãαβγ s (μ)+ ḡγ δαqãαq

γ δ(μ)
]

+ḡγ s
αqãαq

γ s(μ)+ 1
4

[

ḡrs
αβ ãαβrs (μ)+ ḡγ δpq ãpq

γ δ(μ)+ ḡγ δαβ ãαβγ δ

]

. (10-7)

Note that as soon as the normal ordered replacement operator relates merely to spin-
orbitals of the complementary space, it becomes independent of the reference. Also
matrix elements of the two-particle part, i.e. integrals over ĝ = 1/r12, are indepen-
dent of the reference, unlike the Fock matrix elements (f ).

In fact, exact expression of any operator in its second quantized form can be
written similarly as (10-5). Such partitioning enables an easy elimination of a part
of the correlation factor that is describable by the given basis and should not be
included in R̂ [Eq. (10-1)], since it creates determinants that are contained in the
"conventional" configuration space (vide infra).

10.3. OUTLINE OF THE MR BW-CC METHOD

In this section, we recapitulate the basics of the traditional multireference Brillouin
Wigner coupled cluster theory.

In accord with the JM Ansatz the model space is assumed to be spanned by M
reference configurations |Φμ〉, whereas the projection of the exact wave function on
the model space |Ψ P

ω 〉 is expanded as a linear combination of references
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|Ψ P
ω 〉 =

M
∑

μ=1

Cωμ|Φμ〉. (10-8)

Here, the expansion coefficients Cωμ, which are a priori unknown, are determined in
the subsequent calculation. P stands for the projection operator onto the model space,
which is a sum of projection operators onto the individual references

P̂ =
M
∑

μ=1

|Φμ〉〈Φμ|. (10-9)

The exact wave function of the ω-th electronic state is then formally obtained
from the reference function (10-8) using a wave operator Ω̂ω

|Ψω〉 = Ω̂ω|Ψ P
ω 〉, (10-10)

while intermediate normalization

〈Ψω|Ψ P
ω 〉 = 1 (10-11)

must be fulfilled, which translates to the requirement of zero amplitudes for internal
excitations in the complete model space case. Furthermore, let us assume existence
of an effective Hamiltonian Ĥeff as an operator which gives the “exact” energy Eω
when acting on the reference function

Ĥeff|Ψ P
ω 〉 = Eω|Ψ P

ω 〉, (10-12)

i.e. the exact energy Eω can be obtained as an eigenvalue of that effective Hamilto-

nian. Using the aforementioned wave operator, Ĥeff can be expressed as

Ĥeff = P̂ĤΩ̂ωP̂, (10-13)

where the form of the wave operator is still unspecified and can vary due to a specific
approach. In the MR BW-CC method, the wave operator is taken in the form of JM
Ansatz

Ω̂ω =
M
∑

μ=1

eT̂(μ)|Φμ〉〈Φμ|. (10-14)

Here, the operator T̂(μ) is a global cluster operator consisting of excitations with re-
spect to the reference configuration |Φμ〉. The cluster operators are specific for each
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reference. Provided that the model space is complete, cluster amplitudes correspond-
ing to internal excitations, i.e. excitations transforming one reference configuration
to another one, are zero due to the requirement of intermediate normalization. For a
general (incomplete) model space, this requirement leads to so called C-conditions
for the internal amplitudes, which have been employed both in the state-universal
[63–65] and state-specific Brillouin – Wigner [67] approaches. Since the active space
is disjoint with the complement space, this technique can be extended to the R12
approach straightforwardly.

The equations for the cluster amplitudes can be derived from the generalized
Bloch equation

λEωΩ̂ωP̂ω + (1− λ)
[

Ω̂ω, Ĥ0
]

P̂ = λĤΩ̂ωP̂ω + (1− λ)
[

V̂Ω̂ω − Ω̂ωP̂V̂Ωω
]

P̂ ,

(10-15)

where P̂ω denotes the projection operator |Ψ P
ω 〉〈Ψ P

ω | and λ is an arbitrary real number
from the interval 〈0, 1〉. For λ = 1, the equation corresponds to the Brillouin-Wigner
perturbation theory, whereas λ = 0 leads to Rayleigh-Schrödinger theory and state-
universal method. After insertion of the JM Ansatz into the generalized Bloch equa-
tion (10-15), the resulting equation is applied to the state |Ψω〉. Since for λ �= 0 the
method is state-specific, the sufficiency conditions are applied, splitting the equation
system to individual equations sets for each reference |Φμ〉, in a consistent way with

the λ = 0 limit. Division by Cωμ and projection onto the Slater determinants |Φ(μ)
ϑ 〉

excited with respect to |Φμ〉 yields the cluster equations from which the amplitudes
of T̂(μ) are determined:

λ
(Eω − Heff

μμ

)〈

Φ
(μ)
ϑ

∣

∣eT̂(μ)
∣

∣Φμ
〉 = 〈

Φ
(μ)
ϑ

∣

∣

[

ĤN(μ)eT̂(μ)]

C

∣

∣Φμ
〉

+〈Φ(μ)
ϑ

∣

∣

[

ĤN(μ)eT̂(μ)]

DC,L

∣

∣Φμ
〉− (1− λ)

∑

ν �=μ

〈

Φ
(μ)
ϑ

∣

∣eT(ν)
∣

∣Φν
〉

Heff
νμ . (10-16)

Here, Heff
μν are elements of the matrix representation of the effective Hamiltonian

within the model space and can be evaluated from

Heff
μν = 〈Φμ|Ĥ|Φμ〉δμν +

〈

Φμ
∣

∣

[

ĤN(ν)eT(ν)]

C

∣

∣Φν
〉

. (10-17)

The expression for the diagonal elements Heff
μμ is the same as for the CC energy in

the single reference theory, when we use the amplitudes of the μ-th reference.
The off-diagonal elements of (10-17) can be viewed as the connected parts of

the right hand sides of the cluster equations corresponding to the internal amplitude
which transforms the ν-th reference to theμ-th reference. As long as the model space
is restricted to mutually mono- and biexcited references, the off-diagonal elements of
Heff can be collected from the vector of the respective right hand sides at the CCSD
level.
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The correlation energy is obtained by the diagonalization of the Heff matrix, while
the coefficients in the corresponding eigenvector are the Cωμ coefficients from (10-8).
Since the theory is state-specific, only the selected eigenvalue, for which we converge
the equations, has a physical meaning.

For the purpose of obtaining BW-CC and size-extensivity corrections, the (1−λ)-
scaled coupling terms are neglected and the disconnected linked (DC,L) terms are
scaled by λ, giving rise to:

λ
(Eω − Heff

μμ

)〈

Φ
(μ)
ϑ

∣

∣eT̂(μ)
∣

∣Φμ
〉 = 〈

Φ
(μ)
ϑ

∣

∣

[

ĤN(μ)eT̂(μ)]

C

∣

∣Φμ
〉

+λ〈Φ(μ)
ϑ

∣

∣

[

ĤN(μ)eT̂(μ)]

DC,L

∣

∣Φμ
〉

. (10-18)

The usually employed a posteriori size-extensivity correction [48] consists in solving
this equation iteratively with λ = 1 until convergence is achieved and subsequently
making one additional iteration with λ = 0, which yields corrected amplitudes,
from which the corrected Heff is computed and its diagonalization finally yields
the corrected energy. This procedure is independent of the R12 Ansatz and will be
performed analogously in the R12 method.

The theory can be used with an arbitrary truncation of the cluster operator. Trun-
cating the cluster operator to single and double excitations, T̂(μ) = T̂1(μ) + T̂2(μ),
the cluster equations for the MR BW-CCSD variant reduce to:

λ
(Eω − Ĥeff

μμ

)〈

Φμ
∣

∣ãi
a(μ)eT̂1(μ)

∣

∣Φμ
〉 = 〈

Φμ
∣

∣ãi
a(μ)

[

ĤN(μ)eT̂(μ)]

C

∣

∣Φμ
〉

(10-19)

λ
(Eω − Heff

μμ

)〈

Φμ
∣

∣ãij
ab(μ)eT̂(μ)

∣

∣Φμ
〉 = 〈

Φμ
∣

∣ãij
ab(μ)

[

ĤN(μ)eT̂(μ)]

C

∣

∣Φμ
〉

+λ〈Φμ
∣

∣ãij
ab(μ)

[

ĤN(μ)eT̂(μ)]

DC,L

∣

∣Φμ
〉

. (10-20)

Since the action of T̂(μ) creates determinants fully describable by the computa-
tional basis, Ĥcomp

N contribution of ĤN does not need to be considered and in Eqs.
(10-16)-(10-20) ĤN is essentially reduced to Ĥao

N .

10.4. MR CC-R12 ANSATZ

In the explicitly correlated multireference CC theory the form of the wave operator
for the ω-th electronic state (10-10) is logically suggested by the combination of
the basic idea of the CC-R12 given by Ansatz of Eq. (10-2) combined with the JM
Ansatz of Eq. (10-14):
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Ω̂ω =
M
∑

μ=1

eT̂(μ)+R̂(μ)|Φμ〉〈Φμ|. (10-21)

In analogy with the single reference case in the most general sense [9], distinct
pseudo-excitation operators R̂(μ) related to each |Φμ〉 can be written as:

R̂(μ) = R̂1(μ)+ R̂2(μ) = ci
k(μ)R̃k

i (μ)+ 1
4 cij

kl(μ)R̃kl
ij (μ) ; (10-22)

R̃k
i (μ) = F̄kj

αj(μ)ãαi (μ) ≡ Fk
α(μ)ãαi (μ), (10-23)

R̃kl
ij (μ) = 1

2 F̄kl
αβ (μ)ãαβij (μ)+ F̄kl

αb(μ)ãαb
ij (μ), (10-24)

where c are variational parameters.

10.4.1. Working Equations

Amplitudes ci
k(μ) and cij

kl(μ) of the pseudo-excitations created by the action of R̂1(μ)

and R̂2(μ) upon 〈Φμ| have to be determined along with the amplitudes of T̂ . Mod-
ification of Eq. (10-18) for MR BW-CCSD-R12 includes substitution of T̂(μ) by
Ŝ(μ) = T̂(μ)+ R̂(μ) and, besides projections onto the 〈Φ(μ)

ϑ |, also projections onto
〈

Φμ
∣

∣

[R̃k
i (μ)

]† and
〈

Φμ
∣

∣

[R̃kl
ij (μ)

]†. However, since

〈

Φ
(μ)
ϑ

∣

∣eR̂(μ)
∣

∣Φμ
〉 = 0 , (10-25)

〈

Φμ
∣

∣R̂†(μ)eT̂(μ)
∣

∣Φμ
〉 = 0 , (10-26)

projections onto the “conventional” configuration subspaces give rise to

λ
(Eω − Heff

μμ

)〈

Φμ
∣

∣ãi
a(μ)eT̂(μ)

∣

∣Φμ
〉 = 〈

Φμ
∣

∣ãi
a(μ)

[

Ĥao
N (μ)eT̂(μ)]

C

∣

∣Φμ
〉

+〈Φμ
∣

∣ãi
a(μ)

[

Ĥcomp
N (μ)eŜ(μ)]

C

∣

∣Φμ
〉

, (10-27)

λ
(Eω − Heff

μμ

)〈

Φμ
∣

∣ãij
ab(μ)eT̂(μ)

∣

∣Φμ
〉 = 〈

Φμ
∣

∣ãij
ab(μ)

[

Ĥao
N (μ)eT̂(μ)]

C

∣

∣Φμ
〉

+λ〈Φμ
∣

∣ãij
ab(μ)

[

Ĥao
N (μ)eT̂(μ)]

DC,L

∣

∣Φμ
〉+ 〈

Φμ
∣

∣ãij
ab(μ)

[

Ĥcomp
N (μ)eŜ(μ)]

C

∣

∣Φμ
〉

+λ〈Φμ
∣

∣ãij
ab(μ)

[

Ĥcomp
N (μ)eŜ(μ)]

DC,L

∣

∣Φμ
〉

, (10-28)
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whereas projection onto the space of R12 pseudo-excitations results in

λ
(Eω − Heff

μμ

)〈

Φμ
∣

∣

[R̃k
i (μ)

]†
eR̂(μ)

∣

∣Φμ
〉

= 〈

Φμ
∣

∣

[R̃k
i (μ)

]†[
Ĥcomp

N (μ)eŜ(μ)]

C

∣

∣Φμ
〉

, (10-29)

λ
(Eω − Heff

μμ

)〈

Φμ
∣

∣

[R̃kl
ij (μ)

]†
eŜ(μ)

∣

∣Φμ
〉

= 〈

Φμ
∣

∣

[R̃kl
ij (μ)

]†[
Ĥcomp

N (μ)eŜ(μ)]

C

∣

∣Φμ
〉

+ λ〈Φμ
∣

∣

[R̃kl
ij (μ)

]†[
ĤN(μ)eŜ(μ)]

DC,L

∣

∣Φμ
〉

. (10-30)

The model space Hamiltonian also changes accordingly:

Heff
μν =

〈

Φμ
∣

∣Ĥ
∣

∣Φμ
〉

δμν +
〈

Φμ
∣

∣

[

Ĥao
N (ν)eT̂(ν)]

C

∣

∣Φν
〉

+〈Φμ
∣

∣

[

Ĥcomp
N (ν)eŜ(ν)]

C

∣

∣Φν
〉

. (10-31)

Again, Heff
μμ formally corresponds to the total energy calculated separately for the

reference
∣

∣Φμ
〉

, using amplitudes of T̂(μ) and R̂(μ).
In Eqs. (10-27), (10-28), and (10-31), parts that are identical with “conventional”

MR BW-CCSD are clearly identified. For a single reference case, evaluation of
the connected terms on the r.h.s. of Eqs. (10-27), (10-28), (10-29), (10-30), and
(10-31) is given elsewhere [9]. Here, all the resulting matrix elements and inter-
mediates must be just separately related to a specific reference determinant

∣

∣Φμ
〉

.
Products of integrals that involve summations over the complementary basis can
be evaluated using insertions of the resolution of identity that can be in particular
cases approximated by a large auxiliary basis [71]. It is convenient if this auxil-
iary basis is a unification of the computational AO basis and CABS [68]. Closely
related to our formalism, more detailed principles of the derivations were shown
in Ref. [72].

In addition to terms that are involved in the CCSD-R12 equations for the
given reference, one has to evaluate the l.h.s. of Eqs. (10-27), (10-28), (10-29),
and (10-30) and the disconnected terms on r.h.s. Their calculation is obvious
for the “conventional” part. Less obvious, but still trivial is the evaluation of
terms related to R̂ as they contain summations over the complementary basis.
Namely,

〈

Φμ
∣

∣

[R̃k
i (μ)

]†
eR̂(μ)

∣

∣Φμ
〉 = Fαi (μ)Fm

α (μ)ck
m(μ) = Xm

i (μ)ck
m(μ) ; (10-32)
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〈

Φμ
∣

∣

[R̃kl
ij (μ)

]†
eŜ(μ)

∣

∣Φμ
〉 = 1

2

[ 1
2 F̄αβij (μ)F̄mn

αβ (μ)+ F̄aβ
ij (μ)F̄mn

aβ (μ)
]

ckl
mn(μ)

+ 1
2 Fαβij (μ)Fm

α (μ)Fn
β (μ)ck

m(μ)cl
n(μ)− Faβ

ij (μ)tka(μ)Fn
β (μ)cl

n(μ)

= 1
2Xmn

ij (μ)ckl
mn(μ)+ 1

2Wmn
ij (μ)ck

m(μ)cl
n(μ)− X an

ij (μ)tka(μ)cl
n(μ) . (10-33)

The meaning of X and W is obvious. These amplitude-free intermediates can be
easily calculated [9, 72] either using CABS or the standard approximation:

X kl
ij (μ)

cabs= (F̄2)kl
ij (μ)− F̄mq′′

ij (μ)F̄kl
mq′′ (μ)− 1

2 F̄pq
ij (μ)F̄kl

pq(μ)

s.a.= (F̄2)kl
ij (μ)− 1

2 F̄pq
ij (μ)F̄kl

pq(μ) (10-34)

X al
ij (μ)

cabs= F̄aq′′
ij (μ)Fl

q′′ (μ)
s.a.= 0 (10-35)

Wkl
ij (μ)

cabs= F̄p′′q′′
ij (μ)Fk

p′′ (μ)Fl
q′′ (μ)

s.a.= 0 (10-36)

The last term of Eq. (10-28) can be rewritten as:

〈

Φμ
∣

∣ãij
ab(μ)

[

Ĥcomp
N (μ)eŜ(μ)]

DC,L

∣

∣Φμ
〉

= 〈

Φμ
∣

∣ãi
a(μ)

[

Ĥcomp
N (μ)eŜ(μ)]

C

∣

∣Φμ
〉

tjb(μ) . (10-37)

Finally, last term of Eq. (10-30) can be expressed as

〈

Φμ
∣

∣

[R̃kl
ij (μ)

]†[
ĤN(μ)eŜ(μ)]

DC,L

∣

∣Φμ
〉

= −〈Φμ
∣

∣ãk
a(μ)

[

ĤN(μ)eŜ(μ)]

C

∣

∣Φμ
〉X an

ij cl
n(μ)

= 〈

Φμ
∣

∣ãk
α(μ)

[

ĤN(μ)eŜ(μ)]

C

∣

∣Φμ
〉[

F̄αb
ij (μ)tlb(μ)− F̄αβij (μ)Fn

β (μ)cl
n(μ)

]

.

(10-38)

In CABS approximation, it is legitimate to replace spin-orbitals from the complete
complementary space (α) by those from the CABS space (p′′) and evaluate the con-
nected terms in brackets as in CCSD-R12. As soon as we assume the generalized
Brillouin condition for each reference, i.e.

f αi (μ) = 0 , (10-39)

Equations (10-32) and (10-38) are identically equal to zero, which is the case within
the standard approximation.
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Validity of Eq. (10-39) is ensured when the (computational) basis set is saturated
at the one-particle level for all the references. Then also R̂1(μ) disappears. Hence,
R̂1(μ) reflects the basis set unsaturation error for occupied orbitals. In a sense, this
operator treats the single-excitations into the complementary space as externally
contracted. Alternatively, one can recover the deficiency of the one-particle basis
by defining an additional single excitation operator onto the complementary space
spanned by finite auxiliary basis that, together with the computational set, forms a
one-particle basis close to the Hartree – Fock limit. Such approach involves more
variational parameters, but it is computationally more demanding than treating of
R̂1 [73].

10.5. RESULTS AND DISCUSSION

Current implementation was based on our open shell UHF based code [74]. The
potential of the suggested MR BW-CCSD-R12 ansatz was here preliminary tested
on the H4 model. First suggested by Jankowski and Paldus [75], this model system
consists of four hydrogen atoms arranged in an isosceles trapezoid geometry, with
a fixed distance of 2 a.u. between the neighboring hydrogens. The geometry can
be parameterized by the angle θ between the height and the side of the trapezoid.
Hence, θ varies from 0 to π/2. The value of θ=0 corresponds to a square struc-
ture when the HOMO and LUMO orbitals are degenerate, which results in a strong
multireference character. Conversely, θ=π/2 leads to a linear configuration when
the HOMO and LUMO orbitals are well separated and single reference treatment is
sufficient.

The calculations were performed using the parent 9s6p4d3f R12 suited basis
set [76] and its subsets that remain after the subsequent removing of the highest
angular momentum functions. Remaining basis sets will be (also) referred to as
s (9s), sp (9s6p), spd (9s6p4d) and spdf (9s6p4d3f ). Since the occupied molec-
ular orbitals are dominantly built from atomic s orbitals, with these basis sets we
could apply the standard approximation, although being aware that higher angular
momentum functions are of non-negligible importance for occupied orbitals, too.
With (properly used) standard approximation it does not make much difference if
one uses r12 or STG as the correlation factor [9]. For these model results, we used
r12 and hence eliminated the potential geometry dependence of the optimal STG
exponent.

The model space included two reference configurations 220 and 202. The two
monoexcited references could be omitted due to symmetry considerations. For our
purpose, the size-extensivity correction was not employed.

Total energies calculated by both conventional and explicitly correlated MR BW-
CCSD method are listed in Table 10-1. Let us consider the spdf R12 results as
the reference ones. Much faster convergence of the R12 results in this basis set
hierarchy towards the basis set limit values is evident in the whole range of the in-
vestigated geometries. With conventional MR BW-CCSD the maximum errors vary
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Table 10-1. Geometry and basis set dependence of the total MR BW-CCSD energies for
the H4 model. Energies are in Eh. For geometry and basis set specification see the text

θ/π 9s 9s6p 9s6p4d 9s6p4d3f

MR BW-CCSD

0.00 −2.060940 −2.093642 −2.099197 −2.099945
0.01 −2.066665 −2.099243 −2.104712 −2.105459
0.02 −2.075590 −2.108671 −2.114027 −2.114768
0.05 −2.107262 −2.141413 −2.146454 −2.147165
0.10 −2.150466 −2.184585 −2.189177 −2.189832
0.15 −2.178381 −2.211920 −2.216144 −2.216757
0.20 −2.195831 −2.228688 −2.232656 −2.233240
0.30 −2.213793 −2.245392 −2.249073 −2.249622
0.50 −2.223060 −2.253237 −2.256894 −2.257451

MR BW-CCSD-R12

0.00 −2.126476 −2.101485 −2.100409 −2.100515
0.01 −2.134080 −2.107145 −2.105988 −2.106051
0.02 −2.144353 −2.116592 −2.115355 −2.115386
0.05 −2.175869 −2.149112 −2.147820 −2.147815
0.10 −2.213502 −2.191568 −2.190495 −2.190480
0.15 −2.235512 −2.218008 −2.217395 −2.217391
0.20 −2.247468 −2.234145 −2.233851 −2.233857
0.30 −2.256754 −2.250125 −2.250196 −2.250217
0.50 −2.259192 −2.257913 −2.258016 −2.258039

from ∼40 mEh for the s basis to ∼6, ∼1.3 and ∼0.5 mEh for sp, spd and spdf
basis sets, respectively, whereas with R12 approach these errors are reduced to ∼26,
∼1.0, and∼0.1 mEh, respectively, from s to spd. At the first glance, one can observe
the inadequacy of the pure s basis. Even though the absolute error is significantly
reduced with the R12 approach, the energies are overestimated too much. Such be-
havior occurs when the “standard approximation” is not fully justified. Nevertheless,
we have included the latter results for illustration.

Of course, in the light of our knowledge of the performance of the R12 theory
the aforementioned convergence within the basis set hierarchy has been expected.
In an MR approach it is also desirable to investigate the relative performance with
the changing ratio of the reference configurations. This is illustrated in Figure 10-1,
where the errors relative the reference spdf numbers are monitored with respect to
the changing angle θ . Ideal behavior would correspond to straight lines parallel to
the x-axis. Note that both axes are in logarithmic scale which provided a meaningful
comparison for all the results in a single figure. On the other hand, tiny differences
at high accuracy level are more pronounced. Nevertheless, the figure clearly shows
that, though the R12 sp results reach the absolute accuracy between conventional spd
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Figure 10-1. Relative energy errors with respect to spdf MR BW-CCSD-R12 values as functions of the
basis set and the geometry of the H4 model. For description of geometries and basis sets see the text

and spdf values, relative error with the changing geometry varies little more than for
the aforementioned conventional calculations. Despite the R12 spd curve is still not
perfect, one has to realize that the relative error itself is essentially by an order of
magnitude smaller than for the best conventional results. Generally, with all basis
sets, the accuracy of the R12 corrected numbers is somewhat higher when a single
reference determinant dominates.

Finally, in the MR R12 approach one is curious to see whether, and/or to
which extent, the R12 corrections influence the relative importance of the refer-
ence configurations. The weights of these configurations are calculated as prod-
ucts of the corresponding elements of the right and left eigenvectors of the ef-
fective Hamiltonian. For selected geometries, the values are listed in Table 10-2.
As seen, changes after inclusion of the R12 terms are small, but noticeable es-
pecially with smaller basis sets. Regardless of the ill-behaved s basis, with sp
set the changes make as much as 2% for geometries of multireference character.
From the theoretical point of view the weights of individual references should not
change (too much), since via R12 approach the “dynamic correlation” is treated.
Too large changes may indicate an unbalanced treatment for individual references.
Indeed, the larger errors for s and sp R12 results seem to be related to this
phenomenon.
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Table 10-2. Comparison of the reference determinants weights for the H4
model at selected geometries using conventional and explicitly correlated
MR BW-CCSD

Reference configuration

220 202 220 202

Basis set θ/π MR BW-CCSD MR BW-CCSD-R12

9s 0.00 0.5695 0.4304 0.6496 0.3504
0.02 0.8424 0.1575 0.8870 0.1130
0.10 0.9859 0.0140 0.9894 0.0106
0.20 0.9957 0.0042 0.9967 0.0033
0.50 0.9986 0.0013 0.9989 0.0011

9s6p 0.00 0.5752 0.4247 0.5827 0.4173
0.02 0.8781 0.1218 0.8832 0.1168
0.10 0.9918 0.0081 0.9922 0.0078
0.20 0.9976 0.0023 0.9977 0.0023
0.50 0.9992 0.0007 0.9992 0.0008

9s6p4d 0.00 0.5766 0.4233 0.5799 0.4201
0.02 0.8792 0.1207 0.8809 0.1191
0.10 0.9931 0.0068 0.9932 0.0068
0.20 0.9984 0.0015 0.9985 0.0015
0.50 0.9996 0.0003 0.9996 0.0004

9s6p4d3f 0.00 0.5767 0.4232 0.5781 0.4219
0.02 0.8793 0.1206 0.8802 0.1198
0.10 0.9932 0.0067 0.9933 0.0067
0.20 0.9985 0.0014 0.9985 0.0015
0.50 0.9996 0.0003 0.9996 0.0004

10.6. CONCLUSION

In this chapter, we have shown that generalization of the CC-R12 theory to a mul-
tireference case is a relatively straightforward task. We have implemented and tested
the MR BW-CCSD-R12 for the H4 model. Though the absolute energies converge
much faster to the basis set limit values than using the conventional approach, special
care should be devoted to a balanced treatment for all the reference determinants.
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762 (2005)
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CHAPTER 11

COUPLED CLUSTER TREATMENT OF INTRAMONOMER
CORRELATION EFFECTS IN INTERMOLECULAR
INTERACTIONS

TATIANA KORONA
Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland,
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Abstract: An adequate account of the effects of intramonomer correlation is indispensable to
obtain an accurate representation of intermolecular potentials in symmetry-adapted pertur-
bation theory (SAPT) calculations. These intramonomer correlation effects have initially
been taken into account by employing Møller-Plesset perturbation theory, i.e., using the
SAPT(MP) method, and more recently by applying density functional theory within the
SAPT(DFT) approach. In this review a new approach, called SAPT(CC), is presented, in
which the intramonomer correlation effects are treated by coupled cluster (CC) theory.
Specifically, in the SAPT(CC) method each interaction energy component predicted by
SAPT is expressed via monomer properties (density matrices, density susceptibilities and
their generalizations) obtained from coupled cluster theory. In practice, the expectation-
value approach to coupled cluster properties has been found most useful. The SAPT(CC)
approach was implemented in practice at the SAPT(CCSD) level by including only singly
and doubly excited parts of the cluster operator. At this level, the theory is exact for
the interaction of two-electron monomers, i.e., takes into account (connected) triple and
quadruple excitation contributions appearing in the supermolecular CC calculations of the
interaction energy. The results obtained thus far using the SAPT(CCSD) approach are
reviewed and compared with results of the corresponding SAPT(MP) and SAPT(DFT)
treatments. The quality of the SAPT(CCSD) method is also examined by comparison
with high-level supermolecular calculations performed using the CCSD(T), CCSDT(Q)
and CCSDTQ methods.

Keywords: Symmetry-adapted perturbation theory, Coupled cluster, Intermolecular interactions,
Intramonomer correlation

11.1. INTRODUCTION

The concept of intermolecular interaction energy, or intermolecular potential, plays
a central role in describing many phenomena in chemistry and physics, ranging
from bulk properties of gases to biochemical processes [1]. A single point on the
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intermolecular potential energy surface (PES) for a noncovalent complex (dimer)
AB [2] is defined as the difference between the energy of a dimer and a sum of the
energies of monomers A and B

Eint = EAB − (EA + EB), (11-1)

where the energies EAB, EA, and EB are eigenvalues of the electronic Hamiltonians of
a dimer (HAB) and of monomers (HA and HB), respectively. In Eq. (11-1) the geomet-
rical coordinates of monomers’ nuclei are kept unchanged in the dimer, therefore the
interaction energy defined by Eq. (11-1) is not identical with the so-called electronic
binding energy [3]. Theoretical methods devoted for a calculation of the interaction
energy can be divided into two classes: supermolecular (SM) and perturbational (PT)
ones. In the first class Eq. (11-1) is directly applied with some approximate energies
of a dimer and monomers used instead of the exact ones. For a detailed discussion of
virtues and weaknesses of the SM method the reader is referred to, e.g., Refs. [1, 4].
Here we only mention that two necessary conditions for approximate energies in
Eq. (11-1) are: the size-extensivity [5] of the selected method and a proper elimina-
tion of the basis-set superposition error (BSSE) [6].

Contrary to the SM approach, a PT interaction energy is obtained directly as a
sum of some energy corrections. From several initial attempts to formulate a PT
theory of intermolecular interactions, capable to describe the whole intermolecular
potential energy surface, i.e. repulsion, minimum, and large-distance regions in a
uniform way, the perturbational approach presented in Refs. [7–15] has proven to
be the most successful. This approach, called symmetry-adapted perturbation theory
(SAPT), has been used in numerous studies of noncovalent complexes after the first
version of the SAPT program [16] has been released almost 20 years ago. For details
of the historical development of SAPT the reader is referred to the reviews [1, 17] and
references therein. In this place only a general overview of SAPT will be presented,
necessary to establish key definitions and notation.

In perturbation theory of intermolecular interactions a natural candidate for the
unperturbed part of the total Hamiltonian HAB is the sum of the monomer Hamilto-
nians HA and HB. The perturbation V , usually called the intermolecular interaction
operator, is thus defined as the difference between the Hamiltonian of a dimer and
the Hamiltonians of monomers. If Rayleigh-Schrödinger perturbation theory (RSPT)
is applied to such a division of the dimer’s Hamiltonian, the so-called polariza-
tion theory of intermolecular interactions [18] is obtained. The RSPT interaction
energy up to the second order in terms of V is composed of the first-order electro-
static (E(1)

elst), and the second-order induction (E(2)
ind) and dispersion (E(2)

disp) energies.
Unfortunately, the sum of polarization corrections alone fails to describe correctly
these regions of PES, where the overlap between electron clouds of monomers is
nonnegligible. This failure can be traced down to the improper permutational sym-
metry of approximate wave functions (i.e. RSPT wave functions of a finite kth order,
Ψ

(k)
pol , are not antisymmetric with respect to transpositions of electrons belonging to
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different monomers). As a solution of this problem, a forcing of the antisymmetry
in the equations for energy and (in some variants of the method) for wave function
corrections has been proposed [7, 8, 10, 19]. In the simplest case of the symmetrized
Rayleigh-Schrödinger theory (SRS) [8] the unmodified RSPT wave functions are
utilized and the symmetry-forcing is applied to the energy formulae only. Because
of its simplicity and accuracy in a low order the SRS method is utilized in nearly
all practical SAPT developments. The SRS interaction energy through the second
order includes (in addition to the three polarization corrections mentioned above)
the first-order exchange energy (E(1)

exch), and the second-order exchange-induction

(E(2)
exch−ind) and exchange-dispersion (E(2)

exch−disp) energies.
It should be stressed that the convergence properties of polarization theory, as well

as of SRS and other symmetry-forcing methods are far from being trivial. As a matter
of fact, it is now well known that the SRS perturbation series for the energy and wave
function diverge for all but for the smallest (one- and two-electron) monomers [20]
(for a review see Refs. [1, 17] and references therein). From the perspective of years
of applications one can say that the success of SAPT relies mostly on a fortunate
circumstance that this divergent series usually provides an excellent approximation
to the interaction energy in a low (usually second) order [21].

Another complication for a practical use of SRS arises from the fact that exact
monomer energies and wave functions, appearing in the RSPT formulae, are not
known, and their approximate counterparts should be used instead. The easiest so-
lution to this problem consists in replacing the unknown exact monomer wave func-
tions with Hartree-Fock (HF) determinants, leading to the approach denoted here as
SAPT(HF). If such a replacement is performed, the intramonomer electron correla-
tion effects resulting from the Coulomb repulsion are simply neglected in the SAPT
interaction energy. However, it can be predicted that these effects play a signifi-
cant role in the SAPT interaction energy, since on the one hand electron correlation
contributes substantially to molecular properties and – on the other hand – there is
a close relation between molecular properties and perturbation energy components
(vide infra). So far the effect of intramonomer correlation has been treated on the
level of Møller-Plesset (MP) theory or density functional theory (DFT), what gives
methods denoted here as SAPT(MP) [9, 11–15, 22, 23] or SAPT(DFT) [24–31]. In
SAPT(MP) the interaction energy is expanded in terms of three perturbations: V , WA

and WB, where WX is a fluctuation potential of the monomer X (X = A, B). This
expansion gives rise to a triple perturbation series with expansion coefficients of the
type E(nij), where n, i, j are powers of the perturbations V , WA and WB, respectively.
The highest MP level used in practice for SAPT(MP) ranges from three (first-order
electrostatics) through two (first-order exchange and second-order induction and dis-
persion energies) and down to zero (second-order exchange energies). The major dis-
advantage of the SAPT(MP) approach is its dependence on the convergence behavior
of the MP perturbation series. If for some monomer in the complex under study the
MP series is divergent [32], the reliability of the SAPT(MP) corrections for intra-
monomer correlation becomes questionable. A more recent SAPT(DFT) method has
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been simultaneously developed in two groups: Misquitta, Jeziorski, and Szalewicz
added the SAPT(DFT) functionality to the SAPT program [16], while Heßelmann
and Jansen implemented their program into the MOLPRO suite of codes [33]. It
should be noted that these two SAPT(DFT) formulations are not identical, since
in the method of Misquitta et al. the uncoupled Kohn-Sham (KS) propagators are
used for the calculation of the second-order exchange energy,1 while the coupled KS
propagators are utilized by Heßelmann and Jansen for this purpose.

Another popular way of accounting for electron correlation is provided by cou-
pled cluster (CC) theory. If CC theory is applied to the intramonomer correlation
effects of SAPT energy components, a new SAPT(CC) method is obtained [34–42].
This method will be described in detail in the next Sections.

11.2. LOW-ORDER SAPT TERMS AND THEIR RELATION
TO MONOMER PROPERTIES

An important feature of SAPT is a possibility of expressing its energy components
through monomer properties. This virtue of SAPT results in a deeper understand-
ing of processes occurring in interacting molecules, and – from a practical point
of view – allows the methods, which were originally designed for a treatment of
molecular properties, to be easily adapted for needs of the SAPT approach. Note-
worthy, a description of the polarization energy in terms of monomer properties fa-
cilitates a derivation of an asymptotic form of the interaction energy, which is consis-
tent with finite-distance SAPT calculations. Monomer properties used as “building
blocks” of SAPT corrections are: reduced density matrices, cumulants of reduced
density matrices, frequency-dependent density susceptibilities and straightforward
generalizations of the latter quantity, denoted as frequency-dependent density-matrix
susceptibilities. All these quantities will be presented and discussed in a context
of first- and second-order SAPT energy contributions. Since only reduced density
matrices will be discussed here, the word reduced will be omitted in the rest of this
article.

11.3. POLARIZATION ENERGIES

As already mentioned in Section 11.1, polarization energies are obtained by a direct
application of RSPT to the dimer Hamiltonian HAB divided into the unperturbed part
H0 = HA +HB and the perturbation V . For a concise notation in the next sections, it
will be convenient to express the operator V in terms of the generalized interaction
potential v(i, j) [22]

1 The uncoupled KS exchange-induction and exchange-dispersion energies are then corrected by a scaling
procedure to estimate the coupling effect.
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V =
NA
∑

i=1

NA+NB
∑

j=1+NA

v(i, j), (11-2)

where NA and NB denote the numbers of electrons in monomers A and B, respec-
tively, and the pair potential v(i, j) is defined as

v(i, j) = 1

rij
− 1

NB

∑

β∈B

Zβ
rβi
− 1

NA

∑

α∈A

Zα
rαj
+ 1

NANB

∑

α∈A

∑

β∈B

ZαZβ
Rαβ

(11-3)

(i stands for coordinates of the ith electron, including spin, while ri will denote spa-
tial coordinates only).2 The following energy corrections are obtained from RSPT,
where En

X ,Ψ n
X (X = A, B) are eigenvalues and eigenvectors of HX (n = 0 denotes the

ground state)

E(1)
elst = 〈Ψ 0

AΨ
0
B |VΨ 0

AΨ
0
B 〉, (11-4)

E(2)
ind = 〈Ψ 0

A |VBΨ
(1)
ind,A〉 + A ↔ B, (11-5)

E(2)
disp = 〈Ψ 0

AΨ
0
B |VΨ (1)

disp〉. (11-6)

Here VB =
〈

Ψ 0
B

∣

∣VΨ 0
B

〉

and A ↔ B means that the second term should be added for
the induction energy with A and B indices interchanged. The first-order induction
and dispersion wave functions are defined through the following equations

Ψ
(1)
ind,A = −

∞
∑

n=1

∣

∣Ψ n
A

〉 〈

Ψ n
A

∣

∣VBΨ
0
A

〉

ΔEn
A

, (11-7)

Ψ
(1)
disp = −

∞
∑

n=1

∞
∑

m=1

∣

∣Ψ n
AΨ

m
B

〉 〈

Ψ n
AΨ

m
B

∣

∣VΨ 0
AΨ

0
B

〉

ΔEn
A +ΔEm

B
, (11-8)

whereΔEn
X = En

X−E0
X . A total first-order polarization wave function is given by the

formula

Ψ
(1)
pol = Ψ (1)

ind,AΨ
0
B + Ψ 0

AΨ
(1)
ind,B + Ψ (1)

disp. (11-9)

Bearing in mind that V is a two-body operator (a “body” means an electron in this
case), one can integrate r.h.s. of Eqs. (11-4), (11-5), (11-6), (11-7), and (11-8) over
coordinates of all but two electrons. This procedure leads to formulae for polarization

2 It is worthwhile to note that v(i, j), unlike the pure interelectron repulsion operator r−1
ij , is nonsymmetric,

i.e. v(i, j) �= v(j, i).
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energies described in terms of various monomer properties which will be analyzed
in detail in Sections 11.3.1, 11.3.2, and 11.3.3.

11.3.1. Electrostatic Energy

The electrostatic energy is expressed through monomer properties by the following
formula

E(1)
elst =

∫

ρA(1)v(1, 1′)ρB(1′)dτ1dτ ′1, (11-10)

where ρX(i) denotes the one-electron density of the monomer X. The one-electron
density can be viewed as a diagonal part of the one-electron density matrix ρ(1|1′)
[43]

ρ(1|1′) = N
∫

Ψ 0(1, 2, . . . , N)∗Ψ 0(1′, 2, . . . , N)dτ2 . . . τN , (11-11)

i.e. we have an identity ρ(1) = ρ(1|1). In Eq. (11-11) Ψ 0 denotes the ground-
state wave function for a system of N electrons. Eq. (11-10) validates a well-known
interpretation of the electrostatic energy as being a result of the interaction between
unperturbed electron clouds of monomers. Noteworthy, Eq. (11-10) in a somewhat
different form (with a bare interelectron repulsion and with a total charge distribu-
tion) appeared in the literature already in 1956 [44].

Since first-order properties and therefore one-electron densities are available for
many ab initio methods, it is relatively easy to apply them for a calculation of the
electrostatic energy. As a result, there exist numerous calculations of the electro-
static energies for various electron-correlated methods, described in Ref. [22] for
MPn (n = 2, 3, 4), Ref. [45] for BCCD, or Ref. [34] for LR-CCSD and QCISD(T)
methods. In the present SAPT(CC) approach these densities are obtained from
expectation-value coupled cluster theory XCC (X in the abbreviation comes from
the word “expectation”), which has been proposed by Jeziorski and Moszynski some
time ago [46].

In XCC theory the first-order property of an operator X is calculated from the
following expression

X = 〈eS†
e−TXeTe−S†〉, (11-12)

where the abbreviation 〈Z〉 = 〈Φ|ZΦ〉 has been introduced (Φ is the reference
determinant) and T denotes the usual cluster operator of CC theory. Equation (11-12)
has been derived by inserting the normalized CC ansatz for the wave function into
the formula for the expectation value of an operator X and by introducing a new
excitation operator S, which is defined through the equation [46]
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eSΦ = eT†
eTΦ

〈eT† eT〉 . (11-13)

It has been proven [13, 46] that the S operator is a connected quantity, as it satisfies
a linear equation containing a finite number of multiple commutators of T and T†.
The connectedness of S and T operators implies that r.h.s. of Eq. (11-12) is also
connected (provided that the operator X is connected itself). This feature can be
most easily demonstrated by applying twice the nested-commutator expansion

e−ABeA = B+ [B, A]+ 1

2! [[B, A], A]+ . . . , (11-14)

to Eq. (11-12). The formula for a first-order property presented in Eq. (11-12) is
therefore explicitly size-extensive.

An implementation of XCC theory has been reported in Ref. [36] for T limited to
single and double excitations (CCSD theory). If the T operator is taken from CCSD
theory, the expression for the first-order property X is simplified to

X = 〈X〉 + 〈S1|X〉 + 〈XT1〉 + 〈S2|[X, T2]〉 + 〈S1|[X, T2]〉 + 〈S1|[X, T1]〉 +
+〈S2|[[X, T1], T2]〉 +O(W5). (11-15)

In this formula the abbreviation 〈Y|Z〉 = 〈YΦ|ZΦ〉 has been used. The contributions
of the fifth and higher orders in terms of the fluctuation operator W (W = H − F)
have been also derived and implemented, but usually they contribute very little to
the property X. It should be noted that a proper factorization of Eq. (11-15) allows
to make its computational cost insignificant in comparison to the time spent on the
calculation of the cluster operator T .

The recursive formula for the S operator is highly nonlinear in T and T† (see
Eq. (23) of Ref. [46]) and needs to be truncated for practical reasons. A systematic
way of selection of the most important terms in the equation for S has been proposed
by Moszynski et al. [47]. The scheme presented in Ref. [47] is based on the neglect of
contributions containing more than some prescribed number of T and T† operators.
For the case of CCSD theory the S operator up to cubic terms is presented below,

S = T + ̂P1( [T†
1 , T2] )+ 1

2
̂P2( [ [T†

2 , T2], T2] )+ ̂P2( [ [T†
1 , T2], T1] )+

+̂P1(
1

2
[ [T†

1 , T1], T1]+ [ [T†
2 , T2], T1] )+ 1

2
̂P3( [ [T†

1 , T2], T2] )+O(T4),

(11-16)

where ̂Pn is the superoperator projecting on the space spanned by n-tuple excitation
operators,
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̂Pn(X) = 1

(n!)2

∑

a1...an

∑

i1...in

〈

ei1
a1
· · · ein

an
X
〉

ea1
i1
· · · ean

in
, (11-17)

with ep
q = apaq being the spinorbital substitution operator (ar and ar are creation

and annihilation operators for a spinorbital φr) [48].3 Some terms of Eq. (11-16)
can still be neglected without affecting the accuracy of the results. This fact can
be deduced from an analysis of the importance of single and double excitations in
CC theory interpreted as an infinite-order summation scheme for MP theory. It can
be shown that e.g. the double-excitation operator T2 is of the O(W1) order, while
the single-excitation operator T1 appears for the first time in the second W order
(i.e. T1 = O(W2)). This means for instance that a term constructed from two T2 and
one T1 operator is of the O(W4) order, while a similar term built from three T1 oper-
ators is much less important because of its O(W6) order. Since the CCSD correlation
energy is correct to the third W order and the first-order properties calculated from
Eq. (11-12) with T = T1 + T2 are correct through the O(W2) order only, the first
three terms of Eq. (11-16) are sufficient in most applications.

The fact that Eq. (11-15) in spite of its visual complexity misses some O(W3)
terms (namely, those arising from a triple-excitation operator T3 of CC theory),
is somewhat disappointing. Fortunately enough, numerical results presented in
Ref. [36] have shown that a lack of these terms does not affect the quality of the
first-order molecular properties in the majority of cases. However, because of this
formal problem, Jeziorski and Moszynski developed an alternative approach for
an expectation-value CC molecular property, which starting from Eq. (11-12) ar-
rives at the expression containing single- and double-excitation operators only, but
nonetheless correct through the O(W3) order [46]. For real orbitals the corresponding
formula reads

Xresp(3) = 〈X〉+〈T2|[X, T2]〉+2 〈T2|[H, C1(X)]〉+2 〈T2|[[H, C1(X)], T2]〉. (11-18)

This method, called here just Xresp(3), requires that an additional set of coupled HF
equations with the perturbation operator X should be solved in order to obtain a
new single-excitation operator C1(X). It should be stressed that the computational
effort for first-order properties obtained from the XCCSD or Xresp(3) methods is
approximately two times smaller than the time required by the linear-response (LR)
CCSD method [49–52], because in the latter case it is necessary to solve the left-hand
CCSD equation to obtain the corresponding property.

In practice the operators and density matrices are expressed in a spinorbital basis
{φp}. For the one-electron density matrix the expansion in terms of spinorbitals is
given by

3 A convention for denoting occupied spinorbitals by letters i, j, k, l, virtual ones – by a, b, c, d, and generic
by p, q, r, s will be used in the following.
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ρ(1|1′) =
∑

pq

ρp
qφp(1)&φq(1′), (11-19)

where the expansion coefficients are obtained as ρp
q =

〈

Ψ 0
∣

∣ep
qΨ

0
〉

. For the XCC case
the ep

q operators for all possible pairs (p,q) should be inserted as X into Eq. (11-15) to
obtain the corresponding XCC one-electron density matrix. This matrix can be then
used to calculate all one-electron first-order properties of a molecule. Of course, for
the case of the electrostatic energy two such matrices, ρA and ρB, should be obtained.

11.3.2. Induction Energy

The second-order induction energy is composed of two terms, which describe the
polarization of one monomer by the electrostatic field of another monomer and vice
versa

E(2)
ind = E(2)

ind(A←B)+ E(2)
ind(B←A). (11-20)

This interaction energy component can be expressed in terms of one-electron densi-
ties and static density susceptibilities of monomers as follows [53]

E(2)
ind = −

1

2

∫

veff,B(1)αA(1, 1′|0)veff,B(1′)dτ1dτ ′1 + A ↔ B. (11-21)

The effective one-electron potential of the monomer B (veff,B(1)) entering into
Eq. (11-21) is defined as

veff,B(1) = vB(1)+
∫

ρB(1′|1′)
r11′

dτ ′1, (11-22)

where vB and ρB are the one-electron potential and the one-electron density of the
monomer B, respectively. Another monomer property appearing in Eq. (11-21) is a
density susceptibility α(r, r′|ω). This quantity is a particular case of a linear response
function, denoted as 〈〈X;Y〉〉ω, which describes a linear response of a molecule to
perturbing operators (X or Y) oscillating with a frequency ω [54]

〈〈X;Y〉〉ω = −〈Ψ0|Y Q

H − E0 + ωXΨ0〉 − 〈Ψ0|X Q

H − E0 − ωYΨ0〉. (11-23)

In Eq. (11-23) H, E0, and Ψ0 are the Hamiltonian, energy and wave function of the
unperturbed molecule, respectively, and Q = 1 − |Ψ0〉〈Ψ0| is the projection on the
space orthogonal to Ψ0. The linear response function is often called a polarization
propagator. The density susceptibility is defined through linear response functions in
the following way
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α(r, r′|ω) = −〈〈ρ̂(r);ρ̂(r′)〉〉ω = −
∑

pqrs

〈〈Gp
q;Gr

s〉〉ω φp(r)φq(r)φr(r′)φs(r′), (11-24)

where the orbitals are assumed to be real and where ρ̂(r) is the electron-density
operator [44],

ρ̂(r) =
N
∑

i=1

δ(r− ri) =
∑

pq

Ep
qφp(r)φq(r). (11-25)

In Eq. (11-24) an adaptation of spin, trivial for the closed-shell molecules, has been
already performed, and Gp

q = 1
2

(

Ep
q + Eq

p
)

is the Hermitian combination of the usual
orbital-replacement operator Ep

q
(

Ep
q = apαaqα + apβaqβ

)

[48].
The formulae (11-21) and (11-22) look very attractive at first glance since neither

the susceptibility αA, nor the one-electron density ρB depend on the presence of
another monomer. This means that they can in principle be obtained separately for
each interacting molecule and then used to calculate the whole PES of the inter-
molecular interaction. In spite of this, Eq. (11-21) is not well suited for a practical
implementation, as it requires the knowledge of the full static monomer density sus-
ceptibility. In the algebraic approximation this means that the full 4-index propaga-
tor matrix constructed from coefficients 〈〈Gp

q;Gr
s〉〉ω=0 should be available for SAPT

calculations of the induction energy. In addition, it is a known problem that monomer
properties obtained from monomer-centered basis sets (so-called MCBS) give a poor
approximation of the SAPT interaction energy [55]. An augmentation of MCBS by
basis functions placed on another monomer makes the quality of the SAPT energies
considerably better, but this improvement has the price of making monomer proper-
ties dependent on the position of another monomer, what means that a costly step of
obtaining the 4-index propagator matrices should be repeated for each geometry.

Fortunately enough, Eq. (11-5) can be recast into a form more suitable for com-
putational purposes, provided that a concept of perturbed density matrices is utilized.
The first-order one-electron density matrix is defined as

ρ(1)(1|1′) = N
∫

Ψ 0(1, 2, . . . , N)∗Ψ (1)(1′, 2, . . . , N) dτ2 . . . τN , (11-26)

where Ψ (1) describes the first-order response of a molecule to some perturbation.
For the E(2)

ind(A←B) term the molecule A is perturbed by the Veff,B = ∑NA
i=1 veff,B(i)

operator, therefore the corresponding first-order density matrix of the monomer A
will be denoted as ρ(1)

A←B. With these definitions the induction energy can be rewritten
as

E(2)
ind =

∫

ρ
(1)
A←B(1|1)veff,B(1)dτ1 + A ↔ B. (11-27)
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It is noteworthy that the first-order one-electron density matrix has the form of a
transition density matrix, where in place of the wave function for the final state the
first-order wave function Ψ (1) is inserted.

For purposes of SAPT(CC), the ground-state and first-order one-electron den-
sities of monomers are obtained from XCC theory. The ground-state density has
been already presented in Section 11.3.1. The first-order density is retrieved from
time-independent CC theory of the polarization propagator of Moszynski et al. [47].
In this theory the following ansatz for the first-order CC wave function is utilized

Ψ X(ω) =
(

ΩX
0 (ω)+ΩX(ω)

)

eTΦ

〈eT |eT〉1/2 , (11-28)

where ΩX
0 (ω) is a number and ΩX(ω) is an excitation operator which describes the

first-order response of a molecule to the perturbation X oscillating with a frequency
ω. The operator ΩX(ω) is identical with the first-order excitation operator of time-
dependent CC theory (TD-CC) of molecular properties [49, 56] and satisfies the
operator equation

[

e−THeT ,ΩX(ω)
]

Φ + ωΩX(ω)Φ = −e−TXeTΦ, (11-29)

in the space orthogonal to Φ. The general formula for the frequency-dependent CC
polarization propagator from Ref. [47] reads

〈〈X;Y〉〉ω = 〈e−S eT†
Y e−T†

eS | ̂P(eS†
ΩX(ω) e−S†

)〉 + g.c.c., (11-30)

where g.c.c. denotes the second term obtained by performing a complex conjugation
of the first term calculated at frequency −ω∗. The first term in Eq. (11-30) can be
identified as 〈Ψ |YΨ X(ω)〉 with the wave function Ψ X(ω) defined by Eq. (11-28).
The elements of the first-order one-electron density matrix, (ρ(1)

A←B)p
q, are obtained

by inserting X = Veff,B and Y = ep
q into the first term of the r.h.s. of Eq. (11-30) and

by setting ω = 0.
Similarly to the XCC first-order properties, Eq. (11-30) should be simplified for

a practical use. To this end a systematic truncation procedure, proposed in Ref. [47],
has been exploited in Ref. [35], resulting in three models denoted as CCSD(n),
n = 2, 3, 4. Among these schemes the CCSD(3) model has been selected as an
optimal choice for many-electron monomers. The CCSD(3) polarization propagator
is calculated as

〈〈X;Y〉〉ω =
〈

YΩX
1 (ω)

〉+ 〈

S|[Y ,ΩX(ω)]
〉+ 〈

[Y , S2]|ΩX
1 (ω)

〉+
+〈[[T†, Y], S]|ΩX(ω)〉 + g.c.c., (11-31)
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with the S operator approximated by the first three terms of Eq. (11-16). This model
contains all O(W3) terms present in Eq. (11-30) for the T operator from CCSD
theory, but it still misses some O(W3) terms arising from the T3 and ΩX

3 (ω) triple-
excitation operators. Nonetheless, the numerical experience shows that the CCSD(3)
model performs well in comparison to the benchmark full configuration interaction
(FCI) results [35] and that its accuracy is similar to that of time-dependent LR-CCSD
theory [49–52]. It should be noted that LR-CCSD theory also misses some terms
of the O(W3) order, unless the orbital relaxation is explicitly taken into account.
The orbital-relaxed version of LR-CCSD theory has been presented recently by
Wheatley [57].

11.3.3. Dispersion Energy

The second-order dispersion energy can be expressed through monomer properties
with the formula proposed by Longuet-Higgins [58]. This equation represents the
dispersion energy through frequency-dependent density susceptibilities (FDDS) of
monomers A and B (see Eq. (11-24)) calculated for imaginary frequencies iω

E(2)
disp = −

1

2π

∫ ∞

0

∫

αA(1, 1′|iω)αB(2, 2′|iω)
1

r12

1

r1′2′
dτ1dτ ′1dτ2dτ ′2dω. (11-32)

Contrary to the case of the induction energy, the calculation of FDDS cannot be
avoided by using some faster computational method for perturbed CCSD wave func-
tions. For simpler models, like SAPT(HF) or SAPT(MP2), where the orbital sum-
mation ranges in Eq. (11-24) are restricted, it is advantageous to make use of the
formula

1

ΔEK
A +ΔEL

B

= 2

π

∫ ∞

0

ΔEK
A

(

ΔEK
A

)2 + ω2

ΔEL
B

(

ΔEL
B

)2 + ω2
dω, (11-33)

and to calculate directly mixed AB amplitudes [12]. Monomer density susceptibili-
ties can be conveniently obtained from the time-independent CC theory of the po-
larization propagator [47]. In a practical implementation the CCSD(3) model [35]
has been used. The computation of 4-index coefficient matrices from Eq. (11-31)
is the most time-consuming step in the computation of the CC dispersion energy.
This is explained by the necessity of a calculation of a first-order perturbed operator
ΩGr

s (iω) (see Eq. (11-29)) for all r ≥ s pairs of indices. For the CCSD case the
computational cost of one such operator scales as iterative O(o2v4), where o and
v denote the numbers of occupied and virtual orbitals, respectively. As a result,
1
2 M(M + 1) (M = o + v) operators ΩGr

s (iω) are needed to obtain a full FDDS at
one frequency iω, what gives rise to an iterative O(o2v4M2) scaling. In addition, a
numerical quadrature over frequency requires usually about 8–12 integration points
to achieve a 2–3 digit accuracy. This scaling behavior strongly limits the size of
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complexes, for which the calculation of the CCSD dispersion energy is feasible. A
way to overcome this limitation has been presented by Korona and Jeziorski [38],
who proposed to expand density susceptibilities in an auxiliary basis set {χK} of a
dimension Naux

α(r, r′|iω) = −
∑

KL

〈〈χ̂K ;χ̂L〉〉iω χK(r)χL(r′). (11-34)

New perturbing operators χ̂K are defined for each auxiliary orbital χK ,

χ̂K =
∑

pq

DK
pq Ep

q, (11-35)

where the expansion coefficients DK
pq are obtained by fitting the products of orbitals

with the auxiliary basis set (orbitals are assumed to be real) and by using the
Coulomb metric [59, 60]:

φp(r)φq(r) ≈
∑

K

DK
pq χK(r). (11-36)

The density-fitting procedure decreases the number of first-order operators ΩX(ω)
for each frequency from M2 to Naux. Since Naux is usually only 2–3 times larger than
a dimension of the orbital basis M, the utilization of density-fitted FDDS reduces
the computational effort by one order of magnitude (in terms of the orbital basis
size), i.e. to an iterative O(o2v4Naux) scaling. It should be noted that the calculation
of Ωχ̂K (iω) operators can be easily parallelized, since they are independent of each
other and can be therefore obtained simultaneously for various K and ω’s.

It should be noted that another CC-like treatment of the dispersion energy has
been proposed some time ago by Williams et al. [61]. In this approach the dimer
cluster operator T = TA + TB + TAB for a reference wave function ΦAΦB has been
introduced. The TA and TB operators contain pure excitations from ΦA or ΦB to vir-
tual orbitals of the monomers A and B, respectively, while the TAB operator contains
mixed excitations. Working expressions for these operators have been developed
for the simplest nontrivial case of double excitations, giving rise to the dispersion
energy named E(2)

disp(CCD). This energy has been then augmented by noniterative
single and triple corrections obtained in a spirit of the triples correction for CCSD(T)
theory [62], what finally has resulted in the CCD+ST(CCD) method. The quality of
the E(2)

disp(CCD+ST(CCD)) energy is usually superior over the standard SAPT(MP)
method. However, this energy cannot be expressed through monomer properties and
therefore the CCD+ST(CCD) method has no well-defined asymptotics, i.e. the large-
distance behavior of this approach cannot be related to the properties of monomers.
On the contrary, the asymptotic form of the polarization energies obtained from Eqs.
(11-10), (11-21), and (11-32) is readily available, if the expanded form of the in-
termolecular operator V is inserted into these expressions. The resulting formulae
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will contain multipole moments and polarizabilities, which for a consistency should
be calculated on the same level of theory, as used for the finite-distance energy
components (see e.g. Ref. [35] for the calculation of the van der Waals dispersion
coefficients from the CCSD(3) model).

11.4. EXCHANGE ENERGIES

The total SRS exchange corrections of first and second order in V are given by the
formulae [8]

E(1)
exch = 〈Ψ 0

AΨ
0
B |AΨ 0

AΨ
0
B 〉−1〈Ψ 0

AΨ
0
B |VAΨ 0

AΨ
0
B 〉 − E(1)

pol, (11-37)

E(2)
exch = 〈Ψ 0

AΨ
0
B |AΨ 0

AΨ
0
B 〉−1〈Ψ 0

AΨ
0
B |(V − V)AΨ (1)

pol 〉 − E(2)
pol, (11-38)

where A denotes the antisymmetrizer and Y is the mean value of the operator Y
with the zeroth-order wave function Ψ 0

AΨ
0
B (i.e. V = E(1)

elst). The presence of A in
Eqs. (11-37) and (11-38) makes the formulae fairly complicated for a general many-
electron case. A technique to calculate such corrections has been developed only
for the first-order exchange energy within the HF approximation [63]. Fortunately
enough, it turns out that if the intermonomer distance is not too small, it is usu-
ally sufficient to take into account single exchanges of electrons between monomers
only (a so-called S2 approximation) [64, 65]. The S2 approximation tremendously
simplifies the expressions for exchange energies. Single-exchange formulae can be
derived from Eqs. (11-37) and (11-38) if the expansion in terms of single- and
higher-order exchanges of electrons is performed and then only terms linear in the
single-exchange operator P1

P1 = −
NA
∑

i=1

NA+NB
∑

j=1+NA

Pij, (11-39)

are taken into account (Pij denotes here the transposition of electrons i and j). In
the SAPT(CC) method only exchange corrections within the S2 approximation will
be considered. The formulae for the exchange energies up to the second order in V
within the single-exchange approximation are listed below

E(1)
exch = 〈Ψ 0

AΨ
0
B |(V − V)P1Ψ

0
AΨ

0
B 〉, (11-40)

E(2)
exch−ind = 〈Ψ 0

AΨ
0
B |(V − V)(P1 − P1)Ψ (1)

ind,AΨ
0
B 〉 + A ↔ B, (11-41)

E(2)
exch−disp = 〈Ψ 0

AΨ
0
B |(V − V)(P1 − P1)Ψ (1)

disp〉, (11-42)

where E(2)
exch−ind and E(2)

exch−disp are the induction and dispersion components of E(2)
exch.

Similarly to the case of the polarization energies, the integration over most electron
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coordinates can be performed in Eqs. (11-40), (11-41), and (11-42), since both V
and P1 are 2-body operators. However, the presence of the VP1 term results in the
emergence of more complicated monomer quantities, like e.g. two-electron density
matrices. Nevertheless, a reformulation of Eqs. (11-40), (11-41), and (11-42) in terms
of monomer properties is still possible, and will be presented in detail in Sections
11.4.1, 11.4.2, and 11.4.3.

11.4.1. First-Order Exchange Energy

The formula expressing the first-order exchange energy in terms of monomer prop-
erties has been proposed by Moszynski et al. [14]. In Ref. [14] an auxiliary quantity
called the interaction density matrix has been introduced for this purpose. The inter-
action density matrix is constructed from one- and two-electron density matrices of
the monomers A and B

ρint(1|1′) = −ρA(1|1′)ρB(1′|1)−
∫

ρA(1|2′)ΓB(1′2′|1′1)dτ ′2 −

−
∫

ΓA(12|11′)ρB(1′|2)dτ2 −
∫

ΓA(12|12′)ΓB(1′2′|1′2)dτ2dτ ′2. (11-43)

A definition of a two-electron density matrix is given by the equation [43]

Γ (12|1′2′) = N(N − 1)
∫

Ψ 0(1, 2, 3, . . . , N)∗Ψ 0(1′, 2′, 3, . . . , N)dτ3 . . . τN .

(11-44)
In the algebraic approximation the two-electron density matrix is expanded as

Γ (12|1′2′) =
∑

p1q1p2q2

Γ p1p2
q1q2

φ∗p1
(1)φ∗p2

(2)φq1 (1′)φq2 (2′), (11-45)

where the coefficients Γ p1p2
q1q2 are obtained from the formula Γ p1p2

q1q2 =
〈

Ψ 0
∣

∣ep1p2
q1q2Ψ

0
〉

(ep1p2
q1q2 = ap1 ap2 aq2 aq1 is a two-body spinorbital replacement operator). If the

interaction density matrix ρint(1|1′) is used, the first-order exchange energy can be
represented in a following compact form [14]

E(1)
exch =

∫

ρint(1|1′)
(

v(1, 1′)− V

NANB

)

dτ1dτ ′1. (11-46)

In the work of Moszynski et al. [14] the density matrices appearing in Eq. (11-43)
have been obtained from MP theory, with a restriction that the cumulative order
of WA and WB fluctuation operators should be not greater than 2. In this way the
E(1)

exch(2) correction has been obtained. Numerical results presented in Ref. [14] for
this correction were only halfway satisfactory, therefore it has been proposed to use
converged CCSD monomer amplitudes instead of their MP1 and MP2 counterparts
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in the equations for E(1)
exch(2). The first-order exchange energy obtained in this way

is denoted as E(1)
exch(CCSD). A utilization of the E(1)

exch(CCSD) energy instead of the

E(1)
exch(2) one has become a standard in nearly all practical SAPT(MP) applications.

Equation 11-46 contains an explicitly disconnected part and it is not clear if
this term cancels exactly with some parts of the first term, giving a size-extensive
quantity (a correct definition of the first-order exchange energy should be of course
size-extensive). In order to perform an explicit cancellation, a concept of the cumu-
lant (denoted as Λ) of the two-electron density matrix is conveniently utilized. The
cumulant is that part of a two-electron density matrix which cannot be described as
the antisymmetrized product of one-electron density matrices [66]

Γ (12|1′2′) = ρ(1|1′)ρ(2|2′)− ρ(1|2′)ρ(2|1′)+Λ(12|1′2′). (11-47)

If a partitioning of Γ given in Eq. (11-47) is inserted into the definition of the
interaction density matrix (Eq. (11-43)), one can show that the second term in
Eq. (11-46) cancels with one of the terms arising from the part of the interaction
density containing two-electron density matrices of monomers [40]. Since no other
term can be factorized as a product of two or more integrals, the remaining expression
is connected and therefore size-extensive. The resulting formula for the E(1)

exch energy
can be divided into four parts: (nn) – containing one-electron density matrices of
monomers only, (cn) and (nc) – with a cumulant of the monomer A or B, and (cc) –
with cumulants of both monomers simultaneously

E(1)
exch(nn) = −

∫

ρA(1|1′)ρB(1′|1)v(1, 1′)dτ1dτ ′1 −

−
∫

ρA(1|2′)(ρB(1′|1′)ρB(2′|1)− ρB(1′|1)ρB(2′|1′))v(1, 1′)dτ1dτ ′1dτ ′2 −

−
∫

(

ρA(1|1)ρA(2|1′)− ρA(1|1′)ρA(2|1)
)

ρB(1′|2)v(1, 1′)dτ1dτ ′1dτ2 −

−
∫

(

ρA(1|2′)ρA(2|1)ρB(1′|2)ρB(2′|1′)− ρA(1|1)ρA(2|2′)ρB(1|2′)ρB(2′|1′)−
−ρA(1|2′)ρA(2|1)ρB(1′|1′)ρB(2′|2)

)

v(1, 1′)dτ1dτ ′1dτ2dτ ′2,

E(1)
exch(cn) = −

∫

ΛA(12|11′)ρB(1′|2)v(1, 1′)dτ1dτ ′1dτ2 −

−
∫

ΛA(12|12′)
(

ρB(1′|1′)ρB(2′|2)− ρB(1′|2)ρB(2′|1′))v(1, 1′)dτ1dτ ′1dτ2dτ ′2,

E(1)
exch(nc) = −

∫

ρA(1|2′)ΛB(1′2′|1′1)v(1, 1′)dτ1dτ ′1dτ ′2 −

−
∫

(

ρA(1|1)ρA(2|1′)− ρA(1|1′)ρA(2|1)
)

ΛB(1′2′|1′2)v(1, 1′)dτ1dτ ′1dτ2dτ ′2,

E(1)
exch(cc) = −

∫

ΛA(12|12′)ΛB(1′2′|1′2)v(1, 1′)dτ1dτ ′1dτ2dτ ′2. (11-48)
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Equations (11-48) are so far completely general and can be used for any theory with
well-defined cumulants of two-electron density matrices. Unfortunately, the popu-
lar LR-CC theory does not belong to such a class of methods. This deficiency of
LR-CC can be explained by the fact that both one- and two-electron LR-CC density
matrices are linear in terms of the left-hand solution of CC equations, so one cannot
define a cumulant according to the definition given in Eq. (11-47), since the resulting
quantity would contain disconnected terms. On the other hand, it has been shown
recently [40] that the two-electron CC density matrix obtained from expectation-
value CC theory [46] correctly separates into the antisymmetrized product of the
one-electron density matrices and the cumulant part, therefore this theory can be
utilized to obtain molecular properties for the SAPT(CC) method. In the algebraic
approximation the cumulant can be expanded in terms of spinorbitals, analogously
to the density matrix (see Eq. (11-19)), with the expansion coefficients given by the
equation

Λp1p2
q1q2

= 〈eS†
e−Tep1

q1
eTe−S†

̂P(eS†
e−Tep2

q2
eTe−S†

)〉 −

−〈eS†
e−T ẽp2

q1
eTe−S†〉〈eS†

e−Tep1
q2

eTe−S†〉, (11-49)

where ẽp
q = aqap denotes the one-hole substitution operator [48, 66].

In practice, a truncated form of Eq. (11-49) has to be used. The leading terms of
the CCSD cumulant obtained by utilizing the same truncation schemes as in the case
of the CCSD(3) polarization propagators are listed below

Λp1p2
q1q2

= 〈ep1
q1
̂P1( [ep2

q2
, T2] )〉 + 〈 [S†

2, ep1
q1

]̂P1(ep2
q2

) 〉+〈 [S†
2, ep1

q1
]̂P1( [ep2

q2
, T2] ) 〉 +

+〈 {[S†
2, ep1

q1
]̂P2( [ep2

q2
, T2] )}C〉+〈 {[S†

2, [ep1
q1

, T2] ]̂P1(ep2
q2

) }C〉 +O(W3), (11-50)

where the letter “C” in the subscript means that only connected diagrams should
be taken into account. For one-electron density matrices entering Eq. (11-48) the
expression from Eq. (11-15) is used. In this way the main (non-cumulant) part of
the first-order exchange energy can be calculated very accurately (it is exact for two-
electron monomers, for which CCSD is equivalent to FCI). The first-order exchange
energy obtained from the expectation-value CC density matrices will be denoted as
E(1)

exch(XCC), in order to differentiate it from the exchange energy obtained from the
earlier approach of Moszynski et al. [13, 14]. A numerical experience shows that the
non-cumulant part of the exchange energy is clearly a dominant contribution (it gives
over 90% of the total correction), therefore the truncation performed in Eq. (11-50)
is fully justified. It can be noted that differences between the E(1)

exch(XCCSD) and

E(1)
exch(CCSD) energies are of the O(W3) order.
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11.4.2. Second-Order Exchange-Induction Energy

A closer look at Eqs. (11-40) and (11-41) reveals that the E(1)
exch and E(2)

exch−ind energies
presented there have a very similar structure. Basically, the main term of the for-
mula for E(2)

exch−ind(A ← B) is obtained from Eq. (11-40) if the second Ψ 0
A wave

function is replaced by Ψ (1)
A . Therefore the approach, which closely resembles that

described in Section 11.4.1, can be also proposed for the exchange-induction energy.
An analog of the interaction density matrix ρ(1)

int (1|1′) for the A ← B component
of the exchange-induction energy is the first-order interaction density matrix of the
monomer A defined as [41]

ρ
(1)
int,A(1|1′) = −ρ(1)

A←B(1|1′)ρB(1′|1)−
∫

ρ
(1)
A←B(1|2′)ΓB(1′2′|1′1)dτ ′2 −

−
∫

Γ
(1)

A←B(12|11′)ρB(1′|2)dτ2−
∫

Γ
(1)

A←B(12|12′)ΓB(1′2′|1′2)dτ2dτ ′2, (11-51)

where the one-electron first-order density matrix of the monomer A, ρ(1)
A←B(i|j), has

been introduced in Section 11.3.2 and the two-electron first-order density matrix is
defined analogously to Eq. (11-44) with the ket wave function Ψ 0

A replaced by the

first-order wave function Ψ (1)
A . With these definitions the exchange-induction energy

can be expressed by the formula

E(2)
exch−ind =

∫

ρ
(1)
int,A(1|1′)v(1, 1′)dτ1dτ ′1 −

V

NANB

∫

ρ
(1)
int,A(1|1′)dτ1dτ ′1 −

−P1

∫

ρ
(1)
A←B(1|1)v(1, 1′)ρB(1′|1′)dτ1dτ ′1 + A ↔ B. (11-52)

As in the case of the first-order exchange energy, Eq. (11-52) contains explicitly
disconnected terms, which should be removed by the first part of the formula in
order to preserve size-extensivity. An explicitly connected form of Eq. (11-52) can be
obtained if the first-order perturbed cumulantΛ(1)(12|1′2′) is inserted to Eq. (11-51).
For the sake of brevity of the next few formulae some permutation symbols acting
on electron coordinates must be introduced, which will serve to generate parts of
formulae with transposed electron coordinates. For a given product of two functions f
and g of electron coordinates, f (i|j)g(k|l), the symbol π∗ik will denote the permutation
of left coordinates, while the symbol πjl will permute right coordinates in the product
fg, e.g. π∗12 f (1|1)g(2|2) = f (2|1)g(1|2), while π12 f (1|1)g(2|2) = f (1|2)g(2|1). Ad-
ditionally, let us define the antisymmetrizers A∗ik = 1−π∗ik and Ajl = 1−πjl. Finally,
the superscript A or B will denote an operator acting on the quantities belonging to
the monomer A or B only. With these definitions the partitioning of the first-order
two-electron density matrix into the non-cumulant and cumulant parts takes the form

Γ (1)(12|1′2′) = A∗12A1′2′ρ
(1)(1|1′)ρ(2|2′)+Λ(1)(12|1′2′). (11-53)
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By inserting Eq. (11-53) into Eqs. (11-51) and (11-52) the second-order exchange-
induction energy can be expressed through the connected terms only, which, in a
full analogy to the first-order exchange energy, can be separated into four types,
depending on the presence of monomer cumulants in the expressions

E(2)
exch−ind(nn) = −

∫

v(1, 1′)ρ(1)
A (1|1′)ρB(1′|1)dτ1dτ ′1 −

−
∫

v(1, 1′)ρ(1)
A (1|2′)AB

1′1ρB(1′|1′)ρB(2′|1)dτ1dτ ′1dτ ′2 −

−
∫

v(1, 1′)A∗A
12AA

11′ρ
(1)
A (1|1)ρA(2|1′)ρB(1′|2)dτ1dτ ′1dτ2 −

−
∫

v(1, 1′)
(A∗A

12AA
12′AB

1′2 − 1− π∗A
12 π

A
1′2′

)

ρ
(1)
A (1|1)ρA(2|2′)×

×ρB(1′|1′)ρB(2′|2)dτ1dτ ′1dτ2dτ ′2 + A ↔ B,

E(2)
exch−ind(nc) = −

∫

ρ
(1)
A (1|2′)ΛB(1′2′|1′1)v(1, 1′)dτ1dτ ′1dτ ′2 −

−
∫

v(1, 1′)A∗A
12AA

11′ρ
(1)
A (1|1)ρA(2|1′)ΛB(1′2′|1′2)dτ1dτ ′1dτ2dτ ′2 + A ↔ B,

E(2)
exch−ind(cn) = −

∫

Λ(1)
A(12|11′)ρB(1′|2)v(1, 1′)dτ1dτ ′1dτ2 −

−
∫

v(1, 1′)Λ(1)
A(12|12′)AB

1′2ρB(1′|1′)ρB(2′|2)dτ1dτ ′1dτ2dτ ′2 + A ↔ B,

E(2)
exch−ind(cc) = −

∫

v(1, 1′)Λ(1)
A(12|12′)ΛB(1′2′|1′2)dτ1dτ ′1dτ2dτ ′2 + A ↔ B.

(11-54)

For the SAPT(CC) method the one- and two-electron first-order density matrices
are obtained from the formula for the time-independent coupled cluster polariza-
tion propagator [47] (see Eq. (11-30)), where X is set to Veff,B and ω = 0. As in
the ground-state case, it can be demonstrated [41] that the two-electron first-order
matrices defined by setting Y = ep1p2

q1q2 in Eq. (11-30) exhibit a correct behavior,
i.e. that one can define the first-order cumulant according to Eq. (11-53).

The second-order exchange-induction energy is of a lesser importance than the
first-order exchange energy, so in practical applications a more approximate treat-
ment of this contribution is possible. To this end all terms in the first-order cumulant
expansion of order O(W2) and higher have been neglected. This truncation procedure
leads to the following form of the perturbed cumulant

(Λ(1)) p1p2
q1q2

= 〈ep1p2
q1q2
Ω

Veff,B
2 (0)〉 + 〈S†

2ep1
q1
̂P1(ep2

q2
Ω

Veff,B
1 (0))〉 +

+〈S†
2ep2

q2
̂P1(ep1

q1
Ω

Veff,B
1 (0))〉 +O(W2). (11-55)
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Also for the ground-state cumulant only terms of the O(W1) order, i.e. the first two
terms of Eq. (11-50), have been used. Since the E(2)

exch−ind(cc) contribution is of a total
O(W2) order, it has been neglected in the present SAPT(CCSD) implementation. The
first-order one-electron density matrices needed in Eq. (11-54) are the same as used
for the induction energy (see Section 11.3.2).

The exchange-induction energy can be formulated through monomer proper-
ties independent of another monomer, similarly to the induction energy expressed
through monomer static density susceptibilities (see Eq. (11-21)). This formulation
requires an introduction of the electron density-matrix operator ρ(1|1′), which in the
algebraic approximation is given by the equation

ρ̂(1|1′) =
∑

pq

ep
qφ
∗
p (1)φq(1′). (11-56)

Then a generalization of the polarization propagator, denoted here as a half-
propagator, should be defined for purely imaginary frequencies iω as

〈〈X;Y〉〉+iω = 2〈Ψ0|XRe Ψ Y (iω)〉. (11-57)

Note that the CC half-propagator 〈〈Y;X〉〉+iω is obtained as a doubled first term of
Eq. (11-30). With definitions from Eqs. (11-56) and (11-57) a new quantity, called a
density-matrix susceptibility α(1|1′;2|iω), can be introduced as

α(1|1′;2|iω) = −〈〈ρ̂(1|1′);ρ̂(2)〉〉+iω = −
∑

p1q1p2q2

〈〈ep1
q1

;gp2
q2
〉〉+iωφp1 (1)φq1 (1′)φp2 (2)φq2 (2),

(11-58)
where gp

q = 1
2

(

ep
q + eq

p
)

is the Hermitian combination of the usual spinorbital re-
placement operators. With the just defined density-matrix susceptibilities and one-
electron density matrices of monomers the non-cumulant part of the exchange-
induction energy can be expressed in a following way [42]

E(2)
exch−ind(nn) = 1

2

∫

v(1, 1′)veff,B(3)αA(1|1′;3|0)ρB(1′|1)dτ1dτ ′1dτ3 +

+1

2

∫

v(1, 1′)veff,B(3)αA(1|2′;3|0)AB
1′2′ρB(1′|1′)ρB(2′|1)dτ1dτ ′1dτ ′2dτ3 +

+1

2

∫

v(1, 1′)veff,B(3)A∗A
12AA

1′2′αA(1|1;3|0)ρA(2|1′)ρB(1′|2)dτ1dτ ′1dτ2dτ3 +

+1

2

∫

v(1, 1′)veff,B(3)
(A∗A

12AA
12′AB

1′2 − 1− π∗A
12 π

A
1′2′

)

αA(1|1;3|0)ρA(2|2′)×
×ρB(1′|1′)ρB(2′|2)dτ1dτ ′1dτ2dτ ′2dτ3 + A ↔ B. (11-59)

Similar expressions can be derived also for cumulant-containing quantities [42].
As in the case of the induction energy, Eq. (11-59) is not suitable for a practical
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implementation, although it can possibly serve for devising better trial functions in a
fitting procedure of potential energy surfaces obtained by SAPT.

11.4.3. Second-Order Exchange-Dispersion Energy

The second-order exchange-dispersion energy has been recently expressed [42]
through monomer properties, such as one-electron density matrices and frequency-
dependent density-matrix susceptibilities introduced at the end of Section 11.4.2. In
this review only the main (non-cumulant) part of the corresponding formula will be
presented. The omitted part of E(2)

exch−disp contains unimplemented cumulant quan-
tities, which in the algebraic approximation lead to 6-index expansion coefficients.
A numerical experience gained from the calculations of analogous cumulant parts
of the first-order exchange and the second-order exchange-induction energies, as
well as a comparison with the exact (FCI) exchange-dispersion energy for a he-
lium dimer [67] allows us to estimate the importance of the neglected terms at level
of a couple percent of the total E(2)

exch−disp contribution for the attractive region of
PES. The expression for the exchange-dispersion energy bears some similarity to the
Longuet-Higgins formula for the dispersion energy (see Eq. (11-32))

E(2)
exch−disp(nn) = 1

2π

∫ ∞

0

[

∫

v(1, 1′)αA(1|1′;3|iω)αB(1′|1;3′|iω)
1

r33′
dτ1dτ ′1dτ3dτ ′3+

+
∫

v(1, 1′)αA(1|2′;3|iω)A∗B
1′2′AB

1′1αB(1′|1′;3′|iω)ρB(2′|1)
1

r33′
dτ1dτ ′1dτ ′2dτ3dτ ′3+

+
∫

v(1, 1′)A∗A
12AA

11′αA(1|1;3|iω)ρA(2|1′)αB(1′|2;3′|iω)
1

r33′
dτ1dτ ′1dτ2dτ3dτ ′3+

+
∫

v(1, 1′)
(A∗A

12AA
12′A∗B

1′2′AB
1′2 − 1− π∗A

12 π
A
12′π

∗B
1′2′π

B
1′2
)

αA(1|1;3|iω)ρA(2|2′)×

×αB(1′|1′;3′|iω)ρB(2′|2)
1

r33′
dτ1dτ ′1dτ2dτ ′2dτ3dτ ′3

]

dω. (11-60)

From Eq. (11-57) it is clear that the density susceptibility and density-matrix suscep-
tibility share the same first-order wave functions Ψ Gp

q (iω). Since for the CC case the
calculation of these functions dominates the CPU time, the computational require-
ments for the dispersion and exchange-dispersion energies are basically the same.
For density-matrix susceptibilities one can still apply the density fitting to the sec-
ond pair of orbitals in Eq. (11-58), so the same scaling of the computational effort is
preserved also for the density-fitted version of the exchange-dispersion energy. The
expansion coefficients for one-electron density matrices and density-matrix suscep-
tibilities of monomers at the CCSD level are calculated according to Eq. (11-15) and
the first part of Eq. (11-31), respectively.

It should be stressed that the second-order exchange energies in SAPT(MP), as
implemented in the SAPT program [16], are so far treated on the uncorrelated level,
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i.e. the SAPT(HF) values for these terms are used.4 The SAPT(CC) method repre-
sents therefore the first implementation of the second-order exchange contributions
with the inclusion of the intramonomer electron correlation.

11.5. TOTAL SAPT(CCSD) INTERACTION ENERGY

The energy components described in Sections 11.3 and 11.4 give the SAPT(CCSD)
interaction energy up to the second order in terms of the intermolecular operator V . A
derivation of higher-order corrections is quite involved even for monomers described
by HF determinants [68] and – on the other side – a systematic improvement of
the SAPT interaction energy by adding these corrections cannot be guaranteed in
view of a divergence of the SRS series for many-electron monomers. To circumvent
this difficulty, it has been proposed some time ago to approximately account for
some of these missing contributions by adding the so-called HF “delta” correction
term δEHF, which is calculated as a difference between the HF supermolecular in-
teraction energy and the SAPT(HF) electrostatic, first-order exchange, induction,
and exchange-induction terms (the last two components obtained within the CHF
approach) [69, 70]. Due to its simplicity and a visible improvement of the results
for many noncovalent complexes, the utilization of the δEHF correction has become
a standard in the SAPT(MP) and SAPT(DFT) applications. However, very recently
it has been postulated that this term should be added only for interactions involving
polar or polarizable molecules [68], since only in these cases the δEHF correction can
be approximately identified with a sum of the third-order induction and exchange-
induction terms, E(3)

ind + E(3)
exch−ind. Therefore, in numerical examples presented in

Section 11.6 the utilization of the δEHF term will depend on the polarity of a system
under study.

For the case of the SAPT(CCSD) method one more correction term should
be added. Let us first remind that multiple exchanges of electrons between the
interacting monomers are neglected for all exchange components of the interaction
energy. Although the contributions beyond the S2 approximation are small in the
attractive region of PES, they can be nonetheless more significant in the repulsive
part of the potential. In order to approximately account for this effect, a missing
multiple-exchange part of the E(1)

exch term is estimated on the HF level by calculating
a difference

δE(100)
exch (S2) = E(100)

exch − E(100)
exch (S2), (11-61)

where E(100)
exch (S2) and E(100)

exch denote the HF first-order exchange energies calculated
with and without the S2 approximation, respectively.

4 For the exchange-induction energy a scaling procedure has been proposed to estimate the missing

intramonomer correlation part, tE(22)
exch−ind =

tE(22)
ind

E(20)
ind,resp

E(20)
exch−ind,resp.
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Summarizing, the total SAPT(CCSD) interaction energy is composed of the
following terms

Eint = E(1)
elst(XCCSD)+ E(2)

ind(XCCSD)+ E(2)
disp(XCCSD)+ E(1)

exch(XCCSD)+
+E(2)

exch−ind(XCCSD)+ E(2)
exch−disp(XCCSD)+ δE(100)

exch (S2)+ (δEHF). (11-62)

The parenthesis around the δEHF term emphasizes that in order to utilize this correc-
tions the conditions listed at the beginning of this Section and in Ref. [68] should be
fulfilled. All six SAPT components are used in the form and within approximations
discussed earlier.

11.5.1. Accuracy of SAPT(CCSD) – Theoretical Considerations

The quality of the SAPT(CCSD) interaction energy can be most easily gauged
by an analysis of electron configurations, which are included in this approach for
large distances between interacting molecules. Both monomers in SAPT(CCSD) are
described by CCSD theory, so the part of the interaction resulting from simultane-
ous single and double excitations on A and B is correctly reproduced. Quite on the
contrary, in the available SAPT(MP) corrections (with the exception of the E(211)

disp

and E(111)
exch terms) one monomer is always treated on the HF level. Since simultane-

ous double excitations on both monomers mean a quadruple excitation for a dimer,
the SAPT(CCSD) interaction energy should be compared with the supermolecular
interaction energy obtained from CCSDTQ theory (coupled cluster theory limited to
single, double, triple, and quadruple excitations) [71] (or at least with a somewhat
cheaper CCSDT(Q) theory [72]), rather than with the popular CCSD(T) approach
[62].

On the other hand, the molecular properties described by CC theory limited to
single and double excitations only may not be accurate enough for needs of SAPT
energy components. The deficiencies of the XCCSD properties can be (somewhat
artificially) divided into problems related to the orbital relaxation and to the con-
nected triple and higher excitations in monomers’ wave functions. One of the known
shortcomings of the XCCSD first- and second-order properties, already discussed in
Sections 11.3.1 and 11.3.2, is an absence of some O(W3) terms, appearing within the
XCC approach only after triple amplitudes (T3) are included. As already mentioned,
a solution of this problem for the case of the first-order one-electron properties has
been provided by Jeziorski and Moszynski in Ref. [46] through the Xresp(3) model.
Since in this method a CHF-type equation has to be solved, the Xresp(3) approach
incorporates explicitly the effect of orbital relaxation, while the original XCCSD
method includes the orbital response only implicitly through the eT1 operator [73].
On the other hand, the absence of the T1 operator in the Xresp(3) formula (see
Eq. (11-18)) may lead to a lower accuracy for molecules with a large admixture of
single excitations in the exact wave functions. Finally, neither XCCSD, nor Xresp(3)
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approaches are expected to be accurate for molecules with a large contribution from
connected triple (and higher) excitations (e.g. molecules with multiple bonds).

11.5.2. Numerical Details

The SAPT(CCSD) calculations presented here have been performed with a local
developer version of the MOLPRO suite of codes [33]. The SAPT(MP) results have
been obtained with the SAPT [16] program, using the standard level of approxi-
mations [74]. For CCSDT(Q) and CCSDTQ supermolecular calculations the MRCC

code [75, 76] of Kállay has been used. The SAPT(DFT) results have been obtained
with the program of Heßelmann et al. [27, 28, 30, 31, 77] which is a part of MOLPRO.
The functional similar to PBE0 [78, 79], which differs from the original PBE0 by re-
placing the PBEc functional with PW91, with the asymptotic correction of Grüning
et al. [80] has been used to describe the intramonomer correlation in SAPT(DFT).
The ionization potentials needed to calculate this correction have been taken from
Ref. [81]. In all supermolecular calculations the Boys-Bernardi counterpoise correc-
tion for BSSE has been used [6].

The Be· · ·H2, (HF)2, Ne2, and (CO)2 noncovalent complexes have been selected
as examples of various limiting cases discussed above. For the first three complexes
the aug-cc-pVTZ basis set has been utilized, while for the dimer of carbon monox-
ide a smaller aug-cc-pVDZ basis has been applied [82]. For the (HF)2 and (CO)2
complexes the mutual orientations of monomers correspond to those at the global
minima (see Refs. [83, 84], respectively), while distances between monomers (as
defined in respective references) have been varied. For density-fitted SAPT(CCSD)
components the corresponding aug-cc-pVXZ/MP2fit (X = D, T) auxiliary basis sets
[85] have been used, with the exception of the Be atom where the cc-pVTZ/MP2fit
basis has been utilized. It has been verified that the CCSD(T) and CCSDT(Q) inter-
action energies for the dimers of HF and Ne differ by at most few tenths of percent,
therefore only the CCSD(T) energy was used for a comparison in these two cases.

11.6. PERFORMANCE OF SAPT(CCSD)

11.6.1. Be· · · H2 Complex

Figure 11-1 presents interaction energies for the complex of the beryllium atom
and the hydrogen molecule obtained from the SAPT(CCSD), SAPT(MP), and
SAPT(DFT) methods, as well as from CCSDTQ and CCSD(T) supermolecular the-
ories. Since beryllium is a highly polarizable species, the δEHF term has been used
in the SAPT approach.

The CCSD(T) and CCSDTQ interaction energies differ noticeably for the case of
the Be· · ·H2 complex (the error of the CCSD(T) energy amounts to 9% at the mini-
mum and 5% for large distances). This fact can be explained qualitatively by the im-
portance of a low-energy doubly-excited configuration 1s22p2 of beryllium. Because



Coupled Cluster Treatment of Intramonomer Correlation Effects 291

0

0.5

1

1.5

2

2.5

3

6 7 8 9 10 11 12 13

In
te

ra
ct

io
n 

en
er

gi
es

 [
m

H
]

Distance [bohr]

CCSDTQ
CCSD(T)

SAPT(CCSD)
SAPT(MP)

SAPT(DFT)

–0.08

–0.06

–0.04

–0.02

10 11 12 13

Figure 11-1. Interaction energies for the Be· · ·H2 complex (linear configuration, RH−H=1.449 bohr)
calculated by various perturbational and supermolecular methods. All electrons are correlated

of its significant weight in the exact wave function of beryllium this configuration
should be treated on an equal footing with the ground-state configuration 1s22s2 in
supermolecular calculations of beryllium-containing complexes. In particular, con-
figurations which are doubly-excited on the Be atom and singly- or doubly-excited
on H2 should be available for the supermolecular method. Evidently, such a treatment
is not possible within the supermolecular CCSD(T) theory, and a more advanced CC
approach is necessary in this case.

Similar considerations allow to explain the observed behavior of the
SAPT(CCSD) interaction energies, which are close to the CCSDTQ energies
for large distances. For R ≥ 11 bohr errors of SAPT(CCSD) with respect to
CCSDTQ drop below the 1% threshold. A generally poor performance of all SAPT
approaches for smaller distances can be explained by a high polarizability of beryl-
lium, what makes the second-order perturbation theory inadequate in this case. It
should be stressed, however, that the SAPT(DFT) and SAPT(MP) methods perform
substantially worse than SAPT(CCSD), what for the case of SAPT(MP) can be ra-
tionalized by an insufficient inclusion of intramonomer correlation. A behavior of
SAPT(CCSD) for large separations between monomers in the Be· · ·H2 complex is
an illustration of the limit case where the contributions from intermonomer triple and
quadruple excitations are large on the one side, and a role of intramonomer triple and
quadruple excitations is very small on the other.



292 T. Korona

11.6.2. Dimers of HF, CO, and Ne

Table 11-1 presents the interaction energies obtained with various SAPT methods
and compared to the supermolecular CCSDT(Q) and CCSD(T) interaction energies
for (HF)2, (CO)2, and Ne2 complexes (distances R = 5, 6, and 8 bohr for (HF)2, Ne2,
and (CO)2 correspond to the minimum region, respectively). The δEHF term has been
used for the dimer of hydrogen fluoride. The individual SAPT energy components
for the same complexes are listed in Table 11-2.

Let us first examine the hydrogen fluoride dimer. It can be seen from Table 11-1
that the SAPT(CCSD) approach performs disappointingly bad for a smaller distance,
especially in comparison to SAPT(MP), while the agreement with CCSD(T) be-
comes substantially better for a larger distance. As discussed in Section 11.5, the
source of this behavior can be traced down either to an insufficient inclusion of or-
bital relaxation or to a large contribution of connected triple amplitudes for monomer
properties. For a highly polar HF molecule the first explanation is more plausible. In-
deed, if the Xresp(3) density matrices are used instead of the XCCSD ones in the for-
mulae for the first-order energies (see Eqs. (11-10) and (11-46)), the agreement with
the CCSD(T) interaction energies remarkably improves. For the (HF)2 complex the
first-order SAPT components are dominant contributions to the interaction energy
(see Table 11-2), therefore it is not unexpected that a better treatment of these two en-
ergies improves the overall result. On the other hand, a small error of the SAPT(MP)
interaction energy should be regarded as a result of some error cancellation, since
the differences between SAPT(MP) and SAPT(CCSD) exchange-induction energies
are close to the differences between the corresponding total SAPT energies.

Table 11-1. A comparison of total SAPT and supermolecular interaction energies. The row with CCSD(T)
energies is followed by percent errors of this method with respect to CCSDT(Q). For the (CO)2 complex
the rows with SAPT energies are followed by percent errors with respect to CCSDT(Q) and with CCSD(T)
(the value in parenthesis), while for two other complexes just the error with respect to CCSD(T) is listed.
Energies are in millihartrees, distances in bohr

Molecule (HF)2 (CO)2 Ne2

Method/R 5 7 8 10 4 6 7

CCSDT(Q) − − –0.454 –0.286 − − −
CCSD(T) −6.436 −3.052 –0.430 –0.278 7.575 −0.081 −0.053

− − –5.3 –2.8 − − −
SAPT(CCSD) −5.895 −3.012 –0.466 –0.313 7.728 −0.082 −0.054

−8.4 −1.3 2.8(8.6) 9.5 (12.7) 2.0 1.5 3.1
SAPT(MP) −6.575 −3.126 –0.484 –0.304 7.954 −0.078 −0.053

2.2 2.4 6.7(12.6) 6.4(9.5) 5.0 −3.7 0.6
SAPT(DFT) −5.733 −3.051 –0.393 –0.275 8.136 −0.082 −0.053

−10.9 0.0 –13.4(–8.6) –3.8(–1.0) 7.4 1.0 0.9
SAPT(CCSD)a −6.492 −3.083 –0.380 –0.295 7.369 −0.088 −0.055

0.9 1.0 –16.2(–11.5) 3.2(6.2) −2.7 8.7 4.3

a This row contains the SAPT(CCSD) energies obtained if the XCCSD one-electron density matrices are
replaced by Xresp(3) for the first-order components of the interaction energy.
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Table 11-2. Individual components of interaction energies obtained with various SAPT approaches.
The SAPT(HF) terms, denoted as HF, are followed by intramonomer correlation contributions from the
SAPT(CCSD), SAPT(MP), and SAPT(DFT) methods, which are denoted as CCSD, MP, and DFT, respec-
tively. For SAPT(CCSD) also the cumulant corrections [CCSD(c)] are given. All exchange contributions

are presented within the S2 approximation. The corrections for multiple exchanges for the E(1)
exch energy

are listed at the bottom of the table

Molecule (HF)2 (CO)2 Ne2

Method/R 5 7 8 10 4 6 7

E(1)
elst

HF −12.5116 −2.9354 −0.5077 −0.0746 −3.2658 −0.0203 −0.0014
CCSD 0.4997 0.3222 −0.2758 −0.0686 −0.8932 −0.0117 −0.0011
MP 0.4111 0.2200 −0.2107 −0.0550 −0.5575 −0.0064 −0.0007
DFT 0.3580 0.2757 −0.1656 −0.0427 −0.7927 −0.0084 −0.0008

E(1)
exch

HF 11.7908 0.1545 1.1797 0.0358 12.0546 0.0857 0.0070
CCSD 2.4375 0.0674 0.2274 0.0108 2.4112 0.0411 0.0045
MPa 2.4712 0.0634 0.1984 0.0094 2.4237 0.0382 0.0041
DFT 2.3382 0.0557 0.1376 0.0066 2.6283 0.0333 0.0035
CCSD(c) 0.2119 0.0049 0.0607 0.0015 −0.1052 −0.0014 −0.0002

E(2)
ind

HF −6.2091 −0.2303 −0.2625 −0.0057 −3.7943 −0.0151 −0.0006
CCSD −1.2358 −0.0255 −0.0474 −0.0027 −1.4561 −0.0109 −0.0008
MP −1.0421 −0.0209 −0.0086 0.0004 −1.1703 −0.0081 −0.0006
DFT −1.1847 −0.0201 −0.0224 −0.0008 −1.2614 −0.0074 −0.0006

E(2)
exch−ind

HF 3.2101 0.0236 0.2125 0.0031 3.8882 0.0154 0.0006
CCSD 1.1738 0.0167 0.0581 0.0014 1.4759 0.0112 0.0008
MPb 0.5387 0.0021 0.0070 −0.0002 1.1993 0.0083 0.0006
DFT 1.1101 0.0125 0.0266 0.0007 1.3071 0.0075 0.0006
CCSD(c) 0.0753 0.0016 0.0157 0.0003 0.0013 0.0001 0.0000

E(2)
disp

HF −3.4920 −0.3052 −1.0668 −0.2039 −2.4274 −0.1467 −0.0520
CCSD −0.7919 −0.0946 −0.1000 −0.0138 −0.4965 −0.0362 −0.0119
MP −0.7677 −0.0839 −0.1030 −0.0165 −0.4633 −0.0314 −0.0103
DFT −0.6622 −0.0768 −0.0292 0.0020 −0.4475 −0.0306 −0.0100

E(2)
exch−disp

HF 0.5959 0.0111 0.0762 0.0031 0.4904 0.0041 0.0003
CCSD 0.2074 0.0085 0.0382 0.0021 0.1641 0.0029 0.0003
DFT 0.1840 0.0079 0.0270 0.0016 0.1579 0.0024 0.0002

δEHF −1.6421 −0.0253 −0.1088 −0.0023 −0.4732 −0.0017 −0.0001

δE(100)
exch (S2) 0.0720 0.0000 0.0016 0.0000 0.0499 0.0000 0.0000

δE(1)
exch(S2)(DFT) 0.0997 0.0000 0.0020 0.0000 0.0719 0.0000 0.0000

a The E(1)
exch(CCSD) energy has been used [14].

b The estimated correction, see the footnote on the page 288.
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The second complex in Tables 11-1 and 11-2 is the dimer of carbon monoxide.
A triple bond between carbon and oxygen atoms makes the CO molecule a notori-
ously difficult example for theories of electron correlation and requires an inclusion
of higher excitations in order to achieve a good accuracy. It is also well known that
electron correlation changes the sign of the dipole moment of the carbon monoxide
molecule. Therefore it is not surprising that the role of intramonomer correlation is
large also for a dimer of this molecule. From Table 11-2 is can be observed that
the intramonomer correlation corrections are often of the same order of magnitude
as their uncorrelated (HF) counterparts. For instance, the SAPT(CCSD) electrostatic
intramonomer correction for the electrostatic energy amounts to 92% of the E(100)

elst
term for the larger distance considered. Table 11-1 shows that the SAPT(CCSD)
error with respect to CCSDT(Q) is equal to 3% for the smaller distance while it be-
comes as high as 10% for the larger R. The differences with respect to the CCSD(T)
energy are much larger. Table 11-2 reveals that three major energy components can
be identified for (CO)2. These components are: the first-order electrostatic and ex-
change energies and the second-order dispersion energy. As in the HF dimer case,
the first-order energies have been also calculated with the Xresp(3) monomer den-
sity matrices (see the last two lines of Table 11-1). This approach improves the
agreement with CCSDT(Q) for a larger distance, but increases the error substan-
tially for the minimum region. Note, however, that for R = 10 bohr the electrostatic
energy has the largest intramonomer correlation contribution, so a smaller error of
the SAPT(CCSD) energy calculated with Xresp(3) densities can be explained by an
improvement in the description of the electrostatic component. On the other hand,
for the smaller distance an insufficient inclusion of the intramonomer correlation
into the second-order SAPT(CCSD) components may play a role. Based on these
results a preliminary conclusion can be reached that the (CO)2 dimer requires both
triple excitations and orbital relaxation effects to be included in the description of
density matrices and density susceptibilities in order to obtain a better agreement
with the CCSDT(Q) benchmark interaction energies. This complex shows therefore
limitations of the present implementation of the SAPT(CC) method.

The last complex examined in Tables 11-1 and 11-2 is a neon dimer. In this case
the SAPT(CCSD) interaction energy agrees well with the CCSD(T) values, but the
utilization of the Xresp(3) density matrices for the first-order SAPT(CCSD) compo-
nents results in larger errors with respect to CCSD(T), especially in the minimum
region. It can be therefore concluded that the Xresp(3) density matrices should be
rather used for cases with dominant first-order contributions to the interaction energy,
i.e. for polar monomers. Asymptotically, the Ne2 complex is bound by the disper-
sion energy, although for smaller distances also other, short-range, energy contribu-
tions are equally important. In particular, for the first distance in Table 11-2, which
corresponds to the repulsive part of PES, almost all energy components are of the
same order of magnitude. The leading correction for this distance is the first-order
exchange energy, for which the intramonomer correlation amounts to about 20%
of the HF value. The induction and exchange-induction contributions are also quite
large, but they cancel each other almost perfectly, giving the net zero contribution.
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For two larger distances the dispersion energy becomes a dominant component of
the interaction energy, and its intramonomer correlation part is well described by all
three SAPT methods. It is interesting to note that for other components the relative
importance of the intramonomer electron correlation becomes more pronounced for
larger distances, e.g. the intramonomer correlation part of the exchange-dispersion
energy amounts to about 70% of E(200)

exch−disp for R = 7 bohr.
The individual energy components listed in Table 11-2 allow us to make some

general conclusions about the accuracy of the intramonomer correlation corrections.
An examination of this table reveals that the agreement between intramonomer cor-
relation corrections calculated by the SAPT(CCSD), SAPT(MP), and SAPT(DFT)
methods is usually good, especially for the dimers of HF and Ne. Larger differences
occur mostly for the problematic case of (CO)2. As a rule, the cumulant contributions
in SAPT(CCSD) are quite small in comparison to the total exchange corrections, but
they should be nonetheless included into the SAPT(CC) energy if a high accuracy is
desired.

11.7. CONCLUSIONS

The presented SAPT(CC) approach allows for an accurate treatment of intra-
monomer electron correlation, and is in addition free from the uncertainties plaguing
two other available SAPT methods, which are caused either by the possible diver-
gence of the MP series or by an ambiguity in the choice of the DFT functional.
However, the high accuracy comes always at a price of a high cost of the computa-
tions, therefore the new method can be applied only for small, few-atom monomers.
Among three available treatments of intramonomer correlation only the SAPT(DFT)
method has the capabilities to tackle large noncovalent complexes. It is therefore
very reassuring that the agreement between SAPT(CCSD) and SAPT(DFT) energy
components is quite good in nearly all cases. In particular, a closeness of the first-
order exchange energies obtained from both methods indicates that the one-electron
density matrix composed of KS orbitals provides a good estimate of the exact den-
sity matrix (note parenthetically that this fact is not so evident, since in density
functional theory only densities, but not density matrices, can be in principle ex-
act). The smallness of the cumulant part of the exchange energy, which is absent
in SAPT(DFT), is also important in justifying the SAPT(DFT) treatment of the
exchange contributions to the interaction energy. It is interesting to note that the
non-cumulant parts of the SAPT(CCSD) exchange energies agree even better with
the corresponding SAPT(DFT) values. The second-order exchange components cal-
culated by SAPT(CCSD) and SAPT(MP) are quite different, what can be explained
by the neglect of the intramonomer correlation effect for the exchange-induction
and exchange-dispersion energies in the current version of SAPT(MP). On the other
hand, the agreement between SAPT(CCSD) and SAPT(DFT) for these two energy
components is very good, what justifies the use of the CKS monomer propagators
[31, 77] for the calculation of the discussed quantities. It should be stressed that the
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agreement of the exchange-dispersion term obtained from the uncoupled KS propa-
gators is usually substantially worse [42].
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CHAPTER 12

UNCONVENTIONAL ASPECTS OF COUPLED-CLUSTER
THEORY
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Abstract: The formalism of Quantum chemistry in Fock space is used to analyse coupled-cluster
(CC) theory for a closed-shell state. A main aspect is the challenge of generally accepted
wisdom. The theoretical background of CC theory is the separation theorem in Fock space.
This applies to systems that are separable in a localized representation. In three main
parts (a) the traditional coupled cluster (TCC) method, based on a non-unitary similarity
transformation of the Hamiltonian, (b) variational coupled cluster (VCC) in intermediate
normalization, and (c) unitary coupled cluster (UCC) approaches are analyzed. The infi-
nite summation of diagrams from many-body perturbation theory (MBPT) is studied. It is
stressed that higher-order non-linear (multi-commutator) terms are dominated by diagonal
EPV contributions with repeated hole labels, that lead to an individual normalization of
the pair functions, familiar from the coupled electron pair approximation (CEPA). This
concept is generalizable to clusters of higher particle rank. An estimation of the difference
between TCC and VCC is presented. The most promising reformulation of CC theory
appears to be in terms of UCC, for which a closed summation of the bulk contributions is
derived.

Keywords: Traditional coupled cluster, Variational coupled cluster, Unitary coupled cluster, Extended
coupled cluster, Diagram summation, Coupled electron pair approximation, Exclusion
principle violating terms, Fock space

12.1. INTRODUCTION

Coupled-Cluster (CC) theory is one of the most powerful methods of ab-initio Quan-
tum Chemistry, and is a kind of standard for accurate calculations. It is, nevertheless,
not yet fully satisfactory in some respects. There is the challenge to revisit CC theory
in the light of more recent insight into the basis of the molecular many-electron
problem, especially for large molecules.

Traditional CC theory for closed-shell states with a single Slater determinant ref-
erence state Φ has been guided by essentially the following paradigms.
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(1) We search for a wave operator W, which changes the reference wave function
Φ to the exact wave function Ψ , where exact always means full CI (configuration
interaction). This W is written as an exponential

Ψ = WΦ; W = eS; S =
n
∑

k=1

S(k) (12-1)

where S(k) is a k-particle excitation operator, and n the particle number. For the upper
summation limit n in (12-1) replaced by m < n, the ansatz (12-1) represents an
m-particle approximation.

(2) The theory should be invariant with respect to unitary transformations among
the spin orbitals ψi occupied in the reference function Φ.

(3) A non-variational formalism in terms of a wave operator W in intermediate
normalization is preferable to a variational theory, because the power series expan-
sion of the wave operator terminates only for the former, such that variational CC
requires a double hierarchy in terms of the particle rank and the truncation of the
exponential, while a single hierarchy is sufficient for the non-variational formalism.

(4) Many-body perturbation theory (MBPT) is a good guiding line for the con-
struction of approximate CC.

(5) One should be as accurate as possible, i.e. not make additional approxima-
tions, at the lowest level of the CC hierarchy, either CCD (CC with double excita-
tions) or CCSD (CC with single and double excitations), while even serious approxi-
mations are regarded as legitimate at the next-higher level, CCSDT (CC with single,
double, and triple excitations), such that the approximate CCSD(T) is by far more
common than full CCSDT.

(6) CC for open-shell or multiconfiguration reference states has not been in the
center of interest, and is not yet in a fully standardized form [1].

Of these paradigms only the first one (1) is still uncontested. However, if one bases
the CC ansatz on the separation theorem (Section 12.3), the relation of CC theory to
a description in a localized basis becomes obvious, and it appears imperative to take
advantage of a localized description.

The paradigm (2) must, in view of our present knowledge, be relaxed in the sense
outlined in Section 12.8.2, as it is required to achieve scaling of the computational
effort with a low power of the system size (keyword linear scaling) [2].

In this context the relations between CC theory and methods known as IEPA
(independent electron pair approximation) [3, 4] or CEPA (coupled electron pair
approximation) [5, 6] need to be reconsidered. The closeness between CC and CEPA
[7], forgotten for a while, is likely to find more attention in the future.

The preference of the non-variational formulation in the sense of paradigm (3)
also needs a reexamination. One pays a rather high price for the termination of the
expansion of the exponential, such as the lack of a variation principle. The error of
the CC energy does not decrease quadratically with that of the wave function [8], but
only approximatively so (with a nonvanishing linear term), which makes traditional
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CC theory rather uneconomic, when it goes to really high accuracy. The lack of a
genuine Hellmann – Feynman theorem must be compensated by a rather complicated
formalism for energy derivatives [9]. Alternative CC ansaetze have been considered
previously, but usually with pessimistic conclusions [10].

One must further realize that MBPT as a guide for suggesting approximations
according to paradigm (4) is dangerous. There is no guarantee that MBPT converges
[11], and if it does, the convergence is often slow. The convergence in terms of the
excitation rank, on which CC theory is based, is usually much faster. We shall see,
that there are, e.g. terms of 4th order in MBPT that are more important than others of
3rd order, and further that in CCSDT there are 6th order terms neglected in CCSD(T),
which are possibly more important than the 5th terms taken care of in CCSD(T) [12].
CCSD(T) does not describe a genuine three-electron system exactly. In going from
CCSD to CCSDT one introduces energy contributions of 4th and higher orders due
to triple excitations, but one misses the variational 2-particle terms of 5th order,
that are ignored in CCSD. A good criterion for CCD or CCSD is that it should be
exact for genuine 2-electrons systems, while CCSDT should be exact for genuine
3-electron systems. This is the case for CCSD and CCSDT, but not for CCSD(T).
This aspect has recently been considered by Bartlett and Musial [13].

Most curious is the paradigm (5), to be as accurate as possible at the CCD or
CCSD level, but not to mind problematic simplifications of CCSDT. Why should one
care for all terms of 4th order in CCSD, if one is willing to miss terms of the same
order that arise first in CCSDT? If one cares about 5th order terms in CCSD(T), why
does one ignore 5th order contributions to variational CCSD? Is one well advised to
evaluate contributions which are cheap and to ignore others of the same order, which
are expensive?

The aim of the present chapter is to look behind the scene and shed light on
the aspects of CC theory, that usually found less interest. For this purpose a compact
Fock space formalism is used, that has, unfortunately, not yet become as popular, as it
would deserve. We start with a recapitulation of this formalism in Section 12.2. This
is easily generalized beyond closed-shell reference states, for which it was originally
conceived [14–20]. However, the available space does not allow us to go into details
about this.

The separation theorem in Fock space is presented in Section 12.3 as the basis of
CC theory. In this context the importance of a description in a localized representa-
tion is stressed. After a review of some often ignored historic aspects, CC theory is
studied in three contexts, namely (a) the traditional CC theory (TCC) in terms of a
non-unitary similarity transformation of the Fock space Hamiltonian in intermediate
normalization, (b) expectation value CC theory and variational CC theory (XCC and
VCC) in intermediate normalization, (c) unitary CC theory (UCC).

For an analysis of TCC theory the Arponen functional [21] turns out to be useful
(see Section 12.5.5). The partial summation of certain classes of MBPT diagrams is
studied in detail (see Section 12.5.6). The natural emergence of IEPA and CEPA as
well as their linearized versions IEPA0 and CEPA0 plays a key role. Unlike IEPA0
and CEPA0, IEPA and CEPA are exact for a supersystem of non-interacting electron
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pairs. In part (b) the focus is on the estimation of the variational error of TCC theory
(Section 12.7). The last part (c) concentrates on a general linearized CC theory and a
normalized CC theory based on an infinite-order summation of the bulk contributions
to unitary CC theory, which looks as the most promising aspect of the present paper.

A complementary paper on many-body perturbation theory (MBPT) in the lan-
guage of Quantum Chemistry in Fock space has just been published [22]. This is
especially recommended for non-initiated readers. Unfortunately, the space available
does not allow us to address the important topics of multiconfiguration CC [1], and
of explicitly correlated CC both in terms of Gaussian Geminals [23] and with linear
terms in r12 [24].

12.2. THE FOCK SPACE HAMILTONIAN

A more detailed account of this topic is found in Ref. [22].

12.2.1. Excitation Operators

We construct a Fock space built up from a finite-dimensional one-particle Hilbert
space, spanned by an orthonormal spin-orbital basis {ψp}. The basic quantities are
the creation operators ap = a†

p and the annihilation operators ap corresponding to
this basis. Both together are called elementary fermion operators.

A product of fermion operators is said to be in normal order, if all creation oper-
ators are left of all annihilation operators, like e.g.

apaqaras (12-2)

The vacuum expectation value of a normal order operator vanishes, e.g.

〈0|apaqaras|0〉 = 0 (12-3)

Of special interest are the excitation operators (a more appropriate, but rather
lengthy, name might be spin-orbital replacement [or substitution] operator [25]),
such as the one-particle excitation operators ap

q or the two-particle excitation op-
erators [14–20] apq

rs

ap
q = apaq; apq

rs = apaqasar (12-4)

They are particle-number conserving and in normal order.
Density matrix elements are expectation values of excitation operators [15, 16]

γ p
q = 〈Ψ |ap

q|Ψ 〉 (12-5)

γ pq
rs = 〈Ψ |apq

rs |Ψ 〉; etc. (12-6)
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Consider a configuration space Hamiltonian

Hn(1, 2, 3 . . . .n) =
n
∑

k=1

h(k)+
n
∑

k<l=1

1

rkl
(12-7)

with the matrix elements

hp
q = 〈ψq|h|ψp〉; (12-8)

Vpq
rs = 〈ψr(1)ψs(2)| 1

r12
|ψp(1)ψq(2)〉; (12-9)

The corresponding Fock space Hamiltonian is then

H = hp
qaq

p +
1

2
Vpq

rs ars
pq (12-10)

with the Einstein summation convention [15].
The Hamiltonians Hn and H have the same matrix elements with respect to n-

electron Slater determinants. H has eigenstates for all n, Hn only for a specified
n. The eigenstates of H are the full-CI states. The particle number n is a quantum
number.

It is convenient (especially if one wants to apply perturbation theory) to choose
the one-electron basis such that the one-electron part h of H is diagonal

H = h+ V; h = εpap
p; V = 1

2
Vpq

rs ars
pq =

1

4
V̄pq

rs ars
pq; V̄pq

rs = Vpq
rs − Vpq

sr (12-11)

12.2.2. Inversion of a Commutator

In order to transform the Fock space Hamiltonian to diagonal form by means of a
similarity transformation, we have to be able to invert a commutator with the one-
electron operator h = εpap

p.
The commutator of apq

rs with h = εpap
p is obtained if one multiplies apq

rs with an
energy difference

[apq
rs , εta

t
t] = (εr + εs − εp − εq)apq

rs (12-12)

Hence if B has the matrix elements Brs
pq, those of A = [B, h] are Ars

pq = Brs
pq(εr +

εs − εp − εt). If A is known, we get the elements of B as

Brs
pq = Ars

pq(εr + εs − εp − εq)−1 (12-13)

We must, of course, require that (εr + εs − εp − εt) �= 0, otherwise the commutator
inverse does not exist. We symbolize the commutator inverse by the subscript H and
define [15]
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(AH)rs
pq =

{

Ars
pq(εr + εs − εp − εq)−1 if (εr + εs − εp − εq) �= 0

= 0 otherwise

}

(12-14)

With this definition the commutator inverse is not unique. One can add to AH any
operator that commutes with h and it is still a commutator inverse. We shall use this
freedom to impose a normalization condition for the wave operator.

A generalization of the inverse of the commutator with h to operators of arbitrary
particle rank is straightforward. An example is

(AH)stu
pqr =

⎧

⎨

⎩

Astu
pqr(εs + εt + εu − εp − εq − εr)−1

if (εs + εt + εu − εp − εq − εr) �= 0
= 0 otherwise

⎫

⎬

⎭

(12-15)

12.2.3. Particle-Hole Picture

The switch to the particle-hole picture means a change of the reference state Φ. In
the original Fock space formulation the reference is the genuine vacuum |0〉. The
wave operator W generates the n-electron wave function Ψ from the vacuum

Ψ = W|0〉 (12-16)

In the particle-hole picture the reference is a single Slater determinant n-electron
wave function Φ, and W is a particle number conserving operator that generates Ψ
from Φ

Ψ = WΦ (12-17)

The reference wave functionΦ is a Slater determinant with the spin-orbitalsψi,ψj, ...
occupied. These are complemented by the unoccupied spin orbitals ψa,ψb, ... to an
orthonormal set ψp,ψq, ....

In the traditional particle-hole picture one defines first hole creation and hole
annihilation operators. This is, however, a dead end, since it destroys the tensor no-
tation, and since it is not generalizable to arbitrary (non-single-Slater -determinant)
reference functions.

We prefer to define excitation operators in particle-hole picture [17–20, 26] (with
a tilde on a) as

ãp
r = ap

r − γ p
r (12-18)

ãpq
rs = apq

rs − γ p
r aq

s + γ p
s aq

r + γ q
r ap

s − γ q
s ap

r + γ pq
rs ; γ pq

rs = γ p
r γ

q
s − γ p

s γ
q
r (12-19)

with γ p
r etc. defined as (12-5) and (12-6) with Ψ replaced by Φ. While operators in

the original normal ordering satisfy

0 = 〈0|ap
r |0〉; 0 = 〈0|apq

rs |0〉 (12-20)
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Figure 12-1. Graphs for operators in particle-hole picture

operators in normal ordering in the particle-hole sense satisfy

0 = 〈Φ|ãp
r |Φ〉; 0 = 〈Φ|ãpq

rs |Φ〉 (12-21)

The notation using a tilde on operators is an alternative to the more traditional one
where one includes an operator product in braces or double dots.

Operators in the particle hole picture are illustrated by diagrams, in which lines
with labels i, j, ... (corresponding to occupied spin orbitals) are going downwards
(hole lines). An example is on Figure 12-1.

12.2.4. Generalized Wick Theorem

To evaluate products of excitation operators (in particle-hole picture) as sums of
excitation operators (in particle-hole picture) and possibly a constant, we need a
generalization [17, 26] of Wick’s theorem [27]. On Figure 12-2 the special case for
two matching labels is illustrated. Signs are part of the diagrams.

Figure 12-2. Wick theorem in the particle-hole picture
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The Wick theorem in the particle-hole sense contains hole contractions and com-
bined contractions (even full contractions) in addition to particle contractions e.g.

ãi
aãb

j = ãib
aj + δb

aãi
j − δi

j ã
b
a − δb

aδ
i
j (12-22)

(see also Figure 12-2)
Particle labels contract from upper right to lower left in the formula (with up-

going arrows in the figure), while hole labels contract from upper left to lower right
(with down-going arrows). Hole contractions are associated with a factor (−1).

Only full contractions contribute to the expectation value w.r.t. Φ.

12.2.5. Fock Space Hamiltonian in Particle-Hole Picture

In particle-hole picture the Hamiltonian becomes [17]

H = E(0) + f p
q ãq

p +
1

2
Vpq

rs ãrs
pq; E(0) = hp

qγ
q
p +

1

2
Vpq

rs γ
rs
pq; f p

q = hp
q + V̄pr

qsγ
s
r (12-23)

The zeroth order ground state energy E(0)

E(0) = 〈Φ|H|Φ〉 = E0 + E1; E0 = hp
qγ

q
p ; E1 = 1

2
Vpq

rs γ
rs
pq (12-24)

appears as a constant. This E(0) must be distinguished from E0, the zeroth order in a
perturbation expansion.

In (12-23) one recognizes the Fock operator f, that contains the effective field
created by the electrons in addition to the nuclear field.

It is recommended to determine Φ so that the expectation value (12-24) is mini-
mized, such that the Brillouin condition [28]

〈Φ|[ãp
q, H]|Φ〉 = 0; [f, γ ] = 0 (12-25)

is satisfied. This defines Hartree – Fock theory, and implies that f is diagonal in the
basis of the occupied spin orbitals.

Then V does not contain self-contractions (tadpoles) as illustrated in Figure 12-3.
It appears natural to regard

H0 = f p
q aq

p (12-26)

as unperturbed Hamiltonian for a perturbative treatment, as it has first been pro-
posed by Møller and Plesset [29]. Sometimes one wants to consider the bare nuclear
Hamiltonian

h = hp
qaq

p (12-27)
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Figure 12-3. Interactions with self-contractions (tadpoles)

as unperturbed H0. For this choice the perturbation does contain tadpoles. Our for-
malism covers both cases. We shall point out simplifications that arise for PT in the
Møller – Plesset case. CC theory will usually be based on MP.

We do not consider open-shell states, for which not all possible Brillouin condi-
tions are satisfied, and we must consider single excitations to lowest order.

12.2.6. Definition of Diagonal for Closed-Shell States

We want to apply a similarity transformation to the Fock space operator H, such
that the transformed operator L is diagonal. For the present purpose, namely the
evaluation of the ground state energy of a closed-shell state, the following definition
is convenient. We call a diagram in the particle-hole picture [17]

C: closed, if it has no external line (only full contractions)
B: closed from below, if there are only particle creations and/or hole annihilations
A: closed from above, if there are only particle annihilations and/or hole creations
O: open for another possibilities.
A graphical illustration is given on Figure 12-4.

Figure 12-4. Definition of the subscripts C, B, A, O, D, N for operators
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An operator of type B is also called non-diagonal (N), while operators of the
types C, A, O are also called diagonal (D), see the line int in Figure 12-4. Note that
operators of type C are just numbers (expectation values with respect to Φ).

These definitions are appropriate if we choose the intermediate normalization
of the wave operator. For the unitary normalization (see Section 12.9) a different
definition of D and N must be used. It is also indicated on Figure 12-4 in the line
unit. While the definition of B, A, C, O remains unchanged, now D is the sum of C
and O, while N is the sum of B and A.

Different definitions of D and N are also needed if we consider a degenerate or
quasi-degenerate state [16]. This is out of the scope of the present chapter.

The nomenclature of the present subsection has the disadvantage that, in the liter-
ature, the label C is often used for connected rather than closed. Misunderstandings
are hardly possible in this paper, since we always use a formalism, in which diagrams
are connected by construction. We hence do not need a subscript for connected.

Jeziorski and Moszynski [30] have used a superoperator formalism, that is, to
some extent, equivalent to the present one.

12.3. THE SEPARATION THEOREM

We start from a Fock space Hamiltonian, built up from a finite one-electron basis (as
explained in Section 12.2.5). Suppose that the space of one-electron basis functions
can be divided into two subspaces A and B, such that all matrix elements hp

q and gpq
rs

vanish, unless p and q, or p, q, r, s, belong to the same subspace A or B.
Then the Fock space Hamiltonian is additively separable:

H = HA + HB (12-28)

The solution of the Schrödinger equation is essentially equivalent to the block
diagonalization of H by means of a similarity transformation with the wave
operator W.

L = W−1HW = LD (12-29)

The subscript D means diagonal. There are various options for the definition of D
(diagonal) [15, 19], e.g. that given at the end of the preceding subsection. The results
of this section hold for all acceptable definitions of D (diagonal).

We must, of course, require that the definition of diagonal is compatible with
separability. It is here where the fact comes into play that electrons are fermions.

Let us assume that we have achieved the block diagonalization in either subspace

LA = W−1
A HAWA = LAD; LB = W−1

B HBWB = LBD (12-30)

Using that operators commute, if they act in different subspaces, we get
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LA = W−1
B W−1

A HAWAWB (12-31)

LB = W−1
B W−1

A HBWAWB (12-32)

L = LA + LB = W−1HW; W = WAWB (12-33)

While L is additively separable, W is multiplicatively separable. Let us write

W = exp (S) (12-34)

WA = exp (SA); WB = exp (SB); S = SA + SB (12-35)

Then the cluster amplitude S is additively separable.
Separability implies extensivity and a connected-diagram theorem. If we formu-

late the theory in terms of H, S, and L, we deal with only additively separable quan-
tities, that can be represented by connected diagrams. A diagram is connected if
without cutting at least one fermion (particle or hole) line it cannot be decomposed
into two distinct parts. An example of both a connected and a disconnected diagram
is given on Figure 12-5.

Let us divide the space of one-particle functions into two subspaces, the interac-
tion of which can be gradually switched off. Then, in the limit of vanishing inter-
action, a disconnected diagram, describing L, E, or S, consisting of two parts in the
two subspaces, will not vanish, as it should. It must therefore be absent, even if the
interaction is switched on.

The separation theorem is both fundamental and almost trivial. So it is hard to
say when it has first been formulated. The earliest reference known to the author is a
paper by Primas [31].

It is curious that the ansatz (12-34), associated with the names of Coester and
Kümmel [32], which is a manifestation of the separation theorem, is older than this
theorem, and that this ansatz was first formulated in an indirect and tedious way
going through the machinery of many-body perturbation theory (MBPT) [33].

The Gedanken-Experiment to divide the one-electron Hilbert space into two non-
interacting parts, requires that we can use a localized one-electron basis. Separability
is closely related to localizability.

Figure 12-5. Examples of a disconnected (a) and a connected (b) diagram
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In terms of a delocalized basis, separability is not really meaningful. The require-
ment of invariance between a formulation in a localized or a delocalized basis, would
therefore be counterproductive. This is now trivial for anyone who tries to describe
large systems in a satisfactory way [2], which is only possible in a localized basis.
This was not familiar to Pople [34] when he formulated his criteria that a good
many-electron theory should satisfy. The requirement of unitary invariance should
be somewhat attenuated. For details see Section 12.8.1.

12.4. SHORT HISTORY OF ELECTRON PAIR THEORY

The concept of electron pairs has always played a great role in Theoretical Chemistry
[35–39]. Valence bond (VB) theory is, to a large extent, a theory of electron pairs,
though a rather rudimentary one. The first systematic formulation of an electron pair
theory is the theory of separated pairs of Hurley et al. [40]. The Separated Pair ansatz
became later known as APSG [41], for antisymmetrized product of strongly orthog-
onal geminals. This ansatz has a few nice features, and it can, at least in principle,
be applied in variational calculations, but it is, of course, approximate. It could be
shown, that in those cases, where this ansatz is exact (e.g. for a supersystem of n
He atoms at mutually infinite distances), the various pair functions can be treated
independently, and normalized individually, just in the effective field of the other
electrons and nuclei, and that the exact correlation energy is a sum of pair correlation
energies.

The APSG ansatz is actually a special case of a CC ansatz [36]. In terms of this
ansatz one minimizes the total energy of a (2n)-electron system, subject to normal-
ization conditions for n pairs. This leads to n eigenvalue equations. To understand
the APSG ansatz is a prerequisite for understanding CC theory [36].

We can only mention briefly that an alternative ansatz, called APIG (antisym-
metrized product of identical geminals) [41] or AGP (antisymmetrized geminal
power) [42] has found some interest, mainly in the context of the theory of su-
perconductivity, and that a geminal product ansatz without the restriction of strong
orthogonality has recently been studied with promising results [43].

Even before it became feasible to implement the APSG ansatz in a large-scale
ab-initio context [44], it was obvious, that this ansatz is not general enough and that
one ought to go beyond it. With the APSG ansatz one considers n electron pairs for
2n electrons, e.g. for the Be ground state (with 2n = 4) the 1s2 pair and the 2s2

pair, while a more refined treatment would require to consider also the 1s2s pairs,
for 4 possible spin pairings, i.e. a total of 6 pairs. It has been observed [45] that to
the lowest order of Møller – Plesset perturbation theory, to 2nd order for the energy

(MP2), the total correlation energy appears as the sum of

(

2n
2

)

pair correlation

energies. It is plausible to combine this result with that for the APSG ansatz and to
conjecture, that a good approximation to the correlation energy of a closed-shell 2n

electron state can be constructed as the sum of

(

2n
2

)

pair correlation energies in the
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effective field of the other pairs. Sinanoğlu [46] has based his many-electron theory
on an intuitive argument of this kind. Independently, and even earlier Nesbet [47, 48]
has suggested the same approximation under the name Bethe – Goldstone theory. He
based this on a study by Bethe and Goldstone [49], who proposed to sum all ladder
diagrams of many-body perturbation theory (MBPT), which leads to an effective
pair equation (see Section 12.5.6). Actually the motivation of Bethe and Goldstone
was not the derivation of a pair theory, but the construction of a reaction operator,
that is less singular than the hard-core pair interaction, and that allowed a mean-field
treatment of nuclear matter and nuclei, for cases where Hartree – Fock diverged.

Both names many-electron theory and Bethe – Goldstone theory are somewhat
misleading and they were replaced by the neutral term independent electron pair
theory (IEPA) [3]. Nesbet’s access has not only the advantage that his derivation
of IEPA is at least justified in terms of MBPT, but he has moreover defined this
approximation as a member of a hierarchy of approximations, that eventually lead
to an exact theory. The next step is a theory of electron triples. Nesbet and others
[50] did also consider this next step numerically, but this strategy was not further
considered. Nesbet’s ideas have actually survived in the incremental scheme of Stoll,
Dolg, and others [51].

IEPA was combined with the concept of the expansion of electron pair functions
into pair natural orbitals (PNO) and became for a few years the most powerful
approximation towards the evaluation of the electron correlation for small molecules
[4]. One of the merits of IEPA is that it is exact for a supersystem of non-interacting
two-electron systems. IEPA is not invariant with respect to a unitary transformation
among the hole orbitals. One must therefore recommend a particular choice of these.
Localized orbitals represent usually the best choice, because in terms of them the
neglected coupling terms become minimal. All published IEPA-PNO calculations
[4] were based on Boys-localized orbitals.

The simple alternative to implement straight 2nd order Møller – Plesset pertur-
bation theory (MP2) [29] rather than IEPA was only considered much later [52].
Both IEPA and MP2 are approximations, IEPA is more accurate, but also somewhat
more expensive. Sometimes it was reproached to IEPA, that it often overshoots the
correlation energy. This also applies to MP2, but was hardly used as an argument
against it. Some people preferred MP2 over IEPA, because it is unitary invariant
[36], but this is not a strong argument. See the comments on the unitary invariance
of CEPA later in this section and in Section 12.8.3. MP2 will survive for some time,
as the simplest approach to account for electron correlation.

It was a rather small, but important step from IEPA [3] to the coupled electron
pair approximation (CEPA) [5, 6]. This step can be justified by an analogy to that
from MP2 and MP3. It was also seen as an approximation to CP-MET. IEPA merged
into CEPA and became just the first step in a CEPA treatment. The IEPA results for
the total correlation energy became obsolete, but the pair increments to the IEPA
energy (documented in many early studies [4, 53]) remained meaningful, especially
if one wanted to explain changes in the correlation energy, e.g. on a reaction path.
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Actually, pair energies are also defined within CEPA. Even these days IEPA is still
alive and has been used as an intermediate step in CC theory [54].

One can justify CEPA (like IEPA) starting from MBPT in terms of a selection of
diagrams (see Section 12.5.6). It has usually been made plausible starting from CID,
i.e. configuration interaction with double substitutions [36], as we shall see later in
more detail (Section 12.8.3).

CEPA became available for large-scale ab-initio calculations at about the same
time as routine MP2 calculations, but long before the first comparable calculations in
terms of CCD, then still called CP-MET, for coupled-pair many-electron theory, an
obvious tribute to Sinanoglu’s (un-coupled-pair) many-electron theory, synonymous
with IEPA.

Coupled cluster (CC) theory, originally called eS theory, goes back to nuclear
physics [32, 33]. The early history of the eS theory has been reviewed by Paldus
[55].

This theory was adapted to molecular applications by Čížek [56]. First imple-
mentations of the Čížek formalism were in a semiempirical context. Preliminary
ab-initio CC calculations were published in 1972 [57], while first large-scale CCD
calculations [58] of the type that is now standard, appeared in 1978, at a time when
CEPA was already on the market. The very first large-scale CCD calculation by
Taylor et al. [59] of 1976 (still under the older name CP-MET [56]) was actually
built upon CEPA, using the Karlsruhe CEPA program [6], with extra coupling terms
on top of it. This was cited in Bartlett’s review [60], but has otherwise found little
attention, as is also happened to the few studies published on the relation between
CEPA and CC [36, 61–63]. Especially the message that CCD and CEPA differ only
marginally [59, 63], did not become popular.

As already pointed out, CEPA was originally justified from an analysis of the
CI (configuration interaction) equations with unlinked products of pair excitations
included. Earlier attempts to derive CEPA from CCD were reviewed by the present
author [36]. The key point, to which we come in detail in Section 12.8.3, is that
the leading pair coupling terms are those of EPV (exclusion-principle violating)
type, and that the summation over these terms leads to CI-like pseudo-eigenvalue
equations with different eigenvalues, corresponding to independent normalization,
for the different pairs, as they are familiar from CEPA. The non-EPV terms only
lead to usually small and physically rather meaningless corrections.

In spite of the obvious closeness of CCD and CEPA, the opinion was widespread
that CCSD is more sophisticated and better founded, and hence superior to CEPA.
One of the arguments against CEPA has been that it is not invariant with respect to
a unitary transformation among the occupied spin orbitals. This reputation has not
been the result of systematic numerical studies. Actually (see Section 12.8.3) for
“normal” molecules at least the CEPA1 variant is very close to invariant with respect
to a switch from canonical to localized orbitals (see also Section 12.8.3).

Even former protagonists of CEPA abandoned CEPA in favor of CCD or CCSD,
and CEPA was practically forgotten for decades [7], although both some old and
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some recent studies indicated that CEPA often performs, e.g. for spectroscopic con-
stants, even better than CCD or CCSD [64, 65].

Curiously, until very recently [66], CC theory had its greatest success in chemistry
and never became very popular in physics, although some important formal studies
were published by nuclear physicists [21, 67]. The earliest use of the name coupled
cluster theory, that has also been adopted in nuclear physics, has probably been in
a series of papers by Harris, Zivkovic, and Monkhorst, which would deserve to be
better known [68–70].

12.5. MANY-BODY ASPECTS OF MBPT AND CC THEORY

12.5.1. Similarity Transformation

Many-Body perturbation theory (MBPT) and coupled-cluster (CC) theory have a
common history and some common features. This is not so obvious from the original
papers in nuclear theory, because the eS ansatz [32] was meant as a counterpoint in
spirit to MBPT, formulated willingly in algebraic form, not using diagrams. The
adaptation of the eS ansatz to chemistry [56] was formulated in terms of diagrams
and had more similarities with MBPT than the original eS theory.

In order to understand the essential features of MBPT and CC, a look at the history
is hardly helpful, and is, in fact rather confusing [71]. A modern formulation of
MBPT (see also Ref. [72]) has recently been given by the present author [22, 71, 73],
using the language of Quantum Chemistry in Fock space [15]. The same formalism is
applied here to CC theory. In order for this review to be self-contained, the essentials
of this formalism are here recapitulated. For more details the reader is referred to the
companion paper [22].

In a modern language the basis of both MBPT and CC is very simple. We search
for a similarity transformation of the Fock space Hamiltonian H in normal order in
particle hole picture by means of a non-unitary wave operator W = eS to an operator
that is diagonal in the sense of the definition given in Section 12.2.6, which means
that the desired eigenstate with the energy eigenvalue E, equal to the closed part LC

of the transformed Hamiltonian L = W−1HW, is decoupled from the rest. We use
the symbol S for the cluster amplitude in agreement with the original literature [32]
rather than T , which is popular in chemistry.

L = e−SHeS; S = SB; LB = 0; E = LC (12-36)

The choice S = SB is no loss of generality, but leads to important simplifications,
because all basis operators with subscript B commute with each other.

In MBPT one expands in powers of the perturbation parameter λ

H = H0 + λV; S = λS1 + λ2S2 + ...; L = H0 + λL1 + λ2L2 + ...

E = E0 + λE1 + λ2E2 + ... (12-37)



314 W. Kutzelnigg

In (traditional) CC theory one expands S in (12-34) in terms of excitation operators
of particle rank k, i.e.

S =
m
∑

k

S(k) (12-38)

A CC hierarchy consists in solving (12-36) first for S replaced by S(2), then with
the upper summation index in (12-38) m = 2, m = 3 etc. For m = n one arrives at
the full-CI result. Expanding (12-36) we get the CC equations

0 = HB + [H, S]B + 1

2
[[H, S], S]B + 1

6
[[[H, S], S], S]B

+ 1

24
[[[[H, S], S], S], S]B (12-39)

E = HC + [H, S]C + 1

2
[[H, S], S]C (12-40)

The Hausdorff expansion in (12-40) terminates, because a triple (or higher) com-
mutator [[[H, S], S], S] with S = SB cannot be closed. The three S factors mean at
least a threefold excitation, the factor H at most a twofold de-excitation. The expan-
sion in (12-39) terminates, because a quintuple (or higher) commutator cannot be
connected and must hence vanish.

Using that (for operators XB and YB closed from below, but arbitrary otherwise)

[H0, XB] = [H0, XB]B; [XB, YB] = 0 (12-41)

and introducing the formal commutator inverse (12-14), (12-39) and (12-40) can be
reformulated to

S = VBH + [V , S]BH + 1

2
[[V , S], S]BH + 1

6
[[[V , S], S], S]BH

+ 1

24
[[[[V , S], S], S], S]BH (12-42)

E = E0 + VC + [V , S]C + 1

2
[[V , S], S]C (12-43)

This is the basis of traditional coupled-cluster (TCC) theory, outlined in more detail
in Section 12.6.

12.5.2. Two Possible Choices of H0

We consider two possible options for the choice of the Hamiltonian of Section 12.2.5:
(a) The energy expectation value is minimized with respect to variation of

Φ. Then the unperturbed Hamiltonian H0 is that of Hartree – Fock theory, and
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the perturbation term V in the Hamiltonian does not contain single-particle in-
teractions (diagrams with tadpoles). This is the case for Møller – Plesset based
CC or PT.

(b) We keep Φ arbitrary, e.g. possibly as the solution of the bare-nuclear Hamil-
tonian (BNH) problem. Then tadpoles must be included.

In a recent review on MBPT [22] we have considered the general case (b), and
indicated the simplifications that arise for the special choice (a). We shall here only
consider the Møller – Plesset option (a), because the BNH case hardly plays a role
in CC theory. One should realize however, that it may be advantageous to base CC
theory on so-called Brueckner orbitals (see Section 12.6.2). These don’t make the
energy expectation value stationary, such that the general case (b) must be the starting
point.

12.5.3. Connected-Diagram Theorem

In the formalism based on a similarity transformation we only consider operators
such as H, L, S, which are additively separable. All derived quantities are obtained
in Lie algebraic form, i.e. as commutators or multiple commutators. In a diagram-
matic representation all these expressions can be represented by connected diagrams,
because a commutator of two operators represented by connected diagrams is also
represented by a connected diagram (see Section 12.3).

It is essential that we consider operators in Fock space, and also that we ignore
restrictions on spin-orbital labels (as they must be made in a traditional formulation
in fixed-particle-number Hilbert space), and distinguish only particle and hole lines.

The anticommutation relations of the fermion operators take care, that all results
for observables are in perfect agreement with the Pauli principle. However, indi-
vidual diagrams may apparently be in conflict with the Pauli principle, e.g. two or
more particle (or hole) lines in a diagram may have the same label. One can achieve,
that all such EPV diagrams cancel. However, usually connected EPV diagrams
cancel with disconnected ones. If one wants to take advantage of the connected-
diagram theorem, one must not cancel connected EPV diagrams with disconnected
diagrams, but keep the connected EPV diagrams. The connected diagram theorem
only holds, if all connected EPV diagrams are taken care of. For an illustration
see Section 12.8.3.

We rely here on a constructive approach, in which connectedness at each step
is guaranteed by a Lie-algebraic formulation. One can alternatively proceed in a
non-constructive way, where at the end one selects only connected diagrams. For
more details see Ref. [22].

12.5.4. Perturbation Expansion

Since in CC theory one often uses arguments from perturbation theory, it is recom-
mended to have look at the perturbation expansion of TCC [22, 71–73]. We expand
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H = H0 + λV (12-44)

S = λS1 + λ2S2 + ... = SB (12-45)

E = E0 + λE1 + λ2E2 + ... (12-46)

and get (orders in PT are indicated by subscripts) immediately from (12-42) and
(12-43).

S1 = VBH (12-47)

S2 = [V , S1]BH (12-48)

S3 = [V , S2]BH + 1

2
[[V , S1], S1]BH (12-49)

S4 = [V , S3]BH + [[V , S1], S2]BH + 1

6
[[[V , S1], S1], S1]BH (12-50)

S5 = [V , S4]BH + [[V , S1], S3]BH + 1

2
[[V , S2], S2]BH + 1

2
[[[V , S1], S1], S2]BH

+ 1

24
[[[[V , S1], S1], S1], S1]BH (12-51)

E1 = VC (12-52)

E2 = [V , S1]C (12-53)

E3 = [V , S2]C + 1

2
[[V , S1], S1]C (12-54)

E4 = [V , S3]C + [[V , S1], S2]C (12-55)

E5 = [V , S4]C + [[V , S1], S3]C + 1

2
[[V , S2], S2]C (12-56)

We have used that Sk and Sl commute, and that hence

[[V , Sk], Sl] = [[V , Sl], Sk] (12-57)

We can reformulate these expressions such that, in the spirit of the Wigner (2n + 1)
rule, E3 is expressible through S1, and E4 and E5 in terms of S1 and S2 [30]. E5 gets
a more compact form, if one does not eliminate S3. The most compact expressions
for the low orders of the MBPT energy are [22, 74] (12-52) and (12-53), and:

E3 = [S†
1, [V , S1]]C (12-58)

E4 = [S†
1, [V , S2]]C + 1

2
[S†

1, [[V , S1], S1]C (12-59)

E5 = [S†
1, [V , S3]]C + [S†

1, [[V , S1], S2]]C + 1

2
[[V , S2], S2]C (12-60)
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A diagrammatic expression of the Ek of MBPT is given in ref. [22]. The Ek given
here, hold for MP, starting from Hartree Fock. More general results are found in
Ref. [22].

12.5.5. The Arponen Functional and Related Functionals

An alternative formulation of the traditional CC theory (12-36) is to require that
S = SB satisfies

(X†e−SHeS)C = 0, for all X† = (X†)A (12-61)

and that E is constructed from this S as

E = (e−SHeS)C (12-62)

A further step is to consider the functional, introduced by Arponen [21]

FCC(T†, S) = {(1+ T†)e−SHeS}C; S = SB; T† = (T†)A (12-63)

We could also write S† for T†, if we insist that S† and S are independent operators.
This functional has the following properties:
(1) Stationarity of FCC with respect to all possible variations of T† is achieved, if

S satisfies the TCC equations (12-42) and (12-43).
(2) The stationary FCC is equal to the TCC energy E, and is exact (i.e. equivalent

to full CI), if FCC is stationary with respect to all possible variations of T† (within
our finite-dimensional Fock space).

(3) FCC does, unlike a variational functional, not provide an upper bound for the
exact E.

This is a somewhat unusual functional. It depends on the two operators S and T†

in an asymmetric way. Let us consider another functional, namely that correspond-
ing to configuration interaction (CI), with the CI wave function generated from the
reference function Φ by means of the wave operator (1+ U) with U = UB

FCI(U
†, U) = {(1+ U†)H(1+ U)}C

{(1+ U†)(1+ U)}C (12-64)

Stationarity with respect to variation of U† is achieved if U is determined so, that

{X†(H − E)(1+ U)}C = 0; E = FCI(U
†, U) (12-65)

for the set of operators X into which U is expanded. The stationarity condition
(12-65) is an eigenvalue equation and implies
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0 = {U†(H − E)(1+ U)}C (12-66)

{(H − E)(1+ U)}C = {(1+ U†)(H − E)(1+ U)}C (12-67)

E = F(U†, U) = E + {H(1+ U)− E}C
{(1+ U†)(1+ U)}C (12-68)

E = HC + (HU)C (12-69)

The eigenvalue equation (12-65) can be rewritten as a nonlinear system of equations

{X†(H + (H − HC − [HU]C)U)}C = 0; E = HC + (HU)C (12-70)

that can be solved iteratively, starting with [HU]C = 0, i.e. with the linear system

{X†(H + (H − HC)U)}C = 0; E = HC + (HU)C (12-71)

Let us now consider the Arponen functional for CCD, i.e. for only double
excitations

FCCD(T†
(2), S(2))

= {H + HS(2) + T†
(2)H + T†

(2)[H, S(2)]+ 1

2
T†

(2), [[H, S(2)], S(2)]}C
= {H + [H, S(2)]+ [T†

(2), H]+ [T†
(2), [H, S(2)]]

+1

2
[T†

(2), [[H, S(2)], S(2)]}C (12-72)

which has the stationarity condition

{X†
(2)(H + [H, S(2)]+ 1

2
[[H, S(2)], S(2)])}C = 0; E = HC + [H, S(2)]C (12-73)

This is also a non-linear system of equations. The linear part, e.g. for an iteration
start, is

{X†
(2)(H + [H, S(2)]}C = 0; E = HC + [H, S(2)]C (12-74)

If we identify S(2) with U(2) and realize that

{X†
(2)([H, S(2)]}C = {X†

(2)(HS(2) − S(2)H)}C = {X†
(2)(H(2)S− S(2)HC)}C (12-75)

we see that the linear approximation for CCD and CID is the same. It can also be
written
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{X†
(2)(V + [H0, S(2)]+ [V , S(2)]}C = 0; E = HC + [V , S(2)]C (12-76)

This linear system can be derived in many different ways and is now usually called
CEPA0 [36]. It has the formal solution

S(2) = VBH + [V , S(2)]BH (12-77)

The linear CEPA0 system misses only those terms of CCD, which are of 4th order in
MBPT and which are bilinear in S such as

1

2
{X†

(2)[[H, S(2)], S(2)]}C (12-78)

We shall have a closer look at these terms in Section 12.8.3. In the moment we note
that these terms are rather small in absolute value, and are certainly much smaller
than the respective terms of CID

− {X†
(2)(HU(2))CU(2)}C = −(X†

(2)U(2))C(HU(2))C (12-79)

While (12-78) is in Lie algebraic form, hence separable and representable by only
connected diagrams, (12-79) factorizes, is not additively separable, and consists of
products of closed diagrams, i.e. of only disconnected diagrams. We know that CID
is not acceptable. CEPA0 is usually a better approximation to CCD than is CID. Nev-
ertheless, even CEPA0 is not fully satisfactory, because it does not describe a genuine
2-electron system exactly, nor a supersystem of non-interacting 2-electron systems.
For this the extra term (12-78) is needed. However, a simple compact approximation
as in CEPA2 (see Section 12.8.3) will be sufficient.

CEPA0 as it stands, has hardly been used as an approximation to CCD, mainly
because it can suffer from singularities, especially in situations of near-degeneracy
[63], (where, anyway, a pair theory based on a single reference is not recommended).
A way to avoid these singularities has been found by Taube and Bartlett by means of
a Tichonov regularization [75].

For a genuine 2-electron system CCD and CID must be indistinguishable. This
is not immediately obvious from the expressions (12-78) and (12-79). It requires a
closer look at the respective diagrams (see Section 12.8.3).

12.5.6. Infinite Summation of Classes of MBPT Diagrams

If one solves the CC equations in a finite one-electron basis exactly, one gets the
full-CI result. One can usually not afford this and one must make approximations.

The simplest approximation consists in taking the lowest order of PT or the first
iteration cycle, i.e.
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S = VBH ; E = E(0) + VC + [V , VBH]C (12-80)

This is MP2 (2nd order Møller – Plesset).
Attempts to improve the theory by going to successively higher orders of MBPT,

i.e. from MP2 via MP3 to MP4 etc. were disappointing. An alternative to classifying
the diagrams of MBPT by the order in the perturbation parameter λ, and collecting
those of the same order, is to consider certain classes of diagrams, that one regards
as important, and to sum them to infinite order.

It is useful to follow an idea that goes back to Bethe and Goldstone [49], though
introduced for a different purpose.

Let us look at all MBPT diagrams, that carry two hole lines, labeled i and j. In
terms of Goldstone vertices these diagrams look like ladders. They are therefore
called (particle-line) ladder diagrams. They are illustrated on Figure 12-6 in terms
of Hugenholtz vertices. We have used square dots for the antisymmetrized matrix
elements of the interaction potential V , to be consistent with diagrams used later in
this chapter.

Note that in an algebraic expression operators are counted from right to left, while
the corresponding vertices in a diagram go from bottom to top. Energy denominators
are indicated by rectangular boxes (see Section 12.2.3).

Let us now try to sum all these diagrams. The sum of all ladder diagrams is

ΔE =
∑

i<j

εij (12-81)

with εij the partial sum over diagrams for a particular pair of hole labels. We can
write

Figure 12-6. Ladder diagrams
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εij = VCij + [V , VBHij]Cij + [V , [V , VBHij]BHij]Cij + ...

= VCij + [V , Sij]Cij (12-82)

Sij = VBHij + [V , VBHij]BHij + ...

= VBHij + [V , Sij]BHij (12-83)

−[H0, Sij] = VBij + [V , Sij]Bij (12-84)

[H0 + Vij, Sij] = −VBij (12-85)

where the labels ij indicate that the only hole labels present are i and j.
We get Sij as solution of a linear system of equations, and εij immediately in

terms of Sij. We call this IEPA0. Like CEPA0, mentioned in Section 12.5.5 it is
linear (whence the subscript 0), while IEPA stands for independent electron pair
approximation. IEPA0 differs from CEPA0 in the neglect of the pair interaction terms
{S†
μVSν}C (for μ �= ν). Like CEPA0 (see Section 12.5.5), also IEPA0 fails for a

genuine 2-electron system. For this the only allowed hole labels are i and j as in the
partial sum εij of ladder diagrams. We must, include additional diagrams, namely
EPV diagrams with repeated hole lines for any pair of hole labels. A typical EPV
diagram is shown on Figure 12-7.

Adding all the EPV diagrams with two repeated hole labels, one gets a nonlinear
system of equations, that is equivalent to an eigenvalue equation, which describes
a 2-electron system correctly. EPV diagrams must be included to get the correct
normalization. To sum up just the ladder diagrams is not sufficient.

Generally, the summation of a perturbation series to infinite order leads to a linear
system of equations, if only direct (non-EPV) terms are summed up, while renor-
malization (EPV) terms have to be included in order to get the correct eigenvalue
equation, or a non-linear equation equivalent to it.

It would be too tedious at this point to discuss how the inclusion of EPV diagrams
leads from IEPA0 to IEPA, i.e. to a nonlinear theory of independent electron pairs.

Figure 12-7. A typical EPV diagram with two repeated hole labels. Only hole lines are labeled
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It is easier to wait until we have derived CEPA (Section 12.8.3). Then we can sim-
ply omit the pair coupling terms from CEPA or CEPA0 to arrive at IEPA or IEPA0
respectively.

It is an interesting challenge to sum all diagrams with three hole lines, to construct
a theory of independent or coupled electron triples. We shall, however, find an easier
access to this (Section 12.8.5).

12.6. TRADITIONAL COUPLED CLUSTER THEORY (TCC)

This section is devoted to traditional coupled cluster theory, based on a non-unitary
similarity transformation in intermediate normalization, i.e. we try to solve the
Eqs. (12-39) and (12-40). We do this in terms of a hierarchy in the particle rank.
Starting point is the expansion of the cluster amplitude S in a basis of two-particle
operators X(2), known as CCD (D for doubles). The basis is then augmented to X(2)
and X(1), which defines CCSD (S for singles). With additional triply exciting basis
operators X(3) we have CCSDT (T for triples). The next step in the hierarchy, CCS-
DTQ (Q for quadruples) has hardly played a significant role in practice [76]. If we
want to distinguish between traditional CC and other CC variants, we put a letter T
in front of the respective acronym, e.g. TCCD in the same meaning as CCD.

The CC equations are usually solved iteratively, because it is relatively easy to
invert a commutator with the one electron operator H0. This does not mean that the
iterative solution is the only, or the preferable option. Little attention has been spent
to this point.

12.6.1. Coupled-Cluster Theory with Double Excitations (CCD)

We chose S = S(2) as a 2-particle operator. The particle rank of an operator is
now indicated by a subscript in parenthesis. This somewhat unconventional notation
is chosen to be consistent with the paper on MBPT [22] where a simple subscript
(normally chosen for the particle rank) was used for the orders in the perturbation
expansion. Then we have to solve:

S = S(2) = VBH + [V , S(2)](2)BH + 1

2
[[V , S(2)], S(2)](2)BH (12-86)

E = E0 + VC + [V , S(2)]C (12-87)

This compact system of equations can be solved iteratively, starting with S = 0. We
like the commutator formulation, because it makes the connectedness immediately
obvious. Sometimes only one term in the commutator is nonvanishing, and one can,
as well write products instead of commutators, such as

S = S(2) = VBH + (VAS(2))
c
(2)BH +

1

2
(VS(2)S(2))

c
(2)BH (12-88)

E = E0 + VC + (VAS(2))
c
C (12-89)
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Figure 12-8. Graphical representation of the basis equation for CCD in terms of skeletons. Spherical dots
represent cluster amplitudes S, square dots the electron interaction V

In this formulation one needs to specify that only the connected part has to be taken.
We have done this tentatively in term of the superscript c. This is the only place in
this chapter, where this notation is used. It is not needed if one expresses everything
in terms of commutators.

While both S and V are 2-electron operators, and of the single commutators only
the 2-electron parts are taken, in the construction of the double commutator inter-
mediate 3-electron operators (say, in the commutator [V, S(2)]) must not be ignored,
although the final result is a 2-electron operator.

A graphical representation of the Eq. (12-86) is given on Figure 12-8 for skeletons
[56, 71], i.e. for Hugenholtz type diagrams without explicit distinction of particle
and hole lines. For the skeleton (b) of Figure 12-8 the possible explicit diagrams are
shown on Figure 12-9, for the skeletons (c) and (d) on Figure 12-10. We symbolize a
vertex representing an element of S by a spherical dot, one of the electron interaction
V by a square dot.

The skeletons (a), (b), (c), and (d) represent contributions to 1st, 2nd, 3rd, and
3rd order of PT respectively. The corresponding contributions to the energy are of
2nd, 3rd, 4th, and 4th order respectively. If one neglects the 4th order terms, the
formalism is greatly simplified. In fact this defines CEPA0, that has been mentioned
in Section 12.5.5.

Figure 12-9. Hugenholtz type diagrams for the skeleton (b) on Figure 12-8



324 W. Kutzelnigg

Figure 12-10. Hugenholtz type diagrams for the skeletons (c) and (d) on Figure 12-8

The converged result of traditional CCD (TCCD) differs from that of variational
CCD (VCCD) by a term of O(λ5) (see Section 12.7.3). This may not matter as long
as one is only interested in CCD or CCSD, but in CCSDT one will worry about terms
of O(λ5), and the difference between TCCD and VCCD starts to be relevant.

12.6.2. Coupled-Cluster Theory with Single and Double
Excitations (CCSD)

If we choose S = S(1) + S(2) the system to be solved becomes a little lengthy

S(2) = VBH + [V , S(2)](2)BH + [V , S(1)](2)BH + 1

2
[[V , S(2)], S(2)](2)BH

+[[V , S(2)], S(1)](2)BH + 1

2
[[V , S(1)], S(1)](2)BH

+1

6
[[[V , S(1)], S(1)], S(1)](2)BH + 1

2
[[[V , S(2)], S(1)], S(1)](2)BH

+ 1

24
[[[[V , S(1)], S(1)], S(1)], S(1)](2)BH (12-90)

S(1) = [V , S(2)](1)BH + [V , S(1)](1)BH + [[V , S(2)], S(1)](1)BH

+1

2
[[V , S(1)], S(1)](1)BH + 1

6
[[[V , S(1)], S(1)], S(1)](1)BH (12-91)

E = E0 + VC + [V , S(2)]C + 1

2
[[V , S(1)], S(1)]C (12-92)

An iterative solution requires that both the equations for S(1) and S(2) must be solved
self-consistently. Starting from CCD one must update S(2), since it depends on S(1),
and so forth. There are two types of contributions of S(1) to the energy,
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ΔEa
(1) = [V ,ΔS(1)

(2)]C = [V , [V , S(1)](2)BH]C + O(λ5) (12-93)

ΔEb
(1) =

1

2
[[V , S(1)], S(1)]C (12-94)

S(1) = [V , S(2)](1)BH + O(λ3) (12-95)

ΔS(1)
(2) = [V , S(1)](2)BH = [V , [V , S(2)](1)BH](2)BH + O(λ4) (12-96)

where ΔS(1)
(2) is the change of S(2) due to the presence of S(1). If one has updated S(2),

the indirect contribution ΔEa
(1) is included and need not be evaluated explicitly. It

starts with O(λ4). The direct contribution ΔEb
(1) must be included explicitly. It goes

with O(λ5).
The many terms containing S(1) are somewhat embarrassing. Their contributions

to the energy vary between O(λ4) and O(λ7). Most of them could be safely be ne-
glected. Fortunately, it is possible to absorb the single excitation into the reference
function. Having constructed S(1) one can apply a similarity transformation to the
reference function Φ, such that the transformed reference function is a Slater de-
terminant constructed from modified spin-orbitals (often called Brueckner orbitals)
such that no single excitations are explicitly present. One must then update S(1) and
proceed until self-consistency. We cannot go into details here [77].

Although arguments from perturbation theory let single excitations appear rather
unimportant, this applies mainly to the energy. They are quite important for one-
electron properties

12.6.3. Coupled-Cluster with Doubles and Triples (CCDT)

Both single excitations and triple excitations contribute to the energy to 4th order
in MBPT. One may therefore want to treat them on the same footing. Since the
treatment of single excitations is so much easier (though lengthy), it is customary to
start with CCSD and build the triple excitations, usually treated only approximately,
upon a quasi-exact CCSD.

To understand the role of triples, it is nevertheless recommended to consider, at
least preliminarily, a CCDT approach, in which singles are ignored. The stationarity
conditions with respect to variation of T† are

0 =
{

X†
(2)

(

V + [H0, S(2)]+ [V , S(2)](2) + [V , S(3)](2)

+1

2
[[V , S(2)], S(2)](2)

)}

C
(12-97)
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0 =
{

X†
(3)

(

H + [H0, S(3)]+ [V , S(2)](3) + [V , S(3)](3) + 1

2
[[V , S(2)], S(2)](3)

+1

2
[[V , S(2)], S(3)](3) + 1

2
[[V , S(3)], S(2)](3)

)}

C
(12-98)

A consequence of stationarity is

E = HC + [V , S]C = E(0) + [V , S(2)]C (12-99)

The correlation energy is a sum of pair energies as in CCD. S(3) enters only indirectly,
insofar as it changes S(2) with respect to that constructed in CCD.

We can formally solve (12-97) and (12-98) for S(2) and S(3) and get

S(2) = VBH + [V , S(2)](2)BH + [V , S(3)](2)BH

+1

2
[[V , S(2)], S(2)](2)BH (12-100)

S(3) = [V , S(2)](3)BH + [V , S(3)](3)BH + 1

2
[[V , S(2)], S(2)](3)BH

+[[V , S(2)], S(3)](3)BH (12-101)

The Eqs. (12-100) and (12-101) can be solved iteratively. In the first iteration for
S(3) one keeps the 1st and the 3rd term of (12-101), i.e. one constructs

S(3) = [V , S(2)](3)BH + 1

2
[[V , S(2)], S(2)](3)BH (12-102)

In this first iteration cycle one gets the leading term of O(λ2) of S(3) and another
term of O(λ3). If one omits the second term in (12-102), one still gets the leading
term of S(3). This defines an approximation that one can call CCD[T], in analogy
to the approximation CCSD[T], also called CCSD+T(CCSD) of Urban, Noga, and
Bartlett [78] to full CCSDT (see Section 12.6.4).

S(3) does not enter the energy directly, but only via its effect on S(2). The change

ΔS(3)
(2) of S(2) induced by S(3) is dominated by a term of O(λ3)

ΔS(3)
(2) = [V , S(3)](2)BH + O(λ4) (12-103)

which implies the leading triples contribution to the energy of O(λ4)

ΔE(3) = [V ,ΔS(3)
(2)]C = [V , [V , S(3)](2)BH]C + O(λ5) (12-104)

One can reformulate this to

ΔE(3) = [VAH , [V , S(2)
(3)]]C + O(λ5) = [S†

(2), [V , S(3)]]C + O(λ5) (12-105)
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In the approximation CCD[T] (12-104) simplifies to

ΔE(3) = [V , [V , [V , S(2)](3)BH](2)BH]]C + O(λ5)

= [S†
(2), [V , [V , S(2)](3)BH]]C + O(λ5) (12-106)

In CCD[T] one misses terms of 5th and 6th order in the energy, which, except
for one 5th order term, require an iterative solution. One wants to avoid this, since it
involves a formal N8 step, while the non-iterative procedure scales only with N7.

Another term of 5th order, that is included in CCSD(T) (see Section 12.6.4), has
no counterpart in CCDT.

Unfortunately, arguments in terms of orders of perturbation theory have only lim-
ited value. We come back to this in Section 12.8.5.

12.6.4. Coupled-Cluster with Singles, Doubles and Triples (CCSDT)

The expressions of CCSDT are rather lengthy. We therefore consider S only to O(λ3)

S(2) = VBH + [V , S(2)](2)BH + [V , S(3)](2)BH + [V , S(1)](2)BH

+1

2
[[V , S(2)], S(2)](2)BH + O(λ4) (12-107)

S(1) = [V , S(2)](1)BH + [V , S(3)](1)BH + [V , S(1)](1)BH

+1

2
[[V , S(2)], S(2)](1)BH + O(λ4) (12-108)

S(3) = [V , S(2)](3)BH + [V , S(1)](3)BH + [V , S(3)](3)BH

+1

2
[[V , S(2)], S(2)](3)BH + O(λ4) (12-109)

ECCSDT = [V , S(2)]C + 1

2
[[V , S(1)], S(1)]C (12-110)

In a full CCSDT treatment the equations for S(1), S(2), and S(3) are solved iteratively
and self-consistently. Then only S(2) and S(1) are needed for the evaluation of ECCSD.
S(3) acts indirectly, via the dependence of S(2) and S(1) on S(3).

In approximations to CCSDT one starts from CCSD treated self-consistently, i.e.
the influence of S(1) on S(2) is taken care of. However, the influence of S(3) on S(2)
is only treated to the lowest order of perturbation theory. The leading change ΔS(2)
of S(2) under the influence of S(3) is of O(λ3) and the same (12-103) as in CCDT. It
gives rise to an energy contribution (12-104) or (12-106) of O(λ4). This term is taken
care of in the non-iterative full CCSDT formalism.

The second term of O(λ3) in (12-101) or (12-110), which gives rise to an energy
contribution of O(λ5) is neglected in all non-iterative schemes.

In the rather popular CCSD(T) approach [12] one term of O(λ5) for the energy is
explicitly taken care of, which does not even show up explicitly in the full CCSDT.
If one does not update S(1) and S(2) under the influence of S(3), i.e. one starts from
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CCSD and adds triple excitations perturbatively, one must not only take care ofΔS(3)
(2)

as one does in CCSD[T], but also ofΔS(3)
(1), i.e. the change of S(1) under the influence

of S(3). This ΔS(3)
(1) leads to a change ΔS(31)

(2) of S(2)

ΔS(3)
(1) = [V , S(3)](1)BH + O(λ4) (12-111)

ΔS(31)
(2) = [V ,ΔS(3)

(1)](2)BH]+ O(λ5)

= [V , [V , S(3)](1)BH](2)BH]+ O(λ5) (12-112)

ΔE(3)
(1) = [V ,ΔS(31)

(2) ]C + O(λ6)

= [V , [V , [V , S(3)](1)BH](2)BH]C + O(λ6) (12-113)

One can reformulate this to

ΔE(3)
(1) = [S†

(2), [V , [V , S(3)](1)BH]]C + O(λ6) = [S†
(1), [V , S(3)]]C + O(λ6) (12-114)

The two terms (12-105) and (12-114), which characterize CCSD(T) in the most com-
pact way, are shown on Figure 12-11.

It looks somewhat arbitrary to select one of several contributions to the energy
of O(λ5) and neglect others. Support for this choice came mainly from numerical
calculations.

Among the attempts to justify this choice, a study by Stanton [79] (see also
Ref. [80]) is interesting, where he showed, that CCSD(T) comes out automatically,
if one tries to formulate CCSDT, starting from CCSD (rather than Hartree – Fock)
as the reference state and constructing the effect of triple substitutions to the low-
est order of perturbation theory based on CCSD. This perturbative approach can be

Figure 12-11. Contributions of S(3) and S(1) in CCSD(T)
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formulated using the theory of CCSD gradients [9], for a non-hermitian unperturbed
operator. The extra term in CCSD(T) is a direct consequence of the non-hermiticity
of the CCSD Hamiltonian and would not show up in a hermitian perturbation theory.
The extra term is often called a non-Hartree Fock term, to indicate that in a Hartree –
Fock based theory it arises to higher order than in PT based on CCSD.

Müller et al. [81] have observed that, at least in one special case (the HF molecule)
CCSD(T) performed better in a CC calculation with a conventional basis expansion,
but that in terms of an explicitly correlated basis CCSD[T]-R12 appeared superior to
CCSD(T)-R12. Unfortunately, this has not been checked in other calculation, since
most available program packages do not allow to use CCSD[T].

There has been an enormous effort in the literature to derive approximations that
are almost as effective as CCSDT at the cost of CCSD(T) [82].

If one remembers that the main merit of CCD or CCSD is that it is non-
perturbative, one may wonder, why in the next step beyond CCSD, one uses per-
turbative approaches almost without hesitation. Both popular approximations to
CCSDT, namely CCSD[T] and CCSD(T) are not even at the level of CETA0, the
linear version of CETA, the coupled electron-triples approximation, or the 3-particle
generalization of CEPA0, see Section 12.8.5. While CCSDT is at least exact for a
genuine 3-electron system, this is neither the case for CCSD[T] nor for CCSD(T)
(see Section 12.8.5).

A simplification CCSDT(Q) of CCSDTQ, with a perturbative inclusion of
quadruples in the same spirit as CCSD(T) was proposed by Kállay et al. [76].

12.7. TOWARDS VARIATIONAL CC

12.7.1. Why Should One Care for Variational CC?

Traditional coupled cluster (TCC) theory has some attractive features, mainly that
the basis operators Sμ commute, and that the Hausdorff expansion terminates. As
a consequence we need only consider one hierarchy, namely that in terms of the
excitation rank, with the steps TCCD, TCCSD, TCCSDT etc.

One of the drawbacks of TCC theory is, that it is not variational, i.e. does not
provide an upper bound to the ground state energy and does not fulfill hypervirial
relations such as a Hellmann Feynman theorem.

In a variational formulation, the error of the energy is quadratic in the error of
the wave function (or wave operator), in TCC it has a linear term and is only ap-
proximatively quadratic [8]. If one cares for really high accuracy (i.e. if CCSDT is
not sufficient), one should worry about VCC, because it should converge much faster
with respect to the excitation rank.

If one tries a variational CC (VCC) in the intermediate normalization for the wave
operator, one has still a basis of commuting operators, but not automatically manifest
separability and no longer a terminating Hausdorff expansion, One has to consider
a combination of two hierarchies, one in terms the excitation rank, one in terms of
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the truncation of the exponential. One can use arguments from perturbation theory,
to combine the hierarchic guidelines in a consistent way.

It is difficult, but possible [30], to formulate an expectation value of a CC ansatz,
such that it is in Lie algebraic form and hence manifestly connected.

In terms of a perturbation expansion, TCCD and VCCD are consistent up to 4th
order of the energy. The TCCD error starts with O(λ5).

If one formulates variational coupled cluster theory in terms of a unitary ansatz
(UCC), to which we come in the last part of this paper (Section 12.9), it is almost
trivial to reconcile variational behavior and manifest separability. There we shall
also be in the fortunate situation, that the bulk of the non-terminating Hausdorff
expansion can be evaluated as a closed summation, with a surprisingly simple result.

A question that has not yet found much attention is, whether the conventional
hierarchy of CC theory, based on the excitation rank of the cluster amplitude is really
the best choice, or whether one should, e.g. follow the suggestion of Nooijen [83–85]
in favor of the generalized coupled cluster ansatz with singles and doubles (GCCSD).

XCC (expectation-value coupled-cluster theory), VCC, and UCC methods have
been considered by Bartlett and Noga [86]. They differ from those studied here,
insofar as H0 and V are treated as separate quantities, somewhat in the spirit of
perturbation theory. So they are not directly comparable with those of the present
and an earlier study [8], where H is not decomposed into H0 and V .

A rather extensive comparative study of XCC, VCC, and UCC as well as various
variants of them, in terms of criteria that a good theory should satisfy, was published
by Szalay et al. [10]. They recommend a method called SC-XCC (strongly connected
expectation value coupled cluster), but the general conclusions are rather pessimistic.

Unfortunately little is known about results of VCC calculations. A benchmark
study [87] treats very untypical situations, for which neither TCCD nor VCCD
are good approximations. Benchmark calculations for normal molecules are badly
needed.

12.7.2. The Expectation Value of a CC Ansatz
in Intermediate Normalization

On can try a variational formulation of CC theory in two ways, either – as done
in this subsection – in the intermediate normalization, starting from the expectation
value

E = (eS†
HeS)C

(eS†eS)C
(12-115)

or – as outlined later (Section 12.9) in unitary normalization.
Condition for stationarity of (12-115) is [8]

{X†eS†
(H − E)eS}C = 0; X = XB (12-116)
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A problem is that we have to consider a twofold hierarchy, namely with respect to
the excitation rank of the contributions to S and the truncation of the power series.

Unfortunately, the expression (12-115) is not in a Lie algebraic formulation. A
manifestly connected, but a bit complicated formulation, has been given by Jeziorski
and Moszynski [30] in terms of a series of commutators.

There is an expression equivalent to (12-115) [88]

E = (eS†
eSL)C

(eS† eS)C
= (eS†

eSL)C + (L†eS†
eS)C

2(eS†eS)C
; L = e−SHeS (12-117)

Both formulations for E are hermitian, the latter is manifestly so. This can further be
written as

E = LC + {(e
S†

eS)ALB)C + (L†
A(eS†

eS)B}C
2(eS† eS)C

(12-118)

i.e. as the sum of the energy LC of TCC, plus a correction term which changes LC to
an upper bound. If L = LC or LB = 0, we get E = LC, but this is only achieved at
the end of the CC hierarchy.

One can try to make E stationary with respect to variation of S, but this will be
very tedious. A more modest possibility is to construct S from TCC and to insert this
into (12-115) and get so an upper bound for E (though not the best possible one).
These two variants can be referred to as VCC (V for variational) and XCC (X for
expectation value).

12.7.3. Almost Variational CC Theory

Let us rewrite the energy functional as [88]

E = LC + {(e
−SeS†

eS)ALB}C
{e−SeS†eS}C (12-119)

We define a hierarchy of functionals, in which eS†
is replaced successively by 1,

1+ S†, 1+ S† + 1
2 S†2 etc. The first members are

E[0] = LC (12-120)

E[1] = LC + {S†
ALB}C

{1+ [S†, S]}C (12-121)

E[2] = LC + {(S
† + 1

2 S†2 + 1
2 [S†2, S])ALB}C

{1+ [S†, S]+ 1
4 [[S†2, S], S]}C

(12-122)



332 W. Kutzelnigg

The superscripts count members of a hierarchy. E[0] is stationary if S is that of TCC
theory. Let us now specify that we consider CCD. Then we get E[1] = E[0], i.e. the
same S makes also E[1] stationary. If we now insert this S into (12-122), in the spirit
of XCCD, we get

E = LC + 1

2
{S†2LB} + O(λ6) = LC + 1

4
{S†2[[V , S], S]} + O(λ6) (12-123)

The correction is of O(λ5). The part of O(λ5) is a generalized expectation value
of a positive operator, and is likely to be positive. This does not mean that the total
variational correction is necessarily positive. It is only so if the leading term of O(λ5)
dominates. It is not unexpected that the TCCD energy cheats, i.e. is lower than the
expectation value obtained with the same wave function.

This correction term has been considered previously [30, 88, 89].
Let us now go one step further. In (12-123) we have made LC stationary, i.e.

determined S so that (S†LB)C = 0. Let us now consider (12-123) as a functional of
S† and make it stationary with respect to variation of S†, in the spirit of VCC. We
do not require that LC ist stationary. We have, hence to add the term (S†LB)C. Our
functional is then

E = LC + (S†LB)C + 1

2
{S†2LB}C + O(λ6) (12-124)

The stationarity condition is

0 = (X†LB)C + (X†S†LB)C + O(λ6) (12-125)

which implies

0 = (S†LB)C + (S†2LB)C + O(λ6) (12-126)

E = LC − 1

2
(S†2LB)C + O(λ6) = LC − 1

4
(S†2[[V , S], S])+ O(λ6)

(12-127)

Of course, LC has changed, since it is evaluated in terms of a different S, but the main
change is in the sign of the correction term.

The VCCD energy is then, at least to the leading order, not only lower than the
XCCD energy, but even lower than the TCCD energy. This needs numerical checks.

From TCC to XCC the energy rises apparently by a certain amount, then from
XCC to VCC it decreases by roughly twice the same amount, provided that the
leading term dominates, i.e. in situations without near-degeneracies.

The hierarchy presented in this subsection looks too complicated, to be applica-
ble in practice. It is, however, useful to estimate how the TCC energy differs from
an expectation value and the variational result for the same operator basis. It has
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been suggested [88] to evaluate the correction term routinely, to get a feeling for the
difference between TCC, XCC, and VCC.

At the level of CCD the non-variational error of the energy is of the order O(λ5)
in perturbation theory. Since CCD is only correct to O(λ3), one is tempted not to
worry about this error. However, if one goes to CCSDT, which is correct to O(λ4),
neglect of the non-variational error for the CC-SD part does matter. The stationarity
condition for CCSDT does not imply vanishing of this correction term. For this the
stationarity condition for CCSDTQ would be necessary.

12.7.4. Extended Coupled Cluster Theory (ECC)

In extended coupled-cluster theory (ECC) [21] one applies two successive non-
unitary similarity transformation to the Hamiltonian H

L̃ = {eT†
e−SHeSe−T†}C; S = SB; T† = (T†)A (12-128)

The double Hausdorff expansion terminates, but at much higher order in S and T†

than for the single similarity transformation of TCC. To the lower orders we get for
ECCD

L̃ = {H + [H, S]+ [T†, H]+ 1

2
[[H, S], S]+ 1

2
[T†, [T†, H]+ [T†, [H, S]

+1

2
[T†, [[H, S], S]]+ 1

2
[T†, [T†, [H, S]]]+ 1

4
[T†, [T†, [[H, S], S]]}C (12-129)

plus terms of 5th and higher order in T or S. To low orders this looks like a sym-
metrized version of the Arponen functional. To higher order asymmetries between S
and T arise. ECC is somehow half between TCC and VCC. What interests us here,
is that the next term beyond the Arponen functional is actually the correction term
(12-123)

1

4
{[T†, [T†, [[H, S], S]]}C (12-130)

that we have derived as the leading variational correction to CCD.

12.8. ADVANCED CC THEORY

12.8.1. Change of Paradigm

So far, a paradigm of CC theory has been that an acceptable formalism should be
invariant with respect to a unitary transformation of the hole states, i.e. the spin
orbitals occupied in the reference state [34]. It has turned out that this paradigm
can sometimes be even counterproductive. If one wants to construct a formalism
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that scales linearly with the particle number [2], one must use a localized basis, and
renounce on unitary invariance. In this case one is better advised to take advantage
of the freedom in the choice of the basis to care for an optimal basis.

We know that the separation theorem, on which the justification of an exponential
ansatz for the wave operator is based, makes explicitly use of a localized descrip-
tion (see Section 12.3). Although the CC ansatz is unitarily invariant, and so are all
expectation values constructed from it, the decomposition of expectation values into
physically meaningful parts is not. At least for very large molecules a physically
meaningful analysis and a distinction between relevant and irrelevant contributions
is possible only in the localized representation, which allows one either to ignore or
approximate the latter.

A message of this chapter is that on the way to construct the wave operator in
exponential form, the first step is a linear theory, of the type CEPA0, but generalized
to arbitrary particle rank. This step happens to be unitary invariant. In a second step
(not strictly, but often practically unitary invariant) one achieves that the various
electron pairs and higher order clusters are normalized individually, which leads to
CEPA-like equations. This requires to sum over the EPV contributions to certain
coupling terms.

Only in a next step, if at all, the non-EPV contributions to higher order couplings,
which are small in absolute value and of random sign, can be taken care of. These
terms hardly contain physical information. They represent separability defects re-
lated to a slight incompatibility of ideal localization with the general antisymmetry
of the wave function, and are the price to pay for the virtues of the CC expansion.

There are further serious problems related to the non-hermiticity of the effective
Hamiltonian of traditional CC theory, which strongly suggest to switch to a varia-
tional, preferentially unitary CC theory (see Sections 12.7 and 12.9).

12.8.2. Unitary Invariance and Linear Scaling

Let us consider an energy expression of the form

E =
∑

i,j,k,l

Eijkl (12-131)

where the terms in this sum depend on 4 spin-orbital labels i, j, k, l, referring to holes
(occupied spin orbitals). Each of them is an implicit sum over particle (virtual spin
orbital) labels a, b, c, d. Let the sum be unitary invariant with respect to the hole
labels, i.e. depend only on the space spanned by the virtual spin orbitals i, j, k, l and let
further each term Eijkl depend only on the space spanned by the virtual spin orbitals
a, b, c, d. (This virtual-virtual unitary invariance will not be disputed.)

Let us now decompose E into a diagonal and a non-diagonal part (with a different
meaning of these terms than in Section 12.2.6)
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E = Ed + En; Ed =
∑

i,j

Eijij; En =
∑

(i,j) �=(k,l)

Eijkl (12-132)

This decomposition is not necessarily unitary invariant, i.e. Ed and En individually
are then not invariant under a unitary transformation among the occupied spin or-
bitals.

When we refer in this chapter to unitary invariance, or the lack of it, we mean
this precisely with respect to a decomposition of a totally unitary invariant sum such
as (12-132).

There are choices of the hole labels for which E is dominated by the diagonal
term Ed, and this is usually the case if the hole orbitals are localized. If there is
a choice of the hole orbitals, for which En is negligible, the computational effort
is reduced. It is then of the order n2

occ, where nocc is the number of occupied spin
orbitals (holes), while the full expression contains O

(

n4
occ

)

terms. A better scaling
with the number of hole labels (in the direction of linear scaling) is possible if one
relaxes the requirement of unitary invariance. If one wants to take advantage of this
possibility, one must, of course, have criteria of how to choose the hole orbitals, in
order that Ed is a sufficiently good approximation to E. We have this in mind when
we refer to incompatibility of unitary invariance and linear scaling.

One can go even one step further and consider an energy expression in terms of
hole pair labels μ, ν

E =
∑

μ,ν

Eμ,ν = Ed + En (12-133)

and search for an orthogonal set of hole-pair functions in terms of which Ed is a
good approximation to E. These pair functions belong to the family of extremal pair
functions [90].

We shall see that the contribution of those terms by which CCD differs from
CEPA0, are of the type just discussed. The sum of these terms can be decomposed
into contributions of EPV diagrams and non-EPV diagrams.

Often this decomposition is not strictly, but practically, unitary invariant. There
are probably cases with a stronger deviation from unitary invariance, where the non-
diagonal terms are negligible only for a special choice of the occupied spin orbitals,
namely localized ones. In this situation one will want to relax the paradigm of unitary
invariance and rather care for an optimal set of occupied spin orbitals.

One can then still decide whether one wants to neglect En altogether or to con-
struct first Ed, and to evaluate finally En in terms of parameters optimized for Ed, and
so get close to the result of a manifestly unitary invariant calculation.

12.8.3. From CCD to CEPA

Let us start from the Arponen functional (12-72) for CCD and let us decompose it
into the CEPA0 functional
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FCEPA0 (T†
(2), S(2)) = {H + [H, S(2)]+ [T†

(2), H]+ [T†
(2), [H, S(2)]] (12-134)

and an additional term

FΔCCD(T†
(2), S(2)) = 1

2
{[T†, [[H, S(2)], S(2)]]

′
C (12-135)

FCCD(T†
(2), S(2)) = FCEPA0 (T†

(2), S(2))+ FΔCCD(T†
(2), S(2)) (12-136)

This triple-commutator term is represented graphically on Figure 12-12, without
the factor 1

2 .
The diagrams c1, c2, d1, d2 correspond to the diagrams with the same labels as in

Figure 12-10.
One may think that they represent the interaction between triples of pairs (as the

name coupled-cluster may suggest). In reality they play a much simpler and physi-
cally very meaningful role.

The algebraic equivalents of these diagrams are

Figure 12-12. Terms bilinear in S(2) of the Arponen functional for CCD. Spherical dots for T† or S,
square dots for V . In c2 the labels k and l should be exchanged
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c1 : T̃ab
ij Ṽcd

kl S̃kl
abS̃ij

cd = (T̃ab
ij S̃kl

ab)(Ṽcd
kl S̃ij

cd) (12-137)

c2 : T̃ab
ij Ṽcd

kl S̃lj
dbS̃ji

ca (12-138)

d1 : −T̃ab
ij Ṽcd

kl S̃lj
abS̃ki

cd = −(T̃ab
ij S̃lj

ab)(Ṽcd
kl S̃ki

cd) (12-139)

d2 : −T̃ab
ij Ṽcd

kl S̃ij
dbS̃kl

ca (12-140)

The fact that one ought to include diagrams with T and V exchanged, cancels the
factor 1

2 . One must note that the diagrams c1 and d2 are invariant with respect to the
exchange i ↔ j and k ↔ l independently, such that we can sum over i < j, k < l,
while those of d1 and c2 are only invariant with respect to a simultaneous exchange
i ↔ j, k ↔ j, such that one must also include i < j, k > l (or i > j, k < l).

It is not trivial to extract the sign from our diagrams. For this, diagrams with line
vertices would be preferable, but even for point vertices one can distinguish between
lines that enter or leave on the left or right side of the vertex. The diagrams c1 and c2
have 2 and 4 closed loops respectively, hence a +sign, the diagrams d1 and d2 have 3
closed loops, hence a −sign.

The most detailed numerical studies on the relative importance of these diagrams
found in the literature, are the relatively old ones by Paldus et al. [61] and Dykstra
et al. [62] on some realistic systems and some model systems. The counterparts of
our Hugenholtz type diagrams c2 and d2 are the Goldstone type diagrams 1, 2, and
3 respectively in Ref. [61], while our c1 and d1 correspond to 5 and 4 respectively in
Ref. [61].

One interesting observation has been that the non-factorizable diagrams c2 and
d2 give very small absolute contributions. If one only adds c2 and d2 to CEPA0 (this
approach has been called ACP-D123 [61], with ACP for approximate coupled pair),
the results are hardly different from CEPA0. Apparently the individual diagrams in
c2 and d2 have random sign and cancel to a large extent. This is independent of
whether one uses a localized or a delocalized basis, since the sum of the diagrams of
one class is unitary invariant. One can argue that the diagrams c2 and d2 represent
some noise and have no real physical meaning.

The diagrams c2 and d2 contain EPV diagrams with repeated hole labels, but
these are non-factorizable (not equivalent to disconnected diagrams). Each of these
in c2 cancels with a partner in d2. The sum of the d2 EPV diagrams is just the same
expression with a minus sign. For the sum of the two sets of diagrams c2 and d2 it
does not matter whether or not one includes the EPV diagrams.

One sees this cancellation on Figure 12-12 if one looks at the diagrams for c2 and
d2 with i = k.

Conversely to the approach just considered, we can take only the diagrams c1
and d1 and add them to CEPA0, in the sense of ACP-D45 in Ref. [61] or ACC
(approximate CC) in Ref. [62]. One then nearly duplicates the CCD results. Ap-
parently the diagrams c1 and d1 do not show significant sign oscillations, their sums
even factorize. Although preliminary experiences with ACC or ACP-D45 were very
encouraging, this approximation has never become popular. In CC theory in terms
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of Gaussian geminals [23] a factorized version FCCD has played an important role.
It is the counterpart of ACC, and has turned out very powerful in the study of the
He dimer [91]. See also the comment on the 2CC method [13] at the end of this
subsection.

The author was successful in convincing Frank Neese (private communication) to
perform similar studies at the present state of the art, taking some small molecules
such as CH4, NH3, H2O, HF, CO, N2 and F2, as well as two larger ones, adenine
and cyclodecane, as examples. He confirmed that the sums of the terms of type
c2 and d2 practically cancel in all cases, giving rise to less than 2% of the full
correlation energy. They appear to carry hardly any physical information. The di-
agrams with the smallest contribution happen also to be the computationally most
expensive ones.

The situation is slightly different for the diagrams c1 and d1. Their sums are not
negligible, but are entirely dominated by the EPV diagrams. The non-EPV diagrams
of c1 and d1 contribute by less than 1% to the overall correlation energy. In this re-
spect the old studies by Paldus et al. [61] were perfectly confirmed by Neese (private
communication).

The behavior of the diagrams c2 and d2 is independent of whether or not one uses
a canonical or a localized basis, and is essentially based on the random sign of the
respective diagrams. On the other hand there is some preliminary evidence that the
non-EPV diagrams of c1 and d1 are negligible only in a localized basis. This needs a
further check, but is, at least, suggested by the following argument.

Let us refer to ideal localization if the basis can be decomposed into as many
subsets S(i) as there are occupied spin orbitals ψi in the reference function, with
each subset S(i) associated with one ψi, such that the matrix elements Sij

ab are non-
vanishing only if ψa and ψb belong to S(i) and S( j ) or vice versa.

Let us postulate ideal localization, and let us assume that a ∈ S(i);b ∈ S( j );c ∈
S(k), d ∈ S(l), and let us consider the case that the labels i, j, k, l are all different.
Then in all 4 types of diagrams the first two factors are non-vanishing. The third and
forth factors vanish to forth order in the overlap between subsets for diagrams c1 and
to second order in d1. A factor Sij

cd is e.g. small to second order, because c ∈ S(k)
and d ∈ S(l). So these terms will be small, even if there is no ideal localization.

This is no longer the case, if at least one hole label is repeated, i.e. for EPV
diagrams. On Figure 12-13 we show the diagrams of type d1 with one repeated
hole line (i), namely the connected EPV diagram on the r.h.s. and the corresponding
disconnected, but joint (with one common label) renormalization diagram. These
diagrams sum to 0.

Let us define the normalization integral s2
ij and the pair correlation energy εij

s2
ij =

∑

a<b

T̃ab
ij S̃ij

ab; εij =
∑

c<d

Ṽcd
ji S̃ji

cd (12-141)
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Figure 12-13. EPV diagrams of type d1 with one repeated hole label (r.h.s.), and equivalent disconnected
diagram (l.h.s.)

Then the algebraic equivalent of the EPV diagram on Figure 12-13, and the sum
over a, b, c, d is:

−
∑

a<b, c<d

T̃ab
ij Ṽcd

ki S̃ij
abS̃ki

cd = −
∑

a<b

(T̃ab
ij S̃ij

ab)
∑

c<d

(Ṽcd
ki S̃ki

cd) = −s2
ijεik (12-142)

One can symmetrize to

− 1

2
s2

ij(εik + εjk) (12-143)

and one gets the sum

−
∑

i<j

s2
ij

∑

k �=(i,j)

(εik + εjk) (12-144)

The sum of all EPV diagrams on Figure 12-14 (with two repeated hole labels i, j)
is the negative of the disconnected diagram, hence

− s2
ijεij (12-145)

with the sum

−
∑

i<j

s2
ijεij (12-146)

For the sum of all EPV diagrams we get finally

−
∑

i<j

s2
ijε̃ij; ε̃ij = εij +

∑

k �=j

εik +
∑

k �=i

εkj (12-147)

with ε̃ij the pair correlation energy of the pair ij plus the sum of the pair correlation
energies of all pairs that are semi-joint with ij, i.e. have a common spin-orbital label.
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Figure 12-14. EPV diagrams of type c1 and d1 with two repeated hole labels (r.h.s.), and equivalent
disconnected diagram

Like for c2 and d2 there are also non-factorizable EPV diagrams of c1 and d1,
which do not cancel with disconnected diagrams, but between the two sets c1 and
d1. Consider, e.g. the diagram d1 on Figure 12-12 with k = j. It cancels with the
corresponding c1 diagram. Again it does not matter for the sum of c1 and d1, whether
or not one includes these non-factorizable EPV diagrams.

The result (12-146) was first found in a different context by Kelly [38] and later,
starting from CCD by Taylor et al. [59] as well as Paldus et al. [61], though in
terms of spin-adapted pairs, where it needs a slight modification. The EPV concept is
strictly applicable only in terms of spin orbitals. It leads to the CEPA variant CEPA3
[36].

We get so a simplified form of the functional FΔCCD, namely (we omit the sub-
script (2) on T† and S)

FΔCEPA3 (T†, S) = −
∑

μ

T†
με̃μSμ (12-148)

where μ = i < j is a label that counts pairs.
If we add this to the CEPA0 functional (12-134) we get the CEPA3 functional

FCEPA3(T†, S)={H+
∑

μ

[H, Sμ]+
∑

μ

[T†
μ, H]+

∑

μ,ν

[T†
μ, [H, Sν]]−

∑

μ

T†
με̃μSμ}C

(12-149)
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The stationarity condition with respect to variation of T† is

0 = {X†
μ(V + [H0, Sμ]+

∑

ν

[V , Sν]− ε̃μSμ)}C (12-150)

Due to the last term this is no longer a linear system. The nonlinearity is in the energy
shift ε̃μ for the pair μ.

Before we come to other CEPA variants, let us compare the extra functional
FΔCEPA1 with the difference (12-79) between the CI and the CEPA0 functional

FΔCI = −
∑

μ,ν

s2
μεν (12-151)

This is a sum of products of normalization integrals of pairs and pair correlation en-
ergies, taking care of all pairs of electron pairs μ, ν. This is obviously non-physical
and in conflict with the connected-diagram theorem (except, of course, for a genuine
2-electron system). The main advantage of CEPA3 with respect to CID is that only
those products s2

μεν enter, for which the pairs ν,μ have at least one common orbital
label.

One can go one step further, and replace ε̃μ by εμ, i.e. consider only products
s2
μεμ for the same pair. This defines CEPA2, while CEPA1 is a compromise with the

choice

ε̃ij = εij + 1

2

∑

k �=j

εik + 1

2

∑

k �=i

εkj (12-152)

i.e. just the mean of CEPA2 and CEPA3. The subscripts of the CEPA variants have not
always been used unambiguously. The now generally accepted [36] nomenclature is
slightly unsystematic, since the ordering is CEPA0, CEPA2, CEPA1, CEPA3.

CEPA2 (often just called CEPA) is the simplest variant (after CEPA0). Its mo-
tivation was that the standard IEPA had exactly this energy shift [6]. CEPA1 was
proposed as a variant which is invariant with respect to a switch between the canon-
ical and the localized representation in a special case [5].

If one wants to approximate CCD, CEPA3 (which is generally very close to ACC
(Neese, private communication)) appears to be the best choice, while CEPA1 is prob-
ably closer to experiment. It has been speculated (see below) that CEPA1 and CEPA2
perform better than CEPA3 because they simulate some 3-particle correlations.

One can argue in terms of a plausibility argument. The energy shift of CID con-
tains the products s2

μεν for all pairs of pairs μ, ν. In CCD, i.e. by simulating the
inclusion of the unlinked clusters of pair excitations, one removes all products s2

μεν
for μ and ν disjoint, i.e. with no common spin-orbital label [6], but keeps those for
a single pair s2

μεμ and those for μ and ν semi-joint i.e. with a common spin orbital
label [6]. In the limit of independent pairs only s2

μεμ survives. It is plausible that
the effect of correlations beyond CCD reduces the interaction terms for semi-joint
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pairs, multiplying them by a factor 0 < p < 1, which leads to something between
CEPA3 (p = 1) and CEPA2 (p = 0). This means that by switching from CEPA3
(which appears to be the best approximation to CCD) to CEPA1 or even CEPA2 on
can simulate to some extent the effect of higher excitations. This possibly explains
why CEPA1 or CEPA2 often perform better than CCD in real calculations.

Had CEPA survived longer on the market (and had not been practically eliminated
in favor of by CC), one would certainly have agreed on a standard, which would make
the argument obsolete, that CEPA is not uniquely defined. I have never heard, by the
way, that DFT is invalid, because there are so many variants of it on the market.

Heully and Malrieu [92] have presented a more rigorous formulation for the treat-
ment of the effect of triples in terms of a dressed 2-particle Hamiltonian, which is
equivalent to CCSD(T).

If one wants to take CEPA as an approximation to CCD, and keep e.g. the option
to treat triple excitations on top of it, one should probably prefer CEPA3. If one
wants to end with CEPA, and cares for practical performance, CEPA1, or CEPA2
would probably be the methods of choice.

It has often been argued that CEPA, unlike CCD, CID or CEPA0 is not unitary
invariant. This argument has probably mainly been based on the fact that rigorous
unitary invariance of CEPAk with k = 1, 2, 3 cannot be proven, than on systematic
numerical investigations. Recent studies by Neese (private communication) on some
small and medium-sized molecules, including adenine, have shown that the switch
from a canonical to a localized representation leads to changes of the order of only
0.1% of the total correlation energy, at least for k = 1 or 3 . Of course, the bulk of the
latter is in the CEPA0 part, which is unitary invariant anyway. This precludes very
strong deviations from unitary invariance. The new results (private communication)
confirm in this and other respects old conclusions [63]. For a formal discussion of
unitary invariance in CC theory see Ref. [8].

From a practical point of view unitary invariance does not appear to be a problem
for CEPA. Noticeable deviations from unitary invariance are observed in cases of
near-degeneracy (where CC based on a single Slater determinant reference is prob-
lematic anyway) [63]. Then CEPA is closest to CCD for localized hole orbitals. One
further expects stronger deviations from unitary invariance for really large molecules.
More systematic studies are needed.

The CEPA theory, with the two variants CEPA1 and CEPA2 was first derived on
a different route [5, 35, 36], starting from an analysis of the CI equations.

The CEPA conditions imply

E = E(0) + [H, S]C = E(0) +
∑

μ

εμ (12-153)

i.e. the total correlation energy in this approximation can be written as a sum of pair
correlation energies.

A reader may object that, by neglecting the non-EPV contributions to
[T†, [[H, S], S]], one ignores an essential ingredient of CC theory, even if these terms
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hardly matter numerically. In reality, what the exp(S) ansatz achieves is that it re-
moves spurious couplings that plague the linear ansatz of CI and cares for an inde-
pendent normalization of the various pairs. This is physics, while the presence of
the non-EPV contributions to the quadruple commutators are the price to pay for the
physical decoupling. This indicates that the name coupled cluster may be slightly
misleading. What matters is that kind of coupling (or rather interaction) of the pairs,
of O(λ3), by which CEPA differs from IEPA, and which is also present in CID, while
the coupling, of O(λ4), through the normalization of the pairs is minimized in CCD
relative to CID.

One can, of course, after one has performed a CEPA calculation, look at those
diagrams, which do not enter CEPA, and evaluate them in a perturbative way, i.e. as
simple expectation values. This may make sense, if one wants to go beyond CCSD.
Since the triple contributions in CCSDT start with O(λ4), one may want to have taken
care earlier of all terms of O(λ4) in CCSD. However, if one ignores triples, the effort
to be complete with O(λ4) in CCSD will usually not pay, since the bulk of the O(λ4)
terms is taken care of in CEPA anyway. Numerical studies, both old and recent ones
[63–65] have not indicated any superiority of CCSD with respect to CEPA, as far as
e.g. spectroscopic constants are concerned.

If we omit the pair interaction terms in CEPA3 (12-150), we arrive at the IEPA3
system:

0 = {X†
μ(V + [H0, Sμ]+ [V , Sμ]− ε̃μSμ)}C (12-154)

The variant with ε̃μ replaced by εμ is then IEPA2. This does describe a supersystem
of non-interacting pairs exactly, as does IEPA1, CEPA2, or CEPA1. The acronyms
IEPAk have, so far, not been used, only IEPA, in the meaning of IEPA2.

The non-linear system (12-154) is then equivalent to a coupled eigenvalue system.

0 = {X†
μ(H + [H, Sμ]− EμSμ)}C (12-155)

The same stationarity condition is obtained if we minimize the following
functional

E(0) +
∑

μ

{[S†
μ, H]+ [H, Sμ]+ [S†

μ, [H, Sμ]]}C
{1+ S†

μSμ}C
(12-156)

One can also ignore the denominators, and require individual normalization of the
various pairs. Then the energy shifts εμ for the pairs play the role of Lagrange mul-
tipliers.

This functional for IEPA can be generalized to a functional proposed by
Ahlrichs [39] for coupled electron pairs. We shall (Section 12.9.5) later get a more
direct access to the Ahlrichs functional. As to a precursor of this functional see
Ref. [35].
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Recently Bartlett and Musial [13] have considered a hierarchy nCC of approxi-
mations, such that with nCC one describes an n-particle systems or supersystems of
non-interacting n-particle systems exactly, but that one ignores terms from full CC
theory that are not needed for this property. 2CC turns out to be essentially the same
as ACC. The authors [13] regard this explicitly as a counterpart of CEPA, that is
unitary invariant.

12.8.4. The Variational CCD Corrections and CEPA

We have earlier (Section 12.7.3) derived a variational correction to CCD

1

4
[T†, [T†, [[V , S], S]]]C (12-157)

We must now study what this correction becomes in the same spirit as that which
led us from CCD to CEPA. We argue that in (12-157) three factors combine to a pair
interaction term

[T†, [V , S]]C =
∑

μ,ν

[T†
μ, [V , Sν]]C =

∑

μ,ν

vμ,ν (12-158)

while two factors combine to a pair normalization integral

[T†, S]C =
∑

μ

[T†
μ, Sμ]C =

∑

μ

s2
μ (12-159)

such that an approximation to (12-157) is

∑

μ,ν

vμ,ν(s
2
μ + s2

ν)/2 (12-160)

Details have to be worked out, it matters especially whether the two interacting
pairs μ and ν have a common orbital label. The interaction of semijoint pairs is usu-
ally more important than that between disjoint pairs. Most important is the electron
interaction within a single pair, such that terms like vμ,μs2

μ deserve special attention.
One expects a functional, that can be constructed from the CEPA0 functional with

some normalization corrections

F =
∑

μ

{H+([H, Sμ]+[S†
μ, H])(1−s2

μ)+[S†
μ, [H, Sν](1−s2

μ/2−s2
ν/2)}C (12-161)

It is an open question whether one should make this correction to the CEPA func-
tional. In the way, how we have derived CEPA in the Section 12.8.3, CEPA shares
with TCCD that it is non-variational.



Unconventional Aspects of Coupled-Cluster Theory 345

We shall find an easier access to variational CEPA in Section 12.9.5. One notes
the relation of the functional (12-161) to the coupled-pair functional of Ahlrichs et
al. [39], to which we shall come back in a different context (Section 12.9.5).

12.8.5. Beyond CEPA. Electron Triple Approximations

In Section 12.8.3 we have shown that the attempt to solve the CCD equations in a
localized basis leads in a first approximation to a linear system of equations, namely
CEPA0, and in the next approximation to a nonlinear eigenvalue-like system CEPA2
with individual energy shifts for the various pairs. What can we learn from this for
the corresponding treatment of CCDT? Again, in order to simplify things, we ignore
single excitations.

First we must try to formulate the corresponding linear system, that one may
call CETA0 (coupled-electron triple approximation, linear version). Starting from
the CCDT stationarity condition (12-98) we have two possibilities

0=
{

X†
(3)

(

H+[H0, S(3)]+[V , S(2)](3)+[V , S(3)](3)+1

2
[[V , S(2)], S(2)](3)

)}

C
(12-162)

or

0 =
{

X†
(3)

(

H + [H0, S(3)]+ [V , S(2)](3) + [V , S(3)](3)

)}

C
(12-163)

In both cases we have a linear system for S(3). In Section 12.9.3 we will get support
for the second choice. The formal solution for this is

S(3) = [V , S(2)](3)BH + [V , S(3)](3)BH (12-164)

It requires an iterative solution, and is, therefore, more demanding than CCD[T]. It
requires an N8 step like full CCSDT. This is a challenge.

We also need to update S(2), because S(3) does not enter the energy expression
directly. In the spirit of a linear theory we get this from

S(2) = VBH + [V , S(2)](2)BH + [V , S(3)](2)BH (12-165)

As a linear theory, CETA0 does not describe a genuine three-electron system cor-
rectly. Approximate versions of CCSDT or CCSDT, such as CCD[T] or CCSD(T)
fail in this respect as well, but full CCSDT works. For a correct description of a
3-electron system the EPV contributions to the neglected terms are required to care
for an energy shift. Let us look at the contributions of the Arponen functional of
CCSDT that go beyond CETA0.
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FΔCCDT(T†) = 1

2
{T†([[V , S], S]}C

= 1

2
{T†

(3)([[V , S(2)], S(2)]+ [[V , S(2)], S(3)]+ [[V , S(3)], S(2)]

+[[V , S(3)], S(3)])}C + 1

2
{T†

(2)([[V , S(2)], S(3)]

+[[V , S(3)], S(2)]+ [[V , S(3)], S(3)])}C (12-166)

It looks as if the term

{T†
(3)[[V , S(2)], S(3)]}C (12-167)

were a candidate for containing normalization corrections. Its EPV contributions
could be factorized as

∑

μκ
[VS(2)μ]C[T†, S(2)κ ]C =

∑

μκ
εμs2

κ (12-168)

Where the sum over κ goes over all triples, and that over μ over all pairs belonging
to a given triple.

Further work is needed in order to formulate a 3-particle generalization of CEPA.
A possible candidate for this is the 3CC method of Bartlett and Musial [13] or some
modification of it.

Another question arises at this point. Does one really want a hierarchy in terms
of coupled k-tuples, i.e. CEPA, CETA etc. or CCD, CCSDT etc.? Would it not make
more sense to care for a hierarchy in terms of independent k-tuples, like IEPA, IETA,
etc. in the spirit of Nesbet [47]?

Going back to the old idea of summing classes of diagrams to infinite order, one
arrives at IEPA by summing all diagrams (including those of EPV type) with two
distinct hole labels i and j. If in a next step one takes all diagrams with three hole
labels i, j, k, one describes independent 3-particle correlations, but at the same time
couplings between semi-joint pairs like i, j and k, j. The couplings between disjoint
pairs i, j and k, l are treated at the same level as genuine 4-particle correlations, and
the couplings between semijoint correlation functions.

12.9. A CLOSED SHELL REFERENCE STATE IN UNITARY
NORMALIZATION

12.9.1. Formulation of the Problem

We start from the same Hamiltonian (12-23) as in Section 12.2.5, but we subject it
to a unitary transformation [36]

L = e−σHeσ = LD; σ = σN ; σ † = −σ ; E = LC (12-169)
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Now a different definition of diagonal and nondiagonal than in Section 12.6 is
needed (see Section 12.2.6). We call an operator diagonal (D) if it is either closed
(C) or open (O), and non-diagonal (N) if it is either closed from below (B) or closed
from above (A).

The expansion of the energy is

E = HC + [H, σ ]C + 1

2
[[H, σ ], σ ]C + 1

6
[[[H, σ ], σ ], σ ]C

+ 1

24
[[[[H, σ ], σ ], σ ], σ ]C + ... (12-170)

while the operator σ is obtained as solution of

0 = HN + [H, σ ]N + 1

2
[[H, σ ], σ ]N + 1

6
[[[H, σ ], σ ], σ ]N

+ 1

24
[[[[H, σ ], σ ], σ ], σ ]N + ... (12-171)

Unlike the counterparts (12-40) and (12-39) in intermediate normalization the expan-
sions (12-170) and (12-171) do not terminate. Further the basis operators, into which
σ is expanded, do not commute, but they constitute a Lie algebra. We shall see that
the unitary coupled cluster theory (UCC) theory is superior to TCC, nevertheless.

12.9.2. Perturbation Expansion

For perturbation theory it does not matter that the Hausdorff expansion does not
terminate. The various terms in the perturbation expansion terminate order by order.
We expand

H = H0 + λV (12-172)

σ = λσ1 + λ2σ2 + ... = σN (12-173)

E = E0 + λE1 + λ2E2 + ... (12-174)

The expansion of (12-171) is to the lowest order

0 = VN + [H0, σ1] (12-175)

0 = [V , σ1]N + [H0, σ2]+ 1

2
[[H0, σ1], σ1]N = [V − 1

2
VN , σ1]N + [H0, σ2]

(12-176)

0 = [V , σ2]N + 1

2
[[V , σ1], σ1]N + [H0, σ3]+ 1

2
[[H0, σ2], σ1]N + 1

2
[[H0, σ1], σ2]N

+1

6
[[[H0, σ1], σ1], σ1]N
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= [V − 1

2
VN , σ2]N + 1

2
[[V − 1

3
VN , σ1], σ1]N − 1

2
[[V − 1

2
VN , σ1]N , σ1]N

+[H0, σ3] (12-177)

We solve for the σk, making again use of the formal commutator inverse (12-14)

σ1 = VH (12-178)

σ2 = [V − 1

2
VN , σ1]H (12-179)

σ3 = [V − 1

2
VN , σ2]H + 1

2
[[V − 1

3
VN , σ1], σ1]H

−1

2
[[V − 1

2
VN , σ1]N , σ1]H (12-180)

We insert the stationarity conditions into the energy expressions and get, noting
that the commutator of two operators has a closed (C) part only if both factors are
non-diagonal (N)

E1 = VC (12-181)

E2 = 1

2
[VN , σ1]C (12-182)

E3 = 1

2
[VO, σ1], σ1]C + 1

3
[VN , σ1], σ1]C (12-183)

E4 = 1

2
[V − 1

3
VN , σ2], σ1]C + 1

12
[VN , σ1], σ2]C + 1

6
[[[V − 1

4
VN , σ1], σ1], σ1]C

−1

6
[[[V − 1

2
VN , σ1]N , σ1], σ1]C (12-184)

These expressions are a little more lengthy than the counterparts in intermediate
normalization. However, they are manifestly both connected (extensive) and varia-
tional, i.e. a Wigner (2n+1) rule holds. Knowing σ1 and σ2 we get the energy up to
E5. In intermediate normalization we had to choose between either manifest sepa-
rability (via a Lie algebraic structure) or variational behavior but could not get both
properties at the same time.

12.9.3. Linearized Unitary Coupled-Cluster Theory

Let us consider the simplest non-trivial truncation of the UCC expansion. For the
sake of simplicity we assume that single excitations can be ignored. We decompose
σ as

σ = T − T†; T = TB (12-185)
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The first non-trivial choice is (a superscript in brackets indicates the order of the
truncation of the Hausdorff expansion)

E[2] = {H + [H, σ ]+ 1

2
[[H, σ ]σ ]}C = {H + 2Re[H, T]+ [T†, [H, T]]}C (12-186)

The stationarity condition is

0 = {[X†, H]+ [X†, [H, T]]}C; X = XB (12-187)

If we expand

T =
∑

k

ckXk (12-188)

this is a linear system of equations for the construction of the coefficients ck, and
obviously a generalization of CEPA0 to arbitrary particle rank. It implies

0 = {[T†, H]+ [T†, [H, T]]}C (12-189)

E[2] = HC + Re[H, T]C = HC + Re
∑

k

ck[H, Xk]C (12-190)

We consider a hierarchy in the excitation rank of the operators T . We start with
T(2) for UCCD, continue with T(1) + T(2) for UCCSD etc. The formalism is simpler,
if we ignore single excitations, what we shall henceforth do.

The stationarity condition for UCCD[2] is

0 = {[X†
(2), V]+ [X†

(2), [H0, T(2)]]

+[X†
(2), [V , T(2)]]}C (12-191)

with the solution

T(2) = VBH + [V , T(2)]BH ; E[2] = HC + Re[H, T(2)]C (12-192)

This is, of course, CEPA0. The stationarity conditions for UCCDT[2] are

0 = {[X†
(2), V]+ [X†

(2), [H0, T(2)]].

+[X†
(2), [V , T(2)]]+ [X†

(2), [V , T(3)]]}C (12-193)

0 = {[X†
(3), [H0, T(3)]]

+[X†
(3), [V , T(2)]]+ [X†

(3), [V , T(3)]]}C (12-194)
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with the solution

T(2) = VBH + [V , T(2)](2)BH + [V , T(3)](2)BH (12-195)

T(3) = [V , T(2)](3)BH + [V , T(3)](3)BH (12-196)

E[2] = HC + Re[H, T(2)]C (12-197)

The contribution of T(3) to the energy is

Re[V , [V , T(3)](2)BH]C (12-198)

We have so the linearized version of UCCDT.

12.9.4. EPV Contributions

Like in the study of TCC we can argue, that the dominant contributions to the terms
with higher than double commutators are of EPV type, with repeated hole labels.

To simplify the situation we only consider those EPV diagrams that are necessary
to describe isolated k-electron systems exactly. More general EPV diagrams can be
added at a later stage, possibly in a perturbative way.

Let us first consider the UCCD ansatz, for which σ always means σ(2) and T =
T(2).

We note that the term

[H, σ ]C = 2
∑

μ

εμ =
∑

μ

[H, σμ]C = 2Re[H, Tμ]C (12-199)

is a sum of pair contributions 2εμ. The next term is a sum of pair interactions (in-
cluding interactions within a pair) and a renormalization term

{[[H, σ ], σ ]}C =
∑

μ,ν

(T†
μHTν)C − HC

∑

μ

(T†
μTμ)C (12-200)

In higher-order commutators we consider only EPV type renormalization terms. For
triple commutators we follow essentially Section 12.8.4

{[[[H, σ ], σ ], σ ]}C ≈ 2
∑

μ

εμ(T†
μTμ)C (12-201)
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Analogously we get for the quadruple commutator

{[[[[H, σ ], σ ], σ ], σ ]}C ≈
∑

μ,ν

(T†
μHTν)C

1

2
{(T†

μTμ)C + (T†
νTν)C}

≈
∑

μ,ν

(T†
μHTν)C

√

(T†
μTμ)C(T†

νTν)C =
∑

μ,ν

(T†
μHTν)Csμsν (12-202)

The replacement of the arithmetic mean by the geometric mean is justified, since
contributions dominate in which sμ ≈ sν , including those with μ = ν.

12.9.5. Partial Summation of the Hausdorff Expansion to Infinite Order

Limiting higher-order commutators to the diagonal EPV terms, the Hausdorff ex-
pansion for UCC-D becomes

E = HC +
∑

μ

(− t2μ +
t4μ
3
+ ...)HC +

∑

μ

(1− 2t2μ
3
+ 2t4μ

15
+ ...)(HTμ + T†

μH)C

+
∑

μ,ν
(1− t2μ

6
+ t2ν

6
+ t4μ

120
+ t4ν

120
+ t2μt2μ

36
− ...)(T†

μHTν )C (12-203)

t2μ = (T†
μTμ)C (12-204)

E = HC −
∑

μ

sin2 tμHC +
∑

μ

cos tμ sin tμ
tμ

(HTμ + T†
μH)C

+
∑

μ,ν

sin tμ sin tν
tμtν

(T†
μHTν )C (12-205)

Apparently a closed summation is possible. This summation has been known for a
long time [36]. It has been derived for an isolated 2-electron system and it was not
realized, how general it is, at least as a good approximation.

One can derive conditions for stationarity with respect to variation of the Tμ and
insert this into the energy expression to get a stationary energy.

One may alternatively construct the Tμ from the CEPA0 system and insert them
into the sum (12-205). There is, however, a simpler and more accurate way. Let us
define

Sμ = Tμ
tan tμ

tμ
; s2
μ = (S†

μSμ)C = tan2 tμ (12-206)
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then we get

E

= HC −
∑

μ

s2
μ

1+ s2
μ

HC +
∑

μ

1

1+ s2
μ

(HSμ + S†
μH)C +

∑

μ,ν

(S†
μHSν)C

√

(1+ s2
μ)(1+ s2

ν)

=
∑

μ

1

1+ s2
μ

([H, Sμ]+ [S†
μ, H])C +

∑

μ,ν

([S†
μ, [H, Sν]]

√

(1+ s2
μ)+ (1+ s2

ν)
(12-207)

This is essentially the coupled-pair functional of Ahlrichs et al. [39], at least the
variant appropriate for CEPA2, that was originally derived in a heuristic way, and
that, at variance with the Arponen functional, to which it slightly resembles, defines
a variational method. All pairs are normalized individually. The conditions for sta-
tionarity are not exactly the CEPA system, but they are close to it.

A generalization of this scheme to arbitrary particle rank will be given else-
where [93].

12.10. CONCLUSIONS

This chapter contains a few take-home messages.
Coupled-cluster (CC) theory is, at the same time, both much simpler and more

sophisticated than is often claimed. The main merit of the CC ansatz is that it is sep-
arable and correctly describes extensive properties, such as the energy of a molecule.
In this respect CC is by far superior to truncated CI (configuration interaction), which
is not separable. Separability is meaningful in a localized representation, and CC
becomes most powerful in a localized context, which is also essential to achieve
linear scaling.

The simplest form of coupled cluster theory is a linear pair theory, in which the
zeroth oder pair functions are obtained from a linear system of equations, usually
called CEPA0. The next improvement over CEPA0 is CEPA3, where the non-EPV
contributions to 4th order terms of CCD are neglected. This leads to an individual
normalization of the various pair functions. All further corrections, by which CCD
differs from CEPA0, are numerically marginal. CEPA1 and CEPA2 apparently per-
form better than CCD, possibly because they simulate the effect of triples to some
extent.

If one wants to use CC theory (we consider here only closed-shell states), one
must distinguish three regimes. In the first of these one cares for modest accuracy,
for which CEPA is a good choice. It hardly matters whether one uses CEPA1, CEPA2,
or CEPA3. Straight CCD or CCSD is just more complicated, but not more accurate.
Users have just to wait until the CEPA option becomes a standard in the leading
program packages. The ORCA program package offers this choice.



Unconventional Aspects of Coupled-Cluster Theory 353

At the next level of sophistication one will want to take care of triple excita-
tions, but one cannot afford full CCSDT. Although the standard solution to choose
CCSD(T) does not appear to be the best possible choice, it is likely to survive for
some time, until possibly CETA or IETA will take over.

Finally one may care for really high accuracy and want to push CC to its limit.
Then one cannot but choose a scheme, where the error of the energy is quadratic
in the error of the wave function. This means that one will have to abandon TCC
in intermediate normalization and switch to UCC, even if previous studies on these
lines did not lead to optimistic conclusions [10, 87]. This is a challenge for the more
distant future.

Another message is that the formalism introduced long ago under the name quan-
tum chemistry in Fock space is very powerful, both for the formulation of CC theory
and MBPT. Its main potential, that it is a Fock space theory, and easily applicable to
multiconfiguration reference states, has not been exploited here. This aspect had to
be left out of the present chapter. We also did not have the space to discuss explicitly
correlated CC theory, both the older one in terms of Gaussian geminals [23], and the
more recent combination of CC theory with the R12-method [24].
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1965), p. 45
32. F. Coester, Nucl. Phys. 7, 421 (1958); F. Coester, H. Kümmel, Nucl. Phys. 17, 477 (1960);

H. Kümmel, Nucl. Phys. 22, 177 (1961)
33. J. Hubbard, Proc. R. Soc. Lond. A 240, 539 (1957)
34. J. A. Pople, R. Krishnan, H. B. Schlegel, J. S. Binkley, Int. J. Quantum Chem. 14, 545 (1978)
35. W. Kutzelnigg, Fortschr. Chem. Forsch. (Top. Curr. Chem.) 41, 31, (1973)
36. W. Kutzelnigg, ‘Pair Correlation Theories’ in Modern Theoretical Chemistry, vol. III, Ed.

H. F. Schaefer III (Plenum, New York, 1977)
37. R. Ahlrichs, Comput. Phys. Commun. 17, 31 (1979)
38. H. P. Kelly, Phys. Rev. 131, 684 (1963), 134, 1450 (1964), 144, 39; H. P. Kelly, A. H. Sessler, Phys.

Rev. 132, 2091 (1963)
39. R. Ahlrichs, P. Scharf, C. Ehrhardt, J. Chem. Phys. 82, 890 (1985)
40. A. C. Hurley, J. E. Lennard-Jones, J. A. Pople, Proc. R. Soc. Lond. A 220, 446 (1953)
41. W. Kutzelnigg, J. Chem. Phys. 40, 3640 (1964)
42. A. J. Coleman, Rev. Mod. Phys. 35, 668 (1963)



Unconventional Aspects of Coupled-Cluster Theory 355

43. P. Cassam-Chenai, J. Chem. Phys. 124, 104109 (2006)
44. D. M. Silver, K. Ruedenberg, E. L. Mehler, J. Chem. Phys. 52, 1206 (1970)
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46. O. Sinanoğlu, J. Chem. Phys. 36, 706, 3198 (1962)
47. R. K. Nesbet, Proc. R. Soc. Lond. A 230, 312 (1955)
48. R. K. Nesbet, Phys. Rev. 109, 1632 (1958), Adv. Chem. Phys. 14, 1 (1969); C. M. Moser,

R. K. Nesbet, Phys. Rev. A 6, 1710 (1972)
49. H. A. Bethe, J. Goldstone, Proc. R. Soc. Lond. A 238, 551 (1957)
50. G. A. van der Velde, W. C. Nieuwpoort, Chem. Phys. Lett. 13, 409 (1972)
51. H. Stoll, Chem. Phys. Lett. 191, 548 (1992); J. Friedrich, M. Dolg, J. Chem. Theory Comput. 5, 287

(2009); J. Friedrich, K. Walczak, M. Dolg, Chem. Phys. 356, 47 (2009)
52. R. J. Bartlett, D. M. Silver, J. Chem. Phys. 62, 3258 (1975); J. S. Binkley, J. A. Pople, Int. J. Quantum

Chem. 9, 229 (1975); J. A. Pople, R. Krishnan, H. B. Schlegel, J. S. Binkley, Int. J. Quantum Chem.
Symp. 13, 225 (1979)

53. W. Kutzelnigg, ‘Localization and Correlation’, in Localization and Delocalization in Quantum Chem-

istry, Eds. O. Chalvet et al. (Reidel, Dordrecht, 1975)
54. M. Przybytek, B. Jeziorski, K. Szalewicz, Int. J. Quantum Chem. 109, 2872 (2009)
55. J. Paldus, in Theory and Applications of Computational Chemistry. The First Forty Years, Eds.

C. E. Dykstra et al. (Elsevier, Amsterdam 2005)
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Abstract: We start by reviewing, as a background, the standard non-relativistic and relativistic many-
body perturbative and coupled-cluster approaches in the way we have implemented them.
The covariant-evolution-operator method that we introduced more recently for quantum-
electrodynamical (QED) calculations is then described, and it is demonstrated how this
method can be extended to combine electron-correlation and QED effects in a covariant
manner. This can be included in a many-body calculation of coupled-cluster type, and it is
demonstrated that this leads for two-particle systems eventually to the full Bethe–Salpeter
equation. It is indicated how this procedure can also be applied to systems with more
than two electrons. Preliminary numerical results are given for the ground state of some
heliumlike ions.

Keywords: Relativistic coupled cluster, Quantum electrodynamics

13.1. INTRODUCTION

The Coupled-Cluster procedure has for about half a century proved itself to be an
extremely efficient way of handling the correlation problem of electronic and nuclear
systems. In the last couple of decades there has been an increased interest also in
quantum-electrodynamical (QED) problems, particularly in connection with experi-
ments on highly-charged ions. Also here – for systems with more than one electron –
the electron correlation problem plays an important role [1]. We shall demonstrate
here that the coupled-cluster approach is also in such cases a very good base.

The standard approach to include QED effects into many-body calculations is to
add to the final non-QED energy the first-order QED effects [2], taken from ana-
lytical calculations [3]. To go beyond that approximation requires a more sophisti-
cated approach, where the QED effects are included directly into the wave function,
leading to a more covariant procedure. We have developed and applied a covariant-
evolution-operator (CEO) technique for QED calculations [4], which has been found
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to be suitable as a basis also for such a more advanced procedure, where QED and
electron-correlation effects are combined in a more systematic fashion.

In the present chapter we shall first present the many-body and coupled-cluster
procedures in the way we implemented them some time ago, and then demonstrate
how this can be further developed in order to include QED effects in a covariant way.

13.2. TIME-INDEPENDENT PERTURBATION PROCEDURE

13.2.1. Linked-Diagram Expansion

The first steps towards a many-body perturbation theory (MBPT) were taken by
Brueckner and Goldstone in developing the linked-diagram or linked-cluster expan-
sion [5, 6]. They demonstrated that – for a degenerate model space – the non-linear
terms of the Rayleigh–Schrödinger expansion must cancel, leaving only so-called
linked terms, which can be expressed by means of the Bloch equation [7] as

(

E0 − H0
)

ΩP = (

VΩ −ΩVeff
)

linkedP (13-1)

(A term or diagram is said to be “linked”, if it does not contain any disconnected
part that is closed, i.e., operating entirely within the model space, where the model
states are located.) Here, the Hamiltonian of the system is partitioned into a model
Hamiltonian and a perturbation

H = H0 + V (13-2)

and

Veff = PVΩP (13-3)

is the effective interaction (in intermediate normalization) and P is the projection
operator for the model space. The perturbation expansion starts from an unperturbed
(model) state, eigenstate of H0 with the eigenvalue E0 that might be degenerate,

H0Ψ0 = E0Ψ0 (13-4)

The procedure can be generalized to the treatment of several target states simul-
taneously with model states that do not need to be degenerate – so-called quasi-
degeneracy

HΨ α = EαΨ α (α = 1, 2, · · · d) (13-5)

A wave operator can be defined that transforms all degenerate model states to the
corresponding full (target) states

Ω Ψα0 = Ψ α (α = 1, 2, · · · d) (13-6)
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The model states are eigenvectors of an effective Hamiltonian, and the corresponding
eigenvalues are the exact energies of the target states,

HeffΨ
α
0 = EαΨ α0 (α = 1, 2, · · · d) (13-7)

In intermediate normalization the effective Hamiltonian becomes

Heff = PHΩP = PH0P+ Veff (13-8)

It was demonstrated by Brandow [8] – by using a double perturbation expansion –
that the linked-diagram theorem of Brueckner and Goldstone could be extended to
the case of quasi-degeneracy by introducing so-called folded diagrams. This was
somewhat later demonstrated by Lindgren [9] in a more direct way by means of a
generalization of the original Bloch equation

[

Ω , H0
]

P = (

VΩ −ΩVeff
)

linkedP (13-9)

In lowest orders this leads to (Q = 1− P)

{
[

Ω (1), H0
]

P = VP− PV P = QV P
[

Ω (2), H0
]

P = Q
(

VΩ (1) −Ω (1)V (1)
eff

)

linkedP
(13-10)

The second-order equation is illustrated in Figure 13-1. The single-electron orbitals
are here generated in the potential of the nucleus (or some other external potential) –
known as the Furry picture. The last diagram is the folded diagram that represents the
contribution due to an intermediate state in the model space, model-space contribu-
tion (MSC). Such a state leads to a (quasi)singularity that is automatically eliminated
by the Bloch equation. We shall see that this kind of singularity plays an important
role also in the formalism we shall describe later.

The formalism above is based upon the intermediate normalization, implying that
the overlap between the target and model functions is normalized, 〈Ψ α0 |Ψ α〉 = 1.
Then a condition for the linked-diagram theorem to hold is that the model space

Ω (2) =

r s

t u

a b

Q

P

+

r s

c d

a b

P

P

Figure 13-1. Diagrammatic representation of the second-order equation (13-10). The heavy vertical lines
represent electron orbitals and propagators in the Furry picture. The last diagram is the “folded” diagram,
which has a double denominator, associated with the last interaction (represented by a double bar)
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is complete, i.e., contains all configurations that can be formed by distributing the
valence electrons among the valence orbitals in all possible ways.

13.2.2. All-Order and Coupled-Cluster Approaches

By means of second quantization the wave operator can be separated into one-, two-,
... body effects

Ω = 1+Ω1 +Ω2 + · · · (13-11)

This leads to the corresponding partitioning of the Bloch equation

[

Ωn, H0
]

P = (

VΩ −ΩVeff
)

linked,nP (13-12)

and solving a number of these coupled sub-equations iteratively, yields the corre-
sponding effects essentially to all orders. This is known as the all-order perturbation
approach, which is frequently employed.

The simplest approach is to include only double excitations (pair correlation),
Ω ≈ 1+Ω2, leading to the pair equation

[

Ω2, H0
]

P = Q
(

V(1+Ω2)−Ω2Veff
)

linked,2P (13-13)

illustrated in Figure 13-2. The expansion of this equation, when there are no core
states, is indicated in Figure 13-3, and we can generally express this function as

|ρab〉 = ΓQ(E) IPair|ab〉 (13-14)

where E is the unperturbed energy of the state |ab〉 and

Γ (E) = 1

E − H0
; ΓQ(E) = Q

E − H0
(13-15)

a b

r s

=

a b

r s

+

a b

r s

Q +

a b

r s

P

Figure 13-2. Graphical representation of the self-consistent pair equation (13-13) with the “folded” dia-
gram (last)
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= + + + ··· + folded

Figure 13-3. Expansion of the pair function in Figure 13-2

are the resolvent and reduced resolvent, respectively, and IPair represents the series
of Coulomb interactions (with folds). The effective interaction, Veff, becomes with
this notation

Veff = PIPairP (13-16)

An even more effective way of treating electron correlation is the coupled-
cluster approach or exponential Ansatz, developed for closed-shell systems in nu-
clear physics by Coster and Kümmel [10, 11] and introduced into quantum chemistry
by Čížek [12]. Here, the wave operator is expressed as an exponential

Ω = exp (T) = 1+ T + 1

2
T2 + · · · (13-17)

By separating the cluster operator into one-, two-, ... body parts

T = T1 + T2 + · · · (13-18)

the wave operator can be expanded as

Ω = 1+ T1 + T2 + · · · + 1

2
T2

1 + T1T2 + 1

2
T2

2 + · · · (13-19)

The last term indicated above represents normally the most important correlation
effect, next to the pair correlation T2. This effect is included in the simplest CCA
approximation, the pair-correlation approach CCD with T = T2. An effective and
frequently used approximation is the CCSD with singles and doubles, T = T1 + T2.

For open-shell systems it is often convenient to express the wave operator in
normal-ordered exponential form [13, 14]

Ω = {exp (T)} (13-20)

which eliminates unwanted contractions between the clusters. It can be shown that
for a complete model space this operator is completely connected, which can be
expressed by means of the generalized Bloch theorem (13-9) as [13]

[

Tn, H0
]

P = (

VΩ −ΩVeff
)

conn, nP (13-21)
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(It should be noted that a “linked” diagram can be disconnected if all parts are
“open”, acting outside the model space.) Mukherjee has shown that the theorem also
holds for an incomplete model space, if the intermediate–normalization condition is
abandoned [15, 16].

In the CCSD approximation

T = T1 + T2 (13-22)

the cluster operators satisfy the coupled equations

[

T1, H0
]

P = (

VΩ −ΩVeff
)

conn, 1P

(13-23)
[

T2, H0
]

P = (

VΩ −ΩVeff
)

conn, 2P

illustrated in analogy with Figure 13-2 in Figure 13-4. These equations lead to one-
and two-particle equations, analogous to the pair equation given above (13-13). Also
these equations have to be solved iteratively, and we observe that they are coupled,
as are the corresponding equations (13-10) for the full wave operator.

T1 : = x +
x

+ + · · · +

T2 : = + + + +

+ · · · + + +

(Veff)2(Veff)1(Veff)2

(Veff)1

Figure 13-4. Diagrammatic representation of the equations for the cluster operators T1 and T2
Eq. (13-23). The circle with a cross represents the “effective potential” [17], which vanishes when
Hartree–Fock orbitals are used. The last diagram in the second row and the first diagram in the third row
are examples of coupled-cluster diagrams. The last diagram in the first row and the last three diagrams in
the last row represent folded terms (c.f. Figure 13-2)
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13.2.3. Versions of MBPT/CCA

What is indicated here is a multi-reference approach, in which a multiple of states
are treated simultaneously. This is particularly advantageous in calculating transition
energies. The valence universal version, valid also for different stages of ionization,
is particularly useful in evaluating ionization energies or electron affinities. A serious
disadvantage with the multi-reference approach is that it often leads to so-called
intruder states, i.e., states that do not belong to the group of target states under study
but penetrate into the energy range of target states of the same symmetry when the
perturbation is turned on. When this happens, the perturbation expansion no longer
converges.

For simple atomic systems that we are mainly interested in, the intruder problem
is usually not a serious one, and we therefore prefer the multi-reference approach.
The situation is different for molecular systems, due to more dense energy levels.
Therefore, single-reference approaches are becoming more popular for such systems,
as described in other chapters of this book.

13.2.4. Standard Relativistic MBPT: Definition of QED Effects

In the present chapter our main focus is relativity and QED problems, and the starting
point is here the standard relativistic MBPT procedures, based upon the projected
Dirac-Coulomb-Breit approximation [18]1

H = Λ+
[

N
∑

i=1

hD(i)+
N
∑

i<j

e2

4πrij
+ HB

]

Λ+ (13-24)

hD is here the single-electron Dirac Hamiltonian and HB is the instantaneous Breit
interaction

HB = − e2

8π

∑

i<j

[αi · αj

rij
+ (αi · rij)(αj · rij)

r3
ij

]

(13-25)

Λ+ is a projection operator that eliminates the negative-energy solutions of the Dirac
equation. This approximation is also known as the No-Virtual-Pair Approximation
(NVPA).

Effects beyond the NVPA are conventionally referred to as QED effects, and the
lowest-order diagrams are depicted in Figure 13-5. The first row represents so-called
non-radiative effects, or Araki-Sucher effects [19, 20], and the second row radiative
effects (self energy, vacuum polarization and vertex correction).

1 Using natural or relativistic units: c = h̄ = me = ε0 = 1, e2 = 4πα, α being the fine-structure
constant.
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Figure 13-5. Some low-order non-radiative (upper line) and radiative (lower line) “QED effects”. These
diagrams are Feynman diagrams, and the heavy lines represent particle as well as hole or anti-particle
states in the Furry picture. The wavy lines represent the covariant photon exchange. The second diagram
is, when the intermediate states are particle states, reducible, since it can be separated into two single-
photon-exchange diagrams, while all the remaining diagrams are irreducible

13.2.5. Implementation

In this subsection we shall briefly indicate the development and applications of the
many-body theory of the Göteborg group. The development started in the early 1970s
by Ingvar Lindgren and John Morrison and is summarized in their book Atomic
Many-Body Theory [17]. The calculations were first based on first-order single-
particle and pair programs, introduced into the group by Morrison [21, 22]. This
was then developed into numerical all-order programs in the late 1970s by Sten
Garpman, Lindgren and Ann-Marie Mårtensson-Pendrill [23–25]. This technique
was later converted into a coupled-cluster program with doubles (CCD) by Sten
Salomonson [26] and applied to various atomic systems. It was also applied to open-
shell systems [27, 28] – in the application to the beryllium atom the above-mentioned
“intruder problem” was probably observed for the first time in an atomic system. The
procedure was extended to the full CCSD procedure and applied by Lindgren [29]
(see Table 13-1) and Salomonson et al. [31, 39] (see Tables 13-2 and 13-3).

A relativistic version of the linear all-order pair program (LD) was developed by
Eva Lindroth [32], and applied to the helium atom. A new numerical, highly accurate
technique, referred to as the discretization technique, was developed by Salomonson
and Per Öster [33] and applied to full atomic coupled-cluster calculations, relativis-
tically as well as non-relativistically [30, 31]. This technique has been the basis for
all later works of our group.

In Tables 13-1, 13-2 and 13-3 we have compared some of our coupled-cluster cal-
culations for lithium, sodium, beryllium and Li− with results from other groups. The
calculations on Be and Li− demonstrates clearly the importance of single excitations
for such systems. The results for sodium show the importance of triple excitations
in this case. (The results by Safronova et al. are probably fortuitous, indicating that
effects of non-linear coupled-cluster terms and triples accidentally cancel.)
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Table 13-1. Binding energies of the two lowest states of the lithium
atom (in μH)

Lithium atom

2 2S 2 2P References

Expt’l 198, 159 130, 246
Hartree–Fock 196, 304 128, 637
Difference 1, 854 1, 609
LSD 1, 855 1, 582 Blundell et al. [34]
CCSD 1, 850 1, 584 Lindgren [29]
CCSD 1, 835 1, 534 Eliav et al. [35]

Table 13-2. Correlation energy of some low-lying states of the sodium atom (in μH) (from Ref. [36])

Sodium atom

3 2S 3 2P1/2 3 2P3/2 4 2S References

Expt’l 6, 825 2, 121 2, 110 1, 415
LSD 6, 835 2, 118 2, 108 1, 418 Safronova et al. [36]
CCSD 6, 458 Salomonson–Ynnerman [31]
CCSD 6, 385 Eliav et al. [35]
CCSD(T) 6, 840 Salomonson–Ynnerman [31]

Table 13-3. Correlation energy of the ground state of the beryllium
atom and the negative lithium ion (in μH) (from Ref. [37])

Beryllium atom and negative lithium ion

Be Li− References

CCD 92.960 71.148 Bukowski et al. [37]
CCD 92.961 71.266 Salomonson–Öster [30]
CCSD 93.665 72.015 Bukowski et al. [37]
CCSD 93.667 72.142 Salomonson–Öster [30]

13.3. COVARIANT EVOLUTION OPERATOR

We shall now go over into the later developments in our group towards a covariant
many-body procedure. This will be described in more detail in a separate publica-
tion [38].
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13.3.1. Single-Photon Exchange

In the interaction picture (IP) the state vectors and operators are related to those in
the Schrödinger picture (SP) by

|χI(t)〉 = eiH0t |χS(t)〉; VI(t) = eiH0t V e−iH0t (13-26)

It then follows that the Schrödinger equation becomes in IP

i
∂

∂t
|χI(t)〉 = VI(t) |χI(t)〉 (13-27)

The time-evolution operator in IP, U(t, t0), is defined by2

|χ (t)〉 = U(t, t0) |χ (t0)〉 (t > t0) (13-28)

and it satisfies the differential equation

i
∂

∂t
U(t, t0) = V(t) U(t, t0) (13-29)

This leads to the expansion [39]

Uγ (t, t0) =
∞
∑

n=0

(−i)n

n!
∫ t

t0
dt1 . . .

∫ t

t0
dtn T

[

V(t1) . . .V(tn)
]

e−γ (|t1|+|t2|...+|tn|)

(13-30)

where T is the time-ordering operator and γ is an adiabatic damping factor.
The perturbation is represented by the interaction between an electron and the

radiation fields

V(t) =
∫

d3xH(t, x) (13-31)

with

H(x) = −eψ̂†(x)αμAμ(x)ψ̂(x) (13-32)

where x = (t, x) is the four-dimensional space-time coordinate and ψ̂(x), ψ̂†(x) and
Aμ are the electron-field and the photon-field operators, respectively. The expansion
(13-30) then becomes

U(t, t0) =
∞
∑

n=0

(−i)n

n!
∫ t

t0
d4x1 . . .

∫ t

t0
d4xn T

[H(x1) . . .H(xn)
]

e−γ (|t1|+|t2|...+|tn|)

(13-33)

2 In the following we shall work mainly in the interaction picture and leave out the subscript “I”
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Figure 13-6. Comparison between the standard and the covariant evolution operator for single-photon
exchange. In the latter there are electron propagators on the in- and outgoing lines, implying that they can
represent particle or hole with time running both ways

where the integrations are performed over all space and over time as indicated. The
perturbation operates here in the extended photonic Fock space, where the number
of photons is no longer constant. The exchange of a single (virtual) photon is repre-
sented by TWO perturbations of this kind.

The evolution operator (13-28) is non-covariant, since time evolves only in the
positive direction (t > t0). In relativistic applications we must allow time to run
also backwards in the negative direction, which represents the propagation of hole
or antiparticle states with negative energy. This leads to the covariant evolution
operator (CEO), introduced by Lindgren, Salomonson and coworkers [4]. In Figure
13-6 we compare the standard and the covariant evolution operators for the single-
photon exchange between the electrons.

The single-photon CEO is in the adiabatic limit γ → 0

Usp(t, t0) = e−it(E−H0) iΓ (E) Vsp(E)Γ (E) e−it0(E−H0) (13-34)

where Vsp is the single-photon potential, and E is the energy of the initial unperturbed
state. The energy-dependent potential becomes [4, 38]

〈rs|Vsp(E)|tu〉 = 〈rs|
∫ ∞

0
dk f (k)

×
[ 1

E − εr − εu − k
+ 1

E − εs − εt − k

]

|tu〉
(13-35)

when all states are particle states. Here, εx represent the orbital energies, and f (k) is
a gauge-dependent function of the photon momentum.

The diagram of the covariant evolution operator in Figure 13-6 is a Feynman
diagram, involving all possible time orderings of the vertices. In the general case
this corresponds to 16 combinations of particles and holes. A potential has been
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constructed also for this general case, although this obviously becomes more com-
plicated than that given above and will not be reproduced here [38].

13.3.2. Connection to MBPT

The covariant evolution operator contains singularities in higher orders, when there
is an intermediate state in the model space (c.f. Figure 13-2). Eliminating these
singularities leads to what we have referred to as the reduced covariant evolution
operator [4] or the Green’s operator [40], since this object is quite analogous to the
Green’s function.

We separate the Green’s operator, G(t, t0), into

G(t, t0) = 1+ Gop(t, t0)+ Gcl(t, t0) (13-36)

where the subscripts “op” and “cl” refer to the open and closed parts, respectively.
The open part is closely related to the wave operator of standard MBPT (13-6)

ΩCov = 1+ Gop(0,−∞) (13-37)

and the closed part to the effective interaction (13-3)

VCov
eff = P

(

i
∂

∂t
Gcl(t,−∞)

)

t=0
P (13-38)

The covariant wave operator satisfies a “Bloch-like” equation, and in lowest or-
ders we have in analogy with the corresponding equation in standard MBPT (13-10)3

{

Ω (1)PE = ΓQ(E)V(E)PE
Ω (2)PE = ΓQ(E)

[

V(E)Ω (1) −Ω (1)V (1)
eff + δV(E)

δE V (1)
eff

]

linked
PE

(13-39)

where PE is the projection operator of the part of the model space with energy E we
operate on. The second term on the rhs of the second-order equation is identical to
the folded term of MBPT, and the last term is an additional contribution from the
intermediate model-space state due to the energy dependence of the potential. This
equation can also be expressed

Ω
(2)
CovPE =

[

ΓQ(E) V(E)Ω (1) + δΩ
(1)

δE V (1)
eff

]

linked

PE (13-40)

3 In the following we leave out the subscript “Cov”.
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=
VQED

+ + +

Figure 13-7. Feynman diagram representing the “QED potential”, containing also radiative QED effects

13.3.3. QED Potential

In addition to the general potential of the exchange of a single retarded photon, we
have also constructed (although not yet fully implemented) potentials for the photon
with crossed Coulomb interactions as well as of electron self energy and vertex cor-
rection, illustrated in Figure 13-7. This potential contains the most important QED
corrections (which, of course, have to be properly renormalized). Below we shall
indicate how this potential can be incorporated into MBPT calculations.

13.4. COUPLED-CLUSTER-QED APPROACH

The QED potential, shown in Figure 13-7, can be combined with the non-QED
many-body procedure, described above. A single QED potential, combined with the
pair function in Figure 13-2, leads to the evolution operator

UQED(t)|ab〉 = e−it(E−H0)

E − H0
VQED(E)ΓQ(E) IPair|ab〉 (13-41)

where IPair represents the iterated Coulomb interactions (Eq. 13-14). Removing the
singularities, due to intermediate model-space states, leads to the corresponding
wave operator [38]

Ω|ab〉 =
[

ΓQ(E)VQEDΓQ(E) IPair + δ
∗Ω
δE Veff

]

|ab〉 (13-42)

illustrated in Figure 13-8. This is a generalization of the second-order result (13-40).
In the last folded term we have introduced the symbol δ∗, implying that only the last
interaction, including the associated resolvent, is differentiated,

δ∗
(

Γ (E)V1(E)Γ (E)V2(E) · · · )
δE = δ

(

Γ (E)V1(E)
)

δE Γ (E)V2(E) · · · (13-43)

Veff above is the corresponding effective interaction (13-38).
We can also insert the QED potential in the CC equations (13-23) and at the same

time insert the single-electron QED interactions (vacuum polarization and electron
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= Q + P

Figure 13-8. Combining the QED potential in Figure 13-7 with standard pair-function input (heavy line),
yields to the QED pair function after removing the singularity (last folded diagram) (see Eq. 13-42)

self energy) into the single-particle equation. This corresponds to the replacements
illustrated in Figure 13-9. By continuing this procedure and including more and more
irreducible interactions (see Figure 13-5), this will eventually lead to the solution of
the two-particle Bethe–Salpeter equation [41, 42]. (Then, of course, the Coulomb
interactions will automatically be part of the covariant interactions and do not have
to be included separately.) Treating the full Bethe–Salpeter equation, however, is
a very tedious way of handling the electron correlation. Therefore, the procedure
described here, is a much more effective way of gradually including QED into MBPT
calculations.

The CC-QED procedure can also be applied to systems with more than two elec-
trons. For instance, if we consider the simple approximation

Ω = 1+ T2 + 1

2
T2

2

then we will have in addition to the pair function also the coupled-cluster term, illus-
trated in Figure 13-10 (left). Here, one or both of the pair functions can be replaced
by the QED pair function in Figure 13-8 in order to insert QED effects on this level.

Figure 13-9. Replacements to be made in the CC equations in Figure 13-4 in order to generate the corre-
sponding CC-QED equations
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Figure 13-10. Feynman diagram representing coupled-cluster term
1

2
T2

2 with standard pair functions

(left) and one and two inserted QED pair function (defined in Figure 13-8)

In the CCSD approximation, T = T1 + T2, also the single-particle QED effects will
be included in the orbitals, as illustrated in Figure 13-9.

It is a consequence of the complete compatibility between the standard MBPT/CC
approach and the covariant approach described here that the insertion of QED effects
can be restricted to places where they are expected to be most significant. This fact
can be utilized to optimize the computing efficiency.

13.5. IMPLEMENTATION AND FUTURE OUTLOOK

The combined many-body/coupled-cluster-QED procedure, described above, is now
being implemented at our laboratory. The single-photon exchange, represented by
the first diagram in the rhs of Figure 13-7 is fully implemented in our procedure
(with all combinations of particles and holes) and the second diagram in the no-pair
approximation. Calculations have been performed for the ground state of a num-
ber of light and medium-heavy heliumlike ions, and some results are given in the
second part of Table 13-4. These results, here presented for the first time, represent
effects beyond two-photon exchange, i.e., one virtual, covariant photon and at least
two Coulomb interactions (with and without crossing). Our present results are com-
pared in the first part of the table with corresponding two-photon S-matrix results,

Table 13-4. Comparison in the ground state of some heliumlike ions between two-photon Coulomb-Breit
(unretarded no-pair, retarded no-pair, and virtual pairs) and correspondingly WITH electron correlation,
beyond two photons (in μH).

Two-photon Coul-Breit Beyond two-photon Coul-Breit

Z Unretarded Retarded Virtual pairs Unretarded Retarded Virtual pairs

6 −1, 054 31 −10 137 −9.0 2.6
10 −2, 870 122 −46 223 −21 7.3
14 −5, 514 293 −122 301 −36 13
18 −8, 947 553 −248 372 −51 21
30 −23, 629 1, 910 −1, 010 553 −102 46
42 −44, 490 4, 118 −2, 435 688 −147 71
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published by our group in 1995 [43] (Figure 13-11). More detailed results will be
published shortly [38].

The calculations we have performed correspond to the first two diagrams in
Figure 13-12 (up to three Coulomb crossings). The next two diagrams, including
one retarded and one unretarded Breit interaction, are also quite feasible to evaluate,
while the last two – with TWO retarded interactions – are beyond reach for the
time being. It should be noted, though, that the corresponding effects would be quite
small. In Figure 13.11 we have indicated the effect of doubly retarded two-photon
exchange, and the corresponding effect with correlation would be one order of mag-
nitude smaller.

In the pipeline is also to implement the radiative part of the potential in the
Figure 13-7. This will require regularization and renormalization in the Coulomb
gauge, which is not straightforward.

Our intention is also to apply the procedure to excited states of heliumlike ions in
order to evaluate fine-structure splitting. Very accurate experimental results are here
available that presently have no matching theoretical counterpart [44, 45]. In order
to reach sufficient accuracy, our numerical procedure has to be further improved, a

Figure 13-11. The Coulomb-Breit interaction with electron correlation beyond two-photon exchange,
unretarded (squares), retarded no-pair (circles), and virtual pairs (triangles). Shown is also the (estimated)
two-photon Breit-Breit interaction with DOUBLE retardation (dashed). The values are normalized to
the ionization energy. The vertical scale is logarithmic with one unit corresponding to a factor of the
fine-structure constant α ≈ 1/137
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Figure 13-12. One- and two-photon exchange diagrams with electron correlation, represented by incom-
ing and/or outgoing pair functions with one or several Coulomb interactions

procedure that is presently under way in collaboration with the mathematical depart-
ment at our university.

To what extent we will be able to realize the ambitious program indicated here,
will largely depend on the economical and personal resources that we can access in
the future.
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12. J. Čížek, J. Chem. Phys. 45, 4256–4266 (1966)
13. I. Lindgren, Int. J. Quantum Chem. S12, 33–58 (1978)
14. W. Ey, Nucl. Phys. A 296, 189–204 (1978)
15. D. Mukherjee, Chem. Phys. Lett. 125, 207–212 (1986)
16. I. Lindgren, D. Mukherjee, Phys. Rep. 151, 93–127 (1987)
17. I. Lindgren, J. Morrison, in Atomic Many-Body Theory, Second edition (Springer, Berlin, 1986,

reprinted 2009)
18. J. Sucher, Phys. Rev. A 22, 348–362 (1980)
19. H. Araki, Prog. Theor. Phys. (Japan) 17, 619–642 (1957)
20. J. Sucher, Phys. Rev. 109, 1010–1011 (1957)
21. J. Morrison, J. Phys. B 6, 2205–2212 (1973)
22. S. Garpman, I. Lindgren, J. Lindgren, J. Morrison, Phys. Rev. A 11, 758–781 (1975)
23. S. Garpman, I. Lindgren, J. Lindgren, J. Morrison, Z. Phys. A 276, 167–177 (1976)
24. I. Lindgren, J. Lindgren, A. M. Mårtensson, Z. Phys. A 279, 113–125 (1976)
25. A. M. Mårtensson, J. Phys. B 12, 3995–4012 (1980)



374 I. Lindgren et al.

26. I. Lindgren, S. Salomonson, in A Numerical Coupled-Cluster Procedure Applied to the Closed-Shell

Atoms Be and Ne. Presented at the Nobel Symposium on Many-Body Effects in Atoms and Solids,
Lerum, 1979. Physica Scripta 21, 335–342 (1980)

27. J. Morrison, S. Salomonson, in Many-Body Perturbation Theory of the Effective Electron–Electron

Interaction for Open-Shell Atoms. Presented at the Nobel Symposium, Lerum, 1979. Physica Scripta
21, 343–350 (1980)

28. S. Salomonson, I. Lindgren, A. M. Mårtensson, in Numerical Many-Body Perturbation Calculations

on Be-like Systems Using a Multi-Configurational Model Space. Presented at the Nobel Symposium
on Many-Body Effects in Atoms and Solids, Lerum, 1979. Physica Scripta 21, 335–342 (1980)

29. I. Lindgren, Accurate many-body calculations on the lowest 2S and 2P states of the lithium atom.
Phys. Rev. A 31, 1273–1286 (1985)

30. S. Salomonson, P. Öster, Phys. Rev. A 41, 4670–4681 (1989)
31. S. Salomonson, A. Ynnerman, Phys. Rev. A 43, 88–94 (1991)
32. E. Lindroth, Phys. Rev. A 37, 316–328 (1988)
33. S. Salomonson, P. Öster, Phys. Rev. A 40, 5548, 5559 (1989)
34. S. A. Blundell, W. R. Johnson, Z. W. Liu, J. Sapirstein, Phys. Rev. A 40, 2233–2246 (1989)
35. E. Eliav, U. Kaldor, Y. Ishikawa, Phys. Rev. A 50, 1121–1128 (1994)
36. M. S. Safronova, J. Sapirstein, W. R. Johnson, Phys. Rev. A 58, 1016–1028 (1998)
37. R. Bukowski, B. Jeziorski, K. Szalewicz, J. Chem. Phys. 110, 4165–4183 (1999)
38. D. Hedendahl, S. Salomonson, I. Lindgren, Phys. Rev. (to be published) (2010)
39. A. L. Fetter, J. D. Walecka, in The Quantum Mechanics of Many-Body Systems (McGraw-Hill, New

York, 1971)
40. I. Lindgren, S. Salomonson, D. Hedendahl, in Field-Theoretical Approach to Many-Body Pertur-

bation Theory: Combining MBPT and QED. Invited talk at the Sixth International Conference of
Computational Methods in Sciences and Engineering, Corfu, Greece, September 2007. Adv. Quan-
tum Chem. (2008)

41. I. Lindgren, S. Salomonson, D. Hedendahl, Einstein centennial review paper. Can. J. Phys. 83,
183–218 (2005)

42. I. Lindgren, S. Salomonson, D. Hedendahl, Phys. Rev. A 73, 062,502 (2006)
43. I. Lindgren, H. Persson, S. Salomonson, L. Labzowsky, Phys. Rev. A 51, 1167–1195 (1995)
44. E. G. Myers, H. S. Margolis, J. K. Thompson, M. A. Farmer, J. D. Silver, M. R. Tarbutt, Phys. Rev.

Lett. 82, 4200–4203 (1999)
45. T. R. DeVore, D. N. Crosby, E. G. Myers, Phys. Rev. Lett. 100, 243,001 (2008)



CHAPTER 14

ON SOME ASPECTS OF FOCK-SPACE MULTI-REFERENCE
COUPLED-CLUSTER SINGLES AND DOUBLES ENERGIES
AND OPTICAL PROPERTIES

PRASHANT UDAY MANOHAR1, KODAGENAHALLI R. SHAMASUNDAR2,
ARIJIT BAG3, NAYANA VAVAL4, AND SOURAV PAL5

1Department of Chemistry, University of Southern California, Los Angeles, CA 90089-0482, USA, e-mail:
pumanohar@gmail.com
2Universität Stuttgart, Institut für Theoretische Chemie, Pfaffenwaldring 55, D-70569 Stuttgart,
Germany, e-mail: sham@theochem.uni-stuttgart.de
3Physical Chemistry Division, National Chemical Laboratory, Pune 411008, India, e-mail:
bagarijit@gmail.com
4Physical Chemistry Division, National Chemical Laboratory, Pune 411008, India, e-mail:
np.vaval@ncl.res.in
5Physical Chemistry Division, National Chemical Laboratory, Pune 411008, India, e-mail:
s.pal@ncl.res.in

Abstract: Multi-reference coupled cluster methods are established as accurate and efficient tools for
describing electronic structure of quasi degenerate states. Recently we have developed
multi-reference coupled cluster linear response approach based on the constrained vari-
ation method. The method is very general and can describe challenging problems due
to the multiple-root nature of effective Hamiltonian. Calculation of response properties
for the ionized/electron attached or excited state molecules is a challenging task. With
this formulation it is possible to accurately predict the higher order molecular properties
of the open shell molecules. In this article we review the response approaches for quasi
degenerate cases with emphasis on Fock space multi-reference coupled cluster method.

Keywords: Multireference coupled cluster, Fock space, Optical properties, Linear response

14.1. INTRODUCTION

Spectacular success of the standard single reference coupled-cluster (SRCC) method
in the last few decades in explaining a wide variety of chemical phenomena is
well documented in the quantum chemistry literature [1]. Its ability to treat dy-
namical electron correlation accurately for closed shell molecules and satisfy size-
extensivity features, makes it an attractive candidate for electronic structure calcula-
tions. Another reason for the emergence of SRCC as the state-of-the-art method is
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the successful development of efficient analytic energy derivative techniques for the
calculation of molecular properties [2–7]. The response approach in the SRCC con-
text was first attempted by Monkhorst [8]. This was originally formulated in a
non-stationary framework, and hence, this did not have the simplicities introduced
by the generalized Hellmann – Feynman theorem and the (2n+ 1) rule. As a result,
evaluation of first-order property in SRCC depended explicitly on first-derivatives
of cluster amplitudes with respect to the external perturbation. Thus, to satisfy the
necessary condition for Hellmann – Feynman theorem and get the full use of (2n+1)
rule, several attempts have been made to formulate stationary coupled cluster theory
[9–12]. All such attempts have ended in more complicated theories. This apparent
impediment was overcome by Bartlett and coworkers [3, 13]. They used the idea of
algebraic Z-vector method introduced by Handy and Schaefer [14] in the analysis of
analytic orbital derivatives introduced in the configuration interaction method. They
have shown that the requirement of first derivative of cluster amplitudes for such
mode of perturbation may be replaced by a single perturbation independent quantity,
known as Z-vector. This and the subsequent developments by Bartlett and coworkers
substantially facilitated efficient implementation of molecular energy gradients for
SRCC, and significantly contributed to its success in quantum chemistry. However,
Z-vector type of approach turned out to be a tedious job for higher-order proper-
ties such as Hessians, polarizabilities, etc. On the other hand, a conceptually dif-
ferent approach, using a constrained variation approach, proposed by Jørgensen and
coworkers, has incorporated all such developments in a single formulation through
the formation of Lagrangian functional which is easily applicable to higher order
energy derivative [15–18]. This approach involved recasting of standard SRCC the-
ory in a stationary framework by introducing an extra set of de-excitation ampli-
tudes. It was shown that this method includes the Z-vector method as a zeroth-order
result and transparently extends its benefits to higher-order properties. While SRCC
method has been routinely used for energy and energy derivatives for closed shell
like systems, where a single determinant can be identified to be the most impor-
tant part of the wave-function. Description of molecular excited states, open shell
and potential energy surfaces in general, demand a description beyond SRCC the-
ories. These are the cases where reference state may not be described by a single
Slater determinant. A linear combination of determinants may be more appropriate
to describe non-dynamic correlation associated with such states. The use of multi-
determinantal reference space to incorporate non-dynamical electron correlation is
in general known as multi-reference (MR) theories [19, 20]. There have been several
approaches developed in last two decades among which the effective Hamiltonian
approaches [21, 22] are dominating. An effective Hamiltonian is diagonalized with
in a suitably chosen model space to approximately reproduce a part of the spectrum
associated with the exact Hamiltonian.

The development of coupled cluster methods incorporating the non-dynamical
electron correlation is known as multi-reference coupled cluster (MRCC). There
are two subclasses of MRCC methods, which have been studied extensively. One is
the multi root description via effective Hamiltonian approach [23, 24] and the other
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describes a specific root, known as the state-specific MRCC approach [25]. In multi-
root effective Hamiltonian approach, exact energies of the corresponding strongly
interacting near-degenerate states are obtained as roots of effective Hamiltonian via
diagonalization. This class of methods is further subdivided into Hilbert space and
Fock space approach depending on the way the dynamical part of electron correlation
is described [23, 26–36]. In Hilbert space approach a state-universal wave operator
which contains different cluster operators for each of the reference determinants in
the model space [26, 30, 31]. It is based on the concept of multiple vacua and the dif-
ferent cluster operators are hole-particle creation operators with respect to different
vacua. This method has been used for studying PES, bond-dissociation, etc. However
for PES, state-selective MRCC method developed by Mukherjee and co-workers
[25] has been found to be more suitable from the point of view of circumventing
the important problems of intruder states. The Fock-space (FS) MRCC [26–30, 32–
36] in general, is suitable for energy difference calculations i,e ionization, electron-
attachment and electronic excitation of molecules and is based on the concept of
common-vacuum and a valence universal wave-operator. The model space is com-
posed of near degenerate configurations obtained by combinations of electron occu-
pancies among what are called active orbitals. The occupancies of the active orbitals
are denoted in terms of number of active particles and active holes with respect to the
vacuum. The wave operator in this approach must be able to destroy a set of active
holes and/or particles apart from hole particle excitation. The explicit form of inverse
of normal ordered exponential is not known. Therefore, Bloch equation approach is
the only approach that can be followed to obtain the cluster amplitude equations. It
has been shown that this leads to a connected set of equations for each valence sector
and equations for different Fock space sectors are decoupled from each other. This
decoupling of the different Fock space sectors is known as subsystem embedding
condition (SEC). This emerges naturally as consequence of normal-ordered form
of ansatz. Because of these simplifications, the normal-ordered exponential ansatz
has become the standard ansatz for FSMRCC theories and their applications. The
effective Hamiltonian theory aims at a simultaneous description of a manifold of
strongly interacting states. A zeroth-order approximation to this manifold is provided
by the chosen model space. It is further assumed that this model space is energetically
well-separated from its orthogonal complement and weakly interacts with it. This
means that determinants from orthogonal complement are not dominant in any of
the targeted states.Thus, the choice of the model space is very important the wrong
choice of model space may lead to intruder state problem. However, the intruder state
problem may be overcome by the Fock-space (FS) effective Hamiltonian scheme of
Meissner [24] which is very efficient from the computational point of view.

Parallel to this, methods like equations-of-motion (EOM) CC [37–43], cou-
pled cluster linear response (CC-LR) [44], symmetry adapted clusters configura-
tion interaction (SAC-CI) [45, 46], etc. are also known to handle certain classes of
quasi-degeneracy. Bartlett [38] and co-workers implemented EOMCC method for
calculation of excitation energies for atoms and molecules. Stanton and Bartlett [40]
used EOMCC method for excitation energies, transition probabilities and excited



378 P.U. Manohar et al.

state properties. Nooijen and Bartlett [47] implemented it for electron attached sys-
tems. Later, Watts and Bartlett [48] included triples excitation to EOMCC for excita-
tion energies. Similarity transformed EOMCC method (STEOMCC) was developed
by Nooijen and Bartlett [49] for ionized, electron attached and excited states. More
recently, spin-flip EOMCC has been introduced by Krylov [50] for description of
excited states, bond breaking, diradicals and triradicals. For one valence system in
Fock space i.e. for ionization potential and electron affinity calculation it has been
shown that both EOMCC and FSMRCC are equivalent [49]. However, for excitation
energy calculation, such equivalency disappears. It was shown by Bartlett [51] that
while the size-extensivity is maintained in FSMRCC, the same is not true in case
of EOM-CC for higher valence cases. However, recently developed similarity trans-
formed (ST) EOM-CC method of Nooijen and co-workers [52, 53] is size-extensive.
CC-LR method developed by Jørgensen’s group [54] has also been used extensively
for the calculation of excitation energies. The excitation energies obtained by CC-LR
are identical to the EOM-CC excitation energies.

EOMCC derivatives for property calculation was also initiated and implemented
by Stanton [54] first and then by Stanton and Gauss [41, 55]. Analytic energy deriva-
tives for ionized states were described by Stanton and Gauss [41] in EOMCC formal-
ism. Subsequently, analytic second derivative for excited state was also introduced by
Stanton and Gauss [55]. Gradients using STEOM-CC was implemented by Nooijen
and coworkers [56] using Lagrange undetermined multiplier, which is similar to the
method followed in the work which is to be reviewed in this article. In STEOM-
CC method, two more Z vector like quantities are required to be evaluated for the
response of the S± coefficients to the perturbation along with the Lagrange multiplier
lambda (Λ). The role of Λ is equivalent in both cases.

However, obtaining energy derivatives in the context of multi-root MRCC meth-
ods was a challenge. Along the lines of SRCC, the analytic linear response for
MRCC method based on Monkhorst’s approach [8] was initiated by Pal [57] long
back. The computational developments and implementation of the method was done
later by Ajitha et al. [58–60] for obtaining dipole moment of doublet radicals and
low-lying excited states of molecules. However, the approach was quite unsatisfac-
tory, since it required expensive evaluation of cluster amplitude derivatives for every
mode of perturbations.

In SRCC context, this problem was solved by incorporation of Z-vector technique
[4] or equivalently, the constrained variational approach (CVA) [7], which was based
on the method of Lagrange undetermined multipliers. The CVA method in FSMRCC
framework was studied by Szalay [61], independently. However, this method was
applicable for complete model spaces (CMS) only. Similar developments for both
Fock and Hilbert space MRCC [62, 63] for ionic, electron attached and excited states
was pursued by Pal and co-workers in recent years [62]. The CVA formulation of
Shamasundar et al. [62]. is applicable for a general incomplete model space (IMS)
cases and simplifies to Szalay’s formulation in the case of CMS. This single root
method provides a cost-effective tool to obtain higher order energy derivatives with
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the knowledge of lower order cluster amplitude derivatives and a set of perturbation
independent vectors, the Lagrange multipliers.

The computational developments of FSMRCC using CVA were recently started
by Manohar et al. [64, 65] and Bag et al. [66] using singles and doubles (SD)
truncation of the wave operator. The implementation for analytic dipole moments
and polarizabilities of doublet radicals has been done by Manohar et al. [64] and Bag
et al. [66, 67]. Implementation of CVA-FSMRCC method for the energy derivatives
of the singlet and the triplet excited states have been done by Bag et al. [66]. In this
review article, we present an overview of the FSMRCC method for energy deriva-
tives. In particular, we review the Lagrangian based formulation using CVA which
is the most efficient implementation of the method. We review the basic theory and
discuss some of the results obtained using the state of the art CVA based analytic
derivative formulation.

14.2. FOCK-SPACE MULTI-REFERENCE COUPLED-CLUSTER
METHOD

We now present the developments so far in FSMRCC and related methods. As men-
tioned earlier, FSMRCC is based on the concept of a common vacuum. We choose
an N-electron RHF configuration as vacuum, which defines the holes and particles.
In the Fock-space, the model space determinants contain h-holes and p-particles dis-
tributed within a set of what are termed as active holes and active particles, usually
around the Fermi level. We denote the above p-active particle, h-active hole model
space determinant by

{

Φ
(p,h)
i

}

. Thus, the model space of a (p, h) valence Fock-space
can be written as

∣

∣Ψ
(p,h)
(0)μ 〉 =

∑

i

C(p,h)
iμ

∣

∣Φ
(p,h)
i 〉 (14-1)

The dynamical electron correlation arises due to comparatively weak interactions of
the model-space configurations with the virtual space configurations. This interac-
tion is brought in through a universal wave operator Ω which is parameterized such
that the states generated by its action on the reference function satisfy Schrödinger
equation. To generate the exact states for the (p, h) valence system, the wave operator
must generate all valid excitations from the model space. The correlated μth wave
function in the MRCC formalism is written as

∣

∣Ψ (p,h)
μ 〉 = Ω∣

∣Ψ
(p,h)
(0)μ 〉 (14-2)

where

Ω = {

eT̃(p,h)}
(14-3)

The brace-bracket indicates normal ordering of the cluster-operators. In the Fock-
space approach T̃ (p,h) amplitudes contain the lower valence amplitudes and thus give
the additional flexibility in the theory.



380 P.U. Manohar et al.

T̃ (p,h) =
p
∑

k=0

h
∑

l=0

T (k,l) (14-4)

The super scripted bracket in the right hand side of the above expression indicates
that the cluster operator T is capable of destroying exactly k active particles and l ac-
tive holes, in addition to creation of holes and particles. The T̃ (p,h) operator subsumes
all such lower T (k,l) operators.

The Schrödinger equation for the manifold of quasi-degenerate states can be
written as

H
∣

∣Ψ
(p,h)
i 〉 = Ei

∣

∣Ψ
(p,h)
i 〉

which leads to

HΩ
(
∑

i

C(p,h)
iμ Φ

(p,h)
i

) = EμΩ
(
∑

i

C(p,h)
iμ Φ

(p,h)
i

)

(14-5)

The projection operator for model space is defined as

P(p,h) =
∑

i

∣

∣Φ
(p,h)
i 〉〈Φ(p,h)

i

∣

∣ (14-6)

The orthogonal component of the model space, i.e. the virtual space is defined as

Q = 1− P (14-7)

The effective Hamiltonian for (p, h) valence system can be defined such that

∑

j

(

H(p,h)
eff

)

ijCjμ = EμCiμ (14-8)

(

H(p,h)
eff

)

ij = 〈Φ(k,l)
i

∣

∣Ω−1HΩ
∣

∣Φ
(k,l)
j 〉

which can be written as

H(p,h)
eff = P(p,h)Ω−1HΩP(p,h) (14-9)

The form the inverse ofΩ , in general may not be well defined. Hence, above defini-
tion is seldom used to obtain the effective Hamiltonian. Instead, the Bloch – Lindgren
approach is commonly used to define the effective Hamiltonian. The Bloch equation
is just a modified form of Schrödinger equation.

HΩP = ΩHeffP (14-10)
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The Bloch-Lindgren approach not only eliminates the requirement of Ω−1, but also
provides an important criterion the effective Hamiltonian must fulfill. The effective
Hamiltonian is, in general, non-hermitian. Mainly two approaches are used to obtain
Ω and the effective Hamiltonian. One of them, known as Bloch projection approach,
involves left projection of above equation by P and Q.

P(k,l)(HΩ −ΩH(k,l)
eff

)

P(k,l) = 0

Q(k,l)(HΩ −ΩH(k,l)
eff

)

P(k,l) = 0;

∀ k = 0, . . . , p;

l = 0, . . . , h (14-11)

The normalization condition is specified indirectly through parameterization ofΩ . In
case of complete model spaces (CMS), the intermediate normalization is commonly
employed.

The diagonalization of the effective Hamiltonian within the P space gives the
energies of the corresponding states and the left and the right eigenvectors.

H(p,h)
eff C(p,h) = C(p,h)E

C̃(p,h)H(p,h)
eff = EC̃(p,h) (14-12)

C̃(p,h)C(p,h) = C(p,h)C̃(p,h) = 1 (14-13)

Because of normal ordering, the contractions amongst different cluster operators
within the exponential are avoided, leading to partial hierarchical decoupling of
cluster equations. This is commonly referred to as sub-system embedding condi-
tion (SEC). The lower valence cluster equations are completely decoupled from
the higher valence cluster equations because of SEC. Hence, the Bloch equations
are solved progressively from the lowest valence (0, 0) sector upwards up to (p, h)
valence sector.

14.3. FSMRCC LINEAR RESPONSE

14.3.1. The Explicit Differentiation Method

The LR in FSMRCC framework was initiated by Pal and then implemented by
Pal and co-workers for dipole moments of doublet radicals and excited states of
closed-shell molecules. The method is non-variational and involves explicit differen-
tiation of Bloch equation with respect to uniform external field. In presence of time-
independent uniform external field, the parameters Υ = {

H(p,h)
eff , C(p,h), C̃(p,h), E,Ω

}

become perturbation dependent and can be expanded in Taylor series of g.

Υ (g) = Υ (0) + gΥ (1) + 1

2!g
2Υ (2) + 1

3!g
3Υ (3) + . . . (14-14)
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The differentiation of the Bloch equations following left projections by model space
and virtual space configurations with respect to g yields the equations for wave-
function derivatives and the derivative effective Hamiltonian.

P(k,l)(H(1)Ω (0) + H(0)Ω (1) −Ω (1)H(k,l)(0)

eff −Ω (0)H(k,l)(1)

eff

)

P(k,l) = 0 (14-15)

Q(k,l)(H(1)Ω (0) + H(0)Ω (1) −Ω (1)H(k,l)(0)

eff −Ω (0)H(k,l)(1)

eff

)

P(k,l) = 0 (14-16)

;∀k = 0, . . . , p;l = 0, . . . , h

The equations are linear in the perturbation dependent quantities. It is interesting
to note that the homogeneous parts of the Ω derivative equations are identical to
the linear homogeneous part of the undifferentiated cluster equations. The SEC
transparently holds at every order. The method provides multiple roots of derivative
effective-Hamiltonian which can be obtained simultaneously by solving following
equations.

∑

i

{(

H(1)
eff

)

jiC
(0)
iμ +

(

H(0)
eff

)

jiC
(1)
iμ

} = E(1)
μ C(0)

jμ + E(0)
μ C(1)

jμ (14-17)

However, due to its non-variational nature, the method does not obey the generalized

Hellmann – Feynman theorem for energy derivatives. Therefore, the evaluation of
nth order energy derivatives demands the knowledge of cluster amplitudes and their
derivatives up to nth order.

14.3.2. The Z-vector Method

The explicit differentiation method described in the last subsection, although straight
forward, is cumbersome, particularly for higher order derivatives. Before discussing
z-vector method for multi-reference problem we will briefly state formalism for sin-
gle reference first. The response approach for SRCC was formulated by Monkhorst
[8] to enable analytic computation of such properties. The SRCC was originally for-
mulated in a non-stationary framework, and due to this it did not have the simplicities
introduced by the generalized Hellmann – Feynman theorem and the (2n+ 1) -rule.
As a result, the expression for a first-order property in SRCC depended explicitly
on first- derivatives of cluster amplitudes with respect to the external perturbation,
which means it is necessary calculate these cluster amplitude derivatives for all
modes of perturbation. Bartlett and coworkers [3, 13] introduced what is known as
a z-vector method For first-order properties, this problem was overcome by Bartlett
and coworkers using the idea of algebraic Z-vector method based on Dalgarno’s
interchange theorem [68]. This substantially facilitated efficient implementation of
molecular energy gradients for SRCC, and significantly contributed to its success
in quantum chemistry. In lines of Z-vector formalism in SRCC, Pal and co-workers
proposed Z-vector technique for FSMRCC response [58–60]. Expanding Ω and its
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derivatives in terms of T (p,h) and absorbing the lower valence T operators in the

transformed Hamiltonian H̄ (H̄ = [H exp (T̃ (i,j))]c), the equations for H(p,h)(1)

eff and

T(p,h)(1)
can be simplified and rearranged. The H(p,h)(1)

eff can thus be rewritten as.

P(p,h)(H̄(1) + H̄(1)T (p,h)(0) − T (p,h)(0)
H̄(1) + H̄(0)T (p,h)(1) − T (p,h)(1)

H̄(0))P(p,h)

= P(p,h)(H(p,h)(1)

eff

)

P(p,h) (14-18)

Similarly, from Eq. (14-15) we arrive to

Q(p,h)(H̄(0)T (k,l)(1) − T (k,l)(1)
H̄(0) − T (k,l)(1)

H(p,h)(0)

eff − T (k,l)(0)
H(p,h)(1)

eff

)

P(p,h)

= Q(p,h)(H̄(1) + H̄(1)T (k,l)(0) − T (k,l)(0)
H̄(1))P(p,h) (14-19)

Applying the resolution of identity it follows

〈Q(p,h)|H̄(0)|Q(p,h)〉〈Q(p,h)|T (p,h)(1) |P(p,h)〉
−〈Q(p,h)|T (p,h)(1) |P(p,h)〉〈P(p,h)|H̄(0)|P(p,h)〉
−〈Q(p,h)|T (p,h)(1) |P(p,h)〉〈P(p,h)|H(p,h)(0)

eff |P(p,h)〉
= 〈Q(p,h)|H̄(1) + H̄(1)T (k,l)(0) − T (k,l)(0)

H̄(1)|P(p,h)〉 (14-20)

Substituting Eq. (14-18) in the above equation, it follows

〈Q(p,h)|H̄(0)|Q(p,h)〉〈Q(p,h)|T (p,h)(1) |P(p,h)〉
−〈Q(p,h)|T (p,h)(1) |P(p,h)〉〈P(p,h)|H̄(0)|P(p,h)〉
−〈Q(p,h)|T (p,h)(1) |P(p,h)〉〈P(p,h)|H(p,h)(0)

eff |P(p,h)〉
= 〈Q(p,h)|(H̄(0) + H̄(1)T (p,h)(0) − T (p,h)(0)

H̄(1)|P(p,h)〉
+〈Q(p,h)|T (p,h)(0) |P(p,h)〉〈P(p,h)|(H̄(0) + H̄(1)T (p,h)(0) |P(p,h)〉 (14-21)

From the above equation, one can see that T (p,h)(1)
in the left hand side appears in

the right of H̄ in the Q-space and to the left of Heff in P-space. Since, in general,
Heff has a matrix structure, the factorization of the T(p,h)(1)

can be effected only upon
a diagonal assumption of Heff. In the limit of single reference due to single-root
of the model-space, this approximation becomes exact. In case of degenerate states
and states with different symmetries also, the diagonal approximation is appropriate.
Thus, under the diagonal approximation, the equations for T (p,h)(1)

can be written as
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(〈Q(p,h)|(H̄(0)|Q(p,h)〉 − 〈P(p,h)|(H̄(0)|P(p,h)〉
−〈P(p,h)|H(p,h)(0)

eff |P(p,h)〉 + 〈Q(p,h)
∣

∣H̄(1)T (p,h)(0)

−T (p,h)(0)
H̄(1)|P(p,h)〉)〈Q(p,h)|T (p,h)(1) |P(p,h)〉

= 〈Q(p,h)|(H̄(1) + H̄(1)T (p,h)(0) − T (p,h)(0)
H̄(1))

+T (p,h)(0)
(H̄(1) + H̄(1)T (p,h)(0)

)|P(p,h)〉 (14-22)

Rearranging the above equation, it follows

〈Q(p,h)|T (p,h)(1) |P(p,h)〉 = 〈Q(p,h)|(H̄(1) + [H̄(1), T (p,h)(0)
])+ T (p,h)(0)

(H̄(1)

+H̄(1)T (p,h)(0)
)|P(p,h)〉 ∗ A(p,h)(−1)

(14-23)

where,

A(p,h) = 〈Q(p,h)|H̄(0)|Q(p,h)〉 − 〈P(p,h)|H̄(0)|P(p,h)〉
−〈P(p,h)|H(p,h)(0)

eff |P(p,h)〉 − 〈Q(p,h)|T (p,h)(0)
H̄(0)|P(p,h)〉 (14-24)

Ajitha and Pal proposed a perturbation independent set of amplitudes ζ such that
for every Q(p,h)T (p,h)P(p,h) sector amplitude, there is a corresponding P(p,h)ζ (p,h)Q(p,h)

amplitude. Defining the ζ vectors as

〈P(p,h)|ζ (p,h)|Q(p,h)〉 = 〈P(p,h)|(H̄(1) + [H̄(1), T (p,h)(0)
])+ T (p,h)(0)

(H̄(1)

+H̄(1)T (p,h)(0)
)|Q(p,h)〉 ∗ A(p,h)−1

; (14-25)

the derivative effective Hamiltonian equation can be written in terms of these ζ
vectors as

〈P(p,h)|H(p,h)(0)

eff |P(p,h)〉 = 〈P(p,h)|(H̄(1) + H̄(1)T (p,h)(0)
)|P(p,h)〉

〈Q(p,h)|ζ (p,h)|Q(p,h)〉〈Q(p,h)|H̄(0)|P(p,h)〉
(14-26)

This equation is a consequence of Dalgarno’s interchange theorem. We observe
that the derivative effective Hamiltonian equation is independent of the derivative
T-amplitudes of the (p, h)-sector of the Fock space.

14.3.3. The Constrained-Variation Method

In the lines of SRCC, the constrained-variational approach (CVA) for energy deriva-
tives was introduced in FSMRCC context by Szalay and was applicable for com-
plete model spaces (CMS). Later, Pal and co-workers independently formulated the
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CVA-FSMRCC for general incomplete model spaces (IMS) and showed that the
functional simplifies to the one proposed by Szalay if applied for CMS and quasi-
complete model space (QMS). The CVA-FSMRCC method of Pal an co-workers
provides response of a specific root of the multiple roots of FSMRCC. One has to
project a single desired state (root of effective Hamiltonian) for doing constrained
variation. In FSMRCC context, the energy of a specific state of the (p, h) FS sector is
given by

Eμ =
∑

ij

C̃(p,h)
μi (Heff)

(p,h)
ij C(p,h)

jμ (14-27)

We construct the Lagrangian to minimize the energy expression given above, with
the constraint that the MRCC equations (Eqs. 14-11 and 14-13) are satisfied for the
state μ.

� =
∑

ij

C̃(p,h)
μi (Heff)

(p,h)
ij C(p,h)

jμ +
p
∑

k=0

h
∑

l=0

{

P(k,l)Λ(k,l)P(k,l)P(k,l)[HΩ −ΩH(k,l)
eff

]

P(k,l)

+P(k,l)Λ(k,l)Q(k,l)Q(k,l)[HΩ −ΩH(k,l)
eff

]

P(k,l)}+ Eμ
[
∑

ij

C̃(p,h)
μi C(p,h)

jμ − 1
]

(14-28)

The Λs in the above equation are the undetermined Lagrange multipliers obtained
by applying stationarity condition on the Lagrangian � with respect to the cluster
amplitudes of the corresponding sectors. The stationarity condition on � with re-
spect to the Λ vectors yields the MRCC equations for the cluster amplitude. Obvi-
ously, the cluster-amplitudes are completely decoupled from the Λ vectors. The Λ
vectors follow the partial sector wise decoupling exactly in the reverse SEC, i.e.,
the Λ vectors of the highest sector are totally decoupled from the lowest ones.
The lowest sector Λ vectors are coupled with the Λs of all the higher sectors
through the inhomogeneous part of the linear equations. The eigenvectors and ef-
fective Hamiltonian can be obtained by applying stationarity condition on the �. In
case of CMS and IMS, since the effective Hamiltonian can be explicitly defined in
terms of the cluster amplitudes, the CVA method simplifies to the one proposed by
Szalay.

14.3.3.1. First Order Properties Using CVA-FSMRCC

For simplicity, we consider the ionization problem. In FSMRCC context, the model-
space configurations belong to (0,1) sector of the FS, with the unionized RHF
reference as vacuum. One can easily extend the algebra for general (p, h) valence
case. The configurations of the ionized states are given by
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|Ψ (0,1)
μ 〉 =

∑

i

Ciμ|Φ(0,1)
i 〉 (14-29)

The dynamical electron correlation effects are brought in through a universal wave
operator Ω .

Ω = {eT̃(0,1)} (14-30)

T̃ (0,1) = T (0,1) + T (0,0) (14-31)

The wave operatorΩ is parameterized such that the states generated by its action on
the reference function satisfy Bloch – Lindgren equation for effective Hamiltonian
given by Eq. (14-10). From the earlier definition (14-28), the Lagrangian can be
defined as

� =
∑

ij

C̃(0,1)
μi (Heff)

(0,1)
ij C(0,1)

jμ

+P(0,1)Λ(0,1)P(0,1)P(0,1)[HΩ −ΩH(0,1)
eff

]

P(0,1)

+P(0,1)Λ(0,1)Q(0,1)Q(0,1)[HΩ −ΩH(0,1)
eff

]

P(0,1)

+P(0,0)Λ(0,0)P(0,0)P(0,0)HΩP(0,0)

+P(0,0)Λ(0,0)Q(0,0)Q(0,0)HΩP(0,0)

−Eμ

⎛

⎝

∑

ij

C̃(0,1)
μi C(0,1)

jμ − 1

⎞

⎠ (14-32)

Being the CMS, the effective Hamiltonian has explicit expression in terms of the
cluster amplitudes due to which, the closed part of the Lagrangian vanishes and the
above equation reduces to

� =
∑

ij

C̃(0,1)
μi (Heff)

(0,1)
ij C(0,1)

jμ

+P(0,1)Λ(0,1)Q(0,1)Q(0,1)[HΩ −ΩH(0,1)
eff

]

P(0,1)

+P(0,0)Λ(0,0)Q(0,0)Q(0,0)HΩP(0,0)

−Eμ

⎛

⎝

∑

ij

C̃(0,1)
μi C(0,1)

jμ − 1

⎞

⎠ (14-33)

In presence of external field, the Lagrangian and the parameters Υ =
{Heff, C, C̃, E,Ω ,Λ} become perturbation dependent. These can be expanded in Tay-
lor series.
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Υ (g) = Υ (0) + gΥ (1) + 1

2!g
2Υ (2) + 1

3!g
3Υ (3) + . . . (14-34)

The Lagrangian defined in Eq. (14-33) can be differentiated with respect to the field
g to obtain the Lagrangians at every order. The zeroth order and the first order La-
grangians can therefore, be written as

�(0) =
(

C̃(0,1)(0)H(0,1)(0)
eff C(0,1)(0)

)

μμ

+P(0,1)Λ(0,1)(0)[H(0)Ω (0) −Ω (0)H(0,1)(0)
eff

]

P(0,1)

+P(0,0)Λ(0,0)(0)[H(0)Ω (0)]P(0,0)

−Eμ

⎛

⎝

∑

ij

C̃(0,1)(0)
μi C(0,1)(0)

jμ − 1

⎞

⎠ (14-35)

�(1) =
(

C̃(0,1)(1)H(0,1)(0)
eff C(0,1)(0)

)

μμ
+
(

C̃(0,1)(0)H(0,1)(1)
eff C(0,1)(0)

)

μμ

+
(

C̃(0,1)(0)H(0,1)
eff

(0)
C(0,1)(1)

)

μμ

+P(0,1)Λ(0,1)(1)[H(0)Ω (0) −Ω (0)H(0,1)(0)
eff

]

P(0,1)

+P(0,1)Λ(0,1)(0)[H(1)Ω (0) + H(0)Ω (1) −Ω (1)H(0,1)(0)
eff −Ω (0)H(0,1)(1)

eff

]

P(0,1)

+P(0,0)Λ(0,0)(1)H(0)Ω (0)P(0,0) + P(0,0)Λ(0,0)(0)H(1)Ω (0) + H(0)Ω (1)P(0,0)

−E(0)
μ

∑

ij

(

C̃(0,1)(0)
μi C(0,1)(1)

jμ + C̃(0,1)(1)
μi C(0,1)(0)

jμ

)

−E(1)
μ

⎛

⎝

∑

ij

C̃(0,1)(0)
μi C(0,1)(0)

jμ − 1

⎞

⎠ (14-36)

The Eqs. (14-35) and (14-36) give the energy and the first order energy derivative
for the state μ. Because of stationarity of Lagrangian with respect to Λ and Ω , the
above expressions are further simplified. The energy derivatives follow (2n+ 1) rule
with respect to the Ω amplitudes and (2n + 2) rule with respect to Λ amplitudes.
There is a (2n+ 1) rule for the eigenvectors C̃(0,1) and C(0,1) for evaluation of energy
derivatives. With these, the expressions for Lagrangians given in Eqs. (14-35) and
(14-36) simplify. We denote this simplified Lagrangian as �opt.

�(0)
opt =

(

C̃(0,1)(0)H(0,1)(0)
eff C(0,1)(0)

)

μμ
(14-37)
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�(1)
opt =

(

C̃(0,1)(0)H(0,1)(1)
effΩ (0) C(0,1)(0)

)

μμ

+P(0,1)Λ(0,1)(0)[H(1)Ω (0) −Ω (0)H(0,1)(1)
effΩ (0)

]

P(0,1)

+P(0,0)Λ(0,0)(0)H(1)Ω (0)P(0,0) (14-38)

The subscript Ω (0) indicates that the derivative effective Hamiltonian does not con-
tain any term formed from derivatives of the cluster amplitudes. The first order prop-
erties can thus be obtained simply with the knowledge of Ω and Λ amplitudes only.

14.3.3.2. Second Order Properties Using CVA-FSMRCC

Now, we differentiate the Lagrangian (Eq. 14-33) twice with respect to the external
field.

�(2) =
(

C̃(0,1)(2)H(0,1)(0)
eff C(0,1)(0)

)

μμ
+
(

C̃(0,1)(1)H(0,1)(1)
eff C(0,1)(0)

)

μμ

+2
(

C̃(0,1)(1)H(0,1)(0)
eff C(0,1)(1)

)

μμ
+
(

C̃(0,1)(0)H(0,1)(2)
eff C(0,1)(0)

)

μμ

+
(

C̃(0,1)(0)H(0,1)(1)
eff C(0,1)(1)

)

μμ
+
(

C̃(0,1)(0)H(0,1)
eff

(0)
C(0,1)(2)

)

μμ

+P(0,1)Λ(0,1)(2)[H(0)Ω (0) −Ω (0)H(0,1)(0)
eff

]

P(0,1)

+P(0,1)Λ(0,1)(1)[H(1)Ω (0) + H(0)Ω (1) −Ω (0)H(0,1)(1)
eff −Ω (1)H(0,1)(0)

eff

]

P(0,1)

+P(0,1)Λ(0,1)(0)[H(2)Ω (0) + H(1)Ω (1) + H(0)Ω (2)]P(0,1)

−P(0,1)Λ(0,1)(0)[Ω (0)H(0,1)(2)
eff +Ω (1)H(0,1)(1)

eff +Ω (2)H(0,1)(0)
eff

]

P(0,1)

+P(0,0)Λ(0,0)(2)[H(0)Ω (0)]P(0,0) + P(0,0)Λ(0,0)(1)[H(1)Ω (0) + H(0)Ω (1)]P(0,0)

+P(0,0)Λ(0,0)(0)[H(2)Ω (0) + H(1)Ω (1) + H(0)Ω (2)]P(0,0)

−E(0)
μ

∑

ij

(

C̃(0,1)(2)
μi C(0,1)(0)

jμ + 2C̃(0,1)(1)
μi C(0,1)(1)

jμ + C̃(0,1)(0)
μi C(0,1)(2)

jμ

)

−E(1)
μ

∑

ij

(

C̃(0,1)(1)
μi C(0,1)(0)

jμ + C̃(0,1)(0)
μi C(0,1)(1)

jμ

)

−E(2)
μ

∑

ij

(

C̃(0,1)(0)
μi C(0,1)(0)

jμ − 1
)

(14-39)

TheΛ(1) containing terms in the above expressions vanish as they are the products of
the Λ(1) with the derivative MRCC equations (Eqs. 14-15 and 14-16). Similarly, the
Λ(2) containing terms are the MRCC equations multiplied to the �(2) equations and
hence, vanish. Analogously, the C(2) and C̃(2) terms also vanish. With these cancella-
tions, the energy second derivative equation reduces to the form which contains only
undifferentiatedΛ vectors and up to first derivatives of cluster amplitudes and eigen-
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vectors. single-root nature of the CVA method, one has to obtain the Λ amplitudes
separately for every state unlike the non-variational response of FSMRCC structure.
However, the expensive evaluation of wave-function derivatives for each mode of
perturbation is avoided in CVA-FSMRCC. This feature becomes more prominent
while obtaining higher order properties like polarizability. Also, the single-root fea-
ture makes CVA more attractive for the cases like curve-crossing studies of excited
states, etc. than the non-variational response method.

14.4. IMPLEMENTATIONS AND RESULTS AND DISCUSSIONS

In the initial implementation of the FSMRCC response for the first order properties
Ajitha et al. used the formulation which involved explicit differentiation method as
discussed in section III A. of the cluster amplitudes. Using this approach dipole
moments of the OH, OOH, HCOO, CH , SiH and NO radicals [58–60]. However,
this is not the efficient way of the calculation of molecular properties in particular
higher order properties. The Z-vector method described in Section 14.3.2 was quite
complicated in structure and has not been implemented yet for practical applications.
On the other hand, Pal and co-workers have implemented most efficient approach in
this article. CVA-FSMRCCSD has been implemented for the first and second order
properties of the one valence radicals as well and N electron excited states [64–67].
Bag et al. have also implemented the third order property i.e. first hyperpolarizabil-
ity for the one valence problem [69]. These implementations are presented in the
references [64–67]. Taking the advantage of SEC, first the (0, 0) sector amplitudes
are calculated. Before solving for the valence sector amplitudes, the (HeT(0,0)

)c, in-
termediates are calculated and stored these are denoted as H̄ . The closed part of
H̄, i.e. H̄cl is the ground state energy. The open parts of H̄ can be further classified
into one body, two body, three body parts and so on. Under the singles and doubles
(SD) approximation, only up to three body parts of H̄ contribute to the T (0,1), T (1,0)

and T (1,1) as well as to the Λ(0,1), Λ(1,0) and Λ(1,1) equations. Because of the large
dimensions, the three body parts of the H̄ cannot be stored in the hard disk. These
are, therefore, evaluated in the code as and when required. The one and two-body
parts of H̄ are calculated only once and are stored. The equations for Λ amplitudes
are linear simultaneous equations. However, unlike the T amplitudes Λ amplitudes
follow reverse decoupling. Thus, first equations for the Λ amplitudes of the highest
sector are solved, followed by the solution of the lower sectors of the Λ. The Jacobi
iterative procedure has been used for the obtaining Λ amplitudes and the cluster
amplitudes. The first derivatives of cluster amplitudes are obtained in the similar
way using differentiated FSMRCC equations for cluster amplitude derivatives and
derivative effective Hamiltonian. Taking the advantage of SEC, the derivative H̄ are
obtained and stored in the similar way. The terms arising from ∂ΛΩHeff

∂Ω
in which,

there is Λ−Ω contraction, have been merged together, since, the differentiation of
Ω contained in Heff is structurally identical for these terms. The Λ − Ω contrac-
tions for these terms is programmed and stored in an array of dimensions of the
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effective Hamiltonian, for computational simplicity. To validate the implementation
of Lagrange based code for the (1,1) sector Pal and co-workers [66] implemented
the non-relaxed finite field calculations for the first and second order properties.
Each Fock space sector starting from (0,0) each sector results were checked with
the analytic code till the desired accuracy.

14.4.1. Ionized and Electron Attached States

As mentioned earlier the lagrangian based constrained response approach was im-
plemented for the ionized, electron attached and excited state first and second order
properties [64–67]. For the one valence problem, the OH, OOH, HCOO, NO, NO2,
CH, and SiH radicals were studied. If the RHF of the closed shell anion is considered
as a vacuum, the model space configuration of the radical belongs to the (0,1)/(1,0)
sector of the Fock space. For the Hydroxy radical, results of the CVA FSMRCC
method were compared with the EOMCC non-relaxed as well as Full CI results
available. CC-pVDZ basis used was used for the calculation. The RHF of the of
hydroxide was chosen as a vacuum and removal of the electron from HOO leads
to degenerate doublet 2Π state of the radical. The dipole moment result (0.634 au)
was in good agreement with the FCI (0.663 au) as well as EOMCC (0.639 au) [64].
However, for polarizabilities no other results we available for the same. Manohar
et al. compared analytic results with the non-relaxed finite field calculations. Ana-
lytic polarizability diagonal value along the inter-nuclear axis using CVA FSMRCC
method yields 6.61 au which is in good agreement with the finite field results 6.0 au.
Thus, it can be concluded that the effect of relaxation is marginal. The model space
configurations of a radical belonging to this class corresponds to the (1,0) sector
of the Fock space with the RHF of the corresponding cation as a vacuum. Two
systems chosen in this category are CH and SiH radicals. For the dipole moment
and polarizabilities of the CH and SiH, Sadlej basis optimized for the properties was
used. For both the radicals CVAFSMRCC results were compared with finite field as
well as UGA-CCSD results[70]. The dipole moment for CH radical was found to
be 0.543 au using analytic FSMRCC, where as finite field FSMRCC was 0.520 au
the UGA-CCSD gives 0.535 au. For SiH dipole moment was very small. The value
using analytic FSMRCC was 0.063 au and UGA-CCSD (0.037 au) [70].

14.4.2. Excited State Dipole Moment and Polarizabilities

The excited state properties of CH+, H2O and Ozone have been computed using
a reference space of one hole one particle excited determinants with respect to the
restricted Hartree Fock of the ground state of the molecules as vacuum. The code
for (1,1) FS sector was validated using non-relaxed finite field calculations for CH+
molecule [67]. Basis set convergence of the properties was also studied for the CH+
molecule. It was observed that both singlet and triplet state dipole moments increase
from DZ to TZ basis, DZP to TZP basis and so on, but the trend is just opposite
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for polarizabilities. It was observed that singlet dipole moments decrease with the
addition of polarization functions, where as triplet dipole moments increase with
the addition of polarization functions. However, polarizabilities of both singlet and
triplet states increase with the addition of polarization functions. The dipole mo-
ments and polarizabilities of both the states virtually converged after the addition
of a second polarization function. The adiabatic excited state dipole moment and
polarizabilities for the water and ozone were also studied by the method [66].
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Abstract: The single-reference approaches such as many-body perturbation expansions and coupled-
cluster methods, have been very successful in describing many-particle systems. Their ap-
plicability is, however, limited to the cases when the degree of quasi-degeneracy is rather
weak. Unfortunately, their generalization to multi-reference cases, that would enable us to
deal efficiently with quasi-degenerate and open-shell systems turned out nontrivial. The
difficulties that have been encountered are of both theoretical and numerical nature. In
spite of tremendous progress that has been made the problem still remains one of the main
challenges for theoretical physics and quantum chemistry. In this paper we present one of
the developments that, in our opinion, is very promising. It concerns one of the two basic
multi-reference coupled-cluster formulations, namely, the so-called Fock-space coupled-
cluster method. We would like to show that by employing the intermediate Hamiltonian
technique it is possible to overcome many of the problems the standard effective Hamilto-
nian formulations have to face. The approach is presented in a broader context, relations
with other methods of similar type are discussed and some numerical examples showing
the effectiveness of the method are presented.

Keywords: Multireference coupled cluster, Fock space, Intermediate Hamiltonian

15.1. INTRODUCTION

The single-reference (SR) methods for describing electron correlation effects are
now being used in routine calculations [1]. Among them the coupled-cluster (CC)
method [2–4] has proved to be the most powerful tool for the treatment of electron
correlation especially when high accuracy results are required [5–7]. However, the
applicability of the single-reference approaches is limited to the cases when a single
determinant gives reliable zeroth-order approximation to the wave function. In or-
der to be able to describe quasi-degenerate and open-shell systems a generalization
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of the SR methods to a multi-reference (MR) case is required. Only for very few
methods this generalization is straightforward and easy, like, for example, for the
configuration interaction (CI) method. The MR generalization of CI retains formal
and computational simplicity of its SR counterpart and is one of very few MR meth-
ods that are routinely used in calculations. The reason is that both dynamic and
nondynamic electron correlation effects are treated in the same manner in the CI
wave function, i.e. via linear expansion. For approaches that use other expansion
than the linear one for describing dynamic correlation the generalization turned out
non-trivial. That concerns, first of all, many-body perturbation [8, 9] and CC expan-
sions [10–14]. The necessity of employing two different ways for determination of
both types of electron correlation calls for two-step procedures and such a procedure
is provided by the effective Hamiltonian formalism [15–19]. Here the first step is
the determination of the wave operator that describes dynamic correlation effects
while the second step gives non-dynamic correlation contributions to the energies
via diagonalization of the effective Hamiltonian. Unfortunately, within the effective
Hamiltonian formulation eigenvalue problems for several states are coupled and that
requires to consider them simultaneously. That makes schemes based on the effective
Hamiltonian approach numerically demanding.

It is essential for the CC methods to have excitations described thought second-
quantized operators and for that the Fermi vacuum must be chosen. While in the
SR-case the natural selection is the reference determinant, there is no such an obvious
choice in the MR case. Two different strategies in selecting Fermi vacuum resulted
in two basic versions of MR-CC formulations. The first one is the so-called Fock-
space (FS) CC method that follows the strategy of having one Fermi vacuum [10–
12], the other defines different Fermi vacua for excitations from different reference
determinants and is known as the Hilbert-space CC method [13, 14]. The FS-CC
approach seems well suited for description of open shell systems and calculation of
excitation energies and is the main focus of our paper.

Besides of the difficulties in formulating MR-CC approaches described above,
the MR-CC methods have faced many problems in their practical applications. The
effectiveness of iterative procedures for solving equations for cluster amplitudes de-
pends much on clear separation of dynamic and non-dynamic correlation effects
[20–22]. Cluster operators that generate contributions from the orthogonal space
while acting on the reference space should be, in principle, responsible for descrip-
tion of the dynamic part of correlation. Thus wave functions of all states described by
the effective Hamiltonian should be dominated by the reference space contribution
and that can be difficult to satisfy in many practical situations. If the requirement
is not satisfied then we have to deal with the problem of large amplitudes that can
hurt convergence of iterative schemes employed. It is known that the CC expan-
sion can handle even a large contribution of non-dynamic correlation. Examples are
given by the SR-CC schemes that are capable of providing quite good results even
when the degree of quasi-degeneracy is not so low [23]. However, iterative schemes,
especially those based on Jacobi-type methods seem less effective in dealing with
multi-reference situations. The reason is that these situations are more complex than
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the SR ones where we have only one state to describe. The MR-CC applications are
frequently plagued with the so-called intruder state problem [20, 21] or problem of
multiple solutions [22].

In the following we show how the intermediate Hamiltonian (IH) [19, 24] refor-
mulation of the Fock-space CC method eliminates many drawbacks of the standard
effective Hamiltonian FS-CC formulation. The reason for concentrating on the FS-
CC approach is that some specific features of the method allow us to obtain very
simple and at the same time numerically efficient scheme for solving the FS-CC
equations [25, 26]. Over the last several years different variants of the FS-CC method
have been reformulated using the intermediated Hamiltonian technique. The one des-
ignated for description of quasi-degenerate ground states has been implemented and
applied to the beryllium atom [27]. The Be atom is a well-known example of the fail-
ure of the traditionally formulated FS-CC method caused by intruder states [20, 21].
Only with the help of the Newton–Raphson iterative method the equations have been
finally solved after many years of unsuccessful attempts [28]. The Newton–Raphson
method is, however, numerically demanding thus its applicability is very limited.
With our intermediate Hamiltonian version of FS-CC method we are able to obtain
not only the so-called standard FS-CC solutions for Be but also alternative ones
without any problem. The other variant of the IH FS-CC method that has been im-
plemented is the one that is convenient for direct calculations of vertical excitation
energies from the closed-shell ground state [29]. Two levels of approximation are
now available, the basic one that includes one- and two-body components in the
cluster operator (CCSD) [26, 30] and the one that also contains the three-body part
(CCSDT) [31].

The next section is devoted to multi-reference approaches. Some aspects of the
situation when single reference determinant must be replaced with the combination
of several reference determinants to obtain a reliable zeroth-order approximation
to the wave function are discussed. That leads to the concept of effective Hamil-
tonian. The subsequent section describes basics of the standard effective Hamil-
tonian FS-CC method in its version designed for excitation energy calculations.
Then the intermediate Hamiltonian scheme is introduced through similarity trans-
formations of the Hamiltonian. Besides the IH FS-CC version used by us so far
[26, 27, 30] also another possible variant of the method is presented. Next we present
an alternative route to the IH FS-CC formulation that perhaps is not so appealing
as that using similarity transformations but might be very instructive to show the
link between connected form of the FS-CC equations and the IH FS-CC matrix.
The staring point is the standard FS-CC equations expressed through connected
diagrams. We show a method of transforming connected FS-CC equations to the
so-called canonical form. The canonical form allows us to reduce the problem of
solving the FS-CC equations to the eigenvalue problem of a certain operator that can
be identified as the intermediate Hamiltonian [32]. Finally some numerical exam-
ples are presented demonstrating numerical efficiency of the IH technique as well
as the performance of the FS-CC method on both CCSD and CCSDT levels of
approximation.
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15.2. MULTI-REFERENCE APPROACHES

Single-reference approaches can be successfully applied when the wave function is
dominated by a single determinant usually the Hartree–Fock one. If this is not the
case then we have to use several determinants (Φi, i = 1, . . . , m) to construct a
reliable zeroth-order approximation to the wave function. The single reference de-
terminant Φ must be replaced with the linear combination of several determinants

Ψ̃ =
m
∑

i=1

ciΦi. (15-1)

Usually the combination contains not only determinants that are important to cre-
ate the good zeroth-order description but also those necessary to have the so-called
complete active space (CAS). Orbitals that are used to construct CAS function are
partitioned into two categories, The first one consists of those which are occupied in
all Φi while the second one contains the so-called active orbitals that are occupied
in some but not all of them. To have CAS all possible occupancies of active orbitals
must be allowed in the set of Φi. Having Ψ̃ one can try to generate the exact wave
function Ψ in a way similar to that in the single-reference case, i.e., by employing
the wave operator Ω

Ψ = ΩΨ̃ . (15-2)

The difference here is that the reference function Ψ̃ is not completely determined
since the linear combination of Φi contains unknown coefficients ci. One can con-
sider several options. The first one is to obtain the ci coefficients, for example, from
diagonalization of the matrix representation of the Hamiltonian H within the space
spanned by reference determinantsΦi. That would fix Ψ̃ and make the problem more
similar to that in the single-reference case. However, a closer look at excitations
that must be included in the wave operator Ω to reproduce the part of the exact
wave function Ψ that is orthogonal to the reference component Ψ̃ shows that the
situation is not so simple. Since active orbitals are occupied in some but unoccupied
in other Φi determinants then excitation operators can produce linearly dependent
contributions and this linear dependence must then be eliminated. Moreover, also
the so-called internal excitations that lead to other combinations of reference deter-
minants must be admitted . That can cause problems when we deal with degenerate
or nearly degenerate situations. In spite of these difficulties some approaches based
on this scheme have been developed like, for example, the CC method by Banerjee
and Simons [33], internally contracted CI methods [34], perturbative approaches
[35], in particular the CAS PT2 method [36]. It follows that it would be conve-
nient to exclude internal excitations by leaving the ci coefficients in Eq. (15-1) to
be determined. In this way the full similarity to the single-reference case is lost but
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only external excitations must be considered. If so then the wave function can be
expressed as

Ψ =
m
∑

i=1

ciΦi +
m
∑

i=1

XciΦi = (1+ X)
m
∑

i=1

ciΦi, (15-3)

where the X operator generates external excitations only so they must involve at
least one inactive unoccupied or core (occupied in all determinants Φi) spin orbital.
Inserting this form of Ψ to the Schrödinger equation

H(1+ X)
m
∑

i=1

ciΦi = E(1+ X)
m
∑

i=1

ciΦi, (15-4)

and projecting on the M0 space spanned by the reference determinants Φi and on its
orthogonal complement M⊥ we have

P0H(1+ X)P0

m
∑

i=1

ciΦi = EP0

m
∑

i=1

ciΦi, (15-5)

QH(1+ X)P0

m
∑

i=1

ciΦi = EQXP0

m
∑

i=1

ciΦi, (15-6)

where P0 and Q are projection operators on M0 and M⊥, respectively. The quantities
to determine are X ≡ QXP0, ci and the energy E. There are several ways one can
proceed. First, one may find attractive to eliminate X from Eq. (15-5) by determining
it from Eq. (15-6). From Eq. (15-6) we have

QXP0Ψ̃ = Q[P0 + Q(E − H)Q]−1QHP0Ψ̃ . (15-7)

Now, inserting Eqn.(15-7) into Eqn.(15-5) we obtain

P0{H + HQ[P0 + Q(E − H)Q]−1QH}P0Ψ̃ = EΨ̃ . (15-8)

This is a pseudo-eigenvalue problem since the operator

P0{H + HQ[P0 + Q(E − H)Q]−1QH}P0, (15-9)

depends on one of its eigenvalues. The action of the operator is restricted to the
reference space M0. This pseudo-eigenvalue equation must be solved iteratively be-
cause of the energy dependence. Starting with some initial guess for the energy the
operator (15-9) can be diagonalized providing a set of eigenvalues from which one
must be selected for the subsequent iteration. The procedure is continued till conver-
gence. In the final set of eigenvalues only one of them represents the solution of the
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Schrödinger equation the remaining ones are a by-product of the procedure. It is seen
that the scheme involves the inversion of matrix representation of Q(E − H)Q thus
may not be found numerically very attractive here but it has been frequently used in
some specific situations. The method has been proposed by Löwdin and it is known
as the partitioning technique [37]. The partitioning technique can provide many so-
lutions of the Schrödinger equation but for each of them a separate calculation is
required.

The partitioning technique is state specific, i.e. the calculation is performed for
one selected state at a time. Another technique that is quite similar in this respect is
the so-called Brillouin–Wigner-type approach [38] in which instead of inverting the
Q(E−H)Q matrix the idea of solving eigenvalue dependent Eq. (15-6) in an iterative
manner is used. Indeed, from Eq. (15-6) we have

[QHP0 + Q(H − E)QXP0]Ψ̃ = 0, (15-10)

that together with Eq. (15-5) form a set of equations suitable for an iterative scheme.
When the Hamiltonian is partitioning into the zeroth-order part H0 and the perturba-
tion V

H = H0 + V , (15-11)

and assuming that determinants spanning the space are eigenvectors of H0 we have

QXP0 = Q

E − H0
V(1+ X)P0. (15-12)

Now the coupled set of Eqs. (15-12) and (15-5) can be used for solving for X and E.
X obtained from Eq. (15-12) is energy-dependent and so is the P0H(1+ X)P0 oper-
ator in Eq. (15-5). Diagonalization of the latter again provides only one meaningful
eigenvalue. This approach is used in the so-called multi-reference Brillouin–Wigner
coupled cluster method [39]. There are several characteristic features of this scheme.
First, the number of unknowns in X exceeds the number of parameters required for
determination of only one energy. This is associated with the above mentioned prob-
lem of linear dependence of excitation operators which is manifested here by the fact
that the same orthogonal space (M⊥) determinant can be reached by excitations from
each reference functionΦi. In fact, the number of parameters in X would be sufficient
for determining wave functions for m = dim M0 states but here, because of the state-
dependence of X, only single-state description is obtained. On the other hand it can
be seen that the set of equations (15-12) is decoupled into subsets corresponding to
different reference determinantsΦi so in each iteration the QXPi components, where
Pi is the projection on Φi, can be calculated separately. All of them are coupled,
however, by Eq. (15-5) that provides updated energy for the next iterative step. It
should be noted that this energy dependence usually leads to size-inextensivity of
approximate schemes originating from this approach.
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It is seen from the above that the number of parameters in X is sufficient to de-
scribe several states at a time or more precisely m = dim M0 states. Hence, let us
consider such a set of m states with the wave functions Ψj (j = 1, . . . , m) dominated
by the reference space determinants. We have

HΨj = EjΨj. (15-13)

Introducing the model functions

Ψ̃j =
m
∑

i=1

cj
iΦi, (15-14)

and imposing the intermediate normalization condition

〈Ψj|Ψ̃j〉 = 〈Ψ̃j|Ψ̃j〉 = 1, (15-15)

we have

Ψj = (1+ X)Ψ̃j, (j = 1, . . . , m), (15-16)

and

H(1+ X)Ψ̃j = Ej(1+ X)Ψ̃j, (j = 1, . . . , m). (15-17)

Projection of the equation on M0 and M⊥ gives

P0H(1+ X)P0Ψ̃j = EjP0Ψ̃j, (15-18)

Q[H(1+ X)− XEj]P0Ψ̃j = 0. (15-19)

Now, unlike the previous case, the P0H(1 + X)P0 that acts within the M0 space
provides m exact eigenvalues of H. The operator is called the effective Hamiltonian

Heff = P0H(1+ X)P0. (15-20)

and its eigenvectors are Ψ̃j. The effective Hamiltonian allows us to remove the en-
ergy dependence from the equations. Assuming that Ψ̃j are linearly independent
Eq. (15-19) can be written as

Q[H(1+ X)− XP0H(1+ X)]P0 = 0. (15-21)

Eq. (15-21) is quadratic in X and can be solved for X iteratively. Having X, the
effective Hamiltonian (15-20) can be constructed and its eigenvalues obtained.
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The effective Hamiltonian formalism gives us opportunity to deal efficiently with
the linear-dependence problem that appears when the orthogonal space component
has to be generated by excitation operator from the multi-determinantal reference
function. The obvious disadvantage of the approach is the necessity of solving the
eigenvalue problem of H for several states at a time which makes calculations very
expensive. Moreover, for the success of methods based on the effective Hamiltonian
formulation it is important to have components from M0 significant in all Ψj thus
X small and easy to find in iterative procedures. That can be difficult to achieve in
practical applications and can cause convergence problems. Usually along with this
the problem of so-called intruder states appears meaning that there is an additional
state that also tends to be described by the method. This is because Eq. (15-21) can
have many different solutions for X. The one that leads to the desired subset {Ej}mj=1
of all eigenvalues of H is only one of them.

In the following we discuss multi-reference CC approaches that employ the effec-
tive Hamiltonian technique. The focus is on the Fock-space CC method. We show
how serious disadvantages of the effective Hamiltonian formulation can be overcome
by reformulating the method using the concept of intermediate Hamiltonian.

15.3. MULTI-REFERENCE FOCK-SPACE COUPLED-CLUSTER
METHOD

For the CC approaches it is essential to express excitation operators in the second-
quantized form and for that the choice of Fermi vacuum must be made. In the single-
reference case the Hartree–Fock determinant is the obvious choice for the vacuum.
In multi-reference situations there is no such a natural selection and basically two
strategies can be followed. The first one is to define one Fermi vacuum for excitations
from all Φi. This is historically the older concept that can be seen quite sensible
when atomic and nuclear systems are considered. For them the core determinant
built from spin orbitals that are occupied in all Φi seems natural. On the other hand
when looking at Eq. (15-21) another possibility can be seen. That is when different
Fermi vacua are defined for excitations originating from different Φi. That can make
the MR-CC equations corresponding to each reference determinant quite similar to
that in the SR-case. The main deference is caused by the second term in (15-21),
the so-called renormalization term, that couples equations corresponding to different
Φi. Both strategies have their advantages and drawbacks. For example, the common
vacuum leads to a universal X operator meaning that again there are many different
many-body excitation operators that, while acting on a particular reference determi-
nant, lead to the same excited function and introduction of additional equations is
necessary to solve the problem. Also the second choice has its disadvantages. For
example, excitation operators of the same excitation-rank generate different spaces
while acting on different Φi which in many cases unable us to obtain wave functions
of proper spin-symmetry [40].
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In this paper the focus is on the first kind of MR-CC developments, i.e. those
based on the common Fermi vacuum. This general idea does not assume any specific
choice for the vacuum and various options can be considered. The most obvious is to
use the core determinant. Another possibility for the Fermi vacuum has been consid-
ered by Lindgren [12, 41] and then, more extensively, by Haque and Mukherjee, and
others [29, 42, 43]. The aim was to obtain a method suitable for calculation of exci-
tation energies from the closed-shell ground state. Thus, like in the single-reference
ground state calculation, the Hartree–Fock determinant Φ for the neutral system is
used for the vacuum but both hole and particle levels are additionally partitioned
into two categories of active and inactive ones (Figure 15-1). The reference space
determinants are now obtained by creating k particles and l holes on active orbital
levels in all possible ways. The reference space spanned by such determinants is usu-
ally denoted by M(k,l)

0 . For excited states dominated by singly excited determinants
the reference space determinants should be all those having one active hole and one
active particle and that was considered as a primary application of the approach
[12, 41].

Let us assume that we are interested in the above mentioned (1, 1) case. To gen-
erate reference determinants spanning the M(1,1)

0 space we have to act with a pair
of particle-hole creation operators on the Hartree–Fock determinant that create one
active hole and one active particle. Excitations giving outer space contributions are

active
orbital
levels

inactive particles

active particles

inactive holes

active holes

Figure 15-1. Classification of the orbital levels in the Fock-space coupled-cluster approaches designated
for excitation energy calculations
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defined as second-quantized operators in the normal-ordered form with respect to
the Fermi vacuum. They can contain at most two active particle-hole annihilation
operators. This is because they can annihilate only one active hole and one active
particle that are used to create the reference functions. We can have three types of
excitation operators: (i) having no particle-hole annihilation operators, (ii) having
one such an operator and here two cases can be considered, annihilation of active
particle or of active hole, (iii) having a pair of annihilation operators, one annihilating
active particle and another one annihilating active hole. The particle-hole creation
operators generate excited states. It is convenient to use graphical representation for
second-quantized normal-ordered excitation operators. Their diagrams can be found
in Figure 15-2. For details of diagrammatic techniques we refer, for example, to Ref.
[44]. Each diagram has a vertex that is associated with the matrix element of a given
operator, oriented lines represent annihilation and creation operators defined with re-
spect to the physical vacuum. Outgoing and incoming lines are used for creation and
annihilation operators, respectively. Up-going lines are of particle character while
down-going ones are hole lines. Particle-hole creation operators are represented by
oriented lines above the vertex while lines below the vertex are those corresponding
to particle-hole annihilation operators. It follows that our excitation operators can
have at most two lines at the bottom and they all must be active which is marked by
double arrows. The excitations are particle-conserving operators so the number of
incoming lines equals the number of outgoing lines. Particle-hole creation operators
(above the vertex) are responsible for generating outer space functions so if their
number is equal to the number of particle-hole annihilation operators they cannot be
exclusively active. Up to two-body contributions to excitation operators are depicted
in Figure 15-2 and they are partitioned according to the categories discussed above.
They are denoted by S̄(k,l) where k and l correspond to the number of active particle
annihilation and active hole annihilation lines in the diagram, respectively. Also a
subscript is sometimes added to denote the body-rank of the operator. One can notice
that the one-body part that contains only particle-hole annihilation operators is miss-
ing in S̄(1,1). Such a contribution should be included since the excitation leads to the
Hartree–Fock determinant that does not belong to the reference functions. However,
it can be proved that such an operator is not necessary for the CC excitation energy
calculation in spite of the fact that it can be required for obtaining the wave function
of excited state. Thus we exclude the Hartree–Fock determinant from the orthogonal
space determinants and address the problem later on.

Having the excitation operators defined one can try to use them to construct a
coupled-cluster-type of expansion. The usual way is to use them in the exponent

exp (S̄)P(1,1)
0 , S̄ = S̄(0,0) + S̄(1,0) + S̄(0,1) + S̄(1,1), (15-22)

where P(1,1)
0 is the projection operator on M(1,1)

0 . However, the structure of the expo-
nential expansion becomes very complicated because second-quantized S̄ operators
can be contracted with other S̄ operators in the expansion. The normal-ordered form
of exp (S̄)P(1,1)

0 can be made simpler when the S̄ operators are redefine to obtain
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S̄1
(0,0) S̄2

(0,0)

S̄1
(1,0) S̄2

(1,0)

S̄1
(0,1) S̄2

(0,1)

S̄2
(1,1)

Figure 15-2. Graphical representation of cluster amplitudes S̄. Diagrams are partitioned into categories
according to the number of active lines at the bottom for which double arrow is used . The superscript
(m, n) stands for the number of the active particle lines and the number of the active hole lines, respectively.
The subscript is used to indicate the particle-rank of the operator. Thick horizontal lines are used for matrix
elements of S̄

{exp (S̄)}P(1,1)
0 , (15-23)

where { } stands for the normal-ordered form and the new S̄ operators are defined
through connected structures obtained after applying Wick’s theorem in Eq. (15-22).
The normal-ordered form of the expansion has been proposed by Offermann et al.
[11], and by Lindgren [12]. Because of the normal-ordering contractions between S̄
operators are no longer possible in the expansion. A disadvantage of this form is that
the inverse operator of {exp (S̄)} is not easy to find. Such is required when one would
like to perform similarity transformation of the Hamiltonian. This difficulty can be,
however, overcome by determining the transformed Hamiltonian directly as it is done
in the similarity transformed equation of motion (STEOM) method [45]. Expansion
(15-23) allows us, however, for a partial transformation of the Hamiltonian in the
Fock-space. Indeed, we can write

{exp (S̄)}P(1,1)
0 = exp (S̄(0,0)){exp (S̄(1,0) + S̄(0,1) + S̄(1,1))}P(1,1)

0 , (15-24)
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since the S̄(0,0) operator contains only particle-hole creation operators. For exp (S̄(0,0))
the inverse is, of course, exp (−S̄(0,0)). The S̄(0,0) part of S̄ is similar to the cluster
operator T used in the single-reference CC approach. Within the single-reference CC
scheme similarity transformation of the Hamiltonian using exp (T) is very convenient
to justify the elimination of disconnected contributions to the CC equations (due to
Hausdorff formula) and to prove size-extensivity of the method.

It is easy to notice that in each S̄(k,l) subgroup of S̄ there is an operator that,
while acting on a given Φi, gives the same excited determinant. These are, for ex-
ample, S̄(0,0)

1 , S̄(1,0)
2 , and S̄(0,1)

2 shown in Figure 15-2. The number of the effective
Hamiltonian equations (15-21) that is the number of reference functions times the
dimension of the orthogonal space is not sufficiently large to determine all them.
The problem can be solved when the many-body structure of terms contributing to
Eq. (15-21) is analyzed.

Since S̄(0,0) is specific let us introduce more convenient notation for the cluster
operators

T = S̄(0,0), S = S̄− T , (15-25)

thus the expansion reads now

exp (T){exp (S)}P(1,1)
0 . (15-26)

By inserting (15-26) into the effective Hamiltonian equations (15-21), multiplying
them by exp (−T) from the left and applying Wick’s theorem we can obtain the
following form of the equations as shown by Lindgren [12]

Q(1,1){[H̄{exp (S)} − {exp (S)}(H̄{exp (S)})cl]conn{exp (S)}}P(1,1) = 0, (15-27)

where

H̄ = exp (−T)H exp (T), (15-28)

and ( )cl and ( )conn stand for the closed and connected part of the resulting opera-
tors (diagrams), respectively. The closed part must have the number of particle-hole
annihilation operators equal to the number of particle-hole creation operators and
all of them must carry indices of active spin orbitals. For diagrams that means that
the number of lines at the bottom of the diagram must be equal to the number of
lines at the top of the diagram and all of them must be active. Operators or dia-
grams which are not closed are called open and will be denoted by ( )op. Connected
contribution to the normal-ordered product of second-quantized operators must be
such that each operator has at least one common summation index with one of the
others. In diagrammatic language that means that all vertices are connected via or-
bital or interaction lines.
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Equation (15-27) represents a product of the connected operator and {exp (S)}. It
is easy to see that the closed part of the connected operator is equal to zero, so finally
the so-called is linked diagram theorem can be shown for the method, where linked
means that there are no contributions to the equation having disconnected closed
parts. Equation (15-27) is satisfied if the connected operator, that is open, is equal to
zero. The operator can be partitioned into several parts according to the number of
active particle and the number of active hole annihilation operators. We require each
part to be equal to zero

(H̄)(0,0)
op = 0, (15-29)

[H̄{exp (S(1,0))} − {exp (S(1,0))− 1}(H̄{exp (S(1,0)))cl]
(1,0)
op,conn = 0, (15-30)

[H̄{exp (S(0,1))} − {exp (S(0,1))− 1}(H̄{exp (S(0,1)))cl]
(0,1)
op,conn = 0, (15-31)

[H̄{exp (S(1,0) + S(0,1) + S(1,1))} − {exp (S(1,0) + S(0,1) + S(1,1))− 1}
×(H̄{exp (S(1,0) + S(0,1) + S(1,1)))cl}](1,1)

op,conn = 0, (15-32)

where the superscript associated with each equation has the same meaning as for the
S̄ operators shown in Figure 15-2. The requirement provides the additional equations
that allow us to determine all cluster amplitudes. The effective Hamiltonian (15-20)
can be expressed in a similar manner

h(0,0)
eff = (H̄)(0,0)

cl , (15-33)

h(1,0)
eff = [H̄{exp (S(1,0))}](1,0)

cl,conn, (15-34)

h(0,1)
eff = [H̄{exp (S(0,1))}](0,1)

cl,conn, (15-35)

h(1,1)
eff = [H̄{exp (S(1,0) + S(0,1) + S(1,1))}](1,1)

cl,conn, (15-36)

where we have only closed parts contributing. We have all these four many-body
components in the effective Hamiltonian for the (1,1) case. It is seen from the above
that a hierarchical way of solving the S equations can be established. The hierarchy
starts with Eq. (15-29) that contains only T and can be solved for T . Then, using
T already determined in the first step, Eqs. (15-30) and (15-31) can be separately
solved for S(1,0) and S(0,1), respectively. Finally, having T , S(1,0) and S(0,1) obtained
in the previous steps, S(1,1) can be calculated from Eq. (15-32). This is the so-called
valence universal strategy of solving the CC equations proposed by Mukherjee [46].
A closer look at the additional equations required by the strategy for the (1, 1)
problem shows that these contain a significant physical information about the sys-
tem. Eq. (15-29) together with Eq. (15-33) constitute the standard single-reference
CC equations for the neutral system. Then, having the ground state correlation effects
determined, a systems with one extra electron is considered. By solving Eq. (15-30)
for S(1,0) and diagonalizing h(1,0)

eff electron affinities are obtained due to neglecting

(H̄)(0,0)
cl . Usually H̄N = H̄ − (H̄)(0,0)

cl is used instead of H̄ to obtain excitation
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energies from the ground state directly. Similarly, ionization energies are given when
Eq. (15-31) is solved for S(0,1) and used for constructing h(0,1)

eff . Finally, knowing T ,
S(1,0), and S(0,1) Eq. (15-32) can be solved for S(1,1). Excitation energies are obtained
as eigenvalues of the effective Hamiltonian

H(1,1)
eff = P(1,1)

(

h(1,0)
eff + h(0,1)

eff + h(1,1)
eff

)

P(1,1)
0 . (15-37)

The above procedure is an example of the valence-universal strategy for solving the
FS-CC equations. For the problem which requires the (k, l) reference space valence-
universal strategy assumes performing a sequence of calculations. The sequence
contains all problems with (m, n) reference spaces in order of growing number of
quasi-particles (defined as m + n) with m ≤ k and n ≤ l. In each step only S(m,n)

cluster operators have to be determined, the remaining operators that enter the equa-
tions are known from lower quasi-particle problems. The hierarchy of problems that
must be solved to reach the final one involves calculations for systems with different
number of electrons and for this reason the approach is called the Fock-space CC
method. For some specific problems like (k, 0) or (0, l) the hierarchy really contains
different sectors of the Fock-space but for the more general choices different (m, n)
spaces can correspond to problems with the same number of electrons. For example,
the (0, 0) and (1, 1) sectors describe a system with the same number of electrons and
here we would like to return to the problem of the so-called deexcitation operator that
has been omitted in S̄(1,1). The operator generates excitations to the Hartree–Fock
determinant (M(0,0)

0 space) while acting on M(1,1)
0 . Definitely, the operator is neces-

sary if the cluster expansion is assumed to reproduce the exact wave function since
excited states can have contribution from the Hartree–Fock determinant. However,
for the energy calculation the deexcitation operator is not required. To see this let us
go back to the effective Hamiltonian equations (15-20) and (15-21). These equations
possess many solutions and, in principle, are capable of describing all states that have
non-zero overlap with the reference space functions. Thus in the valence-universal
strategy involving (0, 0) and (1, 1) problems the same state can be described twice.
That is avoided if the transformed Hamiltonian H̄ Eq. (15-28) is used in the (1, 1)
calculation. The right eigenfunction of H̄ is the ground state Hartree–Fock deter-
minant Φ and its eigenvalue is one of the exact energies, usually the ground state
one E0

H̄Φ = E0Φ. (15-38)

The remaining eigenvalues of H can be found as eigenvalues of H̄ in the space or-
thogonal to Φ, thus, the deexcitation operator is not required. Then, if necessary,
a simple calculation can be performed to recover the exact wave function. These
simple facts are not so obvious when the wave function expansion is considered.
For example, in early applications of the FS-CC method this elimination of deex-
citation operator was considered as an approximation [29]. The use of similarity
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transformations makes some aspects of the method more transparent and more con-
venient for further developments.

It is worth mentioning here that other similarity transformations of the Hamilto-
nian can be introduced to utilize information about states, which description have
already been obtained, to reduce the number of cluster operators. For example, for
the (2, 2) problem in such a way the excitation operators to M(0,0)

0 and M(1,1)
0 can be

excluded from S(2,2). For more details we refer to Ref. [47].

15.4. INTERMEDIATE HAMILTONIAN FORMULATIONS
OF THE FOCK-SPACE CC METHOD

Similarity transformations of the Hamiltonian can be considered as an attrac-
tive alternative way of introducing the effective Hamiltonian scheme. One can
look at the effective Hamiltonian technique as a way of extracting problem cor-
responding to several eigenvalues from the complete eigenvalue problem for the
Hamiltonian. As before we assume that the functional space is divided into two sub-
spaces: M0 and M⊥. Using simple similarity transformation the eigenvalue problem
of the Hamiltonian can be split into two subproblems [19]. Defining

X ≡ QXP0, (15-39)

we can transform the Hamiltonian H to the form

e−XHeX = (1− X)H(1+ X). (15-40)

Requiring X to satisfy the equation

Q(1− X)H(1+ X)P0 = 0, (15-41)

we divide the problem of finding all eigenvalues of H into two subproblems. Now
all eigenvalues of H can be obtained by looking for eigenvalues of the P0 − P0 and
Q − Q parts of the transformed Hamiltonian separately. The P0 − P0 part of the
transformed Hamiltonian is the effective Hamiltonian which diagonalization pro-
vides m = dim M0 energies

Heff = P0(1− X)H(1+ X)P0 = P0H(1+ X)P0. (15-42)

The set of Eqs. (15-41) and (15-42) is identical with that obtained previously for
the effective Hamiltonian. The difference is that we still can consider the complete
eigenvalue problem knowing how the remaining energies can be obtained.

Similarity transformations are also convenient to introduce another formulation
of the FS-CC method that is formally simpler and more effective in practical appli-
cations. The standard FS-CC formalism that is based on the effective Hamiltonian
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formulation has many disadvantages. First of all this is a two step procedure. In each
(m, n) sector first the cluster amplitudes must be determined in an iterative way and
then, using them, the effective Hamiltonian is constructed. The energies are given
by its diagonalization. The iterative procedure can be slowly convergent or divergent
and that can be related to the intruder state problem. In some cases the alternative
solution can be reached instead of the standard one. Moreover, the method is not
state specific, i.e. we have to perform calculations for all m states at a time in spite
of the fact that we can be interested only in some of them. Thus, it would be de-
sirable to have a method that provides an efficient and dependable way of solving
the FS-CC equations and does not require to find all cluster amplitudes and energies
simultaneously.

The CC expansion shows its advantages when approximate variants are consid-
ered, when no approximation is made the exponential expansion is equivalent to the
linear one. If some truncation scheme is imposed on S̄, for example, the one shown
in Figure 15-2 where only at most two-body operators are included, then two types
of contributions are present in the exponential expansion. There are contributions
from the orthogonal space that are generated directly by S but also contributions that
are given by products of S operators. Most of these products generate excitations
that cannot be reached directly by S. Thus, higher excitations than those given by S
are approximated by products of lower excitation-rank cluster operators and that is
the main advantage the CC ansatz. The effectiveness of this approximation depends,
however, on fulfilling the so-called cluster conditions. If the cluster conditions are
satisfied then the CC expansion is very effective and leads to high-quality results.

A specific feature of the FS-CC approach allowing us to find more efficient for-
mulation than the standard one is that the FS-CC cluster expansion is linear in the
unknown cluster amplitudes at each (m, n) level of the calculations beyond the (0, 0)
one. Indeed, a closer look at {exp (S)}P(m,n)

0 shows that nonlinear terms are generated
only by cluster amplitudes from lower sectors. Since these are already known then
the expansion is linear in the unknown amplitudes. That indicates that the FS-CC
equations can be solved by diagonalization of some operator. To be more specific let
us consider the (1, 1) case in which higher than two-body S̄ operators are neglected,
i.e., the FS-CCSD method (see Figure 15-2). We extract from the orthogonal space
a subspace that is spanned by those determinants that are reached by applying the
S(m,n) excitation operators on the (m, n) reference space determinants at the (1, 0),
(0, 1) and (1, 1) levels. Those subspaces will be denoted by M(m,n)

I and called the

intermediate spaces. For the corresponding projection operators we use P(m,n)
I . The

transformed Hamiltonian reads

H̃(m,n) = (1− X(m,n))H̄N(1+ X(m,n)), (15-43)

where

X(m,n) = {exp S− 1}P(m,n)
0 . (15-44)
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In the standard effective Hamiltonian approach we require

P(m,n)
I H̃(m,n)P(m,n)

0 = 0, (15-45)

and that provides us with the set of equations for the S(m,n) amplitudes. The hierarchy
of equations that must be solved for the (1,1) problem is given by

P(0,0)
I H̄NP(0,0)

0 = 0, (15-46)

P(1,0)
I (1− X(1,0))H̄N(1+ X(1,0))P(1,0)

0 = 0, (15-47)

P(0,1)
I (1− X(0,1))H̄N(1+ X(0,1))P(0,1)

0 = 0, (15-48)

P(1,1)
I (1− X(1,1))H̄N(1+ X(1,1))P(1,1)

0 = 0, (15-49)

These are the standard FS-CCSD equations that must be solved iteratively. To obtain
another possibility of solving the equations than that involving standard iterative
procedures we split the transformations into sequences of two similarity transforma-
tions by dividing X(m,n) into two parts. One can relate this to the idea that has been put
forward by Malrieu et al. [24] suggesting a partition of contributions generated by the
wave operator into two parts and obtaining the trouble making part not via iterations
but by diagonalization of an operator that acts in a larger space than the effective
Hamiltonian but has a subset of eigenvalues identical with the set of eigenvalues
of Heff. The operator has been called the intermediate Hamiltonian and different
intermediate Hamiltonian schemes can be considered since this general idea gives us
a lot of flexibility [19, 24]. Also here different variants can be taken into account but
two of them seem sensible. The choice is determined by partitioning of X(m,n)

X(m,n) = Y (m,n) + Z(m,n), (15-50)

where, in order to obtain similarity transformation within the M(m,n) space being a
sum of the model space M(m,n)

0 (also called the main model space by Malrieu et al.

in this context) and the intermediate space M(m,n)
I we assume that Z(m,n) generates

excitations to the intermediate space M(m,n)
I only while acting on M(m,n)

0

Z(m,n) ≡ P(m,n)
I Z(m,n). (15-51)

Having X(m,n) partitioned the transformed Hamiltonian can be rewritten as

H̃(m,n) = (1− Z(m,n))(1− Y(m,n))H̄N(1+ Y (m,n))(1+ Z(m,n)). (15-52)

Its structure in the M(m,n) space is, of course, characteristic for the transformation
that leads to the effective Hamiltonian. Namely, its off-diagonal P(m,n)

I − P(m,n)
0 part

is equal to zero according to Eqs. (15-47)–(15-49) and then diagonalization of the
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P(m,n)
0 − P(m,n)

0 part that is the effective Hamiltonian gives the desired excitation en-
ergies. The remaining eigenvalues of the transformed Hamiltonian (15-52) in the
M(m,n) space can be obtained by diagonalization of the P(m,n)

I − P(m,n)
I block. Now,

let us consider the operator

˜̃H(m,n) = (1− Y (m,n))H̄N(1+ Y (m,n)). (15-53)

Denoting by P(m,n) the projection operator on M(m,n) one can see that both

P(m,n)H̃(m,n)P(m,n)

= P(m,n)(1− Z(m,n))(1− Y(m,n))H̄N(1+ Y (m,n))(1+ Z(m,n))P(m,n). (15-54)

and

P(m,n) ˜̃H(m,n)P(m,n) = P(m,n)(1− Y (m,n))H̄N(1+ Y (m,n))P(m,n). (15-55)

operators have the same eigenvalues since, due to the requirement (15-51), they are
related through similarity transformation within the M(m,n) space. Thus, the ener-
gies given by the effective Hamiltonian are among those of the operator (15-55).
The operator can be called the intermediate Hamiltonian since it has been derived
following the idea of obtaining a part of effects from the orthogonal space by diag-
onalization. Let us recall here that the intermediate Hamiltonian contains only those
cluster amplitudes that have already been determined at lower quasi-particle levels.
The intermediate Hamiltonian allows us to avoid iterative calculations associated
with finding Z(m,n). The two step procedure of solving the equations is replaced by
diagonalization of the intermediate Hamiltonian (15-55). Eigenvalues of the inter-
mediate Hamiltonian can be found by using diagonalization procedures that permit
single-root calculations and in this sense the method becomes state selective. The
required eigenvalues and eigenvectors can be calculated one by one if necessary.

There are different choices possible for the Z(m,n) operator. The one that has been
used by us so far [26, 27, 30] is

Z(m,n) = P(m,n)
I {exp (S)}P(m,n)

0 . (15-56)

It follows from Eqs. (15-44) and (15-51) that

P(m,n)
I Y (m,n) = 0, (15-57)

so the intermediate Hamiltonian can be given by a very simple expression that is
similar to the effective Hamiltonian one with the only difference being that P(m,n)

0
and X(m,n) are replaced with P(m,n) and Y (m,n)

H(m,n)
I = P(m,n)H̄N(1+ Y (m,n))P(m,n). (15-58)
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That can be further simplified

H(m,n)
I = P(m,n)H̄NP(m,n) + P(m,n)H̄NY (m,n)P(m,n)

0 , (15-59)

showing that the basic part of the H(m,n)
I matrix is the matrix representation of H̄N

and the additional contributions coming from H̄NY (m,n) enter only the first columns
corresponding to the reference space M(m,n)

0 .
The other choice that can be consider for Z(m,n) is

Z(m,n) = S(m,n)P(m,n)
0 . (15-60)

The Z(m,n) component generates excitations to M(m,n)
I as it should but Y (m,n) gives

contributions from both M(m,n)
I and a part of the orthogonal space that is not included

in M(m,n)
I . Having this in mind we can analyze terms that enter different blocks of the

intermediate Hamiltonian

P(m,n)
0 H(m,n)

I P(m,n)
0 = P(m,n)

0 H̄N(1+ Y (m,n)P(m,n)
0 , (15-61)

P(m,n)
I H(m,n)

I P(m,n)
0 = P(m,n)

I H̄N(1+ Y (m,n))− Y(m,n)H̄N(1+ Y (m,n))]P(m,n)
0 , (15-62)

P(m,n)
0 H(m,n)

I P(m,n)
I = P(m,n)

0 H̄NP(m,n)
I , (15-63)

P(m,n)
I H(m,n)

I P(m,n)
I = P(m,n)

I (1− Y (m,n))H̄NP(m,n)
I . (15-64)

At first glance H(m,n)
I looks complicated which is not surprising. Because of

reducing Z(1,1) to S(1,1)P(1,1)
0 many additional term must contribute to the inter-

mediate Hamiltonian. The question is, however, whether all these terms are
irreducible.

Using diagrams introduced in Figure 15-2 we can discuss the FS-CCSD method
in more detail. The first problem in the hierarchy, the (0, 0) one, remains unchanged.
For the one-quasi-particle sectors, (1, 0) and (0, 1), that are next to consider, the in-
termediate Hamiltonian has very simple form. This is because

X(1,0) = S(1,0)P(1.0)
0 , X(0,1) = S(0,1)P(0.1)

0 , (15-65)

and, thus,

Y (1,0) = 0, Y (0,1) = 0, (15-66)
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For the one quasi-particle problem both choices for the Z(m,n) operator considered
above are equivalent leading to the same intermediate Hamiltonians

H(1,0)
I = P(1,0)H̄NP(1,0), H(0,1)

I = P(0,1)H̄NP(0,1). (15-67)

The problem is reduced to finding eigenvalues of H̄N in the M(1,0) space and in the
M(0,1) space. It follows from the above that the eigenvalues do not dependent on the
choice of active orbital levels. However, that does not concern the cluster amplitudes,
S(1,0) and S(0,1), that are needed to construct the intermediate Hamiltonian in the (1, 1)
sector. To obtain the S(1,0) cluster amplitudes we need m = dim M(1,0)

0 eigenvectors of

H(1,0)
I . They are used as columns to construct matrix V(1,0). The matrix is partitioned

into an m × m submatrix V(1,0)
0 consisting of reference determinant coefficients and

submatrix V(1,0)
I consisting of the intermediate space coefficients. The Z(1,0) matrix

can be obtained as

Z(1,0) = V(1,0)
I

(

V(1,0)
0

)−1
, (15-68)

where we assume that V(1,0)
0 is nonsingular. The S(1,0) cluster amplitudes are given

directly by matrix elements of Z(1,0). In a similar manner the S(0,1) cluster amplitudes
are obtained for a given choice of active hole levels.

Having the T , S(1,0) and S(1,0) amplitudes determined the intermediate Hamil-
tonian for the (1, 1) sector can be constructed. Two different partitioning of X(1,1)

are shown in Figure 15-3 in a schematic way (line directions are omitted and cir-
cles are used for active lines). The first choice is shown in Figure 15-3a and dia-
grammatic representation of terms contributing to the intermediate Hamiltonian is

Figure 15-3. Two different partitioning of the X(1,1) operator into the Z(1,1) and Y(1,1) discussed in the
text. Diagram are shown in a schematic ways with line directions omitted
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Figure 15-4. Diagrammatic representation of the intermediate Hamiltonian corresponding to choice (a)
for Z(1,1) in Figure 15-3. The wavy line is used for matrix elements of H̄N

depicted in Figure 15-4. The wavy line is used for matrix elements of H̄N . The num-
ber of diagrams that must be constructed for matrix elements of the intermediate
Hamiltonian is significantly reduced compared to the standard FS-CCSD equations.
First of all there are no diagrams representing the renormalization term since this
contribution is generated in the process of diagonalization. Also some diagrams
originating from the principal part in the FS-CCSD equations are not present in the
intermediate Hamiltonian. The additional contributions that have to be included are
simple and they are represented by the last four diagrams in Figure 15-4. They can
be disconnected but that does not hurt extensivity of the method that is completely
equivalent to the standard one as far as the results are concerned. In fact, the dis-
connected diagrams are really necessary to maintain size-extensivity since they are
required to cancel those disconnected terms that are given by diagonalization of the
intermediate Hamiltonian. So, unlike the standard FS-CC approach, the cancellation
of disconnected terms is numerical. Also the S(1,1) amplitudes can be obtained from
the Z(1,1) matrix elements in the way similar to that in the (1, 0) and (0, 1) sectors. The
difference is that matrix elements of Z(1,1) do not give the S(1,1) amplitudes directly
but must be obtained from

S(1,1)
2 P(1,1)

0 = (Z(1,1)
2 − S(1,0)

1 + S(0,1)
1 + {

S(1,0)
1 S(0,1)

1

}

)P(1,1)
0 . (15-69)

They are, however, not really needed in the final sector calculation.
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Figure 15-5. (a) Diagrammatic representation of the intermediate Hamiltonian corresponding to choice
(b) for Z(1,1) in Figure 15-3. An additional vertex, marked by double horizontal line, is introduce to reduce
the number of diagrams and its definition is given by (b). The fact that internal excitations are not allowed
in S is depicted in (c)
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The second choice for Z(1,1) given by Eq. (15-60) and shown in Figure 15-3b
might be seen as not very attractive. Although it gives the S(1,1) amplitudes directly
from the Z(1,1) matrix but the intermediate Hamiltonian corresponding to this choice
looks quite complicated. Its diagrammatic representation is presented in Figure 15-5.
To reduce the number of diagrams an additional vertex is introduced and the fact that
S(1,0)

1 , S(0,1)
1 and S(1,1)

2 must excite outside the reference space thus all their diagrams
having exclusively active lines are equal to zero is shown.

The intermediate Hamiltonian formalism, as it has been introduced here, does not
make use of the connected diagram theorem and rely on the numerical cancellation
of disconnected contributions. In the next section we present another route to the
intermediate Hamiltonian FS-CC formulations for which the starting point is the
connected form of the standard FS-CC equations. For the second choice for Z(1,1)

that permits elimination of reducible contributions and provides simpler expressions
for matrix elements of the corresponding H(1,1)

I .

15.5. CANONICAL FORM OF THE FS-CCSD EFFECTIVE
HAMILTONIAN EQUATIONS

The effective Hamiltonian formulations resulted from the necessity of describing two
types of electron correlation effects. These formulations postulate a specific structure
for the wave function and introduce approximate schemes. After this it would be
convenient to decouple equations for all states under consideration and solve them
for each state separately. That is possible if the problem of solving the effective
Hamiltonian equations can be reduced to the eigenvalue problem of some operator.
In the following we would like to show how the standard FS-CC equations can be
transformed to a form that is suitable for going back to the single-eigenvalue prob-
lem. This form has been called canonical [32] but can be also related to the so-called
eigenvalue independent partitioning technique [48]. A characteristic feature of the
canonical form is that the equations are expressed in the way characteristic for the
effective Hamiltonian equations

Heff = P0HI(1+ Z)P0, (15-70)

QHI(1+ Z)P0 − QZHeff = 0, (15-71)

where HI is some operator that is obtained by rearranging the effective Hamiltonian
equations and Z ≡ QZP is an excitation operator. If such a form is obtained then
the problem of solving the equations can be reduced to the eigenvalue problem but
this time of HI instead of H. A comparison between Eqs. (15-20) and (15-21) and
Eqs. (15-70) and (15-71) shows that H and HI must be related through some similar-
ity transformation.
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Let us now consider the FS-CCSD method. The equations are given by
(15-29)–(15-37) where only connected terms contribute. It is easy to notice that
the (1, 0) and (0, 1) equations are already in the canonical form since they can be
written as

P(1,0)
I H̄N(1+ S(1,0))P(1,0)

0 − S(1,0)H(1,0)
eff = 0,

H(1,0)
eff = P(1,0)

0 H̄N(1+ S(1,0))P(1,0)
0 , (15-72)

P(0,1)
I H̄N(1+ S(0,1))P(0,1)

0 − S(0,1)H(0,1)
eff = 0,

H(0,1)
eff = P(0,1)

0 H̄N(1+ S(0,1))P(0,1)
0 . (15-73)

The equations are expressed in the diagrammatic form in Figure 15-6. One can easily
see that the HI operator is simply H̄N and Z is either S(1,0) or S(0,1) depending on the
case. Thus the eigenvalues of the effective Hamiltonian for the (1, 0) case can be
obtained by diagonalization of H̄N in the space spanned by determinants with one
extra electron placed on unoccupied level (reference determinants plus determinants
generated from them by S(1,0)

1 ) and two extra electrons and one hole (generated by

S(1,0)
2 ). Such a space is usually called the p 2p-h space. The diagonalization gives

electron affinities. For the (0, 1) sector H̄N must be diagonalized in the h p-2h space

Figure 15-6. Diagrammatic representation of the standard FS-CCSD equations in the (1, 0) and (0, 1) sec-
tors. The first two equations, (a) and (b), are the amplitude equations, (c) shows the one-body contribution
to the effective Hamiltonian
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Figure 15-7. Diagrammatic representation of the standard FS-CCSD equations in the (1, 1) sector. The
first equation (a) represents the set of equations for S(1,1) while (b) shows the two-body contribution to
the effective Hamiltonian

and that provides ionization potentials. So the situation here does not differ from that
described in the previous section.

The (1, 1) case is, however, much more complicated. Diagrammatic represen-
tation of the connected FS-CCSD equations is shown in Figure 15-7. As before,
different possibilities of reaching the canonical form can be considered. Let us start
with the choice for Z(1,1) that is shown diagrammatically in Figure 15-8a and is
identical with the first choice for Z(1,1) considered in the previous section. In order
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Figure 15-8. (a) The first choice for Z(1,1). (b) Diagrams that are lacking in the renormalization term in
the (1, 1) amplitude equations shown in Figure 15-7a to obtain the canonical form. (c) Transformation of
diagrams (b) with the use if (1, 0) and (1, 0) equations presented in Figure 15-6. Filled circles are used
to denote inactive lines. (d) Diagrams that must be included in the principal part of the (1, 1) FS-CCSD
equations in Figure 15-7 a to have the renormalization part in the canonical form

to have canonical form of the renormalization term with such a choice, diagrams
that are shown in Figure 15-8b must be added. Thus, the renormalization term suits
the canonical form if diagrams Figure 15-8b with the opposite sign are added to
those generated by the first principal term in Eq. (15-71). Unfortunately, they do
not support the canonical form of the first term. However, when the (1, 0) and (0, 1)
equations from Figure 15-6 are used to transform them, as shown in Figure 15-8c,
then the canonical form, pictured in Figure 15-8d, is reached. To see diagrams
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representing H(1,1)
I resulting from the canonical form we have to collect all diagrams

entering the amplitude equations shown in Figure 15-7a except those representing
the renormalization term and supply them with those shown in Figure 15-8d. If some
diagram has one of the Z(1,1) vertices shown in Figure 15-8a then such a part of the
diagram must be removed but the remaining part should be kept. Diagrams obtained
in this way represent the P(1,1)

I − P(1,1) part of H(1,1)
I .

The same should be done with the one- and two-particle contributions to the ef-
fective Hamiltonian shown in Figures 15-6c and 15-7b. Again we should remove
Z(1,1) vertices from the two-particle diagrams of the effective Hamiltonian. These
diagrams contribute to the P(1,1)

0 − P(1,1) of H(1,1)
I . If this is done then one can see

that diagrams derived in this way are identical with those obtained in the previous
section for the same choice of Z(1,1). This derivation is, however, more tedious than
the one presented before. It is worth mentioning that one can also use the (1, 0) and
(0, 1) equations in a slightly different manner and obtain a different diagrammatic
representation but the same numerical values for the intermediate Hamiltonian ma-
trix elements as presented in Ref. [32].

Now the question is whether for the second choice of Z(1,1), i.e., Z(1,1) =
S(1,1)P(1,1), the canonical form is also so much difficult to obtain. It should be re-
called here that in the previous section the intermediate Hamiltonian was represented
by relatively large number of diagrams. Surprisingly, a closer look at the FS-CCSD
equations in Figure 15-7a shows that this is not the case since the equations are
already in the canonical form, The only operation that must be done is to identify
H(1,1)

I for this case. The renormalization term in (15-71) is given by the last two
diagrams in the equation for the cluster amplitudes in Figure 15-7a. That definitely
represents what is required by the canonical form. The only problem is that the re-
maining two diagrams with effective Hamiltonian vertices must be expressed in the
explicit form to divide their contribution into the constant part and the part that is
linear in S(1,1). Now collecting several diagrams in one intermediate diagram (filled
box) as shown in Figure 15-9b, contributions to different blocks of H(1,1)

I entering
Eqs. (15-70)–(15-71) can be expressed in a compact form as shown in Figure 15-9c.
A similar structure can be obtained from diagrams derived in the previous section
if the (1, 0) and (0, 1) equations, depicted in Figure 15-6, are used. Indeed it can be
seen that some disconnected diagrams that are shown in Figure 15-5 give the net
contribution equal to zero if the fact that S(1,0) and S(0,1) satisfy equations shown in
Figure 15-6 is taken into account.

To summarize let us emphasize the main features of the intermediate Hamilto-
nian versions of the FS-CC method. First, the intermediate Hamiltonian approach is
equivalent to the standard one in the sense that provides the same energies and cluster
amplitudes, however, the way of reaching the solution is completely different. Un-
like the effective Hamiltonian FS-CC method, the intermediate Hamiltonian version
is based on one-step procedure which gives the eigenvalues and the corresponding
eigenvectors at the same time. Diagonalization allows us to find single eigenvalues
and in this sense the approach is state-selective. Also alternative solutions are easy
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Figure 15-9. (a) The second choice for Z(1,1). (b) Definition of the filled rectangle vertex. (c) Diagrams
contributing to different blocks of the intermediate Hamiltonian
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to access [25]. As has been demonstrated the effective Hamiltonian MR-CC iterative
schemes can lead to some solutions that are not our primary goal [22]. That usually
happens when the chosen reference space can be considered as a relatively good
selection for another set of m states. The ability of obtaining an alternative solution
depends on the starting vector as well as on the iterative scheme used. It has been
shown that the quality of description of some states given by alternative solutions is
quite good [22, 27]. It is easy to see that all possible energies that can be obtained
by the effective Hamiltonian FS-CC approach with all possible solutions for X are
eigenvalues of the intermediate Hamiltonian. Each solution for X provides a set of m
eigenvalues and these are always m-element subsets of eigenvalues of the interme-
diate Hamiltonian. Also it follows that the energy corresponding to a particular state
is the same in all possible solutions of the effective Hamiltonian approach. Another
aspect of the intermediate Hamiltonian formulation is that the method introduces
many formal simplifications. The number of diagrams that must be considered is
significantly reduced.

In the next section numerical examples showing the efficiency of the interme-
diate Hamiltonian version of the FS-CC method are presented. The method has
been implemented on the CCSD and CCSDT level [30, 31]. Also the standard ef-
fective Hamiltonian codes are available to compare the performance of the two ap-
proaches [49].

15.6. NUMERICAL EXAMPLES

The intermediate Hamiltonian FS-CC codes can be easily obtained from those for the
standard FS-CC method. The intermediate Hamiltonian scheme requires, however,
some reorganization of the calculation. Diagrams that are used to constructed the
FS-CC amplitude equations now contribute to the matrix elements of the interme-
diate Hamiltonian. It is seen from Figures 15-7 and 15-4 that only a part of them
is needed. They must be supplemented with a very few that are not present in the
standard equations but these are easy to code and calculate (Figure 15-4). Moreover,
the iterative schemes for solving equations for cluster amplitudes must be replaced
with diagonalization procedure. Usually very effective Hirao–Nakatsuji generaliza-
tion [50] of the Davidson algorithm [51] is employed that permits diagonalization of
non-hermitian matrices.

Having the effective Hamiltonian FS-CC codes we can examine the behavior of
the standard iterative schemes: the Jacobi-type of iterations as well as the scheme
with iterations damped. Three examples are presented. These are the C2, H2O and
O3 molecules. Calculations are performed on the CCSD level. Results are collected
in Tables 15-1, 15-2, and 15-3 where the basis sets and geometries can also be found.
The basis sets employed are either the correlation-consistent basis sets by Dunning
(aug-cc-pVTZ [52]) or the Poli basis sets by Sadlej [53], both with spherical d
functions. The experimental geometries for the ground state are used and the core
electrons are kept frozen. The ability to reach convergence within the standard
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Table 15-1. Vertical excitation energies (eV) of the Ca
2 molecule with FS-CCSD methodb (aug-cc-pVTZ

basis set c; R= 1.243 Åd). NC means no convergence

(1,3)b (3,3)b (5,3)b

Sym. Heff

Heff with
damp. IH Heff

Heff with
damp. IH Heff

Heff with
damp. IH Exp.e

1Πu NC 1.335 1.335 NC NC 1.280 NC NC 1.279 1.23
1Σ+u NC 5.941 5.941 NC NC 1.1086 NC NC 5.789 5.36

a Valence electrons correlated.
b (m, n) is used to describe active spaces. m is the number of lowest unoccupied orbitals and n is the
number of highest occupied orbitals used as active in the calculation.
c Ref. [52].
d Ref. [54].
e Ref. [55].

Table 15-2. Vertical excitation energies (eV) of the H2Oa molecule with FS-CCSD methodb (POL1 basis
set c; R= 0.975 Å, angle= 104.5◦d). NC means no convergence

(2,3)b (3,3)b (6,3)b

Sym. Heff

Heff with
damp. IH Heff

Heff with
damp. IH Heff

Heff with
damp. IH Exp.d

1B1 NC 7.656 7.656 NC 7.602 7.602 NC NC 7.349 7.4
1A2 NC 9.500 9.500 NC 9.500 9.500 NC NC 9.235 9.1
1A1 NC 10.087 10.087 NC 10.062 10.062 NC NC 9.772 9.7

a Valence electrons correlated.
b (m, n) is used to describe active spaces. m is the number of lowest unoccupied orbitals and n is the
number of highest occupied orbitals used as active in the calculation.
c Ref. [53].
d Ref. [60].

Table 15-3. Vertical excitation energies (eV) of the Oa
3 molecule with FS-CCSD methodb (POL1 basis

setc; R= 1.272 Å, angle= 116.8◦d). NC means no convergence

(1,3)b (3,3)b (4,3)b

Sym. Heff

Heff with
damp. IH Heff

Heff with
damp. IH Heff

Heff with
damp. IH Exp.e

1A2 NC 2.075 2.075 NC NC 2.075 NC NC 2.075 1.92
1B1 NC 2.143 2.143 NC NC 2.143 NC NC 2.143 2.1
1B2 NC 5.302 5.302 NC NC 5.268 NC NC 5.257 4.86

a Valence electrons correlated.
b (m, n) is used to describe active spaces. m is the number of lowest unoccupied orbitals and n is the
number of highest occupied orbitals used as active in the calculation.
c Ref. [53].
d Ref. [57, 58].
e Ref. [56, 59].
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FS-CCSD scheme very much depends on the reference space size. In non of the
cases the straight Jacobi-type iterations lead to convergence but with the use of the
damp factor (usually 0.8 or 0.9) we are able to reach the convergence for the smallest
reference spaces considered. Only in one case of the medium-size reference space
the solution is obtained (H2O) while for the largest reference spaces the damping
technique does not help at all. To have an idea about cluster amplitude magnitudes we
should mention that in all presented cases there are cluster amplitudes which absolute
values are slightly above 1. That can explain the convergence problems of the stan-
dard iterative schemes. It can be observed that with the growing size of the reference
space the accuracy of excitation energies given by the method increases. To have high
quality results relatively large reference spaces are required and for them obtaining
solutions within the standard effective Hamiltonian FS-CC iterative schemes may
be out of reach. The intermediate Hamiltonian technique provides solutions of the
FS-CCSD equations in all cases without any problems. It must be noted that we
employ here simple but most commonly used Jacobi-type iterative schemes. There
are also more sophisticated methods like, for example, that based on the Newton –
Raphson scheme. However, the Newton–Raphson scheme is very numerically
demanding and, moreover, depends very much on the starting vector so in practice
can be used only for small systems. But even with the Newton–Raphson method
we have experienced difficulties in calculations for the Be atom, namely, some
non-standard solutions were reached only when we used starting vectors obtained
from the results provided by the intermediate Hamiltonian FS-CC approach [27].

The next two tables (Tables 15-4 and 15-5) contain results of more extensive
calculations for C2 and H2O. Using the same basis sets as before we show how
the accuracy of the results can be increased by enlarging the reference space and
including three-body operators in the exponent. The IH formulation of the basic FS-
CCSD approximation discussed in this paper in more detail can be easily extended
to the FS-CCSDT scheme that includes additional three-body components in the
cluster operator at each level of calculation required by the valence-universal strategy
[31]. Results for two different reference spaces are presented in both cases. Also
results of the equation-of-motion (EOM) CC method which is more frequently used
in excitation energy calculations than the FS-CC one are shown at both CCSD and
CCSDT levels. It is seen that the extension of reference space can have a significant
impact on the accuracy of the FS-CC results and it looks that the effect is more
profound at the CCSD level than at the CCSDT one. Inclusion of triples generally
improves the accuracy of excitation energies leading to better agreement with the
experimental data. In some cases the improvement is particularly well seen like,
for example, for the 1Σ+u state for C2 when the energy gap is reduced by 0.38–
0.29 eV. For the H2O calculation with smaller reference space the difference between
CCSD and CCSDT results varies from 0.12 to 0.25 while for the larger space is less
significant. Comparison with the EOMCC results shows that FS-CC method can be
considered slightly more accurate than the EOMCC one. It must be mentioned that
the EOMCC method requires diagonalization of much larger matrix than the IH one
but does not need calculations in the (1, 0) and (0, 1) sectors. Another important
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Table 15-4. Vertical excitation energies (eV) for Ca
2 as obtained with the IH-FS-CCb and EOM-CC meth-

ods at the CCSD and CCSDT level with the aug-cc-pVTZc basis set (R = 1.243 Åd).

IH-FS EOM

(3,3) (8,3)

Sym. CCSD CCSDT CCSD CCSDT CCSD CCSDT Exp.e

1Πu 1.280 1.252 1.263 1.251 1.313 1.287 1.23

1Σ+u 5.907 5.531 5.789 5.500 5.577 5.532 5.36

a Valence electrons correlated.
b (m, n) is used to describe active spaces. m is the number of lowest unoccupied orbitals and n is the
number of highest occupied orbitals used as active in the calculation.
c Ref. [52].
d Ref. [54].
e Ref. [55].

Table 15-5. Vertical excitation energies (eV) for H2Oa as obtained with the IH-FS-CCb and EOM-CC
methods at the CCSD and CCSDT level with the POL1c basis set (R = 0.957 Å, angle= 104.5◦d).

IH-FS EOM

(3,3) (6,3)

Sym. CCSD CCSDT CCSD CCSDT CCSD CCSDT Exp.d

1B1 7.602 7.476 7.349 7.463 7.609 7.603 7.4

1A2 9.500 9.246 9.235 9.238 9.368 9.374 9.1

1A1 10.062 9.887 9.772 9.873 9.899 9.901 9.7

a Valence electrons correlated.
b (m, n) is used to describe active spaces. m is the number of lowest unoccupied orbitals and n is the
number of highest occupied orbitals used as active in the calculation.
c Ref. [53].
d Ref. [60].

feature of EOM-CC is the lack of size-extensivity. As discussed the FS-CC approach
is fully size-extensive.

15.7. CONCLUSION

In the paper we show advantages of the intermediate Hamiltonian version of the
Fock-space CC method. Drawbacks of the effective Hamiltonian CC approaches
are well-known. These are mainly formal complexity, high numerical cost of the
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calculations, necessity of describing several states at a time, convergence and in-
truder state problems. They cause that the MR-CC methods are not as popular as
their single-reference counterparts and rarely used in routine calculations for physi-
cally and chemically interesting systems. We show that the intermediate Hamiltonian
reformulation of FS-CC helps to overcome many of difficulties the traditionally for-
mulated FS-CC methods have to face. It makes the equations simpler, allows for
performing calculations for single states, introduces a powerful computation scheme
for solving the equations. All solutions that are difficult or impossible to obtain
within the standard approach are easily accessible within the intermediate Hamil-
tonian formulation. That also includes nonstandard solutions of the effective Hamil-
tonian scheme. The effectiveness and accuracy of the approach are shown on several
numerical examples. The numerical performances of the standard and reformulated
version of FS-CC method are compared, the accuracy of calculations at the CCSD
and CCSDT level of approximation with different choices for the reference space is
discussed. The results are also compared with those given by the EOMCC method.
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Abstract: An overview of basic principles and different concepts of the Optimized Virtual Orbital
Space (OVOS) method and its applications is presented. The objective is to show that the
OVOS is a tool that allows extending the applicability of Coupled Cluster calculations
to larger systems with larger basis sets it was possible before. We describe some instru-
ments which serve as a measure of the accuracy of the CC calculation upon the OVOS
truncation supplemented with a short outline of how to get a balanced reduction of virtual
orbital space for all species participating in, e.g., calculation of reaction or interaction en-
ergies. We demonstrate the performance of the OVOS technique in different areas, includ-
ing molecular electric properties, electron affinities, intermolecular interactions and some
other applications. We also present some examples of large scale CCSD(T) calculations,
which illustrate the computational efficiency of the OVOS approach.

Keywords: Coupled cluster, Optimized virtual orbital space, Large molecules, Intermolecular
interactions

16.1. INTRODUCTION

Past few decades brought vigorous progress in the development and applications of
the Coupled Cluster (CC) [1] methods. Most frequently, CC methods are applied to
relatively small molecules which can be well represented by a single-determinant
Hartree – Fock reference. Nowadays, along with extensive applications of a single-
reference CC calculations to numerous molecular properties a large variety of
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different models based on the exponential parametrization of the correlated wave
functions, capable of treating general multi-reference (MR) systems (Fock and
Hilbert space approaches), excited states (EOM), molecular properties (analytic
derivatives and response techniques) and many other interesting aspects [2–8] have
appeared. These achievements help in extending the applicability of CC methods
into areas previously dominated by other methods, like MR CI (Configuration Inter-
action) or CASPT2 (Complete Active Space Perturbation Theory) [9]. Nevertheless,
highly accurate calculations of “well behaved” single-reference systems still remain
one of the most important areas of applications of the CC approach. In spite of the
splendid progress in the applicability of CC and other wave function methods [9] to
larger and more general systems, a vast majority of quantum chemical calculations
are nowadays done using methods based on the Density Functional Theory (DFT).
The admirable progress and the success of DFT methods in many areas of chemistry,
physics and even biology is indisputable. Yet, we should not forget that DFT is still
lacking suitable control of accuracy in terms of a systematic hierarchy of increasing
level of the theory. This extends a space for methods like CC which may serve as
a reliable tool for accurate predictions of molecular properties, intermolecular inter-
action energies, chemical reactivity etc. but, also, as valuable benchmarks for DFT
and other more approximate methods applicable to truly large molecules. To serve
this purpose better there is a need for the availability of CC calculations of model
molecules which are closer to species which need to be treated in real chemical
applications. This may help in approaching a desired symbiosis of the wave function
methods, like CC methods, DFT methods and experiment. Such efforts seem to be
quite promising [10–12].

For obtaining results with high and controlled accuracy, only a few ab-initio wave
function techniques are available. In general, all such methods are computationally
demanding. Moreover, widely accepted methods should be robust enough, i.e. they
should allow explicit correlation of “many” electrons (say up to 50–100 electrons;
actually much larger number would be advisable) with large enough basis sets, which
guarantee results close to the Complete Basis Set (CBS) limit. If this is not feasible,
calculations should be done with a series of systematically improved basis sets al-
lowing the extrapolation to the CBS limit. Within CC methods the basic approach is
represented by the CCSD method in which the amplitudes of the T1 and T2 operators
are calculated iteratively [1, 3–5]. Of course, for highly accurate results rigorous
treatment of higher than T2 connected excitation operators must be considered. The-
oretical and computational implementation of T3, T4 and even higher excitation op-
erators is available [13–15], but iterative CCSDT, CCSDTQ and higher methods are
for larger molecules prohibitively demanding. Important progress in extending CC
methods with higher that T1 and T2 operators was initiated by the introduction of the
perturbative calculation of effects due to higher excitation operators by utilizing am-
plitudes arising from the rigorous iterative treatment of the lower-order amplitudes.
An order-by-order analysis of the perturbative sequence of such approximations is a
basic instrument for a controlled accuracy arising from a systematic improvement of
the wave function representation. Far most important is the CCSD(T) method which
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appears to be the well balanced compromise between the accuracy and computational
effort. This approach, where relatively feasible iterative CCSD method is corrected
by more demanding, but a single-step perturbative treatment of the T3 contribution
[16, 17] nowadays represents the “golden standard” for single reference, highly cor-
related calculations. Perturbative incorporation of quadruples and even quintuples
can be achieved in a similar way leading to a hierarchical wave-function based anal-
ysis of the respective theoretical tools for these contributions.

In most applications the CCSD(T) method leads to very accurate results and can
be used as a predictive tool for obtaining highly reliable molecular properties. Also,
it is frequently used as a benchmark for less controllable DFT calculations. Yet,
when using CCSD(T) in a single-reference framework, its performance should not
be blindly overestimated. Quality of results should be controlled via the T1 diag-
nostics [18], which together with careful inspection of the largest T1 and T2 am-
plitudes [19, 20] allow to safely identify eventual multireference behavior of the
system. When T1 and T2 amplitudes are approaching a limiting value of about 0.2,
one should be careful in using CCSD itself and resulting T1 and T2 amplitudes as
a source for obtaining the triples contributions. In that case, a simple perturbative
T3 treatment may not be accurate enough and can even lead to unphysical behavior.
As was already mentioned, the T3 contribution to the correlation energy appears to
be crucial in achieving the chemical accuracy, as it completes the CCSD energy by
the missing fourth-order terms [5]. For systems which exhibit large quasidegeneracy
higher excitations, at least quadruples, become important. Obtaining iterative triples
or quadruples, is, unfortunately, very demanding when we need to correlate large
number of electrons. When combined with large basis sets and large number of
virtual orbitals, computational demands increase truly painfully. A remedy can be
achieved, e.g, by reducing the number of virtuals in a controlled way.

Returning to CCSD(T) we should stress that scaling of the CCSD(T) method
with the size of the problem is still very disfavorable. Iterative CCSD procedure
scales generally as N6 (N is a general symbol for the number of occupied and virtual
orbitals). The most time consuming steps scale as o3v3 and o2v4 (o and v is the
number of occupied and virtual orbitals, respectively). Non-iterative perturbative T3
contributions scale as N7, namely as o3v4 and o4v3. For systems with large number of
electrons, the T3 step starts to be computationally most demanding. Thus, reducing of
the computational efforts of the CCSD(T) method represents an important challenge
which is crucial for extending the applicability of highly accurate ab-initio methods
to larger systems.

The computational demands of CCSD(T) or higher level CC methods can be re-
duced employing methodological and technical innovations. From the methodologi-
cal improvements the following routes are very promising: accelerating of the basis
set convergence by R12 techniques [21–23], reducing the size of the virtual orbital
space by OVOS [24, 25] or FNO techniques [26–29] or using localized orbitals
[30–32]. Innovative technical tools cover different numerical methods which allow
approaching final results with a controlled accuracy in computationally more effi-
cient way. Among several of those, let us mention techniques based on the sparsity
of matrices [33, 34], different prescreening methods [35], methods based on direct
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evaluation of atomic integrals [36], etc. Approximate formulations based on the
Cholesky Decomposition (CD) of 2-electron integrals (or other objects [37–39])
and Density fitting (DF, also known as the Resolution-of-the-Identity, RI) techniques
employing auxiliary basis sets [40, 41] enable reformulation of CC algorithms into
more efficient form, even if they can not reduce the overall scaling of CC methods.
A specific class of purely technical innovations represent parallelization or incorpo-
ration of highly-optimized algebraic routines (BLAS).

16.2. OUTLINE OF THE OVOS METHOD

One of the approaches that enable reduction of overall computational demands of the
Coupled Cluster methods (as well as other correlated methods heavily dependent on
the size of the virtual orbital space – VOS) is the method of Optimized Virtual Orbital
Space – OVOS [24, 25, 42]. The objective of this method is truncating the original
set of virtual orbitals by an unitary transformation in such a way, that a reduced part
of suitably rotated VOS is able to represent the complete VOS in the subsequent
correlated calculations. In other words, we try to accumulate most of the flexibility
of the complete VOS into a subspace of a smaller dimension, while the rest of the
rotated VOS do not contribute to the expansion of the correlated wave function any-
more. Using of OVOS with sufficiently truncated dimension obviously leads to the
reduction of numerical demands of CC calculations – in fact it leads not only to the
reduction of the computer time, but in many cases it principally opens the feasibility
of calculations, which would be otherwise intractable with the available computa-
tional software and hardware using the original virtual space. Truncated OVOS also
saves considerable disc space and the amount of the input/output operations. From
this point of view, OVOS technique is one of the methods extending the applicability
of the CC approach in general. Overall speedup of the subsequent correlated calcula-
tion depends both on the method and on the measure of the reduction of OVOS. For
the “golden standard” – the CCSD(T) method, which scales as v3 and v4 (the CCSD
part) and v4 (the triples part), reduction of OVOS to 60% of its original dimension
may reduce computational demands roughly by an order of magnitude.

Our introduction to the essence of the OVOS method was rather intuitive so far.
Now, we will present the method in a more exact way. Let us divide the VOS into
three parts: V1-orbitals, which remain unchanged (unrotated) during the VOS op-
timization procedure; V2-optimized virtual orbitals, which will be employed in the
subsequent calculations instead of the full VOS; V3-remaining part of optimized vir-
tual orbitals, which will be deleted in subsequent calculations. Any unitary rotation
of the space of virtual orbitals should not affect the results of quantum chemical
methods – these methods should be invariant with respect to the unitary rotation of
VOS. The structure of the orbital space is illustrated in Figure 16-1.

Introducing the V1 block is a straightforward concept for the treatment of both
closed- and open-shell systems (or possibly other more general reference space)
within the same framework. V1 block is usually empty for closed shell systems.
For the ROHF reference, V1 typically contains spatial complements of the singly
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Figure 16-1. Structure of the orbital space

occupied orbitals. Since those are occupied only with α spin electrons, they do not
belong exclusively to the occupied or the virtual space. Obviously, they cannot be
mixed with V2 or V3 orbitals, because, as mentioned above, mutual mixing of occu-
pied and virtual orbitals violates renormalized vacuum state, making CC energy no
longer invariant with respect to such rotation. We note, that the V1 block can include
also other orbitals, which need to be, for some reason, kept unchanged during the
optimization of VOS.

Let us consider the simplest correlation level, say MBPT2 (Many-body second-
order perturbation theory, or in short, MP2). The original VOS uses the whole space
of virtuals, with dimension of V1 + V2 + V3, to describe the energy or other property
at the MP2 level. With OVOS, the overall capability of the original VOS in describing
any selected property is redistributed among virtuals in such a way, that the capability
of the V2+V3 set is condensed into the truncated V2 space as much as possible.
When reproducing the flexibility of the original VOS in a truncated set of optimized
orbitals, reproducing the MP2 energy or, preferably, the overlap of the first-order
wave function can be considered as examples of the optimization criteria. Our aim
is to maximize the match between the full VOS and truncated (i.e. V2 OVOS) MP2
energy, or the overlap of the first order wave function. Optimization of orbitals pro-
ceeds via an unitary rotation among the virtuals from V2+V3 subspaces. Standard
correlated methods like CC, CI and MP are invariant to so called “canonical” trans-
formation (i.e. unitary transformation which does not “mix” occupied and virtual
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orbitals). Thus, without deleting the V3 space, this rotation has no effect on the
total correlation energy as calculated in the full VOS of HF-SCF canonical orbitals.
However, deleting the V3 OVOS space deteriorates the correlation energy much less
than a naive deletion of equally large subspace of the original, canonical VOS (i.e.
simple deletion of virtuals with highest orbital energies).

The key point in the OVOS method is specifying the functional, which will be
optimized in order to obtain desired reorganization of the VOS. In pioneering papers,
Refs. [24, 25], the authors used the second-order Hylleraas functional, J2, which
gives an upper estimate of the second-order MBPT energy E(2) for a arbitrary trial
wave function. Optimization with respect to this functional tends to modify the trial
wave function toward the first order MBPT wave function |Ψ (1) 〉, since it has its
global minimum there. In our later works, Refs. [42–44], we introduce slightly dif-
ferent functionals, first of which is based on the optimization of the CCSD energy
with truncated OVOS, or more precisely, the minimization of the quantity

L = (ECCSD − EOVOS
CCSD)

2
(16-1)

where ECCSD stands for CCSD energy in complete VOS, and EOVOS
CCSD is CCSD en-

ergy expressed expanded in V1+V2 subspace of OVOS. In the similar spirit we also
defined, even more successful alternative optimization functional, based on optimiza-
tion of the overlap of linearized CCSD wave function

L = 〈Φ0|TCCSD|TOVOS
CCSD |Φ0〉 (16-2)

where TCCSD stands for CCSD mono- and biexcitations in complete VOS, while
TOVOS

CCSD are defined as

TOVOS
1 =

∑

i,a∗
ta
∗

i a∗†i TOVOS
2 = 1/4

∑

i,j
a∗ ,b∗

ta
∗b∗

ij a∗†ib∗†j (16-3)

with an asterisk assigning virtuals from the V1+V2 subspace.
Once we have the optimization functional, we can easily express it in terms of

rotational parameters. From this expression we derive final scheme for determination
of optimized rotational parameters. In the pioneering works [24, 25] an exponential
parametrization of the orbital transformation was used, U = exp (R), where R is an
antisymmetric matrix. In this formulation, matrix elements of the RV2,V3 block need
to be determined to define the transformation uniquely. This rotation is automatically
unitary, although sometimes with problematic convergence. To improve the conver-
gence and overall applicability of the OVOS method, we introduced an alternative
optimization scheme [42], where direct parametrization of the orbital transforma-
tion was used, i.e. Uab were directly treated as rotational parameters. Since this
parametrization does not guarantee the unitarity of the transformation, additional
orthogonality conditions need to be taken into consideration. We used Lagrangian
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multipliers to guarantee the orthogonality of new, optimized virtual orbitals. Vary-
ing the optimization functional (16-2) supplemented by the orthogonality constrains
leads to the iterative diagonalization of the Q matrix (only the closed shell scheme is
presented, for details see Ref. [42, 43])

UTQU = λ (16-4)

in the V2+V3 subspace, assigned by the superscript +,

Qa+b+ =
∑

ij

∑

cd

tca+
ij tdb+

ij Pcd (16-5)

Pcd =
∑

e∗
Ue∗cUe∗d (16-6)

Also here, only the UV2,V3 block is important, because V1 orbitals are not
changed and the mutual V2 ↔ V2 and V3 ↔ V3 rotations have no effect on opti-
mization functional value. Final OVOS orbitals have to diagonalize the FV2,V2 block
of the Fock matrix, defining new orbital energies for the V2 OVOS subspace. Re-
sulting iterative procedure is very similar to the HF-SCF procedure and leads to the
significantly faster and more stable convergence of the method.

OVOS approach is closely related to the Frozen Natural Orbitals (FNO) method
[26–29]. FNO approach can be viewed as an approximation to the OVOS method,
based on the (16-2) functional, setting P = 1 instead of (16-6). In this case, proce-
dure (16-4) is not iterative, because Q does not depend on U anymore. Thus, in the
FNO approach there is no need to define the VOS splitting into V2 and V3 a priori.
However, limited summation in Eq. (16-6) in the OVOS method slightly enhances the
flexibility of the reorganization of the virtuals, i.e. OVOS represents the optimization
tailored specifically to the selected truncated V2 subspace. So, in FNO there is no
initial setting of V2 and V3 subspaces, V3 subspace is deleted a posteriori, without
V2 ↔ V3 splitting feedback. Generally, FNO is very efficient approximation to
OVOS, perhaps up to the substantial truncations of optimized VOS, where P is not
well approximated by the unity matrix anymore.

Overlap functional, defined in Eq. (16-2), can be used in a straightforward way
for the post-CCSD calculations. However, if we wish to use the truncated OVOS
already in the CCSD step, we must use a simplification, in which converged TCCSD
amplitudes are substituted by their first order estimates, (1)T . Optimization functional
becomes actually an overlap of the first-order wave function in the full and truncated
OVOS, respectively.

L = 〈Φ(1)
0 T|(1)TOVOSΦ0〉 (16-7)

Accuracy of the OVOS approach for any target method, e.g. CCSD(T), can
be significantly improved, by taking only the higher than the second order



436 P. Neogrády et al.

contributions from the calculation in OVOS. EMBPT(2) is taken from the full VOS,
since it is available prior to the OVOS CCSD/CCSD(T) calculation anyway.

EOVOS
CCSD(T),2 = EFull

MBPT(2) + X2 (16-8)

X2 = EOVOS
CCSD(T) − EOVOS

MBPT(2) (16-9)

This idea goes back to initial OVOS papers [24, 25] and is based on the fact, that
most of the correlation energy originates from the second order. In this way we can
eliminate major source of error by taking this term from complete VOS calculation.
The OVOS CCSD(T) energy corrected using Eq. (16-8) will be denoted in the appli-
cation part simply as CCSD(T)2. It is convenient to use an alternative notation

EOVOS
CCSD(T),2 = EOVOS

CCSD(T) + Y2 (16-10)

Y2 = EFull
MBPT(2) − EOVOS

MBPT(2) (16-11)

where Y2 is approaching zero if error of the second order in OVOS is approach-
ing zero as well. Thus, Y2 parameter serves as an indicator of the quality of OVOS
optimization [43, 44].

16.2.1. Applications of OVOS: A few Hints for Practical Calculations

OVOS is not a true “black-box” method for several reasons. First, the dimension
of OVOS must be set somehow prior to the calculation by, for instance, defining
percentage of VOs (Virtual Orbitals) to be deleted or by specifying exact number of
VOs to be retained in each irreducible representation. This might seem trivial, but in
more complicated cases like highly-symmetric systems, bond dissociation, calcula-
tion at the reaction energy profile or non-covalent interactions, balanced distribution
of optimized VOs in each symmetry species is crucial.

Perhaps the most demonstrative example is the BSSE (Basis Set Superposition
Error) corrected OVOS calculation of the interaction energy. The most commonly
used approach to eliminate BSSE is the Boys–Bernardi [45] counterpoise scheme,
where the same AO (Atomic Orbital) basis set for the supersystem and subsystems
is used. Since the supersystem (for simplicity a dimer), and monomers have different
number of occupied orbitals, number of VOs must be also different. Efficiency, to
which the truncated optimized VOs reproduce the original VOS, changes with both
the dimension and the percentage of truncation of the full size VOS. This is the
reason, why the “desired” truncation of OVOS for dimer cannot be the same as for
the monomers. Using the same truncation would lead to unbalanced recovery of
correlation energy and thus to inaccurate results.

There is a way of how to overcome this difficulty, applicable also in other
similar situations when simultaneous treatment of several species is necessary (e.g.
finite field calculation of electric properties, reaction energies, etc.). Specifying
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the truncation and carrying out OVOS optimization for any of involved species,
for instance dimer, we obtain an quantitative information about the “efficiency”
of optimization. As this quantity, we use the ratio of value of the optimization
functional in truncated optimized and the full VOS. Based on this ratio we can
act “backwards” and determine the truncation in all other involved species (e.g.
monomers). This is done by insisting on the best possible agreement of the ratios,
mentioned above, for each particular species (e.g. monomers) with the “reference”,
obtained independently (e.g. dimer).

Furthermore, obtaining OVOS according to the scheme described above, leads
to essentially BSSE-free calculation of interaction energies at subsequent CCSD(T)
step. Effect of BSSE, i.e. using of the supermolecular AO basis for monomers, is
almost completely absorbed into the optimized VOs, meaning that their resulting
number is almost equal to the number corresponding to genuine original AO basis
sets for each monomer.

16.2.2. Prerequisites for Large-Scale CCSD(T) Calculations

When talking about extending limits of applicability of CC methods, it is useful
mentioning also the progress in the area of development of more efficient computer
programs. It is mainly the synergic effect of using the OVOS technique combined
with more powerful computer implementation of the CCSD(T) method that enables
calculations of larger problems within this framework. Several robust CCSD(T)
codes in different program packages appeared recently [46–50]. Among those, we
will shortly describe our new implementation [46] in the MOLCAS program package
[9, 51], where both OVOS and CCSD(T) methods are implemented in the efficient
and highly parallelized way.

For large-scale CC calculations several crucial aspects need to be addressed at
the same time. First, it is the huge disk and internal memory requirements. Even
quantities like CCSD T2 amplitudes, scaling as o2v2, can not be stored at once in-
core. The two electron integrals, mainly (ab|cd) integrals over virtuals (scaling as v4,
where a,b,c and d are indexes of virtual orbitals) are usually too large to be stored
even on disk. Another problem is the rapidly increasing number of I/O operations,
but mainly the arithmetics, scaling as o2v4 and o3v3 for the single CCSD step and
o3v4 and o4v3 for the noniterative triples step.

Ideas of the Cholesky decomposition (CD) of the 2-electron integrals, segmen-
tation of the virtual orbitals and efficient matrix-multiplication (BLAS) oriented al-
gorithms are basic concepts our new CCSD(T) implementation profits from. CD
of 2-electron integrals, which is the leading concept of the new generation of the
MOLCAS modules (SCF, CASSCF, CASPT2) [9] is expression of 4-index AO
integrals in terms of 3-index quantities [37–39]

(μν|λσ ) ≈
M
∑

J=1

LJ
μνL

J
λσ , (16-12)
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where the Mulliken notation was used. CD (which is analogous to the DF/RI tech-
niques) opens a possibility for much simpler handling with the 2-electron AO and
MO integrals, thus enabling more efficient factorization of several terms in the CC
equations. Another important tool, enabling elimination of the memory storage re-
quirements and at the same time splitting of the CC equations into independent tasks
(within a single CCSD iteration) is the segmentation, or blocking, of virtual orbitals.
If we divide virtual orbitals into N′ blocks, with the number of virtuals in each block
being roughly v′ ≈ v/N′, corresponding block of e.g. T2 amplitudes

(

ta
′b′

ij

)

requires

only o2v′2 words. Similarly, other larger arrays and intermediates split into smaller
blocks, since they are labeled by at least one virtual orbital index.

We can reformulate the CCSD procedure assuming, that only such fragments of
arrays can be kept in-core. This reduces the memory requirements practically to any
extent, since N′ can be chosen large enough to fit the blocks into a particular memory.
Moreover, whole procedure splits into ≈ N′2 independent tasks (in single CCSD
iteration), which is beneficial in parallelization, since each task can be performed
on separate node or parallel process (PP). Unfortunately, such segmentation intro-
duces an extra penalty in the form of additional I/O, proportional to N′2o2v2. As in
any other CCSD parallel algorithms, there is also a significant data transfer among
nodes – a complete set of amplitudes (also proportional to o2v2) need to be inter-
changed and updated among all nodes after each CCSD iteration. Obviously, these
additional processes, proportional to o2v2 are asymptotically insignificant compared
to o2v′4 and o3v′3, if the computed system becomes large.

In our CCSD code two variants of handling of the most difficult (ab|cd) integrals
are implemented. First is the “pre-calculation” algorithm, where (ab|cd) integrals are
recalculated from Cholesky vectors prior to the iterative procedure. These integrals
are stored on disk and read in each CCSD iteration. In massively parallel run, certain
combination of occupied/virtual indices are locked to particular parallel task, which
mean that the number of integrals needed to be stored on each node decreases with
the number of PP, roughly as 1/PP. Second is the “on-the-fly” algorithm, where direct
reconstruction of desired blocks of these integrals from Cholesky vectors are done
on-the-fly whenever needed, without storing them. The efficiency of both algorithms
depends on the size of calculated system and the setup of the available computer
hardware. Since the dimension of the Cholesky vector is typically quite large, it is
usually faster to read (a′b′|c′d′) block than to recalculate it from Cholesky vectors
(according to Eq. 16-12). However, this is true mostly for PPs with single, or smaller
number of CPUs/cores (1–2), while with increasing this number direct recalculation
of integrals starts to be more efficient. Another limitation is the disk capacity. If we
perform large calculation on small number of nodes, the portion of (ab|cd) integrals,
that need to be stored on each node can easily exceed the disk capacity. In such
case, “on-the-fly” algorithm is the only choice. However, as mentioned above, with
increasing number of nodes – N, disk space requirements decrease proportionally to
1/N. Thus, for massively parallel runs, required portion of (ab|cd) integrals can be
stores on local disks and the “pre-calculation” remains feasible.
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Our CCSD implementation is completed by noniterative T3 program taken from
DIRCCR12OS code [52], with the memory requirement optimized also via segmen-
tation of virtual orbitals. Triples (T) step is typically the most time consuming part of
the whole CCSD(T) calculation, mainly for systems with large number of correlated
electrons. On the other hand, (T) step can be almost ideally parallelized, without any
significant data transfer. Our CCSD(T) code was tested so far mostly on distributed
memory clusters with typically one to eight cores, 1GB memory per core and several
hundreds of GB of local scratch disk on each node. In this setup, CCSD(T) calcula-
tions scaled almost linearly up to hundreds of nodes. Details of implementation and
performance can be found in Ref. [46].

16.3. TESTING THE OVOS PERFORMANCE

In the following two sections we will present few typical applications in which the
OVOS technique allows more extended CCSD(T) calculations than it was possible
with a standard approach. Applications go either to larger molecules or to CCSD(T)
calculations with large basis sets needed for obtaining accurate benchmark results.
Before applying the OVOS CCSD(T) technique to large-scale problems, careful ver-
ification of its accuracy and reliability is needed. The usefulness of the OVOS ap-
proach was demonstrated in our previous papers [42–44, 53–55] on reaction energies
as, e.g., the dissociation energy of pentane to propene and ethane, spectroscopic con-
stants, dipole moments and dipole polarizabilities of small and medium molecules,
interaction energies of the hydrogen-bonded molecules like the formamide and for-
mamidine dimers, van der Waals interactions of typical stacking structures which
serve as a model of interactions in biological systems etc. In this section we will
present a few examples showing the performance of OVOS in CCSD(T) calculations
of molecular electric properties, intermolecular interactions and electron affinities
of relatively small molecules. These properties are mostly quite sensitive to the
quality of the method and may serve as a touchstone of the performance of OVOS.
For all these testing examples OVOS results were confronted with the full virtual
space CCSD(T) results. Subsequently, in Section 16.4 we will provide benchmark
calculations on a few properties of biologically important molecules. All CCSD(T)
calculations were performed by the computer program developed in our laboratory,
which is a part of the MOLCAS package [9, 51].

16.3.1. Molecular Properties

First testing examples documenting the performance of OVOS were accurate
CCSD(T) calculations of the dipole moment and dipole polarizabilities of a series
of atoms and their anions, simple molecules like CO and formaldehyde, followed
by larger push-pull 1-amino-4-nitrobutadiene molecule [42, 53, 54]. In this section
we summarize in Table 16-1 the frozen-core CCSD(T) finite field calculations of the
dipole moment and dipole polarizabilities of thiophene with a medium aug-cc-pVTZ
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Table 16-1. CCSD(T)2 dipole moment and dipole polarizabilities (a.u.) of thiophene
with differently truncated OVOS

% of OVOS No. of VOs μ αzz ᾱ  α

aug-cc-pVTZ
100 304 0.204 77.75 64.71 30.29
60 182 0.204 77.77 64.73 30.26
50 152 0.202 77.78 64.73 30.27
40 121 0.203 77.67 64.73 30.32

aug-cc-pVQZ
100 566 0.214 77.76
60 339 0.212 77.74
50 283 0.212 77.78
40 226 0.213 77.87

and a larger aug-cc-pVQZ basis sets [56–58]. CCSD(T) calculations of thiophene
with the aug-cc-pVQZ basis set (566 virtual orbitals) are not quite effortless with
a routine workstation so it is beneficial to consider less demanding approach. The
dipole moment of thiophene is surprisingly insensitive to the truncation of OVOS.
Even when truncated to 40% of the full VOS the result differs from the full VOS
by only 0.001 a.u. and can be obtained by about 40 times faster. The dipole moment
with smaller aug-cc-pVTZ basis is underestimated by almost 5% with all OVOS
truncations. The dipole moment can be obtained faster and more accurately (in full
agreement with experiment [59]) with larger aug-cc-pVQZ basis with OVOS trun-
cated to, say, 50% of the full VOS. CCSD(T) dipole moment of thiophene with small
basis sets, as 6-31G+pd or 6-31G+pdd are unreliable, being overestimated by a factor
of almost two [44, 60].

Dipole polarizabilities of thiophene are almost insensitive to the basis set when
using at least aug-cc-pVTZ and aug-cc-pVQZ bases. CCSD(T)2 results with OVOS
truncated down to 50% of the full VOS of both basis sets are accurate to within 0.03
a.u. Again, calculations with smaller basis sets lead to inaccurate results [60] and
are clearly outperformed by CCSD(T)2 calculations with larger bases and properly
selected OVOS. More details can be found in Refs. [44, 54].

16.3.2. Intermolecular Interactions

Intermolecular interactions, particularly weak van der Waals interactions, are very
sensitive to the quality of the method. When using OVOS we must be very careful
in proper balancing the truncation of the virtual space for the supersystem and for
subsystems. Some hints were described in Section 16.2.1. Particular attention must
be paid to the treatment of BSSE within OVOS. Among most desired applications
belong benchmark calculations of H-bonded and stacking interactions, typical in
molecules participating in biological systems. Recently [55], we have demonstrated
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good performance of OVOS in calculations of CCSD(T)2 interaction energies of
the model H-bonded complexes, the formamide and formamidine dimers as well as
stacked formaldehyde and the ethylene dimers. With the space of virtual orbitals
reduced to 50% of the full space, which means reducing computational demands
by an order of magnitude, the interaction energy for both H-bonded and stacking
dimers is affected no more than by 0.1 kcal/mol. This error is much smaller than
is the error when interaction energies are calculated using limited basis sets. In
the next section we will show benchmark calculations on relative interaction en-
ergies of different structures of the van der Waals benzene and uracil dimers. Quite
large basis sets could be used thanks to our efficient parallelized computer code
employing Cholesky decomposition combined with reasonably reduced OVOS. To
ensure that we are obtaining “good results for a good reason” we present at least
one testing example of using OVOS in similar applications in Figure 16-2. It is
seen that the part of the CCSD(T) energy hypersurface which represents parallel
displacement of the ethylene dimer is represented by OVOS excellently. There is
a slight shift of interaction energies but main features of the surface are preserved
with OVOS truncated to 50% with just 10% of the computer time needed for the full
VOS calculation. The minimum CCSD(T) energy is calculated at R1 = 3.301 and
R2 = 3.040 Å, respectively, with the full VOS. With OVOS truncated to 50% are
optimized distances practically the same, R1 = 3.299 and R2 = 3.044 Å. Interaction
energies with the full VOS and OVOS are −0.71 and −0.73 kcal/mol, respectively.
For R2 = 3.04 Å and R1 = 0.0 Å (sandwich D2h structure of the dimer) the energy
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Figure 16-2. CCSD(T)2 interaction energies [kcal/mol] of the stacked ethylene dimer with full VOS
(100%) and OVOS reduced to 50% with aug-cc-pVTZ basis set. R2 distance is fixed at 4.6 Å. Results are
based on data in Ref. [55]
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is repulsive. We do not present this part of the energy hypersurface in Figure 16-2.
For details see Ref. [55].

Quite different is another testing example, namely interactions between coinage
metals (M) and the SCH3 radical. From the point of view of applications of OVOS
to intermolecular interactions the M· · ·SCH3 complex differs from those treated
in Ref. [55] in several aspects. First, included are scalar relativistic effects us-
ing the second-order Douglas–Kroll–Hess CCSD(T)-DK approach. Second, both
interacting species are open-shells. Consequently, the interaction of a metal with
SCH3 in its ground state, 2A

′
(assuming simplified C3v structure) leads to at least

two different products, namely the closed shell singlet 1A
′

and the triplet 3A
′′

state
of the M· · ·SCH3 complex. Open-shell complex and separated species were treated
by the approximate spin-adapted ROHF-CCSD(T) method developed in our labo-
ratory [61]. Calculations of the Cu, Ag, and Au interacting with the SCH3 radical
follow up investigations of the bonding mechanism between the coinage metals (M)
and the lone-pair closed shell ligands (L), M· · ·L, like NH3, H2O, or H2S published
some time ago [62, 63].

Based on the analysis of relativistic effects, we were able to provide a consistent
interpretation of trends in M· · ·L interactions which is based on the idea of partial
charge transfer from the lone pair carrier L (employing a molecular orbital picture of
a ligand) to the coinage metal atom. The molecular orbital picture requires also that
there is certain overlap between the electron donor (lone pair orbital of L) and the
electron acceptor (valence ns orbital of M). This requirement makes the interaction
pattern symmetry-dependent and is the main cause of the distinction between the
geometric structures of the M· · ·NH3 (C3v) and non-planar M· · ·OH2 and M· · · SH2
complexes. Applying this picture to M· · ·SCH3 we expect that the M–S–C bond is
bent. Precisely this is seen in Figure 16-3. The bond angles optimized using the
ROHF-CCSD(T) method [61] with the full VOS and with OVOS truncated to 60%,
respectively, agree to within 0.04◦ for the singlet and the triplet states of M· · ·SH2.
Relying on the experience with the bond angle optimization for Cu· · · SCH3 were
bond angles in remaining Ag· · · SCH3 and Au· · ·SCH3 complexes optimized only
using OVOS truncated to 60%.

Similarly, so truncated OVOS reproduces the full VOS ROHF-CCSD(T) M–S
optimized bond length in both states of M· · ·SCH3 excellently, Figure 16-4. For the
1A

′
state of Au· · · SCH3 are Re with the full VOS and the OVOS, 2.241 and 2.242

Å, respectively, while the corresponding bond lengths Re for the 3A
′′

state are 2.327
and 2. 329 Å. For a general use for obtaining optimized geometries of larger systems
Taube and Bartlett [66] developed the gradient technique based on the Frozen Natural
Orbitals (FNO), which is closely related to OVOS.

We note that the usual long-range model fails in describing the bonding features
of M· · ·L complexes, with the exception of very large distances. The transfer of
the electronic charge to M depends on the ionization potential (IP) of the lone pair
electron in L and the electron affinity (EA) of M. The importance of these factors for
M· · ·NH3, M· · ·OH2 and M· · ·SH2 complexes has been discussed in our earlier pa-
pers [62, 63]. Relativistic effects enhance EA of the metal and support the stability of
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these complexes significantly, particularly with gold. Previously studied complexes
have a closed shell ligand. The SCH3 radical may interact with the coinage metal
either with its doubly or singly occupied lone-pair orbital. The same mechanism as
in M· · ·L complexes with a closed shell ligand is also valid for the Au· · · SCH3
complex (and similarly with other coinage metals) in the 3A

′′
state. It results from

the partial charge transfer of electrons in the doubly occupied 10a
′

lone pair orbital
(IP=9.2 eV) to the metal, leaving a single electron in the second lone pair of SCH3.
The bond in the 1A

′
state of the Au· · · SCH3 complex is essentially a covalent bond

created by electrons in the singly occupied lone pair of SCH3 and the valence ns
electron of the metal. Detailed description of the bonding mechanism in both states of
M· · · SCH3 will be presented elsewhere. For the purpose of this paper it is important
that OVOS works very well in describing the structural features of these complexes.
CCSD(T) interaction energies represented by OVOS are satisfactorily accurate as
well. With the full VOS is the CCSD(T)-DK interaction energy of the 1A

′
state

of the Au· · · SCH3 complex 87.17 mHartree (54.7 kcal/mol) and with OVOS it is
88.41 mHartree (55.5 kcal/mol). Full VOS and OVOS interaction energies for the
3A

′′
state are 28.39 and 29.24 mHartree (17.8 and 18.3 kcal/mol, respectively) with

the aug-cc-pVTZ-DK basis set. This accuracy is fully satisfactory for considering
structural and energetic aspects of medium inorganic complexes tractable with the
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single-determinant reference closed shell or open-shell CCSD(T). Basis set effects
are much larger than is the inaccuracy caused by the OVOS truncation. M· · · SCH3
complexes are microscopic representatives of bonding features encountered in the
Self-Assembled-Monolayers (SAMs) or in various compact metal-ligand species
participating in some biological processes. OVOS allows CCSD(T) calculations with
satisfactorily diffuse (i.e. large) basis sets, which may hopefully serve as benchmark
results for DFT calculations for larger complexes of this kind.

16.3.3. Electron Affinities

Calculations of electron affinities (EA) require sophisticated treatment of the electron
correlation and large diffuse basis sets. Unfavorable scaling of CCSD(T) with the
number of virtual orbitals can be alleviated by OVOS, but finding well balanced
truncation of the virtual space for the neutral and the anionic species is difficult.
Therefore, calculation of EA is a good testing example of the OVOS method.

Seemingly a simple task, adiabatic electron detachment energy of the oxygen
molecule has an interesting story of difficulties in obtaining this property accurately,
both experimentally and theoretically. Theoretical difficulties are summarized in,
e.g., Ref. [43]. Experimental measurements have also undergo a long series of im-
provements [67]. Finally, by employing CCSD(T) calculations with extrapolation
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to the CBS limit, vibrational ZPE, core correlation, scalar and spin-orbit relativistic
corrections we have succeeded [68] in obtaining a highly accurate electron affinity of
this molecule in the ground state at 0 K, 0.449±0.008 eV, which is in superb agree-
ment with the most recent photoelectron spectroscopy (PES) electron affinity of O2
measured by Ervin et al. [67], 0.448±0.006 eV.

ROHF-CCSD(T) calculation with the largest d-aug-cc-pV6Z basis (415 virtuals)
used in the full VOS study of O2 [67] is relatively demanding but can be performed
more effectively by truncating the virtual space. Results are presented in Table 16-2.
CCSD(T)2 calculations [43] with the (d)-aug-cc-pVXZ series [56–58] show that
OVOS reproduces the trend with increasing X in both series quite well, even if EA
with OVOS truncated to 50% is slightly overestimated with respect to the full VOS.
OVOS with truncation to 60% gives EA which deviates from the full VOS by about
0.01 eV (or even less with d-aug-cc-pVXZ basis sets). Considering the error bars of
best experimental measurements (and theoretical calculations as well) this is quite
satisfactory for most applications of the OVOS method to electron affinities. For
bases smaller than (d)-aug-cc-pV5Z is the basis set effect larger than is the error due
to the OVOS truncation.

Now, let us take EA=0.407 eV, calculated with our best d-aug-cc-pV6Z basis set
as a reference for some comparisons of CCSD(T) results with OVOS and full VOS,
both having similar number of virtual orbitals, v. We note, e.g., that EA with aug-
cc-pV6Z with OVOS reduced to 50% (v = 171) or with d-aug-cc-pV5Z (v = 158)
are closer to the best result than are full VOS results with smaller basis sets, as
d-aug-cc-pVQZ (v = 201) or aug-cc-pVQZ (v = 151).

Table 16-2. Electronic contribution to adiabatic EA (in eV) of the oxygen molecule with
the full VOS CCSD(T) method and CCSD(T)2 using differently truncated OVOSa

% of OVOSb

basis set 100 70 60 50

aug-cc-pVTZ 0.358 0.359 0.343 0.344
aug-cc-pVQZ 0.385 0.395 0.389 0.390
aug-cc-pV5Z 0.401 0.406 0.408 0.413
aug-cc-pV6Z 0.405 0.412 0.417 0.419
CBSc 0.415 0.419 0.428 0.432

d-aug-cc-pVTZ 0.365 0.364 0.366 0.367
d-aug-cc-pVQZ 0.389 0.388 0.395 0.401
d-aug-cc-pV5Z 0.403 0.408 0.410 0.411
d-aug-cc-pV6Z 0.407 0.408 0.412 0.418
CBSc 0.415 0.420 0.421 0.424

a For more details, see Ref. [43].
b With respect to the full VOS of the O−2 anion.
c Extrapolated using the three-point fit with respect to 1/X3.
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16.4. LARGE SCALE CALCULATIONS WITH OVOS

16.4.1. Benzene Dimer

An interesting application of the OVOS CCSD(T) methodology is the recently pub-
lished benchmark calculation of relative stability of various structures of benzene
dimer [69]. It is based on the pilot study on performance of OVOS for different
hydrogen bonded systems and some typical stacking interactions, as summarized in
Section 16.3.2. In Figure 16-5, three lowest lying structures are shown. Their geome-
tries were obtained by full gradient optimization using BLYP-D/TZV [69], with the
empirical dispersion term optimized against the T and PD CCSD(T)/aug-cc-pVTZ
PES cuts [69].

It is known for some time [70], that the so-called “sandwich” structure of D6h

symmetry, not show in the figure, is relatively well energetically separated from the
almost isoenergetic TT, T and PD structures. However, which of TT/T/PD structures
is the lowest in energy, was quite widely discussed [71] and none of methodologies
used so-far were convincing enough to deliver the “ultimate” answer. Meanwhile,
on-the-fly ab-initio dynamics of benzene dimer at the DFT-D level [72] revealed,

Figure 16-5. Cs TT (T-shaped Tilted, left), C2v T (T-shaped, middle) and C2h PD (Parallel-Displaced,
right) structures of benzene dimer

Figure 16-6. Stacked uracil dimer



OVOS Calculations for Larger Molecules 447

that the barrier between the TT, T and PD structures can be overcome already at
10K, thus making discussion about relative stability of TT/T/PD based solely on the
electronic energy only academic. Nevertheless, knowledge of high-accuracy inter-
action energies is extremely beneficial in designing, parameterizing and testing of
novel, typically approximate, methods.

In Table 16-3 the plain CCSD(T), OVOS CCSD(T)2 and hybrid extrapolated
values of stabilization energies for T, TT and PD structures are shown. Structure
“PDp” served as a reference for calibrating our OVOS CCSD(T) methodology with
respect to QCISD(T) data published by Janowski et al. [73]. Effect of basis set for all
structures is quite significant, stabilization energies change by almost 0.5 kcal/mol
(i.e. ∼20%). At the aug-cc-pVDZ level, T structure seems to be stabilized by
∼0.13 kcal/mol more than the PD, while TT structure by almost 0.3 kcal/mol. At
the CBS level, T and PD became degenerate within the accuracy of our methodol-
ogy, which was estimated to be ±0.03 kcal/mol. TT structure, at the CBS, is only
by ∼0.8 kcal/mol more stable that the other structures. Comparing to the results of
other groups (see Table 16-3), nice agreement (i.e. ±0.05 kcal/mol) is achieved. It
must be, however, emphasized, that significant part of these energy differences can
be attributed to use of different geometries obtained in various ways (see References
in the table).

Table 16-3. Benzene dimer stabilization energies [kcal/mol] for various structures, methods, basis
sets and CBS extrapolations. Geometry of the PDp structure was taken from Ref. [73]

Method/Basis set PD TT T PDp

CCSD(T)/aug-cc-pVDZ 2.15 2.44 2.28 2.29 (2.30)a

CCSD(T)2/aug-cc-pVTZ 70% OVOS 2.49 2.66 2.57 2.53 (2.55)
CCSD(T)2/aug-cc-pVQZ 60% OVOS 2.63 2.75 2.65 2.64 (2.61)

CCSD(T)2/(Q→5)b 2.74 2.81 2.71
CCSD(T)2/(Q→5)c 2.70 2.78 2.69

Sherrill et al. [74] 2.63 – 2.61
Szalewicz et al. [75] 2.70 2.80 2.68
Werner et al. [76] 2.72 – 2.68
Hobza and Kim et al. [71] 2.73 2.83 2.77
Bludský et al. [77] 2.73 2.82 2.70
Pulay et al. [73] 2.66 – 2.68

DFT-D/BLYPd/TZVP 2.88 2.93 2.80
DFT-De/BLYP/TZVP 2.57 2.33 2.03

a In parenthesis, “reference” QCISD(T) full VOS energies calculated by Janowski et al. [73].
b (Q→5) extrapolation using Helgaker’s formula [78] in the form: SCF/5 + corr. MP2/(Q→5) +
 CCSD(T)OVOS/(T→Q). See Ref. [69] for details.
c Kim’s scheme [71] with interaction energies calculated as SCF/X + corr. MP2/X +
 CCSD(T)OVOS/(X-1), where X stands for Q, 5 and X-1 for T, Q. See Ref. [69] for details.
d Empirical dispersion term optimized on the T and PD CCSD(T)/aug-cc-pVTZ PES cuts [69].
e Empirical dispersion term with the original parameters fitted to S22 test set [10].
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Error of the OVOS CCSD(T)2 approach can be seen from comparison with the
full VOS QCISD(T) data by Pulay et al. [73]. However, certain facts have to be
realized before making any conclusions. It was demonstrated, that for the benzene
dimer QCISD(T) and CCSD(T) stabilization energies agree to within 0.004 kcal/mol
in aug-cc-pVTZ basis set[73], which means that neglecting of certain terms in
CCSD(T) does not lead to significant errors. Real sources of error, besides using
OVOS technique, are the use of approximate, Cholesky-decomposed 2-electron
integrals and the elimination of linear-dependent AO basis functions. From our ex-
perience, CD can lead to errors in interaction energy not larger than 0.01 kcal/mol, if
1×10−5 threshold is applied in the decomposition. Larger errors can be attributed to
the elimination of linear-dependent basis functions, which can be ∼0.03 kcal/mol, if
1× 10−5 threshold is applied in elimination. Summing up all these arguments, error
of OVOS CCSD(T)2 is within the error bars of the applied methodology and does
not significantly worsen the results.

So far we have demonstrated, that OVOS CCSD(T) approach is accurate enough
to compete with the full VOS calculations. What is not shown in the Table 16-3,
is the number of VOs, determining the cost of the correlation energy calculation.
For instance, number of VOs for the TT structure in aug-cc-pVQZ (after deleting of
certain number of linear dependent AO basis functions) is 1,416, which was reduced
by OVOS to 851 (∼60%) without significant loss of accuracy. In combination with
efficient parallelization and Cholesky decomposition, for this system (60 correlated
electrons, 851 virtual orbitals, 6,940 Cholesky vectors) 16 iteration of CCSD were
finished in 82 h on 4 computational nodes (Intel Core2 quad-core 2.4 GHz CPUs, par-
allelization within computational node was done only by threaded BLAS routines)
and the perturbative triples step in 408 h. In terms of quartic scaling of CCSD(T) with
respect to the number of VOs, this leads to speedup of almost an order of magnitude.
To keep the accuracy below a few hundredths of kcal/mol, we used very “conserva-
tive” truncation of OVOS at the aug-cc-pVTZ level, 70%, reducing number of VOs
from 786 to 541. 16 iteration of CCSD were finished in 10 h on 6 computational
nodes and the perturbative triples step in 48 h.

16.4.2. Uracil Dimer

Another example demonstrating robustness of OVOS CCSD(T) approach based on
Cholesky decomposed 2-electron integrals is the uracil dimer in the “stacked” ar-
rangement, studied in the work of Pitoňák et al. [79].

As shown in Table 16-4 stabilization energies obtained by various methods (MP2,
MP3, SCS-MP2 [81], SCS(MI)-MP2 [82] and DFT-SAPT [83]) close to the CBS
range from 7.92 (MP3) to 11.08 (MP2) kcal/mol, i.e. they are lying within the inter-
val of 3.2 kcal/mol. Excluding the MP3 method and taking into account only those
methods, which are routinely used for calculation of non-covalent interactions, this
interval reduces only slightly, to 2.8 kcal/mol.
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Table 16-4. Stabilization energy (in kcal/mol) of stacked uracil dimer obtained by various meth-
ods, basis sets and CBS extrapolations. (a)XZ stands for Dunning’s (aug-)cc-pVXZ basis set
[80]. X→Y represents CBS extrapolation from basis X to Y according to Helgaker et al. [78]

Method Stabilization energy

MP2(aTZ→ aQZ) 11.08
MP3(aTZ→ aQZ) 7.92
SCS-MP2(TZ→ QZ) 8.30
SCS(MI)-MP2(TZ→ QZ) 9.60
DFT-SAPT/aTZa 9.26

CCSD(T)/6-31G*(0.25) 7.59 (10.17)b

CCSD(T)/6-31G**(0.25,0.15) 7.75 (10.27)
CCSD(T)/aDZ 8.54 (9.82)
CCSD(T)/aTZ OVOS 60% 9.33 (9.79)
CCSD(T)/(aDZ→ aTZ OVOS) 9.77

a For details see Ref. [79].
b Values in parenthesis obtained according to Eq. (16-13).

In order to obtain the “benchmark” value of the stabilization energy, we car-
ried out a series of CCSD(T) calculations in several basis sets up to the largest,
aug-cc-pVTZ (920 basis functions) basis set. As advocated by Hobza et al. [84–86],
quite reliable estimates of CCSD(T)/CBS interaction energies can be obtained by
combining relatively “cheap” MP2/CBS energy with the CCSD(T) one, calculated
in small or medium size basis set according to the following equation:

CCSD(T)/CBS ≈ MP2/CBS+ΔCCSD(T)/small basis, (16-13)

where

ΔCCSD(T)/small basis = CCSD(T)/small basis−MP2/small basis. (16-14)

Comparing errors of CCSD(T) energies calculated in 6-31G* (0.25) and 6-31G**
(0.25,0.15) with respect to CCSD(T)/CBS, i.e. −2.18 and −2.02 kcal/mol, with
errors of estimated CCSD(T)/CBS (see Eq. 16-13 and values in parenthesis in
Table 16-4), calculated in the same basis sets, i.e. 0.4 and 0.5 kcal/mol, the benefit of
using (16-13) is obvious. Deviation of estimated CCSD(T)/CBS with respect to the
“benchmark” CCSD(T)/CBS is thus reduced to only 0.5 kcal/mol in all used basis
sets.

In order to obtain the best estimate of CCSD(T)/CBS, calculation of CCSD(T)
correlation energy was done in aug-cc-pVTZ basis set in the OVOS truncated to
60%. This calculation employed 558 optimized VOs and 84 correlated electron.
Though it might seem, that the calculation with about 500 virtual orbital should not
be “too” demanding, opposite is true. The perturbative triples step, scaling as o3v4,
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becomes time-determining for systems with large number of correlated electrons.
While 21 CCSD iteration on 4 computation nodes (same specification as for benzene
dimer, see above) took 41 h, calculation of perturbative triples took almost 168 h on
5 of these computational nodes. Without using truncated OVOS, computational time
could be expected to be over 1,000 h in this setup.

16.4.3. Towards More Accurate Electron Affinity of Uracil

When Bachorz, Klopper and Gutowski [87] have published their paper on the elec-
tron affinity of the uracil molecule, it was clear that this is a challenge for CCSD(T)
with OVOS. One reason is the importance of EA of the nuclear acid bases (NBA),
linked to the discovery of damage to single stranded DNA induced by low-energy
electrons. This has stimulated much research on electron attachment of electrons to
NBA [88, 89]. Clearly, electron attachment to the isolated NBA itself can not ex-
plain the mechanism of damage to DNA. Environmental effects are substantial, see
Ref. [88, 89] and references therein. While it is difficult to calculate accurately EA
of a single NBA by the ROHF-CCSD(T) method, it is nearly impossible to perform
calculations for NBA surrounded by realistic environment. It appears that EA of
NBA’s can be significantly enhanced by interaction with a single water molecule.
This can be tractable with CCSD(T) provided that the OVOS performs better than
other methods. Obviously, for larger systems only DFT methods combined with the
molecular mechanics treatment can help in solving the problem of damage to DNA
by low-energy electrons. Having all this in mind it appears to be useful to tune DFT
methods by providing accurate EA’s of at least simple systems. We note that results
of calculations of electron affinities with more simple methods, like DFT or MP2
overestimate EA of, e.g., uracil, by as much as 0.2 eV. Therefore, as a first step, we
try to show how OVOS performs in obtaining accurate adiabatic EA of a single uracil
molecule by large basis set CCSD(T) calculation. We calculate the valence-bound
EA with an extra electron attached to the antibonding π∗ orbital. Our results, sum-
marized in Table 16-5, should be understood as an extension of accurate calculations
by Bachorz et al. [87] and as demanding validation of OVOS. First, we note, that
using OVOS reduced to 60% of the full VOS, the error in EA is 11 meV in the aug-
cc-pVDZ basis set and only 7 meV with larger aug-cc-pVTZ basis set. Therefore, we

Table 16-5. Spin-adapted ROHF CCSD(T)2 contribution to EA (the adiabatic electron
detachment) of the uracil molecule [eV]. Dunning’s et al. aug-cc-pVXZ basis sets [56]

Electron affinity of the uracil molecule

% of OVOS aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVQZ

100 −0.189 −0.150
60 −0.200 −0.157 −0.141
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can expect that OVOS can be safely used with even larger aug-cc-pVQZ basis. Such
calculation was not tractable before with standard CC approach. When going from
the aug-cc-pVTZ to larger QZ basis the electronic contribution to EA is less negative
by 16 meV. Upon extending the basis set, the extra electron tends to be attached to
the uracil molecule. Taking vibrational, core correlation and other corrections (alto-
gether +0.155 eV) and the CBS limit from our ROHF-CCSD(T) aug-cc-pVTZ and
QZ results, we arrive at AEA of −15 meV. This means, that the extra electron is
unbound in the isolated uracil. Bachorz et al. [87] report the final value of +40 meV.
The difference is, that we used the spin-adapted ROHF-CCSD(T) method, which
reduces the correlation energy of the anion. This would reduce their EA by about
30 meV arriving therefore to the value of just 10 meV. Second, Bachorz et al. [87]
extrapolated second-order MP2 correlation energies. In any case, both results lead
to unbound or to very weakly bound electron attached to the uracil. Difficulties in
accurate calculations of the AEA of uracil are, that large basis sets must be used
in conjunction with sophisticated treatment of the electron correlation. The problem
also is that the uracil anion has puckered structure, while the neutral molecule has
a symmetry plane. Therefore, we can not employ the symmetry implemented in our
open-shell CCSD(T) code. Residual basis set effects, spin adaptation, core correla-
tion effects are small, but even small effects matter in accurate calculation of the
electron affinity of uracil. We expect, however, that with OVOS we will be able to
treat EA of the hydrated uracil and provide benchmark results for DFT and other
more approximate methods.

16.5. CONCLUSIONS

The progress in the implementation of efficient algorithms, efficient treatment of the
two-electron integrals and high level of parallelism extend the feasibility of CCSD(T)
single-reference calculations towards calculations of gradually larger molecules.
When combined with methods like OVOS or FNO allowing substantial truncation
of the virtual orbital space in a controllable way, the painful computational con-
sequences of the scaling of CCSD(T) with the number of virtual orbitals can be
alleviated substantially. Using of OVOS is particularly useful when applied to calcu-
lations with extended basis sets aimed at accurate predictions of molecular properties
of relatively large molecules not amenable to CCSD(T) calculations by a standard
way. We have demonstrated the viability of OVOS in highly accurate calculations of
molecular electric properties, electron affinities, reaction energies, interaction ener-
gies and other applications. Reliable results can be obtained with OVOS truncated
to 50–60% of the full virtual space with computer time reduced by an order of
magnitude. We believe that even larger computer effectivity can be achieved when
using OVOS in higher level CC calculations, particularly for the iterative treatment
of triples and iterative or approximate calculations of quadruples. First such results
were obtained by Kallay [90] who demonstrated in higher level CC calculations the
OVOS technique may lead to more that two order of magnitude shorter computer
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time in comparison with calculations with the full virtual space. We believe that
OVOS can be combined also with the MR CC calculations. The OVOS method can
be considered as a viable alternative of other methods which extend applicability
of CC methods to larger molecules with larger basis sets enhancing their predictive
power substantially.

ACKNOWLEDGMENTS

We acknowledge the support of the Slovak Research and Development Agency
(Contract No. APVV-20-018405) and the Slovak Grant Agency VEGA under the
contracts No. 1/0428/09 and 1/0520/10. This work was also part of the research
project No. Z40550506 of the Institute of Organic Chemistry and Biochemistry,
Academy of Sciences of the Czech Republic and it was supported by Grants No.
LC512 and MSM6198959216 from the Ministry of Education, Youth and Sports of
the Czech Republic.

REFERENCES
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10. P. Jurečka, J. Černý, P. Hobza, D. R. Salahub, J. Comput. Chem. 28, 555 (2007)
11. Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 120, 215 (2008)
12. T. Schwabe, S. Grimme, Phys. Chem. Chem. Phys. 9, 3397 (2007)
13. J. Noga, R. J. Bartlett, J. Chem. Phys. 86, 7041 (1987)
14. M. Musiał, S. A. Kucharski, R. J. Bartlett, J. Chem. Phys. 116, 4382 (2002)
15. M. Kallay, P. R. Surjan, J. Chem. Phys. 115, 2945 (2001)
16. K. Raghavachari, G. W. Trucks, J. A. Pople, M. Head-Gordon, Chem. Phys. Lett. 157, 479 (1987)
17. M. Urban, J. Noga, S. J. Cole, R. J. Bartlett, J. Chem. Phys. 83, 4041 (1985)
18. T. J. Lee, G. E. Scuseria, in Quantum Mechanical Electronic Structure Calculations with Chemical

Accuracy, Ed. S. R. Langhoff (Kluwer Academic, Dordrecht, 1995), pp. 47–108
19. J. Watts, M. Urban, R. J. Bartlett, Theor. Chim. Acta 90, 341 (1995)
20. M. Urban, P. Neogrády, J. Raab, G. H. D. Diercksen, Collect. Czech. Chem. Commun. 63,

1409 (1998)
21. W. Kutzelnigg, Theor. Chim. Acta 68, 445 (1985)



OVOS Calculations for Larger Molecules 453

22. W. Klopper, F. R. Manby, S. Ten-no, E. F. Valeev, Int. Rev. Phys. Chem. 25, 427 (2006)
23. J. Noga, S. Kedžuch, J. Šimunek, S. Ten-no, J. Chem. Phys. 128, 174103 (2008)
24. L. Adamowicz, R. J. Bartlett, J. Chem. Phys. 86, 6314 (1987)
25. L. Adamowicz, R. J. Bartlett, A. J. Sadlej, J. Chem. Phys. 88, 5749 (1988)
26. C. Edmiston, M. Krauss, J. Chem. Phys. 45, 1833 (1966)
27. T. L. Barr, E. R. Davidson, Phys. Rew. A 1, 644 (1970)
28. C. Sosa, J. Geertsen, G. W. Trucks, R. J. Bartlett, J. A. Franz, Chem. Phys. Lett. 159, 148 (1989)
29. A. G. Taube, R. J. Bartlett, Collect. Czech. Chem. Commun. 70, 837 (2005)
30. M. Schütz, G. Hetzer, H. J. Werner, J. Chem. Phys. 111, 5691 (1999)
31. M. Schütz, J. Chem. Phys. 113, 9986 (2000)
32. M. Schütz, H.-J. Werner, J. Chem. Phys. 114, 661 (2001)
33. P. Sałek, S. Høst, L. Thøgersen, P. Jørgensen, P. Manninen, J. Olsen, B. Jansík, S. Reine, F.

Pawłowski, E. Tellgren, T. Helgaker, S. Coriani, J. Chem. Phys. 126, 114110 (2007)
34. V. Weijo, P. Manninen, P. Jørgensen, O. Christiansen, J. Olsen, J. Chem. Phys. 127, 074106 (2007)
35. P. Constans, P. Y. Ayala, G. E. Scuseria, J. Chem. Phys. 113, 10451 (2000)
36. H. Koch, A. Sánchez de Merás, T. Helgaker, O. Christiansen, J. Chem. Phys. 104, 4157 (1996)
37. C. E. Benoit, Bull. Geodesique 7, 67 (1924)
38. N. H. F. Beebe, J. Linderberg, Int. J. Quantum. Chem. 12, 683 (1977)
39. H. Koch, A. Sánchez de Merás, T. B. Pedersen, J. Chem. Phys. 118, 9481 (2003)
40. J. L. Whitten, J. Chem. Phys. 58, 4496 (1973)
41. M. Feyereisen, G. Fitzgerald, A. Komornicki, Chem. Phys. 208, 359 (1993)
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43. M. Šulka, M. Pitoňák, P. Neogrády, M. Urban, Int. J. Quantum. Chem. 108, 2159 (2008)
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Abstract: The objective of this paper is to provide an overview of various multi-reference (MR)
coupled-cluster (CC) approaches, particularly those relating to our own research. Although
MR CC methods have been around for almost three decades and much work has been ex-
pended on their development and implementation, no general purpose codes are presently
available. In view of the complexity, inherent difficulties, and computational demands of
both genuine valence and state universal (VU and SU) MR CC methods, attention has been
directed towards the state selective or state specific (SS) approaches that focus on one state
at a time. These methods are based on either the genuine MR CC formalism or on a single-
reference (SR) CC Ansatz, in which higher-than-pair clusters are accounted for by relying
on basic ideas of general MR approaches. This is achieved either internally by relying on
CC or MBPT formalism or by exploiting some external source providing approximate val-
ues of these clusters and accomplished by either correcting equations yielding the cluster
amplitudes or directly by evaluating the corrections to the CCSD energy. Nowadays there
exists a whole plethora of such various approaches for handling of quasi-degenerate states
with a various degree of MR character and our goal is to outline their basic features and
comment on their pro’s and con’s, their usefulness and weaknesses, as well as point out
their mutual relationship.

Keywords: Multireference coupled cluster, Hilbert space, State universal, state specific, Brillouin –
Wigner coupled cluster, Effective Hamiltonian, Jeziorski – Monkhorst Ansatz, Completely
renormalized coupled cluster, Externally corrected, Internally corrected

17.1. INTRODUCTION

Coupled-cluster (CC) methods represent highly-accurate and reliable approaches
that are often exploited in molecular electronic structure calculations. This is par-
ticularly the case for non-degenerate ground states of closed-shell systems near their
equilibrium geometry, but less so for general open-shell systems. Although much
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progress has been achieved in this regard during the past couple of decades, there are
no “black-box”-type packages that could be relied upon in the presence of a strong,
or even an intermediate quasi-degeneracy due to a multireference (MR) nature of
the state considered. This is particularly the case when we wish to generate potential
energy surfaces (PESs) in the entire range of geometries, including various dissocia-
tion channels involving the breaking of genuine chemical bonds. We thus devote this
chapter to CC methods that address this type of problems, which invariably lead to a
multireference-type formalism of one kind or another. It is however beyond the scope
of this chapter to provide concrete illustrations of the performance of such methods.
Neither shall we deal with the equation-of-motion (EOM) or relativistic approaches
and will focus our attention on the energy rather than other properties. These aspects
will be handled in other chapters of this monograph.

17.2. SINGLE-REFERENCE COUPLED-CLUSTER APPROACHES

The single-reference (SR) coupled-cluster (CC) methods are based on the exponen-
tial Ansatz for the wave operator U that generates an exact non-relativistic state
|Ψ 〉 when acting on an independent particle model (IPM) reference (usually a Slater
determinant) |Φ0〉,

|Ψ 〉 = U |Φ0〉 , U = exp (T) , (17-1)

where T designates the so-called cluster operator

T =
∑

μ

tμGμ , (17-2)

which can be expressed as a linear combination of excitation operators Gμ with
coefficients tμ, representing the cluster amplitudes, both associated with all possible
excitations μ from the spin orbitals that are occupied in |Φ0〉 (labeled by capitals
A, B, C, · · · ) to the unoccupied ones (R, S, T , · · · ),

Gμ = X†
RX†

SX†
T · · ·XCXBXA · · · , μ:ABC · · · → RST · · · , (17-3)

with X†
I (XI) designating the creation (annihilation) operators. Classifying Gμ and tμ

by their excitation order i, we can rewrite (17-2) as

T =
N
∑

i=1

Ti , Ti =
∑

μ(i)

t(i)μ G(i)
μ , G(i)

μ =
i
∏

j=1

(

X†
Rj

XAj

)

(17-4)

(for recent reviews, see, e.g., [1–5]; for a historical overview, see [6, 7]).
The source of this Ansatz stems from the general MBPT (many-body perturbation

theory) as developed by Brueckner [8], Goldstone [9], Hugenholtz [10], and others
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(see [11] for a time-independent version). They showed that the exact wave func-
tion |Ψ 〉 and the corresponding energy is given by linked MBPT terms or diagrams,
the fact referred to as the linked cluster theorem. But it was Hubbard [12–14] who
formulated the connected cluster theorem, which states that the exact |Ψ 〉 can be
expressed in the exponential form given by Eq. (17-1), with the (T|Φ0〉) consist-
ing of all possible connected MBPT wave function diagrams, usually designated as
(T|Φ0〉)C. The contribution from disconnected, but linked, terms is then generated
by the exponential Ansatz. The vacuum version of these linked diagrams then gives
the corresponding energy.

The first suggestion to exploit the cluster expansion form for |Ψ 〉 in solving the
non-relativistic stationary Schrödinger equation was made in nuclear physics by Co-
ester and Kümmel [15, 16]. At this time, however, the issuing formalism looked
too formidable to be of a practical use, not to mention the peculiarities of nuclear
Hamiltonians (hard core, tensor forces, absence of fundamental internuclear poten-
tials, etc.). For these reasons a further development has been delayed and more or
less abandoned till its recent revival (see, e.g., [17]). In the meantime, the cluster
expansion was exploited in the context of the molecular electronic structure by Čížek
[18, 19], who formulated general rules for the derivation of explicit CC equations and
illustrated them on the most important case when T is truncated to pair clusters T2
(yielding, in today’s parlance, the CCD method; see also [20]).

In general, relying either on the diagrammatic or algebraic formalism, one finds
that

HN exp (T)|Φ0〉 = {HN exp (T)}C exp (T)|Φ0〉 = exp (T){HN exp (T)}C|Φ0〉 ,
(17-5)

where the subscripts N and C indicate the N-product form of the Hamiltonian
[11] and the connected component, respectively. We also immediately see that
{HN exp (T)}C involves at most four cluster amplitudes [or the four fold commu-
tators; see Eq. (17-10) below], since the two-electron interaction has at most four
fermion lines. Premultiplying the Schrödinger equation HN |Ψ 〉 = ΔE|Ψ 〉, ΔE =
E − 〈Φ0|H|Φ0〉 with exp (− T) from the left gives

{HN exp (T)}C|Φ0〉 = ΔE|Φ0〉 , (17-6)

so that

ΔE = 〈Φ0|{HN exp (T)}C|Φ0〉 , and 〈G(i)
μ Φ0|{HN exp (T)}C|Φ0〉 = 0,

(17-7)
yielding the correlation energy ΔE and equations for the CC amplitudes t(i)μ , respec-
tively. Equivalently, using the algebraic formalism we can write

ΔE = 〈Φ0|H̄N |Φ0〉 = 〈Φ0|HN
(

T1 + T2 + 1
2 T2

1

)|Φ0〉 , (17-8)
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and

〈G(i)
μ Φ0|H̄N |Φ0〉 = 0 , (17-9)

where

H̄N ≡ exp (− T)HN exp (T)

=
4
∑

n=0

(n!)−1[ · · · [[HN , T], T], · · · T
︸ ︷︷ ︸

n

] =
4
∑

n=0

(n!)−1{HNTn}C

= {HN exp (T)}C , (17-10)

is referred to as a similarity transformed normal-product Hamiltonian HN .
Although the initial ab initio test example, which also approximately accounted

for the T1 and T3 components, yielded most encouraging results [21], a wider ex-
ploitation had to await the appearance of more efficient computational tools. Six
years later, almost simultaneously, general purpose codes were developed for the
CCD method [22, 23] and, shortly afterwards, for the CCSD method [24]. In the
meantime, several powerful packages that can handle the standard SR CC method
have become available [25–31] and are currently widely exploited.

Since the complexity of the implementation of CC methods grows rapidly with
the excitation rank of the cluster operator, at most pentuple excitations have been
derived and coded in a “traditional way” [32]. Implementations of higher excitations
with proper computational scaling have been developed in two ways, both involving
computer manipulation of expressions, pioneered in the MBPT [33, 34] and CC [35–
37] formalisms already some time ago. The task of diagram generation and factoriza-
tion of the resulting expressions is passed to the computer in both approaches, how-
ever, they differ in the way how the resulting tensor contractions are evaluated. One
possibility is an automatic generation of Fortran (or other language) code for each
particular case, which is then compiled and linked into the final program [38–43].
Another possibility is the string-based CC approach, which implements contractions
of tensors with arbitrary number of indices within one (human-written) code [44–46].
Both approaches are able to achieve proper computational scaling and take advantage
of the antisymmetry of amplitudes and spin symmetry for any CC excitation level.
Approximate non-iterative schemes of general order and analytic gradients have been
implemented using the string approach as well [47–50].

While the CCSD approach, accounting for T1 and T2, represents an excellent
approximation, it turned out that in order to achieve the chemical accuracy of 1
kcal/mol, it is necessary to also account for T3, at least in an approximate way, since
a full account of triples via the CCSDT method [51–53] is computationally very
demanding, not to mention CCSDTQ or higher-order versions [54]. In many cases it
is thus sufficient to treat the triples perturbatively via the CCSD(T) method [55–58].
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Indeed, this approach has often been referred to as the “gold standard” of quantum
chemistry [59–61].

Unfortunately, CCSD(T) fails in quasi-degenerate situations – these invariably
arise when dealing with open-shell systems, as when breaking genuine chemical
bonds or when handling radicaloid or excited state species – as does even CCSD
itself when the basic assumption of non-degeneracy of the reference |Φ0〉 is violated
(see, e.g., Figure 1 of [62], Figure 1 of [63], and Figures 1–4 of [64]). In such cases,
the role of higher-than-pair clusters becomes essential and, in general, calls for a
multireference (MR) type formalism. Much work has been devoted to this problem
(see, e.g., an overview in [3, 65–68]) and two bona fide MR CC methodologies were
formulated (see below), yet their routine exploitation has yet to be realized. For this
reason much attention has been devoted to approaches that focus on one state at a
time. There exists nowadays a whole plethora of such methods to which we turn
our attention in this chapter. We should also mention, at least in passing, a version
exploiting, in general, a multi-determinantal reference of the Clifford algebra unitary
group approach (CAUGA) [69–73] that can handle open-shell singlet, doublet, and
triplet states and is fully spin adapted [36, 37, 74].

17.3. GENERAL ASPECTS OF MULTIREFERENCE CC APPROACHES

In contrast to configuration interaction (CI) methods, an extension of the SR CC
theory to the MR case is far from being straightforward, since there is no unique
way how to generalize the SR exponential Ansatz, Eq. (17-1). The MR CC or
MBPT approaches are, generally, based on the effective Hamiltonian formalism (see
Section 17.4), which employs a model space M0 that is spanned by M suitable
orthonormal configurations |Φi〉, (i = 1, 2, · · · , M) – consisting of either Slater
determinants or configuration state functions (CSFs) – representing a zero-order ap-
proximation to M exact states |Ψi〉 we are interested in, the latter spanning the target
space M. The projections of |Ψi〉 into M0 are thus given by a linear combination of
model space configurations |Φi〉 and are designated by a tilde, i.e., as |Φ̃i〉.

The next task is to find a wave operator U that transforms the model space
CSFs into the target states. Here we have essentially two options: we can either
aim for a single cluster operator, defining the valence universal (VU) or Fock space
[65, 75, 76] wave operator U (often designated byΩ), transforming the model states
|Φi〉 into the target states |Ψi〉 (or, rather, their linear combinations |Ψ̃i〉) or, alterna-
tively, we can define different cluster operators T[i], one for each |Φi〉, leading to the
state universal (SU) or Hilbert space Ansatz [77]. The desired exact states |Ψi〉 are
then obtained by diagonalizing the Hamiltonian H(eff) of the effective Hamiltonian
formalism (see below; for more details see [2, 3, 67, 68]).

Each of these approaches has its own peculiarities. Yet, one common obstacle
is represented by the so-called intruder states (cf., e.g., [78]). These are the states
from the orthogonal complement of the model space M0 whose energy is generally
much higher than the energy of configurations spanning the model space at one (say,
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equilibrium) geometry, but becomes sufficiently lowered at stretched geometries, so
much so, that they fall (or intrude) within the interval of energies associated with
the model space configurations or lie close to this interval. Just as we require the
reference of the SR CC formalism not to be degenerate or quasi-degenerate, it is
important that the energies of the references of a MR formalism be well separated
from those belonging to the orthogonal complement of M0. Intruder states mainly
arise due to the complete model space (CMS) requirement (M0 involving all possible
valence or active orbital occupancies) in order to warrant the size extensivity. For this
reason other MR CC approaches, including those that may slightly violate the size
extensivity, but avoid the intruder state problem, or focus on one state at a time, have
been explored.

We shall thus distinguish between the genuine MR CC approaches that consider
all M states simultaneously (usually restricted to low dimensional model spaces
[79, 80] or employing the so-called C-conditions as in the generalized model space
(GMS) MR CC method [81–87]) and the so-called state selective or state specific
(SS) methods that focus on one state at a time. These SS-type approaches may then
again be classified into those that employ genuine MR CC equations, represented pri-
marily by MkCC (Mukherjee et al. MR CC [88–95]), KB-MRCC (using Kucharski
and Bartlett coupling [96]), and by the BWCC (Brillouin – Wigner MR CC [97, 98])
methods, as well as by a large group of approaches that are essentially of a SR-type,
but employ some MR CC ideas in accounting for higher-than-pair clusters. Amongst
the latter we may then distinguish the internally (ic) and externally (ec) corrected
approaches [99–101]: the former ones rely solely on the CC or MBPT formalism,
while the ec methods also employ external sources, such as CI or CAS SCF, to supply
the information about higher-than-pair clusters.

The ubiquitous CCSD(T) method may thus be regarded as a prime example
of ic-type approaches, as is its CCSD(TQ) generalization treating perturbatively
also quadruples [102–104]. Another straightforward SS approaches simply truncate
CCSDT or CCSDTQ to CCSDt, CCSDtq or similar versions [105, 106] by consider-
ing only a certain subset of triples and quadruples, implied by the MRCC formalism,
while employing standard SR CC equations.

Yet another successful generalization of CCSD(T) that avoids many of its short-
comings is represented by the CCSD(2) method [107] and especially by the renor-
malized (R) or completely renormalized (CR) CCSD approaches [62, 63, 108–110]
or their fully size-extensive version, the CR-CC(m, n) method [111–113]. We must
also mention recently proposed partially-linearized MRCC (plMR CC) method,
[114, 115] which is an ic version of the ec RMR CC approach (see below) and is
somewhat related to the CCSDT-1 method [116], representing a linearized version
of CCSDT and the first of the CCSDT-n series of approximations [51, 117].

The ec methods may then again be subdivided into the amplitude-corrected ap-
proaches [represented mainly by the reduced multireference (RMR) CCSD method
[118–122] that employs a subset of approximate triples and quadruples as supplied
by a modest-size MR CISD] and the energy-corrected ones that employ the MR
CISD wave function in the asymmetric energy formula [64, 123]. In fact, the latter
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approach is methodologically closely related to the CR-type methods [64, 123],
while the former one can also be employed in the context of genuine MR CC methods
[124]. We should also point out that most MR CC approaches are based on the SU
formalism [77]; for this reason we focus our attention on SU rather than VU cluster
Ansatz. The essence of such approaches will be described in the following sections.

For a nonexpert, the variety and complexity of these various MRCC approaches
may be bewildering. We will thus try to summarize this chapter by providing our
personal opinion concerning the merits and domains of application of these individ-
ual methods and of their relationship, advantages, and shortcoming in comparison
with the CI-type and other approaches.

17.4. EFFECTIVE HAMILTONIAN FORMALISM

We consider a model space M0 together with a target space M,

M0 = Span{Φi} = Span{Φ̃i} ,

M = Span{Ψi} = Span{Ψ̃i} , dimM0 = dimM = M , (17-11)

with the relevant states interrelated via the projector P onto M0, P = ∑M
i=1 Pi, and

Pi = |Φi〉〈Φi|, as well as its “inverse”, the wave operator U, as follows (for details
see, e.g., [67, 68])

PΨi = Φ̃i , UΦ̃i = Ψi , (17-12)

PΨ̃i = Φi , UΦi = Ψ̃i , (17-13)

where both P and U are idempotent, yet P is Hermitian while U is not. Assuming
the intermediate normalization 〈Φi|Ψ̃j〉 = δij, we also find the identities

UPU = UP = U , PUP = PU = P , and UQ ≡ U(1− P) = 0 . (17-14)

Note that while 〈Φi|Φj〉 = δij = 〈Ψi|Ψj〉, the projections |Φ̃i〉 of |Ψi〉 into M0 are,
generally, no longer orthogonal, yet span the same space M0. The operator U may
then be thought of as an “inverse” of P from M0 to M, so that

|Φ̃i〉 =
∑

j

cij|Φj〉 and |Ψi〉 =
∑

j

cij|Ψ̃j〉 or |Ψ̃i〉 =
∑

j

(C−1)ij|Ψj〉 ,

(17-15)
where C = ||cij||.

It is now straightforward to derive the key equations of the effective Hamiltonian
formalism: First, projecting the Schrödinger equation for the target states |Ψi〉,
H|Ψi〉 = Ei|Ψi〉, (i = 1, · · · , M) onto M0 immediately gives

H(eff)|Φ̃i〉 = Ei|Φ̃i〉 , (i = 1, · · · , M) with H(eff) = PHU = PHUP . (17-16)
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Next, acting with U on the same Schrödinger equation leads to the (generalized)
Bloch equations that determine the operator U, namely

UHU = HU or HU = UH(eff) . (17-17)

A rather surprising result that H(eff) acting within M0 yields the same exact
eigenvalues {Ei} as the original Hamiltonian, Eq. (17-16), is made possible thanks
to the fact that we consider only a finite subset of M eigenvalues Ei. The Bloch
equation, Eq. (17-17), can be cast into different equivalent forms (see, e.g., [67, 68]).
In particular, when we partition H into the unperturbed part H0 and a perturbation
W, H = H0 + W, [H0, P] = 0, we then arrive at the following often used form of
Bloch equation [76]

[U, H0]P = (WU − UPWU)P . (17-18)

17.5. GENUINE MRCC METHODS

As implied by the effective Hamiltonian formalism, the cluster Ansatz for the MR
wave operator U cannot take a simple SR form, Eq. (17-1), since the idempotency of
U would require that U = 1̂. As pointed out in Section 17.3, we have basically two
options here, leading to the so-called valence universal (VU) and the state universal
(SU) formalisms.

In the VU case, the operator U must be defined on a suitably larger space than
M0, namely on a general Fock space F engendered by a one-particle space defining
the ab initio model employed. We then require that its restriction to M0 yields U, i.e.,
UP = U, but differs from U in its action on the orthogonal complement M⊥

0 of M0.
Thus, we have to consider a family of model spaces involving a varying number
of electrons, leading to the concept of valence universality. This in turn requires
that we replace the definition of a standard N-product by its “commutative” version
which preserves the number of particles and holes and leads to the “normal ordered”
exponential function, usually designated by a bold face symbol, i.e., exp(T). The
precise formulation of these concepts is rather involved (see, e.g., [125]; see also
[3, 65–68, 76, 126]). Since in this work we deal with methods that are based on
the SU Ansatz [77], we refer the reader who is interested in VU-type approaches to
appropriate literature (for an overview and references, see, e.g., [2, 5, 67, 68, 76]).

17.5.1. SU MRCC Formalism

The Jeziorski–Monkhorst (JM) or SU cluster Ansatz for the wave operator U,
Eqs. (17-12), (17-13), and (17-14), and for the corresponding exact wave functions
|Ψj〉, (j = 1, · · · , M), have the form [77]
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U =
M
∑

i=1

exp (T[i]) Pi and |Ψj〉 =
M
∑

i=1

cij exp (T[i])|Φi〉 , (17-19)

with the coefficients cij given by the eigenvectors of H(eff), the corresponding eigen-
values Ei, (i = 1, · · · , M) providing the desired exact energies, Eq. (17-16). Here-
after the bracketed argument in T[i] will indicate that this cluster operator is defined
relative to the reference |Φi〉 from M0.

The matrix elements H(eff)
ij of H(eff) are given by similar expressions as in the SR

case

H(eff)
ij = 〈Φi|{HNj exp (T[j])}C|Φj〉 , (17-20)

where Nj indicates the N-product form relative to |Φj〉. The cluster amplitudes are
then obtained by exploiting the Bloch equation (17-17). Thus, using the Ansatz
(17-19) in (17-17) gives

HU|Φi〉 = H exp (T[i])|Φi〉 = UH(eff)|Φi〉 =
∑

j

exp (T[j])|Φj〉〈Φj|H(eff)|Φi〉 =
∑

j

exp (T[j])|Φj〉H(eff)
ji , (17-21)

and projecting onto |Φρα [i]〉 ∈ M⊥
0 after multiplying on the left with exp ( − T[i])

and realizing that 〈Φρα [i]|Φi〉 = 0, we finally obtain SU MRCC equations [77]

〈Φρα [i]|H̄[i]|Φi〉 =
∑

j(�=i)

H(eff)
ji Γ ij(Φρα [i]) , (17-22)

where

H̄[i] ≡ exp (− T[i])HNi exp (T[i]) , and (17-23)

Γ ij(Φρα [i]) ≡ 〈Φρα [i]| exp (− T[i]) exp (T[j])|Φj〉 . (17-24)

Here α and ρ represent the sets of (spin) orbital hole and particle labels relative to
|Φi〉, α ≡ {P1, P2, · · · , Pm} and ρ ≡ {Q1, Q2, · · · , Qm}, respectively.

Note that the left-hand-side of (17-22) has the same form as the SR CC equa-
tions relative to one of the references from M0 and |Φρα [i]〉 does not involve exci-
tations within the active orbitals, which are now taken care of via the right-hand-
side coupling terms Γ ij(Φρα [i]). Clearly, when numerous reference configurations
are involved, which is particularly the case when we adhere to CMS, the SU MRCC
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equations (17-22) represent a challenging complex problem. This is certainly the
reason why very few applications of this formalism are available, except possibly for
the simplest two-reference case [79, 80].

17.5.1.1. General Model Space Approach

In the standard SU CC approach it is important that one employs a CMS that is
spanned by all possible configurations involving active orbitals and electrons, war-
ranting the size-extensivity and the intermediate normalization property 〈Φi|Ψ̃j〉 =
δij. However, the use of CMS has a disadvantage not only due to a rapidly increasing
dimensionality of M0 with the number of active orbitals, but also as a source of
intruder states. It is thus desirable to truncate CMS to a suitable incomplete model
space (IMS). We refer to such IMS as a general model space (GMS) in order to
emphasize its arbitrariness, at least in principle. Indeed, our GMS is spanned by
suitably selected configurations that are not necessarily based on the division of MOs
into the core, active, and virtual ones, but rather on the role they play in the states of
interest, as implied, e.g., by a small-scale CI.

The challenge of GMS SU CC approach [81] is thus the handling of those cluster
amplitudes that are associated with the so-called internal excitations, i.e., those that
interrelate configurations spanning M0 (see also [77]). If we wish to preserve the
intermediate normalization then the corresponding internal amplitudes cannot be
simply set to zero as in the CMS case, but must be determined via the so-called
C-conditions (C for constrained or connected).

To briefly indicate the source of the C-conditions for the internal amplitudes [81,
83, 84], consider the FCI form of the exact state |Ψi〉

|Ψi〉 =
∑

|Φj〉∈M0

cij|Φj〉 +
∑

|Ξj〉∈M⊥
0

dij|Ξj〉 , (17-25)

with |Φj〉 spanning the model space M0 and |Ξj〉 its orthogonal complement M⊥
0 ,

so that C = ||cij|| is a square invertible matrix and D = ||dij|| is a rectangular matrix.
The corresponding state |Ψ̃i〉 then takes the form

|Ψ̃i〉 = U|Φi〉 = exp (T[i])|Φi〉
= |Φi〉 +

∑

|Ξj〉∈M⊥
0

bij|Ξj〉 , (17-26)

where now B = C−1D and the corresponding C̃ = ||c̃ij|| = C−1C = I becomes
identity. Thus, for the internal excitations Gρα[i]|Φi〉 ∈M0 we must require that the
corresponding coefficients vanish, i.e., c̃ρα[i] ≡ 0. This immediately implies that all
such singly-excited internal cluster amplitudes vanish, while the higher-excited ones
are determined by the above requirement c̃ρα[i] = 0. Thus, for example, assuming that
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|Φi〉 ∈ M0, (i = 1, 2), are related via the excitation operator GQ1,Q2
P1,P2

, i.e., |Φ2〉 =
GQ1,Q2

P1,P2
[1]|Φ1〉, we require that c̃Q1,Q2

P1,P2
[1] = 0, so that we must set

tQ1,Q2
P1,P2

[1] ≡ tQ2
P1

[1]tQ1
P2

[1]− tQ1
P1

[1]tQ2
P2

[1] , (17-27)

and similarly for tP1,P2
Q1,Q2

[2], as well as for higher-than-pair cluster amplitudes [82]
[81]. The external cluster amplitudes that are associated with the excitation operators
Gρα[i], Gρα[i]|Φi〉 ∈ M⊥

0 are then determined using the standard SU CC equations
(17-22). Finally, as in the RMR CCSD case (Section 17.6.2.1), we can perturba-
tively account for secondary triples by modifying the diagonal elements of H(eff)

(see [127]).
This approach enabled us to handle relatively large model spaces while avoiding

the problem of intruder states, and yielded excellent results in test calculations [86].

17.5.2. Kucharski – Bartlett Formulation of SU MRCC

An alternative formulation of the SU MRCC method has been proposed by
Kucharski and Bartlett [96, 128–130], henceforth referred to as the KB approach. It
starts with Eq. (17-21), but in contrast to the JM SU formalism, no multiplication by
exp (−T[i]) is performed before the projection onto the excited states |Φρα [i]〉 ∈M⊥

0 .
This leads to amplitude equations in the following form

{〈Φρα [i]|HNi exp (T[i])|Φi〉
}

C+DC,L =
∑

j�=i

〈Φρα [i]| exp (T[j])|Φj〉H(eff)
ji . (17-28)

Notice that in contrast to (17-22), where the vanishing i = j term is absent from
the sum over j, here it is not included since it cancels with an unlinked term on the
left hand side, which involves only connected and linked disconnected diagrams, as
indicated by the subscript C + DC, L. Using the method of moments technique, it
can be proved that this formulation is equivalent to the SU MRCC method, as long
as we employ a CMS [131]. We can thus view the KB approach as a generaliza-
tion of the equivalence between the connected and linked formulations of the SR
CC method. Moreover, as shown by Kucharski and Bartlett [96], who performed a
detailed diagrammatic analysis of the expressions in Eq. (17-28), the cancellation of
disconnected terms yields

〈Φρα [i]|H̄[i]|Φi〉 =
∑

j�=i

{

〈Φρα [i]| exp (T[j])|Φj〉H(eff)
ji

}

C
, (17-29)

where the subscript C indicates that only connected diagrams are involved. The re-
moval of disconnected terms preserves the size-extensivity, but breaks the equiva-
lence of the resulting method with FCI in the FCC limit. However, with a CMS, the
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variant including disconnected terms, Eq. (17-28), is already size-extensive thanks
to the equivalence with the JM approach (17-22).

The computation of coupling terms in the KB scheme [in either (17-28) or (17-29)
version] is simpler than in the SU MRCC formalism, Eq. (17-24), thanks to the pres-
ence of a single exponential. In the KB case, one only has to compute a product of the
coupling term 〈Φρα [i]|eT[j]|Φj〉 and an effective Hamiltonian matrix element H(eff)

ji .
The evaluation of the latter is analogous to obtaining a higher CI coefficient from
CC amplitudes. Concerning the implementation of Eq. (17-29), it is not necessary to
explicitly evaluate the connected diagrams corresponding to the entire coupling term,
since it is simpler to evaluate disconnected terms and subtract them from the product
on the right-hand-side of (17-29) [132]. However, the computation of coupling terms
does not represent a bottleneck, which lies in the handling of the left-hand-side terms
〈Φρα [i]|H̄[i]|Φi〉, so that the KB formulation does not bring any advantage in this re-
gard. Moreover, its convergence may be influenced by the presence of intruder states,
as in the SU MRCC method. Nonetheless, the main advantage of the KB formalism
lies in a simpler form of the coupling terms, facilitating their implementation. We
also note that the KB formulation can be generalized to an IMS by exploiting the
C-conditions described in the preceding section.

Note also, that the analytic gradient theory has been developed for the SU MRCC
method [133–137], but has not yet achieved a widespread use due to the lack of an
efficient black-box implementation, with the exception of a special low-spin singlet
two-determinantal case [134].

17.5.3. Brillouin – Wigner MR CC Method

Before we turn our attention to SS MRCC methods, we point out some basic proper-
ties of the JM Ansatz as it pertains to the state-specific formalism. It is well-known
that in model-space-based MR approaches, be they of the CI or CC variety, the ex-
citations from distinct reference configurations |Φi〉 ∈ M0 may lead to identical
excited state configurations from M⊥

0 . This, however, does not imply any ambiguity
of the JM Ansatz in the SU context (as is sometimes erroneously intimated), since
in this case the operator equation resulting from the insertion of the JM Ansatz into
Bloch equation can be applied to all determinants |Φi〉 from the model space M0 and
projected onto appropriate excited bras 〈Φρα [i]| for each such ket, yielding exactly
as many equations as there are unknowns in the JM Ansatz. Therefore, in the SU
methods all the relevant cluster amplitudes are uniquely defined and, if desired, may
be recovered by the cluster analysis of the FCI wave function for any target state |Ψi〉
(see, e.g., [138]). Thus, inserting the JM Ansatz into Bloch equation yields perfectly
consistent MRCC equations at any level of truncation.

However, an entirely different situation arises when we exploit the JM Ansatz
in the MR SS-type methods, which focus on one state at a time. In this case we
have to rely on the Schrödinger equation for a single target state, rather than on
Bloch equation, so that we do not have enough conditions for the number of cluster
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amplitudes in the JM Ansatz to be uniquely determined. The resulting ambiguity
may be usually avoided by invoking suitable sufficiency conditions which replace
the general requirement

∑

i∈M0
A(i) = 0 by setting each term to zero, i.e.,

∑

i∈M0

A(i) = 0 ⇐ A(i) = 0 , ∀i ∈M0 . (17-30)

This idea was used only implicitly in the original derivation of BWCC and later has
been formulated explicitly by Mukherjee et al. [89] in the context of his approach
(cf. Section 17.5.4).

Historically, the derivation of the MR Brillouin – Wigner coupled-clusters method
(BWCC), as originally proposed by Hubač, Čársky, and Mášik [97, 98, 139, 140],
was based on the state-specific Lippmann – Schwinger-like equation

Ui = 1+ BiWUi , Bi =
∑

Φj∈M⊥
0

|Φj〉〈Φj|
Ei − E′j

, (17-31)

where Bi is the BW resolvent, which is responsible for the SS nature of this approach.
In contrast to the SU CC methods, the wave operator Ui (as well as the cluster op-
erator) now carries the index of the target state i. This equation played the role of
Bloch equation for the BWCC theory [141] and it is, of course, equivalent to the
Schrödinger equation for the state |Ψi〉.

It turns out that the derivation of the amplitude equations is actually simpler if
one inserts the JM Ansatz (17-19) with a SS wave operator Uj directly into the
Schrödinger equation (H − Ej)|Ψj〉 = 0, which yields

∑

i∈M0

(H − Ej) exp (T[i])|Φi〉cij = 0. (17-32)

Application of the sufficiency conditions (17-30) and a few algebraic manipulations
lead to BWCC amplitude equations

{〈Φρα [i]|HNi exp (T[i])|Φi〉}C+DC,L = (Ej − H(eff)
ii )〈Φρα [i]| exp (T[i])|Φi〉 . (17-33)

Notice that for a notational simplicity we have omitted the state index j from the
cluster operator, which acquires different values Tj[i] for each state. The effective
Hamiltonian keeps the same form as in the SU MRCC method, Eq. (17-20), but
now only its jth eigenvalue has a physical meaning. The iterative solution of the
amplitude equations (17-33) requires a diagonalization of H(eff) in each iteration,
and the resulting eigenvalue Ej is then used in the next iteration.

The advantage of the BWCC method over the SU methods lies in a greater sim-
plicity of its amplitude equations, which are coupled only via the exact energy Ej.
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Another important advantage is its insensitivity to intruder states, which in turn leads
to a superior convergence characteristics in comparison with the standard SU CC
methods. However, it has a serious drawback in not being size-extensive, thus lack-
ing the most valuable trait of CC methods. Trying to restore the size-extensivity by
left-multiplication with e−T[i] leads to uncoupled system of equations

{〈Φρα [i]|HNi exp (T[i])|Φi〉
}

C = 0 , (17-34)

which are not equivalent to (17-33), since the term with the exact energy Ej van-
ishes. Thus, an a posteriori size-extensivity correction to BWCC energies has been
suggested [142], which consists in an iterative solution of the amplitude equations
(17-33), followed by a single iteration of (17-34) and a final assembly and diago-
nalization of the effective Hamiltonian matrix, yielding the corrected energy. This
correction is, of course, not exact, but in numerous tests and applications it turned
out to yield sufficiently accurate results for practical purposes [143–156].

Another way how to introduce the size-extensivity corrections to BWCC is to
exploit a continuous transition between the BW and Rayleigh – Schrödinger (RS)
perturbation theories, which yields [131, 132]

λEiUiP̃i + (1− λ)[Ui, H0]P = λHUiP̃i + (1− λ)[WUi − UiPWUi]P, (17-35)

where P̃i = |Φ̃i〉〈Φ̃i| is a state-specific projection operator on a one-dimensional
subspace of the model space and λ is a real scaling parameter ranging from zero to
one. The λ = 1 limit corresponds to the BW perturbation theory, while λ = 0 to the
RS theory. Insertion of the JM Ansatz into this equation leads, after some algebra,
to amplitude equations for a λ-scaled transition between the SU MRCC and BWCC.
The iterative size-extensivity correction to BWCC then corresponds to a continuous
change of λ from one to zero during the CC iterative process while neglecting the SU
MRCC coupling terms in the amplitude equations. The iterative correction leads to
exact size-extensivity, but unfortunately reintroduces the intruder state problem and
related convergence difficulties.

Recently, the connected triple excitations have been included in the MR BWCC
method [157–159], considerably increasing its accuracy thanks to a more precise
description of dynamic correlation effects, similarly as in the SR case, where one
also has to account – at least approximately – for connected triply-excited clusters in
order to achieve the chemical accuracy. For a recent detailed account of BW MBPT-
based approaches we refer the reader to a forthcoming monograph by Hubač and
Wilson [141].

17.5.4. Mukherjee’s Approach to MRCC

Similarly to BWCC, the derivation of MkCC [89, 91, 160, 161] starts by substi-
tuting the JM Ansatz (17-19) for |Ψj〉 into the Schrödinger equation for that state,
which yields (17-32). Then, however, additional transformations of this equation are
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performed before the sufficiency conditions (17-30) are applied. Inserting resolution
of the identity in the form

1 = eT[i]Pe−T[i] + eT[i]Qe−T[i] (17-36)

into Eq. (17-32), where again P = ∑

k∈M0
|Φk〉〈Φk| and Q = 1 − P are projectors

onto the model space M0 and its orthogonal complement M⊥
0 , respectively, we

obtain

∑

ik

eT[i]|Φk〉〈Φk|H̄[i]|Φi〉cij +
∑

i

eT[i]QH̄[i]|Φi〉cij − Ej

∑

i

eT[i]|Φi〉cij = 0 .

(17-37)

The next essential step is an interchange of the summation indices i and k in the
first term and the subsequent application of the above mentioned sufficiency condi-
tions (17-30), equating each term in the sum over i to zero. A left-multiplication by
e−T[i] and a projection onto the excited bra manifold then yields

〈Φρα [i]|H̄[i]|Φi〉cij = −
∑

k(�=i)

〈Φρα [i]|e−T[i]eT[k]|Φi〉H(eff)
ik ckj , (17-38)

assuming a CMS in evaluating the effective Hamiltonian matrix elements.
Note that in contrast to the standard SU CC equations (17-22), the MkCC

equations (17-38) for the cluster amplitudes involve both the effective Hamilto-
nian matrix elements and the eigenvector coefficients cij for a selected state j, in-
dicating the state-specificity of the resulting method. Thus, as in the BWCC ap-
proach, the effective Hamiltonian must be diagonalized in each iteration, providing
in this case the j-th eigenvector coefficients cij. Note also that should we invoke
the sufficiency conditions (17-30) to (17-37) without first interchanging the order
of summations in the first term, we would recover uncoupled SR CC-type equa-
tions relative to references |Φi〉. Mukherjee et al. [89, 160] have also shown how
BW-type denominators can be obtained by expanding the coupling terms, imply-
ing a robustness of the method relative to the intruder states while preserving the
size-extensivity.

An important advantage of this approach stems from the structure of the coupling
coefficients which, in contrast to those characterizing the standard SUCC method,
involve the same configuration in the bra and the ket. This distinction was noticed by
Evangelista, Allen, and Schaefer, who derived explicit formulas for these coefficients
enabling them to develop an efficient implementation of the method accounting for
up to triexcitations [94, 95, 162]. A non-iterative approximation to MkCCSDT has
been proposed and implemented by Bhaskaran-Nair et al. [163].

An alternative formulation of Mukherjee’s method – that is similarly related to
the above presented MkCC, Eq. (17-38), as is the Kucharski – Bartlett SU MRCC
to the Jeziorski – Monkhorst SU MRCC – is obtained if instead of premultiplying
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Eq. (17-37) by e−T[i] we analyze the disconnected terms arising via the projection
onto the bra configurations, yielding

(

Ej − H(eff)
ii

)〈Φρα [i]|eT[i]|Φi〉cij =
{〈Φρα [i]|HeT[i]|Φi〉

}

C+DC,L,EXT cij

+
∑

k �=i

〈Φρα [i]|eT[k]|Φi〉H(eff)
ik ckj . (17-39)

The subscript C+DC, L, EXT denotes the inclusion of connected as well as discon-
nected linked diagrams, with at least one external line carrying an inactive orbital
index. Note a similarity of this approach with the BWCC method, Eq. (17-33), thanks
to the presence of the exact energy Ej. This approach is equivalent with (17-38),
as long as a CMS is employed [164]. Its advantages stem from the fact that the
coupling terms in (17-39) involve a single exponential and thus require coding of a
much smaller number of terms. However, the computational costs of both approaches
scales in the same way, since the computation is not dominated by the evaluation
of coupling terms. The convergence properties of this alternative formulation re-
main to be investigated, since its efficient implementation has been developed only
recently [165].

17.5.5. Hanrath’s MR Exponential Ansatz

In lieu of invoking sufficiency conditions (17-30) in order to eliminate redundancies
in the SU Ansatz when used in the SS-type approaches, Hanrath [166–169] proposed
their explicit avoidance a priori by modifying the structure of the cluster operators
T[j] by writing

T[j] = ei arg cij
∑

τ̂μ(j)

tτ̂μ(j)|Φj〉τ̂μ(j) , (17-40)

where cij designate the coefficients defining the appropriate effective Hamiltonian
eigenvector, Eq. (17-19). The excitation operators τ̂μ(j) run again over mono-, bi-,
and higher excitations relative to a reference |Φj〉, but the cluster amplitudes are
labeled by configurations (or determinants) generated by these operators. In other
words, if the two distinct excitations τ̂μ(j) and τ̂ν(k), j �= k, generate the same
determinant, i.e., if τ̂μ(j)|Φj〉 = ±τ̂ν(k)|Φk〉, there will be only one amplitude
tτ̂μ(j)|Φj〉 ≡ ±tτ̂ν (k)|Φk〉 in the Ansatz (17-40). This “brute force” a priori elimination of
redundancies leads, however, to a complex indexing scheme requiring computer as-
sisted code generation, particularly when higher-level excitations are to be included
[169]. The phase factor ei arg cij prevents a cancellation of amplitudes when the co-
efficients cij happen to be equal for the two references (e.g., due to the symmetry)
[166].



Multireference Coupled-Cluster Methods: Recent Developments 471

Insertion of the MRexpT ansatz (17-40) into the Schrödinger equation and pro-
jection onto the bra manifold of both the reference and excited determinants yields
the system of equations

∑

i∈M0

ci〈ρ|(H − E)eT[i]|Φi〉 = 0 , (17-41)

which is fully determined, provided the normalization is fixed by requiring
∑

i |ci|2 = 1. Hanrath has shown the MRexpT Ansatz to be size-consistent [166]
and core-extensive [168, 170, 171], which indicates that the method has a potential
to be accurate for large molecules. Presently, only results for small model systems
are available [167, 169, 172], probably due to the higher complexity of the working
equations resulting from the determinantal indexing. See Chapter 7 for more detail.

17.6. STATE-SPECIFIC MRCC-LIKE METHODS BASED
ON SR CC ANSATZ

Although a proper account of both dynamic and nondynamic correlations in the
presence of quasi-degeneracy calls for a genuine MR description, much can be often
achieved by SS approaches that rely on SR CC Ansatz, while exploiting at the same
time the basic ideas and concepts of MR-type Ansätze. The major shortcomings of
the standard SR CCSD method arise due to the neglect of higher-than-pair clusters,
namely of the terms Λ(k)

i , (k = 1, 2)

Λ
(1)
i ≡ 〈Φ(1)

i |HN T3||Φ0〉C ,

Λ
(2)
i ≡ 〈Φ(2)

i |HN(T3 + T4 + T1T3)|Φ0〉C , (17-42)

whose importance increases with the degree of quasi-degeneracy. Thus, all SS meth-
ods that are based on SR CC Ansatz account, in one way or another, for these clusters,
which were neglected in decoupling of CCSD equations from the rest of the CC
chain. Here it is important to realize that T3 and T4 clusters do not contribute directly
to the energy as given by the asymmetric energy formula

E(Ξ ,Ψ ) = 〈Ξ |H|Ψ 〉/〈Ξ |Ψ 〉 , 〈Ξ |Ψ 〉 �= 0 , (17-43)

but via their interaction with the T1 and T2 clusters. Thus, in the CC case, |Ξ 〉 = |Φ0〉
and |Ψ 〉 = exp (T)|Φ0〉, and the correlation energy ΔE is given by Eq. (17-8).

It is important to realize that E(Ξ ,Ψ ) yields the exact (i.e., FCI) energy E when
either |Ξ 〉 or |Ψ 〉 are exact. Clearly, in practice, both |Ξ 〉 and |Ψ 〉 are approxi-
mate. Thus, in CCSD |Ξ 〉 = |Φ0〉 and |Ψ 〉 ≡ |CCSD〉 = | exp (T1 + T2)Φ0〉.
With the increasing quasi-degeneracy or MR character, the weight of |Φ0〉 in the
FCI wave function decreases and, at the same time, the overlap 〈FCI|CCSD〉, and
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especially the norm 〈CCSD|CCSD〉 rapidly increase. Yet, the renormalized over-
lap 〈FCI|CCSD〉/√〈CCSD|CCSD〉 stays almost constant (cf. Figure 2 and Table I
of [115]). Moreover, MBPT treatment of T3 and T4 further aggravates the situ-
ation (cf., e.g., Figure 1 of [62]). We shall see that either a suitable renormal-
ization (Section 17.6.1.2) or an approximate treatment of higher-than-pair clusters
(Sections 17.6.2.1 and 17.6.3.1) can go a long way towards the achievement of a
useful, while computationally affordable, description.

The account of T3 and T4 clusters can be achieved in two qualitatively distinct
ways, which we refer to as the internal and external ones. The latter approaches rely
on some independent or external source of information about the T3 and T4 clusters,
while the former ones employ the CC or MBPT formalism for this purpose.

17.6.1. Internally Corrected Methods

The prototype of these methods is a basic “workhorse” of CC approaches, namely
the CCSD(T) method [55–58]), often referred to as the “gold standard” of quantum
chemistry [59–61], which relies on a perturbative estimate of triples. One can obtain
a good approximation to T3|Φ0〉 =

{

R(3)VN
∑∞

n=1 (RVN)n|Φ0〉}C that is compatible
with the CCSD method by retaining those higher-order terms that are generated via
the two-body clusters, i.e.,

Λ
(2)
i = 〈Φ(2)

i |HNT3|Φ0〉C ≈ Λ′(2)
i = 〈Φ(2)

i |VNR(3)VNT2|Φ0〉C =
∑

j

W(2)
ij t(2)

j ,

W(2)
ij = −

(3)
∑

k

HikH∗jk/Δεk , Hij = 〈Φ(2)
i |VN |Φ(3)

j 〉 , (17-44)

where VN designates the two-electron part of HN and R(3) and Δεk are, respectively,
the MBPT resolvent and denominator (cf. [3, 11]). The additive triple correction to
the CCSD energy,

ΔE(T) =
∑

i,j

t(2)
i W(2)

ij t(2)
j , (17-45)

then yields the CCSD[T] method [56, 57] or CCSD(T) method when also accounting
for singles via the 〈Φ(1)

i |HNT3|Φ0〉C term.

TheΛ′(2)
i term can also be employed to design an amplitude-correcting algorithm,

either of the iterative kind, yielding various CCSDT-n approximations [51, 116, 117]
or noniterative ones by evaluating the W(2)

ij terms a priori and using them to modify
CCSD equations.
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17.6.1.1. Truncated SRCC Approaches

Since a complete account of T3 and T4 clusters via, respectively, the CCSDT and
CCSDTQ methods is computationally too demanding, we can obtain a suitable ap-
proximation by relying on a truncated version of these methods, which consider only
a subset of the most important triples and quadruples. This type of approaches was
pioneered by Adamowicz et al. [105, 106], particularly in the so-called CCSDt and
CCSDtq methods [173, 174]. To find suitable subsets of triples and quadruples one
relies on MR CC concepts, while further subdividing the set of active orbitals and
allowing higher-than-double excitations involving these subsets. Unfortunately, even
these truncated approaches can quickly become computationally demanding.

17.6.1.2. Renormalized and Completely Renormalized CC Methods

A breakdown of the standard CCSD(T) method in the presence of quasi-degeneracy
may be remedied to a large degree by a suitable renormalization, as indicated in Sec-
tion 17.6. This led Kowalski and Piecuch [62, 63, 108–110] to design the renormal-
ized (R-) and completely renormalized (CR-) CCSD(T) approaches (as well as other
perturbatively corrected approaches, such as CCSD(TQ), EOM-CC, or CCSD[T],
etc.) by relying on the method of moments (MM) (see, also [175]). The basis of
this and related formalisms, leading to both ic or ec approaches, is most simply
understood when based on the asymmetric energy formula, Eq. (17-43). In the CC
case we have

E(Ξ ,Ψ ) = D−1〈Ξ |H| exp (T)Φ0〉 , D = 〈Ξ | exp (T)Φ0〉 . (17-46)

Inserting resolution of the identity in the form eT ∑N
k=0

∑

i∈(k) |Φ(k)
i 〉〈Φ(k)

i | e−T , and
assuming the truncation of T at the nth order, T ≈ T[n] =∑n

i=1 Ti, we easily find in
view of Eq. (17-9) that [62, 108, 123]

E(Ξ , CC[n]) = ECC[n] + D−1
N
∑

k=n+1

∑

i∈(k)

〈Ξ | exp (T[n])|Φ(k)
i 〉〈Φ(k)

i |H̄[n]|Φ0〉

≡ ECC[n] + D−1
N
∑

k=n+1

∑

i∈(k)

C(k)
i [n] M(k)

i [n] . (17-47)

Note that the moments M(k)
i [n] represent the left-hand side of standard CC equa-

tions projected onto |Φ(k)
i 〉, k > n. In the CCSD ≡ CC[2] case T ≈ T [2] = T1 + T2,

we thus have

E(Ξ , CCSD) = ECCSD + D−1
N
∑

k=3

∑

i∈(k)

C(k)
i [2] M(k)

i [2] , (17-48)
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which can be rewritten as [62, 108, 123]

E(Ξ , CCSD) = ECCSD + D−1〈Ξ̃ |(HN −ΔECCSD) exp (T [2])|Φ0〉 , (17-49)

where |Ξ̃〉 represents higher-than-doubly-excited part of |Ξ 〉 and ΔECCSD is the
CCSD correlation energy {cf. Eqs. (12) and (15) of [62] and Eq. (17) of [123]}.
Equation (17-48) or (17-49) serves as a basis of the energy-corrected approaches of
either the ic or ec type (see Section 17.6.2.2). When the bra state 〈Ξ | is now evalu-
ated via a CC-analogue of MBPT to an appropriate order [by associating the cluster
amplitudes with the rightmost interaction vertices] and noting that C(0)[2] = 1, we
obtain the CR-CCSD(T) or CR-CCSD[T] method. These can be similarly extended
to CCSD(TQ), CCSDT(Q) and other approaches. The corresponding R-CC methods
then result by considering only the leading term in the momenta [62, 108].

While CR-CCSD(T) approach corrects for the shortcomings of the standard
CCSD(T) for states having a strong MR character and, in fact, for those of CCSD as
well (that are responsible for, e.g., an artificial hump on potential energy curves, cf.
[176]), it is slightly less accurate than CCSD(T) in the neighborhood of equilibrium
geometry and slightly (∼ 0.5%) violates the size-extensivity. These shortcomings
are eliminated in the so called CR-CC(nA, nB) methods, which exploit an extended
CC Ansatz by representing the bra state as 〈Ξ | = 〈Λ exp ( − T[nA])|. This in turn
requires the evaluation of components of the Λ operator, as in the analytic gradient
CC theory, as well as a more laborious evaluation of denominators [111]. Thus, the
most useful CR-CC(2,3) method, correcting CCSD (nA = 2) for triples (nB = 3),
yields results that optimally approximate CCSDT. Likewise, when quadruples are
required (see, e.g., [177]) one can employ CR-CC(2,4) which, however, is already
computationally quite demanding.

17.6.1.3. Partially Linearized MR CC Method

This method [114], referred to by the acronym plMR CCSD, represents an ic al-
ternative to the ec RMR CCSD method (see Section 17.6.2.1). It employs again a
small subset of higher-than-pair cluster amplitudes, which in this case are generated
by relying on a linear version of higher-order CC equations. In fact, by considering
all triples, we would obtain the CCSDT-1 method [116]. However, in contrast to the
latter, plMR CCSD considers only a small subset of important triples, as well as
higher order amplitudes (possibly up to hextuples). Again, the remaining triples may
be accounted for perturbatively, yielding plMR CCSD(T) method [114, 115, 178].

Although plMR methods are fully size extensive, the corresponding RMR ap-
proaches always yield superior results [115]. This is likely due to the absence of
nonlinear terms in higher than doubles equations. The computational requirements
for both plMR and RMR methods are very similar, yet the former approach is more
difficult to converge, especially in the presence of a strong quasi-degeneracy [115].
However, plMR would allow a relatively easy development of codes for gradients
and Hessians.



Multireference Coupled-Cluster Methods: Recent Developments 475

17.6.2. Externally Corrected Methods

In ec approaches of the amplitude-correcting type one exploits the fact that the elec-
tronic Hamiltonian involves at most two-body terms. As a consequence, the energy
is fully determined by one- and two-body cluster amplitudes, Eq. (17-8), and the
SD-projected CC equations are coupled to the rest of the chain via the terms Λ(k)

i ,
(k = 1, 2), Eq. (17-42), that involve triples and quadruples. Now, rather than decou-
pling the CC chain by setting T3 = T4 = 0, yielding the standard CCSD equations,
one should be able to achieve a physically more meaningful decoupling by approxi-
mating the T3 and T4 terms by relying on some external, yet easily accessible source
that is capable to account for nondynamic correlation effects. Since the importance
of triples and quadruples increases with the increasing quasi-degeneracy, their ac-
count should help to overcome the shortcomings of CCSD and yield more accurate
one- and two-body amplitudes and, consequently, a better energy. In fact, when the
“exact” (i.e., FCI) T3 and T4 clusters are available (i.e., via the cluster analysis of the
FCI wave function), then ecCCSD will return the exact FCI energy.

The first attempt along these lines exploited a singlet-projected UHF (or PUHF)
wave function as a source of four-body clusters (note that PUHF cannot provide
triples). This led to the so-called ACPQ (approximate coupled-pairs with quadru-
ples) method [179, 180], which is closely related to ACC(S)D [approximate CC
with (singles and) doubles] approach proposed at the same time by Dykstra’s group
[181, 182] and the ACP-D45 and similar methods developed by Jankowski and Pal-
dus [183, 184] that emphasize the role of EPV (exclusion principle violating) terms,
which play also the crucial role in CEPA-type approaches [185–187].

In fact, neither ACPQ nor ACCD or ACP-D45 actually evaluate T4 amplitudes
but, instead, discard certain quadratic 1

2 T2
2 terms (keeping only those associated with

diagrams (4) and (5) of Figure 1 in [183] that separate over one or two hole lines)
in CCSD equations. It can be shown [179, 180] that under certain conditions (e.g.,
the exactness of the PUHF wave function) the neglected quadratic terms are in fact
canceled by the terms arising from the T4 clusters. Only later on were the t4 ampli-
tudes actually extracted from the PUHF wave function, yielding the so-called CCSD′
method [188].

The inability of these approaches to account for triples represents definitely a
drawback. Nonetheless, numerous applications testify that the ACPQ results are
always superior to the CCSD ones, while being computationally less demanding.
Recently the attention was again turned to this topic (see, e.g., the 2CC approach
[189, 190] or an empirical handling of quadratic terms [191–194]).

To account for both triples and quadruples in ecCCSD one relies on a small sub-
set of the most important t(3) and t(4) amplitudes obtained via the cluster analysis
of a suitable, easily accessible wave function that efficiently describes nondynamic
correlations that are lacking in SR CCSD. Initially, VB, CAS FCI, and CAS SCF
wave functions were employed for this purpose: The first one (exploited only at a
semi-empirical level [99–101, 195, 196]) represents an ideal source but, unfortu-
nately, no suitable general purpose codes are available at the ab initio level, while
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both CAS-type wave functions (particularly CAS SCF) require a large active space,
rapidly increasing the cost [101, 195–197]. Finally, it was a modest size MR CISD
that proved to be an optimal source, resulting in the reduced MR (RMR) CCSD
method. While ecCCSD represents an amplitude-corrected approach, described in
the next section, the same external source can also be employed for the energy-
corrected version (see Section 17.6.2.2).

17.6.2.1. Amplitude-Corrected ecCCSD

As alluded to above, an optimal choice for the amplitude-corrected ecCCSD turned
out to be a modest-size MR CISD wave function thanks to the following facts [198–
201]: (i) the complementarity of the CC and CI approaches in their ability to describe,
respectively, the dynamic and nondynamic correlation effects; (ii) a simple relation-
ship between the CC and CI Ansätze, facilitating the extraction of the t(3) and t(4)

amplitudes via the cluster analysis [138] (following a trivial transformation of the
MR CISD wave function into the SR CISD form); (iii) the fact that the approximate
Ti ≈ T (0)

i , (i = 3, 4) clusters automatically account for higher-order Ti, i > 4 clusters
[recall that with the exact (i.e., FCI) three- and four-body clusters ecCCSD returns
the exact result] and, finally, (iv) the fact that ecCCSD requires only a very small
subset of triples and quadruples (referred to as the primary ones) as provided by a
modest-size MR CISD.

Moreover, the resulting RMR CCSD method will at most very slightly violate the
size-extensivity, since it is again based on the exponential cluster Ansatz, namely

U = exp
(

T1 + T2 + T (0)
3 + T (0)

4

)

, (17-50)

the superscript (0) indicating the approximate external cluster components. Evalu-
ating the Λ(k)

i , (k = 1, 2) terms, Eq. (17-42), once and for all, and using them to
correct the absolute term in CCSD equations (for the treatment of the T1T3 term, see
[100, 195–197, 202]), the resulting ecCCSD equations have the same algebraic form
as the standard CCSD ones and can be solved with the same ease.

Finally, it is often useful to also correct for the secondary triples that are gen-
erally very small, yet very large in number. This can be done as in the standard
SR CCSD(T) method, yielding the RMR CCSD(T) approach [203, 204]. Moreover,
when we consider larger systems or employ large basis sets, even the number of pri-
mary triples and quadruples becomes significant and it may be useful to truncate this
subset based on suitable criteria [205] (see also [206]) and account for the eliminated
triples via RMR CCSD(T).

On a practical side, the 2R-RMR CCSD (based on 2R-CISD) is often all that is
required to handle the breaking of a single bond (note that in that case the number
of primary t(4) amplitudes is the same as the number of t(2) amplitudes). However,
for a proper description of a triple-bond breaking in N2 [176], we require a high-
dimensional M0. Once the references spanning M0 are decided upon, the available
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codes [207] will automatically perform the corresponding RMR CCSD calculation,
requiring roughly 20% more time than the standard CCSD.

17.6.2.2. Energy-Corrected ecCCSD

As pointed out in Section 17.6.1.2, instead of approximating the bra state 〈Ξ | using a
CC-based MBPT, leading to R- and CR-CC approaches, we can employ an external
source for this purpose. This leads to the energy-corrected ecCCSD methods [64,
123, 202, 208].

Thus, using as an optimal source a CI-type wave function

|Ξ 〉 = |Φ0〉 +
m
∑

k=1

∑

i∈(k)

′
c(k)

i |Φ(k)
i 〉 , (17-51)

where the prime indicates that only a subset of k-times excited configurations may
be involved, the energy correction ΔE of Eqs. (17-48) or (17-49) becomes

ΔE(Ξ , CCSD) =
m
∑

k=3

∑

i∈(k)

′
ΔE (k)

i (Ξ , CCSD) , (17-52)

where

ΔE (k)
i (Ξ , CCSD) = D−1c(k)

i

k
∑

n=3

∑

j∈(n)

′〈Φ(k)
i | exp (T[2])|Φ(n)

j 〉M(n)
j [2], (17-53)

D ≡ 〈Ξ | exp (T[2])|Φ0〉 = 1+
∑

k

∑

i∈(k)

′
c(k)

i 〈Φ(k)
i | exp (T[2])|Φ0〉 . (17-54)

Thus, e.g., ΔE (3)
i (Ξ , CCSD) = D−1c(3)

i M(3)
i (see ref. [2]).

In general, both the energy-corrected ecCCSD and amplitude-corrected RMR
CCSD approaches that employ the same MR CISD wave function yield very similar
results, the former one being slightly superior at large internuclear separations [64].
In fact, one can combine both approaches to obtain even better results. Nonetheless,
to achieve an accurate description of the triple-bond breaking requires very large
reference space and is most easily carried out using the RMR approach [176].

17.6.2.3. ec-GMS MRCC

The idea of amplitude-corrected ecCCSD (Section 17.6.2.1) can be easily extended
to GMS CCSD (Section 17.5) yielding the (N, M)-CCSD method [124], which em-
ploys M-dimensional GMS SU CCSD while exploiting the relevant M states MR
CISD that is based on N-dimensional reference space, N ≥ M. The cluster analysis
is again easily accomplished [138], but has to be carried out relative to each reference
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separately after a transformation with the inverse of the C matrix, Eq. (17-25). Note
that SR RMR CCSD ≡ (N, 1)-CCSD and SU CCSD ≡ (0, M)-CCSD represent spe-
cial cases of a general (N, M)-CCSD method. Conceptually, the most useful version
is represented by (M, M)-CCSD, since it deals with a singly- and doubly-excited
manifold of M0 and no additional model space is required. However, the advantage
of a general M �= N version gives the possibility to account for important configura-
tions, including intruders, in MR CCSD and not in GMS CCSD itself.

17.6.3. Other SR-Based Methods

17.6.3.1. String-Based MRCC Method

The above mentioned idea of Oliphant and Adamowicz [105] to truncate the number
of triples and quadruples in the SR CCSDT and CCSDTQ approaches was further
extended by Kállay et al. [209]. They consider a CMS and select one determinant as
a formal Fermi vacuum. Mono-, bi-, and higher-excited determinants relative to the
individual references are then considered as higher-excited configurations from that
Fermi vacuum. The required CC equations are generated in terms of antisymmetrized
diagrams while eliminating the amplitudes that carry an undesirable number of in-
active indices. The implementation has been based on the string CC approach [45],
which eliminates the need for manual generation of diagrams, factorization of the
resulting expressions, and coding of tensor contractions [45]. An advantage of this
approach is the elimination of problems that are inherent to genuine-MRCC methods,
such as the intruder states or redundancy of the SS MRCC Ansatz. On the other hand
an arbitrariness in the choice of a reference Fermi vacuum may lead to problems in
highly degenerate situations, since it may cause the non-invariance of the energy
with respect to this choice or, in particular, may break the spin symmetry of, e.g., the
low-spin, open-shell singlet states.

17.7. DISCUSSION

In the preceding sections we attempted to present an overview of various MR CC
approaches to many-electron correlation problem, particularly those that are based,
at least tangentially, on the effective Hamiltonian formalism and the SU CC Ansatz
of Jeziorski and Monkhorst. We payed only a cursory, if any, attention to those
methods which are surveyed in greater detail in other chapters of this monograph,
and passed over those SR approaches that exploit, either explicitly or implicitly,
a multi-determinantal reference, such as various spin-adapted approaches (e.g., the
CAUGA based CC [36, 37, 74], spin-flip approaches [210–213], etc.). We shall now
try to assess the merits and limitations of the above reviewed methods by relying on
the available results. The lack of evidence in some cases will be compensated by a
personal view of the authors.

The introduction of genuine MR CC methods has represented an important step
forward in the development of CC methodology. It supplied the need for a CC paral-
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lel to the MR CI methods, which would eliminate the shortcomings of the standard
SR CC theory in the presence of a quasi-degeneracy and was able to treat multiple
states belonging to the same symmetry species. However, in spite of the ingenuity
and subtlety of the MR CC formalism, its practical implementation turned out to be
difficult and most of the existing applications have been limited to simple models or
small molecules. It became soon obvious that suitable simplifications are necessary
if these methods are to be exploited with the present state of the computing technol-
ogy. Of course, such simplifications bring about more or less serious approximations
and deficiencies. For example, an important simplification results by relying on the
Brillouin – Wigner MBPT, however, at the price of loosing the size-extensivity.

The SU CC methods in either the JM or KB version, representing the genuine
Hilbert-space MR CC approaches [77, 96], have never been widely applied in their
full generality. One of the reasons is certainly the absence of efficient codes and
a high computational cost (which was especially prohibitive at the time of their
inception, but is becoming acceptable today, at least for mid-size molecules at the
CCSD level). The most severe limitation, however, turned out to be the intruder
states, causing a poor convergence, or even divergence, of the available algorithms.
In some cases these difficulties may be avoided by exploiting incomplete model
spaces rather that a CMS [81, 82]. Another disadvantage of SU MRCC (as well as
of BWCC and MkCC that also employ the JM Ansatz) is the non-invariance of the
energy with respect to rotations among the active orbitals, which in some cases may
lead to artifactual results, e.g., when computing vibrational frequencies for modes
that lower the symmetry of the system.

In view of its desirable property of a fast convergence, thanks to the BW energy
denominator shifts which simultaneously enable to avoid intruder states, as well as to
the size-extensivity corrections, the basic BW CCSD method has yielded reasonably
accurate results for systems in which the nondynamic correlation plays a significant
role [143–155]. Recently, the connected triple excitations have been included in the
MR BWCC theory [157–159], resulting in a considerable increase in the accuracy
of the method thanks to a more precise description of dynamical correlation effects,
similarly as in the SR case. As already mentioned, the main shortcoming of BWCC
is the lack of the exact size-extensivity, only partly remedied by the non-iterative
correction [142]. The method thus cannot a priori guarantee reliability for larger
systems in spite of its many successful applications. Another problem with the a
posteriori corrections is that the resulting amplitudes do not obey converged ampli-
tude equations. This would considerably complicate the development of the analytic
gradient formalism that is available for uncorrected BWCC [137]. Unfortunately,
the iterative size-extensivity correction [132] reverts back to the state-universality
and reintroduces the intruder state problem.

The MkCC approach seems to represent the only fully size-extensive variant of
the Hilbert-space MRCC method that is capable to avoid intruders thanks to its SS
nature and provides useful and reliable results. This has been enabled thanks to an
efficient implementation accounting for up to triexcitations, including non-iterative
triples variant [94, 95, 162, 164]. However, according to our experience, BWCC
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usually converges faster, often considerably so. One might thus perform a BWCC
study and employ MkCC as a check of the BWCC size-extensivity error. We also
point out that practically all MkCC applications that we are aware of has been to
the lowest state of a given symmetry (except for the first excited state of the H4
model [183], in which case MkCC slightly underperforms standard SU CCSD [94]).
It would be certainly very interesting to test its capabilities for more and higher lying
excited states of real systems.

The dominant part of the computational cost of all Hilbert-space MRCC methods
scales as an M-multiple of the SR CC scaling at the same truncation level, where M
is the dimension of the model space. With the exception of BWCC, this cost also
includes a term proportional to M(M − 1)/2 due to the coupling terms. However,
the scaling with the basis set size for the evaluation of the coupling terms is lower
than that required for the connected terms, so that for small values of M that have
been employed so far the cost of the coupling term evaluation does not represent a
bottleneck.

An appealing possibility how to cope with quasidegeneracies of electronic states
exploits the idea of external corrections [99–101, 195–197], which proved to be
very fertile in both the SR and MR CC approaches. At the SR-level, it has been
especially the RMR CCSD approach [118, 121, 206] and its truncated [205] and
RMR CCSD(T) [203] versions that proved to be very useful in actual applications,
enabling us to handle even rather strong quasi-degeneracies and thus providing an
accurate treatment of a number of both important and challenging systems, including
open-shells [121]. Indeed, these methods turned out to be very efficient not only in
generating of entire potential energy surfaces or curves for small species [119, 214–
216] (e.g., HF, F2, H2O, LiH, BN, C2, BNB, N3, etc.), including a very demanding
case of the triple-bond breaking in the nitrogen molecule [176, 217] (see also [122]),
but also enabled the handling of relatively large systems, such as nickel-carbonyls
[218] and transition metal ion – methylene complexes [219]. Likewise, they enabled
a reliable determination of the spin-multiplicity of the ground state in radicaloid
systems with a small singlet-triplet splittings between the lowest-lying states, again
in both small species [177, 220, 221] (such as CH2, BN, and C2) and in relatively
large systems, such as benzynes [178], pyridynes [222], naphthynes [223], and lin-
ear di-dehydro-polyenes [224]. Particularly remarkable turned out to be the RMR
handling of a triple-bond dissociation of N2 [176] using a 56-dimensional reference
space for MR CISD (including hextuples).

In most cases just mentioned the standard CCSD(T) breaks down or is unreliable.
Nonetheless, in applications to reaction barriers in a series of heavy-atom transfer,
nucleophilic substitution, association, and unimolecular reactions [225] the standard
CCSD(T) method performs very well [differing, in a few cases, from the RMR-
CCSD(T) result by only about 1 kJ/mol]. This is perhaps due to the fact that in the
relevant transition complexes the original chemical bonds are not yet completely
broken while the new bonds are being formed, so that the MR or quasi-degeneracy
effects are sufficiently small to be handled by the standard CCSD(T) method. Indeed,
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while the RMR-type approaches enable one to overcome the CCSD(T) breakdown
in the presence of a strong quasi-degeneracy, in most instances the CCSD(T) ap-
proach provides excellent results, deserving its designation as the “gold standard” in
molecular electronic structure calculations.

A simultaneous handling of a number of states via SU-type MRCC has been
enabled by the GMS-type approaches [81–87, 124, 127, 226], which also indicate
a considerable potential in view of the existing test calculations. Yet, their com-
putational implementation could be greatly improved, particularly when exploiting
parallel processing.

Let us also point out here that the R- and CR-CCSD(T) methods are equally capa-
ble of handling significant quasi-degeneracy effects, at least when dissociating single
bonds [62, 108–113]. Moreover, the CR-CC(2,3) version is fully size-extensive and
generally provides an excellent approximation to the full CCSDT. In some instances,
however, the role of quadruples may be significant [177]. While the RMR approaches
also account for primary quadruples, one has to turn to CR-CC(2,4) in the case of
renormalized approaches, which significantly increases the computational cost.

The above listed applications attest to the efficacy of the RMR-type approaches,
which generally exceeds the computational demands of the standard CCSD or
CCSD(T) by only about 20%. Once the desired model space for the relevant MR
CISD is chosen, the existing codes have a black-box character [207]. Of course, the
principal shortcoming of RMR CCSD is the same as for any SR-type approach,
namely that it can only handle the lowest-lying state of each symmetry species.
This shortcoming may be overcome by exploiting the GMS CCSD method and
its ec version (N, M)-CCSD, which consider simultaneously several states of the
same symmetry species in the spirit of general MR SU CCSD approaches [81–
87, 124, 127, 226]. However, this very much increases the computational demands
and the available codes are of an ad hoc nature. In this regard, the SS-versions of
the SU CCSD approach [92–95] are computationally much more efficient, although
we are not aware of applications that treat several states of the same symmetry, as
already pointed out.

In contrast, both GMS CCSD and its ec version (N, M)-CCSD enable a simulta-
neous handling of several states of the same symmetry in the spirit of general MR
SU CCSD approaches. At the same time they can avoid the intruder state problem
while preserving size-extensivity to a very high degree of accuracy [82, 83]. Test
calculations on diatomic and triatomic systems, as well as a realistic exploration
of singlet and triplet excited states, examining either the entire PECs or vertical and
equilibrium excitation energies, showed that these methods can handle both the equi-
librium and highly stretched geometries and are able to describe at the SD level –
in contrast to EOM CCSD – all types of excited states, including those having a
doubly-excited character [78, 82, 85–87, 124, 201, 226]. The C-conditions of the
GMS method enabled for the first time to consider relatively large model spaces (up
to 14-dimensional one in the case of the water molecule [86]), as well as to generate
highly accurate singlet and triplet excitation energies for all the symmetry species.
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It was also demonstrated that a simple diagonal correction for secondary triples can
often achieve the same goal as the (N, M)-CCSD approach.

More recent additions to MRCC methodology that were briefly mentioned (e.g.,
Section 17.5.5) bring a welcome extension to the available repertoire of MR tech-
niques. Although in most cases the required algorithms may be rather daunting,
so that their general implementation is difficult without a computer assisted code
generation, which proved to be indispensable already in earlier cases (cf., e.g., Ref.
[36]), they seem to deliver encouraging results. We refer the reader to respective
Chapters in this monograph for an up to date description and assessment of these
recent developments.

17.8. SUMMARY

In general, the developments described in this review represent useful tools for the
exploration of the molecular electronic structure when the SR approaches are either
inapplicable or inadequate. Numerous successful applications, as briefly pointed out
in the preceding section, witness the capabilities of these methods and their viability.
It is encouraging that most of these approaches can handle both closed- and open-
shell systems with the same ease, be they excited states of various spin multiplicity
or the low-lying states of radicaloid or diradicaloid species. Moreover, most of these
approaches can successfully handle intruder states, even at the general MR SU level.

We did not pay attention to VU MRCC methods, but instead attempted a com-
prehensive overview of the SU MRCC approaches. Some of them were developed
only recently and there is not yet much evidence on their performance and feasibility
of the respective calculations. Nonetheless, we endeavored to provide their critical
assessment from the viewpoint of practical applications. In the family of genuine
MRCC methods, the SS approaches of Sections 17.5.3 and 17.5.4 proved to be very
useful, even though so far mostly for the lowest states of a given symmetry. The
BWCC method with a posteriori size-extensivity correction has the advantage of
simplest amplitude equations and excellent convergence properties, at the expense
of being only approximately size-extensive. In contrast, MkCC method is exactly
size-extensive, but sometimes requires considerably more iterations to converge than
does BWCC, probably due to the presence of more complex coupling terms. Unfor-
tunately, we are unable to reliably judge the performance of the MRexpT approach
of Hanrath due to the lack of applications to larger systems.

The MR CC methods of either the SS or SU type that are internally or externally
corrected for higher-than-two-body clusters offer a multitude of possibilities, leading
to methods that enable applications even to relatively large systems. As we showed
in Sections 17.6.1 and 17.6.2, there are many ways how to proceed, and only further
applications will show which of these methods are the most general and profitable
ones. Some of these methods are already available in quantum chemical software
packages and we are convinced that this will also be the case for more recent addi-
tions, thus providing a useful complement to MR CI approaches.
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145. J. Pittner, J. Šmydke, P. Čársky, I. Hubač, J. Mol. Struct. (THEOCHEM) 547, 239 (2001)
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VIBRATIONAL COUPLED CLUSTER THEORY
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Abstract: Vibrational coupled cluster (VCC) theory is introduced as a method for solving the time-
independent vibrational Schrödinger equation within the Born-Oppenheimer approxima-
tion. The first part of this chapter introduces the basic foundations of the theory, including
the vibrational self-consistent field method and an appropriate second quantization formal-
ism. The VCC method is then defined and shown to provide good accuracy when compared
with vibrational configuration interaction calculations. The second part of the chapter pro-
vides a detailed treatment of the form and evaluation of the VCC equations in terms of
amplitudes and integrals. Along these lines, strategies for efficient implementations are
discussed.

Keywords: Vibrational coupled cluster, Anharmonic vibrations, Vibrational spectroscopy

18.1. INTRODUCTION

As evidenced by the other contributions to this monograph, coupled cluster (CC)
theory has proven to be an accurate, yet affordable, method for obtaining electronic
wave functions, energies, and properties in molecular science. However, describing
the electronic motion in a molecule is only half the story. Most often the Born –
Oppenheimer approximation is invoked and the electronic equations are solved for
fixed nuclear coordinates. In this way, a potential energy surface (PES) on which
the nuclei move can be obtained by varying these coordinates. The nuclear motion
is the second half of the story. In this chapter, we explore how CC theory can be
applied to this problem. More specifically, we consider the solution of the time-
independent vibrational Schrödinger equation using an exponential ansatz for the
wave function based on excitations out of a mean field reference state. The method
is denoted vibrational coupled cluster (VCC) theory and was introduced as recently
as 2004 [1, 2].
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Though this chapter is very focused on VCC, we acknowledge the large number
of other methods available for calculating vibrational energies and wave functions,
see e.g. Refs. [3–5] for entries into the literature.

18.2. PRELIMINARIES

The nuclear problem is rather different from the electronic case. We focus in this
chapter only on the internal vibrational motion, though extension to the rovibrational
problem is interesting and possible. In this section we discuss two basic subjects: The
construction of the Schrödinger equation for internal nuclear motion, and the vibra-
tional self-consistent field method which is the vibrational analogue to Hartee-Fock
theory. Together with the next section on a second quantization formalism suitable
for vibrational wave functions, this forms the basis for a formulation and implemen-
tation of VCC theory.

18.2.1. The Vibrational Schrödinger Equation

The vibrational Schrödinger equation in the Born-Oppenheimer approximation is
given by

(

T + V(Q)
)

Ψi(Q) = EiΨi(Q). (18-1)

Here T is the kinetic energy operator for the internal motion of the nuclei, and V(Q)
is the PES obtained from the solution of the electronic problem as a function of the
nuclear coordinates, Q, describing the relative arrangement of the nuclei.

In general, V(Q) is a complicated function coupling all the vibrational degrees
of freedom (modes). A common approximation is to use a hierarchical expansion of
V(Q) in terms of functions coupling only a limited number of modes,

V(Q) =
∑

m∈MCR[V]

V̄m(Qm). (18-2)

In this expression, m is a mode combination (MC), i.e. the set of modes coupled by
the function V̄m(Qm), and Qm denotes the coordinates for the modes in m. Note that
the V̄m functions only describe the couplings and therefore are defined to be van-
ishing whenever one or more coordinates are zero, i.e. V̄m( . . . , Qm = 0, . . . ) = 0.
For instance, V̄{m1m2} = V{m1m2}(Qm1 , Qm2 ) − V{m1}(Qm1 ) − V{m2}(Qm2 ). The set of
all MCs used in the PES representation is given by the mode combination range,
MCR[V]. A common approximation is to include in MCR[V] all MCs up to a given
level, for instance all one-, two-, and three-mode couplings. The MC and MCR con-
cepts are used throughout this chapter to describe quantities acting on a limited set
of modes.
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For the efficient implementation of VCC theory, we have chosen to represent each
V̄m function as a sum of products over one mode operators,

V̄m =
Nt
∑

t

ct

∏

m∈m

hmotm
, (18-3)

where Nt is the number of terms in the given V̄m function and hmotm
is a one-mode

operator for mode m of type otm. For instance, a three mode coupling function may
be written as a polynomial expansion,

V̄m = V̄{m1m2m3} =
Nt
∑

t

ct

∏

m∈{m1,m2,m3}
hmotm =

Nt
∑

t

ct Qrt
m1

Qst
m2

Qut
m3

, (18-4)

where rt, st, and ut specify the exponents used in each term. The coefficients ct may
be obtained from derivative information in the case of a Taylor expansion or from
polynomial fitting to a grid representation of the V̄m function. PESs can nowadays
be automatically constructed from single point electronic structure calculations and
expressed in the form of Eqs. (18-2), (18-3), and (18-4). We refer to Refs. [6, 7]
for further details on this particular approach and Refs. [5, 8–10] for more general
overviews.

The representation of the kinetic energy operator, T , is very dependent on the
choice of nuclear coordinates. In mass-weighted normal coordinates, the Watson
operator must in principle be used [11]. However, if the terms originating from
rovibrational couplings are neglected it reduces to the simple form

T = −1

2

M
∑

m=1

∂2

∂Q2
m

, (18-5)

where M is the number of modes. Though only normal coordinates have been con-
sidered so far, the theory and implementation of VCC does not depend on the specific
coordinates used. In case of more involved expressions for the kinetic energy opera-
tor, a MC expansion similar to the one used for the PES may be employed.

18.2.2. Vibrational Self-Consistent Field Theory

In analogy to the Hartree–Fock method in electronic structure theory, the vibrational
self-consistent field (VSCF) method can account for the interaction between different
modes in a mean field sense. Below follows a brief account of the method, see e.g.
Refs. [5, 12, 13] for further details.

Since the vibrational modes are distinguishable, the ansatz for the VSCF wave
function is a simple Hartree product of one-mode functions,
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Mode: 1 2 3

Occupied

V
ir

tu
al

Figure 18-1. The occupied and virtual modals obtained in a VSCF calculation. The vertical lines represent
modals and the circles indicate which ones enter the Hartree product being optimized, in this case the
ground state

Ψi(Q) ≈ Φi(Q1, Q2, . . . , QM) =
M
∏

m=1

φm
im(Qm), (18-6)

where φm
im

(Qm) is a one-mode function for mode m and i = (i1, i2, . . . , iM) is a vector
specifying the occupied level in each mode. The one-mode functions are commonly
denoted modals in analogy to the orbitals of electronic structure theory. The optimal
modals are obtained by minimizing the energy expectation value, Ei = 〈Φi|H|Φi〉,
with respect to arbitrary variations in φm

im
.

Each modal can be expanded in a primitive basis, for instance a set of harmonic
oscillator functions or a set of distributed Gaussians. This translates the minimization
problem into a set of eigenvalue problems which must be solved self-consistently. In
the end, a set of optimal modals is obtained. In addition, one also obtains a set of
virtual modals for each mode as illustrated for a ground state VSCF calculation in
Figure 18-1.

The treatment of one-mode anharmonicity is exact in VSCF theory provided a
complete one-mode basis is used. However, the correlated motion of the nuclei is
only treated in a mean-field sense. To include explicit correlation, an expansion in
multiple Hartree products generated by excitations into the virtual modals may be
used. The next section describes a second quantization formalism that is particu-
larly useful for representing and manipulating Hartree products generated from the
VSCF modals. This paves the wave for the formulation of CC theory in a vibrational
context.

18.3. SECOND QUANTIZATION FOR MANY-MODE
VIBRATIONAL SYSTEMS

To represent a Hartree product in second quantization, we introduce an occupation
number vector (ONV). This vector contains an integer, km

p , for every modal, p, in
every mode, m, specifying how many times the modal enters the Hartree product,
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|k〉 = |{k1
1, k1

2, . . . , k1
N1
}, . . . , {km

1 , km
2 , . . . , km

Nm
}, . . . , {kM

1 , kM
2 , . . . , kM

NM
}〉. (18-7)

Here Nm is the size of the modal basis for mode m, and M is the total number of
modes. Since a Hartree product must contain exactly one modal for each mode, only
the subspace of all |k〉 vectors with exactly one km

i equal to 1 and all others equal to
0 for each mode is of physical relevance to us here. An ONV for an example Hartree
product is illustrated in Figure 18-2.

The special ONV with all elements equal to zero is denoted the vacuum state,
|vac〉. The inner product between two ONVs is defined as

〈k|l〉 =
M
∏

m=1

Nm
∏

p=1

δkm
p lmp . (18-8)

To manipulate the ONVs, we introduce the creation and annihilation operators,

am†
p | . . . , km

p , . . .〉 =
√

km
p + 1| . . . , km

p + 1, . . .〉, (18-9)

am
p | . . . , km

p , . . .〉 =
√

km
p | . . . , km

p − 1, . . .〉. (18-10)

Note that the result of am
p acting on an ONV with km

p = 0 is vanishing. Letting
the operators work on arbitrary ONVs, the following basic commutator relations are
obtained,

[am†
p , am′†

q ] = [am
p , am′

q ] = 0, (18-11)

[am
p , am′†

q ] = δmm′δpq. (18-12)

It is worth noting that the present formalism is different from a formulation in
terms of the usual harmonic oscillator step up and down ladder operators. As is

φφφΦ

Mode: 1 2 3

3

2

1

0

FQ:

SQ: = 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0

(Q ) (Q ) ( )=

Modals:

2
1

i 21 Q30
2

1
3

Φi

Figure 18-2. Using an ONV to represent a Hartree product in second quantization. FQ: first quantization
representation in terms of one-mode functions. SQ: the corresponding second quantization ONV
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evident from Eq. (18-9), the application of a creation operator does not excite the
molecule to a higher vibrational level. Instead, it simply adds a modal to the Hartree
product it represents. One advantage of this formalism is that there is no restriction
to a particular basis or reference state. CC theory based on the harmonic oscillator
second quantization has been proposed by other authors for one-dimensional [14–16]
as well as coupled anharmonic oscillators [17, 18]. However, these methods are very
different from the theory presented in this chapter.

To see how physical excitations can be introduced, we first define a reference
Hartree product described by the vector i = (i1, i2, . . . , iM). In second quantization,
this product is expressed as

|Φi〉 =
M
∏

m=1

am†
im
|vac〉. (18-13)

For the ground state illustrated in Figure 18-1, we would choose i = (0, 0, 0). In the
remainder of this chapter, we use the notation that modal indices i, j, k, . . . correspond
to modals occupied in the reference Hartree product while a, b, c, . . . correspond to
unoccupied modals. To denote general modals, the indices p, q, r, . . . are used. To
generate excited states, we introduce the excitation operators

τμm =
∏

m∈m

am†
am

am
im , (18-14)

where m is the MC for the operator, i.e. the set of modes in which it excites, and
μm is a compound index specifying exactly what modals the operator excites to. For
instance, the one- and two-mode excitation operators can be written explicitly using
general mode indices m1 and m2 as

τam1 = am1†
a1

am1
i1

, (18-15)

τam1 am2 = am1†
a1

am1
i1

am2†
a2

am2
i2

. (18-16)

Since there will always only be one occupied modal for each mode in the reference
state, the corresponding im index is omitted on the left-hand side. The two-mode
excitation operator is illustrated in Figure 18-3. From the basic commutator relations,
(18-11) and (18-12), it is seen that all excitation operators commute,

[τμm , τ
νm′ ] = 0. (18-17)

A key feature of second quantization is that both states and operators can be rep-
resented in terms of creation and annihilation operators. The representation of the
Hamiltonian becomes particularly simple for the sum over products form introduced
in Section 18.2.1. Defining the second quantized operator as
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Mode: 1 2 3

3

2

1

0

Modals:

Figure 18-3. The action of the two-mode excitation operator τμm = τam1 am2 with m = {m1, m2} =
{1, 2} and am1 = 2, am2 = 3

HSQ =
∑

t

ct

∏

m∈mt

hmotm
, hmotm =

∑

p,q

hmotm

pq am†
p am

q , (18-18)

where mt is the MC for the term t and hmotm

pq = ∫

φm
pm

(Qm)hmotm
φm

qm
(Qm)dQm are

one-mode integrals, we obtain a one-to-one correspondence between first and second
quantization. Thus, with either representation, a matrix element between two Hartree
products simply turns into a sum of products of one-dimensional integrals times a
number of Kronecker deltas for the modes not included in the specific term,

〈Φp|H|Φq〉 =
∑

t

ct

∏

m∈mt

hmotm

pq

∏

m/∈mt

δpmqm . (18-19)

Figure 18-4 illustrates how the second quantization representation picks out the cor-
rect one mode integrals based on the occupation numbers in the bra and ket ONVs.

p,q

hmo tm

pq am †
p am

q

3

2

1

0

hmo tm

12

m mm m

Figure 18-4. The second quantization representation of an operator. For each mode in a given term in
the Hamiltonian, the annihilation operators will work on each modal. This will give zero for all modals
except the ones occupied in the ONV. Thus, the result will be a product of the correct one mode integrals

18.4. VIBRATIONAL COUPLED CLUSTER THEORY

To correct for the neglect of correlation beyond the mean-field in VSCF theory,
we have to include more Hartree products than just the VSCF reference state. The
conceptually simplest way of doing this is through a variational linear expansion
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approach in the Hartree product space giving the standard vibrational configuration
interaction (VCI) [5, 8] method. Including all possible configurations, we obtain the
full VCI (FVCI) wave function. For molecules with more than four atoms corre-
sponding to M = 6 vibrational modes, dealing with the FVCI wave function is most
often impractical due to its exponential NM scaling in the number of parameters
where N is the number of one-mode basis functions per mode. Though approxi-
mate VCI methods can be devised [19, 20], we now turn to the alternative VCC
approach.

The VCC wave function is based on the exponential ansatz

|VCC〉 = exp (T)|Φi〉, (18-20)

where the cluster operator, T , is defined as

T =
∑

m∈MCR[T]

Tm, Tm =
∑

μm

tμmτμm . (18-21)

In this expression, MCR[T] is used to specify the MCs included in the excitation
space. The Tm operator then contains all excitation operators and their associated
amplitudes, tμm , for the MC m.

If MCR[T] contains all possible MCs for a given system, Eq. (18-20) is just an
alternative parameterization of the FVCI wave function. However, since the num-
ber of possible excitations increases rapidly with the number of simultaneously ex-
cited modes, the cluster operator must often be truncated. The simplest approach
is to include only MCs containing at most n modes. This results in a hierarchy of
VCC[n] methods analogously to the CCS, CCSD, CCSDT, . . . hierarchy in elec-
tronic structure theory. However, since the molecular vibrations are distinguishable,
more elaborate excitation spaces may be of relevance. Consider for instance two
vibrational modes, m0 and m1, which turn out to be only weakly coupled through
the Hamiltonian. In such a case, the corresponding amplitudes t{m0m1} are expected
to be small and one may choose to exclude these entirely from the excitation
space.

The determination of the cluster amplitudes is carried out as usual by solving the
projected Schrödinger equation after a transformation with exp (–T),

0 = eμm = 〈μm| exp (− T)H exp (T)|Φi〉. (18-22)

The energy is in turn obtained from

EVCC = 〈Φi|H exp (T)|Φi〉. (18-23)
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The solution of Eq. (18-22) is achieved in an iterative manner. The time-limiting
step in this case is the evaluation of the error vector, eμm , using a given set of trial
amplitudes. This will be described more carefully in Section 18.6.

18.4.1. Excited States

Two basic strategies exist for obtaining vibrational excited states: A state specific
and a response approach.

In the state specific approach, a separate VCC calculation is carried out based
on an optimized VSCF reference for each state. In other words, the calculation of
each state is based on a modal basis which is optimal for the state in question. The
VCC excitation level is furthermore counted relative to the reference describing the
excited state. The advantage of this approach is the use of optimized modals which
may reduce the size of the required VCC excitation space. On the other hand, CC
methods based on a single reference function are not well suited for states with mul-
tireference character, especially at lower excitation levels. Often, excited vibrational
states will be strongly multireference due to the vast number of possible resonances.
In these cases, the state specific method may run into trouble. A related issue is solv-
ing the non-linear equations for the excited states in practice. Contrary to the ground
state, the convergence of iterative methods has proved troublesome is some cases.
Another problem is the non-orthogonality of the obtained states. This complicates
the evaluation of for instance transition moments which may be of great interest in
addition to the excitation energies. Due to the issues discussed here, the state specific
method will not be considered further in this chapter.

The response method is fundamentally different from the state-specific approach
in that it is based only on a ground state optimization of the VCC wave function.
CC response theory for electronic structure theory has been extensively described,
see Ref. [21] and references therein. The generalization to VCC theory is provided
in Ref. [22]. In this chapter we shall not go through the derivation but simply quote
the result that excitation energies may be approximated by the eigenvalues of the
Jacobian of the VCC error vector,

Aμmνm′ = 〈μm| exp (− T)[H, τ
νm′ ] exp (T)|Φi〉. (18-24)

Due to the large dimension of the excitation space, the calculation of the full spec-
trum of A is not feasible. Instead, iterative subspace methods are used to obtain
only a limited number of eigenstates. These methods all rely on the ability to trans-
form a given vector with the Jacobian. Once again, this transformation is the time-
limiting step and can be carried out using similar approaches as those described in
Section 18.6.

The response method provides a framework for obtaining not only excitation en-
ergies but also many other properties like expectation values, polarizabilities, and
transition moments. These features are, however, beyond the scope of the present
chapter.
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18.5. NUMERICAL EXAMPLES

The VCC method is still in its infancy. Therefore, it is important to asses to accuracy
of the method by means of benchmark calculations. This is especially true due to the
large diversity of PESs. First of all, the physical degree of mode coupling will vary
between molecules. Second, the number of modes coupled simultaneously in the
model description of the PES is limited by computational resources. The excitation
level needed in VCC will depend on both of these factors. This situation should be
contrasted to electronic theory where the correlation always arises from the universal
two-body Coulomb repulsion.

So far, VCC has only been applied to a limited number of molecules. In this sec-
tion we compare ground-state based calculations for two molecules: Formaldehyde
and ethylene. We only present graphical illustrations of average errors relative to
FVCI. The full set of results and a more elaborate discussion is available in Ref.
[22].

The first three panels of Figure 18-5 show the average absolute errors for the
fundamentals, overtones, and combination bands of formaldehyde. The fourth panel
shows the same results but for the fundamentals of ethylene. Note the logarithmic
scale. It is seen that the accuracy is systematically improved in the VCC hierarchy
at each excitation level. The accuracy is higher for the one-mode excitations, i.e.
the fundamentals and overtones, compared to the combinations. It is also seen that
VCC is superior to VCI at all excitation levels. These facts can all be justified by
perturbation theory arguments, see Ref. [22]. The relative performance is as expected
and experience is similar with other molecules. More extensive benchmarking of the
VCC method to quantify further the accuracy obtainable for given computational
levels is a high priority at the time of this writing.

Though VCC is clearly theoretically favorable over VCI in the sense that higher
accuracy is achieved using the same number of parameters, the VCC equations are
much more complicated to implement in a computationally efficient manner. The
rest of this chapter deals more carefully with this issue.

18.6. A CLOSER LOOK AT THE VCC EQUATIONS

In this section we consider the evaluation of the VCC error vector, Eq. (18-22), in
terms of amplitudes and integrals. The discussion presented here can quite straight-
forwardly be translated into a computer implementation of a general excitation level
VCC method. Though the efficiency of such an implementation has proven not to be
adequate for larger systems, the discussion is nevertheless relevant since it serves to
introduce a number of basic concepts. It illustrates how VCC works and underlines
the differences relative to electronic CC and VCI.

We begin by introducing the resolution of the identity,

1 =
∑

m,μm

|μm〉〈μm| = |Φi〉〈Φi| +
∑

m�={}

∑

μm

|μm〉〈μm|, (18-25)
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Figure 18-5. The convergence of VCC response and VCI ground-state based excitation energies. For
formaldehyde the PES is a fourth order Taylor approximation with up to four-mode couplings [23]. The
primitive basis consists of seven harmonic oscillator functions per mode and all virtual modals are used
in the VCI and VCC calculations. For ethylene, the PES is a fourth order Taylor approximation restricted
to include only up to three-mode couplings [24]. While 21 harmonic oscillator functions were used as the
primitive basis, only the 3 lowest VSCF modals per mode was used in the VCI and VCC calculations to
facilitate the FVCI calculation (531,411 coefficients)

twice into Eq. (18-22):

eμm =
∑

mp,νmp

∑

mq,σmq

〈μm| exp (− T)|νmp〉〈νmp |H|σmq〉〈σmq | exp (T)|Φi〉, (18-26)

Note that the summations are formally over all possible MCs (including the empty
one) and not restricted to the particular VCC excitation space. The evaluation of the
error vector may now be performed in three separate steps:

1. Evaluation of the effect of exp (T) on the reference state,

cσmq = 〈σmq | exp (T)|Φi〉. (18-27)
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2. Transformation of cσmq with the Hamiltonian,

dνmp =
∑

mq,σmq

〈νmp |H|σmq〉cσmq . (18-28)

3. A final transformation with exp (− T),

eμm =
∑

mp,νmp

〈μm| exp (− T)|νmp〉dνmp . (18-29)

In the next two subsections we discuss the exp (T) and Hamiltonian transformations.
We then discuss the assembly of these separate steps into a working entity.

18.6.1. The Exponential Transformations

The exponential transformations can be carried out based on the Taylor expansion of
the exponential function. We first consider the case of exp (T) acting on the reference
state,

exp (T)|Φi〉 =
(

1+ T1 + (T2 + 1

2
T2

1 )+ (T3 + T1T2 + 1

6
T3

1 )+ . . .
)

|Φi〉. (18-30)

The three-mode excited configurations resulting from this transformation are gener-
ated from a combination of the T1, T2, and T3 cluster operators, C3 = T3 + T1T2 +
1
6 T3

1 . The coefficients of the individual configurations generated by C3 are obtained
by combining the amplitudes. For instance, the vector of three-mode coefficients for
the MC {m1m2m3} is given by

c{m1m2m3} = t{m1m2m3} + t{m1}t{m2m3} + t{m2}t{m1m3} + t{m3}t{m1m2}

+t{m1}t{m2}t{m3}. (18-31)

Notice that the factor of 1/6 disappears when the actual coefficient are calculated
due to the six possible ways the modes can be distributed on the three T1 operators.

In the above equation, the product of two amplitude vectors should be considered
as a direct product, i.e.

t{m1}t{m2} =
[

tm1
1

tm1
2

]

⊗
[

tm2
1

tm2
2

]

=

⎡

⎢

⎢

⎢

⎣

tm1
1 tm2

1

tm1
1 tm2

2

tm1
2 tm2

1

tm1
2 tm2

2

⎤

⎥

⎥

⎥

⎦

. (18-32)

In general, it can be realized that the c coefficients for a given MC can be obtained
from
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cm =
∑

MCR∈SMCR[m]

∏

mk∈MCR

tmk
. (18-33)

Here SMCR[m] is the set of all partitions of m, i.e. the set of all possible sets of
mutually disjoint subsets of m whose union is m. Since the cluster operator is usually
truncated, the additional restriction that all MCs in each MCR must be part of the
excitation space naturally applies. The product is again to be considered as a direct
product. Using Eq. (18-33) it is possible to construct the entire cσmq vector in Eq.
(18-27).

The above equations describe how to transform the reference state. Transforming
a general state with exp (±T) as is needed in Eq. (18-29) is only slightly more
complicated. Let the initial state be written as

|D〉 =
∑

mp∈MCR[D]

∑

νmp

dνmp |νmp〉. (18-34)

The coefficients, em, of the transformed state |E〉 = exp (T)|D〉 are then given by

em =
∑

m′∈MCR[D]

(
∑

MCR∈SMCR[m\m′]

∏

mk∈MCR

tmk
)

dm′ . (18-35)

It is seen that in contrast to Eq. (18-33) which generates all excitations necessary to
arrive at the MC m, this form only generates the excitations not already present in
the dm′ coefficients.

To finish this discussion, we merely note that doing exp (–T) as opposed to exp (T)
is simply a matter of multiplying (–1)n on each term in Eqs. (18-33) and (18-35)
where n is the number of t-factors entering.

18.6.2. The Hamiltonian Transformation

To allow large excitation spaces, the transformation with the Hamiltonian, Eq.
(18-28), is carried out in a direct fashion, i.e. the Hamiltonian matrix is never ex-
plicitly constructed. Instead, an algorithm is used to carry out a transformation of the
coefficients equivalent to a matrix multiplication.

The core of a direct transformer is the ability to transform the coefficients
corresponding to excitations in a given MC, cσmp , by a single term, Hm

t , in the
Hamiltonian,

d′
νmp =

∑

σmq

〈νmp |Hm
t |σmq〉cσmp (18-36)

=
∑

σmq

〈νmp |
∏

m∈m

hmotm |σmq〉cσmp , (18-37)
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where d′
νmp is the set of coefficients corresponding to the MC mp in the result.

Since each term in the Hamiltonian is a product of one-mode operators, the result
of the transformation may be determined by applying each operator in turn. This
will lead to a sequence of one-index transformations of the coefficients. Depending
on the mode, mh, associated with the operator and the modes included in mq and mp,
four kinds of transformations are possible:

• mh /∈ (mp ∪mq)
In this case, mode mh in neither excited in 〈νmp | or |σmq〉. Considering the second
quantization form of the one-mode operator, Eq. (18-18), we see that only the term

hmhotmh

ii amh†
i amh

i will give a non-zero results. Therefore, the integral hmhotmh

ii should
simply be multiplied on every coefficient. This is known as a passive contraction.

• mh ∈ (mq \mp)
If mode mh is excited in |σmq〉 but not in 〈νmp |, the excitation must be removed.
Considering again the second quantized operator, we see that this is accomplished
when p = i and q = a in Eq. (18-18). The corresponding transformation of the
coefficients is denoted a down contraction,

d′{m1m2···mh−1mh+1···mK}
a1a2···ah−1ah+1···aK =

∑

ah

hmhotmh

ihah
c{m1m2···mh−1mhmh+1···mK}

a1a2···ah−1ahah+1···aK . (18-38)

• mh ∈ (mp \mq)
This situation is the opposite of the previous, i.e. excitations in mode mh must be
generated. We denote this an up contraction,

d′{m1m2···mh−1mhmh+1···mK+1}
a1a2···ah−1ahah+1···aK+1 = hmhotmh

ahih
c{m1m2···mh−1mh+1···mK+1}

a1a2···ah−1ah+1···aK+1 . (18-39)

• mh ∈ (mp ∩mq)
The final possibility is that mh is excited in both 〈νmp | and |σmq〉. In this case the
excitation must be retained but the second quantized operator connects different
modals, i.e. annihilates one modal and creates another. The result is a forward
contraction,

d′{m1m2···mh···mK}
a1a2···ah···aK

=
∑

bh

hmhotmh

ahbh
c{m1m2···mh···mK}

a1a2···bh···aK
. (18-40)

To implement the transformation (18-37) efficiently, the scaling of the different types
of contractions must be considered. If N is the number of virtual modals, and K is
the number of excited modes on the right-hand sides of Eqs. (18-38), (18-39) and
(18-40), it can be seen that down contractions scale as NK while forward and up
contractions scale as N(K+1). Due to the basic commutator relations, Eqs. (18-11)
and (18-12), the order in which the one-mode operators are applied does not matter.
It is therefore advantageous to do the contractions in the order down, forward, up,
since this will minimize the number of excited modes and thereby the operation
count in all steps.
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We now give a specific example to illustrate a simple transformation in practice.
Consider a set of coefficients, cσmq , describing excitations in mq = {m1m2}, trans-
formed with a three-mode term in the Hamiltonian,

d′
ν{m2m3} =

∑

σ {m1m2}
〈ν{m2m3}|hm1o1hm2o2hm3o3 |σ {m1m2}〉cσ {m1m2} . (18-41)

As is seen, in this case we want the result corresponding to mp = {m2m3}. The
evaluation of the result vector can now be performed in a sequence of steps. In the
simple case of only three modals per mode (with the occupied numbered as 0 and
the virtuals as 1 and 2), these are given as

[

xm2
1

xm2
2

]

=
[

hm1o1
01 cm1m2

11 + hm1o1
02 cm1m2

21

hm1o1
01 cm1m2

12 + hm1o1
02 cm1m2

22

]

hm1o1 , down←−−−−−−−−

⎡

⎢

⎢

⎢

⎣

cm1m2
11

cm1m2
12

cm1m2
21

cm1m2
22

⎤

⎥

⎥

⎥

⎦

, (18-42)

[

ym2
1

ym2
2

]

=
[

hm2o2
11 xm2

1 + hm2o2
12 xm2

2

hm2o2
21 xm2

2 + hm2o2
22 xm2

2

]

hm2o2 , forward←−−−−−−−−−
[

xm2
1

xm2
2

]

, (18-43)

⎡

⎢

⎢

⎢

⎢

⎣

d′m2m3
11

d′m2m3
12

d′m2m3
21

d′m2m3
22

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

hm3o3
10 ym2

1

hm3o3
20 ym2

1

hm3o3
10 ym2

2

hm3o3
20 ym2

2

⎤

⎥

⎥

⎥

⎥

⎦

hm3o3 , up←−−−−−−
[

ym2
1

ym2
2

]

. (18-44)

We have now described how the partial transformation (18-37) can be carried out.
The transformation with the full Hamiltonian, Eq. (18-28), is a simple matter of ac-
counting for all MCs and all terms in the Hamiltonian as described by the following
algorithm:

Algorithm for evaluating Eq. (18-28):
• Loop over all mp

• Loop over all mq coupled to mp through H
• Loop over all terms, t, in H coupling mp and mq

• Evaluate d′
νmp using Eq. (18-37) and add to the final result, dνmp .

18.6.3. Putting the Pieces Together

In Sections 18.6.1 and 18.6.2 the individual steps required for the evaluation of the
VCC error vector, Eq. (18-26), were described. In this section, we discuss the reso-
lution of the identity in greater detail, or rather, the requirements on the intermediate
spaces |νmp〉 and |σmq〉.
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To be specific, start from the left in Eq. (18-26). The MCR of the error vector
is given by MCR[T]. Since exp (–T) can only create excitations, the MCR of the
intermediate space |νmp〉 can be set equal to MCR[T] with the restriction that the
space should be closed under deexcitation. To see why this last restriction applies,
let exp (–T) work to the left on 〈μm|. This will deexcite the bra and generate a set of
|νmp〉 states. Since 〈νmp |H|σmq〉 will not in general be zero for any of the resulting
states, these have to be included as well.

Consider next the |σmq〉 space. The Hamiltonian may both excite and deexcite
and thus the MCR of the |σmq〉 space has to be larger than MCR[T]. For a VCC[n]
calculation with a h-mode Hamiltonian the |σmq〉 space must contain up to (n + h)-
mode excitations. Once the two intermediate spaces are set up, the steps described in
the previous subsections can be applied. The entire process for the case of VCC[2]
with a two-mode Hamiltonian is illustrated in Figure 18-6.

The explicit construction of the excitation coefficients in the larger intermediate
|σmq〉 space has unfortunate consequences in terms of performance. As noted above,
down contractions scale as NK while ups and forwards scale as N(K+1). Although
only down contractions are relevant for the highest excitation part of the |σmq〉 vector
since we must arrive in the |νmp〉 space, these will still scale as N(n+h). This is a
significant factor of N(h−1) more than a corresponding VCI[n] calculation and first
of all it can be avoided.

Instead of constructing the larger |σmq〉 space, we may use it only as a formal
utility. Thus, instead of employing the resolution of the identity between H and
exp (T) in the error vector, Eq. (18-22), we use a direct formula for the exponential
transformation equivalent to Eq. (18-33),
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Figure 18-6. Schematic overview of the evaluation of the VCC [2] error vector with a two-mode
Hamiltonian
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eμm =
∑

mp,νmp

〈μm| exp (− T)|νmp〉〈νmp |H exp (T)|Φi〉 (18-45)

=
∑

mp,νmp

〈μm| exp (− T)|νmp〉 ×

〈νmp |H
∑

mq

(

∑

MCR∈SMCR[mq]

∏

mk∈MCR

Tmk

)

|Φi〉. (18-46)

Now remember that the Hamiltonian is written in terms of products of one-mode
operators. Instead of doing the direct product of the cluster amplitudes followed by
a series of contractions, it is therefore possible to reverse the order. Thus, in this
scheme we perform the contractions with the individual amplitude vectors first and
then do the direct product of the resulting vectors. The two methods are compared in
Figure 18-7. The advantage is two-fold. First, the contractions will scale at most like
N(n+1) since the maximum excitation level of any amplitude vector is n. This is no
higher than in the case of VCI. In addition, the dimensions of the quantities entering
the direct product will usually be smaller since down contractions have reduced their
size. This increases efficiency as well.

Though the above modification reduces the scaling of the individual contractions,
a VCC implementation using this strategy is still significantly more expensive than
a VCI at the same excitation level. This is due to the fact that the number of subsets
in SMCR[mq] grows quickly as the size of mq increases. The number of partitions
of a set of size n is given by the Bell numbers [25], Bn, not to be discussed further
here. Suffice is to say that the first few numbers starting at n = 1 are 1, 2, 5, 15,
52, 203, 877, 4140, 21147, 115975, . . .. Moreover, since the MCs partitioned are the
ones in the larger |σmq〉 space, the excitation level will generally be higher than in
the T-space. The problem can be somewhat alleviated by absorbing the one-mode
part of the cluster operator in the Hamiltonian as described in Ref. [26]. Defining
T = T1 + Tr, we obtain

Expensive di-
rect product

Expensive
contractions

Cheap
contractions

Cheap direct
product

Using resolution of identity: Using direct exponential tranformation:

T2 T2T3 T2 T2T3

Figure 18-7. Two different strategies for the evaluation of the error vector



508 P. Seidler and O. Christiansen

eμm = 〈μm| exp (−T1 − Tr)H exp (T1 + Tr)|Φi〉 (18-47)

= 〈μm| exp (−Tr)H̃ exp (Tr)|Φi〉, (18-48)

where H̃ = exp ( − T1)H exp (T1). The T1 transformation of the Hamiltonian pre-
serves the particle rank of the operator (which would not be the case for higher
excitation level cluster operators) and using the H̃ operator in place of H is a simple
matter of transforming the one-mode integrals, see Ref. [26] for details. Since Tr
contains no one-mode operators, all partitions containing one or more MCs with
only one mode can be discarded. This reduces the number of possible partitions to 0,
1, 1, 4, 11, 41, 162, 715, 3425, 17722, . . .. Thus, the number of partitions and thereby
contractions and direct products can be significantly reduced. For the very relevant
example of VCC [3] with three-mode couplings in the Hamiltonian, the intermediate
MCs in the |σmq〉 space contain up to 6 mode excitations. In this case the original
203 partitions are reduced to only 41 for which contractions and direct products must
be made.

In this section, some basic concepts and issues relevant for the implementation of
VCC theory has been discussed. As is evident, the inner details of VCC are very dif-
ferent from those in electronic CC theory due to the distinguishability of the modes,
the resulting differences in the associated second quantization, and the different form
of the Hamiltonian operator which frequently contain higher-mode couplings. Elec-
tronic single-reference CI and CC can be implemented such that roughly identical
computational scalings are obtained. To arrive at this situation is more difficult in the
VCC case. The above implementation based on the resolution of the identity brings
us only part of the way in this respect. However, the value of a general excitation level
transformer, in particular for benchmark purposes, should not be underestimated for
a new theory such as VCC. Furthermore, much of the analysis and important steps
(direct products and contractions) are key elements in the quest for more efficient but
also more specialized implementations which we will turn to now.

18.7. TOWARDS EFFICIENT IMPLEMENTATIONS

In this section we present a brief overview of an alternative method for evaluat-
ing the VCC error vector. The method is based on the Baker–Campbell–Hausdorff
(BCH) commutator expansion commonly employed in electronic CC theory. Though
designing an efficient general excitation level implementation in terms of a commu-
tator expansion is possible and work is underway, it is a tremendous challenge, as
should be clear from the previous sections.1 We therefore restrict ourselves in this
section to the case of a VCC [2] model with a two-mode Hamiltonian operator. A
full account of the theory and implementation is given in Ref. [26] and this section
merely introduces the basic concepts.

1 A general implementation with optimal scaling was recently published, see J. Chem. Phys. 131, 234109
(2009).
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Since we include only one- and two-mode couplings in the excitation space and
the Hamiltonian, the BCH expansion terminates after three terms,

eμm = 〈μm| exp (− T2)H̃ exp (T2)|Φi〉 (18-49)

= 〈μm|H̃ + [H̃, T2]+ 1

2
[[H̃, T2], T2]|Φi〉, (18-50)

where the T1− transformed Hamiltonian, Eq. (18-48), has been used. The termina-
tion after three terms can be understood by noting that higher nested commutators
will contain at least three T2 operators generating at least six-mode excitations. The
Hamiltonian can remove at most two excitations (by down contractions), and the
resulting four-mode excited configurations will be outside the VCC[2] space used in
the 〈μm| projection.

The evaluation of the error vector proceeds by expanding the commutators,

eμm = 〈μm|H̃ + H̃T2 + T2H̃ + 1

2
H̃T2T2 + T2H̃T2|Φi〉. (18-51)

The final step is now to perform contractions of the amplitudes with the one-mode
operators in the Hamiltonian as described in the previous section. To express this in
a formal way, we introduce a notation where a given one-mode operator is writ-
ten as a sum of operators corresponding to either passive, down, up, or forward
contractions,

h̃mo = h̃mo
p + h̃mo

d + h̃mo
u + h̃mo

f . (18-52)

In this way, a contribution to the error vector arising from a down contracted set of
amplitudes may be written like

eμ{m0} ← 〈μ{m0}|
∑

m1o1

cm1
o1

h̃m1o1
d T{m0m1}|Φi〉, (18-53)

where cm1
o1 is the coefficient of the given term in the Hamiltonian and ← indicates

that this is only one of many contributions to the error vector. To evaluate the full
error vector, we simply have to figure out all possible contributions. This is done in
Ref. [26].

Of course, the result of a Taylor expansion of the exponential functions could
be evaluated in the same way, i.e. by writing products of H and T operators and
determining all possible contributions. However, the commutator expansion has a
slight advantage: Due to the basic commutator relations, (18-11) and (18-12), each T
operator must have at least one mode in common with the Hamiltonian. This reduces
the number of possible contributions. In the case of a Taylor expansion, there is no
such restriction. However, the result will be the same since some terms will cancel
out in the end.
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The major advantage of the strategy presented in this section relative to the use
of the resolution of the identity is the possibility of using intermediates to reduce the
scaling. In the VCC [2] model, one of the most demanding contributions turns out
to be

eμ{m0m1} = 〈μ{m0m1}|
∑

m2o2

∑

m3o3

cm2m3
o2o3

h̃m2o2
d h̃m3o3

d T{m0m2}T{m1m3}|Φi〉. (18-54)

The scaling of this contribution is formally M4L2N2 where M is the number of
modes, L is the number of one-mode operators, and N is the number of virtual
modals. However, by introducing an intermediate,

m2o2Im1 =
∑

m3o3

cm2m3
o2o3

h̃m3o3
d Tm1m3 , (18-55)

the construction of which scales as M3L2N2, the contribution may be evaluated with
M3LN2 effort as

eμ{m0m1} = 〈μ{m0m1}|
∑

m2o2

m2o2 Im1 h̃m2o2
d T{m0m2}|Φi〉. (18-56)

Using such tricks the scaling of all contributions to the VCC[2] error vector can be
reduced to at most M3. This is no higher than the corresponding VCI[2] model.

A very efficient implementation of VCC[2] has been made based on the above
principles. An illustrative example of the capabilities is provided by a sequence of
calculations on duplicated (non-interacting) polyaromatic hydrocarbons, each con-
sisting of seven benzene rings. The timings for a single evaluation of the error vector
are shown in Figure 18-8. The “Full MCR” calculation includes all possible two-
mode couplings. In this case, the algorithmic scaling is M3 as argued above.

As previously noted, the MCR concept in the definition of the cluster operator, Eq.
(18-21), allows for more elaborate excitation spaces than simply defining a specific
excitation level. This is potentially useful for larger systems where the nuclear mo-
tion may in some sense be localized. The case of duplicated monomers represents an
idealized case of such a system in the sense that each vibration is localized on a single
monomer. The calculation labeled ISO1 (interaction space order 1) in Figure 18-8
takes advantage of this artificial localization. Thus, only MCs coupled directly to
the reference state by the Hamiltonian are included in MCR[T]. This means that no
two-mode cluster operators containing modes from different monomers are included
and hence the number of these operators only increases linearly with the number
of monomers. The result is a linear scaling of the computational time. We note that
this reduction in computational cost does not change the numerical results, i.e. the
calculated ground state energies are identical to those obtained from the “Full MCR”
calculations. This is due to the exponential parameterization of the wave function.
Thus, simultaneous one-mode excitations in different monomers are accounted for
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Figure 18-8. Scaling of the VCC [2] algorithm when applied to a set of duplicated, non-interacting pol-
yaromatic hydrocarbon monomers. Each monomer consists of seven benzene rings and has 114 modes.
The largest system thus has 1,140 modes. Full MCR refers to a calculation where all two-mode couplings
are included. ISO1 includes only couplings also present in the Hamiltonian giving a linear scaling with
no loss in accuracy due to the size-extensivity of CC theory.

by the disconnected doubles, i.e. T1T1. This manifestation of size-extensivity is
another strong argument in favor of VCC over VCI and can only be expected to
be of increasing importance as the treatment of larger systems becomes possible.

18.8. SUMMARY

In this chapter, a formulation of CC theory for solving the vibrational Schrödinger
equation has been introduced. The theory is build on top of a second quantization
formalism appropriate for treating systems with distinguishable degrees of freedom.
Compared to the VCI approach which is a standard method in vibrational structure
theory, VCC provides a higher accuracy given identical excitation spaces. However,
both the derivation and implementation of the VCC equations are significantly more
complicated than the corresponding ones in VCI. Different implementation strate-
gies have been discussed in relation to generality and efficiency. While VCC is a
relatively new method and still needs much further development and testing, it has
much to offer due to its high accuracy, its size-extensivity, and its applicability to
large systems. We believe there are good reasons to hope that VCC will open many
new possibilities in the study of the internal dynamics of molecules.
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CHAPTER 19

ON THE COUPLED-CLUSTER EQUATIONS. STABILITY
ANALYSIS AND NONSTANDARD CORRECTION SCHEMES

PÉTER R. SURJÁN AND ÁGNES SZABADOS
Eötvös University, Institute of Chemistry, Laboratory of Theoretical Chemistry,
e-mail: surjan@chem.elte.hu; szabados@chem.elte.hu

Abstract: (i) The coupled-cluster equations being nonlinear, they have to be solved iteratively. An
insight into the convergence properties of this iteration can be obtained by analyzing the
stability of the converged solutions as fixed points. (ii) The usual form of coupled-cluster
equations represents an example to the method of moments, with the number of unknown
amplitudes being equal to the number of equations. The method of moments generates non-
symmetric equations loosing the variational character of the coupled-cluster method, but
enabling efficient evaluation of the matrix elements. Taking higher moments into account,
one may obtain more equations than parameters, thus the latter must be determined by
minimizing the sum-of-squares of all moments. This leads to additional effort but im-
proved coupled-cluster wave functions and/or energies. (iii) Another way of improving
the coupled-cluster method is perturbation theory, which needs special formulations due
to the nonsymmetric nature of the formalism. An efficient way to do this is offered by
multi-configuration perturbation theory.

Keywords: Coupled cluster, Stability analysis, Perturbative corrections

19.1. INTRODUCTION

Most fundamental equations of physics are linear. The basic equation of quan-
tum mechanics, Schrödinger equation, is also linear. Nonlinearity in nature usually
appears as a consequence of complexity, often caused by dissipative forces, cf. the
field equations of condensed matter (fluid mechanics).

The mathematics of linear equations is relatively simple and well developed.
Standard variational tools and eigenproblems offer the solution in most cases. In
turn, nonlinear equations usually lack standard methods to solve, and dealing with
them one often encounters numerical and conceptual difficulties. Here the varia-
tional methods are often replaced by the method of moments, and one may attain the
solution only via complicated iteration schemes. One easily gets the impression that
whenever the physics of the problem permits, one should rely on linear formulations.
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A fundamental approximate method of the many-electron problem, however,
deals with genuinely nonlinear equations. Coupled-cluster (CC) theory involves
exponential wave operators to ensure the extensivity of approximate energies, and
generating nonlinearity at the same time. In this review, we emphasize the following
issues.

1. The nonlinear nature of the CC equations deserves an analysis of the stability of
the solutions. This will offer an insight into the convergence feature of iterative
solutions.

2. The CC equations emerge as a trivial application of the method of moments.
Improved results can be expected when higher moments, neglected in the standard
formulation, are considered.

3. The nonsymmetric nature of the method of moments makes it necessary to
develop special perturbation schemes to obtain systematic corrections to a given
level of CC theory.

19.2. STABILITY ANALYSIS OF ITERATION SCHEMES

Owing to the size and the nonlinear nature of the CC equations, one uses, almost
exclusively, iterative procedures to locate their solutions representing the fixed points
of the iteration scheme. To ensure and accelerate convergence, one often applies
control parameters or extrapolation techniques such as DIIS [1]. Nonlinearity of
the equations represents a complication not only because of iterative solutions, but
also by generating spurious solutions. Analysis in this line has been carried out by
Jankowski [2]. Here, we begin this review with a standard tool for analyzing conver-
gence features of nonlinear iterative schemes.

The theory of stability matrices and Ljapunov exponents is well established [3].
A general iteration procedure for an m-component vector x is given as

x(n+1)
i = fi

(

x(n)
)

, i = 1, 2, . . .m. (19-1)

Let vector a be a fixed point of this iteration:

ai = fi (a) , i = 1, 2, . . .m. (19-2)

Small deviations around this fixed point are written as

x(n) = a+ ξ(n). (19-3)

Substitution into (19-1) and expanding the m-variable function f into Taylor series
up to the first order gives
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ξ
(n+1)
i =

m
∑

j=1

Jijξ
(n)
j +O(2) (19-4)

with the definition of the Jacobian at point a

Jij = ∂fi
∂xj

∣

∣

∣

∣

a
. (19-5)

The Jacobi matrix J is, in this context, the stability matrix. Solution of (19-4) can be
looked for in the form

ξ(n) = eλnξ(0) (19-6)

which, after substitution into (19-4) and writing λ = logμ provides the eigenvalue
problem

Jξ(0) = μξ(0) (19-7)

Modes ξ(0) are eigenvectors of the stability matrix while the logarithm of the
eigenvalues give parameters λ which are related to the Ljapunov exponents of the
problem.1

Analysis of convergence properties of the iteration process (19-1) can be based
on the value of the Ljapunov exponents λ, or on their exponentials μ. If all μ-s are
positive so all λ-s are real, the procedure converges only if all Ljapunov exponents
are negative, that is, if all eigenvalues of the stability matrix satisfy

0 < μ < 1.

When one or more exponents are positive, i.e., μ > 1, the iteration will diverge along
the corresponding trajectory.

It may happen that one or more eigenvalues of the Ljapunov matrix are negative,
generating complex Ljapunov exponents: λ = λ1+ iλ2. To have a real μ, we require
that

Im eλ = eλ1 sin λ2 = 0,

which is satisfied by λ2 = kπ with any integer k. However, μ = cos λ2 eλ1 is
negative only for odd k values, thus we may choose k = 1. Therefore, the Ljapunov
exponent for real, negative μ can be written as

λ = log |μ| + iπ

1 The more common “dynamical” definition of Ljapunov exponents works with the limit n → ∞; we
adopt here a “static” definition based on the converged solution a.
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leading to the convergence condition

Re λ = log |μ| < 0,

which requires the moduli of all eigenvalues to be smaller than unity:

|μ| < 1. (19-8)

The iterations in this case are not monotonic, but exhibit oscillatory convergence:

ξ(n) = eλnξ(0) = eiπnen log |μ|ξ(0). (19-9)

As the Jacobian is not symmetric, its eigenvalues μ may also become complex.
Let us have μ = a+ ib. Then, from eλ = a+ ib we get

eλ1 cos λ2 = a
eλ1 sin λ2 = b

}

resulting

eλ1 =
√

a2 + b2 = |μ|,

which leads again to (19-8).
All above cases can be summarized in the condition of convergence:

|μ| < 1

Violating this condition, the procedure usually diverges, but on the borderline of
convergence and divergence, nonlinear systems may also exhibit chaotic iterations
[4]. This is manifested in irregular and stochastic iteration patterns.

19.3. THE CC EQUATIONS

Previously [5], we have applied the above theory to study iteration characteristics of
the Bloch equation [6, 7] and the idempotency-conserving density matrix iteration
[8, 9]. Here we apply it to the CCSD equations.

Using the CC Ansatz Ψ = eTΦ, we write the Schrödinger equation as

e−TH eTΦ = EΦ (19-10)

where Φ is the reference state, typically the Hartree-Fock solution. The cluster oper-
ator for k-fold excitations Tk is formally written as
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Tk = 1

k!
∑

μ

ktμÊμ, (19-11)

where ktμ are the cluster amplitudes to be determined, and Êμ-s are excitation oper-
ators which, for closed shell systems, can be written as

Êμ = Eβu =
∑

σ

a†
β,σau,σ (19-12)

for single and

Êμ = Eβγuv = Eβu Eγv (19-13)

for double excitations. From (19-10), the CC equations for the amplitudes emerge as

Fν = 〈Φ|Ê†
ν e−TH eT |Φ〉 = 0. (19-14)

Substituting the Hamiltonian, the above forms of the excitation operators and evalu-
ating the matrix elements, this equation can be reduced to its orbital form 1Fβu = 0
and 2Fβγuv = 0. The resulting formulae for CCSD were originally tabulated in
Ref. [10], and recollected in the Appendix of Ref. [11]. Both 1t and 2t equations
detailed there are of the shape

F(t) = 0,

and there are several ways to recast them into an iterative form t = f (t), e.g. using
the scheme

t = t + kF(t)

where k is a t-independent arbitrary parameter or expression. We consider here the
form of the CCSD equations which uses Møller – Plesset-type denominators:

tβu = tβu −
1Fβu

εβ − εu − η (19-15)

tβγuv = tβγuv −
2Fβγuv

εβ + εγ − εu − εv − 2η
(19-16)
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for the 1t and 2t amplitudes, respectively. Parameter η is introduced merely to control
the iteration by damping or accelerating the sequence.2 In these equations, ε denote
orbital energies.

19.4. THE STABILITY MATRIX OF THE CCSD EQUATION

The stability matrix of the CCSD problem can be obtained by taking the derivatives
of the iterative equations with respect to the independent parameters. In our case,
the latter are represented by the cluster amplitudes 1tμ and 2tμ. Since the CCSD
equations for these amplitudes are coupled, the stability matrix will be composed of
four blocks which we denote by 11J, 12J, 21J, 22J, respectively, where mnJ stands for
the derivatives of the m-equations with respect to the nt amplitudes. The four blocks
of the stability matrix are obtained as

J11
uβ,lλ = δulδβλ −

∂ 1Fuβ

∂tλl

εβ − εu − η

J12
uβ,lmλμ = −

∂ 1Fuβ

∂tλμlm

εβ − εu − η

J21
uvβγ ,lλ = −

∂ 2Fuvβγ

∂tλl

εβ + εγ − εu − εv − 2η

J22
uvβγ ,lmλμ = δulδvmδβλδγμ −

∂ 2Fuvβγ

∂tλμlm

εβ + εγ − εu − εv − 2η
. (19-17)

The explicit results for these derivatives are listed in Ref. [11].
The above equations show that the stability matrix J is in close connection to the

Jacobi matrix J0 of the CCSD equations. The structure of Eq. (19-17) is

Jab = δab − J0
ab

Δa − η (19-18)

where Δa stands for the energy denominator in the iterative equations. Using
Eq. (19-14), we obtain

Jo
ab =

∂Fa

∂tb
= 〈Φ|Ê†

a e−T [H, Êb] eT |Φ〉

2 Negative (positive) values for η will damp (accelerate) the iteration by increasing (decreasing) the de-
nominators, respectively.
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The eigenvalue equation of this matrix is known as the EOM-CC equation for exci-
tation energies [12–16].

It is important to emphasize the following two features of the above analysis:

• It is valid only if no extrapolation techniques like DIIS are used to govern the
iteration. While the DIIS method is known to be highly efficient in accelerating
convergence, it does not change the nature of the fixed point. If, by a wrongly
chosen value for η, the fixed point of the iteration becomes repellent, neither DIIS
nor any other extrapolation technique can be expected to ensure convergence.

• The Ljapunov exponents as defined above characterize the nature of the fixed
point, rather than the process of the iteration. We always assume that the initial
amplitudes lie in the sufficient proximity of the fixed point.

Numerical illustrations of the above theory published in Ref. [11] seem to suggest
that a sufficiently large value of the damping parameter η always ensures conver-
gence. We cannot provide a formal proof for this statement. Even if one finds a
sufficiently large value for η so that all Ljapunov exponents are negative, this means
only that the fixed point of the iteration is attractive. Starting from a set of amplitudes
far from the converged ones, the iteration may diverge or may converge to another
fixed point. However, we have not yet treated any cases in which convergence was
impossible to achieve. (Note that a convergent iteration does not mean that one has
reached the desired state.)

In concluding, the nature of the fixed points of the CCSD equations can be
analyzed by finding the eigenvalue of the stability matrix which has the largest
absolute value. The logarithm of the modulus of the eigenvalue (admitting
complex solutions) can be regarded as the Ljapunov exponent of the prob-
lem which should be negative to ensure convergence. The nature of the fixed
points can be effectively controlled by denominator shifts which may either
damp or accelerate the iteration. Connection between the stability matrix J
and the Jacobian J0 reveals an interesting relation between excitation energies
(eigenvalues of J0) and the Ljapunov exponents (eigenvalues of J).

19.5. IMPROVING CC RESULTS: METHOD OF MOMENTS

In this section, following an idea by Jankowski et al. [17], we investigate a possibility
to improve the cluster amplitudes. Emphasizing the close connection between CC
theory and the theory of moments, CC amplitudes are determined by minimizing
the sum-of-squares of the moments of the Hamiltonian constructed with the CCSD
trial function. In addition to standard moments with SD excitations, we include all
moments with excitations higher than doubles in an unconstrained minimization.
This procedure is computationally demanding thus it does not lead to any practical
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method. To circumvent the computational difficulties of amplitude minimization,
Jankowski et al. [17] substituted the exponential of the cluster operator by the lin-
earized CCD (LCCD) Ansatz, reducing thereby the moment optimization problem
to a solution of a linear system of equations. In this work, keeping the nonlinear eT

Ansatz, we rely on a numerical minimization procedure.
Since the publication of the original work [17], many papers have appeared

exploring higher moments in CC theory [18–35]. A common feature of these works
is that they, with a given CC Ansatz, use the higher moments either to modify the
amplitude equations or derive (noniterative) corrections to the CC energy. For a the-
oretical comparison of various CC Ansätze, see [36].

Owing to the recent success of utilizing higher moments in CC theory, it appears
to be interesting to revisit the problem of moment optimization with the simplest,
traditional CCSD Ansatz.

19.5.1. The Method of Moments

The method of moments has been introduced in quantum chemistry a long time ago
[37–39]. It can be summarized as follows. If Ψ is an exact eigenvector of H, and E
is the associated eigenvalue, any quantities of the form

mν = 〈 fν |H − E|Ψ 〉 ν = 1, 2, . . . p (19-19)

are identically zero for arbitrary well-behaved testing functions fν . Quantities mν
are the moments of the Hamiltonian. If the exact wave function is substituted by an
approximate wave function Φ, the above moments are not necessarily zero. Consid-
ering Φ to depend on the parameter set tμ, μ = 1, 2, . . . n, the best trial function Φ
can be determined by minimizing the functional for a given set of testing functions fν ,

M =
p
∑

ν=1

m2
ν (19-20)

with respect to parameters tμ in Φ. The necessary condition for this minimum is

∂M

∂tμ
= 2

p
∑

ν=1

mν
∂mν
∂tμ

= 0 μ = 1, 2, . . . n (19-21)

which constitutes an n × n system of equations for the n unknown parameters tμ.
One may show that in the special case where (i) the testing functions fν are obtained
from a common bra generator function depending on the same set of parameters as
the ket function Φ, and (ii) the bra generator and the ket trial function are the same,
then the method of moments reduces to the variational method.

The accuracy of the method of moments depends on (i) the number of parameters
in the trial ket function, n, and (ii) the number of moments considered, p. In general,
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p can be much larger than n. The method has a trivial variant when p = n which
corresponds to the standard CCSD equations. In this case the functional M can be
set exactly zero, since the equations

mν = 0

can be solved for all ν. This is, of course, not the exact solution if the set of testing
functions fν-s is restricted.

19.5.2. CC Theory and the Method of Moments

The standard CC method accomplishes the trivial version of the method of moments.
To see this, we introduce the similarity-transformed Hamiltonian

H = e−THeT ,

and choose the bra test functions as 〈fν | = 〈0| T†
ν . Therefore, all moments

mν = 〈0| T†
ν (H − E)|0〉 = 〈0| T†

ν H |0〉 = 0 (19-22)

are required to vanish for ν = 1, 2, . . . n. Here we used the orthogonality of the test
functions to the reference state to get rid of the energy.

Having n amplitudes e.g. in a CCSD wave function, we eliminate only the
moments which are projected by single and double substitutions 〈0|T†

ν . However, the
exponential wave operator eT and the Hamiltonian H, when acting on the reference
state |0〉, generate moments which correspond to triple, quadruple, etc. excitations.
These moments are completely neglected in standard amplitude equations, making
CCSD theory non-exact, as many of these moments are nonzero in general.

Stimulated by the theory of moments, one may ask what happens when trying to
achieve a balance between the moments emerging from SD and higher excitations.
That is, what kind of CCSD amplitudes result by minimizing the functional

M =
p
∑

ν=1

m2
ν =

p
∑

ν=1

(〈0| T†
ν H |0〉)2 (19-23)

with respect to the CCSD amplitudes tμ, when

ν = 1, 2, . . . p (p > n)

runs over S, D, T, Q, . . . excitations. In the following section a numerical procedure
is outlined that is used to perform an unconstrained minimization of the sum of
squared moments.
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19.5.3. Amplitude Optimization

Solution of the problem represented by the minimization of functional M in
Eq. (19-23) can be performed in a general way by numerical optimization tech-
niques. To this end, derivation of the gradients (derivatives of M with respect to
the amplitudes) is highly desirable. Components of the gradient vector g

gλ = ∂M

∂tλ

were defined in Eq. (19-21). Using the shorthand

〈ν| = 〈0|T†
ν

and the decomposition

T =
∑

μ

tμTμ,

the derivatives of the individual moments read as

∂mν
∂tλ

= 〈ν|∂e−T

∂tλ
H eT |0〉 + 〈ν|e−TH

∂eT

∂tλ
|0〉

= 〈ν|e−T [H, Tλ]e
T |0〉 (19-24)

where the square bracket stands for the commutator.
Evaluation of the matrix elements occurring in (19-24), in principle, can be per-

formed by standard many-body techniques or by applying the more recent automated
implementation philosophy [40–45]. The only non-usual ingredient of these formu-
lae is that state 〈ν| denotes not only an SD, but also higher excited configurations.
Fortunately, sixfold excitations are the highest which may contribute [17]. One can
also restrict 〈ν| at a selected lower maximal excitation level, quadruples for exam-
ple. The need for higher excitations makes the evaluation of matrix elements quite
involved, and the string based algorithm [40] can be very helpful.

Having the gradients, one can invoke one of the standard optimization routines
to get optimized amplitudes. We have examined the performance of the Broyden –
Fletcher – Goldfarb – Shanno (BFGS) procedure [46] and the optimally conditioned
(OC) method by Davidon [47]. They were found to perform similarly. As starting
parameters for the optimization, standard CCSD amplitudes are convenient to use in
most cases.
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19.5.4. Numerical Results

The model studies reported so far [48] were obtained not exactly with the above
formulae, but with the energy-dependent form of the CC equations. Due to the
complexity of the problem, small systems in very small basis sets were considered.
Two-electron systems are of course excluded, since for them CCSD is equivalent to
full CI.

Consider first a simple four-electron example, the Be atom. Table 19-1 presents
standard and moment-optimized CCSD energies in comparison with full CI. The
expectation value of the Hamiltonian computed with the actual wave function is also
tabulated. To measure the accuracy of the wave function, we give the norm of the

|r〉 = (H − 〈H〉) |Ψ 〉

residual vector.
Table 19-1 clearly shows that balancing SD and higher moments, results in a

slight energy loss. However, the residual norm indicates that overall accuracy of the
wave function improves. For Be, this improvement is quite small, it is some 8% in
the minimal basis, only 1% in the split shell basis, and less than 4% in the polarized
basis set. Similar experience was gained on other small systems.

Table 19-1. Effect of moment-optimized amplitudes on the Be atom. E(CCSD)
corresponds to the standard CC energy formula, 〈H〉 is the expectation value of
the Hamiltonian computed by the given wave function,

√〈r|r〉 is the norm of the
residual vector

basis set level E(CCSD) 〈H〉 √〈r|r〉

STO-6G
HF −14.503361 0.16097
CCSD −14.556084 −14.556086 0.00510
opt-CCSD −14.556076 −14.556086 0.00472
FCI −14.556089 0.0

6-31G
HF −14.566764 0.17153
CCSD −14.613518 −14.613518 0.01399
opt-CCSD −14.613085 −14.613515 0.01383
FCI −14.613545 0.0

6-31G**
HF −14.566944 0.26110
CCSD −14.616483 −14.616487 0.03588
opt-CCSD −14.614763 −14.616413 0.03462
FCI −14.616635 0.0
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The slight improvement shown by the residual norm may become important in
special cases. Dissociation curves computed by breaking more than one bond at a
time were found to constitute such an example. We report here the results for the
nitrogen molecule, where a triple bond rupture is monitored. Figure 19-1 shows the
case of the N2 molecule in 6-31G** basis, with the four lowest canonical molecular
orbitals (MO) kept frozen. The standard CCSD curve is quite pathologic in this case,
an effect well known from previous studies [19, 25, 27, 30, 49–52]. When determin-
ing CCSD amplitudes from moment minimization, the erratic behavior of the curve
is greatly improved, and the moment optimized CCSD potential curve gets much
closer to full CI. The curves can be compared to those showing the expectation value
with the CCSD wave function, depicted also in Figure 19-1. With standard CCSD
wave function the expectation value gives an acceptable estimation till about R ∼
2 Å. When computing the expectation value with moment-optimized CCSD, one
gets a curve that is the closest to full CI.

It is notable that in all basis sets collected in Table 19-1 we see an increase of the
CCSD energy (often getting away from the exact value). At the same time the wave
function improves in the residual norm sense. This fact is tolerable, regarding the
non-variational character of the CC Ansatz. However, it is interesting that not only
the moment-like CC energy, but also the expectation value of the Hamiltonian may
increase (cf. Figure 19-1). This clearly indicates that we are still far from the region
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Figure 19-1. Potential curve of the nitrogen molecule in split-valence polarized basis set. Methods used
are standard and moment-optimized CCSD. Expectation values taken with both wave functions are also
depicted. For abbreviations see text
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Table 19-2. Collection of the largest moments for the water molecule at stretched
geometry, ROH=2.5 Å, before and after optimization (minimal basis set). Excita-
tions are identified by the serial numbers of the MOs involved. MOs 4 and 5 are the
symmetric and antisymmetric combinations of OH bonding orbitals, 6 and 7 are
their virtual counterparts. MO 2 is the σ lone pair on the oxygen atom

Excitation Standard CCSD Moment-optimized CCSD

45→ 67 (α,α) 0.0000 0.0197
45→ 67 (α,β) 0.0000 –0.0146
55→ 66 0.0000 0.0249
55→ 77 0.0000 –0.0178
44→ 66 0.0000 –0.0179
44→ 77 0.0000 0.0239
4545→ 6767 0.2461 0.0130
2525→ 6767 0.0169 0.0007
2424→ 6767 0.0183 0.0023

of validity of the Eckart theorem [53] which, for non-degenerate states would require
the simultaneous improvement of the energy and the wave function.

To gain a better insight into the effect of moment optimization, we have collected
the moments larger than 0.005 in absolute value for water in Table 19-2. First few
lines of the Table show various double excitations. The associated moments are ex-
actly zero in standard CCSD, as they should be. The last three lines correspond to
quadruple excitations, among which the 4545 → 6767 frontier excitation has an
enormous moment, almost 0.25. Certainly, in this small basis set appearance of this
huge moment is responsible for the failure of CCSD at this geometry. Upon minimiz-
ing all moments democratically, we find that this large moment is greatly reduced, at
the price of generating small moments in the SD space. Upon minimization the other
two quadruple moments also diminish by an order of magnitude.

In summarizing, we have investigated the quality of the CCSD wave function
and the associated energy upon performing an unconstrained optimization of
the sum of moment squares with respect to CCSD amplitudes. The numbers
presented above permit us to draw two general conclusions: (i) in each case
studied the CCSD energy raises when computed with moment-optimized am-
plitudes, while (ii) the wave function improves in a residual norm sense, if
compared with standard CCSD. This observation is quite significant, partic-
ularly when CCSD fails due to its non-variational behavior, like the cases of
stretched multiple bonds.
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19.6. IMPROVING CC RESULTS: PERTURBATION THEORY

The usual formulation of Rayleigh – Schrödinger perturbation theory (PT) re-
lies on the availability of the full set of right- and left eigenvectors of a zero
order Hamiltonian. In multi-reference perturbation theory this requirement is re-
laxed, and perturbed wave functions are often expanded in auxiliary bases. In
most formulations, the symmetry between bra and ket vectors is kept, however.
In coupled cluster theory, it is appropriate to abandon this latter constraint too,
owing to the essentially non-symmetric (moment-like) nature of the formalism.
A general perturbative tool that can be routinely applied even is such cases is
the so-called multi-configuration perturbation theory (MCPT) [54–56]. A short re-
view of this formalism as applied to a coupled cluster wave function is presented
below.

19.6.1. Nonsymmetric PT Formulation

Consider a multiconfigurational reference state |CC〉 in intermediate normalization:

|CC〉 = |HF〉 +
∑

k=1

dk |k〉 ,

where |k〉 denotes determinants obtained by applying single, double etc. excitations
to the Fermi vacuum |HF〉. Determinant |k〉 with k = 0 will be identified as the
Fermi vacuum. Coefficients dk can be obtained by conversion of CC amplitudes to
CI coefficients [57], e.g.

dab
ij = tab

ij + tai tbj − tbi taj

if determinant k is associated with excitation i, j → a, b.
A skew-projector Ô can be taken down in terms of the coupled-cluster wave func-

tion and the Fermi-vacuum in the following form

Ô = |CC〉〈HF| .

It is easily seen that operator Ô is idempotent and leaves |CC〉 and 〈HF| intact. The
projector orthogonal and complementary to Ô can be defined as

P̂ = 1̂− Ô

It is also trivially verified that P̂|CC〉 results zero as well as 〈HF|P̂ while

P̂|k〉 = |k〉
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for k ≥ 1. A spectral form of projector P̂ can be constructed, starting from the
representation of the identity

1̂ =
∑

k=0

|k〉〈k|

and writing

P̂ = 1̂P̂ =
∑

k=1

|k〉〈k|P̂ (19-25)

where k = 0 is omitted from the sum since 〈HF|P̂ = 0. Expression (19-25) is in fact
a biorthogonal spectral resolution of operator P̂ formulated in terms of direct space
vectors |k〉 and reciprocal space vectors

〈k̃| = 〈k|P̂ = 〈k| − dk〈HF| .

It is indeed straightforward to see, that vectors |CC〉 and |k〉 for k ≥ 1 form a
biorthogonal set with vectors 〈HF| and 〈k̃|, satisfying the conditions

〈HF|CC〉 = 1 〈HF|l〉 = 0

〈k̃|CC〉 = 0 〈k̃|l〉 = δkl

with k, l ≥ 1. In terms of the above direct and reciprocal space vectors a non-
Hermitean zero-order Hamiltonian can be taken down in the form

Ĥ0 = ECC |CC〉〈HF| +
∑

k=1

Ek |k〉〈k̃| (19-26)

where ECC = 〈HF|Ĥ|CC〉 is the coupled-cluster energy. The excited state energies
Ek are parameters of the theory. They are in principle arbitrary quantities that define
Ĥ0, i.e. the partitioning. The above definition of Ĥ0 possesses the properties

Ĥ0 |CC〉 = ECC |CC〉 (19-27)

and

Ĥ0 |k〉 = Ek |k〉 .

One can similarly see, that left eigenvectors of operator (19-26) are vectors 〈k̃| and
the principal determinant 〈HF|.

Perturbation theory using a biorthogonal vector set as constructed above dif-
fers from usual Rayleigh – Schrödinger PT only in that reciprocal (biorthogonal)
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functions are used in the bra vectors of each matrix element. (For applications of
biorthogonal PT in the theory of chemical bond and intermolecular interactions, see
Refs. [58–60].) Accordingly, for the first order energy correction of the ground state
ECC we get:

E(1) = 〈HF|Ŵ|CC〉 = 0

having utilized Eq. (19-27). The second order looks

E(2) = −
∑

k=1

〈HF|Ŵ|k〉〈k̃|Ŵ|CC〉
Ek − ECC

(19-28)

with Ŵ = Ĥ − Ĥ0. Higher order PT corrections can be put down similarly.
Before discussing the question of partitioning, let us analyse the numerator of the

second order energy (19-28). One readily sees that Ŵ can be substituted for Ĥ in the
matrix elements, regarding that |CC〉 and 〈HF| are eigenvectors to Ĥ0 from the right
and left, respectively. Matrix element 〈HF|Ĥ|k〉 ensures that at most doubly excited
determinants can contribute to the expression, while matrix element

〈k̃|Ĥ|CC〉 = 〈k|Ĥ − ECC|CC〉 = 0 (19-29)

sets all the terms zero as a result of the converged CCSD equations. The first nonzero
energy correction of the theory is therefore the third order term

E(3) =
∑

kl

〈HF|Ŵ|k〉〈k̃|Ŵ|l〉〈l̃|Ŵ|CC〉
(Ek − ECC) (El − ECC)

.

Energy corrections obtained by the above theory are tabulated up to order 5 for the
HF molecule in 6-31G* basis set in Table 19-3. Partitioning used in this calculation
is given by e.g.

Ek = ECC + εa + εb − εi − εj (19-30)

if determinant k arises upon excitation i, j → a, b acting on the Fermi vacuum. One
particle energies εp are Hartree – Fock orbital energies. When willing to describe a
situation where single-reference theories fail, e.g. bond breaking, it is wise to make
a different choice for one particle energies. In this case ionization potentials and
electron affinities have been successfully used instead of Koopmans values [61–63].

Inspecting data of Table 19-3 one sees that the third order correction represents a
considerable improvement upon the CCSD energy. As the covalent bond is stretched,
the third order energy deteriorates, which is a consequence of the partitioning choice.
The error increases from about a tenth of a milliHartree around equilibrium distance
to about one milliHartree at twice the equilibrium length. At 2.0Re the third order
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Table 19-3. PT energy errors E−EFCI [mHartree] for the H-F molecule in 6-31G∗
basis set, frozen core approximation (Re = 0.917 Å). Reference function is a CCSD
wave function. Full CI energies in Hartree are −100.188421 (Re), −100.108796
(1.5Re), −100.034004 (2.0Re)

Geometry

Order Re 1.5Re 2.0Re
Nonsymmetric theory
0 2.146 4.313 9.474
3 −0.074 0.146 1.386
4 0.312 1.108 3.773
5 −0.080 −0.155 −0.170
Symmetric theory
0 1.93 3.939 8.437
2 0.279 0.636 1.553
3 0.160 0.427 1.121
CCSD(T) 0.457 0.840 0.275

approximation is worse than the CCSD(T) result. Regarding higher orders, it is no-
table that correction of order 4 does not represent any improvement, and the PT series
manifestly oscillates around the exact value.

19.6.2. Symmetric PT Formulation

A somewhat better behaving PT series is obtained if turning to a more symmetri-
cal PT framework. This is however computationally demanding as it starts with a
symmetrical projector of the form

Q̂ = |CC〉〈CC|
〈CC|CC〉

where the norm of the coupled-cluster wave function is not computable for anything
but small model problems. If pursuing the theory even with such computational lim-
itations in mind, one takes down the orthogonal and complementary projector to Q̂

R̂ = 1̂ − Q̂ .

To find a spectral form of projector R̂ let us evaluate the product P̂R̂, which leads to

P̂R̂ = (1̂ − |CC〉〈HF|)
(

1̂ − |CC〉〈CC|
〈CC|CC〉

)

= 1̂ − |CC〉〈HF| = P̂ ,

while if multiplying the two projectors in reverse order, one gets
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R̂P̂ = R̂ .

Let us then write projector R̂ as

R̂ = R̂1̂P̂ =
∑

k=1

R̂|k〉〈k|P̂ (19-31)

where again the term k = 0 is omitted from the sum, because 〈k|P̂ = 0. Just as in the
previous case, one can observe the right hand side of expression (19-31) being of the
form of a biorthogonal spectral resolution with direct space vectors

|k′〉 = R̂|k〉

and reciprocal vectors

〈k̃′| = 〈k|P̂ .

In fact it can be verified that biorthogonal relations

〈CC|CC〉/〈CC|CC〉 = 1 〈CC|l′〉 = 0

〈k̃′|CC〉 = 0 〈k̃′|l′〉 = δkl

indeed hold for k, l ≥ 1.
Zero-order Hamiltonian in terms of these direct and reciprocal space vectors is

now formulated as

Ĥ0 = ECC
|CC〉〈CC|
〈CC|CC〉 +

∑

k=1

Ek |k′〉〈k̃′| (19-32)

with ECC = 〈CC|Ĥ|CC〉/〈CC|CC〉. Using biorthogonal PT the energy terms arising
from this zero-order choice are

E(1) = 〈CC|Ŵ|CC〉/〈CC|CC〉 = 0

E(2) = − 1

〈CC|CC〉
∑

k=1

〈CC|Ŵ|k′〉〈k̃′|Ŵ|CC〉
Ek − ECC

(19-33)

with Ŵ = Ĥ − Ĥ0. Higher orders can be constructed analogously.
Inspecting second order expression (19-33), one immediately sees, that matrix

element 〈k̃′|Ŵ|CC〉 in the numerator is zero for singly or doubly excited determi-
nants, for the reason (19-29). However, at difference with the previous PT formula-
tion, the states contributing to E(2) are not restricted to singles and doubles. In this
latter approach every determinant that may interact with the coupled-cluster function
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via the Hamiltonian contributes to the second order correction. This may involve the
full configuration space and therefore it is highly impractical.

Note, that this approach is symmetric only as what concerns projector Q̂. Projector
R̂ is still represented in the form of a biorthogonal spectral resolution, i.e. direct and
reciprocal vectors are different. When computing the illustrative examples shown
in Table 19-3, we neglected primes and tildes in expression (19-33), and also in
the third order formula. Hence the presented numbers should be considered only
approximate. Second and third order energies shown in the table are obtained by the
partitioning of Eq. (19-30). The results indicate that in the symmetric formulation the
errors slowly but systematically decrease with increasing order. Note however that
the first nonvanishing correction is better in the case of the nonsymmetric theory.
The difference between second order by the symmetric theory and third order by the
nonsymmetric approach is diminished as the interatomic distance is enlarged.

19.6.3. Connected Moment Expansion

The marked difference between symmetric and moment-like formulation of correc-
tions to the coupled-cluster wave function has been observed in a different context
also [64]. In this study the Horn – Weinstein function

f (α) = 〈CC|Ĥe−αĤ|CC〉
〈CC|e−αĤ|CC〉

and its momentum-type analogue

f̃ (α) = 〈HF|Ĥe−αĤeT̂ |HF〉
〈HF|e−αĤeT̂ |HF〉

constitute the basis of the approximations. Both of the above functions tend to the
ground state eigenvalue of Ĥ as α→∞. Derivative of f with respect to α evaluated
at α = 0 are related to the so-called connected moments of the Hamiltonian

f (0) = I1 = 〈Ĥ〉/N
− df

dα

∣

∣

∣

∣

α=0
= I2 = 〈Ĥ2〉/N − 〈Ĥ〉2/N 2

− d2f

dα2

∣

∣

∣

∣

α=0
= I3 = 〈Ĥ3〉/N − 3〈Ĥ2〉〈Ĥ〉/N 2 + 2〈Ĥ〉3/N 3

and similarly for higher derivatives. Here, we used 〈CC|Ĥk|CC〉 = 〈Ĥk〉 and the
squared norm of the coupled cluster function is denoted by N . The connected mo-
ments can be used for constructing a successive approximation to the ground state
energy e.g. in the form [65]
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E = I1 − I2
2/I3 − . . . (19-34)

The analogous treatment of function f̃ leads to another infinite series for the ground
state energy,

E = Ĩ1 − Ĩ2
2/Ĩ3 − . . . (19-35)

which is considerably cheaper to compute as the coupled-cluster function never fig-
ures in the bra vectors of the modified connected moments

f̃ (0) = Ĩ1 = 〈e−T̂ ĤeT̂〉 = 〈H〉

− df̃

dα

∣

∣

∣

∣

∣

α=0

= Ĩ2 = 〈H2〉 − 〈H〉2

− d2f

dα2

∣

∣

∣

∣

α=0
= I3 = 〈H3〉 − 3〈H2〉〈H〉 + 2〈H〉3

where we used H = e−T̂ ĤeT̂ and 〈HF|Hk|HF〉 = 〈Hk〉. In analogy with the PT
formulation, it can be shown that the second connected moment in the nonsymmetric
theory is exactly zero due to the fulfillment of the coupled-cluster equations. As it
was found in Ref. [64], only the impractical symmetric expansion (19-34) offers
good corrections, while the accuracy of the nonsymmetric expansion (19-35) is in-
sufficient.

Regarding the coupled cluster wave function as a multiconfigurational refer-
ence, systematic improvement is possible to obtain by the MCPT approach,
either following the symmetric or the nonsymmetric formulation. Nonitera-
tive corrections can be also derived by means of connected moments. Both
schemes show that numbers obtained from a symmetric version are more reli-
able, though these methods can not be used in practice. The third (first nonvan-
ishing) order of the nonsymmetric MCPT seems to offer a reliable and practical
tool.

ACKNOWLEDGMENTS

The authors thank D. Mukherjee, Z. Rolik and P. Szakács for extensive discus-
sions. Partial support from grants OTKA K-81588, K-81590, NI-67702 and Tet-
Ind04/2006 is acknowledged.

REFERENCES

1. G. E. Scuseria, T. J. Lee, H. F. Schaefer III, Chem. Phys. Lett. 130, 236 (1986)
2. K. Kowalski, K. Jankowski, Phys. Rev. Lett. 81, 1195 (1998)



Coupled-Cluster Equations 533

3. Granino A. Korn and Thresa M. Korn, in Mathematical Handbook for Scientists and Engineers

(McGraw Hill, New York, 1968)
4. E. Ott, in Chaos in Dynamical Systems (Cambridge University Press, Cambridge, 1993)
5. P. Szakács, P. R. Surján, J. Math. Chem. 43, 314 (2008)
6. I. Lindgren, J. Morrison, in Atomic Many-Body Theory (Springer, Berlin, 1986)
7. P. O. Löwdin, Int. J. Quantum Chem. 72, 370 (1999)
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T. Kuś, M. Musiał, Theor. Chem. Acc. 112, 349 (2004)
31. P. Piecuch, M. Włoch, J. R. Gour, A. Kinal, Chem. Phys. Lett. 418, 463 (2005)
32. P. Piecuch, M. Włoch, J. Chem. Phys. 123, 224105 (2005)
33. I. Ozkan, A. Kinal, M. Balci, J. Phys. Chem. A 108, 507 (2004)
34. M. J. McGuire, P. Piecuch, J. Am. Chem. Soc. 127, 2608 (2005)
35. C. J. Cramer, M. Włoch, P. Piecuch, C. Puzzarini, L. Gagliardi, J. Phys. Chem. A 110, 1991 (2006)
36. P. G. Szalay, M. Nooijen, R. J. Bartlett, J. Chem. Phys. 103, 281 (1995)
37. E. Szondy, T. Szondy, Acta Phys. Hung. 20, 253 (1966)
38. M. Hegyi, M. Mezei, T. Szondy, Theor. Chim. Acta 21, 168 (1971)
39. K. Ladányi, V. Lengyel, T. Szondy, Theor. Chim. Acta 21, 176 (1971)
40. M. Kállay, P. R. Surján, J. Chem. Phys. 115, 2945 (2001)
41. S. Hirata, P. D. Fan, A. A. Auer, M. Nooijen, P. Piecuch, J. Chem. Phys. 121, 12197 (2004)
42. A. Hartono, A. Sibiryakov, M. Nooijen, G. Baumgartner, D. E. Bernholdt, S. Hirata, C. C. Lam,

R. M. Pitzer, J. Ramanujam, P. Sadayappan, Lect. Notes Comput. Sci. 3514, 155 (2005)
43. S. Hirata, J. Phys. Chem. A 107, 9887 (2003)
44. S. Hirata, J. Chem. Phys. 121, 51 (2004)
45. P. Piecuch, S. Hirata, K. Kowalski, P. D. Fan, T. L. Windus, Int. J. Quantum Chem. 106, 79 (2006)
46. R. Fletcher, Comput. J. 13, 317 (1970)
47. W. C. Davidon, Math. Prog. 9, 1 (1975)



534 P.R. Surján and Á. Szabados

48. Z. Rolik, D. K. Á. Szabados, P. R. Surján, J. Mol. Struct. (THEOCHEM) 768, 1723 (2006)
49. T. V. Voorhis, M. Head-Gordon, Chem. Phys. Lett. 317, 575 (2000)
50. T.V. Voorhis, M. Head-Gordon, J. Chem. Phys. 115(17), 7814 (2001)
51. P. Piecuch, V. Spirko, A. E. Kondo, J. Paldus, J. Chem. Phys. 104, 4699 (1996)
52. W. D. Laidig, P. Saxe, R. J. Bartlett, J. Chem. Phys. 86, 887 (1987)
53. C. E. Eckart, Phys. Rev. 36, 878 (1930)
54. P. R. Surján, Á. Szabados, Z. Szekeres, Int. J. Quantum Chem. 90, 1309 (2002)
55. Z. Rolik, Á. Szabados, P.R. Surján, J. Chem. Phys. 119, 1922 (2003)
56. Á. Szabados, Z. Rolik, G. Tóth, P. R. Surján, J. Chem. Phys. 122, 114104 (2005)
57. I. Mayer, in Simple Theorems, Proofs, and Derivations in Quantum Chemistry (Kluwer, New York,

2003)
58. P. R. Surján, I. Mayer, I. Lukovits, Phys. Rev. A 32, 748 (1985)
59. P. R. Surján, I. Mayer, I. Lukovits, Chem. Phys. Lett. 119, 538 (1985)
60. P. R. Surján, I. Mayer, J. Mol. Struct. (THEOCHEM) 226, 47 (1991)
61. A. Zaitevskii, J. P. Malrieu, Chem. Phys. Lett. 233, 597 (1995)
62. P. R. Surján, Á. Szabados, Int. J. Quantum Chem. 69, 713 (1998)
63. Y. Mochizuki, Chem. Phys. Lett. 472, 143 (2009)
64. J. Noga, Á. Szabados, P. R. Surján, Int. J. Mol. Sci. 3, 508 (2002)
65. J. Cioslowski, Phys. Rev. Lett. 58, 83 (1987)



CHAPTER 20

EXPLICITLY CORRELATED COUPLED-CLUSTER
THEORY

DAVID P. TEW1, CHRISTOF HÄTTIG2, RAFAŁ A. BACHORZ3,
AND WIM KLOPPER3

1 School of Chemistry, University of Bristol, Bristol BS8 1TS, UK, e-mail: david.tew@bristol.ac.uk
2 Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany,
e-mail: christof.haettig@theochem.ruhr-uni-bochum.de
3 Institut für Physikalische Chemie, Karlsruhe Institute of Technology, KIT Campus South, Kaiserstr. 12,
D-76131 Karlsruhe, Germany,
e-mail: rafal.bachorz@chem-bio.uni-karlsruhe.de; klopper@kit.edu

Abstract: The theoretical prediction of molecular energies and properties to chemical accuracy is
often achieved using coupled-cluster methods and large orbital basis sets. Through re-
cent advances in F12 explicitly correlated methods it is now possible to obtain the same
high accuracy far more efficiently, using much smaller orbital basis sets. In CCSD(T)-F12
methods, the basis set truncation error is almost entirely eliminated by introducing a small
set of two-particle basis functions that depend explicitly on the inter-electronic distances
and closely resemble the correlation hole. The computational expense of including the
F12 geminals can be reduced to a fraction of that of the underlying CCSD(T) calcula-
tion through judicious insertions of resolution of the identity approximations and further
simplifications. In this chapter we present CCSD(T)-F12 theory and review the simplified
models CCSD(T)(F12), CCSD(T)-F12x and CCSD(T)F12, demonstrating their utility for
practical applications. In contrast to standard CCSD(T), the Hartree–Fock basis set error
may limit the accuracy of a CCSD(T)-F12 calculation and we therefore also describe meth-
ods for improving the Hartree–Fock energy within an F12 calculation. A brief discussion
on the extension of F12 theory to reduce basis set errors in connected triples and response
properties is also presented.

Keywords: Coupled cluster, R12 approach, F12 approach, Explicitly correlated

20.1. INTRODUCTION

The success of coupled-cluster methods for the computational investigation of chem-
ical phenomena lies in the rapid and systematic convergence of the hierarchy of
coupled-cluster models [1–5] towards the exact solution of the Schrödinger equation.
The CCSD(T) method [6], which accounts for one- and two-electron interactions
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with a perturbative treatment of the simultaneous interaction of three electrons, has
long been a standard tool for quantum chemists, providing reliably high accuracy for
predictions of molecular energies and properties. For example, atomization energies
computed using CCSD(T) are generally within 5 kJ mol−1 of experimental values for
light molecules. The corresponding accuracy for bond lengths is typically 0.1–0.2 pm
and harmonic frequencies are accurate to 6–10 cm−1.

However, the intrinsic accuracy of the coupled-cluster models is only realized if
they are used in combination with sufficiently large orbital basis sets. Even when
using basis sets of quadruple-ζ quality, the basis set errors in frozen-core CCSD(T)
calculations of reaction energies are typically larger than the influence of post-
CCSD(T) corrections and thus limit the accuracy of the calculation. When aiming for
1 kJ mol−1 accuracy [7–10], by combining CCSD(T) energies with corrections for
relativistic and non-adiabatic effects and higher-order correlation (including core-
valence correlation), it is necessary to reduce the CCSD(T) basis set error below
that remaining from cc-pV6Z calculations. Indeed, the basis set errors in the post-
CCSD(T) corrections are also problematic. Since the computational resources re-
quired for a coupled-cluster calculation scale with basis size as N4

AO at least, where
NAO is the number of basis functions per atom, the necessity for large basis sets
severely limits the applicability of coupled-cluster approaches.

Extrapolation techniques [11–14], which exploit the relatively smooth conver-
gence of the energy with basis set cardinal number X, are widely applied to reduce
the basis set error. For example, extrapolations based on cc-pVTZ and cc-pVQZ
calculations are generally as accurate as cc-pV5Z calculations. Although extrapo-
lation goes some way to alleviating the basis set problem, it is still necessary to
use relatively large basis sets to realize the intrinsic accuracy of the coupled-cluster
methods and the extension of extrapolation techniques to molecular properties is not
always clear cut. F12 explicitly correlated methods are a far more direct and efficient
solution to the basis set problem. Based on the ideas of Kutzelnigg [15], the coupled-
cluster wave function is expanded using one- and two-particle basis functions, which
depend explicitly on the inter-electronic distance r12. In this chapter, we present the
current status of F12 explicitly correlated coupled-cluster theory, demonstrating that
near basis set limit accuracy is obtained with comparatively small orbital basis sets
and a low computational cost.

20.2. R12 AND F12 EXPLICITLY CORRELATED METHODS

The root of the basis set problem lies in the inefficient description of the shape of the
correlation hole at short inter-electronic distances. Since the Coulomb singularity
must be canceled by an equal and opposite singularity in the kinetic energy, all
correlated wave functions formally exhibit a linear dependence on r12 when two
electrons approach each other, which culminates in a cusp at electron coalescence
for singlet spin-coupled pairs (Kato’s cusp condition – see Section 20.6.1). For MP2,
the spin-adapted first order pair functions |u(s)

ij 〉 satisfy
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|u(s)
ij 〉 =

1

2(1+ s)
Q̂12r12

1√
2

(φiφj + (1− 2s)φjφi)+O
(

r(2+s)
12

)

, (20-1)

where i, j denote different spin-free occupied Hartree–Fock orbitals and the spin s is
0 or 1.1 While atom centered functions are well suited to the description of Hartree–
Fock orbitals and the nuclear cusps, they are poorly suited to the description of the
correlation cusp, which is electron centered. The conventional expansion of |u(s)

ij 〉
in terms of virtual orbital pairs amounts to a partial wave expansion of linear-r12,
which is slowly convergent. Indeed, the correlation energy increment for each suc-
cessive angular momentum l in such a partial wave expansion can be shown to be
proportional to (l + 1

2 )−4 [16, 17]. The total error for a set truncated at l is then
proportional to l−3, which also accounts for the slow X−3 convergence behavior of
the correlation-consistent basis sets [18].

The central, distinguishing idea of the R12 approach is to augment the orbital
expansion with a small set of R12 geminals, two particle functions with explicit
r12 dependence that directly and efficiently describe the cusp regions of the wave
function [15]. From Eq. (20-1) it is clear that the set of spatial functions

Q̂12f12φiφj (20-2)

can explicitly satisfy the correlation cusp for restricted closed-shell MP2 wave func-
tions, where f12 = f (r12) = r12 + O (

r2
12

)

and i, j run over the set of occupied
orbitals. The inclusion of these functions accelerates the convergence with orbital
basis from l−3 to l−7 [15], which is sufficient to eliminate the basis set problem from
almost all practical applications of modern quantum chemistry. The details for how
to practically incorporate these functions as double orbital replacements in MP2 and
CCSD wave functions were worked out by Kutzelnigg and co-workers [19–23] and
relies chiefly on inserting resolution-of-the-identity (RI) approximations to reduce
three- and four-electron integrals to sums of products of two-electron integrals (see
Section 20.5).

In the original R12 methods, f12 was set to r12 and the orbital basis was used for
the RI. The early R12 methods have been very successful for benchmark calculations
on small to medium sized molecules with a hitherto unobtainable sub mEh accuracy
in total energies [24–39]. Indeed, the basis set limits provided by R12 calculations
made it possible to develop and assess extrapolation methods. However, the fact
that linear-r12 accurately describes a rather small region around the cusp, and the
requirement that the orbital basis be sufficiently complete for an accurate RI, meant
that it was not possible to use small orbital basis sets with the original R12 methods.

1 Q̂12 is the strong orthogonality projector, which ensures intermediate normalization and zero contribu-

tion to |u(s)
ij 〉 from single excitations (see Sections 20.3.2 and 20.5).
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Figure 20-1. (a) The correlation hole ΨCCSD − ΨHF for 1S helium plotted as a function of electron 2
with electron 1 positioned 0.5 a0 from the nucleus. ΨCCSD and ΨHF have been computed with Hylleraas
expansions and are numerically exact on this scale. (b) The F12 basis function − 1

2 Q̂12e−r12ΨHF. (c)
The difference between the exact correlation hole and the F12 basis function

Today, the predominant choice for f12 is a Slater-type function2 [40]

f12 = −γ−1(1− exp (−γ r12)), (20-3)

which accounts for screening in the inter-electronic interaction and accurately de-
scribes a much larger region of the correlation hole than linear-r12. Indeed, 80%
of the CCSD dynamic correlation energy can be recovered using Slater-type gem-
inal functions (STGs) alone, that is, without the conventional orbital expansion for
double excitations (see Figure 20-1 and Ref. [41]). Furthermore, a complementary
auxiliary basis set (CABS) is used in addition to the orbital basis for the RI [42, 43].
Combined, these two developments have transformed R12 theory into a method ca-
pable of recovering over 98% of the basis set limit correlation energy with specially
optimized double-zeta basis sets, which is as accurate as conventional quintuple-zeta
calculations. R12 methods where the correlation factor f12 is non-linear are generally
referred to as F12 methods.

2 Practical calculations actually use f12 = −γ−1 exp (−γ r12), or a STG-nG fit using Gaussian geminals.
Note that the projection operator Q̂12 eliminates the constant.
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These key advances appeared 5–10 years ago at the MP2 level of theory [44] and
since then there has been rapid development in many aspects of R12 methodology,
including systematic approximations [42, 45–47], robust density fitting for the R12
integrals [48, 49], combination with local methods [50–54], efficient integral eval-
uation [40, 53, 55, 56], improvements in RI through numerical quadrature [55, 57],
specially optimized orbital and auxiliary basis sets [58–60], as well as the extension
of MP2-F12 theory to CASPT2-F12 [61] and several coupled-cluster models for
ground state energies and response properties.

In this chapter we review the current status of CCSD-F12 theory, for which MP2-
F12 is the precursor. We will not discuss local [50–54] or multi-reference meth-
ods [61–63] and refer the reader to the literature for information on these topics.
In Section 20.3 we introduce the formalism and notation, and in Section 20.4 we
present the CCSD-F12 method and review several approximations to it. The various
integrals and intermediates required for CCSD-F12 and MP2-F12 calculations are
discussed in Section 20.5 and the choice of correlation factor f12 is explained in more
detail in Section 20.6. In Sections 20.7 and 20.8 we address the issue of basis set
incompleteness in single and triple excitations, respectively. Finally in Section 20.9
we present the current status of CCSD-F12 response theory, before concluding with
some thoughts on the future of F12 methods in Section 20.10.

20.3. FORMALISM AND NOTATION

20.3.1. Orbital Spaces

Coupled-cluster methods are most conveniently discussed in second quantization. In
standard canonical coupled-cluster theory, the set of orbitals underlying the occupa-
tion number representation is determined by a Hartree–Fock calculation in the (finite)
orbital basis. For a second quantization representation of F12 functions, which ex-
tend beyond the space spanned by the orbital basis, it is necessary to introduce a
formally complete set of orbitals. The orbital spaces are depicted in Figure 20-2. We
adhere to the usual convention, with i, j, k, l, m, n referring to orbitals occupied in the
Hartree–Fock state and a, b, c, d to virtual orbitals within the finite basis set. p, q, r, s

Figure 20-2. Orbital space notation
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refer to orbitals (occupied or virtual) in the finite basis set. α⊥,β⊥ denote the set of
complementary orbitals that are orthogonal to the finite set and complete the basis,
while α,β are used for the full set of virtuals. The CABS orbitals used to improve
the RI fall in the complementary space α⊥ and the indices p′, q′ are used to denote
CABS orbitals.

The occupied orbitals are not eigenfunctions of the Fock operator since they
are obtained from a finite basis calculation and the Fock matrix elements Fα⊥i =
〈i| F̂ |α⊥〉 �= 0. In F12 methods these matrix elements that couple F12 geminals
and occupied orbitals are sometimes neglected. This is referred to as assuming the
generalized Brillouin condition (GBC). Alternatively, they are included in an approx-
imate manner by treating them as a perturbation (see Section 20.7). The more drastic
assumption that the elements Fα⊥a = 0 is referred to as the extended Brillouin con-
dition (EBC). For calculations where core orbitals are not included in the correlation
treatment, we use the abbreviation fc (frozen-core).

20.3.2. Excitation Operators

The CCSD-F12 wave function is defined as

|CC〉 = exp (T̂)|HF〉 = exp (T̂1 + T̂2 + T̂2′ )|HF〉, (20-4)

where |HF〉 is the Hartree–Fock wave function and the cluster operators are given by

T̂1 =
∑

ia

tiaÊai, (20-5)

T̂2 = 1
2

∑

aibj

tijabÊaiÊbj, (20-6)

T̂2′ = 1
2

∑

kilj

cij
kl

∑

αβ

wkl
αβ ÊαiÊβj. (20-7)

To simplify later discussions, we adopt the spin-free (closed-shell) formalism and in
terms of creation and annihilation operators the excitation operator is

Êai =
∑

σ

a†
aσaiσ . (20-8)

tia and tijab are the usual singles and doubles amplitudes, respectively. The F12 basis
functions enter the wave function as additional double excitations, representing a
replacement of an orbital pair |ij〉 with the geminal Q̂12f12 |kl〉 with an amplitude cij

kl.
A F12 basis function is a specific linear combination of orbitals in the complete basis
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that describes the correlation hole. The coefficients wαβkl are the (spin-free) matrix
elements

wkl
αβ = 〈kl|f12Q̂12|αβ〉 (20-9)

The choice for the strong orthogonality operator Q̂12 defines the Ansatz of the F12
method. The best choice, referred to as Ansatz 2, is3

Q̂12 = (1− Ô1)(1− Ô2)− V̂1V̂2, (20-10)

where

Ô =
∑

i

|φi〉 〈φi| , (20-11)

V̂ =
∑

a

|φa〉 〈φa| . (20-12)

In first quantization, Q̂12 projects out the overlap of the function f12 |kl〉 with all
occupied pairs |ij〉 and all singly excited pairs |iα〉, which ensures that the excitations
into F12 geminals are pure double excitations. Furthermore, the overlap with the
conventional double excitations into the finite basis is also projected out, minimizing
the coupling between T̂2 and T̂2′ . The resulting space of F12 double excitations is
depicted in Figure 20-3.

An alternative choice, Ansatz 1, is

Q̂1
12 =(1− P̂1) (1− P̂2), (20-13)

P̂ =
∑

p

|φp〉〈φp|. (20-14)

occ compvir

j b β

i

a

comp

O1O2

V1O2 V1V2

O1V2 O1P’2

P’1O2
α

occ

vir

Figure 20-3. The space of orbital pairs. The space of F12 double excitations for Ansatz 2 is shaded

3 Some researchers refer to this as Ansatz 3, reserving Ansatz 2 for (1− Ô1) (1− Ô2).
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Here the F12 geminals fall only in the space of |α⊥β⊥〉 and do not contain any
contributions from |aβ⊥〉, which lead to coupling terms between T̂2 and T̂2′ in the
amplitude equations. Although Ansatz 1 results in much simpler working equa-
tions, Ansatz 2 is far more accurate and Ansatz 1 is rarely used in modern F12
methods. The practical evaluation of integrals involving F12 geminals usually in-
volves RI techniques to avoid three- and four-electron integrals and is discussed in
Section 20.5.

20.3.3. Projection Manifolds and Similarity Transformation

In our approach to coupled-cluster methods, the projection manifolds, the biortho-
gonal bra states for single, double and F12 double excitations, which are used to set
up the CCSD-F12 amplitude equations, are given by

〈μ1| =〈HF| 12 Êia, (20-15)

〈μ2| =〈HF|( 1
3 ÊiaÊjb + 1

6 ÊjaÊib
)

, (20-16)

〈μ2′ | =
∑

αβ

wkl
αβ〈HF|( 1

3 ÊiαÊjβ + 1
6 ÊjαÊiβ

)

. (20-17)

The energy and amplitude equations are obtained by projecting the Schrödinger
equation onto the states 〈HF| exp (−T̂) and 〈μ| exp (−T̂).

E =〈HF| exp (−T̂)Ĥ exp (T̂) |HF〉 , (20-18)

0 =〈μ| exp (−T̂)Ĥ exp (T̂) |HF〉 . (20-19)

The Campbell–Baker–Hausdorff expansion of the similarity transformed Hamilto-
nian exp (−T̂)Ĥ exp (T̂) truncates at four nested commutators and the expansion is
term-wise size extensive.

exp (−T̂)Ĥ exp (T̂) = Ĥ + [Ĥ, T̂]+ 1
2 [[Ĥ, T̂], T̂]+ · · · . (20-20)

The coupled-cluster equations are greatly simplified by absorbing the single excita-
tions into the integrals and using T̂1-transformed operators, defined as

H̃ = exp (−T̂1)Ĥ exp (T̂1). (20-21)

In the Lagrangian formulation of coupled-cluster theory, or in the equation of mo-
tion (EOM) coupled-cluster approach, both the left and right eigenvectors of the
similarity transformed Hamiltonian are required. The ground state right eigenvector
is obviously the Hartree–Fock state. The left eigenvector, 〈Λ| = 〈HF|+〈t̄|, is defined
by the Lagrange multipliers. In CCSD-F12 theory, 〈t̄| contains singles, doubles and
F12 doubles components,
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〈t̄1| =
∑

ia

t̄ia 〈HF| 1
2 Êia, (20-22)

〈t̄2| = 1
2

∑

aibj

t̄ijab〈HF|( 1
3 ÊiaÊjb + 1

6 ÊjaÊib
)

, (20-23)

〈c̄| = 1
2

∑

kilj

c̄ij
kl

∑

αβ

wkl
αβ〈HF|( 1

3 ÊiαÊjβ + 1
6 ÊjαÊiβ

)

. (20-24)

To first order, the doubles amplitudes and multipliers are related through

t̄ijab = 2tijab − tjiab. (20-25)

20.3.4. Basis Sets

The correlation-consistent basis sets of Dunning and co-workers, cc-pVXZ [64, 65]
are not appropriate for F12 calculations. The F12 geminal basis functions are used
for the short range description of the correlation hole and thus the exponents of the
polarization functions in an F12 calculation should be much smaller than for a con-
ventional calculation [66]. It has therefore been customary to use augmented sets for
F12 calculations, aug-cc-pVXZ [65, 67]. Recently, Peterson and co-workers have
constructed correlation-consistent basis sets explicitly for use with F12 methods,
cc-pVXZ-F12 [58]. Although these sets are somewhat larger than the sister cc-pVXZ
sets, being closer in size to the cc-pV(X+1)Z sets, they give significantly improved
relative energies [68]. The cc-pVXZ-F12 sets were optimized specifically for use
with the STG choice for f12 with the exponent γ = 0.9 a−1

0 , 1.0 a−1
0 and 1.1 a−1

0 for X
= D, T and Q, respectively. Auxiliary basis sets for the CABS RI approach have also
been constructed for combination with the cc-pVXZ-F12 [59] and the aug-cc-pVXZ
orbital basis sets [60]. All of Peterson’s F12 basis sets are available from his web
server [69].

20.4. CCSD-F12 MODELS

Partitioning the Hamiltonian into the one-electron part, the Fock operator, and the
two-electron part, the fluctuation potential,

Ĥ = F̂ + Φ̂, (20-26)

the equations for the CCSD-F12 energy and amplitudes are given by

E =EHF + 〈HF| 1
2 [[Φ̂, T̂1], T̂1]+ [Φ̂, T̂2 + T2′ ] |HF〉 , (20-27)

0 =〈μ1| [F̂, T̂1]+ [F̂, T̂2′ ]+ Φ̃ + [Φ̃, T̂2 + T̂2′ ] |HF〉 , (20-28)
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0 =〈μ2| [F̃, T̂2 + T̂2′ ]+ Φ̃ + [Φ̃, T̂2 + T̂2′ ]+ 1
2 [[Φ̃, T̂2 + T̂2′ ], T̂2 + T̂2′ ] |HF〉 ,

(20-29)

0 =〈μ2′ | [F̃, T̂2 + T̂2′ ]+ Φ̃ + [Φ̃, T̂2 + T̂2′ ]+ 1
2 [[Φ̃, T̂2′ ], 2T̂2 + T̂2′ ] |HF〉 .

(20-30)

The above equations assume the Brillouin condition (see Section 20.4.4) and Ansatz
2 (〈μ2| [[Φ̃, T̂2′ ], T̂2′ ] |HF〉 = 0 for Ansatz 1). These equations are formally identical
to conventional CCSD, except that there are two types of double excitations, those
into orbital pairs and those into F12 geminals. All of the properties of CCSD, such as
size extensivity and orbital invariance, are retained.4 The procedure for solving the
amplitude equations is also completely analogous to standard CCSD, with an MP2-
F12 calculation providing the initial guess for the iterative solution of the amplitude
equations.

An attractive alternative to optimizing the F12 amplitudes is provided by the SP
Ansatz [57, 70, 71], where the F12 amplitudes are predetermined to satisfy the singlet
(s-wave) and triplet (p-wave) coalescence conditions for the first-order wave function
(see Section 20.6.1),

cij
kl = 3

8δikδjl + 1
8δilδjk. (20-31)

The amplitudes for conventional excitations are optimized in the presence of this
fixed geminal contribution. The SP approach is numerically less sensitive to the ac-
curacy of the RI approximations and many F12 contributions can be pre-contracted,
significantly reducing the computational cost. The energy for the SP Ansatz is com-
puted from the Lagrange functional

E =〈HF| exp (−T̂)Ĥ exp (T̂) |HF〉 + 〈c̄| exp (−T̂)Ĥ exp (T̂) |HF〉 . (20-32)

The F12 Lagrange multipliers are approximated to first order by replacing them with
the F12 amplitudes according to Eq. (20-25). This ensures that orbital invariance
is retained. Although the accuracy in total energies suffers due to the reduced
flexibility, relative energies are often at least as accurate as when optimizing the
F12 amplitudes. Moreover, there is no direct geminal contribution to the basis
set superposition error (BSSE) for the SP Ansatz, and traditional counterpoise
corrections can be applied to remove the orbital BSSE. This leads to much improved
predictions for weak interactions [70].

Availability: At the time of writing, the CCSD-F12 model with CABS and Ansatz
2 had only been implemented using automated techniques, due to the large number
of terms that arise when evaluating the commutators. In particular, CCSD-F12
has been implemented in the MPQC program using the SMITH package [72–74]

4 In the original MP2-R12 method, the geminal excitations were restricted to cij
ij and cji

ij, which is not
orbital invariant [21] unless the amplitudes are the same for every ij [55].
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for automatic code generation and in the GECCO program [75–77], based on
generalized contraction routines. If the orbital basis is used for the RI, that is without
the CABS, the CCSD-F12 equations become very much simpler. The CCSD-F12
method without CABS has been implemented in DIRCCR12-OS [78].

Computational cost: The computational effort required for the F12 terms makes
a CCSD-F12 calculation somewhat more expensive than a CCSD calculation with
the same orbital basis set. In particular, the commutators 〈μ2′ | [Φ̃, T̂2′ ] |HF〉 and
〈μ2′ | [[Φ̃, T̂2′ ], T̂2′ ] |HF〉 contain terms that scale as O3X3, where O is the number of
occupied orbitals and X is the number of CABS orbitals used for the RI. The size
of the CABS is typically 2–3 times larger than the size of the orbital basis. For the
single commutator, the O3X3 scaling can be replaced by an O6V step, where V is
the number of virtual orbitals, by precomputing the Z intermediate with O5VX2 cost
[23, 75, 78, 79]. For the SP Ansatz, where the F12 residual is only computed once,
the cost of the 〈μ2| [[Φ̃, T̂2′ ], T̂2′ ] |HF〉 term is critical: it contains terms that scale as
O2V2X2.

Apart from the high computational expense, two further observations regarding
the terms quadratic in T̂2′ are noteworthy. The F12 amplitudes vanish in the limit of
an infinite orbital basis and the quadratic terms are therefore small, even for relatively
small orbital basis sets. The evaluation of these terms requires multiple RI insertions,
which may lead to an increased numerical sensitivity to the quality of the CABS.
In short, computing these terms is more trouble than it is worth. In the following
sections we discuss several approximate CCSD-F12 methods, where the scaling is
reduced to O3N2X or O2N4 in the iterations (N = O+ V). These simplified models
have been shown to be almost as accurate as the full CCSD-F12 while the simplest
are only a few percent more expensive than a conventional CCSD calculation in the
same orbital basis.

20.4.1. CCSD(F12)

In the CCSD(F12) model, introduced by Fliegl et al. [80], the treatment of the F12
amplitudes is reduced to second order in the fluctuation potential using analogous ar-
guments to those used to simplify the treatment of conventional doubles from CCSD
to CC2 [81]. In particular, the Fock operator and the conventional singles and doubles
amplitudes and multipliers are taken to be zeroth order. The fluctuation potential
and the F12 amplitudes and multipliers are then first order. The amplitude equations
of the CCSD(F12) model are obtained by discarding all terms in the CCSD-F12
Lagrange functional that are higher than second order. This gives

0 =〈μ1| [F̂, T̂1]+ [F̂, T̂2′ ]+ Φ̃ + [Φ̃, T̂2 + T̂2′ ] |HF〉 , (20-33)

0 =〈μ2| [F̃, T̂2 + T̂2′ ]+ Φ̃ + [Φ̃, T̂2 + T̂2′ ]+ 1
2 [[Φ̃, T̂2], T̂2 + 2T̂2′ ] |HF〉 ,

(20-34)

0 =〈μ2′ | [F̂, T̂2 + T̂2′ ]+ Φ̃ + [Φ̃, T̂2] |HF〉 . (20-35)
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The energy is evaluated using Eq. (20-27) if the F12 amplitudes are optimized. If
the SP Ansatz is used, then the energy is evaluated using the simplified Lagrange
functional [70]

E =〈HF| exp (−T̂)Ĥ exp (T̂) |HF〉 + 〈c̄| [F̂, T̂2 + T̂2′ ]+ Φ̃ + [Φ̃, T̂2] |HF〉 .
(20-36)

Compared to the full CCSD-F12 model, Eqs. (20-28), (20-29) and (20-30), all
terms quadratic in the F12 amplitudes have been neglected, as has the commutator
〈μ2′ | [[F̂, T̂1] + Φ̃, T̂2′ ] |HF〉. Although this simplification leads to a slight loss
in accuracy (see below), this is a very small price to pay for the significant
reduction in computational cost and increased numerical stability associated with
the CCSD(F12) method. Furthermore, since the model is consistent from the point
of view of perturbational analysis, the CCSD(F12) method is appropriate for use in
response calculations (see Section 20.9).

Computational cost: Beyond the O2N4 scaling of conventional CCSD, the F12
terms in the CCSD(F12) iterations scale at worst as O3N2X. Depending on the size
of the CABS, a CCSD(F12) calculation can take approximately 3 times longer than
a conventional CCSD calculation in the same orbital basis and the cost (but not
scaling) can be significantly reduced by employing the SP Ansatz.

Availability: The pilot implementation of the CCSD(F12) model including
STGs and CABS with Ansatz 2 was in a developmental version of the DALTON

program package [82, 83]. This implementation was restricted to closed-shell
calculations with restricted references and has been verified by comparison
with the automated routines in the GECCO program. Subsequently Ten-no has
presented an implementation of the CCSD(F12) model using the SP ansatz
and numerical quadratures [84] and Bachorz et al. have recently completed an
efficient implementation of CCSD(F12) in the TURBOMOLE package using a
combination of integral direct routines and density fitting. Naturally the CCSD(F12)
model is also available in the automated codes SMITH and GECCO, and also
in DIRCCR12-OS, but, at the time of writing this chapter, without the CABS
orbitals.

Performance: The CCSD(F12) method is an accurate, robust and efficient approx-
imation to CCSD-F12 and can be used to compute near basis set limit CCSD correla-
tion energies at relatively low cost using small orbital basis sets [83, 85]. The loss of
accuracy due to the CCSD(F12) simplifications is illustrated in Table 20-1, where
we list fc-CCSD correlation energies of water from CCSD-F12 and CCSD(F12)
calculations, taken from Ref. [75]. For comparison we also include energies from
the CCSD-F12(lin) model, where only the terms quadratic in T̂2′ are neglected from
the CCSD-F12 equations. The loss of accuracy due to the simplified F12 treat-
ment is below 0.3 mEh for these correlation energies, and below 0.1 kJ mol−1 for
equivalent calculations for the reaction energy for H2 + CO2 −→ H2O + CO (see
Ref. [75]).
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Table 20-1. Valence correlation energies of H2O in mEh for various
CCSD-F12 models, computed with a STG exponent of 1.3 a−1

0 [75]

Basis CCSD(F12) CCSD-F12(lin) CCSD-F12

aug-cc-pVDZ −291.005 −291.300 −291.190
aug-cc-pVTZ −296.097 −295.959 −295.950
aug-cc-pVQZ −297.820 −297.655 −297.654

In Table 20-2 we present statistics for the deviation of fc-CCSD(F12) energies
from the basis set limit using the cc-pVXZ-F12 basis sets and CABS sets, with
the recommended STG exponents.5 The basis set limit CCSD energies of 58 small
molecules of H, C, N, O and F [86] have been computed to 99.95% accuracy using
the CCSD(F12) method with the basis sets from Ref. [68]. The CCSD correlation
energy,ΔCCSD, computed using the CCSD(F12) method and the cc-pVDZ-F12 ba-
sis is more accurate than conventional CCSD using the cc-pV5Z basis. Considering
that the scaling with orbital basis is always N4 for any given system, and considering
that the cc-pV5Z basis is 3 times larger than the cc-pVDZ-F12 basis, the cost of the
CCSD(F12) calculation is ∼30 times less than the conventional calculation in the
large basis.

In Table 20-2 we have also listed the basis set errors arising due to the Hartree–
Fock (HF) and (T) contributions to the energy. These have been calculated using
the Hartree–Fock energy in the given basis and evaluating the (T) energy cor-
rection using the conventional singles and doubles amplitudes from a converged
CCSD or CCSD(F12) calculation, that is, without any explicit F12 dependence
(see Section 20.8). For the CCSD(F12)/cc-pVDZ-F12 calculations, the dominant
contribution to the total error is from the Hartree–Fock energies, whereas for
the CCSD(F12)/cc-pVQZ-F12 calculations, the slow convergence of the triples

Table 20-2. Basis set error statistics of conventional CCSD(T) and CCSD(T)(F12) methods over a set of
58 small molecules (kJ mol−1 per valence electron). Core orbitals have not been correlated

HF ΔCCSD CCSD (T) CCSD(T)

CCSD(T) Basis Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

Conv. cc-pVDZ 11.40 2.66 27.00 5.45 38.40 8.04 2.22 0.45 40.62 8.40
cc-pVTZ 2.75 0.69 9.69 2.37 12.43 3.05 0.66 0.15 13.09 3.19
cc-pVQZ 0.63 0.17 3.85 1.06 4.48 1.22 0.22 0.06 4.70 1.27
cc-pV5Z 0.08 0.02 1.80 0.51 1.88 0.53 0.06 0.02 1.93 0.54

(F12) cc-pVDZ-F12 3.22 0.75 1.35 0.29 4.56 1.00 1.07 0.22 5.64 1.19
cc-pVTZ-F12 0.60 0.14 0.21 0.07 0.81 0.21 0.36 0.08 1.18 0.26
cc-pVQZ-F12 0.06 0.01 −0.04 0.01 0.02 0.02 0.12 0.03 0.15 0.04

5 The GBC was assumed in these calculations.
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Table 20-3. Basis set error statistics of CCSD(T), CCSD(T)(F12) and CCSD(T)(F12)-SP methods over a
set of 53 reactions (kJ mol−1 per valence electron). Core orbitals have not been correlated

HF ΔCCSD CCSD (T) CCSD(T)

CCSD(T) Basis Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

Conv. cc-pVDZ −0.27 0.37 −0.95 0.86 −1.22 1.07 −0.11 0.08 −1.33 1.10
cc-pVTZ −0.08 0.12 −0.26 0.29 −0.34 0.34 −0.04 0.03 −0.39 0.35
cc-pVQZ −0.04 0.04 −0.07 0.10 −0.12 0.11 −0.01 0.01 −0.13 0.11
cc-pV5Z 0.00 0.01 −0.03 0.05 −0.03 0.04 −0.00 0.00 −0.03 0.04

(F12) cc-pVDZ-F12 −0.03 0.20 −0.07 0.09 −0.11 0.22 −0.05 0.06 −0.16 0.25
cc-pVTZ-F12 −0.03 0.03 −0.01 0.02 −0.04 0.04 −0.02 0.02 −0.06 0.04
cc-pVQZ-F12 −0.00 0.00 −0.00 0.00 −0.00 0.01 −0.01 0.01 −0.01 0.01

(F12)-SP cc-pVDZ-F12 −0.03 0.20 −0.10 0.08 −0.13 0.23 −0.05 0.06 −0.18 0.27
cc-pVTZ-F12 −0.03 0.03 −0.01 0.01 −0.03 0.04 −0.02 0.02 −0.05 0.04
cc-pVQZ-F12 −0.00 0.00 −0.00 0.00 −0.00 0.01 −0.01 0.01 −0.01 0.01

correction means that this contribution to the basis set error dominates. Methods
for reducing the basis set errors in the Hartree–Fock and triples contributions are
discussed in Sections 20.7 and 20.8, respectively.

In Table 20-3 we present analogous statistical measures for the basis set errors
for the decomposition of 53 molecules into H2, CO, CO2, N2 and F2. The comments
concerning total energies apply equally well to relative energies. The basis set error
for the fc-CCSD(F12) correlation energies is only 0.1 kJ mol−1 per valence electron
with the cc-pVDZ-F12 basis, which is sufficient for chemical accuracy in a wide
range of applications (provided that the Hartree–Fock error is reduced to a similar
level). The cc-pVQZ-F12 basis provides near benchmark accuracy with errors less
than 0.01 kJ mol−1 per valence electron. In Table 20-3 we also present statistics
for the SP Ansatz, which performs at least as well as the fully optimized approach
for relative energies. Indeed, the loss of accuracy in total energies due to the fewer
variational parameters is compensated by the absence of geminal basis set superpo-
sition error when computing relative energies. This advantage of the SP Ansatz is
particularly important when computing weak interactions [70, 87, 88].

20.4.2. CCSD-F12x

In the CCSD-F12x methods of Werner and co-workers [89, 90], the CCSD-F12
equations are reduced to the minimal set of terms required to capture the dominant
F12 contributions so that the additional computational cost of including the explicitly
correlated functions is only a fraction of the underlying cost of the CCSD calculation.
To this end the SP Ansatz is adopted in the CCSD-F12x methods. In the CCSD-F12x
methods, the conventional single and double equations are determined using

0 =〈μ1| [F̂, T̂1]+ [F̂, T̂2′ ]+ Φ̃ + [Φ̃, T̂2]+ [Φ̂, T̂2′ ] |HF〉 , (20-37)

0 =〈μ2| [F̃, T̂2]+ [F̂, T̂2′ ]+ Φ̃ + [Φ̃, T̂2]+ [Φ̃, T̂2′ ]+ 1
2 [[Φ̃, T̂2], T̂2] |HF〉 .

(20-38)
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For all but the 〈μ2| [F̂, T̂2′ ] |HF〉 term, which appears in MP2-F12 theory, the strong
orthogonality projection operator is approximated as

Q̂12 ≈ 1− P̂1P̂2. (20-39)

This is equivalent to using only the orbital basis for the RI for these terms6 instead
of the combined basis of orbital plus CABS and greatly simplifies the resulting
equations. In the CCSD-F12a method, the energy is computed from the Lagrange
functional

〈HF| exp (−T̂)Ĥ exp (T̂) |HF〉 + 〈c̄| [F̂, T̂2 + T̂2′ ]+ Φ̂ |HF〉 , (20-40)

where the F12 terms are identical to those of MP2-F12 (in the Hylleraas functional)
and are evaluated using the full Q̂12, that is Eq. (20-10), not (20-39). In the CCSD-
F12b method, the Lagrangian is extended to

〈HF| exp (−T̂)Ĥ exp (T̂) |HF〉 + 〈c̄| [F̂, T̂2 + T̂2′ ]+ Φ̃ + [Φ̃, T̂2] |HF〉 , (20-41)

where the approximate Q̂12 is used to evaluate the additional term.
The CCSD-F12x methods can be considered as approximations to the

CCSD(F12) approach. By replacing Q̂12 with the approximate form for all terms
that do not appear in MP2-F12, the CCSD(F12)-SP equations reduce to essentially
the CCSD-F12b model. The only further simplification required to recover the
above equations is then to assume the GBC and to neglect the T̂1 contributions to
the commutator 〈μ1| [Φ̃, T̂2′ ] |HF〉. To recover the unlinked equations in Ref. [90]
it is also necessary to delete some of the T̂1 contributions to 〈μ2| [Φ̃, T̂2′ ] |HF〉 and
〈μ2′ | Φ̃ |HF〉, but the effect of this is probably small. The approximation used for
Q̂12 could be seen as rather severe, particularly for double-zeta basis sets where the
approximate RI is far from complete, but the authors of the CCSD-F12x approaches
report that the effect for relative energies is small. It should be noted that for the
CCSD-F12a approach, contributions computed with the approximate Q̂12 do not
enter the final energy expression, affecting it only indirectly through the amplitudes.

Computational cost: In the CCSD-F12x methods, the expense of computing
the F12 terms in the coupled-cluster iterations is only a fraction of the cost of the
conventional terms. The effect of the approximation for Q̂12 is to remove almost
all coupling terms between conventional and F12 doubles and in doing so, to avoid
all terms in the iterations that depend on the size of the CABS. Formally, the most
expensive contraction scales as O2N4, but this is computed almost for free by adding
F12 amplitudes to the conventional amplitudes before the contraction involving
four externals in the conventional calculation. The additional cost of a CCSD-F12x
calculation over conventional CCSD lies predominantly in the computation of the
integrals and intermediates required for MP2-F12, which scales as ON2X2 for the

6 This is known as the standard approximation in the literature.
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SP approach, and the computation of the final energy, which requires a further O2N4

contraction for CCSD-F12b. To summarize, for systems with around 20 valence
electrons, the computation time for a CCSD-F12x calculation is only a few percent
longer than that of a CCSD calculation in the same basis.

Availability: The CCSD-F12x methods have been developed within the MOLPRO

quantum chemistry package. Since they are essentially a simplified version of the
CCSD(F12) method, it is highly probable that it will become possible to use the
CCSD-F12x methods within the CCSD(F12) programs mentioned in the previous
section.

Performance: In Table 20-4 we compare CCSD-F12x correlation energies for
H2O, taken from Ref. [90], with CCSD-F12 values computed using GECCO. The
CCSD-F12 values differ from Table 20-1 because, although the same orbital and
CABS were used, the calculations reported in Table 20-4 were performed with a
STG exponent of 1.5 a−1

0 . The CCSD-F12a method overestimates the correlation
energy, because the F12 contribution is computed using an MP2-like functional. The
convergence of CCSD-F12b with orbital basis is more in line with the full CCSD-
F12 model. For the CCSD-F12b/aug-cc-pVDZ calculations, the loss of accuracy of
3 mEh in the total correlation energy compared to CCSD-F12 is significant, since it
corresponds to 5% of the F12 contribution to the correlation energy, and increases
the total basis set error by 40%.

Due to the use of an approximate Q̂12, it is not appropriate to judge the CCSD-
F12x methods based on total energies, but rather for relative energies. To date, no
fair and direct comparison between the CCSD-F12x methods and other approximate
models exists in the literature. However, the basis set errors of the CCSD-F12x
models for reaction energies, atomization energies, ionization potentials and elec-
tron affinities have been extensively investigated [90]. The results are summarized in
Table 20-5. Compared to a conventional calculation in the same basis, the basis set
errors for the CCSD-F12x methods are an order of magnitude smaller. Even using
aug-cc-pVDZ basis sets, the CCSD-F12x basis set errors are below 5 kJ mol−1 for
reaction energies. In this method this important reduction in the basis set error has
been achieved by including F12 basis functions at almost no extra cost compared to
the conventional calculation. It should be noted that to obtain these excellent results,
the CCSD-F12x energies were combined with a correction for the Hartree–Fock
basis set error, using Eqs. (20-81), (20-82) and (20-83) of Section 20.7. Examples

Table 20-4. Valence correlation energies of H2O in mEh for the CCSD-F12x and
CCSD(2)F12 models, computed with a STG exponent of 1.5 a−1

0 . The basis set
limit is −297.9 mEh

Basis CCSD-F12a CCSD-F12b CCSD(2)F12 CCSD-F12

aug-cc-pVDZ −293.22 −287.27 −290.72 −290.18
aug-cc-pVTZ −298.50 −294.33 −294.75 −295.58
aug-cc-pVQZ −299.37 −296.88 −296.94 −297.35
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Table 20-5. CCSD and CCSD-F12x RMS basis set errors for open- and closed-shell reac-
tion energies and atomization energies (kJ mol−1), and ionization potentials and electron
affinities (meV). Taken from Ref [90]

Method Basis RE(cs) RE(os) AE IP EA

CCSD aug-cc-pVDZ 18.74 51.97 80.49 245.72 177.76
aug-cc-pVTZ 6.80 18.65 24.94 98.10 72.18
aug-cc-pVQZ 2.46 6.71 8.84 40.10 28.00
aug-cc-pV5Z 1.23 3.09 4.17 20.54 14.64

CCSD-F12a aug-cc-pVDZ 2.68 4.68 7.03 51.96 34.93
aug-cc-pVTZ 1.28 1.29 1.86 9.23 11.76
aug-cc-pVQZ 0.51 1.24 2.17 9.10 11.38

CCSD-F12b aug-cc-pVDZ 2.34 5.00 10.23 70.84 50.22
aug-cc-pVTZ 1.18 1.81 2.14 21.80 14.83
aug-cc-pVQZ 0.59 0.68 0.70 5.20 3.76

for the performance of the CCSD-F12x methods for potential energy surfaces can be
found in Ref. [91].

20.4.3. CCSD(2)F12

In Valeev’s CCSD(2)F12 model,7 rather than solving for the geminal amplitudes
iteratively, the geminal contributions are included a posteriori on the basis of per-
turbation theory, using a Löwdin partitioning of the CCSD similarity transformed
Hamiltonian [92–94]. This approach is thus analogous to the perturbative rather than
iterative treatment of connected triples in the (T) method [95]. The particular choice
of Löwdin and perturbation partitionings that is used to define the CCSD(2)F12 model
is

H̄ = H̄(0) + H̄(1) =
(

H̄PP 0

0 H̄(0)
QQ

)

+
(

0 H̄PQ

H̄QP H̄(1)
QQ

)

, (20-42)

where H̄ = e−T̂1−T̂2ĤeT̂1+T̂2 and the singles and doubles amplitudes are those of
a converged CCSD calculation. The Löwdin partitioning of the Hamiltonian into a
reference space P and external space Q, for the perturbation, is chosen such that P
refers to the space of ket states |HF〉 ⊕ Êai |HF〉 ⊕ ÊaiÊbj |HF〉 or the biorthogonal
bra states, and Q refers to the space of kets ÊαiÊβ⊥j |HF〉 or the biorthogonal bra
states. The choice of zeroth order Hamiltonian for the QQ space is F̂ + E(0) − ε,
where ε = 〈HF| F̂ |HF〉. The zeroth order energy E(0) is the CCSD energy and the

7 Valeev himself uses the moniker CCSD(2)R12 irrespective of the correlation factor, but for consistency
we use F12 in this chapter.
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zeroth order bra and ket states are simply the left and right eigenvectors of the CCSD
similarity transformed Hamiltonian, 〈Λ| and |HF〉. Applying perturbation theory,
the first order energy correction vanishes and the second-order correction defines the
CCSD(2)F12 method,

E(2) = −ΛPH̄PQ

(

H̄(0)
QQ − E(0)SQQ

)−1
H̄Q0. (20-43)

H̄(0)
QQ and SQQ are the familiar B and X matrices required for the F12 Fock matrix

elements in MP2-F12 theory (see Section 20.5.1). H̄Q0 and ΛPH̄PQ are given by

H̄Q0 = 〈μ2′ | H̄ |HF〉 , (20-44)

ΛPH̄PQ = 〈Λ| H̄ |μ2′ 〉 . (20-45)

To arrive at the CCSD(2)F12 model, several simplifications are required, which
are referred to as screening approximations in the literature and are very similar in
nature to those used to construct the CCSD-F12x methods. In particular, the HF,
singles and doubles components of 〈Λ| H̄ |μ2′ 〉 are approximated as

〈HF| H̄ |μ2′ 〉 ≈ 〈HF| Φ̂ |μ2′ 〉 , (20-46)

〈μ1| H̄ |μ2′ 〉 ≈ 0, (20-47)

〈μ2| H̄ |μ2′ 〉 ≈ 〈t̄2|Φ̂ |μ2′ 〉 . (20-48)

In keeping with (T) theory, the Lagrange multipliers are approximated to first order
only (see Eq. (20-25)). The neglected terms are either higher than second order in the
fluctuation potential from the point of view of standard Møller–Plesset perturbation
theory, or would disappear if Q̂12 ≈ 1− P̂1P̂2, or correspond to GBC terms. Similar
approximations are applied to the 〈μ2′ | H̄ |HF〉 term. The resulting energy expression
is very simple in form,

E(2) = −〈HF+ t̄2|Φ̂ |μ2′ 〉 〈μ2′ | F̂ − ε |ν2′ 〉−1 〈ν2′ | Φ̂ + [Φ̂, T̂2] |HF〉 . (20-49)

Summation over the indices of adjacentμ2′ or ν2′ is implied. The CCSD(2)F12 energy
can be equivalently obtained by minimizing a modified Hylleraas functional, which
can then also be used with the SP Ansatz,

L(2) =〈c̄| [F̂, T̂2′ ] |HF〉 + 2 〈c̄| Φ̂ + [Φ̂, T̂2] |HF〉 . (20-50)

This is very similar to the energy functional of the CCSD-F12b method. All that
is required to obtain the CCSD(2)F12 functional is to neglect terms from EBC and
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single amplitudes8 and to introduce into Eq. (20-41) a factor of 2 in front of the
commutator 〈c̄| [Φ̃, T̂2] |HF〉, which is the difference between CCSD-F12b and
CCSD-F12a. However, in contrast to the CCSD-F12x methods, the full projector
Q̂12 is used to evaluate the terms in the CCSD(2)F12 approach, that is, Eq. (20-10) is
used, not Eq. (20-39).

Computational cost: Since the CCSD equations are solved without any reference
to the geminal basis, the cost of the iterations is identical to that of conventional
CCSD. Just as for the CCSD-F12x methods, the additional computational effort for
the F12 contributions lies in the construction of the MP2-F12 intermediates and the
evaluation of the final energy. In contrast to the CCSD-F12b method, the CABS
contributions to the commutator 〈HF| [Φ̂, T̂2] |HF〉 are not neglected, which leads
to a step with O3N2X scaling in addition to the O2N4 contractions required for
CCSD-F12b.

Availability: The CCSD(2)F12 model was developed using the MPQC and PSI3
programs. So far, the CCSD(2)F12 method has also been implemented in MOLPRO,
but, due to its simplicity, it is very likely to find its way into almost every program
where full or approximate CCSD-F12 methods are available.

Performance: For total energies, the CCSD(2)F12 method appears to be more
reliable than the CCSD-F12a or CCSD-F12b approaches. The valence correlation
energies of water computed using the CCSD(2)F12 method are listed in Table 20-4
along side CCSD-F12 and CCSD-F12x values. The CCSD(2)F12 and CCSD-F12x
values were both computed using the MOLPRO package, with the same basis sets.
These values were taken from Ref. [90]. It would appear that the improvement of
CCSD(2)F12 over CCSD-F12b for total energies is independent of whether the SP
Ansatz is used or not [90, 93] and results both from the better treatment of Q̂12
and, fortuitously, from the neglect of the EBC terms. For relative energies, the
CCSD(2)F12 and CCSD-F12x methods appear to perform similarly. Although no
direct comparison has yet been published, the impressive results in Table 20-5 could
probably equally well have been obtained using the CCSD(2)F12 method. However,
the differing treatment of single excitations may lead to differences in performance
for ionization potentials and electron affinities.

20.4.4. Further Simplifications

In standard canonical theory, the Brillouin condition implies that

〈HF| [F̂, T̂1] |HF〉 = 〈μ1| F̂ |HF〉 = 〈μ1| [F̂, T̂2] |HF〉 =
〈μ1| [[F̂, T̂1], T̂1] |HF〉 = 〈μ2| [[F̂, T̂1], T̂2] |HF〉 = 0. (20-51)

8 All contributions from single excitations are neglected in the CCSD(2)F12 model: the singles amplitudes
have been assumed to be second order in the fluctuation potential, which is reasonable for ground state
energies computed using RHF and UHF references, but not ROHF [94].
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If the GBC is assumed, then the following terms are additionally zero

〈μ1| [F̂, T̂2′ ] |HF〉 = 〈μ2| [[F̂, T̂1], T̂2′ ] |HF〉 = 〈μ2′ | [[F̂, T̂1], T̂2′ ] |HF〉 = 0.
(20-52)

Assumption of the EBC zeros the coupling terms

〈μ2| [F̂, T̂2′ ] |HF〉 = 〈μ2′ | [F̂, T̂2] |HF〉 = 0. (20-53)

At the level of MP2-F12 theory, neglect of GBC and particularly EBC terms can
lead to significant computational savings. The effect of neglecting the GBC terms
is usually less than 0.1% of the correlation energies and is comparable in magni-
tude to the other approximations employed in integral evaluation [96]. The EBC
terms have an order of magnitude larger effect on the MP2-F12 correlation energy,
and probably should not be neglected, although relative energies do not deteriorate
significantly when the EBC is assumed. Valeev has shown that using a Fock opera-
tor built from imprecise Hartree–Fock orbitals has only a minor effect on the MP2
correlation energy when the GBC and EBC terms are computed [97]. In CCSD-
F12 calculations, the cost of computing the GBC and EBC terms is completely
insignificant.

20.4.5. Open-Shell Extensions

The CCSD-F12 equations are straightforwardly written in terms of spin-orbitals,
which defines the UCCSD-F12 approach for use with UHF references or ROHF
references with semi-canonical orbitals. Just as for conventional calculations, the
ROHF Fock elements Fαi are treated as first order and therefore do not appear in the
zeroth-order Hamiltonian for MP2-F12 [90, 98].

There is, however, a complication that arises when applying the SP Ansatz to
open-shell molecules. It is not possible to satisfy both the s- and p-wave coalescence
conditions for the opposite-spin pairs for UHF references using the geminal basis
defined through the occupied orbitals. Spin-flipped geminal basis functions are also
required [71],

f12φ̄iσ φ̄jτ , (20-54)

where, for example, φ̄i is the spatial function for the orbital with τ spin. For ROHF
references, the additional set of geminals only differ from the ones of the occupied
orbitals for pairs where one of the orbitals is singly occupied. By expanding the
geminal basis to include these orbital pairs, the usual SP amplitudes in Eq. (20-31)
can be applied. At the time of writing this chapter, this had been implemented for
the CCSD-F12x methods in MOLPRO [90] and at the CCSD(F12) level of theory in
TURBOMOLE.
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20.5. INTEGRALS AND INTERMEDIATES

20.5.1. MP2-F12

The F12 intermediates involved in a CCSD-F12 calculation may be divided into
those required for the initial MP2-F12 calculation and those that are only needed for
the coupled-cluster residuals. The MP2-F12 equations are given by

E = 〈HF| F̂ + Φ̂ + [Φ, T̂2 + T̂2′ ] |HF〉 , (20-55)

0 = 〈μ2| [F̂, T̂2 + T̂2′ ]+ Φ̂ |HF〉 , (20-56)

0 = 〈μ2′ | [F̂, T̂2 + T̂2′ ]+ Φ̂ |HF〉 , (20-57)

and are usually solved by minimizing the Lagrangian (Hylleraas functional) for each
pair ij (Ref. [44] contains a review of MP2-F12 theory). In addition to the conven-
tional Fock and Coulomb integrals, four further intermediates are required:

Vkl
ij =〈kl|f12Q̂12r−1

12 |ij〉, (20-58)

Bkl
mn =〈kl|f12Q̂12(F̂1 + F̂2)Q̂12f12|mn〉, (20-59)

Xkl
mn =〈kl|f12Q̂12f12|mn〉, (20-60)

Ckl
ab =〈kl|f12Q̂12(F̂1 + F̂2)|ab〉. (20-61)

The particular way in which the Fock matrix elements B and C are evaluated, regard-
ing whether or not certain terms are neglected or treated approximately is responsible
for the bewildering array of acronyms in MP2-F12 theory, such as A, A′ B, C, with or
without an appended asterisk etc. We will not concern ourselves with all the details
of the derivation or evaluation of these intermediates here and refer the reader to
the numerous accounts in the literature [20, 42, 45–47, 98, 99]. Refs. [47] and [98]
contain particularly thorough discussions on this topic for RHF and ROHF refer-
ences, respectively. Here it is sufficient to mention that for CCSD-F12 theories no
real saving is gained by using the more approximate versions of MP2-F12 theory and
that almost all programs employ the variant B or C, where no terms are neglected.9

Two salient points regarding MP2-F12 intermediates, however, do need to be
discussed here. Taking the V intermediate as an example and expanding Q̂12 using
Eq. (20-10), one sees that three-electron integrals arise,

〈kl| f12Ô1r−1
12 |ij〉 =

∑

m

〈klm| f12r−1
23 |mji〉 . (20-62)

9 For consistency with the CABS singles approach, the Fock elements Fα⊥i should be considered as part
of the first-order Hamiltonian. Since these Fock contributions do not formally contribute to the B or C
matrices, this choice has no effect on the above equations.
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Four-electron integrals are required for the evaluation of B. Although these integrals
are straightforward to evaluate for particular choices of f12, their sheer number means
that the cost of their evaluation would severely restrict the size of system that could
be treated. One of the primary features that distinguish the R12 and F12 methods
from other geminal based approaches, such as GTG [100–106] or GGn [107–110],
is the use of RI approximations to compute these integrals by decomposing them
into sums of products of two-electron integrals (see Ref. [111] for an overview of
explicitly correlated approaches). In the CABS approach, the basis for the RI is the
union of the orbital basis and a complementary auxiliary basis, which leads to the
following compact expressions for Q̂12:

Q̂12 ≈ 1− P̂1P̂2 − Ô1P̂′2 − P̂′1Ô2, (20-63)

Q̂12 ≈ P̂′1P̂′2 + V̂1P̂′2 + P̂′1V̂2. (20-64)

The first is more accurate since the CABS orbitals are used only to approximate
the |iα⊥〉 region of the geminal space, which can be seen by identifying the parts
of Q̂12 in Figure 20-3. The second expression is only used when the evaluation
of the integrals for the unity result in three-electron integrals, for example in the
exchange contribution to B, 〈kl|f12(K̂1 + K̂2)f12|mn〉. The use of either of these ex-
pressions for Q̂12 in Eq. (20-58) obviously results in sums of products of two-electron
integrals.

The second point that should be highlighted is the accuracy of the RI approx-
imation. For the Fock matrix elements, B, direct insertion of the RI approximated
Q̂12 leads to expressions that converge slowly with the size of CABS [20]. However,
a reformulation involving commutators results in terms that either truncate or are
rapidly convergent with CABS. Nevertheless, for the approximate RI to be accurate,
the orbital plus CABS must be saturated to at least 3Locc, where Locc is the maximum
angular momentum of the atomic functions contributing to the occupied orbitals.10

With appropriately chosen CABS the approximate RI leads to errors similar in mag-
nitude or slightly larger than density fitting errors, that is around 0.01 mEh for 10
electron systems [112]. Solving the MP2-F12 equations implicitly involves inverting
B, which is diagonally dominant in spin-adapted form. Too small CABS can result in
significant errors in the small off-diagonal elements, leading to non-positive definite-
ness of B and positive F12 contributions to pair energies. This numerical problem is
circumvented through use of the SP Ansatz.

Most F12 programs currently apply the CABS approach, where the computa-
tional expense for computing the MP2-F12 intermediates is O4X2, which can be
reduced to O4NX by employing so called hybrid approximations [45, 47]. For the
SP Ansatz, only the diagonal spin-adapted matrices are required and the scaling re-
duces to the cost of computing the two-electron integrals. This is at most ON2X2

10 This can be reduced to 2Locc using a combined RI and density fitting approximation [49].
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and many programs employ density fitting techniques to reduce the pre-factor
significantly [48].

RI is not the only device capable of avoiding many-electron integrals: numeri-
cal quadrature can also be applied [57, 113]. This method represents electron re-
pulsion integrals, for example, as sums of two- and three-center objects over grid
points,

〈pq|r−1
12 |rs〉 ≈

∑

g

φ̄p(rg)φ̄r(rg)〈q|r−1
1g |s〉, (20-65)

where φ̄p(rg) = wgφp(rg) denotes the weighted value of the orbital φp at the quadra-
ture grid point rg (wg is the weight of that grid point). Applied to three-electron
integrals, numerical quadrature yields

〈pqr|f12r23|stu〉 ≈
∑

g

φ̄q(rg)φ̄t(rg)〈p|f2g|s〉〈r|r−1
2g |u〉. (20-66)

By combining numerical quadrature and CABS RI techniques, the requirements on
the CABS basis can be reduced. Such hybrid approaches have been suggested by
Ten-no [55].

20.5.2. CCSD-F12

The simplified CCSD-F12x and CCSD(2)F12 models require only one additional in-
termediate beyond those of MP2-F12, namely the integral

Vkl
pq = 〈kl|f12Q̂12r−1

12 |pq〉. (20-67)

The cost of evaluation for this intermediate is O2N4 and Coulomb integrals with four
external indices are required, irrespective of whether Eq. (20-10) or Eq. (20-39) is
used for Q̂12. Just as for conventional CCSD, integral direct schemes can be applied
to avoid storage of the Coulomb integrals with four external indices. Storage of four-
index Coulomb integrals with CABS indices can be avoided through density fitting.

For the CCSD(F12) approach, T̂1 dependent contributions to V are required,
which have been combined into a new intermediate Ṽ in the literature [83],

Ṽkl
pq = 〈kl|f12Q̂12

(

1− T̂1 − 1
2 T̂2

1

)

r−1
12 |pq〉. (20-68)

This is term is used to evaluate 〈μ2′ | Φ̃ |HF〉 and 〈μ2′ | [Φ̃, T̂2] |HF〉 and the T̂1 de-
pendent contributions must be reevaluated in every iteration.

The evaluation of the commutator 〈μ2′ | [Φ̃, T̂2′ ] |HF〉 for the full CCSD-F12
method requires intermediates of the type [23]
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Pkl
ij =〈kl|f12Q̂12r−1

12 Q̂12f12|ij〉, (20-69)

Zkl;m
ij;p =〈klm|f12Q̂12r−1

23 Q̂12f12i|jp〉, (20-70)

where the Z intermediate is needed, for example, for the T̂1 dependency. Several
other intermediates also appear, but the above two require special attention because,
unlike the other terms, straightforward insertion of RI leads to expressions that con-
verge slowly with the size of CABS. For an accurate implementation these must be
reformulated into terms that either truncate or converge rapidly (see Ref. [78], and
also [77], which contains numerical examples and a corrected expression for Z).

20.5.3. Two-Electron Integrals

Evaluation of the MP2-F12 intermediates requires the computation of two-electron
integrals over r−1

12 , f12, f12r−1
12 , f 2

12 and (∇1 f12)2.11 The full CCSD-F12 model re-
quires additional integrals over f 2

12r−1
12 . The cost of computing these integrals makes

a MP2-F12 calculation rather more expensive than a conventional MP2 calculation
in the same orbital basis, but for the CCSD-F12 models, the cost is dominated by
the iterations, or by the triples correction in a CCSD(T)-F12 calculation. Most pro-
grams employ robust density fitting techniques [48] to reduce the cost of the integral
evaluation.

Three choices of correlation factor f12 are prevalent in the literature:

f12 =r12, (20-71)

f12 =− γ−1 exp (−γ r12), (20-72)

f12 =
n
∑

i

ci exp
(−γir

2
12

) ≈ −γ−1 exp (−γ r12).
(20-73)

R12 methods refer to choosing linear-r12 and F12 methods to non-linear correlation
factors. For all three choices, the required two-electron integrals may be computed
analytically. The integrals for linear-r12 are related to conventional Coulomb inte-
grals and the integrals for the STG can be found in Ref. [40] within the Obara–Saika
recursive scheme. The integrals for Gaussian geminals in the STG-nG contraction
are also well known and date back to Boys and Singer [114, 115]. The particular
integrals required for MP2-F12 theory have been reported in Refs. [116] and [56]
for the McMurchy–Davidson and Obara–Saika recursive schemes, respectively and
coefficients for the STG-nG fit with n = 3, 4, 5 and 6 can be found in Ref. [66], or,
alternatively, computed using the prescription in Ref. [47].

Due to the higher accuracy of the F12 methods, linear-r12 is rarely chosen in
modern calculations. Furthermore, the STG correlation factors are shorter range and

11 If approximation B is used rather than C, then integrals over [∇2
1 , f12] are also needed.
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thus more amenable to density fitting and local approximations. The computational
cost of selecting STG or STG-nG would appear to be comparable [55].

20.6. THE CORRELATION FACTOR

The role of the F12 geminal basis functions is to efficiently describe the correlation
hole in correlated wave functions, which is defined as Ψcorr.−ΨHF. Due to the nature
of the Coulomb potential the correlation hole must be linear in r12 at short range r12.
This fact is embodied in Kato’s well known cusp condition (see below). At longer
range r12, the correlation hole deviates from linear-r12, as illustrated for helium in
Figure 20-1. In F12 methods, the correlation hole for each correlated orbital pair
function is represented as a correlation factor f12 multiplying a Hartree–Fock orbital
pair. Both the orbital and f12 components give rise to deviation from linear-r12. The
choice of the orbital pair is chosen such that Kato’s cusp condition can be satisfied
for MP2 wave functions. In this section we examine the choice of f12 in more detail.

20.6.1. Coalescence Conditions

In the limit r12 → 0 the form of the correlation hole is determined by the singularity
of the Coulomb potential. For the local energy not to diverge, the correlated wave
function must exhibit a derivative discontinuity at r12 = 0 such that the singularity
in the kinetic energy exactly cancels that of the Coulomb repulsion. Mathematical
analysis of the exact wave function leads to [117–119]

˜∂Ψ
0

∂r12

∣

∣

∣

r12=0
= 1

2 Ψr12=0, (20-74)

˜∂2Ψ
1

∂r2
12

∣

∣

∣

r12=0
= 1

2

˜∂Ψ
1

∂r12

∣

∣

∣

r12=0
. (20-75)

The first equation is Kato’s cusp condition and is valid when Ψr12=0 �= 0, that is,
when the coalescing electrons have different spins. For triplet coupled electrons,
the wave function vanishes at coalescence and the derivative discontinuity is in the
second derivative. The notation ˜Ψ l indicates a spherical average weighted with a
spherical harmonic Ylm. Equations (20-74) and (20-75) are referred to as s-wave and
p-wave cusp conditions, respectively and have the integrated forms

Ψ = Ψr12=0
(

1+ 1
2 r12

)+O(

r2
12

)

, (20-76)

Ψ = r12 · ∂Ψ
∂r12

∣

∣

∣

∣

r12=0

(

1+ 1
4 r12

)+O(

r3
12

)

. (20-77)
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The equivalent conditions for the first order pair functions in MP2 theory have been
given in Eq. (20-1). In comparing Eq. (20-1) with Eqs. (20-76) and (20-77), it is
helpful to identify the spatial part of singlet Hartree–Fock orbital pairs 1√

2
(φiφj +

φjφi) with the s-wave expression and triplet pairs 1√
2
(φiφj − φjφi) with the p-wave

expression. The coalescence conditions only give information regarding the linear-
r12 dependence of the correlation hole. The form of the hole at medium to long range
r12 is expected to be system dependent. Indeed, analysis of the O (

r2
12

)

and O (

r3
12

)

terms in Eqs. (20-76) and (20-77) indicates an early deviation from linearity and
that different correlation factors are appropriate for different orbital pairs. However,
there is strong numerical evidence suggesting that the Slater-type correlation factor
is close to optimal in F12 methods [66, 120].

20.6.2. Slater-Type Correlation Factors

The R12 basis functions, where f12 = r12, give an exact description of the MP2
correlation hole at short r12, but they do not decay quickly enough to give a reason-
able description for longer range r12.12 This is demonstrated in Figure 20-4 where
we have plotted the optimum F12 correlation factor for a CCSD calculation on the
1S and 3S states of helium, computed numerically using Hylleraas coordinates (see
Refs. [66, 121]). The Slater-type correlation factor is very close to the optimum cor-
relation factor for helium for a wide range of r12. A natural interpretation for this is
that the Slater function models the screened interaction between the two electrons.
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Figure 20-4. (a) R12 and F12 correlation factors
(

c = 0.49, γ = 0.81 a−1
0

)

compared to the optimum

factor for 1S helium. (b) R12 and F12 correlation factors
(

c = 0.29, γ = 1.40 a−1
0

)

compared to the

optimum factor for 3S helium

12 Note that the orbital component of the R12 basis functions ensures that they do decay with r12 and are
zero at infinite r12.
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Table 20-6. Parameters for the fit cγ−1(1−e−γ r12 ) to the optimum
correlation factor for He and its isoelectronic series of cations. γ
closely follows a(Z − b) with a = 0.7177 and b = 0.8481

Z 2 3 4 5 6 7 8

c 0.49 0.49 0.49 0.49 0.49 0.49 0.49

γ (a−1
0 ) 0.81 1.55 2.27 2.99 3.70 4.42 5.12

a(Z − b) 0.83 1.54 2.26 2.98 3.70 4.42 5.13

In Table 20-6 we list the coefficients c and exponents γ in a STG fit to the optimum
correlation factors for the helium isoelectronic series of cations in their 1S ground
states. These differ slightly from those of Ref. [66] because here the fits only used the
range r12 < 0.1 a0. The size of the correlation hole shrinks with increasing nuclear
charge Z and the value of γ thus increases proportionally. The function a(Z − b) in
Table 20-6 models the screened nuclear charge acting on the correlating electrons.
Variations in the effective nuclear charge for valence shell electrons are relatively
weak for neutral atoms and molecules. Thus a single correlation factor with a single
exponent is sufficient for many purposes. However, an exponent chosen for valence
correlation is sub-optimal for core correlation, or correlation in anions or cations. If
one wants to avoid including additional STGs with adapted exponents, these defi-
ciencies must be made up through the orbital basis set.

In fact, there is a large redundancy between the orbital basis and the F12 basis
functions, which helps to reduce the sensitivity of F12 calculations to the choice of γ .
The cc-pVXZ-F12 basis sets were optimized for a particular STG exponent and it is
recommended to use the correct exponent with the correct basis (see Section 20.3.4).
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Figure 20-5. (a) Mean basis set errors (kJ mol−1 per valence electron) in the valence CCSD(F12)/cc-
pVXZ-F12 correlation energies over 58 molecules for X = D (×) and T (•) as a function of γ (a−1

0 ).

The standard deviation is given as an error bar. (b) Mean basis set errors (kJ mol−1 per valence electron)
in the valence CCSD(F12)-SP/cc-pVXZ-F12 correlation contribution to 53 reaction energies for X = D
(×) and T (•) as a function of γ (a−1

0 ). The standard deviation is given as an error bar
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In Figure 20-5 we have plotted statistical measures of the basis set errors in the
CCSD(F12) correlation energy as a function of the exponent γ in the STG correlation
factor. We plot the mean and standard deviations for the basis set errors for total
and relative correlation energies over the set of 58 molecules used for Table 20-2,
where we have used the SP Ansatz for the relative energies. For the cc-pVDZ-F12
basis set, the accuracy is rather sensitive to the exponent γ and the lowest errors
are obtained using the recommended value of 0.9 a−1

0 . For the cc-pVTZ-F12 basis,
the absolute accuracy is much less sensitive to the choice of exponent and again the
recommended value of 1.0 a−1

0 gives the best results. It should, however, be noted
that these statistics only include molecules with elements H, C, N, O and F.

20.7. AUXILIARY SINGLE EXCITATIONS

The F12 geminals reduce the basis set errors in the CCSD correlation energies to
such an extent that the basis set error in the Hartree–Fock energy becomes the lim-
iting factor for CCSD/cc-pVDZ-F12 calculations (see Table 20-3 and the discus-
sion in Section 20.4.1). One obvious solution to this problem would be to compute
the Hartree–Fock energy using a larger basis. Indeed very efficient Hartree–Fock
programs exist and this is usually possible. However, an additional calculation is
unnecessary, since a Hartree–Fock correction can be computed essentially for free
using Fock matrix elements that form part of an MP2-F12 calculation. Perhaps
more importantly, separate calculations for Hartree–Fock and correlation energies
is undesirable when energy derivatives are required for structure optimization or the
computation of response properties.

The CABS orbitals of a MP2-F12 or CCSD-F12 calculation form a convenient
basis for improving the Hartree–Fock description [89]. The CABS singles Hartree–
Fock energy correction is obtained from a second-order perturbative treatment of the
CCS equations, where the conventional single excitations are combined with single
excitations into CABS orbitals, defined through

T̂1′ =
∑

ip′
tip′ Êp′i, (20-78)

〈μ1′ | = 〈HF| 1
2 Êip′ . (20-79)

Using the orbitals from a finite basis Hartree–Fock calculation, the GBC Fock matrix

elements Fq′
i form the perturbation [122],

F = F(0) + F(1) =
⎛

⎜

⎝

Fj
i 0 0

0 Fb
a Fq′

a

0 Fb
p′ Fq′

p′

⎞

⎟

⎠+
⎛

⎜

⎝

0 Fb
i Fq′

i

Fj
a 0 0

Fj
p′ 0 0

⎞

⎟

⎠ . (20-80)
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We have also treated the off-diagonal Fock matrix elements Fa
i as first order to define

a single set of equations for RHF, UHF and ROHF references and to be consistent
with standard ROHF-MBPT. The CABS singles Hartree–Fock energy correction is
given by [90, 123],

E(S2) =EHF + 〈HF| [F̂(1), T̂1 + T̂1′ ] |HF〉 = EHF + 2Fa
i tia + 2Fp′

i tip′ , (20-81)

0 =〈μ1| F̂(1) + [F̂(0), T̂1 + T̂1′ ] |HF〉 = Fi
a + Fb

atib − Fi
jt

j
a + Fq′

a tiq′ , (20-82)

0 =〈μ1′ | F̂(1) + [F̂(0), T̂1 + T̂1′ ] |HF〉 = Fi
p′ + Fq′

p′ t
i
q′ − Fi

jt
j
p′ + Fb

p′ t
i
b. (20-83)

Summation over repeated indices is implied. These equations may be solved analyt-
ically with OX3 effort, or iteratively with OX2 scaling. This perturbative approach
to Hartree–Fock can be formally incorporated into an MP2-F12 treatment without
complication and the corrections for Hartree–Fock and correlation energies are un-
coupled to second order. Furthermore, the Fock matrix elements in the unified or-
bital plus CABS space are available from an MP2-F12 calculation because they are
required for evaluating the B matrix. The cost of evaluating the CABS singles correc-
tion is entirely negligible compared to the cost of an MP2-F12 calculation. Based on
a different partitioning in the original work of Noga et al. [122], a simpler correction

was also suggested [89], where the EBC elements Fq′
a were included in F(1) rather

than treated as zeroth order. Here the energy correction has the very simple form

E(S2∗) =− 2
∑

ip′

|Fp′
i |2

εp′ − εi
, (20-84)

where it is assumed that Fj
i = δj

iεi and Fq′
p′ = δq′

p′ εp′ . However, the EBC terms are
rather large for small basis sets and the Hartree–Fock energies obtained when treating
them as zeroth order are far superior. The above expressions are for RHF calculations
but the UHF formulae are entirely analogous. Knizia et al. have derived spin-free
expressions for high-spin ROHF references [98].

Table 20-7 is taken from Ref. [90] and lists the RMS basis set errors for
Hartree–Fock calculations on reaction energies, atomization energies, ionization po-
tentials and electron affinities, with and without the CABS singles correction. Equa-
tions (20-81) (20-82) and (20-83) were used for the correction, denoted (S2), and for
a HF/aug-cc-pVXZ calculation, the cc-pVXZ JKFIT basis set was used for CABS.
The basis set limit was taken as the aug-cc-pV6Z value and the ROHF method
was used for all open-shell calculations. The CABS singles correction reduces the
Hartree–Fock basis set errors by an order of magnitude and, despite its perturba-
tive rather than variational nature, it is sufficient to ensure that the accuracy of the
Hartree–Fock energies matches that of the CCSD-F12 correlation energies.

The basis set errors for the singles contribution to correlation energies is much less
important than the Hartree–Fock or doubles basis set errors. Nevertheless, this basis
set error can also be reduced by including the T̂1′ cluster operator into the CCSD-F12
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Table 20-7. Hartree–Fock RMS basis set errors for open- and closed-shell reaction energies
and atomization energies (kJ mol−1), and ionization potentials and electron affinities (meV),
with and without the CABS singles correction. Taken from Ref. [90]

Method Basis RE(cs) RE(os) AE IP EA

RHF aug-cc-pVDZ 13.45 28.88 24.39 65.14 76.22
aug-cc-pVTZ 2.07 3.61 3.47 11.07 11.80
aug-cc-pVQZ 0.49 1.17 0.82 2.27 3.58
aug-cc-pV5Z 0.17 0.35 0.25 0.59 0.98

E(S2) aug-cc-pVDZ 1.79 2.22 1.64 8.16 8.04
aug-cc-pVTZ 0.48 0.54 0.29 2.76 1.80
aug-cc-pVQZ 0.18 0.17 0.13 1.04 1.01

wave function [123]. However, simplified methods analogous to the CCSD(F12)
approach are required to avoid terms that have worse scaling than O2N3X [124].

20.8. CONNECTED TRIPLES

The CCSD method alone is insufficient for a robust and accurate description of elec-
tron correlation. Reliable predictions and a quantitative agreement with experiment
requires a treatment of the simultaneous correlation of three electrons and, for high
accuracy, higher order correlation must also be taken into account. For many appli-
cations the CCSD(T) model is sufficient. The (T) energy correction for a CCSD-F12
wave function is given by

 E(T) =〈t̄1|[Φ̂, T̂3]|HF〉 + 〈t̄2|[F̂, T̂3]+ [Φ̂, T̂3]|HF〉 + 〈c̄|[Φ̂, T̂3]|HF〉, (20-85)

0 =〈μ3| [F̂, T̂3]+ [Φ̂, T̂2 + T̂2′ ] |HF〉 , (20-86)

where T̂3 is the usual three-electron excitation operator

T̂3 = 1
6

∑

ijkabc

tijkabcÊaiÊbjÊck. (20-87)

Equation (20-86) for the triples amplitudes differs from that of a conventional
calculation only through 〈μ3| [Φ̂, T̂2′ ] |HF〉. Neglecting this term and the contri-
bution to  E(T) from 〈c̄|[Φ̂, T̂3]|HF〉, the (T) energy correction may be com-
puted in exactly the same way as for a conventional CCSD(T) calculation, tak-
ing the singles and doubles amplitudes from a converged CCSD-F12 calculation
[125]. The effect of neglecting the F12 contribution is to deteriorate the (T) en-
ergy slightly compared to a conventional CCSD(T) calculation in the same basis,
but this effect is small (compare columns CCSD(T) and CCSD(T)(F12)-SP in Ta-
ble 20-8). To date, this is the way in which the (T) correction is computed in the
CCSD(T)(F12) and CCSD(T)-F12x models [83, 89, 90, 125]. For the CCSD(T)F12
approach, the Löwdin partitioning has been chosen such that the (T) correction
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Table 20-8. Valence (T) correlation energies of FH in mEh from
CCSD(T) and CCSD(T)(F12)-SP calculations, with and without
F12 triple excitations [77]. The basis set limit is −8.8 mEh

Basis CCSD(T) (F12)-SP (F12)-XSP

aug-cc-pVDZ −4.132 −4.004 −8.203
aug-cc-pVTZ −7.505 −7.299 −8.504
aug-cc-pVQZ −8.271 −8.170 −8.674
aug-cc-pV5Z −8.580
aug-cc-pV6Z −8.692

and F12 correction are uncoupled and F12 has rigorously zero contribution in this
case [94].

It is straightforward, at least formally, to include F12 basis functions into any
coupled-cluster model. All that is required is to introduce F12 double excitations
into the cluster operator. Indeed, in the initial development of R12 coupled-cluster
methods, formulae were presented up to CCSDT-R12 within the standard approx-
imation, that is, without CABS [23]. The powerful automated programs GECCO

and SMITH are currently capable of performing CCSDTQ-F12 calculations [74] and
work is in progress to ensure that the additional P- and Z-type intermediates that
occur are appropriately treated.

Although the basis set error for the doubles amplitudes is greatly reduced by F12,
these basis functions do not accelerate the convergence of connected triple exci-
tations, or indeed higher order excitations. Table 20-3 demonstrates that the basis
set error for the (T) correction in a CCSD(T)(F12) calculation dominates over that
of the CCSD correlation energy when a cc-pVQZ-F12 basis set is used. To use
F12 methodology to solve the basis set problem for triple excitations, it is neces-
sary to include additional three-body basis functions that are suitable for describing
the wave function when at least two of the three interacting electrons are close to-
gether. For higher excitations, analogous many-body F12-type basis functions are
required.

Köhn has recently proposed the following generalization of the F12 approach to
generate arbitrarily high many-body F12 basis functions [76, 77]. Motivated by the
cusp condition in first quantization

∂ΨCC

∂r12

∣

∣

∣

r12=0
= 1

2 r12ΨCC +O(

r2
12

)

, (20-88)

Köhn defines a generalized geminal operator R̂, representing the action of the corre-
lation factor on the whole orbital space, rather than just the occupied space

R̂ = 1
2

∑

rpsq

cpq
rs

∑

αβ

wrs
αβ ÊαpÊβq. (20-89)
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For the SP Ansatz, cpq
rs = 3

8δprδqs + 1
8δpsδqr. In second quantization, r12ΨCC is rep-

resented by eR̂eT̂ |HF〉. Combining the exponentials leads to the generalized cluster
operator

T̂ + R̂+ [R̂, T̂]+ 1
2 [[R̂, T̂], T̂], (20-90)

where only the parts that are excitation operators from the point of view of the
Hartree–Fock reference are retained. The linear term R̂ is simply T̂2′ and the next
term [R̂, T̂] = [R̂, T̂1 + T̂2 + . . . ] leads to excitations of the type

T̂2′′ =
∑

ijbαβ

tjb
( 3

8 wib
αβ + 1

8 wbi
αβ

)

ÊαiÊβj, (20-91)

T̂3′ =
∑

ijkbcαβ

tjkbc

( 3
8 wib
αβ + 1

8 wbi
αβ

)

ÊαiÊβjÊck, (20-92)

etc. The SP Ansatz has been used. The T̂2′′ operator represents the action of f12 on
singly excited orbital pairs, contracted with the singles amplitudes, and is appropriate
for describing singly excited states in response calculations [76]. T̂3′ is the natural
parameterization for triple excitations in ground state energies because it corresponds
to satisfying the cusp in the commutator 〈μ3′ | [Φ̂, T̂2] |HF〉 in the generalized ampli-
tude Eq. (20-86). Using the SP Ansatz with this definition of T̂3′ , the (T) energy is
given by [77]

 E(T) =〈t̄1|[Φ̂, T̂3 + T̂3′ ]|HF〉
+ 〈t̄2|[F̂, T̂3 + T̂3′ ]+ [Φ̂, T̂3 + T̂3′ ]|HF〉
+ 〈c̄|[F̂, T̂3′ ]+ [Φ̂, T̂3 + T̂3′ ]|HF〉
+ 〈t̄3′ |[F̂, T̂3 + T̂3′ ]+ [Φ̂, T̂2 + T̂2′ ]|HF〉, (20-93)

0 =〈μ3| [F̂, T̂3 + T̂3′ ]+ [Φ̂, T̂2 + T̂2′ ] |HF〉 . (20-94)

No new amplitudes are associated with T̂3′ , so no new amplitude equations need
be solved. In Table 20-8 we list valence (T) energies for FH computed using this
method, denoted XSP, together with energies computed using the standard (T) ex-
pression, that is without any direct F12 contribution. These values are taken from
Ref. [77] and in both cases, the singles and doubles amplitudes are those of a
CCSD(F12)-SP calculation. For comparison, we also list valence (T) energies from a
conventional CCSD(T) calculation. Inclusion of the T̂3′ basis functions greatly accel-
erates the convergence of the (T) correction. 92% of the (T) energy is obtained with
the aug-cc-pVDZ basis, which although somewhat less than the 97% recovered for
the CCSD(F12) correlation energy, is more than sufficient to ensure that the accuracy
in the triples is not the limiting factor. One possible source of the remaining basis
set error in (T) is that corresponding to the missing description of three-electron
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coalescence. However, this contribution is expected to be small both because the
volume element is small and also because the wave function is always zero at the
coalescence point.

At the time of writing the CCSD(T)(F12)-XSP method had only been applied
in pilot calculations using a preliminary implementation in GECCO. The computa-
tional cost is formally O3VX3, but this can be somewhat reduced by the application
of screening or hybrid approximations similar to those used for CCSD-F12x and
CCSD(2)F12. Furthermore, the ideas are readily extended to quadruple and higher
excitations and work is in progress to address the basis set errors for these higher-
order correlation effects.

20.9. RESPONSE PROPERTIES

The CCSD-F12 model can be used to compute response properties in much the same
way as for conventional CCSD [126]. In particular, the ket response functions for
frequency-dependent response properties are computed as right eigenvectors of the
similarity transformed Hamiltonian H̄ = eT̂ ĤeT̂ , expanded in the space of singly
and doubly excited determinants,

(

H̄PP H̄PQ

H̄QP H̄QQ

)(

RP

RQ

)

= E

(

1 0
0 SQQ

)(

RP

RQ

)

. (20-95)

The eigenvalues are the ground and excited state energies. We use an analogous no-
tation to that of Section 20.4.3, but here H̄ denotes the similarity transformation with
the entire CCSD-F12 cluster operator, not just the conventional singles and doubles.
The only difference between Eq. (20-95) and that of conventional CCSD linear
response theory is that the F12 basis functions are not orthogonal and require the
metric

Sμ2′ν2′ = 〈μ2′ |ν2′ 〉. (20-96)

Apart from this, the CCSD-F12 response equations are solved in an entirely
analogous way to those of CCSD. Furthermore, the iterative second and third order
methods CC2 [81] and CC3 [127] can also be combined with the F12 approach. The
detailed response equations for CC2-F12 have been presented by Fliegl et al. [82]
and response equations for CCSD(F12) have been given by Neiss et al. [128], where
the simplifications used for the ground state CCSD(F12) equations are applied to
Eq. (20-95).

Contrary to expectation, the CC2-F12 excitation energies do not always converge
more rapidly with basis set than conventional CC2 calculations [82]. Analysis of
the different contributions reveals that the geminal basis functions f12φiφj are bi-
ased towards the ground state. In some cases the basis set error for excited states
is relatively unaffected by including these F12 basis functions, which results in a
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slow convergence with basis size for the excitation energies. Similarly, properties
such as frequency-dependent polarizabilities also exhibit slow convergence for some
molecules. Expanding the geminal basis to include functions f12φxφy, where φx and
φy denote semi-natural virtual orbitals, significantly reduces this problem [129, 130].
An alternative approach has been proposed by Köhn [76], where the F12 excitations
are generalized in a different way, essentially corresponding to a tjb contraction of the
set of geminals f12φiφb. This approach avoids the near linear dependencies between
the functions f12φxφy and can also be combined with the SP Ansatz.

20.10. SUMMARY AND OUTLOOK

In this chapter we have presented the current status of explicitly correlated coupled-
cluster theory. For CCSD theory, we have demonstrated that the inclusion of a small
set of F12 two-particle basis functions into standard CCSD approaches reduces the
basis set error of the calculation by an order of magnitude, which means that the
accuracy of a CCSD-F12 calculation using a cc-pVDZ-F12 basis set is equivalent
to that of conventional CCSD using a cc-pV5Z basis. Furthermore, we have dis-
cussed three approaches to simplifying the CCSD-F12 method, demonstrating that
the cost of the most accurate simplified model, CCSD(F12), is only a factor of 2–3
times that of standard CCSD in the same basis. The cost of the slightly less ac-
curate models CCSD-F12x and CCSD(2)F12 is only a few percent larger than that
of the conventional calculation. Contrary to all experience with standard coupled-
cluster methods, the basis set error for the Hartree–Fock energy dominates that of
the correlation energy in a CCSD-F12 calculation and it is necessary to include a
correction for the Hartree–Fock basis set error, which can be computed with very
low cost using quantities available in a CCSD-F12 calculation. Combination of the
simplified CCSD-F12 approaches with standard perturbative triples corrections re-
sults in highly accurate and efficient CCSD(T)-F12 methods, capable of predicting
energetics to chemical accuracy for much larger molecules than previously possi-
ble, due to the reduced basis set requirements. Moreover, F12 approaches are well
suited to local approximations, which opens the door to an even larger range of
applicability.

Explicitly correlated approaches have undergone rapid development over the past
5–10 years and are constantly evolving. Although the approach to ground state en-
ergies is now fairly well established, appropriate extensions to excitation energies
and response properties are only now becoming clear and further developments are
expected in this direction. Similarly, the implementation of analytic derivatives has
begun [131] and we can reasonably expect simplified CCSD-F12 analytic gradients
in the near future. Recent work has also extended to the reduction in the basis set
error for higher excitations, important for calculations aiming at sub-kJ mol−1 ac-
curacy, by including explicitly correlated basis functions for triples excitations etc.
Indeed, to date, F12 methods have focused on CCSD valence correlation energies
of light atoms and there is much to be done to extend F12 methods to be able to
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treat heavy atoms, where relativistic effects are important, and core orbitals, which
require F12 functions with a shorter length scale.
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Abstract: Explicitly correlated MP2-F12 and CCSD(T)-F12 methods are reviewed. We focus on
the CCSD(T)-F12x (x = a, b) approximations, which are only slightly more expensive
than their non-F12 counterparts. Furthermore, local approximations in the LMP2-F12 and
LCCSD-F12 methods are described, which make it possible to treat larger molecules than
with standard coupled-cluster methods. We demonstrate the practicability of F12 meth-
ods by large benchmark calculations for various properties, including reaction energies,
vibrational frequencies, and intermolecular interactions. In these calculations, the newly
developed VnZ-F12 orbital and OPTRI auxiliary basis sets by Peterson et al. are compared
to other previously used basis sets. The accuracy and efficiency of local approximations is
demonstrated for reactions of large molecules.

Keywords: Coupled cluster, F12 approach, Explicitly correlated, Perturbation theory, Local
approximations

21.1. INTRODUCTION

The coupled-cluster method with single and double excitations and a perturbative
treatment of triple excitations [CCSD(T)] is nowadays considered to be the gold
standard of quantum chemistry. As long as a single-reference treatment is sufficient,
it yields highly accurate results for many properties, and chemical accuracy can
be reached for energy differences such as reaction enthalpies [1, 2]. However, the
method suffers from two major problems: the very steep scaling of the computational
cost with increasing molecular size, and the extremely slow convergence of the cor-
relation energy with respect to the basis set size. The latter problem is severe even for
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very small molecules, since the computational cost increases with the fourth power
of the basis set size NAO, while the errors in the energy decrease only with N−1

AO.
The slow convergence of the correlation energy with basis set size is due to the

fact that the shape of the wave function cusp for small to intermediate values of
r12 is not well described by an expansion in products of one-electron functions (or-
bitals). Already in 1929 Hylleraas realized that for the helium atom this problem
can be avoided by including terms in the wave function that depend explicitly on
the interelectronic distance r12 [3]. However, extensions to many-electron systems
proved difficult since very numerous many-electron integrals appear in the formal-
ism. The various early approaches, such as Gaussian-type geminal theories and trans-
correlated methods, have recently been nicely reviewed by Helgaker et al. [4], and
we refer to this paper for further information and references. Since most of these
methods require the calculation of three-electron and four-electron integrals, they
are applicable only to very small systems.

A way out of this problem was opened almost 25 years ago by the seminal work
of Kutzelnigg [5]. He proposed to use resolutions of the identity (RIs) to factorize
the many-electron integrals into sums of products of two-electron integrals. Further-
more, he proposed to augment the conventional pair functions by a single explicitly
correlated term that is proportional to r12ΦHF. Since the conventional expansion in
terms of orbital products (Slater determinants) is flexible enough to describe the
correlation hole for medium values of r12, the explicitly correlated terms need only
correct the wave function in the region near the wave function cusp, which is poorly
represented by the orbital products. This leads to a much simpler formalism than
many of the older theories in which the whole wave function was written in terms of
rij-dependent functions.

This so-called R12-method was first implemented by Kutzelnigg and Klopper
[6–11] for MP2 (second-order Møller–Plesset perturbation theory), and was later
extended to CISD (configuration interaction with single and double excitations) and
CEPA (coupled electron pair approximation) [12] as well as to coupled cluster [13,
14] and MRCI [15] (multireference configuration interaction) wave functions. In
all these early methods the atomic orbital (AO) basis set was used to approximate
the RIs (within the so-called standard approximation). In order to represent the re-
solution of the identity accurately, very large orbital basis sets were needed, and the
method was therefore mainly applied to obtain highly accurate correlation energies
for atoms and small molecules.

An important next step towards the goal to obtain accurate results with small
basis sets was made by Klopper and Samson in 2002, who implemented for the
first time an MP2-R12 method in which the RIs were approximated by an auxiliary
basis set [16]. An improved scheme, using the union of the AO and auxiliary basis
sets, was later proposed by Valeev [17] (complementary auxiliary basis set (CABS)
approach). It turned out, however, that the accuracy of the correlation energies was
still rather unsatisfactory when small or medium size basis sets were used. The origin
of this problem is the linear r12 correlation factor. Even though this makes it possible
to describe the wave function cusp for r12 → 0 correctly, its linear increase with
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the interelectronic distance is unphysical and must be compensated by the standard
orbital product expansion. This not only requires large basis sets, but may also lead
to numerical problems in calculations for larger molecules.

A breakthrough came when it was realized that non-linear short-range correla-
tion factors, such as a Slater-type function F12 = exp (−γ r12), yields much better
basis set convergence and numerical stability than the linear r12 factor. This was
first proposed and demonstrated by Ten-no [18]. At about the same time, May
and Manby [19] implemented an MP2-F12 method in which an arbitrary func-
tion F12(r12) could be approximated by a frozen linear combination of Gaussians
F12 =∑

i ci exp
(−αir2

12

)

. In Ref. [19] F12 = r12 was assumed, but soon afterwards
it was found that even with a single Gaussian much better results are obtained than
with F12 = r12 [20]. In the subsequent years, several other MP2-F12 implementa-
tions followed [21–29]. Various other functional forms of the correlation factor F12
(fitted to an expansion of Gaussians) were tested by Tew and Klopper [22], but the
simple Slater function as proposed by Ten-no turned out to be most suitable.

Using the Slater-type geminal it is possible to compute the integrals exactly [18,
30], but no chemically significant error is introduced by an approximate expansion
of the correlation factor in Gaussians. The efficiency of the integral evaluation can
also be enhanced by robust density fitting approximations [19, 31, 32]. Furthermore,
Peterson et al. optimized new orbital [33] and RI [34, 35] basis sets that are specially
designed for F12 calculations. All these advances greatly increased the efficiency and
numerical stability of F12-methods, which can now be used by non-experts routinely.
Many benchmark calculations with the MP2-F12 method showed that with triple-
zeta basis sets quintuple zeta or even better accuracy can be obtained [21, 24, 27–
29]. Extensions to the calculations of excitation energies [36, 37] and of non-linear
response properties[38] were also reported.

Most of the above mentioned methods were limited to MP2, which is not suf-
ficiently accurate for reliable predictions. Extensions to coupled-cluster theory are
therefore the focus of current research. Formally complete treatments of CCSD-R12
methods were described many years ago by Noga et al. [13, 14, 39, 40], but these
methods were complicated and suffered from the fact that the AO basis was used
to approximate the RIs. For CCSD-R12 methods this is even more severe than for
MP2-R12, since many terms which require multiple RIs appear in the CCSD-R12
formalism. Therefore very large basis sets were necessary for numerically accurate
results. In 2008, two independent full CCSD-F12 implementations which use auxil-
iary basis sets were described [41–43]. Even higher-order methods, up to CCSDTQ-
F12, have recently been developed [44, 45], using automatic programming tools.
All these methods include r12-dependent terms only in the doubles excitation op-
erators, and therefore they do not improve the basis set convergence of the energy
contributions of higher excitations. This problem has recently been addressed by
Köhn, who presented the first method which also improves the accuracy of the triples
energy [46].

The CCSD-R12 and CCSD-F12 methods described above are computationally up
to two orders of magnitude more expensive than the standard CCSD method. This
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is because in CCSD-F12 many terms arise that scale with the second or third power
of the size of the auxiliary basis. In order to reduce the computational effort Fliegl
et al. introduced simplified CC2(R12) [37] and CCSD(T)(R12) [47, 48] methods
(initially without an auxiliary basis set), which have more recently been extended to
CCSD(T)(F12) by Tew et al. [49, 50] using the CABS approach. In these treatments
terms that are non-linear in the amplitudes of the explicitly correlated configurations
as well as some other small contributions are neglected. Even simpler CCSD(T)-
F12 approximations, denoted CCSD(T)-F12a and CCSD(T)-F12b, were proposed
and implemented by our group [51, 52]. In these methods the only additional ef-
fort as compared to the standard CCSD(T) is an initial MP2-F12 calculation. Since
this scales as O(N5), where N is a measure of the molecular size, while CCSD(T)
scales as O(N7), the additional effort becomes negligible for larger molecules.
Many benchmark calculations [52–56] have shown that, despite the approximations,
these methods achieve virtually the same accuracy as the CCSD(T)(F12) or the
much more expensive full CCSD(T)-F12 methods. Our methods will be reviewed in
Section 21.2.2.

It should be noted that Valeev independently proposed an approximation that is
closely related to our CCSD-F12b method [57, 58]. In Valeev’s approximation the
coupling between the explicitly correlated and conventional terms is not taken into
account in the CCSD iterations as in our methods, but added a posteriori using a
perturbative approach.

The steep scaling of the computational cost with molecular size can be avoided by
local approximations [59–67], and linear cost scaling has been achieved in our group
for most single reference correlation methods [64–67]. This has made it possible to
perform local CCSD(T) calculations for much larger molecules than with the con-
ventional CCSD(T) method. For example, some enzyme reactions have been studied
using combined quantum mechanics and classical molecular mechanics (QM/MM)
methods. The QM region with up to 49 atoms was treated accurately with LCCSD(T)
using triple-zeta basis sets [68, 69]. Recently, we have demonstrated that it is possible
to include explicitly correlated terms into the LMP2 and LCCSD(T) wave functions
without much additional cost and no increase of the scaling [27, 70, 71]. Moreover,
the errors due to the local approximations are to a large extent eliminated by the
explicitly correlated terms in the wave function [70–72]. These methods will be
reviewed in Section 21.2.4.

In another contribution to this volume Tew et al. discuss explicitly correlated
coupled cluster theory from a different point of view, providing an overview of the
approximate CCSD(T)-F12 models in the current literature. They present general
expressions of the coupled cluster equations in terms of commutator expansions,
which is very elegant and compact. However, it neither shows the expressions which
actually have to be programmed, nor in detail which approximations are introduced
into the working equations. We have chosen a complementary approach and will
present the working equations explicitly. We describe the approximations made in
our CCSD(T)-F12x methods in detail and this should make it possible for other
groups to reproduce these methods exactly.
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21.2. THEORY

In this section we will summarize the theory and working equations for the MP2-
F12 and CCSD-F12 methods, as implemented in the MOLPRO quantum chemistry
program [73]. For simplicity, we will only consider the closed-shell wave functions.
The corresponding open-shell methods are also available and are described in Refs.
[29, 52]. The various orbital spaces used in our formalism with their associated in-
dices are summarized in Table 21-1. We distinguish occupied orbitals (any orbital
contained in the HF determinant), valence orbitals (correlated occupied orbitals),
virtual orbitals (unoccupied in the HF determinant), and complementary auxiliary
(CA) orbitals. The occupied and virtual molecular orbitals (MOs) are represented in
the AO basis set. The complementary auxiliary orbitals, which are orthogonal to all
MOs, are represented in the union of the AO basis and an auxiliary (RI) basis set. In
addition, we will use the indices α,β for a complete (infinitely large) orbital space.
It is assumed that this contains all the orbital spaces in Table 21-1 as subspaces and
that all orbitals are orthonormal.

Table 21-1. Orbital spaces and their indices

Occupied molecular orbitals p, q
Valence molecular orbitals i, j, k, l, m, n, o
Virtual molecular orbitals a, b, c, d
Any molecular orbitals (MO) r, s, t, u

Complementary auxiliary (CA) orbitals x, y
Any MO or CA orbitals α′,β ′
Complete space α,β

21.2.1. MP2-F12 Theory

21.2.1.1. Definition of the First Order Wave Function

The MP2-F12 first-order wave function is defined as [11]

Ψ (1) = 1

2

val
∑

ij

⎡

⎣

virt
∑

a,b

Φab
ij Tij

ab +
val
∑

k,l

Φkl
ij Tij

kl

⎤

⎦ ≡ 1

2

[

Φab
ij Tij

ab +Φkl
ij Tij

kl

]

, (21-1)

Φ
αβ
ij = ÊαiÊβjΦHF, (21-2)

Φkl
ij =

complete
∑

α,β

Φ
αβ
ij 〈αβ|Q̂12F12|kl〉 ≡ Φαβij 〈αβ|Q̂12F12|kl〉. (21-3)

In the following, summations over repeated dummy indices will always be implied,
as indicated in the above equations. Êαi = η†

αηi+η̄†
αη̄i are spin-summed one-electron

excitation operators, and F12 is the r12-dependent correlation factor,
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F12 = − 1

γ
e−γ r12 (21-4)

with γ a length-scale parameter. The projector Q̂12 keeps the explicitly correlated
terms strongly orthogonal to the Hartree–Fock (HF) reference function and orthog-
onal to the conventional singly and doubly excited configurations Φa

i and Φab
ij . In

the literature, the following alternative forms of the projector have been discussed
[16, 28]:

Ansatz 1: Q̂12 = (1− r̂1)(1− r̂2), (21-5)

Ansatz 2: Q̂12 = (1− ô1)(1− ô2), (21-6)

Ansatz 3: Q̂12 = (1− ô1)(1− ô2)− v̂1v̂2, (21-7)

where the operators ô = ∑occ
p |p〉〈p| ≡ |p〉〈p|, v̂ = ∑virt

a |a〉〈a| ≡ |a〉〈a| , and
r̂ = ô + v̂ project onto the occupied, virtual, and full orbital spaces, respectively.
Their subscripts denote the electron coordinate on which they act. Ansatz 1 turned
out to be unsatisfactory because configurations where one electron is excited to a
virtual orbital and the other into an orbital outside the MO basis are neglected. The
ansätze 2 and 3 are equivalent if no further approximations are introduced. However,
ansatz 2 leads to more complicated working equations and yields slightly different
results if certain approximations are introduced (for details see Ref. [28]). Therefore
we like to keep the distinction, even though this is not made by all authors. Our
formalism is based on ansatz 3.

In principle, the range of orbitals k, l in Eq. (21-1) is arbitrary and further specifies
the wave function ansatz. In the current work, k, l are taken to be valence orbitals
only (in open-shell cases with RHF reference functions, k, l run over all valence
spatial orbitals that are either occupied with alpha or beta spin). With this ansatz, the
optimized wave function is invariant with respect to unitary transformations among
the closed-shell or open-shell valence orbitals (e.g., orbital localization). However,
it has been found that this ansatz can lead to problems due to geminal basis set
superposition effects (GBSSE) [23]. Furthermore, when the orbitals k, l are far away
from i, j, near-singularities of the zeroth-order Hamiltonian may arise, which can lead
to serious numerical problems in larger molecules. These problems can be avoided
by using the “diagonal” (D) ansatz, in which kl is restricted to ij or ji:

Tij
kl

D= δikδjlTij + δjkδilTji. (21-8)

In most cases, this more restricted ansatz gives even more accurate results than the
full ansatz [28, 29]. However, it is not orbital invariant and is only size consistent if
localized orbitals are used. Ten-no proposed to use fixed coefficients TS

ij = 1/2 and

TT
ij = 1/4 for all singlet and triplet pairs, respectively [18, 74]. These coefficients

follow from the wave function cusp conditions [75, 76]. In the current formalism,
which does not use singlet and triplet coupling of the external electrons, this means
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Tij
kl

FIX= 3

8
δikδjl + 1

8
δjkδil. (21-9)

The fixed-amplitude ansatz avoids GBSSE as well as singularities, and is orbital
invariant and size consistent. Furthermore, it has the advantage that no amplitude
equations have to be solved for the coefficients Tij

kl. This is particularly important for
the CCSD-F12 method discussed in Section 21.2.2. Usually, the loss of accuracy by
fixing the amplitudes is negligible for valence-shell correlation. However, if inner-
shell orbitals are also correlated, the errors may be significant, since larger values of
γ are required and the fixed-amplitude method is more sensitive to the choice of γ
than the methods with optimized amplitudes.

In Eq. (21-3) the explicitly correlated configurations Φkl
ij are formally ex-

panded in the complete set of doubly excited configurations Φαβij , and the integrals

〈αβ|Q̂12F12|kl〉 can be viewed as fixed contraction coefficients. In the MP2-F12 for-
malism the summations over the complete orbital space mostly lead to exact resolu-
tions of the identity that can be removed when deriving the explicit working equa-
tions. For example, 〈kl|F12|αβ〉〈αβ|r−1

12 |ij〉 is replaced by the integral 〈kl|F12r−1
12 |ij〉.

In some less important terms, where such replacements are not possible, the auxiliary
basis set is used to approximate the summations over the complete space. This will
be discussed in more detail in Section 21.2.2.

The configurations Φαβij as defined in Eq. (21-2) are pairwise non-orthogonal.
In order to write the working equations in the most compact form, it is convenient
to define the contravariant (biorthogonal) configurations Φ̃αβij and their associated

amplitudes T̃ ij
αβ :

Φ̃
αβ
ij = 1

6

(

2Φαβij +Φβαij

)

(21-10)

T̃ ij
αβ = 2Tij

αβ − Tij
βα (21-11)

The contravariant configurations have the properties

〈Φ̃ab
ij |Φcd

kl 〉 = δikδjlδacδbd + δilδjkδadδbc, (21-12)

〈Φ̃ab
ij |Ψ (1)〉 = Tij

ab. (21-13)

21.2.1.2. Choice of the Zeroth-Order Hamiltonian

The zeroth-order Hamiltonian can be defined as [29]

Ĥ(0) = gαβ Êαβ (21-14)

ĝ = ôf̂ ô+ (1− ô)f̂ (1− ô) (21-15)
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where f̂ is the closed-shell Fock operator with matrix elements fαβ = 〈α|f̂ |β〉. Due
to Brillouin’s theorem fai = 0 if the molecular orbitals are fully optimized. We
will not assume, however, that the Fock matrix is diagonal in the occupied and/or
virtual orbital subspaces. The projected operator ĝ is introduced in order to make
the HF wave function ΦHF ≡ Ψ (0) an exact eigenfunction of Ĥ(0). This means that
contributions of fix are treated as part of the perturbation. The projection is needed in
spin-restricted open-shell cases [29], since then the orbitals are not eigenfunctions of
the Fock operator. For closed-shell wave functions this choice of Ĥ(0) leads to exactly
the same result as if f̂ is used instead of ĝ, if the amplitude equations are derived by
minimizing the Hylleraas functional. It turns out, however, that the formalism is
somewhat simpler when ĝ is used (cf. Section 21.2.1.3). Other choices of Ĥ(0) have
been discussed by Noga et al. [26].

21.2.1.3. Explicit Formulation of the MP2-F12 Amplitude Equations

The amplitudes Tij
ab and Tij

kl can be optimized by minimizing the Hylleraas functional

E2 = 〈Ψ (1)|Ĥ(0) − E(0)|Ψ (1)〉 + 2〈Ψ (1)|Ĥ|Ψ (0)〉
= T̃ ij

ab

(

Kij
ab + Rij

ab

)+ T̃ ij
kl

(

Vij
kl + Rij

kl

)

, (21-16)

where

Kij
ab = 〈Φ̃ab

ij |Ĥ|Ψ (0)〉 = 〈ab|r−1
12 |ij〉, (21-17)

Vij
kl = 〈Φ̃kl

ij |Ĥ|Ψ (0)〉 = 〈kl|F12Q̂12r−1
12 |ij〉, (21-18)

Rij
ab = Kij

ab + 〈Φ̃ab
ij |Ĥ(0) − E(0)|Ψ (1)〉, (21-19)

Rij
kl = Vij

kl + 〈Φ̃kl
ij |Ĥ(0) − E(0)|Ψ (1)〉. (21-20)

For the optimized amplitudes the residuals Rij
ab and Rij

kl must vanish. Their explicit
form is

Rij
ab = Kij

ab + facTij
cb + Tij

ac fcb

−fioToj
ab − Tio

ab foj + Tij
mnCmn

ab , (21-21)

Rij
kl = Vij

kl + Bkl,mnTij
mn

−Skl,mn
[

fioToj
mn + Tio

mn foj
]+ Ckl

abTij
ab, (21-22)

where the matrix elements are formally defined as

Bkl,mn = 〈kl|F12Q̂12ĝ12Q̂12F12|mn〉, (21-23)

Skl,mn = 〈kl|F12Q̂12F12|mn〉 , (21-24)

Ckl
ab = 〈kl|F12Q̂12 f̂12|ab〉. (21-25)
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Here and in the following, we use the notation f̂12 = f̂1 + f̂2 and ĝ12 = ĝ1 + ĝ2.
Note that in previous papers 〈kl|F12Q̂12F12|mn〉 was denoted Xkl,mn, but since we
will need the symbol X later in the context of coupled-cluster theory we changed the
notation. Using the additional definition

Akl,mn = 〈kl|F12ĝ12Q̂12F12|mn〉 (21-26)

the matrix Bkl,mn can be rewritten as

Bkl,mn = 1

2

(

Akl,mn + Amn,kl − Fkl
abCmn

ab − Ckl
abFmn

ab

)

. (21-27)

It should be noted that due to the use of the projected Fock operator in Eq. (21-15)
the matrix elements Zkl,mn in Eqs. (31) and (33) of Ref. [28] are zero. In the present
formulation, this contribution is contained in Akl,mn and does not require any addi-
tional computational effort. Furthermore, the GBC (generalized Brillouin condition,
i.e. fix = 0) approximation is not needed.

Up to this point no approximations beyond the wave function ansatz and the
second-order Møller–Plesset treatment have been made. The difficulty is to compute
the matrix elements explicitly, because the one-electron projectors in Eq. (21-7) lead
to 3- and 4-electron integrals, e.g.

〈ij|r−1
12 ô1F12|kl〉 = 〈ijp|r−1

12 F23|plk〉. (21-28)

As first proposed by Kutzelnigg [5], the many-electron integrals can be avoided by
inserting (approximate) resolutions of the identity (RIs) û into the projector Q̂12:

Q̂12 = 1− ô1 − ô2 + ô1ô2 − v̂1v̂2 (21-29)

≈ 1− ô1û2 − û1ô2 + ô1ô2 − v̂1v̂2, (21-30)

û = |α′〉〈α′|. (21-31)

The many-electron integrals then factorize into sums of products of 2-electron inte-
grals, e.g.,

〈ij|r−1
12 ô1û2F12|kl〉 ≈ 〈ij|r−1

12 |pα′〉〈pα′|F12|kl〉. (21-32)

In practice, the RIs are approximated using the union of the orbital basis and an
auxiliary basis set. The operator û can then be written as a sum of a contribution
|r〉〈r| from the orbital basis, and a remainder |x〉〈x|, where x are orthonormal com-
plementary auxiliary (CA) orbitals which are orthogonal to the MO basis, 〈r|x〉 = 0
for all x, r (CABS approach [17]):

û = |r〉〈r| + |x〉〈x|. (21-33)
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Writing the projector as Q̂12 = 1− P̂12 it follows

P̂12 = |rs〉〈rs| + |px〉〈px| + |xp〉〈xp|. (21-34)

In the following, we will use the short-hand notation

P̂12 = |αβ〉Pαβ〈αβ|, (21-35)

where Prs = Ppx = Pxp = 1, and all other elements Pαβ are zero. This definition
implies that the orbitals α, β are contained in the MO or CA basis, and therefore the
primes on α or β have been omitted.

The advantage of the CABS approach is not only that the accuracy of the RI is
improved, but also that it leads to simpler equations since various terms cancel. If
the auxiliary basis set alone were used to represent the RI, these cancellations would
only be approximate, leading to spurious contributions. Furthermore, 1 − |rs〉〈rs| is
the dominant contribution in the projector, and the contributions of the CA orbitals in
the last two terms of Eq. (21-34) are only rather small corrections. As will be shown
later, these can be neglected in some terms without significant loss of accuracy.

The evaluation of the matrix elements Vij
kl and Skl,mn is now straightforward and

does not require further approximations:

Vij
kl = KF

ij,kl − Kij
αβPαβFkl

αβ , (21-36)

Skl,mn = F2
kl,mn − Fkl

αβPαβFmn
αβ , (21-37)

where the integrals are defined as

Kij
αβ = 〈αβ|r−1

12 |ij〉, (21-38)

Fkl
αβ = 〈αβ|F12|kl〉, (21-39)

KF
ij,kl = 〈ij|r−1

12 F12|kl〉, (21-40)

F2
kl,mn = 〈kl |F12F12|mn〉. (21-41)

These integrals can be evaluated analytically or using density fitting approximations
[27, 31].

The matrix elements which contain the Fock operator are more difficult, since
integrals over the product of f̂12F12 cannot be computed analytically. There are
different possibilities to solve this problem. One way (approximation C, proposed
by Kedžuch et al. [77] ) is to straightforwardly use RIs to factorize most of these
products. For example, for the matrix elements Ckl

ab this leads to

Ckl
ab = faxFkl

xb + Fkl
ax fxb. (21-42)
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Alternatively, Kutzelnigg and Klopper [8, 16] have used commutator expressions
to reformulate the matrix elements such that the RI is only needed to factorize the
smaller products k̂12F12, where k̂ is the exchange operator (approximation B). Since
no products with the kinetic energy operator arise, RI approximations for k̂12F12
should converge faster than for f̂12F12. However, approximation B leads to more
complicated expressions (for details, see Ref. [28]), and an additional price one has
to pay is the evaluation of integrals over the commutator [F12, t̂12], which are quite
expensive (t̂12 = t̂1 + t̂2 is the kinetic energy operator). Many tests have shown that
in practice there is no significant improvement of the accuracy by using approxi-
mation B, provided appropriate RI basis sets are used. Therefore approximation B
has mainly historical value and is hardly used any more. We note that there is also
an approximation A [16], which is obtained from approximation B by neglecting
the exchange operator entirely. Nevertheless, due to the need for the expensive com-
mutator integrals, calculations with approximation A are still more expensive than
with approximation C (at least with our program). Approximation A turned out to be
useful, however, when local approximations are introduced. We will come back to
this in Section 21.2.4.

All that remains is to evaluate the matrix elements Akl,mn. Here we will use ap-
proximation C. Apart from the replacement of r12 by F12 our formulation is ex-
actly equivalent to the one in Ref. [77], but the derivation is different and the final
working expressions are much simpler. The commutator trick is used only in one
place to avoid slowly convergent double RIs when evaluating the matrix elements
〈kl|F12(ĝ1 + ĝ2)F12|mn〉. For this we define

ĝ = t̂ + v̂+ 2ĵ− n̂ ≡ ĥ− n̂, (21-43)

n̂ = k̂ − (2ôf̂ ô− ôf̂ − f̂ ô). (21-44)

where t̂, v̂, ĵ, and k̂ are the kinetic energy, external potential, Coulomb, and exchange
contributions to the Fock operator. Since v̂+ 2ĵ commutes with F12 we can write:

F12ĝ12Q̂12F12 = ÛF
12 − F12ĥ12P̂12F12 + ĥ12F2

12 − Ŷ12, (21-45)

ÛF
12 = [F12, t̂12]F12, (21-46)

Ŷ12 = F12n̂12Q̂12F12. (21-47)

Defining the intermediate orbitals

|ᾱ〉 = ĥ|α〉 ≈ |β〉hβα , (21-48)

|̃α〉 = n̂|α〉 ≈ |β〉nβα , (21-49)
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one obtains

Akl,mn = UF
kl,mn −

(

Fkl
ᾱβ + Fkl

αβ̄

)

PαβFmn
αβ + F2

k̄l,mn
+ F2

kl̄,mn
− Ykl,mn, (21-50)

UF
kl,mn = 〈kl|ÛF

12|mn〉, (21-51)

Ykl,mn = 〈kl|Ŷ12|mn〉
≈ (

Fkl
x̃a + Fkl

xã

)

Fmn
xa +

(

Fkl
ãx + Fkl

ax̃

)

Fmn
ax +

(

Fkl
x̃y + Fkl

xỹ

)

Fmn
xy . (21-52)

The most expensive part is the evaluation of the matrix Ykl,mn. The computational
effort to evaluate this matrix grows as O(

N4
o N2

x

)

, where No and Nx are the number of
valence and CA orbitals, respectively. If the diagonal approximation [cf. Eq. (21-8)]
is used, the scaling reduces to O (

N2
o N2

x

)

. Further reductions of the computational
effort can be achieved by using so called hybrid approximations [28] that either ne-
glect the matrix elements Ykl,mn entirely (HY1 approximation), or only the last term
(HY2 approximation). The HY1 approximation is closely related (but not identical)
to the hybrid approximation proposed earlier by Klopper [78]. It should be noted
that even with the HY1 approximation integrals with two indices in the RI basis are
needed in order to compute quantities like Fkl

m̄x. Nevertheless, the savings achieved
by this approximation are significant.

21.2.1.4. Solving the MP2-F12 Equations

The F12 amplitude equations Rij
kl = 0 [cf. Eq. (21-22)] can be solved iteratively by

using the amplitude update formula

ΔTij = −[B− (fii + fjj)S
]−1Rij. (21-53)

In this expression, the F12 intermediates Skl,mn and Bkl,mn are regarded as matrices
with the combined (kl) labels as row index and (mn) as column indices, and the
vectors Tij and Rij correspond to Tij

kl and Rij
kl, respectively.

Exactly evaluating the inverse matrices
[

B− (fii + fjj)S
]−1 for each ij pair is a

process with an unfavorable O (

N8
o

)

scaling, where No is the number of correlated
orbitals. However, the term can be estimated efficiently by using approximate spec-
tral decompositions of both S and B in terms of a common eigensystem Q = (qp):

S ≈
∑

p

sp qpqT
p , (21-54)

B ≈
∑

p

bp qpqT
p . (21-55)

With this approximation, Eq. (21-53) turns into

ΔTij = −
∑

p

qp
1

bp − (fii + fjj)sp
qT

p Rij, (21-56)
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which can be evaluated completely in terms of matrix multiplications (O (

N6
o

)

) and
scalar-vector multiplication (O (

N4
o

)

). The eigensystem of S + B works well for
representing both S and B at the same time. The expansion coefficients bp and sb

are then given by the diagonal elements of QTBQ and QTSQ, respectively. In prac-
tical calculations this update scheme works nearly as well as when using exact pair
specific matrix inversions, even if core orbitals are correlated (i.e., if large diagonal
elements fii and fjj occur).

In general, the conventional amplitude equations Rij
ab = 0 [cf. Eq. (21-21)] also

need to be solved iteratively due to the coupling to the F12 amplitudes. This can
be done in the standard way (e.g., Ref. [79]). It is recommendable to solve the F12
amplitude equations (21-22) exactly in micro-iterations for each conventional macro-
iteration. However, when fixed F12 amplitudes and canonical orbitals are used, or
when EBC (extended Brillouin condition, i.e. neglect of the coupling matrices Ckl

ab)
is employed, a non-iterative closed form solution of the coupled MP2-F12 equations
is also possible.

21.2.2. Explicitly Correlated Coupled Cluster Methods

In this section we will first summarize the general CCSD-F12 theory and then de-
scribe our CCSD-F12a and CCSD-F12b approximations [51]. As for MP2, the dis-
cussion will be restricted to the closed-shell case. An open-shell implementation is
also available and described in Ref. [52].

The CCSD-F12 wave function is defined as

ΨCCSD-F12 = exp (T̂1 + T̂2)|ΦHF〉, (21-57)

where T̂1 and T̂2 are one and two particle excitation operators:

T̂1 = tiaÊai, (21-58)

T̂2 = 1

2

[

Tij
abÊaiÊbj + T ij

αβ ÊαiÊβj

]

, (21-59)

with

T ij
αβ = 〈αβ|Q̂12F12|kl〉Tij

kl. (21-60)

The operator T̂1 and the first part of T̂2 are the same as in the standard CCSD. Note
that there are no single excitations into the CA orbitals, i.e., tix = 0. The second term
in Eq. (21-59) adds the explicitly correlated contributions, in the same way as in the
first-order wave function in MP2-F12. For the further discussion it is useful to unify
the two terms and to write T̂2 as

T̂2 = 1

2
U ij
αβ ÊαiÊβj, (21-61)
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U ij
αβ = δαaδβbTij

ab + T ij
αβ . (21-62)

Here U ij
αβ are generalized amplitude matrices defined in the complete orthonormal

orbital space. They are zero if either α or β or both correspond to an occupied orbital.
In the following, we will use the fixed amplitude ansatz, i.e., the amplitudes Tij

kl are
determined by Eq. (21-9), and therefore no extra amplitude equations need to be
solved for them.

21.2.2.1. General Formulation of the full CCSD-F12 Amplitude Equations

The singles and doubles amplitudes tia and Tij
ab are determined by the conditions ri

a =
0 and Rij

ab = 0, where ri
a and Rij

ab are the CCSD-F12 singles and doubles residuals
obtained by projecting the Schrödinger equation from the left with the contravariant
configurations Φ̃ ij

ab [cf. Eq. (21-10)] and Φ̃a
i = 1

2 ÊaiΦHF:

r̃i
a = 〈Φ̃a

i |Ĥ − E|ΨCCSD-F12〉, (21-63)

R̃ij
ab = 〈Φ̃ab

ij |Ĥ − E|ΨCCSD-F12〉. (21-64)

If the explicit form of these residuals is derived, the energy dependent terms cancel
out. The resulting equations for CCSD were presented in Ref. [79]; they form the
basis for the original CCSD implementation in MOLPRO.

Alternatively, as preferred by many authors, one can use the similarity trans-
formed Hamiltonian (T̂ = T̂1 + T̂2)

ri
a = 〈Φ̃a

i |e−T̂ ĤeT̂ |ΦHF〉, (21-65)

Rij
ab = 〈Φ̃ab

ij |e−T̂ ĤeT̂ |ΦHF〉. (21-66)

It is straightforward to show that ri
a = r̃i

a and

Rij
ab = R̃ij

ab − tiar̃j
b − r̃i

atjb. (21-67)

Since for the optimized amplitudes the last two terms in the latter expression van-
ish, the solutions of the amplitude equations Rij

ab = 0 or R̃ij
ab = 0 are the same,

as long as no further approximations are introduced. Computationally there is no
significant advantage of using one or the other form, and also convergence of the
iterative solution of the amplitude equations is virtually the same. It should be noted,
however, that there is a difference if local approximations are introduced. In this case
the singles residuals r̃i

a vanish only in the orbital domain [i], and since this is smaller
than the pair domain [ij] the optimized LCCSD energies are slightly different if either
Eqs. (21-64) or (21-66) are used. Therefore, and also in order to be consistent with
the formulation of most other authors, we will in the following only use Rij

ab [Eq.
(21-66)] (this is also the current default in MOLPRO).
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The most compact and computationally efficient form of the CCSD equations
is based on the matrix/tensor formulation as first introduced by Meyer in the self-
consistent electron pair (SCEP) theory [80, 81] (which corresponds to CISD). The
corresponding tensor expressions for CCSD, QCISD (quadratic configuration inter-
action), and BCCD (Brueckner coupled cluster doubles) were given in Ref. [79] us-
ing Eq. (21-64). Here we will use a similar matrix formulation based on Eq. (21-66).

In order to keep the presentation most compact, we will absorb all contributions
of single excitations into the integrals, using “dressed” orbitals

|r̃〉 = |r〉 + |c〉trc, (21-68)

|s̄〉 = |s〉 − |k〉tks , (21-69)

where it is assumed that tac = 0 and tki = 0, i.e., |ã〉 = |a〉 and |ī〉 = |i〉. Furthermore,
the singles amplitudes tαβ are assumed to be zero if either α or β corresponds to a
CA orbital. Note that the dressed orbitals |r̃〉 and |s̄〉 are unrelated to the intermediate
orbitals |α̃〉 and |ᾱ〉 in Eqs. (21-49) and (21-48).

Using dressed integrals corresponds to employing a similarity transformed Hamil-
tonian H̄ = e−T̂1 ĤeT̂1 and writing the residuals as

ri
a = 〈Φ̃a

i |e−T̂2 H̄eT̂2 |ΦHF〉, (21-70)

Rij
ab = 〈Φ̃ab

ij |e−T̂2H̄eT̂2 |ΦHF〉. (21-71)

For the sake of simplicity in the following expressions, we define dressed integrals
and a dressed Fock matrix

K̄rs
tu = 〈t̄ū|r−1

12 |r̃s̃〉, (21-72)

f̄rs = hr̄s̃ + 2〈r̄k̄|r−1
12 |s̃k̃〉 − 〈k̄r̄|r−1

12 |s̃k̃〉. (21-73)

Furthermore, to preserve the matrix structure of the equations, it is convenient to
define integral matrices and vectors

[

Kkl]

αβ
= 〈αβ|r−1

12 |kl〉, (21-74)
[

Lkl]

αβ
= 2Kkl

αβ − Klk
αβ , (21-75)

[

K̂kl]

αb = 〈αb̄|r−1
12 |k l̃〉, (21-76)

[

Ĵkl]

αb = 〈kα|r−1
12 |l̃ b̄〉, (21-77)

[

l̄kli]

α
= 2〈kl|r−1

12 |αĩ〉 − 〈lk|r−1
12 |αĩ〉, (21-78)

as well as amplitude matrices

[

Uij]

αβ
= U ij

αβ , (21-79)
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[

Ũij]

αβ
= 2U ij

αβ − U ji
αβ . (21-80)

The CCSD-F12 residuals are obtained from the standard CCSD ones by replacing
the amplitudes Tij

ab by the generalized amplitudes U ij
αβ . This yields

ri
a = f̄ai + Ũ ik

aβ f̄kβ + Kαβāk Ũ ik
αβ − Ukl

aβ l̄lki
β , (21-81)

Rij
ab = K̄ij

ab + K̄αβab U ij
αβ + αij,klT

kl
ab + Gij

ab + Gji
ba, (21-82)

where the intermediates are defined as

αij,kl = K̄ij
kl + Kαβkl U ij

αβ , (21-83)

βki = f̄ki + Kαβkl Ũ il
αβ , (21-84)

X = f̄† − LklUlk, (21-85)

Ykj = K̂kj − 1

2
Ĵkj + 1

4
LklŨlj, (21-86)

Zkj = Ĵkj − 1

2
KlkUjl, (21-87)

Gij = UijX+ ŨikYkj − 1

2
UkiZkj − (UkiZkj)† − Tikβkj. (21-88)

In the matrix multiplications with Uij the summations run formally over the complete
virtual space (occupied orbitals do not contribute due to the strong orthogonality
projector), e.g.,

[

UijX
]

ab = Uij
aγXγ b. (21-89)

When substituting the definition of U ij
αβ [cf. Eq. (21-62)] into these expressions we

can distinguish two types of terms:

Type 1: The exact resolution of the identity |αβ〉〈αβ| arising from the unity operator
in Q̂12 can be eliminated. This is only possible for the trace-like terms

Kαβrs U ij
αβ = [K(Tij)]rs + V̄ij

rs, (21-90)

where

[K(Tij)]rs = 〈rs|r−1
12 |cd〉Tij

cd, (21-91)

V̄ij
rs = 〈rs|r−1

12 Q̂12F12|kl〉Tij
kl. (21-92)
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The contributions V̄ij
rs can be evaluated as

V̄ij
rs = W̄ij

rs − Krs
αβPαβ F̄ij

αβ , (21-93)

where

F̄ij
αβ = 〈αβ|F12|kl〉Tij

kl, (21-94)

W̄ij
rs = 〈rs|r−1

12 F12|kl〉Tij
kl. (21-95)

They occur in Eq. (21-81) for rs = ak (contributions of integrals over 3 external or-
bitals), in Eq. (21-82) for rs = ab (contributions of integrals over 4 external orbitals),
and in Eqs. (21-83) and (21-84) for rs = kl (contributions of integrals over 2 external
orbitals). Defining

T̄ ij
rs = δrcδsdTij

cd − F̄ij
rs (21-96)

one can write Eq. (21-90) as

Kαβrs U ij
αβ = [W̄ij +K(T̄ij)]rs

−〈rs|r−1
12 |px〉F̄ij

px − 〈rs|r−1
12 |xp〉F̄ij

xp. (21-97)

The external exchange operators K(T̄ij) can be computed directly from the two-
electron integrals in the AO basis by first transforming the amplitudes into the AO
basis:

T̄ ij
ρσ = CρcTij

cdCσd − CρrF̄ij
rsCσ s, (21-98)

then contracting these with the integrals, and finally transforming the resulting ma-
trices back into the MO basis:

[K(T̄ij)]μν = 〈μν|r−1
12 |ρσ 〉T̄ ij

ρσ , (21-99)

[K(T̄ij)]rs = Cμr[K(T̄ij)]μνCνs. (21-100)

The transformation of the matrices F̄ij
rs into the AO basis [cf. Eq. (21-98)] can be

carried out before the CCSD-F12 iterations and is therefore required only once. The
same holds for the last two terms of Eq. (21-97). These terms can be efficiently
evaluated using density fitting approximations (for details see Ref. [52]). Even more
efficient is to neglect the terms involving the CA orbitals entirely. As will be dis-
cussed in Section 21.2.2.3, this is an excellent approximation. The effort for the
remaining first term in Eq. (21-97), which needs to be computed in each iteration, is
then virtually the same as in standard CCSD.
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Type 2: These are all contributions where only one index of Uij matches an integral
label, i.e., all cases where Uij occurs in a matrix product. In these terms the unit
operator in Q̂12 cannot be treated exactly as for type 1, but must be approximated by
a double RI, yielding

Q̂12 = |ax〉〈ax| + |xa〉〈xa| + |xy〉〈xy|. (21-101)

For example, this leads to contributions like

[

UikJkj]

ab = Tik
acJkj

cb + F̄ik
axJkj

xb, (21-102)
[

UikKklUlj]

ab = Tik
acKkl

cdTlj
db + F̄ik

axKkl
xyF̄lj

yb

+F̄ik
axKkl

xdTlj
db + Tik

acKkl
cxF̄lj

xb. (21-103)

Hence, the first index of the intermediates X, Ykj and Zkj must run over the virtual
and CA spaces. For the dominant terms this leads to an overall computational cost
of N3

o

(

4N3
v + 6N2

v Nx + 4NvN2
x

)

. Thus, the computational effort scales quadratically
in the size of the CA basis. Assuming that Nx ≈ 3Nv it follows that the evaluation
of these terms in CCSD-F12 is about one order of magnitude more expensive than
in standard CCSD. However, as will be shown in Section 21.2.2.3, it is an excel-
lent approximation to neglect all type 2 contributions of the CA orbitals, and then
the overall effort for the CCSD-F12 residual is virtually the same as for standard
CCSD.

Even though the above formulation of the CCSD-F12 amplitude equations in
terms of dressed integrals is very simple and compact, it should be noted that it
is not the computationally most efficient one. This is because the rather numerous
dressed integrals have to be recomputed and stored in each iteration. The integral
transformation scales with O (

NoN4
AO

)

, where No is the number of occupied (corre-
lated) orbitals, and NAO is the number of basis functions. On the other hand, the ad-
ditional terms arising in the explicit treatment of the singles take very little time and
scale at most with O (

N3
v N2

o

)

(Nv being the number of virtual orbitals). One might
argue that integrals over three virtual and one occupied orbitals (3-external integrals)
are not needed if dressed integrals are used, but these integrals are required for the
perturbative triples (T) correction anyway, and therefore there is no overall saving.
The generation and storage of transformed 4-external integrals can be avoided in
both cases by computing these contributions directly from the two-electron integrals
in the AO basis as explained above. The expanded form of the CCSD residuals, as
implemented in MOLPRO, is given in the Appendix [note that the matrices Gij in
the appendix [Eq. (21-144)] are not identical to the ones in Eq. (21-88), since some
singles terms in Eq. (21-144) are included in the dressed integrals in the first two
terms of Eq. (21-82)].
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21.2.2.2. The CCSD(T)-F12 Energy Expression

Assuming that fully optimized HF orbitals and fully optimized amplitudes Tij
ab and

Tij
kl are used, the CCSD-F12 correlation energy expression simply reads

ECCSD-F12 = D̃ij
abKij

ab + T̃ ij
klV

ij
kl. (21-104)

Here and in the following, we employ composite amplitude matrices Dij
ab, which are

defined as

Dij
rs = δrcδsd

(

Tij
cd + tict j

d

)+ δrit
j
s + δsjt

i
r, (21-105)

D̃ij
rs = 2Dij

rs − Dji
rs. (21-106)

For fixed amplitudes Tij
kl, however, Eq. (21-104) should not be used, since it depends

in first order on the deviations of the amplitudes from their fully optimized values. It
is then necessary to use an energy functional that depends only quadratically on the
deviations of the Tij

kl from the fully optimized values. This can be achieved by adding
to Eq. (21-104) a contribution

ΔECCSD-F12 = Λij
kl〈kl |F12Q̂12|αβ〉Rij

αβ , (21-107)

where Λij
kl is a vector of Lagrange multipliers (the so-called Λ-vector or Z-vector),

and Rij
αβ is the CCSD-F12 doubles residual in the complete orbital basis. To a good

approximation one can assume Λij
kl = 2Tij

kl − Tji
kl. This is exactly true for MP2-F12

or variational approaches like CI or coupled pair functional (CPF). The correlation
energy can then be written as

ECCSD-F12 = D̃ij
abKij

ab + T̃ ij
kl

(

Vij
kl + Rij

kl

)+ D̃ij
rsV̄

ij
rs + S̄ij,klγij,kl

+T̃ ij
mnHmn,opTij

op + 2F̃ij
xaV̄ij

xktka

+2
(

F̃ij
axḠij

ax + F̃ij
xaḠij

xa + F̃ij
xyḠij

xy

)

, (21-108)

where Rij
kl is the MP2-F12 residual given in Eq. (21-22) but evaluated with CCSD-

F12 amplitudes, and

F̃ij
αβ = 2F̄ij

αβ − F̄ji
αβ , (21-109)

Hmn,op = 〈mn|F12Q̂12r−1
12 Q̂12F12|op〉, (21-110)

γij,kl = αij,kl − δik(βlj − flj)− δjl(βki − fki), (21-111)

S̄ij,kl = T̃ ij
mnSmn,opTkl

op, (21-112)
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Ḡij = Uij(X− f)−
∑

k

[K(Dij)(k) + kijk]tk†

+
∑

k

[

ŨikYkj − 1

2
UkiZkj − (UkiZkj)†

]

. (21-113)

The intermediates αij,kl, βki, X, Ykj, and Zkj are defined in Eqs. (21-83), (21-84),
(21-85), (21-86) and (21-87). The Fock matrix contributions are subtracted from X
and βki since these are included in the MP2-F12 residuals Rij

kl. Again, there are type

1 and type 2 contributions. The type 1 contributions occur in Rij
kl, V̄ij

rs, Smn,op, and
Hmn,op (here m, n, o, p run over the valence space only). The contribution of Hmn,op

to the energy takes the explicit form

T̃ ij
mnHmn,opTij

op = T̃ ij
mn〈mn|F12r−1

12 F12|op〉Tij
op

−F̃ij
αβPαβ

(

V̄ij
αβ + W̄ij

αβ

)

. (21-114)

The quantities V̄ij
αβ and W̄ij

αβ are defined in analogy to Eqs. (21-92) and (21-95),
respectively.

However, all contributions of the matrices Ḡij
αβ can only be evaluated in the type

2 way using multiple RIs and by approximating the amplitude matrices Uij as Uij
ab =

Tij
ab, Uij

ax = F̄ij
ax, Uij

xa = F̄ij
xa, and Uij

xy = F̄ij
xy. This requires large auxiliary basis sets

and leads to O (

N3
x

)

scaling of the computational cost. In fact, if one adds the blocks

Ḡij
ab, which are needed for the CCSD-F12 doubles residual, the evaluation of the Ḡij

matrices proceeds exactly as in a standard CCSD calculation but using the combined
virtual and CA orbital basis, and the total effort is approximately proportional to
4N3

o (Nv+Nx)3. If the amplitudes Tij
kl were not fixed but fully optimized in the CCSD-

F12, similar quantities would be required in each iteration. Thus, the computational
effort would be about two orders of magnitude larger than in CCSD, even in a most
efficient implementation which makes fully use of the simple matrix structure of the
equations.

A (T) perturbative energy correction for triple excitations can be added in the
standard way, using the CCSD-F12 amplitudes. This correction is not explicitly cor-
related, and therefore the F12 treatment does not reduce the basis set incompleteness
error of the triples energy (there is a small indirect effect by the singles and doubles
amplitudes, which are affected by the coupling terms in the CCSD-F12x equations).
A proper treatment of explicitly correlated (T) corrections, as recently proposed by
Köhn[46], is complicated but may be considered at a later time. For the time being,
we optionally correct for the basis set error of the triples approximately by scaling
the triples energy as [52, 56]

ΔE(T∗) = ΔE(T)
EMP2-F12

corr

EMP2
corr

. (21-115)
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This assumes that the relative basis set error is similar for the MP2 and (T) correlation
energy contributions. The methods with scaled triples contribution are denoted by a
star on the T, e.g., CCSD(T∗)-F12.

21.2.2.3. The CCSD-F12x Approximations

The quadratic or cubic dependence of the computational effort on the size of the
CA basis can be avoided by neglecting most type 2 contributions in the CCSD-F12
residuals and in the energy expression. The only exceptions are the type 2 terms in
the MP2-F12 residuals, which also contribute to the CCSD-F12 residuals. By default,
the contribution of the CA orbitals is also neglected in Eqs. (21-93) and (21-97) (but
these contributions can be included optionally). The matrix V̄ij

rs in Eq. (21-93) then
takes the form

V̄ij = W̄ij −K(F̄ij). (21-116)

The approximations CCSD-F12a and CCSD-F12b only differ in approximations in
the energy expression:

ECCSD-F12a = D̃ij
abKij

ab + T̃ ij
kl

(

Vij
kl + Rij

kl

)

, (21-117)

ECCSD-F12b = ECCSD-F12a + D̃ij
rsV̄

ij
rs, (21-118)

where again Rij
kl is the MP2-F12 residual defined in Eq. (21-22) evaluated with

CCSD-F12 amplitudes. All further terms in Eq. (21-108) are neglected. The com-
putational effort for these approximations is essentially that of a standard CCSD
plus an MP2-F12 calculation (in addition to the MP2-F12, one needs to evaluate the
matrix elements V̄ij

rs; these can be easily obtained from the half transformed integrals
Vij
μν that are also computed at an intermediate stage in MP2-F12). Since the effort of

MP2-F12 scales only with O(N5) while CCSD(T) scales with O(N7), the additional
time for the MP2-F12 becomes negligible in CCSD(T)-F12x calculations for larger
molecules.

Extensive benchmarks have shown that CCSD-F12a somewhat overestimates the
exact CCSD-F12 correlation energy, and this leads to a favorable and systematic
error compensation when small (double or triple zeta) basis sets are used. The CCSD-
F12b energy expression is closer to the exact CCSD-F12 but slightly underestimates
it. CCSD-F12b is recommended for large basis sets (quadruple-zeta or larger). In
most cases, however, relative energies computed with both approximations are of
rather similar accuracy.

21.2.3. Perturbative CABS Singles Correction

In MP2-F12 and CCSD-F12 calculations the basis set errors of the Hartree–Fock
energy are often much larger than the errors of the correlation energy. The error
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of the HF contribution can be much reduced by including single excitations into
the complementary auxiliary (CA) orbital space and by computing the second-order
energy contribution perturbatively[29, 51]. For closed-shell cases the CABS singles
amplitudes are obtained by solving

0 = f i
α′ + fα′β ′ t

i
β ′ − fiktkα′ , (21-119)

where fα′β ′ are the matrix elements of the closed-shell Fock operator and the indices
α′,β ′ run over the virtual and CA orbitals. This equation can easily be solved by
block diagonalizing the Fock matrix in the occupied and virtual+CA spaces. Note
that the standard virtual orbitals need to be included, since the couplings fxa are
non-zero. The energy correction is then computed as

ΔEs = 2tiα′ f
i
α′ . (21-120)

A spin-free extension for high-spin open-shell cases has been discussed in Ref. [29].
We consider the CABS singles correction as a correction to the HF energy and

not as a correlation effect. The Fock matrix elements fα′β ′ and fα′i are needed in
MP2-F12 calculations anyway and therefore the additional effort for this correction
is negligible. It should be noted that this energy correction is entirely distinct from
the CCSD-F12 calculations, and the singles amplitudes tiβ used here are not the same
as those in the CCSD-F12.

Noga et al. [26] have proposed another way to include singles in the MP2-F12
method. This is different and more complex than our simple approach. One could
also include the CABS singles in the CCSD-F12 equations. However, this would
require many additional integrals and cause a large additional cost, at least within the
F12x framework. The effect would probably be small and not worth the additional
effort.

21.2.4. Explicitly Correlated Local Methods

Local correlation methods [59, 62, 63] exploit the short range character of dynamic
electron correlation through the use of localized orbital basis sets. In the current
work the correlated (valence) Hartree–Fock orbitals (LMOs) are localized using the
Pipek–Mezey scheme [82], but Foster–Boys localization or natural localized orbitals
(NLMOs) can also be employed in our program [83]. The choice of the localization
method usually has only a small effect on the results. Pipek–Mezey localization has
the advantage that σ − π separation is kept in planar or linear molecules, and that
analytical energy gradients can be computed [84, 85]. A disadvantage is that some-
times poor localization is achieved if diffuse basis sets are used. This can be cured by
removing the diffuse functions from the localization criterion, or by using NLMOs,
which are more stable with respect to variations of the basis set [83].

Since the orthogonal virtual orbitals cannot be well localized, projected atomic
orbitals (PAOs) are used to span the virtual space
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|μ̃〉 ≡ |φ̃PAO
μ 〉 =

∑

a

|a〉〈a|χAO
μ 〉, (21-121)

where |χAO
μ 〉 are atomic orbitals. Note that in the current section we use tilde to

indicate quantities in the PAO basis. This is entirely distinct from the intermediate
orbitals or the dressed orbitals used earlier. The AOs can either be individual basis
functions, or atomic orbitals that are represented by a linear combination of basis
functions at one atom. In the current work, we use correlation consistent basis sets,
and the functions |χAO

μ 〉 either correspond to atomic valence orbitals or to correla-
tion/polarization functions. PAOs resulting from atomic core orbitals are omitted,
since they have a very small norm. The PAOs are orthogonal to all occupied or-
bitals, but non-orthogonal among themselves. Since there are more AOs than virtual
orbitals, the PAOs form a redundant set with Nv linearly independent vectors.

The use of local orbital spaces makes it possible to introduce two kinds of approx-
imations: first, the conventional double excitations are restricted to pair domains [ij],
which are spanned by subsets of PAOs that are spatially close to the LMOs from
which the electrons are excited (domain approximation). The pair domain [ij] is de-
fined as the union of orbital domains [i] and [j]. The orbital domain [i] includes all
PAOs located at a subset of atoms that is associated to the LMO i. Automatic pro-
cedures to select the subsets of atoms that are associated to an orbital domain have
been proposed by Boughton and Pulay (BP) [86] and Mata and Werner [83]. The
latter method is based on natural population analysis (NPA) and has the advantage
of being much more stable with respect to changes of the basis set. However, the
calculations presented in the present paper were still carried out with the older BP
method. Details of this method, as implemented in MOLPRO, can be found in Refs.
[63, 87].

Secondly, one can introduce a hierarchy of pair classes, dependent on the distance
of the LMOs i and j (pair approximation). Correlation effects between very distant
pairs are small, and their contribution to the energy can be neglected. On the other
hand, strong pairs, in which the orbitals i and j share at least one atom, usually
contribute more than 90% of the correlation energy. In many cases it is sufficient to
treat only these strong pairs at the highest level, e.g., LCCSD(T), and the remaining
ones by LMP2.

For what follows it is convenient to define orthonormalized functions ã, b̃ span-
ning the domain [ij], and these are obtained from the PAOs μ̃ by transformations

|ã〉 =
∑

μ̃∈[ij]

|μ̃〉W(ij)
μ̃ã . (21-122)

Thus, the orbitals |ã〉 are pair-specific and should in principle be indexed with the
pair label ij. However, since it is always obvious to which domain they belong, we
will omit this index. The transformation matrices W(ij)

μ̃ã are obtained by solving the
projected Fock equations
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f̃ (ij)W(ij) = S̃(ij)W(ij)e(ij), (21-123)

where f̃ (ij) and S̃(ij) are the Fock and overlap matrices, respectively in the basis of the
PAOs of the domain [ij], and e(ij) is a diagonal matrix holding the orbital energies.
Due to the fact that the PAO basis is redundant, the overlap matrix S̃(ij) may have
zero or very small eigenvalues. These are removed using singular value decomposi-
tion. Thus, the resulting transformation matrices W(ij)

μ̃ã may be rectangular with fewer
columns (ã) than rows (μ̃).

Naturally, the restriction of the excitations to domains leads to a reduction of the
computed correlation energy. This is called the domain error and in conventional lo-
cal correlation calculations amounts to 1–2% of the correlation energy. Even though
this relative error is rather small, its absolute value is significant and can cause non-
negligible errors when energy differences are computed. In the following it will be
shown that these errors are much reduced in explicitly correlated local correlation
methods [70–72].

21.2.4.1. LMP2-F12

The LMP2-F12 wave function is defined as

ΨLMP2-F12 = (1+ T̂2)ΦHF, (21-124)

where T̂2 is defined as

T̂2 = 1

2

⎡

⎣

∑

ij∈Pd

∑

ã,b̃∈[ij]

Tij

ãb̃
ÊãiÊb̃j +

∑

ij∈Pc

∑

α,β

T ij
αβ ÊαiÊβj

⎤

⎦ , (21-125)

with

T ij
αβ =

∑

k,l

〈αβ|Q̂ij
12F̂12|kl〉Tij

kl. (21-126)

As compared to the standard MP2-F12 ansatz the following approximations are
introduced:

(i) Orbital pairs ij where the LMOs i and j are very distant are neglected (pair
approximation). This is indicated by the lists Pd and Pc. Pd is the list of all
pairs that are included in the conventional LMP2 (strong, close, weak and
distant pairs [63, 67]). The list of explicitly correlated pairs Pc may optionally
be smaller and exclude the weak and distant pairs (cf. Section 21.3.5).

(ii) The conventional double excitations are restricted to the pair domains [ij]
(domain approximation).
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(iii) Since the excitations are restricted to domains, a pair-specific projector Q̂ij
12 [70]

is used in Eq. (21-126):

Q̂ij
12 = (1− ô1)(1− ô2)−

∑

c̃,d̃∈[ij]

|c̃d̃〉〈c̃d̃|. (21-127)

The only difference to the ordinary projector in standard MP2-F12 or CCSD-F12
theory is that the summation in the last term is restricted to the pair domain c̃, d̃ ∈ [ij].
This is not an additional approximation but is implied by the local ansatz in the
conventional part of the wave function.

Our LMP2-F12 and LCCSD-F12 methods use the diagonal or fixed amplitude
ansatz with approximation 3*A. The latter is simpler and more suitable for a linear
scaling algorithm [27, 71] than the more rigorous approximation 3C as described in
the previous sections. In approximation 3*A the extended Brillouin condition (EBC)
is implied (i.e. Ckl

ab = 0) and the contributions of Ykl,mn [cf. Eq. (21-52)] are ne-
glected. Furthermore, the Skl,mn-matrix as well as exchange terms are neglected (for
details see Refs. [16, 28]). The only quantities needed for LMP2-F12 are then

Vij
kl = KF

ij,kl +
∑

p,q

Kij
pqFkl

pq −
∑

α,p

(

Kij
αpFkl

αp + Kij
pαFkl

pα

)−
∑

ã,b̃∈[ij]

Kij

ãb̃
Fkl

ãb̃
,

(21-128)

B(ij)
kl,mn = UF

kl,mn +
∑

p,q

Ukl
pqFmn

pq −
∑

α,p

(

Ukl
αpFmn

αp + Ukl
pαFmn

pα

)−
∑

ã,b̃∈[ij]

Ukl
ãb̃

Fmn
ãb̃

(21-129)

where UF
kl,mn is defined in Eq. (21-51), Ukl

αβ =
〈

kl|[F12, t̂1 + t̂2]|αβ〉 and Pij
αβ =

〈αβ|1 − Q̂ij
12|αβ〉. Approximation 3*A leads to a slight overestimation of the cor-

relation energies, but this has only a minor impact on energy differences such as
reaction energies (see, e.g., Ref. [28]).

The use of the pair-specific projectors has two important advantages. First, the
integrals Kij

ãb̃
, Fmn

ãb̃
, and Ukl

ãb̃
in the last summations of Eqs. (21-128) and (21-129)

are only needed for ã, b̃ ∈ [ij], and thus the number of these integrals scales linearly
with molecular size (provided distant pairs ij are neglected and the diagonal ansatz
is used, i.e. kl = ij or kl = ji, and mn = ij or mn = ji). This leads to a strong
reduction of the computation time and disk space. Further savings can be achieved
by also using local RI approximations in the other summations of Eqs. (21-128) and
(21-129) (cf. Section 21.2.4.3). It is then possible to achieve linear scaling of the
computational cost with molecular size.

Secondly, due to the modified pair specific projector, the double excitations into
virtual orbitals outside the domain [ij] are not entirely excluded as in standard local
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correlation methods, but for a pair ij implicitly approximated by

ΔT̂ ij
2 =

∑

c̃,d̃/∈[ij]

F̄ij

c̃d̃
Êc̃iÊd̃j, (21-130)

where F̄ij

c̃d̃
= ∑

k,l〈c̃d̃|F̂12|kl〉Tij
kl. This can be viewed as an externally contracted

excitation scheme, i.e., instead of fully optimized amplitudes Tij

c̃d̃
the fixed matrix

elements F̄ij

c̃d̃
are used. As will be demonstrated in Section 21.3.5, these additional

terms very successfully correct for the domain error [70–72].
One of the main reasons for using approximation 3*A is that type 2 matrix el-

ements (cf. Section 21.2.2) are entirely avoided. In type 2 matrix elements, which
arise in the Ckl

ab [cf. Eq. (21-42)] and Ymn,kl [cf. Eq. (21-52)] terms, the unity operator

in Q̂12 is approximated by a double RI, which leads without local approximations to
Eq. (21-101). However, if the pair specific projector Q̂ij

12 is used, one obtains

Q̂ij
12 = |ax〉〈ax| + |xa〉〈xa| + |xy〉〈xy| +

∑

c̃,d̃/∈[ij]

|c̃d̃〉〈c̃d̃
∣

∣. (21-131)

The additional last term arises because the contributions of the virtual orbitals in
the double RI are only partly canceled by the last term in Eq. (21-127). Here, c̃, d̃
run over an orthonormal set of virtual orbitals that does not contain the domain [ij].
If they were included, much of the computational saving in the LMP2-F12 method
would be lost.

21.2.4.2. LCCSD-F12

In the LCCSD-F12 method the excitation operators T̂1 and T̂2 are defined as

T̂1 =
∑

i

∑

ã∈[i]

tiãÊãi, (21-132)

T̂2 = 1

2

∑

ij∈Ps

∑

α,β

U ij
αβ ÊαiÊβj, (21-133)

where, in analogy to Eq. (21-62),

U ij
αβ =

∑

c,d∈[ij]

δαcδβdTij
cd +

∑

k,l

〈αβ|Q̂ij
12F̂12|kl〉Tij

kl. (21-134)

Optionally, only strong pairs, as defined by a list Ps, are included in T̂2. The remain-
ing pairs are then treated by LMP2-F12, as outlined in the previous section. Again,
we use the approximation LCCSD-F12x (cf. Section 21.2.2.3) with ansatz 3*A in the
LMP2-F12. The LCCSD amplitude equations differ from the standard CCSD ones
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by additional multiplications with the overlap matrix S̃, which take into account the
non-orthogonality of the PAOs. Furthermore, the sparse structure of the amplitude
and integral tensors must be consistently taken into account. For details see Refs.
[63], [67].

The only difference of the LCCSD-F12 and LCCSD amplitude equations are the
terms ΔRij

ãb̃
= 〈ãb̃|r−1

12 Q̂ij
12F̂12|kl〉Tij

kl. Neglecting the contributions of the comple-
mentary auxiliary orbitals in Eq. (21-97) yields explicitly in the non-orthogonal PAO
basis

ΔRij
μ̃ν̃
≈ W̄ij

μ̃ν̃
−
∑

p,q

〈μ̃ν̃|r−1
12 |p, q〉F̄ij

pq

−
∑

p,c

[〈μ̃ν̃|r−1
12 |pc〉F̄ij

pc + 〈μ̃ν̃|r−1
12 |cp〉F̄ij

cp

]

−
∑

ρ̃,σ̃∈[ij]

〈μ̃ν̃|r−1
12 |ρ̃σ̃ 〉

∑

ã,b̃∈[ij]

W(ij)
ρ̃ã F̄ij

ãb̃
W(ij)
σ̃ b̃

for μ̃, ν̃ ∈ [ij].

(21-135)

An important observation is that in the last term of Eq. (21-135) the use of the lo-
cal projector directly leads to linear scaling of the number of two-electron integrals
〈μ̃ν̃|r−1

12 |ρ̃σ̃ 〉 over four PAOs. This is true because μ̃, ν̃, ρ̃, σ̃ ∈ [ij] and the number
of PAOs in a given domain is independent of the molecular size. In fact, exactly
the same integrals are needed in standard LCCSD theory, where similar contractions
with the amplitudes Tij

ρ̃σ̃
occur. Thus, both contractions can be done together with

virtually no extra cost by forming Tij
ρ̃σ̃
−∑

ã,b̃∈[ij] W(ij)
ρ̃ã F̄ij

ãb̃
W(ij)
σ̃ b̃

. The contraction of

these quantities with the integrals 〈μ̃ν̃|r−1
12 |ρ̃σ̃ 〉 scales linearly with molecular size,

without introducing any additional approximations. Unfortunately, this is not auto-
matically true for the first two summations in Eq. (21-135). Their treatment will be
discussed in the next section.

21.2.4.3. Local RI Approximations

In the previous sections it has been shown that the local ansatz leads to linear scaling
of the terms in the last summations of Eqs. (21-128), (21-129), and (21-135). How-
ever, this is not the case for the other summations in these equations, which arise
from the occupied-occupied and occupied-virtual terms in the projector and are not
automatically affected by the local ansatz.

In a local orbital basis the integrals Fij
μ′p will be small unless the RI basis functions

μ′ and the LMOs p are spatially close to the LMOs i and j. Therefore, we can restrict
the summations to domains, and approximate the first summation in Eq. (21-128) as

∑

α,p

Kij
αpFkl

αp ≈
∑

ᾱ∈[ij]RI

∑

p∈[ij]MO

Kij
ᾱpFkl

ᾱp, (21-136)
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where [ij]RI is a domain of RI basis functions μ associated to pair ij, and ᾱ are or-
thogonalized functions that span this domain. Similarly, [ij]MO is a domain of LMOs
p. In large molecules, this leads to linear scaling of the number of integrals to be
computed, and at least in principle to linear scaling of the computational cost for
LMP2-F12. Currently, we have implemented only the RI domains and always use all
occupied orbitals p. This formally leads to quadratic scaling. The remaining terms in
Eqs. (21-128) and (21-129) can be approximated in a similar way. The impact of this
local RI approximation on relative energies will be demonstrated in Section 21.3.5.

The overhead for using local RI approximations is that for each pair the RI basis
functions α in the domain [ij]RI must be orthogonalized and the operators Kij

αp, Fij
αp,

and Uij
αp (α ∈ [ij]RI) have to be transformed into this basis. Even though this scales

linearly with molecular size (provided that distant pairs are neglected), this additional
effort pays off only for large molecules, i.e., there is a cross-over point below which
making these approximations is more expensive than the standard procedure.

Similar approximations can be used for LCCSD-F12 in the first two summations
of Eq. (21-135). Again, the summations over p, q are restricted to MO domains
[ij]MO. We found that it is sufficient to include in these domains the LMOs whose
domains overlap with the orbital domains [i] or [j]; furthermore, it is possible to
neglect the contributions of core orbitals. The summation over the virtual orbitals
c can be restricted to the pair domain [ij]. The corresponding terms can then be
written as

∑

p,c

〈μ̃ν̃|r−1
12 |cp〉F̄ij

cp ≈
∑

p∈[ij]MO

∑

ρ̃∈[ij]

〈μ̃ν̃|r−1
12 |ρ̃p〉F̄ij

ρ̃p (21-137)

where F̄ij
ρ̃p =

∑

ã∈[ij] W(ij)
ρ̃ã F̄ij

ãp. If these approximations are made, the number of

transformed two-electron integrals 〈μ̃ν̃|r−1
12 |pq〉 and 〈μ̃ν̃|r−1

12 |ρ̃p〉 and the compu-
tational effort will scale linearly with molecular size. These integrals are a subset
of those needed in the standard LCCSD method [67], and therefore overall linear
scaling of the computational cost should be possible. As will be demonstrated in
Section 21.3.5, the errors introduced by these approximations are very small.

21.2.4.4. Local Density Fitting

Density fitting (DF) approximations are widely used nowadays in electronic struc-
ture theory. After the method was pioneered by Boys and Shavitt [88] and refined
by Whitten [89] it was very successfully used to accelerate the treatment of the
Coulomb problem in density functional theory (DFT) [90]. The method has now
spread from MP2 [32, 91–95] and CC2 [96] over (local) CCSD(T) [97] to MP2-
F12 [19, 27, 28, 31, 98–102]. The overall scaling with respect to system size is
not affected by standard DF, but it significantly reduces the prefactor and reduces
the scaling with respect to NAO/Natoms from quartic to cubic. If integrals other than
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Coulomb integrals are computed, it is essential to use robust fitting approximations
[31, 103] to ensure integral accuracy.

For the AO integrals like Kij
μν or Fij

μν a local variant of DF can be applied [95, 99].
The summation over the inherently local fitting functions A, B can be restricted to
domains [i]fit, very similar to the RI summations discussed in the previous section.
The domain [i]fit consists of those fitting functions within a distance Rfit (or a certain
number of bonds) from the AOs in the orbital domain [i]. The local density-fitted
integrals then take the form

Fij
μν ≈

∑

A∈[i]fit

DA
μiF

A
νj +

∑

B∈[j]fit

FB
μiD

B
νj −

∑

A∈[i]fit

∑

B∈[j]fit

DA
μiFABDB

νj. (21-138)

The fitting coefficients DB
μi are obtained by solving the linear equations

∑

B∈[i]fit

JABDB
μi = JA

μi (∀A ∈ [i]fit). (21-139)

Similar, but slightly more complicated expressions hold for the commutator integrals
Uij
αβ (for details see Refs. [19, 31, 99]). The 2-index and 3-index integrals are defined

as

JAB = (A|r−1
12 |B) =

∫

dr1

∫

dr2 χA(r1)r−1
12 χB(r2), (21-140)

JA
μν = (A|r−1

12 |μν) =
∫

dr1

∫

dr2 χA(r1)r−1
12 χμ(r2)χν(r2), (21-141)

JA
μi = (A|r−1

12 |μν)Cνi, (21-142)

where χA are the fitting basis functions, and Cμi are the molecular orbital coeffi-
cients. The integrals FAB and FA

μi are defined analogously by replacing the integral

kernels r−1
12 by F12.

The overhead of the local fitting is that for each orbital domain [i]fit the
Coulomb submatrix JAB, A, B ∈ [i]fit must be inverted (or the corresponding LU-
decomposition be performed). Thus, as for local RI approximations, there will be a
certain molecular size below which local DF will be more expensive than standard
DF.

21.3. BENCHMARKS

In several previous papers [28, 29, 52–54, 56] we have presented benchmarks for at-
omization energies, reaction energies, ionization potentials, electron affinities, equi-
librium distances, vibrational frequencies, and intermolecular interaction energies.
All these calculations were performed with the augmented correlation consistent or-
bital basis sets (aug-cc-pVnZ) of Kendall et al. [104]. For the second long row atoms,
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we used the aug-cc-pV(n+ d)Z basis sets of Dunning et al. [105]. For simplicity, the
aug-cc-pVnZ and aug-cc-pV(n + d)Z basis sets will in the following be denoted
AVnZ. As RI basis, we used the VnZ/JKFIT basis sets of Weigend [106], which
turned out to work well for this purpose.

Recently, Peterson et al. optimized new AO basis sets [33] that are specifically
designed for F12 calculations. These are denoted VnZ-F12. Furthermore, new aux-
iliary (RI) basis sets for the VnZ-F12 as well as for the aug-cc-pVnZ orbital basis
were presented [34, 35]. Here we will repeat the benchmarks presented in Ref. [52]
using these new basis sets and compare the performance of the VnZ-F12 sets with
the aug-cc-pVnZ ones. For the latter, we will also compare the JKFIT sets with the
new OPTRI auxiliary basis sets which were very recently published [35].

The new OPTRI basis sets [34, 35] are slightly smaller than the JKFIT bases and
are specially constructed for the CABS approach (they cannot be used without CABS
unless they are augmented by the orbital basis). In particular, they contain fewer s
and p functions, but instead contain higher angular momentum functions than in the
JKFIT basis sets. Their main advantage is that they minimize the linear dependencies
between the AO and the RI basis sets, which leads to improved numerical stability.
For the density fitting, which is used to compute all integrals in the MP2-F12 part,
the MP2FIT basis sets of Weigend et al. [107] are used. These were also employed
in the previous calculations.

Peterson et al. recommended to use for the length scale parameter γ in the F12
function values of 0.9, 1.0, and 1.1 a−1

0 for the VDZ-F12, VTZ-F12, and VQZ-F12
basis sets, respectively. For the sake of simplicity, we chose γ = 1.0a−1

0 for all basis
sets; this value was also used in all previous benchmarks. It is possible that slightly
better results could be obtained with the recommended values for the VDZ-F12 and
VQZ-F12 basis sets, but the dependence on the value of this parameter is rather
weak.

The molecular systems used in the next three subsections were the same as in
Ref. [52]. For atomization energies, electron affinities, and ionization potentials the
original G2 set [108] was used, with the exception that molecules containing alkali
and alkali-earth elements were omitted, because no JKFIT basis sets were available.
For the benchmarks of reaction energies, a total of 104 reactions were studied, among
which 54 involved only closed-shell molecules and the remaining 50 also open-shell
molecules. A list of these reactions and molecules can be found in Ref. [52]. Except
for the choice of the basis sets, only default parameters as implemented in the cur-
rent generally available production version of MOLPRO (version 2009.1) were used.
Thus, such calculations can be performed in a black-box manner.

The error statistics presented in the following sections refer to the same reference
values as in [52]. Wherever possible, these were obtained by extrapolating the corre-
lation energies of the AV5Z and AV6Z sets to the complete basis set limit (CBS[56]).
For some of the larger molecules, only the AVQZ and AV5Z results could be used for
the extrapolation (CBS [45]). The Hartree-Fock energies were not extrapolated, and
the values from the largest employed basis set were used directly. In the tables we
will present mean absolute deviations (MAD), root means square deviations (RMS),
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and the absolute maximum errors (MAX). All energy differences are computed from
the total energies, including the Hartree-Fock contribution with the CABS singles
correction.

21.3.1. Benchmarks for the CABS Singles Correction

In Table 21-2 the improvement of the Hartree–Fock energy differences by using the
CABS singles correction is demonstrated. It is of interest to check how the new
OPTRI basis sets perform in this respect, because they contain fewer s and p func-
tions than the JKFIT basis sets. In particular, functions with larger exponents are
missing. As a result, the absolute values for the perturbative corrections are much
smaller than for the JKFIT basis sets. Nevertheless, as seen in Table 21-2, the perfor-
mance for energy differences is very good. The comparisons also show that for all
properties the VnZ-F12/OPTRI basis-set combination is slightly more accurate than
either AVnZ/JKFIT or AVnZ/OPTRI. The last two combinations are almost equally
accurate. The better performance of the VnZ-F12 basis sets is probably due to the
fact that for these the total energy was optimized, including the Hartree-Fock and
correlation energies. Furthermore, the VnZ-F12 orbital basis sets are slightly larger
than the AVnZ sets (except for hydrogen).

21.3.2. Benchmarks with RMP2-F12

Table 21-3 shows a comparison of standard RMP2 and RMP2-F12 results. The fixed
amplitude ansatz has been used. It should be noted that these results cannot be com-
pared directly with those in [29], since the wave function ansatz has been changed:
in our original work on RMP2-F12, the summation over k, l in Eq. (21-1) included
only the spin orbitals that are occupied in the RHF wave function. In our current
methods, the summation includes both spin orbitals that can be formed from any oc-
cupied spatial orbital. It was found that this significantly improves the accuracy [52].
Furthermore, it is more consistent if the fixed amplitude ansatz is used [109]. Table
21-3 demonstrates for RMP2-F12 the dramatic improvements by the F12 treatment.
For all properties, the double-zeta F12 results are better than the standard quadruple
zeta ones.

Again, the performance of the VnZ-F12 and AVnZ sets is comparable, except for
the electron affinities. For the latter, the VnZ-F12 are not diffuse enough and yield
much larger errors. There is no significant difference in the performance of the JKFIT
and OPTRI auxiliary basis sets.

21.3.3. Benchmarks with CCSD(T)-F12x

Table 21-4 shows the results for the RCCSD(T∗)-F12a and RCCSD(T∗)-F12b meth-
ods. Again the accuracy is excellent, even though the errors are somewhat larger
than in the RMP2-F12 case. This is mainly due to the fact that the basis set error
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Table 21-2. Error statistics for the Hartree–Fock contribution to various properties with and without the
CABS singles contribution

Hartree–Fock HF+singles

Orbital basis RI basis MAD RMS MAX MAD RMS MAX

Ionization potentials (meV)
AVDZ JKFIT 45.9 65.1 220.4 7.9 9.9 20.7
AVTZ JKFIT 8.2 11.1 28.5 2.1 2.8 7.7
AVQZ JKFIT 1.6 2.3 7.7 0.8 1.0 2.2

AVDZ OPTRI 45.9 65.1 220.4 9.4 11.6 21.6
AVTZ OPTRI 8.2 11.1 28.5 2.7 3.4 7.3
AVQZ OPTRI 1.6 2.3 7.7 1.0 1.2 2.2

VDZ-F12 OPTRI 21.8 33.4 113.8 4.5 5.4 11.3
VTZ-F12 OPTRI 2.2 3.7 14.9 1.2 1.4 2.7
VQZ-F12 OPTRI 0.4 0.5 2.2 0.2 0.3 0.5

Electron affinities (meV)
AVDZ JKFIT 42.2 76.2 325.5 6.3 11.1 48.4
AVTZ JKFIT 8.1 11.8 35.1 2.4 3.2 8.8
AVQZ JKFIT 2.4 3.6 12.8 1.4 1.9 5.4

AVDZ OPTRI 42.2 76.2 325.5 6.7 10.5 42.4
AVTZ OPTRI 8.1 11.8 35.1 2.4 3.2 6.7
AVQZ OPTRI 2.4 3.6 12.8 1.2 1.6 3.7

VDZ-F12 OPTRI 26.6 51.7 233.4 5.4 8.5 31.3
VTZ-F12 OPTRI 3.5 5.4 21.2 2.2 2.7 5.5
VQZ-F12 OPTRI 1.4 2.0 5.4 1.2 1.7 4.8

Atomization energies (kJ/mol)
AVDZ JKFIT 20.66 24.39 84.60 1.58 1.98 5.33
AVTZ JKFIT 2.90 3.47 11.37 0.23 0.30 1.10
AVQZ JKFIT 0.58 0.82 3.91 0.10 0.13 0.46

AVDZ OPTRI 20.66 24.39 84.60 2.47 3.17 8.56
AVTZ OPTRI 2.90 3.47 11.37 0.36 0.50 1.58
AVQZ OPTRI 0.58 0.82 3.91 0.11 0.14 0.30

VDZ-F12 OPTRI 9.95 12.17 45.68 1.30 1.53 4.63
VTZ-F12 OPTRI 1.61 1.90 6.75 0.19 0.23 0.52
VQZ-F12 OPTRI 0.22 0.25 0.78 0.04 0.06 0.32

Reaction energies (kJ/mol)
AVDZ JKFIT 12.14 21.01 144.08 1.85 2.60 11.49
AVTZ JKFIT 1.84 2.91 17.27 0.40 0.52 2.02
AVQZ JKFIT 0.45 1.03 6.72 0.13 0.18 0.67

AVDZ OPTRI 12.14 21.01 144.08 1.54 2.77 16.11
AVTZ OPTRI 1.84 2.91 17.27 0.28 0.49 2.83
AVQZ OPTRI 0.45 1.03 6.72 0.14 0.21 0.85

VDZ-F12 OPTRI 7.35 12.38 68.45 1.01 1.76 9.13
VTZ-F12 OPTRI 1.00 1.63 9.52 0.17 0.30 1.58
VQZ-F12 OPTRI 0.15 0.21 0.98 0.07 0.12 0.66
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Table 21-3. Error statistics using RMP2-F12 for various properties. The fixed amplitude ansatz
was used

RMP2 RMP2-F12

Orbital basis RI basis MAD RMS MAX MAD RMS MAX

Ionization potentials (meV)
AVDZ JKFIT 251.0 266.8 453.0 32.2 34.8 66.7
AVTZ JKFIT 113.2 122.7 207.6 5.3 6.1 12.4
AVQZ JKFIT 56.0 61.2 109.1 1.5 1.8 5.2

AVDZ OPTRI 251.0 266.8 453.0 33.0 35.7 64.1
AVTZ OPTRI 113.2 122.7 207.6 5.9 6.7 15.8
AVQZ OPTRI 56.0 61.2 109.1 1.3 1.6 3.8

VDZ-F12 OPTRI 234.8 252.3 484.3 30.3 34.4 78.9
VTZ-F12 OPTRI 111.1 120.8 205.2 5.6 6.3 14.8
VQZ-F12 OPTRI 55.9 61.3 105.4 1.1 1.4 3.4

Electron affinities (meV)
AVDZ JKFIT 209.8 223.7 375.4 43.0 45.9 81.6
AVTZ JKFIT 94.2 104.8 160.4 10.8 13.0 28.2
AVQZ JKFIT 47.3 52.6 79.8 3.2 5.5 15.8

AVDZ OPTRI 209.8 223.7 375.4 42.2 45.9 83.6
AVTZ OPTRI 94.2 104.8 160.4 9.6 12.2 29.2
AVQZ OPTRI 47.3 52.6 79.8 3.3 5.4 15.6

VDZ-F12 OPTRI 237.8 251.2 430.6 67.9 72.6 138.9
VTZ-F12 OPTRI 117.9 127.8 201.0 30.2 32.3 56.5
VQZ-F12 OPTRI 61.4 66.8 106.1 14.4 15.9 27.4

Atomization energies (kJ/mol)
AVDZ JKFIT 79.43 87.70 166.86 3.13 3.78 9.99
AVTZ JKFIT 26.87 29.60 56.33 0.57 0.77 2.32
AVQZ JKFIT 10.94 12.14 23.84 0.58 0.71 1.79

AVDZ OPTRI 79.43 87.70 166.86 3.82 4.68 11.49
AVTZ OPTRI 26.87 29.60 56.33 0.44 0.58 1.52
AVQZ OPTRI 10.94 12.14 23.84 0.54 0.66 1.63

VDZ-F12 OPTRI 60.66 66.37 130.01 2.44 3.09 7.97
VTZ-F12 OPTRI 27.03 29.68 61.29 0.45 0.59 1.69
VQZ-F12 OPTRI 12.73 14.02 29.07 0.21 0.27 0.84

Reaction energies (kJ/mol)
AVDZ JKFIT 25.60 39.60 194.10 2.48 3.30 14.75
AVTZ JKFIT 9.88 14.27 54.03 0.91 1.29 5.93
AVQZ JKFIT 4.86 6.66 23.91 0.49 0.69 2.93
AVDZ OPTRI 25.60 39.60 194.10 2.10 3.31 18.96
AVTZ OPTRI 9.88 14.27 54.03 0.59 0.80 2.89
AVQZ OPTRI 4.86 6.66 23.91 0.52 0.72 2.09

VDZ-F12 OPTRI 23.38 32.53 113.79 1.80 2.98 16.75
VTZ-F12 OPTRI 9.44 13.22 44.14 0.44 0.65 2.79
VQZ-F12 OPTRI 5.15 6.68 19.86 0.34 0.53 2.17
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Table 21-4. Error statistics using RCCSD(T∗)-F12x for various properties. The fixed ampli-
tude ansatz was used. The triples energies were scaled using Eq. (21-115)

CCSD(T)-F12a CCSD(T)-F12b

Orbital basis RI basis MAD RMS MAX MAD RMS MAX

Ionization potentials (meV)
AVDZ JKFIT 66.0 74.8 170.8 87.8 96.1 204.1
AVTZ JKFIT 9.6 13.3 33.4 26.3 30.3 59.8
AVQZ JKFIT 4.6 5.0 8.9 7.4 8.9 18.0

AVDZ OPTRI 67.6 75.3 168.4 89.4 96.6 201.7
AVTZ OPTRI 10.1 13.4 33.9 27.0 30.5 60.3
AVQZ OPTRI 4.5 4.9 8.8 7.5 8.7 17.6

VDZ-F12 OPTRI 63.3 75.6 176.3 84.1 94.5 208.6
VTZ-F12 OPTRI 9.1 12.3 30.3 24.1 27.7 55.1
VQZ-F12 OPTRI 4.8 5.4 11.7 7.2 8.0 15.0

Electron affinities (meV)
AVDZ JKFIT 61.5 67.8 137.2 88.7 94.7 170.4
AVTZ JKFIT 10.3 12.5 29.4 28.1 31.1 49.5
AVQZ JKFIT 5.7 6.6 12.5 9.3 11.2 25.5

AVDZ OPTRI 60.6 66.8 139.4 87.8 94.0 172.6
AVTZ OPTRI 9.5 11.7 27.1 26.9 29.9 50.3
AVQZ OPTRI 6.1 7.2 14.1 8.8 10.7 25.5

VDZ-F12 OPTRI 98.3 105.5 203.8 121.1 127.2 232.2
VTZ-F12 OPTRI 32.9 35.7 58.1 50.0 52.8 83.8
VQZ-F12 OPTRI 12.4 13.8 25.9 24.2 25.8 41.8

Atomization energies (kJ/mol)
AVDZ JKFIT 7.88 9.42 18.68 12.67 14.76 31.22
AVTZ JKFIT 0.96 1.33 4.01 3.57 3.97 8.96
AVQZ JKFIT 1.13 1.36 3.49 0.70 0.97 3.57

AVDZ OPTRI 9.69 11.76 24.99 14.76 17.20 36.98
AVTZ OPTRI 1.14 1.54 3.77 3.96 4.39 8.59
AVQZ OPTRI 1.11 1.33 3.43 0.72 0.95 3.41

VDZ-F12 OPTRI 6.26 7.42 15.41 10.45 11.90 26.56
VTZ-F12 OPTRI 1.10 1.42 3.77 3.91 4.28 8.31
VQZ-F12 OPTRI 1.07 1.28 3.10 1.29 1.42 3.01

Reaction energies (kJ/mol)
AVDZ JKFIT 2.43 3.48 16.45 2.78 3.86 17.53
AVTZ JKFIT 0.97 1.25 3.06 1.37 1.85 5.59
AVQZ JKFIT 0.73 0.99 2.81 0.70 0.93 3.14
AVDZ OPTRI 3.44 4.78 21.33 3.96 5.67 22.41
AVTZ OPTRI 0.89 1.21 3.80 1.37 1.98 6.64
AVQZ OPTRI 0.78 1.06 3.35 0.70 0.96 3.16

VDZ-F12 OPTRI 3.05 4.25 16.96 3.62 5.10 19.18
VTZ-F12 OPTRI 1.02 1.40 5.30 1.55 2.19 7.75
VQZ-F12 OPTRI 0.47 0.70 2.80 0.48 0.75 3.53
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of the triples contribution is not removed by the F12 treatment. For the CCSD(T)-
F12b method, significant improvements of all results are achieved by scaling the
triples contribution, as explained in Section 21.2.2.3. For CCSD(T)-F12a, which
somewhat overestimates the correlation energy, the improvements by the scaling are
less systematic, since there is an error compensation between the overshooting of the
CCSD-F12a correlation energy and the underestimation of the triples energy. Over-
all, for the double and triple zeta basis sets the F12a method yields more accurate
results, due to the above-mentioned error compensation. For larger basis sets the
F12b approximation is preferable, since it converges more smoothly to the basis set
limit.

The RMS errors of the reaction energies obtained with the double-zeta basis sets
(relative to the basis set limit) amount to about 1 kcal/mol, which corresponds to
chemical accuracy. The errors obtained with the triple-zeta basis sets are smaller
than 1.5 kJ/mol (CCSD(T∗)-F12a). This corresponds to the intrinsic accuracy of
CCSD(T) if only valence electrons are correlated. To obtain higher accuracy, higher
excitations, core correlation effects, and relativistic effects should be taken into ac-
count.

Table 21-5 shows computed CCSD(T)-F12a and CCSD(T)-F12b equilibrium dis-
tances and harmonic vibrational frequencies for the same 13 diatomic molecules
studied in Ref. [52]. The accuracy is outstanding, in particular for CCSD(T)-F12b.
Already with the VDZ-F12 basis set the RMS error of the vibrational frequencies is
less than 3 cm−1. This is about the same accuracy as achieved with CCSD(T) and the
AV5Z basis set [52]. Also the RMS error for the equilibrium distances obtained with
CCSD(T)-F12b/VDZ-F12 is smaller than the one for CCSD(T)/AVQZ. Somewhat
surprisingly, CCSD(T)-F12b yields for these properties with all basis sets more ac-
curate results than CCSD(T)-F12a. Furthermore, in contrast to most other properties,
the scaling of the triples energy does not improve the frequencies and distances. The
reason for this behavior is not yet understood in detail.

Table 21-5. Error statistics using CCSD(T)-F12x harmonic vibrational
frequencies and equilibrium distances for 13 diatomic molecules

CCSD(T)-F12a CCSD(T)-F12b

Orbital basis MAD RMS MAX MAD RMS MAX

Harmonic vibrational frequencies (cm−1)
VDZ-F12 5.1 5.6 8.5 2.2 2.9 5.7
VTZ-F12 3.1 3.4 6.3 1.7 2.1 4.9
VQZ-F12 0.8 1.1 2.1 0.6 0.7 1.3

Equilibrium distances (pm)
VDZ-F12 0.14 0.17 0.40 0.09 0.11 0.27
VTZ-F12 0.07 0.09 0.23 0.05 0.07 0.18
VQZ-F12 0.02 0.02 0.06 0.01 0.01 0.04
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The RMS deviations of the CCSD(T)/CBS values from the experimental equilib-
rium distances and harmonic frequencies amount to 0.17 pm and 10.3 cm−1, respec-
tively. Thus, already for the VDZ-F12 basis set, the basis set incompleteness errors
are smaller than the intrinsic errors of the CCSD(T) method. As for the reaction
energies, it would be necessary to include higher excitations, core correlation, and
relativistic effects to obtain higher accuracy.

Similar accuracy was also achieved in Ref. [54] for nine polyatomic molecules
with up to 6 atoms. Due to the efficiency of the CCSD(T)-F12x methods, it was pos-
sible to generate many-dimensional potential energy surfaces around the equilibrium
geometries and to compute anharmonic frequencies using vibrational configuration
interaction methods. Using CCSD(T)-F12a/AVTZ, the mean absolute deviation of
all computed frequencies from experimental values was only 4 cm−1.

21.3.4. Intermolecular Interaction Energies

Intermolecular interaction energies are of much current interest due to their impor-
tance in many biological systems. For example, hydrogen bonding and π -stacking
interactions between nucleic acid base pairs are crucial for the folding of nucleic
acids such as DNA and RNA. A particular challenge is the accurate prediction of
dispersion energies, which dominate π -stacking interactions. The calculation of dis-
persion interactions is difficult because they are pure electron correlation effects,
which cannot be described by simple methods such as Hartree–Fock or standard
density functional theory.

We have applied the explicitly correlated MP2-F12 and CCSD(T)-F12a methods
to calculate intermolecular interaction energies for the S22 benchmark set of Jurečka
et al. [110]. This includes clusters which are either hydrogen (electrostatic) bonded
or predominantly dispersion bonded, as well as mixed ones. The interaction energies
range from less than 1 kcal/mol to over 20 kcal/mol. In some clusters with strong
dispersion interactions, the correlation contribution to the interaction energy is larger
than the total interaction energy and may exceed 25 kcal/mol.

In all calculations, the counterpoise correction [111] was applied to reduce basis
set superposition errors (BSSE). For high accuracy, this is even needed in explicitly
correlated calculations, since the BSSE of the Hartree–Fock contribution may still
be significant (even with the CABS singles correction, which is always applied).
The BSSE of the correlation contributions are much smaller than in conventional
MP2 or CCSD(T) calculations, but still not entirely negligible.

The deviations of the MP2 and DF-MP2 interaction energies from MP2/ CBS[45]
reference values are shown in Figure 21-1 (from Ref. [53]). In the standard MP2
calculations the diffuse functions on the hydrogen atoms were omitted. This reduces
the BSSE and has little effect on the results. The resulting mixed basis sets are de-
noted AVnZ′. In the MP2-F12 calculations the diagonal approximation was used.
Figure 21-1 shows that the conventional MP2 results converge very slowly with in-
creasing basis set size. In contrast, the MP2-F12 method yields amazingly accurate
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Figure 21-1. Errors of the total MP2/AVnZ′ and MP2-F12/AVTZ interaction energies for the S22 set
relative to the MP2/CBS [45] estimates of the basis set limits

results already with small basis sets. Using the triple zeta basis set, the MP2-F12
interaction energies are much more accurate than the MP2/AV5Z′ results.

Figure 21-2 shows a similar comparison for CCSD(T∗)-F12a [56]. In this case the
CCSD(T) reference calculations were only possible for a reduced set of 11 dimers.
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highly accurate results. Even with the AVDZ basis set the errors are smaller than
0.2 kcal/mol for all dimers.

21.3.5. Benchmarks with LMP2-F12 and LCCSD-F12

In this section we will summarize and extend our results from Refs. [71], [72]. In all
cases, the domains were determined using the method of Boughton and Pulay [86],
using a completeness criterion of 0.985 (triple zeta basis sets) or 0.98 (double zeta
basis sets). Unless otherwise noted, in all F12 calculations the diagonal ansatz with
approximation 3*A has been used, and the VTZ/JKFIT basis sets were employed for
the RI.

Table 21-6 shows the computed correlation energies for selected large molecules
(cf. Ref. [71]). The F12 energy contributions as well as the total correlation ener-
gies are compared. It can be seen that the F12 energy contributions in the MP2-F12
and LMP2-F12 calculations differ by about 100 mHartree. This is due to the fact
that in the LMP2-F12 method this contribution corrects for the domain errors in
the LMP2 wave function. However, the total correlation energies differ in all cases
by less than 10 mHartree. This shows that the explicitly correlated terms remove the
domain errors very efficiently. Table 21-7 demonstrates for a reaction involving large

Table 21-6. Comparison of MP2-F12 and LMP2-F12 correlation energies
(−Ecorr in mHartree) for selected large molecules. The AVTZ orbital basis
was used and all pairs apart from very distant pairs were treated in F12. No
local DF or local RI approximations were employed

MP2-F12 LMP2-F12

Molecule F12 Total F12 Total

Progesterone (C21H30O2) 397.7 4466.9 477.9 4460.5
Cholesterol (C27H46O) 470.6 5457.1 576.3 5448.7
Borrelidin (C28H43NO6) 654.0 7100.4 763.1 7091.8

Table 21-7. The effects of pair approximations and of local RI, DF ap-
proximations on the correlation contributions ΔEcorr (in kJ/mol) to the
DF-LMP2-F12/AVTZ′ reaction energy of the androstenedione ring closure
reaction shown in Figure 21-3

Pairs Full RI and DF Local RI and DF

Strong (no bond) 19.56 19.58
Close (up to 1 bond) 22.01 22.05
Weak (up to 3 bonds) 23.07 23.14
Weak (up to 4 bonds) 23.98 24.07
Weak (up to 5 bonds) 24.21 24.31
All 24.32 24.37
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Figure 21-3. A ring closure reaction yielding androstenedione

molecules how the correlation contribution to the reaction energy depends on the
pair approximation in the explicitly correlated part (i.e., the list Pc in Eq. (21-125)
has been varied). The pairs ij are classified according to the minimum number of
bonds between any atom in the orbital domain [i] and any atom in domain [j]. In
strong pairs the two orbital domains share at least one atom; close pairs are those
were the shortest distance is one bond, and so on. The number of pairs included
in the conventional LMP2 part is always the same (only very distant pairs are ne-
glected). Somewhat surprisingly, the F12 correlation contributions converge rather
slowly with extension of the pair list. If only strong pairs are included, an error of
about 5 kJ/mol results. If close pairs are also explicitly correlated, the error is reduced
to 2.3 kJ/mol (0.55 kcal/mol). For many applications involving large molecules this
may be sufficient. Further reductions of the error are possible by including weak
pairs. Table 21-7 also demonstrates that the effect of local DF and local RI approx-
imations on the reaction energy is negligible. These approximations lead to almost
linear scaling of the overall computational cost with molecular size. For details and
timings we refer to Ref. [71].

Table 21-8 presents a comparison of CCSD and LCCSD correlation energies with
and without explicit correlation [72]. All pairs are fully included in the LCCSD and
LCCSD-F12 calculations, i.e., the difference between the local and non-local results
solely reflects the domain error. The conventional CCSD and LCCSD energies differ
by several mHartree, but this error is reduced to about 0.1 mHartree in the explic-
itly correlated methods. This demonstrates that the domain error is also efficiently
removed in LCCSD-F12. As compared to the estimated complete basis set limits,

Table 21-8. LCCSD-F12a correlation energies (−Ecorr in mHartree) ob-
tained with the VTZ-F12 basis set in comparison to the extrapolated
CCSD/CBS[45] values. The fixed amplitude Ansatz was used

Molecule CCSD LCCSD CCSD-F12 LCCSD-F12 CBS

C2H4O 611.8 609.2 658.0 658.1 650.4
CH3CHO 606.1 603.8 651.6 651.7 643.9
C2H5OH 648.2 644.3 697.3 697.3 689.1
NH2CONH2 851.9 847.6 918.0 917.9 908.2
HCOOCH3 844.7 841.1 911.7 911.7 901.7
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Table 21-9. Error statistics for reaction energies (in kJ/mol) com-
puted using the LMP2-F12 and LCCSD-F12 methods. The fixed
amplitude ansatz with approximation 3*A and the VnZ/OPTRI aux-
iliary basis sets were used in the F12 calculations

VDZ-F12 VTZ-F12

Method MAD RMS MAX MAD RMS MAX

MP2 10.1 10.8 68.9 4.3 4.7 31.9
LMP2 14.5 13.8 78.3 6.1 5.9 35.1

MP2-F12 1.2 1.1 6.6 0.5 0.5 2.8
LMP2-F12 1.3 1.2 6.5 0.6 0.7 3.3

CCSD 10.5 10.0 57.5 4.6 4.4 27.8
LCCSD 14.3 13.6 66.5 6.1 5.4 30.2

CCSD-F12 1.8 1.5 6.2 0.7 0.6 2.6
LCCSD-F12 1.8 1.5 6.1 0.7 0.6 2.4

the CCSD-F12 and LCCSD-F12 correlation energies are somewhat too large. This
is mainly due to the 3*A approximation used in these calculations. Previous stud-
ies have shown that this has little effect on computed energy differences. This is
confirmed by the results presented below.

Finally, in Table 21-9 we present the error statistics for the 54 closed-shell re-
actions, computed with various local and non-local methods. The fixed amplitude
ansatz with approximation 3*A has been used in all these explicitly correlated cal-
culations, while the results in Tables 21-3 and 21-4 were obtained with the theoret-
ically more accurate approximation 3C. Nevertheless, the errors of the 3*A results
are equally small. The local and non-local variants yield virtually the same accu-
racy, both for MP2-F12 and CCSD-F12x, i.e., the domain errors are almost fully
removed. This is a very promising result for future applications of the LCCSD(T)-
F12x methods for large molecules. The implementation of a fully local linear scaling
LCCSD(T)-F12x implementation is currently in progress.

21.4. CONCLUSIONS

In this paper we have presented in detail the theory of the exact MP2-F12 and CCSD-
F12 methods and discussed the CCSD(T)-F12x approximations as implemented in
the MOLPRO package of ab initio programs. In these approximations the MP2-F12
part is treated without any approximations (apart from the RI). In the additional terms
occurring in the CCSD-F12 amplitude equations and in the energy functional, all
contributions arising from the complementary auxiliary orbital basis are neglected.
Thus, apart from the initial MP2-F12, the computational effort is very similar as for a
standard CCSD(T) calculation with the same basis set. While the additional effort for
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MP2-F12 relative to MP2 is still significant (typically a factor of 10), the additional
effort becomes negligible for CCSD(T)-F12x calculations on larger molecules. This
is because the cost of the MP2-F12 calculation becomes small relative to the triples
calculation, which scales much more steeply with molecular size. Overall, for the
largest systems presented in this work, the CCSD(T)-F12x calculations are only
a few percent more expensive than standard CCSD(T) calculations with the same
basis. Of course, such comparisons depend on the efficiency of the CCSD(T) itself.
In this respect we may note that our CCSD(T) program is considered to be one of the
fastest currently available. This is due to the consequent formulation of the theory in
terms of matrix multiplications, which run near the theoretical maximum speed of
modern processors. For example, the complete CCSD(T)-F12/AVTZ calculation for
the T-structure of the benzene dimer (including counterpoise correction) took 118 h
on a single Xeon 3.0 GHZ processor (MacPro). Of this time, 5.9 h was spent for the
MP2-F12 parts, i.e., the additional effort for the F12 correction is only 5% of the
corresponding CCSD(T)/AVTZ calculation [53].

Extensive benchmark results for atomization energies, reaction energies, ioniza-
tion potentials, electron affinities, intermolecular interaction energies, harmonic vi-
brational frequencies, and equilibrium structures have demonstrated the outstanding
accuracy of the new F12 methods. New AO VnZ-F12 orbital basis sets, that were
especially optimized for F12 methods, were compared to the standard augmented
correlation consistent basis sets of Dunning and co-workers. Furthermore, new RI
basis sets of Yousaf and Peterson [34, 35] were tested. For most properties the results
obtained with the VnZ-F12 and aug-cc-pVnZ basis sets are of the same quality, and
also the choice of the RI basis has a rather small effect. This is consistent with a very
recent study of Bischoff et al. [112]. Only for electron affinities the more diffuse
aug-cc-pVnZ basis sets are preferable. Whatever basis set is used and property is
considered, the explicitly correlated results are uniformly much more accurate than
those obtained with the conventional MP2 and CCSD(T) methods and the same basis
set. Typically, the F12 results obtained with the AVnZ basis are equally or more
accurate as conventional calculations with the AV(n+ 2)Z basis.

Local variants of the MP2-F12 and CCSD-F12 methods have also been reviewed.
These are very promising to extend the applicability of the CCSD(T)-F12 method
to larger molecules. It has been demonstrated that the error caused by the domain
approximation is almost entirely removed by the explicitly correlated terms. Pre-
liminary investigations for LMP2-F12 have shown how the F12 energy correction
depends on pair approximations. Future work is necessary to determine what is the
best choice of pair approximations in LCCSD(T)-F12 calculations in order to obtain
a best compromise between cost and accuracy.

All the (non-local) calculations presented in this paper were performed with de-
fault values as implemented in the public version 2009.1 of the MOLPRO quantum
chemistry package [73] and require no special input. Thus, they can be performed in
a black box manner, similar to standard MP2 and CCSD(T) calculations. In conclu-
sion, these methods are ready for public use and are highly recommended for future
applications.
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APPENDIX: THE CCSD EQUATIONS IN EXPANDED FORM

The CCSD residuals take the explicit form

Rij
ab = Kij

ab + [K(Dij)]ab +
∑

k,l

αij,klD
kl
ab + Gij

ab + Gji
ba, (21-143)

Gij = TijX−
∑

k

Tikβkj −
∑

k

[K(Dij)(k) + kijk]tk†

+
∑

k

[

T̃ikYkj − 1

2
TkiZkj − (TkiZkj)†

]

, (21-144)

ri = fi + [R† −
∑

k

(2Jkk −Kkk)]ti −
∑

k,l

Tlklkli

+
∑

k

[

K(D̃ik)(k) + T̃ik f̄k − tkβki

]

, (21-145)

with the intermediates:

αij,kl =Kij
kl + tr(CijKlk)+ (ti†kklj + t j†klki), (21-146)

βki = fki + f k†
ti +

∑

l

[

tr(LklTli)+ tl†(llki + Llkti)
]

, (21-147)

f̄ k = f k +
∑

l

Lkltl, (21-148)

R = f−
∑

k,l

LklTlk, (21-149)

X =R−
∑

k

f̄ ktk† +
∑

k

[2J(Ekk)−K(Ekk)], (21-150)
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Ykj = Kkj +K(Ekj)− 1

2

[

Jkj + J(Ekj)
]

+1

4

∑

l

LklT̃lj − 1

2

∑

l

(lklj + Lklt j)tl†, (21-151)

Zkj = Jkj + J(Ekj)−
∑

l

[

1

2
KlkTjl + (klkj +Klkt j)tl†

]

. (21-152)

GLOSSARY

Akl,mn = 〈kl|F12ĝ12Q̂12F12|mn〉 Part of MP2-F12 B-matrix

Bkl,mn = 〈kl|F12Q̂12ĝ12Q̂12F12|mn〉 MP2-F12 B-matrix

Cμi MO coefficients

Ckl
ab = 〈kl|F12Q̂12 f̂12|ab〉 MP2-F12 coupling terms

Dij
rs = δrcδsd

(

Tij
cd + tictjd

)

+ δrit
j
s + δsjtir, Composite amplitudes

D̃ij
rs = 2Dij

rs − Dji
rs

Eij
rs = δrit

j
s Used in contractions of integrals

with singles

Fij
αβ = 〈αβ|F12|ij〉 Integrals over F12

F̄ij
αβ = 〈αβ|F12|kl〉Tij

kl Contracted integrals over F12

F̃ij
αβ = 2F̄ij

αβ − F̄ji
αβ

Gij
αβ Intermediates in CCSD-F12

residuals

Hmn,op = 〈mn|F12Q̂12r−1
12 Q̂12F12|op〉 Matrix elements in CCSD-F12

energy expression

Jkl
αβ = 〈αk|r−1

12 |βl〉 Two-external Coulomb integrals

Kkl
αβ = 〈αβ|r−1

12 |kl〉 Two-external exchange integrals

K̄rs
αβ = 〈ᾱβ̄|r−1

12 |r̃s̃〉 Dressed integrals

KF
ij,kl = 〈ij|r−1

12 F12|kl〉 Integrals over r−1
12 F12

Lkl
αβ = 2Kkl

αβ − Klk
αβ

Rαβ Intermediates in CCSD-F12
residual

Rij
kl MP2-F12 residual for explicitly

correlated amplitudes

Rij
ab MP2-F12 or CCSD-F12 doubles

residual
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Smn,op = 〈mn|F12Q̂12F12|op〉 Overlap of explicitly correlated
configurations

S̄ij,kl = T̃ ij
mnSmn,opTkl

op Contracted overlap matrix

S̃(ij)
rs = 〈r̃|s̃〉, r, s ∈ [ij] Overlap matrix of PAOs in

domain [ij]

Tij
kl Amplitudes of explicitly

correlated configurations

T̃ ij
kl = 2Tij

kl − Tji
kl

Tij
ab Doubles amplitudes, virtual

space

T̃ ij
ab = 2Tij

ab − Tji
ab

T ij
αβ = 〈αβ|Q̂12F12|kl〉Tij

kl Amplitudes of explicitly
correlated terms in the

complete virtual space

U ij
αβ = δαcδβdTij

cd + T ij
αβ Composite doubles amplitudes

in complete space

Ũ ij
αβ = 2U ij

αβ − U ji
αβ

Ukl
αβ = 〈kl|[F12, t̂1 + t̂2]|αβ〉 Commutator integrals used in

MP2-F12

UF
kl,mn = 〈kl|[F12, t̂1 + t̂2]F12|mn〉 Commutator integrals used in

MP2-F12

Vij
kl = 〈kl|F12Q̂12r−1

12 |ij〉 Integrals used in MP2-F12

V̄ij
αβ = 〈αβ|r−1

12 Q̂12F12|kl〉Tij
kl Contracted integrals used in

CCSD-F12

W̄ij
αβ = 〈αβ|r−1

12 F12|kl〉Tij
kl Contracted integrals used in

CCSD-F12

W(ij)
μ̃ã , μ̃, ã ∈ [ij] Transformation from PAO basis

to orthonormal

basis in domain [ij]

Xαβ , Ykj
αβ , Zkj

αβ Intermediates in CCSD-F12
residuals

Ykl,mn = 〈kl|F12n̂12Q̂12F12|mn〉 Intermediates in MP2-F12
residuals

fαβ = hαβ + 2Jkk
αβ − Kkk

αβ Closed-shell Fock matrix

f i
α = fαi One-external Fock matrix

elements

f̄αβ Dressed Fock matrix
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f̄ i
α = f̄iα One-external dressed Fock

matrix elements

f̃ (ij)
rs = fr̃s̃, r̃, s̃ ∈ [ij] Fock matrix in PAO basis in

domain [ij]

kkli
α = Kkl

αi One-external integrals

lkli
α = 2kkli

α − klki
α

tia CCSD singles amplitudes

ri
a CCSD singles residuals

Contractions of integrals with amplitudes:

[J(Eij)]ab = 〈ai|r−1
12 |bc〉t j

c

[K(Eij)]ab = 〈ab|r−1
12 |ic〉t j

c

[K(Tij)]rs = 〈rs|r−1
12 |cd〉Tij

cd

[K(Dij)]rs = 〈rs|r−1
12 |tu〉Dij

tu

[K(Dij)](k)
a = [K(Dij)]ak
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Abstract: We review several versions of coupled-cluster (CC) methods based on spin-unrestricted
Hartree–Fock (UHF) approximation. A multireference (MR) CC theory by the use of
UHF natural orbitals (UNO), UNO CASCC, is revisited to elucidate scope and limitation
of UHF coupled-cluster (CC) methods and two types of quantum corrections for UHF
CC (UCC) solutions: first one is the approximate spin-projected UCC scheme (AP UCC)
based on Heisenberg model Hamiltonian, and second one is the recently developed res-
onating UCC configuration interaction (Res-UCC CI) approach. In this article, we examine
these CC-based approaches for quasi-degenerate electronic systems such as dissociation of
covalent bonds. The computational results are discussed in comparison with those of the
MR-CC theory. Our methods have been applied to exchange-coupled systems and ion-
radical systems, which have been accepted current interests.

Keywords: Coupled cluster, Spin-unrestricted, Resonating configuration interaction, Instability in
chemical bonds, Dissociation limits

22.1. INTRODUCTION

In the past decades quasi-degenerate electronic systems attracted great interest
in the fields of chemical reactions and material sciences. Among multidetermi-
nant wavefunction theories, the configuration interaction (CI) theory is the most
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P. Čársky et al. (eds.), Recent Progress in Coupled Cluster Methods, 621–648.
DOI 10.1007/978-90-481-2885-3_22, © Springer Science+Business Media B.V. 2010



622 S. Yamanaka et al.

fundamental and straightforward theory for strongly correlated systems with such
quasi-degenerate electronic states [1–7]. However, practical truncated CI methods
suffer the inextensitivity of electron correlation effects [8]. On the other hand, it is
known that the coupled-cluster (CC) theory is a size-extensive electron-correlation
theory and therefore a promising theory towards large systems. The progress of
the CC theories has been achieved through many computational and theoretical
studies since Sinanoglu, Cizek, Paldus and others introduced the CC ansatz in
the field of quantum chemistry [9–57]. Recent treatments such as the local corre-
lation method [44] and fragment molecular orbital method [49] are proposed as
“an accurate theory for large systems”. Also, for the biomolecular systems such
as enzymes, a multilayer theoretical framework such as CC plus the second-order
Møller–Plesset perturbation theory (MP2) is proposed on the basis of the many-body
perturbation theory [55]. From the theoretical viewpoint, CC theories involving ex-
plicit interelectronic distances have been developed for the pursuit of preciseness
for short-range correlation effects [9, 10, 35, 55]. A more remarkable progress has
been made in the computational method: development of an automatic code gen-
eration for ab initio many-body perturbation theories [53] might become a turn-
ing point towards the next generation of the high-quality ab initio studies. In fact,
simplifying the complicated and tedious manipulations of equations for program-
ming, Hirata and coworkers have implemented several higher-order coupled-cluster
theories [57].

Towards the coupled-cluster theory for quasi-degenerate electronic systems, vari-
ous multireference formulations [14–18, 20–24, 29, 30, 34–37, 39, 41–43, 45, 46, 48,
50, 51, 56] have been developed. The MR-CC theory is expected to provide reliable
results for almost all cases: those might be more reliable than the experimental results
when the instrument or the method of measurement involves artifacts. However, MR-
CC calculations are still computationally demanding as compared with other wave-
function methods, although the remarkable advances in theoretical and computa-
tional contexts have been achieved. Also, it is pointed out that MR-CC theories suffer
active-orbital orbital rotation issues, and can not yield the correct “size-consistent”
potential surfaces [54]. So in applications to exchange-coupled systems, we should
be careful to choose appropriately specific versions of MR-CC and the orbitals used
for the MRCC calculations [54]. Thus, more convenient approaches are needed if
we treat with the large molecular systems containing open-shell electrons. Since
we have investigated molecular magnetic systems, our direction might be slightly
different from that of many other developers of CC theories. As described above, we
can expect from the analysis of UMP2 APUMP2 and MRMP2 that spin-unrestricted
CC (UCC) theory could be an alternative to the MR-CC theory if some quantum
corrections is applied appropriately to recover its symmetry-broken feature. This
“quantum correction using symmetry-broken solutions” is a fundamental scheme
behind the spin-projection method proposed by one of the authors (K.Y.) [58–64],
and a resonating CI theory [65–67] based on UCC solutions that is now developed.
In this article, we reviewed the coupled-cluster theory for the open-shell systems,
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rather emphasizing on the UCC, and UCC based quantum corrected theories and its
relation with the quantum fluctuations.

22.2. THEORETICAL BACKGROUND

22.2.1. Independent Particle Model and Mean-Field Approximation

Independent particle model for many-boby systems permits several mean-field ap-
proximations such as the Hartree–Fock (HF) approach, which provide qualitative
pictures and concepts for lucid understanding of complex phenomena. Here, we start
to define what the “explicit” correlation effects are. The explicit electron correla-
tion effects are results from the non-commutative relationship between an effective
one-electron Hamiltonian and the remaining electron correlation operator,

[

Ĥ0 + V̂eff, Ĥ0 + V̂ee
] �= 0. (22-1)

Here, Ĥ0 and V̂ee, two terms of the non-relativistic ab initio Hamiltonian, Ĥ, are
the core Hamiltonian consisting of kinetic and external potential operators and the
inter-electron repulsion operator, respectively. V̂eff is a mean-field potential operator,
which is the sum of classical Coulomb-repulsion operator and the exchange oper-
ator for the HF approximation. An important point is that, even if we determine a
ground-state solution |�0〉 of Ĥ0 + V̂eff exactly, transitions from |�0〉 to the excited
configurations are inevitable due to the relation given by Eq. (22-1). This type of
effects is obviously a kind of quantum fluctuations since it is due to a noncommu-
tative (uncertainty) relation of quantum mechanics. We call these effects “explicit”
electron correlation effects for many-body systems. Thus, the resulting solution is
beyond the scope of “noninteracting picture”, namely independent particle model, in
other words, beyond any single-determinant wavefunction [68].

Such explicit correlation effects are important for molecular magnetism and the
homolysis type of bond breaking. Here, let us first consider the simplest system, i.e.
hydrogen molecule. The “noninteracting picture” type of wavefunction is expressed
with molecular orbital (MO) model

∣

∣�R
0

〉 = ∣

∣φbondφ̄bond
〉 = 1√

2
|S〉 + 1√

2
|I〉 (22-2)

where φbond and φ̄bond are α and β molecular orbitals (MO), respectively. The right-
est side in Eq. (22-2) indicates that the noninteracting wavefunction is an equivalent
superposition of covalent (quantum singlet: S) state and ionic (I) configurations in
the valence-bond (VB) CI approach [63].

This picture is appropriate for the stable chemical bond, but not appropriate for
dissociation of the chemical bond. A ground-state configuration,

∣

∣�R
0

〉

that is de-
termined for a mean-field Hamiltonian, Ĥ0 + V̂eff, is always disturbed by transi-
tions to excited configurations as described above, resulting in a multideterminant
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ground-state wavefunction. Since the most important transition is from the bonding
state

∣

∣φbondφ̄bond
〉

to the antibonding state
∣

∣φantibondφ̄antibond
〉

in this case, the resulting
wavefunction becomes the 2× 2 CI form.

∣

∣�CI
0

〉 = Cbond
∣

∣φbondφ̄bond
〉− Cantibond

∣

∣φantibondφ̄antibond
〉

= Cbond − Cantibond√
2

∣

∣S
〉+ Cbond + Cantibond√

2

∣

∣I
〉

(22-3)

The weight of pseudo double excitation in Eq. (22-3) is a measure of diradical char-
acter in chemistry. Under the above situation, the closed-shell HF (RHF) solution
∣

∣φbondφ̄bond
〉

suffers the triplet instability, and it is reorganized into a more stable
unrestricted HF (UHF) solution [69–71],

∣

∣�U
0

〉

consisted of the different orbital for
different spins (DODS) type of molecular orbitals,

ψU
α = cos θφbond + sin θφantibond, ψU

β = cos θφbond − sin θφantibond (22-4)

We then have a plain expression of
∣

∣�U
0 (I)

〉

with using the triplet term |T〉,

∣

∣�U1
0

〉 = ∣

∣ψU
α ψ̄

U
β

〉 = 2 cos2 θ − 1√
2

|I〉 + 1√
2
|S〉 + sin 2θ√

2
|T〉, (22-5)

Eq. (22-5) can be further transformed into another expression using a classical spin
term, |C〉 = (|S〉 + |T〉)/√2 [63],

∣

∣�U1
0

〉 = 2 cos2 θ − 1√
2

|I〉 + 1− sin 2θ√
2

|S〉 + sin 2θ√
2
|C〉. (22-6)

This expression shows that the UHF solution reduces to the RHF solution for the
noninteracting limit (θ → 0) and the classical spin solution for the strongly corre-
lated limit (θ → π/4), respectively.

Limθ→0
[∣

∣�U1
0

〉] = Limθ→0
[∣

∣�U2
0

〉] = ∣

∣�R
0

〉

. (22-7)

Limθ→π/4
[∣

∣�U1
0

〉] = −Limθ→π/4
[∣

∣�U2
0

〉] = |C〉. (22-8)

where
∣

∣�U2
0

〉

is the other UHF solution which is, as a partner of
∣

∣�U1
0

〉

, given by

∣

∣�U2
0

〉 = ∣

∣ψU
β ψ̄

U
α

〉 = 2 cos2 θ − 1√
2

|I〉 + 1√
2
|S〉 − sin 2θ√

2
|T〉. (22-9)

At the dissociation limit (θ → π
/

4), the ionic term correctly vanishes and Neel-
ordered classical configuration develops.
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Since UHF(I) and UHF(II) solutions are degenerate in energy, the in-phase
combination of them provides the pure singlet wavefunction which corresponds to
Eq. (22-3), whereas the out of phase combination gives the triplet wavefunction |T〉.
The resonating UHF solution for the singlet state reduces to the pure covalent term
in the VB theory at the dissociation limit.

Limθ→π/4
[∣

∣

∣�
Res−HF
0

〉]

= Limθ→π/4
[(∣

∣

∣�
U1
0

〉

+
∣

∣

∣�
U2
0

〉)/√
2
]

= |S〉 . (22-10)

Therefore Eq. (22-10) is just the zero-th order description of the antiferromagneti-
cally coupled diradicals in the theory of the kinetic exchange mechanism [72, 73].
Then, the ionic configuration, |I〉, is mixed with |S〉, yielding a multidetermi-
nant (valence-bond (VB) configuration interaction (CI)) wavefunction, CS |S〉 +
CI |I〉 ( |CS| >> |CI | ) that is similar to the wavefunction given by Eq. (22-3).

The orbital mixings in Eq. (22-4) become necessary for several chemical bonds
in quasi-degenerate electronic systems, providing UHF and more general HF (GHF)
solutions depending on electron and spin correlation effects for systems under con-
sideration [74]. A lot of electronic and spin states become feasible for these systems,
and these states are often nearly degenerate in energy. This entails the multiconfigu-
ration theory for appropriate description of these quasi-degenerate electronic states.

22.2.2. MR CI for Nondynamical Correlations

The electronic and spin states of quasi-degenerated electronic systems can be de-
scribed using full configuration interaction (FCI) method as shown in standard text-
books of quantum chemistry [8],

∣

∣

∣�
FCI
0

〉

=
(

c0 +
∑

ar
cr

aa+r aa +
∑

abrs
crs

aba+r a+s abaa + . . .
)

∣

∣�R
0

〉

. (22-11)

The second and third terms in the parenthesis indicate that electrons in the ground-
state configuration excite from the occupied orbitals (a, b, . . . ) to the unoccupied
orbitals (r, s, . . . ). However, applicability of FCI is limited to rather small molecules,
indicating the necessity of reduction of number of configurations for large molecules.
In fact, selection of active orbitals and active electrons is crucial for so-called MR CI
approach [1–3]. To this end, the first order density matrix of the UHF and generalized
HF (GHF) solutions has been diagonalized [4–7] as a first step to consider quantum
correction to the broken-symmetry (BS) (unrestricted) Hartree-Fock (UHF or GHF)
mean-field solution [69–71].

ρ (r1;r2) =
∑α,β

σ
ψU+
σ (r1) ψ

U
σ ( r2) =

∑

i
niφ

+
i (r1) φi (r2). (22-12)
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0.0 < ni< 2.0

ni ~ 2.0

ni ~ 0.0

Active space

Inactive space

Secondary
space

ni = 2.0Frozen closed
-shell core

Frozen virtual
space

Figure 22-1. Division of orbital space based on UHF natural orbital analysis

where φi and ni denote, respectively, UHF (GHF) natural orbitals (U(G)NOs) and
their occupation numbers. The U(G)NOs are classified into five groups using occu-
pation numbers as illustrated in Figure 22-1

(1) Frozen closed-shell orbitals (FCO)
(2) Inactive space consisting of closed-shell orbitals (CO) for which ni∼=2.0.
(3) Active space (AO) consisting of partially filled orbitals (0.0 < ni < 2.0), which

are closely related to nondynamical correlations responsible for instability of the
mean-field HF solution.

(4) Secondary space consisting of virtual orbitals (VO) for which ni∼=0.0.
(5) Frozen virtual orbitals (FVO).

The full CI is usually performed within active space (AO) in the group (22-3)
of the above classification, leading to reduction of FCI in Eq. (22-11) into UNO
complete active space (CAS) CI.

�
FCI(group 3)
0 = �UNO CAS

0 =
∑

i
ai�i. (22-13)

The CAS (MO) CI wavefunction can be transformed into the VB CI one [5]. To this
end, the localized natural orbitals (LNO) for active orbital space were defined as the
broken symmetry molecular orbitals (Eq. 4) at the strong correlation limit.

φa = (φbond + φantibond) /
√

2,φb = (φbond − φantibond) /
√

2 (22-14)

The LNO are indeed useful for VB type explanation of UNO CAS CI [6].
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The UNO CAS space in the group (22-13) is relatively small since it is only
responsible for nondynamical correlation relating to triplet instability [4–6, 20].
For well-balanced description of both ground and excited states, the CAS space is
expanded with covering all of the excitations among valence electrons in valence
orbitals,

∣

∣

∣�
CASSCF
0

〉

=
(

c0+
∑

active
orbitals

ar
cr

aa+r aa+
∑

active
orbitals

abrs
crs

aba+r a+s abaa + . . .
)

∣

∣�R
0

〉

,

(22-15)

where trial MOs such as UNO are re-optimized using the multiconfiguration self-
consistent field (MCSCF) technique. This method is now called complete-active-
space (CAS) SCF [75]. In the CASSCF wavefunction, all of low-lying electronic
configurations are included so that it is appropriate for describing qualitative features
of chemical reactions and excited states. In fact, if the active space is large enough,
the CASSCF wavefunction includes all effects related to chemical bonding, other
than relativistic effects and finite-temperature effects. However, as the number of
active orbitals and active electrons increases linearly if the system size increases,
the CASSCF method becomes at least an NP-hard problem [76, 77]. Also, from the
viewpoint of ab initio theory, dynamical correlations that are missed in Eq. (22-15)
should be covered for the quantitative discussions. Of course, if we cover such re-
maining effects using CI, i.e., use multireference CI (MRCI), we turn back to the
size-extensivity problem [8]. Then the second-order perturbations based on CAS are
used for the purpose [78, 79].

22.2.3. Coupled-Cluster Method and Size Consistency Condition

The coupled-cluster (CC) theory [10–57] is, on the other hand, based on an expo-
nential type of expansion, and therefore covers higher-order excitations

∣

∣�CC〉 = exp
(

T̂
)|�〉. (22-16)

Here T consists of excitation operators with normal order from the reference func-
tion, |�〉. The CC equations to obtain

∣

∣�CC
〉

is given by

〈�| exp
(

−T̂
)

Ĥ exp
(

T̂
)

|�〉 = E, (22-17)

〈�| Ô exp
(

−T̂
)

Ĥ exp
(

T̂
)

|�〉 = 0, (22-18)

where Ô is an arbitrary excitation operator. A remarkable point is that in the CC
theory, in contrast to the CI theory, the energy is not equivalent to the expectation
value for Hamiltonian of the CC wavefunction given by Eq. (22-16). There are many
excellent review articles and textbooks for coupled-cluster theories [22–43], in which
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theoretical foundations, various versions, and applications of the CC theories are
described in detail. An important point here is that, if the reference function is a
single-determinant or the complete-active-space (CAS) type of wavefunction, the
linked-cluster theorem holds, the CC theories being size-extensive theories. Thanks
to this size-extensive feature of the electron correlation effects, this type of expan-
sion is superior to the usual type of CI expansion such as SDCI and MRCI for
large-size systems. If we employ the excitation operator T including all possible
single excitations, the CC calculations provide better densities than the CI calcu-
lations do. This is also highly desirable for molecular dynamics studies based on
ab initio theories since the accuracy of the forces relies on the densities calculated
by ab initio theories due to the Feynman’s electrostatic theorem. Further, because
the CC theory includes infinite series of expansion, this theory could treat with the
correlated systems, for which the same order perturbation theory does not work due
to the large remaining electron correlation effects beyond |�〉. For this reason, the CC
theory is not only well-established high-quality one for molecular systems, but also
effective one for the condensed matter-systems. In fact, this type of approximation
is also used to cover the quantum spin effects of magnetic systems within model
spin Hamiltonians [27]. However, the correct dissociation of chemical bonding is
another issue for the CC theory. If we persist in spin-restricted single-determinant
CC (RCC), the “size-consistency” in total meaning is not achieved because of the
perturbative treatment of the CC equation. In fact, we showed that the RCCSD
method fails to describe the correct dissociation limits of covalent bonds where the
orbital energies of bonding and corresponding antibonding orbitals become quasi-
degenerate [32]. The convenient prescription for this problem is to remove the re-
striction of symmetry, i.e. to use spin-unrestricted CC (UCC) method [18, 19]. If we
have to care about the symmetry of the systems (for instance to investigate stable
geometries of radical species), it is better to apply quantum corrections described
later. Otherwise we have to select a “CI compromise” [39, 75] or MR-CC described
just below.

22.2.4. MR CC for Nondynamical and Dynamical Correlations

Here, we describe a minimum review of the MRCC theory for the convenience of
later discussions. For the complete description and other recently developed methods
related to MRCC theories, please refer to review excellent articles and comprehen-
sive comparative studies (for example refs. [18, 23, 25, 37, 46, 56]). Late 1970’s,
several versions of MR CC have been presented for quasi-degenerate electronic sys-
tems [14–16, 18]. We have proposed use of UNO CASCI zero-order wavefunctions
as trials of MR CC approach for the purpose [20]. The UNO CASSCF (MCSCF)
wavefunction has been expressed with the MRCC formulae by the use of the single
(T1) excitation operator:

�UNO CASSCF
i = �UNO CASCCS

i = eT1�UNO CAS
0 . (22-19)



Instability in Chemical Bonds 629

The orbital relaxation effects for UNO CASCI can be incorporated with the T1 op-
erator. The dynamical correlation correction is further considered for quantitative
purpose. The double-excitation operator is used as

�MRCCSD
i

∼= �UNO CASCCSD
i = eT1+T2�UNO CAS

0 . (22-20)

Thus UNO CASCC is regarded as a direct extension of UNO CAS CI starting from
broken-symmetry (BS) UHF and GHF calculations for qausi-degenerated systems
[19, 20]. However, since MRCCSD computations were too difficult at that time,
MRCI with Davidson correction [2] was employed to obtain the higher-order correc-
tion for excitation spectra of several peroxides [7, 20, 80].

Early 1980’s, the multireference version of coupled-cluster (MRCC) theories for
open-shell systems has been formulated extensively. Since the theoretical founda-
tion of the MR-CC theory is not straightforward, many formulae have been derived
recently. In addition, as the numerical treatment is also complicated, the various pro-
cedures are proposed and implemented. Lindgren and Mukherjee [23] classified var-
ious MR-CC theories with respect to (i) the model space and (ii) the wave operator.
In particular, the choice of the model space determines the theoretical framework
of the MRCC theory: if the number of valence electrons is fixed as in the usual
ab initio theories, the formulation of the MR-CC theory is based on the n-valence
Hilbert space. On the other hand, it is possible to formulate the MR-CC theory, with
which the systems with the numbers of valence electrons ranging from zero to n are
treated simultaneously. In this case, the theory is based on the Fock space. Therefore
the two types of the MR-CC theories are referred to as the Hilbert-space and the
Fock-space approaches, respectively. Theorists of MRCC have taken special cares
for the diagrammatic connectivity that is directly related to the size-extensivity, a
most fundamental characteristic of the CC theory. Our present interest is on systems
with fixed-number electrons, so we here describe only the Hilbert-space MRCC the-
ory briefly.

In the Hilbert space MR-CC theory, we first divide the Hilbert space into the
model space and its complementary space using projection operators, P, and Q,

Î = P̂+ Q̂, (22-21)

where P is a projection operator to a specific zero-order reference space,
{∣

∣�i
0

〉}

i,

∧
P =

∑

i

∣

∣�i
0

〉 〈

�i
0

∣

∣. (22-22)

Then it is assumed that the exact wavefunction,
∣

∣� i
0

〉

can be written as a cluster

expansion around a reference function,
∣

∣�i
0

〉

using an wave operator, #̂,

∣

∣� i
0

〉 = #̂ ∣

∣�i
0

〉

. (22-23)
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We then have an effective multireference equation given by,

Ĥeff
∣

∣� i
0

〉 = #̂−1Ĥ#̂Ei
∣

∣�i
0

〉

. (22-24)

with a Bloch equation to determine the wave operator,

Ĥ#̂Ĥ = #̂P̂ĤeffP̂. (22-25)

An explicit form of the wave operator # is given by Jeziorski and Monkhorst

#̂ =
∑P

i=1
exp

(

T̂ i
)

∣

∣� i
0

〉 〈

� i
0

∣

∣, (22-26)

in which different exponential operators are applied on every reference functions,
{∣

∣�i
0

〉}

i [22]. Thus the wavefunction is given by,

∣

∣

∣�
j
0

〉

=
∑P

i=1
Cji exp

(

T̂ i
)

∣

∣� i
0

〉

. (22-27)

The MR-CC based on the Jeziorski and Monkorst’s ansatz is called state universal
(SU) type. The SU formalism provides the accurate results on each state [19, 23, 48,
51] but leads to the complicated situations that is difficult to control, for example
spin quantum number of each state simultaneously.

To reduce the manipulative complexity, a straightforward way is a state-specific
(or state-selective) (SS) method where an effective Hamiltonian is constructed as SU
formalism, but just the specific exponential is used in the state-specific wave opera-
tor. Note that the problem (the effective equation) is for multistates (MS), so this is
referred to as SS-MS MR-CC. The SS-MS MR-CC involves a redundancy problem
to determine the CC amplitudes. To resolve the problem using manipulations on the
wavevector and the CC equation, there are several branches within SS MR-CC such
as Mk-MRCC [39] and Brillouin–Wigner (BW) MRCC [41].

Further simplifications are possible with reducing the set of reference functions,
{∣

∣�i
0

〉}

i to one reference function, |�0〉, being “state-specific single-state MR-CC
(SS-SS MR-CC)”. Even within this simplest subgroup of MRCC theories, there are
many variants with respect to the cluster operator, the reference function, and other
devices [32, 43, 45]. Since we would like to use MRCC to provide the precise de-
scription of exchange-coupled systems, the CAS-CC type of methods in Eq. (22-13)
is desirable. For this case, the formulation is similar to the single-reference restricted
CC theory, of which the energy of the state is given by,

E0 =
〈

�CAS
0

∣

∣

∣ exp
(

−T̂
)

Ĥ exp
(

T̂
)∣

∣

∣�
CAS
0

〉

. (22-28)

As the implementation of the SS-SS MRCC is similar to that of MRCI [1–7],
the size-extensive correction to MRCI would be closely related to the SS-SS MRCC
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[18, 20]. Szalay and Bartlett have developed an intermediate method between SS-SS
MRCC and MRCI methods called as multi-reference averaged quadratic coupled-
cluster (MRAQCC) method, in which size-extensivity of MRCI is improved [29].
One might argue that there is a problem due to the simplification to the single-state
version, which is known as the intruder states problem for the single-state CAS based
perturbation theory (CAS-PT2) [76, 77] for geometry changes that make several
states quasi degenerate. However judging from their applications [43], missing “mul-
tistate” characteristics in the SS-SS MR-CC theory is not severe compared with the
CAS-PT2, leading to a relatively small CAS in Eq. (22-13).

22.2.5. Spin Unrestricted Coupled-Cluster Method

Besides the MR-CC theories described above, the spin-unrestricted CC (UCC) the-
ory also correctly describes the homolysis of covalent bonds and polyradicals. The
UCC wavefunction becomes closer and closer to the full CI if the excitation opera-
tors are expanded as single (S), double (D), triple (T) and so on, though the broken
symmetry UHF solution is taken as the zero-th order reference function.

We can see from Eq. (22-8) that the description of diradicals becomes a classical
like spin ordering (C), which is different from Eq. (22-10) that represents a quantum
singlet spin ordering. This is due to the third term at the rightest side in Eq. (22-5)
that is the well-known triplet (T) contaminant term of the UHF solution, implying
that this UHF wavefunction

∣

∣�U
0

〉

is a spin “broken-symmetry” solution. The UCC
wavefunction is generated with a coupled-cluster expansion of the UHF reference,

∣

∣

∣�
UCC
0

〉

= exp
(

T̂
)

∣

∣�U
0

〉

. (22-29)

Although the spin-contaminations are suppressed due to the quasi-multiconfiguration
nature of coupled-cluster expansions of UCC, the broken-symmetry feature remains
if the excitation operators are truncated.

The use of the broken-symmetry solutions to describe radical species, homolysis
of chemical bonds, and the open-shell transition metal systems [19, 69–71] are now
widely accepted. In particular, spin-unrestricted DFT, of which solutions have char-
acteristics similar to Eqs. (22-4), (22-5), (22-6), (22-7) and (22-8), become a standard
tool [81, 82]. In fact, magnetic states in transition metal systems often involve spin-
orbit interactions so that we do not have to insure the spin-symmetry of the solutions.
In addition, the quantum spin effects decrease as the system size increases, because
the frequency of spin axis rotation of each sub-lattice that is required to recover the
quantum spin state is a function, J

/

(h̄N), of magnetic interaction J and the number
of magnetic sites N, reducing to zero as the N increases [72]. For this reason, the
classical spin ordering (Neel ordering: broken-symmetry state) is actually observed
as the most stable spin state in antiferromagnetic solids [72, 73]. Also for molecular
systems, quantum effects depend on the molecular sizes, the spin magnitudes on the
spin sources, and environments including finite temperature effects. For instance,
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the ESR spectrum of phenalenyl radical dimer in solution indicates that the dimeric
unit forms the quantum spin singlet [83]. For chromium dimers, it was reported that
the quantum spin correction for UB3LYP solutions considerably affects equilibrium
geometries [63, 64]. For the molecular systems that quantum spin effects are strong,
the quantum corrections for UCC solutions are needed. In the following sections, we
shall describe several quantum corrections we proposed.

22.2.6. Approximated Spin-Projected UCC (APUCC) theory

In the field of quantum chemistry and nuclear physics, several types of quantum
correction techniques [58–64, 84–87] have been proposed to recover the broken-
symmetry solutions since spin and angular momentum are good quantum numbers
for small molecular systems and nuclear systems, respectively. The first is the usual
projection operator technique of quantum mechanics that is known as the Löwdin
projection [84] in quantum chemistry. The method usually truncates up to some
low-lying spin states to project out [85], which sometimes causes some errors: for
instance the effective interactions computed with the projected UMP do not reduce
to zero at the no magnetic interaction limit [88]. The second is called the Peierls–
Yoccoz scheme [86], which is originally used to recover the angular momentum of
the deformed nucleus in the field of nuclear physics. This method is also introduced
in molecular systems, but it requires an additional numerical integration in prac-
tice [86].

We have proposed several versions of spin-projection schemes based on spin-
multiplets energy levels with the Heisenberg (HB) model, which is generally used
in the theory of molecular magnetism [58–64]. It is the most convenient projection
method concerning the procedure and the computational cost. Now we again con-
sider the simplest model consisting of two magnetic sites for simplicity. This system
can be described with the Heisenberg Hamiltonian,

ĤHB = −2JŜ1 · Ŝ2. (22-30)

Assuming we can use ab initio results for energies and spin-correlation functions of
the Heisenberg model,

ELS
HB = −2J

〈

Ŝ1 · Ŝ2

〉LS

HB
, EHS

HB = −2J
〈

Ŝ1 · Ŝ2

〉HS

HB
, (22-31)

we obtain the J value of the ab initio results [63],

J = ELS
X − EHS

X

2

(

〈

Ŝ1 · Ŝ2

〉HS

X
−
〈

Ŝ1 · Ŝ2

〉LS

X

) , X = any ab initio method. (22-32a)
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As we treated with the magnetic states described by the Heisenberg model, we can
assume that the on-site spin expectation value of the low-spin state is identical to that
of the high-spin state,

2
〈

Ŝ1 · Ŝ2

〉LS

X
− 2

〈

Ŝ1 · Ŝ2

〉HS

X
=
〈
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2〉LS
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−
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i
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2
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)

∼=
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−
〈

Ŝ
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X

,

(22-33)
we finally have

J = ELS
X − EHS

X
〈

Ŝ
2〉HS

X
−
〈

Ŝ
2〉LS

X

, X = any ab initio method. (22-32b)

Exploiting the Heisenberg model further, we obtain the approximated U − X (X =
DFT, MP, CC) corrected energy for the low-spin state,

ELS
APU−X = ELS

U−X − J

(

S(S+ 1)−
〈

Ŝ
2〉LS

U−X

)

, (22-34)

where S(S+ 1) is the correct spin eigenvalue for the low-spin state.
This method is easy to be implemented and applicable to any types of spin broken-

symmetry theories [58–64]. For the coupled-cluster theories, however, it is not triv-

ial to compute
〈

Ŝ
2〉

UCCSD
. In the following, we use an approximated expression

of
〈

Ŝ
2〉

UCCSD
proposed by Purvis et al. (PSB) [24]. A more accurate expression

of
〈

Ŝ
2〉

UCCSD
, which is based on the Helllmann–Feynman theorem, is derived by

Chen and Schlegel (CS) [31], but the differences between PSB and CS are smaller
than 0.004 on values for a wide range of interatomic distances of hydrogen fluoride.

Therefore hereafter we employ the PSB estimation of
〈

Ŝ
2〉

UCCSD
for the APUCC

theory.

22.3. RESONATING CONFIGURATION INTERACTION METHOD
BASED ON SPIN-UNRESTRICTED COUPLED CLUSTER
SOLUTIONS

22.3.1. Resonating Hartree–Fock Configuration Interaction Method

Next we turn to the resonating configuration interaction (Res-CI) approach based on
broken symmetry solutions. We first proposed this method [65–67] as a simplified
version of the resonating Hartree–Fock SCF theory developed by Fukutome [89].
After the publications of refs [65–67], we noticed that there are several approaches
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similar to Res-HF CI implemented by the precursors [90–93]. However, since the
Res-CI based on broken-symmetry UCC solutions has not been reported, we would
like to present it here.

In the context of the applications to biradical systems, the resonating CI theory
works as a spin-projection method. As touched in Eqs. (22-5), (22-9) and (22-10),
there are two solutions that compensate each other as shown in Figure 22-2a.
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〉 =
∣

∣
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β

〉

,
∣
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U
α

〉

(22-35)

Using these two UHF solutions, we immediately have the Res-CI solution as,
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(22-36)

This Res-CI wavefunction obviously includes the resonating effects among
∣

∣φU
α φ̄

U
β

〉

and
∣

∣φU
β φ̄

U
α

〉

and is equivalent to a spin-projected UHF (APUHF) solution in this case
[70, 71]. The relation among RHF, UHF, and Res-CI (= APUHF) solutions for this
case is summarized in the Figure 22-2A.

The ion-radical system is another important target of the Res-CI theory. For this
type of systems, weak points of theories we examine are exposed. The quantum
chemists using traditional MR wavefunction methods such as MCSCF and MRCI
have struggled to describe relative stabilities among several low-lying states of
formyloxyl radical, nitrogen dioxide, and other ion-radical species [92–96]. Their
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Figure 22-2. Schematic illustrations of the bifurcation to broken-symmetry (BS) solutions and quantum
corrections using complementary BS solutions
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studies show that it is required to employ the awful computer-demanding method
for many systems if the conventional wavefunction theories based on orthogonal
configurations. In particular, the problem is that the charge-distributions calculated
by ab initio methods often exhibit artificially symmetry-broken feature. Even for the
case of molecular systems consisting of such as HCO2 and NO2, the problem is
complicated because the spatially broken-symmetry of the charge distributions are
coupled with the geometry distortions.

For simplicity we consider cation-radical systems consisting of two sites, in which
we do not limit any conditions for molecular geometries, whether these two sites are
connected via through-space or through-bond interaction paths, and types of envi-
ronments (gas, liquid, protein etc.). In order to clarify the electronic structure, we
pick out the fundamental two parameters, i.e., the transfer between left and right
sides, and the asymmetric degree between left and right sides, illustrating the two-
dimensional space in Figure 22-3. Basically, there are four limits in this space. The
first one is the two-center three electron systems consisting of two equivalent sites
as shown in Figure 22-3i. This is a robust chemical bond with the bond-order 0.5
that can be described by the open-shell restricted Hartree-Fock (ROHF) method. As
the degree of asymmetry increases, the deviation of charge distribution increases.
Then we reach at the ionic chemical bond Figure 22-3ii. The third one Figure 22-3iii
corresponds to the dissociation limit of this ionic bond where the system can be
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Figure 22-3. Two-dimensional parameter space including four limits for two-site ion-radical systems
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described as the sum of cation site and neutral site. The last one is the dissociation
limit of the two-center three electron systems consisting of two equivalent sites as
shown in Figure 22-3iv. From the viewpoint of quantum mechanics, this state is
straightforwardly described as the equivalent superposition of the left (L)-and-right
(R) localized states, (|L〉 + |R〉)/√2. In spite of such a straightforward character, it is
not easy task to reproduce this state by ab initio method, because the delocalization
and localization errors involved in the electronic structure theories we examined are
exposed here [66, 67, 96]. However, the small deviations lift the equivalent superpo-
sition between |L〉 and |R〉, leading to the other limit, Figure 22-3iii.

Recently, we investigated a simplest example of the ion-radical system, He2
+

using various electronic structure methods, and showed that almost all wavefunction
theories such as UHF, UCCSD, CASSCF, fail to describe the limit Figure 22-3iv. All
of these methods lead to two types of charge-localized solutions, the left localized
type, |L〉 and the right localized type, |R〉. We then presented that the resonating CI
using |L〉 and |R〉 solutions yields the correct resonating limit Figure 22-3iv. The
bifurcation to |L〉 and |R〉 solutions and restoration of the delocalized state via the
resonating effects are similar to those of diradical states as shown in Figure 22-2B.
In addition we showed that the Res-CI solutions, satisfy the Perdew–Parr–Levy–
Balduz relation that is an essential condition to describe the limit Figure 22-3iv of the
ion-radical systems [66, 67, 97]. After that we found that some precursors applied
the nonorthogonal CI treatments for this type of problems [90–93]. Of course, the
valence bond (VB) CI is another option [97–99], which is particularly suitable for
radical systems, in which the ionic character of the electronic structure is small. A
CI based on the VB picture has been implemented since the early days of quantum
chemistry [97, 98] and is now a sub-branch of electronic structure theory [99]. A
superior point of the UHF-based Res-CI is the use of UHF canonical orbitals. In
fact, the Res-CI requires smaller number of configurations than the VB CI does.
Furthermore it is possible to efficiently extend the Res-HF CI to resonating-“post-
HF” CI methods as described later.

We assume the systems where there are several types of broken-symmetry solu-
tions, which are described by spin density wave, charge-density wave, bond-order
wave, and even the two-and-three-dimensional spin density waves [89, 100]. For
simplicity, we limit our discussion to the ion-radical type of molecules as presented
in refs. [66, 67]. In this case, the Res-HF CI equation is given by,

[ 〈L| Ĥ |L〉 〈R| Ĥ |L〉
〈L| Ĥ |R〉 〈R| Ĥ |R〉

] [

CL

CR

]

= E0

[ 〈L | L〉 〈R | L〉
〈L | R〉 〈R | R〉

] [

CL

CR

]

. (22-37)

Since 〈L| Ĥ |L〉 �= 〈R| Ĥ |R〉 in general, the Res-CI solution takes the form,

|Res〉 = CL |L〉 + CR |R〉 . (22-38)
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The CI coefficients, {CL, CR}, covers the all range from the completely delocalized
state {1/√2, 1/

√
2}, to the completely localized state ({1, 0} or {0, 1}). Since the Res-

CI equation is just a 2× 2 CI in this case, it could be solved easily.

ERes−CI = 1

S2 − 1

×
(

EUHF +  E

2
− St −

√

(

 E

2

)2

− S t (2EUHF + E)+ S2EUHF E + t2

⎞

⎠ .

(22-39)

Here t ≡ 〈R| Ĥ |L〉, S ≡ 〈R|L〉, EUHF ≡ Min
[〈L| Ĥ |L〉 , 〈R| Ĥ |R〉], and  E ≡

∣

∣〈L| Ĥ |L〉 − 〈R| Ĥ |R〉∣∣. Then all we have to compute are t ≡ 〈R| Ĥ |L〉 and S ≡ 〈R|L〉
to correct the UHF energy, EUHF.

One advantage of using a resonating type of CI is its ability to include both
spin-polarized type of correlations and the quantum many-body fluctuations, which
are usually missed in the spin-unrestricted methods, within the small CI expansion.
However, if the spin-polarization effects are too strong to reduce the transfer and
overlap matrices in Eq. (22-39), the resonating CI energy reduces to the low-lying
UHF energy as,

Limt→0,S→0ERes−CI = EUHF. (22-40)

As is known, the CC expansion around the UHF solution usually suppresses the spin-
polarization effects, so is expect to improve this situation, which is the motivation to
develop the resonating CC CI.

22.3.2. A Straightforward Res-CC CI Method

There are two possible formulation of the Res-CC CI. The first formulation is a
straightforward extension of the Res-HF CI. All we have to do is to replace the UHF
elements by the UCC elements in Eqs. (22-38), (22-39) and (22-40). For instance,
the transfer integral in Eq. (22-40) is given by,
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(22-41)
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for the Res-CC CI method. This method is the convenient version of the cluster
expanded CI method for the following energy.

E = MinCI ,CJ ,T̂I ,T̂J
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Actually, as we fix the amplitudes T̂L, T̂R to those of left-and-right UCC solutions in
the Res-CC CI method, the Res-CI energy is given by,

E = MinCI ,CJ
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Technically, the energy expression given by Eq. (22-42) differs from that of MRCC,
because we don’t remove the unlinked diagram. In practice, we can not only resolve
the size-extensitivity problem, but also yield the correct potential surfaces for any
case, if we choose appropriately the left-and-right UCC solutions.

The problem is that we must resolve is the non-orthogonality of two sets of UHF
orbitals in order to use the Slater–Condon rule for Eq. (22-41), i.e.

〈

ψσL i

∣

∣ψσRj

〉 �= δij, σ = α,β. (22-44)

The developers of valence-bond CI theories have confronted with and considerably
worked out the non-orthogonality problem of atomic orbitals they have employed
as a one-electron basis set for CI [100]. We can take a most simple and straight-
forward prescription for the specific Res-CI, by exploiting the fact that two sets of
nonorthogonal orbitals are UHF canonical orbitals and similar to each other.

In such case, we can apply the corresponding molecular orbital transformation
[101], i.e. a singular value decomposition between two sets of UHF orbitals. In
the following, we shall use “a,b,. . .” and “p,q,. . .” for orbital indices, and “O” and
“V” for subscripts to distinguish occupied and virtual sets. In order to diagonal-
ize the overlap orbitals between two sets of UHF occupied orbitals, [OOO σ ]ab ≡
〈

ψσL a

∣

∣ψσR b

〉

, the Hermitian matrix, O+OO σOOO σ is first diagonalized,

O+OOσOOOσVOOσ ≡ VOOσ�OOσ . (22-45)

UOO σ is defined using the eigenvalues matrix, �OO σ , and the eivenvector matrix,
VOO σ as

UOOσ ≡ OOOσVOOσ�
−1/2
OOσ . (22-46)

Using UOO σ and VOO σ , the overlap matrix can be transferred into a diagonal matrix,
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[oOOσ ]ab ≡
〈

ψ ′σL a

∣

∣ ψ ′σRb

〉 = [

U+OOσOOOσVOOσ
]

ab = δabσ λ
1/2
aσ . (22-47)

In the similar manner, the virtual orbitals are transformed by U+Vσ and VV σ for L and
R types of UHF orbital sets respectively. Strictly speaking, the remaining overlap
matrices,

[

OOV σ
] ≡ [〈

ψσL a

∣

∣ψσR p

〉]

a,p and
[

OVO σ
]

pa ≡
〈

ψσL p

∣

∣ψσR a

〉

, are not zero in
general, but those are expected to be nearly zero matrices because the occupied and
virtual orbital spaces are expected not to overlap considerably each other. In fact, we
confirmed [102] that

〈

ψσL a

∣

∣ψσR p

〉 ∼ 0 and
〈

ψσL p

∣

∣ψσR a

〉 ∼ 0 for any pair of (a, p) for
several parallel-stacking configurations of ethylene dimmer cation [66].

Using these CMOs, we can obtain the left-and-right localized types of the UCCSD
solutions. These are equivalent to those using the canonical UHF orbitals, but enable
us to use the Slater-Condon rule to estimate the transfer matrix of Res-CC CI given
by Eq. (22-41). Unfortunately, the UCC program, by which CC calculations using
arbitrary non-canonical UHF orbitals are possible, is not available at the present time.
Instead, we choose the second type of the Res-CC CI theory as described in the next
section.

22.3.3. A Res-CC CI Method Based on the Ayala and Schlegel Treatment

The second formulation is similar to that of Res-CI MP2 developed by Ayala and
Schlegel [90]. As described above, they developed the nonorthogonal CI that is
equivalent to the Res-HF CI and applied it to the formyloxyl radical. Further they
adopted a second-order perturbation correction to include correlation effects. Fol-
lowing their treatment, we solve the equation

[

EL
UCC tRL

UCC

tLR
UCC EL

UCC

]

[

CL

CR

]

= E0

[

1 SRL
UCC

SLR
UCC 1

] [

CL

CR

]

. (22-48)

in order to obtain the Res-CC energy. Here the diagonal terms of the Hamiltonian
matrix are the CC energies given by,

EUCCSD
L =

〈

�UHF
L

∣

∣

∣Ĥ
∣
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〉
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R

∣

∣

∣Ĥ
∣

∣

∣�
UCCSD
R

〉

. (22-49)

The point is that the intermediate normalization is employed. The transfer term and
overlap term are then taken as the average of two possible forms as,

tRL
UCC = tLR

UCC =
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�UHF
R
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∣

∣Ĥ
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〉

+
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L

∣

∣

∣Ĥ
∣

∣
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R

〉)/

2, (22-50)

SRL
UCC = SLR
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(〈

�UHF
R
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∣ �
UCCSD
L

〉

+
〈

�UHF
L

∣

∣

∣ �
UCCSD
R

〉)/

2. (22-51)

The matrix elements between nonorthogonal determinants are evaluated with ex-
panding one canonical orbital in terms of the other canonical orbitals. Thus, as the
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one determinant is also expanded in terms of the other determinant and its excited
configurations, the Hamiltonian element between �UHF

L and �UHF
R is given by,

〈

�UHF
L

∣

∣ Ĥ
∣

∣�UHF
R

〉 = c0
〈

�UHF
L

∣

∣ Ĥ
∣
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〉

+
∑

cpq
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〈

�UHF
L

∣

∣ Ĥa+p a+q abaa
∣

∣�UHF
L

〉

. (22-52)

Other terms between one-ground configuration and the other excited configurations
can be calculated using similar equations. The expansion coefficients in Eq. (22-52)
can be estimated using cofactors [90]. In this formalism, diagonal elements in
Eq. (22-48) are consistent with those obtained from the UCCSD calculations as
shown in Eq. (22-49). This is slightly different from the straightforward imple-
mentation of the Res-CC CI method described in the previous section, in which
the diagonal terms of Res-CC CI Hamiltonian are given by,

〈

�UCCSD
L

∣

∣ Ĥ
∣

∣�UCCSD
L

〉

and
〈

�UCCSD
R

∣

∣ Ĥ
∣

∣�UCCSD
R

〉

. In the following Res-CC calculations, we employed this
Ayala and Schlegel type of Res-CC CI method.

To our knowledge, this type of theory has not been presented yet. We shall ex-
amine the computational results of this Res-CC CI method, comparing with those of
other methods for simple radical systems in the next section.

22.4. COMPUTATIONAL RESULTS AND DISCUSSIONS

We here present the comparative calculations of several versions of coupled-cluster
theories for simple examples. The programs used are as follows. The RCCSD and
UCCSD calculations are done with using Gaussian 03 [103] and Aces2 [104]. The

later is used to obtain
〈

Ŝ
2
〉

UCCSD
values. The multireference averaged quadratic

coupled-cluster (MR-AQCC) calculations [28] are performed with COLUMBUS
[105]. Further, the multireference coupled-cluster (MRCC) calculations are done the
PSIMRCC code developed by Evangelista and Simmonett [106]. Finally, the resonat-
ing CC theory is implemented in the original Res-CI code developed by Nishihara
[66, 67].

22.4.1. Fluorine Molecule

First, we consider singlet states of F2, for which the dynamical correlation correc-
tions are essential. The valence electrons that contribute to the covalent bond are just
two electrons in the σ -orbital. However, the binding energy estimated by CASCI
[2,2] calculation with 6–311++G [2d, 2p] basis set yields the 11.8 kcal/mol that is
less than one third of the experimental value, 38.3 kcal/mol [107]. This is caused by
the fact that the dynamical correlation effects are essential to reproduce the binding
energies of F2 where many valence closed-shell electrons exist.

In fact, the CAS [2,2]-DFT treatment with using on-top pair density to estimate
spin-polarization effects of DFT correlations enhanced the BE to approximately
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27 kcal/mol, but this is partially due to the semi-empirical feature of Lee–Yang–Parr
(LYP) correlation functional employed [108]. Now we performed the BW-MRCC,
Mk-MRCC, MR-AQCC, UCCSD, and Res-UCCSD CI calculations with using 6-
31G basis set, for which the full CI calculation is feasible. For MRCC, we em-
ployed the CAS[2,2] reference and examined both canonical orbitals and localized
orbitals for reference active orbitals. The results are summarized in Figure 22-4 (A)
together with MR-AQCC and full CI results. As we can see from this figure that the
potential surfaces of both Mk-MRCC and BW-MRCC do not dissociate correctly
when the canonical active orbitals are employed. Evangelista et al. reported that
this “size-inconsistent behavior” is caused by the lack of invariance under unitary
transformation of active orbitals in the MRCC procedure and pointed out that this
behavior is corrected by the use of localized orbitals [54]. In fact, Mk-MRCC and
BW-MRCC results with employing localized active orbitals (LAO) (see Eq. (22-14))
show remarkable improvement for this problem. The BE of Mk-MRCC with LAO
results is similar to those of full CI and MR-AQCC,

The potential curve of F2 with UMP2 exhibits a hump at the intermediary stage of
the dissociation. On the other hand, the Res-MP2 CI by Ayala and Schelegel [90] pro-
vides a smooth curve without the hump for the F2 dissociation. APUMP2 also repro-
duces the Res-MP2 CI curve. In contrast to UMP2 and complicated situations con-
cerning reference orbitals in MRCC results, the UCCSD results provide the smooth
(no hump) and “size-consistent” potential surface as shown in Figure 22-4b. The
BEs of these two results are, however, considerably smaller than that of full CI. The
resonating CI treatment followed the UCCSD calculations does not change the situ-
ation. Rather, the spin-projected UCCSD (APUCCSD) yields BE of 21.4 kcal/mol,
which is a better value than that of Res-CC CI: note that the spin correction term in
Eq. (22-34) is crucial even at UCCSD level. For degenerate (magnetic) systems, it is
noteworthy that APUCCSD and Res-CC CI results give the correct dissociation limit.

(a) (b)

Figure 22-4. Potential surfaces of F2 calculated by (a) MRCC, MRAQCC, and (b) UCCSD, APUCCSD,
Res-CCSD, together with Full CI methods
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22.4.2. Manganese Dimer

As a typical example for strong correlated systems with weak magnetic interacting
systems, we calculate manganese dimmer (Mn2). Up to a few years ago, chemical
bonding and magnetic interaction of this species were in controversy [109, 110]. The
stability of the singlet state had been shown by several experiments in the rage-gas
matrix [109], while the DFT researchers had suggested that the high-spin coupling
is favorable for the Mn–Mn interaction [110]. Recently, it was reported that mul-
tireference perturbation theory (MRMP2) calculations yield spectroscopic constants
similar to those of experimentally reported values and the singlet ground state of
Mn2, supporting experimental data [109]. After that, we examined various types of
DFTs and concluded that the high-spin stability of the DFT results is due to the
self-interaction error, which causes overstabilizing a high-spin state [110]. A reason
of this confusing situation is that the straightforward covalent bonding is hindered by
four 4s electrons, resulting in the weak antiferromagnetic interactions. To describe
this system correctly, both nondynamical and dynamical correlation effects have to
be covered accurately. However, the MRCC calculations are not feasible for this
system, because there are 14 active electrons in 12 active orbitals. Figure 22-5 shows
the potential surfaces of 1Σ+g and 11Σ+u states calculated by UCCSD(T) with the
Wachter set with f orbital. Also APUCCSD(T) results are presented where the UMP2
spin expectation values are used for spin-projection. As shown in this figure, 1Σ+g
and 11Σ+u states are nearly degenerate, so spin-projection correction is small for this
system with local spin (S1(2) = 5/2) (see Eq. (22-30)). In other word, UCCSD(T)∼
APUCCSD(T)∼Res-CCSD(T) CI holds in this case. This result is consistent with the

Figure 22-5. Potential surfaces of low-spin (LS) and high-spin (HS) states of Mn2 calculated by
UCCSD(T) and APUCCSD(T) methods
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weak antiferromagnetic interaction J ∼ −9 ± 3 cm−1: note that J = −9 cm−1 with
ESR and J =∼ −10.3± 0.6 cm−1 with MCD [109]. In addition, the binding energy
is approximately 0.05 eV, being also comparable to the experimental one (0.1 eV).

These results show that APUCCSD(T) is efficient for describing the strong cor-
related low-spin systems with weak antiferromagnetic interaction and UCCSD(T)
involving lower-lying paramagnetic configurations is responsible for temperature-
dependent paramagnetic state, namely broken-symmetry (BS) one. On the other
hand, applicability of DFT is often limited in the case of strongly correlated electron
systems.

22.4.3. He+
2 Systems

Next we shall turn to He2
+ system. This is a simplest example of ion-radical systems,

which have been accepted great interest in relation to many-electron self-interaction
errors of DFT [66, 67, 111]. We present the potential surfaces calculated by UHF,
UB3LYP, CASSCF [3, 12] and UCCSD methods with employing aug-cc pVTZ basis
in Figure 22-6a. As is known, the potential surface of UB3LYP does not correctly
dissociate to the dissociation limit energetically, because of the many-electron self-
interaction error of the UB3LYP functional. The delocalized charge distributions of
B3LYP shown in Figure 22-6b are also the results of this error. On the other hand,
the UHF, CASSCF [3, 12], and UCCSD methods yield correct potential surfaces.
However the localization errors in these solutions are shown as Mulliken charges
of the relatively anionic site of He2

+ for large intersite distances in Figure 22-6b.
In other worlds, these methods are not effective for the resonating limit (iv) in Fig-
ure 22-3. A noteworthy point is that the localized CASSCF solutions become most
stable for large intersite distances, although 1s, 2s, 2p, and 3s orbitals are included
in the variational space.

(a) (b)

Figure 22-6. (a) Potential surfaces and (b) Charge distributions at relatively negative site of He2
+ calcu-

lated by UB3LYP, UHF, CASSCF, UCCSD, and Res-CCSD CI methods.
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Interestingly, the coupled-cluster expansion for UHF solutions improves the sud-
den charge-separation for the change of intersite distance, but it also leads to com-
pletely localized solutions for the distances larger than 4 Å. Then we implemented
Res-CCSD CI calculations with employing the left-and-right localized UCCSD solu-
tions. Although, as shown in Figure 22-6a, the stabilization energies with resonating
CI treatment is considerably small, the Res-CC CI provides the correct energy sur-
face and correct charge distributions for He2

+ system. We further examined the en-
ergy dependence of the Res-CC CI binding energy on charge distribution of He2

+. It
can be seen in Figure 22-7 that the energy profile for the various charge distributions
becomes approximately flat at the intersite distance 10 Å, i.e.,

ERes−CC CI
(

He+ He+
) = ERes−CC CI

(

Heω+ + He(1−ω)+
)

= ERes−CC CI
(

He+ + He
)

. (22-54)

This implies that the Res-CC CI satisfies the PPLB condition [8], which is essential
to describe the region near the resonating limit, (iv) in Figure 22-3.

Next we intend to examine the small perturbation effects on these Res-CC CI
solutions due to asymmetric degree of freedom in Figure 22-3. For this purpose, we
introduce an artificial negative point charge placed at 10 Å from the one site on the
line of He2

+, which is illustrated in Figure 22-8. The point charges examined are
X = 0 (no point charge), −0.01, and −0.0001 Hartree, of which the energy scales as
perturbations are approximately 0, 0.001, and 0.00001 Hartree, respectively for the
total energy, but it does not have significant impact on the potential surface because
the deviations are expected to be mostly cancelled over the potential surface. On the

Figure 22-7. Dependence of the Res-CCSD CI binding energies on charge distributions for He2
+
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R10Å

–X

Figure 22-8. Schematic illustration of He2
+ + point charge model

other hand, there are significant features for responses of the charge distributions to
these perturbations.

Figure 22-9 shows the charge distributions of UHF, UCCSD, Res-CC CI solu-
tions on relatively anionic site of He2

+ plus a point charge system. For asymmetric
cases, we also present the full CI results. As we can see from this figure, UHF and
UCCSD results are not affected by these point charges, implying that the localization
errors of these approximations dominate over small asymmetric perturbations near
the symmetric region of Figure 22-3. On the other hand, the response of Res-CC
CI charges to the perturbations is remarkably large, which is quite similar to that of
full CI. These results imply that the Res-CI treatment followed UCCSD calculations
is essential to cover the quantum fluctuations around the resonating limits (iv) in
Figure 22-3.

Figure 22-9. Mulliken distributions of the cationic site for the He2
+ + point charge model. The numbers

in parentheses are the magnitudes of the point charges
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