
Fernando Castor
Yu David Liu (Eds.)

 123

LN
CS

 9
88

9

20th Brazilian Symposium, SBLP 2016
Maringá, Brazil, September 22–23, 2016
Proceedings

Programming
Languages

Lecture Notes in Computer Science 9889

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Fernando Castor • Yu David Liu (Eds.)

Programming
Languages
20th Brazilian Symposium, SBLP 2016
Maringá, Brazil, September 22–23, 2016
Proceedings

123

Editors
Fernando Castor
Universidade Federal de Pernambuco
Recife
Brazil

Yu David Liu
State University of New York
Binghamton, NY
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-45278-4 ISBN 978-3-319-45279-1 (eBook)
DOI 10.1007/978-3-319-45279-1

Library of Congress Control Number: 2016948600

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

This volume contains the proceedings of the 20th Brazilian Symposium on Programing
Languages (SBLP 2016), held during September 22–23, 2016, in Maringá, Brazil.
SBLP is a well-established symposium, promoted by the Brazilian Computer Society
since 1996, and provides a venue for researchers and practitioners interested in the
fundamental principles and innovations in the design and implementation of pro-
gramming languages and systems. Since 2010, SBLP has been organized in the context
of CBSoft (Brazilian Conference on Software: Theory and Practice), co-located with a
number of other events on computer science and software engineering.

The Program Committee of SBLP 2016 was formed by 41 members from 10
countries. The symposium received 29 submissions, including 2 short papers, with
authors from 9 different countries. Each paper was reviewed by at least three reviewers
and most of them by four. Papers were evaluated based on their quality, originality, and
relevance to the symposium. The final selection was made by the program co-chairs,
based on the reviews and Program Committee discussion. The final program featured a
keynote talk by co-chair Yu David Liu (State University of New York, Binghamton),
12 papers in English, and 3 papers in Portuguese. The latter were presented at the
conference but are not included in these proceedings.

We would like to thank the authors, the reviewers, and the members of the Program
Committee for contributing to the success of SBLP 2016. We also want to thank the
members of the Organizing Committee of CBSoft 2016, for all their help and support,
and EasyChair, for once again making the paper submission process smooth and for the
invaluable help in organizing these proceedings. We do not want to conclude without
expressing our gratitude to Alberto Pardo, chair of the SBLP Steering Committee and
chair of the previous edition of SBLP, for all his support at the different stages of the
organization of the symposium.

September 2016 Fernando Castor
Yu David Liu

Organization

Program Committee

Luis Barbosa University of Minho, Portugal
Thiago Bartolomei LogicBlox, USA
Mariza Bigonha Federal University of Minas Gerais, Brazil
Roberto Bigonha Federal University of Minas Gerais, Brazil
Christiano Braga Fluminense Federal University, Brazil
Carlos Camarão Federal University of Minas Gerais, Brazil
Francisco Carvalho-Junior Federal University of Ceara, Brazil
Fernando Castor Federal University of Pernambuco, Brazil
Marcelo d’Amorim Federal University of Pernambuco, Brazil
Fernando Pereira Federal University of Minas Gerais, Brazil
João Fernandes University of Beira Interior, Portugal
João F. Ferreira Teesside University, UK and HASLab/INESC TEC,

Portugal
Ismael Figueroa Pontifical Catholic University of Valparaíso, Chile
Alex Garcia Military Institute of Engineering, Brazil
Rodrigo Geraldo Ribeiro Federal University of Ouro Preto, Brazil
Roberto Ierusalimschy Pontical Catholic University of Rio de Janeiro, Brazil
Rafael Lins Federal University of Pernambuco, Brazil
Yu David Liu State University of New York at Binghamton, USA
Hans-Wolfgang Loidl Heriot-Watt University, UK
Marcelo Maia Federal University of Uberlândia, Brazil
Manuel A. Martins University of Aveiro, Portugal
Fabio Mascarenhas Federal University of Rio de Janeiro, Brazil
Sérgio Medeiros Federal University of Rio Grande do Norte, Brazil
Ana Milanova Rensselaer Polytechnic Institute, USA
Alvaro Moreira Federal University of Rio Grande do Sul, Brazil
Martin Musicante Federal University of Rio Grande do Norte, Brazil
Bruno C.D.S. Oliveira The University of Hong Kong, China
Zachary Palmer Swarthmore College, USA
Alberto Pardo University of the Republic, Uruguay
Gustavo Pinto Federal Institute of Pará, Brazil
Louis-Noel Pouchet Ohio State University, USA
Zongyan Qiu Peking University, China
Andre Rauber Du Bois Federal University of Pelotas, Brazil
Sandro Rigo University of Campinas, Brazil
Noemi Rodriguez Pontifical Catholic University of Rio de Janeiro, Brazil
João Saraiva University of Minho, Portugal

Doaitse Swierstra Utrecht University, The Netherlands
Leopoldo Teixeira Federal University of Pernambuco, Brazil
Simon Thompson University of Kent, UK
Varmo Vene University of Tartu, Estonia

Additional Reviewers

Annamaa, Aivar
Apinis, Kalmer
Cruz, Marco
de Moraes, Camila

Fonte, Victor
Lins, Rafael
Proenca, Jose
Tavares, Carlos

Viera, Marcos
Vojdani, Vesal

VIII Organization

Contents

Language Support for Generic Programming in Object-Oriented
Languages: Peculiarities, Drawbacks, Ways of Improvement 1

Julia Belyakova

JetsonLeap: A Framework to Measure Energy-Aware Code Optimizations
in Embedded and Heterogeneous Systems . 16

Tarsila Bessa, Pedro Quintão, Michael Frank,
and Fernando Magno Quintão Pereira

A Monadic Semantics for Quantum Computing in Featherweight Java. 31
Samuel da Silva Feitosa, Juliana Kaizer Vizzotto,
Eduardo Kessler Piveta, and Andre Rauber Du Bois

Memoized Zipper-Based Attribute Grammars . 46
João Paulo Fernandes, Pedro Martins, Alberto Pardo, João Saraiva,
and Marcos Viera

Purely Functional Incremental Computing . 62
Denis Firsov and Wolfgang Jeltsch

Automatic Annotating and Checking of Dynamic Ownership 78
Tingting Hu, Haiyang Liu, Ke Zhang, and Zongyan Qiu

Certified Derivative-Based Parsing of Regular Expressions. 95
Raul Lopes, Rodrigo Ribeiro, and Carlos Camarão

Concurrent Hash Tables for Haskell . 110
Rodrigo Medeiros Duarte, André Rauber Du Bois, Mauricio L. Pilla,
Gerson G.H. Cavalheiro, and Renata H.S. Reiser

Optional Type Classes for Haskell. 125
Rodrigo Ribeiro, Carlos Camarão, Lucília Figueiredo,
and Cristiano Vasconcellos

An Algebraic Framework for Parallelizing Recurrence
in Functional Programming . 140

Rodrigo C.O. Rocha, Luís F.W. Góes, and Fernando M.Q. Pereira

A Platform of Scientific Workflows for Orchestration of Parallel
Components in a Cloud of High Performance Computing Applications 156

Jefferson de Carvalho Silva and Francisco Heron de Carvalho Junior

http://dx.doi.org/10.1007/978-3-319-45279-1_1
http://dx.doi.org/10.1007/978-3-319-45279-1_1
http://dx.doi.org/10.1007/978-3-319-45279-1_2
http://dx.doi.org/10.1007/978-3-319-45279-1_2
http://dx.doi.org/10.1007/978-3-319-45279-1_3
http://dx.doi.org/10.1007/978-3-319-45279-1_4
http://dx.doi.org/10.1007/978-3-319-45279-1_5
http://dx.doi.org/10.1007/978-3-319-45279-1_6
http://dx.doi.org/10.1007/978-3-319-45279-1_7
http://dx.doi.org/10.1007/978-3-319-45279-1_8
http://dx.doi.org/10.1007/978-3-319-45279-1_9
http://dx.doi.org/10.1007/978-3-319-45279-1_10
http://dx.doi.org/10.1007/978-3-319-45279-1_10
http://dx.doi.org/10.1007/978-3-319-45279-1_11
http://dx.doi.org/10.1007/978-3-319-45279-1_11

Comparison Between Model Fields and Abstract Predicates 171
Ke Zhang and Zongyan Qiu

Erratum to: A Monadic Semantics for Quantum Computing
in Featherweight Java . E1

Samuel da Silva Feitosa, Juliana Kaizer Vizzotto,
Eduardo Kessler Piveta, and Andre Rauber Du Bois

Author Index . 187

X Contents

http://dx.doi.org/10.1007/978-3-319-45279-1_12

Language Support for Generic Programming
in Object-Oriented Languages: Peculiarities,

Drawbacks, Ways of Improvement

Julia Belyakova(B)

I. I. Vorovich Institute of Mathematics, Mechanics and Computer Science,
Southern Federal University, Rostov-on-Don, Russia

julbel@sfedu.ru

http://mmcs.sfedu.ru/∼juliet/

Abstract. Earlier comparative studies of language support for generic
programming (GP) have shown that mainstream object-oriented (OO)
languages such as C# and Java provide weaker support for GP as com-
pared with functional languages such as Haskell or SML. But many
new object-oriented languages have appeared in recent years. Have they
improved the support for generic programming? And if not, is there a
reason why OO languages yield to functional ones in this respect? In this
paper we analyse language constructs for GP in seven modern object-
oriented languages. We demonstrate that all of these languages follow the
same approach to constraining type parameters, which has a number of
inevitable problems. However, those problems are successfully lifted with
the use of the another approach. Several language extensions that adopt
this approach and allow to improve GP in OO languages are consid-
ered. We analyse the dependencies between different language features,
discuss the features’ support using both approaches, and propose which
approach is more expressive.

Keywords: Generic programming · Object-oriented languages · Pro-
gramming language design · Type parameters · Constraints · Interfaces ·
Concepts · Type classes · Concept pattern · Multi-type constraints ·
Multiple models · C# · Java · Scala · Ceylon · Kotlin · Rust · Swift ·
Haskell

1 Introduction

Most of the modern programming languages provide language support for generic
programming (GP) [13]. As was shown in earlier comparative studies [4,7,8,14],
some languages do it better than others. For example, Haskell is generally con-
sidered to be one of the best languages for generic programming [4,7], whereas
mainstream object-oriented (OO) languages such as C# and Java are much less
expressive and have many drawbacks [1,3]. But several new object-oriented lan-
guages have appeared in recent years, for instance, Rust, Swift, Kotlin. Have
they improved the support for generic programming? To answer this question,
c© Springer International Publishing Switzerland 2016
F. Castor and Y.D. Liu (Eds.): SBLP 2016, LNCS 9889, pp. 1–15, 2016.
DOI: 10.1007/978-3-319-45279-1 1

2 J. Belyakova

we analyse seven modern OO languages with respect to their support for GP.
It turns out that all of these languages follow the same approach to constrain-
ing type parameters, which we call the “Constraints-are-Types” approach. This
approach is specific to object-oriented languages and has several inevitable lim-
itations. The approach and its drawbacks are discussed in Sect. 2.

Section 3 provides a survey of the existing extensions [2,3,17,24,25] for
object-oriented languages that address the limitations of OO languages [1] and
improve the support for generic programming: all of them add new language
constructs for constraining type parameters. We call the respective approach
“Constraints-are-Not-Types”. The advantages and shortcomings of this app-
roach as compared with the basic one used in OO languages are discussed; yet
we outline the design issues that need further investigation.

In conclusion, we argue that the “Constraints-are-Not-Types” approach is
more expressive than the “Constraints-are-Types” one. Table 1 is a modified
version of the well-known table [7,8] showing the levels of language support
for generic programming. It provides information on all of the object-oriented
languages and extensions considered, introduces some new features, and demon-
strates the relations between them.

Fig. 1. An ambiguous role of C# interfaces

2 Object-Oriented Approach to Constraining Type
Parameters

We have explored language constructs for generic programming in seven mod-
ern object-oriented languages: C#, Java 8, Ceylon, Kotlin, Scala, Rust, Swift.
As we will see, all of these languages adopt the same approach to constrain-
ing type parameters, which we call the “Constraints-are-Types” approach [3].
In this approach, interface-like constructs, which are normally used as types
in object-oriented programming, are also used to constrain type parameters.
By “interface-like constructs” we mean, in particular, interfaces in C#, Java,
Ceylon, and Kotlin, traits in Scala and Rust, protocols in Swift. Figure 1 shows
a corresponding example in C#: IPrintable is an interface; it acts as a type in the
array parameter xs in the PrintArr function, i. e. xs is an array of arbitrary val-
ues convertible to string, whereas in the InParens<T> function IPrintable is used
to constrain the type parameter T. This example is not of particular interest,

Language Support for Generic Programming in Object-Oriented Languages 3

but it shows a common pattern of how constructs such as interfaces are used for
generic programming in OO languages. Section 2.1 provides a survey of similar
constructs for GP in the modern object-oriented languages mentioned above.
The main problems and drawbacks of the approach are discussed in Sect. 2.2.

2.1 Language Constructs for Constraining Type
Parameters in Object-Oriented Languages

Interfaces in C#, Java and Kotlin. A classical interface describes methods and
properties of a type that implements/extends the interface. In C# and Java 7 only
signatures of instance methods are allowed inside the interface. Kotlin and Java 8
also support default method implementations. This is a useful feature for generic
programming. For instance, one can define an interface for equality comparison
that provides a default implementation for the inequality operation. Figure 2
demonstrates corresponding Kotlin definitions: the Ident class implements the
interface Equatable<Ident> that has two methods, equal and notEqual; as long
as notEqual has a default implementation in the interface, there is no need to
implement it in the Ident class.

Note that the Equatable<T> interface is generic: it takes the T type para-
meter that “pretends” to be a type implementing the interface, and this is
indeed the case for the function contains<T> due to the “recursive” constraint
T : Equatable<T>. The type parameter T is needed to solve the so-called binary
method problem [5]: the equal method of the interface is expected to operate on
two values of the same type (thus, equal is a “binary method”), with the first
value being a receiver of equal, and the second value being a parameter of equal.
T is an actual type of the other parameter, and it is supposed to be a type of
the receiver.

Interfaces in Ceylon. Ceylon interfaces are much similar to the Java 8 and
Kotlin ones, but the Ceylon language also allows a declaration of a type para-
meter as a self type. An example is shown in Fig. 3. In the definition of the
Comparable<Other> interface the declaration “of Other” explicitly requires Other

to be a self type of the interface, i. e. a type that implements this interface.
Because of this the reverseCompareTo method can be defined: the other and this

interface Equatable <T> {
fun equal (other: T) : Boolean
fun notEqual (other: T): Boolean { return !this .equal(other) }

}
class Ident (name : String) : Equatable <Ident > {

val idname = name.toUpperCase()
override fun equal (other:Ident): Boolean { return idname == other.idname }

}
fun <T : Equatable <T>> contains (vs : Array <T>, x : T): Boolean
{ for (v in vs) i f (v.equal(x)) return true;

return false; }

Fig. 2. Interfaces and constraints in Kotlin

4 J. Belyakova

interface Comparable <Other > of Other
given Other satis f ies Comparable <Other > {

formal Integer compareTo(Other other);
Integer reverseCompareTo(Other other) { return other.compareTo(this); } }

Fig. 3. The use of “self type” in Ceylon interfaces

values have the type Other, with the Other implementing Comparable<Other>, so
the call other.compareTo(this) is perfectly legal. Without “of Other” the Other

type can only be supposed to be a type of this, but this cannot be verified by
a compiler, so the reverseCompareTo method cannot be written in Java 8 and
Kotlin.

Scala Traits. Similarly to advanced interfaces in Java 8, Ceylon, and Kotlin,
Scala traits [14,15] support default method implementations. They can also have
abstract type members, which, in particular, can be used as associated types [11,
16]. Associated types are types that are logically related to some entity. For
instance, types of edges and vertices are associated types of a graph.

Just as in C#/Java/Ceylon/Kotlin, type parameters (and abstract types) in
Scala can be constrained with traits and supertypes (upper bounds): the latter
constraints are called subtype constraints. But, moreover, they can be constrained
with subtypes (lower bounds), which are called supertype constraints. None of
the languages we discussed so far support supertype constraints nor associated
types. Another important Scala feature, implicits [15], will be mentioned later in
Sect. 2.2 with respect to the Concept design pattern.

Rust Traits. The Rust language is quite different from other object-oriented
languages. There is no traditional class construct in Rust, but instead it suggests
structs that store the data, and separate method implementations for structs. An
example is shown in Fig. 41: two impl Point blocks define method implementations

struct Point { x: i32, y: i32 , }
...
impl Point {

fn moveOn (& self , dx: i32, dy: i32) -> Point
{ Point {x: sel f .x + dx, y: sel f .y + dy } }}

...
impl Point {

fn reflect (& sel f) -> Point { Point {x: - sel f .x, y: - sel f .y} }}
...
let p1 = Point {x: 4, y: 3};
let p2 = p1.moveOn (1, 1); let p3 = p1.reflect ();

Fig. 4. Point struct and its methods in Rust

1 Some details were omitted for simplicity. To make the code correct, one has to add
#[derive(Debug,Copy,Clone)] before the Point definition.

Language Support for Generic Programming in Object-Oriented Languages 5

trait Equatable { fn equal(& self , that: &Self) -> bool;
fn not_equal(& self , that: &Self) -> bool { ! sel f .equal(that) } }

trait Printable { fn print(& sel f); }
...
impl Equatable for i32 {

fn equal (& self , that: &i32) -> bool { * sel f == *that } }
...
struct Pair <S, T>{ first: S, second: T }
...
impl <S : Equatable , T : Equatable > Equatable for Pair <S, T> {

fn equal (& self , that: &Pair <S, T>) -> bool
{ sel f .first.equal(&that.first) && sel f .second.equal(&that.second) } }

Fig. 5. An example of using Rust traits

for the Point struct. If a function takes the &self2 argument (as moveOn), it is treated
as a method. There can be any number of implementation blocks, yet they can
be defined at any point after the struct declaration (even in a different module).
This gives a huge advantage with respect to generic programming: any struct
can be retroactively adapted to satisfy constraints. “Retroactively” means “later,
after the point of definition”. Constraints in Rust are expressed using traits. A
trait defines which methods have to be implemented by a type similarly to Scala
traits, Java 8 interfaces, and others. Traits can have default method implementa-
tions and associated types; besides that, a self type of the trait is directly available
and can be used in method definitions. Figure 53 demonstrates an example: the
Equatable trait defining equality and inequality operations. Note how support
for self type solves the binary method problem (here equal is a binary method):
there is no need in extra type parameter that “pretends” to be a self type,
because the self type Self is directly available.

Method implementations in Rust can be probably thought of similarly to
.NET “extension methods”. But in contrast to .NET4, types in Rust also can
retroactively implement traits in impl blocks as shown in Fig. 5: Equatable is
implemented by i32 and Pair<S, T>. The latter definition also demonstrates a
so-called type-conditional implementation: pairs are equality comparable only if
their elements are equality comparable. The constraint <S : Equatable... is a
shorthand, it can be declared in a where section as well.

There is no struct inheritance and subtype polymorphism in Rust. Neverthe-
less, traits can be used as types, and due to this, a dynamic dispatch is provided.
This feature is called trait objects in Rust. Suppose i32 and f64 implement the
Printable trait from Fig. 5. Then the following code demonstrates creating and

2 The “&” symbol means that an argument is passed by reference.
3 Some details were omitted for simplicity. The following declaration is to be pro-

vided to make the code correct: #[derive(Copy, Clone)] before the definition
struct Pair<S : Copy, T : Copy>. Yet the type parameters of the impl for pair
must be constrained with Copy+Equatable.

4 Similarly to .NET, Kotlin supports extending classes with methods and properties,
but interface implementation in extensions is not allowed.

6 J. Belyakova

use of a polymorphic collection of values of the &Printable type (the type of the
polyVec elements is a reference type):
let pr1 = 3; let pr2 = 4.5; let pr3 = -10;
let polyVec: Vec <& Printable > = vec![&pr1 , &pr2 , &pr3];
for v in polyVec { v.print (); }

Swift Protocols. Swift is a more conventional OO language than Rust: it
has classes, inheritance, and subtype polymorphism. Classes can be extended
with new methods using extensions that are quite similar to Rust method imple-
mentations. Instead of interfaces and traits Swift provides protocols. They can-
not be generic but support associated types and same-type constraints, default
method implementations through protocol extensions, and explicit access to a
self type; due to the mechanism of extensions, types can retroactively adopt
protocols. Figure 6 illustrates some examples: the Equatable protocol extended
with a default implementation for notEqual (pay attention to the use of the
Self type); the contains<T> generic function with a protocol constraint on the
type parameter T; an extension of the type Int that enables its conformance to
the Printable protocol; the Container protocol with the associated type ItemTy;
the allItemsMatch generic function with the same-type constraint on types of
elements of two containers, C1 and C2.

protocol Equatable { func equal(that: Self) -> Bool; }
extension Equatable { func notEqual (that: Self) -> Bool
{ return ! sel f .equal(that) }}
func contains <T : Equatable > (values: [T], x:T) -> Bool { ... }

protocol Printable { func print (); }
extension Int : Printable { ... }

protocol Container { associatedtype ItemTy ... }
func allItemsMatch <C1: Container , C2: Container

where C1.ItemTy == C2.ItemTy, C1.ItemTy: Equatable > ...

Fig. 6. Protocols and their use in Swift

2.2 Drawbacks of the “Constraints-are-Types” Approach

The Problem of Multi-type Constraints. Constructs such as interfaces or
traits, which are used both as types in object-oriented code and constraints on
type parameters in generic code, describe an interface of a single type. And this
has inevitable consequence: multi-type constraints (constraints on several types)
cannot be expressed naturally. Consider a generic unification algorithm [12]: it
takes a set of equations between terms (symbolic expressions), and returns the
most general substitution which solves the equations. So the algorithm oper-
ates on three kinds of data: terms, equations, substitutions. A signature of the
algorithm might be as follows:

Language Support for Generic Programming in Object-Oriented Languages 7

interface ITerm <Tm> { IEnumerable <Tm> Subterms (); ... }

interface IEquation <Tm, Eqtn , Subst > where Tm : ITerm <Tm>
where Eqtn : IEquation <Tm , Eqtn , Subst >
where Subst : ISubstitution <Tm, Eqtn , Subst >

{ Subst Solve();
IEnumerable <Eqtn > Split (); ... }

interface ISubstitution <Tm, Eqtn , Subst > where Tm : ITerm <Tm>
where Eqtn : IEquation <Tm , Eqtn , Subst >
where Subst : ISubstitution <Tm, Eqtn , Subst >

{ Tm SubstituteTm(Tm);
IEnumerable <Eqtn > SubstituteEq (IEnumerable <Eqtn >); ... }

Fig. 7. The C# interfaces for the Unification algorithm

Subst Unify <Tm, Eqtn , Subst > (IEnumerable <Eqtn >)

But a bunch of functions have to be provided to implement the algorithm:
Subterms : Tm → IEnumerable<Tm>, Solve : Eqtn → Subst,
SubstituteTm : Subst × Tm → Tm,
SubstituteEq : Subst × IEnumerable<Eqtn> → IEnumarable<Eqtn>,
and some others. All these functions are needed for unification at once, hence it
would be convenient to have a single constraint that relates all the type para-
meters and provides the functions required:
Subst Unify <Tm, Eqtn , Subst > (IEnumerable <Eqtn >)

where <single constraint >

But in the languages considered in the previous section the only thing one can do5

is to define three different interfaces for terms, equations, and substitution, and
then separately constrain every type parameter of the Unify<> with a respective
interface. Figure 7 shows the C# interface definitions. To set up a relation between
mutually dependent interfaces, several type parameters are used: Tm for terms,
Eqtn for equations, and Subst for substitution. The parameters are repeatedly
constrained with the appropriate interfaces in every interface definition. Those
constraints are to be stated in a signature of the unification algorithm as well:
Subst Unify <Tm, Eqtn , Subst > (IEnumerable <Eqtn >)

where Tm : ITerm <Tm>
where Eqtn : IEquation <Tm, Eqtn , Subst >
where Subst : ISubstitution <Tm, Eqtn , Subst >

There is one more thing to notice here — interfaces are used in both roles in the
same piece of code: the IEnumerable<Eqtn> interface is used as a type, whereas
other interfaces in the where sections are used as constraints. So the semantics
of the interface construct is ambiguous.

The Lack of Language Support for Multiple Models. For simplicity, in
this part of the paper we call “constraint” any language construct that is used

5 The Concept design pattern can also be used, but it has its own drawbacks. We will
discuss concept pattern later, in Sect. 2.2.

8 J. Belyakova

to describe constraints, while the way in which types satisfy the constraints we
call “model”. All of the object-oriented languages considered earlier allow having
only one, unique model of a constraint for the given set of types. And indeed this
makes sense for the languages where “Constraints-are-Types” philosophy works,
because it is not clear what to do with types that could implement interfaces (or
any other similar constructs) in several ways. But how does this affect generic
programming? It turns out that sometimes it is desirable to have multiple models
of a constraint for the same set of types. For instance, one could imagine sets
of strings with case-sensitive and case-insensitive equality comparison; another
common example is the use of different orderings on numbers, yet different graph
implementations, and so on. Thus, with respect to generic programming, the
absence of multiple models is rather a problem than a benefit. Without extending
the language the problem of multiple models can be solved in two ways:

1. Using the Adapter pattern. If one wants the type Foo to implement the inter-
face IEquatable<Foo> in a different way, an adapter of Foo, the Foo1 that
implements IEquatable<Foo1> can be created. This adapter then can be used
instead of Foo whenever the Foo1-style comparison is required. An obvious
shortcoming of this approach is the need to repeatedly wrap and unwrap Foo

values; in addition, code becomes cumbersome.
2. Using the Concept pattern, which is considered below.

Concept Pattern. The Concept design pattern [15] eliminates two problems:

1. First, it enables retroactive modeling of constraints, which is not supported
in languages such as C#, Java, Ceylon, Kotlin, or Scala.

2. Second, it allows defining multiple models of a constraint for the same set of
types.

The idea of the Concept pattern is as follows: instead of constraining type
parameters, generic functions and classes take extra arguments that provide
a required functionality — “concepts”. Figure 8 shows an example: in the case
of the Concept pattern the constraint T : IComparable<T> is replaced with an
extra argument of the type IComparer<T>. The IComparer<T> interface represents
a concept of comparing: it describes an interface of an object that can compare

// Type Parameter Constraints
interface IComparable <T> { int CompareTo(T other); }
void Sort <T>(T[] values) where T : IComparable <T> { ... }
class SortedSet <T> where T : IComparable <T> { ... }

// Concept Pattern
interface IComparer <T> { int Compare (T x, T y); }
void Sort <T>(T[] values, IComparer <T> cmp) { ... }
class SortedSet <T> { private IComparer <T> cmp; ...

public SortedSet(IComparer <T> cmp) { ... } ... }

Fig. 8. The use of the Concept design pattern in C#

Language Support for Generic Programming in Object-Oriented Languages 9

values of the type T. As long as one can define several classes implementing the
same interface, different “models” of the IComparer<T> “concept” can be passed
into Sort<T> and SortedSet<T>.

This pattern is widely used in generic libraries of mainstream object-oriented
languages such as C# and Java; it is also used in Scala. Due to implicits [14,
15], the use of the Concept pattern in Scala is a bit easier: in most cases an
appropriate “model” can be found by a compiler implicitly, so there is no need
to explicitly pass it at a call site6. Nevertheless, the pattern has two substantial
drawbacks. First of all, it brings run-time overhead, because every object of a
generic class with constraints has at least one extra field for the “concept”, while
generic functions with constraints take at least one extra argument. The second
drawback, which we call models-inconsistency, is less obvious but may lead to
very subtle errors. Suppose we have s1 of the type HashSet<String> and s2 of
the same type, provided that s1 uses case-sensitive equality comparison, s2 —
the case-insensitive one. Thus, s1 and s2 use different, inconsistent models of
comparison. Now consider the following function:
static HashSet <T> GetUnion <T>(HashSet <T> a, HashSet <T> b)
{ var us = new HashSet <T>(a, a.Comparer); us.UnionWith(b); return us; }

Unexpectedly, the result of GetUnion(s1, s2) could differ from the result of
GetUnion(s2, s1). Despite the fact that s1 and s2 have the same type, they use
different comparators, so the result depends on which comparator was chosen to
build the union. Comparators are run-time objects, so the models-consistency
cannot be checked at compile time.

3 The “Constraints-are-Not-Types” Approach
to Constraining Type Parameters

In contrast to object-oriented languages discussed in Sect. 2, type classes [10] in
the Haskell language are not used as types, they are used as constraints only.
Inspired by the design of type classes, several language extensions for C# and
Java have been developed. For defining constraints all these extensions suggest
new language constructs that have no self types and cannot be used as types.
They describe requirements on type parameters in an external way; therefore,
retroactive constraints satisfaction (retroactive modeling) is automatically pro-
vided. Besides retroactive modeling, an integral advantage of such kind of con-
structs is that multi-type constraints can be easily and naturally expressed using
them; yet there is no semantic ambiguity which arises when the same construct,
such as a C# interface, is used both as a type and constraint, as in the example
below:
void Sort <T>(ICollection <T>) where T : IComparable <T>;

Here ICollection<T> and IComparable<T> are generic interfaces, but the former
is used as a type whereas the latter is used as constraint.
6 Scala is often blamed for its complex rules of implicits resolution: sometimes it is

not clear which implicit object is to be used.

10 J. Belyakova

JavaGI Generalized Interfaces. JavaGI [24] provides multi-headed generalized

interfaces that adopt several features from Haskell type classes [23] and describe
interfaces of several types. There is no self type in such interface, it cannot be
used as a type. An example of multi-headed interface is shown in Fig. 9: the UNIFY

interface contains all the functions required by the unification algorithm consid-
ered in Sect. 2.2; the requirements on three types (term, equation, substitution)
are defined at once in a single interface. Note how succinct is this definition as
compared with the one in Fig. 7.

interface UNIFY [Tm, Eqtn , Subst] {
receiver Tm { IEnumerable <Tm> Subterms (); ... }
receiver Eqtn { IEnumerable <Eqtn > Split (); ... }
receiver Subst { Tm SubstituteTm(Tm); ... }}

Subst Unify <Tm, Eqtn , Subst >(Enumerable <Eqtn >)
where [Tm, Eqtn , Subst] implements UNIFY {...}

Fig. 9. Generalized interfaces in JavaGI

Language G and C++ Concepts. Concept as an explicit language construct
for defining constraints on type parameters was initially introduced in 2003 [19].
Several designs have been developed since that time [6,20,21]; in the large, the
expressive power of concepts is rather close to the Haskell type classes [4]. Con-
cepts were designed to solve the problems of unconstrained C++ templates [1,18].
A new version of concepts, Concepts Lite (C++1z) [22], is under way now. The
language G declared as “a language for generic programming” [17] also provides
concepts that are very similar to the C++0x concepts. Similarly to a type class,
a concept defines a set of requirements on one or more type parameters. It can
contain function signatures that may be accompanied with default implemen-
tations, associated types, nested concept-requirements on associated types, and
same-type constraints. A concept can refine one or more concepts, it means that
the refining concept includes all the requirements from the refined concepts.
Refinement is very similar to multiple interface inheritance in C# or protocol
inheritance in Swift. Due to the concept refinement, a so-called concept-based
overloading is supported: one can define several versions of an algorithm/class
that have different constraints, and then at compile time the most specialized
version is chosen for the given instance. The C++ advance algorithm for iterators
is a classic example of concept-based overloading application.

It is said that a type (or a set of types) satisfies a concept if an appro-
priate model of the concept is defined for this type (types). Model definitions
are independent from type definitions, so the modeling relation is established
retroactively ; models can be generic and type-conditional.

C# with Concepts. In the C#cpt project [3] (C# with concepts) concept mech-
anism integrates with subtyping: type parameters and associated types can be

Language Support for Generic Programming in Object-Oriented Languages 11

concept CEquatable[T] { bool Equal(T x, T y);
bool NotEqual (T x, T y) { return !Equal(x, y); }}

interface ISet <T> where CEquatible[T] { ... }

model default StringEqCaseS for CEquatable[String] { ... }
model StringEqCaseIS for CEquatable[String] { ... }

bool Contains <T>(IEnumerable <T> values , T x)
where CEquatable[T] using CEq {... i f (cEq.Equal (...) ...}

Fig. 10. Concepts and models in C#cpt

constrained with supertypes (as in basic C#) and also with subtypes (as in Scala).
In contrast to all of the languages we discussed earlier, C#cpt allows multiple
models of a concept in the same scope. Some examples are shown in Fig. 10: the
CEquatable[T] concept with the Equal signature and a default implementation
of NotEqual, the generic interface ISet<T> with concept-requirement on the type
parameter T, and two models of CEquatable[] for the type String — for case-
sensitive and case-insensitive equality comparison. The first model is marked as
a default model7: it means that this model is used if a model is not specified at
the point of instantiation. For instance, in the following code StringEqCaseS is
used to test equality of strings in s1.
ISet <String > s1 = ...;
ISet <String >[using StringEqCaseIS] s2 = ...;
s1 = s2; // Static ERROR , s1 and s2 have different types

Note that s1 and s2 have different types because they use different mod-
els of CEquatible[String]. Models are compile-time artefacts, so the models-
consistency is checked at compile time. One more interesting thing about C#cpt:
concept-requirements can be named. In the Contains<T> function (Fig. 10) the
name cEq is given to the requirement on T; this name is used later in the body
of Contains<T> to access the Equal function of the concept. It is also worth
mention that the interface IEnumerable<T> is used as a type along with the con-
cept CEquatable[T] being used as a constraint; thus, the role of interfaces is not
ambiguous any more, interfaces and concepts are independently used for different
purposes.

Constraints in Genus. Like G concepts and Haskell type classes, constraints

in Genus [25] (an extension for Java) are used as constraints only. Figure 11
demonstrates some examples: the Eq[T] constraint, which is used to constrain
the T in the Set[T] interface; the model of Eq[String] for case-insensitive equal-
ity comparison; the multi-parameter constraint GraphLike[V, E], and the type-
conditional generic model DualGraph[V,E]. Methods in Genus classes/interfaces
can impose additional constraints:
interface List[E] { boolean remove(E e) where Eq[E]; ... }

7 The default model can be generated automatically for a type if the type conforms
to a concept, i. e. it provides methods required by the concept.

12 J. Belyakova

constraint Eq[T] { boolean T.equals(T other); }
constraint GraphLike[V, E] { V E.source (); ... }

interface Set[T where Eq[T]] { ... }

model CIEq for Eq[String] { ... } // case - insensitive model

model DualGraph[V,E] for GraphLike[V,E] where GraphLike[V,E] g
{ V E.source () { return this .(g.sink)(); } ... }

Fig. 11. Constraints and models in Genus

Here the List[] interface can be instantiated by any type, but the remove method
can be used only if the type E of elements satisfies the Eq[E] constraint. This
feature is called model genericity.

Just as C#cpt, Genus supports multiple models and automatic generation of
the natural model, which is the same thing as the default model in C#cpt. Models-
consistency can also be checked at compile time. In Genus this feature is called
model-dependent types. As well as in C#cpt, constraint-requirements in Genus can
be named; the example is shown in Fig. 11: g is a name of the GraphLike[V,E]

constraint required by the DualGraph[V,E] model.

Table 1. The levels of support for generic programming in OO languages

H
a
sk

e
ll

C
#

J
a
v
a
8

S
c
a
la

C
e
y
lo
n

K
o
tl
in

R
u
st

S
w
if
t

J
a
v
a
G
I

G C
#
cp

t

G
e
n
u
s

Constraints can be used as types

Explicit self types − - − − −
Multi-type constraints

Retroactive type extension
Retroactive modeling
Type conditional models

Static methods a a a a

Default method implementation

Associated types
Constraints on associated types − − − − − −
Same-type constraints − − − − − −
Subtype constraints − −
Supertype constraints − −
Constraints refinement
Concept-based overloading b

Multiple models c d

Models-consistency (model-dependent types) −e −e −e −e −e

Model genericity −

aConstraints constructs have no self types, therefore, any function member of a constraint can be
treated as static function.
bC++ 0x concepts, in contrast to G concepts, provide full support for concept-based overloading.
cPartially supported with OverlappingInstances extension.
dG supports lexically-scoped models but not really multiple models.
eIf multiple models are not supported, the notion of model-dependent types does not make sense.

Language Support for Generic Programming in Object-Oriented Languages 13

4 Conclusion and Future Work

Taking into consideration what we have found out in Sects. 2 and 3, we draw a
conclusion that there are merely two language features concerning generic pro-
gramming that cannot be incorporated in an object-oriented language together :

1. the use of a construct both as a type and constraint;
2. natural support for multi-type constraints.

Using the “Constraints-are-Types” approach, the first feature can be supported,
but not the second; using the “Constraints-are-Not-Types” approach, vice versa.
Can we choose one feature that is more important? The answer is yes. It was
shown in the study [9] that in practice interfaces that are used as constraints
(such as IComparable<T> in C# or Comparable<X> in Java) are almost never used
as types: authors had checked about 14 millions lines of Java code and found
only one such example, which was even rewritten and eliminated. At the same
time, multi-type constraints, which can be so naturally expressed under the
“Constraints-are-Not-Types” approach, have rather awkward and cumbersome
representation in the “Constraints-are-Types” approach. Furthermore, the Con-
cept design pattern used in OO languages to provide the support for multiple
models has serious pitfalls, whereas with the “Constraints-are-Not-Types” app-
roach models-consistency can be ensured at compile-time if multiple models are
allowed. All other language facilities we discussed could be supported under any
approach. Therefore, we claim that the “Constraints-are-Not-Types” approach is
preferable.

Without sacrificing OO features, object-oriented languages can be extended
with new language constructs for constraining type parameters to improve the
support for generic programming. Nevertheless, further study is needed to iden-
tify an effective design and implementation of such extension. The existing
designs that support multiple models, C#cpt and Genus, have at least one essen-
tial shortcoming: constraints on type parameters are declared in “predicate-
style” rather than “parameter-style”. In Haskell, G, C#, Java, Rust, and many
other languages, where only one model of a constraint is allowed for the given
set of types, constraints on type parameters are indeed predicates: types either
satisfy the constraint (if they have a model that is unique) or not. But in Genus
and C#cpt constraints are not predicates, they are actually parameters, as long as
different models of constraints can be used. Unfortunately, the “predicate-style”
syntax does not correspond to this semantics. It misleads a programmer and
makes it more difficult to write and call generic code. Features such as multi-
ple dynamic dispatch, concept variance, and typing rules in presence of concept
parameters are also to be investigated.

Table 1 provides a summary on comparison of the OO languages and lan-
guage extensions considered: each row corresponds to one property important
for generic programming; each column shows levels of support of the proper-
ties in one language. Black circle � indicates full support of a property, �� —
partial support, � means that a property is not supported at language level,� means that a property is emulated using the Concept pattern, and the “−”

14 J. Belyakova

sign indicates that a property is not applicable to a language. Related properties
are grouped within horizontal lines; some of them, such as “using constraints as
types” and “natural language support for multi-type constraints” are mutually
exclusive. The major features analysed in the paper are highlighted in bold. The
purpose of this table is to show dependencies between different properties and to
graphically demonstrate that the “Constraints-are-Not-Types” approach is more
powerful than the “Constraints-are-Types” one. There are some features that
can be expressed under any approach, such as static methods, default method
implementations, associated types [11], and even type-conditional models.

Acknowledgment. The authors would like to thank Artem Pelenitsyn, Jeremy Siek,
and Ross Tate for helpful discussions on generic programming.

References

1. Belyakova, J., Mikhalkovich, S.: A support for generic programming in the modern
object-oriented languages. Part 1. Anal. Probl. 2(2), 63–77 (2015). Transactions of
Scientific School of I.B. Simonenko (in Russian)

2. Belyakova, J., Mikhalkovich, S.: A support for generic programming in the mod-
ern object-oriented languages. Part 2. Rev. Mod. Solutions 2(2), 78–92 (2015).
Transactions of Scientific School of I.B. Simonenko (in Russian)

3. Belyakova, J., Mikhalkovich, S.: Pitfalls of C# generics and their solution using
concepts. Proc. Inst. Syst. Program. 27(3), 29–45 (2015)

4. Bernardy, J.P., Jansson, P., Zalewski, M., Schupp, S., Priesnitz, A.: A comparison
of C++ concepts and haskell type classes. In: Proceedings of the ACM SIGPLAN
Workshop on Generic Programming, WGP 2008, New York, NY, USA, pp. 37–48.
ACM (2008)

5. Bruce, K., Cardelli, L., Castagna, G., Leavens, G.T., Pierce, B.: On binary meth-
ods. Theor. Pract. Object Syst. 1(3), 221–242 (1995). http://dl.acm.org/citation.
cfm?id=230849.230854

6. Dos Reis, G., Stroustrup, B.: Specifying C++ concepts. In: Conference Record
of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2006, New York, NY, USA, pp. 295–308. ACM (2006)

7. Garcia, R., Jarvi, J., Lumsdaine, A., Siek, J., Willcock, J.: An extended compara-
tive study of language support for generic programming. J. Funct. Program. 17(2),
145–205 (2007)

8. Garcia, R., Jarvi, J., Lumsdaine, A., Siek, J.G., Willcock, J.: A comparative study
of language support for generic programming. SIGPLAN Not. 38(11), 115–134
(2003). http://doi.acm.org/10.1145/949343.949317

9. Greenman, B., Muehlboeck, F., Tate, R.: Getting F-bounded polymorphism into
shape. In: Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2014, New York, NY, USA, pp. 89–99.
ACM (2014)

10. Hall, C.V., Hammond, K., Peyton Jones, S.L., Wadler, P.L.: Type classes in haskell.
ACM Trans. Program. Lang. Syst. 18(2), 109–138 (1996). http://doi.acm.org/
10.1145/227699.227700

http://dl.acm.org/citation.cfm?id=230849.230854
http://dl.acm.org/citation.cfm?id=230849.230854
http://doi.acm.org/10.1145/949343.949317
http://doi.acm.org/10.1145/227699.227700
http://doi.acm.org/10.1145/227699.227700

Language Support for Generic Programming in Object-Oriented Languages 15

11. Järvi, J., Willcock, J., Lumsdaine, A.: Associated types and constraint propagation
for mainstream object-oriented generics. In: Proceedings of the 20th Annual ACM
SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and
Applications, OOPSLA 2005, New York, NY, USA, pp. 1–19. ACM (2005)

12. Martelli, A., Montanari, U.: An efficient unification algorithm. ACM Trans.
Program. Lang. Syst. 4(2), 258–282 (1982). http://doi.acm.org/10.1145/357162.
357169

13. Musser, D.R., Stepanov, A.A.: Generic programming. In: Gianni, P. (ed.) ISSAC
1988. LNCS, vol. 358, pp. 13–25. Springer, Heidelberg (1989). http://dl.acm.org/
citation.cfm?id=646361.690581

14. Oliveira, B.C., Gibbons, J.: Scala for generic programmers: comparing haskell
and scala support for generic programming. J. Funct. Program. 20(3–4), 303–352
(2010)

15. Oliveira, B.C., Moors, A., Odersky, M.: Type classes as objects and implicits. In:
Proceedings of the ACM International Conference on Object Oriented Program-
ming Systems Languages and Applications, OOPSLA 2010, New York, NY, USA,
pp. 341–360. ACM (2010)

16. Pelenitsyn, A.: Associated types and constraint propagation for generic program-
ming in scala. Program. Comput. Softw. 41(4), 224–230 (2015)

17. Siek, J.G., Lumsdaine, A.: A language for generic programming in the large. Sci.
Comput. Program. 76(5), 423–465 (2011). http://dx.doi.org/10.1016/j.scico.2008.
09.009

18. Stepanov, A.A., Lee, M.: The standard template library. Technical report 95–
11(R.1), HP Laboratories, November 1995

19. Stroustrup, B.: Concept checking – a more abstract complement to type checking.
Technical report N1510=03-0093, ISO/IEC JTC1/SC22/WG21, C++ Standards
Committee Papers, October 2003

20. Stroustrup, B., Dos Reis, G.: Concepts – design choices for template argument
checking. Technical report N1522=03-0105, ISO/IEC JTC1/SC22/WG21, C++

Standards Committee Papers, October 2003
21. Stroustrup, B., Sutton, A.: A concept design for the STL. Technical report

N3351=12-0041, ISO/IEC JTC1/SC22/WG21, C++ Standards Committee Papers,
January 2012

22. Sutton, A.: C++ Extensions for Concepts PDTS. Technical Specification N4377,
ISO/IEC JTC1/SC22/WG21, C++ Standards Committee Papers, February 2015

23. Wadler, P., Blott, S.: How to make ad-hoc polymorphism less ad hoc. In: Pro-
ceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 1989, New York, NY, USA, pp. 60–76. ACM (1989).
http://doi.acm.org/10.1145/75277.75283

24. Wehr, S., Thiemann, P.: JavaGI: the interaction of type classes with interfaces
and inheritance. ACM Trans. Program. Lang. Syst. 33(4), 12:1–12:83 (2011).
http://doi.acm.org/10.1145/1985342.1985343

25. Zhang, Y., Loring, M.C., Salvaneschi, G., Liskov, B., Myers, A.C.: Lightweight,
flexible object-oriented generics. In: Proceedings of the 36th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI 2015, New
York, NY, USA, pp. 436–445. ACM (2015). http://doi.acm.org/10.1145/2737924.
2738008

http://doi.acm.org/10.1145/357162.357169
http://doi.acm.org/10.1145/357162.357169
http://dl.acm.org/citation.cfm?id=646361.690581
http://dl.acm.org/citation.cfm?id=646361.690581
http://dx.doi.org/10.1016/j.scico.2008.09.009
http://dx.doi.org/10.1016/j.scico.2008.09.009
http://doi.acm.org/10.1145/75277.75283
http://doi.acm.org/10.1145/1985342.1985343
http://doi.acm.org/10.1145/2737924.2738008
http://doi.acm.org/10.1145/2737924.2738008

JetsonLeap: A Framework to Measure
Energy-Aware Code Optimizations in Embedded

and Heterogeneous Systems

Tarsila Bessa1, Pedro Quintão1, Michael Frank2,
and Fernando Magno Quintão Pereira1(B)

1 UFMG, Avenida Antônio Carlos 6627, Belo Horizonte, MG 31270-010, Brazil
{tarsila.bessa,fernando}@dcc.ufmg.br, pedrohquintao@gmail.com

2 San Jose Lab, LG Mobile Research,
2540 North 1st Str., San Jose, CA 95131, USA

michael.frank@lge.com

Abstract. Energy-aware techniques are becoming a staple feature
among compiler analyses and optimizations. However, the programming
languages community still does not have access to cheap and precise tech-
nology to measure the power dissipated by a given program. This paper
describes a solution to this problem. To this end, we introduce Jetson-
Leap, a framework that enables the design and test of energy-aware code
transformations. JetsonLeap consists of an embedded hardware, in our
case, the Nvidia Tegra TK1 System on a Chip Device, a circuit to con-
trol the flow of energy, of our own design, plus a library to instrument
program parts. We can measure reliably the energy spent by 400.000
instructions, about half a millisecond of program execution. Our entire
infra-structure – board, power meter and circuit – can be reproduced
with about $500.00. To demonstrate the efficacy of our framework, we
have used it to measure energy consumption of programs running on
ARM cores, on the GPU, and on a remote server. Furthermore, we have
studied the impact of OpenACC directives on the energy efficiency of
high-performance applications.

1 Introduction

Compiler optimizations improve programs along three different directions: speed,
size or energy consumption. Presently, advances in hardware technology, coupled
with new social trends, are bestowing increasing importance on the latter [15].
This importance is mostly due to two facts: first, large scale computing - at
the data center level - has led to the creation of clusters that include hundreds,
if not thousands, of machines. Such clusters demand a tremendous amount of
power, and ask for new ways to manage the tradeoff between energy consumption
and computing power [1]. Second, the growing popularity of smartphones has
brought in the necessity to lengthen the battery life of portable devices. And yet,
despite this clear importance, researchers still lack precise, simple and affordable
technology to measure power consumption in computing devices. This deficiency
c© Springer International Publishing Switzerland 2016
F. Castor and Y.D. Liu (Eds.): SBLP 2016, LNCS 9889, pp. 16–30, 2016.
DOI: 10.1007/978-3-319-45279-1 2

JetsonLeap: A Framework to Measure Energy-Aware Code Optimizations 17

provides room for inaccuracies and misinformation related to energy-aware pro-
gramming techniques [14,19,22].

Among the sources of inaccuracies, lies the ever-present question: how to
measure energy consumption in computers? Given that the answer to such ques-
tion does not meet consensus among researchers, conclusions drawn based on
potential answers naturally lack unanimity. For instance, Vetro et al. [20] have
described a series of patterns for the development of energy-friendly software.
However, our attempt to reproduce these patterns seem to indicate that they are
rather techniques to speedup programs; hence, the energy savings they provide
are a consequence of a faster runtime. This strong correlation between energy
consumption and execution time has already been observed previously [22]. As
another anecdotal case, Leal et al. [9,10] have used a system of image acquisition
to take pictures each one second of a energy display, in order to probe energy
consumption on a smartphone. Such creativity and perseverance would not be
necessary, had they access to more straightforward technology. In our opinion,
such divergences happen because the programming languages community still
lacks low-cost tools to measure energy reliably in computing devices.

The goal of this paper is to fill up this omission. To this end, we provide
an infra-structure to measure energy in a particular embedded environment,
which can be reproduced with affordable material and straightforward program-
ming work. This infra-structure – henceforth called JetsonLeap1 – consists of an
NVIDIA Tegra TK1 board, a power meter, a simple electronic circuit, plus a code
instrumentation library. This library can be called directly within C/C++ pro-
grams, or indirectly via native calls in programs written in different languages.
We claim that our framework has three virtues. First, we measure actual – phys-
ical – consumption, at the device’s power supply. Second, we can measure energy
with great precision at the granularity of about 400,000 instructions, e.g., 100µs
of execution. Contrary to other approaches, such as the AtomLeap [11], this gran-
ularity does not require synchronized clocks between computing processor and
measurement device. Finally, even though our infra-structure has been developed
and demonstrated on top of a specific device, the NVIDIA Jetson board, it can
be reused with other gadgets that provide general Input/Output (GPIO) ports.
This family of devices include FPGAs, audio codecs, video cards, and embedded
system such as Arduino, BeagleBone, Raspberry Pi, etc.

To validate our apparatus, we have used it to carry out experiments which,
by themselves, already offer interesting insights about energy-aware program-
ming techniques. For instance, in Sect. 4 we compared the energy consumption
of a linear algebra library executing on the ARM CPUs, on the Tegra GPU,
or remotely, in the cloud. We have identified clear phases on programs that
perform different tasks, such as I/O, intensive computing or multi-threaded pro-
gramming. Additionally, we have analyzed the behavior of sequential programs,
written in C, after been ported to the GPU by means of OpenACC directives.
We could, during these experiments, observe situations in which the faster GPU
code was not more energy-friendly than its slower CPU version. The recipe to

1 LEAP (Low-Power Energy Aware Processing) is a name borrowed from McIntire [6].

18 T. Bessa et al.

reproduce these experiments is, in our opinion, one of the core contributions of
this work.

2 Overview

Power, Energy and Runtime. Computer programs consume energy when they
execute. Energy – in our case electric power dissipated on a period of time –
is measured in watts (W). The instantaneous power consumed by any electric
device is given by the formula:

P = V × I (1)

where V measures the electric potential, in volts, and I measures the electrical
current passing through a well-known resistance. Therefore, the energy consumed
by the electrical device on a given period of time T = e − b is the integral of its
instantaneous consumption on T , e.g.:

E =
∫ e

b

VfI(t)dt = Vf

∫ e

b

I(t)dt = Vf

∫ e

b

Vs(t)
Rs

dt =
Vf

Rs

∫ e

b

Vs(t)dt (2)

Above, Vf is the source voltage, which is constant at the power source. To
obtain I we utilize a shunt resistor of resistance Rs. Thus, by measuring Vs

at the resistor, we get, from Ohm’s Law, the value of I = Vs/Rs. One of the
contributions of this work is a simple circuit of well-known Rs, plus an apparatus
to measure Vs with high precision in very short intervals of time. This circuit
can be combined with different hardware. In this paper, we have coupled it with
the NVIDIA TK1 Board, which we shall describe next.

The NVIDIA TK1 Board. All the measurements that we shall report on this
paper have been obtained on top of an NVIDIA “Jetson TK1” board, which con-
tains a Tegra K1 system on a chip device, and runs Linux Ubuntu. Tegra has been
designed to support devices such as smartphones, personal digital assistants, and
mobile Internet devices. Moreover, since its debut, this hardware has seen service
in cars (Audi, Tesla Motors), video games and high-tech domestic appliances.
We chose the Tegra as the core pillar of our energy measurement system due
to two factors: first, it has been designed with the clear goal of being energy
efficient [18]; second, this board gives us a heterogeneous architecture, which
contains:

– four 32-bit quad-core ARM Cortex-A15 CPUs running at up to 2.3 GHz.
– a Kepler GPU with 192 ALUs running at up to 852 MHz.

Thus, from a research standpoint, this board lets us experiment with several
different techniques to carry out energy efficient compiler optimizations. For
instance, it lets us offload code to the local GPU or to a remote server; it lets
us scale frequency up and down, according to the different phases of the pro-
gram execution, and it gives ways to send signals to the energy measurement
apparatus, as we shall explain in Sect. 3.

JetsonLeap: A Framework to Measure Energy-Aware Code Optimizations 19

Fig. 1. Example showing the energy consumed at different phases of a matrix multi-
plication program.

JetsonLEAP in one Example. Before we move on to explain how our energy-
measurement platform works, we shall use Fig. 1 to illustrate which kind of
information we can produce with it. Further examples shall be discussed in
Sect. 4. That figure shows a chart that we have produced with JetsonLeap, for
a program that performs three different tasks: (i) it initializes two 3000 × 3000
matrices; (ii) it multiplies these matrices locally; and (iii) it sends these matrices
to a remove server, and reads back the product matrix, which was constructed
remotely. Notice that phases (ii) and (iii) represent the same operation, except
that in the former case the multiplication happens locally, and in the latter it
happens remotely.

We have forced the main program thread to sleep for 10 s in between each
task. In this way, we have made it visually noticeable the beginning and the
ending of each phase of the program. These marks, e.g., a 10 s low on the energy
chart, lets us already draw one important conclusion about this program: it is
better, from an energy perspective, to offload matrix multiplication, instead of
performing it locally. However, this modus operand is far from being ideal. Its
main shortcoming is the fact that it makes it virtually impossible to measure the
energy consumed by program events of very small duration. Additionally, this
modus operandi bestows too much importance on visual inspection. We could,
in principle, apply some border detection algorithm to detect changes in the
energy pattern of the program. However, our own experience has shown that at
a very low scale, border detection becomes extremely imprecise. One of the main
contributions of this paper is to demonstrate that it is possible to mark – in an
unambiguous way – different moments in the execution of a program.

3 The Infra-Structure of Energy Measurement

The infra-structure of energy measurement that we provide consists of two parts:
on the hardware side, we have an electric circuit that enables or disables the
measurement of energy, according to program signals; on the software side, we
have a library that gives developers the means to toggle energy acquisition; plus
a program that reads the output of the power meter, and produces a report to
the user. In this section we describe each one of these elements.

20 T. Bessa et al.

1

12VDC-SUPPLY

CONN-SIL1

1

0VDC-SUPPLY

CONN-SIL1

4.7KOHM

4.7k

1

BOARD_5V
CONN-SIL1

1

BOARD_GPIO_1.8V
CONN-SIL1

1

BOARD_GND
CONN-SIL1

Q1

BC547

D1

DIODE

RL1
TEXTELL-KBH-5V

1

BOARD_0V

CONN-SIL1

1

BOARD_12V

CONN-SIL1

0.1OHM

0.1

1

POWER_METER1

CONN-SIL1

1

POWER_METER2

CONN-SIL1

Fig. 2. Schematic view of the circuit that we use to measure energy in the Jetson
board.

Hardware. Figure. 2 shows the electric circuit that we use to control the mea-
surement of energy. This circuit enables or disables the power measurement,
once it links or not the power meter’s probes to the shunt resistor edges. This
measurement is controlled by signals which are issued from the target program,
in such a way that only regions of interest within the code are probed. The
circuit is formed by the following components: 1 relay of 5 V2, a resistance of
0.1Ω and 5 W, a resistance of 4.7 KΩ and 0,25 W, a transistor BC547, 1 flyback
diode, 10 mini electric cables, 2 connectors with sockets to feed the board, and a
protoboard. All in all, these components can be acquired with less than $ 20.00.
Figure 3 (Left) shows how the circuit looks like in practice.

The measurement of power spent by the circuit is controlled by the General
Purpose I/O (GPIO) pin of the Jetson board. The GPIO port can be activated
from any software that runs on the board. Each hardware defines GPIO ports in
different ways. In our particular case, the Jetson has eight such ports, which we
have highlighted in Fig. 3 (Right). Besides, the 5 V supply and the Ground pins,
can be found in the same figure. According to the Jetson’s programming sheet,
these ports are installed on the pins: 40, 43, 46, 49, 52, 55 and 58, in J3A2, and
50, in J3A13. Each port can be signalled independently.

2 http://voron.ua/files/pdf/relay/JQC-3F(T73).pdf.
3 http://elinux.org/Jetson/GPIO.

http://voron.ua/files/pdf/relay/JQC-3F(T73).pdf
http://elinux.org/Jetson/GPIO

JetsonLeap: A Framework to Measure Energy-Aware Code Optimizations 21

Fig. 3. A picture of our apparatus. (Left) The overall setup. (Right) The ports on the
Jetson board. (Down) Detailed view of the circuit.

Figure 2 shows that in the absence of positive signals in the GPIO port, the
two cables of the power meter perform readings at the same logical region, which
gives us a voltage of zero. Hence, energy will be zero as well. On the other hand,
in face of a positive signal, the transistor lets energy flow until the relay, powering
up its coil. In this way, the cables of the power meter become linked with the
shunt resistor, enabling the start of the power measurement. From Eq. 2, the
difference in voltage lets us probe the current at the shunt, which, in turn, gives
us a way to know the current that flows into the Jetson board.

Software. The software layer of our apparatus is made of two parts. First, we
provide users with a simple library that lets them send signals to the GPIO
port. Additionally, this library contains routines to record which ports are in
use, and to log events already performed. Figure 4 shows a program that toggles
the energy measurement circuit twice.

The second part of our software layer is an interface with the data acquisition
tool. We are currently using a National Instruments 6009 DAQ. During our
first toils with this device, we have been using LabView4 to read its output.
4 http://www.ni.com/labview/pt/.

http://www.ni.com/labview/pt/

22 T. Bessa et al.

Fig. 4. Activation/deactivation of power data acquisition through program instrumen-
tation. The exact behavior of the program is immaterial – it is used for illustrative
purposes only.

LabView is a development environment provided by National Instruments itself,
and it already comes with an interface with the DAQ. However, for the sake of
flexibility, and in hopes of porting our system to different acquisition devices,
we have coded a new interface ourselves. Our tool, called CMeasure, has been
implemented in C++. It lets us (i) read data from the DAQ; (ii) integrate power,
to obtain energy numbers; and (iii) produce energy reports. Concerning (ii),
while on its idle state, our circuit still lets pass to the DAQ some noise, which
oscillate between −0.001 and +0.001 watts. The expected value of this data’s
integral is zero. Thus, by simply integrating the entire range of power values that
we obtain through CMeasure, we expect to arrive at correct energy consumption
with very high confidence.

4 Experimental Evaluation

In order to validate our energy measurement system, JetsonLeap, we ran several
different experiments on the NVIDIA Tegra TK1 board. The first one concerns
the precision of our apparatus. We are interested in answering the following
research question: what is the minimum number of instructions whose energy
budget we can measure with high confidence. The second batch of experiments
demonstrate the many possibilities that our platform opens up to the program-
ming languages community. These experiments compare the energy footprint
of sequential and parallel execution on the GPU, and the energy footprint of
local compared with remote execution of programs. For simplicity, all the exper-
iments using the Jetson’s CPU use only one CPU, even though the board has
four cores. We emphasize that these experiments, per se, are not a contribution

JetsonLeap: A Framework to Measure Energy-Aware Code Optimizations 23

Write Read

Fig. 5. Energy outline of a program that writes a sequence of records into a file, and
then reads them all.

of this paper; rather, they illustrate the benefit of our framework. Nevertheless,
these experiments are original: no previous work has performed them before on
the Tegra board. Before we start, we provide evidence that the power dissipated
by a program is not constant along its entire execution, even if it is restricted to
a single core within the available hardware.

Program Phases. Figure 5 shows the energy skyline of a program that writes
a large number of records into a file, and then reads this data. The different
power patterns of these two phases is clearly visible in the figure. We show this
example to enforce the fact that programs do not have always a uniform behavior
in terms of energy consumption. It may spend more or less energy, according
to the events that it produces on the hardware. This is one of the reasons that
contribute to make energy modelling a very challenging endeavour.

4.1 On the Precision of the Apparatus

We have used the program in Fig. 6 (Left) to find out the minimum number of
ARM instructions whose energy footprint we can measure. This program runs a
loop that only increments a counter for a certain number of iterations. By varying
the number of iterations, we can estimate the minimum number of instructions
that gives us energy numbers with high confidence. When compiled with gcc
4.2.1, the program in Fig. 6 (Left) yields a loop with only two instructions, a
comparison plus an increment.

Figure 6 (Right) gives us the result of this experiment. For each value of
INTERVAL, we have tried to obtain energy numbers 10 times. Whenever we obtain
a measurement, we deem it a hit; otherwise, we call it a miss. We know precisely
if we get a hit or a miss on each sample because we can probe the state of the
relay after we run the experiment. We started with INTERVAL equals 5,000, and
then moved on to 25,000. From there, we incremented INTERVAL by 25K, until
reaching 450,000. For INTERVAL equal to 5,000, we have been able to switch the
relay 3 out of 10 times. After we go past 325,000, we obtain 10 hits out of each
10 tries. These numbers are in accordance with the expected switching time of
our relay: less than one milisecond. Given that our ARM CPUs run at 2.3GHz,
we should expect no more than 2.3 million instructions per milisecond. From
this experiment, we believe that we can measure – with very high confidence –
energy of events that take around 400,000 instructions to finish.

24 T. Bessa et al.

Fig. 6. (Left) Program used to measure precision of our apparatus. (Right) Chart
relating the number of correct measurements with the value of INTERVAL in the program
on the left. The Y axis gives us number of hits, out of 10 tries; the X axis gives us the
value of INTERVAL (in thousands).

4.2 CPU vs GPU

We open this section by comparing the energy consumption of a program run-
ning on the CPU, versus the energy consumption of similar code running on
the GPU. In this experiment, our benchmark suite is made of six programs,
which we took from Etino, a tool that analyzes the asymptotic complexity of
algorithms [2]. These programs are mostly related to linear algebra: Cholesky
and LU decomposition, matrix multiplication and matrix sum. The other two
programs are Collinear List, which finds collinear points among a set of samples,
and Str. Matching, which finds patterns within strings. All these are written in
standard C, without any adaptations for a Graphics Processing Unit (GPU). To
compile these programs to the Tegra’s GPU, we have marked their mains loops
with OpenAcc directives. OpenAcc is an annotation system that lets developers
indicate to the compiler which program parts are embarrassingly parallel, and
can run on the graphics card. We have used accULL [13] to produce GPU bina-
ries out of annotated programs. Therefore, in this experiment we are comparing,
in essence, the product of different compilers, – targeting different processors –
when given the same source code. The code that runs on the CPU has been
produced with gcc 4.2.1, at the -O3 optimization level.

Figure 7 shows the amount of energy consumed by each benchmark. For each
one, we have used inputs of different sizes: small, medium and large. As we can
see, usually the GPU binaries spend more energy than their CPU counterparts.
The only two exceptions that we have observed are Matrix Multiplication and
String Matching. Figure 8 shows the runtime of each benchmark, for each input
size, on each processor. The GPU version is faster – for large inputs – in four cases:
Cholesky, Collinear List, Matrix Multiplication and String Matching. Notice that
this runtime, as well as the energy numbers, represent the entire execution of the
kernel, including the time to transfer data between CPU and GPU. However, in
either case we omit the time to initialize and check results, which happen in the
CPU, even for the GPU-based benchmarks. We can eliminate these phases from

JetsonLeap: A Framework to Measure Energy-Aware Code Optimizations 25

Fig. 7. Energy consumed by different programs, running either on the CPU, or on the
GPU.

Fig. 8. Runtime for different programs, running either on the CPU, or on the GPU.

our experiment – which are the same for both CPU and GPU-based samples –
because of our ability to turn off the energy measurement hardware whenever we
find it necessary.

Comparing the runtime chart with the energy consumption one, we realize
that, even though the GPU execution is faster for most programs, it usually
consumes more energy than the CPU. In fact, only “Matrix Multiplication”
and “Str Matching” give us the opposite behavior, in which the GPU consumes
less energy than the CPU. This result corroborates some of the conclusions
drawn by Pinto et al. [12], who have shown that after a certain threshold, an

26 T. Bessa et al.

Fig. 9. A chart that illustrates the difference between power consumption by a program
running on the GPU and on the CPU.

excessive number of threads may be less energy efficient, even for data-parallel
applications. Notice that they have gotten their results comparing code running
on a multi-core CPU with a different number of cores enabled each time. Figure 9
supports our observation. It shows a program that performs matrix summation,
first on the GPU, and then on the CPU. The difference in power consumption
makes it easy to tell each phase apart. During the whole execution of the GPU,
its power dissipation is higher than the CPU’s. We believe that these results are
particularly interesting, because they show very clearly that in some scenarios,
runtime is not always proportional to energy consumption.

4.3 Local X Cloud

In our third round of experiments, we compare the execution of two different
benchmarks, e.g., Matrix Multiplication and Matrix Addition, when running
locally on the GPU, on the CPU, or in the cloud. Figure 10 shows how much
energy is spent for each program, running on each location. We compare only
the energy spent to transfer data between devices, plus the energy spent to run
the computation itself. We measure only energy consumed at the Jetson board;
thus, in the cloud case, we do not measure the energy spent by the remote server
to perform the computation. In the cloud-based version, most of the energy
consumed is spent on networking. As we have seen in Fig. 1, the instantaneous
power consumed on networking is slightly higher than the power spent by CPU
intensive computations.

Figure 10 shows that matrix addition consumes less energy when done locally.
This is a consequence of its asymptotic complexity: matrix addition involves
O(N2) floating-point operations on O(N2) elements. Therefore, its computation
over data ratio is O(1). Thus, the time to transfer data between devices already
shadows any gains from parallelism and offloading. On the other hand, when it
comes to the multiplication of matrices, sending the data to a server is beneficial
after a certain threshold. Matrix multiplication has higher asymptotic complexity
than matrix addition, e.g., the former performs O(N2) floating-point operations.
Yet, the amount of data that both algorithms manipulate is still the same:
O(N2). Thus, in the case of matrix multiplication we have a linear ratio of
computation over data, a fact that makes offloading much more advantageous.

JetsonLeap: A Framework to Measure Energy-Aware Code Optimizations 27

Fig. 10. Energy consumed by different versions of a matrix multiplication and a matrix
addition routine.

5 Related Work

Much has been done, recently, to enable the reliable acquisition of power data
from computing machinery. In this section we go over a few related work, focus-
ing on the unique characteristics of our JetsonLeap. Before we commence our
discussion, we emphasize a point: much related literature uses energy models to
derive metrics [3,17]. Even though we do not contest the validity of these results,
we are interested in direct energy probing. Thus, models, i.e., indirect estima-
tion, are not part of this survey. Nevertheless, we believe that an infra-structure
such as our JetsonLeap can be used to calibrate new analytical models.

The most direct inspiration of this work has been AtomLeap [11]. Like us,
AtomLeap is also a system to measure energy in a System on a Chip device.
However, Singh et al. have chosen to use the Intel Atom board as their platform
of choice. Furthermore, they do not use a circuit, like we do, to toggle energy
measurement. Instead, they synchronize the Atom’s clock with a global watch
used by the energy measurement infra-structure. By logging the time when par-
ticular events take place during the execution of a program, they are able to
estimate the amount of energy consumed during a period of interest. They have
not reported on the accuracy of this technique, so we cannot compare it against

28 T. Bessa et al.

our approach. We tried to use the Atom board instead of the Nvidia platform as
our standard experimental ground. We gave up, after realizing that the amount
of energy consumed by that hardware is almost constant, even when there is no
program running on it, other than its operating system. Thus, we believe that
the Nvidia setup gives us the opportunity to log more interesting results.

There is previous work that attempt to recognize programming events by
means of border detection algorithms. This is, for instance, the approach of
Silva et al. [16], or Nazare et al. [8]. Such a methodology works to measure the
energy spent by a program that runs for a relatively long time; however, it can-
not be applied to probe short programming events, like we do in this paper. A
final technique that is worth mentioning relies on hardware counters, such as
Intel’s RAPL (Running average power limit). Different hardware provides dif-
ferent kinds of performance counters, which might log runtime, memory traffic
or energy. RAPL registers can be used to keep track of very fast programming
events, as demonstrated by Hähnel et al. [5]. However, only a limited range
of computing machinery provides such tools. Thus, direct measurement tech-
niques such as ours are still essential for simpler hardware. Additionally, direct
approaches tend to enjoy more the trust of the research community [21].

Contrary to AtomLEAP and similar approaches [4,7], our infra-structure
does not allow us to measure the power dissipation of separate components
within the hardware, such as RAM, disks and processors. This limitation is a
consequence of the heavy integration that exists between the many components
that form the Nvidia TK1 board. Implementing energy measurement in such
environment, at component level is outside the scope of this work. Nevertheless,
a comparison with the work of Ge et al. [4] is illustrative. They use two data
acquisition devices to probe different parts of the hardware simultaneously. Syn-
chronisation is performed through a client-server architecture, via time-stamps.
Although the authors have not reported the length of programming events that
they can measure, we believe that our approach enables finer measurements, as
we do not experiment network delays. Besides, our infra-structure is cheaper:
the fact that we control the acquisition circuitry from within the target program
lets us use a simpler power meter, with only one channel.

6 Conclusion

This paper has presented JetsonLeap, an apparatus to measure energy consump-
tion in programs running on the Nvidia Tegra board. JetsonLeap offers a num-
ber of advantages to developers and compiler writers, when compared to similar
alternatives. First, it allows acquiring energy data from very brief programming
events: our experiments reveal a precision of about 400,000 instructions. Such
granularity enables the measurement of power-aware compiler optimizations.
Second, our infra-structure is cheap: the entire framework can be constructed
with less than $ 500.00. Finally, it is general: we have built it on top of a spe-
cific platform: the Nvidia Jetson TK1 board. However, the only essential feature
that we require on the target hardware is the existence of a general purpose

JetsonLeap: A Framework to Measure Energy-Aware Code Optimizations 29

input-output port. Such port is part of the design of several different kinds of
System-on-a-Chip devices, including open-source hardware, such as the Arduino.

Acknowledgement. This project is sponsored by LG Electronics Brazil. From March
2015 to February 2016, Tarsila Bessa was the recipient of a scholarship sponsored by
Intel Semiconductors. Currently, Tarsila is sponsored by the Big-Sea joint cooperation
between Brazil and the European Union. Fernando Pereira is supported by FAPEMIG,
CNPq and CAPES.

References

1. Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuris-
tics for efficient management of data centers for cloud computing. Future Gener.
Comput. Syst. 28(5), 755–768 (2012)

2. Demontiê, F., Cezar, J., Bigonha, M., Campos, F., Magno Quintão Pereira, F.:
Automatic inference of loop complexity through polynomial interpolation. In:
Pardo, A., Swierstra, S.D. (eds.) SBLP 2015. LNCS, vol. 9325, pp. 1–15. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-24012-1 1

3. Dunkels, A., Osterlind, F., Tsiftes, N., He, Z.: Software-based on-line energy esti-
mation for sensor nodes. In: EmNets, pp. 28–32. ACM (2007)

4. Ge, R., Feng, X., Song, S., Chang, H.-C., Li, D., Cameron, K.W.: Powerpack:
energy profiling and analysis of high-performance systems and applications. IEEE
Trans. Parallel Distrib. Syst. 21(5), 658–671 (2010)

5. Hähnel, M., Döbel, B., Völp, M., Härtig, H.: Measuring energy consumption for
short code paths using RAPL. SIGMETRICS Perform. Eval. Rev. 40(3), 13–17
(2012)

6. McIntire, D., Ho, K., Yip, B., Singh, A., Wu, W., Kaiser, W.J.: The low power
energy aware processing (LEAP) embedded networked sensor system. In: IPSN,
pp. 449–457. ACM (2006)

7. McIntire, D., Stathopoulos, T., Reddy, S., Schmidt, T., Kaiser, W.J.: Energy-
efficient sensing with the low power, energy aware processing (LEAP) architecture.
ACM Trans. Embedded Comput. Syst. 11(2), 27 (2012)

8. Nazaré, H., Maffra, I., Santos, W., Barbosa, L., Gonnord, L., Quintão Pereira,
F.M.: Validation of memory accesses through symbolic analyses. In: OOPSLA,
pp. 791–809. ACM (2014)

9. Domingues Neto, J.L.: User-level online offloading framework. Master’s thesis,
UFMG (2016)

10. Domingues Neto, J.L., Macedo, D.F., Nogueira, J.M.S.: A location aware decision
engine to offload mobile computation to the cloud. In: NOMS, pp. 831–838 (2016)

11. Peterson, P.A.H., Singh, D., Kaiser, W.J., Reiher, P.L.: Investigating energy and
security trade-offs in the classroom with the Atom LEAP testbed. In: CSET,
pp. 1–11. USENIX (2011)

12. Pinto, G., Castor, F., Liu, Y.D.: Understanding energy behaviors of thread man-
agement constructs. In: OOPSLA, pp. 345–360. ACM (2014)

13. Reyes, R., López-Rodŕıguez, I., Fumero, J.J., de Sande, F.: accULL: an Ope-
nACC implementation with CUDA and OpenCL support. In: Kaklamanis, C.,
Papatheodorou, T., Spirakis, P.G. (eds.) Euro-Par 2012. LNCS, vol. 7484,
pp. 871–882. Springer, Heidelberg (2012)

http://dx.doi.org/10.1007/978-3-319-24012-1_1

30 T. Bessa et al.

14. Saputra, H., Kandemir, M., Vijaykrishnan, N., Irwin, M.J., Hu, J.S., Hsu, C-H.,
Kremer, U.: Energy-conscious compilation based on voltage scaling. In: SCOPES,
pp. 2–11. ACM (2002)

15. Sartori, S., Kumar, R.: Compiling for energy efficiency on timing speculative
processors. In: DAC, pp. 1301–1308. ACM (2012)

16. Silva, B.L.B., Guimarães Tavares, E.A., Martins Maciel, P.R., e Silva Nogueira,
B.C., Oliveira, J., Lourenço Damaso, A.V., Rosa, N.S.: AMALGHMA -an environ-
ment for measuring execution time and energy consumption in embedded systems.
In: SMC, pp. 3364–3369. IEEE (2014)

17. Steinke, S., Wehmeyer, L., Lee, B., Marwedel, P.: Assigning program and data
objects to scratchpad for energy reduction. In: DATE, pp. 409–415. IEEE (2002)

18. Stokke, K.R., Stensland, H.K., Griwodz, C., Halvorsen, P.: Energy efficient video
encoding using the tegra K1 mobile processor. In: MMSys, pp. 81–84. ACM (2015)

19. Valluri, M., John, L.K.: Is compiling for performance – compiling for power? In:
Lee, G., Yew, P.-C. (eds.) Interaction between Compilers and Computer Archi-
tectures. The Springer International Series in Engineering and Computer Science,
pp. 101–115. Springer, New York (2001)

20. Vetro, A., Ardito, L., Procaccianti, G., Morisio, M.: Definition, implementation,
validation of energy code smells: an exploratory study on an embedded system. In:
ENERGY, pp. 34–39 (2013)

21. Weaver, V.M., Johnson, M., Kasichayanula, K., Ralph, J., Luszczek, P., Terpstra,
D., Moore, S.: Measuring energy and power with papi. In: ICPPW, pp. 262–268.
IEEE (2012)

22. Yuki, T., Rajopadhye, S.: Folklore confirmed: compiling for speed = compiling
for energy. In: Cas.caval, C., Montesinos-Ortego, P. (eds.) LCPC 2013. LNCS,
vol. 8664, pp. 169–184. Springer, Heidelberg (2014)

A Monadic Semantics for Quantum Computing
in Featherweight Java

Samuel da Silva Feitosa1(B), Juliana Kaizer Vizzotto1,
Eduardo Kessler Piveta1, and Andre Rauber Du Bois2

1 Universidade Federal de Santa Maria, Santa Maria, Brazil
{sfeitosa,juvizzotto,piveta}@inf.ufsm.br

2 Universidade Federal de Pelotas, Pelotas, Brazil
dubois@inf.ufpel.edu.br

Abstract. Nowadays, several languages and libraries have been pro-
posed to program and reason about quantum programs in the imperative
and functional paradigms. Although the object-oriented paradigm is one
of the most used for general purpose software, there is a lack of quantum
programming languages designed with this paradigm in mind. In this
paper, we present the monadic semantics for FJQuantum, an object-
oriented language based on Featherweight Java, created to reason and
to develop programs handling quantum data and quantum operations,
taking advantage of the characteristics of that paradigm. We also show
a set of examples of quantum programs using the proposed language.

Keywords: Quantum computing · Monadic semantics · Featherweight
java

1 Introduction

Quantum computing [19] is a new computational paradigm that considers devices
developed at very small scales, which are governed by the quantum mechanics
laws. The research field tries to find ways to handle quantum effects to enhance
and sustain old computational goals in new ways. The theory of quantum com-
puter science predicts that quantum computers will be able to perform certain
computational tasks in fewer steps than any classical computer. This assertion
is justified because the algorithms available to quantum computers can harness
physical phenomena that are not available to classical computers [30].

One challenging research area in quantum computing is the design of
high-level quantum programming languages [3,6,14,20,22,24,26,28] suitable for
describing and reasoning about quantum algorithms, and also providing tools to
understand how quantum computing works in general.

Although there exists different programming languages proposed to han-
dle quantum data and operations, there is a lack of languages based on the

The original version of this chapter was revised: In the initially published contribu-
tion the name of the author Samuel da Silva Feitosa was incorrect. The correct
name is: Samuel da Silva Feitosa. The erratum to this chapter is available at
10.1007/978-3-319-45279-1 13

c© Springer International Publishing Switzerland 2016
F. Castor and Y.D. Liu (Eds.): SBLP 2016, LNCS 9889, pp. 31–45, 2016.
DOI: 10.1007/978-3-319-45279-1 3

32 Feitosa et al.

object-oriented paradigm, which is among the most used paradigms today in soft-
ware development for general purpose. In this context, this work provides the
description forFJQuantum [10], a quantumobject-oriented language, and a formal
monadic semantics for it, extending Featherweight Java [13] (FJ), a small core cal-
culus of Java, with a rigorous semantic definition of the main core aspects of Java.

The motivation for using FJ as a starting point is twofold: first it is very com-
pact, so we can focus on the essential aspects of the quantum extension. The min-
imal syntax, typing rules and operational semantics is a nice tool for studying the
consequences of an extension for quantum programming. Second, we are interested
in the formal semantic definition of FJ, which allows modeling and proving prop-
erties of programs. In addition, we believe that the definition of an object-oriented
quantum programming language could minimize the learning efforts, allowing to
encapsulate quantum states and operations using classes and objects.

Technically, this paper describes a Java extension that allows the imple-
mentation of quantum computing programs. The quantum computations can
be combined and used as building blocks for the design of new computations
considering the concept of monads, implemented using closures. Although this
Java extension is described in the context of FJ, as we give a monadic semantics
for the language, it could be implemented in any object oriented language that
supports closures, e.g., C#.

The remainder of this paper is organized as follows: Sect. 2 shows the basic
concepts of quantum computing. Section 3 summarizes the FJ proposal [13],
and presents the extensions required to implement the quantum monadic layer.
Section 4 describes our quantum extensions to work with quantum states and
operations. Section 5 presents some examples demonstrating how to handle quan-
tum concepts in the proposed language. Section 6 presents some related work.
Section 7 concludes the paper.

2 Quantum Computing

The basic information unit in classical computing is the traditional bit, represent-
ing a classical binary physical system, where a piece of information is encoded
using two states (true or false, 0 or 1). In quantum computing, the basic infor-
mation unit is represented by a quantum bit, or qubit, a binary quantum physical
system. The qubit is defined by a vector usually represented as a superposition
of basic states, using the Dirac braket1 notation [19]:

|ψ〉 = α|0〉 + β|1〉

The Dirac notation has the advantage of explicitly labeling the basis vectors.
The basic states |0〉 and |1〉 can be explained by an analogy with the classical
bit, i.e., they form a two-level system and are an orthonormal basis for the
quantum vector space [15] (usually called the standard or computational basis).

1 The braket name comes from the convention that a column vector is called a “ket”
and is denoted by | 〉 and a row vector is called a “bra” and is denoted by 〈 |.

A Monadic Semantics for Quantum Computing in Featherweight Java 33

The coefficients α and β, also called probability amplitudes, are complex numbers,
such that |α|2 + |β|2 = 1. In other words, a qubit can be formalized as a vector
in a complex vector space (Hilbert space), with norm (size) equals to one.

As an example, the classical bit 0 can be represented as the basis state
|0〉 = 1|0〉 + 0|1〉 and the classical bit 1 as |1〉 = 0|0〉 + 1|1〉.

Any other state with different values for α and β is said to be in a quantum
superposition of |0〉 and |1〉, for instance, the state 1/

√
2|0〉 + 1/

√
2|1〉.

The interpretation of the probability amplitudes α and β can be given by the
following: when we interact or measure a quantum state like α|0〉 + β|1〉 we will
see/get the state |0〉 with probability |α|2 and the state |1〉 with probability |β|2.

The superposition of states gives to quantum computing a characteristic
called quantum parallelism. Essentially, due to the superposition of states, a
qubit can assume values of 0 and 1 at the same time. This gives an exponential
power to quantum algorithms, as we can design algorithms that can verify various
possibilities in parallel [19].

Table 1 shows how the qubit state space grows with the number of qubits. We
can verify that the the number of possible distinguishable states doubles each
time a qubit is added.

Table 1. State space of the qubit

Qubits Possibilities Power

1 0 or 1 2

2 00,01,10,11 4

3 000,001,010,011,100,101,110,111 8

N 2N

More formally, a composite quantum state with two or more qubits, as Table 1
shows, can be described using a tensor product operation ⊗. Again, in analogy
with the classical bit, considering a state with two bits, we have four alternatives:
00, 01, 10, 11. Then, the state of a pair of qubits is a linear combination of these
four classical states:

α|00〉 + γ|01〉 + δ|10〉 + β|11〉
If q = α|0〉 + β|1〉 and p = γ|0〉 + δ|1〉 are two independent quantum bits,

then we can form a combined state using the tensor operation on vector spaces,
⊗, defined as follows:

q ⊗ p = αγ|00〉 + αδ|01〉 + βγ|10〉 + βδ|11〉
However, there are some combined quantum bits which are not in the q ⊗ p

form. For instance, the state:

1/
√

2|00〉 + 1/
√

2|11〉
is clearly not in the q⊗p form, for any q and p. This kind of combined state which
cannot be described using the tensor product operation is called an entangled
state.

34 Feitosa et al.

Entanglement is another very important characteristic of quantum states.
Entanglement can be understood as a strong correlation that exists between
quantum particles, which states that quantum particles can be linked in a perfect
union, even if separated by great distances.

3 Featherweight Java

Featherweight Java (FJ) [13] is a minimal core calculus for Java, in the sense
that as many features of Java as possible are omitted, while maintaining the
essential flavor of the language and its type system. However, this fragment is
large enough to include many useful programs. A program in FJ consists of a
declaration of a set of classes and an expression to be evaluated, that corresponds
to the public static void main method of Java.

FJ has a similar relation with Java, like Lambda Calculus has with Haskell.
It offers similar operations, providing classes, methods, attributes, inheritance
and dynamic casts with semantics close to Java’s. Featheweight Java project
favors simplicity over expressivity and offers only five ways to create terms:
object creation, method invocation, attribute access, casting and variables [13].
The following example shows how classes can be modeled in FJ. There are three
classes, A, B, and Pair, with constructor and method declarations.

1 class A extends Object {

2 A() { super (); }

3 }

4 class B extends Object {

5 B() { super (); }

6 }

7 class Pair <X extends Object , Y extends Object >

8 extends Object {

9 X fst; Y snd;

10 Pair(X fst , Y snd) {

11 super ();

12 this.fst=fst;

13 this.snd=snd;

14 }

15 Pair <X, Y> setfst(X newfst) {

16 return new Pair(newfst , this.snd);

17 }

18 }

FJ semantics applies a purely functional view without side effects. In other
words, attributes in memory are not affected by object operations [21]. Fur-
thermore, interfaces, overloading, call to base class methods, null pointers, base
types, abstract methods, statements, access control, and exceptions are not
present in the language [13].

Because the language does not allow side effects, it is possible to formalize the
evaluation just using the FJ syntax, without the need of auxiliary mechanisms
to model the heap [21].

A Monadic Semantics for Quantum Computing in Featherweight Java 35

Figure 1 presents the syntactic definitions originally proposed for Feather-
weight Java with generic types [13], where T refers to the type definitions, L to
the classes list, K and M to constructors and methods respectively, and finally,
t and v express the terms and terminal values of that language. Throughout
this paper, we write T̄ as shorthand for a possibly empty sequence T̄1,...,T̄n

(similarly for C̄, f̄, x̄, etc.).

T ::= C | C<T̄>

L ::= class C<T̄> extends C { T̄ f̄; K M̄ }
K ::= C(C̄ f̄) { super(f̄); this.f̄=f̄; }
M ::= C m(¯)x̄C { return t; }
t ::= x | t.f | t.m(t̄)

| new C<T̄>(t̄) | (C) t

)v̄(Cwen=::v

Fig. 1. Syntactic definitions for Featherweight Java with generic types.

Figure 2 presents the evaluation rules originally proposed for FJ, formalizing
how to evaluate attribute access (R-Field), method invocation (R-Invk), and casts
(R-Cast) [13], the only three possible terms to be used as the main program. The
presented functions fields and mbody, are also formalized in the original paper,
representing respectively a way to obtain a list of attributes of some class C,
and the term inside a method m that belongs to a given class C. In the method
invocation rule, we write [x̄ �→ ū, this �→ new C(v̄)]t0 for the result of replacing x1

by u1,...,xn by un, and this by “new C(v̄)” in expression t0. In the cast rule, the
symbol <: is used to express the sub-typing relation between C and D, stating
that C is a subtype of D. These symbols are also used throughout the paper.

fields(C) = C̄ f̄

new C (v̄).fi → vi
[R-Field]

mbody t,x̄(=)C,m(0)

new C (v̄)ū(m.) → x̄[siht,ū t])v̄(Cwen 0
[R-Invk]

C <: D
))v̄(Cwen()D(→ n)v̄(Cwe

[R-Cast]

Fig. 2. Evaluation rules for Featherweight Java [13].

For short, the formalization of sub-typing relation, congruence and typing
rules were omitted here, but can be found in the original FJ paper [13]. To work
similarly to Java, we consider the call-by-value evaluation strategy for FJ [21].

36 Feitosa et al.

3.1 Featherweight Java Extensions

Basically, we added primitive types, as booleans and complex numbers, and basic
operations in FJQuantum in the standard way [21]. The boolean values are used
to represent the basis for quantum states, and complex numbers are used to
represent the probability amplitudes in quantum states. Both constructions are
also possible values in the language and are not reducible. We also added a
conditional (if) expression.

A functional version of tuples [21] was also added in our language, where for
example, {false, false, true} is a 3-tuple containing three booleans, and its type
is represented by {boolean, boolean, boolean}. The tuples can be seen as a new
type in the language, which is represented by a combination of each element
type. Tuples are also terminal values in the language.

As a way to work with monads in Java, we also added closures, the Java
8 new feature, following the extension proposed by Bellia and Occhiuto [5].
This extension models all essential features of Java related with the properties
of closures. In their work, closures need to extend the FJ type system, adding
closure types, and should be first class values which can be bound to parameters,
hence applied to methods or other closures. Also, a new term was included in the
language to invoke2 the λ-expression. The reader should note that the current
implementation of closures in Java does not have closure types, closures can
be used whenever an object of an interface with a single abstract method is
expected. For simplicity, we decided to use closure types instead of modeling the
complete behavior of Java interfaces.

Since FJ is a functional version of Java, for syntax sugar, we also included
the functional operator let [21].

4 Quantum Monadic Semantics

FJQuantum [10] is a quantum object-oriented language that extends Feather-
weight Java [13], by adding several constructions that allows for the development
of programs handling quantum data and quantum operations through a monadic
layer. The use of monads for quantum computing has been explored in several
works [18,27–29], usually applied in functional languages. An initial informal def-
inition of the language was defined before [11]. Here we provide the monad layer
description inside FJ, including a monadic semantics formalizing the behavior
of the proposed constructions.

Monad is a concept widely used in functional languages. It represents a way
to structure computations in terms of values and sequences of computations.
Monads allow programmers to build computations using sequential building
blocks, which can themselves be computation sequences. A monad determines
how combined computations form a new computation and frees the program-
mer from having to manually code the combination each time it is required.

2 The default method .invoke(t̄), responsible to process a closure, is formalized by
the rules GR-Inv-Clos and GRC-Inv-Clos in the referenced paper [5].

A Monadic Semantics for Quantum Computing in Featherweight Java 37

They were first applied to Computer Science by Moggi [16,17] when he pre-
sented a category-theoretic semantics of computations. As an example of this
semantic approach for computations, Moggi showed a general way to structure
various computational effects in the λ-calculus, like side effects, exceptions, par-
tial and nondeterministic computations, and many others cases.

Qubits can be seen as a computational effect, and can also be modeled as
a type of monad for non-determinism [18]. The idea behind this monad is to
construct the space of quantum states, which are mathematically represented as
a vector of complex numbers containing the probabilities amplitudes of qubits.
Transformations can be applied to qubits through quantum gates, which are
modeled as unitary matrices, applied by the monadic operator bind [12].

To handle concepts of quantum computing in the FJQuantum language, we
proposed several syntactic constructions, which allow the creation of quantum
states, setting probability amplitudes and applying transformations over quan-
tum states. The language is formalized through an operational semantics.

Figure 3 shows the syntactic definitions for FJQuantum, where we can note
the addition of type QState, which is used to wrap the quantum states. The type
QState<TB> is a generic type, restricted to the base types TB , which are repre-
sented by booleans or tuples of booleans. Furthermore, we defined the monadic
constructors mzero and mreturn. The first represents a zero computation and
the second is responsible for lifting the base type to a monadic value. Both of
these constructors can be seen as a value in FJQuantum. In our proposal, the
monadic operator bind, represented by >>=, is used to apply transformations
over the quantum states. As a way to facilitate handling the probability ampli-
tudes and also to create superpositions, we added the scalar product $* and the
monadic sum mplus.

T ::= ... FJ Types

| QState<TB>

TB ::= boolean Base Types

| {TBi
i∈1..n}

t ::= ... FJ Expressions

| mzero

| mreturn t

| t1 >>= t2
| t1 mplus t2
| t1 $* t2

v ::= ... FJ Values

| mzero

| mreturn v

Fig. 3. Syntactic definitions for FJQuantum.

38 Feitosa et al.

The following example shows how to create quantum states, where in the
first two lines we are creating states with only one qubit from a boolean type. In
the lines 3 and 4 we are creating states with two qubits, using a tuple of booleans.

1 mreturn false // Creates the state |0〉
2 mreturn true // Creates the state |1〉
3 mreturn {false ,false} // Creates the state |00〉
4 mreturn {false ,true} // Creates the state |01〉

The following example shows how to express a quantum superposition in
FJQuantum, where a combination between the operator mplus and $* is
required. The complex numbers 1/

√
2 and −1/

√
2 are used to represent the

same probability to obtain |0〉 or |1〉 when a measurement is applied.

1/
√

2 $* mreturn false mplus −1/
√

2 $* mreturn true

We also define laws for the operators mplus and scalar as we can see in Fig. 4.
The mplus is the addition operator over quantum vectors, and should respect
some laws, that are similar to the arithmetic addition. The L-Zero equations
show the behavior when mplus is applied with mzero on the left or right side,
while the L-Comm and L-Assoc equations show the commutative and associa-
tive property of that operator. The laws L-Scalar and L-Scalar-Dist show how
to compute a term involving complex probability amplitudes and the addition
operator.

Laws for mplus:

mzero mplus t1 = t1 [L-Zero]

t1 mplus mzero = t1 [L-Zero]

t1 mplus t2 = t2 mplus t1 [L-Comm]

t1 mplus (t2 mplus t3) = (t1 mplus t2) mplus t3 [L-Assoc]

Laws for scalar product:

α1 $* t mplus α2 $* t = (α1 + α2) $* t [L-Scalar]

α $* (t1 mplus t2) = α $* t1 mplus α $* t2 [L-Scalar-Dist]

Fig. 4. Laws for mplus and scalar product operators.

Figure 5 shows the reduction rules which demonstrate how to compute quan-
tum transformations over quantum states. The R-State rule is the most simple
case, where the base value v1 is passed as parameter to a closure which is inside
the t2 term. In R-Sup rule, a state in superposition (t1 mplus t2) of states is
being applied to a closure, which should be inside the t3 term. This reduction

A Monadic Semantics for Quantum Computing in Featherweight Java 39

rule transforms one application of bind operator in two applications, one for t1
term and one for t2 term, joining the applications through the mplus operator.
The last reduction rule R-Scalar also transforms the term (α $* t1), separating
the probability amplitude α, and applying the t1 term to the closure, which is
inside the t2 term. The goal of these rules is to transform the state being applied
(left side) in the simple case R-State.

(mreturn v1) >>= t2 → t2.invoke(v1) [R-State]

(t1 mplus t2) >>= t3 → (t1 >>= t3) mplus (t2 >>= t3) [R-Sup]

(α $* t1) >>= t2 → α $* (t1 >>= t2) [R-Scalar]

Fig. 5. Reduction rules for quantum operators.

In addition to reduction rules, Fig. 6 presents the typing rules aiming to
maintain the type safety of FJQuantum.

Γ mzero : QState<TB>
[T-Zero]

Γ t: TB
Γ mreturn t : QState<TB>

[T-Return]

Γ t1: QState<TB> Γ t2: TB → QState<TB>

Γ t1 >>= t2 : QState<TB>
[T-Bind]

Γ t1, t2: QState<TB>

Γ t1 mplus t2 : QState<TB>
[T-Plus]

Γ t1: Complex t2: QState<TB>

Γ t1 $* t2 : QState<TB>
[T-Scalar]

Fig. 6. Typing rules for quantum operators.

The first two rules are applied to quantum constructors, where in T-Zero one
can see that mzero is of type QState<TB>, and mreturn t is of type QState<TB>
if and only if t is of type TB. As explained before, TB ranges over the basis types.
The rule T-Bind should concern about two constraints: (a) the term t1 should
be of type QState<TB>, and the term t2 should be a closure, which receives
as parameter a base type TB and returns a monadic type QState<TB>. For the
monadic operator mplus, the rule T-Plus has the responsibility to check whether
the terms t1 and t2 are of QState<TB> type. The last rule T-Scalar should check
if t1 is a complex number and if t2 is of type QState<TB>.

40 Feitosa et al.

Considering these rules we can model all pure quantum states and reversible
quantum computations. In pure quantum computing, all operations must be
reversible, that is, they must avoid decoherence and loss of information [28].

As a quantum operation example coded using FJQuantum, consider the
hadamard method, which is used to transform a quantum state into a super-
position.

1 (boolean -> QState <boolean >) hadamard () {

2 return (boolean b) ->

3 if (b) {

4 1/
√

2 $∗ mreturn false mplus −1/
√

2 $∗ mreturn true

5 } else {

6 1/
√

2 $∗ mreturn false mplus 1/
√

2 $∗ mreturn true

7 };

8 }

We can use the equations to prove that, for example, applying Hadamard
twice is the same as identity. Consider:

1 ((mreturn false) >>= obj.hadamard ()) >>= obj.hadamard ();

Figure 7 shows the sequence of reductions following the proposed semantics,
considering the example above.

≡ qop.hadamard().invoke(false) >>= qop.hadamard() (1)

≡ ((1/
√

2 $* mreturn false) mplus (−1/
√

2 $* mreturn true)) >>= qop.hadamard() (2)

≡ ((1/
√

2 $* mreturn false) >>= qop.hadamard()) mplus (3)

((−1/
√

2 $* mreturn true) >>= qop.hadamard())

≡ 1/
√

2 $* ((mreturn false) >>= qop.hadamard()) mplus (4)

−1/
√

2 $* ((mreturn true) >>= qop.hadamard())

≡ 1/
√

2 $* ((1/
√

2 mreturn false) mplus (1/
√

2 $* mreturn true)) mplus (5)
(1/2 $* mreturn false mplus -1/2 $* mreturn true)

≡ mreturn false

Fig. 7. Proof of reversibility for Hadamard operator.

First of all, the hadamard method is evaluated using the T-Invk3 rule [13]
resulting in a lambda expression. After that, step (1) applies the reduction rule R-
State over the initial state, passing as parameter the value false for that lambda
expression, which is evaluated by GR-Invk-Clos4 rule [5] to evaluate the closure
and E-If-False4 rule [21] to eval the if statement. Step (2) applies the R-Sup
rule to handle the superposition and generates two applications of Hadamard.

3 For short, the rules T-Invk, GR-Invk-Clos and E-If-False were omitted from the
text, but can be found in the pointed references [5,13,21].

A Monadic Semantics for Quantum Computing in Featherweight Java 41

Step (3) uses the R-Scalar rule. In step (4) the R-State rule is applied twice for
both sides of the mplus operator. Step (5) uses the law L-Scalar-Dist for scalar
product and then uses the laws for the mplus operator, to simplify the term,
considering the associative and commutative properties, resulting on the initial
state mreturn false.

To have an executable version of this semantics, we implemented an inter-
preter4 using the functional programming language Haskell and the Happy
parser generator for Haskell. The next section shows some code examples demon-
strating how to construct programs handling quantum concepts.

5 Examples

This first example presents a class (QOp) that implements some of the universal
reversible quantum gates. The not method (line 3 to 10) is the quantum version
of the classical not operator, applied to one qubit. The hadamard method (line
11 to 19) is used to put a qubit from a trivial state in a superposition, using the
scalar and mplus operators, as seen previously.

1 class QOp extends Object {

2 // Constructor and other methods ...

3 (boolean -> QState <boolean >) not() {

4 return (boolean b) ->

5 if (b) {

6 mreturn false

7 } else {

8 mreturn true

9 };

10 }

11 (boolean -> QState <boolean >) hadamard () {

12 return (boolean b) ->

13 if (b) {

14 1/
√
2 $∗ mreturn false mplus −1/

√
2 $∗ mreturn true

15 }

16 else {

17 1/
√
2 $∗ mreturn false mplus 1/

√
2 $∗ mreturn true

18 };

19 }

20 }

In the same class QOp, the controlledNot method (line 3 to 15) should be
invoked with two qubits as parameters, representing a conditional not. One can
note that in all these methods, we are returning a closure, to be able to work
directly with the >>= operator.

4 The source-code for FJQuantum interpreter and more examples can be found at
https://github.com/fjquantum.

https://github.com/fjquantum

42 Feitosa et al.

1 class QOp extends Object {

2 // Constructor and other methods ...

3 ({boolean ,boolean} -> QState <{boolean ,boolean}>)

4 controlledNot () {

5 return ({boolean ,boolean} b) ->

6 if (b.1) {

7 if (b.2) {

8 mreturn {true , false}

9 } else {

10 mreturn {true , true}

11 }

12 } else {

13 mreturn {b.1,b.2}

14 };

15 }

16 }

The last example shows a piece of code which performs complex operations
over an initial state, containing several qubits, using the previously defined class
QOp. Here we can find a way to apply partial transformations over the quantum
state and how to compose operations through the bind operator. The program
starts from line 20, creating an object of QExec and invoking the exec method,
that receives as parameter a tuple containing three booleans. Inside the exec
method (line 13 to 17), we build the quantum state of three qubits through the
constructor mreturn, and then apply this state to composedOperation (line 3 to
12) using the bind operator.

1 class QExec extends Object {

2 // Constructor and other methods

3 QState <{boolean ,boolean ,boolean}> composedOperation () {

4 return let qop = new QOp() in

5 ({boolean ,boolean ,boolean} state) ->

6 ((qop.hadamard ()). invoke(state .3)) >>=

7 (boolean b) ->

8 ((qop.controlledNot ()). invoke ({ state.1,state .2})) >>=

9 ({boolean ,boolean} tm) ->

10 ((qop.hadamard ()). invoke(b)) >>=

11 (boolean ba) -> mreturn {tm.1,tm.2,ba};

12 }

13 QState <{boolean ,boolean ,boolean}>

14 exec({boolean ,boolean ,boolean} ini) {

15 return (mreturn ini) >>=

16 this.composedOperation ();

17 }

18 }

19
20 new QExec (). exec({true ,true ,true });

The method composed operation acts over a quantum state of three qubits
applying in sequence the Hadamard operator to the third qubit (line 6), the con-
trolledNot to the first and second qubits (line 8), and then apply the Hadamard
operator again in the third qubit (line 10). After that, the modified state is
rebuilt by the mreturn constructor (line 11).

A Monadic Semantics for Quantum Computing in Featherweight Java 43

The examples show how to handle quantum concepts using FJQuantum,
taking advantage of the object-oriented paradigm, and demonstrate how the
monadic layer fits into the original FJ proposal.

6 Related Work

A quantum programming language is an important tool to formally reason about
quantum algorithms. For this reason, there is an effort in investigating semantic
models and quantum programming languages, despite the fact that quantum
hardware continues in development.

In general, quantum languages are built through the imperative or func-
tional paradigm. The first quantum programming language was developed on
the imperative paradigm, which was proposed by Knill [14]. More complete pro-
gramming languages in this paradigm were proposed by Omer [20], Sanders and
Zuliani [22], and Bettelli et al. [6]. In the functional paradigm, Selinger [23] is a
pioneer, working together with Valiron [25]. Furthermore, we can cite the work
of Altenkirch and Grattage [2], the proposal of Andre Van Tonder [26], among
others [1,4,8].

Our proposed quantum extension of FJ considers other works [3,27,28],
where pure quantum states were modeled as monads [16], and also in a library for
quantum programming in Java using closures [7], called QJava. Another related
work is a domain specific language for concurrent programming using a monadic
semantics for transactional memory in Java [9].

7 Conclusions and Future Work

This paper extends the Featherweight Java language, adding features to deal
with quantum concepts, adapting a monadic approach to an object-oriented
context. Our contribution is a monadic semantics to reason about quantum
data and quantum operations. In addition, we implement an interpreter for the
proposed language, to check the semantics and the type system rules, and present
some examples accepted by the interpreter.

We believe that this language can be a starting point for programmers that
are not familiar with quantum computing concepts, reusing the previous knowl-
edge about object-oriented languages. Furthermore, it is possible to perform the
simulation of quantum algorithms using the developed interpreter.

As future work, it is possible to develop syntactical adjustments to facilitate
visualization of quantum states in source-code, develop a syntax-sugar to write
code similarly to imperative style (like Haskell do-notation), implement closures
as in Java 8, and also add measurement operations in the proposed language.
Additionally, there is the need to prove reduction and type soundness to have
the all benefits of an FJ extension.

44 Feitosa et al.

References

1. Abramsky, S.: High-level methods for quantum computation and information. In:
Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science,
pp. 410–414 (2004)

2. Altenkirch, T., Grattage, J.: A functional quantum programming language. In:
Proceedings of the 20th Annual IEEE Symposium on Logic in Computer Science
(2005)

3. Altenkirch, T., Grattage, J., Vizzotto, J.K., Sabry, A.: An algebra of pure quantum
programming. Electron. Notes Theor. Comput. Sci. 170, 23–47 (2007)

4. Arrighi, P., Dowek, G.: Linear-algebraic λ-calculus: higher-order, encodings, and
confluence. In: Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp. 17–31. Springer,
Heidelberg (2008). eprint arXiv:quant-ph/0612199

5. Bellia, M., Occhiuto., M.: Java: proving type safety for Java simple closures. In:
CSp 2010, pp. 61–72 (2010)

6. Bettelli, S., Serafini, L., Calarco, T.: Towards an architecture for quantum pro-
gramming. CoRR cs.PL/0103009 (2001). http://arxiv.org/abs/cs.PL/0103009

7. Calegaro, B., Vizzotto, J.K.: Quantum monad using Java closures. In: 2nd
Workshop-School on Theoretical Computer Science (WEIT), pp. 34–39, October
2013

8. Coecke, B., Duncan, R.: Interacting quantum observables. In: Aceto, L., Damg̊ard,
I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.)
ICALP 2008, Part II. LNCS, vol. 5126, pp. 298–310. Springer, Heidelberg (2008)

9. Du Bois, A.R., Echevarria, M.: A domain specific language for composable mem-
ory transactions in Java. In: Taha, W.M. (ed.) DSL 2009. LNCS, vol. 5658,
pp. 170–186. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03034-5 9

10. Feitosa, S.S.: Uma Linguagem de Programação Quântica Orientada a Objetos
Baseada no Featherweight Java. Master’s thesis, Universidade Federal de Santa
Maria

11. Feitosa, S.S., Vizzotto, J.K., Piveta, E.K., Du Bois, A.R.: FJQuantum: uma Lin-
guagem Quântica orientada a objetos. In: 3rd Workshop-School on Theoretical
Computer Science, WEIT 2015, Porto Alegre, RS, Brazil, 14–16 October 2015, pp.
136–143 (2015)

12. Grattage, J.J., Chapman, J., Green, A., Jago, M., Swierstra, W., Jaskelioff, M.:
A functional quantum programming language. In: Proceedings of the 20th Annual
IEEE Symposium on Logic in Computer Science, pp. 249–258 (2005)

13. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a minimal core calculus
for Java and GJ. ACM Trans. Program. Lang. Syst. (TOPLAS) 23(3), 396–450
(2001)

14. Knill, E.: Conventions for quantum pseudocode. Technical report, Los Alamos
National Laboratory (1996)

15. Mermin, N.D.: Quantum Computer Science: An Introduction. Cambridge Univer-
sity Press, New York (2007)

16. Moggi, E.: Computational lambda-calculus and monads. In: Proceedings of the
Fourth Annual Symposium on Logic in Computer Science, pp. 14–23. IEEE Press
(1989)

17. Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), 55–92 (1991).
citeseer.ist.psu.edu/moggi89notions.html

18. Mu, S.C., Bird, R.: Functional quantum programming. In: Asian Workshop on
Programming Languages and Systems. KAIST, Dajeaon, Korea. http://www.cs.
ox.ac.uk/people/richard.bird/online/MuBird2001Functional.pdf

http://arxiv.org/abs/quant-ph/0612199
http://arxiv.org/abs/cs.PL/0103009
http://dx.doi.org/10.1007/978-3-642-03034-5_9
http://citeseer.ist.psu.edu/moggi89notions.html
http://www.cs.ox.ac.uk/people/richard.bird/online/MuBird2001Functional.pdf
http://www.cs.ox.ac.uk/people/richard.bird/online/MuBird2001Functional.pdf

A Monadic Semantics for Quantum Computing in Featherweight Java 45

19. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information,
10th edn. Cambridge University Press, New York (2011)

20. Ömer, B.: A procedural formalism for quantum computing. Technical University
of Vienna, Technical report (1998)

21. Pierce, B.C.: Types and Programming Languages. MIT press, Cambridge (2002)
22. Sanders, J.W., Zuliani, P.: Quantum programming. In: Backhouse, R., Oliveira,

J.N. (eds.) MPC 2000. LNCS, vol. 1837, pp. 80–99. Springer, Heidelberg (2000)
23. Selinger, P.: Towards a quantum programming language. J. Math. Struct. Comput.

Sci. 14(4), 527–586 (2004)
24. Selinger, P.: Finite dimensional hilbert spaces are complete for dagger compact

closed categories. In: Proceedings of the 5th International Workshop on Quantum
Physics and Logic (QPL 2008), p. 11, Reykjavik, Iceland (2008)

25. Selinger, P., Valiron, B.: A lambda calculus for quantum computation with classical
control. J. Math. Struct. Comput. Sci. 16(3), 527–552 (2006). Special Issue in
Quantum Programming Languages

26. van Tonder, A.: A Lambda calculus for quantum computation. SIAM J. Comput.
33, 1109–1135 (2004)

27. Vizzotto, J.K., Altenkirch, T., Sabry, A.: Structuring quantum effects: superoper-
ators as arrows. J. Math. Struct. Comput. Sci. 16, 453–468 (2006). Special Issue
in Quantum Programming Languages. http://arxiv.org/abs/quant-ph/0501151

28. Vizzotto, J.K., Calegaro, B.C., Piveta, E.K.: A double effect λ-calculus for quantum
computation. In: Du Bois, A.R., Trinder, P. (eds.) SBLP 2013. LNCS, vol. 8129,
pp. 61–74. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40922-6 5

29. Vizzotto, J.K., Du Bois, A.R., Sabry, A.: The arrow calculus as a quantum pro-
gramming language. In: Ono, H., Kanazawa, M., de Queiroz, R. (eds.) WoLLIC
2009. LNCS, vol. 5514, pp. 379–393. Springer, Heidelberg (2009). http://arxiv.org/
abs/0903.1489

30. Williams, C.P.: Explorations in Quantum Computing, 2nd edn. Springer Publish-
ing Company Incorporated, New York (2008)

http://arxiv.org/abs/quant-ph/0501151
http://dx.doi.org/10.1007/978-3-642-40922-6_5
http://arxiv.org/abs/0903.1489
http://arxiv.org/abs/0903.1489

Memoized Zipper-Based Attribute Grammars

João Paulo Fernandes1, Pedro Martins2(B), Alberto Pardo3, João Saraiva4,
and Marcos Viera3

1 LISP/Release - Universidade da Beira Interior, Covilha, Portugal
jpf@di.ubi.pt

2 University of California, Irvine, USA
pribeiro@uci.edu

3 Universidad de la República, Montevideo, Uruguay
{pardo,mviera}@fing.edu.uy

4 Universidade do Minho, Braga, Portugal
jas@di.uminho.pt

Abstract. Attribute Grammars are a powerfull, well-known formalism
to implement and reason about programs which, by design, are conve-
niently modular.

In this work we focus on a state of the art Zipper-based embedding of
Attribute Grammars and further improve its performance through con-
trolling attribute (re)evaluation by using memoization techniques. We
present the results of our optimization by comparing their impact in
various implementations of different, well-studied Attribute Grammars.

Keywords: Embedded domain specific languages · Attribute
Grammars · Zipper data structure · Memoization

1 Introduction

Attribute Grammars (AGs) are a declarative formalism that allows us to imple-
ment and to reason about programs in a modular and convenient way. This
formalism was proposed by Knuth [12] in the late 60s, and a concrete AG relies
on a context-free grammar to define the syntax of a language, while adding
attributes to it so that it is also possible to define its semantics.

AGs have been used in practice not only to specify real programming lan-
guages, like for example Haskell [6], but also to specify powerful pretty printing
algorithms [22], deforestation techniques [8] and powerful type systems [17].

When programming with AGs, modularity is achieved due the possibility
of defining and using different aspects of computations as separate attributes.
Attributes are distinct computation units, tipically quite simple and modular,
that can be combined into elaborated solutions to complex programming prob-
lems. They can also be analyzed, debugged and maintained independently which
eases program development and evolution.

AGs have proven to be particularly useful to specify computations over trees:
given one tree, several AG systems such as [7,13,24] take specifications of which
c© Springer International Publishing Switzerland 2016
F. Castor and Y.D. Liu (Eds.): SBLP 2016, LNCS 9889, pp. 46–61, 2016.
DOI: 10.1007/978-3-319-45279-1 4

Memoized Zipper-Based Attribute Grammars 47

values, or attributes, need to be computed on the tree and perform these compu-
tations. The effort put into the creation, improvement and maintenance of these
AG systems, however, is tremendous, which often is an obstacle to achieving the
success they deserve.

An increasingly popular alternative approach to the use of AGs relies on
embedding them as first class citizens of general purpose programming lan-
guages [3,5,15,18,21,25]. This avoids the burden of implementing a totally new
language and associated system by hosting it in state-of-the-art programming
languages. We want to exploit the modern constructions and infrastructure that
are already provided by those languages and focus on the particularities of the
domain specific language that we are developing.

In this paper we focus on the embedding proposed in [15] for Haskell, which
we revise in Sect. 2. This choice is motivated by the fact that this embedding
ensures a notation that closely resembles AGs and even if it relies on a simple
navigation engine, it has shown sufficient expressive power to incorporate state-
of-the-art extensions to the AG formalism such as the possibility of defining: (i)
higher-order attributes [20,26], (ii) references [14], (iii) circular attributes [15,21],
and (iv) bidirectional transformations [16].

In spite of its elegancy and expressive power, the embedding of [15] does not
ensure that attributes are computed only once on a given node. As will become
clearer in the next section, the same attribute can be evaluated many times on
the same node which causes unnecessary overhead on computations.

The first contribution of this paper is that we take the embedding of [15]
and show how it can be extended in such a way that all attributes in an AG
are evaluated only once. This extension is achieved with a memoization strategy
that can systematically be applied to all embedded AGs in the setting of [15].
This contribution is introduced in Sect. 3.

A second and final main contribution of the paper is that we analyze the
impact of memoization, in terms of efficiency, on several well known and well
studied AG examples from the literature. This is detailed in Sect. 4. We conclude
in Sect. 5.

2 Zipper-Based Attribute Grammars

In this section we describe by means of an example the embedding of AGs
proposed in [15]. The example we consider, which is used as running example
throughout the paper, is the repmin problem [4]. This is a well-known example
that has been extensively used in the literature, for the same reason we have
chosen it here: it is a simple, easy to understand problem which clearly illustrates
the modular nature of AG and the difficulties on implementing and scheduling its
computations. The goal of repmin is to transform a binary leaf tree of integers
into a new tree with the exact same shape but where all leaves have been replaced
by the minimum leaf value of the original tree. Concretely, we consider the
following definition of binary leaf trees:

data Tree = Leaf Int | Fork Tree Tree

48 J.P. Fernandes et al.

In order to solve repmin, we may define an AG with three attributes: (i) one
inherited attribute, globmin, so that all nodes in a tree may know and use the
global minimum of the tree; and two synthesized attributes: (ii) locmin, to com-
pute the local minimum of each node in a tree, and (iii) replace, to compute at
each node the repmin of the tree under it. These attributes should be scheduled
according to the computation: we need to find the minimum value contained in
the tree with locmin, distribute this value across all the nodes of the tree with
globmin and analyze the structure and traverse the tree to create a new one with
replace.

In the setting of [15] we may define the AG for repmin by the embedding in
Haskell shown in Fig. 1. We see that, e.g., at a Leaf node, the global minimum
of a tree is inherited from its parent node (up t), and that the local minimum of
a Fork node is given by the minimum of the local minimums of the child nodes
(left t and right t). Notice that the attributes are represented as functions.

Finally, repmin is obtained by computing the replace attribute on the top-
most node of a tree:
repmin :: Tree → Tree

repmin t = replace (mkAG t)

The embedding of [15] relies on the zipper data structure [9] to provide the
means to navigate on a tree and to define the values of attributes in terms of
other attributes on neighbour nodes. An AG computation on a Tree is actually
a function that takes a Zipper and returns the result of the computation:

-- Inherited

globmin :: AGTree Int

globmin t = case constructor t of

CRoot → locmin (tree t)

CLeaf → globmin (up t)

CFork → globmin (up t)

-- Synthesized

locmin :: AGTree Int

locmin t = case constructor t of

CLeaf l → l

CFork → min (locmin (left t)) (locmin (right t))

replace :: AGTree Tree

replace t = case constructor t of

CRoot → replace (tree t)

CLeaf → Leaf (globmin t)

CFork → Fork (replace (left t)) (replace (right t))

Fig. 1. Repmin defined using a Zipper-based AG

Memoized Zipper-Based Attribute Grammars 49

type AGTree a = Zipper → a

A zipper can be regarded as a tree together with its context:
type Zipper = (Tree,Cxt)

data Cxt = Root | Top | L Cxt Tree | R Tree Cxt

To construct a zipper, we mark a Tree as being at the Root node:
mkAG :: Tree → Zipper

mkAG t = (t ,Root)

Constructor Root is artificially added as a context, since we need to distin-
guish the topmost tree from all the other (sub)trees. In fact, we need to bind
the local minimum of the topmost tree with the global minimum of that same
tree.1

In order to inspect the node under focus, we define a new datatype, with an
associated pattern-matching function:
data Cons = CRoot | CFork | CLeaf Int

constructor :: Zipper → Cons constructor (Leaf l ,) = CLeaf l

constructor (,Root) = CRoot constructor (Fork ,) = CFork

Now, we have defined all it takes to navigate through concrete trees. Going
down on a (non topmost) tree, for example, can be implemented as follows:
left :: Zipper → Zipper right :: Zipper → Zipper

left (Fork l r , c) = (l ,L c r) right (Fork l r , c) = (r ,R l c)

while trying to go down the topmost tree simply creates a zipper whose (real)
context is Top:
tree :: Zipper → Zipper

tree (t ,Root) = (t ,Top)

Going up on a location on a tree may also be performed in a simple way,
which actually inverts the behavior of functions left , right and tree shown above:
up :: Zipper → Zipper up (t ,L c r) = (Fork t r , c)

up (t ,Top) = (t ,Root) up (t ,R l c) = (Fork l t , c)

Finally, we define a function that applies a transformer to the tree under
focus:
modify :: Zipper → (Tree → Tree) → Zipper

modify (t , c) f = (f t , c)

Despite its clear syntax and expressive power, the described embedding does
not ensure that attributes are computed only once on a given node. We may
notice that on the repmin solution presented earlier, the global minimum of a
tree is computed as many times as the number of leaves that tree has.

As a concrete example of this, in Fig. 2 we show the function call chains that
activate the computation of attributes replace on leaves labelled with 1 (left)
and 2 (right). As defined earlier, replace in a leaf will call globmin on the same
node, then globmin will call globmin at its parent, and so on, calling then locmin
from the root to the leaves. So, while in the first computation of replace every
attribute is computed only once, in the second case we see that some calls to

1 This binding can be seen in the definition of globmin, in CRoot → locmin (tree t).

50 J.P. Fernandes et al.

Fig. 2. Function (attribute) calls to evaluate replace in a leaf

globmin are new, but then we reach a point in which we start to repeat the steps
that have already been taken, therefore duplicating computations and creating
an unnecessary overhead, which grows proportionally with the number of leaves.

One contribution of this paper is the introduction of a strategy for solving
this efficiency issue, which is presented in the next section. This is achieved by
memoizing attribute computations, improving that way the performance of the
solution, and allowing us to say that we provide, under a formal perspective, a
real attribute grammar embedding.

Although we use repmin as a running example, the strategy we study has
also been applied and assessed in other problems that are well know in the AG
domain, some of which are presented in Sect. 4.

3 Memoized AGs

As an alternative to the solution given in Fig. 1 we present the one in Fig. 3. The
structure of the new code is quite similar to the old one. Without delving into
details now, it can be seen that the main differences are the use of a memo func-
tion, which introduces memoization in the evaluation of the attribute grammar,
and the use of let to pass around a changing tree.

In order to avoid attribute recomputations, we attach a table to each node
of a tree to store the value of the attributes associated to the node. We do so by
transforming the original tree into a new one of same shape and with a memo
table attached to each node. The new tree type is now parametric on the type
m of the memo table.
data Treem m = Forkm m (Treem m) (Treem m)

| Leaf m m Int
A new version of the Zipper has to be defined to be able to navigate through

a tree of type Treem.
type Zipperm m = (Treem m,Cxtm m)

Memoized Zipper-Based Attribute Grammars 51

-- Inherited

globmin :: (Memo Globmin m Int ,Memo Locmin m Int) ⇒ AGTreem Int

globmin = memo Globmin $ λz → case constructorm z of

CRoot → locmin .@. treem z

CLeaf → globmin ‘atParent ‘ z

CFork → globmin ‘atParent ‘ z

-- Synthesized

locmin :: (Memo Locmin m Int) ⇒ AGTreem Int

locmin = memo Locmin $ λz → case constructorm z of

CLeaf v → (v , z)

CFork → let (left , z ′) = locmin .@. leftm z

(right , z ′′) = locmin .@. rightm z ′

in (min left right , z ′′)

replace :: (Memo Replace m Tree,Memo Globmin m Int ,Memo Locmin m Int)

⇒ AGTreem Tree

replace = memo Replace $ λz → case constructorm z of

CRoot → replace m .@. treem z

CLeaf → let (mini , z ′) = globmin z

in (Leaf mini , z ′)
CFork → let (l , z ′) = replace .@. leftm z

(r , z ′′) = replace .@. rightm z ′

in (Fork l r , z ′′)

Fig. 3. Repmin defined using memoization

data Cxtm m = Rootm | Topm
| Lm m (Cxtm m) (Treem m)
| Rm m (Treem m) (Cxtm m)

The combinators mkAGm, constructorm, treem, leftm, rightm, upm andmodifym

that work on Zipperm are analogous to the ones defined in Sect. 2 for the original
Zipper type. For example, upm is defined as:

upm :: Zipperm m → Zipperm m
upm (t , T opm) = (t , Rootm)
upm (t , Lm m c r) = (Forkm m t r , c)
upm (t , Rm m l c) = (Forkm m l t , c)

52 J.P. Fernandes et al.

3.1 Memo Tables

A memo table will contain Maybe elements corresponding to the attribues, where
Nothing is used to mean that the value of an attribute has not been computed
yet. In our example, we store Maybe values for the attributes Globmin, Locmin
and Replace.

We define singleton datatypes to refer to each attribute in a table:

data Globmin = Globmin
data Locmin = Locmin
data Replace = Replace

By means of a multi-parameter type class Memo we define functions to lookup
and modify the value (of type a) of a given attribute att in a memo table of
type m.
class Memo att m a where
mlookup :: att → m → Maybe a
mmodify :: att → (Maybe a → Maybe a) → m → m

The intended meaning of mmodify att f m is the update of the value v of
attribute att stored in the table m by f v . The benefit of defining this class
is that we can have memoized implementations of AGs that are generic in the
representation of the memo tables.

There are different alternatives in how we can implement a memo table. One
possibile representation is in terms of tuples. In our example, the tuple stores
values corresponding to Globmin (Int), Locmin (Int) and Replace (Tree).
type MemoTable = (Maybe Int ,Maybe Int ,Maybe Tree)
The use of tuples to represent memo tables imposes an important drawback

because it requires to close the universe of attributes for defining the tuple cor-
responding to the memo table. Consequently, the addition of a new attribute to
the AG leads to the redefinition of the memo table and its associated operations.
In other words, the solution with tuples is not extensible.

One way to solve this problem is by replacing tuples by some implementation
of extensible records, like the heterogeneous strongly typed lists [11] defined in
the HList2 library. In our repository3 we include an alternative version that
represents the memo tables as extensible records.

Once we have decided the representation of the memo table we are in con-
ditions to define an instance of the Memo class for each attribute. For example,
the instance for Globmin for the representation in terms of tuples is as follows:
instance Memo Globmin MemoTable Int where

mlookup (g , ,) = g
mmodify f (g , l , r) = (f g , l , r)

2 https://hackage.haskell.org/package/HList.
3 https://hackage.haskell.org/package/ZipperAG.

https://hackage.haskell.org/package/HList
https://hackage.haskell.org/package/ZipperAG

Memoized Zipper-Based Attribute Grammars 53

A Treem can be generated from an input tree by attaching a given memo table
to each node.

buildm :: Tree → m → Treem m
buildm (Fork l tr) mt = Forkm mt (buildm l mt) (buildm r mt)
buildm (Leaf n) mt = Leaf m mt n

We make a final remark concerning the representation of memo tables. Our
representation assumes uniformity on all nodes of the AG in the sense of all
having the same attributes. However, this is not the case in every AG. Different
types of nodes may have different attributes and consequently different types of
memo tables. To admit this case one possible solution is to declare MemoTable
as a sum type with one type of memo table for each kind of node:

data MemoTable = MTFork MemoTableFork | MTLeaf MemoTableLeaf

It is then necessary to define corresponding instances of the Memo class taking
into account the alternative memo tables.

3.2 Attribute Computation

An attribute computation computes a value, as before, but now it may also apply
modifications to memo tables contained in the tree:4

type AGTreem m a = Zipperm m → (a,Zipperm m)

The function memo, used in every attribute definition of Fig. 3, is who puts the
memoization mechanism to work. It takes as input a reference to an attribute
and an AGTreem, representing the computation of that attribute, and returns
as result a new AGTreem where the computation of the attribute is memoized.

memo :: Memo attr m a ⇒ attr → AGTreem m a → AGTreem m a
memo attr eval z =

case mlookup attr (getMemoTable z) of
Just v → (v , z)
Nothing → let (v , z ′) = eval z

in (v ,modifym z ′ (mmodify attr (const $ Just v)))

First of all, the memo table is obtained (by getMemoTable). Then the given
attribute is searched in the memo table to see whether it was already computed.
In the affirmative case, the stored value of the attribute is directly returned.
Otherwise, we have to compute the value of the attribute at the current location

4 This could also be represented in terms of a State monad, but we will not take that
alternative in this paper.

54 J.P. Fernandes et al.

of the zipper and modify the Treem by storing the computed value in the cor-
responding memo table. Notice the use of modifym to update the Zipperm that
will be passed to future computations.

One effect of attribute computation by memoization is a continuos movement
of the computation focus. This means that the location where the computation
of an attribute is taking place is continuosly changing. Changes in the compu-
tation focus correspond to location changes in the zipper. Those movements in
the zipper need to be taken into account when defining the computation of an
attribute because in some cases it is neccesary to return to the original location
after moving. To see an example suppose we implement locmin of Fig. 3 in the
following way:

locmin = memo Locmin $
λz → case constructorm z of

CLeaf v → (v , z)
CFork → let (left , z ′) = locmin (leftm z)

(right , z ′′) = locmin (rightm z ′)
in (min left right , z ′′)

In the CFork case, the focus is first moved to the left child where locmin is
computed. Then, the intention is to compute locmin at the right child of the
original Fork. However, this is not the case, since it is actually computed at the
right child of the left child of the original Fork (if that location even exists). In
summary, this definition of locmin is not correct. The reason of the failure is
that once we move the focus to another position, using e.g. leftm or rightm, it
does not return to the original one.

To cope with this problem we define two new combinators (.@.) and atParent
to move the focus of the Zipperm to an immediate position to compute an
attribute there, returning the focus to the original location afterwards. By using
(.@.) an attribute is computed in the given child, and then the focus goes back
to the parent using upm:

(.@.) :: AGTreem m a → AGTreem m a
eval .@. z = let (v , z ′) = eval z

in (v , upm z ′)

Moving the focus to the parent adds the complication of knowing the position
of the child to which we have to return. This is easily solved by inspecting the
context of the zipper from which we started.

atParent eval z = (v , (back z) z ′)
where

(v , z ′) = eval (upm z)
back (, T opm) = treem

Memoized Zipper-Based Attribute Grammars 55

back (, Lm) = leftm
back (, Rm) = rightm

Finally, to evaluate the AG defined in Fig. 3 we compute replace at the initial
Treem (with empty tables at each node), ignoring the final Treem.

repmin :: Tree → Tree
repmin t = fst (replace (mkAGm (buildm t emptyMemo)))

If, for example, we adopt the memo table representation in term of tuples then
the empty table for this AG is given by:
emptyMemo = (Nothing ,Nothing ,Nothing)

Fig. 4. Performance of the repmin implementations.

4 Results

In this section, we assess in terms of efficiency the memoization approach we
followed in this paper against the original, non-optimized embedding of [15].
For this assessment, we test the optimized and non-optimized versions of Rep-
min together with three well known AG examples from the literature. The results
are presented as running times and memory consumption.

For the benchmarks we are presenting in this section, we compiled the dif-
ferent approaches with the Glasgow Haskell Compiler (ghc), version 7.8.4, using
the -O2 optimization flag. The computer used was a 1.3 GHz Intel Core i5
with 8 GB 1600 MHz DDR3 RAM memory (mid 2013 stock MacBook Air with
RAM upgrade).

4.1 Repmin

We have started by benchmarking the running example presented throughout
this paper. For this test, we used increasingly larger balanced binary leaf trees
with a number of nodes ranging from 2300 to 5000, represented on Fig. 4 in the
x-axis.

56 J.P. Fernandes et al.

Benchmark +RTS -hc -p -K100M 9,898,013,519 bytes x seconds

seconds0.0 200.0 400.0 600.0 800.0 1000.0

b
y
te

s

0M

2M

4M

6M

(90)Main.CAF

(a) Non memoized.

Benchmark +RTS -hc -p -K100M 7,237,760 bytes x seconds

seconds0.0 0.1 0.1 0.2 0.2 0.2

b
y
te

s

0M

5M

10M

15M

20M

25M

30M

35M

40M

(90)Main.CAF

(b) Memoized.

Fig. 5. Heap Profile on Repmin (values in Mbytes).

The performance results of the implementations with and without memoiza-
tion allow us to observe that the memoized version significantly improves the
performance of the original version. Indeed, when we reach the 5000 nodes there
is a clear gap in the time required to run repmin between the original and the
memoized versions.

Another interesting result is how well the memoized version scales. As we
grow from 2300 to 5000 nodes, almost 50 %, the memoized shows only a slight
increase in running time, while the original approach takes proportionally more
and more processing time.

The use of memoization strategies in programming often trades off memory
consumption to achieve better runtime performance. This is also evidenced from
the memory consumption comparison we performed on the different implementa-
tions of Repmin, which is presented in Figs. 5a and b. Both times we ran repmin
with a balanced tree with 150,000 nodes.

As expected, we observe that it is the original version that throughout its
execution has the lowest peak of memory consumption, of slightly more than 8
Mbytes. And it is the memoized version, which is the fastest in terms of runtime
performance, that reaches the highest peak of consumed memory, of around 45
Mbytes. A large difference but a burden expected by the use of the memo tables.

It is worth mentioning the time gap between the two versions. The original
took around 1500 s (around 25 min) while the memoized version took around
0.3 s. Even though these tests cannot be compared to the performance ones of
Fig. 4, because of the overhead introduced when analysing memory consump-
tion (by the ghc profiler), among themselves there is a huge gap in run time,
confirming the exponential behavior of the non memoized version.

A final note, as mentioned earlier, the original implementation of Repmin
is an extremely heavy example of semantics requiring a large number of neces-
sary recomputations of attributes (the minimum value of the tree is constantly

Memoized Zipper-Based Attribute Grammars 57

being required). So, it comes as no surprise that the memoized versions perform
significantly better here. The next examples are focused on real situations.

4.2 Algol-68 Scope Rules

In this section we benchmark an implementation of the Algol 68 scope rules
[8,15,19]. Algol 68 holds central characteristics of widely-used programming lan-
guages, such as a structured layout and mandatory but unique declarations of
names which are used.

The semantics requirements are therefore the same as some real examples,
like the ones on the Eli system [10] (to define a generic component for the name
analysis task of a compiler), or the let-in construct of the Haskell programming
language.

Algol 68 is a simple block structure language that does not require a declare-
before-use scope rule discipline. A program consists of a block with a list con-
taining either use or declaration of names, or a nested block. An example of a
program is:
p = [use ′ y ; decl ′ x ;

[decl ′ y ; use ′ y ; use ′ w ;]
decl ′ x ; decl ′ y ;]

In this language a definition of an identifier x is visible in the smallest enclosing
block, with the exception of local blocks that also contain a definition of x . In
the latter case, the definition of x in the local scope hides the definition in the
global one. In a block an identifier may be declared at most once.

According to these rules, p above contains two errors: (a) at the outer level,
the variable x has been declared twice, and (b) the use of the variable w , at the
inner level, has no binding occurrence at all.

Implementing a validator for Algol implies not only checking each individual
block for double declarations of variables, but also constantly analysing outer
blocks for the declaration of variables whose definition can not be found in the
current block, forcing multiple tree traversals.

Fig. 6. Performance of the Algol implementations.

58 J.P. Fernandes et al.

In Fig. 6, we show the results we obtained when running the different imple-
mentations on Algol programs with an increasing number of enclosing blocks. The
x-axis of Fig. 6 ranges from 60 to 150 enclosing blocks, an increase of more than
50%. Similarly to the previous examples, memoization shows better processing
times.

4.3 HTML Table Formatter

We now analyze an example from [22]: we want to format HTML style tables.
Namely, we want our AG to receive an abstract data type of an HTML table
and to print a geometrically well defined table. Figure 7 shows an example of a
possible input (left) and correspondent output (right).

〈TR〉〈TD〉 The first line 〈/TD〉〈TD〉 of a 〈/TD〉〈/TR〉
〈TABLE〉

〈TR〉〈TD〉〈TABLE〉
〈TR〉〈TD〉 This 〈/TD〉〈TD〉 is 〈/TD〉〈/TR〉

〈TR〉〈TD〉 another 〈/TD〉〈TD/〉〈/TR〉

〈TR〉〈TD〉 table 〈/TD〉〈TD/〉〈/TR〉
〈/TABLE〉
〈/TD〉〈TD〉 table 〈/TD〉〈/TR〉

〈/TABLE〉

7

14

1

4

24

5

1 1

1

7

1

12

5

1

1

|--------------------|
The first line	of a			
	----------		table	
	This	is		

	another			

	table			

Fig. 7. HTML table formatting (Color figure online)

Notice that in the output, all the lines have the same number of columns and
the columns have the same length. None of these features are required in the
HTML language.

An entry in the table can be a string or a nested table, thus, the straight-
forward algorithm to express this table formatting requires two traversals
and the definition of gluing data types to pass the width/height (blue sub-
scripts/superscripts in Fig. 7) of nested table from the first to the second traver-
sal. Simplifying, it is required to know the sizes of inner tables in order to resize
the outer ones.

To test this AG, we computed trees representing HTML tables with the same
number of rows (50) and an increasing number of columns. All the cells of the
tables include the same text, excepting for the ones in the last column, which
include nested tables with, recursively, the same shape but half the number of
rows and columns of the containing table. The results are presented in Fig. 8a
(time) and b (memory consumption), where the x-axis represents the number of
columns, ranging from 10 to 100.

It can be observed from these results that, although the reduction in execu-
tion time is great, the memoized evaluator does consume much more memory.
Note that, for large inputs this evaluator produces large strings. As a result, in

Memoized Zipper-Based Attribute Grammars 59

(a) Time (b) Memory

Fig. 8. Performance of the HTML table formatters.

the memoized version, partial results are kept in the memo table: large strings
in this case. As usual in memoization techniques the gain in runtime is obtained
by using additional memory: the memo table. In fact, memory consumption can
result in a scalability problem in certain cases. To reduce this problem several
AG techniques to purge entries from a memo table have been proposed [19],
which can be used in our zipper-based setting.

5 Conclusion

This paper shows how memoization is introduced in zipper-based embeddings
of AGs. Regarding the programs we finally end up with, we argue that they
maintain the elegance of the embedding we build upon, and in most cases show
better performance, often by various different orders of magnitude.

There is a range of AG applications where this technique does not necessarily
yield an advantage. For example, AGs that only have one tree traversal or heavily
rely on local attributes or semantic operations on their leaves should not (greatly)
benefit from the use of memoization. However, real applications of AGs do not
fit into this category. In fact, we have seen through a series of standard AG
examples that there is a range of problems where memoization provides real
noticeable benefits modulo the memory consumption.

As a possible direction of future research, we would like to test the approach
suggested here with other embeddings of AGs such as the ones of [1,2,23]. This
comparison should be performed whenever possible (for example, it might be
hard to perform with specific AG systems such as [7,13,24]), but other embed-
dings have different strategies to deal with attribute recomputation (for exam-
ple, lazy evaluation). Further tests are required to see how this compares to our
memoized approach.

Another line of work, could be the use of type-level programming techniques
to make the AG system extensible in the sense of adding new productions to the
grammars.

60 J.P. Fernandes et al.

References

1. Badouel, E., Fotsing, B., Tchougong, R.: Yet another implementation of attribute
evaluation. Research Report RR-6315, Inria (2007)

2. Badouel, E., Fotsing, B., Tchougong, R.: Attribute grammars as recursion schemes
over cyclic representations of zippers. Electron. Notes Theory Comput. Sci. 229(5),
39–56 (2011)

3. Balestrieri, F.: The productivity of polymorphic stream equations and the compo-
sition of circular traversals. PhD thesis, University of Nottingham (2015)

4. Bird, R.S.: Using circular programs to eliminate multiple traversals of data. Acta
Inf. 21, 239–250 (1984)

5. de Moor, O., Backhouse, K., Swierstra, D.: First-class attribute grammars. In:
3rd Workshop on Attribute Grammars and their Applications, Ponte de Lima,
Portugal, pp. 1–20 (2000)

6. Dijkstra, A., Fokker, J., Swierstra, S.D.: The architecture of the Utrecht Haskell
compiler. In: Haskell Symposium, pp. 93–104 (2009)

7. Dijkstra, A., Swierstra, D.: Typing Haskell with an attribute grammar (part I).
Technical report UU-CS-2004-037, Institute of Information and Computing Sci-
ences, Utrecht University (2004)

8. Fernandes, J.P., Saraiva, J.: Tools and libraries to model and manipulate circular
programs. In: Symposium on Partial Evaluation and Program Manipulation, pp.
102–111. ACM (2007)

9. Huet, G.: The zipper. J. Funct. Program. 7(5), 549–554 (1997)
10. Kastens, U., Pfahler, P., Jung, M.: The Eli system. In: Koskimies, K. (ed.) CC

1998. LNCS, vol. 1383, pp. 294–297. Springer, Heidelberg (1998)
11. Kiselyov, O., Lämmel, R., Schupke, K.: Strongly typed heterogeneous collections.

In: Workshop on Haskell, pp. 96–107. ACM (2004)
12. Knuth, D.: Semantics of context-free languages. Math, Syst. Theory, 2(2) (1968).

Correction: Math. Syst. Theory, 5(1) (1971)
13. Kuiper, M., Saraiva, J.: Lrc — a generator for incremental language-oriented tools.

In: Koskimies, K. (ed.) CC 1998. LNCS, vol. 1383, pp. 298–301. Springer, Heidel-
berg (1998)

14. Magnusson, E., Hedin, G.: Circular reference attributed grammars - their evalua-
tion and applications. Sci. Comput. Program. 68(1), 21–37 (2007)

15. Martins, P., Fernandes, J.P., Saraiva, J.: Zipper-based attribute grammars and
their extensions. In: Du Bois, A.R., Trinder, P. (eds.) SBLP 2013. LNCS, vol.
8129, pp. 135–149. Springer, Heidelberg (2013)

16. Martins, P., Fernandes, J.P., Saraiva, J., Van Wyk, E., Sloane, A.: Embedding
attribute grammars and their extensions using functional zippers. Science of Com-
puter Programming (2016, in Press)

17. Middelkoop, A., Dijkstra, A., Swierstra, S.D.: Iterative type inference with
attribute grammars. In International Conference on Generative Programming, pp.
43–52. ACM (2010)

18. Norell, U., Gerdes, A.: Attribute grammars in Erlang. In: Workshop on Erlang,
2015, pp. 1–12. ACM (2015)

19. Saraiva, J.: Purely functional implementation of attribute grammars. PhD thesis,
Utrecht University, The Netherlands, December 1999

20. Saraiva, J., Swierstra, S.D.: Generating spreadsheet-like tools from strong attribute
grammars. In: Pfenning, F., Macko, M. (eds.) GPCE 2003. LNCS, vol. 2830, pp.
307–323. Springer, Heidelberg (2003)

Memoized Zipper-Based Attribute Grammars 61

21. Sloane, A.M., Kats, L.C.L., Visser, E.: A pure object-oriented embedding of
attribute grammars. Electron. Notes Theory Comput. Sci. 253(7), 205–219 (2010)

22. Swierstra, D., Azero, P., Saraiva, J.: Designing and implementing combinator lan-
guages. In: Swierstra, S.D., Oliveira, J.N. (eds.) AFP 1998. LNCS, vol. 1608.
Springer, Heidelberg (1999)

23. Uustalu, T., Vene, V.: Comonadic functional attribute evaluation. In: Trends in
Functional Programming, vol. 10, pp. 145–162. Intellect Books (2005)

24. Van Wyk, E., Bodin, D., Gao, J., Krishnan, L.: Silver: an extensible attribute
grammar system. Electron. Notes Theory Comput. Sci. 203(2), 103–116 (2008)

25. Viera, M., Swierstra, D., Swierstra, W.: First-class, attribute grammars fly: how
to do aspect oriented programming in Haskell. In: International Conference on
Functional Programming, pp. 245–256. ACM (2009)

26. Vogt, H., Swierstra, S.D., Kuiper, M.: Higher order attribute grammars. SIGPLAN
Notices 24(7), 131–145 (1989)

Purely Functional Incremental Computing

Denis Firsov(B) and Wolfgang Jeltsch(B)

Institute of Cybernetics at Tallinn University of Technology,
Akadeemia tee 21, 12618 Tallinn, Estonia

{denis,wolfgang}@cs.ioc.ee

Abstract. Many applications have to maintain evolving data sources
as well as views on these sources. If sources change, the corresponding
views have to be adapted. Complete recomputation of views is typi-
cally too expensive. An alternative is to convert source changes into
view changes and apply these to the views. This is the key idea of incre-
mental computing. In this paper, we use Haskell to develop an incremen-
tal computing framework. We illustrate the concepts behind this frame-
work by implementing several example computations on sequences. Our
framework allows the user to implement incremental computations using
arbitrary monad families that encapsulate mutable state. This makes it
possible to use highly efficient algorithms for core computations.

1 Introduction

Incremental computing is an approach to efficiently updating a view of some
data source whenever the data source changes. For an explanation, let us look
at the following diagram:

Initially, the source is the list [2, 3, 5, 7, 11]. We create a view of the source, defined
as the list of odd numbers in the source, which is [3, 5, 7, 11] initially. Next, we
change the source by inserting the numbers 23 and 42 at index 2, resulting in
[2, 3, 23, 42, 5, 7, 11]. We expect the view to adapt to the new source, that is, to
become [3, 23, 5, 7, 11]. This can be done by fully recomputing the view from the
source. However, a more efficient method is to turn the source change “insert
[23, 42] at 2” into a view change “insert [23] at 1” and apply the latter to the
view.

The most important trait of different approaches to incremental computing
is the amount of automation they provide. One of the strongest achievements
c© Springer International Publishing Switzerland 2016
F. Castor and Y.D. Liu (Eds.): SBLP 2016, LNCS 9889, pp. 62–77, 2016.
DOI: 10.1007/978-3-319-45279-1 5

Purely Functional Incremental Computing 63

in the field of incremental computing is the approach of self-adjusting computa-
tion developed by Acar [1]. Here, any function is incrementalized automatically
using dependency tracking. However, the downside of full automation is that it
provides less control over time and space complexity. For example, the trivial
accumulator-based implementation of the reverse function requires linear time
for change propagation when incrementalized automatically. One can achieve
change propagation in logarithmic time by implementing reverse using a divide-
and-conquer strategy. However, it is generally hard to come up with a function
definition that results in efficient change propagation.

In this paper, we present a framework for incremental computing. This frame-
work makes it possible to efficiently implement basic incremental computations
using carefully crafted algorithms, and then build more complex computations
from them by means of easy-to-use combinators. Furthermore, our framework
offers composability at the type level, allowing notions of change for complex
types to be derived from notions of change for simpler types. To illustrate our
framework, we use sequences as our running example. We make the following
contributions:

– In Sect. 2, we describe an interface to changeable values and associated
changes.

– In Sect. 3, we introduce the notion of transformation. A transformation maps
a source to a view. It allows for efficient updates of the view by propagating
changes of the source to the view. (An example of a transformation is the
filter odd in the above diagram.)

– In Sect. 4, we develop transformations that may use pure state to propagate
changes. As a result, we can equip a wider range of operations with change
propagation.

– In Sect. 5, we show that for some transformations, efficient change propagation
requires mutable state, that is, state that can be updated in place. We char-
acterize a class of monad families that can embed different kinds of mutable
state into pure computations. We generalize transformations such that they
can use arbitrary monad families from this class.

The remaining sections are devoted to related work, conclusions, and further
work.

Our developments use the Haskell programming language and are compatible
with the Glasgow Haskell Compiler (GHC), version 7.8.3. They are available as
the Cabal package incremental-computing [6].

2 Changes and Changeables

The central notion of our framework is the change. A change describes a modifi-
cation of values. Changes are typically implemented using algebraic data types.

64 D. Firsov and W. Jeltsch

This way, they can be inspected during change propagation. We define a type
class Change of all types of changes:

class Change p where
type Value p :: ∗
($$) :: p → Value p → Value p

Each type p of changes has an associated type Value p of values on which the
changes can act. The $$-operator denotes change application. We can see a
partial application (change $$) :: Value p → Value p as the meaning of change.

A change type may optionally be an instance of the Monoid class, in which
case ε denotes the identity change, and change2 • change1 denotes the change
that consists of change1 followed by change2.

For any type of values, there is a primitive notion of change, where a change
is either keeping the current value or replacing the current value by a new value:

data PrimitiveChange a = Keep | ReplaceBy a

instance Monoid (PrimitiveChange a) where
ε = Keep
Keep • change = change
ReplaceBy val • = ReplaceBy val

instance Change (PrimitiveChange a) where
type Value (PrimitiveChange a) = a

Keep $$ val = val
ReplaceBy val $$ = val

Each value type can have an arbitrary number of change types. However, we
allow to specify a single notion of change as the default for a value type. We
introduce a class Changeable of all value types with a default change type:

class (Monoid (DefaultChange a),Change (DefaultChange a),
Value (DefaultChange a) ∼ a) ⇒ Changeable a where

type DefaultChange a :: ∗
type DefaultChange a = PrimitiveChange a

As the code specifies, default changes have to form a monoid, and each type of
the form DefaultChange a has to be an instance of the Change class with a being
the value type of DefaultChange a. If an instance declaration does not provide a
declaration for DefaultChange, primitive changes are used as the default notion
of change. Primitive changes are appropriate for primitive types, like Bool and
Integer ; so we can instantiate Changeable for primitive types easily:

instance Changeable Bool
instance Changeable Integer

In this paper, we want to illustrate the concepts of our framework taking
lists as a running example. However, some operations on standard Haskell lists

Purely Functional Incremental Computing 65

are inefficient. As a solution, the module Data.Sequence from the containers
package provides a type Seq with operations that mostly run in O(log n) time. In
particular, splitting a sequence at a given index and concatenating two sequences
takes Θ(log n) time. So we base our illustration on the Seq type. However, we
will still use list syntax in examples to avoid notational clutter.

First, we define a type AtomicChange whose elements are changes of
sequences:

data AtomicChange a = Insert Int (Seq a)
| Delete Int Int
| Shift Int Int Int
| ChangeAt Int (DefaultChange a)

The semantics of changes and the time complexity of change application to
sequences of size n are as follows:

– Insert ix seq inserts seq at index ix . It takes O(log n + |seq |) time.
– Delete ix len deletes the part of length len that starts at index ix . It takes

O(log n) time.
– Shift src len tgt shifts the part of length len that starts at index src to

index tgt . It takes O(log n) time.
Applying Shift src len tgt is actually equivalent to first applying Delete src len
and then Insert tgt seq where seq is the deleted part. We provide Shift never-
theless, because in certain situations, change propagation for Shift can be done
more efficiently than change propagation for the corresponding Delete–Insert
chain.

– ChangeAt ix elemChange applies elemChange to the element at index ix . It
takes O(log n+m) time where m is the time cost for applying elemChange to
the element.

Note that not all changes are applicable to a given sequence. For example, a
change Insert ix seq can only be applied to a sequence of length len if 0 � ix �
len. In the incremental-computing package, we properly deal with this issue, but
in this paper, we ignore it for the sake of simplicity.

We want to use lists of atomic changes as the default changes of sequences.
This way, default sequence changes form a monoid. We introduce a type
MultiChange such that MultiChange a is essentially [a], but differs from it in
the following points:

– Concatenation takes only O(1) time, which is achieved by using difference
lists.

– The monoid operator • is concatenation with arguments swapped to accom-
modate the above-mentioned argument order of change composition.

– For every instance p of Change, MultiChange p is an instance of Change as
well (with an obvious implementation).

66 D. Firsov and W. Jeltsch

We instantiate Changeable for sequence types as follows:

instance Changeable a ⇒ Changeable (Seq a) where
type DefaultChange (Seq a) = MultiChange (AtomicChange a)

For convenience, we define variants of Insert , Delete, Shift , and ChangeAt ,
called insert , delete, shift , and changeAt , that construct singleton multi changes
instead of atomic changes.

3 Transformations Without State

Transformations are functions equipped with means for change propagation. For
very simple cases, a transformation can be seen as a pair of two functions: one
that maps source values to view values and one that maps source changes to
view changes:

data Trans p q = Trans (Value p → Value q) (p → q)

For transformations that work with default changes, we provide a convenience
type alias:

type a � b = Trans (DefaultChange a) (DefaultChange b)

As an example, we present a map combinator for sequences that works with
transformations instead of functions. First, we implement a version of this com-
binator that only propagates atomic changes:

atomicMap :: (Changeable a,Changeable b)
⇒ (a � b) → Trans (AtomicChange a) (AtomicChange b)

atomicMap (Trans elemFun elemProp) = Trans fun prop where
fun = fmap elemFun
prop (Insert ix seq) = Insert ix (fmap elemFun seq)
prop (Delete ix len) = Delete ix len
prop (Shift src len tgt) = Shift src len tgt
prop (ChangeAt ix elemChange) = ChangeAt ix (elemProp elemChange)

Since the default changes of sequences are multi changes, we now develop
a combinator map for sequences that works with multi changes. Recall that
multi changes are essentially just lists of changes. We introduce a function
MultiChange.map of type

Trans p q → Trans (MultiChange p) (MultiChange q)

that keeps the function on values and lifts the function on changes to a function
on multi changes. The definition of map becomes simple now:

map :: (Changeable a,Changeable b) ⇒ (a � b) → (Seq a � Seq b)
map trans = MultiChange.map (atomicMap trans)

Purely Functional Incremental Computing 67

4 Transformations with Pure State

In many cases, we need additional information about the current source in order
to propagate changes. An example is the reverse transformation. A source change
Insert ix seq , for example, must be turned into the view change Insert (len −
ix) (reverse seq) where len is the current length of the source. So the change
propagator needs to know this length.

To remedy this problem, we extend the Trans type such that a transformation
can use a state to track information about the source:

data Trans p q = ∀s . Trans (Value p → (Value q, s)) (p → s → (q, s))

The type s is the type of the state. Every value of a type Trans p q can use its
own type s, which does not show up as a parameter of Trans. In a transformation
Trans init prop, the function init turns an initial source to the corresponding
view and the initial state, and the function prop turns a source change and a
current state into the corresponding view change and the updated state. Note
that prop is a computation in the state monad.

We can still represent transformations without state by setting the type s
to (). However, we cannot use the previous implementation of map anymore,
since the argument of type a � b that map receives has the new, more com-
plex, structure. Nevertheless, it is possible to implement map for transformations
with pure state. The only difficulty is the propagation of ChangeAt changes. To
propagate a change of the form ChangeAt ix elemChange, we have to propagate
elemChange. This requires access to the state of the element at index ix . For
this reason, we store the sequence of all element states as the state of the result
transformation of map.

Another example of a transformation that requires state is concat , which
flattens a sequence of sequences. To propagate changes, concat needs to translate
indexes and lengths that refer to the nested source sequence into indexes and
lengths that refer to the flattened view sequence. For this, it needs to know the
lengths of the elements of the source. The concat transformation stores these as
its state.

Having concat , we can implement a filter combinator with only little effort.
First, we implement a helper combinator

gate :: Changeable a ⇒ (a � Bool) → (a � Seq a) ,

which is also useful in other contexts. The view of a transformation gate prd is
the empty sequence whenever prd yields false for the source; otherwise, it is the
singleton sequence containing just the source. Figure 1 shows an example run for
gate odd . Note that the source is of type Integer and thus uses changes of type
PrimitiveChange Integer , while the view is of type Seq Integer and thus uses
changes of type MultiChange (AtomicChange Integer). We can now implement
filter easily by composing map, concat , and gate appropriately:

filter :: Changeable a ⇒ (a � Bool) → (Seq a � Seq a)
filter prd = concat ◦ map (gate prd)

68 D. Firsov and W. Jeltsch

Fig. 1. Example run for gate odd

The given implementation uses a composition operator ◦ of type Trans q r →
Trans p q → Trans p r, which definition is straightforward. The example from
Sect. 1 illustrates the use of filter .

5 Transformations with Mutable State

The goal of incremental computing is to make views adapt quickly to source
changes. In some cases, transformations with only pure state are not capable of
propagating changes with optimal time complexity. In Subsect. 5.1, we sketch
an efficient solution to incremental stable sorting that relies on mutable state,
that is, state that can be updated in place. Next, in Subsect. 5.2, we develop the
notion of monadic transformation, which makes it possible to use mutable state
in incremental computations. Finally, in Subsect. 5.3, we discuss how transfor-
mation combinators can be implemented safely in the presence of mutable state.

5.1 Incremental Stable Sorting

A sorting algorithm is stable if it retains the relative order of elements that are
considered equivalent by the comparison function. Stability is especially impor-
tant in an incremental setting, as it prevents equivalent elements from changing
their relative order during application of unrelated changes.

There are several solutions to incremental sorting. Acar [1] presents a random-
ized merge sort that he incrementalizes using self-adjusting computation. With
this approach, change propagation takes logarithmic expected time for single-
element insertions and deletions, and sorting is stable. Furthermore, Acar et al. [2]
describe a cleverly crafted heapsort implementation, for which self-adjusting com-
putation provides single-element change propagation in logarithmic worst-case
time. Unfortunately, the use of heapsort makes sorting unstable. We overcome the
tradeoff between these two approaches by implementing incremental stable sort-
ing with logarithmic worst-case time for single-element change propagation. In this
subsection, we describe the main ideas behind our implementation.

Let us first discuss incremental unstable sorting. As an example, we want
to look at sequences of letters. We assume that letters are ordered according to

Purely Functional Incremental Computing 69

their position in the alphabet without taking case into account. The following
diagram shows an example of change propagation:

The generated view change insert 1 "a" is also appropriate for stable sorting.
Unstable sorting, however, additionally permits the view change insert 0 "a",
which leads to the updated view "aABcC".

The crucial part of change propagation for unstable sorting is the translation
of source indexes into view indexes. To facilitate this translation, we maintain
the sorted sequence as the state of the sorting transformation. We use a search
tree data structure for it, so that we can find the view index of a newly inserted
element or an element to be deleted in logarithmic worst-case time.

Now let us try to turn this incremental unstable approach into an approach
to incremental stable sorting. It is well known how to perform non-incremental
stable sorting based on an unstable sorting algorithm. First, the elements of
the unsorted sequence are tagged with their indexes. Afterwards, the resulting
sequence of element–index pairs is sorted lexicographically. Finally, the indexes
are dropped from the sorted sequence.

We cannot adapt this approach directly to incremental sorting. When prop-
agating an insertion, we must come up with tags for the new elements that lie
between the tags of the existing elements. For an explanation, let us look at the
above diagram again. We first tag the initial source "cACB" with indexes and
get the sequence [(‘c’, 0), (‘A’, 1), (‘C’, 2), (‘B’, 3)]. Then, we sort this sequence
lexicographically, obtaining [(‘A’, 1), (‘B’, 3), (‘c’, 0), (‘C’, 2)]. For propagating
the change insert 3 "a", we have to create a tag that lies between the tags of
‘C’ and ‘B’. We could use rational numbers as tags, so that the new tag could
be 2.5. However with this approach, tag comparison would be linear in the worst
case. Retagging the source sequence is also not an option, as it would take linear
time in the worst case as well.

We solve the tagging issue by employing a solution to the order maintenance
problem. In the order maintenance problem, the objective is to maintain a total
order of tags subject to insertions, deletions, and tag comparison. Dietz and
Sleator [5] show how to achieve constant worst-case time for all these opera-
tions. By using their solution, we are able to create tags between existing tags
efficiently and still avoid linear time complexity for tag comparison. We keep the
tagged sorted sequence in the form of a search tree. In addition, we maintain the
tagged unsorted sequence, so that we can generate new tags based on the tags
of neighboring elements.

70 D. Firsov and W. Jeltsch

Let us illustrate this with our running example. The initial source "cACB"
leads to a tagged unsorted sequence [(‘c’, t0), (‘A’, t1), (‘C’, t2), (‘B’, t3)]
with t0 < t1 < t2 < t3 and the tagged sorted sequence [(‘A’,t1),(‘B’,t3),
(‘c’,t0),(‘C’,t2)], which together constitute the initial state. For propagat-
ing insert 3 "a", we first use the tagged unsorted sequence to find the
neighboring tags of the new element. We use order maintenance inser-
tion to create a new tag t′ between those tags, so that t2 < t′ < t3.
We insert the pair (‘a’, t′) into the tagged sorted sequence, leading to
[(‘A’, t1), (‘a’, t′), (‘B’, t3), (‘c’, t0), (‘C’, t2)]. The index of this pair in the
updated tagged sorted sequence is the view insertion index.

The crux is that the order maintenance solution by Dietz and Sleator relies
on mutable state. So transformations with pure state are not powerful enough to
implement the above incremental stable sorting strategy. Therefore, we extend
our notion of transformation once more to allow for state to be mutable.

5.2 Monadic Transformations

Haskell provides the ST type to implement computations that can work with
mutable variables internally, but can still be used in a pure setting [9]. ST takes a
phantom type parameter s and an ordinary type parameter a, where s represents
a heap of mutable variables that the computation can access, and a is the result
type of the computation. There is a function runST :: (∀s . ST s a) → a that
turns an ST computation into a pure value. The use of universal quantification
ensures that a computation can only work with its own, private heap, so that
state mutations cannot be observed from the outside. ST s is a monad family
indexed by s in the sense that for every particular s, ST s is a monad.

We redefine Trans based on ST to enable transformations to use mutable
state:

newtype Trans p q = Trans (∀s . Value p → ST s (Value q, p → ST s q))

We represent a transformation by a computation that takes an initial source,
sets up the initial state, and returns the initial view and a propagator. The
propagator, in turn, is a computation that turns a source change into a view
change. It can access the state that the initializer has set up, because it is
created inside the initializer. Note that we can still express all transformations
with pure state using this new definition of Trans, since we can store a pure
state in a mutable variable.

The ST -based definition of Trans allows for arbitrary transformations with
mutable state. However, it restricts code reuse. For example, there is an imple-
mentation of order maintenance in the form of the order-maintenance Cabal
package [7], but we cannot use this package to implement a stable sorting trans-
formation. To see why, we have to take a closer look at the interface of this
package.

The order-maintenance package provides a type OrderT for computations
that have access to a mutable totally ordered set. OrderT takes type parameters

Purely Functional Incremental Computing 71

o, m, and a, where o is a phantom parameter that represents the ordered set,
m is an inner monad, which provides additional effects, and a is the result type
of the computation. There is a function

evalOrderT :: Monad m ⇒ (∀o . OrderT o m a) → m a

that turns an OrderT computation into a computation in the inner monad. The
use of universal quantification here is analogous to its use in runST . It ensures
that a computation can only work with its own, private ordered set. For every
monad m, OrderT o m is a monad family indexed by o.

The order-maintenance package does not allow us to incorporate an OrderT
computation into an ST computation, as this would make the ordered set explic-
itly accessible via mutable variables and thus break the abstraction barrier.
Therefore, we cannot make use of the order-maintenance package with the above
ST -based definition of Trans.

If we had a variant of Trans based on the monad family OrderT o (ST s) with
indexes o and s, we could use order-maintenance for implementing incremental
stable sorting. The OrderT layer would provide us with a mutable totally ordered
set for holding the tags, and the ST layer would provide us with a heap for storing
the remaining state. Instead of providing a Trans variant for this particular
monad family, we generalize Trans such that we can use every monad family
that has the following properties:

– It is indexed by an arbitrary number of phantom type parameters that appear
at arbitrary positions in the type.

– It comes with an evaluation function, that is, a function that turns a compu-
tation in the monad family into a pure value, using universal quantification
for all the index parameters to keep mutable state private. (For ST s, this
function is runST , and for OrderT o (ST s), it is runST ◦ evalOrderT .)

We introduce a type alias TransProc whose definition resembles the ST -based
definition of Trans, but allows us to work in an arbitrary monad:

type TransProc m p q = Value p → m (Value q, p → m q)

We call a value of TransProc a transformation processor. We can represent a
transformation by a value of a type ∀w . TransProc μ p q where μ is a monad
family with indexes w. As special cases, we get ∀s . TransProc (ST s) p q, which
corresponds to the ST -based Trans, and ∀o s . TransProc (OrderT o (ST s)) p q,
which is appropriate for implementing incremental stable sorting.

It would be straightforward to define Trans as a transformation processor,
existentially quantifying the monad family μ. However, this would result in the
following problems:

1. Since the number of indexes and the index positions depend on μ, we would
have to bundle indexes as type tuples. This would require users of our frame-
work to write considerable amounts of boilerplate code, and would require
support for data type promotion, which is not a well-established language
extension.

72 D. Firsov and W. Jeltsch

2. Since transformation processors can use different monad families, composition
of transformation processors would be hard to implement.

Therefore, we represent a transformation by a pure function:

newtype Trans p q = Trans ((Value p, [p]) → (Value q, [q]))

The representation of a transformation captures its behavior by turning any
pair of an initial source value and a list of successive source changes into a
corresponding pair of an initial view value and a list of successive view changes.
In practice, we typically cannot provide the initial source value and all the source
changes at once, since they only become available over time. However, we can
obtain parts of the output based on only parts of the input by employing laziness.

Note that there are pure functions of the above-mentioned type that are
not proper representations of transformations, for example, functions where a
view change depends on future source changes. Therefore, we do not export the
data constructor Trans. Instead, we introduce a function trans that constructs
a transformation based on a given transformation processor.

Besides the transformation processor, the trans function needs to know the
evaluation function of the monad family of the transformation processor. So it
would be best if trans had the type

∀μ . (∀w . TransProc μ p q) → (∀r . (∀w . μ r) → r) → Trans p q.

Unfortunately, the use of universal quantification over monad families would
involve a problem similar to Problem 1 described above. Therefore, we modify
the interface of trans step by step until trans has a type that does not involve
universal quantification over monad families. Some of our modifications make the
interface more permissive for the user, but none of them makes it less permissive.
Our modification steps are as follows:

1. We switch to continuation-passing style for the transformation processor,
using μ r with an arbitrary r as the result type of the continuation. As a
consequence, the first argument of trans has the type

∀r . ∀w . (TransProc μ p q → μ r) → μ r .

2. We push the quantification ∀w under the arrow, so that the type of the first
argument becomes

∀r . (∀w . TransProc μ p q → μ r) → (∀w . μ r) .

3. We merge the two arguments into one that is supposed to be the composition
of the former two arguments. The type of this single argument is clearly

∀r . (∀w . TransProc μ p q → μ r) → r .

4. We generalize the type of the continuation such that it covers all monads.
The type of the trans argument becomes

∀r . (∀m . Monad m ⇒ TransProc m p q → m r) → r .

Purely Functional Incremental Computing 73

5. We drop the universal quantification of μ, which is not needed anymore, as
there are no more uses of μ. Now trans has the type

(∀r . (∀m . Monad m ⇒ TransProc m p q → m r) → r) → Trans p q .

Let us look how to construct a transformation from a transformation proces-
sor transProc and an evaluation function eval . First, we turn transProc into
continuation-passing style, which results in the function λcont → cont transProc.
Then, we compose this function with the eval function, leading to λcont →
eval (cont transProc). Finally, we apply trans to this composed function.

By applying this technique to the monad family ST s, we can define a func-
tion stTrans that turns an ST -based transformation processor into a value of
type Trans:

stTrans :: (∀s . TransProc (ST s) p q) → Trans p q
stTrans transProc = trans (λcont → runST (cont transProc))

We conclude this subsection with the presentation of the trans function imple-
mentation:

trans :: (∀r . (∀m . Monad m ⇒ TransProc m p q → m r) → r) → Trans p q
trans cpsProcAndEval = Trans conv where

conv src = cpsProcAndEval $ λtransProc → monadicConv transProc src
monadicConv transProc ∼(val , changes) = do

∼(val ′, prop) ← transProc val
changes ′ ← mapM prop changes
return (val ′, changes ′)

Note that the interface changes to trans have not prevented us from generat-
ing the pure function representation, despite them making the interface more
permissive.

5.3 Transformation Combinators

The use of the pure function representation for transformations becomes a
challenge for the implementation of transformation combinators, that is, func-
tions that construct new transformations from existing ones. Examples of
transformation combinators are map and gate, which are described in Sects. 3
and 4, respectively. Change propagation of a combinator’s result may involve
change propagation of this combinator’s arguments. For example, when a
transformation map elemTrans propagates a sequence change of the form
ChangeAt ix elemChange, it has to use elemTrans to propagate elemChange.

A transformation combinator cannot directly use the Trans data constructor
to construct its result, since Trans is private; it has to invoke the trans function
instead. Therefore, the combinator must represent its result by a transformation
processor, which it can feed to trans. In particular, it must implement change
propagation via a propagator whose type has the form p → μ q. Such a prop-
agator is called with one change at a time. To propagate a given change, it

74 D. Firsov and W. Jeltsch

may need to propagate individual changes using the arguments of the combina-
tor. The problem is that the arguments are represented by pure functions that
take all their source changes at once and therefore cannot propagate changes
individually.

As a solution, we develop a function toSTProc that turns a transformation
into an ST -based transformation processor. Using toSTProc, a transformation
combinator can obtain transformation processors for all its arguments and use
them to individually propagate changes.

A transformation processor toSTProc (Trans conv) has to apply conv to the
pair of the initial source and the list of all source changes in order to receive
the initial view and the view changes. So it has to provide the list of all source
changes immediately, although the source changes become known only by later
propagator calls. To resolve this conflict, we let the propagator put the source
changes into a channel and let the transformation processor construct a sin-
gle lazy list of all future channel elements when it is initially invoked. For this
purpose, we implement channel support for the ST monad family. This sup-
port is inspired by the Control .Concurrent .Chan module, which works with the
IO monad.

We introduce a type Channel such that a value of a type Channel s a is
a channel that works with the monad ST s and contains elements of type a.
Furthermore, we provide a function newChannel :: ST s (Channel s a, [a]) that
creates an empty channel and returns it together with the lazy list of its future
elements, and a function writeChannel :: Channel s a → a → ST s () that puts
an element into a channel.

We are now able to convert transformations into ST -based transformation
processors:

toSTProc :: Trans p q → TransProc (ST s) p q
toSTProc (Trans conv) val = do

(chan, changes) ← newChannel
let (val ′, changes ′) = conv (val , changes)
remainderRef ← newSTRef changes ′

let prop change = do
writeChannel chan change
next : further ← readSTRef remainderRef
writeSTRef remainderRef further
return next

return (val ′, prop)

A transformation processor constructed by toSTProc creates a channel for the
source changes and passes its contents together with the initial source to the
pure function that represents the given transformation. This way, the transfor-
mation processor obtains the initial view and a lazy list of future view changes.
The propagator puts the given source change into the channel and fetches the
corresponding view change from the list of view changes. For this purpose, the
suffix of the view change list that contains the future view changes is kept in a
mutable variable.

Purely Functional Incremental Computing 75

6 Related Work

Approaches to incremental computing differ by the amount of automation they
provide. Generally, automation of change propagation relieves the programmer
from manual design of propagation algorithms and the obligation to prove that
these algorithms are correct. On the other hand, automation restricts control over
incrementalization strategies, which may result in suboptimal time complexity.

We have tried to find a middle ground between automation and potential
for manual intervention. A user of our framework can manually define notions
of change for core data types and implement core transformations by specifi-
cally crafted algorithms. On the other hand, our framework offers composability
of transformations and types of changeable data, allowing the construction of
complex incremental programs from the hand-crafted building blocks.

Cai et al. [3] follow a similar approach. Like us, they allow the user to define
change types and change propagation algorithms for core data types. Based on
these, they can incrementalize arbitrary λ-terms by means of a static transforma-
tion. In one respect, their automation goes further than ours, since it can handle
higher-order programs. In another respect, however, their automation is more
restrictive, because it uses only transformations with a pure state that reflects
the current source value. We conjecture that this restriction necessarily results in
change propagation with suboptimal time complexity for some transformations,
for example, incremental stable sorting.

Substantial contributions to the field of fully automatic incremental comput-
ing are due to Acar [1]. His key approach is executing an ordinary program in
an incremental fashion by maintaining a dynamic dependency graph. Based on
this idea, Acar has developed the technique of self-adjusting computation. This
method allows a user to write a function in the usual way and then have it incre-
mentalized automatically by the compiler. Unfortunately, this level of automa-
tion makes it complicated to analyze the complexity of change propagation. A
user who is not satisfied with the result of automatic incrementalization has little
clue about how to change the implementation of his function to make it perform
better when incrementalized. For example, the typical accumulator-based imple-
mentation of the reverse function requires linear time for change propagation.
One can achieve logarithmic time by implementing reverse using a divide-and-
conquer strategy, but this is not obvious for the lesser experienced user.

Carlsson [4] has implemented adaptive functional programming, a subset of
self-adjusting computation, in Haskell. The key contribution of his work is the
use of monads for integrating incremental computing into a pure language.

Self-adjusting computation does not perform well in the presence of certain
reuse patterns, particularly sharing (using a computation in different contexts),
swapping (changing the order of subcomputations), and switching (toggling com-
putations back and forth). As a solution, Hammer et al. [8] have developed the
λcdd
ic -calculus and the Adapton library, which provide automatic incremental

computing based on a demand-driven semantics.
Maier et al. [10] have developed the Scala.React framework, which supports

functional incremental reactive lists. The authors use the notions of reversible

76 D. Firsov and W. Jeltsch

and associative folds, which are usual folds with some additional constraints
on their arguments. These folds can be used for implementing new incremental
functions. Obtaining incremental operations on reactive lists means translating
the linear recursion of sequential folds into tree recursion of associative folds.

7 Conclusions and Further Work

We have developed a framework for incremental computing in Haskell. This
framework allows the user to associate different notions of change with different
data types and implement change propagation based on arbitrary monad fami-
lies whose computations can be turned into pure values. Furthermore, we have
implemented incremental versions of several sequence operations.

In the future, we want to develop a generic notion of change for inductive data
types and use it to define generic transformations based on recursion schemes.
We expect that general recursion schemes cannot be efficiently incrementalized.
However, we plan to characterize recursion schemes that allow for efficient change
propagation. All functions that are defined in terms of these recursion schemes
can then be efficiently incrementalized automatically.

Acknowledgements. We want to thank Umut Acar, Yan Chen, Paolo Giarrusso,
Magnús Halldórsson, Giuseppe Italiano, and Tarmo Uustalu for helpful discussions
about the topics of this paper. This research was supported by the Estonian Research
Council through the individual research grant PUT763, by the ERDF through the
national ICTP project Coinduction for Semantics, Analysis, and Verification of Com-
municating and Concurrent Reactive Software, and by the Estonian Science Foundation
through Grant 9398.

References

1. Acar, U.A.: Self-adjusting computation. Ph.D. thesis, Carnegie Mellon University,
Pittsburgh, Pennsylvania, May 2005

2. Acar, U.A., Blelloch, G., Ley-Wild, R., Tangwongsan, K., Turkoglu, D.: Traceable
data types for self-adjusting computation. In: Proceedings of the 31st ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI
2010), pp. 483–496. ACM, New York (2010)

3. Cai, Y., Giarrusso, P.G., Rendel, T., Ostermann, K.: A theory of changes for higher-
order languages: incrementalizing λ-calculi by static differentiation. In: Proceedings
of the 35th ACM SIGPLAN Conference on Programming Language Design and
Implementation, pp. 145–155. ACM, New York (2014)

4. Carlsson, M.: Monads for incremental computing. In: Proceedings of the Seventh
ACM SIGPLAN International Conference on Functional Programming, pp. 26–35.
ACM, New York (2002)

5. Dietz, P.F., Sleator, D.D.: Two algorithms for maintaining order in a list. Techni-
cal report CMU-CS-88-113, Carnegie Mellon University, Pittsburgh, Pennsylvania
(1988)

6. Firsov, D., Jeltsch, W.: incremental-computing-0.0.0.0, Haskell Cabal package,
Feburary 2015. http://hackage.haskell.org/package/incremental-computing-0.0.0.0

http://hackage.haskell.org/package/incremental-computing-0.0.0.0

Purely Functional Incremental Computing 77

7. Firsov, D., Jeltsch, W.: order-maintenance-0.1.1.0, Haskell Cabal package, Novem-
ber 2015. http://hackage.haskell.org/package/order-maintenance-0.1.1.0

8. Hammer, M.A., Phang, K.Y., Hicks, M., Foster, J.S.: Adapton: composable,
demand-driven incremental computation. In: Proceedings of the 35th ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI
2014), pp. 156–166. ACM, New York (2014)

9. Launchbury, J., Peyton Jones, S.: State in Haskell. LISP Symbol. Comput. 8(4),
293–341 (1995)

10. Maier, I., Odersky, M.: Higher-order reactive programming with incremental lists.
In: Castagna, G. (ed.) ECOOP 2013. LNCS, vol. 7920, pp. 707–731. Springer,
Heidelberg (2013)

http://hackage.haskell.org/package/order-maintenance-0.1.1.0

Automatic Annotating and Checking
of Dynamic Ownership

Tingting Hu(B), Haiyang Liu, Ke Zhang, and Zongyan Qiu

LMAM and Department of Informatics, School of Mathematical Sciences,
Peking University, Beijing, China

{hutingting.math,liuhaiyang,zksms}@pku.edu.cn,
qzy@math.pku.edu.cn

Abstract. Object ownership is an important technique in dealing with
object sharing and aliasing to support verification of OO programs.
Dynamic Ownership proposes a very flexible encapsulation discipline and
has been adopted in Spec#. However, to use this technique, program-
mers have to keep all the ownership information in mind to decide the
validation for modifying one variable. This makes the approach difficult
to master and use. In this paper, we apply data-flow analysis to gen-
erate most annotations of dynamic ownership automatically, thus can
potentially reduce the workload of program verification. Moreover, our
technique can reveal ownership topology errors and encapsulation errors.
In addition, the entire analysis of our approach is static, thus is efficient.

Keywords: Object ownership · Encapsulation · Program analysis

1 Introduction

The concept of Object Ownership [1,2] has been proposed in 1998 to deal with
the problems caused by aliasing in heap-manipulating programs, especially OO
programs. Ownership provides important benefits for verification. It allows pro-
grammers to describe the topology of data structures in a simple and natural
way, at least for hierarchical structures. Moreover, ownership can be used to
define and enforce encapsulation disciplines, which describe what references are
valid in the execution and which operations may be performed on these refer-
ences. In addition, ownership types support an automatic way of checking the
implementations to some extent.

Various encapsulation disciplines for ownership have been proposed. The
owner-as-dominator discipline enforces that the owner of an object is its domi-
nator which controls every access path to the object. Another idea is owner-as-
modifier, which enforces that all modifications to an object can only be initiated
by its owner. Dietl et al. [3] introduced Dynamic Ownership based on the latter
idea, and has been adopted in Spec#. Dynamic Ownership introduces the con-
cept of ownership state for the involved objects. However, working with Dynamic

The work is supported by NSFC under grant No. 61272160 and No. 61202069.

c© Springer International Publishing Switzerland 2016
F. Castor and Y.D. Liu (Eds.): SBLP 2016, LNCS 9889, pp. 78–94, 2016.
DOI: 10.1007/978-3-319-45279-1 6

Automatic Annotating and Checking of Dynamic Ownership 79

Ownership, the developers must keep all the ownership information – ownership
topology and the current ownership states – in their mind to decide whether it
is valid to modify a object via a variable.

Dynamic Ownership improves the flexibility of ownership types, with the cost
of more complicated annotations. The heavy annotations and unfriendliness for
understanding make it difficult to master and use, thus hindered its spread in
practice.

Our work address this problem. Applying data-flow analysis technique, we
make the work process more automatic while keeping the flexibility. To illustrate
the problem of Dynamic Ownership and our idea, we show a simple example.

Figure 1 (left) shows a class annotated with Dynamic Ownership notation.
To modify the value of field data.f in method m, we must explicitly expose the
transitive owners of f (data and this) using expose annotation. The anno-
tations would be even more complicated for real-world programs. Our approach
reduces the ownership annotations written by programmers, as in Fig. 1 (right),
without losing the flexibility.

The workflow of Dynamic Ownership (especially in Spec#) is depicted in
Fig. 2a. Firstly, programmers add all the ownership annotations into their pro-
gram, then send the program to the model generator and the verifier. The tools
check the ownership properties together with other verifications, and finally give

Fig. 1. Annotations: dynamic ownership vs our approach

Programmer

Model Generator

Verifier

fully annotated code

model

topology error
encapsulation error

back to
fix

ok

(a) Workflow of Spec#

Programmer

Topology Analyzer

Automatic Annotator

Programmer

Verifier, etc.

code with
simple annotations

ok

fully annotated code

topology
error

back to fix

encapsulation
error

unexpected
exposure

fixed

ok

(b) Workflow of our work

Fig. 2. Comparison of two approaches

80 T. Hu et al.

the feedback. If any error occurs, the programmers need to modify the source
code, ownership annotations, etc. to fix the error, and feed the result into the
tools again.

However, the iteration in the workflow is quite long and difficult to conduct,
besides the heavy annotations. Because the checking of ownership relation is
combined into the general verification, programmers can only get the feedback
after the time-consuming dynamic verification. In addition, the errors related to
ownership relations often manifest as failure of theorem proof, which is difficult
to locate and fix. This workflow is inefficient.

The workflow of our approach is shown in Fig. 2b. Now programmers write
only basic ownership declarations, then feed the program into our tools. The
tools work as follows: First, the topology analyzer checks the object topology,
and reports errors immediately when it finds topological faults. Then, our auto-
matic annotator tries to add necessary annotations to make all the accessing to
the objects valid. It reports errors when it cannot complete the work. The pro-
grammers then check if all the annotations inserted by our tools are reasonable
and conform to their intentions. This may induce another iteration. Then the
program can go into the following verifications.

Our main contributions are:

1. A symbolic execution approach to extract and check the ownership topology.
2. An automatic annotation algorithm which can reduce the amount of required

annotations in programs that use object ownership.
3. A prototype implementation of the algorithms.

Following our approach, we get at least three important benefits: (1) The
annotation workload of the programmers is largely reduced. (2) The intellectual
work to specify correct annotations now becomes a simpler work to check the
satisfactory of the annotated program. (3) The tools can give feedback much
earlier, and distinguish clearly the topological errors, annotation errors, etc.

2 Ownership System in Dynamic Ownership

Before going into details, we give a brief introduction to the concept of ownership
topology, encapsulation discipline etc., which support verifications in Dynamic
Ownership. These are the foundations of our work.

2.1 Ownership Topology

The ownership topology describes a hierarchical structure of objects, where each
object is owned by at most one other object, its owner. The ownership topology
is a forest of ownership trees, and the roots are the objects which have no owner.
The set of objects with a same owner (direct or transitive) is called an ownership
context.

Figure 3 shows an example from Dietl and Müller [3]. The picture on the
right hand side depicts the ownership topology after the first four statements

Automatic Annotating and Checking of Dynamic Ownership 81

Fig. 3. Ownership topology

of method Demo are executed. The solid arrows denote object references, and
the dashed boxes depict the borders of the ownership contexts. Here the Main
object is the root, which owns two Person objects. Each Person object owns
an Account object.

There are two kinds of ownership errors, which are clearly separated in [4].

– Topology Error : The ownership topology is not well-formed. A topology is
well-formed if each object has at most one owner and the owner does not
change once been assigned1.

– Encapsulation Error : There are modifications which violate the encapsulation
principle (see Sect. 2.4).

2.2 Ownership Qualifiers

In Dynamic Ownership, there are two qualifiers [Peer] and [Rep] for the field
declarations. [Peer] f means that the object referred by f has the same owner
as this object. This is equivalent to the object invariant

invariant f �= null =⇒ f.owner = this.owner .

Here o.owner denotes the owner of object o. In addition, [Rep] f means that
this object is the owner of the object which f refers to. This is equivalent to the
object invariant

invariant f �= null =⇒ f.owner = this.

In Dynamic Ownership, a new created object is unowned and will acquire an
owner when it is assigned to a rep or peer field of an object.

2.3 Ownership States of Objects

In Dynamic Ownership, each object has an ownership state, which is either valid
or mutable. When valid, the object must satisfy its invariants, but when mutable,
1 Some ownership systems support ownership transfer. For simplicity, we ignore own-

ership transfer in this paper.

82 T. Hu et al.

the object can violate its invariants (except the ownership invariant mentioned
above). A fresh object is valid when the new expression terminates. We call an
object consistent if it is valid and its owner (if any) is mutable; or peer consistent
if it is consistent, as well as all of its peers (the objects with the same owner).

A field update requires the receiver to be mutable, or consistent (providing
the update does not violate the receiver’s object invariant). Before modifying a
field of an object that may temporarily break the object’s invariant, we have to
change its ownership state to be mutable. For this purpose, Dynamic Ownership
introduces the expose structure, see Fig. 1. The semantics of expose(o){...}
is as follows: It asserts that o is consistent, modifies the state of o to be mutable,
then executes its body. Finally, expose asserts that the invariant of o holds
again, and o and all objects owned by it are valid. Note that both the “asserts”
above induce some state checking which may find errors.

2.4 Encapsulation Discipline

Dynamic Ownership enforces the following encapsulation rules: A valid object
has to be exposed before modifications that may temporarily break its invariant.
Pure methods in Dynamic Ownership require the receiver and arguments to be
valid, and ensure peer validity of the result. Impure methods (and constructors)
require their receiver and arguments to be peer consistent and ensure also peer
consistency of their results. Then, an impure method can expose the receiver
and the arguments and modify their state in its body.

The flexibility of Dynamic Ownership comes from that it does not need to
restrict references as read-only, but controls their behaviors.

2.5 Object Invariants

There is some work on which object fields can be mentioned in the object invari-
ants. If f is not a component of objects of class T , Barnett et al. [5] do not allow
the fields of f to be mentioned in the class-T object invariant. Leino et al. [6]
allow object invariants of T to depend on:

1. The fields of o declared in any superclass of T .
2. The fields of any object transitively owned by [o, S] for any superclass S of T .
3. The fields of any specified object o.f1. · · · .fn, (n ≥ 1) — that is, the objects

reachable from o by a fixed sequence of field references.

Müller et al. [7] add constant field access to the aforementioned works. In own-
ership techniques, invariants of object o may depend on the mutable fields of
objects that o owns.

Our work focuses on the ownership relationships. Thus, we require that the
invariants Inv(o) of object o depend only on the state encapsulated for o. For
this purpose, Inv(o) may depend only on the fields of o and objects transitively
owned by o. But other settings can be easily extended into our framework.

We do not deal with inheritance in this paper, as in [3]. To support inheri-
tance, Dynamic Ownership uses object-class pairs (o, C) to represent owners [8],

Automatic Annotating and Checking of Dynamic Ownership 83

that enables layered invariants and makes the operations on invariants more
accurate. We can apply the same technique to extend our work without sub-
stantial difficulties.

3 Analysis and Annotations Generation

In this section, we will present our work in details. Following our approach,
programmers only need to give the basic ownership annotations, [Rep] and
[Peer]. The remaining annotations are generated automatically.

3.1 Overview

Our approach consists of the following steps:

1. Extract the ownership topology of the program, as well as the points-to rela-
tionships.

2. Obtain the ownership state (valid or mutable) of each object based on the
ownership topology by an intra-procedure data-flow analysis.

3. Figure out all the positions to pack or unpack the objects according to the
ownership state transitions of the objects between the statements.

Most of technical difficulties exist in the first step. We need to figure out ref-
erence relations between the objects, and points-to relations between variables
and objects. In addition, throughout the whole program, one variable may ref-
erence to different objects. On the other hand, there may be several variables
referring to one object.

There are two cases where one variable may refer to different objects. We
need to deal with them in building the object ownership topology. The first case
is that a variable might be reassigned to another object. We use SSA (Static
Single Assignment) form to get rid of this form of reference-swing. The second
is that a variable may be used in a loop to iterate over a series of objects, e.g.
in a loop on a linked list,

while (n.next != null) {
n.foo();
n = n.next;

}

In a reasonable program with correct ownership relations, the objects iterated
over by one variable must be peers, i.e. they have a common owner. This should
be a loop invariant. Therefore, we take this as an assumption.

The main difficulty comes from the aliasing problem. SSA form eliminates
aliasing of local variables, leaving out the aliasing of arguments and global vari-
ables, which brings inaccuracy to our analysis.

84 T. Hu et al.

3.2 Analysis for the Ownership Topology

We perform a symbolic execution on the source code to get the ownership topol-
ogy. The topological errors will be checked and reported. The result will be used
in the ownership analysis algorithms. And the state transitions are recorded for
the points-to analysis.

To give the symbolic execution rules, we define the program states first. A
state (σ, h) ∈ Store × Heap is a pair of the program store and heap, where

Store � Name → Ref Heap � Ref → Name → Ref.

Name and Ref are two basic sets for names and object references. A store σ ∈
Store maps variable names to the corresponding object references, and a heap
h ∈ Heap is a pool for the objects, and (r, f, r′) ∈ h denotes that field f of the
object denoted by reference r holds a reference r′. Then h(σx) gives the object
of x in state (σ, h).

For briefness, we introduce the notation ξσ,h(x) = h(σx)(ow), which gives the
reference to the owner of h(σx). Similarly, we use ξσ,h(x.f) = h(h(σx)(f))(ow)
for the owner of the object denoted by x.f in state (σ, h).

Now we introduce the rules for the symbolic execution. The rule for the
assignments of local variables is omitted here, as it does not affect the ownership
topology.

Rules for the field assignment o.f=x are

ξσ,h(x) ∈ {ξσ,h(o.f),None}
〈o.f=x, (σ, h)〉 � 〈σ, h ⊕ {(σx, ow, ξσ,h(o.f)), (σo, f, σx)}〉

ξσ,h(x) /∈ {ξσ,h(o.f),None}
〈o.f=x, (σ, h)〉 � abort

.

Before the assignment, x should be unowned, or it shares the same owner
with o.f. In both cases, x will have the same owner with o.f after the assign-
ment. Otherwise, the assignment will break the well-formedness of the ownership
topology.

The if and while statements bring difficulties to the ownership analysis. In
the symbolic execution, the branch/loop conditions cannot be accurately eval-
uated in general. In addition, it is impossible to conduct an accurate points-to
analysis over branch statements statically. Therefore, we must make some rea-
sonable abstractions.

For if statement, we require that the two branches make consistent updating
to the ownership topology, otherwise an error is raised. Specially, the unowned
objects should get consistent owners. The situation that two branches make
inconsistent ownership topology usually indicates a programming error.

σb = true, 〈ci, (σ, h)〉 �∗ 〈σi, hi〉, i = 1, 2
∀o ∈ domh · h1(o)(ow) = h2(o)(ow)

〈if b c1 else c2, (σ, h)〉 �∗ (σ1, h1)

σb = false, 〈ci, (σ, h)〉 �∗ 〈σi, hi〉, i = 1, 2
∀o ∈ domh · h1(o)(ow) = h2(o)(ow)

〈if b c1 else c2, (σ, h)〉 �∗ (σ2, h2)
.

Automatic Annotating and Checking of Dynamic Ownership 85

The loops should also keep the ownership topology consistent. Therefore, for
any objects created before the loop, its owner keeps the same in the loop body.

σb = true, 〈c, (σ, h)〉 � 〈σ′, h′〉,
〈while b c, (σ′, h′)〉 �∗ 〈σ′′, h′′〉,
∀o ∈ dom h · h(o)(ow) = h′(o)(ow)

〈while b c, (σ, h)〉 �∗ (σ′′, h′′)

σb = false, 〈c, (σ, h)〉 �∗ 〈σ′, h′〉,
∀o ∈ dom h · h(o)(ow) = h′(o)(ow)

〈while b c, (σ, h)〉 � (σ, h)
.

We inline the invocations for non-recursive methods. And for recursive meth-
ods, we assume that each invocation returns an object with an unknown owner,
and omit other effects of the invocation.

Using these rules, we can build the ownership topology for each program
point.

3.3 Ownership State Analysis

Having the ownership topology, we use data-flow analysis [9] technique to track
the ownership state of the objects (valid or mutable). Generally speaking, our
algorithm calculates the minimum sets of mutable objects before and after each
statement which maintains the encapsulation discipline (Sect. 2.4).

The algorithm works in two stages. The first stage is a forward analysis to
decide the set of objects that may be mutable from the method entry to each
of the locations. Then we make a backward analysis to decide the set of objects
that must be mutable from the current location to the exit point of the method.
The intersection of these two sets at each location is the minimum set of mutable
objects to keep the encapsulation. We describe our algorithm on the control flow
graph (CFG). Because the forms of the algorithms are rather standard, we leave
the algorithm in our report, but give only a brief introduction here.

The forward data-flow analysis starts from the method entry, and works step
by step to track which objects may be mutable. In the analysis, we propagate
forward the set of mutable objects and update the set over each statement in
the CFG.

For statement s, let s.in and s.out denote the sets of objects that may be
mutable at its entry and exit points, respectively. Then for each immediate
predecessor statement t of s (i.e. t ∈ prec(s)), we formulate how the forward-
mutable set of t propagating to s:

s.in :=
⋃

t∈prec(s)

t.out .

For each statement s, the forward-mutable set of objects at its exit, s.out, is the
union of the set at its entry and the corresponding generated-set of s, and then
subtracts the killed-set of s, that is,

s.out := (s.in ∪ s.gen) \ s.kill .

The generated-set and killed-set will be discussed later.

86 T. Hu et al.

The forward-mutable set at each location is initialized with an empty set.
And the aforementioned process iterates until all the sets reach a fixed point.

The backward data-flow analysis works similarly, except that the branches
are processed differently. Here we calculate the backward-mutable sets, which
are the sets of objects that must be mutable from each of the locations to the
exit point of the method. For each statement s, the backward-mutable set at its
exit, s.out, is the intersection of the backward-mutable sets of all the immediate
successor statements of s, that is,

s.out :=
⋂

t∈succ(s)

t.in.

While the backward-mutable set at the entry point of s is obtained as before,
but reversely,

s.in := (s.out ∪ s.gen) \ s.kill .

The backward-mutable sets are also initialized with empty sets. The process
iterates until it reaches a fix point.

Table 1. Terms in the transfer function

Statement s.gen s.kill

o.f = x {o} ∪ ACs(o) ∅

o.m(arg) (impure) ACs(o, arg) peer∗(o, arg) ∪ Desc(peer∗(o, arg))

o.m(arg) (pure) ∅ {o, arg} ∪ Desc(o, arg)

We use a transfer function to calculate how the current statement affects the
ownership state of the objects, as defined in Table 1. For each node in the CFG,
(1) if it is an assignment to a field o.f, then o and its immediate or transitive
owners should be exposed, i.e., their ownership states should be mutable; (2)
if it is an invocation of some pure method, then the receiver and arguments of
the invocation should be packed, i.e., their ownership states should be valid;
(3) if it is an invocation for some impure method, then the ownership states of
the receiver and arguments should be peer consistent. Here ACs(obj) denotes the
immediate and transitive owners of object sequence obj , while Desc(obj) denotes
the objects immediately and transitively owned by obj . And finally, peer(obj)
denotes peers of obj , and peer∗(obj) denotes {obj} ∪ peer(obj).

3.4 Annotating the Program

After obtaining the exact mutable sets, we can introduce the access permission
annotations into the program using Algorithm1.

If an object is mutable in one node but valid in one of its subsequent nodes
in the CFG, then a pack annotation for this object should be inserted between

Automatic Annotating and Checking of Dynamic Ownership 87

these two nodes; on the contrary, if an object is valid in one node but mutable in
one of its subsequent nodes, then the object should be unpacked. More than one
objects may be packed or unpacked on one edge in the CFG. And considering
the hierarchical structure of the ownership topology, if o is the owner of o′, then
o should be unpacked before and packed after o′, whenever we need to modify
some field and o, o′ are on the accessing path.

Algorithm 1. Add access permission annotations into the program
procedure Annotation(CFG,OT) � OT is the ownership tree

m fwd ← Forward(CFG,OT) � The result of forward analysis
m back ← Backward(CFG,OT) � The result of backward analysis
mut ← {} � The mutable object sets
for node ∈ CFG.nodes do

mut [node] ← m fwd [node] ∩ m back [node]

for edge ∈ CFG.edges do
for m ∈ (mut [edge.src] − mut [edge.dest]) do

Add statement pack(m) at edge.

for m ∈ (mut [edge.dest] − mut [edge.src]) do
Add statement unpack(m) at edge.

For object o, a code segment where o is mutable is named as a mutable range
of o, if it ensures the encapsulation principle. These segments are bounded by
the unpack/pack pair. Then we have the following definition.

Definition 1 (Minimal Mutable Range). Given an object o, its mutable
range R is called a minimal mutable range (MMR, for short), if there is not any
mutable range R′, such that R′ is a true subsegment of R.

We can obtain the following theorem. Its proof is given in our report.

Theorem 1. Given a program, for each object o in the program, Algorithm1
gives the minimal mutable ranges of o.

3.5 An Example

Here we use an example to illustrate our approach. The class definitions are given
in Fig. 3. In the upper left part of Fig. 4, we fill the rest code of the method Demo.
The lower left part of Fig. 4 shows the CFG of method Demo and the mutable
sets calculation during the analysis, and the right part is the annotated code.

In the lower left part, the left most two columns of the sets are the result
of forward and backward analyses, where the numbers represent the objects as
presented in Fig. 3. By calculating the intersection of the sets in the two columns,
we get the mutable sets for each node in the CFG, and then their corresponding
variables from ownership topology analysis.

88 T. Hu et al.

Fig. 4. The analysis process of method Demo

With the result of the graph, we can apply Algorithm1 to get the complete
annotated program. The insertions of unpack/pack are performed according
to the transitions of the objects’ ownership states. For instance, object p1 is not
mutable at statement p2 = new Person() but becomes mutable at state-
ment p1.spouse = p2 according to the result mutable sets, thus it should be
unpacked between these two statements.

4 Implementation and Experiments

We have implemented our algorithms as a prototype tool based on Soot [10,11],
which is a framework for analyzing and transforming Java and Android applica-
tions. Due to the functionalities of Soot, our analysis and automatic annotations
are performed on Shimple, an SSA-style typed 3-address representation. To deal
with a Java program, we translate it to Shimple using Soot, and then run the
analysis and annotations. Since Shimple is mostly a restricted subset of Java,
we believe that our implementation can be also ported to original Java without
substantial difficulties.

We introduce annotations into Java analogous to Spec#. We define @Rep and
@Peer qualifiers as the correspondents of the [Rep] and [Peer] in Spec#. An
annotated Java program is transformed automatically to the annotated Shimple
code by our tool, and the result can be optionally decompiled back to Java.

To carry the analysis, we perform the symbolic execution on the Shimple
code using the rules in Sect. 3.2 to extract the ownership topology and figure

Automatic Annotating and Checking of Dynamic Ownership 89

out the points-to relations. The symbolic execution is an intraprocedure analy-
sis performed method by method. Since we are not interested in the actual values
of the objects, we only trace the ownership and points-to relations of variables
and object fields, but not the detail of values. Thanks to the SSA-style interme-
diate representation, reassignments of variables are eliminated, therefore we can
assume that if every variable has its value (the points-to relation) unchanged in
the method, then the result of the analysis is unrelated to the real control flow.
This simplifies the implementation a lot.

Shimple is a low level language where the only control structure is if . . .
goto statement. Our tool figures out the while and if structures from the
Shimple code and then applies our symbolic execution rules.

In this phase, our implementation can report some kinds of errors: When a
field assignment tries to change the owner of an object, or when a variable points
to objects with different owners in different branches, an ownership topology
error is reported; when an uninitialized variable is used, an initialization error
is reported.

To obtain the ownership states, we perform the equations in Sect. 3.3 using
the data-flow analysis framework of Soot. Since Shimple is especially designed
for program analysis, this phase can be represented in a neat way, and works
efficiently.

The annotating phase (Sect. 3.4) gives us few difficulties, except that some
control flow analysis is required to put the unpack/pack statements at proper
positions. In Algorithm1, pack and unpack statements are inserted at the edge
of the CFG, therefore we should find out the proper position in the code to insert
the statement, possibly changing the target of goto statement in the Shimple
code.

The accuracy of the data-flow analysis annotation algorithm depends on its
input, e.g., the ownership topology and points-to relationships. Since the analy-
sis is intraprocedural, our analysis in the first phase is not completely accurate.
Especially, the precise points-to analysis is not computable. Due to the inac-
curacy of the analysis, our tool may treat one object as two separate objects
referred by different variables. However, this does not sacrifice the safety. Con-
trarily, if a tool treats two objects as the same one (which is also difficult for
human beings to recognize in local context), the result might be unsafe. Our tool
takes a conservative way, which will not make this error.

For the performance, the analysis of ownership topology and points-to rela-
tionships can be accomplished in linear time O(n), where n is the code length.
The data-flow analysis runs in O(n2) time, and it runs in nearly linear time in
most practical cases since the code in a block is usually short. The annotation
algorithm also runs in linear time.

We evaluate our tool with the examples used in some papers of this field [3,
4,12], and some other longer example made by ourselves. In addition, we also
checked JEdit, which is a cross platform programmer’s text editor written in
Java. Table 2 shows the experimental results. The experiments show that, our
tool can precisely analyze the ownership topology of the programs, recognize the

90 T. Hu et al.

Table 2. Experimental results

Name LOC Rep/Peer annot. Generated annot. Time(s)

PersonMain 37 5 19 0.005

LList 82 2 20 0.005

salesTaxes 722 31 81 0.010

JEdit 30 838 121 998 18.360

ownership topology violations, and automatically annotate the unpack/pack
statements at proper positions.

The tool runs fast. All the experiments are completed on machine with 4
hardware threads. Specially, we used an Intel Core i5 processor with 4 cores at
3.0 GHz. The performance of our prototype is comparable with the type inference
and checking tool of Universe Type [12], but supports a more flexible encapsu-
lation discipline while fewer manual annotations are needed. In contrast, Spec#
checks the ownership properties dynamically together with other verification,
that makes it very slow.

As the most interesting discovery, we notice that, it is not easy to make
satisfactory annotations of the expose block (or unpack/pack block) manually.
During the work, our tool gets different results for some examples taken from the
literature or the web site of Spec#. Carefully checking the results, we conclude
that the annotation in the original examples have some inaccuracies, while our
tool gives better annotations. Our automatic annotations can mark the accurate
ranges, and are also easy to read and confirm by human being. One example is
given in the next section.

5 Related Work and Issues

Now we give a brief overview of some related work, and discuss some issues.

5.1 Related Work on Object Ownership

Ownership technology was proposed by Clarke et al. [1] and Noble et al. [2]
in 1998 to provide a strong protection to the aliasing problems. In some early
work, such as [1,13], the ownership topological properties are annotated and
enforced by a type system, and people emphasize static checking for the owner-
ship properties. However, the expressiveness of those systems is limited. They do
not support down-cast, and only support encapsulation disciplines stricter than
owner-as-modifier.

Leino and Müller [6] introduce Dynamic Ownership to control the parts of
the heap on which the class invariants may depend. In the work, the checking of
ownership properties is postponed to the runtime. Dietl and Müller [3] extend the
method and present it in Spec#. They emphasize that “Before a valid object can

Automatic Annotating and Checking of Dynamic Ownership 91

be modified by some operations that temporarily break its invariant, it has to be
exposed” (or unpacked). However, this rule is too hard to follow for programmers,
because it asks them to keep in mind about the ownership topology and the
states of objects very clearly to avoid making annotation errors. Following our
approach, most ownership annotations can be generated automatically. The work
left for programmers becomes checking the reasonability of the annotations,
which might be easier to carry on. Moreover, compared with their work, our
framework separates the ownership-related checking from other verifications.

Huang et al. [12] present a unified framework for specification, type infer-
ence and type checking of some ownership type systems. The framework allows
partially-annotated programs, and is able to generate the remaining ownership
annotations via a kind of type inference. Their motivation is similar to ours, that
is to simplify the annotations which have to be written by programmers. But
their work is based on a type system, thus can only support a more restricted
encapsulation discipline. Our work is based on Dynamic Ownership, program
analysis, and symbolic execution, which accepts more programs which are cor-
rect in ownership properties.

In most previous work related to ownership techniques, an expose block (or
unpack/pack block) denotes a code segment where the object invariant can be
broken inside, and must be re-established at its end. Our work also adopts this
fundamental assumption, and defines the analysis rules based on it.

5.2 Comparison Between expose and unpack/pack

During the work, we find that the annotation accuracy of unpack/pack is
higher than expose, since the closing tag of expose block contains no informa-
tion. For instance, the corresponding annotated program using expose enlarges
the mutable range of o1 in the following situation.

unpack(o1);
Access_o1;

unpack(o2);
Access_o1_o2;

pack(o1);
Access_o2;

pack(o2);

expose(o1){
Access_o1;
expose(o2){

Access_o1_o2;
Access_o2;

}
}

On the other hand, the semantics of expose, e.g., defined in Dietl and Müller [3],
is not clear in considering that object and variable are two different core concepts.
As a fact, an exposed variable may refer to different objects in an execution of
one expose block, as shown in the below example:

expose(o) { ... o = x; ... }

This problem will be more obvious with the unstructured unpack/pack pair,
where the programmers must pair correctly all the unpack(s) and pack(s).
This causes difficulties to the programmer in writing accessing permissions anno-
tations, and makes their work error-prone. This is one important reason for us to

92 T. Hu et al.

consider the automatic annotations. Our tool can generate correct annotations
in all above cases.

5.3 Object Invariant Assertions

The unpack/pack annotations should cooperate with other annotations for
program verification. For example, in the following program,

unpack(o);
o.f1 = x1;
p.m();
o.f2 = x2;
pack(o);

The hold of the invariants of o may be useful in proving the invariants of p. The
assert mechanism in Spec# and JML [14] is still useful in such situations. We
can insert assert inv(o) before p.m() to declare that the object invariants
of o hold. This gives a hint to the verifier and helps to improve the verification
capability. Our approach does not exclude this kind of assertions.

5.4 An Example of Manual Annotations

The manual ownership annotations are easy to be inaccurate. Here we give an
example from [6] (rewritten in Spec# style):

class Person {
[Peer] Person spouse;
void Marry(Person p) {

expose (this) {
expose (p) {

this.spouse = p;
p.spouse = this;

} } } }

The class Person has a method Marry which sets the spouse of the current
person. There are two field updates in the method that require this and p to
be exposed. The manual annotations provided in the paper use nested expose
blocks that cover both statements, which is correct but inaccurate.

Our tool generates the annotated Marry as follows:
void Marry(Person p) {

unpack(this); this.spouse = p; pack(this);
unpack(p); p.spouse = this; pack(p);

}

It uses isolated unpack/pack blocks and is therefore accurate.2

From this example we can see that, even the experts for ownership techniques
may write out annotations with some implicit inaccuracy. We also find other
similar situations in the examples provided in the literature. These facts provide
further supports to the automatic annotation techniques.
2 Leino and Müller [6] allows invariants to mention more objects than our work. Our

work will still generate more proper annotations if we extend similar rules.

Automatic Annotating and Checking of Dynamic Ownership 93

6 Conclusion and Future Work

Existing ownership approaches require heavy manual annotations, which make
them difficult to master and use. Based on the Dynamic Ownership, we developed
a program analysis framework which can check the ownership topology and insert
the necessary accessing permission annotations automatically. We use symbolic
execution techniques to analyze the ownership topology and points-to relations,
and introduce a two-stage data-flow analysis to figure out the ownership state
for each object. Finally, we determine all the positions where some objects need
to be packed or unpacked and add the annotations automatically. Our approach
greatly reduces the workload of programmers and makes the approach easier to
apply, as well as provides the similar expressiveness as the Dynamic Ownership
technique.

To check the viability of the theory, we have built a prototype implementation
of the framework for a subset of Java using Soot. Experiments on the tool show
that, our approach can precisely analyze the ownership topology of the program,
and automatically annotate unpack/pack properly. The performance of the
tool is comparable with static type inference and checking, but supports more
flexible encapsulation discipline like Dynamic Ownership.

As future work, we consider improving the accuracy of points-to analysis
by extending the intraprocedural data-flow analysis to interprocedural analy-
sis. Ownership plays an important role in program verification, for example in
specification languages JML [14,15] and Spec# [16]. Our approach can be inte-
grated into these verification frameworks, to reduce their annotations overhead
and make them easier to use.

References

1. Clarke, D.G., Potter, J.M., Noble, J.: Ownership types for flexible alias protection.
In: OOPSLA 1998, pp. 48–64. ACM (1998)

2. Noble, J., Vitek, J., Potter, J.: Flexible alias protection. In: Jul, E. (ed.) ECOOP
1998–Object-Oriented Programming. LNCS, vol. 1445, pp. 158–185. Springer,
Heidelberg (1998)

3. Dietl, W., Müller, P.: Object ownership in program verification. In: Clarke, D.,
Noble, J., Wrigstad, T. (eds.) Aliasing in Object-Oriented Programming. LNCS,
vol. 7850, pp. 289–318. Springer, Heidelberg (2013)

4. Cunningham, D., Dietl, W., Drossopoulou, S., Francalanza, A., Müller, P.,
Summers, A.J.: Universe types for topology and encapsulation. In: de Boer, F.S.,
Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2007. LNCS, vol. 5382,
pp. 72–112. Springer, Heidelberg (2008)

5. Barnett, M., DeLine, R., Fähndrich, M., Leino, K.R.M., Schulte, W.: Verification
of object-oriented programs with invariants. J. Object Technol. 3, 27 (2004)

6. Leino, K.R.M., Müller, P.: Object invariants in dynamic contexts. In: Odersky, M.
(ed.) ECOOP 2004. LNCS, vol. 3086, pp. 491–515. Springer, Heidelberg (2004)

7. Müller, P., Poetzsch-Heffter, A., Leavens, G.T.: Modular invariants for layered
object structures. Sci. Comput. Program. 62(3), 253–286 (2006)

94 T. Hu et al.

8. Leino, K.R.M., Müller, P.: Using the Spec# language, methodology, and tools to
write bug-free programs. In: Müller, P. (ed.) LASER Summer School 2007/2008.
LNCS, vol. 6029, pp. 91–139. Springer, Heidelberg (2010)

9. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools.
Addison-Wesley Longman Publishing Co. Inc., Redwood City (1986)

10. Einarsson, A., Nielsen, J.D.: A survivor’s guide to java program analysis with soot,
BRICS, Department of Computer Science, University of Aarhus, Denmark (2008)

11. Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., Sundaresan, V.: Soot -
a java bytecode optimization framework. In: Proceedings of the 1999 Conference
of the Centre for Advanced Studies on Collaborative Research, p. 13. IBM Press
(1999)

12. Huang, W., Dietl, W., Milanova, A., Ernst, M.D.: Inference and checking of object
ownership. In: Noble, J. (ed.) ECOOP 2012. LNCS, vol. 7313, pp. 181–206. Springer,
Heidelberg (2012)

13. Müller, P., Poetzsch-Heffter, A.: Universes: a type system for controlling represen-
tation exposure. In: Programming Languages and Fundamentals of Programming,
vol. 263, Fernuniversität Hagen (1999)

14. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: a behavioral
interface specification language for java. SIGSOFT Softw. Eng. Notes 31(3), 1–38
(2006)

15. Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D., Müller, P.,
Kiniry, J., Chalin, P., Zimmerman, D.M., et al.: JML Reference Manual (2008)

16. Barnett, M., M. Leino, K.R., Schulte, W.: The Spec# programming system: an
overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

Certified Derivative-Based Parsing
of Regular Expressions

Raul Lopes1, Rodrigo Ribeiro2(B), and Carlos Camarão3

1 DECOM, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Brazil
raulfpl@gmail.com

2 DECSI, Universidade Federal de Ouro Preto (UFOP), João Monlevade, Brazil
rodrigo@decsi.ufop.br

3 DCC, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
camarao@dcc.ufmg.br

Abstract. We describe the formalization of a certified algorithm for reg-
ular expression parsing based on Brzozowski derivatives, in the depen-
dently typed language Idris. The formalized algorithm produces a proof
that an input string matches a given regular expression or a proof that
no matching exists. A tool for regular expression based search in the
style of the well known GNU grep has been developed with the certified
algorithm, and practical experiments were conducted with this tool.

1 Introduction

Parsing is the process of analysing if a string of symbols conforms to given rules,
involving also, in computer science, formally specifying the rules in a grammar
and also, either the construction of data that makes evident the rules that have
been used to conclude that the string of symbols can be obtained from the
grammar rules, or else indication of an error, representative of the fact that the
string of symbols cannot be generated from the grammar rules.

In this work, we are interested in the parsing problem for regular languages
(RLs) [16], i.e. languages recognized by (non-)deterministic finite automata and
equivalent formalisms. Regular expressions (REs) are an algebraic and com-
pact way of specifying RLs that are extensively used in lexical analyser gener-
ators [19] and string search utilities [15]. Since such tools are widely used and
parsing is pervasive in computing, there is a growing interest on correct parsing
algorithms [8,10,11]. This interest is motivated by the recent development of
dependently typed languages. Such languages are powerful enough to express
algorithmic properties as types, that are automatically checked by a compiler.

The use of derivatives for regular expressions were introduced by Brzozowski [7]
as an alternative method to compute a finite state machine that is equivalent to a
given RE and to perform RE-based parsing. According to Owens et al. [27], “deriv-
atives have been lost in the sands of time” until his work on functional encoding of
RE derivatives have renewed interest on its use for parsing [13,25]. In this work, we
provide a complete formalization of an algorithm for RE parsing using derivatives,

c© Springer International Publishing Switzerland 2016
F. Castor and Y.D. Liu (Eds.): SBLP 2016, LNCS 9889, pp. 95–109, 2016.
DOI: 10.1007/978-3-319-45279-1 7

96 R. Lopes et al.

as presented by [27], and describe a RE based search tool that has been developed
by us, using the dependently typed language Idris.

More specifically, our contributions are:

– A formalization of derivative based regular expression parsing in Idris. The
certified RE parsing algorithm presented produces as a result either a proof
term (parse tree) that is evidence that the input string is in the language of
the input RE, or a witness that such parse tree does not exist.

– A detailed explanation of the technique used to quotient derivatives with
respect to ACUI axioms1 in an implementation by Owens et al. [27], called
“smart-constructors”, and its proof of correctness. We give formal proofs that
smart constructors indeed preserve the language recognized by REs.

The rest of this paper is organized as follows. Section 2 presents a brief intro-
duction to Idris. Section 3 describes the encoding of REs and its parse trees. In
Sect. 4 we define derivatives and smart constructors, some of their properties and
describe how to build a correct parsing algorithm from them. Section 5 comments
on the usage of the certified algorithm to build a tool for RE-based search and
present some experiments with it. Related work is discussed on Sect. 6. Section 7
concludes.

All the source code in this article has been formalized in Idris Version 0.11,
but we do not present every detail. Proofs of some properties result in functions
with a long pattern matching structure, that would distract the reader from
understanding the high-level structure of the formalization. In such situations
we give just proof sketches and point out where all details can be found in the
source code.

The complete Idris development, instructions on how to build and use it can
be found at [21].

2 An Overview of Idris

Idris [5] is a dependently typed functional programming language that focus on
supporting practical programs. Idris syntax is inspired by Haskell’s with some
minor differences. Unlike Haskell, Idris is strict by default, but lazy evaluation
is supported through code annotations. Idris allows the definition of datatypes
using traditional Haskell and a GADT-style syntax. The type of types is called
Type, rather than �2. Each instance of Type has an implicit level, inferred by
the compiler. Levels are cumulative — everything in Typen is also in Typen+1.

As an example of Idris code, consider the following data type of length-
indexed lists, also known as vectors.
1 Associativity, Commutativity and Idempotence with Unit elements axioms for

REs [7].
2 In Haskell, types are classified using kinds [28] instead of universe levels. The kind

of types is denoted by � and type operators have functional kinds: κ → κ′, where κ
and κ′ are kinds. As an example, in Haskell, type Bool has kind � and the list type
constructor has kind � → �.

Certified Derivative-Based Parsing of Regular Expressions 97

data Nat = Z | S Nat
data Vec : Nat -> Type -> Type where

Nil : Vec Z a
(::) : a -> Vec n a -> Vec (S n) a

Constructor Nil builds empty vectors. The cons-operator inserts a new element
in front of a vector of n elements (of type Vec n a) and returns a value of type
Vec (S n) a. The Vec datatype is an example of a dependent type, i.e. a type
that uses a value (that denotes its length). The usefulness of dependent types
can be illustrated with the definition of a safe list head function: head can be
defined to accept only non-empty vectors, i.e. values of type Vec (S n) a.

head : Vec (S n) a -> a
head (x :: xs) = x

In head’s definition, constructor Nil is not used. The Idris type-checker can figure
out, from head’s parameter type, that argument Nil to head is not type-correct.

In Idris, free variables that start with a lower-case letter are considered to
be implicit arguments, i.e. arguments that can be automatically infered by the
compiler. It is also possible to mark arguments as implicit by surrounding them
in curly braces. In function head, both n : Nat and a : Type are implicit argu-
ments; they could be explicitly annotated in head’s type as follows:

head : {a : Type} -> {n : Nat} -> Vec (S n) a -> a

Thanks to the propositions-as-types principle3 we can interpret types as log-
ical formulas and terms as proofs. An example is the representation of equality
as the following Idris type:

data (=) : a -> b -> Type where
Refl : x = x

This type is called propositional equality4. It defines that there is a unique
evidence for equality, constructor Refl (for reflexivity), that asserts that the
only value equal to x is itself. Given a type P, type Dec P is used to build proofs
that P is a decidable proposition, i.e. that either P or not P holds. The decidable
proposition type is defined as:

data Dec : Type -> Type where
Yes : p -> Dec p
No : Not p -> Dec p

Constructor Yes stores a proof that property P holds and No an evidence that
such proof is impossible (Not is an implication of falsity). Some functions used
in our formalization use this type.
3 Also known as Curry-Howard “isomorphism” [30].
4 Readers who know type theory probably have noticed that this equality encoding

corresponds to the so-called heterogeneous equality [23], which is used in the Idris
Prelude. Detailed discussions about equality in type theory can be found in [32].

98 R. Lopes et al.

Dependently typed pattern matching is built by using the so-called with
construct, that allows for matching intermediate values [24]. If the matched
value has a dependent type, then its result can affect the form of other values.
For example, consider the following code that defines a type for natural number
parity. If the natural number is even, it can be represented as the sum of two
equal natural numbers; if it is odd, it is equal to one plus the sum of two equal
values. Pattern matching on a value of Parity n allows to discover if n = j + j
or n = S(k + k), for some j and k in each branch of with. Note that the value
of n is specialized accordingly, using information “learned” by the type-checker.

data Parity : Nat -> Type where
Even : Parity (n + n)
Odd : Parity (S (n + n))

parity : (n : Nat) -> Parity n
parity = -- definition omitted

natToBin : Nat -> List Bool
natToBin Z = Nil
natToBin k with (parity k)

natToBin (j + j) | Even = False :: natToBin j
natToBin (S (j + j)) | Odd = True :: natToBin j

A detailed discussion about the Idris language is out of the scope of this
paper. A tutorial on Idris is available [17].

3 Regular Expressions

Regular expressions are defined with respect to a given alphabet. Formally, RE
syntax follows the following context-free grammar

e ::= ∅ | ε | a | e e | e + e | e�

where a is a symbol from the underlying alphabet. In our formalization, we
describe symbols of an alphabet as a natural number in Peano notation (type
Nat), i.e. the symbol’s numeric code. The reason for this design choice is due to
the way that Idris deals with propositional equality for primitive types, like Char.
Equalities of values of these types only reduce on concrete primitive values; this
causes computation of proofs to stop under variables whose type is a primitive
one. Thus, we decide to use the inductive type Nat to represent the codes of
alphabet symbols, since computation of its equality proofs behaves as expected
in other languages, like e.g. Agda [26].

Datatype RegExp, defined below, encodes RE syntax:

data RegExp : Type where
Zero : RegExp
Eps : RegExp

Certified Derivative-Based Parsing of Regular Expressions 99

Chr : Nat -> RegExp
Cat : RegExp -> RegExp -> RegExp
Alt : RegExp -> RegExp -> RegExp
Star : RegExp -> RegExp

Constructors Zero and Eps denote respectively the empty language (∅) and
empty string (ε). Alphabet symbols are constructed using Chr constructor. Big-
ger REs are built using concatenation (Cat), union (Alt) and Kleene star (Star).

Using the datatype for RE syntax, we can define a relation for RL member-
ship. Such relation can be understood as a parse tree (or a proof term) that a
string, represented by a list of Nat values, belongs to the language of a given
RE. Datatype InRegExp defines RE semantics inductively.

data InRegExp : List Nat -> RegExp -> Type where
InEps : InRegExp [] Eps
InChr : InRegExp [a] (Chr a)
InCat : InRegExp xs l ->

InRegExp ys r ->
zs = xs ++ ys ->
InRegExp zs (Cat l r)

InAltL : InRegExp xs l ->
InRegExp xs (Alt l r)

InAltR : InRegExp xs r ->
InRegExp xs (Alt l r)

InStar : InRegExp xs (Alt Eps (Cat e (Star e))) ->
InRegExp xs (Star e)

Each constructor of InRegExp datatype specifies how to build a parse tree for
some string and RE. Constructor InEps states that the empty string (denoted by
the empty list []) is in the language of RE Eps. Parse tree for single characters
are built with InChr a, which says that the singleton string [a] is in RL for
Chr a. Given parse trees for REs l and r; InRegExp xs l and InRegExp ys
r, we can use constructor InCat to build a parse tree for the concatenation of
these REs. Constructor InAltL (InAltR) creates a parse tree for Alt l r from
a parse tree from l(r). Parse trees for Kleene star are built using the following
well known equivalence of REs: e� = ε + e e�.

Several inversion lemmas about RE parsing relation are necessary to for-
malize derivative based parsing. They consist of pattern-matching on proofs of
InRegExp and are omitted for brevity.

4 Derivatives, Smart Constructors and Parsing

4.1 Preliminaries

Formally, the derivative of a formal language L ⊆ Σ� with respect to a symbol
a ∈ Σ is the language formed by suffixes of L words without the prefix a.

100 R. Lopes et al.

An algorithm for computing the derivative of a language represented as a RE
as another RE is due to Brzozowski [7] and it relies on a function (called ν) that
determines if some RE accepts or not the empty string:

ν(∅) = ∅
ν(ε) = ε
ν(a) = ∅
ν(e e′) =

{
ε if ν(e) = ν(e′) = ε

∅ otherwise

ν(e + e′) =

{
ε if ν(e) = ε or ν(e′) = ε

∅ otherwise
ν(e�) = ε

Decidability of ν(e) is proved by function hasEmptyDec, which is defined by induc-
tion over the structure of the input RE e and returns a proof that the empty string
is accepted or not, using Idris type of decidable propositions, Dec P.

hasEmptyDec : (e : RegExp) -> Dec (InRegExp [] e)
hasEmptyDec Zero = No (void . inZeroInv)
hasEmptyDec Eps = Yes InEps
hasEmptyDec (Chr c) = No inChrNil
hasEmptyDec (Cat e e’) with (hasEmptyDec e)

hasEmptyDec (Cat e e’) | (Yes prf) with (hasEmptyDec e’)
hasEmptyDec (Cat e e’) | (Yes prf) | (Yes prf’)

= Yes (InCat prf prf’ Refl)
hasEmptyDec (Cat e e’) | (Yes prf) | (No contra)

= No (contra . snd . inCatNil)
hasEmptyDec (Cat e e’) | (No contra)

= No (contra . fst . inCatNil)
hasEmptyDec (Alt e e’) with (hasEmptyDec e)

hasEmptyDec (Alt e e’) | (Yes prf)
= Yes (InAltL prf)

hasEmptyDec (Alt e e’) | (No contra) with (hasEmptyDec e’)
hasEmptyDec (Alt e e’) | (No contra) | (Yes prf)

= Yes (InAltR prf)
hasEmptyDec (Alt e e’) | (No contra) | (No f)

= No (void . either contra f . inAltNil)
hasEmptyDec (Star e)

= Yes (InStar (InAltL InEps))

The hasEmptyDec definition uses several inversion lemmas about RE semantics.
Lemma inZeroInv states that no word is in the language denoted by RE Zero
and inChrNil states that the empty string (represented by an empty list) isn’t
in language denoted by RE Chr c, for some c : Nat. Inversion lemmas for
concatenation and choice are similar.

Certified Derivative-Based Parsing of Regular Expressions 101

4.2 Smart Constructors

Following Owens et al. [27], we use smart constructors to identify equivalent REs
modulo identity and nullable elements, ε and ∅, respectively. RE equivalence
is denoted by e ≈ e′ and it’s defined as usual [16]. The equivalence axioms
maintained by smart constructors are:

– For union:
(1) e + ∅ ≈ e (2) ∅ + e ≈ e

– For concatenation:
(1) e ∅ ≈ ∅ (2) e ε ≈ e
(3) ∅ e ≈ ∅ (4) ε e ≈ e

– For Kleene star:
(1) ∅� ≈ ε (2) ε� ≈ ε

These axioms are kept as invariants using functions that preserve them while
building REs. For union, we just need to worry when one parameter denotes the
empty language RE (Zero):

(.|.) : RegExp -> RegExp -> RegExp
Zero .|. e = e
e .|. Zero = e
e .|. e’ = Alt e e’

In concatenation, we need to deal with the possibility of parameters being the
empty RE or the empty string RE. If one is the empty language (Zero) the result
is also the empty language. Since empty string RE is identity for concatenation,
we return, as a result, the other parameter.

(.@.) : RegExp -> RegExp -> RegExp
Zero .@. e = Zero
Eps .@. e = e
e .@. Zero = Zero
e .@. Eps = e
e .@. e’ = Cat e e’

For Kleene star both Zero and Eps are replaced by Eps.

star : RegExp -> RegExp
star Zero = Eps
star Eps = Eps
star e = Star e

Since all smart constructors produce equivalent REs, they preserve the parsing
relation. This property is stated as a soundness and completeness lemma, stated
below, of each smart constructor with respect to InRegExp proofs.

Lemma 1 (Soundness of union). For all REs e, e’ and all strings xs, if
InRegExp xs (e .|. e’) holds then InRegExp xs (Alt e e’) also holds.

102 R. Lopes et al.

Proof. By case analysis on the structure of e and e’. The only interesting cases
are when one of the expressions is Zero. If e = Zero, then Zero .|. e’ = e’
and the desired result follows. The same reasoning applies for e’ = Zero. ��
Lemma 2 (Completeness of union). For all REs e, e’ and all strings xs, if
InRegExp xs (Alt e e’) holds then InRegExp xs (e .|. e’) also holds.

Proof. By case analysis on the structure of e, e’. The only interesting cases are
when one of the REs is Zero. If e = Zero, we need to analyse the structure of
InRegExp xs (Alt e e’). The result follows directly or by contradiction using
InRegExp xs Zero. The same reasoning applies when e’ = Zero. ��
Lemma 3 (Soundness of concatenation). For all REs e, e’ and all strings xs,
if InRegExp xs (e .@. e’) holds then InRegExp xs (Cat e e’) also holds.

Proof. By case analysis on the structure of e, e’. The interesting cases are when
e or e’ are equal to Eps or Zero. When some of the REs are equal to Zero, the
result follows by contradiction. If one of the REs are equal to Eps the desired
result is immediate, from the proof term InRegExp xs (e .@.e’), using list
concatenation properties. ��
Lemma 4 (Completeness of concatenation). For all REs e, e’ and all strings
xs, if InRegExp xs (Cat e e’) holds then InRegExp xs (e .@. e’) also
holds.

Proof. By case analysis on the structure of e, e’. The interesting cases are when
e or e’ are equal to Eps or Zero. When some of the REs are equal to Zero, the
result follows by contradiction. If one of the REs are equal to Eps the desired
result is immediate, using the following fact:

InRegExp xs’ e -> xs = xs’ ++ [] -> InRegExp xs e

which asserts that if a strings xs’ is in e’s language, then so is xs’ ++ []. ��
Lemma 5 (Soundness of Kleene star). For all REs e and string xs, if InRegExp
xs (star e) then InRegExp xs (Star e).

Proof. Straightforward case analysis on e’s structure. ��
Lemma 6 (Completeness of Klenne star). For all REs e and all strings xs, if
InRegExpa xs (Star e) holds then InRegExp xs (star e) also holds.

Proof. Straightforward case analysis on e’s structure. ��
All definitions of smart constructors and their properties are contained in

SmartCons.idr, in the project’s on-line repository [21].

Certified Derivative-Based Parsing of Regular Expressions 103

4.3 Derivatives and its Properties

The derivative of a RE with respect to a symbol a, denoted by ∂a(e), is defined
by recursion on e’s structure as follows:

∂a(∅) = ∅
∂a(ε) = ∅
∂a(b) =

{
ε if b = a

∅ otherwise
∂a(e e′) = ∂a(e) e′ + ν(e) ∂a(e′)
∂a(e + e′) = ∂a(e) + ∂a(e′)
∂a(e�) = ∂a(e) e�

This function has an immediate translation to Idris. Notice that the derivative
function uses smart constructors to quotient result REs with respect to the
equivalence axioms presented in Sect. 4.2 and RE emptiness test. In the symbol
case (constructor Chr), function decEq is used, which produces an evidence for
equality of two Nat values.

deriv : (e : RegExp) -> Nat -> RegExp

deriv Zero c = Zero

deriv Eps c = Zero

deriv (Chr c’) c with (decEq c’ c)

deriv (Chr c) c | Yes Refl = Eps

deriv (Chr c’) c | No nprf = Zero

deriv (Alt l r) c = (deriv l c) .|. (deriv r c)

deriv (Star e) c = (deriv e c) .@. (Star e)

deriv (Cat l r) c with (hasEmptyDec l)

deriv (Cat l r) c | Yes prf = ((deriv l c) .@. r) .|. (deriv r c)

deriv (Cat l r) c | No nprf = (deriv l c) .@. r

From this definition we prove the following important properties of derivative
operation. Soundness of deriv ensures that if a string xs is in deriv e x’s
language, then InRegExp (x ::= xs) e holds. Completeness ensures that the
other direction of implication holds.

Theorem 1 (Soundness of derivative operation). For all RE e, string xs and
symbol x, if InRegExp xs (deriv x e) then InRegExp (x ::= xs) e.

Proof. By induction on the structure of e, using the soundness lemmas for smart
constructors and decidability of the emptiness test. ��
Theorem 2 (Completeness of derivative operation). For all RE e, string xs

and symbol x, if InRegExp (x ::= xs) e then InRegExp xs (deriv e x).

Proof. By induction on the structure of e using the completeness lemmas for
smart constructors and decidability of the emptiness test. ��

Definitions and properties of derivatives are given in Search.idr, in the
project’s on-line repository [21].

104 R. Lopes et al.

4.4 Parsing

RE parsing with derivatives uses the following definition that extends ∂a(e) from
a single symbol to a whole word by induction on the word structure:

∂�
ε (e) = e

∂�
a w(e) = ∂�

w(∂a(e))

We say that a string w is in e’s language if ∂�
w(e) is nullable, that is, if

ν(∂�
w(e)) = ε.
The Idris encoding of this function involves testing if the RE used for parsing

is a prefix or a substring of the parsed string. Prefixes of a string are represented
by datatype Prefix e xs, which expresses that a string parsed by RE e is a
prefix of xs.

data Prefix : (e : RegExp) -> (xs : List Nat) -> Type where
MkPrefix : (ys : List Nat) ->

(zs : List Nat) ->
(eq : xs = ys ++ zs) ->
(re : InRegExp ys e) ->
Prefix e xs

In order to state that some string ys is a prefix of xs, we need to build a proof
that ys matches e and that it is indeed a prefix of xs, by providing an evidence
that, for some zs, we have that xs = ys ++ zs.

A function for building prefixes just recurse over the structure of the input
string, using derivatives. Definition of decidability of Prefix e xs is an imme-
diate consequence of Theorem 1. Definitions and properties about prefixes can
be found in file Prefix.idr in the source-code [21].

Substrings are represented by the type

data Substring : (e : RegExp) -> (xs : List Nat) -> Type where
MkSubstring : (ys : List Nat) ->

(ts : List Nat) ->
(zs : List Nat) ->
(eq : xs = ys ++ ts ++ zs) ->
(re : InRegExp ts e) ->
Substring e xs

that specifies that a string ts is a substring of xs if it is parsed by e and if
there exist strings ys and zs such that xs = ys ++ ts ++ zs. Deciding if a
RE parses a substring of some input is straightforward by recursion over the
input string using prefix decidability. Definitions about substrings can be found
in Substring.idr [21].

5 Implementation Details and Experiments

From the algorithm formalized we built a tool for RE parsing in the style of
GNU Grep [15]. We have used Lightyear [20], Idris parser combinator library,

Certified Derivative-Based Parsing of Regular Expressions 105

for parsing RE syntax and to deal with file I/O; we have used Idris effects
library [6], which relies on dependent types to provide safe side-effect usage.

In order to validade our tool (named iGrep — for Idris Grep), we compare its
performance with GNU Grep [15] (grep), Google regular expression library [29]
(re2) and with Haskell RE parsing algorithms described in [13] (haskell-regexp).
We run RE parsing experiments on a machine with a Intel Core I7 1.7 GHz, 8 GB
RAM running Mac OS X 10.11.4; the results were collected and the median of
several test runs was computed.

Fig. 1. Results of experiment 1.

Fig. 2. Results of experiment 2.

106 R. Lopes et al.

We use the same experiments as [31] using files formed by thousands of
occurrences of symbol a were parsed, using the RE (a + b + ab)�; in the second,
files with thousands of occurrences of ab were parsed using the same RE. Results
are presented in Figs. 1 and 2, respectively.

Our tool behaves poorly when compared with all other options considered.
Possible causes for this inefficiency: (1) We represent alphabet symbols as nat-
ural numbers in Peano notation which has a costly equality test (linear on the
term size); (2) our algorithm relies on the Brzozowski definition of RE parsing,
which needs to quotient resulting REs. We believe that the use of disambiguation
strategies like greedy parsing [14] and POSIX [31] would be able to improve the
efficiency of our algorithm without sacrificing its correctness. The usage of these
strategies can avoid the use of smart constructor to quotient equivalent REs. We
leave the formalization of such disambiguation strategies for future work.

6 Related Work

Parsing with derivatives: recently, derivative-based parsing has received a lot
of attention. Owens et al. were the first to present a functional encoding of RE
derivatives and use it to parsing and DFA building. They use derivatives to build
scanner generators for ML and Scheme [27] and no formal proof of correctness
were presented.

Might et al. [25] report on the use of derivatives for parsing not only RLs
but also context-free ones. He uses derivatives to handle context-free grammars
(CFG) and develops an equational theory for compaction that allows for effi-
cient CFG parsing using derivatives. Implementation of derivatives for CFGs
are described by using the Racket programming language [9]. However, Might
et al. do not present formal proofs related to the use of derivatives for CFGs.

Fischer et al. describes an algorithm for RE-based parsing based on weighted
automata in Haskell [13]. The paper describes the design evolution of such algo-
rithm as a dialog between three persons. Their implementation has a competitive
performance when compared with Google’s RE library [29]. This work also does
not consider formal proofs of RE parsing.

An algorithm for POSIX RE parsing is described in [31]. The main idea of
the article is to adapt derivative parsing to construct parse trees incrementally to
solve both matching and submatching for REs. In order to improve the efficiency
of the proposed algorithm, Sulzmann et al. use a bit encoded representation of
RE parse trees. Textual proofs of correctness of the proposed algorithm are
presented in an appendix.

Certified parsing algorithms: certified algorithms for parsing also received atten-
tion recently. Firsov et al. describe a certified algorithm for RE parsing by con-
verting an input RE to an equivalent non-deterministic finite automata (NFA)
represented as a boolean matrix [10]. A matrix library based on some “block”
operations [22] is developed and used Agda formalization of NFA-based parsing
in Agda [26]. Compared to our work, a NFA-based formalization requires a lot

Certified Derivative-Based Parsing of Regular Expressions 107

more infrastructure (such as a Matrix library). No experiments with the certified
algorithm were reported.

Firsov describes an Agda formalization of a parsing algorithm that deals
with any CFG (CYK algorithm) [12]. Bernardy et al. describe a formalization
of another CFG parsing algorithm in Agda [3]: Valiant’s algorithm [33], which
reduces CFG parsing to boolean matrix multiplication. In both works, no exper-
iment with formalized parsing algorithms were reported.

A certified LR(1) CFG validator is described in [18]. The formalized checking
procedure verifies if CFG and a automaton match. They proved soundness and
completeness of the validator in Coq proof assistant [4]. Termination of LR(1)
automaton interpreter is ensured by imposing a natural number bound.

Formalization of a parser combinator library was the subject of Danielsson’s
work [8]. He built a library of parser combinators using coinduction and provide
correctness proofs of such combinators.

Almeida et al. [1] describes a Coq formalization of partial derivatives and its
equivalence with automata. Partial derivatives were introduced by Antimirov [2]
as an alternative to Brzozowski derivatives, since it avoids quotient resulting
REs with respect to ACUI axioms. Almeida et al. motivation is to use such
formalization as a basis for a decision procedure for RE equivalence.

7 Conclusion

We have given a complete formalization of a derivative-based parsing for REs
in Idris. To the best of our knowledge, this is the first work that presents a
complete certification and that uses the certified program to build a tool for
RE-based search.

The developed formalization has 563 lines of code, organized in seven mod-
ules. We have proven 23 theorems and lemmas to complete the development.
Most of them are immediate pattern matching functions over inductive datatypes
and were omitted from this text for brevity.

As future work, we intend to work on the development of a certified pro-
gram of greedy and POSIX RE parsing using Brzozowski derivatives [14,31] and
investigate on ways to obtain a formalized but simple and efficient RE parsing
tool.

Acknowledgements. The first author thanks Fundação de Amparo a Pesquisa de
Minas Gerais (FAPEMIG) for financial support.

References

1. Almeida, J.B., Moreira, N., Pereira, D., de Sousa, S.M.: Partial derivative automata
formalized in Coq. In: Domaratzki, M., Salomaa, K. (eds.) CIAA 2010. LNCS, vol.
6482, pp. 59–68. Springer, Heidelberg (2011)

2. Antimirov, V.: Partial derivatives of regular expressions and finite automaton con-
structions. Theor. Comput. Sci. 155(2), 291–319 (1996)

108 R. Lopes et al.

3. Bernardy, J.-P., Jansson, P.: Certified context-free parsing: a formalisation of
valiant’s algorithm in agda. CoRR, abs/1601.07724 (2016)

4. Bertot, Y., Castran, P.: Interactive Theorem Proving and Program Development:
Coq’Art The Calculus of Inductive Constructions, 1st edn. Springer Publishing
Company, Incorporated, Heidelberg (2010)

5. Brady, E.: Idris, a general-purpose dependently typed programming language:
design and implementation. J. Funct. Program. 23, 552–593 (2013)

6. Brady, E.: Programming and reasoning with algebraic effects and dependent types.
In: Proceedings of the 18th ACM SIGPLAN International Conference on Func-
tional Programming, ICFP 2013, pp. 133–144. ACM, New York (2013)

7. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11(4), 481–494 (1964)
8. Danielsson, N.A.: Total parser combinators. SIGPLAN Not. 45(9), 285–296 (2010)
9. Felleisen, M.D., Barski, C., Van Horn, D.: Realm of Racket: Learn to Program,

One Game at a Time! Eight Students of Northeastern University, San Francisco
(2013)

10. Firsov, D., Uustalu, T.: Certified parsing of regular languages. In: Gonthier, G.,
Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307, pp. 98–113. Springer, Heidelberg
(2013)

11. Firsov, D., Uustalu, T.: Certified CYK parsing of context-free languages. J. Log.
Algebr. Meth. Program. 83(5–6), 459–468 (2014)

12. Firsov, D., Uustalu, T.: Certified CYK parsing of context-free languages. J. Log.
Algebr. Methods Program. 83(5–6), 459–468 (2014). The 24th Nordic Workshop
on Programming Theory (NWPT 2012)

13. Fischer, S., Huch, F., Wilke, T.: A play on regular expressions: Functional pearl. In:
Proceedings of the 15th ACM SIGPLAN International Conference on Functional
Programming, ICFP 2010, pp. 357–368. ACM, New York (2010)

14. Frisch, A., Cardelli, L.: Greedy regular expression matching. In: Dı́az, J.,
Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142,
pp. 618–629. Springer, Heidelberg (2004)

15. GNU Grep home page. https://www.gnu.org/software/grep/
16. Hopcroft, J.E., Motwani, R., Rotwani, U., Ullman, J.D.: Introduction to Automata

Theory Languages and Computability, 2nd edn. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston (2000)

17. The Idris Tutorial. http://docs.idris-lang.org/en/latest/tutorial/
18. Jourdan, J.-H., Pottier, F., Leroy, X.: Validating LR(1) parsers. In: Seidl, H. (ed.)

Programming Languages and Systems. LNCS, vol. 7211, pp. 397–416. Springer,
Heidelberg (2012)

19. Lesk, M.E., Schmidt, E.: Lex: a lexical analyzer generator. In: Unix, vol. ii. pp.
375–387. W. B. Saunders Company, Philadelphia, PA, USA (1990)

20. The Lightyear Idris Parsing Combinator Library. https://github.com/ziman/
lightyear/

21. Lopes, R., Ribeiro, R., Camarão, C.: Certified derivative based parsing of regular
expressions — on-linerepository (2016). https://github.com/raulfpl/idrisregexp

22. Macedo, H.D., Oliveira, J.N.: Typing linear algebra: a biproduct-oriented approach.
CoRR, abs/1312.4818 (2013)

23. McBride, C.: Dependently Typed Functional Programs and their Proofs. Ph.D.
thesis, Department of Informatics, University of Edinburgh (1999)

24. McBride, C., McKinna, J.: The view from the left. J. Funct. Program. 14(1), 69–
111 (2004)

25. Might, M., Darais, D., Spiewak, D.: Parsing with derivatives: a functional pearl.
SIGPLAN Not. 46(9), 189–195 (2011)

https://www.gnu.org/software/grep/
http://docs.idris-lang.org/en/latest/tutorial/
https://github.com/ziman/lightyear/
https://github.com/ziman/lightyear/
https://github.com/raulfpl/idrisregexp

Certified Derivative-Based Parsing of Regular Expressions 109

26. Norell, U.: Dependently typed programming in agda. In: Proceedings of the 4th
International Workshop on Types in Language Design and Implementation, TLDI
2009, pp. 1–2. ACM, New York (2009)

27. Owens, S., Reppy, J., Turon, A.: Regular-expression derivatives re-examined. J.
Funct. Program. 19(2), 173–190 (2009)

28. Pierce, B.C.: Types and Programming Languages, 1st edn. The MIT Press,
Cambridge (2002)

29. Google Regular Expression Library - re2. https://github.com/google/re2
30. Sørensen, M.H., Urzyczyn, P.: Lectures on the Curry-Howard Isomorphism. Stud-

ies in Logic and the Foundations of Mathematics, vol. 149. Elsevier Science Inc.,
New York (2006)

31. Sulzmann, M., Lu, K.Z.M.: POSIX regular expression parsing with derivatives. In:
Codish, M., Sumii, E. (eds.) FLOPS 2014. LNCS, vol. 8475, pp. 203–220. Springer,
Heidelberg (2014)

32. The Univalent Foundatiosn Program. Homotopy Type Theory: Univalent Founda-
tions of Mathematics (2013). http://homotopytypetheory.org/book/

33. Valiant, L.G.: General context-free recognition in less than cubic time. J. Comput.
Syst. Sci. 10(2), 308–315 (1975)

https://github.com/google/re2
http://homotopytypetheory.org/book/

Concurrent Hash Tables for Haskell

Rodrigo Medeiros Duarte(B), André Rauber Du Bois, Mauricio L. Pilla,
Gerson G.H. Cavalheiro, and Renata H.S. Reiser

PPGC - Programa de Pós Graduação em Computação,
CDTEC - Centro de Desenvolvimento Tecnológico,

UFPel - Universidade Federal de Pelotas, Pelotas, Brazil
{rmduarte,dubois,pilla,gerson,reiser}@inf.ufpel.edu.br

Abstract. This paper presents seven hash table Haskell implementa-
tions, ranging from low-level synchronization mechanisms to high-level
ones such as transactional memories. The result of the comparison
between the algorithms showed that the implementation using the STM
Haskell transactional memory library and fine-grain synchronization pre-
sented the best performance and good scalability.

1 Introduction

Hash table data structures are inherently concurrent, as data access may be inde-
pendent for most operations. However, implementing hash tables with parallel
access and good performance is not a trivial task [4]. Issues such as conflicts
and increasing table capacity are difficult to implement and error prone. For
example, the simplest implementation with a global lock for the entire table
does not scale, as every access is done sequentially, while fine-grain locking, e.g.,
a lock for each entry, allows more concurrency at the cost of complexity specially
while increasing the table.

Haskell is a high-level purely functional language that provides several syn-
chronization abstractions for concurrent programming, e.g., synchronization
variables (MVar [6]), transactional memory [3] and low-level instructions for syn-
chronization, i.e., CAS (compare and swap). Even with all these synchronization
methods, the lack of concurrent hash tables for Haskell is still a problem [9].

This work presents seven concurrent Haskell hash table implementations
using different synchronization methods and four distinct hash algorithms.
A performance comparison is also presented and results show that the imple-
mentation using the STM Haskell transactional memory library and fine-grain
synchronization has the best performance.

This paper is organized as follows. Section 2 presents the different synchro-
nization methods available in Haskell that were used. Section 3 introduces the
concurrent hash table algorithms studied in this work and their implementa-
tions. Section 4 discusses results. Related work is presented in Sect. 5. Finally,
final remarks and future work are given in Sect. 6.

c© Springer International Publishing Switzerland 2016
F. Castor and Y.D. Liu (Eds.): SBLP 2016, LNCS 9889, pp. 110–124, 2016.
DOI: 10.1007/978-3-319-45279-1 8

Concurrent Hash Tables for Haskell 111

2 Haskell Synchronization Methods

The Haskell functional programming language provides many abstractions for
synchronizing threads. The models used in this work are MVar (Concurrent
Haskell) [11,12], IORef + atomicModifyIORef [1,11] and STM Haskell [3]. The
mechanisms are briefly described below.

2.1 Concurrent Haskell: MVars

An MVar [12] is a synchronization variable that may assume one of two states:
empty or full. MVars are created with an initial value by using the newMVar :: a ->
IO(MVar a) function. Two other functions manipulate MVars: takeMVar :: MVar
a -> IO a and putMVar :: MVar a -> a -> IO(). The first returns a value if its argu-
ment MVar is not empty, and blocks otherwise. The latter works in the opposite
way: it blocks if the MVar is not empty, or writes on it if empty [6]. MVars may be
used to implement a semantics similar to critical sections protected by mutexes
but, as it may contain any Haskell value, the abstraction can be used also in more
interesting ways [11,12].

2.2 Low-Level Synchronization: IORef + atomicModifyIORef

This method can be used to implement non-blocking/lock free algorithms.
IORefs [11] are references to memory positions providing the following opera-
tions: newIORef :: a -> IORef a (creating a new IORef), readIORef (reading
an IORef), and writeIORef (writing to an IORef). These operations by them-
selves do not guarantee safety in the concurrent access to memory references,
however, Haskell provides an atomicModifyIORefCAS which uses atomic instruc-
tions to modify a reference [1]. Hence, it provides a low-level synchronization
mechanism such as using a CAS (Compare-and-Swap) instruction.

2.3 Transactional Memory: STM Haskell

STM Haskell [3] is a concurrency model for Haskell based on Software Transac-
tional Memories (STM) [2]. It provides the abstraction of transactional variables,
or TVars: memory locations that can only be accessed inside transactions. TVars
can be modified using two primitives:

readTVar :: TVar a -> STM a

writeTVar :: TVar a -> a -> STM a

The readTVar primitive takes a TVar as argument and returns an STM
action that, when executed, returns the current value stored in the TVar. The
writeTVar primitive is used to write a new value into a TVar. In STM Haskell,

112 R.M. Duarte et al.

STM actions can be composed together using the same do notation used to com-
pose IO actions and other monads. The only way to execute a transaction is by
using the atomically primitive:

atomically :: STM a -> IO a

atomically takes a transaction and executes it atomically with respect to other
concurrent transactions.

3 Hash Algorithms for Concurrency

The algorithms used in this work provide three basic operations to access a
hash table: (i) insert, (ii) contains, and (iii) delete. All algorithms use closed
addressing, i.e., each table position may contain a set of items, usually imple-
mented using a linked list. Increasing table capacity depends on the number of
insertions. If they reach a limit, table capacity is doubled [5]. This is the most
complex operation, and each algorithm treats it in a different way. To simplify
explanation, we describe here the implementation of Hash tables of integers but
we also provide a polymorphic version of the library (see Sect. 6).

3.1 Global Lock Hash

The global lock algorithm uses a single lock to protect a hash table. Each function
first acquires the lock, executes its operation, and then releases the lock. Its design
is simple and makes it easy to increase table capacity, at the cost of scalability: all
operations are serialized. In this work we used an MVar as a global lock for the table:

type Buckets = Array Int [Int]
data HTable = TH
{

buckets :: MVar Buckets ,
n e lements :: IORef Int ,
l e n t ab :: IORef Int

}

When a table limit is reached, buckets is doubled and stored into the MVar.
The other table attributes such as number of elements and length may be stored in
IORefs, as they are modified only by threads which acquired the buckets MVar.

We also implemented an alternative version of this algorithm using STM
Haskell, in which a single TVar is used to hold the array of buckets:

data HTable = TH
{

buckets :: TVar Buckets ,
n_e lements :: TVar Int ,
l en_tab :: TVar Int

}

Concurrent Hash Tables for Haskell 113

3.2 Hash Table Using Lock Striping

This technique uses two arrays, one for buckets and another for locks. When the
hash table is initialized, both arrays have the same number of elements. However,
when the table’s capacity is increased, only the array of buckets is doubled.
Hence, each lock becomes responsible for twice as many table entries each time
the table’s capacity is doubled. Increasing table size is not a frequent operation,
and there are two main reasons to avoid increasing the array of locks [4]:

– Associating a lock with every bucket can consume too much space, especially
when tables are large and contention is low;

– Increasing the array of buckets is simple, but increasing the array of locks
while in use by different threads is complicated, as discussed in the next
Section.

type Buckets = Array Int (IORef [Int])
type Locks = Array Int (MVar Bool)
data HTable = TH
{

buckets :: IORef Buckets ,
l o ck :: Locks ,
n_elemens :: IORef Int ,
l en_tab :: IORef Int ,
l en_l o ck :: Int

}

In this implementation, locks are represented by MVars containing Booleans.
As the need for increasing a table’s capacity is detected, all locks in the array
of locks are acquired in ascending order to avoid deadlocks. When all locks
have been acquired, the array of buckets is increased and the locks are
released.

As the length attribute of a table is only modified while all locks are being
held, it can be stored in an IORef. The attribute containing the number of
elements is modified by a CAS operation. The length of the array of locks does
not need to be protected, as it is initialized and never changed.

3.3 Fine-Grain Lock Hash Table

This algorithm also uses an array of locks and another one for buckets.
However, it doubles both arrays when the table’s capacity is increased. There-
fore, a single array of MVars is used for both locks and buckets. A flag is used
to make threads aware that the table is being increased. Implementation is
as follows:

114 R.M. Duarte et al.

type Buckets = Array Int (MVar [Int])
type Locks = IORef Buckets

data ThId = ThId ThreadId | Null

data HTable = TH
{

buckets :: Locks ,
n_e lements :: IORef Int ,
l en_tab :: IORef Int ,
onGrow :: IORef ThId

}

As the number of locks may be increased, it must be stored in a ref-
erence (IORef). Modifications of this attribute are controlled by the onGrow
flag. onGrow stores the id of the thread that will increase table capacity
ensuring exclusive access to the table. The function resize is as follows:

r e s i z e :: IORef Buckets −> Int −> IORef Int −> IORef ThId −>
ThreadId −>IO Bool

r e s i z e buckets o ld_lenTab l en_tab f l a g t Id = do
t <− readIORef f l a g
i f (t /= Null)

then return False
else do

old_array <− readIORef buckets
ok <− atomCAS f l a g t (ThId t Id)
i f ok then do

lenTab <− readIORef l en tab
i f (o ld_tam == lenTab)

then do
(. . .) −− grow opera t ion
writeIORef f l a g Null
return True

else do
writeIORef f l a g Null
return False

else return False

Once onGrow is set, resize will acquire the MVars of all buckets, create a
new array of MVars with double the size, and copy old buckets to the new array.
Afterwards, the new array is stored in the buckets’ IORef and the onGrow flag
is reset so other threads may continue.

For this algorithm, we also implemented an alternative version using STM.
Each bucket is protected by a TVar and there is no need for a flag controlling
table growth as the array of buckets is stored in a TVar. Hence, if different
transactions modify the array, the runtime system will detect the conflict:

Concurrent Hash Tables for Haskell 115

type Buckets = Array Int (TVar [Int])
data HTable = TH
{

buckets :: TVar Buckets ,
n_elemens :: TVar Int ,
l en_tab :: TVar Int

}

3.4 Lock Free Hash

The main issue for the implementation of concurrent hash tables is growing the
table’s capacity. Making the array of buckets lock-free is not enough, as moving
data from the old to the new table must be executed in an atomic way to avoid
race conditions and CAS instructions operate on a single memory position.

Therefore, the algorithm proposed in [13] moves buckets through the items,
instead of items through the buckets. All data are stored in a lock-free linked
list and each bucket is a reference to a position in the list (Fig. 1).

Fig. 1. Linked list for the lock-free hash.

Items are ordered by the value obtained from the reverse of its hash. This
ordering allows for the division of values in the linked list between two different
buckets, avoiding the need to move them [4,13]. The catch is that capacity must
be a power of two. For each new bucket, a guard node that will never be removed
is created to avoid situations where all data from a bucket are removed.

The implementation of the linked list is based on the lock free list described
in [15]. The main difficulty here is the removal of list elements while a list is being
accessed concurrently by different threads. Direct removal may break linking,
and to avoid it, a lazy deletion scheme is employed. An element is never directly
deleted from the list, it is marked logically as removed and waits for the next
list operation for complete deletion [15]. The list structure is as follows:

data List = Node { va l::Word , next::IORef (List) }
| DelNode {next::IORef (List) }
| Null
| Guard { va l::Word , next::IORef (List) }

type ListHandle = IORef List

116 R.M. Duarte et al.

The hash table structure is as follows:
data S lo t = PtrL i s t { l i s t :: ListHandle } | Ni l
type Buckets = Array Int (IORef S l o t)
data HTable = TH
{

buckets :: IORef Buckets ,
n_elemens :: IORef Int ,
l en_tab :: IORef Int

}

The hash table is initialized with only the slot/position zero pointing to the
guard zero that is also the list head:

newHash :: Int −> IO (HTable)
newHash s i z e = do

x <− rep l i cateM s i z e (newIORef Ni l)
let arrayHash = listArray (0 , s i z e −1) x
let f i r s t = arrayHash ! 0
headList <− newList
writeIORef f i r s t (Pt rL i s t { l i s t=headList })
buckets <− newIORef arrayHash
n_elemens <− newIORef 0
l en_tab <− newIORef s i z e
return (TH buckets n_elemens l en_tab)

The remaining buckets are initialized when first needed using
initilizeGuards. For each initialized bucket, a new guard is inserted in the linked
list, and then the corresponding slot in the table points to it. Initialization uses the
split-ordered keys method [13], where each bucket is initialized by recursive calls
until an already initialized bucket is found. Then, the guard is inserted in the list
and its reference is used for the next bucket’s insertion:

i n i t i a l i z eGua r d :: Buckets −> Int −> Int −> IO ListHandle
i n i t i a l i z eGua r d s l o t s lenTab guardVal = do

x <− readIORef $ s l o t s ! searchParent lenTab guardVal
case x of

PtrL i s t { l i s t = l } −> do
i nve r s eVa l <− r e v e r s eB i t s guardVal
a <− addGuardToList l i nve r s eVa l
atomicWriteIORef (s l o t s ! guardVal) (Pt rL i s t { l i s t=a })
return a

Ni l −> do
newGuard <− i n i t i a l i z eGua r d s l o t s lenTab $ searchParent

lenTab guardVal
inve r s eVa l <− r e v e r s eB i t s guardVal
a <− addGuardToList newGuard inve r s eVa l
atomicWriteIORef (s l o t s ! guardVal) (Pt rL i s t { l i s t=a })
return a

Concurrent Hash Tables for Haskell 117

The searchParent function calculates the table position were the next closer
guard might be. If the table position contains a guard, the new guard is inserted
in the right position of the linked list (addGuardToList). Otherwise, the posi-
tion found must also be initialized, hence initilizeGuard is called again for
that position. The Haskell Foreign Function Interface (FFI) [10] is used for the
reverseBits function, as an efficient Haskell native library to reverse bits was
not found. In the worst cases of some specific measurements we have performed,
the use of Haskell native library functions were responsible for 66 % of the exe-
cution time, thus justifying the use of an external C implementation.

f o r e i g n import c c a l l s a f e r e v e r s eB i t s :: Int −> IO Word

We also implemented an alternative version of the Lock free algorithm using
transactional memory. For this version, IORefs were substituted by TVars and
we removed part of the synchronization algorithm, as the transactional system
guarantees atomicity. The data structure for the List is as follows:

data List = Node { va l::Word , next::TVar (List) }
| DelNode {next::TVar (List) }
| Null
| Guard { va l::Word , next::TVar (List) }

type ListHandle = TVar List

And the data types for the STM version are:

data S lo t = List { l i s t :: ListHandle } | Ni l
type Buckets = Array Int (TVar S l o t)

data HTable = TH
{

buckets :: TVar Buckets ,
n_elemens :: TVar Int ,
l en_tab :: TVar Int

}

4 Results

Our experiments were concerned mainly with the performance of the different
algorithms. Two experimental environments were used to evaluate the imple-
mented algorithms. The first environment was a Uniform Memory Access (UMA)
architecture and was comprised of an Intel Core i7 processor with 4 physical
cores and hyperthreading, and 8 GB of RAM. The second environment was a
Non-Uniform Memory Access (NUMA) with two Intel Xeon, each with 4 phys-
ical cores and hyperthreadding, and 12 GB of RAM. Threads in the NUMA
machine incur in different memory latency times depending on the location of
data in memory banks. Each set of cores is directly connected to a memory bank
and, even though the address space is shared for the entire system, accesses
to positions in memory banks not directly connected to a given set of cores

118 R.M. Duarte et al.

require extra communication and, thus, increased latencies and reduced band-
width. Both systems executed Ubuntu Linux 14.04 64 bits. The Haskell compiler
used was ghc 7.6.3 with STM 2.4.2. Each experiment was executed 30 times
and the average time is presented. One million operations were executed for
each experiment with a mix of 10 % inserts, 10 % deletes, and 80 % reads. This
experiment reflects the common use of hash tables accordingly to use statistics
from [4]. An additional mix of 80 % inserts, 10 % deletes, and 10 % reads was
employed to study behavior during table growth. Tests were executed for the
following implementations:

– Global lock MVar : global lock implementation explained in Subsect. 3.1;
– Global using STM : also global lock, but using a TVar to implement the global

lock;
– Block MVar : Lock Striping, Subsect. 3.2;
– Fine-grain using MVar : fine-grain lock algorithm, Subsect. 3.3;
– Fine-grain using STM : fine-grain lock implementation using STM,

Subsect. 3.3;
– CAS : lock-free hash using IORef, Subsect. 3.4;
– CAS using STM : also lock-free, but substituting IORefs by TVArs,

Subsect. 3.4.

4.1 Execution Time

Figures 2 and 3 show the execution time of hash tables for the different operation
mixes for the UMA machine. The horizontal axis depicts the number of threads
and the vertical axis shows the execution time in seconds using a logarithm
scale. Each color bar is a different implementation of the hash table algorithms
explained before, and in the top of each bar the standard deviation was plotted.
As expected, Global lock MVar showed performance loss when the number of
threads is increased because of the serialization created by a single lock. Global
using STM showed performance gains up to 4 threads as transactions that do
not modify the state, such as reads, do not generate conflicts. However, when
the amount of inserts was increased to 80 %, this implementation’s performance
was compromised as the number of conflicts increased. The worst scenario was
achieved with 16 threads in the NUMA machine, where execution time exceeded
60 s (See Fig. 5). Note that Block MVar showed the largest standard deviation,
with very different execution times in their repetitions.

With the exception of Global lock MVar, all implementations scaled up to
4 threads, which is also the number of physical cores. When the number of
threads was increased to 8, Block MVar, Fine-grain using MVar, Fine-grain
using STM, and CAS still kept low execution times even when the number of
inserts was increased. Block MVar presented execution times lower than Fine-
grain using MVar, as its lock acquisition and growth algorithms are simpler.

Block MVar, Fine-grain using MVar, and CAS presented similar execution
times. This is due to the overhead for implementing correct synchronization using
CAS which made the lock free implementation in the end similar to Block MVar

Concurrent Hash Tables for Haskell 119

Fig. 2. Execution time, 10% inserts, 10% deletes, and 80% reads, UMA machine.

Fig. 3. Execution time, 80% inserts, 10% deletes, and 10% reads, UMA machine.

and Fine-grain using MVar. The bad performance presented by CAS using STM
is explained by the high number of false conflicts that happens in a linked list
implemented with TVars. This issue is described in detail in Sect. 3.3 of [14].
Fine-grain using STM showed the lower execution time in both mixes.

Figures 4 and 5 show the execution time of hash tables for the different oper-
ation mixes for the NUMA machine. Note that the time scale is different than
that used for Figs. 2 and 3. Direct comparison of execution times between the
UMA and the NUMA machines is not useful as the processors are different.

For the read intensive experiment (Fig. 4), execution time shows the same
trends as for the UMA machine from 1 to 4 threads. When executing 8 threads,
there is a different behavior for the Fine using STM. From 8 threads onwards,
it is possible to see the influence of the Non-Uniform Memory Architecture and

120 R.M. Duarte et al.

Fig. 4. Execution time, 10% inserts, 10% deletes, and 80% reads, NUMA machine.

performance with 16 and 32 threads is very similar. An extra experiment was per-
formed in order to isolate the main contribution to the performance contention
when executing with 8 threads onwards. A threaded code without synchroniza-
tion was executed for the same range of threads and the number of memory ref-
erences and cache misses started to grow very fastly with the number of threads.
Hence, memory contention seems to be the main issue for performance in these
cases.

For the write intensive experiment (Fig. 5), trends were again very similar
but for the Fine using STM and 8 threads. Memory contention was again a very
important issue after 8 threads for both UMA and NUMA machines.

Fig. 5. Execution time, 80% inserts, 10% deletes, and 10% reads, NUMA machine.

Concurrent Hash Tables for Haskell 121

4.2 Speedup

Figures 6 and 7 show the relative speedups in the vertical axis for each imple-
mentation in the UMA machine. The relative speedup was calculated by dividing
the execution time of each implementation with 1 thread by each execution time
for the varying number of threads. Although this measurement does not pro-
vide a precise statement about the performance as execution time, it is useful
to appreciate the scalability of each implementation as the number of threads is
increased.

The behavior of relative speedups does not change significantly for each
implementation in both graphs. All implementations but Global Lock MVar pre-
sented scalability up to 4 threads and all of them presented worse performance

Fig. 6. Speedup, 10% inserts, 10% deletes, and 80% reads, UMA machine.

Fig. 7. Speedup, 80% inserts, 10% deletes, and 10% reads, UMA machine.

122 R.M. Duarte et al.

Fig. 8. Speedup, 10% inserts, 10% deletes, and 80% reads, NUMA machine.

than with 1 thread when the number of threads greatly exceeded the num-
ber of cores. Among all implementations, Block MVar, Fine-grain using MVar,
Fine-grain using STM, and CAS presented good scalability when the number of
processors is increased.

Figures 8 and 9 show the relative speedups in the vertical axis for each imple-
mentation in the NUMA machine. Fine using MVar presented the best relative
speedups again, showing its potential for further scalability. Fine using STM
showed a different trend when compared to Figs. 6 and 7, with worse scalability
than Global using STM and CAS using STM.

Fig. 9. Speedup, 80% inserts, 10% deletes, and 10% reads, NUMA machine.

Concurrent Hash Tables for Haskell 123

5 Related Works

Newton et al. [9] claimed the inexistence of concurrent hash tables for Haskell.
Their solution employed coarse grain locks over Data.Map structures. Their
results showed that the overhead of a global lock was not large, as their structure
stored a small amount of data. In our work, we tried to reduce lock granularity
to a minimum, even implementing a lock-free hash table.

Sulzmann, Lam, and Marlow [15] implemented linked lists using different
concurrent algorithms and the same synchronization primitives explored in our
work. Their implementation with IORef and atomicModifyIORef presented the
best results, but the STM implementation is the most attractive by its ease of
implementation and correctness guarantees, as lock free implementations using
IORefs are complex and difficult to get right. Our implementation of a lock-
free linked list described in Subsect. 3.4 used theirs as a starting point, but
we implemented an ordered list with guards as references to the buckets, a
substantial modification to the original algorithm.

6 Conclusions and Future Work

In this work, different concurrent implementations of hash tables for Haskell were
compared. The Block MVar, Fine-grain using MVar, Fine-grain using STM, and
CAS implementations showed the best performance up to 8 threads for the UMA
machine. The Block MVar implementation compensates the performance bottle-
neck of a low number of locks protecting tables by its lower complexity for table
duplication. On the other hand, the Fine-grain using MVar implementation with
its higher number of locks suffered from the impact of duplicating tables, and hence
its resultswere similar to those ofBlockMVar. TheCAS implementation presented
a high synchronization cost, with performance worse than Block MVar.

Performance trends for the NUMA machines are very similar to those in
the UMA machine but for Fine-gain using STM implementation, which starts
to suffer the effects of the memory hierarchy when 8 threads are executed. In
general, memory contention was a very important issue as the number of threads
increased in the NUMA machine. The experiments also reflect the fact that the
Haskell runtime system, including its Garbage Collector, were designed mainly
for UMA machines, with no optimizations for NUMA architectures [7,8].

For our execution environment, the Fine-grain using STM presented the
best performance up to 8 threads, with the benefit of being easier to implement
than the alternatives. However, the best scalability was achieved with the CAS
implementation.

In future works, we intend to experiment with different initial table sizes and
diverse conditions.

Sources of the tables presented here, and also their polymorphic versions, may
be downloaded from http://lups.inf.ufpel.edu.br/∼pilla/bench hash haskell.tgz.

http://lups.inf.ufpel.edu.br/~pilla/bench_hash_haskell.tgz

124 R.M. Duarte et al.

Acknowledgement. This work was supported by CAPES/Brasil (Programa
Nacional de Cooperação Acadêmica da Coordenação de Aperfeiçoamento de Pessoal
de Nı́vel vel Superior).

References

1. Data.CAS, July 2015. http://hackage.haskell.org/package/IORefCAS-0.1.0.1/
docs/src/Data-CAS.html

2. Harris, T., Larus, J., Rajwar, R.: Transactional Memory (Synthesis Lectures on
Computer Architecture). Morgan and Claypool, San Rafael (2010)

3. Harris, T., Marlow, S., Jones, S.P., Herlihy, M.: Composable memory transactions.
Commun. ACM 51, 91–100 (2008)

4. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Elsevier, San
Francisco (2012). Revised Reprint

5. Leiserson, C.E., Rivest, R.L., Stein, C., Cormen, T.H.: Introduction to Algorithms.
The MIT press, Cambridge (2001)

6. Marlow, S.: Parallel and Concurrent Programming in Haskell: Techniques for Mul-
ticore and Multithreaded Programming. O’Reilly Media, Inc., Sebastopol (2013)

7. Marlow, S., Harris, T., James, R.P., Peyton Jones, S.: Parallel generational-copying
garbage collection with a block-structured heap. In: Proceedings of the 7th Inter-
national Symposium on Memory Management, ISMM 2008, New York, NY, USA,
pp. 11–20. ACM (2008)

8. Marlow, S., Peyton Jones, S., Singh, S.: Runtime support for multicore haskell. In:
Proceedings of the 14th ACM SIGPLAN International Conference on Functional
Programming, ICFP 2009, New York, NY, USA, pp. 65–78. ACM (2009)

9. Newton, R., Chen, C.-P., Marlow, S.: Intel concurrent collections for haskell.
Technical report MIT-CSAIL-TR-2011-015, Massachusetts Institute of Technol-
ogy, Cambridge, MA, USA (2011)

10. O’Sullivan, B., Goerzen, J., Stewart, D.B.: Real World Haskell. O’Reilly, Farnham
(2008)

11. Peyton Jones, S.: Tackling the awkward squad: monadic input/output, concur-
rency, exceptions, and foreign-language calls in haskell. In: Hoare, T., Broy, M.,
Steinbruggen, R. (eds.) Engineering Theories of Software Construction, pp. 47–96.
IOS Press, Amsterdam (2002)

12. Peyton Jones, S., Gordon, A., Finne, S.: Concurrent haskell. In: Proceedings of the
23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 1996, New York, NY, USA, pp. 295–308. ACM (1996)

13. Shalev, O., Shavit, N.: Split-ordered lists: lock-free extensible hash tables. J. ACM
(JACM) 53(3), 379–405 (2006)

14. Sönmez, N., Perfumo, C., Stipic, S., Cristal, A., Unsal, O.S., Valero, M.: UnreadT-
Var: extending haskell software transactional memory for performance. Trends
Funct. Program. 8, 89–114 (2007)

15. Sulzmann, M., Lam, E.S., Marlow, S.: Comparing the performance of concurrent
linked-list implementations in haskell. In: Proceedings of the 4th Workshop on
Declarative Aspects of Multicore Programming, pp. 37–46. ACM (2009)

http://hackage.haskell.org/package/IORefCAS-0.1.0.1/docs/src/Data-CAS.html
http://hackage.haskell.org/package/IORefCAS-0.1.0.1/docs/src/Data-CAS.html

Optional Type Classes for Haskell

Rodrigo Ribeiro1, Carlos Camarão2, Lućılia Figueiredo3(B),
and Cristiano Vasconcellos4

1 DECSI, Universidade Federal de Ouro Preto (UFOP), João Monlevade, Brazil
rodrigo@decsi.ufop.br

2 DCC, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
camarao@dcc.ufmg.br

3 DECOM, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Brazil
luciliacf@gmail.com

4 DCC, Universidade do Estado de Santa Catarina (UDESC), Joinville, Brazil
cristiano.vasconcellos@udesc.br

Abstract. This paper explores an approach for allowing type classes to
be optionally declared by programmers, i.e. programmers can overload
symbols without declaring their types in type classes.

The type of an overloaded symbol is, if not explicitly defined in a
type class, automatically determined from the anti-unification of instance
types defined for the symbol in the relevant module.

This depends on a modularization of instance visibility, as well as on a
redefinition of Haskell’s ambiguity rule. The paper presents the modifica-
tions to Haskell’s module system that are necessary for allowing instances
to have a modular scope, based on previous work by the authors. The
definition of the type of overloaded symbols as the anti-unification of
available instance types and the redefined ambiguity rule are also based
on previous works by the authors.

The added flexibility to Haskell-style of overloading is illustrated by
defining a type system and by showing how overloaded record fields can
be easily allowed with such a type system.

1 Introduction

This paper proposes an approach for allowing symbols to be overloaded in Haskell
without explicitly declaring their types in type classes. For this, modifications
to Haskell’s module system are required so that instances have a modular scope,
as well as a redefinition of Haskell’s ambiguity rule.

The proposed approach is based on the following ideas:

1. As usual, the type of an overloaded symbol is a constrained type of the form
∀a.C ⇒ τ , where C is a set of constraints and τ is a simple type; a constraint
is a class name followed by a sequence of type variables.

2. An overloaded symbol x can be defined by instance declarations of the form
instance x = e, without explicitly declaring its type in a type class.

c© Springer International Publishing Switzerland 2016
F. Castor and Y.D. Liu (Eds.): SBLP 2016, LNCS 9889, pp. 125–139, 2016.
DOI: 10.1007/978-3-319-45279-1 9

126 R. Ribeiro et al.

3. The type of x is automatically determined from the anti-unification of the
instance types for x that are visible in the relevant module, by creating a
type class with a single member (x). The algorithm used for computing the
type of x is presented in Sect. 3.

4. Simple modifications to Haskell’s module system are required so that
instances have a modular scope. This is based on previous work by the authors
which is summarized in Sect. 5.

5. Also, a redefinition of Haskell’s ambiguity rule is required, as discussed in
Sect. 4.

The proposed approach is formalized in Sect. 6, where a type system for a
core-Haskell language where type classes can be optionally declared is presented.
Modularized instance scopes with a revised ambiguity rule and optional type
classes may also avoid the use of qualified imports (as used e.g. in the classy-
prelude, used in e.g. Yesod [15]).

The added flexibility to Haskell-style of overloading is illustrated by present-
ing a simple implementation for overloaded record fields based on the proposed
approach (cf. Sect. 7).

Related work is discussed in Sects. 8 and 9 concludes.
A prototype implementation of a type inference algorithm for Haskell

supporting overloading without the need of defining a type class is available [18].

2 Preliminaries

This section introduces basic definitions and notations. Meta-variable usage and
the syntax of types are given in Fig. 1.

Class Name A
Type variable a, b
Type constructor T
Simple Constraint π ::= A τ
Set of Simple Constraints C
Constraint θ ::= ∀ a. C ⇒ π
Simple Type τ, ρ ::= a | T | τ τ
Constrained Type δ ::= C ⇒ τ
Type σ ::= ∀ a. δ
Substitution φ

Fig. 1. Syntax of types

For simplicity and following common practice, kinds are not considered in
type expressions and type expressions which are not simple types are not explic-
itly distinguished from simple types.

Optional Type Classes for Haskell 127

As usual, we assume the existence of type constructor →, that is written as
an infix operator (τ → τ ′). A type ∀ a.C ⇒ τ is equivalent to C ⇒ τ if a is
empty and, similarly, C ⇒ τ is equivalent to τ if C is empty.

The set of type variables occurring in X is denoted by tv(X), where X can
be a type, a constraint, sets of types or constraints, or a typing context.

Notation xn, or simply x, is used throughout this paper to denote the
sequence x1 · · · xn, or x1, . . . , xn, or x1; . . . ;xn, depending on the context where
it is used, where n ≥ 0, and x’s can be either type variables, or mappings, or
bindings etc. When used in a context of a set, it denotes {x1, . . . , xn}.

A substitution φ is a function from type variables to simple type expressions.
The identity substitution is denoted by id . φ(σ) (or simply φ σ) represents the
capture-free operation of substituting φ(a) for each free occurrence of a in σ.

We overload the substitution application on constraints, constraint sets and
sets of types. Definition of application on these elements is straightforward. The
symbol ◦ denotes function composition and dom(φ) = {α | φ(α) �= α}.

The notation φ[a �→ τn] denotes the substitution φ′ such that φ′(b) = τi if
b = ai, for i = 1, ..., n, otherwise φ(b). Also, [a �→ τ] = id [a �→ τn].

3 Anti-unification of Instance Types

A simple type τ is a generalization of a set of simple types τn if there exist
substitutions φ

n
such that φi(τ) = τi, for i = 1, . . . , n. For example, a0 → a0,

a1 → a2, and a3 are generalizations of {Int → Int ,Float → Float}.1

We say that τ is less general than τ ′, written τ ≤ τ ′, if there exist a substi-
tution φ such that φ(τ ′) = τ . For example, a0 → a0 ≤ a1 → a2 ≤ a3.

The least common generalization (lcg) of a set of types S and a type τ holds,
written as lcgr(S, τ), if, for all generalizations τ ′ of S we have τ ≤ τ ′.

The concept of least common generalization was studied by Gordon Plotkin
[16,17], that defined a function for constructing a generalization of two symbolic
expressions. In Fig. 2, we define function lcg , which returns a lcg of a finite set
of simple types S, by recursion on the structure of S, using function lcg ′ to
compute the generalization of two simple types. For two types τ1 and τ2 the idea
is to recursively traverse the structure of both types using a finite map to store
previously generalized types. Whenever we find two different type constructors,
we search on the finite map if they have been previously generalized. If this is
the case, the previous generalization is returned. If these two type constructors
are not in the finite map, we insert them using a fresh type variable as their
generalization and return this new variable.

As an example of the use of lcg , consider the following types (of functions
map on lists and trees, respectively):

(a → b) → [a] → [b]
(a → b) → Tree a → Tree b

1 A generalization is also called a (first-order) anti-unification [2].

128 R. Ribeiro et al.

lcg(S) = τ where (τ, φ) = lcg (S, id), for some φ

lcg ({τ}, φ) = (τ, φ)

lcg ({τ1} ∪ S, φ) = lcg (τ1, τ , φ) where (τ , φ) = lcg (S, φ)

lcg (T τ n, T ρm, φ) =
if φ(a) = (T τ n, T ρm) for some a then (a, φ)
else

if n = m then (b, φ[b (T τ n, T ρm)])
where b is a fresh type variable

else (ψ τ
n
, φn)

where (ψ,φ0) =
(T, φ) if T = T
(a, φ [a (T, T)]) otherwise, a is fresh

(τi , φi) = lcg (τi, ρi, φi−1), for i = 1, . . . , n

Fig. 2. Least common generalization

A call of lcg for a set with these types yields type (a → b) → c a → c b,
where c is a generalization of type constructors [] and Tree (for c to be used in
c b, mapping c �→ ([],Tree) is saved in parameter φ of lcg ′′, to be reused).

The following theorems guarantee correctness of function lcg :

Theorem 1 (Soundness of lcg). For all (sets of simple types) S, we have that
lcg(S) yields a generalization of S.

Theorem 2 (Completeness of lcg). For all (sets of simple types) S, we have
that lcgr(S, lcg(S)) holds (i.e. lcg(S) is a generalization of S) and, for any τ
that is a generalization of S, we have that lcg(S) ≤ τ .

Theorem 3 (Compositionality of lcg). For all non-empty (sets of simple
types) S, S′, we have that lcg(lcg(S), lcg(S′)) = lcg(S ∪ S′).

Theorem 4 (Uniqueness of lcg). For all (sets of simple types) S, we have
that lcg(S) is unique, up to variable renaming.

The proofs use straighforward induction on the number and structural com-
plexity of elements of S.

4 Ambiguity Rule

The versions of Haskell supported by GHC [8] — the prevailing Haskell com-
piler — are becoming complex, to the point of affecting the view of Haskell as
the best choice for general-purpose software development. A basic issue in this
regard is the need of extending the language to allow multiple parameter type
classes (MPTCs). This extension is thought to require additional mechanisms,

Optional Type Classes for Haskell 129

such as functional dependencies [10] or type families [3]. In another paper [1],
we have shown that the introduction of MPTCs in the language can be done
without the need of additional mechanisms: a simplifying change is sufficient, to
Haskell’s ambiguity rule. Interested readers are referred to [1]. The main ideas
are summarized below.

In (GHC) Haskell, ambiguity is a property of a type: a type ∀ a.C ⇒ τ is
ambiguous if there exists a type variable that occurs in the set of constraints (C)
that is not uniquely determined from the set of type variables that occur in the
simple type (τ). This unique determination is such that, for each type variable
a that occurs in C but not in τ there must exist a functional dependency b �→ a
for some b in τ (or a similar unique determination specified via type families).
Notation b �→ a is used, instead of b → a, to avoid confusion with the notation
used to denote functional types.

We adopt a slightly modified definition for ambiguity, refered here as expres-
sion ambiguity2, that is based on the following similar property of variable reach-
ability, which is independent of functional dependencies and type families:

Definition 1 (Reachable Variable). A variable a ∈ tv(C) is reachable from
a set of type variables V if a ∈ V or if a ∈ π for some π ∈ C such that there exists
b ∈ tv(π) such that b is reachable. a ∈ tv(C) is unreachable if it is not reachable.
The set of reachable type variables of constraint set C from V is denoted by
reachableVars(C, V).

For example, in (A1 a b,A2 a) ⇒ b, type variable a is reachable from the set
of type variables in b, because a occurs in constraint A1 a b, and b is reachable.
Similarly, if C = (A1 a b,A2 b c, A3 c), then c is reachable from {a}.

The presence of unreachable variables in a constraint π ∈ C, on a type
σ = C ⇒ τ , characterizes overloading resolution; in other words, it means that
overloading for π is resolved — there is no context in which an expression with
such a type (σ) could be placed that could instantiate any of the unreachable
variables (occurring in π). However, the presence of unreachable variables does
not necessarily imply ambiguity. Ambiguity is a property of an expression, not
of a type. It depends on the context in which the expression occurs, and on
entailment of the constraints on the expression’s type. Also, because of Haskell’s
open-world style of overloading, ambiguity can be checked only when there exist
unreachable variables; when there are no unreachable variables, overloading is
yet unresolved.

Entailment of constraints and its algorithmic (functional) counterpart are
well-known in the Haskell world (see e.g. [1,14,19]).

Informally, a set of constraints C is entailed (or satisfied) in a program P if
there exists a substitution φ such that φ(C) is contained in the set of instance
declarations of P , or is transitively implied by the set of class and instance
declarations occurring in P . For a formal definition, see e.g. [1,14]. In this case
we say that C is entailed by φ.

2 In [1] it is called delayed closure ambiguity .

130 R. Ribeiro et al.

For example, Eq [[Integer]] is entailed if we have instances Eq Integer and
Eq a =>Eq [a], visible in the context where an expression whose type has a
constraint Eq [[Integer]] occurs.

If overloading is resolved for a constraint π occurring in a type σ = π,C ⇒ τ
then exactly one of the following holds:

– π is entailed by a single instance; in this case a type simplification (also called
“improvement”) occurs: σ can be simplified to C ⇒ τ ;

– π is entailed by two or more instances; in this case we have a type error:
ambiguity;

– π is not entailed (by any instance); in this case we have also a type error:
unsatisfiability.

Note that variables in a single constraint are either all reachable or all
unreachable. If they are unreachable, either the constraint can be removed, in
the case of single entailment, or there is a type error (either ambiguity, in the
case of two or more entailments, or unsatisfiability, in the case of no entailment).

Instead of being dependent on the specification of functional dependencies
or type families, ambiguity depends on the existence of (two or more) instances
in a program context when overloading is resolved for a constraint on the type
of an expression.

The possibility of a modular control of the visibility of instance definitions
conforms to this simplifying change. This is the subject of Sect. 5.

5 Modularization of Instances

This section presents the simple modifications to Haskell’s module system that
are necessary to allow instances to have a modular scope (we do not attempt
to discuss any major revision to Haskell’s module system). This is based on
previous work presented in [13], that allows a modular control of the visibility
of instance definitions.

Essentially, import and export clauses can specify, instead of just names, also
instance A τ , where τ is a (non-empty) sequence of types and A is a class name:

module M (instance A τ , . . .) where . . .

specifies that the instance of τ for class A is exported in module M .

import M (instance A τ , . . .)

specifies that the instance of τ for class A is imported from M , in the module
where the import clause occurs.

The single additional rule to the work presented in [13] that enables type
classes to be optionally declared by programmers is the following:

Definition 2 (Type of overloaded variable). If the type of an overloaded
variable — i.e. a variable that is introduced in an instance definition — is not

Optional Type Classes for Haskell 131

explicitly annotated in a type class declaration, then the variable’s type is the
anti-unification of instance types defined for the variable in the current module;
otherwise, it is the annotated type.

5.1 Pros and Cons of Instance Modularization

Among the advantages of this simple change, we cite (following [13]):

– Programmers have better control of which entities are necessary and should
be in the scope of each module in a program.

– It is possible to define and use more than one instance for the same type in a
program.

– Problems with orphan instances do not occur (orphan instances are instances
defined in a module where neither the definition of the data type nor the
definition of the type class occur). For example, distinct instances of Either
for class Monad , say one from package mtl and another from transformers,
can be used in a program.

– The introduction of newtypes, as well as the use of functions that include
additional (-by) parameters, such as e.g. the (first) parameter of function
sortBy in module Data.List can be avoided.

With instance modularization, programmers need to be aware of which enti-
ties are exported and imported — i.e. which entities are visible in the scope of
a module — and their types, in particular whether they are or not overloaded.
A simple change like a type annotation for a variable exported from a module,
can lead to a change in the semantics of using this variable in another module.

Instance modularization and the rule of expression ambiguity, that consid-
ers the context where an expression occurs to detect whether an expression is
ambiguous or not, has profound consequences. Consider, for example:

module M where
class Show t ...
class Read t ...
instance Show Int ...
instance Read Int ...
f = show . read

module N where
import M
instance Read Bool ...
instance Show Bool ...
g = f "123"

The definition of f in module M is not well-typed in Haskell, since type (Show
a, Read a) ⇒ String is ambiguous. In our approach (i.e. considering ambiguity
as a property of an expression, not of a type), the definition of f in module

132 R. Ribeiro et al.

M is well-typed, because constraints (Show a, Read a) can be removed; these
can be removed because there exists a single instance, in module M , for each
constraint, that entails it. As a result, f has type String→ String . Its use in
module N is (then) also well-typed. That means: f ’s semantics is a function that
receives a value of type String and returns a value of type String , according to
the definition of f given in module M . The semantics of an expression involves
passing a (dictionary) value that is given in the context of usage only if the
expression has a constrained type.

6 Mini-Haskell with Optional Type Classes

In this section we present a type system for mini-Haskell, where type class dec-
laration is optional. Programmers can overload symbols without declaring their
types in type classes. The type of an overloaded symbol is, if not explicitly
defined in a type class, based on the anti-unification of instance types defined
for the symbol in the relevant module.

Figure 3 shows the context-free syntax of mini-Haskell: expressions, modules
and programs. An instance can be specified without specifying a type class,
cf. second option (after |) in Instance Declaration in Fig. 3.

For simplicity, imported and exported variables and instances must be explic-
itly indicated, e.g. we do not include notations for exporting and importing all
variables of a module.

Multi-parameter type classes are supported. In this paper we do not consider
recursivity, neither in let-bindings nor in instance declarations.

A program theory P is a set of axioms of first-order logic, generated from
class and instance declarations occurring in the program, of the form C ⇒ π,
where C is a set of simple constraints and π is a simple constraint (cf. Fig. 3).

Module Name M, N
Program Theory P, Q
Variable x, y
Expression e ::= x | λx. e | e e | let x = e in e
Program p ::= m
Module m ::= moduleM (X) where I; D
Export clause X ::= ι
Import clause I ::= import M (X)
Item ι ::= x | instance A τ
Declaration D ::= classDecl | instDecl | B

Class Declaration classDecl ::= class C ⇒ A a where x : δ
Instance Declaration instDecl ::= instance C ⇒ A τ where B | instance B
Binding B ::= x = e

Fig. 3. Context-free syntax of mini-Haskell

Optional Type Classes for Haskell 133

Entailment of a set of constraints C by a program theory P is written as
P �e C (see e.g. [1]).

Typing contexts are indexed by module names. Γ (M) gives a function on
variable names to types: Γ (M)(x) gives the type of x in module M and typing
context Γ . The notation (Γ (M), x �→ σ) is used to denote the typing context Γ ′

that differs from Γ only by mapping x to σ in module M , i.e.: Γ ′(M ′)(x′) = σ
if M ′ = M and x′ = x, otherwise Γ ′(M ′)(x′) = Γ (M ′)(x′).

A special, empty module name, denoted by [], is used for names exported by
modules, to control the scope of names that use import and export clauses. Also,
a reserved name (self) is used to refer to the current module, being defined and
used in the type system and relations to control import and export clauses.

It is not necessary to store multiple instance types for the same variable in
a typing context, neither it is necessary to use instance types in typing contexts
(they are needed only in the program theory); only the lcg of instance types
is used, because of lcg compositionality (Theorem 3). When a new instance is
declared, if it is an instance of a declared class the type system guarantees that
each member is an instance of the type declared in the type class; otherwise
(i.e. it is the single member of an undeclared class), its (new) type is given by
the lcg of the existing type (an existing lcg of previous instance types) and the
instance type.

We consider that a constraint set C ′ can be removed from a constrained type
C,C ′ ⇒ τ if and only if overloading for C ′ has been resolved and there exists a
single satisfying substitution for C ′ [1].

A declarative type system for core-Haskell is presented in Fig. 4, using rules
of the form P ;Γ �0 e : δ, which means that e has type δ in typing context Γ
and program theory P .

Rule (LET) performs constraint set simplification before type generalization.
Constraint set simplification >>P is a relation on constraints, defined as a compo-
sition of improvement and context reduction [1]. gen(δ, σ, V) holds if σ = ∀ a. δ,

Γ (self)(x) = (∀ a. C ⇒ τ) P e φ C dom(φ) ⊆ a

P ;Γ 0 x : φ(C ⇒ τ)
(VAR)

(Γ (self), x τ) 0 e : C ⇒ τ

P ;Γ 0 λx. e : C ⇒ τ → τ
(ABS)

P ;Γ 0 e : C ⇒ τ → τ P ;Γ 0 e : C ⇒ τ
V = tv(τ) ∪ tv(C) (C ⊕V C) >>P C

P ;Γ 0 e e : C ⇒ τ
(APP)

P ;Γ 0 e : C ⇒ τ C >>P C
gen(C ⇒ τ, σ, tv(Γ)) P ; (Γ (self), x σ) 0 e : C ⇒ τ

P ;Γ 0 let x = e in e : C ⇒ τ
(LET)

Fig. 4. Core-Haskell type system

134 R. Ribeiro et al.

where a = tv(δ) − V ; similarly, for constraints, gen(C ⇒ π, θ, V) holds if
θ = ∀ a.C ⇒ π, where a = tv(C ⇒ π) − V .

C ⊕V C ′ denotes the constraint set obtained by adding to C constraints from
D that have type variables reachable from V :

C ⊕V C ′ = C ∪ {π ∈ C ′ | tv(π) ∩ reachableVars(C ′, V) �= ∅}
In rule (APP), the constraints on the type of the result are those that occur in

the function type plus not all constraints that occur in the type of the argument
but only those that have variables reachable from the set of variables that occur
in the simple type of the result or in the constraint set on the function type
(cf. Definition 1). This allows, for example, to eliminate constraints on the type
of the following expressions, where o is any expression, with a possibly non-empty
set of constraints on its type: flip const o (where const has type ∀a, b. a → b → a
and flip has type ∀a, b, c. (a → b → c) → b → a → c), which should denote an
identity function, and fst (e, o), which should have the same denotation as e.

The extension of core-Haskell to mini-Haskell, which allows (optional) type
classes, modules and modularized instance declarations, is presented in Figs. 5,
6 and 7. Rule (MOD), in Fig. 5, uses relations (�⇓) and (�X

⇑), which are defined
separately, for clarity, in Figs. 6 and 7.

The import relation Γ �⇓ I : Γ ′ yields a typing context (Γ ′) from a typing
context (Γ) and a sequence of import clauses (I).

Relation P ;Γ �X
⇑ D : (E,P ′, Γ ′) is used for specifying the types of a sequence

of bindings, from a typing context (Γ), a program theory (P) and a set of exported
items (X); it yields the set (E) of exported variables with their types, together
with both (i) a new typing context (Γ ′), modified to contain elements of E, so
that Γ ′([]) contains the types of each x ∈ E, and (ii) a new program theory (P ′),
updated from class and instance declarations. Relation (�0) is used to check that
expressions of core-Haskell that occur in declarations are well-typed.

Γ0 ⇓ I : Γ P ;Γ X
⇑ D : (E, P , Γ)

P ;Γ0 module M (X) where I ;D : (E,P , Γ)
(MOD)

Fig. 5. Mini-Haskell module rule

Γ (M)(x) =

⎧⎨
⎩

Γ ([])(x) if M = self and, for some 1 ≤ k ≤ n,
x= ιk or (ιk=instance A τ , x is a member of class A)

Γ (M)(x) otherwise

Γ ⇓ import M (ιn) : Γ

Γ0 ⇓ import M (ι) : Γ Γ ⇓ I : Γ

Γ0 ⇓ import M (ι); I : Γ

Fig. 6. Import relation

Optional Type Classes for Haskell 135

P ;Γ X
⇑ D : (E, P , Γ)

Γ (M)(x) =
δk if x = xk, 1 ≤ k ≤ n, M ∈ {self, []}
Γ0(M)(x) otherwise

P ;Γ0
X
⇑ class C ⇒ A a where x : δ

n
; D : (E,P , Γ)

P e φ(C) gen(φ(C ⇒ π), θ, tv(Γ)) Q = P ∪ {θ}
Q;Γ 0 ei : δi δi = φ Γ ([])(xi) , for i = 1, . . . , n

Q;Γ X
⇑ D : (E, Q , Γ)

(X , E) =
(X − {ι}, E ∪ {x : δ

n}) if ι ∈ X, ι = instance φ(C ⇒ π)
(X, E) otherwise

P ;Γ X
⇑ instance φ(C ⇒ π) where x = en; D : (E , Q , Γ)

A is the class name generated for x

P ;Γ0 0 e : C ⇒ τ gen(C ⇒ A τ, θ, tv(Γ0)) Q = P ∪ {θ}
Q;Γ X

⇑ D : (E, Q , Γ) lcgr({τ} ∪ {Γ0(self)(x)}, τ)

Γ (M)(y) =
A τ ⇒ τ if y = x, (M = self or (M = [], x ∈ X))
Γ0(M)(y) otherwise

(X , E) =
(X − {ι}, E ∪ {x : C ⇒ τ}) if ι ∈ X, ι = instance C ⇒ A τ
(X, E), otherwise

P ;Γ0
X
⇑ instance x = e; D : (E , Q , Γ)

P ;Γ0 0 e : C ⇒ τ gen(C ⇒ τ, σ, tv(Γ0))

P ;Γ X
⇑ D : (E, P , Γ)

Γ (M)(y) =
σ if y = x, (M = self or (M = [], x ∈ X))
Γ0(M)(y) otherwise

(X , E) =
(X − {x}, E ∪ {x : C ⇒ τ}) if x ∈ X
(X, E) otherwise

P ;Γ0
X
⇑ x = e; D : (E , P , Γ)

Fig. 7. Mini-Haskell rules for declarations

There must exist a sequence of derivations for typing a sequence of modules
that composes a program that starts from an empty typing context, or from a
typing context that corresponds to predefined library modules. Recursive mod-
ules are not treated in this paper.

The first and second rules in Fig. 7 specify the bindigs generated by standard
Haskell type classes and instance declarations, respectively. For simplicity, we
omit special rules for validity of type class and instance declarations (see [8]),
that are not relevant here (for example, that the class hierachy is acyclic).

The third rule accounts for instance declarations of an overloaded symbol
x whose type is not explicitly specified in a type class. As stated previously,

136 R. Ribeiro et al.

the type τ ′ of x is the least common generalization of the set of types {τ} ∪
{Γ0(self)(x)}, where τ is the (simple) type of the expression in the current
instance declaration for x and Γ0(self)(x) is the (simple) type of x in the current
type environment (previously computed from other instance declarations for x
that are visible in the typing context Γ0). This is based on the compositionality
of lcg (Theorem 3.) The type of x in the typing context for the current module
is A τ ′ ⇒ τ ′, where A is the class name generated for the overloaded symbol x.
Also, the type of x in the current instance declaration is inserted in the export
environment E, if this instance is listed in the set of items to be exported (X).

7 Records with Overloaded Fields

In this section we describe how the possibility of overloading symbols without
the need of declaring type classes allows record fields to be overloaded, in an easy
way. The idea is simply to transform any access to an overloaded record field
into an automatically created instance of an undeclared type class, and similarly
for any use of a record update of an overloaded record field.

There are certainly design decisions to be made, but below we illustrate the
proposal by creating instance of get fieldname and update fieldname whenever
there exists, respectively, an access of and an update to an overloaded record
field, where fieldname is the name of the overloaded record field.

Consider a simple example of overloaded record fields:

data Person = Person { id :: Int, name :: String }
data Address = Address { id :: Int, address :: String }

The overloaded id fields of types Person and Address have the following
types:

id :: Person → Int
id :: Address → Int

In our approach, we can automatically create following instance declarations
without declared type classes, that are part of a record field name space that is
distinct from the variable name space:

get id :: Person → Int
instance get id (Person id) = id

get id :: Address → Int
instance get id (Address id) = id

If record field updating is used, updating functions are created, as illustrated
below. Consider for example that record field updating is used as follows:

Optional Type Classes for Haskell 137

update id :: Person → Int → Person
instance update id (Person id name) new id = Person new id name

update id :: Address → Int → Address
instance update id (Address id address) new id = Address new id address

Given any expression p of type Person, any use of (p {id = new id}) could
then be translated to (update id p new id). Similarly, given any expression a of
type Address, any use of a {id = new id} could then be translated to update id
a new id .

8 Related Work

Haskell type system has been extended with several advanced typing features
such as functional dependencies [10], type families [3] and GADTs [4], just to
name a few. To the best of our knowledge, there’s no previous work on optional
declaration of type classes. In this section, we summarize some recent Haskell
type system extensions.

Functional dependencies (FDs) were introduced by Mark Jones as a way to
specify type class parameter dependencies in order to avoid ambiguity and to
improve inferred types in the context of MPTCs. FDs where also used to support
some form of type level programming [9] and to define heterogeneous lists and
extensible records [11].

Type families [3] (TFs) where introduced as a “more functional” alternative
to FDs (which is relational in nature). However, there are some issues with type
family injectivity [5] that motivated so-called closed type families and type family
dependencies [6]. Closed type families define all possible instances of a type
family a priori and type family dependencies allows the specification of parameter
dependencies, in a similar way of FDs. All type family related extensions cater
to better type improvement.

Datatype promotion [5,20] lifts user defined algebraic datatypes to kinds
and data constructors to types. It allows the definition of some dependently
typed programs. Singleton types and promoted functions [7] have been used to
automate (through Template Haskell) some constructions commonly needed in
Haskell-style dependent types. Lindley and McBride [12] describe some depen-
dently typed programs in Haskell and how to use GHC’s constraint solver as a
theorem prover to discharge proof obligations in an implementation of a merge-
sort algorithm.

Type level literals is an extension that complements datatype promotion to
numeric and string types. The Haskell prime proposal for overloaded record
fields relies on this extension to overload field access and update functions. Our
approach, based on optional declaration of type classes, does not demand type
promotion features and does not need to create an instance for each record field
(overloaded or not).

138 R. Ribeiro et al.

9 Conclusion

This paper has presented an approach for allowing type classes to be optionally
declared by programmers, so that programmers can overload symbols without
declaring their types in type classes.

An overloaded symbol is defined by means of an instance declaration that is
a normal declaration with keyword instance. The type of an overloaded symbol
is automatically determined from the anti-unification of instance types defined
for the symbol in the relevant module.

The approach depends on a modularization of instance visibility, as well as
on a redefinition of Haskell’s ambiguity rule. The paper presents the simple mod-
ifications to Haskell’s module system that are necessary for allowing instances
to have a modular scope.

We have provided an illustration of the added flexibility by showing how
overloaded record fields can be allowed in the presence of a presented type system
that supports instance modularization and instance definitions of undeclared
type classes that have a single member.

References

1. Camarão, C., Ribeiro, R., Figueiredo, L.: Ambiguity and constrained polymor-
phism. Sci. Comput. Program. 124(1), 1–19 (2016)

2. Chang, C.C., Keisler, H.J.: Model Theory, 3rd edn. Dover Books on Mathematics,
New York (2012)

3. Chakravarty, M.M.T., Keller, G., Jones, S.P.: Associated type synonyms. In: Pro-
ceedings of the Tenth ACM SIGPLAN International Conference on Functional
Programming, ICFP 2005, pp. 241–253 (2005)

4. Chen, S., Erwig, M.: Principal type inference for GADTs. In: Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2016, pp. 416–428 (2016)

5. Eisenberg, R.A., Stolarek, J.: Promoting functions to type families in Haskell. In:
Proceedings of the 2014 ACM SIGPLAN Symposium on Haskell, Haskell 2014, pp.
95–106 (2014)

6. Eisenberg, R.A., Vytiniotis, D., Jones, S.P., Weirich, S.: Closed type families with
overlapping equations. In: Proceedings of the 41st ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2014, pp. 671–683 (2014)

7. Eisenberg, R.A., Weirich, S.: Dependently typed programming with singletons.
In: Proceedings of the 2012 ACM Haskell Symposium, Haskell 2012, pp. 117–130
(2012)

8. Glasgow Haskell Compiler. http://www.haskell.org/ghc/
9. Hallgren, T.: Fun with functional dependencies. In: Proceedings of the Joint CS/CE

Winter Meeting (2000)
10. Jones, M.P., Diatchki, I.S.: Language and program design for functional dependen-

cies. In: Proceedings of the First ACM SIGPLAN Symposium on Haskell, Haskell
2008, pp. 87–98 (2008)

11. Kiselyov, O., Lämmel, R., Schupke, K.: Strongly typed heterogeneous collections.
In: Nilsson, H. (ed.) Proceedings of the ACM SIGPLAN Workshop on Haskell,
Haskell 2004, pp. 96–107 (2004)

http://www.haskell.org/ghc/

Optional Type Classes for Haskell 139

12. Lindley, S., McBride, C.: Hasochism: the pleasure and pain of dependently typed
Haskell programming. In: Proceedings of the 2013 ACM SIGPLAN Symposium on
Haskell, Haskell 2013, pp. 81–92 (2013)

13. Silva, M., Camarão, C., Controlling the scope of instances in Haskell. In: Proceed-
ings of SBLP 2011, pp. 29–30 (2011)

14. Jones, M.: Qualified types: theory and practice. Ph.D. thesis, Distinguished Dis-
sertations in Computer Science. Cambridge Univ. Press (1994)

15. Snoyman, M.: Developing Web Applications with Haskell and Yesod. O’Reilly
Media Inc., California (2012)

16. Plotkin, G.D.: A note on inductive generalisation. Mach. Intell. 5(1), 153–163
(1970)

17. Plotkin, G.D.: A further note on inductive generalisation. Mach. Intell. 6, 101
(1971)

18. Ribeiro, R., Camarão, C., Figueiredo, L., Vasconcellos, C.: Optional Type Classes
for Haskell – On-line Repository (2016). https://github.com/rodrigogribeiro/mptc

19. Stuckey, P., Sulzmann, M.: A theory of overloading. ACM Trans. Program. Lang.
Syst. 27(6), 1216–1269 (2005)

20. Yorgey, B.A., Weirich, S., Cretin, J., Jones, S.P., Vytiniotis, D., Magalhães, J.P.:
Giving Haskell a promotion. In: Proceedings of the 8th ACM SIGPLAN Workshop
on Types in Language Design and Implementation, TLDI 2012, pp. 53–66 (2012)

https://github.com/rodrigogribeiro/mptc

An Algebraic Framework for Parallelizing
Recurrence in Functional Programming

Rodrigo C.O. Rocha1,2, Lúıs F.W. Góes1, and Fernando M.Q. Pereira2(B)

1 Institute of Exact Sciences and Informatics, PUC Minas, Belo Horizonte, Brazil
lfwgoes@pucminas.br

2 Department of Computer Science, UFMG, Belo Horizonte, Brazil
{rcor,fernando}@dcc.ufmg.br

Abstract. The main challenge faced by automatic parallelization tools
in functional languages is the fact that parallelism is often hidden under
the syntax of complex recursive functions. In this paper, we propose
an algebraic framework for parallelizing – automatically – two special
classes of recursive functions. We show that these classes are comprehen-
sive enough to include several well-known instances. We have used our
ideas to implement a source-to-source compiler in Python to parallelize
Haskell code. We have applied this prototype onto six different recursive
functions, achieving, on a 4-core machine, speedups of up to 2.7x.

Keywords: Recursive functions · Parallel computing · Functional pro-
gramming · Algebraic framework · Abstract algebra

1 Introduction

The advent of multi-core computers has greatly spread the use of parallel program-
ming among application developers. Yet, writing code that runs in parallel is still
a difficult and error-prone task. Thus, the automatic parallelization of code has
surfaced as an effective alternative to the development of high-performant pro-
grams [11,18,25]. In this sense, functional programming languages appear as a
promising alternative to the development of parallel code. They provide referen-
tial transparency, reducing shared data and eliminating side effects, which makes
automatic parallelization much easier. However, in spite of years of research, auto-
matic generation of parallelism, out of functional code, is not a solved prob-
lem [12,17]. Testimony of this last statement is the fact that functional code is
still manually parallelized, usually by means of parallel skeletons [4,6,17].

The main challenge faced by automatic parallelization tools in functional lan-
guages is the fact that parallelism is often hidden under the syntax of complex
recursive functions. There are several techniques to discover parallelism, such
as work targeting list homomorphisms [5,13,15,20], or the work of Fisher and
Ghuloum [8], who parallelize imperative loops that can be translated as com-
position of functions. Nevertheless, the programming languages community still
lacks approaches to infer parallelism on recursive functions automatically. The
goal of this paper is to contribute to solve this omission by extending the family
of recursive functions that can be parallelized automatically.
c© Springer International Publishing Switzerland 2016
F. Castor and Y.D. Liu (Eds.): SBLP 2016, LNCS 9889, pp. 140–155, 2016.
DOI: 10.1007/978-3-319-45279-1 10

An Algebraic Framework for Parallelizing Recurrence 141

To achieve this objective, we propose an algebraic framework for parallelizing
two special classes of recursive functions. These functions need to have two core
properties. First: the recursive function must contain only operations that can
be used to define monoids or semirings. Second: the propagation of arguments
between recursive calls has to be defined by a invertible function. The proposed
framework is based on the theory introduced by Fisher and Ghuloum [8]. Those
authors have designed and tested an approach to parallelize imperative loops
by transforming them in recurrence relations defined by the compositions of
associative functions. We go beyond the work of Fisher and Ghuloum in two
ways: (i) we work on recursive functions, instead of imperative loops; (ii) we
provide a more general definition of parallel function composition. The key idea
behind our findings is the fact that algebraic structures such as groups, monoids
and semirings let us decompose recursive functions into simpler components,
which are amenable to automatic parallelization.

To validate the ideas discussed in this paper, we have used them to implement
a source-to-source compiler, in Python, that performs automatic parallelization
of Haskell code. In Sect. 4 we show how to parallelize six different – and well-
known – recursive functions. Key to efficiency is the fact that we can transform
elements in the family of parallelizable functions into list homomorphisms. This
transformation, which we explain in Sect. 3, to the best of our knowledge, is
novel. Our experiments show that our technique is effective and useful. We have
achieved speedups of up to 2.7x in a 4-core Intel processor. These results are even
more meaningful if we consider that they have been obtained in a completely
automatic way.

2 Overview

We will use the well-known factorial function as an example to introduce our
ideas to the reader. This function can be defined as follows:

f(x):=

{
1 if x = 1
x · f(x − 1) otherwise

Factorial is a very simple function, and the reader familiar with the par-
allelization of reductions on commutative and associative operators will know
immediately that this function has a very efficient parallel implementation. Key
to perform this parallelization is the observation that factorial can be re-written
as a sequence of multiplications, e.g.:f(x) = x · (x − 1) · . . . · 2 · 1.

A key property of multiplication – associativity – lets us solve them in a
pairwise fashion. This possibility gives us the chance to run the above expres-
sion in O(ln x) time. The goal of this paper is to be able to apply this kind of
parallelization automatically onto recursive functions. In order to achieve this
objective, we shall be re-writing functions as a composition of simpler functions
which are associative. In the case of factorial, this composition looks like:

f(x) = (f ′
x−1 ◦ . . . ◦ f ′

2 ◦ f ′
1)(1)

142 R.C.O. Rocha et al.

How do we find a suitable implementation of f ′
i? We first provide this answer

for a family of recursive functions which have the following format:

f(p):=

{
g0(p) if p = p0

g1(p) ⊕ f(h(p)) ⊕ g2(p) otherwise
(1)

For any function f that can be written in the format above, we show that it is
possible to decompose f into a composition of functions. We first identify h, the
function used to propagate the arguments of f , which we call the hop function.
The hop function must be a well-defined monotonic function, which must have
an inverse. For the factorial example, we have the following hop function h:
h(x) = x − 1, with inverse h−1(x) = x + 1.

The hop function is fundamental for generating the next arguments of the
sequence of compositions. Because it has an inverse, we use it to know x−1, the
number of functions which will constitute the sequence of compositions. We find
out x − 1 after solving the following equation: p0 = hx−1(p). For the factorial
example, the depth is exactly the initial argument x. After identifying the hop
function and its inverse, we re-write f in a manner suitable for the composition
of functions which does not contain a recursive call, e.g.: f ′

i(s):=(i+1) ·s, where
s is the usually called accumulator parameter in funcional composition.

Now, we can write f such as f(x) = (f ′
x−1 ◦ f ′

x−2 ◦ · · · ◦ f ′
2 ◦ f ′

1)(1). This
transformation is useful, considering that functional composition is an asso-
ciative operation, which can often be parallelized if it is possible to symbol-
ically compute and simplify intermediate compositions [8]. For instance, for
i > 1 ∈ Z, (f ′

i ◦ f ′
i−1)(s) = (i + 1) · (i · s) can be reassociated as (f ′

i ◦ f ′
i−1)(s) =

((i + 1) · i) · s which is essentially equivalent to the original function regarding
computational complexity. Thus we can evaluate f(x) by computing a reduc-
tion over a list of functions, using the functional composition operator, i.e.,
f(x) = ◦/[f ′

x−1, f
′
x−2, . . . , f

′
1].

Section 3.2 generalizes the factorial example seen in this section. In Sect. 3.3
we extend our framework a bit further, showing that we can also parallelize
functions in the format below. In this case, we consider two operators ⊕ and
�, for which we only require that � be associative, and ⊕ be commutative, in
addition of being associative. Again, the hop function h must have an inverse
function which can be computed efficiently.

f(p):=

{
g0(p) if p = p0

g1(p) ⊕ (g3(p) � f(h(p)) � g4(p)) ⊕ g2(p) otherwise
(2)

3 Automatic Parallelization of Recursive Functions

In this section we formalize the developments earlier seen in Sect. 2. To this
end, we provide a few basic notions in Sect. 3.1. In Sect. 3.2, we show how to
parallelize functions on the format given by Eq. 1. In Sect. 3.3, we move on to
deal with functions defined by Eq. 2.

An Algebraic Framework for Parallelizing Recurrence 143

3.1 Technical Background

In the rest of this paper we shall use three notions borrowed from abstract alge-
bra: groups, monoids and semirings. If S is a set, then we define these algebraic
structures as follows:

– A group G = (S,+) is a nonempty set closed under an associative binary-
operation +, which is associative, invertible and has a zero element 0, the
identity regarding +. For each a ∈ S, its inverse −a also belongs to S. A
group need not be commutative. If a group is commutative, it is usually called
an abelian group [21].

– A monoid M = (S,+) is a nonempty set closed under an associative binary-
operation + with identity 0. A monoid need not be commutative and its
elements need not have inverses within the monoid.

– A semiring R = (S,+, ·) is a nonempty set closed under two associative binary-
operations + and ·, called addition and multiplication, respectively [9,10]. A
semiring satisfies the following conditions:
• (S,+) is a commutative monoid with identity element 0;
• (S, ·) is a monoid with identity element 1;
• Multiplication distributes over addition from either side;
• Multiplication by 0 annihilates R, i.e. a · 0 = 0 · a = 0, for all a ∈ S.

Parallelizing Functional Composition. Functional composition is an asso-
ciative binary operator over functions. Previous work [8,19] has shown that, given
a family of indexed functions F closed under functional composition ◦, a function
ψ : Z × Z → F is a composition evaluator of F iff iψj = fi ◦ fj , for fi, fj ∈ F .
If each function in F and the composition evaluator ψ are constant-time com-
putations, then a sequence of n compositions can be efficiently computed in
O(n/p + ln p), considering p processing units. A functional composition over F
can be evaluated by using the composition evaluator ψ. Thus, given a sequence
of compositions fn ◦ fn−1 ◦ · · · ◦ f1, this sequence can be efficiently computed
using a reduction operator ◦/[fn, fn−1, . . . , f1], since the following equivalence
holds: ◦/[fn, fn−1, . . . , f1] = ψ/[n, n − 1, . . . , 1].

3.2 Monoids

In this section, we generalize the solution presented in Sect. 2. We provide the
formal description of the mechanism used for parallelizing the factorial recursive
function, regarding general algebraic structures of groups and monoids. Let SG

and SM be sets and M = (SM ,+) a monoid. Let f : SG → SM be a recursive
function defined as:

f(x):=

{
g0(x0) if x = x0

g1(x) + f(h(x)) + g2(x) otherwise

We assume that each gi : SG → SM are pure and non-recursive functions, i.e.
if a ∈ SG then gi(a) ∈ SM , for i ∈ [0, 2]. Furthermore, we assume that the hop
function h : SG → SG is an invertible and monotonic function over SG.

144 R.C.O. Rocha et al.

Proposition 1. The recursive function f : SG → SM can be written as a func-
tional composition.

Proof. We let f ′
i : SM → SM be the following non-recursive function:

f ′
i(s) = g1((h−1)i(x0)) + s + g2((h−1)i(x0))

In the above definition, we let h−1 : SG → SG be the inverse function of the
hop h. Function (h−1)i(x0) is the i-th functional power of h−1 : SG → SG.
To transform the recursive function into a composition, it is important to infer
the depth of the recursive stack. Let k > 0 ∈ Z such that hk(x) = x0. Thus
f(x) = (f ′

k ◦ f ′
k−1 ◦ · · · ◦ f ′

2 ◦ f ′
1)(g0(x0)) ��

From Fisher and Ghuloum [8], we know that the composition of f ′
i can be com-

puted in parallel since, for i > 1 ∈ Z, we have that:

(f ′
i ◦ f ′

i−1)(s) ⇔ g1((h−1)i(x0)) + f ′
i−1(s) + g2((h−1)i(x0)) ⇔

g1((h−1)i(x0)) + [g1((h−1)i−1(x0)) + s + g2((h−1)i−1(x0))] + g2((h−1)i(x0)) ⇔
[g1((h−1)i(x0)) + g1((h−1)i−1(x0))] + s + [g2((h−1)i−1(x0)) + g2((h−1)i(x0))]

Defining the Hop Function. Let G = (SG,+) be a group with identity 0. If
the hop function h is an invertible and monotonic function, we can calculate k.
Let h be generally defined as h(x) = e1 + x + e2, where e1, e2 ∈ SG. Then

hk(x) = x0 ⇔
e1 + · · · + e1 + e1 + x + e2 + e2 + · · · + e2 = x0 ⇔

ke1 + x + ke2 = x0 ⇔
x + ke2 = (−ke1) + x0 ⇔

x + ke2 − x0 = (−ke1) ⇔
x + (ke2 − x0 + ke1) = 0

that is, ∃k ∈ Z such that k > 0 and (ke2 − x0 + ke1) ∈ SG is the inverse of
x ∈ SG. Given the equality above, k can often be dynamically computed with a
small overhead. If G is commutative, then (ke2 − x0 + ke1) = k(e1 + e2) − x0.
From these notions, we define function h−1, the inverse of the hopping function,
as h−1(x) = (−e1) + x + (−e2). This equality is true, since:

(h−1 ◦ h)(x) = (−e1) + h(x) + (−e2) ⇔
(h−1 ◦ h)(x) = (−e1) + [e1 + x + e2] + (−e2) ⇔
(h−1 ◦ h)(x) = 0 + x + 0 = x

Computing the Function Composition Using List Homomorphism.
Thus far, we have seen how to re-write a function (with certain properties) as a
composition of non-recursive functions. We need now a way to implement this

An Algebraic Framework for Parallelizing Recurrence 145

composition efficiently. To achieve efficiency, we use list homomorphisms. We say
that a function y is a list homomorphism if we have that y(w++ z) = y(w)++ y(z),
where ++ denotes list concatenation. In this section we derive a simple imple-
mentation for such a recursive function f : SG → SM by means of list homo-
morphism.

Proposition 2. Let h′(i) = (h−1)i(x0). Then we can write the functional com-
position f(x) = (f ′

k ◦ f ′
k−1 ◦ · · · ◦ f ′

2 ◦ f ′
1)(g0(x0)) as:

f(x) = (+/(g1 ◦ h′) � [k, k − 1, . . . , 1]) + g0(x0) + (+/(g2 ◦ h′) � [1, 2, . . . , k]) .

Proof. The functional composition expands as follows:

f(x) = g′
1(x0) + g0(x0) + g′

2(x0),where:

g′
1(x0) = g1((h−1)k(x0)) + g1((h−1)k−1(x0)) + · · · + g1((h−1)(x0))

g′
2(x0) = g2((h−1)(x0)) + g2((h−1)2(x0)) + · · · + g2((h−1)k(x0))

Since h′(i) = (h−1)i(x0), then we can write:

g′
1(x0) = g1(h′(k)) + g1(h′(k − 1)) + · · · + g1(h′(1))

g′
2(x0) = g2(h′(1)) + g2(h′(2)) + · · · + g2(h′(k))

Therefore, it is possible to compute g′
1 and g′

2 using a list homomorphism, i.e.:

g′
1(x0) = +/g1 � (h′ � [k, k − 1, . . . , 1])

g′
2(x0) = +/g2 � (h′ � [1, 2, . . . , k])

where +/� denotes the folding of the operation + onto the list �, and k�� denotes
the mapping of function k onto every element of �. The above expression can
then be simplified as:

g′
1(x0) = +/(g1 ◦ h′) � [k, k − 1, . . . , 1]

g′
2(x0) = +/(g2 ◦ h′) � [1, 2, . . . , k]

��

3.3 Semirings

We now describe a second family of recursive functions that we can parallelize
automatically by rethinking them under the light of algebraic structures. Let SG

and SR be sets and R = (SR,+, ·) a semiring. Let f : SG → SR be defined as:

f(x):=

{
g0(x0) if x = x0

g1(x) + g3(x)f(h(x))g4(x) + g2(x) otherwise

where each gi : SG → SR is a non-recursive function. Function h : SG → SG is
the hop. Let f ′

i : SR → SR be the following non-recursive function:

f ′
i(s) = g1((h−1)i(x0)) + g3((h−1)i(x0))sg4((h−1)i(x0)) + g2((h−1)i(x0))

146 R.C.O. Rocha et al.

where (h−1)i(x0) is the i-th functional power of h−1, the inverse function of the
hop function h (see Sect. 3.2).

In order to transform the recursive function into a composition, again we
must infer the depth of the recursive stack. Let k > 0 ∈ Z such that hk(x) = x0

(see Sect. 3.2). Thus:

f(x) = (f ′
k ◦ f ′

k−1 ◦ · · · ◦ f ′
2 ◦ f ′

1)(g0(x0))

Computing the Function Composition Using List Homomorphism. In
this section we derive a simple implementation of a recursive function f : SG →
SR by means of list homomorphism. If h′(i) = (h−1)i(x0), then we can write:

f(x) = φ1(k) + φ3(k)g0(x0)φ4(k) + φ2(k)

where k > 0 ∈ Z such that hk(x) = x0 (see Sect. 3.2). We have that:

β1(i) =
(·/(g3 ◦ h′) � [k, k − 1, . . . , i + 1]

)
g1(h

′(i))
(·/(g4 ◦ h′) � [i + 1, i + 2, . . . , k]

)

φ1(k) = g1(h
′(k)) + (+/β1 � [k − 1, k − 2, . . . , 1])

φ3(k) =
(·/(g3 ◦ h′) � [k, k − 1, . . . , 1]

)

φ4(k) =
(·/(g4 ◦ h′) � [1, 2, . . . , k]

)

β2(i) =
(·/(g3 ◦ h′) � [k, k − 1, . . . , i + 1]

)
g2(h

′(i))
(·/(g4 ◦ h′) � [i + 1, i + 2, . . . , k]

)

φ2(k) = (+/β2 � [1, 2, . . . , k − 1]) + g2(h
′(k))

There are redundant computations in the previous definition. We can opti-
mize the computation of β1 and β2 by pre-computing these redundant values
using a scan operation. Considering left- and right-associative scan operations
(scanl and scanr), we define lists v and w as follows:

[v1, v2, . . . , vk−1] = scanr · /(g3 ◦ h′) � [k, k − 1, . . . , 2]
[w1, w2, . . . , wk−1] = scanl · /(g4 ◦ h′) � [2, 3, . . . , k]

That is, vi = ·/(g3 ◦ h′) � [k, k − 1, . . . , k − i + 1] and wi = ·/(g4 ◦ h′) � [k −
i + 1, . . . , k − 1, k]. Once we have pre-computed vi and wi, we can define the
following simplified construction:

β1(i) = vi · g1(h′(i)) · wk−i

φ1(k) = g1(h′(k)) + (+/β1 � [k − 1, k − 2, . . . , 1])
φ3(k) = v1 · (g3 ◦ h′)(1)
φ4(k) = (g4 ◦ h′)(1) · wk−1

β2(i) = vi · g2(h′(i)) · wk−i

φ2(k) = (+/β2 � [1, 2, . . . , k − 1]) + g2(h′(k))

3.4 Examples

In this section we discuss different functions that we can parallelize automati-
cally. We shall provide examples that we can parallelize using the monoid-based

An Algebraic Framework for Parallelizing Recurrence 147

approach (Catalan Numbers and List Concatenation), and with the semiring-
based approach (Financial Compound Interest, Horner’s Method and Comb Fil-
ters). The actual performance of each of these example is analyzed in Sect. 4.

Catalan Numbers. Catalan numbers form a sequence of positive integers that
appear in the solution of several counting problems in combinatorics, including
some generating functions. Catalan numbers are defined as follows:

Cn =
2(2n − 1)

n + 1
Cn−1 where C1 = 1

which can be written as f : Z → Z
∗

f(x):=

{
1 if x = 1
2(2x−1)

x+1 · f(x − 1) otherwise

Similar to the factorial function seen in Sect. 2, the above function can be
written as a composition of non-recursive functions: Let h : Z → Z be h(x) =
x − 1, g1 : Z → Z

∗ be g1(x) = 2(2x−1)
x+1 and g2 : Z → Z

∗ be g2(x) = 1.
Then, we can define a function f ′

i : Z∗ → Z
∗, such as

f ′
i(s) = g1((h−1)i(1)) · s · g2((h−1)i(1)) ⇔

f ′
i(s) = g1(i + 1) · s · 1 ⇔

f ′
i(s) =

2(2i + 1)
i + 2

· s

since h−1(x) = x+1. We can easily calculate that hk(x) = 1 for k = x− 1, since
x + (0k − 1 + k(−1)) = 0 ⇔ x − k − 1 = 0.

Therefore, f(x) = (f ′
x−1 ◦ f ′

x−2 ◦ · · · ◦ f ′
2 ◦ f ′

1)(1). Since, for every i > 1 ∈ Z,
the composition (f ′

i ◦ f ′
i−1)(s) can be symbolicaly computed and simplified, i.e.

(f ′
i ◦ f ′

i−1)(s) =
2(2i + 1)

i + 2
· f ′

i−1(s) ⇔

(f ′
i ◦ f ′

i−1)(s) =
2(2i + 1)

i + 2
·
(

2(2i − 1)
i + 1

· s

)
⇔

(f ′
i ◦ f ′

i−1)(s) =
(

2(2i + 1)
i + 2

· 2(2i − 1)
i + 1

)
· s

Function f(x) = (f ′
x◦f ′

x−1◦· · ·◦f ′
1)(1) can be computed in parallel as a reduction.

List Concatenation. Let LZ be the set of lists over the set of integers Z. A
list is an ordered sequence denoted by A = [a1, a2, . . . , an], where the size of
A is #A = n. An empty list is denoted by [] and #[] = 0. Concatenation is an
associative binary-operation over a set of lists. Given two lists A = [a1, a2, . . . , an]
and B = [b1, b2, . . . , bm], the concatenation of the lists A and B is denoted by
A ++ B = [a1, . . . , an, b1, . . . , bm]. The identity element regarding concatenation

148 R.C.O. Rocha et al.

is the empty list. Thus(LZ,++) is a non-commutative monoid. Let f : Z → LZ

be the following recursive function:

f(x):=

{
[] if x = 0
[x] ++ f(x − 1) ++ [x] otherwise

Let h : Z → Z be h(x) = x − 1, g1 : Z → LZ be g1(x) = [x] and g2 : Z → LZ

be g2(x) = [x]. Then, we can define a simplified function f ′
i : LZ → LZ, such as:

f ′
i(s) = g1((h−1)i(0)) ++ s ++ g2((h−1)i(0)) ⇔

f ′
i(s) = g1(i) ++ s ++ g2(i) ⇔

f ′
i(s) = [i] ++ s ++ [i]

since h−1(x) = x + 1. We have that hk(x) = 0 for k = x, since x + (0k − 0 +
k(−1)) = 0 ⇔ x − k = 0. Therefore, f(x) = (f ′

x ◦ f ′
x−1 ◦ · · · ◦ f ′

2 ◦ f ′
1)([]). Since,

for every i > 1 ∈ Z, the composition (f ′
i ◦ f ′

i−1)(s) can be symbolicaly computed
and simplified, i.e.:

(f ′
i ◦ f ′

i−1)(s) = [i] ++ f ′
i−1(s) ++ [i] ⇔

(f ′
i ◦ f ′

i−1)(s) = [i] ++ ([i − 1] ++ s ++ [i − 1]) ++ [i] ⇔
(f ′

i ◦ f ′
i−1)(s) = ([i] ++ [i − 1]) ++ s ++ ([i − 1] ++ [i]) ⇔

(f ′
i ◦ f ′

i−1)(s) = [i, i − 1] ++ s ++ [i − 1, i]

Thus f(x) = (f ′
x ◦ f ′

x−1 ◦ · · · ◦ f ′
1)([]) can be computed in parallel by a reduction.

Financial Compound Interest. We can define financial compound interest with
periodic deposits recursively. Let f : Z → R be the following recursive function:

f(x):=

{
y0 if x = 0
(1 + r) · f(x − 1) + yx otherwise

where y0 is the initial deposit, r is the compounded rate, and yx is the deposit
on the x-th period. Let h : Z → Z is h(x) = x − 1, g1 : Z → R is g1(x) = 0,
g3 : Z → R is g3(x) = (1 + r), g4 : Z → R is g4(x) = 1, g2 : Z → R is g2(x) = yx.
From these notions, we define a simplified function f ′

i : R → R as follows:

f ′
i(s) = g1((h−1)i(0)) + g3((h−1)i(0))sg4((h−1)i(0)) + g2((h−1)i(0)) ⇔

f ′
i(s) = g1(i) + g3(i)sg4(i) + g2(i) ⇔

f ′
i(s) = (1 + r)s + yi ⇔

since h−1(x) = x + 1. We have that hk(x) = 0 for k = x, since x + (0k − 0 +
k(−1)) = 0 ⇔ x − k = 0. Hence, f(x) = (f ′

x ◦ f ′
x−1 ◦ · · · ◦ f ′

2 ◦ f ′
1)(y0). Since,

for every i > 1 ∈ Z, the composition (f ′
i ◦ f ′

i−1)(s) can be symbolicaly computed
and simplified, i.e.:

An Algebraic Framework for Parallelizing Recurrence 149

(f ′
i ◦ f ′

i−1)(s) = (1 + r)f ′
i−1(s) + yi ⇔

(f ′
i ◦ f ′

i−1)(s) = (1 + r)((1 + r)s + yi−1) + yi ⇔
(f ′

i ◦ f ′
i−1)(s) = (1 + r)(1 + r)s + (1 + r)yi−1 + yi ⇔

(f ′
i ◦ f ′

i−1)(s) = (1 + r)2s + [(1 + r)yi−1 + yi]

Thus f(x) = (f ′
x ◦ f ′

x−1 ◦ · · · ◦ f ′
2 ◦ f ′

1)(y0) can be computed in parallel.

Horner’s Method. Horner’s method is useful to solve polynomials defined recur-
sively. Its implementation can be parallelized as done in the previous example
of financial compound interest. Let ci be the coefficients, for 0 ≤ i ≤ n. Thus a
polynomial of degree n can be evaluated, for a given value of x, by the following
recursive formula, as described by the Horner’s method:

f(n):=

{
c0 if n = 0
f(n − 1) · x + cn otherwise

Comb Filter in Signal Processing. Comb filters have several applications in signal
processing [23]. The following equation represents the feedback form used by
comb filters: yt = αyt−T +(1−α)xt, where xt is the input signal at a given time
t and α controls the intensity that the delayed signal is fed back into the output
yt given a delay time T . Let f : Z → R be the following recursive function:

f(t):=

{
y0 if t = 0
αf(t − T) + (1 − α)xt otherwise

3.5 Implementation

We have used the ideas discussed in this paper to implement a prototype of
our automatic parallelizer that performs source-to-source transformations. This
prototype is written in Python, and it performs symbolic computations using
Python’s sympy package. Symbolic computing allows us to find the inverse of
the hop function and also to infer the depth of the recursive stack (as discussed
in Sects. 3.2 and 3.3). Below we show the source-to-source transformation that
we produce for the list concatenation example:

Sequential version:

f :: Integer -> [Integer]

f 0 = []

f n = [n] ++ f(n-1) ++ [n]

Parallel version:

f_g_1 :: Integer -> [Integer]

f_g_1 _HOP_i = [(_HOP_i)]

f_g_2 :: Integer -> [Integer]

f_g_2 _HOP_i = [(_HOP_i)]

f :: Integer -> [Integer]

f n = (parFoldr (++) (map f_g_1 (reverse [1..(n)]))) ++ [] ++

(parFoldr (++) (map f_g_2 [1..(n)]))

150 R.C.O. Rocha et al.

In general, for the monoid-based case, we receive inputs in the format below:

f :: Integer -> IMGSET

f e_0 = y_0

f n = g_1(n) * f(n-e_1) * g_2(n)

The prototype’s output consists of three new functions: f g 1, f g 2 and f, which
have the following general format:

f_g_1 :: Integer -> IMGSET

f_g_1 _HOP_i = g_1((_HOP_i*e_1 + e_0))

f_g_2 :: Integer -> IMGSET

f_g_2 _HOP_i = g_2((_HOP_i*e_1 + e_0))

f :: Integer -> IMGSET

f n = (parFoldr (*) (map f_g_1 (reverse [1..((-e_0 + n)/e_1)]))) * y_0 *

(parFoldr (*) (map f_g_2 [1..((-e_0 + n)/e_1)]))

4 Evaluation

To validate the ideas discussed in this paper, we have implemented our source-
to-source compiler that generates parallel Haskell, using the parallel library pro-
vided by the Strategies package, available in the Glasgow Haskell Compiler
(GHC) [1,16]. The experiments were performed in four physical cores of an
Ivy Bridge-based Intel processor technology, with 2 GHz of clock and 15 GB of
RAM. In this section, we show results for six benchmarks – three illustrating
monoid-based parallelization (factorial, catalan and concatenation), and three
illustrating semiring-based parallelization (compound interest, Horner’s method
and Comb Filter). For the experiments with all six applications we evaluated
the speedup varying the number of threads from 1 to 4, while fixing the input
argument of each function in 50,000. We consider a 95 % confidence interval for
a total of five executions.

Monoids. Figure 1 presents the results for the parallelization of recursive func-
tions based on monoids. Vertical bars show confidence interval. For the par-
allelization of the three monoid-based applications we implemented the con-
struction using the list homomorphism presented in Sect. 3.2. Parallelization
was achieved by means of a right-associative fold operator, which is part of
the Parallel Haskell library. We achieved a maximum speedup of 1.78× in the
implementation of Catalan Numbers.

Semirings. Figure 2 shows the results for the parallelization of recursive func-
tions based on semirings. Our largest speedup was 2.71 in the Horner’s Method
example. For the other two examples, we got more modest speedups. For the
parallelization of the three semiring-based applications we implemented the con-
struction using the list homomorphism discussed in Sect. 3.3. We have used the
same parallel implementation of the right-associative fold operator which we
applied on the monoid-based examples.

An Algebraic Framework for Parallelizing Recurrence 151

Factorial.

f(x) :=

{
1 if x = 1

x · f(x − 1) otherwise

Catalan.

f(x) :=

{
1 if x = 1
2(2x−1)

x+1
· f(x − 1) otherwise

List concatenation.

f(x) :=

{
[] if x = 0

[x] ++ f(x − 1) ++ [x] otherwise

Fig. 1. Speedup analysis of monoid-based examples.

Discussion. We have been able to observe actual speedups on the six examples
that we have played with. These speedups were usually sublinear, e.g., we could
not observe a four-fold speedup in any of the cases. We believe that this sublin-
earity is due to the overhead imposed by the reduction operator required by the
proposed parallel construction. Nevertheless, we would like to emphasize that
all these results have been obtained by means of automatic transformations. In
other words, the use of our techniques does not require any intervention from
the programmer who has implemented the original version of each function that
we parallelize.

152 R.C.O. Rocha et al.

Financial compound interest.

f(x) :=

{
y0 if x = 0

(1 + r) · f(x − 1) + yx otherwise

Horner’s method.

f(n) :=

{
c0 if n = 0

f(n − 1) · x + cn otherwise

Comb filter.

f(t) :=

{
y0 if t = 0

f(t − T) + (1 − α)xt otherwise

Fig. 2. Speedup analysis of semiring-based examples.

5 Related Work

There are several automatic parallelization techniques that, similarly to ours,
seek common patterns in code. Strategies based on matrix-multiplication are
a well-known example. Kogge and Stone [14] have shown how to parallelize a
recurrence equation by rewriting it in a form of matrix multiplication, also called
state-vector update form. An expression e in a loop is a recurring expression if,
and only if, e is computed from some loop-carried value. Sato and Iwasaki [22]
have described a framework based on matrix multiplication for automatically

An Algebraic Framework for Parallelizing Recurrence 153

parallelizing affine loops that consist of reduce or scan operations. They have
also provided algorithms for recognizing the normal form and max-operators
automatically. They have been able to report considerable speedups and high
scalability by applying their framework onto simple benchmarks. Also along this
line, Zou and Rajopadhye [26] have proposed a way to parallelize scan operations
using the matrix multiplication framework with the polyhedral model [2,3,24].
They can handle arbitrary nested affine loops; the polyhedron model itself has
already been used to parallelize different types of loops in imperative program-
ming languages [7]. Contrary to our work, these previous approaches search for
a way to deconstruct a loop as multiplication of matrices, we search for a way
to deconstruct a function as a composition of monoid/semiring operations. The
programs that can be parallelized by these two approaches are different.

Fisher and Ghuloum [8] provide a generalized formalization for automatic
parallelization of loops by extracting function composition as the main associa-
tive operator. If a function is closed under composition, its compositions can
be computed efficiently. They describe loops that compute reduction or scan as
the composition of its modeling function. For loops that fit the allowed format,
they can be implemented in a manner that computes the composition of the
modelling function in parallel. Our work improves on theirs, because we extend
their approach to recursive functions. In fact, this is our main contribution: a
general way to extract parallelism buried under the syntax of potentially convo-
luted recursive functions. In addition, we also provide a more general definition
of parallel code by means of algebraic structures such as monoids and semirings.

There exists vast literature about list homomorphisms [5,13,15,20]. List
homomorphism is a special class of natural recursive functions on lists, which
has algebraic properties suitable for parallelism. We rely on list homomorphisms
to build efficient parallel computations of recursive functions. However, our app-
roach does not target exclusively functions that work on lists. As many of our
examples illustrate, we are able to generate parallel code for functions involving
just numbers, or even for more complex data-structures that can be processed
by monoid-based operators.

6 Conclusion

This paper has presented a theoretical approach to parallelize recursive func-
tions. This contribution is important because previous work has reported diffi-
culties to infer parallel behavior out of recursive function. In this case, parallelism
is usually buried under heavy and convoluted syntax. We have delineated two
classes of recursive functions which we can parallelize automatically. These func-
tions have the following property: they can be re-written as the combination of
themselves (through a recursive call) with non-recursive functions by means of
monoid or semiring operators. There are several examples of functions that fit
this framework, including typical functional implementations of algorithms to
compute factorials, sum up elements of lists, concatenate lists, etc.

154 R.C.O. Rocha et al.

As future work, we intend to broaden the classes of recursive functions that
our algebraic framework can automatically parallelize. We also intend to perform
optimizations on the parallel code generated by our source-to-source compiler.

References

1. Berthold, J., Marlow, S., Hammond, K., Al Zain, A.: Comparing and optimising
parallel Haskell implementations for multicore machines. In: ADPNA. IEEE (2009)

2. Bondhugula, U., Baskaran, M., Krishnamoorthy, S., Ramanujam, J., Rountev, A.,
Sadayappan, P.: Automatic transformations for communication-minimized paral-
lelization and locality optimization in the polyhedral model. In: Hendren, L. (ed.)
CC 2008. LNCS, vol. 4959, pp. 132–146. Springer, Heidelberg (2008)

3. Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: A practical auto-
matic polyhedral parallelizer and locality optimizer. In: PLDI. ACM (2008)

4. Brown, C., Danelutto, M., Hammond, K., Kilpatrick, P., Elliott, A.: Cost-directed
refactoring for parallel erlang programs. Int. J. Parallel Programm. 42(4), 564–582
(2013)

5. Cole, M.: Parallel programming with list homomorphisms. Parallel Process. Lett.
5(02), 191–203 (1995)

6. Collins, A., Grewe, D., Grover, V., Lee, S., Susnea, A.: NOVA: a functional lan-
guage for data parallelism. In: ARRAY. ACM (2014)

7. Feautrier, P.: Automatic parallelization in the polytope model. In: Perrin, G.-R.,
Darte, A. (eds.) The Data Parallel Programming Model. LNCS, vol. 1132, pp.
79–103. Springer, Heidelberg (1996)

8. Fisher, A.L., Ghuloum, A.M.: Parallelizing complex scans and reductions. In:
PLDI. ACM (1994)

9. Golan, J.S.: Power Algebras over Semirings: With Applications in Mathematics and
Computer Science. Mathematics and Its Applications, vol. 488, 1st edn. Springer,
Basel (1999)

10. Golan, J.S.: Semirings and their Applications, 1st edn. Springer, Heidelberg (1999)
11. Govindarajan, R., Anantpur, J.: Runtime dependence computation and execution

of loops on heterogeneous systems. In: CGO. IEEE/ACM (2013)
12. Hammond, K., Berthold, J., Loogen, R.: Automatic skeletons in template haskell.

Parallel Process. Lett. 13(03), 413–424 (2003)
13. Hu, Z., Iwasaki, H., Takechi, M.: Formal derivation of efficient parallel programs by

construction of list homomorphisms. Trans. Program. Lang. Syst. 19(3), 444–461
(1997)

14. Kogge, P.M., Stone, H.S.: A parallel algorithm for the efficient solution of a general
class of recurrence equations. Trans. Comput. 22(8), 786–793 (1973)

15. Liu, Y., Hu, Z., Matsuzaki, K.: Towards systematic parallel programming over
MapReduce. In: Namyst, R., Roman, J., Jeannot, E. (eds.) Euro-Par 2011, Part
II. LNCS, vol. 6853, pp. 39–50. Springer, Heidelberg (2011)

16. Marlow, S., Maier, P., Loidl, H.W., Aswad, M.K., Trinder, P.W.: Seq no more:
Better strategies for parallel Haskell. In: Haskell Symposium. ACM Press (2010)

17. Marlow, S., Peyton Jones, S., Singh, S.: Runtime support for multicore haskell. In:
ICFP, pp. 65–78. ACM (2009)

18. Misailovic, S., Kim, D., Rinard, M.: Parallelizing sequential programs with statis-
tical accuracy tests. Trans. Embed. Comput. Syst. 12(2), 88 (2013)

An Algebraic Framework for Parallelizing Recurrence 155

19. Morihata, A., Matsuzaki, K.: Automatic parallelization of recursive functions using
quantifier elimination. In: Blume, M., Kobayashi, N., Vidal, G. (eds.) FLOPS 2010.
LNCS, vol. 6009, pp. 321–336. Springer, Heidelberg (2010)

20. Morita, K., Morihata, A., Matsuzaki, K., Hu, Z., Takeichi, M.: Automatic inversion
generates divide-and-conquer parallel programs. In: PLDI. ACM (2007)

21. Rotman, J.J.: Advanced Modern Algebra, 2nd edn. Prentice Hall, Upper Saddle
River (2003)

22. Sato, S., Iwasaki, H.: Automatic parallelization via matrix multiplication. In: PLDI.
ACM (2011)

23. Schlecht, S.J., Habets, E.A.P.: Connections between parallel and serial combina-
tions of comb filters and feedback delay networks. In: IWAENC (2012)

24. Trifunovic, K., Nuzman, D., Cohen, A., Zaks, A., Rosen, I.: Polyhedral-model
guided loop-nest auto-vectorization. In: PACT. IEEE (2009)

25. Wang, Z., Tournavitis, G., Franke, B., O’Boyle, M.F.P.: Integrating profile-driven
parallelism detection and machine-learning-based mapping. Trans. Archit. Code
Optim. 11(1), 2 (2014)

26. Zou, Y., Rajopadhye, S.: Scan detection and parallelization in “inherently sequen-
tial” nested loop programs. In: CGO. ACM (2012)

A Platform of Scientific Workflows for
Orchestration of Parallel Components in a Cloud
of High Performance Computing Applications

Jefferson de Carvalho Silva(B) and Francisco Heron de Carvalho Junior

Mestrado e Doutorado em Ciência da Computação, Universidade Federal do Ceará,
Fortaleza, Brazil

{jeffersoncarvalho,heron}@lia.ufc.br

Abstract. HPC Shelf is a proposal of a cloud computing platform
for development, deployment and execution of component-based HPC
applications with large-scale parallel processing requirements. Through
components, it addresses the challenge of dealing with heterogeneous
resources in high-end parallel computing systems, including both soft-
ware and hardware. This paper introduces SAFe, a framework for deriv-
ing HPC Shelf applications, and SAFeSWL, a scientific workflow language
for describing the architectural and orchestration parts of parallel com-
puting systems deployed by HPC Shelf applications through SAFe.

1 Introduction

In discussions about emerging High Performance Computing (HPC) applica-
tions, “large-scale” and “heterogeneous” became recurrent keywords associated
to data processing, software architecture and parallel computer architectures.

Large-scale data processing applications demand for a huge amount of
processing power that is beyond the capacity even of high-end parallel com-
puting platforms. A number of these applications recently emerged, with the
exponential growth of data produced in sciences, social networks and sensors
[5], making the so-called Big Data applications important driving forces of HPC
technologies.

In turn, the scale and complexity of software in HPC have increased signif-
icantly since the 1990s, with advent of web technologies and the need of inte-
grating software contributions from different sources, including legacy software
written some decades ago, for solving more challenging problems [22].

Finally, the complexity of parallel computer architectures has also increased,
with the advent of multi-core processors [16], deep memory hierarchies under the
explicit programmer control, and computational accelerators, such as FPGAs
[12], GPUs [14] and MICs [13], forcing HPC application development to be con-
cerned with requirements of heterogeneous computing [21].

The increase in complexity both in software and hardware have motivated
a number of research initiatives aimed at proposing and validating new tech-
niques for large-scale software development for attending the requirements of
c© Springer International Publishing Switzerland 2016
F. Castor and Y.D. Liu (Eds.): SBLP 2016, LNCS 9889, pp. 156–170, 2016.
DOI: 10.1007/978-3-319-45279-1 11

A Platform of Scientific Workflows for Orchestration of Parallel Components 157

HPC applications [22,25,27]. Among these initiatives, we are particularly inter-
ested in component-based HPC platforms [3,4,6,9]. We are also interested in
Scientific Workflow Management Systems (SWfMS) [1,11,18,23,29], which have
introduced techniques and component-based abstractions for specification and
execution of complex data processing procedures by scientists and engineers.

Cloud computing [2,20] has also been consolidated as a suitable abstraction
for on-demand provisioning of HPC Services [7,24,28,30]. Almost all the HPC
cloud services fits the SaaS (software-as-a-service) and IaaS (infrastructure-as-
a-service) models. The former ones implement problem-solving environments
targeting domain-specialist users. In turn, the later ones provide the ability of
instantiating parallel computing platforms (virtual computer nodes, network and
programming libraries) according to the requirements of users’ programs.

HPC Shelf is a proposal of platform for cloud-based HPC services, providing
a substratum for development, deployment and execution of HPC applications,
where users may describe problems that will be solved by automatically gener-
ated parallel computing systems built of components. It may be viewed as a SaaS
cloud from the perspective of application users, a PaaS (platform-as-a-service)
cloud from the perspective of application providers and component developers,
and a IaaS cloud from the perspective of infrastructure maintainers.

This paper introduces SAFe (Shelf Application Framework), the application
framework of HPC Shelf. It is a CBHPC platform for large-scale and hetero-
geneous parallel computing that uses the workflow language SAFeSWL (SAFe
Scientific Workflow Language) for orchestrating parallel components engaged
in long running computations and deployed across a set of parallel computing
platforms. These components and parallel computing platforms form parallel
computing systems. SAFeSWL is integrated with the contextual contract sys-
tem of HPC Shelf for the selection of component implementations according to
application requirements and characteristics of the parallel computing platforms.

For accomplishing the objectives of this paper, Sect. 2 gives an overview about
HPC Shelf, whereas SAFe and SAFeSWL are detailed in Sect. 3, by using work-
flows from the MapReduce and Montage applications as examples. Then, Sect. 4
presents the contributions of SAFe and SAFeSWL in the context of SWfMS,
where they are more prominent. Finally, Sect. 5 concludes this paper and out-
lines further works.

2 HPC Shelf: A Cloud of HPC Services

HPC Shelf is a component-based platform for clouds that provide services for
development, deployment and execution of HPC applications whose computa-
tional requirements for solving problems that specialists of a given domain could
be interested justifies the employment of a set of parallel computing platforms.

In HPC Shelf, parallel computing systems are built of components that rep-
resent their hardware and software elements, including parallel computing plat-
forms, algorithms, data structures, communication/synchronization patterns,
and so on. For that, components comply to Hash, a model of parallel components
where component kinds may represent these different composition elements [8].

158 J. de Carvalho Silva and F.H. de Carvalho Junior

2.1 The Component Kinds of HPC Shelf

The component kinds of HPC Shelf are: platforms, representing distributed-
memory parallel computing platforms (virtual platforms); computations, rep-
resenting implementations of parallel algorithms that exploit the features of a
class of virtual platforms; data sources, representing data sources that may
interest to computations; connectors, which couple a set of computations and
data sources placed in distinct virtual platforms, for either orchestrating them
or making the role of a substratum for their choreography; and bindings, for
connecting service and action ports exported by components for synchronization.

A service binding connects a user to a provider port, allowing a component
to consume a service offered by another component. A user and a provider port
are compatible if a service binding exists for connecting them. In turn, action
bindings connect a set of action ports that export the same set of action names.
Components react to the synchronous activation of these actions.

An application is represented by two components in a parallel computing
system, so-called Application and Workflow. Through service ports, Application
exchanges data with solution components during execution. In turn, through task
ports, Workflow orchestrates actions of solution components through a specifi-
cation written in the orchestration subset of SAFeSWL (Sect. 3.1).

2.2 Stakeholders

The following stakeholders orbit around HPC Shelf. The specialists use applica-
tions for specification of problems and execution of solutions offered by the appli-
cation. They do not manipulate components directly, which are hidden behind
the domain-specific application abstractions. In turn, the providers create and
deploy applications. Since they must solve problems through parallel computing
systems, they are experts in computational solutions in the application domain.
Moreover, the developers develop the components of parallel computing sys-
tems, tuned for exploiting the architecture of a class of virtual platforms. For
that, developers are experts in parallel computer architectures and their pro-
gramming. Finally, the maintainers offer the infrastructure of HPC Shelf, on
top of which virtual platforms are instantiated. Through contextual contracts,
they may specify the architectural features of the virtual platforms they support.

2.3 Architecture

The interests of the stakeholders of HPC Shelf leads to an architecture formed
by three elements: SAFe (Shelf Application Framework), Core and Back-End.

From SAFe, providers derive applications for specialists, by accessing the cat-
alog of components of HPC Shelf, where they choose the components of the par-
allel computing systems that will solve the problems specified by the specialists
through the application. Also, they specify how components are orchestrated and
how they interact with the application. For that, providers employ SAFeSWL,
which is both an architectural description and a scientific workflow language.

A Platform of Scientific Workflows for Orchestration of Parallel Components 159

The Core manages the life-cycle of components, from cataloging to deploy-
ment. Developers and maintainers register components and their contracts
through the Core. The applications access the services of the Core for resolv-
ing component contracts and deploying the components of parallel computing
systems. For that, the Core implements the system of contextual contracts [10].

Each maintainer offers a Back-End to the Core, for the deployment of virtual
platforms in their HPC infrastructure. Once deployed, virtual platforms may
communicate directly with Core for deploying computations, data sources, con-
nectors and bindings. In turn, these components, and also virtual platforms, may
communicate directly with applications through service and action bindings.

2.4 Contextual Contracts

HPC Shelf employs a system of contextual contracts for component typing and
selection according to application requirements and characteristics of the target
parallel computing platforms (deployment context) [10].

Contextual contracts are defined from abstract components, which represent
sets of components that implement a given concern according to a deployment
context. A deployment context is modeled by a contextual signature, including a
set of context parameters, each one typed by a contextual contract (contractual
bound). A contextual contract is an application of a set of context arguments to a
subset of the context parameters of an abstract component, where the contextual
argument is a contextual contract that is a subtype of the contractual bound.

Each contextual parameter denotes an implementation assumption of an
abstract component, related to either an application requirement or an execution
platform characteristic. HPC Shelf defines a set of predefined context parameters
for representing assumptions about parallel computing platforms they offer, as
well as general characteristics of components according to their kinds.

A component declares one contextual contract it implements and a set of
contextual contracts it requires (inner component types). In turn, in a parallel
computing system, components are indirectly referred by means of contextual
contracts. During execution, the contractual resolution mechanism matches con-
textual contracts and components that implement them.

3 SAFe (Shelf Application Framework)

As stated earlier, SAFe is the application framework of HPC Shelf, from which
providers derive applications for attending the needs of specialists in a domain.

The front-end of an application may be a standalone desktop program, a
smartphone app, a web browser interface, a web service, and so on. It is only
expected that an application implements a collection of domain-specific abstrac-
tions that hide the component infrastructure of HPC Shelf from specialists. Using
these abstractions, they specify problems that will be mapped onto the parallel
computing systems that will solve them. For that, SAFe offers a collection of Java
classes and interfaces. An application must be derived from the Application

160 J. de Carvalho Silva and F.H. de Carvalho Junior

class. This class requires the implementation of the method setServices, which
receives from the framework, as an argument, the services object, i.e. an object of
the Services interface, each time a parallel computing system is deployed, from
which the application may connect to the service ports of solution components.
This is inspired in CCA (Common Component Architecture) [3].

An application specifies both the architectural and the orchestration parts
of a parallel computing system through SAFeSWL, which is currently a XML
format. The application takes problem specifications produced by the specialist
through its interface and maps them onto the XML format of SAFeSWL.

c1

c4

c3

c2

application

workflow

platform #1

platform #3

platform #2

read data data source
facet of connector
environment binding (user -> provider)

task binding

computation

workflow events

notificationsto the application

passing
configuration
parameters

sy
nc

data

sync
data

provide
data

connector

Fig. 1. The view of an hypothetical parallel computing system from SAFe

Figure 1 illustrates how SAFe views a parallel computing system composed
by: three virtual platforms (platform#1, platform#2, and platform#3); four
computations (c1, c2, c3, c4), two of which (c2, c3) are deployed in the same
virtual platform (platform #2); one data source, deployed in the same virtual
platform of them; one connector, for data synchronization among c1, c3, and
c4; and bindings connecting these components. They are called solution compo-
nents. The labels in the service bindings describe the service they provide. In
addition, Application is a special component that makes it possible the inter-
action between the application front-end and the solution components, through
service ports. In turn, the Workflow component is the main connector, which
drives the solution components towards the solution. For that, it is connected to
the action ports of computation and connector components in the system.

A Platform of Scientific Workflows for Orchestration of Parallel Components 161

SAFe dialogs with Core for controlling the life cycle of the components in a
workflow (parallel computing system), i.e. for their resolution (of their contex-
tual contracts), deployment and instantiation. These operations may be speci-
fied explicitly in the orchestration code written in SAFeSWL, by accessing the
LifeCycle action ports offered by each component. This is a distinguishing fea-
ture of SAFeSWL, as pointed out in Sect. 4.

Notice that service and action bindings must connect remotely the Applica-
tion and the Workflow components to the solution components. The contextual
contract system must guide the choice of the appropriate binding implementa-
tions, according to the kind of partners, either local or remote, interface car-
dinality (1×N , M × 1 and M ×N) and characteristics of the platforms where
the components are deployed. The choice is transparent for providers when they
are specifying workflows. These specifically designed binding implementations,
aimed at achieving high efficiency, must be provided by component providers.

3.1 SAFeSWL: Workflow

SAFeSWL is both an architectural description and a scientific workflow language,
aimed at describing large-scale and heterogeneous parallel computing systems
deployed by applications of HPC Shelf. Despite it has been originally designed for
the needs of HPC Shelf, its ideas and concepts may be adopted by other SWfMS
with similar requirements. For introducing SAFeSWL, we use two applications:

– Montage [15] is a set of astrophotograph tools for combining astronomical
images into a mosaic. It consists of several self-running components that oper-
ates on some input files and parameters, generating output files that are input
for other components. Each component of Montage is encapsulated as a com-
ponent of HPC Shelf, where inputs and outputs are implemented as service
ports. For their orchestration, components expose action ports with a single
action, named go. In what follows, two well-known workflows of Montage have
been used as case studies: M101 and Pleiades.

– MapReduce [17] is a model for large-scale parallel computing frameworks aimed
at processing large volumes of data. It has been also implemented as a set of
components of HPC Shelf. In what follows, a MapReduce computation for
counting words in a set of text files (WordCounter) is used as a case study.

3.2 SAFeSWL: Architecture

Using the architectural subset of SAFeSWL, providers may specify the elements
of the architecture of parallel computing systems, like the ones in Fig. 1:

1. a set of contextual contracts that represent the application requirements
and platform characteristics that will guide the choice of components in a
conversation between the application and the Core, intermediated by SAFe;

2. a set of component instances, each one compliant to a contextual contract;

162 J. de Carvalho Silva and F.H. de Carvalho Junior

Fig. 2. The M101 architecture (ignoring action ports).

3. a set of service bindings, between user and provider ports of interacting
components, including both Application and Workflow.

4. a set of action bindings, between partner action ports of Workflow, con-
nectors and computations, involved in the orchestration.

Example 1. M101 is a sequential workflow which uses the components of Montage
referenced in its architecture, depicted in Fig. 2. Each component has service
ports for data transferences between them and a single action port connected to
the Workflow component, with a single action named go.

Listing 1.1 shows a SAFeSWL fragment of M101 architecture, declaring the
component mImgtbl. The user port dir-port must be connected to a provider
port of a repository component that stores raw input images. In turn, the
provider port tbl-port provides output information that is passed as input
to other components. The action go, of the action port go-port, is activated by
Workflow.
<computation name=”mimgtbl” id=”2”>

<uses port id=”33” name=”dir−port” id component=”2”/>
<provides port id=”34” name=”tbl−port” id component=”2”/>
<task port name=”go−port” id=”32” id component=”2”>

<action id=”321” name=”go”/>
</task port>

</computation>

Listing 1.1. SAFeSWL declaration of mimgtbl

Listing 1.2 exemplifies the declaration of a service binding, which informs to
SAFe that there is a connection between the user port u-jpeg-port of the appli-
cation to the provider port p-jpeg-port of mJPEG. In an analogous way, action
bindings (tag tsk binding) list the action ports of each partner component, by
using task port tags.
<env binding>

<uses port id=”15” name=”u−jpeg−port” id component=”0”/>
<provides port id=”103” name=”p−jpeg−port” id component=”10”/>

</env binding>

Listing 1.2. SAFeSWL declaration of a service binding.

A Platform of Scientific Workflows for Orchestration of Parallel Components 163

Fig. 3. The Pleiades architecture (ignoring action ports)

In the M101 architecture (Fig. 2), there are computations, for representing
regular Montage components, and data sources, for representing image directo-
ries. Through user ports connected to provider ports of data sources, compu-
tations retrieve and store images after processing, which will be shared by all
components that are connected to the same data source.

Example 2. The next Montage workflow is Pleiades. It runs the same set of com-
putations three times, possibly in parallel, for each color: blue, red and infrared.
Each run generates a fits1 file, merged into a single JPEG file.

Figure 3 depicts the set of computations, data sources and service bindings
of a single run of Pleiades. The three runs differ by the data source dss�Dir,
where � stands for r, b and ir (blue, red and infrared). Pleiades uses the same
computation components of M101.

Example 3. The last workflow in this study is WordCounter, a workflow of the
MapReduce application for counting the number of occurrences of words in a
large set of files retrieved from a data source. It illustrates the use of contextual
contracts, for specifying the mapping, reduction and partition functions required
by a MapReduce computation, as well as the data types of key/value pairs.

Parallel computing systems of MapReduce are built of components from six
types (abstract components): Source and Sink, representing the input and out-
put data repositories; Mapper, representing mapper agents that apply the map-
ping function to a set of input key/value pairs; Reducer, representing reducer
agents that apply the reduction function to a set of intermediary key/value
1 Stands for ‘Flexible Image Transport System’, the standard data format used in
astronomy, endorsed by NASA.

164 J. de Carvalho Silva and F.H. de Carvalho Junior

Reducer

Reducer

ShufflerSplitter

Source

platform

Mapper

Mapper

Platform

Platform

PlatformSink

Platform

task_chunk

task_chunk

task_chunk

task_chunk

task_chunk task_source_sink task_chunk

Fig. 4. An example of MapReduce architecture for WordCounter

pairs; Splitter, representing connectors that distribute the input key/value
pairs between the mappers, receive output pairs produced by reducers and decide
on either terminate or redistribute them to start a new iteration; and Shuffler,
representing connectors that group, by keys, the intermediate key/value pairs
produced by the mappers and redistribute them among the reducers.

Figure 4 shows an example of MapReduce architecture for WordCounter,
employing pairs of mappers and reducers deployed in distinct virtual platforms.
Input, intermediary and output pairs are passed from one component to the next
by means of service ports. Also, there are two types of action ports: task chunk,
for all computations and connectors, and task source sink, only for Splitter.
<connector name=”splitter” id=”2”>

<uses port id=”31” name=”source” id component=”2”/>
<uses port id=”32” name=”sink” id component=”2”/>
<uses port id=”36” name=”collect pairs” id component=”2”/>
<provides port id=”33” name=”feed pairs” id component=”2”/>
<contract>

<uri>/home/safe−user/contracts/splitter contract.cc</uri>
</contract>
<task port name=”task source sink” id=”34” id component=”2”>

<action id=”341” name=”read source”/>
<action id=”342” name=”terminate”/>
<action id=”343” name=”write sink”/>

</task port>
<task port name=”task chunk” id=”35” id component=”2”>

<action id=”351” name=”read chunk”/>
<action id=”352” name=”perform”/>
<action id=”353” name=”chunk ready”/>

</task port>
</connector>

Listing 1.3. Declaration of the Splitter connector.

Listing 1.3 presents a fragment of SAFeSWL code declaring Splitter. The
contract tag points to the contextual contract file generated by the application.
The Splitter component declares two action ports, both having three action
names, whose meaning are explained in the next section.

Table 1 presents the context arguments applied to the contextual contracts of
the MapReduce architecture presented in Fig. 4. They customize such an architec-
ture for executing the WordCounter workflow. The arguments specify the types of
input, intermediary and output key/value pairs, as well as the map and reduction

A Platform of Scientific Workflows for Orchestration of Parallel Components 165

Table 1. Contextual contracts for the WordCounter workflow.

functions. Indeed, the input pair values, of type string, represent file contents,
indexed by integer keys. Each application of the map function to an input pair
generates a set of intermediary pairs containing a word (key) and its number
of occurrences in the file (value). In turn, the reduce function sums the list of
integers found by mappers for each word, resulting in the number of occurrences
of each word across all the input files.

The contextual contract system may choose mapper and reducer components
specialized for working with the specific types of key/value pairs and functions.
However, in the current implementation, generic versions are used. Also, notice
that the same MapReduce architecture depicted in Fig. 4 may be used for exe-
cuting other map/reduce computations only by assigning different contextual
contract files to each component, with appropriate context arguments.

3.3 The Orchestration Subset of SAFeSWL

The provider generates the orchestration code of workflows, such as M101,
Pleiades and MapReduce, by using the orchestration subset of SAFeSWL, whose
abstract syntax is presented in Fig. 5. It is interpreted by the Workflow com-
ponent, which is connected to action ports of computations and connectors,
through action bindings, for driving the parallel computing system. When there
are pending activations of a given action by all the components that are part-
ners through an action binding, each computation or connector partner, which
is written in a full computational programming language (currently C#), may
react by executing an associated computation. For that, they dialog with their
action port objects, which implement the IActionPort interface. In turn, the
Workflow component uses the set of action primitives and combinators of the
orchestration subset of SAFeSWL only for specifying the control flow of action
activations, i.e. without reacting by executing computations.

Listing 1.4 shows the orchestration code of M101 actions. The sequence oper
tag denotes that the enclosing action activations are executed sequentially. When
a solution component activates the go action, it becomes ready for executing a
computation associated to go provided that Workflow have also activated go.
<sequence oper>

<invoke oper action=”compute” id=”mImgtbl−raw−go.go” />
<invoke oper action=”compute” id=”mProjExec−go.go” />
<invoke oper action=”compute” id=”mImgtbl−go.go” />
<invoke oper action=”compute” id=”mOverlaps−go.go” />
<!−− other omitted invocations here! −−>
<invoke oper action=”compute” id=”mJpeg−go.go” />

</sequence oper>

Listing 1.4. SAFeSWL orchestration fragment of M101.

166 J. de Carvalho Silva and F.H. de Carvalho Junior

Fig. 5. Abstract syntax of the orchestration subset of SAFeSWL

Listing 1.5 presents the orchestration code of a single run of the Pleiades work-
flow. Remember that the three runs, connected to distinct image repositories,
are executed in parallel by the Montage application.
<sequence oper>

<invoke oper action=”compute” id=”mImgtbl−raw−go.go” />
<invoke oper action=”compute” id=”mProjExec−go.go” />
<invoke oper action=”compute” id=”mImgtbl−go.go” />
<invoke oper action=”compute” id=”mAdd−go.go” />

</sequence oper>

Listing 1.5. SAFeSWL orchestration fragment of Pleiades.

Listing 1.6 presents the orchestration logic of word counter. Firstly, splitter
activates read source for reading the input pairs delivered by the input data
service binding, produced from the data source repository. The stream of input
pairs is split into a sequence of chunks of a given size (the chunk size controls
the granularity of the parallel computation). Each time a chunk is ready (i.e.
the mapper may read it through the input pairs service binding), splitter
activates the chunk ready action. Then, the action read chunk of mapper is
activated for reading the chunk, and then perform, for applying the map function
to each input pair, producing chunks of intermediate pairs that will be read and
processed by shuffler by using the same chunk ready/read chunk/perform
protocol. Also using this protocol, chunks of intermediate pairs are read and
processed (application of the reduce function) by reducer, producing output
pairs that will be delivered back to splitter. Finally, splitter reads the output
pairs and decides whether the computation must either restart or terminate. In
restarting (new iteration), the output pairs are fed as input pairs to the mapper.
In termination, they are are delivered to the write sink repository through the
output data binding. A single iteration is necessary for WordCounter.

Using SAFeSWL, non-trivial variants of the basic MapReduce model may be
employed, such as: ignoring the map phase (identity map function); applying
sequences of distinct mappers and/or reducers in an iteration; using teams of
mappers and reducers for large-scale parallel processing, like in Fig. 4; inserting
a combining phase (combiner components) for local reduction of intermediate
pairs before shuffling. Also, contextual contracts make it possible the selection of

A Platform of Scientific Workflows for Orchestration of Parallel Components 167

different implementations of the MapReduce components. For example, bindings
for communication of KV-pairs with out-of-core capabilitites could be provided.
<invoke oper action=”compute” id=”splitter.read source” />
<invoke oper action=”compute” id=”splitter.perform” />
<iterate oper max=”−1”>

<choice oper>
<select action id=”splitter.chunk ready”>

<invoke oper action=”compute” id=”mapper.read chunk” />
<invoke oper action=”compute” id=”mapper.perform” />

</select>
<select action id=”mapper.chunk ready”>

<invoke oper action=”compute” id=”combiner.read chunk” />
<invoke oper action=”compute” id=”combiner.perform” />

</select>
<!−− same logic for combiner, shuffler and reducer components −−>
<select action id=”splitter.terminate”>

<invoke oper action=”compute” id=”splitter.write sink” />
<break/>

</select>
</choice oper>

</iterate>

Listing 1.6. SAFeSWL fragment of MapReduce orchestration.

4 Related Works and Contributions

The contributions of SAFe may be better evaluated in the context of scientific
workflowmanagement systems (SWfMS). These systems have been largely applied
by scientists and engineers for the design, execution and monitoring of reusable
data processing task pipelines in scientific discovery and data analysis [26]. From
a systematic study about SWfMS with parallel processing support, we have found
Askalon [23], BPEL Sedna [1], Kepler [18], Pegasus [11], Taverna [29] and OSC [19]
as SWfMS designs that are worth being compared to SAFe.

The following distinguishing features may be found in SAFe when it is com-
pared to these SWfMS: the compliance with a model of parallel components
(Hash); the ability to deploy and orchestrate computational tasks in multiple
parallel computing platforms (large-scale parallel processing); a contextual con-
tract system, from which components may be chosen based on functional and
non-functional requirements declared by applications; a mechanism to deal with
non-functional concerns in general, though component kinds and contextual con-
tracts; the uniform view of software and hardware resources used employed by
workflows, viewed as components of distinct kinds; the full control of life-cycle
stages of resources (deployment, instantiation, execution, release), by means of
explicit SAFeSWL constructors; and a clear separation between the responsibil-
ities and expertises of user categories, specially specialists and providers.

Askalon provides activity types as an alternative to contextual contracts. How-
ever, contextual contracts may add restrictions related to application require-
ments, possibly considering quality of services and monetary costs, to the set
of restrictions based on a fixed set of specific platform characteristics used to
describe the requirements of activity types for selecting activity deployments.

The inclusion of non-functional concerns in workflow specification is also a
feature of OSC. However, in its current prototype, OSC deals with a specific
set of non-functional concerns, including data provenance, fault-tolerance and
parallelism, whereas SAFe is naturally extensible. Also, parallelism is intrinsic to
the component model of SAFe. In fact, only OSC and SAFe takes the parallelism
of components as a concern treated at the level of workflow design.

168 J. de Carvalho Silva and F.H. de Carvalho Junior

The incremental instantiation of resources as they are demanded is also sup-
ported by Pegasus, through an automatic approach. In turn, SAFeSWL gives to
the programmer the ability to specify when components, including parallel com-
puting platforms, are deployed and instantiated during the workflow execution.
One might propose automatic tools to help this task, like in Pegasus.

All SWfMS targets scientists and engineers interested in solving problems
through computational means. SAFe goes beyond, by distinguish target users in
specialists and providers. Using this approach, only providers need expertise in
building computational solutions from the scientific components available in the
catalog. In turn, specialists interact with domain-specific interfaces for declaring
problems by using abstractions from their domains of expertise. On the other
hand, usual SWfMS try to make the composition language simpler for attending
users without expertise in computing, compromising its expressiveness.

5 Conclusions and Further Work

This paper introduced SAFe, a CBHPC platform for developing and deploy-
ing large-scale component-based parallel computing systems over the HPC Shelf
infrastructure (components), serving as a substratum for HPC Shelf applications.
For that, it supports SAFeSWL, a language for orchestrating components across
a set of parallel computing platforms in long running intensive computations.

SAFeSWL is both an architectural description and scientific workflow lan-
guage, supporting distinct language subsets for these purposes, respectively. Its
prominent characteristics are: the uniform view of software (algorithms and
data), hardware (parallel computing platforms) and other kinds of resources
needed by applications under the same abstraction of Hash components; the inte-
gration with the system of contextual contracts of HPC Shelf, aimed at cataloging
and discovery of component implementations (resources) based on application
requirements and the features of their target parallel computing platforms; the
possibility of controlling explicitly the time of deployment, instantiation and
releasing of components, allowing the fine control of the use of resources; and a
naturally extensible mechanism for dealing with non-functional concerns.

SAFe and SAFeSWL have been validated by means of HPC Shelf application
prototypes: Montage and MapReduce. Then, we have discussed the architecture
and orchestration of three workflows from these applications: M101, Pleiades
and WordCounter. In fact, in the near future, one of our main interests is to
implement other HPC Shelf applications on top of SAFe and, by consequence,
SAFeSWL workflows, making it possible a deeper evaluation of them.

SAFe, as well as HPC Shelf, is an ongoing project. However, it is now a
functional prototype that is ready to be applied in real usage scenarios. Besides
the implementation of real case studies for evaluating them in these scenarios,
we have worked in some orthogonal projects aimed at extending SAFe with
some important features for making it competitive in comparison to mature
SWfMS that are currently disseminated and used in practice, such as the formal
certification of components and workflows, data provenance, and fault tolerance.

A Platform of Scientific Workflows for Orchestration of Parallel Components 169

References

1. OASIS Web Services Business Process Execution Language (WSBPEL). https://
www.oasis-open.org/committees/wsbpel/. Accessed 23 April 2015

2. Antonopoulos, N., Gillam, L.: Cloud Computing: Principles Systems and Applica-
tions. Computer Commmunications and Networks. Springer, London (2011)

3. Armstrong, R., Kumfert, G., McInnes, L.C., Parker, S., Allan, B., Sottile, M.,
Epperly, T., Tamara, D.: The CCA component model For high-performance scien-
tific computing. Concurrency Comput. Pract. Experience 18(2), 215–229 (2006)

4. Baude, F., Caromel, D., Dalmasso, C., Danelutto, M., Getov, W., Henrio, L., Prez,
C.: GCM: a grid extension to fractal for autonomous distributed components. Ann.
Telecommun. 64(1), 5–24 (2009)

5. Bell, G., Gray, J., Szalay, A.: Petascale computational systems. Computer 39(1),
110–112 (2006)

6. Blair, G., Coupaye, T., Stefani, J.-B.: Component-based architecture: the fractal
initiative. Ann. Telecommun. 64, 1–4 (2009)

7. Church, P., Wong, A., Brock, M., Goscinski, A.: Toward exposing and accessing
HPC applications in a SaaS cloud. In: Proceedings of the 2012 IEEE 19th Inter-
national Conference on Web Services, pp. 692–699. IEEE, June 2012

8. de Carvalho Jr., F.H., Lins, R.D.: Separation of concerns for improving practice of
parallel programming. Inf. Int. J. 8(5), 621–638 (2005)

9. de Carvalho Junior, F.H., Rezende, C.A.: A case study on expressiveness and per-
formance of component-oriented parallel programming. J. Parallel Distrib. Com-
put. 73(5), 557–569 (2013)

10. de Carvalho Junior, F.H., Rezende, C.A., de Carvalho Silva, J., Al-Alam, W.G.:
Contextual abstraction in a type system for component-based high performance
computing platforms. In: Du Bois, A.R., Trinder, P. (eds.) SBLP 2013. LNCS, vol.
8129, pp. 90–104. Springer, Heidelberg (2013)

11. Deelman, E., Singh, G., Su, M.-H., Blythe, J., Gil, Y., Kesselman, C., Mehta,
G., Vahi, K., Berriman, G.B., Good, J., et al.: Pegasus: a framework for mapping
complex scientific workflows onto distributed systems. Sci. Program. 13(3), 219–
237 (2005)

12. Dimond, R., Racanie Andre, S., Pell, O.: Accelerating large-scale HPC applications
using FPGAs. In: 2011 20th IEEE Symposium on Computer Arithmetic (ARITH),
pp. 191–192, July 2011

13. Duran, A., Klemm, M.: The intel many integrated core architecture. In: 2012 Inter-
national Conference on High Performance Computing and Simulation (HPCS), pp.
365–366. IEEE Computer Society, July 2012

14. Fan, Z., Qiu, F., Kaufman, A., Yoakum Stover, S.: GPU cluster for high perfor-
mance computing. In: Proceedings of the 2004 ACM/IEEE conference on Super-
computing (SC 2004), p. 47. IEEE Computer Society (2004)

15. Jacob, J.C., et al.: Montage: a grid portal and software toolkit for science-grade
astronomical image mosaicking. Int. J. Comput. Sci. Eng. 4(2), 73–87 (2009)

16. Laudon, J., Spracklen, L.: The coming wave of multithreaded chip multiprocessors.
Int. J. Parallel Program. 35, 299–330 (2007)

17. Li, R., Hu, H., Li, H., Wu, Y., Yang, J.: MapReduce parallel programming model:
a state-of-the-art survey. Int. J. Parallel Program. 44(4), 832–866 (2016)

18. Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., Lee,
E.A., Tao, J., Zhao, Y.: Scientific workflow management and the Kepler system.
Concurrency Comput. Pract. Experience 18(10), 1039–1065 (2006)

https://www.oasis-open.org/committees/wsbpel/
https://www.oasis-open.org/committees/wsbpel/

170 J. de Carvalho Silva and F.H. de Carvalho Junior

19. Medeiros, V., Gomes, T.A.: Towards fully configurable support to non-functional
attributes in scientific workflows. In: Proceedings of the 8th IEEE International
Conference on eScience (eScience 2012) (2012)

20. Mell, P., Grance, T.: The NIST Definition of Cloud Computing. Technical report
800–145, Computer Security Division, National Institute of Standards and Tech-
nology, U.S. Department of Commerce, September 2011

21. Mittal, S.: A survey of techniques for architecting and managing asymmetric mul-
ticore processors. ACM Comput. Surv. 48(3), 45:1–45:38 (2016)

22. Post, D.E., Votta, L.G.: Computational science demands a new paradigm. Phys.
Today 58(1), 35–41 (2005)

23. Qin, J., Fahringer, T., Pllana, S.: UML based grid workflow modeling under
ASKALON. In: Kacsuk, P., Fahringer, T., Németh, Z. (eds.) Distributed and Par-
allel Systems, pp. 191–200. Springer, Heidelberg (2007)

24. Rehr, J.J., Vila, F.D., Gardner, J.P., Svec, L., Prange, M.: Scientific computing in
the cloud. Comput. Sci. Eng. 12(3), 34–43 (2010)

25. Sarkar, V., Williams, C., Ebcioğlu, K.: Application development productivity chal-
lenges for high-end computing. In: Workshop on Productivity and Performance in
High-End Computing (PPHEC 2004), pp. 14–18 (2004)

26. Taylor, I.J., Deelman, E., Gannon, D.B., Shields, M.: Workflows for e-Science:
Scientific Workflows for Grids. Springer, Heidelberg (2007)

27. van der Steen, A.J.: Issues in computational frameworks. Concurrency Comput.
Pract. Experience 18(2), 141–150 (2006)

28. Vecchiola, C., Pandey, S., Buyya, R.: High-performance cloud computing: a view
of scientific applications. In: 10th International Symposium on Pervasive Systems,
Algorithms, and Networks (ISPAN 2009), pp. 4–16. IEEE (2009)

29. Wolstencroft, K., Haines, R., Fellows, D., Williams, A., Withers, D., Owen, S.,
Soiland Reyes, S., Dunlop, I., Nenadic, A., Fisher, P., et al.: The Taverna workflow
suite: designing and executing workflows of web services on the desktop, web or in
the cloud. Nucleic Acids Res. p. 328 (2013)

30. Zaspel, P., Griebel, M.: Massively parallel fluid simulations on amazon’s HPC
cloud. In: Proceedings of the First International Symposium on Network Cloud
Computing and Applications (NCCA 2011), pp. 73–78 (2011)

Comparison Between Model Fields
and Abstract Predicates

Ke Zhang(B) and Zongyan Qiu

LMAM and Department of Informatics, School of Mathematics,
Peking University, Beijing, China

zksms@pku.edu.cn, qzy@math.pku.edu.cn

Abstract. To modularly specify and verify object oriented programs
on some abstract level, we need abstraction techniques to hide the
implementation details of the classes. Model fields and abstract predi-
cates are two most important approaches to address the requirements.
In this paper, we mainly compare their expressiveness. We develop two
translation algorithms, which can translate a program with model fields
based specification to one with abstract predicates based specification.
We prove that the translation algorithms are correct, and the resulting
specifications are well-encapsulated and well-formed. This shows that
the abstract predicates technique is more expressive. On the other hand,
the model fields based specifications are more user friendly and useful in
automatic verification. In addition, we discuss the different characteris-
tics of the two approaches in framing, inheritance, and recursion.

1 Introduction

Object Orientation (abbr. OO) is widely used in software development. Due to
the increasing demand on the reliability and correctness, techniques for specify-
ing/verifying OO programs attract more attention recently.

However, to specify/verify OO programs, we have to face the challenges
brought by encapsulation, inheritance and polymorphism, which are the core
features of OO. Abstraction is the key idea to address these issues. Introducing
suitable abstraction mechanisms into the formal notations is helpful to enhance
the modularity of OO specification and verification. In addition, these mecha-
nisms are also useful for information hiding and specification re-use. All of these
characteristics are crucial in verifying large-scale OO programs.

Researchers have paid much attention to abstraction mechanisms in the OO
verification for years. Model fields [1] and abstract predicates [2] are two impor-
tant techniques here. Model fields are abstract fields whose values are deter-
mined by concrete fields of the object. Abstract predicates are user-defined logic
abstractions. Both techniques can specify the program abstractly and support
information hiding.

K. Zhang — The work is supported by the NSFC under grant No. 61272160 and No.
61202069.

c© Springer International Publishing Switzerland 2016
F. Castor and Y.D. Liu (Eds.): SBLP 2016, LNCS 9889, pp. 171–186, 2016.
DOI: 10.1007/978-3-319-45279-1 12

172 K. Zhang and Z. Qiu

Model fields and abstract predicates have been studied for years, and both
techniques address the similar problems. However, no systematic and formal
study has been published on their relationship and advantages/disadvantages.
We try to make such a comparison in this paper. We prove that the abstract
predicates are more expressive than model fields, by showing: (1) the model fields
based specification can be translated into abstract predicates based specification;
(2) there exists programs which can only be specified by abstract predicates.

The rest of the paper is organized as follows: Sect. 2 introduces the model
fields and abstract predicates techniques and compares them briefly; Sect. 3
presents the translation rules and algorithms, together with some discussion;
Sect. 4 summarizes some related work and Sect. 5 concludes.

2 Background

2.1 Model Fields

The model field (abbr. MF) technique was introduced in 1990s [3] to deal with
data abstraction and data refinement. Syntactically, MF is a kind of field in class
declarations which can only be used in the specifications, but cannot be accessed
by real code. We use the definition of MF in JML [1]:

Definition 1 (Model fields). A model field declaration in class C takes the form:

model T f such that RC(f, f , g);

Here T is a type, f is the field name, and the such that clause introduces
a constraint RC(f, f , g) which must hold in every state. The constraint could
mention the model fields f and concrete fields g of class C.

Subclass D inherits all the model fields and constraints from its superclass. It
can add a new constraint RD(. . .) for an inherited model field. Both the inherited
constraints and the new constraint RD(. . .) must hold in every state.

The official references of JML lack formal semantics, but [4] gives formal
semantics for MFs in JML as follows:

Definition 2 (Model field valuator). Let S be the set of states, U be the set
of objects, I be the set of concrete and model fields in classes. A function M :
S × U × I → U is called a model field valuator iff:

For every state s ∈ S, every field x ∈ I and every model field o.f with
constraint ψ (ψ denotes the conjunction of all the constraints which o.f must
conform to):

– The type of object M(s, o, x) is a subtype of the declaration type of field o.x,
– ψ[M(s, o, f)/o.f] = true in state s.

Here [M(s, o, f)/o.f] means replacing o.f with M(s, o, f). Taking model fields
into account, specifications are always meant to hold for every possible valuator.

Comparison Between Model Fields and Abstract Predicates 173

class Rec : Object{
int x1, y1, x2, y2;
invariant x1 ≤ x2 ∧ y1 ≤ y2;

model int width such that width = x2 − x1;
model int height such that height = y2 − y1;

Rec() 〈〉〈width = 1 ∧ height = 1〉
{x1 := 0; y1 := 0; x2 := 1; y2 := 1; }
void ScaleH (int factor)
〈0 ≤ factor〉〈width = old(width) × factor/100〉
modifies width, x2;
{ x2 := (x2 − x1) × factor/100 + x1; }

}

Fig. 1. Rec specified by MFs

For example, a MF method specification (pre and post-conditions) 〈φ〉〈ψ〉 spec-
ifies C.m(), iff for every possible valuator M , the concrete fields based specifica-
tion 〈φ[M(s, o, f)/o.f]〉〈ψ[M(s, o, f)/o.f]〉 specifies C.m().

If the method specifications only depend on MFs, an abstraction boundary is
formed which separates the real code (and concrete fields) from the specification.
The constraints of MFs serve as a bridge to connect the specification and the
implementation. To express this idea, we have the following definition:

Definition 3 (Well-encapsulated). If the method specifications (pre and post-
conditions) in a class do not mention any concrete field, we call it a well-
encapsulated specification or an abstract specification of the class.

Notice that we do not forbid the invariants to mention concrete fields in
Definition 3, because the invariants are always treated as conditions to constrain
the valid object states. In the view of modular programming, those invariants
should not be concerned by other objects. In fact, the example in Fig. 1, which
comes from literature on MF [5], uses concrete fields in its invariant. Thus we
allow the invariants to mention concrete fields in Definition 3.

Figure 1 shows a class Rec specified by model fields. Rec uses the coordinates
of two opposite corners to represent a rectangle, and declares model fields width
and height as the abstraction of the concrete fields.

In the class, the method ScaleH scales the rectangle horizontally, which is
specified using the model field width. In addition, the modifies clause lists all
the (concrete and model) fields modified by the method, which is useful when
reasoning about frame properties of the method.

2.2 Abstract Predicates

The abstract predicate (abbr. AP) technique is proposed when researchers apply
Separation Logic [6] to OO languages [2]. Basically, they are user-defined predi-
cates in class declarations.

174 K. Zhang and Z. Qiu

class Rec : Object{
//concrete fields and method bodies are the same as Fig. 1
define recRec(this, w, h) : w = x2 − x1 ∧ h = y2 − y1;

Rec() 〈〉〈rec(this, 1, 1)〉
void ScaleH (int factor)
〈(0 ≤ factor) ∧ rec(this, w, h)〉〈rec(this, w × factor/100, h)〉

}

Fig. 2. Rec specified by APs

Definition 4 (Abstract predicates). An abstract predicate definition in class C
takes the following form:

define pC(this, v) : ψ;

The predicate has a name p, parameters (this, v), and a definition ψ which is
a separation logic assertion. The definition could mention any object o which is
accessible from class C, and also the predicates of o (i.e. the predicates whose
first parameter is o).

Subclass inherits all the abstract predicates from its superclass, and it can
also override the definition of inherited predicates.

The predicates with same name (but in different classes) form an abstract
predicate family. Paper [7] defines its semantics as follows. Briefly speaking,
when a predicate family p(o, v) is used in the specification, its definition pC(o, v)
is chosen according to the dynamic type of o.

Definition 5 (Assumption context). We define an assumption context Δ, which
is a set including the following formulas:

For every class C, predicate p, parameters o and v,

(1) o : C ⇒ (p(o, v) ⇔ pC(o, v)) (2) define pC(this, v) : ψ;
pC(o, v) ⇔ ψ[o/this]

(3) p(v) ⇔ ∃w · p(v, w) (4) p() ⇔ true

When the type of o is C, denoted as o : C, we can translate the family to a specific
entry for class C. In addition, the entry for class C is equivalent to its definition
in class C. The last two rules allow us to change the arity of predicates.

Taking APs into account, specifications are always meant to hold within the
assumption context Δ.

For example, if the proof obligation of a concrete specification ψ is Γ 	 ψ,
where Γ denotes the static environment, then the proof obligation of an AP
specification ψ′ is Γ,Δ 	 ψ′.

We can also use APs to specify the class Rec abstractly, as shown in Fig. 2.

Comparison Between Model Fields and Abstract Predicates 175

2.3 Preliminary Comparison

Both MF and AP are commonly used techniques in OO verification. Here we
briefly compare their ideas and applicabilities, and leave the comparison of
expressiveness to the rest of the paper.

In common, MF and AP assertions can both be easily translated into asser-
tions on the concrete fields. We can either unfold MF references by their con-
straints, or unfold AP invocations by the predicates’ definitions. The real code
must satisfy the unfolded assertions. On the other hand, outside the encapsula-
tion, we only use the abstract specification for reasoning.

MFs are just names referring to some values derived from concrete fields,
thus it is a relative simple and easy-to-use mechanism. In addition, since the
values of MFs are constrained by concrete fields, their values can be really imple-
mented and automatically updated in the verification or static/dynamic analysis.
It makes MFs useful in the automatic verification or analysis. Both JML [1] and
Spec# [8] integrate MFs into their specification languages to express the abstract
specifications of classes and interfaces.

On the other hand, the close connection between MFs and concrete fields
restricts the way to define MFs and the flexibility of specifications, especially for
subclasses and overridden methods.

The power of APs comes from their structure. Predicates may have arbi-
trary parameters, which can be instantiated in invocations, or be used to con-
nect different parts of specifications. Besides, recursive APs can be naturally
defined, which makes it easy to handle recursive data structures. Furthermore,
APs decouple the specification from implementation details more thoroughly,
since it describes the properties instead of the values of the program states. The
definitions of the predicates are almost arbitrary even in the presence of inher-
itance, which provides enough expressiveness. Due to these advantages, verifi-
cation frameworks like VeriFast [9], implement AP technique as its abstraction
mechanism.

However, the developers need more logic training before using APs. In many
cases, they must carefully design appropriate predicates to ensure the correctness
of the specifications, especially when inheritance and overridden methods are
involved. In addition, the AP specifications cannot be automatically verified.

In conclusion, both abstraction techniques have their own merit, thus neither
of them is superior to the other in practical applications.

3 Expressiveness

Considering the importance of the abstraction techniques in OO verification, we
are interested in comparing the expressiveness of MFs and APs. As an example,
Sect. 2 shows that Rec can be specified by both techniques respectively. Although
it is just a particular case, it gives us some clues for the study.

We notice that each MF holds a value and a constraint binding it to some
concrete fields (directly, or indirectly via other MFs). Correspondingly, AP is

176 K. Zhang and Z. Qiu

also able to describe a value by adding a parameter, and the definition of the
predicate can describe any constraints between this value and the concrete fields.
Thus, it seems that MF is a special case of AP. But we still need to consider
their scope rules and their different ways to deal with frame properties.

Following this basic idea, we develop a set of rules and two translation algo-
rithms, which can translate the MF specification into AP specification. It indi-
cates that the AP is not less expressive than MF. We prove the correctness and
termination of the translation algorithms, and we also show a program which
can only be specified by APs.

3.1 Translation Rules

In this subsection, we introduce our translation rules and an algorithm. We take
a sequential subset of Java. The AP specification is written using separation
logic [2], and MF specification uses a subset of separation logic (without sep-
arating conjunction/implication). Before translation, the program is specified
by MFs. After translation, we will obtain the same program specified by APs.
However, during the translation, the specification may contain both kinds of
notations. In such cases, we define the semantics as follows:

Definition 6. Suppose ψ is an assertion with both MF and AP notations, and
s is a state. ψ holds in s iff for each possible model field valuator M , the AP
based assertion ψ[M(s, o, f)/o.f] holds in s.

We introduce some notations at first:

– spec1 =⇒t spec2 denotes that we translate specification spec1 into spec2;
– B and C are classes, ϕ and ψ assertions;
– model(C, fi), concrete(C, gj) state that fi, gj are all the MFs and concrete

fields of class C, respectively. We assume the set {C.fi} unchanged even after
these MFs are translated into APs.

– fresh(rj) means that rj are fresh variables, and inh(C, fk) denotes that fk is
also defined in the superclass of C.

The rules are listed in Fig. 3. Here are some explanations.
Rule [H-PPRE] says that, we introduce a predicate priC(this, r1, . . . , rn) for

each class C, to assert all the concrete fields of the class. This predicate serves as a
safeguard to prevent these fields from being exposed in the abstract specification.

[H-MPRE] shows how we translate a MF definition into an AP definition. The
last premise indicates the existence of the definition for the MF fk in class C. We
translate the MF definition into an AP definition pk

C with the same number k.
If pk

C(this, v) holds, then the value of v equals a possible value of the MF fk.
In [H-MPRE], we do not handle those fi in the constraint. Those MF appear-

ances will be translated by the rule [H-TRANS] below.
Subclasses are allowed to strengthen the constraints of the inherited MFs

[1,5], thus an inherited MF should satisfy not only the constraint defined in C,
but also the ones inherited from the superclasses of C. Rule [H-MINH] translates

Comparison Between Model Fields and Abstract Predicates 177

Fig. 3. Translation rules

the inherited MFs, where super(C,B) says that B is the immediate superclass
of C, and pk

B is the AP in class B which pk
C inherits. Clearly, pk

C should also
conform to the definition of pk

B .
[H-MOLD] deals with the old(o.fk) in method specifications, where o.fk is

a MF. Here 〈ϕ〉 m(. . .)〈ψ〉 means that ϕ and ψ are the pre and post-conditions
of method m. In programs with MF specification, old(o.fk) can be written in
the post-condition, to denote the value of o.fk in the pre-state. Rule [H-MOLD]
declares dk explicitly for the value of o.fk in the pre-state, then we can use dk to
substitute all the old(o.fk) in the post-condition. Furthermore, the pre-condition
after translation is equivalent to the original one. Since the constraints of model
fields must be satisfiable, i.e. there surely exists a value dk which equals to o.fk

in the pre-state, [H-MOLD] does not strengthen the pre-condition.
[H-TRANS] translates assertions in the program except the invariants (i.e.

the pre and post-conditions of methods and the definition of predicates). Here
the AP pi(oi, vi) asserts that vi has the same value as the MF oi.fi, then the
substitution of all the oi.fi to vi does not modify the semantics of the assertions.
The pri(o′

j , -, rj , -) means that the parameter corresponding to o′
j .gj is rj , and

we do not care about the value of other parameters.
[H-INV] translates a MF invariant into a concrete fields based invariant. With-

out the ownership [10] technique, the MF invariant can only mention the model

178 K. Zhang and Z. Qiu

and concrete fields defined in the same class. Thus we can just unfold the con-
straints and substitute the MF appearances by fresh variables within the scope
of the existential quantifiers. The ownership technique will be considered in
Sect. 3.5.

Based on the rules in Fig. 3, we present an algorithm to translate a pro-
gram with MF specification to the same program with the corresponding AP
specification:

Algorithm 1. We translate a program by 4 steps:

– For each class, use rule [H-PPRE] to encapsulate all the private fields;
– For each MF definition, use [H-MPRE] or [H-MINH] to translate it into an AP

definition;
– For each old(·) appearance in assertions, use rule [H-MOLD];
– Use [H-INV] to translate all the invariants, and use [H-TRANS] to translate

all the other assertions.

We can use this algorithm to translate the specification of all the classes
and client code. In this and the next subsections, we will prove several useful
properties of the algorithm.

Theorem 1. For a program S with MF specification, using Algorithm 1, we
can obtain a program T with AP specification. In addition, the specification of
T is well-encapsulated.

Proof. The second step will remove all the MF definitions, and the fourth step
will remove all the MF appearances in assertions. Thus T has an AP specification
(and we will prove that it is a well-formed specification in the next subsection).
Besides, we can see that all the concrete field appearances in the method spec-
ifications are substituted by the AP pri in the fourth step. Thus, the resulting
specification is well-encapsulated.
�
Theorem 2. If a program S with MF specification is well-encapsulated, we can
modify the rules to simplify the translation algorithm:

– Delete the rule [H-PPRE] and delete the first step in Algorithm1;
– In other rules, unfold the AP pri(. . .) or priC(. . .) to its definition.

If we obtain a program T from S using the simplified algorithm, then the speci-
fication of T will still be well-encapsulated.

Proof. We can prove it by induction. If the method specifications in S do not
mention concrete fields, no matter which rule we use, the method specifications
in T would not mention concrete fields.
�
Example 1. The specification of Rec in Fig. 1 is well-encapsulated. According
to Theorem 2, we can translate it using the simplified algorithm. The result is
shown in Fig. 4.

Comparison Between Model Fields and Abstract Predicates 179

class Rec : Object{
int x1, y1, x2, y2;
invariant x1 ≤ x2 ∧ y1 ≤ y2;

define widthRec(this, v) : v = x2 − x1;
define heightRec(this, v) : v = y2 − y1;

Rec()
〈〉〈∃v, v′ · v = 1 ∧ v′ = 1 ∧ width(this, v) ∧ height(this, v′)〉
void ScaleH (int factor)
〈(0 ≤ factor) ∧ width(this, d)〉〈∃v · width(this, v) ∧ v = d × factor/100〉

}

Fig. 4. Rec translated into abstract predicates

3.2 Well-Formedness of Translation Result

Both MF and AP frameworks provide some scope rules about: (1) the locations
in specifications where a MF or an AP can be mentioned; (2) the concrete fields
that a MF or an AP can depend on. These rules can be found in the related
work [7,11].

Most of the scope rules are stated in Definitions 1 and 4. Besides, MFs can
be mentioned in the invariant of the same class, but APs cannot be mentioned
in any invariant. Based on the scope rules, we define:

Definition 7 (Well-formed). If the MF or AP specification does not violate the
corresponding scope rules, it is called a well-formed specification. A program
with well-formed specification is called a well-formed program.

Theorem 3. If a program S with MF specification is well-formed, we translate
S using Algorithm 1 and obtain T , then T is well-formed.

Proof. We prove the two requirements of the scope respectively.

(1) An AP can be used anywhere (syntactically), except the invariants. Due to
[H-INV], the invariants in T do not mention any predicate. Thus T meets
the first requirement.

(2) Since S is well-formed, the MFs in S only depend on the (model and concrete)
fields in the same class. Thus the APs in T only depend on the fields in the
same class, which is allowed by Definition 4. Therefore T meets the second
requirement.

From (1) and (2), we can conclude that T is well-formed.
�

3.3 Framing

Framing is an important problem in verification. It requires us to specify the
boundary of memory locations modifiable/modified by the methods. For exam-
ple, we must be able to prove that ScaleH does not modify height in Fig. 1; and
ScaleH does not modify the validity of height(this, v) in Example 1.

180 K. Zhang and Z. Qiu

class SRec : Object{
int x1, y1, x2, y2, scale;
model int width such that width = (x2 − x1) × scale;
model int height such that height = (y2 − y1) × scale;
void ScaleH (int factor)
〈0 ≤ factor〉〈width = old(width) × factor/100〉
modifies width, x2;

}

Fig. 5. Another implementation of Rec with model fields based specification

Several solutions are proposed to deal with the frame problem. Literature on
MF often uses a modifies clause to declare the fields possibly modified by the
method, while the other fields will not be modified. Thus in Fig. 1, we are sure
that ScaleH does not modify height.

Specifications based on AP use separation logic to describe the frame prop-
erties. In Example 1, since predicates widthRec and heightRec are separated, we
know that ScaleH does not modify height.

Since MF and AP techniques use different strategies to deal with the frame
problem, we need to present another algorithm to translate the modifies clauses
into separation logic assertions.

The example in Fig. 5 illustrates the main difficulty of the translation. Class
SRec includes a concrete field scale as the scale factor of the rectangle, and both
MFs width and height depend on this field.

Due to the modifies clause of ScaleH , we can still prove that it does not
modify height. But after we translate this program using Algorithm 1, we cannot
use frame rule to prove that heightSRec is not modified by ScaleH , since the
predicates widthSRec and heightSRec are not separated.

This example suggests us to merge the predicates which are not separated.
Firstly we introduce some notations:

– In order to distinguish the new rules from those rules in Fig. 3, here we use
spec1 =⇒f spec2 to denote that spec1 is translated into spec2.

– α denotes a sequence of numbers, and α :: k is the sequence which appends k
at the end of sequence α. α[i] denotes the i-th number in the sequence.

We begin from a simple case without inheritance. All the new rules are shown
in Fig. 6.

[P-MRG] merges two APs into a “big” AP. The superscript α records that
the “big” AP is merged from which predicates, the order of elements in α is the
same as the order of parameters.

[P-SBST] uses the “big” AP to substitute for the predicates in specifications.
If pα

C is merged from pk
C and other predicates, then all the pk(o, v) in specifica-

tions can be translated to pα(o, -, v, -), which means the first parameter is o and
the (i + 1)-th parameter is v, and we do not care about other parameters.

Comparison Between Model Fields and Abstract Predicates 181

[P-MRG]

pα
C , pk

C are not separated,

define pα
C(this, v1, . . . , vn) : ψα, define pk

C(this, v) : ψk

define pα
C . . . ; define pk

C . . . =⇒f

define pα::k
C (this, v1, . . . , vn, vn+1) : ψα ∧ ψk[vn+1/v]

[P-SBST]

define pα
C(this, v1, . . . , vn) : -,

type(o) = C, k = α[i], pk(o, v) appears in ψ

ψ =⇒f ψ[pα(o, -, v, -)/pk(o, v)]

[P-MTHD]

〈ϕ〉 C.m(. . .)〈ψ〉, m is not a constructor, fresh(v), type(o) = C, k = α[i],
define pα

C(this, v1, . . . , vn) : -, pα(o, . . .) appears in 〈ϕ〉〈ψ〉,
o.fk does not appear in the modifies clause of m()

〈ϕ〉〈ψ〉 =⇒f 〈ϕ ∧ pα(o, -, v, -)〉〈ψ ∧ pα(o, -, v, -)〉
[P-MDF]

modifies . . . =⇒f

Fig. 6. Translation rules about modifies clauses

[P-MTHD] deals with method specifications. If a “big” AP pα(o, . . .) appears
in the pre or post-condition, but model field o.fk does not appear in the modifies
clause (k ∈ α), then we need to explicitly declare that the corresponding para-
meter of the “big” AP is not modified.

The resulting specification of [P-MTHD] can usually be simplified. For exam-
ple, pα(o, a, -) ∧ pα(o, -, b) can be reduced to pα(o, a, b) due to the definition
of pα.

The last rule [P-MDF] simply deletes the modifies clause. Based on these
rules, we define the translation algorithm as follows.

Algorithm 2. For a result of Algorithm 1, i.e. a program with AP specification
and modifies clauses, we translate the modifies clauses by 4 steps:

– For each class, use rule [P-MRG] to merge its APs until all the “big” APs are
separated from each other; (If we cannot judge whether two APs are separated,
we just merge them.)

– Use [P-SBST] to translate all the assertions until there are only “big” APs in
them;

– For each method, for each “big” AP pα(o, . . .) appears in the pre or post-
condition, for each k ∈ α, if o.fk does not appear in the modifies clause, use
[P-MTHD] to declare that it is not modified;

– Use [P-MDF] to delete all the modifies clauses.

Theorem 4. Suppose program S has MF specification and modifies clauses.
We use Algorithms 1 and 2 to translate S and obtain a program T , then the
frame properties provable in S are also provable in T .

Proof. In program S, suppose a model field o.fk is not modified by a method
C.m. We will prove the corresponding frame property in program T :

182 K. Zhang and Z. Qiu

(1) If k ∈ α and the AP pα(o, . . .) appears in the pre or post-condition of C.m,
then [P-MTHD] would declare that the corresponding parameter of the “big”
predicate remains the same in the pre and post-conditions;

(2) If k ∈ α but the AP pα(o, . . .) does not appear in the pre or post-condition
of C.m, since pα(o, . . .) is separated from the other “big” APs, we can use
frame rule to prove that the parameters of pα are not modified.

So we can conclude that all the frame properties provable in S are also provable
in T .
�
Example 2. After using Algorithms 1 and 2 to translate the class SRec in Fig. 5
(with some simplification), the result is:

define widthHeightSRec(this, v1, v2) :
v1 = (x2 − x1) × scale ∧ v2 = (y2 − y1) × scale;

SRec() 〈〉〈widthHeight(this, 1, 1)〉
void ScaleH (int factor)
〈0 ≤ factor ∧ widthHeight(this, d, v′)〉〈widthHeight(this, d × factor/100, v′)〉

Then we take the inheritance into account. Notice that a subclass can add
new constraints for the inherited MFs, thus after translation, two separated
APs in the superclass may be not separated in the subclass. To keep the behav-
ioural subtype relation, we also need to merge them in the superclass. Thus, the
requirement of [P-MRG] that

pα
C , pk

C are not separated

should be modified to

∃D <: C · pα
D, pk

D are not separated.

That is to say, if two APs are not separated in one of C’s subclasses, we need to
merge them in C. This rule needs to check all the subclasses of C, thus it is not
modular. The other rules remain unchanged.

We prove the correctness and termination of both translation algorithms.
The proof can be found in our technical report [12].

Theorem 5 (Correctness). If S =⇒t T or S =⇒f T , then program S satisfies
its specification iff program T satisfies its specification.

3.4 Further Investigation

Previously, we have proved that APs are not less expressive than MFs. Here we
show an example which can only be specified by APs, therefore, APs are strictly
more expressive than MFs.

When dealing with recursion data structures, APs are more expressive than
MFs. For the length of linked lists, we can define a recursive AP:

define lenNode(this, v) : (this.next = null ⇒ v = 1)
∧(this.next �= null ⇒ len(this.next, v − 1));

Comparison Between Model Fields and Abstract Predicates 183

However, using MFs (without the ownership mechanism), we cannot define the
length recursively. Since the constraints of MFs are invariant-like properties (they
must hold in all the program states), MFs cannot depend on the fields of other
objects. Thus, methods like “append a node to a linked list” cannot be specified
by MFs.

Even in the presence of the ownership mechanism, MFs have more restrictions
on recursion than APs. In a typical setting [5], the constraint of the MF o.f could
only mention the fields of o, and the fields of the representation fields of o. Thus,
to allow the MF len depending on next.len, each node must own the next node.
But this design will prevent us from looping through the list1.

In conclusion, APs are strictly more expressive than MFs.

3.5 Ownership

Since MFs can only depend on the fields of the same object, they can hardly
describe the properties of aggregate objects. To solve this problem, [1,5,13] intro-
duce the ownership [10] mechanism into MF approaches. With this mechanism,
a MF declaration in class C takes the form:

model T f such that RC(f, o.f , o.g);

Here o ranges in all the objects which are (transitively) owned by this object,
including this itself.

On the other hand, since APs can already mention other objects in its def-
inition, [14] states that AP technique do not need the ownership mechanism to
describe the properties of aggregate objects.

When we take the ownership mechanism into account, the MF specification
except the class invariants, can still be translated. However, the translation rules
need to be revised for a little bit, since the constraints of MFs can depend on
other objects now. Take [H-MPRE] as an example, we modify the premise “fi

are model fields of this” to “oi.fi are model fields of this and the objects this
transitively owns”, and replace “fi” with “oi.fi” in the rule. Other rules can be
revised similarly.

But the invariants cannot be directly translated, since AP specification does
not allow multi-object invariants. To solve the problem, we translate the invari-
ants into method specifications, as suggested by [14].

We define a predicate for each class:

[H-INVD]
invariant ψi; are all the invariants of class C

invariant ψi; =⇒t define invC(this) :
∧

i ψi;

1 In literature on ownership, the nodes of a list do not own each other, instead, they
have a same owner. If we define that each node owns the next node in JML, we
cannot loop through the list and modify its elements, since it violates the owner-as-
modifier discipline; in Spec#, we cannot even loop through the list since the owner
of a variable must be kept unchanged in a loop.

184 K. Zhang and Z. Qiu

And its definition needs to be translated by [H-TRANS]. This AP is true iff all
the invariants of class C holds. Then, suppose oi are the objects owned by o, we
assert that inv(o) holds on the entry and exit of every public method of oi:

[H-INVM]
o : C, oi are all the objects owned by o, including o itself
〈ϕ〉 C.C(. . .)〈ψ〉 =⇒t 〈ϕ〉 C.C(. . .)〈ψ ∧ inv(ret)〉;
〈ϕ〉 oi.m(. . .)〈ψ〉 =⇒t 〈ϕ ∧ inv(o)〉 oi.m(. . .)〈ψ ∧ inv(o)〉

Here ret denotes the return value. When reasoning about the aggregate object
(o together with oi), the multi-object invariant can be proved using [H-INVM]2;
when reasoning about the other objects, the multi-object invariant can be proved
using frame rule.

Notice that if the behavioural subtype relation holds in the original specifi-
cation, then it holds in the translating result, since we just add a same predicate
to all the pre and post-conditions of non-construction methods.

In conclusion, considering the ownership mechanism, the MF specification
can still be translated into AP specification. However, the invariants need to be
translated into method specifications.

4 Related Work

The concept of model fields was proposed by Leino in his PhD thesis [3], where
it was called abstract fields. In the thesis, MFs are used to specify/verify data
refinement. However, the work almost ignores information hiding, and requires
MFs to be uniquely determined by the constraints.

Müller et al. [13] presented a modular technique for specifying/verifying
frame properties using MFs. It also uses the ownership technique to deal with
aggregate objects. However, the work does not fully support the inheritance.

Leino and Müller presented a modular verification methodology for MFs [5].
In this work, the MF o.f is updated only when o is in valid states. It is tightly
combined with the ownership technique, thus it can deal with the frame prop-
erties of aggregate objects modularly, and fully supports the inheritance.

There are some other applications of MFs. MFs are used to express the
abstract specifications in JML [1], to write and check design by contract asser-
tions [15], and to achieve information hiding in the specifications for inter-
faces [16].

The concept of abstract predicates was proposed by Parkinson and Bier-
man [2] in developing an OO program verification system based on separation
logic. More recently they take inheritance into account [7], and introduce sta-
tic/dynamic specifications for each method, to avoid restricting subtypes’ behav-
iors or re-verifying inherited methods.

2 In fact, different encapsulation disciplines (e.g. owner-as-modifier in JML, dynamic
ownership in Spec#) lead to different proof obligations of the invariants. Here
[H-INVM] needs to generate all the proof obligations of the invariants, according
to the adopted encapsulation discipline.

Comparison Between Model Fields and Abstract Predicates 185

Liu et al. proposed an OO verification framework in [17], whose abstraction
technique is similar to Parkinson’s. It can deal with the inheritance by using sim-
pler notations, where each method only need one specification and re-verification
is avoided as well. Qiu et al. extend the framework for interfaces [18], and give
a solution to the problems brought by multiple inheritance.

There are some other abstraction techniques for OO verification, e.g., pure
methods [19] and data groups [20]. The pure methods are side-effect-free meth-
ods, thus they can be invocated in specifications to hide implementation details.
Data groups can help information hiding in decribing frame properties. Each
data group represents a set of variables, and it can be used in the modifies
clauses to announce the modifiability of its members.

Although many papers focus on MF or AP based techniques, a system-
atic comparison between them is lacking. Burgman [21] proposed a comparison
between JML and Separation Logic in verifying multi-threaded Java programs.
But the work does not focus on the abstraction mechanisms.

5 Conclusion

In this paper, we compare two important abstraction techniques for specify-
ing/verifying OO programs, the model fields and the abstract predicates.

By developing the translation rules and algorithms, we demonstrate that any
program with MF specification can be translated into one with AP specification.
The translation is still correct in the presence of inheritance, recursion, or even
the ownership technique.

We prove that the resulting specification obtained from the translation is well-
encapsulated, well-formed and correct. A program satisfies its MF specification
iff it satisfies the resulting AP specification. In addition, we demonstrate the
existence of programs which can only be specified by APs, which indicates that
APs are more expressive.

On the other hand, MFs have its own advantages like user friendliness and
supporting automatic verification. Our conclusion is, the seeking for the powerful
and easy-to-use OO abstraction techniques has not come to the end. As a future
work, we plan to investigate the other abstraction techniques and compare them,
and try to develop better specification techniques or specification patterns for
OO programs.

References

1. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: a behavioral
interface specification language for java. SIGSOFT Softw. Eng. Notes 31(3), 1–38
(2006)

2. Parkinson, M., Bierman, G.: Separation logic and abstraction. In: POPL 2005, pp.
247–258. ACM (2005)

3. Leino, K.R.: Toward reliable modular programs. Ph.D. thesis, California Institute
of Technology (1995)

186 K. Zhang and Z. Qiu

4. Bruns, D.: Formal semantics for the java modeling language. Diplomarbeit, Uni-
versität Karlsruhe, June 2009

5. Leino, K.R.M., Müller, P.: A verification methodology for model fields. In: Sestoft,
P. (ed.) ESOP 2006. LNCS, vol. 3924, pp. 115–130. Springer, Heidelberg (2006)

6. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
LICS 2002, pp. 55–74. IEEE CS (2002)

7. Parkinson, M.J., Bierman, G.M.: Separation logic, abstraction and inheritance. In:
POPL 2008, pp. 75–86. ACM (2008)

8. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: an
overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

9. Jacobs, B., Piessens, F.: The VeriFast program verifier. CW Reports (2008)
10. Clarke, D.G., Potter, J.M., Noble, J.: Ownership types for flexible alias protection.

In: OOPSLA 1998, pp. 48–64. ACM (1998)
11. Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D., Müller, P.,

Kiniry, J., Chalin, P.: JML Reference Manual (2008)
12. Zhang, K., Qiu, Z.: Comparison between Model Fields and Abstract Predicates.

Technical report, School of Math., Peking University (2016). https://github.com/
fm-pku/mf-ap/blob/master/mf-ap.pdf

13. Müller, P., Poetzsch-Heffter, A., Leavens, G.T.: Modular specification of frame
properties in JML. Concurrency Comput. Pract. Exp. 15(2), 117–154 (2003)

14. Parkinson, M.: Class invariants: the end of the road. In: International Workshop
on Aliasing, Confinement and Ownership, vol. 23 (2007)

15. Cheon, Y., Leavens, G., Sitaraman, M., Edwards, S.: Model variables: cleanly sup-
porting abstraction in design by contract: research articles. Softw. Pract. Exp.
35(6), 583–599 (2005)

16. Leavens, G.T., Müller, P.: Information hiding and visibility in interface specifica-
tions. In: ICSE 2007, pp. 385–395. IEEE CS (2007)

17. Liu, Y., Hong, A., Qiu, Z.: Inheritance and modularity in specification and verifi-
cation of OO programs. In: TASE 2011, pp. 19–26. IEEE CS (2011)

18. Zongyan, Q., Ali, H., Yijing, L.: Modular verification of OO programs with inter-
faces. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012. LNCS, vol. 7635, pp. 151–166.
Springer, Heidelberg (2012)

19. Darvas, Á., Leino, K.R.M.: Practical reasoning about invocations and implemen-
tations of pure methods. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS, vol.
4422, pp. 336–351. Springer, Heidelberg (2007)

20. Leino, K.R.M.: Data groups: specifying the modification of extended state. In:
OOPSLA 1998, pp. 144–153. ACM (1998)

21. Burgman, R.: Specifying multi-threaded Java programs (2010). http://referaat.cs.
utwente.nl/conference/12/paper

https://github.com/fm-pku/mf-ap/blob/master/mf-ap.pdf
https://github.com/fm-pku/mf-ap/blob/master/mf-ap.pdf
http://referaat.cs.utwente.nl/conference/12/paper
http://referaat.cs.utwente.nl/conference/12/paper

Erratum to: A Monadic Semantics
for Quantum Computing
in Featherweight Java

Samuel da Silva Feitosa1(&), Juliana Kaizer Vizzotto1,
Eduardo Kessler Piveta1, and Andre Rauber Du Bois2

1 Universidade Federal de Santa Maria, Santa Maria, Brazil
{sfeitosa,juvizzotto,piveta}@inf.ufsm.br

2 Universidade Federal de Pelotas, Pelotas, Brazil
dubois@inf.ufpel.edu.br

Erratum to:
Chapter 3 in: F. Castor and Y.D. Liu (Eds.)
Programming Languages
DOI 10.1007/978-3-319-45279-1_3

In the initially published contribution the name of the author Samuel da Silva Feitosa
was incorrect. The correct name is as follows: Samuel da Silva Feitosa.

The updated original online version for this chapter can be found at 10.1007/978-3-319-45279-1_3

© Springer International Publishing Switzerland 2016
F. Castor and Y.D. Liu (Eds.): SBLP 2016, LNCS 9889, p. E1, 2016.
DOI: 10.1007/978-3-319-45279-1_13

http://dx.doi.org/10.1007/978-3-319-45279-1_3
http://dx.doi.org/10.1007/978-3-319-45279-1_3

Author Index

Belyakova, Julia 1
Bessa, Tarsila 16

Camarão, Carlos 95, 125
Cavalheiro, Gerson G.H. 110

da Silva Feitosa, Samuel 31
de Carvalho Junior, Francisco Heron 156
de Carvalho Silva, Jefferson 156
Du Bois, André Rauber 31, 110

Fernandes, João Paulo 46
Figueiredo, Lucília 125
Firsov, Denis 62
Frank, Michael 16

Góes, Luís F.W. 140

Hu, Tingting 78

Jeltsch, Wolfgang 62

Liu, Haiyang 78
Lopes, Raul 95

Martins, Pedro 46
Medeiros Duarte, Rodrigo 110

Pardo, Alberto 46
Pereira, Fernando Magno Quintão 16, 140
Pilla, Mauricio L. 110
Piveta, Eduardo Kessler 31

Qiu, Zongyan 78, 171
Quintão, Pedro 16

Reiser, Renata H.S. 110
Ribeiro, Rodrigo 95, 125
Rocha, Rodrigo C.O. 140

Saraiva, João 46

Vasconcellos, Cristiano 125
Viera, Marcos 46
Vizzotto, Juliana Kaizer 31

Zhang, Ke 78, 171

	Preface
	Organization
	Contents
	Language Support for Generic Programming in Object-Oriented Languages: Peculiarities, Drawbacks, Ways of Improvement
	1 Introduction
	2 Object-Oriented Approach to Constraining Type Parameters
	2.1 Language Constructs for Constraining Type Parameters in Object-Oriented Languages
	2.2 Drawbacks of the ``Constraints-are-Types'' Approach

	3 The ``Constraints-are-Not-Types'' Approach to Constraining Type Parameters
	4 Conclusion and Future Work
	References

	JetsonLeap: A Framework to Measure Energy-Aware Code Optimizations in Embedded and Heterogeneous Systems
	1 Introduction
	2 Overview
	3 The Infra-Structure of Energy Measurement
	4 Experimental Evaluation
	4.1 On the Precision of the Apparatus
	4.2 CPU vs GPU
	4.3 Local X Cloud

	5 Related Work
	6 Conclusion
	References

	A Monadic Semantics for Quantum Computing in Featherweight Java
	1 Introduction
	2 Quantum Computing
	3 Featherweight Java
	3.1 Featherweight Java Extensions

	4 Quantum Monadic Semantics
	5 Examples
	6 Related Work
	7 Conclusions and Future Work
	References

	Memoized Zipper-Based Attribute Grammars
	1 Introduction
	2 Zipper-Based Attribute Grammars
	3 Memoized AGs
	3.1 Memo Tables
	3.2 Attribute Computation

	4 Results
	4.1 Repmin
	4.2 Algol-68 Scope Rules
	4.3 HTML Table Formatter

	5 Conclusion
	References

	Purely Functional Incremental Computing
	1 Introduction
	2 Changes and Changeables
	3 Transformations Without State
	4 Transformations with Pure State
	5 Transformations with Mutable State
	5.1 Incremental Stable Sorting
	5.2 Monadic Transformations
	5.3 Transformation Combinators

	6 Related Work
	7 Conclusions and Further Work
	References

	Automatic Annotating and Checking of Dynamic Ownership
	1 Introduction
	2 Ownership System in Dynamic Ownership
	2.1 Ownership Topology
	2.2 Ownership Qualifiers
	2.3 Ownership States of Objects
	2.4 Encapsulation Discipline
	2.5 Object Invariants

	3 Analysis and Annotations Generation
	3.1 Overview
	3.2 Analysis for the Ownership Topology
	3.3 Ownership State Analysis
	3.4 Annotating the Program
	3.5 An Example

	4 Implementation and Experiments
	5 Related Work and Issues
	5.1 Related Work on Object Ownership
	5.2 Comparison Between expose and unpack/pack
	5.3 Object Invariant Assertions
	5.4 An Example of Manual Annotations

	6 Conclusion and Future Work
	References

	Certified Derivative-Based Parsing of Regular Expressions
	1 Introduction
	2 An Overview of Idris
	3 Regular Expressions
	4 Derivatives, Smart Constructors and Parsing
	4.1 Preliminaries
	4.2 Smart Constructors
	4.3 Derivatives and its Properties
	4.4 Parsing

	5 Implementation Details and Experiments
	6 Related Work
	7 Conclusion
	References

	Concurrent Hash Tables for Haskell
	1 Introduction
	2 Haskell Synchronization Methods
	2.1 Concurrent Haskell: MVars
	2.2 Low-Level Synchronization: IORef + atomicModifyIORef
	2.3 Transactional Memory: STM Haskell

	3 Hash Algorithms for Concurrency
	3.1 Global Lock Hash
	3.2 Hash Table Using Lock Striping
	3.3 Fine-Grain Lock Hash Table
	3.4 Lock Free Hash

	4 Results
	4.1 Execution Time
	4.2 Speedup

	5 Related Works
	6 Conclusions and Future Work
	References

	Optional Type Classes for Haskell
	1 Introduction
	2 Preliminaries
	3 Anti-unification of Instance Types
	4 Ambiguity Rule
	5 Modularization of Instances
	5.1 Pros and Cons of Instance Modularization

	6 Mini-Haskell with Optional Type Classes
	7 Records with Overloaded Fields
	8 Related Work
	9 Conclusion
	References

	An Algebraic Framework for Parallelizing Recurrence in Functional Programming
	1 Introduction
	2 Overview
	3 Automatic Parallelization of Recursive Functions
	3.1 Technical Background
	3.2 Monoids
	3.3 Semirings
	3.4 Examples
	3.5 Implementation

	4 Evaluation
	5 Related Work
	6 Conclusion
	References

	A Platform of Scientific Workflows for Orchestration of Parallel Components in a Cloud of High Performance Computing Applications
	1 Introduction
	2 HPC Shelf: A Cloud of HPC Services
	2.1 The Component Kinds of HPC Shelf
	2.2 Stakeholders
	2.3 Architecture
	2.4 Contextual Contracts

	3 SAFe (Shelf Application Framework)
	3.1 SAFeSWL: Workflow
	3.2 SAFeSWL: Architecture
	3.3 The Orchestration Subset of SAFeSWL

	4 Related Works and Contributions
	5 Conclusions and Further Work
	References

	Comparison Between Model Fields and Abstract Predicates
	1 Introduction
	2 Background
	2.1 Model Fields
	2.2 Abstract Predicates
	2.3 Preliminary Comparison

	3 Expressiveness
	3.1 Translation Rules
	3.2 Well-Formedness of Translation Result
	3.3 Framing
	3.4 Further Investigation
	3.5 Ownership

	4 Related Work
	5 Conclusion
	References

	Erratum to: A Monadic Semantics for Quantum Computing in Featherweight Java
	Erratum to: Chapter 3 in: F. Castor and Y.D. Liu (Eds.) Programming Languages DOI 10.1007/978-3-319-45279-1_3

	Author Index

