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Preface

The problems of representing, and working with, uncertain knowledge are ancient
problems dating, at least, from Leibnitz, and later explored by a number of dis-
tinguished scholars—Jacob Bernoulli, Abraham de Moivre, Thomas Bayes, Johann
Heinrich Lambert, Pierre-Simon Laplace, Bernard Bolzano, Augustus De Morgan,
George Boole, just to name a few of them. In the last decades there is a growing
interest in the field connected with applications to computer science and artificial
intelligence. Researchers from those areas have studied uncertain reasoning using
different tools, and have used many methods for reasoning about uncertainty:
Bayesian network, non-monotonic logic, Dempster–Shafer Theory, possibilistic
logic, rule-based expert systems with certainty factors, argumentation systems, etc.

Some of the proposed formalisms for handling uncertain knowledge are based on
probability logics. The present book grew out a sequence of papers on probability
logics written by the authors since 1985. Also, some of our papers, from 2001
onwards, were coauthored by (in alphabetical order): Branko Boričić, Tatjana
Davidović, Dragan Doder, Radosav Đorđević, Silvia Ghilezan, John Grant, Nebojša
Ikodinović, Angelina Ilić Stepić, Jelena Ivetić, Dejan Jovanović, Ana Kaplarević-
Mališić, Ioannis Kokkinis, Jozef Kratica, Petar Maksimović, Bojan Marinković,
Uroš Midić, Miloš Milovanović, Miloš Milošević, Nenad Mladenović, Aleksandar
Perović, Nenad Savić, Tatjana Stojanović, Thomas Studer, Siniša Tomović. Two
chapters in this book, five and six, are written in collaboration with Aleksandar
Perović, Dragan Doder, Angelina Ilić Stepić, and Nebojša Ikodinović.

Although the earliest of those papers were motivated by the work of H.J. Keisler
on probability quantifiers, our focus in this book is on latter results about proba-
bility logics with probability operators. The aim of this book is to provide an
introduction to probability logic-based formalization of uncertain reasoning. So, our
primary interest is related to mathematical techniques for infinitary probability
logics used to obtain results about proof-theoretical and model-theoretical issues:
axiomatizations, completeness, compactness, decidability, etc., including solutions
of some problems from literature. This text might serve as a base for further
research projects and as a reference text for researchers wishing to use probability
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logic, but also as a textbook for graduate logic courses. An extensive bibliography
is provided to point to related works.

The authors would like to thank to all collaborators and also to acknowledge the
support obtained from the Ministry of science, Ministry of Science, Technology and
Development, and Ministry of Education, Science and Technological Development
of the Republic of Serbia that provided us with partial funding under
grants ON0401A and ON04M02 (1996–2000), ON1379 (2002–2005), ON144013
(2006–2010), ON174026 and III044006 (2011–2016).

Belgrade, Serbia Zoran Ognjanović
Miodrag Rašković
Zoran Marković
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Chapter 1
Introduction

Abstract This introduction gives an overview of some fields of mathematical logic
and underlying principles (ω-rule,Lω1ω, nonstandard analysis, admissible sets,modal
logics) that are used in the rest of the book. Particularly, it provides motivation for
various applications of infinitarymeans in obtaining the presented results. A compar-
ison between the mainstream approach to mathematical theory of probability based
on Kolmogorov’s axioms and probability logics is given. Finally, the organization of
the book is presented.

1.1 What Is this Book About: Consequence Relations
and Other Logical Issues

A significant part of mathematical logic explores consequence relations, i.e., deriva-
tions of some formulas from other formulas. In that business, it is assumed that
mathematical logic should be as reliable as possible. In the first place, it means that
a precise definition of a symbolic language in which formulas are formed should
be given. Furthermore, semantics should be associated to the language, giving the
meaning to building blocks of formulas: atomic formulas, logical connectives, and
quantifiers. One can, as suitable instruments, introduce the notions of models and
satisfiability relations so that a formula A is a semantical consequence of a (possibly
empty) set of formulas T if A is satisfied (in a model, or, alternatively, in a world from
a model) whenever all formulas from T are satisfied (in that model, or in that world).
Simultaneously, inferences can be studied by means of an axiom system (consist-
ing of axioms and inference rules) where the notion of proof should be determined
yielding the notion of syntactical consequence.

A bridge which connects those semantical and syntactical approaches can be
established by the soundness and completeness theorems. The usual forms of those
theorems are:

• the weak (or simple) completeness: a formula is consistent iff it is satisfiable (i.e.,
a formula is valid iff it is provable), or

© Springer International Publishing AG 2016
Z. Ognjanović et al., Probability Logics,
DOI 10.1007/978-3-319-47012-2_1
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2 1 Introduction

• the strong (or extended) completeness: a set of formulas is consistent iff it is
satisfiable (a formula is a syntactical consequence of a set of formulas iff it is a
semantical consequence of that set).

While the former statement follows trivially from the latter, the opposite direction is
not straightforward. In classical propositional and first-order logics these theorems
are equivalent, thanks to a significant property formulated as:

• the compactness theorem: a set of formulas is satisfiable iff every finite subset of
it is satisfiable.

But, there are logics where compactness fails which complicates their analysis.
In our approach to probability logics, we extend the classical (intuitionistic, tem-

poral, …), propositional or first-order calculus with expressions that speak about
probability, while formulas remain true or false. Thus, one is able to make state-
ments of the form (in our notation) P≥sα with the intended meaning “the probability
of α is at least s”. Such probability operators behave likemodal operators and the cor-
responding semantics consists of special types of Kripke models (possible worlds)
with addition of probability measures defined over the worlds. We will explain in
details in Sect. 3.3 that for probability logics compactness generally does not hold,
and discuss some consequences of that property. For example, it is possible to con-
struct sets of formulas that are unsatisfiable and consistent1 with respect to finitary
axiomatizations (for the notion of finitary axiom systems see Appendix 1.1.2). That
can be a good reason for a logician to investigate possibilities to overcome the men-
tioned obstacle. On the other hand, from the point of view of applications, one
can argue that, since propositional probability logics are generally decidable, all we
need is an efficient implementation of a decision procedure which could solve real
problems. However, as we know, propositional logic is of rather limited expressiv-
ity and in many (even real life) situations first order logic is a must. It was proved
that the sets of valid formulas in probabilistic extensions of first-order logic are not
recursively enumerable, so that no complete finitary axiomatization is possible at all
(see Chap.4). Hence, there are no finitary tools that allow us to adequately model
reasoning in this framework. We believe that this is not only of theoretical interest,
which has motivated us to investigate alternative model-theoretic and proof-theoretic
methods appropriate for providing strongly complete axiomatizations for the studied
systems. The main part of this book is devoted to those issues.

As one of the distinctive characteristics of our approach in exploring relationship
between logic and probability,2 we have used different aspects of infiniteness which
has proved to be a powerful tool in this endeavor. At the same time, we will try to
accomplish it with tools as weak as possible, i.e., to limit the use of infinitary means:
we generally use countable object languages and finite formulas, while only proofs
are allowed to be infinite.

1Contradiction cannot be deduced from the set of formulas.
2Actually, in Chap.2 we will present some evidences about common roots of these two important
branches of mathematics.

http://dx.doi.org/10.1007/978-3-319-47012-2_3
http://dx.doi.org/10.1007/978-3-319-47012-2_4
http://dx.doi.org/10.1007/978-3-319-47012-2_2


1.1 What Is this Book About: Consequence Relations … 3

Other important problemswhichwill be addressed in the book are related to decid-
ability and complexity of probability logics. We will also describe our attempts to
develop heuristically-based methods for the probability logic satisfiability problem,
PSAT.

The main contribution of our work presented in this book concerns development
of a new technique for proving strong completeness for non-compact probability
logics which combines Henkin style procedures for classical and modal logics and
which works with infinitary proofs. This method enabled us to solve some open
problems, e.g., strong completeness for real-valued probabilities in the propositional
and first-order framework and for polynomial weight formulas (see the Chaps. 3, 4,
5, 7). It was also applied to other non-compact logics, for example to linear and
branching discrete time logics [3, 4, 31, 37, 39, 46], and logics with probability
functions with partially ordered ranges, etc.

1.2 Finiteness Versus Infiniteness

Standard courses of mathematical logic, usually encompassing classical proposi-
tional and first-order logic, assume that axiom systems are finitary. Such a system
is presented by a finite list of axiom schemas and inference rules (each rule with a
finite number of hypothesis and one conclusion). Itmight create an impression that all
axiom systems are finitary in the above sense. Nevertheless, infiniteness can play an
important role and significantly expand expressive power of formal systems. It can be
traced back to an extremely important period of development of mathematical logic,
i.e., to 1930s.3 These years brought many significant results in mathematical logic
and, what we call today, theoretical computer science. One of the most prominent
among them, the first Gödel’s incompleteness theorem [10], says that for any con-
sistent first order formal system, expressive enough to represent finite proofs about
natural numbers, there is no recursive (finitary) complete axiomatization. It sug-
gests that some kind of infiniteness should be involved into formal systems to study
the standard model of arithmetics. Indeed, several such approaches were introduced
before 1940.

The seminal work of Gerhard Gentzen [9] showed that, by associating ordinals to
derivations, the consistency of the first-order arithmetic is provable in a theory with
the principle of transfinite induction up to the infinite ordinal ε0.

In his Ph.D. Thesis [60] Alan Turing considered a formal system T0 powerful
enough to represent arithmetics, and a sequence of logical theories (each theory
Ti+1 obtained from the preceding one by adding the assertion about consistency of
Ti, Tω = ∪Ti, and further iterated into the transfinite). He asked whether one of
the logics indexed with denumerable ordinals is complete with respect to statements
true in the standardmodel of natural numbers. Although Turing established that Tω+1

proves an important subclass of true formulas (all valid �1 sentences, i.e., sentences

3It is pointed out in Chap.2 that already Leibnitz discussed infinitary proofs.

http://dx.doi.org/10.1007/978-3-319-47012-2_3
http://dx.doi.org/10.1007/978-3-319-47012-2_4
http://dx.doi.org/10.1007/978-3-319-47012-2_5
http://dx.doi.org/10.1007/978-3-319-47012-2_7
http://dx.doi.org/10.1007/978-3-319-47012-2_2
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of the form (∀x)A(x), where A is a recursive predicate), later on it was showed in [7]
that this progression is not complete (already for true ∀∃ sentences).

Finally (and more relevant to this text), some well-known logicians (Tarski,
Hilbert, Carnap) introduced ω-rule to overcome the limitations of finitary formal
systems of arithmetic [24, 59].

In Gödel’s analysis of undecidability, the role of recursive (�0) and recursively
enumerable (�1) sets (arithmetical predicates, formulas) is important. Informally
speaking, a�0-formula (or a bounded formula) is a formula whose all quantifiers are
bounded,while a�1-formula is, up to equivalence, in the formof a block of existential
quantifiers applied on a �0-formula, i.e., if α is a �0-formula, then ∃x1 . . . ∃xnα is a
�1-formula. More precisely, a �0-formula is inductively defined as follows:

• Any quantifier free formula is a �0-formula;
• Boolean combination of �0-formulas is a �0-formula;
• If α is a �0-formula, then ∀x(x ≤ t → α) and ∃x(x ≤ t ∧ α) are �0 formulas.

In investigation presented in this book, we will be using different manifestations
of infinity:

• infinitary proofs,
• infinitary formulas,
• infinitary ranges of probability functions with an infinitary property (σ -additivity),
• ranges of probability functions containing infinitely small values,4 and
• admissible sets,

but also, where possible, their finitary counterparts will be discussed.

1.2.1 ω-rule

The basic form of this rule in the language of arithmetic {+, ·, S, 0} is
• from A(0), A(1), A(2) …, infer (∀x)A(x)

where 1 = S0, 2 = SS0, …, are numerals. When one adds this rule to a usual axiom
system of arithmetics (PA or Robinson arithmetic Q), a complete logic allowing
proofs of infinite length is obtained [8, 58]. More recently, some versions of ω-
rule (with the additional assumption that proofs of all premises A(n) are recursive)
suitable for effective implementation in automated deduction environments have
been considered [1].

In axiom systems presented in this book several inference rules with infinite
number of premisses and one conclusion, related to different aspects of probability,
will be used.

4Infinitesimals.
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1.2.2 Infinitary Languages

Probably the simplest infinitary logic is Lω1ω which admits at most countable con-
junctions and disjunctions, and finite blocks of quantifiers [25].

Note that the increased expressivity enables formal syntactical description of any
countable first-order structure. For instance, the additive group 〈Z,+〉 of integers
can be formally coded by the following Lω1ω-sentence:

φZ ⇔def ∀x
(∨
n∈Z

x = cn

)
∧

∧
n =m

cn = cm ∧
∧

n,m∈Z
cn ∗ cm = cn+m.

The underlying first-order language LZ contains one binary function symbol ∗ and
countably many constants {cn : n ∈ Z}. It is easy to see that an LZ-structure 〈M, ∗M〉
is a model of φZ iff it is isomorphic to the group 〈Z,+〉.

However, the increased expressiveness comes with the price: the compactness
theorem is not true for the Lω1ω. Indeed, using the same language LZ as in the
previous example, the following set of LZ-sentences⎧⎨

⎩
∨

n∈Z\{0}
cn = c0

⎫⎬
⎭ ∪ {cn = c0 : n ∈ Z \ {0}}

is finitely satisfiable, but it is not satisfiable.
As a formal theory, Lω1ω extends classical first-order logic in the following way:

• Lω1ω admits infinitary formulas,
• Lω1ω has three additional axioms:

–
∧

i∈N αi → αk , for every k ∈ N

– ¬∧
i∈N αi ↔ ∨

i∈N ¬αi

– ¬∨
i∈N αi ↔ ∧

i∈N ¬αi,

• Lω1ω has an additional infinitary inference rule

– From {β → αi : i ∈ N} infer β → ∧
i∈N αi.

For Lω1ω strong completeness fails, and only weak completeness can be proved.
In Chap.5 a fragment of Lω1ω will be used in characterization of probability

functions with arbitrary finite ranges.

1.2.3 Hyperfinite Numbers and Infinitesimals

The nonstandard analysis was introduced by Abraham Robinson (1918–1974) in
1961 [57]. He successfully applied the compactness theorem in order to perform the

http://dx.doi.org/10.1007/978-3-319-47012-2_5
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so-called rational reconstruction of the Leibnitz’s differential and integral calculus.
The key feature of Robinson’s theory was consistent foundation of infinitesimals and
hyperfinite numbers.

Suppose that S is an arbitrary set. A superstructure on S is the set

V (S) = Vω(S) =
⋃
n∈ω

Vn(S),

where V0(S) = S and Vn+1(S) = P(Vn(S)). If S = ∅, then V (S) = Vω = HF,
i.e., V (∅) coincides with the set HF of hereditary finite5 sets. For the nonstandard
analysis the most interesting case is S ⊆ R. Anyhow, S should be large enough to
include all relevant objects within the scope of the underlying problem.

A nonstandard universe on S is a pair 〈∗V (S), ∗〉, where ∗V (S) is a proper superset
of the standard universe V (S) and ∗ is so-called lifting function ∗ : V (S) −→ ∗V (S)
such that

∗s =def ∗(s) = s

for all s ∈ S.
A set X ∈ V (∗S) is:

• internal, iff there is A ∈ V (S) such that X ∈ ∗A;
• external, iff it is not internal;
• standard, iff X = ∗A for some A ∈ V (S).

For example, ∗
N is a standard set,6 sin(Hx) is an internal set for any H ∈ ∗

N \N,
while S and N are external sets.

In particular, elements of the set ∗
N\N are called hyperfinite numbers. An internal

setA is called hyperfinite iff there are a hyperfinite numberH and an internal bijection
f : H −→ A.

So, the notion of a hyperfinite set is a direct generalization of the notion of the finite
set. Of special significance for applications of nonstandard analysis in probability
theory and probability logic is the so-called hypertime interval

T =def

{ n

H
: n ≤ H and n ∈ ∗

N

}
.

Note that, in terms of the nonstandard universe, T is a hyperfinite set since it has
H elements. However, T is not only an infinite set, but its cardinality is equal to
continuum since there is a bijection between T and the real unit interval [0, 1]. This

5A recursive definition of HF goes as follows:

• ∅ ∈ HF;
• X ∈ HF iff X is finite and all its elements are also hereditary finite.

By axiom of regularity, there is no sequence of sets 〈xn : n ∈ ω〉 such that xn+1 ∈ xn for all n, so
our definition is correct. In particular, ∅ is the simplest hereditary finite set.
6It is also a proper superset of N, provided the usual restriction N /∈ S.
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fact was used by Peter Loeb to define the Loeb measure and to establish a natural
correspondence between the counting measure and the Lebesgue measure (so called
Loeb construction or Loeb process) [30]. Thus, the notion of hyperfinite is a bridge
between discrete and continuous.

An infinitesimal is any ε ∈ ∗
R such that

−1

n
< ε <

1

n

for all n ∈ N \ {0}. For example, if H is a hyperfinite number, then 1
H is a positive

infinitesimal.
Some of the key features of the nonstandard analysis are listed below:

• Internal definition principle. A set X ∈ V (∗S) is internal iff

X = {x : x ∈ A and α(x,A1, . . . ,An)},

where α is a �0-formula and A, A1, . . . ,An are internal sets;
• Standard definition principle. A set X ∈ V (∗S) is internal iff

X = {x : x ∈ A and α(x,A1, . . . ,An)},

where α is a �0-formula and A, A1, . . . ,An are standard sets;
• ω1-saturatedness. If {An : n ∈ N} is a countable descending family of internal
nonempty sets (i.e., An+1 ⊆ An for all n), then

⋂
n∈N An = ∅;

• Congruence. For any A ∈ S, x ∈ A iff ∗x ∈ ∗A. Similarly, ∗(A ∪ B) = ∗A ∪ ∗B,
∗(A × B) = ∗A × ∗B, ∗(A \ B) = ∗A \ ∗B etc.;

• Overspill. If A is an internal set and N ∩ A is infinite, then A contains at least one
hyperfinite number;

• Underspill. If an internal set A contains arbitrary small hyperfinite numbers (i.e.,
for all hyperfinite H ∈ A exists a hyperfinite K ∈ A such that K < H), then
A ∩ N = ∅.
Nonstandard notions and techniques are used in the Chaps. 5 and 6 to obtain

a complete axiomatization and to prove decidability of a logic with approximate
conditional probabilities.

1.2.4 Admissible Sets

The theory of admissible sets was introduced by Kenneth Jon Barwise (1942–2000)
[2] in order to provide a minimal formal framework for the study of recursion the-
ory. The notion of finiteness is generalized by so-called admissible countability or
A-finiteness for the given admissible set A.

http://dx.doi.org/10.1007/978-3-319-47012-2_5
http://dx.doi.org/10.1007/978-3-319-47012-2_6
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Admissible set theory is a fragment of Zermelo–Fraenkel set theory with the
following axioms:

• Extensionality. A = B iff they have the same elements;
• Empty set. ∅ =def {x : x = x} is a set;
• Pair. If A and B are sets, then {A,B} =def {x : x = A ∨ x = B} is also a set;
• Union. If A is a set, then

⋃
A =def {x : (∃a ∈ A)x ∈ a} is also a set;

• �0-separation. If A is a set and α is a �0-formula, then {x : x ∈ A∧ α} is also a
set;

• �0-collection. Suppose that α(x, y) is a �0-formula such that for any set X there
is a set Y such that α(X,Y) holds. Then, for any set A there is a set B such that
(∀a ∈ A)(∃b ∈ B)α(a, b) is true;

• Regularity. The membership relation ∈ is regular, i.e., each set has ∈-minimal
element. More precisely, for any set A exists a ∈ A such that a ∩ A = ∅;

• Infinity.7 There exists set A such that ∅ ∈ A and a ∪ {a} ∈ A for all a ∈ A.

The most notable difference between the admissible set theory and ZFC is the
absence of axioms of choice and the powerset axiom. Hence, the admissible set
theory cannot be used for the study of infinitary combinatorics due to the fact that
one cannot establish the hierarchy of infinite cardinals. It can be shown that certain
important mathematical concepts, such as ordered pair and Cartesian product, can
be coded by means of the admissible set theory.

An admissible set is any setA such that the pair 〈A,∈〉 is amodel of the admissible
set theory. For the study and development of probability logic, the most important
example of the admissible set is the setHC of all hereditary countable sets. Similarly
to the set HF of hereditary finite sets, the set HC is inductively defined as follows:

• HF ⊆ HC;
• X ∈ HC iff X is at most countable and x ∈ HC for all x ∈ X.

As before, the axiom of regularity provides the correctness of the above definition.
The main technical aspect of the set HC of all hereditary countable sets is the

fact that the admissible fragment LA of the infinitary logic Lω1ω can be effectively
coded in HC by means of the admissible set theory. For example, suppose that
F = {αi : i ∈ I} is a countable admissible set of formulas and that f : F −→ HC is
an admissible coding of F. If k ∈ HC is a Gödel number (effective or recursive code)
of a conjunction, then 〈k, f 〉 ∈ HC is a Gödel number of the infinitary LA-formula∧

i∈I αi.
In other words, recursive infinitary logical constructions (formula formations,

proofs, completion technique) can be represented as sets and set operations in the
admissible set theory.

In particular, the elements of an admissible set A are called A-finite. The most
important technical tool of the admissible set theory is the Barwise compactness
theorem that connects consistency with A-finitness:

7This axiom is optional, i.e., some authors do not include it in the system.
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Barwise compactness theorem. Suppose thatA is a countable admissible set and
that T is a�1-definable8 set of LA-sentences. Then, T is satisfiable iff eachA-finite
subset of T is satisfiable.

An admissible fragment of a probabilistic counterpart of Lω1ω is constructed in
Chap.5 to completely axiomatize probability functions with arbitrary finite ranges.

1.2.5 Ranges of Probability Functions

For our basic logics, in the Chaps. 3 and 4, we develop completion and decidability
techniques wrt. the standard real-valued probability functions. However, real-valued
probabilities are proved to be inadequate to model different types of uncertainty,
as it is the case in default reasoning. For this purpose we consider other kinds of
probability functions with various ranges:

• the finite set {0, 1
n ,

2
n , . . . ,

n−1
n , 1},

• the unit interval of rational numbers [0, 1]Q, or some other recursive subsets of
[0, 1],

• the unit interval of Hardy field [0, 1]Q(ε),
• some partially ordered countable commutative monoid with the least element 0,
e.g., [0, 1]Q × [0, 1]Q, and

• a closed ball in the field Qp of p-adic numbers.

As expected, different types of ranges impose numerous challenges in axiomatiza-
tions. In this book we provide appropriate methodology to resolve those issues.

1.3 Modal Logics

Motivated by paradoxes of material implication (see Sect. 2.5.4), development of
modal logics at first evolved in a pure syntactical framework. Clarence Irving Lewis
(1883–1964) published a number of papers since 1912 and proposed several formal
systems to axiomatize strict implication9 understood as “it is impossible that the
antecedent is true, while the consequent is false”, or equivalently as “it is necessary
that if the antecedent is true, then so is the consequent” [13, 29]. There are numer-
ous modal logics, but the most studied between them are so-called normal modal
logics. The simplest normal modal logic, denoted K , is axiomatized using the axiom
schemata:

8There is a �1-formula α such that 〈A,∈〉 |= T = {x : α}.
9In modern notation the formal language of modal logics extends the classical propositional lan-
guage with the unary necessity operator �. Then, the strict implication is written as �(α → β).

http://dx.doi.org/10.1007/978-3-319-47012-2_5
http://dx.doi.org/10.1007/978-3-319-47012-2_3
http://dx.doi.org/10.1007/978-3-319-47012-2_4
http://dx.doi.org/10.1007/978-3-319-47012-2_2
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1. all substitutional instances of the classical propositional tautologies, and
2. (Axiom K) �(α → β) → (�α → �β),

and the inference rules:

1. Modus ponens, and
2. (Necessitation) if α, then �α.

Other normal modal systems extend K with additional axioms that determine prop-
erties of the modal operator �.

Today the most widely accepted semantics for modal logics was proposed in the
late 1950s by Saul Kripke (1940) [28]. The semantics is based on the idea of possible
worlds equipped with a relation which represents visibility or accessibility between
worlds. A Kripke model for propositional modal logics is a structureM = 〈W,R, v〉
such that:

• W is a nonempty set of objects called worlds,
• R ⊂ W × W is an accessibility relation between worlds,
• v : W ×φ → {true, false} provides for each world w ∈ W a two-valued valuation
of the set φ of primitive propositions,

while a formula α is satisfied in a world w (denoted w |= α):

• if α ∈ φ, w |= α iff v(w)(α) = true,
• if α = ¬β, w |= α iff w |= β,
• if α = β ∧ γ , w |= α iff w |= β and w |= γ , and
• if α = �β, w |= α iff for every u ∈ W , if wRu, then u |= β.

Note that, since the truth value of �α in a world w depends on R, i.e., on worlds
accessible from w, modal logics are not truth-functional. Modal models without par-
ticular requirements forR characterize the systemK . For stronger systems, additional
axioms correspond to particular properties of R, for example:

• (T) �α → α corresponds to reflexivity,
• (4) �α → ��α corresponds to transitivity,
• (B) α → �¬�¬α, etc.

The operator � can be interpreted in many ways:

• temporal: �α is read “α always holds” [50],
• epistemic: �α is read “an agent knows α” [12],
• proof-theoretical: �α is read “α is provable” [11], etc.,

which is of great importance in applications. Therefore, modal logics are today
accepted as formal bases for many systems in computer science and artificial intel-
ligence.

One of the consequences of similarities between Kripke modal models and prob-
ability models (see the Definitions 3.2 and 4.1; instead of accessibility relations
those models involve probability spaces) is that probability operators are not truth-
functional. Since the semantics of � is given using universal quantification over

http://dx.doi.org/10.1007/978-3-319-47012-2_3
http://dx.doi.org/10.1007/978-3-319-47012-2_4
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possible worlds, probability operators can be seen as a sort of softening of the neces-
sity operator which gives additional expressivity and inspires possible mixing of the
modal and probability languages.

1.4 Kolmogorov’s Axiomatization of Probability
and Probability Logics

Although there are several other proposals, the axiomatization of probability based on
measure-theoretic notions given by Andrei Nikolaevich Kolmogorov (1903–1987)
(see Sect. 2.6.4) is generally accepted as a standard. One can legitimately askwhether
it is a logic, orwhat is its relationshipwith probability logics. To clarify that questions,
one should be aware of the methodology which is used in mathematical logic. As
we emphasize at the beginning of this Chapter and in Appendix, mathematical logic
distinguishes between:

• syntax and semantics,
• object language and meta language, and
• object level and meta-level of reasoning.

While ordinary mathematicians often do not recognize these levels and mix them
into one, the primary interest of mathematical logic is to formulate and prove (at the
meta-level) statements about syntactical and semantical notions from the object level
of reasoning (e.g., object-level theorems, valid formulas and so on). So, this method-
ological difference forces that many questions that are in the focus of probability
logics (consequence relations, completeness, compactness, decidability, complexity,
etc.) are not of huge importance in probability theory.10 For instance,we do not expect
that a probabilist would be too much interested whether optimal bounds of probabil-
ities for consequences of some uncertain premisses are effectively computable.

In that sense, we do not consider Kolmogorov’s axiomatization as a logic. Kol-
mogorov’s axiomatization is used as a basis for semantics for some of the probability
logics presented in this book, but, other approaches to probability are also studied:
non-real-valued probabilities, probabilities with partially ordered ranges, coherent
probabilities, etc.

Finally, we would like to point out that investigations in the field of probability
logics can be useful in proving new theorems about probability: e.g., Keisler in [26,
27] proves existence theorems for some stochastic differential equations which are
not proved by classical methods.

10And vice versa—probability logics do not carefully study some of the issues in probability theory.

http://dx.doi.org/10.1007/978-3-319-47012-2_2
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1.5 An Overview of the Book

We present a number of probability logics. The main differences between the logics
are:

• some of the logics are infinitary, while the others are finitary,
• the corresponding languages contain different kinds of probabilistic operators,
both for unconditional and conditional probability,

• some of the logics are propositional, while the others are based on first-order logic,
• for most of the logics we start from classical logic, but in some cases the basic
logic can be intuitionistic or temporal,

• in some of the logics iterations of probabilistic operators are not allowed,
• for some of the logics, restrictions of the following kinds are used: only probability
measures with fixed finite range are allowed in models; ranges of probability func-
tions are rational numbers, or complex numbers, or p-adic numbers, or domains
of monoids; only one probability measure on sets of possible worlds is allowed in
a model; the measures are allowed to be finitely additive.

For all these logics we give the corresponding axiomatizations, prove completeness,
and discuss their decidability. More precisely, we consider the following logics:

• LPP1 (L for logic, the first P for propositional, and the second P for probability),
probability logic which starts from classical propositional logic, with iterations of
the probability operators and real-valued probability functions [38, 38, 42, 52],

• LPPFr(n)
1 and LPPS

1 propositional probability logics with probability functions
restricted to have ranges {0, 1/n, . . . , (n − 1)/n, 1} and S, respectively [38, 40,
42, 52],

• LPPA,ω1,Fin
1 , propositional probability logic with probability functions restricted to

have arbitrary finite ranges [5, 52],
• LPPLTL

1 , probability logic similar to LPP1, but the basic logic is discrete linear time
logic LTL [37–39], and LPPBTL

1 , propositional discrete probabilistic branching
time logic [3, 46],

• LPP2, LPP
Fr(n)
2 , LPPA,ω1,Fin

2 , and LPPS
2 , probability logics without iterations of the

probability operators [38, 42, 51, 52, 52],
• LPP2,P,Q,O, probability logic which extends LPP2 by having a new kind of prob-
abilistic operators of the form QF , with the intended meaning “the probability
belongs to the set F” [18, 41],

• LPP2,� and LPPFr(n)
2,� , probability logics similar to LPP2 and LPP

Fr(n)
2 , but allowing

reasoning about qualitative probabilities [45, 47],
• LPPI

2, probability logics similar to LPP2, but the basic logic is propositional intu-
itionistic logic [32–34],

• LFOP1, LFOP
Fr(n)
1 , LFOPA,ω1,Fin

1 , LFOPS
1 and LFOP2, the first-order counterparts

of the above logics [42, 53],
• several Kolmogorov’s style-conditional probability propositional and first-order
logic, with or without iterations of the probability operators, with real valued
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probability functions, or probability functions with the range [0, 1]Q(ε) that can
express approximate probabilities [14, 35, 36, 43, 44, 54–56],

• LPCPChr
2 , propositional conditional probability logic, which corresponds to de

Finetti’s view on coherent conditional probabilities [14, 15],
• LPG2, LCOMPB, LCOMPS ,CPLZQp

,CPLfin
Qp
, propositional probability logics with

monoid-valued (complex-valued, p-adic-valued) probability functions [16, 17,
19–23],

• LWF and PWF, propositional probability logics with linear and polynomial
weight formulas (introduced in [6]) with ∗

R-valued probability functions [47–
49].

The parts of the book can be described as follows.
Chapter 2 introduces readers to a fascinating story about interactions between

mathematical logic and probability which is full of great ideas and discoveries. We
will particularly try to emphasize topics that motivated our research.

The key concepts (syntax and semantics, an infinitary axiomatization, the corre-
sponding strong completeness, decidability and complexity) ofLPP2 are presented in
Chap.3. As the semantics, we introduce a class of models that combine properties of
Kripke models and probabilities defined on sets of possible worlds. We consider the
class of so-called measurable models (which means that all sets of possible worlds
definable by classical formulas are measurable) and some of its subclasses: in the
first case all subsets of worlds are measurable, then probabilities are required to be
σ -additive, while models in the last subclass satisfy that only empty set has the zero
probability. The proposed axiomatization is infinitary, i.e., there is an inference rule
with countably many premisses and one conclusion:

• From A → P≥s− 1
k
α, for every integer k ≥ 1

s , and s > 0 infer A → P≥sα.

The rule corresponds to the following property of real numbers: if the probability is
arbitrary close to s, it is at least s. Thus, proofs with countably many formulas are
allowed. We give full details of the proof of strong completeness, so that it can be,
with the corresponding modifications, used as a template for the other completeness
proofs presented in the book. Decidability of PSAT, the satisfiability problem for
LPP2, is proved by a reduction to linear programming problem. Since the related
linear systems can be of exponential sizes, we describe some heuristic approaches
to the probabilistic satisfiability problem.

Chapter 4 investigates the first-order probability logic LFOP1 which allows iter-
ations of probability operators, so that it is possible to formalize reasoning about
higher order probabilities. Since validity is not even recursively enumerable in that
first-order framework, the presented infinitary axiom system, obtained by adding
the probability axioms and inference rules (introduced in Chap. 3) to the classical
axiomatization, is a reasonable tool for formalization of the logic. We also discuss
relationship between LFOP1 and modal logics by analyzing some properties of first-
order modal models (constant domains, rigidness of terms) from the perspective of
probability logics. Then we prove (un)decidability of (some fragments of) LFOP1.
Finally, a logic which combines temporal and probability reasoning is introduced.

http://dx.doi.org/10.1007/978-3-319-47012-2_2
http://dx.doi.org/10.1007/978-3-319-47012-2_3
http://dx.doi.org/10.1007/978-3-319-47012-2_4
http://dx.doi.org/10.1007/978-3-319-47012-2_3
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Chapter 5 covers various probability logics, i.e., variants of LPP2 and LFOP1

obtained by putting restrictions on (or by extending) ranges of probability func-
tions and/or on the used formal languages. We consider new types of probabilistic
operators:

• the conditional probability operators CP≥s, CP≤s,
• the probability operators that express imprecise probabilities P≈s, CP≈s,
• the qualitative probability operator �,
• the probability operators of the formQF with the intendedmeaning “the probability
belongs to the set F”.

and alternative ranges of probability functions: finite, countable, with infinitesimals,
or partially ordered. We consider inference rules that help us to syntactically define
ranges of probability functions. Also, we describe the logic LPPI

2 which extends
propositional intuitionistic logic.

Chapter 6 deals with applications. In the case of LPCP
[0,1]Q(ε),≈
2 , the range is

the unit interval of a recursive non-Archimedean field which makes it possible to
express statements about approximate probabilities: CP≈s(α, β) which means “the
conditional probability of α given β is approximately s”. Formulas of the form
CP≈1(α, β) can be used to model defaults, i.e., expressions of the form “if β, then
generallyα”. So, we relateLPCP

[0,1]Q(ε),≈
2 with thewell-known systemPwhich forms

the core of default reasoning. We also discuss other applications to, for example,
reasoning about evidence, modeling of the process of human thinking based on p-
adic numbers, etc.

A limited number of related papers published between the 1980s and 2010s are
discussed in Chap. 7.

Finally,Appendix provides an overviewof somegeneral concepts inmathematical
logic (formal systems, syntax, semantics, axiom systems, proofs, completeness, etc.)
and probability theory ((σ -) algebras, (σ -) additive measures, the usual and coherent
concepts of probability, etc.) which could help less experienced readers to follow the
rest of the text.

Each chapter ends with the list of relevant references.
The book concludes with an index.
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32. Marković, Z., Ognjanović, Z., Rašković, M.: A probabilistic extension of intuitionistic logic.

Math. Logic Q. 49, 415–424 (2003)
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Chapter 2
History

Abstract Wegive a survey of the relationship throughhistory betweenmathematical
logic and probability theory. Actually, these two branches of science were strongly
connected and intertwined since the appearances of the first treatises on probability
in the second half of the seventeenth century, while probability theory was often
considered as an extension of logic. However, in these early days and even in the
first century and a half of development, the basic notions of probability theory, like
probability itself, conditional probability, independence, etc., were not standardized,
or their meanings were quite different from the modern ones, which allows several
(sometimes opposite) interpretations of original statements. Where appropriate, we
give such apparently contrary opinions of modern commentators. Thanks to numer-
ous digital repositories, many of the old original writings are now at public disposal.
In this chapter, we extensively quote these source texts to illustrate how their authors
created one of the most exiting scientific fields and developed the main concepts
in probability theory. In this way, the reader is offered the insight into the spirit of
those great minds and their times, but it is also left to her/him to grasp the ideas
in their original forms, so that she/he can assess what the authors wanted to say.
The chapter covers very ambitiously the period from Aristotle and Plato until the
middle of 1980s, but most of the materials were selected to emphasize the original
ideas that motivated or, at least, that are somehow related to contemporary research
in the field of probability logic (which also involves some results of the authors of
this book). Far more extensive historical and philosophical studies can be found for
example inDevlin, The unfinished game: Pascal, Fermat and the seventeenth-century
letter that made theworldmodern, 2008, [45], Hailperin, Sentential probability logic,
origins, development, current status and technical applications, 1996, [63], Shafer,
Arch Hist Exact Sci, (19):309–370, 1978, [152], Shafer, Stat Sci, (21):70–98, 2006,
[151], Styazhkin, History of mathematical logic fromLeibnitz to Peano, 1969, [159],
while the early surveys by Pierre-Simon Laplace and Isaac Todhunter in Laplace,
Essai philosophique sur les probabilities, 1902, [88], and Todhunter, A History of
the mathematical theory of probability, 1865, [164] might be particularly interesting.

© Springer International Publishing AG 2016
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20 2 History

2.1 Pre-leibnitzians

Many mathematical stories begin in ancient times, and this one is no exception. The
invention of probable or, better said, plausible reasoning was attributed, in Plato’s
Phaedrus and Aristotle’s Rhetoric, to legendary sophists Corax and Tisias in the
fifth century B.C. [80]. To argue about legal, medical or political questions, as the
main tool, they used the notion of eikos (εικóς ). Plato understood eikos in terms of
likeliness, i.e., weaker than and inferior to truth, whileAristotle interpreted it as either
something subjectively acceptable or what usually happened. Here we can perceive
early signs of subjective—objective duality in epistemic—statistical interpretations
of probability. The following example from [2, Book II, 24] illustrates Aristotle’s
approach (translation from [80]):

If the accused is not open to the charge, for instance if a weakling be tried for violent assault,
the defence is that he was not likely to do such a thing.

Greek tradition did not associate numerical quantities to uncertain assumptions and
conclusions, so we can hardly consider the eikos-arguments as something we today
call formal reasoning about probabilities. In our opinion, these can be seen as early
examples of default reasoning (see Sect. 6.1).

Following the template very common in Western tradition, after a number of
centuries and the period of dark ages, new ideas about uncertainty appeared in the
fifteenth and sixteenth centuries inspired by practical and profitable issues in gam-
bling. For example, fra LucaBartolomeo de Pacioli (1445–1517), GerolamoCardano
(1501–1576), Niccolo Tartaglia (1499–1559) and others dealt with the division prob-
lem in games of chance, i.e., how to split the prize of a game between players,1 if
the first and the second player won a and b rounds, respectively, and the game did
not finish. The deliberations and studies of such issues lead to well-known corre-
spondence (1654–1660) between Pierre de Fermat (1601–1665) and Blaise Pascal
(1623–1662), and Christiaan Huygens’ (1629–1695) treatise De ratiociniis in ludo
aleae [72, 138]. Fermat and Pascal had different approaches to solving the division
problem: while Fermat analyzed the complete list of all possible outcomes of a game,
Pascal introduced some kind of recursion procedure so that, relying on his arithmeti-
cal triangle, he was able to express and calculate more complex cases using simpler
ones [45]. Huygens in [72] tried to produce rigorous mathematical proofs for 14
propositions, and in that way justify his solutions to gambling problems. He used (in
the Latin version of the text) the word expectatio to denote a notion which he did
not define, but which could be interpreted in the framework of a game of chance as a
player’s share of the stake if the game is not played [142] or as the price for a ticket
in a fair lottery [60]. For example, he proved (translation from [73]):

Proposition I. If I expect a or b, and have an equal chance of gaining either of them, my
Expectation is worth a+b

2 .

1We cannot resist to mention here Tartaglia’s view that such a question is more legal than mathe-
matical [150, 163].

http://dx.doi.org/10.1007/978-3-319-47012-2_6
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Proposition III. If the number of Chances I have to gain a, be p, and the number of Chances
I have to gain b, be q. Supposing the Chances equal; my Expectation will then be worth
ap+bq
p+q .

Before all these seventeenth century’s achievements, probability was perceived, fol-
lowing old Greek philosophers, as something epistemic and related to arguments
and opinions. Therefore, some authors [45, 60, 152] particularly emphasize Pascal’s
contribution to emergence of the new approach to conjecturing and uncertainty rea-
soning2 based on similaritieswith calculus and concepts established to analyze games
of chance. In the well-known Pascal’s wager [3, 114], using aleatory calculus he
explained that rational persons should believe in the existence of God since that
choice offers infinite gain of salvation.

In 1662 appeared a book [3] known as Port-Royal Logic, or Ars Cogitandi, which
had a great and long-term influence. This seems to be the first text that explicitly
suggests that probability (in the epistemic sense) can be numerically quantified and
calculated using methods designed for games of chance. To consider possible gains
and losses, it is said, one should take into account not only the corresponding amounts,
but also probabilities that they could occur (translation from [4]):

There are certain games in which ten persons lay down a crown each, and where one only
gains the whole, and all the others lose; thus, each of the players has only the chance of
losing a crown, and of gaining nine by it. If we consider only the gain and loss in themselves,
it might appear that all have the advantage of it; but it is necessary to consider, further, that
if each may gain nine crowns, and there is only the hazard of losing one, it is also nine times
more probable, in relation to each, that he will lose his crown, and not gain the nine. Thus
each has for himself nine crowns to hope for, one to lose, nine degrees of probability of
losing a crown, and only one of gaining the nine, which puts the matter on a perfect equality.

2.2 Leibnitz

There are somewhat different assessments [60, 63, 141] of the significance of
Gottfried Wilhelm Leibnitz3 (1646–1716) in creation and development of proba-
bility logic.4 Some authors, e.g. [152], regard his influence as minor and justify such
view by the fact that a big part of his work remained unpublished long after his death.
However, as Leibnitz was one of the most famous bloggers5 of the age, for us there
is no doubt that his impact on the state of the collective scientific mind was very
important. Anyway, the following are certainly true:

2Although Fermat, Pascal, Huygens, and their predecessors did not use the word probability (or
an equivalent) in the contemporary sense, nor did they use that concept to quantitatively measure
beliefs or uncertainty.
3Or: Lubeniecz, Leibniz.
4Or: probability theory, since for Leibnitz these two were synonymous.
5Or: one of the main nodes in the seventeenth century research communication network. Leibnitz
exchanged more than 15000 letters with more than 1000 persons [101].



22 2 History

• In his dissertation [90] from 1665 Leibnitz used numbers from the interval [0, 1] to
represent legal conditional rights, so that 0 and 1 denote non-existence of rights and
absolute rights, respectively, and fractions stand for different degrees of certainty.6

• Leibnitz used the word probability and advocated the concept of numerical quan-
tification of probable. Having probability conclusions as conditional, i.e., as sub-
jective and relative to the existing knowledge, he tried to measure knowledge [97].

• Leibnitz gave a definition of probability, relaying on equally possible cases, as the
ratio of favorable cases to the total number of cases [93].

• Leibnitz understood moral certainty as something that is “infinitely probable” [98]
(see the interpretation of CP≈1 in Sect. 5.7).

• Leibnitz established a program for development of probability logic and had a
huge impact on its realization.

• Probability, or better said probability logic, had the central role in his attempts to
create a powerful universal calculus.

In his great opus Leibnitz particularly focused on analogies between the processes
of thinking and computation. Already in [92], even before he started deep study in
mathematics, Leibnitz emphasized the combinatorial nature of cognitive processes
(translation from [82]):

ThomasHobbes, everywhere a profound examiner of principles, rightly stated that everything
done by our mind is a computation.

Starting fromhis thesis [90] Leibnitz publicized ideas to develop a doctrine—or a new
kind of logic—of de gradibus probabilitatis (degrees of probability)7 [98, 140, 141].
Leibnitz spent several years (1672–1676) in Paris and taught by Huygens became
familiar with his and Pascal’s works. Leibnitz recognized that their techniques were
suitable for realization of his plan. His work in this field was motivated and always
concerned with jurisprudence, so he used the new ideas in a debate about inheritance
of throne of Poland in 1669 [60] and to justify Huygens’ method by principles of
jurisprudence [152]. Leibnitz’s position was clearly described in his New Essays on
Human Understanding finished in 1704 (translations from [63, 100, 161]):

(66) As for the inevitability of the result, and degrees of probability, we do not yet possess
the branch of logic that would let them be estimated.

(372) Perhaps opinion based on likelihood also deserves the name of knowledge; otherwise,
nearly all historical knowledge will collapse, and a good deal more …probability or like-
lihood is broader: it must be drawn from the nature of things; and the opinion of weighty
authorities is one of the things which can contribute to the likelihood of an opinion, but it
does not produce the entire likelihood by itself.

(464) The entire form of judicial procedures is, in fact, nothing but a kind of logic, applied
to legal questions.

6According to Keynes [78], Leibnitz in [91] used 0 for impossibility and 1 for certainty, while
variable intermediate degrees of probability were denoted by 1

2 .
7Friedrich Nitzsche (1645–1702) in a letter from 1670 suggested Leibnitz to realize these ideas.
Schneider emphasized in [140] that Leibnitz was not able to provide numerical methods to calculate
probabilities, and that, following Skeptics who had a continuum of possible modalities, considered
qualitative gradation of the probable.

http://dx.doi.org/10.1007/978-3-319-47012-2_5
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(466) I have said more than once that we need a new kind of logic, concerned with degrees
of probability, since Aristotle in his Topics couldn’t have been further from it. He is satisfied
with arranging a few familiar rules according to common patterns; these could serve on the
occasion when one is concerned with amplifying a discourse so as to give it some likelihood.
No effort is made to provide a balance necessary to weight the likelihoods in order to obtain
a firm judgement. Anyone wanting to deal with this question would do well to pursue the
investigation of games of chance. In general, I wish that some skilful mathematician were
interested in producing a detailed study of all kinds of games, carefully reasoned and with
full particulars. This would be of great value in improving discovery techniques, since the
human mind appears to better advantage in games than in the most serious pursuits.

Once realized, all these ideas would lead to a formal system—universal language and
a powerful logical calculus—which could be the basis for all sciences and replace
arguments by formal computation [95] (translation from [101]):

If this is done, whenever controversies arise, there will be no more need for arguing among
two philosophers than among two mathematicians. For it will suffice to take pens into the
hand and to sit down by the abacus, saying to each other (and if they wish also to a friend
called for help): Let us calculate!

Since calculations can be considered as proofs in a logical framework so important
in Leibnitz’s work, it is interesting to consider the following passage from [99]
(translation from [166]):

And here is discovered the inner distinction between necessary and contingent truths, which
no one will easily understand unless he has some tincture of Mathematics namely, that in
necessary propositions one arrives, by an analysis continued to some point, at an identical
equation (and this very thing is to demonstrate a truth in geometrical rigor); but in contingent
propositions the analysis proceeds to infinity by reasons of reasons, so that indeed one never
has a full demonstration, although there is always, underneath, a reason for the truth, even
if, it is perfectly understood only by God, who along goes through an infinite series in one
act of the mind.

There are different opinions on success [58, 59] or failure [166] of Leibnitz’s concept
of infinitary proofs, but nevertheless an interesting analogy can be driven between
this idea and some of the notions (infinitary rules and inferences) presented in this
book.

Leibnitz distinguished between forward and backward calculations of probabil-
ities, namely calculations of probabilities of consequences given probabilities of
causes on the one hand, and calculations of probabilities of causes given probabili-
ties of consequences, on the other [159]. He was concerned with the latter, which he
explained in letters exchanged with Jacob Bernoulli (see Sect. 2.3).

Finally, we shouldmentioned that in analyzing the nature of continuum and devel-
oping the differential and integral calculi [94, 96] Leibnitz extensively used another
concept we employ in this book—infinitesimal numbers. For Leibnitz, infinitesimals
were ideal entities, positive but smaller than every 1

n . His Law of Continuity ensured
that infinitesimals were governed by the same arithmetic laws as the real numbers,
except that they obviously violate Archimedes’ principle.8

8Every number can be reached by adding (finitely many times) 1’s.
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2.3 Jacob Bernoulli

The significance of the book Ars Conjectandi [8] is such that it earned its author
Jacob Bernoulli (1654–1705) the title of the founder of probability theory [141].
Some of his achievements are the following:

• He placed the notion of probability, understood as degree of certainty, in the very
focus of scientific research.

• He introduced two notions of probability: a priori, in the absence of prior knowl-
edge of an event, and a posteriori probabilities, with such knowledge taken into
account.

• He also distinguished between another two notions of probability: subjective and
objective probability.

• He improved and generalized existing techniques for calculating probabilities of
compound events from probabilities of their constituents.

• He stated and proved his Golden theorem (also known as the (Weak) Law of large
numbers, or just Bernoulli’s Theorem).

• He realized an important part of Leibnitz’s program for developing a new, proba-
bility logic, etc.

According to Bernoulli’s scientific diary, Meditationes, he studied probability
in the 1680s under the influence of Pascal, Port-Royal Logic9 and Huygens, and
developed most of his important results at that time. A very illustrative example
Bernoulli discussed in Meditationes was related to a problem concerning a marriage
contract between Titius and Caja. Bernoulli analyzed how, under the assumption that
the married couple had children and the wife died before the husband, a division of
the estate could be realized between Titius and the children depending on whether
married couple’s fathers died or not before Caja. Bernoulli provided a discussion
on chances that one of those three lived longer than the others. To do so, he listed
all possible orders of death and, taking into account that Caja was younger and
considering experiences from real-life examples, evaluated her certainty to die first,
second and third as 1

5 , i.e., (translation from [139]):

One probability, five of which make the entire certainty,

4
15 and 8

15 , respectively. Then he explained the concept of a posteriori probabilities
(translation from [141]):

The reason that in card and dice games which are governed solely by chance the expectation
can be precisely and scientifically determined is that we can perceive actually and clearly
the number of cases in which gain or loss must follow infallibly and that these cases behave
indifferently and can each occur with equal facility or when one is more probable than
another we can at least determine scientifically by how much it is more probable. But what
mortal, I pray you, counts the number of cases, diseases or other circumstances to which

9Even the nameArsConjectandiwas reminiscence ofArs cogitandi. InChap. IVofPart IV,Bernoulli
wrote (translation from [10]) “the celebrated author of the Ars cogitandi, a man of great insight and
intelligence”. Another translations can be found in [9, 11].
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now the old men, now the young men are made subject, and knows whether or not these
will be overtaken by death, and determines how much more probable is that one will be
taken unawares than another, since all these depend on causes that are completely hidden
and beyond our knowledge.

Generally in civic and moral affaires things are to be understood, in which we of course
know that the one thing is more probable, better or more advisable than another; but by
what degree of probability or goodness they exceed others we determine only according to
probability, not exactly. The surest way of estimating probabilities in these cases is not a
priori, that is by cause, but a posteriori, that is, from the frequently observed event in similar
examples.

Bernoulli wrote a good part of Ars Conjectandi in the 1680s. He was never fully
satisfied with the text and the book, which he was constantly changing and improv-
ing but failed to finish in his lifetime, was printed by his nephew Nicholas only
eight years after Jacob’s death. In the book, Bernoulli transformed several particular
approaches useful for calculating chances in gambling games to a mathematical cal-
culus applicable to uncertain reasoning in many real-life fields and to a large extent
realized what Leibnitz dreamed of. Ars Conjectandi had four parts:

• In the first part, Bernoulli revised Huygens’ text [72] offering new annotations,
numerous comments and generalizations, and provided solutions to problems from
Huygens’ text.

• The second part presented results about theory of permutations and combinations
like, for example, the first proof of the binomial theorem for positive integral
powers.10

• In the third part Bernoulli solved 24 problems related to games of chances.
• Finally, the forth part, The use and applications of the previous study to civil,
moral, and economic problems, was the most innovative and important part of the
book.

While in the first three parts Bernoulli followed the approach of Huygens, in the last
part he changed his language and wrote about probabilities. In Chap. I of Part IV,
Bernoulli introduced the main notions and, following Leibnitz, defined probabilities
using equally possible cases and explicitly mentioned the subjective and objective
conceptions of probabilities (translation from [11]):

Certainty of some thing is considered either objectively and in itself and means none other
than its real existence at present or in the future; or subjectively, depending on us, and consists
in the measure of our knowledge of this existence …As to probability, this is the degree of
certainty, and it differs from the latter as a part from the whole. Namely, if the integral and
absolute certainty, which we designate by letter α or by unity 1, will be thought to consist,
for example, of five probabilities, as though of five parts, three of which favor the existence
or realization of some event, with the other ones, however, being against it, we will say that
this event has 3/5α, or 3/5, of certainty. …Possible is that which has at least a low degree
of certainty whereas the impossible has either no, or an infinitely small certainty …Morally
certain is that whose probability is almost equal to complete certainty so that the difference

10Particular cases of theBinomial Theorem, (a+x)n = ∑n
k=0

(n
k

)
an−k xk , were known from ancient

times, while in a more general form, with fractional powers, Theorem was stated without proof in
1676 by Isaac Newton in letters to Leibnitz.
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is insensible …Necessary is that, which cannot fail to exist at present, in the future or past
…[Contingent] is that which can either exist or not exist at present, in the past or future
…what seems to be contingent to one person at a certain moment, will be thought necessary
to someone else (or even to the same person) at another time after the causes become known.
And so, contingency mainly depends on our knowledge …

In the next two chapters, Bernoulli introduced some notions that one would expect
today in formal logical systems. This great novelty, as Hailperin noted in [63], has
not been properly recognized by later commentators. Bernoulli first emphasized that
making conjectures meant art of measuring, as exactly as possible, probabilities of
things using numbers and weights11 of arguments (dis)proving those things.

Since the corresponding notions and techniques were not fully developed at the
time, it is not quite clear how Bernoulli understood arguments. Hailperin gave two
possible interpretations for an argument [63]:

• it is a statement which, in the cases when it is true, justifies the conclusion, and
• it is a pair of two statements, so that there is a deduction from the former to the
latter.

In the sequel Bernoulli listed general postulates12 about applying arguments. For
example (translation from [11]):

We ought to consider not only the arguments which prove a thing but also all those which
can lead to a contrary conclusion, so that, after duly discussing the former and the latter, it
will become clear which of them have more weight. It is asked, with respect to a friend very
long absent from his fatherland, may we declare him dead? The following arguments favor
an answer in the affirmative: During the entire twenty years, in spite of all efforts, we have
been unable to find out anything about him; the lives of travelers are exposed to very many
dangers from which those remaining at home are exempted …[we should] oppose them by
the following supporting the contrary …Perhaps Barbarians held him captive so that he was
unable to write …many people are known to have returned unharmed after having been
absent even longer …

However, since complete certitude can only seldom be attained, necessity and custom desire
that that, which is only morally certain, be considered as absolutely certain. Therefore, it
would be helpful if the authorities determine certain boundaries for moral certainty …so
that a judge, unable to show preference to either side, will always have firm indications to
conform with when pronouncing a sentence.

He concluded this discussion by saying (formulated in modern terms) that he was
aware that the list of axioms was not complete.

To calculate probabilities generated by arguments (he called them also “degrees of
certainty”), Bernoulli used ideas from the former parts of the book, i.e., the methods
proposed by Huygens. He supposed that all cases are equally possible, while if they
are not, more frequent cases should be reduced to simpler, equally possible, cases. It
seems that Bernoulli somehow assumed that those equipossible cases were mutually
exclusive, but he did not mention that explicitly. Bernoulli distinguished arguments
that:

11The weight was understood as “the force of the proof”.
12He called them rules or axioms.
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• exist necessarily and provide evidences contingently,
• exist contingently and provide evidences necessarily, and
• exist and provide evidences contingently,

and illustrated them in the following way. The situation that his brother did not write
him for a long time could be caused by brother’s laziness, busyness, or even death.
The first argument exists necessarily (since he knows the brother), but provides the
evidence contingently (laziness does not prevent writing); the next one exists and
provides evidence contingently (the brother could have or haven’t a job), while the
last one obviously exists contingently and provides evidence necessarily. It should
be noted that later authors, for example, Lambert, Bolzano, and De Morgan, usually
considered only necessary inferences. Furthermore, an argument can be:

• pure, which means that in some cases it proves a thing, while in the other case it
does not prove anything, or

• mixed, if in some cases it proves a thing, while in the other case it proves the
contrary.

In the simplest case, if there are a = b+c cases, and an argument exists contingently
(i.e., in b cases) and necessarily provides evidence for a thing (he denoted that by 1),
while it does not exist in c cases when it fails to provide anything (denoted by 0):

Which is, by Coroll. I, Prop. III of the first part, worth b·1+c·0
a = b

a , so that such argument

proves b
a of the thing, or of the certainty of the thing.

After that he proceeded to more complicated situations, including combinations of
two or more arguments that can be contingent and mixed [63, 152]. For example, let
there be two arguments, and:

• b and e be the numbers of cases in which the first and the second argument prove
a thing,

• c and f be the numbers of cases in which the first and the second argument prove
nothing, or prove the opposite of the thing, and

• a = b + c, and d = e + f ,

then the weight of the combination of two arguments is calculated as:

(d − f ) · 1 + f · ((a − c) : a)

d
= ad − c f

ad
= 1 − c f

ad
.

In such a complex setting, Shafer pointed in [152], there are situations in which
probabilities might be non-additive (i.e., the sum of probabilities of a thing and its
opposite is not 1). Indeed, it was written in [8] (translation from [10]):

But if besides the proofs which serve to prove the thing other pure proofs offer themselves,
proofs bywhich the opposite of the thing is advised, the proofs of both kindsmust beweighed
separately according to the preceding rules in order that there then may exist a ratio between
the probability of the thing and the probability of the opposite of the thing. Whence it must
be noted that if the proofs adduced for each side are strong enough, it can happen that the
absolute probability of each side notably exceeds half the certainty; i.e., that each of the
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alternatives is rendered probable, although relatively speaking one is less probable than the
other. And so it can happen that a thing has 2/3 certainty and its opposite possesses 3/4
certainty …

As a picturesque example, Bernoulli considered whether a document was antedated.
He stated a denying argument that the document was signed by a notary and that
between 50 notaries only one might be engaged in fraud. On the other hand, the
affirmative arguments were that the public reputation of the notary who signed the
documentwas bad, and that he could expect benefit from the possible cheat. Bernoulli
derived that the probability that the document was valid could be estimated as 49/50
of certainty,while 999/1000 of certainty valued the opposite.He concluded that, since
he knew that the notary was dishonest, the former possibility could be dismissed. In
Hailperin’s interpretation [63] the probabilities of the conclusion “the document is
antedated” and its negation are not absolute but conditional. Since the corresponding
conditions are different13 he does not see it as an issue.

Chapter4, similarly as in the quotation fromMeditationes, distinguished between
things for which the number of (un)favorable cases could be determined “by the
production of nature or the free will of people” and those depending on hidden
causes for which the number of (un)favorable cases could not be discovered a priori.
Bernoulli emphasized that in the latter circumstances the corresponding probability
could be estimated a posteriori from repeated observations as the ratio between the
number of favorable cases and the number of all cases. Those estimations would be
contained in intervals with boundaries that could be brought closer and closer by
increasing the number of experiments and in this process moral certainty could be
reached. In Chap.5 Bernoulli proved the result,14 he was developing for 20 years and
which he highly appreciated (translation from [11]):

Both its novelty and its very great usefulness, coupled with its just as great difficulty, can
exceed in weight and value all the remaining chapters of this thesis …

Main Theorem: Finally, the theorem follows upon which all that has been said is based, but
whose proof now is given solely by the application of the lemmas stated above. In order that I
may avoid being tedious, I will call those cases inwhich a certain event can happen successful
or fertile cases; and those cases sterile in which the same event cannot happen. Also, I will
call those trials successful or fertile in which any of the fertile cases is perceived; and those
trials unsuccessful or sterile in which any of the sterile cases is observed. Therefore, let the

13More formally, the probabilities are of the forms P(C |H1) and P(¬C |H2), where C , H1, and H2
are the conclusion and hypothesis, respectively.
14Later called the (Weak) Law of large numbers by Poisson (1781–1840). In modern notation, the
statement can be formulated as: Let p be the probability of an event, ε a small positive number, and
c a large positive number, then n can be calculated such that

P

(∣∣∣∣ Snn − p

∣∣∣∣ > ε

)
<

1

c
.

where Sn is the number of success in n binomial trials.
As an additional argument that Bernoulli did not consider non-additive probabilities, Hailperin

argues that using this theorem a posteriori probabilities are obtained from frequencies and that the
sum of the relative frequencies of an event and its complement is 1.

http://dx.doi.org/10.1007/978-3-319-47012-2_4
http://dx.doi.org/10.1007/978-3-319-47012-2_5
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number of fertile cases to the number of sterile cases be exactly or approximately in the ratio
r to s, and hence the ratio of fertile cases to all the cases will be r

r+s or
r
t ; which is within the

limits r+1
t and r−1

t . It must be shown that so many trials can be run such that it will be more
probable than any given times (e.g., c times) that the number of fertile observations will fall
within these limits rather than outside these limits—i.e., it will be c times more likely than
not that the number of fertile observations to the number of all the observations will be in a
ratio neither greater than r+1

t nor less than r−1
t .

Bernoulli believed that from this celebrated theorem a solution for the inverse prob-
lem15 would follow. In several letters exchanged with Bernoulli, Leibnitz expressed
his concerns whether contingent events determined by infinitely many conditions
could be properly characterized by finite numbers of experiments, while Bernoulli
wrote (translation from [60]):

I can already determine how many observations must be made in order that it is 100 times,
1000 times, 10000 times, etc., more likely than not—and this is moral certainty—that the
ratio between the number of cases which I estimate is legitimate and genuine.

However, as Hacking pointed out in [60], this is not the case, namely the theorem
only enables to compute a conditional probability16 that the probability p of an event
would be within some experimentally determined limits, given the probability p.

2.4 Probability and Logic in the Eighteenth Century

Many famous mathematicians in one way or another continued Bernoulli’s work on
probability theory: the members of his family—Nicolaus I (1687–1759), Nicolaus
II (1695–1726) and Daniel Bernoulli (1700–1782), Pierre Rémond de Montmort
(1678–1719),17 Leonhard Euler (1707–1783), Joseph-Louis Lagrange (1736–1813),
Nicolas de Condorcet (1743–1794), Johann Carl Friedrich Gauss (1777–1855), etc.

2.4.1 Abraham de Moivre

A pearl amongst outstanding eighteenth century achievements in the field was
Abraham de Moivre’s (1667–1754) book The Doctrine of Chances: a method of
calculating the probabilities of events in play [38]. In the 1738 edition de Moivre
included the chapter “A method of approximating the sum of the terms of the bino-
mial a + b

n
expanded into a series, from whence are deduced some practical rules to

estimate the degree of assent which is to be given to experiments” that introduced the
concept of the normal distribution as an approximation of the binomial distribution

15To determine probabilities a posteriori from samples.
16More formally: P(p ∈ [Sn ± ε]|p).
17Montmort published in 1708 a book, Essay d’analyse sur les jeux de hasard [39],which accelerated
the appearance of Jacob Bernoulli’s Ars Conjectandi.
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and was the first example of what would later be called the central limit theorem.18

De Moivre, inspired by Jacob Bernoulli’s approach to determine probabilities from
observations, realized that as a result of great importance (all quotations are from the
1756 edition):

…I’ll take the liberty to say, that this is the hardest Problem that can be proposed on the
subject of chance, for which reason I have reserved it for the last, but I hope to be forgiven
if my solution is not fitted to the capacity of all readers; however I shall derive from it some
conclusions that may be of use to every body …Altho’ the solution of problems of chance
often requires that several terms of the binomial (a + b)n be added together, nevertheless in
veryhighpowers the thing appears so laborious, andof sogreat difficulty, that fewpeople have
undertaken that task; for besides James and Nicolas Bernoulli, two great Mathematicians,
I know of no body that has attempted it; in which, tho’ they have shewn very great skill,
and have the praise which is due to their industry, yet some things were farther required; for
what they have done is not so much an approximation as the determining very wide limits,
within which they demonstrated that the sum of the terms was contained.

and, similarly as Jacob Bernoulli, believed that it could also be used to solve the
inverse problem:

As, upon the supposition of a certain determinate law according to which any event is
to happen, we demonstrate that the ratio of happenings will continually approach to that
law, as the experiments or observations are multiplied: so, conversely, if from numberless
observations we find the Ratio of the events to converge to a determinate quantity, as to the
ratio of P to Q; then we conclude that this ratio expresses the determinate law according
to which the event is to happen …Again, as it is thus demonstrable that there are, in the
constitution of things, certain laws according to which events happen, it is no less evident
from observation, that those laws serve to wise, useful and beneficent purposes; to preserve
the stedfast order of the universe, to propagate the several species of beings, and furnish to
the sentient kind such degrees of happiness as are suited to their state …And hence, if we
blind not ourselves with metaphysical dust, we shall be led, by a short and obvious way, to
the acknowledgment of the great maker and governour of all.

Under the impression of importance of de Moivre’s result, which gave mathematical
formulation to an empirical phenomenon of statistical regularity, it has been usually
forgotten that his book offered other original insights that established directions for
further researchers. The book beganwith basic definitions and rules that illustrated de
Moivre’s understanding of reasoning about chances. Following Bernoulli, deMoivre
defined probability as a ratio:

Wherefore, if we constitute a fraction whereof the numerator be the number of chances
whereby an event may happen, and the denominator the number of all the chances whereby
it may either happen or fail, that fraction will be a proper designation of the probability of
happening.

and considered it the primary notion of his theory. Undoubtedly, for de Moivre
probabilities were additive:

18It seems that this name was introduced by György Pölya in 1920 [74]. It means that the limit
theorem is of central importance in probability.
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The fractions which represent the Probabilities of happening and failing, being added
together, their sum will always be equal to unity, since the sum of their numerators will
be equal to their common denominator: now it being a certainty that an event will either
happen or fail, it follows that certainty, which may be conceived under the notion of an
infinitely great degree of probability, is fitly represented by unity. These things will easily be
apprehended, if it be considered, that the word probability includes a double idea; first, of
the number of chances whereby an event may happen; secondly, of the number of chances
whereby it may either happen or fail.

Expectation was not the primary notion, but a defined one:

In all cases, the expectation of obtaining any sum is estimated by multiplying the value of
the sum expected by the fraction which represents the probability of obtaining it. Thus, if
I have 3 chances in 5 to obtain 100L I say that the present value of my expectation is the
product of 100L by the fraction 3

5 , and consequently that my expectation is worth 60L .

De Moivre was the first who considered (in)dependent events:

Two events are independent, when they have no connexion one with the other, and that the
happening of one neither forwards nor obstructs the happening of the other. Two events are
dependent, when they are so connected together as that the probability of either’s happening
is altered by the happening of the other.

and gave the multiplication rule to calculate probabilities of compound events:

Suppose there is a heap of 13 cards of one colour, and another heap of 13 cards of another
colour, what is the probability that taking a card at a venture out of each heap, I shall take
the two aces? The Probability of taking the ace out of the first heap is 1

13 : now it being
very plain that the taking or not taking the ace out of the first heap has no influence in the
taking or not taking the ace out of the second; it follows, that supposing that ace taken out, the
probability of taking the ace out of the secondwill also be 1

13 ; and therefore, those two Events
being independent, the probability of their both happening will be 1

13 × 1
13 = 1

169 …From
whence it may be inferred, that the probability of the happening of two events dependent,
is the product of the probability of the happening of one of them, by the probability which
the other will have of happening, when the first is considered as having happened19; and the
same rule will extend to the happening of as many events as may be assigned.

In the above quotation, as Hailperin pointed in [63], de Moivre was the first to
consider the notion of conditional probability, although he did not name it.

2.4.2 Thomas Bayes

Still without a name, conditional probabilities20 influenced to a great extent another
prominent milestone in development of probability theory—Bayes’ rule. The paper

19In modern notation: P(A ∧ B) = P(A) · P(B|A). Hailperin noted in [63] that this rule can
be also applied to independent events since in that case P(B|A) = P(B), and P(A ∧ B) =
P(A) · P(B|A) = P(A) · P(B).
20It seems that George Boole in [14] was the first who used this name. According to Shafer [149],
Harold Jeffreys introduced the notation P(A|B) only in 1931.
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entitled “An essay towards solving a problem in the doctrine of chances” [7] written
by Thomas Bayes (1701–1761) was posthumously published, and may have been
even repaired21 by Richard Price (1723–1791). Bayes’ aim was to discuss:

PROBLEM:Given the number of times in which an unknown event has happened and failed:
Required the chance that the probability of its happening in a single trial lies somewhere
between any two degrees of probability that can be named.

that can be seen as a version of the inverse problem. Assuming uniform a priori
probabilities, he proposed how tomodify initial beliefs by obtaining new information
from experiments. In the introduction to the paper Price emphasized great importance
of that result and differences between it andwhatBernoulli and deMoivre discovered:

These observations prove that the problem enquired after in this essay is no less important
than it is curious. It may be safely added, I fancy, that it is also a problem that has never
before been solved. Mr De Moivre, indeed, the great improver of this part of mathematics,
has in his Laws of Chance, after Bernoulli, and to a greater degree of exactness, given rules
to find the probability there is, that if a very great number of trials be made concerning any
event, the proportion of the number of times it will happen, to the number of times it will
fail in those trials, should differ less than by small assigned limits from the proportion of the
probability of its happening to the probability of its failing in one single trial. But I know
of no person who has shewn how to deduce the solution of the converse problem to this;
namely, ‘the number of times an unknown event has happened and failed being given, to
find the chance that the probability of its happening should lie somewhere between any two
named degrees of probability’.

Bayes did not follow Leibnitz, Bernoulli, and de Moivre, but defined:

The probability of any event is the ratio between the value at which an expectation depending
on the happening of the event ought to be computed, and the value of the thing expected
upon it’s happening.

As proper terminology and techniques were not fully developed at the time, Bayes
had a lot of trouble formulating and proving statements that are today treated as
elementary.22 For example:

Prop. 3: The probability that two subsequent events will both happen is a ratio compounded
of the probability of the 1st, and the probability of the 2nd on supposition the 1st happens
…COROLLARY. Hence if of two subsequent events the probability of the 1st be a/N , and
the probability of both together be P/N , then the probability of the 2nd on supposition the
1st happens is P/a.

Prop. 4: If there be two subsequent events to be determined every day, and each day the
probability of the 2nd is b/N and the probability of both P/N , and I am to receive N if both
the events happen the first day on which the 2nd does; I say, according to these conditions,
the probability of my obtaining N is P/b. …COR. Suppose after the expectation given me
in the foregoing proposition, and before it is at all known whether the 1st event has happened
or not, I should find that the 2nd event has happened; from hence I can only infer that the
event is determined on which my expectation depended, and have no reason to esteem the
value of my expectation either greater or less than it was before.

21At least Price withdrew the original introduction and wrote his own, added some remarks and
Appendix.
22If properly understood.
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Prop. 5 If there be two subsequent events, the probability of the 2nd b/N and the probability
of both together P/N , and it being first discovered that the 2nd event has happened, from
hence I guess that the 1st event has also happened, the probability I am in the right is P/b.23

It is interesting to mention here that Shafer writes in [149] that these statements show
that Bayes mixed the concepts of time and probability in the notion of subsequent
events, which is absent from the contemporary timeless understanding of conditional
probability.

The last proposition in the paper provided a solution to the presented problem and
estimated, using geometrical approach in terms of the ratio of areas of some rectan-
gles, the chance that the unknown prior probability x of an event which happened p
times in p + q experiments belonged to the interval [x1, x2]. In modern notation, it
can be written as in [35]:

P(x1 ≤ x ≤ x2|p, p + q) =
∫ x2
x1

(p+q
p

)
x p(1 − x)qdx∫ 1

0

(p+q
p

)
x p(1 − x)qdx

.

Ironically, one cannot find Bayes’ rule24 in Bayes’ paper. His work was further
developed by Laplace.

2.4.3 Johann Heinrich Lambert

Jacob Bernoulli’s work on combinations of arguments was further enhanced in the
chapter Von dem Wahrscheinlichen from Neues organon [83] written by Johann
Heinrich Lambert (1728–1777). Lambert was particularly interested in probabilities
of propositions and probabilities inferred from them, which is quite close to the
modern approach formalized in probability logics. His work is deeply analyzed in
[63, 152].

23Richard Price’s remark: What is proved by Mr Bayes in this and the preceding proposition is the
same with the answer to the following question. What is the probability that a certain event, when
it happens, will be accompanied with another to be determined at the same time? In this case, as
one of the events is given, nothing can be due for the expectation of it; and, consequently, the value
of an expectation depending on the happening of both events must be the same with the value of
an expectation depending on the happening of one of them. In other words; the probability that,
when one of two events happens, the other will, is the same with the probability of this other. Call
x then the probability of this other, and if b/N be the probability of the given event, and p/N the
probability of both, because p/N = (b/N ) × x , x = p/b = the probability mentioned in these
propositions.
24A common formulation is

P(Ai | B) = P(B | Ai ) P(Ai )∑
j
P(B | A j ) P(A j )

where {A j } is a partition of the sample space.
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Lambert considered propositions of the form

A is B

where A and B are predicates. B can be characterized by an argument C ,25 where C
can be a predicate or a combination (conjunction) of predicates. Then, if A is C is
necessary, it follows necessarily that A is B. However, if C does not characterize B,
i.e., something different from B can be also C , by enumeration or calculation one
can find a ratio of the number of favorable cases to the number of all cases, which
is the corresponding degree of probability. To determine probabilities, Lambert used
an analogy between his descriptions of problems and aleatory calculus.

For example, suppose that there are several not characterizing arguments of B,
i.e., the premises of the form B is Ci are contingent, while A is Ci is necessary. An
argument Ci is modeled by a heap of tickets, where each marked ticket denotes a
particularly favorable case for Ci is B, and similarly unmarked tickets symbolize
unfavorable cases. For every argument for B there is a separate heap and one takes
a ticket from each heap. The probability that only unmarked tickets are chosen
corresponds to the case that all arguments do not imply B. Assuming independence
of arguments, which Lambert did explicitly, the probability that arguments do not
prove B is calculated as the product p of the individual probabilities of unmarked
tickets, while 1 − p is the degree of probability that the arguments prove26 A is B.

Lambert discussed probabilistic propositions of the forms 3
4 A are B, C 2

3 is D and
E is 1

2 F that mean 3
4 of objects that are A are also B, the probability that C is D is

2
3 and E has 1

2 attributes of F . Then, an uncertain inference is

3

4
A are B

C is A

hence, C 3
4 is B,

where C appears to be a typical member of A, i.e., that A has a uniform distribution.
In a more complex example, Lambert considered inferences of the form

(
2

3
a + 1

4
e + 1

12
u

)
A are B

C is

(
3

5
a + 2

5
u

)
A

hence, C

(
2

5
a + 3

20
e + 9

20
u

)
is B,

25In modern notation: B ↔ C .
26Hailperin objects that the calculated probability of the form P(

∨
i (Ci is B)) is only the lower

bound for the probability that A is B.
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where a,e, andu stand for affirmative, negative and undetermined cases, respectively.
So, ( 23a + 1

4e + 1
12u) in the first row means that 2

3 of objects that are A are certainly
B, that 1

4 of objects that are A are certainly not B, while the status of 1
12 of objects

that are A is not determined. Hailperin’s interpretation of this inference is

2

3
≤ P(x ∈ B|x ∈ A) ≤ 9

12
3

5
≤ P(C ∈ A)

hence,
2

5
≤ P(C ∈ B) ≤ 17

20
,

where the undetermined cases are added to both the affirmative and negative cases
which produces inequalities.

Shafer in [152] emphasized that Lambert, similarly toBernoulli, used non-additive
probabilities as can be illustrated by:

3
4 A are B
C is 2

3 A
hence, C 1

2 is B,

1
4 A are not B
C is 2

3 A
hence, C 1

6 is not B,

and (translation from [152]):

§193. …Thus the probability that the syllogism’s conclusion is negative is 1
6 , whereas the

probability that it is affirmative is 1
2 . Both probabilities together yield

1
6 + 1

2 = 2
3 …

while, similarly as above, Hailperin does not agree with Shafer’s explanation and
offers another interpretation where the conclusions are

P(C ∈ B ∧ C ∈ A) = 1

2
P(C /∈ B ∧ C ∈ A) = 1

6

respectively, which is the same as

P(C ∈ A) = 2

3
= P(C ∈ B ∧ C ∈ A) + P(C /∈ B ∧ C ∈ A).

2.5 Laplace and Development of Probability
and Logic in the Nineteenth Century

2.5.1 Laplace

For almost half a century Pierre–Simon Laplace (1749–1827) was the leading devel-
oper of probability theory, from 1774 and his first paper Mémoire sur la probabilité
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des causes par les événements [84, 111, 158] to 1824, when he added the last supple-
ment to his monumental book27 Théorie Analytique des Probabilités [87]. The book
comprised 40 years of his numerous contributions to probability theory, particularly
to:

• the inverse problem, where he gave the “Bayes’ formula” for a nonuniform distri-
bution of causes, and

• the central limit theorem, where he generalized de Moivre’s result on the asymp-
totic normality of the binomial distributions to the case of sums of randomvariables
with the same distributions.

Laplace’s epistemic approach to probability was clearly formulated already in [85]
(translation from [110]):

We owe to the frailty of the human mind one of the most delicate and ingenious of mathe-
matical theories, namely the science of chance or probabilities.

His point of view was elaborated in a series of principles in Essai philosophique
sur les probabilités [86, 88], a popular introduction to the second edition of Théorie
Analytique des Probabilités. Laplace, following his great ancestors, first states that
probability is the ratio of the number of favorable cases to the number of all possible
cases, assuming that all cases are equipossible. If they are not, one has to carefully
determine possible cases, so that probabilities of complex cases will be the appro-
priate sums of probabilities of mutually exclusive simpler cases. Then he empha-
sizes importance of the notion of (in)dependent events (the next four translations
from [88]):

One of the most important points of the theory of probabilities and that which lends the most
to illusions is the manner in which these probabilities increase or diminish by their mutual
combination. If the events are independent of one another, the probability of their combined
existence is the product of their respective probabilities. Thus the probability of throwing
one ace with a single die is 1

6 ; that of throwing two aces in throwing two dice at the same time
is 1

36 …We cannot better compare this diminution of the probability than with the extinction
of the light of objects by the interposition of several pieces of glass. A relatively small
number of pieces suffices to take away the view of an object that a single piece allows us to
perceive in a distinct manner. The historians do not appear to have paid sufficient attention to
this degradation of the probability of events when seen across a great number of successive
generations; many historical events reputed as certain would be at least doubtful if they were
submitted to this test. In the purely mathematical sciences the most distant consequences
participate in the certainty of the principle fromwhich they are derived. In the applications of
analysis to physics the results have all the certainty of facts or experiences. But in the moral
sciences, where each inference is deduced from that which precedes it only in a probable
manner, however probable these deductions may be, the chance of error increases with their
number and ultimately surpasses the chance of truth in the consequences very remote from
the principle.

Without the proper notation, Laplace expresses in words the standard definition for
conditional probabilities, i.e., P(B|A) = P(A∩B)

P(A)
, that for two mutually depended

27“…the most influential book on probability and statistics ever written”, claims Anders Hald in
[67].
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events the probability of the compound event is P(A ∩ B) = P(A)P(B|A), and
finally Bayes’ rule in the contemporary form:

Each of the causes to which an observed event may be attributed is indicated with just as
much likelihood as there is probability that the event will take place, supposing the event to be
constant. The probability of the existence of any one of these causes is then a fraction whose
numerator is the probability of the event resulting from this cause and whose denominator
is the sum of the similar probabilities relative to all the causes; if these various causes,
considered á priori, are unequally probable, it is necessary, in place of the probability of the
event resulting from each cause, to employ the product of this probability by the possibility
of the cause itself. This is the fundamental principle of this branch of the analysis of chances
which consists in passing from events to causes.

This principle gives the reason why we attribute regular events to a particular cause. Some
philosophers have thought that these events are less possible than others and that at the play
of heads and tails, for example, the combination in which heads occurs twenty successive
times is less easy in its nature than those where heads and tails are mixed in an irregular
manner. But this opinion supposes that past events have an influence on the possibility of
future events, which is not at all admissible. The regular combinations occur more rarely
only because they are less numerous. If we seek a cause wherever we perceive symmetry,
it is not that we regard a symmetrical event as less possible than the others, but, since this
event ought to be the effect of a regular cause or that of chance, the first of these suppositions
is more probable than the second.

An important part of Laplace’s work was devoted to applications of uncertain reason-
ing. He considered problems in demography (for example to o determine the size of
the French population), astronomical observations, jurisprudence. Concerning mis-
takes of witnesses and juries Laplace estimated chances that accused persons were
wrongly judged and concluded:

The impossibility of amending these errors is the strongest argument of the philosophers
who have wished to proscribe the penalty of death.

2.5.2 Bernard Bolzano, Augustus de Morgan, Antoine
Cournot

Bernard Bolzano (1781–1848) described probability as a part of logic in
Wissenschaftslehre [13]. He discussed a notion28 called validity (in [63]), and satisfi-
ability (in [136]), of propositions. In fact, those propositionswere predicateswith one
free variable. The degree of validity of a proposition A(x) can be seen as its absolute
probability, i.e., as the usual ratio of favorable cases to the total number of cases
|x∈U :A(x)|

|U | , for the corresponding set U of objects. Probability was used to measure
a relation (relative validity in [63], and comparative satisfiability in [136]) between
propositions. The relative validity of a proposition M with respect to a set of propo-
sitions A, B, C ,…was actually the conditional probability P(M |A ∧ B ∧ C ∧ . . .).
To calculate the degree of probability of M wrt. A, B, C , …, Bolzano dividedU into

28Güiltigkeit.
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equipossible mutually exclusive K1, K2, …, Kk , and counted the number m of K ’s
which validated M ∧ A ∧ B ∧ C ∧ . . ., and the number k of K ’s which validated
A ∧ B ∧ C ∧ . . .. Then, the sought degree of probability was m

k . He considered an
inference rule of the form (translation from [63]):

For if we accept propositions A, B, C , D, …then this proposition tells us whether we should
also accept M . If M becomes true in more than half the cases in which A, B, C , D, …are
true, the truth of A, B, C , D, …entitles us to accept M as well, otherwise not.

which Hailperin interpreted as

If P(M |A ∧ B ∧ C ∧ . . .) ≈ 1
and A ∧ B ∧ C ∧ . . .,
therefore accept M ,

understanding “more than half” as “practically all”. Bolzano formulated some the-
orems about conditional probability (i.e., about relative validity), given below in
modern notation:

• P(M |A ∧ B ∧ C ∧ . . .) ≤ 1,
• P(¬M |A ∧ B ∧ C ∧ . . .) = 1 − P(M |A ∧ B ∧ C ∧ . . .), etc.

Hailperin found several mistakes in those statements, like, for example, in

• P(M ∧ N |A∧ B ∧ · · · ∧ D ∧ E ∧ . . .) = P(M |A∧ B ∧ . . .) · P(N |D ∧ E ∧ . . .)

which is valid only under the restricted assumption about independence of proposi-
tions. On the other hand, he emphasized that Bolzano recognized another common
error in the contemporary methods in uncertain reasoning that the probability of a
conclusion is equal to the product of the probabilities of the corresponding premises,
namely that:

• If M follows from A, B, …, C , then P(M) = P(A) · P(B) · · · P(C)

which is due to two causes. First, the probability of M is only bounded from below
by the probability of the conjunction of the premises. That issue will be addressed
by a generalization of the modal axiom K in Sect. 3.4 (Lemma 3.1(1)). And second,
without independence of the premises, the product of the probabilities of the premises
would not be equal to the probability of the conjunction of the premises.

Augustus De Morgan (1806–1871) devoted a significant part of his work to ana-
lyzing relationships between logic and probability. He had important influence on
Isaac Todhunter (1820–1884), who published extensive History of the Mathematical
Theory of Probability from the Time of Pascal to that of Laplace [164], and onGeorge
Boole. De Morgan’s Theory of Probabilities [40] was the first review on probability
theory and its applications in English. He gave in [41, 42, 175] an exposition of
Laplacian theory of probability concluding that:

If we can make a few reflecting individuals understand, that, be the theory of probabilities
true or false, valuable or useless, its merits must be settled by reference to something more
than the consideration of a few games at cards, we shall have done all which we ventured to
propose to ourselves.

http://dx.doi.org/10.1007/978-3-319-47012-2_3
http://dx.doi.org/10.1007/978-3-319-47012-2_3
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De Morgan had a subjective, epistemic approach to probability (quotations from his
Formal logic, or, the calculus of inference, necessary and probable [43]):

We have lower grades of knowledge, which we usually call degrees of beliefs but they are
really degrees of knowledge…Itmay seem a strange thing to treat knowledge as amagnitude,
in the same manner as length, or weight, or surface. This is what all writers do who treat of
probability, and what all their readers have done, long before they ever saw a book on the
subject. But it is not customary to make the statement so openly as I now do: and I consider
that some justification of it is necessary. By degree of probability we really mean, or ought to
mean, degree of belief…I will take it then that all the grades of knowledge, from knowledge
of impossibility to knowledge of necessity, are capable of being quantitatively conceived,

and shared with Bolzano the view that numerical probability. i.e., probabilistic infer-
ence, is a part of formal logic:

The old doctrine of modals is made to give place to the numerical theory of probability.
Many will object to this theory as extralogical …I cannot understand why the study of the
effect which partial belief of the premises produces with respect to the conclusion, should
be separated from that of the consequences of supposing the former to be absolutely true,

which was elaborated in chapters On the numerically definite syllogism, On prob-
ability and On probable inference of [43]. Since De Morgan conceived probability
as a measure of knowledge, he had to justify the basic principles of probability. For
example:

Now, whether we shall proceed, or stop short at this point, depends upon our acceptance or
non-acceptance of the following POSTULATE:-
When any number of events are disjunctively possible, so that one of them may happen,
but not more than one, the measure of our belief that one out of any some of them will
happen, ought to be the amount of the measures of our separate beliefs in each one of those
some. I mean that any one would say, A, B, C , being things of which not more than one can
happen, my belief that one of the three will happen is the sum of my separate beliefs in A,
and in B, and in C . This is the postulate on which the balance depends; and there is a similar
postulate before we can use the physical balance. The only difference (and that but apparent)
is that we are to speak of weights collectively, and of events disjunctively. The weight of the
(conjunctive) mass is the sum of the weights of its parts: the credibility of the (disjunctive)
event is the sum of the credibilities of its components …The laws of matter and mind being
both what they are, the connexion between physical collection and mental summation is, I
grant, necessary: the simplest of manual, and the simplest of mental, operations, are and,
with us, must be, concomitants …

He discussed uncertain reasoning with necessary valid inferences (he called them
arguments) and probable premises (testimonies) by analyzing some examples.
Hailperin in [63] noticed some systematical failures in the work of De Morgan:
disregarding of (in)dependence of components of compound events, proclaiming the
probability of premises which necessarily imply a conclusion to be the probability
of the conclusion, etc.

Problem 3. Arguments being supposed logically good, and the probabilities of their proving
their conclusions (that is, of all their premises being true) being called their validities, let
there be a conclusion for which a number of arguments are presented, of validities a, b, c, &c.
Required the probability that the conclusion is proved …Testimonies are all true together
or all false together: but one of the arguments may be perfectly sound, though all the rest
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be preposterous. The question then is, what is the chance that one or more of the arguments
proves its conclusion. That all shall fail, the probability is29 a′b′c′ . . . that all shall not fail,
the probability is 1 − a′b′c′ . . .

By denoting the conclusion, premises, their probabilities and arguments as C , Ai ,
P(Ai ) = ai , and Ai → C , respectively, Hailperin pointed out that De Morgan’s
result is correct if P(∧i¬Ai ) = Πi P(¬Ai ), i.e. if the premises are independent.

Problem 6. Given an assertion, A, which has the probability a; what does that probabil-
ity become, when it is made known that there is the probability m that B is a necessary
consequence of A, B having the probability b? And what does the probability of B then
become?

Hailperin translated this as: if P(A) = a, P(B) = b, what are the conditional
probabilities P(A|P(A → B) = m) and P(B|P(A → B) = m)? Again, under
the assumption of independence which was not mentioned, De Morgan represented
events (with probabilities that should be found) as conjunctions of other possibly
negated events with known probabilities and calculated odds P(A) : P(¬A) =
(a(1 − mb′))/a′, and P(B) : P(¬B) = b/(b′(1 − ma)).

Antoine Cournot (1801–1877) in [31] laid the foundation for frequentism in prob-
ability by stating (translation from [151]):

The physically impossible event is therefore the one that has infinitely small probability,
and only this remark gives substance—objective and phenomenal value—to the theory of
mathematical probability.

Later, in the twentieth century, Lévy wrote that the principle combined with
Bernoulli’s theorem gives objective probabilities of events [102], while Kolmogorov
and Borel understood it as the principle which connects the mathematical theory of
probability with the real world [151].

2.5.3 George Boole

The design of the following treatise is to investigate the fundamental laws of those operations
of the mind by which reasoning is performed; to give expression to them in the symboli-
cal language of a Calculus, and upon this foundation to establish the science of Logic and
construct its method; to make that method itself the basis of a general method for the appli-
cation of the mathematical doctrine of Probabilities; and, finally, to collect from the various
elements of truth brought to view in the course of these inquiries some probable intima-
tions concerning the nature and constitution of the human mind …The general doctrine
and method of Logic above explained form also the basis of a theory and corresponding
method of Probabilities …Hence the subject of Probabilities belongs equally to the science
of Number and to that of Logic.

wrote George Boole (1815–1864) in An investigation of the laws of thought [14]
where almost half of the text was devoted to the relationship between logic and

29a′ means 1 − a.
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probability. Boole’s understanding of probability was that it is founded upon partial
knowledge about the relative frequency of occurrences of events. Instead of consid-
ering the numerical probability of the occurrence of an event, Boole often expressed
it as the probability of the truth of the proposition declaring that the event will occur.
Hailperin argued in [62] that, although the other authors—as, for example, Lambert
and Bolzano—shared the same approach, Boole’s development of logical calcu-
lus was the enabling technology providing advantages of that substitution. Boole
listed seven principles as the basis for the above mentioned doctrine. The principles,
mostly taken from Laplace, corresponded to additivity of probabilities, probabilities
of (in)dependent events, Bayes’ theorem for a priori equally probable causes, etc.
For example, Principle 4 defined conditional probability, but provided neither the
name nor the proper symbolism:

4th. The probability that if an event, E , take place, an event, F , will also take place, is equal
to the probability of the concurrence of the events E and F , divided by the probability of
the occurrence of E .

Boole asserted the relative sufficiency of the principles, namely that by combining
these principles one can calculate the probability of a compound event that depends
on a set of independent events with known probabilities. He worked with conditional
propositions of the form: if the proposition X is true, the proposition Y is true, and
calculated their probabilities, which he called (but in only one place in the book)
conditional probabilities.

Already in the introduction Boole stated one of his main goals:

…it is not clear that any advance has been made toward the solution of what may be regarded
as the general problem of the science, viz.: Given the probabilities of any events, simple
or compound, conditioned or unconditioned: required the probability of any other event
equally arbitrary in expression and conception. In the statement of this question it is not
even postulated that the events whose probabilities are given, and the one whose probability
is sought, should involve some common elements, because it is the office of a method to
determine whether the data of a problem are sufficient for the end in view, and to indicate,
when they are not so, wherein the deficiency consists. This problem, in the most unrestricted
form of its statement, is resolvable by the method of the present treatise …

Boole’s method constitutes essentially the decision procedure for probability logic.30

The method basically consisted of two phases:

• first, using his algebraic laws written in the symbolical language of the logical
calculus, Boole expressed the eventwith the unknown probability as a combination
of other events, and

• second, he constructed a function of known probabilities to calculate the desired
probability.

The following example31 was used to illustrate the method:

30That would, more than one century later, be rediscovered independently several times [69].
31In the example, and elsewhere in the book, Boole used the notations of the form:

• 1 to indicate that all the elements of the class must be taken,
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Ex. 1. The probability that it thunders upon a given day is p, the probability that it both
thunders and hails is q, but of the connexion of the two phænomena of thunder and hail,
nothing further is supposed to be known.Required the probability that it hails on the proposed
day. Let x represent the event—It thunders. Let y represent the event —It hails. Then xy
will represent the event—It thunders and hails; and the data of the problem are

Prob., x = p,Prob., xy = q.

There being here but one compound event xy involved, assume, according to the rule,

Prob., xy = u. (2.1)

Our data then become
Prob., x = p,Prob., xy = q. (2.2)

and it is required to find Prob.,y. Now (1) gives

y = u

xy
+ 1

0
u(1 − x) + 0(1 − u)x + 0

0
(1 − u)(1 − x).

Hence (XVII. 17) we find

V = ux + (1 − u)x + (1 − u)(1 − x),

V x = ux + (1 − u)x = x, Vu = ux;
and the equations of the General Rule, viz.,

Vx

p
= Vu

q
= V .

Prob., y = A + cC

V
become, on substitution, and observing that A = ux ,C = (1−u)(1−x), and that V reduces
to x + (1 − u)(1 − x),

x

p
= ux

q
= x + (1 − u)(1 − x),

Prob., y = ux + c(1 − u)(1 − x)

x + (1 − u)(1 − x)
,

from which we readily deduce, by elimination of x and u,

Prob., y = q + c(l − p). (2.3)

(Footnote 31 continued)

• 0, on the other hand, means that elements of the class must not be taken,
• 0

0 to represent an indefinite class, i.e., that all, some, or none of the elements of the class must
be taken, and

• 1
0 , as the algebraic symbol of infinity, implies that the corresponding class is 0.

Thus, according to Hailperin, the form

w = A + 0B + 0

0
C + 1

0
D

can be interpreted as w = A + νC , and D = 0, where ν is indefinite.
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In this result c represents the unknown probability that if the event (1−xy)(1−x) happen, the
event y will happen. Now (l−u)(l− x) = (l− xy)(1− x) = 1− x , on actual multiplication.
Hence c is the unknown probability that if it do not thunder, it will hail.

The general solution (2.3) may therefore be interpreted as follows: The probability that it
hails is equal to the probability that it thunders and hails, q, together with the probability
that it does not thunder, 1 − p, multiplied by the probability c, that if it does not thunder it
will hail. And common reasoning verifies this result.

If c cannot be numerically determined, we find, on assigning to it the limiting values 0 and
1, the following limits of Prob.,y, viz.:

Inferior limit = q. Superior limit = q + 1 − p.

On amore fine-grained level, the method was not completely correct. It was critically
analyzed already by Alexander Macfarlane [62, 107] in 1879, and Platon Sereyevich
Poretskiy in 1887 [159].Much later, a systematic considerationwas given in [61, 62],
where Hailperin discussed the appropriate interpretations and corrections using the
linear programming approach, and presented the best possible probability boundaries
for logical functions of events. Hailperin criticized Boole for:

• restricting disjunction to be exclusive, so that he could apply additivity to calculate
probabilities of disjunctively compound events, and

• assuming that all events can be expressed as combinations of simple stochastically
independent events, he obtained probabilities of conjunctively compound events
as products of probabilities of their constituents.

Furthermore, Hailperin noted that Boole did not fully distinguish conditional proba-
bilities from probabilities of conditionals (in modern notation P(B|A) and P(B →
A), respectively). Still, Hailperin and many others recognized the full worth of
Boole’s ideas and confirmed that The laws of thought was themost successful follow-
up of the idea about probability logic for almost 200 years since Leibnitz announced
the challenging program.

2.5.4 J. Venn, H. MacColl, C. Peirce, P. Poretskiy

JohnVenn (1834–1923) in [167] examined laws according to which beliefs (acquired
by inferences based on induction or analogy, that depend on testimonies or memo-
ries) of different strengths could be obtained. While rejecting the subjective view of
probability and promoting the frequentism (citations from [167]):

The probability is nothing but that proportion, and is unquestionably in this case derived
from no other source but the statistics themselves …

Venn proposed logical treatment of probability:

With what may be called the Material view of Logic as opposed to the Formal or Concep-
tualist, with that which regards it as taking cognisance of laws of things and not of the laws
of our own minds in thinking about things, I am in entire accordance. Of the province of
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Logic, regarded from this point of view, and under its widest aspect, Probability may, in my
opinion, be considered to be a portion. The principal objects of this Essay are to ascertain
how great a portion it comprises, where we are to draw the boundary between it and the
contiguous branches of the general science of evidence, what are the ultimate foundations
upon which its rules rest, what the nature of the evidence they are capable of affording, and
to what class of subjects they may most fitly be applied.

One of the main problems in Venn’s approach [167, 168] was to properly introduce
the concept of infinite series of things or eventswith continually increasinguniformity
while havingonly arbitrarily long, but still finite, series. That issuewas later addressed
by Hans Reichenbach [159].

Charles S. Peirce (1839–1887) first, like Venn, had an objectivist approach to
probability, but in his latter days he proposed some kind of propensity interpreta-
tion of probability. He assigned probability to an argument, with premises and a
conclusion, rather than to a proposition or an event, and in that sense all probabil-
ities are conditional probabilities [20]. Peirce introduced a symbol for conditional
probability,32 considered its properties, for example33:

• aba = bab
• (1 − b)a = 1 − ba ,

clearly distinguished conditional probability from probability of conditional [63],
while in calculations did not generally assume independence of events, as Boole did.
Among his numerous contributions to logic, Peirce analyzed Boole’s work on logic
and probability, and noticed several mistakes and limitations. For example, in [115],
he wrote:

It being known what would be the probability of Y , if X were to happen, and what would
be the probability of Z , if Y were to happen; what would be the probability of Z , if X were
to happen? But even this problem has been wrongly solved by him. For, according to his
solution, where p = Y [X ], q = Z [Y ], r = Z [X ], r must be at least as large as the product
of p and q. But if X be the event that a certain man is a negro, Y the event that he is born in
Massachusetts, and Z the event that he is a white man, then neither p nor q is zero, and yet
r vanishes.

Peirce distinguished:

• deduction,
• induction, and
• retroduction (abduction)

as fundamentally different kinds of reasoning [26]:

Deduction is that mode of reasoning which examines the state of things asserted in the
premisses, forms a diagram of that state of things, perceives in the parts of that diagram
relations not explicitly mentioned in the premisses, satisfies itself by mental experiments
upon the diagram that these relations would always subsist, or at least would do so in a
certain proportion of cases, and concludes their necessary, or probable, truth.

32ba denotes the frequency of b’s among the a’s.
33In modern notation: P(A)P(B|A) = P(B)P(A|B) and P(¬B|A) = 1 − P(B|A) .
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Induction is that mode of reasoning which adopts a conclusion as approximate, because it
results from a method of inference which must generally lead to the truth in the long run. For
example, a ship enters port laden with coffee. I go aboard and sample the coffee. Perhaps I
do not examine over a hundred beans, but they have been taken from the middle, top, and
bottom of bags in every part of the hold. I conclude by induction that the whole cargo has
approximately the same value per bean as the hundred beans ofmy sample. All that induction
can do is to ascertain the value of a ratio.

Retroduction is the provisional adoption of a hypothesis, because every possible consequence
of it is capable of experimental verification, so that the persevering application of the same
method may be expected to reveal its disagreement with facts, if it does so disagree. For
example, all the operations of chemistry fail to decompose hydrogen, lithium, glucinum,
boron, carbon, nitrogen, oxygen, fluorine, sodium,…gold, mercury, thallium, lead, bismuth,
thorium, and uranium.We provisionally suppose these bodies to be simple; for if not, similar
experimentation will detect their compound nature, if it can be detected at all.

which could be illustrated by:

• by induction, from the hypothesis that beans are from this bag, and the result that
these beans are white, the rule that all the beans from this bag are white is obtained,
while

• by retroduction, from the rule that all the beans from this bag are white, and the
result that these beans are white, the hypothesis that these beans are from this bag
is formulated.

Hediscriminated between the different kinds of imperfection—probability, verisimil-
itude or likelihood, and plausibility and associated them with deduction, induction
and abduction, respectively [116]:

By Plausible, I mean that a theory that has not yet been subjected to any test, although more
or less surprising phenomena have occurred which it would explain if it were true, is in itself
of such a character as to recommend it for further examination or, if it be highly plausible,
justify us in seriously inclining toward belief in it, as long as the phenomena be inexplicable
otherwise.

I call that theory likely which is not yet proved but is supported by such evidence that if the
rest of the conceivably possible evidence should turn out upon examination to be of a similar
character, the theory would be conclusively proved.

Hugh MacColl (1837–1909), independently of Peirce, provided a symbol for
conditional probability and investigated the corresponding properties. He attached
probabilities to propositions and not to arguments [63]:

The symbol xa denotes the chance that the statement x is true on the assumption that the
statement a is true.

Besides the standard truth values he suggested, with probabilistic motivation, the
modalities certain, impossible and variable, and classified statements in pure logic
as34 (the next two citations from [104]):

34He mixed here syntax and semantics.
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In pure or abstract logic statements are represented by single letters, and we classify them
according to attributes as true, false, certain, impossible, variable, respectively denoted by
the five Greek letters τ , ι, ε, η, θ …The symbol Aτ only asserts that A is true in a particular
case or instance. The symbol Aε asserts more than this: it asserts that A is certain, that A
is always true (or true in every case) within the limits of our data and definitions, that its
probability is 1 …The symbol Aη asserts more than this; it asserts that A contradicts some
datum or definition, that its probability is 0 …The symbol Aθ (A is a variable) is equivalent
to A−ηA−ε ; it asserts that A is neither impossible nor certain, that is, that A is possible
but uncertain. In other words, Aθ asserts that the probability of A is neither 0 nor 1, but
some proper fraction between the two …The symbol AB : CD is called an implication, and
means (ABC−D)η, or its synonym (A−B + CD)ε …Let the symbol π temporarily denote
the word possible, let p denote probable, let q denote improbable, and let u denote uncertain
…We shall then, by definition, have (Aπ = A−η) and (Au = A−ε) while Ap and Aq will
respectively assert that the chance of A is greater than 1

2 , that it is less than
1
2 .

MacColl contributed both to classical and to non-classical modal logic but for long
time his achievementswere often forgotten and attributed to others. His interpretation
of syllogisms as inferences defined in terms of implication, for example:

Barbara asserts that “If every X is Y , and every Y is Z , then every X is Z”, which is equivalent
to (SX : SY )(SY : SZ ) : (SX : SZ ).

allowed him to develop, contemporaneously with Frege, propositional logic as a
branch of logic independent of the class calculus or term logic of the traditional
syllogisms [159]. MacColl was the first who discussed the paradoxes of material
implication [105]:

For nearly thirty years I have been vainly trying to convince them that this assumed invariable
equivalence between a conditional (or implication) and a disjunctive is an error …Take the
two statements “He is a doctor” and “He is red-haired”, each of which, is a variable, because
it may be true or false. Is it really the fact that one of these statements implies the other?
Speaking of any Englishman taken at random out of those now living, can we truly say of
him “If he is a doctor he is red-haired”, or “if he is red-haired he is a doctor?”

This dissatisfaction with the material implication led to the notion of the strict impli-
cation [106, 121]:

…with Mr Russell the proposition A implies B means (AB ′)ι, whereas with me it means35

(AB ′)η.

While Rescher listedMacColl as one of the founders of many-valued logics in [134],
Simons argued against that, and understood it as a modal probability logic [154].

Platon Sergeyevich Poretskiy (1846–1907) in [120] tried

…to give scientific form to Boole’s deep, but vague and unproved, idea of applying mathe-
matical logic to the theory of probability.

He developed a calculus of logical equations and applied it to problems in the prob-
ability theory [159]. In Russia, in the second half of the nineteenth century and the
first decades of the twentieth century, the research related to the probability theory

35In modern terms: A and ¬B is false, A and ¬B is impossible, respectively.
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was focused on other issues [22, 147]: Pafnuty Lvovich Chebyshev (1821–1894)
and his students and followers36 generalized Laplace’s and Poisson’s law of large
numbers [12, 27–29, 109, 165], gave the central limit theorem [28], introduced and
analyzed sequences of random variables in which the future variable is determined
by the present variable only, i.e., Markov chains [108], but their great achievements
are out of the scope of this text.

2.6 Rethinking the Foundations of Logic and Probability
in the Twentieth Century

The second half of nineteenth and the beginning of twentieth century were marked
by significant efforts to establish foundations of mathematics. These efforts were
caused by three crises in mathematics in nineteenth century, which for the first time
opened a question of the nature of mathematical truth and reliability of mathematical
knowledge. The first crisis was in Analysis, resulting from careless use of infini-
tesimals, for which there was no firm foundation and this resulted in suspicions or
incorrect proofs. The second crisis was the discovery of non-Euclidean geometries
(and proofs of their equiconsistency with Euclidean geometry), which brought an
end to the general belief that Euclidean geometry is “The Truth” about space. The
third developed toward the end of nineteenth century. Just as the set theory started
looking not only as a powerful tool but also as a good candidate for the foundations
of mathematics, numerous paradoxes started appearing. While the first crisis seemed
to be resolved by replacing infinitesimals by epsilon-delta technique, and by defining
real numbers from rationals using Cauchy sequences or Dedekind cuts, the second
and especially the third crisis demanded more radical solutions.

Gottlob Frege (1848–1925) criticized mathematicians, who were mostly satisfied
with deriving real numbers from natural numbers, and embarked on an ambitious
project of deriving the whole of mathematics from some elementary logical princi-
ples, inventing in the process the predicate (quantifier) logic [52]. Frege introduced
binary, ternary, etc., relations, which enabled him to introduce the second, third,
etc., quantifiers, bringing thus logic out of the dead end into which Aristotle’s syl-
logisms stranded it. Namely, already scholastics realized that the main task in the
development of logic should be to somehow introduce the “second generality”, i.e.,
the second quantifier, into syllogisms. However, the influence of Aristotle’s analysis
of language and his assertion that the basic element to which all language can be
reduced is “subject-predicate”, meaning that all language is based on unary predi-
cates, was so strong that nobody, even such great minds as Leibnitz, did dare think
out of that box. It seems incredible that such a simple and obvious step was sufficient
to bring logic out of more than 2000 years of virtual standstill, but Frege was the first

36Andrei Andreevich Markov (1856–1922), Alexander Alexandrovich Chuprov (1874–1926),
Sergei Natanovich Bernstein (1880–1968), Yakov Viktorovich Uspenski (1883–1947), just to men-
tioned some of them.
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who dared make it. His second step was even bolder: he derived the set theory (and
from it the arithmetic of natural numbers) from just two obvious logical axioms. One
was that two sets are equal just in case they have the same members and the other
was that for every property, there is the set of all objects having that property. As
Frege’s book was being printed, a Ph.D. student Bertrand Russell derived a paradox
from the second axiom—so-called Russell’s paradox, destroying thus the Frege’s
dream. On the other hand Russell popularized Frege’s predicate calculus (which had
been mostly ignored, due to his awkward two-dimensional notation) and published,
with Whitehead, immensely influential Principia Mathematica [172] which tried to
resurrect the Frege’s program and which played very significant role in the rise of
mathematical logic in the first decades of twentieth century, culminating with Kurt
Gödel’s (1904–1977) proof of completeness of first order logic [57].

It is interesting that from the viewpoint of this book, which is devoted to con-
nections between logic and probability, Frege’s influence might be considered as
negative. Namely, Frege’s interest being in founding mathematics, and mathemat-
ical truths being necessary (not contingent), there was no room for probability in
his approach. He considered propositions to be names for truth or falsity and those
truth values had a special status that had nothing to do with probabilities. Ironically,
a century after Frege, towards the end of twentieth century, “proofs with probabil-
ity” appeared in mathematics. Some statements in number theory were shown to be
true—with very high probability, e.g., Robert Solovay andVolker Strassen developed
a probabilistic test to check if a number is composite, or (with high probability) prime
[156, 157]. The rapid development of logic in the first half of the twentieth century
was the development of logic of necessary mathematical truth, and its elegance and
effectiveness completely eclipsed the probability logic despite the efforts of Keynes,
Reichenbach, Carnap and others that continued Boole’s approach connecting prob-
ability and logic.

At the same time, beside the classical definition where the probability of an event
is the quotient of the numbers of the favorable and all possible outcomes, some
alternative views were proposed: frequency, logical, and subjective interpretations,
etc. Particularly, influential was the measure-theoretical approach which resulted
in Andrei Nikolaevich Kolmogorov’s axiomatic system for probability. Since those
works the mainstreams of mathematical logic and probability theory were almost
completely separated until the middle of the 1960s.

2.6.1 Logical Interpretation of Probability

In this context probability logic can be seen as a generalization of deductive logic
which formalizes a broader notion of inference based on the notion of confirmation37

which one set of propositions, i.e., evidences or premises, brings to another set of
propositions, conclusions.

37Viewed as a generalization of the notion of classical implication.
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John Maynard Keynes (1883–1946), following Leibnitz,38 conceived of proba-
bility as a part of logic, i.e., as a relation between propositions which represents an
objective estimation of non-personal knowledge (citations from [78]):

The Theory of Probability is concerned with that part [of our knowledge] which we obtain by
argument, and it treats of the different degrees in which the results so obtained are conclusive
or inconclusive …The Theory of Probability is logical, therefore, because it is concerned
with the degree of belief which it is rational to entertain in given conditions, and not merely
with the actual beliefs of particular individuals, which may or may not be rational. Given the
body of direct knowledge which constitutes our ultimate premisses, this theory tells us what
further rational beliefs, certain or probable, can be derived by valid argument from our direct
knowledge. This involves purely logical relations between the propositions which embody
our direct knowledge and the propositions about which we seek indirect knowledge …Let
our premisses consist of any set of propositions h, and our conclusion consist of any set of
propositions a, then, if a knowledge of h justifies a rational belief in a of degree α, we say
that there is a probability-relation of degree α between a and h39 …Between two sets of
propositions, therefore, there exists a relation, in virtue of which, if we know the first, we
can attach to the latter some degree of rational belief. This relation is the subject-matter of
the logic of probability.

For Keynes, there exists a unique rational probability relation between sets of
premises and conclusions, so that from valid premises, one could in a rational way
obtain a belief in the conclusion. It means that the conclusion sometimes, or even
very often, only partially follows from its premises. Thus probability extends classi-
cal logic. In the same time he did not limit himself to give only numerical meaning
to probabilities and that arbitrary probabilities must be comparable.40 He stated that,
although each probability is on a path between impossibility and certainty, different
probabilities can lie on different paths:

I believe, therefore, that the practice of underwriters weakens rather than supports the con-
tention that all probabilities can be measured and estimated numerically …It is usually
held that each additional instance increases the generalisation’s probability. A conclusion,
which is based on three experiments in which the unessential conditions are varied, is more
trustworthy than if it were based on two. But what reason or principle can be adduced for
attributing a numerical measure to the increase? …We can say that one thing is more like a
second object than it is like a third; but there will very seldom be any meaning in saying that
it is twice as like. Probability is, so far as measurement is concerned, closely analogous to
similarity. …Some sets of probabilities we can place in an ordered series, in which we can
say of any pair that one is nearer than the other to certainty, that the argument in one case
is nearer proof than in the other, and that there is more reason for one conclusion than for
the other. But we can only build up these ordered series in special cases. If we are given two
distinct arguments, there is no general presumption that their two probabilities and certainty
can be placed in an order.

38At the very beginning of the book, Keynes quoted Leibnitz’s demand for new logic which involves
probability reasoning.
39This will be written a/h = α.
40Namely, he believed that probabilities of events or propositions in its widest sense cannot be
always associated with numbers from the unit interval of reals.
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Incomparable probabilities can arise from uncertainty that can be estimated by over-
lapping intervals that are not mutually comparable, or when uncertainty is evaluated
in terms of vectors:

Is our expectation of rain, when we start out for a walk, always more likely than not, or less
likely than not, or as likely as not …If the barometer is high, but the clouds are black, it is
not always necessary that one should prevail over another in our minds …

Keynes saw probability between sets of propositions as an undefined primitive con-
cept and tried to formalize it. He presented a system of axioms, e.g.,

• Provided that a and h are propositions or conjunctions of propositions or disjunc-
tions of propositions, and that h is not an inconsistent conjunction, there exists one
and only one relation of probability P between a as conclusion and h as premiss.
Thus any conclusion a bears to any consistent premiss h one and only one relation
of probability.

• Axiom of equivalence: If (a ≡ b)/h = 1, and x is a proposition, x/ah = x/bh.
• (aa ≡ a)/h = 1.
• ab/h + ab/h = a/h.
• ab/h = a/bh × b/h = b/ah × a/h, etc.,

and then proved a number of theorems about probabilities, for example:

• a/h + a/h = 1.
• If a/h = 1, then a/bh = 1 if bh is not inconsistent.

Hailperin objects to this formal framework [63]. He explains that Keynes’ formal-
ization does not fulfill modern requirements, i.e., that there is no well defined syntax,
that there are no inference rules, that some definitions are not eliminable, etc. Further-
more, the axioms do not allow iterations of probabilities, namely it is not possible to
write something like (a/b = c/d)/e. Finally, while some authors interpret Keynes’
concept as degree of confirmation, his axioms do not seem strong enough to charac-
terize notions wider than conditional probabilities.

Rudolf Carnap’s (1891–1970) work on logical foundations of probability was also
an attempt to develop a pure logical concept of probability [25]. He was among the
first researchers who clearly acknowledged that there are two distinct concepts of
probability (citation from [24]):

Among the various meanings in which the word ‘probability’ is used in everyday language,
in the discussion of scientists, and in the theories of probability, there are especially two
which must be clearly distinguished. We shall use for them the terms ‘probability1’ and
‘probability2’. Probability1 is a logical concept, a certain logical relation between two sen-
tences (or, alternatively, between two propositions); it is the same as the concept of degree
of confirmation. I shall write briefly “c” for “degree of confirmation”, and “c(h, e)” for “the
degree of confirmation of the hypothesis h on the evidence e”, the evidence is usually a
report on the results of our observations. On the other hand, probability2 is an empirical con-
cept; it is the relative frequency in the long run of one property with respect to another. The
controversy between the so-called logical conception of probability, as represented e.g. by
Keynes, and Jeffreys, and others, and the frequency conception, maintained e.g. by v. Mises
and Reichenbach, seems to me futile. These two theories deal with two different probability
concepts which are both of great importance for science. Therefore, the theories are not
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incompatible, but rather supplement each other. In a certain sense we might regard deductive
logic as the theory of L-implication (logical implication, entailment). And inductive logic
may be construed as the theory of degree of confirmation, which is, so to speak, partial
L-implication. “e L-implies h” says that h is implicitly given with e, in other words, that the
whole logical content of h is contained in e. On the other hand, “c(h, e) = 3/4” says that
h is not entirely given with e but that the assumption of h is supported to the degree 3/4 by
the observational evidence expressed in e …Inductive logic is constructed out of deductive
logic by the introduction of the concept of degree of confirmation.

In the framework of probability1, Carnap connected the concepts of inductive rea-
soning, probability, and confirmation and considered that c-functions should obey
the generally accepted properties of confirmation [63], so that if some c-values are
given, some others can be derived. Carnap fixed a finitary unary first order language
LN with constants a1, a2,…aN to express h and e. He considered an arbitrary non-
negative measure m on conjunctions of possible negated ground atomic formulas,
with the only constraint that their sum is 1, and then, using additivity, extended
it to all sentences. Then, if m(e) �= 0, c(h, e) is defined as m(e.h)/m(e), while
m- and c-values for infinitary system are determined as limits of the values for finite
systems. Carnap studied properties of c, for example how degrees of confirmation
decrease in chains of inferences, or:

• If c(h, e) = 1 and c(i, e) > 0, then c(h, e.i) = 1.

In Appendix of the first edition of [25], he announced:

In Volume II a quantitative system of inductive logic will be constructed, based upon an
explicit definition of a particular c-function c∗ and containing theorems concerning the
various kinds of inductive inference and especially of statistical inference in terms of c∗.

The idea was to, out of an infinite number of c-functions, choose one particular
function adequate as a concept of degree of confirmation which would enable us to
compute the c∗-value for every given sentence. However, later he abandoned that
idea [63].

Even though Carnap’s work was not completely successful, it stimulated a line
of research on probabilistic first-order logics with more expressive languages than
Carnap’s [53, 54, 144, 160].

2.6.2 Subjective Approach to Probability

In [18], Émil Borel (1871–1956) criticized Keynes’ approach, and and argued for the
existence of different meanings of probability depending on the context. Borel, as a
subjectivist, allowed that different persons with the same knowledge could evaluate
probabilities differently, and proposed betting as a means to measure someone’s
subjective degree of belief (translation from [55]):

…exactly the same characteristics as the evaluation of prices by the method of exchange. If
one desires to know the price of a ton of coal, it suffices to offer successively greater and
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greater sums to the person who possesses the coal; at a certain sum he will decide to sell
it. Inversely if the possessor of the coal offers his coal, he will find it sold if he lowers his
demands sufficiently.

On the other hand, following Henri Poincaré’s (1854–1912) ideas [171], he accepted
also objective probabilities in science, where probabilities could be identified with
statistically stable frequencies (translation from [19]):

There is no difference in nature between objective and subjective probability, only a differ-
ence of degree. A result in the calculus of probabilities deserves to be called objective, when
the probability is sufficiently large to be practically equivalent to certainty. It matters little
whether one is predicting future events or reviewing past events; one may equally aver that
a probabilistic law will be, or has been, confirmed.

Frank Plumpton Ramsey (1903–1930) in [122] regarded probability theory as a
part of logic of partial belief and inconclusive argument.He did not reduce probability
to logic and admitted that themeaning of probability in other fields could be different.
Ramsey was a student of Keynes, but did not accept Keynes’ objective approach to
probability and doubted existence of his probability relations. Ramsey insisted that
he does not perceive probability relations. For example, he argued that there is no
relation of that kind between propositions “This is red” and “This is blue”. The focus
of his examination was on probabilities comprehended as partial subjective beliefs,
and on the logic of partial belief. One of the main issues in this approach was how to
regard beliefs quantitatively so that they could be appropriately related to probability.
To develop a theory of quantities of beliefs, Ramsey assumed that a person acts in the
way she/he thinks most likely to realize her/his desires, and used betting to measure
beliefs (citations from [122]):

The old-established way of measuring a person’s belief is to propose a bet, and see what
are the lowest odds which he will accept …We thus define degree of belief in a way which
presupposes the use of the mathematical expectation …By proposing a bet on p we give the
subject a possible course of action from which so much extra good will result to him if p is
true and so much extra bad if p is false. Supposing, the bet to be in goods and bads instead
of in money, he will take a bet at any better odds than those corresponding to his state of
belief; in fact his state of belief is measured by the odds he will just take …

which might be seen as reminiscence of Huygens’ approach and Bayes’ definition
of probability. Ramsey showed that consistent degrees of belief must follow the laws
of probability [122], e.g.:

(1) Degree of belief in p + degree of belief in p = 1
…
(4) Degree of belief in (p ∧ q) + degree of belief in (p ∧ q) = degree of belief in p.
…We find, therefore, that a precise account of the nature of partial belief reveals that the
laws of probability are laws of consistency, an extension to partial beliefs of formal logic,
the logic of consistency.

Defining probability along the lines of Ramsey’s approach, Bruno de Finetti
(1906–1985) emphasized his subjective interpretation of probability [37]:
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According to whether an individual evaluates P(E ′|E ′′) as greater than, smaller than, or
equal to P(E ′), we will say that he judges the two events to be in a positive or negative
correlation, or as independent: it follows that the notion of independence or dependence of
two events has itself only a subjective meaning, relative to the particular function P which
represents the opinion of a given individual …

In what precedes I have only summarized …what ought to be understood, from the sub-
jectivistic point of view, by “logical laws of probability” and the way in which they can be
proved. These laws are the conditions which characterize coherent opinions (that is, opinions
admissible in their own right) and which distinguish them from others that are intrinsically
contradictory. The choice of one of these admissible opinions from among all the others is
not objective at all and does not enter into the logic of the probable …

that all probabilities are conditional, existing only as someone’s description of an
uncertain world.41 Then, the role of probability theory is to coherently manage opin-
ions [30], which is analogous to the satisfiability checking problem in probability
logic (see Sect. 3.5). In de Finetti’s view, this offered more freedom than the objec-
tivistic approach, since for him it was possible to evaluate the probability over any set
of events, while objectivists needed an unnecessarily complexmathematical structure
in the background (citations from [36]):

Concerning a known evaluation of probability, over any set of events whatsoever, and inter-
pretable as the opinion of an individual, real or hypothetical, we can only judge whether, or
not, it is coherent …Such a condition of coherence should, therefore, be the weakest one if
we want it to be the strongest in terms of absolute validity. In fact, it must only exclude the
absolutely inadmissible evaluations; i.e. those that one cannot help but judge contradictory.

Another de Finetti’s distinguishing characteristic was his strong support of finite
additivity of probability. He posed the question whether it is possible to give zero
probability to all the events in an infinite partition. The first answer was negative,
i.e., probability is σ -additive, so in every infinite partition there must be an at most
countable number of events with positive probabilities and the sum of those proba-
bilities is 1. Here the zero probability may or may not mean impossibility. A more
general view allows uncountable partitions, in which case the sum of an uncountable
many zeroes can be positive. However, de Finetti had the following opinion:

A: Yes. Probability is finitely additive. The union of an infinite number of incompatible
events of zero probability can always have positive probability, and can even be the certain
event …Let me say at once that the thesis we support here is that of A, finite additivity;
explicitly, the probability of a union of incompatible events is greater than or equal to the
supremum of the sums of a finite number of them.

41This has an interesting consequence: a conditioning event can have the zero probability, which
is not possible in the standard approach, where conditional probabilities are defined as quotients of
absolute probabilities.

http://dx.doi.org/10.1007/978-3-319-47012-2_3


54 2 History

2.6.3 Objective Probabilities as Relative Frequencies
in Infinite Sequences

Based on Cournot’s principle about events with infinitely small probabilities, and
Bernoulli’s theorem, the frequency interpretation seems to be an objective way to
determine themeaningof probability values as limits of relative frequencies in infinite
sequences of events [102, 151]. Still it opens many questions, and not the least of
them concerns estimation of limits by finite sequences. Richard von Mises (1883–
1953) restricted the types of sequences that would be appropriate to characterize
probabilities to random sequences in which it would not be possible to acquire gains
by betting on the next item given the previous outcomes [169, 170]. However, his
notion of collectives, infinite sequences of outcomes with warranted limiting values
of the relevant frequencies and invariance of limits in subsequences, just shifted the
existing issue to another one: the existence of collectives.

HansReichenbach (1891–1953) considered abroader class of the so-called normal
sequences [132] but his definition was far from being precise [56], and we will not
give it here, since for this text what is relevant is that Reichenbach used probabilities
to replace the standard truth values in a logic where inferences should be represented
axiomatically (citations from [132]):

It will be shown that the analysis of probability statements referring to physical reality leads
into an extension of logic, into a probability logic, that can be constructed by a transcription of
the calculus of probability; and that statements that aremerely probable cannot be regarded as
assertions in the sense of classical logic, but occupy an essentially different logical position.
Within this wider frame, transcending that of traditional logic, the problem of probability
finds its ultimate solution …This …has a mathematical advantage in that it presents the
content of the mathematical discipline of probability in a logically ordered form.

which is similar to Keynes’ logical approach, but here probabilities assigned to
propositions are limiting frequencies of events (that correspond to propositions) in
sequences. For example, let A and B denote the classes (i.e., sequences) of events
“the die is thrown” and “1 is obtained”, respectively. Then:

Probability statements therefore have the character of an implication; they contain a first
term, and a second term, and the relation of probability is asserted to hold between these
terms. This relation may be called probability implication …the probability implication
expresses statements of the kind “if a is true, then b is probable to the degree p”.

Then for the events xi ∈ A, and yi ∈ B, the probability statement is written42 as

(i)(xi ∈ A

�

p
yi ∈ B) or A

�

p
B or P(A, B) = p or P( f xi , gyi ) = p,

while P(A) denotes the probability of A.
Reichenbach proposed a formal system with four groups of axioms43:

42Meaning: for all xi and all yi , if xi ∈ A, then yi ∈ B with probability p.
43We give the axioms in the original form, i.e., A ⊃ B, A, A.B, A ≡ B denote A → B,¬A, A∧ B,
and A ↔ B, respectively.
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I Univocality
(p �= q) ⊃ [(A �

p
B).(A

�

q
B) ≡ (A)]

II Normalization

1. (A ⊃ B) ⊃ (∃p)[(A �

p
B).(p = 1)]

2. (A).(A

�

p
B) ⊃ (p � 0)

III Theorem of addition

(A

�

p
B).(A

�

q
C).(A.B ⊃ C)] ⊃ (∃r)[(A �

r
(B ∨ C)).(r = p + q)]

IV Theorem of multiplication

(A

�

p
B).(A.B

�
u
C)] ⊃ (∃w)(A

�

w
B.C).(w = p · u).

These axioms say that the probability values are unique44 (I), from the real unit inter-
val (II), that probabilities are finitely additive (III), while the axiom IV correspond
to the rule P(CB|A) = P(C |BA)P(B|A) [56].

The truth-table for Reichenbach’s logic:

P(A) P(B) P(A, B) P(A) P(A ∨ B) P(A.B) P(A ⊃ B) P(A ≡ B) P(B, A)

p q u 1 − p p + q − pu pu 1 − p + pu 1 − p − q + 2pu pu/q

with the constraints:

• P(A, A) = 1 and
• p+q−1

p � u � q
p

means that the logic is not truth-functional. For example, P(A ∨ B) depends on the
values P(A) and P(B), but also on the third value u that is not determined uniquely
by the probabilities of A and B.

Reichenbach’s position was that probability is reducible to frequency. To bridge
the gap between his deductive system and the frequency-based approach to proba-
bility, Reichenbach added to the axiomatic system:

Rule of induction. If an initial section of n elements of a sequence xi is given, resulting in
the frequency f n , and if, furthermore, nothing is known about the probability of the second
level for the occurrence of a certain limit p, we posit that the frequency f i (i > n) will
approach a limit p within f n ± δ when the sequence is continued.

The rule might seem in spirit of the law of large numbers, but the crucial difference
between the two is that Rule of induction relies on finite sequences. Reichenbach

44A is an empty class (denoted by A), if B follows from A with two different probabilities.
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tried to justify it using a strong assumption about existence of the so-called higher
order probabilities that guarantee that the limiting relative frequency of an event is in
a small interval and represents the true probability. Anyhow, Rule of induction was
seen as a part of the meta-level which could not be mixed with the object language:

When we use the logical concept of probability, the rule of induction must be regarded as
a rule of derivation, belonging in the metalanguage. The rule enables us to go from given
statements about frequencies in observed initial sections to statements about the limit of the
frequencies for the whole sequence. It is comparable to the rule of inference of deductive
logic, but differs from it in that the conclusion is not tautologically implied by the premisses.
The inductive inference, therefore, leads to something new; it is not empty like the deductive
inference, but supplies an addition to the content of knowledge.

Besides numerous philosophical objections about [48, 56, 65]: accessibility of the
truth in the real world, possibility to reduce different forms of uncertainty to only one
kind of probability, problematic assumption of existence of limits of relative frequen-
cies, dependability of limits upon the arrangement of events ordered in sequences,
etc., there is logically founded criticism, too. Eberhardt and Glymour in [56] and
Hailperin in [63] point out that:

• Reichenbach’s axiomatization is neither strong enough to characterize σ -additive
probabilities nor sets of limiting relative frequencies satisfy countable additivity
[56],

• the syntax is not precisely specified, for example it is not clear whether iterations
of the probability implication is allowed, i.e., what is the meaning of ,

• no definition of the consequence relation is given, etc.

2.6.4 Measure-Theoretic Approach to Probability

Theory of measure and integration was initiated by Émil Borel [15] and Henri
Lebesgue (1875–1941) [89] and further developed by Constantine Carathéodory
(1873–1950), Johann Radon (1887–1956), Maurice Fréchet (1878–1973), Otto
Nikodym (1887–1974), Percy Daniell (1889–1946), etc. Their results, following
the analogy of events and their probabilities with sets of real numbers and their
measures, provided important tools for probability theory. For example, it became
possible to analyze limiting behaviors of relative frequencies.

In [15, 16] a countably additive extension of length of intervals,45 today named
afterBorel,was introduced.46 Themeasurable setswere defined to be closed intervals,
their complements and at most countable unions, while the measure of a countable
union of pairwise disjoint closed intervals was the sum of the lengths of the intervals.

45Countably additive probabilities were discussed for the first time by Anders Wiman (1865–1959)
[47] in [174].
46It was not without criticism. Arthur Schoenflies (1853–1928) in [143] objected that Borel’s
approach to measurability was ad hoc, while σ -additivity was introduced by a definition, and
motivated only to achieve a specific goal (translation from [47]):
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In [16] Borel used Lebesgue’s integral to prove that the event of randomly choosing
a rational number in [0, 1] has the zero probability. However, at the time, he was not
fully satisfied with applications of measure theory to probability, so in [17] he did
not have a measure-theoretical approach, and used limits to obtain probabilities of
events in infinite sequences of trials [151]. That seminal paper, although considered
as the transition point between classical and modern probability theory, caused a dis-
agreement in interpretations of Borel’s way of reasoning and proving statements [5,
64, 146]. Borel introduced denumerable probabilities as a reasonable generalization
of finite probabilities which avoids the continuous case (translation from [5]):

The cardinality of denumerable sets alone being what we may know in a positive manner,
the latter alone intervenes effectively in our reasonings…I believe that…the continuumwill
prove to have been a transitory instrument, whose present-day utility is not negligible (we
shall supply examples at once), but it will come to be regarded only as a means of studying
denumerable sets, which constitute the sole reality that we are capable of attaining.

He also considered probabilities that are only finitely additive47 and was in principle
not against them, but concluded that (translation from [171]):

…such a hypothesis does not seem logically absurd to me, but I have not encountered
circumstances where its introduction would have been advantageous.

Borel analyzed countably long sequences of Bernoulli trials,48 and formulated three
questions [64]:

• What is the probability that the case of success never occurs?
• What is the probability of exactly k successes?
• What is the probability that success occurs an infinite number of times?

In the first problem he extended, to the countable version, the classical rule of com-
pound probability for independent events

P

( ∞∧
i=1

Ai

)
= Π∞

i=1P(Ai )

and justified it by analyzing convergence of the infinite sum
∑∞

i=1 P(Ai ):

• if the sum is finite, the sought probability is well defined and belongs to (0, 1),
and

(Footnote 46 continued)

Above all, it only has the nature of a postulate because we cannot decide if a property which
can be verified by a finite sum, can be extended over an infinite number of terms by an axiom,
but by deep examination alone.

47For example: for every natural number the probability to be picked out from the set of all natural
numbers is 0, and the probability of the whole set is 1.
48Independent trials, each trial Ai with exactly two possible outcomes, with the respective proba-
bilities P(Al ) = pl and P(¬Al ) = 1 − pl of success and of failure in the lth trial, respectively.
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• if the sum is divergent, the infinite product tends towards 0, which is the value given
to the sought probability, but Borel understood that in that case the corresponding
event is not impossible.

The second problem required generalization of the principle of total probability to
infinite case of countable additivity

P

( ∞∨
i=1

Ai

)
=

∞∑
i=1

P(Ai ).

Borel laconically justified this by an analogy to the previous case. Regarding the
third problem, Borel concluded49 that the probability of infinite number of successes
is 1 if

∑∞
i=1 pi < ∞, while if the sum is divergent, the probability is 0. This result

was applied to prove that almost all real numbers from the unit interval are normal,
i.e., that in the corresponding binary expansions the proportion of 1s converges to
1/2. Generally, Borel used the notion of an almost sure probabilistic occurrence as
a proof of existence.

Although Borel himself was not interested in formalization of probability, his
paper motivated other authors to try to apply measure theory in establishing an
axiomatic foundation of probability theory, e.g., Ugo Broggi (1880–1965), Sergei
Bernstein (1880–1968), EvgenySlutsky (1880–1948),HugoSteinhaus (1887–1972),
Stanisław Ulam (1909–1984), etc. [151]. It culminated with the famous Foundations
of the theory of probability byAndrei NikolaevichKolmogorov (citations from [79]):

The purpose of this monograph is to give an axiomatic foundation for the theory of prob-
ability. The author set himself the task of putting in their natural place, among the general
notions of modern mathematics, the basic concepts of probability theory–concepts which
until recently were considered to be quite peculiar. This task would have been a rather hope-
less one before the introduction of Lebesgue’s theories of measure and integration. However,
after Lebesgue’s publication of his investigations, the analogies between measure of a set
and probability of an event, and between integral of a function and mathematical expectation
of a random variable, became apparent.

Kolmogorov started with elementary theory of probability which deals with a finite
number of events only. He defined an abstract structure such that the corresponding
relations on its elements are determined by a set of axioms:

Let E be a collection of elements ξ , η, ζ , …, which we shall call elementary events, and F

a set of subsets of E ; the elements of the set Fwill be called random events.

49This is known as Borels zero-one law, or Borel–Cantelli lemma in recognition of the independent
proof (for general independently and identically distributed randomvariables) by FrancescoCantelli
(1875–1966) [23]. This lemma is about almost sure convergence (except for a set of sequence of
the probability zero) and can be seen as the initial version of the strong law of large numbers.
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I. F is a field50 of sets.

II. F contains the set E .

III. To each set A ∈ F is assigned a non-negative real number P(A). This number P(A) is
called the probability of the event A.

IV. P(E) equals 1.

V. If A and B have no element in common, then

P(A + B) = P(A) + P(B)

A system of sets,F, together with a definite assignment of numbers P(A), satisfying Axioms
I-V, is called a field of probability.

and proved its consistency by considering a singleton E , F = {E,∅}, and P(E) = 1,
P(∅) = 0, that satisfy the axioms. He also defined the conditional probability of the
event B under the condition A that has a positive probability:

PA(B) = P(AB)

P(A)
.

and then proved a number of theorems, for example Multiplication theorem,51 Theo-
rem on total probability,52 Bayes’ theorem,53 etc. Then Kolmogorov considered the
infinitary case:

The field F is called a Borel field, if all countable sums of the sets An from F belong to F

…A field of probability is a Borel field of probability if the corresponding field F is a Borel
field …Given a field of probability (F, P). As is known, there exists a smallest Borel field
BF containing F.

and introduced the additional Axiom of Continuity:

VI. For a decreasing sequence of events A1 ⊃ A2 ⊃ . . . ⊃ An ⊃ . . . of F for which
A1A2 · · · = 0, the following holds:

lim P(An) = 0, n → ∞.

which implies generalized addition theorem, i.e., that the probability P(A) is a com-
pletely additive set function on F:

If A1, A2, …, An , …and A belong to F, then from A = A1 + A2 + . . . + An + . . . follows
the equation P(A) = ∑

n P(An)

50Cf. Hausdorff, Mengenlehre, 1927, p. 78. A system of sets is called a field if the sum, product, and
difference of two sets of the system also belong to the same system. Every nonempty field contains
the null set 0. Using Hausdorff’s notation, we designate the product of A and B by AB; the sum by
A + B in the case where AB = 0; and in the general case by A � B; the difference of A and B by
A − B. The set E − A, which is the complement of A, will be denoted by A ….
51P(A1A2 . . . An) = P(A1)PA1 (A2)PA1A2 (A3) . . . PA1A2...An−1 (An).
52For mutually exclusive A1, A2, …, An such that A1 + A2 + . . . + An = E , and an arbitrary X :
P(X) = P(A1)PA1 (X) + P(A2)PA2 (X) + · · · + P(An)PAn (X).
53For A1 + A2 + · · · + An = E and an arbitrary X : PX (Ai ) =

P(Ai )PAi (X)

P(A1)PA1 (X)+P(A2)PA2 (X)+···+P(An )PAn (X)
.
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Kolmogorov explained that he adopted this extension as an ideal, but useful gener-
alization:

Since the new axiom is essential for infinite fields of probability only, it is almost impossible
to elucidate its empirical meaning …For, in describing any observable random process we
can obtain only finite fields of probability. Infinite fields of probability occur only as idealized
models of real random processes. We limit ourselves, arbitrarily, to only those models which
satisfy Axiom VI …

Only in the case of Borel fields of probability do we obtain full freedom of action, without
danger of the occurrence of events having no probability …Even if the sets (events) A of
F can be interpreted as actual and (perhaps only approximately) observable events, it does
not, of course, follow from this that the sets of the extended field BF reasonably admit of
such an interpretation. Thus there is the possibility that while a field of probability (F, P)

may be regarded as the image (idealized, however) of actual random events, the extended
field of probability (BF, P) will still remain merely a mathematical structure. Thus sets
of (BF, P) are generally merely ideal events to which nothing corresponds in the outside
world. However, if reasoning which utilizes the probabilities of such ideal events leads us to
a determination of the probability of an actual event of F, then, from an empirical point of
view also, this determination will automatically fail to be contradictory.

Kolmogorov’s understanding of applicability of the theory of probability to the world
of actual events was motivated by von Mises’ frequentist approach. Kolmogorov
explained the relationship between probability and the real world using a (finite)
system capable of unlimited repetition of trials, for example, of flipping a coin.
Then the ratio between a large number n of repetitions of the experiment and m, the
number of occurrences of the sought event A, could be used for empirical deduction
of the axioms I–V. Thus it is possible to use it as a practical estimation of P(A), the
probability of A. Finally, he noticed that:

…it does not follow that in a very large number of series of n tests each, in each the ratio
m/n will differ only slightly from P(A).

…To an impossible event (an empty set) corresponds, in accordance with our axioms, the
probability P(∅) = 0, but the converse is not true: P(A) = 0 does not imply the impossibility
of A …all we can assert is that …event A is practically impossible. It does not at all assert,
however, that in a sufficiently long series of tests the event A will not occur.

In the decades that followed the appearance of [79], Kolmogorov’s axiomatic
approach has become standard and established modern probability theory, where the
probability is determined by the above axioms.

2.6.5 Other Ideas

There are plenty of authors whose approaches to probability are more or less compat-
ible with the above mentioned ones. In [75], Harold Jeffreys (1891–1989) developed
Bayesian statistics based on the idea that uncertainty can be described by statements
about probabilities, with the central role of Bayes’s rule in knowledge updating.
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Richard Cox (1898–1991) in [32, 34] tried to formulate rules that guarantee that
probabilities are measurable, and that some probable inferences are more convinc-
ing than the others. Starting from such intuitively plausible principles, for example
(citation from [34]):

The probability of an inference on given evidence determines the probability of its contra-
dictory on the same evidence.

he provided the foundation for logical interpretation of probability by proving that
there is ameasure, i.e., a function of propositions,which satisfies the usual probability
axioms [153].

György Pólya (1887–1985) discussed qualitative conditions for plausible reason-
ing (citation from [117]):

We have here a pattern of plausible inference:

A implies B
B true

A more credible

and investigated the relationship between plausible reasoning and the calculus of
probability.

Edwin Jaynes (1922–1998), influenced by the results of Cox and Pólya, strongly
defended the principle of (citation from [74]):

…assigning probabilities by logical analysis of incomplete information.

Leonard Savage (1917–1971) constructed probabilities from subjective prefer-
ences and then developed applications to decision theory [66, 137].

Karl Popper (1902–1994) promoted a kind of objective approach to probability
called propensity interpretation54 [66, 118, 119]. For him probability represents an
experiment’s tendency to produce given types of outcomes, e.g., the probability of
an outcome is a propensity of the corresponding experiment to generate a sequence
of outcomes of a particular type with a limiting relative frequency. For example, the
properties of a coin (it is homogeneous, with a head and a tail) have the effect that
the limit of the relative frequencies of heads and tails in long sequences are one half.

Patrick Suppes (1922–2014) in [160] considered two instances of the so-called
statistical syllogism:

• if P(A|B) = r and B is true, then P(A) = r , and
• if P(A|C) = s and C is true, then P(A) = s,

which makes a paradoxical conclusion, if r �= s. While the classical approach to
resolve the problem relied on the concept of total evidence, i.e., that total available
evidence has to be used in making the conclusion, Suppes proposed a more general
rule in probabilistic inference (citations from [160]):

54Reference [60] indicates that Peirce, in the last period of his work, adopted a similar opinion. Also,
similarities between Popers’s propensity approach and ideas formulated by Cardano and Galileo
Galilei’s (1564–1642) are discussed.
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P(A|B) � r
P(B) � ρ

P(A) � rρ.

which, in combination with the theorem on total probability implies that from the
premises P(A|B) = r , P(B) = ρ, P(A|C) = s, P(C) = σ , one concludes
P(A) ≥ max{rρ, sσ }. Then he proved validity of other similar rules, e.g.:

P(B → A) � 1 − ε

P(B) � 1 − ε

P(A) � 1 − 2ε

P(A|B) � 1 − ε

P(B) � 1 − ε

P(A) � (1 − ε)2

which he generalized to:

Theorem 1. If P(A) � 1 − ε and A logically implies B then P(B) � 1 − ε.

Theorem 2. If each of the premises A1, …, An has probability of at least 1 − ε and these
premises logically imply B then P(B) � 1 − nε. Moreover, in general the lower bound
1 − nε cannot be improved on, i.e., equality holds in some cases whenever1nε � 0.

As all that is not enough, in [65] another approaches are listed:

• Terrence Fine (1939) proposed comparative probabilities [50],
• David Cox (1924) used complex valued probabilities [33],
• Alfréd Rényi (1921–1970) allowed ∞ to be between possible values of probabil-
ities [133],

• Paul Dirac (1902–1984) and Eugene Wigner (1902–1995) considered negative
probabilities [46, 173],

• David Lewis (1941–2001) and Brian Skyrms (1938) pointed out that infinitesimal
probabilities are essential [103, 155],

• Arthur Dempster (1929) and Glenn Shafer (1946) promoted non-additive proba-
bilities [44, 148],

• Ernest Adams (1926–2009) considered entailments with probabilities almost 1
[1], etc.

2.7 1960s: And Finally, Logic

Most of the previously described ideas about probability logic had very little in
common with the contemporary advances in mathematical logic, i.e., with the proof-
theoretical and model-theoretical results of Gödel, Alfred Tarski (1901–1983), Leon
Henkin (1921–2006) Abraham Robinson, Saul Kripke, Kenneth Jon Barwise, and
other big names in the field [6, 57, 70, 81, 135, 162]. However, this situation started
changing with the papers by Gaifman, Hailperin, and Scott and Krauss that appeared
in 1960s, and particularly with, a little bit latter, Keisler’s work. Also, several authors,
e.g., Charles Hamblin, John Burgess, and Krister Segerberg discussed probability in
the framework of modal logics.
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2.7.1 Probabilities in First-Order Settings

HaimGaifman in [53] introduced the so-called probabilitymodels of the form 〈U,m〉,
where U is a nonempty domain containing all constant symbols from a first-order
calculus B, and m satisfies, for all quantifier free formulas without free variables:

• m(φ) ∈ [0, 1],
• if φ is a theorem, i.e., � φ, then m(φ) = 1, and
• if � ¬(φ ∧ ψ), then m(φ ∨ ψ) = m(φ) + m(ψ).

One can understand m(φ) as a measure of the set of models of φ, or as an extension
of a usual assignment of truth values to an assignment of a probabilistic truth values
to φ. However, since in the above definition m determines [0, 1]-values only for a
limited set of sentences, it has to be extended to the set of all sentences:

• (Gaifman condition) for every probabilitymodel 〈U,m〉 there is a unique extension
m∗ of m to the set of all sentences such that m∗(∃xφ(x)) = sup{m∗(φ(ai ) : ai ∈
U }, the supremum taken over all finite subsets of U .

Geifman analyzed properties of probability models and, for example, proved the
existence of certain subclasses of probability models, e.g., of symmetric models that
satisfy m(φ(a1, . . . , an) = m(φ(π(a1), . . . , π(an)) for every formula φ and every
permutation π .

Motivated by Gaifman’s paper [53] Dana Scott (1932) and Peter Krauss wrote
(citations from [144]):

In this paper we wish to investigate how probabilities behave on statements, where to be
definite we take the word “statement” to mean “formula of a suitable formalized logical
calculus” …It would be fair to say that our position is midway between that of Carnap and
that of Kolmogorov. In fact, we hope that this investigation can eventually make clear the
relationships between the two approaches …The main task we have set ourselves in this
paper is to carry over the standard concepts from ordinary logic to what might be called
probability logic. Indeed ordinary logic is a special case: the assignment of truth values to
formulas can be viewed as assigning probabilities that are either 0 (for false) or 1 (for true).

They used the first-order infinitary language Lω1ω, which allows countable conjunc-
tions and disjunctions, and finite quantification, while in semantics they considered
strictly positive probabilities55 defined on Boolean σ -algebras representing values of
sentences. As a consequence they obtained countably additive probability models.
Scott andKrauss proved the generalization of theGaifman condition for the infinitary
language and introduced several model-theoretic concepts, e.g.:

• a probability assertion Ψ is a tuple

〈�,φ1, . . . φN 〉

55m(a) = 0 iff a is 0 in the Boolean algebra.
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where � is a formula in the first order language of algebra of real numbers (with
N free variables) which speaks about probabilities of the sentences φi from the
initial language,

• a probability system 〈T,m〉 is a probability model of 〈�,φ1, . . . φN 〉 if the n-tuple
of reals 〈m(φ1), . . .m(φN )〉 satisfies � in 〈R,≤,+, ·, 0,+1, 1〉,

• the probability assertion Ψ is a probability consequences of the set of probability
assertions � if all probability models of � are models of Ψ , which introduced
probability consequences as a generalization of the consequence relation in clas-
sical logic, and

• a probability assertion Ψ is a probability law if Ψ is a probability consequence of
the empty set.

It was proved that every countable consistent set of sentences has a countable proba-
bility model. Regarding the existence of a method of deductively generating proba-
bility consequences Scott andKrausswere pessimists. On the other hand, they proved
somehow restricted goal for probability laws:

Theorem 6.7. Let 〈�,ϕ0, . . . ϕn−1〉 be a probability assertion such that the freee variables of
� are λ0, …, λn−1; further � ¬(ϕi ∧ ϕ j ) if i �= j , and � ∨i<nϕi . Let I = {i < n :� ¬ϕi }.
Then 〈�,ϕ0, . . . ϕn−1〉 is a probability law iff the sentence

∀λ0 . . .∀λn−1[[∧i∈Iλi = 0 ∧ ∧i<nλi ≥ 0 ∧ λ0 + · · · + λn−1 = 1] → �]
is a theorem of real algebra.

Using Tarski’s result about decidability of theorems of real algebra, this theorem
guarantees that for a class of probability assertions it can be decided whether the
corresponding sentences in real algebra are theorems.

2.7.2 Probability Quantifiers

The most important advancement in probability logic, after work of Leibnitz and
Boole, was made by Howard Jerome Keisler (1936). The purpose of his famous
paper [76] was to develop, within Robinson’s nonstandard infinitesimal analysis
[135], model theory appropriate for studying and classifying probability models
that arise in applied mathematics, e.g., in analyzing infinitesimal Poisson processes,
and Brownian motion. While, Gaifman, Scott and Krauss defined probabilities on
sentences, Keisler considered probability distributions on domains of first-order
structures. Instead of classical universal and existential quantifiers, he introduced
probability quantifiers, for example Px > r . The formula (Px > r)φ(x) means
that the probability of the set {x : φ(x)} is greater than r . Keisler studied both
finitary (LωP ) and infinitary (Lω1P , i.e., with countably infinite conjunctions and
disjunctions) languages. Examples of LωP -valid formulas are:

• nonnegativity: |= (Px ≥ 0)ϕ
• monotonicity: |= (Px > r)ϕ → (Px > s)ϕ, for r > s,
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• additivity:|= [(Px > r)(ϕ ∧ ψ) ∧ (Px > s)(ϕ ∧ ¬ψ)] → (Px > r + s)ϕ, etc.

Mixing of ordinary ∀ and ∃ and probability quantifiers in this σ -additive framework
is still an open problem [77]. In [76], Keisler focused on model-theoretic approach
and proved a number of results analogous to the statements from the standard model
theory.

Axiomatizations for Keisler-like logics LωP , Lω1P and56 LAP = Lω1P ∩ A, with
real-valued σ -additive probabilities were given by Douglas Hoover [71]. In this
framework, a probability model is a structure

M = (A, μn)n<ω

such that:

• A = 〈A, Ri , f j , ck〉i, j,k is a model in the sense of first-order logic,
• each μn , n < ω, is a σ -additive probability measure on An , and the sequence of
measures 〈μn : n < ω〉 satisfies the Fubini property,57 and

• every set of elements of An satisfying an atomic formula with n free variables is
measurable with respect to μn .

The satisfiability relation fulfills the usual requirements, and additionally:

• M |= P(y ≥ r)ϕ(x, y)[a] iff μn{b ∈ An : M |= ϕ[a, b]} ≥ r .

The following examples illustrate expressivity of the mentioned logics:

• there are no singletons of positive probability: (Px ≥ 1)(Py ≥ 1)x �= y,
• there is a countable set of probability 1: (Px ≥ 1)(Py > 0)x = y,
• (in Lω1P ) almost everywhere convergence of a sequence of random variables

Xm → X : (Px ≥ 1)(∧n ∨m ∧q∈Q([X (x) > q] ↔ [Xm(x) > q − 1
n ])).

Some of the axioms and rules presented in the paper are:

• monotonicity: (Px ≥ 1)(ϕ(x) → ψ(x)) → ((Px ≥ r)ϕ(x) → (Px ≥ r)ψ(x))
• necessitation:

fromψ → ϕ(x)
inferψ → (Px ≥ 1)ϕ(x)

• continuity at 0:
for any n < ∞, n > 0,

fromϕ → (Py ≥ 1
n )(Px ∈ [r − 1

m , r))ψ
infer¬ϕ.

In the infinitary logics, the continuity rule implies a formula expressing the
Archimedean property:

56
A is a countable admissible set [6].

57Informally, the Fubini property means that the sequence 〈μn : n < ω〉 behaves like a sequence
of product measures 〈μn : n < ω〉.
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(Px ≥ r)ψ(x) ↔ ∧n∈N
(
Px ≥ r − 1

n

)
ψ(x)

while in the finitary logic it corresponds to the rule

from {ψ → (Px ≥ r)(Py ≥ s − 1
n )ϕ : n ∈ N}

inferψ → (Px ≥ r)(Py ≥ s)ϕ.

Hoover’s completeness proofs consist of two steps. First he proved that every con-
sistent set of formulas T is satisfiable in a weak model, which is a probability model
with finitely additive probabilities. Then, by applying the Loeb process, he obtained
the strong, i.e., σ -additive, model which satisfies T .

In the following years, Keisler and Hoover made very important contributions in
the field. They proved completeness theorems for various kinds of models (prob-
ability, graded, analytic, hyperfinite, etc.) and many other model-theoretical theo-
rems. The development of probability model theory has engendered the need for
the study of logics with greater expressive power than that of the logic LAP . The
logic LAI , introduced in [77] as an equivalent of the logic LAP , allows us to express
many properties of random variables in an easier way. In this logic the quantifiers∫

. . . dx are incorporated instead of the quantifiers Px > r . Since the logic LAI is
not rich enough to express probabilistic notions involving conditional expectations
of random variables with respect to σ -algebras, such as martingale, Markov process,
Brownian motion, stopping time, optional stochastic process, etc., [77] also intro-
duced the logics LAE and Lad that are appropriate for the study of random variables
and stochastic processes. Keisler’s paper finished with a list of research problems.
Miodrag Rašković and his co-authors solved some of them in [124, 126, 130, 131].
For example, [124] presented a new method of using Barwise compactness theorem
[6] in proving completeness theorem for absolutely continuous measures, while in
[123] a new LAM logic with [0,+∞]-valued measures was introduced. Some efforts
to combine ordinary ∀ and ∃, and probability quantifiers have been made in [125,
127–129].

Comprehensive overviews of work in the field of logics with probability quanti-
fiers are [49, 130].

2.7.3 Probabilities in Modal Settings

Charles Hamblin (1922–1985) combined probability and modal logic [68]. He intro-
duced an additional unary modal operator, denoted P , so that Pp (p is probable) was
understood as the probability of p is greater than or equal to x . Hamblin considered
a finite language, i.e., a language with a finite number of propositional letters p1, p2,
…, pn , while formulas were restricted to be without nesting of the modal operators.
The corresponding models contain 2n possible worlds, each world characterized by
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a state description,58 i.e., a conjunction which contains, for every pi , either pi or
¬pi . Probabilities are attached to the possible worlds, probabilities of statements are
sums of probabilities of possible worlds so that the corresponding state descriptions
satisfy the statements, while formulas of the form Pp are valid if they are true in
every model for any x ∈ [ 12 , 1]. Hamblin proposed an axiom system containing,
besides the standard axioms for the modal system T , for example59:

• P¬p → ¬Pp,
• �p → Pp, and
• �(p → q) → (Pp → Pq).

Hamblin also considered an alternative system in which he used the unary operator
Q to express plausibility. Instead of probabilities, numbers that measure plausibility
are associated to sets of possible worlds so that in every model at least one of those
numbers must be 1, while, instead of the additivity rule, the plausibility of an union
of possible worlds is equal to the largest of the plausibilities of those worlds. In both
systems, truth does not imply probability, or plausibility, i.e., p → Pp and p → Qp
are not theorems. Finally, Hamblin gave an alternative definition of probable, as
something more plausible then its negation, and formalized it as:

• ¬(Q¬p → Pp).

John Burgess (1948) investigated in [21] the system S5U , which is the modal S5
extended by the probability operator denoted U . He decided to add the axiom

• Up → �Up

i.e., what is probable is necessarily probable, to the probability axioms from [68]. He
defined the corresponding class of algebraic models, and proved weak completeness
of the axiom system and decidability. To study the notion of numerical probabili-
ties, Burgess used Hamblin’s approach interpreting Up to mean probability of p is
greater than x , for all rational x from [ 12 , 1). He proved that for all such different
x and y there is an x-valid formula which is not y-valid. Finally, Burgess studied a
relationship between his modal logic and an extended first-order framework in which
� corresponds to ∀, while U corresponds to a new quantifier “for most x”.

Krister Segerberg considered qualitative probabilities in [145]. He introduced a
binary model operator � so that

• A � B

means A is at least as probable as B. He extended the notion of Kripke models so
that every possible world x is associated by a σ -algebra Bx of subsets of accessible
worlds and a probability measure Mx defined on Bx . Then, A � B is satisfied in a
world x if the probability of A in x is not less than the probability of B in x , i.e.:

58Called atom in Sect. 3.1.1.
59Actually, Hamblin, as well as Burgess, used Polish notation, so the first axiom in the list was
written as CPNpN Pp.

http://dx.doi.org/10.1007/978-3-319-47012-2_3
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• Mx {y : y is accessible from x, y |= A} � Mx {y : y is accessible from
x, y |= B}.

He provided an axiom system PK containing the modal system K and some axioms
characterizing �, for example:

• [�(A ↔ A′) ∧ �(B ↔ B ′)] → [(A � B) → (A′ � B ′)], and
• ⊥ � ⊥.

Furthermore, if

• A1 . . . Am E B1 . . . Bm denotes�(C0∨· · ·∨Cm), and for every integer p ∈ [0,m],
Cp is the disjunction of all conjunctions

δ1A1 ∧ · · · ∧ δm Am ∧ ε1B1 ∧ · · · ∧ εmBm

such that exactly p of the δ’s and p of ε’s are empty strings, and the rest of them
are the negation sign,60

another Segerberg’s axiom is:

• (A1 . . . Am E B1 . . . Bm) → [(A1 � B1 ∧ · · · ∧ Am � Bm) → (B1 � A1 ∧ · · · ∧
Bm � Am)], for every m � 1.

Segerberg proved completeness and decidability of the system PK .

2.7.4 Probabilistic Logical Entailment

Theodore Hailperin (1916–2014) extended Boole’s and Fréchet’s results [14, 51],
and derived an effective procedure to obtain the best possible bounds for probabilities
of propositional formulasφ(A1, . . . , An), when the probabilities of subformulas, i.e.,
P(A1),…, P(An), are known [61].His approach, likeBoole’s, was based onmethods
of linear programming.

Since the middle of 1980s, the interest in probability logics started growing
because of development ofmany fields of application of representation of and reason-
ing about uncertain knowledge (in economics, artificial intelligence, computer sci-
ence, philosophy, etc.) resulting in numerous publications. The first of those papers
was Nils Nilsson’s [112] inspired by the work on developing the PROSPECTOR
expert system in geology. PROSPECTOR used Bayes’ rule to calculate probabilities
of hypotheses given geological evidence about ore deposits. Nilsson tried to give a
semantical generalization of classical logic such that the truth values of sentences are
replaced by their probabilities. He analyzed the probabilistic entailment, i.e., how to
calculate the probability of a sentence given a set of sentences with the corresponding

60In other words, A1 . . . Am E B1 . . . Bm holds in a world x if in every accessible world y exactly
the same number of Ai ’s and Bj ’s hold.
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probabilities such that the obtained value is independent from any assumptions rela-
tive to specific probability models. It turned out that Nilsson’s approach was already
presented by Hailperin, but the timing of [112] was much better and it caused numer-
ous reactions [113]. For us, particularly interesting between them are papers about
proof-theoretic methods that will be analyzed in Sect. 7.

The reduction to linear programming problem in Hailperin’s and Nilsson’s works
means, in fact, that they usemodalmodels, even though they do not explicitlymention
it. In that sense, [61, 112] are related to the papers ofHamblin,Burgess andSegerberg.
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124. Rašković,M.: Completeness theorem for biprobabilitymodels. J. Symb.Logic 51(3), 586–590
(1986)
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Chapter 3
LPP2, a Propositional Probability Logic
Without Iterations of Probability Operators

Abstract The probability logic denoted LPP2 is described with the aim to give
a clear, step-by-step introduction to the field and the main proof techniques that
will be used elsewhere in the book. The logic enriches propositional calculus with
probabilistic operators of the form P≥s with the intended meaning “probability is at
least s”. In LPP2 the operators are applied to propositional formulas, while iterations
of probability operators are not allowed. Possible world semantics with a finitely
additive probability measure on sets of worlds definable by formulas is defined, so
that formulas remain true or false. The corresponding axiomatization is provided.
The axiom system is infinitary. It contains an infinitary rule with countable many
premisses and one conclusion. The rule is related to the Archimedean property of
real numbers. The logic LPP2 is not compact: there are unsatisfiable sets of for-
mulas that are finitely satisfiable. Some of the consequences of non-compactness
are described. Then, soundness and strong completeness of the logic is proved with
respect to several classes of probability models. This is followed by a proof of decid-
ability of PSAT, the satisfiability problem for LPP2, which is NP-complete. Finally,
a heuristic approach to PSAT is presented. This Chapter covers some results from
Ikodinović et al., Int J Approx Reason, (55):1830–1842, 2014, [3], Jovanović et
al., Variable neighborhood search for the probabilistic satisfiability problem, 2007,
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78 3 LPP2, a Propositional Probability Logic Without Iterations …

3.1 Syntax and Semantics

3.1.1 Syntax

Let [0, 1]Q be the set of all rational numbers from the real unit interval [0, 1]. The
symbols of the language of LPP2 are

• primitive propositions from the denumerable set φ = {p, q, r, . . .},
• classical propositional connectives ¬, and ∧, and
• a list of probability operators P≥s for every s ∈ [0, 1]Q.
The set ForC of all classical propositional formulas over the set φ is the smallest set

• containing all primitive propositions, i.e., p ∈ ForC , for every p ∈ φ, and
• closed under the formation rules: if α, β ∈ ForC , then ¬α, α ∧ β ∈ ForC .

The formulas from the set ForC will be denoted by α, β, …, indexed if necessary.
Probability formulas are defined as follows:

Definition 3.1 If α ∈ ForC and s ∈ [0, 1]Q, then

P≥sα

is a basic probability formula.
The set ForP of all probability formulas is the smallest set

• containing all basic probability formulas, and
• closed under the formation rules: if A,B ∈ ForP, then ¬A, A ∧ B ∈ ForP.

The set of all LPP2-formulas is ForLPP2 = ForC ∪ ForP. �
The intended meaning of P≥sα is “the probability of α is at least s.” The formulas
from the sets ForP and ForLPP2 will be denoted byA,B,…, and ϕ,ψ ,…, respectively,
and indexed if necessary.

We use the usual abbreviations for the other classical connectives, and also denote

• ¬P≥sα by P<sα,
• P≥1−s¬α by P≤sα,
• ¬P≤sα by P>sα,
• P≥sα ∧ P≤sα by P=sα, and
• both α ∧ ¬α and A ∧ ¬A by ⊥, letting the context determine the meaning.

As it can be seen from Definition3.1, neither mixing of pure propositional formu-
las and probability formulas, nor nested probability operators are allowed in LPP2.
Thus

• α ∧ P≥sβ and
• P≥sP≥rα

do not belong to ForLPP2 . It means that in LPP2 we can formally reason about prob-
abilities of formulas, but cannot express higher order probabilities, i.e., probabilities
of probabilities of formulas.
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3.1.2 Semantics

The semantics for ForLPP2 will be based on the possible world approach.

Definition 3.2 An LPP2-model is a structureM = 〈W,H, μ, v〉 where:
• W is a nonempty set of objects called worlds,
• H is an algebra of subsets of W ,
• μ is a finitely additive probability measure, μ : H → [0, 1], and
• v : W ×φ → {true, false} provides for each world w ∈ W a two-valued valuation
of the primitive proposition. �

For each world w ∈ W , the truth valuation v(w, ·) is extended to all classical propo-
sitional formulas from ForC as usual.

If M is an LPP2-model and α ∈ ForC , the set of all worlds in which α is true,
{w : v(w, α) = true}, is denoted by [α]M. We will omit the subscript M from
[α]M and write [α] if M is clear from the context. Instead of v(w, α) = true and
v(w, α) = false, we will occasionally write w |= α, and w �|= α, respectively.

Definition 3.3 An LPP2-model M = 〈W,H, μ, v〉 is measurable if [α]M ∈ H for
every formula α ∈ ForC . The class of all measurable LPP2-models is denoted by
LPP2,Meas. �

In this book we focus on the class of measurable models.

Example 3.1 Let us consider the a finite set of primitive propositions φ = {p, q, r}
and the following structure M = 〈W,H, μ, v〉:
• W = {u, t,w},
• H is the power set P(W ),
• μ(∅) = 0, μ(u) = μ(t) = 2

5 , μ(t) = 1
5 , μ({u, t}) = 4

5 , μ({u,w}) = μ({t,w}) =
3
5 , and μ(W ) = 1, and

• v(u, p) = v(u, q) = v(u,¬r) = true, v(t, p) = v(t,¬q) = v(t, r) = true, and
v(w, p) = v(w, q) = v(w, r) = true.

The reader can easily check thatM is an LPP2-model. Moreover, since μ is defined
for all subsets ofW , for every α ∈ ForC , the corresponding set [α] is measurable, so
M is an LPP2,Meas-model. �

Definition 3.4 The satisfiability relation |=⊆ LPP2,Meas × ForLPP2 fulfills the fol-
lowing conditions for every LPP2,Meas-model M = 〈W,H, μ, v〉:
• if α ∈ ForC ,M |= α iff for every w ∈ W , v(w, α) = true,
• ifM |= P≥sα iff μ([α]) ≥ s,
• if A ∈ ForP,M |= ¬A iffM �|= A,
• if A,B ∈ ForP,M |= A ∧ B iffM |= A and M |= B. �
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Concerning expressiveness of our formal language, note that it is not possible to
directly say that the probabilities of two formulas are equal. If the probabilities of
those formulas is the same rational number, we can write for exampleP=sα ↔ P=sβ,
but, since our formal language is countable, it is not possible to do that for irrational
probabilities. However, those equal probabilities can be described using a set of
formulas

{P≥sα ↔ P≥sβ,P≥sβ ↔ P≥sα : s ∈ [0, 1]Q}.

Similarly, we can say that the probability of a formula is not lesser, or not greater,
than the probability of another formula. On the other hand, our strong hypothesis is
that the predicate Pr(α) < Pr(β) cannot be represented as an LPP2-theory.

Now, we introduce the notions of satisfiable and valid formulas, and satisfiable
sets of formulas.

Definition 3.5 A formula ϕ ∈ ForLPP2 is satisfiable if there is an LPP2,Meas-model
M such that M |= ϕ; ϕ is valid (denoted |= ϕ) if for every LPP2,Meas-model M,
M |= ϕ.

A set T of ForLPP2 -formulas is satisfiable if there is an LPP2,Meas-model M such
that M |= ϕ for every ϕ ∈ T (denoted M |= T ). �

IfM |= ϕ, we say that M is a model of ϕ.

Example 3.2 Let us consider the model M described in Example3.1. We can see,
for example, that the following holds:

• u |= p and u |= ¬r, so u |= p ∧ ¬r,
t |= p and t |= r, so t |= p ∧ r and t �|= p ∧ ¬r,
since u |= p ∧ ¬r, and t �|= p ∧ ¬r, we have that M �|= p ∧ ¬r.

• Thus, M |= P≥1p, and M �|= P≥1(p ∧ ¬r).

The reader can also check that, for example, since [p ∧ r] = {t,w}, we have that
M |= P= 3

5
(p ∧ r). Similarly, since [q] = {u,w}, and [p ∧ ¬q] = {t}:

• M |= P< 4
5
q

• M �|= P> 2
5
(p ∧ ¬q), etc. �

Note that the classical formul as do not behave in the usual way.

• For some α, β ∈ ForC and an LPP2,Meas-model M it can be M |= α ∨ β, but that
neither M |= α, nor M |= β.

• It can be simultaneously M �|= α and M �|= ¬α.

Nevertheless, the set of all classical formulas that are valid with respect to the above
given semantics and the set of all classical valid formulas coincide, because every
world from an arbitrary LPP2,Meas-model can be seen as a classical propositional
interpretation.

Example 3.3 Let us consider the model M = 〈{u,w}, {∅, {u}, {w}, {u,w}}, μ, v〉
such that
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• μ({u}) = μ({w}) = 1
2 , and• u |= p, and w |= ¬p, for a p ∈ φ.

Then, it is easy to see that: M �|= p (since w |= ¬p), and M �|= ¬p (since u |= p),
while obviously M |= p ∨ ¬p. �

Definition 3.6 A formula ϕ ∈ ForLPP2 is a (semantical) consequence of a set T of
ForLPP2 -formulas, denoted

T |= ϕ

if every model of T is a model of ϕ. �

In the sequel we will also consider the following classes of LPP2-models

• LPP2,Meas,All,
• LPP2,Meas,σ and
• LPP2,Meas,Neat.

A model M = 〈W,H, μ, v〉 belongs to the first class if H = P(W ), i.e., if every
subset of W is μ-measurable. A model M belongs to the second class if it is a σ -
additive measurable model, i.e., if μ is a σ -additive probability measure. Finally, a
model M belongs to the third class if it is a measurable model such that μ(H1) = 0
iff H1 = ∅, i.e., if only the empty set has the zero probability.

3.1.3 Atoms

Let ϕ ∈ ForLPP2 be a formula and {p1, . . . , pn} be the set of all primitive propositions
that appear in ϕ. An atom a of ϕ is a conjunction ±p1 ∧ . . . ∧ ±pn, where ±pi is
either pi, or ¬pi, i.e., an atom contains, for every pi, either pi itself or its negation.
The set of all atoms of ϕ is denoted by Atoms(ϕ). Note that

• |Atoms(ϕ)| = 2n ≤ 2len(ϕ).
• Different atoms are mutually exclusive, i.e., for a, b ∈ Atoms(ϕ), if a and b are
different, then |= ¬(a ∧ b).

• Every classical propositional formula α ∈ ForC is equivalent to its complete
disjunctive normal form CDNF(α), i.e., to a disjunction of some atoms from
Atoms(α).

When we analyze a classical propositional formula α ∈ ForC in a world w of a
model M = 〈W,H, μ, v〉, w is completely specified by an atom aw ∈ Atoms(α)

which contains all pi’s from α such that w |= pi, and all ¬pj’s such that w �|= pj.
Then, w |= α iff aw ∈ CDNF(α). In other words:

• [α] = ∪a∈CDNF(α)[a],
• if a, b ∈ Atoms(α) are different, then [a] ∩ [b] = ∅, and
• μ([α]) = ∑

a∈CDNF(α) μ([a]).
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Later in this text we will describe probability models by specifying probabilities of
the sets of the form [a], where a is an atom, with the condition that the sum of those
probabilities is 1.

3.2 Complete Axiomatization

The set of all LPP2,Meas-valid formulas can be characterized by the following set of
axiom schemata:

1. all ForC-substitutional instances and all ForP-substitutional instances of the clas-
sical propositional tautologies

2. P≥0α

3. P≤rα → P<sα, s > r
4. P<sα → P≤sα

5. (P≥rα ∧ P≥sβ ∧ P≥1(¬(α ∧ β))) → P≥min(1,r+s)(α ∨ β)

6. (P≤rα ∧ P<sβ) → P<r+s(α ∨ β), r + s ≤ 1

and inference rules:

1. From ϕ and ϕ → ψ infer ψ .
2. From α infer P≥1α.
3. From A → P≥s− 1

k
α, for every integer k ≥ 1

s , and s > 0, infer A → P≥sα.

We denote this axiom system by AxLPP2 .
Let us now discuss the above axioms and rules. First note that, by Axiom 1, the

classical propositional logic is a sublogic of LPP2, i.e., all classical propositional
tautologies are LPP2,Meas-valid.

The axioms 2–6 concern the probabilistic aspect ofLPP2. Axiom2 announces that
every formula is satisfied by a set of worlds of the measure at least 0. By substituting
¬α for α in the axiom, the formula P≥0¬α is obtained. According to our definition
of the operator P≤1, we have the following instance of Axiom 2:
2′.P≤1α (= P≥1−s¬α, for s = 1).
It forces that every formula is satisfied by a set of worlds of the measure at most 1,
and gives the upper bound for probabilities of formulas in LPP2,Meas-models. In a
similar way, the axioms 3 and 4 are equivalent to
3′.P≥tα → P>sα, t > s
4′.P>sα → P≥sα

respectively. The axioms 5 and 6 correspond to the additivity of measures. Suppose
that α and β are disjoint. By Axiom 5, the lower bound of μ[α ∨ β] cannot be lesser
than μ[α]+μ[β], while by Axiom 6, the upper bound of μ[α ∨β] cannot be greater
than μ[α] + μ[β].

Rule 1 is classical Modus Ponens. Rule 2 can be considered as the rule of necessi-
tation in modal logics, but, since iterations of probability operators are not allowed,
it can be applied on the classical propositional formulas only.
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Fig. 3.1 Tree-like representations of the inference rules from AxLPP2

Rule 3 is the only infinitary inference rule in the system, i.e., it has a countable
set of assumptions and one conclusion. It corresponds to the Archimedean axiom for
real numbers and intuitively says that if the probability is arbitrary close to s, then it
is at least s. An equivalent form of Rule 3 is
3′. From A → P≤s+ 1

k
α, for every integer k ≥ 1

1−s , infer A → P≤sα.
The axioms and rules about probability are similar to those given by Keisler

and Hoover (see Sect. 2.7.2), but instead of first order probability quantifiers, we
use probability operators, so the corresponding proofs are quite different: while in
Keisler–Hoover’s approach first order models are considered, our framework relies
on Kripke-like modal models.

Since there is an infinitary inference rule in AxLPP2 , the classical notion of deduc-
tion should be modified accordingly.

Definition 3.7 A formula ϕ is deducible from a set T of formulas1 (denoted by
T � ϕ) if there is a sequence ϕ0, ϕ1, . . . , ϕλ+1 (λ is a finite or countable ordinal2) of
ForLPP2 -formulas, such that

• ϕλ+1 = ϕ, and
• every ϕi, i ≤ λ+1, is an axiom-instance, or ϕi ∈ T , or ϕi is derived by an inference
rule applied on some previous members of the sequence.

A proof for ϕ from T is the corresponding sequence of formulas. A formula ϕ is a
theorem (denoted by � ϕ) if it is deducible from the empty set. �

It is easy to see that every LPP2-proof consists of two parts (one of them may be
empty). In the first one only classical formulas are involved, while the second one
uses formulas from ForP. Two parts are separated by some applications of Rule 2.
There is no inverse rule, so we can pass from the classical to the probability level,
but we cannot come back. It follows that LPP2-logic is a conservative extension of
the classical propositional logic.

Definition3.7 introduces proofs as (possibly countable) linear sequences of for-
mulas. Alternatively, we can represent a proof as a (possibly countable) tree where
predecessors of nodes imply by inference rules their successors. Since we have an
infinitary rule, some nodes can have countably many predecessors. This is illustrated
in the Figs. 3.1 and 5.1.

1ϕ is a syntactical consequence of T .
2In other words, the length of a proof is an at most countable successor ordinal.

http://dx.doi.org/10.1007/978-3-319-47012-2_2
http://dx.doi.org/10.1007/978-3-319-47012-2_5
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Definition 3.8 A set T of formulas is consistent if there are at least a formula from
ForC , and at least a formula from ForP that are not deducible from T , otherwise T is
inconsistent.

A consistent set T of formulas is said to be maximal consistent if the following
holds:

• for every α ∈ ForC , if T � α, then α ∈ T and P≥1α ∈ T , and
• for every A ∈ ForP, either A ∈ T or ¬A ∈ T .

A set T of formulas is deductively closed if for every ϕ ∈ ForLPP2 , if T � ϕ, then
ϕ ∈ T . �

Alternatively, we can say that T is inconsistent iff T � ⊥. Also, note that classical
and probability formulas are handled in different ways in Definition3.8: it is not
required that for every classical formula α, either α or ¬α belongs to a maximal
consistent set, as it is done for formulas from ForP.

3.3 Non-compactness

Let T be the set
{¬P=0p} ∪ {P<1/np : n ∈ N}

for a primitive proposition p. In every finite subset T ′ of T , there is the largest k ∈ N

such that P<1/kp ∈ T ′. It is easy to see that there is an LPP2,Meas-model MT ′ such
that μ[p] = 1

k+1 > 0, and that all formulas from T ′ are satisfied in MT ′ . However,
there is no LPP2,Meas-model M which satisfies all formulas from T , since for every
c > 0, if μ[p] = c, there is a k ∈ N, such that 1

k < c, andM �|= P<1/kp. If μ[p] = 0,
then M �|= ¬P=0p. Thus:

• Although every finite subset of T is LPP2,Meas-satisfiable, the set T itself is not

So, the compactness theorem

Theorem 3.1 A set of formulas is satisfiable iff every finite subset of it is satisfiable.
Does not hold for LPP2,Meas.

If we have a finitary axiomatization, and if compactness holds, the strong com-
pleteness is a consequence of the weak completeness. Let us suppose that a set T
of formulas is unsatisfiable. By the compactness theorem, there is a finite subset
T ′ ⊂ T which is also unsatisfiable. Since T ′ is finite, by the weak completeness we
have that T ′ � ⊥, which implies T � ⊥. Hence, any unsatisfiable set of formulas
is inconsistent, or equivalently: every consistent set of formulas is satisfiable. To
conclude

• Starting with a finitary axiom system, we cannot hope for the strong completeness
theorem for LPP2,Meas.
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It means that for every finitary, weakly complete, axiomatization there are consistent
LPP2,Meas-unsatisfiable sets of formulas. If we carefully examine the above intro-
duced set T = {¬P=0p} ∪ {P<1/np : n ∈ N} which illustrated non-compactness, we
can notice

• No finitary proof (in the context LPP2,Meas) can prove inconsistency of T , since
only finite number of members of T can be used in such a proof, while every finite
subset of T is satisfiable and consistent.

• The set T is satisfiable if infinitesimals belong to the range of probability functions.
Let ε be a positive infinitesimal, and let μ[p] = ε in a model M. Then, it is easy
to verify that M |= T .

• The set T is unsatisfiable if the range of probability functions is a finite set of the
form {0, 1

k ,
2
k , . . . ,

k−1
k , 1}, but in that case it is possible to give a finitary strongly

complete axiomatization such that T is inconsistent.

While logics with finite ranges and with non-standard valued probabilities will be
discussed later in Chap.5, in this chapter we will address the first issue, where Rule
3 guarantees that T is inconsistent:

1. T � ¬P=0p, since ¬P=0p ∈ T
2. T � P<1/np, since P<1/np ∈ T , for every n ∈ N

3. T � P≤1/np, by Axiom 4 and Modus Ponens, for every n ∈ N

4. T � P≤0p, by Rule 3 from (3)
5. T � P=0p, by Axiom 2 and definition of P=0

6. T � ⊥ from (1) and (5).

In this way Rule 3 eliminates non-Archimedean-valued probability functions.
The reader can observe that the range of probability functions in LPP2,Meas, the

unit interval [0, 1] of reals, is a unique, concrete set. Usually, when we have to
characterize such a concrete set, we can expect troubles. In terminology of model
theory, [0, 1] is not saturated with respect to the considered logical language, i.e.,
we can define in [0, 1] a non-isolated type.3 To achieve strong completeness, such
a non-isolated type should be omitted, i.e., we have to provide logical instruments
which allow us to prove inconsistency of non-isolated types. In the logic LPP2 that
aim is achieved by Rule 3. However, the similar situation appears in other cases, too.
In next chapters we will consider other ranges of probability functions: for example
[0, 1]Q, the unit intervals of Q(ε) or some other countable sets, etc. In those cases,
other rules will be given instead of Rule 3 to overcome the problem. To summarize,
we will consider ranges of probability functions that are

• uncountable, with everywhere dense subsets (e.g., [0, 1] and [0, 1]Q), in which
case rules similar to Rule 3 are used to prove inconsistency of non-Archimedean4

types,

3A set of formulas, a theory, which is finitely satisfiable, but not realized (satisfiable).
4Which in the case of LPP2 coincides with non-isolated types.

http://dx.doi.org/10.1007/978-3-319-47012-2_5
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• countable (e.g., [0, 1]Q or the [0, 1]Q(ε)), in which cases we represent the ranges
in syntax, i.e., for every element s from a range, P=s is a probability operator, and
formulate infinitary rules of the form: if A → P�=sα, for every s in the range, then
infer A → ⊥, that guarantee that probabilities of formulas are in the specified
range, and

• finite, in which cases we provide infinitary strongly complete axiomatizations.

As we stated in the introduction, we will try to limit the use of infinitary means.
While proofs can be infinite, we keep them countable. In our approach infinitary
formulas are not necessary to obtain completeness, for example infinite conjunctions
are represented by sets of formulas. Wherever appropriate, we use recursive object
languages and finite formulas, so that decidability could be achieved.

Finally, we note that compactness is obviously related to classes of models that
can be connected via completeness to axiom systems. Is possible that a system
axiomatizes valid formulas in two distinct classes of models, and that for one of
those classes compactness holds, while it fails for the second class. So it is not
impossible that, for an axiom system strong completeness for the former class is
proved, while only weak completeness can be shown for the latter.

3.4 Soundness and Completeness

3.4.1 Soundness

Soundness of our system follows from the soundness of classical propositional logic,
as well as from the properties of probabilistic measures, so we give only a sketch of
a straightforward but tedious proof.

Theorem 3.2 (Soundness) The axiom system AxLPP2 is sound with respect to the
class of LPP2,Meas-models.

Proof We can show that every instance of axiom schemata holds in every model,
while the inference rules preserve the validity. For example, let us consider Axiom
5. Suppose that P≥rα, P≥sβ, and P≥1¬(α ∨ β) hold in a model M = 〈W,H, μ, v〉.
It means that μ([α]) ≥ r, μ([β]) ≥ s, and that [α] and [β] are disjoint sets. By the
definition of finitely additive measures, the measure of [α] ∪ [β] (which is [α ∨ β])
is μ([α]) + μ([β]). Hence,M |= P≥min(1,r+s)(α ∨ β), and Axiom 5 holds inM. The
other axioms can be proved to be valid in a similar way.

Rule 1 is validity-preserving for the same reason as in classical logic. Consider
Rule 2 and suppose that a formula α ∈ ForC is valid. Then, for every model M =
〈W,H, μ, v〉, [α] = W , and μ([α]) = 1. Hence, P≥1α is valid too. Rule 3 preserves
validity because of the properties of the set of real numbers. �
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3.4.2 Completeness

In the proof of the completeness theoremwe adapt theHenkin style procedure and the
strategy developed for proving completeness for modal logics. So, the proof consists
of the following main steps:

• We start with a form ofDeduction theorem (Theorem3.3) and some other auxiliary
statements (the Lemmas3.1, 3.2 and 3.3).

• Then, we prove Lindenbaum’s theorem, i.e., we show how to extend a consistent
set T of formulas to a maximal consistent set T∗ (Theorem3.4).

• Finally, the canonical model MT is constructed using the set T∗ (Theorem3.5)
such that MT |= ϕ iff ϕ ∈ T∗ (Theorem3.6).

The next formulation of Deduction theorem takes into account that the formal
language is restricted so that iterations of probability operators are not allowed.

Theorem 3.3 (Deduction theorem) If T is a set of formulas and ϕ,ψ ∈ ForC or
ϕ,ψ ∈ ForP, then

T ∪ {ϕ} � ψ iff T � ϕ → ψ.

Proof The implication from right to left can prove exactly in the same way as in the
classical propositional case. For the other direction we use the transfinite induction
on the length of the proof of ψ from T ∪ {ϕ}. The cases when either � ψ or ϕ = ψ

or ψ is obtained by application of Modus Ponens (Rule 1) are standard.
Thus, let us consider the case where ψ = P≥1α is obtained from T ∪ {ϕ} by an

application of Rule 2, and ϕ ∈ ForP. In that case

T , ϕ � α

T , ϕ � P≥1α by Rule 2.

However, since α ∈ ForC , and ϕ ∈ ForP, ϕ does not affect the proof of α from
T ∪ {ϕ}, and we have

T � α

T � P≥1α by Rule 2
T � P≥1α → (ϕ → P≥1α)

T � ϕ → P≥1α by Rule 1.

Next, let us consider the case where ψ = A → P≥sα is obtained from T ∪ {ϕ} by an
application of Rule 3, and ϕ ∈ ForP. Then

1. T , ϕ � A → P≥s− 1
k
α, for every integer k ≥ 1

s

2. T � ϕ → (A → P≥s− 1
k
α), for k ≥ 1

s , by the induction hypothesis

3. T � (ϕ ∧ A) → P≥s− 1
k
α, for k ≥ 1

s
4. T � (ϕ ∧ A) → P≥sα, from (3) by Rule 3
5. T � ϕ → ψ . �
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The next statement Lemma3.1(1)) is a generalization of the well known modal
axiom K : �(α → β) → (�α → �β).

Lemma 3.1

1. � P≥1(α → β) → (P≥sα → P≥sβ),
2. if � α ↔ β, then � P≥sα ↔ P≥sβ,
3. � P≥sα → P≥rα, for s ≥ r,
4. � P≤rα → P≤sα, s ≥ r.

Proof (1) First note that using Rule 2, from � ¬α ∨ ¬⊥, we obtain

� P≥1(¬α ∨ ¬⊥), (3.1)

and similarly, from � (¬α ∧ ¬⊥) ∨ ¬¬α we have

� P≥1((¬α ∧ ¬⊥) ∨ ¬¬α). (3.2)

By Axiom 5, we have � (P≥sα ∧ P≥0⊥ ∧ P≥1(¬α ∨ ¬⊥)) → P≥s(α ∨ ⊥). Since
� P≥0⊥ by Axiom 2, from (3.1) it follows that:

� P≥sα → P≥s(α ∨ ⊥). (3.3)

The expression P≥s(α ∨ ⊥) denotes P≥s¬(¬α ∧ ¬⊥), P≥1−(1−s)¬(¬α ∧ ¬⊥), and
P≤1−s(¬α ∧ ¬⊥). Similarly, ¬P≥s¬¬α denotes P<s¬¬α. By Axiom 6, we have

� (P≤1−s(¬α ∧ ¬⊥) ∧ P<s¬¬α) → P<1((¬α ∧ ¬⊥) ∨ ¬¬α). (3.4)

Since P≥1((¬α ∧ ¬⊥) ∨ ¬¬α) denotes ¬P<1((¬α ∧ ¬⊥) ∨ ¬¬α), from (3.2) we
obtain that

� (P≤1−s(¬α ∧ ¬⊥) ∧ P<s¬¬α) →
(P<1((¬α ∧ ¬⊥) ∨ ¬¬α) ∧ ¬P<1((¬α ∧ ¬⊥) ∨ ¬¬α).

(3.5)

It follows that � P≤1−s(¬α ∧ ¬⊥) → ¬P<s¬¬α, i.e.,

� P≥s(α ∨ ⊥) → P≥s¬¬α. (3.6)

From (3.3) and (3.6) we obtain

� P≥sα → P≥s¬¬α. (3.7)

The negation of the formula P≥1(α → β) → (P≥sα → P≥sβ) is equivalent to

P≥1(¬α ∨ β) ∧ P≥sα ∧ P<sβ. (3.8)
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Since � P≥sα → P≥s¬¬α, this formula implies

P≥1(¬α ∨ β) ∧ P≥s¬¬α ∧ P<sβ (3.9)

which can be rewritten as

P≥1(¬α ∨ β) ∧ P≤1−s¬α ∧ P<sβ. (3.10)

Finally, from

Axiom 6, P≤1−s¬α ∧ P<sβ → P<1(¬α ∨ β), and
P<1α = ¬P≥1α,

we have

� ¬(P≥1(α → β) → (P≥sα → P≥sβ)) → P≥1(¬α∨β)∧¬P≥1(¬α∨β), (3.11)

a contradiction. It follows that

� P≥1(α → β) → (P≥sα → P≥sβ). (3.12)

(2) It is an easy consequence of Lemma3.1(1).
(3) This formula expresses monotonicity of probabilities. From

Axiom 3’ P≥sα → P>rα, s > r, and
Axiom 4’ P>rα → P≥rα,

we obtain � P≥sα → P≥rα for s > r. If s = r, the formula is trivially a theorem of
the form � ϕ → ϕ.
(4) Similarly as (3). �

Lemma 3.2 Let T be a consistent set of formulas.

1. For any formula A ∈ ForP, either T ∪{A} is consistent or T ∪{¬A} is consistent.
2. If ¬(α → P≥sβ) ∈ T, then there is some n > 1

s such that T ∪ {α → ¬P≥s− 1
n
β}

is consistent.

Proof (1) The proof is standard: if T ∪ {A} � ⊥, and T ∪ {¬A} � ⊥, by Deduction
Theorem we have T � ⊥.
(2) Suppose that for every n > 1

s

T , α → ¬P≥s− 1
n
β � ⊥.

By Deduction Theorem, and manipulation at the propositional level, we have

T � α → P≥s− 1
n
β,
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for every n > 1
s . By application of Rule 3 we obtain

T � α → P≥sβ,

a contradiction with the fact that ¬(α → P≥sβ) ∈ T . �

Lemma 3.3 Let T be a maximal consistent set of formulas. Then,

1. for any formula A ∈ ForP, exactly one member of {A,¬A} is in T,
2. for all formulas A,B ∈ ForP, A ∨ B ∈ T iff A ∈ T or B ∈ T,
3. for all formulas ϕ,ψ , where either ϕ,ψ ∈ ForC or ϕ,ψ ∈ ForP, ϕ ∧ ψ ∈ T iff

{ϕ,ψ} ⊂ T,
4. for every ϕ ∈ ForLPP2 , if T � ϕ, then ϕ ∈ T,
5. for all formulas ϕ,ψ , where either ϕ,ψ ∈ ForC or ϕ,ψ ∈ ForP, if {ϕ, ϕ →

ψ} ⊂ T, then ψ ∈ T
6. for all formulas ϕ,ψ , where either ϕ,ψ ∈ ForC or ϕ,ψ ∈ ForP, if ϕ ∈ T and

� ϕ → ψ , then ψ ∈ T,
7. for any formula α, if t = sups{P≥sα ∈ T}, and t ∈ Q, then P≥tα ∈ T.

Proof Proofs (1)–(6) are standard.
(7) Let t = sups{P≥sα ∈ T} ∈ Q. By themonotonicity of themeasure (Lemma3.1(3)),
for every s ∈ Q, s < t, T � P≥sα. Using Rule 3 we have T � P≥tα. Since T is a
maximal consistent set, it follows from Lemma3.3(4) that P≥tα ∈ T . �

Theorem 3.4 (Lindenbaum’s theorem) Every consistent set of formulas can be
extended to a maximal consistent set.

Proof Let T be a consistent set, CnC(T) the set of all classical formulas that are
consequences of T , and A0, A1, …an enumeration of all formulas from ForP. We
define a sequence of sets Ti, i = 0, 1, 2, …such that

1. T0 = T ∪ CnC(T) ∪ {P≥1α : α ∈ CnC(T)}
2. for every i ≥ 0,

a. if Ti ∪ {Ai} is consistent, then Ti+1 = Ti ∪ {Ai}, otherwise
b. if Ai is of the form β → P≥sγ , then Ti+1 = Ti ∪ {¬Ai, β → ¬P≥s− 1

n
γ }, for

some positive n ∈ N, so that Ti+1 is consistent, otherwise
c. Ti+1 = Ti ∪ {¬Ai}.

3. T = ∪∞
i=0Ti.

The set T0 is consistent since it is contains consequences of an consistent set, and
similarly for the other members of the family of sets, by Lemma3.3 each Ti, i > 0,
is consistent.

It remains to show that T is maximal and consistent. The steps 1 and 2 of the
above construction fulfill all requirements from Definition3.8 which guarantees that
T is maximal. We continue by showing that T is a deductively closed set which
does not contain all formulas, and, as a consequence, that T is consistent.
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First of all, T does not contain all formulas. If α ∈ ForC , by the construction of
T0, α and ¬α cannot be simultaneously in T0. For a formula A ∈ ForP the set T
does not contain both A = Ai and ¬A = Aj, because Tmax(i,j)+1 is consistent.

I remains to show thatT is deductively closed. If a formula α ∈ ForC andT � α,
then by the construction of T0, α ∈ T and P≥1α ∈ T .

Let A ∈ ForP. It can be proved by the induction on the length of the inference that
if T � A, then A ∈ T . Note that if A = Aj and Ti � A, it must be A ∈ T because
Tmax(i,j)+1 is consistent.

Suppose that the sequence ϕ1, ϕ2, . . . ,A forms the proof of A from T . If the
sequence is finite, there must be a set Ti such that Ti � A, and A ∈ T .

Thus, suppose that the sequence is countably infinite. We can show that for every
i, if ϕi is obtained by application of an inference rule, and all premisses belong toT ,
then it must be ϕi ∈ T . If the rule is a finitary one, then there must be a set Tj which
contains all premisses and Tj � ϕi. Reasoning as above, we conclude ϕi ∈ T . Next,
we consider the only infinitary rule 3. Let ϕi = B → P≥sα be obtained from the set
of premisses {ϕk

i = B → P≥skγ : sk ∈ Q}. By the induction hypothesis, ϕk
i ∈ T for

every k. If ϕi /∈ T , by the step 2b of the construction, there are some l and j such
that ¬(B → P≥sα),B → ¬P≥s− 1

l
γ ∈ Tj. It means that for some j′ ≥ j

• B ∧ ¬P≥sα ∈ Tj′ ,
• B ∈ Tj′ ,
• ¬P≥s− 1

l
γ,P≥s− 1

l
γ ∈ Tj′ ,

which is in contradiction with consistency of Tj′ . Hence, ϕi ∈ T which finally means
that T is deductively closed. �

The set T is used to define a tupleMT = 〈W,H, μ, v〉, where
• W = {w |= CnC(T)} contains all classical propositional interpretations that satisfy
the set CnC(T) of all classical consequences of the set T ,

• [α] = {w ∈ W : w |= α} and H = {[α] : α ∈ ForC},
• μ : H → [0, 1] such that μ([α]) = sups{P≥sα ∈ T }, and
• for every worldw and every primitive proposition p ∈ φ, v(w, p) = true iffw |= p.

The next theorem states that MT is an LPP2,Meas-model, called the canonical model
of T .

Theorem 3.5 Let MT = 〈W,H, μ, v〉 be defined as above and α, β ∈ ForC. Then,
the following hold

1. H is an algebra of subsets of W ,
2. If [α] = [β], then μ([α]) = μ([β]),
3. μ([α]) ≥ 0.
4. μ(W ) = 1 and μ(∅) = 0.
5. μ([α]) = 1 − μ([¬α]).
6. μ([α] ∪ [β]) = μ([α]) + μ([β]), for all disjoint [α] and [β].
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Proof (1) Let α, α1, α2, . . . αn be formulas from ForC . It is not hard to see that the
following hold:

• W = [α ∨ ¬α], and W ∈ H,
• if [α] ∈ H, then its complement [¬α] belongs to H, and
• if [α1], . . . , [αn] ∈ H, then the union [α1] ∪ . . . ∪ [αn] ∈ H because [α1] ∪ . . . ∪

[αn] = [α1 ∨ . . . ∨ αn].
Thus, H is an algebra of subsets of W .
(2) It is enough to prove that [α] ⊂ [β] impliesμ([α]) ≤ μ([β]). By the completeness
of the propositional logic, [α] ⊂ [β] means that α → β ∈ CnC(T) and P≥1(α →
β) ∈ T . By Lemma3.1(1) we have that for every s ∈ Q, P≥sα → P≥sβ ∈ T . Thus,
μ([α]) ≤ μ([β]).
(3) Since P≥0α is an axiom, μ([α]) ≥ 0.
(4) Since p ∨ ¬p ∈ CnC(T) and P≥1(p ∨ ¬p) ∈ T for every p ∈ φ, we have
W = [p ∨ ¬p] and μ(W ) = 1.

On the other hand, obviously, μ(∅) ≥ 0. Since P≥1(p∨ ¬p) = P≥1−0(p∨ ¬p) =
P≤0¬(p∨ ¬p) = P≤0(p∧ ¬p) = ¬P>0(p∧ ¬p), by Axiom 3’, sups{P≥s(p∧ ¬p) ∈
T } = 0, and μ(∅) = 0.
(5) Let r = μ([α]) = sups{P≥sα ∈ T }. Suppose that r = 1. By Lemma3.3(7),
P≥1α) ∈ T . Thus, ¬P>0¬α(= P≤0¬α = P≥1α) belongs to T . If for some s > 0,
P≥s¬α ∈ T , by Axiom 3’ it must be P>0¬α ∈ w, a contradiction. It follows that
μ([¬α]) = 1.

Next, suppose that r < 1. Then, for every rational number r′ ∈ (r, 1], ¬P≥r′α =
P<r′α, and P<r′α ∈ T . By Axiom 4, P≤r′α and P≥1−r′¬α belong to T . On the
other hand, if there is a rational number r′′ ∈ [0, r) such that P≥1−r′′¬α ∈ T , then
¬P>r′′α ∈ T , a contradiction.

Hence, sups{P≥s(¬α) ∈ T } = 1−sups{P≥sα ∈ T }, i.e.,μ([α]) = 1−μ([¬α]).
(6) Let [α] ∩ [β] = ∅, μ([α]) = r and μ([β]) = s. Since [β] ⊂ [¬α], by the above
steps (2) and (5), we have r + s ≤ r + (1 − r) = 1.

Suppose that r > 0, and s > 0. By the well known properties of the supremum,
for every rational number r′ ∈ [0, r), and every rational number s′ ∈ [0, s), we have
P≥r′α, P≥s′β ∈ T . It follows by the axiom 5 that P≥r′+s′(α ∨ β) ∈ T . Hence,
r + s ≤ t0 = supt{P≥t(α ∨ β) ∈ T }.

If r + s = 1, then the statement trivially holds.
Suppose r + s < 1. If r + s < t0, then for every rational number t′ ∈ (r + s, t0)

we have P≥t′(α ∨ β) ∈ T . We can choose rational numbers r′′ > r and s′′ > s such
that

• ¬P≥r′′α, P<r′′α ∈ T ,
• ¬P≥s′′β, P<s′′(β) ∈ T and
• r′′ + s′′ = t′ ≤ 1.
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By Axiom 4, P≤r′′α ∈ T . Using Axiom 6 we have

• P<r′′+s′′(α ∨ β) ∈ T ,
• ¬P≥r′′+s′′(α ∨ β) ∈ T and
• ¬P≥t′(α ∨ β) ∈ T ,

a contradiction. Hence, r + s = t0 and μ([α] ∪ [β]) = μ([α]) + μ([β]).
Finally suppose that r = 0 or s = 0. Then we can reason as above, with the only

exception that r′ = 0 or s′ = 0. �

Finally, we can summarize the previous statements to prove the strong complete-
ness for LPP2,Meas.

Theorem 3.6 (Strong completeness theorem for LPP2,Meas) A set T of formulas is
AxLPP2 -consistent iff it is LPP2,Meas-satisfiable.

Proof The (⇐)-direction follows from the soundness of the above axiomatic system.
In order to prove the (⇒)-direction we can construct MT , the LPP2,Meas-canonical
model of T , and show that for every ϕ ∈ ForLPP2 ,MT |= ϕ iff ϕ ∈ T .

To begin the induction, let ϕ = α ∈ ForC . If α ∈ CnC(T), then by the definition of
MT ,MT |= α. Conversely, ifMT |= α, by the completeness of classical propositional
logic, α ∈ CnC(T).

Next, let ϕ = P≥sα. If P≥sα ∈ T , then supr{P≥r(α) ∈ T } = μ([α]) ≥ s,
and MT |= P≥sα. For the other direction, suppose that MT |= P≥sα, i.e., that
supr{P≥r(α) ∈ T } ≥ s. If μ([α]) > s, then, by the well known property of supre-
mum and monotonicity of μ, P≥sα ∈ T . If μ([α]) = s, then by Lemma3.3(7),
P≥sα ∈ T .

Letϕ = ¬A ∈ ForP. ThenMT |= ¬A iffMT �|= A iffA /∈ T iff (byLemma3.3(1))
¬A ∈ T .

Finally, let ϕ = A ∧ B ∈ ForP. MT |= A ∧ B iff MT |= A and MT |= B iff A,
B ∈ T iff (by Lemma3.3(3)) A ∧ B ∈ T . �

Using the notion of consequences, the same can be formulated as

Theorem 3.7 Let T be a set of formulas, and ϕ a formula. Then:

T |= ϕ iff T � ϕ.

Proof (⇐) Let T |= ϕ. It means that T ∪ {ϕ} is not satisfiable. By Theorem3.6,
T ∪{¬ϕ} is inconsistent, i.e., T ∪{¬ϕ} � ⊥. By Deduction theorem, T � ¬ϕ → ⊥.
Thus, T � ϕ.
(⇒) Let T � ϕ. We use the induction on the length of the proof of ϕ from T . If ϕ is
an axiom or belongs to T , the statement trivially holds. So, let ϕ is obtained by an
application of a inference rule.
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In the cases of Modus Ponens (Rule 1) it means that we have

T � ψ → ϕ

T � ψ

T � ϕ (by Rule 1),

and that by the induction hypothesis

• T |= ψ → ϕ, and
• T |= ψ .

Then, by classical reasoning we obtain that T |= ϕ.
If ϕ is obtained by an application of Rule 3, we have

• T |= β → P≥s−1/kα, for every k ≥ 1
s .

By the properties of real-valued probability functions, it follows that T |= P≥sα.
Finally, let ϕ is obtained by an application of Rule 2. It means that ϕ = P≥1α,

and that T |= α. Thus, for every M which is a model of T it is also M |= α, and in
every world w fromM, w |= α. Furthermore, M |= P≥1α, i.e.,M |= ϕ. �

3.4.3 The Role of the Infinitary Rule

Let us note a few things that could help in understanding Rule 3. The infinitary rule

• From A → P≥s− 1
k
α, for every integer k ≥ 1

s , and s > 0 infer A → P≥sα

has the role to ensure that some infinitary sets are inconsistent. That is the reason
that Rule 3 is infinite—all formulas from an infinite set should be taken as premisses
in the corresponding application of the rule.

In the proof of Lindenbaum’s Theorem3.4, the step of the construction of a max-
imal consistent extension T of a consistent set T which is devoted to Rule 3

• if Ai is of the form β → P≥sγ , and Ti ∪ {Ai} is not consistent, then Ti+1 =
Ti ∪ {¬Ai, β → ¬P≥s− 1

n
γ }, for some positive n ∈ N, so that Ti+1 is consistent,

guarantees that it is not simultaneously possible that

• T ∪ {β → P≥sγ } is inconsistent, and
• β → P≥s− 1

k
γ ∈ T , for all k ≥ 1

s .

In that sense, the chosen formula β → ¬P≥s− 1
n
γ is a witness that

T � β → P≥sγ.

Note that this step in the construction of a maximal consistent extension is a proposi-
tional counterpart of the corresponding step in the Henkin construction of saturated
sets (see Sect. 4.4).

Finally, Rule 3 is given in the implicative form to allow a straightforward proof
of Deduction Theorem3.3.

http://dx.doi.org/10.1007/978-3-319-47012-2_4
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3.4.4 Completeness for Other Classes of Models

The canonical model MT from Theorem3.6 will be a tool in proving completeness
with respect to the classes

• LPP2,Meas,All,
• LPP2,Meas,σ , and
• LPP2,Meas,Neat.

Theorem 3.8 (Strong completeness theorem for LPP2,Meas,All) A set T of formulas
is AxLPP2 -consistent iff it is LPP2,Meas,All-satisfiable.

Proof The proof can be obtained by applying the extension theorem for additive
measure5 on the measure μ from the weak canonical model MT . Thus, there is a
finitely additive measure μ defined on the power set of W that is an extension of the
measure μ. It is easy to verify that T is satisfied in that extension ofMT . �

In Theorem3.9 the canonical model MT will be used as a base for applica-
tion of the Carathéodory theorem6 to show the extended completeness theorem for
σ -additive models.

Theorem 3.9 (Strong completeness theorem for LPP2,Meas,σ ) A set T of formulas is
AxLPP2 -consistent iff it is LPP2,Meas,σ -satisfiable.

Proof Let MT = 〈W,H, μ, v〉 be the canonical model of T . We have proved in
Theorem3.5 that μ is finitely additive. Note that, if MT is finite, μ is trivially
σ -additive on H, and MT is a σ -additive of T .

So, letMT be infinite, in which case we will use the Carathéodory theorem.
Letβ0,β1, . . . , βn,…be an infinite sequence of ForC-formulas and let

⋃
n∈N[βn] ∈

H. Then, by the above construction ofMT , there is α ∈ ForC such that
⋃

n∈N[βn] =
[α]. Note that:
• for every k ∈ N,

⋃
n≤k[βn] ⊆ [α],

• if
⋃

n≤k[βn] �= [α], the ForC formula ¬β0 ∧ . . . ∧ ¬βk ∧ α is satisfiable, and
• by the compactness theorem for classical logic the set S = {α,¬β0,¬β1, . . . ,

¬βn, . . .} is satisfiable.

5Theorem 3.2.10 from [1]. Let C be an algebra of subsets of a set Ω and μ(w) a positive bounded
charge—a finitely additive measure—on C. Let F be an algebra on Ω containing C. Then there
exists a positive bounded charge μ(w) on F such that μ(w) is an extension of μ(w) from C to F
and that the range of μ(w) is a subset of the closure of the range of μ(w) on C.
6Carathéodory theorem 1.3.10 Letμ be a measure on the algebraH , and assume thatμ is σ -finite,
i.e.:

• if Fi ∈ H , for i ∈ N, and
⋃

i Fi ∈ H , then
• μ(

⋃
i Fi) = limi μ(F0 ∪ . . . ∪ Fi).

Then μ has a unique extension to a measure on the minimal σ -algebra H over H .
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It means that
⋃

n∈N[βn] �= [α], which contradicts the assumption that
⋃

n∈N[βn] =
[α].

Hence, there must be k ∈ N, such that β0 ∪ . . . ∪ βk = ⋃
n∈N[βn] = [α], and

we conclude that for every countably infinite union
⋃

n∈N[βn] which belongs to H,
μ(bigcupn∈N[βn]) is defined, i.e., it is equal to μ(β0 ∪ . . . ∪ βk). Thus, μ is σ -finite.

Now, according to the Carathéodory theorem, we can transform MT to an
LPP2,Meas,σ -model MT = 〈W,H, μ, v〉 such that
• H is the minimal σ -algebra over H, and
• μ is a σ -additive extension of the measure μ such that for every ϕ ∈ ForLPP2 ,
MT |= ϕ iff ϕ ∈ T .

Thus, T is LPP2,Meas,σ -satisfiable. �

Theorem 3.10 (Strong completeness theorem forLPP2,Meas,Neat)A set T of formulas
is AxLPP2 -consistent iff it is LPP2,Meas,Neat-satisfiable.

Proof In this proof we use a slightly changed construction of the set T from Theo-
rem3.4. Using the same notation as above, the sequence of sets Ti, i = 0, 1, 2, … is
now defined in the following way:

1. T0 = T ∪ CnC(T) ∪ {P≥1α : α ∈ CnC(T)}
2. for every i ≥ 0,

a. if Ti ∪ {Ai} is consistent, then Ti+1 = Ti ∪ {Ai}, otherwise
b. if Ai is of the form β → P≥sγ , then Ti+1 = Ti ∪ {¬Ai, β → ¬P≥s− 1

n
γ }, for

some positive integer n, so that Ti+1 is consistent, otherwise
c. Ti+1 = Ti ∪ {¬Ai}.
d. if Ti is enlarged by a formula of the form P=0α, add ¬α to Ti+1 as well.

3. T = ∪∞
i=0Ti.

As it can be seen, the only new step is 2d.We can show that it produces consistent sets,
too. So, suppose that for some α ∈ ForC , (Ti ∪ {P=0α}) ∪ {¬α} � ⊥. By Deduction
theorem, we have that Ti ∪ {P=0α} � α. Since α ∈ ForC , α belongs to CnC(T),
and by the construction, we have that P≥1α ∈ T0 which leads to inconsistency of
Ti ∪ {P=0α} since
1. Ti,P=0α � P≥1α, since P≥1α ∈ Ti,
2. Ti,P=0α � P≤0α, by the definition of P=0,
3. Ti,P=0α � P<1α, by Axiom 3

and P<1α = ¬P≥1α. The rest of the completeness proof is the same as in
Theorem3.9. �

The situation that the axiomatic system AxLPP2 is sound and complete with respect
to three different classes of models is similar to the one from the modal framework
where, for example, the modal system K is characterized by the class of all models,
but also by the class of all irreflexive models. In other words, LPP2-formulas cannot
express the differences between the mentioned classes of probability models.
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3.5 Decidability and Complexity

In this subsection we will consider the problem of satisfiability of ForLPP2 formu-
las. Since there is a procedure for deciding satisfiability and validity for classical
propositional formulas, we will consider ForP-formulas only.

So, let A ∈ ForP. It is easy, using propositional reasoning and Lemma3.1(2), to
show that A is equivalent to a formula

DNF(A) =
m∨
i=1

ki∧
j=1

Xi,j(p1, . . . , pn)

called a disjunctive normal form of A, where

• Xi,j is a probability operator from the set {P≥si,j ,P<si,j }, and
• Xi,j(p1, . . . , pn) denotes that the propositional formula which is in the scope of
the probability operator Xi,j is in the complete disjunctive normal form, i.e., the
propositional formula is a disjunction of the atoms of A.

Theorem 3.11 (Decidability theorem) The logic LPP2 is decidable.

Proof EveryForP-formulaA is equivalent toDNF(A) = ∨m
i=1

∧ki
j=1 X

i,j(p1, . . . , pn).
A is satisfiable iff at least one disjunct from DNF(A) is satisfiable. Let the measure
of the atom ai be denoted by yi. We use an expression of the form

at ∈ X(p1, . . . , pn)

to denote that the atom at appears in the propositional part of X(p1, . . . , pn).
A disjunct D = ∧k

j=1 X
j(p1, . . . , pn) from DNF(A) is satisfiable iff the following

system of linear equalities and inequalities is satisfiable

∑2n

i=1 yi = 1
yi ≥ 0 , for i = 1, . . . , 2n∑

at∈X1(p1,...,pn)∈D yt

{≥ s1 if X1 = P≥s1
< s1 if X1 = P<s1

. . .∑
at∈Xk(p1,...,pn)∈D yt

{≥ sk if Xk = P≥sk
< sk if Xk = P<sk

(3.13)

Since the problem of LPP2,Meas-satisfiability of A is reduced to the linear systems
solving problem, the satisfiability problem for LPP2-logic is decidable. Finally, since
A is LPP2,Meas-valid iff ¬A is not LPP2,Meas-satisfiable, the validity problem is also
decidable. �

We can show that the LPP2,Meas-satisfiability problem is NP-complete.

Theorem 3.12 The LPP2,Meas-satisfiability problem is NP-complete.
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Proof The lower bound follows from the complexity of the same problem for clas-
sical propositional logic. The upper bound is a consequence of the NP-complexity
of the satisfiability problem for weight formulas from [2, Theorem 2.9].7 �

3.6 A Heuristic Approach to the LPP2,Meas-Satisfiability
Problem PSAT

Since the LPP2,Meas-satisfiability problem PSAT is NP-complete, it is natural to try
to solve its instances using heuristics. In this section we describe such an approach
which is based on genetic algorithms [8–10].

Genetic algorithms (GA) use populations of individuals. Each individual (also
called chromosome) is seen as a possible solution in the search space for the particular
problem. Thus, a GA can be seen as a searching procedure for the global optima
of the corresponding problem. Individuals are represented by genetic code over a
finite alphabet. An evaluation function assigning fitness values to individuals has to
be defined. Fitness values indicate quality of the corresponding individuals, while
average fitness of entire populations may be goodmeasures of obtained quality of the
procedures. GA’s consist of applications of the genetic operators to populations that
must ensure that averagefitness values are continually improved fromeachgeneration
to subsequent.Basic genetic operators are selection, crossover, andmutation but some
additional operators such as inversion, local search, etc., may be used.

Selection mechanism favors highly fitted individuals (as well as parts of genetic
code of individuals, i.e., genes) to have better chances for reproduction into next
generations. On the other hand, chances for reproduction for less fitted members
are reduced, and they are gradually wiped out from populations. Crossover operator
partitions a population into a set of pairs of individuals named parents. For each pair
a recombination of their genetic material is performed with some probability. In that

7Statements about complexity of the satisfiability problem for weight formulas from [2]. |A| and
‖A‖ denote the length of A (the number of symbols required to writeA), and the length of the longest
coefficient appearing in A, when written in binary, respectively. The size of a rational number a/b,
where a and b are relatively prime, is defined to be the sum of lengths of a and b, when written in
binary.
Theorem 2.6 Suppose A is a weight formula that is satisfied in some measurable probability struc-
ture. Then A is satisfied in a structure (S,H, μ, v) with at most |A| states where every set of states
is measurable, and where the probability assigned to each state is a rational number with size
O(|A|‖A‖ + |A| log(|A|)).
Lemma 2.7 If a system of r linear equalities and/or inequalities with integer coefficients each of
length at most l has a nonnegative solution, then it has a nonnegative solution with at most r entries
positive, and where the size of each member of the solution is O(rl + r log(r)).
Lemma 2.8 Let A be a weight formula. LetM = (S,H, μ, v) andM0 = (S,H, μ, v′) be probability
structures with the same underlying probability space (S,H, μ). Assume that v(w, p) = v′(w, p)
for every state w and every primitive proposition p that appears in A. Then M |= A iff M0 |= A.
Theorem 2.9 The problem of deciding whether a weight formula is satisfiable in a measurable
probability structure is NPcomplete.
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InputData();
PopulationInit();
while ( not FinishedGA() ) {

for ( i= 0 ; i< Npop ; i++) pi = ObjectiveFunction();
HeuristicImprovement();
ComputeFitnesses();
Selection();
Crossover();
Mutation();

}
OutputResults();

Fig. 3.2 A general description of GA’s

way nondeterministic exchange of genetic material in populations is obtained.Multi-
ple usage of selection and crossover operators may produce that the variety of genetic
materials is lost. It means that some areas of search spaces become not reachable.
This usually causes the convergence in local optimums far from the global optimal
values. Mutation operator can help to avoid this shortcoming. Parts of individuals
(genes) can be changed with some small probability to increase diversity of genetic
material. An initial population is usually generated by random, although sometimes
it may be fully or partially produced by an initial heuristic. A general description of
GA’s is given in Fig. 3.2, whereNpop and pi denote the number of individuals and their
objective values, respectively. The objective value of an individual corresponds to the
value which the individual owns in the case of the considered problem. The for-loop
is repeated until a finishing criterion (the global optima is found, themaximal number
of iterations is reached, …) is satisfied. Since the procedure is not complete, if the
maximal number of iterations is reached, we do not know whether the considered
problem is solvable. HeuristicImprovement() can be optionally included to improve
efficiency of GA and/or to help the procedure to escape from local optima.

In this section, we slightly expand syntax of probabilistic formulas [2]. Namely,
as we will mention below in Sect. 5.8, sometimes is suitable to consider Boolean
combinations of basic weight formulas of the form:

a1w(α1) + · · · + anw(αn) ≥ c

where ai’s and c are rational numbers, and αi’s are classical propositional formulas
containing primitive propositions from φ. The intended meaning of w(α) is “the
probability of α.” Note that w(α) ≥ s can be written as P≥sα in our notation.

A weight literal is an expression of the form
∑

i aiw(αi) ≥ c or
∑

i aiw(αi) <

c. The logic that allows such kind of formulas is still NP-complete—which can
be proved as above, i.e., by reducing the LPP2,Meas-satisfiability problem to linear
programming problem—so by using this logic we just add some expressiveness to
our language.

http://dx.doi.org/10.1007/978-3-319-47012-2_5
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Since ForP-formulas can be equivalently translated into their disjunctive normal
forms, and a disjunction is satisfiable if at least one disjunct is satisfiable, in the
sequel we will only consider formulas of the following form:

k∧
j=1

aj1w(CDNF(α
j
1)) + · · · + ajnjw(CDNF(αj

nj )) ρj c
j

where ρj ∈ {≥,<}, aji’s and cj are rational numbers, and CDNF(α) denotes the
complete disjunctive normal form of α. We say that such a formula is in the weight
conjunctive form (wfc-form). Also, we will use at ∈ CDNF(α) to denote that the
atom at appears in CDNF(α).

Example 3.4 Let us consider the formula

A = w(p → q) + w(p) ≥ 1.7 ∧ w(q) ≥ 0.6.

The set of atoms of A is

At(A) = {p ∧ q, p ∧ ¬q,¬p ∧ q,¬p ∧ ¬q} .

The classical formulas from A are p → q, p, and q, while the sets of atoms satisfying
them, or appearing in the corresponding complete disjunctive normal forms are

α p → q p q
a ∈ CDNF(α) p ∧ q,¬p ∧ q,¬p ∧ ¬q p ∧ q, p ∧ ¬q p ∧ q,¬p ∧ q

Now, the formula A is satisfiable since the same holds for the linear system

μ(p ∧ q) + μ(p ∧ ¬q) + μ(¬p ∧ q) + μ(¬p ∧ ¬q) = 1
μ(p ∧ q) ≥ 0
μ(p ∧ ¬q) ≥ 0
μ(¬p ∧ q) ≥ 0
μ(¬p ∧ ¬q) ≥ 0
μ(p ∧ ¬q) + μ(¬p ∧ q) + μ(¬p ∧ ¬q) + 2μ(p ∧ q) ≥ 1.7
μ(p ∧ q) + μ(¬p ∧ q) ≥ 0.6.

For example the following assignment μ

a p ∧ q p ∧ ¬q ¬p ∧ q ¬p ∧ ¬q
μ(a) 0.8 0.2 0 0

satisfies the formula. �

The input for the LPP2,Meas-satisfiability checker based on genetic algorithms is a
weight formulaA in thewfc-formwithLweight literals.Without loss of generality,we
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demand that classical formulas appearing in weight terms are in disjunctive normal
form.

Let φ(A) = {p1, . . . , pN } denote the set of all primitive propositions from A, and
|φ(A)| = N .

An individual M consists of L pairs of the form (atom, probability) that describe
a probabilistic model. The first coordinate is given as a bit string of length N , where
1 at the position i denotes ¬pi, while 0 denotes pi. Probabilities are represented by
floating point numbers.

For an individual

M = ((at1, μ(a1)), . . . , (atN , μ(atN )))

the linear system is equivalent to

L∨
i=1

( L∑
j=1

aijμ(atj)

)
ρi ci.

Note that it is possible that some aij = 0, though [aij] matrix is usually not sparse.
The individuals are evaluated using function d(M), which measures a degree of

unsatisfiability of an individualM. Function d(M) is defined as the distance between
left and right hand side values of theweight literals not satisfied in themodel described
byM

d(M) =
√ ∑

M �|=ti ρi ci

[ai1
∑

at∈CDNF(αi
1)

μ(at) + · · · + aini
∑

at∈CDNF(αi
ni

)

μ(at) − ci]2.

If d(M) = 0, all the inequalities in the linear system are satisfied, hence the individual
M is a solution.

Some features of GA have been set for all tests

• the population consists of 10 individuals,
• one set of tests has been performed with a population of 20 individuals,
• selection is performed using the rank-based roulette operator (with the rank from
2.5 for the best individual to 1.6 for the worst individual - the step is 0.1),

• The crossover operator is one-point, with the probability 0.85,
• the elitist strategy with one elite individual is used in the generation replacement
scheme, and

• multiple occurrences of an individual are removed from the population.

Two problem-specific two-parts mutation operator are used:

• The first operator (TP1) features two different probabilities of mutation for the two
parts (atoms, probabilities) of an individual; after mutation, the real numbers in
probabilities part of an individual have to be scaled since their sum must equal 1.
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• The second operator (TP2) is a combination of ordinary mutation on atoms part,
and a special mutation on probabilities part of an individual. Instead of performing
mutation on two bits in the representation of probabilities part, two members
pi1, pi2 of probabilities part are chosen randomly and then replaced with random
p′
i1
, p′

i2
, such that pi1 +pi2 = p′

i1
+p′

i2
and 0 ≤ p′

i1
, p′

i2
≤ 1. The sum of probabilities

does not change and no scaling is needed.

We have experimented with the following choices in the local search procedure:

• LS1 (LS denotes “local search”): For an individual M all the weight literals are
divided into two sets: the first set (B) contains all satisfied literals, while the second
one (W ) contains all the remaining literals. The literal

tB ρB cB ∈ B

(called the best one) with the biggest difference |μ(tB) − cB| between the left and
the right side, and the literal

tW ρW cW ∈ W

(the worst one) with the biggest difference |μ(tW ) − cW | are found. Two sets of
atoms are determined: the first set

BAt(f )

contains all the atoms from M satisfying at least one classical formula αB
i from

tB = aB1w(αB
1 ) + · · · + aBkBw(αB

kB
), while the second one

WAt(f )

contains all the atoms from M satisfying at least one classical formula αW
i from

tW = aW1 w(αW
1 )+· · ·+aWkW w(αW

kW
). The probabilities of a randomly selected atom

from
BAt(f ) \ WAt(f )

and a randomly selected atom from

WAt(f ) \ BAt(f )

are changed so that tB ρB cB remains satisfied, while the distance |μ(tW ) − cW | is
decreased or tW ρW cW is satisfied.

• LS2: For na individual M, the worst weight literal

tW ρW cW

from W (the set of unsatisfied literals) with the biggest difference |μ(tW ) − cW |
is found. The literal can be represented as
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L∑
j=1

aWjμ(atj) ρW cW .

We try to change the vector of probabilities [μ(atj)], so that the linear equation
L∑
j=1

aWjμ(atj) = cW

is satisfied. The equation
∑L

j=1 aWjμ(atj) = cW represents a hyperplane in R
n

while [aWj] denotes a vector normal to the hyperplane. The projection of [μ(atj)]
to the hyperplane—which satisfies the equation—is

[μ′(atj)] = [μ(atj)] + kW [aWj].

The calculation of k and the projection vector is simple and straightforward (k =
cw−aW ◦[μ(atj)]

|aW |2 = cw−∑L
j=1 μ(atj)aWj∑L
j=1 aWj

2
). We set the new vector of probabilities to be

[μ′′(atj)] = [max{μ′(atj), 0}]∑L
k=1 max{μ′(atk), 0}

(negative coordinates are replaced with 0, and the vector is scaled so that the sum
of its coordinates

∑L
j=1 μ′′(atj) equals 1).

• LS3 is similar to LS2, with the difference being made when choosing the weight
literal tW ρW cW from W (the set of unsatisfied literals). The chosen literal is the
one with the smallest difference |μ(tW ) − cW |; it is the best bad literal.

• LS4 is similar to LS2 and LS3. Instead of calculating the projection [μ′(atj)] =
[μ(atj)] + kW [aWj] for one chosen weight literal tW ρW cW from W , we calculate
kWi [aWij] for each literal tWi ρWi cWi from W (the set of unsatisfied literals) and
calculate the intermediate vector [μ′(atj)], by adding the linear combination to the
original vector

[μ′(atj)] = [μ(atj)] +
∑
Wi

kWi [aWij].

The new vector of probabilities [μ′′(atj)] is then calculated in same fashion as in
LS2.

In our methodology, introduced in [8], the performance of the system is evaluated on
a set of PSAT-instances, i.e., on a set of randomly generated formulas in the wfc-form
(with classical formulas in disjunctive normal form). The advantage of this approach
is that a formula can be randomly generated according to the following parameters:

• N—the number of propositional letters,
• L—the number of weight literals,
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• S—the maximal number of summands in weight terms, and
• D—the maximal number of disjuncts in DNF’s of classical formulas.

The considered set of test problems contains 27 satisfiable formulas. Three PSAT-
instances were generated for each of nine pairs of (N,L), where N ∈ {50, 100, 200},
and L ∈ {N, 2N, 5N}. For every instance S = D = 5.

Having the above parameters, L atoms and their probabilities (with the constraint
that the sum of probabilities must be equal to 1) are chosen. Next, a formula f
containing L basic weight formulas is generated. It contains primitive propositions
from the set {p1, . . . , pN } only. Every weight literal contains at most S summands in
its weight term. Every classical formula is in disjunctive normal form with at most
D disjuncts, while every disjunct is a conjunction of at most N literals. For every
weight term t coefficients are chosen, and the value of t is computed. Next, the sum
sp(t) of positive coefficients and the sum sn(t) of negative coefficients are computed.
Finally, the right side value of the weight literals between sp(t) and sn(t), and the
relation sign are chosen such that f is satisfiable.

We prefer to test more problem instances of different sizes (even very large scale
instances) rather than making more trials on a smaller set of instances (of smaller or
average size). Since the tests are of large sizes, the necessity to perform them in a
reasonable time imposed to set the maximal number of generations to be: 10000 for
N = 50, 7000 for N = 100 and 5000 for N = 200.

As an illustration of the corresponding results we give Table3.1 which contains
the average running time of successful tests as measured on our test computer (a
Pentium P4 2.4GHz, 512MB-based Linux station). The table shows running times
only for selected tests.

Columns 2 and 3 show times for tests without LS’s, with different population size
(10 individuals vs 20 individuals). Increased population size does result in smaller
number of iterations needed to find the solution, but the computational cost for each
iteration is increased and the overall computational cost is greater than with smaller
population size.

In columns 4–7 and 8–11 we can compare the efficiency of various LS’s. It is clear
that LS2 and LS3 are more efficient than LS1 and LS4 when used for large problem
instances, however it is not clear which of them is the most efficient. The running
times in columns 8–11 (LS’s applied in each third generation) are on average smaller
than times in columns 4–7 (LS’s applied in each generation). However, this does not
mean that the principle of reducing application of LS’s to each third generation is
always more efficient.

Finally, columns 12–14 show execution times for tests using combination of LS’s.
Combined usage of LS’s is not justified in terms of time efficiency, but it is justified in
terms of increased success rate. Higher mutation rate in this setup leads to better time
efficiency and higher success rate, except for a few less complex problem instances.
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3.6.1 Other Heuristics for PSAT and Similar Problems

Another heuristic for PSAT based on Variable neighborhood search (VNS) meta-
heuristic was presented in [4]. The corresponding solution space consists of 0–1
variables, while the associated probabilities are found by a fast approximate vari-
able neighborhood descent procedure combined with the Nelder-Mead nonlinear
optimization method.

The logic LPCP
[0,1]Q(ε),≈
2 , described in Sect. 5.7.1, is suitable for representing

and reasoning with uncertain knowledge and for modeling default reasoning. The
LPCP

[0,1]Q(ε),≈
2,Meas,Neat-satisfiability problem is related to PSAT, while the main differences

are

• CPSAT-ε involves conditional probability operators, and
• probabilities of formulas in CPSAT-ε may take infinitesimal values.

A method for solving CPSAT-ε based on the bee colony optimization metaheuristic
was proposed in [14].
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Chapter 4
Probability Logics with Iterations
of Probability Operators

Abstract Thefirst order probability logicLFOP1 is introduced.The logic allows for-
mulas about higher-order probabilities. To give semantics to the logic we introduced
first order probability models with constant domains and rigid terms. An infinitary
axiom system for LFOP1 is presented. The logic LFOP1 inherits the main properties
of LPP2, so, in spite of all differences, we use the techniques from Chap.3 to prove
strong completeness. The same technique can be also applied to other kinds of proba-
bility logics: the first order LFOP2, and propositional LPP1, etc. In LFOP1-formulas
probabilistic operators and the classical quantifiers can be mixed and nested, so the
logic is related tomodal logics andwediscuss how (translations of) someproperties of
modal logics (e.g., Barcan formula) behave in the probabilistic settings. SinceLFOP1

extends classical first order logic, it is undecidable, but we show that the monadic
fragment of LFOP1 without iterations of probability operators is decidable. The same
hold for the propositional LPP1. Finally, the logic LPPLTL

1 suitable for a combina-
tion of probability and temporal reasoning is presented. This chapter covers some
results from Ikodinović, Proceedings of the 8th European conference symbolic and
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4.1 Introduction

In [1], Abadi and Halpern provided a comprehensive study of decidability of first
order probability logics and showed that in the general case the set of first order
valid formulas is not recursively enumerable, which means that no complete finitary
axiomatization is possible. However, it is possible to extend our infinitary axiomati-
zation from Chap.3 to a strongly complete axiom system for first order probability
logic. Abadi and Halpern considered two kinds of first order logics:

• with probabilities on domains, i.e., Keisler-like logics, and
• with probabilities on possible worlds, which is close to our approach.

The formal language of the latter logic is more expressive than the language used in
our systems. We show elsewhere [19] how to extend our syntax to the same level of
expressiveness, while still being able to obtain the results about strong completeness.
So, for ease of exposition we will present the results in this Chapter in our standard
notations, but note that the same can be done in the extended language of [1].

4.2 Syntax and Semantics of LFOP1

This section is devoted to a probabilistic extension of first order classical logic. In
this case, interleaving of the probabilistic operators and the classical quantifiers is
essential, especially when we compare first order probability logics to first order
modal logics. Thus, contrary to Chap.3, we will start here with a logic in which
iterations of quantifiers and probability operators are allowed.

4.2.1 Syntax

The symbols of the first order language L of LFOP1 are:

• for each k ∈ N, k-ary relation symbols Pk
0,P

k
1, . . . ,Q

k
0,Q

k
1, . . . ,R

k
0,R

k
1,…,

• for each k ∈ N, k-ary function symbols Fk
0 ,F

k
1 , . . . ,G

k
0,G

k
1, . . . ,H

k
0 ,H

k
1 ,…,

• the connectives ∧, and ¬, and the universal quantifier ∀,
• a list of unary probability operators P≥sα, for every s ∈ [0, 1]Q,
• a list of individual variables x, y, z, …, and
• auxiliary symbols commas and parentheses.

Wewill occasionally omit superscripts and subscripts from the function and predicate
symbols, and write simply f , g, h, and P, Q, R, respectively. The function symbols
of the arity 0 are called (individual) constant symbols. The constants will be denoted
by a, b, c, …

Terms are defined as in first order classical logic and denoted by t1, t2, …. The
set ForLFOP1(L) of all formulas of the language L is the smallest set:

http://dx.doi.org/10.1007/978-3-319-47012-2_3
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4.2 Syntax and Semantics of LFOP1 111

• containing all atomic formulas, i.e., ifP is a relation symbol of arity k, and t1, . . . , tk
are terms, than P(t1, . . . , tk) ∈ ForLFOP1(L), and

• closed under the formation rules: if α, β ∈ ForLFOP1(L), then ¬α, P≥sα, α ∧ β

and (∀x)α ∈ ForLFOP1(L).

Wewill useα,β, γ , indexed if necessary, to denote formulas, while (∃x)α abbreviates
the formula ¬(∀x)¬α.

Example 4.1 An example of a formula is:

P≥s(∀x)P1
1(x) → P2

3(y,F
0
0 ) ∧ P≥rP≥tP

1
1(F

0
1 ).

�

Since formulas with iterations of probability operators are allowed, it is possible
to formalize reasoning about higher-order probabilities, e.g., “The probability is s
that the event has the probability r.”

In a formula of the form (∀x)α, α is said to be in the scope of that quantifier. An
occurrence of a variable x in a formula α is bound if it occurs in a part of α which
is of the form (∀x)β, otherwise, the occurrence is called free. If α is a formula and
t is a term, then t is said to be free for x in α if no free occurrences of x lie in the
scope of any quantifier (∀y), where y is a variable in t. α(x1, . . . , xm) indicates that
free variables of the formula α form a subset of {x1, . . . , xm}, while α(t/x) denotes
the result of substituting in α the term t for all free occurrences of x. We can also
use the shorter form α(t) to denote the same substitution. A formula α is a sentence
if no variable is free in α.

4.2.2 Semantics

Similarly as in Sect. 3.1.2, the semantics for ForLFOP1(L) will be based on the
possible-world approach, with an important difference that worlds of models are
now classical first order models. Also, note that, since formulas with iterated prob-
ability operators are allowed, probability measures are associated to worlds of a
model, and not to a model, as in Definition 3.2.

Definition 4.1 An LFOP1-model is a structureM = 〈W,D, I,Prob〉 where:
• W is a non empty set of objects called worlds,
• D associates a non empty domain D(w) with every world w ∈ W ,
• I associates an interpretation I(w) with every world w ∈ W such that:

– I(w)(Fk
i ) is a function from D(w)k to D(w), for all i, and k,

– I(w)(Pk
i ) is a relation over D(w)k , for all i, and k.

• Prob is a probability assignment which assigns to every w ∈ W a probability
space, such that Prob(w) = 〈W (w),H(w), μ(w)〉, where:

http://dx.doi.org/10.1007/978-3-319-47012-2_3
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112 4 Probability Logics with Iterations of Probability Operators

– W (w) is a non empty subset of W ,
– H(w) is an algebra of subsets of W (w) and
– μ(w) : H(w) → [0, 1] is a finitely additive probability measure. �

The next definitions reflect the mentioned fact that worlds in LFOP1-models are
classical first order models.

Definition 4.2 LetM = 〈W,D, I,Prob〉 be an LFOP1-model. A variable valuation
v assigns some element of the corresponding domain to every world w and every
variable x, i.e., v(w)(x) ∈ D(w). If w ∈ W , d ∈ D(w), and v is a valuation, then
vw[d/x] is a valuation like v except that vw[d/x](w)(x) = d. �

Definition 4.3 For an LFOP1-model M = 〈W,D, I,Prob〉 and a valuation v, the
value of a term t (denoted by I(w)(t)v) is:

• if t is a variable x, then I(w)(x)v = v(w)(x), and
• if t = Fm

i (t1, . . . , tm), then I(w)(t)v = I(w)(Fm
i )(I(w)(t1)v, . . . , I(w)(tm)v). �

Definition 4.4 The truth value of a formula α in a world w ∈ W for a given LFOP1-
model M = 〈W,D, I,Prob〉, and a valuation v (denoted by I(w)(α)v) is:

• if α = Pm
i (t1, . . . , tm), then I(w)(α)v = true, if 〈I(w)(t1)v, . . . , I(w)(tm)v〉 ∈

I(w)(Pm
i ), otherwise I(w)(α)v = false,

• ifα = ¬β, then I(w)(α)v = true, if I(w)(β)v = false, otherwise I(w)(α)v = false,
• if α = P≥sβ, then I(w)(α)v = true, if μ(w){u ∈ W (w) : I(u)(β)v = true} ≥ s,
otherwise I(w)(α)v = false,

• if α = β ∧ γ , then I(w)(α)v = true, if I(w)(β)v = true, and I(w)(γ )v = true,
otherwise I(w)(α)v = false, and

• if α = (∀x)β, then I(w)(α)v = true, if for every d ∈ D, I(w)(β)vw[d/x] = true,
otherwise I(w)(α)v = false. �

Another consequence of the definition of ForLFOP1(L)-formulas is that satisfia-
bility is considered in worlds of models, and not in models, as was introduced in
Definition 3.5.

Definition 4.5 A formula is satisfied in a world w from an LFOP1-model M =
〈W,D, I,Prob〉 (denoted by (M,w) |= α, or simply w |= α if M is clear from
the context) if for every valuation v, I(w)(α)v = true. If d ∈ D(w), we will use
(M,w) |= α(d) to denote that for every valuation v, I(w)(α(x))vw[d/x] = true.

A formula is valid in a LFOP1-modelM = 〈W,D, I,Prob〉 (denoted byM |= α),
if it is satisfied in every world w from W .

A formula α is valid if for every LFOP1-model M, M |= α.
A sentence α is satisfiable if there is a world w in an LFOP1-model M such

that (M,w) |= α. A set T of sentences is satisfiable if there is a world w in an
LFOP1-model M such that for every α ∈ T , (M,w) |= α (also denoted w |= T ). �

In this chapter we will consider a class of all LFOP1-models that satisfy:

http://dx.doi.org/10.1007/978-3-319-47012-2_3
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• all the worlds from a model have the same domain, i.e., for all v,w ∈ W , D(v) =
D(w),

• for every sentence α, and every worldw from a modelM the set of all worlds from
W (w) that satisfy α, i.e., that is definable by α, [α]M,w = {u ∈ W (w) : I(u)(α)v =
true}, is measurable, and

• the terms are rigid, i.e., for every model their meanings are the same in all worlds.

We use LFOP1,Meas to denote the class of all constant domain measurable mod-
els with rigid terms. Some of the introduced notions will be illustrated in the next
example. In Sect. 4.5, some consequences of the rejection of the assumption about
rigidness of terms will be addressed.

Example 4.2 Let us consider an LFOP1,Meas-model M = 〈W,D, I,Prob〉, w ∈ W ,
and suppose that (M,w) |= P≥sP1

1(x).
By the Definitions 4.4 and 4.5, this holds iff for every valuation v:

• I(w)(P≥sP1
1(x))v = 
, iff

• μ(w){u ∈ W (w) : I(u)(P1
1(x))v = true} ≥ s, iff

• μ(w){u ∈ W (w) : v(w)(x) ∈ I(u)(P1
1).

The last condition means that the element of D(w) assigned to x by v(w), should
belong to the interpretation of P1

1 in u. It means that the formula P≥sP1
1(x) connects

elements of two different domains. Since for LFOP1,Meas terms are rigid and domains
are equal, this will not cause any problems. However, as we discuss in Sect. 4.5, the
situation is much more complicated without these constrains. �

Note that (M,w) |= P≥sP1
1(x) iff (M,w) |= (∀x)P≥sP1

1(x), but, as we will show
in Example 4.3, P≥sP1

1(x) and P≥s(∀x)P1
1(x) have quite different meanings.

4.3 Axiom System AxLFOP1

The axiom system AxLFOP1 is a combination of a classical first order axiomatization
and the probability system introduced in Chap.3. It involves the following axiom
schemata:

1. all ForLFOP1(L)-substitutional instances of the axioms of classical propositional
logic

2. (∀x)(α → β) → (α → (∀x)β), where x is not free in α

3. (∀x)α(x) → α(t/x), where α(t/x) is obtained by substituting all free occurrences
of x in α(x) by the term t which is free for x in α(x)

4. P≥0α

5. P≤rα → P<sα, s > r
6. P<sα → P≤sα

7. (P≥rα ∧ P≥sβ ∧ P≥1(¬α ∨ ¬β)) → P≥min(1,r+s)(α ∨ β)

8. (P≤rα ∧ P<sβ) → P<r+s(α ∨ β), r + s ≤ 1

http://dx.doi.org/10.1007/978-3-319-47012-2_3
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and inference rules:

1. From α and α → β infer β.
2. From α infer (∀x)α
3. From α infer P≥1α.
4. From β → P≥s− 1

k
α, for every integer k ≥ 1

s , infer β → P≥sα.

We use the notions of proofs, theorems, and deducibility introduced in Chap. 3,
with an important exception related to applications of Rule 3:

Definition 4.6 A formula α is deducible from a set T of formulas (T  α) if there
is a sequence α0, α1, . . . , αλ+1 (λ is a finite or countable ordinal) of ForLFOP1(L)-
formulas, such that:

• αλ+1 = α, and
• every αi, i ≤ λ+1, is an axiom-instance, or αi ∈ T , or αi is derived by an inference
rule applied on some previous members of the sequence, with the proviso thatRule
3 can be applied on the theorems only. �

Additionally, since the set of formulas ForLFOP1(L) is considered, we have:

Definition 4.7 A set T of ForLFOP1(L)-formulas is consistent if T � ⊥, otherwise
T is inconsistent.

A consistent set T of formulas ismaximal consistent if for every α ∈ ForLFOP1(L),
either α ∈ T or ¬α ∈ T .

A set T of ForLFOP1(L)-formulas is saturated if it is maximal consistent and
satisfies:

• if ¬(∀x)α(x) ∈ T , then for some term t, ¬α(t) ∈ T . �

4.4 Soundness and Completeness

The proofs of soundness and completeness for LFOP1,Meas extend the corresponding
proofs from Chap.3, and we will only emphasize the main differences.

Theorem 4.1 (Soundness theorem) The axiom system AxLFOP1 is sound with respect
to the LFOP1,Meas class of models.

Proof Let M = 〈W,D, I,Prob〉 be an LFOP1,Meas-model, and w ∈ W such that

• (M,w) |= (∀x)α(x).

It means that I(w)((∀x)α(x))v = true for every valuation v. For each v, among all
valuations there must be one (denoted v′) such that v′(w)(x) = d = I(w)(t)v and
I(w)(α(x))v′ = true. Since I(w)(α(x))v′ = I(w)(α(t/x))v, we have I(w)(α(t/x))v =
true for every valuation. Thus, every instance of Axiom 3 is valid. �

http://dx.doi.org/10.1007/978-3-319-47012-2_3
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Note that the assumptions about constant domains and rigidness of terms are crucial.
If it is not the case, and α(t/x) is of the form P≥sβ(t/x), the term t refers to objects in
otherworlds (different fromw). Example 4.4 illustrates that it can have a consequence
that I(w)(α(t/x))v = false.

Deduction Theorem 3.3 and the Lemmas 3.1, 3.2, and 3.3 can be proved as above,
while for Lindenbaum’s theorem we need modifications, according to the Henkin
construction of saturated extensions of consistent sets.

Theorem 4.2 (Lindenbaum’s theorem) Let T be a consistent set of ForLFOP1(L)-
sentences, and C be a countably infinite set of new constant symbols (C ∩ L = ∅).
Then T can be extended to a saturated set T in the language L = L ∪ C.

Proof The main novelty in the proof concerns the saturation property. The comple-
tion of T is accomplished using the following method. Let α0, α1, …be an enumer-
ation of all ForLFOP1(L)-sentences. The sequence of sets Ti, i = 0, 1, 2, …is defined
such that:

1. T0 = T
2. for every i ≥ 0,

a. if Ti ∪ {Ai} is consistent, then Ti+1 = Ti ∪ {Ai}, otherwise
i. if αi is of the form β → P≥sγ , then Ti+1 = Ti ∪{¬αi, β → ¬P≥s− 1

n
γ },

for some positive n ∈ N, so that Ti+1 is consistent, otherwise
ii. Ti+1 = Ti ∪ {¬αi}.

b. If Ti+1 is obtained by adding a formula of the form ¬(∀x)β(x) to Ti, then
for some c ∈ C, ¬β(c) is also added to Ti+1, so that Ti+1 is consistent,

3. T = ∪∞
i=0Ti.

Let us consider the only new step 2b. Suppose that for some i > 0, a formula of the
form ¬(∀x)β(x) is consistently added (in the steps 2a, or 2(a)ii) to Ti. If there is a
constant symbol c ∈ C such that¬β(c) ∈ Ti, then obviouslyTi∪{¬(∀x)β(x),¬β(c)}
is consistent. Suppose that there is no such c. Since Ti ∪ {¬(∀x)β(x)} is obtained by
adding only finitely many formulas to T , and T does not contain constants from C,
there is at least one constant c ∈ C which does not appear in Ti ∪ {¬(∀x)β(x)}. If
Ti ∪ {¬(∀x)β(x),¬β(c)}  ⊥, then by Deduction theorem

• Ti,¬(∀x)β(x)  β(c).

Since c does not appear in Ti ∪ {¬(∀x)β(x)}, we have
• Ti,¬(∀x)β(x)  (∀x)β(x), and
• Ti  (∀x)β(x).

But, by the hypothesis Ti ∪ {(∀x)β(x)}  ⊥, which means that Ti is not consistent,
a contradiction. Thus, the step 2b produces consistent sets. The rest of the proof is
the same as in Theorem 3.4. �

Let the tuple MT = 〈W,D, I,Prob〉 be defined in the following way:

http://dx.doi.org/10.1007/978-3-319-47012-2_3
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• W is the set of all saturated sets in the language L = L ∪ C,
• D is the set of all variable-free terms in L,
• for every w ∈ W , I(w) is an interpretation such that:

– for every function symbol Fm
i , I(w)(Fm

i ) is a function from Dm to D such that
for all variable-free terms t1, . . . , tm in L, Fm

i : 〈t1, . . . , tm〉 → Fm
i (t1, . . . , tm),

and
– for every relation symbol Pm

i , I(w)(Pm
i ) = {〈t1, . . . , tm〉 for all variable-free

terms t1, . . . , tm ∈ L : Pm
i (t1, . . . , tm) ∈ w}.

• for every w ∈ W , Prob(w) = 〈W (w),H(w), μ(w)〉 such that:

– W (w) = W ,
– H(w) is the class of sets [α] = {w ∈ W : α ∈ w}, for every sentence α, and
– for every set [α] ∈ H(w), μ(w)([α]) = sups{P≥sα ∈ w}.
We can prove (as in Theorem 3.5) that for every w ∈ W , Prob(w) is a probability

assignment, i.e., that:

• H(w) is an algebra of subsets of W (w), and
• μ(w) is a finitely additive probability defined on H(w).

Note that above in the algebras H(w)’s, sets [α] are defined using α ∈ w, and not
(MT ,w) |= α as it is required for LFOP1,Meas-models. So, we have first to show

Theorem 4.3 MT is an LFOP1,Meas-model.

Proof Actually, we have to proof prove that for every formula α, and every w ∈ W ,
(MT ,w) |= α iff α ∈ w, which can be done as in Theorem 3.6. The only new case
concerns α = (∀x)β.

If α ∈ w, then, because of Axiom 3, β(t) ∈ w for every t ∈ D. By the induction
hypothesis (MT ,w) |= β(t) for every t ∈ D, and (MT ,w) |= (∀x)β.

On the other hand, let α /∈ w. Since w is saturated, there is some t ∈ D such that
(MT ,w) |= ¬β(t). It follows that (MT ,w) �|= (∀x)β. �

From the Theorems 4.2 and 4.3 we obtain:

Theorem 4.4 (Strong completeness theorem for LFOP1,Meas) A set T of sentences
is AxLFOP1 -consistent iff it is LFOP1,Meas-satisfiable.

Proof By Theorem 4.2, T can be extended to a saturated set, while by Theorem 4.3
the correspondingMT is an LFOP1,Meas-model such that for some worldw fromMT ,
w |= T . Hence, T is LFOP1,Meas-satisfiable. �

4.4.1 Semantical Consequences

In the modal-like context of the probability logic LFOP1, determining the semantical
counterpart of the relation of syntactical consequence can be ambiguous (Melvin
Fitting (1942) analyzed this dichotomy for modal logics in [3]):

http://dx.doi.org/10.1007/978-3-319-47012-2_3
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• T |= α, if in every world w in which all formulas from the set T are satisfied,
w |= α, or

• T |= α, if for every model M in which all formulas from the set T are valid,
M |= T .

The relation of syntactical consequence introduced in Definition 4.6 corresponds to
the latter option, in which, according to Fitting, members of the set of formulas T
can be seen as logical truths. Now, following Theorem 3.7, we can prove

Theorem 4.5 Let T be a set of formulas, and α a formula. Then:

T |= α iff T  α.

Proof The only specific case concerns the application of the necessitation rule:

 α

T  P≥1α (by Rule 3).

Since α is a AxLFOP1 -theorem, by Theorem 4.4, for every world w from any
LFOP1,Meas-model M = 〈W,D, I,Prob〉, w |= α, and μ(w)([α]) = 1. Thus,
M |= P≥1α. It follows that for every LFOP1,Meas-model M, if M |= T , then
M |= P≥1α. �

4.4.2 Completeness for Other Classes of Measurable
First-Order and Propositional Models

The classes of models

• LPFOP1,Meas,All,
• LFOP1,Meas,σ , and
• LFOP1,Meas,Neat

can be defined similarly as in Sect. 3.1.2. LFOP1 can be restricted to the propositional
logic LPP1 with iterations of probability operators so that we can consider the classes
of models LPP1,Meas, LPP1,Meas,All, LPP1,Meas,σ , and LPP1,Meas,Neat. For all those
classes of models the corresponding strong completeness theorems can be proved
in the same way as in the Sects. 3.4.4 and 4.4. The same holds for LFOP2, the first
order probability logicwithout iterations of probability operators (that generalized the
propositional logic LPP2), and the corresponding classes of models LFOP2,Meas,All,
LFOP2,Meas,σ , and LFOP2,Meas,Neat.

The language of LFOP1 can be further extended to involve conditional probability
operators of the forms CP≥s(α, β) and CP≤s(α, β) with the intended meaning “the
conditional probability of α given β is at least s”, and “at most s”, respectively.
Complete axiom systems for the first order logics LFOCP2 without iterations of
conditional probability operators, and LFOCPE1 with iterations and with the symbol

http://dx.doi.org/10.1007/978-3-319-47012-2_3
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of equality, are given in [11, 12], while the propositional counterparts are analyzed in
[10] (with nonstandard-valued probabilities), [8] (coherent conditional probabilities),
and [14] (higher order conditional probabilities).

4.5 Modal Logics Versus Probability Logics

Semantics of modal and probability formulas is given using models with possible
worlds, i.e., modal and probability Kripke models, respectively. The main differ-
ence between the definitions of those models concerns accessibility relation between
worlds which in the modal case is described in binary terms: two worlds either are
connected, or they are not connected. On the other hand, probability Kripke models
give more refined quantitative characterization in the sense that worlds are con-
nected with some probability. Beside that distinction the two approaches coincide
which gives us opportunity to use ideas and results about modal logics in the prob-
ability logics framework. In Sect. 4.7 we present a logic involving both modal and
probability operators and analyze their relationship.

Example 4.3 Let us consider the well known Barcan formula of the first order modal
logic:

BF (∀x)�α(x) → �(∀x)α(x).

It is proved that BF holds in the class of all first-order fixed domain modal models,
and that it is independent from the other first order modal axioms [6, 7]. However,
the behavior of the probabilistic analogon of that formula:

BF(s) (∀x)P≥sα(x) → P≥s(∀x)α(x)

is quite different.
First, if s = 0,BF(0) is valid, becauseP≥0(∀x)α(x) always holds since probability

functions are nonnegative.
Next, suppose that 0 < s < 1. Let us consider the LFOP1,Meas-model M =

〈W,D, I,Prob〉 such that:

• W = {w1,w2,w3,w4},
• D = {d1, d2},
• (M,w1) �|= P(d1), (M,w1) �|= P(d2),

(M,w2) |= P(d1), (M,w2) �|= P(d2),
(M,w3) |= P(d1), (M,w3) |= P(d2), and
(M,w4) �|= P(d1), (M,w4) |= P(d2),

• μ(w1)({w1}) = 1 − (s + 1
n ), μ(w1)({w2}) = 1

n , μ(w1)({w3}) = s − 1
n , and

μ(w1)({w4}) = 1
n .

Then:
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• (M,w1) |= (∀x)P≥sP(x), sinceμ(w1)({w : w |= P(d1)}) = μ(w1)({w2,w3}) = s,
and μ(w1)({w : w |= P(d2)}) = μ(w1)({w3,w4}) = s, and

• (M,w1) �|= (∀x)P(x), (M,w2) �|= (∀x)P(x), and (M,w4) �|= (∀x)P(x), whilst
(M,w3) |= (∀x)P(x).

Since

• μ(w1)({w3}) = s − 1
n , and• (M,w1) �|= P≥s(∀x)P(x)

it follows that
(M,w1) �|= BF(s).

Finally, let s = 1 andM′ = 〈W,D, I,Prob〉 be the following infinitary LFOP1,Meas-
model with a constant countable domain:

• W = {w0,w1,w2, . . . ,wn, . . .},
• D = {d0, d1, d2, . . . , dn, . . .},
• for every i, wi |= P(dj) iff i �= j,
• W (w0) = W , while the algebra H(w0) contains all singletons {wi} = [¬P(di)]w0 ,
all finite and all co-finite subsets of W , and

• μ(w0) is a finitely additive probability such that μ(w0)(H ′) = 0 for every finite
H ′ ∈ H(w0), and μ(w0)(H") = 1 for every co-finite H" ∈ H(w0).

Obviously, for every w ∈ W , w �|= (∀x)P(x), and μ(w0)({u : u |= (∀x)P(x)}) = 0.
For every d ∈ D, the set {w : w |= P(d)} is co-finite, andμ(w0)({w : w |= P(d)} = 1.
Thus, w0 |= (∀x)P≥sP(x), and w0 �|= BF(1).

Here, the fact that all finite sets have the zero measure (from w0) makes the key
difference in comparison to modal logics. Namely:

• in the modal framework the left hand side of BF says that for every element of
the domain d, the formula α(d) holds necessarily, i.e., in every accessible world,
while

• in the model M′ the same α(d) holds with the probability 1, but still there is a
world with the zero probability in which α(d) does not hold.

So, although probability and modal logics are closely related, modal necessity
(denoted by�) is a stronger notion than probability necessity (probability one, P≥1).

On the other hand, the inverse of BF is a theorem in first order modal logics, and
the same holds for the inverse of BF(s):

CBF(s) P≥s(∀x)α(x) → (∀x)P≥sα(x)

which is a theorem of AxLFOP1 :

 (∀x)α(x) → α(x), by Axiom 3
 P≥1[(∀x)α(x) → α(x)], by Rule 3
 [P≥s(∀x)α(x)] → P≥sα(x), by Lemma 3.1.1 and Rule 1.
 [P≥s(∀x)α(x)] → (∀x)P≥sα(x), by Rule 2, Axiom 2 and Rule 1. �

http://dx.doi.org/10.1007/978-3-319-47012-2_3
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The assumptions about constant domains and rigidness of terms allow us to give
semantics of probabilistic formulaswhich is similar to the objectual interpretation for
first order modal logics [4]. In this case, as we illustrated in Sect. 4.4, it is possible to
obtain axiomatization for LFOP1 by extending the standard first order axiom system
with axioms and rules about probability operators. Furthermore, the same method
can be used if the first order probability language contains the relation symbol =
interpreted as equality [12].

The assumption about constant domains can be relaxed in the modal framework
such that models with monotone domains are considered. Domains in a model are
monotone if:

• if u is accessible from w, then W (w) ⊂ W (u).

In the considered first order probability models there is no accessibility relation
between worlds, but monotonicity can be formulated in the following way:

• if u belongs to at least one member of H(w), then W (w) ⊂ W (u).

Under such assumption it is still possible to use the same technique to axiomatize
valid formulas of the first order modal models with rigid terms. On the other hand,
if the assumption about rigidness of terms is discarded, classical Axiom 3 will be no
more valid (the example is given in [5]).

Example 4.4 Let us consider the class of probability models without the condition
about rigidness of terms. Let M be the following model:

• W = {w1,w2},
• D(w1) = D(w2) = {d1, d2},
• w1 |= P(d1), w1 �|= P(d2), w2 �|= P(d1), and w2 |= P(d2), and
• μ(w1)({w1}) = μ(w1)({w2}) = 1

2 .

Let c be a constant symbol and I(w1)(c) = d2 i I(w2)(c) = d1. Then:

• μ(w1)({w : w |= P(d1)}) = μ(w1)({w1}) = 1
2 ,

• μ(w1)({w : w |= P(d2)}) = μ(w1)({w2}) = 1
2 ,• w1 �|= P(c),

• w2 �|= P(c), and
• w1 �|= P≥ 1

2
P(c).

It follows that:

• w1 |= (∀x)P≥ 1
2
α(x), and

• w1 �|= (∀x)P≥ 1
2
P(x) → P≥ 1

2
P(c).

So, the classical first order axiom (∀x)α → α(t/x), where the term t is free for x, is
not valid. �

Finally, we note that our proof of completeness in Sect. 4.4 differs from the usual
completeness proofs for modal logics [6, 7] since in our approach we rely on Deduc-
tion theorem.
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4.6 (Un)decidability

4.6.1 The First-Order Case

Since the considered first order probability logics LFOP1 and LFOP2 contain clas-
sical first order logic, they are undecidable. Even stronger, we already noted that
[1] proved that the set of valid LFOP1,Meas-formulas is not recursively enumerable.
Furthermore, using a procedure due to Saul Kripke [6, 9], it can be shown that the
monadic fragment1 of LFOP1 is undecidable, too. Kripke considered a translation
of classical first order formulas that contain only one binary relation symbol P2

to monadic modal formulas. The translation replaces every expression of the form
P2(t1, t2) in a classical formula by ♦(P1

1(t1) ∧ P1
2(t2)), such that a classical first

order formula is valid if and only if its translation is a valid modal formula. As the
similar translation can be constructed for probability logics, the undecidability of
the monadic fragment of LFOP1 follows from undecidability of the fragment of the
classical first order logic with a single binary relation symbol.

On the other hand, the monadic fragment of LFOP2 is decidable. Using the same
procedure as in Sect. 3.5, it can be proved that every monadic probability sentence
A ∈ ForP,LFOP2 can be equivalently transformed to a disjunctive normal form

DNF(A) =
m∨
i=1

ki∧
j=1

±P≥si,jα
i,j

where±P≥si,j is eitherP≥si,j or¬P≥si,j , andαi,j’s are classical first order sentences. Let

us consider an arbitrary disjunct D i = ∧ki
j=1 ±P≥si,jα

i,j and an LFOP2,Meas model2

M = 〈W,D, I,H, μ〉 such that M |= D i. We can suppose, without the loss of
generality, that all quantifiers inD i refer to different variables. Let mi be the number
of different variables in D i. In every world from W holds exactly one conjunction
of the form ∧ki

j=1 ± αi,j.
It is well known that a classical monadic formula with m variables is satisfiable if

and only if it is satisfiable in a model of cardinality 2m. For every world w ∈ W we
consider a classical first order model w′ = 〈D(w′), I(w′)〉 such that D(w′) contains
2m elements and I(w′) |= ∧ki

j=1 ±αi,j if and only if w |= ∧ki
j=1 ±αi,j. For the modelM

we can construct a modelM′ = 〈W ′,D′, I ′,H ′, μ′〉whose worlds are the considered
classical first order models with the domains of the cardinality 2m. For everyH1 ∈ H,
we can consider H ′

1 ∈ H ′ such that H ′
1 = {w′ : w ∈ H1}, while μ′(H ′

1) = μ(H1).
It follows that M′ |= Di if and only if M |= Di. Let d1, d2, . . . , d2m denote the
elements in the domains of worlds from M ′. Let c1, c2, . . . , c2m be a sequence of

1The formal language of the monadic fragment of first order logic contains only relation symbols
of arity 1.
2Since there is no iterations of probability operators, instead of a function Prob in an LFOP1,Meas-
models, it is enough to specify an algebra H and a probability measure μ, as in Chap.3.

http://dx.doi.org/10.1007/978-3-319-47012-2_3
http://dx.doi.org/10.1007/978-3-319-47012-2_3
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2m new constant symbols. The definition of M′ is extended so that for every w′,
I(w′)(ci) = di. For every αi,j we consider a formula #αi,j without quantifiers which
contains variable-free formulas only. Namely, we replace every universal quantifier
by a conjunction, and every existential quantifier by a disjunction of variable-free
formulas. For example,

#((∀x)P1
1(x) ∧ (∃y)P1

2(y)) = ∧2m
k=1P

1
1(ck) ∧ (∨2m

k=1P
1
2(ck)).

Since domains of worlds fromM′ are finite, for every w′ ∈ W ′, w′ |= αi,j if and only
if w′ |= #αi,j. Thus,

M |= Di iff M′ |=
ki∧
j=1

±P≥si,j#α
i,j (= #Di).

Finally, variable-free formulas can be treated as propositional formulas, and in this
way the problem PSAT for the monadic fragment of ForP,LFOP2 is reduced to the
decidable problem of satisfiability of the ForLPP2 -formulas.

Decidability of some fragments of the first order logics LFOCP2 and LFOCPE1

with conditional probability operators, is discussed in [11, 12].

4.6.2 The Propositional Case

To prove decidability of the propositional LPP1-logic we follow the approach for
LPP2 from Sect. 3.5. However, the situation is a little bit more complicated here
since in LPP1-logic iterations of probability operators are allowed. So, decidability
for LPP1 will be proved in two steps:

• first, we show that an LPP1-formula is satisfiable iff it is satisfiable in a model
with a finite3 (and bounded by a function of the length of the formula) number of
worlds, and

• second, we have to reduce the satisfiability problem in those finite models to
decidable linear programming problem.

Note that in the propositional case we do not need domains as in Definition 4.1, so
the models from the class LPP1,Meas are of the form 〈W, I,Prob〉, where I assigns
propositional valuations to worlds from W .

3Note that, while in the modal framework this is enough to prove decidability, since for every
k ∈ N there are only finitely many modal models with k worlds, this is not the case for probability
logics, i.e., since probability models involve probabilities, for every finite set of k worlds, there are
uncountable many probability measures defined on them, and uncountably many models with k
worlds.

http://dx.doi.org/10.1007/978-3-319-47012-2_3
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Theorem 4.6 If a formula α is LPP1,Meas-satisfiable, then it is satisfied in an
LPP1,Meas-model with a finite number of worlds. The number of worlds in that model
is at most 2len(α).

Proof We will use the method of filtration [7]. Assume that w |= α, where w is a
world from an LPP1,Meas-model M = 〈W, I,Prob〉. Let Subf(α) denote the set of
all subformulas of α, and k = |Subf(α)|. Let ≈⊂ W × W denote the equivalence
relation such that w ≈ u iff for every β ∈ Subf(α), w |= β iff u |= β. The quotient
setW/≈ is finite with the cardinality at most 2|Subf(α)|. From every class Ci we choose
an element and denote it wi. We consider the model M∗ = 〈W ∗,Prob∗, I∗〉, where:
• W ∗ = {wi},
• Prob∗ is defined as follows:

– W ∗(wi) = {wj ∈ W ∗ : (∃u ∈ Cwj )u ∈ W (wi)}
– H∗(wi) is the powerset P(W ∗(wi)),
– μ∗(wi)({wj}) = μ(wi)(Cwj ∩ W (wi)), and for any D ∈ H∗(wi), μ∗(wi)(D) =∑

wj∈D μ∗(wi)({wj}),
• I∗(wi)(p) = I(wi)(p), for every primitive proposition p.

It is straightforward to show thatM∗ is an LPP1,Meas-model. For example, for every
wi, μ∗(wi) is a finitely additive probability measure, since

μ∗(wi)(W
∗(wi)) =

∑
wj∈W ∗(wi)

μ∗(wi)({wj}) =
∑

Cwj∈W/≈

μ∗(wi)(Cwj ∩ W (wi)) = 1.

Now, we can prove that for every β ∈ Subf(α), (M,w) |= β iff β is satisfied in
the world wi which represents Cw inM∗. If β is a primitive proposition, (M,w) |= β

iff for wi ∈ Cw, (M,wi) |= β iff (M∗,wi) |= β. The cases related to ∧ and ¬ can
be proved as usual. Finally, let β = P≥sγ . Then, (M,w) |= P≥sγ iff for wi ∈ Cw,
(M,wi) |= P≥sγ iff

s ≤ μ(wi)([γ ]M,wi)

=
∑

Cu:M,(M,u)|=γ

μ(wi)(Cu ∩ W (wi))

=
∑

u:(M∗,u)|=γ

μ∗(wi)({u})

= μ∗(wi)([γ ]M∗,wi)

iffM∗,wi |= P≥sγ .
Finally, since the number of different classes inW/≈ is at most 2|Subf(α)| ≤ 2len(α),

the same holds for the number of worlds inM∗. �
As we noted above, there is uncountable many finite LPP1,Meas-models with no

more than 2len(α) worlds, so Theorem 4.6 does not directly imply decidability of
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the PSAT problem for LPP1,Meas. However, we can again use a reduction to linear
programming to solve PSAT in a finite number of steps, but the role which atoms
have in Chap.3, will be played here by conjunctions of subformulas of the considered
formula.

Theorem 4.7 The PSAT problem for LPP1-formulas is decidable.

Proof Let
Subf(α) = {β1, β2, . . . , βk}

denote the set of all subformulas of α, and let ±βi denote βi or ¬βi. In every world
w in every model M exactly one of the formulas of the form

δw = ±β1 ∧ · · · ∧ ±βk

is satisfied.
For every l ≤ 2k we will consider l formulas of the above form such that

• The chosen formulas are not necessarily different, but they are propositionally con-
sistent, i.e., we consider only formulas δw such that there is no different conjuncts
β and ¬β appearing in δw.

• At least one then must contain the examined formula α.

Using probabilistic constraints (i.e., formulas of the form P≥sβ, ¬P≥sβ) from the
formulas δw we shall examine whether there is an LPP1,Meas-model M with l which
contains a world w satisfying α. We do not try to determine probabilities precisely.
Rather, we just check whether there are probabilities such that probabilistic con-
straints are satisfied in the corresponding world. To do that, for every world wi, i < l,
we consider a system of linear equalities and inequalities of the form (we write
β ∈ δw to denote that β occurs positively in the top conjunction of δw, i.e., if δw can
be seen as ∧iδi, then for some i, β = δi):

l∑
j=1

μ(wi)({wj}) = 1

μ(wi)({wj}) ≥ 0 , for every world wj∑
wj :β∈δwj

μ(wi)({wj}) ≥ s , for every P≥sβ ∈ δwi

∑
wj :β∈δwj

μ(wi)({wj}) < s , for every ¬P≥sβ ∈ δwi

The first two rows correspond to the general constraints: the probability of the set of
all worlds must be 1, while the probability of every measurable set of worlds must be
nonnegative. The last two rows correspond to the probabilistic constraints, because

http://dx.doi.org/10.1007/978-3-319-47012-2_3
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∑
wj :β∈δwj

μ(wi)({wj}) = μ(wi)([β]wi).

Such a system is solvable iff there is a probability μ(wi) satisfying all probabilistic
constraints that appear in δwi . Note that there are finitely many such systems that can
be solved in a finite number of steps.

If the above test is positively solved there is anLPP1,Meas-model inwhich for every
world wi, wi |= δwi . Since α belongs to at least one of the formulas δwi , we have that
α is satisfiable. If the test fails, and there is another possibility of choosing l and/or
the set of l formulas δw, we continue with the procedure, otherwise we conclude that
α is not satisfiable.

It is easy to see that the procedure terminates in a finite number of steps. Thus,
the problem PSAT for the class LPP1,Meas is decidable. Since |= α iff ¬α is not
satisfiable, the LPP1,Meas-validity problem is also decidable. �

4.7 A Discrete Linear-Time Probabilistic Logic

In this section we provide a look at a logic in which the probability and the modal
(i.e., temporal) operators are mixed, so that probabilistic reasoning is enriched with
temporal features [13]. The temporal part of the logics is a standard discrete linear-
time logic LTL [2, 20], where the flow of time is isomorphic to natural numbers,
i.e., each moment of time has a unique possible future, while the corresponding
language contains the “next” operator (©) and the reflexive strong “until” operator
(U), (the operators “sometime” F and “always” G are definable: Fα = 
Uα and
Gα = ¬F¬α). Similarly as above, nesting of the probabilistic and temporal operators
is important and we will start from the logic LPP1. A first-order branching time
counterpart is presented in [17].

In our logic, denoted LPPLTL
1 , the probabilistic operators quantify events along a

single time line. It allows us to express sentences such as “(according to the current
set of information) the probability that, sometime in the future, α is true is at least s”.
And, as the knowledge can evolve during the time, the probability of α might change
too. As we noted in Sect. 4.5, the operators “sometime” and “always” can be seen as
two extreme cases of probabilistic quantification of the future time instants definable
by formulas. We may try to motivate the proposed semantics in the following way.

Example 4.5 A suitable representation of all possible outcomes of an infinite
sequence of probabilistic experiments (let us say that experiments A and B are per-
manently repeated resulting in a or¬a, and b or¬b, respectively) could be an infinite
tree, where every branch corresponds to a possible realization of the sequence of the
experiments, and every time instant is described in the form ±a,±b depending on
obtaining (or not obtaining) a and b in the corresponding experiment. We might be
interested in probabilistic properties that hold for all branches. In that case we can
reason about an arbitrary branch and need ability to express probabilities of events
along it, for example that the probability of the event a is at least s, or some more
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complicated conditions, like that in every time instant, if the probability of a is less
than r, then b must hold forever. �

The set ForLPPLTL
1

of formulas is defined inductively as the smallest set containing
primitive propositions and closed under formation rules:

• if α and β are formulas, then

– ¬α, α ∧ β,
– P≥sα, and for every s ∈ [0, 1]Q,
– ©α (α holds in the next moment), and αUβ (α holds until β becomes true)

are formulas.

We will use the following notational definition:

• ©0α = α, and ©i+1α = © ©i α for i ≥ 0,
• Fα = 
Uα, i.e., α is true or will be true in a future moment,
• Gα = ¬F¬α, i.e., α is true or will be always true, and
• if T = {α1, α2, . . .} is a set of formulas, then ©T denotes {©α1,©α2, . . .}.
Example 4.6 An example of a formula is

(©P≥rp ∧ FP<s(p → q)) → GP=tq

which can be read as “if the probability of p in the next moment is at least r and
sometime in the future q follows from p with the probability less than s, then the
probability of q will always be equal to t.” �

4.7.1 Semantics

The semantics for LPPLTL
1 is a Kripke-style one using sequences of natural numbers

as frames. Let φ denote the set of primitive propositions.

Definition 4.8 An LPPLTL
1 -model is a structureM = 〈W,Prob, v〉 where:

• W = {w0,w1, . . .} is a sequence of time instants,
• Prob is a probability assignment which assigns to every w ∈ W a probability
space, such that Prob(w) = 〈W (w),H(w), μ(w)〉, where:
– W (w) = {wj : j ≥ i},
– H(w) is an algebra of subsets of W (w) and
– μ(w) : H(w) → [0, 1] is a finitely additive probability measure.

• v : W × φ → {true, false}. �

Definition 4.9 LetM = 〈W,Prob, v〉 be aLPPLTL
1 -model, i ∈ N andα be a formula.

The satisfiability relation |= is inductively defined as follows:
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• if p ∈ φ is a primitive proposition, wi |= p if v(wi)(p) = true,
• wi |= ¬α if wi �|= α,
• wi |= P≥sα if μ(wi)({wi+j, j ≥ 0 : wi+j |= α}) ≥ s,
• wi |= ©α if wi+1 |= α,
• wi |= α ∧ β if wi |= α and wi |= β.
• wi |= αUβ if there is an integer j ≥ 0 such that wi+j |= β, and for every k ∈ N

such that 0 ≤ k < j, wi+k |= α. �

We concern a reflexive, strong version of the until operator, i.e., if αUβ holds in a
time instant, β must eventually hold. In the above definition the future includes the
present, so that:

• wi |= Fα if there is j ≥ 0 such that wi+j |= α, and
• wi |= Gα if for every j ≥ 0, wi+j |= α.

Also, the present time instant is included when the probability of formulas are con-
sidered. All the presented results then can be proved with essentially no change if
we use the temporal and probabilistic operators referring to the strict future that does
not concern the present.

Again, we will consider measurable models only, i.e., the class LPPLTL
1,Meas of all

LPPLTL
1 -models such that for everywi ∈ W the setH(wi)) = {[α]wi : α ∈ ForLPPLTL

1
},

where [α]wi = {wi+j : j ≥ 0,wi+j |= α}.
The notions of satisfiable and valid formulas and satisfiable sets of formulas are

defined as in Sect. 4.2.2.
Note that, similarly to the probabilistic logics, compactness does not hold for

LTL. For example, we can consider the set of temporal formulas of the form

{¬Gα} ∪ {©iα : i ∈ N}

which is unsatisfiable but finitely satisfiable, similarly to the set considered in
Sect. 3.3. As a consequence, in the next section we will introduce another infini-
tary rule which eliminates possible inconsistent sets of temporal formulas (Rule 3).

4.7.2 Axiomatization

An axiomatization AxLPPLTL
1

that characterizes the set of all LPPLTL
1,Meas-valid formulas

extends the system AxLPP2 (having in mind that instances of the axiom schemas and
rules must obey the syntactical rules for LPPLTL

1 ) with the following axiom schemas:

8. ©(α → β) → (©α → ©β)

9. ¬ © α ↔ ©¬α

10. αUβ ↔ β ∨ (α ∧ ©(αUβ))

11. αUβ → Fβ

12. Gα → P≥1α

http://dx.doi.org/10.1007/978-3-319-47012-2_3
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while the inference rules should be rewritten in the following form:

1. from α and α → β infer β

2. from α infer ©α

3. from γ → ¬((
∧i−1

k=0 ©kα) ∧ ©iβ) for all i ≥ 0, infer γ → ¬(αUβ)

4. from β → ©mP≥s− 1
k
α, for anym ≥ 0, and for every k ≥ 1

s , infer β → ©mP≥sα.

The main novelty in AxLPPLTL
1

concerns axioms about temporal reasoning (the axioms
8 and 9 are the usual axioms for the next operator©, as well as the axioms 10 and 11
for the until operator) and mixing of probabilistic and temporal reasoning (Axiom
12). There are two infinitary inference rules: 3 and 4. The former one characterizes
the until operator. The temporal part of AxLPPLTL

1
offers possibility to prove extended

completeness which cannot be proved using finitary means.
In this framework we can use the Definition 4.6 of deductions and consistency.
Modifications of AxLPPLTL

1
according to ideas presented in the previous sections

could produce the corresponding axiomatic systems for a first order logic for rea-
soning about discrete linear time and probability. Also, we can specify additional
relationships between the flow of time and the probability measures by adding new
axioms.

Example 4.7 The formula ¬α → (P≥sα → ©P≥sα), considered as an additional
axiom scheme, characterizes models with the property that if a formula does not
hold in a time instant, then in the next time instant its probability will be not
decreased. �

4.7.2.1 Completeness and Decidability

The proof of extended completeness again follows the ideas given in the previous
sections, so we only outline the main new details.

Theorem 4.8 (Strong completeness theorem for LPPLTL
1,Meas) A set T of formulas is

AxLPPLTL
1
-consistent iff it is LPPLTL

1,Meas-satisfiable.

Proof We start with Deduction theorem and consider the temporal part only. For
example, assume that T , δ  γ → ¬(αUβ) is obtained by Rule 3. Then:

1. T , δ  γ → ¬((
∧i−1

k=0 ©kα) ∧ ©iβ), for i ≥ 0,
2. T  δ → (γ → ¬((

∧i−1
k=0 ©kα)∧©iβ)), for i ≥ 0, by the induction hypothesis,

3. T  (δ ∧ γ ) → ¬((
∧i−1

k=0 ©kα) ∧ ©iβ), for i ≥ 0,
4. T  (δ ∧ γ ) → ¬(αUβ), by Rule 3,
5. T  δ → (γ → ¬(αUβ)).

The axioms and rules imply some auxiliary statements (T denotes a consistent set of
formulas):
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1. the following inference rule is derivable: From β → ©iα for all i ≥ 0, infer
β → Gα,

2.  Gα ↔ α ∧ ©Gα,
3.  G © α ↔ ©Gα,
4.  (©α → ©β) → ©(α → β),
5.  ©(α ∧ β) ↔ (©α ∧ ©β),
6.  ©(α ∨ β) ↔ (©α ∨ ©β),
7. Gα  ©iα for every i ≥ 0,
8. if  α, then  Gα,
9. if T  α, where T is a set of formulas, then ©T  ©α.

10. for j ≥ 0, ©jβ,©0α, . . . ,©j−1α  αUβ,
11. For any formula α, either T ∪ {α} is consistent or T ∪ {¬α} is consistent.
12. If γ → ¬(αUβ) ∈ T , then there is j0 ≥ 0 such that T∪{γ → ¬((

∧j0−1
k=0 ©kα)∧

©j0β)} is consistent.
13. If¬(α → ©mP≥sβ) ∈ T , then there is j0 > 1

s such thatT∪{α → ¬©mP≥s− 1
j0
β}

is consistent.

For example, the statement (10) follows in the following way. Assume  α. By
application of Rule 2, we get  ©kα, for every k ∈ ω. We obtain  Gα by the
derivable rule (1). From Axiom 12 and by application of Modus Ponens, we have
 P≥1α.

Then we can show that every consistent set T of formulas can be extended to a
maximal consistent set. Let α0, α1, …be an enumeration of all formulas. A maximal
consistent extension T of T can be obtained as follows:

1. T0 = T .
2. For every i ≥ 0 ifTi∪{αi} is consistent, then Ti+1 = Ti∪{αi}. Otherwise, ifαi is of

the form γ → ¬(αUβ), then Ti+1 = Ti ∪ {¬αi, γ → ¬((
∧j0−1

k=0 ©kα) ∧ ©j0β)}
for some j0 ≥ 0 such that Ti+1 is consistent. Otherwise, αi is of the form γ →
©mP≥sβ, then Ti+1 = Ti ∪ {¬αi, γ → ¬ ©m P≥s− 1

j0
β} for some j0 > 0 such

that Ti+1 is consistent. Otherwise, Ti+1 = Ti ∪ {¬αi}.
3. T = ⋃∞

i=0 Ti.

For a maximal consistent extensionT of a consistent set T of formulas we define
the canonical model MT = 〈W,Prob, v〉 such that:

• W = w0,w1, . . ., w0 = T , and for i > 0, wi = {α : ©α ∈ wi−1},
• for i ≥ 0, Prob(wi) = 〈W (wi),H(wi), μ(wi)〉 is defined as follows:

– W (wi) = {wi+j : j ≥ 0},
– H(wi) = {{wi+j : j ≥ 0, α ∈ wi+j}},
– for μ(wi)({wi+j : j ≥ 0, α ∈ wi+j}) = sups{P≥sα ∈ wi},

• for every primitive proposition p ∈ φ, and every wi ∈ W , v(wi)(p) = 
 iff p ∈ wi.

First of all, we can prove that for every i ≥ 0, wi is a maximal consistent set. By
hypothesis,w0 is maximal and consistent. Suppose thatwi+1 is not maximal. There is
a formula α such that {α,¬α}∩wi+1 = ∅. Consequently, {©α,©¬α}∩wi = ∅. We
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obtain that {©α,¬©α}∩wi = ∅which is in contradictionwith themaximality ofwi.
Suppose thatwi+1 is not consistent, i.e., thatwi+1  α∧¬α. Then,wi  ©(α∧¬α),
and wi  ©α ∧ ¬ © α which is in contradiction with consistency of wi.

Then, similarly as in the previous sections, we can show thatMT is an LPPLTL
1,Meas-

model such that for all wi and α, α ∈ wi iff wi |= α. For example, if α = ©β, we
have wi |= α iff wi+1 |= β iff β ∈ wi+1 iff α ∈ wi (by the construction of wi+1). �

For the previously presented logics as the first step in the proofs of their decid-
ability we have used some kind of the filtration technique which helps as to show that
every formula is satisfiable iff it is satisfiable in a finite model. The problem is that
the filtration cannot be used here since the LPPLTL

1,Meas-models are (by their definition)
infinite. However, we can show (following the ideas presented in [20]) that a formula
is satisfiable if and only if it is satisfiable in a model such that the sequence of time
instants of the model has a finite initial sequence of time instants followed by another
finite sequence of time instants, which permanently repeats and in that way forms the
rest of the whole time-line. The lengths of both sequences are bounded by functions
of the size of the considered formula. The full proof of decidability and complexity
of the LPPLTL

1,Meas-satisfiability problem can be found in [13]. As it is rather long, we
give only the corresponding main statements:

Theorem 4.9 Every LPPLTL
1,Meas-satisfiable formula α is satisfiable in a model with

the starting sequence of time instants, followed by the sequence of time instants which
permanently repeats. The length of the former sequence is≤ 22|α| +1, and the length
of the later sequence is ≤ (2|α| + 1) × 2|α|, where |α| denotes the length of α.

Theorem 4.10 (Decidability and complexity for LPPLTL
1 ) The LPPLTL

1 is decidable.
The LPPLTL

1,Meas-satisfiability problem is PSPACE-hard and in nondeterministic expo-
nential time.
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Chapter 5
Extensions of the Probability Logics LPP2
and LFOP1

Aleksandar Perović, Dragan Doder, Nebojša Ikodinović
and Angelina Ilić Stepić

Abstract We describe various extensions of logics introduced in the Chaps. 3 and 4
that concern introduction of new types of probability operators, and various ranges of
probability functions (finite ranges, non-Archimedean ranges, andunordered ranges).
We outline the general features of the corresponding completeness-proof techniques.
We present finitary probability logics for reasoning about probability measures with
fixed finite ranges, and an infinitary logic with probability functions with arbitrary
(not fixed) finite ranges. We introduce logics with the additional probability oper-
ators of the form QF . The intended meaning of QFα is that the probability of α is
in F. A characterization of the hierarchy of logics with QF-operators is provided.
We give strongly complete axiomatization for a logic with the qualitative probability
operator �. A probability extension of the intuitionistic logic is presented. Logics
that correspond toKolmogorov’s and de Finetti’s notions of conditional probabilities,
and a logic with [0, 1]Q(ε)-valued probability functions with binary operators for con-
ditional and approximate probabilities are presented. We describe strongly complete
propositional axiomatizations for logics with linear and polynomial weight formu-
las. We consider axiomatization of probability functions with unordered ranges, and
illustrate that using p-adic valued probabilities. This Chapter covers some results
from Doder et al., Publications de L’Institut Mathematique (N.S.), 87(101), 85–
96 (2010), [2], Doder and Ognjanović, Probabilistic logics with independence and
probabilistic support, (2015), [3], Dordević et al. Arch. Math. Logic, 43, 557–563
(2004), [4], Ghilezan et al. Proceedings of the 22nd international conference on
types for proofs and programs, TYPES (2016), [6], Ikodinović, Some Probability
and Topological Logics (2005), [7], Ikodinović and Ognjanović, Proceedings of
the 8th European Conference Symbolic and Quantitative Approaches to Reason-
ing with Uncertainty, ECSQARU (2005), [8], Ikodinović, J Multiple Valued Logic
Soft Comput., 20(5–6), 527–555 (2013), [9], Ikodinović, Int. J. Approx. Reason.
55(9), 1830–1842, 2014), [13] (Ilić-Stepić, Math. Logic Q. 58(4–5), 63–280 (2012),
[10], Ilić-Stepić, Int. J. Approx. Reason., 55(9), 1843–1865 (2014), [14], Ilić-Stepić,
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Ognjanović, Publications de l’Institut Mathematique, N.s. tome, 95(109), 73–86
(2014), [11], Ilić-Stepić and Ognjanović, Studia Logica, 103, 145–174 (2015), [12],
Kokkinis et al. Logic J. IGPL, 23(4), 662–687 (2015), [16], Kokkinis et al. roceed-
ings of Logical Foundations of Computer Science International Symposium, LFCS,
(2016), [17], Marković et al. Math. Logic Q. 49, 415–424 (2003), [19], Marković
et al. Publications de L’Institute Matematique (N.S.), 73(87), 31–38 (2003), [20],
Marković et al. IPMU 2004, 443–450 (2004), [21], Milošević and Ognjanović,
Logic J. Interest Gr. Pure Appl. Logics, 20(1), 235–25 (2012), [22], Milošević and
Ognjanović, Publications de L’Institute Matematique, N.S., 93(107), 19–27 (2013),
[23], Ognjanović and Rašković, J. Logic Comput., 9(2), 181–195 (1999), [25], Ogn-
janović, Publications de L’Institute Matematique Ns., 78(92), 35–49 (2005), [26],
Ognjanović and Ikodinović, Publications de L’Institute Matematique (Beograd), ns.,
82(96), 141–154 (2007), [24], Ognjanović et al. Logic J. IGPL, 16(2), 105–120
(2008), [27], Perović, Some applications of the formal method in set theory, model
theory, probabilistic logics and fuzzy logics, (2008), [28], Perović et al. 5th Interna-
tional Symposium on Foundations of Information and Knowledge Systems, FoIKS
2008, Proceedings, (2008), [29], Perović, et al. 11th European Conference on Log-
ics in Artificial Intelligence, JELIA 2008, Proceedings, (2008), [30], Perović, et al.
Fuzzy Sets Syst., 169, 65–90 (2011), [31], Rašković, J. Symb. Logic 51(3), 586–
590 (1986), [32], Rašković et al. Int. J. Approx. Reason., 49(1), 52–66 (2008), [33],
Savić et al. Proceedings of the 9th International Symposium on Imprecise Proba-
bility: Theories and Applications, ISIPTA, (2015), [34], Tomović, Proceedings of
the 13th European Conference Symbolic and Quantitative Approaches to Reasoning
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5.1 Generalization of the Completeness-Proof Technique

In order to avoid the repetition of essentially the same arguments, in this section we
shall present a general outline of the completeness-proof technique for probability
logics with countable inference rules and denumerable sets of formulas. Here we
assume that the underlying formal system allows the basic properties of the inference
relation such as weakening and deduction theorem.

Let IR be an arbitrary sound infinitary inference rule of the general form

{ϕn : n ∈ N}
ϕ

(IR).

The first technical step in the completeness proof is to show that if a consistent set of
formulas T is incompatible with a particular conclusion of IR, then there is at least
one premise ϕn such that T ∪ {¬ϕn} is consistent. The proof is essentially the same
as the one presented in Lemma 3.2.

Lemma 5.1 Suppose that T is a consistent set of formulas, ϕ is a formula that can
be obtained from {ϕn : n ∈ N}, and that T ∪{ϕ} is inconsistent. Then there is n ∈ N

such that T ∪ {¬ϕn} is consistent. �
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The second technical step in the completeness proof (the proof of the correspond-
ing Lindenbaum theorem) is to apply the Lemma 5.1 in all iterations where the
current extension Tn is incompatible with the current formula ϕ, provided that ϕ is
obtainable by some infinitary inference rule IR. Using an adaptation of the proof of
Theorem 3.4 we obtain the following theorem:

Theorem 5.1 Every consistent set of formulas T can be extended to a maximal
consistent set of formulas.

5.2 Logic LPPFr(n)
2

The logic LPPFr(n)
2 provides arguably the simplest method of resolving the non-

compactness phenomenon of the logicLPP2. Namely, for the given positive integer n,
an LPP2 consistent set of formulas

TFr(n) =
{

n∨
i=0

P=i/nα : α ∈ ForC

}

ensures that all formulas have the probability in the set

Fr(n) =
{
0,

1

n
,
2

n
, . . . ,

n − 1

n
, 1

}

andmakes any use of the Archimedean rule in the proofs from TFr(n) redundant. More
precisely, the following theorem holds:

Theorem 5.2 Suppose that T is a consistent set of LPP2-formulas and that T ∪
TFr(n) �LPP2 ϕ. Then, there is a finite LPP2-proof of ϕ from T ∪ TFr(n).

Proof The standard proof technique is induction on the length of the inference. The
only slightly nontrivial case is the application of the Archimedean rule. So suppose
that

{θ → P>rα : r < s, r ∈ [0, 1Q]} ∪ {θ → P≥sα}

is an LPP2 proof of θ → P≥sα from T ∪TFr(n). There is a unique k ∈ {0, 1, 2, . . . , n}
such that k

n ≤ s ≤ k+1
n . By the completeness theorem for LPP2,

TFr(n) � (θ → P≥sα) ↔ (θ → P≥ k+1
n

α)

and
TFr(n) � (θ → P>rα) ↔ (θ → P≥ k+1

n
α)

for all r ≥ k
n , so the above infinite proof can be reduced to the pair of formulas

http://dx.doi.org/10.1007/978-3-319-47012-2_3
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{θ → P> k
n
α, θ → P≥ k+1

n
α}. �

In the axiomatization of LPPFr(n)
2 logics (varying n produces different logics) we

shall use the fact that any Fr(n) is a discrete ordering, so successor and predecessor
functions are definedon it (the only exceptions are the endpoints 0 and 1). If s ∈ Fr(n),
then its immediate successor will be denoted by s+ (here 1 is excluded), while its
immediate predecessor will be denoted by s− (here 0 is excluded).

The axiomatic system AxLPPFr(n)
2

differs from the system AxLPP2 in the following
way:

• It has one additional axiom P>sα → P≥s+α, where s ∈ Fr(n) \ {1};
• The Archimedean rule is excluded.

Note that AxLPPFr(n)
2

is a finitary axiomatic system. The next lemma shows that
AxLPPFr(n)

2
has essentially the same properties as the above introduced LPP2 set of

formulas TFr(n).

Lemma 5.2 Let α be a formula. Then

1. � P<rα → P≤r−α,
2. � P>rα ↔ P≥r+α,
3. � P≤r−α ↔ P<rα,
4. � ∨

s∈Fr(n) P=sα,
5. � ∨

s∈Fr(n)P=sα, where
∨

denotes the exclusive disjunction.

Proof It is essentially the same argument as in the proof of Theorem 5.2. All five
statements are LPP2 consequences of the additional axiom schemata P>sα →
P≥s+α treated as a set of LPP2 formulas. By Theorem 5.2, all applications of the
Archimedean rule can be replaced by finite sets of formulas, so any LPP2 proof from
P>sα → P≥s+α can be transformed into an LPPFr(n)

2 proof. �

The completeness proofs for the classes LPPFr(n)
2,Meas, LPP

Fr(n)
2,Meas,All, LPP

Fr(n)
2,Meas,σ ,

and LPPFr(n)
2,Meas,Neat are similar to the corresponding proofs in the case of LPP2 logic.

Theorem 5.3 announces a property that does not hold for the infinitary systems
considered before. Another difference between logics from this and the previous
sections is illustrated in Example 5.1.

Theorem 5.3 (Compactness theorem for LPPFr(n)
2 ) Let L be any class of models

considered in this section and T be a set of formulas. If every finite subset of T is
L-satisfiable, then T is L-satisfiable.

Proof If T is not L-satisfiable, then it is not AxLPPFR(n)
2

-consistent. It follows that
T � ⊥. Since the axiomatic system AxLPPFR(n)

2
is finitary one, there must be a finite

set T ′ ⊂ T such that T ′ � ⊥. It is a contradiction because every finite subset of T is
both L-satisfiable and AxLPPFR(n)

2
-consistent. �
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Example 5.1 For every positive integer n and Range defined as above, it is easy
to construct an LPP2,Meas-model M = 〈W,H,μ, v〉 which does not satisfy Axiom
P>sα → P≥s+α. For example, let n = 3, and p ∈ ϕ

• W = {w1,w2},
• H is the power set of W
• μ(w1) = 1/2, μ(w2) = 1/2 and
• v(w1, p) = true, v(w2, p) = false.

Since μ([p]M) = 1/2, obviously M |= P>1/3p, and M �|= P≥2/3p, so the instance

P>1/3p → P≥2/3p

of the considered Axiom does not hold in M. �

Finally, decidability of the satisfiability problem for the classes of models consid-
ered in this section can be proved similarly as in the LPP2 case. The only difference
is in the fact that the measures of atoms must be in the set Fr(n). Since that set is
always finite, there are only finitely many possibilities for such distributions, and
decidability easily follows.

5.3 Logic LPPA,ω1,Fin
2

The present section offers a complete axiomatization of probability functions with
arbitrary finite ranges, which substantially generalize the case of a fixed finite range
treated in Sect. 5.2.

Arguably, the most interesting challenge in the development process was to pro-
vide an adequate formal representation of the finiteness of range.

Though the solution is not unique, the following characterization from [1] pro-
vides a nice foundation for implementation of techniques from infinitary logics and
admissible set theory (for more information on infinitary logic and admissible set
theory, see the corresponding sections in the introductory chapter.)

Theorem 5.4 Let 〈W,H,μ〉 be a probability space. Then, the following statements
are equivalent:

1. μ has a finite range;
2. There is a real number c from the open unit interval (0, 1) such that

μ(X) > 0 ⇒ μ(X) > c

for all X ∈ H. �
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The complete axiomatization of the logicLPPA,ω1,Fin
2 presented herewas published

in [4]. It is a somewhat extensive modification of our early work on probability logics
with probability quantifiers published in [32].

Throughout this sectionAwill denote a large enough countable admissible set that
contains all objects relevant for our purpose. As it is usual in infinitary logics, finitary
and infinitary formulas are treated as sets. Consequently, admissible sets are closed
for Boolean combinations of formulas and countable conjunctions and disjunctions
of formulas.

The basic syntactical objects of LPPA,ω1,Fin
2 are the countable set Var of proposi-

tional variables and the countable set of probabilistic operators {P≥s : s ∈ [0, 1]∩A}.
The inductive definition of the set of all LPPA,ω1,Fin

2 -formulas is given below

• propositional variables are LPPA,ω1,Fin
2 -formulas;

• the set of LPPA,ω1,Fin
2 -formulas is closed for Boolean combinations;

• if G ∈ A is a countable set of LPPA,ω1,Fin
2 -formulas, then both

∧
G and

∨
G are

LPPA,ω1,Fin
2 -formulas.

A standard method for formalization of De Morgan laws for infinitary logics
requires introduction of the novel syntactical objectϕ¬. The corresponding inductive
definition goes as follows:

• p¬ =def ¬p for any propositional variable p;
• (ϕ ∧ ψ)¬ =def (ϕ¬) ∨ (ψ¬);
• (ϕ ∨ ψ)¬ =def (ϕ¬) ∧ (ψ¬);
• (

∧
G)¬ =def

∨
ϕ∈G(ϕ¬);

• (
∨

G)¬ =def
∧

ϕ∈G(ϕ¬).

Here we consider a particular subclass of the class LPP2,Meas of all measurable
probabilistic models. We denote it LPPA,ω1,Fin

2,Meas ,and it contains all measurable mod-
els whose measures have finite ranges. The satisfiability relation |= generalizes the
corresponding relation from Definition 3.4. The new cases are related to infinitary
formulas

• if G is a finite or countable set of ForP-formulas, M |= ∧
G iff for every B ∈ G,

M |= B, and
• if G is a finite or countable set of ForP-formulas, M |= ∨

G iff there is some
b ∈ G so that M |= B.

The axiomatic system AxLPPA,ω1 ,Fin
2

contains all the axioms and rules from the
system AxLPP2 , and also the following new axioms:

7. (¬ϕ) ↔ (ϕ¬)

8. (
∧

B∈G B) → C, C ∈ G, G ∈ A, G is a set of probability formulas
9.

∨
c>0

∧
α∈G(P>0α → P>cα), G ∈ A, G is a set of classical propositional formu-

las

and the rule

http://dx.doi.org/10.1007/978-3-319-47012-2_3
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4. From B → C, for all C ∈ G, infer B → ∧
C∈G C, G is a set of probability

formulas

introduced in [15]. In the completeness proof a result from [1] and the weak–strong
model construction from [32] will be used.

Theorem 5.5 An LPPA,ω1,Fin
2 -formula ϕ is consistent iff it is satisfiable in a weak

model in which every LPPA,ω1,Fin
2 -theorem is true.

Proof The simpler direction follows from the soundness of the axiomatic system.
For the other direction, we use argument presented in Theorem 5.1 to construct a
maximal consistent set T that contains ϕ. Then, we can follow the completeness prof
for LPP2,Meas, and construct the canonical model Mϕ. The axioms guarantee that Mϕ

is a weak model in which every LPPA,ω1,Fin
2 -theorem is true, and that Mϕ |= ϕ iff

ϕ ∈ T . �
Note that, although in aweakmodel (sinceAxiom9 holds) for everyForC-formula

α the following condition is satisfied:

if M |= P>0α then M |= P>cα. (5.1)

It may be the case that there is no single c > 0 such that the condition (5.1) holds
for all formulas. Thus, we will now construct the corresponding strong model, i.e.,
a weak model M which satisfies that there is a c > 0 such that for every ForC-
formula α the condition (5.1) holds. By Theorem 3.2.10 from [1] (see Theorem
5.4), measures from a strong model have finite ranges, and the model belongs to the
LPPA,ω1,Fin

2,Meas -class.

Theorem 5.6 An LPPA,ω1,Fin
2 -formula ϕ is consistent iff it is satisfiable in a strong

model in which every LPPA,ω1,Fin
2 -theorem is true.

Proof Again, the simpler direction follows from the soundness of the axiomatic
system. To prove another part of the statement we consider a language LA containing

• the following three kinds of variables

– variables for sets (X , Y , Z , …),
– variables for elements (x, y, z, …),
– variables for reals from [0, 1] (r, s, …), and
– variables for positive reals greater than 1 (u, v,…)

• the predicates: ≤ for reals, V (u, u), E(x,X) and μ(X, r),
• a set constant symbol Wα for every LPPA,ω1,Fin

2 -ForC-formula α,
• a constant symbol r′ for every real number r ∈ [0, 1] ∩ A, and
• two function symbols for additions and multiplications for reals.

The intended meaning of E(x,X) is x ∈ X , V (u, u) means that a formula ϕ with
the Gödel-number u (denoted gb(ϕ) = u) holds in the model, while μ(X, r) can
be understood as “r is the measure of X”. We use μ(X) ≥ r to denote (∃s)(s ≥
r ∧ μ(X, s)), and V (ϕ) to denote V (gb(ϕ), gb(ϕ)).
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We define a theory T of Lω1ω ∩ A which contains the following formulas:

1. (∀X)(∀Y)((∀x)(E(x,X) ↔ E(x,Y)) ↔ X = Y)

2. (∀x)(E(x,Wα∧β) ↔ (E(x,Wα) ∧ E(x,Wβ))) for every α ∧ β ∈ ForC
3. (∀x)(E(x,W¬α) ↔ ¬E(x,Wα)), for every α ∈ ForC
4. (∀x)(E(x,Wp∨¬p)

5. V (α) ↔ Wα = Wp∨¬p, for every α ∈ ForC
6. V (P≥sα) ↔ μ(Wα) > s, for every α ∈ ForC
7. V (

∧
B∈G B) ↔ ∧

B∈G V (B), for every set of probability formulas G ∈ A
8. V (¬B) ↔ ¬V (B), for every LPPA,ω1,Fin

2 -ForP-formula B
9. (∀X)(∃1r)μ(X, r)
10. (∀X)(∀Y)((μ(X, r) ∧ μ(Y , s) ∧ ¬(∃y)(E(y,X) ∧ E(y,Y))) →

→ (∃Z)((∀y)((E(y,X) ∨ E(y,Y)) ↔ E(y,Z)) ∧ μ(Z, r + s)))
11. (∀X)((∀y)E(y,X) → μ(X, 1))
12. (∃r > 0)(∀X)(μ(X) > 0 → μ(X) > r)
13. Axioms for Archimedian fields for real numbers
14. (∀x)E(x,Wψ) where ψ is an axiom of LPPA,ω1,Fin

2
15. (∃x)E(x,Wϕ) where ϕ is the formula from the formulation of the statement.

Let a standard model for LA be

〈W,H,F, V,E,μ,+, ·,≤,Wα, r〉α∈ForC ,r∈F,

where H ⊂ P(W ), F = F ′ ∩ [0, 1], F ′ ⊂ R a field, V ⊂ R × R, E ⊂ W × H,
μ : H → F, +, · : F2 → F, ≤⊂ F2, and Wα ∈ H.

Let M = 〈W,H,μ, v〉 be a weak model for LPPA,ω1,Fin
2 . If we define Wα =⋃

w∈W [α]w, and H = {Wα : α ∈ ForC}, it easy to show that M can be transformed
to a standard model. On the other hand, if ψ is a consistent LPPA,ω1,Fin

2 -formula, then
there is a weak model in which it is satisfied, and consequently there is a standard
model in which V (ψ) holds.

Let T0 ⊂ T , T0 ∈ A. Since Axiom 9 holds in the weak model M it follows that
every T0 has a model. Hence, by the Barwise compactness theorem, T has a model
M′ = 〈W,H,F, V,E,μ,+, ·,≤,Wα, r〉α∈ForC ,r∈F . Finally, we use M′ to obtain the
strong model M′′ = 〈W,H,μ, v〉 of φ in the following way:

• for every w ∈ W , v(w, p) = true iff w ∈ Wp for every primitive proposition p,
• H = {Wα : α ∈ ForC},
• μ(X) = r iff μ(X, r) holds in M′.

Indeed, in order to verify that M′′ has required properties, it remains to check
whether M′′ |= ϕ, which is an immediate consequence of the fact that (15) holds
in M′. �

Completeness also holds for �1 definable sets of formulas (i.e., recursively enumer-
able sets), but it is possible to show that it cannot be generalized to arbitrary sets of
formulas.
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5.4 Probability Operators of the Form QF

In this section, we will analyze an extensions of LPP2. We will use LPP2,P,Q,O to
denote a probability logic which depends on a recursive familyO of recursive subsets
of [0, 1] in amanner whichwill be explained below,whileP andQ in the indexmeans
that two kinds of probabilistic operators will be used. More precisely, the language
of LPP2,P,Q,O extends the LPP2-language with a list of unary probabilistic operators
of the form QF , where F ∈ O. For example, the set ForLPP2,P,Q,O of formulas contains
QFα → ¬P≥sβ. Note that every particular choice of the family O of sets produces a
different probability language, a different set of probability formulas and a distinct
LPP2,P,Q,O-logic.

To give semantics to formulas, we use the class LPP2,Meas of measurable LPP2-
models, and the corresponding satisfiability relation (from Definition 3.4) with addi-
tional requirement that

• M |= QFα iff μ([α]) ∈ F, for every F ∈ O

which covers the case of the new operators. Note that ¬QFα is not equivalent to
Q[0,1]\Fα because [0, 1] \ F /∈ O, and the later is not a well formed formula.

5.4.1 Complete Axiomatization

Let us consider a fixed recursive family O of recursive subsets of S and the cor-
responding LPP2,P,Q,O-logic. The axiomatic system AxLPP2,P,Q,O extends the system
AxLPP2 with the following axiom:

7. P=sα → QFα, where F ∈ O and s ∈ F

and the inference rule

4. QF-rule. From P=sα → ϕ, for all s ∈ F, infer QFα → ϕ.

As an illustration we give a list of useful theorems of AxLPP2,P,Q,O

Theorem 5.7 If all the mentioned formulas belong to the set ForLPP2,P,Q,O , the fol-
lowing holds in the corresponding LPP2,P,Q,O-logic:

1. � QFα → QGα, for F ⊂ G
2. � (QFα ∧ QGα) ↔ QF∩Gα
3. � (QFα ∨ QGα) ↔ QF∪Gα
4. � (QFα ∧ P≥sα) ↔ Q[s,1]∩Fα, and similar for P≥sα, P≤sα, P≤sα
5. � QFα ↔ Q1−F¬α, where 1 − F = {1 − f : f ∈ F}
6. � (QFα ∧ ¬QGα) ↔ QF\Gα

http://dx.doi.org/10.1007/978-3-319-47012-2_3
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Fig. 5.1 Tree-like
representation of the proof
for � QFα → QGα,
F = {f1, f2, . . .} ⊂ G

QFα → QGα

P= f1α → QGα P= f2α → QGα . . .

. . . . . .

Proof Let us consider the case (1). If F,G ∈ O:

• � P=sα → QGα for every s ∈ F ⊂ G, by Axiom 7
• � QFα → QGα, by Rule 4.

This proof is illustrated in Fig. 5.1. The other statements follow similarly. �

The strong completeness of AxLPP2,P,Q,O can be shown following the completeness-
proof technique outlined in Sect. 5.1. In particular, AxLPP2,P,Q,O has two infinitary
inference rules so the step 4 in the proof of Theorem 5.1 has two instances: one for
the Archimedean rule, and the other for the QF-rule 4.

5.4.2 Decidability

In Sect. 3.5, we proved decidability of the LPP2 logic which can be seen as an
LPP2,P,Q,O-logicwith the empty familyO. Theproof involves a reductionof a formula
to a system of linear (in)equalities. A look on this method indicates that the similar
procedure might be applied for an arbitrary LPP2,P,Q,O-logic. However, since there
are also the operators of the formQF , instead of the system (3.13),we have to consider
linear systems of the following form:

∑2n

i=1 yi = 1
yi ≥ 0, for i = 1, . . . , 2n

∑
at∈X1(p1,...,pn)∈D yt

⎧⎪⎪⎨
⎪⎪⎩

≥ s1 if X1 = P≥s1
< s1 if X1 = P<s1
∈ F1 if X1 = QF1

/∈ F1 if X1 = ¬QF1

. . .

∑
at∈Xk(p1,...,pn)∈D yt

⎧⎪⎪⎨
⎪⎪⎩

≥ sk if Xk = P≥sk
< sk if Xk = P<sk
∈ Fk if X1 = QFk

/∈ Fk if X1 = ¬QFk

(5.2)

An obvious statement holds

Theorem 5.8 An LPP2,P,Q,O-logic is decidable iff for every probabilistic formula
A ∈ ForLPP2,P,Q,O \ ForC there is at least one disjunct from DNF(A) such that the
corresponding system (5.2) is solvable.

http://dx.doi.org/10.1007/978-3-319-47012-2_3
http://dx.doi.org/10.1007/978-3-319-47012-2_3
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The requirement from Theorem 5.8 is very strong. For example, consider the system

y1 + y2 = 1
yi ≥ 0, for i = 1, 2
y1 ≥ s
y1 ∈ F

obtained from the formula P≥sp∧QFp. The system is solvable only if F∩[s, 1] �= ∅
is decidable, and this depends on the set F. If F is a codomain of a suitable rational-
valued function, the system can be solved, but, in the general case, decidability of the
set F does not imply that either the system is solvable or that the LPP2,P,Q,O-logic
is decidable. However, there are recursive families O such that the corresponding
probabilistic logics are decidable. A trivial example of this kind is any recursive
O ⊆ [S]<ω , where [S]<ω is the family of all finite subsets of S. A nontrivial example
of a decidable logics concerns the logic which is characterized by the family O such
that each F ∈ O is definable (with rational parameters) in the language of ordered
groups.

5.4.3 The Lower and the Upper Hierarchy

Using the semantics of P≥s andQF-operators, it obviously holds that for a set F ∈ O,

QFα ⇔
∨
fi∈F

P=fiα.

However, if the set F is not finite, the right-hand side of this equality is an infinitary
disjunction that is clearly not an LPP2,P,Q,O-formula. Similarly goes for the formula
P≥sα ↔ Q[s,1]α, where s is a rational number from [0, 1), the formula Q[s,1]α /∈
ForLPP2,P,Q,O . More formally:

Definition 5.1 Let ϕ, � ∈ ForLPP2,P,Q,O . Let Mod(ϕ) = {M ∈ LPP2,Meas : M |= ϕ}.
ϕ is definable from � if Mod(ϕ) = Mod(�). �

The above discussion suggests that generally neither the P≥.-operators are defin-
able from the Q.-operators (i.e., some formulas on the language {¬,∧,P≥.} are not
definable from the formulas on the language {¬,∧,Q.}), nor are the Q.-operators
definable from the P≥.-operators. The next theorems formalize these conclusions.

Theorem 5.9 Let O be a recursive family of recursive rational subsets of [0, 1], F ∈
O an infinite set, and LPP2,P,Q,O the corresponding logic. For an arbitrary primitive
proposition p, there is no probabilistic formula A on the sublanguage {¬,∧,P≥.}
such that QFp is definable from A.
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Proof Suppose that there is a formula A on the language {¬,∧,P≥.} such that

Mod(QFp) = {〈W,H,μ, v〉 : μ([p]) ∈ F} = Mod(A).

Recall that A is satisfiable iff at least a system from the set of all linear sys-
tems that correspond to DNF(A) is satisfiable. Let at’s be the atoms of A and
yt’s be the corresponding measures. The solutions of any of those systems must
satisfy

∑
at∈DNF(p) yt ∈ F. But, the solutions of the systems are of the following

form: yt ∈ (r, s), yt ∈ [r, s), yt ∈ (r, s], and yt ∈ [r, s]. Such sets of solutions
cannot produce the infinite, but denumerable set F. Hence, QFp is not definable
over A. �

Theorem 5.10 Let O be a recursive family of recursive rational subsets of [0, 1],
LPP2,P,Q,O the corresponding logic, and s ∈ S \ {1}. For an arbitrary primitive
proposition p ∈ ϕ, there is no probabilistic formula A on the sublanguage {¬,∧,Q.}
such that P≥sp is definable from A.

Proof Suppose that there is a formula A on the language {¬,∧,Q.} such that

Mod(P≥sp) = Mod(A).

The models of A are exactly those that satisfy that μ[p] ≥ s. But, similarly as above,
the set of values for μ[p] produced by Mod(A) can be either denumerable, or its
complement is denumerable. Hence, P≥sp cannot be definable over A. �

Example 5.2 Formulas with the new probabilistic operators are suitable for rea-
soning about discrete sample spaces. For example, consider an experiment which
consists of tossing a fair coin an arbitrary, but finite number of times. Then, QFα
holds in this model, where α means that only heads (i.e., no tails) is observed in the
experiment, and F denotes the set { 12 , 1

22 ,
1
23 , . . .}. Since QF is not definable over the

probability language {¬,∧,P≥.}, this sentence cannot be described in the probability
logics used so far. �

5.4.4 Representability

The central part in the classification of LPP2,P,Q,O logics is the characterization of
their mutual expressiveness.We say that the logic L2 is more expressive than the logic
L1 iff for each L1-formula ϕ exists an L2-formula ψ such that Mod(ϕ) = Mod(ψ).

The main result of this subsection is the proof of the characterization theorem
(Theorem 5.11). We start with some notational remarks that will be used later on.

Note that the following semantical equivalences hold:

• QX∩Yα ⇔ QXα ∧ QYα;
• QX∪Yα ⇔ QXα ∨ QYα;
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• QX\Yα ⇔ QXα ∧ ¬QYα;
• Q1−Xα ⇔ QX¬α. Here the set 1 − X is defined by

1 − X = {1 − a : a ∈ X}.

The introduced operation 1− will be called the quasi-complement. It is easy to
verify the following properties for every formula α:

1. Q1−(F∩G)α ⇔ Q(1−F)∩(1−G)α;
2. Q1−(F∪G)α ⇔ Q(1−F)∪(1−G)α;
3. Q1−(F\G)α ⇔ Q(1−F)\(1−G)α;
4. Q1−(1−F)α ⇔ QFα.

For example, suppose that M = 〈W,H, v,μ〉 is an arbitrary model of Q1−(F∩G)α.
Then μ[α] ∈ 1 − (F ∩ G), so there is x ∈ μ[α] ∈ F ∩ G such that μ[α] = 1 − x.
Then, 1 − x ∈ 1 − F, and 1 − x ∈ 1 − G. Thus, 1 − x ∈ (1 − F) ∩ (1 − G), and
M |= Q(1−F)∩(1−G)α. The converse direction follows similarly.

Moreover, we define operators Q[r,s], Q(r,s], Q[r,s), Q(r,s) and Q[0,1]\F as follows:

• Q[r,s]α ⇔ P≥rα ∧ P≤sα;
• Q(r,s]α ⇔ P>rα ∧ P≤sα;
• Q[r,s)α ⇔ P≥rα ∧ P<sα;
• Q(r,s)α ⇔ P>rα ∧ P<sα;
• Q[0,1]\Fα ⇔ ¬QFα.

Definition 5.2 Let O be a recursive family of recursive subsets of [0, 1]Q. By O we
will denote the minimal superset of the family

O ∪ {[r, s] : r, s ∈ [0, 1]Q and r < s}

that is closed under the operations ∪, ∩, \ and 1−. �

Definition 5.3 Let O1 and O2 be recursive families of recursive subsets of [0, 1]Q.
We say that O1 is representable in O2 iff O1 ⊆ O2. �

As an example, consider a positive integer k > 0, the sets

• F1 = { 1
2i : i = k, k + 1, . . .} ∪ { 3i−1

3i : i = k, k + 1, . . .},
• F2 = { 1

2i : i = 1, 2, . . .},
• F3 = { 1

3i : i = 1, 2, . . .},
and the family O2 = {F2,F3}. By Definition 5.3, F1 is representable in O2 because
F1 = (F2 ∩ [0, 1

2k ]) ∪ ((1 − F3) ∩ [ 3k−1
3k , 1]). On the other hand, the set

F4 =
{

1

22i
: i = 1, 2, . . .

}

is not representable (i.e., LPP2,P,Q,O2 -definable) in O2.
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Definition 5.4 Let O1 and O2 be recursive families of recursive subsets of [0, 1]Q,
andL1 andL2 be the correspondingLPP2,P,Q,O-logics. The logicL2 ismore expressive
than the logic L1 (L1 ≤ L2) iff for every formulaϕ ∈ For(P,Q,O1) there is a formula
ψ ∈ For(P,Q,O2) such that Mod(ϕ) = Mod(ψ). �
Theorem 5.11 Let L1 ≤ L2. Then, O1 ⊆ O2.

Proof Clearly, it is enough to prove that O1 ⊆ O2 follows from L1 ≤ L2. Moreover,
any finite subset of [0, 1]Q is also inO2, so it remains to prove that for any countably
infinite F = {fn : n ∈ N} ∈ O1 we have that F ∈ O2. Since L1 ≤ L2, there is an L2
formula ϕ such that Mod(QFp) = Mod(ϕ) (p is a propositional letter).

First we will show that pmust be an element of Var(ϕ). Indeed, if p /∈ Var(ϕ) =
{p1, . . . , pn}, then for any a ∈ [0, 1] there is a model N = 〈WN ,HN ,μN , vN 〉 of
ϕ such that μN ([p]) = a. In order to see that we shall start from the arbitrary
model M = 〈W,H,μ, v〉 of ϕ. Let α1, . . . ,α2n be all atoms over Var(ϕ). Since∑2n

i=1 μ([αi]) = 1, there are real numbers a1, . . . , a2n ∈ [0, 1] so that ai ≤ μ([αi])
for all i and

∑2n

i=1 ai = a. Let WN = W , HN = H, vN = v and let μN be any finitely
additive probability measure on H such that μN ([p∧αi]) = ai and μN ([¬p∧αi]) =
μ([αi]) − ai for all i. Note that for all i

μN ([αi]) = μN ([p ∧ αi]) + μN ([¬p ∧ αi]) = ai + μ([αi]) − ai = μ([αi]),

so N ∈ Mod(ϕ) and μN ([p]) = a. However, this contradicts the condition
Mod(QFp) = Mod(ϕ) since we can chose any a /∈ F.

Hence, p ∈ Var(ϕ). Without the loss of generality, we may assume that p =
p1. For any model M, in order to decide whether it satisfies ϕ or not, the only
relevant information is the probabilities thatM designates to atoms α1, …, α2n . The
mapping M �→ 〈μM([α1]), . . . , μM([α2n ])〉 allows us to see Mod(ϕ) as a subset of
the intersection of the hyperplane � : ∑2n

i=1 xi = 1 and the hypercube E : [0, 1]2n .
From now on, for any probabilistic formula ψ we shall identify Mod(ψ) with the

corresponding subset of � ∩ E.
Moreover, we shall assume that atoms are ordered lexicographically with respect

to appearance of negation. For example, if Var(ϕ) = {p1, p2}, then α1 = p1 ∧ p2,
α2 = p1 ∧ ¬p2, α3 = ¬p1 ∧ p2 and α4 = ¬p1 ∧ ¬p2.

Let β be any classical propositional formula such that Var(β) ⊆ Var(ϕ). By
At(β) we shall denote the unique subset of {1, . . . , 2n} such that

β ⇔
∨

i∈At(β)

αi.

ByCDNF(ϕ)we shall denote the complete disjunctive normal formof the formula
ϕ. CDNF(ϕ) has the form

∨k
i=1

∧mi
j=1 QHi,jβi,j which can be transformed to

k∨
i=1

mi∧
j=1

QHi,j

⎛
⎝ ∨

l∈At(βi,j)

αl

⎞
⎠ ,
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where eachHi,j is either an element ofO2, or it is an interval with rational endpoints,
or Hi,j = [0, 1] \ G for some G ∈ O2.

Let a ∈ [0, 1]. Since Mod(QFp) = Mod(ϕ), we have that a ∈ F iff

〈a, 0, . . . , 0︸ ︷︷ ︸
2n−1

, 1 − a, 0, . . . , 0〉 ∈ Mod(ϕ).

Moreover, in each model of ϕ ∧ ∧
i �=1,2n−1+1 P=0αi the formula QHi,j

(∨
l∈At(βi,j)

αl

)
is equivalent to

• QHi,jα1, if 1 ∈ At(βi,j) and 2n−1 + 1 /∈ At(βi,j);
• Q1−Hi,jα1, if 1 /∈ At(βi,j) and 2n−1 + 1 ∈ At(βi,j);
• P=1(p2 ∧ · · · ∧ pn), if 1 ∈ At(βi,j) and 2n−1 + 1 ∈ At(βi,j);
• P=0βi,j, if 1 /∈ At(βi,j) and 2n−1 + 1 /∈ At(βi,j).

Note that
∧

i �=1,2n−1+1 P=0αi impliesP=0βi,j for 1, 2n−1+1 /∈ At(βi,j) andP=1(p2∧
· · · ∧ pn). Hance, we have that

a ∈ F ⇔ 〈a, 0, . . . , 0, 1 − a, 0, . . . , 0〉 ∈ Mod(ϕ)

⇔ 〈a, 0, . . . , 0, 1 − a, 0, . . . , 0〉 ∈ Mod

⎛
⎝QHα1 ∧

⎛
⎝ ∧

i �=1,2n−1+1

P=0αi

⎞
⎠

⎞
⎠ .

Here H = ⋃k
i=1

⋂mi
j=1 H

′
i,j, where

H ′
i,j =

⎧⎨
⎩
Hi,j , 1 ∈ At(βi,j), 2n−1 + 1 /∈ At(βi,j)

1 − Hi,j , 1 /∈ At(βi,j), 2n−1 + 1 ∈ At(βi,j)

[0,1] , otherwise
.

Hence, F = H , so F ∈ O2. �

As a consequence, we have the following theorem:

Theorem 5.12 Let O1 and O2 be recursive families of recursive rational subsets
of [0, 1], and L1 and L2 be the corresponding LPP2,P,Q,O-logics. The family O1 is
representable in the family O2 iff L1 ≤ L2. �

5.4.5 The Upper Hierarchy

Theorem 5.12 correlates the relations of “being more expressive” between the
LPP2,P,Q,O-logics, and “being representable in” between the corresponding fami-
lies of sets. In the sequel, we investigate the latter relation having in mind the former
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one. The relation “being more expressive” describes the hierarchy of expressiveness
of the LPP2,P,Q,O-logics.

Definition 5.5 Let O1 and O2 be recursive families of recursive subsets of [0, 1]Q.
The binary relation ∼ is defined such that O1 ∼ O2 iff O1 = O2. �

The relation ∼ is an equivalence relation on the set O of all recursive families
of subsets of [0, 1]Q. We use O/∼ to denote the corresponding quotient set. Each
equivalence class o ∈ O/∼ contains a unique maximal family Oo such that Oo = Oo.
For such an equivalence class o and the corresponding family Oo we say that Oo

represents o. Let the set {Oo : o ∈ O/∼} be denoted by O∗. Clearly, O and O∗ are
countable.

Definition 5.6 Let O1 and O2 be different families from O∗. Then O1 ≤ O2 iff O1

is representable in O2. �
We state some properties of the introduced hierarchy relation. Detailed proofs can

be found in [10, 25].

1. Let O1 and O2 be different families from O∗. Then O1 ≤ O2 iff O1 ⊆ O2;
2. The structure (O∗,≤) is a lattice. The meet (·) and join (+) operations can be

defined as follows:

• O1 · O2 = O1 ∩ O2;
• O1 + O2 = O1 ∪ O2;

3. The lattice (O∗,≤) is non-modular;
4. ∅ is the smallest element of (O∗,≤);
5. A necessary and sufficient condition that an O ∈ O∗ be an atom is that O = {F},

where F is a recursive set with only one accumulation point. The lattice (O∗,≤)

is non-atomic;
6. There is no greatest element in (O∗,≤). Consequently, the lattice O∗ is σ-

incomplete, i.e., there exists a countable increasing chain L0 < L1 < L2 < · · ·
that has no upper bound in O∗.

Thus, we can define a hierarchy of the LPP2,P,Q,O-logics, so that a logic L1 is
less expressive than a logic L2 (L1 ≤ L2) iff the corresponding families O1 and O2

of subsets of [0, 1]Q satisfy a similar requirement (O1 ≤ O2). The hierarchy of the
probability logics is isomorphic to 〈O∗,≤〉. For instance, the probability logic LPP2

is the minimum of the hierarchy of the LPP2,P,Q,O-logics and corresponds to the
0-element of 〈O∗,≤〉.

As we have seen, for all LPP2,P,Q,O-logics L1 and L2, L1 ≤ L2 iff O1 ⊆ O2.
The natural maximum of 〈O∗,≤〉 would be the minimal extension of all LPP2,P,Q,O

logics. Such logic can be obtained as follows:

1. the set of LPP2,P,Q,O-formulas is the smallest superset of the set

{P≥sα,QFα | s ∈ [0, 1]Q,α ∈ ForC,F ⊆ [0, 1]Q is recursive}

that is closed for Boolean connectives;
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2. axioms and inference rules are the same as for any LPP2,P,Q,O logic.

That logic will be denoted by LPP2,P,Q,all. Here “all” stands for the family of all
recursive subsets of [0, 1]Q. Though the set of LPP2,P,Q,all-formulas is not recursive,
from now on we will assume that LPP2,P,Q,all is also an LPP2,P,Q,O-logic. The strong
completeness ofLPP2,P,Q,all can be straightforwardly derived from the corresponding
argumentation for LPP2,P,Q,O-logics that is presented here.

5.4.6 The Lower Hierarchy

Here we shall study the so-called lower hierarchy of LPPFr(n)
2,Meas logics. It is defined

in the same manner as the upper one (see Definition 5.4).

Definition 5.7 Let L1 and L2 be arbitrary LPPFr(n)
2 -logics. We say that the logic L2

is more expressible than L1 and write L1 ≤ L2 iff for each L1-formula ϕ exists an L2
formula ψ such that Mod(ϕ) = Mod(ψ) (i.e. ϕ and ψ have the same models). �

It is easy to see that the introduced relation is reflexive and transitive. Furthermore,
for any LPPFr(n)

2 -formula ϕ, an LPP2-formula ψ defined by

ψ =def ϕ ∧
∧

α∈ForC(ϕ)

n∨
k=0

P= k
n
α

have the same models as ϕ (here ForC(ϕ) is the set of all classical propositional
formulas appearing in ϕ), so we can naturally consider the upper hierarchy as an
end-extension of the lower hierarchy.

We shall show that the characterization theorem for the upper hierarchy (Theorem
5.11) has the natural counterpart in the lower hierarchy.

Theorem 5.13 Suppose that L1 and L2 are arbitrary LPP
Fr(n)
2 -logics. Then, L1 ≤ L2

if and only if Fr(n1) ⊆ Fr(n2).

Proof Suppose that Fr(n1) ⊆ Fr(n2) and let ϕ be an arbitrary L1-formula. As above,
we define an L2-formula ψ by

ψ =def ϕ ∧
∧

α∈ForC(ϕ)

n1∨
k=0

P= k
n1

α.

Clearly, ϕ and ψ have the same models, so L1 ≤ L2.
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Conversely, let Fr(n1) � Fr(n2). Then, we can chose s ∈ Fr(n1) \ Fr(n2). Let p
be an arbitrary propositional letter. Then, P=sp is satisfiable as L1-formula, while by
A8, �L2 ¬P=sp. Hence, L1 � L2. �

Since Fr(1) ⊆ Fr(n) for all positive integers n, the LPPFr(1)
2 logic is the minimum

of the lower hierarchy. Moreover, Fr(n) is a proper subset of Fr(2n) for all positive
integers n, so the lower hierarchy has no maximal elements.

Note that logicsL1 andL2 are incomparable if and only if the symmetric difference
Fr(n1) � Fr(n1) �= ∅. Thus, the hierarchy contains incomparable elements (for
instance, Fr(2) = {0, 1

2 , 1} and Fr(3) = {0, 1
3 ,

2
3 , 1}).

Another immediate consequence of Theorem 5.13 is that the lower hierarchy is
a lattice. Namely, the greatest lower bound of L1 and L2 is determined by Fr(n1) ∩
Fr(n2) = Fr(GCD(n1, n2)). The least upper bound of L1 and L2 is determined by
Fr(n1) ∪ Fr(n2) = Fr(LCM(n1, n2)). Notice that L1 ≤ L2 iff n1|n2 (n1 divides n2).
Theorem 5.14 The lower hierarchy is atomic and non-modular.

Proof Concerning non-modularity, it is well known that any lattice is non-modular
iff the pentagon lattice N5 can be embedded into it. In particular, logics

LPPFr(1)
2 ,LPPFr(2)

2 ,LPPFr(3)
2 ,LPPFr(4)

2 ,LPPFr(12)
2

form the N5 lattice so we have established non-modularity (see Fig. 5.2). Moreover,
by Theorem 5.13, the logics L1 and L2 are incomparable iff Fr(n1) � Fr(n1) �= ∅.
As a consequence, atoms of the lower hierarchy are determined by Fr(n), where n is
a prime number. �

As we have mentioned earlier, it is quite natural to merge the upper and the lower
hierarchy into a single hierarchy of probability logics due to the same definition
of ≤. Since each LPPFr(n)

2 -logic can be embedded into any LPP2,P,Q,O-logic in the
same manner as we have demonstrated for the LPP2 logic, the upper hierarchy is an
end-extension of the lower hierarchy (see Fig. 5.3).

Fig. 5.2 N5–lattice
embedded in the lower
hierarchy

LPPFr(12)
2

LPPFr(4)
2

LPPFr(3)
2

LPPFr(2)
2

LPPFr(1)
2
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Fig. 5.3 The lower and the
upper hierarchy

LPPFr(1)
2

LPP2

5.5 Qualitative Probabilities

Reasoning about qualitative probabilities is one of themost common cases of qualita-
tive reasoning. Herewe offer the first strongly complete formalization of the notion of
qualitative probabilitywithin the framework of probabilistic logic [27, 28].Weobtain
the language of the corresponding logic (denoted LPP2,�) by extending the LPP2-
language with an additional binary operator �, such that for some ForC-formulas α
and β, α � β means “β is at least probable as α.” Similarly as in Sect. 5.4, we use
the class LPP2,Meas of measurable LPP2-models, and the corresponding satisfiability
relation with another additional requirement that

• If α,β ∈ ForC , M |= α � β iff μ([α]) ≤ μ([β]),
The axiom system AxLPP2,� extends AxLPP2 with the following axioms:

7. (P≤sα ∧ P≥sβ) → α � β
8. (α � β ∧ P≥sα) → P≥sβ,

and the inference rule

4. From A → (P≥sα → P≥sβ) for every s ∈ [0, 1]Q, infer A → α � β.

The next theorem gives us some useful properties of the probability operator �.

Theorem 5.15 Suppose that T is a set of formulas and that α, β, γ ∈ ForC. Then
the following holds

1. T � α � β if and only if T � P≥s(α) → P≥s(β) for all s ∈ [0, 1]Q;
2. � α � β ∨ β � α;
3. � (α � β ∧ β � γ) → α � γ;
4. � α � α;
5. If T � P≥1(α → β) then T � α � β;
6. If T � α → β then T � α � β. �

The corresponding completeness and decidability results can be obtained in the
similar way as it was the case for the LPP2-logic.
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Note that the qualitative probability operator is definable in the logic LPPFr(n)
2

α � β ⇔def

∧
s∈Fr(n)

(P≥sα → P≥sβ).

Thus, the notion of the qualitative probability is definable in LPPFr(n)
2 , and LPPFr(n)

2

and LPPFr(n)
2,� coincide.

5.6 An Intuitionistic Probability Logic

Intuitionistic logic arises quite naturally fromaconceptionofmathematics as a human
endeavor not pertaining to some outside reality. Since the statements of mathematics
are not about something which exists out there, they cannot be true or false but only
proved or disproved. This leaves another category of statements, those which are as
yet undetermined. Thus intuitionistic logic may be viewed as the logic of the growth
of human knowledge (as opposed to the classical logic which we may regard as the
logic of the static Platonic universe of mathematical objects).

Thanks to this, intuitionistic logic has less consequences which would seem rather
unintuitive in a real-life situation (e.g., (p → q) ∨ (q → p) and (p → (q ∨ r)) →
((p → q) ∨ (p → r)) are not intuitionistic theorems, i.e., there are models in which
they are false).

In reality, there is the fact that the intuitionistic logic might be the least popular
non-classical logic among the practitioners of artificial intelligence and computer
science in general. However, for those comfortable with the ubiquitous S4-modal
logic and uncomfortable with intuitionism, we should emphasize that these two
logics are practically the same: their models are the same, while the Gödel translation
enables us to interpret syntax. Furthermore, as we shall show in the Remark at the end
of this section, intuitionistic logic arises naturally whenever we deal with possible
worlds semantics. In any case, starting with intuitionistic logic, we naturally have,
besides proved statements (probability is 1) and disproved statements (probability
is 0), undetermined statements whose probability should range between 0 and 1.

This is more obvious if we consider a Kripke model in which we can assign a
probability to a formula on the basis of the number of possible worlds in which it
is true. In our approach the probabilistic operators have the classical treatment. As
a justification, we may say that once we determine the probability of an uncertain
proposition α, it should be either greater or equal to some s ∈ [0, 1] or not, so it is
not unreasonable to assume P≥sα ∨ ¬P≥sα (even if we reject α ∨ ¬α).

We use LPPI
2 to denote the corresponding intuitionistic probability logic. At the

propositional level, the language contains the connectives ¬, ∧, ∨ and →, while
on the probabilistic level we have two lists of unary probabilistic operators (P≥s),
and (P≤s), s ∈ [0, 1]Q, and the connectives ¬ and ∧. Note that, since we have the
intuitionistic base
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• at the propositional level, the propositional connectives are independent, and
• at the probabilistic level, the probabilistic operators P≥., and P≤. are independent,
but ∨ and → can be defined from ¬ and ∧.

Similarly as for the logic LPP2, we do not allow iterations of probabilistic operators,
and define the sets ForI of propositional formulas, ForP of probabilistic formulas,
and ForLPPI

2
of all formulas, as in Sect. 3.1.1.

5.6.1 Semantics

Corresponding to the structure of the set ForLPPI
2
, there are two levels in the definition

of models. At the first level there is the notion of intuitionistic Kripke models [18],
while probability comes in the picture at the second level.

Definition 5.8 An intuitionistic Kripke model for the language ForI is a structure
〈W,≤, v〉 where
• 〈W,≤〉 is a partially ordered set of possible worlds which is a tree, and
• v is a valuation function, i.e., v maps the set W into P(φ), which satisfies the
condition: for all w, w′ ∈ W , w ≤ w′ implies v(w) ⊆ v(w′). �

The last requirement from Definition 5.8 allows that v does not determine the
status of some primitive propositions from φ in some worlds. In each Kripke model
we define the forcing relation �⊂ W × ForI by the following:

Definition 5.9 Let 〈W,≤, v〉 be an intuitionistic Kripke model. The forcing relation
� is defined by the following conditions for every w ∈ W , α, β ∈ ForI :

• if α ∈ φ, w � α iff α ∈ v(w),
• w � α ∧ β iff w � α and w � β,
• w � α ∨ β iff w � α or w � β,
• w � α → β iff for every w′ ∈ W if w ≤ w′ then w′

� α or w′ � β, and
• w � ¬α iff for every w′ ∈ W if w ≤ w′ then w′

� α. �

We read w � α as “w forces α” or “α is true in the world w”. Validity in the
intuitionistic Kripke model 〈W,≤, v〉 is defined by

〈W,≤, v〉 |= αiff (∀w ∈ W )w � α.

A formula α is valid (|= α) if it is valid in every intuitionistic Kripke model.
Let MI = 〈W,≤, v〉 be an intuitionistic Kripke model. Let [α] denote {w ∈ W :

w � α} for every α ∈ ForI . The familyHI = {[α]MI : α ∈ ForI} is a Heyting algebra
with operations

• [α] ∪ [β] = [α ∨ β],
• [α] ∩ [β] = [α ∧ β],

http://dx.doi.org/10.1007/978-3-319-47012-2_3
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• [α] ⇒ [β] = [α → β], and
• ∼ [α] = [¬α].
Thus, HI is a lattice on W , but it may be not closed under complementation.

Definition 5.10 A measurable probabilistic model is a structure M = 〈W,≤, v,
H,μ〉 where
• MI = 〈W,≤, v〉 is an intuitionistic Kripke model,
• H is an algebra on W containing HI = {[α] : α ∈ ForI},
• μ : H → [0, 1] is a finitely additive probability. �

Note thatH contains all sets of the formW \[α], even if for some α ∈ ForI it may
be thatW \ [α] �= [¬α]. The fact that [¬α] does not have to contain the complement
of [α] is the reason why we need both P≥s and P≤s operators since P≤sα will not
imply P≥1−s¬α.

We use LPPI
2,Meas to denote the class of all measurable probabilistic models.

Definition 5.11 The satisfiability relation |= is defined by the following conditions
for every LPPI

2,Meas-model M = 〈W,≤, v,H,μ〉:
• if α ∈ ForI , M |= α if (∀w ∈ W )w � α,
• M |= P≥sα if μ([α]) ≥ s,
• M |= P≤sα if μ([α]) ≤ s,
• if A ∈ ForP, M |= ¬A if M |= A does not hold, and
• if A,B ∈ ForP, M |= A ∧ B if M |= A, and M |= B. �

Definition 5.12 A formula ϕ ∈ ForLPPI
2
is satisfiable if there is a LPPI

2,Meas-model
M such that M |= ϕ; ϕ is valid if for every LPPI

2,Meas-model M, M |= ϕ; a set of
formulas is satisfiable if there is an LPPI

2,Meas-model M such that for every formula
ϕ from the set, M |= ϕ. �

5.6.2 Axiomatization, Completeness, Decidability

An axiomatization that characterizes the set of all LPPI
2,Meas-valid formulas can be

obtain by combining

• any propositional intuitionistic axiomatization for ForI ,
• any classical propositional axiomatization for ForP and
• probabilistic axioms and rules from Sect. 3.2

with the proviso that in this framework the probabilistic operators P≥., and P≤. are
independent. Thus, Axiom 3 from the system AxLPP2 should be rewritten in the form

P≥1−r¬α → ¬P≥sα for s > r.

http://dx.doi.org/10.1007/978-3-319-47012-2_3
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Strong completeness and decidability theorems can be obtained in the similar way
as it was shown earlier. Details can be found in [19–21].

Wewill showhere that even if we start with classical logic, possibleworlds seman-
tics naturally produces intuitionistic logic. It turns out that intuitionistic implication
will coincide with conditional probability when probability is equal to 1.

Let us start with a standard possible-world model M = 〈W,H,μ, v〉. We may
define a preorder (reflexive and transitive relation) R on W by: uRw iff for every
primitive proposition p, v(u, p) = true implies v(w, p) = true. From this we may
obtain a partial order in the usual way. First we introduce an equivalence relation ∼
defined by: u ∼ w iff uRw and wRu, and then we split W into equivalence classes:
Cu = {w : u ∼ w}. Now we may pick a selection W ′ ⊂ W of representatives of
equivalence classes (one for each class). So we have (∀u ∈ W )(∃w ∈ W ′)(u ∼ w).
Obviously, R induces a partial order ≤ on W ′ such that u ≤ w iff u Rw. Now we
have a Kripke model with a partial ordering relation on worlds 〈W ′,≤, v〉 which
makes it a model for intuitionistic logic. Namely, we may define (semantically) a
new propositional connective → by: w |= α → β iff (∀w′ ≥ w)(w′ |= α implies
w′ |= β). We may also define a new, intuitionistic, negation by: −α = α → ⊥.
Therefore, even if we start with classical logic, when we come to models, we have
an intuitionistic implication built in.

The interest in intuitionistic implication, besides the arguments proposed at the
start of this section, comes from the fact that conditional probability, which is often
used as the proper form of entailment in the context of probability logic, coincides
in a sense with the intuitionistic implication:

Theorem 5.16

μ(α → β) = 1 iff
μ(α ∧ β)

μ(α)
= 1.

�

However, this symmetry holds only in the case when probability is equal to 1.
It is possible to construct models in which conditional probability is high while the
probability of (intuitionistic) implication is low and vice versa. The reason is that,
despite the fact that both operators are defined globally (and not locally, in each
world) the definitions are quite different. Conditional probability considers (i.e.,
counts) only worlds in which α is true, while intuitionistic implication takes into
account also their predecessors. We may say, in a sense, that conditional probability
disregards the development of events and regards only the final stages (with regard
to the validity of α), i.e., the analysis starts with the worlds in which α is true and
disregards the previous stages in which α may be “not yet true”. Existence of long
time-lines which end with worlds in which α is not true adds to the probability of
α → β, while it is irrelevant for the conditional probability. On the other hand, a long
sequence which has an ending in which α is true and β is not, reduces considerably
the probability of α → β, while it may, in the presence of a relevant number of
worlds in which both α and β are true, be insignificant for conditional probability.
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5.7 Logics with Conditional Probability Operators

Our work on complete axiomatization of the notion of conditional probability
involves both Kolmogorov and de Finetti concepts of developing probability theory
[7, 8, 22–24]. While Kolmogorov derives conditional probability from the notion
of probability, de Finetti postulates conditional probability as a primitive notion and
from it derives the notion of probability.

Here we shall just outline the corresponding formalization in the case of logic
LPCP

[0,1]Q(ε),≈
2 with approximate conditional probabilities. Details can be found for

instance in [26, 33].

5.7.1 A Logic LPCP
[0,1]Q(ε),≈
2 with Approximate Conditional

Probabilities

A Hardy field is a recursive non-Archimedean field which contains all rational func-
tions of a fixed positive infinitesimal ε which belongs to ∗

R. Some examples of
infinitesimal are (in ascending order, if ε > 0): ε3 + ε4, ε2 − 5ε6, ε

100 , 85ε, or nega-
tive infinitesimals: −ε, −ε2, …Q(ε) contains all rational numbers. The unit interval
of Q(ε) is denoted by [0, 1]Q(ε).

The basic probability operators are the following binary operators of the form:

CP≥s, CP≤s and CP≈r,

where s ∈ [0, 1]Q(ε) and r ∈ [0, 1]Q. The intended meaning is obvious: for instance,
CP≥s(α,β) means that Pr(α|β) ≥ s, while CP≈r(α,β) means that Pr(α|β) − r is
an infinitesimal.

Similarly to the case of the LPP2-logic, probabilistic LPCP
[0,1]Q(ε),≈
2 -formulas are

Boolean combinations of the basic (atomic) probabilistic (or probability) formulas.
Moreover,

P∗sα =def CP∗s(α,→ p),

where ∗ ∈ {≥,≤,≈}, introduces other probability operators.
Semantics is defined similarly as for the LPP2-logic. The only difference is in

definition of satisfiability of atomic probability formulas, which will be explicitly
stated in Definition 5.13. Closely related to that is the following convention that
extends the conditional probability to entireH2: for any [0, 1]Q(ε)-valued probability
measure μ and any pair of X,Y ∈ H we assume that

μ(X|Y) = 1 whenever μ(Y) = 0.

Definition 5.13 LetM = 〈W,H,μ, v〉be anLPCP[0,1]Q(ε),≈
2 model. The satisfiability

of the basic probabilistic formulas is defined as follows:
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1. M |= CP≤s(α,β) iff μ([α]M | [β]M) ≤ s;
2. M |= CP≥s(α,β) iff μ([α]M | [β]M) ≥ s;
3. M |= CP≈r(α,β) iff μ([α]M | [β]M) − r is an infinitesimal. �

5.7.2 Axiomatization

The axiom system Ax
LPCP

[0,1]Q(ε),≈
2

which characterizes the set of all LPCP
[0,1]Q(ε),≈
2,Meas,Neat-

valid formulas contains the following set of axiom schemata:

1. all ForC-instances of classical propositional tautologies
2. all ForP-instances of classical propositional tautologies
3. CP≥0(α,β)

4. CP≤s(α,β) → CP<t(α,β), t > s
5. CP<s(α,β) → CP≤s(α,β)

6. P≥1(α ↔ β) → (P=sα → P=sβ)

7. P≤sα ↔ P≥1−s¬α
8. (P=sα ∧ P=tβ ∧ P≥1¬(α ∧ β)) → P=min(1,s+t)(α ∨ β)

9. P=0β → CP=1(α,β)

10. (P=tβ ∧ P=s(α ∧ β)) → CP=s/t(α,β), t �= 0
11. CP≈r(α,β) → CP≥r1(α,β), for every rational r1 ∈ [0, r)
12. CP≈r(α,β) → CP≤r1(α,β), for every rational r1 ∈ (r, 1]
and inference rules:

1. From ϕ and ϕ → ψ infer ψ.
2. If α ∈ ForC , from α infer P≥1α.
3. From A → P�=sα, for every s ∈ [0, 1]Q, infer A → ⊥.
4. For every r ∈ [0, 1]Q, from A → CP≥r−1/n(α,β), for every integer n ≥ 1/r, and

A → CP≤r+1/n(α,β) for every integer n ≥ 1/(1 − r), infer A → CP≈r(α,β).

It is easy to see (just put → p instead of β) that the axioms 3–5 generalize the
corresponding axioms from the system AxLPP2 . Axiom 9 conforms with the useful
practice of assuming conditional probability to be 1, whenever the condition has the
probability 0. Axiom 10 expresses the standard definition of conditional probability,
while the axioms 11 and 12, andRule 4 describe the relationship between the standard
conditional probability and the conditional probability infinitesimally close to some
rational r ∈ [0, 1]Q. The rules 3 and 4 are infinitary. Rule 3 guarantees that the
probability of a formula belongs to the set S.

The main difference in the completeness-proof technique is in the construction of
a canonical model from amaximal consistent set of formulas T , namely the definition
of a measure μT . Here μT is defined as follows:

μ([α]) = s ⇔def T � P=sα.
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The existence of such s is a consequence of Lemma 5.1, while the uniqueness is a
consequence of the consistency of T . In particular, we have the following theorem:

Theorem 5.17 (Strong completeness for LPCP
[0,1]Q(ε),≈
2,Meas,Neat) A set T of formulas is

Ax
LPCP

[0,1]Q(ε),≈
2

-consistent iff it is LPCP
[0,1]Q(ε),≈
2,Meas,Neat-satisfiable. �

5.8 Polynomial Weight Formulas

In this section,we shall briefly outline the solution of the problemof finding a strongly
complete propositional axiomatization of logics for polynomial weight formulas
proposed by Fagin et al. [5]. In the same way, it is possible to address the related
issue for logic with linear weight formulas from [5]. All technical details can be
found in [2, 28–30].

First we introduce the notion of a polynomial weight term. The corresponding
inductive definition is given below

w(α) | r | f g | f + g.

Here α is an arbitrary classical propositional formula, r ∈ [0, 1]Q and f , g are
variables for polynomial weight terms.

An atomic polynomial weight formula is a formula of the form

f ≤ g,

where f , g are arbitrary polynomial weight terms. The set of polynomial weight for-
mulas ForP contains Boolean combinations of atomic polynomial weight formulas,
while the set of formulas ForPWF = ForC ∪ ForP.

The other types of the standard qualitative formulas f ≥ g, f < g, f > g
and f = g are introduced in the usual way. Note that the usual meaning of the
atomic weight term w(α) is the weight of the formula α, which can be interpreted
in terms of uncertain reasoning as the agent’s measure (level of confidence) in α.
The corresponding semantics for the logic PWF of polynomial weight formulas is
virtually the same as for the LPP2. A complete axiomatization AxPWF is given below

Axioms for propositional reasoning

1. all substitutional instances of the classical propositional tautologies.

Axioms for probabilistic reasoning

2. P(α) � 0.
3. P(α ∨ β) = P(α) + P(β), for disjoint α and β.
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Axioms about rational numbers

4. r � s, iff r � s.

Axioms about commutative ordered rings

5. f + g = g + f
6. (f + g) + h = f + (g + h)
7. f + 0 = f
8. f − f = 0
9. f · g = g · f

10. f · (g · h) = (f · g) · h
11. f · 1 = f
12. f · (g + h) = (f · g) + (f · h)
13. f � g ∨ g � f
14. (f � g ∧ g � h) → f � h
15. f � g → f + h � g + h
16. (f � g ∧ h > 0) → f · h � g · h
Inference rules

1. From Φ and Φ → � infer �.
2. From α infer P(α) = 1.
3. From {φ → f � −n−1 | n = 1, 2, 3, . . . } infer φ → f � 0.

All relevant proof-theoretical notions are the same as for the LPP2-logic. Using
the same technique that is thoroughly elaborated in Chap. 3, we can show the cor-
responding strong completeness theorem. Decidability and complexity (PSPACE-
completeness) of the PSAT problem are proved in [5].

5.9 Logics with Unordered or Partially Ordered Ranges

We conclude this chapter with a discussion on probability logics with unordered
ranges of probability functions that are studied in [9, 11–14] (consider also Keynes’
view described in Sect. 2.6.1). The particular ranges that we have inmind are the field
of p-adic numbers Qp for the given prime number p, the field of complex numbers
and a lattice with the additional underlying structure (e.g., [0, 1]Q × [0, 1]Q with the
product order).

Probability functions with such ranges naturally arose in various phenomena
involving quantum physics, incomparability, and indeterminacy. Theoretical back-
ground can be found in so-called vector valued measure theory. The main idea is to
replace the notion of an ordering with the notion of a metric space (Banach space,
pre-Hilbert space, Hilbert space, etc.).

http://dx.doi.org/10.1007/978-3-319-47012-2_3
http://dx.doi.org/10.1007/978-3-319-47012-2_2
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In terms of probability assertions, the atomic statements have the following two
forms:

• Pr(α) ∈ B[c, r], i.e., the probability of α is in the closed ball with the center c and
radius r;

• Pr(α) ∈ B(c, r), i.e., the probability of α is in the open ball with the center c and
the radius r.

Due to the fact that any p-adic norm | |p generates an ultrametric space with
respect to p-adic metric dp(x, y) = |x − y|p, we have a peculiar consequence that
B[c, r] = B(c, r) and B[c, r] = B[x, r] for all x ∈ B[c, r]. In the case of complex
valued probability functions, thiswill not be the case due to thewell-knownproperties
of the Euclidean metrics on . We shall illustrate the completeness-proof technique in
the case of the logic LQp .

Given the prime number p, a p-adic norm | |p of any integer k is defined by

k = 1

pm
,

where k = pm · r (r is not divisible by p) is the unique prime factorization of k. This
notion is naturally extended on rational numbers by

∣∣∣∣kl
∣∣∣∣
p

= |k|p
|l|p .

The field Qp of p-adic numbers can be obtained as a completion (with respect to
Cauchy sequences) of the field of rational numbers Q in p-adic norm | |p on Q.

5.9.1 A Logic for Reasoning About p-adic Valued
Probabilities

Let p be a fixed prime andM ∈ N be an arbitrary large but fixed positive integer. We
introduce the following sets:

1. QM = {r ∈ Q : |r|p ≤ pM},
2. ZM = Z

− ∪ {0, 1, 2, . . . ,M}, where Z
− denotes the set of all negative integers,

and
3. R = {pM−n : n ∈ N} ∪ {0} = {pn : n ∈ ZM} ∪ {0}.
Suppose that φ is a countable set of propositional letters. By ForC we will denote
the set of all propositional formulas over φ. Propositional formulas will be denoted

by α, β, γ, etc. The set For
LQp

P of probabilistic formulas is defined as the least set
satisfying
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• If α ∈ ForC , r ∈ QM, ρ ∈ R then Kr,ρα is probabilistic formula.
• If ϕ,φ are probabilistic formulas then (¬ϕ), (ϕ ∧ φ) are probabilistic formulas

The set For
LQp

LPP2
of all LQp -formulas is ForC ∪ For

LQp

P .

Definition 5.14 An LQp -model is a structure M = 〈W,H,μ, v〉 where W , H and v
have the same meaning as before. The only difference is in the definition of μ

• μ : H → B[0, pM ] is an additive function such that μ(W ) = 1. �

The satisfiability relation is defined similarly as before. In the next definition, we
emphasis the only difference, namely the satisfiability of the atomic formula Kr,ρ.

Definition 5.15 Let M = 〈W,H,μ, v〉 be an LQp-model. The satisfiability relation
on atomic formulas of the form Kr,ρ is defined by

• If α ∈ ForC then M |= Kr,ρα iff |μ([α]) − r|p ≤ ρ. �

Let us pay attention on the definition of satisfiability for the formulas of the form
Kr,ρα. For arbitrary ρ, M |= Kr,ρα means that μ([α]) belongs to the p-adic ball
with the center r and the radius ρ. In the special case when ρ = 0 and M |= Kr,0α,
according to Definition 5.15, μ([α]) = r.

Also, we can calculate the measure of tautology (�) and contradiction (⊥). μ is a
measure that satisfies conditions of normalization and additivity (see Definition 5.14)
and since [�] = W and [⊥] = ∅ we conclude that μ([�]) = 1 and μ([⊥]) = 0, i.e.,
for every model M, M |= K1,0 → p and M |= K0,0⊥.

The axiom system AXLQp
involves the next axiom schemas

1. Substitutional instances of tautologies.
2. Kr,ρα → Kr,ρ′α, whenever ρ′ ≥ ρ
3. Kr1,ρ1α ∧ Kr2,ρ2β ∧ K0,0(α ∧ β) → Kr1+r2,max(ρ1,ρ2)(α ∨ β).
4. Kr1,ρ1α → ¬Kr2,ρ2α, if |r1 − r2|p > max(ρ1, ρ2)
5. Kr1,ρα → Kr2,ρα, if |r1 − r2|p ≤ ρ

and inference rules

1. From ϕ and ϕ → ψ infer ψ.
2. From α infer K1,0α
3. If n ∈ N, from ϕ → ¬Kr,pM−nα for every r ∈ QM , infer ϕ → ⊥.
4. From α → ⊥, infer K0,0α
5. If r ∈ QM , from ϕ → Kr,pM−nα for every n ∈ N, infer ϕ → Kr,0α.
6. From α ↔ β infer (Kr,ρα → Kr,ρβ).

Completeness technique is essentially the same as it was outlined in Sect. 5.1. On
the other hand, the analysis of decidability involves a nontrivial adaptation of the
corresponding argument for the LPP2 logic. Specific technical details can be found
in [13].



162 5 Extensions of the Probability Logics LPP2 and LFOP1

5.10 Other Extensions

Here we will briefly mention some other of our results related to probability logics.
The paper [31] discusses the proof-theoretical and the model-theoretical approaches
to a probabilistic logic which allows reasoning about the finitely additive probability
measures on formulas generated by an arbitrary [0, 1]-valued evaluation of the set
of propositional letters using Gödel’s and product t-norms. The corresponding for-
mal language enables efficient formalization of classification problems with criteria
expressible as propositional formulas. Combinations of probability and justification
logics are analyzed in [16, 17].Doder andOgnjanović [3] presents an approachwhich
allows reasoning about independence and probabilistic support in a probability logic.
An infinitary strongly complete propositional logic with unary operators that speak
about upper and lower probabilities is introduced in [34], while for some restricted
fragments of the logic, finitary axiomatic systems are provided. Strong complete-
ness for the class of measurable structures of an epistemic logic with probabilistic
common knowledge and infinitely many agents is given in [35]. Ghilezan et al. [6]
is a first step towards a formal system for probabilistic reasoning in λ-calculus with
intersection types.
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Chapter 6
Some Applications of Probability Logics

Dragan Doder, Aleksandar Perović and Angelina Stepić

Abstract In this chapter, we review some application areas of probability logics.
The first part of the chapter is devoted to the theory of nonmonotonic inference and its
deep connections with probability logic. We describe how our system LPCP

[0,1]Q(ε),≈
2

(from Sect. 5.7) can be used to model default reasoning. Then, using the techniques
from the Chaps. 4 and 5, we present a solution for an open problem of construc-
tion a propositional logic for reasoning about evidence (Halpern and Pucella, J Artif
Intell Res 26:1–34, 2006 [15]). In the third section, we discuss a method for logical
modeling of the process of human thinking based on p-adic numbers. The fourth
section briefly describes some additional papers in the application area of probabil-
ity logics. This chapter covers some results from Doder, Publications de l’Institut
Mathématique, ns. 90(104):13–22, 2011 [5], Doder and Woltran, Scalable uncer-
tainty management SUM 2014. Lecture notes in artificial intelligence, vol 8720, pp
134–147, 2014 [6], Doder et al., A probabilistic temporal logic that can model rea-
soning about evidence, vol 5956, pp 9–24, 2010 [7], Doder et al. Int J Approx Reason
51:832–845, 2010 [8], Doder et al., Symbolic and quantitative approaches to rea-
soning with uncertainty ECSQARU 2011. Lecture notes in artificial intelligence, vol
6717, pp 459–471, 2011 [9], Doder et al., J Log Comput 23(3):487–515, 2013 [10],
Ilić-Stepić and Ognjanović, Studia Logica 103:145–174, 2015 [17], Ognjanović et
al., AnnMath Artif Intell 65(2–3):217–243, 2012, [25], Rašković et al., Int J Approx
Reason 49(1):52–66, 2008 [28].

6.1 Nonmonotonic Reasoning and Probability Logics

6.1.1 System P and Rational Monotonicity

Nonmonotonic reasoning is a field of artificial intelligence that studies behavior of
the so-called common sense reasoning from available, but incomplete data. Often,
an expert possesses incomplete knowledge and use it to infer further information
in order to make decisions and plan actions. Thus, nonmonotonic logics deal with
principled reasoning about normal or typical situations where the conclusion might
be retracted after a new information is added. In [13], Gabbay suggested that the study
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of default reasoning should be focused on the corresponding consequence relations
|∼ on formulas, where a default rule α |∼ β can be read as “if α, then generally β.”
Soon after, Kraus, Lehmann andMagidor proposed in [20] a set of properties, named
System P (P stands for preferential), that every nonmonotonic consequence relation
should satisfy. Those properties are widely accepted as the core of nonmonotonic
reasoning (see, for example [12]).

A preferential relation [20] is a binary relation |∼ on the set of propositional formu-
las, which satisfies the following properties of so-called System P (REF–Reflexivity,
LLE–Left logical equivalence, RW–Right weakening, CM–Cautious monotonicity):

REF :
α|∼α

; LLE : � α ↔ β, α|∼γ

β|∼γ
;

RW : � α → β, γ |∼α

γ |∼β
; AND : α|∼β, α|∼γ

α|∼β ∧ γ
;

OR : α|∼γ , β|∼γ

α ∨ β|∼γ
; CM : α|∼β, α|∼γ

α ∧ β|∼γ
.

For a set of defaults Δ, we write Δ �P α |∼ β if the default α |∼ β is deducible
from Δ using System P. In the paper [21] of Lehmann and Magidor, the additional
rule of Rational monotonicity is considered:

RM : α |∼ γ, α |� ¬β

α ∧ β |∼ γ

and nonstandard probabilistic semantics is proposed. A preferential relation which
satisfies the rule RM is called a rational relation. Let μ be a finitely additive non-
standard probability measure on formulas and let the binary relation |∼μ be defined
as

α |∼μ β iff μ(β|α) ≈ 1 or μ(α) = 0.

Lehmann and Magidor have proved that each rational relation is generated by some
neat finitely additive probability measure, i.e., for each rational relation |∼ there is a
finitely additive hyperreal-valued probability measure μ such that |∼=|∼μ.

The classes of preferential and rational relations are not distinguishable using the
language of defaults (that contains |∼, but not |�).

6.1.2 Modeling Defaults in LPCP
[0,1]Q(ε),≈
2

We can use CP≈1(β, α) to syntactically represent the default α |∼ β. In the sequel,
we will use α |∼ β both in the original context of the system P and to denote the
corresponding translation CP≈1(β, α) in LPCP

[0,1]Q(ε),≈
2 (Sect. 5). In the case of a

finite default base our approach produces the same result as the other mentioned
approaches, namely it is equivalent to P.

http://dx.doi.org/10.1007/978-3-319-47012-2_5
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Theorem 6.1 For every finite default base Δ and for every default α |∼ β

Δ �P α |∼ β iff Δ �Ax
LPCP

[0,1]Q(ε),≈
2

α |∼ β.

Proof Since (the corresponding translation of) all axioms and rules (e.g. (CP≈1
(β, α) ∧ CP≈1(γ, α)) → CP≈1(β ∧ γ, α) corresponds to AND rule) of the sys-
tem P are valid in the class of nonstandard probability models from [21], and
LPCP

[0,1]Q(ε),≈
2,Meas,Neat is a subclass of that class, P is sound with respect to LPCP

[0,1]Q(ε),≈
2,Meas,Neat.

On the other hand, following the ideas from [21, Lemma 4.9], we can show that
for every finite default base Δ and for every default α |∼ β, if Δ �P α |∼ β then
Δ �Ax

LPCP
[0,1]Q(ε),≈
2

α |∼ β. The key step in the proof is that there is a finite rational

model M which satisfies Δ and does not satisfy α |∼ β. M can be transformed to
an LPCP

[0,1]Q(ε),≈
2,Meas,Neat-model M′ such that for every default d, M |= d iff M′ |= d.

The transformation can be as follows. For an arbitrary infinitesimal ε′ ∈ [0, 1]Q(ε) a
probability distribution μ on W can be defined so that

• μ(wn+1)
μ(wn)

= ε′, where wn and wn+1 are the sets of all states of the rank n and n + 1
respectively, and

• all states of the same rank have equal probabilities.

Since M |= Δ and M �|= α |∼ β, the same holds forM′, and from the completeness
of LPCP

[0,1]Q(ε),≈
2 we obtain that Δ �Ax

LPCP
[0,1]Q(ε),≈
2

α |∼ β. �

Theorem6.1 cannot be generalized to an arbitrary default baseΔ, as it is illustrated
by the following example:

Example 6.1 It is proved in [21, Lemma 2.7] that the infinite set of defaults T =
{pi |∼ pi+1, pi+1 |∼ ¬pi}, where pi’s are propositional letters for every integer i ≥
0, has only non well-founded preferential models (a preferential model containing
an infinite descending chain of states) in which p0 |� ⊥, i.e., p0 is consistent. It
means that T �P p0 |∼ ⊥. On the other hand, T �Ax

LPCP
[0,1]Q(ε),≈
2

p0 |∼ ⊥ since the

following holds. Let an LPCP
[0,1]Q(ε),≈
2,Meas,Neat-model M = 〈W ,H, μ, v〉 satisfy the set T .

Ifμ([pi]) = 0, for some i > 0, then it must beμ([p0]) = 0, andM |= p0 |∼ ⊥. Thus,
suppose that μ([pi]) �= 0, for every i > 0. Then, for every i ≥ 0: μ([pi∧pi+1])

μ([pi]) ≈ 1

and μ([¬pi∧pi+1])
μ([pi+1]) ≈ 1, i.e., μ([pi∧pi+1])

μ([pi]) = 1 − ε1 and
μ([¬pi∧pi+1])

μ([pi+1]) = 1 − ε2, for some
infinitesimals ε1 and ε2. A simple calculation shows that which means thatμ([pi]) ≤
ε0μ([pi+1]) for some infinitesimal ε0. Since, for some c and k, ε0 ≤ cεk , it follows
that for every i > 0, 0 ≤ μ([p0]) ≤ εi. Since μ([p0]) ∈ S and there is no positive
element of S with such property, it follows that

μ([p0]) = 0, [p0] = ∅ and M |= p0 |∼ ⊥.

Since M is an arbitrary LPCP
[0,1]Q(ε),≈
2,Meas,Neat-model, T �

LPCP
[0,1]Q(ε),≈
2

p0 |∼ ⊥. �
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Note that the above proof ofμ([p0]) = 0, does not hold in the case when the range of
the probability is the unit interval of ∗R because ∗R isω1-saturated (which means that
the intersection of any countable decreasing sequence of nonempty internal sets must
be nonempty). As a consequence, thanks to the restricted ranges of probabilities that
are allowed in LPCP

[0,1]Q(ε),≈
2,Meas,Neat-class of models, our system goes beyond the system

P, when we consider infinite default bases.
LPCP

[0,1]Q(ε),≈
2 is rich enough not only to express formulas that represents defaults

but also to describe more: probabilities of formulas, negations of defaults, combi-
nations of defaults with the other (probabilistic) formulas, etc. Let us now consider
some situations where these possibilities allow us to obtain more conclusions than
in the framework of the language of defaults.

Example 6.2 The translation of rational monotonicity, ((α |∼ β)∧¬(α |∼ ¬γ )) →
((α ∧ γ ) |∼ β), is LPCP

[0,1]Q(ε),≈
2,Meas,Neat-valid since rational monotonicity is satisfied

in every ∗R-probabilistic model, and LPCP
[0,1]Q(ε),≈
2,Meas,Neat is a subclass of that class of

models. The same holds for the formula ¬(true |∼ false) corresponding to another
property called normality in [12]. �

Note that in the above example we use negated defaults that are not expressible in P.

Example 6.3 Let the default base consist of the following two defaults s |∼ b and
s |∼ t, where s, b and t means Swedes, blond and tall, respectively [3]. Because of the
inheritance blocking problem, in some systems (for example in P) it is not possible
to conclude that Swedes who are not tall are blond ((s∧¬t) |∼ b). Since our system
and P coincide if the default base is finite, the same holds in our framework. In fact,
there are some LPCP

[0,1]Q(ε),≈
2,Meas,Neat-models in which the previous formula is not satisfied.

Avoiding a discussion of intuitive acceptability of the above conclusion, we point
out that by adding some additional assumptions (CP=1−ε(t, s) and CP=1−ε2(b, s)) to
the default base we can entail that conclusion too. First, note that the assumptions
are compatible with defaults s |∼ t and s |∼ b. Then, an easy calculation shows that
P(s∧¬t)
P(s) = P(s)−P(s∧t)

P(s) = P(s)−P(s)+P(s)ε
P(s) = ε, and similarly P(s∧¬b)

P(s) = ε2. Finally, we
can estimate the conditional probability of b given s ∧ ¬t:

P(s ∧ ¬t ∧ b)

P(s ∧ ¬t) = P(s ∧ ¬t)− P(s ∧ ¬t ∧ ¬b)
P(s ∧ ¬t) ≥ εP(s)− ε2P(s)

εP(s)
= 1− ε.

It follows that (s ∧ ¬t) |∼ b. �

6.1.2.1 Decidability of LPCP[0,1]Q(ε),≈
2

The decision method presented in this section extends the procedure from Sect. 3.5.
We can show that every probability formula A is equivalent to a disjunctive nor-
mal form of A: DNF(A) = ∨m

i=1
∧ki

j=1±Xi,j(p1, . . . , pn), where n is the number of
propositional letters from A, and

http://dx.doi.org/10.1007/978-3-319-47012-2_3


6.1 Nonmonotonic Reasoning and Probability Logics 169

• Xi,j ∈ {CP≥s,CP≤s}s∈[0,1]Q(ε)
∪ {CP≈r}r∈[0,1]Q ,

• Xi,j(p1, . . . , pn) denotes that the propositional formula which is in the scope of
the probability operator Xi,j is in the complete disjunctive normal form, i.e., the
propositional formula is a disjunction of the atoms of A.

Obviously, to prove decidability of our logic, it is enough to show that satisfiability
of probability formulas of the form

∧k
i=1±Xi(p1, . . . , pn) is decidable.

For every conditional probability formula (±CP≥s(α, β), ±CP≤s(α, β), and
±CP≈r(α, β)) we can distinguish two cases

1. the probability of β is zero, in which case

• CP≥s(α, β), for s ∈ [0, 1]Q(ε), ¬CP≤s(α, β), for s ∈ [0, 1]Q(ε) \ {1},
CP≤1(α, β), and CP≈1(α, β) hold—and can be deleted from the formula,
while

• ¬CP≥s(α, β), for s ∈ [0, 1]Q(ε), CP≤s(α, β), CP≈r(α, β), for s ∈ [0, 1]Q(ε) \
{1}, r ∈ [0, 1]Q \ {1} ¬CP≤1(α, β), and ¬CP≈1(α, β) do not hold—and the
whole conjunction is not satisfiable,

2. the probability of β is greater than zero.

As a consequence, to prove decidability of our logic it is enough to prove decidabil-
ity of satisfiability of formulas which are conjunctions of conditional probabilistic
formulas of the forms:±CP≥s(α, β),±CP≤s(α, β), and±CP≈r(α, β), such that the
probability of β is greater than 0.

In the next step, we will reduce the satisfiability problem to linear programming
problem. However, in the logic we discuss here, the range of probabilities is recursive
and contains nonstandard values, and there are operators of the formCP≈r that do not
appear in Sect. 3.5. Thus, we should perform the reduction carefully to obtain linear
systems that are suitable for establishing decidability, which, in our approach, means
that Fourier–Motzkin elimination can be applied to them. The idea is to eliminate≈
and �≈ signs and to try to solve linear systems in an extension of Q(ε). We will use
the following abbreviations:

• xi denotes the measure of the atom ai ∈ At(A), i = 1, . . . , 2n,
• ai |= α means that the atom ai appears in the complete disjunctive normal form
of a classical propositional formula α,

• ∑
(α) denotes

∑
ai∈At(A):ai|=α xi, and

• C
∑

(α, β) denotes
∑

(α∧β)∑
(β)

.

Recall that [α]M denotes the set of all worlds of an LPCP
[0,1]Q(ε),≈
2,Meas,Neat-modelM that sat-

isfy α. Since [α]M = ∪ai∈At(A):ai|=α[ai]M , and different atoms are mutually exclusive,
i.e., [ai]M ∩ [aj]M = ∅ for i �= j, CP≥s(α, β) holds inM iff

∑
(β) = 0, or

∑
(β) > 0

and C
∑

(α, β) ≥ s (and similarly for CP≤s, and CP≈r).
Let us consider a formula A of the form

(∧i=1,I ± CP≥si(αi, βi)) ∧ (∧j=1,J ± CP≤sj (αj, βj)) ∧ (∧l=1,L ± CP≈rl (αl, βl)).

http://dx.doi.org/10.1007/978-3-319-47012-2_3
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Then, A is satisfiable iff the following system is satisfiable:

∑2n

i=1 xi = 1
xi ≥ 0 for i = 1, 2n∑

(β) > 0 for every formula β appearing in the formulas of the
form ± CP�(α, β) from A, and � ∈ {≥ si,≤ sj,≈ rl}

C
∑

(αi, βi) ≥ si for every formula CP≥si(αi, βi) from A
C

∑
(αi, βi) < si for every formula ¬CP≥si(αi, βi) from A

C
∑

(αj, βj) ≤ sj for every formula CP≤sj (αj, βj) from A
C

∑
(αj, βj) > sj for every formula ¬CP≤sj (αj, βj) from A

C
∑

(αl, βl) ≈ rl for every formula CP≈rl (αl, βl) from A
C

∑
(αl, βl) �≈ rl for every formula ¬CP≈rl (αl, βl) from A.

We can further simplify the above system by observing that every expression of
the form C

∑
(αl, βl) ≈ rl can be seen as

C
∑

(αl, βl)− rl ≈ 0 and C
∑

(αl, βl)− rl ≥ 0 (6.1)

or

C
∑

(αl, βl)− rl ≈ 0 and rl − C
∑

(αl, βl) ≥ 0. (6.2)

Similarly, every expression of the form C
∑

(αl, βl) �≈ rl can be seen as

C
∑

(αl, βl)− rl �≈ 0 and C
∑

(αl, βl)− rl > 0 (6.3)

or

C
∑

(αl, βl)− rl �≈ 0 and rl − C
∑

(αl, βl) > 0. (6.4)

Thus, we will consider systems containing expressions of the forms (6.1)–(6.4)
instead of C

∑
(αl, βl) ≈ rl, and C

∑
(αl, βl) �≈ rl, respectively. Let us use S(

−→x , ε)

to denote a system of that form. Note that

C
∑

(αl, βl)− rl ≈ 0 and C
∑

(αl, βl)− rl ≥ 0 (6.5)

is equivalent to (∃nl ∈ N) 0 ≤ C
∑

(αl, βl)− rl < nl · ε,

C
∑

(αl, βl)− rl ≈ 0 and rl − C
∑

(αl, βl) ≥ 0 (6.6)

is equivalent to (∃nl ∈ N) 0 ≥ C
∑

(αl, βl)− rl > −nl · ε,
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C
∑

(αl, βl)− rl �≈ 0 and C
∑

(αl, βl)− rl > 0 (6.7)

is equivalent to (∃nl ∈ N)C
∑

(αl, βl)− rl >
1

nl
,

C
∑

(αl, βl)− rl �≈ 0 and rl − C
∑

(αl, βl) > 0 (6.8)

is equivalent to (∃nl ∈ N)C
∑

(αl, βl)− rl < − 1

nl
.

Since we have only finitely many expressions of the forms (6.1)–(6.4) in our
system, we can use a unique n0 ∈ N instead of many nl’s in expressions (6.5)–
(6.8) (we can choose any n0 greater than all nl’s). In other words, if we denote by
S(−→x , ε, n0) the conjunction of all the formulas that appear in (6.5)–(6.8) under the
scope of existential quantifier (with nl’s replaced by n0), then

S(−→x , ε) has a solution in Q(ε) iff (∃n0 ∈ N)S(−→x , ε, n0) is satisfiable in Q(ε).

(6.9)
Note that n0 is not determined in the (6.9). Now, we will replace n0 with another,

infinite but fixed, parameter K which will also have some suitable characteristics in
relation to ε. The role ofK is to help us to avoid the standard approach to the analysis
of inequalities, where we have very often to discuss arguments of the form “it holds
for all, large enough integers.” Since K is a positive infinite integer, if an inequality
holds for every n ∈ N greater than some fixed finite n0, by the overspill principle
it also holds for K . The other direction is a consequence of the underspill principle
which says that if an inequality holds for every infinite number less than K , it also
holds for some finite positive integer. Thus, let us consider the following set

O = {n ∈ ∗
N : S(−→x , n, ε) has a solution in ∗R}.

O is an internal set. IfO is nonempty, it contains all natural numbers greater than some
fixed natural number n′. Using the overspill and underspill principles, we conclude
that O contains all infinite numbers from ∗

N which are less than a fixed infinite
natural number K , i.e., for some n′ ∈ N, and K ∈ ∗

N \ N, [n′,K] = {n ∈ ∗
N : n′ ≤

n ≤ K} ⊂ O. Then,

S(−→x , n0, ε) has a solution in ∗R iff S(−→x ,K, ε) has a solution in ∗R. (6.10)

We can choose K so that for every k ∈ N, Kk · ε ≈ 0. That can be explained as
follows. Let us consider the internal set O′ = {n ∈ ∗

N : nn < 1√
ε
}. Obviously,

N ⊂ O′. Using the overspill principle, there is some K ∈ ∗
N \ N such that

0 < KK <
1√
ε
and 0 < KK · ε <

√
ε.
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Thus, for every k ∈ N,

0 < Kk · ε <
√

ε and Kk · ε ≈ 0.

Note that ≈ and �≈ do not appear in the system S(−→x ,K, ε). Thus, we can freely
multiply (in)equalities by the denominators of the expressions of the formC

∑
(α, β)

and in that way obtain linear (in)equalities of the form

∑
(α ∧ β)− s

∑
(β) ρ 0,

where s is a rational function in ε and K , and ρ ∈ {≥,>,=,<,≤}.
Next, we perform Fourier–Motzkin elimination, which iteratively rewrites the

starting system into a new system without a variable xi such that two systems are
equisatisfiable. During the procedure, numerators and denominators of coefficients
in (in)equalities remain polynomials in ε and K . When no variables are left, we have
to check satisfiability of relations between numerical expressions with the parameter
ε and K which is decidable since K is chosen so that for every k ∈ N, Kk · ε ≈ 0.
Namely, we compare two polynomials Q1(ε,K) and Q2(ε,K) in ε and K of the
forms: Q1(ε,K) = q1,0Q1,0(K)ε0 + q1,1Q1,1(K)ε1 + · · · + q1,n1Q1,n1(K)εn1 , and
Q2(ε,K) = q2,0Q2,0(K)ε0+q2,1Q2,1(K)ε1+· · ·+q2,n2Q2,n2(K)εn2 , where qi,j’s are
rationals, and Qi,j(K)’s are polynomials in K with rational coefficients. Comparison
of Q1(ε,K) and Q2(ε,K) starts by examining q1,0Q1,0(K) and q2,0Q2,0(K) in the
standard way. If they are equal, we have to examine q1,1Q1,1(K) and q2,1Q2,1(K) and
so on. Since ε is an infinitesimal, the above examination of expressions sharing the
same powers of ε is done in a reverse order with respect to the standard procedure
of comparison of polynomials.

It follows that the problem of solving whether S(−→x ,K, ε) has a solution in ∗
R

is decidable, i.e., it is decidable whether the above defined set O is nonempty. As
we noted above, in the case O �= ∅, there is a nonempty [n′,K] ⊂ O. In particular,
if we replace K with an arbitrary finite n ∈ [n′,K] in the inequalities resulting
from Fourier–Motzkin elimination applied to S(−→x ,K, ε), we obtain the inequalities
solvable in Q(ε) iff the original inequalities are solvable in ∗R which is decidable.

If S(−→x , ε) is solvable, we can define an LPCP
[0,1]Q(ε),≈
2 -modelM = 〈W ,H, μ, v〉

such that

• W = Atoms(A),
• H = P(W),
• μ is defined according to the solutions of S(−→x , ε), and
• v(a)(p) = true iff p (and not ¬p) appears in the conjunction which constitutes the
atom a.

Obviously,M |= A. However, even if S(−→x , ε) has a solution, some of xi’s might be 0.
It means thatM does not satisfy the neatness condition, i.e., that some nonempty sets
of worlds (represented by the corresponding atoms that hold in those worlds) have
the zero probabilities. In that case, we can simply remove those worlds and denote
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the obtained model by M′. It is easy to see that for every formula A, M |= A iff
M′ |= A. Thus, we have

Theorem 6.2 The problem of LPCP
[0,1]Q(ε),≈
2,Meas,Neat-satisfiability is decidable. �

Example 6.4 Let us consider the formula A = C ∧ ((D∨ B) → (D∧ B)), where B,
C andD denoteCP≈0(q,�),CP≈1(¬p∧¬q,¬q) andCP≈0.4(p∧q, q), respectively.
The set of atoms, Atoms(A), contains a1 = p ∧ q, a2 = p ∧ ¬q, a3 = ¬p ∧ q and
a4 = ¬p∧¬q. Let xi denote the measure of atom ai. The formula A is equivalent to
(B∧C∧D)∨ (¬B∧C∧¬D). We start with the first conjunct B∧C∧D. According
to the above procedure suppose that the measures of q and ¬q are greater than zero,
i.e., that x1+ x3 > 0, and x2+ x4 > 0. B∧C ∧D is satisfiable iff the same holds for
the following system:

x1 + x2 + x3 + x4 = 1 , xi ≥ 0 for i = 1, 4
x1 + x3 > 0 x2 + x4 > 0
x1 + x3 ≈ 0
x2/(x2 + x4) ≈ 1
x1/(x1 + x3) ≈ 0.4

which is equivalent to

x1 + x2 + x3 + x4 = 1, xi ≥ 0 for i = 1, 4
x1 + x3 > 0 x2 + x4 > 0
0 < x1 + x3 < n1ε
x4/(x2 + x4) < 1/n2
0.4− n3ε < x1/(x1 + x3) < 0.4+ n3ε

for some n1, n2, n3 ∈ N. If we replace n1, n2, n3 by their maximum denoted by n,
we obtain an equivalent system. Since≈ does not appear in the last system, Fourier–
Motzkin elimination can be performed in the standard way. The procedure finishes
with the true condition

1− nε

n
< 1

which means that the considered formula is satisfiable. �

6.1.3 Approximate Defaults and LPCP
[0,1]Q(ε),≈
2

Now we turn to the issue of combining default knowledge and probabilistic knowl-
edge.We are interested in probabilistic approximations of defaults of the formα |∼nβ,
where the corresponding conditional probability is not approximately 1, but at least
1 − 1

n [8]. We are interested in the following question: if we use both rational rela-
tion |∼ and |∼n in one of the nonmonotonic rules, does the strength of a premise
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(the number n) transfer to the conclusion? Consider the following example, which
is essentially a modification of examples from [23].

Example 6.5 Suppose that the statistical knowledge “more than 95% of birds fly”
is available, and that we accept the default rule “generally, birds have wings.” (The
former can be expressed in our terminologywithb |∼20 f , while the later is expressible
by default rule b |∼ w, usually interpreted as “conditional probability of w knowing
b is approximately 1.”)

What can we say about the birds with the wings? Intuitively, the conclusion that
they fly with the probability greater than 95% is quite acceptable. On the other hand,
the best we can calculate is that the probability is either greater than or infinitely
close to 95%. �

We overcome the above difficulty by slightly changing the notion of |∼n.

Theorem 6.3 Let |∼ be a rational relation, and let μ be a corresponding neat
nonstandard probability measure. If the binary relations |∼n are defined by α |∼nβ

iff μ(β|α) > 1− 1
n or μ(β|α) ≈ 1− 1

n , then the following rules hold:

LLE≈n :
� α ↔ β,α |∼nγ

β |∼nγ
; RW≈

n :
� α → β,γ |∼nα

γ |∼nβ
;

OR≈n :
α |∼γ ,β |∼nγ

α ∨ β |∼nγ
; AND≈n :

α |∼β,α |∼nγ

α |∼nβ ∧ γ
;

CM1≈n :
α |∼nβ,α |∼γ

α ∧ β |∼nγ
; CM2≈n :

α |∼β,α |∼nγ

α ∧ β |∼nγ
.

Proof As an illustration, we will prove OR≈n . Let us suppose μ(γ |α) = 1− ε1 and
μ(γ |β) > 1− 1

n−ε2 (ε1, ε2 ≈ 0). As in the proof ofORn, we can obtainμ(γ |α∨β) ≥
1− μ(α0∨β0)

μ(α∨β)
, where α0 is α ∧¬γ and β0 is β ∧¬γ . From μ(α0) ≤ ε1μ(α ∨ β) and

μ(β0) < (ε2+ 1
n )μ(α∨β) we conclude μ(α0∨β0) ≤ (ε1+ ε2+ 1

n )μ(α∨β). Thus,
μ(γ |α ∨ β) ≥ 1− 1

n − ε1 + ε2 ≈ 1− 1
n . �

The above statement is in spirit of [23, Theorem5.1]where some ruleswith similar
combinations of default knowledge and probabilistic knowledge are presented.

The LPCP
[0,1]Q(ε),≈
2 -logic is a suitable syntactic framework for modeling default

reasoning. For example, the above rule OR≈n can be written as

CP≈1(γ, α) ∧ (CP≥1− 1
n
(γ, β) ∨ CP≈1− 1

n
(γ, β)) →

(CP≥1− 1
n
(γ, α ∨ β) ∨ CP≈1− 1

n
(γ, α ∨ β)).

Section5.7.1 provides a complete axiomatization of the logic LPCP
[0,1]Q(ε),≈
2 , so

that (theLPCP
[0,1]Q(ε),≈
2 -translations) of all the rules fromTheorem6.3 are theoremsof

LPCP
[0,1]Q(ε),≈
2 . Obviously, if a formula (representing the LPCP

[0,1]Q(ε),≈
2 -translation

of defaults and/or approximate defaults) is not an LPCP
[0,1]Q(ε),≈
2 -theorem, then it is

not a consequence of (the LPCP
[0,1]Q(ε),≈
2 -translations) of the above rules.

http://dx.doi.org/10.1007/978-3-319-47012-2_5
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6.2 Logic for Reasoning About Evidence

6.2.1 Evidence

As a noun, evidence can be defined as something that proves or disproves certain
claims—hypotheses. In the philosophy of science the notion of evidence is one of
the main concepts in confirmation theory and evidence theory. Let us first consider
the introductory example from [15].

Example 6.6 Suppose that a box with fair and double-headed coins is given and that
one coin is randomly chosen from that box. After finitely many (say 10) tosses of
the coin and the observations of the outcomes of each toss, what can we say about
the likelihood of the hypothesis that the coin is double-headed without the prior
knowledge of the exact number of fair coins and the exact number of the double-
headed coins in the box?

If the coin lands tails in at least one toss, then the hypothesis that the coin is
double-headed is obviously false. On the other hand, if the coin lands heads in all
tosses, thanwe can say that our experiment favors thementioned hypothesis (the coin
is double-headed). In this particular case, the amount of evidence increases with the
increment of the number of tosses in the experiment.

Of course, the relative frequencies of double-headed and fair coins in the box
are sufficient for the computation of the probability of hypotheses after experiment.
However, the prior probabilities are usually unknown, so we cannot compute pos-
terior probabilities. Still, experiments do provide some evidence in favor of one or
several possible hypotheses. �

Intuitively, the probability of a hypothesis depends on

• the prior probabilities of the hypothesis (i.e., the proportion of double-headed coins
in the box);

• to what extent the observations support the hypothesis.

The second item is formalized by theweight of evidence—the functionwhich assigns
a number from the unit interval to every observation and hypothesis. Let us give a
short overview of how evidence is modeled and formalized in the case of one or more
observations.

LetH = {h1, . . . , hm} be the set that represents mutually exclusive and exhaustive
hypotheses and O = {o1, . . . , on} be the set of possible observations.

For the hypothesis hi, letμi be a likelihood function onO, i.e., the function which
satisfies

• μi : O −→ [0, 1];
• μi(o1)+ · · · + μi(on) = 1.

We assume that for every observation o ∈ O there is i ∈ {1, . . . ,m} such that
μi(o) > 0. An evidence space is a tuple E = 〈H,O, μ1, . . . , μm〉. For an evidence
space E, we define a weight function wE by the following conditions:
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• wE : O× H −→ [0, 1];
• wE(oi, hj) = μj(oi)

μ1(oi)+···+μm(oi)
.

Intuitively, wE(o, h) is the likelihood that the hypothesis h holds, if o is observed.
Specially, wE(o, h) = 0 means that h is certainly false if o is observed, while
wE(o, h) = 1 means that o fully confirms h.

Similarly as in the case of probability measures, we need a list of properties that
will fully capture the notion of a weight function. In addition, those properties should
be stated in such a way that will enable purely syntactical reformulation.

Reference [15] provides one such characterization of weight functions

Theorem 6.4 Let H = {h1, . . . , hm} and O = {o1, . . . , on}, and let f be a real-
valued function, f : O× H −→ [0, 1]. Then there exists an evidence space

E = 〈H,O, μ1, . . . , μm〉

such that f = wE iff f satisfies the following properties:

1. f (oi, h1)+ · · · + f (oi, hm) = 1, for every i ∈ {1, . . . , n}.
2. There exist x1, . . . , xn > 0 such that, for all j ∈ {1, . . . ,m},

x1f (o1, hj)+ · · · + xnf (on, hj) = 1. �

Moreover, if 1. and 2. are satisfied, then the likelihood functions μi, i ∈ {1, . . . ,m}
are defined by

μj(oi) = f (oi, hj)

xj
.

A weight function can be seen as a qualitative assessment of the evidence in
favor of one of the hypotheses. As we have mentioned earlier, we cannot determine
the probability of the hypotheses after an observation without knowing the prior
probabilities. On the other hand, if we know the prior probabilities, then we can use
the Dempster’s rule of combination to calculate the posterior probabilities.

Dempster’s rule of combination combines probability distributions ν1 and ν2 on
G in the following way: for every measurable G ⊆ G

(ν1 ⊕ ν2)(G) =
∑

h∈G ν1(h)ν2(h)∑
h∈G ν1(h)ν2(h)

.

Let μ be a probability measure on the set For(H) of propositional formulas over
H = {h1, . . . , hm} , which satisfies

μ(h1)+ · · · + μ(hm) = 1.

Since hypotheses are mutually exclusive, μ should satisfy μ(hi ∧ hj) = 0, for i �= j.
Then μ(h1 ∨ . . . ∨ hm) = μ(h1) + · · · + μ(hm), so the fact that hypotheses are
exhaustive may be expressed by the equality μ(h1)+ · · · + μ(hm) = 1.
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Note that for any φ ∈ For(H), there exists φ′ ∈ For(H) of the form
∨

i∈I hi, for
some I ⊆ {1, . . . ,m}, such that μ(φ) = μ(φ′).

Indeed, it is obvious if φ ∈ H; suppose that μ(φ1) = μ(φ′1) and μ(φ2) = μ(φ′2),
where φ′1 is of the form

∨
i∈I1 hi and φ′2 is of the form

∨
i∈I2 hi.

Then, μ(φ1 ∧ φ2) = μ((φ1 ∧ φ2)
′) and μ(¬φ1) = μ((¬φ1)

′) for (φ1 ∧ φ2)
′ =∨

i∈I1∩I2 hi and (¬φ1)
′ = ∨

i∈{1,...,m}\I1 hi.
Since for each observation o for which μ1(o) + · · · + μm(o) > 0, wE(o, h1) +

· · ·+wE(o, hm) = 1 holds, there is a unique probability measure on For(H)which is
an extension ofwE(o, ·), such that hypotheses are mutually exclusive. Hence, we will
also denote that measure with wE(o, ·). Informally, we may assume that elements of
For(H) are subsets of H.

If we let μ be a prior probability on hypotheses, then we can calculate the proba-
bility of hypotheses after observing o in the following way:

μo = μ⊕ wE(o, ·).

If E = 〈H,O, μ1, . . . , μm〉 is an evidence space, we define

E∗ = 〈H,O∗, μ∗1, . . . , μ
∗
m〉

as follows:

• O∗ = {〈o1 . . . , ok〉 | k ∈ ω, oi ∈ O}.
• μ∗i : O∗ −→ [0, 1] is defined by

μ∗i (〈o1, . . . , ok〉) = μi(o
1) · · ·μi(o

k).

The sequence 〈o1, . . . , ok〉 can be seen as a conjunction of its members, so the
previous formula implicitly reflects independence of observations o1, . . . , ok . It is
shown in [15] that

wE∗(〈o1, . . . , ok〉, ·) = wE(o
1, ·)⊕ · · · ⊕ wE(o

k, ·).

Informally, wE∗(〈o1, . . . , ok〉, h) is the weight that hypothesis h is true, after observ-
ing o1 . . . , ok . We will also use the following equality in an axiomatization of our
temporal logic:

wE∗ (〈o1, . . . , ok〉, hi) = wE∗ (o1, hi) · · ·wE∗ (ok, hi)

wE∗ (o1, h1) · · ·wE∗ (ok, h1)+ · · · + wE∗ (o1, hm) · · ·wE∗ (ok, hm)
.

If the prior probability μ on the set of hypotheses H is known, then we can
calculate the probability of hypotheses after observing 〈o1, . . . , ok〉 in the following
way:

μ〈o1,...,ok〉 = μ⊕ wE(〈o1, . . . , ok〉, ·).



178 6 Some Applications of Probability Logics

As an illustration, we will slightly modify Example 2.5 from [15]

Example 6.7 Similarly as before, one coin is taken from the box that contains fair
and double-headed coins. The coin is tossed 10 times. Each toss of the coin yields a
different observation. The set of all possible outcomes (observations) is O = {h, t},
where h stands for “the coin lands heads,” while t stands for “the coin lands tails."
The set of hypotheses is H = {f , d}, where f stands for “the coin is fair,” while d
stands for “the coin is double-headed.” In order to complete our evidence space, we
need to define the likelihood functions μf and μd

• μf (h) = μf (t) = 0.5;
• μd(h) = 1, μd(t) = 0.

Using likelihood functions μf and μd we can easily compute the values of μ∗f (〈o1,
. . . , ok〉) μ∗d(〈o1, . . . , ok〉) for any sequence of observations 〈o1, . . . , ok〉, where 1 �
k � 10. For instance, let us consider the sequences

a = 〈h, h, h, t, h, h, h, h, h, h〉 and b = 〈h, h, h, h, h, h, h, h, h, h〉.

The corresponding μ∗-values are

• μ∗f (a) = μ∗f (b) = 2−10;
• μ∗d(a) = 0, μ∗d(b) = 1.

From the μ∗-values we can calculate the respective values of evidence weights as
follows:

• wE∗(a, f ) = 1, wE∗(a, d) = 0;

• wE∗(b, f ) = 2−10

1+ 2−10
, wE∗(b, d) = 1

1+ 2−10
. �

6.2.2 Axiomatizing Evidence

Now we introduce a temporal logic that can deal with sequences of observations
made over the time. Let H = {h1, . . . , hm}, O = {o1, . . . , on} and C = {c1, . . . , cn}.
The elements of H will be called hypotheses and the elements of O will be called
observations observations. The elements of C are constants occurring in the repre-
sentation of the likelihood function. Let For(H) be the set of propositional formulas
over H.

We define the set Term of all probabilistic terms recursively as follows:

• Term(0) = {P(α) | α ∈ For(H)} ∪ {w(o, h) | o ∈ O, h ∈ H} ∪ C ∪ {0, 1}.
• Term(n+ 1) = Term(n) ∪ {(f+ g), (f · g), (−f) | f,g ∈ Term(n)}.
• Term =

∞⋃
n=0

Term(n).
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The set For of formulas is defined recursively as the smallest set that contains
expressions of the form f � 0, f ∈ Term (basic probability formulas), observations
and hypotheses, and is closed under Boolean connectives and the temporal operators
© and U. An example of the formula is

(o ∧ w(o, h) � r ∧ G(P(h) > 0)) → F(o→ P(h) � s)

which can be read as “if o is observed, theweight of evidence of o for h is at least r and
if the probability of h is always positive, then, sometimes in the future, probability
of h will be at least s, if o is observed.”

We define a model M as an infinite sequence 〈M0,M1,M2, . . .〉 such that

Mk = 〈E∗, μ, h, d1, . . . , dn, o
1, o2, . . . , ok〉

for all k � 1 and M0 = 〈E∗, μ, h, d1, . . . , dn〉. Notice that E∗, μ, d1, . . . , dn are the
same in all Mk’s and that with the increment of k we just add one new observation.

For a modelM = 〈M0,M1,M2, . . .〉we define the satisfiability relation |= recur-
sively

• Mk |= h′ if h′ = h.
• Mk |= o′ if o′ = ok .
• Mk |= f � 0 if fMk � 0, where fMk is recursively defined in the following way:

– 0Mk = 0, 1Mk = 1, cMk
i = di.

– P(φ)Mk = μ⊕ wE∗(〈o1, . . . , ok〉, ·)(φ), φ ∈ For(H).
– w(〈oi1 , . . . , oik 〉, h′)Mk = wE∗(〈oi1 , . . . , oik 〉, h′).
– (f+ g)Mk = fMk + gMk .
– (f · g)Mk = fMk · gMk .
– (−f)Mk = −(fMk ).

• the conditions for Boolean operators and temporal operators are as usual (see
Sect. 4.7).

Axiomatization of the logic extends the axiomatization of polynomial weight
formulas from [27] (see also Sect. 5.8) with the temporal axioms 8–11 and inference
rules 2 and 3 from AxLPPLTL

1
(Sect. 4.7) and the following axioms:

Te1 φ ↔©φ, φ ∈ For(H).
Te2 f � 0↔©(f � 0), if f does not contain an occurrence of P.
Ev1 w(o, h) � 0, o ∈ O, h ∈ H.
Ev2 w(o, h1)+ · · · + w(o, hm) = 1, o ∈ O.
Ev3 ©(P(h) � r) → P(h)w(o, h) � r(P(h1)w(o, h1) + · · · + P(hm)w(o, hm)),

o ∈ O, h ∈ H, r ∈ [0, 1] ∩Q.
Ev4 c1 > 0∧. . .∧cn > 0∧c1w(o1, h1)+· · ·+cnw(on, h1) = 1∧. . .∧c1w(o1, hm)+

· · · + cnw(on, hm) = 1.
Ev5 w(o1, h) · · ·w(ok, h) =

w(〈o1, . . . , ok〉, h)(w(o1, h1) · · ·w(ok, h1)+ · · · + w(o1, hm) · · ·w(ok, hm)).

http://dx.doi.org/10.1007/978-3-319-47012-2_4
http://dx.doi.org/10.1007/978-3-319-47012-2_5
http://dx.doi.org/10.1007/978-3-319-47012-2_4
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Axioms Ev2 and Ev4 are counterparts of the items 1 and 2 of Theorem 6.4 respec-
tively. In particular, Axiom Ev4 eliminates quantifiers in Axiom E4 of [15], which
is an important part of the solution of the axiomatization problem posed in the same
paper. Axiom Ev3 is a reformulation of Dempster’s rule of combination in tempo-
ral settings: it gives the connection between probabilities in the current state (time
instance) and its immediate future. Axiom Ev5 is formal representation of

wE∗ (〈o1, . . . , ok〉, hi) = wE∗ (o1, hi) · · ·wE∗ (ok, hi)

wE∗ (o1, h1) · · ·wE∗ (ok, h1)+ · · · + wE∗ (o1, hm) · · ·wE∗ (ok, hm)
.

All the proof theoretical notions are the same as for the LPPLTL
1 -logic. Combining

the techniques from the Sects. 4.7 and 5.8, we can prove that this axiomatization is
strongly complete for the presented class of models.

6.3 Formalization of Human Thinking Processes in LQp

A mathematical model of the process of human thinking based on the dynamical
systems over a field of p-adic numbers was presented in [1, 18, 19]. Here we briefly
describe only the key parts of thismodel and for details we refer to the cited literature.
Then we show how this process of thinking can be formalized in a version of the
logic LQp where the appropriate measure μ can be seen as a coding function that
associates a p-adic number to each peace of information.

The process of human thinking can be seen as a nonlinear function xn+1 = f (xn),
xn ∈ XI where XI is a space of information. In the biological model the space
of information is defined as follows. Elementary units for processing information
are neurons. All neurons have the same number of possible states (levels), say m.
Each information I is represented by chains of neurons, N = (n0, n1 . . . nN ), so
every such chain of neurons must be found in some of the mN different I-states
x = (α0, α1 . . . αN ), αi ∈ {0, 1, . . . ,m − 1}. Then, the space of information XI is
exactly the set of all possible I-states. Neurons have a hierarchy structure: the most
important is the neuron n0, the neuron n1 is less important then n0, but it is more
important then n2, n3 . . . nN , and so on. Thus, because of this hierarchy, if nj ignites,
that can cause ignition of the neurons nj+1, nj+2 . . . nN .

More formally, if nj is in the highest state, αj = m − 1, then ignition of this
neuron causes that αj = 0, and nj+1 exceeds to higher level, αj+1 := αj+1 + 1.
Note that the same holds when we increase by 1 any digit in p-adic representation
of some number (when m is actually some prime number). This model assumes a
finite number of neurons but in order to apply tools developed for p-adic analysis
to examine the proposed model, it is useful to consider an ideal - infinite states:
x = (α0, α1, . . . , αN . . .), αi = 0, 1, . . . ,m − 1.

Note that in this model two pieces of information are close if they have a suf-
ficiently long common prefix. The p-adic distance d(x, y) = |x − y|p allows us to

http://dx.doi.org/10.1007/978-3-319-47012-2_4
http://dx.doi.org/10.1007/978-3-319-47012-2_5
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measure nearness of information in this way. Therefore the set of p-adic integersZQp

is suitable to be chosen as the space of information, i.e., XI = ZQp . We consider
dynamical system f : ZQp → ZQp where f is analytic function. If f (x0) = x0 then x0
is a fixed point of the function f , i.e., fixed point of the dynamical system.

A fixed point x0 of the function f is called attractor if there is a neighborhood
V(x0) such that for every y ∈ V(x0), limn→∞ f n(y) = x0. For an attractor x0, we
define a basin of attraction A(x0) = {y ∈ ZQp : f n(y) → x0, n→∞}.

The clopen ball B[a, 1
pn ], n ∈ Z is called Siegel disk, if each sphere S(a, 1

pl ), l ≥ n
is invariant sphere of f .

There are several results concerning dynamical functions of the forms fc(x) =
x2 + c, c ∈ ZQp and fn(x) = xn, n ∈ N, see for instance [1, 18, 19]. Here we give
one of these results needed for the later discussion.

Theorem 6.5 The dynamical system fn(x) = xn has m = n − 1 fixed points aj, j =
1 . . .m on the sphere S[0, 1]. All fixed points aj �= 1 belong to sphere S[1, 1] and
1. If GCD(n, p) = 1 then all these points are centers of Siegel disks.
2. If GCD(n, p) �= 1 then all these points are attractors and A(aj) = B[aj, 1

p ] �

The proposed model uses the idea that thinking is carried out on two levels: con-
scious and subconscious. The conscious formulates problems and then sends them
to subconscious, i.e., conscious sends an initial information x0 and a function f - the
regime of work to subconscious. Subconscious works with the obtained data, i.e.,
starting with x0, and using f generates the set of attractors, which conscious sees
as possible solutions. Below we present an example similar to examples from [18]
which illustrates thinking in Q2 with the function f (x) = x2.

Example 6.8 A tourists must decide which of the given n countries she will visit
based on the given conditions: each of these country has one of the labels-0 if tourist
cannot go to that country and 1 if she can. The set of countries is ordered by their
importance B0,B1 . . .Bn−1, where B0 is the country where she would most wish to
go,B1 is less desirable thanB0 etc. Her state of mind about countries can be described
by a number x = α0 + α1 · 2+ · · ·αn−1 · 2n−1, where αj is the label of Bj.

The tourist makes a decision which country she will visit, using some initial state
of mind x0. First, we consider the situation when her subconscious is described by
the dynamical system f (x) = x2

(a) If x0 ∈ B[0, 1
2 ], i.e., α0 = 0, then, according to the previous theorem, the

sequence x0, x1, x2 … converges to the attractor a0 = 0+ 0 · 2+ · · · + 0 · 2m−1,
which can be interpreted as that if she can not go her favorite country, she would
decide not to go anywhere.

(b) If x0 ∈ S[0, 1] = B[1, 1
2 ], i.e., α0 = 1, then the sequence x0, x1, x2 … converges

to the attractor a1 = 1 + 0 · 2 + · · · + 0 · 2n−1. Therefore, if she can go to B0,
she reject all other possibilities. �
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In this model, each piece of information corresponds to a p-adic number. From the
logical point of view each piece of information is a proposition, andwewant to repre-
sent it by a classical propositional formula. Then we have to define a coding function
(or functions) which associates a p-adic number to that formula(information). It turns
out that the logic LQp is suitable for formalization of this coding function because
axiomatic systemAXLQp

“obligates” this function to behave according to the topology
of space ZQp .

There are some changes that we need to make in order to adapt the logic for this
new task. Thus, in this sectionwe propose a new logic, denoted Lthinking

ZQp
, for reasoning

about arbitrary coding p-adic functionμ. The only two differences between this logic
and LQp are

• the additivity condition (Axiom 3) is withdrawn, since the corresponding feature
is not required for coding functions, and

• the range of coding functions is ZQp = B[0, 1], and not B[0, pM] ⊂ Qp as above.

Special properties (if any) of coding functions could be described using particu-
lar theories in the logic. We illustrate our approach by describing a theory which
formalizes Example 6.8.

The language of the logic Lthinking
ZQp

is the same as the language of the logic LQp ,
except that for the operators Kr,ρ it must be r ∈ Q0 = {r ∈ Q : |r|p ≤ 1},
ρ ∈ R0 = {p−n : n ∈ N} ∪ {0}. Using these operators we define the set of cognitive
formulas Forcgn in the same way as we construct LQp -formulas. The fundamental
difference between theses logics lies in the meaning of the formulas Kr,ρα. In the
new formalism Kr,ρα means that the code of α belongs to the p-adic ball with the
center r and the radius ρ.

Finally, we use logic Lthinking
ZQp

to formalize Example 6.8. Let the proposition αi

represent that the tourist will go to the country Bi and let α = α0 ∨ α1 ∨ . . .∨ αm−1.
In this example the coding function satisfies μ([α]) = μ([α0]) + μ([α1]) · 2 +
· · ·μ([αm−1]) · 2m−1. As in the original example, we suppose that the code of α0 is
given, and that the code of α should be obtained as a deductive consequence of the
corresponding Lthinking

ZQp
-theory. First, we consider the case f (x) = x2. Let

• T1 = {Kx0,
1
2
α ⇔ Kx0,0α0}

• T2 = {Kx2
n

0
, 1
2n+1 α ⇒ Kx2

n+1
0

, 1
2n+2 α|n ∈ N}

• T = T1 ∪ T2

Since μ([α]) = μ([α0]) + μ([α1]) · 2 + · · ·μ([αm−1]) · 2m−1, the theory T1
provides that the code of α belongs to the p-adic ball with the center x0 and the
radius 1

2 , where x0 = μ([α0]). The theory T2 asserts that thinking process consists of
iterative applications of the function x2 on the code of α. Precisely, T2 says: if after
the n-th iteration we know that μ([α]) belongs to the ball with the center (μ([α0]))2n
and the radius 1

2n+1 , then we conclude that after the next iteration, μ([α]) belongs to
the ball with the center (μ([α0]))2n+1 and the radius 1

2n+2 . Furthermore, K1,0α0 and
K0,0α0 mean that the tourist can (cannot) go to her favorite country.

Now, if she can go to her favorite country, we have
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• T ,K1,0α0 � K1, 12
α; i.e. if μ([α0]) = 1, then according to T1, μ([α]) belongs to

the ball with the center 1 and the radius 1
2 .

Then using T2 we obtain

• T ,K1,0α0 � K1, 1
2n

α for every n ∈ N; i.e., for every n ∈ N, μ([α]) belongs to the

ball with the center 1 and the radius 1
2n ,

and therefore, according to Rule 5

• T ,K1,0α0 � K1,0α.

Thus, μ([α]) = 1+ 0 · 2+ · · · + 0 · 2m−1, that is, she will go only to the country B0.
In the same way we obtain

• T ,K0,0α0 � K0,0α,

i.e., if she cannot go to B0, she will go nowhere.

6.4 Other Applications

It is shown in [2] that the standard probabilistic semantics for System P is given by
so-called big-stepped probabilities, i.e., the neat probability measures that satisfy the
conditions

• ∑
at′∈Atoms,μ(at′)<μ(at) μ(at′) < μ(at), for all at ∈ Atoms, and

• μ(at) = μ(at′) iff � at ↔ at′, for all at, at′ ∈ Atoms,

where Atoms = Atoms({p1, p2, . . . , pn}) is the set of atoms. Then we can interpret
a default rule of the form α |∼β as μ(β|α) > μ(¬β|α). In [5] we showed that we
can express this condition using the language of LPP2, , and that we can extend the
axiomatization of LPP2, in order to characterize big-stepped probabilities.

In [9] we provided probabilistic representations for three specific classes of pref-
erential relations, obtained by adding to P one of the following rules: Determinacy
preservation [24]

DP : α |∼ β, α ∧ γ |� ¬β

α ∧ γ |∼ β
,

Fragmented disjunction and conditional excluding middle [4]

FD : α|∼β ∨ γ, α|�β, α|�γ

¬β|∼γ
; CEM : α|�β

α|∼¬β
.

Each of those rules imply Rational monotonicity [4]. For the three classes of relations
wehave identified the corresponding subclasses of nonstandardfinitely additive prob-
ability measures that induces them, and proved the corresponding characterization
theorems.

A few years ago a new formalism was introduced to represent spatiotemporal
information in the presence of uncertainty [14, 26]. In [10], several probabilistic
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logics are developed for modeling such information. An atomic formula of the logics
is of the form loc(id, r, t)[�, u] and has the meaning that a particular object id is in
a particular region r at a particular time t with a probability that is in the probability
interval [�, u]. For all the logics, sound and strongly complete axiomatizations are
presented, and decidability issues are discussed.

The paper [6] presents an application of probability logic in the field of abstract
argumentation, nowadays a vivid field within artificial intelligence. Several enrich-
ments of the standard Dung’s argumentation frameworks [11] have been proposed
in order to model scenarios where probabilities have to be expressed [16, 22]. In [6],
the semantics from [22] are characterized in terms of probability logic (similar to
LPP2). This not only provides a uniform logical formalization but also might pave
the way for future implementations.
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weight formulas. In: Sven Hartmann, L., Kern-Isberner, G. (eds.) Foundations of Information
and Knowledge Systems FoIKS 2008. Lecture Notes in Computer Science, vol. 4932, pp.
239–252. Springer, New York (2008)
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Chapter 7
Related Work

Abstract We relate our results to a number of papers of other authors published
from the mid-1980s onwards. Although we have tried to provide a comprehensive
bibliography, we are aware that it is inevitably incomplete and that some important
references might be missing. A lot of efforts have been made to reduce the number of
those absent works. We try to arrange our comments in temporal order of appearance
of transcripts, with some exceptions if some papers are closely related by their sub-
jects but not by publishing times. Whenever possible we comment journal versions
of the papers, although there were preliminary versions in proceedings.

7.1 Papers on Completeness of Probability Logics

As we mentioned in Chap. 2, a lot of recent interest in probability logic was initiated
by the paper [49], published in 1986, inwhichNilsson presented a procedure for prob-
abilistic entailment which, given probabilities of premises, could calculate bounds
on probabilities of the derived sentences. The Nilsson’s approach was semantical and
stimulated other authors to provide axiomatizations and decision procedures for the
logic. In the same year Gaifman studied structures appropriate for higher order prob-
abilities and their connections with modal logics [20]. Geifman defined probability
models (similar to our measurable models LPP1,Meas for the propositional logic with
iterations of probability operators) as tuples (called HOP, higher order probability
space) of the form

• 〈W,F,P,PR〉,
where W is a nonempty set, F is a field of subsets of W (events), P is the subjective
probability of an agent, whilePR associates to every A ∈ F, and every closed interval
Δ ⊂ [0, 1] an event PR(A,Δ) that the probability of A is in Δ. Geifman gave a
semantical analysis of those models. He presented a list of postulates for HOPs, e.g.,
PR(A, [0, 1]) = W , and (a version of Miller’s principle P(A|P(A) ∈ [s, t]) ∈ [s, t])

© Springer International Publishing AG 2016
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• if C = ⋂n
i=1 PR(Bi,Δi), and P(C ∩ PR(A, [s, t])) �= 0, then

s ≤ P(A|C ∩ PR(A, [s, t])) ≤ t

and showed that every HOP uniquely determines a mapping p which assigns
to every w ∈ W a probability p(w) : F → [0, 1], p(w)(A) = sup{s : w ∈
PR(A, [s, 1])}. Gaifman then considered valuations that map primitive propositions
to F, so that he could work with a formal language extending propositional logic
with formulas of the form PR(ψ,Δ). He proved that nesting of PR’s does not add
expressivity and that by translating modal �ψ to PR(ψ, [1, 1]) he could embed the
modal system S5 into his logic. Finally, he introduced General HOP’s by adding
an additional argument to PR ranging over a set of ordered (or partially ordered)
time-points. so that he was able to describe changes of probabilities of events.

Fattorosi-Barnaba andAmati considered a class of calculiPF that gave probability
interpretations tomodal operators [15]. They introduced a list of operators of the form
Mr and Lr , that are, in our notation, P>r , and P≥1−r , respectively. Note that Mr and
Lr are mutually definable. M0 and L0 (i.e., P>0, and P≥1) were identified with the
possibility operator M, and the necessity operator L, which probably motivated the
notation. Their probability Kripke-like models are our LPPFr(n)

1,Meas measurable models
with probability functions with a finite range F ⊂ [0, 1], and with iterations of
probability operators. Since the range of probabilities is finite, compactness holds,
andFattorosi-Barnaba andAmati provided afinitary axiomatizationwhich is strongly
complete. Toprove completeness, although the range of probability functions is finite,
they first showed that the infinitary inference rule 3 from Chap.3 is deducible in their
system, and then defined measures in the canonical model using sup. In [70, 71]
van der Hoeck used the notation similar to ours: his probability operators are of the
form P>

r , and the other operators are defined using P
>
r ’s. He simplified completeness

proof from [15] using only finitary means and proved decidability of the logic by
showing that PF has the finite model property1 and, since the range of probability
functions is finite, only finite number of models should be inspected. Independently,
the same logic as PF was axiomatized in [54]. Van der Hoeck showed that, if P≥

1 ϕ

is denoted by �ϕ, the modal system KD is embedded in PF . He also addressed a
serious logical issue caused by finitary axiomatizations of non-compact logics with
real-valued probability functions,2 and mentioned [4] as one of possible ways to
overcome that problem.

Alechina gave a strongly complete axiomatization for the class of measurable
first-order probability models (LPP1,Meas, in our notation) with [0, 1]Q-valued prob-
abilities [4]. The main novelty is the infinitary rule:

• From Σ � ¬P=rϕ, for every r ∈ [0, 1]Q, infer Σ � ⊥

1Every consistent formula is satisfiable in a finite model.
2There are consistent but unsatisfiable sets of formulas.

http://dx.doi.org/10.1007/978-3-319-47012-2_3
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which guarantees that the probabilities of sentences belong to [0, 1]Q.Weused similar
rules in [55] and [65, 66] to ensure that probabilities are in decidable subsets of [0, 1]
and in [0, 1]Q(ε), the unit interval of Hardy field, respectively.

Computational aspects of probability logics were discussed in [21]. The paper
[40] showed that it is possible to apply a very efficient numerical method of column
generation to solve the PSAT satisfiability problem for LPP2,Meas.

In [7] Bacchus introduced a first-order logic, called Lp, suitable for representing
and reasoning with statistical information, for example statistical statements about
the state of the world, e.g., “More than 75% of all birds fly.” This approach is
similar to Keisler’s logics [41] with probability quantifiers (see Chap.2). Keisler’s
(P−→x ≥ r)ψ(x) is Bacchus’ [α]−→x ≥ r, where [α]−→x is considered as a probability
term. Bacchus added flexibility to the logic by allowing, beside the usual first-order
language, conditional probability terms of the form [α|β]−→x and, field terms built up
from field constants 0 and ±1, and variables, using function symbols +, − and ×,
and terms built up from probability and field terms, e.g., a formula is

∀r(r × [α|β]−→x > [γ ]−→y ).

Quantification is allowed over variables that are evaluated in domains, and over field
variables, as in the previous example. The considered Lp-models are, similarly to
Keisler’s, first-order structures with probabilities on their domains. The presented
finitary axiom system contains the standard axioms and rules of the first-order cal-
culus with equality, axioms of a totally ordered field, and axiom about probability,
e.g.,

• ∀x1 . . . ∀xnα → [α]−→x = 1,
• ∀z1∀z2[[α]−→x = z1]−→y = z2 → [α]〈−→x ,−→y 〉 ≥ z1 × z2,
• [α]−→x = [α]π(−→x ), for every permutation π of −→x , etc.

Since the axiom system is finitary, the strong completeness theorem, T � α iff T |= α

is proved by a way of standard Henkin style procedure. In Bacchus’ framework, the
price paid to obtain that was

• domains are countable,
• probability functions are finitely additive, and
• the range of probability functions is required to be the unit interval of a totally
ordered field, instead of a particular field, e.g., [0, 1], or [0, 1]Q.

As a consequence, there are sentences on the real-valued probability functions that
are not provable in Lp, e.g.,

(∀r1 ∈ [0, 1])([(∀r2 < r1)[α]−→x > r2] → [α]−→x ≥ r1).

Fagin, Halpern, and Megiddo provided a comprehensive study of several formal
languages for reasoning about probability [13]. They started with the class LPP2,Meas

of measurable propositional models with real-valued probability functions and with-
out iteration of probability operators. Since they were not able to axiomatize the set

http://dx.doi.org/10.1007/978-3-319-47012-2_2
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of valid ForLPP2 -formulas (in the language containing the probability operators P≥s),
they extended the language to allow basic probability formulas of the form

a1w(α1) + . . . + anw(αn) ≥ s,

where ai’s and s are rational numbers, αi’s classical propositional formulas, and
w(αi)’s are primitive weight terms denoting probabilities.3 Probability formulas are
Boolean combinations of basic probabilistic formulas. Fagin, Halpern, and Megiddo
gave the finitary axiomatic system AXMEAS which is divided into three parts

• the standard axioms and rules for propositional logic,
• axioms for reasoning about probability

– w(α) ≥ 0,
– w(true) = 1,
– w(ϕ ∧ ψ) + w(ϕ ∧ ¬ψ) = w(ϕ), and
– if |= ϕ ↔ ψ , then w(ϕ) = w(ψ), and

• axioms for reasoning about linear inequalities, e.g.,

– x ≥ x,
– (a1x1 + · · · + anxn ≥ c) ∧ (a′

1x1 + · · · + a′
nxn ≥ c′) → ((a1 + a′

1)x1 + · · · +
(an + a′

n)xn) ≥ (c + c′),
– (t ≥ c) → (t > d), for c > d, etc.

To prove the weak completeness, � A iff |= A, they showed (using axioms for
reasoning about linear inequalities) that for every w(ϕ) ∈ Subf(A), � w(ϕ) ↔∑

a∈Atoms(ϕ) w(a), and that, without loss of generality, A can be assumed to be a finite
conjunction of (possibly negated) basic probabilistic formulas. That conjunction is
satisfiable iff the corresponding linear system of the form given in Theorem 3.11
is satisfiable. So, unsatisfiability of the system implies that � ¬A, i.e., that A is
inconsistent. In [55, 56, 64] an axiomatization of the logic LPP2 without linear com-
binations of primitive weight terms was given, while [63] presented an adaptation of
the logic LPP2 so that the strong completeness was proved for the logic with Boolean
combinations of linear inequalities of primitive weight terms. Fagin, Halpern, and
Megiddo proved decidability and NP-completeness of PSAT, as it is mentioned in
Sect. 3.5. They also discussed conditional probabilities by extending the language to
allow polynomial weight formulas, e.g., 2w(p1 ∧p2)w(p2)+3w(p2) ≥ w(p1)w(p2),
and proved decidability of PSAT. To obtain the weak completeness, they extend the
language to a first-order language such that variables can appear in formulas

(∀x)(∃y)[(3 + x)w(ϕ)w(ψ) + 2w(ϕ ∨ ψ) ≥ z].

The corresponding axiom system AXFO−MEAS contains the standard first-order
axiomatization and, additionally, axioms for real closed fields. In [61–63] strong

3So, w(α) ≥ s is P≥sα.

http://dx.doi.org/10.1007/978-3-319-47012-2_3
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completeness was proved for the logics with polynomial weight formulas and [0, 1],
and [0, 1]∗R-valued probability functions. For the latter, logic compactness was
also showed. Models that are not measurable were also considered in [13], i.e.,
the probability measure μ is partial and, for some set A, only the inner measure
μ∗(A) = sup{μ(B) : B ⊂ A} and the outer measure μ∗(A) = inf{μ(B) : B ⊃ A}
induced by μ can be defined. Fagin, Halpern, and Megiddo provided a weakly com-
plete axiom system for this logic, and prove decidability of PSAT.

Boričić and Rašković considered nonmeasurable models in [10]. They extended
Heyting propositional logic by probabilistic operators. Since predicates “at lest r”
and “at most r” are not mutually expressible in that context, both types of operators
P≥r and P≤r are included in the formal language. Kripke type models of the form
〈W,R, (px)x∈W , (px)x∈W 〉, appropriate for intuitionistic logic, were used as the cor-
responding semantics. Each world is equipped with two partial functions px and px
with a finite range. The functions represent upper and lower probabilities in x and
satisfy

• monotonicity: if xRy, andX ⊂ W is measurable, then px(X) ≤ py(X), and px(X) ≥
py(X), i.e., the upper probabilities cannot increase, and lower probability cannot
decrease, which corresponds to the paradigm of increasing knowledge over time
in intuitionistic logic,

• subadditivity for upper probabilities: if X,Y ⊂ W are measurable, then px(X ∪
Y) ≤ min{px(X) + px(Y), 1}, and

• superadditivity for lower probabilities:: if X,Y ⊂ W are measurable, then px(X ∪
Y) ≥ min{px(X) + px(Y), 1}.

They presented an axiom system containing

• all instances of formulas provable in the Heyting propositional calculus,
• monotonicity axioms: P≤rα → P≤sα, for r ≤ s; P≥rα → P≥sα, for r ≥ s,
• P≤1α, P≥0α,
• finite semiadditivity: (P≤rα ∧ P≤sβ) → P≤t(α ∨ β), t = min{1, r + s}, and

(P≥rα ∧ P≥sβ ∧ P≤0(α ∧ β)) → P≥t(α ∨ β), t = min{1, r + s},
• Modus Ponens, and
• Necessitation: from α infer P≥1α

and proved its simple completeness.
Halpern considered two first-order probability logics in [31]. In the first logic

probabilities are defined on the domain, similarly as in [7, 41], while in the second
logic probabilities are defined on possible worlds, similarly as in LFOP1,Meas, but
with the restriction that the measures μ(w) in all worlds of a model are equal. Thus,
formulas expressing probabilities either hold in everyworld from amodel, or they are
not satisfiable in that model, i.e., |= ϕ → w(ϕ) = 1 where no function and relation
symbols appear in ϕ except in the argument ψ of a probability term w(ψ), and the
models of that second logic posses also properties of LFOP2,Meas-models. Halpern
provided axiomatization for both logics, but completeness can be proved only if the
domains are bounded in size by some finite n. In Bacchus’ opinion it is difficult
to justify that assumption even for artificial intelligence applications [7]. Bacchus
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explained that first, while domain may be finite, it is questionable that there is a
fixed upper bound on its size, and second, that there are many domains, interesting
in AI applications, that are not finite. The paper [56] introduced a strongly complete
axiom system for LFOP1, the first-order probability logic with probabilities defined
on possible worlds with unbounded domains.

Abadi and Halpern in [1] provided a deep analysis of decidability issues for
the first-order probability logics introduced in [31]. They proved (assuming that
probability functions are discrete, i.e., defined for every singleton) that both logics
are highly undecidable

• when the probability is on the domain, if the language contains one binary predi-
cate, the validity problem is Π2

1 complete,
• with equality in the language and with no other symbol, the validity problem for
the logic with the probability on the domain, is at least Π1∞ hard,

• when the probability is on possible worlds, if the language contains at least one
unary predicate, the validity problem is Π2

1 complete, while
• with equality and only one constant symbol in the language, the validity problem
is Π1∞ hard,

• in the case of [0, 1]Q-valued probabilities, complexity decreases from Π2
1 to Π1

1 .

In the case of arbitrary (i.e., not only discrete) probabilities, the corresponding upper
bounds of complexity remained undetermined. As it is mentioned above, if the sizes
of domains in models are bounded by some fixed n, the validity problem becomes
decidable. In [48, 56] decidability of some fragments of first-order probability logics
without iterations of probability operators were presented.

Frisch and Haddawy presented in [19] an incomplete iteration procedure which
computes increasingly narrow probability intervals for propositional formulas in
LPP2,Meas-models (in our notation). The procedure can be stopped at any time yield-
ing partial information about the probability of sentences, and allowing one to make
a tradeoff between precision and computational time. The considered formulas are
of the form P(φ|ξ) ∈ I , where φ and ξ are classical propositional formulas and I is
a closed subinterval of [0, 1]. To avoid indefiniteness of the conditional probability
P(φ|ξ) when the probability of the conditioning formula ξ is 0, they stated that in
that case P(φ|ξ) holds in any model. Their proof system consists of a set of sound
inference rules, e.g.,

P(α|δ) ∈ [x, y]
P(α ∨ β|δ) ∈ [u, v]
P(α ∧ β|δ) ∈ [w, z]

P(β|δ) ∈ [max(w, u − y + w),min(v, v − x + z)]
provided thatw ≤ y, x ≤ v,w ≤ v

Frisch and Haddawy also mentioned the lack of finitary strongly complete axioma-
tization caused by non-compactness of the logic.

Fagin and Halpern gave in [14] a finitary axiomatization of higher order proba-
bilities (their models extend our LPP1,Meas with the modal notion of knowledge) in
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the formal language that mixes the modal operator of knowledge and linear com-
binations of primitive weight terms. In this more complex system, they use a proof
procedure similar to the one from [13], and prove decidability of PSAT. They also
considered assumptions about relationships between knowledge and probability. A
strongly complete axiomatization of the probabilistic part of this logic was given in
[51, 56, 64].

Hajek,Godo, andEsteva [37] proposed a fuzzy logic of probability forwhichweak
completeness was proved. The fuzzy formulas contains propositional variables of the
form fϕ , which we read “probable ϕ.” Godo andMarchioni presented in [22] a modal
fuzzy logic approach to model probabilistic reasoning in the sense of de Finetti, in
which Łukasiewicz implication can be used to express comparative statements.

Providing a strongly complete axiom system for probability logics was an open
question that attracted attention of researchers. For example, in [6] Aumann noted
that in the context of probability (he consideredmulti-agent propositional real-valued
probabilities, and the language with the probability operators Pr

i , or in our notation
Pi≥rm where i denotes the agent i) still there was no satisfactory syntactic definition
of consistency which enables a proof of strong completeness. As we already noted,
it was solved for propositional and first-order probability logics using the infinitary
axiomatizations from [51, 55, 56]. Heifetz and Mongin in [39] noted that there is
no hope to have a finitary strongly complete system for real-valued probabilities and
gave a finitary weakly complete axiom system for the multi-agent LPP1,Meas. The
key rule in their system guarantees compatible degrees of belief for any two sets of
formulas that are equivalent in a particularly defined sense. The space limit does not
allow to present their inference rule in details, and we refer readers to the original
paper. Another weakly complete axiom system for LPP1,Meas was given in [72]. The
initial axiom system Σ+ contains the infinitary Archimedean rule 3, and is similar to
the propositional part of AxLFOP1 described in Chap.4. Thus, the weak completeness
theorem obtained in [72] is a simple consequence of Theorem 4.4. The second axiom
system ΣL, a subset of Σ+, was used to prove completeness for more general not
measurable models. In the last part of the paper it was shown that it is possible to
provide a weakly complete axiomatization for LPP1,Meas by replacing the infinitary
rule with a finitary version

• ARCHf : From β → P≥r−ε(s,β,α)α, infer β → P≥sα,

where ε(s, β, α) is an elementary function of r,β andαwhich can be computed using
the corresponding decision procedure (note that, since the logic is decidable, there is a
simple finitary axiomatizationwith only one schema: all instances of valid formulas).
A handmade verification of our approach to strongly complete axiomatization of
probability logics which is based on the notion of infinitary deductions was given
in [73], while in [46] key properties of the completeness proof technique presented
in this book were formally verified using the proof assistant Coq. Another approach
similar to ours was presented in [24] for coalgebras over measurable spaces, where
Goldblatt (1949) used a methodology for infinitary logics he developed in [23].

Halpern and Pucella [35] provided a weakly complete axiomatization for reason-
ing about linear combinations of upper probabilities. In semantics, uncertainty is

http://dx.doi.org/10.1007/978-3-319-47012-2_4
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represented by a set P of probability measures with the same set of measurable sets
of possible worlds. For a measurable set of worlds X, upper probability is defined as
is P�(X) = sup{μ(X) | μ ∈ P}. They also showed that the satisfiability problem for
the formulas of the logic is NP-complete.

John Burgess in [11] considered the operator of comparative probability, p ≤ q,
read as “p is less probable than q,” and gave the corresponding complete axioma-
tization in a class of models (in our notation) LPP2,Meas. Our papers related to that
subject are [57, 61].

Meier presented in [47] an infinitary propositional probability logic (with infini-
tary formulas) and proved strong completeness for σ -additive probabilities. Due to
the cardinality argument, that logic is undecidable. In [51, 56] strong completeness
for σ -additive probabilities was given using (in the propositional case decidable)
logics with finitary formulas and infinitary proofs.

7.2 Papers on (Infinitary) Modal Logics

Goldblatt [23] and Segerberg [68] addressed the problem of characterization of
semantical consequence relations in non-compact modal logics (e.g., in the linear
discrete temporal logic with the next and always operators) using infinitary rules.
For example, in a Gentzen type framework, Segerberg included the rule

• (Scott’s Rule) If Γ � A, then �Γ � �A, where Γ is allowed to be infinite.

They provided completeness proofs with the property that for every instance of an
infinitary rule, if the negation of the consequence belongs to a maximal extension
Σ , then there is a premiss C of the rule such that ¬C ∈ Σ . That approaches could
be applied to temporal, dynamic, multi-agent epistemic logics, etc., and generalized
the paper [69]. Infinitary modal logics were also discussed in [16].

Finally, we note that some of the papers that discussed relationships between prob-
ability logics and modal logics are: [4, 5, 27, 30, 32, 70, 71]. Using the translation
P≥1 to�, andP>0 to♦, their results are that, sinceP≥1(α → β) → (P≥1α → P≥1β)

and P>0(p ∨ ¬p), probability logics generalize modal logic KD. Under additional
assumptions about probabilitymodels, some other strongermodal logics (e.g., reflex-
ive, transitive, symmetric) can be embedded into probability systems. The paper [14]
considered probabilistic operators and the modal operator of knowledge.

7.3 Papers on Temporal Probability Logics

Combinations of temporal and probabilistic formalizations are presented in several
papers. Some papers that either implicitly or explicitly combine probabilistic and
temporal reasoning were motivated by the need to analyze probabilistic programs
and stochastic systems [38, 44] provided semantics and axiom systems for logics
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with temporal formulas that do not involve probabilities explicitly and are interpreted
over Markov systems which can simulate the execution of probabilistic programs.
A double-exponential space decidability procedure of a probabilistic propositional
dynamic logics with explicit probabilities was given in [17], but the completeness
problem is not solved.A fragment of that logicwas considered in [42] and a PSPACE-
decision procedure was provided.

A sound first-order axiomatization (which is not complete) is provided in [26] for
a logic for representing branching time, chance, and action.

In [25] a strongly complete dynamic propositional logic of qualitative probabilities
was presented. The logic can be used for reasoning about probabilistic processes. In
the logic, finitary formulas are used, while the axiom system contains an infinitary
rule

• if the set of rationals that are greater or equal to the probability of one proposition
is contained in the set of rationals that are greater or equal to the probability of
another proposition, then the probability of the first proposition is greater or equal
to the probability of the second one.

The completeness proof is similar as in our approach. This logic extends the logic
of qualitative probabilities introduced by Segerberg in [67].

7.4 Papers on Applications of Probability Logics

In [43], Kraus, Lehmann and Magidor proposed System P determining the core of
nonmonotonic reasoning. There are many semantics for default reasoning that are
characterized by those rules. Lehmann and Magidor [45] showed that preferential
entailment is characterized by System P. In the same paper, a family of nonstandard
(∗R) probabilistic models characterizing the default consequence relation defined by
the system P, was proposed.

The idea of using probabilities and infinitesimals in default reasoning can be found
in the ε-semantics [2]. This inspired the approach to deal with default information
based on belief functions in [9], where mass values are either close to 0 or close to 1.

In [34], Halpern compared nonstandard probability spaces with lexicographic
probability systems, which uses sequences of probability measures to represent
uncertainty. He showed that those two approaches are equivalent if the state space is
finite, otherwise nonstandard probability spaces are more general.

The paper [8] used a special subclass of probability measures, so called big-
stepped probabilities, to provide a standard semantics for System P.

In [18], Friedman and Halpern introduced plausibility measures, applied them to
default reasoning, and unified many previously proposed results regarding System P
into one framework.
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In [36], Halpern and Pucella provided a first-order linear time logic (without the
until operator) for reasoning about evidence, where evidence is seen as a function
from prior beliefs to beliefs after making an observation. They proved the weak
completeness theorem and posed as an open question construction of propositional
logic for reasoning about evidence. That problem is solved in [59].

7.5 Books About Probability Logics

Finally, we would like to mention several books related to our text.
ErnestAdams (1926–2009) investigatedmethods to calculate probabilities of con-

clusions in valid deductions from probable premises in [2], with the main intention to
provide a sound philosophical andmathematical background for introduction of oper-
ative alternatives to material implication. He argued that the natural way to weaken
the classical material implication is to introduce probability semantics. Moreover, in
his opinion, the conditional probability Pr(α|β) is more suitable probability inter-
pretation of the conditional β → α than the alternative interpretation Pr(β → α).
He used so-called extreme probabilities (i.e., probabilities that are infinitesimally
close to either 0 or 1) to define the ε-interpretation of conditionals. In particular, he
proposed the following probability interpretation of β → α:

• a conditional β → α is satisfied iff Pr(α|β) = 1 − ε for some nonnegative
infinitesimal ε.

Adams also analyzed semantical properties of the introduced interpretation of condi-
tionals. His book [3] is an introductory course in probability reasoning emphasizing
both technical and philosophical issues.

Theodore Hailperin gave in [28] an excellent and comprehensive overview of
origins of the relationship between mathematical logic and probability, and analyzed
the notion of consequence in a propositional logicwith a probability valued extension
of the classical semantics

• ψ is a probability logical consequence of ϕ1, …, ϕm, wrt. the nonempty subsets
α1, …, αm, β ⊂ [0, 1],

iff in all probability models M the following is satisfied

• if PM(ϕ1) ∈ α1 and …and PM(ϕm) ∈ αm, then PM(ψ) ∈ β,

where PM : ForC → [0, 1] satisfies
• if |= ϕ, then PM(ϕ) = 1,
• if |= ϕ → ψ , then PM(ϕ) ≤ PM(ψ), and
• if |= ϕ → ¬ψ , then PM(ϕ ∨ ψ) = PM(ϕ) + PM(ψ).

He gave a decision procedure which enables determining of optimal intervals of
probability values for conclusions and proved
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• There is, for any explicitly given probability logical consequence, an effective
procedure for determining whether

P(ϕ1) ∈ [a1, b1], . . . ,P(ϕm) ∈ [am, bm] |= PM(ψ) ∈ [l, u]

is, or is not, a valid consequence relation.

Hailperin extended his approach to conditional probabilities. In another book [29]
he offered first-order counterpart of his propositional probability logic, with, again,
a large part devoted to historical topics.

The book [33] written by Joseph Halpern contains a comprehensive overview
of models for representing uncertainty, and provides philosophical background for
the field, while references are given to papers where proofs of statements could be
found. A part of the book is devoted to a probability logics-based formalization of
reasoning about uncertainty. A number of motivating puzzles are given and analyzed
in different frameworks (probability, lower and upper probabilities, Dempster–Shafer
belief functions, possibilitymeasure, ranking function, likelihood, plausibility,multi-
agent epistemic logic, Bayesian networks, etc.). Halpern considers the notions of
independence, entropy, expectation, expected utility, defaults, belief revision, etc.

In a strictmathematicalway Jeff Paris (1944) also offers a careful study of different
models (probability, plausibility, fuzzy logic, possibilitymeasures, Dempster–Shafer
theory, belief networks) to represent degrees of (real-valued) beliefs [60]. His goal is
to give a firm mathematical background to the process of constructing computation-
ally feasible expert systems capable to predict the values of beliefs Bel(A), Bel(B|C)

from a finite set of identities of the form Bel(D) = d, and Bel(E|F) = e. Paris
analyzed a number of issues, e.g., maximum-entropy principle, techniques for belief
revision, etc., but did not consider axiomatization issues.
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Appendix A
General Notions

A.1 Formal Axiom Systems

In general, a formal system consists of syntax and semantics (interpretation, mean-
ing). Strictly speaking, it may be argued that only the syntax constitutes the formal
system. However, no one is constructing a formal system without having in mind
some intended interpretation, so we consider it reasonable to treat semantics as a part
of a formal system.

A.1.1 Syntax

Syntax consists of language and derivation apparatus.

A.1.1.1 Language

Language consists of: symbols (alphabet) and formation rules.
Usually, we have several types of symbols, including at least one type of symbols

for variables. We may have symbols for operations, relations, constants, logical
connectives, brackets, comma, etc. For symbols, we may use any kind of objects.
The only restriction is that a symbol should not be a sequence of some other symbols,
as this would prevent the unique readability of expressions.

While in natural languages the acceptable words are given as a list in a dictio-
nary and grammar prescribes what acceptable sentences are, here we have formation
rules which define how different kinds of expressions are to be built as sequences
of symbols. There is always at least one type of expressions—formulas. There are
two approaches to defining a language. When the main concern is proving theorems
about the syntax (so-called meta-theorems), we try to keep the number of symbols
and expressions to aminimum. Asmeta-theorems are usually proved by induction on

© Springer International Publishing AG 2016
Z. Ognjanović et al., Probability Logics,
DOI 10.1007/978-3-319-47012-2
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the length or complexity of expressions, this reduces the number of clauses, i.e., sim-
plifies the proofs. The price to pay is poor readability. For example, in propositional
logic we may have many logical connectives:

• ¬ (not),
• ∧ (and),
• ∨ (or),
• → (implies),
• ↔ (is equivalent).

They may all be replaced by a single one, e.g.:

• ↑ (nand, not and)

from which all others may be defined, but the formulas become unreadable. As in
this book our main concern is readability, andmost meta-theorems have already been
proved in journal papers, we shall avoid this practice and try to use a more standard
notation.

A.1.1.2 Derivation Apparatus

Derivation apparatus consists of Axioms and Inference (derivation) rules. Axioms
are just some chosen formulas. They can be given as an explicit list or as some
schemas for constructing formulas of a certain shape: axiom schemata. Inference
rules are relations on the set of formulas, i.e., an inference rule is a set of n+1-tuples
of formulas (n ∈ N), where first n formulas are called premises and the last formula
is called the conclusion (consequence).

From axioms, using inference rules, we get theorems (provable formulas). Each
theorem has a proof (derivation) which is a sequence of formulas such that each
formula in the sequence is either an axiom or is obtained as a consequence of some
inference rule from some previous formulas in the sequence, and the last formula
in the sequence is our theorem. The proofs are usually finite, but in this book we
allow also infinitary inference rules, where the number of premises is infinite, and,
consequently, the proofswill be infinite sequences, in a formof a denumerable ordinal
(see Chap.3).

We say that an axiom system is finitary, if:

• the set of axiom schemata is recursive1 (i.e., for every formula it is decidable
whether it is an axiom instance), and

• relations representing inference rules are recursive (i.e., for a given n + 1-tuple of
formulas it is decidable whether it belongs to the relation).

Syntactic consequence relation, denoted by �, is a generalization of provability.
We say that a formula α is a syntactic consequence of a set of formulas T , denoted
by T � α, if there is a proof of α which, in addition to axioms, uses also formulas
from T . In other words:

1The set of axiom schemata can be finite or infinite (in which case it must be effectively specifiable).

http://dx.doi.org/10.1007/978-3-319-47012-2_3


Appendix A: General Notions 203

• T � α iff there is a sequence of formulas such that for each of the formulas in the
sequence either:

– It is an axiom.
– It belongs to T .
– It is obtained from some previous formulas in the sequence using one of the
inference rules, and

• the last formula in the sequence is α.

A.1.2 Semantics

Semantics provides an interpretation (meaning) for the syntax.Wemay have informal
semantics, but here we are interested in the formal ones, which are usually some
mathematical theories or constructions. For a given syntax, we may have different
semantics, but also quite different syntaxes may have essentially the same semantics.

First, we must interpret the language. The interpretation of symbols will be in
some set which we call the universe of interpretation. Symbols for variables are
interpreted as ranging over this set and, e.g., an operation symbol is interpreted as an
operation on the elements of the universe, etc. Then, the expressions of the language
are interpreted in the universe. In particular, formulas are interpreted as sentences
about the elements of the universe.

This interpretation has to be such that axioms are interpreted as true sentences and
inference rules preserve truth, i.e., from true premises they derive true conclusion.
In this case, we say that the interpretation is sound and that the given universe with
its structure is a model.

Another important property of this pair syntax–semantics, is called (weak) com-
pleteness:

• if every sentence true in all models can actually be derived from axioms.

In this sense, we have interpreted a syntactic notion of provability by a semantic
notion of truth.

Similarly, corresponding to the notion of syntactic consequence, T � α, there is
a notion of “semantic consequence”, T |= α, defined by:

• T |= α iff every model for all formulas from T , is a model for α.

The best agreement between a given syntax and a given semantics is when these two
consequence relations coincide and then we say that the syntax is strongly complete
for the semantics.

This relation can, dually, be expressed in terms of a syntactic notion of consistency:
we say that a set of formulas is consistent, if we cannot derive a contradiction from
it.

Strong completeness is equivalent to the following statement:

• A set of formulas is consistent iff it has a model.
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A.2 Propositional Calculus

Propositional (or Sentential) calculus is one of the simplest formal theories.

A.2.1 Language

The symbols of the language are:

• denumerable set of primitive propositions (propositional variables) φ = {p, q,

r, . . .},
• classical propositional connectives ¬, and ∧, and
• auxiliary symbols: parentheses ( and ).

There is only one kind of expressions—formulas—which are defined by:

1. Primitive propositions are formulas.
2. If α and β are formulas, so are ¬α and (α ∧ β).
3. Formulas are obtained only by a finite number of applications of rules (1) and (2).

We immediately introduce the following abbreviations:

• (α ∨ β) stands for ¬(¬α ∧ ¬β),
• (α → β) stands for (¬α ∨ β), and
• (α ↔ β) stands for (α → β) ∧ (β → α).

If α is a formula then the set Subf(α) of subformulas of α is defined recursively:

• α ∈ Subf(α),
• if ¬β ∈ Subf(α), then β ∈ Subf(α), and
• if β ∧ γ ∈ Subf(α), then β, γ ∈ Subf(α).

Wewrite len(α) to denote the length of (or size) of α, assuming a reasonably succinct
encoding. If we denote the cardinality (the number of elements) of a set T by |T |,
then:

|Subf(α)| ≤ len(α).

A.2.2 Derivation Apparatus

An axiom system AxLP for propositional calculus LP is given by the following
axiom schemas:

1. α → (β → α)

2. (α → (β → γ )) → ((α → β) → (α → γ ))

3. (¬α → ¬β) → (β → α)
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and the inference rule Modus Ponens (MP):

1. From α and α → β infer β.

The rule MP can be also represented as follows:

α

α → β

α

Note that the formulas that appear above are schema formulas. They represent an
infinite number of “real” formulas that can be obtained by systematic replacing
schema formulas by concrete formulas. For example, instances of the first axiom
are:

• p → (p → p) (both α and β are replaced by the primitive proposition p), and
• p → (q → p) (α is replaced by p and β by the q), etc.

As an example, we give a formal proof of the theorem α → α for an arbitrary
formula α, which is a sequence of five formulas. On the right-hand side we provide
comments.

1. (α→((α→α)→α))→((α→(α→α))→(α→α)) (Axiom2)
2. α → ((α → α) → α) (Aksiom 1)
3. (α → (α → α)) → (α → α) (MP from (1), (2))
4. α → (α → α) (Aksiom 1)
5. α → α ((MP from (3), (4))

A.2.3 Semantics

The intended informal interpretation of this formal theory is that variables denote
some propositions or sentences for which we assume only that they are either true or
false. The connectives are interpreted as intuitive logical operations: “not” and “and”.
The main formal interpretation is the two-element Boolean algebra of True and False
or 1 and 0. The universe in which we interpret variables is {0, 1} and connectives are
interpreted as operations on that set given by the usual truth tables.

α β ¬α α ∧ β

1 1 0 1
1 0 0 0
0 1 1 0
0 0 1 0

For any assignment of values 0 or 1 to variables, we can calculate, in a unique
way, the value of any formula. We say that the classical propositional connectives
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of LP are truth-functional. On the other hand, in this book we consider probability
and modal operators that are not truth-functional, i.e., in the general case it is not
possible to calculate truth values of formulas from truth values of subformulas.

A formula that gets the value 1 for each assignment is called a tautology.
Another interpretation, offered by Boole himself, is a Boolean algebra of subsets

of some set. If p denotes some proposition, its interpretationwill be the set of all cases
(possible worlds) in which this proposition is true. The interpretation of connectives
is naturally the intersection for∧ (as the set of cases when both propositions are true),
and for ¬ the complement with respect to the set of all cases (possible worlds)—
which is the universe here. This interpretation is well suited for probabilistic logic:
the probability of a proposition will be the measure of its interpretation. When the
number of possible cases is finite, this reduces to the familiar fraction: the number
of positive cases divided by the number of all possible cases.

A.2.4 Completeness Proof

The weak completeness theorem proves that the set of tautologies coincides with the
set of theorems of the formal system. The strong completeness theorem proves that
an arbitrary (possibly infinite) set of formulas T is consistent if and only if it has a
model, i.e., there is an assignment of values 0 and 1 to variables so that each formula
from the set T gets value 1.

The main steps in proving strong completeness of the axiom system AxLP with
respect to the above-mentioned formal interpretations are:

• Soundness: every instance of axioms schemata is a tautology, while applications
of the inference rule MP on tautologies derive tautologies (i.e., MP preserves the
validity).

• Deduction theorem: if T is a set of formulas and α and β are formulas, then

T ∪ {α} � β iff T � α → β.

• Lindenbaum’s theorem – every consistent set T of formulas can be extended
to a maximal consistent set T (for every formula α, T contains either α or
¬α) in the following way: let α0, α1, …be a list of all propositional formulas; a
sequence (Ti )i∈N of consistent extensions of T is constructed such that T0 = T ,
Ti+1 = Ti∪{αi }, if Ti∪{αi } is consistent, otherwise Ti+1 = Ti∪{¬αi };T = ⋃

i Ti ,• Construction of a model for a consistent set T of formulas:

– an assignment I to primitive propositions is defined such that I (p) = 1 iff
p ∈ T , and

– for every formula α it can be proved that I (α) = 1 iff α ∈ T .

• Since all formulas from T belongs to T , I is a model of T .



Appendix A: General Notions 207

Obviously, weak completeness is a consequence of strong completeness:

• We want to prove: if |= α, then � α.
• It is equivalent to: if � α, then �|= α, i.e.,
• if ¬α is consistent, then ¬α has a model,

which follows from the strong completeness theorem. Furthermore, since the axiom
system AxLP is finitary, the strong completeness theorem implies another important
property—compactness:

• For every set T of its formulas, T has a model iff every finite subset of T has a
model.

The point is that compactness follows from strong completeness just in case when
logic is finitary. As we explain in this book, probabilistic logics are inherently non-
compact, and we need some kind of infiniteness to obtain strongly complete axiom-
atizations (see Sect. 3.3).

A.3 Object Language and Meta-Language

When we consider formal systems, two different languages are involved :

• the formal language mentioned in Sect.A.1.1 is called the object language, and
• the language used to talk about a formal system is called the meta-language.

While the object language is very precise, as we describe above, the meta-language
(althoughmathematized) is not always so formal. This division is also reflected when
we consider statements:

• theorems in a formal system are formulas in the object language, and their proofs
are given the precise meaning of special sequences of formulas in the object lan-
guage, while

• theorems about properties of a formal system (e.g., the completeness theorem) are
expressed and proved in the meta-language.

In this book, different object languages are used for different probability logics.
Usually, the classical propositional (or first order) language is extended with some
probability operators, while different conditions restrict the formation rules, e.g., we
consider formulas with(out) iterations of probability operators.

A.4 Probability

If W �= ∅, then H is an algebra of subsets of W , if H ⊂ P(W ) such that:

• W ∈ H , and
• if A, B ∈ H , then W \ A ∈ H and A ∪ B ∈ H .

http://dx.doi.org/10.1007/978-3-319-47012-2_3
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A function P : H → [0, 1] is a finitely additive probability measure, if the following
conditions hold:

• P(W ) = 1, and
• P(A ∪ B) = P(A) + P(B), whenever A ∩ B = ∅.
ForW , H and P described as above, the triple 〈W, H, P〉 is called a (finitely additive)
probability space.

We also say that an algebra H is a σ -algebra, if:

• ⋃
i∈N Ai ∈ H whenever Ai ∈ H for every i ∈ N,

while a probability measure P is σ -additive, if:

• P(
⋃

i∈N Ai ) = ∑
i∈N P(Ai ), whenever Ai ∈ H and Ai ∩ A j = ∅ for all i �= j .

In Kolmogorov’s approach the conditional probability of B given A is defined
using the notion of probability:

P(B|A) = P(B ∩ A)

P(A)

for every A such that P(A) > 0.
On the other hand, in the approach proposed by de Finetti, coherent conditional

probability is the primitive notion. LetW be a non empty set, H an algebra of subsets
of W , and H 0 = H \ {∅}. Then, P : H × H 0 → [0, 1], is a conditional probability
if the following holds:

• P(A, A) = 1, for every A ∈ H 0,
• P(·, A) is a finitely additive probability on H for any given A ∈ H 0, and
• P(C ∩ B, A) = P(B, A) · P(C, B ∩ A), for all C ∈ H and A, B, A ∩ B ∈ H 0.
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