
Manuel Mazzara
Andrei Voronkov (Eds.)

 123

LN
CS

 9
60

9

10th International Andrei Ershov Informatics Conference, PSI 2015
in Memory of Helmut Veith
Kazan and Innopolis, Russia, August 24–27, 2015
Revised Selected Papers

Perspectives of
System Informatics

Lecture Notes in Computer Science 9609

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Manuel Mazzara • Andrei Voronkov (Eds.)

Perspectives of
System Informatics
10th International Andrei Ershov Informatics Conference, PSI 2015
in Memory of Helmut Veith
Kazan and Innopolis, Russia, August 24–27, 2015
Revised Selected Papers

123

Editors
Manuel Mazzara
Innopolis University
Innopolis
Russia

Andrei Voronkov
The University of Manchester
Manchester
UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-41578-9 ISBN 978-3-319-41579-6 (eBook)
DOI 10.1007/978-3-319-41579-6

Library of Congress Control Number: 2016942778

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

To the memory of Helmut Veith
The Ershov Informatics Conference (the PSI Conference Series) is the premier

international forum in Russia for research and applications in computer, software, and
information sciences. The conference brings together academic and industrial
researchers, developers, and users to discuss the most recent topics in the field. PSI
provides an ideal venue for setting up research collaborations between the rapidly
growing Russian informatics community and its international counterparts, as well as
between established scientists and younger researchers.

The 10th edition of the conference was held during August 24–25, 2015, in Kazan
and Innopolis City, in Tatarstan (Russian Federation). In particular, the first and last
day of the conference were hosted in the new ultramodern complex of Innopolis City
(http://www.innopolis.com/main/) while the core days were held at the Korston Con-
ference Center, in downtown Kazan.

This volume contains a selection of papers presented at PSI 2015. It includes two
invited papers and 23 papers selected out of 56 submissions. We wish to thank all those
involved in the organization as well as the Program Committee members and the
anonymous reviewers. Without them and all their hard work, the realization of such an
ambitious project would not have been possible.

During the preparation of this volume, a dramatic event stunned us and the members
of the international scientific community, in Austria and worldwide. Helmut Veith,
whose invited paper is published in this volume, died tragically on March 12, 2016.
This volume is dedicated to the memory of a bright colleague and dear friend.

April 2016 Manuel Mazzara
Andrei Voronkov

http://www.innopolis.com/main/

Organization

Program Committee

Farhad Arbab CWI and Leiden University, The Netherlands
David Aspinall University of Edinburgh, UK
Marcello M. Bersani Politecnico di Milano, Italy
Eike Best Universität Oldenburg, Germany
Nikolaj Bjørner Microsoft Research, USA
Nail Bukharaev Kazan Federal University, Russia
Andrea Calì University of London, Birkbeck College, UK
Mauro Caporuscio Politecnico di Milano, Italy
Néstor Cataño Madeira Interactive Technologies Institute, Portugal
Gabriel Ciobanu Romanian Academy, Iasi, Romania
Volker Diekert University of Stuttgart, Germany
Salvatore Distefano University of Messina, Italy
Nicola Dragoni Technical University of Denmark, Denmark
Schahram Dustdar TU Wien, Austria
Dieter Fensel University of Innsbruck, Austria
Carlo A. Furia ETH Zurich, Switzerland
Carlo Ghezzi Politecnico di Milano, Italy
Sergei Gorlatch University of Münster, Germany
Jan Friso Groote Eindhoven University of Technology, The Netherlands
Arie Gurfinkel Carnegie Mellon University, USA
Cliff Jones Newcastle University, UK
Joost-Pieter Katoen RWTH Aachen University, Germany
Konstantin Korovin The University of Manchester, UK
Maciej Koutny Newcastle University, UK
Laura Kovacs Chalmers University of Technology, Sweden
Gregory Kucherov CNRS/LIGM, France
Johan Lilius A bo Akademi University, Finland
Anthony Widjaja Lin Yale-NUS College, USA
Zhiming Liu Birmingham City University, UK
Jan Madsen Technical University of Denmark
Rupak Majumdar MPI-SWS, Germany
Manuel Mazzara Innopolis University, Russia
Klaus Meer TU Cottbus, Germany
Hernan Melgratti Universidad de Buenos Aires, Argentina
Bertrand Meyer ETH Zurich, Switzerland
Torben Mogensen DIKU, Denmark
Peter Mosses Swansea University, UK

Martin Nordio ETH Zurich, Switzerland
Jose R. Parama University of A Coruna, Spain
Wojciech Penczek ICS PAS and Siedlce University, Poland
Peter Pepper Technische Universität Berlin, Germany
Alexander K. Petrenko Russian Academy of Sciences, Russia
Paul Pettersson Mälardalen University, Sweden
Nadia Polikarpova ETH Zürich, Switzerland
Qiang Qu Innopolis University, Russia
Wolfgang Reisig Humboldt-Universität zu Berlin, Germany
Andrey Rybalchenko Microsoft Research, UK
Davide Sangiorgi University of Bologna, Italy
Klaus-Dieter Schewe Software Competence Center Hagenberg, Germany
Natalia Sidorova Technische Universiteit Eindhoven, The Netherlands
Giancarlo Succi Free University of Bozen-Bolzano, Italy
Max Talanov Kazan Federal University, Russsia
Alexander Tormasov Innopolis University, Russia
Mark Trakhtenbrot Holon Institute of Technology, Israel
Kishor Trivedi Duke University, USA
Andrei Voronkov The University of Manchester, Chalmers University of

Technology, and EasyChair, UK/Sweden
Domagoj Vrgoc Center for Semantic Web Research, Chile
Sergey Zykov Higher School of Economics, Russia

Additional Reviewers

Akbar, Zaenal
Barylska, Kamila
Dan, Li
Enoiu, Eduard Paul
Fensel, Anna
Fleischhack, Hans
Freitas, Leo
Haidl, Michael

Kahsai, Temesghen
Keshishzadeh, Sarmen
Lorenzen, Florian
Marinescu, Raluca
Mezzetti, Nicola
Moelle, Andre
Noll, Thomas
Penabad, Miguel R.

Prüfer, Robert
Rasch, Ari
Seghir, Mohamed Nassim
Steggles, Jason
Szreter, Maciej
Veselov, Alexander

VIII Organization

Contents

Quantitative Analysis of Collective Adaptive Systems 1
Jane Hillston

What You Always Wanted to Know About Model Checking
of Fault-Tolerant Distributed Algorithms . 6

Igor Konnov, Helmut Veith, and Josef Widder

Applying MDA to Generate Hadoop Based Scientific
Computing Applications. 22

Darkhan Akhmed-Zaki, Madina Mansurova, Bazargul Matkerim,
Ekateryna Dadykina, and Bolatzhan Kumalakov

Site-Level Web Template Extraction Based on DOM Analysis 36
Julián Alarte, David Insa, Josep Silva, and Salvador Tamarit

Verification Support for a State-Transition-DSL Defined with Xtext 50
Thomas Baar

Towards Using Exact Real Arithmetic for Initial Value Problems 61
Franz Brauße, Margarita Korovina, and Norbert Th. Müller

Constraint Solving for Verifying Modal Specifications of Workflow
Nets with Data . 75

Hadrien Bride, Olga Kouchnarenko, and Fabien Peureux

Behavioural Analysis of Sessions Using the Calculus of Structures 91
Gabriel Ciobanu and Ross Horne

Using Refinement in Formal Development of OS Security Model 107
Petr N. Devyanin, Alexey V. Khoroshilov, Victor V. Kuliamin,
Alexander K. Petrenko, and Ilya V. Shchepetkov

Conflict Resolution in Multi-agent Systems with Typed Connections
for Ontology Population. 116

Natalia Garanina, Elena Sidorova, and Stepan Anokhin

Maximally-Polyvariant Partial Evaluation in Polynomial Time 130
Robert Glück

Dynamics Security Policies and Process Opacity for Timed
Process Algebras. 149

Damas P. Gruska

http://dx.doi.org/10.1007/978-3-319-41579-6_1
http://dx.doi.org/10.1007/978-3-319-41579-6_2
http://dx.doi.org/10.1007/978-3-319-41579-6_2
http://dx.doi.org/10.1007/978-3-319-41579-6_3
http://dx.doi.org/10.1007/978-3-319-41579-6_3
http://dx.doi.org/10.1007/978-3-319-41579-6_4
http://dx.doi.org/10.1007/978-3-319-41579-6_5
http://dx.doi.org/10.1007/978-3-319-41579-6_6
http://dx.doi.org/10.1007/978-3-319-41579-6_7
http://dx.doi.org/10.1007/978-3-319-41579-6_7
http://dx.doi.org/10.1007/978-3-319-41579-6_8
http://dx.doi.org/10.1007/978-3-319-41579-6_9
http://dx.doi.org/10.1007/978-3-319-41579-6_10
http://dx.doi.org/10.1007/978-3-319-41579-6_10
http://dx.doi.org/10.1007/978-3-319-41579-6_11
http://dx.doi.org/10.1007/978-3-319-41579-6_12
http://dx.doi.org/10.1007/978-3-319-41579-6_12

Estimating Development Effort for Software Architectural Tactics 158
Mohamad Kassab and Giuseppe Destefanis

Clone Detection in Reuse of Software Technical Documentation. 170
Dmitrij Koznov, Dmitry Luciv, Hamid Abdul Basit, Ouh Eng Lieh,
and Mikhail Smirnov

Modeling Actor Systems Using Dynamic I/O Automata. 186
Ilham W. Kurnia and Arnd Poetzsch-Heffter

RSSA: A Reversible SSA Form . 203
Torben Ægidius Mogensen

Checking Several Requirements at once by CEGAR 218
Vitaly Mordan and Vadim Mutilin

Unifying Requirements and Code: An Example . 233
Alexandr Naumchev, Bertrand Meyer, and Victor Rivera

Program Schemata Technique to Solve Propositional Program
Logics Revised . 245

Nikolay Shilov

Automated Two-Phase Composition of Timed Web Services 260
Maciej Szreter

Equivalence of Finite-Valued Symbolic Finite Transducers. 276
Margus Veanes and Nikolaj Bjørner

Relaxed Parsing of Regular Approximations of String-Embedded
Languages . 291

Ekaterina Verbitskaia, Semyon Grigorev, and Dmitry Avdyukhin

Branching Processes of Timed Petri Nets . 303
Irina Virbitskaite, Victor Borovlyov, and Louchka Popova-Zeugmann

Implementation and Evaluation of Contextual Natural Deduction
for Minimal Logic. 314

Bruno Woltzenlogel Paleo

Hybrid Lustre . 325
Zhenghen Yuan, Tingliang Zhou, Jing Liu, Juan Luo, Yi Zhang,
and Xiaohong Chen

Author Index . 341

X Contents

http://dx.doi.org/10.1007/978-3-319-41579-6_13
http://dx.doi.org/10.1007/978-3-319-41579-6_14
http://dx.doi.org/10.1007/978-3-319-41579-6_15
http://dx.doi.org/10.1007/978-3-319-41579-6_16
http://dx.doi.org/10.1007/978-3-319-41579-6_17
http://dx.doi.org/10.1007/978-3-319-41579-6_18
http://dx.doi.org/10.1007/978-3-319-41579-6_19
http://dx.doi.org/10.1007/978-3-319-41579-6_19
http://dx.doi.org/10.1007/978-3-319-41579-6_20
http://dx.doi.org/10.1007/978-3-319-41579-6_21
http://dx.doi.org/10.1007/978-3-319-41579-6_22
http://dx.doi.org/10.1007/978-3-319-41579-6_22
http://dx.doi.org/10.1007/978-3-319-41579-6_23
http://dx.doi.org/10.1007/978-3-319-41579-6_24
http://dx.doi.org/10.1007/978-3-319-41579-6_24
http://dx.doi.org/10.1007/978-3-319-41579-6_25

Quantitative Analysis of Collective
Adaptive Systems

Jane Hillston(B)

LFCS, School of Informatics, University of Edinburgh, Edinburgh, Scotland, UK
jane.hillston@ed.ac.uk

http://www.quanticol.eu

1 Introduction

Quantitative formal methods, such as stochastic process algebras, have been
used for the last twenty years to support modelling of dynamic systems in order
to investigate their performance. Application domains have ranged from com-
puter and communication systems [1,2], to intracellular signalling pathways in
biological cells [3,4]. Nevertheless this modelling approach is challenged by the
demands of modelling modern collective adaptive systems, many of which have
a strong spatial aspect, adding to the complexity of both the modelling and the
analysis tasks.

In this talk I gave an introduction to formal quantitative analysis and the
challenges of modelling collective adaptive systems, together with recent devel-
opments to address those challenges using the modelling language Carma.

2 Quantitative Analysis

Performance analysis has a long tradition in computer and communication engi-
neering dating back to the 1960s, as the dynamic behaviour of systems can
sometimes be counter-intuitive and hard to predict without detailed mathemat-
ical models. Since many aspects of the system must be abstracted in order to
construct tractable models, probability distributions are used to represent the
variability within the timing characteristics of the system, for example, due
to different data characteristics. Specifically continuous time Markov chains
(CTMCs) were found to offer a good compromise between faithfulness and
tractability. Initially queueing networks [5] were the dominant approach to cap-
turing the conflict for resources which is often at the root of performance prob-
lems. From such descriptions it is easy to build a CTMC, typically with a simple
birth-death process for each queue, but in many cases this is not even neces-
sary as analytical solutions are known, circumventing the need for the explicit
construction and analysis of the CTMC [6].

However, the advent of large distributed systems, in which multiple resources
may be needed by processes simultaneously, led to the use of more flexible
modelling frameworks such as stochastic Petri nets [7] and stochastic process
algebras [8]. Stochastic process algebras are small textual description languages
c© Springer International Publishing Switzerland 2016
M. Mazzara and A. Voronkov (Eds.): PSI 2015, LNCS 9609, pp. 1–5, 2016.
DOI: 10.1007/978-3-319-41579-6 1

2 J. Hillston

which represent a system as a number of interacting processes. At the basic level
each process is a small CTMC capturing the ordering and (stochastic) timing of
activities that the process may undertake. The construction of the model speci-
fies how these processes are constrained to interact through shared activities. A
large CTMC capturing the complete behaviour of the system can be automat-
ically constructed from the stochastic process algebra description, allowing the
modeller to focus on the higher level behaviour of the system rather than the
underlying state space. Prime examples of stochastic process algebras include
PEPA [8], EMPA [9] and IMC [10]. Note, however, that the system description
and the underlying mathematical model (CTMC) are inherently discrete and
this can pose significant challenges for representing large scale systems due to
the problem of state space explosion. In particular, numerical solution to find the
probability distribution over the state space becomes intractable, and stochastic
simulation becomes computationally expensive, as the size of the system grows.

3 Challenges in Modelling Collective Adaptive Systems

Recent years have seen increasing interest in collective adaptive systems. Such
systems, which appear in many natural scenarios such as the behaviour of social
insects, are increasingly forming a paradigm for the construction of the soft-
ware systems of the future. Collective adaptive systems (CAS) are seen to be
comprised of a large number of interacting entities whose behaviour is based on
their local perception, without access to global control or knowledge. Moreover
entities are typically replicated to establish robustness to failure of individual
entities whilst adaptivity provides robustness to changes at a higher level.

The global or emergent behaviour of such systems can be difficult to predict
making it paramount that we develop adequate modelling formalisms to capture
and reason about the behaviour at both local and global levels. The compo-
sitional nature of stochastic process algebras make them strong candidates for
developing models at the local level, but the state space explosion problem places
severe challenges on their analysis.

In the last decade there have been efforts to alleviate the problems of state
space explosion for very large systems by the use of fluid approximations [11]. In
this approach an approximation of the underlying discrete CTMC is constructed
as a set of ordinary differential equations that capture the average behaviour of
the system when a large population of entities is involved. Analysis techniques,
such as stochastic model checking, have been adapted to work with this approx-
imation [12].

Other significant challenges for stochastic process algebras when modelling
CAS stem from the spatially distributed nature of the entities and the adapta-
tion. The spatial aspect is important because entities are restricted to interact
and communicate locally so capturing the relative positions of entities is crucial.
Similarly, the ability of an entity to have a goal which guides changes in behav-
iour based on the information that it receives has not previously been considered
in stochastic process algebras. To address these challenges we have developed a
new process algebra-based language Carma [13].

Quantitative Analysis of CAS 3

4 Carma

Carma has been designed specifically to represent systems developed accord-
ing to the CAS paradigm [14]. The language offers a rich set of communication
primitives, and permits exploiting attributes, captured in a store associated with
each component, to enable attribute-based communication. For most CAS sys-
tems we anticipate that one of the attributes could be the location of the agent.
Thus it is straightforward to model those systems in which, for example, there
is a limited scope of communication or there is the restriction to only interact
with components that are co-located, or where there is spatial heterogeneity in
the behaviour of agents. The use of a store to explicitly capture a limited set of
data associated with an entity is a compromise between full agent-based mod-
elling and the approach of data abstraction that has previously been adopted in
stochastic process algebra-based languages.

The rich set of communication primitives is one of the distinctive features
of Carma. Specifically, Carma supports both unicast and broadcast commu-
nication, and permits locally synchronous, but globally asynchronous communi-
cation. This richness is important to take into account the spatially distributed
nature of CAS, where agents may have only local awareness of the system, yet
the design objectives and adaptation goals are often expressed in terms of global
behaviour. Representing these patterns of communication in classical process
algebras or traditional stochastic process algebras would be difficult, and would
require the introduction of additional model components to represent buffers,
queues and other communication structures.

Another key feature of Carma is its distinct treatment of the environment.
It should be stressed that although this is an entity explicitly introduced within
our models, it is intended to represent something more pervasive and diffusive of
the real system, which is abstracted within the modelling to be an entity which
exercises influence and imposes constraints on the different agents in the system.
For example, in a model of a smart transport system, the environment may have
responsibility for determining the rate at which entities (buses, bikes, taxis etc.)
move through the city. However this should be recognised as an abstraction of
the presence of other vehicles causing congestion which may impede the progress
of the focus entities to a greater or lesser extent at different times of the day.
The presence of an environment in the model does not imply the existence of
centralised control in the system. The role of the environment is also related to
the spatially distributed nature of CAS — we expect that the location where an
agent is will have an effect on what an agent can do.

To summarise, in Carma a system is composed of a collective of compo-
nents that exist in an environment. Each component consists of a process and
a store where the process captures the possible behaviours of the component
in a similar manner to previous process algebras, whereas the store records the
state of the component with respect to a number of attributes. These attributes,
which can be thought of as enumerated types, allow the behaviour, including the
communication partners, of a component to be dependent on its current state.

4 J. Hillston

5 Future Perspectives

CAS present an interesting and challenging class of systems to design and con-
struct, with many exciting prospects for future software systems as well as
socio-technical systems, in which users themselves become entities in the sys-
tem. Example areas of application include smart urban transport systems, smart
energy networks and swarm robotics. The role of CAS within infrastructure sys-
tems, such as within smart cities, make it essential that quantitative aspects
of behaviour, in addition to functional correctness, are taken into considera-
tion during design, but the scale and complexity of these systems pose chal-
lenges both for model construction and model analysis. carma aims to address
many of these challenges, supporting rich forms of interaction, using attributes
to capture explicit locations and the environment to allow adaptivity. Moreover
analysis techniques based on fluid approximation offer hope for scalable quanti-
tative analysis techniques. However, to tackle the full range of behaviours which
can occur within CAS extensions to classical fluid approximation techniques are
needed. For example, recent work by Bortolussi [15] proves convergence results
in terms of hybrid systems which take into account multi-scale behaviour with
respect to time and/or populations.

Acknowledgement. This work is partially supported by the EU project QUANTI-
COL, 600708.

References

1. Hermanns, H., Herzog, U., Katoen, J.: Process algebra for performance evaluation.
Theor. Comput. Sci. 274(1–2), 43–87 (2002)

2. De Nicola, R., Latella, D., Massink, M.: Formal modeling and quantitative analy-
sis of klaim-based mobile systems. In: Proceedings of the 2005 ACM Symposium
on Applied Computing (SAC), Santa Fe, New Mexico, USA, 13–17 March 2005,
pp. 428–435. ACM (2005)

3. Priami, C.: Algorithmic systems biology. Commun. ACM 52(5), 80–88 (2009)
4. Ciocchetta, F., Hillston, J.: Bio-PEPA: a framework for the modelling and analysis

of biological systems. Theor. Comput. Sci. 410(33), 3065–3084 (2009)
5. Kleinrock, L.: Sequential processing machines (S.P.M) analyzed with a queuing

theory model. J. ACM 13(2), 179–193 (1966)
6. Baskett, F., Chandy, K.M., Muntz, R.R., Palacios, F.G.: Open, closed, and mixed

networks of queues with different classes of customers. J. ACM 22(2), 248–260
(1975)

7. Marsan, M.A., Conte, G., Balbo, G.: A class of generalized stochastic petri nets
for the performance evaluation of multiprocessor systems. ACM Trans. Comput.
Syst. 2(2), 93–122 (1984)

8. Hillston, J.: A Compositional Approach to Performance Modelling. CUP,
Cambridge (1995)

9. Bernardo, M., Gorrieri, R.: A tutorial on EMPA: a theory of concurrent processes
with nondeterminism, priorities probabilities and time. Theor. Comput. Sci.
202(1–2), 1–54 (1998)

Quantitative Analysis of CAS 5

10. Hermanns, H.: Interactive Markov Chains: The Quest for Quantified Quality.
LNCS. Springer, Heidelberg (2002)

11. Hillston, J.: The benefits of sometimes not being discrete. In: Baldan, P., Gorla,
D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 7–22. Springer, Heidelberg (2014)

12. Bortolussi, L., Hillston, J.: Model checking single agent behaviours by fluid approx-
imation. Inf. Comput. 242, 183–226 (2015)

13. Hillston, J., Loreti, M.: Specification and analysis of open-ended systems
with CARMA. In: Weyns, D., Michel, F. (eds.) E4MAS 2014. LNCS, vol. 9068,
pp. 95–116. Springer, Heidelberg (2015)

14. Bortolussi, L., De Nicola, R., Galpin, V., Gilmore, S., Hillston, J., Latella, D.,
Loreti, M., Massink, M.: CARMA: collective adaptive resource-sharing Markovian
agents. In: Bertrand, N., Tribastone, M. (eds.) Proceedings Thirteenth Workshop
on Quantitative Aspects of Programming Languages and Systems, QAPL 2015.
EPTCS, London, UK, 11th–12th April 2015, vol. 194, pp. 16–31 (2015)

15. Bortolussi, L.: Hybrid behaviour of markov population models. Inf. Comput. 247,
37–86 (2016). CoRR abs/1211.1643 (2012)

What You Always Wanted to Know
About Model Checking of Fault-Tolerant

Distributed Algorithms

Igor Konnov(B), Helmut Veith, and Josef Widder

TU Wien (Vienna University of Technology), Vienna, Austria
konnov@forsyte.tuwien.ac.at

Abstract. Distributed algorithms have numerous mission-critical appli-
cations in embedded avionic and automotive systems, cloud comput-
ing, computer networks, hardware design, and the internet of things.
Although distributed algorithms exhibit complex interactions with their
computing environment and are difficult to understand for human engi-
neers, computer science has developed only very limited tool support to
catch logical errors in distributed algorithms at design time.

In the last two decades we have witnessed a revolutionary progress in
software model checking due to the development of powerful techniques
such as abstract model checking, SMT solving, and partial order reduc-
tion. Still, model checking of fault-tolerant distributed algorithms poses
multiple research challenges, most notably parameterized verification:
verifying an algorithm for all system sizes and different combinations of
faults. In this paper, we survey our recent results in this area which
extend and combine abstraction, partial orders, and bounded model
checking. Our results demonstrate that model checking has acquired suf-
ficient critical mass to build the theory and the practical tools for the
formal verification of large classes of distributed algorithms.

1 Introduction

Fault-tolerant distributed algorithms (FTDA) are a central research area in dis-
tributed computing theory [2,28]. While such algorithms typically have been
used in safety critical applications in the automotive or avionic industries, new
application domains such as cloud computing provide additional motivation to
study fault-tolerant algorithms: with the huge number of computers involved in a
cloud, faults are the norm [30] rather than an exception. Together, this motivates
our research on automated verification techniques for fault-tolerant distributed
algorithms. We need to automatically verify such mechanisms for several hun-
dreds or even thousands of components. However, a straightforward application
of model checking to systems of such a scale suffers from combinatorial state
space explosion.

Supported by the Austrian Science Fund (FWF) through the National Research Net-
work RiSE (S11403 and S11405) and project P27722 (PRAVDA), and by the Vienna
Science and Technology Fund (WWTF) through project ICT15-103 (APALACHE).

c© Springer International Publishing Switzerland 2016
M. Mazzara and A. Voronkov (Eds.): PSI 2015, LNCS 9609, pp. 6–21, 2016.
DOI: 10.1007/978-3-319-41579-6 2

Model Checking of Fault-Tolerant Distributed Algorithms 7

A paradigmatic approach to verify very large systems is parameterized model
checking : if M(n) is a distributed or concurrent system consisting of n identical
components, and φ is a temporal logic formula, parameterized model checking
requires us to check whether ∀n.M(n) |= φ. Already for quite restricted classes
of concurrent systems the problem is undecidable, cf. our recent survey [4]. For
fault-tolerant distributed algorithms there are (at least) two more challenges that
we shall discuss below: (i) multiple parameters with arithmetic constraints and
(ii) parameterized code. Let us describe these challenges more precisely. First, in
addition to n there is a parameter t that expresses the assumed number of faulty
components, and algorithms are typically correct only under a resilience condi-
tion. A typical resilience condition in the case of Byzantine fault tolerance [14,31]
is n > 3t. Second, while the parameterized model checking problems discussed
in [4] assume that the process code and state space are independent of the para-
meters, FTDAs often count messages: Due to faults, processes cannot wait for
messages from specific (possibly faulty) senders. Therefore, most FTDAs use
counters, e.g., if a process receives a certain message from more than t distinct
senders, then it concludes that one of the senders must be non-faulty. We call
such conditions on counters threshold guards.

Algorithm 1. Core logic of the broad-
casting algorithm from [35].
Code for processes i if it is correct:
Variables

1: vi ∈ {false,true}
2: accepti ∈ {false,true} ← false

Rules
3: if vi and not sent 〈echo〉 before then
4: send 〈echo〉 to all;
5: if received 〈echo〉

from at least t + 1 distinct
processes

and not sent 〈echo〉 before then
6: send 〈echo〉 to all;
7: if received 〈echo〉 from at least n − t

distinct processes then
8: accepti ← true;

qI

q1

q2

q3

q4

sv = V1

sv �= V1∧
nsnt0 =
nsnt ∧
sv0 = sv

nsnt0 = nsnt + 1

sv0 = SE

q5

q6

q7

q8

q9
qF

rcvd ≤ rcvd ′ ∧ rcvd ′ ≤ nsnt + f

(t+ 1 > rcvd ′) ∧
sv ′ = sv0 ∧
nsnt ′ = nsnt0

t + 1 ≤ rcvd ′

sv0 = V0

sv0 �= V0∧
nsnt ′ = nsnt0

nsnt ′ = nsnt0 + 1

n − t > rcvd ′
n − t ≤ rcvd ′

sv ′ = SE

sv ′ = AC

Fig. 1. A control flow automaton
of the Algorithm 1 for Byzantine
faults.

Algorithm 1 presents a threshold-based FTDA in pseudo code, as is typical for
the distributed algorithms literature. It uses threshold guards in lines 5 and 7. In
Fig. 1, we give a graphical representation of a control-flow automaton that serves
as a formal representation of the algorithm. For instance, the local variable rcvd

8 I. Konnov et al.

represents the number of received messages, which is implicitly assumed in the
pseudo code, while the global variable nsnt represents the number of messages
sent by the correct processes. Moreover, the local variable sv represents the local
control state of a process, which is implicit in the pseudo code in the phrases
“not sent <echo> before” and “accept i ← TRUE”. Note that the expressions
over the parameters are compared to the value of variable rcvd′, which contains
the number of received messages, including the messages received at the current
step. A system is then composed of n−f instances of the control-flow automaton
that run concurrently and represent the correct processes. The formal definition
and the semantics of control-flow automata can be found in [21].

We observe that the process code and state space depend on the parame-
ters (in our example on n and t). In addition to the parameterized number of
processes and faults, automatic verification of FTDAs has to deal with process
code which refers to parameters in a non-trivial way. We address this problem
by stacking different techniques that we will survey in the following section.

2 Verification Techniques

Figure 2 gives an overview of our techniques that we introduced in a series of
papers on parametrized model checking of FTDAs [21,23,24]. In Sect. 3, we dis-
cuss how these techniques interact with each other in the framework of our tool
ByMC. We deal with the parametrized code and state space by a parametrized
interval data abstraction [21] in Sect. 2.1. After that step, we have obtained
a more classic parametrized model checking problem where all processes are
uniform [4] and the system is thus symmetric. Symmetry allows us to change
representation into a counter representation (Sect. 2.2) which gives rise to dif-
ferent techniques, namely, counter abstraction (Sects. 2.3 and 2.4), and offline
partial order reduction with acceleration (Sects. 2.5 to 2.7).

2.1 Parametric Interval Data Abstraction (PIA Data)

In [21] we formalized threshold-guarded statements (e.g., the one from line 5 in
the pseudocode example given in Algorithm 1) using a special form of control
flow automata, e.g.:

q4 q5t + 1 ≤ rcvd ′

The above edge from q4 to q5 can be executed only if the number of received
messages rcvd′ is greater than or equal to t + 1. The central insight is that for
evaluating this condition, the precise value of rcvd′ is not important, it suffices to
know whether rcvd′ is above the threshold. Our case study in [21] contained an
additional threshold guard of n − t. This motivated an abstract domain of four
intervals I0 = [0, 1[and I1 = [1, t + 1[and I2 = [t + 1, n − t[and I3 = [n − t, n].
In our approach, the abstract domain is extracted from the guards automatically.

Recall that we want to get rid of parameterized process code. To this end, we
can now replace the guards that refer to unbounded variables and parameters by

Model Checking of Fault-Tolerant Distributed Algorithms 9

FMCAD’13 [21] CONCUR’14 [23] CAV’15 [24]

data abstraction

counter
representation

counter
abstraction &

refinement

state enumeration
or BDDs

SPIN, NuSMV-BDD

data abstraction

counter
representation

counter
abstraction &

refinement

partial orders
&

acceleration

bounded
model checking
NuSMV-SAT

data abstraction

counter
representation

counters in SMT

partial orders
&

acceleration

bounded
model checking

SMT

Fig. 2. Stacks of techniques

their abstraction. In our abstract domain, if the guard “t + 1 ≤ rcvd′” evaluates
to true, this means that rcvd′ is in the interval [t + 1, n − t[or [n − t, n]. These
intervals correspond to the abstract values I2 and I3, respectively. Thus, we can
replace the guard by:

q4 q5rcvd ′ = I2 ∨ rcvd ′ = I3

In this way we obtain a finite-state abstract process. Still, the resulting system
is a parallel composition of a parametric number of such processes.

2.2 Counter Representation

A system that consists of concurrent anonymous (identical) processes can be
modeled as a counter system by exploiting the symmetry of the system: Instead
of recording which process is in which local state, we record for each local state,
how many processes are in this state. Thus, we need one counter per local state �,
which we denote by κ[�]. After the PIA data abstraction, abstract processes have
a fixed finite number of local states, hence we have a fixed number of counters.
A step by a process that goes from local state � to local state �′ is modeled by
decrementing κ[�] and incrementing κ[�′]. When we fix the number of processes,
e.g., by giving a concrete value to n, each counter is bounded by the number of
processes n.

10 I. Konnov et al.

κ[�1] = 5

κ[�3] = 1
nsnt = 0

s0

κ[�1] = 4
κ[�2] = 1
κ[�3] = 1
nsnt = 0

s1

κ[�1] = 3
κ[�2] = 2
κ[�3] = 1
nsnt = 0

s3

κ[�1] = 2
κ[�2] = 3
κ[�3] = 1
nsnt = 0

s′
3

κ[�1] = 1
κ[�2] = 4
κ[�3] = 1
nsnt = 0

s4

.

. . .

Fig. 3. An illustration of a counter representation for a system with n = 7, t = 1, f = 1.
States s3 and s′

3 correspond to the single abstract state ŝ3 in Fig. 4.

Figure 3 illustrates a transition system obtained by switching to a counter
representation of a system of six correct processes (hence, the sum of counters is
six in each state). Note that each transition decrements one counter and incre-
ments another one. As one can see, if the original system does not have self-loops,
the counter representation does not have them either. This is in sharp contrast
to counter abstraction, which is presented in Sect. 2.3.

However, as we are interested in the parametrized problem, we have to con-
sider systems for all values of n. That is, after changing the representation,
we have not reached a finite state representation. Thus another abstraction is
needed.

Remark. In the literature, “counter representation” is sometimes referred to as
“counter abstraction,” partly because such a system can be viewed as more
abstract due to absence of process identifiers. As the specifications of FTDAs
do not single out processes but refer to process states only using quantification
over the individual processes, for us this “counter representation” maintains all
information which is present in the parallel composition of processes. Thus, in
our setting, the counter representation is precise for the specifications of FTDAs
that quantify over all correct processes.

2.3 Parametric Interval Counter Abstraction (PIA Counter)

In the counter representation of Sect. 2.2, the unbounded counter values are the
only source of an unbounded state space. To get rid of this, the natural idea
is to replace integer counters by counters over a finite abstract domain. In our
work, we use the same domain as in the PIA data abstraction in Sect. 2.1, e.g.,
for Algorithm 1, we use the domain of four intervals I0 = [0, 1[and I1 = [1, t + 1[
and I2 = [t + 1, n − t[and I3 = [n − t;n]. Figure 4 illustrates counter abstraction
of counter representations for all parameter values. For instance, the abstract
states ŝ0, ŝ1, ŝ3, ŝ4 represent the concrete states s0, s1, s3, s

′
3, s4 from Fig. 3. The

Model Checking of Fault-Tolerant Distributed Algorithms 11

κ̂[�1] = I2

κ̂[�3] = I1
nsnt = I0

ŝ0

κ̂[�1] = I2
κ̂[�2] = I1
κ̂[�3] = I1
nsnt = I0

ŝ1

κ̂[�1] = I1
κ̂[�2] = I1
κ̂[�3] = I1
nsnt = I0

ŝ2

κ̂[�2] = I1
κ̂[�3] = I1
nsnt = I0

ŝ6

κ̂[�1] = I2
κ̂[�2] = I2
κ̂[�3] = I1
nsnt = I0

ŝ3

κ̂[�1] = I1
κ̂[�2] = I2
κ̂[�3] = I1
nsnt = I0

ŝ4

.

.

Fig. 4. A small part of the transition system obtained by counter abstraction of counter
representations for all parameters.

abstract state ŝ2 represents states that do not appear for the parameter values
in Fig. 3, but occur, e.g., for n = 4, t = 1, f = 1.

For decrementing and incrementing counters, a counter abstraction intro-
duces abstract operations. For instance, an increment of abstract value I1 should
overapproximate that a concrete value from the interval [1, t + 1[is incremented.
Note that increment can result in the same interval I1 or in the next interval I2.
Similarly, decrement either maintains or changes its abstract value. When decre-
ment and increment maintain the counter values, the abstract transitions form
self-loops, as one can see in Fig. 4. Hence, abstract increment is not determinis-
tic. In particular, applying an abstract increment to a counter does not have to
change the counter value ever, which introduces spurious behavior, i.e., abstract
paths that do not correspond to real paths.

Our PIA counter abstraction uses many ideas developed by Pnueli et al. [32].
Regarding the abstract domain, they focused on mutual exclusion and thus used
the well-known “(0, 1,more)” abstract domain, whereas we focus on FTDAs and
use intervals with parametric boundaries.

In this way, we arrive at a system of a fixed number of counters that range
over a finite domain, that is, a finite-state model checking problem. We have
used this in [21] (cf. [16] for technical details) to check safety and liveness of
classic fault-tolerant broadcasting algorithms under a number of fault models.
As in [32], abstraction makes liveness verification more challenging as it requires
to add justice constraints. Moreover, for liveness we had to deal with spurious
counterexamples, cf. Sect. 2.4.

2.4 Parametrized Abstraction Refinement

Our PIA abstraction maintains the relevant properties of threshold guards and
counters, so that the classic CEGAR approach [10], which consists of refining
the state space, is not suitable. However, the non-determinism due to abstract

12 I. Konnov et al.

Fig. 5. Spurious loop due to coarse abstraction in classic CEGAR [10] on the left,
and a spurious path due to many concrete systems that are mapped to one abstract
systems in parametrized model checking on the right.

operations on counters leads to spurious transitions that lead to spurious coun-
terexamples. Hence our abstraction refinement approach deals with removing
transitions.

Our main problem stems from the non-determinism due to abstract counters.
If a process moves from local state � to �′ we have to decrease the counter κ(�)
and increase κ(�′). However, abstract decrease may lead to a smaller abstract
value, while abstract increase maintains the counter value. Overall, processes
may be lost. As we use global variables to record the number of message sent,
we have the same effect there and messages “may be lost” due to abstraction.
As messages may be required to make progress, this generates challenges for the
verification of liveness properties.

Our current approach is to use an SMT solver to check whether abstract
transitions correspond to concrete ones. If this is not the case, we explicitly
remove these transitions from the transition relation of the counter abstraction.
See [16] for implementation details, where we also discuss how we refine unfair
loops that occur in some case studies.

We would like to mention that abstraction refinement in parametrized model
checking generates challenges different from classic CEGAR. As shown in Fig. 5,
abstract transitions that build a path in the abstract system may stem from

Model Checking of Fault-Tolerant Distributed Algorithms 13

different concrete systems for different parameter values. Currently, we deal
with such counterexamples by user-provided invariant candidates that our tool
checks to be invariants and which are then used for verification. To achieve more
automation, one has to detect spurious paths instead of individual spurious tran-
sitions. However, this is challenging in the parameterized case, as infinitely many
concrete systems are involved.

2.5 Threshold Automata

In Sects. 2.1–2.4, we used control-flow automata (CFA) as an input to our model
checking techniques (cf. Fig. 1). A CFA is a formal presentation that is close to
pseudo code and symbolically captures the transition relation of a single process
as a formula over input, output (primed), and temporary variables. A path
through the control-flow automaton (non-deterministically) computes a single
transition in the transition relation of the algorithm. For instance, the leftmost
path of the CFA shown in Fig. 1 computes the local transition from the local
state with the assignment sv �→ V0, rcvd �→ 0, and nsnt �→ 0 to the local
state with the assignment sv �→ V0, rcvd �→ f , and nsnt �→ 0 (once the target
state of the transition is computed, the primes are dropped). If we apply data
abstraction (see Sect. 2.1) to the local variables, we obtain an abstract control-
flow automaton. Likewise, a path through the abstract control-flow automaton
computes a single transition in the abstract transition relation. There is, however,
an important difference between the input CFA and the CFA that is created by
data abstraction: the domain of the local variables, e.g., rcvd, in the abstract
CFA is finite, and hence the local state space of each process is finite. This
observation allows us to use another representation of the abstract transition
relation, which we call a threshold automaton [23].

In a nutshell, a threshold automaton is a graph, whose nodes correspond
to the abstract local states of a process, and the edges correspond to the local
transitions. The edges are annotated with linear arithmetic constraints over the
parameters and the shared variables, e.g., nsnt ≥ (n−t)−f , as well as with incre-
ments of the shared variables, e.g., nsnt′ = nsnt + 1. Note the three important
differences of a threshold automaton from a CFA:

1. The nodes of a threshold automaton correspond to the local states, whereas
the nodes of a CFA correspond to the locations in the control flow of the code
computing the next state of the algorithm;

2. An atomic step of the algorithm is represented by an edge of a threshold
automaton, as opposite to a path of a CFA;

3. The edges of a threshold automaton are annotated only with shared variables
and parameters, whereas the values of the local variables are implicit in the
automata nodes.

Figure 6 illustrates a threshold automaton that is constructed automatically
from the CFA shown in Fig. 1 by our tool. For instance, if a process is in local
state 00 and nsnt ≥ (n − t) − f , then the process may go to the local state 22.
In doing so, it increases nsnt.

14 I. Konnov et al.

00

33

10

22

01

02

12

Fig. 6. A threshold automaton for the CFA shown in Fig. 1. The nodes correspond to
the local states of the processes, while the edges correspond to the guarded transitions.
The edges are annotated with guards as follows: the bold gray edge is guarded with
true; the dotted edges are guarded with nsnt ≥ 1− f ; the solid edges are guarded with
nsnt ≥ (t+ 1) − f ; the dashed edges are guarded with nsnt ≥ (n− t) − f . Finally, nsnt
is incremented by the edges from the local states 00, 10, and 01 to the local states 12,
22, and 33, whereas all other edges do not change nsnt.

In our case studies, all increments of shared variables in threshold automata
are outside of loops. This is a consequence of the class of FTDAs under con-
sideration: each correct process sends a message of each type at most once, and
thus increases each shared variable at most once. The partial order reduction
techniques in Sects. 2.6 and 2.7 exploit this property to guarantee completeness
of bounded model checking.

2.6 Checking Reachability by Bounded Model Checking Using
Offline Partial Order Reduction and Acceleration

In [23], we apply SAT-based bounded model checking to verify reachability
properties of the finite model obtained by counter abstraction of FTDAs (see
Sect. 2.3). It is well-known that to make bounded model checking complete for
reachability properties, one has to analyze executions of length up to the diam-
eter of the transition system [3].

To this end, we first compute an upper bound on the diameter of the counter
representation, that is, an upper bound on the minimal number of steps required
to reach any configuration σ′ from a configuration σ. From the bound on the
counter representation we obtain a diameter bound on the counter abstraction.
In the following we discuss why, surprisingly, the diameter is bounded.

Assume σ′ is reached from σ by steps of two processes where each process
transitions from local state � to local state �′. In classic interleaving semantics,
this run has length 2. However, we might also model this as a single update on
the counters, that is we may decrease the counter κ(�) and increase κ(�′) by two,
respectively. This idea is illustrated in Fig. 7. In general, we may move arbitrarily

Model Checking of Fault-Tolerant Distributed Algorithms 15

κ[�1] = 5

κ[�3] = 1
nsnt = 0

s0

κ[�1] = 4
κ[�2] = 1
κ[�3] = 1
nsnt = 0

s1

κ[�1] = 3
κ[�2] = 2
κ[�3] = 1
nsnt = 0

s3

κ[�1] = 2
κ[�2] = 3
κ[�3] = 1
nsnt = 0

s′
3

κ[�1] = 1
κ[�2] = 4
κ[�3] = 1
nsnt = 0

s4

.

. . .

Fig. 7. A counter system in Fig. 3 extended with accelerated transitions (dashed)

many process at once, and call such runs of counter systems accelerated. In this
example, 2 would be the acceleration factor. In the context of parametrized model
checking, the important property is that because we may move arbitrarily many
process at a time, there is potential to bound the diameter independently of the
value of the parameters!

Exploiting commutativity arguments not given in detail here, by swapping
two neighboring transitions in a run, we obtain the same final state. To combine
this with acceleration, one would like to swap transitions in such a way that
many neighboring transitions can be accelerated. Importantly, one has to ensure
that after swapping the guard of a transition still evaluates to true. Ensuring
this has great influence on the actual bound and is the key technical argument
from [23], where we also show that the resulting bounds are sufficiently small to
check several case studies. Note that our method can be seen as a form of partial
order reduction that is applied before model checking, i.e., an offline partial order
reduction.

2.7 Bounded Model Checking Using SMT

Our final method avoids counter abstraction and directly encodes runs of the
counter representation in SMT. A global system state, which contains basically
one counter per local state, can be represented as a vector of integer variables
(one for each local state). As in SAT-based bounded model checking, one can
then encode the transition relation, and the subsequent global state using a fresh
vector of integer variables (or fresh integer variables for the counters that have
actually been updated).

While the technique of Sect. 2.6 conceptually enumerates all runs of length
up to the diameter, in [24] we only encode a small set of “schemas”, and show that
the (representative) runs generated from the schemas span the reachable state

16 I. Konnov et al.

Input: a CFA,
an LTL property

Data
abstraction

Counter
representation

Counter
abstraction

Finite-state
model checking

Spin, NuSMV (BDD),

NuSMV (BMC)

Property holds

Abstraction
refinement

A counterexample
(possibly spurious)

Fig. 8. Parameterized verification of FTDAs with data and counter abstractions [16,
21,23]

space. A schema is essentially a sequence of scheduling constraints containing
guards. The schemas are obtained by an improvement of the partial order ideas
that we used in [23] to bound the diameter. Thus, we obtain a more aggressive
offline partial order reduction, and significantly better experimental results that
are discussed in Sect. 4.

To illustrate schemas, consider the threshold automaton depicted in Fig. 6.
The automaton has three guards: ϕ1 ≡ nsnt ≥ 1 − f , ϕ2 ≡ nsnt ≥ t + 1 − f ,
and ϕ3 ≡ nsnt ≥ n − t − f . Consider the following transitions of the threshold
automaton: the transition r1 from 01 to 02; the transition r2 from 02 to 22,
the transition r3 from 22 to 33. Then, a schema {}r1{ϕ1, ϕ2}r1r2r3{ϕ1, ϕ2, ϕ3}
generates runs for various parameter values, where the transition r1 is executed
by several processes first and makes the guards ϕ1 and ϕ2 true; after that the
transitions r1, r2, and r3 are executed by several processes one after the other
and make the guard ϕ3 true.

The number of different threshold guards in the typical distributed algo-
rithms in the literature varies from one to ten, which results in a reasonably
large number of schemas that have to be checked, typically several thousand
schemas [24]. Note that the schemas can be verified independently, and thus, in
parallel.

3 Implementation: Byzantine Model Checker

We have implemented the techniques described in Sect. 2 in our tool ByMC:
Byzantine Model Checker1. Figures 8 and 9 illustrate two different workflows
that combine our techniques within ByMC.

In the first workflow depicted in Fig. 8, our tool computes data and counter
abstractions and invokes a model checker to verify a finite-state abstract sys-
tem. Depending on the choice of the model checker, ByMC can verify either
safety properties, or both safety and liveness: the explicit-state model checker

1 http://forsyte.at/software/bymc/.

http://forsyte.at/software/bymc/

Model Checking of Fault-Tolerant Distributed Algorithms 17

Input:
a CFA,
an LTL
formula

(safety only)

Data abstraction
(threshold automata)

Counter
representation

Complete
bounded

model checking
with SMT

(infinite-state)

Property holds, or
a counterexample

Fig. 9. Parameterized verification of FTDAs with data abstraction and SMT-based
bounded model checking [24]

Spin [18] or the BDD-based symbolic algorithms in NuSMV/nuXmv [7] allow us
to verify safety and liveness as described in [21]; the SAT-based bounded model
checker implemented in NuSMV/nuXmv allows us to verify safety properties2 as
described in [23]. When a model checker reports a counterexample, ByMC checks
whether the counterexample is spurious, and when it finds spurious behavior,
ByMC refines the counter abstraction.

In the second workflow depicted in Fig. 9, our tool computes only data
abstraction (Sect. 2.1), constructs a threshold automaton (Sect. 2.5) and com-
putes a complete set of schemas (Sect. 2.7) as described in [24]. Each schema is
encoded as an SMT formula in linear integer arithmetic and checked with an
SMT solver, e.g., Z3 [11] or MathSAT [9]. As this technique maintains precise
process counters, it does not produce spurious counterexamples that are caused
by counter abstraction in the first workflow. Thus, the refinement loop is not
required in our experiments.

4 Evaluation and Case Studies

In Figs. 10 and 11 we show how our techniques allowed us to check more and
more involved distributed algorithms.

We are currently able to verify FTDAs that use threshold guards and work
in asynchronous systems:

Broadcast. Reliable broadcast is a problem that can be solved in asynchronous
systems, and we have verified the core of several such algorithms: Folklore
reliable broadcast (“first forward to all then accept”, e.g., given in [8]), Consis-
tent Broadcast [35], Asynchronous Byzantine agreement [5]. Also the problem
called “Condition-based consensus” can be solved in asynchronous systems
and bears some similarities to broadcasting. We verified the condition-based
consensus algorithm from [29]. After we published our verification results, a
broadcasting algorithm very similar to [35] but with a different threshold was
published in [19], and our tool easily checked its correctness.

2 Although NuSMV implements bounded model checking for LTL, our present results
guarantee completeness only for safety properties.

18 I. Konnov et al.

1 s

10 s

100 s

10 m

1 h

5 h

1 d

0 5 10 15 20 25
Number of checked benchmarks

SMT @ cav15
NuSMV-SAT @ concur14
NuSMV-BDD @ fmcad13

SPIN @ fmcad13

Fig. 10. Time to verify instances of fault-tolerant distributed algorithms (Color figure
online)

FTDAs using Failure Detectors. The impossibility of solving non-blocking
atomic commitment in asynchronous systems can be circumvented by using
oracular mechanisms like failure detectors. They can be easily encoded in
linear temporal logic. Thus, we verified such atomic commitment algorithms
from [17,33].

Fast Consensus Algorithms. The idea of this class of algorithms is to have a
quick (cheap) distributed preprocessing to a more expensive consensus algo-
rithm: the algorithm terminates quickly in average runs, e.g., if there are no
faults, if the system is not “too asynchronous”, or if all processes have the
same initial value. In case the preprocessing does not lead to a conclusive
result, a “more-expensive” fall-back consensus algorithm is started with spe-
cific initial values. Our tool can check the correctness of this preprocessing of
the algorithms BOSCO [34], C1CS [6], and CF1S [12].

Our techniques are currently limited to the class of asynchronous FTDAs
that use only threshold guards. In particular, as consensus cannot be solved in
asynchronous systems [15], we cannot completely verify algorithms for consensus,
atomic broadcast, state machine replication, non-blocking atomic commitment,
and similar hard problems. For that we need to restrict the interleavings and
move from asynchronous systems to partially synchronous systems [14]. Only
then, famous FTDAs like in [14] or Paxos [25] can be verified automatically in
their entirety.

Our tool uses an extension of Promela as a front-end for CFA [16,22]. Their
source code and the code of the threshold automata are freely available.3

3 https://github.com/konnov/fault-tolerant-benchmarks/.

https://github.com/konnov/fault-tolerant-benchmarks/

Model Checking of Fault-Tolerant Distributed Algorithms 19

0.1 GB

1 GB

10 GB

32 GB

0 5 10 15 20 25
Number of checked benchmarks

SMT @ cav15
NuSMV-SAT @ concur14
NuSMV-BDD @ fmcad13

SPIN @ fmcad13

Fig. 11. Memory to verify instances of fault-tolerant distributed algorithms (Color
figure online)

5 Conclusions and Future Work

Automatic verification of fault-tolerant distributed algorithms is a challenging
task. To the best of our knowledge, besides our own work, there are only few
papers that deal with parameterized verification of FTDAs [1,13]. The main
complications stem from multiple parameters, that are related by resilience con-
ditions, as well as the fact that not only the number of processes, but also the
code of each process is parameterized.

To make progress in automatic verification, our first steps have focused on
domain-specific abstractions for a large class of fault-tolerant distributed algo-
rithms with threshold guards. These guards are quite natural constructs in the
distributed algorithms literature: for instance, majority voting on a value is a
natural technique to achieve agreement. The algorithms we address with our
technique operate in the standard interleaving semantics (with fairness con-
straints). In terms of distributed algorithms literature, they are asynchronous. In
the future, we will address also other computational models such as completely
synchronous, partially synchronous, timed systems, and round-based systems.

Further, we want to develop more domain-specific techniques for increas-
ingly larger classes of FTDAs. We are currently developing a tool4 that imple-
ments these techniques and applies them to the popular TLA+ specification
language [27]. This will give us a framework and a toolset for verification of
complex distributed algorithms such as Paxos [26].

4 http://forsyte.at/apalache/.

http://forsyte.at/apalache/

20 I. Konnov et al.

Acknowledgements. We are grateful to Annu Gmeiner and Ulrich Schmid for their
contributions to several papers [16,20–22] of our research agenda.

References

1. Alberti, F., Ghilardi, S., Pagani, E., Ranise, S., Rossi, G.P.: Universal guards,
relativization of quantifiers, and failure models in model checking modulo theories.
JSAT 8(1/2), 29–61 (2012)

2. Attiya, H., Welch, J.: Distributed Computing, 2nd edn. Wiley, New York (2004)
3. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without

BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999)

4. Bloem, R., Jacobs, S., Khalimov, A., Konnov, I., Rubin, S., Veith, H., Widder,
J.: Decidability of Parameterized Verification. Synthesis Lectures on Distributed
Computing Theory. Morgan & Claypool Publishers, San Rafael (2015)

5. Bracha, G., Toueg, S.: Asynchronous consensus and broadcast protocols. J. ACM
32(4), 824–840 (1985)

6. Brasileiro, F., Greve, F.G.P., Mostéfaoui, A., Raynal, M.: Consensus in one com-
munication step. In: Malyshkin, V.E. (ed.) PaCT 2001. LNCS, vol. 2127, pp. 42–50.
Springer, Heidelberg (2001)

7. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A.,
Mover, S., Roveri, M., Tonetta, S.: The nuXmv symbolic model checker. In: Biere,
A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, heidelberg
(2014)

8. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. JACM 43(2), 225–267 (1996)

9. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
Solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS,
vol. 7795, pp. 93–107. Springer, Heidelberg (2013)

10. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

11. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

12. Dobre, D., Suri, N.: One-step consensus with zero-degradation. In: DSN,
pp. 137–146 (2006)

13. Drăgoi, C., Henzinger, T.A., Veith, H., Widder, J., Zufferey, D.: A logic-based
framework for verifying consensus algorithms. In: McMillan, K.L., Rival, X. (eds.)
VMCAI 2014. LNCS, vol. 8318, pp. 161–181. Springer, Heidelberg (2014)

14. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. J. ACM 35(2), 288–323 (1988)

15. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

16. Gmeiner, A., Konnov, I., Schmid, U., Veith, H., Widder, J.: Tutorial on parame-
terized model checking of fault-tolerant distributed algorithms. In: Bernardo, M.,
Damiani, F., Hähnle, R., Johnsen, E.B., Schaefer, I. (eds.) SFM 2014. LNCS, vol.
8483, pp. 122–171. Springer, Heidelberg (2014)

17. Guerraoui, R.: Non-blocking atomic commit in asynchronous distributed systems
with failure detectors. Distrib. Comput. 15(1), 17–25 (2002)

Model Checking of Fault-Tolerant Distributed Algorithms 21

18. Holzmann, G.: The SPIN Model Checker. Addison-Wesley, Boston (2003)
19. Imbs, D., Raynal, M.: Simple and efficient reliable broadcast in the presence

of Byzantine processes. CoRR abs/1510.06882 (2015). http://arxiv.org/abs/1510.
06882

20. John, A., Konnov, I., Schmid, U., Veith, H., Widder, J.: Brief announcement: para-
meterized model checking of fault-tolerant distributed algorithms by abstraction.
In: PODC, pp. 119–121 (2013)

21. John, A., Konnov, I., Schmid, U., Veith, H., Widder, J.: Parameterized model
checking of fault-tolerant distributed algorithms by abstraction. In: FMCAD,
pp. 201–209 (2013)

22. John, A., Konnov, I., Schmid, U., Veith, H., Widder, J.: Towards model-
ing and model checking fault-tolerant distributed algorithms. In: Bartocci, E.,
Ramakrishnan, C.R. (eds.) SPIN 2013. LNCS, vol. 7976, pp. 209–226. Springer,
Heidelberg (2013)

23. Konnov, I., Veith, H., Widder, J.: On the completeness of bounded model checking
for threshold-based distributed algorithms: reachability. In: Baldan, P., Gorla, D.
(eds.) CONCUR 2014. LNCS, vol. 8704, pp. 125–140. Springer, Heidelberg (2014)

24. Konnov, I., Veith, H., Widder, J.: SMT and POR beat counter abstraction:
parameterized model checking of threshold-based distributed algorithms. In:
Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 85–102.
Springer, Heidelberg (2015)

25. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–169
(1998)

26. Lamport, L.: Paxos made simple. ACM SIGACT News 32(4), 18–25 (2001)
27. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware

and Software Engineers. Addison-Wesley Longman Publishing Co., Inc., Boston
(2002)

28. Lynch, N.: Distributed Algorithms. Morgan Kaufman, San Francisco (1996)
29. Mostéfaoui, A., Mourgaya, E., Parvédy, P.R., Raynal, M.: Evaluating the condition-

based approach to solve consensus. In: DSN, pp. 541–550 (2003)
30. Netflix: 5 lessons we have learned using AWS (2010). http://techblog.netflix.com/

2010/12/5-lessons-weve-learned-using-aws.html
31. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.

J. ACM 27(2), 228–234 (1980)
32. Pnueli, A., Xu, J., Zuck, L.D.: Liveness with (0, 1,∞)-counter abstraction. In:

Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 107–122.
Springer, Heidelberg (2002)

33. Raynal, M.: A case study of agreement problems in distributed systems: non-
blocking atomic commitment. In: HASE, pp. 209–214 (1997)

34. Song, Y.J., van Renesse, R.: Bosco: one-step byzantine asynchronous consensus.
In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 438–450. Springer,
Heidelberg (2008)

35. Srikanth, T., Toueg, S.: Simulating authenticated broadcasts to derive simple fault-
tolerant algorithms. Dist. Comp. 2, 80–94 (1987)

http://arxiv.org/abs/1510.06882
http://arxiv.org/abs/1510.06882
http://techblog.netflix.com/2010/12/5-lessons-weve-learned-using-aws.html
http://techblog.netflix.com/2010/12/5-lessons-weve-learned-using-aws.html

Applying MDA to Generate Hadoop Based
Scientific Computing Applications

Darkhan Akhmed-Zaki, Madina Mansurova(B), Bazargul Matkerim,
Ekateryna Dadykina, and Bolatzhan Kumalakov

Faculty of Mechanics and Mathematics, Al-Farabi Kazakh National University,
Al-Farabi 71, Almaty, Republic of Kazakhstan

mansurova01@mail.ru

Abstract. The paper presents an attempt to develop and deploy a
functioning MDA (Model-Driven Architecture) model of a distributed
scientific application. The main focus is a problem of modeling high per-
formance computing processes in a visual notation and automatic gen-
eration of an executable code using the resulting diagrams. The article
describes the efforts to create a platform independent model of process
execution, transformation it into a platform specific model and, finally,
automatic generation an application code. The research novelty includes
a platform independent model of the classic hydrodynamics problem,
equivalent Hadoop based platform specific model and the testing results
that confirm feasibility of the research.

Keywords: Model-Driven Architecture · Hadoop · Scientific computing

1 Introduction

Model Driven Development (MDD) is a software engineering methodology that
treats “formal specification of the function, structure and actions of the system”
as the main object of development [1]. Other objects, such as program codes, are
generated at a later stage from these specifications also called models. Models are
usually developed using standard or extended Unified modeling language (UML)
diagrams, which make one more level of abstraction in the object-oriented design
paradigm. In this case, the increased level of abstraction facilitates development
of platform independent application templates that are easily converted to an
executable code for any platform. In other words, one may build a template
application (set of diagrams) that may be used by an automated code generator
to produce an executable code for any known software platform.

In the early 2000s, OMG consortium [2] defined the conceptual infrastructure
of Model driven architecture (MDA) that serves as the basis for MDD methods
and defines standard specification, model description and transformation lan-
guages. Figure 1 presents a generic MDA development cycle.

First, user requirements are processed and formalized in a form of Platform-
independent-model (PIM). Despite being presented as a set of UML diagrams,
c© Springer International Publishing Switzerland 2016
M. Mazzara and A. Voronkov (Eds.): PSI 2015, LNCS 9609, pp. 22–35, 2016.
DOI: 10.1007/978-3-319-41579-6 3

Applying MDA to Generate Scientific Computing Applications 23

Fig. 1. An MDA application development cycle.

PIM has to take into account how the automated interpreter would further
transform the model with the final goal of building a working solution. There
is rich discussion on MDD modeling techniques in academic literature, which is
out of the scope of this article. In this section, let us point out that an initial
prototype of the model may contain inaccuracies or discrepancies, therefore, it
goes through repetitive validation and introduction of changes before it proceeds
to the second stage (Fig. 1, step 1).

Platform-specific-model (PSM) is the same system specification as PIM, but
with the elements of the target platform. For instance, if the system has to
run under particular environment (target environment) such elements would
include environment components, interfaces, data storage, etc. Thus, every time
when it is necessary to adapt the system to new technology only PSM should
be reconsidered (Fig. 1, step 3). In the cases when it is necessary to introduce
changes to the functioning system, for example, to start it with the help of other
technology, PIM and PSM models should be reconsidered (Fig. 1, steps 4 and
7). Steps 2 and 5 are the steps of model transformations.

Code stage in the figure represents automated executable generation (Fig. 1,
step 6). It involves special software that interprets PSM and produces final
output. Such tools are available in different varieties and their properties vary
depending on vendor and employment proposals. Academic literature provides
some brief introduction to such tools, but this discussion is out of the scope of
this article.

At this stage it should be noted that MDA and MDD have been successfully
applied in several domains of software engineering including high performance
scientific computing (HPSC). This article presents an attempt to construct and
evaluate all levels of HPSC MDA models, define their transformation rules and
generate an executable code.

The remaining part of the article is structured as follows: Sect. 2 presents an
extensive literature review and puts the article results on the body of knowledge
landscape. Section 3 provides a detailed description of the solution including the

24 D. Akhmed-Zaki et al.

main components overview (Subsect. 3.1), PIM (Subsect. 3.2) and PSM (Sub-
sect. 3.3) descriptions. Next, Sect. 4 describes the experiment design and evalua-
tion results. Finally, the article is completed by a relevant discussion and further
research directions.

2 Research Background and Related Work

2.1 HPSC Model Development Process Overview

Figure 2 vizualizes the process of designing and implementing HPSC application
using UML 2.0 activity diagram. The process is divided into 5 stages. Each
stage is performed by a specialist indicated on the left and its result is the
corresponding MDA model shown on the right.

HPSC application design and development is carried out by a group of spe-
cialists as presented in Fig. 3. A specialist in oil-gas industry defines the problem
statement. Next, a mathematician creates a mathematical model that is passed
on to a specialist in the field of the numerical methods. He/she finds a corre-
sponding explicit or implicit numerical method and defines an application algo-
rithm. Next, a MDD modeler constructs HPSC application architecture, and,
finally, a programmer implements the solution.

Throughout the complex application development errors may appear at dif-
ferent stages. Causes include ambiguity in interpretation of models, complexity
of a program code, upgrade from one parallel architecture to another, modifi-
cation of software, documentation updates, etc. Investigations show that MDD
gives good results, when developing HPSC applications.

2.2 Related Work Review

In order to develop scientific computing applications using MDD methodologies,
several contributions have been proposed. The paper of Lugato [3] is one of the
early works that proposed MDE for high performance computing applications.
Later in [4], he presented the idea in detail. The papers of [5–9] proposed MDE
approach by creating a domain specific modeling language. Palyart et al. [7]
proposed an approach called MDE4HPC using their own domain specific mod-
eling language - High Performance Computing Modeling Language to describe
abstract views of the software. Implementation of the approach using the tool
ArchiMDE is integrated with Paprika studio and Arcane framework. Palyart
et al. [6] introduced a DSVL to help in specifying and modeling high perfor-
mance computing (HPC) applications. They focus on specification of solution
parallelism. However, they did not show how their language could be used to
generate HPC code. Brual et al. [8] reported the needs for leveraging on knowl-
edge and expertise by focusing on Domain-Specific Modeling Languages (DSML)
application. Similarly, Almorsy et al. [10] proposed their prototype of scientific
Domain Specific Visual Languages (DSVLs)-based toolset. However, they did
not consider the distributed scientific computing. In [11], the authors developed
an approach to interoperation of high performance, scientific computing appli-
cations based upon math-oriented data modeling principles. In [12], the authors

Applying MDA to Generate Scientific Computing Applications 25

Fig. 2. MDD process of HPSC software.

Fig. 3. Relay race of specialists in HPSC application development.

26 D. Akhmed-Zaki et al.

define the architecture framework consisting of a coherent set of viewpoints to
support the mapping of parallel algorithms to parallel computing platforms. The
feature of the approach [12] is the particular focus on optimization at the design
level using architecture viewpoints. This approach can be adopted for different
parallel algorithms and can be used with different parallel technologies. Gamatie
et al. [13] represent the Graphical Array Specification for Parallel and Distrib-
uted Computing (GASPARD) framework for massively parallel embedded sys-
tems on Multi-Processor System-on-Chips (MPSoCs) architectures to support
optimization of the usage of hardware resources. GASPARD uses MARTE stan-
dard profile for modeling embedded systems at a high abstraction level. Based
on the Model-Driven Engineering (MDE) paradigm, MARTE models are refined
towards lower abstraction levels, this making automatic generation of the code
possible. Danniluk [14] presented the problem of Molecular Beam Epitaxy and
Reflection High-Energy Electron Diffraction with MDA approach. In the paper,
he described a practical and pragmatic approach to MDA that had been used
during the work at three scientific projects. The PIMs are described with UML
and PSMs that specify implementation of PIMs with Object Pascal and C++.
They applied MDD and visual-development tools to numerical simulation prob-
lems. Each of these projects has its own research interests and none of them
considers Hadoop distributed computing platform as a specific platform. Simi-
larly to the authors of this work, the works of [15,16] proposed MDD approach
in developing MapReduce applications. In [15], the authors apply Map/Reduce
to EMF-based models to cope with complex data structures in the familiar
an easy-to-use and type-safe EMF fashion. They store large EMF models in
Hadoop’s HBase and then use those models from within the Map/Reduce pro-
gramming model using EMF’s generated APIs. The authors of [16] developed
an MDE-based cloud deployment framework that automates the deployment
and execution of MapReduce applications. The model-driven approach is used
to predict the performance of MapReduce application in the cloud environment.
The features of our approach are: (1) We create scientific computing components
for modeling scientific computing applications. Application modeling is achieved
by using UML diagrams. (2) We presented the whole cycle of MDA process of
development from modeling to code generation. (3) Our approach is oriented
to the MapReduce application development for one of oil extraction problems.
(4) The presented work is the continuation of earlier works [17,18].

3 Solution Design

This section introduces generic components that form the building blocks of
HPSC applications. Then it proceeds to present how template PIM is built and
then transformed to PSM for Hadoop code generation.

3.1 Main Components of the System

In order to design models, we implement four generic components that will serve
as basic building blocks for HPSC applications. The developed components are

Applying MDA to Generate Scientific Computing Applications 27

divided and named depending on the peculiarities of HPC applications. At this
stage, we assume that a scientific computing problem is of no importance for the
solution, because the model can be constructed from these components in any
case (for discussion on components functions see [19]).

For any application one has to determine input and output parameters, class
of equations, explicit or inexplicit methods of computation and instruments
(tools) for performing parallel computations. Therefore, we presented these 4
invariable independent parts in the form of 4 basic components. They are:
an input-output component InOutPut, a component of equations of numeri-
cal methods NumerMethods and a component of organization of a high perfor-
mance computing environment PEOrganize. Every component consists of several
classes. Description of the components - as applied to MapReduce application -
is presented below:

1. Component PEOrganize is used for creation of the topology on Hadoop plat-
form.

2. Component NumerMethods is used for determination of a numerical model
with different types of grid and numerical methods.

3. Component SciEquations is used for determination of a mathematical model
with the number of final differential equations and conditions for these equa-
tions.

4. Component InOutPut consists of classes of reading from the file and writing
into the file with the help of which input and output data of HPSC application
are prescribed (set).

As is shown in Fig. 4, in the process of designing and development of appli-
cations there takes place transformation of models starting from the upper level
to the lower level.

Fig. 4. MDA modeling.

28 D. Akhmed-Zaki et al.

As it was mentioned above, MDD specialist receivers a computationally inde-
pendent model CIM from the specialist in numerical methods. In case of solution
of the problem, CIM contains the algorithm of a numerical solution of the prob-
lem by the explicit method. In his turn, MDD-specialist creates an independent
on the platform and the programming language PIM model for the given numer-
ical CIM model using HPSC components. Model CIM can be described by the
components of input-output-InOutPut, the component of equation of a scientific
computing problem SciEquations, the component of numerical methods Numer-
Methods.

But in CIM model there is no information for the component of organization
of high performance computational environment PEOrganize as the environment
of development in the computational models is not considered.

The work resulted in the development of the MDA model and realization
using the Hadoop technology.

3.2 PIM Model

In our case, computations are performed in MapReduce Hadoop environment.
The algorithm with the use of MapReduce consists of the stage of initialization
and iteration stage, a separate MapReduce work being fulfilled at each iteration.

Computations are performed on Hadoop platform, a MapReduce problem
receives a cube of data, Mappers perform 1D decomposition, each Reducer
receives its block of data and performs computations. After computations are
completed, boundary data are entered into a distributed file system HDFS, the
values of inside points are written into a local file system. Then a new cycle
begins. The process continues until the condition is satisfied.

Thus, we have developed a PIM model for HPSC applications for the problem
with the help of UML diagram of classes (Fig. 5) indicating relations between
the classes. On account of retrieving calling methods of each other, the classes
of components are in associative relations.

3.3 PSM Model

Models of transformation of PIM to PSM can be classified by several categories:
improving the quality of transformation, with perfection of the development,
with refining, with specialization, translation, abstraction, generalization and
forms of designing. In our case, transition from PIM model to MapReduce Java
PSM model refers to the category with refining. Refining means redetermina-
tion in the course of transition from CIM to PIM, transition from PIM to PSM.
Refining can be added at one level of abstraction. Transformation of PIM model
to MapReduce Java PSM model is transformation of UML-diagram of classes
Java to the diagram of classes Java with addition of MapReduce specification to
PSM. When transforming PIM model to MapReduce Java PSM model, multiple
succession, associations of classes and qualified associations must be removed.
In PSM model, the relations between components shown in Fig. 6 are preserved,
but specification of the programming language Java is added. The Hadoop PSM

Applying MDA to Generate Scientific Computing Applications 29

Fig. 5. PIM model.

model in Fig. 6 shows specification of the HPSC component - PEOrganization.
The MapReduce distributed programming paradigm which consists of initializa-
tion and iteration stages of computation is modeled with the help of Map class
and Reduce class.

4 Experiment Design and Evaluation

4.1 Hydrodynamics Problem Definition

Let us consider a hypercube in anisotropic elastic porous medium Ω = [0, T] ×
K{0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1}.

Let Eq. (1) describe the fluid dynamics in hypercube Ω under initial condi-
tions (2) and boundary conditions:

∂P

∂t
=

∂

∂x
(φ(x, y, z)

∂P

∂x
) +

∂

∂y
(φ(x, y, z)

∂P

∂y
) +

∂

∂z
(φ(x, y, z)

∂P

∂z
). (1)

P (0, x, y, z) = ϕ(0, x, y, z). (2)

∂P

∂n
|Γ = 0. (3)

Here, (3) is the surface of cube Ω. In Eq. (1) the solution function P(t, x,
y, z) is seam pressure in point (x, y, z) at the moment t; φ(x, y, z) is diffusion
coefficient in the reservoir; f(x, y, z) is density of sources. To solve (1)–(3) Jacobi’s
numerical method was used. In order to implement a test solution, we employ a
mathematical problem for a particular case with functions from [17].

First, the original domain is divided into sub-domains (Fig. 7). Every sub-
domain consists of three main parts: ghost slab, boundary slab and interior slab.

30 D. Akhmed-Zaki et al.

Fig. 6. Hadoop based PSM model.

Data transformations (defined by the algorithm) can proceed independently only
in the interior slab. The boundary slab of the sub-domain, when being computed,
requires boundary slab values of its neighbors and those are stored in the ghost
slab. In other words, the ghost slab stores copies of neighbors boundary slab
values.

The algorithm of numerical solution of the problem with the help of MapRe-
duce Hadoop technology consists of two stages: the stage of initialization at which
MapReduce work of the first level is performed only once and the iteration stage
at which a cycle of MapReduce works of the second level is performed. Mapper
of the first level loads data from the file system HDFS. Then, Mapper distributes
the data between Reducer processes on slabs, thus realizing 1D decomposition
of the data.

Reducer, in its turn, performs computations, duplications of boundary slabs
into the ghost slabs of the neighbors and stores the obtained results. The data
used by Reducer for computations are divided into two kinds: local data, i.e.
the data which refer to the interior slab and shared boundary data (boundary
slab). Reducer enters local computed data directly into a local file system and
enters the shared boundary data into the output file of the distributed file system
HDFS, which will be an input file for Mapper of the second level at the next
iteration. At each iteration Mapper of the second level distributes the updated
boundary data among Reducers, thus providing the exchange of boundary values

Applying MDA to Generate Scientific Computing Applications 31

Fig. 7. 1D-decomposition of computational domain. (Color figure online)

Fig. 8. Iterative MapReduce framework scheme.

between slabs. The flow of data corresponding to the description is presented in
Fig. 8.

The distributed algorithm consists of two stages:

1. The stage of initialization;
2. The iteration stage.

The stage of initialization is a MapReduce task Initial in which there takes
place initialization and writing of files necessary for computations in the process
of iterations.

The iteration stage is a MapReduce task Iterations. At each iteration in
Mapper, points of the field with the same keys, i.e. numbers of subcubes, are

32 D. Akhmed-Zaki et al.

grouped. The input data of Mapper are the output data of Reducer. In Reducer,
the main computations are performed according to the formulae of the explicit
method. Then, writing of the interior parts of files into the local file system
and transfer of values of boundary slabs to the output of Reducer Iterations are
performed.

4.2 Computational Experiment Results

An automatic transition from MapReduce Java PSM to Java code is realized
with the help of generator Acceleo. Acceleo is a pragmatic realization of Object
Management Group (OMG) of MOF model. Acceleo UML2 for Java is a code
generator based on Acceleo 3.2. This generator supports creation of the initial
code Java for classes and interfaces.

After automatic generation we have a program code which contains descrip-
tion of classes and methods as well as relations between methods corresponding
to PSM model (Fig. 6). Then, the methods of each class of HPSC components
are written down according to their functionality or called from class libraries.
According to Fig. 2 the process of code writing and interpretation of the results
goes on till the program gives the results corresponding to the results of a sequen-
tial program. The computing experiments on the generated MapReduce program
and the sequential program must be performed at equal pre-determined para-
meters of the computational problem.

We have performed all the stages of the process of MapReduce application
development for problem (1)–(3) according to MDD methodology and have
obtained the same computing results for the problem solution of the sequen-
tial program code and generated MapReduce code. The experimental design
and the results of the generated MapReduce program execution on a special
deployed Apache Hadoop Mini-Cluster of Laboratory of Computer Science of
al-Farabi Kazakh National University are presented below.

Apache Hadoop 2.6.0 Mini-Cluster consists of 1 master node and 7 slaves. All
slave nodes have Ubuntu 14.04 on board, master node has Ubuntu Server 14.04.
Master node hardware characteristics: Hardware: HP ProLiant-BL460c-Gen8,
Architecture: x86-64, CPU(s): 4, Model name: Intel(R) Xeon(R) CPU E5-2609
0 @ 2.40 GHz. Slaves hardware characteristics: Architecture: x86-64, CPU(s): 4,
Model name: Intel(R) Core(TM) i5-2500 CPU @ 3.30 GHz. NFS server is con-
figured on master node. Slaves have the same folder mounted with read/write
access rights. Nodes are connected using Ethernet devices, this providing up to
1000 Mbps, Intel(R) PRO/1000 Network Connection. 3D problem sizes are cho-
sen by the possibility of the memory of computing nodes: 256 × 128 × 128,
1024 × 128 × 128, 4096 × 128 × 128, 8192 × 128 × 128.

The results obtained for the dependence of the speedup and efficiency are
presented in Figs. 9 and 10. We can see that only the problem size of 8192×128×
128 has got the four times of speedup, it means that, according to the features
of Hadoop platform, with the increase of MapReduce application data size the
speedup increases. Figure 10 also shows that when we choose a big problem size
the computing nodes are more effectively used.

Applying MDA to Generate Scientific Computing Applications 33

Fig. 9. The speedup versus the number of nodes for different meshes.

Fig. 10. The efficiency versus the number of nodes for different meshes.

34 D. Akhmed-Zaki et al.

To test the fault tolerance appearance of IOException with the probability
of 33 % is added to the Reducer code. In the experiment, 3 jobs have taken part
each of which initiates 8 Reducers. The number of broken Reducers is 25 out
of 97. The average time of the problem performance without IOException and
with IOException was the same. Thus, it can be concluded that the time of
performance does not depend on failures of Reducers and their restarting. The
computations obtained in both cases have equal values.

5 Conclusion and Further Research

The aim of this direction of investigations is the use of MDD methods for devel-
opment of applications for HPSC in the field of oil and gas production. For the
work, MDA standard is chosen as MDD methodology. The process of designing
and developing a high performance application is described on the example of
MDA modeling. The method of passing on a baton between different specialists
of oil and gas industry, the close interaction of which can facilitate the work on
creation of complex applications for oil and gas industry, is shown. The inves-
tigation results show the prospects of using MDD methodology for solution of
complex resource intensive problems.

The experimental results allow to conclude that the distributed application
works well and with the increase in the volume of the data being processed the
performance of Hadoop implementation increases. HPSC applications can be
designed and developed with the help of the proposed MDA model and its basic
components. This approach will possible become one of the ways to perform
distributed scientific computing on high performance heterogeneous systems.

Acknowledgments. The presented research was funded under Kazakhstan govern-
ment research grant “Development of models and applications for high performance
distributed processing based on MapReduce-Hadoop technology for oil extraction prob-
lems”.

References

1. Frankel, D.S.: Model Driven Architecture: Applying MDA to Enterprise Comput-
ing. Wiley, New York (2003)

2. OMG. Unified Modeling Language, Version 2.2. Superstructure (2009)
3. Lugato, D.: Model-driven engineering for high-performance computing applica-

tions. In: Proceedings of the 19th IASTED International Conference on Modeling
and Simulations, Quebec City, Quebec, Canada, May 2008

4. Lugato, D., Bruel, J.M., Ober, I., Venelle, B.: Model-driven engineering for high-
performance computing applications, modeling simulation and optimization - focus
on applications. In: Cakaj, S. (ed.) (2010)

5. Palyart, M., Lugato, D., Ober, I., Bruel, J.-M.: MDE4HPC: an approach for using
model-driven engineering in high-performance computing. In: Ober, I., Ober, I.
(eds.) SDL 2011. LNCS, vol. 7083, pp. 247–261. Springer, Heidelberg (2011)

Applying MDA to Generate Scientific Computing Applications 35

6. Palyart, M., Lugato, D., Ober, I., Bruel, J.: A modeling language dedicated to
high-performance scientific computing. In: Proceedings of the 1st International
Workshop on Model-Driven Engineering for High Performance and CLoud com-
puting, MDHPCL 2012. Article No. 6 (2012)

7. Palyart, M., Lugato, D., Ober, I., Bruel, J.-M.: Improving scalability and main-
tenance of software for high-performance scientific computing by combining MDE
and frameworks. In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS,
vol. 6981, pp. 213–227. Springer, Heidelberg (2011)

8. Bruel, J.M., Combemale, B., Ober, I., Raynal., H.: MDE in practice for computa-
tional science. In: ICCS 2015, pp. 660–669 (2015)

9. Arkin, E., Tekinerdogan, B.: Domain specific language for deployment of parallel
applications on parallel computing platforms. In: Proceedings of the ECSAW 2014.
Article No. 16 (2014)

10. Almorsy, M., Grundy, J., Sadus, R.J., van Straten, W., Barnes, D.G., Kaluza,
O.: A suite of domain-specific visual languages for scientific software application
modelling. In: VL/HCC, pp. 91–94 (2013)

11. Miller, M.C., Reus, J.F., Matzke, R.P., Arrighi, W.J., Schoof, L.A., Hitt, R.T.,
Espen, P.K.: Enabling interoperation of high performance, scientific computing
applications: modeling scientific data with the sets and fields (SAF) modeling sys-
tem. In: Alexandrov, V.N., Dongarra, J.J., Juliano, B.A., Renner, R.S., Tan, C.J.K.
(eds.) Computational Science - ICCS 2001. LNCS, vol. 2074, pp. 158–167. Springer,
Heidelberg (2001)

12. Tekinerdogan, B., Arkin, E.: Architecture framework for mapping parallel algo-
rithms to parallel computing platforms. In: Proceedings of the 2nd International
Workshop on Model-Driven Engineering for High Performance and CLoud com-
puting, MDHPCL 2013, pp. 53–63 (2013)

13. Gamatie, A., Le Beux, S., Piel, E., Ben Atitallah, R., Etien, A., Marquet, P.,
Dekeyser, J.-L.: A model-driven design framework for massively parallel embedded
systems. ACM Trans. Embed. Comput. Syst. 10(4), 39 (2011)

14. Daniluk, A.: Visual modeling for scientific software architecture design. A practical
approach. Comput. Phys. Commun. 183, 213 (2012)

15. Scheidgen, M., Zubow, A.: Map/reduce on EMF models. In: Proceedings of the 1st
International Workshop on Model-Driven Engineering for High Performance and
CLoud computing, MDHPCL 2012. Article No. 7 (2012)

16. Shekhar, S., Caglar, F., An, K., Kuroda, T., Gokhale, A., Gokhale, S.: A model-
driven approach for price/performance tradeoffs in cloud-based mapreduce appli-
cation deployment. In: Proceedings of the 2nd International Workshop on Model-
Driven Engineering for High Performance and CLoud computing, MDHPCL 2013,
pp. 37–43 (2013)

17. Mansurova, M., Akhmed-Zaki, D., Matkerim, B., Kumalakov, B.: Distributed par-
allel algorithm for numerical solving of 3D problem of fluid dynamics in anisotropic
elastic porous medium using MapReduce and MPI technologies. In: Proceedings
of 9th International Joint Conference on Software Technologies ICSOFT 2014,
Vienna, Austria, pp. 525–528 (2014)

18. Matkerim, B., Akhmed-Zaki, D., Barata, M.: Development high performance sci-
entific computing application using model-driven architecture. Appl. Math. Sci.
7(100), 4961–4974 (2013)

19. Bezivin, J.: Object to Model Paradigm Change with the OMG/MDA Initiative,
presentation of Summer School on MDA for Embedded System Development,
pp. 16–20, Leon, France (2002)

Site-Level Web Template Extraction
Based on DOM Analysis

Julián Alarte1, David Insa1, Josep Silva1(B), and Salvador Tamarit2

1 Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
{jalarte,dinsa,jsilva}@dsic.upv.es

2 IMDEA Software, Universidad Politécnica de Madrid,
Campus Montegancedo UPM, 28223 Pozuelo de Alarcón, Madrid, Spain

stamarit@software.imdea.org

Abstract. One of the main development resources for website engineers
are Web templates. Templates allow them to increase productivity by
plugin content into already formatted and prepared pagelets. For the
final user templates are also useful, because they provide uniformity and
a common look and feel for all webpages. However, from the point of view
of crawlers and indexers, templates are an important problem, because
templates usually contain irrelevant information such as advertisements,
menus, and banners. Processing and storing this information leads to a
waste of resources (storage space, bandwidth, etc.). It has been measured
that templates represent between 40% and 50% of data on the Web.
Therefore, identifying templates is essential for indexing tasks. In this
work we propose a novel method for automatic web template extraction
that is based on similarity analysis between the DOM trees of a collection
of webpages that are detected using an hyperlink analysis. Our imple-
mentation and experiments demonstrate the usefulness of the technique.

Keywords: Information retrieval · Content extraction · Template
extraction

1 Introduction

A web template (in the following just template) is a prepared HTML page where
formatting is already implemented and visual components are ready to insert
content into them. Templates are an essential component of nowadays websites,
and they are important for web developers, users, and also for indexers and
crawlers:

This work has been partially supported by the EU (FEDER) and the Spanish
Ministerio de Economı́a y Competitividad (Secretaŕıa de Estado de Investigación,
Desarrollo e Innovación) under grant TIN2013-44742-C4-1-R and by the Gener-
alitat Valenciana under grant PROMETEOII/2015/013. David Insa was partially
supported by the Spanish Ministerio de Eduación under FPU grant AP2010-4415.

c© Springer International Publishing Switzerland 2016
M. Mazzara and A. Voronkov (Eds.): PSI 2015, LNCS 9609, pp. 36–49, 2016.
DOI: 10.1007/978-3-319-41579-6 4

Site-Level Web Template Extraction Based on DOM Analysis 37

– Web developers use templates as a basis for composing new webpages that
share a common look and feel. This also allows them to automate many tasks
thanks to the reuse of components. In fact, many websites are maintained
automatically by code generators that generate webpages using templates.

– Users can benefit from intuitive and uniform designs with a common vocabu-
lary of colored and formatted visual elements.

– Crawlers and indexers usually judge the relevance of a webpage according to
the frequency and distribution of terms and hyperlinks. Since templates con-
tain a considerable number of common terms and hyperlinks that are repli-
cated in a large number of webpages, relevance may turn out to be inaccu-
rate, leading to incorrect results (see, e.g., [3,19,21]). Moreover, in general,
templates do not contain relevant content, they usually contain one or more
pagelets [3,7] (i.e., self-contained logical regions with a well defined topic or
functionality) where the main content must be inserted. Therefore, detecting
templates helps indexers to identify the main content of the webpage. Gibson
et al. [10] determined that templates represent between 40 % and 50 % of data
on the Web and that around 30 % of the visible terms and hyperlinks appear
in templates. This justifies the importance of template removal [19,21] for web
mining and search.

Our approach to template extraction is based on the DOM [8] structures that
represent webpages. Roughly, given a webpage in a website, (1) we first identify
a set of webpages that are likely to share a template with it, and then, (2) we
analyze these webpages to identify the part of their DOM trees that is common
with the original webpage. (3) This slice of the DOM tree is returned as the
template.

Some of the ideas in this paper were previously discussed in their earlier
version in [1,2]. Herein we further develop them, we put them all together, we add
new technical results and algorithms, and finally, we describe our implementation
of the whole system.

The rest of the paper has been structured as follows: In Sect. 2 we discuss
the state of the art and show some problems of current techniques that can be
solved with our approach. In Sect. 3, we present our technique with examples and
explain the algorithms used. In Sect. 4 we give some details about the implemen-
tation and show the results obtained from a collection of benchmarks. Finally,
Sect. 5 concludes.

2 Related Work

Template detection and extraction are hot topics due to their direct application
to web mining, searching, indexing, and web development. For this reason, there
are many approaches that try to face this problem. Some of them have been pre-
sented in the CleanEval competition [4], which periodically proposes a collection
of examples to be analyzed with a gold standard. The examples proposed are
especially thought for boilerplate removal and content extraction.

38 J. Alarte et al.

Content Extraction is a discipline very close to template extraction. Content
extraction tries to isolate the pagelet with the main content of the webpage. It
is an instance of a more general discipline called Block Detection that tries to
isolate every pagelet in a webpage. There are many works in these fields (see,
e.g., [6,11,12,20]), and all of them are directly related to template extraction.

In the area of template extraction, there are three main different ways to solve
the problem, namely, (i) using the textual information of the webpage (i.e., the
HTML code), (ii) using the rendered image of the webpage in the browser, and
(iii) using the DOM tree of the webpage.

The first approach is based on the idea that the main content of the webpage
has more density of text with less labels. For instance, the main content can
be identified selecting the largest contiguous text area with the least amount of
HTML tags [9]. This has been measured directly on the HTML code by counting
the number of characters inside text and the number of labels. This measure
produces a ratio called CETR [20] used to discriminate the main content. Other
approaches exploit densitometric features based on the observation that some
specific terms are more common in templates [14,16]. The distribution of the
code between the lines of a webpage is not necessarily the one expected by the
user. The format of the HTML code can be completely unbalanced (i.e., without
tabulations, spaces or even carriage returns), specially when it is generated by
a non-human directed system. As a common example, the reader can see the
source code of the main Google’s webpage. At the time of writing these lines,
all the code of the webpage is distributed in only a few lines without any legible
structure. In this kind of webpages CETR is useless.

The second approach assumes that the main content of a webpage is often
located in the central part and (at least partially) visible without scrolling [5].
This approach has been less studied because rendering webpages for classification
is a computational expensive operation [15].

The third approach is where our technique falls. While some works try to
identify pagelets analyzing the DOM tree with heuristics [3], others try to find
common subtrees in the DOM trees of a collection of webpages in the website
[19,21]. Our technique is similar to these last two works.

Even though [21] uses a method for template extraction, its main goal is
to remove redundant parts of a website. For this, they use the Site Style Tree
(SST), a data structure that is constructed by analyzing a set of DOM trees
and recording every node found, so that repeated nodes are identified by using
counters in the SST nodes. Hence, an SST summarizes a set of DOM trees. After
the SST is built, they have information about the repetition of nodes. The most
repeated nodes are more likely to belong to a noisy part that is removed from
the webpages.

In [19], the approach is based on discovering optimal mappings between DOM
trees. This mapping relates nodes that are considered redundant. Their tech-
nique uses the RTDM-TD algorithm to compute a special kind of mapping
called restricted top-down mapping [18]. Their objective, as ours, is template
extraction, but there are two important differences. First, we compute another

Site-Level Web Template Extraction Based on DOM Analysis 39

kind of mapping to identify redundant nodes. Our mapping is more restrictive
because it forces all nodes that form pairs in the mapping to be equal. Second,
in order to select the webpages of the website that should be mapped to identify
the template, they pick random webpages until a threshold is reached. In their
experiments, they approximated this threshold as a few dozens of webpages. In
our technique, we do not select the webpages randomly, we use a new method to
identify the webpages linked by the main menu of the website. We only need to
explore a few webpages to identify the webpages that implement the template.
Moreover, contrarily to us, they assume that all webpages in the website share
the same template, and this is a strong limitation for many websites.

3 Template Extraction

Our technique inputs a webpage (called key page) and it outputs its template.
To infer the template, we identify what concrete other webpages in the same
website should be analyzed. Our approach introduces three new ideas to solve
the following three problems:

1. Minimize the number of webpages to be analyzed from the (usually huge)
universe of directly or indirectly linked webpages. For this, starting from the
key page, we identify a complete subdigraph in the website topology.

2. Solve conflicts between those webpages that implement different templates.
For this, we establish a voting system between the webpages.

3. Extract the template by comparing the set of webpages analyzed. For this,
we calculate a new mapping called equal top-down mapping (ETDM) between
the DOM tree of the key page and the DOM trees of the webpages in the
complete subdigraph.

The three processes are explained in the following sections.

3.1 Finding Webpage Candidates to Extract the Template

The first phase of our technique identifies a set of webpages that share their
template with the key page. This phase was proposed and described in [1] as
an independent process that can be used by any template extraction technique.
In fact, this phase is orthogonal to the other phases that extract the template.
Roughly, we detect the template’s menu and analyze the hyperlinks of the menu
to identify a set of mutually linked webpages. One of the main functions of a
template is in aiding navigation, thus almost all templates provide a large number
of hyperlinks, shared by all webpages implementing the template. Locating the
menu allows us to identify in the topology of the website the main webpages of
each category or section. These webpages very likely share the same template.

Given a website topology, a complete subdigraph (CS) represents a collection
of webpages that are pairwise mutually linked. A n-complete subdigraph (n-CS)
is formed by n nodes. Our interest in complete subdigraphs comes from the
observation that the webpages linked by the items in a menu usually form a CS.

40 J. Alarte et al.

Fig. 1. Webpages of Innopolis University sharing a template

This is a new way of identifying the webpages that contain the menu. At the
same time, these webpages are the roots of the sections linked by the menu, and
thus they very likely share a common template.

Example 1. In Fig. 1, we see two webpages of Innopolis University that share the
same template. The left webpage is reached from the menu option “Education”.
The right webpage is reached from the menu option “Research”. In both pages
the main content is at the bottom right. They both share the same header, menu,
and general structure, and they form a 2-CS. Similarly, the 6 webpages linked by
the menu at the top form a 6-CS, and they all implement the whole template.
Our technique uses these webpages as candidates.

This simple idea is so powerful that it significantly increases the quality of
the webpage candidates (main webpages of a category normally maximize the
amount of template implemented), and at the same time it increases perfor-
mance: contrarily to other approaches, we only need to investigate a reduced
set of webpages linked by the key page, because they will for sure contain a
CS that represents the menu. Contrarily to our approach, with independence
of the approach followed to compare the candidates, the most extended way of
selecting them is manually. For instance, the ContentExtractor algorithm and
its improved version, the FastContentExtractor algorithm [17], take as input a
set of webpages that are given by the programmer. The same happens in the
methodology proposed in [13].

Other approaches select the candidates randomly. For instance, in [21], SSTs
are built from a collection of webpages. They do not have a methodology to
select the webpages, and they do not propose a number of webpages needed.
In their experiments, they randomly sample 500 webpages, and the time taken
to build a SST is always below 20 s. Similarly, in [19], in order to select the
webpages of the website that should be mapped to identify the template, they
pick random webpages until a threshold is reached. In their experiments, they
approximated this threshold as a few dozen of webpages. They need 25 webpages

Site-Level Web Template Extraction Based on DOM Analysis 41

to reach a 0.95 F1 measure using a collection of product description webpages
that share the same template. Therefore, contrarily to us, they assume that all
webpages in the website share the same template, and this is too restrictive for
many websites.

By analyzing the hyperlinks (in the following, links) in the key page, it is
possible to select those links that most likely produce a CS. This is essential to
avoid analyzing all links and thus significantly increasing the performance. Our
strategy to identify the links that should be analyzed is based on the structure
of the website, and the structure of the website can be inferred from the own
links. In particular, by analyzing the links in the key page, we can establish an
order of relevance (i.e., an order that states what links should be analyzed first).
For this, we use the hyperlink distance and the DOM distance:

Hyperlink Distance. It represents the distance in the file system between the
directories pointed by two links. This can be observed in Fig. 2 (left), which
represents a tree of directories that contain webpages. There, we can see the
distance of the webpage in the gray directory to the rest of webpages. Note
that the hyperlink distance can be negative and it is asymmetric. This can be
also observed in Fig. 2 (right) where hyperlink distance is represented with
hDistance.

DOM Distance. It is just the standard tree nodes distance in the DOM tree
between two link nodes. Hence, two hyperlink nodes have zero DOM distance
if and only if they are exactly the same node. Contrarily, two different hyper-
link nodes (even if they have the same URL, and thus the same hyperlink
distance) necessarily have a positive DOM distance. An example of DOM
distance can be observed in Fig. 2 (right) where DOM distance is represented
with dDistance.

Fig. 2. Hyperlink distance (left). A DOM tree T (center) with its information (right).

There exists a clear relation between hyperlink distance and the probabil-
ity of the linked webpages to share the template. Another observation is that
we want the candidates that share the template to be as different as possible
to ensure representativity of the website (e.g., avoiding to select all webpages
about the same sport in a sports website). Therefore, the process of obtaining
webpages that share the same template tries to identify webpages with an hyper-
link distance as close to zero as possible, but at the same time maximizing the
DOM distance (to ensure that the webpages are as different as possible), and
giving priority to the hyperlink distance.

42 J. Alarte et al.

Concretely, to compute the n-CS, we sort the links of the key page, and
iteratively explore them until they form a n-CS. The order of the links is created
using both the hyperlink distance and the DOM distance. The order is the
following: First, those links with zero hyperlink distance, then, those links that
are closer to the key page with a positive distance, and finally those links that
are closer to the key page with a negative distance. In the three cases, if a draw
occurs, then, the draw is broken using the DOM distance: those links that are
farer to the already selected links are collected. A formalization together with
the algorithms used to compute a n-CS can be found in [1].

3.2 Solving Conflicts Between Webpages with Different Templates

One problem that we detected in previous techniques is the general assumption
that the website has a unique template. Contrarily, a single webpage can imple-
ment various templates, or even subsets of different templates. This is illustrated
in the following example.

Example 2. In Fig. 3 we see the key page and two webpages used to extract
its template. The two webpages implement a different template, and they are
disjoint except for the root node. If we assume that all webpages implement the
same template, then, the template extracted would be only the root node (it is
the only one shared by the three webpages). Contrarily, it is possible that the
key page implements a part of the template of one webpage, and a part of the
other webpage, being the template the gray nodes. Thus, even if the webpage
candidates are disjoint, they can contribute to the template.

Fig. 3. Template extracted from webpages with different template

Example 2 shows that not all webpages must share a node to consider this
node as template. But, how many of them are necessary? The answer is: it
depends on the size of the CS. We experimented with a benchmark suite and
measured the recall and precision obtained with all combinations of CS size and
number of votes needed. The results are summarized in the first two columns of
Table 2. For instance, with a CS of size 6, 3 votes are enough to get the best F1.
As a result, our algorithm implements a voting system to extract the template
from a set of candidates, and it uses a parameter that represents the number of
votes needed for a node to be considered template. This algorithm is presented
in the next section in such a way that it is parametric so that it can be used for
any size of the CS and for any number of votes needed.

Site-Level Web Template Extraction Based on DOM Analysis 43

3.3 Template Extraction from a Complete Subdigraph

In the following, given a DOM tree T = (N,E), parent(n) represents node n′ ∈ N
such that (n′, n) ∈ E. Similarly, subtree(n) denotes the subtree of T whose root
is n ∈ N .

In order to identify the part of the DOM tree that is common in a set of
webpages, our technique uses an algorithm that is based on the notion of map-
ping. A mapping establishes a correspondence between the nodes of two trees.
In order to identify templates, we define a very specific kind of mapping that we
call equal top-down mapping (ETDM) (see Fig. 4).

Fig. 4. Equal top-down mapping between DOM trees

Definition 1 (Equal Top-Down Mapping). A mapping from a tree T =
(N,E) to a tree T ′ = (N ′, E′) is any set M of pairs of nodes (n, n′) ∈ M ,
n ∈ N,n′ ∈ N ′ such that, for any two pairs (n1, n

′
1) and (n2, n

′
2) in M , n1 = n2

iff n′
1 = n′

2. Given an equality relation � between tree nodes, a mapping M
between two trees T and T ′ is said to be equal top-down if and only if

– equal: for every pair (n, n′) ∈ M , n � n′.
– top-down: for every pair (n, n′) ∈ M , with n �= root(T) and n′ �= root(T ′),

there is also a pair (parent(n), parent(n′)) ∈ M .

Note that this definition is parametric with respect to the equality relation
�. We could simply use the standard equality (=), but we left this relation
open, to be general enough as to cover any possible implementation. In par-
ticular, other techniques consider that two nodes n1 and n2 are equal if they
have the same label. However, in our implementation we use a notion of node
equality much more complex that compares two nodes considering their HTML
id, CSS classes, their number of children, their relative position in the DOM
tree, and their HTML attributes. We refer the interested reader to our open
and free implementation (http://www.dsic.upv.es/∼jsilva/retrieval/templates/)
where relation � is specified.

This definition of mapping allows us to be more restrictive than other map-
pings such as, e.g., the restricted top-down mapping (RTDM) introduced in [18].
While RTDM permits the mapping of different nodes (e.g., a node labelled with
table with a node labelled with div), ETDM can force all pairwise mapped nodes

http://www.dsic.upv.es/~jsilva/retrieval/templates/

44 J. Alarte et al.

to have the same label. Figure 4 shows an example of an ETDM using: n � n′ if
and only if n and n′ have the same label.

After we have found the webpage candidates (the CS), we identify an ETDM
between the key page and a set of webpages in the CS. For this, initially, the
template is considered to be empty. Then, we iteratively compute an ETDM
between the template and v webpages in the set, being v the number of votes
needed for a node to be considered template. The result is a template with
all those nodes of the key page appearing in at least v other webpages of the
CS. This process is formalized in Algorithm 1, which uses function ETDM to
compute the biggest ETDM between a set of trees. Algorithm 1 uses a loop
(foreach ({p1 . . . pv} in P)) that iterates over all possible partitions of P
formed with v pages (because v votes are needed). Then, an ETDM is com-
puted between these webpages and the key page. Observe that function ETDM
is recursive. It traverses the trees top-down collecting all those nodes that are
equal modulo �. Note that function ETDM assumes that, given two webpages
p1 = (N1, E1), p2 = (N2, E2), only one node n1 ∈ N1 satisfies n1 � n2 for a given
n2 ∈ N2. Of course, this strictly depends on the definition of �. In the case that
∃ n1, n

′
1 ∈ N1, n2 ∈ N2 . n1 � n2 ∧ n′

1 � n2, then, the algorithm should be
augmented with a mechanism to select only one node (either n1 or n′

1).

Algorithm 1. Extract a template from a set of webpages
Input: A key page pk = (N,E), a set P of n webpages, and the number of votes v needed for a
node to be considered template.
Output: A template for pk with respect to P and v.

begin
template = (Nt, Et) = (∅, ∅);
foreach ({p1 . . . pv} in P)

if root(pk) � root(p1) � . . . � root(pv)
(N ′, E′) = ETDM (pk, p1, . . . , pv);
(Nt, Et) = (Nt ∪ N ′, Et ∪ E′);
template = (Nt, Et);

return template;
end

function ETDM (tree T0 = (N0, E0), tree T1 = (N1, E1), . . . , tree Tv = (Nv, Ev))
r0 = root(T0); r1 = root(T1); . . . ; rv = root(Tv);
nodes = {r0};
edges = ∅;
foreach n0 ∈ N0, . . ., nv ∈ Nv . n0 � . . . � nv, (r0, n0) ∈ E0, . . ., (rv, nv) ∈ Ev

(nodes st, edges st) = ETDM (subtree(n0), . . . , subtree(nv));
nodes = nodes ∪ nodes st;
edges = edges ∪ edges st ∪ {(r0, n0)};

return (nodes, edges);

end function

As in Definition 1, we left the algorithm parametric with respect to equality
relation �. This is done on purpose, because this relation is the only parameter
that is subjective and thus, it is a good design decision to leave it open. For
instance, a researcher can decide that two DOM nodes are equal if they have the
same label and attributes. Another researcher can relax this restriction ignoring

Site-Level Web Template Extraction Based on DOM Analysis 45

some attributes (i.e., the template can be the same, even if there are differences
in colors, sizes, or even positions of elements. It usually depends on the particular
use of the extracted template). Additionally, this design decision gives us control
over the recall and precision of the technique. Because the more restrictive � is,
the more precision (and less recall).

4 Implementation

The technique presented in this paper, including all the algorithms, has been
implemented as a Firefox’s extension accepted by Mozilla as an official add-on
(https://addons.mozilla.org/en-US/firefox/addon/template-extractor/). In this
tool, the user can browse on the Internet as usual. Then, when he/she wants
to extract the template of a webpage, he/she only needs to press the “Extract
Template” button and the tool automatically (internally) loads the appropriate
linked webpages to form a CS, analyzes them, and extracts the template. The
template is then displayed in the browser as any other webpage.

4.1 Empirical Evaluation

Initially, we wanted to use a public standard collection of benchmarks to evaluate
our tool, but we are not aware of any public dataset for template extraction. In
particular, the standard CleanEval suite [4] contains a gold standard prepared
for content extraction (each part of the webpages is labelled as main-content or
non-content), but it is not prepared for template extraction. We tried to use the
same benchmark set as the authors of other template extraction papers. However,
due to privacy restrictions, copyright, or unavailability1 of the benchmarks we
could not use a previous dataset. It is surprising, and quite disappointing, to
see how few systems are open-source, or even otherwise (freely) available. In
many papers, it is stated that a prototype was developed but we were not able
to find the tool. In some cases, a system might be mentioned to be open source
but you need to contact the authors to get it. This is the cause why we are
reinventing the wheel, implementing similar systems once and again. Moreover,
not providing the dataset makes impossible to validate or replicate experiments.
For this reason, we made our system, open-source and publicly available, so that
other researchers can reuse it or join efforts to further developing it. And we
decided to create a new suite of benchmarks that is also publicly accessible,
both the dataset and the gold standard. This is one of the main contributions of
our work. Any interested researcher can freely access and download our dataset
from: http://www.dsic.upv.es/∼jsilva/retrieval/teco/.

The dataset is composed of a collection of web domains with different lay-
outs and page structures. This allows us to study the performance of the tech-
niques in different contexts (e.g., company websites, news articles, forums, etc.).

1 Some authors answered that their benchmarks were not stored for future use, or that
they did not save the gold standard.

https://addons.mozilla.org/en-US/firefox/addon/template-extractor/
http://www.dsic.upv.es/~jsilva/retrieval/teco/

46 J. Alarte et al.

Table 1. Results of the experimental evaluation

Benchmark DOM Template Retrieved Recall Precision F1 Time

www.water.org 948 711 668 93, 95 % 100 % 96, 88 % 5661

www.jdi.org.za 626 305 305 100 % 100 % 100 % 2928

www.stackoverflow.com 6450 447 461 100 % 96, 96 % 98, 46 % 18348

www.eclipse.org 256 156 160 97, 44 % 95 % 96, 20 % 3382

www.history.com 1246 669 593 88, 19 % 99, 49 % 93, 50 % 16946

www.landcoalition.org 1247 393 433 98, 47 % 89, 38 % 93, 70 % 4901

www.es.fifa.com 1324 276 239 84, 78 % 97, 91 % 90, 87 % 8171

www.cordis.europa.eu 959 335 327 97, 01 % 99, 39 % 98, 19 % 5115

www.clotheshor.se 459 231 225 97, 40 % 100 % 98, 68 % 2176

www.emmaclothes.com 1080 374 368 98, 40 % 100 % 99, 19 % 8641

www.cleanclothes.org 1335 266 288 100 % 92, 36 % 96, 03 % 7725

www.mediamarkt.es 805 337 329 97, 63 % 100 % 98, 80 % 5903

www.ikea.com 1545 407 565 99, 75 % 71, 86 % 83, 54 % 7326

www.swimmingpool.com 607 499 349 69, 94 % 100 % 82, 31 % 2514

www.skipallars.cat 1466 842 828 98, 34 % 100 % 99, 16 % 10042

www.tennis.com 1300 463 419 90, 50 % 100 % 95, 01 % 7312

www.tennischannel.com 661 303 236 77, 89 % 100 % 87, 57 % 3520

www.turfparadise.com 1057 726 818 99, 72 % 88, 51 % 93, 78 % 6756

www.riotimesonline.com 2063 879 861 97, 96 % 100 % 98, 97 % 50528

www.beaches.com 1928 1306 1172 89, 74 % 100 % 94, 59 % 11201

http://users.dsic.upv.es/∼jsilva 197 163 163 100 % 100 % 100 % 7419

http://users.dsic.upv.es/∼dinsa 241 74 88 100 % 84, 09 % 91, 36 % 1457

www.engadget.com 1818 768 767 99, 09 % 99, 22 % 99, 15 % 19116

www.bbc.co.uk/news 2991 364 355 97, 53 % 100 % 98, 75 % 13806

www.vidaextra.com 2331 1137 992 87, 25 % 100 % 93, 19 % 17787

www.ox.ac.uk/staff 948 525 533 99, 43 % 97, 94 % 98, 68 % 59599

www.clinicaltrials.gov 543 389 394 97, 17 % 95, 94 % 96, 55 % 4746

www.en.citizendium.org 1083 414 447 100 % 92, 62 % 96, 17 % 13414

www.filmaffinity.com 1333 351 355 100 % 98, 87 % 99, 43 % 5279

www.edition.cnn.com 3934 192 180 93, 75 % 100 % 96, 77 % 31076

www.lashorasperdidas.com 1822 553 536 96, 93 % 100 % 98, 44 % 19379

www.labakeryshop.com 1368 218 193 80, 73 % 91, 19 % 85, 64 % 7893

www.felicity.co.uk 300 232 232 100 % 100 % 100 % 2217

www.thelawyer.com 3349 1293 1443 93, 81 % 84, 06 % 88, 67 % 19998

www.us-nails.com 250 18 215 100 % 85, 58 % 92, 23 % 3386

www.informatik.uni-trier.de 3085 64 63 98, 44 % 100 % 99, 21 % 10174

www.wayfair.co.uk 1950 702 700 99, 29 % 99, 57 % 99, 43 % 30990

www.catalog.atsfurniture.com 340 301 304 100 % 99, 01 % 99, 50 % 2862

www.glassesusa.com 1952 1708 1656 96, 96 % 100 % 98, 45 % 19462

www.mysmokingshop.co.uk 575 407 428 100 % 95, 09 % 97, 49 % 89887

Average 1444, 3 499, 1 492, 2 95, 44 % 96, 35 % 95, 61 % 14226, 08

To measure our technique, we randomly selected an evaluation subset. Table 1
summarizes the results of the performed experiments. First column contains the
URLs of the evaluated website domains. For each benchmark, column DOM shows
the number of nodes in the key page’s DOM tree; column Template shows the
number of nodes in the gold standard template; column Retrieved shows the
number of nodes that were identified by the tool as the template; column Recall

http://www.water.org
http://www.jdi.org.za
http://www.stackoverflow.com
http://www.eclipse.org
http://www.history.com
http://www.landcoalition.org
http://www.es.fifa.com
http://www.cordis.europa.eu
http://www.clotheshor.se
http://www.emmaclothes.com
http://www.cleanclothes.org
http://www.mediamarkt.es
http://www.ikea.com
http://www.swimmingpool.com
http://www.skipallars.cat
http://www.tennis.com
http://www.tennischannel.com
http://www.turfparadise.com
http://www.riotimesonline.com
http://www.beaches.com
http://users.dsic.upv.es/~jsilva
http://users.dsic.upv.es/~dinsa
http://www.engadget.com
http://www.bbc.co.uk/news
http://www.vidaextra.com
http://www.ox.ac.uk/staff
http://www.clinicaltrials.gov
http://www.en.citizendium.org
http://www.filmaffinity.com
http://www.edition.cnn.com
http://www.lashorasperdidas.com
http://www.labakeryshop.com
http://www.felicity.co.uk
http://www.thelawyer.com
http://www.us-nails.com
http://www.informatik.uni-trier.de
http://www.wayfair.co.uk
http://www.catalog.atsfurniture.com
http://www.glassesusa.com
http://www.mysmokingshop.co.uk

Site-Level Web Template Extraction Based on DOM Analysis 47

shows the number of correctly retrieved nodes divided by the number of nodes
in the gold standard; column Precision shows the number of correctly retrieved
nodes divided by the number of retrieved nodes; column F1 shows the F1 metric
that is computed as (2 ∗P ∗R)/(P +R) being P the precision and R the recall;
finally, column Time shows the total milliseconds used to obtain the template.

Experiments reveal an average precision of more than 96 %, and an average
recall of more than 95 % which, from the best of our knowledge, produce the
highest F1 in the state of the art. To produce this result, we have performed
more than half a million experiments to tune our definition of � combining
different DOM parameters such as label, class, id, children, position, etc. See
http://www.dsic.upv.es/∼jsilva/retrieval/templates/ for details.

Table 2. Determining the ideal size of the complete subdigraph

Size Votes Recall Precision F1 Loads

1 1 88,56 % 94,89 % 88,69 % 2

2 1 96,34 % 90,32 % 91,93 % 5, 6

3 2 95,44 % 96,35 % 95,61 % 10, 13

4 3 94,61 % 96,88 % 95,27 % 16, 52

5 3 94,69 % 96,96 % 95,40 % 18, 68

6 3 95,21 % 96,82 % 95,69 % 23, 68

7 3 95,46 % 96,31 % 95,57 % 30

8 4 95,14 % 96,57 % 95,54 % 32, 08

In the experiments, we also evaluated empirically what is the ideal size of
the CS computed. Results are shown in Table 2. This table summarizes many
experiments. Each row is the average of repeating all the experiments in Table 1
with a different value for n in the n-CS searched by the algorithm and for a
different value for all v < n. All possible combinations were evaluated. Column
Size represents the size of the CS that the algorithm tried to find in the websites.
And column Votes represents the best v value obtained for each CS size. In the
case that there did not exist a CS of the searched size, then the algorithm used
the biggest CS with a size under the specified size. Column Loads represents the
average number of webpages loaded to extract the template.

We determined that a subdigraph of size 3 is the best option because it keeps
almost the best F1 value, while being very efficient (only 10 webpages must be
loaded to extract the template). Therefore, the results shown in Table 1 have
been computed with a 3-CS.

5 Conclusions

This work presents a new technique for template extraction. It uses a hyperlink
analysis to identify the menu of a given webpage. With this menu, the technique

http://www.dsic.upv.es/~jsilva/retrieval/templates/

48 J. Alarte et al.

collects a set of webpages that form a CS and, thus, they probably share the
same template. The DOM structures of these webpages are then compared with
a new mapping called ETDM to identify the blocks that are common to some
of them. The exact number has been approximated empirically. Our best values
considering both F1 and performance are a size of the CS of 3, and 2 votes needed
to be considered template. To the best of our knowledge, the idea of using the
menus to locate the template is new, and it allows us to quickly find a set of
webpages from which we can extract the template. This is especially interesting
for performance, because loading webpages to be analyzed is expensive, and this
part of the process is minimized in our technique. As an average, our technique
only loads 10 pages to extract the template (a mean of less than 15 s for the
overall template extraction process).

References

1. Alarte, J., Insa, D., Silva, J., Tamarit, S.: Automatic detection of webpages that
share the same web template. In: ter Beek, M.H., Ravara, A. (eds.) Proceedings
of the 10th International Workshop on Automated Specification and Verification
of Web Systems (WWV 2014). Electronic Proceedings in Theoretical Computer
Science, vol. 163, pp. 2–15. Open Publishing Association, July 2014

2. Alarte, J., Insa, D., Silva, J., Tamarit, S.: Web template extraction based on
hyperlink analysis. In: Escobar, S. (ed.) Proceedings of the XIV Jornadas sobre
Programación y Lenguajes (PROLE 2015). Electronic Proceedings in Theoretical
Computer Science, vol. 173, pp. 16–26. Open Publishing Association, September
2015

3. Bar-Yossef, Z., Rajagopalan, S.: Template detection via data mining and its appli-
cations. In: Proceedings of the 11th International Conference on World Wide Web
(WWW 2002), pp. 580–591. ACM, New York (2002)

4. Baroni, M., Chantree, F., Kilgarriff, A., Sharoff, S.: Cleaneval: a competition
for cleaning web pages. In: Proceedings of the International Conference on Lan-
guage Resources and Evaluation (LREC 2008), pp. 638–643. European Language
Resources Association, May 2008

5. Burget, R., Rudolfova, I.: Web page element classification based on visual features.
In: Proceedings of the 1st Asian Conference on Intelligent Information and Data-
base Systems (ACIIDS 2009), pp. 67–72. IEEE Computer Society, Washington,
DC (2009)

6. Cardoso, E., Jabour, I., Laber, E., Rodrigues, R., Cardoso, P.: An efficient
language-independent method to extract content from news webpages. In: Pro-
ceedings of the 11th ACM Symposium on Document Engineering (DocEng 2011),
pp. 121–128. ACM, New York (2011)

7. Chakrabarti, S.: Integrating the Document Object Model with hyperlinks for
enhanced topic distillation and information extraction. In: Proceedings of the 10th
International Conference on World Wide Web (WWW 2001), pp. 211–220. ACM,
New York (2001)

8. W3C Consortium. Document Object Model (DOM) (1997). http://www.w3.org/
DOM/

9. Ferraresi, A., Zanchetta, E., Baroni, M., Bernardini, S.: Introducing and evaluating
ukWaC, a very large web-derived corpus of English. In: Proceedings of the 4th Web
as Corpus Workshop (WAC-4), pp. 47–54 (2008)

http://www.w3.org/DOM/
http://www.w3.org/DOM/

Site-Level Web Template Extraction Based on DOM Analysis 49

10. Gibson, D., Punera, K., Tomkins, A.: The volume and evolution of web page tem-
plates. In: Ellis, A., Hagino, T. (eds.) Proceedings of the 14th International Con-
ference on World Wide Web (WWW 2005), pp. 830–839. ACM, May 2005

11. Gottron, T.: Content code blurring: a new approach to content extraction. In:
Tjoa, A.M., Wagner, R.R. (eds.) Proceedings of the 19th International Workshop
on Database and Expert Systems Applications (DEXA 2008), pp. 29–33. IEEE
Computer Society, September 2008

12. Insa, D., Silva, J., Tamarit, S.: Using the words/leafs ratio in the DOM tree for
content extraction. J. Logic Algebraic Program. 82(8), 311–325 (2013)

13. Kadam, V., Devale, P.R.: A methodology for template extraction from heteroge-
neous web pages. Indian J. Comput. Sci. Eng. (IJCSE) 3(3), 449–452 (2012)

14. Kohlschütter, C.: A densitometric analysis of web template content. In: Quemada,
J., León, G., Maarek, Y.S., Nejdl, W. (eds.) Proceedings of the 18th International
Conference on World Wide Web (WWW 2009), pp. 1165–1166. ACM, April 2009

15. Kohlschütter, C., Fankhauser, P., Nejdl, W.: Boilerplate detection using shallow
text features. In: Davison, B.D., Suel, T., Craswell, N., Liu, B. (eds.) Proceedings
of the 3th International Conference on Web Search and Web Data Mining (WSDM
2010), pp. 441–450. ACM, February 2010

16. Kohlschütter, C., Nejdl, W.: A densitometric approach to web page segmentation.
In: Shanahan, J.G., Amer-Yahia, S., Manolescu, I., Zhang, Y., Evans, D.A., Kolcz,
A., Choi, K.-S., Chowdhury, A. (eds.) Proceedings of the 17th ACM Conference
on Information and Knowledge Management (CIKM 2008), pp. 1173–1182. ACM,
October 2008

17. Nguyen, D.Q., Nguyen, D.Q., Pham, S.B., Bui, T.D.: A fast template-based app-
roach to automatically identify primary text content of a web page. In: Proceedings
of the 2009 International Conference on Knowledge and Systems Engineering, KSE
2009, pp. 232–236. IEEE Computer Society (2009)

18. de Castro Reis, D., Golgher, P.B., Silva, A.S., Laender, A.H.F.: Automatic web
news extraction using tree edit distance. In: Proceedings of the 13th International
Conference on World Wide Web (WWW 2004), pp. 502–511. ACM, New York
(2004)

19. Vieira, K., da Silva, A.S., Pinto, N., de Moura, E.S., Cavalcanti, J.M.B., Freire, J.:
A fast and robust method for web page template detection and removal. In: Pro-
ceedings of the 15th ACM International Conference on Information and Knowledge
Management (CIKM 2006), pp. 258–267. ACM, New York (2006)

20. Weninger, T., Hsu, W.H., Han, J.: CETR: content extraction via tag ratios. In:
Rappa, M., Jones, P., Freire, J., Chakrabarti, S. (eds.) Proceedings of the 19th
International Conference on World Wide Web (WWW 2010), pp. 971–980. ACM,
April 2010

21. Yi, L., Liu, B., Li, X.: Eliminating noisy information in web pages for data mining.
In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD 2003), pp. 296–305. ACM, New York (2003)

Verification Support for a State-Transition-DSL
Defined with Xtext

Thomas Baar(B)

Hochschule für Technik und Wirtschaft (HTW) Berlin,
Wilhelminenhofstraße 75A, 12459 Berlin, Germany

thomas.baar@htw-berlin.de

Abstract. A Domain-Specific Language (DSL) allows the succinct mod-
eling of phenomena in a problem domain. Modern DSL-tools make it easy
for a language designer to define the syntax of a new DSL, to specify code
generators or to build a new DSL on top of existing DSLs. Based on the
language specification, the DSL-tool then generates rich editors. Often,
these editors support features such as syntax highlighting, code comple-
tion or automatic refactoring.

In this paper, we describe an approach of adding verification support
for DSLs defined within the Eclipse-framework Xtext. Xtext provides
good support for checking the well-formedness rules of the DSL’s syn-
tax. In contrast, support for specifying the language’s semantics as well
as verification support have been rather neglected so far. Our approach
of incorporating semantic verification techniques is illustrated by a very
simple State-Transition-DSL, which has been fully implemented in Xtext.
The DSL’s editor verifies on the fly that the current model holds some
semantic properties such as deterministic execution and invariant preser-
vation. The verification services for this DSL are based on the theorem
prover Princess.

Keywords: DSL · Model verification · Proof obligation · State machine

1 Motivation

20 years ago, the three amigos of the UML were proud to win the war of notation.
They have successfully extracted the main modelling concepts of the predeces-
sors of the UML, such as OMG, Booch, Shlaer-Mellor, and created a graphical
language with 9 diagrams at the beginning. This language was supposed to be
applicable in many domains.

The nice thing about UML was (and still is) that, while being an open stan-
dard, it triggered many research activities, e.g. research groups mainly from
academia reported at the UML conference series (which was 2005 renamed into
MoDELS) on progress when working with models, i.e. their efficient creation,
understanding, reuse, and semantic analysis. These efforts enjoyed great interest
in the scientific community due to the large user base of UML.

c© Springer International Publishing Switzerland 2016
M. Mazzara and A. Voronkov (Eds.): PSI 2015, LNCS 9609, pp. 50–60, 2016.
DOI: 10.1007/978-3-319-41579-6 5

Verification Support for a State-Transition-DSL Defined with Xtext 51

However, not only the general purpose modelling languages made progress,
but also Domain-specific languages (DSLs). Tool support for DSLs has concen-
trated so far in the easy definition of abstract and concrete syntax, and how to
define code generators that take a model as input (see [1] for an overview).

Tools for the semantic analysis of the model formulated in such a DSL have
been rather neglected. A typical example is the tool Yakindu [2], which imple-
ments a statechart DSL and provides an editor for editing and even simulating
statecharts. Internally, Yakindu is based on Xtext.

When editing a statechart, Yakindu’s editor gives very valuable feedback if
the user constructs a syntactically ill-formed model, e.g., if she adds a transition
ending in the start state or refers to a non-existing variable or event. However,
Yakindu’s editor does not offer any support if the model is semantically incorrect.
For example, it does not issue a warning if the model contains dead transitions. In
the simplest case, a transition is dead if it is annotated with a guard [false], but
any other unsatisfiable guard (e.g. [3 > 7]) would also lead to a dead transition.

The detection of dead transitions goes beyond syntactic checks. It requires
to interpret guards and - for example - to reduce a guard [3 > 7] to [false]
due to the standard interpretation of mathematical symbols 3, 7, >.

In this paper, we develop a DSL for describing simple state machines using
Xtext. The editor for this DSL offers semantic model checks, e.g. the detection of
dead transitions. Our semantic model checks are internally based on the theorem
prover Princess, which supports reasoning on integer arithmetic and first-order
logic. Princess works very fast and discards each proof obligation from the
example discussed in this paper within less than 10 ms. Thus, semantic checks
are not more expensive than ordinary syntactic checks and can be executed
on-the-fly by the DSL’s editor while the user enters the model.

2 The Framework Xtext

Xtext is a framework for the development of textual DSLs. It is implemented in
Java and is available in form of a plugin for the popular IDE Eclipse. Illustrative
examples on what can be achieved via Xtext can be found on its homepage [3].

In order to define a DSL, the user first has to define a grammar in an
EBNF-like syntax. Based on the grammar, the Eclipse plugin will then generate
the so-called language infrastructure, consisting of a textual editor, the Ecore-
metamodel, and the Java API for easy model access. This generation process as
well as the resulting tools can be customized by the user in numerous ways, e.g.
by implementing classes for presenting the syntax tree differently (so-called label
providers) or by defining additional constraints on the syntax tree (implemented
by a so-called validator).

The implementation of customization classes is done in Xtend, a Java-based
language developed by the creators of Xtext. Using Xtend, many typical pro-
gramming tasks such as traversing a syntax tree, creating a net of objects, or
template-based string generation can be solved very elegantly.

52 T. Baar

Fig. 1. ParkingTicketMachine (PTM) specified with Yakindu

2.1 Yakindu

Yakindu [2] is an open-source tool for the specification of statecharts [4]. It allows
the user to draw states, nested states, and transitions; in this respect Yakindu
is a tool for a graphical modelling language.

Since Yakindu is heavily based on Xtext, it is developed and maintained
mainly by software engineers from Itemis, the company also standing behind
Xtext. Yakindu allows the user to add to a transition an annotation consisting
of a guard, an event, and an action. The formalism to express the annotation is
internally defined as an Xtext-language.

An action can be a named action or an update of state variables with new
values. Events, named actions, and state variables have to be declared separately.
When specifying guards or updates, the user can take advantage of a pre-defined
language for arithmetical and logical expressions.

Yakindu checks the type rules for expressions and sub-expressions instantly
while a guard is typed in. Yakindu also executes additional syntax checks auto-
matically, for example to ensure that each statechart has a start-state.

Yakindu does not offer semantic checks, which could help to prevent non-
intended behaviour when executing the statechart. The only possibility for the
user to analyze the run-time behaviour of the specified system is to execute the
statechart in Yakindu’s simulator.

Verification Support for a State-Transition-DSL Defined with Xtext 53

2.2 Running Example ParkingTicketMachine (PTM)

In Fig. 1 we see a screenshot from Yakindu when editing a small statechart,
which models a ticket machine in a parking deck (called ParkingTicketMa-
chine (PTM)). The machine is waiting (state idle) for a customer inserting
her park ticketing card (event cardInserted). Now, the ticket machine changes
its state (to waitingForMoney) and the customer has to pay a certain amount
of money (variable bill). The machine now expects coins to be inserted (event
coinInserted) until the amount to be paid has been reached. For the sake of
simplicity, we assume all coins to have the same value and that the amount to
be paid is exactly the value of N many coins (N > 0). Once enough coins have
been inserted, the machine changes its state first to paid and then immediately
to idle (due to the pseudo-event always).

Unfortunately, the statechart has a semantic error: The machine collects the
money correctly only from the first customer! After the machine has walked
through the states idle - waitingForMoney - paid - idle, the state vari-
able collected has the same value as bill. So, after the next customer has
inserted her card, she can insert as many coins as she wants, but she will never
reach the state paid!

3 Adding Verification Support for DSLs

In this section, we will demonstrate how one can implement verification support
for DSLs implemented with Xtext. The verification support targets semantic
properties of model written in the DSL. For the sake of illustration, we explain
the verification techniques using the simple statechart introduced in Sect. 2.2.

Since our verification approach should serve as a blueprint for adding veri-
fication support to any textual DSL created with Xtext, we will start with the
development of a DSL, which is able to denote simple forms of Yakindu’s stat-
echarts, but in a purely textual notation. Our language is called SMINV and
models expressed in this language are called state machines in order to distin-
guish them easily from Yakindu’s statecharts.

3.1 SMINV– A Textual DSL for Encoding Simple State Machines

A language to denote state machines can be basically subdivided into two parts:
(1) The sublanguage for defining the ‘infrastructure’ of a state machine using
concepts like state, transition, event, state variable and (2) the expression lan-
guage for defining guards and updates of state variables.

Sublanguage for Infrastructure. The grammar definition for SMINV starts1

with the start rule:

1 Due to the paper’s page limit, only the important parts of the grammar are presented
here. The full grammar is available from [5].

54 T. Baar

SminvModel:

vd=VarDecl

sd=StateDecl

ed=EventDecl

td=TransDecl

A state machine is a sequence of declarations for variables, states, events, and
transitions. While a variable, state or event is just declared by its name (which
must be unique), the definition of a transition is a little bit more complex:

Transition:

pre=[State] ’=>’ post=[State]

(ev=[Event])? (’[’ g=Term ’]’)? (’/’ act+= Update +)? ’;’

A transition connects two states (pre, post) and has optional annotations
for event, guard, and updates.

Sublanguage for Expressions. The sublanguage for expressions is defined as
usual in Xtext (see, for example, [6] for enlightening tutorial examples). Com-
pared to the language supported by Yakindu, our expressions are simpler. We
decided to allow only INT and BOOL as expression types. Thus, an expression
is either a formula (boolean) or a term of type INT. Note that variables always
have the type INT.

Running Example Formulated in SMINV. Despite its simplicity, our lan-
guage allows to formulate many interesting models, including the running exam-
ple PTM:

vars c o l l e c t e d b i l l
states s t a r t i d l e waitingForMoney paid
events ca rd In s e r t ed c o i n I n s e r t ed

transit ions
s t a r t => i d l e / c o l l e c t e d = 0 b i l l = 3 ;

i d l e => waitingForMoney ca rd In s e r t ed ;

waitingForMoney => waitingForMoney co i n In s e r t ed
[c o l l e c t e d < b i l l − 1] / c o l l e c t e d += 1 ;

waitingForMoney => paid c o i n In s e r t ed
[c o l l e c t e d == b i l l − 1] / c o l l e c t e d += 1 ;

paid => i d l e ;

Adding Invariants. The semantic problem of the PTM was due to the fact,
that it has been forgotten to set the value of collected to 0 when the transition

Verification Support for a State-Transition-DSL Defined with Xtext 55

from paid to idle is fired. In other words, the PTM only works correctly, if the
variable collected has the value 0 when the system is in the state idle.

The statechart language of Yakindu does not offer the possibility to formulate
invariants. In SMINV, the specification of state invariants is made possible by
adding an additional element to the start rule of our grammar. The complete
start rule of SMINV looks as follows:

SminvModel:

vd=VarDecl

sd=StateDecl

ed=EventDecl

td=TransDecl

(id=InvDecl)?;

The definition of invariants is enabled by the following rules of the grammar:

InvDecl:

{InvDecl} ’invariants ’ invs+=Inv*;

Inv: state =[State] ’:’ inv=Term ’;’;

An invariant is an arbitrary term that has been attached to a state. However,
this term must of type boolean, what is checked by an ordinary syntax check in
SMINV’s validator class.

Finally, we can now formulate the invariant for state idle formally.

invariants
i d l e : c o l l e c t e d == 0 ;

However, in order to be able to prove the invariant, we should first fix the
bug in PTM and add an update to the transition from paid to idle:

paid => i d l e / c o l l e c t e d = 0 ;

3.2 Semantic properties to be verified

The verification of statecharts and related formalisms has been and still is a
research topic for many authors [7,8]. The goal for this paper is to demonstrate
how a language designer can implement verification support according to her
needs for her user-defined DSL. For the language SMINV, we consider the fol-
lowing semantic model properties worth to be checked.

Invariant-Preserving Transitions. An state invariant is a boolean term
expressing a constraint on the values of state variables (e.g. v1 > 4). By attach-
ing a state invariant to a single state one claims, that a running state machine
will satisfy the constraint on the values of state variables, whenever the machine
is in the corresponding state. States without an attached invariant have always
the implicit invariant true. The start state must not have any invariant attached.

By a simple induction argument, one can prove that all invariants are satisfied
in all reachable states, if each transition establishes the invariant of the post-
state.

56 T. Baar

Deterministic Transitions. It is also important to know whether the specified
state machine works deterministically (recall that generation of implementation
code from a state machine is in most cases meaningless when a specified state
machine can behave non-deterministically). A non-determinism occurs when the
system could change its state to more than one post-state upon receiving an
event. This could happen, if a state exists that has at least two outgoing tran-
sitions that are triggered by the same event and whose guards overlap.

Alive Transitions. A state machine should have only alive transitions, because
dead transitions are never executed. A transition is dead, if the constraints
expressed by the transition’s guard and the invariant of its pre-state are dis-
joint. In other words, it is not possible to find such values for the state variables
that both the invariant of the pre-state and the guard are evaluated to true.

3.3 Proof Obligations

All semantic model properties described above can be formulated in form of
proof obligations for model elements (for SMINV, either states or transitions). A
proof obligation is a first-order formula with interpreted symbols for arithmetic
operators. In the following, we formulate the proof obligation for each of the
above described semantic model properties formally.

Invariant-Preserving Transitions. In order to prove that an invariant IS for
state S holds, one has to show that for all transitions t, which are incoming in
state S, the update annotated on t is sufficient to establish the invariant IS .
Note that the start-state of the state machine must not be annotated by any
invariant (start-states always have implicitly the invariant true annotated).

One can assume that the invariant annotated to the pre-state of t holds as
well as the guard annotated to t. More formally:

Let Σ be the set of all states and S an element from Σ. For any such S, IS
denotes the invariant annotated to state S and IS [v ← update(t)] denotes the
substitution of all variables in IS according to the update annotated on transition
t. Furthermore, guard(t) denotes the guard annotated to t (true is taken when
no guard is specified). By pre(t), post(t) the pre/post-state of transition t is
denoted and ∀−→v means the all-quantification of all state variables v1, v2,

Then, one has to prove the following proof obligation for all transitions t:

∀−→v (Ipre(t) ∧ guard(t)) −→ Ipost(t)[v ← update(t)] (1)

Deterministic Transitions. In order to prove a state machine being deter-
ministic, one has to show for all transitions t1, t2 that have the same pre-state
and that are triggered by the same event:

∀−→v Ipre(t1) −→ ¬(guard(t1) ∧ guard(t2)) (2)

Verification Support for a State-Transition-DSL Defined with Xtext 57

Fig. 2. Semantic error messages in editor for SMINV

Alive Transitions. In order to prove a transition t being alive, one has to show
the satisfiability of its guard together with the invariant of the pre-state. More
formally:

∃−→v Ipre(t) ∧ guard(t) (3)

3.4 Implementation

The language SMINV as well as the corresponding toolset is free software, the
sources of this software are made available on GitHub and can be downloaded
from [5]. Figure 2 shows the editor running on the PTM-example, with some addi-
tional faulty transitions to cause some validation errors (note the error markers
in the text as well as in the view Problems).

The semantic proof obligations discussed above have been implemented by
@Check-annotated methods in the validator class of the language SMINV. The

58 T. Baar

validator class is a standard class in the Xtext-framework to be implemented
by each DSL separately. The validator also contains all syntax checks for the
language.

The generation of proof obligations itself is delegated to another class, whose
implementation in Xtend is surprisingly short. For example, the proof obligation
for checking that transitions t1 and t2 (having the same pre-state and same
event) do not cause an non-determinism (i.e. they cannot fire both in the same
situation) is implemented as:

def getPO NonDeterminism(Transition t1, Transition t2) {
t1.pre.invariantsCopyConjunction

.implies(neg(t1.guardCopy.and (t2.guardCopy)))
}
The generated proof obligation is passed to an automatic theorem prover in

order to prove or disprove the obligation. Currently, SMINV supports only the
prover Princess [9,10], but other suitable provers could be integrated as well.

Princess has been chosen for

– its excellent results for proof tasks on integer arithmetic
– its support of ordinary first-order predicate logic with uninterpreted symbols
– its ability to provide counterexamples for non-provable tasks

The input syntax of Princess is quite similar to the syntax for expressions
in SMINV, only some logical operators have to be substituted (e.g. && by &).
An example for the Princess input from a proof obligation generated for the
PTM-example is:

\universalConstants{ int collected; int bill;}
\problem{true -> ! (collected < bill−1 & collected =

bill−1)}
The experimental results obtained when using Princess are very encourag-

ing. All proof obligations generated for the PTM example could be proved/dis-
proved within 2 ms – 8 ms on a Windows8 notebook (1.8 GHz, 8 GB RAM). Thus,
the DSL editor can give instant feedback to the user also for semantic checks.

4 Discussion and Related Work

In the past, providing verification support for modelling languages was rather a
task for either research groups or for companies selling tools for general purpose
languages. The effort of implementing verification techniques only pays off when
a language has a broad user base. In contrast, DSLs developed in industry for a
very specific purpose often have very few users. One cannot expect tool builders
to offer any dedicated support for single DSLs. Consequently, tool support has
to be provided by the creator of the language herself.

There is another reason why verification support is less common for DSLs
than for general purpose languages. It is not always clear what a (formal) seman-
tics of a DSL could look like, though some DSLs has been recently made avail-
able, whose purpose is to define the semantics of other DSLs formally. For Xtext,

Verification Support for a State-Transition-DSL Defined with Xtext 59

such a DSL is Xsemantics [11]; the corresponding DSL for Spoofax [12] is called
DynSem [13]). For general purpose languages, a common understanding of the
language is evolving over time. This process eventually results in commonly
accepted documents describing an informal or even formal semantics [14]. During
this process, bugs, mistakes, and inconsistencies might be found by the broad
user community. The semantics evolves over time. For DSLs, writing up the
semantics might result in similar inconsistencies as in case of writing up the
semantics of general purpose languages.

5 Conclusion and Future Work

DSLs allow to model succinctly for a certain purpose, but this flexibility also
often means to abandon classical semantics for modelling languages. Conse-
quently, semantic checks are currently neglected by DSL-definition frameworks
such as Xtext, while syntax checks are very common and widely used.

The goal of this paper is to demonstrate that Xtext allows to implement DSL-
specific semantic checks with moderate effort. Technically, semantic checks are
realized analogously to syntax checks within the DSL’s validator class. Thanks
to the speed of the used theorem prover Princess, also semantic checks can give
instant feedback to the user. From the user’s perspective, semantic checks make
an editor much more intelligent, since they can detect semantic errors the user
has made.

In future, we plan to address the following issues. Firstly, an integration into
the tool Yakindu would make this tool much more usable. One challenge here is
to extend the verification support to the expression language used by Yakindu,
which is more expressive than those of SMINV. Secondly, we plan to extend
SMINV and to include other language constructs, e.g. nested states and else-
guards for transitions. This will result in a more user-friendly DSL to describe
state machines. Finally, besides Princess, other theorem provers supporting
arithmetics and first-order logic should be integrated.

References

1. Aßmann, U., Bartho, A., Bürger, C., Cech, S., Demuth, B., Heidenreich, F.,
Johannes, J., Karol, S., Polowinski, J., Reimann, J., Schroeter, J., Seifert, M.,
Thiele, M., Wende, C., Wilke, C.: Dropsbox: the Dresden open software toolbox
- domain-specific modelling tools beyond metamodels and transformations. Softw.
Syst. Model. 13(1), 133–169 (2014)

2. Yakindu: Homepage. http://statecharts.org/
3. Xtext: Homepage. http://www.eclipse.org/Xtext/
4. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Pro-

gram. 8(3), 231–274 (1987)
5. Baar, T.: SSMA - Simple State Machine Analyzer. https://github.com/thomas-

baar/simplesma
6. Bettini, L.: Implementing Domain-Specific Languages with Xtext and Xtend. Packt

Publishing, Birmingham (2013)

http://statecharts.org/
http://www.eclipse.org/Xtext/
https://github.com/thomasbaar/simplesma
https://github.com/thomasbaar/simplesma

60 T. Baar

7. Ghezzi, C., Menghi, C., Sharifloo, A.M., Spoletini, P.: On requirement verification
for evolving statecharts specifications. Requir. Eng. 19(3), 231–255 (2014)

8. Prashanth, C.M., Shet, K.C.: Efficient algorithms for verification of UML state-
chart models. JSW 4(3), 175–182 (2009)

9. Rümmer, P.: Princess homepage. http://www.philipp.ruemmer.org/princess.shtml
10. Rümmer, P.: A constraint sequent calculus for first-order logic with linear integer

arithmetic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS
(LNAI), vol. 5330, pp. 274–289. Springer, Heidelberg (2008)

11. Bettini, L.: Xsemantics Documentation (2015). http://xsemantics.sourceforge.net/
documentation/

12. Wachsmuth, G., Konat, G.D.P., Visser, E.: Language design with the Spoofax
language workbench. IEEE Softw. 31(5), 35–43 (2014)

13. Vergu, V.A., Neron, P., Visser, E.: Dynsem: a DSL for dynamic semantics specifi-
cation. In: Fernández, M., (ed.) 26th International Conference on Rewriting Tech-
niques and Applications, RTA 29 to 1 July 2015, Warsaw, Poland, vol. 36 of LIPIcs,
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, pp. 365–378, June 2015

14. Object Management Group: Unified Modeling Language (UML), version 2.5, June
2015. http://www.omg.org/spec/UML/2.5/

http://www.philipp.ruemmer.org/princess.shtml
http://xsemantics.sourceforge.net/documentation/
http://xsemantics.sourceforge.net/documentation/
http://www.omg.org/spec/UML/2.5/

Towards Using Exact Real Arithmetic
for Initial Value Problems

Franz Brauße1, Margarita Korovina2, and Norbert Th. Müller1(B)

1 Abteilung Informatikwissenschaften, Universität Trier, Trier, Germany
mueller@uni-trier.de

2 A.P. Ershov Institute of Informatics Systems, Novosibirsk, Russia

Abstract. In the paper we report on recent developments of the iRRAM
software [7] for exact real computations. We incorporate novel methods
and tools to generate solutions of initial value problems for ODE sys-
tems with polynomial right hand sides (PIVP). The algorithm allows
the evaluation of the solutions with an arbitrary precision on their com-
plete open intervals of existence. In consequence, the set of operators
implemented in the iRRAM software (like function composition, com-
putation of limits, or evaluation of Taylor series) is expanded by PIVP
solving.

Keywords: Computable analysis · Taylor models · Ordinary differential
equations · Exact real arithmetic

1 Introduction

The field of ‘exact real arithmetic’ (ERA) aims to combine the elegance and
correctness of mathematical theories for real numbers with optimized algorithms.
The theoretical background for ERA is called ‘computable analysis’ or ‘type-2-
theory of effectivity’ (TTE), see e.g. [13]. In TTE, a real number x is usually
represented as a sequence (rn)n∈N of rational numbers rn with a known rate of
convergence. Computability on R is defined via Type-2 Turing machines. Usually
the rate of convergence is expressed as a constraint ‘∀n : |x−rn| ≤ 2−n’ (leading
to the ‘Cauchy representation’ in [13, p. 88]). Formulated with notations from
interval arithmetic, x is represented as a converging sequence (In)n∈N of intervals.

ERA now uses similar concepts to implement real numbers on real-world
computers. Pioneering in this direction was the iRRAM library [7] the initial
version of which was presented already in 1996. Since then it has been continu-
ously enhanced and improved. A big advantage of this package is a simple user

The research leading to these results has received funding from the People
Programme (Marie Curie Actions) of the European Union’s Seventh Framework
Programme FP7/2007-2013/ under REA grant agreement n◦ PIRSES-GA-2011-
294962-COMPUTAL and from the DFG/RFBR grant CAVER BE 1267/14-1 and
14-01-91334.

c© Springer International Publishing Switzerland 2016
M. Mazzara and A. Voronkov (Eds.): PSI 2015, LNCS 9609, pp. 61–74, 2016.
DOI: 10.1007/978-3-319-41579-6 6

62 F. Brauße et al.

interface, as it uses internal book keeping of approximation accuracies and preci-
sions. Therefore the user can concentrate on the mathematics behind algorithms.

Main aspects of this paper are enhancements for the iRRAM package origi-
nating from optimizing an implementation for the arbitrary precision evaluation
of the solution to initial value problems (IVPs) presented in [3]. Many ODEs may
be transformed into systems with polynomial right hand sides [10], therefore solv-
ing IVPs for this class is of great importance. For this purpose we constructed and
implemented the new iRRAM-operator PIVPSolve: Polyd ×R

d ×R → C(Rd).
Applying PIVPSolve to the input values f , w0 and t0 (denoting an IVP)
results in (a representation of) the solution y . Evaluating y at some point tend
works in steps (ti,w i) such that t0 < · · · < ts ≤ tend ≤ ts+1. On every step i
the Taylor series

∑
n∈N

an(t − ti)n of y around ti is constructed and evaluated
at ti+1 to get the initial value w i+1 for the next step.

It is worth noting that a key to evaluating power series is additional infor-
mation about a pair (R,M) ∈ R

2 with |an| ≤ M · R−n [4]. This allows reliable
bounds for the truncation error. Computing ‘good’ (R,M) is of great importance
for computability and for efficiency. Larger R allow increased step sizes ti+1 − ti
as well as reduced numbers of Taylor coefficients in each step.

A common problem of interval algorithms is that they suffer from wrapping
effects, i.e. unnecessary growth of approximation intervals. Reducing such wrap-
ping effects is an important issue in interval arithmetic [9, p. 15ff]. We discuss
two methods to deal with this effect: (a) applying appropriate local Lipschitz
bounds and (b) using Taylor Models [2] as primary data type.

The paper is organized as follows: In Sect. 2 we detail basic ideas of iRRAM
and discuss how its tools can be applied to control error propagation. In Sect. 3
we present methods for computing the parameters (R,M) and local Lipschitz
bounds. We then present the main algorithm in Sect. 4 and conclude with exper-
imental results in Sect. 5 and future work.

We will use the following notations throughout the paper: N, Z, R, C denote
the natural, integer, real and complex numbers. The set of dyadic numbers is
D := {z · 2p : z, p ∈ Z}, U is the closed interval U := [−1, 1]. Vectors w of
any kind are written in bold and ‖w‖ denotes the maximum norm ‖w‖∞. For
closed real intervals [a, b] we use the notation c+ eU, with c = a+b

2 as center and
e = b−a

2 as radius of the interval. In the case of vectors w0 of complex numbers
and for real μ ≥ 0 we will use [w0 ± μ] := {w : ‖w − w0‖ ≤ μ}.

2 Exact Real Arithmetic Using iRRAM

The iRRAM [7] is a software library implemented in C++. It is licensed under
LGPL and is freely available at https://github.com/norbert-mueller/iRRAM.
The central structure is a class REAL, whose objects behave like real numbers in
TTE [13]. An important feature of the iRRAM is the ability to compute limits
of certain user-defined sequences of real numbers.

The basic idea of the implementation is simple: Essentially, all operations on
real numbers are being replaced by corresponding interval versions. The main

https://github.com/norbert-mueller/iRRAM

Towards Using Exact Real Arithmetic for Initial Value Problems 63

difference to ordinary interval arithmetic is as follows: If errors grow too big,
e.g. to compare two numbers x and y (i.e. the intervals corresponding to x and
y overlap), the whole computation is repeated with a higher precision.

The iRRAM uses a simplified interval arithmetic based on the dyadic num-
bers D. Intervals take the form I := d + eU for d, e ∈ D. The center d is imple-
mented as an arbitrarily long multiple-precision floating-point number using the
MPFR library [14] while two 32-bit integers are used to represent the mantissa
and the exponent of e. In consequence, computations with these intervals are
only slightly more expensive than with isolated multiple-precision numbers.

Of course, long computations suffer from the usual wrappings in interval
arithmetic. This may be addressed using additional knowledge about the com-
puted numerical functions. To this end we discuss two methods recently imple-
mented in the iRRAM: exploiting Lipschitz bounds [6,7] and Taylor models [2].

Lipschitz Bounds: The iRRAM library is based on intervals although this is
hidden to the user. Suppose the user wants to compute a value g(x) for a function
g : R → R (we will only consider the one-dimensional case here). On the internal
level x is given as an interval X with x ∈ X, also the computation of g(x) is
implemented using interval arithmetic. So instead of g an interval extension G
of g will be used. As the exact value of x is unknown, G must have the property
g(X) ⊆ G(X). Quite often G(X) is much larger than g(X).

If we have access to a Lipschitz bound L valid for g on X, it is possible to
reduce this overestimation. Suppose X = c + eU with center c and radius e.
Instead of computing G on X we can compute G on the point interval {c} =
c + 0U, leading to some interval c′ + e′

U := G({c}). Of course, c′ + e′
U will be

an overestimation of the point interval {g(c)}. Now using that L is a Lipschitz
bound for g, we see g(X) ⊆ c′ + e′

U + L · eU. So all we need is to add L · e
to the radius e′ of the interval c′ + e′

U. If L is small and the overestimation in
c′ + e′

U is not too bad, then c′ + e′
U + L · eU will be better than G(X) as an

approximation of g(X).
If L were minimal, the resulting interval c′ + (e′ + Le)U would be nearly

identical to g(X), almost without any influence from wrapping. However, in
practice it is very hard to find the minimal possible value for L.

Taylor Models: Taylor models (see papers by Kyoko Makino and Martin Berz,
e.g. [2]) can be interpreted as a sophisticated version of the basic idea from the
previous section. Instead of depending on an externally given Lipschitz bound
L, the computation on the center c of the interval c+eU is performed in parallel
to the computation of certain approximations connected to first (or even higher)
derivatives on c + eU of the function under consideration.

Usually Taylor models are defined as sums T + I. Here T (λ) =
∑

n �=0 cnλn

is a polynomial in a vector λ = (λ1, . . . , λk) of ‘error symbols’ and I is an
interval enclosing any approximation errors (called interval remainder of the
Taylor model). Most implementations restrict the coefficients cn in T to be
in double precision, but they could also be arbitrary real numbers. The error
symbols λi denote unknown values within the interval U and allow to express
functional dependencies between Taylor models that share those error symbols.

64 F. Brauße et al.

A very important manipulation on Taylor models is called sweeping: whenever
appropriate, a monomial cnλn from T can be replaced by the interval cnU, thus
enlarging the interval I. Every sweeping removes information about functional
dependencies to some extent and thus adds some wrapping effect to the Taylor
model, but it also helps to control the size of the Taylor model.

We use the following modification of Taylor models: Our Taylor models are
polynomials

∑
c′
n ·λn , where λ is the vector of error symbols and each coefficient

c′
n is an interval. Sweeping can then be implemented by replacing an interval

monomial c′
n · λn by an interval monomial c′

n · λk · U for arbitrary k < n .
The original Taylor model with a single interval remainder is included here,

if sweeping always uses k = 0 . However we propose to use k 	= 0 when sweeping
to retain at least linear functional dependencies.

In the iRRAM, where each REAL is already stored as an interval, such Tay-
lor models can be implemented quite easily based on vectors of REAL. The IVP
solver described in this paper starts with an initial set of error symbols for w0 at
t0 and heuristically selects time instances ti to revise this set in order to recom-
press the representation of w i and to improve the subsequent computations. For
our purpose, restricting the degrees of monomials to ≤ 1 achieved the highest
performance, i.e. we use Taylor models of order ≤ 1 but with interval coefficients
in the form T (λ) = c′

0 +
∑

c′
iλi.

The Lipschitz approach considers a worst case scenario and the Lipschitz
bound has to be provided externally, while a computation with Taylor models
computes similar dependencies on the fly. However, the Lipschitz approach is
independent from the length of a computation and from the precision used in
the computation whereas the coefficients in the Taylor models might suffer from
wrapping effects themselves. So at least for the purpose of proving the soundness
and termination of algorithms, the Lipschitz approach is very useful.

3 Theoretical Background

A d-dimensional polynomial ODE system is defined by a vector of polynomials
f : Rd+1 → R

d and an initial value problem has the form

ẏ(t) = f (t,y(t)), (3.1)
y(t0) = w0

for some t0 ∈ R and w0 ∈ R
d. For simplicity, we assume that t0 = 0.

The Picard-Lindelöf theorem guarantees the existence of a unique holomor-
phic solution y on some interval containing 0. In this region around zero y can
be written in the form of d Taylor series yν(t) =

∑
n∈N

aν,ntn for ν = 1, . . . , d.
Solving the initial value problem can be divided into three components:

(a) the computation of the coefficients aν,n of these series (see [3]),
(b) the evaluation of the sum function

∑∞
n=0 aν,ntn (e.g. based on [4]) and

(c) the retrieval of a pair (R,M) ∈ R
2 with |aν,n| ≤ M · R−n.

Towards Using Exact Real Arithmetic for Initial Value Problems 65

w0

ε

δ

μ
w0

ε

δ

μ

Fig. 1. Existence of solutions according to Picard-Lindelf (left) and improved (right).

The component (c) is necessary for (b) [5] and allows to use the simple formula
∑∞

n=k+1 |aν,ntn| ≤ M ·R
R−|t| · |t|k+1

Rk+1 for the truncation error for |t| < R.
In this section we mainly address two aspects: (i) we show how to derive

(R,M) in the case of IVPs, i.e. component (c), and (ii) the dependency on
perturbations of the initial value. Therefore we consider the family of solutions
y(t,w) parameterized by initial values w from the complex interval [w0 ± μ]
for arbitrary positive μ ∈ R. This dependency can be characterized by a local
Lipschitz bound Lμ with ‖y(t,w)−y(t,w0)‖ ≤ Lμ‖w −w0‖ for t ∈ R, |t| < R.
One of the options in our algorithm in Sect. 4 is to use this bound Lμ.

(i) Computing Truncation Error Parameters (R,M): Let us consider
positive values δ (for time intervals) and μ ∈ R (for perturbations of initial
values). For any ε ≥ μ let Cε = Cε(w0, δ) be the complex region

Cε := {(t, v) ∈ C
d+1 : ‖v − w0‖ ≤ ε, |t| ≤ δ}.

Figure 1 visualizes the usual relation of the values within Cε.
Let M := ‖w0‖ + ε; for simplicity we will hide the dependancy of M on w0

and ε. Then M trivially is a bound for y(t, v) whenever (t,y(t, v)) ∈ Cε. To
find a matching R we only need to ensure that (t,y(t, v)) ∈ Cε for any t ∈ C

with |t| ≤ R. Then R is a lower bound for the radii of convergence of the series
and |aν,n| ≤ M · R−n follows from the Cauchy integral formula.

Since f is continuous on Cε, there is a monotonic function p(ε) bound-
ing ‖f (Cε)‖. On the one hand, since f is a vector of polynomials, it is easy
to derive a polynomial p1 that bounds ‖f (Cε)‖ essentially by taking absolute
values of the coefficients, as it has been done in [3,11]. On the other hand,
using complex interval arithmetic to evaluate p2(ε) = ‖f (Cε)‖ often results in
smaller values due to cancellation effects. A combination of both methods, i.e.
p(ε) = min{p1(ε), p2(ε)}, can be used. Please keep in mind that p(ε) is still
implicitly depending on the parameters δ and w0.

A first formula for R immediately follows from the theorems of Picard-
Lindelöf and of Cauchy-Peano on the existence of solutions of ODEs, see [12],

RPL(μ, ε) := min
{

δ,
ε − μ

p(ε)

}

. (3.2)

66 F. Brauße et al.

Here for all t ∈ C, |t| ≤ RPL(μ, ε), and for all perturbed initial values w ∈
[w0±μ] we have (t,y(t,w)) ∈ Cε. So we might define R as R := RPL(μ, ε). This
is visualized on the left of Fig. 1 where the grey area encloses the solution.

The construction of RPL uses a very simple worst case argument, so the result
is far too small in general. As a first improvement we use that for any perturbed
w ∈ [w0 ± μ] we also get (t,y(t,w)) ∈ Cε even for |t| ≤ Rint(μ, ε) where

Rint(μ, ε) := min
{

δ,

∫ ε

μ

1
p(s)

ds

}

(3.3)

so R := Rint(μ, ε) can be used as well. A visualization of this idea can be found
on the right of Fig. 1, where the grey area enclosing the solution is now extended
to a bigger part of the time axis.

We do not need the exact value of the integral in 3.3, lower bounds would
suffice. So we may use approximations Rsum(μ, ε) determined as a lower Riemann
sum of this integral. This is much easier to evaluate and can be based on a
suitable sequence ε0 := μ, εi < εi+1 and εk := ε as follows

Rsum(μ, ε) :=
k−1∑

i=0

εi+1 − εi

p(εi+1)
. (3.4)

All three choices for R above are based on a worst case analysis, so usually the
actual solution will stay in Cε even longer. To exploit this, we use that for any
already known R and any |t| < R the solution y(t) exists and can be computed.
Now choose r < R and let m(r) := max{||y(t,w)−w0|| : |t| ≤ r} be the maximal
distance to the initial value w0 that actually arises up to r. By definition, for
any |t| ≤ r the values (t,y(t)) must stay within the region Cm(r).

Choosing m(r) as the perturbation μ in Eq. (3.3) we get (t,y(t)) ∈ Cε even
for t ≤ R′ := min{δ, r + Rint(m(r), ε)}. So from the initial R we now get a new
and larger lower bound R′ for inclusion in Cε. This enlargement R
→ R′ can be
repeated as in Algorithm 1.

Algorithm 1. Pushing the Radius
function ImproveRadius(R)

repeat
Choose r with r < R
R ← min{δ, r + Rint(m(r), ε)}

until no significant improvement
return R

end function

We would like to give some short
remarks on the actual implementation:
(i) The bound ε is heuristically adapted
between steps. (ii) For

∫ ε

μ
1/p(s) ds a

table of lower bounds is maintained.
(iii) For m(r) we evaluate the Taylor
series with complex interval arithmetic
on [0 ± r]. This is possible as r < R
allows to compute a bound on the trun-
cation error.

(ii) Obtaining Lipschitz Bounds on Solutions: Using any of the above
formulae R(μ, ε) we are already able to compute bounds on the truncation error
for the Taylor series of y(t,w) for any t with |t| ≤ R(μ, ε) and any w ∈ [w0±μ].
However, any interval implementation will additionally suffer from the wrapping
effect mentioned before, so the precision of the result would also drastically

Towards Using Exact Real Arithmetic for Initial Value Problems 67

depend on the error propagation properties of the computation of the coefficients
of the series. As mentioned in Sect. 2, we can use Lipschitz bounds or Taylor
models to improve on the error propagation.

In the following we derive a Lipschitz bound LC
μ (t) valid for w ∈ [w0±μ] from

the behaviour of the solution in Cε, so ‖y(t,w)−y(t,w0)‖ ≤ LC
μ (t) · ‖w −w0‖.

One way [11] to derive such a Lipschitz bound uses the generalized Gronwall’s
Lemma yielding LT

μ (t) := eL|t|, where L is a Lipschitz bound valid on w in
f (t′,w) for all t′ ∈ [0, t], c.f. [12]. LT

μ (t) is valid even for t beyond R(μ, ε).
We propose another way based on the Cauchy integral formula on polydiscs,

∀w ∈ U : Dkyν(t,w) = k !
(2πi)1

∫
∂U

yν(t,ξ)
(ξ−w)k+1 dξ, where U is the open polydisc

with common radius η centered at w0 for some value η. If for all ξ ∈ ∂U we
have (t,y(t, ξ)) ∈ Cε, then the numerator yν(t, ξ) in the integrand is bounded
by M . By definition of R(·, ε) we see that this is true if |t| ≤ R(η, ε). In the
following fix t, 0 < |t| < R(μ, ε), and let η be as large as possible such that
|t| ≤ R(η, ε).

Therefore if η >
√

2 · μ, then a lower bound for the denominator in the
integrand is (η − √

2 · μ)d+1. Hence for any w ∈ [w0 ± μ] we get

‖Deiyν(t,w)‖ =
∥
∥
∥
∥

1
(2πi)1

∫

∂U

yν(t, ξ)
(ξ − w)ei+1

dξ

∥
∥
∥
∥ ≤ M · ηd

(η − √
2 · μ)d+1

=: LC
μ (t) .

(3.5)
Please note that η depends on ε and on t. Furthermore, if η is large compared
to μ, LC

μ (t) ≈ M/η will be quite small. In an interval implementation exploiting
Lipschitz bounds, this already helps to reduce the wrapping effects significantly.

Obviously there is a tradeoff between (a) choosing t close to R(μ, ε) to get a
large step size and (b) choosing t small to have good bounds on the truncation
error as well as to get a small LC

μ (t). In our implementation this is currently
reflected by the restriction t ≤ Rscale ·Rsum(μ, ε) for a heuristically chosen value
Rscale ∈ (0, 1). The necessary η is computed using the lower Riemann sum (3.4).

4 PIVP Algorithm

We now describe our main Algorithm 2 to solve a PIVP system. Its basic struc-
ture is as follows: While trying to evaluate the power series with a truncation
error bound below the intended precision, the needed Taylor coefficients of the
solution are computed recursively. Dynamic programming is used to avoid reeval-
uations in this recursion. To that end four operators have been introduced to
iRRAM. We now shortly describe the respective mappings. Let k ∈ N.

– TaylorCoefficients: Rd → (N → R
d), w0
→ (an)n where an = (aν,n)v

using a recursion on the coefficients.
– PowerSeries: (N → R

k) × R
2 → (R → R

k), ((an)n∈N, R,M)
→ g analytic
with the expansion g(t) =

∑
n∈N

antn centered in 0 iff ∀n : ‖an‖ ≤ MR−n.
– Lipschitzify: (R → R

k) × R → (R → R
k), (g , L)
→ g̃, where g is a com-

putable function, g̃ = g , but the interval extensions G̃ of g̃ and G of g satisfy
G̃(c + eU) = G({c}) + eLU. For details see Sect. 2.

68 F. Brauße et al.

Algorithm 2. PIVP-Solver
function PIVPSolveSingle(f ,w0, t0, tend, δ, ε, Rscale)

i ← 0, h0 ← t0
loop

recenter f at hi in case f is non-autonomous
(Ri, Mi, Li, ε) ← TaylorBoundsw i, f , δ, ε, Rscale � see Sect. 3
(an)n ← TaylorCoefficientsw i

y ← PowerSeries(an)n, Ri, Mi � recentered solution via Taylor series
y ← Lipschitzifyy , Li � optional, see Sect. 2
hi+1 ← Rscale · Ri � step size
if tend ∈ (ti ± hi+1) then � multi-valued test whether target is in range

return y(tend − ti) � evaluate solution at tend, initiating recursion
end if
ti+1 ← ti + hi+1

w i+1 ← y(hi+1) � evaluate solution at ti+1 to get new initial value
reconsider Taylor model for w i+1 � optional, see Sect. 2
i ← i + 1

end loop
end function

– PIVPSolve: Polyk ×R
k ×R → (R → R

k), (f ,w0, t0)
→ y with the property
ẏ(t) = f (t,y(t)) for [t0, t] ⊂ Dom(y) and y(t0) = w0. It is implemented by
calling PIVPSolveSingle (see Algorithm 2) with appropriate choices for the
control parameters Rscale < 1, δ and initial ε which strongly influence the step
size and speed of the algorithm as detailed in Sect. 3.

Generation of Taylor Polynomial Coefficients and Evaluation: In the
settings of iRRAM, we represent a vector f of polynomials fν : R

d+1 → R,
ν = 1, . . . , d, as d finite index sets Eν ⊂ N

d+1 together with coefficients cν,k,i ∈ R

indexed by Eν as follows:

fν(t,w) =
∑

(k,i)∈Eν

cν,k,i · tk · wi

It is not necessary that all coefficients given in that way are non-zero, but by
definition all coefficients not in this finite set are zero: (k, i) /∈ Eν =⇒ cν,k,i = 0.
A few examples for such index sets Eν can be found below.

1. Consider the following linear and autonomous system x of dimension d = 4
and corresponding index sets Eν , ν = 1, . . . , 4:

ẋ1(t) = x2(t) E1 = {(0, 0, 1, 0, 0)}
ẋ2(t) = x3(t) E2 = {(0, 0, 0, 1, 0)}
ẋ3(t) = x4(t) E3 = {(0, 0, 0, 0, 1)}
ẋ4(t) = x1(t) E4 = {(0, 1, 0, 0, 0)}.

Here just 4 coefficients c1,0,0,1,0,0 = c2,0,0,0,1,0 = c3,0,0,0,0,1 = c4,0,1,0,0,0 = 1
are nonzero. For the initial value w0 = (1, 0,−1, 0) at the time t0 = 0, the
solution of this system is x = (cos,− sin,− cos, sin).

Towards Using Exact Real Arithmetic for Initial Value Problems 69

2. Our second example is an autonomous Riccati equation:

ẋ(t) = 1 + x2(t)

As index set for the nonzero coefficients we have

E = {(0, 0), (0, 2)}.

For initial value 0 at 0, the solution is x(t) = tan(t) exhibiting a singularity
at π/2. In contrast to double precision algorithms, the approach proposed
in this paper using exact real arithmetic is able to compute x(t) beyond the
limited range of double precision numbers, i.e. even for t > π/2 − 10−17.

3. An example discussed many times in literature is the Van-der-Pol oscillator,
which is a nonlinear and autonomous ODE:

ẋ(t) = y(t) E1 = {(0, 0, 1)}
ẏ(t) = αy(t) − x(t) − αx2(t)y(t) E2 = {(0, 0, 1), (0, 1, 0), (0, 2, 1)}.

It is worth noting that there is no closed form solution for this ODE. We will
consider this example again in Sect. 5.

In the following constructions we require t0 = 0. There are two ways to meet
this condition. One option is to alternatively solve the autonomous IVP

ż (t) = g(z (t)) = (1, f (z (t))), z (0) = (t0,w0)

that includes time as an additional component of the solution and then to project
z on the d remaining components to get the desired solution y of (3.1).

Another approach is a recentering of the right hand side, i.e. to transform
the right hand side f to f̄ at each step in order to reposition the solution to 0
on the time axis. This involves formally expanding

f̄ν(t,w) := f ν(t0 + t,w) =
∑

(k,i)∈Eν

cν,k,i · (t0 + t)k · wi (4.1)

=
∑

(j,i)∈Ēν

⎛

⎝
∑

(k,i)∈Eν :k≥j

cν,k,i

(
k

j

)

tk−j
0

⎞

⎠

︸ ︷︷ ︸
=: c̄ν,j,i

· tj · wi ,

thereby forming Ēν := {(j, i) : (k, i) ∈ Eν , 0 ≤ j ≤ k}, for all ν = 1, . . . , d.
The new index sets Ēν then contain all powers from 0 to k in the time variable,
even if Eν did not before. Therefore, from step 1 to step s, the size |Ēν | of the
discrete part of the representation of the RHS is bounded by max k · |Eν | of the
original RHS. After recentering, ȳ(t) = y(t0 + t) holds for t0 + t ∈ Dom(y).
In the current version of the iRRAM library we chose to implement this second
approach, however if the coefficients c̄ν,k,i grow too much, we can always take
the first approach.

70 F. Brauße et al.

Therefore, without loss of generality we can assume t0 = 0. Then, in a region
around zero the solution y to (3.1) can be written as yν(t) =

∑
n∈N

aν,ntn,
ν = 1, . . . , d. To generate the coefficients aν,n we observe that ẏ can be written
in two ways

ẏν(t) =
∑

(k,i)∈Eν

cν,k,i · tk · (y1(t))i1 · . . . · (yd(t))id =
∑

n∈N

(n + 1) · aν,n+1 · tn,

where the powers (yν(t))i can be expressed as Taylor series (yν(t))i =
∑

n∈N
a
(i)
ν,ntn. Comparing coefficients leads to the following recursion scheme in

n, i ∈ N, i ≥ 2.

a
(0)
ν,0 = 1, (R1)

a
(0)
ν,n+1 = 0, (R2)

a
(1)
ν,0 = w0,ν , (R3)

a
(1)
ν,n+1 =

1
n + 1

∑

(k,i)∈Eν

cν,k,i ·
∑

(jl)∈Nd:
∑

jl=n−k

a
(i1)
1,j1

· . . . · a
(id)
d,jd

, (R4)

a(i)
ν,n =

n∑

j=0

a
(�i/2)
ν,j · a

(
i/2�)
ν,n−j . (R5)

For details we refer to [3]. Now we discuss important optimizations of the
implementation, especially of (R4). In examples above, the coefficient vectors
are quite sparse with many zero values (that we already did exclude from the
lists above).

From the recursion scheme we get a
(i�)
�,j�

= 0 in case of i� = 0 and j� > 0.
So often we do not have to consider all combinations that are suggested by the
formula (R4), but we can omit combinations where j� > 0 for a i� = 0.

We then get the simpler version of (R4).

aν,n+1 =
1

n + 1

∑

(k,i)∈Eν

cν,k,i ·
∑

j∈N
d : j1+...+jd=n−k ∧

(∀1≤�≤d : j�>0 =⇒ i�>0)

[
a
(i1)
1,j1

· . . . · a
(id)
d,jd

]
(4.2)

This is equivalent to a sum just over combinations on reduced vectors of indices.
From the recursion scheme we further know a

(i�)
�,j�

= 1 for i� = 0 and j� = 0.

So, we only have to multiply those values a
(i�)
�,j�

where i� > 0. For simplicity, in
the following we fix a ν ∈ {1, . . . , d}, n ∈ N and (k, i) ∈ Eν . Let [i] = {
 : i� 	=
0,
 = 1, . . . , d} denote the set of indices of non-zero components of i ∈ N

d and
let [i]� be the
-th smallest element in [i].

The inner sum over j ∈ N
d in (4.2) can then be rewritten as

∑

(j�)�∈[i]∑
j�=n−k

∏

�∈[i]

a
(i�)
�,j�

(4.3)

Towards Using Exact Real Arithmetic for Initial Value Problems 71

or equivalently – reducing the number of multiplications in a form similar to
Horner’s scheme

∑

j1∈N

j1≤n−k

a
(i[i]1)

[i]1,j1
·
∑

j2∈N

j1+j2≤n−k

a
(i[i]2)

[i]2,j2
· . . . ·

∑

jr∈N

j1+...+jr=n−k

a
(i[i]r)

[i]r,jr
,

where r = |[i]|. Please note that the innermost sum (including jr) consists of just
a single value. This formula is easy to implement as a recursion over 0 < r ∈ N,

Ai (n, 0) = δ0,n, where δi,j is the Kronecker symbol,

Ai (n, r) =
n∑

l=0

a
(i[i]r)

[i]r,l · Ai (l, r − 1),

finally reducing (4.2) to

aν,n+1 =
1

n + 1

∑

(k,i)∈Eν

cν,k,i ·Ai (n−k, |[i]|). (R4′)

Formula (4.3) clearly indicates that the number of terms that have to be
evaluated is usually much smaller than the number of all terms in the inner sum
∑

j1,j2,...,jd∈N

j1+...+jd=n−k
[...] of the formula (R4) which is (d+n−k−1)!

(d−1)!(n−k)! =
(
d+n−k−1

d−1

)
.

Obviously the number of parameter components |[i]| in the monomials of fν

have more influence on the complexity than the dimension d of the ODE system.
In our three examples, we had (1.) |[i]| = 1, (2.) |[i]| ≤ 1 and (3.) |[i]| ≤ 2.

The evaluation of Taylor series and control of truncation errors are based on
[4] and the refinements of Sect. 3.

Soundness: A big advantage of ERA is that soundness proofs are significantly
easier than with ordinary double precision arithmetic. For any function f offered
by an ERA implementation the following consistency property must hold, similar
to interval arithmetic: the result of applying f to an argument x is consistent with
the mathematically correct result f(x). The argument x is represented internally
as a sequence (In) of intervals converging to x, hence the result of applying
f to x will internally be a sequence (Jn) of intervals all containing f(x). In
addition to this consistency of interval arithmetic, however, TTE promises that
the resulting sequence (Jn) actually converges to f(x). ERA implementations
will never violate the consistency property and will deliver convergent results as
far as time and the finite resources of real computers allow.

Our algorithm above just consists of applications of such basic functions:
For the computation of the Taylor coefficients we only need basic arithmetic,
implying that any such coefficent will eventually be computed arbitrarily precise.
Also the computations of the pairs (R,M) only need basic functions. In addition,
even evaluating the sum function of a Taylor sequence is a basic function in ERA
[3,4]. We only had to make sure that the used pairs (R,M) fit to the Taylor
sequences as mentioned at the beginning of Sect. 3.

72 F. Brauße et al.

In consequence it only remains to show termination in order to ensure sound-
ness. Here termination means that the number of necessary ‘exact’ mathematical
operations has to be finite. This boils down to proving that the number s of steps
(ti,w i) necessary to reach a time instance tend is finite.

The central argument here is that the number s of steps computed by the
algorithm essentially depends on the size of the radii chosen per step, which are
comparable to Picard-Lindelöf’s, as detailed below. Therefore the number s of
steps is finite.

More formally, for any closed and bounded interval I = [t0, tend] ⊂ Dom(y)
the set {(t,y(t)) : t ∈ I} is closed and bounded. With a standard compactness
argument we conclude that there is a finite covering of I by intervals (ti ±
Ri)i such that ti+1 ∈ (ti ± Ri) for all i, where the Ri depend on ti as follows.
The vectors (ti, μi, Ri, Li) of time instances ti, allowed perturbances μi of w i,
corresponding radii Ri and Lipschitz bounds Li are computed in every step i
by Algorithm 2. From Sect. 3 we know that Ri = Rsum(μi, ε) in (3.4) is a lower
bound on the radius of convergence of the Taylor series centered at ti. To ensure
that Ri is generally at least as large as the corresponding lower bound RPL on the
radius from the standard proof of the Picard-Lindelöf theorem, please note that
in the construction e.g. ε ≥ kμ and an equally-spaced partitioning (εj)k

j=0 with
k ≥ 2 could be used. These radii are strictly positive on the complete compact
interval I. As the step size hi is chosen to be linear in Ri, the computed (ti±hi+1)i

cover I finitely. This shows that for any tend within the interval of existence of
the solution a finite number of steps is sufficient to compute the solution on the
interval [t0, tend]. Please note that the above arguments are independent from
any considerations on the precision.

The correctness of the presented method already follows from the construc-
tion in the previous sections without even using the Lipschitz approach or the
Taylor models. However using the Lipschitz approach we can also get informa-
tion on the speed of convergence. So for the rest of the section assume that we
employ the (optional) Lipschitzify-operator in the algorithm.

Let Li bound the dependency of solutions y(hi+1,w) (y recentered at ti) on
perturbed initial values w ∈ [w i ± μi], i.e. ‖y(hi+1, [w i ± μi])‖ ≤ Li · μi. As has
been detailed in Sect. 3, the computed Li = LC

μi
even satisfies ∀t ∈ [0, hi+1] :

‖y(t, [w i ± μi])‖ ≤ Li · μi and can therefore be applied to bound the error of
w i+1.

So if we assume an initial condition w0 perturbed by at most μ, after an
arbitrary number k of steps the sub-algorithm for the Li ensures that μL(0, k)
with L(i, k) :=

∏k−1
j=i Lj bounds the perturbation error on wk. This means to

evaluate wk with precision 2−n at tk, it is sufficient to compute each intermediate
w i up to a precision of 2−n−�log(μL(i,k))	. During the complete iteration process
we lose only a constant number of bits that is independent on the required
precision, if we apply the Lipschitz approach!

Towards Using Exact Real Arithmetic for Initial Value Problems 73

Fig. 2. Experimental results for Van-der-Pol with α = 3, w0 = (1, 1).

5 Experimental Results

In this section we present some results of running our algorithm on the Van-der-
Pol ODE with α = 3 and initial value (1, 1) at t0 = 0. We compared the results
from the three different methods for approximating the radius of convergence
from Sect. 3 (RPL, Rsum, Algorithm 1 on Rsum) as well as the effects from three
different approaches to reduce wrapping effects (Lipschitz bound in Eq. (3.5),
the original method of sweeping into c′

0 , and the new method of sweeping into
higher order monomials proposed in Sect. 2).

We compared our results with Nedialkov’s package VNODE-LP [8], where we
only had to change MU to α in his example vanderpol.cc. Computation times
were significantly different, but the numbers of steps in both implementations
were similar. The example vanderpol.cc used only 0.2 s to integrate this ODE
up to tend = 100, while our fastest version took about 344s on the same machine.
A big part of the difference is due to the fact that VNODE-LP uses double precision
hardware while the iRRAM uses a software multiple precision package instead.

The left part in Fig. 2 depicts the different lower bounds for the radii of con-
vergence computed during a run of Algorithm2 while ti ∈ [11, 17]. The solution
of the ODE is essentially periodic, the time interval [11, 17] contains slightly more
than a full circle of the solution. Additionally the corresponding stepsizes com-
puted by vanderpol.cc from VNODE-LP are given. This shows that our approach
gives competitive bounds for the radii of convergence.

The right part of Fig. 2 compares the three different methods to reduce wrap-
ping effects. As expected, using a worst case analysis to compute Lipschitz
bounds could not compete with Taylor models at all. However, our modified
version of the Taylor models was superior compared to the version usually used.

6 Conclusion

Our implementation reliably computes results to arbitrary precision without the
necessity for subsequent verification runs as in traditional numerical algorithms.
Applying Taylor Models in the setting of ERA, using local Lipschitz bounds

74 F. Brauße et al.

and improving validated upper bounds on intermediate step sizes substantially
increase the efficiency of the solver as experimental results showed.

Further work is necessary to check whether this approach can also lead to
refinements of the theoretical results from [1,11] on complexity of solving ODEs.
We also plan to work on improvements of the core ODE solver to make it more
competitive to double precision approaches.

References

1. Kawamura, A., Ota, H., Rösnick, C., Ziegler, M.: Computational complexity of
smooth differential equations. Log. Meth. Comput. Sci. 10(1), 1–15 (2014)

2. Makino, K., Berz, M.: Taylor models and other validated functional inclusion meth-
ods. Int. J. Pure Appl. Math. 4(4), 379–456 (2003)

3. Müller, N., Korovina, M.: Making Big Steps in Trajectories. In: EPTCS (2010)
4. Müller, N.T.: Polynomial time computation of Taylor series. In: Proceedings of the

22th JAIIO - Panel 1993, Part 2, pp. 259–281, Buenos Aires (1993)
5. Müller, N.T.: Constructive aspects of analytic functions. In: Ko, K.I., Weihrauch,

K. (eds.) Computability and Complexity in Analysis. Informatik Berichte, vol. 190,
pp. 105–114. FernUniversität Hagen (September 1995), CCA Workshop, Hagen,
19–20 August 1995

6. Müller, N.T.: Towards a real real RAM: a prototype using C++. In: Ko, K.I.,
Mller, N., Weihrauch, K. (eds.) Computability and Complexity in Analysis, pp.
59–66. Universität Trier, Second CCA Workshop, Trier, 22–23 August 1996

7. Müller, N.T.: The iRRAM: exact arithmetic in C++. In: Blank, J., Brattka, V.,
Hertling, P. (eds.) CCA 2000. LNCS, vol. 2064, p. 222. Springer, Heidelberg (2001)

8. Nedialkov, N.S.: VNODE-LP — a validated solver for initial value problems inordi-
nary differential equations. Technical report, CAS-06-06-NN, Department of Com-
putingand Software, McMaster University, Hamilton, Ontario, L8S 4K1 (2006)

9. Nedialkov, N.S., Jackson, K.R., Corliss, G.F.: Validated solutions of initial value
problems for ordinary differential equations. Appl. Math. Comput. 105(1), 21–68
(1999)

10. Parker, G.E., Sochacki, J.S.: Implementing the Picard iteration. neural, parallel.
Sci. Comput. 4(1), 97–112 (1996)

11. Pouly, A., Graça, D.S.: Computational complexity of solving elementary differential
equations over unbounded domains. CoRR abs/1409.0451 (2014)

12. Teschl, G.: Ordinary Differential Equations and Dynamical Systems. Graduate
Studies in Mathematics. American Mathematical Society, Providence (2012)

13. Weihrauch, K.: Computable Analysis: An Introduction. Springer-Verlag New York,
Inc., Secaucus (2000)

14. Zimmermann, P.: Reliable computing with GNU MPFR. In: Fukuda, K., Hoeven,
J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp. 42–45.
Springer, Heidelberg (2010)

Constraint Solving for Verifying Modal
Specifications of Workflow Nets with Data

Hadrien Bride1,2(B), Olga Kouchnarenko1,2, and Fabien Peureux1

1 Institut FEMTO-ST – UMR CNRS 6174,
University of Bourgogne Franche-Comté, 16, route de Gray,

25030 Besançon, France
{hbride,okouchna,fpeureux}@femto-st.fr

2 Inria Nancy Grand Est, CASSIS Project Campus Scientifique,
BP 239, 54506 Vandœuvre-lès-nancy Cedex, France
{hadrien.bride,olga.kouchnarenko}@inria.fr

Abstract. For improving efficiency and productivity companies are
used to work with workflows that allow them to manage the tasks and
steps of business processes. Furthermore, modalities have been designed
to allow loose specifications by indicating whether activities are neces-
sary or admissible. This paper aims at verifying modal specifications
of coloured workflows with data assigned to the tokens and modified
by transitions. To this end, executions of coloured workflow nets are
modelled using constraint systems, and constraint solving is used to ver-
ify modal specifications specifying necessary or admissible behaviours.
An implementation supporting the proposed approach and promising
experimental results on an issue tracking system constitute a practical
contribution.

Keywords: Workflows · Modalities · Coloured Petri nets · Constraint
system

1 Introduction

To improve efficiency and productivity companies are used to work with work-
flows describing the set of possible runs of a particular system/process. The
development of such workflows has become a crucial part of companies effort
since they define the organisational core of these companies by increasing their
business agility, flexibility and efficiency. Major Key Performance Indicators
(compliance with respect to regulations and directives, end-user acceptance and
confidence, etc.) are often directly determined by the quality of the workflows in
use, and therefore much of the companies successes depends on them. From this,
it requires workflow specifications to be properly designed and carefully verified
to ensure they comply with the expected and needed workflows properties. How-
ever, the increasing complexity of such workflows makes them error-prone and
the verification of the related models still remains a tough task [1].

c© Springer International Publishing Switzerland 2016
M. Mazzara and A. Voronkov (Eds.): PSI 2015, LNCS 9609, pp. 75–90, 2016.
DOI: 10.1007/978-3-319-41579-6 7

76 H. Bride et al.

Many modelling languages and related tooling to describe workflow systems
have been proposed [2]. Among them, workflow Petri nets (WF-nets for short) [3]
are well suited for modelling and analysing discrete event systems exhibiting
behaviours such as concurrency, conflict, and causal dependency between events.
They represent finite or infinite-state processes, and several important verifica-
tion problems, such as reachability or soundness, are known to be decidable.
However, due to the growing complexity of modeled processes, WF-nets describ-
ing them tend to be too complex and extremely large [4]. Moreover, WF-nets do
not model the data often relevant to address realistic processes [5]. To handle
data, workflows can be modelled by coloured Petri nets where data are assigned
to the tokens and can be modified by transitions based on their contents [6].

Within refinement approaches for workflow development, modal specifica-
tions [7] have been designed to allow loose specifications by imposing restric-
tions on the possible refinements by indicating whether activities–transitions in
the case of WF-nets–are necessary or admissible. Modalities provide a flexible
tool for workflow development as decisions can be delayed to later steps of the
development life cycle, when performing workflow refinements.

The paper first presents modal specifications with additional constraints on
the initial state of the workflow as well as with conditions on coloured transitions
and their causalities, i.e. on activities. Second, it defines a formal framework
based on constraint systems to model executions of CWF-nets, which, in turn,
enables the automated verification of modal specifications. Third, it reports on
an implementation of the approach, which is successfully experimented on a
concrete case study to validate an issue tracking system.

After providing preliminaries on Petri nets, coloured Petri nets and modal
specifications in Sect. 2 and Sect. 3 introduces the Questions and Answers Portal
motivating example and specifies it as a CWF-net. The main contribution in
Sect. 4 consists of a formal framework based on constraint systems to model
executions of CWF-nets and their structural properties, as well as to verify
their modal specifications. An implementation supporting the proposed approach
and promising experimental results constitute a practical contribution in Sect. 5.
Finally, Sect. 6 concludes the paper by discussing related work and future work.

2 Background

This section presents preliminaries on Petri nets, coloured Petri nets [8] and
introduces modal specifications based on proposals in [9,10].

2.1 Petri Nets

Petri nets are a basic model of parallel and distributed systems defined as follow.

Definition 1 (Petri net). A Petri net is a tuple (P, T, F) where P is a finite
set of places, T is a finite set of transitions (P∩T = ∅), and F ⊆ (P×T)∪(T×P)
is a set of arcs.

Constraint Solving for Verifying Modal Specifications 77

A Petri net with arcs of weight 1 (i.e. every element of F is unique) is called
an ordinary Petri net. Let g ∈ P ∪ T and G ⊆ P ∪ T . We use the notations:
g• = {g′|(g, g′) ∈ F}, •g = {g′|(g′, g) ∈ F}, G• = ∪g∈G g•, and •G = ∪g∈G

•g.
These definitions allow characterizing structural features such as siphons and
traps.

Definition 2 (Siphon/Trap). Let N ⊆ P such that N �= ∅: N is a trap if and
only if N• ⊆ •N , and N is a siphon if and only if •N ⊆ N•.

Lemma 1 [11]. A marked trap cannot be unmarked, and an unmarked siphon
cannot be marked.

Theorem 1 [11]. An ordinary Petri net without siphon is live.

Coloured Petri nets [8] are high-level Petri nets where data assigned to the
tokens can be modified by transitions based on their contents. Let Ξ be a non-
empty set of data-types (called colours), where each data-type is a set of data-
values. We denote here L(V,W) the space of linear maps from V to W, and O
the zero map.

Definition 3 (Coloured Petri net). A coloured Petri net (CPN) is a tuple
(P, T,C,W) where:

– P is a finite set of places, T is a finite set of transitions, such that P ∩T = ∅,
– C : P ∪ T → Ξ is the colour-function,
– W− : P × T → L(Ξ,Ξ) is the pre-incidence function,
– W+ : P × T → L(Ξ,Ξ) is the post-incidence function.

A marking of a CPN is a function M defined on P , such that ∀p ∈ P,M(p) ∈
C(p) → N. Two markings Ma and Mb are in relation Ma ≥ Mb if and only if
∀p ∈ P,∀c ∈ C(p),Ma(p)(c) ≥ Mb(p)(c).

A weighted set of transitions is a function x defined on T , such that ∀t ∈
T, x(t) ∈ C(t) → N. From now on, let � denote the generalized matrix-multipli-
cation where each product is replaced by a function composition. With this
notation, a transition defined by x(t) ∈ C(t) → N is enabled in a marking Ma if
and only if Ma ≥ W−(t) � x(t). When x(t) is enabled, it may fire. If x(t) fires, a
new marking Mb = Ma+(W+−W−)(t)�x(t) is reached. Mb is said to be directly

reachable from Ma by transition x(t), written Ma
x(t)−−→ Mb. Let reachability

relation be the reflexive and transitive closure of the direct reachability.
Let σ = x1(t1), .., xn(tn) be a sequence of transitions, i.e. ∀i ∈ 1..n, xi(ti) ∈

C(ti) → N, we say that σ is a valid sequence of transitions with respect to the
weighted set of transitions x, denoted σ |= x, if ∀t ∈ T, x(t) =

∑

i|ti=t

xi(ti).

Fig. 1. Example of a CPN

For example, let Ξ = {C1, C2} where C1 =
{1, 2, 3, 4, 5, 6} and C2 = {1, 2, 3}. For the CPN1

of Fig. 1, let C(P0) = C1 and C(t0) = C2. Let
be x ∈ C2 and t0(x) a transition such that ∀e ∈
C2 \ {x}, t0(x)(e) = 0 and t0(x)(x) = 1. When tran-
sition t0(x) fires, it consumes a token x and produces

78 H. Bride et al.

a token x ∗ 2 in P0. Let MCPN1(x) be the marking such that ∀e ∈ C1 \ {x},
MCPN1(x)(P0)(e) = 0 and MCPN1(x)(P0)(x) = 1. For σ = t0(1), t0(2), we have

MCPN1(1)
t0(1)−−−→ MCPN1(2)

t0(2)−−−→ MCPN1(4). Let wt be the weighted set of
transitions such that wt(t0)(1) = wt(t0)(2) = 1 and wt(t0)(3) = 0, we have
σ |= wt.

2.2 Coloured Workflow Nets

From the framework of coloured Petri nets, we now define coloured workflow
nets (CWF-nets for short).

Definition 4 (CWF-net). A coloured Petri net (P, T,C,W) is a CWF-net if
and only if: PN have two special places i and o where •i = ∅ and o• = ∅, and
for each node n ∈ (P ∪ T) there exists a path from i to o passing through n.

In the rest of the paper, the following notations are used:

– Mi: the set of initial markings of a CWF-net where ∀Ma ∈ Mi,Ma(i) �= O
and ∀p ∈ P \ i,Ma(p) = O,

– Mo: the set of final markings of a CWF-net where ∀Ma ∈ Mo,Ma(o) �= O and
∀p ∈ P \ o,Ma(p) = O,

– M1
σ−→ Mn: for σ = x1, x2, ..., xn−1, there are markings such that M1

x1−→
M2

x2−→ ...
xn−1−−−→ Mn,

– Ma
∗−→ Mb: there exists σ such that Ma

σ−→ Mb.

In our approach, constraints over markings and weighted sets of transitions
are expressed using Presburger arithmetic [12] in order to remain within the
realm of decidability. Let Ma(p) be the marking of a place p, and fp a first-order
formula over Presburger arithmetic with free variables over C(p). We denote by
Ma(p) |= fp the fact that Ma(p) satisfies fp, i.e. (

∧
d∈C(p) d = Ma(p)(d)) ∧ fp

is satisfiable. Similarly, let xa(t) be the weighted set of transitions t, and ft a
first-order formula over Presburger arithmetic formulae with free variables over
C(t). We write xa(t) |= ft when xa(t) satisfies ft, i.e. (

∧
d∈C(t) d = xa(t)(d))∧ft

is satisfiable.
To illustrate this notation on CPN1 of Fig. 1, let fP0 = (C1(1) = 1) be

a formula over Presburger arithmetic with free variables over C(P0). We have
MCPN1(1) |= fP0 , which expresses the fact that the marking MCPN1(1) contains
exactly 1 token of value 1. Likewise, let ft0 = (C2(2) = 1) be a formula with free
variables over C(t0), and wt the weighted set of transitions such that t0(2) |= wt.
We have wt |= ft0 expressing the fact that wt is valid with respect to a sequence
of transitions containing a transition x(t0) where x(t0)(2) = 1.

An execution between markings Ma and Mb of a CWF-net is a sequence of
transitions σ such that Ma

σ−→ Mb. An execution is a correct execution if and
only if Ma ∈ Mi and Mb ∈ Mo. The behaviour of a CWF-net is defined as the
set Σ of all its correct executions.

Constraint Solving for Verifying Modal Specifications 79

2.3 CWF-nets with Modalities

Modal specifications permit specifiers to indicate that a transition is necessary
or just admissible. In the context of CWF-nets, it usually means that there are
two kinds of transitions: the must-transitions and the may-transitions. A may-
transition (resp. must-transition) is a transition fired by at least one correct
execution (resp. by all the correct executions) of a CWF-net.

We extend this concept to allow specifiers to indicate modal properties on
several transitions and on their causalities. We also add the possibility to para-
meterize transitions as well as the initial marking, to permit a precise modal
specification of desired behavior.

Definition 5 (Well-formed modal formula). Let CPN = (P, T,C,W) be a
CWF-net. The language S of well-formed modal specification formulae is defined
by the following grammar of axiom A, where t ∈ T and p (resp. q) is a first-order
formula over Presburger arithmetic formulae [12] with free variables over C(t)
(resp. C(i)): A → [q]B , B → (B ∧ B)|(B ∨ B)|(¬B)|t[p] .

These formulae allow specifiers to express modal properties about CWF-nets’
correct executions. Any modal specification formula [q]m ∈ S can be interpreted
as a may-formula or a must-formula. Given a CWF-net, a may-formula (resp. a
must-formula) describes a behaviour constrained by m that has to be ensured
by at least one (resp. all) correct execution of initial state satisfying q. Formally,
the semantics of a formula m generated from B, where the semantics of ¬,∨ and
∧ is standard, is defined by:

– wt |=may t[p] iff ∃σ = x1, x2, ..., xn−1 ∈ Σ. σ |= wt ∧ ∃k. xk(t) |= p,
– wt |=must t[p] iff ∀σ = x1, x2, ..., xn−1 ∈ Σ. σ |= wt ∧ ∃k. xk(t) |= p.

Furthermore, given a may-formula (resp. must-formula) [q]m ∈ S, its seman-
tics is inductively defined by:

– CPN |=may q[m] iff ∃σ ∈ Σ,Ma ∈ Mi,Mb ∈ Mo. Ma
σ−→ Mb ∧ Ma(i) |= q ∧

σ |= wt ∧ wt |=may m,
– CPN |=must q[m] iff ∀σ ∈ Σ,Ma ∈ Mi.Ma(i) |= q.(∃Mb ∈ Mo. Ma

σ−→ Mb ⇒
(σ |= wt ∧ wt |=must m)).

Definition 6 (Modal Specification). A modal specification is defined by a
tuple (Mmay,Mmust) where

Mmay ⊂ S is a finite set of may-formulae, and
Mmust ⊂ S is a finite set of must-formulae.

A CWF-net CPN satisfies a modal specification MS = (Mmay,Mmust), written
CPN |= MS, iff ∀m ∈ Mmay. CPN |=may m ∧ ∀m′ ∈ Mmust. CPN |=must m′.

80 H. Bride et al.

2.4 Constraint System

A constraint system is defined by a set of constraints (properties), which must
be satisfied by the solution of the problem it models. Such a system can be
represented as a Constraint Satisfaction Problem (CSP) [13]. Formally, a CSP
is a tuple Ω =< X,D,C > where X is a set of variables {x1, . . . , xn}, D is a
set of domains {d1, . . . , dn}, where di is the domain associated with the variable
xi, and C is a set of constraints {c1(X1), . . . , cm(Xm)}, where a constraint cj

involves a subset Xj of the variables of X. It is such that each variable appearing
in a constraint should take its value from its domain. Hence, a CSP models NP-
complete problems as search problems where the corresponding search space is
the Cartesian product space d1 × . . . × dn.

The solution of a CSP Ω is computed by a labelling function L, which pro-
vides a set v (called valuation function) of tuples assigning each variable xi of X
to one value from its domain di such that all the constraints of C are satisfied.
More formally, v is consistent—or satisfies a constraint c(X) of C—if the pro-
jection of v on X is in c(X). If v satisfies all the constraints of C, then Ω is a
consistent or satisfiable CSP. In the present paper, we propose to use Constraint
Logic Programming over Finite Domains, written CLP(FD) [14], to solve the
CSP representing the modal specifications to be verified.

3 Motivating Example

Let us consider a business process workflow of a Question and Answer portal,
which is a part of a proprietary issue tracking system used to manage bugs
and issues requested by the customers of a tool provider company1. It allows
company’s customers to ask questions that are then answered by the company’s
sellers. To use the system, users have to be registered. Three types of users can
log-in: clients, sellers and administrators. Clients can ask questions that are then
answered by sellers. Once the answer to a question has been validated by the
client who asked it, the administrator archives the question. An execution of the
workflow is complete once all users have been logged-out and unregistered. We
present one of the several refinements of the workflow modelled by a CWF-net.
For clarity, this CWF-net is described by several sub-CWF-nets where the places
with the same name are the same, as, e.g., HomeQA place in Figs. 2(a) and 3.

In this refinement, there are three colours. The first colour models a set
U = {u1, .., ut} of t user names representing the different users of the system.
The second colour is used for a set R = {client, seller, admin} of roles, which
are assigned to users. Finally, to represent the question states, the third colour
Q = {unanswered, answered, validated} is a set of statuses. Table 1 shows the
colours associated with places of the Question and Answer CWF-net, and Table 2
shows the colours, inputs, outputs and guards (u, u1, u2 ∈ U, r ∈ R, q ∈ Q).

An execution of the Question and Answer CWF-net starts with at least three
users (a client, a seller, and an administrator). To illustrate how this CWF-
net works, let us consider the following execution with u1, u2 and u3 as initial
1 For confidentiality reasons, the details about this case study are not given.

Constraint Solving for Verifying Modal Specifications 81

(a) Create Question (b) Answer Question

(c) (Un)Valid Answer (d) Archive Question

Fig. 2. sub-CWF-nets of the Question and Answer CWF-net

marking: each user is registered, then logs in and navigates to the QA’s Home
(Fig. 3):

– Register(u1, client), Login(u1, client), HomeToQA(u1, client)
– Register(u2, seller), Login(u2, seller), HomeToQA(u2, seller)
– Register(u3, admin), Login(u3, admin), HomeToQA(u3, admin)

The client creates a new question (Fig. 2(a)):

– CreateQ(u1, client), CommitQ(u1, client, unanswered, u1)

The seller selects the question and the answer (Fig. 2(b)):

– SelectQ(u2, seller, unanswered, u1), CreateA(u2, seller, unanswered, u1)
– CommitA(u2, seller, answered, u1)

The client selects the question, reads the answer and validates (Fig. 2(c)):

– SelectQ(u1, client, answered, u1), V iewA(u1, client, answered, u1)
– AcceptA(u1, client, answered, u1)

The administrator selects the question and archives it (Fig. 2(d)):

– SelectQ(u3, admin, validated, u1),ArchiveQA(u3, admin, validated, u1)

The users navigate to Home and then log-out and are unregistered (Fig. 3):

– QAtoHome(u1, client), Logout(u1, client) UnRegister(u1, client)
– QAtoHome(u3, seller), Logout(u3, seller) UnRegister(u2, seller)
– QAtoHome(u3, admin), Logout(u3, admin) UnRegister(u3, admin)

82 H. Bride et al.

Table 1. Colours of Question and Answer
CWF-net’s places

Colours Places

U i, o

U × R P0, Home,HomeQA,HomeSR

U × R × Q × U DisplayQ,DisplayA, P 1, P 3

Q × U Questions

Fig. 3. Login and navigation sub-CWF-net

Regarding this business process, the goal is to verify, at the specification or design
stage of the development, some required behavioural properties derived from
textual requirements and business analyst expertise. We consider the following
properties, denoted pi for later references (nbUsers denotes the number of users
in the initial marking: nbUsers =

t∑

r=1
Mi(i)(r)).

– p1: QA |=must [true]Register[u = u1]∧..∧Register[u = ut]: all users must register;
– p2: QA |=may [true]V iewA[r = admin]: an admin may view an answer;
– p3: QA |=may [true]CreateQ[r = client, u = ux] ∧RefuseA[r = client, u1 = ux]:

ux client may create a question and refuse the answer;
– p4: QA |=must [true]CommitQ[u2 = ux] ⇒ CommitA[u2 = ux] ∧ ArchiveQA[u2 =

ux]: when ux asks a question it must be answered and archived;
– p5: QA |=must [true]¬CreateA[r = client]: a client must not answer a question;
– p6: QA |=may [nbUsers > 3]CreateQ[u = ux] ∧ ¬CreateQ[u = uy]: there may be

an user ux who asks a question while another (i.e. uy) does not;
– p7: QA |=must [nbUsers < 3]¬CreateQ[true]: if there is less than three users, no

question is asked;
– p8: QA |=must [true]CreateQ[true] ⇒ (Register[r = client] ∧ Register[r = seller]

∧Register[r = admin]): if a question is asked then the system must have regis-
tered a client, a seller and an administrator.

Let us emphasize that these properties could not be expressed without taking
colours into account because data are necessarily involved.

4 Modelling Executions of CWF-nets

This section aims to model the correct executions of a CWF-net by a constraint
system, which is then solved to validate or invalidate properties of interest.

Theorem 2 (State equation [8]). Let CPN = (P, T,C,W), if a marking Mb

is reachable from Ma then there exists x a weighted set of transitions such that:

Mb = Ma + (W+ − W−) � x. (1)

Constraint Solving for Verifying Modal Specifications 83

Table 2. Colours, inputs, outputs, and guards of Question and Answer CWF-net’s
transitions

Transition Colours Inputs Outputs Guard

Register U × R u (u, r) True

UnRegister U × R (u, r) u True

Login, Logout U × R (u, r) (u, r) True

HomeToQA U × R (u, r) (u, r) True

QAtoHome U × R (u, r) (u, r) True

HomeToSR U × R (u, r) (u, r) True

SRtoHome U × R (u, r) (u, r) True

CreateQ U × R (u, r) (u, r,′ unanswered′, u) r =′ client′

EditQ U × R × Q × U (u1, r, q, u2) (u1, r, q, u2) True

CommitQ U × R × Q × U (u1, r, q, u2) (u1, r) and (q, u2) True

SelectQ U × R × Q × U (u1, r) and

(q, u2)

(u, r, q, u) True

CreateA U × R × Q × U (u1, r, q, u2) (u1, r,′ answered′, u2) r =′ seller′ ∧ q =′

unanswered′

EditA U × R × Q × U (u1, r, q, u2) (u1, r, q, u2) True

CommitA U × R × Q × U (u1, r, q, u2) (u1, r) and (q, u2) True

V iewA U × R × Q × U (u1, r, q, u2) (u1, r, q, u2) u1 = u2 ∧ q =′

answered′

AcceptA U × R × Q × U (u1, r, q, u2) (u1, r) and

(′validated′, u2)

True

RefuseA U × R × Q × U (u1, r, q, u2) (u1, r) and

(′unanswered′, u2)

True

ArchiveQA U × R × Q × U (u1, r, q, u2) (u1, r) r =′ admin′ ∧ q =′

validated′

BackToHome U × R × Q × U (u1, r, q, u2) (u1, r) and (q, u2) True

To illustrate (1), let us consider the CWF-net described in Sect. 3. Let M1

be a marking such that M1(i) = {u1},∀p ∈ P \ {i}.M1(p) = O, and M2 be
a marking such that M2(o) = {u1},∀p ∈ P \ {i}.M2(p) = O. The marking
M2 is reachable from M1 by the transition sequence α = Register(u1, client),
Unregister(u1, client). Let x1 denote the weighted set of transitions in α, then
we have M2 = M1 + (W+ − W−) � x1.

The set of solutions of the state Eq. (1) of a CWF-net, where Ma ∈ Mi and
Mb ∈ Mo, defines an over-approximation of the set of its correct executions.
A solution of the state Eq. (1) is called spurious if it does not correspond to
an execution of the considered CWF-net. For example, let us now consider the
weighted set x2 of the transitions Register(u1, client), Unregister(u1, client),
and EditQ(u1, client, unanswered, u1). In this case we have M2 = M1 +(W+ −
W−)�x2, however the weighted set of transitions x2 does not correspond to any
correct execution, i.e. x2 is a spurious solution. This is because of the transition
EditQ, which produces and consumes the same token in place P1.

To dismiss spurious solutions, this over-approximation can be refined by con-
sidering structural properties of the places and transitions involved in the consid-
ered executions. To this end, we introduce the notion of the subnet of a CWF-net
associated with a solution of its state Eq. (1).

84 H. Bride et al.

Definition 7. Let CPN = (P, T,C,W) a CWF-net, Ma, Mb two markings of
CPN , and x a weighted set of transitions such that Mb = Ma +(W+−W−)�x.
We define the subnet sCPN(x) = (sP, sT, sF) where:

– sP = {p ∈ P \ {p ∈ P |Ma(p) �= O ∨ Mb(p) �= O} | ∃t ∈ T,W+(t, p) � x(t) >
0 ∨ W−(p, t) � x(t) > 0}

– sT = {t ∈ T | x(t) > 0}
– sF = {(a, b) | a ∈ (sP ∪sT)∧b ∈ (sP ∪sT)∧(W+(a, b)�x(a) > 0∨W−(a, b)�

x(b) > 0)}
Among various structural properties of CWF-nets, the existence of a siphon

and a trap in the subnet of a CWF-net, associated with a solution of its state
Eq. (1), is relevant (Lemma 1). Moreover, any subnet of a solution of (1) that
contains a siphon or a trap is a spurious solution. Theorem (3) defines a con-
straint system for determining the presence of a siphon in a Petri net.

Theorem 3 [10]. Let θ(PN) be the following constraint system associated with a
Petri net PN = (P, T, F): ∀p ∈ P,∀t ∈• p.

∑
p′∈•t ξ(p′) ≥ ξ(p) ∧ ∑

p∈P ξ(p) > 0
where ξ : P → {0, 1} is a valuation function. PN contains a siphon if and only
if there is a valuation satisfying θ(PN).

In this way, checking the existence of traps and of siphons can be done simul-
taneously thanks to the following theorem.

Theorem 4. Let CPN = (P, T,C,W) a CWF-net, Ma, Mb two markings, and
x a weighted set of transitions such that Mb = Ma+(W+−W−)�x. If sCPN(ν)
contains a trap (resp. siphon) N then N is also a siphon (resp. trap).

Fig. 4. Subnet of x2

Structural properties (the siphon existence) can be
exploited to refine the state Eq. (1) over-approximation.
Let us consider the above-mentioned spurious solution x2.
The subnet of x2 is shown in Fig. 4. We can see that in
this subnet formed by the solution x2, place P1 is a siphon
as the valuation ξ, such that ξ(P1) = 1 and ξ(P0) = 0,
satisfies θ(sCPN(x2)).

Theorem 5 uses the state Eq. (1) together with the con-
straint system of Theorem 4 to provide a constraint system
for modeling executions of CWF-net without spurious solutions.

Theorem 5. Let CPN = (P, T,C,W) a CWF-net, Ma, Mb two markings of
CPN , x a weighted set of transitions, and sCPN(x) = (sP, sT, sF) the subnet
associated to CPN and the weighted set of transitions x. Let φ(CPN,Ma,Mb, x)
be the following constraint system:

– Mb = Ma + (W+ − W−) � x,
– there is no valuation satisfying θ(sCPN(x)), and
– ∀p ∈ sP, |• p |≤ 1∧ | p• |≤ 1,

If φ(CPN,Ma,Mb, x) is satisfiable then there exists σ |= x such that Ma
σ−→ Mb.

Constraint Solving for Verifying Modal Specifications 85

Let CPN = (P, T,C,W) be a CWF-net, Ma, Mb two markings of CPN , the
set of solutions of φ(CPN,Ma,Mb, x) is an under-approximation of the set of
correct executions reaching Mb from Ma in CPN . Any execution modelled by
the constraint system φ is called a segment. Any correct execution of CPN can
be modelled by a finite number of segments.

Theorem 6. Let CPN = (P, T,C,W) a CWF-net, Ma, Mb two markings of
CPN . Let ψ(CPN,Ma,Mb,X,K) be the following constraint system:

– ∀k ∈ 1..K, φ(CPN,Mk−1,Mk, xk),
– M0 = Ma ∧ MK = Mb, and
– X = {x1, .., xK}.
There exists σ = σ1, .., σK such that ∀i ∈ 1..K, σi |= xi and Ma

σ−→ Mb if and
only if ∃K ∈ N such that ψ(CPN,Ma,Mb,X,K) is satisfiable.

The constraint system of Theorem (6) allows modelling any correct execution
of a CWF-net composed of at most K segments. This naturally leads us to
consider two decision problems.

The first decision problem, called the K-bounded validity of a modal formula,
only considers executions formed by K segments, at most. The second one,
called the unbounded validity of a modal formula, generalizes the first problem
by considering executions formed by an arbitrary number of segments.

To verify the K-bounded validity of a modal [q]m may-formula determining
the existence of a correct execution modelled by K segments starting from an
initial marking satisfying q where the behaviour of m is satisfied, is enough.
Similarly, determining the K-bounded validity of a modal [q]m must-formula
can be done by determining the non-existence of a correct execution modelled
by K segments starting from an initial marking satisfying q where the behaviour
of ¬m is satisfied.

Let x be a weighted set of transitions, and [q]m a modal formula. We denote
P (x,m) the constraint corresponding to the formula m. To construct this con-
straint, every terminal symbol t[p] of the formula m is replaced by the corre-
sponding constraint obtained by replacing every free variable of p in C(t) by
the corresponding variable over x. To illustrate this construction, let us consider
m = CreateQ[r = client, u = ux] ∧ RefuseA[r = client, u1 = ux]. The cor-
responding constraint P (x,m) is x(CreateQ)(r) = client ∧ x(CreateQ)(u) =
ux ∧ x(RefuseA)(r) = client ∧ x(RefuseA)(u) = ux. We say that x |= m (i.e. x
satisfies m) if and only if x ∧ P (x,m) is satisfiable. Let X = {x1, .., xn} be a set
of weighted sets of transitions, X |= m if and only if x1 |= m ∨ .. ∨ xn |= m.

Theorem 7. Let CPN be a CWF-net and M = (Mmay,Mmust) be a modal
specification of CPN . CPN satisfies the modal specification M if and only if:

– ∀[q]m ∈ Mmay ∃k ∈ N, Ma ∈ Mi and Mb ∈ Mo such that
Ma(i) |= q ∧ ψ(CPN,Ma,Mb,X,K) ∧ X |= m is satisfiable.

– ∀[q]m ∈ Mmust ∃k ∈ N, Ma ∈ Mi and Mb ∈ Mo such that
Ma(i) |= q ∧ ψ(CPN,Ma,Mb,X,K) ∧ X |= ¬m is not satisfiable.

86 H. Bride et al.

Theorem (7), with k ≤ K, defines a constraint system, which allows to deter-
mine the K-bounded validity of a modal specification.

Theorem 8. Let CPN be a CWF-net where Ξ is composed of finite data-types,
R̄must the set of all well-formed must-formulae not satisfied by CPN , and Rmay

the set of all well-formed may-formulae satisfied by CPN . There exists Kmax

such that:

– ∀[q]m ∈ R̄must ∃k ≤ Kmax, Ma ∈ Mi and Mb ∈ Mo such that
Ma(i) |= q ∧ ψ(CPN,Ma,Mb,X,K) ∧ X |= ¬m is satisfiable.

– ∀[q]m ∈ Rmay ∃k ≤ Kmax, Ma ∈ Mi and Mb ∈ Mo such that
Ma(i) |= q ∧ ψ(CPN,Ma,Mb,X,K) ∧ X |= m is satisfiable.

Theorem (8) states that for any CWF-net where Ξ is composed of finite
data-types, there exists Kmax such that the Kmax-bounded validity of a modal
specification is equivalent to the unbounded validity of a modal specification.
However this is not true for CWF-net where Ξ is composed of infinite data-
types. This is consistent with the fact that reachability of CPN with infinite
colours is undecidable as they can, for example, simulate a Minsky 2-counter
machine [15].

5 Implementation and Experiments

This section describes the tool chain developed to experimentally validate this
paper’s proposals, and illustrates its use on the motivating example from Sect. 3.

5.1 Overview of the Prototype Architecture and Procedures

In order to assess our work, especially regarding its feasibility and efficiency, we
have implemented our approach within the Eclipse platform on a trial basis. The
process starts using a graphical CWF-net editor created within the Sirius frame-
work2, which is an EMF-based open source project to create customized graph-
ical modeling workbench by leveraging Eclipse Modeling technologies. Basically,
it provides a generic workbench for model-based architecture engineering that
could be easily tailored to fit the specific needs of a given Domain Specific Lan-
guage, e.g., CWF-nets in our context. Hence the developed CWF-net editor
allows producing an XML file corresponding to the designed CWF-net model. It
is completed by the modal specification, which is manually designed using a ded-
icated XML format. Once syntactically and semantically validated by a modal
checker, these inputs are translated into constraint systems that are handled by
the CLP(FD) library of Sicstus Prolog3. Finally, a report is generated.

To verify a may-formula (resp. a must-formula) [q]m, the tool first checks if
there exists a solution x of the over-approximation, given by the state equation

2 http://projects.eclipse.org/projects/modeling.sirius.
3 https://sicstus.sics.se.

http://projects.eclipse.org/projects/modeling.sirius
https://sicstus.sics.se

Constraint Solving for Verifying Modal Specifications 87

(Theorem (2)) for which the subnet (Theorem (7)) does not contain siphons, such
that the modelled execution satisfies (resp. does not satisfy) [q]m (we denote
this constraint system ϕ). If such an execution exists, it then tries to find an
execution modelled by K segments (Theorem (6)), which satisfies (resp. does not
satisfy) [q]m (we denote this constraint system φ(K)). It then reports about the
K-bounded validity of a given modal formula m. To cope with the complexity
raised by Kmax, K can be fixed to a manageable value. When fixing K to Kmax

(or greater than Kmax), the algorithm enables deciding the unbounded validity
of the must-formula m. The results given in Sect. 4 ensure its soundness and
completeness. Finally, solving a CSP over a finite domain being an NP-complete
problem with respect to the domain size, this algorithm inherits this complexity.

Modellers often use, in the context of workflow development, infinite colours
(e.g., strings, integers) to represent data (e.g., usernames of a system, identifiers
of files), even if these data are usually not directly manipulated by the control
flow. However, CWF-nets with infinite colours cannot be directly handled due
to the nature of the constraint solver over finite domains. Fortunately, abstrac-
tion techniques help to tackle the problem entailed by this restriction and can
therefore cope with infinite colours. [16] proposes an algorithm to construct a
finite state abstract program from a given, possibly infinite, state program (e.g.,
a CWF-net) by means of a syntactic program transformation starting with an
initial set of predicates from a specification (e.g., modal specification).

This method is shown to be sound (the abstract program is always guaranteed
to simulate the original one) and complete (the algorithm can produce a finite
simulation-equivalent, resp. bisimulation-equivalent, abstract program if the con-
crete program has a finite abstraction with respect to simulation, resp. bisimu-
lation, equivalence). On the one hand, in the case of a bisimulation-equivalent
abstract program, the abstracted modal specification can be verified using our
method, and the (in)validity of the modal specification can be directly inferred.
On the other hand, for simulation-equivalent abstract program, only the validity
of a may-formula and the invalidity of a must-formula can be inferred.

To handle infinite colours, another approach is to consider only a finite num-
ber of data of an infinite colour according to control-flow selection criteria (e.g.,
decision or condition coverage) [17]. However, this approach is not complete.

5.2 Experimental Results

The approach and the corresponding implementation have been applied to the
industrial issue tracking system described in Sect. 3. Since the properties have
initially been defined by the business analysts involved in the project, we assume
that they are representative of properties that should be verified by engineers
when they design and implement such business processes. Furthermore, the
obtained verification results have been shared and discussed with them. Table 3
shows an extract of the experimental results focusing on the properties p1 to
p8 from Sect. 3. In Table 3, the modal formula associated with each property
is specified, and the computation result is given by its final verdict (valid or
not) as well as the internal evaluation of ϕ. The input K and the corresponding

88 H. Bride et al.

Table 3. Experimentation results

Formula ϕ K φ(K) Result

p1 QA |=must [true]Register[u =
u1] ∧ .. ∧ Register[u = ut]

TRUE - - TRUE

p2 QA |=may [true]V iewA[r = admin] FALSE - - FALSE

p3 QA |=may [true]CreateQ[r = client, u = ux]
∧RefuseA[r = client, u1 = ux]

TRUE 5 FALSE -

7 TRUE TRUE

p4 QA |=must [true]CommitQ[u2 = ux] ⇒
CommitA[u2 = ux] ∧ ArchiveQA[u2 = ux]

TRUE - - TRUE

p5 QA |=must [true]¬CreateA[r = client] TRUE - - TRUE

p6 QA |=may [nbUsers > 3]CreateQ[u =
ux] ∧ ¬CreateQ[u = uy]

TRUE 12 TRUE TRUE

p7 QA |=must [nbUsers < 3]¬CreateQ[true] TRUE - - TRUE

p8 QA |=must [true]CreateQ[true] ⇒ (Register[r =
client]
∧Register[r = seller] ∧ Register[r = admin]

TRUE - - TRUE

computed value of φ(K) are also precised when it makes sense, i.e. when the
algorithm cannot conclude without this bound.

On the one hand, we observe that when verifying must-formulae that are
satisfied by the CWF-net (e.g., p1, p4), or may-formulae that are not satisfied
by the WF-net (e.g., p2), the over-approximation ϕ is usually enough to con-
clude. On the other hand, when verifying may-formulae that are satisfied by the
CWF-net (e.g., p3), or must-formulae that are not satisfied by the WF-net, the
decomposition into K segments is needed. We empirically show that this decom-
position is very effective since values of Kmax are usually moderate (Kmax = 12
for p6, less than 30 on all the experiments conducted on this case study).

Thanks to the experiments conducted using this proof-of-concept prototype,
we can conclude that the proposed method is suitable and efficient, and can
therefore gain benefits within business process design and verification. Notably,
these experiments highlighted that the approach is able to conclude about the
(in)validity of the studied properties in a very short time (less than 5 s).

6 Conclusion and Related Work

This paper presents an approach based on constraint systems to model execu-
tions of CWF-nets in order to verify modal specifications. It allows managing
realistic and complex specifications that manipulate and manage data types.
This approach, supported by an Eclipse-based prototype, has been successfully
experimented on a non-trivial case study to validate an issue tracking system.
These promising results show the relevance and the effectiveness of the approach
to validate complex business processes using modal specifications.

Constraint Solving for Verifying Modal Specifications 89

Modal specifications–originally introduced in [9]–allow loose or partial spec-
ifications in a process algebraic framework. Adapted to Petri nets, they allow
defining relations between generated modal languages to decide specifications
refinement and asynchronous composition [18]. In [10], modal specifications lan-
guage over WF-nets expresses requirements on several activities and on their
causalities. To handle CWF-nets, we extend modal specifications with additional
conditions on initial state as well as on coloured transitions. Unlike [18], to verify
modal specifications, our approach focuses on correct executions of CWF-nets.

A lot of results have been provided to model and to analyse Petri nets by
using equational approaches [19]. Among popular resolution techniques, con-
straint programming has been successfully used to analyse properties of Petri
nets. In [20], an SMT-based approach to the coverability problem using the state
equation and traps is presented. Our CSP-based approach also takes advantage
of trap and siphon properties in pursuance of modelling correct executions of
CWF-nets. Furthermore, constraint programming makes it possible to tackle
one of the major verification problems–the reachability problem, as shown in [21]
where a decomposition into step sequences, i.e. segments, was modelled by con-
straints. Our approach is almost similar, but the constraints on step sequences
are much stronger in our case because we address not only the reachability of a
given marking, but also the transitions involved in the path reaching it.

As a future work, we plan extensive experiment to increase the scalability of
our verification approach based on constraint systems. To improve its readiness
level and to foster its use by business analysts, we plan to propose user-friendly
modal properties patterns. On the theoretical side, investigating modal specifi-
cations preservation through refinements is a further research direction.

References

1. Cardoso, J., Mendling, J., Neumann, G., Reijers, H.A.: A discourse on complexity
of process models. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS,
vol. 4103, pp. 117–128. Springer, Heidelberg (2006)

2. Dumas, M., ter Hofstede, A.H.M.: UML activity diagrams as a workflow specifi-
cation language. In: Gogolla, M., Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185,
pp. 76–90. Springer, Heidelberg (2001)

3. van der Aalst, W.M.P.: Three good reasons for using a petri-net-based workflow
management system. J. Inf. Process Integr. Enterp. 428, 161–182 (1997)

4. van der Aalst, W.M.P., Van Hee, K.M., Houben, G.J.: Modelling and analysing
workflow using a Petri-net based approach. In: Workshop on Computer-Supported
Cooperative Work, Petri nets and Related Formalisms, pp. 31–50, June 1994

5. Ellis, C.A., Nutt, G.J.: Modeling and enactment of workflow systems. In: Ajmone
Marsan, M. (ed.) ICATPN 1993. LNCS, vol. 691. Springer, Heidelberg (1993)

6. Liu, D., Wang, J., Chan, S.C.F., Sun, J., Zhang, L.: Modeling workflow processes
with colored Petri nets. Comput. Ind. 49(3), 267–281 (2002)

7. Larsen, K.G.: Modal specifications. In: Sifakis, J. (ed.) Automatic Verifica-
tion Methods for Finite State Systems. LNCS, vol. 407, pp. 232–246. Springer,
Heidelberg (1989)

90 H. Bride et al.

8. Jensen, K.: Coloured Petri nets. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
Petri Nets: Central Models and Their Properties. LNCS, pp. 248–299. Springer,
Heidelberg (1987)

9. Larsen, K.G., Thomsen, B.: A modal process logic. In: 3rd Annual Symposium on
Logic in Computer Science, LICS 1988, Edinburgh, UK, pp. 203–210. IEEE CSP,
July 1988

10. Bride, H., Kouchnarenko, O., Peureux, F.: Verifying modal workflow specifications
using constraint solving. In: Albert, E., Sekerinski, E. (eds.) IFM 2014. LNCS, vol.
8739, pp. 171–186. Springer, Heidelberg (2014)

11. Murata, T.: Petri nets: Properties, analysis and applications. IEEE 77(4), 541–580
(1989)

12. Presburger, M.: Über die vollständigkeit eines gewissen systems der arithmetik
ganzer zahlen, in welchem die addition als einzige operation hervortritt. In:
Sprawozdanie z I Kongresu metematykw slowiaskich, Warszawa, Poland,
pp. 92–101 (1929)

13. Macworth, A.K.: Consistency in networks of relations. J. Artif. Intell. 8(1), 99–118
(1977)

14. van Hentenryck, P., Dincbas, M.: Domains in logic programming. In: National
Conference on Artificial Intelligence, AAAI 1986, pp. 759–765, August 1986

15. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall Inc.,
Englewood Cliffs (1967)

16. Namjoshi, K.S., Kurshan, R.P.: Syntactic program transformations for automatic
abstraction. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855.
Springer, Heidelberg (2000)

17. Vilkomir, S., Bowen, J.: Formalization of software testing criteria using the Z nota-
tion. In: 25th International Conference on Computer Software and Applications,
COMPSAC 2001, Chicago, IL, USA, pp. 351–356. IEEE CSP, October 2001

18. Elhog-Benzina, D., Haddad, S., Hennicker, R.: Refinement and asynchronous
composition of modal Petri nets. In: Jensen, K., Donatelli, S., Kleijn, J. (eds.)
Transactions on Petri Nets and Other Models of Concurrency V. LNCS, vol. 6900,
pp. 96–120. Springer, Heidelberg (2012)

19. Desel, J.: Basic linear algebraic techniques for place/transition nets. In: Reisig, W.,
Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491. Springer, Heidelberg (1998)

20. Esparza, J., Ledesma-Garza, R., Majumdar, R., Meyer, P., Niksic, F.: An SMT-
based approach to coverability analysis. In: Biere, A., Bloem, R. (eds.) CAV 2014.
LNCS, vol. 8559, pp. 603–619. Springer, Heidelberg (2014)

21. Bourdeaud’huy, T., Hanafi, S., Yim, P.: Incremental Integer Linear Programming
Models for Petri Nets Reachability Problems. Petri Net: Theory and Applications.
InTech, Rijeka (2008)

Behavioural Analysis of Sessions
Using the Calculus of Structures

Gabriel Ciobanu1 and Ross Horne1,2,3(B)

1 Institute of Computer Science, Romanian Academy, Iasi, Romania
gabriel@info.uaic.ro

2 Faculty of Information Technology, Kazakh-British Technical University,
Almaty, Kazakhstan

3 School of Computer Science and Engineering,
Nanyang Technological University, Singapore City, Singapore

rhorne@ntu.edu.sg

Abstract. This paper describes an approach to the behavioural analysis
of sessions. The approach is made possible by the calculus of structures —
a deep inference proof calculus, generalising the sequent calculus, where
inference rules are applied in any context. The approach involves spec-
ifications of global and local sessions inspired by the Scribble language.
The calculus features a novel operator that synchronises parts of a pro-
tocol that must be treated atomically. Firstly, the calculus can be used
to determine whether local sessions can be compose in a type safe fash-
ion such that sessions are capable of successfully completing. Secondly,
the calculus defines a subtyping relation for sessions that allows causal
dependencies to be weakened while retaining termination potential. Con-
sistency and complexity results follow from proof theory.

1 Introduction

This work is the first to draw connections between a calculus that originates
in proof theory, namely the calculus of structures [9], and the static analysis of
sessions using session types [10,12].

In many systems, a protocol is initiated by opening a session between the par-
ties involved. Participants in a protocol typically exchange a number of messages
before closing the session. Each session can be characterised by the types of mes-
sages exchanged and also the order in which messages are sent. Such information
can be captured in a session type. The session type declares a specification that
can be used for both static and runtime analysis of the protocol concerned.

On the other hand, the calculus of structure is a proof calculus that was orig-
inally discovered by studying non-commutative operators, i.e. operators, say op,
where A op B is not the same as B op A. Such operators are useful for express-
ing causal dependencies, such as the concept of A happening before B, which is
clearly a non-commutative concept. There are simple and natural connections
between the calculus of structures and session types that can be understood
immediately:
c© Springer International Publishing Switzerland 2016
M. Mazzara and A. Voronkov (Eds.): PSI 2015, LNCS 9609, pp. 91–106, 2016.
DOI: 10.1007/978-3-319-41579-6 8

92 G. Ciobanu and R. Horne

– The calculus of structures is a term rewriting system modulo an equational
theory [16]. Term rewriting systems modulo an equational theory are analogous
to reduction systems modulo a structural congruence as typically used to
express the operational semantics that govern the behaviour of session types.

– A proof in the calculus of structures is a special derivation that may terminate
successfully. Session types can be used to analyse whether a family of partic-
ipants in a session may together successfully complete the session, in which
case they are multiparty compatible [5].

Further striking connections between session types and the calculus of structures
are forthcoming. In the paper [10], which initiated interest in session types,
Honda introduces the notion of a co-type, which respects the following properties
resembling De Morgan dualities:

∼(P & Q) = ∼P ⊕ ∼Q ∼(P ⊕ Q) = ∼P & ∼Q ∼(P ; Q) = ∼P ; ∼Q

It is no secret that the first two De Morgan dualities above were inspired by
the additive operators with and plus (& and ⊕) of linear logic. Abramsky had
already suggested [1] that & and ⊕ could be interpreted as a external choice and
internal choice respectively.

More recently, proof theorists have independently devised proof calculi, by
using the calculus of structures [9], that exhibit the De Morgan duality for
sequential composition above. Because the De Morgan dual of sequential compo-
sition is also sequential composition, it is considered to be a self-dual operator.
In this work, we argue that the self-dual non-commutative operator found in
session types and the self-dual non-commutative operator found in the calculus
of structures are essentially the same operator.

Section 2 introduces the running example of a simple two-phase commit pro-
tocol in a language inspired by the session type based language Scribble. The
syntax of global and local types are defined as well as the projection from global
types to local types. Section 3 defines the semantics of local types in the calcu-
lus of structures, and presents consistency and compatibility results. Section 4
compares our work to the body of work bridging session types and proof calculi,
and highlights open problems.

2 A Core Calculus Inspired by Scribble

We begin with a concrete example of a ubiquitous protocol from distributed
computing. Two-phase commit (2PC) ensures the atomicity of a transaction
involving data persisted across distributed nodes. The language we introduce is
heavily influenced by the Scribble language [11], which can be used to specify the
global behaviour of the two-phase commit protocol. The Scribble language is an
implementation of multiparty asynchronous session types [5,12], with a syntax
deliberately chosen to appeal to software engineers that uses curly braces for
disambiguation.

Behavioural Analysis of Sessions Using the Calculus of Structures 93

par p begin (Payload) from Client to Participant
and l begin (Payload) from Client to Leader ;
prepare (Timestamp) from Participant to Leader ;
par c commit (Timestamp) from Leader to Client
and p commit (Timestamp) from Leader to Participant

Fig. 1. A global protocol for client driven two-phase commit.

The example protocol is presented in Fig. 1. The protocol describes interac-
tions between three parties: a Client that initiates a transaction, a Leader that
coordinates the transaction, and a Participant that must coordinate with the
leader.

Global types of the form prepare (Timestamp) from Participant to Leader
mean that role Participant sends a message of type Timestamp to the role
Leader, using the channel prepare. A channel is assumed to be some messag-
ing middleware that the sender passes a message to, and the receiver listens on.
The type constructor par . . . and . . . represents the parallel composition of two
protocols. For example, in 2PC the leader sends commit timestamps to the Client
and Participant in parallel. The semi-colon represents sequential composition.
We assume that par takes higher operator precedence than semi-colon.

The variant of the Two Phase Commit protocol described in the global proto-
col is a client-driven two phase commit with one participant. The Client initiates
the protocol by sending a payload to the Leader and Participant. The leader and
the participant manage a disjoint range of keys associated with data. The pay-
load for the leader and the client contains updates to apply at each respective
node. When the participant receives the payload, the participant acquires locks
for the relevant data, logs the transaction, picks a timestamp that is greater than
the timestamp applied to any previous transaction, then sends the timestamp
to the leader. Upon receiving the prepare timestamp from the Participant and
the begin message from the Client, the leader locks its own data and picks a
timestamp greater than the prepare timestamp from the Participant and greater
than the timestamp applied to any transaction at the Leader. The leader then
logs its own updates and the timestamp. Finally, the Leader notifies the Client
and Participant about the timestamp chosen for the whole transaction, the Par-
ticipant logs the timestamp and all locks are released.

Session types, such as Scribble, can be used for the design, implementation
and verification of distributed systems. A methodology for using session types is
as follows. Firstly, a systems analyst designs the global protocol, which describes
the message exchanges between all parties in a distributed system. Secondly, the
global protocol is automatically projected to local protocols, as presented in
Fig. 2 for 2PC, where local protocols specify permitted patterns of sends and
receives of messages for each role. Because the projection to local protocols is
performed automatically such that a certain semantics is respected, the systems
analyst knows that each local protocol is correct with respect to the global

94 G. Ciobanu and R. Horne

Client:
par ∼p begin (Payload) to Participant
and ∼l begin (Payload) to Leader ;
commit (Timestamp) from Leader

Participant:
p begin (Payload) from Client ;
∼prepare (Timestamp) to Leader ;
p commit (Timestamp) from Leader

Leader: l begin (Payload) from Client ;
prepare (Timestamp) from Participant ;
par ∼p commit (Timestamp) to Participant
and ∼c commit (Timestamp) to Client

Fig. 2. Local types for roles Client, Participant and Leader projected from Fig. 1.

protocol. Verified automation eliminates human error that can be introduced
when projection is performed manually using the intuition of the systems analyst.

A local protocol can fulfil several roles in the software engineering process.
Firstly, a local protocol can be used as a reference for an engineer who is respon-
sible for implementing the node that performs the role described in the protocol.
Furthermore, the local protocol can be used to verify that the engineer’s imple-
mentation does indeed conform to the given protocol. For some languages, there
exist extensions [15,19] that enable the code itself to be statically analysed. For
situations where there are either no static type checking tools or we do not
have access to the code, runtime monitors can be automatically generated that
observe the behaviour of nodes while they execute to detect whether a protocol
violates its specification [14].

The syntax for global and local types is presented in Fig. 3. The syntax is
heavily influenced by the global and local protocols of Scribble [11], but with
some significant differences:

– We include a complementation operator over atoms, written as a tilde prefix,
where atoms represent the separate send and receive events. Atoms and their
complements interact to compose local protocols with channels.

– We also include a binary operator sync, which ensures that two events occur
atomically. Types joined by sync “appear” to happen simultaneously, using
separate resources, hence they cannot be interleaved. We use sync to capture
synchrony in the transport mechanism, but we envision that it can form an
extension to Scribble where complex atomic transactions are modelled.

Projection. The projection from global G to local types for a given role R is
defined as follows, written G �R.

(G0 ; G1) �R= (G0 �R) ; (G1 �R)
(par G0 and G1) �R= par (G0 �R) and (G1 �R)

c (S) from P to Q �R=

⎧
⎨

⎩

∼c (S) to Q ifP = R
c (S) from P ifQ = R
{} otherwise

(choice atP G0 or G1) �R=
{

(G0 �R) or (G1 �R) ifP �= R
(G0 �R) & (G1 �R) ifP = R

Behavioural Analysis of Sessions Using the Calculus of Structures 95

S ::= int | string | S × S | . . . sorts

c channel P role

A ::= c (S) to P send to
| c (S) from P receive from
| ∼A complementation

G ::= c (S) from P to P values
| G ;G seq
| par G and G par
| choice atP G or G choice

T ::= {} unit
| A atom
| T ; T seq
| par T and T par
| sync T and T sync
| T or T internal choice
| T& T external choice

Fig. 3. Syntax of global types (G), local types (T), atoms (A) and sorts (S).

The projection generates a local type for each role that appears in a global type.
Notice that send events are prefixed with the complementation operator, which
makes explicit the contravariant nature of sending on a channel [20] which we
explain further when we introduce subtyping in the next section.

For simplicity, we assume synchronous communication where messages are
received and delivered atomically. Channels are handled explicitly as special local
types defined by the following projection from global types to local types. The
projection below maps a message exchange to a send event synchronised with
a receive event. Notice that polarities of atoms, indicated by the compliment
operator, are opposite to atoms in the projection for roles.

d (S) from P to Q �c=
{
sync c (S) to Q and ∼c (S) from P if c = d
{} otherwise

(choice atP T or U) �c= (T �c) or (U �c)
(G0 ; G1) �c= par (G0 �c) and (G1 �c)

(par G0 and G1) �c= par (G0 �c) and (G1 �c)

Asynchronous channels and channels with queues of up to length two can also
be handled by this framework. We refer to [12] for constraints restricting the
order of events in asynchronous systems and avoiding races.

3 The Subtype System and Multiparty Compatibility

The semantics of local types is defined by a term rewriting system modulo an
equational theory. The semantics can be used to define both a subtype relation
over local types and the notion of multiparty compatibility.

The rewrite rules and equational theory are presented in Fig. 4. As standard
for term rewriting, the equations can be applied at any point in a derivation,
and the rules can be applied in any context, where a context C{ } is any local
type with one hole in which any local type can be plugged. Thus we have the
following implicit rules:

96 G. Ciobanu and R. Horne

C{ T } −→ C{ U } only if T −→ U context closure

T −→ U only if T ≡ U congruence

We name the term rewriting system in Fig. 4 multiplicative additive system
virtual (MAV) since our system combines systems multiplicative additive linear
logic with mix (MALL) [17] and basic system virtual (BV) [9], both of which are
consistent proof calculi. The equational system ensures that ; is a monoid and
par and sync are commutative monoids. We briefly explain the rewrite rules.

– The atomic interaction rules enable a negative atom and positive atom to
annihilate each other, whenever the carried sort of the negated atom is a
subsort of the carried sort of the positive atom. Assuming we have a subsorting
system, that defines any preorder, we extend the system atoms as follows.

c (S0) to P ≤ c (S1) to P only if S0 ≤ S1
c (S0) from P ≤ c (S1) from P only if S0 ≤ S1

For example, the subsorting can be given by subtyping for XML Schema [2].
– The switch rule generalises the rule for the tensor product in linear logic. The

rule focusses a parallel composition on where an interaction takes place.
– The seq rule arises in the theory of pomsets [8]. The rule strengthens causal

dependencies to introduce a barrier across two parallel threads.
– The left choice and right choice rules represent an internal choice where the

protocol has control over the branch to select. The external choice rule, repre-
sents when we cannot determine at compile time what branch will be selected;
hence must analyse both possibilities. The tidy rule simply acknowledges when
two branches in an external choice have successfully closed. The medial is
essential for the co-existence of seq and external choice.

We extend the complementation operator over atoms to all local types using
the following function that transforms a type into its co-type [10].

∼(P & Q) = ∼P or ∼Q ∼(P or Q) = ∼P & ∼Q

∼par T and U = sync ∼T and ∼U ∼sync T and U = par ∼T and ∼U

∼(T ; U) = ∼T ; ∼U ∼{} = {} ∼∼A = A

The above function transforms any local type into a local type in negation nor-
mal form, where complementation applies only to atoms, as permitted by the
syntax in Fig. 3. We deliberately do not include complementation for arbitrary
types in the syntax for local types, since the contravariant nature of complemen-
tation complicates the rewriting system without any gain in expressive power [9].

In the calculus of structures a proof is a special derivation that reduces to
the unit type {}, representing a successfully completed session.

Definition 1. If for any type T −→ {}, according to the term rewriting system
in Fig. 4, then we write � T , and say that T is provable.

Behavioural Analysis of Sessions Using the Calculus of Structures 97

par ∼A and B −→ {} only if A ≤ B atomic interaction

par { sync T and U } and V −→ sync T and { par U and V } switch

par { T ; U } and { V ; W } −→ { par T and V } ; { par U and W } seq

T or U −→ T left choice T or U −→ U right choice {} & {} −→ {} tidy

par T and { U & V } −→ { par T and U } & { par T and V } external choice

{ T ; U } & { V ; W } −→ { T & V } ; { U & W } medial

par { par T and U } and V ≡ par T and { par U and V }
sync { sync T and U } and V ≡ sync T and { sync U and V }

sync T and {} ≡ T par T and {} ≡ T

{ T ; U } ; V ≡ T ; { U ; V } {} ; T ≡ T T ; {} ≡ T

par T and U ≡ par U and T sync T and U ≡ sync U and T

Fig. 4. Term rewriting system modulo an equational theory for local types.

The following result is a generalisation of a consistency result called cut elimi-
nation that appears commonly in proof theory.

Theorem 1. Suppose that there is a proof using the extra rules:

– par ∼T and T −→ {} (interact)
– {} −→ sync ∼T and T (co-interact)

Given such a proof, a new proof can be constructed that uses only the rules in
Fig. 4. We say that the rules interact and co-interact are admissible.

The main results in this paper are corollaries of the above proof-theoretic result.
The proof of Theorem 1 involves a technique known as splitting introduced in [9].
Choice operators, known as additives, are handled using techniques similar to
Theorem 6 in [4], for which we require the following notion of a killing context.

Definition 2. A killing context T { ·, ·, . . . , · } is an n-ary context such that

T { } ::= { · } | T { } & T { }

where { · } is a hole into which any local type can be plugged.

The splitting lemma below simulates sequent calculus style rules in a context
where the root formula is a parallel composition. The proof of the splitting
lemma is quite involved, so receive special attention in a companion paper [13].

98 G. Ciobanu and R. Horne

Lemma 1 (Splitting). The following statements hold.

– For any atom A, if � par ∼A and T , then there exist atoms B1, B2, . . . , Bn

such that A ≤ Bi for 1 ≤ i ≤ n and n-ary killing context T { } where T −→
T { B1, B2, . . . , Bn }.

– For any atom A, if � par A and T , then there exist atoms B1, B2, . . . , Bn

such that Bi ≤ A for 1 ≤ i ≤ n and n-ary killing context T { } where T −→
T { ∼B1,∼B2, . . . ,∼Bn }.

– If � par {T & U} and V , then � par T and V and � par U and V .
– If � par {T or U} and V , then there exist local types Wi such that either

� par T and Wi or � par U and Wi, for 1 ≤ i ≤ n, and n-ary killing context
T { } where V −→ T { W1,W2, . . . ,Wn }.

– If � par { sync S and T } and U , then there exist local types Vi and Wi such
that � par S and Vi and � par T and Wi, for 1 ≤ i ≤ n, and n-ary killing
context T { } where U −→ T { par V1 and W1, . . . , par Vn and Wn }.

– If � par {S ; T } and U , then there exist local types Vi and Wi such that
� par S and Vi and � par T and Wi, for 1 ≤ i ≤ n, and n-ary killing context
T { } where U −→ T { V1 ; W1, V2 ; W2, . . . , Vn ; Wn }.

The above splitting result is key to solving two further lemmas, the proof of
which are provided in a companion paper [13]. Hence, in the interest of focusing
on the relevance of MAV to sessions, we provide only statements of the lemmas.

Lemma 2 (Context Reduction). If, for any type V , � par T and V yields
� par U and V , then, for any context C{ } ,� C{ T } yields � C{ U }.
The following result, shows that rules complimentary to those that appear in
Fig. 4 can be eliminated. By a complementary rule, or co-rule, we mean a rule
where the direction of rewriting is reversed and co-typing is applied to both
local types in the rewrite rule. The proof follows from splitting and the context
lemma.

Lemma 3 (Co-rule Elimination). The following statements hold.

– If � C{ sync A and ∼B }, where A ≤ B, then � C{ }.
– If � C{ sync { T ; U } and { V ; W } } ,

then � C{ { sync T and V } ; { sync U and W } }.
– If � C{ T & U }, then � C{ T } .
– If � C{ T & U }, then � C{ U } .
– If � C{ sync T and { U or V } },

then � C{ { sync T and U } or { sync T and V } }.
– If � C{ {} or {} }, then � C{ }.
– If � C{ { P ; Q } or { R ; S } },

then � C{ { P or R } ; { Q or S } }.
Theorem 1, follows from the above result, by induction on the size of the local
type in any interaction or co-interaction rule. Thereby we have established the
consistency of the system MAV. The following section, demonstrates why con-
sistency of a calculus is more than a theoretical curiosity.

Behavioural Analysis of Sessions Using the Calculus of Structures 99

3.1 A Subtyping Relation for Sessions

We use the semantics of local types to define a subtype relation over local types.

Definition 3. For local types T and U , if � par ∼T and U , then T ≤ U ,
pronounced T is a subtype of U .

From Theorem 1 we immediately establish that subtyping is consistent in the
following sense.

Corollary 1. Subtyping is a precongruence: a reflexive, transitive relation that
holds in any context.

Consider the running 2PC example. The Leader local protocol in Fig. 2 is a
subtype of the following local protocol Leader′.

par prepare (Timestamp) from Participant
and l begin (Payload) from Client ;
par ∼p commit (Timestamp) to Participant
and ∼c commit (Timestamp) to Client

The difference between the local types for Leader and Leader′ is that Leader′

waits for the l begin and prepare messages in parallel. Thus Leader; can poten-
tially consume the prepare message before consuming the l begin message, which
is not possible in Leader.

Subsorting. The use of subsorts allows us to recover a classic property of sub-
typing for channel types [20]: send types are contravariant and receive types are
covariant. Immediately, from the atomic interaction rules we obtain, that if S0 ≤
S1, then both ∼c (S1) to P ≤ ∼c (S0) to P and c (S0) from P ≤ c (S1) from P
hold. Notice that the complementation operator prefixing the send event induces
the expected contravariance. For example, in 2PC the sender may send a nat-
ural number timestamp, when an integer timestamp was expected, assuming
that nat ≤ int is in the subsorting system. This agrees with related work [20] on
subtyping with respect to I/O types for channels.

Subtyping for Choice. The subtype system derived from the extended calculus,
reflects existing work on session subtyping involving choice [6]. Consider the
extended two phase commit example, with local types Leader′′, Participant′,
and Client′ in Fig. 5. Note that par, sync and semi-colon are assumed to have
a higher precedence than & and or.

The example local types Leader′′ and Client′ involve an external choice.
The local type Leader′′ has a choice that allows an abort message to be received
from the participant, at which point the client must be notified about the abort.
The client has the choice of receiving the commit message or receiving the abort
message.

100 G. Ciobanu and R. Horne

Client′ :

par ∼p begin (Payload) to Participant
and ∼l begin (Payload) to Leader ;
{ commit (Timestamp) from Leader

or

c abort (Error) from Leader }

Participant′ :

p begin (Payload) from Client ;
{ ∼prepare (Timestamp) to Leader ;

p commit (Timestamp) from Leader
&
∼p abort (Error) to Leader }

Leader′′ : l begin (Payload) from Client;
{ prepare (Timestamp) from Participant ;

par ∼p commit (Timestamp) to Participant
and ∼c commit (Timestamp) to Client
or

p abort (Error) from Participant ;
∼c abort (Error) to Client }

Fig. 5. Example of roles in a commit protocol with the choice to abort.

The local type Leader′′ is a super-type of the local type Leader, since
Leader′′ can always (internally) choose the left branch of the choice in the
protocol. Similarly, the local type Client′ is a super-type of Client.

Now consider the local type Participant′. In contrast to Leader′′ and
Client′, the local type Participant′ is not a supertype of Participant. This
contrast is due to the presence of external choice rather than internal choice. An
external choice is used since we cannot determine at compile-time whether the
participant will commit or abort; hence both branches must be analysed.

3.2 Multiparty Compatibility

The semantics of local types in Fig. 4 can also be used to determine whether a
session can successfully close, without hanging sends or receives. The following
definition is the essence of the idea of multiparty compatibility in [5].

Definition 4 (Multiparty Compatibility). If T1, T2, . . .Tn are local types
such that par T1 and T2 . . . and Tn is provable, then T1, T2, . . .Tn are said to
be multiparty compatible.

The following example, due to Tiu [21], emphasises that we could not express
multiparty compatibility using natural deduction.

Role P : ∼begin (Data) to Q ;
{
par ∼fun (Control) to Q
and done (Data) from Q

}

Role Q : {
par begin (Data) from P
and fun (Control) from P

} ;
∼done (Data) to P

Behavioural Analysis of Sessions Using the Calculus of Structures 101

Notice that the causal dependency forced by role Q between receiving a message
on channel fun and sending a message on channel done, induces a dependency at
role P ; specifically the send on fun must happen before the receive on done. In
the proof of multiparty compatibility, this dependency is imposed by applying a
rule, within sequential composition structure, within a par structure. Application
of rules in a context alternating between structures is known as deep inference.
Natural deduction, traditionally used to express type systems, cannot express
the scenario above.

The projection of any global type onto its local types for each participant
and channel is multiparty compatible.

Lemma 4. For any G with set of roles and channels I, the multiset of local
types (G �i)i∈I is multiparty compatible.

Proof. The proof is by induction on the structure of G. The only base case is
c (S) from P to Q, for which the following rewrites hold using switch and atomic
interaction.

par G �P and G �Q and G �c =
par ∼c (S) to Q and c (S) from P and { sync c (S) to Q and ∼c (S) from P }

−→ sync { par ∼c (S) to Q and c (S) to Q } and
{ par ∼c (S) from P and c (S) from P } −→ {}

Hence the local types G �P , G �Q, G �c are multiparty compatible.
Consider the case of sequential composition. Assume that G0 and G1 are

multiparty compatible and consider G0 ;G1. Hence for i1, i2, . . . ∈ I. By repeated
application of the seq rule and the induction hypotheses.

par { (G0 ; G1) �i1 } and { (G0 ; G1) �i2 } and . . .
= par { G0 �i1 ;G1 �i1 } and { G0 �i2 ;G1 �i2 } and . . .

−→ par G0 �i1 and G0 �i2 and . . . ; par G1 �i1 and G1 �i2 and . . .
−→ {}

Hence G0 ; G1 is multiparty compatible.
Consider the case of choice. Assume that G0 and G1 are multiparty com-

patible and consider choice atP G0 or G1. Hence for i1, i2, . . . ∈ I \ {P}. By
repeated application of the external choice, left choice, right choice and the
induction hypotheses.

par (choice atP G0 or G1) �P and (choice atP G0 or G1) �i1 and . . .
= par { G0 �P & G1 �P } and { G0 �i1 or G1 �i1} and . . .

−→ par G0 �P and { G0 �i1 orG1 �i1 } and . . .
& par G1 �P and { G0 �i1 orG1 �i1 } and . . .

−→ par G0 �P and G0 �i1 and . . . & par G1 �P and G1 �i1 and . . .
−→ {} & {} −→ {}

Hence choice atP G0 or G1 is multiparty compatible.
The inductive case for parallel composition is similar. Hence the result follows

by induction on the structure of G.
�

102 G. Ciobanu and R. Horne

A consequence of the above lemma is that the family of all projections from the
global type in Fig. 1 is multiparty compatible.

Subtyping allows local protocols to be weakened while retaining multiparty
compatibility. The following lemma is an immediate consequence of Corollary 1.

Lemma 5. If T1, T2, . . . , Tn are multiparty compatible, and Ti ≤ Ui, for 1 ≤
i ≤ n, then U1, U2, . . .Un are multiparty compatible.

We now introduce the notion of coherence, which defines families of local
protocols and channels, that respect a global type.

Definition 5. A multiset of local types (Ti)i∈I , where I is a set of roles and
channels, is coherent (with respect to G) if there exists a global type G such that
for all i ∈ I, G �i≤ Ti, where ≤ is the subtyping relation.

The protocol based on Tiu’s counter example is coherent with respect to the
following global type.

begin (Data) from P to Q ;
fun (Function) from P to Q ;
done (Data) from Q to P

Notice that, if type equality rather than subtyping is used in the definition of
coherence, then Tiu’s counter example is not coherent. Thus subtyping relaxes
the corresponding definition in [12].

The proof of the following proposition follows from Lemmas 4 and 5.

Proposition 1. Any coherent protocol is multiparty compatible.

Proof. Assume that (Ti)i∈I is coherent. Hence there exists G such that for all
i ∈ I, G �i≤ Ti. By Lemma 4, the multiset of of protocols (G �i)i∈I is multiparty
compatible. Furthermore, by Lemma 5, since for all i ∈ I, G �i≤ Ti, (Ti)i∈I is
also multiparty compatible.
�
The converse of Proposition 1 is more difficult, since given only the local pro-
tocols, we must construct, or synthesise, a global protocol given only the local
types. In general synthesis of a global protocol is not possible [5], hence an open
question is the following: under what conditions is a multiparty compatible fam-
ily of local protocols is coherent.

The protocols Client, Leader′, Participant are coherent, since the defini-
tion of coherence permits subtyping. However they are also coherent with respect
to the global protocol below.

par { p begin (Payload) from Client to Participant ;
prepare (Timestamp) from Participant to Leader }

and l begin (Payload) from Client to Leader ;
par c commit (Timestamp) from Leader to Client
and p commit (Timestamp) from Leader to Participant

The global type above is more general than the global type in Fig. 1, with respect
to the subtyping relation over global types defined below.

Behavioural Analysis of Sessions Using the Calculus of Structures 103

Definition 6. For global types G0 and G1 with set of participants and channels
I, if for all i ∈ I, G0 �i≤ G1 �i, then G0 ≤ G1.

Following [18], we say that the most general coherent global protocol, with
respect to the above subtyping relation, with respect to the multiset of pro-
tocols, is the principal global type for that multiset of local protocols. Hence the
above global type is the principal global type for Client, Leader′, Participant.

For the local protocols Client′, Leader′′ and Participant′ from Fig. 5, the
principal global type is as follows.

par p begin (Payload) from Client to Participant
and l begin (Payload) from Client to Leader ;
choice at Participant

{ prepare (Timestamp) from Participant to Leader ;
par c commit (Timestamp) from Leader to Client
and p commit (Timestamp) from Leader to Participant }

or { p abort (Error) from Participant to Leader ;
c abort (Error) from Leader to Client }

Notice that, since subtyping for external choice and internal choice are dual to
each other, there is no subtype relationship between the global type above and
the global type in Fig. 1. Subtyping of global protocols should preserve coherence.

Proposition 2. If (Ti)i∈I is coherent with respect to G1 and G0 ≤ G1, then
(Ti)i∈I is coherent with respect to G0.

The proof follows immediately from the definitions.

Asynchronous Sessions. Assume that we use asynchronous communication chan-
nels, where a send message event happens before the corresponding receive mes-
sage event, and furthermore the order messages are received are not related to
the order in which messages are sent. The projection to asynchronous channels is
the same as the projection for synchronous channels except the following case.

d (S) from P to Q�c =
{
sync c (S) to Q ; ∼c (S) from P if c = d
{} otherwise

We can establish that, for protocols that use synchronous channels and can suc-
cessfully complete, the protocols can successfully complete using asynchronous
channels in place of synchronous channels. This observation follows immediately
from Lemma 4, Corollary 1, and the observation that sync T and U ≤ T ; U .

Corollary 2. If G is a global protocol, where I is the set of roles and chan-
nels appearing in G, then using asynchronous channels, (G�i)i∈I is multiparty
compatible.

However, the converse does not hold. There exist sessions that may success-
fully complete using asynchronous channels, that can never complete successfully

104 G. Ciobanu and R. Horne

using synchronous channels. The methodology in this work can also be adapted
to evaluate the termination potential of protocols where channels are queues of
length up to two, for which stronger guarantees on the order in which messages
are receive on channels are guaranteed [12].

3.3 Complexity and a Path to Implementation

Deciding provability in the calculus MAV is a PSPACE-complete problem. This
complexity bound can be established directly from existing results. In particular,
since the calculus extends MALL which is PSPACE-hard [17], there is a trivial
polynomial reduction from MALL to MAV, i.e. the direct embedding of proposi-
tions, such that a proposition is provable in MALL if and only if its embedding
is provable in MAV. Furthermore, by the argument in [17], the length of each
independent branch in a proof is polynomial.

Proposition 3. The problem of deciding whether a local type in MAV is provable
is PSPACE-complete.

A consequence of the above complexity result is provability of local types
in MAV can be reduced to QBF, the canonical PSPACE-complete problem, for
which sufficiently efficient solvers exist. Thereby properties of sessions, such as
multiparty compatibility, can be verified for protocols of a realistic size.

4 Related Work and Conclusion

Correspondences between session types and variants or extensions of linear logic
have been studied in related work. The study of the “proofs as processes” inter-
pretation of intuitionistic linear logic using the linear λ-calculus was initiated
by Abramsky [1], and has been adapted explicitly to asynchronous sessions [7].
An alternative approach due to Caires and Pfenning [3] assigns propositions in
intuitionistic linear logic to channel names, where the proposition represents the
session performed on the named channel. Wadler [22] brings light to the lin-
ear λ-calculus and channel approaches, by proving that a variant of the linear
λ-calculus can be translated faithfully into a process calculus and type system
where propositions in (classical) linear logic are assigned to channel names. In
both the intuitionistic [3] and classical [22] interpretations, intuitively, the tensor
product is interpreted asymmetrically as follows: “A⊗B is the type of a channel
that outputs an A and then behaves as B.” Both approaches argue that the
symmetry of the tensor product can be recovered using an isomorphism induced
by a process that flips the order of actions.

We make a different choice. We interpret sequentiality using an explicit non-
commutative operator. This relieves the commutative operators so that they can
be used to model symmetric features such as parallel composition. For the cal-
culus in this work, the results presented, notably the consistency of subtyping
(Corollary 1) and the multiparty compatibility of coherent protocols (Proposi-
tion 1), follow directly from the proof theoretic result in Theorem 1. Thus, by

Behavioural Analysis of Sessions Using the Calculus of Structures 105

adopting the calculus of structures to express the semantics of local types, we
reduce several problems in session types to a generalised cut elimination result.

Acknowledgements. This work is supported by a grant of the Romanian National
Authority for Scientific Research, project number PN-II-ID-PCE-2011-3-0919. The sec-
ond author received support from MOE Tier 2 grant MOE2014-T2-2-076.

References

1. Abramsky, S.: Computational interpretations of linear logic. Theoret. Comput. Sci.
111(1), 3–57 (1993)

2. Benzaken, V., Castagna, G., Frisch, A.: CDuce: an XML-centric general-purpose
language. ACM SIGPLAN Not. 38(9), 51–63 (2003)

3. Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In:
Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 222–236.
Springer, Heidelberg (2010)

4. Chaudhuri, K., Guenot, N., Straßburger, L.: The focused calculus of structures.
In: EACSL, vol. 12, pp. 159–173 (2011)

5. Deniélou, P.-M., Yoshida, N.: Multiparty compatibility in communicating
automata: characterisation and synthesis of global session types. In: Fomin, F.V.,
Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol.
7966, pp. 174–186. Springer, Heidelberg (2013)

6. Gay, S., Hole, M.: Subtyping for session types in the pi calculus. Acta Informatica
42(2–3), 191–225 (2005)

7. Gay, S.J., Vasconcelos, V.T.: Linear type theory for asynchronous session types. J.
Funct. Program. 20(1), 19 (2010)

8. Gischer, J.L.: The equational theory of pomsets. Theoret. Comput. Sci. 61(2–3),
199–224 (1988)

9. Guglielmi, A.: A system of interaction and structure. ACM Trans. Comput. Logic
8, 1–64 (2007)

10. Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR 1993. LNCS,
vol. 715, pp. 509–523. Springer, Heidelberg (1993)

11. Honda, K., Mukhamedov, A., Brown, G., Chen, T.-C., Yoshida, N.: Scribbling
interactions with a formal foundation. In: Natarajan, R., Ojo, A. (eds.) ICDCIT
2011. LNCS, vol. 6536, pp. 55–75. Springer, Heidelberg (2011)

12. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. ACM
SIGPLAN Not. 43(1), 273–284 (2008)

13. Horne, R.: The consistency and complexity of multiplicative additive system vir-
tual. Sci. Ann. Comput. Sci. XXV(2), 245–316 (2015). doi:10.7561/SACS.2015.2.
245

14. Hu, R., Neykova, R., Yoshida, N., Demangeon, R., Honda, K.: Practical interrupt-
ible conversations. In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174,
pp. 130–148. Springer, Heidelberg (2013)

15. Hu, R., Yoshida, N., Honda, K.: Session-based distributed programming in java. In:
Vitek, J. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 516–541. Springer, Heidelberg
(2008)

16. Kahramanogullari, O.: Maude as a platform for designing and implementing deep
inference systems. ENTCS 219, 35–50 (2008)

http://dx.doi.org/10.7561/SACS.2015.2.245
http://dx.doi.org/10.7561/SACS.2015.2.245

106 G. Ciobanu and R. Horne

17. Lincoln, P., et al.: Decision problems for propositional linear logic. Ann. Pure Appl.
Logic 56(1), 239–311 (1992)

18. Mostrous, D., Yoshida, N., Honda, K.: Global principal typing in partially commu-
tative asynchronous sessions. In: Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502,
pp. 316–332. Springer, Heidelberg (2009)

19. Ng, N., Yoshida, N., Honda, K.: Multiparty session C: safe parallel programming
with message optimisation. In: Furia, C.A., Nanz, S. (eds.) TOOLS 2012. LNCS,
vol. 7304, pp. 202–218. Springer, Heidelberg (2012)

20. Pierce, B., Sangiorgi, D.: Typing and subtyping for mobile processes. In: LICS
1993, pp. 376–385. IEEE (1993)

21. Tiu, A.: A system of interaction, structure II: the need for deep inference. Logical
Methods Comput. Sci. 2(2), 1–24 (2006)

22. Wadler, P.: Propositions as sessions. J. Funct. Prog. 24(2–3), 384–418 (2014)

Using Refinement in Formal Development
of OS Security Model

Petr N. Devyanin1(B), Alexey V. Khoroshilov2, Victor V. Kuliamin2,
Alexander K. Petrenko2, and Ilya V. Shchepetkov2

1 Educational and Methodical Community of Information Security, Moscow, Russia
peter devyanin@hotmail.com

2 Institute for System Programming, Russian Academy of Sciences, Moscow, Russia
{khoroshilov,kuliamin,petrenko,shchepetkov}@ispras.ru

Abstract. The paper presents work in progress on formal development
of an operating system security model for the purpose of its deductive
verification. We consider two approaches to formalize the security model.
The first one is to build a monolithic model, another one is to build a
hierarchical model using the refinement technique. The main criteria
for comparison are costs of development, simplicity of maintenance and
confidence in the quality of the formal model. The results are twofold.
On the one hand, refinement helped us to deal with complexity of the
formal model, to improve its readability and to simplify automatic proofs.
However, deep understanding of the security model details and careful
planning were absolutely necessary to build a reasonable hierarchical
model. The monolithic approach allowed to quickly start formalization
and helped to study the details of the security model, but the resulting
formal model became hard to maintain and explore.

Keywords: Security model · Formal verification · Refinement · Event-B

1 Introduction

Traditionally computer security models are expressed by combining a natural
language and mathematical notations. Proofs of their correctness and consis-
tency are performed by hand. Such proofs are error prone and not completely
reliable. Besides, the reliability of manual proofs decreases with increasing size
and complexity of the models.

Formal methods are promising approaches for specification and verification
of software systems [10]. Validation of the RBAC ANSI 2012 standard confirmed
that they could be successfully used for proving the correctness of security mod-
els [8]. Although this standard is widely used in industry, numerous problems
were identified and fixed with the help of formal method B [1].

The research was supported by the Ministry of Education and Science of the Russian
Federation (unique project identifier RFMEFI60414X0051).

c© Springer International Publishing Switzerland 2016
M. Mazzara and A. Voronkov (Eds.): PSI 2015, LNCS 9609, pp. 107–115, 2016.
DOI: 10.1007/978-3-319-41579-6 9

108 P.N. Devyanin et al.

In this paper we present a work in progress on formal analysis of a mandatory
entity-role security model of access and information flows control in Linux (the
MROSL DP-model [7]), which provides:

– Mandatory integrity control (MIC).
– Mandatory access control (MAC).
– Role-based access control (RBAC).

The model was implemented in Astra Linux Special Edition1 as a Linux
Security Module by RPA RusBITech in 2014.

In the previous work [6] we chose formal method Event-B and the Rodin
platform [2,3] for the MROSL DP-model formalization and verification in order
to confirm that the model satisfies the main security requirements – ability to
protect entities and subjects from violating their integrity and security levels
through authorized accesses.

Like many other formal methods, Event-B allows to develop formal specifica-
tions using refinement — a well-known and a widely recommended technique for
incremental development [4,9]. Numerous systems were formalized with it [5,11].
Refinement helps to deal with the complexity of systems by decomposing their
specifications into separate components. However, it is not clear what disadvan-
tages refinement has, or what additional benefits it offers.

The paper presents the results of comparison of two MROSL DP-model spec-
ifications that were developed using different approaches: without use of the
refinement technique and with it.

Next section of the paper describe the MROSL DP-model in detail. Sec-
tions 3 and 4 give an overview of Event-B and the refinement technique. Section 5
describes formalization of the model. Section 6 provides the comparison of devel-
oped specifications. Section 7 summarizes the results of development and verifi-
cation and outlines further work of the project.

2 Main Features of the MROSL DP-model

Concepts used in the model are entities, sessions, user accounts and roles. Entities
represent data objects like files, directories, sockets, etc. Sessions are operating
system processes and each of them has the corresponding user account on behalf
of which it operates. Roles are containers of permissions allowing to perform
certain operations. The main complexity of the model derives from the non-
trivial connections between these concepts that in most cases are expressed as
functions.

The MROSL DP-model contains three main security features: MIC, MAC
and RBAC. Due to MIC each entity, session, user account and role has an
integrity level, which can be high or low. High-integrity entities (roles, etc.) are
protected from modification by low-integrity sessions. MAC provides a security
label to each entity, session, user account and role. MAC prohibits read accesses

1 http://www.astra-linux.com.

http://www.astra-linux.com

Using Refinement in Formal Development of OS Security Model 109

to an entity for sessions that do not have greater-or-equal security label (labels
are partially ordered). Also it prohibits write accesses to an entity for sessions
that do not have the same security label. RBAC strictly limits session rights to
perform various operations by providing a set of roles (containers of rights) to
each session.

The security model defines 44 operations. 34 of these operations can create
or remove entities, sessions, user accounts or roles, change integrity and security
labels, add or remove accesses. In addition, 10 operations are defined for more
precise security analysis in terms of information flows. Each operation is defined
by precondition and postcondition.

Postconditions must not violate any constraints defined in the model. Some
of these constraints describe the environment of the security model (e.g. filesys-
tem, processes, accesses), while others define security features mentioned above.
Due to the large number of the constraints and their complex nature it is hard
to verify the MROSL DP-model by hand without mistakes. Formalizing the
model into a machine-readable form allows to prove its correctness in a machine
checkable way.

3 Event-B and Rodin

Capability of combining automatic and interactive proofs along with the stories
of its successful use for a number of complex projects convinced us to use a B
dialect called Event-B. It has a simple notation and comes with a great tool
support in the form of the Rodin Platform2.

An Event-B model (or specification) consists of contexts and machines. Con-
texts contain the static parts of the specification: definitions of constants and
their axioms. Machines contain the dynamic or behavioral parts of the speci-
fication: variables, invariants and events. Variables and constants can be sets,
binary relations, functions, numbers or Boolean data. Values of variables form
the current state of the specification and invariants constrain it.

Events represent the way the state may evolve. Each event consists of para-
meters, guards and actions, though any two of them are optional. Guards restrict
values of parameters and states under which the event can occur, while actions
change current state of the specification by modifying its variables. The correct-
ness of each change of the specification state needs to be proven since invariants
are supposed to hold whenever variable values change.

The Rodin platform supports both modelling and proving and integrates
them in a seamless way. Both automatic and interactive proofs are supported. For
each case that requires a proof — unambiguity of expressions, invariant preser-
vation and refinement between models (if the refinement technique is used) —
Rodin generates a corresponding proof obligation. Full proof of a model means
that all generated proof obligations are discharged.

2 http://www.event-b.org/.

http://www.event-b.org/

110 P.N. Devyanin et al.

4 Refinement

Refinement technique is well known and supported by many formal methods.
Instead of making a monolithic specification that contains all details of the sys-
tem, refinement offers to build a series of specifications, where each specification
is a refinement of the previous one (or abstract one) and the last one is the most
concrete one. It allows to build a specification gradually, adding new features
step by step, and thus to deal with complexities that arise during formalization
of large systems.

There are two major approaches of refinement: posit-and-prove and rule-
based [5]. In the first approach each refinement step must be proved to be cor-
rect, while in the second approach refinement is performed automatically using
transformation rules, from which it follows that this refinement is correct by
construction.

Refinement can be used in two ways. The aim of horizontal refinement (often
called superposition refinement) is to add complexity to the specification by
introducing new properties and events extending old ones. The second way is to
use refinement to add details to data structures, such as replacing an abstract
variable by a concrete one (vertical or data refinement).

5 Development

Formalization of the MROSL DP-model is a tricky task because of the size of the
model (200 pages) and its complex nature. We started from the development of a
monolithic specification that represents the entire security model. Then we used
this knowledge to develop a new specification with the refinement technique.

To develop the monolithic specification, we used an iterative approach adding
small parts of the system step by step and proving their correctness. It allowed
to quickly notice and to fix problems occurring due to misunderstanding of the
description of the system, but sometimes it was necessary to repeat existing
proofs since every change of the specification could violate them. With this
approach we developed the formal specification of the MROSL DP-model and
proved its correctness. It took more than a year of work. A number of inaccuracies
in the initial description of the model was identified and fixed.

Fig. 1. The composition and the size of the monolithic specification.

Using Refinement in Formal Development of OS Security Model 111

The size of this specification is approximately 2 500 lines of code, which is quite
small compared with the textual description. More details can be seen in Fig. 1.

On top of this experience we developed a refined specification. Despite the
fact that we were perfectly familiar with the MROSL DP-model at that moment,
several times we had to completely rewrite the specification due to inaccurate
planning. As a result we managed to decompose the original model into 16 parts
and to determine the order in which they should be implemented as a series
of specifications. Our refinement was correct by construction, so no additional
proof obligations were generated.

6 Comparison

During the analysis of the refined specification we noticed some differences from
the monolithic one. The refined version is easier to understand, more human
readable and structured. Moreover, refinement provides a natural way to add
new details to the specification. It is easier to change the specification, and,
unlike the monolithic specification, changes can affect fewer of discharged proofs.
We kept possible changes in mind during refinement planning, and it helped to
achieve our additional goal – to simplify maintenance.

Despite the aforementioned advantages of the refined specification, most
design decisions (which data structures to use, how to express invariants bet-
ter, etc.) are the same. The main comparison characteristics like the size of the
specification and the difficulty of interactive proofs are also similar in our case.
However, the development of the monolithic specification required much less
effort — due to the absence of refinement planning, which is quite a difficult
task, so our main goal (to prove correctness of the model) is achieved faster
with it.

Better readability of the refined model can be exposed with two examples3.
Figure 2 demonstrates a part of the create session event from the monolithic
specification. This event is an analogue of the corresponding operation from the
MROSL DP-model. It models the creation of a new session. It has parameters,
preconditions (guards, in terms of Event-B) and postconditions (actions). Guards
and actions are lines with @grd and @act labels, parameters are defined in the
any section.

Arrows in Fig. 2 group related guards and actions by parts of the model to
which they belong. It is easy to notice a lack of structure here: a lot of closely
related guards and actions are scattered throughout the text. For instance,
@grd2 — @grd4, @grd7 — @grd9, @grd25, @act6, @act7 are represent profiles
and executable files. Moreover, parts of one event can be associated not only
with each other, but also with the existing invariants and parts of other events.
There is no way to denote their connection in Event-B without use of refinement.

Actually the refined model is a series of specifications. Each of them describes
a specific feature of the MROSL DP-model. Figure 3 represents one of the refine-
ment steps — adding the specification modeling profiles and executable files.
3 These examples are provided with permission of RPA RusBITech.

112 P.N. Devyanin et al.

Fig. 2. A part of the create session event from the monolithic specification.

We can see how a particular feature — profiles and exefiles — affects existing
events (create user, set user labels and create session) and the require-
ments (invariants) it must satisfy. This specification is quite compact, it is easy
to understand and maintain.

To achieve this it is vital to know possibilities of refinement, its restrictions,
features of the chosen formal method, and of course the system itself. Each wrong

Using Refinement in Formal Development of OS Security Model 113

Fig. 3. A part of the refined specification related to profiles and executable files.

114 P.N. Devyanin et al.

decision can eventually lead to the need of total redesign of a specification. In
some cases wrong refinement can even complicate formalization and analysis.

In our experience, automatic provers operate a little better on the refined
specification. Some statistics can be found in Fig. 4. It could be explained by the
fact that the Rodin platform was specifically designed to support the refinement
technique.

Fig. 4. Statistics of operation of automatic provers.

The MROSL DP-model contains precise description of operations in form of
preconditions and postconditions. It simplifies the development of both speci-
fications, but also restricts the refinement possibilities. Thus, in our case (and
for the class of similar systems) refinement offers only better readability and
structure of specifications, in exchange for increased complexity of development.

7 Conclusions and Future Work

We completed formalization and verification of the MROSL DP-model using
formal method Event-B in two ways — without use of the refinement technique
and with it. The approach without refinement allowed us to develop a monolithic
specification that contains the entire security model, while refinement was used to
build an ordered series of specifications, where each specification is a refinement
of the previous one (or abstract one) and the last one is the most concrete one.

We have found that refinement improves readability and simplifies automatic
proofs. But to achieve this it is vital to know possibilities of refinement, its
restrictions, features of the chosen formal method, and the system under veri-
fication (the MROSL DP-model, in our case). Careful planning is also needed.
The development of the monolithic specification required much less effort, but
the resulting specification is hard to maintain and explore.

On the next steps of the project we are going to use refinement for for-
malization and verification of a hierarchical MROSL DP-model, which is under
development. It will contain a basic layer that can be extended to a security
model of hypervisor, operating system, etc. We believe that there will be diffi-
culties with refinement due to a nonlinear hierarchy of the model and multiple
inheritance.

References

1. Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

Using Refinement in Formal Development of OS Security Model 115

2. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

3. Abrial, J.-R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. Int. J. Softw. Tools Tech-
nol. Transfer 12(6), 447–466 (2010)

4. Abrial, J.-R., Hallerstede, S.: Refinement, decomposition, and instantiation of dis-
crete models: application to Event-B. Fundamentae Informatica 77(1,2), 1–28
(2007)

5. Damchoom, K.: An incremental refinement approach to a development of a flash-
based file system in Event-B. Ph.D. thesis, University of Southampton, School of
Electronics and Computer Science (2010)

6. Devyanin, P.N., Khoroshilov, A.V., Kuliamin, V.V., Petrenko, A.K., Shchepetkov,
I.V.: Formal verification of OS security model with alloy and Event-B. In: Ait
Ameur, Y., Schewe, K.-D. (eds.) ABZ 2014. LNCS, vol. 8477, pp. 309–313.
Springer, Heidelberg (2014)

7. Devyanin, P.N.: Security models of computer systems: access control and informa-
tion flows (in Russian). Hot line - Telecom (2013)

8. Huynh, N., Frappier, M., Mammar, A., Laleau, R., Desharnais, J.: Validating the
RBAC ANSI 2012 standard using B. In: Ait Ameur, Y., Schewe, K.-D. (eds.) ABZ
2014. LNCS, vol. 8477, pp. 255–270. Springer, Heidelberg (2014)

9. Wirth, N.: Program development by stepwise refinement. CACM Commun. ACM
14, 221–227 (1971)

10. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.: Formal methods: practice
and experience. ACM Comput. Surv. 41(4), 1–39 (2009)

11. Yeganefard, S., Butler, M., Rezazadeh, A.: Evaluation of a guideline by formal
modelling of cruise control system in Event-B. In: NFM 2010, pp. 182–191 (2010)

Conflict Resolution in Multi-agent
Systems with Typed Connections

for Ontology Population

Natalia Garanina(B), Elena Sidorova, and Stepan Anokhin

A.P. Ershov Institute of Informatics Systems,
Lavrent’ev av., 6, Novosibirsk 630090, Russia

{garanina,lena}@iis.nsk.su, saanokhin@gmail.com

Abstract. The paper presents a conflict resolution algorithm for multi-
agent systems with agents connected by relations of different types and
worth. The result of conflict resolution is a conflict-free set of agents. We
apply this algorithm for the ambiguity resolution problem in ontology
population based on multiagent natural language text analysis.

1 Introduction

The motivation of our work is studying the problem of ambiguity resolution
in the framework of ontology population from natural language texts. In [4]
we suggest text analysis algorithms producing a system of information agents.
However, features of natural language cause the ontology population ambiguities,
which those agents have to resolve.

The ambiguity problem in a natural language processing can be classified into
the following types: syntactic, lexical, structural, semantic, pragmatic ambigu-
ity etc. The widespread approach WSD (Word Sense Disambiguation) resolves
ambiguity for isolated words using subject information [1,9]. However, for dis-
ambiguation in the framework of ontology population the problem has to be
solved for ontology instances of classes and relations retrieved from a given text
which could populate a given ontology. Also there may be necessary to consider
word-complexes not isolated words only.

The allied approach to ontology-driven disambiguation which uses a context
of a given input text is suggested in [8]. Sequential sentence-by-sentence ambigu-
ity resolution is performed. For every sentence, a set of semantic interpretation is
constructed. Each interpretation is represented by a graph with vertices as ontol-
ogy entities and edges as ontology relations. Every next sentence may increase
scores of some interpretation of the previous ones. Hence the preference of alter-
native meaning of words is based on ontology relations. This approach has low
accuracy because such on-the-fly choice of alternative takes into account the
nearest context mainly. Our approach uses the maximal context available from

The research has been supported by Russian Foundation for Basic Research (grant
13-01-00643, 15-07-04144, 13-07-00422).

c© Springer International Publishing Switzerland 2016
M. Mazzara and A. Voronkov (Eds.): PSI 2015, LNCS 9609, pp. 116–129, 2016.
DOI: 10.1007/978-3-319-41579-6 10

Conflict Resolution in Multi-agent Systems with Typed Connections 117

an input text for choosing alternative. Connections between ontology objects
(class and relation instances) correspond to informational dependance of the
text. Since the approach does not require complete sentence parsing, this con-
siderably simplify the text analysis for ontology population.

We generalize this particular problem of ambiguity resolution for ontology
population to a problem of conflict resolution in multi-agent system with typed
weighted connections. This abstraction is a basis for resolution of various types
of text ambiguities. The presence and evolution of typed connections, affecting
internal and external states of an agent, are the main matter of the proposed
systems. Such simple models can be used for study and analysis of dynamical
multi-agent systems, for instance, social communities and networks, models of
cloud distributed computing, etc. In particular, it may be necessary to solve this
class of problems of conflict resolution in groups of agents taking into account
the number and quality of connections inside a group of agents. An example of
such a problem could be the task of determining the election winners in any
socially significant structure or club in which the presence and weight of the
connections between certain members of the election are important as well as
their own weight.

The works on multi-agent systems usually focus on the behavior of agents,
methods of communication between agents, knowledge and beliefs of an agent
about environment and other agents, etc. [3,11]. Works concerning conflict reso-
lution process usually consider the process in terms of the behavior of the agent
depending on its internal state, reasoning and argumentation methods etc. [7].
The dynamics of the agents connections is not a subject of these researches.
There are papers related to the dynamics of weighted connections, but those
connections are not the typed and their changes does not affect the internals of
the agent [6]. On the other hand there are works on the study of social networks
in which the agents are connected by the typed connections, but their weight is
irrelevant [2].

In this paper, we propose an algorithm for the conflict resolution in the multi-
agent system with typed weighted connections. Protocols of the agents executing
this algorithm are presented. It is shown that the algorithm of conflict resolution
can be used to resolve ambiguities in the process of semantic analysis of a natural
language text for ontology population of subject domains.

The rest of the paper is organized as follows. The next Sect. 2 gives base
definitions and the problem statement. Section 3 describes agents of our systems,
their action protocols, and the main conflict resolution algorithm. The following
Sect. 4 shows that the extended base multi-agent text analysis algorithm for
ontology population forms a multi-agent system with typed connections and the
conflict resolution algorithm can be used for the context-depending ambiguity
resolution. We conclude in the last Sect. 5 with a discussion of further research.

2 Problem Statement and Base Definitions

Let a set of conflict types be CTypes = {remove, delete, decrease}. We
define Multi-agent System with Typed Connections (MASC) as a tuple S =
(A,C, IC , wC , wA, TA, TC), where

118 N. Garanina et al.

– A is a finite set of agents;
– C is a finite set of connection;
– mapping IC : C −→ 2A×A is an interpretation function of (directed) connec-

tions between agents;
– mapping wA : A −→ N is a worth function for agents;
– mapping wC : C −→ N is a worth function for connections;
– mapping TA : A −→ CTypes × 2C matches agents with types and

∀a ∈ A (∃ct ∈ CTypes, Con ⊆ C : (Con �= ∅ ∧ TA(a) = (ct, Con)) ⇒ (∀c ∈
Con∃a′ ∈ A : (a, a′) ∈ IC(c) ∨ (a′, a) ∈ IC(c)), i.e. connections in an image
of the function must be connections of the corresponding agent;

– mapping TC : C × A × A −→ CTypes matches connections with types and
∀c ∈ C, a, a′ ∈ A : TC(c, a, a′) �= ∅ ⇔ (a, a′) ∈ IC(c), i.e. this function is
defined for an instances of connections;
mapping TD : C×A −→ N matches connections of decrease type with natural
numbers: ∀c ∈ C, a, a′ ∈ ATC(c, a, a′) = decrease ⇒ TD(c, a) = d.

For every agent a ∈ A we define the following sets of agents and connections.
The similar definitions are used in the graph theory, but we would like to refor-
mulate them for the clarity. We omit symmetric definitions of ancestors Anc∗
(for descendants Des∗) and predecessors Pred∗ (for successors Succ∗) for the
brevity:

– Ca = {c ∈ C|∃a′ ∈ A : (a, a′) ∈ IC(c)
∨

(a′, a) ∈ IC(c)} is connections of a;
– Desc

a = {a′ ∈ A | (a, a′) ∈ IC(c)} is a set of descendants by c connection;
– Desa =

⋃
c∈Ca

Desc
a is a set of descendants;

– Succc
a = Desc

a ∪ ⋃
a′∈Desc

a
Succc

a′ is a set of successors by c connection;
– Succa = Desa ∪ ⋃

a′∈Desa
Succa′ =

⋃
c∈Ca

Succc
a is a set of successors.

We deal with MASC in which Succc
a ∩ Predc

a = ∅, i.e. every connection has
no cycle. We consider conflicts of agents which resolution depends on degree of
connectivity of an agent with other agents, on its own worth, and on its influence
determined by its type. The degree of connectivity is determined by a weight of
an agent which could be defined as follows. For every a ∈ A mapping

– wtaDes : C −→ N is the weight function of connection successors defined by
wtaDes(c) =

∑
a′∈Desc

a
wta

′
Des(c) + wA(a);

– wtaAnc : C −→ N is the weight function of connection predecessors defined by
wtaAnc(c) =

∑
a′∈Ancca

wta
′

Anc(c) + wA(a);
– wt : A −→ N is the weight function of agents defined by

wt(a) =
∑

c∈Ca
(wtaDes(c) + wtaAnc(c) − 2wA(a)) + wA(a).

The weight of system S is wt(S) =
∑

a∈A wt(a).
Let conflict set Conf ⊆ A × A be a given set of conflict pairs of agents,

and Conf satisfies the following inheritance property: ∀(a, b) ∈ Conf(∃a′, b′ ∈
A, c ∈ C : (a, a′) ∈ IC(c) ∧ (b, b′) ∈ IC(c)

∨
(a′, a) ∈ IC(c) ∧ (b′, b) ∈ IC(c)) ⇒

(a′, b′) ∈ Conf), i.e. descendants or ancestors by the same connection inherit
the conflict. For every (a, a′) ∈ Conf , agent a′ is a minor agent if a wins over

Conflict Resolution in Multi-agent Systems with Typed Connections 119

a′. Determination of the winner depends on the weights of conflicting agents.
Successors and predecessors of the minor agent could be involved in its conflict
also. We say that a conflict is resolved if agent a, which is the minor agent (or is
the agent involved by agent b via connection c), performs the following conflict
actions:

1. if TA(a) = (remove, ∅) (or TC(c, b, a) = remove), then a removes itself from
A with all its connections and involves all its descendants and ancestors to
perform conflict actions induced the corresponding connections;

2. if TA(a) = (delete,Del) (or TC(c, b, a) = delete), then it deletes all con-
nections in Del (or Del = {c}), and involves its descendants and ancestors
connected by these connections to perform conflict actions induced the cor-
responding connections;

3. if TA(a) = (decrease,Dec) (or TC(c, b, a) = decrease), then it decreases its
own worth for all connections from Dec = {c | TC(c, a, a′) = decrease ∨
TC(c, a′, a) = decrease} (or Dec = {c}) by number

∑
c∈Dec TD(c, a), and

involves its descendants and ancestors connected by these connections to per-
form conflict actions induced the corresponding connections.

A conflict pair of agents is deleted from Conf after conflict resolution. Conflict
actions can decrease the weight of all involved agents and their successors and
predecessors. Hence, the set of minor agents is unstable in general. Moreover,
the first conflict action reduces the conflict set and the set of agents in MASC.
Hence the system is dynamic due to conflict resolution. Change of the system
weight with the fixed weight function depends on a policy of conflict actions
for every agent. Problem of conflict resolution in MASC is to get a conflict-free
MASC of the maximal weight. We develop a multiagent algorithm that produces
such system.

3 Conflict Resolution in MASC

For constructing the conflict-free multiagent system of the maximal weight by
resolving a chain of conflicts we should know how much each conflict resolution
step affects the system weight. Hence, for every agent in conflict, it is necessary
to compute its conflict weight which is the difference between the system weight
before and after the agent conflict resolution. Really the conflict weight of every
conflict agent is the sum of induced “conflict weights” of all agents involved by it.
Our algorithm for constructing the conflict-free set uses distributed computing
of this function with polynomial complexity.

Action protocols for conflict resolution used by MASC agents form a multi-
agent system of conflict resolution MACR. The system MACR includes set of
MASC agents and an agent-master. Note that a fully distributed version of our
algorithm could be developed but it should be quite ineffective. The result of
agent interactions by protocols described below is the conflict-free MASC. All
agents execute their protocols in parallel until the master detects termination.
The system is dynamic because MASC agents can be deleted from the system.

120 N. Garanina et al.

The agents are connected by synchronous duplex channels. The master agent
is connected with all agents, MASC agents are connected with their ancestors
and descendants. Messages are transmitted instantly via a reliable medium and
stored in channels until being read.

Let A = {a1, ..., an} be a MASC agents set, and M be the master agent. Let
Ai be an interface protocol of agent ai, and M be the protocol of actions of the
agent-master M . Then multi-agent conflict resolution algorithm MACR can be
presented in pseudocode as follows:
MACR:: parallel {A1} ...{An} {M}

Our algorithm for constructing a conflict-free MASC of the maximal weight
is a greedy algorithm. At every step it chooses for resolution a conflict which has
the maximal effect to the system weight. This effect depends on conflict actions
of involved agents. Hence the following algorithms should be implemented: cal-
culating of agents’ weights, calculating of agents’ conflict weights, the main algo-
rithm for constructing a conflict-free set of agents of the maximal weight. The
weights’ calculation should be performed by MASC agents, but constructing a
conflict-free set should be conducted by the master agent.

We define an interface protocol Ai for system agents, which specifies agent’s
reactions for incoming messages. Messages for a system agent include actions
act which agent should to perform and information for those actions body:
msg = act × body, where act = {start, stop, ToAct, ToChange}, where ToAct
is to perform a conflict action protocol, ToChange is to change weight protocol,
and their parameters body described below at the protocols’ definitions. An
agent stays in a wait mode until an input message causes the agent to react. Let
function get(Set) gets an arbitrary element in nonempty set Set and removes
it from the set.
Interface Protocol of Agent a.

Ai (a) ::
set of msg Input; msg mess = (start, null);

1. while (mess.act != stop)
2. if (Input != ∅) then {
3. mess = get (Input);
4. if(mess.act = ToAct) then a.Act(mess.body);
5. if(mess.act = ToChange) then a.ChangeWeight(mess.body);}
(1) The Main Algorithm for Conflict Resolution
Let us give an informal description of protocol Master. Let ConfA = {a ∈
A|∃b ∈ A(a, b) ∈ Conf} be a set of agents in a conflict. Until this set becomes
empty master should repeat the following steps: (1) to compute agents’ weights
by launching agents to perform protocols WeightComp in parallel; (2) to compute
agents’ conflict weights by launching conflict agents to perform protocols Act in
sequence; before every launching local data of every agent should be saved, and
after they should be restored for correct computations of conflict weights; (3) to
find the minor partner of the agent of maximal impact for the system weight,
with the maximal difference in their conflict weights; (4) to resolve the conflict
of these agents by launching the minor agent to perform protocol Act; (5) to

Conflict Resolution in Multi-agent Systems with Typed Connections 121

remove the conflict of the agent and conflicts of deleted agents from the conflict
set; (6) to remove from A agents which perform (induced) conflict action 1; (7) to
recalculate the set of conflicts and the set of agents in conflicts. We consider the
master can detect termination moments of other agents’ parallel computations
at every step. The protocol of conflict weights computing and weights changing
belongs to the class of wave echo algorithms [10].

Let integer weight of agent a be a.wt, its conflict weight be a.cwt, boolean
variable a.Rmvd is true if a is removed by its conflict action 1, and false otherwise.
Let function save data(a) saves data of agent a (its current weight, worth,
set of connections, sets of descendants and ancestors, and existence status),
and function restore data(a) restore these data. Let function (max wConf(X))
(min wConf(X)) return the agent of the maximal (minimal) conflict weight in
set of agents X. Let DelA be set of agents removed from A due to particular
conflict resolution.
Protocol of the Master Agent for Conflict Resolution.

Master ::
agent a, b;
1. while (ConfA �= ∅){
2. forall a∈ A in_parallel WeightComp(a);
3. forall a∈ ConfA in_sequence {
4. forall b∈ A save_data(b);
5. a.Act(TA(a).type, null, null, true);
6. forall b∈ A restore_data(b); }
7. a = max_wConf(ConfA);
8. b = min_wConf(PartConfa);
9. b.Act(TA(b).type, null, null, false);
10. Conf = Conf \ {(a, b)};
11. A = A \ DelA;
12. recalculate(Conf);
13. recalculate(ConfA);}
14. forall a∈ A in_parallel send (stop) to a;

(2) Computing Agents’ Weight
Let the set of connection of agent a be Ca = {c1, . . . , cn}. Following the defin-
itions of the weights the agent launches parallel calculations of the sum weight
by every connection ci for successors Des(ci) and for predecessors Anc(ci) (line
1) and stores calculated weights in arrays w Des and w Anc respectively. When
these parallel calculations are finished, the agent computes its own weight (lines
2–4). The calculation processes have local channels Input for messages with
integer weights of successors (predecessors). They send the weights increased by
wA(a) to predecessors (successors) respectively. We omit the similar description
of predecessors’ processes Anc(ci) for the brevity. All these agent’s weights are
accessible to the agent for changing in its other protocols.
Protocol of Agent a for Weight Compute.

WeightComp (a) ::

122 N. Garanina et al.

array [Ca] of int: w_Des, w_Anc;
int w_Des_own = 0, w_Anc_own = 0;

1. parallel forall ci ∈ Ca {Des(ci)} {Anc(ci)}
2. w_Des_own =

∑
ci∈Ca

w_Des[ci];
3. w_Anc_own =

∑
ci∈Ca

w_Anc[ci];
4. a.wt = w_Des_own + w_Anc_own + wA(a);
a.Des(ci) ::

set of int Input;
int NumD = |Desci

a |;
1. w_Des[ci] = 0;
2. while(NumD != 0)
3. if (Input != ∅) then {
4. w_Des[ci] = w_Des[ci] + get(Input); NumD = NumD - 1;}
5. forall (b∈ Ancci

a) send w_Des[ci]*wC(ci)+wA(a) to b.Des(ci);

(3) Computing Agents’ Conflict Weight
An input for the next protocol Act is a message of the form mess = (ct, x, c,
wc), where ct is conflict action type, x is an agent which induce this action, c
is a connection with this agent, and wc is true if a conflict weight is computing.
Let a starting agent have no inducing agent. This protocol a removed agent
should not perform (line 1). In (lines 2–5) an agent depending on the type of
its conflict action (1) determines its difference in the own weight in variable of
temporal conflict weight wConf, (2) forms sets of connections with descendants
and ancestors which weights are changing due to this action, and (3) specifies the
amount of these changes in variable w (lines 4, 6, 7). Then the agent sends the
corresponding messages to the partners (lines 6, 7). The agent launches a wave of
weight changing of its successors and predecessors and waits when it finishes (line
8). The agent has local channel Input for messages with changed integer weights
of its successors and predecessors. In line 9 it adds these weights to its temporal
conflict weight. Note that at this moment the conflict weight characterizes a
change in the agent’s weight (line 10). Further the agent depending on its conflict
type launches a wave of conflict actions of its involved partners (lines 13, 14).
If the agent computes its conflict weight it waits when the wave finishes (line
16). Now the local channel Input stores messages with integer induced conflict
weights of involved successors and predecessors. In line 16 the agent sums these
weights with its temporal conflict weight. If the agent is not a starting agent
then it sends its induced conflict weight to the agent which has involved it (line
18). If the agent is a starting agent then it stores its conflict weight (line 19). If
the agent is involved in conflict resolution then it can change its local data (lines
20–21).
Protocol of Agent a for Conflict Actions.

Act(mess = (ct, x, c, wc)) :: {
int w, wConf;
agent b; connection c;
set of connections Con;
set of agents Desa = ∅, Anca = ∅, Part = ∅;

Conflict Resolution in Multi-agent Systems with Typed Connections 123

set of int Input;
1. if(a.Rmvd) then send(doneAct, 0) to x; return;
2. if(ct = remove) then act = delMe; Con = Ca;

wConf = a.wt; a.Rmvd = true;
3. if(ct = delete) then act = delMe;

if(x = null) Con = Del; else Con = c;
wConf=

∑
e∈Del(w_Des[e]+w_Anc[e])*wC(e);

4. if(ct = decrease) then act = decMe; Con = Ca;
if(x = null) w =

∑
e∈Dec TD(e, a);

else w = TD(c, a);
wConf = w; wA(a) = wA(a) - w;

5. forall c∈Con {
6. forall b∈ Desc

a \ {x};
if(ct != decrease) w = w_Anc[c]+wA(a);
send (ToChange, act, a, c, w, Anc) to b;
Desa = Desa∪{b};

7. forall b∈ Ancc
a \ {x};

if(ct != decrease) w = w_Des[c]+wA(a);
send (ToChange, act, a, c, w, Des) to b;
Anca = Anca∪{b}; }

8. wait (doneWt) fromall b∈Desa∪Anca;
9. while (Input != ∅) wConf = wConf + get(Input);
10. a.wt = a.wt - wConf;
11. if (ct = decrease) then

if (x = null) Con = Dec; else Con = c;
12. forall c∈Con {
13. forall b∈ Desc

a \ {x};
send (ToAct, TC(c, a, b), a, c, wc) to b;
Part = Part∪{b};

14. forall b∈ Ancc
a \ {x};

send (ToAct, TC(c, b, a), a, c, wc) to b;
Part = Part∪{b}; }

15. if (wc) then
16. wait (doneAct) fromall b∈Part;
17. while (Input != ∅) wConf = wConf + get(Input);
18. if (x != null) then send (doneAct, wConf) to x;
19. else a.cwt = wConf;
20. else if (ct = remove) then DelA = DelA ∪ {a};
21. if (ct = delete) then Desa = Desa\Desa;

Anca =Anca\Anca; }
The next protocol input is a message of the form mess = (act, x, c, w,

Rel), where act specifies should the agent a remove (act = delMe) agent x
from its ancestors (Rel = Anc) or descendants (Rel = Des) by connection c
(lines 1–6). In any case, the agent decreases its corresponding weights by w.
Decreasing of the weights affects weights of its successors and predecessors. The

124 N. Garanina et al.

agent initiates changing of the weights in line 7 and waits when it finishes (line
8). The local channel Input accumulates changing of these weights. The agent
sums the differences with its weight difference w df and sends the result to agent
x which has induced its weight change (lines 9–11). Its own weight should be
decreased by w df also (line 12).
Protocol of Agent a for its Weight Changing.

ChangeWeight(mess = (act, x, c, w, Rel)) :: {
int w_df;
agent b;
set of agents Parts;
set of int Input;

1. if(Rel = Anc) then w_Anc[c] = w_Anc[c] - w;
2. if(act = delMe) then Ancc

a = Ancc
a \ {x};

3. Parts = Desc
a;

4. else w_Des[c] = w_Des[c] - w;
5. if(act = delMe) then Desc

a = Desc
a \ {x};

6. Parts = Ancc
a;

7. forall b∈Parts send (ToChange, decMe, a, c, w, Rel);
8. wait (doneWt) fromall b∈Parts;
9. w_df = w*wC(c);
10. while(Input != ∅) w_df = w_df + get(Input);
11. send (doneWt, w_df) to x;
12. a.wt = a.wt - w_df; }

Outline of the main conflict-resolution algorithm performed by the agent-
master. Weights of agents are computed in parallel, then conflict weights of
conflict agents are computed in sequence. The conflict weights correspond to
degree of the agents’ influence to post-conflict weight of the system. During
computation of conflict weights, changes of the weight and connections of a
conflict agent are simulated. The difference between the whole system weights
before and after the simulation is calculated. Then the most influential agent
is chosen and its least influential conflict partner (the minor agent) performs
its conflict action resolving the conflict. If after the resolution there are conflict
agent in the system then the above steps repeat again. Correctness of the main
algorithm follows from correctness of weights computing and the proper choice
of a conflict for resolution due to inheritance property of a conflict set. Really, at
every resolution step the agent with the maximal impact to the system weight
has to remain in the system.

Outline of the weight computing algorithm performed by every system agent.
Parallel computation starts with agents without descendants/ancestors. Con-
nection’s ancestors/descendants of every agent accumulate the values from the
connection’s descendants/ancestors. They sum these values with their worth and
send this sum to the connection’s ancestors/descendants. The own weight of an
agent is the sum of its worth and weight values of all connections. Correctness

Conflict Resolution in Multi-agent Systems with Typed Connections 125

of the algorithm is based on acyclicity of every connection and could be proved
by induction on a structure of the connection graph.

Outline of the conflict weight computing algorithm performed by the conflict
agents. The computation is started by a conflict agent. It can remove itself from
the system with all its connections, or delete some of its connections, or decrease
its worth for some of its connections. In every case, its weight and the weights
of partners linked with the agent by these connections are decreased. Hence the
agent launches computations of these weight changes. It waits for the end of all
computations to guarantee their correctness. Before the computations start, the
agent fixes the system weights difference caused by itself directly without taking
into account the weight differences caused by involved agents. To calculate the
latter differences, the agent launches computations of induced conflict weights of
the involved agents in recursive and parallel mode. Due to additivity of conflict
weights and acyclicity of connections the conflict weight computation is correct.
This fact could be proved by induction on a structure of the connection graph.

A time complexity of recursive parallel algorithms for weights, changes of
weights, and conflict weights computations depends on number of connections
and is equal to O(n2), where n is the number of the system agents. The most
complicated computation of the main algorithm is the sequential computation
of the conflict weights. It takes O(n3) time. Hence, the general time complexity
of the multi-agent algorithm for construction of the conflict-free set of agents is
equal to O(n3).

4 Ambiguity Resolution

The proposed algorithm is applicable for conflict resolution to resolve ambigui-
ties (homonymy) in the framework of ontology population from natural language
texts. Paper [4] presents the basic algorithm of semantic analysis of a natural
language text for a given domain ontology. In this multi-agent algorithm, agents
of two main kinds interact: information agents correspond to meaningful units of
the information being retrieved, and rule agents implement population rules of a
given ontology and a semantic-syntactic model of a language. The result of the
algorithm is a multi-agent system composed of information (class and relation)
agents and lexical objects related to instances of classes and relations of the
ontology. However, due to the features of natural language, several information
agents may correspond to the same fragments of the text. This fact generates
semantic ambiguity: the ontology can be populate by the only one of them. In
the paper [5] we proposed to evaluate the cardinality of agents’ contexts, i.e.
how much an agent is related with the other agents of the resulting system via
the information contained in it, and to choose the agents the most integrated
in the text. The resulting system can be regarded as multi-agent information
system with typed connections and the conflict resolution algorithm, removing
the less integrated agents from the system, can be used for resolving ambiguity.
This multi-agent system is a system of information dependencies. In these sys-
tems agents can use information from predecessors and can pass the (processed)

126 N. Garanina et al.

information to successors. Naturally, there are no cycles because of information
transfer. The weight functions for agents and winners in conflicts should corre-
spond to information worth of agents and their connectivity with other agents.
Note, that in information systems only descenders can be involved in a conflict.

Let AO be a finite set of information agents and Atr be a set of attributes of
information agents. For a1, a2 ∈ AO we say that

– a1
αtut

−→ a2 if there is a rule which updates a2 using attribute α from a1;
– a1

αpar

−→ a2 if there is a rule which generates a2 using attribute α from a1;

– a1
apar
1−→ a2 if a2 is a relation agent and there is a rule which generates a2 using

class agent a1 or an object agent from relation agent a1.

We define the system as a tuple SO = (AO, CO, IO
C , wO

C , wO
A , TO

A , TO
C), where

– AO is a finite set of information agents;
– CO = {α ∈ Atr | ∃a, b ∈ AO : a

α−→ b} ∪ {a ∈ AO | ∃b ∈ AO : a
a−→ b}

– mapping IO
C : C −→ 2A×A connects two agents a, b ∈ AO: IO

C (c) = (a, b) iff
a

c−→ b;
– mapping wO

A : A −→ 1 is a worth function for agents;
– mapping wO

C : C −→ 1 is a worth function for connections;
– mapping TO

A : A −→ {remove} × ∅ permits only removal of conflict agents;
– mapping TO

C : C × A × A −→ {remove, delete} defines types of connections:

TO
C (c, a, b) = remove iff a

cpar

−→ b and TO
C (c, a, b) = delete iff a

ctut

−→ b.

For performing the suggested conflict resolution algorithm the base protocols
for information and rule agents should be expanded by features to store infor-
mation about generating and updating agents. For this purpose, on generating
(updating) agent a by attribute α or object agent b, a rule agent sends

1. the name of generated (updated) agent a with information about typed con-
nection cpar (ctut) to owners of the attribute or object, and

2. a list of names of the attribute or object owners with information about typed
connection cpar (ctut) to agent a.

The agents store these data in descendant and ancestor lists respectively.
Set of conflicts ConfO corresponds to ambiguities in a text and can be cal-

culated using information about text positions of information agents. It satisfies
inheritance property due to transferring information about values of attributes
or objects, which correspond to appointed text position. Now we can apply the
above algorithm of conflict resolution to multi-agent system SO generated by
the enriched basic algorithm and then use the ambiguity-free set of information
agents for ontology population.

Consider now the performance of the conflict resolution algorithm in a par-
ticular case of syntactic ambiguity in the following sentence:

On October 22, 2013, an official ceremony was held in the Nenets Autonomo-
us District to mark the start of pilot oil production at the A. Titov field.

Conflict Resolution in Multi-agent Systems with Typed Connections 127

We consider Energetics as an ontology subject domain. Thesaurus of this
subject area among others should contain single-word terms pilot, oil and pro-
duction together with multi-word terms pilot oil and oil production. Thus the
ambiguity in the example above is the following:

[[pilot [oil production]] ←→ [[pilot oil] production]]
During the multiagent algorithm initialization for the above sentence the

following lexical objects L1–L5 is created with semantic attributes from the the-
saurus (see Fig. 1). As a result of main stage of multiagent algorithm by the
means of rule-agents implementing search of information concerning activities
related to the oil production, an informational agents I1–I4 and R1–R3 corre-
sponding to the ontological classes and relations is created.

Fig. 1. An example of conflicting agents.

Thus the main stage of the analysis in our example results in the following
list of conflicts: (L1,L2), (L2,L3), (L3,L4), (I1,I2), (I3,I4), (R1,R2). Calculated
weights of agents are also depicted at Fig. 1. The conflict resolution algorithm
deletes agents L2, I1, and R1 at the first iteration, and L4 and I4 at the second
one. The result of the algorithm is the set of information agents I2, I3, I5, R2,
and R3. Thereby all remaining conflicts are resolved automatically.

128 N. Garanina et al.

5 Conclusion

This paper proposes to consider a special kind of multi-agent systems with typed
connections. For the operation of such systems, the weight and type of relations
between the agents is of particular importance. In particular, conflict resolu-
tion for agents is based on the comparison of agents’ weights depending on the
quantity and quality of connections within the system. We study the conflict
resolution process in information systems, in which connections of agents are
determined by the transfer of information. The suggested algorithm of conflict
resolution is based on the calculation of agents’ weights and their impact on the
state of the system in the process of conflict resolution. An extended multi-agent
system of the semantic analysis of natural language text for ontology population
is an information system with typed connections. It is shown that the algorithm
of conflict resolution can be used to resolve contextual ambiguity that often
arises in the analysis of natural language texts.

In the near future we plan to give formal proofs of correctness of the algorithm
proposed and to estimate its time complexity. We propose use an ambiguity reso-
lution method based on this algorithm for ontology instances relied on unreliable
information. In a development process of our multi-agent system of text analysis
we intend to carry out integrated testing and to rate quality of these algorithms
in terms of accuracy and recall.

Acknowledgements. We would like to thank our colleague Igor Anureev for help
and discussions.

References

1. Alfawareh, H.M., Jusoh, S.: Resolving ambiguous entity through context knowledge
and fuzzy approach. Int. J. Comput. Sci. Eng. (IJCSE) 3(1), 410–422 (2011). ISSN:
0975-3397

2. Bergenti, F., Franchi, E., Poggi, A.: Selected models for agent-based simulation
of social networks. In: Proceedings of 3rd Symposium on Social Networks and
Multiagent Systems (SNAMAS 2011), pp. 27–32 (2011)

3. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.
MIT Press, Cambridge (1995)

4. Garanina, N., Sidorova, E., Bodin, E.: A multi-agent text analysis based on ontol-
ogy of subject domain. In: Voronkov, A., Virbitskaite, I. (eds.) PSI 2014. LNCS,
vol. 8974, pp. 102–110. Springer, Heidelberg (2015)

5. Garanina, N.O., Sidorova, E.A.: Ontology population as algebraic information sys-
tem processing based on multi-agent natural language text analysis algorithms.
Program. Comput. Softw. 41(3), 140–148 (2015)

6. De Gennaro, M.C., Jadbabaie, A.: Decentralized control of connectivity for multi-
agent systems. In: Proceedings of 45th IEEE Conference on Decision and Control,
pp. 3628–3633 (2006)

7. Huhns, M.N., Stephens, L.M.: Multiagent systems and societies of agents. In: Mul-
tiagent Systems, pp. 79–120. MIT Press (1999)

Conflict Resolution in Multi-agent Systems with Typed Connections 129

8. Kim, D.S., Barker, K., Porter, B.W.: Improving the quality of text understanding
by delaying ambiguity resolution. In: Proceedings of the 23rd International Con-
ference on Computational Linguistics (Coling 2010), Beijing, pp. 581–589, August
2010

9. Navigli, R.: Word sense disambiguation: a survey. ACM Comput. Surv. 41(2), 169
(2009)

10. Tel, G.: Introduction to Distributed Algorithms. Cambridge University Press,
Cambridge (2000)

11. Wooldridge, M.: An Introduction to Multiagent Systems. Willey & Sons Ltd.,
New York (2002)

Maximally-Polyvariant Partial Evaluation
in Polynomial Time

Robert Glück

DIKU, Department of Computer Science,

University of Copenhagen, Copenhagen, Denmark

Abstract. Maximally-polyvariant partial evaluation is a strategy for
program specialization that propagates static values as accurate as pos-
sible. The online partial evaluator presented here achieves this precision
in time polynomial in the number of partial-evaluation configurations.
This is a significant improvement because a conventional partial eva-
luator can take exponential time, and no fast algorithm was known for
maximally-polyvariant specialization. For an important class of quasi-
deterministic specialization problems, our algorithm performs in linear
time, even for linear-time specialization of a naive string matcher into
a linear-time matcher, which was Futamura’s long-standing open chal-
lenge. Our results are presented using a recursive flowchart language.

1 Introduction

Partial evaluation, also known as mixed computation, is a well-known technique
for program specialization based on aggressive constant propagation and exten-
sive call unfolding [11,24]. Maximally-polyvariant partial evaluation (polymax
PE) is a recent strategy that has no intentional loss of information and is as
accurate as possible in propagating static values [8]. It overcomes an inherited
limit [26] present in almost all partial evaluators of recursive languages, the
monovariant specialization of procedure exits. The increased accuracy allows a
maximally-polyvariant partial evaluator to achieve, among others, the Bulyonkov
effect [7], that is, constant folding while specializing an interpreter.

However, accuracy has its price: specialization time. A straightforward real-
ization of such a partial evaluator can take exponential time for specializing pro-
grams. The online partial evaluator presented in this paper achieves the same
precision in time polynomial in the number of partial-evaluation configurations.
For an important class of quasi-deterministic specialization problems our algo-
rithm performs in linear time, which includes Futamura’s long-standing open
challenge [14]: the linear-time specialization of a naive string matcher into a
linear-time matcher. Previously it was conjectured that a binding-time-improved
naive matcher would expose enough static computations to the caching of a
hypothetical memoizing partial evaluator [1]. However, no such partial evalua-
tion method existed and the binding-time improvements were not trivial. Our
solution to Futamura’s challenge involves applying a new algorithm to a naive

c© Springer International Publishing Switzerland 2016
M. Mazzara and A. Voronkov (Eds.): PSI 2015, LNCS 9609, pp. 130–148, 2016.
DOI: 10.1007/978-3-319-41579-6 11

Maximally-Polyvariant Partial Evaluation in Polynomial Time 131

string matcher that is similar to a deterministic pushdown matcher [3]. The naive
matcher is thereby specialized into an efficient linear-time matcher in linear time.
This is remarkable because both parts of Futamura’s challenge are solved. Pre-
viously, it was unknown that the KMP test [28] could be passed by an accurate
partial evaluator without sophisticated binding-time improvements. Known solu-
tions to the KMP test include Futamura’s generalized partial computation uti-
lizing a theorem prover [14], Turchin’s supercompilation with unification-based
driving [18], and various binding-time-improved matchers [1,9]. Our approach
provides fresh insights into fast partial evaluation and accurate program staging.

We present our results using a recursive flowchart language, as it is commonly
used for studying the principles of partial evaluation (e.g., [6,15,19,21,23]),
which should make our results readily comparable and comprehensible.

To summarize, the main contributions of this investigation are

– a method for maximally-polyvariant partial evaluation in polynomial time
that speeds up to linear time for quasi-deterministic specialization problems,

– a solution to Futamura’s challenge, a classic problem of partial evaluation.

As a result, a class of specialization problems can now be solved faster than before
with high precision, which may enable faster Ershov’s generating extensions [11],
e.g., for a class similar to Bulyonkov’s analyzer programs [6]. This is significant
because super-linear program staging by partial evaluation becomes possible: the
time to run the partial evaluator and its residual program is linear in the input,
while the original program is not, as for the naive matcher.

In Sect. 2, we define the recursive flowchart language. Section 3 lays out
maximally-polyvariant partial evaluation, and presents our main technical result,
the polynomial-time graph-based algorithm. In Sect. 4, we present the linear-
time specialization of a naive string matcher. Section 5 discusses related work,
and Sect. 6 concludes the paper.

We assume the reader is familiar with the basic notions of partial evaluation
(a good source is [21] or [24, Part II]).

2 A Recursive Flowchart Language

The basic aspects of computation in a flowchart language are store transforma-
tions by assignments and control transfers by jumps. Our recursive flowchart
language has been slightly modified from that in [8] but has the same format.1

Syntax. Figure 1 defines the abstract syntax of the language. A program is a
sequence of labeled basic blocks containing either an assignment and a jump, a
call, or a return statement. An assignment x := o(x∗) contains the application of
an n-ary operator o to arguments x∗. For simplicity, only variables are allowed as
arguments. Nested expressions can be built using several assignments. Constants
are represented by nullary operators.

1 Multiple return variables; tests are evaluated in the assignment-updated store.

132 R. Glück

Grammar
q ::= b+

b ::= l : a j
| l : call l l
| l : return x∗ l

a ::= x := o(x∗)
j ::= case t(x∗) l+

Syntax Domains

q ∈ Programs
b ∈ Basic-Blocks
a ∈ Assignments

j ∈ Jumps
l ∈ Labels
x ∈ Variables

o ∈ Operators
t ∈ Tests

Fig. 1. Syntax of the recursive flowchart language

A jump case t(x∗) l+ contains the application of an n-ary test t to argu-
ments x∗ and labels l+. Control will be transferred to one of the labels in l+.

A call statement call l′ l′′ transfers control to a procedure whose entry block
is labeled l′ and copies the whole store. When the procedure returns, control is
transferred to label l′′ (possibly offset by the label in the return statement; see
below) and the values of the specified variables are copied back into the original
store. We do not demand a distinguished entry point of a procedure; one may
call to any basic block in a program, from where execution will then proceed
until a return statement is met.

A return statement return x∗ l returns the values of variables x∗ to the call.
It also includes an offset label l which is “added” to the return label given in the
call. The offset makes it easy to return to different basic blocks. The special label
nil ∈ Labels is used as the empty label. We assume that the concatenated target
labels all exist in the program. A conventional return corresponds to return x nil.

A program q is represented by a block map Γ that maps label l into the basic
block labeled l in q. We assume that every program q considered is well-formed.

Programs are written in a concrete syntax using syntactic sugar. For example,
we write goto l instead of case ttrue() l, and several assignments in a basic block.
The string matcher is such a program (Fig. 7).

Semantics. Evaluation of a program proceeds sequentially from one block to
another. A computation state is a pair (l, σ) that contains label l of the current
basic block and the values of the program’s variables in store σ. A store σ ∈
Stores is a partial function from Variables to Values. We denote by variable
update σ[x �→v] the store like σ except that x maps to v, by store update σ·σ′

the store like σ except that all variables in σ′ map to their value in σ′, and by
selection σx1,...,xn

the store that maps x1, . . . , xn to their value in σ. A stack of
states r ∈ Stacks represents the current state of execution of a program.

The rules in Fig. 2 define a transition relation →int between stacks of states.
A judgment ��Γ r →int r′ represents a transition from stack r to stack r′ in

Maximally-Polyvariant Partial Evaluation in Polynomial Time 133

Assignment
∀i . σ(xi) = vi [[o]](v1, . . . , vn) = v

σ � x := o(x1, . . . , xn) ⇒ σ[x �→v] (E1)

Jump
∀i . σ(xi) = vi [[t]](v1, . . . , vn, l1, . . . , lm) = l

σ � case t(x1, . . . , xn) l1, . . . , lm ⇒ l (E2)

Basic Block
Γ (l) = a j σ � a ⇒ σ′ σ′ � j ⇒ l′

��Γ (l, σ) :r →int (l′, σ′) :r (E3)

Γ (l) = call l′ l′′

��Γ (l, σ) :r →int (l′, σ) : (l′′, σ) :r (E4)

Γ (l) = return x1, . . . , xn l′′

��Γ (l, σ) : (l′, σ′) :r →int (l′, σ′)·(l′′, σx1,...,xn) :r (E5)

Semantic Values

r ∈ Stacks = (Labels × Stores)∗

l ∈ Labels = Block-Labels ∪ { nil }
σ ∈ Stores = Variables⇀Values
Γ ∈ Block-Maps = Block-Labels⇀Basic-Blocks

Fig. 2. Operational semantics of the recursive flowchart language

program Γ . The rules are defined with respect to the semantics of Operators
and Tests. Each test name is mapped to a function from value/label tuples to
labels e.g.: [[t]](v1, . . . , vn, l1, . . . , lm) = l . We assume that the test always returns
one of its input labels, l ∈ {l1, ..., lm}, and that the outcome of the test does not
depend on those labels, only on v1, . . . , vn.

At a call, the current store is paired with the return label then pushed on the
call stack, and control is shifted to the called label. On return, the state is popped
off the stack and evaluation continues at state (l′, σ′)·(l′′, σ′′) = (l′·l′′, σ′·σ′′),
where l′′ is the offset label and σ′′ = σx1,...,xn

is the returned store. We regard
labels as strings, and use an auxiliary function, ·, to concatenate labels (e.g.,
cont·ab = contab). The empty label, nil, is syntactic sugar for the empty string
(e.g., nil·ab = ab). A call statement can specify an empty label, call l nil, as long
as the offset label in the return exists in the program. The rules of the operational
semantics are straightforward and should not need particular explanation.

3 Maximally-Polyvariant Partial Evaluation

A partial evaluator tries to precompute as much as possible, given part of a pro-
gram’s input. The essential difference between interpretation and partial evalu-
ation is that a partial evaluator operates over a partial store in which values of
the variables are not all known. Abstractly, three steps are performed [21,23]:

134 R. Glück

1. Collection of all reachable configurations.
2. Block specialization and code generation.
3. Post-processing of the residual program.

Starting from an initial configuration containing a partial store, the first step
of partial evaluation determines the set of all reachable configurations. The sec-
ond step produces specialized blocks for the residual program using the reachable
configurations. The third step, post-processing, performs conventional local opti-
mizations and eliminates redundant code (e.g., jumps caused by blocks chained
by one-way jumps). The two last steps can be performed in time linear in the
number of reachable configurations and will not be considered further (cf. [21]).
We will focus on the key problem of a fast collection.

To distinguish known (static) and unknown (dynamic) values, we use a
special value D �∈ Values. A partial store is a store σ that maps variables to
ValuesD = Values ∪ {D } such that

– If a variable x has a static value v, then σ(x) = v.
– If a variable x has a dynamic value, then σ(x) = D .

A variable x is either static or dynamic: there are no partially static values. A
configuration (l, σ) consists of a label l and a partial store σ, and represents a set
containing all states in which the static variables are fixed to their static values
in the configuration. Below we refer to partial stores simply as stores.

Block traversal. We give the rules for handling the three types of basic blocks,
and then use the rules to define an (inefficient) stack- and an (efficient) graph-
based collection. The four rules B1–B4 for assignments and jumps in Fig. 3 are
simple. The evaluation of operators (tests) now depends on the partial store σ.
If all arguments of an operator (test) are static, it is evaluated. Otherwise, in the
case of an assignment, the value of x becomes dynamic. In the case of a test, all
labels in the jump are returned (i.e., all labels to which control might be passed).
Dynamic tests lead to branching traces in partial evaluation (all possible control
flows have to be considered when collecting the reachable configurations).

The traversal of a basic block is formalized as a judgment �Γ c ⇒ P that
relates a configuration c to a set of steps P , which determines how to proceed
with the collection. The next step can be forward (↑↑) to a new configuration or
return (↓↓) with a configuration. The rules B5–B7 at the bottom of Fig. 3 define
P . An assignment block yields a set of several forward steps if the test is dynamic,
P = {↑↑(c, c1), . . . , ↑↑(c, cm)}, a singleton otherwise. A call block yields a forward
step containing caller c, callee c′, and continuation c′′, P = { ↑↑((c, c′′), c′) }. A
return block yields a step that returns c′, called a terminator of c, P = { ↓↓(c, c′) }.

In general, a step p ∈ P has the form

p ::= ↑↑(k, c) | ↓↓(k, c)
k ::= c | (c, c) | ()

where ↑↑(k, c) is a step forward from a predecessor k to a configuration c, and
↓↓(k, c) returns a terminator c to k. A predecessor k can be a single configuration,

Maximally-Polyvariant Partial Evaluation in Polynomial Time 135

Assignment
∀i . σ(xi) = vi [[o]](v1, . . . , vn) = v

σ �pe x := o(x1, . . . , xn) ⇒ σ[x �→v] (B1)

∃i . σ(xi) = D

σ �pe x := o(x1, . . . , xn) ⇒ σ[x �→D] (B2)

Jump
∀i . σ(xi) = vi [[t]](v1, . . . , vn, l1, . . . , lm) = l

σ �pe case t(x1, . . . , xn) l1, . . . , lm ⇒ { l } (B3)

∃i . σ(xi) = D

σ �pe case t(x1, . . . , xn) l1, . . . , lm ⇒ {l1, . . . , lm} (B4)

Basic Block
Γ (l) = a j σ �pe a ⇒ σ′ σ′ �pe j ⇒ L

�Γ (l, σ) ⇒ { ↑↑((l, σ), (l′, σ′)) | l′ ∈ L } (B5)

Γ (l) = call l′ l′′

�Γ (l, σ) ⇒ { ↑↑(((l, σ), (l′′, σ)), (l′, σ)) } (B6)

Γ (l) = return x1, . . . , xn l′′

�Γ (l, σ) ⇒ { ↓↓((l, σ), (l′′, σx1,...,xn)) } (B7)

Fig. 3. Traversing a basic block with a configuration (l, σ)

a pair of configurations, or empty. When empty, it is denoted by (), as in the
case of an initial configuration which has no predecessor.

3.1 Stack-Based Collection of Reachable Configurations

Intuitively, to collect all reachable configurations, all possible computation traces
through a program have to be followed, starting from an initial configuration.
Rather than relating stacks of call states (like →int), the stack-based collection
relates stacks of predecessors. Every configuration passed during a forward step
is placed on the stack. Understanding the stack-based collection will be useful
when we introduce an efficient graph-based collection.

Let c0 = (l0, σ0) be the initial configuration where l0 is the initial label of a
program Γ and σ0 is the store holding the values of the static variables given as
input to the partial evaluator (all other variables are dynamic). A configuration
c is considered reachable from c0 if it is the target of a forward step ↑↑(k, c). The
set of reachable configurations is the set of configurations in the closure:

Polystack = { c | ��Γ 〈↑↑((), c0), ε〉 →∗
stack 〈↑↑(k, c), r〉 } .

The collection starts with the initial step ↑↑((), c0) and the empty stack ε. Figure 4
defines the three collection rules S1–S3 of relation →stack . The rules are similar

136 R. Glück

Step
�Γ c ⇒ P p ∈ P

��Γ 〈↑↑(k, c), r〉 →stack 〈p, k :r〉 (S1)

��Γ 〈↓↓(c, t), k :r〉 →stack 〈↓↓(k, t), r〉 (S2)

��Γ 〈↓↓((c, c′), t), r〉 →stack 〈↑↑(c, c′·t), r〉 (S3)

Semantic Values

r ∈ Stacks = Preds∗

p ∈ Steps = ↑↑(Preds × Configs) ∪ ↓↓(Preds × Configs)
k ∈ Preds = Configs ∪ (Configs × Configs) ∪ { () }
c ∈ Configs = Labels × Pe-Stores
σ ∈ Pe-Stores = Variables⇀(Values ∪ {D })

Fig. 4. Stack-based collection of reachable configurations

to the original semantics in Fig. 3 except that the transition sequence may branch
and that every predecessor is pushed on the stack.

The first rule S1 for a ↑↑-step selects a step p ∈ P among those determined by
the block traversal, and pushes the predecessor k of c on the stack r. The last two
rules S2 and S3 for ↓↓-steps propagate a terminator t down the stack until the most
recent call is on top (a configuration pair). Rule S3 mimics the return-block rule
E5 of the original semantics, and yields a ↑↑-step to the following configuration
obtained by updating the continuation configuration with terminator t.

A partial evaluator can produce a residual program if the set of reachable
configurations is finite. This is the case when the static values in the stores of the
reachable configurations vary only finitely. Because this is not always the case,
the partial evaluator defined by the rules in this paper may not terminate for
every initial configuration c0 of a program Γ , which for non-trivial specialization
is considered acceptable in most of the literature on partial evaluation.

Maximally polyvariant. A distinguishing feature of the collection is that all basic
blocks are handled in a polyvariant manner. There is no intentional loss of static
values due to generalization of configurations. A call can have multiple termi-
nators due to branching transitions, which leads to multiple configurations that
need to be explored after a call. This polyvariant handling of terminators avoids
the monovariant return approximation of conventional partial evaluators [24], in
which the result of a call is dynamic if one of its arguments is dynamic. The par-
tial evaluator defined by the rules in Figs. 3 and 4 is maximally polyvariant [8].
Among others, it achieves the Bulyonkov effect [7], that is, constant folding while
specializing an interpreter. However, accuracy has its price. Multiple termina-
tors are the “complexity generator” of maximally polyvariant partial evaluation
because multiple continuations need to be explored after a call, and this degree

Maximally-Polyvariant Partial Evaluation in Polynomial Time 137

of branching is not bound by a program-dependent constant, but depends on the
static values in the initial configuration c0. In a conventional partial evaluator, a
recursive call has at most one terminator regardless of the initial configuration.

3.2 Graph-Based Collection of Reachable Configurations

A naive implementation of the stack-based rules in Fig. 4 may take exponential
time to collect all reachable configurations. The same transition sequence may
be repeated many times, and there is no way in which one could reuse steps done
previously. It may be nonterminating even if the set of reachable configurations
is finite because the stack may grow forever without reaching new configurations.
Both problems can be avoided by taking advantage of the following observation
about sharing transitions sequences and terminators [16].

Observation 1 (terminator sharing). For any program Γ, the following
implication holds for all configurations c, t, predecessors k, and stacks r:

��Γ 〈↑↑((), c), ε〉 →∗
stack 〈↓↓((), t), ε〉 =⇒ ��Γ 〈↑↑(k, c), r〉 →∗

stack 〈↓↓(k, t), r〉 .

That is, if a step to a configuration c in an empty context (empty predecessor,
empty stack) yields a terminator t, so will a step to c in any context (k, r). We
will use this observation in two ways to avoid redundant transitions.

1. Once t is known as a terminator of c, it can be reused. To illustrate this,
suppose we reach c in two different contexts, 〈↑↑(k1, c), r1〉 and 〈↑↑(k2, c), r2〉. Then
we can make a shortcut using t without repeating the intermediate transitions:

�Γ 〈↑↑(k1, c), r1〉 →shortcut 〈↓↓(k1, t), r1〉 ,
�Γ 〈↑↑(k2, c), r2〉 →shortcut 〈↓↓(k2, t), r2〉 .

2. If the same terminator is returned into the same context, the subsequent
transitions are identical. To illustrate this, suppose two configurations c1 and c2
that return the same terminator t are reached in the same context, 〈↑↑(k, c1), r〉
and 〈↑↑(k, c2), r〉. Then the transitions following 〈↓↓(k, t), r〉 need not be repeated:

��Γ 〈↑↑(k, c1), r〉 →∗
stack 〈↓↓(k, t), r〉 ,

��Γ 〈↑↑(k, c2), r〉 →∗
stack 〈↓↓(k, t), r〉 .

The central idea of the graph-based rules is to take advantage of these properties.
Instead of following each single path, as with the stack-based rules, we will search
concurrently along all paths for reachable configurations. A forward step (↑↑) then
traverses a forward edge in a directed graph, which may be cyclic, and a return
step (↓↓) propagates a terminator backward along an edge. We define the rules
such that the collection (i) traverses an edge just once, and (ii) returns the same
terminator along an edge just once. For this we memoize the predecessors (in a
relation K) and the terminators (in a relation T) of each configuration. Relation
K is the reverse graph that points from configurations to their predecessors.

We write K(c) = { k | (c, k) ∈ K } to denote the predecessors of c in K, and
T (c) = { t | (c, t) ∈ T } to denote the terminators of c in T . Then k ∈ K(c)

138 R. Glück

Step
K(c) = ∅ �Γ c ⇒ P

��Γ 〈↑↑(k, c), K, T 〉 →pe 〈P, K ∪ (c, k), T 〉 (R1)

K(c) �= ∅ k �∈ K(c)

��Γ 〈↑↑(k, c), K, T 〉 →pe 〈{ ↓↓(k, t) | t ∈ T (c) }, K ∪ (c, k), T 〉 (R2)

t �∈ T (c)

��Γ 〈↓↓(c, t), K, T 〉 →pe 〈{ ↓↓(k, t) | k ∈ K(c) }, K, T ∪ (c, t)〉 (R3)

��Γ 〈↓↓((c, c′), t), K, T 〉 →pe 〈{ ↑↑(c, c′·t) }, K, T 〉 (R4)

Control
��Γ 〈p, K, T 〉 →pe 〈P ′, K′, T ′〉

��Γ 〈p � P , K, T 〉 →pe 〈P ∪ P ′, K′, T ′〉 (C1)

��Γ 〈p, K, T 〉 →pe�
��Γ 〈p � P , K, T 〉 →pe 〈P, K, T 〉 (C2)

Semantic Values (See Fig 4.)

Fig. 5. Graph-based collection of reachable configurations

means that k is a predecessor of c, and t ∈ T (c) that t is a terminator of c. We
often omit the parenthesis around singletons, e.g., T ∪ (c, t) is T ∪ { (c, t) }.

The set of reachable configurations is the set of configurations in the closure:

Polygraph = { c | ��Γ 〈{ ↑↑((), c0) }, ∅, ∅〉 →∗
pe 〈↑↑(k, c) ∪ P ,K, T 〉 } .

The collection starts with a pending set P that contains the initial step ↑↑((), c0),
and empty sets K, T . Figure 5 defines the six collection rules of relation →pe .
Set P is maintained by two control rules (C1, C2). C1 adds steps P ′ to P if
one of the four rules (R1–R4) applies to a step p in the pending set. If none of
the four rules applies, p is removed by C2 (� is the union of disjoint sets). The
control rules can be applied in any order and until the pending set is empty.

The application of rules R1–R4 maintains two invariants for all c:

K(c) �= ∅ =⇒ c “was traversed” ,

k ∈ K(c) ∧ t ∈ T (c) =⇒ ↓↓(k, t) “was generated” .

R1 ↑↑(k, c): A basic block is traversed with configuration c, �Γ c ⇒ P , if this
was not done before, K(c) = ∅. The first predecessor k of c is recorded by adding
k to K(c). Each application of R1, as well as of R2 and R3, disables a condition
that enabled it (here, K(c) �= ∅ afterwards).

R2 ↑↑(k, c): If c is reached from a new predecessor, k �∈ K(c), and c was already
traversed, K(c) �= ∅, all known terminators t ∈ T (c) are returned to k, and the
invariant is maintained by adding k to K(c). Note that even if no terminator
has yet been found for c, k is recorded as a predecessor of c.

Maximally-Polyvariant Partial Evaluation in Polynomial Time 139

R3 ↓↓(c, t): A terminator t passed back to c is only propagated to the prede-
cessors of c, K(c), if t is a new terminator of c, that is t �∈ T (c). The invariant is
maintained by adding t to T (c); otherwise, ↓↓(k, t) was already added to P .

R4 ↓↓((c, c′), t): Essentially the same as the corresponding rule S3 in Fig. 4.
We state without proof: For all Γ and all initial c0, Polystack = Polygraph .

Termination. If the set of reachable configurations is finite for a given program
Γ and initial c0, the transition sequence terminates with an empty pending set:

��Γ 〈{ ↑↑((), c0) }, ∅, ∅〉 →∗
pe 〈∅,K, T 〉

If the set of reachable configurations is finite, so is the set of possible steps. Rule
C1 adds new steps to P as long as a R1–R4 rule applies to some p in P , but
this can only be the case a finite number of times. Each application of R1–R3
disables a condition that enabled it (e.g., if t �∈ T (c) before applying R3, then
t ∈ T (c) afterwards). Thus, only a finite number of steps can be added by R1–R3,
including ↓↓-steps. This limits how often R4 can turn a ↓↓- into a ↑↑-step. Hence,
rule C2 eventually removes all steps from P , and no more rules apply.

Polynomial-Time Complexity. We will now show that the time to collect all
reachable configurations is (i) cubic in the number of reachable configurations,
and (ii) polynomial in the static variety of the program variables. We begin by
assuming a suitable data structure for sets such that the union of two sets with
cardinalities u and v takes at most time O(u+ v), and the creation of a set from
n elements takes at most time O(n). Set operations that take constant time are
testing the membership of an element, and picking and removing an element
from a set. We assume a random-access machine with a uniform cost model.

Let n be the number of reachable configurations for a given program Γ and
initial c0. Then sets K and T contain at most O(n2) elements, and there are
at most O(n2) steps of the form ↑↑(k, c) and ↓↓(k, t). (There are at most O(n)
predecessors k = (c1, c2) because the stores in c1, c2 are by construction in B6
always identical.) Any subset K(c) and T (c) has at most O(n) elements.

Assuming that the evaluation of primitive operators o and tests t takes con-
stant time, the traversal of a basic block, �Γ c ⇒ P , takes constant time (Fig. 3).

The time to perform the collection depends on how many steps are added
to P by C1 (Fig. 5). Steps can only be added by C1 if a R1–R4 rule applies to
some p. R1 can only be applied once to each of the n configurations, and each
application yields O(1) steps. R2 and R3 can only be applied once to each of
the O(n2) possible steps, and each application yields at most O(n) steps. Thus,
R1–R3 can add up to O(n3) steps. R4 cannot be applied more often than the
↓↓-steps added by R1–R3. Together, C1 and C2 apply at most O(n3) times. Thus,
the collection time is cubic O(n3) in the number of reachable configurations.

The number of reachable configurations, n, depends on the number of stores,
which depends on the number of static values to which each variable in a given
program can be bound during the collection (there is only one dynamic value D).

140 R. Glück

Assuming that each of the j program variables is bound at most to m static val-
ues, there are at most O(mj) different stores, where j is a program-dependent
constant. Thus, there are at most O(mj) reachable configurations. The collec-
tion takes time O(n3), and thus is polynomial O(mj) in the static variety m, a
function of the initial configuration c0. (This coincides with the time to simulate
2N-PDAs with j heads on a read-only input tape of length m [2].)

Linear-time case. The time to collect the reachable configurations is dominated
by the number of steps added to P . If we identify conditions under which only a
linear number of steps is added, the collection takes linear time. Among R1–R4
in Fig. 5, R2 and R3 are the “complexity generators” as each application can
produce O(n) steps depending on the size of sets T (c) and K(c), respectively.

Table 1. Linear-time case: configuration types and their predecessors and terminators

c |C(c)| |K(c)| |T (c)|
x O(1) O(1) O(n)

y O(1) O(n) O(1)

z O(n) O(1) O(1)

Σ O(n) O(n) O(n)

Consider a set of reachable configurations, C, that consists of three disjoint
sets X, Y , Z such that C = X�Y �Z. We assume every x ∈ X, y ∈ Y , z ∈ Z has
the number of predecessors, |K(·)|, and terminators, |T (·)|, given by Table 1, and
there are O(1) configurations in X and Y , and O(n) in Z. Then the size of sets
K and T is O(n). It is easy to verify that there are at most O(n) applications of
R1–R4 producing in total at most O(n) steps. Thus, the collection time is O(n).
(This coincides with the time to simulate 2D-PDAs, which is linear in the length
of the read-only input tape [10].) The specialization of a naive matcher below
can be carried out in linear time because it is an instance of this special case.

Block Specialization. Block specialization can be done in time linear in the
number of reachable configurations and generates residual programs of size lin-
ear in the number of reachable configurations (at most one block per configu-
ration) [8,19]. Importantly, all static calls are replaced by unconditional jumps.
The return configuration of a static call c is the terminator t in singleton T (c).
Replacing static calls by their static result is standard in partial evaluation [24].
It ensures that static calls are not evaluated again by the residual program.

4 Linear-Time Specialization of a Naive String Matcher

The specialization of a naive string matcher into an efficient linear-time matcher
is a classic problem of partial evaluation first considered in 1987 [14]. Given

Maximally-Polyvariant Partial Evaluation in Polynomial Time 141

an inefficient quadratic-time matcher that searches for the first occurrence of a
pattern p in a string s, the task of a partial evaluator is to specialize the matcher
with respect to p into a residual matcher that searches for p in a string in linear
time. Let m be the length of a pattern p and let n be the length of a string s,
then two types of problems arise [12]:

1. Can we obtain for any p an O(n)-time residual matcher of size O(m) by
partial evaluation of the naive matcher?

2. Can we obtain from the naive matcher and the partial evaluator an O(m)-time
program generator that produces matchers of Type 1 for any p?

The Type 1 problem was solved in different ways by several partial evaluators,
including generalized partial computation by employing a theorem prover [13],
perfect supercompilation based on unification-based driving [18], and offline par-
tial evaluation after binding-time improvement of a naive matcher [9]. The solu-
tions were thoroughly investigated in several publications (see [1] for references).

The Type 2 problem remained unsolved until this study, though it had been
pointed out [1] that manual binding-time improvement of a naive matcher could
expose static functions to the caching of a hypothetical memoizing partial eva-
luator. However, no such method for partial evaluation existed.

We are going to show that the graph-based partial evaluation method that we
introduced in Sect. 3 solves both types of problems. Our method relies solely on
maximally-polyvariant constant propagation, and not the addition of a theorem
prover, perfect driving, or sophisticated binding-time improvements.

A new approach. We approach Futamura’s challenge from a new angle. It was
noted [3, p. 336], [25, p. 338] that a naive matcher programmed as a 2-way
deterministic pushdown automaton (2D-PDA) can be simulated in linear time
O(m + n) given p and s using Cook’s construction [10]. This is noteworthy
because the same matcher run as a standard PDA takes quadratic time O(m ·n).

We are going to use such a matcher as the source program for our partial
evaluator. We assume that the reader is familiar with the basics of PDA, and
recalls that they consist of a stack, a read-only tape, and a finite-state control.
The sets of stack symbols, tape symbols, and states are fixed for a given PDA.

To understand how to write such a matcher in our flowchart language
(Sect. 2), we are first going to look into the workings of a naive pushdown
matcher taken from the literature [3, p. 338]. It is not a common practice to
imitate a pushdown automaton in a recursive language, but this approach will
lead us to our goal of improving the asymptotics of both problem types from
quadratic to linear.

Naive pushdown matcher. Figure 6 shows the naive matcher written in a push-
down programming language [5] with instructions that push and pop the stack
(push, pop), move the tape head (left, right), test the symbol on the stack top
and under the tape head (iftop=, iftape=), test the emptiness of the stack and
the end of the tape (bottom?, rightend?), and halt (accept, reject). The input
on the read-only tape has the form sn . . . s1$p1 . . . pm where sR = sn . . . s1 is the

142 R. Glück

(copy ((iftape= A) (push A) right (goto copy)) ; copy A to stack
((iftape= B) (push B) right (goto copy)) ; copy B to stack
((iftape= $) right (goto compare))) ; start match

(compare (rightend? accept) ; p did match
(bottom? reject) ; p didn’t match
((iftape= A) (iftop= A) pop right (goto compare)) ; both are A

((iftape= B) (iftop= B) pop right (goto compare)) ; both are B

(left (goto restore))) ; p isn’t prefix

(restore ((iftape= A) (push A) left (goto restore)) ; restore A

((iftape= B) (push B) left (goto restore)) ; restore B

((iftape= $) pop right (goto compare))) ; restart match

Fig. 6. A naive string matcher in a 2D-PDA language (adapted from [5])

((p s) (match) ; match(p,s)
(match ((t := '()) (q := '())) (goto copy)) ; initialize

(copy (if (pair? s) spush compare)) ; start match
(spush (call sarg ())) ; copy character
(sarg ((t := (hd s)) (s := (tl s))) (goto copy)) ; to stack

(compare (if (null? p) accept cempty?)) ; p did match
(cempty? (if (null? t) reject cequal?)) ; p didn’t match
(cequal? (if (= (hd p) t) cnext restore)) ; both are equal
(cnext ((q := (cons (hd p) q)) (p := (tl p))) ; move right on p

(return (p q) compare)) ; continue match

(restore (if (pair? q) rpush rpop)) ; restore
(rpush (call rarg ())) ; push by call
(rarg ((t := (hd q)) (p := (cons t p))) ; restore character

(q := (tl q)) (goto restore)) ; move left on p

(rpop (return (p q) compare)) ; restart match

(accept ((p := 'accept)) (goto spop)) ; return accept
(reject ((p := 'reject)) (goto spop)) ; return reject
(spop (return (p) spop))) ; pop to halt

Fig. 7. A naive string matcher in recursive flowchart (with syntactic sugar)

reversed string, p = p1 . . . pm the pattern, and $ a separator that differs from the
characters in s and p (m,n ≥ 0). Initially, the head is positioned at the left-most
character on the tape and the stack is empty. The matcher in the figure is defined
over the tape alphabet { A, B, $ }, and is easily extended to larger alphabets.

Maximally-Polyvariant Partial Evaluation in Polynomial Time 143

The matcher works in two phases. First, the string sn . . . s1 is copied from the
tape to the stack by reading the characters from the left to the right, and pushing
them onto the stack until the separator $ is read (block copy), which means that
sn is on the bottom of the stack and s1 on its top (thus, it is convenient, but not
necessary, to have the string in reversed order). After loading the string onto the
stack, this part of the tape is never read again.

Second, the pattern p1 . . . pm is compared with the string on the stack (block
compare). The tape head (initially p1) and the stack top (initially s1) are com-
pared. As long as the comparison is successful (pi = sj), the tape head moves
right (pi+1) and the stack is popped (sj+1). The comparison continues until the
match is complete (accept), the stack is empty (reject), or a mismatch occurs
(pi �= sj). In case of a mismatch, the successfully matched prefix p1 . . . pi−1 is
used to restore the stack (block restore), and matching starts again after pop-
ping the top of the restored stack, which is the next prefix of s. The repeated
restoring and rematching makes this a quadratic-time matcher.

Naive flowchart matcher. We are going to simulate the working of this pushdown
matcher in flowchart. Recursive flowchart does not provide a pushdown stack,
but allows imitation of its behavior by calling and returning on the call stack.
This leads to an unusual recursive matcher. Instead of an input tape, the program
has two input variables, p and s, which hold pattern and string as character lists.

The matcher moves one-way on the string and two-way on the pattern. To
allow two-way operation, position i on a pattern p is represented by two variables:
p = (pi . . . pn), q = (pi−1 . . . p1). A right move yields p = (pi+1 . . . pn), q =
(pi . . . p1); analogously for a left move. Initially, p = (p1 . . . pn), q = (). List
operators select the head and tail of a list (hd, tl), add an element to the front
of a list (cons), and test for a pair and an empty list (pair?, null?).

The flowchart matcher in Fig. 7, written in concrete syntax, proceeds in two
phases just as the pushdown matcher. The two input variables (p, s) and the ini-
tial block (match) are specified in the program header. After recursively building
the call stack, where each call assigns the current head of s to a local variable t
(‘top’), matching starts by comparing the head of p against t. If equal, matching
continues by returning the tail of p; otherwise, the call stack is recursively rebuilt
from the pattern. After the first phase, during which p and q are unchanged, s is
no longer live in the second phase. There are two recursive calls in the matcher
(underlined). The variables live at a call to sarg, and thus its implicit argu-
ments, are p, q, s; those live at a call to rarg are p, q. Variable t is local to each
recursive invocation because it is not live at the called blocks.

During partial evaluation, the equality test in block cequal? will be static
or dynamic depending on whether t is assigned a character of the static pattern
by rarg or the dynamic string by sarg. Analysis of what a call to rarg returns
reveals that it locates the longest prefix of p that is a proper suffix of the suc-
cessfully matched p1 . . . pi−1 (cf. [1]). This is a static quadratic-time subproblem
that our partial evaluator simulates in linear time by memoizing terminators.

We use a programming technique in which only the offset label in a return
statement determines the target block. This makes the program more compact,

144 R. Glück

((s) (0_match_0) ; matchAAB(s)
(0_match_0 (if (pair? s) 0_spush_1 0_compare_2))

(0_spush_1 (call 2_sarg_2 0_))

(2_copy_2 (if (pair? s) 2_spush_2 2_compare_2)) ; copy character
(2_spush_2 (call 2_sarg_2 2_)) ; to stack
(2_sarg_2 ((t := (hd s)) (s := (tl s))) (goto 2_copy_2))

(2_compare_2 (if (null? t) 2_spop_3 2_cequal?_2)) ; p didn’t match
(2_cequal?_2 (if (= 'A t) 2_cnext_2 2_restore_2)) ; t equal A
(2_cnext_2 (return () compare_4)) ; continue match
(2_restore_2 (return () compare_2)) ; restart match

(2_compare_4 (if (null? t) 2_spop_3 2_cequal?_4)) ; p didn’t match
(2_cequal?_4 (if (= 'A t) 2_cnext_4 2_compare_2)) ; t equal A
(2_cnext_4 (return () compare_5)) ; continue match

(2_compare_5 (if (null? t) 2_spop_3 2_cequal?_5)) ; p didn’t match
(2_cequal?_5 (if (= 'B t) 2_spop_7 2_compare_4)) ; t equal B

(2_spop_3 (return () spop_3)) ; pop to reject
(2_spop_7 (return () spop_7)) ; pop to accept

(0_compare_2 ((p := 'reject)) (goto 0_spop_f)) ; return reject
(0_compare_4 ((p := 'reject)) (goto 0_spop_f)) ; return reject
(0_compare_5 ((p := 'reject)) (goto 0_spop_f)) ; return reject
(0_spop_3 ((p := 'reject)) (goto 0_spop_f)) ; return reject
(0_spop_7 ((p := 'accept)) (goto 0_spop_14)) ; return accept
(0_spop_f (return (p) spop_d)) ; halt
(0_spop_14 (return (p) spop_12))) ; halt

Fig. 8. A linear-time residual matcher for pattern p = (A A B) after post-processing

but is otherwise not essential. Recall that upon a return, two labels are appended,
l′ on the call stack and l′′ in the return statement, and control returns to block
l′·l′′ (cf. E5, Fig. 2). Thus, when the label on the call stack is empty, l′ = nil,
control returns to block l′′ = nil·l′′. For example, (return (p q) compare)
returns to block compare provided the corresponding call was (call rarg ()),
where () represents the empty label nil.2 A return can update the values of
several variables in the target block (here, p, q are updated in block compare).

Fast residual matcher. To illustrate the residual matchers, we specialize the naive
matcher in Fig. 7 with respect to p = (A A B) using the maximally-polyvariant
partial evaluator. After postprocessing including transition compression, inlining
constants, and adding syntactic sugar, this yields the residual matcher in Fig. 8.

Again, the residual matcher consists of two phases. As before, the first phase
recursively builds the call stack in time and size proportional to the length of s
2 A return block that returns to itself halts a program: (spop (return (p) spop)).

Maximally-Polyvariant Partial Evaluation in Polynomial Time 145

(blocks 2 copy 2 to 2 sarg 2). Unlike the naive matcher in Fig. 7, the second
phase performs the matching without restoring any part of the string (blocks
2 compare 2 to 2 cequal? 5). Control is dispatched depending on the outcome
of the tests, and only jumps or returns to the next test; there are no restore
calls. The pattern is hard-coded. The residual matcher takes time linear in the
length of s and its size is linear in the length of p. It satisfies the conditions
of a Type 1 matcher (this is the case for all residual matchers; see below). The
residual variants of block spop are artifacts of specializing the outermost call
sarg with respect to static t = (), and inlining constants by post-processing.

The residual matcher is a linear-time Morris-Pratt matcher [1,3]. A Morris-
Pratt matcher performs some redundant tests because negative information
obtained during the last mismatch is not exploited in the next match. For exam-
ple, in our residual matcher, when the two tests (null? t) and (= 'A t) fail at
blocks 2 compare 4 and 2 cequal? 4, they are repeated at blocks 2 compare 2
and 2 cequal? 2 before restarting the match. Only a program-dependent num-
ber of redundant tests is performed, so the linear-time performance of a Morris-
Pratt matcher is not affected. Negative information about tests is not exploited
by the partial evaluator as done by perfect driving in supercompilation [17,18].

Linear-time specialization. From the analysis in the previous section we know
that the graph-based collection takes time linear in the number of configurations
under the conditions in Table 1. To show that is the case when specializing the
naive matcher in Fig. 7 with respect to a static pattern, we check all configura-
tions that can occur. We use the fact that the matcher runs in two phases.

During the first phase, the static variables (p, q) representing the pattern are
unchanged; all operations on the dynamic variable s are suspended. Thus, in the
first phase, the number of configurations and their predecessors is O(1). Accord-
ing to Table 1, the number of terminators is of no concern for configurations of
type x (in fact, it is O(m) because all pattern positions may be returned).

In the second phase, the static variables (p, q) may represent every position in
the static pattern, which means the number of possible configurations is O(m).
Because the only variables live at a call to block rarg are static (p, q), all
restore calls are precomputed, and never occur in the residual matcher. A static
call is deterministic and, if it terminates, has exactly one terminator. Thus, the
second phase has O(m) configurations, and for each configuration the number
of terminators and predecessors is O(1) (configurations of type z).

The conditions in Table 1 are satisfied and the collection takes time O(m).
The number of configurations in both phases is O(m), and so is the size of the
residual matcher obtained by block specialization. A trivial specialization of the
partial evaluator yields an O(m)-time generating extension, which is sufficient
to satisfy the Type 2 requirement and solve Futamura’s challenge.

5 Related Work

Parsing algorithms make use of sharing to achieve polynomial-time performance.
Generalized LR parsing in particular uses a related graph-structured representa-

146 R. Glück

tion of parsing stacks [20]. Most algorithms rely on the 1-way nature of parsing,
and often treat left recursion as a special case, e.g. by grammar transformation,
while our partial evaluation method assumes no directionality when exploring
the configuration space. Our method examines only those configurations that are
reachable from the initial configuration, while the classic simulation methods for
2-way pushdown automata also examine unreachable pushdown configurations
bottom-up [2,10]; exceptions are the 2D-PDA simulations [22,27]. Methods for
model checking of recursive procedures [4] also make use of pushdown systems.
Related work on partial evaluation was discussed throughout the paper.

6 Conclusion

We presented an efficient method for maximally-polyvariant partial evaluation of
recursive flowchart languages that makes use of computation sharing by memo-
ization and a graph-structured stack representation. We exploited analogies with
pushdown automata for the linear-time specialization of a naive string matcher.

A main result of this investigation is that super-linear program staging by
partial evaluation is possible. Three keys to the solution are:

1. high accuracy by maximally-polyvariant partial evaluation (allows recursive
procedures with multiple terminators),

2. fast partial evaluation by a polynomial-time reachability algorithm (solves a
class of quasi-deterministic reachability problems in linear time), and a

3. source program structure analogous to pushdown systems (exposes recursive
subproblems to memoization).

A direction for future work is to investigate how more deeply specialized generat-
ing extensions can be obtained from the mechanisms above, and practical issues
related to super-linear staging and the generation of fast program generators.

Acknowledgments. The author would like to thank Andrei Klimov and the anony-
mous reviewers for their comments, and Chung-chieh Shan for discussions of parsing.
It is a great pleasure to thank Akihiko Takano for providing the author with excellent
working conditions at the National Institute of Informatics, Tokyo, and Masami Hagiya
and Zhenjiang Hu for their invaluable support.

References

1. Ager, M.S., Danvy, O., Rohde, H.K.: Fast partial evaluation of pattern matching
in strings. ACM TOPLAS 28(4), 696–714 (2006)

2. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: Time and tape complexity of pushdown
automaton languages. Inf. Control 13(3), 186–206 (1968)

3. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading (1974)

4. Alur, R., Bouajjani, A., Esparza, J.: Model checking procedural programs. In:
Clarke, E.M., Henzinger, T.A., Veith, H. (eds.) Handbook of Model Checking.
Springer, Heidelberg (2016)

Maximally-Polyvariant Partial Evaluation in Polynomial Time 147

5. Amtoft-Hansen, T., Nikolajsen, T., Träff, J.L., Jones, N.D.: Experiments with
implementations of two theoretical constructions. In: Meyer, A.R., Taitslin, M.A.
(eds.) Logic at Botik 1989. LNCS, vol. 363, pp. 119–133. Springer, Heidelberg
(1989)

6. Bulyonkov, M.A.: Polyvariant mixed computation for analyzer programs. Acta
Informatica 21(5), 473–484 (1984)

7. Bulyonkov, M.A.: Extracting polyvariant binding time analysis from polyvariant
specializer. In: Partial Evaluation and Program Manipulation, pp. 59–65. ACM
(1993)

8. Christensen, N.H., Glück, R.: Offline partial evaluation can be as accurate as online
partial evaluation. ACM TOPLAS 26(1), 191–220 (2004)

9. Consel, C., Danvy, O.: Partial evaluation of pattern matching in strings. Inf.
Process. Lett. 30(2), 79–86 (1989)

10. Cook, S.A.: Linear time simulation of deterministic two-way pushdown automata.
In: Freiman, C.V., Griffith, J.E., Rosenfeld, J.L. (eds.) Information Processing 71,
pp. 75–80. North-Holland, Amsterdam (1972)

11. Ershov, A.P.: On the partial computation principle. Inf. Process. Lett. 6(2), 38–41
(1977)

12. Futamura, Y., Konishi, Z., Glück, R.: Automatic generation of efficient string
matching algorithms by generalized partial computation. In: Asian Symposium
on Partial Evaluation and Program Manipulation, pp. 1–8. ACM (2002)

13. Futamura, Y., Konishi, Z., Glück, R.: Program transformation system based on
generalized partial computation. New Gener. Comput. 20(1), 75–99 (2002)

14. Futamura, Y., Nogi, K.: Generalized partial computation. In: Bjørner, D.,
Ershov, A.P., Jones, N.D. (eds.) Partial Evaluation and Mixed Computation,
North-Holland, pp. 133–151 (1988)

15. Glück, R.: A self-applicable online partial evaluator for recursive flowchart lan-
guages. Softw. Pract. Experience 42(6), 649–673 (2012)

16. Glück, R.: A practical simulation result for two-way pushdown automata. In: Han,
Y.-S., Salomaa, K. (eds.) Implementation and Application of Automata. LNCS,
vol. 9705. Springer, Heidelberg (2016)

17. Glück, R., Jørgensen, J.: Generating transformers for deforestation and supercom-
pilation. In: LeCharlier, B. (ed.) SAS 1994. LNCS, vol. 864, pp. 432–448. Springer,
Heidelberg (1994)

18. Glück, R., Klimov, A.V.: Occam’s razor in metacomputation: the notion of a per-
fect process tree. In: Cousot, P., Falaschi, M., Filé, G., Rauzy, A. (eds.) WSA 1993.
LNCS, vol. 724, pp. 112–123. Springer, Heidelberg (1993)

19. Gomard, C.K., Jones, N.D.: Compiler generation by partial evaluation: a case
study. Structured Program. 12(3), 123–144 (1991)

20. Grune, D., Jacobs, C.J.H.: Parsing Techniques: A Practical Guide. Monographs in
Computer Science, 2nd edn. Springer, New York (2008)

21. Hatcliff, J.: An introduction to online and offline partial evaluation using a simple
flowchart language. In: Hatcliff, J., Mogensen, T.Æ., Thiemann, P. (eds.) Partial
Evaluation 1998. LNCS, vol. 1706, pp. 20–82. Springer, Heidelberg (1999)

22. Jones, N.D.: A note on linear time simulation of deterministic two-way pushdown
automata. Inf. Process. Lett. 6(4), 110–112 (1977)

23. Jones, N.D.: Automatic program specialization: a re-examination from basic prin-
ciples. In: Bjørner, D., Ershov, A.P., Jones, N.D. (eds.) Partial Evaluation and
Mixed Computation, North-Holland, pp. 225–282 (1988)

24. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program
Generation. Prentice-Hall, Englewood Cliffs (1993)

148 R. Glück

25. Knuth, D.E., Morris, J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM J.
Comput. 6(2), 323–350 (1977)

26. Mogensen, T.Æ.: Evolution of partial evaluators: removing inherited limits. In:
Danvy, O., Glück, R., Thiemann, P. (eds.) Partial Evaluation. LNCS, vol. 1110,
pp. 303–321. Springer, Heidelberg (1996)

27. Rytter, W.: A simulation result for two-way pushdown automata. Inf. Process.
Lett. 16(4), 199–202 (1983)

28. Sørensen, M.H., Glück, R., Jones, N.D.: A positive supercompiler. J. Funct. Pro-
gram. 6(6), 811–838 (1996)

Dynamics Security Policies and Process Opacity
for Timed Process Algebras

Damas P. Gruska(B)

Institute of Informatics, Comenius University,
Mlynska dolina, 84248 Bratislava, Slovakia

gruska@fmph.uniba.sk

Abstract. Process opacity for dynamic security policies is formalized
and studied. The dynamic security policies influence what an intruder
can observe as well as which part of system’s behaviour is classified at
a given moment. The resulting security properties are undecidable but
under some realistic restrictions we obtain decidable ones.

Keywords: Dynamic security policy · Process opacity · Process
algebras · Information flow

1 Introduction

Information flow based security properties (see [GM82]) assume an absence of
any information flow between private and public systems activities. This means,
that systems are considered to be secure if from observations of their public activ-
ities no information about private activities can be deduced. This approach has
found many reformulations and among them opacity (see [BKR04,BKMR06])
could be considered as the most general one and many other security properties
could be viewed as its special cases (see, for example, [Gru07]). In [Gru15] opac-
ity is modified (the result is called process opacity) in such a way that instead of
process’s traces we focus on properties of reachable states. Hence we assume an
intruder who is not primarily interested whether some sequence of actions per-
formed by a given process has some given property but we consider an intruder
who wants to discover whether this process reaches a state which satisfied some
given (classified) predicate. It turns out that in this way we could capture some
new security flaws. Both opacity and process opacity are based on fixed (static)
security policy which is not changed during system computation. This approach
seems to be rather restrictive for applications where their security policies (clas-
sification, declassification etc.) change dynamically. Hence, there is a growing
research and a number of papers devoted to dynamic security properties tai-
lored for various formalizations and computational paradigms. For instance, in
the case of imperative programs, security policy requires that values of classified

Work supported by the grant VEGA 1/1333/12.

c© Springer International Publishing Switzerland 2016
M. Mazzara and A. Voronkov (Eds.): PSI 2015, LNCS 9609, pp. 149–157, 2016.
DOI: 10.1007/978-3-319-41579-6 12

150 D.P. Gruska

variables could not be obtained by observing public ones, what can be formal-
izes by an equivalence relation on values of program’s variables. In the case of
dynamic security policies, this relation can change during a computation (see,
for example, [DHS15]). In general, a dynamic security policy permits different
information flows at different points during program/system’s execution.

The aim of this paper is to formalize process opacity for dynamic security
policies. Here the dynamic security policies define what an intruder can observe
as well as which part of system’s behaviour is classified at a given moment.
Since our plan is to elaborate techniques for description of timing attacks and
to verify systems security against them, we have decided to work with a timed
process algebra which can be used for description of timing behavior of systems.
We do not consider value-passing algebra since we focus on actions and not
on communicated values. Considering also values and possible security types of
variables would bring new challenges and we leave it for future work together
with some other proposals which are mentioned in the next sections.

The paper is organized as follows. In Sect. 2 we describe the timed process
algebra TPA which will be used as a basic formalism. In Sect. 3 we present some
notion on information flow security and in the next section dynamic security
policies for process opacity are defined and studied. Section 5 contains discussion
and plans for future work.

2 Timed Process Algebra

In this section we define Timed Process Algebra, TPA for short. TPA is based on
Milner’s CCS but the special time action t which expresses elapsing of (discrete)
time is added. The presented language is a slight simplification of Timed Security
Process Algebra introduced in [FGM00]. We omit an explicit idling operator ι
used in tSPA and instead of this we allow implicit idling of processes. Hence
processes can perform either “enforced idling” by performing t actions which are
explicitly expressed in their descriptions or “voluntary idling” (i.e. for example,
the process a.Nil can perform t action since it is not contained the process
specification). But in both cases internal communications have priority to action
t in the parallel composition. Moreover we do not divide actions into private and
public ones as it is in tSPA. TPA differs also from the tCryptoSPA (see [GM04]).
TPA does not use value passing and strictly preserves time determinancy in case
of choice operator + what is not the case of tCryptoSPA.

To define the language TPA, we first assume a set of atomic action symbols
A not containing symbols τ and t, and such that for every a ∈ A there exists
a ∈ A and a = a. We define Act = A ∪ {τ}, At = A ∪ {t}, Actt = Act ∪ {t}. We
assume that a, b, . . . range over A, u, v, . . . range over Act, and x, y . . . range
over Actt. Assume the signature Σ =

⋃
n∈{0,1,2} Σn, where

Σ0 = {Nil}
Σ1 = {x. | x ∈ A ∪ {t}} ∪ {[S] | S is a relabeling function}

∪{\M | M ⊆ A}
Σ2 = {|,+}

Dynamics Security Policies and Process Opacity for Timed Process Algebras 151

with the agreement to write unary action operators in prefix form, the unary
operators [S], \M in postfix form, and the rest of operators in infix form. Rela-
beling functions, S : Actt → Actt are such that S(a) = S(ā) for a ∈ A,S(τ) = τ
and S(t) = t.

The set of TPA terms over the signature Σ is defined by the following BNF
notation:

P :: = X | op(P1, P2, . . . Pn) | μXP

where X ∈ V ar, V ar is a set of process variables, P, P1, . . . Pn are TPA terms,
μX− is the binding construct, op ∈ Σ.

The set of CCS terms consists of TPA terms without t action. We will use
an usual definition of opened and closed terms where μX is the only binding
operator. Closed terms which are t-guarded (each occurrence of X is within
some subterm t.A i.e. between any two t actions only finitely many non timed
actions can be performed) are called TPA processes.

We give a structural operational semantics of terms by means of labeled
transition systems. The set of terms represents a set of states, labels are actions
from Actt. The transition relation → is a subset of TPA×Actt×TPA. We write
P

x→ P ′ instead of (P, x, P ′) ∈ → and P � x→ if there is no P ′ such that P
x→ P ′.

The meaning of the expression P
x→ P ′ is that the term P can evolve to P ′ by

performing action x, by P
x→ we will denote that there exists a term P ′ such

that P
x→ P ′. We define the transition relation as the least relation satisfying

the inference rules for CCS plus the following inference rules:

Nil
t→ Nil

A1
u.P

t→ u.P
A2

P
t→ P ′, Q t→ Q′, P | Q � τ→

P | Q
t→ P ′ | Q′

Pa
P

t→ P ′, Q t→ Q′

P + Q
t→ P ′ + Q′

S

Here we mention the rules that are new with respect to CCS. Axioms A1, A2
allow arbitrary idling. Concurrent processes can idle only if there is no possibility
of an internal communication (Pa). A run of time is deterministic (S) i.e. per-
forming of t action does not lead to the choice between summands of +. In the
definition of the labeled transition system we have used negative premises (see
Pa). In general this may lead to problems, for example with consistency of the
defined system. We avoid these dangers by making derivations of τ independent
of derivations of t. For an explanation and details see [Gro90].

For s = x1.x2.xn, xi ∈ Actt we write P
s→ instead of P

x1→x2→ · · · xn→ and
we say that s is a trace of P . The set of all traces of P will be denoted by Tr(P).
By ε we will denote the empty sequence of actions, by Succ(P) we will denote the
set of all successors of P i.e. Succ(P) = {P ′|P s→ P ′, s ∈ Actt∗}. If set Succ(P)
is finite we say that P is finite state process. We define modified transitions x⇒M

which “hide” actions from M . Formally, we will write P
x⇒MP ′ for M ⊆ Actt

iff P
s1→ x→ s2→ P ′ for s1, s2 ∈ M� and P

s⇒M instead of P
x1⇒M

x2⇒M . . .
xn⇒M . We

will write P
x⇒M if there exists P ′ such that P

x⇒MP ′. We will write P
x̂⇒MP ′

152 D.P. Gruska

instead of P
ε⇒MP ′ if x ∈ M . Note that x⇒M is defined for arbitrary action but in

definitions of security properties we will use it for actions (or sequence of actions)
not belonging to M . We can the extend the definition of ⇒M for sequences of
actions similarly to s→. By Sort(P) we will denote the set of actions from A
which can be performed by P . The set of weak timed traces of process P is
defined as Trw(P) = {s ∈ (A ∪ {t})�|∃P ′.P s⇒{τ}P ′}. Two process P and Q are
weakly timed trace equivalent (P 	w Q) iff Trw(P) = Trw(Q). We conclude
this section with definitions M-bisimulation and weak timed trace equivalence.

Definition 1. Let (TPA,Actt,→) be a labelled transition system (LTS). A rela-
tion
 ⊆ TPA × TPA is called a M-bisimulation if it is symmetric and it sat-
isfies the following condition: if (P,Q) ∈
 and P

x→ P ′, x ∈ Actt then there
exists a process Q′ such that Q

x̂⇒MQ′ and (P ′, Q′) ∈
. Two processes P,Q are
M-bisimilar, abbreviated P ≈M Q, if there exists a M-bisimulation relating P
and Q.

3 Information Flow

In this section we will present motivations for new security concepts which will
be introduced in the next section. First we define an absence-of-information-
flow property - Strong Nondeterministic Non-Interference (SNNI, for short, see
[FGM00]). Suppose that all actions are divided into two groups, namely public
(low level) actions L and private (high level) actions H. It is assumed that
L ∪ H = A. Process P has SNNI property (we will write P ∈ SNNI) if P\H
behaves like P for which all high level actions are hidden (by action τ) for an
observer. To express this hiding we introduce hiding operator P/M,M ⊆ A,
for which it holds if P

a→ P ′ then P/M
a→ P ′/M whenever a �∈ M ∪ M̄ and

P/M
τ→ P ′/M whenever a ∈ M∪M̄ . Formally, we say that P has SNNI property,

and we write P ∈ SNNI iff P\H 	w P/H. SNNI property assumes an intruder
who tries to learn whether a private action was performed by a given process
while (s)he can observe only public ones. If this cannot be done then the process
has SNNI property. A generalization of this concept is given by opacity (this
concept was exploited in [BKR04,BKMR06,Gru07] in a framework of Petri Nets,
transition systems and process algebras, respectively. Actions are not divided
into public and private ones at the system description level but a more general
concept of observations and predicates is exploited. A predicate is opaque if for
any trace of a system for which it holds, there exists another trace for which it
does not hold and the both traces are indistinguishable for an observer (which is
expressed by an observation function). This means that the observer (intruder)
cannot say whether a trace for which the predicate holds has been performed
or not.

Let us assume that an intruder tries to discover whether a given process can
reach a state with some given property expressed by a (total) predicate. This
might be process deadlock, capability to execute only traces s with time length
less then n, capability to perform at the same time actions form a given set,

Dynamics Security Policies and Process Opacity for Timed Process Algebras 153

incapacity to idle (to perform t action) etc. We do not put any restriction on
such predicates but we only assume that they are consistent with some suitable
behaviorial equivalence. The formal definition follows.

Definition 2. We say that the predicate φ over processes is consistent with
respect to relation ∼= if whenever P ∼= P ′ then φ(P) ⇔ φ(P ′).

As consistency relation ∼= we could take bisimulation (≈∅), weak bisimulation
(≈{τ}) or any other suitable equivalence. A special class of such predicates are
such ones (denoted as φQ∼=) which are defined by a given process Q and equivalence
relation ∼= i.e. φQ∼=(P) holds iff P ∼= Q.

We suppose that the intruder can observe only some activities performed
by the process. Hence we suppose that there is a set of public actions which
can be observed and a set of hidden (not necessarily private) actions. To model
observations we exploit the relation s⇒M . The formal definition of process opacity
(see [Gru15]) is the following.

Definition 3 (Process Opacity). Given process P , a predicate φ over
processes is process opaque w.r.t. the set M if whenever P

s⇒MP ′ for s ∈
(Actt\M)∗ and φ(P ′) holds then there exists P ′′ such that P

s⇒MP ′′ and ¬φ(P ′′)
holds. The set of processes for which the predicate φ is process opaque w.r.t. to
the M will be denoted by POpφ

M .

Note that if P ∼= P ′ then P ∈ POpφ
M ⇔ P ′ ∈ POpφ

M whenever φ is consistent
with respect to ∼= and ∼= is such that it a subset of the trace equivalence (defined
as 	w but insted of s⇒{τ} we use s⇒∅).

4 Dynamic Security Policies

In this section we will generalize process opacity. First we define its persistent
variant. It requires that not only process itself is process opaque but also all its
successors are process opaque. The formal definition is the following.

Definition 4 (Persistent Process Opacity) Given process P , a predicate φ

over processes is persistently process opaque w.r.t. the set M if P ∈ POpφ
M and

whenever P
s⇒MP ′ for s ∈ (Actt\M)∗ then P ′ ∈ POpφ

M . The set of processes
for which the predicate φ is persistently process opaque w.r.t. to the M will be
denoted by PPOpφ

M .

Persistent process opacity is, in general, the stronger property then process
opacity as it is stated by the following proposition.

Proposition 1. PPOpφ
M ⊆ POpφ

M and there exists M and φ such that the
inclusion is proper.

Proof. Sketch. The inclusion part follows directly form Definitions 3 and 4.
Now let as assume that φ holds iff process cannot perform action h. Let
P = a.h.(a.h.Nil + a.Nil) + a.aNil then P ∈ POpφ

{h} but P �∈ PPOpφ
{h}.

154 D.P. Gruska

Process opacity and persistent process opacity represent static security prop-
erties since neither predicates nor sets M can change during system’s execution.
To define dynamic security policy first we introduce a security policy as a pair
(M,φ) with the first component being a set of actions non-visible for an intruder
and the second component is a predicate over processes. We assume some fixed
set L of actions which always visible to possible intruders. Some or all actions
from Actt\L could become temporally visible. Actions from M , M ⊆ Actt\L are
supposed to be invisible. Given security policy (M,φ) we define which processes
satisfy this policy by means of process opacity.

Definition 5. We say that process P satisfy security policy (M,φ) if P ∈
POpφ

M .

Now we can define partial ordering on security policies. This ordering takes
into account both the set of invisible actions as well as the strength of predicates.

Definition 6. Given two security policies (M1, φ1) and (M2, φ2). We say that
policy (M1, φ1) is stronger then (M2, φ2) (denoted by �) iff φ2 ⇒ φ1 and
M1 ⊆ M2. Let T be a set of policies. We will write (M,φ) � T iff
(M,φ) � (M ′, φ′) for every (M,φ′) ∈ T .

The ordering on security policies define security level for processes as it is
stated by the following proposition.

Proposition 2. Given two security policies (M1, φ1) and (M2, φ2) such that
(M1, φ1) � (M2, φ2). Then POpφ1

M1
⊆ POpφ2

M2
.

Proof. Let (M1, φ1) � (M2, φ2). In [Gru15] we have proved that
POpφ

M1
⊆ POpφ

M2
for M1 ⊆ M2 and POpφ1

M ⊆ POpφ2
M if φ2 implies φ1. We

complete the proof by applying these properties first for sets Mi and then for
predicates φi.

Now we define dynamic security policy as a mapping which maps every visibly
executed sequence s to a security policy. Then process satisfies dynamic policy
if all its corresponding successors satisfy corresponding security policies. Formal
definitions follow.

Definition 7. Dynamic policy is a mapping D which maps every sequence s, s ∈
L∗ to a security policy.

Definition 8. We say that process P satisfies dynamic policy D (denoted by
P ∈ dsp(D)) if for every s ∈ L∗ such that P

s⇒Actt\LP ′ it holds P ′ ∈ POpφ
M

where D(s) = (M,φ).

An alternative way how to define dynamic security policy could be by map-
pings which assign security policy to “present” security policy (and/or process
P) and an execution path, i.e. mappings which assign ((M1, φ1)×s) �→ (M2, φ2)
(P × (M1, φ1) × s) �→ (M2, φ2), (P × s) �→ (M2, φ2)), respectively (as regards

Dynamics Security Policies and Process Opacity for Timed Process Algebras 155

the third possibility, see [DHS15]). Elaborating these approaches we leave for
further work.

A special case of dynamic security policy is such one, which does not change
security policy during execution. This case corresponds to persistent process
opacity i.e. P ∈ dsp(D) iff P ∈ PPOpφ

M for D such that D(s) = (M,φ) for
every s, s ∈ L∗. Moreover, also in the case of truly dynamic security policy D
(which does not map every sequence to one given security policy), we can find
appropriate “the strongest” persistent process opacity which guaranties dsp(D)
property as it is stated by the following proposition.

Proposition 3. Given dynamic security policy D. Let (M,φ) � I(D) where
I(D) is the image of D and P ∈ PPOpφ

M . Then P ∈ dsp(D).

Proof. Sketch. The proof follows from Proposition 2 and Definition 4.

Unfortunately, process security with respect to dynamic security policy is
undecidable.

Proposition 4. Process security with respect to dynamic security policy D (i.e.
the question whether P ∈ dsp(D)) is undecidable in general.

Proof. Sketch. The proof follows from Propositions 1, 3 and from undecidability
of process opacity (see [Gru15]).

To obtain decidability of process opacity for dynamic security policies we
put some restrictions on security policies as well as on mappings which assign
them. First we model predicates by special processes called tests. For now we
assume that action τ is not visible for an intruder, i.e. τ ∈ M for every security
policy from I(D). The tests communicate with processes and produce

√
action

if corresponding predicates hold for the processes. Then we model also dynamic
security policy by a process which associate predicates with sequences of visible
actions. In the subsequent proposition we show how to exploit this idea to express
process opacity by means of appropriate M-bisimulation.

Definition 9. We say that process Tφ is a test representing predicate φ if φ(P)
holds iff (P |Tφ) \ At ≈t

√
φ.Nil where

√
φ is a new action indicating a passing

of the test. If Tφ is the finite state process we say that φ is finitely definable
predicate.

Definition 10. Suppose than dynamic security policy does not change a set of
invisible actions, i.e. there exists M such D(s) = (M,φs) for every s. We say that
process TD defines dynamic security policy D iff (TD|s.Nil)[f]\Sort(s.Nil) ≈
Tφs

[f] for every s ∈ L∗ and appropriate choice of f . If TD is the finite state
process we say that dynamic security policy D is finitely definable.

Note, that the renaming function f in the previous definition is needed to
ensure that the whole sequence s is consumed by TD to emulate Tφs

. To formulate
the proposition which reduces verification of security with respect to a given
dynamic security policy to checking a variant of weak bisimulation, we need an
auxiliary definition of contexts process (see, for example, [Gru10]).

156 D.P. Gruska

Definition 11. By context process we denote process which contains place
holder(s) H i.e. in TPA term definition we allow also H alongside with process
variable X. Let O be the context process. By O[P] we denote process obtained
from O by replacing all placeholders by P .

Proposition 5. Let dynamic security policy D is finitely definable and for every
s, predicates φ, ¬φ are the finitely definable as well, where D(s) = (M,φ). Then
there exists context process O such that P ∈ dsp(M) iff O[P] ≈M∪{t} Fn where
F =

√
φ.

√
¬φ.Nil +

√
¬φ.

√
φ.Nil +

√
¬φ.Nil and Fn denotes n parallel runs of

F , where n = |I(D)| i.e. n is equal to the size of the image of D.

Proof. The main idea. To construct process context O we exploit process TD

and Tφ, T¬φ. Process context duplicates necessary number copies of sequences
of actions to corresponding copies of TD processes as well as to Tφ and T¬φ

processes. The auxiliary process B (“inside” O) produces visible actions for each
copy of P or produces k actions which start validations of φ and ¬φ, respectively,
by corresponding tests. Then if process passes the test for validity of φ it has to
pass also the test for validity of ¬φ (ordering is not important) or can pass only
the test of validity of ¬φ or none. Note that time behaviour is checked by tests.
This is the reason why we can use ≈M∪{t} instead of ≈M .

Now, thanks to the above introduced constructions, we can obtain a variant
of decidable dynamic security policies. Actually, a limitation to finite states tests
and policies are practically insignificant since the most of (if not all) practically
important properties can be described by them.

Proposition 6. Let dynamic security policy D is finitely definable and for
every s, predicates φ, ¬φ are finitely definable as well, where D(s) = (M,φ).
Process security with respect to dynamic security policy D is decidable in time
O((n.m.k.|A|)3) for finite state processes, where n, m and k are numbers of
states of P and the maximum of numbers of states of tests corresponding to φ
and ¬φ and number of states of the process TD corresponding to dynamic security
policy D.

Proof. According to Proposition 5 it is enough to prove that ≈M∪{t} can be
decided in time O((n.m.k.|A|)3). This can be done by the slight modification of
the proof of complexity results for weak bisimulation (see [KS83]).

In the previous definitions and proposition we have assumed finite dynamic
security policies, i.e. such ones for which image of D is finite. On the other side,
we may restrict capabilities of an intruder and/or of dynamic security policy
in such a way that we are interested only in executions s which contain less
then some given number of t actions, i.e. to the case when the intruder has no
more time to perform an attack than m time units. The proposed formalism
can be easily extended to model such situations. We can also define dynamic
security policies which do not depend on elapsing of time i.e. D(s) = D(s′)
whenever s|A = s′|A, where s|A denote the sequence obtained from s by removing
elements not contained in A. Similarly, we can define dynamic security policies

Dynamics Security Policies and Process Opacity for Timed Process Algebras 157

which depend only on elapsing of time by requiring D(s) = D(s′) whenever
s|{t} = s′|{t}.

5 Discussion and Further Work

We have presented the new security concept - dynamic security policies for
process opacity and we have formalized it in the timed process algebra setting.
We have shown that static persistent process opacity, which is strictly stronger
then process opacity, is a special case of dynamic variant of process opacity.
Moreover, by careful choice of processes expressing predicates as well as security
policies we can obtain properties which can be effectively checked. We can model
security with respect to limited time length of an attack, with a limited number
of attempts to perform an attack and so on. We also plan to study dynamic
security policies which assume intruders which are not only observers but can
actively interact with the systems to be attacked.

References

[BKR04] Bryans, J., Koutny, M., Ryan, P.: Modelling non-deducibility using Petri
Nets. In: Proceedings of the 2nd International Workshop on Security Issues
with Petri Nets and other Computational Models (2004)

[BKMR06] Bryans, J.W., Koutny, M., Mazaré, L., Ryan, P.Y.A.: Opacity generalised
to transition systems. In: Dimitrakos, T., Martinelli, F., Ryan, P.Y.A.,
Schneider, S. (eds.) FAST 2005. LNCS, vol. 3866, pp. 81–95. Springer,
Berlin (2006)

[DHS15] van Delft, B., Hunt, S., Sands, D.: Very static enforcement of dynamic
policies. In: Focardi, R., Myers, A. (eds.) POST 2015. LNCS, vol. 9036,
pp. 32–52. Springer, Heidelberg (2015)

[FGM00] Focardi, R., Gorrieri, R., Martinelli, F.: Information flow analysis in a
discrete-time process algebra. In: Proceedings of 13th Computer Security
Foundation Workshop. IEEE Computer Society Press (2000)

[GM04] Gorrieri, R., Martinelli, F.: A simple framework for real-time cryptographic
protocol analysis with compositional proof rules. Sci. Comput. Program.
50(1–3), 23–49 (2004)

[GM82] Goguen, J.A., Meseguer, J.: Security policies and security models. In: Pro-
ceedings of IEEE Symposium on Security and Privacy (1982)

[Gro90] Groote, J.F.: Transition systems specification with negative premises. In:
Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp.
332–341. Springer, Heidelberg (1990)

[Gru15] Gruska, D.P.: Process opacity for timed process algebra. In: Voronkov, A.,
Virbitskaite, I. (eds.) PSI 2014. LNCS, vol. 8974, pp. 151–160. Springer,
Heidelberg (2015)

[Gru10] Gruska, D.P.: Process algebra contexts and security properties. Funda-
menta Informaticae 102(1), 63–76 (2010)

[Gru07] Gruska, D.P.: Observation based system security. Fundamenta Informati-
cae 79(3–4), 335–346 (2007)

[KS83] Kanellakis, P.C., Smolka, S.A.: CCS expressions, finite state processes, and
three problems of equivalence. In: Proceedings of The second annual ACM
Symposium on Principles of Distributed Computing. ACM (1983)

Estimating Development Effort for Software
Architectural Tactics

Mohamad Kassab1,2(✉) and Giuseppe Destefanis3

1 Innopolis University, Kazan, Russia
2 Engineering Division, The Pennsylvania State University, Malvern, PA, USA

muk36@psu.edu
3 CRIM, Computer Research Institute of Montreal, Montreal, Canada

giuseppe.destefanis@crim.ca

Abstract. The increased awareness of the quality requirements as a key to soft‐
ware project and product success makes explicit the need to include them in any
software project effort estimation activity. However, the existing approaches to
defining size-based effort relationships still pay insufficient attention to this need.
Furthermore, existing functional size measurement methods still remain unpop‐
ular in industry. In this paper, we propose the usage of the Analytic Hierarchy
Process (AHP) technique in the effort estimation for architectural tactics derived
to satisfy the quality requirements. The paper demonstrates the applicability of
the approach through a case study.

Keywords: Quality requirements · Tactics · AHP · Requirements engineering ·
Effort estimation · Functional size

1 Introduction

The increasing software complexity and competition that exist in the software industry
have highlighted the need to consider quality requirements as an integral part of software
modeling and development. Quality requirements are characteristics that the system
must possess in addition to the functionality. They play a critical role in driving archi‐
tectural structure more than functionality during the software development; and they
serve as an essential and distinguishing attributes of the final product.

Empirical reports consistently indicate that improperly dealing with quality require‐
ments leads to project failures, or at least to considerable delays, and, consequently, to
significant increases in the final cost [1].

While estimating development effort is a major activity in managing the scope of
the requirements, this activity has been neglected for quality attributes in practice.
From April 2013 through July 2013, we conducted a survey study on the require‐
ments engineering (RE) current state of practice [2]. The survey drew 247 profes‐
sional participants from 23 countries and from wide range of industries. Respondents
were asked to base their responses on one project that they were either currently
involved with or had taken part in during the past five years. Only 36 % of the survey
participants reported on taking into account the quality requirements during the size/

© Springer International Publishing Switzerland 2016
M. Mazzara and A. Voronkov (Eds.): PSI 2015, LNCS 9609, pp. 158–169, 2016.
DOI: 10.1007/978-3-319-41579-6_13

effort estimation. For those who conducted estimation for the size/effort, “Expert
Judgments” was the most popular technique.

While experiences show that quality requirements may represent more than 50 % of
the total effort to produce a software product [3]; software developers are constantly
under pressure to deliver on time and on budget. As a result, many projects focus on
delivering functionalities at the expense of meeting quality requirements such as relia‐
bility, security, maintainability, portability, accuracy, among others. As software
complexity grows and clients’ demands on software quality requirements increase, these
qualities can no longer be considered of secondary importance.

The need to deal comprehensively with the effect of quality attributes on the effort of
building the software project generates the need to measure their functional size, as effort
is a function of size [4]. Nevertheless, using the functional size measurement (FSMs)
methods still remain unpopular in industry. In the RE state of practice survey that we
conducted, out of the 60 % of those who reported on performing estimation for the size of
requirements or the effort of building them, less than 7 % reported on the usage of any FSM
method [2]. In addition, many quality requirements cannot have their functional size
directly measured. This is mainly because many of these requirements cannot be opera‐
tionalized in terms of functionalities but in other forms of architectural decisions.

The goal of this research is to investigate requirements-based tuned early estimation
of the software effort. In particular, we propose the usage of the Analytic Hierarchy
Process (AHP) technique in the effort estimation for quality requirements. These
requirements are subjective and usually captured in qualitative format at the early stages
of RE. Since AHP integrates qualitative approach with quantitative one, and subjective
approach with objective one, it is appropriate for estimating the quality requirements at
the beginning of development.

In the rest of this paper, Sect. 2 reviews related work, Sect. 3 introduces the back‐
ground of quality-tactics relation and the AHP technique. In Sect. 4 we present our
approach of incorporating the AHP for the quality effort estimation; and we demonstrate
it through a case study. Finally we summarize and conclude the paper in the Sect. 5.

2 Related Work

Over the years, different estimation techniques have been developed in industry and
academia, primarily with the objective of improving the accuracy of schedule, effort and
cost estimation. These estimation techniques can primarily be subdivided into two major
categories: formal methods and expert-judgment based methods. Overall, quality
requirements received little attention compared to functionalities from these effort esti‐
mation techniques.

The existing function-point-based FSM techniques have so far addressed the topic
of quality requirements only with respect to the task of adjusting the (unadjusted) FP
counts to the project context or the environment in which the system is supposed to
work. For example, the International Function Point Users Group (IFPUG) [5] has been
approaching the inclusion of quality requirements in the final FP count by using quali‐
tative judgments about the system’s environment. The current version of the IFPUG
Function Point Analysis (FPA) manual [6] speaks of a set of General System

Estimating Development Effort for Software Architectural Tactics 159

Characteristics and Value Adjustment Factors all meant to address though in different
ways – the quality requirements that a project may include.

Currently, there are five FSM models which are proposed by the COSMIC consor‐
tium and IFPUG member associations (namely, NESMA [7], FISMA [8], UKSMA [9],
COSMIC [10], and IFPUG [6]) and which are recognized as ISO standards. In our earlier
work [11], we compared and contrasted the ways in which quality requirements are
treated in these FSM standards. For each standard, we looked at what quality require‐
ments artifact is used as input to the FSM process, how this artifact is evaluated, and
which FSM counting component reflects the NFRs. We found that all five FSM standards
provide, at best, checklists which estimators can use to perform qualitative assessments
of certain factors of the system’s environment. However, these assessments reflect the
subjective view of the professionals who run the FSM process. The FSM standards say
nothing about what should be put in place to enable estimators to ensure the reproduci‐
bility of their assessment results regarding the NFRs in a project. For example, the Mark
II FPA manual [9] refers to recent statistical analysis results and suggests that neither
the Value Adjustment Factors from the IFPUG method [6] nor the Technical Complexity
Adjustment (TCA) factors from the Mark II FPA method [9] represent well the influence
on size of the various characteristics these two methods try to take into account. Indeed,
the Mark II FPA manual says that the TCA factors are included only because of
continuity with previous versions, and recommends that these factors be ignored alto‐
gether (p. 63 in [12]) when sizing applications within a single technical environment
(where the TCA is likely to be constant).

Recently, “Software Non-functional Assessment Process” (SNAP) [13] was intro‐
duced as a measurement of non-functional software size. SNAP point sizing is a comple‐
ment to a function point sizing, which measures functional software size. Nevertheless,
as we pointed earlier, the usage of any FSM for estimation remains unpopular in the
industry.

3 Background

3.1 Quality Requirements and Tactics

Quality is “the totality of characteristics of an entity that bear on its ability to satisfy
stated and implied needs” [14]. Software Quality is an essential and distinguishing
attribute of the final product. Tactics on the other hand are measures taken to implement
the quality attributes [15]. For example, introducing concurrency for a better resource
management is a tactic to improve system’s Performance. Similarly, Authentication and
Authorization are popular tactics to resist unwanted attacks on the system and improve
the overall Security. In [15], the authors list the common tactics for the qualities: Avail‐
ability, Modifiability, Performance, Security, Testability and Usability.

Tactics are considered as the building blocks from which software architectures are
composed [15]; and the meeting point between requirements and architecture. Because
qualities are being satisfied by implementing their corresponding set of tactics; the effort
of building the quality requirements is in fact the effort of implementing their derived

160 M. Kassab and G. Destefanis

tactics. In this paper, our aim is to estimate the effort of building tactics that aim at
satisfying the qualities.

3.2 The AHP Technique

The AHP [16, 17] is a technique for modeling complex and multi-criteria problems and
solving them using a pairwise comparison process. Based on mathematics and psychology,
it was developed by Thomas L. Saaty in the 1970s and has been extensively studied and
refined since then. AHP was refined through its application to a wide variety of decision
areas, including transport planning, product portfolio selection, benchmarking and resource
allocation and energy rationing.

Simply described, AHP breaks down a complex and unstructured problems into a
hierarchy of factors. A super-factor may include sub-factors. By pairwise comparison
of the factors in the lowest level, we can obtain a prior order of factors under a certain
decision criterion. The prior order of super-factors can be deduced from the prior order
of sub-factors according to the hierarchy relations.

The AHP process starts by a detailed definition of the problem; goals, all relevant
factors and alternative actions are identified. The identified elements are then structured
into a hierarchy of levels where goals are put at the highest level and alternative actions
are put at the lowest level. Usually, an AHP hierarchy has at least three levels: the goal
level, the criteria level, and the alternatives level. This hierarchy highlights relevant
factors of the problem and their relationships to each other and to the system as a whole.

Once the hierarchy is built, involved stakeholders (i.e., decision makers) judge and
specify importance of the elements of the hierarchy. To establish the importance of
elements of the problem, a pairwise comparison process is used. This process starts at
the top of the hierarchy by selecting an element (e.g., a goal) and then the elements of
the level immediately below are compared in pairs against the selected element. A pair‐
wise matrix is built for each element of the problem; this matrix reflects the relative
importance of elements of a given level with respect to a property of the next higher
level. Saaty proposed the scale [1…9] to rate the relative importance of one criterion
over another (See Table 1). Based on experience, a scale of 9 units is reasonable for
humans to discriminate between preferences for two items [16, 17].

Table 1. Pairwise comparison scale for AHP [16].

Intensity of judgment Numerical rating
Extreme importance 9
Very strong importance 7
Strong importance 5
Moderate importance 3
Equal importance 1
For compromise between the above values 2, 4, 6, and 8

One important advantage of using AHP technique is that it can measure the degree
to which manager’s judgments are consistent. In the real world, some inconsistency is

Estimating Development Effort for Software Architectural Tactics 161

acceptable, and even natural. For example, in a sporting contest, if team A usually beats
team B, and if team B usually beats team C, this does not imply that team A usually
beats team C. The slight inconsistency may result because of the way the teams match
up overall. The point is to make sure that inconsistency remains within some reasonable
limits. If it exceeds a specific limit, some revision of judgments may be required. AHP
technique provides a method to compute the consistency of the pairwise comparisons
[16, 17].

4 Incorporating the AHP into Tactics Effort Estimation

4.1 AHP Hierarchy for Effort Estimation

The first step in the AHP process is to construct the hierarchy model. One challenge was
to identify the elements of the criteria levels of the effort estimation AHP hierarchy.

We conducted a workshop that drew 24 professionals. During the workshop, profes‐
sionals participated in a questionnaire and brainstorming session aiming at identifying
the set of criteria that contributes to the effort of implementing the tactics. The partici‐
pants reflected a diverse range of positions; describing themselves as programmers/
developers, software/system engineers, or testers 46 % of the time. Architects, project/
product managers, analysts, and consultants comprised the remaining 54 % of respond‐
ents; positions typically involved in the higher-level aspects of computerized system’s
technical design. Given this population, responses to the questionnaire are more likely
to reflect the opinions and biases of any given project’s development team rather than
those of other groups represented in a software development effort.

The outcome of the workshop was the generation of Fig. 1 which presents the
proposed AHP hierarchy model for the tactics effort estimation.

In the hierarchy, the effort as the object of decision-making appeared at the top level.
The alternatives level, namely the bottom level, was composed of the tactics. In the
middle, there were two criteria levels. One level had three criteria (level 2), i.e.,
Complexity, Inadvance in Technique, and Restriction from Developers. There was a
convention that the weight of a super-criterion would increase with the increase of the
sub-criterion’s weights. Thus, we used “inadvance” as a criterion, but not “advance”.

In the second criteria level (level 3), there were eight criteria, where functional size,
Impact on architecture, association and interactivity are the sub-criteria of complexity,
and so on. The contribution of sub-criteria of “Inadvance in Technique” and “Develop‐
ment Restrictions” towards the effort is trivial. The sub-criteria of “Complexity” are
briefly explained below:

Functional size: Functional Size Methods have shifted the focus from measuring the
technical characteristics of the software towards measuring the functionality of the soft‐
ware that is required by the intended users of the software. If the tactic corresponds to
a functionality; then it will have a functional size that can be estimated and compared;
otherwise if the tactic corresponds to other types of architectural decisions; then it will
have no functional size. The effort is a function of size [4] where the increase in func‐
tional size increases the effort.

162 M. Kassab and G. Destefanis

Impact on Architecture: In [18], the authors identified six types of changes that an
architectural structure or behavior might undergo when a tactic is implemented within
the structure and they define a scale to rate these changes. For example, a tactic can have
a minimum impact on the architecture when there are no major changes to be imple‐
mented to the current structure (e.g. minimal changes to be implemented within existing
components); while it may have high impact on the architecture if the current structure
require major changes (e.g. requiring the addition of 3 or more new components that
will break the current structure). The higher the impact on the architecture is; the higher
contribution to the effort. This criterion suggests also to take into account the order in
which the tactics to be implemented. That is, if tactic B implemented after tactic A, then
its implementation may require modification to the existing structure of A - a different
effort from incorporating tactic B from scratch.

Association: This criterion suggests considering the range of items a tactic is associated
to (e.g. functions, resources, processes, or the whole product). The wider this range is,
the higher the effort will be.

Interactivity: Typically, systems have multiple important quality attributes, and decisions
made to satisfy a particular quality may help or hinder the achievement of another quality
attribute. The best-known cases of conflicts occur when the choice of a tactic to imple‐
ment certain quality attribute contributes negatively towards the achievement of another
quality. For example, decisions to maximize the system reusability and maintainability
through the usage of “abstracting common services” tactic may come at the cost of the

Fig. 1. AHP hierarchy model for the tactics effort estimation

Estimating Development Effort for Software Architectural Tactics 163

“response time”. If a tactic contributes negatively to satisfy other qualities; then it contrib‐
utes towards the increase in the effort and if it contributes positively towards the satisfac‐
tion of other qualities; then it contributes towards the decrease in the total effort.

4.2 Case Study Description

We demonstrate the incorporation of the AHP into quality/tactics effort estimation
through an automated building system case study.

A company manufactures devices for the building automation domain and software
applications that manage a network of these devices. With the hardware being commodi‐
tized, its profit margins have been shrinking. The internal development costs for the soft‐
ware applications that manage different devices have also been rising. To sustain their
business long term, the company decides to create a new integrated building automation
system. The intended system would broadly perform the following functions: manage field
devices currently used for controlling building functions; define rules based on values of
field device properties that trigger reactions; issue commands to set values of field device
properties; and for life critical situations, trigger alarms notifying appropriate users.

Taking this approach would allow the company to reduce internal development
costs – several existing applications will be replaced with the new system. The
company could also achieve market expansion by entering new and emerging
geographic markets and opening new sales channel in the form of Value Added
Resellers (VARs).

In order to support a multitude of hardware devices and consider different languages
and cultures, the system must be modifiable (a modifiability requirement). In order to
support different regulations in different geographic markets, the system must respond
to life threatening events in a timely manner (a performance requirement).

To apply the modifiability tactics, we aim to limit the impact of change and minimize
the number of dependencies on the part of the system responsible for integrating new
hardware devices. There are three design concerns related with modifiability: (1)
Localize changes: this relates to adding a new field device; (2) Prevention of ripple
effects: this relates to minimizing the number of modules affected as a result of adding
a new field device; and (3) Defer binding time: this relates to the time when a new field
device is deployed and the ability of non-programmers to manage such deployment.

We address these concerns by creating adaptors for field devices, an “anticipation of
expected changes” tactic. We use two additional architectural tactics to minimize propa‐
gation of change. First we specify a standard interface to be exposed by all adaptors
(“maintain existing interfaces”). Second, we use the adaptor as an “intermediary” respon‐
sible for semantic translation into a standard format, of all the data received from different
field devices.

As of the performance quality attribute of the building automation system, there are
two design concerns: (1) Resource Demand: the arrival of change of property value
events from the various field devices and the evaluation of automation rules in response
to these events are source of resource demand; and (2) Resource Management: the
demand on resources may have to managed in order to reduce the latency of event and
alarm propagation.

164 M. Kassab and G. Destefanis

To address these concerns, we move the responsibility of rule evaluation and execu‐
tion, and alarm generation, respectively to a newly added separate Logic & Reaction
(L&R) component and an Alarm component. These components running outside the
automation server can now be easily moved to dedicated execution nodes if necessary.
In doing so, we are making use of the “increase available resources” tactic to address
the resource management concern and the “reduce computational overhead” tactic to
address the resource demand concern. We use an additional tactic to address the resource
management concern. This tactic relies on introducing “concurrency” to reduce delays
in processing time. Concurrency is used inside the L&R and Alarm components to
perform simultaneous rule evaluations.

So to satisfy modifiability and performance qualities in the building automated
systems; we introduced the five tactics: (1) an anticipation of expected changes; (2)
maintain existing interfaces; (3) usage of an intermediary; (4) increase available
resources; and (5) introducing concurrency.

4.3 AHP in Action

Construction of the hierarchy model is the first step in the problem solving process of
the AHP technique. In the hierarchy, each of the eight criteria from level 3 is related to
all tactics. In the automated building system case study, this means that each of the
criteria: functional size, impact on architecture, association, interactivity, inadvance in
methods, inadvance in tools, technical level experience, and number of developers is
related to all tactics: an anticipation of expected changes; maintain existing interfaces;
usage of an intermediary; increase available resources; and introducing concurrency.

Each of these relations between a level 3 criteria and tactics will be assessed via the
pairwise comparison. The comparisons for this effort estimation problem applied on the
building automation system case study are shown below (this is an actual execution of
our approach by one of the architects participated in the workshop described earlier):

1. We start by the pairwise comparisons of evaluation criteria (level-2 elements in the
decision hierarchy) – Table 2. This comparison represents the prioritization of the
criteria in that level in respect to their impact on the effort. The weights values are
calculated by; first calculating the geometric mean for each row; then dividing the
geometric mean of each row by the total summation of geometric mean values from
all rows. The geometric mean of n numbers, say, X1, X2,… Xn is given by: (X1 *
X2 * …* Xn)1/n.

Table 2. Pairwise comparisons matric for level-2 criteria in the automated home system.

Complexity Inadvace in
technique

Development
restrictions

Geometric
Mean

Weight

Complexity 1 3 5 2.47 0.6
Inadvace in technique 0.33 1 0.2 0.4 0.1
Development restrictions 0.2 5 1 1 0.3

Estimating Development Effort for Software Architectural Tactics 165

2. Similarly, we complete the pairwise comparisons of sub-criteria from the third levels
with respect to level-2 criteria of the decision hierarchy (See Tables 3, 4 and 5).

Table 3. Pairwise comparisons matric for “Complexity” criterion

Functional
Size

Impact on
architecture

Association Interactivity Weight

Functional size 1 5 5 5 0.6
Impact on architecture 0.2 1 3 3 0.2
Association 0.2 0.33 1 1 0.1
Interactivity 0.2 0.33 1 1 0.1

Table 4. Pairwise comparisons matric for “Inadvance in Technique” criterion

Inadvance in methods Inadvance in tools Weight
Inadvance in methods 1 1 0.5
Inadvance in tools 1 1 0.5

Table 5. Pairwise comparisons matric for “Development Restrictions” criterion

Technical experience level Number of developers Weight
Technical experience level 1 3 0.75
Number of developers 0.33 1 0.25

3. We then complete the pairwise comparisons of the tactics (elements of the lowest
level in the hierarchy with respect to every crtiterion from level 3). Table 6 shows
the pairwise comparison of the tactics with respect to “functional size” criterion. We
will not show the pairwise computations with respect to other criteria in this paper
due to the space constraints.

Table 6. Pairwise comparisons of tactics with respect to “functional size” criterion: (T1: Antic‐
ipation Expected Changes; T2: Maintain Existing Interfaces; T3: Usage of an Intermediary; T4:
Increase Available Resources; T5: Introducing Concurrency)

T1 T2 T3 T4 T5 Weight
T1 1 5 3 1 3 0.34
T2 0.2 1 0.33 0.2 0.33 0.05
T3 0.33 3 1 0.33 1 0.13
T4 1 5 3 1 3 0.34
T5 0.33 3 1 0.33 1 0.13

166 M. Kassab and G. Destefanis

4. Once the normalized are computed for all levels of the hierarchy, they are combined
by moving through the hierarchy starting at the lowest level. Figure 2 illustrates this
procedure. For example, after one level of composition the average weights of the
tactics (anticipation of expected changes, maintain existing interfaces, usage of an
intermediary, increase available resources, introducing concurrency) with respect to
“Development restrictions” are: (0.323, 0.165, 0.12, 0.325, 0.068) = 0.75 * (0.34,
0.13, 0.13, 0.34, 0.06) + 0.25 * (0.27, 0.27, 0.09, 0.28, 0.09).

Following this procedure, the overall weights for the tactics: (anticipation of
expected changes, maintain existing interfaces, usage of an intermediary, increase avail‐
able resources, introducing concurrency) are calculated to be (0.33, 0.11, 0.12, 0.34,
0.1).

Fig. 2. Hierarchy composition of weights for the Home Automated system case study

5. Finally, if we know the effort of anyone among the five tactics from a historical
project, then the effort of the others can be calculated. For example, if had known
the effort of “introducing concurrency” from a previous project to be 3 person days;
then the effort of “anticipation of expected changes” would be: (0.33/0.1) * 3 = 11
person days.

Estimating Development Effort for Software Architectural Tactics 167

5 Conclusion

The quality effort estimation methodology presented in this paper aims at improving the
predictive quality of the software industry’s effort estimation models. The paper demon‐
strates the feasibility of the proposed approach on a case study.

The research we presented is multidisciplinary in nature, which opened multiple
avenues of future work that we could effectively pursue. In our immediate next steps;
we plan to validate our work further in real industrial settings. In addition, we plan on
extending the effort estimation model to consider the cost estimation for the project.

We acknowledge that our solution proposal may sound complex for implementation
by practitioners when large number of tactics are selected. Thus, we are also looking to
automate the process of collecting the pairwise judgments and the final weights’ calcu‐
lations through implementing an automating tool for the process.

References

1. Kassab, M.: Non-functional Requirements: Modeling and Assessment. VDM Verlag Dr.
Mueller (2009). ISBN 978-3-639-20617-3

2. Kassab, M., Neill, C., Laplante, P.: State of practice in requirements engineering:
contemporary data, innovations in systems and software engineering. NASA J. (2014)
doi:10.1007/s11334-014-0232-4

3. IBM website: SAS Hub Non Functional Requirements (NFRs). http://www.haifa.ibm.com/
projects/software/nfr/index.html. Accessed January 2015

4. Pfleeger, S.L., Wu, F., Lewis, R.: Software Cost Estimation and Sizing Methods: Issues and
Guidelines. RAND Corporation (2005)

5. FP Users Group. www.ifpug.org
6. IFPUG 4.1 Unadjusted Functional Size Measurement Method - Counting Practices Manual,

ISO/IEC 20926, 1 October 2003, 1st edn (2003). www.ifpug.org
7. NESMA: NESMA functional size measurement method compliant to ISO/IEC 24570 (2006).

www.nesma.nl
8. FISMA: FiSMA 1.1 Functional Size Measurement Method, ISO/IEC 29881 (2008). http://

www.fisma.fi/wp-content/uploads/2008/07/fisma_fsmm_11_for_web.pdf
9. UKSMA: estimating with Mark II, v.1.3.1, ISO/IEC 20968:2002(E) (2002). www.

uksma.co.uk
10. Abran, A., Desharnais, J.-M., Oligny, S., St-Pierre, D., Symons, C.: COSMIC FFP –

Measurement manual (COSMIC implementation guide to ISO/IEC 19761:2003), École
detechnologie supérieure – Université du Québec, Montréal, Canada (2003). http://
www.gelog.etsmtl.ca/cosmic-ffp/manual.jsp

11. Kassab, M., Daneva, M., Ormandjieva, O.: A meta-model for the assessment of non-
functional requirement size. In: Proceedings of the 34th Euromicro Conference Software
Engineering and Advanced Applications – SEAA 2008, pp. 411–418 (2008)

12. ISO 14143-1: Functional size measurement – Definitions of concepts, International
Organization for Standardization – ISO, Geneva (1988)

13. SNAP. http://www.ifpug.org/ISMA6/ITPC%20SNAP-SW%20Non-Functional%20Assessment
%20Process-Sept13.pdf. Accessed May 2014

14. Glinz, M.: On non-functional requirements. In: 15th IEEE International Requirements
Engineering Conference (RE 2007), Delhi, India, pp. 21–26 (2007)

168 M. Kassab and G. Destefanis

http://dx.doi.org/10.1007/s11334-014-0232-4
http://www.haifa.ibm.com/projects/software/nfr/index.html
http://www.haifa.ibm.com/projects/software/nfr/index.html
http://www.ifpug.org
http://www.ifpug.org
http://www.nesma.nl
http://www.fisma.fi/wp-content/uploads/2008/07/fisma_fsmm_11_for_web.pdf
http://www.fisma.fi/wp-content/uploads/2008/07/fisma_fsmm_11_for_web.pdf
http://www.uksma.co.uk
http://www.uksma.co.uk
http://www.gelog.etsmtl.ca/cosmic-ffp/manual.jsp
http://www.gelog.etsmtl.ca/cosmic-ffp/manual.jsp
http://www.ifpug.org/ISMA6/ITPC%2520SNAP-SW%2520Non-Functional%2520Assessment%2520Process-Sept13.pdf
http://www.ifpug.org/ISMA6/ITPC%2520SNAP-SW%2520Non-Functional%2520Assessment%2520Process-Sept13.pdf

15. Bass, L., Clements, P., Bass, L., Kazman, R.: Software Architecture in Practice, 3rd edn.
Addison-Wesley, Reading (2013)

16. Saaty, T.L.: The Analytic Hierarchy Process. McGraw-Hill, New York (1980)
17. Saaty, T.L.: Decision Making for Leaders, Belmont. LifeTime Leaning Publications,

California (1985)
18. Harrison, N.B., Avgeriou, P.: How do architecture patterns and tactics interact? A model and

annotation. J. Syst. Softw. 83(10), 1735–1758 (2010)

Estimating Development Effort for Software Architectural Tactics 169

Clone Detection in Reuse of Software
Technical Documentation

Dmitrij Koznov1(B), Dmitry Luciv1, Hamid Abdul Basit2, Ouh Eng Lieh3,
and Mikhail Smirnov1

1 Saint Petersburg State University, Saint Petersburg, Russia
d.koznov@spbu.ru, dluciv@math.spbu.ru, smnsmn1979@gmail.com

2 Lahore University of Management Sciences, Lahore, Pakistan
hamidb@lums.edu.pk

3 National University of Singapore, Singapore, Singapore
issoel@nus.edu.sg

Abstract. As software documentation is becoming more and more com-
plicated, efficiency of maintenance process could be increased through
documentation reuse. In this paper, we apply software clone detection
technique to automate searching of repeated fragments in software tech-
nical documentation to be reused. Our approach supports adaptive reuse,
which means extracting “near duplicate” text fragments (repetitions with
variations) and producing customizable reusable elements. We present a
process and a tool, which can work with both DocBook documenta-
tion (widely used XML markup language) and DRL (DocBook exten-
sion with adaptive reuse features), as well as with plain text. Our tool
is based on Clone Miner software clone detection tool, and integrated to
DocLine environment (adaptive reuse documentation framework), pro-
viding visualization and navigation facilities on the clone groups found,
and also supporting refactoring to extract clones into reusable elements.

Keywords: Software technical documentation · Documentation reuse ·
Software clone detection · Adaptive reuse · Refactoring · DocBook ·
DocLine · DRL

1 Introduction

Software documentation is a significant component of modern software. It is
supposed to help software engineers to comprehend a given software system
and accomplish development and modification tasks more efficiently [1]. There
are two types of software documentation: technical documentation (require-
ment specifications, design documents, etc.), and user documentation (e.g., user
guides). Sometimes API documentation is considered, that is a special case of
technical documentation and describes application programming interfaces of
reusable code libraries [2]. In this paper, we consider technical software docu-
mentation only.

c© Springer International Publishing Switzerland 2016
M. Mazzara and A. Voronkov (Eds.): PSI 2015, LNCS 9609, pp. 170–185, 2016.
DOI: 10.1007/978-3-319-41579-6_14

Clone Detection in Reuse of Software Technical Documentation 171

It should be noted, that technical documentation may have considerable size
and complex structure, and like the software itself, is constantly changed during
development process. The quality of technical documentation is a well-known
problem that has not been resolved in the last decades [3]. One of the reasons that
leads to essential decrease of documentation quality during maintenance process
is that documents may contain numerous repetitions. If there is no traceability
between duplicate text fragments, we need to modify each fragment manually
while making changes. But in practice it is hard to keep the documentation
updated because of huge volumes and lack of time. That leads to accumulation
of mistakes and contradictions in documentation.

The situation is even more complicated because very often duplicate infor-
mation is “near duplicate”, e.g., in one document the same software features may
be described many times with different level of details. Also, there are sets of
similar objects, which are described on the documentation: functions, interrup-
tions, signals, etc. If objects belong to the same set then their descriptions have
a lot of commonalities, but at the same time they differ from each other. This
leads to repetitions with variations, and makes it difficult to apply usual text
search techniques to find such repetitions. Moreover, it is necessary not only to
search duplicate text fragments, but to manage them consistently.

Systematic reuse techniques attempt to simplify the software maintenance
process. Different techniques of software reuse have been proposed [4,5]. One
of these techniques is XVCL [6], which is based on adaptive reuse introduced
by Paul Bassett [7]. These ideas were applied for software documentation reuse
in DocLine framework [8]. In this context, refactoring of XML documentation
technique was also explored [9] to simplify the maintenance process of existing
documentation extracting reusable text fragments. But the challenge of auto-
matically searching for reusable document fragments still remained open.

This paper closes the gap using software clone detection technique [10,11].
Our approach is designed for operating with XML documentation in Doc-
Book [12] and DRL [8] markup languages, as well as with plain Text (i.e.
ASCII/UNICODE format). DocBook is a wide-spread XML language for soft-
ware documentation development in Linux/Unix community, while DRL is an
extension of DocBook for implementation of adaptive reuse approach. We used
Clone Miner [13] as a clone detection tool, filtering and correcting its outputs.
Based on clones found by the tool, the approach supports refactoring of docu-
mentation, i.e. producing customizable reusable elements and inserting them into
the text. We consider not only exact duplicates, but also “near duplicate” text
fragments, applying adaptive reuse technique [6,7]. We implemented the app-
roach as a tool that incorporates visualization and navigation facilities on the
detected clone groups and provides seamless invocation of DocLine refactoring
operations. The paper includes the results of the evaluation the proposed app-
roach whereby we applied our tool for DocBook documentation of several open
source projects, and, in particular, for Linux Kernel Documentation (LKD) [14].

172 D. Koznov et al.

2 Related Works

Technical documentation development currently widely employs XML markup
languages. The widely used standards are DocBook [12] and DITA [15], both sup-
porting modular approach and enabling development of reusable documentation
components. In [8] adaptive software reuse technique of Bassett-Jarzabek [6,7],
has been applied to documentation. But all of these approaches imply that
documentation is developed as reusable modules from the very beginning, and
they do not offer approaches and tools for searching and extracting repetitions.
Meanwhile, documentation maintenance often requires eliminating inconsisten-
cies, because previous corrections were local and made by different persons,
in different manners. Searching “near duplicate” text fragments and extracting
reusable text elements could simplify the maintenance process. Moreover, this
may also lead to correction of descriptions of similar code objects (signals, func-
tions of API, handlers, etc.) for better unification to facilitate future changes.
The adaptive reuse technique of XVCL is helpful in this regard. In [9] refactoring
of documentation was suggested to extract adaptive reusable elements. But no
tools to search repeatable fragments were available.

A systematic review of the software documentation domain is presented
in [16]. Below, we overview some of the studies, which provide automatic analysis
and transformation of documentation.

Zhong et al. [17] suggested an approach to infer resource specifications from
API documentation. The approach overcomes the problem that developers tend
to ignore information in API documentation. But if some part of the code is
automatically generated on technical documentation, the problem is solved. The
paper proposes to generate resource specification on documentation.

An approach to detect documentation errors comparing code samples and
corresponding document fragments is proposed in [18]. The approach is based on
comparing code objects that are mentioned in the text (data types, procedures,
variables, etc.) with the ones in the samples.

Garousi et al. [1] suggests to analyze the usage and quality of software
projects’ documentation during development and maintenance phases, based on
projects’ data and experts’ opinion from a survey-based questionnaire.

Metrics to measure documentation quality are proposed in [19,20]. The
authors also adapt the VizzAnalyzer clone detection tool [21] to provide a mea-
surement of a documents uniqueness. However, further use of found clones is
only briefly discussed and their automatic transformation for future reuse is not
done.

To summarize, little attention is given to search repetitions in software tech-
nical documentation to extract reusable elements. The issue is only touched
upon in [19,20], but no approach applies the idea of adaptive reuse to software
technical documentation.

Clone Detection in Reuse of Software Technical Documentation 173

3 Background

3.1 DocBook

DocBook [12] is a collection of standards and tools for technical writing, partic-
ularly used for large and highly structured content. The key difference between
DocBook and other structured formats (e.g., LaTeX) is that the style (bold,
font size, italics etc.) is separated from the structured content. This allows one
source document to have many presentations, such as HTML, PDF, etc. Unlike
other document markup tools, DocBook is not WYSIWYG technology (What
You See Is What You Get). It provides more flexibility, and allows to create
more reliable documents, but demands for technical writers to be more experi-
enced than Microsoft Word users (discussion about usage of markup languages
by technical writers can be found in [22]). DocBook may be easily extended, and
it is possible to use these extensions in practice: you only need to perform pre-
processing specifications to eliminate extended constructs into plain DocBook,
and after that you may use the standard DocBook utilities to get target docu-
ment presentations (e.g., PDF).

3.2 DocLine

DocLine [8] is created for the development and maintenance of complicated soft-
ware documentation basing on adaptive reuse [6,7] to operate with duplicate
documentation fragments. Adaptive reuse means that reusable text fragments
can be configured for each context where they are inserted.

DocLine provides a new XML markup language DRL, a model of documen-
tation development process, and a toolset integrated into Eclipse IDE. DRL
(Documentation Reuse Language) extends DocBook [12] providing two mecha-
nisms of adaptive reuse: customizable information elements and multi-view item
catalogs.

Customizable Information Elements. This can be understood with the help
of a simple example. Let us consider a news aggregator that provides news feed
from different sources. A description of the module to refresh news from RSS
and Atom feeds can be the following:

When module instance receives refresh_news call, it updates its
data from RSS and Atom feeds it is configured to listen to and
pushes new articles to the main storage. (1)

Meanwhile, the news aggregator can also use Twitter as a news feed, and the
description of corresponding module can be as follows:

When module instance receives refresh_news call, it updates its
data from Twitter feeds it is subscribed to and pushes new
articles to the main storage. (2)

174 D. Koznov et al.

To provide reuse of duplicate text in (1) and (2) using an adaptive reuse
technique, the corresponding information element must be specified in DRL:

<infelement id="refresh_news">
When module instance receives refresh_news call, it updates its
data from <nest id="SourceType"></nest> and pushes new articles
to the main storage.</infelement> (3)

In this example, we define an information element (<infelement/> tag) and
an extension point inside it (<nest/> tag). When this information element is
included in a particular context, the extension point can be removed, replaced
or appended with custom content without having to modify the information
element itself. The following customization transforms(3) into (2):

<infelemref infelemid="refresh_news">
<replace-nest nestid="SourceType">Twitter feeds it is subscribed
to </replace-nest> </infelemref> (4)

The example (4) shows a reference to the information element defined in
(3) (<infelemref/>) and the replacement of the extension point defined in this
information element by new content (<replace-nest/>).

Multi-view Item Catalogs. In the documentation of most Software products
one can find descriptions of typical items of the same kind. To organize adaptive
reuse for that case a multi-view item catalog is introduced in DRL. The catalog
contains a collection of items represented by a set of attributes. When a technical
writer includes a catalog item into a particular context, s/he must indicate the
corresponding representation template and the item identifier. Then, the content
of the template will be inserted into the target context and all the references to
the attributes will be replaced by corresponding attribute values. A particular
case of the catalog is a dictionary, which contains a set of terms without presen-
tation templates. Dictionaries are useful for creating glossary to unify naming
policy in documentation. More details about multi-view item catalogs can be
found in [8,9].

3.3 Refactoring Documentation

Refactoring is the process of changing a software system in such a way that it
does not change the external behavior of the code, yet improves its internal struc-
ture [24]. In [9], refactoring was adapted to XML documentation maintenance. In
this case, refactoring means the change of internal document specification (XML
markup constructs), and preservation of output document presentation (e.g., pdf
file). Based on this idea, a number of refactoring operations were designed for
DocLine [9].The operations can be divided into the following groups:

1. Operations for extracting common assets, and, in particular, for transition to
DRL from plain text or DocBook.

Clone Detection in Reuse of Software Technical Documentation 175

2. Operations to facilitate core assets tuning (extending their configurability).
3. Operations to facilitate the use of small-grained reuse constructions — dic-

tionaries and multi-view item catalogs.
4. Operations for renaming various structural elements of documentation.

3.4 Software Clone Detection and Clone Miner

Very often software is reused by means of copy/paste. It produces duplicate code
(software clones), and that may lead to serious maintenance problems. Clone
detection methods and tools are aimed to find different kinds of duplicate code
to perform refactoring based on reuse techniques. Systematic review of clone
detection methods and tools can be found in [11], while interesting discussion
about code cloning and clone detection is presented in [10].

This area is quite mature; there are a number of ready-to-use tools. We
selected Clone Miner tool [13] as it is a simple command line tool that could
easily integrate into the DocLine framework. Clone Miner is a token-based code
clone detector. It converts the input source code into a string of lexical tokens and
then applies suffix array based string matching algorithms to find the repeated
parts of this string as clone groups.

The tool allows varying the minimal length of clones to be searched, measur-
ing it in terms of the number of tokens. A token in the context of text documents
is one single word separated from other words by some separator: ‘.’, ‘(’, ‘)’, etc.
For example, the following text fragment consists of 2 tokens: “FM registers”.

Clone Miner was extended for this project to support plain text and Unicode
inputs, which made it possible to apply the tool to Russian language documents
as well.

4 The Process of Clone Detection and Refactoring

4.1 Overview

The general scheme of the process is shown in Fig. 1. The input of the process
is a DRL file, which the user prepares for clone detection. After that s/he starts
document clone detection by launching Clone Miner which generates the output
results. Once the user gets the list of clone groups, s/he can execute the auto-
mated refactoring for any clone group. In refactoring, all occurrences of clone
selected are replaced by references to reusable element definition.

4.2 Preparation for Clone Detection

DocLine operations are executed for DRL constructs, in particular, the searching
of clones is applied to information elements. If the user wants to apply docu-
ment clone detection for plain text or DocBook documents, s/he has to first
perform refactoring operation “Transition to DRL”. As a result, a new informa-
tion element appears that includes the whole original text. Clone detection is
then performed on this information element.

176 D. Koznov et al.

Fig. 1. Process overview

4.3 Clone Detection

We start Clone Miner in the “search in flat text” mode since actually we need
flat text search: the repetitions in question might be found inside XML struc-
tures. Therefore, the found clones might violate XML markup. (5) shows a text
fragment with a found clone emphasized. It includes the start tag but not the
end tag. The clones become correct in terms of XML as a result of refactoring
operations, and so does their context in the document.

<section id="file-tree-isa-directory">
<title>Reviving incoming calls </title>
<para>
Once you receive an incoming call, the phone gets CallerID
information and reads it out. But if...</para>
</section> (5)

4.4 Filtering

We use clones detected in refactoring, since it is the technical writer who is
responsible for choosing the candidates for refactoring based on their seman-
tic meaningfulness. Meanwhile the number of clone groups detected is so large
that they need to be filtered. Our algorithm filters Clone Miner output by the
following steps:

1. A clone group is rejected if clone length in the group is less than 5 symbols
(e.g. “is a” contains 3 symbols): as a rule, such clones have no semantics,
but usually a lot of such groups are found. Some terms can be lost, espe-
cially abbreviations, but this is the way to reduce considerably the number of
insignificant clone groups. It should be reminded that we measure the clone
length in number of tokens in the paper (it means the number of symbol
sequences separated by the comma, space, etc.), but in this case we do it in
terms of symbols, because the length is too small.

2. We eliminate the groups containing clones consisting only of XML constructs
and do not contain output text: we have no task to organize XML markup
constructs reuse.

Clone Detection in Reuse of Software Technical Documentation 177

3. We remove the clone groups consisting of phrases “that is”, “there is a”, etc.:
these clones have no software semantics (this issue is discussed in Sect. 6). To
avoid such clones we have elaborated the dictionary of such expressions based
on our own experiments, and we check every clone group if its clones belong
to the dictionary. In the future more sophisticated analysis techniques can
be used, considering natural-language patterns embedded [23] into strictly
defined DRL markup.

4.5 Refactoring

After previous steps, we have a set of clone groups. But our aim is to use clones to
extract reusable elements. It can be done using the refactoring process described
below. The process uses refactoring operations which have been suggested in [9],
but some additional activities have to be performed. The schema of the refac-
toring process is presented in Fig. 2.

Clone groups
found Search pairs

Analysis of pairs &
clone groups

Extraction information
elements & dictionaries

Modified
document

Correction of
XML-structure

Control of clone
intersection

Fig. 2. Refactoring process

Searching Close Pairs. We have the list of clone groups found by Clone Miner
in (SetG). To provide adaptive reuse, we search clone groups from SetG where
clones are located close to each other. For example, the following phrase can be
found in the text 5 times with different variations (various port numbers): “inet
daemon can listen on ... port and then transfer the connection to appropriate
handler”. In this situation we have 2 clone groups with 5 clones in every group:
one group include clones “inet daemon can listen on”, while the other includes
“port and then transfer the connection to appropriate handler”. We want to
combine these clone groups in a single information element with one extension
point to capture different port numbers.

To find out such kinds of clone groups we propose an algorithm. The algo-
rithm works only with two clone groups, because our observations show that
this is the most popular case (we plan to extend the algorithm in the future for
n clone groups). We define the distance between two clones as the number of
symbols between them (we do not consider a case of intersected text fragments).
We define the distance between two clone groups G1 and G2 under the following
constraints:

178 D. Koznov et al.

1. They have the same number of clones: #G1 = #G2.
2. We introduce an ordering for clones in a group based on their appearance in

the document, and assign a number to each clone. As a result we have a set of
clone pairs, where the first member belongs to one group, the second belongs
to another, and for all pairs the first members belong to the same group, and
the second members belong to the second one. Clones in the same pair are
not intersecting, i.e. they are not overlapping in the text:
∀k ∈ (1..#G1) gk1 ∩ gk2 = ∅,
where gk1 and gk2 are members of G1 and G2 groups respectively.

3. For every pair of clones (one clone belongs to first group, another belongs to
the second group, and both clones have the same number) clone from one
group occurs before clone from the other group in the document:
(∀k ∈ (1..#G1)Before(gk1 , g

k
2))

∨
(∀k ∈ (1..#G1)Before(gk2 , g

k
1)),

where gk1 and gk2 are members of G1 and G2 groups respectively.

The distance between G1 and G2 is dist(G1, G2) = max(dist(gk1 , g
k
2)), where

dist(gk1 , g
k
2) is a distance between clones (text fragments) gk1 and gk2 . We use

this simple formula, because we have just one special requirement for distance
between clone groups: if we choose a clone group it should be possible to compare
a distances from this group to others to select the closest one. But we would not
like to consider unreal distances, that is, variation of distances between clone
pairs for selected groups should not be too big. For example, if the distance
between the first clone pair is 1 symbol, and the distance between the second
pair is 10 000 symbols then there is no chance, that these pairs are seman-
tically connected, and it would not be sensible to create information element
with extension point. Following our experiments, we have defined the maxi-
mum of distance variance between clones from two group as constant 2000:
Var({dist(gk1 , gk2)|k ∈ (1..#G1), gk1 ∈ G1, g

k
2 ∈ G2}) ≤ 2000. If the variance is

greater, we do not consider this pair.
The algorithm of searching close pairs considers all clone groups from SetG

and for every group finds the closest one. If it is successful, a new pair is added
to the set PairG. If it is not successful for selected clone group (e.g. there is
no other clone group with the same number of clones) the resulting list have no
pair with this clone group.

Analysis of Pairs & Clone Groups. In this step we combine the clone group
pairs and the initial list of clone groups in a list L to present the informa-
tion to the user for making decision: what text fragments should be extracted
as information elements/dictionaries (elements of L we will call candidates for
refactoring or shortly – candidates). The problem is that reusable text elements
have to have some semantic, e.g. to be a typical description of a function or
interruption. If reuse relies only on syntax and have no semantics, it looks use-
less. But it is hard to do such analysis automatically, that is why we provide
browsing facilities to help the user to make the right decision.

Clone Detection in Reuse of Software Technical Documentation 179

L includes clone group pairs and single groups, which are not included in
any pair: L = PairG

⋃ {G | G ∈ SetG & � ∃P ∈ PairG : G = left(P) ∨ G =
right(P)}.

We order L by the length of elements measuring length in a symbols in
descending order. The length of clone is the number of the symbols in a clone.
The length of clone group is sum of lengths of all clones from a group: ∀G ∈ L
length(G) = #G · length(g), where g ∈ G, and #G is a number of clones in G.
It should be reminded that all clones from a group are duplicate text fragments,
that is why all of them have equal length. The length of the clone group pair is the
sum of the lengths of clone groups included in the pair: length(Pair(G1, G2)) =
length(G1)+ length(G2). We can see elements at the top of the L, which contain
most “amount” of text, and these elements are most preferable for reuse. The
user should select manually a group or a pair to perform refactoring operations.

Extraction Information Elements & Dictionaries. For each clone group
or clone group pair selected before the user can apply the following refactoring
operations (see Sect. 3.3, group 1): extracting information element, extracting
information element with variations, or extracting to dictionary.

Before executing these operations, we check if the selected clone group inter-
sects with other clone groups, which have already been used to extract informa-
tion elements/dictionaries. Clone Miner allows intersection of clone groups, as it
has no information what will happen to the detected clones further. But in our
case, such intersection leads to mistakes in refactoring operations.

If this checking was successful we perform transformation of selected text
fragments to be reused and the remaining context into correct XML. As men-
tioned earlier, Clone Miner outputs XML-incorrect results, but DocLine can
operate only with the correct DocBook/DRL fragments. Generally speaking,
our algorithm opens/closes all the necessary tags, both in the clone and in the
context from which it is extracted. However, these open/close actions should be
“clever”. For example, if we close and reopen the tag <para> (it marks a new
paragraph), then we would have two paragraphs instead of one in the resulting
text (i.e. text on pure DocBook that is produced after the elimination of DRL
constructions and, in particular, after the substitution of reusable information
elements). This is the direction of the future work.

Once the refactoring operation for selected candidates is successfully com-
pleted, it is removed from L, and document coordinates of the another elements
of L are recalculated. After that the user goes back to the “Analysis of pairs &
clone groups” step.

5 The Tool

To support the process presented above we implemented a Documentation Refac-
toring Toolkit [25], and integrated it into DocLine/Eclipse. The tool is imple-
mented in Python and can be invoked as a standalone application (i.e. outside
of Eclipse and DocLine). The tool provides navigation over detected candidates,

180 D. Koznov et al.

and text browsing facility to observe clones in the source text. It is possible to
perform extracting all clones from selected groups into reusable elements, i.e.
perform refactoring.

Fig. 3. Documentation refactoring toolkit

The main window is shown on the Fig. 3. The tool is launched for a document,
while the title of the document is displayed as the title of the window. The lines
of table in the section «Refactoring candidates» correspond to clone groups or
pairs found for that document. In the pop up menu for a candidate the user
can select a refactoring type – to create either an information element or a
dictionary element. If the candidate is a pair, then variations are highlighted as
yellow/green pieces of text in the «Candidate text» column.

The «Source text» section shows clones in the source document. If a selected
candidate is a clone group then the user needs to select the number of the
clone element in the group (see color numbers at the end of the first cell in the
«Candidate text» column, Fig. 3). If a candidate is a pair (see the second cell in
the «Candidate text» column), then the user needs to select a certain pair by
clicking on the corresponding variation. In either case the «Source text» window
will display the clone pair of clones in the source document.

6 Evaluation

We did our experiments using hand-made tests and third party DocBook doc-
umentation of open source industrial projects. The list of projects and corre-
sponding documentation is presented in Table 1.

Clone Detection in Reuse of Software Technical Documentation 181

Table 1. Documentation used in experiments

Project Documentation Acronym Size

Linux Kernel is an open oper-
ating system kernel, which is
basis for Linux operating sys-
tem

«Linux Kernel Documenta-
tion» is designed for program-
mers who use Linux Kernel
[14]

LKD 892 KB

Zend Framework is an open
source framework for develop-
ing web applications and ser-
vices using PHP

«Zend PHP Framework docu-
mentation» is a programming
guide [26]

Zend 2924 KB

Subversion is a versioning and
revision control system

«Version Control with Sub-
version For Subversion 1.7»
is a tool description for users
and system administrators
[27]

SVN 1810 KB

DocBook is a framework for
single source documentation
development

«DocBook 4 Definitive
Guide» is the complete
official documentation on
DocBook markup language
4.0 [28]

DocBook 686 KB

Following GQM approach [29] we selected a set of questions to characterize
the way of the assessment in our experiments:

– question 1: quality of documentation clone detection
– question 2: effectiveness of filtering clones
– question 3: evaluation of refactoring facilities

Addressing question 1 we did experiments with Clone Miner and DocLine
clone search facilities. The first experiment was carried out on hand-made tests
for which we know exactly the number and the locations of clones. We found
that Clone Miner made some mistakes, e.g., it sometimes skipped the last token
in clones. We fixed these errors. After that our tool found correctly all the clones
in hand-made tests.

To assess question 2 we used third party documentation listed in Table 1.
We used metrics, which are filtering types described in Sect. 4.4. The results are
presented in Table 2. It should be noted, that filtering decreases the number of
candidates by 13.2% on average.

Numbers of refactoring candidates after filtration are presented in Table 3
for two cases: with the minimal lengths of clones of 1 and 5 (divided by slash in
table). In the latter case the numbers of candidates are fewer and the situation
looks more operable. However smaller clones, which were excluded in this case,
can be used as dictionary elements or in other important situations. Therefore,
we recommend that technical writer should work with candidates with the min-
imal length of clone equal to 1. To simplify operations with a large number of
candidates our tool supports ordering by length.

182 D. Koznov et al.

Table 2. Filtering results

Metrics LKD Zend SVN DocBook Average

Rejecting clones under 5 symbols in length, % 7.3 4.8 4.4 7.2 5.9
Rejecting pure XML markup clone groups, % 3.3 5.8 2.4 6.0 4.4
Rejecting common language phrases, % 3.2 2.2 2.9 3.4 2.9
Total, % 13.8 12.8 9.7 16.6 13.2

Table 3. Number of candidates in case of minimal length of clone is 1 and 5

Number of candidates LKD Zend SVN DocBook

Number of single clone groups 12819/1034 33400/5213 27847/3119 8228/870
Number of pairs 351/108 1400/613 616/249 232/50
Total 13170/1254 34800/5826 28463/3368 8460/920

Let us consider question 3. We assessed the question using the metric called
amount of reuse, which tracks percentages of reused text [30]. We calculate the
metric by dividing the amount of reusable text by the total size of documentation.
We take all refactoring candidates as reusable text and calculate the amount
as

∑
C∈(all candidates) length(C), where length(C) is the number of symbols in

a clone or a clone pair multiplied by the number of clones in the group (see
Sect. 4.5). We measure documentation/text fragments size in symbols. It would
be better to measure it in tokens but we had some technical problems with
that. The average amount of reusable text for all tested documents is between
48% and 52.9%. The results show that when refactoring is carried out in an
automatic (straightforward) way, reuse happens to be quite significant. But it is
hard to estimate real reuse amount because, as it has been mentioned, technical
writer performs additional semantic filtering of candidates for refactoring. To
estimate the quality of refactoring more precisely, additional experiments with
real project documentation are necessary.

7 Conclusions

Our experiments have shown that even after filtering we have a lot of insignificant
clones. Some of them are easy to remove with improved filtering, but others can
only be filtered manually. The precision of the algorithm is a baseline for our
future work. Support of adaptive reuse should be also extended, e.g. proving
extraction of information elements with n extension points, where n > 1.

During our experiments, it became clear that our tool should be improved to
be more convenient in operating with clone groups, e.g. providing more facilities
for construction of information elements.

The proposed approach can be useful in software product line documen-
tation management environment to extract reusable document fragments for

Clone Detection in Reuse of Software Technical Documentation 183

documentation of different product line members and organize reusable docu-
ment structure. It simplifies document maintenance process and, of course, it
is meaningful only if maintenance (product line member or/and its documenta-
tion) is significant. Our approach can also be used in the context of variability
management [31] in software product line development.

Supporting semantic reuse can allow to integrate our approach with various
software traceability techniques [32,33], and mapping document fragments into
other software artifacts: code, requirements, model entities, etc. In this case,
reuse can improve the quality of this mapping, and semantic-oriented adaptive
reuse could increase the granularity of the mapping.

Apart from software engineering, the proposed approach could also be used
in such areas as Ontology Engineering [34] or Enterprise Architecture Model-
ing [35]: usually, models are stored in XML format, and irregular repetitions are
also possible here, taking into account that a number of analysts can work with a
large volume of information, and a lot of information is unstructured (documents
and comments applied to models, long names of model entities, etc.).

Acknowledgements. The authors thank the students Artem Shutak, Dmitry Kopin,
Mikhail Smarzhevskij and Adeel Khan, who implemented the draft versions of selected
parts of the solution, and participated in discussions.

References

1. Garousi, G., Garousi, V., Moussavi, M., Ruhe, G., Smith, B.: Evaluating usage and
quality of technical software documentation: an empirical study. In: Proceedings
of EASE 2013, pp. 24–35 (2013)

2. Watson, R.: Developing best practices for API reference documentation: creating
a platform to study how programmers learn new APIs. In: Proceedings of IPCC
2012, pp. 1–9 (2012)

3. Parnas, D.L.: Precise documentation: the key to better software. In: Nanz, S. (ed.)
The Future of Software Engineering, pp. 125–148. Springer, Heidelberg (2011)

4. Holmes, R., Walker, R.J.: Systematizing pragmatic software reuse. ACM Trans.
Softw. Eng. Methodol. 21(4), 20:1–20:44 (2013)

5. Czarnecki, K.: Software reuse and evolution with generative techniques. In: Pro-
ceedings of the IEEE/ACM International Conference on Automated Software Engi-
neering, p. 575 (2007)

6. Jarzabek, S., Bassett, P., Zhang, H., Zhang, W.: XVCL: XML-based variant con-
figuration language. In: ICSE 2003, pp. 810–811 (2003)

7. Bassett, P.: The theory and practice of adaptive reuse. SIGSOFT Softw. Eng. Notes
22(3), 2–9 (1997)

8. Koznov, D., Romanovsky, K.: DocLine: a method for software product lines docu-
mentation development. Program. Comput. Softw. 34(4), 216–224 (2008)

9. Romanovsky, K., Koznov, D., Minchin, L.: Refactoring the documentation of soft-
ware product lines. In: Huzar, Z., Koci, R., Meyer, B., Walter, B., Zendulka, J.
(eds.) CEE-SET 2008. LNCS, vol. 4980, pp. 158–170. Springer, Heidelberg (2011)

10. Akhin, M., Itsykson, V.: Clone detection: why, what and how? In: Proceedings of
CEE-SECR 2010, pp. 36–42 (2010)

184 D. Koznov et al.

11. Rattan, D., Bhatia, R.K., Singh, M.: Software clone detection: a systematic review.
Inf. Softw. Technol. (INFSOF) 55(7), 1165–1199 (2013)

12. Walsh, N., Muellner, L.: DocBook: The Definitive Guide, p. 644. O’Reilly,
Sebastopol (1999)

13. Basit, H.A., Smyth, W.F., Puglisi, S.J., Turpin, A., Jarzabek, S.: Efficient token
based clone detection with flexible tokenization. In: Proceedings of ACM SIGSOFT
International Symposium on the Foundations of Software Engineering, pp. 513–516.
ACM Press (2007)

14. Linux Kernel Documentation, snapshot on 11 December 2013 (2013). https://
github.com/torvalds/linux/tree/master/Documentation/DocBook/

15. Darwin Information Typing Architecture (DITA) Version 1.2 Specification (2012).
http://docs.oasis-open.org/dita/v1.2/os/spec/DITA1.2-spec.pdf

16. Zhi, J., Garousi, V., Sun, B., Garousi, G., Shahnewaz, S., Ruhe, G.: Cost, benefits
and quality of technical software documentation: a systematic mapping. J. Syst.
Softw. 99, 175–198 (2015)

17. Zhong, H., Zhang, L., Xie, T., Mei, H.: Inferring resource specifications from natural
language API documentation. In: Proceedings of 24th ASE, pp. 307–318 (2009)

18. Zhong, H., Su, Z.: Detecting API documentation errors. In: Proceedings of
SPASH/OOPSLA, pp. 803–816 (2013)

19. Wingkvist, A., Lowe, W., Ericsson, M., Lincke, R.: Analysis and visualization of
information quality of technical documentation. In: Proceedings of the 4th Euro-
pean Conference on Information Management and Evaluation, pp. 388–396 (2010)

20. Wingkvist, A., Ericsson, M., Lowe, W.: A visualization-based approach to present
and assess technical documentation quality. Electron. J. Inf. Syst. Eval. 14(1),
150–159 (2011)

21. VizzAnalyzer Clone Detection Tool. http://www.arisa.se/vizz_analyzer.php
22. Cameron, H.G.: Wright: technical writing tools for engineers and scientists. Com-

put. Sci. Eng. 12(5), 98–103 (2010)
23. Grigorev, S., Kirilenko, I.: GLR-based abstract parsing. In: Proceedings of the 9th

Central & Eastern European Software Engineering Conference in Russia (2013)
24. Fowler, M., et al.: Refactoring: Improving the Design of Existing Code. Addison-

Wesley, Reading (1999)
25. Document Refactoring Toolkit. http://www.math.spbu.ru/user/kromanovsky/

docline/index_en.html
26. Zend PHP Framework documentation, snapshot on 24 April 2015 (2015). https://

github.com/zendframework/zf1/tree/master/documentation
27. SVN Book, snapshot on 24 April 2015 (2015). http://sourceforge.net/p/svnbook/

source/HEAD/tree/trunk/en/book/
28. DocBook Definitive Guide, snapshot on 24 April 2015 (2015). http://sourceforge.

net/p/docbook/code/HEAD/tree/trunk/defguide/en/
29. Basili, V.R., Caldiera, G., Rombach, H.D.: The goal question metric approach.

Encycl. Softw. Eng. 2, 528–532 (1994). Wiley
30. Frakes, W., Terry, C.: Software reuse: metrics and models. ACM Comput. Surv.

28(2), 415–435 (1996)
31. Krueger, C.W.: Variation management for software product lines. In: Proceedings

of SPL 2002, San Diego, CA, USA, pp. 37–48 (2002)
32. Abadi, A., Nisenson, M., Simionovici, Y.: A traceability technique for specifica-

tions. In: Proceedings of ICPC 2008, pp. 103–112 (2008)
33. Terekhov, A.N., Sokolov, V.V.: Document implementation of the conformation of

MSC and SDL diagrams in the REAL technology. Progra. Comput. Softw. 33(1),
24–33 (2007)

https://github.com/torvalds/linux/tree/master/Documentation/DocBook/
https://github.com/torvalds/linux/tree/master/Documentation/DocBook/
http://docs.oasis-open.org/dita/v1.2/os/spec/DITA1.2-spec.pdf
http://www.arisa.se/vizz_analyzer.php
http://www.math.spbu.ru/user/kromanovsky/docline/index_en.html
http://www.math.spbu.ru/user/kromanovsky/docline/index_en.html
https://github.com/zendframework/zf1/tree/master/documentation
https://github.com/zendframework/zf1/tree/master/documentation
http://sourceforge.net/p/svnbook/source/HEAD/tree/trunk/en/book/
http://sourceforge.net/p/svnbook/source/HEAD/tree/trunk/en/book/
http://sourceforge.net/p/docbook/code/HEAD/tree/trunk/defguide/en/
http://sourceforge.net/p/docbook/code/HEAD/tree/trunk/defguide/en/

Clone Detection in Reuse of Software Technical Documentation 185

34. Gavrilova, T.A.: Ontological engineering for practical knowledge work. In: Apol-
loni, B., Howlett, R.J., Jain, L. (eds.) KES 2007. LNCS, vol. 4693, pp. 1154–1161.
Springer, Heidelberg (2007)

35. Grigoriev, L., Kudryavtsev, D.: ORG-Master: combining classifications, matrices
and diagrams in the enterprise architecture modeling tool. In: Mouromtsev, D.,
Klinov, P. (eds.) KESW 2013. CCIS, vol. 394, pp. 250–257. Springer, Heidelberg
(2013)

Modeling Actor Systems Using
Dynamic I/O Automata

Ilham W. Kurnia(B) and Arnd Poetzsch-Heffter

University of Kaiserslautern, Kaiserslautern, Germany
{ilham,poetzsch}@cs.uni-kl.de

Abstract. Actor-based programming has become an important tech-
nique for the development of concurrent and distributed systems. This
paper presents a new automaton model for actor systems and demon-
strates how the model can be used for compositional verification. The
model allows expressing the detailed behavior of actor components where
components are built from actors and other components. It abstracts
from internal and environment behavior, supports encapsulation of
actors, and captures the dynamic aspects of actor creation and expo-
sure of actor names to the component environment, which are crucial
for verification. We handle these changes at the component interface by
specializing dynamic I/O automata. The model can be used as a founda-
tion of different verification techniques. We illustrate this by combining
weakest precondition techniques on the actor level with simulation proofs
on the component level.

1 Introduction

Actors [2] are a well studied programming model that gets more and more atten-
tion for developing concurrent and distributed systems (e.g., actors in Scala
[19]). At runtime, an actor-based system consists of a dynamically changing set
of actors. Actors are similar to objects: They have a unique name and a local
state; they can create new actors and send messages to other actors addressing
them by their name. As the sender does not wait for a reply, i.e., messages are
passed asynchronously, message sending naturally leads to concurrent behavior
of sender and receiver.

Our overall goal is the compositional verification of actor systems. More
precisely, we want to verify the behavior of actor components independently of
their environment and use component specifications to verify larger components.
This goal entails the following requirements:

– A hierarchical component concept is needed that goes beyond single actors
and allows to develop components by encapsulating other components.

– Components have to be handled in an open way, i.e., without knowing their
environment (cf. [20]).

– Dynamic actor creation and the passing of actor names has to be captured.

c© Springer International Publishing Switzerland 2016
M. Mazzara and A. Voronkov (Eds.): PSI 2015, LNCS 9609, pp. 186–202, 2016.
DOI: 10.1007/978-3-319-41579-6 15

Modeling Actor Systems Using Dynamic I/O Automata 187

The combination of these requirements is surprisingly challenging. In particular,
a component consisting of several actors might expose some of its actors to the
environment, thereby enabling the environment to interact with these actors.
Exposing actors to the environment dynamically changes the component inter-
face (as demonstrated in Sect. 2). Thus, it is important to precisely keep track
of the exposed actors to capture the component behavior.

We use automaton models as they allow constructive specification techniques
[27]. They can incorporate both notions of states and actions, making them
flexible to integrate with various verification techniques. In particular, they are
often compositional which allows for compositional reasoning. The challenge is to
capture the dynamic behavior at the component interfaces. In our approach, we
follow the ideas of the dynamic I/O automaton (DIOA) model [6,7]. As the high
degree of dynamicity provided by DIOA is larger than needed for our purposes
and as it would further complicate verification, we adapt DIOA to actor systems.
In summary, the paper makes the following contributions:

– It formally develops an automaton model that faithfully captures the dynamic
semantics of actors and components (Sect. 3).

– It combines a verification technique for actor programs and a simulation-
based proof technique to a two-tier verification approach for actor components
(Sect. 4).

The paper closes with a discussion on related work and a conclusion.

Notation. We use abstract data structures sequence, set, multiset and map. The
sequence data structure is represented by Seq〈T 〉, with T denoting the type of
the sequence elements. An empty sequence is denoted by [] and a sequence con-
catenation is simply juxtaposition. The set data structure Set〈T 〉 is a container
of values of type T while a multiset is denoted by M〈T 〉. Standard notations
for sets are used. The map data structure Map〈S, T 〉 is an associative container
that maps unique keys of type S to values of type T . An empty map is denoted
by {}. If m is a map, m[x �→ y] represents the insertion or update of the key
x with value y to m. The value y of key x is represented by m(x). If x is not
associated to any value, then m(x) = undef. The predicate diffOn(m1,m2,X)
for a set of keys X is true if m1 may differ from m2 with respect to the values
of keys in X and other keys are mapped to the same value.

2 Class-Based Actor Programming

Our techniques have been developed for the verification of ABS programs [23].
ABS is a class-based actor language with futures, subtyping and recursive data
types. In this paper, we only consider a core fragment of ABS, called αABS. As
illustrated in Listing 1.1, the syntax of αABS is similar to Java. Actor creation
is like object creation using the new expression. The state of an actor consists of
creation parameters and attributes (e.g., a Session-actor has the creation para-
meter c and an attribute w). A class defines the messages that are understood

188 I.W. Kurnia and A. Poetzsch-Heffter

by its actors. The body of a message definition is a statement that is executed
when the message is processed. Messages may have parameters, but do not have
a return value. Syntactically, sending a message is similar to calling a method
in Java. Semantically, a send is executed by adding the message to the buffer
of the receiver actor. Actors retrieve messages from the buffer one by one and
execute them until completion1.

1class Server(DB db) {

2 reqSess(Client c) {

3 Session ss = new Session(c, db);

4 c.provSess(ss);

5} }

6class Worker(Client c, DB db) {

7 do(Query q) {

8 Value v = compute(q, db);

9 c.response(v);

10} }

11class Session(Client c, DB db) {

12 Worker w = null;

13 perform(Query q) {

14 if (w == null)

15 w = new Worker(c, db);

16 w.do(q);

17 }

18}

19

20

Listing 1.1. Server implementation in αABS

The program in Listing 1.1 realizes a tiny server. Clients can request sessions
from the server and then use the session actors to perform a query. The session
actors internally use workers to execute the query and to send the response to the
client. The domain of queries and results are represented by the data types Query

and Value, respectively. Details of these types and of how queries are computed
are not of interest here. The example is not meant to be realistic; rather it is
designed to illustrate three important aspects:

– The server component is used in an unknown environment. The only infor-
mation about the environment is that there are clients and that these clients
accept the messages provSess and response. In particular, we do not known
what the clients do with the session actors.

– At runtime, the server consists of a server actor, a set of session actors, and
sets of workers. The session actors are dynamically created and exposed to
the environment. Thus, they are part of the behavioral interface of the server.
The worker actors are encapsulated and can never be accessed from the envi-
ronment. They all use the server’s database that can only be accessed via the
session interface.

– The sessions run concurrently2.

Inspired by component frameworks like OSGi [35], a component consists of a
set of classes C with a designated activator class C0 ∈ C [26]. The idea is that
a component instance is created by creating an actor of class C0. All actors
transitively created by this activator belong to the component instance. Conse-
quently, we require C to contain all classes of actors that might transitively be
1 αABS does not support suspension of tasks or wait statements.
2 For simplicity, we have only one worker per session. It is easy to extend the example

to support pools of workers.

Modeling Actor Systems Using Dynamic I/O Automata 189

created by actors of class C0. In the example, the Server class is the activator for
a component consisting of {Server, Session, Worker}. A subcomponent contains
less classes and a different activator class; e.g., {Session, Worker} with activator
class Session is a subcomponent of the server component. Based on this notion,
we can verify the Server properties from the properties of the Session component
in a hierarchical way.

A safety property of the server is that its sessions correctly respond to the
queries. In the following sections, we show how to accurately represent such
systems using the DIOA model and verify that the implementation satisfies the
desired behavior.

3 Automaton Model

The DIOA model [7] is a two-tier automaton model based on signature automata
(SA)3, formalized in Definition 1. On top of the standard elements of transition
systems: the set of (initial) states and the labeled transition relation, SA also
have state signatures: a description of its input, output and internal actions
parameterized by the state. The state-based classification of actions (of the uni-
verse Act) not only allows us to explicitly distinguish the externally observable
behavior represented by the automata, but also to have the interaction possi-
bilities dependent on the states. The two-tier aspect and the state signatures
are what are extended from I/O automata (IOA) [29]. SA retain an important
property of IOA: they are input-enabled.

Definition 1 (Signature Automata). A signature automaton A =
〈states(A), start(A), sig(A), steps(A)〉 is a 4-tuple where

– states(A) is a set of states,
– start(A) ⊆ states(A) is a non-empty set of initial states,
– sig(A) is a signature mapping where for each s ∈ states(A), sig(A)(s) =

〈in(A)(s), out(A)(s), int(A)(s)〉 where in(A)(s), out(A)(s), int(A)(s) ⊆ Act
such that in(A)(s) ∩ out(A)(s) = in(A)(s) ∩ int(A)(s) = out(A)(s) ∩
int(A)(s) = ∅,

– steps(A) ⊆ states(A) × acts(A) × states(A) is a transition relation, such that
• ∀(s, l, s′) ∈ steps(A) : l ∈ ŝig(A)(s),
• ∀s ∈ states(A) : ∀l ∈ in(A)(s) : ∃s′ ∈ states(A) : s

l−→ s′, and
• acts(A) =

⋃

s∈states(A)

ŝig(A)(s),

where the -̂operator represents the union of sets of the signature tuple.

Behavior can be represented by an SA in terms of executions and traces. An
execution is a sequence of alternating sequence s0l1s1 . . . of states and actions
such that s0 is an initial state and si−1

li−→ si is a transition in SA. A trace is

3 We use abbreviations for automata to also represent “a single automaton”. The
usage is apparent from the context.

190 I.W. Kurnia and A. Poetzsch-Heffter

the observable variant of an execution, i.e., the projection of the execution to
the sequence of its actions. The overall behavior of an entity represented by an
SA is captured by a set of executions (traces). We further define an external
trace to be a trace derived from an execution where each action li is either an
input or output action at state si−1. The external traces describe the observable
interaction between the entity and its environment.

The state signatures of SA are very flexible, such that an action may be an
input action in one state and output in another, for example. This flexibility is
excessive for representing actor systems, so we define in the following how to
restrict them.

3.1 First Tier Model

The first tier of a DIOA model for actors is populated by actor automata (AA):
SA that are enriched with the characteristics of (groups of) actors. This means:

– An actor can only send messages to other actors and pass these actors’ names
as parameters when they have been exposed to that actor.

– An actor must be able to accept any possible message sent by its environment.
– A newly created actor always has a fresh name.
– An actor processes one incoming message to completion at a time.

Before we show how to enrich SA to represent these characteristics, we first
introduce several elementary building blocks. We shortly define a notion of com-
ponents based on the creation dependency between classes. This notion allows
for a definition of AA that covers both actors and component instances.

The universes of actor(name)s, classes, messages, and data values are repre-
sented by a, b ∈ A, C ∈ CL, m ∈ M, and d ∈ D, respectively. We say “actor
a” to refer to an actor of some unique name a. The behavior of each actor is
represented by a class C. A class also determines what kind of messages an actor
of that class can process, represented by aMsg(C) ⊆ M. This function states
which messages are allowed to be sent to the actor and which messages the actor
can send to other actors. We overload this function with an extra parameter
type ∈ {in, out , int} to distinguish respectively which messages are part of the
input interface of the class, which messages can be sent by the actor to another
actor, and which messages the actor can send to itself, e.g., to trigger inter-
nal computations. The function class(a) represents the class of actor a and the
parameterized universe A(C) defines the set of actors of class C. The component
with activator class C is denoted by [C].

A message m can be an actor creation message new C(p) or a message send
mtd(p). A parameter can either be a data value d or an actor name. As with
actors, the universe of a data type D can be represented by D(D).

From these universes we build the set of events E which replaces the domain
of actions Act for AA. An event e ∈ E represents the occurrence of a message
m = msg(e) being sent from the sender actor a = sender(e) to the target actor
b = target(e) or being reacted to by b. If m is a creation message, b will be the name

Modeling Actor Systems Using Dynamic I/O Automata 191

of the newly created actor while a is its creator. The actor creation event is written
as a → b : new C(p). We assume that actors are named hierarchically, so that we
can say whether b is transitively created by a by checking that a is an ancestor
of b (written a ∈ ancestors(b)). For message sends, we distinguish between the
emittance of the message (a → b : mtd(p)) and its reaction (a � b : mtd(p)).
The function param(e) extracts the parameters of the message msg(e), while the
function acq(e), short for acquaintance, extracts the actors exposed in e.

Adapting SA to represent actors and component instances (together we call
them entities) based on the context described above requires two ingredients:
enriched states and some constraints placed on the initial states, the state signa-
tures and the transition relation. Definition 2 describes the states and constraints
utilizing the function isLocal that identifies whether an actor is represented by
the AA:

isLocal(a, a′, kind) def= (kind = TAct =⇒ a = a′)
∧ (kind = TComp =⇒ a′ ∈ ancestors(a))

Definition 2 (Actor Automata). A parameterized SA A(this, kind) =
〈states(A), start(A), sig(A), steps(A)〉 with the following description:

1. states(A) is a map with a fixed domain V ⊆ V denoting the variables stored
by the entity. V includes the following variables: buf , known, expActors,
ready , nameGen, and tgen , representing an event bag (of type M〈E〉), the
set of known actors (2A), the set of exposed actors (2A), whether the entity
is at a ready point (B), the actor name generator (2A), and the traces gener-
ated by the entity (Seq〈E〉), respectively. The read-only class parameters are
stored under the variable params. Other variables are internal and grouped
together under ints.

2. A non-empty set of initial states start(A) ⊆ states(A).
3. A signature mapping sig(A) where for each state s ∈ states(A), sig(A)(s) =

〈in(A)(s), out(A)(s), int(A)(s)〉, where in(A)(s), out(A)(s), int(A)(s) ⊆ E.
4. A transition relation steps(A) ⊆ states(A) × acts(A) × states(A).

is an actor automaton representing an entity (with the initial actor) of kind
“actor” (TAct) or “component instance” (TComp) of name this of class/com-
ponent D when it satisfies the following constraints:

A1. ∀s ∈ start(A) : s(buf) = s(nameGen) = ∅ ∧ this ∈ s(known) ∧ s(ready)
∧ s(expActors) = {this} ∧ s(tgen) = [].

A2. ∀s ∈ states(A) : in(A)(s) ={

e

∣
∣
∣
∣
isEmit(e) ∧ msg(e) ∈ aMsg(D, in)
∧ isLocal(target(e), this , kind) ∧ ¬isLocal(sender(e), this , kind)

}

.

A3. ∀s ∈ states(A) : out(A)(s) =
⎧
⎪⎪⎨

⎪⎪⎩
e

∣
∣
∣
∣
∣
∣
∣
∣

isEmit(e) ∧ acq(e) ⊆ s(known) ∧ msg(e) ∈ aMsg(D, out)
∧ (isSend(e) =⇒ isLocal(sender(e), this , kind)

∧ ¬isLocal(target(e), this, kind))
∧ (isCreate(e) =⇒ target(e) /∈ s(nameGen) ∧ sender(e) = this)

⎫
⎪⎪⎬

⎪⎪⎭
.

192 I.W. Kurnia and A. Poetzsch-Heffter

A4. ∀s ∈ states(A) : int(A)(s) =
⎧
⎨

⎩
e

∣
∣
∣
∣
∣
∣

(isReact(e) =⇒ emitOf (e) ∈ s(buf))

∧ (isEmit(e) =⇒ isSend(e) ∧ acq(e) ⊆ s(known)

∧isLocal(sender(e), this, kind) ∧ isLocal(target(e), this, kind))

⎫
⎬

⎭
.

A5. ∀(s, e, s′) ∈ steps(A) : e ∈ in(A)(s) =⇒ s′ = s[buf �→ s(buf) ∪ {e}].
A6. ∀(s, e, s′) ∈ steps(A) : isReact(e) =⇒ s(ready)

∧ diffOn(s, s′, {buf , known, ready , tgen , ints}) ∧ s′(tgen) = s(tgen) e
∧ s′(buf) = s(buf) − {emitOf (e)} ∧ s′(known) = s(known) ∪ acq(e).

A7. ∀(s, e, s′) ∈ steps(A) : isEmit(e) ∧ e ∈ out(A)(s) ∪ int(A)(s) =⇒
∧ diffOn(s, s′′, {expActors, ready , tgen , ints}) ∧ s′(tgen) = s(tgen) e
∧ (isCreate(e) =⇒ s′(known) = s′′(known) ∪ {target(e)}

∧ s′(nameGen) = s′′(nameGen) ∪ {target(e)})
∧ (e ∈ int(A)(s) =⇒ s′(buf) = s′′(buf) ∪ {e}).

Definition 2 describes how SA are transformed to AA. AA are parameterized
with the (initial) actor (of the component instance) this, mimicking how classes
are behavior templates of actors, and kind , the kind of the entity. The events
used in a particular AA are parameterized accordingly by this. The states consist
of predefined variables governing the local event buffer, the exposure knowledge
of non-local and local actors from and to the environment, whether the actor is
ready to process the next incoming message or whether the component instance
is ready to execute the next message, the actor name generator, and the trace
the entity has generated. These variables allow the construction of Constraints
A1 to A7 that regulate over the state signatures and the transition relation to
represent the actor characteristics.

Constraint A1 defines the initial states, where the buffer is still empty, the
entity knowledge is still at its minimum, the entity is ready to process an incom-
ing message and no actor has been generated yet. For a component instance, the
last aspect means that no locally created actor is exposed to the environment.

Constraints A2 to A4 describe how the state signatures are derived from
the state. The input and output state signatures are restricted by the allowed
messages of the class/component and message direction. Only emittance events
are part of these signatures. The internal state signatures are either reaction
events to events stored in the buffer or emittance events where both sender and
target actors are local.

Constraints A5 to A7 describe the effect of all transitions on the state vari-
ables. All incoming messages are put into the buffer without otherwise changing
the state. The entity can only react to a message when it is ready to do so. Exe-
cuting a reaction event causes the corresponding emittance event to be removed
from the buffer and the set of known actors is updated by the newly received
acquaintance. When an output or internal event can be emitted, we allow the
set of exposed actors, the values of the ready flag and the internal variables to
be changed. If the event is an actor creation event, the entity knows the created
actor. To ensure fresh names, the name generator keeps the name of the created
actor. If it is an internal event, then the event is directly added to the entity’s
buffer.

Modeling Actor Systems Using Dynamic I/O Automata 193

We drop the parameters this and kind from an AA when they are irrelevant
to the discussion. The name(s) of the (set of) actor(s) is retrieved by the function
names:

names(A(this, kind)) def=

{
{this}, if kind = TAct
{a | this = ancestors(a)}, if kind = TComp

For AA representing component instances, the function returns an over-
approximation of the set of actors that are local to the instance.

More specific behavior of an AA that goes beyond the constraints is expressed
by so-called AA specifications. We illustrate such specifications by an example.

Example 1. The behavior of an AA representing the server component (i.e., the
system) can be specified in three parts: the provided and required interfaces,
which form the set of allowed messages, the internal state, and the actions taken
by a server component instance. As a component, the server’s provided interface
consists not only of the server actor’s own interface (where it provides the reqSess

method), but also of the interface of the associated session actors (where they
provide the perform method). The required interface consists of the provSess and
response methods. The component’s specification does not include the internal
communication, because they are not observable by the environment.

The internal states of the server component need to capture the created
sessions, to which client each session is mapped to, and the queries the component
instance is currently processing. The states of this component are populated
when the component instance reacts to a message of the provided interface.
This reaction is marked by the execution of an event cl � srv : reqSess(cl)
or cl � sess : perform(q). In response, the server component sends back a
fresh session srv → cl : provSess(sess) or the computed query sess → cl :
response(compute(q)), respectively.

The specifications for AA that represent classes can be further optimized
because each actor processes one incoming message at a time. The actions exe-
cuted by the Server class can be represented by the AA using the following event
sequence:

cl � srv : reqSess(cl) srv → sess : new Session(cl , db) srv → cl : provSess(sess).

The AA definition allows this event sequence to be portrayed accurately.

Important to note is that AA does not utilize the full flexibility of SA with
regards to the state signature. An input event will always be an input event, and
similarly to output and internal event. The lemma formalizes this fact.

Lemma 1. Let A be an AA. We define in(A) to be
⋃

s∈states(A)in(A)(s), and
similarly for out(A) and int(A). Then in(A) ∩ out(A) = in(A) ∩ int(A) =
out(A) ∩ int(A) = ∅.
Proof. Follows from Constraints A2 to A4.

This lemma implies that AA are essentially more flexible IOA and verification
procedures for IOA are reusable. This lemma is also carried over to the second
tier which handles the dynamic creation aspect.

194 I.W. Kurnia and A. Poetzsch-Heffter

3.2 Second Tier Model

Missing from the first tier is the effect of creating an actor or a compo-
nent instance. Attie and Lynch [7] model this effect by defining configuration
automata (CA). CA are based on the notion of configurations: the set of A of
alive SA and a mapping S that maps each SA in A to a particular state. The
configuration information allow CA, the main semantic model, to represent open
systems that feature dynamic creation. Here we present the tweaked CA for actor
systems.

For an actor system, on top of the set of alive AA and the state information, a
configuration needs to store the information of actors that have been exposed to
the environment E. We set some sanity conditions on the alive AA such that they
are pairwise representing distinct entities and it is impossible for AA to create
entities that are already alive. Definition 3 formalizes this requirement using the
names function and the output state signature of each AA in the configuration.

Definition 3 (Configurations). A configuration C is a triple 〈A,S,E〉 where
A is a set of AA, S maps each AA A ∈ A to a state s ∈ states(A), and E ⊆
names(C) is the set of actor(name)s that have been exposed to the environment
such that

∀A, B ∈ A : A �= B =⇒ (names(A) ∩ names(B) = ∅
∧ out(A)(S(A)) ∩ {e | isCreate(e) ∧ target(e) ∈ names(B)} = ∅).

The names function is lifted to configurations: names(C) =
⋃

A∈A

names(A).

Important to CA is that they are derived from configurations. That is, the
signatures and the available transitions in a CA are fully dictated by the AA
present in the configurations and their state mapping. The following definition
precisely provides how to derive the signature of a configuration. It is based on
the observation that an event is always observable by at most two actors: the
sender and the target.

Definition 4 (Signatures of a Configuration). Let C = 〈A,S,E〉 be a
configuration. Let commonEv be the set of common events between actors
represented within the configuration: commonEv = { e | sender(e), target(e) ∈
names(C) }. Let envEv be the set of bogus events generated by the environment:

envEv =

{
e

∣∣∣∣ isSend(e) ∧ acq(e) ∩ ({a | ancestors(a) ∩ names(C) = ∅} ∪ E) �= ∅
∧ sender(e) /∈ names(C)

}
.

Then, the signature of C is sig(C) = 〈in(C), out(C), int(C)〉, where

– in(C) = (
⋃

A∈A

in(A)(S(A))) − commonEv − envEv ,

– out(C) = (
⋃

A∈A

out(A)(S(A))) − commonEv ,

– int(C) =
⋃

A∈A

(int(A)(S(A))) ∪ (
⋃

A∈A

in(A)(S(A)) ∩ ⋃

A∈A

out(A)(S(A))),

Modeling Actor Systems Using Dynamic I/O Automata 195

The signature of a configuration is the aggregation of the state signatures of
each AA in the configuration. All events sent by and to actors in the configuration
are clumped together as internal events. These common events from each actor’s
perspective are external events, but from the system’s perspective they occur
within the system. A special attention is needed for the input events, where due
to the lack of information of the system on the AA stage, each AA is modeled
as open as possible. This openness, however, include events that can never be
generated by the environment (and the system at the current configuration):
messages coming from an actor not represented by an AA in the configuration
whose parameters include actors of the configuration that are not yet exposed. To
retain input-enabledness, they must be removed from the configuration’s input
signature.

For each event in the signature of a configuration, we can derive the effect
of executing that event from the involved AA. This transition from the pre-
configuration to the post-configuration can be seen as an aggregate of the
transitions of the participating AA. If the event creates another entity, the
AA representing that entity is added to the configuration, such that the AA
is mapped to some initial state. All AA that can participate in executing that
event must perform the corresponding transition. The post-state of each transi-
tion is recorded in the post-configuration. The post-configuration also takes note
of which actors become exposed to the environment after executing the event.
Definition 5 formalizes this description.

Definition 5 (Intrinsic Transitions). Let C = 〈A,S,E〉, C
′ = 〈A′,S′,E′〉

be configurations and e an event. Let A′(target(e)) be an AA of class class(e)
or component [class(e)], if e is a creation event (i.e., isCreate(e)). There is an
intrinsic transition from C to C

′ labeled by e, written C
e=⇒ C

′, iff

1. e ∈ ŝig(C),
2. A

′ = A ∪ {A′(target(e)) | isCreate(e)},
3. for all A ∈ A

′ − A : S′(A) ∈ start(A) ∧ S
′(A)(params) = param(e),

4. for all A ∈ A : if e ∈ ŝig(A)(S(A)) ∧ S(A) e−→A s, then S
′(A) = s, otherwise

S
′(A) = S(A), and

5. E
′ = E ∪

{

a

∣
∣
∣
∣
isSend(e) ∧ target(e) /∈ names(C)
∧ a ∈ acq(e) − {a | ancestors(a) ∩ names(C) = ∅}

}

.

The following definition assembles the configurations, signatures, and tran-
sitions into a CA. More precisely, all configurations are taken from AA that
are deemed alive (Definition 3), whose signatures and possible transitions are
exactly as stated in Definitions 4 and 5, respectively. For simplicity, we restrict
ourselves to CA where initially only one entity is present in the configuration.
Initial configurations that contain more than one entity can be simulated by
having a main actor that creates the other entities and sends a start message to
them in a non-deterministic order.

Definition 6 (Configuration Automata). A configuration automaton C is a
pair 〈sa(C), config(C)〉 where

196 I.W. Kurnia and A. Poetzsch-Heffter

– sa(C) is an SA; (the parts of this SA are abbreviated to states(C) =
states(sa(C)), start(C) = start(sa(C)), etc. for brevity)

– a configuration mapping config(C) with domain states(C) such that for all
x ∈ states(C), config(C)(x) is a configuration;

such that the following constraints are satisfied:

1. If x ∈ start(C) and (A, s) ∈ config(C)(x), then s ∈ start(A).
Additionally, ∀x ∈ start(C) : 〈A,S,E〉 = config(C)(x) ∧ |A| = 1 ∧ E ⊆
names(A).

2. If (x, e, x′) ∈ steps(C) then config(C)(x) e=⇒ config(C)(x′).
3. If x ∈ states(C) and config(C)(x) e=⇒ C for some event e and a configuration

C, then ∃x′ ∈ states(C) such that config(C)(x′) = C and (x, e, x′) ∈ steps(C).
4. ∀x ∈ states(C) : in(C)(x) = in(config(C)(x))

∧out(C)(x) = out(config(C)(x)) ∧ int(C)(x) = int(config(C)(x)).

4 Verification

The automaton model can be used for verifying the correctness of an implemen-
tation of an actor system. We follow a two-tier approach proposed by, e.g., Misra
and Chandy [30] to perform this task. The first tier is verifying that the class
implementation satisfies the class specification, represented by an AA. In this
tier, we follow an approach by Dovland et al. [15], where the class implemen-
tations are checked against desired trace-based class invariants. First, a trace-
based class invariant is extracted from the AA. Then, the class implementation
is translated into a simple sequential language in the spirit of the transforma-
tional approach by Olderog and Apt [34]. The verification takes place by, e.g.,
taking the weakest-liberal precondition of the translated implementation and
deducing that the weakest-liberal precondition holds. This technique allows the
verification of safety properties. The second tier is done by constructing a simula-
tion relation from the CA representing the implementation of the component to
the CA representing the component specification. This relation checks whether
the component specification is fulfilled by the activator class and subcompo-
nent specifications. We use a specialized simulation relation called the possibility
map [29,33], which synchronizes only on external events. This tier allows the
verification of liveness properties on top of the safety properties.

In the following subsections, we sketch how verification on each tier works.
More details including a soundness proof for a more complex setting and the
model’s congruence to an actor-based language are available [24]. The reference
also contains an application of the verification technique to components with
recursive unbounded actor creation of a single chain.

4.1 Class Verification

Verifying the class implementation is done in two parts. First, we encode the
AA representing the class specification as a class invariant. The class invari-
ant reflects what needs to remain true at an actor before and after executing a

Modeling Actor Systems Using Dynamic I/O Automata 197

method in response of an incoming message. Furthermore, it also ensures when-
ever an actor is in the middle of a computation, that computation is part of a
response of the actor to an incoming message. To support the verification effort
on this tier, we include a user-defined relation ρ(f, s) which links the class para-
meters used in the implementation and the state variables used in the AA. It is
typically given during the verification process as the implementation is available
and only the internal variables of the specification are compared to the class
parameters.

Definition 7 (Class Invariants). Let A be an AA. Given a predicate ρ(f, s)
over the class parameters f and a state s of the A, the class invariant I(f, t) of
A over f and the trace t is defined as follows:

I(f, t) def= ∃s ∈ states(A) : s(ready) ∧ s(tgen) = t ∧ ρ(f, s)

Following the idea of Dovland et al. [15], we encode the class implemen-
tation into a simple sequential language SEQ with non-deterministic assign-
ments [5]. This language consists of the typical sequential statement constructs,
such as conditional, skip and sequential composition, enriched with a non-
deterministic assignment, an assume statement, and a procedure construct. The
non-deterministic assignment is used to assign the names of newly created actors,
while the assume statement is used to establish that the invariant holds before
and after the method execution, respectively. The procedure construct is used
to represent the methods of a class.

Encoding the implementation in SEQ has the advantage of using well-
established semantics such as the weakest liberal precondition semantics. This
means we can introduce the following verification condition of class C with the
invariant I(f, t):

∀m, t, f , x : wf(t) ∧ I(f, t) =⇒ wlp(m(x) bodym, I(f, t))

where wf(t) maintains the well-formedness of trace t, m(x) bodym is a method
definition in C populated by parameters x, and wlp(s,Q) is the weakest lib-
eral precondition that ensures that postcondition Q holds after executing state-
ment s.

Example 2. The class invariant of the Server class is derived from its AA A
(Example 1) by setting the predicate ρ as true: I(db, t) def= ∃s ∈ states(A) :
s(ready) ∧ s(tgen) = t. Assuming e1 = cl � this : reqSess(cl), e2 = this →
sess : new Session(db) and e3 = this → cl : provSess(sess), the verification
condition for the implementation in Listing 1.1 is

∀t, db, cl : wf(t)∧I(db, t) =⇒ ∀sess : wf(t e1 e2) =⇒ wf(t e1 e2 e3) =⇒ I(t e1 e2 e3).

The verification proceeds by first-order logic deduction rules.

198 I.W. Kurnia and A. Poetzsch-Heffter

4.2 Component Verification

The second tier deals with verifying components and ultimately the whole sys-
tem. The main verification method is the possibility map [29,33], a specialized
simulation relation that allows an implementation to synchronize with its spec-
ification only on external events. That is, an implementation may conduct an
arbitrary number of internal transitions to fulfill its desired observable behavior.

Definition 8 (Possibility Maps). Let C1, C2 be CA and Eext ⊆ Act(C1) a set
of events. A map r = Map〈states(C1), states(C2)〉 is a possibility map from C1 to
C2 with respect to Eext if the following conditions hold.

1. If x ∈ start(C1) then r(x) �= undef and r(x) ∈ start(C2).
2. If x

e=⇒C1 x′∧r(x) �= undef then r(x′) �= undef and either e /∈ Eext∧r(x) = r(x′)
or r(x) e=⇒C2 r(x′).

This verification method is defined for IOA and in general does not work for
DIOA due to the dynamic state signatures. Actor systems have the advantage
that the set of external events can be over-approximated (Lemma 1). This set
is defined by the following function given the initial actor of the component
instance:

extEv(a) = {e | isMethod(e) ∧ isEmit(e) ∧ ({sender(e), target(e)} ∩ ancestors(a) �= ∅)}

In addition to the external events, the component specification utilizes the reac-
tion events of the input events which are captured by the following function.

Ecmp(a) = extEv(a) ∪ {e | emitOf (e) ∈ extEv(a)}

If we can find a possibility map with respect to Ecmp between the CA containing
the AA of the component specification and the CA containing the AA of the class
specification, then the component specification is satisfied by its implementation.

Theorem 1. Let C[C] be a CA whose initial configurations consist of a compo-
nent instance of component [C] and CC a CA whose initial configurations consist
of an actor this of class C. Let r = Map〈states(CC), states(C[C])〉 be a possibility
map from CC to C[C] with respect to Ecmp(this). Given the set of external traces
xtraces(C) of CA C, then,

xtraces(CC) ⊆ xtraces(C[C]).

Proof. Follows from [33] for IOA and Lemma1.

Example 3. Assume we have a verified specification of the [Session] component,
where it represents the perform and the response of each query from the envi-
ronment. The internal state of the [Session] component is the set of queries
the component instance is currently processing. Using the specifications of the
[Session] component and the Server class (Example 1), we can construct a pos-
sibility map between them and the AA of the Server component by:

Modeling Actor Systems Using Dynamic I/O Automata 199

– equating the event bag of the [Server] component instance to the event bags
of the [Session] component instances and the Server actor,

– equating the queries of the [Server] component instance to the queries of the
[Session] component instance, and

– mapping the correct [Session] component instance to each client, as stored in
the internal state of the [Server] component instance.

5 Related Work

There are several automaton models for representing actors, but they either do
not consider actor creation or all actors are assumed to be present in the system
from the start. Belonging to the former approach are the translation of actor
programs to constraint automata [37] and the modeling of timing aspects of
actor programs by timed automata [22]. An example of the latter is the work
by Leo [28] where actor systems are modeled by the composition of an infinite
number of IOA, each of which has a flag indicating whether the represented actor
has been created.

Automaton models that accurately capture dynamic creation need to store
the created names. History-dependent automata [31,32] provide a generalized
means to encode systems with dynamic creation, but without a separation of
concerns between the behavior of the system’s individual entities and the col-
lective, instantiated behavior. Similar to DIOA [6,7], dynamic communicating
automata (DCA) [8,9] and dynamic register automata [1] provide this separa-
tion, where a template automaton is used to describe the generic behavior of
each process in the system. Instantiations of the template automaton (i.e., the
processes) is collected in a configuration (for DCA, message sequence charts
[21]). These models need a composition operator to avoid packing the behav-
ior of every system component into one template automaton. Callable timed
automata [10] represent behavioral templates for calls and the (timed) systems
are represented using timed transition systems. An adaptation for actor systems
is not straightforward, as the semantics are based on the calls instead of entities
such as actors. Dynamic reactive modules [17] model process classes as transi-
tion systems that use logical formulas to describe the transition relations. This
framework is more suitable for systems whose entities share variables.

Logics can be used to model actor systems. Some models based on tempo-
ral logic have been pursued [11,16,36], but they carry the drawback that the
implementation has to be encoded in full together with the specification’s for-
mula. A promising approach is the use of trace-based dynamic logic [4,12,13],
which can handle actor systems with more complex features such as futures. The
modularity of the verification of this approach is up to the method level, with
the integration of a (static) component notion as defined in this paper is still
to be investigated. We have investigated a generalized Hoare logic based on the
splitting of traces into input and output traces [25]. Implementation verification
using this approach is an open challenge.

Models based on process algebra [3,18] require the construction of a
(bi)simulation relation to compare the implementation and the specification,

200 I.W. Kurnia and A. Poetzsch-Heffter

unless abstractions are applied [14,40] which allow automatic model checking
at the loss of some precision. A translation from the expressive Specification
Diagram for actor systems [38] to process algebra has been worked out [39].

6 Conclusion

In this paper we presented an automaton model based on DIOA for representing
actor systems. The automaton model provides an explicit support for dynamic
creation and dynamic topology. It enables accurate representation of the com-
plete observable behavior of the actor systems, while allowing abstractions to be
built based on a simple hierarchical component notion. The integration with the
component notion enables a hierarchical end-to-end verification approach. We
illustrate it using a transformational approach to a sequential language to verify
the implementation and a simulation relation to verify the components.

We envision several directions of further research. First, a full support for
futures in the model is still not yet established. One way to support this is
by introducing a special kind of SA that only represent futures. An interesting
question is how the futures generated by the environment can be handled by the
model. Another direction is to investigate other verification techniques applicable
to this model. Some preliminary work on adapting temporal logic for DIOA
exists, but the logical rules and their soundness are not yet fully investigated.

References

1. Abdulla, P.A., Atig, M.F., Kara, A., Rezine, O.: Verification of dynamic register
automata. In: FSTTCS, pp. 653–665 (2014)

2. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge (1986)

3. Agha, G., Thati, P.: An algebraic theory of actors and its application to a simple
object-based language. In: Owe, O., Krogdahl, S., Lyche, T. (eds.) From Object-
Orientation to Formal Methods. LNCS, vol. 2635, pp. 26–57. Springer, Heidelberg
(2004)

4. Ahrendt, W., Dylla, M.: A system for compositional verification of asynchronous
objects. Sci. Comput. Program. 77(12), 1289–1309 (2012)

5. Apt, K.R.: Ten years of Hoare’s logic: a survey part II: nondeterminism. Theor.
Comput. Sci. 28, 83–109 (1984)

6. Attie, P.C., Lynch, N.A.: Dynamic Input/Output automata: a formal model for
dynamic systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol.
2154, pp. 137–151. Springer, Heidelberg (2001)

7. Attie, P.C., Lynch, N.: Dynamic Input/Output automata: a formal and composi-
tional model for dynamic systems. Inf. Comput. (2015) (To appear)

8. Bollig, B., Cyriac, A., Hélouët, L., Kara, A., Schwentick, T.: Dynamic communicat-
ing automata and branching high-level MSCs. In: Dediu, A.-H., Mart́ın-Vide, C.,
Truthe, B. (eds.) LATA 2013. LNCS, vol. 7810, pp. 177–189. Springer, Heidelberg
(2013)

Modeling Actor Systems Using Dynamic I/O Automata 201

9. Bollig, B., Hélouët, L.: Realizability of dynamic MSC languages. In: Ablayev, F.,
Mayr, E.W. (eds.) CSR 2010. LNCS, vol. 6072, pp. 48–59. Springer, Heidelberg
(2010)

10. Boudjadar, A., Vaandrager, F., Bodeveix, J.-P., Filali, M.: Extending UPPAAL for
the modeling and verification of dynamic real-time systems. In: Arbab, F., Sirjani,
M. (eds.) FSEN 2013. LNCS, vol. 8161, pp. 111–132. Springer, Heidelberg (2013)

11. Dam, M., Fredlund, L., Gurov, D.: Toward parametric verification of open distrib-
uted systems. In: de Roever, W.-P., Langmaack, H., Pnueli, A. (eds.) COMPOS
1997. LNCS, vol. 1536, pp. 150–185. Springer, Heidelberg (1998)

12. Din, C.C., Dovland, J., Johnsen, E.B., Owe, O.: Observable behavior of distributed
systems: component reasoning for concurrent objects. J. Log. Algebr. Program.
81(3), 227–256 (2012)

13. Din, C.C., Owe, O.: Compositional and sound reasoning about active objects with
shared futures. Research report 437 (2014)

14. D’Osualdo, E., Kochems, J., Ong, C.-H.L.: Automatic verification of erlang-style
concurrency. In: Logozzo, F., Fähndrich, M. (eds.) Static Analysis. LNCS, vol.
7935, pp. 454–476. Springer, Heidelberg (2013)

15. Dovland, J., Johnsen, E.B., Owe, O.: Verification of concurrent objects with asyn-
chronous method calls. In: SwSTE, pp. 141–150 (2005)

16. Duarte, C.H.C.: Proof-theoretic foundations for the design of actor systems. Math.
Struct. Comput. Sci. 9(3), 227–252 (1999)

17. Fisher, J., Henzinger, T.A., Nickovic, D., Piterman, N., Singh, A.V., Vardi, M.Y.:
Dynamic reactive modules. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011.
LNCS, vol. 6901, pp. 404–418. Springer, Heidelberg (2011)

18. Gaspari, M., Zavattaro, G.: An algebra of actors. In: Ciancarini, P., Fantechi, A.,
Gorrieri, R. (eds.) FMOODS. Springer, New York (1999)

19. Haller, P., Odersky, M.: Scala actors: unifying thread-based and event-based pro-
gramming. Theor. Comput. Sci. 410(2–3), 202–220 (2009)

20. International Telecommunication Union - Telecommunication Standardization.
Open distributed processing - reference models parts 1–4. Technical report,
ISO/IEC (1995)

21. International Telecommunication Union - Telecommunication Standardization.
Recommendation Z.120: Message Sequence Chart (MSC). Technical report,
ISO/IEC (2011)

22. Jaghoori, M.M., Chothia, T.: Timed automata semantics for analyzing Creol. In:
FOCLASA, pp. 108–122 (2010)

23. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) Formal Methods for Components and Objects. LNCS,
vol. 6957, pp. 142–164. Springer, Heidelberg (2011)

24. Kurnia, I.W.: An automata-theoretic approach to open actor system verification.
Ph.D. thesis, University of Kaiserslautern, January 2015

25. Kurnia, I.W., Poetzsch-Heffter, A.: A relational trace logic for simple hierarchical
actor-based component systems. In: AGERE! 2012, pp. 47–58. ACM (2012)

26. Kurnia, I.W., Poetzsch-Heffter, A.: Verification of open concurrent object sys-
tems. In: Giachino, E., Hähnle, R., de Boer, F.S., Bonsangue, M.M. (eds.) Formal
Methods for Components and Objects. LNCS, vol. 7866, pp. 83–118. Springer,
Heidelberg (2013)

27. Lamport, L.: What good is temporal logic? In: IFIP Congress, pp. 657–668 (1983)
28. Leo, J.: Dynamic process creation in a static model. Master’s thesis, MIT (1990)

202 I.W. Kurnia and A. Poetzsch-Heffter

29. Lynch, N., Tuttle, M.R.: Hierarchical correctness proofs for distributed algorithms.
In: PODC, pp. 137–151 (1987)

30. Misra, J., Mani Chandy, K.: Proofs of networks of processes. IEEE Trans. Software
Eng. 7(4), 417–426 (1981)

31. Montanari, U., Pistore, M.: Ugo Montanari and Marco Pistore. ENTCS 10,
170–188 (1997)

32. Montanari, U., Pistore, M.: History-dependent automata: an introduction. In:
Bernardo, M., Bogliolo, A. (eds.) SFM-Moby 2005. LNCS, vol. 3465, pp. 1–28.
Springer, Heidelberg (2005)

33. Nipkow, T., Slind, K.: I/O automata in Isabelle/HOL. In: Dybjer, P., Nordström,
B., Smith, J. (eds.) TYPES. LNCS, vol. 996, pp. 101–119. Springer, Heidelberg
(1994)

34. Olderog, E.-R., Apt, K.R.: Fairness in parallel programs: the transformational
approach. ACM TOPLAS 10(3), 420–455 (1988)

35. OSGi core release 5 (2012). http://www.osgi.org
36. Schacht, S.: Formal reasoning about actor programs using temporal logic. In: Agha,

G., De Cindio, F., Rozenberg, G. (eds.) APN 2001. LNCS, vol. 2001, pp. 445–460.
Springer, Heidelberg (2001)

37. Sirjani, M., Jaghoori, M.M., Baier, C., Arbab, F.: Compositional semantics of an
actor-based language using constraint automata. In: Ciancarini, P., Wiklicky, H.
(eds.) COORDINATION 2006. LNCS, vol. 4038, pp. 281–297. Springer, Heidelberg
(2006)

38. Smith, S., Talcott, C.L.: Specification diagrams for actor systems. High.-Order
Symb. Comput. 15(4), 301–348 (2002)

39. Thati, P., Talcott, C., Agha, G.: Techniques for executing and reasoning about
specification diagrams. In: Rattray, C., Maharaj, S., Shankland, C. (eds.) AMAST
2004. LNCS, vol. 3116, pp. 521–536. Springer, Heidelberg (2004)

40. Zufferey, D., Wies, T., Henzinger, T.A.: Ideal abstractions for well-structured tran-
sition systems. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol.
7148, pp. 445–460. Springer, Heidelberg (2012)

http://www.osgi.org

RSSA: A Reversible SSA Form

Torben Ægidius Mogensen(B)

DIKU, University of Copenhagen,
Universitetsparken 5, 2100 Copenhagen O, Denmark

torbenm@di.ku.dk

Abstract. The SSA form (Static Single Assignment form) is used in
compilers as an intermediate language as an alternative to traditional
three-address code because code in SSA form is easier to analyse and
optimize using data-flow analysis such as common-subexpression elimi-
nation, value numbering, register allocation and so on.

We introduce RSSA, a reversible variant of the SSA form suitable
as an intermediate language for reversible programming languages that
are compiled to reversible machine language. The main issues in making
SSA reversible are the unsuitability for SSA of the reversible updates
and exchanges that are traditional in reversible languages and the need
for φ-nodes on both joins and splits of control-flow. The first issue is
handled by making selected uses of a variable destroy the variable and
the latter by adding parameters to labels.

We show how programs in the reversible intermediate language RIL
can be translated into RSSA and discuss copy propagation, constant
propagation and register allocation in the context of RSSA.

1 Introduction

We start this paper by a brief summary of the traditional SSA form and a
description of a (non-SSA) reversible intermediate language RIL [6]. We will
then modify RIL to RSSA by adding the static-single-assignment property and
a variant of the φ-nodes from the SSA form. The key insight is that a reversible
SSA form needs for each variable not only a unique definition point, but also a
unique undefinition (destruction) point.

We show that RSSA greatly simplifies optimisations such as copy propagation
and constant propagation and discuss how RSSA can help solve the for reversible
languages tricky problem of register allocation.

2 Static Single Assignment Form (SSA)

The SSA form is a type of intermediate language used in several compilers, most
notably the LLVM compiler framework [3]. The SSA form was introduced by
Wegman, Zadeck, Alpern and Rosen [1,8] to facilitate data-flow analysis such as
value numbering and conditional constant propagation, because the SSA form
makes definition-use chains trivial.
c© Springer International Publishing Switzerland 2016
M. Mazzara and A. Voronkov (Eds.): PSI 2015, LNCS 9609, pp. 203–217, 2016.
DOI: 10.1007/978-3-319-41579-6 16

204 T.Æ. Mogensen

The main property of SSA form is that there is exactly one assignment or
definition to each variable in the program. Unlike in functional languages, this
assignment can be executed several times in a loop, changing the value of the
variable, hence the term Static Single Assignment.

Converting traditional three-address code to SSA form involves three steps:

1. Add an index to each defining occurrence of a variable, i.e., when the variable
is assigned a new value.

2. Add φ-nodes where differently indexed versions of the same variable meet in
a control-flow join.

3. Add indices to variable uses, so a variable is given the index it has in the
unique defining occurrence that reaches this use of the variable.

We will illustrate this by a short example. Consider the flow-chart program
below:

begin
x := 0

loop :
x := x + 1
if x < 10 then loop else exit

exit :
x := x + 3

end

In phase 1, we add indices to definitions of x:

begin
x1 := 0

loop :
x2 := x + 1
if x < 10 then loop else exit

exit :
x3 := x + 3

end

We next note that the use of x inside the loop can come from either the
definition of x1 or the definition of x2. To ensure that the use of x after the
join-point comes from a unique definition, we define x by a φ-node at the start
of the loop:

begin
x1 := 0

loop :
x4 := φ(x1, x2)
x2 := x + 1
if x < 10 then loop else exit

exit :
x3 := x + 3

end

RSSA: A Reversible SSA Form 205

The φ function chooses one of its arguments depending on which predecessor
the control-flow came from. It is, strictly speaking, not a real function, as its
implementation needs additional control-flow information, but for the purposes
of data-flow analysis it can be seen as a function.

The use of x in the last assignment has only one possible definition (x2), so
no φ-node is needed there. The last step is adding indices to uses of variables:

begin
x1 := 0

loop :
x4 := φ(x1, x2)
x2 := x4 + 1
if x2 < 10 then loop else exit

exit :
x3 := x2 + 3

end

It is now trivial to see which (unique) definition defines a use of a variable,
which makes data-flow analysis easy. Determining where φ-nodes are needed
can be efficiently computed using dominance frontiers [2]. We define the basic
concepts below.

– A basic block is a piece of code that starts with a label (or begin), ends with
a jump, a fall-through to another label, or end and has no labels and jumps
between these.

– A basic block B dominates a basic block C if all paths from begin to C goes
through B. A basic block dominates itself, so B may be C itself. B can also
be the basic block starting with begin.

– A basic block B strictly dominates a basic block C if B dominates C and
B �= C.

– The dominance frontier of a basic block B is the set of basic blocks C such
that B dominates one of the immediate predecessors of C, but does not strictly
dominate C itself. It is possible that B is in its own dominance frontier.

If a basic block B contains a definition of a variable used in a basic block C
and C is in the dominance frontier of B, then C must have a φ-node for x. Note
that a φ-node for x is also a definition of x, so this criterion is iterated until no
more φ-nodes need to be added. When φ-nodes have been added, every use of a
variable x is given the index of the unique definition of x that reaches the use
of x. If the use of x is as an argument to a φ-function in a basic block C, this
definition must go through the corresponding immediate predecessor of C.

See [2] for more details and efficient methods for computing the dominance
frontier, inserting φ-nodes and adding indices to uses of variables.

A variant notation for the SSA form splits the φ-nodes between the join-point
and the jumps to the join point. Labels used in join points are given parameters,
and fall-through to join points are made into explicit jumps, so parameters can
be added. In this variant, the example program above looks like this:

206 T.Æ. Mogensen

begin
x1 := 0
goto loop(x1)

loop(x4) :
x2 := x4 + 1
if x2 < 10 then loop(x2) else exit

exit :
x3 := x2 + 3

end

Note that this notation clears the potential confusion about which prede-
cessor of a φ-node corresponds to which argument of the φ-function, but the
notation is farther from traditional three-address code than the assignment-style
φ-nodes. We will use this variant for our reversible SSA form, since we need to
deviate from three-address code anyway.

3 The Reversible Intermediate Language RIL

We describe the reversible intermediate language RIL [6]. RIL is inspired by
Janus [4], using unstructured jumps in the style of the Janus variant described
in [5]. RIL has a formal semantic definition [6], but in this paper we will just
describe it informally.

A RIL program consists of an unordered set of basic blocks, each consisting
of an entry point followed by either updates and exchanges or a single subroutine
call and is terminated by an exit point. We will describe each of these below.

3.1 Entry and Exit Points

An entry point has one of the forms

l ← where l is a label,
l1; l2 ← c where c is a condition and l1 and l2 are labels, or
begin l where l is a label.

An exit point has one of the forms:

→ l where l is a label,
c → l1; l2 where c is a condition and l1 and l2 are labels, or
end l where l is a label.

Each label in the program must occur in exactly one entry point and exactly
one exit point. Furthermore, a label that occurs in a begin entry point must
also occur in an end exit point.

Conditions are of the form L �� R, where a left-value L is either a named
variable x or of the form M [x], representing the memory location pointed to by
a variable x, and a right-value R is either a left-value or a signed constant, and
�� is an operator from the set ==, <, >, !=, <=, >= and &, using notation from the
programming language C. We use the value 0 to represent false and any non-zero
value to represent true.

RSSA: A Reversible SSA Form 207

begin and end represent beginnings and ends of subroutines. The start and
end of the entire program are entry and exit points with the label main. An
exit point of the form → l constitutes an unconditional jump to the (unique)
entry point where l occurs. An exit point of the form c → l1; l2 constitutes a
conditional jump: If c is true, the jump goes to l1, otherwise to l2. An entry point
of the form l ← unconditionally accepts incoming jumps. An entry point of the
form l1; l2 ← c conditionally accepts incoming jumps: Jumps to l1 are accepted
if c is true and jumps to l2 are accepted if c is false. If the incoming jump is not
accepted, a run-time error occurs.

3.2 Updates and Exchanges

A basic block can hold a (possibly empty) sequence of updates and exchanges.
An update is of the form L ⊕= R1 � R2, where L is a left-value, R1 and

R2 are right-values and ⊕= is one of the update assignments +=, -= or ^= with
the same semantics as in the programming language C. � is an infix arithmetic
operation that can be either +, -, ^ , &, |, >>, or <<, again with the same semantics
as in C.

An exchange is of the form L1 ↔ L2, where L1 and L2 are left-values. The
effect is that the values in the two specified locations are swapped.

In order to ensure reversibility, the following restrictions apply to updates
and exchanges:

– In an update of the form L ⊕= R1 � R2, the same named variable can not
occur both to the left and to the right of the update operator ⊕=.

– In an update of the form L ⊕= R1 � R2, memory accesses (left-values of the
form M [x]) can not be used on both sides of the update operator ⊕=.

– In an exchange of the form L1 ↔ L2, the same named variable can not occur
both to the left and to the right of the exchange operator ↔.

3.3 Subroutine Calls

Instead of containing a sequence of exchanges and updates, a basic block can
hold a single subroutine call. A subroutine call is done using the instructions
call l and uncall l. There can be several calls to the same subroutine. We use
an implicit stack to store return information.

A subroutine call must be in a basic block of the form l1 ← call l → l2 or
l1 ← uncall l → l2.

In such a block, call l stores l2 on the implicit stack and jumps to the entry
point begin l until it reaches end l, at which point it pops the stack and jumps
to the label l2 that is stored on the top of the stack.

RIL (like Janus) also supports running subroutines backwards: uncall l
stores l2 on the implicit stack, and then runs the subroutine l backwards, start-
ing from the exit point end l and ending with begin l, again returning via the
stack to l2.

208 T.Æ. Mogensen

3.4 Shorthands

To make code more readable, we introduce a number of shorthands when dis-
playing RIL code in the paper.

We will use L ⊕= R as an abbreviation of L ⊕= R + 0.
Two blocks E I1 → l and l ← l I2 X, where E in an entry point, X is

an exit point and I1 and I2 are sequences of updates, exchanges or calls, can be
abbreviated to a single extended basic block E I1 I2 X.

4 Combining SSA and RIL to RSSA

We illustrate the design of RSSA by rewriting the example program in Sect. 2
to RIL and then discuss the issues in converting this to a form that has the
single-assignment property while retaining reversibility. Conversion to RIL is
fairly simple:

begin main
x += 0
→ entry
entry; loop ← x == 0
x += 1
x < 10 → loop; exit
exit ←
x += 3
end main

The first update of x has no effect and is superfluous, as all variables are consid-
ered to be initialised to 0. It is added here to make the RIL version more similar
to the three-address version from Sect. 2. Note that we have added a test to the
join-point at the loop entry, which is required for reversibility.

The first step in SSA conversion (adding indices to variable definitions) is
easy enough:

begin main
x1 += 0
→ entry
entry; loop ← x == 0
x2 += 1
x < 10 → loop; exit
exit ←
x3 += 3
end main

We need a φ-node to the join point at the loop entry. We use the variant notation,
so we just add a parameter to the labels in the join point and in the jumps to the
join point. Since the two labels in the join point share the incoming parameter,
we place this between the two labels:

RSSA: A Reversible SSA Form 209

begin main
x1 += 0
→ entry(x)
entry(x4)loop ← x == 0
x2 += 1
x < 10 → loop(x)exit
exit ←
x3 += 3
end main

Note that the parameter to the loop label in the conditional jump is shared with
the exit label, so we must also give the entry point for exit a parameter:

begin main
x1 += 0
→ entry(x)
entry(x4)loop ← x == 0
x2 += 1
x < 10 → loop(x)exit
exit(x5) ←
x3 += 3
end main

Note the symmetry, which will be a rule: The two labels in a conditional entry
point or in a conditional exit point will share a list of parameters (corresponding
to a list of φ-nodes), and the other occurrences of these labels must have corre-
sponding parameters. Parameters to labels in entry points are defining instances,
so they are given indices, while parameters to labels in exit points are (as yet)
not given indices.

The last step is adding indices to uses of x. Here, we have a problem: The
update x2 += 1 has an implicit use of x, but this use is not of x2 but of x4,
which is not used afterwards. Similarly, the update x3 += 3 has a hidden use of
x5, which is not used afterwards. Hence, we replace the updates by assignments
with explicit uses of variables, but with the semantics that the first occurrence
of a variable on the right-hand side of an assignment destroys that variable. The
update to x1 is now turned into a definition that introduces the variable x1. The
(almost) final RSSA form of the program is

begin main
x1 := 0
→ entry(x1)
entry(x4)loop ← x4 == 0
x2 := x4 + 1
x2 < 10 → loop(x2)exit
exit(x5) ←
x3 := x5 + 3
end main

210 T.Æ. Mogensen

We note the following:

1. An assignment to a variable introduces a new indexed version of the variable
which is previously undefined, and so does a parameter to a label in an entry
point.

2. The first variable used on the right-hand side of an assignment is destroyed by
that use. Uses of variables as parameters to labels in exit points also destroy
these variables.

3. An assignment of the form x := y ⊕ R1 � R2 is reversely executed as y :=
x � R1 � R2, where � is the semi-inverse of ⊕. For example, x := y + 1 is
reversely executed as y := x − 1.

4. A definition like x := 0 must be reversible, so we introduce a form 0 := x,
which defines no variable but destroys x after verifying that it is equal to 0.
We will generalise this notion of destroying variables by equality testing in
Sect. 5.

5. Variables that are inputs to the program are added as parameters to the
label main in begin main. Similarly, outputs of the program are added as
parameters to main in end main. This means that the last line of the program
above must be changed to end main(x3), but since the program has no input,
no parameter is added to begin main.

6. All variables that are not part of the input should explicitly be initialised to
0 (like x is in the example above) and all variables y that are not part of the
output should explicitly be destroyed using an assignment of the form 0 := y.

The example above does not use variable exchanges, memory accesses or sub-
routine calls, so we will below discuss how these are handled.

A variable exchange of the form x ↔ y uses and defines two variables, so we
rewrite it to a simultaneous assignment x, y := y, x, so uses and definitions of
the variables are explicitly separated. After adding indices, the two assignments
are independent, and we can remove them by copy propagation (see Sect. 6.5).

Unlike variables, memory is not restricted to single assignment, so we can
keep a memory update of the form M [x] ⊕= e unchanged (except for adding
indices to variable uses). Note that e can not use memory, so e must be of the
form y ⊕ z, where y and z are either variables or constants.

An exchange M [x] ↔ M [y] can, likewise, be kept unchanged (except for
adding indices to x and y), as no variable is defined.

To handle exchanges between a variable and a memory location (such as
x ↔ M [y]), we introduce a new form x := M [y] := z, which defines x to be the
value of M [y] and overwrites M [y] with the value of z, which is destroyed. The
exchange x ↔ M [y] is rewritten to x := M [y] := x, which will later have indices
added, so the two occurrences of x will become different variables.

An entry of the form begin l is a join point, as there can be several calls to
this. So, like in conditional entry points, we add parameters to the label. Simi-
larly, end l is a split point, so we add parameters to the label here also. A sub-
routine will, hence, start with an entry point begin l(x, . . .) and end with an exit
point end l(y, . . .). A call to l will have one of the forms (y′, . . .) := call l(x′, . . .)

RSSA: A Reversible SSA Form 211

or (x′, . . .) := uncall l(y′, . . .). The argument variables are destroyed and the
result variables are created. We have essentially turned parameter-less subrou-
tines into functions with parameter and result lists, but since the parameters are
indexed versions of global variables, there will at any time only be one live copy
of such a parameter, even if the procedure is called recursively.

5 Definition of RSSA

The syntax and informal semantics of RSSA is shown in Fig. 1.
In the syntax, we use atoms, R-values and conditions:

– An atom x is either a variable or a constant.
– An R-value R is either an atom or of the form M [a], where a is an atom.
– A condition is of the form R1 �� R2, where R1 and R2 are R-values.

Note that we allow a constant in all places where a variable can occur, even on
the left-hand side of an assignment. This is both to make it possible to invert all
instructions and to allow unlimited constant propagation. A general rule is that
if a constant k occurs where a variable would otherwise be created and given a
value v, it is instead verified that k = v. No new variable is created, but if the
check fails, the program stops with an error message. If a constant is used where
a variable would be destroyed, no variable is destroyed. We will, for reasons of
brevity, in Fig. 1 not repeat explaining this behaviour every time a constant can
be used in place of a variable.

A variable can (after indices are added) not both be defined and used by the
same assignment. This is true also of the inverses of assignments.

A basic block consists of an entry point, a call or sequence of assignments, and
an exit point. A program is a set of basic blocks. Every label in the program must
occur in exactly one entry point and exactly one exit point, a label occurring
in a begin must also occur in an end, and the program must contain an entry
point begin main.

We use x, where x is an atom, as a shorthand for both x + 0 and x ⊕ 0 � 0,
noting that 0� 0 = 0 for all the operators � that we allow, and x⊕ 0 = x for all
the operators ⊕ we allow. For example, x := 0 is a shorthand for x := 0 + 0 + 0,
0 := x is a shorthand for 0 := x + 0 + 0, and x := y + 3 is a shorthand for
x := y + 3 + 0. The syntactic context makes it clear if a variable x is used as a
shorthand and what for.

Semantically, running a subroutine backwards is done by running it in the
inverted program. Rules for inversion are shown in Fig. 2. We use the notation
A � B to say that A inverts to B and vice-versa. We assume that the entire
program is inverted, so a call inverts to a call (as it calls an inverted subrou-
tine) rather than to an uncall, swapping the argument and result lists. We use
� to denote the semi-inverse of ⊕, so if ⊕ is +, � is - and so on.

212 T.Æ. Mogensen

Table 1. Converting assignments and calls from RIL to RSSA

RIL RSSA

x ⊕= R1 � R2 xi := x ⊕ R1 � R2

M [x] ⊕= R1 � R2 M [x] ⊕= R1 � R2

x ↔ y xi, yj := y, x

M [x] ↔ M [y] M [x] ↔ M [y]

x ↔ M [y] xi := M [y] := x

M [y] ↔ x xi := M [y] := x

call l () := call l()

uncall l () := uncall l()

6 Converting RIL to RSSA

We will now give a complete description of how RIL programs are converted to
RSSA. We will do this in a sequence of mostly simple steps:

1. Add initialisers and finalisers to variables.
2. Convert individual assignments and calls from RIL to RSSA
3. Add indices to defining instances of variables.
4. Add parameters to labels in entry and exit nodes and add parameter and

result lists to calls and subroutine entries and exits.
5. Add indices to uses of variables.
6. Clean up.

We will describe these in more detail below.

6.1 Adding Initialisers and Finalisers

Add the list of input-variables as parameters to begin main and add the list of
output-variables as parameters to end main.

A variable x that is not part of the input is explicitly initialised to 0 using an
assignment x := 0 that is added to the beginning of the program, and a variable
y that is not part of the output is explicitly destroyed by adding an assignment
0 := y at the end of the program.

6.2 Converting Individual Assignments and Calls and Adding
Indices

We convert assignments and calls as shown in Table 1. We add indices to variables
while we convert, which we indicate by subscripts i or j in the table. Each xi

and yj introduced by the conversion in the table is unique.
Note that parameter and result lists to calls are initially empty, as parameters

will not be added until the next step.

RSSA: A Reversible SSA Form 213

Entry points:

l ← where l is a label. This is an unconditional entry point.
l1(x, . . .)l2 ← c where c is a condition, l1 and l2 are labels and the xs are atoms. If x

is a variable, it is created and given the value of the corresponding
parameter of the incoming label. If entered through a jump to l1, the
condition c is evaluated and verified to be true. If entered through a
jump to l2, the condition c is evaluated and is verified to be false.

begin l(x, . . .) where l is a label and the xs are atoms. This is a subroutine entry
point. If an x is a variable, it is created and given the value of the
corresponding incoming argument.

Exit points:

→ l where l is a label. This is an unconditional jump.
c → l1(y, . . .)l2 where c is a condition, l1 and l2 are labels and the ys are atoms.

First, the condition is evaluated. If this is true, l1 is given the values
of (y, . . .) as parameters and a jump to l1 is made. If c is false, l2 is
given the values of (y, . . .) as parameters and a jump to l2 is made.

end l(y, . . .) where l is a label and the ys are atoms. This is a subroutine exit
point. The values of (y, . . .) are passed back to the caller.

Assignments and calls:

x := y ⊕ R1 � R2 where x and y are atoms and R1 and R2 are R-values. The
value w of R1 � R2 is calculated and the value v of y is
fetched. If y is a variable, it is destroyed. If x is a variable,
it is created and given the value u = v ⊕ w.

x, y := z, w The variables z and w are destroyed and their values given
to the variables x and y, which are created.

M [x] ⊕= y � z where x, y and z are atoms. The value w of y � z is cal-
culated, the value a of x is fetched and the contents v of
memory at address a is fetched. The contents of memory
at address a is then given the value u = v ⊕ w.

M [x] ↔ M [y] where x and y are atoms. The values a and b of x and y
are fetched, and the contents of memory at addresses a
and b are interchanged.

x := M [y] := z where x, y and z are atoms. Read the value v of z. If z
is a variable, destroy it. Read the value a of y and the
contents u of the memory at address a. Store v at address
a. If x is a variable, create it and give it the value u.

(y, . . .) := call l(x, . . .) where l is a label and the xs and ys are atoms. The sub-
routine labelled l is called. The values of the xs are passed
as arguments to the subroutine. If an x is a variable, it is
destroyed. At return, the variables y are created and given
the values passed back by the subroutine.

(x, . . .) := uncall l(y, . . .) Run the subroutine l backwards, starting at end l(y′, . . .)
and finishing at begin l(x′, . . .). Semantically, this cor-
responds to performing (x, . . .) := call l(y, . . .) in the
inverted program.

Fig. 1. Syntax and semantics of RSSA

214 T.Æ. Mogensen

Entry and exit points:

l ← ⇀↽ → l
l1; (x, . . .)l2 ← c ⇀↽ c → l1(x, . . .)l2
begin l(x, . . .) ⇀↽ end l(x, . . .)

Assignments and calls:

x := y ⊕ R1 � R2 ⇀↽ y := x � R1 � R2

x, y := z, w ⇀↽ z, w := x, y
M [x] ⊕= y � z ⇀↽ M [x] �= y � z

M [x] ↔ M [y] ⇀↽ M [x] ↔ M [y]
x := M [y] := z ⇀↽ z := M [y] := x

(y, . . .) := call l(x, . . .) ⇀↽ (x, . . .) := call l(y, . . .)
(y, . . .) := uncall l(x, . . .) ⇀↽ (x, . . .) := uncall l(y, . . .)

Basic blocks:

N A X ⇀↽ X ′ A′ N ′ if N ⇀↽ N ′, A ⇀↽ A′, and X ⇀↽ X ′.

Inverting a program is done by inverting its basic blocks. Inverting a sequence of
assignments is done by inverting each assignment and reversing the sequence.

Fig. 2. Inverting RSSA programs

6.3 Adding Parameters to Labels and Calls

We use the dominance-frontier criterion described in Sect. 2 to determine if a
variable x should be a parameter to a label.

We use the RSSA definition of basic blocks and consider a call to have a path
to the entry point of the called subroutine, and the exit point of a subroutine to
have paths to all its callers.

If the criteria described in Sect. 2 prescribes a φ-node for a variable x at an
entry point, the label(s) at the entry point get an indexed x as a parameter and
all jumps and calls to these labels get non-indexed x added as arguments.

To add parameters to exit points, we invert the program and repeat the above
process. If the criteria prescribe adding a parameter to an entry-point label in
the inverted program, we add the parameter to the corresponding exit-point
label in the original program. Even if both the forwards and backwards criteria
prescribe adding a variable to a label, it is added only once.

6.4 Add Indices to Uses of Variables

To add an index to a use of a variable x, we must find the unique defining instance
of x that reaches this use. We can do that by following all paths backwards
from the use until we reach a definition, keeping track of basic blocks we have
already visited, so we don’t get stuck in a loop. Even though we follow multiple
alternative paths back from the use, the criterion for adding parameters to labels
ensures that there will be a unique reaching definition.

RSSA: A Reversible SSA Form 215

6.5 Clean up

A simultaneous assignment x, y := z, w can be removed by replacing all uses of
x by uses of z and all uses of y by uses of w. This simplified form of copy propa-
gation is safe to do because of the single-assignment property of the RSSA form.
After this clean up, the resulting RSSA program will contain no simultaneous
assignments.

7 Optimisations on the RSSA Form

We discuss a few optimisations that are made simpler by the properties of the
RSSA form.

7.1 Copy Propagation

As mentioned in Sect. 6.5, copy propagation is trivial. Copy propagation can
remove all copy instructions from the program. Note that, excepting simultane-
ous assignments, copy instructions are of the form x := y ⊕ 0 � 0.

7.2 Constant Propagation

An assignment of the form x := k, where k is a constant, is a shorthand for
x := k ⊕ 0 � 0. It can be removed by replacing all uses of x by k. This is similar
to copy propagation and can be done at the same time.

Variable destructions k := x can be propagated by first inverting the pro-
gram, doing constant propagation as described above, and then inverting the
program back.

This will eliminate the initialisations and finalisations of non-input and non-
output variables that were introduced when converting RIL to RSSA. Applying
constant propagation to the example program will yield

begin main
→ entry(0)
entry(x4)loop ← x4 == 0
x2 := x4 + 1
x2 < 10 → loop(x2)exit
exit(x5) ←
x3 := x5 + 3
end main(x3)

7.3 Register Allocation

In RIL, register allocation is non-trivial, as all variables are either outputs or
must be verified to be 0 at exit from the program, and all variables are either
inputs or initialised to 0 at entry to the program. This makes all variables live

216 T.Æ. Mogensen

throughout the program, so traditional register allocation based on liveness does
not work for RIL.

In RSSA, variables are explicitly introduced and consumed, so they have
limited life times. This can enable register allocation based on liveness. Liveness
analysis is simplified by the fact that destruction of variables is explicit in RSSA,
so a variable is live on all paths from its unique definition to its unique destruc-
tion, i.e., in all basic blocks that are dominated by the definition of the variable
and post-dominated by its destruction (where post-domination is domination in
the inverse program). These paths are often quite short, especially if initialisa-
tions of non-inputs and finalisations of non-outputs are constant-propagated.

On the flip side, RSSA conversion adds indices to variables, so a single vari-
able in the RIL form becomes many variables in the RSSA form. This may
potentially increase the need for registers, but as several versions of the same
variable are rarely live at the same time (though it can happen after copy prop-
agation and other optimisations), this is in practice not a problem.

If there are insufficient registers to hold all simultaneously-live variables, spill
is needed. This is done in the traditional way by giving the spilled variable x a
location ax in memory. It is assumed that ax holds the value 0 both before the
definition of x and after it is destroyed. x is defined normally, but is then immedi-
ately swapped with the memory location using the instruction 0 := M [ax] := x,
which verifies that the contents of memory at ax was 0. Immediately before a con-
suming use of x, it is fetched from memory using the instruction x := M [ax] := 0,
which clears the memory location. Non-consuming uses of x can sometimes sim-
ply be replaced by M [ax], but in some cases this breaks the syntax, for example
if M [x] ↔ M [y] is replaced by M [M [ax]] ↔ M [y]. In these cases, x is swapped in
from memory before the use and swapped back again afterwards. For example,
M [x] ↔ M [y] would be replaced by the sequence

x′ := M [ax] := 0
M [x′] ↔ M [y]
0 := M [ax] := x′

To preserve the RSSA property, x′ must be an otherwise unused variable.

8 Conclusion and Discussion

We have defined a reversible variant of the SSA form called RSSA. We have
shown how programs in the reversible intermediate language RIL can be trans-
formed into RSSA, and we have sketched a few optimisations, including register
allocation, that are simplified by the properties of RSSA. The main insight is
that a variable should not only have a unique definition point but also a unique
destruction point. Using a notation where labels have parameters simplifies the
transformation, especially of subroutine calls.

By adding paths from an exit point of a subroutine to all callers when cal-
culating dominators, we have included unfeasible paths: From one call to a sub-
routine back to the return point of an unrelated call. This makes the dominance

RSSA: A Reversible SSA Form 217

property imprecise, and can cause parameters to be added where not strictly
necessary. We can use context-free reachability to avoid these unfeasible paths
and get more precise reachability results [7], but since CF reachability requires
O(n3) time, this is rather costly. Alternatively, we can keep subroutines separate
and SSA-convert each individually. This requires that all variables used by a
subroutine are either entirely local to the subroutine or passed as parameters.
This, actually, requires more parameters to be passed than added by our current
approach, but it simplifies the treatment of subroutines. A subroutine in RIL
consists of the basic blocks that are dominated by the entry point of the subrou-
tine and post-dominated by its exit point (not considering paths along calls and
returns), so it is easy enough to extract subroutines and add parameters and
results for all variables that are used both inside the subroutine and outside it.

References

1. Alpern, B., Wegman, M.N., Zadeck, F.K.: Detecting equality of variables in pro-
grams. In: Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL 1988, pp. 1–11. ACM, New York (1988)

2. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Kenneth Zadeck, F.: Effi-
ciently computing static single assignment form and the control dependence graph.
ACM Trans. Program. Lang. Syst. 13(4), 451–490 (1991)

3. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program analy-
sis & transformation. In: Proceedings of the International Symposium on Code
Generation and Optimization: Feedback-directed and Runtime Optimization, CGO
2004, p. 75. IEEE Computer Society, Washington, DC (2004)

4. Lutz, C.: Janus: a time-reversible language. A letter to Landauer (1986). http://
www.tetsuo.jp/ref/janus.pdf

5. Mogensen, T.Æ.: Partial evaluation of Janus part 2: assertions and procedures.
In: Clarke, E., Virbitskaite, I., Voronkov, A. (eds.) PSI 2011. LNCS, vol. 7162,
pp. 289–301. Springer, Heidelberg (2012)

6. Mogensen, T.Æ.: Garbage collection for reversible functional languages. In: Krivine,
J., Stefani, J.-B. (eds.) RC 2015. LNCS, vol. 9138, pp. 79–94. Springer, Heidelberg
(2015)

7. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via graph
reachability. In: Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 1995, pp. 49–61. ACM, New York
(1995)

8. Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Global value numbers and redundant
computations. In: Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 1988, pp. 12–27. ACM, New York
(1988)

http://www.tetsuo.jp/ref/janus.pdf
http://www.tetsuo.jp/ref/janus.pdf

Checking Several Requirements
at once by CEGAR

Vitaly Mordan(B) and Vadim Mutilin

Institute for System Programming
of the Russian Academy of Sciences, Moscow, Russia

{mordan,mutilin}@ispras.ru

Abstract. At present static verifiers, which are based on Counterexam-
ple Guided Abstraction Refinement (CEGAR), can prove correctness of
a program against a specified requirement, find its violation in a program
and stop analysis or exhaust the given resources without producing any
useful result. If we use this approach for checking several requirements
at once, then finding a first violation of some requirement or exhausting
resources for some requirement will prevent checking the program against
other requirements. In particular we may miss violations of some require-
ments. That is why in practice each requirement to the program is usually
checked separately. However, static verifiers perform similar actions dur-
ing checking of the same program against different requirements and thus
a lot of resources are wasted. This paper presents a new CEGAR-based
method for software static verification, that is aimed at checking pro-
grams against several requirements at once and getting the same result
as basic CEGAR, which checks requirements one by one. In order to do it
the suggested method divides resources among requirements equally and
continues analysis after finding violation of requirement excluding that
requirement. We used Linux kernel modules to conduct experiments, in
which implementation of the suggested method reduced total verification
time by 5 times. The total number of divergent results in comparison with
CEGAR was about 2 %.

Keywords: Static verification · Counterexample guided abstraction
refinement · Aspect

1 Introduction

Static verification is a formal means for checking program source code without
its execution by exploring all possible program paths. The main benefit of sta-
tic verification is that it aims at proving correctness of the software instead of
simply finding frequent bugs. The main disadvantage, which makes it much less
applicable in practice, is a large amount of required resources such as CPU time

The research was carried out with funding from the Ministry of Education and
Science of Russia (the project unique identifier is RFMEFI61614X0015).

c© Springer International Publishing Switzerland 2016
M. Mazzara and A. Voronkov (Eds.): PSI 2015, LNCS 9609, pp. 218–232, 2016.
DOI: 10.1007/978-3-319-41579-6 17

Checking Several Requirements at once by CEGAR 219

and memory especially for large software systems. Currently static verification
tools (static verifiers), based on Counterexample Guided Abstraction Refinement
(CEGAR), are appropriate for large software systems which is demonstrated in
annual Competitions on Software Verification [1,2].

At the same time every program in a big software system may contain any
number of different bugs, which are violations of requirements to that program. In
order to find them static verifiers check the program against all specified require-
ments. The CEGAR approach checks the program against only one requirement
at a time, because it stops after finding a bug (and thus other requirements will not
be checked) and checking the program against some requirement may exhaust all
given resources. Thus large amount of required resources for verification further
increases depending on the number of requirements.

Let us consider an example which demonstrates this problem. Linux Driver
Verification Tools (LDV Tools) are an open source toolset for checking cor-
rectness of Linux kernel modules against rule specifications (i.e. specifications
of rules for correct usage of the kernel API) with help of different static ver-
ifiers [3]. It has already helped to find more than 190 bugs in Linux kernel
modules [4]. The process of verification of all Linux kernel modules with help of
LDV Tools against a single rule specification by static verifiers BLAST [5,6] or
CPAchecker [7] takes about 2 days, whereas verification of 17 basic rule specifi-
cations takes about 40 days. But the number of rule specifications is 50 and a
few new rule specifications are under development.

This paper presents a new static verification method which can significantly
reduce required time even if the number of requirements to be checked is grow-
ing. The suggested method extends CEGAR in order to check more than one
requirement at once. The main demand to this method is to prove correctness
of programs against specified requirements and to find their violations as well
as CEGAR do, but faster. This method was implemented as extensions of LDV
Tools [3] and the CPAchecker [7] static verifier and was evaluated on verification
of Linux kernel modules.

We make the following contributions:

– We propose a new method for static verification which extends the CEGAR
approach for checking a program against several requirements at once.

– We implement this method as extensions of LDV Tools and the CPAchecker
static verifier.

– We experimentally show that the suggested method reduces total verification
time by 5 times on verification of Linux kernel modules, the total number
of negative results, in which the suggested method requires more resources
than CEGAR in order to prove correctness of a program against specified
requirement or to find its violation, is about 2 %.

Next Section describes the CEGAR approach and introduces definitions
which are used in the paper. Section 3 presents related work. In Sect. 4 the new
method is suggested. Section 5 presents its implementation. In Sect. 6 the results
of experiments are described.

220 V. Mordan and V. Mutilin

2 Background

2.1 Definitions

In the paper we refer to an aspect as a formal representation of a checked
requirement to a program [8]. Aspects represent what we intend to check in
the program. For example: allocated resources should be correctly freed. Indeed,
specifications of rules for correct usage of the kernel API are aspects.

Error location is a location in a program, which corresponds to an aspect
violation (for example, predefined function error() or predefined label ERROR).

Verification task is a program source code, built on a program under analysis,
which contains specific checks for an aspect. In CEGAR verification tasks usually
are reachability tasks, their main goal is to prove that an error location cannot
be reached from specified entry point in the program (for example, from function
main).

Error trace is a sequence of operations in program source files that leads from
a specified entry point to an error location (i.e. an aspect violation).

Verdict is a result of solving a verification task by a static verifier. Usually there
are 3 possible verdicts:

– Safe: a program is correct against a specified aspect;
– Unsafe: a program violates a specified aspect, a corresponding violation is

represented as an error trace;
– Unknown: a static verifier cannot solve a given verification task.

2.2 Counterexample Guided Abstraction Refinement

Since it is usually impossible to analyze a precise model of a program in a
reasonable time, CEGAR operates with an abstract model of the program.

Concrete state consists of assignments of specific values to relevant variables
at particular program locations [6].

Abstract state is a set of concrete states of a program [6].

Abstract Reachability Graph (ARG) is an abstraction of a program, in
which nodes correspond to abstract states and edges correspond to program
statements [6].

Verification fact is a result (possibly intermediate) of the verification process,
that is necessary for proving correctness of the program against a given aspect [9].

Abstraction precision (precision) is a verification fact, that instructs the
analysis which information should be tracked and which information should be
omitted in abstraction of the program [9]. For example, in the predicate analy-
sis [10] precisions define tracking predicates, in the explicit value analysis [11]
precisions define tracking variables. Thus a precision defines the current level of
abstraction in ARG.

Checking Several Requirements at once by CEGAR 221

The CEGAR algorithm is presented in Fig. 1 [12,13]. At the beginning
CEGAR builds ARG based on an initial precision (for example, an empty pre-
cision). If a specified error location is not reached, then the algorithm terminates
with the verdict Safe. Otherwise CEGAR checks a found counterexample for fea-
sibility. If it is feasible then an error trace is built for the found counterexample
and the algorithm terminates with the verdict Unsafe. Otherwise the precision is
refined based on the infeasible counterexample and the CEGAR loop is continued.

Since static verification is an undecidable problem in general case, static
verifiers, which implement the CEGAR approach, operate with limited resources
(such as CPU time and memory) in practice and terminate their analysis with
the verdict Unknown in case of resources exhaustion.

Fig. 1. The CEGAR loop.

2.3 Example

Let us consider an example. There are three aspects:

Aspect 1: all allocated resources by usb alloc urb() should be freed by
usb free urb().

Aspect 2: the same mutexes should not be acquired or released twice in the same
process.

Aspect 3: an offset should not be greater than a size of an array.

In order to get verdicts for all specified aspects with the basic CEGAR app-
roach we need to prepare 3 different verification tasks and run the CEGAR
algorithm 3 times. Each verification task is created based on program source
code and a specified aspect. In a verification task a selected aspect corresponds
to specific error location. For example, Aspect i can correspond to error label
ERROR i, i = 1,2,3. Thus Aspect 3 may be represented by the following checks
in the verification task:

if (offset > size)
ERROR_3 : goto ERROR_3;

222 V. Mordan and V. Mutilin

3 Related Work

The idea of modifying the CEGAR algorithm in order to reduce verification
time is not new. By adding auxiliary actions at different steps of the CEGAR
algorithm (Fig. 1) it is possible to solve specific verification tasks faster.

3.1 Regression Verification

Even if a program is absolutely correct, it always can be modified. Every mod-
ification of the program potentially may add new bugs. Such bugs are called
regressions. Regression verification is aimed at verifying program revisions in
order to find regressions. One of the approaches to do it efficiently is to reuse
verification results [9]. Verification facts, which were obtained during analysis,
are stored as results and then are used on the Initialization step of the CEGAR
algorithm (Fig. 1) to start analysis with the known level of abstraction, for exam-
ple, to verify the next revision of that program. Experiments confirm [9], that
reuse of verification facts reduces time for regression verification. At the same
time in some cases reuse of verification results may increase time of analysis.
For example, abstraction may become too accurate for the new revision (for
some verification tasks precision reuse increased time almost twice [9]). Regres-
sion verification approaches are useful for reducing time for verification, but it
is unclear whether verification facts can be reused between different aspects as
well as between program revisions or not.

3.2 Conditional Model Checking

The verdict Unknown means that a static verifier fails to solve a verification task.
It is still unclear whether the given program correct or not and thus resources
were spent for nothing. In order to solve this problem the conditional model
checking approach was suggested [14]. A static verifier saves its result even if
it cannot solve the whole verification task. This result describes which parts of
the program (e.g., abstract states in ARG) were successfully verified and which
were not. Then another static verifier (or the same with another configuration)
takes this result at the Initialization step of the CEGAR algorithm (Fig. 1)
and verifies only those parts of the program which were not verified. Conditional
model checking helps to solve problems which cannot be solved by a single launch
of a static verifier [14]. Conditional model checking can be useful for resolving
verdicts Unknown.

3.3 Method for Finding All Violations of an Aspect

Any program can contain any number of bugs for a given aspect. The basic
CEGAR algorithm stops after it finds a first bug. In practice it significantly
increases time for finding and fixing different bugs of the same kind. In order
to solve this problem the method for finding all violations of an aspect was

Checking Several Requirements at once by CEGAR 223

suggested [15]. Its main idea is to continue analysis after finding a bug. Obvi-
ously, this method requires more time for analysis (in comparison with the basic
CEGAR), but it also reduces time for finding and fixing different bugs of the
same kind. Nevertheless, analysis may be terminated abnormally after finding
several bugs, for example, it may exhaust resources that means that there may
be more bugs. That is why this method cannot be used directly for checking
several aspects at once.

4 Multi-aspect Verification

Multi-aspect Verification (MAV) is aimed at configurable checking of several
aspects for a given verification task at once. In this paper MAV is suggested as
an extension of the CEGAR algorithm, but potentially the same ideas can be
applied to other static verification approaches.

It is supposed that the verification task has already been built for the selected
aspects (for more details see Sect. 5). The main requirement to MAV is to get
the same result for all aspects (i.e. prove correctness or find error traces) as basic
CEGAR for each aspect, but faster.

The first problem that must be resolved, is that basic CEGAR checks for
a single error location, which corresponds to a single aspect. It is possible to
check for several error locations (for example, check for several error labels at
once), but those error locations do not correspond to specific aspects. Thus, if
we intend to check for several error locations, each of them should get link to
a corresponding aspect (for example, to determine which aspect is violated in a
found error trace).

Second, checking of some aspect may interfere with checking of another one.
The basic CEGAR approach stops after it finds a first error trace, thus violation
of a single aspect leads to analysis termination for all aspects. Also it is impossible
to limit resources for some aspect separately, thus if CEGAR cannot check a
single aspect (for example, it exhausts time limit), then analysis of all aspects
will be terminated.

So, the MAV method should satisfy the following requirements:

– to differ one aspect from another (in terms of error locations);
– to continue analysis after finding an error trace (the verdict Unsafe);
– to identify the verdicts Unknown and to continue analysis after them;
– to get the same verdicts for aspects as basic CEGAR;
– to consume less resources (in comparison with basic CEGAR).

4.1 The Multi-aspect Verification Method

The MAV algorithm was designed to meet the mentioned above requirements
(Fig. 2). It extends the basic CEGAR algorithm and checks for several error
locations.

In terms of MAV each aspect contains the following attributes: an unique
identifier, a corresponding error location identifier (for example, specific error

224 V. Mordan and V. Mutilin

Fig. 2. The MAV algorithm.

label name), an aspect verdict, consumed resources (CPU time, wall time,
etc.), corresponding verification facts. At the Aspects creation step (Fig. 2) links
between aspects and error locations are created, attributes for each aspect get
initial values.

Aspect verdict is an internal verdict of an aspect. Aspect verdict takes all com-
mon verdict values (which were defined in Sect. 2) and auxiliary value Checking,
which means that this aspect is currently being checked.

In order to know, which aspect is being checked (to change aspect verdicts,
to keep records of consumed resources, etc.), the notion of Latest Checked
Aspect (LCA) is suggested. LCA is the latest aspect, which was checked during
analysis. But during the ARG construction more than one aspect can be checked
at once (i.e. ARG can be built based on several aspects at once). The following
approximation is suggested: only one aspect is being checked at the moment of
time and the latest checked aspect is LCA.

At the start of the algorithm LCA is unset. Then all time of analysis can
be divided by LCA changing points, which are moments of time, when LCA
changes. Current checked aspect is considered equal to LCA until the next LCA
changing point. The main idea of these points is that they should represent that
the algorithm builds ARG for the selected aspect. Since counterexample always
contains reached error location, it is always possible to determine which aspect
it violates and to add LCA changing point after the Build counterexample step.
In general case LCA changing points can be added at the Build ARG step.

After that it is possible to divide an analysis time line for the LCA intervals,
which are time intervals between two LCA changing points. Thus we can use the
LCA intervals to calculate time, consumed by each aspect. In order to do it we
add time of the interval to LCA time at the Change LCA step.

Checking Several Requirements at once by CEGAR 225

In general case verification facts for each aspect are obtained after the Change
LCA step for LCA. For example, if verification facts are represented as precisions,
we can obtain them for every infeasible counterexample after the Refine step.
They define a current level of abstraction for LCA.

Tracking aspect time gives us the possibility for Aspect Time Limit (ATL)
for each aspect. ATL is aimed at limiting total time for aspect. In case of ATL
exhaustion, LCA will be disabled on the Disable LCA step (Fig. 2). Since in
general case the LCA interval can exceed ATL by itself, ATL should be checked
asynchronously inside the LCA interval (i.e. during the Build ARG step).

Therefore aspect verdicts are changed during analysis in the following way. At
the Aspects creation step every aspect gets the aspect verdict Checking. In case
of finding an error trace for some aspect, its aspect verdict changes to Unsafe. In
case of ATL exhaustion, the corresponding aspect verdict changes to Unknown.
If the algorithm has finished with the verdict Safe, then all aspects with the
aspect verdict Checking change to Safe.

The Disable LCA step consists of the following operations: (1) stop checking
error location, which corresponds to LCA, (2) remove verification facts relevant
to LCA and (3) unset LCA. Verification facts, which correspond to some aspect,
could both be useful for the others and interfere with the others (for more details
see Sect. 6). It is possible to remove abstract states, relevant to LCA, from ARG
as well, but we should take into account that any operation with full ARG may
not be efficient (since ARG can consist of millions abstract states). Therefore we
need options to determine, which verification facts we intend to track and where
we intend to remove them.

The Disable LCA step unsets LCA, thus, for the next interval we do not have
LCA until the next LCA changing point. We call such interval the Interval
without LCA (except the first one). In terms of current approximation such
intervals means that analysis does not check any aspect and thus time is wasted.
It leads to extending the idea of ATL for the notion of Internal Time Limit
(ITL). The main idea of any ITL is to limit time for some operation (or sequence
of operations) and then execute predetermined action in case of its exhaustion.
Thus ATL is ITL, which limits total time for the aspect and in case of its
exhaustion that aspect will be disabled. Potentially we can also limit the LCA
interval, the first interval, the interval without LCA, etc.

The suggested approximation can be extended for more general case, in which
more than one LCA can be at a time. In that case the notion of Set of Latest
Checked Aspects (SLCA) is suggested. This approximation is more close to
reality (since MAV may actually check for several aspects at a time), but cannot
solve problem of tracking time and verification facts for each aspect as clearly
as LCA approximation.

4.2 The Conditional Multi-aspect Verification Method

The main disadvantage of MAV is that it cannot continue analysis if the algo-
rithm was somehow terminated. ATL helps to find time limit exhaustion for

226 V. Mordan and V. Mutilin

Fig. 3. The CMAV schema.

specific aspect, but memory limit exhaustion and abnormal termination of sta-
tic verifiers are still remain as unresolved problems. In such cases all aspects
with the aspect verdict Checking get the aspect verdict Unknown. But if only
one aspect exceeds memory limit we could expect that MAV isolates it. In order
to achieve this, MAV was extended based on ideas of Conditional model check-
ing [14]. The main idea is to launch the MAV method a few times, passing inter-
mediate results between each launch, until all aspects get verdicts. We call this
extension Conditional MAV (CMAV). The schema of CMAV is presented
in Fig. 3.

In order to save all actual information about verification process we sug-
gest common format, which keeps aspect attributes (an aspect identifier, an
aspect verdict, a consumed time, an error trace identifier, a reason of Unknown)
and LCA identifier. This intermediate result in common format is stored into
the specified file. At the Change LCA step, the Disable LCA step and analysis
termination information in this file is updated. Thus in case of any abnormal
termination this file will contain all relevant information, including LCA, which
might cause the termination.

We call each launch of the MAV algorithm an iteration of CMAV. After each
iteration CMAV determines if analysis have been completed based on the file
with intermediate results. If the algorithm was terminated abnormally, CMAV
finds the reason of its termination and the aspect (or aspects), which caused it.
In case of global problems (such as incorrect verification task), all aspects get the
aspect verdict Unknown and CMAV terminates its analysis. Otherwise only those
aspects which caused termination get the aspect verdict Unknown (for example,
in case of memory limit exhaustion, while all aspect verdicts are still Checking,
LCA gets the aspect verdict Unknown). If analysis is not completed, CMAV
starts new iteration, which checks aspects with the aspect verdict Checking. In
any case next iteration gets at least one less aspect to check. Thus, number of all
iterations is less or equal than the number of all aspects. After the completion
of the last iteration CMAV unites intermediate information from all iterations
and presents it as the final result for the given verification task.

Also CMAV helps to resolve problem with the long intervals without LCA,
the main reason of which is too complex ARG. Such intervals are possible only
after the Disable LCA step, i.e. at least one aspect have already got the aspect
verdict Unsafe or Unknown. In order to limit such intervals we suggest Idle
Interval Time Limit (IITL). IITL is ITL, which limits the interval without
LCA. In case of IITL exhaustion CMAV starts new iteration, which gets at least
one aspect less to check, since at least one aspect got its aspect verdict on the
previous iteration (before the Disable LCA step).

Checking Several Requirements at once by CEGAR 227

5 Implementation

We have implemented the suggested method as extensions of LDV Tools and the
CPAchecker static verifier. LDV Tools prepare verification tasks, based on mul-
tiple aspects, and launch CMAV iterations with processing results in the CMAV
common format. The CPAchecker static verifier executes the MAV algorithm.

5.1 LDV Tools Extension

LDV Tools take multiple aspects as input and join them into a Combined aspect.
The Combined aspect contains references to the original aspects, for example,
each error location corresponds to some original aspect. For the preparation
of the Combined aspect LDV Tools were equipped with the new component
merging aspects.

The CPAchecker input configuration includes references to original aspects.
Therefore we can choose the set of original aspects to check while passing veri-
fication task prepared with help of the Combined aspect.

The wrapper inside LDV Tools which launches CPAchecker reads
CPAchecker output in the CMAV common format to determine whether analysis
is completed or the next CMAV iteration is needed. In the later case the wrapper
changes verification task by removing references to corresponding aspects from
the CPAchecker input configuration. Thus on the next iteration CPAchecker
ignores original aspects for which we have already got verdicts.

If the analysis is completed then LDV Tools prepare final report containing
information for every original aspect (its verdict, consumed time, error trace,
reason of Unknown), so it can be easily compared with CEGAR final reports.

5.2 CPAchecker with MAV

We extended the CPAchecker static verifier in order to support the MAV method
based on its description in Sect. 4. Here implementation details are presented.

Aspect. In CPAchecker the notion of error location is extended for the notion
of property, which is represented by automaton. In automaton there is a state
(or states) specified as an error state and the task is to prove that the error
state cannot be reached. LDV Tools pass to CPAchecker such automata with
references to the original aspects with verification task. Such references repre-
sent different error labels in program source code, thus automata check that
corresponding error labels cannot be reached.

In order to check a few properties at once we suggest automaton composition.
In automaton composition every automaton gets a unique name and can be
disabled. The Aspects creation step creates aspects for every passed automaton,
aspects identifiers are equal to corresponding automaton names. The Disable
LCA step disables corresponding automaton.

In general case every error location can correspond to some part of the
automaton (for example, each error location corresponds to some automaton

228 V. Mordan and V. Mutilin

transition). Then such automaton parts should get unique names at the Aspects
creation step and can be disabled at the Disable LCA step.

LCA. We implemented approximation, in which only one aspect is being checked
at a time. LCA changing points happen only after the Build counterexample step.

Adjustable Precision. We extended abstraction precision based on set theory.
At the start precision is empty, which corresponds to an empty set. We added
operations of addition and subtraction between two precision and operation of
clearing precision. We called such extended precision as adjustable precision.
Thus every used type of precision in analysis are adjustable precision.

Furthermore only adjustable precision is used as verification fact. At the
Aspects creation step each aspect gets empty precision as corresponding veri-
fication fact. After finding infeasible counterexample it is possible to get new
precision (from the Refine step) and add it to precision of LCA.

ITLs. In addition to suggested above ITLs (ATL for MAV and IITL for CMAV)
we implemented 2 heuristic ITLs. Basic Interval Time Limit (BITL) limits
each LCA interval, in case of its exhaustion LCA is disabled with the aspect
verdict Unknown. First Interval Time Limit (FITL) limits the first interval,
in case of its exhaustion CPAchecker terminates its analysis, all Checking aspects
get the aspect verdict Unknown. The main reason of additional ITLs is to find
the aspect verdict Unknown faster (since it means that we neither could prove
aspect correctness nor find its violation). Any of those ITLs can be unset.

Cleaning Adjustable Precision. Since we use only adjustable precision as
verification facts, only adjustable precision should be cleaned at the Disable
LCA step. We can remove corresponding adjustable precision from every abstract
state (the whole ARG) or only from not yet processed abstract states (so called
waitlist). Moreover, we can subtract precision, which corresponds to LCA, or
clear it. In general case 5 different strategies are possible: (1) None (do not
remove anything); (2) WL/Subtract (subtract from each precision in waitlist
precision, that correspond to LCA); (3) ARG/Subtract (subtract from each
precision in ARG precision, that correspond to LCA); (4) WL/Clear (clear all
precisions in waitlist) and (5) ALL (clear all precisions in ARG).

The suggested strategies represent different techniques to precision reuse
effect between different aspects (up from full precision reuse in None strat-
egy to not using this effect at all in All strategy). In general case there are
examples, in which some strategy is better, than the others. All strategies were
implemented, experiments with their comparison are presented in Sect. 6.

6 Results of the Experiments

In order to evaluate the suggested method we conducted the following experi-
ments. Verification tasks were prepared with help of LDV Tools based on Linux
kernels 3.16-rc1 and 4.0-rc1. All experiments were performed on machines with
3.4 GHz Quad Core CPU (Intel Core i7-2600), 16 Gb of RAM and Ubuntu 12.04

Checking Several Requirements at once by CEGAR 229

(64-bit). 17 LDV Tools basic aspects [16] were used for all experiments. For
basic CEGAR we used CPAchecker revision 14998 with ldv configuration, which
includes predicate analysis [10] and explicit value analysis [11], each launch of
the CEGAR algorithm was limited to 900 s of CPU time and 15 Gb of RAM. For
CMAV we used LDV Tools branch cmav and CPAchecker branch cmav (revision
15941), each iteration of CMAV was limited to 1200 s of CPU time and 15 Gb
of RAM, ATL = 900 s (same as time limit for CEGAR), IITL = 20 s, BITL =
100 s, FITL = 100 s.

6.1 Cleaning Adjustable Precision Strategies

The first experiment is meant to compare different strategies of cleaning
adjustable precision. In order to do it 1000 verification tasks were prepared
based on Linux kernel modules 3.16-rc1, which violate at least one aspect. The
results of this experiment are presented in Table 1.

Table 1. Cleaning adjustable precision strategies comparison (l is an average number
of iterations/launches for one verification task).

Strategy CPU time (hours) Error traces Iterations/Launches l

None 140 543 2084 2.084

WL/Subtract 118 610 1984 1.984

WL/Clear 127 599 1580 1.58

ARG/Subtract 122 590 2005 2.005

ALL 120 605 1451 1.451

CEGAR 389 604 17000 17

Experiment results revealed the features of the suggested strategies. None
strategy shows the best result only in case of nested error traces (i.e. there are two
error traces for different aspects and the first one is contained in the second), but
their numbers are low (about 20 in the experiment). ARG/Subtract is aimed at
preventing negative precision reuse effect at all, but the operation itself is slow (it
may exhaust the iteration time limit). WL/Subtract strategy minimizes such
negative precision reuse effect for most cases and thus finds the maximal number
of error traces. WL/Clear strategy is better than the others only in particular
cases, in which precision in ARG helps to other aspects, but precision in waitlist
(even for other aspects) does not. ALL strategy is unexpectedly fast (it also
requires the lowest number of CMAV iterations) since it fully removes negative
precision reuse effect with minimal number of additional operations. At the same
time ALL strategy loses so called positive precision reuse effect, which allows to
solve verification tasks that were not solvable in CEGAR (that is demonstrated in
the next experiment). In comparison with basic CEGAR all strategies are faster
in about 3 times, since CEGAR always requires 17 launches per one verification
task, whereas CMAV requires only about 2 launches to solve one verification task.
In the next experiments we use WL/Subtract strategy as the best strategy of

230 V. Mordan and V. Mutilin

this experiment, since it minimizes the negative precision reuse effect in most
cases, keeps positive precision reuse effect and requires reasonable resources.

6.2 Verification of All Linux Kernel Modules

In order to evaluate the suggested method all Linux kernel modules of version
4.0-rc1 were verified with the help of CEGAR and CMAV. LDV Tools prepare
6021 verification tasks for that Linux kernel version. The basic CEGAR approach
total time is 1047 h (CPU time), LDV Tools total time (together with CEGAR)
is about 960 h (wall time), the total number of found error traces is 623.

Time. CPAchecker with CMAV total time is 360 h (CPU time), which is 3 times
less than for CEGAR, LDV Tools total time (together with CMAV) is 200 h (wall
time), which is 5 times less than with CEGAR. Average time for one iteration
is 155 s (it is limited to 1200 s). Maximal time for a verification task is 8165 s
(time of all iterations). Analysis of experimental results revealed, that aspect
time in CMAV (which is total LCA intervals time) is less than corresponding
time in CEGAR on average at 6 times, because of similar actions in CEGAR
during checking of different aspects. But we should take into account, that CMAV
contains the intervals without LCA for performing common or auxiliary actions,
so the full CPU time of CMAV is 3 times less than for CEGAR.

Verdicts. CMAV verdicts are the same as in CEGAR in 97.61 %. The number of
CMAV negative transitions (Safe or Unsafe in CEGAR and Unknown in CMAV)
is 2.17 %. The number of CMAV positive transitions (Unknown in CEGAR and
Safe or Unsafe in CMAV) is 0.22 %. There are no missed bugs (transitions from
Unsafe to Safe) or additional false alarms (transitions from Safe to Unsafe) in
CMAV in comparison with CEGAR. Table 2 contains more detailed comparison
of verdicts in CEGAR and CMAV.

Table 2. Comparison of verdicts in CEGAR and CMAV for verification of all Linux
kernel modules of version 4.0-rc1 (6021 verification tasks) against 17 aspects.

Algorithm Safe Unsafe Unknown

CEGAR 98651 623 3083

CMAV negative 96654 –2195 (2.15 %) 624 –22 (0.02 %) 5079

positive + 198 (0.20 %) +23 (0.02 %)

The first reason of negative transitions in CMAV is more complex verifi-
cation tasks, which may require more time. For example, in order to find the
verdict Unsafe in module drivers/isdn/i4l/isdn.ko against aspect 08 1a CEGAR
requires about 830 s, but in CMAV it exhausts ATL (900 s). They still can be
found if we increase ATL (in case of drivers/isdn/i4l/isdn.ko for about 1200 s).
The second reason of negative transitions in CMAV is heuristic ITLs in CMAV.

Checking Several Requirements at once by CEGAR 231

For example, up to 48 % of the lost verdicts Safe for each aspect could be found
in case of unsetting FITL. At the same time, total time of analysis also increases
in almost 1.3 times. Thus by changing ITLs it is possible to change balance
between verification time and possible inaccurate results.

The main reason of positive transitions in CMAV is reusing precision and
ARG between different aspects, which may decrease time for finding error traces
or proving correctness. For example, in module fs/gfs2/gfs2.ko CMAV could find
4 new error traces, which are Unknown in CEGAR. In the CMAV method corre-
sponding error traces are found for about 700–800 s. The CEGAR algorithm also
can find them, but for about 1400–1500 s. Thus CMAV solves verification tasks,
that cannot be resolved in basic CEGAR with the same resource limitation.

Iterations. Total number of CMAV iterations is 8395, and thus the ration
between iterations and verification tasks is l = 1.39. CMAV solves 5511 veri-
fication tasks (almost 92 %) by the first iteration (i.e. for 92 % of all tasks the
MAV method is enough, 8 % needs the CMAV method). Maximal number of
iterations for one verification task is 15 (all aspect verdicts are Unknown).

7 Conclusion

The suggested method extends the CEGAR approach and provides a means to
check several requirements at once. Experiments showed that its implementation
in the CPAchecker static verifier and LDV Tools worked 5 times faster than
LDV Tools with the CEGAR approach, CPAchecker time was reduced by 3
times. More than 90 % of all verification tasks require only one launch of the
CPAchecker static verifier to check program against all requirements. At the
same time verdicts for verification tasks are the same for about 97.61 % of all
verification tasks. Some verification tasks (about 2.17 %) need more resources
than in basic CEGAR. At the same time positive effect of precision reuse helps
to solve some tasks (about 0.22 %), that cannot be resolved in basic CEGAR
with the same resource limitation, and even the total number of found error
traces in CMAV is greater than in CEGAR.

The main benefit of the suggested method is more optimal usage of resources.
Also it can be configured by using different options (for example, internal time
limits) for specific verification task and user demands, it is possible to determine
balance between verification time and quality of analysis.

The suggested method was presented and implemented as the CEGAR exten-
sion, but potentially the same ideas could be used for the other static verification
approaches. One of the perspective area of the future development is integration
of the suggested method with the method for finding all violations of an aspect,
which will allow to find all violations of several aspects at once.

References

1. Beyer, D.: Competition on software verification. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 504–524. Springer, Heidelberg (2012)

232 V. Mordan and V. Mutilin

2. Beyer, D.: Software verification and verifiable witnesses. In: Baier, C., Tinelli, C.
(eds.) TACAS 2015. LNCS, vol. 9035, pp. 401–416. Springer, Heidelberg (2015)

3. Khoroshilov, A., Mutilin, V., Novikov, E., Shved, P., Strakh, A.: Towards an open
framework for C verification tools benchmarking. In: Clarke, E., Virbitskaite, I.,
Voronkov, A. (eds.) PSI 2011. LNCS, vol. 7162, pp. 179–192. Springer, Heidelberg
(2012)

4. Website: problems found in Linux kernels. http://linuxtesting.org/results/ldv
5. Shved, P., Mandrykin, M., Mutilin, V.: Predicate analysis with BLAST 2.7. In:

Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 525–527.
Springer, Heidelberg (2012)

6. Beyer, D., Henzinger, T., Jhala, R., Majumdar, R.: The software model checker
BLAST. Int. J. Softw. Tools Technol. Transf. 9(5–6), 505–525 (2007)

7. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable software ver-
ification. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 184–190. Springer, Heidelberg (2011)

8. Novikov, E.: An approach to implementation of aspect-oriented programming for
C. Program. Comput. Softw. 39(4), 194–206 (2013)

9. Beyer, D., Löwe, S., Novikov, E., Stahlbauer, A., Wendler, P.: Precision reuse
for efficient regression verification. In: Proceedings of the 9th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT Sympo-
sium on Foundations of Software Engineering (ESEC/FSE 2013), St. Petersburg,
Russia, 18–26 August 2013, pp. 389–399. ACM (2013)

10. Beyer, D., Keremoglu, M., Wendler, P.: Predicate abstraction with adjustable-
block encoding. In: Formal Methods in Computer-Aided Design, FMCAD 2010
(2010)

11. Beyer, D., Löwe, S.: Explicit-state software model checking based on CEGAR
and interpolation. In: Cortellessa, V., Varró, D. (eds.) FASE 2013 (ETAPS 2013).
LNCS, vol. 7793, pp. 146–162. Springer, Heidelberg (2013)

12. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

13. Mandrykin, M., Mutilin, V., Khoroshilov, A.: Vvedenie v metod CEGAR -
utochnenie abstraktsii po kontrprimeram [Introduction to CEGAR - Counter-
Example Guided Abstraction Refinement]. Trudy ISP RAN [Proc. ISP RAS] 24,
219–292 (2013)

14. Beyer, D., Henzinger, T.A., Keremoglu, M.E., Wendler, P.: Conditional model
checking: a technique to pass information between verifiers. In: Proceedings of the
20th ACM SIGSOFT International Symposium on the Foundations of Software
Engineering, FSE 2012, Cary, NC, 10–17 November 2012. ACM (2012)

15. Mordan, V., Novikov, E.: Minimizing the number of static verifier traces to
reduce time for finding bugs in Linux kernel modules. In: Proceedings of the
Spring/Summer Young Researchers Colloquium on Software Engineering, vol. 8
(2014)

16. Zakharov, I., Mandrykin, M., Mutilin, V., Novikov, E., Petrenko, A., Khoroshilov,
A.: Configurable toolset for static verification of operating systems kernel mod-
ules. Program. Comput. Softw. 41(1), 49–64 (2015)

http://linuxtesting.org/results/ldv

Unifying Requirements and Code: An Example

Alexandr Naumchev1(B), Bertrand Meyer1,2, and Victor Rivera1

1 Software Engineering Laboratory, Innopolis University, Innopolis, Russia
{a.naumchev,b.meyer,v.rivera}@innopolis.ru

2 ETH Zürich, Zurich, Switzerland
http://university.innopolis.ru/

Abstract. Requirements and code, in conventional software engineering
wisdom, belong to entirely different worlds. Is it possible to unify these
two worlds? A unified framework could help make software easier to
change and reuse. To explore the feasibility of such an approach, the
case study reported here takes a classic example from the requirements
engineering literature and describes it using a programming language
framework to express both domain and machine properties. The paper
describes the solution, discusses its benefits and limitations, and assesses
its scalability.

Keywords: Software engineering · Requirements specifications · Mul-
tirequirements · Eiffel

1 Introduction

According to the standard view in software engineering, the tasks of require-
ments, design and implementation require distinct techniques and produce dif-
ferent artifacts.

What if instead of focusing on the differences we recognized the fundamental
unity of the software construction process through all its stages? The principle of
seamlessness (see e.g. [1]) follows from this assumption that the commonalities
are more fundamental than the differences, and that it pays to use the same
set of concepts, notations and tools throughout the development, from the most
general and user-oriented initial steps down to the most technical tasks.

A consequence of the seamlessness principle is that requirements are just
another software artifact, susceptible to many of the same techniques as code and
design. In particular, assuming a modern programming language with powerful
abstraction facilities, the requirements can be written in the same notation as
the program.

The notion of multirequirements [2] adds to this principle the idea of using
several interleaved descriptions: natural language, graphical, and formal (Eiffel
text) serving as the reference.

How realistic is the seamless multirequirements approach, what are its limits,
and what benefits does it bring? To help answer this question, the present article
takes the example used in a classic paper of the requirements literature, Jackson’s
c© Springer International Publishing Switzerland 2016
M. Mazzara and A. Voronkov (Eds.): PSI 2015, LNCS 9609, pp. 233–244, 2016.
DOI: 10.1007/978-3-319-41579-6 18

234 A. Naumchev et al.

and Zave’s zoo control system, and describes it entirely in a seamless style,
including the formal constraints that form a key part of the original article.

The goal of the paper is not advocacy but experimentation. The advocacy
is present in the earlier references cited above. We practice a seamless approach
to software construction and consider it fruitful, but the present discussion does
not attempt to establish its superiority; rather it starts from the seamlessness
hypothesis - in particular, the hypothesis that a single notation, Eiffel, is applica-
ble to requirements analysis just as much as to programming - and applies this
hypothesis fully and consistently to a significant example. While we draw some
conclusions, the important part is the result of the experiment as presented here,
enabling readers to form their own conclusions as to the benefits and limits of
the approach.

Section 2 briefly explains why it is interesting to put into question the tra-
ditional separation between software development tasks. Section 3 proposes an
approach to unify software development tasks by combining the approaches
described in [2,3]. Section 4 introduces some theoretical and technical back-
ground. Section 5 presents the approach applied to an example. Finally, Sect. 6
concludes and mentions future work.

1.1 Summary of Contributions

Experimentation mentioned at the end of Sect. 1 resulted in the following key
outcomes.

– An evidence suggesting that it is possible to use Multirequirements approach
[2] for describing cyber-physical systems like zoo turnstile controller. At the
same time, different types of exemplar statements goes far beyond just the
relational statements used in [2].

– An evidence suggesting that a real programming language notation may be
even more expressive than most of the popular formal notations. Section 5.5
contains all the details.

– An example showing how object orientation helps to effectively manage com-
plexity in specifications. The approach used in [3], where the specification is
basically a linear list of statements, does not scale to the case of large sys-
tems, when the number of requirements is too big. Object orientation provides
a way to relate the conceptual objects so that the resulting specification will
be scattered across the classes in an intuitive way.

2 The Drawbacks of Too Much Separation of Concerns

Historically, there was a reason for emphasizing the distinction between devel-
opment tasks. The goal was to highlight the specific needs of requirements and
design, moving away from the “code first, think later” way of building software.
But as the precepts of software engineering have gained wide acceptance and
programming languages have moved from low-level machine-coding notations to

Unifying Requirements and Code: An Example 235

descriptive formalisms with high expressive power, the reverse approach is worth
exploring: instead of emphasizing the differences, show the fundamental unity of
the software process.

The traditional approach is subject to five criticisms.

(i) Insufficient information. Requirements analysts do not know what details
are important for developers. They are good at expressing customer needs
in a form the customer is ready to sign, but they typically do not know
what is implementable and what is not. [4] discusses some typical flaws of
natural language requirements specifications.

(ii) Lack of communication. When developers see ambiguous or contradictory
elements in the requirements, they will not always go back and ask, but
will often interpret the requirement according to their own understanding,
which may or may not coincide with user wishes.

(iii) Impedance mismatches [1]. The use of different formalisms at different
stages requires translations and creates risks of mistakes.

(iv) Impediment to change. With different formalisms, it is difficult [1] to ensure
that a change at one level is reflected at other levels.

(v) Impediment to reuse. The presence of requirements as a document specific
to each project may mask the commonality between projects and make the
team miss potential reuse of existing developments.

3 A Seamless Approach

3.1 Unifying Processes

Consideration of the problems listed above leads to trying a completely different
approach, which recognizes that beyond the obvious differences between tasks of
software development they share fundamental needs, concepts, principles, tech-
niques. In particular, they can be addressed through a common notation. Mod-
ern programming languages are not just coding tools to talk to a machine, but
powerful tools for expressing abstract concepts and modeling complex systems.
The Eiffel notation used in the present work uses object-oriented principles of
classes, genericity, polymorphism and inheritance, which have proved adept at
describing sophisticated systems (independently of their technical programming
aspects) in a modular, flexible, reusable and evolutionary way. Thanks to the
presence of Design by Contract mechanisms, it can describe not only the struc-
ture of systems but their abstract semantics.

3.2 The Hypothesis

The hypothesis explored in this paper, in light of the above analysis, is that it
is possible to design a software development process that:

(i) Uses for requirements the same notation and tools as for design and imple-
mentation.

236 A. Naumchev et al.

(ii) Links the resulting documents (requirements, design, code) together, ensur-
ing a major goal of software engineering: traceability.

(iii) Makes it possible to prove, formally, the correctness of the implementation
against the specification.

(iv) Supports extendibility by ensuring that small changes in the requirements
will cause a proportionally small change in the design and the implementa-
tion.

3.3 How to Test the Hypothesis

The present work relies on the following scenario for testing the preceding
hypothesis at least in part:

(i) Propose a candidate process.
(ii) Select examples and apply the process.
(iii) Analyze the outcome.

[2] sketches such a process, based on using object orientation for representing the
relationships between the conceptual objects in the requirements document. The
basic idea was to have an object-oriented code along with the natural language
description of a requirement. It is also possible to represent each code fragment
graphically as a BON diagram [5].

[2], however, uses as example the very notion of requirements process. In
other words, it is self-referential. This confers (we hope) a certain elegance to
the example, but makes it look artificial. In the present paper we take a more
standard example, coming from a classic requirements paper by Jackson and
Zave [3].

More precisely, the requirements from the example are represented using the
model-based [6] contracts-equipped [7] object-oriented [1] notation (Eiffel).

4 Theoretical and Technical Background

4.1 Design by Contract

Work [7] gives a comprehensive description of Design By Contract. Design By
Contract integrates Hoare-style assertions [8] within object-oriented programs
[1] constraining the data that run time objects hold. This approach equips each
class feature (member) with a predicate expression, that specify its behavior, in
the form of pre- and postcondition. The postcondition has to hold whenever the
precondition held and the feature finished its computation before the program
execution process invokes the next feature. Design By Contract equips the class
itself with an invariant predicate expression which holds in all states of the
corresponding objects.

Unifying Requirements and Code: An Example 237

4.2 Model-Based Contracts

If classical contracts are for constraining the data that run time objects actually
hold, model-based contracts are “meta” contracts for constraining the objects
as mathematical entities (sets, sequences, bags, relations etc.), and an execution
process does not instantiate the corresponding mathematical representations at
run time as parts of the objects. Model-Based Contracts are useful when it is
not possible to capture all the nuances by means of classical contracts. The PhD
thesis [6] gives some examples of such situations and a comprehensive description
of the concept.

4.3 AutoProof

The AutoProof [9] tool is capable of formally proving the correctness of contract-
equipped object-oriented programs, both classical and model-based. AutoProof
proves for every routine that the conjunction of the precondition and the class
invariant before invocation ensures the conjunction of the postcondition and the
class invariant after invocation. The class is verified if and only if all the class
features are verified.

5 Unifying the Two Worlds: An Example

Avoiding the problems analyzed in Sect. 2 means unifying the worlds of require-
ments and code in a unified framework. This section illustrates the approach. It
takes the example from the work [3] and shows how to express requirements of
various types in the style of work [2] - namely, using Eiffel as a formal specifica-
tion language for expressing each requirement. Originally the authors used this
example to demonstrate the process of deriving specifications from requirements,
and the unified approach captures all the nuances of this process.

5.1 Example Overview

The authors of [3] start with giving the overall context: “...Our small example
concerns the control of a turnstile at the entry to a zoo. The turnstile consists
of a rotating barrier and a coin slot, and is fitted with an electrical interface...”
This small paragraph mostly describes the relationships between the conceptual
objects. Figure 1 contains specification of the context in the style of work [2].

Translating the specification from Fig. 1 back to natural language using the
object-oriented semantics results in almost the same initial description: “A ZOO
has a TURNSTILE turnstile; a TURNSTILE has a COINSLOT coinslot and a
BARRIER barrier so that coinslot has Current TURNSTILE as turnstile and
barrier has Current TURNSTILE as turnstile...” COINSLOT and BARRIER
hold references to the TURNSTILE instances in order to capture the “electrical
interface” phenomena: the word “interface” means something over which the
parties are able to communicate with each other; communicating means sending

238 A. Naumchev et al.

class ZOO
feature

t u r n s t i l e : TURNSTILE
end

class TURNSTILE
feature

c o i n s l o t : COINSLOT
ba r r i e r : BARRIER

invariant
c o i n s l o t . t u r n s t i l e = Current
ba r r i e r . t u r n s t i l e = Current

end

class COINSLOT
feature

t u r n s t i l e : TURNSTILE
invariant

t u r n s t i l e . c o i n s l o t = Current
end

class BARRIER
feature

t u r n s t i l e : TURNSTILE
invariant

t u r n s t i l e . b a r r i e r = Current
end

Fig. 1. Expressing the context formally

messages to each other, and to send message to someone in the object-oriented
world is to take a reference to the object and perform a qualified call on it. So
at the very least the parties should hold references to each other to be able to
communicate in two directions.

5.2 The Designation Set

After stating the problem context the authors of [3] describe the designa-
tion set. Each designation basically corresponds to a separate type of events
observed in the problem area. The authors give the designations as a set of
predicates as in Fig. 2. Figure 3 is an Eiffel implementation of each designa-
tion set described in Fig. 2. The implementation uses Eiffel features names as
labels for the events types. The natural language descriptions from Fig. 2 pro-
vide heuristics on which feature should be added to which class (Fig. 2 highlights
the correspondence with bold). Each event type has an associated history - a
sequence of moments in time when the events of this particular type occurred. For
example, enters : MML SEQUENCE[INTEGER 64] (in Fig. 3) is a sequence
of moments in time expressed in milliseconds when events of type enter took
place. MML SEQUENCE is a class from the MML (Mathematical Modeling
Library) and denotes mathematical sequence. MML contains special classes for
expressing model-based contracts. Although it is possible to instantiate some
simple objects from these classes (like a sequence containing one element), the
instances will not be modifiable. The model annotation is the Eiffel mechanism to
represent model-based contracts (introduced in Sect. 4.2). For instance, expres-

– Push(e): In event e a visitor pushes the barrier to its intermediate position
– Enter(e): In event e a visitor pushes the barrier fully home and so gains entry to

the zoo
– Coin(e): In event e a valid coin is inserted into the coin slot
– Lock(e): In event e the turnstile receives a locking signal
– Unlock(e): In event e the turnstile receives an unlocking signal

Fig. 2. The Zoo Turnstile example designation set

Unifying Requirements and Code: An Example 239

note
model : en t e r s

deferred class ZOO
feature

ente r
deferred
ensure

en t e r s . b u t l a s t ˜ old en t e r s
en t e r s . l a s t > old en t e r s . l a s t

end
en t e r s : MMLSEQUENCE[INTEGER 64]

end

note
model : locks , unlocks

deferred class TURNSTILE
feature

l o ck
deferred
ensure

l o ck s . b u t l a s t ˜ old l o ck s
l o ck s . l a s t > old l o ck s . l a s t

end
unlock
deferred
ensure

unlocks . b u t l a s t ˜ old unlocks
unlocks . l a s t > old unlocks . l a s t

end
l o ck s : MMLSEQUENCE[INTEGER 64]
unlocks : MMLSEQUENCE[INTEGER 64]

end

note
model : c o in s

deferred class COINSLOT
feature

co in
deferred
ensure

co in s . b u t l a s t ˜ old co in s
co in s . l a s t > old co in s . l a s t

end
co in s : MMLSEQUENCE[INTEGER 64]

end

note
model : pushes

deferred class BARRIER
feature

push
deferred
ensure

pushes . b u t l a s t ˜ old pushes
pushes . l a s t > old pushes . l a s t

end
pushes : MMLSEQUENCE[INTEGER 64]

end

Fig. 3. Specifying the designation set formally

sion model : enters in Fig. 3 gives a hint that enters feature will be used for
expressing the model-based part of the contract.

The deferred keyword states that the specification gives only formal defini-
tions of the events (in terms of pre- and postconditions [8]) and does not give the
corresponding operational reactions of the machine on the events. The ensure
clause is the postcondition of the feature. It describes how the system changes
after reacting on an event of the corresponding type. These specifications are
intuitively plausible: an event occurrence should result in extending the corre-
sponding history with the moment in time when the event took place, and the
time of the new event should be strictly bigger than the time of the previous
event, as shown, for instance, by the postcondition in feature unlock of Fig. 3.
The keyword old is used to indicate expressions that must be evaluated in the
pre-state of the routine, and ˜ makes a comparison by value.

5.3 Shared Phenomena

The authors of [3] introduce the notion of shared phenomena - that is, the
phenomena visible to both the world (the environment) and the machine (the
notions of the world and the machine were introduced by Jackson in [10]). In
the present approach this notion is covered by using the “has a” relationships
between the ZOO and the TURNSTILE classes, accompanied with the model-
based contracts. Namely, since a ZOO has a turnstile as its feature, it can see

240 A. Naumchev et al.

deferred class ZOO
feature

t u r n s t i l e : TURNSTILE
ent e r s : MMLSEQUENCE[INTEGER 64]

invariant
en t e r s . count <= t u r n s t i l e . c o i n s l o t . c o in s . count

end

Fig. 4. Entries should never exceed payments

any phenomena hosted by the turnstile: locks, unlocks, coins, pushes; since a
TURNSTILE does not hold any references to a ZOO, it can not observe nor
control the enter events modeled by ZOO.

5.4 Specifying the System

Work [3] introduces a set of criteria by means of which it is possible to iden-
tify whether the machine is specified or not. One of the criteria states that all
requirements should be expressed in terms of shared phenomena only. Require-
ments refinement is the process of converting the requirements stated in terms of
both shared and non-shared phenomena to the form in which they are expressed
in terms of shared phenomena only. Refinement process consists of identifying
some laws, which hold in the environment regardless of the machine behaviour,
and constraining the machine behaviour. The resulting constraints imposed on
the machine together with the laws of the environment should logically imply
the requirements stated in the beginning.

The authors of [3] state that the laws of the environment are always expressed
in the indicative mood, while the restrictions imposed on the machine behavior
are expressed in the optative mood.

All properties of the problem derived in [3] - be they optative or indicative
descriptions - can be conceptually divided into the two main categories.

Properties Which Hold at Any Moment in Time: An example of such
property is the OPT1 requirement (expressed in Fig. 4) saying that entries should
never exceed payments (the authors of [3] use OPT∗ for labeling properties
expressed in an optative mood). Within the present approach this requirement
can be expressed in the following way. The “something always holds” semantics
fits perfectly into the semantics of Eiffel invariant: “something holds in all states
of the object”, as expressed in Fig. 4.

Properties Which Hold Depending on the Type of the Next Event to
Occur: The indicative property IND2 saying that it is impossible to push the
barrier if the turnstile is locked will serve as an example (the authors of [3] use
IND∗ for labeling properties expressed in the indicative mood). Figure 5 depicts
the corresponding specification. The initial description is divided into the two
different claims: first, the turnstile should be unlocked at least once, and second,

Unifying Requirements and Code: An Example 241

deferred class BARRIER
feature

push
require

not t u r n s t i l e . un locks . i s empty
(not t u r n s t i l e . l o ck s . i s empty) implies (t u r n s t i l e . un locks . l a s t >

t u r n s t i l e . l o ck s . l a s t)
deferred
end

end

Fig. 5. It is impossible to use locked turnstile

deferred class BARRIER
feature

t u r n s t i l e : TURNSTILE
push
deferred
ensure

((old t u r n s t i l e . un locks . l a s t > old t u r n s t i l e . l o ck s . l a s t) and
(pushes . count = t u r n s t i l e . c o i n s l o t . c o in s . count))
implies (t u r n s t i l e . l o ck s . l a s t > pushes . l a s t and

(t u r n s t i l e . l o ck s . l a s t − pushes . l a s t) < 760)
end
pushes : MMLSEQUENCE[INTEGER 64]

end

Fig. 6. The machine locks the turnstile timely

if the turnstile has ever been locked, the last unlock should have occurred later
than the last lock.

Real Time Properties: The authors of [3] derive several timing constraints on
the events processing. For example, the OPT7 requirement says that the amount
of time between the moment when the number of the barrier pushes becomes
equal to the number of coins inserted and the moment when the machine locks
the turnstile should be less than 760 ms. This is basically a constraint for the
reaction on the push event: if the next push event uses the last coin, the machine
should ensure that the turnstile is locked in a timely fashion, so that a human
being will not have time to enter without paying. The 760 quantity reflects
the fact that it takes at least 760 ms for a human being to rotate the barrier
completely and enter the Zoo.

Taking this reasoning into consideration, the present specification approach
handles the timing constraint by putting it into the push feature postcondition
(as depicted in Fig. 6). The antecedent of the implication assumes the situation
when before the push event the turnstile was locked (oldturnstile.unlocks.last >
oldturnstile.locks.last expression in Fig. 6), and after the event occurrence
the number of barrier pushes became equal to the number of coins inserted
(pushes.count = turnstile.coinslot.coins.count expression in Fig. 6). The con-
sequent reflects the requirement that, having in place the situation that the
antecedent describes, there should be a lock event which is more late than the
last push event (turnstile.locks.last > pushes.last expression in Fig. 6), and

242 A. Naumchev et al.

deferred class ZOO
feature

t u r n s t i l e : TURNSTILE ABSTRACT
ente r
deferred
end
en t e r s : MMLSEQUENCE[INTEGER 64]

invariant
t u r n s t i l e . c o i n s l o t . c o in s . count > en t e r s . count implies

(agent ente r) . p r e cond i t i on
end

Fig. 7. The turnstile let people who pay enter

the distance between them should be less than 760 ms ((turnstile.locks.last −
pushes.last) < 760 expression in Fig. 6).

5.5 Specifying the “Unspecifiable”

One of the requirements mentioned in [3] was OPT2 saying that the visitors who
pay are not prevented from entering the Zoo. The authors give only informal
statement of this requirement: ∀ v,m, n • ((Enter#(v,m) ∧Coin#(v, n) ∧ (m <
n)) =⇒ ′The machine will not prevent another Enter event′.

The antecedent of this implication should be read like “the number of entries
is less than the number of coins inserted”. The authors of [3] do not formalize the
consequent and leave it in the natural language form. The present specification
approach handles this requirement using standard Eiffel mechanism called agents
(see Fig. 7).

The agent clause treats a feature (the enter feature in this particular case) as
a separate object so that the feature precondition becomes one of the boolean-
type features of the resulting object.

6 Conclusion

Software construction involves different activities. Typically these activities are
performed separately. For instance, requirements and code, as developed nowa-
days, seem to belong to different worlds. The case study reported in this paper
shows the feasibility of unifying requirements and code in a single framework.

This paper takes the classic Zoo Turnstile example [3] and implements it
using Eiffel programming language. Eiffel is used not just to express the domain
properties but also the properties of the machine [10], enabling users to combine
requirements and code in a single framework. This paper does not present the
complete implementation of the example due to limited space. Full implementa-
tion can be reached in the GitHub project [11].

The specification approach presented in this work is suitable not only for
formalizing the statements that [3] formalizes, but also for formalizing those
which are not possible to formalize with classical instruments like predicate or
temporal logic (like OPT2 requirement, see Fig. 7).

Unifying Requirements and Code: An Example 243

The present approach is not only expressively powerful - it enables smooth
transition to design and implementation. GitHub project [11] contains a contin-
uation of the present work in the form of a complete implementation of the Zoo
Turnstile example.

In order to understand the benefits of the present approach better it seems
feasible to evaluate it against the hypothesis stated in Sect. 3.2:

(i) Unity of software development tasks: indeed, all the code fragments corre-
sponding to different specification items merged together will bring a com-
plete design solution available at [11] (the classes ending with “ abstract”).

(ii) Traceability between the specification and the implementation: the classes
ending with “ concrete” available at [11] contain the implementation and
relate to the specification classes by means of inheritance.

(iii) Provability of the classes: the AutoProof system [9] is capable of formally
proving both classical and model-based contracts in Eiffel. However, it is
not yet capable of proving “higher-level” agents-based contracts like the one
used in Fig. 7 for expressing requirement OPT2 from the work [3]. Adding
this functionality to AutoProof is one of the next work items.

(iv) Extendibility of the solution: since Eiffel artifacts used in the formalizations
of the requirements items correspond to their natural language counterparts
directly, it is visible right away how a change in one representation will affect
the second.

Speaking about scalability of the approach, a formal representation of a
requirements item specified with Eiffel is as big as the scope of the item and
its natural language description are, so the overall complexity of the final doc-
ument should not depend on the size of the project. Anyway, this is something
to test by applying the approach to a bigger project.

6.1 Future Work

The future actions plan include:

(i) to prove formally that the specifications are consistent. In particular to
ensure that the features specifications preserve the invariants of their home
classes; to ensure that the invariants are self-consistent. For example it
should not be possible for P (x) and ¬P (x) to hold at the same time.

(ii) to extend the BON notation [5] so that it will be capable of expressing
model-based contracts.

(iii) to design machinery for translating model-based contract-oriented require-
ments to their natural language counterpart so that the result will be recog-
nizable by a human being.

(iv) to apply the approach to a bigger project.
(v) to extend AutoProof technology [9] so that it will be able to handle agents

in specifications (like in Fig. 7).

244 A. Naumchev et al.

It seems feasible to utilize AutoProof technology [9] for achieving goal (i).
AutoProof is already capable of proving that a feature implementation pre-
serves its specification (except specifications with agents), and it seems logical
to empower it with the capabilities for working solely on the specifications level.
Work [12] contains a formal proof that it is possible to achieve goal (v).

As a result of implementing the plan a powerful framework for expressing all
possible views on the software under construction should emerge. The threshold
of success includes the possibility to generate the specification classes (their
names end with “ abstract”) available at [11] automatically, using requirements
documents produced according to the present process as input.

Acknowledgment. This work has been supported by the Russian Ministry of edu-
cation and science with the project “Development of new generation of cloudy
technologies of storage and data control with the integrated security system and
the guaranteed level of access and fault tolerance” (agreement: 14.612.21.0001, ID:
RFMEFI61214X0001). Also, the authors would like to thank their colleagues Alexander
Chichigin and Dr. Manuel Mazzara from the Innopolis University Software Engineering
Laboratory for their invaluable feedback.

References

1. Meyer, B.: Object-Oriented Software Construction, vol. 2. Prentice Hall, New York
(1988)

2. Meyer, B.: Multirequirements. In: Seyff, N., Koziolek, A. (eds.) Modelling and
Quality in Requirements Engineering (Martin Glinz Festscrhift). MV Wissenschaft
(2013)

3. Jackson, M., Zave, P.: Deriving specifications from requirements: an example.
In: Proceedings of the 17th International Conference on Software Engineering,
pp. 15–24. ACM (1995)

4. Meyer, B.: On formalism in specifications. IEEE Softw. 2(1), 6–26 (1985)
5. Waldén, K., Nerson, J.M.: Seamless Object-Oriented Software Architecture.

Prentice-Hall, Upper Saddle River (1995)
6. Polikarpova, N.: Specified and verified reusable components. Ph.D. thesis, Diss.,

Eidgenössische Technische Hochschule ETH Zürich, Nr. 21939, 2014 (2014)
7. Meyer, B.: Touch of Class: Learning to Program Well with Objects and Contracts.

Springer, Heidelberg (2009)
8. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM

12(10), 576–580 (1969)
9. Tschannen, J., Furia, C.A., Nordio, M., Meyer, B.: Automatic verification

of advanced object-oriented features: the autoproof approach. In: Meyer, B.,
Nordio, M. (eds.) LASER 2011. LNCS, vol. 7682, pp. 133–155. Springer,
Heidelberg (2012)

10. Jackson, M.: The world and the machine. In: 17th International Conference on
Software Engineering, ICSE 1995, pp. 283–283. IEEE (1995)

11. Naumchev, A.: Jackson-zave zoo turnstile implementation (2015). https://github.
com/anaumche/Zoo-Turnstile-Multirequirements

12. Nordio, D.M.: Proofs and proof transformations for object-oriented programs.
Ph.D. thesis, Citeseer (2009)

https://github.com/anaumche/Zoo-Turnstile-Multirequirements
https://github.com/anaumche/Zoo-Turnstile-Multirequirements

Program Schemata Technique to Solve
Propositional Program Logics Revised

Nikolay Shilov(B)

A.P. Ershov Institute of Informatics Systems, Russian Academy of Sciences,
Lavren’ev av. 6, 630090 Novosibirsk, Russia

shilov@iis.nsk.su

Abstract. Propositional program (dynamic, temporal and process) log-
ics are basis for logical specification of program systems (including par-
allel, distributed and multiagent systems). Therefore development of
efficient algorithms (decision procedures) for validation, provability and
model checking of program logics is an important research topic for the
theory of programming.

The essence of a program schemata technique consists in the following.
Formulas of a program logic to be translated into uninterpreted nonde-
terministic monadic flowcharts (so called Yanov schemata) so that the
scheme is total (i.e. terminates) in all special interpretations if and only
if the initial formula is a tautology (i.e. is identically true). Since this
generalized halting problem is solvable (with an exponential complex-
ity), it implies the decidability of initial program logic (and leads to a
decidability upper bound).

The first version of the technique was developed by Nikolay V. Shilov
and Valery A. Nepomnjaschy in 1983–1987 for variants of Propositional
Dynamic Logic (PDL). In 1997 the technique was expanded on the propo-
sitional μ-Calculus. In both cases a special algorithm was used to solve
the generalized halting problem.

A recent development of program schemata technique consists in
revised decision procedure for the halting problem. A new decision proce-
dure consists in model checking of a special fairness property (presented
by some fixed μ-Calculus formula) in finite models presented by Yanov
schemata flowcharts. Exponential lower bound for transformation of μ-
Calculus formulas to equivalent guarded form is a consequence of the
new version of the decision procedure.

1 Propositional µ-Calculus

Let us define syntax and semantics of the propositional μ-Calculus (μC) [8], one
of the most expressive propositional program logics.

Definition 1. Let Con = {true, false} be Boolean constants and V ar and Act
be disjoint (countable) alphabets of propositional and program variables. Syntax
of μC consists of formulas to be defined by structural induction.

This work is supported by the RFBR-grant # 13-01-00645-a.

c© Springer International Publishing Switzerland 2016
M. Mazzara and A. Voronkov (Eds.): PSI 2015, LNCS 9609, pp. 245–259, 2016.
DOI: 10.1007/978-3-319-41579-6 19

246 N. Shilov

– All constants in Con and variable in V ar are formulas.
– Any propositional combination of formulas is a formula: negation ¬φ, con-

junction (φ∧ψ) and disjunction (φ∨ψ) are formulas for any formulas φ and
ψ.

– For any program variable a ∈ Act and formula φ modal constructs sometimes
(〈a〉φ) and always ([a]φ) are formulas.

– For any propositional variable x ∈ V ar and formula φ without negative1 and
bound2 instances of x, the least fix-point (μx.φ) and the greatest fix-point
(νx.φ) are formulas too3.

Let us drop the top-level parenthesis around formulas as well as those paren-
thesis inside formulas that may be restored according to the standard precedence
rules for the propositional connectives: negation precedes conjunction that pre-
cedes disjunction

For any syntactic expression r and any two expressions of same kind4 s and
t let rt/s be the result of instantiation of t instead of all instances of s in r; also
let r0t/s denote the expression t itself, and for every n ≥ 0 let rn+1

t/s be rrn
t/s

/s i.e.
rm
t/s stays for m-times substitution of t instead of s in φ. For example, if φ is a

formula ψ ∨ 〈a〉x (where x ∈ V ar and a ∈ Act are propositional and program
variables) then5

– φ0
true/x ≡ true,

– φ1
true/x ≡ (ψ ∨ (〈a〉true)),

– φ2
true/x ≡ (ψ ∨ (〈a〉(ψ ∨ (〈a〉true)))), etc.

μC semantics is defined in models that are called labeled transition systems
(LTS) in Computer Science and Kripke systems/structures in Logic and Philos-
ophy; let us just use term model instead of both in this paper.

Definition 2. Each model M is a triple (D,R,E) where

– the domain D 	= ∅ is a set of states;
– the interpretation R : Act → 2D×D is a function that assigns a binary relation

R(a) ⊆ D × D to each a ∈ Act;
– the valuation E : V ar → 2D is a function that assigns a unary predicate

E(x) ⊆ D to each x ∈ V ar.

If M = (D,R,E) is a model, S ⊆ D is a set of states, and x ∈ V AR is a propo-
sitional variable then let MS/x denote a model (D,R,ES/x) where6 valuation
1 An instance of a subformula is said to be negative if it is in the scope of odd number

of negations; otherwise the instance is said to be positive.
2 An instance of a variable x is said to be bound if it is in the scope of μx or νx;

otherwise it is said to be free.
3 The definition implies that all bound variable within a formula must be different.
4 i.e. both are simultaneously propositional variables, program variables, formulas, etc.
5 Hereafter we use ‘≡’ for syntax identity, but ‘=’ for (set-theoretic) equality.
6 Acronym upd stays for update, i.e. the following second-order function modifier: for

any function f : X ×Y , elements x ∈ X and y ∈ Y let upd(f, x, y) = λz ∈ X. if z =
x then y else f(y).

Program Scheme Technique to Solve Propositional Program Logics Revised 247

ES/x is upd(E, x, S) i.e. a valuation that may differ from E for propositional
variable x only: ES/x(x) = S.

Definition 3. μC semantics in may be defined by extending valuations (provided
by models) from propositional variables onto all formulas by structural induction
as follows. For any model M = (D,R,E) let

– M(true) = D, M(false) = ∅, and M(x) = E(x) for every x ∈ V ar;
– M(¬φ) = D \ M(φ), M(φ ∧ ψ) = M(φ) ∩ M(ψ), M(φ ∨ ψ) = M(φ) ∪ M(ψ);
– M(〈a〉φ) = {s ∈ D : ∃t ∈ D((s, t) ∈ R(a) and t ∈ M(φ))},
– M([a]φ) = {s ∈ D : ∀t ∈ D((s, t) ∈ R(a) implies t ∈ M(φ))};
– M(μx.φ) is the least (w.r.t. ⊆) set of states S ⊆ D that MS/x(φ) = S;
– M(μx.φ) is the greatest (w.r.t. ⊆) set of states S ⊆ D that MS/x(φ) = S.

Satisfiability |= is a ternary relation between states, models and formulas defined
as follows: s |=M φ iff s ∈ M(φ).

The above definition needs some justification since it refers to existence of
the set-theoretic least and greatest fix-points MS/x(φ) = S over 2D. Correctness
of this definition follows from monotonicity of a function λS ⊆ D.MS/x(φ) :
2D → 2D (assuming φ hasn’tt negative instances of x) and Knaster-Tarski fix-
point theorem [8,13,15]. We skip full details of this justification (due to space
limitations) but formulate a corollary that follows from the proof of the theorem7.

Corollary 1. For any propositional variable x ∈ V ar, μC-formula φ without
bound and negative instances of x, for every n ≥ 0 and every model M the
following inclusions hold: M(φn

false/x) ⊆ M(μx.φ) and M(νx.φ) ⊆ M(φn
true/x).

Definition 4. Let φ be any μC-formula.

– φ is said to be valid in a model M (|=M φ), if M(φ) = DM where DM is the
domain of the model; φ is said to be valid (|= φ), if it is valid in all models.

– φ is said to be satisfiable in a model M , if there exists a state s such that
s |=M φ; φ is said to be satisfiable if it is so in some model.

The following definition just recalls some general logic concepts.

Definition 5.

– Calculus is a formal language provided with syntax-driven inference system; if
the inference system has axioms (i.e. premise-free inference rules) then prov-
able sentences are those of the language that may be inferred from axioms. A
calculus with axioms is called axiomatic system.

– A formal language provided with model-base concept of validity (for its sen-
tences) is
• decidable if there exists an algorithm to solve the set of valid sentences;
• axiomatizeable if there exists an algorithm to enumerate all valid sentences.

7 We need the corollary for justification of some statements in the paper.

248 N. Shilov

– A calculus (or axiomatic system) provided with model-base validity is
• sound if all provable sentences are valid;
• complete if all valid sentences are provable.

– A formal language provided with model-base validity is said to be syntactical-
ly-axiomatizable if it has a sound and complete axiomatic system.

In the original paper [8] D. Kozen defined syntax, Kripke semantics (i.e.
model-based validity) and axiomatic system (i.e. a calculus itself) for μ-Calculus
and proved soundness of the axiomatic system. The first sound and complete
axiomatization for μC was built 10 years later by I. Walukiewicz [14]; I. Walukie-
wicz proved completeness of the original axiomatization next 7 years later in [15].

μ-Calculus was proved to be decidable with exponential upper bound 15 years
after the original paper [8] independently by N.V. Shilov in [11] and by E.A.
Emerson and C.J. Jutla [3]. E.A. Emerson and C.J. Jutla proved exponential
upper bound by reduction of the satisfiability problem to the emptiness problem
for Büchi automata; furthermore they also proved EXP −Time completeness of
the satisfiability problem. In contrast, N.V. Shilov suggested linear time trans-
lation of μC-formulas to non-deterministic Yanov8 schemata [9,11] such that
reduces validity problem to a so-called generalized halting problem for schemata;
it had been shown earlier by V.A. Nepomniaschij and N.V. Shilov [9,11] that
the generalized halting problem is decidable for Yanov schemata in exponential
time.

2 Special Classes of Models and Formulas

Definition 6. μC-formulas φ and ψ are said to be equivalent in a class of models
M if M(φ) = M(ψ) for every model M in this class. In particular, when M is
the class of all models then the formulas are said equivalent. If a class M consists
of a single model M then formulas are said to be equivalent in this model M .

Definition 7. μC-formula is said to be normal if all instances of negation are
at literal level (i.e. ¬ may appear only in front of propositional variables in the
formula).

According to the following very standard statement each μC-formula may be
transformed in linear time into an equivalent normal formula.

Proposition 1. For any propositional variable x and program variable a, for
any μC-formulas φ and ψ the equivalences in the Table 1 are valid.

Definition 8. An instance of a propositional variable in a formula is said to be
guarded if it occurs in the range of any modality [. . .] or 〈. . . 〉. A propositional
variable is said to be guarded in a formula if all its instances are guarded in the
formula. μC-formula is said to be guarded if all its bound variables are guarded.

8 Alternative spelling: Ianov.

Program Scheme Technique to Solve Propositional Program Logics Revised 249

Table 1. Normalization equivalences

¬(¬φ) is equivalent to φ

¬(φ ∧ ψ) is equivalent to (¬φ) ∨ (¬ψ) ¬(φ ∨ ψ) is equivalent to (¬φ) ∧ (¬ψ)

¬(〈a〉ψ) is equivalent to [a](¬ψ) ¬([a]ψ) is equivalent to 〈a〉(¬ψ)

¬(μx.ψ) is equivalent to νx.(¬ψ¬x/x) ¬(νx.ψ) is equivalent to μx.(¬ψ¬x/x)

One can read in papers [14,15] that every μC-formula can be converted into
equivalent guarded one in polynomial time. But recently it was proved that
“known guarded transformations can cause an exponential blowup in formula
size, contrary to existing claims of polynomial behavior” [1].

Proposition 2. Every μC-formula is equivalent to some guarded μC-formula
that may be constructed from the input formula in exponential time and space.

Proof. First, if a formula φ has no instances of a propositional variable x then
μx.φ and νx.φ are both equivalent to φ.

Next, let x be a propositional variable and φ be a formula without negative
instances of x; let us classify instances of x in φ as follows:

– guarded instances or instances in the scope of any alien fix-point construct9;
– unguarded instances that are out of scope of any alien fix-point construct;

let us refer instances of the first type by xfp and instances of the second type
by xos; then following equivalences hold:

– μx.φ is equivalent to μx.φfalse/xos
, i.e. the same formula where all unguarded

instances of x are replaced by false;
– νx.φ is equivalent to νx.φtrue/xos

, i.e. the same formula where all unguarded
instances of x are replaced by true.

Using these equivalences one can eliminate all unguarded bound instances of
variables that are out of scope of any alien fix-point construct.

Finally, for any propositional variables x and y, any μC-formulas φ(x, y)
and ψ(x, y) without negative and bound instances of x and y, for any fix-point
constructs π, ρ ∈ {μ, ν}, any fresh10 propositional variable z and t, the following
formulas are equivalent:

– πx.φ(x, ρy.ψ(x, y)),
– πx.φ(x, ρy.ψ(πz.φ(z, ρt.ψ(z, t)), y)),
– πx.φ(x, ρy.ψ(πz.φ(z, y), y)).

Observe, that if formula ψ(x, y) has no unguarded instances of y, then the for-
mula πx.φ(x, ρy.ψ(πz.ψ(z, y), y)) has no unguarded instances of neither x, nor
y, nor z in the scope of an alien fix-point construct ρy or πz. �
9 i.e. a construct that bounds another variable.

10 i.e. that are not in use neither in φ nor in ψ.

250 N. Shilov

Definition 9. A model M = (D,R,E) is said to be strict if every program
variable a ∈ Act is interpreted as a total function R(a) : D → D. A variant of μ-
Calculus (with same syntax as μC) based on (i.e. that uses) strict interpretations
only, is called strict μ-Calculus (μ-Strict or μS).

Let us remark that Propositions 1 and 2 are true for μ-Strict. But strict μ-
Calculus also has some specifics: for every program variable a ∈ Act and any
μS-formula φ the following μS-formulas [a]φ and 〈a〉φ are equivalent due to
interpretation of program variables by total functions. This observation implies
the following corollary.

Corollary 2. Every μS-formula is equivalent to some normal guarded box-free11

μS-formula that may be constructed from the input formula in exponential time
and space.

Definition 10. Formulas (in different languages maybe) are said to be equally
valid if they all are simultaneously valid (according to their semantics) or all
simultaneously are not valid. Similarly, formulas are said to be equally satisfiable
if they all are simultaneously satisfiable (according to their semantics in different
models maybe) or all simultaneously are not satisfiable.

Let us introduce (classical propositional) implication → and equivalence ↔
in the standard manner as macros legal to use in non-normal formulas: for
any formulas φ and ψ let φ → ψ stays for (¬φ) ∨ ψ, and φ ↔ ψ stays for
(φ → ψ) ∧ (ψ → φ).

Next let us introduce few more macros inspirited by Propositional Dynamic
Logic (PDL) [5]: for any program variables a and b, any formulas φ and ψ let

– [(a;φ?)∗; b]ψ stays for νx.([b]ψ ∧ [a](φ → x)),
– 〈(a;φ?)∗; b〉ψ stays for μx.(〈b〉ψ ∨ 〈a〉(φ ∧ x)).

It is possible to say that ‘;’ is sequential composition of programs, ‘*’ is non-
deterministic iteration of a program, and ‘?’ is a test construct that converts a
‘property’ to a guard. Thus formula [(a;φ?)∗; b]ψ suggests to iterate a any (non-
deterministic) number of times (while φ holds after each iteration), then apply
b and check that at the end ψ is always true; in contrast, formula 〈(a;φ?)∗; b〉ψ
suggests to iterate a some (non-deterministic) number of times (with care about
φ after each iteration), then apply b and eventually ψ should be true.

The following proposition has been proved in [11].

Proposition 3. Let φ be a μC-formula. For every program variable a ∈ Act that
occurs in φ, let fa, ga and pa be fresh (disjoint) program variables and propo-
sitional variable (individual for each a). Let μS-formula ψ be result of replace-
ment in φ of all instances of each program variable a ∈ Act by an instance
of expression (fa; pa?)∗; ga; then μC-formula φ is equally valid/satisfiable with
μS-formula ψ. It implies that every μC-formula is equally valid/satisfiable with
some μS-formula that may be constructed from the input formula in linear time.

11 i.e. a formula without instances of modality [. . .].

Program Scheme Technique to Solve Propositional Program Logics Revised 251

Fig. 1. Simulation of a countable μC-model by μS-model

Proof. Firstly let us remark that φ is valid iff it is valid in all tree-based countable
models. Here a tree-based countable model is any model (D,R,E) where D as the
set of nodes and {R(a) : a ∈ Act occurs in φ} as the set of edges form a directed
tree. One can think about a tree-based model for φ as a labeled directed tree
where nodes are states, edges are graphs of interpreted program variables that
occur in φ; edges of this tree are marked by corresponding program variables and
nodes are marked by propositional variables occurring in φ that are evaluated
as valid in these nodes. A tree-based model that “emulates” a given model for φ
can be constructed as follows: for each state glue together all its successor states
that are indistinguishable by any formula of μC, and then unfold this reduced
model into an infinite tree (starting from any desired state). Let us remark that
gluing indistinguishable states and coping by unfolding don’t change validity of
any formula in states and their copies. Remark also that after gluing together all
indistinguishable states the reduced model is (not more than) countable; hence
unfolded tree-based model is also countable.

Next, we can transform a countable tree-based model for φ into a countable
tree-based μS-model for μS-formula ψ, by “simulating” interpretation of each
program variable a ∈ Act (that occurs in φ) as specified below and illustrated
on Fig. 1: for each state s

– let us introduce a countable set of auxiliary states,
– let fa enumerates all the auxiliary states in some order,
– let pa be valid as many times on auxiliary states as is the number of a-

successors of s,
– let ga returns a corresponding a-successor of s for each of auxiliary states.

In the resulting μS-model the validity of the formula ψ in the states of the
original μC-model coincides with the validity of φ in the original μC-model. �

252 N. Shilov

The following statement is a corollary from Knaster-Tarski fix-point theorem.
Corollary 3. For any propositional variable x ∈ V ar, any μC-formula φ that
has no negative or bound instances of x, for any strict model M the following
holds:

– M(μx.φ) =
⋃

n≥0 M(φn
false/x),

– M(νx.φ) =
⋂

n≥0 M(φn
true/x).

Proof. Both equalities are very similar, so let us prove the first one only by
simultaneous induction by number of fix-point constructs in φ; since proof of
the induction basis and the induction step are very similar, let us just sketch the
induction basis, i.e. to prove that M(μx.φ) =

⋃
n≥0 M(φn

false/x) for a fix-point-
free formula φ.

Firstly, subsumption
⋃

n≥0 M(φn
false/x) ⊆ M(μx.φ) is valid in each model

according to Corollary 1. Next, let us assume (in contrary)
⋃

n≥0 M(φn
false/x) 	=

M(μx.φ). Then let us denote
⋃

n≥0 M(φn
false/x) by S. Due to the assumption,

MS/x(φ) 	= S. Hence there exists a state s ∈ DM such that s ∈ (MS/x(φ) \ S).
Since φ is fix-point-free and M is strict, then there exists a finite set Sfin ⊆ S
such that s ∈ MSfin/x(φ). It implies that s ∈ ⋃

n≥0 M(φn
false/x) due to finiteness

of Sfin. — Contradiction. Hence MS/x(φ) = S. �

Definition 11. A model (D,R,E) is called Herbrand model [9] (or free model
in Russian tradition [4,7]) if the domain D is the set Act∗ of all finite words
constructed from program variables (including the empty word θ) and interpre-
tation R is defined as follows: R(a)(w) = wa for any program variable a ∈ Act
and any word w ∈ Act∗.

If to analyze the proof of Proposition 3 above then it is possible to prove the
following statement.

Proposition 4. μC-formula is valid/satisfiable iff it is valid/satisfiable in
every/some Herbrand model.

3 Non-deterministic Yanov Schemata

Yanov schemata [4,6,10] is one of classical program models that enjoys decidabil-
ity of many algorithmic problems like (functional) equivalence, emptiness and
totality (halting) [4,7]. The term Yanov scheme was introduced by Andrey P.
Ershov; he also developed graphical flowchart notation and complete graphical
axiomatization for the equivalence problem [4,10].

Non-deterministic Yanove schemata were introduced in [9] and then were
used in [11]. Let us repeat below basic syntax and semantics definitions for non-
deterministic Yanov schemata.

Program Scheme Technique to Solve Propositional Program Logics Revised 253

Definition 12. Let us use natural numbers (including 0) as labels12. Assign-
ment (or labeled assignment operator) is any expression of the form “l : f goto
L” where l is a label, f is a program variable, and L is a finite set (the empty
set maybe) of labels13. Choice (or labeled choice operator) is any expression of
the form “l : if p then L+ else L−” where l is a label, p is a propositional vari-
able, L+ and L− are finite sets of labels (each may be empty). Non-deterministic
Yanov scheme is a finite set of labeled operators.

According to the definition above, a label may mark several operators in
a non-deterministic Yanov scheme. Definition of syntax of the classical Yanov
schemata results from the above definition by imposing the following additional
constraints:

– a label may mark a single operator in a scheme;
– all sets L, L+ and L− in operators are singletons.

Let us reserve term Yanov scheme (or simply scheme) for non-deterministic
Yanov scheme, but use term standard Yanov scheme when we discuss the classical
case.

Semantics of Yanov schemata is defined in strict models. Speaking informally,
run of a scheme in a model may start from any state but the first operator to
fire must be marked by label 0 (zero); then run consists of firings of operators
according to control flow that is defined by labels; run halts when control is
passed to any label that does not mark any operator within the scheme14.

Definition 13. Let S be an arbitrary fixed Yanov scheme and M = (D,R,E)
be any fixed strict model. Configuration is any pair of the form (l, s) where l is
a label (that occurs in S) and s is a state (of the model). Firing of an operator
is a pair of configurations (l, s)(l′, s′) as defined below:

– firing of an assignment operator “l : f goto L” (that occurs in S) is a pair of
configurations (l, s)(l′, s′) where s′ = R(f)(s) and l′ ∈ L;

– firing of a choice operator “l : if p then L+ else L−” (that occurs in S) is a

pair of configurations (l, s)(l′, s′) where s′ = s and l′ ∈
{

L+ if s ∈ E(p)
L− otherwise.

A run is any sequence of configurations (l0, s0) . . . (lk, sk)(lk+1, sk+1) . . . such
that each neighbor pair (lk, sk)(lk+1, sk+1) within this sequence is a firing of
some operator (of S of course). A complete run starts with a configuration with
label 0 and is either infinite or ends with a configuration with a final label (in S).

Let us recall some facts and concept about the standard Yanov schemata.
Every standard Yanov scheme in any strict model for any initial state has a
single complete run that starts in this state. A standard Yanov scheme is said
12 Let us assume that notation for number representation is fixed.
13 Let us use the standard representation for finite sets: ∅ for the empty set and

elements enumerated in a pair of curly parenthesis ‘{’ and ‘}’.
14 These labels are called final labels of the scheme.

254 N. Shilov

to be total, if it hasn’t any infinite complete run in any strict model. The halting
(totality) problem for standard Yanov schemata is to decide for an input scheme
whether it is total or not. It is well-known that the problem is decidable, and a
scheme is total iff in every Herbrand model starting in configuration15 (0, θ) the
scheme always halts16 [7].

Definition 14. Let Fin ⊆ V ar be a finite set of propositional variables. Let us
say that a Herbrand model M = (D,R,E) fits Fin, if for every propositional
variable p ∈ Fin its evaluation E(p) is a finite set. A scheme S is said to be
total with respect to Fin, if in every Herbrand model that fits Fin, scheme S has
a finite complete run starting in configuration (0, θ).

Definition 15. Generalized halting (totality) problem for non-deterministic Ya-
nov schemata is to decide for an input scheme S and input finite set of proposi-
tional variables Fin whether S is total with respect to Fin.

Generalized halting problem has been proven to be decidable [9,11] with
upper bound exp(nA + nC) where nA and nC are numbers of assignments and
choices in the input scheme. Below we will present a new decision procedure for
the problem in a sub-class of guarded schemata inspirited by a decision procedure
for a special class of automata [12].

Definition 16. Yanov scheme is said to be guarded if any non-empty path on
flow-chart of the scheme that starts in a choice operator with some propositional
variable as the condition, and ends in a choice operator17 with the same condi-
tion, has an instance of an assignment operator.

It is well-known that functional equivalence is decidable for the standard
Yanov schemata [4,7]. This equivalence may be expanded onto non-deterministic
Yanove schemata by considering input-output relations augmented by looping,
and can been proven to be decidable since every scheme can be effectively trans-
formed to appropriate equivalent canonical guarded scheme [9]. These equiva-
lence and transformation were very helpful for proving decidability of Propo-
sitional Dynamic Logic [9] but aren’t so helpful in study of decidability of μ-
Calculus.

Nevertheless we are interested in guarded non-deterministic schemata since
such schemata may be converted to models for μ-Calculus.

Definition 17. Let S be a guarded scheme. For each propositional variable p
that occurs in S, let +p and −p be a pair of new (fresh) program variables. Let
MS be the following model (DS , RS , ES).

– DS is union of the following three sets:
• {(l, f) : l is a label, f is a program variable such that S has an assignment

“l : f goto . . . ” };
15 Recall that θ is the empty word.
16 i.e. it has a finite complete run.
17 maybe the same operator where the path starts.

Program Scheme Technique to Solve Propositional Program Logics Revised 255

• {(l,+p), (l,−p) : l is a label, p is a propositional variable such that S has
a choice “l : if p then . . . else . . . ”};

• {(l, stop) : l is a final label in S}.
– RS interprets old and new program variables as follows:

• for each program variable f that occurs in S, RS(f) = {((l, f), (k,m)) :
(l, f), (k,m) ∈ DS and S has an assignment “l : f goto L”, where k ∈ L};

• for each propositional variable p in S, RS(+p) = {((l, p), (k,m)) :
(l, f), (k,m) ∈ DS and S has a choice “l : if p then L+ else . . . ”,
where k ∈ L+};

• for each propositional variable p in S, RS(−p) = {((l, p), (k,m)) :
(l, f), (k,m) ∈ DS and S has a choice “l : if p then . . . else L−”,
where k ∈ L−}.

– For each propositional variable p in S, ES(p) = {(l,+p) : (l,+p) ∈ DS}.
Any state of DS in the form (0, . . .) is called initial.

Definition 18. Let Fun ⊆ Act be a finite set of program variables, φ be μC-
formula, M = (D,R,E) be a model, and s ∈ D be a state. An infinite sequence
of states s0, s1, · · · ⊆ D is generated by Fun from s in M , if s0 = s and for all
k ≥ 0 there is a program variable a ∈ Fun that (sk, sk+1) ∈ R(a). Let us say
that

– formula φ is inevitable for Fun in M from s, if every infinite sequence of
states s0, s1, · · · ⊆ D generated by Fun from s in M has a state sj |=M φ;

– program variables Fun are fair for (or with respect to) φ in M from s, if every
infinite sequence of states s0, s1, · · · ⊆ D generated by Fun from s in M has
an infinite subsequence t0, t1, . . . that tj |=M φ for all j ≥ 0.

Proposition 5. Let S be a guarded scheme, Fin be a set of propositional vari-
ables, MS be model constructed from S as specified in the Definition 17, and Fun
be the set of all program variables that correspond to propositional variables in
Fin according to this definition. Then the following clauses are equivalent:

– S is total with respect to Fin;
– Fun is fair with respect to

∨
p∈Fin p in MS from every initial state.

Proof. A path l0, . . . lk, . . . in a flowchart is said to be valid if there exists a strict
model M and sequence of states s0, . . . sk, . . . (with same length as the path)
such that (l0, s0) . . . (lk, sk) . . . is a run in this model. A scheme is said to be free
[7,11] if any path on its flowchart is a valid. It is easy to see that every guarded
scheme is free. Due to this freedom of S and finiteness of Fin we have: S isn’t
total with respect to Fin ⇔ there exists an infinite path in MS where formula∨

p∈Fin p is valid an infinitely often. �

Definition 19. Let Fun ⊆ Act be a finite set of program variables, and φ be
any μC-formula. Let us introduce two more macros:

– let18 AF (Fun, φ) stays for μy.(φ ∨ ∧
a∈Fun[a]y),

18 AF means Always in Future is a modality from Computation Tree Logic CTL [2].

256 N. Shilov

– and fair(Fun, φ) stays for νx.AF (Fun, φ ∧ x).

Proposition 6. For every model M = (D,R,E), for every state s ∈ D, every
finite set of program variables Fun, and every μC-formula φ the following equiv-
alences hold:

– s |=M AF (Fun, φ) ⇔ φ is inevitable for Fun in M from s;
– s |=M fair(Fun, φ) ⇔ Fun is fair for φ in M from s.

Proof. The first equivalence is trivial and well-know from Computational Tree
Logic [2]. To prove the second equivalence, let us pickup an arbitrary infinite
sequence of states s0, s1, · · · ⊆ D generated by Fun from s in M such that s0 |=M

fair(Fun, φ); according to the first equivalence, the sequence has a state t0 |=M

φ ∧ AF (Fun, fair(Fun, φ)), i.e. t0 |=M φ and t0 |=M AF (Fun, fair(Fun, φ));
it implies that the sequence has another state t1 (somewhere after t0) where
t1 |=M φ ∧ AF (Fun, fair(Fun, φ)); due the same argument we can find states
t2, t3 and so on. �

The following proposition is a corollary from Propositions 5 and 6.

Proposition 7. Let S be a guarded scheme, Fin be a set of propositional vari-
ables, MS be model constructed from S as specified in the Definition 17, and Fun
be the set of all program variables that correspond to propositional variables in
Fin according to this definition. Then S is total with respect to Fin if and only
if (0,m) |=MS

fair(Fun,
∨

p∈Fin p) for all m such that (0,m) is a state in DS.

Definition 20. Global model checking [2] for a program logic (a variant of μ-
Calculus in particular) in a class of models for this logic is an algorithmic prob-
lem to compute (to construct) the set M(φ) for input model M (in this class)
and input formula φ (of this logic).

Proposition 8. Generalized halting problem for guarded non-deterministic Ya-
nov schemata is decidable in quadratic time O(nA + nC)2 where nA and nC are
numbers of assignments and choices in the input scheme.

Proof. The upper bound O(|φ|×|M |alt(φ)) for model checking μC in finite models
is well-known [2]; here

– |φ| is the total number of Boolean connectives and modalities in the input
formula,

– alt(φ) is the maximal number of alternations of nesting μ/ν-constructs in the
formula,

– |M | is the overall size of the input model (i.e. the total number of states and
edges).

Let S be a guarded scheme, Fin be a set of propositional variables, MS be
model constructed from S as specified in the Definition 17. According to Proposi-
tion 7, we have to model check formula fair(Fun,

∨
p∈Fin p) in the finite model

MS . It suffices to remark that |fair(Fun,
∨

p∈Fin p)| is some fixed constant,
alt(fair(Fun,

∨
p∈Fin p)) = 1 and |MS | = O(nA + nC)2. �

Program Scheme Technique to Solve Propositional Program Logics Revised 257

4 Main Results

4.1 Translation Algorithm

Let us define below a recursive algorithm F2S (Formulas To Schemata) to
translate normal guarded μS-formulas into guarded non-deterministic Yanov
schemata. We would like to use in the definition the following standard control-
flow constructs:

– S′;S′′ for sequential composition of two schemata,
– if q then S′ else S′′ for deterministic choice in two schemata,
– S′ ∪ S′′ for non-deterministic choice in two schemata;

all these control-flow constructs are easy to define formally in terms of non-
deterministic Yanov schemata. Let us also use some macro-notations:

– stop for all final labels of a scheme under consideration (i.e. labels that occur
in the scheme but don’t mark any operator),

– loop for a fixed scheme that always loops (e.g., {0 : if p then {0} else {0}}).

Algorithm F2S:

– For any propositional variable
• F2S(p) = {0 : if p then stop else loop};
• F2S(¬p) = {0 : if p then loop else stop};

– F2S(φ ∧ ψ) = if q then F2S(φ) else F2S(ψ), where q is a new (fresh)
propositional variable;

– F2S(φ ∨ ψ) = F2S(φ) ∪ F2S(psi);
– for any program variable

F2S([a]φ) = F2S(〈a〉φ) = {0 : a goto stop};F2S(φ).
– F2S(μx.φ) results from F2S(φ) by replacement instead of every choice oper-

ator (with condition x) “if x then stop else loop” the unconditional operator
“goto {0}”.

– F2S(νx.φ) results from F2S(φ) by replacement instead of every choice oper-
ator (with condition x) “if x then stop else loop” the choice operator
“if x then {0} else stop”.

Proposition 9. Algorithm F2S translates normal guarded μC-formulas into
guarded non-deterministic Yanov schemata in linear time.

Definition 21. Let M = (D,R,E) and M ′ = (D′, R′, E′) be two models with
same domain (i.e. D = D′) and interpretation of program variables (i.e. R =
R′), let Fin be a set of propositional variables; we say that M ′ is a modification
of M on Fin, if valuations E and E′ differs on variable in Fin only (i.e. E(p) =
E′(p) for every p 	∈ Fin).

258 N. Shilov

Proposition 10. Let M be any Herbrand model, φ be a normal guarded formula
of the strict μ-Calculus, Gfp (Greatest fix points) be the set of all propositional
variables that are bound by ν in this formula, and Cnj be the set of all new
propositional variables q that are introduce for conjunctions in an exercise of
F2S(φ). Then μS-formula φ is valid in M if and only if the non-deterministic
Yanov scheme F2S(φ) halts in every M ′ that fits Gfp and is a modification of
M on Gfp ∪ Cnj.

Proof. Induction on formula structure. Induction base is the case when a formula
is a literal (i.e. a propositional variable or its negation); in this case proof is trivial
due to explicit definition of F2S in these cases.

Induction step in case of disjunction ∨ and modalities [. . .] or 〈. . . 〉 is straight-
forward due to simplicity of definition of F2S in these cases.

Let us consider conjunction. Since F2S(φ ∧ ψ) = if q then F2S(φ) else
F2S(ψ), where q is a variable in Cnj, and since q has instances neither in
F2S(φ) nor in F2S(ψ), then we can interpret this variable arbitrary and (by
this) test both F2S(φ) and F2S(ψ) for halting.

Let us discuss an idea that is behind the induction step in case of μp.φ.
According to Corollary 3, M(μx.φ) =

⋃
n≥0 M(φn

false/x). Recall that F2S(μx.φ)
results from F2S(φ) by substitution of unconditional “goto {0}” instead of
“if x then stop else loop”, i.e. F2S(μx.φ) is equivalent to F2S(

∨
n≥0 φn

false/x).
Finally, an idea behind induction step for νp.φ follows. Again, according to

Corollary 3, M(νx.φ) =
⋂

n≥0 M(φn
true/x). Since F2S(νx.φ) results from F2S(φ)

by substitution of “if x then {0} else stop” instead of “if x then stop else loop”
(where x ∈ Gfp) then F2S(νx.φ) is equivalent to F2S(

∧
n≥0 φn

true/x) because x
can be true only finite number of times. �

4.2 Results and Conclusion

Main Theorem follows from Propositions 1–4 and 8–10.

Theorem 1. The propositional μ-Calculus is decidable with exponential upper
bound (on formula size).

Since it is known that μ-Calculus is EXP − Time complete [3], Proposi-
tions 1–4 and 8–10 imply the following corollary.

Corollary 4. Any algorithm that transforms μ-Calculus formulas into equiva-
lent guarded formulas, must be exponential in fix-point nesting depth of the input
formula.

Concluding Remarks. To the best of our knowledge, the lower bound from
Corollary 4 is a very new result [1]. Study of implications from this result (for par-
ity games [15] for instance) may be a topic for further research. Another possible
research topic may be complete axiomatization of the propositional μ-Calculus
in a manner similar to the complete axiomatization for the Propositional

Program Scheme Technique to Solve Propositional Program Logics Revised 259

Linear Temporal Logic in [12]. Research on a new approach to axiomatization
may be interesting since completeness proof in [14,15] uses reduction to guarded
fragment.

References

1. Bruse, F., Friedmann, O., Lange, M.: Guarded Transformation for the Modal mu-
Calculus (2013). arXiv:1305.0648v2, http://arxiv.org/abs/1305.0648

2. Clarke, E.M., Grumberg, O., Peled, D.: Moedel Checking. MIT Press, Cambridge
(1999)

3. Emerson, E.A., Jutla, C.J.: The complexity of tree automata and logics of pro-
grams. SIAM J. Comput. 29, 132–158 (1999)

4. Ershov, A.P.: Origins of Programming: Discourses on Methodology. Springer,
New York (1990)

5. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
6. Ianov, Y.I.: The logical schemes of algorithms. In: Lyapunov, A.A., Goodman, R.,

Booth, A.D. (eds.) Problems of Cybernetics, vol. I, pp. 82–140. Pergamon Press,
New York (1960)

7. Kotov, V.E., Sabelfeld, V.K.: Theory of Program Schemata. Nauka Publeshers,
Moscow (1991). (In Russian)

8. Kozen, D.: Results on the propositional Mu-calculus. Theoret. Comput. Sci. 27,
333–354 (1983)

9. Nepomniaschy, V.A., Shilov, N.V.: Non-deterministic program schemata, their rela-
tion to dynamic logic. In: International Conference on Mathematical Logic and
its Applications, pp. 137–147. Plenum Press, New York (1987). (Revised version:
Cybernetics 24(3), 285–293 (1988)

10. Podlovchenko, R.I.: A.A. Lyapunov and A.P. Ershov in the theory of program
schemes and the development of its logic concepts. In: Bjørner, D., Broy, M.,
Zamulin, A.V. (eds.) PSI 2001. LNCS, vol. 2244, pp. 8–23. Springer, Heidelberg
(2001)

11. Shilov, N.V.: Program schemata vs. automata for decidability of program logics.
Theoret. Comput. Sci. 175, 15–27 (1997)

12. Shilov, N.V.: An approach to design of automata-based axiomatization for propo-
sitional program, temporal logics (by example of linear temporal logic). In: Logic,
Computation, Hierarchies. Ontos Mathematical Logic, vol. 4, pp. 297–324. Ontos-
Verlag/De Gruyter, Germany (2014)

13. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math.
5, 285–309 (1955)

14. Walukiewicz, I.: A complete deductive system for the mu-calculus. In: Proceedings
of IEEE LICS 1993, pp. 136–147 (1993)

15. Walukiewicz, I.: Completeness of Kozen’s axiomatisation of the propositional Mu-
calculus. Inf. Comput. 157, 142–182 (2000)

http://arxiv.org/abs/1305.0648v2
http://arxiv.org/abs/1305.0648

Automated Two-Phase Composition
of Timed Web Services

Maciej Szreter(B)

Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland
mszreter@ipipan.waw.pl

Abstract. The paper extends PlanICS web services composition system
by augumenting services with an explicit notion of time, and evolution
of variables as a function of time. Its distinguishing feature is focusing
not only on time constraints in services, but covering the whole service
definition and composition process: providing an ontology with a strong
type system on which definitions of typed stateless timed services are
based, timed user queries, offers from service providers corresponding to
instances of service types, and searching for services and offers matching
the user query. A novel idea is that services express their timed behavior
by producing timed automata as a part of their output. Abstract and
concrete planning is described, dealing respectively with service types
(including time dependencies), and with offer sets corresponding to these
types.

1 Introduction

Composition of web services is an area of intensive research being performed in
several directions. These are, among others, improving the scalability in order
to deal with very big numbers of services, extending the semantic part of the
composition process, adding new features to service definitions, which enable
the finer and more precise composition of services. Introducing explicit time to
services is yet another active research direction, however most papers focus on
searching for satisfying time constraints by services put together in an ad-hoc
manner, rather than published, discovered and composed in a way analogous
to untimed services. The key aim of this paper is to tackle this problem. The
distinguishing features of our approach are:

– the complete planning process, starting from services registration in an ontol-
ogy, with abstract descriptions being a basis for the search of a plan. Our
method performs the two-phase (abstract and concrete) planning, what is the
distinguishing feature of PlanICS web service composition system [1],

– strong type system, extending the PlanICS way of modeling, and making it
easier to separate timed and untimed aspects of a service activity. This signif-
icantly simplifies modeling, as a service provider can apply the time automata

This work has been supported by the National Science Centre under the grant No.
2011/01/B/ST6/01477.

c© Springer International Publishing Switzerland 2016
M. Mazzara and A. Voronkov (Eds.): PSI 2015, LNCS 9609, pp. 260–275, 2016.
DOI: 10.1007/978-3-319-41579-6 20

Automated Two-Phase Composition of Timed Web Services 261

(which is the formalism we use) only for representing the timed part of the
service behavior,

– instantaneous services execution model based on the IOPR rule (Inputs, Out-
puts, Preconditions and Results). Services produce time automata describing
how they change dynamic variables they control, depending possibly on time
and values of other variables,

– introducing offers (i.e., instances of service types), what means that several
providers would send their offers for each service type, and either the best
(or just acceptable) combination of offers is then chosen, consistent with the
abstract plan dealing with service types. Offers provide concrete values for
abstract typed variables defined in the respective service type. Services instead
of modifying all their (possibly complex) type definitions in the ontology each
time they are queried, may prepare their customized offers.

Taking out a loan in a bank is an example of a scenario modeled by time
automata produced by services. When a loan is approved, a customer can per-
form (and complete) other related activities (for example, buying a house) while
paying off the loan can take years to come. As the running example shows, our
approach allows for modeling services inspired by real-world scenarios: we are
able to easily model several aspects from the area of finance: loans, delayed
payments, savings accounts, buying and selling bonds, discounts for bigger buy-
ers, etc. It also allows for modeling durations of events, what is the focus of
the most papers about composing timed services, as well as untimed relations
between variables. The proposed approach is integrated into PlanICS web service
composition system.

There exist many web service composition tools. PlanICS is similar to [2] in
the general idea of semantic description of services, but is focused more on effi-
ciency issues. Below we restrict to work for timed web services. To the best of our
knowledge, no solution exists covering the complete process starting from the
level of an ontology and automated composition. [3] deals with timing aspects of
BPEL composition, adding additional mechanisms for specifying durations and
timeouts. A translation to NuSMV verifier is provided. It uses a low level mod-
eling lacking of a semantic description. The composition is simple, and agents
have their partners hard-coded into automata modeling them. [4] models timed
services at the level of BPEL. Services are translated to a formalism based on
timed automata. Care is taken to precisely define semantics of timed activities,
but the paper focuses on automated testing and not on composition. [5] models
services in WS-BPEL, and translates the problem to a planning domain. Services
are stateful and the effort is directed on improving the communication efficiency.
A complex resolution algorithm based on binary decision graphs is developed.
[6] models web services as timed automata, with mediators fixing compositions
where timed constraints cannot be satisfied. The service composition problem is
translated to Uppaal verification. It is not described how services are selected
for composition. [7] is yet another paper modeling timed web services as timed
automata and translating the composition problem to a model checking prob-
lem. The automata modeling services are customized by hand for the composition

262 M. Szreter

Fig. 1. PlanICS overview. The rectangles stand for the software components of the
system. The bold arrows correspond to computation of a plan, the thin arrows model
the planner infrastructure, the dotted arrows represent the user interaction.

scenario, for example by using ad-hoc variable instances without proper typing.
[8] focuses on the minimal and maximal durations of executing services, with-
out modeling time into their internal structure. [9] describes how an interface is
added to web services in order to define a translation to Uppaal automata and
verify some time properties. [10] is maybe the most advanced solution of service
composition using timed automata (as well as Constraint Logic Programming).
It uses Orc orchestration language which is related to WS-BPEL. Compared
to our approach, it is single-stage and focuses mostly on fixing timing issues in
services rather then orchestrating services satisfying a query.

The paper is organized as follows. Section 2 describes the internals of PlanICS.
Section 3 introduces timed automata and merges them into PlanICS web services,
rending them timed in this way. Section 4 extends abstract and concrete plan-
ning to these timed services. Section 5 provides experimental evaluation for the
concrete planning, and Sect. 6 concludes the paper.

2 Introduction to PlanICS

PlanICS is a system implementing an original approach which solves the service
composition problem in some clearly separated stages. Figure 1 shows the system
overview. The formalism behind PlanICS is defined very precisely. We describe
it in a general way, formalizing only the parts relevant to the described work,
and pointing at [11] for the complete references.

2.1 Basic Syntax and Semantics of Objects and Services

The basic building blocks of PlanICS are objects and (web) services. The services
transform the objects, and the objects are composed from other objects, called
attributes. We denote by I the set of all identifiers, and by A the set of all the
attributes, with A ⊂ I.

An object type is a pair (t, Attr), where t ∈ I and Attr ⊆ A. P is the set of all
object types. The object types are composed of typed attributes with domains. In
this paper we restrict our quantitative analysis to the domain of real numbers.
Note that boolean values and character strings can be reduced to this domain.
An object is a pair (id, type), where id ∈ I and type ∈ P. We denote by id : type
assigning type to the object id.

Automated Two-Phase Composition of Timed Web Services 263

The services process objects, and have attribute lists in, out, inout referring
to the objects read by a service (this does not mean being discarded), produced
by it, or both read and produced, respectively. Moreover, abstract formulas,
in disjunctive normal form without negations, are defined over the attributes,
built from predicates isNull(a) and isSet(a) stating that attribute a is not set
or set. An user query expresses what is the input and what the output of the
composition, and is technically modeled similarly to a service. For a service s or
a user query q, a specification is specx = (inx, outx, inoutx, prex, postx), where
x ∈ {s, q}, with meaning of attribute lists described above, and prex and postx
are abstract formulas over attributes from lists.

Types of services and objects (called classes) are organized in an inheritance
tree rooted in the abstract type Thing (abstract types cannot be instantiated).
All the services and objects are derived from the abstract types Service and
Artifact, respectively. The types are stored in an ontology. We define a transi-
tive, irreflexive, and antisymmetric inheritance relation Ext ⊆ P × P, such that
((t1, A1), (t2, A2)) ∈ Ext iff t1 �= t2 and A1 ⊆ A2. That is, a subtype contains
all the attributes of a base type and optionally introduces more attributes.

Having defined the syntax, we now move towards the PlanICS semantics. For
an abstract formula α, a valuation of object attributes is a partial function assign-
ing, for every object, to every its attribute a a value true or false if isSet(a) or
isNull(a) predicates occur in a clause in α, respectively, or is undefined other-
wise. By an object state we mean an object with the assigned valuation. A world
is a pair consisting of a set of objects, and a valuation function for them.

From the semantic point of view, the service types and user queries are
defined by their interpretations, which are pairs of worlds. In the first one, called
input world set for services and initial world set for a query, there are objects
belonging to inx or inoutx, and the valuation is the family of the valuation
functions over prex. In the second one, called output world set for services and
expected world set for a query, there are objects from sets inoutx or outx, and
the valuation is the family of the valuation functions over postx.

2.2 Abstract Planning

An interpretation of a specification, as defined above, determines the pair of
worlds transformed by a service or a query. In planning, we want to combine
several services, modifying (parts of) consecutive worlds so that the query would
be satisfied. We now present how this is done in PlanICS.

Two valuations for two objects are compatible if the types of both objects
are the same, or one of them is a subtype of the another one, and the valuations
agree for every attribute. Similar worlds are identified by the notion of world
compatibility: worlds w and w′ are compatible if they contain the same number
of objects, and for every object state from w there exists a compatible object
state from w′, and vice versa. Worlds with different numbers of objects are
compatible if there exist a sub-world in the bigger world compatible with the
smaller one.

264 M. Szreter

The key idea of the abstract planning is transforming worlds by services in
order to satisfy the user query. A context function describes a mapping of objects
from the initial, expected and intermediate worlds into the attributes of user
query and services. Then, for two worlds w,w′ ∈ W , referred to as world before
and world after, respectively, a world transformation for service s transforms w
into w′ in a context ctx, if these worlds can be mapped into the attribute list
of s, and the additional requirements are met. Let IN be a ctx context image
of the set ins. The world before contains a sub-world built over IN , compatible
with a sub-world of some input world of the service s, built over the objects from
ins. The state of the objects from IN is consistent with pres. The objects from
IN and those not involved in the transformation do not change their states in
the world after. The conditions for images of inout and out sets are given in [11].

A transformation sequence seq is a sequence of worlds transformed by services
in a context. For a user query q = (W q

init,W
q
exp), seq is a user query solution of

q if there exists a world w ∈ W q
init and some world w′ such that seq leads from

w to w′, and w′ is compatible with some wq
exp ∈ W q

exp.
Finally, we want to abstract away the ordering of services where it is irrele-

vant. We introduce an equivalence relation of solutions: two solutions are equiv-
alent if the number of occurrence for every service type are equal in them. For
a sequence seq, a context abstract plan (CAP) is the set of all the solutions
equivalent to seq w.r.t. the relation defined above.

2.3 Collecting Offers and Concrete Planning

In the second planning stage CAP is used by an offer collector (OC) [12], i.e., a
tool which queries real-world services in cooperation with the service registry (see
Fig. 1), which keeps an evidence of real-world web services, registered accordingly
to the service type system from the ontology. During the registration the service
provider defines a mapping between input/output data of the real-world service
and the object attributes processed by the declared service type.

OC communicates with the real-world services of the types present in a CAP,
sending the constraints on the data, which can potentially be fed to the service
in an inquiry, and on the data expected to be received in an offer in order to keep
on building a potential plan. The constraints are constructed from the pre and
post conditions. Usually, each service type represents a set of real-world services.
Moreover, querying a single service can produce several offers. Thus, we define
an offer set as a result of the offer collecting planning stage.

Definition 1 (Offer, offer set). Assume that the n-th instance of a service
type from a CAP processes some number of objects having in total m attributes.
A single offer collected by OC is a vector P = [v1, v2, . . . , vm], where vj is a value
of a single object attribute from the n-th intermediate world of the CAP.

An offer set On is a k × m matrix, where each row corresponds to a single
offer and k is the number of offers in the set. The element oni,j is the j-th value
of the i-th offer collected from the n-th service type instance from the CAP.

Automated Two-Phase Composition of Timed Web Services 265

The detailed translation of a PlanICS query to a set of constraints is beyond
the scope of this paper, because it would require describing the whole inference
process inside OC. More details on constraints can be found in [12].

Finally, the concrete planning consists in finding an assignment of offers to
the CAP (a concrete plan), possibly satisfying some optimality criteria.

3 Dynamic (timed) Services

In this section the definition of a PlanICS service, introduced above, will be
extended to the timed case. Let N denote the set of natural numbers (including
0), Z - the set of integers, and R (R+) - the set of (non-negative) reals.

Example 1. Let us now sketch the running example. The query can be described
as follows: a user will have some money available, and wants to get apple juice.
The amount of money available will change over time, and also there are require-
ments concerning the delivery schedules and quantities. In particular, it is accept-
able either to deliver a smaller amount earlier, or a bigger amount later.

3.1 Ontology - Dynamic Variables as Object Attributes

We introduce dynamic variables as object attributes to the ontology, possibly
modeling some physical quantities. Let denote by Ad ⊆ A the set of dynamic
variables. One of them is time, flowing globally at a constant rate. We set the
domain of dynamic variables to the real numbers. If an object o has only one
dynamic attribute a and the object identifier is clear from the context, we refer
to this attribute by o instead of o.a.

Example 2. An example ontology contains the following object types (the
dynamic attributes are shown in bold):

– w : Ware - a ware, something that can be sold or bought. It has the attributes
owner : Owner, location : Location,

– o : Owner - an owner of a ware,
– m : Money - money, inherits from Ware, with the dynamic attribute q: quan-

tity, the inherited attributes o : Owner and l : Location, and the attribute
c : Currency,

– a : Apples, inherits from Ware, with the dynamic attribute q: quantity and
the inherited attributes o : Owner and l : Location,

– j : Juice, inherits from Ware, with the dynamic attribute q: quantity and
the attributes o : Owner and l : Location.

3.2 Timed Automata, Dynamic Automata

In our approach, a dynamic variable can be watched or modified by a service
over a period of time. Services refer to dynamic variables by producing dynamic

266 M. Szreter

automata, which are timed automata with discrete data [13], defined over the
dynamic variables. Below we provide the precise definitions.

Let IV be a finite set of the integer variables. The set of arithmetic expres-
sions over IV , denoted Expr(IV), is defined by the following grammar: expr =
c | v | v ⊗ c | c ⊗ v | v ⊗ v, where c ∈ Z, v ∈ IV and ⊗ ∈ {+,−, ∗}.

The set of boolean expressions over IV are defined as follows: β =
true | expr ∼ expr | β ∼ β | ¬β where expr ∈ Expr(IV) and ∼∈ {=, �=, <
,≤,≥, >}. The set of instructions over IV , denoted by Ins(IV), is given by
α := ε | v := expr | αα, with v ∈ IV , expr ∈ Expr(IV), and ε denotes an empty
sequence. Thus, an instruction over IV is either an atomic instruction over IV
v := expr, or a (possibly empty) sequence of atomic instructions. Moreover, by
InsL(IV) we denote the set consisting of all these α ∈ Ins(IV), in which any
v ∈ IV appears on the left-hand side of every assignment at most once. Let by
IV L ⊆ IV denote the variables of A occurring in left-hand side of at least one
assignment, and by IV R the set of the variables appearing only on the right-
hand sides of assignments. A variable valuation is a total function v : IV → Z.
We extend it to expressions of BoE(IV) in an usual way.

Let X be a set of real-valued variables, called clocks. The set of clock con-
straints over X , denoted C(X), is defined by the grammar cc := true | xi ∼
c | xi − xj ∼ c | cc ∧ cc, where xi, xj ∈ X , c ∈ N, and ∼∈ {≤, <,=, >,≥}. Let
X+ denote the set X ∪ x0, where x0 �∈ X is a fictitious clock representing the
constant 0. An assignment over X is a function a : X → X+. Asg(X) denotes
the set of all the assignments over X .

A clock valuation is a total function c : X → R+. Given a valuation c and
d ∈ R+, by c+d we denote a clock valuation c′ such that c′ = c(x)+d for every
clock x ∈ X . Moreover, for some c and an assignment a ∈ Asg(X), by c(a) we
denote a clock valuation c′ such that for all x ∈ X it holds c′(x) = c(a(x)) if
a(x) ∈ X , and c′(x) otherwise.

The satisfaction relations |= for a clock constraint cc ∈ C(X) and c, and for
a Boolean expression β ∈ BoE(IV) and v, are defined in the usual way [13].

Definition 2 (Timed automaton). A timed automaton is a tuple
(L, l0, IV ,X , Act, E , I), where L is a set of locations, l0 ∈ L is an initial loca-
tion, IV is a set of integer variables, X is a set of clocks, Act is a set of actions,
E ⊆ L × Act × BoE(IV) × C(X) × 2X × L is a set of edges between locations
with an action, a guard, and a set of clocks to be reset, I : L → C(X) assigns
invariants to locations.

Every element e = (l, a, β, cc, α, aa, l′) ∈ E represents a transition from the
location l to l′, labeled with a, β and cc are the enabling conditions for e w.r.t.
variables and clocks, respectively, α is the instruction to be performed, and aa
are clocks to be reset.

Because of the space restrictions we skip the definitions of the semantics of
timed automata and their parallel composition, adopting the standard approach.
The semantics defines the behaviour of a timed automaton as a transition system,
with two types of transitions, corresponding either to time flow or executing an

Automated Two-Phase Composition of Timed Web Services 267

action, observing the guards and possibly resetting some clocks. Invariants need
to be satisfied for every run. A parallel composition of automata is an automaton,
executing either timed transitions in all the components, or synchronizing over
shared action labels. Standard definitions of automata runs, labeling locations
with variables, and reachability of states satisfying boolean formulas over these
variables are also assumed.

Given a subset J = {j1, . . . , jm} of {1, . . . , n}, and the instructions {αj ∈
InsL(IV) | j ∈ J}, define

⊔
j∈J αj as a sequence αjk1

, . . . , αjkm
with jk1 ∈ J and

jki
< jki+1 for each i = 1, . . . ,m − 1. Define by Act(a) = {1 ≤ i ≤ n | a ∈ Acti}

the set of indices corresponding to automata containing the action a.
It is also necessary to fix the ordering of instructions. The conditions specified

in [13] hold for all the automata presented in the paper. We will refer by automata
to the networks of automata, possibly consisting of a single automaton.

Given a set of dynamic variables Ad ⊆ A, a dynamic automaton A is a timed
automaton where IV (A) ⊆ Ad.

Because we want the dynamic automata to be variables in the attribute lists
of web services, a type needs to be assigned to each of them. For an automaton
A, we define the type signature T = [type(d) | d ∈ Ad ∩ IV (A)], where type(d)
is a type of a dynamic variable, with a fixed ordering, and denote the resulting
type by AT . For two type signatures T1 and T2, T1 is a supertype of T2 if it
contains at most the variables occurring in T2. For simplicity, the information
which variables are constant is not added to type signatures, so this issue needs
to be taken into account at the run-time level. To save space, we refer to the
types by first letters of their names, so AM,T is an abbreviation for the type
AMoney,T ime. There are no types with names beginning with the same letter
in the paper, so it causes no confusion. For example, AM,T is a supertype of
AJ,M,T .

3.3 Ontology - Dynamic Services

In addition to plain PlanICS services, not referring to time, we introduce dynamic
services. Each dynamic service has a set of dynamic variables in its attribute list.
It can observe and modify these variables. For non-dynamic attributes, the rules
defined for untimed PlanICS apply. The dynamic variables are treated in a differ-
ent way. All the services, both dynamic and non-dynamic, execute immediately,
and the former produce dynamic automata defined over these variables. These
automata describe how every service plans to react to the dynamic variables,
and possibly change them. All the automata start at a certain point of global
time and execute for a finite period, until each of them reaches one of its final
locations. The product of automata describes the behavior of all the services
participating in the composition. The dynamic automata from the user query
are added to the product, determining the initial and final worlds.

A dynamic service extends a PlanICS service and is a basic building block of
the timed extension.

Definition 3 (Dynamic service specification). A dynamic service is a ser-
vice s which:

268 M. Szreter

– has a nonempty set of dynamic variables in its attribute lists,
– produces a vector of dynamic automata V = [A1, . . . , An] in list out (called

dynamic service description). Every automaton A ∈ V has a single initial
state, a final state, and two actions {starts, ends} ⊆ Act(A) such that only
transitions labeled with starts leave from the initial state, and only transitions
labeled with ends lead to the final state,

– for every automaton A, a predicate isSet(a) is added to each clause of the
post formula for every instance of a dynamic variable a occurring in type(A).

The types of dynamic automata do not distinguish between the dynamic vari-
ables modified by an automaton, and those being only read. This is to simplify
the type system and avoid introducing additional rules. Instead, the information
about the variables modified by a service is determined by its attribute lists in
the following way: for variable v referred to by service s, and for every automaton
A ∈ outs such that v ∈ IV (A) we have:

– v ∈ ins - v ∈ IV R(A) ∩ Ad (it is read-only),
– v ∈ inouts ∪ outs - v ∈ IV (A) ∩ Ad (it can be read and changed),

We also restrict the write operations performed over dynamic variables to adding
or subtracting some values. Dynamic automata for different services do not com-
municate by ways other than by the dynamic variables specified explicitly in the
attribute lists.

We assume that there is always present in the ontology a read-only single-
instance object of class Time, with a single clock t measuring global time, acces-
sible implicitly to all the dynamic services.

Example 3. Below are shown the type specifications of the services in our ontol-
ogy: (empty attribute lists are skipped)

– BankLoan : out = {m : Money,ABL : AM,T }
– BankDeposit inout = {m : Money}, out = {ABD : AM,T }

Note that BankDeposit assumes that there are some money in its input world.
It will not be applied to worlds where there are no money at all.

– SellApples inout = {m : Money}, out = {a : Apples,ASA : AA,M,T }
– SellJuice inout = {m : Money}, out = {j : Juice,ASJ : AJ,M,T }
– ProduceJuice inout = {m : Money, a : Apples}, out = {j : Juice,APJ :

AA,J,M,T }. Placing Apples in the inout list shows at the type level that the
service can change the quantity of apples. Should this variable occur in in,
the value could be only read.

The information about the types of produced dynamic automata should be
as detailed as possible, in order to facilitate planning. For example, producing
automata of types AJ,T and AM,T is not equivalent to generating AJ,M,T , as the
latter asserts that dynamic variables of types Money and Juice directly depend
on each other.

Automated Two-Phase Composition of Timed Web Services 269

3.4 Dynamic User Query

A dynamic user query is essentially a timed service: dynamic variables can occur
in its attribute lists, and dynamic automata in the list out. These automata define
which values of dynamic variables are expected in the initial and final world, and
possibly also in the intermediate worlds. As all the dynamic automata start their
execution at the same time instance, the initial locations with possible invariants
determine the initial world for the plan. We require that only the variables
from the lists in and inout can be used in this scheme. Locations labeled with
goal determine the expected world. Let by Aq denote the network of automata
composed of all the automata occurring in the user query.

Example 4. The specification of the user query is: inout = {m : Money}, out =
{j : Juice,Aj : AJ,M,T , Am : AM,T }, pre : isSet(m) ∧ m.Owner = ‘myName‘,
post : isSet(j) ∧ isSet(m) ∧ j.Location = ‘myCity‘ ∧ j.Owner = ‘myName‘.

The argument lists declare the qualitative information: money must be “real”
(i.e. instantiated) in the initial and final world, and juice in the final world. The
lists and the dynamic automata (Fig. 2, left) add some quantitative information,
the former about setting the new owner and location, and the latter about
expected values of the dynamic variables. In particular, Am : AM,T declares
that the amount of money available grows in the consecutive periods, what is
modeled by the invariants and guards constraining money and time, respectively.
Aj : AJ,M,T adds no requirements over the initial state, but expresses that the
composition will be successful if either more than 80 units or 120 units are be
provided in 60 or 90 days, respectively.

3.5 Dynamic Offers

Dynamic offers are PlanICS offers produced by dynamic services. In addition to
non-dynamic attributes, in their attribute lists there are variables of dynamic
automata types:

Definition 4 (Dynamic Offer). Assume that the n-th instance of a service
from a CAP processes some number of objects, having in total m attributes, and
also md dynamic attributes. A single dynamic offer collected by OC is a vector
P = [v1, . . . , vm, A1, . . . , Amd], where vj is a value of a single object attribute
and Aj is a value of a dynamic automaton attribute from the n-th intermediate
world of the CAP.

m < 170m < 5

t > 10
10 ≤ i ≤ 30
m+ = i

t > 25
20 ≤ i ≤ 50
m+ = i

Am : AM,T

j = 120
m > 0

Aj : AJ,M,T
goalq

goalq

j ≥ 80
m > 0

t < 90

t < 60

start1SA

1 ≤ i < 3
a := a+ i
m− = i ∗ 3

l2 l1

lstart

end1
SA

A1
SA : AA,M,T

lend

3 ≤ i ≤ 5
a := a+ i
m− = i ∗ 2

end1
SA

goal

l3

Fig. 2. Automata for the user query (left), an offer for SellApples service (right).

270 M. Szreter

Example 5. A (simple) offer definition for type SellApples is shown in Fig. 2,
right. The amount of apples to be sold is modeled by a variable i, and there are
two prices depending on i. There is no reference to time.

4 Planning in Dynamic Services and Offers

In this section it will be shown how PlanICS planning works for dynamic services.

4.1 Abstract Planning

Given the requirements expressed in the user query and the service specifications
in the ontology, the PlanICS abstract planner either finds the abstract plan(s),
or states that none exists. Introducing the dynamic extensions does not require
modifying the abstract planner, because at this stage, for an attribute of any
type, it is relevant only whether its value is set or not. Dynamic automata appear
in the attribute lists, but the abstract planner does not analyze their internal
structure, and only deals with their types.

Example 6. The result of the abstract planning, as described in [11], is a fea-
sible plan (Fig. 3). Note that although the abstract plans have been defined as
sequences of service types, we present them as graphs corresponding to ordering
of services. We also show the context objects for dynamic variables, for clarity
named accordingly with service attributes. CAP1 is a simple one: buy apple
juice, invest some money as a bank deposit, to (hopefully) make the acquisition
feasible.

4.2 Dynamic Concrete Planning Problem

An input is an abstract plan CAP to be concretized, either selected automati-
cally or chosen by the user. The concrete planning described in Sect. 2 needs to
be extended. Now, offers assign not only real values to the non-dynamic vari-
ables, but also concrete instances of the dynamic automata to the attributes
with dynamic automata types. Intuitively, a concrete plan is satisfied if the non-
dynamic variables satisfy all the respective constraints, and the goal locations
of the user query automata are reachable in their product with automata from
a sequence of dynamic offers, matching the types of the services from CAP .

The above description is formalized by the following definitions. For CAP ,
let DS(CAP) denote a set of dynamic service indices, i.e. DS(CAP) = {i | 1 ≤
i ≤ n ∧ i-th service is dynamic}.

Definition 5 (Dynamic offer set). For a service type instance s, a dynamic
offer set On is a k × (m + md) matrix, where each row corresponds to a
single offer and k is the number of offers in the set. Thus, the j-th row is
Pj = [vn

i,1, . . . , v
n
i,m, An

i,1, . . . , A
n
i,md], where vn

i,j for 1 ≤ j ≤ m is the j-th value
of the i-th offer collected from the n-th service type instance from the CAP, and
An

i,jd for 1 ≤ jd ≤ md is a dynamic automaton being a service dynamic attribute.

Automated Two-Phase Composition of Timed Web Services 271

Moreover, for every automaton An
i,jd representing the service s and indexed with

i in CAP, the actions starts, ends are renamed to starti, endi.1

Definition 6 (Dynamic concrete planning problem). Let CAP be an
abstract plan to be concretized, and O = (O1, . . . , On) the vector of dynamic
offer sets collected by OC such that for every i = 1, . . . , n and j = 1, . . . , ki, the
j-th row of Oi is P i

j = [vi
j,1, . . . , v

i
j,mi

Ai
j,1, . . . , A

i
j,md

i
]. Let P denote the set of all

sequences (P 1
j1

, . . . , P i
ji

, . . . , Pn
jn

), such that ji ∈ {1, . . . , ki} and i ∈ {1, . . . , n}.
The Dynamic Concrete Planning Problem (DCPP) is defined as finding S ∈ P

such that the following conditions hold:

1. C(S) is satisfied, where C(S) = {Cj(S) | j = 1, . . . , c for c ∈ N} is a set
of constraints over non-dynamic attributes, derived from offer pre- i post-
conditions and from optimality criteria (conditions for the untimed case),

2. given the network of timed automata:
ADCPP = Aq||(

∏
i∈DS(CAP)

∏
1≤m≤md

i for P i
ji

∈S(Ai
j,m)), a state satisfying the

property ϕC = (
∧

i∈DS(CAP) goali ∧ goalq) is reachable in ADCPP .

We say that S is a solution of DCPP for CAP and O.

For simplicity, we do not require solutions to be optimal, as opposed to the
untimed case. Any solution satisfying the criteria is accepted. Note also that the
type information, concerning both dynamic and non-dynamic attributes, is used
in concrete planning only to ensure that offers match service specifications. For
i �∈ DS(CAP) there are no dynamic automata, so md

i = 0.

4.3 Solving DCPP

First we focus on the point 2. from the definition of DCPP given above. We
comment on point 1. at the end of this Section.

Checking the reachability of the goal state in ADCPP directly would require
testing every combination of offers, rending it clearly ineffective. We thus con-
struct the automata network AC , containing, for every dynamic service s with
index i ∈ DS(CAP), the automata for all the offers and the control automaton
Actrl

i , enforcing that only automata for a single offer execute completely and
all the other remain in their initial states. We show that reachability properties
with respect to DCPP for ADCPP and AC are equivalent. Actrl

i has locations
lstart, lend, and lj , for every 1 ≤ j ≤ md

i , and we add the transitions from
lstart to lj (labeled with starts), and from lj to lend (labeled with endjs). This
ensures that only Aj

s, corresponding to the j-th offer of type s executes, by syn-
chronizing with Actrl

i . All the automata for the remaining offers for this type
will not leave their initial locations. Additionally, in every automaton Ai

j,m,
representing the j-th offer for service s, the action labels starts and ends are
renamed to startjs and endjs, respectively. The resulting network of automata is:
1 For simplicity, we use type names rather than indices in the example. This is correct

because there is only a single service of every type in CAP .

272 M. Szreter

AC =
∏

i∈DS(AP)(A
ctrl
i ||∏1≤k≤ki

∏
1≤j≤md

i
Ai

k,j) || Aq, and the property to be
checked is ϕC . If a solution is found, the concrete plan contains the offers for
which the dynamic automata reached their final locations.

Lemma 1. For every vector of offer sets O, we have that S ∈ P(O) is a solution
of ADCPP iff is a solution of AC .

Proof. The runs of both automata networks are different, as ADCPP encodes
only a single sequence, while AC all the sequences of P. Moreover, there are
control automata in AC . However, the construction guarantees, by synchronizing
with the control automata, that for every service type only one offer executes
completely, and all the remaining offers remain in their initial locations.

Condition 1. From the definition of DCPP corresponds to the non-dynamic case.
Because dynamic and non-dynamic variables do not influence each other, a con-
crete PlanICS planner can be used for selecting offers satisfying 1., and this
solution (if it exists) can be then checked for condition 2. This procedure can
be repeated iteratively until finding a solution satisfying both conditions, or
determining that none exist. It can be conjectured that the latter algorithm will
be much less efficient w.r.t the number of offers than the former one. Testing
non-dynamic requirements can be also encoded into time automata for simple
cases.

5 Experimental Results

This section provides the experimental evaluation of the dynamic concrete plan-
ning. We show no results for the abstract phase, because none of the PlanICS

abstract planners fully implements the nested types (e.g. objects being parts of
other objects) necessary to formalize our type system. One can however expect
that plans of the complexity presented in Fig. 3 could be computed in very short
times. Abstract solvers were described in many papers and proved to be fast for
huge of services and offers. We focus on concrete planning for dynamic services.

We used BMC [13] and Uppaal [14] tools for reachability checking for timed
automata. BMC (Bounded Model Checking) translates the problem to check-
ing satisfiability, using an efficient SAT solver for increasing depths of model
unwinding. If a satisfiable formula is found, the algorithm stops. Otherwise, it
continues until the full model is searched or the solver gives up. Uppaal is an
explicit-state tool, what means that locations of stored states are kept in a hash
table.

In Table 1 we show the results generated for abstract plan CAP2, which
extends CAP1 in the following way: money can be deposed in a bank or borrowed
from a bank, and juice can be either acquired or produced from apples. Helper
services sum instances of dynamic variables: money and juice, which occur in
more than none instance. The modeled offers are similar to those shown in Fig. 2
with respect to the conditions and size, but we cannot present all of them because

Automated Two-Phase Composition of Timed Web Services 273

BD

SJ

CAP1 m

m, j

m

Fig. 3. Example abstract plan.
Rectangles correspond to the
services, circles to the initial
and final worlds. Contexts map
the objects from worlds to the
service attributes. BD denotes
BankDeposit, SJ − SellJuice.

Table 1. Experimental results - verification times
in seconds. k - number of offers for each service
type, FULL - automaton Ao, SIMPLE - the simpli-
fied translation, YES/NO - existence of a solution,
U - Uppaal, B - BMC, to - timeout (> 60[s])

FULL SIMPLE

k YES NO YES NO

U B U B U B U B

1 2 5 to 6 5 9 54 5

2 3 16 to 8 9 12 to 5

3 6 17 to 10 3 13 to 6

4 4 19 to 9 5 12 to 7

of the space restrictions. Different constants in guards and invariants determine
whether there exists a concrete plan or not.

For some examples, where each offer is represented by a single automaton, the
presented translation can be done more efficiently. Instead of defining separate
automata for every offer, for every service types the offers can be represented
by branches in a single automaton, starting in the initial state and leading to
the final state. Only a single instance of clocks is then used. This optimization
can be applied to our examples, and it answers how the number of clocks and
components influences the efficiency.

The results show that the tools perform differently, depending on the struc-
ture of the task. Uppaal finds counterexamples fast if they exist, but checking
the whole model takes very long time. The performance strongly depends on
the verification options. For example, breadth-first-search is much less efficient
than depth-first-search. BMC is sensitive mostly to the depth of the model (i.e.,
to which depth the model is unwound). Numbers of components, clocks and
variables, and the truth of the property, influence the effectiveness to the much
smaller degree. The negative results are produced faster.

In general, verification times seem to be long, given that our automata are rel-
atively simple (timeouts are set to 60 s, because service composition require quick
answers). The explanation is that our reachability problem is rather untypical
from the perspective of the existing tools. The automata modeling service types
do not have shared actions, what contributes to the big number of executions
with many possible orderings of local actions. Moreover, in the non-simplified
model, only a single automaton executes for every service type, while the remain-
ing offers add clocks, variables and components. For realistic scenarios, the tools
would need to solve this issue, what could be an interesting research problem
related to several possible semantics of timed concurrent systems.

274 M. Szreter

6 Final Remarks and Future Work

The paper presents a new way of modeling timed web services following the
IOPR approach, and their composition, providing service ontology, strong typ-
ing system and two-phase composition algorithm. The key feature is expressing
timing behavior as timed automata produced by services. The proposed solution
is compatible with PlanICS web services composition system. Dynamic automata
can be accessible by software interfaces or pre-defined for simple scenarios should
they appear too sophisticated for the offer providers.

There are several possible directions of the future work. Services could not
only produce, but also take dynamic automata as an input, specified as a part
of their interface. For example, when applying for a loan, a customer shows the
received incomes during the last year. Another extension would be optimization
of dynamic variables, making use of features provided by verification tools for
timed automata. The novel idea of services representing their behavior by timed
automata sent and received as a part of their communication with other services
can be extended beyond stateless services presented in this paper. For example,
services could run and communicate continuously in a single composition task,
instead of executing only once. This would provide the semantics for emerging
Internet of Things ad-hoc networks, with the agents modeled by web services.

References

1. Doliwa, D., Horzelski, W., Jarocki, M., Niewiadomski, A., Penczek, W., Polrola, A.,
Szreter, M., Zbrzezny, A.: PlanICS - a web service composition toolset. Fundam.
Inform. 112, 47–71 (2011)

2. Roman, D., de Bruijn, J., Mocan, A., Lausen, H., Domingue, J., Bussler, C.J.,
Fensel, D.: WWW: WSMO, WSML, and WSMX in a nutshell. In: Mizoguchi,
R., Shi, Z.-Z., Giunchiglia, F. (eds.) ASWC 2006. LNCS, vol. 4185, pp. 516–522.
Springer, Heidelberg (2006)

3. Kazhamiakin, R., Pandya, P., Pistore, M.: Timed modelling and analysis inweb ser-
vice compositions. In: Proceedings of the First International Conference on Avail-
ability, Reliability and Security. ARES 2006, pp. 840–846 (2006)

4. Lallali, M., Zaidi, F., Cavalli, A.: Timed modeling of web services composition for
automatic testing. In: Proceedings of the of SITIS 2007, pp. 417–426 (2007)

5. Bertoli, P., Pistore, M., Traverso, P.: Automated composition of web services via
planning in asynchronous domains. Artif. Intell. 174, 316–361 (2010)

6. Guermouche, N., Godart, C.: Composition of web services: from qualitative to
quantitative timed properties. In: Bouguettaya, A., Sheng, Q.Z., Daniel, F. (eds.)
Web Services Foundations, pp. 399–422. Springer, Heidelberg (2014). Rapport
LAAS nr 14012

7. Stöhr, D., Glesner, S.: Automated composition of timed services by planning as
model checking. In: Proceedings of ZEUS-12, pp. 34–41 (2012)

8. Du, Y., Tan, W., Zhou, M.: Timed compatibility analysis of web service compo-
sition: a modular approach based on Petri Nets. IEEE T. Autom. Sci. Eng. 11,
594–606 (2014)

9. Jingjing, H., Zhu Wei, Z.X., Dongfeng, Z.: Web service composition automation
based on timed automata. (Applied Mathematics and Information Sciences)

Automated Two-Phase Composition of Timed Web Services 275

10. Dong, J., Liu, Y., Sun, J., Zhang, X.: Towards verification of computation orches-
tration. Formal Aspects of Comput. 26, 729–759 (2014)

11. Niewiadomski, A., Penczek, W.: SMT-based abstract temporal planning. In: Pro-
ceedings of the International Workshop on Petri Nets and Software Engineering,
Tunis, Tunisia, June 23–24, 2014, pp. 55–74 (2014)

12. Niewiadomski, A., Skaruz, J., Penczek, W., Szreter, M., Jarocki, M.: SMT versus
genetic and OpenOpt algorithms: concrete planning in the PlanICS framework.
Fundam. Inform. 135, 451–466 (2014)

13. Zbrzezny, A., Pó�lrola, A.: SAT-based reachability checking for timed automata
with discrete data. Fundam. Inform. 70(1–2), 579–593 (2007)

14. Behrmann, G., David, A., Larsen, K., H̊akansson, J., Pettersson, P., Yi, W.,
Hendriks, M.: UPPAAL 4.0. In: QEST. IEEE Computer Society 125–126 (2006)

Equivalence of Finite-Valued
Symbolic Finite Transducers

Margus Veanes(B) and Nikolaj Bjørner

Microsoft Research, Redmond, USA
{margus,nbjorner}@microsoft.com

Abstract. Symbolic Finite Transducers, or SFTs, is a representation
of finite transducers that annotates transitions with logical formulas
to denote sets of concrete transitions. This representation has practical
advantages in applications for web security analysis, where it provides
ways to succinctly represent web sanitizers that operate on large alpha-
bets. More importantly, the representation is also conducive for efficient
analysis using state-of-the-art theorem proving techniques. Equivalence
checking plays a central role in deciding properties of SFTs such as idem-
potence and commutativity. We show that equivalence of finite-valued
SFTs is decidable, i.e., when the number of possible outputs for a given
input is bounded by a constant.

1 Introduction

State machines, such as automata and transducers typically use finite alphabets.
This is both helpful when formulating the main algorithms and it is realistic when
considering applications from text processing. Furthermore, implementations can
apply compression algorithms on the transition functions when the alphabet is
large. In symbolic analysis of automata, however, there are practical advantages
to formulating transitions directly as predicates, and sometimes it is beneficial
to use character types possibly even with an infinite domain, e.g., integers. We
are interested in transducers that arise from applications such as web sanitizers
and string encoders [1], that work over large alphabets like Unicode. The focus
here is on the class of SFTs that, for a given input sequence, can output a finite
number of possible outputs sequences.

A concrete example is an Html sanitizer that may either use a decimal or a
hexadecimal encoding of characters codes, see Fig. 1. Other typical parameters
are, whether to use a “safe list” (of characters not to be encoded) or not, or
whether to use shorthands such as "&" for encoding "&" and other common
characters. Viewed as an SFT, a given input string such as "=" may be encoded
as "=" or as "=", corresponding to the value of the second parameter
of EncodeHtml, but there is an upper bound on how many different outputs
an input sequence may be mapped into (two in this case), i.e., the underlying
SFT is finite-valued. Our main result is that equivalence of SFTs is decidable
in the finite-valued case. This is a nontrivial extension of decidability of SFT

c© Springer International Publishing Switzerland 2016
M. Mazzara and A. Voronkov (Eds.): PSI 2015, LNCS 9609, pp. 276–290, 2016.
DOI: 10.1007/978-3-319-41579-6 21

Equivalence of Finite-Valued Symbolic Finite Transducers 277

1: static string EncodeHtml(string strInput, bool useDecimal = false)
2: {
3: if (strInput == null) return null;
4: if (strInput.Length == 0) return string.Empty;
5: StringBuilder b = new StringBuilder();
6: foreach (char c in strInput)
7: if (((‘a’ <= c) && (c <= ‘z’)) || (c == ‘,’) ||
8: ((‘A’ <= c) && (c <= ‘Z’)) || (c == ‘ ’) ||
9: ((‘0’ <= c) && (c <= ‘9’)) || (c == ‘.’) ||
10: (c == ‘-’) || (c == ‘ ’) || (c == ‘;’))
11: b.Append(c);
12: else {
13: b.Append(string.Format(useDecimal ? "&#{0}" : "&#x{0:X}",(int)c));
14: b.Append(";");
15: }
16: return b.ToString();
17: }

Fig. 1. Html sanitizer with decimal or hexadecimal formatting.

equivalence in the single-valued case [2] and enables analysis scenarios that are,
in general, not expressible with single-valued SFTs. SFTs do not have a notion
of parameters other than the actual input. Instead, the use of parameters can
be abstracted by considering finite-valued transducers.

2 Examples and an Application to Web Sanitizers

We here illustrate the use of SFT analysis on web security analysis. Cross site
scripting (XSS) attacks are a major concern in web applications, and happen as a
result of untrusted data leaking across web sites. Part of data may be interpreted
as code (e.g. JavaScript) by a browser, that may end up being executed in the
browser of another user. The first line of defense against XSS attacks is the use
of sanitizers in web servers, that escape or remove potentially harmful strings.
Although sanitizers are typically small programs, in the order of tens of lines of
code, writing them correctly is difficult [3]. We represent a sanitizer program as
a symbolic finite transducer. It uses transduction functions.

Example 1 (Transduction Functions). In most modern programming languages,
strings correspond to character sequences where characters use Unicode (UTF16)
encoding. Assume that there is a sort bvk, for k ≥ 1, and that Ubvk is the domain
of k-bit bit-vectors. The elements of Ubvk correspond to k-bit binary encodings
of nonnegative integers from 0 to 2k − 1. A natural representation of Unicode
characters for symbolic analysis is as elements in Ubv16 . Assume the following
operations, where k = 16:

<: bvk × bvk → bool,
πn

m : bvk → bvk, for 0 ≤ m < n ≤ k,
⊕ : bvk × bvk → bvk,

where < corresponds to the underlying integer order and matches the lexico-
graphic order over characters; πn

m projects bits m through n − 1 and pads the
result with k − n + m zeros; ⊕ is addition modulo 2k. Then

278 M. Veanes and N. Bjørner

hj(c)
def= Ite(9 < π4j+4

4j (c), π4j+4
4j (c)⊕55, π4j+4

4j (c)⊕48)

extracts the j’th nibble (half-byte) of c, 0 ≤ j ≤ 3, and maps it to its hexadecimal
representation (‘0’,‘1’,. . . ,‘9’,‘A’,. . . ,‘F’).

The transduction function allows defining a symbolic transducer.

Example 2 (Transducer Guards). The SFT below represents a so-called “string
sanitizer”, where certain characters c in the input string, not satisfying the con-
dition

ϕ(c) : (‘a’ ≤ c ∧ c ≤ ‘z’) ∨ (‘A’ ≤ c ∧ c ≤ ‘Z’)
∨ (‘0’ ≤ c ∧ c ≤ ‘9’) ∨ c = ‘ ’ ∨ c = ‘.’
∨ c = ‘,’ ∨ c = ‘-’ ∨ c = ‘ ’ ∨ c = ‘;’

are in the output string replaced by their hexadecimal representation:

q0 q1

ϕ(c)/[c]

[‘;’]

¬ϕ(c)/[‘&’, ‘#’, ‘x’] · c

where �c� is the (up-to) four-character encoding of c:

�c� def= Ite(h3(c) �= ‘0’, [h3(c),h2(c),h1(c),h0(c)],
Ite(h2(c) �= ‘0’, [h2(c),h1(c),h0(c)],
Ite(h1(c) �= ‘0’, [h1(c),h0(c)], [h0(c)])))

with hj ’s as defined in Example 1. It is also straight-forward to rewrite the
conditions into four transitions with simple guards and a fixed number of outputs
each.

The work in [1] introduces a domain specific language Bek based on SFTs for
writing and analyzing sanitizers. The main application of SFTs in the context
of Bek is to formally verify key security properties of sanitizers. Two examples
of such properties are idempotence (to determine if applying the same sanitizer
twice matters) and commutativity (to determine if the order of applying differ-
ent sanitizers matters). Since sanitizers are functions that take arbitrary input
strings and (other optional parameters) the corresponding SFTs are consequently
finite-valued and often total, i.e., produce at most some bounded number of out-
put strings for each input string and accept all input strings.

3 Preliminaries

We recall the definition of a finite transducer [4]. Intuitively, a finite transducer
is a generalization of a Mealy machine that may omit inputs and outputs and
may be nondeterministic. We use ε as a special symbol denoting the empty word.

Equivalence of Finite-Valued Symbolic Finite Transducers 279

Definition 1. A finite transducer (FT) A is a six-tuple (Q, q0, F, I, O, δ), where
Q is a finite set of states, q0 ∈ Q is the initial state, F ⊆ Q is the set of final
states, I is the input alphabet, O is the output alphabet, and δ is a finite transition
function from Q × (I ∪ {ε}) to 2Q×O∗

.

There exist several alternative definitions of FTs. By using the standard form
theorem of FTs [4, Theorem 2.17], Definition 1 is easily seen to be equivalent to
those definitions.

We indicate a component of an FT A by using A as a subscript. We often
use the technically more convenient view of δA as a set of transitions ΔA and

write p
a/v−−→A q for (q, v) ∈ δA(p, a). We omit the subscript A when it is clear

from the context.

ΔA
def= Δε

A ∪ Δε̄
A

Δε̄
A

def= {p
a/v−−→ q | (q, v) ∈ δA(p, a), a ∈ IA}

Δε
A

def= {p
ε/v−−→ q | (q, v) ∈ δA(p, ε)}

Given a set V of elements, we write v = [v0, . . . , vn−1], for v ∈ V ∗. For
v, w ∈ V ∗, v · w denotes the concatenation of v with w. (Both [] and ε denote
the empty sequence.)

Given qi
ui/vi−−−→A qi+1 for i < n we write q0

u/v� A qn where u = u0 ·u1 · . . . ·un−1

and v = v0 · v1 · . . . · vn−1. We write also q
ε/ε�A q.

Definition 2. An FT A induces the transduction,

TA(u) def= {v | ∃q ∈ FA (q0A
u/v� q)}.

Two FTs A and B are equivalent if TA = TB .

We define d(A) as the underlying nondeterministic finite automaton with
epsilon moves (εNFA) that is obtained from the FT A by eliminating outputs
on all transitions. We write L(B) for the language accepted by an εNFA B.

Definition 3. An FT A is finite-valued if there exists k such that for all u ∈ I∗
A,

|TA(u)| ≤ k; A is single-valued if for all u ∈ I∗
A, |TA(u)| ≤ 1.

Definition 4. An FT A is a generalized sequential machine or GSM 1 if Δε
A = ∅.

We say A is input-ε-free.

Definition 5. An FT A is deterministic if d(A) is deterministic.

There exist single-valued FTs for which there exists no equivalent determin-
istic FT (e.g., an FT that removes all input symbols after the last occurrence of a
given symbol.) Conversely, determinism does not imply single-valuedness, since
several transitions with same input but distinct outputs may collapse into single
transitions in d(A). Other definitions of deterministic FTs (allowing input-ε) are
used by some authors [5]. Definition 5 is consistent with [4].
1 Definition 4 is consistent with [4,5]. However, the definition of a GSM is not stan-

dardized in the literature. Some sources define GSMs without a dedicated set of final
states [6].

280 M. Veanes and N. Bjørner

3.1 Background Structure and Models

We work modulo a background structure U over a language ΓU that is multi-
sorted. We also write U for the universe (domain) of U . For each sort σ, Uσ

denotes a nonempty sub-domain of U . There is a Boolean sort bool, Ubool =
{true, false}, and the standard logical connectives are assumed to be part of
the background. Terms are defined by induction as usual and are assumed to be
well-sorted. Function symbols with range sort bool are called relation symbols.
Boolean terms are called formulas or predicates. A term without free variables
is closed.

An uninterpreted function symbol of arity n ≥ 1 is a function symbol f /∈ ΓU
with a domain sort σ1 × · · · × σn and a range sort σ. An interpretation for f is
a function from Uσ1 × · · · × Uσn to Uσ. An uninterpreted constant is a constant
c /∈ ΓU of some sort σ. An interpretation for c is an element of Uσ. By convention,
a constant is also called a function symbol of arity 0.

We write Σ(t) for the set of all uninterpreted function symbols that occur
in a term t. Given a set of uninterpreted function symbols Σ, t is a term over
Σ, or a Σ-term if Σ(t) ⊆ Σ. We say Σ-model for an expansion of U to ΓU ∪ Σ.
The interpretation of a closed Σ-term t in a Σ-model M , is denoted by tM

and is defined by induction as usual. There is a background function (symbol)
Ite:bool×σ ×σ → σ for each sort σ and Ite(ϕ, t, f)M = if ϕM then tM else fM

Let ϕ be a closed Σ-formula. A Σ-model M satisfies ϕ or ϕ is true in M or
M � ϕ, if ϕM = true; ϕ is satisfiable if it has a model, denoted by IsSat(ϕ); ϕ
is true if ϕM = true for all Σ-models M .

For each sort σ let cσ stand for a default fixed uninterpreted constant of sort
σ. We omit the sort σ when it is clear from the context. Let T σ(Σ) denote the
set of all closed terms of sort σ only using uninterpreted symbols from Σ, T σ

stands for T σ(Σ) where Σ is an infinite set of uninterpreted constants of some
fixed sort. Unless stated otherwise, we assume that T σ is quantifier free, closed
under substitutions, Boolean operations, and equality. F stands for T bool.

4 Symbolic Finite Transducers

Symbolic automata provide a representation of automata where several transi-
tions from a given source state to a given target state may be combined into a
single transition with a symbolic label denoting multiple concrete labels. This
representation naturally separates the finite state graph from the character rep-
resentation.

Definition 6. A Symbolic Finite Transducer (SFT) A over Γ with input sort
ι and output sort o, or A

ι/o
Γ , is a six-tuple (Q, q0, F, ι, o,Δ), where Q is a finite

set of states, q0 ∈ Q is the initial state, F ⊆ Q is the set of final states, ι is the
input sort, o is the output sort, and Δ = Δε̄ ∪ Δε,

Δε̄ : Q × F(cι) × (T o(cι))∗ × Q
Δε : Q × {ε} × (T o)∗ × Q

is a finite symbolic transition relation.

Equivalence of Finite-Valued Symbolic Finite Transducers 281

A single transition (p, ϕ,u, q) ∈ ΔA is also denoted by p
ϕ/u−−→A q or p

ϕ/u−−→ q
when A is clear from the context; ϕ is called the input condition or guard of the
transition and u is called the output sequence of the transition. Let IA denote
the set of non-epsilon input conditions in ΔA. Let OA denote the set of output
terms in ΔA.

The definition of a symbolic finite automaton (SFA) is the special case of an
SFT whose outputs are empty. A transition of an SFA Aι is denoted by p

ϕ−→ q
where ϕ ∈ IA ∪ {ε}.

We lift the interpretation of terms to apply to sequences of terms. Given
u = [ui]i<n ∈ (T γ(Σ))∗, for n ≥ 0, and a Σ-model M , uM def= [uM

i]i<n ∈ (Uγ)∗.

Definition 7. An SFT Aι/o denotes the concrete FT

[[A]] def= (QA, q0A, FA,U ι,Uo,Δε̄ ∪ Δε), where

Δε̄ = {p
cM

ι /uM

−−−−−→ q | p
ϕ/u−−→ q ∈ Δε̄

A, M � ϕ},

Δε = {p
ε/uU
−−−→ q | p

ε/u−−→ q ∈ Δε
A},

where M ranges over {cι}-models. Let TA
def= T[[A]].

Example 3. Consider the SFT A in Example 2. Then |Δε̄
[[A]]| = 216. For example,

[[A]] has the following transitions:

q0
‘b’/[‘b’]−−−−→ q0, q0

‘ö’/[‘&’,‘#’,‘x’,‘F’,‘6’]−−−−−−−−−−−−→ q1
ε/[‘;’]−−−→ q0

So TA(“böb”) = {“böb”}.

The following basic property of SFTs is important in the context of algorithm
design for SFTs.

Definition 8. An SFT A is clean if IsSat(ϕ) for ϕ ∈ IA.

Other properties of SFTs are defined in terms of their denotations as FTs:
SFT A is deterministic, resp. single-valued, input-ε-free, if [[A]] is determin-
istic, resp. single-valued, input-ε-free. The following proposition follows from
Definitions 5 and 7.

Proposition 1. A is deterministic if and only if A is input-ε-free and for all

p
ϕ/u−−→ q, p

ψ/v−−→ r ∈ ΔA, if q �= r then ϕ ∧ ψ is unsatisfiable.

4.1 Alphabets of SFTs

In order to base the definitions of SFTs on classical formal language theory, the
concrete alphabets U ι and Uo need to be finite. For example, in Example 2,
|Ubv16 | = 216. However, for the symbolic representation the main concern is
decidability and complexity of the character theory, rather than finiteness of
the underlying domain. This point becomes more transparent when we discuss
algorithms for SFTs. When considering an input or output sort whose domain
is infinite, e.g. integers, all algorithms on SFTs remain intact, while SFTs are in
this case strictly more expressive than FTs.

282 M. Veanes and N. Bjørner

Example 4. Consider the sort int for integers and the following SFT Aint/int:

q0 q0

true/[c, c]

The image of TA is {[n, n] | n ∈ U int}∗ that is not accepted by any SFA, since
infinitely many states are required, contrary to the image of a finite transduction
(also called rational transduction) that is a regular language.

Example 4 is an instance of the general case when Aι/o is a clean SFT where
both U ι and Uo are infinite, A has a transition whose output sequence contains
cι in other than the first output term and denotes infinitely many concrete
transitions. In this case the image of TA cannot be recognized using a finite
number of states.

5 Equivalence

Our main theorem is Theorem 1, it builds on Lemma5 as our main technical
result. The theorem generalizes the decidability of equivalence of single-valued
SFTs [1]. The main reason why the technique for checking equivalence of single-
valued SFTs does not generalize to checking equivalence of finite-valued SFTs
is that the dependency from inputs to outputs does not remain functional in
the finite-valued case. In the single-valued case one can detect inequivalence
during an incremental product construction using local satisfiability checks, by
essentially detecting non-single-valuedness of the product [1, Lemma 2]; this is
nonsensical in the finite-valued case.

We use several lemmas to prove Theorem 1. The main ones are Lemma 4
and Lemma 5. Lemma 4 is used to transform the SFTs into a normal form that
considerably simplifies the proof of Lemma5. The main construction used in
Lemma 5 is a product construction of the given SFTs. The product construction
uses multiple outputs. The number of states in the product is bounded by the
product of the number of states of the component SFTs. The key idea is to
exhaustively detect conflict-states that represent product states at which point
we know that there exists an input element that will at some point cause different
outputs be yielded by the SFTs.

Proposition 2. Let A be a finite-valued SFT such that TA(ε) = ∅. There is an
input-ε-free SFT that is effectively equivalent to A.

Proof. First, assume that A is clean, has no epsilon-loops, no dead-ends, and no

unreachable states. Second, note that A cannot have input-epsilon loops p
ε/u� p,

u �= ε, because A is finite-valued.
Let ΔA(p) denote the set of all transitions in ΔA starting from p. Similarly

for Δε
A and Δε̄

A.
The idea is to transform A repeatedly, each time decreasing the number

of states p, such that Δε
A(p) �= ∅, while preserving equivalence. The following

transformation is repeated until Δε
A(p) = ∅ for p ∈ QA \ {q0A}.

Equivalence of Finite-Valued Symbolic Finite Transducers 283

1. Choose a non-initial state q such that Δε
A(q) �= ∅.

2. For each transition p
ϕ/u−−→ q in A add the new transitions

{p
ϕ/u·v−−−−→ r | q

ε/v−−→ r ∈ Δε
A(q)}

to A. Note that r �= q and if ϕ = ε then p �= q. Also, the semantics of v is not
affected because Σ(v) = ∅.

3. Remove the transitions Δε
A(q) from A.

Equivalence of the transformed A to the original one follows by using absence of
input-epsilon loops and that q �= q0A. Eliminate all dead-ends that were created.

Finally, transitions in Δε
A(q0A) are eliminated one by one as follows. Fix

q0A
ε/u−−→ p. Since TA(ε) = ∅ we know that p /∈ FA and since p is not a dead-

end ΔA(p) �= ∅. We know also that q0A �= p. Replace the transition q0A
ε/u−−→ p

by

{q0A
ϕ/u·v−−−−→ r | p

ϕ/v−−→ r ∈ ΔA(p)}
Repeat the step until Δε

A(q0A) = ∅. ��
Note that if A in Proposition 2 is not clean, then more transitions may be

added during the transformations but whose guards remain unsatisfiable and
the statement remains correct. If A is clean then the transformed SFT is also
clean, since guards are not modified.

Example 5. Consider the SFT in Example 2. Input-epsilon elimination yields
the following equivalent SFT:

q0 q0
ϕ(c)/[c]
¬ϕ(c)/c̄

where c̄ stands for [‘&’, ‘#’, ‘x’] · �c� · [‘;’].

We say that a state of an SFT is relevant if it is reachable from the initial state
and not a dead-end. We use the following pumping lemma over word equations.

Lemma 1. For all u1, u2, v1, v2, w1, w2, z1, z2: if u1 · u2 = v1 · v2, u1 · w1 · u2 =
v1 · z1 · v2 and u1 · w2 · u2 = v1 · z2 · v2 then u1 · w1 · w2 · u2 = v1 · z1 · z2 · v2.

Lemma 2. Let A be a finite-valued SFT. For all u, v, w, and relevant p ∈ QA,

if p
u/v� A p and p

u/w� A p then v = w.

Proof. Suppose there exist u, v, w, and p such that p
u/v� A p and p

u/w� A p and
v �= w. Then for any k, by Lemma 1, there exist u1, u2, v1 and v2 and m such
that TA(u1 · um · u2) ≥ k, contradicting finite-valuedness of A. ��
Definition 9. An SFT A is a component if it is strongly connected and FA =
{q0A}, q0A is called the anchor of A. An SFT A is a sequence (of components) if it
consists of disjoint components Ai for 0 ≤ i ≤ n such that q0A = q0A0

, FA = FAn
,

and there is a single transition q0Ai
→ q0Ai+1

for 0 ≤ i < n.

284 M. Veanes and N. Bjørner

Definition 10. The union of a set A of SFTs is an SFT with a new initial state
and epsilon moves to the initial states of SFTs in A.

Definition 11. An SFT is in sequence normal form (SNF) if it is a union of
pairwise disjoint sequences.

Lemma 3. All SFTs have an effectively equivalent SNF.

Proof. Let A be an SFT. The sequences are constructed by considering all loop-
free paths from the initial state of A to some final state, possibly creating extra
states if a strongly connected component of A is entered and exited through
different states. ��

The following lemma is used to simplify the proof of Lemma 5 by normalizing
the representation of SFTs.

Lemma 4. Every finite-valued SFT has an effectively equivalent SNF with
single-valued sequences.

Proof. By using Lemma 3 we assume, without loss of generality, that the SFT
is a single sequence. Moreover, by using Proposition 2, we assume that the SFT
is input-ε-free.

We apply the following algorithm to transform the SFT into a set of single-
valued sequences. First, note that if the SFT is a single component then it is
already single-valued by Lemma2. Next, we describe the algorithm for the case
when the SFT has the form AαB, where A and B are two components with
anchors p and q and α is a nonempty path p � q. The case when either A or
B have no transitions follows also from Lemma2. So assume that both A and
B contain nonempty paths p � p and q � q. Different outputs may arise by
ambiguous parses of an input sequence u through AαB that must allow paths:

r s

p q
v/y

a/w b/z

a/x1 v/y1 b/x2v/y2

and u has the form am ·a ·v ·v ·b ·bn causing the conflict x1 ·y1 ·y ·z �= w ·y ·y2 ·x2

in the output. We can rule out the case when a = b = ε or else there exist
either unboundedly many different outputs for vk, by increasing k, contradicting
finite-valuedness, or just a single output, independent of the parse, e.g. when
y1 = y2 = ε. So assume a �= ε (the case b �= ε is symmetrical). The idea is to
resolve the conflict by replacing AvB with (A \ {av, v}∗)vB, AavvB and AavB.

In order to detect and resolve such conflicts symbolically, extract the sequence
ϕ̄ of guards on the path α and search for the corresponding symbolic paths in
A and B by checking satisfiability of the corresponding guard sequences for

Equivalence of Finite-Valued Symbolic Finite Transducers 285

which there exist different output sequences. The maximum length of the paths
corresponding to a and b that need to be considered is |QA||QB |.

For example, let α = p
ψ/t−−→ q. And suppose there exist transitions p

ϕ1/u1−−−−→
p

ϕ′
1/u′

1−−−−→ r
ψ1/t1−−−→ p in A and transitions q

ϕ2/u2−−−−→ q
ψ2/t2−−−→ s

ϕ′
2/u′

2−−−−→ q in B. Let
θi = {c �→ ci} where ci is fresh. Assume the following formula is satisfiable:

ϕ1θ1 ∧ ψθ2 ∧ ψ2θ3 ∧ ϕ′
2θ4 ∧ ϕ′

1θ1 ∧ ψ1θ2 ∧ ψθ3 ∧ ϕ2θ4
∧u1θ1 · tθ2 · t2θ3 · u′

2θ4 �= u′
1θ1 · t1θ2 · tθ3 · u2θ4

Then there exist u with different outputs. Construct the SFA D for the guard
sequences {[ϕ1 ∧ ϕ′

1], [ϕ1 ∧ ϕ′
1, ψ1]}∗, in particular accepting {a, a · v}∗ as above.

Let D̄ be the complement of D. Let A′ = A � D̄ (thus removing the conflicts

from A). Let α1 be the path p
ϕ1∧ϕ′

1/u1−−−−−−→ p1
ψ/t−−→ q and let α2 be the path

p
ϕ1∧ϕ′

1/u′
1−−−−−−→ r2

ψ1/t1−−−→ p2
ψ/t−−→ q. Now replace AαB with the SFTs A′αB, Aα1B

and Aα2B. Note that A′αB is now single-valued and can be transformed to SNF.
It follows that the union of the new sequences is equivalent to AαB. Repeat the
transformation on Aα1B and Aα2B. Termination follows from that both have
fewer nonequivalent conflicts remaining and that the length of paths α causing
conflicts is effectively bounded by the size of the original SFT. The proof can be
generalized to the case of sequences of arbitrary length. ��

The following lemma is our main technical result. Some details of the proof
have been omitted but can be found in [7]. It generalizes the decidability of
equivalence of single-valued SFTs [1]. For a single-valued SFT A write A(u) = v
when TA(u) = {v}.

Lemma 5. Let Aι/o, B
ι/o
1 , . . . , B

ι/o
k be input-ε-free single-valued SFTs for some

k ≥ 1 then the problem ∃x (
∧k

i=1 TA(x) �= TBi
(x)) is decidable if F is decidable.

Proof. Case k = 1 is [1, Theorem 2]. We prove the case for k = 2. Generalization
to k > 2 is technically more involved but straightforward. Let B = B1, C = B2.
We only need to consider inputs in L = L(d(A)) ∩ L(d(B)) ∩ L(d(C)). For
example, if u ∈ L(d(A)) \ L(d(B)) and u ∈ L(d(C)) then TA(u) �= TB(u) and
the problem reduces to equivalence of A � d(B) and C, where the construction
of A � d(B) is effective. The other cases are similar.

For the case L construct the product D = A × B × C that has states QA ×
QB × QC and 3-output-transitions

(p, q, r)
ϕ∧ψ1∧ψ2/(u,v,w)−−−−−−−−−−−→ (p′, q′, r′),

for p
ϕ/u−−→A p′, q

ψ1/v−−−→B q′, r
ψ2/w−−−→C r′

such that IsSat(ϕ∧ψ1∧ψ2). Note that L(d(D)) = L. The unreachable states and
the dead-ends are eliminated from D. D(u) def= (A(u), B(u), C(u)), Let p0 = q0A,
q0 = q0B and r0 = q0C . We write s0 for (p0, q0, r0) and sf for some (pf , qf , rf) ∈
FA × FB × FC .

Given u ∈ L and D(u) = (a,b, c), there are two (possibly overlapping) cases
for a B-conflict a �= b (symmetrically for a C-conflict a �= c):

286 M. Veanes and N. Bjørner

1. there is a B-length-conflict : |a| �= |b|, or
2. there is a B-character-conflict : for some i, a[i] �= b[i].

We say that a state s ∈ QD is a B-length-conflict-state if there exists a simple

loop (a loop without nested loops) s
u/(v,w,)� s such that |v| �= |w|. The state-

ments below make implicit use of the assumption that D contains no unreachable
states and no dead-ends.

(*) There are two ways how a B-length-conflict can arise.
1.(a) There exists a B-length-conflict state s in D.

1.(b) There exists a loop-free path s0
u/(v,w,)� sf such that |v| �= |w|.

Proof of (*): We show that cases 1.a and 1.b are exhaustive. Consider any
u ∈ L such that D(u) = (v, w,) and |v| �= |w| and suppose 1.b is false. Then
there must exist u1, u

′, u2, v1, v
′, v2, w1, w

′, w2 such that

u = u1 · u′ · u2, v = v1 · v′ · v2, w = w1 · w′ · w2,

and a loop s
u′/(v′,w′,)� s where |v′| �= |w′|, or else |v| = |w| since 1.b is false.

Now suppose the loop is not simple.
Then there exist u′

1, u
′′, u′

2, v
′
1, v

′′, v′
2, w

′
1, w

′′, w′
2 such that

u′ = u′
1 · u′′ · u′

2, v′ = v′
1 · v′′ · v′

2, w′ = w′
1 · w′′ · w′

2,

and a state s′,

s s′

u
′
1/(v

′
1, w

′
1,)

u
′′

/(v
′′

, w
′′

,)

u
′
2/(v

′
2, w

′
2,)

If |v′′| = |w′′| then |v′
1 · v′

2| �= |w′
1 · w′

2| and

s u
′
1 · u

′
2/(v

′
1 · v

′
2, w

′
1 · w

′
2,)

and repeat the argument for the shorter path if it is not simple. Otherwise, if
|v′′| �= |w′′| and the loop through s′ is not simple apply the argument for s′. �

In the case of 1.a we have that for any path

s0
u1/(v1,w1,)� s

u2/(v2,w2,)� sf

there exists u, v, w, |v| �= |w|, and a large enough m ≥ 0, such that, for all n ≥ m,

D(u1 · un · u2) = (v1 · vn · v2, w1 · wn · w2,),
|v1 · vn · v2| �= |w1 · wn · w2|

Note that the problems of deciding 1.a and 1.b are decidable. In order to
decide if a state s is a B-length-conflict-state consider all the possible simple
loops s � s: for each such path check if the outputs lengths for A and B are
different. There are finitely many such paths. Similarly for 1.a.

Equivalence of Finite-Valued Symbolic Finite Transducers 287

Next, we proceed by case analysis, showing that we can effectively decide all
the different combinations of possible B-conflicts and C-conflicts that can arise.
We write B.1.a for the case when there exists a B-length-conflict-state, similarly
for the other cases.

Case (B.1.a, C.1.a): Check if there exist sB and sC such that sB is a B-length-
conflict-state and sC is a C-length-conflict state and sB � sC . Then there exists
a path

s0 sB sC sf

u1/(v1, w1, z1)

u2/(v2, w2, z2)

u3/(v3, w3, z3)

u4/(v4, w4, z4)

u5/(v5, w5, z5)

where |v2| �= |w2| and |v4| �= |z4|. It follows that there exist m and n such that

|v1 · vm
2 · v3 · vn

4 · v5| �= |w1 · wm
2 · w3 · wn

4 · w5|
|v1 · vm

2 · v3 · vn
4 · v5| �= |z1 · zm

2 · z3 · zn
4 · z5|

Thus there exists u = u1 ·um
2 ·u3 ·un

4 ·u5 ∈ L such that D(u) is a B-conflict and
a C-conflict. There are finitely many such combinations. The case sC � sB is
symmetrical. No other simultaneous combinations of (B.1.a, C.1.a) are possible.

Case (B.1.a, C.1.b): Check if there exists a B-length-conflict-state s and a loop-
free path s0 � s � sf that causes a C-length conflict, i.e., there exists a path

s0 s sf

u1/(v1, w1, z1) u3/(v3, w3, z3)

such that |v1 · v3| �= |z1 · z3|. There exists u2 such that s
u2/(v2,w2,z2)� s where

|v2| �= |w2|. Thus, there exists m such that

|v1 · vm
2 · v3| �= |w1 · wm

2 · w3|, |v1 · vm
2 · v3| �= |z1 · zm

2 · z3|
Thus there exists u = u1 · um

2 · u3 ∈ L such that D(u) is a B-conflict and a
C-conflict. There are finitely many such combinations. No other simultaneous
combinations of (B.1.a, C.1.b) are possible. The case (B.1.b, C.1.a) is symmet-
rical.

Case (B.1.b, C.1.b): Check if there exists a loop-free path s0 � sf that causes
both a B-length-conflict and and a C-length-conflict. Then there exists u such
that D(u) is a B-conflict and a C-conflict. There are finitely many such paths
and no other simultaneous occurrences of (B.1.b, C.1.b) are possible.

Case (B.2, C.1): Assume, by previous cases, that (B.1, C.1) is not possible. Let
� be the length of the longest possible output from either A, B or C on any
loop-free path. Clearly, � can be computed effectively. Suppose there exists a
C-length-conflict-state s. Consider all paths

ρm : s0 � (s � s)m � sf , m ≤ 2�

288 M. Veanes and N. Bjørner

Since B.1.a is not possible, we know that for all loops s � s the A-output
and the B-output have the same length. For each ρm check if a simultaneous
B-character-conflict and C-length-conflict exists.

If no such simultaneous conflicts exist it follows from the following argument
that no such simultaneous conflicts exist in any longer paths. We may assume
that all such loops have nonempty A (and thus B) outputs, since empty outputs
neither cause nor remove any character conflicts.

– Suppose some ρm, � ≤ m < 2�, contains a B-character conflict. Then, by choice
of � and since all the A and B-outputs are nonempty, there exist ui, vi, wi, zi,
1 ≤ i ≤ 2, such that

s0 s sf

u1/(v1, w1, z1) u2/(v2, w2, z2)

and either the character conflict occurs in the prefixes of v1, w1 or in the
suffixes of v2, w2 (i.e., the conflict is not in the overlap). Thus, the B-character-
conflict remains in

s0 s s sf

u1/(v1, w1, z1) u
′
/(v

′
, w

′
, z

′
) u2/(v2, w2, z2)

for any s
u′/(v′,w′,z′)� s, where |v′| = |w′| and |v′| �= |z′|. We now have a

contradiction, because either ρm or ρm+1 must cause a simultaneous C-length-
conflict, i.e., either |v1 · v2| �= |z1 · z2| or |v1 · v′ · v2| �= |z1 · z′ · z2|.

– Thus, in particular, ρ	 and ρ	+1 do not cause any B-character-conflicts. It now
follows from Lemma 1 that for all m ≥ �, in ρm the outputs of A and B will
be equal.

There are finitely many symbolic paths in D that correspond to the concrete
ρm’s above. For each such path construct a formula in F that is satisfiable iff a
B-character-conflict exists. For example, for a symbolic path

s0
ϕ1/(v1,w1,)−−−−−−−−→ s

ϕ2/(v2,w2,)−−−−−−−−→ sf ,

given substitution θi = {cι �→ ci} where ci is a fresh uninterpreted constant the
formula is:

ϕ1θ1 ∧ ϕ2θ2 ∧ v1θ1 · v2θ2 �= w1θ1 · w2θ2

The case C.1.b is covered by considering all loop-free paths. It follows that the
case (B.2, C.1) is decidable. The case (B.1, C.2) is symmetrical. Case (B.2, C.2)
is proved in [7]. One can show that the above cases are exhaustive. Decidability
follows for k = 2. ��

The proof of the lemma uses arbitrarily many uninterpreted constants of sort
ι, i.e., it assumes decidability of F while the proof of the case for k = 1 uses at
most two distinct constants of sort ι and assumes decidability of F({c : ι, d : ι})

Equivalence of Finite-Valued Symbolic Finite Transducers 289

Theorem 1. Equivalence of finite-valued SFTs is decidable provided that F is
decidable.

Proof. Let A and B be finite-valued SFTs. Assume D = L(d(A)) = L(d(B)), or
else A and B are not equivalent. By using Lemma 4 assume A and B are on SNF
containing single-valued SFTs. Assume, without loss of generality that A and B
do not accept the empty string and that all component sequences in A and B
are input-ε-free. To decide A ∼= B, we check that for all v ∈ D, TA(v) ⊆ TB(v)
and TB(v) ⊆ TA(v). Conversely, A � B iff either (1) or (2) holds for some v ∈ D:

1. for some A1 in A and all B1 in B, TA1(v) �= TB1(v).
2. for some B1 in B and all A1 in A, TA1(v) �= TB1(v).

Decidability of (1) and (2) follows now from Lemma 5. ��

6 Related Work

Equivalence checking of FTs is undecidable in general [8], and is undecidable
already for GSMs. The special case of equivalence checking of single-valued
SFTs over decidable character background is shown to be decidable in [2].
This result is substantially generalized here (Theorem1) to finite-valued SFTs.
This result generalizes also the decidability of equivalence of finite-valued FTs
[5,9–11]. Lemma 4 is a symbolic generalization of a decomposition technique
studied in [11]. A fundamental simplifying assumption compared to SFTs is
that the range of an FT is always regular. Equivalence of single-valued extended
SFTs (SFTs with lookahead) is studied in [12], the motivation there is to analyze
decoders, and it gives an orthogonal extension of decidability of equivalence of
single-valued SFTs. Besides the work on Bek [1], finite state transducers have
been used for dynamic and static analysis to validate sanitization functions in
web applications in [3], by an over-approximation of the strings accepted by
the sanitizer using static analysis of existing PHP code. Other security analysis
of PHP code, e.g., SQL injection attacks, use string analyzers to obtain over-
approximations (in form of context free grammars) of the HTML output by a
server [13–15].

7 Conclusion

We studied equivalence of finite-valued Symbolic Finite Transducers. Although
equivalence checking is in general undecidable the cause for undecidability is
subtle, and this paper identifies a boundary based on whether the transducer is
finite-valued (and satisfiability of guard formulas is decidable). The symbolic
representation of transducers is both convenient for applications and allows
for succinct representations. Basic automata algorithms lift in many cases in
a straight-forward way to this representation, and it allows leveraging state-
of-the-art theorem proving technology for analyzing the automata. Our main
motivation behind this work originates from analysis of sanitizers.

290 M. Veanes and N. Bjørner

References

1. Hooimeijer, P., Livshits, B., Molnar, D., Saxena, P., Veanes, M.: Fast and precise
sanitizer analysis with Bek. In: USENIX Security, pp. 1–16 (2011)

2. Veanes, M., Hooimeijer, P., Livshits, B., Molnar, D., Bjorner, N.: Symbolic finite
state transducers: Algorithms and applications. In: POPL 2012. ACM, pp. 137–150
(2012)

3. Balzarotti, D., Cova, M., Felmetsger, V., Jovanovic, N., Kirda, E., Kruegel, C.,
Vigna, G.: Saner: Composing static and dynamic analysis to validate sanitization
in web applications. In: SP (2008)

4. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of
Formal Languages, vol. 1, pp. 41–110. Springer, Heidelberg (1997)

5. Demers, A., Keleman, C., Reusch, B.: On some decidable properties of finite state
translations. Acta Informatica 17, 349–364 (1982)

6. Harrison, M.A.: Introduction to Formal Language Theory. Addison-Wesley,
Reading (1978)

7. Bjørner, N., Veanes, M.: Symbolic transducers. Microsoft Research, Technical
Report MSR-TR-2011-3 (2011)

8. Ibarra, O.: The unsolvability of the equivalence problem for Efree NGSM’s with
unary input (output) alphabet and applications. SIAM J. Comput. 4, 524–532
(1978)

9. Schützenberger, M.P.: Sur les relations rationnelles. In: Brakhage, H. (ed.)
Automata Theory and Formal Languages. LNCS, vol. 33, pp. 209–213. Springer,
Heidelberg (1975)

10. Culic, K., Karhumäki, J.: The equivalence problem for single-valued two-way trans-
ducers (on NPDT0L languages) is decidable. SIAM J. Comput. 16(2), 221–230
(1987)

11. Weber, A.: Decomposing finite-valued transducers and deciding their equivalence.
SIAM J. Comput. 22(1), 175–202 (1993)

12. D’Antoni, L., Veanes, M.: Equivalence of extended symbolic finite transducers. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 624–639. Springer,
Heidelberg (2013)

13. Minamide, Y.: Static approximation of dynamically generated web pages. In: Pro-
ceedings of the 14th International Conference on the World Wide Web, WWW
2005, pp. 432–441 (2005)

14. Wassermann, G., Su, Z.: Sound and precise analysis of web applications for injec-
tion vulnerabilities. In: PLDI, pp. 32–41. ACM (2007)

15. Wassermann, G., Yu, D., Chander, A., Dhurjati, D., Inamura, H., Su, Z.: Dynamic
test input generation for web applications. In: ISSTA (2008)

Relaxed Parsing of Regular Approximations
of String-Embedded Languages

Ekaterina Verbitskaia(B), Semyon Grigorev, and Dmitry Avdyukhin

Saint Petersburg State University, Saint Petersburg, Russia
kajigor@gmail.com, rsdpisuy@gmail.com, dimonbv@gmail.com

Abstract. We present a technique for syntax analysis of a regular set
of input strings. This problem is relevant for the analysis of string-
embedded languages when a host program generates clauses of embed-
ded language at run time. Our technique is based on a generalization
of RNGLR algorithm, which, inherently, allows us to construct a finite
representation of parse forest for regularly approximated set of input
strings. This representation can be further utilized for semantic analysis
and transformations in the context of reengineering, code maintenance,
program understanding etc. The approach in question implements relaxed
parsing : non-recognized strings in approximation set are ignored with no
error detection.

Keywords: String-embedded languages · String analysis · Parsing ·
Parser generator · RNGLR

Introduction

There is a broad class of applications which utilize the idea of string embed-
ding of one language into another. In this approach a host program generates
string representation of clauses in some external language which are then passed
to a dedicated runtime component for analysis and execution. One significant
example of string embedded language is embedded SQL [1]; among others, some
frameworks such as JSP [2] and PHP mySQL interface1 can be mentioned.

Despite providing a high level of expressiveness and flexibility, string embed-
ding makes the behavior of the system less predictable and harder to reason
about since a whole class of verification procedures is postponed until run time,
which complicates development, testing and maintenance. To overcome this defi-
ciency, it is desirable to perform syntax analysis of well-formedness of all gen-
erated clauses prior to execution. However, since the host language, as a rule,
is Turing-complete, the precise analysis is undecidable; the common approach is
to analyse an over-approximating set of strings represented in some constructive
form. It’s worth to mention that, similarly to regular syntax analysis, the analy-
sis of string-embedded languages often follows two-level scheme: first a set of

1 http://php.net/manual/en/mysqli.query.php.

c© Springer International Publishing Switzerland 2016
M. Mazzara and A. Voronkov (Eds.): PSI 2015, LNCS 9609, pp. 291–302, 2016.
DOI: 10.1007/978-3-319-41579-6 22

http://php.net/manual/en/mysqli.query.php

292 E. Verbitskaia et al.

strings is tokenized to provide an approximation for tokenized stream set, then
this set is parsed by a syntax analyzer.

This paper contributes a generalization of RNGLR (Right-Nulled General-
ized LR [3]) algorithm, which, instead of linear stream of tokens, analyzes a
regular set of streams. Our algorithm can be considered as proper generalization
since it provides exactly the same result as the original one on a trivial one-
element set; moreover, our implementation reuses original RNGLR parse tables.
The distinctive feature of our approach in comparison with other techniques for
analysis of string-embedded languages is that it provides the set of parsing trees,
encoded in the form of Shared Packed Parse Forest (SPPF) [4]. The choice of
RNGLR looks quite natural in this regard since in its original form it already
incorporates the technique to deal with multiple ways of parsing. On the other
hand, our approach can be categorized as relaxed parsing since it silently ignores
non-recognized part of the input; we do not consider this property as an essen-
tial drawback because it only means that, to provide best results, it has to be
combined with some existing recognition-centric approaches.

1 Related Works

Our approach for syntax analysis of string-embedded languages borrows some
common principles from existing techniques in this area. In addition, we reuse
RNGLR syntax analysis algorithm and some accompanying constructs. In this
section we provide a review and recollect some important notions which will be
referred to later on.

1.1 String-Embedded Languages Analysis Techniques

The analysis of string-embedded languages, as a rule, requires a set of hotspots
to be indicated in the host application source code. Hotspot is considered as
some “point of interest”, where the analysis of the set of possible string values is
desirable. This task can be performed either in a user-assisted manner or auto-
matically using some pragmatic considerations or knowledge of the framework
being analyzed. The following logical steps include static analysis to construct an
approximation for the set of all possible string values, lexical, syntax, and, per-
haps, some kind of semantic analysis. These steps are not necessarily performed
separately; some of them may be omitted.

A rather natural idea of regular approximation is to approximate the set of
all possible strings by a regular expression. In recognition-centric formulation,
this approach boils down to the problem of inclusion of approximating regular
language into context-free reference language, which is decidable for a number
of practically significant cases [5]. Many approaches follow this route. In [6],
forward reachability analysis is used to compute regular approximation for all
string values in the program. Further analysis is based on patterns detection in
approximation set or generation of some finite subset of strings for analysis by

Relaxed Parsing of Regular Approximations of String-Embedded Languages 293

standalone tools. Regular approximation in [7] is acquired by widening context-
free approximation, initially built as a result of program analysis. Our approach
is partially inspired by Alvor [8,9] which utilizes GLR-based technique for syntax
analysis of regular approximation; this framework implements abstract lexical
analysis to convert a regular language over characters into regular language over
tokens, which simplifies syntax analysis.

Kyung-Goo Doh et al. in a series of papers [10–12] introduced an approach,
based on implicit representation of the set of potential strings as a system of
data-flow equations. Conventional LALR(1) is chosen for the basis of parsing
algorithm; original parse tables are reused. Syntax analysis is performed as the
system of dataflow equations is being solved iteratively in the space of abstract
stacks. The problem of infinite stack growth, which appears in general case,
is handled using abstract interpretation [13]. This approach later evolved to a
certain kind of semantic processing in terms of attribute grammars which made
it possible to analyze a wider class of languages, than LALR(1).

1.2 Right-Nulled Generalized LR Parsing Algorithm

RNGLR (Right-Nulled Generalized LR) is a modification of Generalized LR
(GLR) algorithm, which was developed by Masaru Tomita [14] in the con-
text of natural language processing. GLR was designed to handle ambiguous
context-free grammars. Ambiguities in the grammar produce shift/reduce and
reduce/reduce conflicts, speaking in terms of LR approach. The algorithm uses
parse tables, similar to those for classical LR, each cell of which can contain
multiple actions. The general approach is to carry out all possible actions dur-
ing parsing using graph-based data structures to efficiently represent the set of
stacks and derivation trees. Originally, Tomita’s algorithm was unable to recog-
nize all context-free languages. Elizabeth Scott and Adrian Johnstone presented
RNGLR [3], which extends GLR with a certain way of handling right nullable
rules (i.e. rules of the form A → αβ, where β reduces to an empty string).

To efficiently represent the set of all stacks produced during parsing, RNGLR
uses Graph Structured Stack (GSS). GSS is a directed graph, whose vertices
correspond to the elements of individual stacks and edges link successive stack
elements. Each vertex can have multiple incoming and outgoing edges to merge
multiple stacks together; thus stack element sharing is implemented. Each vertex
is a pair (s, l), where s is a parser state and l is a level (position in the input
string). Vertices in GSS are unique and there are no multi-edges.

According to RNGLR, an input is read left-to-right, one token at a time,
and the levels of GSS are constructed sequentially for each input position: first,
all possible reductions are applied, then the next input terminal is shifted and
pushed to the GSS. When a reduction or pushing is performed, the algorithm
modifies GSS in the following manner. Suppose an edge (vt, vh) has to be added
to the GSS. By construction, the head vertex vh is always already in the GSS. If
the tail vertex is also in the GSS, then a new edge (vt, vh) is added (provided it
is not yet there); otherwise both new tail vertex and new edge are created and
added to the GSS. Every time a new vertex v = (s, l) is created, the algorithm

294 E. Verbitskaia et al.

calculates the new parser state s′ from s and the next terminal of the input.
The pair (v, s′), called push, is added to the global collection Q. The set of ε-
reductions (i.e. reductions with length l = 0) is also calculated, when a new
vertex is added to the GSS, and reductions from this set are added to the global
queue R. Reductions with length l > 0 are calculated and added to R each time
a new (non-ε) edge is created.

An input string can have several derivation trees and, as a rule, they can
have numerous identical subtrees. Shared Packed Parse Forest (SPPF) [4] is a
directed graph designed for a compact representation of all possible derivation
trees. SPPF has the following structure: the root (i.e. vertex with no incoming
edges) corresponds to the starting nonterminal of the grammar; vertices with no
outgoing edges correspond to terminals or derivation of ε-string; the rest of the
vertices is divided into two classes: nonterminal and production. Each nontermi-
nal vertex keeps a collection of production nodes, each of which represents one
possible derivation of that nonterminal. Production vertices represent a right-
hand side of the production and keep an ordered list of terminal or nonterminal
nodes. The length of this list lies in the range [l − k..l], where l is the length
of production right-hand side, and k is the number of rightmost symbols which
derive ε (nullable symbols are ignored to reduce memory consumption).

SPPF is constructed simultaneously with GSS. Each edge of the GSS is
associated with either a terminal or nonterminal node. When a GSS edge is
added with a push, a new terminal node is created and associated with the edge.
Nonterminal nodes are associated with edges which were added, when reductions
were performed: if the edge has already been in GSS, a production node is added
to the family of nonterminal nodes, associated with the edge. All subgraphs from
the edges of the reduction path are added as children to the production node.
After the input is read to the end, all vertices with accepting states are searched
and nodes associated with outgoing edges of such vertices are merged to form
the resulting SPPF. All unreachable vertices are deleted from the SPPF graph,
which leaves only the actual derivation trees for the input.

The detailed algorithm description in the form of pseudocode can be found
in Appendix A.

2 Relaxed Parsing of Regular Sets

The input of our algorithm (see parse function in Algorithm 1) is a reference
grammar G with alphabet of terminal symbols T and a finite non-deterministic
automaton (Q,Σ, δ, q0, qf) with a single start state q0, single final state qf and no
ε-transitions, where Σ ⊆ T — alphabet of input symbols, Q — alphabet of states,
δ — transition relation. RNGLR parse tables and some accessory information
(called parserSource in pseudocode) are generated for the grammar G.

Relaxed Parsing of Regular Approximations of String-Embedded Languages 295

Algorithm 1. Parsing algorithm
1: function parse(grammar, automaton)
2: inputGraph ← construct inner graph representation of automaton
3: parserSource ← generate RNGLR parse tables for grammar
4: if inputGraph contains no edges then
5: if parserSource accepts empty input then report success
6: else report failure

7: else
8: addVertex(inputGraph.startV ertex, startState)
9: Q.Enqueue(inputGraph.startV ertex)

10: while Q is not empty do
11: v ← Q.Dequeue()
12: makeReductions(v)
13: push(v)
14: applyPassingReductions(v)

15: if ∃vf : vf .level = qf and vf .state is accepting then report success
16: else report failure

17: function push(innerGraphV)
18: U ← copy innerGraphV.unprocessed
19: clear innerGraphV.unprocessed
20: for all vh in U do
21: for all e in outgoing edges of innerGraphV do
22: push ← calculate next state by vh.state and the token on e
23: addEdge(vh, e.Head, push, false)
24: add vh in innerGraphV.processed

25: function makeReductions(innerGraphV)
26: while innerGraphV.reductions is not empty do
27: (startV, N, l) ← innerGraphV.reductions.Dequeue()
28: find the set of vertices X reachable from startV
29: along the path of length (l − 1), or 0 if l = 0;
30: add (startV, N, l − i) in v.passingReductions,
31: where v is an i-th vertex of the path
32: for all vh in X do
33: statet ← calculate new state by vh.state and nonterminal N
34: addEdge(vh, startV, statet, (l = 0))

35: function applyPassingReductions(innerGraphV)
36: for all (v, edge) in innerGraphV.passingReductionsToHandle do
37: for all (startV, N, l) ← v.passingReductions.Dequeue() do
38: find the set of vertices X ,
39: reachable from edge along the path of length (l − 1)
40: for all vh in X do
41: statet ← calculate new state by vh.state and nonterminal N
42: addEdge(vh, startV, statet, false)

The general idea of the algorithm is to traverse the automaton graph and
sequentially construct GSS, similarly as in RNGLR. However, as we deal with a
graph instead of a linear stream, the next symbol turns into the set of terminals

296 E. Verbitskaia et al.

on all outgoing edges of current vertex. This results in a different semantics of
pushing and reducing (see line 21, Algorithm 1, and lines 9 and 21, Algorithm 2).
We use queue Q to control the order of automaton graph vertices processing.
Every time a new GSS vertex is added, all zero-reductions have to be performed
and then new tokens have to be shifted, so a corresponding graph vertex has
to be enqueueed for further processing. Addition of new GSS edge can produce
reductions to handle, so the graph vertex at the tail of the added edge has also to
be enqueueed (see Algorithm 2). Reductions are applied along the paths in GSS,
and if we add a new edge to some tail vertex, which was already presented in GSS,
we also have to recalculate all passing reductions (see applyPassingReductions
function in Algorithm 1).

Algorithm 2. GSS construction
1: function addVertex(innerGraphV, state)
2: v ← find a vertex with state = state in
3: innerGraphV.processed ∪ innerGraphV.unprocessed
4: if v is not null then � The vertex have been found in GSS
5: return (v, false)
6: else
7: v ← create new vertex for innerGraphV with state state
8: add v in innerGraphV.unprocessed
9: for all e in outgoing edges of innerGraphV do

10: calculate the set of zero-reductions by v
11: and the token on e and add them in innerGraphV.reductions

12: return (v, true)

13: function addEdge(vh, innerGraphV, statet, isZeroReduction)
14: (vt, isNew) ← addVertex(innerGraphV, statet)
15: if GSS does not contain edge from vt to vh then
16: edge ← create new edge from vt to vh
17: Q.Enqueue(innerGraphV)
18: if not isNew and vt.passingReductions.Count > 0 then
19: add (vt, edge) in innerGraphV.passingReductionsToHandle

20: if not isZeroReduction then
21: for all e in outgoing edges of innerGraphV do
22: calculate the set of reductions by v
23: and the token on e and add them in innerGraphV.reductions

Like RNGLR, we associate GSS vertices with positions in the input, and, in
our case, a position coincides with some state of input automaton. We construct
some inner data structure (referred to as inner graph) by copying input automa-
ton graph and extending each of its vertices with the following collections:

– processed : GSS vertices, for which all the pushes were processed. This set
aggregates all GSS vertices, associated with inner graph vertex.

– unprocessed : GSS vertices, for which all the pushes are to be processed. This
set is analogous to Q of original RNGLR.

Relaxed Parsing of Regular Approximations of String-Embedded Languages 297

– reductions: a queue, which is analogous to R of original RNGLR: all reductions
to be processed.

– passingReductionsToHandle: pairs of GSS vertex and GSS edge to apply pass-
ing reductions along them.

Besides parser state and level (which is equal to the input automaton state),
a collection of passing reductions is stored in a GSS vertex. Passing reduction is
a triplet (startV,N, l), representing reductions, whose path contains given GSS
vertex. This triplet is similar to one describing reduction, where l is a remaining
length of the path. Passing reductions are stored for every vertex of the path
(except for the first and the last) during path search in makeReductions function
(see Algorithm 1).

We inherit SPPF construction from the original RNGLR; in our case, deriva-
tion trees for strings, accumulated along the paths of the input automaton graph,
are merged.

3 Example of Parsing and SPPF Construction

We demonstrate the application of our algorithm by the following example. The
reference grammar is shown below:

(0) start rule ::= s
(1) s ::= LBR s RBR s
(2) s ::= ε

The automaton for regular approximation after tokenization is shown on the
Fig. 1; the SPPF, provided by our algorithm, is shown on the Fig. 2. To reduce
clutter we omit in the SPPF right nullable symbols in the rules: thus there are
no nodes for the last nonterminal s in the right-hand side of the rule (1).

0

LBR(0)

1LBR(1) 2RBR(2)

RBR(3)

3EOF

Fig. 1. Regular approximation for string-embedded code after tokenization

Nonterminal which have multiple possible derivations are colored in the
figure. To extract a derivation tree for an input string one should choose one
production node for each colored nonterminal node.

As it can be seen, some of the words from regular approximation do not
belong to the reference language (for example, LBR LBR RBR). The algorithm
ignores such strings and constructs SPPF, which contains derivation trees for all
recognized strings w.r.t. reference grammar.

298 E. Verbitskaia et al.

start_rule

prod 0

s !

prod 1 prod 1

LBR(1) s RBR(2)

eps

LBR(0) s ! RBR(3)

prod 1 prod 1

LBR(1) s RBR(2)

eps

LBR(0) s ! RBR(3)

prod 1 prod 1

LBR(1) s RBR(2)

eps

LBR(0) RBR(3)

Fig. 2. SPPF for input automaton presented in Fig. 1

4 Correctness of the Algorithm

In this section we present a justification of termination and correctness of our
algorithm.

Statement 1. Algorithm terminates for any input.

Relaxed Parsing of Regular Approximations of String-Embedded Languages 299

Proof. Each vertex of inner graph contains, at most, N GSS vertices, where N
is the number of parser states. So, the total number of GSS vertices is, at most,
N × n, where n is the number of vertices in the inner graph. Since GSS has no
multi-edges, the number of its edges is O((N × n)2). The algorithm dequeues
some vertex to process from Q in each iteration of the main loop. Vertices are
enqueued to Q only when a new edge is added to GSS. Since the number of GSS
edges is finite, the algorithm always terminates. ��

To prove correctness, we first introduce the following definition:

Definition. Correct tree is an ordered tree with the following properties:

1. The root is the start nonterminal of the grammar G.
2. The leaf nodes are terminals of G. The sequence of the leaf nodes corresponds

to some path in the inner graph.
3. The interior nodes are nonterminals of G. All children of nonterminal N

correspond to the symbols of the right-hand side of some production for N
in G.

Informally, a correct tree is a derivation tree (w.r.t. reference grammar) for
some word in regular approximation. Now we have to prove that, first, SPPF
contains only correct trees, and second, that for any recognized by the reference
grammar string there is some correct tree in the SPPF.

Lemma. For every GSS edge (vt, vh), vt ∈ Vt.processed, vh ∈ Vh.processed, the
terminals of the associated subtree correspond to some path in the inner graph
p from Vh to Vt.

Proof. The proof is by induction on the height of derivation tree. The base
case is either some ε-tree or a tree with a single leaf. An ε-tree corresponds to a
path of zero length; the tail and the head of the edge associated with ε-tree are
identical, thus the statement is true. A tree with the single leaf corresponds to a
single terminal read from an edge (Vh, Vt) of the inner graph, thus the statement
is true.

A tree of height k has a nonterminal N as its root. By third statement of
correct tree definition, there is a production N → A0, A1, . . . , An for children
A0, A1, . . . , An of the root node. A subtree Ai is associated with GSS edge (vi

t, v
i
h)

and, as its height is k − 1, by inductive hypothesis, there is a path in the inner
graph from V i

h to V i
t . V i

t = V i+1
h , since vi

t = vi+1
h , thus there is a path in the

inner graph from V 0
h to V n

t , corresponding to the tree under consideration. ��
Statement 2. Every tree, generated from SPPF, is correct.

Proof. Consider arbitrary tree, generated from SPPF, and prove that it is
correct. The first and the third statements of correctness definition immediately
follow from SPPF definition. The second statement of the definition follows from
Lemma 1 by considering all edges from GSS vertices on the last level, labeled
by accepting state, to the vertices on level 0. ��
Statement 3. For every path p in the inner graph, recognized w.r.t. reference
grammar, a correct tree corresponding to p can be generated from SPPF.

300 E. Verbitskaia et al.

Proof. Consider arbitrary correct tree and show it can be generated from SPPF.
The proof follows the proof of correctness for RNGLR algorithm, except for the
following moment. RNGLR constructs GSS layer-by-layer: it is guaranteed, that
∀j ∈ [0..i − 1] j-th level of the GSS would be fixed by the time, when i-th level
is processed. In our case, this property does not hold, which leads to a possible
generation of some paths for already applied reductions. The only possible way to
actually add a new path is to add an edge (vt, vh), where vt is already in the GSS
and it has some incoming edges. Since the algorithm stores which reductions have
passed through each vertex, to overcome this problem it is sufficient to continue
passing reductions, stored in vt, and this is exactly what applyPassingReductions
function does. ��

5 Conclusion

We presented and proved the correctness of generalized RNGLR algorithm,
designed for syntactic analysis of regular sets of tokens. The algorithm con-
structs a set of derivation trees for every recognized string of the input set in
the form of SPPF, whereas non-recognized part of the input is ignored. The
distinctive feature of our approach is that, unlike others, it delivers a set of all
parse trees, encoded in the form of SPPF, for recognized part. We implemented
our algorithm in F# as a part of YaccConstructor project2 within the frame-
work for string-embedded languages support [15]; host-language specific features
were implemented using JetBrains ReSharper SDK3, which potentially makes it
possible to analyse multiple host languages (our experiments involved C# and
Javascript).

Presented algorithm does not report incorrect strings from an input set. Nev-
ertheless, the algorithm may still be used in the context of reengineering, when
most of the analysed code is errorless. The examples of such tasks are DBMS
migration or migration from string-embedding approach to new technologies,
e.g. LINQ.

We can indicate some directions for future research. First, the complexity
estimation of our algorithm is still unclear; existing literature say very little on
this subject; in addition the contribution of SPPF construction has to be taken
into account. Another direction concerns the utilization of SPPF for semantic
analysis. While it is clear, that availability of SPPF is beneficial in general sense,
the concrete ways of its utilization can be cumbersome since SPPF represents
potentially infinite set of parse trees.

Acknowledgments. We thank Dmitri Boulytchev for the scientific guidance and the
feedback on this work.

2 https://github.com/YaccConstructor/YaccConstructor.
3 https://www.jetbrains.com/resharper.

https://github.com/YaccConstructor/YaccConstructor
https://www.jetbrains.com/resharper

Relaxed Parsing of Regular Approximations of String-Embedded Languages 301

A Appendix: RNGLR pseudocode

Algorithm 3. RNGLR algorithm
1: function parse(grammar, input)
2: R ← ∅ � Queue of tuples of GSS vertex, nonterminal, and reduction length
3: Q ← ∅ � Collection of pairs of GSS vertex and parser state
4: if input = ε then
5: if grammar accepts empty input then report success
6: else report failure

7: else
8: addVertex(0, 0, startState)
9: for all i in 0..input.Length − 1 do

10: reduce(i)
11: push(i)

12: if i = input.Length − 1 and there is a vertex in the last level of GSS which
state is accepting then

13: report success
14: else report failure

15: function reduce(i)
16: while R is not empty do
17: (v, N, l) ← R.Dequeue()
18: find the set X of vertices reachable from v along the path of length (l − 1)
19: or length 0 if l = 0
20: for all vh = (levelh, stateh) in X do
21: statet ← calculate new state by stateh and nonterminal N
22: addEdge(i, vh, v.level, statetail, (l = 0))

23: function push(i)

24: Q′ ← copy Q
25: while Q′

is not empty do
26: (v, state) ← Q.Dequeue()
27: addEdge(i, v, v.level + 1, state, false)

Algorithm 4. GSS construction
1: function addVertex(i, level, state)
2: if GSS does not contain vertex v = (level, state) then
3: add new vertex v = (level, state) to GSS
4: calculate the set of shifts by v and the input[i + 1] and add them to Q
5: calculate the set of zero-reductions by v and the input[i + 1] and
6: add them to R
7: return v
8: function addEdge(i, vh, levelt, statet, isZeroReduction)
9: vt ← addVertex(i, levelt, statet)

10: if GSS does not contain edge from vt to vh then
11: add new edge from vt to vh to GSS
12: if not isZeroReduction then
13: calculate the set of reductions by v and the input[i + 1] and
14: add them to R

302 E. Verbitskaia et al.

References

1. ISO. ISO/IEC 9075: 1992. Information Technology – Database Languages – SQL
(1992)

2. Houglan, D., Tavistock, A.: Core JSP, p. 416. Upper Saddle River, Prentice Hall
PTR (2000)

3. Scott, E., Johnstone, A.: Right nulled GLR parsers. ACM Trans. Program. Lang.
Syst. 28(4), 577–618 (2006)

4. Rekers, J.: Parser generation for interactive environments. Ph.D. thesis. University
of Amsterdam, 174p (1992)

5. Asveld, P.R.J., Nijholt, A.: The inclusion problem for some subclasses of context-
free languages. Theor. Comput. Sci. 230(1–2), 247–256 (1999)

6. Fang, Y., Alkhalaf, M., Bultan, T., Ibarra, O.H.: Automata-based symbolic string
analysis for vulnerability detection. Formal Methods Syst. Des. 44(1), 44–70 (2014)

7. Christensen, A.S., Møller, A., Schwartzbach, M.I.: Precise analysis of string expres-
sions. In: Proceedings of the 10th International Conference on Static Analysis, pp.
1–18 (2003)

8. Annamaa, A., Breslav, A., Kabanov, J., Vene, V.: An interactive tool for
analyzing embedded SQL queries. In: Ueda, K. (ed.) APLAS 2010. LNCS, vol.
6461, pp. 131–138. Springer, Heidelberg (2010)

9. Annamaa, A., Breslav, A., Vene, V.: Using abstract lexical analysis and parsing
to detect errors in string-embedded DSL statements. In: Proceedings of the 22nd
Nordic Workshop on Programming Theory, pp. 20–22 (2010)

10. Doh, K.-G., Kim, H., Schmidt, D.A.: Abstract parsing: static analysis of dynami-
cally generated string output using LR-parsing technology. In: Palsberg, J., Su, Z.
(eds.) SAS 2009. LNCS, vol. 5673, pp. 256–272. Springer, Heidelberg (2009)

11. Doh, K.-G., Kim, H., Schmidt, D.A.: Abstract LR-parsing. In: Agha, G., Danvy, O.,
Meseguer, J. (eds.) Formal Modeling: Actors, Open Systems, Biological Systems.
LNCS, vol. 7000, pp. 90–109. Springer, Heidelberg (2011)

12. Kim, H., Doh, K.-G., Schmidt, D.A.: Static validation of dynamically generated
HTML documents based on abstract parsing and semantic processing. In: Logozzo,
F., Fähndrich, M. (eds.) Static Analysis. LNCS, vol. 7935, pp. 194–214. Springer,
Heidelberg (2013)

13. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceed-
ings of the 4th Symposium on Principles of Programming Languages, pp. 238–252
(1977)

14. Tomita, M.: An efficient all-paths parsing algorithm for natural languages.
Carnegie-Mellon University, Department of Computer Science (1984)

15. Grigorev, S., Verbitskaia, E., Ivanov, A., Polubelova, M., Mavchun, E.: String-
embedded language support in integrated development environment. In: Proceed-
ings of the 10th Central and Eastern European Software Engineering Conference
in Russia, pp. 21:1–21:11 (2014)

Branching Processes of Timed Petri Nets

Irina Virbitskaite1,2(B), Victor Borovlyov1,2, and Louchka Popova-Zeugmann3

1 A.P. Ershov Institute of Informatics Systems,
SB RAS, 6, Acad. Lavrentiev avenue, 630090 Novosibirsk, Russia

virb@iis.nsk.su
2 Novosibirsk State University, 2, Pirogov avenue, 630090 Novosibirsk, Russia
3 Humboldt University of Berlin, Unter den Linden 6, 10099 Berlin, Germany

Abstract. The intention of this note is to spread the Couvreur et al.’s
semantic framework of branching processes [9], suitable for describing
the behavior of general Petri nets with interleaving semantics, to timed
general Petri nets with step semantics in order to characterize unfolding
as the greatest element of a complete lattice of branching processes. In
case of maximal step semantics of timed Petri nets, we impose some
restrictions on the model behavior and define a new class of branching
processes and unfoldings under the name of apt ones which are shown
to satisfy the complete lattice properties.

1 Introduction

In recent years there has been a growing interest in the development and use of
unfolding-based approaches. Originally introduced in the setting of Petri nets,
unfolding can be seen as a specification formalism that is able to describe the
intrinsic parallelism of the modeled systems, as well as a semantics providing in
a single structure explicit information concerning causality, conflict and concur-
rency of events in systems computations.

The unfolding (occurrence net with forward branched places) semantics was
firstly introduced by Nielsen, Plotkin and Winskel in [17] for safe Petri nets.
Engelfriet in [10] characterized the unfolding as the greatest element of a com-
plete lattice of occurrence nets embedding into initially one marked Petri nets
without arc weights. Meseguer et al. [16] extended this to cover also arc weights.
More recently, Couvreur et al. [9] proposed a new structure, the faithful unfold-
ing of a Petri net, which allows for the good algebraic properties identified by
Engelfriet [10], and which is applicable to general nets, without any finiteness or
safeness assumption.

Whilst the unfolding can be infinite, McMillan identified the possibility of a
finite prefix that contains enough information to reason about all the reachable
markings of the original Petri nets. The approach has gained the interest of
researchers in verification (see e.g. [2,5,7,11]), diagnosis [3,4] and planning [6,14].

This work is supported in part by DFG-RFBR (project CAVER, grants BE 1267/
14-1 and 14-01-91334).

c© Springer International Publishing Switzerland 2016
M. Mazzara and A. Voronkov (Eds.): PSI 2015, LNCS 9609, pp. 303–313, 2016.
DOI: 10.1007/978-3-319-41579-6 23

304 I. Virbitskaite et al.

We especially emphasize the expansion of the finite prefix approach towards
time(d) extensions of Petri nets [8,12,13]. Besides, an infinite branching process
semantics has been proposed for hierarchical timed safe Petri nets, where time
intervals of duration are attached to each transition. It is also worth mentioning
the papers [1,19] where causal net process semantics have been put forward for
time safe Petri nets and timed bounded Petri nets, respectively.

The intention of this note is to spread the Couvreur et al.’s semantic frame-
work of branching processes [9], suitable for describing the behavior of general
Petri nets with interleaving semantics, to timed general Petri nets with step
semantics in order to characterize unfolding as the greatest element of a complete
lattice of branching processes. In case of maximal step semantics (all enabled
non-conflicting transitions are fired) of timed Petri nets, we impose some restric-
tions on the model structure and behavior and define a new class of branching
processes and unfoldings under the name of apt ones which are shown to satisfy
the complete lattice properties.

2 Preliminaries

Multisets. Let N be the set of non-negative integers. A multiset over X is a
function μ : X → N, i.e. μ ∈ N

X . The number μ(x) ∈ N is the coefficient of
x ∈ X. The support of the multiset μ is the set μ = {x ∈ X | μ(x) > 0}.
Note that the support of a multiset may be infinite. Let ∅ denote the empty
multiset. Multisets are often represented as vectors in N

X or as sums of the form∑
x∈X μ(x)x. The operations of addition and subtraction of multisets over X are

defined componentwise, as on vectors (note however that negative coefficients are
not allowed). Multisets are partially ordered by letting μ ≤ ν if μ(x) ≤ ν(x) for
each x ∈ X. An infinite sum

∑
i∈I μi of multisets is said to be well-defined if∑

i∈I μi(x) ∈ N, for any x ∈ X. If X and Y are sets, a mapping h : X −→ Y can
be extended to multisets, h : NX −→ N Y , by letting h(μ) =

∑
x∈X μ(x)h(x) if

the sum is well-defined.

Graphs. Let (X,→) be a graph. We denote by ∗→ (+→) the reflexive and
transitive closure (transitive closure) of →. We use the following notions: for
Y ⊆ X, •Y = {x ∈ X | ∃y ∈ Y, x → y}, Y • = {x ∈ X | ∃y ∈ Y, y → x},
∗Y = {x ∈ X | ∃y ∈ Y, x

∗→ y}, Y ∗ = {x ∈ X | ∃y ∈ Y, y
∗→ x}. If Y = {y}, we

write simply •y, y•, ∗y and y∗. When the graph (X,→) is acyclic (i.e., x
+→ x

never holds, for any x ∈ X), the relation ∗→ forms a partial order on X. In this
case, the graph (X,→) is finitary if |{y ∈ X | y

∗→ x}| < ∞, i.e. every vertex is
preceded by a finite number of vertices.

Lattices. For a partially ordered set (X,≤) and a subset Y ⊆ X, we say that
x ∈ X is a lower (respectively, upper) bound of Y if x ≤ y (respectively, y ≤ x) for
each element y ∈ Y . The greatest lower bound (respectively, least upper bound)
of Y , if it exists, is denoted by inf(Y) (respectively, sup(Y)). If any two-element
subset of X admits a greatest lower bound and a least upper bound, X is called
a lattice. It is a complete lattice, if any subset of X admits a greatest lower and
a least upper bound.

Branching Processes of Timed Petri Nets 305

3 Timed Petri Nets

In this section we introduce the syntax and (maximal) step semantics of timed
Petri nets whose transitions are labeled over a set of actions with time durations.

Let N be a set of natural numbers, and A a set of actions.

Definition 1. A (labeled) timed Petri net (over A) (TdPN) is a 7-tuple NA =
(P , T , Pre, Post, m0, L, Δ) such that

1. N(NA) = (P, T, Pre, Post,m0) is a Petri net consisting of: two disjoint
(finite or infinite) sets P and T whose elements are called places and tran-
sitions, respectively, two multisets Pre and Post over P × T 1 called flow
functions, and a multiset m0 over P called the initial marking. A marking
m of N(NA) is a multiset over P 2. The pre-condition of a transition t ∈ T
(denoted Pre(t)) is the marking Pre(·, t), and the post-condition of t (denoted
Post(t)) is the marking Post(·, t). Moreover,

∑

t∈T ′
Pre(t) and

∑

t∈T ′
Post(t) are

the markings3 of N(NA), for all T ′ ⊆ T ,
2. L : T −→ A is a labeling function associating an action from A with each

transition from T ,
3. Δ : A −→ N is a timing function associating a natural number from N with

each action from A. Let sup(NA) = sup{Δ(L(t)) | t ∈ T}.
Notice that a TdPN is a timed Petri net as specified in [18] in case if the sets

P and T are finite, A = T , and L is the identical function.

Example 1. Figure 1 shows a graphical representation of a labeled timed Petri
net NA over the set A = {a1, a2, a3, a4} of actions. Here, places and transitions
are depicted as circles and as rectangles, respectively; pre- and post-conditions

p1

a1, 3

p2 p3 p4

a2, 2 a3, 5 a4, 3

t1 t2 t3 t4

2

Fig. 1. A graphical representation of the TdPN NA

1 The number of arcs between each place and each transition is a natural number.
2 A marking contains a natural number of tokens in each net place.
3 The number of arcs between each place and each subset of transitions is a natural

number.

306 I. Virbitskaite et al.

of the transitions are indicated by labels on arcs, if the corresponding coeffi-
cients are greater than 1; the initial marking is shown by the corresponding
numbers of tokens in the places; each transition is labeled by an action with the
corresponding time duration, indicated near the transition.

For TdPNs NA = (P , T , Pre, Post, m0, L, Δ) and N ′
A = (P ′, T ′, Pre′,

Post′, m′
0, L′, Δ′), a mapping h : P ∪T → P ′ ∪T ′ is a homomorphism from NA

to N ′
A iff

– h(P) ⊆ P ′, h(T) ⊆ T ′,
– m′

0 = h(m0),
– Δ′ = Δ,
– for each transition t ∈ T , it holds:

• Pre′(h(t)) = h(Pre(t)),
• Post′(h(t)) = h(Post(t)),
• L′(h(t)) = L(t).

Notice that in this definition, h(m0), h(Pre(t)) and h(Post(t)) must be well-
defined.

We now move to considering the behavior of TdPNs. A state of a TdPN
NA is a triple z = (m, ft, u), where m is a marking of N(NA), ft is a set of
the firing transitions, and u : A −→ N is a dynamic timing function such that
u(a) ≤ Δ(a), for all a ∈ A. The initial state z0 is a triple (m0, ∅, u0), where m0

is the initial marking and u0(a) = 0, for all a ∈ A. A non-empty subset R ⊆ T
is a step in a state z if it holds: (i)

∑

t∈R

Pre(t) ≤ m, (ii) ∀t ∈ R : u(L(t)) = 0,

(iii) ∀t, t′ ∈ R : t′ �= t −→ L(t) �= L(t′); a maximal step in z, if R is a step
in z and, moreover, the following property holds: for all t̂ ∈ T \ R,

(
Pre(t̂) ≤

m ∧ u(L(t̂)) = 0 ∧ ∀t ∈ R : L(t̂) �= L(t)
) −→ (∑

t∈R

Pre(t) + Pre(t̂) �≤ m
)
.

Definition 2. Let z = (m, ft, u) be a state of a TdPN NA and R ⊆ T . Then,

– R can fire in z (denoted z
R−→(max)) iff R is a (maximal) step in z,

– after the firing of the (maximal) step R in z, the TdPN moves to the state
z′ = (m′, ft′, u′) (denoted z

R−→(max)z
′), where

1. m′ := m − ∑

t∈R

Pre(t) +
∑

t∈R,
Δ(L(t))=0

Post(t),

2. ft′ := ft ∪ {t ∈ R | Δ(L(t)) �= 0},
3. u′(a) :=

{
Δ(a), if t ∈ R ∧ a = L(t),
u(a), otherwise,

– the elapsing of one time unit in step semantics (denoted z
1−→) is always

possible in z; the elapsing of one time unit in maximal step semantics (denoted
z

1−→max) is possible in z iff u(L(t)) = 0 −→ Pre(t) �≤ m, for all t ∈ T ,
– after the elapsing of one time unit in (maximal) step semantics in z, the TdPN

moves to the state z′ = (m′, ft′, u′) (denoted z
1−→(max)z

′), where

Branching Processes of Timed Petri Nets 307

1. m′ := m +
∑

t∈ft
u(L(t))=1

Post(t),

2. ft′ := {t ∈ ft | u(L(t)) > 1},
3. u′(a) :=

{
u(a) − 1, if u(a) > 1,
0, otherwise.

Lemma 1. Given a homomorphism h from a TdPN NA to a TdPN N ′
A, and a

state (m, ft, u) of NA such that h(m) is well-defined, h is injective on ft, and
u = h(u),

(i) if (m, ft, u) R−→ (m′, ft′, u′) in NA, then h(m′) is well-defined, h is injective

on R, and h(m, ft, u)
h(R)−→ h(m′, ft′, u′) in N ′

A,
(ii) (m, ft, u) 1−→ (m′, ft′, u′) in NA, then h(m′) is well-defined, h is injective

on ft′, and h(m, ft, u) 1−→ h(m′, ft′, u′) in N ′
A.

For a TdPN NA, σ := z0 = z00
R1−→(max) z01

1−→(max) z11 . . . zj1−1
1

1−→(max) zj11

. . . z
jn−1
n−1

Rn−→(max) z0n
1−→(max) z1n . . . zjn−1

n
1−→(max) zjn

n such that zki �= zk+1
i

for all 1 ≤ i ≤ n and 0 ≤ k < ji (n ≥ 0, ji ≥ 0) is a firing sequence in (maximal)
step semantics. A state z of NA is reachable in (maximal) step semantics if there
is a firing sequence in (maximal) step semantics containing z.

We say that NA is

– plainly labeled iff the labeling function L is injective,
– time progressive iff

∑

i>0

Δ(L(ti)) ≥ sup(NA) for each infinite set {t1, t2, . . .} of

transitions such that ∀i > 0 : t•i ∩• ti+1 �= ∅,
– possessing the non-multiple enabling property in (maximal) step semantics

iff for each state (m, ft, u) reachable in (maximal) step semantics, for each
(maximal) step R in (m, ft, u), and for each transition t ∈ R, there is a place
p ∈ •t such that m(p) − ∑

t′∈R

Pre(p, t′) < Pre(p, t),

– proper iff NA is plainly labeled, time progressive, and possessing the non-
multiple enabling property in maximal step semantics,

– quasi-live in (maximal) step semantics iff for all t ∈ T there exists a (maximal)
step R in a state (m, ft, u) reachable in (maximal) step semantics of NA such
that t ∈ R.

Example 2. Consider the behavior of the TdPN NA shown in Fig. 1. The initial
state of NA is z0 = (2p1, ∅, 0). The sets {t2}, {t3} and {t2, t3} are steps in z0,
and, moreover, {t2, t3} is the only maximal step in z0. After the firing of the
step {t2} in z0, NA moves to the state z1 = (p1, {t2}, u(a1) = u(a3) = u(a4) =
0;u(a2) = 2), and after the elapsing of one time unit in step semantics in z1, we
get the state z11 = (p1, {t2}, u(a1) = u(a3) = u(a4) = 0;u(a2) = 1). Furthermore,

σ = z0
{t2,t3}−→ (max) z01

1−→(max) z11
1−→(max) z21

{t1}−→(max) z02
1−→(max) z12

1−→(max)

z22
1−→(max) z32

{t2}−→(max) z03
1−→(max) z13

1−→(max) z23
{t1,t4}−→ (max) z04 is a firing

308 I. Virbitskaite et al.

sequence in (maximal) step semantics of NA, where z01 = (∅, {t2, t3}, u(a1) =
u(a4) = 0;u(a2) = 2;u(a3) = 5), z11 = (∅, {t2, t3}, u(a1) = u(a4) = 0;u(a2) = 1;
u(a3) = 4), z21 = (p2 + p3, {t3}, u(a1) = u(a2) = u(a4) = 0;u(a3) = 3), z02 =
(p3, {t1, t3}, u(a2) = u(a4) = 0;u(a1) = 3;u(a3) = 3), z12 = (p3, {t1, t3}, u(a2) =
u(a4) = 0;u(a1) = 2;u(a3) = 2), z22 = (p3, {t1, t3}, u(a2) = u(a4) = 0;u(a1) = 1;
u(a3) = 1), z32 = (p1 + p3 + p4, ∅, u(a1) = u(a2) = u(a3) = u(a4) = 0),
z03 = (p3 + p4, {t2}, u(a1) = u(a3) = u(a4) = 0;u(a2) = 2), z13 = (p3 +
p4, {t2}, u(a1) = u(a3) = u(a4) = 0;u(a2) = 1), z23 = (p2 + 2p3 + p4, ∅, u(a1) =
u(a2) = u(a3) = u(a4) = 0), z04 = (∅, {t1, t4}, u(a2) = u(a3) = 0;u(a1) = 3;
u(a4) = 3). Then, we can conclude that the TdPN NA is quasi-live in (maximal)
step semantics. It is not difficult to check that NA is a proper TdPN.

4 Branching Processes and Unfoldings of TdPNs

Following traditions, we consider a branching process of a TdPN as a pair con-
sisting of an occurrence net being a TdPN with the acyclic and finitary bipartite
graph whose nodes are called conditions (instead of places) and events (instead
of transitions) and a homomorphism from the occurrence net to the TdPN,
satisfying some additional restrictions.

A TdPN OA = (B, E, In, Out, q0, l, δ) is a (labeled) occurrence net (over
A) (TdON) in (maximal) step semantics iff

– |•b| ≤ 1, for each condition b ∈ B,
– the support of q0 is exactly the set {b ∈ B | |•b| = 0},
– OA is quasi-live in (maximal) step semantics.

According to the definition above, the graph of any TdON OA is acyclic and
finitary.

Given two TdONs OA = (B, E, In, Out, q0, l, δ) and O′
A = (B′, E′, In′,

Out′, q′
0, l′, δ′), we say that OA is a subnet of O′A (denoted OA � O′

A), if
B ⊆ B′, E ⊆ E′, q0 = q′

0, δ = δ′, and In(e) = In′(e), Out(e) = Out′(e),
l(e) = l′(e), for all e ∈ E. A subnet OA of O′

A is a prefix of O′
A if x ∈ B ∪ E

whenever x
∗→ y for some y ∈ B ∪ E. It is not difficult to see that any subnet

OA of O′
A is a TdON iff OA is a prefix of O′

A.

Definition 3. Given a TdPN NA = (P , T , Pre, Post, m0, L, Δ), a pair
β = (OA = (B, E, In, Out, q0, l, δ), h) is a branching process in (maximal)
step semantics of NA iff OA is a TdON in (maximal) step semantics and h :
B ∪ E → P ∪ T is a homomorphism from OA to NA such that:

(i) h is injective on q0, and on the post-set e•, for all e ∈ E, and
(ii) whenever In(e) = In(e′) and h(e) = h(e′), then e = e′, for all e, e′ ∈ E.

For branching processes β = (OA, h) and β′ = (O′
A, h′) in (maximal) step

semantics of a TdPN NA, a homomorphism g from OA to O′
A is a homomorphism

from β to β′ if h = h′ ◦ g.

Branching Processes of Timed Petri Nets 309

Lemma 2. Given branching processes β = (OA, h) and β′ = (O′
A, h′) in (maxi-

mal) step semantics of a TdPN NA, there is at most one homomorphism g from
β to β′ and, moreover, g is injective, if it exists.

For a branching process β = (OA, h) in maximal step semantics of NA, a
state (q, fe, u) reachable in maximal state semantics of OA is called finishing
iff in each firing sequence σ containing (q, fe, u), there is no maximal step in
(q, fe, u) and in each state following (q, fe, u) in σ.

A branching process β = (OA, h) in (maximal) step semantics of NA is
called apt iff for each state (q, fe, u) reachable in (maximal step semantics) of

OA, it holds: whenever (q, fe, u) R−→(max) in OA, then h(q, fe, u)
h(R)−→(max) in

NA, and whenever (q, fe, u) 1−→(max) in OA (and (q, fe, u) is a non-finishing

state), then h(q, ft, u) 1−→(max) in NA. Notice that every branching process in
step semantics of NA is apt but it is not the case for branching processes in
maximal step semantics of NA.

b1(p1)

a1, 3

b2(p2) b3(p3) b4(p4)

a2, 2 a3, 5

e2(t3)

e3(t1)

e4(t2) e5(t3)

e6(t1) e7(t4) e8(t4) e9(t4)

b5(p1)

b6(p2) b7(p3) b8(p4)

b9(p1) b10(p1) b11(p1) b12(p1)

a3, 5a2, 2

a1, 3 a4, 3 a4, 3 a4, 3

2

e1(t2)

Fig. 2. The branching process β in step semantics of the TdPN NA

Example 3. First, consider Fig. 2 with the branching process β = (OA, h) in
step semantics of the TdPN NA shown in Fig. 1. Here, the corresponding values
of the homomorphism h are indicated in parentheses near by the events and
conditions. However, β is not a branching process in maximal step semantics
of NA because it is impossible to find a maximal step in some state reachable

310 I. Virbitskaite et al.

b1(p1)

a1, 3

b2(p2) b3(p3) b4(p4)

a2, 2 a3, 5

e2(t3)

e3(t1)

e4(t2) e5(t3)

e6(t1) e9(t4)

b5(p1)

b6(p2) b7(p3) b8(p4)

b9(p1) b12(p1)

a3, 5a2, 2

a1, 3 a4, 3

e1(t2)

Fig. 3. The branching process β′ in maximal step semantics of the TdPN NA

in maximal step semantics, containing the event e7 or the event e8, i.e. OA is
not quasi-live in maximal step semantics. On the other hand, Fig. 3 shows the
branching process β′ = (O′

A, h′) in maximal step semantics of NA. Moreover, it
not difficult to become convinced that β′ is an apt branching process in maximal
step semantics of NA. Further, examine the subnet O′′

A consisting of the event
e1 and the conditions b1, b2 and b3 of the TdON O′

A and the restriction h′′ of h′

to the elements of O′′
A. Clearly, β′′ = (O′′

A, h′′) is a branching process in maximal
step semantics of NA. However, it is easy to see that β′′ is not an apt branching
process in maximal step semantics of NA because RO′′

= {e1} is a maximal step
in the initial state of O′′

A but h′′(RO′′
) is not a maximal step in the initial state

of NA.

Lemma 3. Given an (apt) branching process (OA, h) in (maximal) step seman-
tics of a TdPN NA, if (q, fe, u) is a (non-finishing) state reachable in (maximal)
step semantics of OA, then h(q, fe, u) is a state reachable in (maximal) step
semantics of NA.

Lemma 4. Given an (apt) branching process (OA, h) in (maximal) step seman-
tics of a TdPN NA possessing the non-multiple enabling property, OA is a TdON
possessing the non-multiple enabling property.

We extend the natural partial order � on TdONs in (maximal) step semantics
to a quasi-order � on branching processes in (maximal) step semantics of NA
as follows: β � β′ iff there exists a homomorphism from β to β′. We say that β

Branching Processes of Timed Petri Nets 311

and β′ are isomorphic iff β � β′ and β′ � β. A �-maximal branching process
in (maximal) step semantics of NA is called an unfolding in (maximal) step
semantics of NA.

Consider a characterization of (apt) unfoldings in (maximal) step semantics
of TdPNs.

Proposition 1. An (apt) branching process β = (OA, h) in (maximal) step
semantics of a (proper) TdPN NA is its (apt) unfolding in (maximal) step
semantics iff the following property holds:

(*) whenever (q, fe, u) is a state reachable in (maximal) step semantics of
OA, R is a (maximal) step in h(q, fe, u) of NA, containing a transition t, such
that Pre(t) = h(q̃) for some marking q̃ ≤ q, then there exists a (maximal) step
RO in (q, fe, u), containing an event e, such that h(RO) = R, h(e) = t, and
In(e) = q̃.

The following three results establish important properties of unfoldings of
TdPNs.

Lemma 5. Given an (apt) branching process β = (OA, h) and an (apt) unfold-
ing β′ = (O′

A, h′) in (maximal) step semantics of a (proper) TdPN NA, there is
a unique homomorphism g from β to β′.

Lemma 6. Given (apt) unfoldings β and β′ in (maximal) step semantics of
(proper) NA, such that β � β′, β and β′ are isomorphic.

β11, Eβ11 = {e1, e2, e3, e4, e5}

β0, Eβ0 = ∅

β1, Eβ1 = {e1}
β3, Eβ3 = {e1, e2}

β7, Eβ7 = {e1, e2, e3, e4}
β9, Eβ9 = {e1, e2, e3, e5}

β2, Eβ2 = {e2}

β5, Eβ5 = {e1, e2, e3}β4, Eβ4 = {e1, e3}

β6, Eβ6 = {e1, e3, e4}
β8, Eβ8 = {e1, e3, e5}

β10, Eβ10 = {e1, e3, e4, e5}

β16, Eβ16 = {e1, e3, e4, e5, e7} β17, Eβ17 = {e1, e2, e3, e4, e5, e7}

β12, Eβ12 = {e1, e3, e5, e8} β13, Eβ13 = {e1, e2, e3, e5, e8}
β14, Eβ14 = {e1, e3, e4, e6} β15, Eβ15 = {e1, e2, e3, e4, e6}

β18, Eβ18 = {e1, e3, e4, e5, e6}
β20, Eβ20 = {e1, e3, e4, e5, e8}

β19, Eβ19 = {e1, e2, e3, e4, e5, e6}
β21, Eβ21 = {e1, e2, e3, e4, e5, e8}

Fig. 4. An initial fragment of the complete lattice of branching processes in step seman-
tics of the TdPN NA

312 I. Virbitskaite et al.

βapt
0 , Eapt

β0
= ∅

βapt
1 , Eapt

β1
= {e1, e2}

βapt
3 , Eapt

β3
= {e1, e2, e3, e4} βapt

4 , Eapt
β4

= {e1, e2, e3, e5}

βapt
2 , Eapt

β2
= {e1, e2, e3}

βapt
8 , Eapt

β8
= {e1, e2, e3, e4, e5}

βapt
11 , Eapt

β11
= {e1, e2, e3, e4, e5, e6, e9}

βapt
7 , Eapt

β7
= {e1, e2, e3, e4, e6, e9}

Fig. 5. An initial fragment of the complete lattice of apt branching processes in maxi-
mal step semantics of the TdPN NA

Theorem 1. Every (proper) TdPN NA has a unique up to isomorphism (apt)
unfolding U(apt) in (maximal) step semantics such that β � U(apt), for any (apt)
branching process β in (maximal) step semantics of NA.

Theorem 1 and Lemma 2 imply that every (apt) branching process in (max-
imal) step semantics of a (proper) TdPN NA is isomorphic to a single prefix
of the (apt) unfolding in (maximal) step semantics of NA. So, we are ready to
establish the following important fact.

Proposition 2. The set of (apt) branching processes in (maximal) step seman-
tics of a (proper) TdPN NA forms a complete lattice w.r.t. �.

Example 4. Figures 4 and 5 show initial fragments of the complete lattices of
branching processes in step semantics and apt branching processes in maximal
step semantics, respectively, of the TdPN NA depicted in Fig. 1.

References

1. Aura, T., Lilius, J.: Time processes for time Petri nets. In: Azéma, P., Balbo, G.
(eds.) ICATPN 1997. LNCS, vol. 1248, pp. 136–155. Springer, Heidelberg (1997)

2. Baldan, P., Bruni, A., Corradini, A., Koenig, B., Rodriguez, C., Schwoon, S.: Effi-
cient unfolding of contextual Petri nets. Theor. Comput. Sci. 449, 2–22 (2012)

3. Baldan, P., Haar, S., König, B.: Distributed unfolding of Petri nets. In: Aceto, L.,
Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 126–141. Springer,
Heidelberg (2006)

4. Benveniste, A., Fabre, E., Jard, C., Haar, S.: Diagnosis of asynchronous discrete
event systems, a net unfolding approach. IEEE Trans. Autom. Control 48(5), 714–
727 (2003)

Branching Processes of Timed Petri Nets 313

5. Bergenthum, R., Mauser, S., Lorenz, R., Juhas, G.: Unfolding semantics of Petri
nets based on token flows. Fundamenta Informaticae 94(3–4), 331–360 (2009)

6. Bonet, B., Haslum, P., Hickmott, S.L., Thiébaux, S.: Directed unfolding of Petri
nets. In: Jensen, K., Aalst, W.M.P., Billington, J. (eds.) Transactions on Petri
Nets and Other Models of Concurrency I. LNCS, vol. 5100, pp. 172–198. Springer,
Heidelberg (2008)

7. Bonet, B., Haslumb, P., Khomenko, V., Thiebauxb, S., Vogler, W.: Recent advances
in unfolding technique. Theor. Comput. Sci. 551, 84–101 (2014)

8. Chatain, T., Jard, C.: Time supervision of concurrent systems using symbolic
unfoldings of time Petri nets. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005.
LNCS, vol. 3829, pp. 196–210. Springer, Heidelberg (2005)

9. Couvreur, J., Poitrenaud, D., Weil, P.: Branching processes of general Petri nets.
Fundamenta Informaticae 122, 31–58 (2013)

10. Engelfriet, J.: Branching processes of Petri nets. Acta Informatica 28(6), 575–591
(1991)

11. Esparza, J.: Model checking using net unfoldings. Sci. Comput. Program. 23(2–3),
151–195 (1994)

12. Fleischhack, H., Pelz, E.: Hierarchical timed high level nets and their branching
processes. In: Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp.
397–416. Springer, Heidelberg (2003)

13. Fleischhack, H., Stehno, C.: Computing a finite prefix of a time Petri net. In:
Esparza, J., Lakos, C.A. (eds.) ICATPN 2002. LNCS, vol. 2360, pp. 163–181.
Springer, Heidelberg (2002)

14. Hickmott, S., Rintanen, J., Thiebaux, S., White, L.: Planning via Petri net unfold-
ing. In: Proceedings of 20th International Joint Conference on Artificial Intelli-
gence. AAAI Press, pp. 1904–1911(2007)

15. Khomenko, V., Koutny, M., Vogler, W.: Canonical prefixes of Petri net unfoldings.
Acta Informatica 40(2), 95–118 (2003)

16. Meseguer, J., Montanari, U., Sassone, V.: On the semantics of place/transition
Petri nets. Math. Struct. Comput. Sci. 7(4), 359–397 (1997)

17. Nielsen, M., Plotkin, G.D., Winskel, G.: Petri nets, event structures and domains.
part i. theor. comput. sci. 13(1), 85–108 (1981)

18. Popova-Zeugmann, L.: Time and Petri Nets, pp. 1–209. Springer, Heidelberg
(2013). I-XI

19. Valero, V., de Frutos, D., Cuartero, F.: Timed processes of timed Petri nets.
In: DeMichelis, G., Dı́az, M. (eds.) ICATPN 1995. LNCS, vol. 935, pp. 490–509.
Springer, Heidelberg (1995)

Implementation and Evaluation of Contextual
Natural Deduction for Minimal Logic

Bruno Woltzenlogel Paleo1,2(B)

1 Vienna University of Technology, Vienna, Austria
2 Australian National University, Canberra, Australia

bruno.wp@gmail.com

Abstract. The contextual natural deduction calculus (NDc) extends
the usual natural deduction calculus (ND) by allowing the implication
introduction and elimination rules to operate on formulas that occur
inside contexts. It has been shown that, asymptotically in the best case,
NDc-proofs can be quadratically smaller than the smallest ND-proofs
of the same theorems. In this paper we describe the first implementa-
tion of a theorem prover for minimal logic based on NDc. Furthermore,
we empirically compare it to an equally simple ND theorem prover on
thousands of randomly generated conjectures.

1 Introduction

Natural deduction was introduced by Gentzen in [13] and one of its distinguishing
features is that the meaning of a logical connective is determined by elimination
and introduction rules, and not by axioms. As a result, formal natural deduction
proofs are considered to be similar in structure to their informal counterparts
and hence more natural. This subjective claim is corroborated by the observation
that widely used proof assistants1 follow a natural deduction style.

However, as exemplified in [21], the inference rules of natural deduction style
calculi can be inconvenient, lengthy and ultimately unnatural for formalizing
reasoning steps that modify a deeply located subformula of a formula, such as:
Tseitin’s transformation, skolemization, double negation elimination, quantifier
shifting, prenexification. . . Because these deep reasoning steps are commonly
used by automated deduction tools during preprocessing of the theorem to be
proved, the resulting proofs may contain deep inferences [10]. Therefore, auto-
matically replaying (i.e. reproving) these proofs in proof assistants (e.g. when
an automated deduction tool is integrated within a proof assistant [2]) can be
inefficient in terms of proving time and size of the generated shallow proof.

These challenges motivated the invention (in [21]) of the contextual natural
deduction calculus (NDc), which is a simple extension of the usual natural deduc-
tion calculus (here called ND) allowing introduction and elimination rules to
operate on formulas occurring inside contexts. The goals in [21] were purely
theoretical. It was shown that NDc is sound and complete, that proofs can be
1 e.g. Isabelle (www.cl.cam.ac.uk/research/hvg/Isabelle/) and Coq (http://coq.inria.fr).

c© Springer International Publishing Switzerland 2016
M. Mazzara and A. Voronkov (Eds.): PSI 2015, LNCS 9609, pp. 314–324, 2016.
DOI: 10.1007/978-3-319-41579-6 24

www.cl.cam.ac.uk/research/hvg/Isabelle/
http://coq.inria.fr

Implementation and Evaluation of Contextual Natural Deduction 315

normalized, and that some proofs can be quadratically smaller than the smallest
proofs of the same theorem in the usual natural deduction calculus. In contrast,
the main goal of the work reported in the present paper is to evaluate NDc

empirically. This is important, because asymptotic proof-complexity results can
be misleading when the assymptotic behaviour they describe for particular worst
cases or best cases is not observed in cases that occur most often in practice.

NDc can be regarded not only from a theorem proving perspective but also
from a proof compression point of view: a given ND-proof ψ could be compressed
by transforming it to a smaller NDc-proof. Since every ND-proof is also an
NDc-proof, a straightforward proof compression algorithm could simply try to
reprove ψ’s theorem using an NDc theorem prover.

The implementation of prototypical theorem provers based on ND and NDc

within the Skeptik framework (https://github.com/Paradoxika/Skeptik) is dis-
cussed in Sect. 3. These provers are restricted to minimal logic (intuitionistic
logic having only the implication connective). Although it would be straightfor-
ward to extend the contextual techniques to inference rules for other connectives
as well, the restriction to minimal logic implies less implementation effort and
is sufficient to estimate how promising the idea of contextual natural deduction
might be in practice. An experimental infra-structure, including a random for-
mula generator, also had to be implemented, as briefly described in Sect. 4. The
experimental results are shown and analyzed in Sect. 5.

Related work: due to the increasing maturity of automated deduction tools,
there has been a lot of recent work on proof production [11] and on the devel-
opment of algorithms for simplifying the generated proofs in a post-processing
phase. These methods have focused mostly on propositional resolution proofs
output by SAT- and SMT-solvers so far [1,3,4,9,12,23], but generalizations to
first-order resolution have been proposed as well [14]. There are also algorithms
aimed at compressing and structuring sequent calculus proofs by eliminating or
introducing cuts [17,22,25,26] or by extracting Herbrand sequents from proofs
[18–20]. [21] is probably the first work considering, from a theoretical perspective,
the compressibility of natural deduction proofs, and this paper reports the first
realization of this idea in practice. Contextual inferences have a lot in common
with the related idea of deep inference, which has been intensively investigated
in the last decade, especially for classical logic (e.g. [5,7,8,16]) but also for intu-
itionistic logic [6,15,24]. Despite the technical differences, deep inference calculi
were an inspiration for the development of contextual natural deduction.

2 Contextual Natural Deduction

In this paper a derivation is a tree of inferences (instances of the inference rules),
operating on sequents of the form Γ � t : T , where Γ is a (possibly empty) set of
named hypotheses h1 : H1, . . . , hn : Hn, t is a (contextual) lambda term (whose
free variables are among the names in Γ and whose bound variables are assumed
to have unique names) and T is a minimal logic formula (or equivalently, by the
Curry-Howard isomorphism, the type of t). A derivation ψ is a proof of a theorem

https://github.com/Paradoxika/Skeptik

316 B. Woltzenlogel Paleo

T if and only if its leaves are axiom inferences and it ends in � t : T , for some
term t. Figure 1 shows the rules of a natural deduction calculus for minimal logic
(here called ND).

Γ, a : A � a : A

Γ, a : A � b : B →I

Γ � λaA.b : A → B

Γ � f : A → B Γ � a : A →E
Γ � (f a) : B

Fig. 1. The natural deduction calculus ND

Figure 2 shows the inference rules of the contextual natural deduction calcu-
lus NDc along with a corresponding extension of the lambda calculus. NDc

extends ND by allowing the inference rules to operate on subformulas located
deeply inside the premises. The notation Cπ[F] indicates a formula that has the
subformula F in position π. Cπ[] is called the context of F in the formula Cπ[F].
A position π is encoded as a binary string indicating the path from the root of
Cπ[F] to F in the tree structure of Cπ[F]; thus, a subformula at position π of a
formula P , denoted Atπ(P), can be retrieved by traversing the formula according
to the following inductive definition:

Atε(A) = A At0π(A → B) = Atπ(B) At1π(A → B) = Atπ(A)

A position is said to be positive (negative) if and only if it contains an even (odd)
number of digits 1. In other words, in the tree structure of a formula, a node
and its left (right) child always occupy positions with opposite (same) polarities,
and the root position is positive. Moreover, a position is strongly positive if and
only if it does not contain any digit 1. NDc has two implication elimination
rules (i.e. →↼

E and →⇀
E) because the contexts can be combined in two different

ways, which are indicated by the superscript left and right harpoons. The natural
deduction calculus ND can be considered a restriction of NDc enforcing empty
contexts. Examples of NDc-proofs are available in [21].

3 Implementation

Implementation was done in Scala, leveraging and extending the Skeptik proof
compression library. Although Skeptik’s original focus was on propositional res-
olution proofs, the addition of data structures for natural deduction was easy
and required no refactoring, because Skeptik has always taken advantage of
Scala’s object-orientation features to be agnostic with respect to proof systems.

Implementation and Evaluation of Contextual Natural Deduction 317

Note: π, π1 and π2 must be positive positions.

Γ, a : A � a : A

Γ, a : A � b : Cπ[B] →I (π)
Γ � λπaA.b : Cπ[A → B]

Contextual Soundness Condition:
a is allowed to occur in b only if π is strongly positive.

Γ � f : C1
π1 [A → B] Γ � a : C2

π2 [A] →⇀
E (π1;π2)

Γ � (f a)⇀(π1;π2)
: C1

π1 [C2
π2 [B]]

Γ � f : C1
π1 [A → B] Γ � a : C2

π2 [A] →↼
E (π1;π2)

Γ � (f a)↼(π1;π2)
: C2

π2 [C1
π1 [B]]

Fig. 2. The contextual natural deduction calculus NDc

In Skeptik, inference rules are classes. In order to increase the confidence on
the correctness of inference rules, each rule class includes correctness checking
code and is kept as small as possible. The 3 classes for the ND rules are only
13 lines long. The single class ImpElimC for the two contextual implication elim-
ination rules has 17 lines and the soundness condition for the ImpIntroC rule
is a 10-line long trait. To the extent that these few lines of code are trusted,
any proof constructed using these inference rules is correct. Any code that is not
essential to the rule is written not in the class but in its companion object.

The class SimpleProver implements a theorem prover that is generic in
the sense that it takes arbitrary (companion objects of) inferences rules and
then performs bottom-up proof search using the given inference rules. For each
open goal, the prover tries all inference rules in a bottom-up manner in parallel,
generating all possible subgoals. Then it recursively tries to prove the subgoals
in parallel. When returning from the recursion, the prover chooses the smallest
subproof among all alternative subproofs returned by the recursive calls. This
exhaustive search strategy is appropriate in the context of proof compression,
where the goal is to find small proofs not necessarily as fast as possible. The
depth of the recursion is bounded by the maximum proof height specified as a
parameter of SimpleProver.

The companion objects of the inference rules implement a standard interface,
which provides methods that generate subgoals as required by the prover and
reconstruct the proof when the subgoals are proved. In the case of ND’s implica-
tion elimination rule, when generating subgoals for a goal of the form Γ � B, it is
necessary to guess a formula A in order to generate the subgoals Γ1 � A → B and
Γ2 � A. Exhaustively guessing all possible formulas would be inefficient. Instead,
the rule searches for hypotheses of the form D1 → (. . . → (Dk → B) . . .) in Γ
and then generates the subgoals Γ � (Dk → B) and Γ � Dk. The search Although

318 B. Woltzenlogel Paleo

proof search is still complete under this restriction, the proofs it finds are always
normalized. Consequently, a proof found by this procedure is not necessarily the
smallest possible proof, because sometimes non-normal proofs can be smaller.

Example 1. Let t : T be a closed simply typed lambda term corresponding to
a proof ψt of T with � inferences. Then the term (λxT .λcT→T→Z .((c x) x)) t
corresponds to a proof ψ of (T → T → Z) → Z with (� + 8) inferences hav-
ing ψt as a subproof. The proof search procedure described above, however,
would never be able to construct ψ. To do so, it would have to start by apply-
ing implication elimination. But since there are no hypotheses, no application
of implication elimination is possible according to the proof search procedure
described above. Instead, the procedure will have to start with an application of
implication introduction and will eventually construct the proof ψ′ correspond-
ing to the normalized term λcT→T→Z .((ct)t). Because ψ′ has (2�+4) inferences,
ψ is smaller than ψ′ and hence ψ′ is not the smallest possible proof, for large
enough �.

In the case of NDc rules, the generation of subgoals is complicated further
by the need to take positions into account. For a goal of the form Γ � F , the
contextual implication elimination rule first searches for all positive positions π1

and π2 such that F = Cπ1 [Cπ2 [B]] for some B. Then it searches for a hypothesis of
the form Cπ1 [D1 → (. . . → (Dk → B) . . .)] (or Cπ2 [D1 → (. . . → (Dk → B) . . .)])
and, if it succeeds, it generates the subgoals Γ � Cπ1 [(Dk → B)] and Γ � Cπ2 [Dk]
(or, respectively, Γ � Cπ2 [(Dk → B)] and Γ � Cπ1 [Dk]).

Example 2. Consider the goal h : C → (D → B)� (D → (C → B). There
are the following possibilities of values for the pair (π1, π2): (ε, ε), (ε, 0), (ε, 00),
(0, ε), (0, 0), (00, ε). Consider the case when π1 = 0 and π2 = 0. In this case,
Cπ1 [] = D → [] and Cπ2 [] = C → []. h is of the form Cπ2 [D → B]. Therefore,
for this case, the subgoals h : C → (D → B)� Cπ2 [D → B] (i.e. h : C → (D →
B)� C → (D → B)) and h : C → (D → B)� Cπ1 [D] (i.e. h : C → (D →
B)� D → D) are generated. The proof search procedure then continues trying
to prove these subgoals. After the subgoals are proved, a proof of the original
goal can be obtained with an application of contextual implication elimination.
The other cases for (π1, π2) do not result in contexts that match the hypothesis
h; therefore, no subgoals are generated for those other cases.

4 Experimental Setup

In order to evaluate the provers, a random formula generator was implemented. It
takes a desired size s and a desired number of distinct atomic formulas q as input.
Then it generates a list of length s containing q distinct atomic formulas. The list
is grown recursively, and at each iteration, every atomic formula is equally likely
to be selected. At this stage, care is taken to avoid generating formulas that
are isomorphic modulo variable renaming (e.g. A → B, B → A, A → C, . . . ;
only B → A can be generated). Subsequently, the generator transforms this list

Implementation and Evaluation of Contextual Natural Deduction 319

into a minimal logic formula by recursively introducing implications at random
positions in the list. The positions are equally likely to be selected (i.e. A →
(A → A) and (A → A) → A are equally probable to be generated).

The experiments varied the value of s from 3 to 15 and the value of q from
1 to s − 1. For each pair of values (s, q), 1000 formulas were generated, except
for small values of s and q, for which there are less than 1000 distinct formulas.
In total, 76755 formulas were generated.

For each generated formula f , the ND prover with a timeout of 30 s and a
maximum proof height of 20. The NDc prover, on the other hand, had a timeout
of 300 s and a maximum proof height of h + 1, where h is the height of proof
of f found by the ND prover. The larger timeout was chosen because NDc’s
contextual rules clearly result in a larger search space, with more subgoals to
try. With the larger timeout, it is possible to measure the impact of the larger
search space in the proof search time.

5 Results of the Experiments

30127 formulas were proved by the ND prover. 46628 formulas were shown to be
countersatisfiable by the ND prover, because it terminated before the timeout
exhausting the proof search space without finding a proof. There was no case
of timeout for the ND prover. There were 533 cases of timeout for the NDc

prover.
Among the 29594 formulas on which both provers were successful, 2557

(8.49 %) had shorter proofs in NDc than in ND. The total length of the NDc-
proofs was 2.97 % lesser than the total length of the proofs found by the ND
prover on all 29594 formulas. The total length of the NDc-proofs was 27.8 %
lesser than the total length of the ND-proofs on the 2557 proofs that admit
shorter NDc proofs.

In Fig. 3, each dot represents a generated formula and its position indicates
the length of the proof found by each prover. Overlapped dots are shown as
darker dots. In the standard box-whiskers plot of Fig. 4, formulas have been
grouped by the length of their ND-proofs. For each group, the chart shows the
median length of NDc-proofs, as well as the quantiles, fences and outliers. This
chart, together with the bar charts in Fig. 5 indicate a dependence of the com-
pressibility of proofs on the length. Figure 5 shows that the proportion of formu-
las that admit shorter NDc-proofs (i.e. whose ND-proofs could be compressed
to shorter NDc-proofs) tends to grow with the length of the ND-proofs. In a
larger proof, the likelihood of an opportunity for compression is greater; however,
the compression might be less significant in comparison to the proof length, as
indicated by the decreasing trend in Fig. 6.

The 3D-charts in Fig. 7 shed further light on what influences the proportion
of formulas that admit shorter NDc-proofs and the total compression ratios
(including all 29594 formulas). The proportion of formulas admitting shorter
NDc-proofs (and their total compression ratios) is higher the lower the number

320 B. Woltzenlogel Paleo

Fig. 3. Scatter Plot of Proof Lengths

Fig. 4. Box-Whiskers Plot of Proof Lengths

Implementation and Evaluation of Contextual Natural Deduction 321

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.0

0.1

0.2

0.3

0.4

Proof Length in Natural Deduction

Pr
op

or
tio

n
of

C
om

pr
es

se
d

Pr
oo

fs

Fig. 5. Proportion of Compressed Proofs by Length

3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Proof Length in Natural Deduction

T
ot

al
C

om
pr

es
si

on
R

at
io

Fig. 6. Total Compression by Length

322 B. Woltzenlogel Paleo

of distinct atoms they contain and the larger they are. The depths2 of the for-
mulas also seem to play a role, with greater compression proportions and total
compression ratios for intermediary depth values.

Fig. 7. Proportion of Compressed Proofs

Figure 8 (which takes into account all 76755 formulas) shows that the ND prover
rarely took longer than 10 milliseconds on a formula. The NDc prover was, as
expected, significantly slower than the ND prover, because the search space for
NDc proofs is much larger. Nevertheless, the NDc prover is surprinsingly faster
in a few cases, probably due to the stricter upper-bound on proof height.

Fig. 8. Scatter Plot of Proving Time

2 depth(A) = 1, for an atomic A; depth(B → C) = max(depth(B),depth(C)) + 1.

Implementation and Evaluation of Contextual Natural Deduction 323

6 Conclusions

The empirical investigation reported in this paper confirms the expectation that
NDc can provide shorter proofs in a significant number of cases. Because the
benchmarks were randomly generated, it is still an open question whether contex-
tual natural deduction will perform well on real-world benchmarks. Nevertheless,
the good performance on randomly generated benchmarks complements and the
previous theoretical result of asymptotic best-case quadratic compression shown
in [21]. Together, the experimental evaluation and the theoretical improved proof
complexity constitute strong evidence that contextualization is worth pursuing
for the sake of obtaining shorter proofs in natural deduction style.

The price to pay for shorter proofs is currently a much longer proving time. In
this paper, proving time was restricted by bounding the proof height during proof
search. Other more sophisticated techniques to restrict proof search should be
investigated in the future, in order to improve the efficiency of theorem proving
in NDc.

To evaluate the benefit of contextual natural deduction on real-world bench-
marks, it is firstly necessary to extend NDc to the more expressive higher-order
logics used by interactive proof assistants. Their libraries of formalized mathe-
matics contain proofs of theorems for which shorter contextual natural deduction
proofs could be possible.

Acknowledgements. This work was supported by an Stipendium of the
Österreichische Akademie der Wissenschaften (APART).

References

1. Bar-Ilan, O., Fuhrmann, O., Hoory, S., Shacham, O., Strichman, O.: Linear-time
reductions of resolution proofs. In: Chockler, H., Hu, A.J. (eds.) HVC 2008. LNCS,
vol. 5394, pp. 114–128. Springer, Heidelberg (2009)

2. Böhme, S., Nipkow, T.: Sledgehammer: judgement day. In: Giesl, J., Hähnle, R.
(eds.) IJCAR 2010. LNCS, vol. 6173, pp. 107–121. Springer, Heidelberg (2010)

3. Boudou, J., Fellner, A., Woltzenlogel Paleo, B.: Skeptik: a proof compression sys-
tem. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol.
8562, pp. 374–380. Springer, Heidelberg (2014)

4. Boudou, J., Woltzenlogel Paleo, B.: Compression of propositional resolution proofs
by lowering subproofs. In: Galmiche, D., Larchey-Wendling, D. (eds.) TABLEAUX
2013. LNCS, vol. 8123, pp. 59–73. Springer, Heidelberg (2013)

5. Brünnler, K.: Atomic cut elimination for classical logic. In: Baaz, M., Makowsky,
J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 86–97. Springer, Heidelberg (2003)

6. Brünnler, K., McKinley, R.: An algorithmic interpretation of a deep inference sys-
tem. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI),
vol. 5330, pp. 482–496. Springer, Heidelberg (2008)

7. Bruscoli, P., Guglielmi, A.: On the proof complexity of deep inference. ACM Trans.
Comput. Logic 10, 1–34 (2009)

324 B. Woltzenlogel Paleo

8. Bruscoli, P., Guglielmi, A., Gundersen, T., Parigot, M.: A quasipolynomial cut-
elimination procedure in deep inference via atomic flows and threshold formulae.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 136–153.
Springer, Heidelberg (2010)

9. Cotton, S.: Two techniques for minimizing resolution proofs. In: Strichman, O.,
Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 306–312. Springer, Heidelberg
(2010)

10. Deharbe, D., Fontaine, P., Woltzenlogel Paleo, B.: Quantifier inference rules in
the proof format of verit. In: 1st International Workshop on Proof Exchange for
Theorem Proving (2011)

11. Delahaye, D., Woltzenlogel Paleo, B. (eds.): All about Proofs, Proofs for All. Math-
ematical Logic and Foundations, vol. 55. College Publications, London (2015)

12. Fontaine, P., Merz, S., Woltzenlogel Paleo, B.: Compression of propositional reso-
lution proofs via partial regularization. In: Bjørner, N., Sofronie-Stokkermans, V.
(eds.) CADE 2011. LNCS, vol. 6803, pp. 237–251. Springer, Heidelberg (2011)

13. Gentzen, G.: Untersuchungen über das logische Schließen. Mathematische
Zeitschrift, vol. 39, pp. 176–210, 405–431 (1934–1935)

14. Gorzny, J., Woltzenlogel Paleo, B.: Towards the compression of first-order resolu-
tion proofs by lowering unit clauses. In: Felty, A.P., Middeldorp, A. (eds.) CADE-
25. LNCS, vol. 9195, pp. 356–366. Springer, Switzerland (2015)

15. Guenot, N.: Nested proof search as reduction in the lambda-calculus. In:
Schneider-Kamp, P., Hanus, M. (eds.) PPDP, pp. 183–194. ACM (2011)

16. Guglielmi, A.: A system of interaction and structure. CoRR cs.LO/9910023 (1999)
17. Hetzl, S., Leitsch, A., Weller, D.: Towards algorithmic cut-introduction. In:

Bjørner, N., Voronkov, A. (eds.) LPAR-18 2012. LNCS, vol. 7180, pp. 228–242.
Springer, Heidelberg (2012)

18. Hetzl, S., Leitsch, A., Weller, D., Woltzenlogel Paleo, B.: Herbrand sequent extrac-
tion. In: Autexier, S., Campbell, J., Rubio, J., Sorge, V., Suzuki, M., Wiedijk, F.
(eds.) AISC 2008, Calculemus 2008, and MKM 2008. LNCS (LNAI), vol. 5144, pp.
462–477. Springer, Heidelberg (2008)

19. Woltzenlogel Paleo, B.: Herbrand sequent extraction. M.sc. thesis, Technische Uni-
versität Dresden; Technische Universität Wien, Dresden, Germany; Wien, Austria
(2007)

20. Woltzenlogel Paleo, B.: Herbrand Sequent Extraction. VDM-Verlag, Saarbrücken,
Germany (2008)

21. Woltzenlogel Paleo, B.: Contextual natural deduction. In: Artemov, S., Nerode, A.
(eds.) LFCS 2013. LNCS, vol. 7734, pp. 372–386. Springer, Heidelberg (2013)

22. Woltzenlogel Paleo, B.: Reducing redundancy in cut-elimination by resolution.
J. Logic Comput. (2014). doi:10.1093/logcom/exu075. http://logcom.oxfordjour
nals.org/content/early/2014/12/13/logcom.exu075.full.pdf?keytype=ref&ijkey=
5g54fcql8kBznTf

23. Bruttomesso, R., Sharygina, N., Tsitovich, A.: Resolution proof transformation for
compression and interpolation. Formal Methods Syst. Des. 45(1), 1–41 (2014)

24. Tiu, A.F.: A local system for intuitionistic logic. In: Hermann, M., Voronkov, A.
(eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 242–256. Springer, Heidelberg
(2006)

25. Woltzenlogel Paleo, B.: A general analysis of cut-elimination by CERES. Ph.D.
Dissertation, Vienna University of Technology (2009)

26. Woltzenlogel Paleo, B.: Atomic cut introduction by resolution: proof structuring
and compression. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol.
6355, pp. 463–480. Springer, Heidelberg (2010)

http://dx.doi.org/10.1093/logcom/exu075
http://logcom.oxfordjournals.org/content/early/2014/12/13/logcom.exu075.full.pdf?keytype=ref&ijkey=5g54fcql8kBznTf
http://logcom.oxfordjournals.org/content/early/2014/12/13/logcom.exu075.full.pdf?keytype=ref&ijkey=5g54fcql8kBznTf
http://logcom.oxfordjournals.org/content/early/2014/12/13/logcom.exu075.full.pdf?keytype=ref&ijkey=5g54fcql8kBznTf

Hybrid Lustre

Zhenghen Yuan1, Tingliang Zhou2(B), Jing Liu1(B), Juan Luo2,
Yi Zhang2, and Xiaohong Chen1,3

1 Shanghai Key Lab of Trustworthy Computing,
East China Normal University, Shanghai, China

yuanzhengheng@gmail.com, jliu@sei.ecnu.edu.cn
2 Casco Signal LTD., Shanghai, China

{zhoutingliang,luojuan}@casco.com.cn
3 National Trustworthy Embedded Software Engineering Research Centre,

Shanghai, China

Abstract. Hybrid Lustre is a formal modeling language for a mixed
discrete-continuous system extended from Lustre. Lustre is a data-flow
based synchronous language widely used in development of real-time
embedded systems. While Luster lacks of a mechanism for modeling
continuous behavior of physical processes which are controlled by dig-
ital controllers, Hybrid Lustre is proposed as an extension of Lustre
to accommodate continuous behaviors in between discrete transitions.
The continuous state change can be specified by ordinary differential
equations. The syntax and the semantics of Hybrid Lustre are formally
described, thus to support verifying the correctness of models of mixed
discrete-continuous systems. It is successfully used in development of new
generation Communication Based Zone Controller of Casco Signal LTD.

1 Introduction

Synchronous languages including Esterel [1], Lustre [2], Signal [3] have been
established as a technology of choice for modeling, specifying, validating, and
implementing real-time embedded applications [4] since 1991. As concurrency,
simplicity and synchrony have been considered form the beginning of the devel-
opment of the languages, they have got acceptation by the industries. Lustre
may be the most popular one of these three languages. With a commercial tool
SCADE (Safety Critical Application Development Environment) developed by
Esterel Technologies, many successful systems have been developed and running
in Aerospace, Automotive, Rail & Transport and Energy & Nuclear.

Lustre is a dataflow model based language. It can be seen as a diagram where
operators are connected by lines which are flows of data. It divides time into dis-
crete instants [4], so that each variable in Lustre is a sequence of values, i.e.,
variable is a function of time. These features make it easier to ensure synchro-
nous. With a frequency decided by the environment active the Lustre program,
variables won’t cover their history values so as avoid wrong updates in normal
programming languages.

c© Springer International Publishing Switzerland 2016
M. Mazzara and A. Voronkov (Eds.): PSI 2015, LNCS 9609, pp. 325–340, 2016.
DOI: 10.1007/978-3-319-41579-6 25

326 Z. Yuan et al.

Model checking based approaches are widely used in the verification and
validation of embedded systems [5,6]. For the propose of model checking of
Lustre programs, the verifier will explore all state space of the program, and
declare whether the state follows the property being verified. If there is a negative
answer reached, the verifier produces a result with a counter-example to show
the state the property gets wrong.

So it’s obviously that besides Design model (the system under verification),
there should be an Observer which implements the property the system has to
keep. As inputs, it receives only the inputs and outputs of Design model which
is “black” from the sight of Observer, i.e., what happened in it is not known by
Observer. The output of Observer is the answer that whether the state of the
system follows the property.

Another model is Environment [7]. Environment should be an abstract of the
real outer system. Its main purpose is to give a possible input space of all values
the system get from the real environment. However, a node with too much details
will increase the complexity of the verification which leads to the opposite side
of our springboard. In the solution being used now, a very rough Environment is
constructed. It only ensures that the sensors’ value are valid and some very simple
connections between different variables. The lack of an accurate description and
the transition relation of Environment make it possible to produce all correct
input state space to the system as well as many unnecessary ones, which increase
the state explosion problem.

This makes it important to find a way modeling a more accurate Environ-
ment. Now in real-time online social networks, it is getting more important
[8,9]. However, for the systems always interact with the physical world, Lustre
based on the discrete logic time is not enough. Proposing a language which has
the features of Lustre as well as supporting the modeling of physical world is
important. To address this, we propose to extend Lustre with the time model
of Hybrid Automata. Hybrid Automata is a formal model which combines the
discrete systems and continuous dynamics. It is a special kind of finite state
machine [10]. In each state, there exists the continuous variables described by
Ordinary Differential Equations (ODEs). And among the states, there are the
discrete transition processes. Hybrid Lustre is the result language which based
on Lustre and extended by the time model of Hybrid Automata, and it supports
the description of ODEs.

There are two common ways to describe ODEs. Both of them need to take
the initial value and the slope as inputs. The difference is the third input. It
can be either the duration time or the final value, and this depends the method
how the program transits. Since the real-time embedded systems are activated
by logic clock (in Lustre we call it cycles), our method is updating all variables
which involved in ODEs. And then the problem rely on the projection of physical
time to logic clock. With the terminal value accessible, the system can run in
current state without considering the mapping from logic clock to physical time.
In fact, this is the time model of hybrid automata. More advantages can be taken
by the developers for the only thing they have to do is focusing on the guard

Hybrid Lustre 327

actions which leads the transition of system. However, the durations between
discrete clocks are often same in Lustre programs (stable cycles), which makes
the physical time divided by the stable cycles while waiting for the satisfaction
of the transition guard. To get the value of the outputs at the stable cycles, it
has to use the initial value, slope and the duration time. That’s why we use a
combined method to Hybrid Lustre.

This paper presents an extension on Lustre language in order to model hybrid
systems. Since the physical world can described by ODEs in most cases, differ-
ence between Lustre and Hybrid Lustre is the support of ODEs. Section 2 intro-
duces the Hybrid Dataflow model and the reason why we extend Lustre in such
a way. The extended part will be presented in detailed syntax and semantics in
Sects. 3 and 4. And an example which is divided from a project verifying Zone
Control (ZC) is showed in Sect. 5. Section 6 is the related work and Sect. 7 is
conclusions.

2 Hybrid Dataflow Model

Lustre is based on an abstract notion of time. In an informal description, each
variable has its own logic clock which ticks when all inputs of the node it belongs
to are available. With this definition, each variable has a discrete clock which
“ticks” when the node is activated. As a node runs only when the program is
activated, and no more than one time at each activation (for the dataflow model),
all clocks can be seen as a sub-clock of the one of the program, which is called
basic clock of the system. In fact, in Lustre, clock is described as a sequence of
Boolean values. The basic clock is a sequence of true values, and other clocks
have false values, which means at those instants, the variable has no definition.
From the system level, Lustre program is often running with a stable cycle.
The developers of synchronous languages consider that if the program’s worst
running time of each cycle is shorter than the period of the system, we can take
the program as running instantaneous. This assumption helps a lot to make
Lustre synchrony [4].

Hybrid automata is a classic hybrid model which contains both discrete and
continuous behaviors. The transition relations are guarded by Boolean expres-
sions as well as dynamic behaviors are described by location invariants. Discrete
event triggers as soon as the guard of it being satisfied. When all guards are
not satisfied, location invariants ensure the value of the continuous variables
changing.

We take the time model implemented by Hybrid Automata to extend Lustre.
This makes the discrete part of Hybrid Lustre almost has no difference with the
original. The events are still instantaneous, and [11] proved that this model covers
the expressiveness of all models which discrete transitions has none, a constant
or a variable time-delay. For Lustre does not have control flows exhibitively, the
Sequential Switch operators take the role instead of guarded actions. However,
these operators only effect when the logic clock ticks. This makes them not
enough to cover the requirements of continuous behaviors. A more precise model

328 Z. Yuan et al.

is the continuous operators should take a predict at the beginning of the dynamic
behaviors. The guards will be established from the correlative Sequential Switch
operators of the hybrid variables, and an additional transition will be activated
if it is predicted that one of the guards will be satisfied before next discrete cycle
comes. A non-negative integer will be specified as the maximum number of the
discrete transitions can be triggered during one basic clock duration in order to
prevent Zeno.

Definition 1. A Hybrid Lustre program has a Basic Clock (BC), whose value
is a sequence of Real values. These values present the actual time of each discrete
cycle. It has two main responsibility:

First, it defines the universal set of all clocks in the program as well as
recording all physical time of all discrete cycles. And secondly, when it is treated
as a discrete clock, BC can be seen as a Boolean value which is always true.

Definition 2. In Hybrid Lustre programs, each discrete variable has a Discrete
Clock (DC), whose value is a Boolean sequence. Only when DC’s value is true,
the value of the variable is updated.

At any discrete cycle, the number of the values of DC and BC should be same.
This is because of that the nodes in the program can be activated only when
the system initials a new discrete cycle. If the node is not activated at a cycle,
it gets a value false of DCs of the variables in the node.

Definition 3. When being connected by an operator ∩, DC1 ∩ DC2 results in
a discrete clock DC3 which has a cycle at the instants that DC1 and DC2 both
have a cycle, i.e., the instants DC1 = true and DC2 = true. And DC1 ∩ CC
results in DC1.

Definition 4. When being connected by an operator ∪, DC1 ∪ DC2 results in
a discrete clock DC3 which has a cycle at the instants that at least one of DC1

and DC2 has a cycle, i.e., the instants DC1 = true or DC2 = true. And
DC1 ∪ CC results in CC.

3 Syntax of Hybrid Lustre

In this section, the syntax of Hybrid Lustre is formalized. Lustre is extended
with two constructs: new type hybrid and new operators.

– hybrid: hybrid is a new type defined in Hybrid Lustre in order to present the
continuous variables which does not has a discrete clock, and can be expressed
by ODEs.

In order to be known from discrete clocks defined in Hybrid Lustre, we use
Continuous Clock (CC) to present the concept of physical time. It can be seen
as dense time [12].

Any variables or expressions defined in Lustre denotes an infinite sequence
of values. Each value can be seen as a kind of memory of the expression at a

Hybrid Lustre 329

certain cycle. Thus the variables and expressions are separated into discrete by
the computing cycle. The value between cycles is made no more sense. However,
type hybrid makes it different that variables defined in this type should have
value at any time of the system, or the value of the variable can be known at
any instant.

e ::= e | uop e1 | e1 bop e2 |
if e1 then e2 else e3 |
pre(e) | e1 -> e2 |
e1 when e2 | e1 current e2|
ing(e1, e2) | der(e1) |
e1, ..., en

where bop is binary language operator and uop is unary language operator. These
operators can be divided into three kinds showed below.

– boolean operators:
and, or, not;

– arithmetic operators:
+,−, ∗, /;

– relational operators:
=, <>,>,<,>=, <=;

Further more, pre, →, when and current are temporal operators which have
definition in Lustre, and ing and der are newly defined hybrid operators in
Hybrid Lustre.

– pre(e) represents the last value of e, i.e., the value of e at previous cycle. If e
has a hybrid type, the previous cycle is read from BC of the program.

– e1 → e2 expresses a sequence whose first value is taken from e1 and the rest
are from e2.

– e1 when e2 “projects” e1 to the clock that the Boolean variable e2 declares.
There are no definition of e1 when e2 is false.

– e1 current e2 returns e1’s value as the last value of e1 where e2 is true. For
example, if e1 is a sequence of (e0, e1, e2, e3, e4, ...) and e2 is (t, f, t, t, f, ...),
then e1 when e2 is (e0, e2, e3, ...) with a clock (t, f, t, t, f, ...) and e1 current
e2 is (e0, e0, e1, e2, e2, ...).

– ing(e1, e2) defines a continuous behavior. The value of the expression is ini-
tialized as e1, and derivative is e2.

– der(e1) gives an opposite result of ing. Its value is the derivative of the expres-
sion.

The syntax of the expressions in Hybrid Lustre is introduced above. Expres-
sions are considered as variables that has a certain with it, showing at which cycle
the expression has a value. Hybrid Lustre programs are constructed by nodes. It
is a package of dataflows with defined inputs and outputs. More detailed syntax
on node level can be found in [13]. There is no much difference between Lustre
and Hybrid Lustre.

330 Z. Yuan et al.

4 Semantics of Hybrid Lustre

4.1 Typing Rules and Semantics

In this section, discrete type (dt for short) includes integer, float and boolean
types. These are all discrete variable types, and their must be defined on a
discrete clock. Otherwise, all continuous variables are defined in type hybrid,
and the clock of them must be continuous clock.

Arithmetic Operators

DC1 � e1 : dt DC2 � e2 : dt
DC1 ∩ DC2 � e1 × e2 : dt

two discrete expressions connected with an arithmetic operator results in a dis-
crete expression. The clock of it is the disjunction of two clocks, i.e., e1 × e2 has
value only when e1 and e2 both have value.

DC � e1 : dt CC � e2 : hybrid
DC � e1 × e2 : dt

with a discrete expression e1 and a continuous expression e2 connected with an
arithmetic operator, the results should be a discrete expression. The clock it
based on is the same as e1. The operation takes the value of e2 at current time
and compute the result as two discrete expressions.

CC � e1 : hybrid CC � e2 : hybrid
BC � e1 × e2 : float

two continuous expressions can be connected with an arithmetic operator. How-
ever the result of it is a discrete variable which based on the basic clock of the
program. The operation will first read the value of two continuous expressions
at current time, and compute the result as discrete expressions.

Relation Operators

DC1 � e1 : dt DC2 � e2 : dt
DC1 ∩ DC2 � e1 × e2 : boolean

connecting two discrete expressions with a relation operator results in a Boolean
sequence. Especially if the clocks of two expressions are different, the Boolean
sequence’s clock is the disjunction of them.

DC � e1 : dt CC � e2 : hybrid
DC � e1 × e2 : boolean

when a discrete expression compared with a continuous one, the result should
be a Boolean sequence with the discrete expression’s clock. The comparison will
be done with the current value of both expressions.

Hybrid Lustre 331

CC � e1 : hybrid CC � e2 : hybrid
BC � e1 × e2 : boolean

two continuous expressions connected with a relation operator will leads to a
Boolean sequence either, but its clock should be constrained to basic clock of
the system. Also, before the compare, the value of two continuous expressions
will be computed.

Sequential Switch

DC � e1 : boolean DC � e2 : dt DC � e3 : dt
DC � if e1 then e2 else e3 : dt

the expression following if has to be a Boolean expression, and the other two
should have a same clock and same type. The result share the same clock of
them and the value is decided by the value of e1.

DC � e1 : boolean CC � e2 : hybrid CC � e3 : hybrid
DC � if e1 then e2 else e3 : dt

even if the expressions after then and else are both continuous, the result is still
a discrete expression. The clock of it follows the one of the condition expression.
The values of the continuous expressions are still computed by the times stored
in basic clock.

followed by (→)

DC1 � e1 : dt DC2 � e2 : dt
DC2 � e1 → e2 : dt

if a discrete expression is followed by another discrete expression, the result
should be a discrete expression. Its clock follows the second one.

DC � e1 : dt CC � e2 : hybrid
DC � e1 → e2 : float

if a discrete expression is followed by a continuous expression, the result should
be a float sequence with the discrete expression’s clock.

CC � e1 : hybrid DC � e2 : dt
DC � e1 → e2 : float

if a continuous expression is followed by a discrete expression, the first value of
the result is the initial value of the continuous one, and the rest is the discrete
one’s. The clock of the result follows the discrete one and the type is float.

CC � e1 : hybrid CC � e2 : hybrid
BC � e1 → e2 : float

if a continuous expression is followed by another continuous expression, the result
also has a continuous type, with an initial value of the first one and the rest from
the second one.

332 Z. Yuan et al.

when For when operator, the second expression is always a Boolean sequence
which can be treated as a clock.

DC1 � e1 : dt DC2 � e2 : boolean
DC1 ∩ {e2 = true} � e1 : dt

a discrete expression will be projected to a subset of its values where the new
sequence has a clock which is the injection of the discrete one and the Boolean
sequence.

CC � e1 : hybrid BC � e2 : boolean
{e2 = true} � e1 : float

a continuous expression can only be connected to a Boolean sequence which is
defined on a basic clock. The result of the operation is a float sequence with a
clock where the Boolean sequence is true.

current As in when operator, the second expression of current operator is
always a Boolean sequence which can be treated as a clock.

DC � e1 : dt DC � e2 : boolean
DC � e1 current e2 : dt

the result sequence won’t change its value unless the value of the Boolean
sequence is true. The clock of the result sequence is same as the discrete sequence.

CC � e1 : hybrid DC � e2 : boolean
DC � e1 current e2 : float

when the expression before the current operator is a continuous one, the instants
that Boolean sequence becomes true can be seen as the change point of the value
of the result. It has a discrete type.

ing

DC � e1 : dt DC � e2 : dt
CC � ing(e1, e2) : hybrid

the parameters of the ing operator should be both discrete expressions. And
they should have a same clock. The result will become a continuous expression.
The first expression is the initial value of the operation in each cycle, and the
second one is the derivative.

der

DC � e1 : dt
CC � der(e1) : hybrid

the operator can deal with discrete variables. And the result is a continuous one.

Hybrid Lustre 333

CC � e1 : hybrid
CC � der(e1) : hybrid

the operator can deal with continuous variables. And the result is also a contin-
uous one.

4.2 Safe Semantics and Live Semantics

Hybrid Lustre does not have control flows exhibitively. The transition relation
between different states can be extract from sequential switch operators (if e1
then e2 else e3). If at a certain cycle, e1 changes its value from true to false, we
consider it is a transfer from state “X = e2” to state “X = e3”. We can
consider e1 as a transition guard.

However, for Hybrid Lustre, determining the instant at which next transfer
may happen is one of the key problem. Discrete expressions will not trigger a
transfer between two cycles, but a continuous expression may change the value
of transition guard before next discrete instant.

To cross over the gap, a new transition trigger event is introduced here.
Generally, in reactive systems, there exists a stable duration time between cycles.
In Hybrid Lustre, we assume this stable cycle is known. Then the program can
compute the physical time of next cycle by following steps:

1. The program receives necessary resources, so as to activate a new discrete
cycle;

2. With the data flow sequence, variables get their current values, i.e., discrete
ones have been computed, and continuous one get their initial value as well
as the slope between this cycle and the next one. The outputs are computed
in this step.

3. Collect all transition guards of the program, and pick out the relative contin-
uous variables. The values of these variables from current cycle to next one
will be computed.

4. All transition guards will be judged whether the values of them will change
in the coming cycle. If there is any transition will be activated, the exact time
should be known and the duration from current cycle to the next one will be
divided into two at that instant. Then go to step 2. Otherwise, go to next
discrete cycle.

It should be mentioned that the divided cycles between two contiguous dis-
crete cycles should have a maximum number, with which the accuracy can be
accepted by the program and ensures the program is nonzeno.

4.3 A Tool

We have implemented a tool which support modeling and simulation of Hybrid
Lustre programs. It is based on Ptolemy II [14]. A new director named HL
Director has been developed to indicate that the model should follow the syntax
and semantic of Hybrid Lustre.

334 Z. Yuan et al.

The following operators are developed in HL Director: HLPre, HLFol-
lowedBY, HLWhen, HLCurrent, HLBooleanSelect, HLIng, HLDer.

– HLPre is pre operator, which gets the value of the variable in previous discrete
cycle.

– HLFollowedBy is followedby operator, which changes the initial value of a
variable.

– HLWhen is when operator, which changes the clock of the variable according
to a Boolean sequence.

– HLCurrent is current operator, which changes the value of the variable accord-
ing to a Boolean sequence.

– HLBooleanSelect is if...then...else... operator, which returns one of the vari-
able according to the Boolean variable.

– HLIng is ing operator, which integrates the value of a variable.
– HLDer is der operator, which is derivation.

5 An Application

5.1 Calculation of End of Authority

Communications-Based Train Control (CBTC) system is one kind of typical
safety critical systems. Different from the last generation train control system,
trains are protected by moving block instead of fixed block. Trackside equipments
compute safe sections of each train according to the exact positions. These safe
sections are sent to trains again in every compute cycle, and they are called
movement authorities (MA). The main part of MA report is a coordinate, shows
that the track from the current exact position of a train to MA is safe to pass
and any other train can not enter this region. It’s blocked.

As MA is an area on the track, it has two coordinates. It always starts from
the head of the train, and for ZC, this coordinate is part of Environment which
is computed by other systems in CBTC. So the only value ZC should compute
is the end point of MA, which called End of Authority (EOA). The computation
of EOA relies on the location of the train, the state of signals and points. In
the real environment of the node, there are more than 100 sensors. Most of the
sensors are numerical value, which decrease the effect of the verification.

5.2 The Environment Node of the Computation of EOA

The Environment of the computation of EOA node (CAL EOA) focus on show-
ing the constrains of the values of all sensors and the relationship among them.
As a detailed example, the following five sensors will be discussed:

– g arrsTrain LocMinPoss
– g arrsTrain LocMaxBrchPoss
– g arrsTrain LocMinBrchPoss
– g arrsTrain LocMinOrientations
– g arrsTrain LocMinBrchOrientations

Hybrid Lustre 335

A train location is decided by four coordinates: MaxHeadPos,
MinHeadPos, MaxTailPos, MinTailPos. The range [MinHeadPos,
MaxHeadPos] shows an imprecise location of train head as well as
[MinTailPos, MaxTailPos] is the imprecise location of train tail.
MinHeadPos and MinTailPos can be read from g arrsTrain LocMinPoss.
However, MaxHeadPos and MaxTailPos are not stored directly in above
sensors.

The coordinates have been discussed are based on block-based coordi-
nate system. A point’s location can be expressed by a tuple (Block Index,
OffsetOnBlock). Block Index shows on which block the point locates, and
OffsetOnBlock gives the exact distance between the point and the start
endpoint of the block. Similarly, there is another coordinate system which
based on branches. Branch is a connected track consisted by a number of
blocks. A branch can not link to another branch, or they should become
one branch. The branches may differ at any cycle of the computation, for
some equipments can change the connecting relationship among blocks. A
branch-based coordinate system is accessible for CAL EOA node. It has
the same structure with block-based coordinate system to locate a point
with (Branch Index, OffsetOnBranch). Block-based locations are transfered
to branch-based locations out of CAL EOA node, and they are stored in
g arrsTrain LocMaxBrchPoss and g arrsTrain LocMinBrchPoss.

Orientations are directions of the train. The front orientation is the direction
from train tail to head, and the other one is on opposite. There also exist a block
orientation and a branch one in two sensors: g arrsTrain LocMinOrientations
and g arrsTrain LocMinBrchOrientations.

Totally, there are about one hundred lines of code for the description of five
sensors. Among them, eleven lines are “assert”s. These “assert”s are about

– All values should in the valid range.
– Sensors g arrsTrain LocMinPoss and g arrsTrain LocMinBrchPoss

should be same points on the track.
– Each two directions stored in g arrsTrain LocMinOrientations or
g arrsTrain LocMinBrchOrientations should be different.

5.3 Realization of Environment with Hybrid Lustre

In this section, a realization of Environment of the CAL EOA node will be
presented. The node will be extended with Hybrid Lustre, and we will show the
great difference between the original Lustre and Hybrid Lustre.

node LocateTrain() returns ()
let
assert BlkPos2BrchPos(g_arrsTrain_LocMinPoss)

= g_arrsTrain_LocMinBrchPoss;
assert BlkPos2BrchPos(g_arrsTrain_LocMaxPoss)

= g_arrsTrain_LocMaxBrchPoss;

336 Z. Yuan et al.

assert g_arrsTrain_LocMinOrientations.Head
<> g_arrsTrain_LocMinOrientations.Tail;

tel

Except the functions mentioned above, Environment can give more con-
strains about the sensors with Hybrid Lustre. Without an established standard
to decided how many constrains will be the best quantity, we take a balance here
between the number and the accuracy. Following constrains are modeled in this
realization.

Constrains About the Velocity and Acceleration. As a basic physical
law, velocity is the derivative of distance the train moved, and acceleration is
the derivative of velocity. Apparently, both value have a valid range.

LOChCurMinHeadVel = der(g_arrsTrain_LocMinBrchPoss.Head.iAbs);
LOChCurMinHeadAcc = der(LOChCurMinHeadVel);
assert LOChCurMinHeadVel <= MaxVel

and LOChCurMinHeadVel >= MinVel;
assert LOChCurMinHeadAcc <= MaxAcc

and LOChCurMinHeadAcc >= MinAcc;

Here MaxV el, MinV el, MaxAcc and MinAcc are predefined constants about
the valid range of velocity and acceleration. LOChPreV el and LOChPreAcc
are hybrid variables.

Model Some Basic Behaviors with Constrains. In order to give a contin-
uous environment to CAL EOA node, first we should determine the scope of
the node. In this example, Environment should predict the possible location of
the train in the following cycle, determine the states that won’t be reached in
certain situation and decrease the state space which help verification efficiency.

Following is the code of the assertions about g arrsTrain LocMinBrchPoss:

LOCbInSafeRng = (LOCiTrainAbs - LOCiEOAAbs >= SafeDist);
LOChMaxAcc = MAX[LOChCurMinHeadAcc, LOChCurMinTailAcc,

LOChCurMaxHeadAcc, LOChCurMaxTailAcc];
LOChMinAcc = MIN[LOChCurMinHeadAcc, LOChCurMinTailAcc,

LOChCurMaxHeadAcc, LOChCurMaxTailAcc];
LOChCurMaxAbs = if LOCbInSafeRng

then ing(g_arrsTrain_LocMinPoss.Head.iAbs,
ing(LOChCurVel, LOChMaxAcc))

else ing(g_arrsTrain_LocMinPoss.Head.iAbs,
ing(LOChCurVel, MinAcc));

LOChCurMinAbs = if LOCbInSafeRng
then ing(g_arrsTrain_LocMinPoss.Head.iAbs,

ing(LOChCurVel, LOChMinAcc))
else ing(g_arrsTrain_LocMinPoss.Head.iAbs,

Hybrid Lustre 337

ing(LOChCurVel, MinAcc));
assert g_arrsTrain_LocMinBrchPoss.Head.iAbs

>= pre(LOChCurMinAbs);
assert g_arrsTrain_LocMinBrchPoss.Head.iAbs

<= pre(LOChCurMaxAbs);

LOChMaxAcc and LOChMinAcc are the maximum value and minimum value
of the acceleration. After being integrated twice, they can be considered as the
range of the location of the train in next discrete cycle. Furthermore, these code
present a basic control logic: if the train is too close to EOA, it should have an
emergency break.

The Simulation Result: Figure 1 shows the model described above which
is implemented in the tool, it’s a part of Environment of CAL EOA. With
this model, the most important train control logic can be described. And
for these additional constrains about the sensors being used in CAL EOA,
the input space can be more precise. As it can be seen in the figure,
g arrsTrain LocMaxBrchPoss and g arrsTrainLocMinBrchPoss are deriva-
tived twice, reaching the range of the velocity and acceleration of the train. And
through some asserts, the values are constrained in valid range. The difference
among the values is treated as error value, which leads to a random value of the
location of the train in next discrete cycle.

Fig. 1. The Hybrid Lustre tool based on Ptolemy II and the Environment node

338 Z. Yuan et al.

Fig. 2. Simulation result of Environment

Figure 2 is simulation results of the node showed in Fig. 1. The x-axis is
time with unit of 100 ms, and the y-axis is the distance the train moved from
start with unit of 1 cm. We simulate a train starting from the frontier of ZC.
The simulation has been run for 10000 times, and the figure shows that most
“distance-time” curves locate in the dark area, so as to each point in it is an
input state space of the system.

6 Related Work

There are other synchronous languages being extended to hybrid. Kerstin Bauer
[11] has considered a synchronous language Quartz, and he extend it to Hybrid
Quartz. The target of the language is deal with non-trivial cyber-physical sys-
tems. The semantics of Hybrid Quartz is formally defined with structural opera-
tional semantics rules that have been extended by continuous phase rules. Bauer
gave a proof of the reason why he chose hybrid automata as the time model of
Hybrid Quartz, and this proof help us a lot in design decision of Hybrid Lustre.
Albert Benveniste [15] introduced a language for programming explicit hybrid
systems with synchronous concurrency, ordinary differential equations, and hier-
archical automata. Benveniste crossed the gap between discrete logic time and
physical by using zero-crossing which has been used in Simulink/Stateflow. They
have also implemented a tool to support this language which named Zlus [16].

Our method is extending Lustre with hybrid automata. However, the time
model is still different from the languages mentioned above. Benefited by the
static cycle time of most Lustre programs, we use a predict way to divide the
duration between two cycle into more pieces and activate the transitions among
program states.

Hybrid Lustre 339

7 Conclusions

Real-Time systems have a limitation in dealing with both continuous and discrete
data-flows. With increasing calling for formalisms supporting these features, we
have constructed an extension of Lustre, namely Hybrid Lustre. Dedicated to
the verification of real-time systems, Hybrid Lustre offers formal syntax and
semantics to dynamic behaviors. Also the semantics of Hybrid Lustre defines
the operations of the operators dealing with hybrid variables.

We have shown an application of Hybrid Lustre from Communications-Based
Train Control systems. Focusing on the verification of CAL EOA node which is
one of the most important functions in Zone Controller, the Environment node
reaches more constrains with the extended language. This help the verification
can be run in a continuous way, opposite from the original cycles which are
disconnected with another cycle. And a tool which supports modeling systems
with Hybrid Lustre has been developed.

In future work, we will focus on the design method for Environment node,
which should contain all situations that the system consider itself running
correct.

Acknowledgment. Thanks the reviewers for their valuable comments. This paper is
partially supported by the projects funded by the NSFC Trustworthy Software Track
91318301, NSFC Creative Team 61321064, NSFC Key Project 61332008 and NSFC
61170084. The Shanghai Trustworthy Computing Key Lab is supported by Shanghai
Knowledge Service Platform ZF 1213. The third author is supported by NSFC 91418203
and Shanghai Project (No. 14511100400).

References

1. Boussinot, F., De Simone, R.: The esterel language. Proc. IEEE 79(9), 1293–1304
(1991)

2. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data flow
programming language lustre. Proc. IEEE 79(9), 1305–1320 (1991)

3. LeGuernic, P., Gautier, T., Le Borgne, M., Le Maire, C.: Programming real-time
applications with signal. Proc. IEEE 79(9), 1321–1336 (1991)

4. Benveniste, A., Caspi, P., Edwards, S.A., Halbwachs, N., Le Guernic, P., De
Simone, R.: The synchronous languages 12 years later. Proc. IEEE 91(1),
64–83 (2003)

5. Clarke, E.M., Grumberg, O., Peled, D.: Model checking. MIT Press, Cambridge
(1999)

6. Chen, M., Qin, X., Koo, H., Mishra, P.: System-Level Validation: High-Level Mod-
eling and Directed Test Generation Techniques. Springer, Heidelberg (2013)

7. Halbwachs, N., Lagnier, F., Ratel, C.: Programming and verifying real-time sys-
tems by means of the synchronous data-flow language lustre. IEEE Trans. Softw.
Eng. 18(9), 785–793 (1992)

8. Gu, H., Hang, H., Lv, Q., Grunwald, D.: Fusing text and frienships for location
inference in online social networks. In: IEEE/WIC/ACM International Confer-
ences on Web Intelligence and Intelligent Agent Technology (WI-IAT), vol. 1,
pp. 158–165. IEEE (2012)

340 Z. Yuan et al.

9. Gu, H., Xie, X., Lv, Q., Ruan, Y., Shang, L.: Etree: effective and efficient event
modeling for real-time online social media networks. In: 2011 IEEE/WIC/ACM
International Conference on Web Intelligence and Intelligent Agent Technology
(WI-IAT), vol. 1, pp. 300–307. IEEE (2011)

10. Henzinger, T.A.: The theory of hybrid automata. In: Inan, M.K., Kurshan, R.P.
(eds.) Verification of Digital and Hybrid Systems. Springer, Heidelberg (2000)

11. Bauer, K.: A new modelling language for cyber-physical systems. Ph.D. Disserta-
tion, TU Kaiserslautern (2012)

12. André, C., Mallet, F.: Clock constraints in UML/marte CCSL (2008)
13. Halbwachs, N., Raymond, P.: A Tutorial of Lustre. IMAG, Grenoble (1993)
14. Ptolemaeus, C.: System Design, Modeling, and Simulation: Using Ptolemy II.

Ptolemy. org, Berkeley (2014)
15. Benveniste, A., Bourkey, T., Caillaud, B., Pouzet, M.: A hybrid synchronous lan-

guage with hierarchical automata: static typing and translation to synchronous
code. In: 2011 Proceedings of the International Conference on Embedded Software
(EMSOFT), pp. 137–148. IEEE (2011)

16. Bourke, T., Pouzet, M.: Zélus: a synchronous language with odes. In: Proceedings of
the 16th International Conference on Hybrid Systems: Computation and Control,
pp. 113–118. ACM (2013)

Author Index

Akhmed-Zaki, Darkhan 22
Alarte, Julián 36
Anokhin, Stepan 116
Avdyukhin, Dmitry 291

Baar, Thomas 50
Basit, Hamid Abdul 170
Bjørner, Nikolaj 276
Borovlyov, Victor 303
Brauße, Franz 61
Bride, Hadrien 75

Chen, Xiaohong 325
Ciobanu, Gabriel 91

Dadykina, Ekateryna 22
Destefanis, Giuseppe 158
Devyanin, Petr N. 107

Garanina, Natalia 116
Glück, Robert 130
Grigorev, Semyon 291
Gruska, Damas P. 149

Hillston, Jane 1
Horne, Ross 91

Insa, David 36

Kassab, Mohamad 158
Khoroshilov, Alexey V. 107
Konnov, Igor 6
Korovina, Margarita 61
Kouchnarenko, Olga 75
Koznov, Dmitrij 170
Kuliamin, Victor V. 107
Kumalakov, Bolatzhan 22
Kurnia, Ilham W. 186

Lieh, Ouh Eng 170
Liu, Jing 325

Luciv, Dmitry 170
Luo, Juan 325

Mansurova, Madina 22
Matkerim, Bazargul 22
Meyer, Bertrand 233
Mogensen, Torben Ægidius 203
Mordan, Vitaly 218
Müller, Norbert Th. 61
Mutilin, Vadim 218

Naumchev, Alexandr 233

Petrenko, Alexander K. 107
Peureux, Fabien 75
Poetzsch-Heffter, Arnd 186
Popova-Zeugmann, Louchka 303

Rivera, Victor 233

Shchepetkov, Ilya V. 107
Shilov, Nikolay 245
Sidorova, Elena 116
Silva, Josep 36
Smirnov, Mikhail 170
Szreter, Maciej 260

Tamarit, Salvador 36

Veanes, Margus 276
Veith, Helmut 6
Verbitskaia, Ekaterina 291
Virbitskaite, Irina 303

Widder, Josef 6
Woltzenlogel Paleo, Bruno 314

Yuan, Zhenghen 325

Zhang, Yi 325
Zhou, Tingliang 325

	Preface
	Organization
	Contents
	Quantitative Analysis of Collective Adaptive Systems
	1 Introduction
	2 Quantitative Analysis
	3 Challenges in Modelling Collective Adaptive Systems
	4 Carma
	5 Future Perspectives
	References

	What You Always Wanted to Know About Model Checking of Fault-Tolerant Distributed Algorithms
	1 Introduction
	2 Verification Techniques
	2.1 Parametric Interval Data Abstraction (PIA Data)
	2.2 Counter Representation
	2.3 Parametric Interval Counter Abstraction (PIA Counter)
	2.4 Parametrized Abstraction Refinement
	2.5 Threshold Automata
	2.6 Checking Reachability by Bounded Model Checking Using Offline Partial Order Reduction and Acceleration
	2.7 Bounded Model Checking Using SMT

	3 Implementation: Byzantine Model Checker
	4 Evaluation and Case Studies
	5 Conclusions and Future Work
	References

	Applying MDA to Generate Hadoop Based Scientific Computing Applications
	1 Introduction
	2 Research Background and Related Work
	2.1 HPSC Model Development Process Overview
	2.2 Related Work Review

	3 Solution Design
	3.1 Main Components of the System
	3.2 PIM Model
	3.3 PSM Model

	4 Experiment Design and Evaluation
	4.1 Hydrodynamics Problem Definition
	4.2 Computational Experiment Results

	5 Conclusion and Further Research
	References

	Site-Level Web Template Extraction Based on DOM Analysis
	1 Introduction
	2 Related Work
	3 Template Extraction
	3.1 Finding Webpage Candidates to Extract the Template
	3.2 Solving Conflicts Between Webpages with Different Templates
	3.3 Template Extraction from a Complete Subdigraph

	4 Implementation
	4.1 Empirical Evaluation

	5 Conclusions
	References

	Verification Support for a State-Transition-DSL Defined with Xtext
	1 Motivation
	2 The Framework Xtext
	2.1 Yakindu
	2.2 Running Example ParkingTicketMachine (PTM)

	3 Adding Verification Support for DSLs
	3.1 SMINV-- A Textual DSL for Encoding Simple State Machines
	3.2 Semantic properties to be verified
	3.3 Proof Obligations
	3.4 Implementation

	4 Discussion and Related Work
	5 Conclusion and Future Work
	References

	Towards Using Exact Real Arithmetic for Initial Value Problems
	1 Introduction
	2 Exact Real Arithmetic Using iRRAM
	3 Theoretical Background
	4 PIVP Algorithm
	5 Experimental Results
	6 Conclusion
	References

	Constraint Solving for Verifying Modal Specifications of Workflow Nets with Data
	1 Introduction
	2 Background
	2.1 Petri Nets
	2.2 Coloured Workflow Nets
	2.3 CWF-nets with Modalities
	2.4 Constraint System

	3 Motivating Example
	4 Modelling Executions of CWF-nets
	5 Implementation and Experiments
	5.1 Overview of the Prototype Architecture and Procedures
	5.2 Experimental Results

	6 Conclusion and Related Work
	References

	Behavioural Analysis of Sessions Using the Calculus of Structures
	1 Introduction
	2 A Core Calculus Inspired by Scribble
	3 The Subtype System and Multiparty Compatibility
	3.1 A Subtyping Relation for Sessions
	3.2 Multiparty Compatibility
	3.3 Complexity and a Path to Implementation

	4 Related Work and Conclusion
	References

	Using Refinement in Formal Development of OS Security Model
	1 Introduction
	2 Main Features of the MROSL DP-model
	3 Event-B and Rodin
	4 Refinement
	5 Development
	6 Comparison
	7 Conclusions and Future Work
	References

	Conflict Resolution in Multi-agent Systems with Typed Connections for Ontology Population
	1 Introduction
	2 Problem Statement and Base Definitions
	3 Conflict Resolution in MASC
	4 Ambiguity Resolution
	5 Conclusion
	References

	Maximally-Polyvariant Partial Evaluation in Polynomial Time
	1 Introduction
	2 A Recursive Flowchart Language
	3 Maximally-Polyvariant Partial Evaluation
	3.1 Stack-Based Collection of Reachable Configurations
	3.2 Graph-Based Collection of Reachable Configurations

	4 Linear-Time Specialization of a Naive String Matcher
	5 Related Work
	6 Conclusion
	References

	Dynamics Security Policies and Process Opacity for Timed Process Algebras
	1 Introduction
	2 Timed Process Algebra
	3 Information Flow
	4 Dynamic Security Policies
	5 Discussion and Further Work
	References

	Estimating Development Effort for Software Architectural Tactics
	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Quality Requirements and Tactics
	3.2 The AHP Technique

	4 Incorporating the AHP into Tactics Effort Estimation
	4.1 AHP Hierarchy for Effort Estimation
	4.2 Case Study Description
	4.3 AHP in Action

	5 Conclusion
	References

	Clone Detection in Reuse of Software Technical Documentation
	1 Introduction
	2 Related Works
	3 Background
	3.1 DocBook
	3.2 DocLine
	3.3 Refactoring Documentation
	3.4 Software Clone Detection and Clone Miner

	4 The Process of Clone Detection and Refactoring
	4.1 Overview
	4.2 Preparation for Clone Detection
	4.3 Clone Detection
	4.4 Filtering
	4.5 Refactoring

	5 The Tool
	6 Evaluation
	7 Conclusions
	References

	Modeling Actor Systems Using Dynamic I/O Automata
	1 Introduction
	2 Class-Based Actor Programming
	3 Automaton Model
	3.1 First Tier Model
	3.2 Second Tier Model

	4 Verification
	4.1 Class Verification
	4.2 Component Verification

	5 Related Work
	6 Conclusion
	References

	RSSA: A Reversible SSA Form
	1 Introduction
	2 Static Single Assignment Form (SSA)
	3 The Reversible Intermediate Language RIL
	3.1 Entry and Exit Points
	3.2 Updates and Exchanges
	3.3 Subroutine Calls
	3.4 Shorthands

	4 Combining SSA and RIL to RSSA
	5 Definition of RSSA
	6 Converting RIL to RSSA
	6.1 Adding Initialisers and Finalisers
	6.2 Converting Individual Assignments and Calls and Adding Indices
	6.3 Adding Parameters to Labels and Calls
	6.4 Add Indices to Uses of Variables
	6.5 Clean up

	7 Optimisations on the RSSA Form
	7.1 Copy Propagation
	7.2 Constant Propagation
	7.3 Register Allocation

	8 Conclusion and Discussion
	References

	Checking Several Requirements at once by CEGAR
	1 Introduction
	2 Background
	2.1 Definitions
	2.2 Counterexample Guided Abstraction Refinement
	2.3 Example

	3 Related Work
	3.1 Regression Verification
	3.2 Conditional Model Checking
	3.3 Method for Finding All Violations of an Aspect

	4 Multi-aspect Verification
	4.1 The Multi-aspect Verification Method
	4.2 The Conditional Multi-aspect Verification Method

	5 Implementation
	5.1 LDV Tools Extension
	5.2 CPAchecker with MAV

	6 Results of the Experiments
	6.1 Cleaning Adjustable Precision Strategies
	6.2 Verification of All Linux Kernel Modules

	7 Conclusion
	References

	Unifying Requirements and Code: An Example
	1 Introduction
	1.1 Summary of Contributions

	2 The Drawbacks of Too Much Separation of Concerns
	3 A Seamless Approach
	3.1 Unifying Processes
	3.2 The Hypothesis
	3.3 How to Test the Hypothesis

	4 Theoretical and Technical Background
	4.1 Design by Contract
	4.2 Model-Based Contracts
	4.3 AutoProof

	5 Unifying the Two Worlds: An Example
	5.1 Example Overview
	5.2 The Designation Set
	5.3 Shared Phenomena
	5.4 Specifying the System
	5.5 Specifying the ``Unspecifiable''

	6 Conclusion
	6.1 Future Work

	References

	Program Schemata Technique to Solve Propositional Program Logics Revised
	1 Propositional -Calculus
	2 Special Classes of Models and Formulas
	3 Non-deterministic Yanov Schemata
	4 Main Results
	4.1 Translation Algorithm
	4.2 Results and Conclusion

	References

	Automated Two-Phase Composition of Timed Web Services
	1 Introduction
	2 Introduction to PlanICS
	2.1 Basic Syntax and Semantics of Objects and Services
	2.2 Abstract Planning
	2.3 Collecting Offers and Concrete Planning

	3 Dynamic (timed) Services
	3.1 Ontology - Dynamic Variables as Object Attributes
	3.2 Timed Automata, Dynamic Automata
	3.3 Ontology - Dynamic Services
	3.4 Dynamic User Query
	3.5 Dynamic Offers

	4 Planning in Dynamic Services and Offers
	4.1 Abstract Planning
	4.2 Dynamic Concrete Planning Problem
	4.3 Solving DCPP

	5 Experimental Results
	6 Final Remarks and Future Work
	References

	Equivalence of Finite-Valued Symbolic Finite Transducers
	1 Introduction
	2 Examples and an Application to Web Sanitizers
	3 Preliminaries
	3.1 Background Structure and Models

	4 Symbolic Finite Transducers
	4.1 Alphabets of SFTs

	5 Equivalence
	6 Related Work
	7 Conclusion
	References

	Relaxed Parsing of Regular Approximations of String-Embedded Languages
	1 Related Works
	1.1 String-Embedded Languages Analysis Techniques
	1.2 Right-Nulled Generalized LR Parsing Algorithm

	2 Relaxed Parsing of Regular Sets
	3 Example of Parsing and SPPF Construction
	4 Correctness of the Algorithm
	5 Conclusion
	A Appendix: RNGLR pseudocode
	References

	Branching Processes of Timed Petri Nets
	1 Introduction
	2 Preliminaries
	3 Timed Petri Nets
	4 Branching Processes and Unfoldings of TdPNs
	References

	Implementation and Evaluation of Contextual Natural Deduction for Minimal Logic
	1 Introduction
	2 Contextual Natural Deduction
	3 Implementation
	4 Experimental Setup
	5 Results of the Experiments
	6 Conclusions
	References

	Hybrid Lustre
	1 Introduction
	2 Hybrid Dataflow Model
	3 Syntax of Hybrid Lustre
	4 Semantics of Hybrid Lustre
	4.1 Typing Rules and Semantics
	4.2 Safe Semantics and Live Semantics
	4.3 A Tool

	5 An Application
	5.1 Calculation of End of Authority
	5.2 The Environment Node of the Computation of EOA
	5.3 Realization of Environment with Hybrid Lustre

	6 Related Work
	7 Conclusions
	References

	Author Index

