
Klaus Havelund
Gerard Holzmann
Rajeev Joshi (Eds.)

 123

LN
CS

 9
05

8

7th International Symposium, NFM 2015
Pasadena, CA, USA, April 27–29, 2015
Proceedings

NASA
Formal Methods

Lecture Notes in Computer Science 9058

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zürich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Klaus Havelund · Gerard Holzmann
Rajeev Joshi (Eds.)

NASA
Formal Methods
7th International Symposium, NFM 2015
Pasadena, CA, USA, April 27–29, 2015
Proceedings

ABC

Editors
Klaus Havelund
Jet Propulsion Laboratory
Pasadena, California
USA

Gerard Holzmann
Jet Propulsion Laboratory
Pasadena, California
USA

Rajeev Joshi
Jet Propulsion Laboratory
Pasadena, California
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-17523-2 ISBN 978-3-319-17524-9 (eBook)
DOI 10.1007/978-3-319-17524-9

Library of Congress Control Number: 2015935615

LNCS Sublibrary: SL2 – Programming and Software Engineering

Springer Cham Heidelberg New York Dordrecht London
c© Springer International Publishing Switzerland 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known
or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

This volume contains the papers presented at NFM 2015, the 7th NASA Formal
Methods Symposium, held during April 27–29, 2015 in Pasadena. The NASA Formal
Methods Symposium is a forum for anyone interested in the development and applica-
tion of formal methods, both theoreticians and practitioners, from academia, industry,
and government. The goal of the symposium is to identify challenges and provide solu-
tions that can help us achieve greater reliability of mission- and safety-critical systems.

Within NASA, such systems include manned and unmanned spacecraft, orbiting
satellites, and aircraft. Rapidly increasing code size and new software development
paradigms, including the broad use of automatic code generation and code synthesis
tools, static source code analysis techniques, and tool-based code review methods, all
bring new challenges as well as new opportunities for improvement. Also gaining in-
creasing importance in NASA applications is the use of more rigorous software test
methods, often inspired by new theoretical insights.

The focus of the symposium is understandably on formal methods, their foundation,
current capabilities, and limitations. The NASA Formal Methods Symposium is an an-
nual event, which was created to highlight the state of the art in formal methods, both
in theory and in practice. The series started as the Langley Formal Methods Workshop,
and was held under that name in 1990, 1992, 1995, 1997, 2000, and 2008. In 2009 the
first NASA Formal Methods Symposium was organized by NASA Ames Research Cen-
ter, which also organized the 2013 symposium. In 2010 the symposium was organized
in Washington DC by the Formal Methods Group of NASA Langley Research Center
with the collaboration of NASA Goddard and NASA Headquarters; and in 2012 it was
organized by NASA Langley Research Center in Norfolk, Virginia. In 2011 the organi-
zation was done by JPL’s Laboratory for Reliable Software, in Pasadena, California. In
2014 it was organized by NASA’s Johnson Space Center in collaboration with NASA
Ames Research Center and Lero (Ireland), in Houston, Texas. Finally, the organization
of the current 2015 symposium returned to JPL’s Laboratory for Reliable Software in
Pasadena, California.

The topics covered by the NASA Formal Methods Symposia include: theorem prov-
ing, logic model checking, automated testing and simulation, model-based engineering,
real-time and stochastic systems, SAT and SMT solvers, symbolic execution, abstrac-
tion and abstraction refinement, compositional verification techniques, static and dy-
namic analysis techniques, fault protection, cyber security, specification formalisms,
requirements analysis, and applications of formal techniques.

Two types of papers were considered: regular papers describing fully developed
work and complete results or case studies, and short papers on tools, experience reports,
or work in progress with preliminary results. The symposium received 108 submissions
(77 regular papers and 31 short papers) out of which 33 were accepted (24 regular
papers and 9 short papers), giving an acceptance rate of 30.6%. All submissions went
through a rigorous reviewing process, where each paper was read by three reviewers.

VI Preface

In addition to the refereed papers, the symposium featured three invited presenta-
tions: by Dino Distefano from Facebook, USA, and Professor at Queen Mary University
of London, UK, titled Moving Fast with Software Verification; by Viktor Kuncak, from
the Laboratory for Automated Reasoning and Analysis at EPFL, in Lausanne, Switzer-
land, on Developing Verified Software using Leon; and by Rob Manning, from NASA’s
Jet Propulsion Laboratory, on Complexity Tolerance: Dealing with Faults of Our Own
Making.

The organizers are grateful to the authors for submitting their work to NFM
2015 and to the invited speakers for sharing their insights. NFM 2015 would not have
been possible without the collaboration of the outstanding Program Committee and
external reviewers, the support of the Steering Committee, and the general support
of the NASA Formal Methods community. The NFM 2015 website can be found at
http://nasaformalmethods.org.

Support for the preparation of these proceedings was provided by the Jet Propul-
sion Laboratory, California Institute of Technology, under a contract with the National
Aeronautics and Space Administration.

February 2015 Klaus Havelund
Gerard Holzmann

Rajeev Joshi

Organization

Program Committee

Erika Ábrahám RWTH Aachen University, Germany
Julia Badger NASA Johnson Space Center, USA
Christel Baier Dresden University of Technology, Germany
Saddek Bensalem VERIMAG/University Joseph Fourier, France
Dirk Beyer University of Passau, Germany
Armin Biere Johannes Kepler University, Austria
Nikolaj Bjørner Microsoft Research, USA
Borzoo Bonakdarpour McMaster University, Canada
Alessandro Cimatti Fondazione Bruno Kessler, Italy
Leonardo De Moura Microsoft Research, USA
Ewen Denney NASA Ames Research Center, USA
Ben Di Vito NASA Langley Research Center, USA
Dawson Engler Stanford University, USA
Jean-Christophe Filliatre Université Paris-Sud, France
Dimitra Giannakopoulou NASA Ames Research Center, USA
Alwyn Goodloe NASA Langley Research Center, USA
Susanne Graf VERIMAG, France
Alex Groce Oregon State University, USA
Radu Grosu Vienna University of Technology, Austria
John Harrison Intel Corporation, USA
Mike Hinchey University of Limerick/Lero, Ireland
Bart Jacobs Katholieke Universiteit Leuven, Belgium
Sarfraz Khurshid University of Texas at Austin, USA
Gerwin Klein NICTA and University of New South Wales,

Australia
Daniel Kroening University of Oxford, UK
Orna Kupferman Hebrew University Jerusalem, Israel
Kim Larsen Aalborg University, Denmark
Rustan Leino Microsoft Research, USA
Martin Leucker University of Lübeck, Germany
Rupak Majumdar Max Planck Institute, Germany
Panagiotis Manolios Northeastern University, USA
Peter Müller ETH Zürich, Switzerland
Kedar Namjoshi Bell Laboratories/Alcatel-Lucent, USA

VIII Organization

Corina Pasareanu NASA Ames Research Center, USA
Doron Peled Bar-Ilan University, Israel
Suzette Person NASA Langley Research Center, USA
Andreas Podelski University of Freiburg, Germany
Grigore Rosu University of Illinois at Urbana-Champaign, USA
Kristin Yvonne Rozier NASA Ames Research Center, USA
Natarajan Shankar SRI International, USA
Natasha Sharygina University of Lugano, Switzerland
Scott Smolka Stony Brook University, USA
Willem Visser Stellenbosch University, South Africa
Mahesh Viswanathan University of Illinois at Urbana-Champaign, USA
Michael Whalen University of Minnesota, USA
Jim Woodcock University of York, UK

Additional Reviewers

Alberti, Francesco
Alt, Leonardo
Arlt, Stephan
Astefanoaei, Lacramioara
Bartocci, Ezio
Bourke, Timothy
Bozga, Marius
Bozzano, Marco
Cattaruzza, Dario
Chamarthi, Harsh Raju
Chang, Yen Jung
Cholewa, Andrew
Christ, Juergen
Corzilius, Florian
Dangl, Matthias
David, Cristina
Decker, Normann
Duan, Lian
Duggirala, Parasara Sridhar
Dutertre, Bruno
Farkash, Monica
Fedyukovich, Grigory
Ferrara, Pietro
Fiadeiro, José Luiz
Frömel, Bernhard
Ghassabani, Elaheh
Greenaway, David
Griggio, Alberto
Harder, Jannis

Hyvärinen, Antti
Isakovic, Haris
Jain, Mitesh
Jovanović, Dejan
Juhasz, Uri
Kahsai, Temesghen
Kandl, Susanne
Katz, Guy
Kesseli, Pascal
Kim, Chang Hwan Peter
Li, Wenchao
Li, Yilong
Luckow, Kasper
Luo, Qingzhou
Löwe, Stefan
Mahboubi, Assia
Markin, Grigory
Mehta, Farhad
Melnychenko, Oleksandr
Melquiond, Guillaume
Mentis, Anakreon
Mery, Dominique
Miyazawa, Alvaro
Moore, Brandon
Moy, Yannick
Munoz, Cesar
Murali, Rajiv
Narkawicz, Anthony
Neogi, Natasha

Organization IX

Neville, Daniel
Nouri, Ayoub
Olivo, Oswaldo
Owre, Sam
Pais, Jorge
Papavasileiou, Vasilis
Prokesch, Daniel
Radoi, Cosmin
Ratasich, Denise
Rodriguez-Navas, Guillermo
Rozier, Eric
Scheffel, Torben
Schrammel, Peter
Schupp, Stefan
Schönfelder, René

Selyunin, Konstantin
Stefanescu, Andrei
Sticksel, Christoph
Stümpel, Annette
Taha, Walid
Thoma, Daniel
Tixeuil, Sebastien
Van Glabbeek, Rob
Vizel, Yakir
Wachter, Björn
Weissenbacher, Georg
Wendler, Philipp
Westphal, Bernd
Yang, Junxing
Zalinescu, Eugen

Contents

Invited Papers

Moving Fast with Software Verification . 3
Cristiano Calcagno, Dino Distefano, Jeremy Dubreil, Dominik Gabi,
Pieter Hooimeijer, Martino Luca, Peter O’Hearn, Irene Papakonstantinou,
Jim Purbrick, and Dulma Rodriguez

Developing Verified Software Using Leon. 12
Viktor Kuncak

Regular Papers

Timely Rollback: Specification and Verification. 19
Martín Abadi and Michael Isard

Sum of Abstract Domains . 35
Gianluca Amato, Simone Di Nardo Di Maio, and Francesca Scozzari

Reachability Preservation Based Parameter Synthesis for Timed Automata . . . 50
Étienne André, Giuseppe Lipari, Hoang Gia Nguyen, and Youcheng Sun

Compositional Verification of Parameterised Timed Systems 66
Lăcrămioara As�tefănoaei, Souha Ben Rayana, Saddek Bensalem,
Marius Bozga, and Jacques Combaz

Requirements Analysis of a Quad-Redundant Flight Control System. 82
John Backes, Darren Cofer, Steven Miller, and Michael W. Whalen

Partial Order Reduction and Symmetry with Multiple Representatives 97
Dragan Bošnački and Mark Scheffer

Statistical Model Checking of Ad Hoc Routing Protocols
in Lossy Grid Networks. 112

Alice Dal Corso, Damiano Macedonio, and Massimo Merro

Efficient Guiding Strategies for Testing of Temporal Properties
of Hybrid Systems . 127

Tommaso Dreossi, Thao Dang, Alexandre Donzé, James Kapinski,
Xiaoqing Jin, and Jyotirmoy V. Deshmukh

First-Order Transitive Closure Axiomatization via Iterative Invariant
Injections . 143

Aboubakr Achraf El Ghazi, Mana Taghdiri, and Mihai Herda

Reachability Analysis Using Extremal Rates . 158
Andrew N. Fisher, Chris J. Myers, and Peng Li

Towards Realizability Checking of Contracts Using Theories 173
Andrew Gacek, Andreas Katis, Michael W. Whalen, John Backes,
and Darren Cofer

Practical Partial Order Reduction for CSP . 188
Thomas Gibson-Robinson, Henri Hansen, A.W. Roscoe, and Xu Wang

A Little Language for Testing . 204
Alex Groce and Jervis Pinto

Detecting MPI Zero Buffer Incompatibility by SMT Encoding. 219
Yu Huang and Eric Mercer

A Falsification View of Success Typing . 234
Robert Jakob and Peter Thiemann

Verified ROS-Based Deployment of Platform-Independent Control
Systems . 248

Wenrui Meng, Junkil Park, Oleg Sokolsky, Stephanie Weirich,
and Insup Lee

A Rigorous Approach to Combining Use Case Modelling
and Accident Scenarios . 263

Rajiv Murali, Andrew Ireland, and Gudmund Grov

Are We There Yet? Determining the Adequacy of Formalized Requirements
and Test Suites . 279

Anitha Murugesan, Michael W. Whalen, Neha Rungta,
Oksana Tkachuk, Suzette Person, Mats P.E. Heimdahl, and Dongjiang You

A Greedy Approach for the Efficient Repair of Stochastic Models 295
Shashank Pathak, Erika Ábrahám, Nils Jansen, Armando Tacchella,
and Joost-Pieter Katoen

Integrating SMT with Theorem Proving for Analog/Mixed-Signal Circuit
Verification . 310

Yan Peng and Mark Greenstreet

Conflict-Directed Graph Coverage . 327
Daniel Schwartz-Narbonne, Martin Schäf, Dejan Jovanović,
Philipp Rümmer, and Thomas Wies

XII Contents

Shape Analysis with Connectors . 343
Holger Siegel and Axel Simon

Automated Conflict-Free Concurrent Implementation of Timed
Component-Based Models . 359

Ahlem Triki, Borzoo Bonakdarpour, Jacques Combaz, and Saddek Bensalem

Formal API Specification of the PikeOS Separation Kernel 375
Freek Verbeek, Oto Havle, Julien Schmaltz, Sergey Tverdyshev,
Holger Blasum, Bruno Langenstein, Werner Stephan,
Burkhart Wolff, and Yakoub Nemouchi

Short Papers

Data Model Bugs . 393
Ivan Bocić and Tevfik Bultan

Predicting and Witnessing Data Races Using CSP 400
Luis M. Carril and Walter F. Tichy

A Benchmark Suite for Hybrid Systems Reachability Analysis 408
Xin Chen, Stefan Schupp, Ibtissem Ben Makhlouf, Erika Ábrahám,
Goran Frehse, and Stefan Kowalewski

Generalizing a Mathematical Analysis Library in Isabelle/HOL 415
Jesús Aransay and Jose Divasón

A Tool for Intersecting Context-Free Grammars and Its Applications 422
Graeme Gange, Jorge A. Navas, Peter Schachte, Harald Søndergaard,
and Peter J. Stuckey

UFIT: A Tool for Modeling Faults in UPPAAL Timed Automata 429
Reza Hajisheykhi, Ali Ebnenasir, and Sandeep S. Kulkarni

Blocked Literals Are Universal. 436
Marijn J.H. Heule, Martina Seidl, and Armin Biere

Practical Formal Verification of Domain-Specific Language Applications . . . 443
Greg Eakman, Howard Reubenstein, Tom Hawkins, Mitesh Jain,
and Panagiotis Manolios

Reporting Races in Dynamic Partial Order Reduction 450
Olli Saarikivi and Keijo Heljanko

Author Index . 457

Contents XIII

Invited Papers

Moving Fast with Software Verification

Cristiano Calcagno, Dino Distefano(B), Jeremy Dubreil, Dominik Gabi,
Pieter Hooimeijer, Martino Luca, Peter O’Hearn, Irene Papakonstantinou,

Jim Purbrick, and Dulma Rodriguez

Facebook Inc., Cambridge, USA
ddino@fb.com

Abstract. For organisations like Facebook, high quality software is
important. However, the pace of change and increasing complexity of
modern code makes it difficult to produce error-free software. Available
tools are often lacking in helping programmers develop more reliable and
secure applications.

Formal verification is a technique able to detect software errors stat-
ically, before a product is actually shipped. Although this aspect makes
this technology very appealing in principle, in practice there have been
many difficulties that have hindered the application of software verifi-
cation in industrial environments. In particular, in an organisation like
Facebook where the release cycle is fast compared to more traditional
industries, the deployment of formal techniques is highly challenging.

This paper describes our experience in integrating a verification
tool based on static analysis into the software development cycle at
Facebook.

1 Introduction

This is a story of transporting ideas from recent theoretical research in reasoning
about programs into the fast-moving engineering culture of Facebook. The con-
text is that most of the authors landed at Facebook in September of 2013, when we
brought the INFER static analyser with us from the verification startup Monoidics
[4,6]. INFER itself is based on recent academic research in program analysis [5],
which applied a relatively recent development in logics of programs, separation
logic [10]. As of this writing INFER is deployed and running continuously to ver-
ify select properties of every code modification in Facebook’s mobile apps; these
include the main Facebook apps for Android and iOS, Facebook Messenger, Insta-
gram, and other apps which are used by over a billion people in total.

In the process of trying to deploy the static analyser the most important issue
we faced was integration with Facebook’s software development process. The
software process at Facebook, and an increasing number of Internet companies,
is based on fast iteration, where features are proposed and implemented and
changed based on feedback from users, rather than wholly designed at the outset.
The perpetual, fast, iterative development employed at Facebook might seem
c© Facebook, Inc. 2015
K. Havelund et al. (Eds.): NFM 2015, LNCS 9058, pp. 3–11, 2015.
DOI: 10.1007/978-3-319-17524-9 1

4 C. Calcagno et al.

to be the worst possible case for formal verification technology, proponents of
which sometimes even used to argue that programs should be developed only
after a prior specifications had been written down. But we found that verification
technology can be effective if deployed in a fashion which takes into account when
and why programmers expect feedback. INFER runs on every “diff”, which is a
code change submitted by a developer for code review. Each day a number of
bugs are reported on diffs and fixed by developers, before the diff is committed
and eventually deployed to phones. Technically, the important point is that
INFER is a compositional1 program analysis, which allows feedback to be given
to developers in tune with their flow of incremental development.

2 Facebook’s Software Development Model

Perpetual Development. As many internet companies Facebook adopts a con-
tinuous development model [9]. In this model, software will never be considered
a finished product. Instead features are continuously added and adapted and
shipped to users. Fast iteration is considered to support rapid innovation. For
its web version, Facebook pushes new changes in the code twice a day.

This perpetual development model fits well with the product and its use-
case. It would be impossible to foresee a-priori how a new feature would be used
by the hundreds of million of people using Facebook services every day. The
different uses influence the way a new feature is shaped and further developed.
In other words, Facebook prioritises people using the product rather than an
initial design proposed in some fixed specification by architects at the company.

Perpetual Development on Mobile Versus Web. In the last couple of years, Face-
book has gone through a shift. From being a web-based company Facebook tran-
sitioned to embrace mobile. Use of its mobile applications on the Android and
iOS platforms has increased substantially, reflecting a global trend for consumers
of Internet content.

For mobile applications, Facebook applies a continuous development model
as well. However there are some fundamental differences w.r.t. web development.
Although the development cycle is the same, the deployment is fundamentally
different. In web development the software runs on Facebook servers in our
datacenters, and in the client on code downloaded from our servers by a browser.
New code can, therefore, be deployed directly to the servers, which then serves
the users (including by serving them Javascript); new versions of the software
are deployed without the users getting involved.

On the contrary, mobile applications run on users’ phones. Therefore, it is
up to the user to update to a new version of the app implementing new features
1 A compositional analysis is one in which the analysis result of a composite program

is computed from the results of its parts. As a consequence, compositional analyses
can run on incomplete programs (they are not whole-program analyses), are by
their nature incremental, scale well, and tolerate imprecision on parts of code that
are difficult to analyse [5].

Moving Fast with Software Verification 5

or fixing existing bugs. Facebook can only distribute a new version to the Apple
App Store or Google Play, but Facebook is not anymore in control of which
version a user is running on her mobile device.

This difference has dramatic impact on bug fixes. On web when a bug is
discovered a fix can be shipped to the servers as part of a periodic release or in
exceptional cases immediately via a “hotfix”. And on the web mechanisms exist
to automatically update the JavaScript client software running in the browser,
allowing fixes to quickly and automatically be deployed as soon as they have
been developed. On current mobile platforms updates must typically be explic-
itly authorised by the device owner, so there is no guarantee that a fix will be
deployed in a timely manner, if ever, once it is developed.

The sandboxes provided by modern web browsers also make it easier to
isolate the effects of a bug in one part of the interface from another, allowing the
experience to gracefully degrade in the face of runtime errors. Current mobile
platforms typically provide a model closer to processes running on a traditional
operating system and will often terminate the entire app when a runtime error
is detected in any part of it. This lower fault tolerance increases the potential
severity of bugs which would have a minor impact on the web.

Thus mobile development at Facebook presents a strong dichotomy: on one
hand it employs continuous development; on the other hand it could benefit from
techniques like formal verification to prevent bugs before apps are shipped.

When the INFER team landed at Facebook there was a well developed ver-
sion of INFER for C programs, and a rudimentary version for Java. Facebook
has considerable amounts of C++, Javascript, php, objective-C and Java code,
but less development is being done in pure C. This, together with the above
discussion determined our first targets, Android and iPhone apps.

3 Software Verification in the Perpetual Development Era

As we have seen, Facebook employs a perpetual development model both for
web and mobile software. While in such an environment it is difficult to envisage
requiring specs to always be written before programming starts, a common app-
roach in static analysis has been to work towards the implicit specification that
(certain) runtime errors cannot occur. Of course, when an assertion is placed
into code it can help the analysis along. In INFER’s case at the beginning the
implicit safety properties were null pointer exceptions and resource leaks for
Android code, and additionally memory leaks for iOS.

Unlike many other software companies, Facebook does not have a separate
quality assurance (QA) team or professional testers. Instead, engineers write
(unit) tests for their newly developed code. But as a part of the commit and
push process there is a set of regression tests that are automatically run and
the code must pass them before it can be pushed. This juncture, when diffs
are reviewed by humans and by tests, is a key point where formal verification
techniques based on static analysis can have impact.

There are several features that the verification technique should offer to be
adopted in such different environment:

6 C. Calcagno et al.

– Full automation and integration. The technique should be push-button and
integrated into the development environment used by programmers.

– Scalability. The technique scales to millions of lines of code.
– Precision. Developers’ time is an important resource. An imprecise tool pro-

viding poor results would be seen as a waste of that resource.
– Fast Reporting. The analysis should not get in the way of the development

cycle; therefore it has to report to developers in minutes, before programmers
commit or make further changes. As we will see in Section 5, fast reporting is
not only about analysing code fast, but it also involves good integration with
the existing infrastructure where many other tasks need to be performed.

These requirements are challenging. In our context we are talking about
analysis of large Android and iPhone apps (millions of lines of code are involved
in the codebases). The analysis must be able to run on thousands of code diffs
in a day, and it should report in under 10 minutes on average to fit in with the
developer workflow. There are intra-procedural analyses and linters which fit
these scaling requirements, and which are routinely deployed at Facebook and
other companies with similar scale codebases and workflows. But if an analysis
is to detect or exclude bugs involving chains of procedure calls, as one minimally
expects of verification techniques, then an inter-procedural analysis is needed,
and making inter-procedural analyses scale to this degree while maintaining any
degree of accuracy has long been a challenge.

4 Background: the INFER Static Analyser

INFER [4] is a program analyser aimed at verifying memory safety and developed
initially by Monoidics Ltd. It was first aimed at C code and later extended to
Java. After the acquisition of Monoidics by Facebook, INFER’s development
now continues inside Facebook.

INFER combines several recent advances in automatic verification. It’s under-
lying formalism is separation logic [10]. It implements a compositional, bottom-up
variant of the classic RHS inter-procedural analysis algorithm based on procedure
summaries [11]. There are two main novelties. First, it uses compact summaries,
based on the ideas of footprints and frame inference [2] from separation logic, to
avoid theneed for huge summaries that explicitly tabulatemost of the input-output
possibilities. Second, it uses a variation on the notion of abductive inference to dis-
cover those summaries [5].

Bi-abduction. INFER computes a compositional shape analysis by synthesising
specification for a piece of code in isolation. Specifications in this case are Hoare’s
triples where pre/post-conditions are separation logic formulae. More specifically,
for a given piece of code C, INFER synthesises pre/post specifications of the form

{P} C {Q}
by inferring suitable P and Q. A crucial point is that such specifications do
not express functional correctness but rather memory safety. The consequence
is that they relates to a basic general property that every code should satisfy.

Moving Fast with Software Verification 7

The theoretical notion allowing INFER to synthesise pre and post-conditions
in specifications is bi-abductive inference [5]. Formally, it consists in solving the
following extension of the entailment problem:

H ∗ A � H ′ ∗ F

where H, H ′ are given formulae in separation logic describing a heap config-
uration whereas F (frame) and A (anti-frame) are unknown and need to be
inferred. Bi-abductive inference is applied during an attempted proof of a pro-
gram to discover a collection of anti-frames describing the memory needed to
execute a program fragment safely (its footprint).

Triples of procedures in a program are composed together in a bottom-up
fashion according to the call graph to obtain triples of larger pieces of code.

Soundness. The soundness property for the algorithm underlying INFER is that
if INFER finds a Hoare triple {P} C {Q} for a program component C then that
triple is true in a particular mathematical model according to the fault-avoiding
interpretation of triples used in separation logic [10]: any execution starting from
a state satisfying P will not cause a prescribed collection of runtime errors (in the
current implementation these are leaks and null dereferences) and, if execution
terminates, Q will be true of the final state. Soundness can also be stated using
the terminology of abstract interpretation (see [5], section 4.4).

Soundness can never be absolute, but is always stated with respect to the
idealization (assumptions) represented by a mathematical model. In INFER’s
case limitations to the model ([5]) include that it doesn’t account for the con-
currency or dynamic dispatch found in Android or iPhone apps. So interpreting
the results in the real world must be done with care; e.g., when an execution
admits a race condition, INFER’s results might not over-approximate. Note that
these caveats are given even prior to the question of whether INFER correctly
implements the abstract algorithm. Thus, soundness does not translate to “no
bugs are missed.” The role of soundness w.r.t. the mathematical model is to serve
as an aid to pinpoint what an analysis is doing and to understand where its lim-
itations are; in addition to providing guarantees for executions under which the
model’s assumptions are met.

Context. In this short paper we do not give a comprehensive discussion of related
work, but for context briefly compare INFER to several other prominent indus-
trial static bug catching and verification tools.

– Microsoft’s Static Driver Verifier [1] was one of the first automatic program
verification tools to apply to real-world systems code. It checks temporal
safety properties of C code. It assumes memory safety and ignores concur-
rency, so is sound with respect to an idealized model that doesn’t account
for some of the programming features used in device drivers. Driver Verifier
uses a whole-program analysis which would be challenging to apply incre-
mentally, with rapid turnaround on diffs for large codebases, as INFER is
at Facebook. In INFER we are only checking memory properties at present.

8 C. Calcagno et al.

We could check temporal properties but have not surfaced this capability to
Facebook code as of yet.

– Astrée has famously proven the absence of runtime errors in Airbus code
[8]. Strong soundness properties are rightfully claimed of it, for the kinds
of program it targets. It also does not cover programs with dynamic alloca-
tion or concurrency, which are areas that Driver Verifier makes assumptions
about. Astrée has a very accurate treatment of arithmetic, while INFER is
very weak there; conversely, INFER treats dynamic allocation while Astrée
does not. Astrée is a whole-program analysis which would be challenging to
apply incrementally as INFER is at Facebook.

– Microsoft’s Code Contracts static checker, Clousot, implements a composi-
tional analysis by inferring preconditions in a way related to that of INFER
[7]; consequently, it can operate incrementally and could likely be deployed
in a similar way to INFER. Beyond this similarity, its strong points are
almost the opposite of those of INFER. Clousot has a precise treatment
of arithmetic and array bounds, but its soundness property is relative to
strong assumptions about anti-aliasing of heap objects, where INFER con-
tains an accurate heap analysis but is at present weak on arithmetic and
array bounds. And, INFER focusses on preconditions that are sufficient to
avoid errors, where Clousot aims for preconditions that are necessary rather
than sufficient; necessary preconditions do not guarantee safety, but rather
provide a novel means of falsification.

– Coverity Prevent has been used to find bugs in many open source and indus-
trial programs. We are not aware of how Prevent works technically, but it has
certainly processed an impressive amount of code. Coverty do not claim a
soundness property, and a paper from Coverity questions whether soundness
is even worthwhile [3].

5 Integration with the Development Infrastructure

Part of deploying formal verification in this environment of continuous devel-
opment was the integration of INFER into the Facebook development infras-
tructure used by programmers. In this environment it was desirable that the
programmer does not have to do anything else than his/her normal job, they
should see analysis results as part of their normal workflow rather than requiring
them to switch to a different tool.

At a high-level, Facebook’s development process has the following phases:

1. The programmer develops a new feature or makes some change on the code-
base (a.k.a. diff).

2. Via the source-control system, this diff goes to a phase of peer-reviews per-
formed by other engineers. In this phase the author of the diff gets sugges-
tions on improvement or requests for further changes from the peer reviewers.
Thus, the author and the peer reviewers start a loop of interactions aimed at
making the code change robust and efficient as well as being understandable,
readable and maintainable by others.

Moving Fast with Software Verification 9

3. When the reviewers are satisfied, they “accept” the code change and the diff
can be then pushed via the source-control system to the main code-base.

4. Every two weeks a version of the code base is frozen into the release candi-
date. The release candidate goes into testing period by making it available
to Facebook employees for internal use. During this period, feedback from
employees helps fixing bugs manifesting at runtime.

5. After two weeks of internal use, the release candidate is deployed to Facebook
users. First to a small fraction of users and, if it doesn’t raise any alert, it is
finally deployed to all users.

During phase 2, regression tests are automatically run and before accepting any
code change a reviewer requires that all the tests pass. Tests run asynchronously
and the results are automatically available in the collaboration tool phabricator
(http://phabricator.org) used for peer review.

INFER is run at phase 2. The process is completely automatic. Once the
code is submitted for peer review, an analysis is run asynchronously in one
of Facebook’s datacenters and results are reported on phabricator in the form
of comments. INFER inserts comments on the lines of code where it detects
a possible bug. Moreover, we have developed tools to navigate the error trace
and make it easier for the developer to inspect the bug report. To provide useful
commenting on bugs we had developed a bug hashing system to detect in different
diffs, whether two different bugs are actually the same bugs or not.

Going forward a goal is to reduce the 2 week period in step 4. There will
however still remain a period here with scope for analyses and are longer-running
than a per-diff analysis should be.

Incremental Analysis. On average INFER needs to comment on a diff within
ten minutes, and for this the incremental analysis aspect of INFER is impor-
tant. We have implemented a caching system for analysis results. The latest
Android/iOS code base is fully analysed nightly. A full analysis can take over
4 hours. This analysis produces a database of pre/post-condition specifications
(a cache). Using the mechanism of bi-abduction (see Section 4) this cache is
then used when analysing diffs. Only functions modified by a diff and functions
depending on them need to be analysed.

The Social Challenge. Ultimately, one of the biggest challenges we faced was a
social challenge: to get programmers to react to bugs reported by the tool and
fix genuine errors. Programmers need to accumulate trust in the analyser and
they should see it as something helping them to build better software rather than
something slowing them down. All the features listed in Section 3 (scalability
and precision of the analysis, full automation and integration, fast reporting)
are important for the social challenge.

This challenge suggested to us that we should start small to build trust
gradually, and this determined our attitude on what to report. Facebook has
databases of crashes and other bugs, and many on Android were out-of-memory
errors and null pointer exceptions. We concentrated on these initially, target-
ing false positives and negatives for resource leaks and null dereferences, and

http://phabricator.org

10 C. Calcagno et al.

we wired INFER up to the internal build process. We trained INFER first on
Facebook’s Android apps to improve our reports.

Having a dedicated static analysis team within Facebook helps tremendously
with the social challenge.

6 Conclusions

INFER is in production at Facebook where it delivers comments on code changes
submitted by developers. INFER’s compositional, incremental, nature is impor-
tant for this means of deployment. This stands in contrast to a model based
on whole-program analysis/verification, where long runs produce bug lists that
developers might fix outside of their normal workflow. We have run INFER in
a whole-program mode to produce lists of issues but found this to be less effec-
tive, because of the inefficiency of the context switch that it causes when taking
developers out of their flow (amongst other reasons).

Just as the apps are, INFER itself is undergoing iterative development and
changing in response to developer feedback; the number of bugs reported is
changing, as is the proportion of code where specs are successfully inferred.
And, in addition to null dereference and leak errors, we will be extending the
kinds of issues INFER reports as time goes on.

Finally, although there have been some successes, we should say that from an
industrial perspective advanced program analysis techniques are generally under-
developed. Simplistic techniques based on context insensitive pattern matching
(“linters”) are deployed often and do provide value, and it is highly nontrivial
to determine when or where many of the ingenious ideas being proposed in the
scientific literature can be deployed practically. Part of the problem, we suggest,
is that academic research has focused too much on whole-program analysis, or
on specify-first, both of which severely limit the number of use cases. There are
of course many other relevant problem areas – error reporting, fix suggestion,
precision of abstract domains, to name a few – but we believe that automatic
formal verification techniques have the potential for much greater impact if com-
positional analyses can become better developed and understood.

References

1. Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg, J., McGarvey, C.,
Ondrusek, B., Rajamani, S.K., Ustuner, A.: Thorough static analysis of device
drivers. In: Proceedings of the 2006 EuroSys Conference, Leuven, Belgium, April
18-21, pp. 73–85 (2006)

2. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: modular automatic asser-
tion checking with separation logic. In: de Boer, F.S., Bonsangue, M.M., Graf,
S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 115–137. Springer,
Heidelberg (2006)

3. Bessey, A., Block, K., Chelf, B., Chou, A., Fulton, B., Hallem, S., Gros, C.-H.,
Kamsky, A., McPeak, S., Engler, D.R.: A few billion lines of code later: using
static analysis to find bugs in the real world. Commun. ACM 53(2), 66–75 (2010)

Moving Fast with Software Verification 11

4. Calcagno, C., Distefano, D.: Infer: an automatic program verifier for memory safety
of C programs. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.)
NFM 2011. LNCS, vol. 6617, pp. 459–465. Springer, Heidelberg (2011)

5. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape anal-
ysis by means of bi-abduction. J. ACM 58(6), 26 (2011)

6. Constine, J.: Facebook acquires assets of UK mobile bug-checking software devel-
oper Monoidics. http://techcrunch.com/2013/07/18/facebook-monoidics

7. Cousot, P., Cousot, R., Fähndrich, M., Logozzo, F.: Automatic inference of nec-
essary preconditions. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI
2013. LNCS, vol. 7737, pp. 128–148. Springer, Heidelberg (2013)

8. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D.,
Rival, X.: The ASTREÉ analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444,
pp. 21–30. Springer, Heidelberg (2005)

9. Feitelson, D.G., Frachtenberg, E., Beck, K.L.: Development and deployment at
Facebook. IEEE Internet Computing 17(4), 8–17 (2013)

10. O’Hearn, P.W., Reynolds, J.C., Yang, H.: Local reasoning about programs that
alter data structures. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 1–19.
Springer, Heidelberg (2001)

11. Reps, T.W., Horwitz, S., Sagiv, S.: Precise interprocedural dataflow analysis via
graph reachability. In: Conference Record of POPL 1995: 22nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, San Francisco,
California, USA, January 23-25, pp 49–61 (1995)

http://techcrunch.com/2013/07/18/facebook-monoidics

Developing Verified Software Using Leon

Viktor Kuncak(B)

École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
viktorkuncak@epfl.ch

Abstract. We present Leon, a system for developing functional Scala
programs annotated with contracts. Contracts in Leon can themselves
refer to recursively defined functions. Leon aims to find counterexam-
ples when functions do not meet the specifications, and proofs when
they do. Moreover, it can optimize run-time checks by eliminating stati-
cally checked parts of contracts and doing memoization. For verification
Leon uses an incremental function unfolding algorithm (which could be
viewed as k-induction) and SMT solvers. For counterexample finding it
uses these techniques and additionally specification-based test genera-
tion. Leon can also execute specifications (e.g. functions given only by
postconditions), by invoking a constraint solver at run time. To make this
process more efficient and predictable, Leon supports deductive synthesis
of functions from specifications, both interactively and in an automated
mode. Synthesis in Leon is currently based on a custom deductive syn-
thesis framework incorporating, for example, syntax-driven rules, rules
supporting synthesis procedures, and a form of counterexample-guided
synthesis. We have also developed resource bound invariant inference for
Leon and used it to check abstract worst-case execution time. We have
also explored within Leon a compilation technique that transforms real-
valued program specifications into finite-precision code while enforcing
the desired end-to-end error bounds. Recent work enables Leon to per-
form program repair when the program does not meet the specification,
using error localization, synthesis guided by the original expression, and
counterexample-guided synthesis of expressions similar to a given one.
Leon is open source and can also be tried from its web environment at
leon.epfl.ch.

1 Overview

We present Leon, a system supporting the development of functional Scala [21]
programs. We illustrate the flavor of program development in Leon, and present
techniques deployed in it. Leon supports a functional subset of Scala. It has
been observed time and again that one of the most effective ways of writing
software that needs to be proved correct is to write it in a purely functional
language. ACL2 [8] and its predecessors have demonstrated the success of this

Viktor Kuncak — This work is supported in part by the European Research Council
(ERC) Grant Implicit Programming and Swiss National Science Foundation Grant
“Constraint Solving Infrastructure for Program Analysis”.

c© Springer International Publishing Switzerland 2015
K. Havelund et al. (Eds.): NFM 2015, LNCS 9058, pp. 12–15, 2015.
DOI: 10.1007/978-3-319-17524-9 2

Developing Verified Software Using Leon 13

approach, resulting in verification of a number of hardware and software systems.
Unlike ACL2, the input language supported by Leon has Hindley-Milner style
type system [6,19]. Leon currently delegates parsing and type analysis to the
existing Scala compiler front end; a Leon program is a valid Scala program.
For convenience, Leon also supports local functions, local mutable variables and
while loops, which are expanded into recursive functions [1]. Among related
tools to Leon as far as verification functionality is concerned are liquid types
[27], though Leon has a real model checking flavor in that it returns only valid
counterexamples.

Leon functions are annotated with preconditions and postconditions using
Scala syntax for contracts [20]. They manipulate unbounded integer and bitvec-
tor numerical quantities, algebraic data types expressed as case classes, lists,
functional arrays, and maps. An ambitious research direction introduces a Real
data type that compiles into a desired finite-precision data type that meets given
precision guarantees [2,3]. The main challenge in this work is automatically com-
puting the accumulation of worst-case error bounds though non-linear compu-
tations, which requires also precisely computing ranges of variables in programs
using constraint solving.

Contracts in Leon can themselves refer to recursively defined functions, which
makes them very expressive. Leon aims to find counterexamples when functions
do not meet the specifications, and proofs when they do. For verification Leon
uses an incremental function unfolding algorithm (which could be viewed as k-
induction) and SMT solvers. The foundations of this work have been presented
in [25], with first presentation of experimental results appearing in [26]. This
algorithm simultaneously searches for proofs and counterexamples and has many
desirable properties [24]. To speed up search for counterexamples, Leon also
makes use of specification-based test generation, though this direction could be
pushed further using, for example, techniques deployed in the domain-specific
Scala language for test generation [17].

Leon has so far primarily relied on the Z3 SMT solver [4]; its performance and
support for numerous theories including algebraic data types has proven to be very
useful for automating a functional programverifier such aLeon.Particularly conve-
nient have been extended array operations in Z3 [5]which have allowedus to encode
Leon’s sets, arrays, and maps efficiently. More recently we have built a more generic
SMT-LIB interface and are exploring the possibility of using other solvers, as well
as many of the unique features of CVC4, such as its increasingly sophisticated sup-
port for quantifiers [23] and automated mathematical induction [22].

Wehavealsodeveloped resourcebound invariant inference forLeonbyencoding
the inference problem into non-linear arithmetic, and used this approach to check
abstract worst-case execution time [18]. In this approach we have also shown that
function postconditions can be inferred or strengthened automatically.

Constructs for preconditions (require) and postconditions (ensuring) have run-
time checking semantics in standard Scala; they are simply particular assertions.
Executing precise specifications at run time may change not only constant factors
but also asymptotic complexity of the original program, changing, for example,
insertion into a balanced tree from logarithmtic into quadratic operation. In Leon,

14 V. Kuncak

even when contracts cannot be checked fully statically, they can be optimized by
eliminating statically checked parts of contracts anddoingmemoization [12]. Using
these techniques, it is often possible to speed up runtime checks and recover the
asymptotic behavior of the original program.

Leon can also execute specifications alone (e.g. functions without body, given
only by postconditions), by invoking a constraint solver at run time [13]. This
mechanism reuses counterexample-finding ability as a computation mechanism
[11]. Leon thus supports an expressive form of constraint programming with com-
putable functions as constraints. While convenient for prototyping, constraint
programming can be slow and unpredictable, often involving exponential search
for solutions.

As a step towards more efficient and predictable approach, Leon supports
deductive synthesis of functions form specifications. This functionality was orig-
inally aimed at being fully automated [10]. Synthesis in Leon is based on a custom
deductive synthesis framework incorporating, for example, syntax-driven rules,
rules supporting synthesis procedures [7,14–16], and a form of counterexample-
guided synthesis [10]. Subsequently we have worked on interfaces to perform
this synthesis interactively, which allows the developer both to explore different
alternatives if the solution is not unique, and to guide synthesis using manual
steps.

Recent work enables Leon to perform program repair when the program
does not meet the specification, using error localization, synthesis guided by the
original expression, and counterexample-guided synthesis of expressions similar
to a given one [9].

Leon is under active development and has been used in teaching courses at
EPFL. It is open source and can also be tried from its web environment at the
URL http://leon.epfl.ch.

References

1. Blanc, R.W., Kneuss, E., Kuncak, V., Suter, P.: An overview of the leon verifica-
tion system: verification by translation to recursive functions. In: Scala Workshop
(2013)

2. Darulova, E.: Programming with Numerical Uncertainties. PhD thesis, EPFL
(2014)

3. Darulova, E., Kuncak, V.: Sound compilation of reals. In: ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages (POPL) (2014)

4. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

5. de Moura, L., Bjørner, N.: Generalized, efficient array decision procedures. In:
Formal Methods in Computer-Aided Design, November 2009

6. Hindley, R.: The principal type-scheme of an object in combinatory logic. Trans-
actions of the American Mathematical Society 146, 29–60 (1969)

7. Jacobs, S., Kuncak, V., Suter, P.: Reductions for synthesis procedures. In:
Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737,
pp. 88–107. Springer, Heidelberg (2013)

http://leon.epfl.ch

Developing Verified Software Using Leon 15

8. Kaufmann, M., Moore, J.S., Manolios, P.: Computer-Aided Reasoning: An App-
roach. Kluwer Academic Publishers, Norwell (2000)

9. Kneuss, E., Koukoutos, M., Kuncak, V.: On deductive program repair in Leon.
Technical Report EPFL-REPORT-205054, EPFL, February 2014

10. Kneuss, E., Kuncak, V., Kuraj, I., Suter, P.: Synthesis modulo recursive functions.
In: OOPSLA (2013)

11. Köksal, A., Kuncak, V., Suter, P.: Constraints as control. In: ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages (POPL) (2012)

12. Koukoutos, E., Kuncak, V.: Checking data structure properties orders of magni-
tude faster. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734,
pp. 263–268. Springer, Heidelberg (2014)

13. Kuncak, V., Kneuss, E., Suter, P.: Executing specifications using synthesis and
constraint solving. In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174,
pp. 1–20. Springer, Heidelberg (2013)

14. Kuncak, V., Mayer, M., Piskac, R., Suter, P.: Complete functional synthesis.
In: ACM SIGPLAN Conf., Programming Language Design and Implementation
(PLDI) (2010)

15. Kuncak, V., Mayer, M., Piskac, R., Suter, P.: Software synthesis procedures. Com-
munications of the ACM (2012)

16. Kuncak, V., Mayer, M., Piskac, R., Suter, P.: Functional synthesis for linear arith-
metic and sets. Software Tools for Technology Transfer (STTT) 15(5–6), 455–474
(2013)

17. Kuraj, I., Kuncak, V.: SciFe: scala framework for effcient enumeration of data
structures with invariants. In: Scala Workshop (2014)

18. Madhavan, R., Kuncak, V.: Symbolic resource bound inference for functional pro-
grams. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 762–778.
Springer, Heidelberg (2014)

19. Milner, R.: A theory of type polymorphism in programming. JCSS 17(3), 348–375
(1978)

20. Odersky, M.: Contracts for scala. In: Barringer, H., Falcone, Y., Finkbeiner, B.,
Havelund, K., Lee, I., Pace, G., Roşu, G., Sokolsky, O., Tillmann, N. (eds.) RV
2010. LNCS, vol. 6418, pp. 51–57. Springer, Heidelberg (2010)

21. Odersky, M., Spoon, L., Venners, B.: Programming in scala: a comprehensive step-
by-step guide. Artima Press (2008)

22. Reynolds, A., Kuncak, V.: Induction for SMT solvers. In: D’Souza, D., Lal, A.,
Larsen, K.G. (eds.) VMCAI 2015. LNCS, vol. 8931, pp. 80–98. Springer, Heidelberg
(2015)

23. Reynolds, A., Tinelli, C., de Moura, L.M.: Finding conflicting instances of quanti-
fied formulas in SMT. In: FMCAD, pp. 195–202. IEEE (2014)

24. Suter, P.: Programming with Specifications. PhD thesis, EPFL, December 2012
25. Suter, P., Dotta, M., Kuncak, V.: Decision procedures for algebraic data types with

abstractions. In: ACM SIGACT-SIGPLAN Symposium on Principles of Program-
ming Languages (POPL) (2010)

26. Suter, P., Köksal, A.S., Kuncak, V.: Satisfiability modulo recursive programs. In:
Yahav, E. (ed.) Static Analysis. LNCS, vol. 6887, pp. 298–315. Springer, Heidelberg
(2011)

27. Vazou, N., Rondon, P.M., Jhala, R.: Abstract refinement types. In: Felleisen, M.,
Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 209–228. Springer, Heidelberg
(2013)

Regular Papers

Timely Rollback: Specification and Verification

Mart́ın Abadi1 and Michael Isard2(B)

1 University of California at Santa Cruz, Santa Cruz, California, USA
2 Microsoft Research, Mountain View, California, USA

misard@microsoft.com

Abstract. This paper presents a formal description and analysis of a
technique for distributed rollback recovery. The setting for this work is a
model for data-parallel computation with a notion of virtual time. The
technique allows the selective undo of work at particular virtual times.
A refinement theorem ensures the consistency of rollbacks.

1 Introduction

Rollback recovery plays an important role in ensuring fault-tolerance in many
distributed systems [7]. In this paper we initiate the development and study
of a rollback technique for distributed data-parallel computing. This technique
relies on the timely-dataflow model [11], in which computations are organized as
dataflow graphs (e.g., [9]) and events are associated with virtual times [8] in a
partial order. The technique guarantees consistency and transparency to appli-
cations while allowing the selective undo of work that corresponds to particular
virtual times. For example, if a system has processed messages associated with
virtual times t1 and t2, with t2 �≤ t1, the work for time t1 may be preserved while
that for time t2 may be undone, independently of the order in which the work
was originally performed.

More generally, each node p in a dataflow graph may roll back to a set of times
f(p). This set is not necessarily the same for all nodes, but consistency constrains
its choice. For example, virtual times for which a node p has produced visible
external output cannot, in general, be outside f(p): the output represents a
commitment. Despite such constraints, the flexibility of not having the same f(p)
for all nodes is attractive in practice. In particular, choosing a particular f(p)
may imply the availability of corresponding logs or checkpoints, and allowing
f(p) to vary means that subsystems may adopt their own policies for logging
and checkpointing.

The goal of this paper is to describe the design of our technique abstractly,
and to present specifications and proofs that have been essential for this design.
These specifications and proofs, which require a non-trivial use of prophecy vari-
ables [4], go beyond the analysis of internal dependencies (cf., e.g., [6]) to ensure

Most of this work was done at Microsoft Research. M. Abadi is now at Google.

c© Springer International Publishing Switzerland 2015
K. Havelund et al. (Eds.): NFM 2015, LNCS 9058, pp. 19–34, 2015.
DOI: 10.1007/978-3-319-17524-9 3

20 M. Abadi and M. Isard

that rollbacks are observationally correct in the sense that every execution with
rollbacks is externally indistinguishable from an execution without rollbacks. We
are implementing the design in the context of the Naiad system [11]; we hope to
report on this implementation in the future.

The next section reviews the framework that we use for specifications and the
model of computation. Section 3 motivates an assumption on buffering external
outputs. Section 4 introduces auxiliary concepts and notations needed for the
specification of rollback and the corresponding proofs. That specification is the
subject of Section 5. Section 6 outlines the main steps of our proof that the model
of Section 5, which includes rollback, is a correct refinement of the high-level
model of Section 2.3. Section 7 briefly suggests four further elaborations of the
rollback mechanism. Finally, Section 8 concludes, and in particular comments on
the broader applicability of our ideas and results. Because of space constraints,
proofs are omitted.

2 Model of Computation

This section describes our model of computation; it is based on another paper [2],
which provides further details.

2.1 Basics of Specifications and Implementations

In this work, as in much work based on temporal logic (e.g., [4,10]), specifications
describe allowed behaviors, which are sequences of states. Each of the sequences
starts in an initial state, and every pair of consecutive states is either identical
(a “stutter”) or related by a step of computation. Formally, a specification is
a state machine, that is, a triple (Σ,F,N) where the state space Σ is a subset
of the product of a fixed set ΣE of externally visible states with a set ΣI of
internal states; the set F of initial states is a subset of Σ; and the next-state
relation N is a subset of Σ × Σ. The complete property generated by a state
machine (Σ,F,N) consists of all infinite sequences 〈〈s0, s1, . . .〉〉 such that s0 ∈ F
and, for all i ≥ 0, either 〈si, si+1〉 ∈ N or si = si+1. This set is closed under
stuttering and is a safety property. (We omit fairness conditions, for simplicity.)
The externally visible property generated by a state machine is the externally
visible property induced by its complete property via projection onto ΣE and
closure under stuttering. It need not be a safety property. A state machine S
implements a state machine S′ if and only if the externally visible property
generated by S is a subset of the externally visible property generated by S′.

2.2 Basics of Timely Dataflow

A system is a directed graph (possibly with cycles), in which nodes do the
processing and messages are communicated on edges. We write P for the set of
nodes. The set of edges is partitioned into input edges I, internal edges E, and
output edges O. Edges have sources and destinations (but not always both): for

Timely Rollback: Specification and Verification 21

each i ∈ I, dst(i) ∈ P , and src(i) is undefined; for each e ∈ E, src(e), dst(e) ∈ P ,
and we require that they are distinct; for each o ∈ O, src(o) ∈ P , and dst(o) is
undefined. We refer to nodes and edges as locations. We write M for the set of
messages, and M∗ for the set of finite sequences of messages.

We assume a partial order of virtual times (T, ≤), and a function time from
M to T (independent of the order of processing of messages). Each node can
request to be notified when it has received all messages for a given virtual time.
We allow T to include multiple time domains, that is, subsets that may use
different coordinate systems or express different concerns. For example, inside
loops, virtual times may be tuples with coordinates that represent iteration
counters. Therefore, it is not always meaningful to compare virtual times at
different graph locations. For simplicity, we assume that all inputs, notifications,
and notification requests (but not outputs) at each node are in the same time
domain; if inputs in different time domains are desired, auxiliary relay nodes can
translate across time domains.

The state of a system consists of a mapping from nodes to their local states
and outstanding notification requests plus a mapping from edges to their con-
tents. We write LocState(p) for the local state of node p, and ΣLoc for the set of
local states; NotRequests(p) for p’s outstanding notification requests, which are
elements of T ; and Q(e) for the finite sequence of messages on edge e.

A local history for a node p is a finite sequence that starts with an initial local
state that satisfies a given predicate Initial(p), and a set N of initial notification
requests, and is followed by events of the forms t and (e,m); these events indicate
the received notifications and the received messages with corresponding edges.
We write Histories(p) for the set of local histories of p.

We assume that initially, in every behavior of a system, each node p is in a
local state that satisfies Initial(p), and p has some set of notification requests;
and for each edge i ∈ I we let Q(i) contain an arbitrary finite sequence of
messages, and for each edge e ∈ E ∪ O we let Q(e) be empty. Thereafter, in the
absence of rollback, at each step of computation (atomically, for simplicity), a
node consumes a notification or a message, and produces notification requests
and places messages on its outgoing edges.

The processing of events is defined by a function g1(p) for each node p, which
is applied to p’s local state s and to an event x (either a time t or a pair (e,m)),
and which produces a new state s′, a set of times N , and finite sequences of
messages μ1, . . . , μk on p’s outgoing edges e1, . . . , ek, respectively. We write:

g1(p)(s, x) = (s′, N, 〈e1 	→μ1, . . . , ek 	→μk〉)
where 〈e1 	→μ1, . . . , ek 	→μk〉 is the function that maps e1 to μ1, . . . , ek to μk.
Iterating g1(p), we obtain a function g(p) which takes as input a local history h
and produces a new state s′ and the resulting cumulative notification requests
and sequences of messages μ1, . . . , μk:

g(p)(h) = (s′, N, 〈e1 	→μ1, . . . , ek 	→μk〉)
We let ΠLoc(s′, N, 〈e1 	→μ1, . . . , ek 	→μk〉) = s′, ΠNR(s′, N, 〈e1 	→μ1, . . . , ek 	→μk〉)
= N , and Πei(s

′, N, 〈e1 	→μ1, . . . , ek 	→μk〉) = μi for i = i . . . k.

22 M. Abadi and M. Isard

When one event at a given virtual time t and location l in a dataflow graph
can potentially result in another event at a virtual time t′ and location l′ in
the same graph, we say that (l, t) could-result-in (l′, t′), and write (l, t)� (l′, t′).
For example, when a node p forwards on an outgoing edge e all the messages
that it receives on an incoming edge d, we have that (d, t)� (e, t) for all t. The
could-result-in relation enables an implementation of timely dataflow to support
completion notifications, which tell a node when it will no longer see messages
for a given time, and also to reclaim resources that correspond to pairs (l, t) at
which no more events are possible. Another paper [2] gives a precise definition of
� and of the assumptions and properties on which we base our proofs. These
include, in particular, that � is reflexive and transitive.

A set S ⊆ ((I ∪ E ∪ O) ∪ P) × T is upward closed if and only if, for all (l, t)
and (l′, t′), (l, t) ∈ S and (l, t)� (l′, t′) imply (l′, t′) ∈ S. We write Close↑(S) for
the least upward closed set that contains S. Since � is reflexive and transitive,
Close↑(S) consists of the pairs (l′, t′) such that (l, t)� (l′, t′) for some (l, t) ∈ S.

2.3 High-Level Specification

Throughout this paper, each element of ΣE is an assignment of a value to Q(e)
for each e ∈ I ∪ O (that is, to Q�(I ∪ O), where the symbol � denotes function
restriction). In other words, the externally visible state consists of the contents
of input and output channels. In the high-level specification, each element of ΣI

is an assignment of a value to LocState(p) and NotRequests(p) for each p ∈ P ,
and to Q(e) for each e ∈ E (that is, to Q�E). In our lower-level specifications,
below, each element of ΣI has additional components.

Loosely adopting the TLA [10] approach, we define a high-level specifica-
tion SpecR in Figure 1. We use the following TLA notations. A primed state
function (for example, Q′) in an action refers to the value of the state function
in the “next” state (the state after the action); is the temporal-logic opera-
tor “always”; given an action N and a list of expressions v1, . . . , vk, [N]v1,...,vk

abbreviates N ∨((v′
1 = v1)∧ . . .∧(v′

k = vk)). Internal state functions are existen-
tially quantified. We also write v for the list of the state components LocState,
NotRequests , and Q, and use the auxiliary state function Clock which indicates
pairs of a location and a time for which events may remain:

Clock = Close↑

⎛
⎝

{(e, time(m)) | e ∈ I ∪ E ∪ O,m ∈ Q(e)}
∪

{(p, t) | p ∈ P, t ∈ NotRequests(p)}

⎞
⎠

The predicate InitProp defines the initial states of a state machine, while the
action MessR ∨ Not ∨ Inp ∨ Outp defines its next-state relation. The disjuncts
MessR, Not , Inp, and Outp correspond, respectively, to processing messages,
processing notification requests, external changes to input edges, and external
changes to output edges. Action Inp could be further constrained to ensure that
it only shrinks Clock or leaves it unchanged. Importantly, MessR does not strictly
require FIFO behavior. Given a queue Q(e), a node may process any message m

Timely Rollback: Specification and Verification 23

InitProp =

(∀e ∈ E ∪ O.Q(e) = ∅ ∧ ∀i ∈ I.Q(i) ∈ M∗

∧∀p ∈ P.(LocState(p),NotRequests(p)) ∈ Initial(p)

)

MessR = ∃p ∈ P.MessR1 (p)

MessR1 (p) =

⎛
⎝∃e ∈ I ∪ E.p = dst(e) ∧ ∃m ∈ M.∃u, v ∈ M∗.

Q(e) = u·m·v ∧ Q′(e) = u·v ∧ ∀n ∈ u.time(n) �≤ time(m)
∧Mess2 (p, e, m)

⎞
⎠

Mess2 (p, e, m) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

let {e1, . . . , ek} = {d ∈ E ∪ O | src(d) = p},
s = LocState(p),
(s′, {t1, . . . , tn}, 〈e1 �→μ1, . . . , ek �→μk〉) = g1(p)(s, (e, m))
in LocState ′(p) = s′

∧ NotRequests ′(p) = NotRequests(p) ∪ {t1, . . . , tn}
∧ Q′(e1) = Q(e1)·μ1 . . . Q′(ek) = Q(ek)·μk

∧ ∀q ∈ P �= p.LocState ′(q) = LocState(q)
∧ ∀q ∈ P �= p.NotRequests ′(q) = NotRequests(q)
∧ ∀d ∈ I ∪ E ∪ O − {e, e1, . . . , ek}.Q′(d) = Q(d)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Not = ∃p ∈ P.Not1 (p)

Not1 (p) = ∃t ∈ NotRequests(p).

∀e ∈ I ∪ E such that dst(e) = p.(e, t) �∈ Clock ∧ Not2 (p, t)

Not2 (p, t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

let {e1, . . . , ek} = {d ∈ E ∪ O | src(d) = p},
s = LocState(p),
(s′, {t1, . . . , tn}, 〈e1 �→μ1, . . . , ek �→μk〉) = g1(p)(s, t)
in LocState ′(p) = s′

∧ NotRequests ′(p) = NotRequests(p) − {t} ∪ {t1, . . . , tn}
∧ Q′(e1) = Q(e1)·μ1 . . . Q′(ek) = Q(ek)·μk

∧ ∀q ∈ P �= p.LocState ′(q) = LocState(q)
∧ ∀q ∈ P �= p.NotRequests ′(q) = NotRequests(q)
∧ ∀d ∈ I ∪ E ∪ O − {e1, . . . , ek}.Q′(d) = Q(d)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Inp =

⎛
⎜⎜⎝

∀p ∈ P.LocState ′(p) = LocState(p)
∧ ∀p ∈ P.NotRequests ′(p) = NotRequests(p)
∧ ∀i ∈ I.Q(i) is a subsequence of Q′(i)
∧ ∀d ∈ E ∪ O.Q′(d) = Q(d)

⎞
⎟⎟⎠

Outp =

⎛
⎜⎜⎝

∀p ∈ P.LocState ′(p) = LocState(p)
∧ ∀p ∈ P.NotRequests ′(p) = NotRequests(p)
∧ ∀o ∈ O.Q′(o) is a subsequence of Q(o)
∧ ∀d ∈ I ∪ E.Q′(d) = Q(d)

⎞
⎟⎟⎠

SpecR = ∃LocState,NotRequests, Q�E.

InitProp ∧ [MessR ∨ Not ∨ Inp ∨ Outp]v

Fig. 1. High-level specification

24 M. Abadi and M. Isard

such that there is no message n ahead of m with time(n) ≤ time(m). This
relaxation has various benefits, for example in supporting optimizations. For our
purposes, it is crucial for obtaining a flexible and correct rollback technique. For
example, suppose that a node receives a message for time 2 and then a message
for time 1. We would like to be able to undo the work for time 2 while preserving
the work for time 1. The system will then behave as though the message for time
1 had overtaken the message for time 2. Therefore, our high-level specification
should enable such overtaking.

3 An Assumption on External Outputs

The model of Section 2.2 allows each node to consume and produce multiple
events in one atomic action. While such behavior does not pose problems when
it is limited to internal edges, it complicates selective rollback when it becomes
visible on output edges, as the following example illustrates.

Example 1. Suppose that q has an outgoing edge o ∈ O. Suppose that t1 and
t2 are incomparable times, and t3 is greater than both. As long as q receives
messages only for time t1, it forwards them, outputting them on o, with the
same “payload” but at time t3. As soon as q receives a notification for time t2, it
stops doing any forwarding. Suppose that in a run q has received a notification
for time t2 followed by 50 messages for time t1, so q has not output anything
on o. Suppose that we wish to roll back to a state where q has received the
messages for time t1 but not the notification for time t2. Consistency requires
that there should be 50 messages on o. But a rollback action cannot put them
there all atomically, since in a run without the notification for time t2 they would
have appeared one after another, not all at once.

This example suggests that rollback can benefit from buffering external out-
puts. Buffering may be “a simple matter of programming”. Alternatively, we can
achieve it “for free” by adding buffer nodes (between q and o in the example).
More generally, buffer nodes can support asynchronous behavior (see, e.g., [12]).
Formally, we say that p ∈ P is a buffer node if there exists exactly one e1 ∈ I ∪E
such that dst(e1) = p; there exists exactly one e2 ∈ E ∪O such that src(e2) = p;
for this e2, g1(p)(s, t) = (s, ∅, 〈e2 	→∅〉); and for this e1 and e2, g1(p)(s, (e1,m)) =
(s, ∅, 〈e2 	→〈〈m〉〉〉). Such a node p is simply a relay between queues. We assume:

Condition 1. If o ∈ O and src(o) = p then p is a buffer node.

4 Auxiliary Concepts

This section reviews a few auxiliary concepts and corresponding notations (intro-
duced in the study of information-flow security properties [3]).

Timely Rollback: Specification and Verification 25

4.1 Sequences, Frontiers, Filtering, and Reordering

We write ∅ for the empty sequence, 〈〈a0, a1, . . .〉〉 for a sequence that contains
a0, a1, . . . (as above), and use · both for adding elements to sequences and for
appending sequences. We define subtraction for sequences, inductively, by:

u − ∅ = u ∅ − m = ∅
u − m·v = (u − m) − v (m·u − m) = u

(n·u − m) = n·(u − m) for n �= m

A subset S of T is downward closed if and only if, for all t and t′, t ∈ S and
t′ ≤ t imply t′ ∈ S. We call such a subset a frontier , and write F for the set of
frontiers; we often let f range over frontiers. (In the parlance of mathematics, a
frontier might be called an ideal; in that of distributed systems, frontiers resemble
consistent cuts.) When S ⊆ T , we write Close↓(S) for the downward closure of
S (the least frontier that contains S).

Filtering operations on histories and on sequences of messages keep or remove
elements in a given frontier. Given a local history h = 〈〈(s,N), x1, . . . , xk〉〉 and
a frontier f , where each xi is of the form ti or (di,mi), we write h@f for the
subsequence of h obtained by removing all ti �∈ f and all (di,mi) such that
time(mi) �∈ f . When u is a sequence of messages, we write u@f for the subse-
quence obtained by removing those messages whose times are not in f . Finally,
given a sequence of messages u and a frontier f , we write u\@f for the subsequence
of u consisting only of messages whose times are not in f .

The reordering relation ↪→ on finite sequences of messages is the least
reflexive and transitive relation such that, for u, v ∈ M∗ and m1,m2 ∈ M ,
if time(m1) �≤ time(m2) then u·m1·m2·v ↪→ u·m2·m1·v. This relation models the
reordering that happens in message processing according to action MessR, so
serves in reasoning with this action.

4.2 Expressing Dependencies

Rollback can exploit information on whether a history or a part of a history at
a node suffices for determining a notification request or message generated by
the node. For example, if we know that p’s outputs up to time 1 are determined
entirely by its history up to time 1, and a rollback does not affect p’s history up
to time 1, then the outputs up to time 1 and their consequences downstream do
not need to be retracted. Here we consider how to capture such information.

We simply assume that every node’s notification requests up to time t are
determined by its local history up to time t, for all t. For messages, on the other
hand, many useful nodes do not satisfy an analogous property (for example,
because of the use of different time domains for inputs and outputs) or satisfy
stronger properties that we would want to leverage (as is the case for nodes that
increment loop counters). Therefore, we make a more flexible hypothesis: for
each edge e ∈ E ∪ O, we assume a function φ(e) from frontiers to frontiers (a
frontier transformer) such that h gives rise to a message on e in φ(e)(f) if and
only if so does h@f , and with messages in the same order and multiplicity:

26 M. Abadi and M. Isard

Condition 2. For all f ∈ F , if g(p)(h) = (. . . , N, 〈. . . ei 	→μi . . .〉) and g(p)(h@f)
= (. . . , N ′, 〈. . . ei 	→μ′

i . . .〉) then N@f = N ′@f and μi@φ(ei)(f) = μ′
i@φ(ei)(f).

For example, when e is the output edge of a buffer node, we can let φ(e)(f) =
f for all f , that is, let φ(e) be the identity function. More generally, φ(e) may
be the identity function for many other edges, but this is not required. Neither
is it required that φ(e) be as precise as possible, though a more precise φ(e)
will generally be more useful. In this paper, we do not investigate how to check
that Condition 2 holds for a given φ: we simply posit that we can find a correct,
useful φ. Our experience indicates that this assumption is reasonable.

Additionally, we require that φ satisfy the following properties:

Condition 3. For all e ∈ E ∪ O:

1. φ(e)(f1) ∩ φ(e)(f2) ⊆ φ(e)(f1 ∩ f2) for all f1, f2 ∈ F ,
2. φ(e)(T) = T ,
3. φ(e) is monotonic.

Conditions 3(1) and 3(3) imply that φ(e)(f1) ∩ φ(e)(f2) = φ(e)(f1 ∩ f2). In
combination with Condition 3(2), they say that φ(e) distributes over all finite
intersections, including the empty intersection that yields T . (We can justify a
stronger property, namely that φ(e) distributes over arbitrary intersections [3].)

5 Low-Level Specification (with Rollback)

The low-level specification, which permits rollback, has the same state compo-
nents as the high-level specification plus an internal variable H that maps each
p ∈ P to a local history in Histories(p). The resulting state space is ΣLow.
Figure 2 defines the specification. There, we write v for the list of the state
components LocState, NotRequests , Q, and H.

The main novelties are in the action RollbackL. This action creates a global
state from local histories filtered down to frontiers f(p) by applying the function
g(p), for each node p. Among other things, for each outgoing internal edge ei
this function yields messages μi, from which messages in φ(ei)(f(p))∩f(dst(ei))
are expunged, intuitively because ei’s destination should already have them.

Crucially, the global state is completely determined by the local histories,
since g(p) is a function. So we are not concerned with recording non-deterministic
choices, other than those encoded in local histories, in order to ensure consistency
(for example, in order to ensure that any internal choices revealed by external
outputs are made in the same way at each rollback). As discussed in Section 7.2,
the creation of the global state may be accelerated by precomputation; the spec-
ification is silent on such implementation matters.

The choice of the frontiers f(p) is subject to several constraints. (Section 7.3
briefly considers how to pick frontiers that satisfy these constraints.) A guard
in RollbackL2 (f, p) requires that f(p) cannot contain times for which there are
messages in transit towards p on internal edges, basically because, in practice,
any messages in transit on internal edges may be lost during the failures that

Timely Rollback: Specification and Verification 27

InitPropL = InitProp ∧ ∀p ∈ P.H(p) = 〈〈(LocState(p),NotRequests(p))〉〉
MessL = ∃p ∈ P.

MessR1 (p) ∧ H ′(p) = H(p)·(e, m) ∧ ∀q ∈ P �= p.H ′(q) = H(q)

NotL = ∃p ∈ P.NotL1 (p)

NotL1 (p) = ∃t ∈ NotRequests(p).⎛
⎝∀e ∈ I ∪ E such that dst(e) = p.(e, t) �∈ Clock

∧ Not2 (p, t)
∧ H ′(p) = H(p)·t ∧ ∀q ∈ P �= p.H ′(q) = H(q)

⎞
⎠

InpL = Inp ∧ ∀p ∈ P.H ′(p) = H(p)

OutpL = Outp ∧ ∀p ∈ P.H ′(p) = H(p)

RollbackL = ∃f ∈ P→F.RollbackL1 (f)

RollbackL1 (f) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∀p ∈ P, i ∈ I such that dst(i) = p.
{time(m) | (i, m) ∈ H(p)} ⊆ f(p)

∧ ∀p ∈ P, o ∈ O such that src(o) = p.
{time(m) | ∃e.(e, m) ∈ H(p)} ⊆ f(p)

∧ ∀p, q ∈ P, e ∈ E such that src(e) = p ∧ dst(e) = q.
{time(m) | (e, m) ∈ H(q)} ∩ f(q) ⊆ φ(e)(f(p))

∧ ∀p, q ∈ P, e1, e2 ∈ E such that src(e1) = p ∧ dst(e2) = q,
t1 ∈ T, t2 ∈ H(q)@f(q).
if (e1, t1) � (e2, t2) then t1 ∈ φ(e1)(f(p))

∧ ∀e ∈ I ∪ O.Q′(e) = Q(e)
∧ ∀p ∈ P.RollbackL2 (f, p)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

RollbackL2 (f, p) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f(p) ∩ {time(m) | ∃e ∈ E, m ∈ M.dst(e) = p ∧ m ∈ Q(e)} = ∅
∧
let {e1, . . . , ek} = {d ∈ E ∪ O | src(d) = p},
h = H(p)@f(p),
(s′, {t1, . . . , tn}, 〈e1 �→μ1, . . . , ek �→μk〉) = g(p)(h)
in
∀i ∈ 1 . . . k. if ei ∈ E

then Q′(ei) = μi\@(φ(ei)(f(p)) ∩ f(dst(ei)))
∧ LocState ′(p) = s′

∧ NotRequests ′(p) = {t1, . . . , tn}
∧ H ′(p) = h

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

SpecL = ∃LocState,NotRequests, H, Q�E.

InitPropL ∧ [MessL ∨ NotL ∨ InpL ∨ OutpL ∨ RollbackL]v

Fig. 2. Low-level specification

28 M. Abadi and M. Isard

has consumed message

3. Edge condition

has consumed message

1. Input edge condition

has consumed and relayed message

2. Output edge condition

has received a notification at

4. Notification condition

…

Fig. 3. The guards in RollbackL1 (f)

cause rollbacks. One way to ensure that this guard holds is to pick f(p) so that
it contains only times t for which (p, t) �∈ Clock . In addition, while the frontiers
need not be the same at all nodes, guards in RollbackL1 (f) ensure that they are
chosen to be consistent with one another and with external inputs and outputs:

1. For each node p connected to an input edge i ∈ I, f(p) must contain the
times of all messages that p has consumed: we do not assume any external
mechanism for replaying those messages after a rollback, so p should not
forget them, in general. (Optimizations may however allow p to forget many
messages in practice.)

2. For each node p connected to an output edge o ∈ O, which must be a buffer
node, f(p) must contain the times of all messages that p has consumed and
therefore relayed: they cannot be retracted.

3. For each pair of nodes p and q and edge e from p to q, φ(e)(f(p)) must
contain the times of all the messages that q has consumed and that are in
f(q): since q keeps those messages, p must keep the part of its local history
that determines them.

4. Finally, an analogous but more complicated guard refers to notifications. It
ensures that if a node q has received a notification for a time t2 ∈ f(q), then
every node p that might cause events at t2 at q keeps the part of its local
history that would determine those events.
Below, in Section 7.4, we develop a refinement of SpecL that simplifies the
treatment of this guard.

Figure 3 summarizes these four guards; when a message m is shown under an
edge, it means that m has been transmitted on that edge (not that it is currently
in transit). The following two examples illustrate the role of guards (3) and (4),
respectively.

Timely Rollback: Specification and Verification 29

Example 2. Suppose that p has incoming edges d0 and d1 and outgoing edges
e0 and e1 to q0 and q1, respectively; and that q0 and q1 are buffer nodes, with
respective output edges o0 and o1. Suppose that p forwards all messages from d0
on e0 or from d1 on e1, but not both, depending on whether it reads first from d0
or from d1. For simplicity, initially, we let φ(e) be the identity function for every
edge e. Assume that, in a particular run, a message with time 0 has travelled
from d0 to o0 via p, e0, and q0. Upon a rollback, let 0 ∈ f(q0), as suggested by
guard (2). Guard (3) then dictates that 0 ∈ f(p). If instead we had f(p) = ∅,
and upon recovery p first reads from d1, it would cause an output on o1, which
is inconsistent with the previous output on o0.

As a variant, suppose that p increments all virtual times, so the message from
d0 yields an output on o0 with time 1. We take φ(e0)(f) = {0} ∪ {t + 1 | t ∈ f}.
Upon a rollback, we should have 1 ∈ f(q0), but we do not need to impose that
1 ∈ f(p): the application of φ(e0) implies that 0 ∈ f(p) suffices.

Example 3. Suppose that p0 and p1 each send a message to p2, with times 0 and
1 respectively. Suppose further that, when it receives a message with time 0, p2
forwards its “payload” with time 1 to p3 on an edge e, but only if it has not
yet processed a message with time 1. Therefore, we have that (p2, 0)� (p3, 1)
but not (p2, 1)� (p3, 1), and we can let φ(e) be the identity function. Assume
that, in a particular run, p2 hears from p1 first, then from p0, so p2 never sends
anything to p3; then p3 receives a completion notification for time 1; and then
a rollback takes place with f(p2) = {0}. Upon recovery, it appears to p2 that
it heard from p0 first, so it should send a message at time 1 to p2. As this
message would contradict the completion notification for time 1, we cannot have
1 ∈ f(p3). Guard (4) prevents it.

As mentioned in Section 4.2, we need not have the most accurate function φ.
Since the occurrences of φ in the guards for RollbackL are all in positive positions,
using a more informative φ makes rollbacks more liberal. On the other hand,
using a less informative φ (obtained by some under-approximation) does not
compromise soundness. Section 7.1 discusses other approximations that may be
attractive in practice.

6 Refinement Theorem

Our main result is that the low-level specification SpecL implements the high-
level specification SpecR. In other words, the behaviors in the externally visible
property of the system with rollback are all in the externally visible property of
the system without rollback; so, externally, one cannot tell whether a behavior
includes rollback transitions.

For safety properties, we can prove implementation relations by reasoning
only about finite prefixes of behaviors: when Spec is a safety property, if every
prefix of a behavior in Spec′ is the prefix of a behavior in Spec then Spec′ imple-
ments Spec. While such reasoning may not be easy, it can avoid complications

30 M. Abadi and M. Isard

related to liveness properties, such as finiteness requirements on prophecy vari-
ables [4]. Unfortunately, although SpecR’s body (InitProp ∧ [MessR ∨ Not ∨
Inp ∨ Outp]v) is clearly a safety property, SpecR itself need not be one, because
safety properties are not closed under existential quantification. Therefore, our
proof does have to address those complications.

The proof is rather long, so we cannot present it in full detail, but we hope
to convey its main elements.

Invariant. As in many refinement proofs, the first step is to establish an induc-
tive invariant of the low-level specification. In this case, the invariant, which we
call Inv , relates the function g to elements of the state, at each node and edge.
It is the conjunction of the following formulas:

∀p ∈ P.ΠLocg(p)(H(p)) = LocState(p)
∀p ∈ P.ΠNRg(p)(H(p)) = NotRequests(p)
∀p, q ∈ P, e ∈ E such that src(e) = p ∧ dst(e) = q.

Πeg(p)(H(p)) ↪→ (〈m | (e,m) ∈ H(q)〉·Q(e))

Prophecy Variable. Constructing a refinement mapping is a sound method
for proving an implementation relation. Unfortunately, it is not complete on its
own [4]. Auxiliary variables are often required to complement refinement map-
pings. In our case, we cannot find a refinement mapping basically because we
cannot predict the effects of future rollbacks, but the addition of a prophecy vari-
able to the low-level specification can provide the required, missing information.
(Another paper [1] explains this situation in detail with much smaller examples,
not tied to timely dataflow.) Specifically, we add an auxiliary variable D that
maps each node p to a frontier. Intuitively, D(p) consists of times not affected
by future rollbacks at p. Formally, D(p) is subject to a number of constraints,
imposed via the definition of an enriched state space ΣP

Low:

Construction 1. The enriched state space ΣP
Low consists of pairs of a state

from ΣLow (with components LocState, NotRequests, Q, and H) and a function
D from P to F such that:

1. ∀p ∈ P,∀i ∈ I such that dst(i) = p.{time(m) | (i,m) ∈ H(p)} ⊆ D(p),
2. ∀p ∈ P,∀o ∈ O such that src(o) = p.{time(m) | ∃e.(e,m) ∈ H(p)} ⊆ D(p),
3. ∀p, q ∈ P,∀e ∈ E such that src(e) = p, dst(e) = q, ∀m ∈ M such that m ∈

Q(e) ∨ (e,m) ∈ H(q).if time(m) ∈ D(q) then time(m) ∈ φ(e)(D(p)),
4. ∀p, q ∈ P,∀e1, e2 ∈ E such that src(e1) = p, dst(e2) = q, ∀t1 ∈ T, t2 ∈

H(q)@D(q). if (e1, t1)� (e2, t2) then t1 ∈ φ(e1)(D(p)).

These conditions are analogous to those in the definition of the action RollbackL.
However, they apply at all times, not just during rollbacks. This distinction
largely accounts for the small differences between them.

Timely Rollback: Specification and Verification 31

The following specification extends SpecL with conjuncts that describe the
changes in D. Here, v is the list of all previous state components plus D.

InitPropP = InitPropL

MessP = MessL ∧ D = D′

NotP = NotL ∧ D = D′

InpP = InpL ∧ D = D′

OutpP = OutpL ∧ D = D′

RollbackP = ∃f ∈ P→F.RollbackL1 (f) ∧ D = (D′ ∩ f)

SpecP = ∃LocState,NotRequests ,H,Q�E,D as per Construction 1.

InitPropP ∧ [MessP ∨ NotP ∨ InpP ∨ OutpP ∨ RollbackP]v

Most transitions are such that D = D′. The exception is in rollbacks, where
we have D = D′ ∩ f . In other words, at each node p, the times D(p) that will
survive future rollbacks, starting from before a particular rollback to f(p), are
those in f(p) that will survive future rollbacks after the transition, that is, those
in D′(p) ∩ f(p). Characteristically, the current value D of the prophecy variable
is defined from its next value D′.

There are standard conditions on what it means to be a prophecy variable.
Unfortunately, D, as we have defined it, does not quite satisfy them, because each
state in ΣLow may yield infinitely many states in ΣP

Low. We address this difficulty
by quotienting by the equivalence relation Q such that (s1,D1)Q(s2,D2) if and
only if s1 = s2 and D1 and D2 coincide on the finite set of times ITimes(H),
where H is the history component of s1 and s2, and ITimes(H) consists of all
t ∈ T such that, for some p, time(m) = t for some (e,m) ∈ H(p) or t ∈ H(p).
Intuitively, ITimes(H) consists of the “interesting” times given H. For each s ∈
ΣLow, the set of equivalence classes {(s,D) ∈ ΣP

Low}/Q is finite. The soundness
of prophecy variables yields that SpecL implements the quotient of SpecP by Q,
which we call SpecP/Q.

Refinement Mapping. Using the invariant Inv and the auxiliary variable D,
we construct a refinement mapping from the low-level specification to the high-
level specification. This mapping is a function from ΣP

Low to ΣHigh that preserves
externally visible state components, maps initial states to initial states, and maps
steps to steps or to stutters. Basically, it maps a low-level state to a high-level
state by pretending that each node p did not process any events with times
outside D(p). Formally, it is defined by the following state functions:

HLocState(p) = ΠLocg(p)(H(p)@D(p))

HNotRequests(p) = ΠNRg(p)(H(p)@D(p))

HQ(e) = Q(e) for e ∈ I ∪ O

HQ(e) = Πeg(p)(H(p)@D(p)) − 〈m | m ∈ M, (e,m) ∈ H(q)〉@D(q)
where p = src(e) and q = dst(e), for e ∈ E

32 M. Abadi and M. Isard

Thus, for each node p, HLocState(p) and HNotRequests(p) are obtained by apply-
ing g(p) to p’s filtered local history. Similarly, for an internal edge e from a node
p to a node q, HQ(e) is obtained by applying g(p) to p’s filtered local history, but
subtracting messages that q has consumed according to its filtered local history.
When e is an input or an output edge, HQ(e) simply equals Q(e), since Q(e) is
externally visible.

This refinement mapping respects the equivalence relation Q. In other words,
it maps equivalent low-level states to the same high-level state. Therefore, the
refinement mapping from ΣP

Low induces a refinement mapping from Q’s equiv-
alence classes, and the soundness of refinement mappings yields that SpecP/Q
implements SpecR. By transitivity, we conclude:

Theorem 1. SpecL implements SpecR.

7 Further Refinements

In this section we consider several further refinements of the low-level specifi-
cation. Our main goal is to provide evidence that the low-level specification is
a useful step towards concrete, correct implementations, and to indicate some
possible features of those implementations.

7.1 Approximating the Clock and the Could-Result-in Relation

The low-level specification mentions the state function Clock and also refers to
the relation � directly. Both of these may be hard to calculate precisely and
efficiently. Fortunately, it is sound to replace Clock with any over-approximation.
Using a bigger state function will mean that fewer notifications may be delivered
at any point, so may result in a smaller set of behaviors. Similarly, it is sound
to over-approximate the relation � in its other use in the specification (since
it is in a negative position).

7.2 Precomputations

While the specification of RollbackL suggests that a new state can be com-
puted by applying the function g to filtered local histories, this computation
may be expensive, and there is no requirement that an implementation per-
form it naively and on the fly. In particular, an implementation may com-
pute and store the values of g(p)(h) for certain local histories h, as it runs.
For this purpose, an implementation might leverage commutativity properties
that could require careful analysis. In any case, much like traditional check-
points, these values can later facilitate rollback. Formally, the precomputation
simply provides an efficient way of satisfying the equations h = H(p)@f(p) and
(s′, {t1, . . . , tn}, 〈e1 	→μ1, . . . , ek 	→μk〉) = g(p)(h) in RollbackL.

Timely Rollback: Specification and Verification 33

7.3 Choosing Frontiers

The specification of RollbackL does not describe how to find a function f that sat-
isfies its constraints. A possible refinement consists in specifying that it chooses
the largest solution (the function that yields the largest frontiers), which is the
one that entails the least rollback. A largest solution exists because the set of
functions that satisfy the constraints is closed under arbitrary unions. A further
refinement consists in specifying that it chooses the largest solution that has
some additional properties. For example, each processor may be willing to roll
back only to some subset of “available” frontiers (possibly ones for which it has
checkpoints, or ones that do not contain times of events deemed problematic for
whatever reason). A largest solution will still exist as long as the set of “avail-
able” frontiers is closed under unions. We are currently exploring whether and
how finding largest solutions can be practical, at least in special cases.

7.4 Implementing the Guard on Notifications

One of the guards in RollbackL (guard (4)) includes a relatively complex condi-
tion that refers to the relation � and potentially requires some checking for all
pairs of edges. We can replace that condition with one that necessitates only sim-
pler checks. For this purpose, we introduce an additional function fc. For all p,
fc(p) is a subset of f(p) and, intuitively, represents those times for which events
must be preserved in order to respect notifications. The specification SpecS is
obtained from SpecL by replacing that guard with the requirement that, for some
fc : P→F :

1. ∀p ∈ P.fc(p) ⊆ f(p),
2. ∀p ∈ P, t ∈ T. if t ∈ H(p)@f(p) then t ∈ fc(p), and
3. ∀p, q ∈ P, e ∈ E such that src(e) = p ∧ dst(e) = q.fc(q) ⊆ φ(e)(fc(p)).

We can prove that these conditions are sufficient (but not necessary). We obtain:

Theorem 2. SpecS implies SpecL.

8 Conclusion

This paper describes and studies, formally, the design of a technique for rollback
recovery. This technique is delicate, so its rigorous development has been benefi-
cial. The required proofs have been challenging but, in our opinion, interesting,
in particular because of the advanced application of prophecy variables.

The main motivation for our work has been fault-tolerance in the timely-
dataflow model of computation. However, some of the machinery that we have
developed is more broadly applicable. In particular, rollbacks may arise not
only because of failures but also, for example, to undo speculative computations
or to revert the effects of attacks. Moreover, the use of functions on frontiers
for expressing dependencies and some of the corresponding end-to-end results

34 M. Abadi and M. Isard

may be valuable even for systems without rollback. (Some of the proofs in our
work on information-flow security properties [3] resemble those of this paper,
but they are considerably simpler, and in particular do not include prophecy
variables.) Finally, some of the ideas developed here may help explain, in a
common framework, specific schemes for recovery in models less general than
timely dataflow (e.g., [5]).

Acknowledgments. We are grateful to our coauthors in work on Naiad for discussions
that led to this paper.

References

1. Abadi, M.: The prophecy of undo. In: Egyed, A., Schaefer, I. (eds.) FASE 2015.
LNCS, vol. 9033, pp. 347–361. Springer, Heidelberg (2015)

2. Abadi, M., Isard, M.: Timely dataflow: A model, in preparation (2014). https://
users.soe.ucsc.edu/∼abadi/allpapers-chron.html

3. Abadi, M., Isard, M.: On the flow of data, information, and time. In: Focardi, R.,
Myers, A. (eds.) POST 2015. LNCS, vol. 9036, pp. 73–92. Springer, Heidelberg
(2015)

4. Abadi, M., Lamport, L.: The existence of refinement mappings. Theoretical Com-
puter Science 82(2), 253–284 (1991)

5. Akidau, T., Balikov, A., Bekiroğlu, K., Chernyak, S., Haberman, J., Lax, R.,
McVeety, S., Mills, D., Nordstrom, P., Whittle, S.: MillWheel: Fault-tolerant
stream processing at Internet scale. Proceedings of the VLDB Endowment 6(11),
August 2013

6. Alvisi, L., Marzullo, K.: Message logging: Pessimistic, optimistic, causal, and opti-
mal. IEEE Transactions on Software Engineering 24(2), 149–159 (1998)

7. Elnozahy, E.N., Alvisi, L., Wang, Y., Johnson, D.B.: A survey of rollback-recovery
protocols in message-passing systems. ACM Computing Surveys 34(3), 375–408
(2002)

8. Jefferson, D.R.: Virtual time. ACM Transactions on Programming Languages and
Systems 7(3), 404–425 (1985)

9. Kahn, G.: The seantics of a simple language for parallel programming. In: IFIP
Congress, pp. 471–475 (1974)

10. Lamport, L.: Specifying Systems, The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley (2002)

11. Murray, D.G., McSherry, F., Isaacs, R., Isard, M., Barham, P., Abadi, M.: Naiad: a
timely dataflow system. In: ACM SIGOPS 24th Symposium on Operating Systems
Principles, pp. 439–455 (2013)

12. Selinger, P.: First-order axioms for asynchrony. In: Mazurkiewicz, Antoni,
Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 376–390. Springer,
Heidelberg (1997)

https://users.soe.ucsc.edu/~abadi/allpapers-chron.html
https://users.soe.ucsc.edu/~abadi/allpapers-chron.html

Sum of Abstract Domains

Gianluca Amato, Simone Di Nardo Di Maio, and Francesca Scozzari(B)

Università di Chieti-Pescara, Pescara, Italy
{gamato,simone.dinardo,fscozzari}@unich.it

Abstract. In the abstract interpretation theory, program properties are
encoded by abstract domains, and the combination of abstract domains
leads to new properties to be analyzed. We propose a new method to
combine numerical abstract domains based on the Minkowski sum. We
provide a general framework equipped with all the necessary abstract
operators for static analysis of imperative languages.

1 Introduction

The theory of abstract interpretation [8,9] is based on the notion of abstract
domain. The choice of the abstract domain determines the properties to be
analyzed, the precision of the analysis and, in most cases, its computational
complexity. In the literature on abstract interpretation, we find a large number
of numerical abstract domains, such as intervals [7], polyhedra [11], octagons
[15], zonotopes [13], parallelotopes [3] and polyhedra template [16]. The choice
of an abstract domain is mainly guided by a trade off between analysis precision
and complexity.

Abstract domains can also be combined or refined to obtain new abstract
domains. The very first and fundamental method to combine two abstract
domains is Cousot and Cousot reduced product [9]. Other methods include pow-
erset [9], quotient [6], open products [5] and donut domains [12]. In many cases
domain combinators cannot be applied blindly, but the resulting domain needs
some tweaking, such as the design of specific abstract operators or an ad-hoc
representation for abstract objects.

In this paper we introduce a new domain combinator based on the Minkowski
sum. Given two sets A,B ⊆ R

n, the (Minkowski) sum of A and B is the subset
of R

n given by
A + B = {a + b ∈ R

n | a ∈ A, b ∈ B} ,

where a + b is the vector addition of the points a and b. In other words, the
Minkowski sum is the union of all the translations of the points in A by a point
in B. For instance, given the segments

A = {(x, 0) ∈ R
2 | 0 ≤ x ≤ 1}

B = {(0, y) ∈ R
2 | 0 ≤ y ≤ 1}

c© Springer International Publishing Switzerland 2015
K. Havelund et al. (Eds.): NFM 2015, LNCS 9058, pp. 35–49, 2015.
DOI: 10.1007/978-3-319-17524-9 4

36 G. Amato et al.

the Minkowski sum A + B is the unit square C = {(x, y) ∈ R
2 | 0 ≤ x ≤ 1, 0 ≤

y ≤ 1}.
In our proposal, given any two numerical abstract domains A and B, we define

a new abstract domain A + B whose abstract objects are defined as the sum of
an object in A and an object in B.

The Minkowski sum is well-suited to define a domain combinator, since it
enjoys many geometric and algebraic properties (commutes with convex hull,
distributes over the scalar product, admits an identity element and an annihi-
lator) which greatly help in defining the abstract operators in the sum domain.
Moreover, sum is not idempotent, so that, for an abstract domain A, in the gen-
eral case we have that A �= A+A. This allows the construction of a new domain
even from a single abstract domain. In this way, the sum combinator may be
used as a domain refinement operator.

Minkowski sum has also been recently used to define the numerical abstract
domain of zonotopes, which are bounded polyhedra generated as the sum of a
finite number of segments. In some way, the sum domain combinator may be
thought of as the lifting of the zonotope construction to the level of abstract
domains.

In the rest of the paper we describe the theoretical foundation of the sum of
abstract domains. Its abstract operators are designed by exploiting the opera-
tors of the original abstract domains, thus ensuring ease of implementation. A
prototype has been developed for the Jandom static analyzer [1,2,4]. We show
some experiments for the special case of the sum of the interval and parallelotope
domains, and discuss some heuristics which may be used to enhance precision.

2 Notations

2.1 Linear Algebra

We denote by R the set of real numbers extended with +∞ and −∞. Addition
and multiplication are extended to R in the obvious way. We use boldface for
elements v of R

n. Any vector v ∈ R
n is intended as a column vector, and vT is

the corresponding row vector. Given u,v ∈ R
n, and a relation �� ∈ {<,>,≤,≥

,=}, we write u �� v if and only if ui �� vi for each i ∈ {1, . . . , n}. We denote
by infu∈A f(u) the greatest lower bound in R of the set {f(u) | u ∈ A} and by
R(m,n) the set of real matrices with m rows and n columns.

2.2 Abstract Interpretation

In this paper we adopt a framework for abstract interpretation which is weaker
than the common one based on Galois’ connections/insertions (see [10, Section 7]).
Given a poset (C,≤C) — the concrete domain — and a setA— the abstract domain
— we establish an abstract–concrete relationship between them with the use of a
concretization map, which is just a function γ : A → C.

We say that a ∈ A is a correct abstraction of c ∈ C when c ≤C γ(a). In
general, a given c ∈ C has many correct abstractions. We say that a ∈ A is a

Sum of Abstract Domains 37

minimal correct abstraction of c ∈ C when a is a correct abstraction of c and
there is no a′ ∈ A such that c ≤C γ(a′) <C γ(a). Moreover, a ∈ A is an optimal
abstraction of c ∈ C when c ≤C γ(a′) implies γ(a) ≤C γ(a′).

A function fA : A → A is a correct abstraction of f : C → C when it preserves
correctness of abstractions, i.e. when c ≤C γ(a) implies f(c) ≤C γ(fA(a)). It is a
minimal correct abstraction of f : C → C when it is correct and, for any a ∈ A,
fA(a) is a minimal correct approximation of f(γ(a)). Analogously we define the
concept of optimal abstraction for f . Composition preserves correctness, but not
minimality and optimality. The best precision is reached when fA is γ-complete,
i.e., when γ(fA(a)) = f(γ(a)).

An abstraction function is a map α : C → A such that c ≤C γ(α(c)). When
an abstraction function exists (which is quite common), a correct abstraction
of f : C → C may be defined as α ◦ f ◦ γ. An abstraction function is minimal
when, for each c ∈ C, α(c) is a minimal correct abstraction of c. In this case,
α◦f ◦γ is a minimal correct abstraction of f . Analogously we define the concept
of optimal abstraction function.

The abstract–concrete relationship induces a pre-order ≤A on A defined as
a1 ≤A a2 iff γ(a1) ≤C γ(a2). Note that γ is a monotone map from (A,≤A)
to (C,≤C). When ≤A is a partial order and α is optimal, we have the classical
framework based on Galois’s insertions. A widening on A is a map ∇ : A×A → A
such that a, a′ ≤A a∇a′ and for every sequence x0, . . . , xi, . . . in A, the sequence
y0 = x0 ≤A · · · ≤A yi+1 = yi∇xi+1 ≤A · · · is not strictly increasing.

2.3 Numerical Domains

In the following, we recall the definition of several standard numerical abstract
domains, i.e, abstractions of the concrete domain (℘(Rn),⊆). We consider fixed
the dimension n of the concrete domain. A set A ⊆ R

n is called a closed box
when there are l,u ∈ R

n such that A = {x ∈ R
n | l ≤ x ≤ u}, a parallelotope

when there are an n × n invertible matrix A and l,u ∈ R
n such that A =

{x ∈ R
n | l ≤ Ax ≤ u}, a zonotope when there is A ∈ R(m,n) such that

A =
{
A

(
1
ε

) | ε ∈ [−1, 1]m−1
}

and a polyhedral set when there is A ∈ R(m,n)
and b ∈ R

m such that A = {x ∈ R
n | Ax ≤ b}.

The abstract objects of the interval, parallelotope, zonotope and polyhedral
domains are, respectively, closed boxes, parallelotopes, zonotopes and polyhedral
sets. Abstract objects are ordered by set inclusion, and the concretization map is
the identity. In actual implementations, a finite representation is used for these
abstract objects, but this is not relevant to our paper.

3 Combining Domains by Minkowski Sum

One of the most important operations in geometry, in particular in convexity
theory, is the Minkowski sum of two sets.

38 G. Amato et al.

Definition 1 (Minkowski sum). Given two sets A,B ⊆ R
n, the Minkowski

sum A + B ⊆ R
n is defined as:

A + B = {a + b ∈ R
n | a ∈ A, b ∈ B} .

It is immediate to see that every element of the interval domain is the Minkowski
sum of (possibly unbounded) segments. Moreover, any zonotope is the Minkowski
sum of a finite number of bounded segments.

We introduce a new operator for combining two numerical abstract domains
into a new domain whose objects are the sum of the abstract objects of the
constituent domains.

Definition 2 (Sum of abstract domains). Given two numerical abstract
domains A and B, we define a new abstract domain called the (Minkowski) sum
of A and B, which is:

A + B = {〈A + B〉 | A ∈ A, B ∈ B}
with concretization map:

γA+B(〈A + B〉) = γA(A) + γB(B) .

We use the notation 〈A + B〉 instead of (A,B), since the former better conveys
the real purpose of the pair. We stress out that 〈A + B〉 is only a formal sum.

Example 1. Let A ∈ Int and B ∈ Parallelotope with

A = {0 ≤ x ≤ 1, 0 ≤ y ≤ ∞}
B = {0 ≤ y ≤ 2, 0 ≤ x − y ≤ 2}

as depicted in Fig. 1(a) and 1(b). Then, 〈A + B〉 is an abstract object in Int +
Parallelotope such that

γ(〈A + B〉) = {0 ≤ x ≤ 3, 0 ≤ y ≤ ∞, x − y ≤ 3}
as depicted in Fig. 1(c). It is neither an interval nor a parallelotope nor a zonotope
(since it is unbounded and has constraints on three different linear forms).

3.1 Ordering

The subset ordering ⊆ on the concrete domain induces a pre-order ≤A+B on
A + B. This is not a partial order, since different objects in A + B represent the
same concrete object. For example, in Int + Int, the objects 〈[0, 1] + [0, 1]〉 and
〈[0, 0] + [0, 2]〉 both represent the interval [0, 2] ⊆ R.

Moreover, given objects 〈A+B〉 and 〈A′+B′〉, deciding whether 〈A+B〉 ≤A+B

〈A′ + B′〉 is not an easy task. There are some sufficient conditions which ensure
the required property, such as A ≤A A′ and B ≤B B′. When A and B are both
abstractions of a domain C (often C is the polyhedra domain), then we may
compute, on the domain C, the representation of A,B,A′, B′, the Minkowski
sums A + B and A′ + B′, and check if the ordering holds. However, in the
general case, an algorithm for deciding ≤A+B must be especially designed for a
given instance of the sum combinator. In any case, we will show later that this
is not required for the analysis.

Sum of Abstract Domains 39

−1 1 2 3 4 5 6

2

4

6

(a) Unbounded Box

−1 1 2 3 4 5 6

2

4

6

(b) Parallelotope

−1 1 2 3 4 5 6

2

4

6

(c) Minkowski Sum

Fig. 1. Minkowski sum of a box and a parallelotope

3.2 Sum of Standard Domains

The following proposition summarizes some basic results when combining inter-
vals, zonotopes, parallelotopes and polyhedra. It is worth noting that, in general,
for an abstract domain A we have that A+A �= A. This is the case for the abstract
domain of parallelotopes, since the sum of two parallelotopes is not, in general, a
parallelotope, as shown in Figure 1. Moreover, given two domains A and B such
that A is an abstraction of B, it may well happen that the sum of A and B is
more concrete than both domains, as shown in the next theorem.

Theorem 1. The abstract domains Int, Zonotope and Polyhedra are closed by
Minkowski sum, that is:

– Int + Int = Int
– Zonotope + Zonotope = Zonotope
– Polyhedra + Polyhedra = Polyhedra

Moreover, the following inclusions are strict:

– Zonotope � Int + Zonotope
– Parallelotope � Int + Parallelotope
– Parallelotope � Parallelotope + Parallelotope

Figure 1 shows the counterexamples for the second part of the theorem. Note
that, the box in Figure 1(a) is also a parallelotope, and the parallelotope in
Figure 1(b) is also a zonotope, while their sum fails to be a zonotope.

4 Abstract Operators

We now consider the operations on ℘(Rn) commonly used when defining the
collecting semantics of imperative programming languages, and for each of them
we introduce a correct approximation. We show that some abstract operators
are γ-complete, provided the corresponding abstract operators on the component
domain are also γ-complete.

In the following we fix two numerical abstract domains A and B and their
sum A + B.

40 G. Amato et al.

4.1 Union

Abstract union on the sum domain can be defined component-wise from the
abstract unions of the two original domains.

Definition 3 (Abstract union). Given A1, A2 ∈ A and B1, B2 ∈ B, we define
the abstract union ∪A+B as:

〈A1 + B1〉 ∪A+B 〈A2 + B2〉 = 〈(A1 ∪A A2) + (B1 ∪B B2)〉 .

Theorem 2. The abstract union is correct.

4.2 Linear Transformations

A linear (homogeneous) assignment has the form xi := aT x where a ∈ R
n and

x is the vector of program variables. Linear assignments (even multiple linear
assignments) may be represented as linear transformations in R

n. If M is a
square real matrix of order n and A ⊆ R

n, we consider the operator

M · A = {Ma | a ∈ A} .

The abstraction of · in A + B may be easily recovered by its abstraction on A
and B.

Definition 4 (Linear assignment). Given A ∈ A, B ∈ B and M ∈ R(n, n)
we define the abstract linear transformation as:

M ·A+B 〈A + B〉 = 〈M ·A A + M ·B B〉 .

Theorem 3. The abstract linear assignment operator is correct. Moreover, it is
γ-complete if the corresponding abstract operators on A and B are γ-complete.

4.3 Translations

Given b ∈ R
n and A ⊆ R

n, consider the translation operator

A + b = A + {b} = {a + b | a ∈ A} .

As for linear transformations, it is easy to determine a correct abstraction of +
in the abstract domain A+B starting from correct abstractions in A and B, but
there is not a single abstract version which could be considered the canonical
one.

Definition 5 (Abstract translation). Given A ∈ A, B ∈ B, b ∈ R
n and

w ∈ R, we define the abstract sum (weighted by w) as

〈A + B〉 +A+B
w b = 〈(A +A wb) + (B +β (1 − w)b)〉 .

In this definition, the weight w determines in which part of the two abstract
objects A and B we need to apply the translation. It may be applied entirely on
A (w = 1), entirely in B (w = 0) or divided between them.

Theorem 4. The abstract translation operator is correct. Moreover, it is
γ-complete if the corresponding abstract operators on A and B are γ-complete.

Sum of Abstract Domains 41

4.4 Non-deterministic Assignment

Given i ∈ {1, . . . , n}, we define the concrete operator forgeti : ℘(Rn) → ℘(Rn)
as

forgeti(A) = {x ∈ R
n | a ∈ A ∧ ∀j �= i. xi = ai} .

This simulates the effect of a non-deterministic assignment xi :=?.

Definition 6. Given i ∈ {1, . . . , n}, we define the non-deterministic assignment
as

forgetA+B
i (〈A + B〉) = 〈forgetAi (A) + B〉

or
forgetA+B

i (〈A + B〉) = 〈A + forgetBi (B)〉 .

Both definitions are correct, and the choice between them follows by heuristic
considerations. We will talk about this later in the paper.

Theorem 5. The abstract non-deterministic assignment is correct. Moreover,
it is γ-complete if the corresponding abstract operator on A (for the first form)
or B (for the second form) is γ-complete.

4.5 Refinement by Linear Inequality

The concrete refinement by linear inequality refine(a,b), with a ∈ R
n and b ∈ R,

is the intersection of a subset of R
n with an half-space. Formally:

refine(a,b)(A) = A ∩ {x ∈ R
n | aT x ≤ b} .

In the following, we extend this definition to the case b = ±∞ with the obvious
interpretation.

Definition 7. Given a ∈ R
n and b ∈ R, we define the abstract refinement by

linear inequality as

refineA+B
(a,b)(〈A + B〉) = 〈refineA(a,b−d2)(A) + refineB(a,b−d1)(B)〉

where d1, d2 ∈ R such that d1 ≤ infx∈A aT x and d2 ≤ infx∈B aT x. Moreover,
we define

refineA+B
(a,+∞)(〈A + B〉) = (〈A + B〉)

refineA+B
(a,−∞)(〈A + B〉) = C

where C is any correct approximation of ∅ (i.e., any value in A + B).

This operator needs a way to determine a lower bound for the value that a linear
form may assume in every abstract object of the domains A and B. If this is not
possible, both d1 and d2 may be considered to be −∞, and the refine operator
turns out to be the identity.

Theorem 6. The operator refineA+B
(a,b) is correct.

42 G. Amato et al.

i = 0
x = 0
y = 0
while (i <= 4) {

i = i+1
if (?) x = i−1 else x = i
if (?) y = i−1 else y = i

}
(a) Example program.

2 4 6

2

4

6

x

y

(b) Possible values for
variables x and y at the
last program point of the
loop.

Fig. 2. Example program

4.6 Widening and Narrowing

Given A1, A2 ∈ A and B1, B2 ∈ B we can use the widening/narrowing opera-
tors of the individual numerical abstract domains to devise widening/narrowing
operators for the Minkowski sum.

Definition 8. The abstract widening for A + B is defined as

〈A1 + B1〉∇A+B〈A2 + B2〉 = 〈A1∇AA2 + B1∇BB2〉
and the abstract narrowing for A + B is defined as

〈A1 + B1〉∇A+B〈A2 + B2〉 = 〈A1
∇AA2 + B1

∇BB2〉 .

Theorem 7. The abstract operator ∇A+B is a widening and
∇A+B is a narrow-

ing.

Note that widening is defined component-wise. This means that, at widening
points, the increasing chains we get are of the form

〈A0 + B0〉 ≤A+B 〈A1 + B1〉 ≤A+B 〈A2 + B2〉 ≤A+B . . .

with A0 ≤A A1 ≤A A2 . . . and B0 ≤A B1 ≤A B2 Both the chains of Ai’s
and Bi’s eventually stop increasing, since they are constrained by ∇A and ∇B.
Therefore, if we can decide ≤A and ≤B, then we known when to stop the analysis
even if, in the general case, we cannot decide ≤A+B.

5 An Example

Consider the program in Figure 2(a) and the graph in Figure 2(b) which depicts
the possible values for variables x and y at the end of the loop’s body. The convex
hull of these points, which is the shaded area in the figure, may be described
as the sum of the box {i = 0,−1 ≤ x ≤ 0,−1 ≤ y ≤ 0} and the parallelotope
{1 ≤ i ≤ 5, x = i, y = i}. Using the domain Int + Parallelotope, we are able to

Sum of Abstract Domains 43

i = x = y = 0
[i = 0, x = 0, y = 0] + [i = 0, x = 0, y = 0]

while (i <= 4) {
[i = 0, x = 0, y = 0] + [i = 0, x = 0, y = 0]

i = i+1
[i = 0, x = 0, y = 0] + [i = 1, x = 0, y = 0]

if (?)
x = i−1
[i = 0, x = −1, y = 0] + [i = 1, x = i, y = 0]

else
x = i
[i = 0, x = 0, y = 0] + [i = 1, x = i, y = 0]

[i = 0,−1 ≤ x ≤ 0, y = 0] + [i = 1, x = i, y = 0]

if (?) y = i−1 else y = i
[i = 0,−1 ≤ x ≤ 0,−1 ≤ y ≤ 0] + [i = 1, x = i, y = i]

}

Fig. 3. Annotated program after the 1st loop iteration

infer this property, although we need to refine the raw domain operators with
heuristics specifically tailored for this specific combination.

The main tunable aspect of the operators we have described in the previous
section is the value of the weight w in translations and abstractions. Choosing
w randomly may lead to very bad precision. For the moment, assume we choose
w = 0 for the increment i = i + 1 and w = 1 for all the other assignments.
Figure 3 shows the candidate invariants reached after a single iteration of the
while loop. Using the standard domain operators, before entering the while loop
we get the invariant {i = 0, x = 0, y = 0} + {i = 0, x = 0, y = 0} which is
preserved by the loop’s guard. The increment to i, according to the chosen value
w = 0, yields {i = 0, x = 0, y = 0} + {i = 1, x = 0, y = 0}.

The true branch of the first non-deterministic conditional statement leads
to {i = 0, x = −1, y = 0} + {i = 1, x = i, y = 0} while the else branch leads
to {i = 0, x = 0, y = 0} + {i = 1, x = i, y = 0}. The component-wise union
gives {i = 0,−1 ≤ x ≤ 0, y = 0} + {i = 1, x = i, y = 0}. Repeating the same
argument for the second conditional statement we get {i = 0,−1 ≤ x ≤ 0,−1 ≤
y ≤ 0} + {i = 1, x = i, y = i}.

At the second iteration, the previous while invariant {i = 0, x = 0, y =
0} + {i = 0, x = 0, y = 0} is widened with {i = 0,−1 ≤ x ≤ 0,−1 ≤ y ≤
0} + {i = 1, x = i, y = i} to get {i = 0,−∞ < x ≤ 0,−∞ < y ≤ 0} + {0 ≤ i <
∞, x = i, y = i}. This is the fix-point of the ascending chain. The subsequent
descending phase yields the while invariant {i = 0,−1 ≤ x ≤ 0,−1 ≤ y ≤
0} + {0 ≤ i ≤ 5, x = i, y = i}. The program with the final annotations is shown
in Figure 4. The invariant at the last program point in the loop is the one we
were looking for.

Crucial in obtaining the desired result is that the parallelotope component
encodes the unsound relationship i = x = y while the box component contains
the deviation w.r.t. this line which makes the result correct. If we use w = 1

44 G. Amato et al.

i = x = y = 0
[i = 0, x = 0, y = 0] + [i = 0, x = 0, y = 0]

while (i <= 4) {
[i = 0,−1 ≤ x ≤ 0,−1 ≤ y ≤ 0] + [0 ≤ i ≤ 4, x = i, y = i]

i = i+1
[i = 0,−1 ≤ x ≤ 0,−1 ≤ y ≤ 0]+[1 ≤ i ≤ 5, x = i−1, y = i−1]

if (?)
x = i−1
[i = 0, x = −1,−1 ≤ y ≤ 0] + [1 ≤ i ≤ 5, x = i, y = i − 1]

else
x = i
[i = 0, x = 0,−1 ≤ y ≤ 0] + [1 ≤ i ≤ 5, x = i, y = i − 1]

[i = 0,−1 ≤ x ≤ 0,−1 ≤ y ≤ 0] + [1 ≤ i ≤ 5, x = i, y = i − 1]

if (?) y = i−1 else y = i
[i = 0,−1 ≤ x ≤ 0,−1 ≤ y ≤ 0] + [1 ≤ i ≤ 5, x = i, y = i]

}

Fig. 4. Annotated program at the end of the analysis. The highlighted invariant is the
one sought after.

for i = i + 1 instead of w = 0, the initial invariant i = x = y = 0 for the
parallelotope component remains stable for the entire while loop, and all the
analysis actually proceeds on the interval domain. The result is the much less
precise {1 ≤ i ≤ 5, 0 ≤ x ≤ 5, 0 ≤ y ≤ 5} + {i = 0, x = i, y = i}. On
the contrary, if we use w = 0 for all the assignments, the analysis actually
proceeds in the parallelotope domain. The result depends on the heuristics used
for parallelotopes. The Jandom static analyzer determines the following: {i =
0, x = 0, y = 0} + {1 ≤ i ≤ 6, 1.0 ≤ −i + x ≤ 0.0,−1.0 ≤ −i + y ≤ 0.0}. The
result is qualitatively better than the one on intervals, but not as good as the
one with get with the correct choices for w.

The problem is how to determine an heuristic to choose the value of w for
the assignment operators. Our idea is to use the parallelotope domain to capture
an “ideal” relationships between variables, and resort to the interval domain for
capturing the deviation w.r.t. the ideal behavior. This means that, for a non
invertible assignment xi = aT x+ b we use w = 1, in the hope that xi −aT x has
an almost constant value in a program point, modulo some variability captured
by the interval domain. For all other assignments we use w = 0. In the program
of Figure 2(a) this heuristic yields the optimal choice we have shown before.

6 Precision of Abstract Operators

In this section we reason about the precision of the abstract operators of the sum
domain. We will see that even very precise operators (such as translations) are
problematic due to the fact that many different representation exists for the same
abstract object, and that the imprecise operators gives different results for differ-
ent representations. Finally, we explicitly discuss the domain Int+Parallelotope.

Sum of Abstract Domains 45

6.1 An Approximate Ordering

The subset ordering ⊆ in ℘(Rn) induces the pre-order ≤A+B on A+B. However,
many of the operators we have defined are not monotonic w.r.t. ≤A+B. This
makes difficult to reason about the precision of analysis. We do not even know
if, improving the precision of one operator, actually improves the precision of the
result. However, it is possible to define a coarser ordering on A+B, component-
wise as

〈A1 + B1〉 �A+B 〈A2 + B2〉 ⇐⇒ ∃p ∈ R
n s.t.

γ(A1) ⊆ γ(A2) + p and γ(B1) ⊆ γ(B2) − p .

It turns out that 〈A1 + B1〉 �A+B 〈A2 + B2〉 implies 〈A1 + B1〉 ≤A+B 〈A2 + B2〉.
Moreover, all operators in Section 4 (but widening and narrowing) are monotone
w.r.t. �A+B. Therefore, if we replace an abstract operator with another one which
is more precise w.r.t. the �A+B ordering, we are sure we are not going to loose
precision globally for the entire analysis, modulo the effect of the non-monotonic
widening and narrowing operators.

6.2 Abstraction Function

Particularly critical, in the general definition of the sum domain, is the fact
that we do not have a good abstraction function. Actually, a family of correct
abstraction functions may be defined easily as follows.

Theorem 8. Given abstract domain A and B with abstraction functions αA and
αB, consider a weight w ∈ R. Then

αA+B
w (C) = 〈αA(wC) + αB((1 − w)C)〉

is a correct abstraction function for any w ∈ R.

However, in the general case αw(C) is not a minimal abstraction of C for any
value of w. Even if domains A and B have good abstraction functions αA and
αB, the abstraction function αA+B may have, in general, a bad precision. For
example, consider Figure 2(b) and let C be the set of points in the shaded area.
Although C may be described as the sum of a box and a parallelotope, there is
no choice of weight w such that αA+B

w (C) returns such as description. Actually,
we have

αA+B
w (C) = 〈A + B〉

with

A = {0 ≤ x ≤ 5w, 0 ≤ y ≤ 5w}
B = {−(1 − w) ≤ x − y ≤ 1 − w, 0 ≤ x + y ≤ 10(1 − w)}

and γA+B(αA+B
w (C)) � C.

46 G. Amato et al.

In abstraction interpretation, the abstraction function is often used to guide
the definition of the abstract operators. If f : C → C is a concrete operator,
fA = αA ◦ f ◦ γA is a correct abstract operator. However, since αA+B may
have such a bad precision, this approach is not applicable for the sum domain.
While for most concrete operators we were nonetheless able to find good abstract
counterparts, this is definitively not easy for linear refinement.

6.3 Linear Refinement

Consider the sum domain Int+Int. The box B = [0, 2]×[0, 2] may be described in
Int+ Int as S = 〈[0, 1]× [0, 1]+[0, 1]× [0, 1]〉. Assume we want to refine S with the
linear inequality x1 ≤ 1, i.e., we want to compute refine(a,b)(S) with a = (1, 0)T

and b = 1. The result is the box [0, 1]× [0, 2] which may be represented optimally
as, for example, 〈[0, 1/2] × [0, 1] + [0, 1/2] × [0, 1]〉.

However, applying the definition for abstract refinement in Section 4, we
get a much coarser result. Let A = [0, 1] × [0, 1]. Note that infx∈A aT x =
0 = infx∈B aT x = 0. By choosing d1 = d2 = 0, we get refineInt(a,b−d1)(A) =
refineInt(a,b−d2)(A) = A. Hence refineInt+Int

(a,b) (〈A + A〉) = 〈A + A〉.
Here the problem is caused by the high redundancy in Int+Int. The constraint

x1 ≤ 2 in B is divided between the two’s x1 ≤ 1 in 〈A + A〉. The same may
happen in Int + Parallelotope when the parallelotope has some equations of the
kind xi ≤ b. Therefore, in this sum, the parallelotope component should be
tweaked to avoid generating constraints parallel to the axis.

Another problem caused by linear refinement is with unbounded abstract
object. Consider in Int+Parallelotope the full R

n, represented as 〈Rn +R
n〉. If we

want to refine with aT x ≤ b, for any a and b, we get infx∈Rn aT x = −∞, hence
refine(a,b)(〈Rn +R

n〉) = 〈refine(a,+∞)(Rn)+refine(a,+∞)(Rn)〉 = 〈Rn +R
n〉. Note

that, on the contrary, if we represent R
n as 〈{0} + R

n〉, then refinement works
much better, essentially performing the refinement on the second component.
Here {0} may be replaced by any one-point element without affecting precision.

In some way, both problems are related and could be solved by some form
of normalization which, before applying linear refinement refine(a,b) to 〈A + B〉,
transform 〈A + B〉 to 〈A′ + B′〉 with the same concretization but minimizing
the range of {aT x | x ∈ γ(A′)}. There is no general method to perform such a
normalization, which should be devised specifically for each instance of the sum
domain.

6.4 Union and Widening

Abstract union may also be quite imprecise. Consider the abstract values A1 =
〈{0}+{0}〉 and A2 = 〈{a}+{0}〉 on the domain Int+Parallelotope, where a is any
vector in R

n. The concrete union γ(A1)∪γ(A2) is the two point set {0,a}. In the
Int+Parallelotope domain, its optimal representation is 〈{0}+L〉 where L is the
segment from 0 to a. However, the abstract union gives A1∪Int+IntA2 = 〈B+{0}〉
where B is the box with corners 0 and a. This is (except for the case a = 0)
much worse than the optimal result.

Sum of Abstract Domains 47

The problem arises from the fact that abstract union cannot “restructure”
the representation to use the strong points of the component domains. We believe
that designing a more precise union operator is a difficult challenge. Widening,
being defined component-wise as union, has similar problems.

6.5 Other Operators

The other operators are generally much more precise than linear refinement.

non deterministic assignment) Many domains have γ-complete non-
deterministic assignments. When this happens, it is better to apply non
deterministic assignment to this component. If the other component has a
γ-complete assignment of the constant 0 to a variable, we may refine forgeti
as follows:

forgetA+B
i (〈A + B〉) = 〈forgetAi (A) + M ·B B〉

where M is the matrix whose effect is to assign 0 to the i-th variable. This
is better since it smaller w.r.t. �A+B than the one defined in Section 4.

linear assignments) This operator does not cause precision problems.
translations) Although this operator is quite precise, the choice of the weight

w is crucial in obtaining good results. This is because of the imprecision
of the abstract union operator. An example of this phenomenon has been
shown in Section 5.

6.6 The Domain Int + Parallelotope

The domain Int + Parallelotope is one of the simplest non trivial domains which
may be obtained with the sum combinator. Since translations are γ-complete
both in Int and Parallelotope, the same holds for translations on Int+Parallelotope.
For the same reason, non-deterministic assignment is γ-complete.

As we said before, deciding whether 〈B1 + P1〉 ≤ 〈B2 + P2〉 may be eas-
ily implemented by representing sums as convex polyhedra, and checking set
inclusion. On the contrary, improving the abstraction function is harder. Even
if the abstraction is firstly computed over polyhedra, it remains the problem
of representing a polyhedron in the most effective way as sum of a box and a
parallelotope. Solving the abstraction problem could lead to the design of better
operators for union and refinement, which also suffer from great imprecision.

We have implemented a prototype of the sum combinator in the static ana-
lyzer Jandom and did some preliminary test of the Int+Parallelotope domain on
the ALICe benchmarks [14] (plus some additional test programs). The test-suite
comprises a total of 105 models with 316 program points. We have compared the
results on the sum with the results on the parallelotopes (the comparison with
the interval domain gives very similar results). With respect to the parallelotope
domain, the sum is more precise on 53 program points and less precise in 72
program points, while in 76 cases the results are incomparable. We believe that
these preliminary tests are very promising:

48 G. Amato et al.

– The regressions w.r.t. the component domains were expected and are mainly
due to the fact that some operators on the sum, like union, introduce a loss
of precision.

– In addition to the cases where sum is better, we have many cases with
incomparable results. This shows that the sum combinator is able to improve
at least one constraint in many program points. Combining the results on
the sum domain with the (incomparable) results on the component domain,
we obtain more precise results in more than 40% of the program points.

– No special code has been written for the Int + Parallelotope domain: all the
operators are the generic ones of the sum combinator, and the only heuristic
applied is choosing w in translations as we have done in Section 5. Nonethe-
less, the domain was able to produce new constraints. This is in contrast
with other combinators, such as reduced product, where new results always
need some specific code.

We still need to do more experiments and find better heuristics, but the fact
that we have found many new constraints is encouraging.

6.7 Analysis Kickoff and Non-deterministic Assignments

Some numerical abstract domains, such as template parallelotope, template poly-
hedra and zonotopes, need a special treatment in the starting phase of the anal-
ysis. For instance, consider the domain of template polyhedra with constraints
x + y and x − y, and assume that we start the analysis of a program whose first
statement is the assignment x = 0. Since we cannot represent this information
with the given template, we loose the information about the variable x. A sim-
ilar problem arises with zonotopes, where we cannot represent an unbounded
value for y. Such a situation can be easily managed using the sum combinator,
by considering the sum with a simple abstract domain, like intervals, which is
exploited in the starting phase of the analysis.

More generally, we can use the sum combinator to enrich a domain which
may only represent bounded objects (such as the zonotope domain) summing
to it a simple domain able to represent unbounded objects (such as the interval
domain). The resulting domain (Int + Zonotope in our example) would be able
to handle unbounded objects and non-deterministic assignment with greater
precision.

7 Conclusion

We have described the theoretical foundation of the sum of abstract domains.
We have defined generic abstract operators which can be easily implemented
exploiting the corresponding operators on the original domains and we have
discussed possible improvements.

For the sum of intervals and parallelotopes we have also discussed some
heuristics to enhance the precision of the analysis and presented preliminary
experimental results.

Sum of Abstract Domains 49

References

1. Amato, G., Di Nardo Di Maio, S., Scozzari, F.: Numerical static analysis with
soot. In: Proceedings of the ACM SIGPLAN International Workshop on State of
the Art in Java Program Analysis, SOAP (2013)

2. Amato, G., Scozzari, F.: Jandom. https://github.com/jandom-devel/Jandom
3. Amato, G., Scozzari, F.: The abstract domain of parallelotopes. In: Proceedings of

the NSAD 2012. ENTCS, vol. 287, pp. 17–28 (2012)
4. Amato, G., Scozzari, F.: Localizing widening and narrowing. In: Logozzo, F.,

Fähndrich, M. (eds.) Static Analysis. LNCS, vol. 7935, pp. 25–42. Springer,
Heidelberg (2013)

5. Cortesi, A., Le Charlier, B., Van Hentenryck, P.: Combinations of abstract domains
for logic programming: Open product and generic pattern construction. Science of
Computer Programmming 38(1–3), 27–71 (2000)

6. Cortesi, A., Filé, G., Winsborough, W.W.: The quotient of an abstract interpreta-
tion. Theoretical Computer Science 202(1–2), 163–192 (1998)

7. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs.
In: Proc. 2nd Int’l Symposium on Programming, pp. 106–130 (1976)

8. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the POPL 1977, pp. 238–252 (1977)

9. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Proceedings of the POPL 1979, pp. 269–282 (1979)

10. Cousot, P., Cousot, R.: Abstract interpretation frameworks. Journal of Logic and
Computation 2(4), 511–549 (1992)

11. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Proceedings of the POPL 1978, pp. 84–97 (1978)

12. Ghorbal, K., Ivančić, F., Balakrishnan, G., Maeda, N., Gupta, A.: Donut
domains: efficient non-convex domains for abstract interpretation. In: Kuncak, V.,
Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 235–250. Springer,
Heidelberg (2012)

13. Goubault, E., Putot, S., Védrine, F.: Modular static analysis with zonotopes. In:
Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 24–40. Springer,
Heidelberg (2012)

14. Maisonneuve, V., Hermant, O., Irigoin, F.: Alice: a framework to improve affine
loop invariant computation. In: 5th Workshop on Invariant Generation (2014)

15. Miné, A.: The octagon abstract domain. Higher-Order and Symbolic Computation
19(1), 31–100 (2006)

16. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Scalable analysis of linear systems
using mathematical programming. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol.
3385, pp. 25–41. Springer, Heidelberg (2005)

https://github.com/jandom-devel/Jandom

Reachability Preservation Based Parameter
Synthesis for Timed Automata

Étienne André1(B), Giuseppe Lipari2, Hoang Gia Nguyen1, and Youcheng Sun3

1 Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS, UMR 7030, Paris, France
Etienne.Andre@lipn.fr

2 CRIStAL – UMR 9189, Université de Lille, USR 3380 CNRS, Lille, France
3 Scuola Superiore Sant’Anna, Pisa, Italy

Abstract. The synthesis of timing parameters consists in deriving con-
ditions on the timing constants of a concurrent system such that it meets
its specification. Parametric timed automata are a powerful formalism
for parameter synthesis, although most problems are undecidable. We
first address here the following reachability preservation problem: given
a reference parameter valuation and a (bad) control state, do there exist
other parameter valuations that reach this control state iff the reference
parameter valuation does? We show that this problem is undecidable,
and introduce a procedure that outputs a possibly underapproximated
answer. We then show that our procedure can efficiently replace the
behavioral cartography to partition a bounded parameter subspace into
good and bad subparts; furthermore, our procedure can even outperform
the classical bad-state driven parameter synthesis semi-algorithm, espe-
cially when distributed on a cluster.

1 Introduction

The design of critical real-time systems is notoriously error-prone, and requires
formal verification to assess the absence of undesired behaviors. The theory of
timed automata (TA) [1] provided in the past two decades designers with a
powerful formalism to formally verify real-time systems. TA extend finite-state
automata with clocks that can be compared with integers in guards and invari-
ants. Unfortunately, the classical definition of TA is not tailored to verify systems
only partially specified, especially when the value of some timing constants is not
yet known. The synthesis of timing parameters consists in deriving conditions
on the timing constants of a concurrent system such that it meets its specifica-
tion. Parametric timed automata (PTA) [2] extend TA by allowing the use of
parameters (i.e., unknown constants) in place of integer constants in the model.

This work was partially supported by a BQR grant “SynPaTiC” and by the ANR
national research program “PACS” (ANR-2014).

c© Springer International Publishing Switzerland 2015
K. Havelund et al. (Eds.): NFM 2015, LNCS 9058, pp. 50–65, 2015.
DOI: 10.1007/978-3-319-17524-9 5

Reachability Preservation Based Parameter Synthesis for Timed Automata 51

Related Work. The expressive power of PTA comes at the cost of the undecid-
ability of almost all interesting problems. The EF-emptiness problem1 (“does
there exist a parameter valuation such that a control state is reachable?”) is
undecidable if the model contains as little as three parameterized clocks [2].
Research around PTA since then consisted mainly in either exhibiting subclasses
of PTA for which interesting problems become decidable, or devising efficient
semi-algorithms that would terminate “often enough” to be useful. A famous
subclass of PTA is L/U PTA [8,13] where each parameter can be used only
either as upper bounds or as lower bounds, and for which the EF-emptiness
problem becomes decidable. In [8], further problems have been shown to be
decidable for L/U PTA, including the emptiness and the universality problem
for infinite runs properties (“do all parameter valuations have an infinite accept-
ing run?”), for integer parameter valuations. In [14], however, it was shown that
the solution to the EF-synthesis problem (“find all parameter valuations such
that a control state is reachable”) for L/U PTA cannot be represented as a finite
union of polyhedra, hence strongly limiting the practical interest of L/U PTA.
Orthogonal to syntactical restrictions on the model is the search for restrictions
on the parameter domain: in [14], an algorithm is proposed to synthesize integer
parameter valuations in a bounded domain. This is of course decidable, and the
authors devise two symbolic algorithms that perform better than enumeration.

More practical research on PTA include the development of tools (e.g., Romo
[16], Imitator [6]) and their application to several fields such as hardware veri-
fication (e.g., [10]) and parametric schedulability analysis (e.g., [12]). In [3], we
proposed the inverse method IM, a procedure that takes advantage of a reference
parameter valuation and generalizes it in the form of a convex constraint, such
that the discrete (linear-time) behavior of the system is preserved. In [5], we
proposed the behavioral cartography BC: by iterating IM on integer points in
a bounded parameter domain, we decompose this domain into constraints such
that, for all parameter valuations in each constraint, the discrete behavior is the
same. Then, BC can give a (possibly incomplete) solution to the EF-synthesis
problem, by returning the union of all constraints for which the desired control
state is reachable.

Contribution. In this work, our main goal is to address the EF-synthesis problem.
Instead of attacking the state space exploration in a brute force manner (like [2,
14]), we propose to perform several explorations of smaller size, taking advantage
of reference valuations in the line of the inverse method. More in details, our
contributions are as follows:

1. We first address the following reachability preservation problem for PTA:
given a reference parameter valuation π and a control state, do there exist
other parameter valuations that reach this control state iff π does? We show
that this problem is undecidable, and we introduce a procedure PRP (para-
metric reachability preservation) that gives a (possibly incomplete) answer.

1 “EF” comes from the CTL syntax and stands for “exists finally”.

52 É. André et al.

2. Then, we show that PRP can efficiently replace IM in the behavioral cartogra-
phy to partition a bounded parameter subspace into good and bad subparts,
and give a solution to the EF-synthesis problem.

3. We then compare the PRP-based cartography with the classical parameter
synthesis semi-algorithm “EFsynth” [2,14] that solves the EF-synthesis prob-
lem: not only PRP gives a more precise result, but it also performs surpris-
ingly well, despite its repeated analyses. Comparisons are performed using
parametric schedulability problems for real-time systems.

4. We finally briefly discuss a distributed version of PRP, that is faster and
almost always outperforms EFsynth.

Outline. Section 2 recalls PTA, decision problems and existing results. Section
3.1 defines the reachability preservation problem and proves its undecidability;
Section 3.2 introduces PRP and proves its correctness; Section 3.3 shows that
PRP can be used to solve the EF-synthesis problem. Section 4 discusses a dis-
tributed version of PRP, and Section 5 describes an experimental comparison
with BC and EFsynth. Section 6 concludes the paper and gives perspectives.

2 Preliminaries

Throughout this paper, we assume a set X = {x1, . . . , xH} of clocks, i.e., real-
valued variables that evolve at the same rate. A clock valuation w is a func-
tion w : X → R+. We will often identify a clock valuation π with the point
(w(x1), . . . , w(xH)). We denote by X = 0 the conjunction of equalities that
assigns 0 to all clocks in X. Given d ∈ R+, w + d denotes the valuation such
that (w + d)(x) = w(x) + d, for all x ∈ X.

Throughout this paper, we assume a set P = {p1, . . . , pM} of parameters, i.e.,
unknown constants. A parameter valuation π is a function π : P → Q+. We will
often identify a valuation π with the point (π(p1), . . . , π(pM)). An integer point
is a valuation π : P → N.

An inequality over X and P is e ≺ 0, where ≺∈ {<,≤,≥, >}, and e is a linear
term

∑
1≤i≤N αizi+d for some N ∈ N, where zi ∈ X∪P , αi ∈ Q+, for 1 ≤ i ≤ N ,

and d ∈ Q+. A (linear) constraint over X and P is a set of linear inequalities
over X and P . We define in a similar manner inequalities and constraints over
P . A parametric guard is a set of linear inequalities where exactly one zi is a
clock. We denote by L(P) and L(X ∪ P) the set of all constraints over P , and
over X and P respectively. We use K ∈ L(P) and C ∈ L(X ∪ P).

Given a parameter valuation π, C[π] denotes the constraint over X obtained
by replacing each parameter p in C with π(p). Likewise, given a clock valua-
tion w, C[π][w] denotes the expression obtained by replacing each clock x in C[π]
with w(x). We say that π satisfies C, denoted by π |= C, if the set of clock valu-
ations satisfying C[π] is nonempty. We use the notation <w|π> |= C to indicate
that C[π][w] evaluates to true.

We denote by � (resp. ⊥) the constraint over P that corresponds to the set
of all possible (resp. the empty set of) parameter valuations. We denote by C↓P
the projection of C onto P , i.e., obtained by eliminating the clock variables. We

Reachability Preservation Based Parameter Synthesis for Timed Automata 53

define the time elapsing of C, denoted by C↑, as the constraint over X and P
obtained from C by delaying an arbitrary amount of time. Given R ⊆ X, we
define the reset of C, denoted by [C]R, as the constraint obtained from C by
resetting the clocks in R, and keeping the other clocks unchanged.

Parametric timed automata are an extension of the class of timed automata to
the parametric case, where parameters can be used within guards and invariants
in place of constants [2].

Definition 1. A PTA A is a tuple A = (Σ,L, l0,X, P, I, E), where:

– Σ is a finite set of actions,
– L is a finite set of locations, l0 ∈ L is the initial location,
– X is a set of clocks, P is a set of parameters,
– I is the invariant, assigning to every l ∈ L a parametric guard I(l),
– E is a set of edges (l, g, a,R, l′) where l, l′ ∈ L are the source and destination

locations, a ∈ Σ, R ⊆ X is a set of clocks to be reset, and g is a parametric
guard.

Throughout this paper, we will be interested in the reachability of bad loca-
tions. We assume a special location lbad ∈ L; without loss of generality, we
assume that this location is unique (the case with several bad locations can be
reduced to one only using additional transitions to lbad).

Given a PTA A = (Σ,L, l0,X, P, I, E), and a parameter valuation π, A[π]
denotes the TA obtained from A by substituting every occurrence of a parameter
pi by the constant π(pi) in the guards and invariants.

We borrow from [14] and adapt to our notations the semantics of a TA.

Definition 2 (Semantics of a TA). Given a PTA A = (Σ,L, l0,X, P, I, E),
and a parameter valuation π, the semantics of A[π] is given by the timed transi-
tion system (Q, q0,⇒), with

– Q = {(l, w) ∈ L × R
H
+ | I(l)[π][w] evaluates to true} , q0 = (l0,X = 0)

– ((l, w), a, (l′, w′)) ∈ ⇒ if ∃w′′ : (l, w) a→ (l′, w′′) d→ (l′, w′), with
• discrete transitions: (l, w) a→ (l′, w′), with a ∈ Σ, if (l, w), (l′, w′) ∈ Q,

there exists (l, g, a,R, l′) ∈ E, w′ = [w]R, and g[π][w] evaluates to true.
• delay transitions: (l, w) d→ (l, w + d), with d ∈ R+, if ∀d′ ∈ [0, d], (l, w +

d′) ∈ Q.

A concrete run of a TA is an alternating sequence of states of Q and actions
of the form s0

a0⇒ s1
a1⇒ · · · am−1⇒ sm, such that for all i = 0, . . . , m − 1, ai ∈ Σ,

and (si, ai, si+1) ∈ ⇒. Given a state s = (l, w), we say that s is reachable (or
that A[π] reaches s) if s belongs to a run of A[π]; by extension, we say that l is
reachable in A[π].

We now recall the semantics of PTA.

Definition 3 (Symbolic state). A symbolic state of a PTA A is a pair (l, C)
where l ∈ L is a location, and C ∈ L(X ∪ P) its associated constraint.

54 É. André et al.

l1
x ≤ b

x = y = 0 l2

x ≥ a
x := 0

y ≥ 20

Fig. 1. An example of a PTA A1 [14]

A state s = (l, C) is π-compatible if π |= C.
The initial state of A is s0 = (l0, (X = 0)↑ ∧ I(l0)).
The computation of the state space relies on the Succ operation. Given a

symbolic state s = (l, C), Succ(s) = {(l′, C ′) | ∃(l, g, a,R, l′) ∈ E s.t. C ′ =(
[(C ∧ g)]R

)↑ ∩ I(l′)}. By extension, given a set S of states, Succ(S) = {s′ | ∃s ∈
S s.t. s′ ∈ Succ(s)}.

A symbolic run of a PTA is an alternating sequence of symbolic states and
actions of the form s0

a0⇒ s1
a1⇒ · · · am−1⇒ sm, such that for all i = 0, . . . , m − 1,

ai ∈ Σ, and si
ai⇒ si+1 is such that si+1 belongs to Succ(si) and is obtained via

action ai.
Given a (concrete or symbolic) run (l0, C0)

a0⇒ (l1, C1)
a1⇒ · · · am−1⇒ (lm, Cm),

its corresponding trace is l0
a0⇒ l1

a1⇒ · · · am−1⇒ lm. The set of all traces of a TA is
called its trace set. Two runs (concrete or symbolic) are said to be equivalent if
their associated traces are equal.

Problems for PTA. We recall below two classical problems, as formalized in [14].

Problem 1 (EF-emptiness). Let A be a PTA. Is the set of parameter valua-
tions π such that A[π] reaches lbad empty?

Problem 2 (EF-synthesis). Let A be a PTA. Compute the set of parameter
valuations π such that A[π] reaches lbad .

Problem 1 is undecidable [2], and the set of parameter valuations solving
Problem 2 cannot be computed in general. In [14], the following semi-algorithm
is proposed, that gives a complete answer to Problem 2 when it terminates.

EFsynthlbad ((l, C), S) =

⎧⎨
⎩

C↓P if l = lbad
∅ if (l, C) ∈ S⋃

s′∈Succ((l,C)) EFsynthlbad
(
s′, S ∪ {(l, C)})

otherwise

Example 1. Consider the PTA A1 in Fig. 1 [14], with clocks x and y and param-
eters a and b. Then EFsynthl2(s0, ∅) does not terminate, and neither does it if
the range of the parameters is bounded from above (e.g., a, b ∈ [0, 50]).

From the proof of correctness of EFsynth in [14], one can infer that the result
of EFsynth is still a (possibly incomplete) answer to Problem 2 even when the
algorithm is artificially stopped before its termination. By artificially stopping

Reachability Preservation Based Parameter Synthesis for Timed Automata 55

EFsynth, we mean bounding the recursion depth: when the depth indeed exceeds
some bound, we replace the recursive call EFsynthlbad (s

′, S ∪ {(l, C)}) with ⊥.

Proposition 1. Let K be the result of EFsynthlbad (s0, ∅) when EFsynth is stopped
after being recursively called a bounded number of times. For all π |= K, lbad is
reachable in A[π].

Behavioral Cartography. In [3], we introduced the inverse method IM. This proce-
dure takes as input a reference parameter valuation π and outputs a constraint K
such that 1) π |= K and 2) for all π′ |= K, the trace sets of A[π] and A[π′] are the
same; hence, the discrete (linear-time) behavior of the system is preserved. IM
performs a breadth-first exploration of the symbolic state space of A; whenever
a π-incompatible state (l, C) is met, it is removed as follows: a π-incompatible
inequality is selected within the projection of C onto P , and then its negation is
added to a constraint maintained by IM. When a fixpoint is reached, IM returns
the intersection of all parametric constraints associated to the remaining sym-
bolic states.

A variant of IM named IMK outputs a weaker (i.e., larger) constraint, that
only guarantees that any trace of A[π′] is a trace of A[π] [7]. It is similar to IM
except that, instead of returning the intersection of all parametric constraints, it
returns only the accumulation of π-incompatible inequalities. Hence, IMK only
forbids the traces not possible under π, without requiring that all traces of A[π]
be possible in A[π′].

In [5], we introduced the behavioral cartography BC: by iterating IM on the
integer points in a bounded parameter domain V (usually a product of intervals
in |P | dimensions), one can decompose V into tiles, i.e., parametric constraints
in which the discrete behavior is uniform. Hence all parameter valuations in
a tile satisfy the same set of linear-time properties. Then, given such a prop-
erty (expressed using, e.g., LTL), one can partition V into good and bad tiles
depending whether this property is or not satisfied in each tile.

This method has two theoretical drawbacks: first, some calls to IM may not
terminate and, second, BC does not formally guarantee that any “dense” part
of V will be covered beside the integer points. However, in practice not only the
whole dense part of V is almost always covered, but large (infinite) parts of the
parameter space beyond V are often covered.

3 Solving the EF-Emptiness Problem Using Reachability
Preservation

3.1 Undecidability of the Preservation of Reachability

Parameter synthesis with respect to a bad location is known to be undecidable [2].
Here, we take advantage of a reference parameter valuation π, for which it is
possible to decide whether lbad is reachable [1]. The assumption of a known
parameter valuation seems realistic to us: in system design, it is often the case
that one knows (from a previous design, of using empirical methods) a first

56 É. André et al.

valuation; however, finding other valuations may be much more difficult, and may
require to restart the design phase from zero. Here, given a reference parameter
valuation, we are interested in the preservation of the reachability of lbad by other
parameter valuations. Given two TA A[π] and A[π′], we say that A[π′] preserves
the reachability of lbad in A[π] when lbad is reachable in A[π] if and only if
lbad is reachable in A[π′]. We call PREACH the problem of the preservation of
reachability. In the following, we show that, given π, deciding whether at least
one parameter valuation π′ �= π preserves the reachability of lbad in A[π] is
undecidable.

Problem 3 (PREACH-emptiness). Let A be a PTA, and π a parameter valua-
tion. Does there exist π′ �= π such that A[π′] preserves the reachability of lbad
in A[π]?

Problem 4 (PREACH-synthesis). Let A be a PTA, and π a parameter valua-
tion. Compute the set of parameter valuations π′ such that A[π′] preserves the
reachability of lbad in A[π].

We show below that Problem 3 is undecidable.

Theorem 1. PREACH-emptiness is undecidable.

Proof. Given a parameter valuation reaching some location, we reduce the exis-
tence of a different parameter valuation reaching the same location from the
halting problem of a 2-counter machine.

1. First, recall that [2] defines the encoding of a 2-counter machine (2CM) using
a PTA A2CM that contains two parameters a and b.2 Then [2] shows that
the 2CM halts iff there exists at least one non-null parameter valuation such
that a special location lhalt is reachable in A2CM .

2. Now, let us add a gadget to A2CM that adds a direct transition from the
initial location l0 to lhalt with a guard a = b = 0.3 Let A be this new PTA,
as depicted in Fig. 2. Now, we have:
(a) If the 2CM halts, then lhalt is still reachable in A for some non-null

parameter valuation since it was already reachable in A2CM . Addition-
ally, due to our gadget, lhalt is also reachable in A for a = b = 0.

(b) If the 2CM does not halt, lhalt is again reachable in A for a = b = 0 due
to our gadget, but no other parameter valuation can reach lhalt , just as
in item 1.

Hence, given π : a = b = 0, there exists a parameter valuation π′ �= π such
that A[π′] preserves the reachability of lhalt in A[π] iff the 2CM halts.

2 Strictly speaking, their construction uses six parameters, but it is well-known (shown,
e.g., in [14]) that they can be reduced to two.

3 This guard is not allowed in PTA, but can be simulated using an extra clock x and
an urgent location followed by a transition with guard x = a ∧ x = b.

Reachability Preservation Based Parameter Synthesis for Timed Automata 57

l0 lhaltA2CM

a = b = 0

Fig. 2. Undecidability of PREACH-emptiness: PTA A

3.2 Parameter Synthesis Preserving the Reachability

To propose a solution to Problem 4, we introduce here PRP(A, π), that is inspired
by two existing algorithms, viz., EFsynth and the variant IMK of IM [7]. PRP
(standing for parametric reachability preservation) is at first close to IMK , and
then switches to an algorithm that resembles EFsynth:

– As long as no bad location is reached, PRP generalizes the trace set of A[π]
by removing π-incompatible states; this is done by negating π-incompatible
inequalities, and returning the intersection of such negated inequalities, in
the line of IMK .

– When at least one bad location is met, PRP switches to an algorithm close
to EFsynth, i.e., it simply gathers the constraints associated with the bad
locations, and returns their union. However, a main difference with EFsynth
is that PRP does not explore π-incompatible states: although this is not
necessary to ensure correctness (in fact, this makes PRP not complete), this
is a key heuristics to keep the state space of reasonable size.

We introduce PRP in Algorithm 1. It is a breadth-first exploration procedure that
maintains the following variables: S (resp. Snew) is the set of states computed
at the previous (resp. current) iterations; Bad is a Boolean flag that remembers
whether a bad location has been met; Kgood is the intersection of the negation
of all π-incompatible inequalities, that will be returned if no bad state is met;
Kbad is the union of the projection onto P of all bad states, that will be returned
otherwise; i remembers the current exploration depth.

The procedure consists in a (potentially infinite) while loop. First, lines
3–4 take care of the π-incompatible states and resembles IMK . These states
are discarded from the exploration, i.e., they are removed from the set of new
states (line 4). Then, if the exploration has not yet met any bad state, Kgood

is refined so as to prevent any such π-incompatible state (l, C) to be reached: a
π-incompatible inequality J is selected within the projection of C onto P , and
then its negation is added to Kgood . This mechanism is borrowed to IM (and its
variant IMK).

Second, lines 8–9 take care of the bad states. If any bad state is reached
(line 8), then the Bad flag is set to true, the union of the projection onto P
of the constraints associated with these bad states is added to Kbad , and these
states are discarded, i.e., their successor states will not be computed (line 9).

58 É. André et al.

Algorithm 1. PRP(A, π)
input : PTA A of initial state s0, parameter valuation π
output : Constraint over the parameters

1 S ← ∅ ; Snew ← {s0} ; Bad ← false ; Kgood ← � ; Kbad ← ⊥ ; i ← 0
2 while true do
3 foreach π-incompatible state (l, C) in Snew do
4 Snew ← Snew \ {(l, C)}
5 if Bad = false then
6 Select a π-incompatible inequality J in C↓P (i.e., s.t. π
|= J)
7 Kgood ← Kgood ∧ ¬J

8 foreach bad state (lbad , C) in Snew do
9 Bad ← true ; Kbad ← Kbad ∨ C↓P ; Snew ← Snew \ {(lbad , C)}

10 if Snew ⊆ S then
11 if Bad = true then return Kbad else return Kgood ;

12 S ← S ∪ Snew ; Snew ← Succ(Snew) ; i ← i + 1

The third part is a classical fixpoint condition: if no new state has been met
at this iteration (line 10), then the result is returned, i.e., either Kbad if some
bad states have been met, or Kgood otherwise. If new states have been met, then
the procedure explores one step further in depth (line 12).

We will show in Theorem 2 that PRP outputs a sound (though possibly
incomplete) answer to Problem 4. In fact, PRP verifies a stronger property: if
lbad is reachable in A[π], PRP outputs a constraint K guaranteeing that lbad is
reachable for any parameter valuation satisfying K. However, if lbad is unreach-
able in A[π], the constraint K output by PRP satisfies the same property as IMK ,
i.e., the trace set of A[π′] is a subset of the trace set of A[π], for all π′ |= K.
This is formalized in Proposition 2.

Proposition 2. Let A be a PTA, and π a parameter valuation. Suppose PRP
(A, π) terminates with result K. Then, π |= K and, for all π′ |= K:

– if lbad is reachable in A[π], then lbad is reachable in A[π′];
– if lbad is unreachable in A[π], then every trace of A[π′] is a trace of A[π].

Theorem 2. Let A be a PTA, and π a parameter valuation. Suppose PRP(A, π)
terminates with result K. Then, π |= K and, for all π′ |= K, lbad is reachable in
A[π] iff lbad is reachable in A[π′].

Proof. From Proposition 2.

Remark 1. PRP may not terminate, which is natural since Problem 3 is unde-
cidable. Furthermore, even if it terminates, the result output by PRP may be
non complete; in fact, this is designed on purpose (since we stop the exploration
of π-incompatible states) so as to prevent a too large exploration. Enlarging the
output constraint can be done by repeatedly calling PRP on other points than
π, which will be done in Section 3.3.

Reachability Preservation Based Parameter Synthesis for Timed Automata 59

Example 2. Let us apply PRP to the PTA A1 in Fig. 1. For point π1 : (a =
20, b = 10), PRP outputs constraint 20 > b∧a > b∧ b ≥ 0, which guarantees the
unreachability of lbad . For point π2 : (a = 30, b = 30), PRP outputs constraint
b > 20 ∧ a ≥ 0, which guarantees the reachability of lbad . For point π3 : (a =
0, b = 40), PRP does not terminate.

We now state in Theorem 3 that, even when PRP is interrupted before
its termination, PRP outputs a sound (though possibly incomplete) answer to
Problem 4, provided some bad states have already been met. The result comes
from the fact that the first item of the proof of Proposition 2 holds even if PRP
has not terminated. (Note that the converse case, when Bad = false, does not
hold if PRP has not terminated: although no bad state has been met yet, there
could be some in the future.)

Theorem 3. Let A be a PTA, and π a parameter valuation. Let be K the value
of Kbad at the end of iteration i of PRP(A, π), for some i ≥ 0, such that Bad =
true. Then: 1) lbad is reachable in A[π], and 2) for all π′ |= K, lbad is reachable
in A[π′].

Example 3. Let us again apply PRP to the PTA A1 in Fig. 1. For this PTA and
π3 : (a = 0, b = 40), PRP with a depth limit of 10 terminates with Bad = true.
From Theorem 3, the output constraint is valid, i.e., guarantees the reachability
of lbad .

3.3 EF-Synthesis Using PRP

Given a bounded parameter domain, IM can be iterated on integer points to
perform a behavioral cartography; then, the tiles can be partitioned in good and
bad according to a linear-time property. If the property of interest is simply a
(non-)reachability property, then PRP can be used in place of IM within BC,
giving birth to a procedure PRPC (see Algorithm 2). PRP is called repeatedly
with as an argument the first integer point not yet covered by any constraint
(line 2 in Algorithm 2).

The “cartography” output by PRPC is less precise than the one output by
the classical BC, because the constraints outputs by PRP are not tiles anymore:
Theorem 2 only guarantees the preservation of reachability, and hence different
parameter valuations within a constraint may correspond to different trace sets.
To output a set of parameter valuations solving EF-synthesis, it suffices to return
the union of the constraints for which lbad is reachable.

Now, a key feature of PRPC is to explore a relatively small part of the whole
parametric state space at a time, and to still output larger constraints than BC.
We will show in Section 5 that using PRP instead of IM in the cartography indeed
dramatically increases its efficiency.

Remark 2. In the general case, PRPC may not terminate, due to the non-termina-
tion of PRP. However, it is possible to set up a maximum exploration depth for
PRP: when this depth is reached, the algorithm stops. If some bad states have

60 É. André et al.

Algorithm 2. PRPC(A, V)
input : PTA A, bounded parameter domain V
output : Set C of constraints over the parameters (initially empty)

1 while there are integer points in V not covered by C do
2 Select an integer point π in V not covered by C
3 C ← C ∪ PRP(A, π)

4 return C

been met, the resulting constraint can be safely used (from Theorem 3); otherwise
the constraint is just discarded and the reference point on which PRP was called
will never be covered. In this case, termination of PRPC is always guaranteed,
with a partial result (some integer points may still be uncovered).

Let us now compare EFsynth and PRPC, that can both output (possibly
incomplete) solutions to the EF-synthesis problem. On the one hand, EFsynth
should be faster (although we will see in Section 5 that it is not even true in
general), because it performs only one exploration, whereas PRPC has to launch
PRP on many integer points. On the other hand, PRPC will use less memory,
since a smaller part of the state space is explored at a time (due to the non-
exploration of π-incompatible states). Furthermore, its main interest is that it
synthesizes a more valuable result: whereas EFsynth outputs only a possibly
under-approximated set of bad parameter valuations (reaching lbad) and leaves
the whole rest of parameter valuations unknown, PRPC outputs possibly under-
approximated sets of both bad and good parameter valuations, giving much more
valuable information. Finally, just as BC, PRPC can possibly cover parameter
valuations beyond the limits of V , which is not possible for EFsynth.

Example 4. Consider again the PTA A1 in Fig. 1, and let us apply EFsynth
and PRPC with a bounded exploration depth of 10; recall that this is safe from
Proposition 1 and Theorem 3. We apply PRPC to an unconstrained model with
V : a, b ∈ [0, 50]. We apply EFsynth to a model where a and b are constrained to
be in [0, 50]. We give in a graphical manner in Fig. 3a (resp. Fig. 3b) the results
output by PRPC (resp. EFsynth). PRPC synthesizes all the good parameter val-
uations (below, in green), i.e., that do not reach l2, and all the bad parameter
valuations (above, in red), i.e., that reach l2, with the exception of a small area
near (0, 0) (in white). All constraints output by PRPC are infinite (which is
not shown in the figure), and hence cover the whole part outside V too. As of
EFsynth, the same bad valuations as for PRPC are covered, but only within V ,
and no information is given about the good valuations. Hence, since EFsynth was
stopped prematurely, no information can be given for the non-covered part: in
particular, the white part of V cannot be decided, whereas PRPC covers every-
thing except the small area near (0, 0). This is a major advantage of PRPC over
EFsynth in terms of precision of the result. Also recall that EFsynth covers only
(a part of) V whereas PRPC covers here the whole parameter space beyond V .

Reachability Preservation Based Parameter Synthesis for Timed Automata 61

(a) PRPC (b) EFsynth

Fig. 3. EF-synthesis using PRPC and EFsynth for A1

4 Towards Distributed Parameter Synthesis

In [4], we proposed two distribution algorithms to execute BC on a set of com-
puters (e.g., on a cluster), implemented in Imitator using the message passing
interface (MPI). Distributing BC is intrinsically easy: it is trivial that two exe-
cutions of IM from two different parameter valuations can be performed on two
different nodes. However, distributing it efficiently is challenging: calling two
executions of IM from two contiguous integer points has a very large probability
to yield the same tile in both cases, and hence to result in a loss of time for
one of the two nodes. Hence, the critical question is how to distribute efficiently
the reference valuations (“points”) on which to call IM. In [4], we proposed a
master-workers scheme, where a master distributes the points to the workers,
using two point distribution algorithms:

1. A sequential point enumeration: each integer point not yet covered by any tile
is sent to a worker, i.e., (0, 0), then (0, 1) and so on (in two dimensions). This
algorithm suffers from the aforementioned problem of close integer points,
but still performs reasonably well (up to 7 times faster using 36 nodes).

2. A random point distribution followed by a sequential enumeration: points
are selected randomly and, when points not yet covered by any tile become
scarce, the master switches to a sequential point enumeration to ensure that
all integer points are covered. The fact that the points not covered by any
tile become scarce is detected after the number of unsuccessful attempts to
randomly choose an uncovered point goes beyond a certain threshold (e.g.,
100). This algorithm performs better (up to 12 times faster using 36 nodes).

Here, we will use a third master-workers distribution method, that dynamically
splits the parametric domain V in subparts: when a worker completes the cover-
ing of its subpart, the master splits another subpart into two parts, and assigns
one of the two part to that worker. From our results, this algorithm (implemented
in the working version of Imitator) is more efficient than the two algorithms
of [4].

Remark 3 (Fairness). Of course, comparing a distributed algorithm (PRPC) with
a monolithic one (EFsynth) is unfair. However, to the best of our knowledge, no

62 É. André et al.

distributed algorithm for parameter synthesis has been proposed (except [4]).
One could argue that EFsynth could at least take advantage of multi-cores,
e.g., using one core to compute the successor states while another performs the
(costly) equality check, or by computing in parallel the successor states of several
states – but PRPC could take advantage of exactly the same enhancements.

5 Experimental Comparison

We compare here several algorithms to solve the EF-synthesis problem using Imi-
tator [6]. In its latest version, Imitator implements EFsynth, BC and PRPC,
and can run PRPC in a distributed fashion. Experiments were run using Imita-
tor 2.6.2 (build 845) on a Linux-based cluster. The nodes of this cluster feature
two 6-core Intel Xeon X5670 running at 2.93 GHz CPUs (therefore, 12 cores in a
NUMA fashion). Each node has 24 GiB of memory and runs a 64-bit Linux 3.2
kernel. The code was compiled using OCaml 3.12.1. The message-passing library
we used is Bull’s OpenMPI variant for Bullx, and the nodes are interconnected
by a 40 Gb/s InfiniBand network.4

5.1 Case Studies

Our first case study is the PTA A1 in Fig. 1, with V : a, b ∈ [0, 50].
Sched1 and Sched2 are two parametric schedulability problems on a single

processor. The goal is to synthesize task parameter valuations guaranteeing that
every task meets its relative deadline. For Sched1, we consider two parameters
D2 and T2 that correspond to the relative deadline and the period of task 2
respectively. We set V to D2, T2 ∈ [20, 100]. For Sched2 (adapted from the
example studied in [9,14]), we consider two parameters b and z, which correspond
to upper bounds on the execution time of tasks 1 and 3, that is C1 ∈ [10, b]
and C3 ∈ [20, z]. A third parameter (always valuated in our experiments) is a,
that is used in the relative deadline and the period of tasks 1, 2, 3. Precisely:
D1 = T1 = a, D2 = T2 = 2a and D3 = T3 = 3a. Finally, task τ2 has a release
jitter J2 ∈ {0, 2}. We will study Sched2 with two different V . First, we valuate
a = 50, we set V : b ∈ [10, 50], z ∈ [20, 100] and we synthesize parameters for
both J2 = 0 (“Sched2.50.0”) and J2 = 2 (“Sched2.50.2”). Second, we valuate
a = 100, we set V : b ∈ [10, 1000], z ∈ [20, 1000] and we consider J2 = 0
(“Sched2.100.0”) and J2 = 2 (“Sched2.100.2”).

Sched5 models the schedulability of 5 fixed-priority tasks in a single processor.
SPSMALL is a model of an asynchronous memory circuit [10].

4 Sources, binaries, models and results are available at www.lipn.fr/∼andre/PRP/.

www.lipn.fr/~andre/PRP/

Reachability Preservation Based Parameter Synthesis for Timed Automata 63

Table 1. Comparison of algorithms to solve the EF-synthesis problem

Case study |H| |V | EFsynth BC PRPC PRPC distr(12)

A1 2 2,601 0.401* TO 0.078* 0.050*

Sched1 13 6,561 TO TO 1595 219

Sched2.50.0 6 3,321 9.25 990 14.55 4.77

Sched2.50.2 6 3,321 662 TO 213 84

Sched2.100.0 6 972,971 21.4 2093 116 10.1

Sched2.100.2 6 972,971 3757 TO 4557 1543

Sched5 21 1,681 352 TO TO 917

SPSMALL 11 3,082 7.49 587 118 11.2

5.2 Summary of the Experiments and Discussion

Table 1 gives from left to right the case study, the number of clocks, the number of
integer points in V and the computation time in seconds for EFsynth, BC, PRPC,
and the distributed version of PRPC using the part-splitting point distribution
running on 12 nodes. “TO” indicates a timeout (> 5000 s).

For A1, none of the algorithms terminate; hence, termination is ensured
by bounding the exploration depth to 10 (marked with * in Table 1). From
Proposition 1 and Theorem 3, the result is still correct; however, this does not
hold for BC. For the other case studies, all algorithms terminate (except in case
of timeouts), and always cover entirely V . To allow a fair comparison, parameters
for EFsynth are bounded in the model as in V ; without these bounds, EFsynth
never terminates for these case studies.

First, we see that PRPC dramatically outperforms BC for all case studies.
This is due to the fact that the constraints output by PRP (that preserve only
non-reachability) are much weaker than those output by IM (that preserve trace
set equality). Second, we see that PRPC compares rather well with EFsynth, and
is faster on three case studies; PRPC furthermore outputs a more valuable con-
straint for A1 (see Example 4). PRPC can even verify case studies that EFsynth
cannot (Sched1).

The distributed version of PRPC is faster than PRPC for all case studies.
Most importantly, the distributed PRPC outperforms EFsynth for all but two
case studies. The good timing efficiency of PRPC is somehow surprising, since
it was devised to output a more precise result and to use less memory, but not
necessarily to be faster. We believe that PRPC allows to explore small state
spaces at a time and, despite the repeated executions, this is less costly than
handling a large state space (as in EFsynth), especially when performing equality
checks when a new state is computed.

6 Conclusion

In this work, we address the synthesis of timing parameters for reachability
properties. We introduce PRP that outputs an answer to the parameter synthe-
sis problem of the preservation of the reachability of some bad control state lbad ,

64 É. André et al.

which we showed to be undecidable. By repeatedly iterating PRP on some
(integer) points, one can cover a bounded parameter domain with constraints
guaranteeing either the reachability or the non-reachability of lbad . This app-
roach competes well in terms of efficiency with the classical bad state synthesis
EFsynth, and gives a more precise result than EFsynth while using less memory.
Finally, our distributed version almost always outperforms EFsynth.

The approach recently proposed to synthesize parameters using IC3 for reach-
ability properties [11] looks promising; it would be interesting to investigate a
combination of that work with a PRP-like procedure, especially if distributed.

So far, we only investigated the preservation of the reachability; investigating
infinite runs properties is of interest too. In this case, it would be interesting to
combine our distributed setting with the multi-core algorithm recently proposed
for (non-parametric) timed automata [15].

Acknowledgments. We thank Camille Coti for a valuable help while using the Magi
cluster, and Didier Lime for useful comments on Section 3.1.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science
126(2), 183–235 (1994)

2. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: STOC,
pp. 592–601. ACM (1993)

3. André, É., Chatain, T., Encrenaz, E., Fribourg, L.: An inverse method for para-
metric timed automata. IJFCS 20(5), 819–836 (2009)

4. André, É., Coti, C., Evangelista, S.: Distributed behavioral cartography of timed
automata. In: EuroMPI/ASIA 201414, pp. 109–114. ACM (2014)

5. André, É., Fribourg, L.: Behavioral cartography of timed automata. In: Kučera,
A., Potapov, I. (eds.) RP 2010. LNCS, vol. 6227, pp. 76–90. Springer, Heidelberg
(2010)

6. André, É., Fribourg, L., Kühne, U., Soulat, R.: IMITATOR 2.5: a tool for analyzing
robustness in scheduling problems. In: Giannakopoulou, D., Méry, D. (eds.) FM
2012. LNCS, vol. 7436, pp. 33–36. Springer, Heidelberg (2012)

7. André, É., Soulat, R.: Synthesis of timing parameters satisfying safety properties.
In: Delzanno, G., Potapov, I. (eds.) RP 2011. LNCS, vol. 6945, pp. 31–44. Springer,
Heidelberg (2011)

8. Bozzelli, L., La Torre, S.: Decision problems for lower/upper bound parametric
timed automata. Formal Methods in System Design 35(2), 121–151 (2009)

9. Bucci, G., Fedeli, A., Sassoli, L., Vicario, E.: Timed state space analysis of real-time
preemptive systems. Transactions on Software Engineering 30(2), 97–111 (2004)

10. Chevallier, R., Encrenaz-Tiphène, E., Fribourg, L., Xu, W.: Timed verification of
the generic architecture of a memory circuit using parametric timed automata.
Formal Methods in System Design 34(1), 59–81 (2009)

11. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Parameter synthesis with IC3. In:
FMCAD, pp. 165–168. IEEE (2013)

12. Cimatti, A., Palopoli, L., Ramadian, Y.: Symbolic computation of schedulability
regions using parametric timed automata. In: RTSS, pp. 80–89. IEEE Computer
Society (2008)

Reachability Preservation Based Parameter Synthesis for Timed Automata 65

13. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.W.: Linear parametric model
checking of timed automata. JLAP 52–53, 183–220 (2002)

14. Jovanović, A., Lime, D., Roux, O.H.: Integer parameter synthesis for timed
automata. IEEE Transactions on Software Engineering (2014, to appear)

15. Laarman, A., Olesen, M.C., Dalsgaard, A.E., Larsen, K.G., van de Pol, J.: Multi-
core emptiness checking of timed büchi automata using inclusion abstraction. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 968–983. Springer,
Heidelberg (2013)

16. Lime, D., Roux, O.H., Seidner, C., Traonouez, L.-M.: Romeo: a parametric model-
checker for petri nets with stopwatches. In: Kowalewski, S., Philippou, A. (eds.)
TACAS 2009. LNCS, vol. 5505, pp. 54–57. Springer, Heidelberg (2009)

Compositional Verification
of Parameterised Timed Systems

Lăcrămioara Aştefănoaei1,2(B), Souha Ben Rayana1,2, Saddek Bensalem1,2,
Marius Bozga1,2, and Jacques Combaz1,2

1 Université de Grenoble, Verimag, F-38000 Grenoble, France
lastefan@imag.fr

2 CNRS, Verimag, F-38000 Grenoble, France
souha.benrayana@image.fr

Abstract. In this paper we address the problem of uniform verification
of parameterised timed systems (PTS): “does a given safety state prop-
erty hold for a system containing n identical timed components regardless
of the value of n?”. Our approach is compositional and consequently it
suits quite well such systems in that it presents the advantage of reusing
existing local characterisations at the global level of system characteri-
sation. Additionally, we show how a direct consequence of the modelling
choices adopted in our framework leads to an elegant application of the
presented method to topologies such as stars and rings.

1 Introduction

Swarm robots, satellite systems, multithreaded programs, ad-hoc networks,
device drivers, all these applications have in common a structural character-
istic: they rely on multiple copies of the same program interacting between each
other, that is, they constitute systems parameterised by some components which
are being replicated. Though the individual “replicas” may not involve a too
complicated code in itself, the systems containing them are quite complex. The
inherent complexity has several sources: it may come from that the systems are
considerably large, as it is the case for swarm robots, or from that, effectively,
their size cannot be a priori known, as it is the case for satellites. Yet another
delicate matter is that these systems are highly dynamic and adaptable as their
topology may change depending on initial goals, component failures, etc. All in
all, the verification of such parameterised systems reveals real challenges.

There is an extensive amount of work on the verification of untimed param-
eterised systems. Some [14,17,22,26,31,32] focus on particular classes for which
the problem of uniform verification is decidable. Among these classes, we name
well-structured transition systems [1,20,21] for which decidability follows from
the existence of a so-called well-quasi ordering between states. Two examples

Work partially supported by the European Projects 257414 ASCENS, STREP
318772 D-MILS, French BGLE Manycorelabs, and Artemis AIPP Arrowhead.

c© Springer International Publishing Switzerland 2015
K. Havelund et al. (Eds.): NFM 2015, LNCS 9058, pp. 66–81, 2015.
DOI: 10.1007/978-3-319-17524-9 6

Compositional Verification of Parameterised Timed Systems 67

that fit this class are Petri nets, and lossy channel systems. Most notably,
the work in [32] shows that, for bounded-data parameterised systems and for a
restricted fragment of properties there is always a small number n (the so-called
cutoff, later leading to small model theorems) such that if one can show correct-
ness for the systems with less than n replicas then the system itself is correct.
Others focus on incomplete but general methods: semi-automatic approaches
based upon explicit induction [18] and upon network invariants [4,29,30,34] or
automatic ones based upon abstraction [11,12], upon regular model-checking
(for a survey [6]), or upon symmetry reduction [19].

In this paper we address the problem of uniform verification of parame-
terised timed systems (PTS). The existing approaches are less numerous than
for untimed systems. The work in [3,5] concentrates on decidability: the authors
show the decidability of the reachability of PTSs where processes are timed
automata with either only one clock or otherwise time is discrete. These results
have been later generalised to timed ad hoc networks in [2] where it is shown
that even for processes as timed automata with one clock, for star topologies
where the diameter between nodes is of length 5, the reachability problem is
undecidable. It is also the case for processes with 2 clocks and clique topologies.
Decidability holds for special topologies as stars with diameter 3 and cliques of
arbitrary order for processes as timed automata with 1 clock. For discrete time,
reachability is decidable for any number of clocks and topologies as graphs with
bounded paths. As a side remark, all the positive results above rely on the tech-
nique of well-quasi-orderings mentioned above. The approaches in [15,16,27] are
closer in spirit to ours. The work in [15,16] shows how reachability of parame-
terised systems where processes are timed automata can be encoded as a formula
in a decidable fragment of the theory of arrays [23]. The work in [27] concen-
trates upon parameterised rectangular hybrid automata nets. They show a small
model theorem for such systems. The proof typically follows the lines from the
one showing the existence of cutoffs in [32].

Our approach borrows from [27] and builds upon the methodology described
in [10]. There, a compositional method is introduced for the verification of fixed
size timed systems. It did so by locally computing invariants for each component
and for their interactions and checking with an SMT solver, Z31, if their conjunc-
tion implies the validity of a given safety property. The method being composi-
tional suits quite well parameterised systems in that it presents the advantage
of reusing existing local characterisations at the global level of system charac-
terisation. Applying the method in the context of PTSs boils down to giving an
effective method of checking the validity of quantified formulae. This is not obvi-
ous because, for instance, Z3 fails while trying to instantiate it to disprove it. At
a first thought, one could apply some tactics which make extensive use of tran-
sitivity and practically reduce the formula to a tautology. However, to do this,
one would need to transform the initial formula into disjunctive normal form,
which is costly. At a second thought, following the reasoning from [15], we could
show that the formula we feed to Z3 fits well in the theory of arrays. However,
1 rise4fun.com/Z3

rise4fun.com/Z3

68 L. Aştefănoaei et al.

a simpler and more inspired solution is to make use of the small model theo-
rem from [27]. The advantage of combining such result with the compositional
method from [10] is twofold. On the one hand it can be the case that the system
without replicas is big enough to make the construction of the product infeasi-
ble. On the other hand, a direct consequence of the modelling choices adopted
in our framework leads to an elegant application of the presented method to
parameterised timed systems where interactions are given by various types of
topologies which extend the standard binary synchronous communication from
[27]. With respect to the work in [15], our formulae are quite small while there
the resulting formulae have a number of quantifiers proportional to the length
of the fixpoint computation of the reachability set.

Organisation of the paper. Section 2 recalls the needed existing results. Section 3
introduces the semantics of PTSs while Section 4 shows how to effectively verify
PTSs compositionally. Section 5 describes two applications on classical examples
and Section 6 concludes.

2 Preliminaries

Following [10], ourmethodbuilds upon theverification rule (VR) from [13].Assume
that a system consists of n components B i interacting by means of an interac-
tion set γ, and that the property that the system should satisfy is Ψ . If compo-
nents B i and interactions γ can be locally characterised by means of invariants
(here denoted CI (B i), resp. II (γ)), and if Ψ can be proved to be a logical con-
sequence of the conjunction of the local invariants, then Ψ is a global invariant.

�
∧
i

CI (B i) ∧ II (γ) → Ψ

‖γB i |= � Ψ
(VR)

Fig. 1. Compositional Verification

In the rule (VR) depicted in Figure 1 the
symbol “ � ” is used to underline that
the logical implication can be effectively
proved (for instance with an SMT solver)
and the notation “B |= � Ψ” is to be read
as “Ψ holds in every reachable state of B”.

The method in [10] extends, in a modular manner, the above rule with the
purpose of applying it to the verification of timed systems. The framework in
this paper is that of parameterised timed systems. We show how compositional
verification along the lines of the methodology of [10] works for parameterised
timed systems. Before, we recall the standard concepts we make use of.

Timed Automata. We use timed automata (TA) to represent the behaviour
of components. Timed automata have control locations and transitions between
these locations. Transitions may have timing constraints, which are defined on
clocks. Clocks can be reset and/or tested along with transition execution. For-
mally, a timed automaton is a tuple (L,Σ, T,X, tpc, s0) where L is a finite
set of control locations, Σ a finite set of actions, X is a finite set of clocks,
T ⊆ L×(Σ×C ×2X)×L is finite set of transitions labelled with actions, guards,
and a subset of clocks to be reset, and tpc : L → C assigns a time progress con-
dition to each location. C is the set of clock constraints and s0 ∈ L × C provides

Compositional Verification of Parameterised Timed Systems 69

the initial configuration. Clock constraints are conjunctions of (in)equalities of
the form x#ct or x−y#ct with x, y ∈ X , # ∈ {<,≤,=,≥, >} and ct ∈ Z. Time
progress conditions are restricted to conjunctions of constraints as x ≤ ct.

A timed automaton is a syntactic structure whose semantics is based on
continuous and synchronous time progress. A state of a timed automaton is
given by a control location paired with real-valued assignments of the clocks.
From a given state, a timed automaton can let time progress when permitted
by the time progress condition of the corresponding location, or can execute a
(discrete) transition if its guard evaluates to true. The effect of time progress of
δ ∈ R

+ units of time is to increase synchronously all clocks by δ. Executions of
transitions are instantaneous: they keep values of clocks unchanged except the
ones that are reset (i.e., assigned 0). Because of their continuous semantics, most
timed automata have infinite state spaces. However, they admit finite symbolic
representations of their state spaces as the so-called zone graphs [7,8,25,35].

T-Assertions. We use T-assertions to express local and system properties. This
choice is motivated by the fact that, following a result from [27], the validity of
T-assertions is decidable. T-assertions are a particular2 case of LH-assertions.
The signature of T-assertions consists of the constants 1 and n of type N, and
of a finite number of variables: (a) index variables: i1, . . . , ia ∈ N; (b) discrete
variables: l1, . . . , lb ∈ L; (c) real variables: x1, . . . , xc ∈ R; (d) discrete array
variables: l̄1, . . . , l̄d : [n] → L; (e) real array variables: x̄1, . . . , x̄e : [n] → R

+

where by [n] we denote the set {1, . . . , n}. Terms are given by the BNF grammar:

ITerm ::= 1 | n | ij DTerm ::= Lj | lk | l̄j [ITerm] RTerm ::= xj | x̄k[ITerm]

and the formulae are structurally defined as:

Atom ::= ITerm < ITerm | DTerm = Lk | a · RTerm + b · RTerm + c < 0
Formula ::= Atom | ¬Formula | Formula ∧ Formula

with a, b, c ∈ R. T-assertions are of the form ∀i1, . . . , ik ∈ [n] ∃j1, . . . , jm ∈ [n].F
where F is of type Formula. We note that equality and non strict comparisons
between indices and real variables can be expressed by means of ∧,¬, <. For
example, i = j is written as ¬(i < j) ∧ ¬(j < i). It is also the case that addition
with constants can be expressed by means of extra quantifiers. For example,
j = i+1 is written as i < j ∧∀k.i < k → j ≤ k. This construction generalises to
j = i + o for o an integer constant. To restrict indices within bounds, we make
the convention that addition is understood modulo n. For succinctness, in the
rest of the paper we adopt the notation x[i + o] to stand for ∃j.j = i + o ∧ x[j].

Example 1. The following T-assertions express safety properties:

1. ∀i �= j.¬(l̄[i] = C ∧ l̄[j] = C) expresses mutual exclusion for C denoting that
a process is in the critical location;

2 To be specific, by “particular” we mean that we do not need the so called “index-
valued array variables” which in [27] model pointer variables.

70 L. Aştefănoaei et al.

2. ∀i, j.(l̄[i] = l̄[j] →| x̄[i] − x̄[j] |< 6) expresses a “maximum delay” between
the timings of any two processes which are in the same location.

As in [27], the semantics of a T-assertion Φ is given by n-models, denoted as
M(n,Φ), which interpret the index, the discrete and resp. the real variables in
Φ as taking values in [n], L, and resp. R+.

Example 2. A 2-model for the mutual exclusion in Example 1 is l̄ = [C, I] where
say I denotes idle locations. A 4-model for the maximum delay property is
l̄ = [L1, L2, L1, L2], x̄ = [10, 8, 6, 3].

T-assertions have a small model theorem. This is a key fact that can be
exploited for automatic verification in general.

Proposition 1 (Simplified from [27]). Let Φ be a T-assertion given in the
form ∀i1, . . . , ik ∈ [n] ∃j1, . . . , jm ∈ [n].φ where φ is a quantifier-free formula
involving the index variables i1, . . . , ik, j1, . . . , jm and array variables. We have
that Φ is valid iff, for all n ≤ k + 2, Φ is satisfied by all n-models.

Next, we introduce our formalisation of PTSs and show how we can take
advantage of the small model result to compositionally verify PTSs.

3 PTSs and Their Semantics

In our framework, PTSs are understood as consisting of possibly (but not also
necessarily) a fixed number of components and an arbitrary number n of isomor-
phic processes P i all given as TAs and interacting by means of an interaction set
γ. In what follows, we adopt the notations C for the non parameterised part of a
PTS, C‖n

γP i for a PTS itself. For ease of reference, we use ΣC , Σ, Σi to denote
the actions of C, of a generic process P and of a process i, P i. Σi is obtained
from Σ by attaching i to each action in Σ. An example of a PTS is depicted in
Figure 2a. C interacts with some processes P i by synchronising actions a and
ai while resetting clocks xc and xi. As Figure 2b illustrates, components P i are
obtained from the same generic timed automaton P consisting of two control
locations l0 and l1 and one transition3 from l0 to l1 labelled by action a and
resetting clock x. The construction of P i from a generic P is straightforward:
each location l, clock x, and action a are mapped into li, xi, ai respectively.

Components interact by means of strong synchronisation between their
actions. The synchronisations are specified in the so called interactions as sets
of actions. An interaction can involve at most one action of each component. For
the ease of reference, the whole set of interactions is denoted by γ. In a param-
eterised setting, we define γ as a set of interaction patterns instead. An interac-
tion pattern α is a tuple

(
ac, (a1, o1), . . . , (am, om)

) ∈ Σc × (Σ ×N)m such that
0 = o1 < o2 < · · · < om. An interaction pattern describes at an abstract level a
3 Non displayed guards and time progress conditions of locations are by default true.

Compositional Verification of Parameterised Timed Systems 71

Fig. 2. An Example of a PTS and the construction of P i

family of interactions between C and m processes4:
(
ac, (a1, o1), . . . , (am, om)

)
generates n interactions αi =

(
ac, ai+o1

1 , . . . , ai+om
m

) ∈ Σc × Σi+o1 × · · · × Σi+om

where all sums are understood modulo n. We use gen(α) to denote the interac-
tions generated by α, that is, ∪i∈[n]α

i. By abuse of notation, we refer to γ as
either the set of interaction patterns or as ∪α∈γ gen(α), the set of all interactions
generated by the patterns. The distinction should be clear from the context.

Example 3. The family of interactions {(ac, a1), (ac, a2), . . . , (ac, an)} in
Figure 2a is given by the interaction pattern α =

(
ac, (a, 0)

)
.

For C as (Lc, Σc, T c,X c, tpcc, sc
0), and P i as (Li, Σi, T i,X i, tpci, si

0), the
semantics of C‖n

γP i is given by that of the timed automaton (L, γ, Tγ ,X , tpc, s0)
where L = Lc ×i Li, X = X c ∪i X i and:

– for sc
0 = (lc, C0), si

0 = (li0, C
i
0), s0 is a pair of a global location l0 =

(lc0, l
1
0, . . . , l

n
0) and the initial clock constraints given by C0 ∧i Ci

0,
– tpc

(
(lc, l1, . . . , ln)

)
= tpc(lc) ∧i tpc(li),

– for any α =
(
ac, (a1, o1), . . . , (am, om)

)
with αi =

(
ac, ai+o1

1 , . . . , ai+om
m

)
and

O = {i + o1, . . . , i + om}, we have that:

• if lc
ac,gc,rc

−−−−−→ l′c ∈ T c and li
ai,gi,ri

−−−−−→ l′i ∈ T i for any i ∈ O, ai ∈ Σi ∩ αi

• then (lc, l1, . . . , ln)
αi,g,r−−−−→ (l′c, l′1, . . . , l′n) ∈ Tγ with l′j = lj for any

j ∈ [n] \ O and g = gc ∧i∈O gi, respectively r = rc ∪i∈O ri.

Interaction patterns have a considerable expressiveness power to the extent
that they can encode regular topologies. Usually topologies are given by a graph
where the vertices represent the indices of the processes and the edges give the
communication between processes [2]. In our framework, the communication is
given/induced by the set of interactions. There is a close correspondence between
topologies and sets of interactions. This comes from the observation that topolo-
gies represented as graphs have a straightforward encoding as interaction sets.
As an illustration, we consider the classical topology of a ring5. Given n nodes,
4 The case of PTSs without C is similar and we illustrate it only by means of examples.
5 Rings are typically for binary communication, however broadcasts can be just as

well encoded by means of interaction patterns.

72 L. Aştefănoaei et al.

a ring topology naturally links a send from node i to a receive at node i + 1,
that is, it is generated by the pattern ((s, 0), (r, 1)) where s, r stand for “send”,
“receive”. A graphical interpretation is given in Figure 3b.

Example 4. The interaction set in Figure 2a is generated by one pattern, namely
(ac, (a, 0)). The corresponding topology it describes is that of a star, another
classical topology. The corresponding graphical depiction is in Figure 3a.

Fig. 3. Topologies & Interaction Sets

Remark 1. Thanks to the definition of γ as a set, thus implicitly nondeterminis-
tic, with our method we cover any topology which may be enforced or hard-wired
in the system at a later moment of time, or stage of design. To take a concrete
example, the interaction set for the star topology does not oblige all components
to participate, so any star “subset” (corresponding for instance to the situation
when some components are turned off) is considered. This has the implication
that, with respect to deadlock freedom, if our method yields true, the system is
safe, then this is the case irrespectively of how many components are interacting.

4 Compositional Verification of PTSs

To compositionally verify PTSs, our method consists of automatically generating
invariants characterising components, interactions and inter-component timings.
These invariants are assembled in the (VR) rule recalled in the introduction. To
apply the small model result from Proposition 1, the provided invariants need
to be T-assertions. Next, we take them one by one and show how they can be
effectively computed and shaped into the form of T -assertions.

4.1 Component Invariants

Component invariants characterise the reachable states of components when con-
sidered alone. Such invariants can be computed from the zones of the corre-
sponding timed automata [7,8,25,35]. More precisely, given that the set of the
reachable symbolic states (lj , ζj) of an arbitrary process P is finite, its invariant
is defined by the disjunction ∨j(lj ∧ ζj), where by abuse of notation lj is used
to denote the predicate that holds whenever P is at location lj .

Compositional Verification of Parameterised Timed Systems 73

We recall that, for a process P i, we identify locations and clocks as li, xi, for
locations l and clocks x in the generic process P . To fit the formulae character-
ising the reachable set of states of P i in the class of T-assertions, we indiscrimi-
nately view li as the ith element in the array l̄ and similarly, xi is equally viewed
as the ith element in the array x̄, that is, semantically we make no difference
between li and l[i], respectively xi and x[i].

Example 5. As an illustration, the component invariants for C, P and P i (where
C, P i, P are the ones depicted in Figures 2a,2b) are as follows:

CI (C) = (lc0 ∧ xc ≥ 0) ∨ (lc1 ∧ xc ≥ 0) (1)
CI (P) = (l0 ∧ x ≥ 0) ∨ (l1 ∧ x ≥ 0)

CI (P i) = (l0[i] ∧ x[i] ≥ 0) ∨ (l1[i] ∧ x[i] ≥ 0) (2)

We use CI to denote the conjunction of CI (C) and of all CI (P i). Extending
the argument that the conjunction of invariants is an invariant itself, it can be
shown that CI is an invariant characterising all components.

Proposition 2 CI
�
=

(
CI (C) ∧ ∀i.CI (P i)

)
is an invariant of C‖n

γP i.

4.2 History Clocks and Auxiliary Constraints

A direct application of the rule (VR) on PTSs may be too weak in the sense that
the component and the interaction invariants alone are usually not enough to
prove global properties, especially when such properties involve relations between
clocks in different components. Though component invariants encode timings of
local clocks, because the interaction invariant is orthogonal on timing aspects,
there is no direct way to constrain the bounds on the differences between clocks
in different components. History clocks allow to decouple the analysis for compo-
nents and for their composition. They make it possible to derive new global con-
straints from the simultaneity of interactions and the synchrony of time progress.

Adding History Clocks. History clocks are associated with actions and inter-
actions. For a process P we use Ph to denote its extension with history clocks.
The extension Ch‖n

γP ih of C‖n
γP i is obtained from the extensions of the compo-

nents alone together with the history clocks for interactions. As an illustration,
Figure 4 shows the extension of the PTS in Figure 2a.

The mechanism of history clocks is as follows. When an interaction α takes place,
the history clocks hα and ha associated to α and to any action a ∈ α are reset.
Thus they measure the time passed from the last occurrence of α, respectively
of a. Since there is no timing constraint involving history clocks, the behaviour
of the components is not changed by the addition of history clocks, a fact which
is shown by a similar argument as in [10].

Proposition 3 C‖n
γP i and Ch‖n

γP ih are bisimilar.

74 L. Aştefănoaei et al.

Fig. 4. Illustrating Components with History Clocks for (Inter)Actions

Generating Interaction Equalities from History Clocks. History clocks
are introduced with the purpose of obtaining stronger invariants. Intuitively, the
strengthening comes from the following observation. Each time an interaction α
is executed, hα and all the history clocks corresponding to the actions partici-
pating in α are reset synchronously, and then remain unchanged and equal until
the next interaction is executed. Moreover, a history clock ha for an action a
from a last executed interaction α is necessarily less than any hβ with β another
interaction containing a. This is because the clocks of the actions in α are the
last ones being reset. Consequently, given a common action a of α1, α2, . . . , αp,
ha is the minimum of hαi

, ha = min
i∈[p]

hαi
.

In the parameterised case, the above observation is captured as follows. Each
interaction pattern α and each a ∈ α are associated to the arrays hα, respectively
ha. Let α be of the form (. . . , (a, o), . . .). For a given index i, ai appears in αi−o.
Consequently, ha[i] is the minimum among hα[i − o]:

E(ai) =

⎛
⎝ ∨

(a,o)∈α

ha[i] = hα[i − o]

⎞
⎠ ∧

⎛
⎝ ∧

(a,o)∈α

ha[i] ≤ hα[i − o]

⎞
⎠

By switching perspective from that of P i to that of C, we obtain, for an action
ac in Σc, the following quantified formula:

E(ac) = ∃j.

(∨
ac∈α

hac = hα[j]

)
∧ ∀i.

(∧
ac∈α

hac ≤ hα[i]

)
.

The existential quantifier is needed to express that hac is the minimum among
an unbounded number of history clocks associated to interactions containing ac.

To combine both perspectives, we define E(γ) = ∀i ∧a E(ai) ∧ac E(ac). By an
inductive argument, it can be shown that these constraints are an invariant.

Proposition 4 E(γ) is an invariant of Ch‖n
γP ih.

Example 6. For the star topology γ = {α} with α =
(
ac, (a, 0)

)
we have that:

E(γ) = ∀i.(ha[i] = hα[i] ∧ ha[i] ≤ hα[i])∧
∃j.(hac = hα[j]) ∧ ∀i.(hac ≤ hα[i])

Compositional Verification of Parameterised Timed Systems 75

As for the ring topology γ = {α} with α =
(
(s, 0), (r, 1)

)
we have:

E(γ) = ∀i.
(
hs[i] = hα[i] ∧ hs[i] ≤ hα[i]

) ∧ (
hr[i] = hα[i − 1] ∧ hr[i] ≤ hα[i − 1]

)
.

Generating Inequalities from Conflicting Interactions. The equality con-
straints shown previously allow to relate local constraints obtained separately
from the component invariants. Without conflicts, that is, when interactions
do not share any action, the generated invariants are quite tight in the sense
that E(γ) is essentially a conjunction of equalities. However, E(γ) is weaker in
the presence of conflicts because any action in conflict can be used in different
interactions. The disjunctions in E(γ) reflect precisely this uncertainty. History
clocks on interactions are introduced to capture the time lapses between conflict-
ing interactions. The basic information we exploit is that when two conflicting
interactions compete for the same action a, no matter which one is first, the
other one must wait until the component which owns a is again able to execute
a. This is referred to as a “separation constraint” for conflicting interactions.
Since we make the distinction between the actions in C and P , the reasoning
goes as for E , by a case distinction:

S(ac) = ∀i1, i2.
∧

α�ac

β�ac

i1 �=i2∨α�=β

∣∣hα[i1] − hβ [i2]
∣∣ ≥ kac

S(ai) =
∧

(a,o1)∈α
(a,o2)∈β

o1 �=o2∨α�=β

∣∣hα[i − o1] − hβ [i − o2]
∣∣ ≥ ka

where kac , ka are lower bounds of the time elapsed between two consecutive
executions of ac in C, respectively of a in P , bounds which can be statically
computed from the timed automata of C, respectively of P . Similarly to E(γ),
S(γ) is defined by combining S(ac) and S(ai): S(γ) = ∀i ∧a S(ai) ∧ac S(ac).
Furthermore, S(γ) can be shown to be an invariant.

Proposition 5 S(γ) is an invariant of Ch‖n
γP ih.

Example 7. For the star topology γ = {α} with α =
(
ac, (a, 0)

)
we have that:

S(γ) = ∀i1, i2.
∣∣hα[i1] − hα[i2]

∣∣ ≥ kac (3)

As the ring topology γ = {α} with α =
(
(s, 0), (r, 1)

)
does not have con-

flicts, for illustration purposes, we consider the following slight variation α =(
(r, 0), (s, 1), (r, 2)

)
corresponding to sends being forwarded to the left and to

the right. In this case, we have that:

S(γ) = ∀i.
∣∣hα[i] − hα[i − 2]

∣∣ ≥ kr (4)

with kr being the lower bound of the time elapsed between two consecutive r.

76 L. Aştefănoaei et al.

4.3 Interaction Invariants

Interaction invariants II (γ) are induced by the synchronisations and have the
form of global conditions involving control locations of components. Previous
work considered boolean conditions [13] as well as linear constraints [28] as
methods for generating II (γ). These approaches do not easily generalise to the
parameterised case: applying the method of [13] boils down to transforming
to conjunctive normal forms quantified formulae while the one in [28] boils
down to solving an unbounded number of equations. Our solution is to adopt
a k-window abstraction instead. To obtain such an abstraction, the main step
is to generate interactions involving only actions from Σi with i ≤ k. Let α
be an interaction pattern

(
ac, (a1, o1), . . . , (am, om)

)
. Recall that the offsets oi

are in ascending order. We define gen(α, k) as ∪i∈[k]proj(αi) where proj(αi) =(
ac, ai

1, a
i+o2
2 , . . . , a

i+oj

j

)
and j is the last index for which i + oj ≤ k. We recall

that addition is taken modulo n. We denote ∪α∈γgen(α, k) by γk. Given this
construction, the remaining steps for computing a k-window abstraction are:

1. use the above mentioned methods or simply compute the set of the reachable
states of C interacting with k processes P i to generate II k

�
= II (γk);

2. reindex II k by renaming all indices j ∈ [k] to j + i to obtain II ∗
k of the form

∀i.II k[j ← j + i].

We note that k-window is an abstraction of the original system C‖n
γP i. Con-

sequently, each invariant computed with respect to the k-window is also an
invariant of C‖n

γP i.

Proposition 6 The formula (k < n ∨ II ∗
k) is an invariant of C‖n

γP i.

Example 8. We consider the star topology present in the toy example shown in
Figure 2a. If we abstract to a window of size 1, the first step consists in the
computation of the interaction invariant for C interacting with P 1, where the
interaction set after projection is γ1 = {(ac, a1), ac}. Using the reachable set of
C‖γ1P

1, the interaction invariant for this abstraction is II 1 = l0[1] = 1 ∨ lc1 = 1.
By Step 2, the interaction invariant for C‖n

γP i is II ∗ = ∀i.l0[i] = 1 ∨ lc1 = 1.

4.4 Parameterised (VR)

Taking into account the clock constraints E and S, the generalisation of the
rule (VR) recalled in the introduction to the parameterised case boils down to
checking the validity of the following formula:

CI ∧ (k < n ∨ II ∗
k) ∧ E(γ) ∧ S(γ)︸ ︷︷ ︸

GI

→ Ψ (5)

or equally the unsatisfiability of GI ∧¬Ψ . These formulae are T-assertions when-
ever Ψ is a T-assertion itself.

Proposition 7 For Ψ a T-assertion, GI → Ψ is a T-assertion itself.

Compositional Verification of Parameterised Timed Systems 77

Proof (sketch). In prenex normal form, each invariant is a T-assertion. We only
detail the more interesting cases of E and S:

E(γ) = ∀i ∧a E(ai) ∧ac E(ac)

≡ ∀i1, i2.∃jΣc .

⎛
⎝ ∨

(a,o)∈α

ha[i1] = hα[i1 − o]

⎞
⎠ ∧

⎛
⎝ ∧

(a,o)∈α

ha[i1] ≤ hα[i1 − o]

⎞
⎠∧

∧ac

(∨
ac∈α

hac = hα[jac]

)
∧
(∧

ac∈α

hac ≤ hα[i2]

)
(6)

S(γ) = ∀i. ∧a S(ai) ∧ac S(ac)

≡ ∀i1, i2. ∧a

∧
(a,o1)∈α
(a,o2)∈β

o1 �=o2∨α�=β

∣∣hα[i − o1] − hβ [i − o2]
∣∣ ≥ ka

∧ac

∧
α�ac

β�ac

∣∣hα[i1] − hβ [i2]
∣∣ ≥ kac

where a, ac are arbitrary actions inΣ, respectivelyΣc,∃jΣc denotes∃ja1ja2 . . . jam

for Σc = {a1, . . . , am} and jac stands for an arbitrary element in jΣc .
Observing that all quantified variables are not shared among invariants, we

can rename these such that there are no overlappings and use the following basic
equivalences where op denotes any logical connective and Q any quantifier:

QxQy.(P (x) op R(y)) ≡ QyQx.(P (x) op R(y))
P op Qy.R(y) ≡ Qy.(P op R(y))

to finally transform GI → Ψ itself into a T-assertion. ��
Proposition 7 allows us to apply the small model theorem from Section 2.

Corollary 1. For a PTS C‖n
γP i and a global property Ψ

�
= ∀s̄∃t̄.Ψ◦ it is enough

to check the validity of ¬GI ∨ Ψ for n ≤ #s̄ + #Σc + 2 in order to assert the
validity of Ψ for any n.

Proof. By Proposition 1, the bound depends on the number of universally quan-
tified variables in Ψ and on the size of Σc, by Equation (6). The latter is the
number of universal quantifiers in ¬GI.

Example 9. As an illustration, we work through the toy example from head to
tail. As a safety state property we take Ψ

�
= ∃i.xc = x[i], that is, Ψ expresses that

one of the clocks in x̄ has the same value as xc. We have already gone through
the main ingredients with Equations (1)-(3) in Examples 5-8. What is left is to
combine them and rename the quantified variables to obtain:

78 L. Aştefănoaei et al.

∀i ∃j1, j2, j3, j4, j5.

(
¬
(
(lc0 ∧ hac ≥ 0 ∧ xc ≥ 0 ∨ lc1 ∧ xc = hac ≥ 0) ∧

(l0[j1] ∧ ha[j1] ≥ 0 ∧ x[j1] ≥ 0 ∨ l1[j1] ∧ x[j1] = ha[j1] ≥ 0) ∧
(ha[j2] = hα[j2] ≥ hac) ∧ (hac = hα[i]) ∧ ∣∣hα[j3] − hα[j5]

∣∣ ≥ kac

)
∨

xc = x[j4]

)
(7)

Above, we have used the component invariants with respect to the extensions
with history clocks6. By applying Corollary 1, we can assert the correctness of
Ψ from the validity the formula in (7) for n ≤ 3 processes.

5 Experiments

To illustrate the star and the ring topologies, we take the following case studies.
Train Gate Controller: This is the parameterised version of the classical exam-
ple from [9]. The system is depicted in Figure 5. It is composed of a controller,
a gate and an arbitrary number of trains. The controller lowers (raises) the gate
when a train enters (exits). The property Ψ is that the gate enters g1 location
only if one of the trains left far location: ∃i.¬far[i] ∨ ¬g1. For this example,

Fig. 5. A Controller Interacting with an Arbitrary Number of Trains and a Gate

II (γ) plays no role: E(γ) and S(γ) are enough to check the validity of ¬GI ∨ Ψ
for the bound of 3. The small model result justifies this check as sufficient. As a
side note, additionally, we proved deadlock-freedom (the bound was 5).

Token Ring: The protocol depicted in Figure 6 is an adaption from [33]. Every
process P i receives the token from P i−1 through the interaction (si−1, ri). It then
moves to ti1 location and after passing the token, it moves from ti2 to ai. Once
P i sends the token, it cannot have it again before 2 time units. This constraint
is expressed using clock xi. Initially, P 1 is in t11, meaning that it possesses the

6 The computation is the same as the one in Example 5. For illustration, we only show
the component invariant for Ch: CI (Ch) = lc0 ∧hac ≥ 0∧xc ≥ 0∨ lc1 ∧xc = hac ≥ 0.

Compositional Verification of Parameterised Timed Systems 79

token, while all other P i are at location ai, waiting for the reception of the
token. The property Ψ is that one and only one process possesses the token:
Ψ

�
= ∃i.∀j �= i.

(¬a[i] ∧ a[j]
)
.

Fig. 6. An Arbitrary Number of Processes in a Ring Topology

For this example, the number of universal quantifiers in ¬GI ∨ Ψ is 3. As a
more interesting observation from our experiments, we add that the interac-
tion invariant as computed automatically in [10] has the form of a T-assertion:
∃j. (t1[j]∨ t2[j]). What it expresses is that at least one P i is not at a[i] location,
or equally, that the token is not lost. This invariant is, along with clock con-
straints from CI (P i), and E(γ) as ∀i.hs[i] = hα[i] ∧ hr[i] = hα[i − 1], necessary
to show that exactly one P i is at a[i] at a given time.

6 Conclusion and Future Work

We have presented a compositional method for the verification of parameterised
timed systems. The key element we made use of is a typical small model theorem.
The small model theorem does not hold in the context of networks of parametric
timed automata in its most general case. If the particular case of timed automata
with parameter n can be handled by extending the fragment of T-assertions
with results from [24], this is no longer the case for timed automata parametric
in their indices. This is because the invariant of such timed automata would
involve constraints of type xi ≥ i · ct and such constraints are not allowed by the
grammar of T-assertions. It would be of interest to investigate in this direction if
possible extensions of T -assertions are foreseeable. Another possible alternative
is to exploit the inherent symmetry in such systems.

Besides showing how compositional verification can benefit from small model
theorems, we have also shown the close relation between interactions and topolo-
gies. In this respect, we note that tree-like topologies are more tricky to encode:
offsets as constants are too weak but we intuit that the offset would need to
contain offsets itself. To allow more sophisticated interaction patterns, we could
also borrow some of the constructions in [24] to express constraints like period-
icity on indices. That is, given an interaction pattern α, instead of generating αi

for i ∈ [n], it would be of interest to generate αi only for indices i satisfying a
constraint like parity, or boundedness.

A third possible extension we will consider is with respect to false positives: as
any incomplete method, (VR) may yield spurious counterexamples. We will look
into how counterexample-based refinement techniques can in turn be applied in

80 L. Aştefănoaei et al.

the context of (parameterised) timed systems. Given that the search space (of
reals) is infinite, the main difficulty we envisage is the generalisation of the con-
crete real values from a given counterexample to a more generic characterisation
which would guarantee convergence.

References

1. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.: General decidability theorems
for infinite-state systems. In: LICS (1996)

2. Abdulla, P.A., Delzanno, G., Rezine, O., Sangnier, A., Traverso, R.: On the
Verification of Timed Ad Hoc Networks. In: Fahrenberg, U., Tripakis, S. (eds.)
FORMATS 2011. LNCS, vol. 6919, pp. 256–270. Springer, Heidelberg (2011)

3. Abdulla, P.A., Deneux, J., Mahata, P.: Closed, open, and robust timed networks.
ENTCS 138(3) (2005)

4. Abdulla, P.A., Jonsson, B.: On the Existence of Network Invariants for Verify-
ing Parameterized Systems. In: Olderog, E.-R., Steffen, B. (eds.) Correct System
Design. LNCS, vol. 1710, pp. 180–197. Springer, Heidelberg (1999)

5. Abdulla, P.A., Jonsson, B.: Model checking of systems with many identical timed
processes. Theor. Comput. Sci. 290(1) (2003)

6. Abdulla, P.A., Jonsson, B., Nilsson, M., Saksena, M.: A Survey of Regular Model
Checking. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170,
pp. 35–48. Springer, Heidelberg (2004)

7. Alur, R.: Timed Automata. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS,
vol. 1633, pp. 8–22. Springer, Heidelberg (1999)

8. Alur, R., Courcoubetis, C., Dill, D.L., Halbwachs, N., Wong-Toi, H.: An implemen-
tation of three algorithms for timing verification based on automata emptiness. In:
RTSS (1992)

9. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. (1994)
10. Aştefănoaei, L., Ben Rayana, S., Bensalem, S., Bozga, M., Combaz, J.: Compo-

sitional Invariant Generation for Timed Systems. In: Ábrahám, E., Havelund, K.
(eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 263–278. Springer, Heidelberg
(2014)

11. Baukus, K., Bensalem, S., Lakhnech, Y., Stahl, K.: Abstracting WS1S Systems to
Verify Parameterized Networks. In: Graf, S. (ed.) TACAS 2000. LNCS, vol. 1785,
pp. 188–203. Springer, Heidelberg (2000)

12. Baukus, K., Stahl, K., Bensalem, S., Lakhnech, Y.: Networks of processes with
parameterized state space. ENTCS 50(4) (2001)

13. Bensalem, S., Bozga, M., Sifakis, J., Nguyen, T.-H.: Compositional Verification for
Component-Based Systems and Application. In: Cha, S.S., Choi, J.-Y., Kim, M.,
Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 64–79. Springer,
Heidelberg (2008)

14. Bouajjani, A., Jurski, Y., Sighireanu, M.: A Generic Framework for Reasoning
About Dynamic Networks of Infinite-State Processes. In: Grumberg, O., Huth, M.
(eds.) TACAS 2007. LNCS, vol. 4424, pp. 690–705. Springer, Heidelberg (2007)

15. Bruttomesso, R., Carioni, A., Ghilardi, S., Ranise, S.: Automated Analysis of Para-
metric Timing-Based Mutual Exclusion Algorithms. In: Goodloe, A.E., Person, S.
(eds.) NFM 2012. LNCS, vol. 7226, pp. 279–294. Springer, Heidelberg (2012)

16. Carioni, A., Ghilardi, S., Ranise, S.: Mcmt in the land of parametrized timed
automata. In: VERIFY@IJCAR (2010)

Compositional Verification of Parameterised Timed Systems 81

17. Emerson, E.A., Kahlon, V.: Reducing model checking of the many to the few. In:
CADE (2000)

18. Emerson, E.A., Namjoshi, K.S.: Reasoning about rings. In: POPL (1995)
19. Emerson, E.A., Sistla, A. P.: Symmetry and model checking. Formal Methods in

System Design 9(1/2) (1996)
20. Finkel, A.: A generalization of the procedure of karp and miller to well structured

transition systems. In: ICALP (1987)
21. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theor.

Comput. Sci. 256(1-2) (2001)
22. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. J. ACM

39(3) (1992)
23. Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Towards SMT Model Checking

of Array-Based Systems. In: Armando, A., Baumgartner, P., Dowek, G. (eds.)
IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 67–82. Springer, Heidelberg (2008)

24. Habermehl, P., Iosif, R., Vojnar, T.: What Else Is Decidable about Integer Arrays?
In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 474–489. Springer,
Heidelberg (2008)

25. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for
real-time systems. Inf. Comput. (1994)

26. Ihlemann, C., Jacobs, S., Sofronie-Stokkermans, V.: On Local Reasoning in Veri-
fication. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963,
pp. 265–281. Springer, Heidelberg (2008)

27. Johnson, T.T., Mitra, S.: A Small Model Theorem for Rectangular Hybrid
Automata Networks. In: Giese, H., Rosu, G. (eds.) FORTE 2012 and FMOODS
2012. LNCS, vol. 7273, pp. 18–34. Springer, Heidelberg (2012)

28. Legay, A., Bensalem, S., Boyer, B., Bozga, M.: Incremental generation of linear
invariants for component-based systems. In: ACSD (2013)

29. Lesens, D., Halbwachs, N., Raymond, P.: Automatic verification of parameterized
linear networks of processes. In: POPL (1997)

30. Lesens, D., Halbwachs, N., Raymond, P.: Automatic verification of parameterized
networks of processes. Theor. Comput. Sci. 256(1–2) (2001)

31. Namjoshi, K.S.: Symmetry and Completeness in the Analysis of Parameterized
Systems. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp.
299–313. Springer, Heidelberg (2007)

32. Pnueli, Amir, Ruah, Sitvanit, Zuck, Lenore D.: Automatic Deductive Verification
with Invisible Invariants. In: Margaria, Tiziana, Yi, W. (eds.) TACAS 2001. LNCS,
vol. 2031, pp. 82–97. Springer, Heidelberg (2001)

33. Reich, J.: Processes, roles and their interactions. In: Proceedings of IWIGP (2012)
34. Wolper, P., Lovinfosse, V.: Verifying properties of large sets of processes with

network invariants. In: AVMFSS (1989)
35. Yi, W., Pettersson, P., Daniels, M.: Automatic verification of real-time communi-

cating systems by constraint-solving. In: FORTE (1994)

Requirements Analysis of a Quad-Redundant
Flight Control System

John Backes1(B), Darren Cofer1, Steven Miller1, and Michael W. Whalen2

1 Rockwell Collins, Bloomington, MN 55438, USA
{john.backes,darren.cofer,steven.miller}@rockwellcollins.com

2 University of Minnesota, Minneapolis, MN 55455, USA
whalen@cs.umn.edu

Abstract. In this paper we detail our effort to formalize and prove
requirements for the Quad-redundant Flight Control System (QFCS)
within NASA’s Transport Class Model (TCM). We use a composi-
tional approach with assume-guarantee contracts that correspond to the
requirements for software components embedded in an AADL system
architecture model. This approach is designed to exploit the verification
effort and artifacts that are already part of typical software verifica-
tion processes in the avionics domain. Our approach is supported by an
AADL annex that allows specification of contracts along with a tool,
called AGREE, for performing compositional verification. The goal of
this paper is to show the benefits of a compositional verification approach
applied to a realistic avionics system and to demonstrate the effectiveness
of the AGREE tool in performing this analysis.

1 Introduction

Modern aircraft are complex cyber-physical systems with safety and security
requirements that must be satisfied by their onboard software. As these systems
have grown in complexity, their verification has become the single most costly
development activity [1]. The verification costs of even more complex systems in
the future will impact safety, not just through an increasing incidence of errors
and unforeseen interactions, but by delaying and preventing the deployment of
crucial safety functions.

In a NASA-funded project with University of Minnesota and University of
Iowa we are addressing these challenges by developing compositional reasoning
methods that will permit the verification of systems that exceed the complexity
limits of current approaches. Our approach is based on:

– Modeling the system architecture using standard notations that will be
usable by systems and software engineers.

– Developing a sophisticated translation framework that automates the trans-
lation of these models for analysis by powerful general-purpose verification
engines such as SMT-based model checkers.

c© Springer International Publishing Switzerland 2015
K. Havelund et al. (Eds.): NFM 2015, LNCS 9058, pp. 82–96, 2015.
DOI: 10.1007/978-3-319-17524-9 7

Requirements Analysis of a Quad-Redundant Flight Control System 83

– Developing techniques for compositional verification based on the system
architecture to divide the verification task into manageable, reusable pieces.

This approach has the potential to significantly reduce verification costs by
identifying and correcting system design errors early in the life cycle rather than
waiting until system integration. We are validating our approach and our tools
on a realistic fault-tolerant flight control system model. The Quad-redundant
Flight Control System (QFCS) has been designed by NASA as a suitable control
system for its Transport Class Model (TCM) aircraft.

Our compositional approach is designed to exploit the verification effort
and artifacts that are already part of typical software component verifica-
tion processes. Each component in the system model is annotated with an
assume/guarantee contract that includes the requirements (guarantees) and envi-
ronmental constraints (assumptions) that were specified and verified as part of
its development process. We then reason about the system-level behavior based
on the interaction of the component contracts. By partitioning the verification
effort into proofs about each subsystem within the architecture, the analysis will
scale to handle large system designs. Additionally, the approach naturally sup-
ports an architecture-based notion of requirements refinement: the properties
of components necessary to prove a system-level property in effect define the
requirements for those components.

There were two objectives in using this verification approach. The first was
to reuse the verification already performed on components. The second was to
enable distributed, parallel development of components via virtual integration.
In this process, we specify formal component-level requirements, demonstrate
that they are sufficient to prove system guarantees, and then use these require-
ments as specifications for suppliers. If the suppliers’ implementations meet these
specifications, we have a great deal of confidence that the integrated system will
work properly.

We have chosen the Architecture Analysis and Design Language (AADL) as
our system architecture modeling language [2]. AADL was designed for embed-
ded, real-time, distributed systems and so is a good fit for our domain. It provides
the constructs needed to model embedded systems such as threads, processes,
processors, buses, and memory. It is sufficiently formal for our purposes, and is
extensible through the use of language annexes that can initiate calls to sepa-
rately developed analysis tools.

We have implemented our compositional reasoning methodology in a tool
called AGREE: Assume-Guarantee Reasoning Environment. AGREE is imple-
mented as an Eclipse plugin and is designed to work with the open source OSATE
AADL tool developed by the Software Engineering Institute [3]. AGREE is able
to check the correctness of behavioral properties defined by the composition of
component contracts, check component contracts for inconsistencies, and deter-
mine whether a component contract has any possible realization. AGREE makes
use of the AADL annex mechanism to annotate models with contracts corre-
sponding to formal assumptions and guarantees about their behaviors. AGREE
is open source software and is available at http://github.com/smaccm.

http://github.com/smaccm

84 J. Backes et al.

The goal of this paper is to show the benefits of a compositional verification
approach applied to a realistic avionics system and its requirements, and to
demonstrate the effectiveness of the AGREE tool in performing this analysis.

2 Compositional Verification with AGREE

In this section we briefly describe the rules that AGREE uses to create compo-
sitional proofs. A more complete description is in [4] and a proof of correctness
of these rules is provided in [4,5].

AGREE is a language and a tool for compositional verification of AADL
models. The behavior of a model is described by contracts specified on each
component. A contract contains a set of assumptions about the component’s
inputs and a set of guarantees about the component’s outputs. The assumptions
and guarantees may also contain predicates that reason about how the state of
a component evolves over time. The state transitions of each component in the
model occur synchronously with every other component (i.e., each component
runs on the same clock). The guarantees of a component must be true provided
that the component’s assumptions have always been true. The goal of the anal-
ysis is to prove that a component’s contract is entailed by the contracts of its
subcomponents.

Formally, let a system S : (A,G,C) consist of a set of assumptions A, guaran-
tees G, and subcomponents C. We use the notation Sg to represent the conjunc-
tion of all guarantees of S and Sa to represent the conjunction of all assumptions
of S. Each subcomponent c ∈ C is itself a system with assumptions, guarantees,
and subcomponents. The goal of our analysis is to prove that the system’s guar-
antees hold as long as its assumptions have always held. This is accomplished
by proving that Formula 1 is an invariant.

H(Sa) → Sg (1)

The predicate H is true if its argument has held historically (i.e., the expres-
sion has been true at every time step up until and including now). In order
to prove that Formula 1 is invariant, we prove that the assumptions of all the
subcomponents of system S hold under the assumptions of S. This invariant is
shown in Formula 2.

∧
c∈C

[
H(Sa) → ca

]
(2)

This formula is actually stronger than what we need to prove. It may be the
case that the assumptions of certain subcomponents are satisfied by the guar-
antees of other subcomponents (and possibly the guarantees of the component
itself at previous instances in time). This weaker invariant is shown in Formula 3.

Requirements Analysis of a Quad-Redundant Flight Control System 85

∧
c∈C

[(
H(Sa) ∧

∧
w∈C

Z(H(wg)) ∧
∧

v∈C,c �=v

H(vg)
)

→ ca

]
(3)

The predicate Z is true in the first step of a trace and thereafter is true iff
its argument was true in the previous time step.

However, this formula may not be sound when the connections between com-
ponents form cycles. One could imagine a scenario where the assumptions of
each of two components are true precisely because of the guarantees of the other
component (i.e., wg → va and vg → wa for w, v ∈ C and w �= v). Suppose com-
ponents w and v both assume that their inputs are positive, and they guarantee
that their outputs are positive. If the output of w is connected to the input of v,
and v’s output is connected to w, the state of the system is improperly defined.
To avoid this problem, AGREE creates a total ordering of a system’s subcom-
ponents. It uses this ordering to determine which subcomponent guarantees are
used to prove the assumptions of other subcomponents. This slight modification
of Formula 3 is shown in Formula 4.

∧
c∈C

[(
H(Sa) ∧

∧
w∈C

Z(H(wg)) ∧
∧

v∈C,v<c

H(vg)
)

→ ca

]
(4)

If Formula 4 is invariant then Formula 1 is proven to be invariant by showing
that the system assumptions and subcomponent guarantees satisfy the system
guarantees. Formally, if Formula 4 is invariant, then Formula 5 implies Formula 1.

H(Sa) ∧
∧
c∈C

H(cg) → Sg (5)

AGREE uses a syntax similar to Lustre to express a contract’s assump-
tions and guarantees [6]. AGREE translates an AADL model annotated with
AGREE annexes into Lustre corresponding to Formulas 4 and 5 and then queries
a user selected model checker. AGREE then translates the results from the model
checker back into OSATE so they can be interpreted by the user. For this project
we have used both the Kind 2.0 and JKind model checkers [7,8].

In Section 3 we describe some examples of guarantees that were written in
AGREE to model some of the requirements in the QFCS architecture. However,
the examples are presented here in a simple first order logic syntax to make them
more concise and readable.

3 Requirements Formalization

We are using NASA’s TCM aircraft simulation model [9] as a realistic example
to demonstrate and validate our compositional reasoning work. The TCM was

86 J. Backes et al.

not originally developed with a set of requirements, but other researchers have
created a set of requirements representative of those that would be necessary
to certify an aircraft for operation in the national airspace system [10]. These
requirements were developed hierarchically with different requirements being
assigned to different levels of the system architecture, all the way down to the
major software components. The requirements hierarchy is shown in Figure 1.

Fig. 1. The QFCS requirements hierarchy (those in grey were included in our
analysis)

3.1 QFCS Architecture

The QFCS is a quad-redundant flight control system for the TCM consisting of
four cross-checking flight control computers (FCC), as shown in Figure 2. The
QFCS model was developed in Simulink R© and includes models of the aircraft’s
control laws, sensors, and actuators, and interacts with the TCM aerodynamics
model. The fault tolerance logic was not originally part of this model, but was
added to the simulation in parallel during our project.

Our work focused on formalizing requirements for five components of the
QFCS hierarchy: the Flight Control System (FCS), the Flight Control Comput-
ers (FCC), the Output Signal Analysis and Selection component (OSAS), the
Input Signal Analysis and Selection component (ISAS), and the Control Laws
(CLAW). The FCS consists of four individual FCCs, and each FCC includes a
single OSAS, ISAS, and CLAW component, as well as several other components.
We focused on formalizing the requirements for these components for a couple
reasons. First, others were working to formalize some of the other components

Requirements Analysis of a Quad-Redundant Flight Control System 87

Fig. 2. The QFCS architecture with four flight control computers

using different techniques in parallel with this work [10]. Second, the require-
ments for these components had a much clearer path to formalization compared
to the other component requirements.

The FCS component hierarchy is shown in Figure 3. These components were
modeled in AADL with the same interfaces and connections described in the
QFCS Simulink R© model. The requirements for the QFCS were taken from the
hierarchy of requirements shown in Figure 1 and were formalized and assigned
as assume guarantee contracts to the relevant QFCS components in the AADL
model. AGREE was used to show that the requirements at each level of the
component hierarchy were satisfied by the requirements of their direct subcom-
ponents. Explicitly, the requirements formalized for the FCS were proven to
hold by the composition of the requirements of the four FCCs. Additionally,
the requirements of each FCC were satisfied by the requirements of the OSAS,
ISAS, and CLAW components. This section lists examples of some of the English
language requirements that were formalized for some of these components. In
particular, we discuss requirements related to the actuator signals that are sent
from each flight control computer.

In the remainder of this section we list examples of some of the English
language requirements that we formalized for some of these components. In
particular, we discuss requirements related to the actuator signals that are sent
from each flight control computer.

3.2 Flight Control System

The FCS requirements make up the “top level” properties that should be satisfied
by the composition of the requirements of all of the components within the

88 J. Backes et al.

AGREE contract

AGREE contract

AGREE contracts

Fig. 3. The QFCS component hierarchy

FCS. Many of the FCS requirements reference functions that we have not yet
modeled, including as Guidance Navigation and Control, Maintenance Function,
and Status and Warning. We have chosen to focus our analysis on the fault
tolerance requirements for the FCS. The top level FCS requirement for the fault
handling logic is shown in Requirement FCS-120.

FCS-120 - The Health Management Function (HM) shall detect and
mitigate Flight Control System faults.

This statement is certainly too vague to be formalized. There is no guidance
given on what qualifies as “mitigating a fault”. However, Requirement FCS-120
depends on many sub requirements that are more precise. Among these are
Requirements HM-220 and HM-240.

HM-220 - The Health Management Function shall provide Cooper
Harper Level 4 Handling Qualities after any single LRU, LRU func-
tion, or LRU IO signal failure.

Requirements HM-220 and HM-240 are also challenging to formalize because
they require that the aircraft meet a specific Cooper Harper rating [11]. A
Cooper Harper rating is a subjective measurement used to describe the ease
with which a pilot is able to operate an aircraft. However, there are some
objective properties that are related to these statements. We propose Require-
ments HM-240a and HM-240b as properties that can be stated precisely and are
necessary for satisfying Requirements HM-220 and HM-240.

Requirements Analysis of a Quad-Redundant Flight Control System 89

HM-240 - The Health Management Function shall provide Cooper
Harper Level 4 Handling Qualities after any dual simultaneous LRU,
LRU function, or LRU IO signal failures including actuator runaways
and jams not shown to be extremely improbable.

HM-240a - The average of the signals sent to any given actuator is
bounded regardless of how many LRU failures occur.

The rationale behind Requirements HM-240a and HM-240b is that they offer
some guarantee about the controllability of the vehicle. They are also written
in precise language that can be verified using AGREE. We modeled Require-
ments HM-240a and HM-240b as Guarantees 1 and 2, respectively, in the con-
tract of the FCS component.

guarantee : low ≤ avg ∧ avg ≤ high

avg =
(act1 + act2 + act3 + act4)

4

(1)

The variable actn in Guarantee 1 represents the nth signal sent to an actua-
tor. Each of these signals comes from a set of four redundant signals. The values
of low and high are constant values that are determined for each actuator. This
guarantee is repeated for each actuator in the FCC.

The variable num valid acts in Guarantee 2 represents the total number
of valid actuator signals. Readers familiar with Lustre will recognize the pre
function [6]. The pre function returns the value of its expression on the previous
time step, in this case the previous value of num valid acts. This guarantee is
also repeated for each set of quad redundant actuator signals.

guarantee : num valid acts ≤ pre(num valid acts) (2)

3.3 Flight Control Computer

The FCS consists of four individual FCCs. The composition of the guarantees of
the four FCCs prove the guarantees of the FCS. One of the FCC requirements
is shown in Requirement FCC-S-150.

This statement also lacks the precision needed to develop a direct formaliza-
tion. It is not obvious what constitutes “mitigation logic” or what is considered
“fault detection”. This requirement needed to be linked to more precise defi-
nitions in lower level requirements. The OSAS component requirements, which
are discussed in the next subsection, contain language describing how the out-
put signal gains are computed. When the OSAS is declared faulty, its actuator

90 J. Backes et al.

HM-240b - The number of FCCs with a failed OSAS component
decreases monotonically.

FCC-S-150 - The FCC OSAS application shall perform FCC com-
mand fault detection and mitigation logic.

signals are latched to zero. When the OSAS is behaving correctly each output
signal is multiplied by a factor determined by the number of faulty FCCs.

The requirements of each FCC act as lemmas about the ISAS, OSAS, and
CLAW components to prove the top level properties about the FCS component.
Based on the requirements of the OSAS and Requirement HM-240a in the FCS,
Requirement FCC-S-150 was modeled by Guarantees 3 and 4. These guarantees
fulfill some of the “mitigation logic” and “fault detection logic” functionality
mentioned in Requirement FCC-S-150. The composition of these guarantees from
all four FCCs is strong enough to prove Requirements HM-240a and HM-240b
in the FCS, and they are abstract enough to be proven by some of the OSAS
requirements.

guarantee :
(num valid = 0 → (low ≤ act ∧ act ≤ 4 ∗ high))∧
(num valid = 1 → (low ≤ act ∧ act ≤ 2 ∗ high))∧
(num valid = 2 → (low ≤ act ∧ act ≤ (3/4) ∗ high))∧
(num valid = 3 → (low ≤ act ∧ act ≤ high))

(3)

guarantee : pre(act fail) → act fail (4)

Guarantees 3 and 4 are repeated for each actuator. The variable num valid
represents the number of valid actuator signals from other FCCs, act represents
the signal being sent to the actuator, low represents the lower bound of the
actuator signal, high represents the upper bound of the actuator signal, and
act fail is a Boolean variable that is true if the actuator signal is latched failed.

3.4 Output Signal Analysis and Selection

Each actuator signal is computed by the OSAS component. The redundant actu-
ators apply force to their associated control surface in parallel. The requirements
for the OSAS component determine the gain to be applied to each actuator sig-
nal depending on whether there have been failures in the other FCCs. The OSAS
component also has requirements that state how the value of an actuator sig-
nal is determined in the event of a failure in the OSAS component’s own FCC.
Requirements OSAS-S-180, OSAS-S-140, and OSAS-S-170 reflect some of the

Requirements Analysis of a Quad-Redundant Flight Control System 91

OSAS-S-180 - OSAS shall compute the actuator command gain as
the ratio of the total number of command channels to the number of
valid command channels (i.e. 4/(number of valid command channels)).

OSAS-S-140 - When an actuator command has been latched failed,
OSAS shall set that actuator command to 0 (zero).

OSAS-S-170 - If the local CCDL has failed, OSAS shall set the local
actuator command gain to 1 (one).

requirements used to determine the gain of each actuator signal. Their formal-
izations are shown as Guarantees 5, 6, and 7, respectively.

guarantee :
(num valid = 0 → fcc gain = 4)∧
(num valid = 1 → fcc gain = 2)∧
(num valid = 2 → fcc gain = 4/3)∧
(num valid = 3 → fcc gain = 1)

(5)

guarantee : (latched failed → fcc gain = 0) (6)

guarantee : (ccdl failed → fcc gain = 1) (7)

There are other requirements that determine the true actuator gain value for
the OSAS component, but they have been omitted here for the sake of space.
These guarantees are used to prove Guarantee 3 in the FCC, and the composition
of the FCC contracts are used to prove Guarantee 1 in the FCS.

In the next section we discuss errors that were discovered through the process
of formalizing and analysing the QFCS requirements in AGREE.

4 Analysis Results

We ran our analysis on a laptop computer with an Intel R© i5 CPU and 16GB of
RAM. The tool was run inside a virtual machine running Ubuntu Linux. Using
JKind as the model checker and Yices [12] as the SMT Solver, the contract for
the FCS was proved in 7 seconds and the contract for the FCC (all four FCCs
had identical contracts) was proven in 115 seconds. Kind 2.0 had similar perfor-
mance. In Table 1 we list some information about the size of the QFCS AADL

92 J. Backes et al.

model and the number of requirements that we formalized for each component.
The Inputs and Outputs columns list the number of input and output features,
respectively, that are present in the AADL model. Many of these features are
complex structures that consist of multiple data fields. For example, one actua-
tor output consists of 20 real number values. The number of variables generated
in the Lustre code that is sent to the model checker is on the order of hundreds
for each component. The Guarantees column reports the number of guarantees
in each component contract. This number roughly corresponds to the number of
English language requirements that we formalized for each component from the
requirements hierarchy described in Figure 1. The number of guarantees is not
exactly the same as the number of English language requirements because the
language of some of the requirements was changed somewhat during formaliza-
tion (as discussed in Section 3).

Table 1. Information about the QFCS AADL Model

Component Inputs Outputs Guarantees

FCS 13 12 2

FCC 11 22 9

OSAS 9 4 9

ISAS 9 18 11

CLAW 1 1 1

Through the course of our analysis, we discovered a number of problems with
the QFCS requirements. These errors were discovered either through formalizing
the requirements, attempting to prove properties, or using AGREE’s realizability
analysis (which we describe briefly later in this section). In this section we give
a few examples of the kinds of problems that we found.

4.1 Errors Found During Formalization

Some requirements contained clear mistakes that were found through formalizing
the English text. In our experience, this is almost always a benefit of formalizing
requirements. One of these requirements is shown in Requirement ISAS-S-260.

ISAS-S-260 - ISAS shall determine the selected value for a quad digital signal using
the following table:

1. 4 good values with total range less than SignalTolerance, average all 4
2. 4 good values with total range greater than SignalTolerance, average middle 2
3. 3 good values with total range less than SignalTolerance, average all 3
4. 3 good values with total range greater than SignalTolerance, select middle value
5. 2 good values with total range less than SignalTolerance, average values

Requirements Analysis of a Quad-Redundant Flight Control System 93

Interpreting this requirement at face value would indicate that the selected
signal from a set of quad redundant digital signals would be completely uncon-
strained in the event that the range of all four values of the quad-redundant
signals were exactly equal to SignalTolerance. This does not seem to be the
intent of the requirement as it is stated. This problem was discovered while for-
malizing the requirement, but it would have otherwise been discovered while
verifying assumptions about the CLAW component input signal ranges.

4.2 Errors Found During Model Checking

For some QFCS components we were able to check whether or not the imple-
mentation met its requirements. In addition to the requirements for the ISAS
component, we were also provided with an algorithmic specification (in tabular
format) for its implementation. We formalized this specification and attempted
to prove that it met its formalized requirements. This analysis can be performed
in AGREE by determining if a component’s guarantees are entailed by asser-
tions about the component’s implementation. In essence, component assertions
are treated similarly to the component assumptions described in Section 2, but
are not checked to determine whether they hold as result of the system level
assumptions. Unlike component assumptions, which must be proven to hold by
Formula 4, component assertions are thought of as “details about how a com-
ponent is designed.”

The ISAS component is responsible for determining a selected sensor value
to send to the CLAW component from a set of redundant input signals. Some
input signals are quad redundant while others are dual redundant. Among the
quad redundant signals are values from the Embedded GPS/INS Sensor (EGI).
For each dual redundant signal, there exists a roughly equivalent signal that can
be computed from the EGI. In the event that the two values of a dual input
signal miscompare (are not equal within some tolerance) the equivalent value of
the EGI is selected to be sent to the CLAW component. During verification it
was discovered that the implementation for the ISAS component did not cor-
rectly implement Requirement ISAS-S-220. The implementation for the ISAS
component did not meet this requirement when the following scenario occurred.

– Channels 1 and 2 of a dual redundant signal are neither stale nor out-of-range
– Channels 1 and 2 of a dual redundant signal miscompare
– The equivalent value from the EGI is not declared faulty
– Channel 1 of a dual redundant signal miscompares with its equivalent EGI

parameter
– Channel 2 of a dual redundant signal does not miscompare with its equivalent

EGI parameter

In this scenario, the implementation selects the average of Channel 2 of a
dual redundant signal with its equivalent EGI parameter. AGREE produced
a counterexample showing this behavior. Through discussions with the domain
experts, it was determined that the implementation was correct, and the require-
ment should be amended to handle this scenario in the same manner.

94 J. Backes et al.

ISAS-S-220 - In the case of mismatched dual input signals, ISAS shall set
the selected value equal to the equivalent selected value of EGI data.

4.3 Errors Found During Realizability Analysis

AGREE also has an analysis option to determine if a component’s contract is
realizable. This analysis is detailed in other work [13]. Informally, a component’s
contract is realizable if there exists some implementation for the component
that obeys the contract. Realizability is a stronger notion than consistency. For
example, consider a component with a single integer input and a single integer
output. Suppose the component’s contract guarantees that the output is always
half the value of its input. The component’s contract is consistent because there
are certainly some values for the input that satisfies this contract (e.g., if the
input is 2 then the output would be 1). However, if the input is an odd value
then there is no corresponding integer value for the output. This contract is
not realizable because there is no way to implement a component that could
compute output values to satisfy this contract for every allowable input value.

A diligent reader may have noticed that Requirements OSAS-S-140
and OSAS-S-170 are stated, likewise Guarantees 6 and 7 are formulated, in
a way that makes them unrealizable. What happens in the scenario where an
actuator is latched failed and the CCDL fails? There is a contradiction in what
the selected gain value should be (should it be 0 or 1?). This error eluded the
engineers who originally drafted the requirements as well as the engineers who
formalized them. However, AGREE’s realizability analysis was able to iden-
tify the error and provide a counterexample with variables latched failed and
ccdl failed set to true.

After discussing the error with the domain experts who wrote the require-
ments, it was determined that the solution was to set an order of precedence for
how the gain value is computed. For example, Guarantees 5, 6 and 7 could be
reformalized as Guarantees 8, 9 and 10.

guarantee :
not (latched failed ∨ ccdl failed) →

(num valid = 0 ⇒ fcc gain = 4)∧
(num valid = 1 ⇒ fcc gain = 2)∧
(num valid = 2 ⇒ fcc gain = 4/3)∧
(num valid = 3 ⇒ fcc gain = 1)

(8)

guarantee :
(latched failed ⇒ fcc gain = 0)

(9)

guarantee :
(not latched failed ∧ ccdl failed ⇒ fcc gain = 1)

(10)

Requirements Analysis of a Quad-Redundant Flight Control System 95

5 Lessons Learned

Through the course of this project we developed a number of insights about the
challenges and benefits associated with formalizing and proving requirements
compositionally.

– Many of the requirements that we attempted to formalize were not conducive
to compositional verification. Some of the high level requirements contained
language that included details about lower level components. These types of
requirements are hard to prove compositionally because they require details
about components that are at a low level in the hierarchy to be exposed at
a high level. Care should be taken when drafting requirements to make sure
that they are precise but still abstract enough to reasoned about composi-
tionally.

– Often when we found that a component implementation failed to meet its
requirements, the requirements were amended to be satisfied by the imple-
mentation. This scenario seemed to occur frequently because the require-
ments were not expressed formally in the first place. The examples given in
Sections 4.2 and 4.3 are illustrations of this.

– Requirements are hard to formalize without a clear description of the model’s
architecture. We started this project without descriptions of the component
interfaces. Upon receiving the interface descriptions, it was clear that many
of our original formalizations were not correct.

– Often times proof failures will expose errors in the model. For example an
incorrect connection between two components will often cause the model
checker to produce a counter example to properties that would normally
seem trivial. Formalizing and proving requirements gives some assurance
that the architectural model is correct.

6 Conclusion

Much of the effort in this work was spent trying to find reasonable formaliza-
tions for the original English language properties. The formalization process
itself identified significant problems with the requirements as they were origi-
nally stated. Even after formalization, model checking and realizability analysis
identified a number of other issues.

Future work includes modeling more of the QFCS architecture in AADL,
and formalizing other requirements in AGREE. In this project all of the com-
ponents were modeled to execute synchronously. Based on discussions with the
QFCS designers this seemed to be a fair assumption. However, many systems are
composed of components that execute on different clock domains. Support for
modeling components that execute asynchronously (or quasi-synchronously [14])
is currently being added to AGREE.

96 J. Backes et al.

References

1. Crum, V., Buffington, J., Tallant, G., Krogh, B., Plaisted, C., Prasanth, R.,
Bose, P., Johnson, T.: Validation verification of intelligent and adaptive control
systems. In: Proceedings of the Aerospace Conference 2004. IEEE (2004)

2. Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL: An Introduction
to the SAE Architecture Analysis & Design Language, 1st edn. Addison-Wesley
Professional (2012)

3. The Software Engineering Institute: OSATE: Plug-ins for front-end processing of
AADL models (2013)

4. Cofer, D.D., Gacek, A., Miller, S.P., Whalen, M.W., LaValley, B., Sha, L.: Com-
positional verification of architectural models. In: Goodloe, A.E., Person, S. (eds.)
Proceedings of the 4th NASA Formal Methods Symposium (NFM 2012). Berlin,
vol. 7226, pp. 126–140. Heidelberg, Springer-Verlag (2012)

5. Gacek, A., Backes, J., Whalen, M.W., Cofer, D.: AGREE Users Guide3 (2014).
http://github.com/smaccm/smaccm

6. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous dataflow pro-
gramming language LUSTRE. In: Proceedings of the IEEE, pp. 1305–1320 (1991)

7. University of Iowa: Kind2: a multi-engine smt-based automatic model checker for
safety properties of lustre programs (2014)

8. JKind: A Java implementation of the KIND model checker4 (2013). http://github.
com/agacek/jkind

9. Hueschen, R.M.: Development of the transport class model (TCM) aircraft simula-
tion from a sub-scale generic transport model (GTM) simulation. NASA Technical
Report (2011)

10. Brat, G., Bushnell, D., Davies, M., Giannakopoulou, D., Howar, F., Kahsai, T.:
Verifying the saftety of a flight-critical system. NASA Technical Report (2015)

11. Cooper, G., Harper, R.: The use of pilot rating in the evaluation of aircraft handling
qualities. NASA Technical Report (1969)

12. Dutertre, B., de Moura, L.: The Yices SMT solver. SRI International Tech Report
(2006)

13. Gacek, A., Katis, A., Whalen, M., Backes, J., Cofer, D.: Towards realizability
checking for contracts using theories. In: NASA Formal Methods Symposium
(2015)

14. Caspi, P., Mazuet, C., Paligot, N.R.: About the design of distributed control sys-
tems, the quasi-synchronous approach (2001)

http://github.com/smaccm/smaccm
http://github.com/agacek/jkind
http://github.com/agacek/jkind

Partial Order Reduction and Symmetry
with Multiple Representatives

Dragan Bošnački(B) and Mark Scheffer

Eindhoven University of Technology, Eindhoven, The Netherlands
dragan@win.tue.nl, m.scheffer@tue.nl

Abstract. Symmetry reduction is one of the most successful techniques
to cope with the state explosion problem in model-checking. One of the
central issues in symmetry reduction is the problem of finding unique
(canonical) representatives of equivalence classes of symmetric states.
This problem is equivalent to the graph isomorphism problem, for which
no polynomial algorithm is known. On the other hand finding multiple
(non-canonical) representatives is much easier because it usually boils
down to sorting algorithms. As a consequence, with multiple representa-
tives one can significantly improve the verification times. In this paper we
show that symmetry reduction with multiple representatives can be com-
bined with partial order reduction, another efficient state space reduction
technique. To this end we introduce a new weaker notion of independence
which requires confluence only up to bisimulation.

1 Introduction

Symmetry reduction [3,6,20] is one of the most successful techniques to tackle
the state space explosion problem in model checking. The technique exploits the
inherent symmetry of the model which is present in many systems, like mutual
exclusion algorithms, cache coherence protocols, bus communication protocols,
etc. After observing that the symmetry in the description of the model results
in a symmetric state space, the key idea is to partition the state space into
equivalence classes of (symmetric) states. Then, the state space exploration can
be performed in the usually smaller quotient state space that consists only of
(representatives of the) equivalence classes.

The problem of finding canonical, i.e., unique, representatives of equivalence
classes is also known as the orbit problem. The orbit problem is equivalent to the
graph isomorphism problem [3], for which no polynomial algorithm is known. As
a result, often with symmetry reduction the verification time can become critical.
On the other hand, finding multiple (non-canonical) representatives usually boils
down to sorting algorithms [2,6]. An obvious drawback of the multiple represen-
tatives is that they provide less state space reduction compared to the canonical
representatives. However, in practice it often turns out that, with an acceptable
increase of the state space, the verification time can be improved significantly
by using multiple representatives [2,20].
c© Springer International Publishing Switzerland 2015
K. Havelund et al. (Eds.): NFM 2015, LNCS 9058, pp. 97–111, 2015.
DOI: 10.1007/978-3-319-17524-9 8

98 D. Bošnački and M. Scheffer

It is always an advantage if one can combine symmetry with other reduction
techniques which are orthogonal to it, i.e., which exploit different aspects of
the system for reduction of the state space. One such technique is partial order
reduction [11,21,23].

Partial order reduction exploits the independence of the checked property
from the execution order of the system actions. More specifically, two actions a,
b are allowed to be permuted precisely when, if for all sequences v, w of actions: if
vabw (where juxtaposition denotes concatenation) is an accepted behavior, then
vbaw is an accepted behavior as well. In a sense, instead of checking all the execu-
tion sequences, the desired property is checked only on representative sequences,
which results in significant savings in space and time. Thus, the corner stone of
the independence relation is the confluence condition as given in Fig. 1a. The
confluence requires that from each state s of the state space the permutations
of two independent actions a and b will lead to the same state s′.The actual
reduction of the state space is realized during the state space exploration by
limiting the search from a given state s to only a subset of the actions that are
executable in s.

The problem of combining symmetry based on canonical representatives with
partial order reduction was solved in [9]. In fact, this paper can be seen as a con-
tinuation of [9] which also deals with multiple representatives. Following [9] we
derive our result in the more general setting of bisimulation preserving reduc-
tions. As symmetry reduction is just a special case of a bisimulation preserving
reduction, all results are valid for symmetry too.

The central idea of this paper is to use a new notion of independence, which
is weaker than the standard one. As mentioned above, in the usual definition
of independence we insist on confluence, i.e., we require that the two paths
obtained by permuting the independent actions a and b meet in the same state
s′. Instead, in the new definition we relax the confluence condition by allowing
the permutations to lead to bisimilar states s′

1 and s′
2, as represented in Fig. 1b.

(a) (b)

s2

s

s′

s

s1 s2

a

a

b b

≈
s′
1 s′

2

b

s1

b a

a

Fig. 1. Confluence of independent actions

Partial Order Reduction and Symmetry with Multiple Representatives 99

It turns out that almost all property preservation results, like absence of
deadlock, safety, and liveness (LTL and CTL∗ without the next operator), that
can be found in the literature can be reused with a straightforward adaptation.

Related work other than [9]. The usefulness of multiple representatives (without
partial order reduction) is discussed in several papers (e.g. [20], [3]).

To the best of our knowledge only [12] tackles the problem of combining
symmetry with multiple representatives and partial order reduction. The main
difference compared to our work is that [12] works only with safety properties,
while we also show preservation of liveness properties given in the next-free
versions of LTL and CTL∗. Also the multiple representatives used in [12] are of
a special kind.1 As [12] targets software model checking, it deals with symmetry
based on transitions instead of states. We believe that our concept of weak
independence leads to a more seamless reusage of the results that exists in the
literature. This is because the latter are mostly based on symmetry of states.

The concept of symmetric independence was introduced in [19]. It turns out
that the concept is a special case of our weak independence. However, symmetric
independence is used in [19] in a different context of combining partial order
reduction with so-called heap symmetries for software model checking. Also, [19]
assumes only canonical representatives.

Paper layout. The next section provides some basic definitions and terminology
used in the paper. Section 3.1 recalls some of the main concepts and results
from [9]. The main contributions of the paper are contained in Sections 3.2
and 4. In Section 3.2 we introduce the definition of weak independence and
give the property preservation results that can be derived from it. In Section 4
we show that the combination of partial order reduction and a bisimulation pre-
serving reduction also preserves deadlock, safety (local) properties, and next-free
LTL and CTL∗ formulae which are invariant under the preserved bisimulation.
Section 5 deals with some experimental results that confirm the practical benefit
of the presented theory. The last section concludes the paper and provides some
directions for future work.

2 Preliminaries

In the paper we use temporal logics defined in the standard way. For the defi-
nitions of CTL∗ and LTL, as well as their variants without the next operator
CTL∗-Xand LTL-X, we refer the reader to, for instance, [5].

We represent the state space of the system which is checked as a labeled
transition system formally defined as follows:

1 For the sake of truth it should be said that the derivation of the results can be done
for the general case.

100 D. Bošnački and M. Scheffer

Definition 1. Let Π be a set of atomic propositions. A labeled transition system
(LTS) is a 5-tuple T = (S,R,L,A, ŝ), where

– S is a finite set of states,
– R ⊆ S×A×S is a transition relation (we write s

a→ s′ ∈ R for (s, a, s′) ∈ R),
– L : S → 2Π is a labeling function which associates with each state a set of

atomic propositions that are true in the state,
– A is a finite set of actions,
– ŝ is the initial state,

Unless stated differently, we fix T to be (S,R,L,A, ŝ) for the rest of the paper.
An action a is enabled in a state s ∈ S iff s

a→ s′ ∈ R for some s′ ∈ S. We
denote the set of enabled actions in a given state s with enT (s). Similarly, for
given s ∈ S and a ∈ A we define aT (s) = {s′ | s

a→ s′ ∈ R}. An execution
sequence or path is a finite or infinite sequence of subsequent transitions, i.e., for
si ∈ S, ai ∈ A, the sequence s0

a0→ s1
a1→ s2 . . . is an execution sequence in T iff

si
ai→ si+1 ∈ R for all i ≥ 0. A finite execution sequence c = s0

a0→ s1
a1→ . . .

an−1→
sn, n ≥ 1 is a cycle iff the start and end states coincide, i.e. s0 = sn. A state s
is reachable iff there exists a finite execution sequence that starts at ŝ and ends
in s.

Next, we define bisimulation between two LTSs:

Definition 2. Given two LTSs T1 = (S1, R1, L1, A, ŝ1) and
T2 = (S2, R2, L2, A, ŝ2), an equivalence relation ≡ ⊆ S1 × S2 is called a bisimu-
lation between T1 and T2 iff the following conditions hold:

– ŝ1 ≡ ŝ2;
– If s ≡ s′, then:

• L1(s) = L2(s′);
• Given an arbitrary transition s

a→ s1 ∈ R1, there exists s2 ∈ S2 such
that s′ a→ s2 ∈ R2 and s1 ≡ s2;

• The symmetric condition holds: given an arbitrary transition s′ a→ s2 ∈
R2, there exists s1 ∈ S1 such that s

a→ s1 ∈ R1 and s1 ≡ s2;

We say that T1 and T2 are bisimilar iff there exists a bisimulation between
T1 and T2.

3 Property Preserving Reductions

3.1 Bisimulation Preserving Reduction

In this section we recall some definitions and results from [9]. Our starting point
is the idea to model check in an abstract state space, which is usually much
smaller than the original one. To this end, the original state set S is partitioned
into equivalence classes. The abstract state space consists of (not necessarily
unique) representatives of these classes, chosen by a function h, with transitions
between them as defined below.

Partial Order Reduction and Symmetry with Multiple Representatives 101

Definition 3. Given a function h : S → S on LTS T = (S,R,L,A, ŝ), we define
the corresponding abstract LTS Th to be (Sh, Rh, Lh, A, h(ŝ)), where

– Sh = h(S), the set of representatives,
– r1

a→ r2 ∈ Rh iff there exists s ∈ S such that r1
a→ s ∈ R and h(s) = r2.

– for all r ∈ Sh, Lh(r) = L(r).

In order to preserve the properties of interest that hold in T also in Th we
need to impose some additional constraints on the function h. In particular, we
require that the equivalence class induced by the partitioning is a bisimulation.

Definition 4. For a given LTS T , a function h : S → S is a selection function
iff there exists a bisimulation ≡ ⊆ S×S between T and T such that for all s ∈ S,
s ≡ h(s).

Intuitively, the function h picks one or more representatives for each equivalence
class of S induced by ≡. It should be emphasized that in the definition of selection
function in [9] h is required to satisfy the additional property

s ≡ s′ implies that h(s) = h(s′)

which in the sequel we call canonicity requirement. Obviously, with this require-
ment each equivalence class has a canonical (unique) representative. In what
follows we assume that h is a selection function without the canonicity require-
ment, which allows multiple representatives per equivalence class.

We say that h preserves the bisimulation relation ≡. The following result is
implied by the definitions given above:

Lemma 1 ([9]). Given an LTS T = (S,R,L,A, ŝ) and a selection function h,
T and Th are bisimilar.

Lemma 1 is actually Lemma 8 from [9]. The proof of that lemma in [9] is valid
in our setting too because it does not use the canonicity requirement for the
representatives. (Due to lack of space most of the proofs are omitted in this
version of the paper.)

The main consequence of Lemma 1 is the following result [9]:

Theorem 1. Given a LTS T , let φ be a formula in CTL∗-Xover the set of
atomic propositions Π of T . Let T ′ be an LTS which is bisimilar to T . The
formula φ is satisfied by T iff it is satisfied by T ′. (See [5] for a definition of the
satisfaction of an CTL∗-Xformula by an LTS.)

The result above implies that we can do the model checking in the reduced state
space. Notice that the property φ is in fact not an arbitrary CTL∗-Xformula. The
set of preserved formulae is limited by the choice of the set of atomic propositions
Π and the bisimulation relation. Thus, there is an implicit requirement that φ
is invariant under the bisimulation ≡ which is preserved by the reduction. More
precisely, if prop(φ) ⊆ Π is the set of atomic propositions in φ, we have that for
all s, s′ ∈ S, if s ≡ s′, then L(s)∩prop(φ) = L(s′)∩prop(φ). (The last condition
is obviously trivially satisfied because we have L(s) = L(s′) from the definition
of Th.)

102 D. Bošnački and M. Scheffer

3.2 Partial Order Reduction

This section and the next one contain the main contributions of the paper. In
the current section we combine the systematization of the properties which are
preserved under partial order reduction from [26] with a definition of reduced
LTS along the lines of [1]. After the definition of the reduced LTS modulo a
reduction function r, we list some conditions on this function, which ensure
preservation of particular properties. Intuitively, during the construction of the
reduced LTS in each new state the function r selects only a subset of the enabled
actions in that state.

Definition 5 ((Partial Order) Reduction). For any so-called reduction
function r : S → 2R, we define the (partial-order) reduction of T with respect to
r as the smallest LTS T r = (Sr, Rr, Lr, A, ŝ) satisfying the following conditions:

– Sr ⊆ S, Rr ⊆ R, and Lr = L ∩ (Sr × 2Π);
– for every s ∈ Sr, if s

a→ s′ is in r(s), then s
a→ s′ is in Rr.

Note that these requirements imply that, for every s ∈ Sr and a ∈ A, if s
a→ s′ ∈

Rr, then also s
a→ s′ ∈ R. For every s ∈ S we define act(r(s)) = {a | ∃s′.s a→

s′ ∈ r(s)}.
It may be clear that not all reductions preserve all properties of interest. Thus,
depending on the properties that a reduction must preserve, we have to define
additional restrictions on r. To this end, we need to formally capture the notion
of independence introduced earlier. Actions occurring in different processes may
still influence each other, for example, when they access global variables in the
specification. The following notion of independence defines the absence of such
mutual influence. Intuitively, two actions are independent iff, in every state where
they are both enabled, (1) the execution of one action cannot disable the other
and (2) the result of executing both actions is always the same or similar state.

Definition 6 (Independence). Given an LTS T = (S,R,L,A, ŝ) and a rela-
tion ≈ ⊆ S × S, an irreflexive and symmetric relation I ⊆ A × A is a ≈-
independence relation on actions iff for each pair of actions (a, b) ∈ I (called
independent actions) it must hold that for each s ∈ S, if {a, b} ⊆ enT (s) then

– for each state state s′ ∈ aT (s) we have that b ∈ enT (s′).
– there exists a path s

a→ s1
b→ s′ in T iff there exists a path s

b→ s2
a→ s′′ in

T and s′ ≈ s′′.

In what follows we assume that ≈ is either the identity or a bisimulation relation.
The first version of ≈-independence, obtained by taking s′ ≈ s′′ iff s′ = s′′,
corresponds to the usual definition of independence that can be found in the
literature. Therefore, throughout the paper we refer to it simply as (standard)
independence. The second version, when ≈ is a bisimulation relation, we call
weak independence. We introduce the latter in order to combine bisimulation
preserving reductions with partial order reduction.

Partial Order Reduction and Symmetry with Multiple Representatives 103

In order to reuse as seamlessly as possible the existing results about partial
order reduction in the sequel we assume that T is ≈-deterministic, i.e., for any s ∈
S and a ∈ A it holds that if s

a→ s′ and s
a→ s′′ are in R, then s′ ≈ s′′. This is not a

serious limitation because the symmetry reduction (or more precisely, symmetry
equivalence), which is our main target, satisfies this constraint. (Nondeterminism
and partial order reduction can be reconciled too with certain modifications of
the criteria presented below [22,23].)

The first class of properties we are interested in is the presence or absence of
deadlocks. To preserve deadlock states of an LTS in a reduced LTS, the reduction
function r must satisfy the following two conditions:

C0 r(s) = ∅ iff enT (s) = ∅.
C1 (persistency) For any s ∈ S and a finite execution sequence s = s0

a0→
s1

a1→ . . .
an−1→ sn with ai �∈ r(s) for all i (0 ≤ i < n), action an−1 is

≈-independent of all actions in act(r(s)).

Theorem 2 (Deadlock Preservation). Let r be a reduction function for LTS
T that satisfies C0 and C1. Then the following holds:

– if a deadlock state s is reachable in T , then there exists a deadlock state
s′ ≈ s which is reachable in the reduced LTS T r.

– if a deadlock state s′ is reachable in T r, then there exists a deadlock state
s ≈ s′ which is reachable in the original LTS T .

Proof of the theorem for the case when ≈ is the identity relation (standard
independence) can be found, for instance, in [11](Theorem 4.3).2 With straight-
forward modifications the proof of [11] carries over to the case of weak indepen-
dence.

The second class of properties we discuss are the local properties. A local
property is a boolean combination of propositions in Π whose truth value cannot
be changed by two ≈-independent actions: That is, a property φ is local iff, for
all states s, s′, s′′ ∈ S and ≈-independent actions a, b ∈ A such that

– a, b ∈ enT (s),
– s

a→ s′, s
b→ s′′ and

– φ has different truth values in states s and s′,

the truth values of φ in s and in s′′ are the same. An LTS satisfies a local property
φ iff there is a reachable state that satisfies φ. Typical examples of local properties
are properties that depend only on the state of a single process or shared object.
Notice that φ is invariant under ≈, i.e., for any s, s′ ∈ S such that s ≈ s′, and
for any atomic proposition π ∈ Π in φ, it holds π ∈ L(s) ⇔ π ∈ L(s′). To
guarantee that a reduction of a state space preserves local properties, it suffices
that the reduction function r satisfies the following requirement (in addition to
C0 and C1).
2 In [11] a slightly stronger definition of (standard) independence is used. However,

the proof of Theorem 4.3 in [11] stays valid also with our definition of standard
independence.

104 D. Bošnački and M. Scheffer

C2 (cycle proviso). For any cycle s0
a0→ s1

a1→ . . .
an−1→ sn = s0 there is an i

with 0 ≤ i < n such that r(si) = enT (si).

Theorem 3 (Local-Property Preservation). Let r be a reduction function
for LTS T satisfying conditions C0, C1, and C2; let φ be a local property. LTS
T satisfies φ iff the reduced LTS T r satisfies φ.

Condition C2 prevents the so-called ‘ignoring problem’ identified in [24]. Infor-
mally, this problem occurs when a reduction of a state space ignores the actions
of an entire process. Proofs of (variants of) Theorem 3 for standard independence
can be found in [11,17,24]. For weak independence the theorem can be proved
in an analogous way. In fact, [11,17,24] show that C2 can be weakened if one is
only interested in the preservation of local properties. The stronger proviso given
above is needed for the preservation of next-time-free LTL properties, which is
the third class of properties we are interested in.

For any LTL formula φ over the set of atomic propositions Π of a given LTS
T , prop(φ) is the set of atomic propositions in φ.

Definition 7 (Invisibility). An action a ∈ A is φ-invisible in state s ∈ S iff
a �∈ enT (s) or, for all π ∈ prop(φ) and s′ ∈ S such that s

a→ s′, π ∈ L(s) ⇔ π ∈
L(s′). Action a is globally φ-invisible iff it is φ-invisible for all s ∈ S.

Informally, a globally φ-invisible action cannot change the truth value of the
formula φ.

C3 (invisibility). For any state s ∈ S, all actions in act(r(s)) are globally
φ-invisible or r(s) = enTh

(s).

Theorem 4 (Next-Time-Free LTL Preservation). Let r be a reduction
function for LTS T satisfying C0, C1, C2, and C3; let φ be a next-time-free
LTL formula. T satisfies φ iff the reduced LTS T r satisfies φ.

The proof of (variants of) Theorem 4 for standard independence can be found
in [4,18,21,25]. The proof of [4] is seamlessly adjusted for weak independence
too. A similar remark to the one at the end of Section 3.1 for the preservation
of CTL∗-Xand the local properties above can also be given for LTL-X– there
is an implicit requirement that φ is invariant under ≈.

In [9] it is discussed how symmetry can be combined with partial order reduc-
tion for CTL∗-X. It is shown that the algorithm [10] can be reused also in the
setting of [9]. Analogously one can show that the same algorithm can be straight-
forwardly adapted for the case with multiple representatives. The r function for
CTL∗-Xdiffers from the one for LTL by the fact that it must satisfy an addi-
tional condition

C4 (singleton). The set r(s) is a singleton set or r(s) = enT (s).

Partial Order Reduction and Symmetry with Multiple Representatives 105

In an analogous way as for LTL we define the invisibility of actions with
regard to a given formula. It can be shown that CTL∗-Xformulae which are
invariant under bisimulation are preserved in the reduced state space obtained
with the additional condition. In the proof of the following theorem we assume
that the original LTS T is deterministic, i.e., that |aT (s)| ≤ 1, for each s ∈
S, a ∈ A.

Theorem 5 (Next-Time-Free CTL Preservation). Let r be a reduction
function for LTS T satisfying C0, C1, C2, C3, and C4; let φ be a CTL∗-X
formula. T satisfies φ iff the reduced LTS T r satisfies φ.

As absence of deadlock, local properties, and LTL-Xformulae can be expressed
in CTL∗-X, it might look like we could have shown only the preservation of the
latter, or maybe only of LTL-Xand CTL∗-X, as it is done in [9]. However, in
practice, it is often useful to use the weaker variants on the conditions imposed
on r in order to achieve a better reduction. Therefore, we opted for giving the
gradual strengthening on the conditions on r, following the usual hierarchical
property classification (see [26]).

4 Combining Bisimulation Preserving Reductions with
Partial Order Reduction

In this section we combine the bisimulation preserving reduction with partial
order reduction in two ways. In the first approach, which we introduce only
for the sake of the proof and which we call sequentially combined reduction, we
first apply the bisimulation preserving reduction in order to obtain the abstract
LTS Th. After that we apply partial order reduction on Th. We use for ≈ in
the definition of r the bisimulation which is preserved by h, i.e., we assume
weak independence. Intuitively, the second more efficient approach corresponds
to applying both partial order and bisimulation reduction simultaneously while
generating (on-the-fly) the (reduced) state space. So, we refer to this approach
as simultaneously combined reduction. We assume the same weak independence
relation as in the first approach. Actually, it turns out that we can reuse the
independence relation of the original LTS T , as a weak independence relation
for the reduction in the reduced state space in both approaches. The correctness
of the first combination follows straightforwardly from the preservation results
presented in the previous section. Thus, we establish the correctness of the second
approach by showing that both approaches generate the same reduced state
space, provided that the same selection and reduction functions are used in both
cases.

Definition 8 (Sequentially Combined Reduction). Given a LTS T and
a selection function h we define the sequentially combined reduction (Th)r to
be the LTS obtained such that partial order reduction, as defined in Def. 5, is
applied on the abstract LTS Th.

106 D. Bošnački and M. Scheffer

In order to preserve properties we substitute in r for ≈ the bisimulation ≡
which is preserved by h. The preservation of the properties (deadlock, local,
LTL-X, CTL∗-X) which hold in the original LTS T is implied by the preserva-
tion results from the previous section. In particular, the preservation from T to
Th is guaranteed by Theorem 1. The preservation in the second phase, between
Th and (Th)r, follows directly from Theorems 2 to 5. Hence, we can rephrase
the theorems from the previous section for the sequentially combined reduction
(Th)r. We give below only the theorem for CTL∗-X. The other properties can
be formulated in an analogous way – i.e., by basically only replacing T r with
(Th)r in the corresponding texts.

Theorem 6 (Next-Time-Free CTL Preservation Under Sequentially
Combined Reduction). Given an LTS T with a selection function h which
preserves the bisimulation ≡, let r be a reduction function which satisfies C0,
C1, C2, C3, and C4, and which is based on ≡-independence. Let φ be a CTL∗-X
formula. T satisfies φ iff the reduced LTS (Th)r satisfies φ.

A generic algorithm for partial order reduction is given in Fig. 2. Applied to
Th it constructs the sequentially combined reduction (Th)r. (It is trivial to write
a similar algorithm which generates Th from T according to Def. 3.)

1 states := unexpanded := {ŝ}; transitions = Ø
2 while unexpanded �= Ø do
3 remove a state s from unexpanded;

4 for each transition s
a→ s′ in r(s) do

5 if s′ �∈ states then
6 add s′ to states and unexpanded;

7 add s
a→ s′ to transitions

Fig. 2. An Algorithm for Sequentially Combined Reduction

The following definition paves the way to a more efficient algorithm for per-
forming combined reduction:

Definition 9 (Simultaneously Combined Reduction). Let T be a LTS for
which we are given a selection function h, which preserves the bisimulation ≡,
and a reduction function r. We define the simultaneously combined reduction
for T with respect to r and h as the smallest LTS T r

h = (Sr
h, Rr

h, Lr
h, A, h(ŝ))

satisfying the following conditions:

– Sr
h ⊆ S, Rr

h ⊆ R, and Lr
h = L ∩ (Sr

h × 2Π);
– for every s ∈ Sr

h, if s
a→ s′ is in r(s), then s

a→ h(s′) is in Rr
h.

The algorithm in Fig. 3 is an implementation of the above definition.
The following theorem states the equivalence of the two reduction combina-

tions, if they are featuring the same selection and reduction functions:

Partial Order Reduction and Symmetry with Multiple Representatives 107

1 states := unexpanded := {h(ŝ)}; transitions = Ø
2 while unexpanded �= Ø do
3 remove a state s from unexpanded;

4 for each transition s
a→ s′ in r(s) do

5 if h(s′) �∈ states then
6 add h(s′) to states and unexpanded;

7 add s
a→ h(s′) to transitions

Fig. 3. An Algorithm for Simultaneously Combined Reduction

Theorem 7. For a LTS T with a selection function h which preserves the
bisimulation ≡ it holds that (Th)r = T r

h , provided that the functions r in both
reductions are defined with ≡-independence and satisfy the same subset of the
conditions C0 to C4.

The theorem can be proved in a similar way as Theorem 19 in [9]. After observing
that with the conditions of the theorem the functions r are the same, we show
that for each run of the algorithm in Fig. 2 there exists a corresponding run of
the algorithm in Fig. 3. To this end we execute lock-step both runs and show
that the invariant holds that the variables states, transitions, and unexpanded
are the same in both executions. The following observation is important from
practical point of view because it solves in an elegant way the requirement that
the same weak independence has to be used in both approaches:

Lemma 2. Let I be an independence relation for a LTS T = (S,R,L,A, ŝ)
and h a bisimulation preserving selection function for T which preserves the
bisimulation ≡. In this case, I is a weak (i.e., ≡) independence relation for the
corresponding abstract LTS Th.

Again, this can be proved like the analogous Lemma 10 from [9] which holds for
unique representatives.

In conclusion, Theorem 7 leads us directly to an algorithm for checking prop-
erties in a reduced LTS which is obtained by combining partial order and bisimu-
lation reduction (thus, also symmetry) with multiple representatives. Moreover,
this can be done on-the-fly and (by Lemma 2) reusing the independence relation
of the original LTS T . (Notice that this provides a practical method for com-
puting the reduction funciton r, i.e., the persistent sets of actions in presence of
symmetries.) Such an algorithm can be obtained by adjusting in a straightfor-
ward way the algorithm in Fig. 3 to various well known algorithms for verification
of safety and liveness properties.

5 Experimental Support

A prototype implementation of the algorithm described in the previous sections
is included in SymmSpin [2], an extension of the model checker Spin [14] (version
3.4.16) with symmetry reductions. We tried it on the case studies from [2] with

108 D. Bošnački and M. Scheffer

encouraging results. The obtained reductions for liveness properties were usually
of several orders of magnitude, very similar to the results for the same examples
for safety properties, reported in [2].

For comparison we also give the results of the experiments with standard
Spin with and without the partial order reduction (POR) option, but with-
out symmetry reduction (which does not exists in the standard version of the
tool). The synergy between the symmetry and the partial order reductions which
was reported in [2] for safety properties is observed also for liveness. The two
reduction techniques are orthogonal because they exploit different features of
the concurrent systems, therefore, their cumulative effect can be used to obtain
more efficient verification.

We ran the symmetry reduction algorithm with four versions of the selection
function h. Two of them are canonical (denoted here with “can1” and “can2”)
and correspond to the “segmented” and “pc-segmented” heuristic, respectively,
from [2]. The other two, “mult1” and “mult2”, yield multiple representatives
and correspond to the “sorted” and “pc-sorted” heuristics, respectively, from [2].
Notice that the number of states for the canonical heuristics “can1” and “can2”
is the same. Although they may produce different representatives, the number
of symmetry classes remains the same (minimal) in both cases.

All experiments were performed on a PC machine with 1.7 GHz Pentium
processor and 256 MB of main memory, running Red Hat Linux 7.0 operating
system. Verification times (in the rows labeled with “t”) are given in seconds
(s.x), minutes (m:s), or hours (h:m:s); the number of states (in the rows labeled
with “s”) is given directly or in millions (say, 9.1M); o.m. stands for out of
memory, and o.t. denotes out of time (more than 10 hours); time 0.0 means less
than 0.1 second; +POR and -POR mean with and without POR, respectively.

Table 1 contains the results for the Data Base manager example from [2]. The
verified property was absence of individual starvation expressed via Spin’s non-
progress cycle feature, which corresponds to an LTL formula of the form ��p.
One can see that the reduction factor significantly improves as N increases,
which is typical for symmetry reduction. Also, for greater N the verification
times with the multiple representative heuristics are clearly better than the ones
with the canonical representatives.

Also, it is interesting to notice that, in this particular example, the heuristics
“mult2” actually produced canonical representatives. So, within the same state
space, the verification times were improved for a factor greater than 10,000.
The latter was due to the fact that the algorithm for canonical representatives
has significant overhead compared to the one for multiple representatives. It is
difficult to say, however, how often this most favorable situation would occur in
practice. We did not observe with any of the other case studies.

Multiple representative heuristics were less successful in the case of Peterson’s
mutual exclusion protocol (Table 2). For this example we verified a bounded
response type property (LTL formula: �(p → �q)): each process that enters
its critical section will eventually leave it. Obviously, for this case, non-canonical

Partial Order Reduction and Symmetry with Multiple Representatives 109

Table 1. Results for the Data Base Manager example

N 7 8 9 10 11 12

+POR -POR +POR -POR +POR -POR +POR -POR +POR -POR +POR -POR

s 1809 5120 4627 17515 11541 59070 28183 196853 67609 649564 159771 2.1M

no sym. t 0.0 0.1 0.0 0.4 0.1 1.3 0.3 5.3 0.6 26.4 1.6 3:08

s 18 33 20 41 22 50 24 60 26 71 — —

can1 t 0.2 0.2 1.5 1.7 15.2 16.8 3:09 3:12 35:01 40:13 o.t. o.t.

can2 t 0.1 0.1 0.4 0.5 4.0 4.2 40.7 44.8 7:54 8:31 o.t. o.t.

s 60 258 76 514 94 1026 114 2050 136 4098 160 8194

mult1 t 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.2 0.0 0.5

s 18 60 20 93 22 157 24 247 26 417 28 661

mult2 t 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.1

Table 2. Results for Peterson’s mutual excusion protocol

N 2 3 4 5 6 7

+POR -POR +POR -POR +POR -POR +POR -POR +POR -POR +POR -POR

s 81 149 1353 3536 32836 89137 912833 2.596M o.m. o.m. o.m. o.m.

no sym. t 0.1 0.1 0.1 0.1 0.3 0.9 7.5 32.6 — — — —

s 49 77 262 656 1610 4470 10029 27800 54366 162131 279528 898344

can1 t 0.2 0.2 0.2 0.2 0.2 0.4 0.5 1.5 3.6 18.6 46.0 4:44.5

can2 t 0.2 0.2 0.2 0.2 0.2 0.3 0.5 1.0 3.3 10.2 50.5 2:24.1

s 61 94 541 1260 5552 15247 65987 174287 653668 1.93M o.m. o.m.

mult1 t 0.2 0.2 0.2 0.2 0.3 0.4 0.8 3.0 8.0 43.9 — —

s 50 79 301 794 2948 7560 33395 82644 471720 1.05M o.m. o.m.

mult2 t 0.2 0.2 0.2 0.2 0.2 0.3 0.6 1.6 6.7 22.7 — —

heuristics cause much larger number of states which results in worse verification
times. This observation is also consistent with the results in [2] for the same
protocol obtained for safety properties.

6 Conclusion and Future Work

In this paper we showed that partial order reduction is compatible with sym-
metry reduction with multiple representatives. The results were derived in the
more general setting of bisimulation preserving reduction as defined in [9]. As
symmetry reduction is only a special case of a bisimulation preserving reduction,
all results were automatically valid for the former too. The central idea was to

110 D. Bošnački and M. Scheffer

introduce a new kind of independence which is weaker than the independence
usually used in the literature. In particular, we weakened the confluence condi-
tion by requiring that the permutations of independent actions lead to bisimilar
states.

Our results can be readily adapted for parallel model checking algorithms,
e.g. [15], as well as for arbitrary search order of the state space, e.g., along the
lines of [16].

From practical point of view, a very important direction for future work is
to combine partial order, symmetry and fairness. A good starting point in that
direction could be the algorithms for model checking by exploiting symmetry
under (weak) fairness in [7,13].

The material in this paper was instigated mainly by authors’ experience in
model checking with explicit state representation. However, it should be possible
to apply directly the results presented here also for symbolic model checking. To
this end, a promising idea looks the combination of the partial order reduction
algorithm presented in [1] and the existing work on symmetry reduction with
multiple representatives (e.g. [3]) in the context of symbolic model checking. For
instance, the adaptation for weak independence of the cycle proviso for breadth
first search – one of the crucial ideas in [1] – should be quite straightforward.

Finally, it can be interesting to identify bisimulation preserving reductions
other than symmetry. The results of the paper will of course be immediately
applicable. A good candidate in that direction are the “almost symmetric” sys-
tems from [8].

References

1. Alur, R., Brayton, R.K., Henzinger, T.A., Qadeer, S., Rajamani, S.K.: Partial-
Order reduction in symbolic state-space exploration. In: Grumberg, O. (ed.) CAV
1997. LNCS, vol. 1254, pp. 340–351. Springer, Heidelberg (1997)

2. Bošnački, D., Dams, D., Holenderski, L.: Symmetric Spin. International Journal
on Software Tools for Technology Transfer 4(1), 65–80 (2002)

3. Clarke, E.M., Enders, R., Filkorn, T., Jha, S.: Exploiting Symmetry in Temporal
Logic Model Checking. Formal Methods in System Design 19, 77–104 (1996)

4. Clarke, Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press
(2000)

5. Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Formal Models
and Semantics, pp. 995–1072. Elsevier (1990)

6. Emerson, E.A., Sistla, A.P.: Symmetry and model checking. In: Courcoubetis, C.
(ed.) CAV 1993. LNCS, vol. 697, pp. 463–478. Springer, Heidelberg (1993)

7. Emerson, E.A., Sistla, A.P.: Utilizing symmetry when model checking under fair-
ness assumptions: an automata theoretic approach. In: Wolper, P. (ed.) CAV 1995.
LNCS, vol. 939, pp. 309–324. Springer, Heidelberg (1995)

8. Emerson, E.A., Trefler, R.J.: From asymmetry to full symmetry: new techniques for
symmetry reduction in model checking. In: Pierre, L., Kropf, T. (eds.) CHARME
1999. LNCS, vol. 1703, pp. 142–157. Springer, Heidelberg (1999)

9. Emerson, E.A., Jha, S., Peled, D.: Combining partial order and symmetry reduc-
tions. In: Brinksma, E. (ed.) TACAS 1997. LNCS, vol. 1217, pp. 19–34. Springer,
Heidelberg (1997)

Partial Order Reduction and Symmetry with Multiple Representatives 111

10. Gerth, R., Kuiper, R., Peled, D., Penczek, W.: A partial order reduction approach
to branching time logic model checking. In: Proc. of Third Israel Symposium on
Theory on Computing and Systems, pp. 130–139, Tel Aviv, Israel. IEEE (1995)

11. Godefroid, P. (ed.): Partial-Order Methods for the Verification of Concurrent
Systems. LNCS, vol. 1032. Springer, Heidelberg (1996)

12. Godefroid, P.: Exploiting symmetry when model-checking software. In: Proc. of
FORTE/PSTV 1999, Formal Methods for Protocol Engineering and Distributed
Systems, pp. 257–275, Beijing, October 1999

13. Gyuris, V., Sistla, A.P.: On-the fly model checking under fairness that exploits sym-
metry. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 232–243. Springer,
Heidelberg (1997)

14. Holzmann, G.J.: The SPIN Model Checker - primer and reference manual. Addison-
Wesley (2004)

15. Holzmann, G.J., Bošnački, D.: The Design of a Multicore Extension of the SPIN
Model Checker. IEEE Trans. Software Eng. 33(10), 659–674 (2007)

16. Bošnački, D., Leue, S., Lluch-Lafuente, A.: Partial-Order Reduction for General
State Exploring Algorithms. STTT 11(1), 39–51 (2009)

17. Holzmann, G.J., Godefroid, P., Pirottin, D.: Coverage preserving reduction strate-
gies for reachability analysis, protocol specification, testing and verification,
pp. 349–363, XII. Elsevier (1992)

18. Holzmann, G., Peled, D.: An improvement in formal verification. In: FORTE 1994.
Bern, Switzerland (1994)

19. Iosif, R.: Symmetry reduction criteria for software model checking. In: Bošnački,
D., Leue, S. (eds.) SPIN 2002. LNCS, vol. 2318, pp. 22–41. Springer, Heidelberg
(2002)

20. Ip, C.N., Dill, D.L.: Better verification through symmetry. Formal Methods in
System Design 9, 41–75 (1996)

21. Peled, D.: Combining partial order reductions with on-the-fly model checking. In:
Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 377–390. Springer, Heidelberg
(1994)

22. Peled, D.: Personal communication (2001)
23. Valmari, A.: The state explosion problem. In: Reisig, W., Rozenberg, G. (eds.)

APN 1998. LNCS, vol. 1491, pp. 429–528. Springer, Heidelberg (1998)
24. Valmari, A.: Stubborn sets for reduced state space generation. In: Rozenberg,

G. (ed.) Advances in Petri Nets 1990. LNCS, vol. 483, pp. 491–515. Springer,
Heidelberg (1991)

25. Valmari, A.: A Stubborn Attack on State Explosion. Formal Methods in System
Design 1, 297–322 (1992)

26. Willems, B., Wolper, P.: Partial order models for model checking: from linear to
branching time. In: Proc. of 11th Symposium of Logics in Computer Science, LICS
1996, New Brunswick, pp. 294–303 (1996)

Statistical Model Checking of Ad Hoc Routing
Protocols in Lossy Grid Networks

Alice Dal Corso1, Damiano Macedonio2, and Massimo Merro1(B)

1 Dipartimento di Informatica, Università degli Studi di Verona, Verona, Italy
massimo.merro@univr.it
2 Julia Srl, Verona, Italy

Abstract. We extend recent work by Höfner and McIver con the per-
formances of the ad hoc routing protocols AODV and DYMO in terms of
routes established. Höfner and McIver apply statistical model checking to
show that on arbitrary small networks (up to 5 nodes) the most recent,
and apparently more robust, DYMO protocol is less efficient than AODV.
Here, we reformulate their experiments on 4x3 toroidal networks, with
possibly lossy communication. As a main result we demonstrate that, in
this more realistic scenario, DYMO performs significantly better than
AODV.

1 Introduction

Ad hoc networking is a relatively recent area in wireless communications that is
attracting the attention of many researchers for its potential to provide ubiqui-
tous connectivity without the assistance of any fixed infrastructure. A Mobile Ad
Hoc Network (MANET) is an autonomous system composed of mobile devices
communicating with each other via radio transceivers.

Wireless devices use radio frequency channels to broadcast messages to the
other devices. A single transmission span over a limited area and reach only a
subset of the devices in the network. As a consequence, ad hoc networks rely on
multi-hop wireless communications where nodes have essentially two roles: (i)
acting as end-systems and (ii) performing routing functions.

A routing protocol is used to determine the appropriate paths on which data
should be transmitted in a network. Routing protocols for wireless systems can
be classified into topology-based and position-based ones:

– Topology-based protocols rely on traditional routing concepts, such as main-
taining routing tables or distributing link-state information.

– Position-based protocols use information about the physical locations of the
nodes to route data packets to their destinations.

The third author is partly supported by the Joint Project 2011 “Statical Analysis
for Multithreading” from Università degli Studi di Verona.

c© Springer International Publishing Switzerland 2015
K. Havelund et al. (Eds.): NFM 2015, LNCS 9058, pp. 112–126, 2015.
DOI: 10.1007/978-3-319-17524-9 9

Statistical Model Checking of Ad Hoc Routing Protocols 113

Topology-based protocols can be further divided into proactive protocols and
reactive ones:

– Proactive routing protocols try to maintain consistent routing information
within the system at any time.

– Reactive routing protocols establish a route between a source and a destina-
tion only when it is needed, typically when a new data packet is injected by a
user. For this reason, reactive protocols are also called on-demand protocols.

Examples of proactive routing protocols for mobile ad hoc networks are OLSR [6]
and DSDV [19], while DSR [13], AODV [17] and DYMO [18] are typical on-
demand protocols.

Most of the analyses of protocols for large-scale MANETs are usually based
on discrete-event simulators (e.g., ns-2, Opnet and Glomosim). However, differ-
ent simulators often support different models of the MAC physical-layer yield-
ing different results, even for simple systems. Formal analysis techniques allow
to screen protocols for flaws and to exhibit counterexamples to diagnose them.
For instance, model checking provides both an exhaustive search of all possi-
ble behaviours of the system, and exact, rather than approximate, quantitative
results. As an example, Fehnker et al. [10] used the Uppaal model checker [1] to
analyse basic qualitative properties of the AODV routing protocol. The authors
of [10] were able to analyse systematically all network topologies up to five
nodes. However, crucial aspects such as passage of time and probabilities were
not considered in their analysis.

Statistical Model Checking (SMC)[20,21] is a trade off between testing and
formal verification: it consists in performing an appropriate number of runs of
the model under examination to check whether a given property is satisfied
with a certain probability. Unlike an exhaustive approach, a simulation-based
solution does not guarantee a correct result with a 100% confidence. It is only
possible to bound the probability of making an error. More precisely, according
to theoretical Chernoff-Hoeffding bounds, it is possible to estimate the number
of runs that the simulator must perform: the higher is the precision required in
the analysis and the greater must be the number of runs.

In the current paper we apply SMC-Uppaal [8] (release 4.1.19, July 2014), a
statistical extension of the Uppaal model checker which supports the composition
of timed and/or probabilistic automata. In SMC-Uppaal the user must fix two
main statistical parameters, α and ε, both in the real interval]0, 1[. The answer
provided by the tool is a confidence interval [p−ε, p+ε] for estimating the prob-
ability p of the desired property; α represents the probability of false negatives
while ε is the probabilistic uncertainty. In the last two releases of SMC-Uppaal,
the number of runs to be executed in a simulation to ensure a fixed precision is
not estimated a priori anymore; instead it is continually re-computed during the
simulation, taking into consideration the results of the runs executed up to that
point. As a consequence, starting from SMC-Uppaal 4.1.18 there is a dramatic
reduction of the average number of runs effectively executed in a simulation.

114 A. Dal Corso et al.

Our work has been strongly inspired by a recent comparison between the two
ad hoc routing protocols AODV and DYMO, on arbitrary networks up to 5 nodes
with perfect communication [12], relying on the SMC-Uppaal model checker
(release 4.1.11). DYMO [18] is a recent evolution of AODV (since March 2012 it
is sometimes referred to as AODVv2) that tries to populate the routing tables of
each node by adopting a concept called path accumulation: whenever a control
message travels via more than one node, information about all intermediate
nodes is accumulated in the message and distributed to its recipients. In principle
this should result in better performances of the routing process. However, the
analysis of [12] revealed that DYMO establishes fewer routes on average than
does AODV. This calculation is obtained by counting the average number of
entries appearing in the routing tables of all nodes after completing routing
requests. Also the average quality of the routes found by AODV seems to be
better than that of DYMO. Here route quality measure the difference between
the length of the routes found by the routing protocol and the length of the
corresponding optimal route.

These results cast a shadow on the more recent and more sophisticated
DYMO protocol. Actually, it would seem that path accumulation in DYMO
constitutes more a problem rather than an help. We conjecture that the results
of [12] applies only to small networks, where the proliferation of extra messages
may really constitute a problem. For this reason we decided to use the most
recent release of SMC-Uppaal to repeat the analysis of [12] on networks of big-
ger size, operating in a slightly more realistic communication scenario. Ad hoc
routing protocols have been developed for networks operating in harsh operating
conditions. In particular, communication failures are quite common in MANETs:
wireless communications can easily fail due to either communication collisions or
environmental conditions such as temporary obstacles or physical interferences.

We have adapted the SMC-Uppaal models of [12] to compare AODV and
DYMO on 4x3 toroid topologies, i.e. 4x3 grids circularly connected in the two
dimensions. In this manner, each of the 12 nodes is connected with exactly 4
neighbours. We have adopted a probabilistic model of wireless communication to
take into account message loss at different rates. For high loss rates this allows
us to emulate scarse networks, i.e. networks scarsely connected.

As in [12] we consider three different workbenches to compare the two pro-
tocols: i) a probabilistic analysis to estimate the ability to successfully complete
the protocol; ii) a quantitative analysis to determine the average number of
routes found during the routing process; iii) a qualitative analysis to verify how
good (i.e. short) are the routes found by the routing protocol. In our proba-
bilistic analysis, in the case of perfect communication, AODV and DYMO have
pretty much the same performances. However, with the introduction of some
loss rate, DYMO performs dramatically better than AODV: up to 20% better
than AODV, with a 30% loss rate. In the quantitative analysis DYMO performs
at least 24% better than AODV. Again, the gap between the two protocols is
wider when increasing the loss rate. Finally, our qualitative analysis shows that,
in this respect, the two protocols behave pretty much in the same manner.

Statistical Model Checking of Ad Hoc Routing Protocols 115

s −→ ∗ : rreq, s,Rid , d,Sseq ,Dseq , 0
l −→ ∗ : rreq, s,Rid , d,Sseq ,Dseq , 1

m −→ ∗ : rreq, s,Rid , d,Sseq ,Dseq , 2
d −→ m : rrep, s, d,Dseq ′, 0

m −→ l : rrep, s, d,Dseq ′, 1
l −→ s : rrep, s, d,Dseq ′, 2

Fig. 1. The AODV routing protocol

Outline In Section 2 we describe the two protocols under examination: AODV
and DYMO. In Section 3 we recall and extends the SMC-Uppaal models of [12]
for the two protocols. In Section 4 we repeat the experiments of [12] in our
setting. The paper ends with a discussion of the results.

2 AODV and DYMO: Two Different Generations of
Ad-hoc Routing Protocols

This section provides a brief overview of both ad-hoc routing protocols.
AODV [17] is one the four protocols standardised by the IETF MANET

working group. The protocol is intended to first establish a route between a
source node and a destination node (route discovery), and then maintain a route
between the two nodes during topology changes caused by node movement (route
maintenance). Since AODV works on-demand, routers only maintain distance
information for nodes reached during route discovery. In this paper we focus on
the route discovery process.

In the AODV protocol each node maintains a routing table (RT) containing
informations about the routes to be followed when sending messages to the
other nodes of the network. In particular, for each destination node n a routing
table provides an entry containing the following information: (i) the name of
the destination node (say n); (ii) the number of hops necessary to reach n; (iii)
the neighbour node in the route towards n; (iv) a destination sequence number
to represent how fresh the information is: the higher the sequence number is,
the fresher the path will be; (v) a validity flag for that entry. The collective
information in the nodes’ routing table is at the best a partial representation
of network connectivity as it was sometimes in the past; in the most general
scenario, mobility together with node and communication failures continually
modify that representation.

Each node maintains also a local history table (HT) containing pairs of the
form (source-name, request-id) to discard request packets which have already
been processed.

116 A. Dal Corso et al.

In Figure 1, we report a scheme of the AODV protocol on a network of four
nodes in a line topology: a source s, a destination d and two intermediate nodes l
and m. We also provide a graphical representation of the flow of messages: dashed
arrows denote the broadcast of route request packets (rreq), while continuous
arrows denote the unicast sending of route reply packets (rrep). More precisely,
suppose the source node s wishes to send a message to the destination node d.
In order to perform the sending, s will look up an entry for d in its routing table.
If there is no such an entry it will launch a route discovery procedure to find a
route to d. The protocol works as follows:

– The source s broadcasts a route request packet of the form

〈rreq, s,Rid , d,Sseq ,Dseq , hc〉 .

Here, the fields s and d denote the IP addresses of source and destination,
respectively. The field Rid denotes a request-id, that is a sequence number
uniquely identifying the request. The Sseq field contains the source sequence
number , i.e. the current sequence number to be used in routing table entries
pointing towards the source node s. The Dseq field is the destination sequence
number containing the latest sequence number received in the past by the
source node s for any route towards the destination d; this number is 0 if d
is unknown to s. The hop-count field hc keeps track of the number of hops
from the source node to the node handling the request. Initially, this field is
set to 0.

– When the intermediate node l receives the route request, it acts as follows:
• It looks up the pair (s, Rid) in its local history table to verify whether

the request has already been processed. If this is the case, the request is
discarded and the processing stops. Otherwise, the pair is entered into
the local history table, so that future requests from s with the same Rid
will be discarded.

• Then, l looks up an entry for d in its routing table. If there is such an
entry, with destination sequence number greater than or equal to the
Dseq , then a route reply packet is sent back to the source saying to use
l itself to get to the destination d. Otherwise, it re-broadcasts the route
request packet with the hc field incremented by one.

• In any case, l compares the source sequence number Sseq contained in
the request with the one appearing in its routing table associated with
node s. If Sseq is more recent (i.e. greater) than the one in the table, l
updates its routing table entry associated with s.

– Node m will repeat the same steps executed by node l.
– Whenever the destination d receives the route request, it sends to m a unicast

reply packet of the form

〈rrep, s, d,Dseq ′, hc, lt〉 .

Here, the source address and the destination address are copied from the
incoming request, while the destination sequence number is possibly updated

Statistical Model Checking of Ad Hoc Routing Protocols 117

according to d’s routing table. The hop-count field is set to 0. The lifetime
field lt contains the time expressed in milliseconds for which nodes receiving
the rrep consider the route to be valid.

– The reply packet then follows the reverse path towards node s increasing the
hc field at each hop. Each node receiving the reply packet will update the
routing table entry associated with d if one of the following conditions is
met:

• No route to d is known;
• The sequence number for d in the route reply packet is greater than that

stored in the routing table;
• The sequence numbers are equal but the new route is shorter.

In this way, nodes on the reverse route learn the route to d.

The architecture of the DYMO protocol [18] is quite similar to that of AODV.
Here we follow the explanation of [12] to highlight only the major design differ-
ences between the two protocols.

– DYMO’s mechanism for managing duplicate rreq messages is no longer
based on checking the history table. Instead DYMO check the sequence num-
ber inside a route request to judge whether that request should be forwarded
or discarded. While this modification save some memory, it has been shown
that the change can lead to loss of route requests [9].

– On the other hand AODV can loose route replies since rrep messages are
only forwarded if the routing table of an intermediate node is updated
(changed). To avoid this, in DYMO a node generating a route reply incre-
ments the sequence number for the destination, thereby guaranteeing that
the routing tables of nodes receiving the rrep message will be updated, and
the rrep forwarded.

– DYMO establishes bidirectional routes between originator and destination.
When an intermediate node initiates a route reply, it unicasts a message
back to the originator of the request (as AODV does), but at the same time
it forwards a route reply to the intended destination of the route request. In
this manner the destination node gets all informations about intermediate
nodes.

– DYMO uses the concept of path accumulation: whenever a control message
travels via more than one node, information about all intermediate nodes is
stored in the message. In this way, a node receiving a message establishes
routes to all other intermediate nodes. In AODV nodes only establish routes
to the initiator and to the sender of a message.

3 A Probabilistic Model for AODV and DYMO in
SMC-Uppaal

In this section we provide a slight extension of the SMC-Uppaal models of [12] for
both AODV and DYMO, where probabilities are introduced to model message
loss. Both protocols are represented as parallel composition of node processes,

118 A. Dal Corso et al.

Fig. 2. Queue(ip) model for DYMO

where each process is a parallel composition of two timed automata, the Handler
and the Queue. This is because each node maintains a message queue to store
incoming messages and a process for handling these messages; the workflow of
the handler depends on the type of the message. Communication between nodes
i and j is only feasible if they are neighbours, i.e. in the transmission range
of each other. This is modelled by predicates of the form isconnected[i][j]
which are true if and only if i and j can communicate. Communication between
different nodes i and j are on channels with different names, according to the
type of the control message being delivered (rrep, rreq, rerr).

The Queue of a node ip for DYMO is depicted in Figure 2; the Queue automa-
ton for AODV is very similar. Messages (arriving from other nodes) are stored
in the queue, by using a function addmsg(). Only messages sent by nodes within
the transmission range may be received. Unlike the model of [12] our Queue
is essentially a probabilistic timed automata. SMC-Uppaal features branching
edges with associated weights for the probabilistic extension. Thus we define
an integer constant loss, with 0 ≤ loss ≤ 100, and a node can either lose a
message with weight loss or receive it with weight (100−loss). Notice that SMC-
Uppaal requires input determinism to ensure that the system to be tested always
produces the same outputs on any given sequence of inputs. Thus we need an
extra intermediate committed location instead of branching immediately on the
receiving action.

The Handler automaton, modelling the message-handling protocol, is far
more complicated and has around 20 states. The implementation of the two pro-
tocols basically differs for this automaton. The Handler is busy while sending
messages, and can only accept one message from the Queue once it has com-
pletely finished handling the previous message. Whenever it is not processing a
message and there are messages stored in the Queue, the Queue and the Handler
synchronise via channel imsg[ip], transferring the relevant message data from
the Queue to the Handler. According to the specification of AODV [17], the
most time consuming activity is the communication between nodes, which take

Statistical Model Checking of Ad Hoc Routing Protocols 119

Fig. 3. Extract from Handle(ip, art[ip]) model for AODV at RREQ message

on average 40 milliseconds. This is modelled in the Handler by means of a clock
variable t, set to 0 before transmission, so that a delay between 35 and 45 mil-
liseconds is selected uniformly at random. Due to lack of space, we cannot present
the full timed automaton modelling the Handler, but it is available online1.

The Handler automata of the two protocols are exactly the same as those
made available in [12] except for a few minor details. In particular, in the model
for AODV of [12] we noticed a missing guard

!isconnected(ip, oipnhop())

on an arc that resulted in an rerr-message even if the networks was connected.
As a consequence a node could get into a non-deterministic choice between send-
ing a rrep-message and an rerr-message. In our model we have introduced the
missing guard as depicted in Figure 3. Moreover, in order to correctly commu-
nicate the number of hops to the target node, we corrected the rrep-message
rrep[ip][msg local.tip]! as rrep[ip][rt[msg local.tip].nhop]! in the Handler
of DYMO. In both automata the constant MAX HOP LIMIT is now set to 100
instead of 10: in a 5-nodes network the value 10 is widely enough, but when
working with bigger networks (we have worked also on 7x7 toroidals) this limi-
tation may become a problem.

4 Experiments

We replay the experiments of [12] to compare AODV and DYMO on 4x3 toroidals
(12 nodes) with possibly lossy channels. As in [12] we consider three different
workbenches to compare the two protocols: i) a probabilistic analysis to estimate
the ability to successfully complete the protocol finding the requested routes for a
1 http://www.profs.scienze.univr.it/∼merro/nfm2015/

http://www.profs.scienze.univr.it/~merro/nfm2015/

120 A. Dal Corso et al.

number of properly chosen scenarios; ii) a quantitative analysis to determine the
average number of routes found during the routing process in the same scenarios;
iii) a qualitative analysis to verify how good (i.e. short) are the routes found by
the routing protocol. Our experiment relies on the following set-up: (i) 2.3 GHz
Intel Quad-Core i7, with 16GB memory, running the Mac OS X 10.9 “Maverick”
operating system; (ii) SMC-Uppaal model-checker 64-bit version 4.1.19. The
statistical parameters of false negatives (α) and probabilistic uncertainty (ε)
are both set to 0.01 -yielding a confidence level of 99%. With these parameters
SMC-Uppaal checks for each experiment a number of runs that can go from a
few hundreds to 26492, in the worst case.

4.1 Successful Route Requests

In the first set of experiments we consider four specific nodes A, B, C and D; each
with particular originator/destination roles. Our scenarios are a generalisation
of those of [12] (as we consider larger networks) and assign roles as follows:

(i) A is the only originator sending a packet first to B and afterwards to C;
(ii) A is sending to B first and then B is also sending to C;
(iii) A is sending to B first and then C is sending to D.

Up to symmetry, varying the nodes A, B, C and D on a 4x3 toroidal, we have
1728 different configurations. From this number we deduct 276 configurations
because they make little sense in our analysis, as the source and the destination
node coincide. This calculation yields 1452 different experiments. As we will
repeat our simulations for three different loss rates, this makes in total 4356
experiments.

Initially, for each scenario no routes are known, i.e. the routing tables of each
node are empty. Then, with a time gap of 35-45 millisecond, two of the distinct
nodes receive a data packet and have to find routes to the packet’s destinations.
The query in SMC-Uppaal’s syntax has the following shape:

Pr[<=10000](<>(tester.final && emptybuffers() &&

art[OIP1][DIP1].nhop!=0 && art[OIP2][DIP2].nhop!=0))

The first two conditions require the protocol to complete; here, tester refers
to a process which injects to the originators nodes (tester.final means that
all data packets have been injected), and the function emptybuffers() checks
whether the nodes’ message queue are empty. The third and the fourth conditions
require that two different route requests are established. Here, art[o][d].nhop
is the next hop in o’s routing table entry for destination d. As soon as this value
is set (is different to 0), a route to d has been established. Thus, the whole query
asks for the probability estimate (Pr) satisfying the CTL-path expression within
10000 time units (milliseconds); as in [12] this bound is chosen as a conservative
upper bound to ensure that the analyser explores paths to a depth where the
protocol is guaranteed to have terminated.

In Table 1 we provide the results of our query on the AODV model. More
precisely, we report the average probability to satisfy the required property in

Statistical Model Checking of Ad Hoc Routing Protocols 121

Table 1. AODV: Probability analysis on 4x3 toroidals (α = ε = 0.01)

loss rate avg probability standard deviation avg runs standard deviation

0% 0.984 0.0036 583 1795
10% 0.746 0.130 11521 4486
30% 0.354 0.190 12875 2980

Table 2. DYMO: Probability analysis on 4x3 toroidals (α = ε = 0.01)

loss rate avg probability standard deviation avg runs standard deviation

0% 0.990 0.001 294 154
10% 0.818 0.090 9416 3851
30% 0.429 0.164 14571 2085

all 1452 different configurations. This is done for three different loss rates: 0%
(perfect communication), 10% and 30%. Note that, in the case of perfect com-
munication, our analysis shows that the probability to successfully establish a
required route in our setting can be estimated to be at least 0.98. In the same
analysis, paper [12] estimates at 0.99 the success rate for AODV on 5-nodes
networks with arbitrary topologies. It should not surprise to see that the per-
formances of AODV are strongly influenced by the message-loss rate. From a
model-checking point of view, it is interesting to notice that the higher is the
loss rate the greater is the number of runs required to complete the simulation.
This is because with unreliable channels control messages need to be resent,
making longer the whole routing process.

Table 2 presents the results for the same experiments on the DYMO protocol.
In the case of perfect communication, our analysis shows that the probability of
success in establishing the route requests can be estimated at around 0.99. In a
similar analysis, paper [12] estimates success probably in DYMO, on arbitrary
4-nodes networks, at around 0.94.

Putting together the results of Tables 1 and 2 we can see that on 4x3 toroidals
with perfect communication the reliability of the two protocols is quite similar.
However, in the presence of message loss, DYMO performs much better than
AODV. Actually, the higher is the loss rate the bigger is the gap between the
two protocols. More precisely, with a 10% loss rate DYMO performs 10% better
than AODV, whereas with a 30% loss rate DYMO performs 20% better then
AODV. It should be also noticed that the results of the simulations on DYMO are
more homogeneously distributed around the average probability, as it appears
from the smaller standard deviation.

4.2 Number of Route Entries

The second analysis proposed in [12] compares the performances of AODV and
DYMO by taking into account the capability to build other routes while estab-
lishing a route between two specific nodes. Routing tables are updated whenever

122 A. Dal Corso et al.

Table 3. Route quantity on 4x3 toroidals (26492 runs for each experiment)

loss 0% stand. dev. loss 10% stand. dev. loss 30% stand. dev.

AODV 62.30 2.79 60.89 3.11 54.79 3.48
DYMO 77.61 4.59 75.77 4.51 69.87 4.36

max 132 - 132 - 132 -

control messages are received. AODV does so only for the originator/destination
node and for the sender of each message; whereas DYMO uses path accumulation
to establish routes to all intermediate nodes of a path. This difference in design
between the two protocols should make a significative difference in the number
of routes computed by the two protocols. However, the analysis made in [12], for
all possible topologies up to 5-nodes, provides a quite surprising result: AODV
establishes more routes on average than does DYMO. The authors have obtained
their results by checking the property

E[<=10000,26492](max:total knowledge())

where the function total knowledge() counts the number of non-empty entries
appearing in all routing tables built along a run of the protocol, and the function
max returns the largest of these numbers among all runs of the simulation. This
calculation is done for all different configurations; the result of the analysis is
the average over all configurations. The reader should notice that this kind of
query is different from the previous one. It has the form E.., where the
letter “E” stands for value estimation, as the result of the query is a value and
not a probability. Since value estimation does not fix the statistical parameters
α and ε, from which it is determined the number of runs, we set 26492 runs for
our simulations to guarantee a 99% confidence.

We repeat the same analysis of [12] on our 4x3 toroidals by considering three
different loss rates. In total we did 4356 experiments, one for each configuration
with a different loss rate. The results of our analysis are reported in Tables 3.
Note that the last row shows the maximal number of routing entries which can
be involved during the routing processes: this number is n · (n − 1) because in
an n-node network each node has a routing table with n − 1 entries. Tables 3
shows that during the routing process DYMO establishes on average 24.5% more
routes than AODV, in the absence of message loss. This gap rises up to 27.5%
with a 30% loss rate. It is quite interesting to notice that in both protocols the
introduction of a loss rate has a relatively small influence on the average number
of established routes.

In the same analysis of [12], on arbitrary networks up to 5 nodes without
message loss, the results obtained depict a complete different picture: AODV
establishes on average 15% more routes than DYMO.

4.3 Optimal Routes

The results of the previous section tell us that in our 4x3 toroidals DYMO
is more efficient than AODV in populating routing tables while establishing

Statistical Model Checking of Ad Hoc Routing Protocols 123

Table 4. Höfner and McIver’s route quality on 4x3 toroidals (738 runs)

loss 0% stand. dev. loss 10% stand. dev. loss 30% stand. dev.

AODV 0.02% 0.14 1.65% 0.68 9.10% 2.50
DYMO 1.91% 1.24 6.03% 1.45 14.58% 1.69

routing requests. In this section we provide a class of experiments to compare
the ability of the two protocols in establishing optimal routes, i.e. routes of min-
imal length, according to the network topology. As explained in [12,16], all ad-
hoc routing protocols based on rreq-broadcast can establish non-optimal routes
when, for instance, the destination node does not forward the rreq-message.
This phenomenon is obviously more evident in a scenario with an unreliable
communication medium.

We start our analysis by replaying the same experiments of [12]. In particular,
we check the property

E[<=10000,26492](max:quality())

for all possible configurations and loss rates. Again, this makes in total 4356
experiments. Here, the function quality() compares the length of the estab-
lished routes with the length of the corresponding optimal routes. This is done
by considering all non-empty hops-entries of all routing tables of all nodes. More
precisely, for a given configuration, the property above returns the maximum
among 738 runs (to ensure a 95% confidence) of the average deviation from the
optimal route of all hops-entries. Then, as in [12], our experiment returns the
average on all possible configurations. And as in [12], the results of Table 4 say
that the established routes in AODV are significantly closer to optimal routes,
when compared to DYMO. The gap between the two protocols goes from a cou-
ple of percentage points, in the case of perfect communication, up to 5 points,
with a 30% loss rate. These results are not that surprising as the quality() func-
tion takes into consideration all and only non-empty entries, i.e. those entries
which have been involved somehow in the routing process. As described in the
previous section, DYMO, unlike AODV, fills routing entries of nodes which are
not directly involved in the routing request. However, there is no guarantee that
these entries are filled with optimal routes. Thus, if after two route requests
AODV fills 62 entries while DYMO fills 78 entries, then the function quality()
returns for AODV the maximum average deviation on 62 entries, while in DYMO
it returns the maximum average deviation on 78 entries. We believe that the two
protocols should be compared considering the same routing entries. In fact, the
extra 16 non-empty entries in DYMO are not necessarily optimal but they are
definitely closer to the optimal route when compared to the corresponding empty
entries of AODV. Thus, perhaps the quality() function proposed by Höfner and
McIver is not the best instrument to test which of the two protocols establish
the better route as a result of a route request.

As a consequence, we decided to reformulate our analysis on route quality
by making a different experiment. We checked the following property:

124 A. Dal Corso et al.

Table 5. Optimal routing on 4x3 toroidals (α = ε = 0.01)

loss 0% stand. dev. loss 10% stand. dev. loss 30% stand. dev.

AODV 0.980 0.042 0.696 0.119 0.280 0.161
DYMO 0.983 0.022 0.712 0.087 0.298 0.129

Pr[<=10000](<>(tester.final && emptybuffers() &&

art[OIP1][DIP1].hops==min path && art[OIP2][DIP2].hops==min path1)).

Here, the third and the fourth conditions require that two different route requests
are established. In fact, art[o][d].hops returns the number of hops necessary
to reach the destination node d from the originator o, according to o’s routing
table. Furthermore, we require this number to be equal to the length of the
corresponding optimal route (which has been previously computed).

In this experiment we are not interested in checking all non-empty routing
entries but only those which are directly involved in the two routing requests.
As usual this property is checked on all 4356 configurations with three different
loss rates. Notice that this time we ask for a probability estimation, so the result
is going to be a probability. The statistical parameters of our simulations are
α = ε = 0.01, as usual.

Table 5 says that the probability to establish optimal routes in the two rout-
ing protocols is very close. Actually, in the presence of message loss, there is a
small gap, between 0.01 and 0.02, in favour of DYMO. This gap would become
bigger if we would focus only on the optimality of the second route request,
which is lauched slightly after the first one. This is because DYMO works better
then AODV when routing tables are non completely empty.

5 Conclusions, Related and Future Work

The formal analysis of MANETs and their protocols is challeging and go beyond
the usual requirements for standard network protocols. In particular, the formal
verification of ad hoc routing protocols received a lot of attention from the formal
methods community [2,3,5,10–12,14,15].

Our work has been strongly inspired by a recent comparison of AODV and
DYMO on arbitrary 5-node networks, in the ideal case of perfect communica-
tion [12]. In that analysis the DYMO protocol does not seem to perform better
than the ten years older AODV protocol. In our opinion, some of the negative
results of [12] about the performances of DYMO are due to the fact that 5-
node networks might be too small (or scarsely connected) to allow DYMO to
beneficiate of path accumulation.

In our paper we have carried on the analysis of [12] on 4x3 toroidals with pos-
sible lossy communication. We have extended the models of [12] to our setting
and obtained a network of probabilistic timed automata [7] which has been used
for doing Statistical Model Checking within the UPPAAL toolset [8] (release
4.1.19, July 2014). As a main result, in contrast with the results of [12], we have

Statistical Model Checking of Ad Hoc Routing Protocols 125

showed that on 4x3 toroidals the performances of DYMO appear to be signifi-
cantly better than those of AODV. In particular, the probability to satisfy a route
request in DYMO is significantly higher than in AODV in the presence of mes-
sage loss: DYMO performs up to 20% better than AODV, with a 30% loss rate.
In the quantitative analysis DYMO performs at least 24% better than AODV,
with both loss rates. Again, the gap between the two protocols becomes larger
when increasing the loss rate. Finally, the quality analysis of the established
routes is a bit more delicate. We believe that the function quality() designed
in [12] is not appropriate to estimate the quality of the requested routes, because
it gives the average deviation of all non-empty entries. So, we have proposed a
different query which estimates the deviation from the optimal route of the paths
obtained from the required route requests. The results say that both protocols
are pretty good in finding optimal routes with very small differences, depending
on the loss rate. Notice that our quality analysis starts always from scratch, with
empty routing tables. We conjecture that in a scenario where routing tables are
non-empty DYMO will do better than AODV, also in term of route quality.

As in [12] we have assumed stationary networks. It would be interesting to
compare the two protocols in a scenario with node mobility, along the lines of
the work done in [11]. Moreover, we would like to extend our analysis to sparse
grids affected by an increasing number of node and/or link failures. It would be
interesting to check whether the robustness of DYMO makes a difference in such
a kind of networks.

In order to study bigger systems with an higher confidence, paper [4] proposes
a distributed implementation of UPPAAL SMC. We are planning to employ this
approach to extend our results to bigger networks.

Acknowledgments. We thank Giacomo Annaloro and Marco Campion for their pre-
liminary experiments on 7x7 toroidals. Annaloro and Campion also found some minor
errors in the SMC-Uppaal models of [12], as pointed out in Section 3. We thank the
anonymous referees for their constructive comments.

References

1. Behrmann, G., David, A., Larsen, K.G., H̊akansson, J., Pettersson, P., Yi, W.,
Hendriks, M.: UPPAAL 4.0. In: International Conference on the Quantitative Eval-
uation of Systems (QEST), pp. 125–126. IEEE Computer Society (2006)

2. Benetti, D., Merro, M., Vigano, L.: Model checking ad hoc network routing proto-
cols: Aran vs. endairA. In: 8th IEEE International Conference on Software Engi-
neering and Formal Methods (SEFM), pp. 191–202. IEEE Computer Society (2010)

3. Bhargavan, K., Obradovic, D., Gunter, C.: Formal verification of standards for
distance vector routing protocols. Journal of the ACM 49, 538–576 (2002)

126 A. Dal Corso et al.

4. Bulychev, P., David, A., Guldstrand Larsen, K., Legay, A., Mikučionis, M., Bøgsted
Poulsen, D.: Checking and distributing statistical model checking. In: Good-
loe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226, pp. 449–463. Springer,
Heidelberg (2012)

5. Chiyangwa, S., Kwiatkowska, M.: A timing analysis of AODV. In: Steffen, M.,
Zavattaro, G. (eds.) FMOODS 2005. LNCS, vol. 3535, pp. 306–321. Springer,
Heidelberg (2005)

6. Clausen, T., Jacquet, P.: Optimized Link State Routing Protocol (OLSR), rFC
3626 (2003)

7. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B., van Vliet, J.,
Wang, Z.: Statistical model checking for networks of priced timed automata. In:
Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919, pp. 80–96.
Springer, Heidelberg (2011)

8. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Wang, Z.: Time for statistical
model checking of real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 349–355. Springer, Heidelberg (2011)

9. Edenhofer, S., Höfner, P.: Towards a rigorous analysis of AODVv2 (DYMO). In:
IEEE International Conference on Network Protocols (ICNP), pp. 1–6. IEEE Com-
puter Society (2012)

10. Fehnker, A., van Glabbeek, R., Höfner, P., McIver, A., Portmann, M., Tan, W.L.:
Automated analysis of AODV using UPPAAL. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 173–187. Springer, Heidelberg (2012)

11. Höfner, P., Kamali, M.: Quantitative analysis of AODV and its variants on dynamic
topologies using statistical model checking. In: Braberman, V., Fribourg, L. (eds.)
FORMATS 2013. LNCS, vol. 8053, pp. 121–136. Springer, Heidelberg (2013)

12. Höfner, P., McIver, A.: Statistical model checking of wireless mesh routing pro-
tocols. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871,
pp. 322–336. Springer, Heidelberg (2013)

13. Johnson, D.B., Maltz, D.A.: Dynamic Source Routing in Ad Hoc Wireless Net-
works. Kluwer Acad. Pub. (1996)

14. Liu, S., Ölveczky, P.C., Meseguer, J.: A framework for mobile Ad hoc networks in
real-time maude. In: Escobar, S. (ed.) WRLA 2014. LNCS, vol. 8663, pp. 162–177.
Springer, Heidelberg (2014)

15. Merro, M., Sibilio, E.: A calculus of trustworthy ad hoc networks. Formal Aspects
of Computing 25(5), 801–832 (2013)

16. Miskovic, S., Knightly, E.: Routing primitives for wireless mesh networks: design,
analysis and experiments. In: IEEE International Conference on Computer Com-
munications (INFOCOM), pp. 2793–2801. IEEE Computer Society (2010)

17. Perkins, C., Belding-Royer, E., Das, S.: Ad-hoc on-demand distance vector
(AODV). RFC 3561 (Experimental) (2003). http://www.ietf.org/rfc/rfc3561

18. Perkins, C., Chakeres, I.: Dynamic MANET on-demand (AODVv2) routing. IETF
Internet Draft (2012, Work in Progress)

19. Perkins, C.E., Bhagwat, P.: Highly dynamic destination-sequenced distance-vector
routing (DSDV) for mobile computers. In: Conference on Communications Archi-
tectures, Protocols and Applications (SIGCOMM), pp. 234–244 (1994)

20. Sen, K., Viswanathan, M., Agha, G.: VESTA: A statistical model-checker and
analyzer for probabilistic systems. In: International Conference on the Quantitative
Evaluation of Systems (QEST), pp. 251–252. IEEE Computer Society (2005)

21. Younes, H., S.: Verification and Planning for Stochastic Processes with Asyn-
chronous Events. Ph.D. thesis, Carnegie Mellon University (2004)

http://www.ietf.org/rfc/rfc3561

Efficient Guiding Strategies for Testing
of Temporal Properties of Hybrid Systems

Tommaso Dreossi1(B), Thao Dang1, Alexandre Donzé2, James Kapinski3,
Xiaoqing Jin3, and Jyotirmoy V. Deshmukh3

1 Verimag, Gières, France
{tommaso.dreossi,thao.dang}@imag.fr
2 University of California, Berkeley, USA

donze@berkeley.edu
3 Toyota Technical Center, Ann Arbor, USA

{james.kapinski,xiaoqing.jin,jyotirmoy.deshmukh}@tema.toyota.com

Abstract. Techniques for testing cyberphysical systems (CPS) currently
use a combination of automatic directed test generation and random
testing to find undesirable behaviors. Existing techniques can fail to effi-
ciently identify bugs because they do not adequately explore the space
of system behaviors. In this paper, we present an approach that uses the
rapidly exploring random trees (RRT) technique to explore the state-
space of a CPS. Given a Signal Temporal Logic (STL) requirement, the
RRT algorithm uses two quantities to guide the search: The first is a
robustness metric that quantifies the degree of satisfaction of the STL
requirement by simulation traces. The second is a metric for measuring
coverage for a dense state-space, known as the star discrepancy measure.
We show that our approach scales to industrial-scale CPSs by demon-
strating its efficacy on an automotive powertrain control system.

1 Introduction

Model-Based Development (MBD) for cyberphysical systems (CPS) is a paradigm
based on an end-to-end use of high-level executable models of physical systems
interacting with software. These models facilitate a wide array of design and anal-
ysis techniques such as accurate simulation, control design, test generation, and
code generation. This allows validating the behavior of the CPS early in develop-
ment cycles, which not only enhances product reliability but also brings significant
cost savings.

Techniques for testing CPSs typically employ a combination of automatic
directed test generation and random testing [21,24] to detect undesirable behav-
iors. The prevalent practice is to use coverage metrics such as Modified-Condition
Decision Coverage (MCDC) inspired from software testing [24]. Such metrics
help quantify the degree to which the models of software components of the
CPS (typically embedded/control software) have been tested. Models of CPS,
however, often contain physics-based models (also called plant models) tightly
coupled with the models of embedded software. In contrast to models of control
c© Springer International Publishing Switzerland 2015
K. Havelund et al. (Eds.): NFM 2015, LNCS 9058, pp. 127–142, 2015.
DOI: 10.1007/978-3-319-17524-9 10

128 T. Dreossi et al.

software (that are akin to standard computer programs), plant models typically
represent behaviors that evolve over continuous time and state-space. Existing
code-coverage metrics are thus not applicable when reasoning about the “cov-
erage” of the possibly infinite state-space of a CPS. Furthermore, the idea of
using temporal logic to specify behavioral specifications of CPSs has been gain-
ing traction [12,17,25]. Existing directed testing tools are inadequate as they
typically try to generate test inputs to satisfy code-coverage criteria or inputs
to violate static assertions in the model [21,24].

In this paper, we propose a testing-based approach that hopes to fill these
two lacunae. It builds on two recent results: the first is a hybrid systems test
generation technique that is based on the rapidly exploring random trees (RRT)
algorithm and guided by the star-discrepancy coverage measure [6]. The other
is a technique for robust monitoring of properties expressed in Signal Temporal
Logic (STL) [8,9]. The combination of coverage and robustness analysis allows
increasing the effectiveness of generated test suites in terms of error detection.

Another goal of this work is to create a tool that supports industrial CPS
models by considering modeling environments that are prevalent in industry,
such as Simulink R©. Simulink has become a de facto standard in the automotive
engine controls domain. It is used as an MBD platform to perform system mod-
eling, simulation, and automatic code generation. Tools that can identify design-
bugs in Simulink models offer a significant benefit over testing-based techniques,
as the cost of addressing problems during the later stages of development is
significantly greater than at the modeling stage.

Our contribution can be summarized as follows. Given a user-provided tem-
poral logic specification ϕ, our technique can automatically identify examples of
system behaviors that falsify ϕ. Our method uses an RRT algorithm, guided by
a combination of two metrics: a metric quantifying state-space coverage and a
metric quantifying the robust satisfaction degree of the given specification. We
provide experimental results that compare the performance of our implementa-
tion with the falsification tool S-TaLiRo.

Related Work. Our technique brings together two lines of work. The first is
the development of efficient sampling-based exploration algorithms. The use of
Rapidly-exploring Random Trees (RRT) has been popularized in the context of
path planning in robotics [14,18] and applied and extended later for falsification
of safety properties, using the observation that the latter reduces to finding a
path from an initial state to some unsafe state [1,5,15,23].

The second line of work is falsifying temporal specifications on CPS models.
This is a very active area of research, and tools based on search guided by
stochastic and nonlinear optimization (as implemented in the tools S-TaLiRo [2]
and Breach [7]) have been already applied in an industrial context to Simulink
models [10,12]. There are two key differences between falsification tools and
our approach. First, S-TaLiRo and Breach essentially assume a parameterized
representation of input signals, and at the beginning of a simulation run, fix a
valuation for the parameters.

By contrast, our RRT-based algorithm allows the flexibility to change input
values based on robustness values of a partial system trajectory; in Section 5,
we demonstrate how this flexibility leads to superior falsification performance

Efficient Guiding Strategies for Testing of Temporal Properties 129

compared to S-TaLiRo for some examples. The second difference is that falsi-
fication tools typically do not measure the coverage of the hybrid state-space
by the set of test inputs explored, while our approach uses the star-discrepancy
based coverage metric to quantify coverage.

The dual of falsification, the problem of control with temporal logic specifi-
cations, has been considered recently [13,16]. The work in [4] is similar to our
work, in that RRT algorithms are considered to derive control inputs enforcing
temporal logics goals. However, most of the work in this area assumes either
simpler (linear) dynamical models, or simpler specification formalisms such as
LTL. To the best of our knowledge, our work is the first to consider the problem
of STL falsification based on a modified RRT algorithm.

2 Preliminaries

2.1 Dynamical System Model

We assume that a system model M is specified as a gray-box, that is, we assume
we know qualitative information about M (e.g., the number of state variables)
but we do not know detailed information (e.g., the closed-form analytic represen-
tation of system dynamics). We assume that the underlying system described by
the gray-box is a continuous-time hybrid system. We also assume that the system
is provided with a simulator that takes as input discrete-time input sequences,
and returns discrete-time output sequences.

The system model M is defined as a tuple (X ,U , sim), where X is a finite or
infinite set of states, U is a finite or infinite set of input values. Let x denote a
function that maps a given time point t over a given time domain to the state
x(t) of M at time t; we also call x as the state variable. Let u denote a function
mapping a given time point t to the input value u(t) ∈ U ; we also call this
function an input signal. The function sim maps a state and an input at a given
time tk, i.e., x(tk) and u(tk), and a rational time-step hk > 0, to a new state
at time tk+1 = tk + hk. In other words, M can be viewed as a nonautonomous
discrete-time dynamical system, with the update function given by sim:

x(tk+1) = sim(x(tk),u(tk), hk) (1)

In general, X can be a product of n different domains (such as the Boolean
{true, false} domain, Z, R, etc.). We say that the state dimension of M is
n. Similarly, U can be a product of m different input domains, and the input
dimension is called m.

A simulation trace of the model M is defined as a sequence of times and
pairs of state and input values:

(t0,x(t0),u(t0)) , (t1,x(t1),u(t1)) , . . . , (tN ,x(tN),u(tN))

where ∀i : x(ti+1) = sim(x(ti),u(ti), hi), and ti+1 = ti + hi.
We stress that we do not require the function sim to be known in an analytic

or symbolic form, but assume that there is a simulator that returns the states
computed by sim. Formally, a simulator is a program that, given an initial time

130 T. Dreossi et al.

t0, an initial state value x(t0), a sequence of non-zero time-steps h0, . . . , hN , and
a sequence of input values u(t0), . . . ,u(tN) is able to compute the corresponding
simulation trace of M.

In the case of Simulink models, the simulator can be provided with a fixed
time step hi. Simulation traces are computed by performing numerical integra-
tion of the differential (or difference) algebraic equations corresponding to the
continuous or hybrid dynamical systems that the models describe.

Simulator Assumptions. We assume that the inputs of M are controllable by
the user and the full state of M is observable. We also assume that it is possible
to reset any stateful element of the model to a permissible value in X . These
assumptions are meaningful in the context of model-based testing as they allow a
user or a test program to start a simulation trace from an arbitrary initial state.
Note that, in theory, our technique could be applied to a testing scenario, where
the result of sim is provided by performing a particular test case. While our
assumptions are plausible for this case, they would be quite difficult to enforce,
as observing and resetting the state of the system is often difficult or impossible
in a testing scenario.

2.2 Signal Temporal Logic

We require a formal language to specify how a model M is expected to behave
and employ Signal Temporal Logic (STL) for this purpose. STL was proposed
in [20] as a specification language for properties of signals (i.e., functions from a
time domain to some domain of values). In the following we present the syntax
and semantics of STL for a continuous time domain (R+

0). In practice, STL
semantics have to be adapted to discrete time signals (such as the simulation
traces of a system M) on a dense time domain by use of linear interpolation
(i.e., for t between tk, tk+1, we define x(t) by linear interpolation between x(tk)
and x(tk+1)).

An STL formula is formed of atomic predicates connected with Boolean and
temporal operators. Atomic predicates can be reduced to inequalities of the form
μ = f(x) ∼ 0, where f is a scalar-valued function over the signal x, ∼∈ {<,≤
,≥, >,=, �=}. Temporal operators are “always” (denoted as �), “eventually”
(denoted as ♦) and “until” (denoted as U). Each temporal operator is indexed
by intervals of the form (a, b), (a, b], [a, b), [a, b], (a,∞) or [a,∞) where each of
a, b is a non-negative real-valued constant, and a < b. If I is an interval, then an
STL formula is written using the following grammar:

ϕ := 	 | μ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 UI ϕ2

The always and eventually operators are defined as follows: �Iϕ � ¬♦I¬ϕ,
♦Iϕ � 	 UI ϕ. When the interval I is omitted, we use the default interval of
[0,+∞). The semantics of STL formulas are defined informally as follows. The
signal x satisfies f(x) > 0 at time t (where t ≥ 0) if f(x(t)) > 0. It satisfies
ϕ = �[0,2) (x − 1 > 0) if for all time 0 ≤ t < 2, x(t) − 1 > 0. The signal x1

satisfies ϕ = ♦[1,2) x1 + 0.5 > 0 iff there exists time t such that 1 ≤ t < 2 and
x1(t) > −0.5. The two-dimensional signal x = (x1, x2) satisfies the formula ϕ
= (x1 > 0) U[2.3,4.5] (x2 < 0) iff there is some time t where 2.3 ≤ t ≤ 4.5 and
x2(t) < 0, and ∀t′ in [2.3, t), x1(t′) is greater than 0.

Efficient Guiding Strategies for Testing of Temporal Properties 131

Quantitative Semantics. We define a quantitative semantics of STL as a function
ρ such that the sign of ρ(ϕ,x, t) determines whether (x, t) satisfies ϕ and its
absolute value estimates the robustness of this satisfaction. A common way of
defining such functions, as presented in [8], is as follows. For a predicate μ =
x > 2, one can simply use the value x(t) − 2 as a robustness estimate. For the
conjunction of two formulas ϕ = ϕ1 ∧ ϕ2, with robustness ρ1 and ρ2, we can use
ρ = min(ρ1, ρ2). For ♦[0,2] (x − 1 > 0), the robustness at time 0 can be estimated
by the maximum for t ∈ [0, 2] of x(t) − 1.

3 Coverage-Based Testing

The original RRT algorithm is a technique for quickly exploring the state space
for systems with differential constraints [19]. In this section, we recall the gRRT
version of RRT, which is a testing approach used to maximize state space cover-
age [6]. The gRRT algorithm stores the visited states in a tree, the root of which
corresponds to the initial state. The construction of the tree is summarized in
Algorithm 1.

We will now present how the algorithm is applied to a Simulink model. The
procedure takes as input a Simulink model M, an initial state value xinit ∈ X ,
and an iteration limit kmax . The function sample samples a goal-state xgoal from
X . The goal-state is intended to indicate the direction towards which the tree
is expected to evolve. Then, a starting state xnear is determined as a neighbor
of xgoal using some predefined distance. The point xnear is expanded towards
xgoal as follows:

– The function findInput is used to select a sample from the input set u ∈ U .
This can be performed by randomly selecting a point in U .

– The initial condition for M is set to xnear , and a simulation is performed for
h seconds using the input u. A new edge from xnear to xnew , labeled with
the associated input u, is then added to the tree.
Unlike the original RRT algorithm, the goal state sampling in the gRRT

algorithm is not uniform, and the function sample is used to guide the exploration
to improve the star-discrepancy coverage, which we define below.

3.1 Star-Discrepancy Coverage

The star discrepancy is a notion in equidistribution theory (see for example [3])
that has been used in quasi-Monte Carlo techniques for error estimation. Let P
be a set of k points inside B = [l1, L1] × . . . × [ln, Ln] ⊂ R

n. Let p = (β0, . . . , βn)
be a point inside B, this point together with the bottom left vertex of B forms a
subbox J = [l1, β1]× . . .× [ln, βn]. The local discrepancy of the point set P with
respect to the sub-box J is:

D(P, J) =
∣∣∣A(P, J)

k
− vol(J)

vol(B)

∣∣∣ (2)

where A(P, J) is the number of points of P that are inside J , and vol(J) is the
volume of the box J . We use J to denote the set of all subboxes J such that

132 T. Dreossi et al.

Algorithm 1. The gRRT Algorithm
1: function gRRT(M,xinit ,kmax ,h)
2: k ← 0; T .init(xinit)
3: repeat
4: xgoal ← T .sample()
5: xnear ← T .neighbor(xgoal)
6: u ← T .findInput(xnear ,xgoal)
7: xnew ← sim(xnear ,u, h)
8: T .addState(xnew ,u)
9: k ← k + 1

10: until k ≥ kmax

11: end function

Algorithm 2. The Rrt-Rex Algorithm
1: function Rrt-Rex(M,xinit ,ϕ,kmax , h)
2: k ← 0; T .init(xinit)
3: repeat
4: xgoal ← T .sample()
5: xnear ← T .neighbor(xgoal)
6: u ← T .findInput(xnear ,xgoal)
7: xnew ← sim(M, xnear , u, h)
8: traj ← T .getTrajectory(xnew)
9: v ← ρest(traj , ϕ)

10: T .addState(xnew ,u,v)
11: k ← k + 1
12: until (v < 0) or (k ≥ kmax)
13: end function

li ≤ βi ≤ Li for each i ∈ 1, . . . , n. The star discrepancy of a point set P with
respect to the box B is defined as:

D∗(P,B) = sup
J∈J

D(P, J). (3)

The star discrepancy of a point set P with respect to a box B satisfies 0 <
D∗(P,B) ≤ 1. We define the coverage of P as γ(P,B) = 1−D∗(P,B). Intuitively,
the star discrepancy is a measure for the irregularity of a set of points. A large
value D∗(P,B) means that the points in P are not distributed well over B.

We use the star discrepancy to evaluate the coverage of a set of states. Since
there is no efficient way to compute the star discrepancy, we approximate it with
an upper and lower bound. The estimation is based on a finite box partition, C,
of the box B (see [6] for more detail). Below, we describe how this information is
used to guide the exploration of the system behaviors to the elements of C that
are not as well explored as other elements.

4 Combining Coverage and Robustness

In this section we show how to combine the robustness and coverage information
to guide the test generation process. To guide the exploration towards the states
violating the property, robustness information can be used to select a starting
state with a low robustness value; however, this objective can result in poor
performance, as the initial robustness values can lead the exploration to some
local positive minima. The star discrepancy coverage information can be used to
ameliorate this problem by steering the algorithm to other parts of the feasible
space. Intuitively, the algorithm uses the robustness to bias towards critical
behaviors and the coverage to explore freely in the search space.

Note that while the coverage is defined for a set of states, robustness is
defined for a trace. Each state in the RRT tree stems from a unique trace from
the initial state (at the root of the tree). This trace may be incomplete, that is,
the trace is not long enough to determine the true robustness value; however,
a “predictive” value can be estimated and used for the purpose of guiding the

Efficient Guiding Strategies for Testing of Temporal Properties 133

search. The estimation will be discussed in Section 4.2. When a trace is complete,
the robustness value indicates whether it satisfies the STL property in question.

We now describe the sampling method employed by the function sample in
Algorithm 1. The search space is partitioned into a set C of rectangular regions
called cells. Each cell c is associated with a local star discrepancy value, denoted
by D(c), determined by the geometric distribution of the current set of states
with respect to the cell (see the definition (2)). When a new state is added, the
estimates for the affected cells are updated.

4.1 Guiding Strategies

Using the above information, the main steps of the goal state sampling process
are as follows:

– Step 1: a goal cell cgoal ∈ C is selected, based on the coverage estimate;
– Step 2: a goal state xgoal is randomly selected from inside the chosen cell

cgoal.

The goal cell selection in Step 1 is performed by defining a probability distri-
bution for the cells in the partition. We create a discrete probability distribution
by assigning a probability value to each c based on the estimated star discrep-
ancy. Let C be the current set of cells. For each cell we define a weight:

w(c) = s(ρ(c))

where s(ρ(c)) = 1
1+e−ρ(c) is the sigmoid function. A goal cell is then sampled

according to the following probability distribution:

Prob[cgoal = c] =
w(c)∑

c∈C w(c)
.

The computation of the neighbor is biased by the robustness. Indeed, we
can choose m nearest neighbors of the xgoal and then pick the one with the
lowest robustness estimate. So the robustness plays a role in the selection of the
neighbor which determines the initial state for the next iteration.

4.2 Defining Branch Robustness

The syntax and semantics of STL introduced in Section 2.2 are defined for traces
with a possibly unbounded time horizon. In practice, one usually assumes that
simulation time is long enough to estimate the satisfaction of a property. How-
ever, this assumption cannot be made in our case since we construct a tree of
incomplete trajectories and estimate the satisfaction of a property for each node
of the tree corresponding to incomplete trajectories. In this section, we introduce
an interval quantitative semantics which is well-defined even for partial traces.

Consider the simple property ϕ ≡ �[10,20](x > 1) and assume that we simu-
lated the system until some time Tsim. There can be three situations: Tsim < 10,
10 ≤ Tsim < 20 or 20 ≤ Tsim. In the first case, the trace does not con-
tain any information relevant to the property, hence its satisfaction cannot be

134 T. Dreossi et al.

determined in any way. In the last case, the trace contains all the information
needed for computing the Boolean and quantitative satisfaction. In the mid-
dle case, we cannot know what happens between Tsim and 20s, but the values
of x between 10s and Tsim provide some information. For instance, we have
ρ(ϕ, x, t) = mint∈[10,20](x(t) − 1) ≤ mint∈[10,Tsim](x(t) − 1), hence the minimum
of x(t) − 1 in [10, Tsim] is an upper bound of ρ(ϕ, x, t). If this upper bound is
negative, we know that the property is falsified, even though we do not know the
actual robust satisfaction value. Similarly, if ϕ ≡ ♦[10,20](x > 1), then we can
easily deduce that the maximum of x(t) − 1 over [10, Tsim] is a lower bound of
ρ(ϕ, x, t). If it is positive, we know already that no matter what happens between
Tsim and 20, the property will be satisfied. The computation of upper and lower
bounds for ρ can be done automatically by induction on formulas. Let x be a
signal defined on R

+, x|Tsim its restriction to [0, Tsim] for some Tsim > 0 and ϕ
an STL formula.

Formally, we define the function ρ̄ for x|Tsim and an arbitrary STL formula
as:

ρ̄(μ,x|Tsim , t) = f(x(t)) if t ≤ Tsim, +∞ otherwise. (4)

ρ̄(¬ϕ,x|Tsim , t) = −ρ(ϕ,x|Tsim , t) (5)

ρ̄(ϕ1 ∧ ϕ2,x|Tsim , t) = min(ρ̄(ϕ1,x|Tsim , t), ρ̄(ϕ2,x|Tsim , t)) (6)

ρ̄(ϕ1U[a,b]ϕ2,x|Tsim , t) =

sup
t′∈[t+a,t+b]

(
min(ρ̄(ϕ2,x|Tsim , t′), inf

t′′∈[t,t′)
ρ̄(ϕ1,x|Tsim , t′′)

)
. (7)

Then ρ satisfies the same self inductive rules except that +∞ is replaced by
−∞ in (4) and ρ̄ and ρ are switched in (5). The following lemma is true by
construction:

Lemma 1. Define the time horizon T (ϕ) of ϕ inductively by T (μ) = 0, T (¬ϕ) =
T (ϕ), T (ϕ1, ϕ2) = max(T (ϕ1), T (ϕ2)) and T (ϕ1U[a,b]ϕ2) = max(T (ϕ1), T (ϕ2))+
b. Then

Tsim > 0 ⇒ ρ̄(ϕ,x|Tsim
, 0) ≥ ρ(ϕ,x, 0) ≥ ρ(ϕ,x|Tsim

, 0) (8)

Tsim ≥ T (ϕ) ⇒ ρ̄(ϕ,x|Tsim
, 0) = ρ(ϕ,x|Tsim

, 0) = ρ(ϕ,x, 0) (9)

From (8), it follows that if ρ̄ is negative for x|Tsim , we can conclude that
x falsifies ϕ. Similarly, a non-negative ρ for x|Tsim means that x satisfies ϕ,
which means we can stop expanding the tree from x|Tsim . From (9), it follows
that if a trace issued from a node in the exploration tree is longer than T (ϕ),
its satisfaction status is fully determined. If it falsifies ϕ, then we are done,
otherwise, the branch issued from this node does not need to be explored any
further.

In practice, it is often the case that ρ̄ and/or ρ do not provide any useful
information (e.g., if they are equal to +∞ or −∞). For guiding purposes, we
use an intermediate estimate obtained by computing ρ on the unbounded signal
defined by constant extrapolation of the last value. Since such extrapolation does
not provide any guarantee on the Boolean satisfaction of ϕ, we use ρ only for
guiding, ρ̄ to determine falsification and ρ to determine definite satisfaction.

Efficient Guiding Strategies for Testing of Temporal Properties 135

4.3 Algorithm for Testing a Simulink Model Against an STL
Formula

We describe an implementation of our approach called Rrt-Rex (RRT Robust-
ness-guided EXplorer), which uses Simulink as a simulation engine. The pseu-
docode in Algorithm 2 summarizes the new algorithm. The algorithm receives
as input a Simulink model M, an STL formula ϕ, and the maximum number of
iterations kmax ∈ N. The algorithm iterates until a negative robustness estimate
is found, i.e., a trace that does not satisfy the property is discovered, or the
maximum number of iterations is reached. In this algorithm we use a fixed time
step h for simplicity of presentation but it is possible to use a variable time step
for more accurate simulation performance.

In Rrt-Rex, as the sim function, we use the numerical differential equation
solvers within Simulink to produce an updated state xnew . This is performed
by first resetting the solver state to xnear and then setting the input to u; the
solver then provides a solution over h seconds. For the Simulink tool, this is
computationally costly, due to a time-consuming model-compilation step that
is performed before each simulation is computed. This is an inefficiency in the
solver implementation, but it does not reflect a fundamental drawback of our
technique.

Our implementation of the function neighbor uses the Approximate Nearest
Neighbors (ANN) library [22]. The ANN library can quickly identify members
of the elements of T in close proximity to a given point xnear . Also, we use a
part of HTG (Hybrid Test Generation Tool [6]) to build and maintain the T
structure, as well as to implement the function sample (sample uses coverage
to bias a randomized selection of xgoal , as in Algorithm 1). The Breach [7]
tool is used to implement the ρest function, which results in branch robustness
estimates v = (ρ, ρ̄) based on the trajectory traj and the specification ϕ. The
function addState primarily adds a new point to the RRT T ; it additionally
updates the partitions in the tree with the star-discrepancy information as well
as the robustness estimate. The updated star-discrepancy information is used
by the sample function, and both the star-discrepancy and robustness estimates
are used by neighbor to select a point in the tree (i.e., in addition to proximity,
coverage and robusntess affect which point xnear is selected). All of the T -
related functions use the implied partition C. We note that this partition can
be dynamically refined for more accurate star discrepancy estimation, faster
neighbor computation, and better cell robustness estimation.

5 Case Studies

This section discusses case studies of the application of our technique. We con-
sider four case studies: an academic model of a system that measures how much
longer a signal remains positive than it remains negative, a mode-selection exam-
ple that uses a number of Boolean connectives to determine an operating regime
and accordingly sets a reference value, an abstract model for the closed-loop
fuel-control in an internal combustion gasoline engine, and a closed-loop model
of the airpath in a diesel engine.

136 T. Dreossi et al.

ẋ1 = 0
ẋ2 = sign(x1)
τ̇ = 1
y = x2

τ ≥ Δ/
τ := 0
x1:= u

Fig. 1. Sampled polarity integrator system

For each model, we try to falsify a given STL requirement and compare the
performance of Rrt-Rex with a state-of-the-art falsification tool: S-TaLiRo.
S-TaLiRo uses robust satisfaction values of an MTL requirement computed on
complete simulation traces in iteration i to guide the choice of inputs and initial
conditions of the model in iteration i+1. This guidance is provided by stochastic
optimization algorithms such as simulated annealing, cross-entropy, and ant-
colony optimization. Recall that S-TaLiRo chooses a fixed parameterization of
the input signal-space and at the beginning of each simulation picks a set of
valuations for the parameters to define the concrete input signals.

The results of the study are summarized in Table 1. Note that for each item
in the table, an average over 10 cases is reported. For the Falsified columns
(denoted Fals.), all of the 10 cases for each item were either falsified or not,
except for the footnoted item.

5.1 Sampled Polarity Integrator System (SPI)

A sampled polarity integrator is an academic model that highlights the advan-
tages of using intermediate robustness values as a search heuristic for guiding
the RRT search. As shown in Fig. 1, every Δ seconds, the system samples the
input u(t), and stores the value in state x1. We assume that u is a signal that
ranges over [−v, v] for some real number v. The state x2 evolves with rate −1 if
x1(t) < 0, and +1 if x1(t) > 0. Finally, the output of the system (denoted y) is
the state x2. We pick Δ = 1 for our experiment, and initial conditions x1(0) = 0,
x2(0) = 0, τ(0) = 0.

We introduce the following artificial safety requirement, where n, k are fixed
positive integers, k ∈ [−v, v], and n > k: �[0,nΔ](y < k). We assume the following
fixed parameterization of the input signals: u(t) = ui if (i − 1)Δ ≤ t < iΔ for
1 < i ≤ n, and ui ∈ [−v, v]. Each ui is called a control point. We observe
that in order to falsify the requirement, the required input u would have to be
positive at greater than �n+k

2 � control points. For a tool based on Markov-chain
Monte-Carlo based random testing techniques, the probability of at least �n+k

2 �
of n uniform-randomly chosen numbers in the interval [−v, v] being positive is
tiny (when k is comparable1 to n). For example, for k = 30, and n = 50, the
probability is about 10−5.

One of the Rrt-Rex heuristics is to pick multiple goal points and select one
based on lower branch robustness. The next step is then to perform a local opti-
mization in order to choose an input that drives the RRT towards the goal point.
1 One could use the (conservative) Chernoff bounds on the sum of binomial coefficients,

which yields the following bound on probability: exp
(

−k2

2n

)
.

Efficient Guiding Strategies for Testing of Temporal Properties 137

In this variant, in each step, the probability that Rrt-Rex selects a positive
input effectively exceeds that in the previous step (starting with a probability of
0.5 in the first step). Thus, as a result of the robustness-guided goal-point selec-
tion and local optimization, the probability that Rrt-Rex discovers a sequence
containing greater than n+k

2 positive values is much better than that for MCMC
techniques. This is reflected in the experimental results shown in Table 1. For the
results in the table, we use a time step of h = 1.0 seconds for the Rrt-Rex algo-
rithm over each of the various time horizons (50,200,500). For the associated
S-TaLiRo tests, the time horizon is equivalent to the dimension of the search
space explored by the falsification engine.

5.2 Mode-Specific Reference Selection Model (MRS)

Next, we consider a model that selects an operating regime based on the input
signals, and then sets a reference value based on the operating regime. The model
takes as input 9 signals u1, . . . , u9, where the range for each input in u1, . . . , u8,
is [0, 100], and the range for u9 is [−5, 5]. The model has two outputs, and we
consider it a violation if any one of the outputs is less than a specified bound
for that output. There are two discrete-time states for the model, the inputs
of which are connected to the output signals (i.e., the states do not affect the
model behaviors). We consider three requirements of the form:

�[τ,Thoz](yi > −ρi). (10)

In the above, we assume τ = 5 seconds, Th = 10 seconds, and ρ1 = 8,
ρ2 = 100 and ρ3 = 20. We use a slightly different version of the model for each
of the three requirements. Analyzing the structure of the models, we observe
that for each requirement, selection of the mode corresponding to the following
condition leads to the failing case:

∧
i∈[1..4]

((u2i(t) > 90) ∧ (u2i−1(t) < 10)) . (11)

We thus know that is is possible to falsify each of the requirements by set-
ting the appropriate input values, so as to enable the particular failing mode.
However, such a configuration is difficult to find since the probability of finding
an input at a given time t for which (11) is true is 10−8 (8 inputs, and for each
input there is a probability of 1

10 for choosing the right value for that input).
We select a time step of h = 2.5 seconds for the Rrt-Rex algorithm over the

10 second time horizon. For the associated S-TaLiRo tests, this corresponds to
4 decision variables per each of the 9 inputs (i.e., a 36 dimension search space).
As expected, neither Rrt-Rex nor S-TaLiRo were able to falsify any of the
requirements with their default configurations.

5.3 Fuel Control System (AFC)

Next we consider a closed-loop model of an automotive powertrain control (PTC)
subsystem. The system consists of two separate parts: (1) a plant model that

138 T. Dreossi et al.

Table 1. Results of comparison between RRT approach and S-TaLiRo toola

RRT S-TaLiRo
Model Spec. Fals. Time (sec) Iter. Fals. Time Iter.×Run

�[0,50](y < 20) yes 57.48 186.15 yes 104.95 1176.60
SPI �[0,200](y < 50) yes 421.24 492.31 no 1103.46 2000×10

�[0,500](y < 150) yes 2970.72 2251.01 no 9771.45 5000×10

�[5,10](yi > −8) no 376.79 5000 no 813.36 1000×10
MRS �[5,10](yi > −100) no 351.81 5000 no 997.80 1000×10

�[5,10](yi > −20) no 313.21 5000 no 905.93 1000×10

�[5,50](|λ| ≤ 0.05) yes 1091.76 171.34 no 5737.43 5000×10
AFC �[5,50](|λ| ≤ 0.02) yes 1751.58 305.93 no 6755.09 5000×10

♦[50,50](λrms ≤ 0.05) no 6359.22 1000 yes 928.97 10.00

�[1.1,50](x < 2) yes 14.23 2.3 yes 35.01 1
DAP �[1.1,50](x < 4) yes 155.55 15.3 yes 46.30 1.4

�[1.1,50](x < 6) yes/nob 416.38 40.0 yes 204.36 7.6

a Note that the experiments involving the DAP example were performed on an IntelR©

XeonR© dual core (2.13 GHz, 24GB RAM) machine running Windows 7. All other
experiments were performed on an IntelR© CoreTM2 Duo (2.40 GHz, 4GB RAM)
machine running the Windows 7 operating system.

b For this case, Rrt-Rex found falsifying traces 7 out of 10 times.

describes some key physical processes in an internal combustion engine, and (2)
a controller model that represents the embedded software used to regulate the
ratio of air-to-fuel (A/F) within the engine. A detailed description of this model
can be found in [11], section 3.1.; here, we only focus on features relevant to
this case study. The model has 7 continuous state variables (5 for the plant,
and 2 for the controller), a delay function2, 4 discrete modes of operation in the
controller, and two exogenous inputs. In this case study we focus on: (1) the plant
state λ denoting the measured, normalized A/F ratio, (2) a fixed engine speed
ω ∈ [900, 1100], which is treated as a parameter, and (3) the exogenous user input
θ representing the throttle angle command. We assume that θ(ti) ∈ [0, 61.2], and
is permitted to change value at a rate of h = 1.0 seconds.

We provide three requirements for the closed-loop model. The first two are
specified in (12). Here, ϕ1 specifies the bounds on the worst-case overshoot or
undershoot on λ, while ϕ2 characterizes the settling time on λ (time it requires
λ to return to a small neighborhood of the reference value λref after a pertur-
bation). In (13), we introduce the signal λrms to help measure the RMS error
between λ and λref . In the definition of λrms, we exclude model behaviors for an
initial τI seconds of time in order to discard transients in the startup mode and
2 A continuous-time delay is a function described by the input/output relation

y(t) = u(t − Δ) for some Δ ∈ R
≥0. Systems with delays pose a significant chal-

lenge to techniques such as Rrt-Rex, as they correspond to systems with infinite
state variables. We assume that we can simulate such systems, but do not assume
that we can measure the states associated with the delays.

Efficient Guiding Strategies for Testing of Temporal Properties 139

transients arising from a mode switch to the normal mode of operation. Note
that u(t) denotes the Heaviside step function. The third requirement (shown in
(14)) specifies the bounds on the RMS error incurred in the A/F ratio state in
the normal model of operation.

ϕ1 ≡ �[0,Th](|λ| ≤ 0.05) ϕ2 ≡ �[τ,Th](|λ| ≤ 0.02) (12)

λrms(t) =

√
1

t − τI

∫ t

0

(λ(τ) − λref)2 · u(t − τI)dτ (13)

ϕ3 ≡ ♦[Th,Th](λrms ≤ 0.05) (14)

In the above formulas, we select parameter values τ = 11 seconds and Th = 50
seconds, and we use a time step of h = 1.0 seconds for the Rrt-Rex algorithm. In
this study Rrt-Rex and S-TaLiRo present mixed results (see Table 1). Rrt-Rex
was able to falsify both the specifications 1) and 2) but not 3); however, S-TaLiRo
was not able to falsify the properties 1) nor 2), but found a counterexample for
the specification 3). The results support the theory that constructing input traces
incrementally, as is the case for Rrt-Rex, can offer performance benefits over
other approaches for some cases; however, such incremental approach may be a
drawback in some instances. For instance, specification 3) imposes a constraint
on a precise time instant rather then on a time interval. This does not provide
Rrt-Rex with incremental quantitative information that will lead to the failing
trace, which makes it difficult for Rrt-Rex to identify a falsifying instance.

5.4 Diesel Air-Path Model (DAP)

In this section, we consider an industrial closed-loop Simulink model of a pro-
totype airpath controller for a diesel engine. The model contains more than
3, 000 blocks. It has a detailed plant model and a controller with more than 20
lookup tables and function blocks containing customized Matlab functions and
legacy code. Moreover, more than half of these lookup tables are high dimen-
sional (greater than one dimension). One of the challenges is, due to the high
model complexity, obtaining simulation traces for this model is computationally
expensive.

For this case study, we choose a safety property specifying upper bounds
on the overshoot of a particular signal. This is represented by the following
STL formula: �[1.1,50](x < c). We select a time step of h = 5.0 seconds, and
compare the results of running Rrt-Rex and S-TaLiRo on this model, using
three different values for c (2, 4, and 6). These values for c are not realistic, in
the sense that the actual worst-case bounds on the system behavior are much
larger. We select these smaller bounds due to the significant computational costs
required to find falsifying traces using either Rrt-Rex or S-TaLiRo. The c values
we select are adequate to study the performance of the Rrt-Rex approach versus
S-TaLiRo as a function of the relative difficulty of the falsification task.

140 T. Dreossi et al.

Table 1 indicates the results of the experiments. For the c = 2 case, Rrt-Rex
is able to identify falsifying traces early in the simulation runs, and so explores
simulation runs that are significantly shorter in length than the 50 second time
horizon. By contrast, S-TaLiRo has to complete at least one simulation trace
over the 50 second time horizon to determine that a trace falsifies the property.
Since this requirement is easily falsified, Rrt-Rex is able to identify falsifying
traces by exploring a small number of short simulation traces. The result is that
Rrt-Rex performs better than S-TaLiRo for this case.

For the c = 4 and c = 6 cases, S-TaLiRo performs better than Rrt-Rex.
The reason for this is that the requirements are such that the robustness values
are sufficient to guide the global optimizer within S-TaLiRo directly to falsifying
traces. This is in contrast to the Rrt-Rex approach, which introduces a signif-
icant amount of randomness into the search. This additional randomness incurs
computational costs (due to the increased number of required simulations) that
are larger than those incurred by S-TaLiRo.

6 Conclusions

In this paper we proposed a testing-based technique to find bugs in CPS sys-
tems. Given a specification expressed in terms of an STL formula, the search
for an input sequence that causes the system to exhibit behaviors that violate
the formula (falsifying behaviors) is guided using a combination of two crite-
ria: the coverage of the system state space and the satisfaction robustness value
of the specification. The coverage indicates “how well” we are exploring the state
space of the system, while the robustness reflects “how much” the specification
is satisfied, giving us the numerical intuition of how far we are from falsifying the
formula. We incrementally build a simulation tree to best cover the state space,
favoring those branches that correspond to low robustness value (with respect
to the specification).

We implemented our framework in a prototype tool called Rrt-Rex, we
applied it to both academic and industrial models, showing its applicability to
practical systems, and we compared it with the S-TaLiRo tool.

Our experiments reveal that the relative performance of Rrt-Rex and S-
TaLiRo depends on the nature of the model and the associated specification. We
demonstrated that the incremental random Rrt-Rex search performs well on
system with large input spaces and long input sequence; however, the Rrt-Rex
approach is weak in the case of specifications defined of precise temporal instants.
This drawback suggests directions for future developments. In subsequent work,
we plan to study a dynamic exploration technique triggered by the formula itself,
where the sampling space from which Rrt-Rex selects the exploration directions
varies according to logical subformulas within the specification.

Efficient Guiding Strategies for Testing of Temporal Properties 141

References

1. Ahmadyan, S.N., Kumar, J.A., Vasudevan, S.: Runtime verification of nonlin-
ear analog circuits using incremental time-augmented rrt algorithm. In: Design,
Automation Test in Europe Conference Exhibition (DATE), pp. 21–26, March
2013

2. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool
for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011)

3. Beck, J., Chen, W.: Irregularities of Distribution. Cambridge Studies in Social and
Emotional Development. Cambridge University Press (1987)

4. Bhatia, A., Maly, M., Kavraki, E., Vardi, M.: Motion planning with complex goals.
IEEE Robotics Automation Magazine 18(3), 55–64 (2011)

5. Dang, T., Donzé, A., Maler, O., Shalev, N.: Sensitive state-space exploration. In:
CDC, pp. 4049–4054 (2008)

6. Dang, T., Nahhal, T.: Coverage-guided test generation for continuous and hybrid
systems. Formal Methods in System Design 34(2), 183–213 (2009)

7. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174,
pp. 167–170. Springer, Heidelberg (2010)

8. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued
signals. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS,
vol. 6246, pp. 92–106. Springer, Heidelberg (2010)

9. Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for STL. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 264–279. Springer,
Heidelberg (2013)

10. Fainekos, G., Sankaranarayanan, S., Ueda, K., Yazarel, H.: Verification of automo-
tive control applications using s-taliro. In: ACC (2012)

11. Jin, X., Deshmukh, J.V., Kapinski, J., Ueda, K., Butts, K.: Powertrain control
verification benchmark. In: HSCC (2014)

12. Jin, X., Donzé, A., Deshmukh, J., Seshia, S.: Mining requirements from closed-loop
control models. In: HSCC (2013)

13. Karaman, S., Frazzoli, E.: Linear temporal logic vehicle routing with applications
to multi-UAV mission planning. Int. J. of Robust and Nonlinear Control 21(12),
1372–1395 (2011)

14. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning.
Int. J. of Robotics Research 30(7), 846–894 (2011)

15. Kim, J., Esposito, J.M., Kumar, V.: An rrt-based algorithm for testing and
validating multi-robot controllers. In: RSS, pp. 249–256 (2005)

16. Kloetzer, M., Belta, C.: A fully automated framework for control of linear
systems from temporal logic specifications. IEEE Trans. Auto. Control 53(1),
287–297 (2008)

17. Kong, Z., Jones, A., Ayala, A.M., Gol, E.A., Belta, C.: Temporal logic inference
for classification and prediction from data. In: HSCC (2014)

18. LaValle, S.M.: Planning Algorithms, chap. 5. Cambridge University Press, Cam-
bridge, U.K. (2006). http://planning.cs.uiuc.edu/

19. Lavalle, S.M., Kuffner, J.J., Jr.: Rapidly-exploring random trees: progress
and prospects. In: Algorithmic and Computational Robotics: New Directions.
pp. 293–308 (2000)

20. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals.
In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS,
vol. 3253, pp. 152–166. Springer, Heidelberg (2004)

http://planning.cs.uiuc.edu/

142 T. Dreossi et al.

21. Mathworks, T.: Simulink design verifier. http://www.mathworks.com/products/
sldesignverifier/

22. Mount, D.M., Arya, S.: Ann: a library for approximate nearest neighbor searching.
http://www.cs.umd.edu/∼mount/ANN/

23. Plaku, E., Kavraki, L., Vardi, M.: Hybrid systems: from verification to falsification
by combining motion planning and discrete search. Formal Methods in System
Design 34(2), 157–182 (2009)

24. Systems, R.: Model based testing and validation with reactis, reactive systems inc.
http://www.reactive-systems.com

25. Yang, H., Hoxha, B., Fainekos, G.: Querying parametric temporal logic proper-
ties on embedded systems. In: Nielsen, B., Weise, C. (eds.) ICTSS 2012. LNCS,
vol. 7641, pp. 136–151. Springer, Heidelberg (2012)

http://www.mathworks.com/products/sldesignverifier/
http://www.mathworks.com/products/sldesignverifier/
http://www.cs.umd.edu/~mount/ANN/
http://www.reactive-systems.com

First-Order Transitive Closure Axiomatization
via Iterative Invariant Injections

Aboubakr Achraf El Ghazi(B), Mana Taghdiri, and Mihai Herda

Karlsruhe Institute of Technology, Karlsruhe, Germany
{elghazi,mana.taghdiri,herda}@kit.edu

Abstract. This paper presents an approach for proving the validity
of first-order relational formulas that involve transitive closure. Given
a formula F that includes the transitive closure of a relation R, our
approach can deduce a complete (pure) first-order axiomatization of the
paths of R that occur in F . Such axiomatization enables full automated
verification of F using an automatic theorem prover like Z3. This is
done via an iterative detection and injection of R-invariants —invariant
formulas with respect to R-transitions in the context of F . This paper
presents a proof for the correctness of the approach, and reports on its
application to non-trivial Alloy benchmarks.

Keywords: First-order relational logic · Transitive closure ·
Axiomatization · Specification · Verification · Alloy · SMT solving

1 Introduction

Many computational problems, especially those that encode manipulations of
linked data structures, can be efficiently specified in a relational first-order logic.
Alloy [16] is a popular such language that has been successfully used for spec-
ifying and checking several different systems for different purposes at both the
design and implementation level (see e.g. [5,17,24,26]). The transitive closure
(TC) operator is a crucial, powerful tool for encoding structure-rich systems.

While the Alloy Analyzer can efficiently check Alloy specifications within a
bounded scope, their full verification is a long-standing challenge. This is espe-
cially due to the known difficulty of reasoning about transitive closure —adding
transitive closure even to very tame logics makes them undecidable [15]. Due to
this undecidability, most attempts to verify the correctness of Alloy specifications
are based on interactive theorem proving (e.g. [1,12,25]).

In our previous work [8], we proposed to verify Alloy specifications by first
trying a fully automatic proof engine before switching to interactive theorem
proving. The automatic engine, described in [9], relies on an efficient, semi-
satisfiable1 translation of Alloy into the satisfiability modulo theories (SMT)
1 If the result is unsatisfiable, the input is unsatisfiable too.

c© Springer International Publishing Switzerland 2015
K. Havelund et al. (Eds.): NFM 2015, LNCS 9058, pp. 143–157, 2015.
DOI: 10.1007/978-3-319-17524-9 11

144 A.A. El Ghazi et al.

language, and is able to automatically provide (full) proofs of some non-trivial
Alloy specifications. Given the increasing capability of SMT solvers in handling
quantifiers [4,13,14], the success of our automatic engine is not surprising at
a first glance. However, given the fact that some of the proofs required tran-
sitive closure which causes undecidability, the success was thought-provoking.
Since transitive closure is not expressible in pure first-order logic, in [9], we used
an integer-based axiomatization. Although such axiomatization guaranties TC-
satisfiability —any model of the axiomatisation is a TC model— it is not gener-
ally sufficient for refuting proof obligations; one still needs the integer induction
(IND) principle. The latter claim roots in our experiments with Kelloy [25], an
interactive proof engine for Alloy specifications. We observed that most speci-
fications that require the transitive closure theory, need the IND principle and
have to be proven manually.

In this paper, we investigate the following questions: (1) when can the integer
based axiomatization of TC refute proof obligations without requiring the IND
principle? (2) for the logic fragment of question 1, can one use an integer-free
axiomatization? and (3) to refute a proof obligation outside the fragment of
question 1, what kind of integer-free axiomatization can be used?

Let F be a refutable first-order relational formula in which the semantics of
all symbols except for transitive closure are precisely encoded, and the transi-
tive closure of a relation R is encoded by an uninterpreted binary relation tcR.
To answer questions (1) and (2), we use a pure first-order, weak axiomatization
(WTC) which constrains tcR to a transitive relation containing R but not the
smallest one. We prove that WTC is complete for any negative transitive clo-
sure occurrence in the clause normal form (CNF) of F . Therefore, if the solver
(falsely) reports F as satisfiable modulo WTC, it is only because of positive tran-
sitive closure occurrences. To extend the WTC fragment and to answer question
(3), we introduce a technique which automatically detects relevant invariants
about the paths of tcR and adds them as additional assumptions to F . If any of
such invariants cause contradiction, F has been refuted and the process stops.
Otherwise, more invariants will be detected and added to F .

We applied our technique to a total of 20 Alloy benchmarks known to be
valid, all of which require the transitive closure theory for their proof. Out of
the 20 benchmarks 18 were successfully proven correct fully automatically using
our invariant detection technique.

2 Background

Let Σ = (Typ,�,Fun, α) be a typed signature consisting of a set of type symbols
Typ that always includes boolean (Bool) and integer (Int) types, a partial order
� over Typ, a set of function symbols Fun2, and a typing function α : Fun →
Typ+ that gives the type of each function symbol, i.e. α(f) = (T1, . . . , Tn) iff
f : T1 ×· · ·×Tn−1 → Tn. If Tn = Bool , function f can also be called a predicate
2 Certain interpreted functions (e.g. equality and logical connectives) are always

included and denoted in infix notation.

First-Order Transitive Closure Axiomatization via Iterative 145

and the notation f ⊆ T1 × · · · ×Tn−1 can be used alternatively. We assume that
for each type T ∈ Typ, there exists an infinite set of variables of type T denoted
by VarT . Variable sets are mutually disjoint and their union is denoted by Var .

Terms of the logic are built recursively from variables in Var , function sym-
bols in Fun and quantifiers. The type of a term is determined recursively based
on the types of its variables and functions. Function symbols with arity 0 are
constants, and denoted by the set Con. Terms without variables are ground
terms, and denoted by Gr . The notation t[x1, . . . , xn] denotes that the variables
x1, . . . , xn (for short x1:n) occur in t. For two terms t and s and a variable x,
the notation t[s/x] denotes the result of substituting s for x in t. We use t[S] for
applying a set of substitutions S when the substitution order does not matter.

Formulas are boolean terms. A formula is atomic if it is a function application,
i.e. f(t1:n), and the top-level function f is not a logical connective. A literal is an
atomic formula or its negation. A clause is a disjunction of literals. A formula F
is in clause normal form (CNF) if it is a conjunction of clauses C1∧· · ·∧Cn, where
each Ci is quantifier-free and its variables are implicitly universally quantified.
We view CNF formulas as sets of clauses and clauses as sets of literals.

We extend our first-order logic to a relational one by introducing two distinct
types Rel and Tuple, and a binary predicate ∈ ⊆ Tuple × Rel that represent
relations, tuples, and the membership predicate respectively. We use ar : Rel ∪
Tuple → N to denote the arity of relations and tuples. Unary relations are called
sets and unary tuples are called atoms. We use R ⊆ T1 ×· · ·×Tn to denote that
R is an n-ary relation, and that the ith element of every tuple in R is of type Ti.

Constant relations form basic relational expressions3. Complex relational
expressions are built using the usual relational operators. Particularly, the join
R � S of two relational expressions R and S is a relational expression Q of arity
n := ar(R) + ar(S) − 2, such that (a1:n) ∈ Q iff there exists an atom a where
(a1:ar(R)−1, a) ∈ R and (a, aar(R):n) ∈ S; the transitive closure R+ of a binary
relation R is the smallest transitive relation containing R; the restriction R|S of a
relational expression R and a set of tuples S of arity ar(R) is a relational expres-
sion Q such that Q = R ∩ S. For a binary relation R, an R-path is a sequence of
atoms a1:n where n ≥ 2 and (ai, ai+1) ∈ R for 1 ≤ i < n. An R-path of length
n = 2 is an R-step. An R-path may not list the intermediate atoms explicitly.
That is, (a, b) ∈ R+ is also an R-path. For an R-path p we use pu to denote its
tuple and ps and pe to denote its start and end boundaries respectively.

Let |M |T denote the universe of all semantical values of a type T ∈ Typ.
A model M for a signature Σ is a pair (|M |,M) where |M | is a class of uni-
verses defined as {|M |T | T ∈ Typ} such that if Ti � Tj , then |M |Ti ⊆ |M |Tj ,
and M is an interpretation that maps every function f : T1 × .. × Tn−1 → Tn

to an interpretation M(f) : |M |T1 × . . . × |M |Tn−1 → |M |Tn and every vari-
able x : T to a value in |M |T . For a relation R, we write M(R) as a short-
hand for {u | M(∈ (u,R))}. By default, |M |Bool = {true, false} and |M |Int =
Z. The interpretation M(t) of a term t is defined recursively using the rule
M(f(t1:n)) = M(f)(M(t1), . . . , M(tn)) for a function symbol f . Satisfaction,

3 Conventionally, relational terms are called relational expressions.

146 A.A. El Ghazi et al.

F : (1) h1 � mark = ∅
(2) h0 � ref ⊆ h1 � ref
(3) ∀n.¬((root, n) ∈ tcH�ref (h1)) ∨ n ∈ h2 � mark
(4) h1 � ref ⊆ h2 � ref
(5) ∀n.¬(n /∈ h2 � mark) ∨ n � (h3 � ref) = ∅
(6) ∀n.¬(n ∈ h2 � mark) ∨ n � (h3 � ref) = n � (h2 � ref)
(7) (root, live) ∈ tcH�ref (h0)
(8) live � (h0 � ref) �⊆ live � (h3 � ref)

WTC : (9) ∀h.h � ref ⊆ tcH�ref (h)
(10) ∀h.Transitive(tcH�ref (h))

Essential R-path p:
(root, live) ∈ tcH�ref (h0)

Path invariant for p:
n ∈ h2 � mark

(b)

F ′ :
F ∧ WTC ∧
∀x. (root, x) ∈ tcH�ref (h0) → x ∈ h2 � mark

(c)
(a)

Fig. 1. Example. (a) Original formula and a weak transitive closure theory, (b) a
difficult R-path in F and its invariant, (c) augmented formula.

denoted by M |= ϕ, for a model M and a formula ϕ is defined as usual (see
elsewhere [11, p. 80]).

A theory T is a set of deductively closed formulas. A class of models ω induces
a theory Th(ω), namely the theory of all formulas ϕ where M |= ϕ and M ∈ ω
—the resulting set is deductively closed by definition. We use T g

f to denote the
theory which agrees with T except for the interpretations M of f , where it is
interpreted the same way as M(g). A T -model M is a model that satisfies all
formulas of T . Especially, a formula ϕ is satisfiable modulo a theory T if there
exists a T -model M where M |= ϕ, for short M |=T ϕ.

Let Ax be the finite set of axioms for all the interpreted symbols of Fun
except transitive closure. Only sub-theories of the theory built by the deductive
closure Cl(Ax) of Ax are considered here. For the transitive closure R+, we
introduce a fresh uninterpreted binary relation tcR.

3 Example

Figure 1(a) gives a relational first-order formula F in CNF form —lines
correspond to clauses. Symbols h0 to h3 are constants of type H that repre-
sents the system state; root and live are two constants of type Obj that rep-
resents objects; mark ⊆ H × Obj represents the marked objects in each state;
ref ⊆ H × Obj × Obj represents references between objects in each state; and
tcH�ref : H → Obj × Obj is a function that maps each state h to a binary
relation tcH�ref (h) ⊆ Obj × Obj which aims at representing the transitive clo-
sure of the relation h � ref . The last two lines (WTC) give a weak semantics for
tcH�ref (h). They constrain it to be transitive and to include the base relation,
but not necessarily the smallest such relation. F gives the negated proof obliga-
tion of a safety property of an extremely simplified version of mark-and-sweep
algorithm. The state transition (h0–h1) resets all the marks (Lines 1-2), (h1–h2)
marks objects reachable from root (Lines 3-4), and (h2–h3) sweeps references of
non-marked objects (Lines 5-6). The safety property is negated, thus it checks if
in the final state, there is a live object that was originally reachable from root in
the beginning state (Line 7), but some of its references have been swept (Line 8).

First-Order Transitive Closure Axiomatization via Iterative 147

In our previous work [25], we solved such formulas by adding general axioms
about transitive closure. Here, for example, F can be refuted using the subset
preservation axiom, namely R ⊆ S → R+ ⊆ S+ for binary relations R and
S. The only state transition in F that allows for sweeping object references is
(h2–h3) —Line 5. Since (5) is guarded by the condition that the objects are not
marked at h2, to refute the formula, it is sufficient to show that all live objects
are marked at h2. Applying the above axiom to Lines 2, 4 and using Line 7, we
have (root, live) ∈ tcH�ref (h2) and can easily close the proof. In [25] we collected
more than 100 such transitive closure axioms, proved and added them as further
deduction rules. Although the approach was useful for interactive and semi-
interactive solving, the results of [3] suggest that this approach does not scale
for automatic provers such as SMT solvers. [3] proposes to add these lemmas
only on-demand based on some heuristics. In this paper, we go one step further
and detect and add only the actually needed properties on-the-fly (as opposed
to always include some general properties).

Our new approach refutes F by first solving F ∧WTC using an SMT solver.
In this example, the safety property holds, and thus F must be unsatisfiable.
The solver, however, (falsely) reports F as satisfiable. This is because WTC
only fixes the semantics of negative R-paths in F —those that only appear in
negated literals in CNF; positive R-paths remain as sources of incompleteness
(thus called difficult R-paths). We are interested in those difficult R-paths whose
refutation is mandatory for refuting F (essential R-paths). Fig. 1(a) contains
only one difficult R-path: (root, live) ∈ tcR (Line 7) (denoted by p), and it
is essential since it is a unit clause in F 4. We refute p by searching for some
property ϕ[x], called p-invariants, that (1) holds for all objects reachable from
the beginning of p, namely root, by one R-step —p-step test— and (2) if it
holds for an object x, it holds for all objects reachable from x by one R-step
—R-invariant test. Given a p-invariant ϕ[x], the induction principle allows us to
add the assumption ∀x2.(root, x2) ∈ tcR → ϕ[x2/x] as an additional clause to F
without affecting its validity. If one of the p-invariants is known to not hold for
live (the end object of p), then p is refuted and we are done. Fig. 1(b) shows the
p-invariant which is sufficient to refute our essential R-path. It is the subclause of
clause (3) which passes both p-step and R-invariant tests. Details on the search
procedure for p-invariants are presented in sec. 6. After adding the p-invariant
assumption to F (Fig. 1(c)), the SMT solver reports it as unsatisfiable, and thus
the example has been verified fully automatically.

4 Weak TC Axiomatization and Its Fragment

In this section, we discuss a general5, weak, first-order, integer-free axiomatiza-
tion for transitive closure (denoted by WTC) and describe a fragment for which
this is complete. The WTC axioms are given in 1. They constrain the symbol tcR
to be a transitive relation that contains R —denoted by tr(R). Therefore, their
4 In general the test for essential R-paths is not trivial.
5 Independent of the considered formula.

148 A.A. El Ghazi et al.

deductive closure Cl(WTC) describes T tr(R)
tcR . Although the WTC is very weak,

there exists a non-trivial fragment for which this axiomatization is complete.

∀x1, x2. (x1, x2) ∈ R → (x1, x2) ∈ tcR

∀x1, x2, x3. (x1, x2) ∈ tcR ∧ (x2, x3) ∈ tcR → (x1, x3) ∈ tcR (1)

Theorem 1 (WTC complete fragment). Let F be a first-order relational
formula, R and tcR two binary relations, and u a tuple such that the R-path
u ∈ tcR occurs only as negative literal in CNF (F). Then, F is unsatisfiable
modulo T R+

tcR|u iff it is unsatisfiable modulo T tr(R)
tcR|u.

Proof. Let u denote a tuple (a, b) and the R-path (a, b) ∈ tcR be denoted by p.
Assuming that p occurs only as negative literal in CNF (F), we need to prove
that (1) if F is unsatisfiable modulo T tr(R)

tcR|u, then it is unsatisfiable modulo T R+

tcR|u

too, and (2) if F has a T tr(R)
tcR|u-model, it has a T R+

tcR|u-model too. Case (1) is trivial
since R+ ⊆ tr(R). For case (2) we assume that M is a T tr(R)

tcR|u-model of F . For all
clauses in CNF (F) in which a literal other than ¬p is satisfied, M is especially
a T R+

tcR|u-model because T tr(R)
tcR|u and T R+

tcR|u coincide in symbols other than tcR|u. For
all other clauses C, we can assume that C := ¬p∨Crest and M |= ¬(a, b) ∈ tcR.
Since T tr(R)

tcR = Cl(WTC), M is especially a model for the second WTC axiom
instantiated with a and b; M |= ∀x2. (a, x2) /∈ tcR ∨ (x2, b) /∈ tcR. By induction,
using the first axiom, there is no R-path from a to b in M. Therefore M is a
T R+

tcR|u-model for ¬p and thus for C. �
In other words, theorem 1 states that if all R-paths in CNF (F) are negative

literals, then WTC is a correct and complete R+-axiomatization of tcR in F .
It describes, therefore, a WTC complete fragment. The fragment conditions are
syntactic and allow categorizing R-paths into easy —with only negative literals
in the CNF (F)— and difficult —otherwise. Hereafter, we denote the set of all
difficult R-paths by DP.

5 R-Invariants for Axiomatizing Difficult R-Paths

This section introduces R-invariants as a means for providing a transitive closure
axiomatisation that is context-complete, i.e. complete with respect to the context
in which the transitive closure is used. This axiomatisation handles difficult R-
paths, those for which the weak axiomatisation is not complete, and thus provides
a proof possibility for formulas beyond the WTC-fragment described in Sec. 4.

Definition 1 (Essential difficult R-paths). Let R be a binary relation and
F be a refutable first-order relational formula modulo T R+

tcR. Then, a difficult R-
path p ∈ DP is essential —for refuting F— if there exists a model M where
∀p′ ∈ DP \ p. M(tcR|p′

u
) = M(R+|p′

u
), M(tcR|pu

) = M(tr(R)|pu
) and M |= F .

The set of all essential (difficult) R-paths is denoted by EDP.

Definition 1 describes difficult R-paths that require further axiomatization
in order to refute F . The definition condition, however, requires a complete
axiomatization of difficult R-paths, which is in fact our ultimate goal. Therefore,
we will later give a practical heuristic to check for essential R-paths.

First-Order Transitive Closure Axiomatization via Iterative 149

Definition 2 (R-invariant). Let F be a first-order formula and R a binary
relation. Then, a formula ϕ[x] is a forward (resp. backward) R-invariant with
respect to x, F and a theory T if

F |=T ∀x1, x2. ϕ[x1/x] ∧ (x1, x2)d ∈ R → ϕ[x2/x]

for d = 1 (resp. d = −1) , where (x1, x2)−1 = (x2, x1).

Definition 3 (p-invariant). Let F be a first-order formula, R a binary relation
and p an R-path of the form (a, b) ∈ tcR. Then, a forward (resp. backward) R-
invariant formula ϕ[x] is forward (resp. backward) p-invariant with respect to x,
F and a theory T if a (resp. b) is ground and

F |=T ∀x2. (a, x2)−d ∈ R → ϕ[x2/x]

for d = 1 (resp. d = −1).

When using def. 3 and 2, we may skip mentioning x, F and T when clear
from the context. Unless explicitly stated, the forward definitions are meant.

Definition 4 (TC induction schema). The first-order relational version of
the induction axiom, denoted by INDr, is a schema of axioms which states that
for any closed first-order formula ϕ[z1, z2], containing variables z1 and z2, the
following hold:

[∀x1:2. (x1, x2) ∈ R → ϕ[x1/z1, x2/z2] ∧ (2)
∀x1:3. ϕ[x1/z1, x2/z2] ∧ (x1, x2) ∈ tcR ∧ (x2, x3) ∈ R → ϕ[x1/z1, x3/z2]] (3)

→ [∀x1:2. (x1, x2) ∈ R+ → ϕ[x1/z1, x2/z2]] (4)

For any refutable formula F modulo T R+

tcR|pu
that contains an essential R-

path p of the form (a, b) ∈ tcR, we would like to claim the existence of a p-
invariant formula ϕ, such that (∀x.(a, x) ∈ tcR → ϕ) ∧ F is refutable modulo
T tr(R)

tcR|pu
. We found it difficult to prove this claim using a T R+

tcR theory, especially
since any refutation proof of F has to be considered in a second-order proof
system. Instead, we consider the T ind

tcR theory, which consists of the extension of
T tr(R)

tcR with our induction schema for transitive closure (def. 4). This is indeed a
restriction, since T ind

tcR only covers a recursively-enumerable set of properties —
similar argument as in [19]. This is comparable to the gap between the first- and
second-order Peano axiomatization of arithmetic (cf. [2, page 1133]). In practice,
however, it imposes no restriction to the proof power and this is the common
practice in literature (cf. [1,25]).

Theorem 2 (Main theorem). Let R be a binary relation, F a first-order
relational formula and p a difficult R-path of the form (a, b) ∈ tcR in a clause
C of F . If F is refutable modulo T ind

tcR|a,b but satisfiable modulo T tr(R)
tcR|a,b, then there

exists a p-invariant ϕ[x] w.r.t. x, F \ C and T tr(R)
tcR|a,b, such that

F \ C |=T tr(R)
tcR|a,b

¬ϕ[b/x] and (5)

(∀x2. (a, x2) ∈ tcR → ϕ[x2/x]) ∧ F is refutable modulo T tr(R)
tcR|a,b. (6)

150 A.A. El Ghazi et al.

Proof. Without lost of generality, we can assume that T tr(R)
tcR|a,b differs from T ind

tcR|a,b

only in the interpretation of tcR|(a,b), and p only occurs in C. Therefore, F \ C
must be satisfiable modulo T ind

tcR|a,b. This means that since F is refutable modulo
T ind

tcR|a,b but satisfiable modulo T tr(R)
tcR|a,b, for each T ind

tcR|a,b-model M of F \ C, M |=
(a, b) /∈ tcR, which in turn means F \ C |=T ind

tcR|a,b
(a, b) /∈ tcR.

Let us further consider a proof object pr (e.g. in sequent style) for F \
C |=T ind

tcR|a,b
(a, b) /∈ tcR, then the set of all formulas IP of all essential INDr

applications in pr is non-empty. Let Γ := {φi[x1, x2] := ∀x1, x2. (x1, x2) ∈
tcR → ϕi(x1, x2) | ϕi ∈ IP}. Since IP contains all formulas of all essential
INDrapplications in pr, we can conclude that Γ, F \ C |=T tr(R)

tcR|a,b
(a, b) /∈ tcR.

Note, that a proof pr′ of the last sequent does not contain any INDrapplication,
but have to make use of Γ in order to close, since F \ C �|=T ind

tcR|a,b
(a, b) /∈ tcR

. Therefore, we can assume, w.l.o.g. the existence of a formula ψ[x1, x2] where
F \C |=T tr(R)

tcR|a,b
¬ψ(a, b) and Γ,¬ψ(a, b) |=T tr(R)

tcR|a,b
(a, b) /∈ tcR. Because of the form of

the formulas in Γ , there must exist a φi ∈ Γ where Γ,¬ψ(a, b) |=T tr(R)
tcR|a,b

¬ϕi(a, b).
Having this, (a, b) /∈ tcR can be directly concluded from φi —left to right. Note
that this argument will already work if we only had the instantiation of x1 in
φi with a. Now we construct ϕ[x2] := ϕi[a/x1] and prove that ϕ fulfills all the
conditions of the theorem.

By instantiating x1 with a in the first and second INDrconditions (2) and (3)
for ϕi[x1, x2], we get directly that ϕ[x2] is a p-invariant w.r.t. x2, F and T R+

tcR|a,b.
For the theorem condition (5), let us assume that F \ C |=T tr(R)

tcR|a,b
ϕi(a, b), then

we get that F \ C |=T tr(R)
tcR|a,b

ψ(a, b), which contradicts our earlier results. The last
condition (6) holds since F \ C |=T tr(R)

tcR|a,b
¬ψ(a, b) and F \ C,ϕ(b) |=T tr(R)

tcR|a,b
ψ(a, b).

�
Theorem 2 offers a basis for a framework capable of proving the validity

of transitive closure formulas beyond the WTC fragment. Especially, for each
essential R-path p, the theorem guaranties the existence of a p-invariant which
is deducible from F modulo T ind

tcR and can together with F refute p. In the next
section we show how the conditions of the theorem on ϕ can be turned into
practical rules and heuristic algorithms to direct the search for p-invariants.

6 Algorithm for Detecting p-invariants

In order to provide an automatic procedure capable of proving transitive closure
specifications, we present an algorithm which tries to bring the theoretical results
of the previous sections into action. Before discussing the actual algorithm, some
definitions and lemmas are needed.

We first discuss two concepts introduced and used in the last section: (1)
essential R-paths, and (2) R-path isolation, i.e. the consideration of F modulo
(T R+

tcR)tr(R)
tcR|pu

for an R-path p (cf. proof of theorem 2). The latter concept subsumes
the former one and is of particular importance for the automation process. It
allows for detecting essential R-paths and for handling the WTC incompleteness

First-Order Transitive Closure Axiomatization via Iterative 151

for each R-path individually regardless of other paths. However, the second con-
cept requires T R+

tcR which is our actual goal. In order to overcome this, in def. 5,
we introduce the idea of bounded R-paths isolation. Here, an R-path —of an
arbitrary length— is replaced with a corresponding R-path of length less equal
n, where n is the isolation confidence and Ri denotes joining R with itself i
times.

Definition 5 (n confident R-path isolation). Let R be a binary relation, F
a first-order relational formula, p a difficult R-path in F and n a positive natural
number. Then, the n confident isolation of p in F is

F |np := F [{[u ∈
⋃
i≤n

Ri / u ∈ tcR] | (u ∈ tcR) ∈ DP \ {p}}].

Data: F : Term
Result: Term

1 F ini ← CNF (¬F); F ← F ini; n ← 1
2 repeat
3 for p := (ps, pe) ∈ tcR ∈ {p ∈ DP (F ini) | sat(F ini|np)} do
4 for <pg,d> ∈ {<ps,1>, <pe,−1>} do
5 if pg ∈ Gr then
6 F ← pathInv(p, p, pg, F, F ini, R, d, n)
7 if unsat(F) then
8 return F

9 else
10 x1:n ← V ar(pg)
11 for p′ := (p′

s, p
′
e) ∈ {p[a1:n/x1:n] | ai ∈ sufGT 1(xi)} do

12 if sat(F [p′/p]|np′) then
13 p′

g ← d ? p′
s : p′

e

14 F ← pathInv(p, p′, p′
g, F, F ini, R, d, n)

15 if unsat(F) then
16 return F

17 if (∀p′. unsat(F [p′/p]|np′)) ∧ sat(F |np) then
18 Further/General techniques are needed

19 if ∀p : EDP. unsat(F |np) then
20 n ← n + 1

21 until F and n are unchanged;
22 return F

Algorithm 1. Main Procedure

Algorithm 1 shows the main procedure of our approach. Given a refutable
formula F modulo T R+

tcR, it will first detect all essential R-paths by checking the
satisfiability of the n bounded isolation F |np of all difficult R-paths p (line 3). The
isolation confidence n, is only increased if F |np is unsatisfiable for all essential
R-paths in EDP but F is not (lines 19-20).

152 A.A. El Ghazi et al.

Data: p, p′, pg, F, F ini : Term, R ⊆ T × T, d, n : Int
Result: Term

1 for ϕ[x1:n] ∈ (F ini \ Cp) with pg �− type(xi) do
2 for xi ∈ {x1:n} do
3 F ← concPathInv(ϕ, p, p′, pg, F, F ini, xi, R, d, n)
4 if unsat(F [p′/p]|np′) then
5 return F

6 return F

Data: ϕ, p, p′, pg, F, F ini : Term, x : V ar, R ⊆ T × T,
d, n : Int
Result: Term

1 for ϕi[x] ⊆ ϕ do
2 F ← checkPathInv(ϕi, x, pg, F, R, d)
3 if unsat(F [p′/p]|np′) then
4 return F

5 for ϕ′
i[x] ∈ abst(ϕi, F

ini, x, R, n) do
6 F ← checkPathInv(ϕ′

i, x, pg, F, R, d)
7 if unsat(F [p′/p]|np′) then
8 return F

9 return F

Algorithm 2: pathInv Algorithm 3: concPathInv

Data: ϕ, F : Term, x : V ar, R ⊆ T × T, n : Int
Result: Set < Term >

1 S ← {ϕ}; A ← ∅
2 for ϕi ∈ S do
3 for abst ∈ {applicable abstraction rules to ϕi} do
4 A ← A ∪ abst(ϕi, x, R, n); S ← S ∪ abst(ϕi, x, R, n)

5 S ← S \ {ϕi}
6 return A

Data: ϕ, t, pg, F : Term, R ⊆ T × T, d : Int
Result: Term

1 begin

2 POini ← ∀x2. (pg, x2)
d ∈ R → ϕ[x2/t]

3 POind ← ϕ[x2/t] ∧ (pg, x2)
d ∈ tcR ∧ (x2, x3)

d ∈ R
4 POind ← ∀x2, x3. POind → ϕ[x3/t]
5 if unsat(F ∧ ¬POini) ∧ unsat(F ∧ ¬POind) then

6 F ← (∀x2. (pg, x2)
d ∈ tcR → ϕ[x2/t]) ∧ F

7 return F

Algorithm 4: abst Algorithm 5: checkPathInv

For each essential R-path p we search for forward p-invariants with respect to
its start boundary ps and backward p-invariants with respect to its end boundary
pe. If the currently handled path boundary, pg, is ground, which corresponds
exactly to the considered case in theorem 2, the search is performed for the
original R-path p by algo. 2. Otherwise, instances of p are used (line 11-12). The
p instances are generated by instantiating the variables of pg with their essential
ground terms of complexity 1 —constants— using a slightly modified version of
the framework in [10]6. The R-path instantiation approach is motivated by the
guess that probably only a small finite set of p instances are refutable.

In algo. 2, each clause ϕ of CNF (F) —after excluding p’s clauses— that
contains a non empty set of variables x1:n of a type compatible to pg is considered
for the p-invariant search, namely with respect to each xi in {xi:n} (line 1-2).
Since all variables in ϕ are universally quantified, ϕ is obviously a p-invariant
with respect to any variable xi, however, we are interested in more concrete forms
of ϕ. This is described in algo. 3, where, each sub clause ϕi that contains xi is
considered a candidate. The actual check for p-invariance is performed in algo. 5.
Depending on weather pg is a start or end boundary, the forward or backward
definition of p-invariants is used respectively. If the p-invariant check fails for
a candidate ϕi, syntactically-driven abstractions are generated and tried (algo.
4). Our abstraction rules are shown in fig. 2. The first rule abstracts a ϕi by
instantiating their variables —xi excluded— with their essential ground terms
of complexity equal to the current calculation round r. The second rule relaxes
positive literals —conclusions— in ϕi by their syntactic consequences in F . The
6 The essential ground terms are calculated in rounds with increasing term complexity,

regardless of whether the set is finite or not.

First-Order Transitive Closure Axiomatization via Iterative 153

third rule is only used if a p-invariant candidate passes the p-step test (cf. POini

in algo. 5) but fails in the R-invariant test. It then relaxes unary assumptions
on a single path boundary such that they hold for all reachable nodes from that
boundary including itself —reachability direction is stated by d. Let’s assume a
clause C in F of the form (a, x2) ∈ R ∧ φ(a) → ϕrest[x2] and an R-path p of the
form (a, x2) ∈ tcR. Then, the p-invariant candidate ϕ equal to φ(a) → ϕrest[x2]
will pass the p-step check using C only. If ϕ does not pass the R-invariant test,
then our third abstraction rule can abstract it such that it passes both tests
using C only.

Abst1 : Variable instantiations with essential ground terms of complexity r, using [10]
Abst2 : ϕ := (l ∨ ϕrest), (¬l ∨ Crest) ∈ CNF (F) =⇒ ϕ � ϕ[Crest / l]
Abst3 : ϕ := (¬φ(t)∨ϕrest), t := pg =⇒ ϕ � ϕ[(∀x. x = t∨(t, x)d ∈ tcR → φ(x)) / φ(t)]

Fig. 2. Abstraction rules

If, in the case of a non-ground pg, all R-path instances p′ can be refuted but
not the original path p, we directly switch to a more general technique (algo. 1
line 17-18). Basically, the technique is a natural extension of the framework
presented in section 5 to explicitly consider R-paths with non-ground boundaries.
This technique was employed in only one of our benchmarks. Details of the
technique are skipped in the interest of space.

7 Evaluation

We have implemented a prototype version of the procedure described in section 6.
In the current implementation, we fixed both the isolation confidence (algo. 1
line 19-20) and the ground term complexity (fig. 2 Abst1) parameters to 1. To
evaluate our technique, we checked 20 Alloy specifications that were expected to
be correct. These benchmarks were taken from the Alloy Analyzer 4.2 distribu-
tion and involve transitive closure of varying complexities. In order to provide a
fair evaluation of the technique, we have restricted the considered benchmarks to
those that require the semantics of transitive closure for their correctness proof.

Since most Alloy benchmarks that involve transitive closure also involve trace
specifications (based on the Alloy ordering library), we developed a reduction of
Alloy trace specifications to transitive closure specifications. That is, we repre-
sent any ordered signature S which forms the base of a trace specification, as
the set first ∪ first � next+ where first denotes the starting atom of the trace
and next ⊆ S × S is a fresh acyclic relation denoting the ordering. If a trace
invariant is known, we divide the original specification to (1) an invariant proof
and (2) an invariant use specification. Such reduction is used for two of our Alloy
benchmarks: addrbooktrace and hotelroom.

154 A.A. El Ghazi et al.

Table 1 shows the experimental results7 performed using Z3 4.3.1 on an Intel
Xeon, 2.7 GHz, 64GB memory. For each checked benchmark, we collect the number
of R-paths, difficult R-paths, essential R-paths, checked p-invariant candidates,
proved and injected p-invariants and the total analysis time (in seconds). Time-
out is set to 12 hours for the entire analysis and to 1 minute for each call to the
SMT solver. Out of 20 benchmarks assumed to be valid, 18 were proven correct by
our tool. It should be noted that these benchmarks are absolutely not trivial. For
example, our previous axiomatization using Z3 could not prove any of the bench-
marks with essential R-paths at all (cf. [9]), and although Kelloy could prove all
benchmarks, it required substantial human interactions, even for the com bench-
marks, which do not contains essential R-paths at all (cf. [25]).

A surprising observation is that quite a large number, 13 out of 20, of Alloy
specifications, that involve transitive closure, do not contain any essential R-
paths, which lets them be effectively in the WTC fragment, although not syn-
tactically. This fully answers our question of why in our earlier investigation [9],
some transitive closure benchmarks could be proven but not others. It shows
that only a very small part of our previous [9] transitive closure axiomatization,
namely the WTC axioms, was actually responsible for the success.

All of the 13 benchmarks with no essential R-paths could be proven fully
automatically in less than 2 seconds using WTC and without the need of any
p-invariant injection. For these examples, according to theorem 1, if the SMT
solver had reported a satisfying model, it would have been a valid one. Out of
the remaining 7 benchmarks containing essential R-paths, our tool could prove
5. The number of injected p-invariants varies between 1, for soundness1, and 159,
for completeness. The number of injected p-invariants is not guaranteed to reflect
the number of needed p-invariants since it depends very much on the ordering
of essential R-paths and CNF clauses. However, it does reflect that for all of our
proven benchmarks except the last two. The benchmarks hotelroom-locking and
javatypes-soundness could not be proven by our tool. For both benchmarks, the
main difficulty lies in the complexity of our generated SMT formulas which makes
them too difficult to solve by Z3. For hotelroom-locking, the proof obligations for
the essential R-path checks could be handled, but none of the p-invariant checks,
whereas for javatypes-soundness every single call of the solver times-out. This
shows the dependency of the current version of our approach on analysable SMT
representations.

8 Related Work

Several approaches have addressed the verification of Alloy specifications in gen-
eral. Due to the undecidability of the Alloy language, most of these approaches
are based on interactive solving. Prioni [1] and Kelloy [25] rely on reasoning in
first-order logic and integer arithmetic, Dynamite [12] chose a reasoning in fork
algebras —a higher-order logic. In all these general approaches the verification of
7 Benchmarks, results and tool are available at http://i12www.ira.uka.de/∼elghazi/

tcAx via p-inv/

http://i12www.ira.uka.de/~elghazi/tcAx_via_p-inv/
http://i12www.ira.uka.de/~elghazi/tcAx_via_p-inv/

First-Order Transitive Closure Axiomatization via Iterative 155

Table 1. Evaluation results

Benchmarks Result All/Dif/Ess Paths Che. p-inv Inj. p-inv Time

addrbook-addIdempotent proved 5 / 2 / 0 0 0 0,08

addrbook-delUndoesAdd proved 5 / 2 / 0 0 0 0,10

addrbooktrace-addIdempotent proved 23 / 17 / 0 0 0 0,25

addrbooktrace-delUndoesAdd proved 20 / 14 / 0 0 0 0,21

addrbooktrace-lookupYields-use proved 22 / 13 / 0 0 0 0,24

grandpa-noSelfFather proved 6 / 3 / 0 0 0 0.09

grandpa-noSelfGrandpa proved 6 / 3 / 0 0 0 0.09

com-theorem1 proved 5 / 2 / 0 0 0 0,18

com-theorem2 proved 5 / 2 / 0 0 0 1.73

com-theorem3 proved 5 / 2 / 0 0 0 0.24

com-theorem4a proved 5 / 2 / 0 0 0 0.25

com-theorem4b proved 5 / 2 / 0 0 0 0.13

filesystem-noDirAliases proved 7 / 4 / 0 0 0 0.12

filesystem-someDir proved 5 / 3 / 1 2 1 0.15

marksweepgc-soundness1 proved 15 / 9 / 1 38 1 9,29

marksweepgc-soundness2 proved 16 / 10 / 2 75 2 5,92

marksweepgc-completeness proved 16 / 8 / 2 1021 159 66,58

addrbooktrace-lookupYields-proof proved 18 / 11 / 2 271 41 79,67

hotelroom-locking timeout 6 / 3 / 1 – – –

javatypes-soundess timeout 116 / 19 / – – – –

transitive closure specifications is in general interactive. In addition to definition
rules, an induction schema is involved either directly or indirectly —for proving
general lemmas.

Closer to our approach, are the works of Nelson [23] and Ami [22]. Nelson
proposes a set of first-order axioms for axiomatizing the reachability between
two objects following a functional relation f . To handle the presence of cycles
he uses a ternary predicate a f−→c b stating that b is reachable from a via arbitrary

f applications, but never going through c. Later works, as in [7,20,21], revis-
ited and extended Nelson’s ideas. The main problem with such fixed first-order
axiomatizations of transitive closure is that it is unlikely that they are complete.
Ami proves in [22] that Nelson’s axioms are not complete even in the functional
setting. More directly, we can provide a very simple refutable formula modulo
transitive closure which is satisfiable in Nelson’ axioms, i.e. a f−→b b∧∀x. f(x) �= b.
In our approach, however, the f -path from a to b can be easily refuted since
the empty clause —false— is a backward invariant for this path. Ami’s work,
also motivated by Nelson’s work, proposes, instead, three axiom schemas, which
follow from a transitive closure induction schema. This is very similar to our
approach in that the axiom set is not fixed, but generated on-demand. However,
their approach differs significantly from ours in that: (1) only a pure syntactical
notion of difficult R-paths is used (2) only unary predicates and their boolean
combinations are considered as instantiation formulas for the axiom schemas,
(3) the search for instantiation formulas is not R-path directed, (4) no criteria
for detecting already refuted R-paths is involved, and finally (5) no abstractions
are used, even not variable instantiations.

156 A.A. El Ghazi et al.

Other tools like ACL2 [18], and IsaPlanner [6] are well established in the
automation of general induction schemas, for years. We think that our procedure
and implementation can definitively profit from their ideas, especial their lemma
discovering routine, called lemma calculation, and lemma abstraction ideas.

9 Conclusion

We have presented an approach capable of proving Alloy specifications that
involve transitive closure fully automatically. For all transitive closure occur-
rences the WTC axiomatization is introduced. In case the Alloy specification
includes neither difficult R-paths —syntactical check— nor essential R-path —
semantical check— we have proved that WTC is a complete axiomatization
of transitive closure and thus the solver result —either sat or unsat— can be
trusted. Otherwise, each essential R-path can be handled on its own thanks to
our bounded R-path isolation concept. The incompleteness of WTC is adjusted
for an essential R-path p by a directed detection and injection of p-invariants.

Although in theory our p-invariant detection procedure is guaranteed to ter-
minate, this has little significance in practical terms, as we could observe for
some benchmarks. From both, the conceptual as well as the engineering point
of view, there is plenty room for improvement. This includes (1) the reduction
of redundancy w.r.t. p-invariant candidates, and instantiation of paths and for-
mulas, (2) the introduction of heuristics for the prioritization of paths, clauses,
instantiations and abstractions, and (3) the further, also conceptual, investiga-
tion of essential R-paths with non-ground boundaries. At least for (1) and (2)
we think that we can profit from well established tools in the area of induc-
tion automation like ACL2 [18], and IsaPlanner [6], even though their focus is
different.

References

1. Arkoudas, K., Khurshid, S., Marinov, D., Rinard, M.: Integrating model checking
and theorem proving for relational reasoning. In: Berghammer, R., Möller, B.,
Struth, G. (eds.) Relational and Kleene-Algebraic Methods in Computer Science.
LNCS, vol. 3051, pp. 21–33. Springer, Heidelberg (2004)

2. Barwise, J. (ed.): Handbook of mathematical logic. In: Number 90 in Studies
in Logic and the Foundations of Mathematics. North-Holland Publ., Amsterdam
(1977)

3. Best, J.: Proving alloy models by introducing an explicit relational theory in SMT.
Studienarbeit, Karlsruhe Institute of Technology, Dec. 2012

4. Bonacina, M.P., Lynch, C., de Moura, L.: On deciding satisfiability by DPLL
(Γ + T) and unsound theorem proving. In: Schmidt, R.A. (ed.) CADE-22. LNCS,
vol. 5663, pp. 35–50. Springer, Heidelberg (2009)

5. Dennis, G., Chang, F., Jackson, D.: Modular verification of code with SAT. In:
ISSTA, pp. 109–120 (2006)

6. Dixon, L., Fleuriot, J.D.: IsaPlanner: a prototype proof planner in isabelle. In:
Baader, F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 279–283. Springer,
Heidelberg (2003)

First-Order Transitive Closure Axiomatization via Iterative 157

7. Van Eijck, J.: Defining (reflexive) transitive closure on finite models (2008)
8. El Ghazi, A.A., Geilmann, U., Ulbrich, M., Taghdiri, M.: A dual-engine for early

analysis of critical systems. In: DSCI, Berlin (2011)
9. El Ghazi, A.A., Taghdiri, M.: Relational reasoning via SMT solving. In: Butler, M.,

Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 133–148. Springer, Heidelberg
(2011)

10. El Ghazi, A.A., Ulbrich, M., Taghdiri, M., Herda, M.: Reducing the complexity of
quantified formulas via variable elimination. In: SMT, pp. 87–99, July 2013

11. Enderton, H.B.: A mathematical introduction to logic. Academic Press (1972)
12. Frias, M.F., Pombo, C.G.L., Moscato, M.M.: Alloy analyzer+PVS in the analysis

and verification of alloy specifications. In: Grumberg, O., Huth, M. (eds.) TACAS
2007. LNCS, vol. 4424, pp. 587–601. Springer, Heidelberg (2007)

13. Ge, Y., Barrett, C., Tinelli, C.: Solving quantified verification conditions using
satisfiability modulo theories. AMAI 55(1), 101–122 (2009)

14. Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in satisfia-
biliby modulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol.
5643, pp. 306–320. Springer, Heidelberg (2009)

15. Immerman, N., Rabinovich, A., Reps, T., Sagiv, M., Yorsh, G.: The bound-
ary between decidability and undecidability for transitive-closure logics. In:
Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 160–174.
Springer, Heidelberg (2004)

16. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT
Press, Apr. 2006

17. Kang, E., Jackson, D.: Formal modeling and analysis of a flash filesystem in alloy.
In: Börger, E., Butler, M., Bowen, J.P., Boca, P. (eds.) ABZ 2008. LNCS, vol.
5238, pp. 294–308. Springer, Heidelberg (2008)

18. Kaufmann, M., Strother Moore, J., Manolios, P.: Computer-Aided Reasoning: An
Approach. Kluwer Academic Publishers, USA (2000)

19. Keller, U.: Some remarks on the definability of transitive closure in first-order logic
and datalog (2004)

20. Lahiri, S.K., Qadeer, S.: Verifying properties of well-founded linked lists. In: ACM
SIGPLAN Notices, POPL, pp. 115–126. ACM, New York (2006)

21. Rustan, K., Leino, M.: Recursive object types in a logic of object-oriented pro-
grams. In: Hankin, C. (ed.) ESOP 1998. LNCS, vol. 1381, pp. 170–184. Springer,
Heidelberg (1998)

22. Lev-Ami, T., Immerman, N., Reps, T., Sagiv, M., Srivastava, S., Yorsh, G.: Simu-
lating reachability using first-order logic with applications to verification of linked
data structures. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632,
pp. 99–115. Springer, Heidelberg (2005)

23. Nelson, G.: Verifying reachability invariants of linked structures. In: POPL,
pp. 38–47, ACM, New York (1983)

24. Taghdiri, M., Jackson, D.: A lightweight formal analysis of a multicast key man-
agement scheme. In: König, H., Heiner, M., Wolisz, A. (eds.) FORTE 2003. LNCS,
vol. 2767. Springer, Heidelberg (2003)

25. Ulbrich, M., Geilmann, U., El Ghazi, A.A., Taghdiri, M.: A proof assistant for
alloy specifications. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol.
7214, pp. 422–436. Springer, Heidelberg (2012)

26. Vaziri-Farahani, M.: Finding bugs in software with a constraint solver. Thesis,
Massachusetts Institute of Technology (2004)

Reachability Analysis Using Extremal Rates

Andrew N. Fisher1(B), Chris J. Myers1, and Peng Li2

1 University of Utah, Salt Lake City, UT 84112, USA
{andrew.n.fisher,myers}@ece.utah.edu

2 Texas A&M University, College Station, TX 77843, USA
pli@tamu.edu

Abstract. General hybrid systems can be difficult to verify due to their
generality. To reduce the complexity, one often specializes to hybrid sys-
tems where the complexity is more manageable. If one reduces the mod-
eling formalism to ones where the continuous variables have a single rate,
then it may be possible to use the methods of zones to find the reachable
state space. Zones are a restricted class of polyhedra formed by consid-
ering the intersections of half-planes defined by two variable constraints.
Due to their simplicity, zones have simpler, more efficient methods of
manipulation than more general polyhedral classes, though they are less
accurate. This paper extends the method of zones to labeled Petri net
(LPN) models with continuous variables that evolve over a range of rates.

Keywords: Range of rates · LPNs · Zones · Difference bound matrices

1 Introduction

A common method for modeling hybrid systems is to use hybrid automata [2]
which combine discrete transitions with dynamics described by first-order differ-
ential equations. The full generality of hybrid automata is difficult to formally
verify, and it is common for authors to restrict their attention to more restrictive
subclasses, such as linear hybrid automata (LHA) [1]. Instead of allowing gen-
eral first-order differential equations, LHA restrict the invariants, guards, and
flow relations to be linear equations over the continuous variables. Even though
LHA represent a restricted class of hybrid automata, they are still useful in
describing systems and can approximate more general automata [16]. By the
restricting to LHA, one can perform reachability analysis to verify that a system
satisfies a given condition. Although the exact state space is undecidable [11],
methods have been able to verify systems by approximating the reachable state
space using classes of polyhedra [3,8,9,17,18]. The complexity of these meth-
ods comes from the choice of polyhedral class along with the methods used to

This material is based upon work supported by an ARCS Fellowship and the National
Science Foundation (NSF) under Grant No. CCF-1117515 and CCF-1117660. Any
opinions, findings, and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of the NSF.

c© Springer International Publishing Switzerland 2015
K. Havelund et al. (Eds.): NFM 2015, LNCS 9058, pp. 158–172, 2015.
DOI: 10.1007/978-3-319-17524-9 12

Reachability Analysis Using Extremal Rates 159

update the state space. For example, SpaceEx [10] utilizes template polyhedra
and updates the state space by essentially lifting a numerical integrator to the
level of sets. By increasing the number of template directions, the accuracy of
the approximating state space improves, but at a cost of increasing the storage
requirements and the number of operations needed to update the state.

One can avoid numeric integration techniques by restricting the modeling
class even further. One option is to use labeled Petri nets (LPNs) [13]. Although
LPNs, in general, allow for a range of possible rates for each continuous variable,
the authors in [12] assume a constant rate. This simplification allows them to
avoid the expense of numerical integration by extending the methods used for
timed automata (TA) [4,15] to LPNs whose rates are a single constant. The
method is based on zones, a subclass of polyhedra formed by considering the
intersection of half-planes of the form y − x ≤ c, where x and y are continuous
variables and c is a constant. A common method of representing zones is to
gather the constants into a matrix that relates each pair of continuous variables.
Such matrices are known as difference bound matrices (DBMs) [6]. One key
advantage to the method of zones is that time advancements can be performed
by appropriately adjusting the largest possible value for each continuous variable
and then re-tightening the boundary constraints defining the zone, which has a
complexity of O(n3) where n is the number of continuous variables. To handle
rates other than one, the zone is warped [12], a process where the variables in
the original zone are scaled to produce variables with a rate of 1. After scaling,
the resulting R

n-subset Z is, in general, no longer a zone, so the subset Z is
replaced with the best over-approximating zone Z such that Z ⊆ Z.

Although the methods used in [12] are straightforward, they fall short of
handling the ranges of rates possible in general LPNs. To remedy this situation,
a couple attempts ([5,14]) have been made to extend zones to a range of rates.
Both methods are based on a translational approach whereby the original model
is transformed into a single rate model, but, as explained later, neither fully
handles the use of ranges of rates in models. This paper shows how a zone-based
method can be extended to verify LPN models with ranges of rates. Similar to
the translational approaches, this extension is based on the fact that states reach-
able using a rate chosen from a range of possible rates are also reachable using
only the extremal rates. Moreover, since the work of [13] extends zones to cap-
ture all states reachable from a set of states advancing with a particular rate, it
is only necessary to consider the rate changes at fixed discrete moments in time
and allow the zones to capture the simultaneous advancement of a collection
of states. This paper is organized as follows: Section 2 defines the LPN syn-
tax and updated semantics for ranges of rates. Section 3 presents an algorithm
for computing an over-approximation of the reachable state space. Section 4
presents a correctness argument for the algorithm. Section 5 discusses the related
translational approaches. Section 6 provides some experimental results. Finally,
Section 7 gives conclusions.

160 A.N. Fisher et al.

2 Labeled Petri Nets

This section provides an overview of the LPN formalism used in this paper.

2.1 LPN Syntax

An LPN is a type of Petri net that has been augmented with a set of labels for
modeling continuous variables and their rates of change. This does not preclude
the use of discrete (or Boolean) variables since they can be modeled using vari-
ables with a zero rate. LPNs are assumed to be safe, and continuous variables
are allowed to non-deterministically choose a rate from an interval of possible
rates. Formally, an LPN is a tuple N = 〈P , T , Tf , V , F , M0, Q0, R0, L 〉 where:

– P : is a finite set of places;
– T : is a finite set of transitions;
– Tf ⊆ T : is a finite set of failure transitions;
– V : is a finite set of continuous variables;
– F ⊆ (P × T) ∪ (T × P) is the flow relation;
– M0 ⊆ P is the set of initially marked places;
– Q0 : V → Q is the initial value of each continuous variable;
– R0 : V → Q × Q is the initial range of rates for each continuous variable;
– L : is a tuple of labels defined below.

Failure transitions are used to indicate when a failure has occurred. The flow
relation, F , is used to describe how the places and transitions are connected.
Every transition t ∈ T has a preset denoted by •t = {p | (p, t) ∈ F} and a
postset denoted by t• = {p | (t, p) ∈ F}. The labels, L, for an LPN are defined
by the tuple L = 〈En, D , VA, RA〉:

– En : T → Pφ labels each transition t ∈ T with an enabling condition;
– D : T → Q×Q labels each transition t ∈ T with a minimum and a maximum

delay for which a transition t must be enabled before it can fire;
– VA : T × V → Q labels each transition t ∈ T and continuous variable v ∈ V

with a continuous variable assignment that is made to v when t fires;
– RA : T × V → Q × Q labels each transition t ∈ T and continuous variable

v ∈ V with a range of possible rates v can have after the transition t fires.

The enabling conditions are Boolean expressions, Pφ, that satisfy the grammar:

φ ::= true | ¬φ | φ ∧ φ | v ≥ c

where ¬ is negation, ∧ is conjunction, v is a continuous variable, and c is a
rational constant. The expressions false, ∨, and v ≤ c are defined from these. For
simplicity, the delay, variable, and rate assignments are assumed to be constants
or ranges bounded by constants, but they can, in general, be expressions that
evaluate to constants (i.e., include only continuous variables whose rates are
zero). All ranges are of the form (a, b) ∈ Q×Q, which corresponds to the interval
[a, b] with the restriction that a ≤ b and is either non-negative (i.e., a ≥ 0) or is

Reachability Analysis Using Extremal Rates 161

p3,i

p2,ip1,i

〈sw(i+1) := 1〉
[20]

{true}
t2,i

[0]
{swi ≥ 1}

〈V ′
i := [1, 2]〉

t1,i

{¬(swi ≥ 1}
[0]p0,i

t3,iswi = 0

sw(i+1) = 0
sw′

i = 0

sw′
(i+1)

= 0

V ′
i = 0

Vi = 0
〈sw(i+1) := 0, V ′

i := −1〉

〈V ′
i := 0〉
[0]

{¬(Vi ≥ 0)}
t0,i

(a)

t8

{¬(Vi ≥ 0)}
[0]

t11
{Vi ≥ 30}

[0]

p9

p8

p5

p6

t5
{true}
[10]

p10

p4

t10
{true}
[10]

p7

t6
{¬(Vi ≥ 15)}

[0]

t7
{true}
[10]

t9
{Vi ≥ 15}

[0]

tFail

{¬(Vi ≥ 30)}
[0]

t4
{swi ≥ 1}

[0]

(b)

Fig. 1. LPN model for a capacitor stage with a corresponding property. (a) A model of
a capacitor whose charging is turned on by swi. After a time delay of 20μs, the switch
sw(i+1) is turned on (i.e., set to 1), initiating the charging of the next capacitor. Note
that [d] is used when dl(t) = du(t) = d. (b) A property in which, when swi is 1, it
checks that Vi is above 15mV after 10μs, and then that Vi is more than 30mV after an
additional 10μs. The property is violated if the fail transition, tFail, fires.

negative (i.e., b < 0). In the case of delay assignments, the ranges clearly must
be non-negative.

As a running example, consider a sequence of capacitors that are charged
sequentially. The charging phase of the first capacitor is initiated by a switch
sw0. After 20μs of charging, a switch sw1 is turned on, initiating the second
capacitor’s charging phase, and so on. When the switch sw0 is turned off,
the first capacitor starts discharging and the switch sw1 is turned off, start-
ing the second capacitor to discharge, and so on. Fig. 1a shows an LPN model
of the i-th capacitor where the charging is some uncertain rate between 1mV/μs
and 2mV/μs. The initial marking is M0 = {p1,i} and is represented by the filled
in circle. The values Vi = 0 and V ′

i = 0 are the initial conditions for the voltage
Vi. The variables swi and sw(i+1) are essentially Boolean variables with initial
values of 0, representing false. The enabling conditions, delays, and variable
assignments are in the curly braces, square brackets, and angle brackets, respec-
tively. In this example, the delays are constants rather than bounds. Initially,
the capacitor is not charging. When the signal swi is set to 1, charging is ini-
tiated by assigning V ′

i the interval [1, 2], which indicates the rate of Vi can be
any rate between 1mV/μs and 2mV/μs. The capacitor is allowed to charge for
20μs (given as a delay on the transition t2,i) before setting the variable sw(i+1)

to 1. Once the charging is turned off, that is, when swi is set to 0, the capacitor
begins to discharge at a rate of −1mV/μs. Finally, when the capacitor is fully
discharged, the t0,i transition fires, setting the rate to zero.

162 A.N. Fisher et al.

2.2 LPN Semantics

The state of an LPN is defined as a tuple σ = 〈M,Q,RR,R, I, C〉 where:

– M ⊆ P is the set of marked places;
– Q : V → Q is the value of each continuous variable;
– RR : V → Q × Q is the current range of rates for each continuous variable;
– R : V → Q is the current rate of each continuous variable;
– I : I → {false, true} is the value of each inequality;
– C : T → Q is the time each transition has been enabled.

The set of all inequalities of the form vi ≥ ci is denoted by I.1 The collection of
all states is Σ.

In LPNs, the Boolean value of an inequality is evaluated in a non-standard
way at the boundary. For example, if the inequality is v ≥ 5 and v is equal to 5,
then the inequality is considered true if the rate of v is non-negative and false
if the rate is negative. The intuition for these semantics is that when the rate
is negative and the variable is at the boundary, then the inequality is about to
become false while when the rate is positive, then the inequality remains true
as time progresses. Formally, the evaluation of an inequality is given by:

evalInequalities(σ)(v ≥ c) =

{
R(v) ≥ 0 if Q(v) = c;
Q(v) ≥ c otherwise.

The initial state, σ0, for an LPN consists of the initial markings, M0, the
initial value of each continuous variable, Q0, the initial range of rates, R0, an
initial rate within this range, the initial value of the inequalities, and the time
each transition has been enabled set to 0. The initial rate for each variable, v,
is determined using the function resetRates(RR), which is defined by:

resetRates(RR)(v) = rl(v),

where rl(v) returns the lower bound rate. Similarly, ru(v) returns the upper
bound. Requiring that the initial rate is given by the function resetRates is not
a limitation since the rate is allowed to change arbitrarily within the range at any
time. The initial state, σ0, of the LPN in Fig. 1a has M = {p1,i}, Q(Vi) = Q(swi)
= Q(sw(i+1)) = R(Vi) = R(swi) = R(sw(i+1)) = 0, RR(Vi) = RR(swi) =
RR(sw(i+1)) = [0, 0], I(Vi ≥ 0) = true, I(swi ≥ 1) = false, and C(t0,i) =
C(t1,i) = C(t2,i) = C(t3,i) = 0.

The state σ can change to a new state σ′ = 〈M ′, Q′, RR′, R′, I ′, C ′〉 by firing
a transition, advancing time, or changing a rate. Collectively, transition firings,
time advancements, and rate changes are known as events. A time advancement
that results in the truth value of an inequality changing is an inequality event.

A transition t ∈ T is enabled when all the places in its preset are marked
(that is, when •t ⊆ M) and the enabling condition on t evaluates to true (that
1 Recording the inequality values is not strictly necessary. It is included as a matter

of convenience so that an implementation does not need to calculate it repeatedly.

Reachability Analysis Using Extremal Rates 163

is, when Eval(En(t), σ) is true where the function Eval : Pφ×Σ → {false, true}
evaluates an expression given a state σ ∈ Σ). The set of all enabled transitions
in a state σ is given by E(σ). When a transition becomes enabled, it must fire
after the minimum delay dl(t) and before the maximum delay du(t), where dl(t)
is the lower bound and du(t) is the upper bound of the delay assignment D(t).
The state σ′ created as a result of firing the transition t is defined by:

M ′ = (M − •t) ∪ t•;
∀v ∈ V.Q′(v) = VA(t, v);

∀v ∈ V.RR′(v) = RA(t, v);
R′ = resetRates(RR′);
I ′ = evalInequalities(σ′);

∀t ∈ T.C ′(t) =

{
0 if t ∈ E(σ′) ∧ t /∈ E(σ);
C(t) otherwise.

When a transition is fired, the marking is updated and any assignments to the
continuous variables and their rates are performed. The firing of a transition,
t, causing a change from a state σ to a state σ′ is denoted by σ

t−→ σ′. As an
example, consider the state σi, which is identical to σ0 except swi = 1. The
new state, σi+1, after t1,i fires in Fig. 1a is M = {p2,i}, Q(Vi) = 0, Q(swi) =
1, Q(sw(i+1)) = 0, R(Vi) = 1, R(swi) = R(sw(i+1)) = 0, RR(Vi) = [1, 2],
RR(swi) = RR(sw(i+1)) = [0, 0], I(Vi ≥ 0) = I(swi ≥ 1) = true, and C(t0,i) =
C(t1,i) = C(t2,i) = C(t3,i) = 0.

Time can advance by any amount τ such that τ ≤ τmax(σ) where τmax(σ) is
the largest allowable time advancement before an inequality changes value or a
transition is forced to fire due to its maximum delay expiring.

τmax(σ) =

{
c−Q(v)

R(v) ∀(v ≥ c) ∈ I.I(v ≥ c) = (R(v) ≥ 0);

du(t) − C(t) ∀t ∈ E(σ).

In this equation, division by 0 is interpreted as yielding ∞. Thus, a zero rate
variable does not limit the maximum time advancement. The new state σ′ after
advancing τ time units has M ′ = M , RR′ = RR, R′ = R, and:

∀v ∈ V.Q′(v) = Q(v) + τ ∗ R(v);
I ′ = evalInequalities(σ′);

∀t ∈ T.C ′(t) =

{
C(t) + τ if t ∈ E(σ);
0 otherwise.

A time advancement by an amount τ is denoted by σ
τ−→ σ′. If a time advance-

ment, τ , results in the change of truth value of an inequality in the set I (that
is, the time advancement is an inequality event), then the event is denoted by

σ
τ,I−−→ σ′ where I is the set of inequalities that change truth value. In addi-

tion, the rates are reset to the initial conditions (i.e., R′ = resetRates(RR′)).

164 A.N. Fisher et al.

Note that a time advancement results in an inequality event, if and only if,
τ = τmax(σ). In state σi+1 above, τmax = 20, since after 20 time units the timer
for the transition t2,i expires. The new state, σi+2, after a time advancement of 10
time units is M = {p2,i}, Q(Vi) = 10, Q(swi) = 1, Q(sw(i+1)) = 0, R(Vi) = 1,
R(swi) = R(sw(i+1)) = 0, RR(Vi) = [1, 2], RR(swi) = RR(sw(i+1)) = [0, 0],
I(Vi ≥ 0) = I(swi ≥ 1) = true, C(t0,i) = C(t1,i) = C(t3,i) = 0, and
C(t2,i) = 10.

The final type of state change is a rate change event. This event changes
the rate of a single continuous variable v̂ ∈ V to a new rate r̂ ∈ RR(v̂). Since
the truth value of an inequality depends on the rate, a rate change requires
the updating of the inequalities involving v̂. The corresponding new state has
M ′ = M , Q′ = Q, RR′ = RR, C ′ = C, and:

R′(v) =

{
r̂ if v̂ = v;
R(v) otherwise;

I ′ = evalInequalities(σ′).

After a rate change event for a continuous variable, the rate cannot change again
until another non-rate event occurs. This restriction disallows the possibility of
the state changing infinitely often solely due to the rates of continuous variables
changing. Generality is not sacrificed in imposing this condition since the rate
can be set to any value prior to the advancing of time, which is all that matters
to the final trajectory of the continuous variable concerned. A rate change for a

particular variable v̂ to the rate r̂ is denoted by σ
R(v̂)←r̂−−−−−→ σ′. In the state σi+2,

the state σi+3 after changing the rate of Vi to a rate of 1.5 is given by M = {p2,i},
Q(Vi) = 10, Q(swi) = 1, Q(sw(i+1)) = 0, R(Vi) = 1.5, R(swi) = R(sw(i+1)) = 0,
RR(Vi) = [1, 2], RR(swi) = RR(sw(i+1)) = [0, 0], I(Vi ≥ 0) = I(swi ≥ 1) =
true, C(t0,i) = C(t1,i) = C(t3,i) = 0, and C(t2,i) = 10.

3 Reachability Algorithm

The reachability algorithm presented here is an extension of the zone-based
model checking algorithm used by LEMA as described in [12]. The main point
of using zones (or any polyhedral method) is to reduce the infinite number
of possible continuous variable states to a finite set of state sets that collect
together several states into a finite representation. A state set is a tuple ψ =
〈M,Q,RR,R, I, Z〉 where:

– M ⊆ P is the set of marked places;
– Q : V → Q × Q is the range of values of each zero rate continuous variable;
– RR : V → Q × Q is the current range of rates for each continuous variable;
– R : V → Q is the current rate of each continuous variable;
– I : I → {false, true} is the truth value of each inequality;
– Z : (T ∪ V ∪ {c0}) × (T ∪ V ∪ {c0}) → Q ∪ {∞} is a DBM composed of the

transition clocks for the enabled transitions, the non-zero rate continuous
variables, and c0, a reference clock which is always zero.

Reachability Analysis Using Extremal Rates 165

This definition is modified from that in [12] to accommodate ranges of rates.
The basic reachability algorithm used by LEMA is shown in Algorithm 1.1.

The algorithm starts by constructing the initial state set, ψ, for the LPN. In
the initial state, M = M0, Q = Q0, RR = R0, R = resetRates(RR), and I =
evalInequalities(ψ). The DBM, Z, is composed of the initial values for all
the continuous variables for which R(v) = 0. In addition, the DBM contains
a clock initialized to 0 for every enabled transition. After adding the initial
state to the set of reachable states, Ψ , the algorithm next calls the function
findPossibleEvents which returns the set of all events, E , that are possible in
the current state. The function select then chooses an arbitrary event, e, to be
the next event to explore. If, after removing the event, e, the event set, E , still
has events remaining, these remaining events are pushed onto a stack together
with the current state. The next state, ψ′, is computed by the updateState
function and is the result of executing the event, e, in the current state, ψ. If
the state ψ′ has not been seen before, then the algorithm adds it to the set of
reachable states, makes ψ′ the current state to search from, and finds the possible
events that can be executed from ψ′ (now the current ψ). If ψ′ has been seen
before, then the algorithm checks if there are any event sets left on the stack to
explore. If the stack is not empty, then the last record is removed and is used
as the new current state, ψ, and current set of events, E . If the stack is empty,
then there are no events left to explore, and the result is returned.

Algorithm 1.1. reach()
1 ψ := initialStateSet();
2 Ψ := {ψ};
3 E := findPossibleEvents(ψ);
4 while (true) do
5 e := select(E);
6 if (E − {e} �= ∅) then
7 push(E − {e}, ψ);
8 ψ′ := updateState(ψ, e);
9 if (ψ′ /∈ Ψ) then

10 Ψ := Ψ ∪ {ψ′};
11 ψ := ψ′;
12 E := findPossibleEvents(ψ);

13 else
14 if (stack not empty) then
15 (E , ψ) := pop();
16 else
17 return Ψ ;

The functions findPossibleEvents and updateState must be modified to
take into account a new rate change event. The findPossibleEvents algorithm
is shown in Algorithm 1.2. Lines 1-7 are the same as in [12] and handle deter-
mining which transitions can fire and which inequalities can change. A transition

166 A.N. Fisher et al.

can fire as soon as the clock (stored in the zone) exceeds the lower bound of the
delay assignment for that transition. The function ub(Z, t) is used to obtain the
largest value of the clock, t, from the zone, Z. An inequality can change if time
has advanced far enough for the variable to cross the constant associated with
the inequality. Lines 8-10 are added to determine if any rate events are possible.
Namely, any variables that are not evolving at their upper rate bound can have
a rate event to set it to its upper rate. In all cases, the function addSetItem
handles the adding and removing of elements from the event set according to
which events should occur first.

Algorithm 1.2. findPossibleEvents(ψ)
1 E := ∅;
2 foreach (t ∈ Z) do
3 if (ub(Z, t) ≥ dl(t)) then
4 E := addSetItem(E , t);

5 foreach (i ∈ ineq(En)) do
6 if (ineqCanChange(R, I, Z, i)) then
7 E := addSetItem(E , i);

8 foreach (v ∈ V) do
9 if (R(v) �= ru(v)) then

10 E := addSetItem(E , v);

11 return E ;

The modified updateState function is shown in Algorithm 1.3. The main
modifications to the original algorithm are the addition of resetRates and the
rateChange event. The first step is to restrict the zone according to the knowl-
edge provided by which event has occurred. When a transition fires, this means
that the time has advanced at least to the lower bound delay and for inequali-
ties this means that the continuous variable has reached the bounding constant.
After the restriction, the bounds are re-tightened. Next, the state is updated
according to whether the event is a set of inequalities changing, a transition
firing, or a rate change event. In the cases of inequalities changing or transitions
firing, the rates are reset via resetRates(RR), which resets the rates of each
continuous variable according to its range of rates. A rate change event consists
of a call to rateChange which takes the current state ψ and the rate change
event, e, and makes the rate change of R(v) = ru(v). Note, this change has the
effect of changing the rate for every state represented by the state set ψ. After
assigning the new rate, the inequalities are updated according to any variable
assignments and rate changes. Similarly, the zone is updated according to which
transitions are enabled. Finally, the zone is re-warped, time is allowed to advance
up to τmax, and the bounds are re-tightened.

Reachability Analysis Using Extremal Rates 167

Algorithm 1.3. updateState(ψ, e)
1 Z := restrict(Z, e);
2 Z := recanonicalize(Z);
3 Rold := R;
4 if (e ⊆ I) then
5 ψ := updateInequalities(ψ, e);
6 R := resetRates(RR);

7 else if (e ⊆ T) then
8 ψ := fireTransition(ψ, e);
9 R := resetRates(RR);

10 else
11 R := rateChange(ψ, e);
12 ψ := evalInequalities(ψ);
13 forall the (t ∈ T) do
14 if (t /∈ Z ∧ t ∈ E(ψ)) then
15 Z := addT(Z, t);
16 else if (t ∈ Z ∧ t /∈ E(ψ)) then
17 Z := rmT(Z, t);

18 Z := dbmWarp(Rold, R, Z);
19 Z := advanceTime(R, I, Z);
20 Z := recanonicalize(Z);
21 return ψ;

4 Correctness

The proof that the above algorithm does over-approximate the reachable state
space is done in two stages (see [7] for additional details). The first stage shows
that every state set S′ resulting from a transition firing or a set of inequalities
changing is captured by some state set ψ′. The second stage handles the inter-
vening rate changes and time advancements. First suppose that tr is a transition
and S

tr−→ S′. Since S ∈ ψ, the same transition tr is enabled in ψ and is one of
the possible event firings that are explored. Thus, one has ψ

tr−→ ψ′. The state
S′ is then in ψ′, since the same operations of updating the state S to produce S′

are performed for all the states in ψ to produce ψ′. For example, the markings,
M , are updated in the same fashion, the zone, Z, is updated to reflect the same
continuous variable assignments, etc. If S′ is the result of a set of inequalities, I,
changing, then this same set of inequalities is enabled to change in the state set
ψ. Furthermore, the same set of inequalities can change to produce ψ′. Since the
only states that are removed from ψ to produce ψ′ satisfy the condition v = c
for each v ≥ c ∈ I, the state S′ is not removed since v must equal c for each
v ≥ c ∈ I owing to the fact that the inequality is changing its truth value. Next,
the rate change events and time advancements are handled. Let ψ be the result
of a transition firing, a set of inequalities changing, or the initial state set, and
let S be a state in ψ. It is shown that if S′ is a state resulting from a sequence
of rate changes and time advancements up to a total time advancement of τmax,

168 A.N. Fisher et al.

then S′ is in some ψ′ resulting from ψ by a sequence of rate changes. For sim-
plicity, assume that v̂ is the only continuous variable and that RR(v̂) = [a, b].
The argument is to first show that the state S′ can be obtained by using a single
rate change and then show that the resulting trace is captured by a sequence of
state sets. Theorem 1 establishes the first part.

Theorem 1 ([7]). Let a, b ∈ R with 0 ≤ a ≤ b or a ≤ b ≤ 0, τ ∈ R any non-
negative real number, and q ∈ R any real number. Then, for any real number v
such that aτ + q ≤ v ≤ bτ + q, there exists a τ ′ ∈ [0, τ] such that f(τ) = v where:

f(x) =

{
b(x − τ ′) + aτ ′ + q if τ ′ ≤ x ≤ τ

ax + q if 0 ≤ x ≤ τ ′ .

Using this theorem, there exists τ1, τ2 such that S
τ1−→ S′′ R(v̂)←b−−−−−→ S′′′ τ2−→ S′. In

like fashion, let ψ′ be the state set resulting from ψ by changing the rate of v̂ to

b, and advancing time τmax, that is ψ
R(v̂)←b−−−−−→ ψ′′ τmax−−−→ ψ′. All that remains to

show is that the states S, S′, and S′′ are captured by the two state sets ψ and
ψ′. In [14], it is shown that the zone obtained by warping and advancing time
contains all points obtained by picking a point in the original zone, changing the
rate, and advancing time. This fact can be expressed formally in the following
theorem:

Theorem 2 (Section 4.4 of [14]). Let Z be a zone, let Z be the zone obtained
by warping Z, τ, r ∈ R such that τ ≥ 0 and r = 0. Then, for all z ∈ Z, z/r+τ ∈
Z ⊕ [0, τ] where ⊕ is the Minkowski sum X ⊕ Y = {x + y | x ∈ X and y ∈ Y }.
Consequently, the point z + rt is represented by a point in the time-advanced
warped zone Z ⊕ [0, τmax].

Therefore, ψ contains all points z ∈ Z which are the result of a time advancement
τ such that τ ≤ τmax when the rate of v̂ is a. Thus, S′′ is in ψ. Similarly, the
construction of ψ′ changes the rate of v̂ to b for each state in ψ and captures all
time advancements up to τmax. So, S′′′ and S′ are in ψ′.

Finally, extending to multiple continuous variables is a matter of finding the
sequence of switching points for each of the continuous variables and applying
the appropriate warping for each dimension.

5 Related Work

This paper addresses ranges of rates using an algorithmic approach. In contrast,
the methods of [5,14] use a translational approach where the original LPN or
automaton is transformed to replace the range of rates with single rate changes.
Suppose a variable v has a range of possible rates [a, b] in a given state. The
method of [5] is to replace the range of rates with three stages. The first stage
determines the total amount of time the system spends in the state, say τ time
units. The second stage determines the value of the continuous variable v after τ

Reachability Analysis Using Extremal Rates 169

time units, provided the rate is a. The third stage determines the possible values
for the continuous variable after τ time units for each of the possible rates in the
interval [a, b]. Similar to the approach of [5], the method used in [14] replaces
the state with two stages. The first stage sets the rate of v to a and then allows
a transition to fire that sets the rate to b.

Both these methods break the range of rates into traces that utilize only single
rates, namely, the rates a and b. However, in each case, the traces explored only
allow for a single change of rate. Such a transformation is enough when the LPN
or automaton is used to check a property, but it is not necessarily enough when
ranges of rates are used for an LPN or automaton model. The single switching
ensures that given a time τ and a range of rates [a, b], every possible value of v
at time τ is achievable by setting v to have rate a for some time τ̂ , switching
the rate to b and then allowing time to advance τ − τ̂ (Theorem 1). This process
breaks down when two sample times are involved. For example, suppose v is
required to be 2b at time 2 and 2b + a after 1 more time unit, for 0 < a < b.
Then, it is no longer possible to start with the rate at a and then switch once to
b since after 2 time units the rate needs to be changed back to a. As a concrete
example, consider the property LPN shown in Fig. 1b. After being initiated by
swi being set to 1, the property checks that Vi is above 15mV after 10μs and
then checks that Vi is more than 30mV after an additional 10μs. For Vi to be
greater than 15mV at 10μs, the rate of Vi must switch at or before 5μs. However,
since the rate has switched once, the rate must remain at 2mV/μs for the next
10μs resulting in Vi being at least 35mV. Thus, it is not possible for the failure
transition to fire. However, if Vi is 15mV at 10μs and the rate is set to 1mV/μs,
then Vi is 25mV after an additional 10μs, enabling the failure transition.

Instead of a translational approach, the method of Section 3 uses an algo-
rithmic approach that allows the rate to switch once per transition firing and
inequality changing. For LPNs, the number of times that a variable needs to be
allowed to switch is the number of times that the LPN ‘samples’ the variable,
that is, when an inequality changes or a transition fires. It is with these events
that something is learned about the values of the continuous variables.

6 Experimental Results

This section compares verification results from the translational approach of [14]
with results from the algorithmic approach of this paper by using models having
a varying number of capacitor stages (Fig. 1a). In the translational approach
of [14], the capacitor stages in Fig. 1a are modified to only use a single rate by
setting the rate initially to 1 and then adding a one time transition which option-
ally sets the rate to 2. The algorithmic approach requires no modifications. The
capacitor models are verified against the property in Fig. 1b with three different
enabling conditions for tFail and t11 using LEMA, a java-based verification tool.
All experiments are run on a 64-bit machine with an 3.4 GHz Intel Core i5-3570
CPU with 4 cores and 12GB of memory with a time limit of 6 hours. In each
case, the property is placed on the last stage.

170 A.N. Fisher et al.

Table 1. Comparison of translational approach [14] to our algorithmic approach with
a tFail enabling condition of ¬(Vi ≥ −2) that should verify to be correct

Translational Algorithmic Algorithmic (opt)

Caps Time (s) States Correct? Time (s) States Time (s) States Correct?

1 0.149 72 yes 0.188 59 0.108 35 yes

2 0.268 235 yes 2.01 144 0.457 56 yes

3 0.487 553 yes 40.085 279 0.941 65 yes

4 1.083 881 yes 15311.948 1148 2.954 105 yes

5 3.066 3009 yes TIMEOUT - 4.081 207 yes

Table 2. Comparison of translational approach [14] to our algorithmic approach with
a tFail enabling condition of Vi ≥ 30 that should not verify to be correct

Translational Algorithmic

Caps Time (s) States Correct? Time (s) States Correct?

100 108.686 1639 no 6.504 233 no

200 972.568 3239 no 88.599 723 no

300 3496.862 4839 no 287.089 875 no

400 10290.709 6439 no 710.162 1127 no

500 TIMEOUT - no 3418.39 1967 no

For the first example, the enabling condition on tFail is ¬(Vi ≥ −2). In
the capacitor models, the voltage is never negative. Thus, the failure transition
should not fire. The verification results for the modified property are shown in
Table 1. Both the translational approach and this paper’s algorithmic approach
give the correct verification result. Namely, that the model satisfies the property.
The state spaces are comparable, with the algorithmic approach producing no
more than a multiple of 2 more than the translational approach; however, the run
time quickly explodes. This fact suggests that many new states are either subsets
or supersets of previously found zones. To address this problem, addSetItem can
be modified to ensure that rate events fire before all other events. The results
are in the Algorithmic (opt) column in Table 1.

As a second example, the enabling condition for the failure transition tFail
is changed to Vi ≥ 30. In this case, the model does not satisfy the property and
both approaches correctly find this result, as is shown in Table 2. In this case, the
translational approach has state counts that are four to seven times larger than
the algorithmic approach for 100, 200, 300, 400, and 500 stages of capacitors.
Furthermore, the translational approach is now the one experiencing the rapid
increase in time. The state count for the algorithmic approach is relatively small
which indicates that the failure occurs rather early in the state search.

Reachability Analysis Using Extremal Rates 171

Table 3. Comparison of translational approach in [14] to our algorithmic approach for
the property shown in Fig. 1b that should not verify to be correct

Translational Algorithmic

Caps Time (s) States Correct? Time (s) States Correct?

1 0.162 81 yes 0.146 52 no

2 0.287 240 yes 0.534 143 no

3 0.529 622 yes 2.00 280 no

4 1.31 1550 yes 13.6 481 no

5 3.83 3710 yes 130 877 no

6 13.1 8926 yes 1047 1649 no

7 76.2 52574 yes 860 3798 no

8 410 122014 yes 29709 7489 no

The final property is the one shown in Fig. 1b. This property first checks that
if the voltage Vi is at least 15mV at 10μs, then the voltage must be at least 30mV
after an additional 10μs. If this is not true, then tFail fires, indicating a failure.
The results of verifying the last capacitor stage for models with one capacitor
through eight are shown in Table 3. For each example, the translational approach
indicates the model passes verification; however, this result is incorrect. If Vi has
a rate of 1mV/μs for 5μs and then has a rate of 2mV/μs for 5μs, the value of
Vi at 10μs is 15mV. If the rate goes back to 1mV/μs for another 10μs, then
the value of Vi is 25mV. This trace results in the sequence of transitions t5, t9,
t10, and tFail in Fig. 1b. Although zones over-approximate the state space, this
trace is missing from the transformed model. Thus, the translational approach
does not find this failure trace while the algorithmic approach does.

7 Conclusion

This paper shows how a zone-based reachability method can be extended to
verify models that utilize a range of rates. Previous methods have opted for
a translational approach that converts models to ones with only a single rate
change. Although this approach is adequate for properties, it is not enough
when used for models. By using a method that allows for multiple resets, one
can recover all the necessary behaviors. One avenue of future exploration is
increasing the accuracy of zones. Since zones provide an over-approximation,
states are introduced into the reachable state set that are not, in fact, reachable.
Thus, the verification result may indicate that the system does not meet the
specification, when the system really does. In the future, this method should
also be applied to more realistic examples. The experiments are shown with the
aid of a toy example that gives insight into the behavior of the method; however,
the applicability should be tested against examples in a real design flow.

172 A.N. Fisher et al.

References

1. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin,
X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
Theoretical Computer Science 138, 3–34 (1995)

2. Alur, R., Courcoubeti, C., Henzinger, T.A., Ho, P.H.: Hybrid automata: An
algorithmic approach to the specification and verification of hybrid systems. In:
Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) Hybrid Systems. LNCS,
vol. 736, pp. 209–229. Springer, Heidelberg (1993)

3. Asarin, E., Dang, T., Maler, O.: The d/dt tool for verification of hybrid systems.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 365–370.
Springer, Heidelberg (2002)

4. Bengtsson, J.E., Yi, W.: Timed Automata: Semantics, Algorithms and Tools. In:
Desel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri
Nets. LNCS, vol. 3098, pp. 87–124. Springer, Heidelberg (2004)

5. Cassez, F., Larsen, K.G.: The impressive power of stopwatches. In: Palamidessi,
C. (ed.) CONCUR 2000. LNCS, vol. 1877, p. 138. Springer, Heidelberg (2000)

6. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems.
In: Sifakis, J. (ed.) Automatic Verification Methods for Finite State Systems.
LNCS, vol. 407, pp. 197–212. Springer, Heidelberg (1990)

7. Fisher, A.N., Myers, C.J., Li, P.: Ranges of rates (2013) [Online; accessed 31-
December-2014]. http://www.async.ece.utah.edu/∼andrewf/ranges of rates.pdf

8. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: SpaceEx: Scalable verification of hybrid systems.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395.
Springer, Heidelberg (2011)

9. Frehse, G., Krogh, B., Rutenbar, R.: Verifying analog oscillator circuits using for-
ward/backward abstraction refinement. In: DATE 2006 Proceedings of the Design,
Automation and Test in Europe, vol. 1, p. 6, March 2006

10. Frehse, G.: Spaceex (2012) [Online; accessed 31-December-2012]. http://spaceex.
imag.fr/documentation/publications

11. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about
hybrid automata? In: Symposium on Theory of Computing, pp. 373–382. Associa-
tion for Computing Machinery (1995). http://dl.acm.org/citation.cfm?id=225162

12. Little, S., Seegmiller, N., Walter, D., Myers, C., Yoneda, T.: Verification of
analog/mixed-signal circuits using labeled hybrid petri nets. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 30, 617–630 (2011)

13. Little, S., Walter, D., Jones, K., Myers, C., Sen, A.: Analog/mixed-signal circuit
verification using models generated from simulation traces. The Inernational Jour-
nal of Foundations of Computer Science 21(2), 191–210 (2010)

14. Little, S.R.: Efficient modeling and verification of analog/mixed-signal circuits
using labeled hybrid petri nets. Ph.D. thesis, University of Utah (2008)

15. Myers, C.: Asynchronous Circuit Design. John Wiley & Sons, July 2001
16. Puri, A., Borkar, V., Varaiya, P.: ε-approximation of differential inclusions. In:

Alur, R., Sontag, E.D., Henzinger, T.A. (eds.) HS 1995. LNCS, vol. 1066. Springer,
Heidelberg (1996)

17. Silva, B.I., Krogh, B.H.: Formal verification of hybrid systems using checkmate: A
case study. American Control Conference 3, 1679–1683 (2000)

18. Yan, C., Greenstreet, M.: Faster projection based methods for circuit level verifi-
cation. In: ASPDAC 2008 Design Automation Conference, Asia and South Pacific,
pp. 410–415 (2008)

http://www.async.ece.utah.edu/~andrewf/ranges_of_rates.pdf
http://spaceex.imag.fr/documentation/publications
http://spaceex.imag.fr/documentation/publications
http://dl.acm.org/citation.cfm?id=225162

Towards Realizability Checking
of Contracts Using Theories

Andrew Gacek1(B), Andreas Katis2, Michael W. Whalen2,
John Backes1, and Darren Cofer1

1 Rockwell Collins Advanced Technology Center,
400 Collins Rd. NE, Cedar Rapids, IA 52498, USA

{andrew.gacek,john.backes,darren.cofer}@rockwellcollins.com
2 Department of Computer Science and Engineering,

University of Minnesota, 200 Union Street, Minneapolis, MN 55455, USA
katis001@umn.edu, whalen@cs.umn.edu

Abstract. Virtual integration techniques focus on building architectural
models of systems that can be analyzed early in the design cycle to
try to lower cost, reduce risk, and improve quality of complex embed-
ded systems. Given appropriate architectural descriptions and composi-
tional reasoning rules, these techniques can be used to prove important
safety properties about the architecture prior to system construction.
Such proofs build from “leaf-level” assume/guarantee component con-
tracts through architectural layers towards top-level safety properties.
The proofs are built upon the premise that each leaf-level component
contract is realizable; i.e., it is possible to construct a component such
that for any input allowed by the contract assumptions, there is some
output value that the component can produce that satisfies the con-
tract guarantees. Without engineering support it is all too easy to write
leaf-level components that can’t be realized. Realizability checking for
propositional contracts has been well-studied for many years, both for
component synthesis and checking correctness of temporal logic require-
ments. However, checking realizability for contracts involving infinite the-
ories is still an open problem. In this paper, we describe a new approach
for checking realizability of contracts involving theories and demonstrate
its usefulness on several examples.

1 Introduction

In the recent years, virtual integration approaches have been proposed as a
means to lower cost and improve quality of complex embedded systems. These
approaches focus on building architectural models of systems that can be ana-
lyzed prior to construction of component implementations. The objective is to
discover and resolve problems early during the design and implementation phases
when cost impact is lower. Several architecture description languages such as
AADL [1], SysML [2], and AUTOSAR [3] are designed to support such an engi-
neering process, and there has been significant effort to analytically determine
c© Springer International Publishing Switzerland 2015
K. Havelund et al. (Eds.): NFM 2015, LNCS 9058, pp. 173–187, 2015.
DOI: 10.1007/978-3-319-17524-9 13

174 A. Gacek et al.

system performance [4,5], fault tolerance [5], security [6], and safety [7] using
these techniques.

In an ongoing effort at Rockwell Collins and The University of Minnesota, we
have been pursuing virtual integration using compositional proofs of correctness.
The idea is to support hierarchical design and analysis of complex system archi-
tectures and co-evolution of requirements and architectures at multiple levels of
abstraction [8]. This was based on two observations about software development
for commercial aircraft: first, that component-level errors are relatively rare and
that most problems occur during integration [9], and second, that requirements
specifications often contain significant numbers of omissions or errors [10] that
are at the root of many of the integration problems. Specifically, the problem
involves demonstrating satisfaction arguments [11], i.e., that the requirements
allocated to components and the architecture connecting those components is
sufficient to guarantee the system requirements. We have created the AGREE
reasoning framework [12] to support compositional assume/guarantee contract
reasoning over system architectural models written in AADL.

Such proof systems build from “leaf-level” assume/guarantee component con-
tracts through architectural layers towards proofs of top-level safety properties.
The soundness of the argument is built upon the premise that each leaf-level
component contract is realizable; i.e., it is possible to construct a component
such that for any input allowed by the contract assumptions, there is some out-
put value that the component can produce that satisfies the contract guarantees.

Unfortunately, without engineering support it is all too easy to write leaf-level
components that can’t be realized. When applying our tools in both industrial
and classroom settings, this issue has led to incorrect compositional “proofs” of
systems; in fact the goal of producing a compositional proof can lead to engineers
modifying component-level requirements such that they are no longer possible
to implement. In order to make our virtual integration approach reasonable for
practicing engineers, tool support must be provided to check whether compo-
nents are realizable.

Realizability checking for propositional contracts has been well-studied for
many years (e.g., [13–16]), both for component synthesis and checking correct-
ness of temporal logic requirements. Checking realizability for contracts involv-
ing theories, on the other hand, is still an open problem. In this paper, we
describe a new approach for checking realizability of contracts involving theories
and demonstrate its usefulness on several examples. Our approach is similar to
k-induction over quantified formulas. We describe two algorithms. The first is
sound for both proofs and counterexamples, but computationally intractable.
The second algorithm is not sound for counterexamples (i.e., it may return a
‘false counterexample’ to a problem that is in fact realizable), but we have found
it fast and accurate in practice.

The rest of the paper is structured as follows. In Section 2 we will describe our
motivation and an example to illustrate realizability, and will define realizability
formally in Section 3. We next describe two algorithms for checking realizability
in Section 4, our implementation in the AGREE tool suite in Section 5, and our

Towards Realizability Checking of Contracts Using Theories 175

experience using the realizability check in Section 6. Section 7 describes related
work and Section 8 concludes.

2 Motivation and Example

We have been pursuing a proof-based virtual integration approach for building
complex systems using the architecture description language AADL [1] and the
AGREE compositional reasoning system [12]. We have demonstrated the effec-
tiveness of the approach on a variety of industrial-scale systems, including the
software controller for a patient-controlled analgesia (PCA) infusion pump [17],
a dual flight-guidance system [12], and several more recent models, such as a
quad-redundant flight control system and a quadcopter control system. We are
using this approach on the DARPA HACMS program to build secure vehicles
and to demonstrate how to apply virtual integration on industrial scale systems
to facilitate technology transfer.

As part of the HACMS project, we attempted a feasibility test via a class-
room exercise. We used the AADL and AGREE tools in a class assignment in a
graduate-level software architecture class. The students were organized into six
teams of four students. Each team was asked to specify the control software for
a simplified microwave oven in AADL using a virtual integration approach. The
software was split into two subsystems: one for controlling the heating element
and another for controlling the display panel, with several requirements for each
subsystem. The goal was to formalize these component-level requirements and
use them to prove three system-level safety requirements.

The results of the initial experiment were sobering. All student groups were
able to prove the system-level requirements starting from formalizations of the
component requirements. Unfortunately, in many cases, the proofs succeeded
because the components were incorrectly specified. In fact, only one of the teams
had written component-level requirements that could be implemented. The other
teams had requirements which were inconsistent under certain input conditions.
For example, one team produced the following informal component-level require-
ments:

Microwave-1 - While the microwave is in cooking mode, seconds to cook
shall decrease.

Microwave-2 - If the display is quiescent (no buttons pressed) and the
keypad is enabled, the seconds to cook shall not change.

and then produced the following formalized requirements1:

guarantee : is cooking′ ⇒ seconds to cook′ ≤ seconds to cook − 1

guarantee : (¬any digit pressed ∧ keypad enabled) ⇒
seconds to cook′ = seconds to cook

1 We have translated this property and others from the higher level AGREE syntax
into a two-state form that is used throughout this paper.

176 A. Gacek et al.

These formalized guarantees fail to avoid the conflict in the seconds to cook vari-
able between the Microwave-1 and Microwave-2 requirements, as they cannot
be both satisfied in a case where the microwave is cooking and the keypad is
enabled. This error was not caught despite an analysis built into an early version
of AGREE that checks contracts for consistency, i.e., whether the conjunction of
a system’s guarantees is satisfiable. We realized that consistency checking does
not actually provide a trustworthy answer because it only checks whether the
system works in some external environment, not in all environments. Realiz-
ability checking determines whether or not the component works in all input
environments that satisfy the component assumptions.

From this experience, we decided that realizability checking was necessary for
successful tech transfer of a virtual integration approach. The analysis was not
only necessary for classroom settings. We also found problems with component-
level requirements in two of our large-scale analysis efforts. Further, existing
approaches for checking realizability do not allow predicates over infinite theories
such as integers and reals, which are native to our AGREE contracts.

In the following sections, we formally define realizability over transition sys-
tems, as well as algorithms for checking realizability over infinite-state systems
that are efficient and accurate in practice. A machine-checked formalization of
the definitions and proofs in Coq can be found in a companion paper [18].

3 Realizability

We assume the types state and input for states and inputs. We use s for variables
of type state and i for variables of type input. State represents both internal state
and external outputs. A transition system is a pair (I, T) where I : state → bool
holds on the initial states states and T : state × input × state → bool holds on
T (s, i, s′) when the system can transition from state s to state s′ on receipt of
input i. We assume the usual notion of path with respect to a transition relation.

A contract specifies the desired behavior of a transition system. A con-
tract is a pair (A,G) of an assumption and a guarantee. The assumption A :
state × input → bool specifies for a given system state which inputs are valid.
The guarantee G is a pair (GI , GT) of an initial guarantee and a transitional
guarantee. The initial guarantee GI : state → bool specifies which states the sys-
tem may start in, that is, the possible initial internal state and external outputs.
The transitional guarantee GT : state× input× state → bool specifies for a given
state and input what states the system may transition to.

We now define what it means for a transition system to realize a contract.
This requires that the system respects the guarantee for inputs which satisfying
the contract. Moreover, the system must always remain responsive with respect
to inputs that satisfying the assumptions. In order to make this definition precise,
we first need to define which system states are reachable given some assumptions
on the system inputs.

Definition 1 (Reachable with respect to assumptions). Let (I, T) be a
transition system and let A : state × input → bool be an assumption. A state of

Towards Realizability Checking of Contracts Using Theories 177

(I, T) is reachable with respect to A if there exists a path starting in an initial
state and eventually reaching s such that all transitions satisfying the assump-
tions. Formally, ReachableA(s) is defined inductively by

ReachableA(s) = I(s) ∨ ∃sprev, i. ReachableA(sprev) ∧ A(sprev, i) ∧ T (sprev, i, s)

Definition 2 (Realization). A transition system (I, T) is a realization of the
contract (A, (GI , GT)) when the following conditions hold

1. ∀s. I(s) ⇒ GI(s)
2. ∀s, i, s′. ReachableA(s) ∧ A(s, i) ∧ T (s, i, s′) ⇒ GT (s, i, s′)
3. ∃s. I(s)
4. ∀s, i. ReachableA(s) ∧ A(s, i) ⇒ ∃s′. T (s, i, s′)

The first two conditions in Definition 2 ensure that the transition system
respects the guarantees. The second two conditions ensure that the system is
non-trivial and responsive to all valid inputs.

Definition 3 (Realizable). A contract is realizable if there exists a transition
system which is a realization of the contract.

Definitions 2 and 3 are useful for directly defining realizability, but not very
useful for checking realizability. We now develop an equivalent notion which is
more suggestive and amenable to checking. This is based on a notion called via-
bility. Intuitively, a state is viable with respect to a contract if being in that
state does not doom a realization to failure. We can capture this notion with-
out reference to any specific realization, because condition 2 in the definition of
realization tells us that GT is an over-approximation of any T .

Definition 4 (Viable). A state s is viable with respect to a contract (A, (GI ,
GT)), written Viable(s), if GT can keep responding to valid inputs forever, start-
ing from s. Informally, one can say that a state s is viable if it satisfies the
infinite formula:

∀i1. A(s, i1) ⇒ ∃s1. GT (s, i1, s1) ∧ ∀i2. A(s1, i2) ⇒ ∃s2. GT (s1, i2, s2) ∧ ∀i3. · · ·
Formally, viability is defined coinductively by the following equation

Viable(s) = ∀i. A(s, i) ⇒ ∃s′. GT (s, i, s′) ∧ Viable(s′)

Theorem 1 (Alternative realizability). A contract (A, (GI , GT)) is realiz-
able if and only if ∃s. GI(s) ∧ Viable(s).

Proof. For the “only if” direction the key lemma is ∀s.ReachableA(s) ⇒ Viable(s).
This lemma is proved by coinduction and follows directly from conditions 2 and 4
of Definition 2. Then by conditions 1 and 3 we have some state s such that I(s) and
GI(s). ThusReachableA(s) holds and applying the lemma we getGI(s)∧Viable(s).

For the “if” direction, let s0 be such that GI(s0) and Viable(s0). Define I(s) =
(s = s0) and T (s, i, s′) = GT (s, i, s′) ∧ Viable(s′). Conditions 1, 2, and 3 of Def-
inition 2 are clearly satisfied. Condition 4 follows from the observation that ∀s.
ReachableA(s) ⇒ Viable(s) and from the definition of viability.

178 A. Gacek et al.

4 An Algorithm for Checking Realizability

In this section we develop two versions of an algorithm for automatically checking
the realizability of a contract. The first version is based on Theorem 1 together
with under- and over-approximations of viability. An over-approximation is use-
ful to show that a contract is not viable, while an under-approximation is useful
to show that a contract is viable. The second version of the algorithm follows
from the mitigating the intractability of the first version.

We first define an over-approximation of viability called finite viability based
on a finite unrolling of the definition of viability. Because this is an over-approxi-
mation, if a contract does not have an initial state which is finitely viable, then
the contract is not viable. We formalize this when we prove the correctness of
the realizability algorithm.

Definition 5 (Finite viability). A state s is viable for n steps, written Viablen
(s) if GT can keep responding to valid inputs for at least n steps. That is,

∀i1. A(s, i1) ⇒ ∃s1. GT (s, i1, s1) ∧
∀i2. A(s1, i2) ⇒ ∃s2. GT (s1, i2, s2) ∧ · · · ∧

∀in. A(sn−1, in) ⇒ ∃sn. GT (sn−1, in, sn)

All states are viable for 0 steps.

We next define an under-approximation of viability based on one-step exten-
sion. This notion looks if GT can respond to valid inputs given a finite historical
trace of valid inputs and states.

Definition 6 (One-step extension). A state s is extendable after n steps,
written Extendn(s), if any valid path of length n from s can be extended in
response to any input. That is,

∀i1, s1, . . . , in, sn.
A(s, i1) ∧ GT (s, i1, s1) ∧ · · · ∧ A(sn−1, in) ∧ GT (sn−1, in, sn) ⇒

∀i. A(sn, i) ⇒ ∃s′. GT (sn, i, s′)

We now use these two notions to formally define our realizability algorithm.
The core of the algorithm is based on two checks called the base and extend
check.

Definition 7 (Realizability Algorithm). Define the checks:

BaseCheck(n) = ∃s. GI(s) ∧ Viablen(s)
ExtendCheck(n) = ∀s. Extendn(s)

The following algorithm checks for realizability or unrealizability of a contract.

Towards Realizability Checking of Contracts Using Theories 179

for n = 0 to ∞ do
if not BaseCheck(n) then
return “unrealizable”

else if ExtendCheck(n) then
return “realizable”

end if
end for

Theorem 2 (Soundness of “unrealizable” result). If ∃n. ¬BaseCheck(n)
then the contract is not realizable.

Proof. First we show ∀s, n. Viable(s) ⇒ Viablen(s) by induction on n. The result
then follows from Theorem 1.

Theorem 3 (Soundness of “realizable” result). If ∃n. BaseCheck(n) ∧
ExtendCheck(n) then contract is realizable.

Proof. First we show how Extendn(s) can be used to shift Viablen(s) forward.
The following is proved by induction on n.

∀s, n, i. Extendn(s) ∧ Viablen(s) ∧ A(s, i) ⇒ ∃s′. GT (s, i, s′) ∧ Viablen(s′)

Using this lemma we can show the following by coinduction.

∀s, n. Viablen(s) ∧ ExtendCheck(n) ⇒ Viable(s)

The result then follows from Theorem 1.

Corollary 1 (Soundness of Realizability Algorithm). The Realizability
Algorithm is sound.

Due to the approximations used to define the base and extends check, the
algorithm is incomplete. The following two examples show how both realizable
and unrealizable contracts may send the algorithm into an infinite loop.

Example 1 (Incompleteness of “realizable” result). Suppose the type state is
integers. Consider the contract:

A(s, i) =
 GI(s) =
 GT (s, i, s′) = (s �= 0)

This contract is realizable by, for example, a system that starts in state 1 and
always transitions into the same state. Yet, for all n, ExtendCheck(n) fails since
one can take a path of length n which ends at state 0. This path cannot be
extended.

Example 2 (Incompleteness of “unrealizable” result). Suppose the type state is
integers. Consider the contract:

A(s, i) =
 GI(s) = (s ≥ 0) GT (s, i, s′) = (s′ = s − 1 ∧ s′ ≥ 0)

This contract is not realizable since in any realization the state 0 would be
reachable, but the contract does not allow a transition from state 0. However,
BaseCheck(n) holds for all n by starting in state s = n.

180 A. Gacek et al.

Implementing this algorithm requires a way of automatically checking the
formulas BaseCheck(n) and ExtendCheck(n) for validity. This can be done in an
SMT-solver that supports quantifiers over the language the contract is expressed
in. Checking ExtendCheck(n) is rather nice in this setting since it has only a single
quantifier alternation. Moreover, using an incremental SMT-solver one can reuse
much of the work done to check ExtendCheck(n) to also check ExtendCheck(n+1).
However, BaseCheck(n) is problematic. First, it has 2n quantifier alternations
which puts even small cases outside the reach of modern SMT-solvers. Sec-
ond, the quantifiers make it impractical to reuse the results of BaseCheck(n)
in checking BaseCheck(n + 1). Finally, due to the quantifiers, a counterexample
to BaseCheck(n) would be difficult to relay back to the user. Thus we need a
simplification of BaseCheck(n) in order to make our algorithm practical.

Definition 8 (Simplified base check). Define a simplified base check which
checks that any path of length n from an initial state can be extended one step.

BaseCheck′(n) = ∀s. GI(s) ⇒ Extendn(s)

First, note that this check has a single quantifier alternation. Second, this
check can leverage the incremental features in an SMT-solver to use the results
of BaseCheck′(n) in checking BaseCheck′(n+ 1). Finally, when this check fails it
can return a counterexample which is a trace of a system realizing the contract
for n steps, but then becoming stuck. This provides very concrete and useful
feedback to system developers. The correctness of this check is captured by the
following theorem.

Theorem 4 (One-way soundness of simplified base check).

(∃s. GI(s)) ⇒ ∀n. (∀k ≤ n. BaseCheck′(k)) ⇒ BaseCheck(n)

Proof. We first prove the following by induction on n:

∀s, n. Extendn(s) ∧ Viablen(s) ⇒ Viablen+1(s)

The final result follows using this and induction on n.

Thus replacing BaseCheck(n) in the realizability algorithm with BaseCheck′(n)
preserves soundness of the “realizability” result. However, because the implica-
tion in Theorem 4 is only in one direction, the algorithm is no longer sound for
the “unrealizable” result. That is, it may return a counterexample showing n
steps of a realization of the contract that gets into a stuck state. The following
example makes this point explicit.

Example 3. Consider again Example 1 where the type state is integers and the
contract is:

A(s, i) =
 GI(s) =
 GT (s, i, s′) = (s �= 0)

As before, this contract is easily realizable. However, BaseCheck′(n) fails for all
n since it will consider a path starting at state n and transitioning n steps to
state 0 where no more transitions are possible.

Towards Realizability Checking of Contracts Using Theories 181

The benefits of this second version of the algorithm outweigh its costs. The
cases where a contract is realizable, yet fails the modified base check seems
unlikely in practice. We have encountered none in our case studies. Moreover,
when a contract does spuriously fail the simplified base check, it can almost
always be rewritten into a form which would pass.

5 Implementation

We have built an implementation of the realizability algorithm as an extension
to JKind [19], a re-implementation of the KIND model checker [20] in Java. Our
tool is called JRealizability and is packaged with the latest release of JKind. The
model’s behavior is described in the Lustre language, which is the native input
language of JKind and is used as an intermediate language for the AGREE tool
suite.

We unroll the transition relation defined by the Lustre model into SMT prob-
lems (one for the base check and another for the extend check) which can be
solved in parallel. We use the SMT-LIB Version 2 format which most modern
SMT solvers support. The most significant issue for SMT solvers involves quan-
tifier support, so we use the Z3 SMT solver [21] which has good support for rea-
soning over quantifiers and incremental search. The tool is often able to provide
an answer for models containing integer and real-valued variables very quickly
(in less than a second). Because of the use of quantifiers over a range of theories,
it is possible that for one of the checks, Z3 returns unknown; in this case, we dis-
continue analysis. In addition, because our realizability check is incomplete, the
tool terminates analysis when either a timeout or a user-specified max unrolling
depth (default: 200) is reached. In this case we are able to report how far the
base check reached which may provide some confidence in the realizability of the
system.

6 Case Studies

As a part of testing the algorithm in actual components, we examined three
different cases: a quad-redundant flight control system, a medical infusion pump,
and a simple microwave controller. In this section, we provide a brief description
of each case study and summarize the results in Table 1 at the end of the section.

6.1 Quad-Redundant Flight Control System

We ran our realizability analysis on a Quad-Redundant Flight Control System
(QFCS) for NASA’s Transport Class Model (TCM) aircraft simulation. We were
provided with a set of English language requirements for the QFCS components
and a description of the architecture. We modeled the architecture in AADL and
the component requirements as assume/guarantee contracts in AGREE. As the
name suggests, the QFCS consists of four redundant Flight Control Comput-
ers (FCCs). Each FCC contains components for handling faults and computing

182 A. Gacek et al.

actuator signal values. One of these components is the Output Signal Analy-
sis and Selection component (OSAS). The OSAS component is responsible for
determining the output gain for signals coming from the control laws and going
to the actuators. The output signal gain is determined based on the number of
other faulty FCCs or based on failures within the FCC containing the OSAS
component. The OSAS component contains 17 English language requirements
including the following:

OSAS-S-170 – If the local Cross Channel Data Link (CCDL) has failed,
OSAS shall set the local actuator command gain to 1 (one).

OSAS-S-240 – If OSAS has been declared failed by CCDL, OSAS shall
set the actuator command gain to 0 (zero).

We formalized these requirements using the following guarantees:

guarantee : ccdl failed ⇒ (fcc gain′ = 1)
guarantee : osas failed ⇒ (fcc gain′ = 0)

These guarantees are contradictory in the case when the local CCDL has failed
and the local CCDL reports to the OSAS that the OSAS has failed. This error
eluded the engineers who originally drafted the requirements as well as the engi-
neers who formalized them. In this case, there should be an assumption that if
the CCDL has failed then it will not report to the OSAS that the OSAS has
failed. This was not part of the original requirements. However, AGREE’s real-
izability analysis was able to identify the error and provide a counterexample.

6.2 Medical Device Example

Our realizability tool was also used to verify the realizability of the components
in the Generic Patient Controlled Analgesia infusion pump system that was
described in [22]. The controller consists of six subcomponents that were given
as input for the tool to verify the requirements described inside. While five of the
models were proven to be realizable, a subtly incorrect requirement definition
was found in the contract for the controller’s infusion manager.

GPCA-1 - The mode range of the controller shall be one of nine different
modes. If the controller is in one of the first two modes the commanded flow
rate shall be zero.

guarantee :
(IM OUT.Current System Mode′ ≥ 0) ∧
(IM OUT.Current System Mode′ ≤ 8) ∧
(IM OUT.Current System Mode′ = 0 ⇒

IM OUT.Commanded Flow Rate′ = 0) ∧
(IM OUT.Current System Mode′ = 1 ⇒

IM OUT.Commanded Flow Rate′ = 0)

(1)

Towards Realizability Checking of Contracts Using Theories 183

GPCA-2 - Whenever the alarm subsystem has detected a high severity
hazard, then Infusion Manager shall never infuse drug at a rate more than
the specified Keep Vein Open rate.

guarantee :
(TLM MODE IN.System On′ ∧

ALARM IN.Highest Level Alarm′ = 3) ⇒
(IM OUT.Commanded Flow Rate′ = CONFIG IN.Flow Rate KVO′)

(2)

The erroneously defined guarantee (2) tries to assert that
the IM OUT.Commanded Flow Rate to some (potentially non-zero)
Flow Rate KVO if the alarm input is 3; however, this may occur when
the IM OUT.Current System Mode is computed to be zero or one, in which case
the flow rate is commanded to be 0. While discovering and fixing the problem
was not difficult, the error was not discovered by the regular consistency check
in AGREE.

6.3 Microwave Assignment

The realizability tool was used to check the contracts for the microwave models
produced by the graduate student teams described in Sect. 2 that provided the
initial motivation for this work. The microwave consists of two subsystems that
manage the cooking element and display panel of the device. Table 1 shows the
corresponding results for each team, named as MT1, MT2, etc. While every
team but one managed to provide an implementable set of requirements for the
microwave’s mode controller, there were several interesting cases involving the
display control component. For space reasons, we highlight only one here.

Microwave-1 - While the microwave is in cooking mode, seconds to cook
shall decrease.

Microwave-3 - When the keypad is initially enabled, if no digits are
pressed, the value shall be zero.

Team 6 formalized these requirements as

guarantee : (cooking mode′ = 2) ⇒ (seconds to cook′ = seconds to cook − 1)
guarantee : (¬keypad enabled ∧ keypad enabled′ ∧ ¬any digit pressed′) ⇒

(seconds to cook′ = 0)

In the counterexample provided, the state where the microwave is cooking
(cooking mode = 2) and no digit is pressed creates a conflict regarding which
value is assigned to the seconds to cook variable: should it decrease by one, or
be assigned to zero? This counterexample is interesting because it indicates a
missing assumption on the environment: the keypad is not enabled when the

184 A. Gacek et al.

Table 1. Realizability checking results for case studies

Case study Model Result Time elapsed (seconds)
Base check depth

(# of steps)

QFCS FCS realizable 1.762 0

QFCS FCC unrealizable 0.981 1

GPCA Infusion Manager unrealizable 0.2 1

GPCA Alarm realizable 0.316 0

GPCA Config realizable 0.102 0

GPCA OutputBus realizable 0.201 0

GPCA System Status realizable 0.203 0

GPCA Top Level realizable 0.103 0

MT 1 Mode Control realizable 0.229 0

MT 1 Display Control unrealizable 0.207 1

MT 2 Mode Control realizable 0.202 0

MT 2 Display Control unknown 1000 (tool timeout) 1

MT 3 Mode Control realizable 0.203 0

MT 3 Display Control unrealizable 0.202 1

MT 4 Mode Control realizable 0.202 0

MT 4 Display Control unrealizable 0.521 1

MT 5 Mode Control unrealizable 0.1 1

MT 5 Display Control unrealizable 0.222 1

MT 6 Mode Control realizable 0.201 0

MT 6 Display Control unknown 1000 (tool timeout) 1

cooking mode is 2 (cooking). Without this assumption about the inputs, the
guarantees are not realizable.

Table 1 contains the exact results thatwere obtained during the three case stud-
ies. Every “realizable” resultwas determined to be correct since an implementation
was produced for each of the components analyzed, ensuring the accuracy of the
tool. Every contract that was identified as “unrealizable” was manually confirmed
to be unrealizable, i.e., there were no spurious results. Additionally, the number
of steps that the base check required to provide a final answer was not more than
one, with the unknown results being particularly interesting, as the tool timed out
before the solver was able to provide a concrete answer. This shows that there is
still work to be done in terms of the algorithm’s scalability, as well as an efficient
way to eliminate quantifiers, making the solving process easier for Z3.

7 Related Work

The idea of realizability has been the subject of intensive study. Gunter et al.
refer to it using the term relative consistency in [23], while Pnuelli and Rosner
use the term implementability in [13] to refer to the problem of synthesis for
propositional LTL. Additionally, the authors in [13] proved that the lower-bound
time complexity of the problem is doubly exponential, in the worst case. In the
following years, several techniques were introduced to deal with the synthesis
problem in a more efficient way for subsets of propositional LTL [24], simple
LTL formulas ([14], [25]), as well as in a component-based approach [16] and

Towards Realizability Checking of Contracts Using Theories 185

specifications based on other temporal logics ([26], [15]), such as SIS [27]. Finally,
an interesting and relevant work has been done regarding the solution to the
controllability problem using in [28] [29] and [30], which involves the decision
on the existence a strategy that assigns certain values to a set of controllable
activities, with respect to a set of uncontrollable ones.

Recent work in solving infinite game problems [31,32] can be specialized to
the problem of realizability. In this work, the authors describe a framework for
analyzing arbitrary two-player games. To provide proofs within the framework,
template formulas must be provided by the user that describe the shape of a
Skolem function that is used to explicitly define an inductive invariant that
demonstrates the realizability of a model. Although this work is more general
than ours, the applicability of the approach requires user-provided templates
that are problem specific, so is not entirely automated.

The main contribution of our work is that it automatically checks the realiz-
ability of infinite domain systems. The problem is, in general, undecidable. Still,
the application of bounded model checking can still offer an approximate answer
to the realizability problem as we experienced by the fact that Z3 managed to
solve the majority of our test models.

8 Conclusions and Future Work

In this paper, we have presented a new approach for determining realizability
of contracts involving infinite theories using SMT solvers. This approach allows
analysis of a class of contracts that were previously not solvable using automated
analysis. The approach is both incomplete and conservative, i.e., it may return
“false positive” results, declaring that a contract is not realizable when it could
be realized. However, it has been shown to be both fast and effective in practice
on a variety of models.

The results of this paper provide a good foundation towards further research
in realizability. In much the same way that many properties are not induc-
tive, some contracts cannot be proven realizable using one step extensions. We
are examining alternate algorithms, similar to approaches such as IC3 [33],
which support property-directed invariant generation, to improve the approach
presented here. However, this requires generalizing the IC3 approach to solve
quantified formulas (as well as to generalize counterexamples over quantified
formulas). We hope to demonstrate an approach involving a IC3-like algorithm
in the near future.

In addition, for realizable systems, it is likely that we want to consider the
synthesis problem, which we have not explicitly considered in this paper. Syn-
thesis aims to construct a concrete implementation of the contract, rather than
determine its existence. It is known for propositional systems that the synthesis
problem is equivalent in complexity to the realizability problem [13], but it is
not known (to us) whether this equivalence is true in the infinite-state case.

Acknowledgments. This work was funded by DARPA and AFRL under contract
FA8750-12-9-0179 (Secure Mathematically-Assured Composition of Control Models),

186 A. Gacek et al.

and by NASA under contract NNA13AA21C (Compositional Verification of Flight
Critical Systems), and by NSF under grant CNS-1035715 (Assuring the safety, security,
and reliability of medical device cyber physical systems).

References

1. SAE-AS5506: Architecture Analysis and Design Language. SAE (2004)
2. Friedenthal, S., Moore, A., Steiner, R.: A Practical Guide to SysML: Systems

Modeling Language. Morgan Kaufmann Publishers Inc., San Francisco (2008)
3. Consortium, A.: Automotive Open System Architecture (AUTOSAR) Revision

4.2.1. AUTOSAR (2014)
4. Varona-Gomez, R., Villar, E.: Aadl simulation and performance analysis in sys-

temc. In: 2009 14th IEEE International Conference on Engineering of Complex
Computer Systems, pp. 323–328 (2009)

5. Bozzano, M., Cimatti, A., Katoen, J.P., Nguyen, V.Y., Noll, T., Roveri, M.: Safety,
dependability and performance analysis of extended aadl models. Comput. J. 54,
754–775 (2011)

6. Apvrille, L., Roudier, Y.: SysML-Sec: A model-driven environment for developing
secure embedded systems. In: SAR-SSI 2013, 8ème Conférence sur la Sécurité des
Architectures Réseaux et des Systèmes d’Information, Mont-de-Marsan, France,
16–18 Septembre 2013

7. Bozzano, M., Cimatti, A., Katoen, J.P., Katsaros, P., Mokos, K., Nguyen, V.Y.,
Noll, T., Postma, B., Roveri, M.: Spacecraft early design validation using formal
methods. Reliability Engineering and System Safety 132 (2014)

8. Whalen, M.W., Gacek, A., Cofer, D., Murugesan, A., Heimdahl, M.P.,
Rayadurgam, S.: Your what is my how: Iteration and hierarchy in system design.
IEEE Software 30, 54–60 (2013)

9. Rushby, J.: New challenges in certification for aircraft software. In: Proceedings of
the Ninth ACM Int’l Conf. on Embedded Software, pp. 211–218. ACM (2011)

10. Miller, S.P., Tribble, A.C., Whalen, M.W., Heimdahl, M.P.E.: Proving the shalls:
Early validation of requirements through formal methods. Int. J. Softw. Tools
Technol. Transf. 8, 303–319 (2006)

11. Hammond, J., Rawlings, R., Hall, A.: Will it work? [requirements engineering]. In:
Proceedings of Fifth IEEE Int’l Symposium on Requirements Engineering, 2001,
pp. 102–109 (2001)

12. Cofer, D.D., Gacek, A., Miller, S.P., Whalen, M.W., LaValley, B., Sha, L.: Com-
positional verification of architectural models. In: Goodloe, A.E., Person, S. (eds.)
Proceedings of the 4th NASA Formal Methods Symposium (NFM 2012). LNCS,
vol. 7226, pp. 126–140. Springer-Verlag, Heidelberg (2012)

13. Pnueli, A., Rosner, R.: On the Synthesis of a Reactive Module. In: Proceedings
of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL 1989), pp. 179–190 (1989)

14. Bohy, A., Bruyére, V., Filiot, E., Jin, N., Raskin, J.F.: Acacia+, a tool for LTL
Synthesis. In: Madhusudan, P., Seshia, S.A. (eds.) Computer Aided Verification
(CAV 2012). LNCS, vol. 7358, pp. 652–657. Springer, Heidelberg (2012)

15. Hamza, J., Jobstmann, B., Kuncak, V.: Synthesis for regular specifications over
unbounded domains. In: Proceedings of the 2010 Conference on Formal Methods
in Computer-Aided Design, pp. 101–109 (2010)

Towards Realizability Checking of Contracts Using Theories 187

16. Chatterjee, K., Henzinger, T.A.: Assume-guarantee synthesis. In: Grumberg, O.,
Huth, M. (eds.) Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 2007). LNCS, vol. 4424, pp. 261–275. Springer, Heidelberg (2007)

17. Murugesan, A., Whalen, M.W., Rayadurgam, S., Heimdahl, M.P.: Compositional
verification of a medical device system. In: ACM Int’l Conf. on High Integrity
Language Technology (HILT) 2013. ACM (2013)

18. Katis, A., Gacek, A., Whalen, M.W.: Machine-checked proofs for realizability
checking algorithms (2015) (submitted). http://arxiv.org/abs/1502.01292

19. Gacek, A.: JKind - a Java implementation of the KIND model checker (2014).
https://github.com/agacek/jkind

20. Hagen, G.: Verifying safety properties of Lustre programs: an SMT-based approach.
PhD thesis, University of Iowa (2008)

21. De Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis of Sys-
tems. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

22. Murugesan, A., Sokolsky, O., Rayadurgam, S., Whalen, M., Heimdahl, M., Lee,
I.: Linking abstract analysis to concrete design: A hierarchical approach to verify
medical CPS safety. In: Proceedings of ICCPS 2014 (2014)

23. Gunter, C.A., Gunter, E.L., Jackson, M., Zave, P.: A Reference model for Require-
ments and Specifications. IEEE Software 17, 37–43 (2000)

24. Klein, U., Pnueli, A.: Revisiting synthesis of GR(1) specifications. In: Barner, S.,
Harris, I., Kroening, D., Raz, O. (eds.) Hardware and Software: Verification and
Testing (HVC 2010). LNCS, vol. 6504, pp. 161–181. Springer, Heidelberg (2010)

25. Tini, S., Maggiolo-Schettini, A.: Compositional Synthesis of Generalized Mealy
Machines. Fundamenta Informaticae 60, 367–382 (2003)

26. Beneš, N., Černá, I.: Factorization for component-interaction automata. In:
Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) The-
ory and Practice of Computer Science. LNCS, vol. 7147, pp. 554–565. Springer,
Heidelberg (2012)

27. Aziz, A., Balarin, F., Braton, R., Sangiovanni-Vincentelli, A.: Sequential synthesis
using SIS. In: Proceedings of the 1995 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD 1995), pp. 612–617 (1995)

28. Cimatti, A., Micheli, A., Roveri, M.: Solving temporal problems using SMT: Weak
controllability. In: AAAI, pp. 448–454 (2012)

29. Cimatti, A., Micheli, A., Roveri, M.: Solving temporal problems using SMT: Strong
controllability. In: Milano, M. (ed.) Principles and Practice of Constraint Program-
ming (CP). LNCS, vol. 7514, pp. 248–264. Springer, Heidelberg (2012)

30. Cimatti, A., Micheli, A., Roveri, M.: Solving strong controllability of temporal
problems with uncertainty using SMT. Constraints (2014)

31. Beyene, T., Chaudhuri, S., Popeea, C., Rybalchenko, A.: A constraint-based app-
roach to solving games on infinite graphs. In: Proceedings of the 41st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL
2014, pp. 221–233. ACM, New York, NY, USA (2014)

32. Beyene, T.A., Popeea, C., Rybalchenko, A.: Solving existentially quantified Horn
clauses. In: Sharygina, N., Veith, H. (eds.) Computer Aided Verification (CAV).
LNCS, vol. 8044, pp. 869–882. Springer, Heidelberg (2013)

33. Bradley, A.: SAT-based model checking without unrolling. In: Jhala, R., Schmidt,
D. (eds.) Verification, Model Checking, and Abstract Interpretation (VMCAI).
LNCS, vol. 6538, pp. 70–87. Springer, Heidelberg (2011)

http://arxiv.org/abs/1502.01292
https://github.com/agacek/jkind

Practical Partial Order Reduction for CSP

Thomas Gibson-Robinson1(B), Henri Hansen2, A.W. Roscoe1,
and Xu Wang1,2

1 Department of Computer Science, University of Oxford, Oxford, UK
{thomas.gibson-robinson,bill.roscoe}@cs.ox.ac.uk

2 Department of Mathematics, Tampere University of Technology, Tampere, Finland
henri.hansen@tut.fi

Abstract. FDR is an explicit-state refinement checker for the process
algebra CSP and, as such, is vulnerable to the state-explosion prob-
lem. In this paper, we show how a form of partial-order reduction, an
automatic state reduction mechanism, can be utilised to soundly reduce
the number of states that must be visited. In particular, we develop a
compositional method for partial-order reduction that takes advantage
of FDR’s internal, compositional, process representation. Further, we
develop novel methods of preserving the traces of a process which allow
partial-order reduction to be applied to arbitrary FDR refinement checks.
We also provide details on how to efficiently implement the algorithms
required for partial-order reduction.

1 Introduction

Communicating Sequential Processes (CSP) [1–3] is one of the most widely
known process algebras. FDR (Failures Divergence Refinement) [4,5] is an
industrial-strength tool that can check for refinement between CSP processes
described in a lazy functional language, along with other properties including
deadlock-freedom and determinism. Partial-order reduction [6–8] is a technique
for automatically and soundly reducing the number of states that need to be
visited. In this paper we describe an extension to FDR3 that adds support for
partial-order reduction, using weak stubborn sets, based on [9].

The stubborn sets are computed using a dependency graph that encodes
information about how actions interfere. This dependency graph is computed
compositionally, by taking advantage of FDR’s compositional process representa-
tion using supercombinators. A supercombinator represents a labelled-transition
system (LTS) implicitly as a set of component LTSs and a set of rules spec-
ifying how to combine the component transitions. The partial-order reduction
has been designed to preserve not only deadlocks, but also traces, failures, and
divergences, using theory similar to [9,10]. This means that it can be used for
general refinement checks inside FDR.

This paper makes three main contributions. 1. We provide a general frame-
work for efficiently computing weak stubborn sets, which have not been exploited
c© Springer International Publishing Switzerland 2015
K. Havelund et al. (Eds.): NFM 2015, LNCS 9058, pp. 188–203, 2015.
DOI: 10.1007/978-3-319-17524-9 14

Practical Partial Order Reduction for CSP 189

thus far due to the perceived complexity of the algorithms. 2. We show how to
efficiently compute dependency information for supercombinators. 3. We develop
a vastly more efficient method of preserving trace refinement violations (one of
FDR’s verification modes) utilising the watchdog transformation of [11].

Related Work. Recent research in partial order reduction has explored ways to
expand its applications. Strong stubborn sets were proven to be optimal in a
model theoretic sense [12]: if the classic dependency and enabling relations are
the only things known about the system, omitting any transition from the strong
stubborn set as calculated by the deletion algorithm [13], risks losing a deadlock.
The result does not apply to weak sets, which use different dependency relations.

The more complicated algorithms (e.g. the deletion algorithm) we discuss
in this article come at a cost in time. Approaches that target more efficient
calculation have recently been explored, for instance the use of guards [14] in
shared variable concurrency to control for causality. We make use of similar ideas
in the implementation, though adapted for supercombinators.

The use of weak stubborn sets with the failures-divergences model was earlier
explored in [9]. The work in this article provides a more general framework of
parallel composition and covers reductions for several other models. Our work
extends many of the ideas presented in [10], which covers computation of (strong)
stubborn sets for many of the semantic models in the linear-time/branching-time
spectrum. Most models require solving the so-called ignoring problem as defined
in [6], which has recently received some attention on its own [15]. Our methods
do not require global information such as cycle provisos. The approach in the
watchdog transformation is similar to that in [16].

Outline. Section 2 describes FDR’s LTS representations and weak stubborn sets.
Section 3 formalises dependency graphs and shows how these can be computed
from a supercombinator. Section 4 describes how to compute stubborn sets.
Section 5 extends Section 3 to preserve the traces, failures, and divergences of
a process. Section 6 presents experimental results regarding partial-order reduc-
tion, and discusses how it relates to FDR’s existing state-reduction methods.

2 Background

FDR converts CSP processes to labeled-transition systems.

Definition 1. A labeled transition system (LTS) is a 4-tuple (S,Σ,Δ, ŝ) where:

– S is a set of states;
– Σ is a finite set of events (such that − /∈ Σ);
– Δ ⊆ S × Σ × S is a transition relation;
– ŝ ∈ S is the initial state.

Given Σ we write Σ− = Σ∪{−}. If (s, a, s′) ∈ Δ we write s
a−→ s′. s

a1...an−−−−→ s′

iff there exists s1, . . . , sn such that s = s1
a1−→ s2 · · · sn

an−−→ s′. s
a−→ is true iff

∃ ·s a−→ s′. We define en(s) =̂ {a ∈ Σ | ∃ s′ · s
a−→ s′}.

190 T. Gibson-Robinson et al.

FDR also has an implicit LTS representation, called a supercombinator. It
consists of a set of component LTSs along with a set of rules that describe how
the transitions should be combined. The rules are partitioned into formats: in a
state, rules from one format are active. A rule combines transitions of (a subset
of) the components and determines the event the supercombinator performs.
Rules may also reset components to their initial state, and change the format.

Definition 2. A supercombinator is a 3-tuple (P,R, f̂) where:

– P = {P1, . . . , Pn} is a set of LTSs, such that Pi = (Si, Σi,Δi, ŝi).
– R is a sequence of disjoint sets of length |R|. The ith format is denoted by

R(i) and is a set of supercombinator rules (e, a, r, f) where:
• e ∈ Σ−

1 × · · · × Σ−
n specifies the action each component must perform.

‘−’ indicates it performs none.
• a is an event.
• r ⊆ {1, . . . , n} are the indices of the Pi that are reset.
• f ∈ {1, . . . , |R|} is the result format.

– f̂ ∈ {1, . . . , |R|} is the initial format.

Given a rule α in a format f ∈ R, [α] =̂ f . We abuse notation and write
(e, a, r, f) ∈ R to mean ∃ i · (e, a, r, f) ∈ R(i). Further, we assume that if
(e1, a1, r1, f1), (e2, a2, r2, f2) ∈ R are two different rules, then a1 �= a2

1.

Given a supercombinator, a corresponding explicit LTS can be constructed.

Definition 3. Let S = ({P1, . . . , Pn},R, f̂) be a supercombinator where Pi =
(Si, Σi,Δi, ŝi). The LTS induced by S is the smallest LTS (S,Σ,Δ, ŝ) such that:

– States are tuples consisting of the state of each component, plus the identifier
of the format: S ⊆ S1 × · · · Sn × {1, . . . , |R|}.

– The initial state is the tuple containing the initial states of each of the
components, along with the initial format: ŝ = (ŝ1, . . . , ŝn, f̂) ∈ S.

– The action labels are the labels of the rules Σ = {a | ∃(e, a, r, f) ∈ R}.
– The transitions correspond to the supercombinator rules firing. Let s =̂

(s1, . . . , sn, f) ∈ S, s′ =̂ (s′
1, . . . , s

′
n, f ′) ∈ S, and ((b1, . . . , bn), a, r, f ′) ∈

R(f). (s, a, s′) ∈ Δ iff for each component i:
1. If i /∈ r, then either bi = − and si = s′

i, or si
bi−→Pi

s′
i;

2. If i ∈ r, s′
i = ŝi and, if bi �= − then ∃ s∗

i · si
bi−→Pi

s∗
i .

1 This assumption simplifies the theory by allowing supercombinator rules to be
uniquely identified. This is required as the techniques we develop need to know which
rule generated each transition. This is not a desirable restriction and, in practice,
rules are identified by an integer and thus do not need unique events.

Practical Partial Order Reduction for CSP 191

Weak Stubborn Sets. Our partial-order reduction technique utilises weak stub-
born sets [9], which is the weaker form (i.e. can achieve more reduction) of the
common stubborn set method [6]. In the stubborn set method, a stubborn subset
of the actions in each state are selected. The main requirement is that any action
from the stubborn set must commute with sequences of non-stubborn actions.

Definition 4 (From [9]). A function T : S �→ 2Σ is a stubborn set reduction
function for a LTS L = (S,Σ,Δ, ŝ) iff for every s ∈ S:

D1 For all b1, . . . , bn /∈ T (s) and a ∈ T (s), if s
b1···bna−−−−−→ s′ then s

ab1···bn−−−−−→ s′;
D2 Either en(s) = {}, or there exists a ∈ T (s) such that for every b1, . . . , bn /∈

T (s), if s
b1···bn−−−−→ s′, then s′ a−→.

If T is a stubborn set reduction function for L, we say that the set T (s) is a
stubborn set at s. If T (s) is a stubborn set and a ∈ T (s) satisfies the second
condition, we say that a is a key action of s.

The difference between weak and strong stubborn sets only concerns D2. In
the strong stubborn set definition, every a ∈ T (s) is required to be a key action.

The LTS induced by a stubborn set reduction function is defined as follows.

Definition 5 (From [9]). Let L = (S,Σ,Δ, ŝ) be a LTS and T be a stubborn set
reduction function for L. The T -reduction of L, denoted T (L) =̂ (ST , Σ,ΔT , ŝ),
is the minimal LTS such that: 1. ŝ ∈ ST ; 2. ST ⊆ S; 3. For every s ∈ ST , if
(s, a, s′) ∈ Δ and a ∈ T (s) ∩ en(s), then (s, a, s′) ∈ ΔT and s′ ∈ ST .

Weak stubborn sets only preserve deadlocks. Section 5 considers how to
strengthen Definition 4 to preserve other properties of interest to FDR.

Theorem 6 (From [9]). Let T be a stubborn set reduction function for a LTS
L = (S,Σ,Δ, ŝ) and L′ = (S′, Σ′,Δ′, ŝ′) be the T -reduction of L. For every
reachable s′ ∈ S, if enL(s′) = {} then s′ ∈ S′ is reachable and enL′(s′) = {}.

3 Dependency Information

In this section we consider how to compute stubborn sets. Our analysis will be
dynamic (i.e. we will compute stubborn sets in each state), but will be based on
statically-computed information derived from supercombinators.

Supercombinators naturally suggest a compositional method of analysing the
components. Firstly, we will analyse the component processes (which are small
explicit LTSs) to see how events interfere. This will be used to determine how
the supercombinator rules interfere, which will form the basis of our analysis.

Our definitions are not restricted to supercombinators: in Section 3.1 we will
describe a general framework that can be used for computing stubborn sets, and
we will then describe how to include supercombinators in this in Section 3.2.

192 T. Gibson-Robinson et al.

3.1 Dependency Graphs

The static analysis will produce a dependency graph that indicates how actions
interfere. It will be defined so that a subset of it that is closed (in some sense)
will be a stubborn set. Before defining the dependency graph, we firstly define
two dependency relations that will form the basis of the dependency graph.

Definition 7. Given a LTS L = (S,Σ,Δ, ŝ), D ⊆ Σ ×Σ is a strong dependency
relation iff for all s ∈ S, a, b ∈ Σ: if (a, b) /∈ D, s

b−→, and s
a−→, then:

1. For every s′ such that s
a−→ s′, s′ b−→ (and symmetrically for b);

2. For every s∗, if s
ab−→ s∗ then s

ba−→ s∗ (and symmetrically for ba).

Two actions are strongly dependent if either they disable each other, or do
not commute. We also consider another notion, called weak dependency. Despite
its name, the relation is incomparable with strong dependency.

Definition 8. Given a LTS L = (S,Σ,Δ, ŝ), W ⊆ Σ × Σ is a weak dependency
relation iff for every s ∈ S and a, b ∈ Σ: if (a, b) /∈ W and s

ba−→ s′, then s
ab−→ s′.

a is weakly independent of b if the result of ba can be obtained by performing
ab. Note that it is asymmetric: if a is weakly independent of b, then this prevents
b from enabling a, and only prevents a from disabling b if b does not disable a,
whereas strong independence prevents either from disabling the other.

The dependency graph contains three vertex types: enabled actions, disabled
actions, and guards. The guards encode why each disabled action is disabled,
whilst each action is linked to the guards it may satisfy.

Definition 9. Let L = (S,Σ,Δ, ŝ) be a LTS, D be a strong dependency relation
on L, W be a weak dependency relation on L, and s ∈ S. A dependency graph
of L at s is a tuple (X,Y,Z,�,�W) where:

1. X contains the enabled actions, i.e. X = en(s).
2. Y contains the disabled actions, i.e. Y = Σ \ en(s).
3. Every disabled action is guarded : for every a ∈ Y there is at least one c ∈ Z

such that c � a.
4. For all (a, b) ∈ D such that a ∈ en(s), a � b.
5. For all (a, b) ∈ W such that a ∈ en(s), a �W b.
6. Guards of disabled actions must meet the following criterion: if a ∈ Y , and

s
b1···bna−−−−−→, then for every c ∈ Z such that c � a, there is some i ≤ n such

that bi � c (i.e. bi causes the guard c to be satisfied).

Close subsets of dependency graphs are also stubborn sets, as we now show.

Definition 10. Let (X,Y,Z,�,�W) be a dependency graph of a LTS L at s,
and T ⊆ X∪Y ∪Z. An element a ∈ X is strongly closed in T iff {b | a � b}∩(X∪
Y) ⊆ T . An element b ∈ X is weakly closed in T iff {b | a �W b}∩ (X ∪Y) ⊆ T .
T is a result set iff:

Practical Partial Order Reduction for CSP 193

1. If X �= {} then there exists a ∈ T ∩ X such that a is strongly closed in T ;
2. Every a ∈ T ∩ X is either strongly or weakly closed in T ;
3. If a ∈ T ∩ Y then there is some c ∈ Z such that c � a and c ∈ T ;
4. If c ∈ T ∩ Z then {a | a � c} ⊆ T .

Recall a stubborn set is required to commute with all sequences of non-
stubborn actions. This explains the definition: a result set consists of at least
one strongly closed action, along with everything that it interferes with. Further,
if an action is in the result set and disabled, then no action that is not in the
result set can enable the disabled action, thus ensuring D1.

Theorem 11. If T is a result set of a dependency graph (X,Y,Z,�,�W) at
s, then T ∩ (X ∪ Y) is a stubborn set at s.

The proof is very similar to the proofs in [9,12].

3.2 Supercombinator Dependency Graphs

We now consider how to construct a dependency graph for a supercombinator.
As discussed above, this will be done compositionally by composing dependency
information about the components using the supercombinator rules.

We firstly define strong and weak dependency relations for supercombinators.

Lemma 12. Let P = {P1, . . . , Pn} be a set of LTSs, Di and Wi be strong and
weak dependency relations for Pi, resp. Let S = (P, R, f̂) be a supercombinator.
Then, the relations D and W , defined as follows, are strong and weak dependency
relations for the LTS induced by S:

– (a, b) ∈ D iff ∃α = ((a1, . . . , an), a, ra, fa), β = ((b1, . . . , bn), b, rb, fb) ∈ R,
such that [α] = [β]2 and either:
1. The actions of a component are dependent, i.e. ∃ i · (ai, bi) ∈ Di; or
2. α resets a component that β requires (or vice-versa), i.e. there exists

i ∈ ra such that bi �= − (or symmetrically for rb and ai); or
3. α or β change the format, i.e. ¬(fa = [α] = [β] = fb).

– (a, b) ∈ W iff ∃α = ((a1, . . . , an), a, ra, fa), β = ((b1, . . . , bn), b, rb, fb) ∈ R,
such that:
1. α and β are enabled in the same format, and one of their component

events is weakly dependent, i.e. [α] = [β] = fb and ∃ i · (ai, bi) ∈ Wi; or
2. α and β are enabled in different formats, but β switches to α’s format,

i.e. [α] �= [β] and fb = [α]; or
3. fb = [α] and β resets a component that α utilises to enable α, i.e. ∃ i ∈

rb · ai �= − ∧ ai ∈ eni(ŝi).

2 Actions in different formats can never be enabled in the same state, so cannot be
strongly dependent.

194 T. Gibson-Robinson et al.

Note that the above are sufficient, but not necessary conditions. For instance,
requiring fa = [α] = [β] = fb is stronger than necessary since it may be the case
that even though the formats change, there may be a rule equivalent to β in fa,
and a rule equivalent to α in fb, in which case the actions may not interfere.

In order to construct the dependency graph for the supercombinator, another
relation is required on the components. This causality relation indicates when
actions enable others, and is used for constructing edges from actions to guards.

Definition 13. Given a LTS P = (S,Σ,Δ, ŝ), a relation C ⊆ Σ × Σ is a
causality relation iff for every s ∈ S, a, b ∈ Σ: If (a, b) /∈ C, then s

ba−→ s′ ⇒ s
a−→.

We now define a dependency graph for a supercombinator, so that it satisfies
Definition 9. The main decision concerns the choice of guard nodes. In a LTS
induced by a supercombinator, there are two reasons why an action may be
disabled: 1. The wrong format is currently selected; 2. A component is unable to
perform the event required by the rule. Thus, there will be two types of guard
nodes: format guards corresponding to a format, and component event guards
that correspond to a component performing an event.

Theorem 14. Let P = {P1, . . . , Pn} be a set of LTSs, Ci be a causality relation
for Pi, S = (P,R, f̂) be a supercombinator, and W and D weak and strong
dependency relations for the LTS L induced by S. The 5-tuple (X,Y,Z,�,�W)
is a dependency graph for L at s = (s1, . . . , sn, f) if:

– X = en(s) and Y = Σ \ en(s).
– Z = ZF ∪ ZC where ZF consists of format guards for disabled formats, and

ZC consists of component event guards for each event that each component
cannot perform. Formally, ZF =̂ {f ′ ∈ {1 . . . |R|} | f ′ �= f} whilst ZC =̂
{(ai, i) | ((a1, . . . , an), a, r, fa) ∈ R, ai �= −, ai /∈ eni(si)}.

– For every a ∈ X and b ∈ Σ, if (a, b) ∈ D then a � b.
– For every a ∈ X and b ∈ Σ, if (a, b) ∈ W then a �W b.
– For every disabled rule, there is an edge from every component event guard

to every rule for which the component cannot perform the required event.
Formally, for every ((a1, . . . , an), a, r, fa) ∈ R where a ∈ Y and, for all i such
that ai �= − and ai /∈ eni(si), (ai, i) � a.

– For every disabled rule of a different format, there is an edge from the format
guard to the rule. Formally, for every α = (e, a, r, f) ∈ R such that a ∈ Y
and f �= [α], [α] � a.

– For every rule that changes format, there is an edge from the rule to the new
format guard. Formally, for all α = (e, a, r, f) ∈ R where [α] �= f , a � f .

– There is an edge from every rule to every component event guard that
the rule may satisfy. Formally, for every (ai, i) ∈ Z and b ∈ Σ such that
(e, b, ri, fb) ∈ R, b � (ai, i) if:
1. i ∈ rb and ai ∈ eni(ŝi) (i.e. b resets i, and ai is available in ŝi); or
2. e = (b1, . . . , bn) and (ai, bi) ∈ Ci (i.e. performing b means component i

performs bi, which enables ai).

Practical Partial Order Reduction for CSP 195

4 Implementing Stubborn Sets

In the previous section we showed how a dependency graph can be constructed
for a supercombinator, and also proved that a subset of a dependency graph,
known as a result set, is a stubborn set. In this section, we consider how to
actually compute a result set from a dependency graph.

In order to achieve as much reduction as possible, it appears to be desirable
to compute a stubborn set with as few enabled actions as possible. However, not
only is this problem known to be NP-complete [17], but it is also not guaranteed
to yield the best overall reduction. Clearly, if one stubborn set reduction yields
a subset of another reduction, the first also results in a reduced system with a
subset of the latter’s states. We instead give approximation algorithms, one of
which is guaranteed to give subset-minimal stubborn sets. We then explain how
they can be efficiently implemented in practice, which is challenging.

4.1 Deletion Algorithm

The first algorithm we consider is an adaptation of the well-known deletion
algorithm [13,18]. This is a method for computing a result set of the dependency
graph by progressively pruning a set. It is, essentially, an optimised least-fixed
point calculation. The algorithm is guaranteed to give a subset-minimal result in
the sense that no proper subset can be a result set, but its weakness is complexity:
it is cubic in the number of actions and guards.

The algorithm, shown in Algorithm 1, takes a dependency graph (X,Y,Z,�,
�W). It maintains two sets: K which initially equals X, and N which initially
contains X ∪Y ∪Z. An iteration consists of a recursive operation called deletion
of one of the elements in X. Between iterations, the algorithm maintains the
following invariants:

– K contains enabled rules that are strongly closed with respect to K ∪ N .
– N consists of enabled rules nodes that are weakly closed, disabled rule nodes

that have a guard predecessor, and guards that have all of their predecessors.

The invariants guarantee that if K �= {} then K ∪ N is a result set (cf. Defini-
tion 10 (1)). When deleting a node, anything that violates the definition of a
result set is removed in order to maintain the invariants.

Theorem 15. Given a dependency graph G =̂ (X,Y,Z,�,�W), the set left
after deletion of every node of X, i.e. T = K ∪ N , is a result set of G. Further,
no T ′ ⊂ T is a result set of G.

Implementation. Efficiently implementing the algorithm is a challenge. We out-
line several details that were required to obtain acceptable performance.

The algorithm requires a representation of the dependency graph to be con-
structed in each state. Dynamically constructing a graph is clearly inefficient,
and thus we statically construct a global dependency graph for the LTS. Any

196 T. Gibson-Robinson et al.

1 function Stubborn1 (s)
2 K, N = X, X ∪ Y ∪ Z
3 forall the b ∈ X do
4 K′, N ′ = Delete(K, N , b)
5 if K′ �= {} then K, N = K′, N ′

6 return N ∪ K
7 function Delete(K, N , b)
8 K, N = K \ {b}, N \ {b}
9 if b ∈ Σ then

10 forall the a ∈ K : a � b do
11 K = K \ {a}
12 if a /∈ N then K, N = Delete(K, N , a)

13 forall the a : a ∈ N ∩ X ∧ a �W b do
14 N = N \ {a}
15 if a /∈ K then K, N = Delete(K, N , a)

16 forall the c : c ∈ Z ∩ N ∧ b � c do
17 K, N = Delete(K, N , c)

18 if b ∈ Z then
19 forall the a : a ∈ Y ∩ N ∧ b � a do
20 if {c ∈ Z | c � a} ∩ N = {} then K, N = Delete(K, N , a)

21 return K, N
Algorithm 1. The deletion algorithm for finding stubborn sets.

dependency graph of the LTS is a subgraph of the global dependency graph,
and can be obtained simply by selecting a subset of the guard vertices. This is
a straightforward adaptation of Theorem 14.

Given a global dependency graph, instantiating it in each state requires the
rule nodes to be partitioned into X and Y , and the correct guard nodes to be
enabled. The latter can be expensive, and therefore we precompute for each
state of each component the set of component event guards that are enabled.
This reduces the computation of the enabled guards to a union operation.

Another challenge with dependency graphs concerns is that they are often
very large, making traversal of the graph prohibitively expensive. To solve this
we present two strategies. Firstly, we consider component event guards.

Definition 16. Let (S,Σ,Δ, ŝ) be a LTS and let a, b ∈ Σ. a and b are always
co-enabled iff for all s ∈ S, s

a−→ iff s
b−→.

If (a, i) and (b, i) are guard nodes such that a and b are always co-enabled in
component i, they have exactly the same neighbours in any dependency graph.
This means that the dependency graph can be factored by co-enabled guards,
with an arbitrary representative picked for each equivalence class. In practice,
CSP scripts produce components with large numbers of always co-enabled events.

The second size optimisation considers cliques of rules (i.e. sets of rules where
each rule strongly conflicts with each other rule). Cliques are interesting, because
when running the deletion algorithm, if a rule node is deleted (i.e. it is no longer

Practical Partial Order Reduction for CSP 197

1 function Stubborn2 (s)
2 W = {a} for some a ∈ X
3 S = {}
4 while W �= {} do
5 S = S ∪ {a} for some a ∈ W
6 W = W \ a
7 if a ∈ X then
8 W = W ∪ {b | a � b}
9 or W = W ∪ {b | a �W b}

10 if a ∈ Y then
11 W = W ∪ {c} for some c ∈ Z such that c � a
12 if a ∈ Z then W = W ∪ {b | b � a}
13 return S

Algorithm 2. The closure algorithm for finding stubborn sets

in K ∪ N), then every other node in the clique must be removed from K since it
is no longer strongly closed. Treating cliques as a whole, rather than traversing
all edges, is advantageous since cliques contain quadratically many edges.

The other notable optimisation is the data structure used for representing
K and N . This is a set representation that supports O(1) operations to: query
membership, insert/delete, and backtrack to the last snapshot. This data struc-
ture takes advantage of the fact that all items are integers in a small range by
maintaining an array that contains all the integers, along with an offset specify-
ing the border between elements in and out of the set. Thus, backtracking can
be done by simply resetting the border to its old value.

4.2 Iterative Algorithm
The second algorithm we consider is known as the iterative algorithm and, in
contrast to the deletion algorithm, builds a result set from a single seed. The
algorithm is linear time, but it is nondeterministic and there is no guarantee
whatsoever about the size of the resulting set, unlike with the deletion algorithm.

The algorithm, shown in Algorithm 2, works as follows. A work set W is
initialised with a nondeterministically chosen node from X. The algorithm pro-
ceeds to build the set by adding nodes that are required in order to make the
set a result set. For example, if an enabled rule node is added then either all
weakly or all strongly conflicting rule nodes must be added (which is another
nondeterministic choice). In our implementation, this is resolved by choosing the
set that contains the fewest nodes still outside the set; one of the choices must
be the strong set. If a disabled rule node is added, then one of its guards must
be added. This is the third nondeterministic choice. In our implementation we
select the guard that serves as the guard for as many disabled rule nodes in the
set as possible. The process ends when no new nodes need to be added.

Theorem 17. Given a dependency graph G =̂ (X,Y,Z,�,�W), the set con-
structed is a result set of G providing one nodes from X is strongly closed.

198 T. Gibson-Robinson et al.

5 Preserving CSP Models

The theory and methods explored thus far preserve deadlocks. In order to pre-
serve the results of refinement checks, additional constraints on the stubborn set
are required. A refinement assertion S �M I asserts that every behaviour of I
in the denotational model M is also a behaviour of the specification S. FDR
supports three denotational models: the traces, failures, and failures-divergences
models. In this section we discuss how to extend the existing stubborn set defi-
nition to preserve the denotational value of a process.

Definition 2 assumed supercombinator rules have unique action labels (from
Σ). To discuss CSP denotational models, we need to map actions from Σ to
events, non-injectively, as multiple supercombinator actions may generate the
same event. Thus, let ΣE be a set of events such that τ /∈ ΣE and L = (S,Σ,Δ, ŝ)
be a LTS. A function f : Σ → ΣE ∪ {τ} is called a naming function for L. The
naming function induces a partition of Σ into ΣV and ΣI , such that ΣI = {a ∈
Σ | f(a) = τ} (i.e. ΣI and ΣV contain invisible and visible actions, respectively).

5.1 The Traces Model

The traces model associates each process with the set of finite linear sequences of
visible events it can perform. Preserving all traces of a process [10] requires the
use of non-local information that is unavailable during a breadth-first search.
FDR uses a breadth-first search as it allows for an extremely time and space
efficient implementation [4]. We instead utilise watchdogs [11], which allow trace
checks to be converted into deadlock checks (similarly to [16]).

To check if S �T I, FDR converts S to a watchdog that monitors I for trace
violations. This watchdog barks iff I’s behaviour deviates from S. We define:

I ′ =̂

(
I ‖

ΣE\{bark}
Watchdog(S)

)
Θ{bark} STOP

I ′ runs I in parallel with the watchdog, synchronising on all events that I can
perform and, if the watchdog barks, I ′ deadlocks (P ΘS Q behaves like P until P
performs an event in S, at which point it behaves like Q). Further, Watchdog(S)
is defined such that I ′ deadlocks iff the watchdog has barked.

I ′ can be utilised in several ways to verify if S �T I. One option is to check if
I ′ is deadlock free. This is correct since I ′ deadlocks iff I ′ performs bark, which
is true iff I can perform a trace that is disallowed by S.

The problem with checking if I ′ is deadlock free is that any counterexample is
of the form tr′ = tr�〈bark〉 (i.e. I ′ deadlocks after tr′) where tr is a counterex-
ample to S �T I. As FDR performs a breadth-first search, this delays detection
of the error until the next level of the search, increasing the search cost.

Instead, we check if S �T I ′. If S �T I, then I ′ will not perform bark, and
thus S �T I ′. Otherwise, if S ��T I, then there is some trace tr ∈ traces(I) \
traces(S). Hence, I ′ will also be able to perform tr (and then perform bark before
deadlocking), and thus S ��T I ′. Further, when applying partial-order reduction

Practical Partial Order Reduction for CSP 199

to I ′, it is sufficient to preserve deadlocks of I ′ since any trace violation leads to a
deadlock. This means that preserving deadlocks preserves at least one violating
trace, but not necessarily all violating traces (partial-order reduction preserves
the reachability of deadlock states, but not all unique paths to them).

Note that the above construction has not required us to address the ignoring
problem with any global rules (unlike the majority of other techniques). Further,
checking if S �T I ′ imposes essentially no overhead versus verifying if S �T I.

5.2 Failures and Divergences

The failures model associates each process P with a set of pairs (tr,X) that
indicate that after P performs tr it can reach a stable state (i.e. a state τ is
unavailable) in which all events in X are refused. The failures-divergences model
associates each process not only with its failures, but also a set of traces on
which it can diverge by performing an infinite sequence of events from ΣI .

Neither failures nor divergences are preserved by D1 and D2. [11] also defines
a failures watchdog that can be used to monitor a process for failures violations,
but unfortunately the construction is not efficient (particularly with determinis-
tic specification). Thus, we instead require the stubborn set reduction function
(Definition 4) to also satisfy the following properties from [10]:

I1. If ΣI ∩ en(s) �= {} then there is some a ∈ ΣI ∩ T (s) that is a key action at s.
V2. For each s ∈ S, if en(s) ∩ T (s) ∩ ΣV �= {}, then ΣV ⊆ T (s).

The above are sufficient to preserve the failures and divergences of a process.
V2 requires that either no visible actions are stubborn, or all visible actions

are. This intuitively makes sense: if an arbitrary subset of the visible actions
were included, the failures of the resulting LTS could be different.

I1 requires that at least one single invisible action is key, if there is at least a
single invisible action available. This ensures divergences are preserved: without
it, there would be no guarantee that any invisible action would be preserved in
a divergent state.

It is tempting to think that only invisible actions that are part of a divergence
need to be preserved. This is actually only true when strong stubborn sets are
being used, rather than weak stubborn sets. If an unstable state (i.e. a state
with an invisible action) has all of its invisible actions elided, the state becomes
stable, essentially introducing new failures which may well not be part of the
specification. In the case of strong stubborn sets, this is not problematic, because
the strong stubborn set properties guarantee that the current state has the same
failures as any stable state that can be reached by following invisible actions,
and therefore no new failures are introduced. However, when weak stubborn sets
are used, this guarantee is removed. Hence, only preserving invisible actions that
are part of a divergence is not sufficient.

The two algorithms of Section 4 can be efficiently altered to enforce V2. The
deletion algorithm is altered so that as soon as a single visible action is deleted,
all other visible actions are deleted. The iterative algorithm inserts all visible
actions as soon as a single visible action is inserted. They can also be modified
to enforce I1. The deletion algorithm can be modified so that as soon as the last

200 T. Gibson-Robinson et al.

Table 1. Experimental results comparing the performance of the algorithms (‘Normal’
means partial-order reduction is deactivated). |S| is the number of states, |Δ| is the
number of transitions, T is the time (in seconds), and K, M , and B indicate 103, 106,
and 109 respectively.

Input File
Normal Deletion Iterative

|S| |Δ| T (s) |S| |Δ| T (s) |S| |Δ| T (s)

chain 100M 243M 11 1M 2M 1 73 82 < 1
ddb 26M 117M 33 8M 20M 36 6M 15M 15
inv 22M 221M 178 85K 126K < 1 17M 169M 276
nspk 7M 114M 3 7K 25K 0.06 126K 879K 0.3
phils 915M 9,253M 338 96 118 < 1 819 1,140 < 1
swp 24M 57M 20 9M 22M 16 7M 16M 14

tokring 786M 2,319M 289 20M 22M 169 31M 35M 82
virtroute 244M 3,515M 107 3M 7M 4 589K 1M < 1

Average — — — -89 % -92 % -63 % -81 % -83 % -57 %

action from ΣI ∩ K is deleted, it backtracks, whilst the iterative algorithm can
be modified so that the initial selection of a key action selects one from ΣI if
one is available.

6 Experiments

To measure the effectiveness of partial-order reduction, we took the example files
accompanying [3], and ran each of the 348 checks both with and without partial-
order reduction. In total, when using the deletion algorithm, 17% of assertions
had some reduction, whilst 13% achieved more than a 20% reduction. This
also illustrated the value of weak stubborn sets: with strong stubborn sets, only
11% achieved more than a 20% reduction, and some no longer achieved any
reduction.

Table 1 gives the results of running partial-order reduction on specific exam-
ples and illustrates the differences between the algorithms. As expected, the
deletion algorithm is often slower than the iterative algorithm. The iterative
algorithm sometimes achieves more reduction than the deletion algorithm. This
illustrates a problem with the deletion algorithm: whilst the result is subset
minimal, it is not always minimal. When the experiments from Table 1 were
repeated using strong stubborn sets, the number of states in swp doubled, and
for phils increased by a factor of 10.

The overhead of computing stubborn sets causes FDR to visit states 2—5
times slower (i.e. between 50%-85% of time is spent in the partial-order reduc-
tion code). However, in cases where partial-order reduction achieves some reduc-
tion (such as those in Table 1), the reduction in the number of states almost
always exceeds this factor, and thus the overall time to check an assertion is
reduced. This is observed in Table 1 where the average time decreased by 63%
despite slower visiting rates. As FDR’s memory usage is proportional to the
number of states visited, memory requirements decreased by 90%, on average.

Practical Partial Order Reduction for CSP 201

Existing Reductions. FDR has long supported a simple form of partial-order
reduction, known as chase. chase(P) behaves like P, except that whenever P
offers a τ , chase(P) automatically selects an arbitrary τ and proceeds. This is
only sound when P is deterministic. nspk exploits this to dramatically cut the
state space. In our testing, we found that the version of nspk using partial-order
reduction visited the same number of states in the same time as the version with
chase, indicating that our technique can spot the τ -commutativity.

FDR also supports another method of visiting a subset of the states known
as compression [19]. Compressing a LTS produces another LTS that is semanti-
cally equivalent, but is, hopefully, smaller. FDR has many different methods of
compressing LTSs, including bisimulation-based techniques [20], in addition to
CSP-specific compressions such as diamond, and normal. Compression is gen-
erally effective on processes that have subprocesses with complex internal state
spaces that are externally very simple. Partial-order reduction instead reduces
interleaving of actions. Thus, whilst it is able to reduce systems even where
the external interface is highly complex, it is not able to recognise that state is
redundant. They are somewhat incomparable in that regard: there are examples
on which partial-order reduction works better than compression (e.g. tokring),
and also conversely (e.g. SVA scripts [21]). This makes partial-order reduction
complementary to compression, rather than a replacement. Indeed, there should
be scripts where using partial-order reduction on compressed machines yields
better reduction than using just one of the techniques.

7 Conclusions

We have shown how to efficiently implement partial-order reduction for FDR. We
have extended existing theory to develop a general framework in which partial-
order reduction can be expressed, and have shown how this can be used to
achieve compositional partial-order reduction for supercombinators. Further, we
have shown how this partial-order reduction can be efficiently implemented, and
have developed new techniques for preserving the denotational value of processes
that can be more efficiently implemented than previous approaches.

The partial-order reduction outlined in this paper is available in FDR 3.2,
and is fully compatible with all of the other FDR3-enhancements, including the
shared-memory [4] and cluster [22] refinement-checkers.

The experiments of Section 6 demonstrated that the three different algo-
rithms can give different quantities of reduction on different problems. There-
fore, we intend to consider if an algorithm that combines the three approaches
can be developed. It would also be interesting to consider methods of combin-
ing partial-order reduction and compression: given that they reduce different
aspects of problems, there may be a benefit to combining them. The experi-
ments of Section 6 also revealed that partial-order reduction does not always
work. It would be very useful to develop a technique to automatically determine
if partial-order reduction will be effective.

202 T. Gibson-Robinson et al.

The improvements in this paper are incorporated into FDR3 which is avail-
able from https://www.cs.ox.ac.uk/projects/fdr/. FDR3 is free for personal or
academic use, whilst commercial use requires a licence.

Acknowledgments. Research into FDR3 has been partially sponsored by DARPA
under agreement number FA8750-12-2-0247. We are grateful to the anonymous review-
ers for their helpful comments.

References

1. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall (1985)
2. Roscoe, A.: The Theory and Practice of Concurrency. Prentice Hall (1997)
3. Roscoe, A.: Understanding Concurrent Systems (2010)
4. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3 — A

modern refinement checker for CSP. In: Ábrahám, E., Havelund, K. (eds.) TACAS
2014 (ETAPS). LNCS, vol. 8413, pp. 187–201. Springer, Heidelberg (2014)

5. University of Oxford, Failures-Divergence Refinement–FDR 3 User Manual (2014).
https://www.cs.ox.ac.uk/projects/fdr/manual/

6. Valmari, A.: Stubborn sets for reduced state space generation. In: Rozenberg,
G. (ed.) Advances in Petri Nets 1990. LNCS, vol. 483, pp. 491–515. Springer,
Heidelberg (1991)

7. Peled, D.: All from one, one for all: on model checking using representatives. In:
Courcoubetis, C. (ed.) Computer Aided Verification (CAV). LNCS, vol. 697, pp.
409–423. Springer, Heidelberg (1993)

8. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems:
An Approach to the State-Explosion Problem (1996)

9. Hansen, H., Wang, X.: Compositional analysis for weak stubborn sets. In: Appli-
cation of Concurrency to System Design (ACSD) (2011)

10. Valmari, A.: Stubborn set methods for process algebras. In: Proceedings of the
DIMACS Workshop on Partial Order Methods in Verification (1997)

11. Goldsmith, M., Moffat, N., Roscoe, A.W., Whitworth, T., Zakiuddin, I.: Watchdog
transformations for property-oriented model-checking. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 600–616. Springer, Heidelberg
(2003)

12. Valmari, A., Hansen, H.: Can stubborn sets be optimal?. Fundamenta Informaticae
113(3) (2011)

13. Varpaaniemi, K.: On the Stubborn Set Method in Reduced State Space Generation.
PhD thesis, Helsinki University of Technology (1998)

14. Laarman, A., Pater, E., van de Pol, J., Weber, M.: Guard-based partial-order
reduction. In: Bartocci, E., Ramakrishnan, C.R. (eds.) SPIN 2013. LNCS, vol.
7976, pp. 227–245. Springer, Heidelberg (2013)

15. Evangelista, S., Pajault, C.: Solving the ignoring problem for partial order reduc-
tion. International Journal on Software Tools for Technology Transfer 12(2) (2010)

16. Godefroid, P., Wolper, P.: Using partial orders for the efficient verification of dead-
lock freedom and safety properties. In: Larsen, K.G., Skou, A. (eds.) CAV 1991.
LNCS, vol. 575, pp. 332–342. Springer, Heidelberg (1992)

17. Varpaaniemi, K.: Minimizing the number of successor states in the stubborn set
method. Fundamenta Informaticae 51(1) (2002)

18. Valmari, A.: State space generation: Efficiency and practicality. PhD thesis, Tam-
pere University of Technology (1988)

https://www.cs.ox.ac.uk/projects/fdr/
https://www.cs.ox.ac.uk/projects/fdr/manual/

Practical Partial Order Reduction for CSP 203

19. Roscoe, A.W., Gardiner, P., Goldsmith, M., Hulance, J., Jackson, D.,
Scattergood, J.: Hierarchical compression for model-checking CSP or how to check
1020 dining philosophers for deadlock. In: Brinksma, E., Steffen, B., Cleaveland,
W.R., Larsen, K.G., Margaria, T. (eds.) TACAS 1995. LNCS, vol. 1019, pp. 133–
152. Springer, Heidelberg (1995)

20. Boulgakov, A., Gibson-Robinson, T., Roscoe, A.W.: Computing maximal bisim-
ulations. In: Merz, S., Pang, J. (eds.) ICFEM 2014. LNCS, vol. 8829, pp. 11–26.
Springer, Heidelberg (2014)

21. Roscoe, A.W., Hopkins, D.: SVA, a tool for analysing shared-variable programs.
In: AVoCS (2007)

22. Gibson-Robinson, T., Roscoe, A.W.: FDR into the cloud. In Communicating Pro-
cess Architectures (2014)

A Little Language for Testing

Alex Groce(B) and Jervis Pinto

School of Electrical Engineering and Computer Science,
Oregon State University, Corvallis, OR, USA

agroce@gmail.com

Abstract. The difficulty of writing test harnesses is a major obstacle
to the adoption of automated testing and model checking. Languages
designed for harness definition are usually tied to a particular tool and
unfamiliar to programmers; moreover, such languages can limit expres-
siveness. Writing a harness directly in the language of the software under
test (SUT) makes it hard to change testing algorithms, offers no support
for the common testing idioms, and tends to produce repetitive, hard-
to-read code. This makes harness generation a natural fit for the use of
an unusual kind of domain-specific language (DSL). This paper defines a
template scripting testing language, TSTL, and shows how it can be used
to produce succinct, readable definitions of state spaces. The concepts
underlying TSTL are demonstrated in Python but are not tied to it.

1 Introduction

Building a test harness is an often irksome task many users of formal methods or
automated testing face from time to time [12,18]. The difficulty of harness gen-
eration is one reason for the limited adoption of sophisticated testing and model
checking by the typical developer who writes unit tests. This is unfortunate, as
even simple random testing can often uncover subtle faults.

The “natural” way to write a test harness is as code in the language of the
Software Under Test (SUT). This is obviously how most unit tests are written,
as witnessed by the proliferation of tools like JUnit [3] and its imitators (e.g.,
PyUnit, HUnit, etc.). It is also how many industrial-strength random testing
systems are written [15,17]. A KLEE “test harness” [6] for symbolic execution is
written in C, with a few additional constructs to indicate which values are sym-
bolic. This approach is common in model checking as well: e.g., Java Pathfinder
[2,28] can easily be seen as offering a way to define a state space using Java
itself as the modeling language, and CBMC [1,24] performs a similar function
in C, using SAT/SMT-based bounded model checking instead of explicit-state
execution. JPF in particular has shown how writing a harness in the SUT’s own
language can make it easy to perform “apples to apples” comparisons of various
testing/model checking strategies [29].

Unfortunately, writing test harnesses this way is a highly repetitive and error-
prone programming task, with many conceptual “code clones” (e.g. Figure 1). A
user faces difficult choices in constructing such a harness. For example, the way
c© Springer International Publishing Switzerland 2015
K. Havelund et al. (Eds.): NFM 2015, LNCS 9058, pp. 204–218, 2015.
DOI: 10.1007/978-3-319-17524-9 15

A Little Language for Testing 205

op = choice(operations);
val1 = choice(values);
val2 = choice(values);
switch (op) {
case op1: if (guard1)

call1(val1);
break;

case op2: if (guard2)
call2(val1,val2);

break;
case op3: if (guard3)

call3(val1,val3);
break;

Fig. 1. A test harness in the SUT language

heap() : returns a new heap
heap.insert(key,val) : inserts a key with value, returning ref
heap.union(heap) : merges two heaps
heap.extractMin() : extracts the minimum
ref.delete() : given a reference to a node, deletes it
ref.decreaseKey(key) : decreases the key of ref’s node

Fig. 2. A binomial heap to test

guards and choices are interleaved means that the state-space will be pointlessly
expanded to include many action and value choices that don’t produce any use-
ful behavior. This harness also always assigns val2 even though call1 only uses
val1, to avoid having to repeat the choice code for calls 2 and 3. Moreover, this
harness is possibly sub-optimal for a method such as random testing, where the
lack of any memory for previously chosen values can make it hard to exercise
code behaviors that rely on providing the same arguments to multiple method
calls (e.g., insert and delete for container classes). The construction of a har-
ness becomes even more complex in realistic cases, where the tested behaviors
involve building up complex types as inputs to method calls, rather than simple
integer choices. For example, consider the problem of testing or model check-
ing a binomial heap that supports several operations, defined in Figure 2. Such
a harness must manage the creation and storage of values of multiple types,
including heaps and references. Moreover, because building up heaps and ref-
erences is complicated, they cannot simply be produced on each iteration, but
must be remembered. As the interactions of multiple heaps (via union) and ref-
erences into a heap are the source of all interesting behavior, the harness needs
to decide how many heaps and references to store. The code quickly becomes
hard to read, hard to maintain, and hard to debug. In some cases [15] the code
for a sophisticated test harness approaches the SUT in complexity and even size!
The code’s structure also tends to lock in many choices (such as how to handle
storing heaps and references) that would ideally be configurable.

The definition of a harness also tends to be intimately tied to a single tool,
with the only testing strategies available being those provided by that tool.
Writing novel testing strategies in even such an extensible platform as Java
Pathfinder is hardly a task for the non-expert. The harness in Figure 1 may
support random testing and some form of model checking, if it is written in Java

206 A. Groce and J. Pinto

and can use JPF or a library for adaptation-based testing [14]. Such a harness
cannot support model checking or any sophisticated strategy without being re-
written if it is in a language like Python without verification tool support.

What the user really wants is to simply provide the information in Figure
2, some configuration details (e.g., how many refs to keep around), and some
information on which testing method to use (e.g., model checking, random test-
ing, machine-learning based approaches). Some automated testing tools for Java
[8,27] take a variation on this approach, automatically extracting the signatures
of methods from source code and testing them. Unfortunately, completely auto-
matic extraction often fails to handle the subtle details of harness construction,
such as defining guards for some operations, or temporal constraints between
API calls that are not detectable by simple exception behavior. The user wants
declarative harnesses, but often needs to program the details of a harness.

1.1 Domain Specific Languages for Testing

The properties of the problem at hand suggest the use of a domain-specific
language (DSL) [13]. DSLs [7] provide abstractions and notations to support a
particular programming domain. The use of DSLs is a formalization of the long-
standing approach of using “little languages” in computer science, as memorably
advocated by Jon Bentley in one of his famous Programming Pearls columns [5]
and exemplified in such system designs as UNIX. DSLs typically come in two
forms: external and internal. An external DSL is a stand-alone language, with
its own syntax. An internal DSL, also known as a domain-specific embedded
language (DSEL), is hosted in a full-featured programming language, restricting
it to the syntax (and semantics) of that language. Many attempts to define
harnesses can be seen as internal DSLs [6,10,14,24,28]. Neither of these choices is
quite right for harness definition. Simply adding operations for nondeterministic
choice, as is done in most cases, still leaves most of the tedious work of harness
definition to the user, and makes changing testing approaches difficult at best.
With an external DSL, the user must learn a new language, and the easier it is
to learn, the less likely it is to support the full range of features needed.

A novel approach is taken in recent versions of the SPIN model checker [23].
Version 4.0 of SPIN [21] made use of SPIN’s nature as a tool that outputs a C
program to allow users to include calls to the C language in their PROMELA
models. The ability to directly call C code makes it much easier to model check
large, complex C programs [15,22]. C serves as a “DSEL” for SPIN, except that,
rather than having a domain-specific language inside a general-purpose one,
here the domain-specific language hosts a general-purpose language. A similar
embedding is used in where clauses of the LogScope language for testing Mars
Science Laboratory software [16]. We adopt this approach: embed a general-
purpose language (for expressiveness) in a DSL (for concision and ease-of-use).

A Little Language for Testing 207

@import bh
pool: %INT% 4
pool: %HEAP% 3
pool: %REF% 4
%INT%:=%[1..20]%
%HEAP%:=bh.heap()
%REF%:=%HEAP%.insert(%INT%,%INT%)
%HEAP%.insert(%INT%,%INT%)
%HEAP%.union(%HEAP%)
%HEAP%.extractMin()
%REF%.delete()
%REF%.decreaseKey(%INT%)

Fig. 3. A simple harness definition for a binomial heap

1.2 Template Scripting

In previous discussions, a harness has been thought of as imperative code that
tests a system, even when the underlying use is more declarative, as in CBMC,
or as a purely declarative model stating the available test operations, in which
case the harness is often hidden from the user and generated by a tool. In this
paper, we propose thinking of a harness as a declaration of the possible actions
the SUT can take, but where these actions are defined in the language of the SUT
itself, with the full power of the programming language to define guards, perform
pre-processing, and implement oracles in an imperative fashion. Our particular
approach is based on what we call template scripting.

The template aspect is based on the fact that our method proceeds by pro-
cessing a harness definition file to output code in the SUT’s language for a test
harness, much like SPIN. The harness description file consists of fragments of
code in the SUT language that are expanded, via code-generation, into exe-
cutable source code. The tool that outputs code basically defines a template for
test harnesses in a programming language, and the harness definition tells the
tool how to instantiate that template. Rather than generating a testing tool,
our method outputs a class defining a search space. The scripting aspect simply
means that our language is meant to be very lightweight, and assumes a host
language without a rigorous type system (e.g. Python) or with effective type-
inference (e.g. Scala), making minimal demands on the user. The design of the
language also relies on the very-high-level nature of code in scripting languages,
making the harness concise but expressive, and making “one-liners” of action
definition possible.

Figure 3 shows a complete harness definition for the binomial heap class
defined in Figure 2. The example is easily understood by splitting it into three
sections. First, the single line proceeded by an “@” is raw Python, inserted into
the output harness with no modification in most cases. This section can be used
not only to import the SUT’s code, but to define functions to be used in the
body of the harness, as we will see below. Second, the lines beginning with pool:
define the “pool” [4,10,27] of values that will be used during testing. In model
checking terms, these store the state of the SUT. There is no type information
here, because the template approach simply assumes the type system of the host
language, but in an informal sense each pool value typically represents its own

208 A. Groce and J. Pinto

import bh as b
class t(object):

def act0(self):
self.p INT[0]=1
self.p INT used[0]=False

def guard0(self):
return (self.p INT used[0])

...
def act87(self):

self.p REF[0]=self.p HEAP[0].insert(self.p INT[1],self.p INT[0])
self.p INT used[1]=True
self.p INT used[0]=True
self.p REF used[0]=False
self.p HEAP used[0]=True

def guard87(self):
return (self.p INT[1] != None) and (self.p INT[0] != None) and

(self.p REF used[0]) and (self.p HEAP[0] != None)
...

self.actions.append((r"self.p INT[0]=1",self.guard0,self.act0))

Fig. 4. Fragments of Python code for binomial heap harness

type in the template language, as shown by its usage below (a pool value will
correspond to inputs of a particular type to method calls, in the most trivial
instance, but can also be used to encode more fine-grained type distinctions not
present in the host language). The numbers indicate how many values of a given
pool “type” are needed. Here, at least two INTs are needed, unless both values
provided to insert should always be the same. Similarly, there need to be at
least two HEAPs if union is to be tested effectively. Because the performance of
random testing and some learning algorithms depends heavily on pool sizes, we
want to make it easy to experiment with them.

Finally, the remainder of the harness definition simply gives possible actions,
one on each line. Each line is expanded into Python code for 1) the actual test
action represented and 2) a guard that determines if that action is enabled, as
shown in Figure 4. The functions for actions and guards are then added to a list
that stores all possible SUT actions, with no remaining nondeterminism unless
the SUT provides it. Nondeterminism is controlled by choosing which actions
(whose guards are currently satisfied) to execute. Even in the absence of user-
defined guards, some guards are automatically generated. First, no uses of a
pool value are allowed until that value has been assigned (the generated harness
initializes pool values as None, a special Python value). Second, no pool value
can be assigned to unless it is either uninitialized or has been used at least once.
This is critical to avoid the potential for some test strategies (such as random
testing) to repeatedly perform useless assignments to values used in the actual
testing (e.g., INT[1] = 1 followed immediately by INT[1] = 2. Figure 5 shows
an example of a test that can be generated by this harness. Note that assigning
anything to INT[3], REF[0] or REF[1] is not valid after the final action of the
test, as these pool values have been assigned but not used.

A Little Language for Testing 209

self.p INT[1]=9
self.p INT[2]=1
self.p INT[0]=18
self.p HEAP[0]=b.heap()
self.p REF[2]=self.p HEAP[0].insert(self.p INT[0],self.p INT[2])
self.p INT[3]=17
self.p INT[0]=18
self.p REF[0]=self.p HEAP[0].insert(self.p INT[0],self.p INT[1])
self.p REF[0].decreaseKey(self.p INT[1])
self.p INT[1]=19
self.p REF[1]=self.p HEAP[0].insert(self.p INT[0],self.p INT[1])
self.p REF[0]=self.p HEAP[0].insert(self.p INT[0],self.p INT[1])
self.p HEAP[1]=b.heap()
self.p HEAP[1].union(self.p HEAP[0])

Fig. 5. A valid action sequence (test) for the binomial heap harness

<template> ::= <template-line> EOL <template> | EOF
<template-line> ::= <raw> | <pool> | <property> | <init> |

<feature> | <reference> | <compare> | <action>
<raw> ::= @ <raw-code>
<pool> ::= pool: %<ID>% <INT> [REF]
<property> ::= property: <simple-code>
<init> ::= init: <simple-code>
<feature> ::= feature: <regexp>
<reference> ::= reference: <regexp> ==> <text>
<compare> ::= compare: <regexp>
<action> ::= <text> | <lhs> := <rhs> | guardedFN(<simple-code>)
<raw-code> ::= <text> | def guardedFN(<text>) | %COMMIT%
<lhs> ::= <simple-code>
<rhs> ::= <simple-code>
<simple-code> ::= <text> | <simple-code> <ID-use> <simple-code> |

<simple-code> <range> <simple-code>
<ID-use> ::= %<ID>% | ~%<ID>%
<range> ::= %[INT..INT]%

Fig. 6. The Template Scripting Testing Language in Pseudo-BNF

2 The Template Scripting Testing Language (TSTL)

Figure 6 shows a BNF-style specification of the Template Scripting Testing Lan-
guage (TSTL). Processing a harness definition involves iterating through the
lines in the file and performing a set of transformations that result in an output
file that defines a class in the target language (Python in our current implemen-
tation). This class itself performs no testing; it instead defines an interface to a
definition of the available actions of the SUT that any testing algorithm can use,
shown in Table 1.1 The methods in this interface are not defined by the user, but
automatically generated by the TSTL “compilation.” The basic transformation
algorithm is relatively simple (our implementation for Python is less than 1,000
lines of code):

1. Output the <raw> Python code, transforming guarded functions into
expanded Python code as described in Section 2.2.

1 This is not the entire set of methods TSTL compilation automatically generates:
there are also methods for swarm testing [20], generalized delta-debugging [11,30],
code coverage, and other common testing needs.

210 A. Groce and J. Pinto

Table 1. SUT Class Methods

Method Type Purpose

restart ()→() resets pools, executes <init> code
actions ()→[(str,()→bool,()→())] returns a list of all possible actions
enabled ()→[(str,()→bool,()→())] returns actions with True guard
check ()→bool executes <property> assertions
state ()→STATE returns deep copy of pool values
replay [(str,()→bool,()→())] → bool replays a test, returns whether it failed
backtrack STATE→() sets pools to STATE

2. Collect the set of pool values, properties, initialization code, features, refer-
ences, and comparisons.

3. Replace each pool ID in actions and properties with the pool ID plus a
<range> from 0 to the pool size - 1.

4. Recursively expand each action and property range, creating copies with
each value in the range instantiated. At this point all actions should be
deterministic2

5. Collect assignments and uses from actions; assignments are IDs on the lhs of
a :=; uses are IDs appearing in an action, such that ID is not an assignment
or marked with a ˜.

6. Generate guards for each action: first, ensure no values are used that have
no value; second, ensure no assignments to values that have a value that
has not been used are made; third, add any guarded function calls as extra
guards (see Section 2.2).

7. For any actions involving pools marked as ref, copy with reference.
8. Apply all transformations indicated by <reference> (text matching regexp

is replaced by the given text), then add an assertion of equal return values
for any transformed code that matches a <compare> regexp.

9. Perform any language-specific transformations.

Due to lack of space here, we cannot elaborate on every aspect of TSTL.
Instead, we present some example uses to highlight salient features.

2.1 Oracles

TSTL handles test oracles in two ways. First, users can specify properties that
the check method will automatically verify using assertion statements, expanded
for each pool item involved. Figure 7 shows how properties are defined, in this
case with quite trivial properties. Note that because raw Python can be used,
and properties can call arbitrary Python code, it is easy to encode even complex
specifications by defining a Python function that takes the pool values of interest
as input and returns a Boolean, then adding it as a property. A second popular
approach to the oracle problem is differential testing [25], also known as testing

2 Assuming the SUT itself is determinstic.

A Little Language for Testing 211

@def guardedAppend(l,item,limit): @
if len(l) >= limit:
@ return False
@ %COMMIT%
@ l.append(item)
property: (len(%LIST%) < 10) or (6 not in %LIST%)
property: %VAL% != -1
pool: %LIST% 1
pool: %VAL% 1
%LIST% := []
guardedAppend(~%LIST%,%VAL%,10)
%VAL% := %[1..10]%
print %LIST%

Fig. 7. A toy bounded list generation example (%COMMIT% is expanded into a check
for when the function is used as a guard)

@import avl
@import bintree
pool: %INT% 4
pool: %AVL% 1 REF
%INT%:=%[1..20]%
%AVL%:=AvlTree()
%AVL%.insert(%INT%)
%AVL%.delete(%INT%)
%AVL%.find(%INT%)
reference: AvlTree() ==> BinTree()
compare: find

Fig. 8. Using a reference as oracle

with a reference. TSTL supports this by making it easy to define how to trans-
form actions on the SUT into actions on the reference, and when to compare
values from calls to the SUT and reference. Figure 8 shows a simple example,
where an AVL tree in Python is tested by comparing its behavior to a simple
(unbalanced) binary tree implementation. All that is required to do this is 1) to
mark the AVL pool as a ref pool, meaning it will have a copy that contains a
reference implementation 2) to explain how to transform the call that initialized
the AVL tree to initialize the binary tree and 3) to indicate that results from
calling find on the AVL and reference should be compared. TSTL automatically
generates the required code based on this information.

2.2 Guards and Function Calls

As Figure 7 shows, TSTL makes it simple to define functions and call them
in actions. Obviously, some actions cannot be expressed as one line of code. In
these cases, we expect that the user will define a function whose inputs can be
any pool values, constants, etc. and perform more complex tasks. We exploit
this feature to implement user-defined guards for actions easily. If a function is
named guardedFN, where FN is a function name, TSTL will automatically add an
additional parameter to the function definition when it generates a harness. This
parameter indicates whether the call is to actually perform the action, or simply
check if the action is enabled. The function definition should check the guard
and return False if it is not satisfied. At the point where the user indicates that

212 A. Groce and J. Pinto

a “real” action is to follow (which typically modifies SUT state) the function
definition should include a %COMMIT%, which will be replaced with code that
checks for a speculative call and simply returns True without proceeding if the
call is in a guard context. The translation of the relevant code from Figure 7 is
shown in Figure 9, with a comment to indicate where the %COMMIT% was.

def guardedAppend(l,item,limit, SPECULATIVE CALL = False):
if len(l) >= limit:

return False
if SPECULATIVE CALL: return True # /%COMMIT/%
l.append(item)

...
def act1(self):

guardedAppend(self.p LIST[0],self.p VAL[0],10)
self.p VAL used[0]=True

def guard1(self):
return (self.p LIST[0] != None) and (self.p VAL[0] != None)

and (guardedAppend(self.p LIST[0],self.p VAL[0],10,True))

Fig. 9. User-defined guard example, Python code generated

2.3 Miscellaneous Notes on TSTL

In order to effectively test the SUT, it is often important to build up complex
values before calling the code under test. Making every appearance of a pool
element in an action a use, therefore allowing the value to be reset to its initial
state can “suppress” [19] behaviors, even if it does not strictly prevent them.
TSTL therefore allows the use of a ˜ before a use of a pool ID, as shown in
Figure 7 to indicate that a reference to a pool ID should not count as a use,
it is simply building up a complex input. Another mitigation for suppression
effects is provided by the <feature> definitions, which allow TSTL to support
swarm testing [20]. Swarm testing is a random testing approach in which each
test disables some randomly chosen API calls or grammar features, in order to
better explore the state space of the system. A feature definition indicates that
any action matching the regexp is considered an instance of a certain feature, and
is disabled if that feature is disabled. TSTL has strong out-of-the-box support
for a variety of testing algorithms, some state-of-the-art like swarm testing.

Finally, we note that TSTL is not restricted to API testing. Figure 10 demon-
strates TSTL’s support for encoding grammars for generating strings. It also
provides an example of mixing range values and explicit values in assignment.

2.4 Output Language

The language and tool presented here are not inherently tied to any language.
With trivial modifications, the harness maker could output Scala code instead
of Python. In principle, C or Java could also serve as the base for the DSEL. In
fact, it should be simple to output PROMELA models with embedded C, given
a harness with C as the base language, though maintaining the “declarative”

A Little Language for Testing 213

@import sys
@import calculator as c
pool: %EXPR% 7
pool: %NUM% 5
%NUM% := ’%[-100..100]%’
%NUM% := str(sys.maxint)
%NUM% := str(-sys.maxint - 1)
%EXPR% := %NUM%
~%EXPR% = ’(’ + ~%EXPR% + ’)’
~%EXPR% = ~%EXPR% + ’+’ + ~%EXPR%
~%EXPR% = ~%EXPR% + ’*’ + ~%EXPR%
~%EXPR% = ~%EXPR% + ’-’ + ~%EXPR%
~%EXPR% = ~%EXPR% + ’/’ + ~%EXPR%
c.calculate(%EXPR%)
reference: c.calculate ==> eval
compare: calculate

Fig. 10. Harness for a simple calculator class

t = SUT.t()
for ntests in xrange(1,config.maxtests+1):

t.restart()
test = []
for s in xrange(0,config.depth):

(name,guard,act) = random.choice(t.enabled())
test.append(name)
act()
if not t.check():

print "FAILED TEST:", test
sys.exit(1)

print ntests, ‘‘SUCCESSFUL’’

Fig. 11. A simple random tester

approach would make the PROMELA somewhat difficult to read (each SPIN
nondeterministic choice would need to pick the nth action, with the guards
being the enabled check). Python was chosen for several reasons: first, it is a
widely adopted language in the real world, particularly in the testing community.
Second, Python programs can particularly benefit from more effective automated
testing because the lack of a good type system means Python code may fail in
surprising and frustrating ways.

3 Using the Harness to Test and Experiment

It is simpler to show how the interface described in Table 1 is used than to
explain each method. Figure 11 shows the core of the implementation of a pure
random tester for an arbitrary SUT, omitting boilerplate such as import state-
ments, command-line option parsing, and checking for timeout. A few points
are important: first, the test algorithm is entirely SUT-agnostic. All interaction
with the SUT is performed through the API in Table 1. The use of pools and
the (name, guard, action) tuple list reduces the complex problem of choosing
values and operations as shown in Figure 1 to the uniform simplicity of picking
one enabled action and calling it as a function, storing the name as a human-
readable identifier for the test behavior. Note that when reference oracles are

214 A. Groce and J. Pinto

used, the call to act is also typically enclosed in a try block to record the failing
test, as is done with check.

t = SUT.t()
t.restart()
visited = []
S = []
S.append(t.state(), [])
test = []
while S != []:

(v, test) = S.pop()
t.backtrack(v)
if (v not in visited) and (len(test) < config.maxdepth):

visited.append(v)
trans = t.enabled()
for (name, guard, act) in trans:

test.append(name)
act()
if not t.check():

print "FAILED TEST:", test
sys.exit(1)

S.append((t.state(), test))

Fig. 12. A really simple DFS-only model checker for safety properties

Perhaps more impressively, a natural consequence of encoding a state space is
that we can easily implement a (very simple) model checker, as shown in Figure
12. Of course, as a model checker it is highly inefficient, since the visited check
is implemented as a linear search through a list of visited states. The inefficient
linear search can be easily improved through the use of a hash table for pool
states. TSTL makes use of Python’s deepcopy functionality to automatically
provide backtracking for many SUTs. To our knowledge, no other frameworks
makes it as easy to use either backtracking or replay for state restoration as
TSTL. State copies are often more efficient than replay. However, for simple
SUTs and shallow depths replay may be better, and it works for some hard-to-
copy SUTs.
Exploring Novel Testing Algorithms: In order to demonstrate how TSTL
facilitates the design and evaluation of testing approaches, we provide the fol-
lowing simple algorithm motivated by classical beam search. Note that we do
not claim this algorithm is highly effective in general, the point is to show that
it is extremely easy to implement and compare new algorithms using TSTL.

Figure 13 shows a modified random testing algorithm. It performs almost
like traditional random testing (as shown in Figure 11) except for the following
change: at each step of the test, the state is saved. Instead of randomly selecting
a single enabled action at random, this strategy picks k actions at random, and
tries each one (backtracking to the old state after each action but the final one).
However, if any action covers a never-before-explored branch of the SUT, it is
chosen and testing proceeds to the next step immediately.3 In less than thirty
3 The coverage analysis is provided in this example by a simple Python coverage instru-

mentation tool, but TSTL offers integration with the very popular coverage.py as
well.

A Little Language for Testing 215

t = SUT.t()
coverTool.clearCoverage()
for ntests in xrange(1, config.maxtests+1):

t.restart()
test = []
print ntests+1, len(coverTool.getCoverage())
for s in xrange(0,config.depth):

possible = t.enabled()
random.shuffle(possible)
old = t.state()
cov = coverTool.getCoverage()
last = min(config.k, len(possible))
pos = 0
for (name, guard, act) in possible[:config.k]:

pos += 1
test.append(name)
act()
if not t.check():

print "FAILING TEST:", test
sys.exit(1)

covNew = coverTool.getCoverage()
if (pos == last) or (len(covNew) > len(cov)):

break
coverTool.setCoverage(cov)
t.backtrack(old)

Fig. 13. A novel random testing algorithm, which is essentially random beam search,
demonstrating the use of backtracking for state restoration

 250

 300

 350

 400

 450

 500

 550

 0 50 100 150 200 250 300

B
ra

nc
he

s

Time(s)

random testing
k = 10

Fig. 14. Testing time vs. branches seen, traditional random testing vs. beam-search
like method with k = 10, for Dominion simulator

minutes, we modified the random tester to perform this algorithm and both it
and the default random tester to output the time at which each new branch is
first covered during testing. Figure 14 shows the branch discovery rate of random

216 A. Groce and J. Pinto

testing compared to the novel test harness based on beam-search. The SUT (an
implementation of strategy simulation for the card game Dominion) was taken
from our work on applying machine learning to test generation, where it had
proven difficult to improve on random testing. The experiment shows that, for
this subject, the curve of covered code increases much more rapidly using the
modified beam search than with traditional random testing. This simple experi-
ment shows the ease with which researchers can explore novel testing strategies
in TSTL. The benefits of providing backtracking are also evident here — other
experiments show the same algorithm using replay performs considerably worse
on average, at the test lengths required for good code coverage.

4 Related Work

To our knowledge, there has been no previous proposal of a concise language
like TSTL to assist users in building test harnesses. One line of related work is
our own previous work on building common frameworks for random testing and
model checking [18] and proposing common terminology for imperative harnesses
[12]. Work on domain-specific languages also informed our approach [7].

There exist various testing tools and languages of a somewhat different fla-
vor: e.g. Korat [26], which has a much more fixed input domain specification,
or the tools built to support the Next Generation Air Transportation System
(NextGen) software [9]. The closest of these is the UDITA language [10], an
extension of Java with non-deterministic choice operators and assume, which
yields a very different language that shares our goal. TSTL aims more at the
generation of tests than the filtering of tests (as defined in the UDITA paper),
while UDITA supports both approaches. This goal of UDITA (and resulting need
for first-class assume) means that it is hosted inside a complex (and sometimes
non-trivial to install/use) tool, JPF [28], rather than generating a stand-alone
simple interface to a test space, as with TSTL. Building “UDITA” for a new
language is far more challenging than porting TSTL. UDITA also supports far
fewer constructs to assist test harness development.

The design of the SPIN model checker [23] and its model-driven extension to
include native C code [21] inspired our flavor of domain-specific language, though
our approach is more declarative than the “imperative” model checker produced
by SPIN. Similarly, work at JPL on languages for analyzing spacecraft telemetry
logs in testing [16] provided a working example of a Python-based declarative
language for testing purposes. The pool approach to test case construction is
derived from work on canonical forms and enumeration of unit tests [4].

5 Conclusions and Future Work

We believe that the little language defined in this paper could be of considerable
use to software developers who would like to use more automated testing, but do
not want to learn complex new languages and tools. We expect that it also will
prove useful to researchers who would like to rapidly prototype new testing and

A Little Language for Testing 217

model checking methods and easily try their ideas out on new SUTs. The use of a
template language makes it easy to exploit the usability of a scripting language,
and the declarative approach makes implementing new testing algorithms easy.

Our future work is to further develop the TSTL language and tool, based on
other users’ experiences. One goal is to make use of TSTL easy out-of-the-box,
which means including many example harnesses, SUTs, and testing algorithms.
A second task is to improve the core language to include more functionality. For
example, one obvious language omission is the inability to express desired proba-
bilities for random testing. More automatic ranges, or a shorthand for including
multiple concrete values as choices on one line for grammar encoding would also
be useful. We also plan to extend TSTL to handle more host languages, including
Scala, Java, C (possibly including use of KLEE [6]), and PROMELA. Addition-
ally, we plan to use TSTL as a basis for further research in using machine learning
techniques to improve software testing [13]. A development version of TSTL is
available at https://code.google.com/p/harness-maker.

Acknowledgments. The authors would like to thank Klaus Havelund, Gerard Holz-
mann, Rajeev Joshi, John Regehr, Alan Fern, Martin Erwig, and the anonymous
NFM’15 reviewers for their comments and ideas. A portion of this research was funded
by NSF CCF-1217824 and NSF CCF-1054876.

References

1. http://www.cs.cmu.edu/∼modelcheck/cbmc/
2. JPF: the swiss army knife of Java(TM) verification. http://babelfish.arc.nasa.gov/

trac/jpf
3. JUnit. http://junit.sourceforce.net
4. Andrews, J., Zhang, Y.R., Groce, A.: Comparing automated unit testing strategies.

Technical Report 736, Department of Computer Science, University of Western
Ontario, December 2010

5. Bentley, J.: Programming pearls: little languages. Communications of the ACM
29(8), 711–721 (1986)

6. Cadar, C., Dunbar, D., Engler, D.: KLEE: Unassisted and automatic generation of
high-coverage tests for complex systems programs. In: Operating System Design
and Implementation, pp. 209–224 (2008)

7. Fowler, M.: Domain-Specific Languages. Addison-Wesley Professional, (2010)
8. Fraser, G., Arcuri, A.: Evosuite: automatic test suite generation for object-

oriented software. In: Proceedings of the 19th ACM SIGSOFT Symposium
and the 13th European Conference on Foundations of Software Engineering,
pp. 416–419. ESEC/FSE ’11, ACM (2011)

9. Giannakopoulou, D., Howar, F., Isberner, M., Lauderdale, T., Rakamarić, Z.,
Raman, V.: Taming test inputs for separation assurance. In: International Con-
ference on Automated Software Engineering, pp. 373–384 (2014)

10. Gligoric, M., Gvero, T., Jagannath, V., Khurshid, S., Kuncak, V., Marinov, D.:
Test generation through programming in udita. In: International Conference on
Software Engineering, pp. 225–234 (2010)

11. Groce, A., Alipour, M.A., Zhang, C., Chen, Y., Regehr, J.: Cause reduction for
quick testing. In: Software Testing, Verification and Validation (ICST), 2014 IEEE
Seventh International Conference on, pp. 243–252. IEEE (2014)

https://code.google.com/p/harness-maker
http://www.cs.cmu.edu/~modelcheck/cbmc/
http://babelfish.arc.nasa.gov/trac/jpf
http://babelfish.arc.nasa.gov/trac/jpf
http://junit.sourceforce.net

218 A. Groce and J. Pinto

12. Groce, A., Erwig, M.: Finding common ground: choose, assert, and assume. In:
Workshop on Dynamic Analysis, pp. 12–17 (2012)

13. Groce, A., Fern, A., Erwig, M., Pinto, J., Bauer, T., Alipour, A.: Learning-based
test programming for programmers, pp. 752–786 (2012)

14. Groce, A., Fern, A., Pinto, J., Bauer, T., Alipour, A., Erwig, M., Lopez, C.:
Lightweight automated testing with adaptation-based programming. In: IEEE
International Symposium on Software Reliability Engineering, pp. 161–170 (2012)

15. Groce, A., Havelund, K., Holzmann, G., Joshi, R., Xu, R.G.: Establishing flight
software reliability: Testing, model checking, constraint-solving, monitoring and
learning. Annals of Mathematics and Artificial Intelligence 70(4), 315–349 (2014)

16. Groce, A., Havelund, K., Smith, M.: From scripts to specifications: The evolu-
tion of a flight software testing effort. In: International Conference on Software
Engineering, pp. 129–138 (2010)

17. Groce, A., Holzmann, G., Joshi, R.: Randomized differential testing as a prelude
to formal verification. In: International Conference on Software Engineering, pp.
621–631 (2007)

18. Groce, A., Joshi, R.: Random testing and model checking: Building a common
framework for nondeterministic exploration. In: Workshop on Dynamic Analysis,
pp. 22–28 (2008)

19. Groce, A., Zhang, C., Alipour, M.A., Eide, E., Chen, Y., Regeher, J.: Help, help,
I’m being suppressed! the significance of suppressors in software testing. In: IEEE
International Symposium on Software Reliability Engineering, pp. 390–399 (2013)

20. Groce, A., Zhang, C., Eide, E., Chen, Y., Regehr, J.: Swarm testing. In: Interna-
tional Symposium on Software Testing and Analysis, pp. 78–88 (2012)

21. Holzmann, G.J., Joshi, R.: Model-driven software verification. In: Graf, S.,
Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 76–91. Springer, Heidelberg
(2004)

22. Holzmann, G., Joshi, R., Groce, A.: Model driven code checking. Automated Soft-
ware Engineering 15(3–4), 283–297 (2008)

23. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley Professional, (2003)

24. Clarke, E., Kroning, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

25. McKeeman, W.: Differential testing for software. Digital Technical Journal of Dig-
ital Equipment Corporation 10(1), 100–107 (1998)

26. Milicevic, A., Misailovic, S., Marinov, D., Khurshid, S.: Korat: A tool for gener-
ating structurally complex test inputs. In: International Conference on Software
Engineering, pp. 771–774 (2007)

27. Pacheco, C., Lahiri, S.K., Ernst, M.D., Ball, T.: Feedback-directed random test
generation. In: International Conference on Software Engineering, pp. 75–84 (2007)

28. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model checking programs.
Automated Software Engineering 10(2), 203–232 (2003)

29. Visser, W., Păsăreanu, C., Pelanek, R.: Test input generation for Java contain-
ers using state matching. In: International Symposium on Software Testing and
Analysis, pp. 37–48 (2006)

30. Zeller, A., Hildebrandt, R.: Simplifying and isolating failure-inducing input. Soft-
ware Engineering, IEEE Transactions on 28(2), 183–200 (2002)

Detecting MPI Zero Buffer Incompatibility
by SMT Encoding

Yu Huang(B) and Eric Mercer

Brigham Young University, Provo, Utah
{yuHuang,egm}@byu.edu

Abstract. A prevalent asynchronous message passing standard is the
Message Passing Interface (MPI). There are two runtime semantics for
MPI: zero buffer (messages have no buffering) and infinite buffer (mes-
sages are copied into a runtime buffer on the API call). A problem in
any MPI program, intended or otherwise, is zero buffer incompatibility.
A zero buffer incompatible MPI program deadlocks. This problem is diffi-
cult to predict because a developer does not know if the deadlock is based
on the buffering semantics or a bad program. This paper presents an algo-
rithm that encodes a single-path MPI program as a Satisfiability Modulo
Theories (SMT) problem, which if satisfiable, yields a feasible schedule,
such that it proves the program is zero buffer compatible. This encoding
is also adaptable to checking assertion violation for correct computation.
To support MPI semantics, this algorithm correctly defines the point-
to-point communication and collective communication with respective
rules for both infinite buffer semantics and zero buffer semantics. The
novelty in this paper is considering only the schedules that strictly alter-
nate sends and receives leading to an intuitive zero buffer encoding. This
paper proves that the set of all the strictly alternating schedules is capa-
ble of covering all the message communication that may occur in any
execution under zero buffer semantics. Experiments demonstrate that
the SMT encoding is correct and highly efficient for a set of benchmarks
compared with two state-of-art MPI verifiers.

Keywords: MPI · SMT · Message Passing

1 Introduction

Message passing technology has become widely used in many fields such as med-
ical devices and automobile systems. The Message Passing Interface (MPI) plays
a significant role as a common standard. It is easy for a developer to implement
a message passing scenario using MPI semantics, including:

– zero buffer semantics (messages have no buffering) and infinite buffer seman-
tics (messages are copied into a runtime buffer on the API call) [21],

– MPI point-to-point operations (e.g., send and receive), and
– MPI collective operations (e.g., barrier and broadcast).

c© Springer International Publishing Switzerland 2015
K. Havelund et al. (Eds.): NFM 2015, LNCS 9058, pp. 219–233, 2015.
DOI: 10.1007/978-3-319-17524-9 16

220 Y. Huang and E. Mercer

A problem in any MPI program is zero buffer incompatibility. A zero buffer
incompatible program deadlocks. If there exists any feasible schedule for a pro-
gram under zero buffer semantics, this program is zero buffer compatible. Note
that the zero buffer incompatibility is not equivalent to deadlock that may be
caused by reasons other than buffering. The zero buffer incompatibility is essen-
tial to any MPI application since it is difficult for a developer to predict. This
problem is also very difficult to verify because of the complicated MPI semantics.
In particular, the message passing may be non-deterministic such that a receive
may match more than one send in the runtime system. Also, the MPI collective
operations that synchronize the program may change how messages communi-
cate. To address the problem of zero buffer incompatibility, this paper presents
an algorithm that encodes a single-path MPI program into a Satisfiability Mod-
ulo Theories (SMT) problem [2]. This encoding is resolved by a standard SMT
solver in such a way that the program is proved/disproved to be zero buffer com-
patible. This encoding is also adaptable to checking assertion violation caused
by message non-determinism.

Several solutions were proposed to verify MPI programs. The POE algorithm
is capable of dynamically analyzing the behavior of an MPI program [20]. This
algorithm is implemented by a modern MPI verifier, ISP. As far as we know, there
is no research proposed merely for zero buffer incompatibility. Though the works
on MPI deadlock are also capable of detecting zero buffer incompatibility, they
suffer from the scalability problem [10,16]. In particular, the algorithm MSPOE
is an extension of POE. It is able to detect deadlock in an MPI program [16].
Forejt et al. proposed a SAT based approach to detect deadlock in a single-path
MPI program [10].

The problem of generating a input match pair set is NP-Complete. The pre-
processing, however, only needs to over-approximate the match pairs in quadratic
time complexity. Before discussing how the new algorithm is capable of detecting
zero buffer incompatibility, this paper needs to present in detail the complete
list of encoding rules for several MPI operations, including a few rules that are
trivial to define. In particular, the MPI non-deterministic point-to-point com-
munication is similar to how message communicate in the Multicore Communi-
cations API (MCAPI). As such, this paper adapts the existing encoding rules
for MCAPI defined in prior work [12]. This paper also presents how to encode
deterministic receive operations and collective operations, which are essential
to MPI semantics, into a set of SMT formulas. The formula size is quadratic.
Note that the prior work also provides a list of non-intuitive and complicated
zero buffer encoding rules. However, these rules are only useful for manually
encoding the zero buffer semantics. The new zero buffer encoding in this paper
considers only the schedules that strictly alternate sends and receives, there-
fore, not only is it correct and intuitive, it is easy to build automatically. The
use of strict alternation is able to cover any message communication that may
occur in any execution under zero buffer semantics. This strategy is inspired
by Threaded-C Bounded Model Checking (TCBMC) that extends C Bounded
Model Checking (CBMC) [4,5] to support concurrent C program verification

Detecting MPI Zero Buffer Incompatibility by SMT Encoding 221

[15]. It assumes each lock operation and its paired unlock operation is ordered
alternatingly in any execution.

To summarize, the main contributions of this paper include,

– a new zero buffer encoding with strict alternation of sends and receives that
is capable of detecting zero buffer incompatibility,

– a new encoding algorithm that supports MPI deterministic point-to-point
communication and MPI collective communication, and

– a set of benchmarks that demonstrate the new encoding is more efficient
than two state-of-art MPI verifiers.

The rest of the paper is organized as follows: Sections 2 and 3 present a few
trivial rules for encoding MPI operations, including the summarization of the
prior work [12] in section 2 and the rules for MPI deterministic operations and
collective operations in section 3; Based on these rules, section 4 discusses the
new zero buffer encoding and how it is able to check zero buffer incompatibility;
Section 5 gives the experiment results; Section 6 discusses the related work; and
Section 7 discusses the conclusion and future work.

2 SMT Encoding for MCAPI

This section summarizes the SMT encoding rules (except the rules for zero buffer
semantics) discussed in the prior work for MCAPI verification. MCAPI is a light-
weight message passing interface that only uses sends and wildcard receives for
message communication. A wildcard receive is a receive that can match sends
from any source. These rules are used to encode MPI non-deterministic point-
to-point communication. In general, the SMT encoding is generated from 1) an
execution trace of a program that includes a sequence of events; and 2) a set of
possible match pairs for message communication. Intuitively, a match pair is a
coupling of a send and a receive.

The encoding contains a timestamp timee for every event e in a program.
Intuitively, the timestamp is an integer. The event order is enforced by the
Happens-Before (HB) operator, denoted as ≺HB, over two events, e1 and e2 respec-
tively, such that timee1 < timee2 holds. The send and receive operations are
encoded as tuples. In particular, a send operation S = (MS, timeS, eS, valueS), is
a four-tuple of variables. MS is the timestamp of the matching receive; timeS is
the timestamp of S; eS is the destination endpoint of a message; and valueS is the
transmitted value. The values of eS and valueS are fixed from the input trace.
Similarly, a receive operation R = (MR, timeR, eR, valueR, timeWR), is modeled
by a five-tuple of variables. MR is the timestamp of the matching send; timeR is
the timestamp of R; eR is the destination endpoint of a message; valueR is the
received value; and timeWR is the timestamp of the nearest-enclosing wait WR. A
nearest-enclosing wait is a wait that witnesses the completion of a receive by
indicating that the message is delivered and that all the previous receives on the
same process issued earlier are completed as well. The value of eR is fixed from

222 Y. Huang and E. Mercer

− Sequential sends S and S
′ from a common

source to a common destination eS = eS′

timeS ≺HB timeS′ (1)

− Sequential receives R and R
′, on a common

process, eR = eR′

timeR ≺HB timeR′ (2)

−Receive R and its nearest-enclosing wait WR timeR ≺HB timeWR (3)
− Sequential order over a nearest-enclosing

wait WR for a receive R and a send S

timeWR ≺HB timeS (4)

− Two Sends, S and S
′, to a common destination,

eS = eS′ , such that timeS ≺HB timeS′ is enforced

MS ≺HB MS′ (5)

−Match pairs for any receive R
∨

S∈Match(R)

〈R, S〉 (6)

−Assumption A on control flow A (7)
−User provided assertion P ¬P (8)

Fig. 1. SMT encoding for MPI non-deterministic point-to-point communication

the input trace. Note that only wildcard receive is used in the MCAPI seman-
tics. Therefore, the encoding for MCAPI does not need to specify the message
source endpoints in sends and receives. The message communication topology is
encoded as a set of match pairs defined in Definition 1.

Definition 1 (Match Pair). A match pair, 〈R, S〉, for a receive R = (MR,
timeR, eR, valueR, timeWR) and a send S = (MS, timeS, eS, valueS), corresponds
to the following constraints:
1. MR = timeS ∧ MS = timeR

2. eR = eS ∧ valueR = valueS

3. timeS ≺HB timeWR

We define the potential sends for a receive R, denoted as Match(R), as the
set of all the sends that R may potentially match. The encoding rules are given
in Figure 1: rules (1) – (5) encode the program order; rule (6) encodes the
match pairs; and rules (7) and (8) encode the assumptions on control flow and
the negated assertion respectively. Assume a program contains N API calls,
the generated SMT encoding contains O(N 2) formulas. The following sections
discuss the extension to MPI semantics and more importantly zero buffer incom-
patibility that is not included in the prior work.

3 Extension to MPI

This section discusses the new encoding for MPI deterministic point-to-point
communication and collective communication. To be precise, the encoding needs

Detecting MPI Zero Buffer Incompatibility by SMT Encoding 223

to add variables srcS and srcR to the send operation and the receive operation
respectively. Intuitively, the variables srcS and srcR are the source endpoints of
messages. As such, a send operation S = (MS, timeS, eS, srcS, valueS), is now
a five-tuple of variables. A receive operation R = (MR, timeR, eR, srcR, valueR,
timeWR), is now a six-tuple of variables. We constrain the variable srcR to be equal
to ∗ for a wildcard receive R. In addition, the match pair defined in Definition 1
adds a new constraint:

srcR = ∗ ∨ srcS = srcR,

indicating that either R is a wildcard receive or the source endpoints are matched
for S and R.

As discussed earlier, collective operations are used to synchronize an MPI
program. To be precise, collective operations such as barriers block the execu-
tion of processes until all the members in a group are matched. In addition, some
type of collective operations such as broadcast are able to send internal messages
amongst its group, and/or to execute global operations. MPI semantics guaran-
tee that messages generated on behalf of collective operations are not confused
with messages generated by point-to-point operations. Therefore, the encoding
in this paper puts emphasis on how to reason about the synchronization of collec-
tive operations as it affects point-to-point communication. The internal message
passing and the execution of global operations by collective communication can
be added as SMT constraints to the encoding. In the following discussion, we
take barrier as an example. The barrier is defined as a group in Definition 2.

Definition 2 (Barrier). The occurrence of a group of barriers, B = {B0, B1, ...,
Bn}, is captured by a single timestamp, timeB, that marks when all the members
in the group are matched.

Even though barriers affect the issuing order of two events, it is hard to
determine whether they prevent a send from matching a receive. As an example,
the message “1” in Figure 2 may flow into R even though R is ordered before
the barrier and S is ordered after the barrier. The wait W(&h2) determines the
behavior. If the program had issued W(&h2) before the barrier, R would have to
be completed before the barrier, meaning the message is delivered. The encod-
ing further defines the nearest-enclosing barrier (Definition 3) for this type of
interaction.

Definition 3 (Nearest-Enclosing Barrier). For any process i, a receive R
has a nearest-enclosing barrier B if and only if

Process 0 Process 1

B(comm) R(from P0, A,&h2)

S(to P1, “1”,&h1) B(comm)

W(&h1) W(&h2)

Fig. 2. Message Communication with Barriers

224 Y. Huang and E. Mercer

− Any receive R that has a nearest-enclosing

barrier B and a nearest-enclosing wait WR

timeWR ≺HB timeB (9)

− Any barrier B and any operation O ordered

after a member of B

timeB ≺HB timeO (10)

Fig. 3. SMT encoding for MPI collective communication

1. the nearest-enclosing wait, W, of R is ordered before Bi ∈ B, and
2. there does not exist any receive R′ on process i, with a nearest-enclosing wait,

W′, such that 1) W′ is ordered after W; and 2) W′ is ordered before Bi.

Based on the definitions above, the encoding defines two rules for program
order in Figure 3. Rule (9) only constrains the program order over the nearest-
enclosing wait and the nearest-enclosing barrier for a receive. The order over
this receive and the nearest-enclosing barrier is not constrained. For rule (10), a
barrier has to happen before any operation ordered after it.

4 Zero Buffer Incompability

This section presents a new zero buffer encoding that is easy to build automat-
ically. The key insight is to order a send immediately preceding the matching
receive in a match pair captured in Definition 4.

Definition 4 (Match Pair *). A match pair, 〈R, S〉∗, for a receive R = (MR,
timeR, eR, srcR, valueR, timeWR) and a send S = (MS, timeS, eS, srcS, valueS),
corresponds to the constraints:
1. MR = timeS ∧ MS = timeR

2. eR = eS ∧ valueR = valueS

3. srcR = ∗ ∨ srcS = srcR
4. timeS = timeR − 1

Intuitively, the consecutive order over a send and the matching receive is
defined in the bold rule 4 of Definition 4. Any resolved execution strictly alter-
nates sends and receives.

Definition 5 (Strict Alternation). A set of sends, S, and a set of receives,
R, are strictly alternated if and only if each send in S immediately precedes the
matching receive in R and each receive in R immediately follows the matching
send in S.

To further constrain the program order for zero buffer semantics, new rules are
added as shown in Figure 4: on each process a send happens before a receive
that is issued later (rule (11)); and similarly, on each process a send happens
before a barrier that is issued later (rule (12)). In addition, Rule (1∗) replaces

Detecting MPI Zero Buffer Incompatibility by SMT Encoding 225

− Sequential sends S and S
′ from a common

source to any destinations

timeS ≺HB timeS′ (1*)

−Match pairs for any receive R
∨

Si∈Match(R)

〈R, Si〉∗ (6*)

− Send S and receive R are in

a sequential order on a common process

timeS ≺HB timeR (11)

− Send S and barrier B are in

a sequential order on a common process

timeS ≺HB timeB (12)

Fig. 4. SMT encoding for zero buffer semantics

rule (1) as zero buffer semantics do not allow a new send to be issued before the
pending send is completed on a common process. Rule (6∗) replaces rule (6) to
enforce strict alternation for every send and its matching receive.

To check zero buffer incompatibility, the encoding intends to find a feasi-
ble strictly alternating schedule by constraining the over-approximated match
relation and the program order. If no feasible schedule exists, meaning there is
no ordering that satisfies the happens-before relation, the program is zero buffer
incompatible, and it deadlocks under zero buffer semantics; otherwise, zero buffer
compatibility is proved. Since this process only relies on the event ordering, the
constraints of user-provided assertions defined in rule (8) are removed.

Notice that a program with deadlock may be zero buffer compatible. Intu-
itively, a deadlock can be caused by an orphaned send or receive that is never
matched, a dependency circuit existing in the message communication topology,
the improper use of collective operations, etc.

4.1 Correctness

As discussed earlier, the zero buffer encoding only considers schedules that
strictly alternate sends and receives, therefore, it makes the encoding rules intu-
itive and easy to build automatically. The fundamental insight is that this strict
alternation is sufficient to cover all possible resolutions of message communica-
tion. We prove a theorem later that asserts this insight. Before that, we need to
define a few terms.

Definition 6 (Method Invocation). A invocation of a method, M, with a
list of specific values of arguments, (args · · ·), on process P , denoted as P :
Mi(args · · ·), is a event that occurs when M is invoked.

Definition 7 (Method Response). A response of a method, M, with a specific
return value, resp, on process P , denoted as P : Mr(resp), is a event that occurs
when M returns.

226 Y. Huang and E. Mercer

Based on Definition 6 and Definition 7, an operation is split into two events:
invocation and response. The invocation asserts the issuing of an operation with
concrete arguments. We use the notations Si and Ri to represent the set of all
the send invocations and the set of all the receive invocations respectively for
an MPI program. The response asserts the completion of an operation with a
concrete return value. We use the notations Sr and Rr to represent the set of
all the send responses and the set of all the receive responses respectively for an
MPI program. A history of an MPI program relies on method invocation and
method response.

Definition 8 (History). For an MPI program, let H be a history with a total
order over method invocations and method responses for a set of send operations,
S, a set of receive operations, R, and a set of barriers, B.

Based on Definition 8, we further define a legal history as follows.

Definition 9 (Legal History). A history, H, for an MPI program is legal if
the total order over all the events in H is allowed by MPI semantics.

A legal history defined in Definition 9 represents a total order over events for
an MPI program. A legal history only takes care of sends, receives and barriers
because only they matter to message communication. In other words, the events
in a legal history can be used to evaluate how messages may flow in a runtime
system. Since the arguments are concrete in any method invocation and the
return value is also concrete in any method response, a legal history corresponds
to a precise resolution of message communication. To find a feasible message
communication for a receive R, one only needs to search through the preceding
events and find a send S that matches the endpoints of R and obeys the non-
overtaking order for all the sends to the common destination endpoint. The
legal history asserts that the total order over all the events is allowed by MPI
semantics. In particular, if a legal history is allowed by zero buffer semantics, we
call it a zero-buffer legal history.

To prove the theorem later, we need to compare two legal histories for equiva-
lence. The equivalence relation relies on the following definitions for projections.

Definition 10 (Projection to Process). A projection of a legal history, H,
to a process, P , denoted as H|P , is a sequence of all the events on process P in
H, such that the order over any pair of events in H|P is identical as in H.

Definition 11 (Projection to Receive Response). A projection of a legal
history, H, to the receive responses, Rr, denoted as H|Rr

, is a sequence of receive
responses in H such that the order over any pair of receive responses in H|Rr

is
identical as in H.

Based on Definition 10 and Definition 11, a legal history can be further
projected to the receive responses Rr on process P . We use H|Rr,P to represent
this projection. The equivalence relation relies on H|Rr,P .

Detecting MPI Zero Buffer Incompatibility by SMT Encoding 227

Definition 12 (Equivalence Relation). Two legal histories for an MPI pro-
gram, say H and L respectively, are equivalent, denoted as H ∼ L, if and only
if their projections to the receive responses Rr on each single process P , H|Rr,P

and L|Rr,P respectively, agree on the return values of Rr.

The following lemma is essential to proving that Definition 12 is a valid
equivalence relation. Definition 13 defines the reachable set of legal histories for
an MPI program.

Definition 13 (Reachable Legal Histories). For an MPI program, p, let
RS(p) be a set of all the legal histories that are reachable from p.

Lemma 1 (Validity of Equivalence Relation). The ∼-operator is an equiv-
alence relation over the set of all legal histories.

Proof. Proof by the definition of equivalence relation. Consider three legal his-
tories, H,L, T ∈ RS(p), for an MPI program, p, the equivalence relation in
Definition 12 is reflexive, symmetric and transitive.
1. H ∼ H. The reflexivity is true because the projection H|Rr,P to the receive

responses Rr on any process P , and the projection itself agree on the return
values of Rr.

2. H ∼ L then L ∼ H. The symmetry is also true because H ∼ L and L ∼ H
both indicate that the projections H|Rr,P and L|Rr,P to the receive responses
Rr on any process P agree on the return values of Rr.

3. H ∼ L and L ∼ T then H ∼ T . As for the transitivity, for all the receive
responses Rr on any process P in the MPI program, H ∼ L indicates that
the projections H|Rr,P and L|Rr,P to the receive responses Rr on any process
P agree on the return values of Rr. Further, L ∼ T indicates that L|Rr,P is
also identical to T |Rr,P . Therefore, H|Rr,P is identical to T |Rr,P . Since P is
an arbitrary process in the MPI program and Rr do not change on P , thus
H ∼ T is implied.

Based on the reflexivity, symmetry and transitivity, this equivalence relation
is able to partition the reachable set of legal histories, RS(p), and therefore
identifies the equivalent classes among RS(p).

Based on Lemma 1, we further use E(RS(p)) to represent the equivalent
classes for all the legal histories in RS(p). If an equivalent class includes zero-
buffer legal histories, we call it a zero-buffer available equivalent class. The fol-
lowing theorem states that a representative exists for each zero-buffer available
equivalent class.

Theorem 1. For any MPI program, p, each zero-buffer available equivalent
class, E ∈ E(RS(p)), has a representative zero-buffer legal history, T , that
strictly alternates the sends, S, and the receives, R.

Proof. Proof by showing the existence of a zero-buffer legal history for any equiv-
alence class. First, assume there is a legal history L ∈ E . Second, assume Rr is
a set of all the receive responses. The projection L|Rr

is a sequence of receive

228 Y. Huang and E. Mercer

responses that reflects how messages are received in L for all the processes.
Since the message communication is precisely resolved in L, each receive in R

is matched with a send in S. Based on L and L|Rr
, a new sequence, T , can be

produced by two steps: 1) inserting the corresponding receive invocation imme-
diately preceding each receive response; and 2) inserting the invocation and the
response of the matching send immediately preceding each receive invocation.
Based on those steps, T strictly alternates S and R. Further, it obeys the con-
ditions in Definition 9: first, the consecutive order over a send and the matching
receive in L still exists in T ; second, if the matching receive is issued earlier on
process P , there is no way to execute any operation after the receive on pro-
cess P until it is matched with a send, therefore, postponing issuing the receive
after the matching send does not violate the MPI semantics. Under zero buffer
semantics, it is not possible to order a send and the matching receive other than
the two stated situations above. Notice that T is equivalent to L as they receive
a common sequence of messages on each process. Therefore, for any existing
zero-buffer available equivalent class, the procedure above is able to find a rep-
resentative zero-buffer legal history that strictly alternates sends and receives.

�
Given the proof of message communication coverage, the soundness and com-

pleteness only rely on the existing proofs in the prior work. The soundness proof
is consistent with the prior work: 1) the program order is precisely constrained
in the encoding; and 2) any match pair used in a resolved satisfying schedule
is valid. The deterministic receive operations and the collective operations for
the new encoding do not violate these properties. To be precise, the first prop-
erty still holds because the program order for deterministic receive operations
and collective operations are precisely defined in the new encoding. The second
property is also true because the set of match pairs is given as input, which is
not affected by deterministic receive operations and collective operations.

The completeness proof of the new technique is similar to the prior work
that uses the operational semantics to simulate the encoding during its opera-
tion to ensure that the two make identical conclusions. To prove the new encod-
ing is complete, the operational semantics are extended to support deterministic
receive operations and collective operations. A simulation of the extended oper-
ational semantics is then able to prove that any behavior of MPI semantics is
encoded by the new technique in this paper. Because the soundness and com-
pleteness for the new encoding are both proved, we conclude that the encoding
is correct for MPI semantics.

5 Experiment

We compare the performance of our work with two state-of-art MPI verifiers:
ISP [20,16], a dynamic analyzer, and MOPPER [10], a SAT based tool. We
conduct a series of experiments for five typical benchmark programs that are
modified to be single-path. Assertions related to correct computation are man-
ually inserted into each program. All the results show the comparison between

Detecting MPI Zero Buffer Incompatibility by SMT Encoding 229

Table 1. Tests on Selected Benchmarks
Test Programs Our Method ISP MOPPER

Name #Procs #Calls Match B Error ZI Mem Time #Runs Time Mem Time

Monte

4 35 24
0 No No† 3.62 0.02s 6 0.25s 6.09 <0.01s
∞ No – 3.42 0.02s 6 0.96s – –

8 75 40K
0 No No† 4.83 0.04s >5K TO 11.28 0.02s
∞ No – 4.34 0.04s >5K TO – –

16 155 2E13
0 No No† 8.97 0.29s >5K TO 24.42 0.08s
∞ No – 7.22 0.15s >5K TO – –

Integrate

8 36 5K
0 Yes No 4.71 0.08s 1 0.15s – – a

∞ Yes – 4.20 0.04s 1 0.16s – –

10 46 362K
0 Yes No 5.39 0.08s 1 0.16s – – a

∞ Yes – 4.76 0.05s 1 0.26s – –

16 76 1E12
0 Yes No 8.79 0.62s 1 0.25s – – a

∞ Yes – 7.50 0.32s 1 0.54s – –

Diffusion2D

4 52 6E9
0 No Yes 5.50 0.04s 90 3.09s 6.10 0.01s
∞ No – 4.80 0.03s 90 32.01s – –

8 108 2E21
0 No Yes 11.94 0.22s >9K TO – TO
∞ No – 8.51 0.12s >9K TO – –

16 228 3E57
0 No Yes 30.68 1.25s >10K TO – TO
∞ No – 30.76 5.11s >10K TO – –

Router

2 34 1
0 No Yes 3.39 0.02s 1 0.04s – – a

∞ No – 3.37 0.02s 60 13.24s – –

4 68 83K
0 No Yes 4.18 0.02s 1 0.04s – –a

∞ No – 3.99 0.03s >10K TO – –

8 136 7E9
0 No Yes 5.17 0.04s 1 0.15s – –a

∞ No – 5.06 0.05s >11K TO – –

Floyd

8 120 4E29
0 No No 13.87 0.15s >20K TO 18.05 0.27s
∞ No – 12.14 0.12s >20K TO – –

16 256 1E58
0 No No 21.58 0.26s >20K TO 67.53 43.08s
∞ No – 17.55 0.21s >20K TO – –

32 528 3E137
0 No No 252.97 439.89s >20K TO 212.30 476.52s
∞ No – 57.91 19.34s >20K TO – –

† MOPPER detects deadlock.
a MOPPER does not launch SAT analysis.

zero buffer semantics and infinite buffer semantics. The initial program trace for
our approach is generated by running MPICH [14], a public implementation of
the MPI standard. This program trace is encoded symbolically where each vari-
able does not have a concrete value. A unique instance is generated for each write
of a variable in the program computation (similar to the static single assignment
form [6]). Our encoding is resolved by the SMT solver Z3 [13]. MOPPER also
needs an initial program trace with the same input data. MOPPER launches ISP
to automatically generate such a trace. Since MOPPER is designed for deadlock
checking, it does not encode any computation in a program. The results only
show the performance of MOPPER for zero buffer incompatibility. The experi-
ments are run on a AMD A8 Quad Core processor with 6 GB of memory running
Ubuntu 14.04 LTS. We set a time limit of 30 minutes for each test. We abort
the verification process if it does not complete within the time limit.

The results of the comparison are in Table 1. The column “Match” records the
approximated number of match possibilities. A program with a large number of
match possibilities has a large degree of message non-determinism. The column
“ZI” indicates whether the program is zero buffer incompatible or not. The

230 Y. Huang and E. Mercer

column “Mem” records the memory cost in megabytes. The “Time” columns
for our approach and MOPPER are only for constraint solving. As a note, our
approach and MOPPER both spend less than one second to generate the trace
and the encoding for every benchmark. The column “#Runs” for ISP is the
number of program interleavings that ISP traverses before termination. The
column “Time” for ISP is the running time of dynamic analysis. The meaning of
the symbol “–” is “unavailable”: either the test is not interesting for comparison
or the error is detected in preprocessing.

Monte implements the Monte Carlo method to compute π [3]. It uses one
manger process and multiple worker processes to send messages back and forth.
In addition, barrier operations are used to synchronize the program.

Integrate uses heavy non-determinism in message communication to compute
an integral of the sin function over the interval [0, π] [1]. This benchmark also has
a manger-worker pattern where the root process divides the interval to a certain
number of tasks. It then distributes those tasks to multiple worker processes.

Diffusion2D has an interesting computation pattern that uses barriers to
“partition” the message communication into several sections [1]. A message from
a send can be only received in a common section.

Router is an algorithm to update routing tables for a set of nodes. Each
node is in a ring and communicates only with immediate neighbors to update
the tables. The program ends when all the routing tables are updated.

Floyd implements the Floyd’s all-pairs shortest path algorithm [24]. Each
node communicates only with the immediate following neighbor.

Note that all the tools are able to correctly check zero buffer incompatibility
for the benchmarks above. Also, our encoding and ISP are both able to correctly
check assertion violations. The results in Table 1 show that our encoding with Z3
is highly efficient compared to ISP. For the benchmark programs such as Diffu-
sion2D and Floyd, where ISP does not terminate after traversing a large number
of interleavings, our approach returns under a second in most cases. Even for the
benchmark programs where ISP terminates after traversing only a small subset
of all the interleavings, our approach is able to run slightly faster. Our approach
is also faster than MOPPER for the benchmark programs where there is a large
degree of message non-determinism. If the number of match possibilities is low,
our approach runs as fast as MOPPER does. As discussed earlier, a deadlock
may be caused by many ways other than zero buffer incompatibility. The pro-
gram Monte is zero buffer compatible, but it contains a deadlock that can be
detected by MOPPER. Our solution was never intended to find such a dead-
lock. ISP should detect it but does not. For the programs Integrate and Router,
MOPPER does not launch a SAT analysis because the ISP preprocessor detects
the assertion violation or deadlock, and thus, MOPPER aborts the verification
process.

6 Related Work

The dynamic analyzer ISP implements the POE algorithm, a Dynamic Par-
tial Order Reduction (DPOR) algorithm [9] applied to MPI programs [20].

Detecting MPI Zero Buffer Incompatibility by SMT Encoding 231

An extension is the MSPOE algorithm [16]. It operates by postponing the coop-
erative operations for message passing in transit until each process reaches a
blocking call. It then determines the potential matches of send and receive oper-
ations in the runtime. In addition to program properties, it is able to check
deadlocks.

Forejt et al. proposed a SAT based approach to detect deadlock in a single-
path MPI program [10]. This solution is correct and efficient for programs with a
low degree of message non-determinism. However, since the size of their encoding
is cubic, checking large programs is time consuming. Similar to our solution, this
work requires a match pair set that can be over-approximated.

MPI-Spin is integrated into the classic model checker SPIN [11] for verifying
MPI programs [18,19]. It generates a model of an MPI program and symbolically
executes it. It does not scale to large programs with a large degree of message
non-determinism.

Vo et al. used Lamport clocks to update auxiliary information via piggyback
messages [22,23]. While completeness is abandoned in their analysis, they show
the approach is useful and efficient in practice.

Sharma et al. proposed the first push button model checker for MCAPI –
MCC [17]. It indirectly controls the MCAPI runtime to verify MCAPI programs
under zero buffer semantics. One drawback of this work is that it does not include
the ability to analyze infinite buffer semantics which is known as a common
runtime environment in message passing. A key insight, though, is the direct use
of match pairs – couplings for potential sends and receives.

Elwakil et al. also used SMT techniques to reason about the program behavior
in the MCAPI domain [7,8]. State-based and order-based encoding techniques
are both used. These techniques fail to reason about the infinite buffer semantics
and require a precise match set which is non-trivial to compute beforehand.

Our prior work encodes an MCAPI execution into an SMT problem for
detecting user-provided assertions [12]. The encoding is sound and complete
and is easy to use to reason about infinite buffer semantics without requiring a
precise match set. The work also provides an algorithm that runs in quadratic
time complexity to generate a sufficiently small over-approximated match set
based on the given execution trace.

7 Conclusion and Future Work

This paper presents a new algorithm that correctly encodes a single-path MPI
program. This encoding, including the rules for MPI point-to-point communi-
cation and MPI collective communication, is capable of detecting zero buffer
incompatibility. It is also adaptable to checking assertion violations. The key
insight in this paper is that the new zero buffer encoding considers only the
schedules that strictly alternate sends and receives. This strict alternation strat-
egy makes the encoding intuitive and easy to build automatically, and is able to
cover all the message communication. Experiments indicates that our solution
is correct and more efficient than two state-of-art MPI verifiers.

232 Y. Huang and E. Mercer

The encoding is dependent on a single-path MPI program which can be
initialized by an execution trace. Future work will explore using bounded model
checking to encode all the paths of an MPI program. This technique statically
unrolls an MPI program and then verifies it by constraining the semantics into
an SMT encoding. Also, future work will explore using the SMT encoding to
check deadlock patterns other than zero buffer incompatibility.

References

1. FEVS benchmark. http://vsl.cis.udel.edu/fevs/index.html
2. Barrett, C., Ranise, S., Stump, A., Tinelli, C.: The satisfiability modulo theories

library (smt-lib). www.SMT-LIB.org (2008)
3. Burkardt, J.: MPI Examples. http://people.sc.fsu.edu/jburkardt/cpp src/mpi/

mpi.html
4. Clarke, E., Kroning, D., Lerda, F.: A tool for checking ANSI-C programs. In:

Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

5. Clarke, E.M., Kroening, D., Yorav, K.: Behavioral consistency of C and verilog
programs using bounded model checking. In: DAC, pp. 368–371. ACM (2003)

6. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Effi-
ciently computing static single assignment form and the control depen-
dence graph. ACM Trans. Program. Lang. Syst. 13(4), 451–490 (1991).
http://doi.acm.org/10.1145/115372.115320

7. Elwakil, M., Yang, Z.: Debugging support tool for MCAPI applications. In:
Lourenço, J. (ed.) PADTAD, pp. 20–25. ACM (2010)

8. Elwakil, M., Yang, Z., Wang, L.: CRI: symbolic debugger for MCAPI applications.
In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 353–358.
Springer, Heidelberg (2010)

9. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking
software. In: Palsberg, J., Abadi, M. (eds.) POPL, pp. 110–121. ACM (2005)

10. Forejt, V., Kroening, D., Narayanaswamy, G., Sharma, S.: Precise predictive anal-
ysis for discovering communication deadlocks in MPI programs. In: Jones, C.,
Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 263–278. Springer,
Heidelberg (2014)

11. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Software Eng. 23(5),
279–295 (1997)

12. Huang, Y., Mercer, E., McCarthy, J.: Proving MCAPI executions are correct using
SMT. In: ASE, pp. 26–36 (2013)

13. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

14. MPICH: High-Performance Portable MPI. http://www.mpich.org
15. Rabinovitz, I., Grumberg, O.: Bounded model checking of concurrent programs.

In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 82–97.
Springer, Heidelberg (2005)

16. Sharma, S., Gopalakrishnan, G., Bronevetsky, G.: A sound reduction of persistent-
sets for deadlock detection in MPI applications. In: Gheyi, R., Naumann, D. (eds.)
SBMF 2012. LNCS, vol. 7498, pp. 194–209. Springer, Heidelberg (2012)

http://vsl.cis.udel.edu/fevs/index.html
www.SMT-LIB.org
http://people.sc.fsu.edu/jburkardt/cpp_src/mpi/mpi.html
http://people.sc.fsu.edu/jburkardt/cpp_src/mpi/mpi.html
http://doi.acm.org/10.1145/115372.115320
http://www.mpich.org

Detecting MPI Zero Buffer Incompatibility by SMT Encoding 233

17. Sharma, S., Gopalakrishnan, G., Mercer, E., Holt, J.: MCC: A runtime verification
tool for MCAPI user applications. In: FMCAD, pp. 41–44. IEEE (2009)

18. Siegel, S.F.: Model checking nonblocking MPI programs. In: Cook, B., Podelski,
A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 44–58. Springer, Heidelberg (2007)

19. Siegel, S.F.: Verifying parallel programs with MPI-Spin. In: PVM/MPI, pp. 13–14
(2007)

20. Vakkalanka, S.S., Sharma, S., Gopalakrishnan, G., Kirby, R.M.: ISP: a tool for
model checking MPI programs. In: PPOPP, pp. 285–286 (2008)

21. Vakkalanka, S.S., Vo, A., Gopalakrishnan, G., Kirby, R.M.: Reduced execution
semantics of MPI: From theory to practice. In: FM, pp. 724–740 (2009)

22. Vo, A., Aananthakrishnan, S., Gopalakrishnan, G., de Supinski, B.R., Schulz,
M., Bronevetsky, G.: A scalable and distributed dynamic formal verifier for MPI
programs. In: SC, pp. 1–10. IEEE (2010)

23. Vo, A., Gopalakrishnan, G., Kirby, R.M., de Supinski, B.R., Schulz, M.,
Bronevetsky, G.: Large scale verification of MPI programs using Lamport clocks
with lazy update. In: Rauchwerger, L., Sarkar, V. (eds.) PACT, pp. 330–339. IEEE
Computer Society (2011)

24. Xue, R., Liu, X., Wu, M., Guo, Z., Chen, W., Zheng, W., Zhang, Z., Voelker,
G.M.: MPIWiz: subgroup reproducible replay of mpi applications. In: Proceed-
ings of the 14th ACM SIGPLAN Symposium on Principles and Practice of Par-
allel Programming, PPOPP 2009, Raleigh, NC, USA, February 14–18, 2009,
pp. 251–260 (2009), http://doi.acm.org/10.1145/1504176.1504213

http://doi.acm.org/10.1145/1504176.1504213

A Falsification View of Success Typing

Robert Jakob(B) and Peter Thiemann

University of Freiburg, Freiburg, Germany
{jakobro,thiemann}@informatik.uni-freiburg.de

Abstract. Dynamic languages are praised for their flexibility and expres-
siveness, but static analysis often yields many false positives and veri-
fication is cumbersome for lack of structure. Hence, unit testing is the
prevalent incomplete method for validating programs in such languages.

Falsification is an alternative approach that uncovers definite errors
in programs. A falsifier computes a set of inputs that definitely crash a
program.

Success typing is a type-based approach to document programs in
dynamic languages. We demonstrate that success typing is, in fact, an
instance of falsification by mapping success (input) types into suitable
logic formulae. Output types are represented by recursive types. We
prove the correctness of our mapping (which establishes that success
typing is falsification) and we report some experiences with a prototype
implementation.

1 Introduction

Dynamic languages like JavaScript, Python, and Erlang are increasingly used in
application domains where reliability and robustness matters. Their advantages
lie in the provision of domain specific libraries, flexibility, and expressiveness,
which enables rapid prototyping. However, massive unit testing with all its draw-
backs is the primary method of discovering errors: static analysis is often not
applicable because it either yields many false positives or restricts the expres-
siveness. Verification is feasible but cumbersome (see for example the JavaScript
formalization effort [3,6]). Moreover, it requires a major effort.

Unit testing with good code coverage is not straightforward to achieve, either.
As the development of meaningful unit tests is also cumbersome and time con-
suming, the lack of static analyses that permit error detection prior to execution
is one of the major drawbacks of dynamic languages.

Classical static analyses and type systems guarantee the absence of a par-
ticular class of errors: the program cannot go wrong. Imposing such a system
on a dynamic language deprives it of its major attraction for certain program-
mers: the ability to write code without being restricted by a formal framework.
Even suggesting such a framework would come close to treason. Furthermore,
programmers are confused by false positives or error messages they do not under-
stand [2]. However, an analysis that only reports problems that would definitely
c© Springer International Publishing Switzerland 2015
K. Havelund et al. (Eds.): NFM 2015, LNCS 9058, pp. 234–247, 2015.
DOI: 10.1007/978-3-319-17524-9 17

A Falsification View of Success Typing 235

lead to an error during execution could be acceptable. This point of view leads
to the idea of a success typing.

In a standard type system, the typing F : τ1 → τ2 means that an application
of F to an argument v of type τ1 yields a result of type τ2 if F (v) terminates
normally. If type checking for the system is decidable, then there are programs
which do not lead to type mismatches when executed, but which are rejected
by the type system. A trivial example is a conditional that returns values of
different types in its branches, but semantically it is clear that only the first
branch can ever be executed.

In contrast, a success type system guarantees that for all arguments v not of
type τ1, the function application F (v) leads to a run-time error (or nontermina-
tion). For an argument v of type τ1, success typing gives the same guarantees as
traditional typing: F (v) ∈ τ2 if it terminates normally. By necessity, the guar-
antee of the run-time error is also an approximation, but success typing must
approximate in the other direction as a standard type system. Hence, the “stan-
dard part” of a success type usually gives a weaker guarantee than a standard
type. In model checking terms, a standard type system performs verification
whereas success typing seems related to falsification [1]: its goal is the detection
of errors rather than proving the absence of them.

1.1 Success Typings in Erlang

Erlang is a dynamically typed functional programming language with commer-
cial uses in e-commerce, telephony, and instant messaging. Besides the usual
numeric and string types, Erlang includes an atom data type for symbols and
tuples for building data structures.

Lindahl and Sagonas [10,14] designed a success typing system for Erlang
which infers types with a constraint-based algorithm. Types are drawn from
a finite lattice that encompasses types for various atoms (symbols, numbers,
strings, etc), functions, tuple and list constructions, unions, and a type any that
subsumes all other types. One of the major goals of their approach is the ability
to automatically generate documentation for functions from the inferred success
types. This goal requires small, readable types, which are guaranteed by the
finiteness of the lattice. Types for data structures are made finite by cutting off
at a certain depth bound. A concrete example shows where this boundedness
leads to approximation.

Many Erlang programming idioms rely on named tuples, that is, tuples where
the first component is an atom and the remaining components contain associ-
ated data as in {book,‘‘Hamlet”,‘‘Shakespeare”}. One can view named tuples
as named constructors: book(‘‘Hamlet”,‘‘Shakespeare”). Named tuples can be
nested arbitrarily and created dynamically.

Lindahl and Sagonas’ algorithm misses some definite errors based on nested
named tuples, as can be seen by the following example. Here is an implementation

236 R. Jakob and P. Thiemann

of a list length function returning the zero constructor and succ constructor
instead of the built-in integers.1

length ([]) −> { zero} ;
length ([|XS]) −> {succ , length (XS)} .

The Dialyzer2 infers the following success type for length:

length : [any] → zero ∪ succ(zero ∪ succ(zero) ∪ succ(any))

The argument part of the success type, [any], describes that applying length to
a non-list argument yields an error and applying it to a list of arbitrary content
might succeed or fail. The result part describes the return value as either zero or
as a nested tuple consisting of succ and any value. The argument part is exact:
There is no argument of type [any] for which length fails. However, the analyzer
restricts tuples to a nesting depth of three levels.

To illustrate the problem with this approximation, consider the function
check that pattern matches on a nest of named tuples, which cannot be created
by the length function. Applying the check function to the result of length
yields a definite error. However, the standard setting of the Dialyzer does not
detect this error.

check ({succ , {succ , {succ , { f oo}}}}) −> 0 .
t e s t () −> check (length ([0 ,0 ,0 ,0])) .

1.2 Our Approach

We focus on errors that include the creation and destruction of data structures
and thus consider programs that manipulate constructor trees, only. Our app-
roach describes input type and output type of a function with different models.
A success typing of a function comprises a recursive type describing the possi-
ble outputs and of a crash condition as a logical formula whose models are the
crashing inputs of the function. This approach yields a modular definition of
success typings.

Contributions.

– We propose a new formally defined view of success typing for a language
with data structures. We represent the input and output types of a function
differently and thus obtain a modular approach.

– Our approach is correct. We show preservation of types and crash condition
during evaluation as well as failure consistency (i.e., if our analysis predicts
a crash, the evaluation crashes definitely).

– We give a prototype implementation of our approach.
1 The left-hand side pattern [] matches the empty list and the pattern [|XS] matches

a list with arbitrary head and tail bound to XS.
2 The DIscrepancy AnalYZer for ERlang programs, an implementation of Lindahl and

Sagonas’ algorithm. http://www.erlang.org/doc/man/dialyzer.html

http://www.erlang.org/doc/man/dialyzer.html

A Falsification View of Success Typing 237

Outline. In Section 2 we define syntax and semantics of a constructor-based lan-
guage. We introduce types and crash conditions for expressions of this language
in Section 3 followed by an analysis that assigns types and crash conditions to
expressions. Afterwards, we show show the correctness of the analysis. We dis-
cuss practical issues of our approach in Section 4. In Section 5 we discuss related
work and conclude in Section 6.

An extended version of this article, including proofs, is available online [8].

2 Language

We illustrate our approach using a higher-order call-by-value language λC that
comprises of explicit recursion, integer values, n-ary constructors, and pattern-
matching to distinguish and destruct the previously defined constructors. We
draw these constructors from a fixed, finite, and distinct ranked alphabet, that is,
every constructor has a specific arity. We will denote constructors by upper case
letters A,B,C, . . . , and implicitly specify their arity when creating constructor
terms.

Syntax. Syntactically, the language λC (Fig. 1) consists of values and expres-
sions. A value v is either an integer literal n, a constructor term C(v1, . . . , vn)
where C has arity n and vi are values, a recursive unary3 function rec f x = e,
or an explicit error err. An expression e is either a value v, an identifier x, a
constructor term C(e1, . . . , en) where C has arity n and ei are expressions, a
function application (e e), or a pattern-matching expression match e with P .
Within the possibly empty list of patterns P , a pattern C(x1, . . . , xn) → e con-
sists of a constructor C with arity n, a list of variables x1, . . . , xn, and a body
expression e. For the list of empty patterns we write [] and to append lists we
write [C(x1, . . . , xn) → e]++P . We assume that the constructors in a list of pat-
terns occur at most once. We introduce an auxiliary definition v̂ that represents
values not containing functions. For constructor expressions with arity zero, we
omit parentheses.

Semantics. In Fig. 2 we define the semantics of λC as a small-step operational
semantics. We use E to describe expressions with holes � and Eval-Final to
evaluate expressions containing only values as subexpressions. Eval-Hole eval-
uates expressions by choosing holes. SApp defines recursive function application
by capture-avoiding substitution of the argument and function symbol. The rule
SMatch evaluates a constructor value and a list of patterns if the the construc-
tor value matches the first pattern. If so, it extracts the values of the argument
and substitutes the variables for the corresponding values in the pattern’s body
expression. If the first pattern in the list of patterns does not match the construc-
tor value, the rule SMatchNext applies and discards the first non-matching
pattern.

3 Multiple arguments can be passed by wrapping them in a constructor.

238 R. Jakob and P. Thiemann

We explicitly define error creation and propagation as we want to detect def-
inite errors in our programs. Errors occur, if the expression at the first argument
of a function application is reduced to a non-function value or if a pattern match-
ing expression occurs with an empty list either because no pattern matched or
the list of patterns was initially empty. The former case, non-function values in
applications, is handled by the rule SAppErr1 and the latter case by the rule
SMatchErr both reducing to the error value err. Error propagation is handled
by the rules SMatchErr, if the argument to a pattern matching is an error, the
rule SAppErr2 if the argument to a function application is an error, and the
rule SMatchNextErr, if a constructor contains an error as a subexpression.

v ::= n | rec f x = e | C(v1, . . . , vn) | err

e ::= v | x | C(e1, . . . , en) | (e e) | match e with [Ci(x̄) → ei]

v̂ ::= n | C(v1, . . . , vn)

Fig. 1. Syntax of λC with values v, expressions e and non-function values v̂

E ::= C(v1, . . . , vn, �, e1, . . . , em) | � e | v � | match � with [Ci(x̄) → ei]

Eval-Final
e −→ e′

e ↪→ e′

Eval-Hole
e ↪→ e′

E [e] ↪→ E [e′]

SApp ((rec f x = e) v) −→ e[x �→ v, f �→ rec f x = e]

SAppErr1 (v̂ v) −→ err

SAppErr2 ((rec f x = e) err) −→ err

SMatch match C(v) with [C(x) → e, . . .] −→ e[xi �→ vi]

SMatchErr match err with [. . .] −→ err

SMatchNext match C(v) with [D(x) → e] ++ P −→ match C(v) with P

SMatchNextErr match C(v) with [] −→ err

SCtorErr C(v1, . . . , vn, err, e1, . . . , em) −→ err

Fig. 2. Small-step operational semantics for λC

3 Type and Crash Condition

The basic notion of our formalization is a type τ that represents trees created
from constructors C on a type level. Furthermore, we represent function values

A Falsification View of Success Typing 239

using recursive types. To formalize success types, we represent the possible out-
puts of a function and the valid inputs of a function differently, thus resulting
in a non-standard function type definition where the possible outputs are rep-
resented using a type τ and the possible inputs are represented using a crash
condition φ. Types and crash conditions are defined mutually in Fig. 5. Intu-
itively, a crash condition for a function is a logical formula whose models are
types. These types describe inputs that definitely crash the function.

Types τ comprise of type variables α, an equi-recursive function type written
μX.∀α [φ] .τ that includes a type variable α representing the function’s argument,
a return type τ , and a crash condition φ indicating when the function definitely
crashes. Furthermore, we define a constructor type τ that captures the types of
a constructor expression, a union type τ ∪ τ , an integer type int, and the empty
type ⊥ that has no values. We define two operators that work on types: a type-
level function application (τ @τ τ), and a projection function for constructor
types τ ↓C

i that projects the ith component of a type τ if it is a constructor type
C. The semantics of these operators is defined in Fig. 6. In our definition, the
fix-point formulation μX only occurs together with a function type definition.
The type operators are always implicitly applied.

Crash conditions φ are defined as atoms true tt and false ff, intersection
φ∨φ and conjunction φ∧φ, predicates over types C ∈ τ symbolizing that a type
τ can be a constructor C, C /∈ τ symbolizing that a type τ is not a constructor
type C, and ∀ /∈ τ symbolizing that τ is not a function. Furthermore, in Fig. 6
we define an operator (τ @φ τ) that describes a crash-condition-level function
application. Again, the crash condition operator is implicitly applied.

An interpretation J is a mapping of type variables to types. An interpretation
of a type is a set of types as specified in Fig. 3.

Fig. 3. Definition of an interpretation J on a type τ

In Fig. 4 we recursively define an entailment relation J � φ for an interpre-
tation J and a crash condition φ.

240 R. Jakob and P. Thiemann

J � tt

J � ff

J � φ1 ∨ φ2 ⇐⇒ J � φ1 ∨ J � φ2

J � φ1 ∧ φ2 ⇐⇒ J � φ1 ∧ J � φ2

J � C ∈ τ ⇐⇒ ∃C(τ) ∈ τ J
J � C /∈ τ ⇐⇒ �(C(τ)) ∈ τ J
J � ∀ /∈ τ ⇐⇒ �(μX.∀α [φ] .τ) ∈ τ J

Fig. 4. Definition of the entailment relation J � φ

Example 1. We take the length function of lists as an example using constructors
Cnil, Czero, Csucc, and Ccons with arities zero, zero, one, and two, respectively.

rec len x = match x with [Cnil → Czero, Ccons(x1, x2) → Csucc((len x2))]

A possible function type for the length function is

τlen = μX.∀α
[
Cnil /∈ α ∧

((
Ccons ∈ α ∧ (X @φ α↓Ccons

2)
)

∨ Ccons /∈ α
)]

.

Czero ∪ Csucc((X @τ α↓Ccons
2))

whose type is recursively entwined with its crash condition. The derivation of
this type is described in Section 3.1. We extract the crash condition that still
makes use of τlen via X and get a logical formula with free variable α

φlen = Cnil /∈ α ∧
((

Ccons ∈ α ∧ (τf @φ α↓Ccons
2)

)
∨ Ccons /∈ α

)

that symbolizes when the function crashes. For example the following interpre-
tation (amongst many others)

J = {α
→
⋃

{((μX.∀α [ff] .Czero ∪ Ccons (τ, (X @τ α))) @φ Cunused) | τ ∈ T }

entails the crash condition: J � φlen. Here, Cunused is only needed as a dummy
argument to the type-level function. When implicitly applying the type opera-
tors, we end up with the infinite type4

{μX.Czero ∪ Ccons(τ,X) | τ ∈ T }
This type represents all lists not ending with a nil but with a zero.

Before introducing the analysis that assigns types and crash conditions to
expressions, please note that the question of entailment is not decidable in
general.
4 For the sake of a simpler type syntax, this type cannot be represented using our type

syntax directly. We always have to use type-level applications.

A Falsification View of Success Typing 241

τ ::= α | μX.∀α [φ] .τ | C(τ1, . . . , τn) | τ ∪ τ | int | ⊥ | (τ @τ τ) | τ ↓C
i

φ ::= ff | tt | φ ∨ φ | φ ∧ φ | C ∈ τ | C /∈ τ | ∀ /∈ τ | (τ @φ τ)

Fig. 5. Definition of types τ and crash conditions φ

(τ1 @τ τ2) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

τb[α �→ τ2, X �→ τ1] if τ1 = μX.∀α [φ] .τb

(τ1 @τ τ2) if τ1 = α

(τ11 @τ τ2) ∪ (τ12 @τ τ2) if τ1 = τ11 ∪ τ12

(τ1 @τ τ21) ∪ (τ1 @τ τ22) if τ2 = τ21 ∪ τ22

⊥ otherwise

τ ↓C
i =

⎧⎪⎨
⎪⎩

τi if τ = C(τ1, . . . , τn), 1 ≤ i ≤ n

τ ↓C
i if τ0 = α

⊥ otherwise

(τ1 @φ τ2) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

φ[α �→ τ2, X �→ τ1] if τ1 = μX.∀α [φ] .τb

(τ1 @φ τ2) if τ1 = α

(τ11 @φ τ2) ∪ (τ12 @φ τ2) if τ1 = τ11 ∪ τ12

(τ1 @φ τ21) ∪ (τ1 @φ τ22) if τ2 = τ21 ∪ τ22

tt otherwise

Fig. 6. Type and crash condition operators

Lemma 1. It is undecidable whether for an arbitrary crash condition φ there
exists an interpretation J such that J � φ.

We discuss possible solutions to this problem in Section 4.

3.1 Analysis

We present our analysis as a type system using a judgment Γ � e : τ & φ that
relates a type variable environment Γ , an expression e, a type τ of the expression,
and a crash condition φ characterizing when the expression crashes. We define
the derivation rules in Fig. 7.

The rule T-Rec derives a recursive function type for a recursive function
expression by inferring the body’s type and crash condition using type variables
for the argument and a recursive type formulation for recursive calls. For a
function application (T-FunApp) we infer types and crash conditions for both
the callee e1 and the argument e2 . The result type of the function application
is the type-level application of the types of the callee and the argument. The
function application can crash if either e1 or e2 crashes, e1 is not a function,

242 R. Jakob and P. Thiemann

or the application itself crashes. The latter is symbolized by a crash condition-
level function application. The rule T-Identifier derives the type of a variable
from the environment and never crashes. An error value err has type ⊥ and
always crashes (T-Error). In rule T-Constructor, a constructor expression
has a constructor type with the types of its arguments inferred recursively. A
constructor crashes if one of its arguments crashes. Integer literals are handled
by T-Integer and always have type int and never crash.

For the pattern matching expression, the type is described by the union of
the types of the expression in the patterns. The crash condition is described by
the crash condition of the expression to match and the crash conditions of the
cases. The crash conditions of the cases are built using an auxiliary judgment:
φm; τ0;Γ �p P : τp & φp where φm describes the crash conditions accumulated
so far, τ0 describes the type of the expression to match, P the list of patterns
which are traversed and τp the union of the types of the pattern case’s body
expression. The type and crash condition of a pattern list is created by two
rules: if the pattern list is empty, we return the bottom type and the crash
condition accumulated to far. If the pattern list is non-empty, we create the type
of the current body expression by binding the variables defined in the pattern
and inductively applying the derivation. The current expression can crash, if

T-Rec
Γ, xr : αr, fr : X � e : τe & φe αr fresh xr, fr /∈ dom(Γ)

Γ � rec fr xr = e : μX.∀αr [φe] .τe & ff

T-FunApp
Γ � e1 : τ1 & φ1

Γ � e2 : τ2 & φ2

Γ � (e1 e2) : (τ1 @τ τ2) & (τ1 @φ τ2) ∨ φ1 ∨ φ2 ∨ ∀ /∈ τ1

T-Identifier
Γ (x) = τ

Γ � x : τ & ff

T-Error

Γ � err : ⊥ & tt

T-Constructor
∀i ∈ {1, . . . , n} : Γ � ei : τi & φi

Γ � C(e1, . . . , en) : C(τ1, . . . , τn) &
∨

φ

T-Pattern-Matching
tt; τ0; Γ �p P : τp & φp

Γ � e0 : τ0 & φ0

Γ � match e0 with P : τp & φ0 ∨ φp

T-Integer

Γ � n : int & ff

T-Pattern-Next
φ0 ∧ ((C ∈ τ0 ∧ φe) ∨ C /∈ τ0); τ0; Γ �p P : τ ′ & φ′

Γ, xi : τ0 ↓C
i � e : τe & φe i = 1, . . . , n

φ0; τ0; Γ �p [C(x1, . . . , xn) → e] ++ P : τ ′ ∪ τe & φ′

T-Pattern-Empty

φ0; τ0; Γ �p [] : ⊥ & φ0

Fig. 7. Derivation rules for the types and crash conditions

A Falsification View of Success Typing 243

either the pattern matches (C ∈ τ0) and the body expression crashes, or if the
pattern does not match at all.

Additionally, we define a subtyping relation ≤: τ × τ in Fig. 8 The relation is
standard, except for the rule S-Fun, which requires a logical implication of the
crash conditions.

The (output) types derived for an expression are over-approximations whereas
the crash conditions describe the possible crashes exactly. The interplay of types
and crash conditions ends up with definite errors, because the predicate C /∈ τ
describes the question whether it is not possible that the type τ is a constructor
C, and similarly for the predicate ∀ /∈ τ .

S-Bot

⊥ ≤ τ

S-Union

τ ≤ τ ∪ τ ′

S-Refl

τ ≤ τ

S-Ctor
τ̄ ≤ τ̄ ′

C(τ̄) ≤ C(τ̄ ′)

S-Fun
τ ≤ τ ′ φ′ → φ

μX.∀α [φ] .τ ≤ μX.∀α
[
φ′] .τ ′

T-Sub
Γ � e : τ & φ τ ≤ τ ′ φ′ → φ

Γ � e : τ ′ & φ′

Fig. 8. Subtyping rules

3.2 Properties

To justify our analysis, we prove the preservation of types and crash conditions
and the correctness. To do so, we need several auxiliary lemma.

Weakening allows the introduction of a fresh type variable into the type
environment without changing anything.

Lemma 2 (Weakening). For expressions e, types τ , τy, and τ0, an identifier
y, conditions φ and φ0, and an environment Γ , the following holds:

1. If Γ � e : τ & φ and y /∈ dom(Γ) then Γ, y : τy � e : τ & φ
2. If φ0; τ0;Γ �p P : τ & φ and y /∈ dom(Γ) then φ0; τ0;Γ, y : τy �p P : τ & φ.

The next lemma shows that we can replace a type variable α within an
environment by a concrete type α if we replace all occurrences of the type variable
in the resulting type and crash condition. We need this lemma when working
with the type-level function application.

Lemma 3 (Consistency of type substitution). For a well-formed environ-
ment Γ , an identifier y, a type variable α, an arbitrary expression e, types τ and
τα, conditions φ and φ0 the following holds:

1. If Γ, y : α � e : τ & φ then (Γ, y : α)[α
→ τα] � e : τ [α
→ τα] & φ[α
→ τα]
2. If φ0; τ0;Γ, y : α �p P : τ & φ then φ0[α
→ τα]; τ0[α
→ τα]; (Γ, y : α)[α
→

τα] �p P : τ [α
→ τα] & φ[α
→ τα].

244 R. Jakob and P. Thiemann

Lemma 4 shows that we can substitute a variable y in an expression e with
a value of the same type without changing the type and crash condition of the
whole expression. This lemma is needed for the type-level function applications
later.

Lemma 4 (Consistency of value substitution). For an environment Γ , an
identifier y, types τ and τy, an expression e, conditions φ and φ0, and a value
v, the following holds

1. If Γ, y : τy � e : τ & φ and Γ � v : τy & ff then Γ � e[y
→ v] : τ & φ.
2. If φ0; τ0;Γ, y : τy �p P : τ & φ and Γ � v : τy & ff then φ0; τ0;Γ �p

P [y
→ v] : τ & φ.

The next lemma shows that the analysis is designed such that after a suc-
cessful pattern matching, the crash conditions of the remaining pattern’s body
expressions cannot be satisfied anymore. The reason is that φ0 in the rules T-
Pattern-Next and T-Pattern-Empty influences the resulting crash condi-
tion of the whole expression.

Lemma 5 (Unsatisfiability after matching patterns). For an environment
Γ , types τ and τ ′, and conditions φ′ it holds that if ff, τ0;Γ �p P : τ ′ & φ′ then
� φ′.

Finally, we can establish the preservation theorem for our type system.

Theorem 1 (Preservation of types and crash conditions). If Γ � e :
τ & φ, e ↪→ e′ and Γ � e′ : τ ′ & φ′ then τ ≤ τ ′ and φ ↔ φ′.

Furthermore, we show that our analysis is sound: if the crash conditions
report an error, then there is either an error or the evaluation does not terminate.

Theorem 2 (Failure). If ∀T ,V, Γ and ∀x ∈ dom(Γ): � V(x) : T (Γ (x)) �
T (φ), and

1. Γ � e : τ & φ, then V(e) ↪→∗ err or V(e)⇑.
2. φ0; τ0;Γ �p [C1(x̄ → e1), . . . , Cn(x̄ → en)] : τ & φ and a value C(v1, . . . , vn)

with Γ ′ � C(v1, . . . , vn) : C(τ1, . . . , τn) & ff, then either
– ∀i : Ci �= C
– or ∃i : Ci = C and (V ′(ei) ↪→∗ err or V(e1)⇑).

4 Practical Considerations

We have shown that success typing is an instance of falsification and thus allows
the detection of definite errors. However, as shown by Lemma 1, the satisfiability
of φ is undecidable in general. Thus a direct algorithmic solution cannot exist.
We implemented5 a version of the analysis that imposes a user-definable limit of
k iterations on the unfolding operations described in the operators in Section 3
and can thus check for errors up to depth k.
5 http://www.informatik.uni-freiburg.de/∼jakobro/stpa/

http://www.informatik.uni-freiburg.de/~jakobro/stpa/

A Falsification View of Success Typing 245

Example 2. An example for a yet problematic combination of type and crash
condition we cannot solve at the moment is the following: We create a function
that generates an infinite list and apply the resulting stream on the list length
function.

With the list generator’s type

τgen = ((μX.∀α [ff] .Ccons(Czero, (X @τ α))) @τ Cunused)
= Ccons(Czero, (τgen @τ Cunused))

and the list’s type from Example 1 the application of the stream to the length
function has the following crash condition after type and crash condition oper-
ators are applied once (before substitution):

(
Cnil /∈ α ∧

((
Ccons ∈ α ∧ (X @φ α↓Ccons

2)
)

∨ Ccons /∈ α
))

[α
→ Ccons(Czero, (τgen @τ Cunused))]

After performing the substitution, we can evaluate the predicates that only look
finitely deep into their argument. When we apply type and crash condition
operators again, we end up on the same crash condition. Although we reach
a fix point in this case, this is of course not the case in general.

To solve this problem in general, we need to find an approximation for the
crash condition formula. As we only want to find definite errors, our approx-
imation has to be an under-approximation. However, finding a good under-
approximation, is yet an open problem.

When we view the output type of a functions as a constructor tree, we can
represent it as a higher-order tree grammar, as is proposed by Ong and Ram-
sey [12]. The (approximated) crash condition of a function can be represented
as a tree automaton. As the model checking of tree automata and higher-order
tree grammars is decidable [11] we have some means of finding definite errors.

5 Related Work

The idea of finding definite errors in programs is quite old and several approaches
exist.

Constraint-based analyses to detect must-information can be found in
Reynolds [13] where he describes a construction of recursive set definitions for
LISP programs that are “a good fit to the results of a function”. However, the
goal of the paper was to infer data structure declarations and not to find errors.
The constraint-based analysis of Lindahl and Sagonas’ [10] is a modular app-
roach similar to ours, but does not account for data structures of arbitrary depth
but instead uses k-depth abstraction as we do in our current implementation.
Furthermore, the approach of Lindahl and Sagonas uses union types that are
widened after a fixed size limit. These limits are to establish small and readable
types whereas we focus on exact tracking of values.

246 R. Jakob and P. Thiemann

Soft typing, presented by Cartwright and Fagan [4] detects suspicious expres-
sions in a program, i.e., expressions that cannot be verified to be error-free, and
adds run-time checks. Although the idea of not rejecting working programs is the
same, our approach requires no changes in existing programs as we only assume
programs to contain errors if we can proof it.

The line of work of Vaziri et al. [5,7] focuses on imperative first-order lan-
guages and uses user-defined specifications given in the Alloy language to state
the intention of a function and then checks the implementation against its spec-
ification. Although they explicitly mention unbounded data structures in their
approach, only instances up to a number of heap cells and loop iterations are
considered. In contrast to our approach, they require user-defined annotations. A
similar framework [15] removes the chore to define annotations and only requires
the user to provide a property to be checked. Their abstraction refines specifi-
cations that describe the behavior of procedures and thus creates a refinement-
based approach that ensures that no spurious errors appear if the analysis halts.

Different approaches for definite error detections are presented by Ball et al. [1]
and Kroening and Weissenbacher [9] for imperative first-order languages in a
Hoare-style way. However, a comparison to our approach is difficult because
they rely on a transition system to model the behavior of programs whereas we
use a type system.

6 Conclusion

We presented a new formal approach to success typings for a constructor-based
higher-order language using different representations for the input and output
type of a function. We proved that our formulation of success typings is a falsifi-
cation in the sense that it only reports definite errors. We presented a prototype
implementation that checks for errors up to a user-defined bound.

In future we want to look at means to model check (type) trees [11,12] with log-
ical formula represented as higher-order tree grammars and tree automata, respec-
tively. Thus, we hope to (partly) remove the n-bound of current approaches.

Acknowledgments. This work has been partially supported by the German
Research Foundation (Deutsche Forschungsgemeinschaft, DFG) within the Research
Training Group 1103 (Embedded Microsystems).

References

1. Ball, T., Kupferman, O., Yorsh, G.: Abstraction for falsification. In: Etessami, K.,
Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 67–81. Springer, Heidelberg
(2005)

2. Bessey, A., Block, K., Chelf, B., Chou, A., Fulton, B., Hallem, S., Gros, C., Kamsky,
A., McPeak, S., Engler, D.R.: A few billion lines of code later: using static analysis
to find bugs in the real world. Commun. ACM 53(2), 66–75 (2010)

A Falsification View of Success Typing 247

3. Bodin, M., Charguéraud, A., Filaretti, D., Gardner, P., Maffeis, S., Naudziuniene,
D., Schmitt, A., Smith, G.: A trusted mechanised JavaSript specification. In:
Jagannathan, S., Sewell, P. (eds.) POPL, pp. 87–100. ACM (2014)

4. Cartwright, R., Fagan, M.: Soft typing. In: Wise, D.S. (ed.) Proceedings of
the ACM SIGPLAN’91 PLDI, Toronto, Ontario, Canada, June 26–28, 1991,
pp. 278–292 (1991)

5. Dolby, J., Vaziri, M., Tip, F.: Finding bugs efficiently with a SAT solver. In:
Crnkovic, I., Bertolino, A. (eds.) Proceedings of the 6th joint meeting of the
European Software Engineering Conference and the ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2007, Dubrovnik, Croatia,
September 3–7, 2007, pp. 195–204. ACM (2007)

6. Gardner, P., Maffeis, S., Smith, G.D.: Towards a program logic for JavaScript. In:
Field, J., Hicks, M. (eds.) Proc. 39th ACM Symp. POPL, pp. 31–44, Philadelphia,
USA, January 2012. ACM Press

7. Jackson, D., Vaziri, M.: Finding bugs with a constraint solver. In: ISSTA, pp. 14–25
(2000)

8. Jakob, R., Thiemann, P.: A falsification view of success typings. CoRR,
abs/1502.01278 (2015). extended version

9. Kroening, D., Weissenbacher, G.: Verification and falsification of programs with
loops using predicate abstraction. Formal Asp. Comput. 22(2), 105–128 (2010)

10. Lindahl, T., Sagonas, K.F.: Practical type inference based on success typings. In:
Bossi, A., Maher, M.J. (eds.) PPDP, pp. 167–178. ACM (2006)

11. Ong, C.-H.L.: On model-checking trees generated by higher-order recursion
schemes. In: LICS, pp. 81–90. IEEE Computer Society (2006)

12. Ong, C.-H.L., Ramsay, S.J.: Verifying higher-order functional programs with
pattern-matching algebraic data types. In: Ball, T., Sagiv, M. (eds.) POPL,
pp. 587–598, Austin, TX, USA, January 2011. ACM Press

13. Reynolds, J.C.: Automatic computation of data set definitions. IFIP Congress 1,
456–461 (1968)

14. Sagonas, K.F., Silva, J., Tamarit, S.: Precise explanation of success typing errors.
In: Albert, E., Mu, S.-C. (eds.) PEPM, pp. 33–42. ACM (2013)

15. Taghdiri, M.: Inferring specifications to detect errors in code. In: 19th IEEE
International Conference on Automated Software Engineering (ASE 2004), 20–25
September 2004, Linz, Austria, pp. 144–153. IEEE Computer Society (2004)

Verified ROS-Based Deployment
of Platform-Independent Control Systems

Wenrui Meng(B), Junkil Park, Oleg Sokolsky,
Stephanie Weirich, and Insup Lee

University of Pennsylvania, Philadelphia, PA 19104, USA
wenrui@cis.upenn.edu

Abstract. The paper considers the problem of model-based deployment
of platform-independent control code on a specific platform. The app-
roach is based on automatic generation of platform-specific glue code
from an architectural model of the system. We present a tool, ROS-
Gen, that generates the glue code based on a declarative specification
of platform interfaces. Our implementation targets the popular Robot
Operating System (ROS) platform. We demonstrate that the code gen-
eration process is amenable to formal verification. The code generator
is implemented in Coq and relies on the infrastructure provided by the
CompCert and VST tool. We prove that the generated code always cor-
rectly connects the controller function to sensors and actuators in the
robot. We use ROSGen to implement a cruise control system on the
LandShark robot.

1 Introduction

Modern cyber-physical systems are typically constructed from individually devel-
oped components. This process involves two steps: first, developing the compo-
nents in a platform independent way, and second, deploying these components
on a specific architecture, using a middleware platform to implement the con-
nections between the components.

Model-based development aids in both parts of this development process.
First, in developing individual components, component behaviors are abstractly
specified by data models, state charts, or diagrams. These diagrams can be
expressed using design tools such as Simulink/Stateflow, UPPAAL [1], or
SCADE/- Lustre [2]. Code generation tools then convert these diagrams into
code, typically platform-independent C source code. This generative approach
helps us to preserve properties verified at the modeling level, making sure that
component implementations also satisfy these properties.

Second, system architectural models describe the relationships between the
components of the system. For example, in an autonomous robotic system the

This research is supported in part by DARPA HACMS program under agreement
FA8750-12-2-0247. The views expressed are those of the authors and may not reflect
the official policy or position of the Department of Defense or the U.S. Government.

c© Springer International Publishing Switzerland 2015
K. Havelund et al. (Eds.): NFM 2015, LNCS 9058, pp. 248–262, 2015.
DOI: 10.1007/978-3-319-17524-9 18

Verified ROS-Based Deployment of Platform-Independent Control Systems 249

architectural model specifies (1) how each component should be executed (such
as how the periodic execution within a given period may be specified), (2) how
system inputs, such as sensor streams, should be routed to inputs of compo-
nents processing the streams, and (3) how outputs of each component should be
routed to inputs of other components or to system outputs (such as actuators). A
significant part of platform configuration is providing a platform-specific wrap-
per for the platform-independent component implementation. The wrapper (also
known as the glue code) uses platform APIs to schedule component execution,
to obtain inputs for the component, and to forward its outputs. A faulty deploy-
ment undermines the benefits of provably correct implementation of individual
components. Platform configurations, therefore, should be automatically gen-
erated from the architectural model to ensure correct integration of individual
components.

In this paper, we address the problem of automatically generating provably
correct glue code for a particular deployment platform from a given architectural
model. We use the Robot Operating System (ROS)1 as our target platform, a
“thin, message-based, peer-to-peer” [3] robotics middleware designed for mobile
manipulators. The ROS platform has recently gained popularity in the robotics
community because it raises the level of abstraction in embedded control system
development. ROS-based applications are assembled from multiple ROS nodes
that run concurrently. ROS supports communication between these nodes using
a publish/subscribe-based message system.

To that end, we develop a ROS glue code generator, called ROSGen, that
automatically generates such glue code from system architecture specifications.
The input language for our code generator is a domain-specific language, called
a ROS node model, that specifies the ROS nodes that comprise the system and
ROS topics that the nodes subscribe to and publish on.

Of course, by generating code we eliminate some sources of programmer error
in system development. However, for safety critical systems, we want the highest
level of assurance. We would like to prove that the output of our code generator
satisfies strong correctness and safety requirements. One can take two approaches
for the verification of generated code; first, one may verify every output indi-
vidually. Alternatively, which is generally much harder, one may verify the code
generator itself.

Our code generator is designed to support (both forms of) formal verification.
ROSGen is implemented using the Coq proof assistant [4], making the full higher-
order logic of Coq available for reasoning about both the output of the generator
(represented as a Coq data structure) and the code generator itself (represented
as a Coq function). In this context, we have used both approaches for verification.

We have applied ROSGen as part of a case study of glue code generation
for the Black-i Robotics LandShark platform. The LandShark is an unmanned
ground vehicle typically used to extend human capabilities, often in dangerous
environments such as at a chemical spill or for sentry duty. ROSGen can generate
glue code for this platform, and we have proven that the generated code satisfies
1 www.ros.org

www.ros.org

250 W. Meng et al.

a crucial Data Delivery Correctness (DDC) property: that the arriving sensor
message will be correctly delivered to the control function and that the output of
the control function will be correctly delivered to the actuators. We express and
prove this property using the Verified Software Toolchain (VST) tool [5], which
provides a higher-order separation logic for reasoning about memory usage in C
programs. Our proof has been mechanically checked by Coq.

Moreover, we prove the generalized DDC property of the code generator itself.
That is, we can show that every output of ROSGen satisfies the same DDC
property that we have shown for the LandShark instance. In general, this is
a hard problem. However, in our case, because of the relatively simple code
structure and because the property of interest is concerned with data transfer,
we can generalize the proof of instances of the generated code to the proof of
the generator itself.

In summary, this paper makes the following contributions:

– We introduce a domain specific language for describing the ROS nodes. We
develop a code generator ROSGen to generate the robotics glue code accord-
ing to a given ROS node model (Section 4).

– We demonstrate an application of ROSGen to a case study of a robotic
control system and prove, using a suite of Coq-based tools, that the glue code
correctly delivers data according to the ROS node model of the controller
(Section 5).

– Finally, we verify that, given a well-formed ROS node model, ROSGen
always generates code that satisfies the data delivery correctness property
(Section 6).

The rest of the paper is organized as follows: we introduce the relevant work
that our code generation is dependent on in Section 2. Section 3 explains the
architecture of the ROS based control system and introduces the LandShark
case study. In Sections 4, 5 and 6, we explain our code generation approach for
ROS based control system and the verification for the generated code and code
generator itself. We discuss related work in Section 7 and conclude in Section 8.

The Coq implementation of the code generator and case study can be down-
loaded from http://rtg.cis.upenn.edu/HACMS/codegen.html. The technical
report [6] full version of this paper, including the formal VST specification and
proof of DDC property, can also be found on the same webpage.

2 Proof Environment

Figure 1 shows the tools underlying ROSGen, which are briefly described below.
Coq. The Coq Proof Assistant2 is a formal proof management system. It pro-
vides a formal language to write mathematical definitions, executable algorithms
and theorems together with an environment for semi-interactive development of
machine-checked proofs.
2 http://coq.inria.fr/

http://rtg.cis.upenn.edu/HACMS/codegen.html
http://coq.inria.fr/

Verified ROS-Based Deployment of Platform-Independent Control Systems 251

Fig. 1. ROSGen dependency structure

CompCert. CompCert [7] is a formally verified optimizing compiler for the C
programming language that currently targets PowerPC, ARM and 32-bit x86
architectures. The compiler is specified, implemented and proved correct using
the Coq proof assistant. It targets embedded systems programming, with strin-
gent reliability requirements. CompCert’s source language, a large subset of C
called Clight, is the target language of our code generator; our generator pro-
duces abstract syntax values for Clight.

The formal semantics of Clight is mechanized using Coq. It supports many
types including integral types (integers and floats in various sizes and signed-
ness), array types, pointer types (including pointers to functions), function types,
as well as struct and union types. A Clight program is composed of a list of dec-
larations for global variables (name and type), a list of functions and an identifier
naming the entry point of the program (the main function in C). Verified soft-
ware toolchain. The goal of the Verified Software Toolchain (VST)3 project is
to verify that the assertions claimed at the top of a software toolchain really
hold in the machine language program, running in the operating system con-
text, on a weakly-consistent-shared-memory machine. It defines Verifiable C,
a higher-order concurrent separation logic for Clight. Verifiable C has been
proven sound with respect to the operational semantics of CompCert C [5].

The Verifiable C program logic extends Hoare logic by including separa-
tion logic constructs to support reasoning about mutable data structures such
as arrays and pointers. In separation logic, an assertion holds on a particular
subheap and assertions on different subheap are independent. As a result logical
reasoning is modular. VST provides a tactic system for proving correctness prop-
erties, specified by the VST assertions, of C light programs. The most significant
of these are the forward tactic, which symbolically executes the code, and the
entailer tactic, which simplifies and often solves VST assertions [8].

3 ROS-Based Control System

3.1 Robot Operating System

ROS is a widely used component-based middleware for robotic system applica-
tions. A software component in ROS is called a ROS node. A ROS application
usually consists of multiple ROS nodes running concurrently. The ROS nodes
asynchronously communicate with each other. Communication in ROS is based
3 http://vst.cs.princeton.edu/

http://vst.cs.princeton.edu/

252 W. Meng et al.

on the Publish/Subscribe paradigm and uses structured message types. ROS
Services are the mechanism to implement remote procedure calls in ROS, which
are synchronous and blocking.

Fig. 2. ROS-based controller system skeleton

Figure 2 shows the skeleton of a ROS-based control system. In order to
subscribe to a topic in ROS, users need to define a callback function. A callback
function for a topic is a message handler that is invoked to process the new
messages when they arrive. Subscribe is a function from the ROS API that
registers subscription information: a topic name, the message type, the internal
buffer size and the callback function for those messages. If a new message is
received, it is stored in an internal buffer. It replaces the oldest message in the
buffer if the buffer is already full. When the ROS API function SpinOnce is
invoked, all registered callback functions are invoked for every message in the
internal buffers. In order to publish a topic in ROS, users should use the ROS
API function Advertise to first create a publisher with a topic name, message
type, and internal buffer size. The ROS API Publish function is then used to
publish a message.

3.2 Case Study of LandShark Control System

In this section we illustrate a typical ROS-based control system using the Land-
Shark robot. The LandShark is an electric unmanned ground vehicle, shown

Fig. 3. LandShark robot

Verified ROS-Based Deployment of Platform-Independent Control Systems 253

in Figure 3, manufactured by Black-I Robotics.4 Our case study develops a
constant-speed cruise control algorithm that is resilient to attacks on vehicle
sensors. The LandShark uses three sensors, GPS, a left wheel encoder and a
right wheel encoder, to estimate its current velocity. These sensors can be com-
promised by attacks, such as GPS spoofing, that cause confusion in estimating
the current velocity of the vehicle. The attack-resilient cruise controller of Land-
Shark uses multiple independent sensors and the knowledge of the system model
in order to correctly estimate the current velocity of the vehicle and drive the
vehicle with a given constant velocity [9].

Fig. 4. LandShark control system architecture

Figure 4 shows the architecture of the LandShark control system, which
consists of sensor/actuation/controller nodes and the connections between them
through topic-based pub/sub communication. The ROS nodes landshark gps and
landshark base are associated with sensors that read GPS and wheel encoder
values respectively and publish them. The ROS node landshark wheel velocity
subscribes to the series of wheel encoder values and publishes the velocity of
the vehicle calculated from them. The ROS node landshark base also plays a
role as an actuation node in that it subscribes to the actuation commands and
actuates the vehicle according to them. The ROS node landshark controller is the
controller node that subscribes to sensor value messages and publishes actuation
commands. The landshark controller node is periodically invoked at the rate of
50 Hz to execute the Simulink-generated step function. In each invocation, the
callback functions are invoked by SpinOnce to process the messages received.
The callback functions store the sensor messages in global variables. The sensor
values in the global variables are transferred to the input data structure of the
control algorithm function that is generated by Simulink. The step function is
4 http://www.blackirobotics.com/

http://www.blackirobotics.com/

254 W. Meng et al.

executed to calculate the actuation command, which is encapsulated in a ROS
message variable and published by the publisher.

4 Code Generation

Fig. 5. Verified code generation toolchain

Our toolchain for verified code generation appears in Figure 5. The ROSLab
tool supports the design of system architectures, allowing the creation of a dia-
gram block using a graphical user interface. The diagram block in ROSLab
can then be exported in our architectural description language as a ROS node
model. With the ROS node model, ROSGen produces an abstract syntax tree
for a subset of C called Clight, by instantiating a Clight AST template. In addi-
tion, ROSGen also generates a VST specification for each function, describing
its Data Delivery Correctness DDC properties. We can prove that the generated
code satisfies these specifications, as we demonstrate in Section 6. The final C
code, which is run on the LandShark, is produced by the CompCert compiler
using its pretty printer.

ROSLab Tool. ROSLab is a modular programming environment for robotic appli-
cations based on ROS. ROSLab enables users to model an architecture of a ROS
application that consists of a set of ROS nodes and the connections between them.
The interfaces of some commonly used ROS nodes such as sensor and actuator
nodes are pre-defined in ROSLab. Users can define a new ROS node and its inter-
face by selecting the pub/sub channels to add to the interface of the node.

4.1 ROS Node Model

A diagram block in ROSLab can be exported as a ROS node model. A ROS
node model includes the period at which the node is to be invoked; the list of
topics that the node publishes or subscribes to; the name and the I/O interface
of the controller function that the node will run; and finally, a mapping from
subscribed and published topics to inputs and outputs of the controller function.

The ROS node model for the landshark controller ROS node in Figure 4
is shown in Table 1. The name of the node, the period of the controller, and the

Verified ROS-Based Deployment of Platform-Independent Control Systems 255

Table 1. ROS node model for LandShark

Node Information

period node name controller name

20 landshark controller Controller

ROS Topics

type topic name message package message type buffer size

S /landshark/left wheel velocity geometry msgs TwistStamped 1
S /landshark/right wheel velocity geometry msgs TwistStamped 1
S /landshark/gps velocity geometry msgs TwistStamped 1
P /landshark control/base velocity geometry msgs TwistStamped 1

Controller Interface

I/O name record type

I Controller U (In1, double), (In2, double), (In3, double)
O Controller Y (Out1, double)

Interface Relation

type topic controller

SI /landshark/left wheel velocity, twist, linear, x Controller U, In1
SI /landshark/right wheel velocity, twist, linear, x Controller U, In2
SI /landshark/gps velocity, twist, linear, x Controller U, In3
PO /landshark control/base velocity, twist, linear, x Controller Y, Out1

name of the controller function that the node will execute are shown at the top
of the table. Published topics are indicated by the letter P and subscribed topics
are indicated by the letter S. For each topic, the unique topic name and the
type of messages are given. Next, the ROS node model specifies the controller
function interface. In our case study, the controller function is generated from a
Simulink model of the controller, and the names and types of input and output
variables are following the Simulink code generator conventions. Finally, the
interface relation represents the mapping from relevant fields of subscribed sensor
messages to the fields in the input data structures of the controller function, and
similarly for outputs of the controller function to published actuator messages.

4.2 ROSGen

Symbol Table. As the first step in code generation, ROSGen constructs a Coq
data structure representing symbols to be used in the generated code. The names
are obtained by parsing the ROS node model. Types for the controller function
interface are given in the node model. Types for ROS messages referenced in the
node model are obtained by parsing the corresponding C header files.

Code Templates. Code generation proceeds by instantiating templates that are
Clight AST fragments. We use a top-level template, representing the whole pro-
gram, and a set of local templates. The top-level template is shown in Figure 6. The
program contains a list of global definitions and the name for the main function.
A global definition can be either a variable definition or a function definition. One
of the global definitions is the definition of the main function, which is partially

256 W. Meng et al.

constructed in the top-level template. Light-colored triangles in the top-level tem-
plate represent holes that are filled with instantiations of local templates. Local
templates are used to capture global definitions, such as callback function defini-
tions, global variables used to transfer data from callback functions to the main
function, and also glue code functions explained in more detail below. Holes in
local templates can represent statements, as well as variable ids and types that
are filled with references to the symbol table. Once all the templates are instanti-
ated, the final C code is produced by CompCert pretty printing.

Fig. 6. Top-level template

To make proofs more efficient, we modularize the body of the main function
from Figure 2 into several functions. The while loop is encapsulated as a loop
function. Within the loop function, we wrap the code for transferring data from
global variable to controller input and controller output to publish input as
input glue and output glue function, respectively. Figure 7 shows the generated
code for the glue functions.

Fig. 7. Input glue function

5 Code Proof

We use VST to prove a DDC property for the generated Clight AST. Because
VST is based on axiomatic semantics, we specify the DDC properties with pre-
and post-conditions that capture the relation between the origin variables and
destination variables.

Verified ROS-Based Deployment of Platform-Independent Control Systems 257

5.1 Data Delivery Correctness Property of Glue Code

Fig. 8. Data delivery correctness property for ROS-based control system

The main purpose of the ROS glue code is linking the sensor input, controller
function and actuator, so the critical property of glue code should capture the
correctness of the linking. In ROS glue code, the linking correctness means that
the sensor message is delivered into controller function input correctly. In addi-
tion, the output of the controller function correctly is delivered into the actuator
input. We specify the linking correctness property of the ROS glue code as a DDC
Property. This property indicates that the information from the origin should
be consistent with the system specification when it arrives at the destination.
For example, we design the system in the way that the sensor message is directly
stored into global variables. So the DDC property of this operation is that the
original value of the sensor message is equal to the value of the updated global
variable. If we need to transform the original value, then the DDC property should
specify the relation between the original value and destination value according
to the transformation.

5.2 Generating Function Specifications

ROSGen automatically generates VST function specifications according to the
ROS node model for both generated functions and ROS API functions. In VST,
users specify properties through function specifications, so we wrap our glue
code as functions. These functions include callback, and input and output glue
functions for the controller step function.

As shown in Figure 8, the specifications of the functions capture the DDC prop-
erty of the generated AST instance. The callback functions are responsible for
transferring sensor messages to global message variables; the input glue function
is responsible for transferring global message variable to the input parameter of
controller function; and the output glue function is responsible for transferring
output of controller function to the parameters of publish function. For each
part, the DDC property specification defines the precondition that the original
value is stored in memory and the postcondition that the destination contains
the desired value according to the original value.

As shown in Figure 9, the input glue function has precondition that there
are three global message variables with values and controller input Controller U
with an unknown value. The postcondition indicates that Controller U contains
the right value from corresponding fields defined in the ROS node model and
that the values of those three global variables are unchanged. By satisfying this

258 W. Meng et al.

Fig. 9. DDC specification of input glue function

postcondition, we can guarantee that the input to the controller function is
consistent to the architecture ROS node model.

Specification of ROS API Functions. For the code proof, we have to supply
specifications of ROS API functions called by the code. These specifications
are treated as assumptions in the proof. Here, specification of the ROS API
function SpinOnce presents a challenge. The function implicitly invokes the reg-
istered callback functions to update global variables with new sensor values. The
straightforward way to specify SpinOnce is to refer to the specifications of the
callbacks. However, currently, VST does not support using other function specifi-
cations to construct a specification. Therefore, we specify the SpinOnce function
using the global variables update essentially incorporating callback specifications
directly into the SpinOnce specification. This specification has the precondition
that the global variables are stored somewhere of memory and the postcondition
that the global variables are updated to the provided data.

5.3 Code Proof Strategy

We use the tactics from VST proof automation to prove the DDC property. For
each function, the proof starts with the function precondition as the proof con-
text. We then apply the VST tactics for the current statement of the function
body. Each tactic execution updates the proof context by calculating the post-
condition of the statement and advances to the next statement, until the end
of the function body is reached. At that point, the context should imply the
function postcondition.

6 Code Generator Proof

6.1 Property of the Code Generator

We developed the code generator in Coq, which makes it possible to verify prop-
erties of the code generator itself. One interesting property is a generalized DDC
property which states that every generated ROS glue code from a valid ROS

Verified ROS-Based Deployment of Platform-Independent Control Systems 259

node model will satisfy the DDC property defined in the Section 5. Intuitively,
we should prove that for any input ROS node model, our function template
instance satisfies our function specification instance. However, VST tactics can
only reason about closed code; it cannot specify properties of our AST tem-
plates. Therefore, we cannot directly verify these templates. Instead, we analyze
the properties that are required of code generation in order to guarantee the DDC
property of the generated code.

The DDC property of generated code states that the destination variable holds
the desired value according to the ROS node model before it is used. This DDC
property is implied by three code generation properties discussed below. We use
the input glue function from Figure 7 to illustrate how the following three code
generation properties imply the DDC property.

Fig. 10. Fragment of input glue function body template

Let us first look at the fragment of the template that generates statements in the
body of the input glue function that deliver the value for a single input field. The
body is obtained by instantiating the template for each input field. The template
has twoparameters:global exprfield ofmessagevariable andcontrol exprfield
of controller input Controller U. It generates two statements: one copies the mes-
sage field value (global expr) to the temporary variable (temp id); the other sets
one field (control expr) of the controller variable with a temporary variable. We
want to show that the DDC property of the input glue function generated using
this template will be satisfied whenever the three properties below hold.

The first code generation property is that the origin (global expr) and the
destination (control expr) should keep the corresponding relation according
to the ROS node model. It ensures that the data is delivered from the right
origin to the right destination according to the ROS node model. In this case,
global expr and control expr in the input glue function should be consis-
tent with the interface relation. This property guarantees that the Controller U
fields will be assigned by the values from corresponding fields shown in Table 1.

The second property is the valid assignment property, which requires only
that the left and right sides of an assignment have the same type. This property
implies that the destination variables receive the assigned value after this assign-
ment according to the axiomatic semantics of VST. In this case, Controller U
will hold the value from field x of those three global message variables in Table 1.
With the first and second code generation properties, the input glue function
postcondition is guaranteed.

The last code generation property is that the destination variable is not re-
assigned by other values before it is used. The third property guarantees that

260 W. Meng et al.

the value of Controller U is preserved until the Controller step function is
invoked.

6.2 Proof of the Three Code Generator Properties

In this section, we discuss the proof of the three code generator properties pre-
sented above. The first property is that we instantiate the input glue function
assignment template correctly according to the input ROS node model interface
relation. We maintain a list of expressions for each side in the resulting assign-
ments. For the input glue function body, there are lists for global expr and
control expr. The first property can be proven by showing that the lists of
expressions are consistent with the ROS node model interface relation, as stated
by the lemma in Figure 11. In this lemma, lg expr is the list of expressions for
global expr, while lc expr is the list of expressions for control expr. The
quantified variable lir is the list of interface relations from Table 1. To prove
the consistency, we verify that the fields of these expression lists are identical to
the fields in the interface relation.

Fig. 11. Relation consistency of the input glue function

For the valid assignment property, we only need to check that the lists of types
for the left and right sides of the assignment are consistent. The type checking
function for the input glue function is shown in Figure 12. Since users may
specify an inconsistent ROS node model, mapping a ROS message field with one
type to controller input with a different type, the generated assignment can be
invalid. The type checking function is applied before generating the input glue
function. If type checking returns FALSE, ROSGen can set the error flag to true
and stop generating code. In this way, we guarantee that the generated code
always satisfies the valid assignment property.

For the third property, we verify the preservation property by checking that
there is no new assignment for the destination variable between the input glue
function and Controller step function. This is quite straightforward, because
therearenoother statementsbetweeninput glue functionandController step
function in our loop function template. Furthermore, if we were to change our tem-
plate to add additional statements between the input glue and Controller U
calling statements,wewouldalsoaddthe constraint that theydonot involvemanip-
ulating theController Uheap.According to the separation logic ofVST, the value
of Controller U is still preserved if those statements manipulate variables in a dif-
ferent heap.

Verified ROS-Based Deployment of Platform-Independent Control Systems 261

Fig. 12. Type checking for input glue function

7 Related Work

There has been much work on automatic generation of platform-specific glue
code based on the architectural model of the system and the underlying platform
specification. In [10,11], code generation for a variety of platforms is performed
using AADL models to represent hardware and software architectures and their
properties relevant for code generation. None of these papers targeted the ROS
platform. More importantly, they do not consider verification of the generated
code nor the code generator itself.

There is also a similarity between the intent of our approach and verification
of model transformations in domain-specific languages. Most of that work, how-
ever, is done in the context of behavioral models, with the goal of ensuring that
syntactic constraints are preserved by the transformation [12–14]. By contrast,
we start with an architectural model, where behavior is implicit, and generate
executable code.

8 Conclusions

We propose a verified framework ROSGen for generating glue code for ROS-
based control systems. We start with a model of a ROS node capturing external
connections of the node and parameters needed to execute the node. The code
generator, implemented in Coq, uses this model to instantiate Clight templates
and use the VST toolset to reason about the code. We then use CompCert
utilities to generate C source code from Clight AST. We discuss how to generalize
the proof of data delivery correctness for the generated code to a proof of data
delivery correctness for the code generator itself. We apply the approach to the
cruise control system for the LandShark robotic vehicle.

Our plans for future work include extending the proof approach to directly
reason over quantified Clight templates, allowing for a more natural proof of the
code generator correctness. Furthermore, we plan to extend the framework to
cover the step function, to be able to reason about control-related properties of
the code, in addition to the data delivery properties.

Acknowledgments. Thanks to Andrew W. Appel, Joey Dodds and Qinxiang Cao
for help on applying VST and separation logic. We would like to thank the reviewers
for their comments that help improve the paper.

262 W. Meng et al.

References

1. Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal. In: Formal methods
for the design of real-time systems, pp. 200–236. Springer (2004)

2. Halbwachs, N.: A synchronous language at work: the story of lustre. In: For-
mal Methods for Industrial Critical Systems: A Survey of Applications, pp. 15–31
(2005)

3. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y.: ROS: an open-source robot operating system. In: ICRA workshop on
open source software, vol. 3 (2009)

4. The Coq development team: The Coq proof assistant reference manual. LogiCal
Project, Version 8.0. (2004)

5. Appel, A.W.: Verified software toolchain. In: Barthe, G. (ed.) ESOP 2011. LNCS,
vol. 6602, pp. 1–17. Springer, Heidelberg (2011)

6. Meng, W., Park, J., Sokolsky, O., Weirich, S., Lee, I.: Verified ros-based deployment
of platform-independent control systems. In: University of Pennsylvania Depart-
ment of Computer and Information Science Technical Report No. MS-MS-CIS-15-
01, February 2015

7. Leroy, X.: The compcert c verified compiler (2012)
8. Appel, A.W., Robert, D., Hobor, A., Beringer, L., Dodds, J., Stewart, G., Blazy,

S., Leroy, X.: Program Logics for Certified Compilers. Cambridge University Press,
UK (2014)

9. Pajic, M., Bezzo, N., Weimer, J., Sokolsky, O., Michael, N., Pappas, G.J., Tabuada,
P., Lee, I.: Demo abstract: Synthesis of platform-aware attack-resilient vehicu-
lar systems. In: Cyber-Physical Systems (ICCPS), 2013 ACM/IEEE International
Conference on, pp. 251–251. IEEE (2013)

10. Lasnier, G., Zalila, B., Pautet, L., Hugues, J.: Ocarina: an environment for AADL
models analysis and automatic code generation for high integrity applications. In:
Kordon, F., Kermarrec, Y. (eds.) Ada-Europe 2009. LNCS, vol. 5570, pp. 237–250.
Springer, Heidelberg (2009)

11. Kim, B.G., Phan, L.T.X., Sokolsky, O., Lee, I.: Platform-dependent code genera-
tion for embedded real-time software. In: Compilers, Architecture and Synthesis for
Embedded Systems (CASES), 2013 International Conference on, pp. 1–10. IEEE
(2013)

12. Narayanan, A., Karsai, G.: Towards verifying model transformations. In: Proceed-
ings of the 5th International Workshop on Graph Transformation and Visual Mod-
eling Techniques (GT-VMT 2006), pp. 191–200 (2008)

13. Cabot, J., Clarisó, R., Guerra, E., de Lara, J.: Verification and validation of declar-
ative model-to-model transformations through invariants. Journal of Systems and
Software 83(2), 283–302 (2010)

14. Lucio, L., Vangheluwe, H.: Model transformations to verify model transformations.
In: Proceedings of the Workshop on Verification of Model Transformations, June
2013

A Rigorous Approach to Combining Use Case
Modelling and Accident Scenarios

Rajiv Murali(B), Andrew Ireland, and Gudmund Grov

School of Mathematical and Computer Sciences,
Heriot-Watt University, Edinburgh, UK
{rm339,a.ireland,g.grov}@hw.ac.uk

Abstract. We describe an approach to embedding a formal method
within UML use case modelling. Moreover, we extend use case mod-
elling to allow for the explicit representation of safety concerns. Our
motivation comes from interaction with systems and safety engineers
who routinely rely upon use case modelling during the early stages of
defining and analysing system behaviours. Our chosen formal method is
Event-B, which is refinement based and consequently has enabled us to
exploit natural abstractions found within use case modelling. By under-
pinning informal use case modelling with Event-B, we are able to provide
greater precision and formal assurance when reasoning about concerns
identified by safety engineers as well as the subsequent changes made at
the level of use case modelling. To achieve this we have extended use
case modelling to include the notion of an accident case. Our approach
is currently being implemented, and we have an initial prototype.

Keywords: Formal modelling · Use cases · Hazard analysis · Model
based · Refinement · Event-B

1 Introduction

UML use cases are an informal notation for modelling the required behaviour
of a system with respect to its operational environment. They are widely used
and highly accessible. Our interest in use cases has developed through interac-
tions with systems and safety engineers at BAE Systems1. Use case modelling
provides a basis on which initial system behaviours can be defined and analyzed
by systems engineers. Moreover, safety concerns that are identified by safety
engineers are mitigated via changes to the use cases, e.g. corrections, inclusion
of additional behaviours, etc. The lack of formality of use case modelling means
that the process of analysis is typically review-based, and thus lacks the rigour
that comes from formal methods, i.e. systematic identification of ambiguities,
inconsistencies and incompleteness. Moreover, use case modelling does not pro-
vide any special mechanisms for representing the concerns of safety engineers,
such as accident scenarios.
1 http://www.baesystems.com

c© Springer International Publishing Switzerland 2015
K. Havelund et al. (Eds.): NFM 2015, LNCS 9058, pp. 263–278, 2015.
DOI: 10.1007/978-3-319-17524-9 19

http://www.baesystems.com

264 R. Murali et al.

We present an approach that adds rigour to use case modelling via the
Event-B [1] formalmodellingnotation.Wealso extenduse casemodelling to include
thenotion of anaccident case,whichprovides awayof representing accident scenar-
ios. We selected Event-B because it promotes a layered style of formal modelling,
where a design is developed as a series of abstract models – level by level concrete
details are progressively introduced via provably correct refinement steps. Some-
times referred to as posit-and-prove, this style of modelling can increase the clarity
of design decisions as well as simplify the complexity of the verification task. We
argue that use case modelling exhibits a series of natural abstract models. Our app-
roachexploits thismapping.That is, foragivenusecaseweautomaticallygeneratea
skeleton Event-B development. The completion of the development relies upon the
user formalizing the details of their use case, e.g. constants, variables, pre-, post-
condition, invariants, assignments. Our prototype tool allows the user to specify
their informal and formal descriptions of the a use case side-by-side. As a conse-
quence inconsistencies and defects identified by formal verification can be mapped
back onto the informal level.

The paper is structured as follows. Sect. 2 provides background on both use
case modelling and Event-B along with a case study of a simple water tank
controller to describe our approach. In Sect. 3 we introduce our notion of an
accident case to consider safety concerns within UML use case modelling. In
Sect. 4 and 5, we provide a formal use case specification and its mapping onto
an Event-B development, respectively. Sect. 6 focuses on the benefits that formal
verification at the level of Event-B brings to use case modelling and describes a
prototype tool support. Finally, related work and conclusions are described in
Sect. 7 and 8.

2 Preliminaries

2.1 Water Tank Controller Case Study

A case study of a water tank controller is used to describe our approach on
formalising UML use cases. The design intent for the controller is to maintain
the water level between the high (H) and low (L) limits of a water tank, as seen
in Fig. 1. To achieve this intent, the controller communicates with two external
components: sensor system and pump. The sensor system monitors the water
level in the tank with respect to the high threshold (HT) and low threshold
(LT) sensor readings. Based on these readings, the controller either activates or
deactivates the pump. When the pump is active, its motor is switched on which
increases the water level in the tank, and while inactive the motor is switched off
which gradually decreases the water level in the tank. The additional component
drain is later introduced in Sect. 3.

2.2 Use Case Modelling

A use case model [2] is composed of a collection of use cases and actors that
are of interest to the system being designed. A use case diagram describes the
relationships between the actors and use cases within a system, where-each use

A Rigorous Approach to Combining Use Case Modelling 265

H

L

Drain Input Signal

SensorHT

Sensor HT, LT and Motor
Readings

Water Tank

Water Level

SensorLT

Pump
Pump Input Signal

Controller

Sensor
System

Water

Drain

Exit Valve

HT

LT

Motor Signal

Fig. 1. A description of the water tank system

case captures the intended function of the system while the associated actors
play a role in achieving it. Actors may represent roles played by human users,
external hardware, or other subjects.

In Fig. 2a, a use case diagram for the water tank controller captures a use
case, MaintainH, which denotes the desired functionality of the controller to
maintain the water level below the H limit of the water tank. The pump, sensor
system and water tank are represented as actors that play a role in achieving this
functionality. Each use case can be further detailed in a use case specification2.
The specification for MaintainH can be seen in Fig. 2b.

(a) Use case diagram

Use case: MaintainH

Pre-condition: Water level above HT.

Post-condition: Water level between L and
HT.

Invariant: Water level between L and H.

Main Flow:

Trigger : Water level above HT.

B1. Sensor System activates sensor HT.

B2. Controller deactivates pump.

B3. Pump switches its motor off.

B4. Water level in tank gradually decreases.

(b) Use case specification of MaintainH

Fig. 2. A use case model of the water tank system

A use case specification captures a sequence of action steps where each step
is a discrete unit of interaction between an actor and the system. This sequence
of steps is known as a flow and every use case has one main flow. The main flow
2 There is no standard template for use case specifications. The one used in the paper

is kept simple as possible and is in common use in industry [3], with the exception
of the invariant field.

266 R. Murali et al.

describes a sunny day scenario where there are no failures or exceptions. The
flow can initiate if its trigger condition is enabled. The specification also captures
the pre-, post-condition and invariant for the use case. These can be described as
a contract specified by the designer where given the pre-condition, if the main
flow of the use case executes and completes, then the result described by the
post-condition must be achieved. The invariant must be maintained throughout
the execution of the flow.

2.3 Event-B

Event-B [1] is a refinement-based formalism for system-level modelling and anal-
ysis. An Event-B model is composed of contexts and machines where a context
expresses the static information about the model while a machine represents the
dynamic aspects. A machine models the state space by variables v, and state
transitions are modelled by events. The state variables v are constrained by laws
specified by invariants I(v). An event evt is of the following form:

evt =̂ where G(v) then S(v, v′) end

In event evt, G(v) specifies the enableness conditions of the event while S(v, v′)
defines the state transition associated with the event. A dedicated initialisation
event with no guards defines the states of the variables v at start-up. S(v, v′)
contains several assignments that are supposed to happen simultaneously. Each
assignment may take the following forms: v := E(v), v :∈ E(v), or v : |P (v, v′).
The first form deterministically assigns the values of expression E(v) to v, the
second form non-deterministically assigns to v some value from E(v). The last
assignment form is the most general as it assigns to v some value satisfying the
before-after predicate P (v, v′). A machine is consistent if its invariants hold at
any given time. In practice, this is guaranteed by proving that the invariant is
established by the initialisation and maintained by all its events.

An Event-B model supports refinement which allows detail to be added in a
stepwise manner. This helps manage the complexities of design and improve the
degree to which verification can be automated. Correctness of the refinement is
ensured by a set of generated proof obligations. The Rodin platform [4] provides
tool support for Event-B. It is based on the Eclipse framework and is further
extensible via plug-ins.

3 Accident Scenarios in Use Case Modelling

Accidents, or losses, are considered early in the development of safety-critical
systems. An accident can be defined as “an undesired or unplanned event that
result in a loss, including loss of human life or human injury, property damage,
environmental pollution, mission loss, etc” [5]. In the water tank controller case
study, an accident (A1) that results in damage to the water tank is considered:

A1: Water level in tank exceeds the high (H) limit (physical damage to tank).

A Rigorous Approach to Combining Use Case Modelling 267

It is necessary for hazardous causal scenarios that lead to an accident to be
considered along side the proposed system behaviour in order to agree upon
appropriate design recommendations that may help mitigate them. We argue
that if the design intent, i.e. the expected behaviour of a system, can be captured
and conveyed via use cases (e.g. MaintainH), then it should be possible for the
unexpected scenarios that result in an accident to be conveyed in a similar
manner. To our knowledge, this has not yet been considered for use cases and
we have extended use case modelling to incorporate a use case type known as
accident case.

3.1 Accident Case

Leveson [5] describes the cause of an accident as follows:

Hazard (Action) + Environmental Conditions (State) ⇒ Accident (Event)

A hazard is an action that together with a particular set of worst-case environ-
mental conditions, constitutes an accident. What constitutes a hazard depends on
where the boundaries of the system are drawn. The use case model establishes the
actors and systemboundarydiagrammaticallywhichdetermineswhat thedesigner
has control over. If one expects the designer to create systems that eliminate or con-
trol hazards, then those hazards must be in their design space.

For the water tank controller, the designer has control over the action to
either increase or decrease the water level in the tank (albeit not directly). A
hazardous action would be for the water level to continue to increase in the tank
even after the water level has exceeded the high threshold (HT) limit and the
pump is inactive. The cause of the accident for A1 can be written as follows:

Water level increases + Water level above HT and Pump is inactive
⇒ Water level exceeds H limit (A1)

It is the role of the safety engineer to apply hazard analysis in order to
determine the hazardous causal scenarios that can lead to the hazardous action,
given the environmental conditions. We extend UML use cases with accident
cases to help capture these hazardous causal scenarios, while relating them to
use cases via a disrupt relationship. An accident case is defined as follows:

Definition 1 (Accident Case). An accident case is a sequence of actions that
a system or other entity can perform that result in an accident or loss to some
stakeholder if the sequence is allowed to complete.

The specification of an accident case contains the accident flow, where its
trigger captures the environmental condition for the cause of an accident, while
its final step captures the hazardous control action. The preceding steps capture
the hazardous causal scenario identified from hazard analysis. The accident case
may disrupt a use case by providing an alternate flow resulting in an accident if
allowed to complete.

268 R. Murali et al.

The use case model of the water tank system is updated to introduce the acci-
dent, A1, via an accident case ExceedH (Fig. 3a). ExceedH disrupts the MaintainH
use case by introducing the accident flow. The trigger of the accident flow cap-
tures the environmental condition where the water level is above HT and the
pump is inactive. The final step captures the hazardous control action of increas-
ing the water level, while the preceding step capture a causal scenario leading
to the hazardous action, i.e. where the motor remains switched on (Fig. 3b).

Controller

Water
Tank

Sensor
System

Pump

MaintainH

ExceedH

<<disrupt>>

(a) Use case diagram

Accident Case: ExceedH

Accident Flow:

Trigger: Water level above HT and Pump is
inactive.

F1. Motor remains switched on.

F2. Water level in the tank increases.

(b) Specification of ExceedH

Fig. 3. Use case model updated with accident case

3.2 Safety Guided Design

The purpose of the accident case is to provide a means to communicate appro-
priate design recommendations after hazard analysis, between system and safety
engineers. One of the aims of a safety engineer is to ensure that no single fault or
failure may result in an accident. In order to strengthen the safety of the water
tank system an additional component drain is introduced, as seen in Fig. 1. The
controller may activate the drain if it detects a fault where the motor remains
switched on (motor reading from the sensor system) even after the pump has
been deactivated. When the drain is activated, it opens an exit valve on the
water tank which drains the water level to the low threshold (LT) limit.

In use case modelling exceptional behaviour can be introduced to the system
via an extension use case [2]. An extension use case is used to describe how a
system can respond to when things do not go as expected. The structure of an
extension use case specification is the same as a regular use case, however it is
dependant on the base use case it extends. It places an extension-point between
the steps of the base use case, and if its trigger condition is true then its flow
will initiate. We introduce an attribute, return-after, to the extension-point that
captures a step of the use case it extends, which indicates where the extension
flow will return to, after it completes.

An extension use case MonitorPump is introduced in the use case model of
the water tank controller (see Fig. 4a). It extends the MaintainH use case by
mitigating the accident flow provided by ExceedH. An extension-point is placed
between steps F1 and F2 (as seen in Fig. 6a) of the accident flow. This captures
a relationship, mitigate, between the extension use case and accident case. The
mitigate relationship must ensure that if the accident case triggers then the

A Rigorous Approach to Combining Use Case Modelling 269

extension use case will prevent its accident flow from completing. The extension-
point captures a return-after step that returns the extension use case flow after
the final step of the use case MaintainH.

Controller

Water
Tank

Sensor
System

Pump

MaintainH

ExceedH

<<disrupt>>

Monitor
Pump <<mitigate>>

<<extend>>

Drain

(a) Use case diagram

Accident Case: ExceedH

...

F1. Pump motor remains switched on.

extension-point: MonitorPump [return-after: B4]

F2. Water level in the tank increases.

Extension Use Case: MonitorPump

Pre-condition: Pump is inactive and motor is on.

Post-condition: Water level at LT.

Extension Flow:

Trigger: Pump is inactive and motor is on.

E1. Controller activates the drain.

E2. Drain opens the exit valve.

E3. Water level in the tank is drained.

(b) ExceedH and MonitorPump

Fig. 4. Use case model updated with extension use case

4 A Formal Use Case Specification

We aim to perform formal verification of use cases by automatically transform-
ing its specification to Event-B. To do so, we first introduce a formal use case
specification to represent the informal use cases MaintainH (Fig. 2b), ExceedH
(Fig. 3b) and MonitorPump (Fig. 4). These are formally written with Event-
B’s mathematical language [1]. Fig. 5a shows a formal use case specification of
a generic use case, UC, where its pre-condition, post-condition, and invariant
describe constraints on the variables i. These variables i model a state space
associated to the domain of actor, A, who happens to plays a role in UC. Vari-
ables that are written in capital letters indicate that they are static, i.e. they
cannot be modified by the flow of the use case. The variables, along with their
types T (i) for each associated actor, are provided on the left-hand side of the for-
mal use case specification. This is done to help guide the designer when detailing
the right-hand side that contains the pre-, post-condition, invariant and flow.

The flow contain steps S1..Sn that capture actions that describe state tran-
sition to the variables of UC. The flow is expected to reveal more of the state
space, which we model by variables j. The variables i and j are kept distinct as
the steps S1 to Sn−1 capture actions, E(i, j, j′), that describe some state tran-
sitions to variables j. However, we work on the assumption that there will be
some step, Sn, that will capture the necessary action, E(i, i′, j), that modifies
the variables i in order to achieve the post-condition Q(i).

This template is applied to the use cases of the water tank controller. The
formal use case specification can be seen for MaintainH (Fig. 5b), ExceedH (Fig.
6a) and MonitorPump (Fig. 6b). In MaintainH, the actor, Water Tank, captures
the variable wl that denotes the water level in the tank. Its state space represents
a numerical value hence the type wl ∈ N. The pre-, post-condition and invariant

270 R. Murali et al.

(a) Generic use case UC (b) MaintainH

Fig. 5. Formal use case specification of UC and MaintainH

(a) ExceedH (b) MonitorPump

Fig. 6. Formal use case specification of ExceedH and MonitorPump

capture the necessary constraint on wl with respect to the limits of the water
tank H,HT,LT,L. The limits are written in capital to indicate that they are
static and they cannot be modified by the flow of the use case. The static variable
DEC is a discrete representation of the decrease in the water level by the water
tank. The flow of MaintainH reveals more of the state space which are modelled
by variables pump, senHT (sensor reading for high threshold limit) and motor.
They are of type BOOL, where TRUE indicates active (or on) while FALSE
indicate inactive (or off), i.e. when pump = TRUE denotes the pump is active.
The steps B1 to B3 modify these variable, while the final step B4 captures the
necessary modification to the variable wl that should achieve the post-condition.
The formal use case specification helps bring the benefit of precision and clarity
when detailing the use case while enabling the designer to relate informal and
formal notation.

The static variable DRN in ExceedH indicates the level at which the water
will be drained in the water tank. In this instance, the designer has set the drain
to the low threshold limit (LT). Once the use cases are specified formally, it is
possible to map their content to a formal model via refinement for purpose of
verification.

A Rigorous Approach to Combining Use Case Modelling 271

(a) Machine uc m0 (b) Events of refined machine uc m1

Fig. 7. Use case specification of UC mapped to an Event-B model

5 Mapping Use Cases to Event-B via Refinement

In this section we describe how the formal use case specification of UC is mapped
to an Event-B model. We then apply this mapping to the MaintainH use case of
the water tank controller. ExceedH and MonitorPump are also taken into account
as they are dependent on MaintainH by providing alternate scenarios to its flow.
The verification performed for the use cases from their corresponding Event-B
model is discussed in Sect. 6.

5.1 Generic Use Case

We consider the use case specification to have a contract and body. The contract
is composed of the pre-, post-condition and invariant, while the body contains
the flow. Our mapping introduces the contract of UC in an abstract Event-B
machine, uc m0, while the body is introduced by its refinement in uc m1. The
contract is the constraint on the body of the use case, and we use refinement to
relate them accordingly.

UC Contract: In uc m0, we introduce a key abstraction of what is to be
achieved by the use case without specifying how. UC’s pre- and post-condition
are modelled by an event, UC, as its guard and action, respectively (see Fig.
7a). This event introduces a state transition in the model, where given the pre-
condition it is possible for the post-condition to be achieved. The event does not
reveal how this is done and emphasises only on what is achieved. The variables
i associated to the pre- and post-condition are introduced. The invariants, T (i)
and I(i), ensure their constraints on i are maintained by event UC.

UC Body: The machine uc m0 is refined to uc m1, in order to introduce UC’s
flow which describes how the use case achieves and maintains its contract. Each
step of UC’s flow along with its trigger is mapped to a corresponding event in
um m1 (see Fig. 7b). The variables j (revealed by the flow) and its associated
types T (j) are introduced in this refinement. The flow is mediated between steps
S1 to Sn by an auxiliary variable s that act as a program counter. The event
UC Trigger initiates the use case’s flow (s := S1) given the trigger condition
R(i, j). The steps S1 to Sn−1 capture actions that modify the variables j, how-
ever the final step Sn capture the necessary modification on variables i and

272 R. Murali et al.

Fig. 8. Event-flow diagram of UC in Event-B

refines the abstract event UC. If the refinement is consistent, then the behaviour
described in the body complies with the constraints specified in the contract of
UC. Moreover, it allows to reason about the contract in the initial model while
temporarily ignoring how they are implemented till refinement.

To illustrate the execution we use an event-flow diagram (see Fig. 8). The event-
flow diagram is read from left-to-right, where each line is an execution of an event in
the formal model. The diagram helps to illustrate the refinement, where any event
in bold indicates it refines an event from the abstract model. However, if the name
of the concrete event is different from that of its abstract counter part then we show
the abstract event name in parenthesis, e.g. Sn (UC).

5.2 Water Tank Controller

The mapping from UC is applied to MaintainH to produce two layers of refinement
mh m0 andmh m1.TheMaintainHuse case has a disrupt relationshipwhich intro-
duces the accident flow of ExceedH in mh m1. This accident flow captures an
extension-point that introduces the extension use caseMonitorPump. Themapping
from UC is applied to MonitorPump to introduce its contract in mh m1 while its
body (containing the extension flow) is introduced via refinement in mh m2. The
event-flow diagram for the Event-B model of MaintainH can be seen in Fig. 10.

Initial Model: In mh m0, the contract of MaintainH use case is introduced. The
event MaintainH models the pre- and post-condition as its guard (wl > HT)
and action (wl : | wl′ ≥ L ∧ wl′ ≤ HT), respectively. The event captures
what the use case MaintainH achieves, by allowing the water level to be reduced
between the L and HT limits, if it exceeds the HT limit. The variable wl asso-
ciated with the pre- and post-condition is introduced along with its type wl ∈ N

and invariant wl ∈ L..H. The static variables (written in capitals) are captured
in a context component of the Event-B model which can be seen by the machine.

First Refinement: In mh m1, the flow of MaintainH is introduced which
describes how the water level is reduced when it exceeds the HT limit. The
trigger and steps B1 to B4 are mapped to events (as seen in machine mh m1
in Fig. 10). The variables pump, senHT and motor revealed by the flow are
introduced in this machine along with their types. The events B1 to B3 per-
form actions that modify these variables according to the behaviour specified
in the main flow. The final event B4 describes the decrease in the water level
(wl := wl − DEC) after the motor has been switched off. This final event B4
refines the abstract event MaintainH.

The accident flow of ExceedH is also introduced in this refinement due to the
disrupt relationship with MaintainH. The accident flow of ExceedH is modelled

A Rigorous Approach to Combining Use Case Modelling 273

by the events ExceedH Trigger, F1 and F2. The event ExceedH Trigger may
initiate the accident flow at any point during the flow of MaintainH, provided its
trigger condition is true. If the accident flow is allowed to terminate, then the
water level would exceed above the H limit which would violate the invariant
(wl ∈ L..H).

The extension-point between the steps F1 and F2 introduces the extension
use case MonitorPump by two events: MonitorPump and MonitorPump False.
An auxiliary boolean variable ext is used to insert both these events between
events F1 and F2 (see Fig. 9). The event MonitorPump captures the contract
of the extension use case. If the motor remains active while the pump has
been deactivated, then the water level is reduced to the low threshold (LT)
and the flow is returned after the final step B4 of the main flow. The event
MonitorPump refines the abstract event MaintainH, since the post-condition
describes a desired stated (wl = LT) on the abstract variable wl. On the other
hand, MonitorPump False captures the negation of the extension use case’s pre-
condition as its guards. Suppose if the extension use case’s precondition is not
true, then this event returns the flow back into the accident flow. This requires
the right fault condition to be specified by the extension use case in order to
prevent the accident flow from completing.

Event F1

when

flow = F1

then

motor := TRUE

flow := F2

ext := FALSE

Event MonitorPump

refines MaintainH

when

flow = F2

ext = FALSE

(pump = FALSE ∧
motor = TRUE)

then

wl : | wl’ = LT

flow = MaintainH Final

ext := TRUE

Event

MonitorPump False

when

‘ flow = F2

ext = FALSE

¬(pump = FALSE ∧
motor = TRUE)

then

flow := F2

ext := TRUE

Event F2

when

flow = F2

ext = TRUE

then

wl := wl + INC

Fig. 9. Extension-point inserted between events F1 and F2 of ExceedH in Event-B

Second Refinement: In the final refinement, we introduce the body of the
extension use case MonitorPump. The body reveals more of the system by intro-
ducing the variables drain and valve. The flow of MonitorPump is mapped to
events MonitorPump Trigger, E1, E2 and E3. It introduces the scenario of the
controller activating the drain which opens an exit valve on the water tank. This
is done to reduce the water level if the controller detects the motor remains
active even after the pump being deactivated. The final event E3 drains the
water level in the tank which refines the abstract event MonitorPump.

6 Verification and Tool Support

6.1 Generic Use Case

UCContract: The main mathematical judgement in the initial model of the use
case is to determine whether the invariant, I(i), is guaranteed to be maintained by

274 R. Murali et al.

Fig. 10. Event-flow diagram for MaintainH’s corresponding Event-B model

what is achieved, Q(i, i′), by event UC. Proving this ensures that the flow intro-
duced by refinement will be required to meet the contract of UC.
UC Body: The model checks whether UC’s flow achieves the post-condition
Q(i), given the pre-condition P (i). We are required to prove that the pre-
condition must be maintained before the execution of step S1 to Sn−1. The
following invariant is automatically introduced to help prove this:

∀s · s ∈ {S1, .., Sn} ∧ flow = s ⇒ P (i) (1)

The event Sn refines the abstract event UC. This refinement must prove that
the behaviour of the abstract event, i.e. what the use case achieves, corresponds
to the behaviour described in its flow.

Mitigate: For any accident flow introduced via the disrupt relationship, there is
expected to be an extension-point between its steps. As discussed in Sect. 3, the
extension-point in an accident flow is required to ensure the steps after its point
of insertion can never be executed. In Event-B, we introduce invariants that
negate the guards of the events that model these steps. This allows the model to
automatically prove that the steps can never be enabled, i.e. the accident case
will be unable to complete.

6.2 Water Tank Controller

Initial Model: In the initial model we are able prove what is achieved by the
MaintainH use case’s post-condition, i.e. the reduction of water level, is within
constraints of its invariant wl ∈ L..H. The following proof is generated by the
model and automatically proved:

wl′ ≥ L ∧ wl′ ≤ HT � wl′ ∈ L..H

First Refinement: The model is refined to introduce the flow of MaintainH
which ensures that the contract introduced in the abstract model is preserved.

A Rigorous Approach to Combining Use Case Modelling 275

The invariant (1) is applied to MaintainH to produce the following invariant:

∀s · s ∈ {B1, B2, B3, B4, F1, F2} ∧ flow = s ⇒ wl > HT

This is used to ensure the pre-condition is true before the flow can execute. The
event B4 refines the abstract event MaintainH. A proof obligation is generated
to ensure the action of event B4 is maintained between L and HT limits, given
that the water level is above HT . The model produces the following proof:

flow = B4 � wl − DEC ≥ L ∧ wl − DEC ≤ HT

The event MonitorPump, which captures the contract of the extension use
case, also refines the abstract event MaintainH. The model checks what the
extension use case achieves, i.e. the water level reduced to LT , corresponds to
what is achieved by event MaintainH of the abstract model. In addition, the
model proves that the accident flow of ExceedH is not allowed to complete. The
guards of the events after the extension-point, MonitorPump False, and F2, are
negated and introduced as invariants (3) and (2) respectively.

¬(flow = F2 ∧ ext = FALSE ∧ ¬(pump = FALSE ∧ motor = TRUE)) (2)

The model is able to prove these invariants hold as the accident flow intro-
duces the necessary conditions for the event, MonitorPump to execute instead
of MonitorPump False.

¬(flow = F2 ∧ ext = TRUE) (3)

Second Refinement: The model is able prove that the extension use case’s
flow which drains the water level correspond to MaintainH, as the drain is set
to the LT limit of the water tank (DRN = LT) which is between L and HT .

6.3 UC-B Tool Support

Fig. 11. UC-B tool on Rodin

Our approach is currently being
implemented as a tool UC-B3

(Use Case Event-B) for the Rodin
platform (Fig. 11). It supports
the authoring and management of
UML use cases with the inclu-
sion of accident cases. It allows
the use case specifications to be
detailed with Event-B’s mathe-
matical language and provides
support for the automatic gen-
eration of Event-B models from
a target use case. The generated
3 Tool information can be found at https://sites.google.com/site/rajivmkp/uc-b

https://sites.google.com/site/rajivmkp/uc-b

276 R. Murali et al.

Event-B models are immediately subjected Event-B’s verification tools (syntax
checks and provers) that run automatically providing an immediate display of
problems. Our aim is for inconsistencies in the Event-B models to reflected back
to their parent use case model. We have considered two other case studies, anti-
lock braking system (ABS) and sense and avoid (SAA), that fit the same control
pattern as the water tank controller.

7 Related Work

While our focus is on safety, the majority of work on representing negative
scenarios within the context of use cases has targeted security issues. Ellison
et al. [6] introduce intruders and intrusion scenarios in their case study as
part of a large-scale distributed health care system. The intrusion scenario is
similar to an accident flow, but they do not provide a diagrammatic notation, a
specification, or guidelines for what constitutes an intrusion scenario. McDermott
and Fox [7] propose abuse cases which focus on security requirements and their
relation to design and testing. They capture the abuse cases and regular use cases
in separate use case diagrams. This differs from our approach where we provide
relationships between accident cases and regular use cases in the same use case
diagram. Aside from UML use cases, Potts [8] introduces obstacles for goal-
oriented requirements engineering (KAOS), while Harel and Marrelly [9] extend
Live Sequence Chart (LSC) with forbidden elements (messages and condition).

Several groups have investigated a rigorous approach to capturing UML use
cases [10–12]. In comparison, the novelty of our approach comes from the use
of refinement to introduce key abstractions that are captured naturally by the
structure of the use case specification and its relationship to other use cases. In
[10], Soussa and Russo provide a mapping from the flow of a use case to opera-
tions in B. They rely upon the flow to be written in accordance to a transaction
pattern between the actor and the system as follows: (1) an actors request action;
(2) a system data validation action; (3) a system expletive action; and finally (4)
a system response action. We consider this pattern would require the designer
to focus more on the solution rather than understanding the problem domain,
which steps away from some of the benefits and simplicity of using UML use
cases. In [11], Whittle presents a precise notation for specifying use cases based
on three levels of abstraction: use case charts, scenario charts and interaction
diagrams. The motivation for this approach is similar to ours which also consid-
ers the use of negative scenarios. However, we have focused on adding rigour to
the textual specification of use cases which is commonly used in industry.

Requirements engineering approaches such as Problem Frames[13] and
KAOS[14] have been considered for formal analysis. We have deliberately focused
on UML use cases in order to reach a broader audience.

8 Conclusion and Future Work

The work presented here is part of an on-going effort to help in the indus-
trial adoption of formal methods and of a more specific effort to consider safety

A Rigorous Approach to Combining Use Case Modelling 277

concerns. We have extended UML use cases to consider potential accidents via
the use of accident cases, that is aimed to improve communication between sys-
tem and safety engineers. For the purpose of formal analysis of use cases, we
have provided a formal use case specification to detail use cases with Event-B’s
mathematical language. From this, we use the structure and relationship of use
cases to derive a natural abstraction when mapping them to an Event-B model.
Proof automation is possible which helps identify inconsistencies and defects in
the formal model that can be mapped back onto the use case model. Our tool
implementation supports the authoring and management of UML use cases on
the Rodin, while enabling automatic generation of Event-B models.

For future work, we are investigating links between the hazard analysis tech-
niques with our notion of an accident case. Our tool is currently being extended
to support traceability between the generated Event-B model and its parent use
case. Patterns of inconsistencies identified by proofs could be used to meaning-
fully guide an while detailing use cases.

Acknowledgments. The first author was supported by an Industrial CASE stu-
dentship funded by the EPSRC and BAE Systems (EP/J501992), while the second
and third authors was partially supported by EPSRC grant EP/J001058. We also
would like to thank Benjamin Gorry, Rod Buchanan and Paul Marsland from BAE
Systems.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. University
Press, Cambridge (2010)

2. Booch, G., Rumbaugh, J., Jacobson, I.: Unified Modeling Language. Addison-
Wesley (1997)

3. Arlow, J., Neustadt, I.: UML 2 and the Unified Process: Practical Object-Oriented
Analysis and Design. Pearson Education (2005)

4. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
An open toolset for modelling and reasoning in event-b. International Journal on
Software Tools for Technology Transfer 12(6), 447–466 (2010)

5. Leveson, N.: Engineering a Safer World: Systems Thinking Applied to Safety. Mit
Press (2011)

6. Ellison, R.J., Linger, R.C., Longstaff, T., Mead, N.R.: Survivable Network System
Analysis: A Case Study. IEEE Software 16(4), 70–77 (1999)

7. McDermott, J., Fox, C.: Using abuse case models for security requirements analy-
sis. In: (ACSAC 1999) Proceedings 15th Annual Computer Security Applications
Conference, pp. 55–64. IEEE (1999)

8. Potts, C.: Using schematic scenarios to understand user needs. In: Proceedings of
the 1st Conference on Designing Interactive Systems: Processes, Practices, Meth-
ods, and Techniques, pp. 247–256. ACM (1995)

9. Harel, D., Marelly, R.: Come, Let’s Play: Scenario-Based Programming using LSCs
and the Play-Engine. Springer Science and Business Media, Vol. 1 (2003)

10. Russo Jr., A.G., de Sousa, T.: Starting B specifications from use cases. In: Abstract
State Machines (ASM), Alloy, B and Z Conference (2010)

278 R. Murali et al.

11. Whittle, J.: Precise Specification of Use Case Scenarios. In: Dwyer, M.B., Lopes,
A. (eds.) FASE 2007. LNCS, vol. 4422, pp. 170–184. Springer, Heidelberg (2007)

12. Klimek, R., Szwed, P.: Formal Analysis of Use Case Diagrams. Computer Science,
115–131 (2010)

13. Jackson, M.: Problem Frames: Analysing and Structuring Software Development
Problems. Addison-Wesley (2001)

14. Ponsard, C., Dieul, E.: From Requirements Models to Formal Specifications in B.
ReMo2V (2006)

Are We There Yet? Determining the Adequacy
of Formalized Requirements and Test Suites

Anitha Murugesan1(B), Michael W. Whalen1, Neha Rungta2,
Oksana Tkachuk2, Suzette Person3, Mats P.E. Heimdahl1, and Dongjiang You1

1 Department of Computer Science and Engineering, University of Minnesota,
200 Union Street, Minneapolis, MN 55455, USA
{anitha,whalen,heimdahl,djyou}@cs.umn.edu
2 NASA Ames Research Center, Mountain, USA

{neha.s.rungta,oksana.tkachuk}@nasa.gov
3 NASA Langley Research Center, Hampton, USA

suzette.person@nasa.gov

Abstract. Structural coverage metrics have traditionally categorized
code as either covered or uncovered. Recent work presents a stronger
notion of coverage, checked coverage, which counts only statements whose
execution contributes to an outcome checked by an oracle. While this
notion of coverage addresses the adequacy of the oracle, for Model-Based
Development of safety critical systems, it is still not enough; we are also
interested in how much of the oracle is covered, and whether the val-
ues of program variables are masked when the oracle is evaluated. Such
information can help system engineers identify missing requirements as
well as missing test cases. In this work, we combine results from checked
coverage with results from requirements coverage to help provide insight
to engineers as to whether the requirements or the test suite need to
be improved. We implement a dynamic backward slicing technique and
evaluate it on several systems developed in Simulink. The results of our
preliminary study show that even for systems with comprehensive test
suites and good sets of requirements, our approach can identify cases
where more tests or more requirements are needed to improve coverage
numbers.

1 Introduction

Model-Based Development (MBD) refers to the use of domain-specific modeling
notations to create models of a desired system early in the development lifecycle.
These models can be executed on the desktop, analyzed for desired behaviors,
and then used to automatically generate code and test cases. Also known as
correct-by-construction development, the emphasis in model-based development
is on the engineering effort invested in the early lifecycle activities of modeling,
simulation, and analysis. This reduces development costs by finding defects early

This work has been partially supported by NSF grants CNS-0931931 and CNS-
1035715.

c© Springer International Publishing Switzerland 2015
K. Havelund et al. (Eds.): NFM 2015, LNCS 9058, pp. 279–294, 2015.
DOI: 10.1007/978-3-319-17524-9 20

280 A. Murugesan et al.

in the lifecycle, avoiding rework that is necessary when errors are discovered dur-
ing integration testing, and by automating the late life-cycle activities of coding
and test case generation. In this way, Model-Based Development significantly
reduces costs while also improving quality. There are several commercial MBD
tools, including Simulink/Stateflow [19], SCADE [10], IBM Rhapsody [1] and
IBM Rational Statemate [2].

An important part of MBD is automated test generation and execution.
Tools such as Reactis [26], the MathWorks Verification and Validation plug-in
for Simulink, and the IBM Rhapsody Automatic Test Generation add-on, as
well as other tools, support automated test generation from models. These tools
enable generation of structural coverage tests up to a high degree of rigor, e.g.,
tests satisfying the MC/DC coverage metric. In the domain of critical systems
– particularly in avionics – demonstrating structural coverage is required for
certification [27].

In principle, automated test generation represents a success for software engi-
neering research: a mandatory – and potentially arduous – engineering task
has been automated. However, several studies have raised questions about the
effectiveness of automated test generation towards a specific structural coverage
metric (e.g., [12,14,31]), in some cases finding these tests less effective than ran-
domly generated tests of the same length in terms of fault-finding capabilities.
This often has to do with the observability capabilities of the test oracle, which
determines whether the test passes or fails. In many cases, the code structure
that was examined has no measurable effect on the test outcome.

In recent work, a metric proposed by Schuler and Zeller in [29,30] addresses
observability, but does so in a post-priori way: given a test suite and a set
of requirements specified as assertions, it uses dynamic backward slicing from
the requirements (assertions) to determine the set of program statements that
affect the evaluation of the requirement. They call this metric checked statement
coverage, because it only considers the statements that are checked (observed).
They note that this metric judges the quality of the test oracle — a program
with no assertions will have no coverage. Therefore, given any test suite, it is
possible to increase coverage by adding additional oracles (requirements) to the
suite. Our hypothesis is that this metric can be leveraged to better assess the
quality of an automated testing process in MBD where formalized requirements
serve as oracles for auto-generated tests [28].

In this work, we combine the results of checked coverage with the results of
requirements coverage to determine for a given model whether its requirements
and test suite are adequate. While the work in [30] focuses on whether or not
the oracles (requirements) are adequate, we are interested in both the adequacy
of the test suite and the requirements encoded as oracles: if checked coverage is
low then either the requirements or the tests maybe incomplete. Specifically, we
add to this notion of coverage by calculating checked coverage based on dynamic
backward slicing as well as MC/DC masking information. Finally, we map the
different forms of code coverage back to the model, and report the coverage of

Determining the Adequacy of Formalized Requirements and Test Suites 281

Fig. 1. Hierarchical state machine model of the ALARM subsystem

the requirements, in order to provide information to the system engineers about
sources of incompleteness. Thus, the contributions of the paper are:

– An approach using checked, unchecked, and requirements coverage informa-
tion to assess the adequacy of both test suites and requirements.

– An approach to calculate checked coverage based on backward dynamic slic-
ing and MC/DC masking information, which leads to more precise checked
coverage results than dynamic backward slicing alone.

– A preliminary evaluation of our technique on a set of examples that use
Simulink as part of the MBD approach. In addition to computing coverage
for the auto-generated code, we also map the results back to the models.

Our experience shows that even for case studies with comprehensive test
suites and good sets of requirements, our approach can identify cases where
more tests or more requirements are needed to improve the coverage numbers.

2 Motivation

Consider the control software for an infusion pump, a medical device that is typ-
ically used to infuse liquid drugs into a patient’s body in a controlled fashion. An
important subsystem of the controller is the ALARM subsystem shown in Fig. 1.
The model for the system [22] was developed using MathWorks Simulink/State-
flow tool [19]. The “ALARM” subsystem is responsible for monitoring hazards
(CheckAlarm state machine) with different levels of severity in the system, and
alerting the clinicians (Audio and Visual state machines) to take the appropriate
action when such conditions occur. We auto-generate the source code from the
Simulink model, formalize the requirements as boolean expressions, and auto-
matically generate the test cases from the model.

282 A. Murugesan et al.

1: if(localB->ALARM OUT Hazard >= 3){
2: if(localB->Disable Audio > 1){
3: localB->ALARM OUT Audio Command = 0;
4: localB->ALARM OUT Audio Disabled = 1;
5: if(localDW->time minutes > 3){
6: localB->Disable Audio = 0;
7: }
8: }
9: }else . . .

Fig. 2. Code snippet from the ALARM system’s audio notification functionality

To motivate the utility of our proposed approach we use a snippet of auto-
generated code from the Audio state machine in Fig. 1. The code is shown
in Fig. 2. It raises an aural alert when a certain level of hazard is detected and
the audio has not been disabled by the user. Assume the following oracle encodes
a requirement of the system:

Hazard >= 3 ∧ Disable Audio = 0 =⇒ Audio Command = 1

Suppose we execute a test case, t, that covers program statements one to
seven in Fig. 2 and the values of the variables used in the oracle are: Hazard := 3
and Disable Audio := 2. The corresponding checked coverage for the test does
not contain the program statement at line 4 in Fig. 2; the Audio Disabled variable
defined at line 4 does not either directly or transitively impact the values used in
the oracle. This example demonstrates that the checked coverage is lower than
the set of covered statements.

The notion of checked coverage, however, does not take into account which
parts of the oracle were covered and whether the values of certain program
variables are masked when the oracle is evaluated. The values for variables
Hazard := 3 and Disable Audio := 2 cause the antecedent in the requirement
(Hazard >= 3 ∧ Disable Audio = 0) to be false; hence, the consequent of the
requirement (Audio Command = 1) is not evaluated. Even though the program
statement at line 3 in Fig. 2 writes to the variable Audio Command used in
the oracle, the test, t, does not evaluate Audio Command in the oracle. We
can leverage this information to define a more precise checked coverage measure
by marking line 3 in Fig. 2 as unchecked. In the next section we present an
overview of how we measure requirements coverage along with checked coverage
to improve upon the checked coverage measure.

3 Methodology

There are three inputs to our technique: the model of the system being analyzed,
a set of test cases (manual or auto-generated) that exercise the model, and a set
of formalized requirements of the model as shown in Fig. 3. The requirements are

Determining the Adequacy of Formalized Requirements and Test Suites 283

Fig. 3. Test Case Coverage Classification Approach Overview

transformed into assertions over program variables. We automatically generate
the code from the model and execute the tests on the auto-generated code. The
formalized requirements are used as a slicing criteria for program execution traces
generated by the various tests as shown in Fig. 3. A dynamic backward slice is
used to extract the set of program statements that operate on variables whose
values are checked in the assertions. This is termed as checked coverage while all
other executed statements are categorized as unchecked coverage. In addition to
the code coverage we also measure the coverage of the requirements. Checked,
unchecked, and uncovered code coverage are mapped back to the model to help
the system engineers determine incompleteness in the requirements, tests, or the
model.

We present an overview of the algorithm to partition coverage into checked
coverage versus unchecked coverage in Fig. 4. The algorithm takes as input an
auto-generated program M , the test suite T for exercising the behaviors of the
program, and the set of assertions that encode the formalized requirements. The
sets checked and unchecked are initialized as empty. We run each test, t, in
the test suite T on the program and generate the set of program statements
〈l0, . . . , ln〉 executed by the test. Next, we generate a dynamic slice of the trace
using each assertion a as the slicing criteria. In the case that a program statement
l is in the dynamic slice then it is added to the checked set; otherwise it is added
to the unchecked set.

Dynamic slicing is used to compute the basic form of checked coverage. A
dynamic slice of an execution trace with respect to an assertion extracts the set of
program statements in the trace that may impact the evaluation of the assertion.

284 A. Murugesan et al.

/ ∗ checked := ∅, unchecked := ∅ ∗ /

procedure initialize(M,T,A)
1: for each t ∈ T ∧ a ∈ A do
2: 〈l0, . . . , ln〉 := execute(P, t)
3: for each i ∈ [0, n] do
4: if li ∈ dynamicBackwardSlice(〈l0, . . . , ln〉, a) then
5: checked := checked ∪ {li}
6: else
7: unchecked := unchecked ∪ {li}
8: unchecked := unchecked \ checked

Fig. 4. An algorithm to partition checked and unchecked coverage

Standard flow analyses are used to generate the slice based on the assertion. Any
program statements that read or write variables used in the assertion, as well as
program statements computed by transitive closure of the reads and writes, are
part of the dynamic slice. Suppose, boolean variables x and y are used in the
assertion; all program statements that read and write program variables that
may be used directly or transitively by x and y are added to the dynamic slice.
This notion of checked coverage does not however take into account which parts
of the assertion are covered and whether certain values are masked when the
assertion is evaluated. In the rest of the section we first present how we measure
the coverage of the assertions and then leverage the information to improve the
precision of the checked coverage.

3.1 Coverage of Requirements

In this work we use the Modified Decision/Condition Coverage (MC/DC) metric
to evaluate the assertion coverage for a given test suite. MC/DC is commonly
used to evaluate the coverage of requirements in safety-critical systems. MC/DC
coverage of a requirement encoded as an assertion requires that each condition
in the assertion takes on all possible outcomes at least once and each condition is
shown to independently affect the assertion’s outcome. Note that a condition is a
boolean expression that contains no boolean operators. We use the masking form
of MC/DC to determine the independence of the conditions in the assertion. A
condition is masked if changing its value does not affect the outcome of the
assertion. For example, when evaluating assert x and y, in the case when x
is false, the value of y is masked. We need to satisfy three possible coverage
obligations:

1. x ∧ y
2. x ∧ ¬y
3. ¬x ∧ y

In order to check the MC/DC coverage of the assertion x and y, we replace the
assertion in A with three new assertions synthesized from the expressions shown

Determining the Adequacy of Formalized Requirements and Test Suites 285

above. If there are test cases in T that can satisfy all three assertions, then we
report 100% MC/DC coverage of the assertion. But if only one is satisfied by the
test, then we report 33% coverage of the assertion. We believe that measuring
the MC/DC coverage of the requirements for a given test suite enables us to
better characterize the quality of the test suite with respect to a given set of
requirements.

3.2 A More Precise Dynamic Backward Slice

We propose a more precise dynamic backward slice that takes into account which
parts of the assertion are covered and whether certain values of program variables
are not used when the assertion is evaluated. We leverage the masking informa-
tion within an assertion for a given test to generate a more precise dynamic
backward slice. As stated earlier, a condition is masked if changing its value
cannot affect the outcome of a decision. So in the assertion, x and y, if the
value for x is false, the value of y is masked. In this more precise version of a
dynamic slice we first extract the variables in the assertion that are not masked,
then get all of the program statements in the execution trace that impact them.
Therefore, instead of computing the slice based on both x and y, we generate
a slice using x alone. Even though there are values of y being written to in the
execution trace, since they are not being used in the evaluation of the assertion,
they are not added to the checked set. We believe this will reduce the size of the
checked set and provide a more precise characterization of parts of the program
that are being checked in the assertions.

3.3 Mapping Back to the Model

In the final phase of our technique, for a given test suite, we report the following
to the system engineers: (i) the precise checked coverage, (ii) the unchecked
coverage, (iii) the uncovered coverage, and the (iv) coverage of the requirements.
Note that we map the coverage of the code onto the model. We believe that these
coverage measures help us bridge the gap between requirements, tests, and the
model as discussed in [28]. The relationship between the various types of coverage
can potentially help to determine the source of incompleteness in either tests,
requirements, or the model. Low coverage of the requirements and high checked
coverage could indicate missing functionality in the model. Low coverage of the
requirements coupled with low checked coverage could be indicative of missing
tests and/or missing requirements. Finally, high coverage of requirements along
with low checked coverage could be indicative of missing requirements.

4 Evaluation

In this section we describe the evaluation of our approach on three systems.
We first give a brief overview of the example systems, then we describe the
experimental set up followed by the evaluation of the approach on the systems.

286 A. Murugesan et al.

4.1 Case Examples

We consider three different systems: a medical device controller, an avionics
system controller and a general appliance controller. Table 1 shows the specifics
of the case examples considered. Following this section, we refer to each system
and its test cases using the ID from the first column in Table 1. The second
column gives the number of auto-generated source lines of code (LOC); column
three presents the number of requirements available for each test suite; column
4 describes the source of the test suites. The last column shows the number of
tests in each test suite.

Table 1. Case Example Artifacts Synopsis

ID System # LOC # Reqs Test Suite : Source # Tests

ALM 1 ALARM 1950 18 Set 1 : Manual 16

ALM 2 ALARM 1950 18 Set 2 : jKind 106

DCK 1 DOCKING 2240 3 Set 1 : Reactis 32

DCK 2 DOCKING 2240 3 Set 2 : SDV 69

MCR 1 MICROWAVE 537 11 Set 1 : Reactis 39

MCR 2 MICROWAVE 537 11 Set 2 : Reactis 23

Table 2. Case Example’s Test Case Coverage Metrics

ID Statement Condition Requirements

ALM 1 43.65% 31.93% 65.71%

ALM 2 95.05% 95.80% 84.84%

DCK 1 39.43% 35.29% 26.66%

DCK 2 77.37% 78.89% 73.32%

MCR 1 79.07% 93.75% 60.86%

MCR 2 87.21% 100.00% 80.42%

The first system considered is the ALARM subsystem discussed in Section 2.
The model of the ALARM subsystem was developed as a multi-level hierarchical
state machine using the Mathworks Simulink/Stateflow tool. The source code of
this model was automatically generated using MathWorks Simulink Coder [20].
The system has 18 formally verified [22] safety critical requirements. For testing
the ALARM system, we created manual test cases using the requirements as a
reference and also generated a test suite with high structural coverage (MC/DC)
using the jKind model checker [13].

The second example we consider is a docking approach system. This system
specifies the mechanism for the docking of a space vehicle. This system was also
developed using Mathworks Simulink/Stateflow tool and its source code was
generated using Simulink Coder. A major issue with this system is that even

Determining the Adequacy of Formalized Requirements and Test Suites 287

though it is elaborately modeled, there are only a few requirements specified.
Although we know that this system lacks a complete set of requirements, our goal
was to analyze the adequacy of the sparse requirements for the test cases. For
the Docking example, we generated a random test suite using the Reactis tool
and another test suite with high structural coverage using MathWorks Simulink
Design Verifier (SDV) [21] .

The third case example is a microwave’s controller system used in our pre-
vious work [28], that was also modeled as hierarchical state machines using the
MathWorks Stateflow notation. The microwave controller implements the usual
functions of a regular microwave. We generated code for the microwave system
using the Gryphon Tool Suite [34]. The advantage with the microwave model is
that it has a comprehensive set of requirements. The test cases for microwave
were generated using Reactis.

4.2 Tools and Experiment Set up

We use a combination of commercially available and free open source tools to
implement our approach. As previously mentioned, the test suites and the source
code are generated using various sources and tools in order to generate a variety
of artifacts and determine the efficacy of the different test suites based on our
metrics. However, assessing the test suite generation techniques and tools is
not the intent of this experiment. We used the gcov [17] tool to measure the
statement and condition coverage of the test suites. In order to measure coverage
of requirements we generate MC/DC obligations and replace the assertions with
these obligations. The total number of obligations that are satisfied by the test
suite are recorded and reported.

To generate dynamic backward slices, we use the Frama-C tool [7], an open
source tool for analysis of C programs. Although Frama-C is primarily a static
analysis tool, it provides the ability to construct dynamic backward slices by
embedding the test vector into the program and using the -slevel slicing option.
The Frama-C slicing plugin provides an implementation of dependence-based
backward slicing. The Frama-C slicing plugin requires the slicing criterion to be
expressed using ACSL [4], a formal specification language used for specifying
behavioral properties of C source code. The ACSL notation allows C like syntax
for specifying slicing criteria, which makes it straightforward to specify require-
ments as logical statements. For example, the slicing criteria for the ALARM’s
oracle described in Section 2 is translated into an expression for slicing as shown
below:

//@slice pragma expr

(!(Hazard >= 3 and Disable_Audio == 1) || (Audio_Command == 0));

The slice is obtained by executing each test case in the test suite and extract-
ing the dynamic backward slice based on the slicing criterion (requirements).
While executing the test, the execution trace is also obtained. Once all slices
and execution traces are obtained, the slices are compared with the execution

288 A. Murugesan et al.

Table 3. Coverage Metrics Partitioned based on Slicing

Slicing Precise Slicing

ID Checked Unchecked Checked Unchecked Uncovered

ALM 1 36.50% 8.65% 20.01% 23.64% 56.35%

ALM 2 75.44% 19.61% 54.35% 38.70 % 4.95%

DCK 1 23.91% 15.52% 5.49% 33.96% 60.57%

DCK 2 35.63% 41.47% 16.06% 61.31% 22.63%

MCR 1 76.70% 2.37% 56.25% 22.82% 20.93%

MCR 2 73.86 % 13.35% 65.34% 21.87% 12.79%

Table 4. Data Summary

ID Covered Requirements Checked Improve, Add

ALM 1 43.65% 65.71% 20.01% test cases, new reqs

ALM 2 95.05% 84.84% 54.35% new reqs

DCK 1 39.43% 26.66% 5.49% all

DCK 2 77.37% 73.32% 16.06% new reqs

MCR 1 79.07% 60.86% 56.25% test cases

MCR 2 87.21% 80.42% 65.34% new reqs

trace to identify the checked and unchecked covered lines of code. Similarly by
comparing the source code and the execution trace, the uncovered lines of code
are obtained.

4.3 Analysis of the Results

Table 2 shows the structural and requirements coverage metrics for the artifacts
for a given test suite. The statement and condition coverage for ALM 1 and
DCK 1 and the requirements coverage for DCK 1 is less than 50%. The rest of
the coverage numbers are over 50%. The statement and condition coverage of
ALM 2 is slightly above 95% and the requirements coverage is 84%. Similarly
MCR 2 has statement and condition coverage of 87% and 100% respectively and
requirements coverage of 80%. These are fairly reasonable values for traditional
coverage metrics for this set of artifacts.

Table 3 shows the results obtained using the dynamic slicing based approaches.
The first two columns show the checked and unchecked coverage values using the
dynamic backward slicing technique as proposed by [29,30], whereas the next two
columns show the checked and unchecked coverage values using the more precise
dynamic backward slicing approach presented in this paper. The results demon-
strate that, overall, the checked coverage in Table 3 is lower compared to the set
of covered statements shown in Table 2. Recall that the total number of checked
statements plus the unchecked statements gives the covered statements. Table 3
shows that the unchecked coverage ranges from 2.37% for MCR 1 to 41.47% for
DCK 2.Using themore precise dynamic slicing techniqueproposed in thiswork the

Determining the Adequacy of Formalized Requirements and Test Suites 289

checked coverage decreases even further while the unchecked coverage increases.
The MCR 2 artifact has a reasonably high statement coverage of 87.21% as shown
in Table 3. coverage In the MCR 1 example, the checked coverage using the slicing
approachdecreases from76.70% in columnone to 56.25% in column three ofTable 3
when using precise slicing, because the tests are not able to exercise most variables
in the requirements. The low requirements coverage of 60% as shown in Table 2
provides evidence for the same. In MCR 2, however, when more variables of the
requirements are exercised by the test cases (indicated by requirements coverage
of 80.42%) the decrease in the checked coverage is smaller—73.86% to 65.34%.

The results for the examples in this section provide evidence towards our
hypothesis that taking into account the part of the requirements or oracle that
are covered (not masked) by the tests can provide us with a stronger notion of
structural coverage with respect to the requirements.

5 Discussion

We summarize the results of the empirical evaluation and provide some rec-
ommendations for improvement based on the data. Table 4 presents the three
coverage metrics (i) covered, (ii) requirements, and (iii) checked, as well as the
recommendations for which artifacts should be further augmented in order to
improve the coverage of the code and the requirements. For example, ALM 1
has reasonable requirements coverage of 65.71% but fairly low covered program
statements (43.65%) and even lower precise checked coverage (20.01%). Our rec-
ommendation is to first augment the test suite with tests that exercise additional
parts of the code, then try to identify missing requirements, and finally measure
the requirements coverage with the augmented test cases. DCK 1 has fairly low
coverage values for all metrics, suggesting that all artifacts need to be improved.
This is not surprising since there are only three requirements for the model. The
ALM 2, DCK 2, MCR 2 examples have reasonable statement and requirements
coverage but low precise checked coverage. This suggests that the set of require-
ments may be incomplete. MCR 1 also has reasonable statement coverage but
the coverage of existing requirements needs to be improved prior to identifying
the missing requirements.

We demonstrate using an example of how the coverage information can be
used by system engineers to detect potential causes of missing requirements.
The ALARM system had 19.6% unchecked coverage (see Table 3). A snippet
of code from the unchecked lines of code is shown in Figure 5. The variables
used in these lines are then traced back to their source blocks in the model, as
shown in Figure 5. Using this information, a system engineer might want to add
a requirement that would check if the system has been IDLE for more than a
certain amount of time.

This overall approach can be iteratively applied until we achieve the desired
coverage metrics. Although achieving 100% for all the coverage criteria is ideal,
it may not be practical. However, we believe that the metrics presented in the
paper help identify the specific inadequacies in the test suite, that can be ana-
lyzed by the stakeholders to determine if and how they should be addressed. In

290 A. Murugesan et al.

switch (ALARM_Functional_DW.is_IsIdleTimeExceeded)
.....
case ALARM_Functional_IN_No:

else if (ALARM_Functional_B.Current_System_Mode == 1)
ALARM_Functional_DW.idletimer = 0;
ALARM_Functional_DW.idletimer++;

...

Fig. 5. Tracing unchecked lines of source code in the ALARM model

future work, we would like to assess the fault finding capability improvement by
improving these artifacts.

6 Related Work

Our work is built on the checked-coverage work of Schuler and Zeller [29,30],
which is in turn built upon dynamic slicing techniques [15] which follow from
Weiser’s original slicing work [32]. Checked coverage is in the category of observ-
ability testing, in which a metric tries to ensure that the code structure under
test can be observed by the oracle. Often, the oracle is simply the outputs of the
system under test. Observability testing has been a focus in testing of hardware
logic circuits. The observability-based code coverage metric (OCCOM) attaches
tags to internal states in a circuit and the propagation of tags is used to predict
the actual propagation of errors (corrupted state) [9,11]. A variable is tagged
when there is a possible change in the value of the variable due to a fault. The
observability coverage can be used to determine whether erroneous effects that
are activated by the inputs can be observed at the outputs.

For software, dynamic taint analysis, or dynamic information flow analysis,
marks and tracks data in a program at runtime in order to determine observ-
ability. This technique has been used in security as well as software testing and
debugging [6,18]. Taint propagation occurs in both explicit information flow
(i.e., data dependencies) and implicit information flow (control dependencies).
Although the way in which markings are combined varies based on the appli-
cation, the default behavior is to union them [6]. Thus, dynamic taint analysis
is conservative and does not consider masking. More accurate techniques for

Determining the Adequacy of Formalized Requirements and Test Suites 291

information flow modeling, such as [35], define path conditions to prove non-
interference, that is, the non-observability of a variable or expression on a partic-
ular output. These information flow-based techniques have been used for testing
in a metric called Observable MC/DC [33]; this work is very similar to checked
coverage except that markings are forward propagated from observation points
towards an oracle rather than (in checked coverage) back-propagated from the
oracle towards observation points.

Mutation testing [3,8,23] is also concerned with quality of both tests and
oracles. In mutation testing, one creates a set of programs that contain some
small modification (mutation) of the original program and determines whether
the discrepancy is detected (killed) by the test suite / oracle pair. Mutation test-
ing suffers somewhat from the problem of equivalent mutants, which are program
modifications that do not change the observable behavior of the program.

For requirements testing, much of the work has focused on requirements spec-
ified in temporal logic. In [24,36], a coverage metric called Unique First Cause
Coverage is defined by expanding the MC/DC test metric to formulas involv-
ing temporal logic operators. Similar work involves vacuity checking of temporal
logic formulas [5,16,25]. Intuitively, a model M vacuously satisfies property f if
a sub-formula φ of f is not necessary to prove whether or not f is true. Formally,
a formula is vacuous if we can replace φ by any arbitrary formula ψ in f without
affecting the validity of f :

M � f ≡ M � f [φ ← ψ]

For requirements specified as synchronous observers, the Simulink test gener-
ation tool Reactis and the Mathworks Verification and Validation plug-in for
Simulink support MC/DC generation and coverage measurement over require-
ments.

7 Conclusion

There are a variety of mechanisms to generate test cases. The two main tech-
niques for test case generation are (i) manual and (ii) automated test case gener-
ation techniques. In MBD, system engineers often write tests manually in order
to cover the requirements as well as cover program statements. The system engi-
neers study the requirements and try to determine the constraints on program
inputs and their expected outputs on the model based on the statements in the
requirements. This information is used to then create test inputs and a test ora-
cle, using various techniques. Some operate on formalized requirements, some
on the model, while others on the code auto-generated from the model. We can
measure the structural coverage of the code when these tests are executed.

The challenge for automatically generated tests is that there is no oracle.
Sometimes even in manually generated tests, defining a precise oracle for a given
test is often a difficult endeavor. When present, system requirements that are
either formalized or can be formalized serve as ideal candidates to be encoded
as oracles. Even if the requirements are in a natural language such as English

292 A. Murugesan et al.

but describe the requirements in terms of the interface of the model, then we
can convert these requirements into some formal notation.

Recent work presents a stronger notion of coverage of checked coverage, com-
pared to traditional structural values of simply covered and uncovered [29,30].
It uses dynamic backward slicing to count only statements whose execution con-
tributes to an outcome checked by an oracle. In this work we add precision to
the notion of checked coverage based on combining MC/DC masking informa-
tion with dynamic backward slicing. We believe that this information can help
system engineers identify missing requirements as well as missing test cases.
The approach presented here allows us to connect the dots between test cases,
requirements, and the model.

We demonstrated our approach using three case examples and also illustrated
how the metrics can be actually used as a closed loop in identifying missing
requirements and improving testing in a model-based approach. As part of future
work, we would like to evaluate the proposed approach on the requirements
and tests of the NASA’s Lunar Atmosphere and Dust Environment Explorer
(LADEE) mission.

Acknowledgments. This work was performed as part of an internship at NASA
Ames Research Center funded by the Aviation Safety Program. We would like to
thank Gregory Gay at University of Minnesota, for helping us measure requirements
coverage of test cases.

References

1. IBM Rational Rhapsody (2014). http://www.ibm.com/developerworks/rational/
products/rhapsody/

2. IBM Rational Statemate (2014). http://www-03.ibm.com/software/products/en/
ratistat

3. Ammann, P., Delamaro, M.E., Offutt, J.: Establishing theoretical minimal sets of
mutants. In: Proceedings of the 2014 IEEE International Conference on Software
Testing, Verification, and Validation, IEEE Computer Society Washington, DC,
USA (2014)

4. Baudin, P., Filliâtre, J.-C., Claude, M., Benjamin, M., Moy, Y., Virgile, P., Île-de
France, I.S.: ANSI/ISO C specification language, ACSL (2008)

5. Beer, I., Ben-David, S., Eisner, C., Rodeh, Y.: Efficient detection of vacuity in
ACTL formulas. In: Formal Methods in System Design, pp. 141–162 (2001)

6. Clause, J., Li, W., Orso, A.: Dytan: a generic dynamic taint analysis framework.
In: Proceedings of the 2007 Int’l Symposium on Software Testing and Analysis,
pp. 196–206 (2007)

7. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-c. In: Software Engineering and Formal Methods, pp. 233–247. Springer
(2012)

8. DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on test data selection: Help for
the practicing programmer. Computer 11(4), 34–41 (1978)

9. Devadas, S., Ghosh, A., Keutzer, K.: An observability-based code coverage metric
for functional simulation. In: Proceedings of the 1996 IEEE/ACM Int’l Conf. on
Computer-Aided Design, pp. 418–425 (1996)

http://www.ibm.com/developerworks/rational/products/rhapsody/
http://www.ibm.com/developerworks/rational/products/rhapsody/
http://www-03.ibm.com/software/products/en/ratistat
http://www-03.ibm.com/software/products/en/ratistat

Determining the Adequacy of Formalized Requirements and Test Suites 293

10. Esterel-Technologies. SCADE Suite product description. http://www.
esterel-technologies.com/v2/scadeSuiteForSafetyCriticalSoftwareDe

11. Fallah, F., Devadas, S., Keutzer, K.: OCCOM-efficient computation of
observability-based code coverage metrics for functional verification. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems 20(8), 1003–
1015 (2001)

12. Fraser, G., Staats, M., McMinn, P., Arcuri, A., Padberg, F.: Does automated white-
box test generation really help software testers? In: ISSTA 2013 Proceedings of
the 2013 International Symposium on Software Testing and Analysis, pp. 291–301.
ACM, New York, NY, USA (2013)

13. Gacek, A.: JKind - a Java implementation of the KIND model checker. https://
github.com/agacek

14. Gay, G., Staats, M., Whalen, M.W., Heimdahl, M.P.E.: Moving the goalposts: cov-
erage satisfaction is not enough. In: Proceedings of the 7th International Workshop
on Search-Based Software Testing, ACM, New York, NY, USA (2014)

15. Korel, B., Laski, J.: Dynamic program slicing. Information Processing Letters
29(3), 155–163 (1988)

16. Kupferman, O., Vardi, M.Y.: Vacuity detection in temporal model checking. Jour-
nal on Software Tools for Technology Transfer 4(2), February 2003

17. GNUGPL License. Gcov: Gnu coverage tool. https://gcc.gnu.org
18. Masri, W., Podgurski, A., Leon, D.: Detecting and debugging insecure informa-

tion flows. In: Proceedings of the 15th Int’l Symposium on Software Reliability
Engineering, pp. 198–209 (2004)

19. MathWorks Inc., Simulink. http://www.mathworks.com/products/simulink
20. MathWorks Inc., Simulink Coder. http://www.mathworks.com/products/

simulink-coder/
21. MathWorks Inc., Simulink Design Verifier. http://www.mathworks.com/products/

sldesignverifier
22. Murugesan, A., Whalen, M.W., Rayadurgam, S., Heimdahl, M.P.E.: Compositional

verification of a medical device system. In: ACM Int’l Conf. on High Integrity
Language Technology (HILT) 2013. ACM, November 2013

23. Offutt, A.J., Untch, R.H.: Mutation testing for the new century. chapter Mutation
2000: Uniting the Orthogonal, pp. 34–44. Kluwer Academic Publishers, Norwell,
MA, USA (2001)

24. Pecheur, C., Raimondi, F., Brat, G.: A formal analysis of requirements-based test-
ing. In: Proceedings of the Eighteenth International Symposium on Software Test-
ing and Analysis, pp. 47–56. ACM (2009)

25. Purandare, M., Somenzi, F.: Vacuum cleaning CTL formulae. In: Brinksma, E.,
Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, p. 485. Springer, Heidelberg (2002)

26. Reactive systems inc. http://www.reactive-systems.com/index.msp
27. RTCA/DO-178C. Software considerations in airborne systems and equipment cer-

tification
28. Rungta, N., Tkachuk, O., Person, S., Biatek, J., Whalen, M.W., Castle, J.,

Gundy-Burlet, K.: Helping system engineers bridge the peaks. In: TwinPeaks 2014
Proceedings of the 4th International Workshop on Twin Peaks of Requirements
and Architecture, pp. 9–13. ACM, New York, NY, USA, (2014)

29. Schuler, D., Zeller, A.: Assessing oracle quality with checked coverage. In: ICST
2011 Proceedings of the 2011 Fourth IEEE International Conference on Software
Testing, Verification and Validation, pp. 90–99. IEEE Computer Society, Washing-
ton, DC, USA (2011)

http://www.esterel-technologies.com/v2/scadeSuiteForSafetyCriticalSoftwareDe
http://www.esterel-technologies.com/v2/scadeSuiteForSafetyCriticalSoftwareDe
https://github.com/agacek
https://github.com/agacek
https://gcc.gnu.org
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/simulink-coder/
http://www.mathworks.com/products/simulink-coder/
http://www.mathworks.com/products/sldesignverifier
http://www.mathworks.com/products/sldesignverifier
http://www.reactive-systems.com/index.msp

294 A. Murugesan et al.

30. Schuler, D., Zeller, A.: Checked coverage: an indicator for oracle quality. Software:
Testing, Verification and Reliability 23(7), 531–551 (2013)

31. Staats, M., Gay, G., Whalen, M.W., Heimdahl, M.P.E.: On the danger of coverage
directed test case generation. In: 15th Int’l Conf. on Fundamental Approaches to
Software Engineering (FASE), April 2012

32. Weiser, M.: Program slicing. IEEE Transactions on Software Engineering 10(4),
352–357 (1984)

33. Whalen, M., Gay, G., You, D., Heimdahl, M.P.E., Staats, M.: Observable modified
condition/decision coverage. In: Proceedings of the 2013 Int’l Conf. on Software
Engineering. ACM, May 2013

34. Whalen, M.W., Cofer, D.D., Miller, S.P., Krogh, B.H., Storm, W.: Integration of
Formal Analysis into a Model-Based Software Development Process. In: Leue, S.,
Merino, P. (eds.) Formal Methods for Industrial Critical Systems. LNCS, vol. 4916,
pp. 68–84. Springer, Heidelberg (2007)

35. Whalen, M.W., Greve, D.A., Wagner, L.G.: Model Checking Information Flow.
Springer-Verlag, Berlin Germany (2010)

36. Whalen, M.W., Rajan, A., Heimdahl, M.P.E.: Coverage metrics for requirements-
based testing. In: Proceedings of Int’l Symposium on Software Testing and
Analysis, pp. 25–36. ACM, July 2006

A Greedy Approach for the Efficient Repair
of Stochastic Models

Shashank Pathak1, Erika Ábrahám2, Nils Jansen2(B),
Armando Tacchella1, and Joost-Pieter Katoen2

1 University of Genova, Genova, Italy
2 RWTH Aachen University, Aachen, Germany

nils.jansen@cs.rwth.aachen.de

Abstract. For discrete-time probabilistic models there are efficient
methods to check whether they satisfy certain properties. If a property is
refuted, available techniques can be used to explain the failure in form of
a counterexample. However, there are no scalable approaches to repair a
model, i.e., to modify it with respect to certain side conditions such that
the property is satisfied. In this paper we propose such a method, which
avoids expensive computations and is therefore applicable to large mod-
els. A prototype implementation is used to demonstrate the applicability
and scalability of our technique.

1 Introduction

Discrete-time Markov chains (DTMCs) are a widely used modeling formalism for
systems that exhibit probabilistic behavior, some typical application areas being
distributed computing, security, hardware, and systems biology. DTMCs can
be seen as directed graphs whose transitions are equipped with probabilities. A
popular language to specify properties of such models is probabilistic computation
tree logic (PCTL) [1]. Model checking PCTL properties or ω-regular properties
can be reduced to reachability problems, i.e., checking whether the probabilities of
reaching a set of distinguished target states are within some required thresholds.
Efficient probabilistic model checkers like PRISM [2] or MRMC [3] are available.

In the recent past, much effort has been made in automatically generating
explanations for the failure of a property in the form of counterexamples. For an
overview on different approaches and literature we refer to [4]. In spite of various
efficient methods for counterexample generation, a still open problem is how to
automatically repair a DTMC model that does not meet a certain requirement.

A first approach, referred to as model repair for DTMCs, was presented in [5].
Basically, the models are parametrized using linear combinations of real-valued
parameters in the transition probabilities of a DTMC that violates a desired
reachability property. Additionally, a cost-function over the parameters is given.

This work was partially supported by the Excellence Initiative of the German federal
and state government, the FP7-IRSES project MEALS, and the EU FP7 project
SENSATION.

c© Springer International Publishing Switzerland 2015
K. Havelund et al. (Eds.): NFM 2015, LNCS 9058, pp. 295–309, 2015.
DOI: 10.1007/978-3-319-17524-9 21

296 S. Pathak et al.

The goal is to find an parameter valuation which on the one hand induces the
satisfaction of the property and on the other hand minimizes the value of the
cost-function, i.e., changing the transition probabilities and thereby repairing
the DTMC with minimal costs.

Formally, the underlying model is a parametric discrete-time Markov chain
(PDTMC). Such models are also used in early system development stages, where
the parameters represent design parameters whose values should be fixed later
such that the resulting instantiated model satisfies some properties within a
fixed probability range while being optimal (or nearly optimal) with respect to
a given objective function under some realizability conditions. Recently some
approaches were proposed to represent the probability that a PDTMC satisfies
a required property in the form of a rational function over the parameters [6,7],
as being implemented in the tool PARAM [8].

In [5], such a rational function is computed for the PDTMC underlying the
model repair problem. Then a non-linear optimization problem [9] is solved
implying that the desired property is satisfied for this formula while the cost-
function is minimized. This can be done, e.g., via IPOPT [10]. If satisfiable, the
resulting valuation is a solution for the model repair problem. Also a method
for Markov decision processes (MDPs) was proposed, encompassing approxi-
mative methods [11]. Statistical model checking combined with reinforcement
learning was used in [12] for a related problem on robustness. Model repair for
non-stochastic systems has, e.g., been studied in [13].

The main practical obstacle of using non-linear optimization, be it using
a dedicated optimization algorithm or using an SMT-solver for non-linear real
algebra [14] coupled with a binary search towards the optimal solution, is scal-
ability. As the optimization involves costly computations of greatest common
divisors of polynomials, approaches like [6,7] are inherently restricted to small
PDTMCs with just a few parameters.

In this paper we present a new technique which we call local repair. Our
method starts from an initial parameter assignment and iteratively changes the
parameter values by local repair steps. To illustrate the basic idea, assume a
model in which the probability to reach some “unsafe” states is above an allowed
bound. Using model checking we know for each state the probability to reach
“unsafe” states from it. The higher this probability, the more dangerous it is
to visit this state. To repair the model, we iteratively consider single proba-
bility distributions in isolation, and modify the parameter values such that we
decrease the probability to move to more dangerous successor states. We show
our approach to be sound and complete in the sense that each local repair step
improves the reachability probability towards a desired bound for a repairable
PDTMC, and under some reasonable conditions on the applied heuristics, the
repair algorithm always terminates with an optimal solution.

We implemented our approach in a prototype and tested it thoroughly using
a robotics application scenario, where the given environment is modeled by
a Markov Decision Process (MDP) and where a controller is synthesized via
reinforcement-learning [15], which is modeled by a DTMC. This controller shall

A Greedy Approach for the Efficient Repair of Stochastic Models 297

be repaired until a certain property is satisfied. Furthermore, we present well-
known benchmarks from the PRISM benchmark suite and categorize each of
them into one of our three PDTMC subclasses. The experiments show the fea-
sibility of our approach, where the method as proposed in [5] immediately fails
even for very small systems.

2 Preliminaries

Definition 1 (Discrete-time Markov chain). A discrete-time Markov chain
(DTMC) is a tuple D = (S, sI , P) with S a finite non-empty set of states, sI ∈ S
an initial state, and P : S ×S → [0, 1] ⊆ Q a transition probability function with∑

s′∈S P (s, s′) = 1 for all s ∈ S.

We assume the states to be encoded by natural numbers, i.e., S = {1, . . . , k}
for some k ∈ N, k > 0. The transition probability function P can be seen as a
probability matrix of size k×k, where the entry in row si ∈ S and column sj ∈ S
is the probability P (si, sj) of the transition from si to sj in S.

A path of a DTMC D = (S, sI , P) is a non-empty (finite or infinite) sequence
π = s0s1 . . . of states si ∈ S such that P (si, si+1) > 0 for all i. Let PathsD

fin

denote the set of all finite paths of D, PathsD
fin(s) those starting in s ∈ S, and

PathsD
fin(s, t) those starting in s and ending in t. A state t ∈ S is called reachable

from s ∈ S iff PathsD
fin(s, t) �= ∅.

The cylinder set Cyl(π) for π ∈ PathsD
fin is the set of all infinite paths of D

with prefix π. As usual, we associate to D the smallest σ-algebra that contains all
cylinder sets of all finite paths of D. This gives us a unique probability measure
PrD on the σ-algebra, where the probabilities of the cylinder sets are given by

PrD(Cyl(s0 . . . sn)) =
n−1∏
i=0

P (si, si+1) .

We write short PrD(s, t) for the probability PrD(∪π∈PathsDfin(s,t)Cyl(π)) of reach-

ing t from s in D. These probabilities PrD(s, t) can be computed as the unique
solution for the variables ps of the following equation system:

ps =

⎧⎪⎨
⎪⎩

1 for s = t,
0 if t is not reachable from s in D,∑

s′∈S P (s, s′) · ps′ else .

(1)

In [6], parametric DTMCs (PDTMCs) are introduced. Instead of constants,
the transition probabilities in PDTMCs can be specified by rational functions
(fractions of polynomials) over a set of parameters.

Let in the following Var = {x1, . . . , xn} be a finite set of variables with
domains dom(xi) = [ai, bi] ⊆ R for some ai, bi ∈ Q, i ∈ {1, . . . , n}. A valuation

298 S. Pathak et al.

P1 : (1) (2)

1
2
−x′

1
2
−y′

1
2
+x 1

2
+y

P2 : (1) (2)

1
2
−x

1
2
−y

1
2
+x 1

2
+y

P3 : (1) (2)

1
2
−x

1
2
−x

1
2
+x 1

2
+x

Fig. 1. Type-I PDTMC P1, Type-II PDTMC P2, and Type-III PDTMC P3

for Var is a function v : Var → R such that v(xi) ∈ dom(xi) for each i ∈
{1, . . . , n}. Let V be the set of all valuations for Var.

Transition probabilities in PDTMCs will be specified by rational functions
f = p1/p2 over Var, where p1 and p2 are polynomials over Var with rational coef-
ficients. Let F be the set of all rational functions over Var. By Var(p) we refer to
the set of variables appearing in the polynomial p, write p = 0 if p can be reduced
to 0, and p �= 0 otherwise. Using p(x1, . . . , xn) we explicitly refer to the variables
of p. We use similar notations for rational functions. The value of a polynomial
p(x1, . . . , xn) under a valuation v ∈ V is v(p(x1, . . . , xn)) = p(v(x1), . . . , v(xn)),
and analogously v(p1(x1, . . . , xn)/p2(x1, . . . , xn)) = v(p1)/v(p2) if v(p2) �= 0 and
undefined otherwise for rational functions.

Definition 2 (Parametric DTMC). A parametric DTMC (PDTMC) is a
tuple P = (S, sI , P) with S a finite non-empty set of states, sI ∈ S an initial
state, and P : S × S → F a transition probability function.

Note that, as DTMCs are a special case of PDTMCs, we use the same nota-
tions. The work [5] on model repair considers a subclass of these models, where
the involved rational functions are linear terms. We call such models linear
PDTMCs. We now identify the following subclasses of PDTMCs:

Type-I: PDTMCs where each variable appears on at most one transition:

∀s1, s2, s
′
1, s

′
2 ∈ S. Var(P (s1, s2)) ∩ Var(P (s′

1, s
′
2)) �= ∅ → s1 = s′

1 ∧ s2 = s′
2 .

Type-II: PDTMCs where each variable appears in at most one distribution:

∀s1, s2, s
′
1, s

′
2 ∈ S.Var(P (s1, s2)) ∩ Var(P (s′

1, s
′
2)) �= ∅ → s1 = s′

1 .

Type-III: Unrestricted PDTMCs, allowing each variable to appear several times
possibly in different distributions.

Example 1. Figure 1 shows examples for the three PDTMC classes. Note that
sometimes Type-II PDTMCs can be transformed to Type-I PDTMCs. In this
example, P1 and P2 are equivalent, because they have the same set of valid
valuations (up to renaming).

Let P = (S, sI , P) be a PDTMC. A valuation v ∈ V is valid for P iff
v(P (s, s′)) ∈ [0, 1] and

∑
s′′∈S v(P (s, s′′)) = 1 for all s, s′ ∈ S. Each valid valua-

tion v for a P induces a DTMC D(P, v) = (S, sI , Pv) with Pv(s, s′) = v(P (s, s′))

A Greedy Approach for the Efficient Repair of Stochastic Models 299

P1 :

(1) (2)

1
2

1
2

1
2

1
2

P2 :

(1) (2)

1
2
−x

1
2
−y

1
2
+x 1

2
+y

P :

(1, 1) (2, 1)

(1, 2) (2, 2)

1
1
4
+ 1

2
x

1
4
+ 1

2
y 1

1
4
+ 1

2
x

1
4
− 1

2
x

1
4
− 1

2
x1

4
− 1

2
y

1
4
− 1

2
y

1
4
+ 1

2
y

D :

(1, 1) (2, 1)

(1, 2) (2, 2)

1
1
4

1
4

1

1
4

1
4

1
4

1
4

1
4

1
4

D̂ :

(1, 1) (2, 1)

(1, 2) (2, 2)

1
7
20

1
4

1

7
20

3
20

3
20

1
4

1
4

1
4

Fig. 2. Example: DTMC P1; PDTMC P2 with dom(x) = dom(y) = [−0.4, 0.4];
PDTMC P = P1||P2 where (1, 1) and (2, 2) are made absorbing and (2, 2) is the tar-
get; D = D(P, v) for v(x) = v(y) = 0; D̂ = D(P, v̂) for repaired valuation v̂(x) = 0.2,
v̂(y) = 0

for all s, s′ ∈ S. The PDTMC P is called realizable iff it has a valid valuation.
In the following we assume all PDTMCs to be realizable, which can be checked
by solving the following equation system:

∧
s∈S

∧
s′∈S

P (s, s′) ∈ [0, 1] ∧
∑

s′′∈S

P (s, s′′) = 1 ∧
∧

xi∈Var

xi ∈ dom(xi) . (2)

Each solution for the above problem gives us a valid valuation for P. For non-
linear PDTMCs the check is of exponential complexity in the number of param-
eters, however, for linear PDTMCs it can be done in polynomial time.

Example 2. Figure 2 illustrates our running example. Assume two places (1)
and (2) and an object moving between them according to the DTMC model P1.
To catch the object, a robot moves between the places according to a strategy
modeled by P2 with parameter domains dom(x) = dom(y) = [−0.4, 0.4]. In the
synchronous parallel composition1 P of P1 and P2 we made the states (1, 1)
and (2, 2), in which the robot succeeds to catch the ball, absorbing. The valid
valuation v with v(x) = v(y) = 0 induces the DTMC D.

1 For the parallel composition of probabilistic automata see, e.g., [16].

300 S. Pathak et al.

s1
. . .
si
. . .
sn

s

s′
1

. . .
s′
j

. . .
s′
m

hi

g

h′
j

s1
. . .
si
. . .
sn

s′
1

. . .
s′
j

. . .
s′
m

hi·h′
j

1−g

Fig. 3. State elimination

The (parametric) probability to reach a target state t ∈ S from the initial
state sI in a PDTMC P can be computed as a rational function over Var (along
with some side conditions) using state elimination [17], illustrated in Figure 3.
Eliminating a non-initial non-absorbing state s ∈ S in PDTMC P = (S, sI , P)
results in PDTMC P ′ = (S′, sI , P ′) with S′ = S \ {s} and

P ′(si, sj) = P (si, sj) +
P (si, s) · P (s, sj)

1 − P (s, s)

for all si, sj ∈ S′. This state elimination procedure is analogous to the specifi-
cation of the equation system according to Equation (1) and the elimination of
the variables ps for all s ∈ S \ {sI , t}.

Example 3. The probabilities to reach the state (2, 2) in PDTMC P in Figure 2
are described by:

p(2,2) = 1
p(1,1) = 0

p(1,2) = (
1
4

− 1
2
y)p(1,1) + (

1
4

+
1
2
y)p(1,2) + (

1
4

− 1
2
y)p(2,1) + (

1
4

+
1
2
y)p(2,2)

p(2,1) = (
1
4

+
1
2
x)p(1,1) + (

1
4

− 1
2
x)p(1,2) + (

1
4

+
1
2
x)p(2,1) + (

1
4

− 1
2
x)p(2,2)

Eliminating p(1,1), p(2,1) and p(2,2) yields the probability p(1,2) = −x+y+1
−x−y+2 to

reach (2, 2) from (1, 2). In this simple example this function is linear, however,
this is not necessarily the case for real applications and our approach is not
restricted to linear functions.

3 Local Model Repair

After a description of the model repair problem in Section 3.1, we propose a solu-
tion in Section 3.2. Soundness and completeness proofs are given in Section 3.3.

3.1 The Problem

Let P = (S, sI , P) be a PDTMC with state set S = {1, . . . , k}, k ≥ 1, and
let t ∈ S be a dedicated target state. We assume that t is absorbing in P,
i.e., P (t, t) = 1 (otherwise we make it absorbing by changing P to P ′ with
P ′(t, t) = 1, P ′(t, s) = 0 and P ′(s, s′) = P (s, s′) for all s ∈ S \ {t} and s′ ∈ S).

Given a λ ∈ (0, 1) ⊆ Q, our aim is to determine a valid valuation v such that
the probability to reach t from sI in the induced DTMC D(P, v) is at most λ.

A Greedy Approach for the Efficient Repair of Stochastic Models 301

Example 4. In our running example depicted in Figure 2, assume that catching
the ball at place (2) is dangerous. We declare (2, 2) as target state and try to
find a valid valuation for P such that the probability to visit (2, 2) is below a
given threshold λ.

To check whether this problem is solvable, the function psI of the probability
of reaching t from sI in P can be computed, e.g., by state elimination using the
PARAM tool [8]. Alternatively, satisfiability of psI ≤ λ under Equation (1) (and
potential side conditions) can be decided by SMT solvers for real arithmetic such
as Z3 [18]. Even an optimal valuation minimizing the probability to reach t from
sI could be theoretically determined using an optimization algorithm for real
algebra [5].

However, these are very costly procedures, which are not applicable in prac-
tice even for medium-size models with a few parameters. The reason is that the
rational function psI is usually very complex for non-trivial problems and of high
degree.

Furthermore, given a parametric model and an initial valid valuation v, we
are often not interested in an arbitrary solution but rather in one that is “close”
to v, i.e., which changes the distributions as smoothly as possible. A reasonable
measure could be the number of distributions differing from v or the maximal
difference in the transition probabilities. In general, such measures can be for-
malized in the form of cost functions.

3.2 The Algorithm

For the above reasons, instead of hard algebraic computations, we aim at defining
a greedy method to stepwise improve a given initial valuation. More precisely,
given an initial valid valuation v for P, our goal is to iteratively manipulate the
valuation such that in the induced DTMC the probability of reaching t from
sI is successively reduced as long as its value exceeds the required threshold λ.
(First we neglect the cost function and will embed it into our procedure later.)
Another concept that we need for our repair procedure is the notion of structural
equivalence.

Definition 3 (Structural equivalence). Two DTMCs D1 = (S1, s
I
1, P1) and

D2 = (S2, s
I
2, P2) are structurally equivalent, denoted D1 ≡S D2, if S1 = S2,

sI
1 = sI

2, and P1(s, s′) = 0 iff P2(s, s′) = 0 for all s, s′ ∈ S1.

Example 5. The DTMCs D and D̂ in Figure 2 induced by the two different
valuations v and v̂ for P are structurally equivalent.

Definition 4 (Partial order over valuations). We define the relation ≺P,t⊆
V × V such that for all valuations v, v̂ ∈ V , v̂ ≺P,t v iff v and v̂ are both valid
for P, D(P, v) ≡S D(P, v̂), and

(∃s ∈ S. p̂s < ps) ∧ (∀s′ ∈ S. p̂s′ ≤ ps′),

where ps = PrD(P,v)(s, t) and p̂s = PrD(P,v̂)(s, t) for all s ∈ S.

302 S. Pathak et al.

Example 6. For the valid valuations v and v̂ for P in Figure 2 it holds that
v̂ ≺P,(2,2) v, since p̂(1,1) = 0 = p(1,1), p̂(2,2) = 1 = p(2,2), p̂(1,2) = 4

9 < 1
2 = p(1,2)

and p̂(2,1) = 1
3 < 1

2 = p(2,1).

The relation ≺P,t is a strict partial order on V × V . Our greedy method will
apply local repair steps (defined below) iteratively on a valid initial valuation
(or analogously on the induced DTMC) until the probability of reaching t from
sI is reduced to a value at most λ (if possible). Each local repair step results in
a smaller valuation with respect to the above-defined partial order.

Assume for the rest of this section a PDTMC P = (S, sI , P), an absorbing
target state t ∈ S, and an arbitrary valid valuation v for P with D(P, v) =
(S, sI , Pv) (e.g., computed using Equation (2)). Let ps = PrD(P,v)(s, t) for all
s ∈ S denote the probabilities to reach t from s in D(P, v); these values can be
computed by applying probabilistic model checking.

Assume that in D(P, v) the probability to reach t is above λ (otherwise
the problem is already solved). Our iterative approach modifies the valuation
stepwise, satisfying the following local repair condition. As we will show, local
repairs step change a valuation v to v̂ such that v̂ ≺P,t v holds.

Definition 5 (Local repair). A valuation v̂ ∈ V is a local repair of v for
PDTMC P and target state t iff there exists ∅ �= Sr ⊆ S such that

– v and v̂ are valid for P,
– D(P, v) = (S, sI , Pv) ≡S D(P, v̂) = (S, sI , Pv̂) are structurally equivalent,
–

∑
s′∈S Pv̂(s, s′) · ps′ <

∑
s′∈S Pv(s, s′) · ps′ for all s ∈ Sr, and

– Pv̂(s, s′) = Pv(s, s′) for all s ∈ S \ Sr and s′ ∈ S,

where ps = PrD(P,v)(s, t) is the probability to reach t from s in D(P, v) for all
s ∈ S. We say that v̂ is a local repair of v on Sr, and call

δv,v̂ =
∑
s∈Sr

∑
s′∈S, Pv(s,s′)<Pv̂(s,s′)

Pv̂(s, s′) − Pv(s, s′)

the mass of the repair.
A (finite or infinite) sequence v1, v2, . . . such that vi+1 is a local repair of vi

for i ≥ 1 is called a local repair sequence, and vj with j > 1 a repair of v1.

Example 7. In Figure 2, v̂ is a local repair of v for P and state (2, 2).

Let us come back to the integration of a cost function. As we use a greedy
algorithm, we can support only cost functions for which the effect of a repair
step can be estimated just by knowing the local modifications. Furthermore,
a non-linear cost function would cause a significant computation effort. In our
algorithm we aim at keeping the changes in the parameter values of the ini-
tial valuation v0 small, expressed by the cost function

∑
xi∈Var |v(xi) − v0(xi)|.

Assume a single repair step on state s with distribution variables Var(s) =
∪s′∈S′Var(P (s, s′)), changing the values of the variables xi ∈ Var(s) from v(xi)

A Greedy Approach for the Efficient Repair of Stochastic Models 303

Input: Realizable PDTMC P = (S, sI , P), absorbing target state t ∈ S,
upper bound λ ∈ (0, 1) ⊆ Q, initial valid valuation v0 for P, (cost function f)

Output: A valid repair v of v0 such that either PrD(P,v)(sI , t) ≤ λ or v is final.

1. Let v = v0.
2. Compute for each s ∈ S the probabilities ps to reach t from s in D(P, v).
3. If psI ≤ λ then return v.
4. Try to find a local repair v′ of v (optimizing a cost function f under all repairs).
5. If no such repair exists, return v.
6. Set v to v′.
7. Goto 2.

Fig. 4. Model repair algorithm for PDTMCs

to v(xi)+δi. We prefer such a local repair step that minimizes the related compo-
nent

∑
xi∈Var(s) |(v(xi) + δi) − v0(xi)| of the cost function. As the cost function

is linear, such a local optimum leads also globally to a smaller cost function
value. However, to reduce computational effort, the selection of a distribution
for repair does not consider the cost function, therefore our greedy method is
heuristic and does not guarantee to reach the global optimum.

We formalize the local model repair algorithm for PDTMCs in Figure 4.
Note that the algorithm can be used also without involving a cost function.
For termination, we have to assure that the mass of the repair sequence does
not converge to 0 (see Sec. 3.3 for soundness and completeness). Note that for
Type-I and Type-II PDTMCs we can always repair just a single distribution,
what is in general not possible for Type-III PDTMCs, making the search for a
repair harder. We also remark that all the benchmarks we will use for evaluation
are linear, for which the repairability checks are much simpler than for general
PDTMCs.

In Step 4, any heuristics could be used to find a suitable repair. In our
implementation for Type-I and Type-II PDTMCs we use k-shortest path search:
We determine the most probable path from the initial to the target state and
check the distributions along this path whether they are repairable. If it is not
the case, we continue with the next most probable path etc., until either we find
a repairable distribution or we have checked all of them (in which case we have
reached a final valuation).

It is also important to mention that the order in which states (respectively
their distributions) are repaired is highly relevant for the efficiency of the method.
Intuitively, if we repair a state s and then a state s′ that is reachable from s then
the second repair changes the probabilities to reach t for the successors of s; this
might trigger a new repair on s, basically undoing the first one. Therefore, when
using shortest paths as heuristics, we prefer to repair states at the end of the
path, rather than at the beginning.

To reduce the model checking effort, we can repair several distributions before
applying model checking to re-compute the reachability probabilities. Type-I
benchmarks often have quite simple transition terms, for which the equation
system in Step 4 can be solved without invocating an LP solver. Note that for

304 S. Pathak et al.

Type-II PDTMCs we can apply the same algorithm as for Type-I PDTMCs.
The only difference is that, since each variable can appear on several transitions
in the same distribution, changing the probability of one transition might cause
a change of the probabilities of other transitions (in the same distribution).
Therefore, the computations in Step 4 are more involved and might an LP solver.

3.3 Soundness and Completeness

The following theorem states the correctness of our approach, i.e., that repairing
a valuation brings us closer to the goal of getting the reachability probability of
t below λ.

Theorem 1 (Soundness). If v̂ ∈ V is a local repair of v for P and t then
v̂ ≺P,t v.

Proof. Let v̂ be a local repair of v for P and t on ∅ �= Sr ⊆ S, D(P, v) =
(S, sI , Pv) and D(P, v̂) = (S, sI , Pv̂). Let p = (ps1 , . . . , psk

)T ∈ Q
k be the vector

of the probabilities psi
= PrD(P,v)(si, t) to reach t from si ∈ S in D(P, v). It

holds that p = Pv p (see Equation (1)).
Note that pt = 1 (recall that t is absorbing) and ps′ = 0 for all states s′ ∈ S

from which t is not reachable in D(P, v). Since reachability coincides in D(P, v)
and the structurally equivalent D(P, v̂), it holds also for reachability in D(P, v̂).
Thus for the analogous steady-state distribution p̂ in D(P, v̂) with p̂ = Pv̂ p̂, it
holds that p̂ = limi→∞ P i

v̂ p.
For two k-dimensional vectors q and q′ we write q < q′ iff there is an si ∈ S

such that qsi
< q′

si
and qsj

≤ q′
sj

for all sj ∈ S \ {si}.
We show that P i

v̂ p < p for all i > 0 by induction. For i = 1, by the definition
of Pv̂ we have Pv̂ p < p. Assume now that P i

v̂ p < p for some i ≥ 1. Then

P i+1
v̂ p = Pv̂ P i

v̂ p
ass. for i

< Pv̂ p
case i = 1

< p.
Having shown P i

v̂ p < p for all i > 0, from p̂ = limi→∞ P i
v̂ p we conclude

p̂ < p, i.e., v̂ ≺P,t v, what was to be shown.

Next we show completeness, i.e., that if we repair a valuation such that for
each distribution we repair either with at least a given minimal mass or with as
much mass as the variable domains allow then our repair sequences will always
terminate with a minimal valuation.

Definition 6 (Final and minimal valuations).

– A valuation v ∈ V is final for P and t iff it is valid for P and there exists
no local repair of v for P and t.

– A valuation v ∈ V is minimal for P and t iff it is valid for P and
PrD(P,v)(sI , t) ≤ PrD(P,v′)(sI , t) for all valuations v′ ∈ V that are valid
for P and whose induced DTMCs D(P, v′) are structurally equivalent to
D(P, v).

A Greedy Approach for the Efficient Repair of Stochastic Models 305

Theorem 2 (Completeness). For each P = (S, sI , P), t ∈ S, and for each
valuation v ∈ V which is valid for P the following holds:

i) The masses in each infinite local repair sequence v = v0, v1, . . . for P and t
converge to 0.

ii) Every final and valid valuation v for P and t is minimal.

Proof. Assume P = (S, sI , P), t ∈ S and a valuation v ∈ V that is valid for P. If
the initial state is absorbing, v is final and minimal. Thus assume that the initial
state is not absorbing. We prove the theorem by induction over the number of
non-initial non-absorbing states in D(P, v).

If there is no non-initial non-absorbing state then we can repair only on the
initial state, whose transitions are either

1. leading from the initial to the target state t,
2. or a self-loop on the initial state sI ,
3. or leading from sI to non-target absorbing states.

Each local repair moves some mass from lower to higher transition types (i.e.,
from 1 over 2 to 3), but never back. Because the domains are finite, this process
can lead to an infinite local repair sequence only if the repair masses converge to
0, thus i) in Theorem 2 holds. Furthermore, if the last valuation of a local repair
sequence is final then the probability of transition 1. cannot be reduced, and the
probabilities of transitions of type 3. cannot be increased. This final valuation
induces a DTMC with minimal reachability probability from sI to t under all
structurally equivalent instantiations of P.

Assume now that the theorem holds for each PDTMC Pn = (Sn, sI , Pn),
absorbing target state t ∈ Sn, and Pn-valid valuation v ∈ V with D(Pn, v) =
(Sn, sI , Pn,v), if the number of non-initial non-absorbing states in D(Pn, v) is at
most n. Let Pn+1 = (Sn+1, s

I , Pn+1) with absorbing target state t ∈ Sn+1 and
Pn+1-valid v ∈ V , such that the number of non-initial non-absorbing states in
D(Pn+1, v) = (Sn+1, s

I , Pn+1,v) is n + 1.

i) Assume an infinite repair sequence v = v0, v1, . . . for Pn+1 and t. We select
in Pn+1 a non-initial non-absorbing state s and eliminate it as shown in
Figure 3 from all PDTMCs in the infinite repair sequence. Let Pn denote
Pn+1 after the elimination of s. For each s′, s′′ ∈ Sn we have that

Pn(s′, s′′) = Pn+1(s′, s′′) +
Pn+1(s′, s) · Pn+1(s, s′′)

1 − Pn+1(s, s)
.

We show that each repair step for vi on Pn+1 and t is also a repair step for
vi on Pn and t. The valuations v0, v1, . . . for Pn+1 are also valid for Pn and
they induce structurally equivalent DTMCs. The cases for the states that
are not predecessors of s, and the case where no repair on any predecessor
of s took place, are straightforward. Thus the only interesting condition to

306 S. Pathak et al.

be checked is that when a predecessor of s is repaired, it satisfies the repair
conditions for the ith repair from vi to vi+1:

∑
s′′∈Sn

Pn,vi+1(s
′, s′′) · ps′′

elim.prop.
=

∑
s′′∈Sn+1

Pn+1,vi+1(s
′, s′′) · ps′′

assumption
<

∑
s′′∈Sn+1

Pn+1,vi
(s′, s′′) · ps′′

elim.prop.
=

∑
s′′∈Sn

Pn,vi
(s′, s′′) · ps′′

Thus the infinite repair sequence for Pn+1 and v after the elimination of s
is an infinite repair sequence for Pn and v. By assumption the masses in the
repair of Pn converge to 0. Therefore, also the mass of the original sequence
for Pn+1 converges to 0.

ii) Assume a valid valuation v for Pn+1. We select again a non-initial non-
absorbing state s and eliminate it from Pn+1, resulting in Pn. Then v is also
final for Pn and by induction minimal. Thus v is minimal also for Pn+1.

4 Evaluation

In this section we present an empirical evaluation of our approach. We devel-
oped a C++ prototype implementation capable of performing repair as described
in Section 3. For building the explicit state space of our benchmarks we used
PRISM [2], while MRMC [3] serves as black-box probabilistic model checker. For
every iteration of the repair, we maintain a priority queue indicating which state
shall be repaired next. As mentioned before, this order is determined by a heuris-
tic, the best one so far being to take for each state the probability of reaching a
target state into account. After each repair step, we perform model checking. As
mentioned before, it is possible to suspend model checking for a number of steps
which can significantly decrease the time needed for model repair while needing
the possibility to backtrack to a previous repair step in case the result is too far
below the threshold.

We demonstrate the feasibility of the repair by an experimental setting incor-
porating three benchmarks, one of Type-I and two of Type-III. For all experiments
we give the system parameters as well as the number of states and transitions. “mc”
describes the overall time spent on model checking, “sn” the time spent on selecting
the next state to repair, and “rn” the time needed for repair. All experiments were
run on Linux using an Intel I7 CPU 3.4 GHz with 32 GB of memory. We defined a
timeout (-TO-) of 2700 seconds.

First, the ROBOT benchmark consists of an environment modeled as a
square grid of size N × N with N ∈ Z

+ by means of an MDP. The goal is
for a robot to reach a set of target states from a set of initial states without
visiting a certain set of “fatal” states. The interaction between the robot and
the environment—the strategy—is modeled as a DTMC. This DTMC is repaired
with the goal to guarantee that the probability to end up in a fatal state (PrD)
is reduced to at most 0.001, yielding PrD̂. As in each state of the MDP the
strategy is independent from other states, this is a Type-I repair problem which

A Greedy Approach for the Efficient Repair of Stochastic Models 307

Table 1. Results for the Type-I benchmark ROBOT

we perform for different values of N . Table 1 shows the results obtained for
the ROBOT benchmark. We measure the quality of the results by giving the
original and repaired probabilities (PrD and PrD̂). We also measure the number
of edges |E| that were changed. For most of the instances, model checking was
performed in each step. In some cases we mention a value N which indicates the
number of local repair steps before model checking was invoked.

The measurements show that the time spent on repair is negligible. Most
time is spent on model checking. For the grid sizes N = 512 and N = 1024 we
get a timeout due to model checking. In case of N = 1024, it was only possible
to perform three iterations, as both PRISM and MRMC performed very slow on this
benchmark. By repairing 20 states before calling the model checker, we obtained
results for N = 512 within the time limit. For N = 1024, with N = 100 the
repair also terminated within time.

The CROWDS protocol [19] is designed for anonymous network communica-
tion using random routing. There are N nodes in a network that with probabil-
ity pf forward a message to another—again randomly chosen node—or directly
deliver it. Each member is “good” or “bad” described by probability pbad . The
number of protocol runs is parametrized by K. The property, called probable
innocence, of the real sender being no more likely than others to have sent
the message, is formulated as a reachability property on the underlying DTMC.
Here, dependencies exist between transitions yielding Type-III benchmarks. The
standard instantiations are pf = 0.8 and pbad = 0.091 which induce the proba-
bility PrD0 for probable innocence for fixed values of N and K. We introduce
“errors” by choosing a smaller value pf = 0.1, inducing probability PrD and
repair towards the original model checking result PrD0 as bound. Repairing only
the transitions where the parameters occurred results in the parameter value p̂f

and probability PrD̂. Table 2 shows the results for CROWDS.
First note that in all cases the resultingprobabilityPrD̂ and theparameter value

p̂f are very close to the original values PrD0 and pf . This means that the model was
successfully repaired which shows the applicability of our approach to very common
benchmarks.Concerning the running times,mostof the timewas spentonsearching
the next state to repair while again the time for repair is negligible. We are able to

308 S. Pathak et al.

Table 2. Results for Type-III benchmarks CROWDS and NAND

repair instances with millions of states within the time limit. Note that the number
of changed transitions and steps is constant for all instances.

NAND [20] models how reliable computations are obtained using unreliable
hardware by having N number of copies of a NAND unit all doing the same job.
Parameters are the probabilities of the units perr and the error input probabilities
pIerr . The original value is perr = 0.02. Consider again Table 2. K denotes the
number of restorative stages where the possibly erroneous results is corrected.
We basically make the same observations as for CROWDS, i.e., we get the
desired result for the repaired parameter p̂err = 0.02 and the probability PrD̂.

5 Conclusion and Future Work

Summing up, our main contribution is a sound and complete greedy local-repair
algorithm for repairing large stochastic models efficiently. Our experimental
results confirm that greedy repair is feasible even for models with millions of
states, which are beyond the reach of other comparable state-of-the-art tech-
niques and that we are able to repair common benchmarks in a reasonable way.

Topics in our current research agenda that are yet to be explored include
experimenting other node selection and repair heuristics. More in general, we
believe it would be interesting also to explore the connections between our greedy
method and local optimization of probability functions in the space defined by
multiple parameters (e.g., establishing a formal analogy with multivariable opti-
mization based on gradient descent methods). Finally, we would like to lift the
assumption of linear local repair to see whether our method could also be applied
to more complex parameter dependencies.

References

1. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing 6(5), 512–535 (1994)

2. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

A Greedy Approach for the Efficient Repair of Stochastic Models 309

3. Katoen, J.P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and
outs of the probabilistic model checker MRMC. Performance Evaluation 68(2),
90–104 (2011)

4. Ábrahám, E., Becker, B., Dehnert, C., Jansen, N., Katoen, J.-P., Wimmer, R.:
Counterexample generation for discrete-time markov models: an introductory sur-
vey. In: Bernardo, M., Damiani, F., Hähnle, R., Johnsen, E.B., Schaefer, I. (eds.)
SFM 2014. LNCS, vol. 8483, pp. 65–121. Springer, Heidelberg (2014)

5. Bartocci, E., Grosu, R., Katsaros, P., Ramakrishnan, C.R., Smolka, S.A.: Model
repair for probabilistic systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS
2011. LNCS, vol. 6605, pp. 326–340. Springer, Heidelberg (2011)

6. Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric
Markov models. Software Tools for Technology Transfer 13(1), 3–19 (2010)

7. Jansen, N., Corzilius, F., Volk, M., Wimmer, R., Ábrahám, E., Katoen, J.-P.,
Becker, B.: Accelerating parametric probabilistic verification. In: Norman, G.,
Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 404–420. Springer, Heidelberg
(2014)

8. Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: PARAM: a model checker for
parametric markov models. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 660–664. Springer, Heidelberg (2010)

9. Bradley, S., Hax, A., Magnanti, T.: Applied Mathematical Programming. Addison-
Wesley Pub. Co. (1977)

10. Biegler, L.T., Zavala, V.M.: Large-scale nonlinear programming using IPOPT:
An integrating framework for enterprise-wide dynamic optimization. Computers
& Chemical Engineering 33(3), 575–582 (2009)

11. Chen, T., Hahn, E.M., Han, T., Kwiatkowska, M., Qu, H., Zhang, L.: Model repair
for markov decision processes. In: Proc. of TASE, pp. 85–92. IEEE (2013)

12. Bartocci, E., Bortolussi, L., Nenzi, L., Sanguinetti, G.: On the robustness of tem-
poral properties for stochastic models. In: Proc. of HSB 2013. EPTCS, vol. 125,
pp. 3–19 (2013)

13. Chatzieleftheriou, G., Bonakdarpour, B., Smolka, S.A., Katsaros, P.: Abstract
model repair. In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226,
pp. 341–355. Springer, Heidelberg (2012)

14. Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B.,
Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 339–354. Springer,
Heidelberg (2012)

15. Sutton, R., Barto, A.: Reinforcement Learning - An Introduction. MIT Press (1998)
16. Sokolova, A., de Vink, E.P.: Probabilistic automata: system types, parallel com-

position and comparison. In: Baier, C., Haverkort, B.R., Hermanns, H., Katoen,
J.-P., Siegle, M. (eds.) Validation of Stochastic Systems. LNCS, vol. 2925, pp. 1–43.
Springer, Heidelberg (2004)

17. Daws, C.: Symbolic and parametric model checking of discrete-time markov chains.
In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 280–294. Springer,
Heidelberg (2005)

18. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

19. Reiter, M.K., Rubin, A.D.: Crowds: Anonymity for web transactions. ACM Trans.
on Information and System Security 1(1), 66–92 (1998)

20. Han, J., Jonker, P.: A system architecture solution for unreliable nanoelectronic
devices. IEEE Transactions on Nanotechnology 1, 201–208 (2002)

Integrating SMT with Theorem Proving
for Analog/Mixed-Signal Circuit Verification

Yan Peng(B) and Mark Greenstreet

University of British Columbia, Vancouver, British Columbia, Canada
{yanpeng,mrg}@cs.ubc.ca

Abstract. We present our integration of the Z3 SMT solver into the
ACL2 theorem prover and its application to formal verification of analog-
mixed signal circuits by proving global convergence for a state-of-the-
art digital phase-locked loop (PLL). SMT (satisfiability modulo theory)
solvers eliminate much of the tedium associated with detailed proofs by
providing automatic reasoning about propositional formulas including
equalities and inequalities of polynomial functions. A theorem prover
complements the SMT solver by providing a proof structuring and proof
by induction. We use this combined tool to show global convergence
(i.e. correct start-up and mode-switching) of a digital PLL. The PLL
is an example of a second-order hybrid control system; its verification
demonstrates how these methods can address challenges that arise when
verifying such designs.

1 Introduction

We present our integration of the Z3 SMT solver [1] into the ACL2 theo-
rem prover [2]. With this approach, high-level proof structure and proof tech-
niques such as induction can be handled by the theorem prover while many
tedious details for verifying real-world designs discharged by the SMT solver. The
implementation presented in this paper supports booleans, integers, and ratio-
nals/reals, and our approach could be readily extended to other types including
arrays, lists, strings, and more general algebraic data types. For soundness, we
want to rely on ACL2, Z3, and as little other code as possible. We also want Z3
to be easily used from within ACL2; thus, our interface performs many, auto-
matic transformations of ACL2 formulas to convert them into the restricted
form required by Z3. We resolve these seemingly conflicting objectives with a
software architecture that divides the ACL2-to-Z3 translation process into two
phases: most of the transformations are performed in the first phase, and the
result is verified by ACL2. The second phase is a very simple direct translation
from the s-expressions of ACL2 into their counterparts for Z3’s Python API.

This research was supported by grants from NSERC Canada and Intel.

c© Springer International Publishing Switzerland 2015
K. Havelund et al. (Eds.): NFM 2015, LNCS 9058, pp. 310–326, 2015.
DOI: 10.1007/978-3-319-17524-9 22

Integrating SMT with Theorem Proving 311

We demonstrate our approach by using it to verify global convergence for
an all-digital phase-locked loop (PLL). The PLL is an example of an analog-
mixed signal (AMS) design. The AMS approach has emerged as the dominant
paradigm for implementing analog operations where digital circuits replace many
analog functions and provide adaptation functions to compensate for variations
in process, device, and operating conditions. AMS designs play an important role
in nearly every computing, communication, and cyber-physical systems. These
designs pose serious simulation challenges because they involve an extremely
wide range of time-scales from sub-picosecond (e.g. for oscillator jitter) to mil-
liseconds or longer for software controlled adaptation loops or interactions with
mechanical sensors and systems. Formal methods can verify properties that are
intractable or impossible to show with simulation. We consider global conver-
gence: showing that an AMS circuit converges to the intended operating mode
from all initial conditions. This requires modeling the large-scale, non-linear
behavior of the analog components. If such non-linearities create an unintended
basin of attraction, then the AMS circuit may fail to converge to the intended
operating point. AMS circuits may make many mode changes per second to
minimize power consumption, adapt to changing loads, or changes in operating
conditions. Each of these mode changes requires the AMS circuit to converge to
a new operating region. Once the AMS circuit is in the small operating region
intended by the designer, small-signal analysis based on linear-systems theory is
sufficient to show correct operation [3,4].

The key contributions of this paper are:

– A demonstration that the arithmetic decision procedures of an SMT solver
can be exploited effectively when verifying properties of physical systems
with continuous models.

– A description of the challenges that arise when using a SMT solver with a
theorem prover and present our solutions to these issues.

– the first integration of an SMT solver into the ACL2 theorem prover.
– A model for a state-of-the art digital PLL with recurrences using rational

functions that can be used for evaluating other verification approaches.
– A proof of global convergence of the digital PLL.

2 Related Work

There has been extensive work in the past decade on integrating SAT and SMT
solvers into theorem provers including [5–11]. Many of these papers have followed
Harrison and Théry’s “skeptical” and focused on methods for verifying SMT
results within the theorem prover using proof reconstruction, certificates, and
similar methods. Several of the papers showed how their methods could be used
for the verification of concurrent algorithms such as clock synchronization [6],
and the Bakery and Memoir algorithms [9]. While [6] used the CVC-Lite [12]
SMT solver to verify properties of simple quadratic inequalites, the use of SMT
in theorem provers has generally made light use of the arithmetic capability

312 Y. Peng and M. Greenstreet

of such solvers. In fact [10] reported better results for SMT for several sets of
benchmarks when the arithmetic theory solvers were disabled!

The work that may be the most similar to ours is [11] that presents a trans-
lation of Event-B sequents from Rodin [13] to the SMT-LIB format [14]. Like
our work, [11] verifies a claim by using a SMT solver to show that its negation is
unsatisfiable. They address issues of types and functions. They perform exten-
sive rewriting using Event-B sequents, and then have simple translations of the
rewritten form into SMT-LIB. While noting that proof reconstruction is possible
in principle, they do not appear to implement such measures. The main focus of
[11] is supporting the set-theoretic constructs of Event-B. In contrast, our work
shows how the procedures for non-linear arithmetic of a modern SMT solver can
be used when reasoning about VLSI circuits.

Our work demonstrates the value of theorem proving combined with SMT
solvers for verifying properties that are characterized by functions on real num-
bers and vector fields. Accordingly, the linear- and non-linear arithmetic theory
solvers have a central role. As our concern is bringing these techniques to new
problem domains, we deliberately take a pragmatic approach to integration and
trust both the theorem prover and the SMT solver.

Prior work on using theorem proving methods to reason about dynamical
systems includes [15] which uses the Isabelle theorem prover to verify bounds on
solutions to simple ODEs from a single initial condition. In contrast, we verify
properties that hold from all initial conditions. Harutunian [16] presented a very
general framework for reasoning about hybrid systems using ACL2 and demon-
strated the approach with some very simple examples. Here we demonstrate that
by discharging arithmetic proof obligations using a SMT solver, it is practical
to reason about much realistic designs.

The past decade has also seen a rapidly growing interest in applying formal
methods to analog and mixed-signal designs. Much of this work goes back to
early model-checking results by Kurshan and MacMillan [17]. Other early work
includes [18–21]. To verify phase-locked loops, Dong et al. [22] proposed using
property checking for AMS verification, including PLLs. Shortly after the work
by Dong et al., Jesser and Hedrich [23] described a model-checking result for
a simple analog PLL. Althoff et al. [24] presented the verification of a charge-
pump PLL using an approach that they refer to as “continuization.” They use
a purely linear model for the components of their PLL, and their focus is on the
switching activities of the phase-frequency detector, in particular, uncertainties
in switching delays.

More recently, Lin et al. [25,26] developed an approach for verifying a digital
PLL using SMT techniques. To the best of our knowledge, they are the first to
claim formal verification of a digital PLL. They consider a purely linear, analog
model and then reason about the discrepancies between this idealized model and
a digital implementation. They use the KRR SMT solver to verify bounds on
this discrepancy. They verify bounds on the lock time of a digitally intensive
PLL assuming that most of the digital variables are initialized to fixed values,

Integrating SMT with Theorem Proving 313

and that only the oscillator phase is unknown. Our work shows initialization for
a different PLL design over the complete state space.

Using the SpaceEx [27] reachability tool, Wei et al. [28] presented a veri-
fication of the same digital PLL as described in this paper. That work made
a over-approximation of the reachable space by over-approximating the recur-
rences of the digital PLL with linear, differential inclusions. As SpaceEx could
not verify convergence property for the entire space in a single run, [28] broke
the problem into a collection of lemmas that were composed manually. Their
work demonstrated the need for some kind of theorem-proving tool to compose
results. Furthermore, they could not show the limit cycles that our proof does;
therefore their proof does not provide as tight of bounds on PLL jitter and other
properties as can be obtained with our techniques.

3 Integrating Z3 into ACL2

Theorem provers and SMT solvers provide complementary reasoning capabili-
ties. The main challenge is connecting the two with an interface that is both
useful and trustworthy. We achieve these goals by using a two-step translation
process. The first step translates the user-provided goal into a minimal subset
of operations that all have direct counterparts in the logic of the SMT solver.
The second step performs a direct translation of this expanded and simplified
version of the goal into the syntax and logic of the SMT solver. The SMT solver
then proves the goal, provides a counter-example, or reports that it could not
decide. A key feature of this architecture is that most of the complexity of the
translation process is in the first step. The first step translates a goal in the the-
orem prover logic to an equivalent or stronger goal, still in the theorem prover
logic. We use the theorem prover to verify this implication for each translated
goal. Thus, the first step does not introduce any soundness assumptions beyond
our existing faith in the theorem prover. The second step provides the transla-
tion between the theorem prover and SMT solver. This is trusted code, and our
design allows it to be very simple and easily reviewed by other humans.

This section describes our solution to integrating Z3 into ACL2 in more detail.
We describe the issues that arose to ensure the soundness of our implementation
and features that we’ve included to make the combination easy to use. First,
Section 3.1 gives a very brief description of the key features of ACL2 and Z3
used in our design.

3.1 ACL2 and Z3

ACL2 [2] is a theorem prover for programs written in a comprehensive, applica-
tive subset of Common Lisp. ACL2 provides a very general notion of induction
based on recursive function definition in lisp: every recursive function defines a
corresponding induction schema. This is ideal for our application where we are
using a theorem prover to compensate for the lack of induction capabilities in
SMT solvers. While ACL2 supports many other methods for proving goals in its

314 Y. Peng and M. Greenstreet

false

expanded
clause

ACL2 (lisp)
to smt−py
translate SMT clause

(python)
clause

Not(clause)
satisfiable?

generate
return
clause

generate
return
clause

Z3

simplify
expand &original

clause
ACL2 (lisp)

return
clause
list to
ACL2

step 2
translation

lisp (ACL2) python (z3)

sat, unsat,
unknownor

(proven)

no

yes

?unsat

acl2SMT

step 1
translation

original expanded

(implies
expanded
original)

Fig. 1. The Clause Processor

“waterfall”, our approach is to allow ACL2 to automate a proof where it can, and
use an integrated SMT solver to discharge tedious obligations, especially those
involving systems of non-linear inequalities that frequently arise when reasoning
about AMS circuits or other physical systems. ACL2 supports the integration of
external decision procedures through its clause processor mechanism described
below.

ACL2 represents a proof goal as a conjunction of clauses, where each clause is
a disjunction of terms. The terms can be arbitrary s-expressions. ACL2 supports
the inclusion of user-defined “clause processors”. A clause processor takes an
ACL2 clause (i.e. proposition) as an argument and returns a list of clauses with
the interpretation that the conjunction of the result clauses implies the original
clause. In particular, if the result list is empty, then the clause processor is
asserting that the original clause is true for all valuations of any free variables.
ACL2 supports two types of clause processors: verified and trusted. A verified
clause processor is written in the ACL2 subset of Common Lisp and proven
correct by ACL2. A trusted clause processor does not require a correctness proof;
instead, all theorems are tagged to identify the trusted processors that they may
depend on. The soundness of the trusted clause processor becomes, in effect, a
hypothesis of any theorem that uses the clause processor. We connected the Z3
SMT solver to ACL2 by writing a trusted clause processor.

Z3 [1] is a SMT solver developed at Microsoft Research that has been used
in many software verification tools. Z3 combines procedures for boolean combi-
nations of linear equalities and inequalities over linear, polynomial, and rational
functions along with and operations on arrays and algebraic data types within
the framework of a CDCL satisfiability solver [29]. We make incidental use of
some of the other capabilities of Z3 such as lists to simplify the implementation
of our interface. Formulas for Z3 can be written using the SMTLIB format [14],
an Ocaml API, or a Python API (z3py). We used z3py for the ease of prototyping
in Python.

Integrating SMT with Theorem Proving 315

3.2 The Clause Processor

Figure 1 shows the architecture of our clause processor. The critical part of this
design for soundness is the second translation step. This step supports a very
small subset of the ACL2 logic consisting of nineteen functions:

– five arithmetic functions – binary plus, minus, and times; and unary
negation, and reciprocal.

– five comparison functions – equal, <, ≤, ≥, and >.
– three more logical operations – if, not, and implies.
– three functions for declaring the types of Z3 variables – booleanp,
integerp, and rationalp.

– three functions to support other ACL2 constructions – array, lambda, and
nth.

This translation step is implemented using 220 lines of lisp code (translate step
2 in the figure), and 130 lines of python (class acl2SMT in the figure). The
lisp code is driven by an association list to map lisp functions to their python
counterparts. The python code defines an object whose methods call the appro-
priate Z3 functions. As classes implementing the same interface could be defined
for other SMT solvers, our architecture is largely solver agnostic. The code is
straightforward and easily inspected.

In principle, a user could transform a more general ACL2 clause into one that
uses the minimal set of operators described above by guiding ACL2’s rewrit-
ing process. The tedious effort of doing so would largely nullify the advantages
promised by using an external decision procedure. To make the SMT solver of
practical use, the first step of the translation process converts a richer subset
of the ACL2 logic into the minimal form accepted by the final translation. As
described below, the user can provide hints that produce a translated clause
that is stronger than the original clause. Further strengthening of the clause
can occur because of the way we handle the connection between ACL2’s use of
rational numbers and the use of real numbers in the logic of Z3.

Once the clause has been translated into the logic of the SMT solver, we
ask the SMT solver to prove it by showing that the negation of the clause is
unsatisfiable. If the expanded clause is proven to be a theorem by the SMT solver,
then the clause processor returns (implies expanded original) to ACL2. In
other words, the original clause is a theorem if ACL2 can show that the expanded
clause implies the original. The soundness of the connection to the SMT solver
does not depend on the first step of the translation. If the SMT solver finds
a satisfying assignment to the negated clause, the original claim might not be
a theorem. Presently, we report the failure, but do not provide any proposed
counter-example to ACL2.

Given this framework, the remainder of this section describes the logical
issues that arose when integrating Z3 into ACL2 and presents our solutions.

316 Y. Peng and M. Greenstreet

3.3 Connecting the Logics

The logic of ACL2 is much more expressive than that of SMT solvers such as
Z3. In particular,

– ACL2 is untyped, but Z3 requires a declared sort (i.e. type) for each variable.
– ACL2 supports rational numbers, but Z3 uses reals.
– Users of ACL2 usually make extensive use of user-defined, recursive func-

tions. Z3 only provides uninterpreted functions.
– The antecedent of an ACL2 clause may imply other facts that can be proven

by ACL2 and are needed by the SMT solver but that cannot be derived by
the SMT solver.

– Substitutions: a clause may include (in)equalities over terms that are neither
polynomials nor rational functions and thus outside the domain of Z3’s non-
linear solver.

– Hints: our clause processor may return clauses for ancillary conditions that
ACL2 cannot discharge without further guidance.

We show in the remainder of this section how each of these issues are naturally
addressed within the clause processor architecture described above.

Typed vs. untyped logics: ACL2 is untyped and all functions are total. How-
ever, ACL2 does provide type predicates, and it is common to write theorems of
the form:

(thm (implies (and (and type − assertion1 type − assertion2 . . .)
(and other-hypotheses))

conclusion))

where type-assertions are of the form (rationalp x), (integerp n), etc. We
simply require that theorems be stated with this structure. Our clause proces-
sor checks for this structure, identifies the type assertions, and generates the
corresponding variable declarations for the SMT solver. This is done in the sec-
ond translation step, and soundness requires exact correspondence between the
ACL2 and Z3 types. This is the case for booleans and integers (e.g. ACL2 and
Z3 have the same definition of integer additions, etc.). However, it raises an issue
for ACL2 rationals vs. Z3 reals which we discuss next.

Real Numbers and Rationals: Our translator represents variables that are
restricted to rational number values in ACL2 to ones that are real valued in Z3.
We need to ensure that results from Z3 are sound in ACL2. For example, in
ACL2 can prove that there is no (rational) number x such that x2 = 2. On the
other hand, Z3 can prove that there is a (real) number x such that x2 = 2. To
preserve soundness, we restrict the use of the SMT solver to discharging clauses
where all variables are universally quantified, noting that

∀x ∈ R. p(x) ⇒ ∀x ∈ Q. p(x)

because Q ⊂ R. In practice, this is not a serious restriction.

Integrating SMT with Theorem Proving 317

Another consequence of this difference in representation is that Z3 may pro-
duce a counter-example where some variables are assigned irrational (in par-
ticular, algebraic) values. As illustrated by the x2 = 2 example above, such a
counter-example is not valid in ACL2. When Z3 produces a model for a for-
mula, each value can be identified as being integer, rational, or algebraic. Thus,
we could check if a counter-example generated by Z3 could be used in ACL2.
We have not needed existential witnesses, and restricting the SMT solver as
described above has been completely satisfactory.

An alternative would be to use ACL2r[30]. We have used our clause processor
with both ACL2 and ACL2r, and the same proof of convergence for the digital
PLL works in both systems. Presently, ACL2r is not fully upward compatible
with ACL2, and we chose to start with ACL2 because of its more comprehensive
environment for proof development.

Another difference between ACL2 and Z3 for numerical problems is division
by zero. While ACL2 and Z3 require all operations to be total, ACL2 defines (/
x 0) to be 0 for all x; where as Z3 considers the quotient to be an unspecified
number. Our solution is implement reciprocal in the acl2SMT module to match
the ACL2 definition:

def reciprocal(self, x): self.ifx(x == 0.0, 0.0, 1.0/x)

Functions. ACL2 users naturally use the expressiveness of lisp to write concise
theorem statements. This includes user-defined and library functions. While Z3
and other SMT solvers support uninterpreted functions, this is almost always
too imprecise to prove real theorems. Many functions that appear in proofs are
non-recursive; in other words, they are macros. These are easily eliminated by
expanding the function. Of course, clauses can also include recursive functions.

Our clause processor accepts a user-provided “hint” called :functions that
says what functions should be expanded, to what depth they should be expanded,
and the type of the value produced by the function. These hints are used in
the first translation step to expand function calls to the specified depth. Any
deeper calls are replaced by an unconstrained variable of the specified return
type. These transformations are performed in the first translation step; therefore,
ACL2 verifies the soundness of this transformation.

The expansion of function calls replaces (f actual1 actual2 . . .) with
((lambda (newVar1, newVar2, newVar3) rewritten-body-of-f)

(actual1 actual2 . . .))

where the body of f is rewritten by replacing formal parameters with the fresh
variables (i.e. names that don’t otherwise appear in the clause) and recursively
expanding any function calls in the body. The second step translates this into
the corresponding Python lambda expression. The acl2SMT object provides a
method that creates names for the SMT solver for fresh variables.

This mechanism for supporting functions is also used to support let opera-
tions in the user-provided clause – in fact, the ACL2 macro expansion turns them
into the form described above without any assistance from our clause processor.

318 Y. Peng and M. Greenstreet

Adding Hypotheses: The hypotheses of a clause may imply other facts that
are not derivable by the SMT solver but that can be readily shown within the
theorem prover. These include previously established theorems and claims that
have straightforward induction proofs. The SMT solver may need these addi-
tional facts to prove a clause.

Our clause processor accepts a user-provided hint called :hypothesize to
add additional hypotheses to the clause. The hypotheses are added in the first
translation step; therefore, ACL2 verifies the soundness of this transformation.

Non-polynomials: the non-linear arithmetic procedures in Z3 only support
polynomials and rational functions. For example, our reasoning about the digital
PLL uses the Common Lisp function (expt r n) which computes rn for integer
n. Our clause processor accepts a user-provided hint called :let to replace all
occurrences of given subexpression with a new unconstrained variable of the user
specified type. Our clause processor then adds a proof obligation (to be returned
to ACL2) that the type of the subexpression always matches the user specified
type. These substitutions are performed in the first translation step; therefore,
ACL2 verifies the soundness of this transformation. Typically, the user will also
use :hypothesize hints to state constraints that must hold for the value of this
new variable. For example, we might include the hint

:hypothesize (equal (expt x (+ n 2)) (* x x (expt x n)))

As noted above, the soundness of these added hypotheses are verified by ACL2.

Nested Hints: as described above, our clause processor returns a new clause
to check the soundness of the translation and any user-provided assertions. In
practice, this means that Z3 establishes the truth of a complicated system of
equalities and inequalities, and ACL2 is required to discharge a handful of much
simpler conditions. Occasionally, these returned clauses can be non-trivial, and
our clause processor accepts a user-provided hint called :use that allows the
user to attach hints to the clauses returned to ACL2. A common form of this is
to prove a lemma within ACL2 that corresponds to a :hypothesize hint. The
user may then employ a :use hint to tell ACL2 how to instantiate the lemma to
discharge the added hypothesis. Proof hints in ACL2 do not change the meaning
of the formula that ACL2 is attempting to prove; they only guide the theorem
prover to use proof methods that the user believes will succeed. Thus, these hints
do not affect the soundness of our implementation.

3.4 Soundness of the Connection

The previous section described the main issues that arose when integrating an
SMT solver into the ACL2 theorem prover. The two-step translation process
allows the more complicated transformations to be performed in the first step,
and the result is verified by ACL2. The second step is very simple, and that is
the only part that is trusted for soundness. This section summarizes how a clause
is discharged using our clause processor by showing the logical transformations
that are performed at each step.

Integrating SMT with Theorem Proving 319

Originally, the clause processor is asked to prove

(antecedent ∧ typePredicates) → claim (1)

Let Goal denote this proposition. Furthermore, the user may provide the clause
processor with various hints about function expansion, subexpression substitu-
tion, additional hypotheses, and hints to give back to ACL2. The first transla-
tion step of the clause processor rewrites antecedent to antecedent ′ and claim to
claim ′. It also introduces new hypotheses, both from :hypothesize hints and
the type assumptions for functions and :let hints. Let moreHyps denote these
added hypotheses. The SMT solver attempts to prove:

(antecedent ′ ∧ typePredicates ∧ moreHyps) → claim ′ (2)

Let Goal ′ denote this “expanded” proposition. If the SMT solver proves Goal ′,
then the clause processor returns the following clauses to ACL2:

Goal ′ → Goal
(antecedent ∧ typePredicates) → moreHyps (3)

Where the last line is one clause for each added hypothesis in the actual imple-
mentation. The original claim (Eq. 1) is an immediate consequence of the clause
established by the SMT solver (Eq. 2) and the clauses subsequently discharged
by ACL2 (Eq. 3).

4 Verifying a Digital PLL

Figure 2 shows the digital phase-locked-loop (PLL) verified in this paper; it is
a simplified version of the design presented in [31]. The purpose of this PLL
is to adjust the digitally-controlled oscillator (DCO) so that its output, ΦDCO

has a frequency that is N times that of the reference input, Φref and so that
their phase match (i.e. each rising edge of Φref coincides with a rising edge of
ΦDCO). The three control-paths shown in the figure make this a third-order
digital control system. By design, the lower two paths dominate the dynamics
making the system effectively second-order.

The DCO has three control inputs: φ, c, and v. The φ input is used by a
proportional control path: if Φref leads ΦDCO/N then the PFD will assert up,
and the DCO will run faster for a time interval corresponding to the phase
difference. Conversely, if Φref lags ΦDCO/N , the dn signal will be asserted, and
the DCO will run slower for a time interval corresponding to the phase difference.
If the frequencies of Φref and ΦDCO/N are not closely matched, then the PFD
simply outputs up (resp. dn) if the frequency of ΦDCO/N is lower (resp. higher)
than that of Φref .

The c input of the DCO is used by the integral control path. The DCO
in [31] is a ring-oscillator, and the c input controls switched capacitor loads on
the oscillator – increasing the capacitive load decreases the oscillator frequency.

320 Y. Peng and M. Greenstreet

Linear
Phase

Control

Bang−Bang
Frequency

Control

Σ

Fref

Σ

Fref

DAC

BBPFD

0:23

0:14

15:23

0:7

refΦ
ΦDCO

ΦDCO/N

PFD
+
− dn

up

Coarse

Control
Frequency

discarded

c v DCO
φ

Φref is the reference signal whose frequency is denoted by fref .
ΦDCO is the output of the digitally controlled oscillator whose frequency is denoted
by fDCO .
Labels of the form lo:hi denote bits lo through hi (inclusive) of a binary value.

Fig. 2. A Digital Phase-Locked Loop

The bang-bang phase-frequency detector (BBPFD) controls whether this capac-
itance is increased one step or decreased one step with for each cycle of Φref .
The c input provides a fast tracking loop.

The v input of the DCO is used to re-center c to restore tracking range.
This input sets the operating voltage of the oscillator – the oscillator frequency
increases with increasing v. The accumulator for this path is driven by the dif-
ference between c and its target value ccenter .

As a control system, the PLL converges to a switching surface where c and φ
fluctuate near their ideal values. As presented in [31] these limit-cycle variations
are designed to be slightly smaller than the unavoidable thermal and shot-noise
of the oscillator. Furthermore, the time constants of the three control loops are
widely separated. This facilitates intuitive reasoning about the system one loop
at a time – it also introduces stiffness into the dynamics that must be considered
by any simulation or reachability analysis. We believe that these characteristics
of convergence to a switching surface and stiffness from multiple control loops
with widely separated tracking rates are common in digitally controlled physical
systems. This motivates using the digital PLL as a verification example and
challenge.

4.1 Modeling the Digital PLL

From Spectre simulations, we observe that the oscillator frequency is very nearly
linear in v and nearly proportional to the inverse of c for a wide range of each
of these parameters. The phase error, φ is a continuous quantity, but the val-
ues of c and v are determined by the digital accumulators that are updated

Integrating SMT with Theorem Proving 321

on each cycle of the reference clock, fref . This motivates modeling the PLL using
a discrete-time recurrence for real-valued variables:

c(i + 1) = min(max(c(i) + gc sgn(φ), cmin), cmax)
v(i + 1) = min(max(v(i) + gv(ccenter − c(i)), vmin), vmax)
φ(i + 1) = wrap(φ(i) + (fDCO(c(i), v(i)) − fref) − gφφ(i))

fDCO(c, v) = 1+αv
1+βc f0

wrap(φ) = wrap(φ + 1), if φ ≤ −1
= φ, if −1 < φ < 1
= wrap(φ − 1), if 1 ≤ φ

(4)

where gc, gv, and gφ are the gain coefficients for the bang-bang frequency control,
coarse frequency control, and linear phase paths respectively. The coefficient α is
the slope of oscillator frequency with respect to v, and β is the slope of oscillator
period with respect to c; both are determined from simulation data. We measure
phase leads or lags in cycles: φ = 0.1 means that ΦDCO/N leads Φref by 10%
of the period of Φref . We say that c is “saturated” if (c = cmin) ∧ (φ < 0) or
(c = cmax) ∧ (φ > 0). Likewise, v is saturated if (v = vmin) ∧ (c > ccenter) or
(v = vmax)∧ (c < ccenter). In this paper, we scale fref to 1. With similar scaling,
we choose gc = 1/3200, gv = −gc/5, and gφ = 0.8. We assume bounds for c of
cmin = 0.9 and cmax = 1.1 with ccenter = 1 and bounds for v of vmin = 0.2 and
vmax = 2.5. With these parameters, the PLL is intended to converge to a small
neighbourhood of c = ccenter = 1; v = fref ccenter = 1 and φ = 0.

4.2 Proving Global Convergence

Our verification proceeds in three phases as depicted in Fig. 3.a. First we show
that for all trajectories starting with c ∈ [cmin, cmax], v ∈ [vmin, vmax], and φ ∈
[−1,+1] (the blue regions 3.a) the trajectory eventually reaches a relatively
narrow stripe (the red and green regions) for which fDCO ≈ fref . The proof is
based on a simple ranking function that Z3 easily verifies. By proving this we’ve
shown that the non-linearities of the global model do not create unintended
stable modes.

The second part of the proof pertains to the small, red stripes where fDCO ≈
fref but c is close enough to cmin or cmax that saturation remains a concern.
Consider the red stripe near c = cmin. We use Z3 as a bounded model checker
to show that v increases, and that c “tracks” v to keep fDCO close to fref and
θ small. Together, these results show that all trajectories eventually enter the
region shown in green in Fig. 3.

The final part of the proof shows convergence to the limit-cycle region, shown
in yellow in Fig. 3.a. The key observation here is that φ repeatedly alternates
between positive and negative values. For any given value of v, we can calculate
the value of c for which fDCO(c, v) = fref — call this ceq(v). Figure 3.b depicts
a trajectory from a rising zero-crossing of φ to a falling crossing. Let c1 be the
value of c following a rising zero-crossing of φ, and let c2 be the value of c at the
subsequent falling crossing. We note that c1 < ceq(v) < c2.

322 Y. Peng and M. Greenstreet

Fig. 3. Global Convergence Proof

The obvious way to show convergence is to show that c2 is closer to ceq
than c1 is. However, this involves calculating the recurrence step at which φ
makes its falling crossing of zero, and that involves solving a non-linear system
of equations. Although Z3 has a non-linear arithmetic solver, it does not support
induction as would be required with an arbitrary choice for c1. Instead, we
extrapolate the sequence to the last point to the right of ceq that is closer to
ceq than c1 is. We use formula from Eq. 4 for computing c(i + 1) assuming
that sgn φ = 1; either this assumption is valid for the whole sequence, or φ
had a falling crossing even earlier. Either is sufficient to show convergence. The
proof involves solving the recurrence, and rewriting the resulting formula. The
key inequality has exponential terms of the form (1−gφ)n multiplied by rational
function terms of the other model parameters. We use the substitution technique
from Section 3.2 to replace these non-polynomial terms, and add a :hypothesize
hint that 0 < (1−gφ)n < 1. ACL2 readily discharges this added hypothesis using
a trivial induction.

Our proof is based on a 13-page, hand-written proof. The ACL2 version
consists of 75 lemmas, 10 of which were discharged using the SMT solver. Of
those ten, one was the key, polynomial inequality from the manual proof. The
others discharged steps in the manual derivation that were not handled by the
standard books of rewrite rules for ACL2. ACL2 completes the proof in a few
minutes running on a laptop computer. We found one error in the process of
transcribing the hand-written proof to ACL2.

We completed much of the proof using ACL2 alone while implementing the
clause processor. We plan to rewrite the proof to take more advantage of the
SMT solver and believe that the resulting proof will be simpler, focus more on
the high-level issues, and be easer to write and understand. When faced with
proving a complicated derivation, one can guide ACL2 through the steps of the
derivation, or just check the relationship of the original formula to the final

Integrating SMT with Theorem Proving 323

one using the SMT solver. The latter approach allows novice users (including
the authors of this paper) to quickly discharge claims that would otherwise
take a substantial amount of time even for an expert. As noted before, if Z3
finds a counter-example, we do not return it as a witness for ACL2. However,
our clause processor prints the counter-example (in its Z3 representation) to the
ACL2 proof log. The user can examine this counter-example; in practice, it often
points directly to the problem that needs to be addressed.

The ACL2 formulation enabled making generalizations that we would not
consider making to the manual proof. In particular, the manual proof assumed
that ceq − c1 was an integer multiple of g1. After verifying the manual proof, we
removed this restriction – this took about 12 hours of human time, most of which
was to introduce an additional variable 0 ≤ dc < 1 to account for the non-integer
part. We also generalized the proof to allow v to an interval whose width is a
small multiple of |g2(cmax − cmin)|. This did not require any new operators and
took about 3 hours of human time. The interval can be anywhere in [vlo, vhi].
This shows that the convergence of c and φ continues to hold as v progresses
toward fref ccenter . It also sets the foundation for verifying the PLL with a more
detailed model including the ΔΣ modulator in the c path, an additional low-pass
filter in the v path, and adding error terms in the formula for fDCO(c, v).

5 Conclusions

This paper presented the integration of the Z3 SMT solver into the ACL2 theorem
prover and demonstrated its application for the verification of global convergence
for a digital PLL. The proof involves reasoning about systems of polynomial and
rational function equalities and inequalities, which is greatly simplified by using
Z3’s non-linear arithmetic capabilities. ACL2 complements Z3 by providing a ver-
satile induction capability along with a mature environment for proof development
and structuring. Section 3 described technical issues that must be addressed to
ensure the soundness, of the integrated prover, usability issues that are critical for
the tool to be practical, and our solutions to these challenges.

Section 4 showed how this integrated prover can be used to verify global
convergence for a digital phase-locked loop from all initial states to the final limit-
cycle behaviours. The analysis of the limit cycle behaviour requires modeling
the PLL with recurrences. Such limit cycles are not captured by continuous
approximations used in [24,28]. Our approach allowed uncertainty in the model
parameters and not just in the signal values. The reachability tools cited above
require fixed model parameters. Our approach shows much more promise for
verification that accounts for device variability and other uncertainties.

Prior work on integrating SMT solvers into theorem provers has focused
on using the non-numerical decision procedures of an SMT solver. Our work
demonstrates the value of bringing an SMT solver into a theorem prover for
reasoning about systems where a digital controller interacts with a continuous,
analog, physical system. The analysis of such systems often involves long, tedious,
and error-prone derivations that primarily use linear algebra and polynomials.

324 Y. Peng and M. Greenstreet

We have shown that these are domains where SMT solvers augmented with
induction and proof structuring have great promise. We are currently exploring
using our methods to verify other AMS designs as well as to similar problems
that arise in hybrid control systems and machine learning.

Acknowledgments. We thank Leo Moura, David Rager, Jijie Wei, and Ge Yu for
helpful discussions about this research.

References

1. de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). http://dx.doi.org/10.1007/978-3-540-78800-3 24

2. Kaufmann, M., Moore, J., Manolios, P.: Computer-Aided Reasoning: An Approach.
Kluwer (2000)

3. Kundert, K.S.: Introduction to RF simulation and its application. IEEE J. Solid-
State Circuits 34(9), 1298–1319 (1999). http://dx.doi.org/10.1109/4.782091

4. Kim, J., Jeeradit, M., Lim, B., Horowitz, M.A.: Leveraging designer’s intent: a
path toward simpler analog CAD tools. In: Custom Integrated Circuits Conf., pp.
613–620, September 2009. http://dx.doi.org/10.1109/CICC.2009.5280741

5. McLaughlin, S., Barrett, C., Ge, Y.: Cooperating theorem provers: A case study
combining HOL-Light and CVC Lite. In: 3rd Workshop on Pragmatics of Decision
Procedures in Automated Reasoning, pp. 43–51. http://dx.doi.org/10.1016/j.entcs.
2005.12.005

6. Fontaine, P., Marion, J.-Y., Merz, S., Nieto, L.P., Tiu, A.F.: Expressiveness +
automation + soundness: towards combining SMT solvers and interactive proof
assistants. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920,
pp. 167–181. Springer, Heidelberg (2006). http://dx.doi.org/10.1007/11691372 11

7. Besson, F.: Fast reflexive arithmetic tactics the linear case and beyond. In:
Altenkirch, T., McBride, C. (eds.) TYPES 2006. LNCS, vol. 4502, pp. 48–62.
Springer, Heidelberg (2007). http://dx.doi.org/10.1007/978-3-540-74464-1 4

8. Armand, M., Faure, G., Grégoire, B., Keller, C., Théry, L., Werner, B.: A modular
integration of SAT/SMT solvers to Coq through proof witnesses. In: Jouannaud,
J.-P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 135–150. Springer, Heidelberg
(2011). http://dx.doi.org/10.1007/978-3-642-25379-9 12

9. Merz, S., Vanzetto, H.: Automatic verification of TLA+ proof obligations with SMT
solvers. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18 2012. LNCS, vol. 7180, pp.
289–303. Springer, Heidelberg (2012). https://hal.inria.fr/hal-00760570/document

10. Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending Sledgehammer
with SMT solvers. J. of Automated Reasoning 51(1), 109–128 (2013).
http://dx.doi.org/10.1007/s10817-013-9278-5

11. Déharbe, D., Fontaine, P., Guyof, Y., Voisin, L.: Integrating SMT solvers in
Rodin. Science of Computer Programming 94(pt. 2), 130–143 (2014). http://www.
sciencedirect.com/science/article/pii/S016764231400183X

12. Barrett, C.W., Berezin, S.: CVC lite: A new implementation of the cooperating
validity checker category B. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol.
3114, pp. 515–518. Springer, Heidelberg (2004)

http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1109/4.782091
http://dx.doi.org/10.1109/CICC.2009.5280741
http://dx.doi.org/10.1016/j.entcs.2005.12.005
http://dx.doi.org/10.1016/j.entcs.2005.12.005
http://dx.doi.org/10.1007/11691372_11
http://dx.doi.org/10.1007/978-3-540-74464-1_4
http://dx.doi.org/10.1007/978-3-642-25379-9_12
https://hal.inria.fr/hal-00760570/document
http://dx.doi.org/10.1007/s10817-013-9278-5
http://www.sciencedirect.com/science/article/pii/S016764231400183X
http://www.sciencedirect.com/science/article/pii/S016764231400183X

Integrating SMT with Theorem Proving 325

13. Abrial, J.-R., Butler, M., Hallerstede, S., Voisin, L.: An open extensible tool envi-
ronment for Event-B. In: Liu, Z., Kleinberg, R.D. (eds.) ICFEM 2006. LNCS,
vol. 4260, pp. 588–605. Springer, Heidelberg (2006). http://dx.doi.org/10.1007/
11901433 32

14. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB standard version 2.0. In: 8th
SMT Workshop (2010). http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.
0-r10.12.21.pdf

15. Immler, F.: Formally verified computation of enclosures of solutions of
ordinary differential equations. In: Badger, J.M., Rozier, K.Y. (eds.)
NFM 2014. LNCS, vol. 8430, pp. 113–127. Springer, Heidelberg (2014).
http://home.in.tum.de/ immler/documents/immler2014enclosures.pdf

16. Harutunian, S.: Formal verification of computer controlled systems. Ph.D. disser-
tation, University of Texas, Austin, May 2007. http://www.lib.utexas.edu/etd/d/
2007/harutunians68792/harutunians68792.pdf

17. Kurshan, R., McMillan, K.: Analysis of digital circuits through symbolic reduction.
IEEE Trans. CAD 10(11), 1356–1371 (1991). http://dx.doi.org/10.1109/43.97615

18. Hedrich, L., Barke, E.: A formal approach to nonlinear analog circuit verification.
In: ICCAD, pp. 123–127 (1995). http://dl.acm.org/citation.cfm?id=224841.224870

19. Greenstreet, M. R.: Verifying safety properties of differential equations. In: Alur,
R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 277–287. Springer,
Heidelberg (1996). http://dx.doi.org/10.1007/3-540-61474-5 76

20. Hartong, W., Hedrich, L., Barke, E.: Model checking algorithms for analog veri-
fication. In: 39th DAC, pp. 542–547, June 2002. http://dx.doi.org/10.1109/DAC.
2002.1012684

21. Dang, T., Donzé, A., Maler, O.: Verification of analog and mixed-signal circuits
using hybrid system techniques. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004.
LNCS, vol. 3312, pp. 21–36. Springer, Heidelberg (2004). http://dx.doi.org/10.
1007/978-3-540-30494-4 3

22. Dong, Z.J., Zaki, M.H., Al-Sammane, G., Tahar, S., Bois, G.: Checking properties
of PLL designs using run-time verification. In: Int’l. Conf. Microelectronics, pp.
125–128 (2007). http://dx.doi.org/10.1109/ICM.2007.4497676

23. Jesser, A., Hedrich, L.: A symbolic approach for mixed-signal model checking.
In: ASPDAC, pp. 404–409 (2008). http://dl.acm.org/citation.cfm?id=1356802.
1356903

24. Althoff, M., Rajhans, A., et al.: Formal verification of phase-locked loops using
reachability analysis and continuization. Comm. ACM 56(10), 97–104 (2013).
http://doi.acm.org/10.1145/2507771.2507783

25. Lin, H., Li, P., Myers, C. J.: Verification of digitally-intensive analog circuits via
kernel ridge regression and hybrid reachability analysis. In: 50th DAC, pp. 66:1–
66:6 (2013). http://doi.acm.org/10.1145/2463209.2488814

26. Lin, H., Li, P.: Parallel hierarchical reachability analysis for analog verification. In:
51st DAC, pp. 150:1–150:6 (2014). http://doi.acm.org/10.1145/2593069.2593178

27. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In:
Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395.
Springer, Heidelberg (2011). http://dx.doi.org/10.1007/978-3-642-22110-1 30

28. Wei, J., Peng, Y., Yu, G., Greenstreet, M.: Verifying global convergence for a
digital phase-locked loop. In: 13th FMCAD, pp. 113–120, October 2013. http://
dx.doi.org/10.1109/FMCAD.2013.6679399

http://dx.doi.org/10.1007/11901433_32
http://dx.doi.org/10.1007/11901433_32
http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.0-r10.12.21.pdf
http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.0-r10.12.21.pdf
http://home.in.tum.de/immler/documents/immler2014enclosures.pdf
http://www.lib.utexas.edu/etd/d/2007/harutunians68792/harutunians68792.pdf
http://www.lib.utexas.edu/etd/d/2007/harutunians68792/harutunians68792.pdf
http://dx.doi.org/10.1109/43.97615
http://dl.acm.org/citation.cfm?id=224841.224870
http://dx.doi.org/10.1007/3-540-61474-5_76
http://dx.doi.org/10.1109/DAC.2002.1012684
http://dx.doi.org/10.1109/DAC.2002.1012684
http://dx.doi.org/10.1007/978-3-540-30494-4_3
http://dx.doi.org/10.1007/978-3-540-30494-4_3
http://dx.doi.org/10.1109/ICM.2007.4497676
http://dl.acm.org/citation.cfm?id=1356802.1356903
http://dl.acm.org/citation.cfm?id=1356802.1356903
http://doi.acm.org/10.1145/2507771.2507783
http://doi.acm.org/10.1145/2463209.2488814
http://doi.acm.org/10.1145/2593069.2593178
http://dx.doi.org/10.1007/978-3-642-22110-1_30
http://dx.doi.org/10.1109/FMCAD.2013.6679399
http://dx.doi.org/10.1109/FMCAD.2013.6679399

326 Y. Peng and M. Greenstreet

29. Marques-Silva, J., Sakallah, K.: GRASP: a search algorithm for propo-
sitional satisfiability. IEEE Trans. Computers 48(5), 506–521 (1999).
http://dx.doi.org/10.1109/12.769433

30. Gamboa, R.: Mechanically verified real-valued algorithms in ACL2. Ph.D. disser-
tation, University of Texas at Austin (1999)

31. Crossley, J., Naviasky, E., Alon, E.: An energy-efficient ring-oscillator digital PLL.
In: Custom Integrated Circuits Conf. (September 2010). http://dx.doi.org/10.
1109/CICC.2010.5617417

http://dx.doi.org/10.1109/12.769433
http://dx.doi.org/10.1109/CICC.2010.5617417
http://dx.doi.org/10.1109/CICC.2010.5617417

Conflict-Directed Graph Coverage

Daniel Schwartz-Narbonne1, Martin Schäf2(B), Dejan Jovanović2,
Philipp Rümmer3, and Thomas Wies1

1 New York University, New York, USA
2 SRI International, Menlo Park, USA

martin.schaef@sri.com
3 Uppsala University, Uppsala, Sweden

Abstract. Many formal method tools for increasing software reliability
apply Satisfiability Modulo Theories (SMT) solvers to enumerate feasi-
ble paths in a program subject to certain coverage criteria. Examples
include inconsistent code detection tools and concolic test case gener-
ators. These tools have in common that they typically treat the SMT
solver as a black box, relying on its ability to efficiently search through
large search spaces. However, in practice the performance of SMT solvers
often degrades significantly if the search involves reasoning about com-
plex control-flow. In this paper, we open the black box and devise a
new algorithm for this problem domain that we call conflict-directed
graph coverage. Our algorithm relies on two core components of an SMT
solver, namely conflict-directed learning and deduction by propagation,
and applies domain-specific modifications for reasoning about control-
flow graphs. We implemented conflict-directed coverage and used it for
detecting code inconsistencies in several large Java open-source projects
with over one million lines of code in total. The new algorithm yields sig-
nificant performance gains on average compared to previous algorithms
and reduces the running times on hard search instances from hours to
seconds.

1 Introduction

Inconsistent code represents a class of program abnormalities whose detection
has attracted considerable attention over the past years [4,15,18,20,28,29]. A
statement in a program is considered inconsistent if it never partakes in any
properly terminating execution of the program. That is, the statement is either
unreachable or any execution passing through it must inevitably lead to an
unrecoverable error.

Detecting inconsistent statements is important for several reasons. First,
inconsistent code is closely correlated with the existence of real bugs and is
difficult to detect using testing. For example, Wang et al. [29] have used code
inconsistency detection to identify optimization-unstable code in C programs1

1 The C standard allows compilers to eliminate code with undefined behavior. Such
code can be formalized as being inconsistent.

c© Springer International Publishing Switzerland 2015
K. Havelund et al. (Eds.): NFM 2015, LNCS 9058, pp. 327–342, 2015.
DOI: 10.1007/978-3-319-17524-9 23

328 D. Schwartz-Narbonne et al.

and discovered previously unknown optimization-related bugs in the Linux ker-
nel. The inconsistency detection tool Joogie developed by some of the authors [4]
has revealed several new bugs in open-source Java programs, including Apache
Tomcat and Ant [25]. Second, code inconsistencies can be detected statically and
locally by checking individual procedures in isolation, without requiring precise
procedure contracts. This enables the use of theorem provers to obtain a fully
automated analysis that scales to entire programs. Well, not entirely . . . A small
number of indomitable inconsistencies still holds out against efficient detection.

In this paper, we present a new algorithm for detecting inconsistencies effi-
ciently, realizing considerable performance improvements over existing algorithms
in practice.

Most existing algorithms implement variations of the following basic idea:
for a given procedure, one first computes an abstraction to obtain an acyclic
control-flow graph (see, e.g., [18]). This graph is then encoded into a first-order
logic formula whose models can be mapped back to the feasible executions of
the procedure. Then, an SMT solver is repeatedly queried to obtain such feasible
executions. For each obtained execution, the statements on the corresponding
control-flow path are marked as consistent and a condition is added to prevent
the prover from finding other executions of the same path. The algorithm termi-
nates once the formula becomes unsatisfiable and all program statements that
have not been covered by a feasible path are reported as inconsistent.

All the variations of this basic algorithm have in common that they treat the
SMT solver as a black box. They completely rely on the solver’s ability to (1) effi-
ciently reason about the propositional encoding of the control-flow graph; and (2)
learn theory conflicts from the constraints on infeasible paths to avoid enumerat-
ing them one at a time. However, the interplay between propositional reasoning
and theory reasoning in a general purpose SMT solver is complex. In particular,
for search-intensive problems, it is unavoidable that the solver will end up doing
theory reasoning across many different paths at once, even if the application only
requires reasoning about individual paths. We have observed that this can lead to
severe performance degradation during inconsistent code detection, in particular,
if inconsistent statements participate in many paths of a control-flow graph.

Our new algorithm builds upon the basic search loop of an SMT solver.
That is, we use (1) a DPLL-style SAT procedure to search for individual paths;
and we rely (2) on conflict-driven clause learning (CDCL) [27] to detect incon-
sistent statements efficiently by generalizing theory conflicts. However, we pro-
pose several important application-specific modifications to the standard CDCL
and DPLL procedures. First, we completely separate the search for paths in
the control-flow graph from checking feasibility of these paths. That is, theory
reasoning and conflict learning are always restricted to single complete paths.
Second, we exploit that the propositional formula given to the DPLL proce-
dure encodes a control-flow graph. Namely, we devise specialized propagation
rules that accelerate the search for individual paths. Together, these modifica-
tions ensure that none of the solver components gets confused by the complex
propositional structure of the control-flow graph encoding.

Conflict-Directed Graph Coverage 329

1 boolean equals(MyClass other) {

2 if (this == other) return true;

3 if (other == null) return false;

4 if (getClass () != other.getClass ()) return false;

5 if (bases == null) {

6 if (other.bases != null) return false;

7 // inconsistent with line 9

8 }

9 if (bases.hashCode () != other.bases.hashCode ())

10 return false;

11 return true;

12 }

Fig. 1. A method with inconsistent code taken from the Bouncy Castle library. Any
path through line 7 (i.e., the implicit else block of line 6) requires that bases and
other.bases are null, which is inconsistent with the fact that these objects are deref-
erenced in line 9.

We have implemented our algorithm in the tool GraVy [26] and applied it
to several open-source Java projects consisting of more than thirty thousand
methods and over one million lines of code in total. Our evaluation shows that,
even though difficult search-intensive problem instances are relatively rare, our
new algorithm leads to considerable performance improvements on average. For
individual difficult instances, we have observed performance improvements of
up to two orders of magnitude, reducing the running times of the analysis from
hours to seconds.

2 Overview

We explain our Conflict-Directed Coverage algorithm along the code snippet
in Fig. 1. The snippet shows an occurrence of inconsistent code that we found
and fixed in the cryptography library Bouncy Castle [1]. In this example, line 7
can only be reached by executions where other.bases is null. Further, any
such execution must also reach line 9 which dereferences other.bases. Thus,
there can be no normally terminating execution going through line 7 since any
such execution will throw a null pointer exception in line 9. Therefore, line 7 is
inconsistent.

To find this inconsistency, existing algorithms translate the program into a
formula in first-order logic whose models encode the feasible complete executions
of the program. The formula is sent to an SMT solver. Once a model is found,
the formula is extended to block all other models that can be mapped to the
same control-flow path. This way, each time the theorem prover is queried, it has
to find a new feasible complete path. Once this formula becomes unsatisfiable,
we know that all statements that occur on feasible complete paths have been
covered and the remaining statements are inconsistent.

330 D. Schwartz-Narbonne et al.

try {
...
while((obj = ois.x()) != null) {
if (obj instanceof SampleEvent)

{
try {
...

} catch (... Exception err) {
if (...){

throw new ...;
}

}
} else {...}

}
} catch (EOFException err) {...
} catch (IOException err) { ...
} catch (... Exception err) { ...
} finally {

try {...}
catch (... Exception e) {...}
if(! temporaryFile.delete ())

{...}
}

iter0block2492#join#join#join#join#join#then#join#join#join

iter0block2492#join#join#join#join#join#then#join#join#join$between$iter0block2492#join#join#join#join#join#join

iter0block2489#join

iter0block2489#join$between$block2489#join#then

iter0block2489#join#else

block2483$between$block2485

block2485

block2502#then

block2502#then#else

block2502#then#then

block2509#else

block2509#join

block2497#join#then#join#else

block2497#join#then#join#join

block2508$between$block2509

block2509

block2492#join#join#join#join#join#join#join#join#join#then$between$block2492#join#join#join#join#join#join#join#join#join#then#then

block2492#join#join#join#join#join#join#join#join#join#then#then

block2486#then#join#else

block2486#then#join#join

iter0block2492#join#join#join#join#join#join#join#join#join#join#join#join$between$block2489

block2489

iter0block2492#join#join#join#join#join#join#join#then

iter0block2492#join#join#join#join#join#join#join#then$between$block2492#join#join#join#join#join#join#join#then#then

iter0block2492#join#join#join#join#join#join#join#then#else

block2492#join#join#join#join#join#join#join#join#join#then#join#join

block2492#join#join#join#join#join#join#join#join#join#then#join#join$between$block2492#join#join#join#join#join#join#join#join#join#then#join#join#thenblock2492#join#join#join#join#join#join#join#join#join#then#join#join#else

block2517#then$between$block2518

block2518

block2486#then#then

block2486#then#then$between$block2487

block2492#join#join#join#join#join#join#join#then#join$between$block2492#join#join#join#join#join#join#join#then#join#then

block2492#join#join#join#join#join#join#join#then#join#then

block2492#join#join#join#join#join#join#join#then#join#then$between$block2487

block2492#join#join#join#join#join#join#join#then#join#join#join$between$block2492#join#join#join#join#join#join#join#join

block2492#join#join#join#join#join#join#join#join

iter0block2494#then#join#join#join

iter0block2494#then#join#join#join$between$iter0block2494#join

iter0block2493#join#join#then#join#join$between$block2493#join#join#then#join#join#then

block2493#join#join#then#join#join#then

block2492#join#join#join#join#join#join#join#join#join#join#join#then#join#then

block2492#join#join#join#join#join#join#join#join#join#join#join#then#join#then$between$block2487

iter0block2493#join#then

iter0block2493#join#join

block2494#join#join#then#join#join#then$between$block2488

block2488

block2492#join#join#join#join#join#then#join#join#then

block2492#join#join#join#join#join#then#join#join#then$between$block2488

block2492#join#join#join#join#join#join#join#join#join#join#then

block2492#join#join#join#join#join#join#join#join#join#join#join

iter0block2489#else$between$iter0block2489#join

block2486#then#join#then

block2486#then#join#then$between$block2488

block2491#then#then

block2498

block2500#then$between$block2501

block2501

iter0block2492#join#join#join#then#join

iter0block2492#join#join#join#then#join$between$block2492#join#join#join#then#join#then

iter0block2492#join#join#join#then#join#else

block2486#join#then#then

block2486#join#then#then$between$block2487

iter0block2492#join#join#join#join#join#join#join#join#join#then#join#else

iter0block2492#join#join#join#join#join#join#join#join#join#then#join#join

block2492#join#join#join#join#join#join#join#join#join#join#join#then#then

block2492#join#join#join#join#join#join#join#join#join#join#join#then#then$between$block2496

block2492#then#join$between$block2492#then#join#then

block2492#then#join#then

block2492#join#join#join#join#join#join#join#join$between$block2492#join#join#join#join#join#join#join#join#elseblock2492#join#join#join#join#join#join#join#join#then

block2494#join

block2494#join$between$block2494#join#else block2494#join#then

block2497#join

block2497#join#then

iter0block2492#join#join#join#join#join#join#join#join#join#then#join#join$between$block2492#join#join#join#join#join#join#join#join#join#then#join#join#then

block2492#join#join#join#join#join#join#join#join#join#then#join#join#then

iter0block2493#join#join#then#join$between$block2493#join#join#then#join#then

block2493#join#join#then#join#then

iter0block2493#join

iter0block2493#join$between$block2493#join#else

block2492#join#join#join#else

block2492#join#join#join#else$between$block2492#join#join#join#join

iter0block2492#join#join#join#join#join#join#join#join#join#else

iter0block2492#join#join#join#join#join#join#join#join#join#else$between$iter0block2492#join#join#join#join#join#join#join#join#join#join

block2517#else

block2517#join

block2492#join#join#join#join#join

block2492#join#join#join#join#join#then

block2492#join#join#join#join#join#else

block2494#join#join#then#join#else

block2494#join#join#then#join#join

block2489#join

block2489#join$between$block2489#join#then block2489#join#else

block2506#then

block2506#then#else

block2506#then#then

iter0block2492#join#join#join

iter0block2492#join#join#join#elseiter0block2492#join#join#join#then

block2492#join#join#join#then#join#join#join

block2492#join#join#join#then#join#join#join$between$block2492#join#join#join#join

block2502#then#join$between$block2502#join

block2502#join

block2493#join#else$between$block2488

block2489#join#join#then

block2492

block2490#join#then#join$between$block2490#join#join

block2490#join#join

block2497#join#then#then$between$block2496

block2496

block2486#join#else

block2486#join#else$between$block2486#join#join

block2492#join#join#then

block2492#join#join#join

iter0block2493#join#join#then#join#join#join$between$iter0block2493#join#join#join

iter0block2493#join#join#join

block2487#join#else

block2487#join#else$between$block2487#join#join

iter0block2492#then$between$block2492#then#then

block2492#then#then

iter0block2492#join#join#join#join#join#join#join#join#join#join#join#else

iter0block2492#join#join#join#join#join#join#join#join#join#join#join#else$between$iter0block2492#join#join#join#join#join#join#join#join#join#join#join#join

block2492#join#join#join#join#join#join#join#then#then

block2492#join#join#join#then#join#join#else

iter0block2492#then#join#join#join$between$iter0block2492#join

iter0block2492#join

iter0block2492#join#join#join#join#join#join#join#join#join#join

iter0block2492#join#join#join#join#join#join#join#join#join#join$between$block2492#join#join#join#join#join#join#join#join#join#join#else

iter0block2492#join#join#join#join#join#join#join#join#join#join#then

block2492#join#then#join

block2492#join#then#join#elseblock2492#join#then#join$between$block2492#join#then#join#then block2494#then#join#then

block2494#then#join#then$between$block2487

iter0block2492#join#join#join#join#join#join#join#join#join#join#join

iter0block2492#join#join#join#join#join#join#join#join#join#join#join#then

block2494#join#else

block2494#join#join

block2505#then

block2505#then$between$block2501

block2514#else

block2514#else$between$block2514#join

iter0block2492#join#join#join#join#join#else$between$iter0block2492#join#join#join#join#join#join

iter0block2492#join#join#join#join#join#join

block2486#then

block2486#then#else

block2486#join#then#join#else

block2486#join#then#join#join

block2492#join#then#then

block2492#join#then#then$between$block2496

block2493#then

block2493#join

block2514#then#then

block2515

block2492#join#join#join#then#join#join$between$block2492#join#join#join#then#join#join#then

block2492#join#join#join#then#join#join#then

block2492#join#join#join#join#join#join#join#then#join#join#then$between$block2488

block2493#join$between$block2493#join#elseblock2493#join#then

iter0block2492#join#join#join#join#join#join#then

iter0block2492#join#join#join#join#join#join#join

root

block2482

block2493#join#join#then#join

block2493#join#join#then#join$between$block2493#join#join#then#join#then block2493#join#join#then#join#else

block2510#then

block2510#then#else

block2510#then#then

block2504

block2492#join#join#join#join#join#join#join#join#else$between$block2488

iter0block2492#join#join#join#join#join#then$between$block2492#join#join#join#join#join#then#then

block2492#join#join#join#join#join#then#then

block2489#thenblock2489#else

block2487

block2487#elseblock2487#then

block2514

block2486

block2486#else

block2492#join#join#join#join#join#join#join#join#join#then#join#else

block2483

block2484

block2484$between$block2485

block2482#then block2482#else

iter0block2492#join#join#join#join#join#join#join#join#join#then#join#join#else

block2493#join#join#then#join#then$between$block2487

block2487#else$between$block2488

iter0block2492#join#else$between$iter0block2492#join#join

iter0block2492#join#join

block2492#join#join#join#join#join#then$between$block2492#join#join#join#join#join#then#then

block2498$between$block2500

block2500

iter0block2492#join#join#join#else$between$iter0block2492#join#join#join#join

iter0block2492#join#join#join#join#join#join#join#join#join#join#join#then#join$between$block2492#join#join#join#join#join#join#join#join#join#join#join#then#join#then

block2503$between$block2505

block2505

block2493#else

block2493#else$between$block2488

block2489#join#then

iter0block2492#join#join#join#join#join#join#join#join#join#join#join#then#join

iter0block2492#join#join#join#join#join#join#join#join#join#join#join#then#join#else

block2502

block2497

block2497#then block2497$between$block2497#else

block2499

block2499$between$block2500

block2492#elseblock2492#then block2493

block2493$between$block2493#else

block2494

block2494#then block2494#else

block2497#join#then#join$between$block2497#join#then#join#then

block2497#join#then#join#then

iter0block2497#join#then#join$between$block2497#join#then#join#then

block2482#join#join#then#then

block2482#join#join#then#then$between$block2483

block2490

block2490#then block2490#else

block2491

block2491#thenblock2491#else

iter0block2492#then#join#join#else

iter0block2492#then#join#join#join

block2487#join#then#then$between$block2488

block2492#join#join#join#then#then

block2492#join#join#join#then#then$between$block2496

iter0block2493#join#join#then#join#else

iter0block2493#join#join#then#join#join

block2492#join#join#join#join#join#join#join#join#join#then#join#join#join$between$block2492#join#join#join#join#join#join#join#join#join#join

block2492#join#join#join#join#join#join#join#join#join#join

iter0block2492#join#join#join#join#then

iter0block2492#join#join#join#join#join

block2494#then#join#join#join

block2494#then#join#join#join$between$block2494#join

iter0block2494#join

iter0block2489#then

iter0block2489#then#else

iter0block2489#then$between$block2489#then#then

block2492#join#join#join#then#join#then

iter0block2497#join#then#join#join#else

iter0block2497#join#then#join#join#join

block2487#join#then#then

block2491#then#else

block2492#join#join#join#join#join#join#join#join#join#join#join#then#join#else

block2492#join#join#join#join#join#join#join#join#join#join#join#then#join#join

block2492#join#join#else$between$block2488

iter0block2492#join#join#join#join#join#join#join#join#join#join#join#then#join#join#join$between$iter0block2492#join#join#join#join#join#join#join#join#join#join#join#join

iter0block2492#join#join#join#join#join#join#join#join#join#join#join#join

iter0block2492#join#join#join#join#join#join#join#then#join#join

iter0block2492#join#join#join#join#join#join#join#then#join#join$between$block2492#join#join#join#join#join#join#join#then#join#join#then

iter0block2492#join#join#join#join#join#join#join#then#join#join#else

block2492#join#then#else

block2497#join#then#join#then$between$block2487

iter0block2492#join#join#join#join#join#join#join#else

iter0block2492#join#join#join#join#join#join$between$block2492#join#join#join#join#join#join#else

block2492#else$between$block2492#join

block2492#join#join#join#join#join#then#join#join

block2492#join#join#join#join#join#then#join#join#else block2492#join#join#join#join#join#then#join#join$between$block2492#join#join#join#join#join#then#join#join#then

block2493#join#else

block2492#join#join

block2492#join#join$between$block2492#join#join#else

block2501$between$exit

exit

block2492#join#join#join#join#join#join#join#join#join

block2492#join#join#join#join#join#join#join#join#join#elseblock2492#join#join#join#join#join#join#join#join#join#then

block2494#then#then$between$block2496

block2492#then$between$block2492#then#then

block2494#join#join#then#else

block2494#join#join#then#join

iter0block2497#join#else$between$iter0block2497#join#join

iter0block2497#join#join

block2492#join#join#join#join#join#join#join#join#join#join#join#then$between$block2492#join#join#join#join#join#join#join#join#join#join#join#then#then

block2482#join#then$between$block2484

block2492#join#join#join#then#join#else

block2492#join#join#join#then#join#join

iter0block2494#then#join$between$block2494#then#join#then

block2492#join#then

block2492#join#then$between$block2492#join#then#then

block2492#join#join#join#join#join#then#join#join#join

block2500#join$between$block2501

block2492#join#join#join#join#join#join#join#join#join#join#join#then#join#join#then

block2492#join#join#join#join#join#join#join#join#join#join#join#then#join#join#then$between$block2488

block2487#join#join

block2489#then#join#then

block2489#then#join#then$between$block2488

block2492#join#then#join#then

block2492#join#then#join#then$between$block2487

iter0block2492#join#join#join#join#join#then#join#join

iter0block2492#join#join#join#join#join#then#join#join$between$block2492#join#join#join#join#join#then#join#join#then

iter0block2492#join#join#join#join#join#then#join#join#else

block2482#join#join#else

block2482#join#join#else$between$block2482#join#join#join

block2502#else$between$block2502#join

block2515$between$block2517

block2517

block2490#join#then#join

block2510#then#join

block2494#join#join#then#join#join#else

block2494#join#join#then#join#join#join

block2490#join#then#then$between$block2488

block2492#join#join#join#then$between$block2492#join#join#join#then#then

block2494#join#join#then#join#then

block2486#then#join

block2513#then$between$block2501

block2486#join#then#join#then$between$block2488

block2505#join

block2505#join$between$block2501

block2506#then#join$between$block2506#join

block2506#join

block2494#join#join#else$between$block2494#join#join#join

block2494#join#join#join

block2510#else

block2510#else$between$block2510#join

block2492#join#join#join#join#join#then#else

block2492#join#join#join#then#join#then$between$block2487

block2489#then#join

block2489#then#join#else block2489#then#join$between$block2489#then#join#then

block2510

block2489#then#else block2489#then$between$block2489#then#then

block2492#join#join#join#join#join#join#join#then#then$between$block2496

block2494#then#join#join#else

block2482#join#join#then#else

block2482#join#join#then#join

block2505#else

iter0block2494#then#else

iter0block2494#then#join

block2492#join#join#join#join#join#join#else$between$block2488

block2486#else$between$block2486#join

block2486#join#then#join

block2486#join#then#join#then

block2482#join#join#join$between$block2484

block2493#join#join#then#join#join

block2493#join#join#then#join#join$between$block2493#join#join#then#join#join#then

iter0block2489#then#join

block2492#join#join#join#join#join#then#join#join#join$between$block2492#join#join#join#join#join#join

block2492#join#join#join#join#join#else$between$block2492#join#join#join#join#join#join

block2492#join#join#join#join#join#join

iter0block2492#join#then#join#join$between$block2492#join#then#join#join#then

block2492#join#then#join#join#then

block2492#join#join#join#join#join#join#join#join#join#then#join#join#then$between$block2488

block2504$between$block2505

iter0block2492#join#join#join#join#join#else

iter0block2492#join#then$between$block2492#join#then#then

block2482#else$between$block2482#join

block2482#join

block2486#join#then#join#join$between$block2486#join#join

block2486#join#join

block2492#join#join#join#join#join#join#join#join#else

block2491#else$between$block2491#join

iter0block2493$between$block2493#else

iter0block2492#join#join#join#then#join#join#else

iter0block2492#join#join#join#then#join#join#join

block2492#then#join#join#then

block2492#then#join#join#then$between$block2488

block2492#join#join#join#join#join#join#join#then#join#join#else

block2492#join#join#join#join#join#join#join#then#join#join#join

block2492#join#join#join#join#join#then#join#then

block2492#join#join#join#join#join#then#join#then$between$block2487

block2513#else

block2513#join

iter0block2492#join#join#join#join#join#then#join

iter0block2492#join#join#join#join#join#then#join#else

iter0block2492#join#join#join#join#join#then#join$between$block2492#join#join#join#join#join#then#join#then

block2492#join#join#join#join#join#join#join#join#join#then#join$between$block2492#join#join#join#join#join#join#join#join#join#then#join#then

block2492#join#join#join#join#join#join#join#join#join#then#join#then

block2497#join#then#join#join#then$between$block2488

block2507$between$block2509

iter0block2489#join#join#join

iter0block2493

block2492#then#join#join#else

block2492#then#join#join#join

block2492#join#join#join#join#join#join#join#join#join#join#join#then

block2494#then#then

block2492#join#join#join#join#join#join#join#join#join#then#else

block2492#join#join#join#join#join#join#join#join#join#then#join

block2492#then#join#else

block2492#then#join#join

block2513#thenblock2500#then

block2492#join#join#join#join#join#then#join

block2490#else$between$block2488

block2492#join#join#join#join#join#join#join#join#join#join#join#then#join

block2492#join#join#join#join#join#join#join#join#join#join#join#then#join$between$block2492#join#join#join#join#join#join#join#join#join#join#join#then#join#then

block2486#join

block2486#join#then

block2517#join$between$block2518

iter0block2492#join#join#join#join#join#join#join#then#join

iter0block2492#join#join#join#join#join#join#join#then#join#else

iter0block2492#join#join#join#join#join#join#join#then#join$between$block2492#join#join#join#join#join#join#join#then#join#then

iter0block2494#then$between$block2494#then#then

iter0block2492#join#join#join#then$between$block2492#join#join#join#then#then

iter0block2492#join#join#join#then#else

iter0block2492#join#join#join#join#join#join#join#else$between$iter0block2492#join#join#join#join#join#join#join#join

iter0block2492#join#join#join#join#join#join#join#join

block2482#then#then

block2482#then#then$between$block2483

block2494#join#join#join#else

block2494#join#join#join#else$between$block2488

block2494#join#join#then#join#then$between$block2487

block2482#join#else

block2482#join#then

iter0block2492#then#join#else

iter0block2492#then#join#join

block2497#join#then#else

block2497#join#then#join

block2492#join#then#join#join#then$between$block2488

block2487#join#then#join$between$block2487#join#join

block2489#else$between$block2489#join

iter0block2492#join#join#join#join#join#then#else

block2494#then#else

block2494#then#join

block2514#join

block2492#join#join#join#join

block2490#join#then#else

block2492#join#join#join#join#join#join#else

iter0block2492#join#join#join#then#join#join#join$between$iter0block2492#join#join#join#join

block2506#else$between$block2506#join

block2497#else

iter0block2489#then#join$between$block2489#then#join#then

iter0block2497

iter0block2497$between$block2497#else

iter0block2497#then

block2497#join#then$between$block2497#join#then#then

block2497#join#then#then

iter0block2495

iter0block2495$between$block2489

iter0block2494

iter0block2494#then iter0block2494#else

iter0block2493#then

iter0block2492

iter0block2492#then iter0block2492#else

block2482#join#join

block2513#join$between$block2501

block2492#then#join#join$between$block2492#then#join#join#then

block2492#join#join#join#join#join#join#then

block2492#join#join#join#join#join#join#join

block2511$between$block2513

block2513

block2492#then#join

block2510#join

block2512

iter0block2489

iter0block2489#else

iter0block2489#join#join#else

block2494#join#join#then#join#join#join$between$block2494#join#join#join

block2491#join

block2492#join#join#join#join#join#then#join$between$block2492#join#join#join#join#join#then#join#then block2492#join#join#join#join#join#then#join#else

block2493#join#join#then#join#join#then$between$block2488

iter0block2492#join#join#join#join#join#join#join#join#then

iter0block2492#join#join#join#join#join#join#join#join#join

block2497#join#then#join#join$between$block2497#join#then#join#join#then

block2497#join#then#join#join#then

block2491#then#join

block2491#then#join$between$block2491#join

iter0block2492#join#join#join#join#join#join#join#join#join#then#join#join#join

iter0block2494#then#join#join

iter0block2494#then#join#join#else

iter0block2494#then#join#join$between$block2494#then#join#join#then

iter0block2493#join#join#then#join#join#else

iter0block2493#join#join#then#join#join#join

block2492#join#join#join#join#join#join#join#then#else

block2492#join#join#join#join#join#join#join#then#join

iter0block2492#join#join#join#join#join#join#join#join#join#join#join#then#join#join

block2492#join#join#join#then

block2482#join#join#then#join$between$block2482#join#join#join

block2482#join#join#join

block2492#join#join#join#join#join#join#join#then#join#join$between$block2492#join#join#join#join#join#join#join#then#join#join#then

block2492#join#join#join#join#join#join#join#then#join#join#then

iter0block2493#join#join#else

iter0block2493#join#join#else$between$iter0block2493#join#join#join

iter0block2497#join#then$between$block2497#join#then#then

iter0block2492#join#else

block2487#join#then#join

iter0block2492#join#join#join#join#join#join#join#join#join#join#join#then$between$block2492#join#join#join#join#join#join#join#join#join#join#join#then#then

block2492#join#join#join#join#join#join#join#join#join#then#then$between$block2496

block2490#join

block2493#join#join#then

block2493#join#join#then#else block2493#join#join#then#then

block2492#join#join#join#join#else

block2492#join#join#join#join#else$between$block2488

block2506#then#join

iter0block2497#join#then#join#else

iter0block2497#join#then#join#join

iter0block2489#join#join

block2487#join#then#else

iter0block2492#then#else

iter0block2493#join#join#then#else

iter0block2493#join#join#then#join

block2486#then#join#join$between$block2486#join

block2492#join#join#join#join#join#join$between$block2492#join#join#join#join#join#join#else

iter0block2492#join#then

iter0block2492#join#then#else

block2482#join#join#then

block2492#join#join#join#join#join#join#join#join#join#join#join#then#else

iter0block2492#join#join$between$block2492#join#join#else

iter0block2492#join#join#then

iter0block2494#join#then

iter0block2489#join#join#then

iter0block2497#join#then#join#join#join$between$iter0block2497#join#join

iter0block2492#join#join#join#join#join#join#join#join#join#join#join#then#else

block2494#join#join#then block2494#join#join#else

block2510#then#join$between$block2510#join

iter0block2492#join#join#join#join#join#join#join#join#join#then#join$between$block2492#join#join#join#join#join#join#join#join#join#then#join#then

block2492#join#then#join#join

iter0block2492#join#join#join#join#join#join#join#join#join#then

iter0block2492#join#then#join$between$block2492#join#then#join#then

block2492#join#then#join#join#else

block2492#join#then#join#join#join

block2492#then#then$between$block2496

iter0block2492#join#join#join#join

block2494#join#join#join#then

block2494#join#join#join#join

block2492#join#else

block2492#join#else$between$block2492#join#join

block2492#join#join#else

block2489#then#then

iter0block2497#join#join$between$block2489

iter0block2492#join#join#join#join#join#join#join#join#join#join#join#then#join#join#join

block2494#then#join$between$block2494#then#join#then

block2490#join#then#then

iter0block2492#then#join

block2512$between$block2513

block2489#then#join#join

block2489#then#join#join$between$block2489#join

block2492#join#join#join#join#join#join#join#join#join#then#join#join#join

block2492#join#join#join#join#join#join#join#join#join#join#else$between$block2488

block2493#join#join

block2494#join#join#then#then

iter0block2497#join#then#join#join$between$block2497#join#then#join#join#then

block2511

block2514#then#join$between$block2514#join

block2500#join

block2482#then#else

block2492#then#join#join#join$between$block2492#join

block2490#join#then

block2490#join#else

block2482#then#join$between$block2482#join

block2514#then#else

block2514#then#join

iter0block2493#join#join#then

iter0block2493#join#join#then#then

iter0block2492#then#join#join$between$block2492#then#join#join#then

block2516$between$block2517

block2494#join#join#join#join$between$block2488

block2494#else$between$block2494#join

block2492#then#else

iter0block2497#join#then#join

block2492#join#join#join#join#join#join#join#join#join#join#join#then#join#join$between$block2492#join#join#join#join#join#join#join#join#join#join#join#then#join#join#then

block2492#join#join#join#join#join#join#join#join#join#join#else

iter0block2492#join#join#join#join#join#join#join#join#join#then#join

block2492#join#join#join#join#join#join#join#else

block2492#join#join#join#join#join#join#join#else$between$block2492#join#join#join#join#join#join#join#join

block2492#join#join#join#join#join#join#join#join#join#then#join#then$between$block2487

block2502#then#join

block2494#then#join#join#then$between$block2488

block2514#then

block2492#join#join#join#join$between$block2492#join#join#join#join#else

iter0block2494#join$between$block2494#join#else

iter0block2494#else$between$iter0block2494#join

block2489#join#join

block2492#join#join#join#join#join#join#join#join#join#else$between$block2492#join#join#join#join#join#join#join#join#join#join

iter0block2492#join#join#join#then#join#join$between$block2492#join#join#join#then#join#join#then

block2494#join#join#then#join#join#then

iter0block2492#join#join#join#join#join#join#join#join#join#then#else

iter0block2492#join#join#join#join#join#join#join#then#join#join#join$between$iter0block2492#join#join#join#join#join#join#join#join

iter0block2489#then#join#join

iter0block2489#then#join#join$between$iter0block2489#join

block2492#join#then#join#join#join$between$block2492#join#join

block2482#then#join

iter0block2494#then#join#else

iter0block2497#join#then#else

iter0block2492#join#join#join#join#join#then

block2492#join#join#join#then#join#join#then$between$block2488

block2509#then

block2509#then$between$block2501

block2487#join

block2497#else$between$block2488

block2489#join#join#else

block2492#join#join#join#then#else

block2492#join#join#join#join#join#then#then$between$block2496

block2492#join#join#join#then#join

block2492#join#join#join#join#join#join#join#then$between$block2492#join#join#join#join#join#join#join#then#then

block2492#join

iter0block2497#join

block2494#then#join#join#then

block2494#then$between$block2494#then#then

block2486#join#then#else

iter0block2492#join#then#join

block2487#join#then

block2494#then#join#join$between$block2494#then#join#join#then

block2503

block2492#join#join#join#join#join#join#join#then#join#else

block2492#join#join#join#join#join#join#join#then#join#join

block2494#join#join#then#then$between$block2496

block2492#join#join#join#join#join#join#join#join#join#join$between$block2492#join#join#join#join#join#join#join#join#join#join#else

iter0block2492#join#join#join#join#join#join#join#join#join#then$between$block2492#join#join#join#join#join#join#join#join#join#then#then

iter0block2492#join#join#join#then#join#join

iter0block2497#join#else

iter0block2492#then#join$between$block2492#then#join#then

block2489#join#join#join

block2492#join#join#join#then#join$between$block2492#join#join#join#then#join#then

iter0block2492#join#then#join#else

block2500#else

iter0block2492#join#join#join#join$between$block2492#join#join#join#join#else

iter0block2492#join#join#join#join#join#join#join#join$between$block2492#join#join#join#join#join#join#join#join#else

iter0block2492#join#then#join#join

iter0block2489#then#join#else

block2492#join#join#join#join#then

iter0block2492#join#then#join#join#join$between$iter0block2492#join#join

block2492#join#then#join#join$between$block2492#join#then#join#join#then

block2518$between$exit

block2517#then

block2516

iter0block2492#else$between$iter0block2492#join

block2494#then#join#else

iter0block2492#join#then#join#join#else

iter0block2492#join#then#join#join#join

iter0block2492#join#join#join#join#join#join#join#then#join#join#join

block2492#then#join#then$between$block2487

block2490#join#else$between$block2490#join#join

iter0block2492#join#join#join#join#join#join#join#join#join#join#join#then#join#join#else

iter0block2492#join#join#join#join#join#join#join#join#join#join#join#then#join#join$between$block2492#join#join#join#join#join#join#join#join#join#join#join#then#join#join#then

block2507

block2506#else

iter0block2492#join#join#join#join#join#join#join#join#join#then#join#join#join$between$iter0block2492#join#join#join#join#join#join#join#join#join#join

block2506

block2502#else

block2508

block2492#join#join#join#join#join#join#join#then

block2494#then#join#join

iter0block2497#join#then

block2509#join$between$block2501

Fig. 2. The CFG of the method testEnded from DiskStoreSampleSender in the
Apache jMeter project. The listing on the left shows an excerpt of the Java code.
The method consists of only 55 lines but a combination of switch-cases, loops, and
complex exception handling results in complex control-flow. The right-hand side shows
the CFG. Each of the 659 nodes represents a block of straight-line bytecode instruc-
tions.

This approach is efficient as long as it is easy to find new models. In our
example, we would quickly cover everything other than line 7. In order to show
that line 7 is inconsistent, however, the theorem prover still has to show that all
complete paths through that line are infeasible. In this example, there are only
two such paths, so the prover will not struggle to solve this quickly. In practice,
however, the number of paths can be prohibitively large.

Fig. 2 shows an excerpt of a method from the Apache jMeter project and its
control-flow graph. This example shows that even a relatively small Java method
(here 55 lines) can result in very complex control-flow graphs. Our previous
algorithm is very fast at finding feasible paths through the first 600 of 659 nodes
in the graph. Finding paths for the remaining nodes, however, takes over 90
minutes, because the solver starts enumerating all paths through these nodes to
show the absence of feasible paths.

To avoid this worst-case enumeration of all paths, we propose a new algorithm
that learns conflict clauses from each infeasible path. These clauses then prune
entire subgraphs to show that no further models exist. We explain this approach
using the simple example from Fig. 1. Let us assume that we have already covered
all feasible paths in the method. What is left are two paths, one passing the lines 7

Conflict-Directed Graph Coverage 331

and 10, and the other passing the lines 7 and 11. Let us further assume that the
SMT solver first checks feasibility of the path through the lines 7 and 10. The
query for this check looks roughly as follows:

. . .

bases = null ∧
other �= null ∧
other �= null ∧
other.bases = null ∧
bases �= null ∧
other.bases �= null ∧
bases.hashCode() = other.bases.hashCode() ∧
ret = false

This formula is unsatisfiable because of the contradicting clauses other.bases =
null generated from line 7 and other.bases �= null generated from line 10.
Our algorithm extracts this conflict by computing a minimal unsatisfiable core
of the formula.2

A theorem prover would learn this conflict as well, however, it would be
unable to infer the clause other.bases �= null in the conflict also guards the
other path through line 7 directly. When reasoning about the control-flow, which
is typically implemented through Boolean variables intertwined with the actual
transition relations (e.g.,[6]), the solver would not consider the information that
it should not attempt any further path containing the learned conflict. In the
worst-case, this causes the theorem prover to enumerate many paths that are
known to be infeasible already. This problem has, e.g., been described in [10,13].

To avoid enumerating all paths, our algorithm checks if all paths through
line 7 must contain the clauses from this unsatisfiable core. To that end, it turns
the problem of finding the next path into a SAT problem. The structure of the
control-flow graph is encoded into a SAT formula which is constrained by the fact
that the node we want to cover must be used, that source and sink of the graph
must be used, and that no model is allowed that contains any of the learned
conflicts. Further, we give the solver additional propagation rules presented in
[3] that simplify reasoning about graphs. E.g., if the solver picks a transition
through one side of a diamond, we enforce that no transition on the other side
of the diamond can be chosen.

Using the learned conflicts and the knowledge about the structure of the
control-flow graph, we are able to establish the inconsistency of line 7 immedi-
ately without analyzing any further path and our algorithm terminates, reporting
line 7 to be inconsistent. We discuss our algorithm in more detail in Section 4.

Note that for a small example such as the one shown in Fig. 1, our algo-
rithm will typically be less efficient than a simple algorithm that enumerates
2 The following argument is unchanged if the solver instead found the unsat core
bases = null and bases �= null.

332 D. Schwartz-Narbonne et al.

all infeasible paths explicitly because computing unsatisfiable cores is relatively
expensive. Our algorithm targets big problems where existing algorithms fail
because of the enormous number of paths. In particular, for the example shown
in Fig. 2, our new algorithm manages to identify infeasible subgraphs efficiently
using the computed conflict clauses, ruling out many complete infeasible paths
simultaneously. The method testEnded can therefore be analyzed in less than 1
minute compared to the 90 minutes with our previous algorithm. This example
shows that our new approach leads to a significant performance improvement if
inconsistencies can be detected locally. If inconsistencies can not be generalized
to larger subgraphs, we will not see any performance gain as our algorithm will
fall back to enumerating individual infeasible paths. However, our evaluation in
Section 5 shows that, in practice, inconsistencies in real code often generalize
and, hence, our new algorithm works much better.

3 Preliminaries

We represent programs as control-flow automata where program statements are
encoded directly in terms of their transition relations, expressed as formulas in
first-order logic. We assume standard syntax of such formulas and we assume
that their semantics is given by some appropriate first-order theory that we
leave unspecified. We only assume that all values used for the interpretation
of formulas are drawn from a fixed set V . As usual, for a formula φ with free
variables X and a valuation σ : X → V , we write σ |= φ to indicate that σ
satisfies φ.

We fix a set of variables X , which we call program variables. In order to be
able to reason over the states in a program execution, we define a sequence of
variable sets {X 〈i〉}i∈N. We use the variables in X 〈i〉 to describe a program state
that has been reached after executing i statements in the program. Note that for
a loop free program, X 〈i〉 is effectively equivalent to SSA form [7,12]. Formally,
define X 〈0〉 = X and for all i > 0, let X 〈i〉 be a set of variables that is of equal
cardinality than X and pairwise disjoint from all other X 〈j〉, j �= i. Let ·〈1〉 be
a bijective function that maps the variables X 〈i〉 to the variables X 〈i+1〉, for all
i ∈ N. For a variable x we denote by x〈i〉 the result of applying this function i
times to x. We extend this shift function to formulas as expected.

Now, a program P is formally defined as a tuple (L,T , �0, �f) where

– L is a finite set of control locations,
– T is a finite set of statements (�, ϕ, �′) with �, �′ ∈ L and ϕ a formula over

the variables X ∪ X ′,
– �0 ∈ L is the initial location, and
– �f ∈ L is the final location.

For a statement τ = (�, ϕ, �′) we define start(τ) = �, end(τ) = �′, and tr(τ) = ϕ.
We call tr(τ) the transition formula of τ .

A state s = (�, σ) of a program P consists of a program location � and a
valuation of the program variables σ : X → V . We denote the location of a state

Conflict-Directed Graph Coverage 333

s by loc(s) and its valuation by val(s). For a valuation σ : X → V and i ∈ N,
we define σ〈i〉 : X 〈i〉 → V such that for all x ∈ X , σ〈i〉(x〈i〉) = σ(x). Similarly,
we define s〈i〉 = (�, σ〈i〉) for a state s = (�, σ).

A path π of program P is a finite sequence τ0, . . . , τn of P ’s statements such
that start(τ0) = �0, end(τn) = �f , and for all i ∈ [0, n), end(τi) = start(τi+1). We
extend transition formulas from statements to paths by defining

tr(π) = tr(τ0)〈0〉 ∧ · · · ∧ tr(τn)〈n〉 .

We call tr(π) the path formula of π. A path formula encodes the executions of
the path. That is, projecting a model σπ of π onto the variables X 〈i〉 yields
val(s〈i〉), the valuation of the i-th state s in the execution.

We call a path π feasible if its path formula is satisfiable. A statement τ ∈ T
is inconsistent if it does not occur on any feasible path of P .

Finally, we define a preorder � on statements that captures the notion of
domination in control flow graphs: for τ1, τ2 ∈ T we have τ1 � τ2 iff for every
path π of P , if τ2 occurs on π, then so does τ1. We write τ1 ∼ τ2 if τ1 � τ2 and
τ2 � τ1. Finally, for τ ∈ T , we denote by [τ]∼ the equivalence class of τ in the
quotient set that is induced by the equivalence relation ∼. The following lemma
states that inconsistency propagates along the domination relation, which gives
rise to certain optimizations during inconsistency detection.

Lemma 1. Let τ1 and τ2 be statements of a program. If τ1 � τ2 and τ1 is
inconsistent, then so is τ2.

4 Algorithm

Our method for detection of infeasible code operates over loop-free graphs, and
we assume that the input programs are loop-free. We refer the reader to existing
work (e.g. [18] and [28]) that describes the algorithms for sound loop abstraction
in the context of inconsistent code detection. Program statements are encoded
in SSA form [7,12].

4.1 Main Procedure

The main procedure Cover is described in Algorithm 1. Cover takes a loop-free
control-flow graph as input and returns the set of statements C that can occur
on feasible paths.

The procedure Cover starts by collecting the set of all statements that need
to be discharged (i.e., proven inconsistent, or covered by a feasible path) in the
set S, and setting the set C to empty.

In each iteration of the main loop, the procedure then tries to cover a state-
ment τ from S, or prove that it is inconsistent. The statement τ is picked
using the procedure FindMaxElement. This procedure takes the set of not-
yet-covered statements S, the control-flow graph cfg, and returns the statement
τ ∈ S that is maximal with respect to the pre-order � defined in Section 3. The

334 D. Schwartz-Narbonne et al.

Algorithm 1. Cover
Input: The control-flow graph cfg.
Output: The set C of statements that occur on feasible complete paths in cfg.
begin

S ← GetStatements(cfg) ;
C ← ∅ ;
repeat

τ ← FindMaxElement(cfg, S);
π ← FeasiblePath(cfg, τ) ;
if π = ⊥ then

S ← S \ [τ]∼ ;
else

S ← S \ π ;
C ← C ∪ π ;

end if

until S = ∅;
return C;

end

intuition behind this choice is two-fold. First, we aim at covering a particular
node, and we focus the underlying solver on the sub-graph of paths that contain
it. Second, by picking a τ to be �-maximal, we make sure that this sub-graph
is indeed reduced since it will exclude the nodes that are �-sibling to τ (i.e.
branches adjacent to τ).

The statement τ returned by FindMaxElement is then delegated to the
FeasiblePath procedure that checks whether there exists a feasible path through
this particular statement. If such a path π exists, all statements in π are then
removed from S, since they are also covered by π. Otherwise, if no such path
exists, the statement τ is discharged as inconsistent along with all the nodes in
its equivalence class [τ]∼ (by Lemma 1).

This procedure repeats this loop until the set of statements S becomes empty,
implying that it has discharged all statements. Since in each loop iteration at
least one statement is removed from S, the procedure is guaranteed to terminate.

4.2 Finding Feasible Paths

Algorithm 2 describes the FeasiblePath procedure that discharges inconsistency
of a particular statement τ . The procedure takes as input the loop-free control-
flow graph cfg, and the statement τ in cfg, and either returns ⊥, if τ is incon-
sistent in cfg, or a feasible full path π that contains τ .

Algorithm 2 implements a typical CDCL-style search loop where path can-
didates are generated, while learning from unsuccessful attempts, until either a
full solution is found (a feasible path), or it can be shown that no such path
can exist. The set of conflicts encountered during the search is kept in the set
conflicts that is initialized to the empty set. Each conflict is a set of statements

Conflict-Directed Graph Coverage 335

Algorithm 2. FeasiblePath
Input: The control flow graph cfg and the statement τ to be discharged.
Output: A feasible complete path π that covers τ , or ⊥ if τ is inconsistent.
begin

conflicts ← ∅ ;
while true do

π ← FindPath(cfg, τ , conflicts) ;
if π = ⊥ then

return ⊥
if CheckSat(π) then

return π ;
else

core ← UnsatCore(π) ;
conflicts ← conflicts ∪ {core} ;

end if

end while

end

such that any full path that includes all statements of the conflicts can not be
feasible.

In each iteration of the loop, the procedure first picks a candidate path π
from the cfg using the procedure FindPath. The procedure FindPath takes as
input the control-flow graph, the statement τ , and the set of learned conflicts,
and returns a complete path through τ that does not contain any of the already
known conflicts. This path need not be feasible, i.e. the only requirement on
FindPath is that the path must be complete and not pass through any of the
conflicts discovered so far. This can be implemented using a simple call to a SAT-
solver, and does not require any SMT reasoning, making it very efficient. Our
implementation uses a dedicated path solver for control-flow graphs [3] available
in the Princess theorem prover.

If FindPath returns that no path through τ exists, we have a proof that τ
is inconsistent, and we return ⊥. Otherwise, we take the candidate path π and
check whether it is feasible by calling the Princess theorem prover [24] to check if
the formula tr(π) is satisfiable. If so, we know that τ is not inconsistent and the
algorithm returns the path π. If tr(π) is unsatisfiable, the procedure computes a
minimal unsatisfiable core of tr(π). 3 Since any path that includes all statements
from the core will also be infeasible, the core is then added to the conflict set.

The FeasiblePath procedure terminates because each iteration of the loop
either leaves the loop directly, or learns one new conflict. Each conflict eliminates
a set of paths from the control-flow graph (in the worst-case only π). That is,

3 Our current implementation finds the minimal core by taking the full path and then
removing each statement that can be removed while keeping unsatisfiability. This is
feasible only because path satisfiablity is very efficient to check.

336 D. Schwartz-Narbonne et al.

since the set of paths in the control-flow graph is finite, the algorithm terminates
eventually.

If the unsatisfiable cores that the procedure computes always contain the full
paths, the procedure can diverge into complete path enumeration. However, in
practice, our algorithm detects inconsistent code without enumerating all paths,
as shown in our evaluation on some challenging real-world problems.

4.3 Details of the FindPath Function

Our algorithm works for any implementation of FindPath that computes, given
the control-flow graph, the statement τ to be covered, and the set of conflicts, a
single complete path through τ . Computing such paths reduces to the well-known
problem of finding hitting sets, and is in general NP-hard [21]; it is therefore
meaningful to employ a theorem prover or SAT solver for computing such paths.

Our implementation of FindPath uses the control-flow theory developed in
[3], which provides a tailor-made propagator for reasoning about control-flow
graphs. This propagator can be loaded as a plug-in into a theorem prover, and
ensures that only models are computed that correspond to single, complete paths
in the graph, reducing the number of explicit Boolean clauses needed to encode
those constraints.

5 Evaluation

We evaluated our algorithm by comparing it against the algorithm from our
Joogie tool [4]. The algorithm in Joogie uses a greedy path cover strategy to find
all feasible paths. To that end, it used a special theory in the SMT solver that
allows it to reason about the control-flow more efficiently [3]. Our implementation
uses the same theory when searching for new paths. For comparability, both
algorithms use Princess as the underlying SMT solver. The code of all algorithms
and all benchmark problems are available online [26].

Setup. We compare the two algorithms on a set of open-source programs. Both
algorithms are applied to each procedure in these programs. That is, the algo-
rithms do not perform inter-procedural analysis. The task is to find all incon-
sistent statements in each individual procedure. Since both algorithms use the
same front-end and the same loop abstraction, the set of inconsistent statements
is the same in both cases.

Each algorithm is given ten minutes per procedure before it is stopped by a
timeout. Procedures that timeout are counted as ten minutes computation time.
The goal of the experiment is to show that our algorithm times out less often
and is able to analyze the benchmark programs faster. We do not discuss the
inconsistent code that was found as this would exceed the scope of this paper.
For the interested reader, we provide some examples of inconsistent code that
we found and fixed in our wiki.4

4 https://github.com/martinschaef/gravy/wiki/Bugs-found-so-far

https://github.com/martinschaef/gravy/wiki/Bugs-found-so-far

Conflict-Directed Graph Coverage 337

Table 1. Results of running the Conflict-Directed Inconsistency Detection algorithm
against the optimized algorithm from [3]. The algorithms are applied to each procedure
in isolation. The timeout per procedure is 10 minutes. The time shown is the overall
running time from start to end including logging, etc. All experiments are carried out
on a 2.8 GHz i7 with 16GB memory. The JVM is started with -Xmx4g -Xms4g -Xss4m.

Joogie Algorithm New Algorithm

Benchmark # procedures KLOC time timeouts time timeouts

Ant 10,563 271 23,150s 34 13,136s 12
Bouncy Castle 10,692 461 8,002s 7 8,499s 6

Cassandra 1,110 237 1,073s 1 969s 1
jMeter 3,712 114 7,302s 11 2,833s 2
Log4j 2,836 65 2,950s 4 1,960s 1

Maven (Core) 2,307 43 2,793s 4 1,192s 1

Our benchmark suite consists of a variety of open-source Java programs (see
Table 1). For each benchmark program, we used the source code available from
GitHub at the day of submission for our experiments. Benchmark programs are
translated into Boogie [23] which serves as the input language to our algorithm.
The translation is sound for large parts of the Java language but abstracts certain
language features such as multithreading and reflection. Looping control-flow
and procedure calls are eliminated using the sound abstraction described in [18].
We do not discuss translation and abstraction in further detail. However, we
emphasize that both algorithms in our experiments use the exact same code
for the abstraction to ensure that the results are comparable. Details on the
translation can be found on the website mentioned above.

Results. Table 1 shows the results of our experiment. The first three columns
show the name of each benchmark, the total number of analyzed procedures, and
the number of lines of code in thousands (excluding comments). Column four
and five show the computation time and the number of timeouts for the Joogie
algorithm, and the last two columns show the same for our Conflict-Directed
Inconsistency Detection Algorithm.

For all benchmarks, we can see a reduction in the number of timeouts. For
all benchmarks other than Bouncy Castle, the new algorithm was also faster
then the old algorithm; for Bouncy Castle, it took slightly longer but succeeded
on more procedures. For Ant, our new algorithm is almost twice as fast and
only has one third of the timeouts. The large difference in computation time
can mostly be attributed to the number of timeouts. Without considering the
procedures that timeout, both algorithms take roughly the same amount of time.
Most of the procedures for which the old algorithm timeouts are of a similar
nature to the one in Fig. 2 of Section 2: a large control-flow graph, where a small
subgraph is inconsistent. Our algorithm can establish the inconsistency after
learning clauses from a few infeasible paths (in our experiments, the algorithm
never needed to learn more than 10 conflicts). The old algorithm, on the other

338 D. Schwartz-Narbonne et al.

Table 2. Distribution of timeouts per benchmark. Column 2 is the number of pro-
cedures where the old algorithm succeeded within 10 minutes, but the new algorithm
timed out. The third column shows the number of procedures in that benchmark where
the new algorithm succeeded within 10 minutes, but the old algorithm timed out. The
final column shows the number of examples where both algorithms timed out.

Benchmark # Joogie Better # New Algorithm Better Both timeout

Ant 1 23 11
Bouncy Castle 0 1 6

Cassandra 0 0 1
jMeter 0 9 2
Log4j 1 4 0

Maven (Core) 0 3 1

Table 3. Distribution of computation time per benchmark. For the respective algo-
rithm, we show the percentage of procedures that can be analyzed in less than a second,
more than one second, more than 100 seconds, and more than 300 seconds.

Joogie Algorithm New Algorithm

Benchmark ≤ 1s > 1s > 100s > 300s ≤ 1s > 1s > 100s > 300s

Ant 97.73 % 2.26 % 0.35 % 0.33 % 97.88 % 2.11 % 0.23 % 0.16 %
Bouncy Castle 98.87 % 1.11 % 0.18 % 0.09 % 98.88 % 1.12 % 0.16 % 0.08 %

Cassandra 98.46 % 1.53 % 0.27 % 0.09 % 98.46 % 1.53 % 0.18 % 0.09 %
jMeter 98.16 % 1.83 % 0.32 % 0.32 % 98.27 % 1.72 % 0.18 % 0.13 %
Log4j 98.80 % 1.19 % 0.17 % 0.14 % 98.80 % 1.19 % 0.17 % 0.14 %

Maven (Core) 97.83 % 2.16 % 0.17 % 0.17 % 98.17 % 1.82 % 0.08 % 0.04 %

hand, starts enumerating all paths which is impractical for problems of that size
and therefore leads to a timeout after ten minutes.

Table 2 shows the relative timeouts between the two algorithms. The first
column shows the name of the benchmark. The second column shows the number
of procedures in that benchmark where the old algorithm succeeded within 10
minutes, but the new algorithm timed out. The third column shows the number
of procedures in that benchmark where the new algorithm succeeded within 10
minutes, but the old algorithm timed out. The final column shows the number
of examples where both algorithms timed out. For all benchmarks, the new
algorithm had significantly fewer timeouts than the old algorithm.

Table 3 shows the distribution of computation time per benchmark in more
detail. For both algorithms, the table shows the fraction of procedures that can
be analyzed in less than a second, over a second, over 100 seconds, and over 300
seconds (with a timeout of 600 seconds). The table shows that our new algorithm
has the most impact on procedures in the range above 100 or 300 seconds. That
is, while we see improvements across all columns, our algorithm is particularly
strong on procedures where the old algorithm struggles.

The performance difference between the two algorithms would become more
visible if we would not timeout the algorithms after 10 minutes. For example,

Conflict-Directed Graph Coverage 339

for the procedure from Fig. 2 of Section 2 the old algorithm took over 90 min-
utes where the new algorithm took less than one minute. However, running
the experiments without timeout on such a large corpus of benchmarks seemed
impractical.

Threats to Validity. Although the benchmark applications is a potential threat
to validity, we tried to select a diverse set of benchmark programs ranging from
desktop applications (Log4j and Ant), over web applications (Cassandra), to
cryptographic code (Bouncy Castle). Further, since both algorithms share a
common front-end, we are confident that neither the selection of benchmarks
nor the infrastructure is biased towards one of the algorithms.

Another potential threat to validity is the choice of the SMT solver. We
chose Princess because it is the only solver that provides the CFG-theory [3],
which we found to be vital for finding paths efficiently. During the development
of our algorithm we tested whether the timeouts that we encountered in the old
algorithm are specific to Princess. To that end, we exported several of our hard
queries into the SMT-LIB format and checked them with Z3 [14], which also
timed out.

6 Related Work

The concept of inconsistent code has been presented in several works (e.g., [4,
15,28]), sometimes under different names such as infeasible code [9], doomed
program points [18], or deviant behavior [16]. The approaches in [4,9,18,28] and
a similar approach in [20] are based on deductive verification. In [4] and on our
website [25] we demonstrate that these approaches can identify relevant coding
mistakes even in mature code.

The algorithm presented in this paper can extend any of these approaches.
The approach in [15] is based on a type-checking approach but unfortunately, no
tool is available for comparison. Most compilers have built in data-flow and type-
checking tools as well to detect inconsistent code. For example, most compilers
do not allow the use of uninitialized variables, which can be seen as a form of
inconsistency. Due to the simpler reasoning, these tools only detect a subset of
what can be detected with deductive verification-based approaches but are also
significantly faster.

The approach of Engler et al. in [16] uses syntactic pattern matching and is
therefore not directly comparable. Other syntactic tools, such as Findbugs [19]
also detect a certain set of inconsistencies but have the usual limitations in terms
of precision.

Inconsistent code detection has several other applications beyond finding
coding mistakes. For example, [20] uses a variation of our algorithm to check
reachability of annotated code. Our algorithm can be used in the same way and,
beyond that, can identify code that must violate other specification statements.
That is, our approach can be extended to debug functional specification in the
spirit of [17], [11], and [8].

340 D. Schwartz-Narbonne et al.

Identifying all statements in a program that occur on feasible paths also has
applications for the generation of verification counterexamples. Usually, deduc-
tive verification returns only one counterexample if the proof of the desired
property fails. This can be time consuming as the verification has to be re-run
very often. In [2], we have presented an approach how a coverage algorithm like
the one presented in this paper can be used to identify all assertions in a proce-
dure that may fail. This is closely related to other techniques that find multiple
counterexamples for one verification attempt, such as [5], and also related to the
problem extracting error traces from theorem prover models as presented in [22].

7 Conclusion

We have proposed a new algorithm for finding feasible paths in a program that
satisfy certain coverage criteria. The algorithm makes application-specific mod-
ifications to the core components of an SMT solver in order to accelerate the
search in complex control-flow graphs. We have used our algorithm to find code
inconsistencies in large Java programs and showed that we gain significant per-
formance improvements compared to previous algorithms. We believe that the
usefulness of our algorithm extends beyond inconsistent code detection to appli-
cations with different coverage notions such as those used in concolic testing.

Acknowledgments. This work was in part supported by the NASA contract NNX14-
AI05A and the NSF grant CCS-1350574. The content is solely the responsibility of the
authors and does not necessarily represent the official views of NASA or NSF.

References

1. The legion of the bouncy castle. https://www.bouncycastle.org/
2. Arlt, S., Rubio-González, C., Rümmer, P., Schäf, M., Shankar, N.: The gradual

verifier. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp.
313–327. Springer, Heidelberg (2014)

3. Arlt, S., Rümmer, P., Schäf, M.: A theory for control-flow graph exploration.
In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 506–515.
Springer, Heidelberg (2013)

4. Arlt, S., Schäf, M.: Joogie: infeasible code detection for java. In: Madhusudan, P.,
Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 767–773. Springer, Heidelberg
(2012)

5. Ball, T., Naik, M., Rajamani, S.K.: From symptom to cause: localizing errors in
counterexample traces. SIGPLAN Not., 97–105 (2003)

6. Barnett, M., Leino, K.R.M.: Weakest-precondition of unstructured programs. SIG-
SOFT Softw. Eng. Notes, 82–87 (2005)

7. Barnett, M., Leino, K.R.M.: Weakest-precondition of unstructured programs. ACM
SIGSOFT Software Engineering Notes 31, 82–87 (2005)

https://www.bouncycastle.org/

Conflict-Directed Graph Coverage 341

8. Beer, I., Ben-David, S., Eisner, C., Rodeh, Y.: Efficient detection of vacuity in
ACTL formulas. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 279–290.
Springer, Heidelberg (1997)

9. Bertolini, C., Schäf, M., Schweitzer, P.: Infeasible code detection. In: Joshi, R.,
Müller, P., Podelski, A. (eds.) VSTTE 2012. LNCS, vol. 7152, pp. 310–325.
Springer, Heidelberg (2012)

10. Bjørner, N., Dutertre, B., de Moura, L.: Accelerating lemma learning using joins-
DPLL (join). In: Int. Conf. Logic for Programming, Artif. Intell. and Reasoning,
LPAR (2008)

11. Chockler, H., Kupferman, O., Vardi, M.Y.: Coverage metrics for temporal logic
model checking. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031,
pp. 528–542. Springer, Heidelberg (2001)

12. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph.
TOPLAS, 451–490 (1991)

13. de Moura, L., Bjørner, N.: Relevancy propagation. Technical Report MSR-TR-
2007-140, Microsoft Research (2007)

14. de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

15. Dillig, I., Dillig, T., Aiken, A.: Static error detection using semantic inconsistency
inference. In: PLDI (2007)

16. Engler, D., Chen, D.Y., Hallem, S., Chou, A., Chelf, B.: Bugs as deviant behavior:
A general approach to inferring errors in systems code. In: Proceedings of the
Eighteenth ACM Symposium on Operating Systems Principles, SOSP 2001, pp.
57–72. ACM, New York (2001)

17. Gheorghiu, M., Gurfinkel, A.: Vaquot: A tool for vacuity detection. Technical
report. In: Proceedings of Tool Track, FM 2006 (2005)

18. Hoenicke, J., Leino, K.R., Podelski, A., Schäf, M., Wies, T.: Doomed program
points. Formal Methods in System Design (2010)

19. Hovemeyer, D., Pugh, W.: Finding bugs is easy. ACM Sigplan Notices 39(12),
92–106 (2004)

20. Janota, M., Grigore, R., Moskal, M.: Reachability analysis for annotated code. In:
SAVCBS (2007)

21. Karp, R.M.: Reducibility among combinatorial problems. In: Symposium on the
Complexity of Computer Computations, The IBM Research Symposia Series, pp.
85–103. Plenum Press, New York (1972)

22. Leino, K.R.M., Millstein, T.D., Saxe, J.B.: Generating error traces from
verification-condition counterexamples. Sci. Comput. Program. 55(1–3), 209–226
(2005)

23. Leino, K.R.M., Rümmer, P.: A Polymorphic intermediate verification language:
design and logical encoding. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010.
LNCS, vol. 6015, pp. 312–327. Springer, Heidelberg (2010)

24. Rümmer, P.: A constraint sequent calculus for first-order logic with linear integer
arithmetic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS,
vol. 5330, pp. 274–289. Springer, Heidelberg (2008)

342 D. Schwartz-Narbonne et al.

25. Schäf, M.: Bixie: Find contradictions in java code (2014). http://www.csl.sri.com/
bixie-ws/

26. Schäf, M.: Gravy website (2014). https://github.com/martinschaef/gravy
27. Silva, J.P.M., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In:

Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol.
185, pp. 131–153. IOS Press (2009)

28. Tomb, A., Flanagan, C.: Detecting inconsistencies via universal reachability anal-
ysis. In: ISSTA, pp. 287–297 (2012)

29. Wang, X., Zeldovich, N., Kaashoek, M.F., Solar-Lezama, A.: Towards optimization-
safe systems: analyzing the impact of undefined behavior. In: SOSP, pp. 260–275.
ACM (2013)

http://www.csl.sri.com/bixie-ws/
http://www.csl.sri.com/bixie-ws/
https://github.com/martinschaef/gravy

Shape Analysis with Connectors

Holger Siegel and Axel Simon(B)

Institut für Informatik II, Technische Universität München, Garching, Germany
{holger.siegel,axel.simon}@in.tum.de

Abstract. We extend off-the-shelf shape analyses with the ability to
infer numeric relations between directly or indirectly connected heap
cells. Specifically, we introduce the concept of connectors, an instrumen-
tation that retains relations between heap cells even if these cells are
merged into summary nodes. Managing connectors is based on apply-
ing generic fold and expand operations on a numeric abstract domain.
Connectors are thus a universal tool to enhance shape analyses with any
numeric analysis. We show how connectors provide the ability to infer
invariants of non-trivial heap structures such as sorted/skip lists and
search trees.

1 Introduction

Proving the absence of NULL- and dangling pointer dereferences in heap-ma-
nipulating programs requires the ability to deal with an a priori unbounded
number of heap cells. The problem of summarizing these heap cells into a finite
set of abstract heap cells is known as shape analysis. Traditionally, the shape of
the heap is described using a logic such as separation logic [14] or three-valued
logic analysis (TVLA) [15]. The challenge of both approaches is the synthesis of
appropriate predicates that are able to express the invariants in the program.

While this challenge has been addressed quite successfully for the synthesis
of shape predicates, the synthesis of numeric invariants remains a stronghold of
numeric abstract domains. This paper therefore addresses how to combine an
analysis of heap shapes with the inference of numeric relations on the contents of
heap cells. Such a combination is a prerequisite to expressing invariants for sorted
lists, search trees and other common data structures. The presented analysis
extends any shape analysis that summarizes and materializes nodes in a graph
that represents the abstracted heap. We therefore consider the actual shape
analysis to be an oracle that informs our analysis about nodes that are combined
into summaries and about accesses to nodes. In the latter case, we assume that a
summarized node is being materialized. For the sake of the introduction, we also
assume that the underlying shape analysis removes infeasible points-to edges.

Consider the sorted list in Fig. 1a) that is summarized into a single summary
node in Fig. 1b). When analyzing the numeric content using the abstract domain

This work was supported by DFG Emmy Noether programme SI 1579/1.

c© Springer International Publishing Switzerland 2015
K. Havelund et al. (Eds.): NFM 2015, LNCS 9058, pp. 343–358, 2015.
DOI: 10.1007/978-3-319-17524-9 24

344 H. Siegel and A. Simon

a)

1 2 3

b)

[1,3]

c)

1 3 2

Fig. 1. Summarizing a linked list

of polyhedra [2], the cell content reduces to 1 ≤ x ≤ 3 that we abbreviate by
the interval notation x ∈ [1, 3]. Note that summarizing the heap has discarded
any information about the order of list elements. Figure 1c) shows one possible
materialization of this summary where the order of list elements is not preserved.

The central idea is to construct so-called connectors between heap nodes that
allow numeric domains to infer numeric relations between the nodes. Figure 2a)
shows the connectors attached to the same three-element list as in Fig. 1a).
Each connector holds copies of the contents of the cells that it connects. When
summarizing the cells containing one and two, the connector between them stays
on the edge that thereby points from the summary node to itself. When folding
the next node onto the summary, the cell content and the connector are folded
in unisono, yielding the state in Fig. 2b). The connector retains the invariant
that the successor of each node contains the next larger value. When a cell is
materialized from the summary, the corresponding connector is expanded too, as
done in Fig. 2c). Once it is certain that one cell points to another, the content of
the corresponding connector is equated to the two cells it connects. For instance,
upon accessing the second list node, another cell and connector is materialized
before the first connector a, a + 1 is equated with the first and the new second
heap cell. The equated connector can now be removed, yielding the heap in
Fig. 2d). Note how equating the connector has restricted the content of the first
cell to a ∈ [1, 2] and that of the second cell to a + 1 ∈ [2, 3].

The connectors presented so far are one-step connectors. They are sufficient
to express relations between neighboring nodes like sortedness properties, but
they cannot express invariants of search trees, namely, that e.g. all elements
reachable via the right branch of a node contain a greater value than the node
itself. transitive properties like reachability. In order to express these reachability
invariants, we additionally introduce transitive connectors that express a numeric
relation between a cell and all cells that are transitively reachable from this cell.

In summary, we present an inference of numeric heap invariants that is generic
in the shape analysis and in the numeric domains, based on these novel ideas:

– We use generic relational fold and expand operators [16] to infer numeric
relations using any numeric domain. This improves over the state-of-the-art
of tracking a fixed set of predicates as part of the shape analysis.

– We introduce the concepts of one-step and transitive connectors that express
the relation between nodes on the heap. The handling of connectors is linked
to the operations of a shape analysis which is a parameter of our framework.

– We illustrate how several important data structure invariants can be inferred.

Shape Analysis with Connectors 345

a)
1 1

2 2

3

2

3

b)
[1,3]

c

c+1

c)

[1,3]

[1,3]

a

a+1
c

c+1

d)

[1,2] [2,3]

[1,3]

b

b+1
c

c+1

Fig. 2. Summarizing a linked list with one-step connectors

After presenting an interface to existing shape analyses and numeric domains,
Section 3 introduces one-step connectors and details the interaction between the
shape analysis and our connectors. Section 4 presents transitive connectors, fol-
lowed by an example of their application to complex data strutures. Section 6
presents experimental resultsbeforeSection7discusses relatedworkandconcludes.

2 Preliminaries

This section introduces the interface to an off-the shelf shape analysis and details
necessary operations on the numeric domain.

2.1 Interface to the Shape Analysis

Let M denote a set of non-overlapping memory regions, consisting of heap-
allocated cells and stack variables. Each region contains of a set of non-overlapping
fields that are written A.l with A ∈ M and l ∈ Σ where Σ denotes the set of all
field names. As a convention, we write A.x, A.y for fields containing numeric val-
ues and A.p, A.q for fields containing pointers, although a field may contain either,
a pointer or a value. For brevity, a stack variable S.x is also written as x.

In order to be agnostic to the employed shape analysis, we define an interface
that the shape analysis must implement and that is sufficient to infer connectors.
Let S denote the set of abstract heap shapes and N denote an abstract numeric
domain. Each state s ∈ S of the shape analysis is paired with a numeric state
n ∈ N that holds valuations for all fields that contain numeric values, that is,
A.x and A.y are variables in the numeric domain. We assume that the transfer
function of assignment, tests etc. modify the numeric domain accordingly.

The interface between the shape analysis and our connector inference is given
by only four functions. These may already be implemented by the shape analysis
in order to summarize the numeric content of a cell. In this case, they have to
be redirected to our connector inference. The four operations are as follows:

– Operation foldS,C merges the content of C (usually a concrete node) with
that of S (usually a summary node), thereby removing all information on
C. In the numeric domain, all fields C.xi are folded onto the respective

346 H. Siegel and A. Simon

fields S.xi. The connector inference translates each call foldS,C to a call
foldS S1...Sn, C C1...Cn

that simultaneously folds nodes S and C and the nodes
Si, Ci that are stored in the connectors attached to S and C. By this, the
numeric invariant of Fig. 2b) is inferred.

– Operation expandS,C is the inverse of operation fold. It duplicates the infor-
mation in memory region S to a new memory region C. Its effect on the
numeric domain and the connectors are symmetrical to those of fold, allowing
to restore the numeric properties of the expanded memory region as shown
in Fig. 2c). Both, the fold and expand mechanisms, are detailed below.

– Operations assume(C.f �→ D) and assume(C.f ��→ D) informs the numeric
domain (and the connector inference) that field C.f definitely contains
(respectively: does not contain) a pointer to region D.

Moreover, we require that the shape analysis provides a set E ⊆ Edges of possible
edges where Edges = {A.l �→ B | A,B ∈ M, l ∈ Σ}. In other words, E over-
approximates all possible points-to configurations of the current abstract state.
We now detail how two common shape analyses can provide the interface of fold,
expand and assume.

2.2 Separation Logic

Separation logic [14] describes a heap using a first order logic formula over heap
assertions A.l �→ B, stating that the heap consists of a cell A with field l pointing
to a cell B that is not necessarily part of this heap. A separating conjunction
h1 ∗ h2 states that the heap cells in h1 and h2 live in separate heaps. Thus,
the heap described by formula A.l �→ B ∗ B.l �→ A consists of two different
nodes pointing to each other. In contrast, both arguments of a logical disjunction
describe the same heap, so that a expression A.l �→ C ∨ B.l �→ null stands for
a single heap node which is named A or B. In the following, we associate each
heap node with a distinct and unique name, so that each node in the heap is
accompanied by exactly one node A in the numeric state. A set of possible edges
E is then given by the set of all points-to terms A.l �→ B in the formula.

Separation logic allows to summarize sets of similar heap cells by recursively
defined predicates. For instance, a list from node A ending at B can be char-
acterized by the predicate ls(A,B) = (A.n �→ B) ∨ (∃C .A.n �→ C ∗ ls(C, B)).
Each occurence of predicate ls(A, ·) in a heap formula represents a list that is
summarized into one summary node A. In the numeric domain, node A holds
the summarized numeric content of this list. When a list element is accessed, the
predicate ls(A,B) is unfolded by replacing it with its right hand side. Since the
right hand side consists of a disjunction (A.n �→ B) ∨ (∃C .A.n �→ C ∗ ls(C, B))
of different heap shapes, both alternatives have to be considered separately in
the numeric domain: replacing ls(A,B) with (A.n �→ B) just turns the summary
node into a concrete node, so we do not need to adjust the numeric state. Replac-
ing ls(A,B) with (∃C .A.n �→ C ∗ ls(C, B)) introduces a new node C, therefore
a new node is also introduced in the numeric domain via operation expandA,C .
Symmetrically, a formula that matches the right hand side of a predicate defini-
tion can be replaced by its left hand side. In this case a corresponding operation

Shape Analysis with Connectors 347

foldA,C is executed on the numeric domain. This mechanism allows to summarize
any heap shape for which a recursive separation logic predicate exists.

Whenever a points-to relation A.n �→ B is unconditionally true, operation
assume(A.n �→ C) should be executed on the numeric domain. Analogously, if a
points-to relation A.n �→ B is definitely unsatisfiable, then an assume(A.n ��→ B)
operation should be executed.

2.3 Three-Valued Logic Analysis (TVLA)

The TVLA framework for shape analysis [15] represents the heap by a finite set
of abstract summary nodes, each of them representing a set of concrete nodes.
The shape of the heap is characterized by a set of user-supplied predicates.
Usually, at least a next(A.l, C) predicate is given, indicating whether a points-to
edge A.l �→ C exists. The set of next-predicates that occur in the current state
defines the set of edges E . A valuation function takes each predicate to a value
in {0, 1

2 , 1}. Whenever the valuation of next(A.l, C) changes to zero or one, a
corresponding assume(A.l ��→ C) or assume(A.l �→ C) operation is performed
on the numeric state. Folding and expanding corresponds to summarizing and
materializing a node in TVLA. During updating a cell, all involved predicates
must map to zero or one in order to determine the semantics of an access. To this
end, the state is temporarily duplicated for each involved predicate with value
1
2 . The task of updating a numeric state in the presence of a set of formulae has
been addressed elsewhere [3]. Variants of TVLA refine the three-valued mapping
with a Boolean formula, avoiding the duplication of the TVLA formula for 1

2
values [13]. Moreover, the information in the Boolean formula can be folded and
expanded in the same way as the numeric information [17], thereby giving a
unified formulation of shape analysis as an analysis over numeric variables.

Given the interface to the shape analysis, we now turn to numeric domains.

2.4 Numeric Domain Operations

We illustrate our analysis on NX := PolyX , the numeric domain of convex poly-
hedra [2] over variables X , although any other abstract domain may be used.
In the context of our analysis, X = {A.x,A.y, . . . | A ∈ M}, and we write N
instead of NX where the support set is clear from the context. We define the
following three functions that return a new numeric state:

– Function copyA,B : N → N adds a copy B of region A to a numeric state
n ∈ N by performing the assignment B.l := A.l for all A.l currently in n.

– Function dropA : N → N eliminates all variables A.l from a state n ∈ N . In
the abstract domain of polyhedra, elimination of a variable x corresponds to
a projection onto the Euclidian subspace without dimension x.

– Function [[A = B]] : N → N restricts a state n ∈ N by adding the constraint
A.l = B.l for every field l ∈ Σ, such that A.l or B.l occurs in n.

348 H. Siegel and A. Simon

We require two more numeric domain functions that mirror the effect of fold and
expand on memory regions. To this end, we recall the following definition [16]:

Definition. Given the m dimensions ab . . . ∈ Xm and m dimensions a′b′ . . . ∈
Xm, define foldab...,a′b′... : N → N and expand : N → N as follows:

foldab...,a′b′...(n) = dropa′b′...(n � swapab...,a′b′...(n))
expandab...,a′b′...(n) = n � swapab...,a′b′...(n)

where operation dropa′b′... eliminates the given variables (analogous to dropA)
and swapab...,a′b′... exchanges the given primed and unprimed identifiers.

The fold function merges the information over a′b′ . . . with that over ab . . .
and then removes a′b′ Intuitively, fold discards all relations between ab . . .
and a′b′ . . . but retains any relational information that ab . . . and a′b′ . . . have
with other variables. Symmetrically, expand duplicates relations within ab . . . to
a′b′ . . . but, unlike an assignment a := a′, induces no equality between a and a′.
For instance, expandab,a′b′(n) on a polyhedron n defined by the vertices 〈a, b〉 ∈
{〈0, 0〉, 〈1, 1〉} yields 〈a, b, a′, b′〉 ∈ {〈0, 0, 0, 0〉, 〈0, 0, 1, 1〉, 〈1, 1, 0, 0〉, 〈1, 1, 1, 1〉}.
Note that the equality a = b in the input state n has been preserved and dupli-
cated to a′ = b′ in the expanded state, but that a = a′ does not hold.

Applying fold and expand on memory regions S and C naturally translates
to applying the corresponding numeric operations on the sequences of numeric
variables S.x S.y . . . and C.x C.y Care must be taken that both sequences
contain the same sequence of field indices by possibly inserting lacking fields. In
the sequel, we write n := foldS,C(n) to update a numeric state and assume that
the translation to sequences of numeric variables is done implicitly.

These preliminary definitions suffice to introduce the connector inference.

3 One-Step Connectors

The connector inference tracks relational information between heap cells that
preserves certain information that may otherwise be lost when heap cells are
summarized. This section addresses the key questions about connectors, namely
how to create them and how to use their information, by first introducing one-
step connectors that are generalized to transitive connectors in the next section.

A one-step connector tracks the relation between two cells that are directly
connected via a points-to edge. Thus, we define the state of the connector infer-
ence as a partial map o : Edges �→ M × M. A connector between a field A.l
and a memory region B exists iff o(A.l �→ B) is defined. In this case the tuple
〈A′, B′〉 := o(A.l �→ B) is a connector that describes the contents of A and B
in all states where the edge A.l �→ B exists. Valuations for all fields A′.xi, B′.xi

are held in the numeric domain, so that relations between these fields can be
inferred. Suppose that the summary node in Fig. 2b) is S and that its self-edge
is S.next, the heap consists of a summary node S and a connector S.next �→ S
with o(A.l �→ B) = 〈〈S′.x, S′.next〉, 〈S′′.x, S′′.next〉〉. Then the numeric domain
holds the constraints S.x ∈ [1, 3], S′.x = c and S′′.x = c + 1 for some c ∈ [1, 2].

Shape Analysis with Connectors 349

before disconnected folded
a1)

S

C

p

q

a2) S C

p q

a3) S, C

p q

b1)
S

C

p

q

r

s

b2)
S C

p, r q, s

b3)
S, C

p, r q, s

c1) S

p q t u r s

v wC

c2)

S C

p, r q, s t, v u, w

c3)

S, C

(p, r),
(t, v)

(q, s),
(u, w)

Fig. 3. Folding two cells. The result of simultaneously folding r onto p and s onto q is
denoted by p, r and q, s. Folding t, v onto p, r is denoted by (p, r), (t, v).

Creating Connectors. In order to curtail an information loss due to summariza-
tion, connectors have to be created before a memory region C is folded onto
region S by intercepting the operation fold(S,C). Based on the set of may-edges
E , we identify all edges E ⊆ E that are connected to S or to C and for which
no connector exists. For each such edge A.l �→ B ∈ E \ dom(o), we create two
memory regions A′, B′, update the numeric state to n := copyA,A′(copyB,B′(n))
and extend o with the mapping from A.l �→ B to 〈A′, B′〉.

Folding Cells. When two regions S and C are folded using fold(S, C), the con-
nectors attached to S and C also have to be folded onto each other. A connector
represents values of nodes in case they are connected, so for a non-existing edge
arbitrary connectors may be introduced, as they will never be applied. Thus,
when two nodes A and B are summarized where a connector C.l �→ A but no
corresponding connector C.l �→ B exists, the connector o(C.l �→ A) becomes the
connector of the summarized node. Analogously for connectors A.l �→ C and
B.l �→ C. Connectors may be absent in two contexts, namely for connectors to
other nodes than S or C and for edges between S and C, as detailed now.

The first step in folding two regions S and C is to ensure that no connectors
between S and C exist, as these would be dangling once C is removed. Hence,
any connector on the edge C.l �→ S is “bent” to the edge C.l �→ C as shown
in Fig. 3a2). If a connector already exists for edge C.l �→ C, it is folded onto
the bent connector as shown in Fig. 3b2). The edges from S to C are treated
symmetrically, thereby giving a strategy for removing all edges between S and C.
Figure 3 illustrates this strategy: In a2), the connector from S to C of the heap
in a1) is bent to S, giving the heap in a3). In b1), the connector reaching from
S to C is turned into a self-looping connector that reaches from S to S. This

350 H. Siegel and A. Simon

a)

S
c

c+1

b)

C

e

e+1

d

d+1

S
c

c+1

Fig. 4. Expanding a list element

requires its numeric content to be folded onto the already existing connector
from S to itself, giving the heap b2). In c1), both the connectors from S to C
and from C to S have to be folded onto the connector from S to S and the
connector from C to C, respectively, giving the heap in c2).

The intermediate result are two nodes S and C that are not connected.
Now regions S and C have to be folded onto each other together with the con-
nectors attached to them. The goal is to update the numeric state to n :=
foldS S1...Sn, C C1...Cn

(n) where S1 . . . Sn and C1 . . . Cn are sequences of connec-
tors that are folded alongside the actual cells S and C. To this end, define
sequences s and c as s := S and c := C and extend them with connectors:

– For each node A �∈ {S,C} for which connectors 〈A′, S′〉 := o(A.l �→ S) and
〈A′′, C ′〉 := o(A.l �→ C) exist, add them to s and c by updating s := sA′S′

and c := cA′′C ′ and remove connector A.l �→ C from o.
– For each node A �∈ {S,C} for which connectors 〈S′, A′〉 := o(S.l �→ A) and

〈C ′, A′′〉 := o(C.l �→ A) exist, add them to s and c by updating s := sA′S′

and c := cA′′C ′ and remove connector C.l �→ A from o.
– If there exist connectors 〈S′, S′′〉 := o(S.l �→ S) and 〈C ′, C ′′〉 := o(C.l �→ C),

add them to s and c by updating s := sS′S′′ and c := cC ′C ′′ and remove
connector C.l �→ C from o.

Finally, the numeric content is folded by updating the numeric state to n :=
folds,c(n). Now all connectors attached to C that had a corresponding connector
attached to S are removed from o and their numeric contents are summarized.

Note that there may still be connectors attached to C that have no corre-
sponding connector attached to S. These are “moved” to region S by updating
o so that every connector 〈A′, C ′〉 := o(A.l �→ C) is replaced with a connec-
tor A.l �→ S such that 〈A′, C ′〉 = o(A.l �→ S). Analogously, every connector
〈A′, C ′〉 := o(C.l �→ A) originating from C is replaced by a connector S.l �→ A
originating from S. The third column of Fig. 3 illustrates this situation. In a3)
and b3) the connectors attached to S remain unchanged during summarization,
whereas in c3) the connector attached to C is folded onto the connector attached
to S together with the numeric contents of the nodes.

Expanding Summaries. Expanding a summary node S to a concrete node C is
done by simply reverting the steps of folding two nodes to one summary node:
First, S is expanded to an exact copy C, then each self-looping connector at S
is expanded to a connector from S to C and finally each self-looping connector
at C is bent to S. Figure 4a) shows a summary S of a consecutively numbered

Shape Analysis with Connectors 351

a) 4

3

5

6

b) S: [3;6]

p

p-1

q

q+2

c) 4

6

5

d) S: [3;6]

p

p-1

q

q+2

s t=[s+1,s+2]r r-1

Fig. 5. summarizing a binary search tree

list. In Fig. 4b), a node C has been materialized and the connector S.next �→ S
has been expanded to connectors S.next �→ C and C.next �→ S, describing every
edge from C to S or vice versa, provided that it exists, points to the next higher
value.

Applying Connectors. The information contained in a connector can be utilized
whenever the shape analysis determines that an edge A.l �→ B definitely exists.
In this case, the connector 〈A′, B′〉 := o(A.l �→ B) can be applied by updat-
ing state n to state n := [[A = A′, B = B′]](n). This operation is triggered
by the shape analysis via operation assume(A.l �→ B). In contrast, operation
assume(A.l ��→ B) informs the connector inference that a connector is spurious
and that the relations it expresses do not hold. In the first case, the informa-
tion in the connector is redundant after applying it, whereas in the second case
its information is not applicable. Hence, in both cases we remove the connector
A.l �→ B from o and A′, B′ from n using dropA′ ◦ dropB′ .

Since relations between neighboring nodes are not always sufficient for
describing complex heap structures, we now turn to transitive connectors.

4 Transitive Connectors

Consider summarizing the search tree in Fig. 5a). One-step connectors can
express relations between a node and its left or right child. This is shown in
Fig. 5b) where connector S.l �→ S indicates that the left child is exactly one
smaller and connector S.r �→ S indicates that the right child is exactly one
greater. However, the concrete heaps modeled by this abstraction include the
heap shown in Fig. 5c), which obviously violates the search tree invariant as it
is cyclic.

Since one-step connectors are insufficient for expressing certain invariants
such as that of search trees, we now address how to generalize them to connectors
that relate nodes that are indirectly connected via arbitrary paths. Considering
the set of field names Σ as an alphabet, then the words over Σ describe possible
paths that may connect one node with another. Suppose that we annotate each
connector with the formal language that describes the set of possible paths for

352 H. Siegel and A. Simon

a) y ∈ {x + 1, x + 2} b) y ∈ {x + 1, x + 2}
s ∈ {r + 1, r + 2} t = q − 1 ∧ t ∈ {x + 1, x + 2}

R: x

 C: y

S: z

p

p-1

r

s

q

q-1

R: x

C: y

S: z

p

p-1

q

t

Fig. 6. Expanding a summarized tree with transitive connectors

which the connector models a relation. Then a one-step connector A.l �→ B can
be considered as tracking a relation for the one-elemented language {l}.

In principle, one can track connectors for any set of paths. For simplicity, we
will confine this presentation to connectors that capture the relation between
node A and all nodes reachable from A via some arbitrary path beginning in
field A.l. Thus, we partition the possible paths into languages ωl = lΣ∗ for all
field names l ∈ Σ. In the following, we will denote the set of paths connecting
node A with node B via ωl by A.l � B. The operations presented for these
paths ωl can straightforwardly be adopted to more specific paths.

Figure 5d) shows the summarized tree of Fig. 5a) with a dotted transitive
connector 〈r, r − 1〉 for S.l � S, stating that, for each tree element, the nodes
in the left subtree are exactly one smaller (implying at most one node), and a
transitive connector S.r � S whose content 〈s, t〉 with t ∈ [s + 1, s + 2] states
that all contents of a node’s right subtree are strictly greater than that of S.

Creating Transitive Connectors. Transitive connectors are created in the same
way as one-step connectors: For every pair of heap cells A and B and field l ∈ Σ
for which the set E of possible edges contains a path p ∈ lΣ∗ from A to B
starting with field l, a transitive connector A.l � B is created by copying the
numeric contents of A and B into regions A′ and B′ in the numeric state, and
a mapping from (A.l � B) to 〈A′, B′〉 is tracked. Since overapproximating the
set of possible paths introduces connectors between unrelated heap cells, the
precision of the transitive connectors crucially depends on the accuracy of set E .

Folding and Expanding. Transitive connectors are folded and expanded in the
same way as one-step connectors. Figure 6a) shows the tree of Fig. 5d) after
expanding the summary two times and then following path r, that is, accessing
contents of the root node’s right child. The connector of path R.r � C has been
applied to the numeric content of R and C, forcing the numeric content y of C
to be greater than the numeric content x of R. For the sake of presentation, we
have omitted connectors originating at S and those targeting R.

Applying Transitive Connectors. In Fig. 6a), the connector for R.r � S states
that those nodes summarized in S that are reachable via the r field of R have

Shape Analysis with Connectors 353

greater numeric content that node R itself. We cannot apply this information
directly to summary node S, since at this point the nodes abstracted in S that
are reachable from node R via field r cannot be distinguished from those that
are reachable from R.l. However, we know that R.r definitely points to C, and
so all fields reachable via R.r are also reachable via node C, in particular, via
fields C.l and C.r. More generally, every node A that is reachable from C via
paths C.l � A or paths C.r � A is also reachable via paths R.r � A. Thus,
the information in connector R.r � S is valid for C.l � S and C.r � S.

Hence, we restrict the connectors C.l � S and C.r � S by expanding the
connector R.r � S as necessary and equating the instance. (Expansion is not
necessary in our example, as there is only C.l � S.) This is done by equating the
“source” value r of connector R.r � S with x and equating the “target” value
s of connector R.r � S with the target value q − 1 of connector C.l � S. The
resulting state is shown in Fig. 6b), where target value t of connector C.l � S
is now restricted by t = q − 1 and t ∈ {x + 1, x + 2}, maintaining the invariant
that the values of the left subtree of C are between the values of R and C.

5 Inferring Relational Heap Invariants

Since the numeric contents of all connectors are stored in a single domain, con-
nector inference does not only infer relations between the heap cells a connector
is attached to, but also between different connectors. This allows to infer invari-
ants for more complex shapes like lists of lists. This section illustrates one such
example.

Figure 7a) shows a linked list of sub-lists, each of them containing a numeric
field, a pointer to the next list element and a pointer to a sub-list with numeric
content. Similar to a skip list, this data structure fulfills the invariant that the
entries of each sub-list are between the values of its own and the next list head.
Figure 7b) shows the data structure with one-step connectors for the next fields
and transitive connectors for the sub fields of the outer list after the sub-lists are
summarized into one node S. For node A, the invariant restricting the entries of
its sub-list is expressed by the transitive connector originating in A. Analogously
for B, C and D. Summarizing node A with node B simultaneously folds node B
and the two connectors attached to B onto A and the two connectors attached
to A, thereby inferring the relation between the two connectors originating from
each node. Summarizing the outer list yields the heap shown in Fig. 7c) where
q < t is inferred for the transitive connector 〈p, q〉 of A.sub � S where t is in the
one-step connector A.next �→ A, thereby enforcing the desired sub-list invariant.
This example shows that, although being agnostic of the analyzed heap shapes,
the combination of connectors and relational numeric domains can even infer
properties of hierarchical data structures.

6 Experimental Work

Our prototype implementation consists of the shape analysis described in [17],
extended with one-step and transitive connectors. As the numeric domain, we

354 H. Siegel and A. Simon

a)

A: 1 next sub

B: 4 next sub

C: 7 next sub

2 3

5 6

8 9

D: 10 next sub

c)
A: [1;10]

s t = s+3

S: [2;9]

p q | q < t

v w =v+1

b)

A: 1

B: 4

C: 7

D: 10

p

q =[p+1; 3]

S: [2;9]

r

s =[r+1; 6]

t

u =[t+1; 9]

1

4

4

7

7

10

Fig. 7. Summarizing a list of lists

use the implementation of the Octagon domain [11]. While the shape analysis is
written in Java, the Octagon domain is taken from the Apron library [8].

Figure 8 shows the experimental results measured on an Intel Core i7 with
1.6 Ghz. All programs are evaluated in three variations: without connectors, with
one-step connectors and with transitive connnectors. The first program creates
a six-elemented linked list with values in ascending order that is abstracted into
one summary node by the analyzer. By inspecting the resulting state, we have
verified, whether the sortedness of the list is still maintained by the summarized
heap. Without connectors, all relational information between the summarized
nodes is lost, whereas in the variants with one-step and transitve connectors,
a connector establishes the relation between each node and its successor. The
second program accesses and thereby materializes the first three nodes of a
summarized sorted list, verifying that they are indeed in ascending order. As
before, both one-step and transitive connectors are able to maintain sortedness.

Similarly to the first and second program, the third and fourth program of
Fig. 8 summarize and expand a list of consecutive numbers. By inspecting the
summarized state and by materializing list elements, we have checked whether
the invariant that all list elements are increasing by one is inferred. Here, transi-
tive connectors are not sufficient to verify that the difference between each node
and its successor is exactly one, because the transitive connector models the
numeric relation between a node and all following nodes.

The last two programs of Fig. 8 summarize the binary search tree of Fig. 9.
Although the one-step connectors express that the left child of each node has a

Shape Analysis with Connectors 355

connectors time (s) verified

summarize sorted list — 0.48 ✗

one-step 0.88 ✓

transitive 1.64 ✓

unroll sorted list — 0.73 ✗

one-step 2.68 ✓

transitive 6.49 ✓

summarize numbered list — 0.52 ✗

one-step 0.86 ✓

transitive 1.70 ✗

unroll numbered list — 0.76 ✗

one-step 2.73 ✓

transitive 6.61 ✗

summarize tree — 0.69 ✗

one-step 2.21 ✗

transitive 4.38 ✓

access leaf — 1.20 ✗

one-step 64,84 ✗

transitive 673,60 ✓

Fig. 8. Evaluation of our implementation

p

1

- -

3

- -

2

5

- -

6

 -

8

 -

12

 -

4

Fig. 9. The search tree

lower value and, respectively, that the right child of each node has greater value,
they cannot express the crucial invariant that all nodes in the right subtree are
greater than the root node. The last program descends into the right subtree
and checks whether its leftmost leaf has value 5, which amounts to evaluat-
ing the C-like assertion assert(p->r->l->l->l->val == 5). Indeed, transitive
connectors succeed in proving this property. The timings show a drawback of
our implementation: The complexity of the Octagon domain is quadratic in the
number of variables, so that the runtime becomes cubic in the number of con-
nectors that have to be applied. Moreover, computing the set of all transitive
connectors is costly, since in the best case it is based on the Floyd-Warshall
algorithm that runs in n3 steps when creating the n2 connectors where n is the
number of reachable nodes.

7 Related Work

Ferrara et al. [3] extend a TVLA shape analysis with a numeric abstract domain.
They address the challenge of modifying the single numeric domain when the
TVLA analysis has inferred several possible heaps at a given program point.
Their work thereby shows how TVLA can be combined with our connector
inference. However, they use a one-dimensional fold and expand operation [5]
that cannot retain relations between variables in a heap cell. In our context,
this is particularly critical, as a connector needs to express relations between
at least two variables to be of use. Thus, the use of relational fold and expand
operations [16] is a prerequisite for tracking summarized relations.

356 H. Siegel and A. Simon

Magill et al. [9] enhance a separation logic based shape analysis with a
numeric analysis. The idea is to generate an arithmetic program from counterex-
amples that the shape analysis provides. Thus, the result of the shape analysis is
refined whenever the numeric analysis infers that a counterexample is spurious.

Nguyen et al. [12] use predefined numeric predicates in a separation-logic
based verification tool. They can verify various various length and sortedness
properties, but they cannot infer any numeric relations and rely on user-supplied
predicates. Inlining (unfolding) shape definitions creates a new instance of a
numeric relation and thereby corresponds to our expand operation. Analogously,
their fold operation corresponds to our fold operation. However, note that a
fold operation in separation logic may fail if no predicate matches the current
formula. The advantage of using fold on numeric domains is that new relations
and hence new invariants can be inferred.

Bouajjani et al. [1] introduce data words abstract domains that model the
numeric contents of linked lists. While their approach is able to infer numeric
invariants like sortedness, it is limited to sequential data structures.

McCloskey et al. [10] implement a similar invariant checker based on canon-
ical abstraction [15]. While the set of user-defined predicates is fixed, they infer
numeric invariants using numeric abstract domains. Their approach is able to
handle complex hierarchical shapes such as lists of trees. Creating hierarchical
invariants amounts to summarizing a group of heap nodes onto another group.
While the generic fold and expand operations would, in principle, allow this, our
handling of edges between objects that are to be folded currently only caters for
two single objects to be folded. Future work will address this shortcoming.

Further afield is the work of Fu [4] that focuses on scalability. Here, an upfront
points-to analysis is run to obtain an approximation of possible heap structures.
He shows that on this approximated structure a numeric analysis can be imple-
mented efficiently.

Gulwani et al. [6] infer sizes and offsets into memory partitions by combining a
generic shape analysis with relational numeric abstract domains. Their approach
is based on an on-demand reduction between both domains. Our method of
combining shape analysis with numeric analysis merely refines the shape analysis
and in particular does not need to use a reduction operator in order to propagate
information. Instead, all information is propagated towards the numeric domain.
This alleviates the implementor from deciding when to apply the reduction.

Halbwachs et al. [7] verify algorithms that iterate over some arrays A and B
simultaneously. They abstract each array A as a current element A[i] at position
i and summaries for the partitions before and after position i. Whenever index
variable i changes, the summaries are weakly updated simultaneously with the
current values of A[i] and B[i]. In our approach, this simultaneous weak update
corresponds to folding a connectors that spans between A[i] and B[i] onto a
summarized connector.

Several analyses address the inference of metaproperties such as the length
of lists [6,9,12]. Our connector inference is a universal refinement technique that
also applies to these analyses. For instance, the size of a list can be analyzed by

Shape Analysis with Connectors 357

tracking the length of the remaining list in each list element. Analogously, the
depth of a tree can be tracked by annotating each node with the distance to its
leaves.

8 Conclusion

We proposed an analysis of the numeric contents of heap shapes that is able to
infer numeric relations between different but related heap cells. Based on generic
relational fold and expand operations, any numeric abstract domain can be used
for this inference. We illustrated that invariants of complex data structures can
be inferred automatically and described how established shape analyses like sep-
aration logic and TVLA can be enhanced with the proposed connector inference.

References

1. Bouajjani, A., Drăgoi, C., Enea, C., Rezine, A., Sighireanu, M.: Invariant synthesis
for programs manipulating lists with unbounded data. In: Touili, T., Cook, B.,
Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 72–88. Springer, Heidelberg
(2010)

2. Cousot, P., Halbwachs, N.: Automatic discovery of linear constraints among vari-
ables of a program. In: Principles of Programming Languages, Tucson, Arizona,
USA, pp. 84–97. ACM, January 1978

3. Ferrara, P., Fuchs, R., Juhasz, U.: TVAL+: TVLA and value analyses together. In:
Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012. LNCS, vol. 7504,
pp. 63–77. Springer, Heidelberg (2012)

4. Fu, Z.: Modularly combining numeric abstract domains with points-to analysis,
and a scalable static numeric analyzer for java. In: McMillan, K.L., Rival, X. (eds.)
VMCAI 2014. LNCS, vol. 8318, pp. 282–301. Springer, Heidelberg (2014)

5. Gopan, D., DiMaio, F., Dor, N., Reps, T., Sagiv, M.: Numeric domains with sum-
marized dimensions. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol.
2988, pp. 512–529. Springer, Heidelberg (2004)

6. Gulwani, S., Lev-Ami, T., Sagiv, M.: A combination framework for tracking par-
tition sizes. In: Principles of Programming Languages, Savannah, Georgia, USA.
ACM, January 2009

7. Halbwachs, N., Péron, M.: Discovering properties about arrays in simple programs.
In: Gupta, R., Amarasinghe, S.P. (eds.) Programming Language Design and Imple-
mentation, Tucson, Arizona, USA, pp. 339–348. ACM, June 2008

8. Jeannet, B., Miné, A.: Apron: a library of numerical abstract domains for static
analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–
667. Springer, Heidelberg (2009)

9. Magill, S., Berdine, J., Clarke, E., Cook, B.: Arithmetic strengthening for shape
analysis. In: Nielson, H.R., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 419–436.
Springer, Heidelberg (2007)

10. McCloskey, B., Reps, T., Sagiv, M.: Statically inferring complex heap, array, and
numeric invariants. In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337,
pp. 71–99. Springer, Heidelberg (2010)

11. Miné, A.: The Octagon Abstract Domain. Higher-Order and Symbolic Computa-
tion 19, 31–100 (2006)

358 H. Siegel and A. Simon

12. Nguyen, H.H., David, C., Qin, S.C., Chin, W.-N.: Automated verification of shape
and size properties via separation logic. In: Cook, B., Podelski, A. (eds.) VMCAI
2007. LNCS, vol. 4349, pp. 251–266. Springer, Heidelberg (2007)

13. Podelski, A., Wies, T.: Boolean heaps. In: Hankin, C., Siveroni, I. (eds.) SAS 2005.
LNCS, vol. 3672, pp. 268–283. Springer, Heidelberg (2005)

14. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
Logic in Computer Science, Copenhagen, Denmark, pp. 55–74. IEEE (2002)

15. Sagiv, M., Reps, T., Wilhelm, R.: Parametric Shape Analysis via 3-Valued Logic.
Transactions on Programming Languages and Systems 24(3), 217–298 (2002)

16. Siegel, H., Simon, A.: Summarized dimensions revisited. In: Mauborgne, L. (ed.)
Workshop on Numeric and Symbolic Abstract Domains, ENTCS, Venice, Italy.
Springer, Heidelberg, September 2011

17. Siegel, H., Simon, A.: FESA: fold- and expand-based shape analysis. In: Jhala,
R., De Bosschere, K. (eds.) Compiler Construction. LNCS, vol. 7791, pp. 82–101.
Springer, Heidelberg (2013)

Automated Conflict-Free Concurrent
Implementation of Timed Component-Based

Models

Ahlem Triki1(B), Borzoo Bonakdarpour2,
Jacques Combaz1, and Saddek Bensalem1

1 University Grenoble Alpes/CNRS, VERIMAG, Grenoble, France
ahlem.triki@imag.fr

2 McMaster University, Hamilton, ON, Canada

Abstract. Correct implementation of concurrent real-time systems has
always been a tedious task due to their inherent complex structure; con-
currency introduces a great deal of non-determinism, which can poten-
tially conflict with meeting timing constraints. In this paper, we focus on
model-based concurrent implementation of timed models. Our abstract
models consist of a set of components interacting with each other using
multi-party interactions. Each component is internally subject to a set
of timing constraints. We propose a chain of transformations that starts
with an abstract model as input and generates correct-by-construction
executable code as output. We show that all transformed models are
observationally equivalent to the abstract model through bisimulation
proofs and, hence, all functional properties of the abstract model are
preserved. To facilitate developing the proofs of correctness, each trans-
formation obtains a model by incorporating a subset of physical con-
straints (e.g., type of communication and global clock synchronization).

1 Introduction

Although concurrent computing is widely used nowadays, especially due to the
recent advances in the multi-core and GPU technologies, implementation and
deployment of correct concurrent applications are still time-consuming, error-
prone, and hardly predictable tasks. This problem becomes even more chal-
lenging when the concurrent application is required to meet a set of timing
constraints as well, for instance, in computation-intensive real-time embedded
systems. This is due to the fact that the developer of a real-time concurrent
application not only has to consider typical problems in concurrency (e.g., dead-
lock/livelock freedom, race conditions, etc), but also should ensure that all subtle
interleavings of the application meet the timing constraints.

Model-based software development is a promising approach, where a chain
of steps starting from a specification leads to an implementation on a given

This research was partially funded by projects Artemis AIPP Arrowhead and French
BGLE Manycorelabs.

c© Springer International Publishing Switzerland 2015
K. Havelund et al. (Eds.): NFM 2015, LNCS 9058, pp. 359–374, 2015.
DOI: 10.1007/978-3-319-17524-9 25

360 A. Triki et al.

execution platform. It involves the use of transformation methods and tools for
progressively deriving the implementation by making adequate design choices.
Such transformations ensure functional correctness, software line productivity,
and incorporate extra-functional properties such as timing constraints. Although
there have recently been plausible efforts in model-based automated implemen-
tation of distributed (e.g., [7,13]) and real-time (e.g., [1,11]) systems, we cur-
rently lack techniques that obtain executable real-time concurrent code from an
abstract model of a system. This problem is particularly challenging, as one has
to develop transformations for different levels of abstractions, each taking into
account certain physical constraints (e.g., time, communication, synchronization,
etc), and each transformation should add minimal overhead while maintaining
a high level of parallelism. With this motivation, in this paper, we propose an
automated method for producing efficient and correct-by-construction multi-
threaded real-time implementation from an abstract component-based timed
model. Our abstract models are expressed in the timed BIP (Behavior, Inter-
action, Priority) formalism [5]. BIP is a well-founded component-based frame-
work, where the behavior of each component (similar to timed automata [2]) is
a Petri net or transition system subject to local timing constraints expressed
by Boolean expressions over logical dense-time clock variables. A BIP model
encompasses high-level multi-party interactions for synchronizing components
(e.g., rendezvous and broadcast) and dynamic priorities for scheduling between
interactions.

Our method consists of successive transformations that starts with a timed
BIP model and terminates with an implementation. Intermediate transformation
steps augment the output model with communication constraints and a physical
time watching mechanism, such that each step results in a model closer to an
actual implementation. These transformations are described as follows:

Decentralization. In the abstract model, each component may depend upon
global synchronization with other components to execute a local step. Indeed,
executing a component transition is possible only when an interaction involving
that transition is executed. To decide whether an interaction can be executed,
one has to consider all participating components. In a concurrent setting, how-
ever, each component can only rely on its local knowledge to decide whether
to execute a transition. Thus, our first transformation builds a model where
additional components are responsible for scheduling interactions, based on the
information received from the input model’s components. Our transformation
creates conflict-free schedulers, where schedulers do not need to interact with
each other in order to resolve distributed conflicts. A distributed conflict refers
to the situation where two or more interactions are enabled in the distributed
implementation, but the abstract model semantics allows execution of only one.

Logical Clock Removal. This transformation step builds a model that is
robust to execution delay. This is done through decoupling logical and physical
time. At this step, the two of them are assumed to be identical; i.e., communi-
cation occurs instantaneously (no delay) and component clocks are perfect (no
drifts). This is the main reason that our target concurrent execution platform is
multi-process applications, where all processes reside in the same machine and

Automated Conflict-Free Concurrent Implementation 361

share a single clock. Unlike the logical clocks, the single clock introduced in this
step is never reset and measures the absolute real time elapsed since the system
starts executing. This transformation step is parametrized by a set of (observ-
able) interactions whose constraints have to be met. We show that the model
obtained in this step is observationally equivalent to the input abstract model
through a bisimulation proof and, hence, all functional properties of the abstract
model are preserved.

Implementation. This transformation creates a set of independent executables
that communicate through asynchronous message passing and may read the
value of the single global hardware clock of the platform.

The rest of this paper is structured as follows. In Section 2, we present the
preliminary concepts on timed BIP models. Section 3 formalizes the point-to-
point communication physical constraints. Our step-wise transformations are
formally described in Sections 4 and 5. Related work is discussed in Section 6.
Finally, we make concluding remarks in Section 7. For reasons of space, all proofs,
implementation and experimental results appear in the appendix.

2 Basic Semantic Model of BIP

In this section, we present the operational global state semantics of BIP [4]. BIP
is a component framework for constructing systems by superposing three layers
of modeling: Behavior, Interaction, and Priority. In this paper we do not consider
priorities. In Subsection 2.2, we formally define atomic components. The notion
of composite components is presented in Subsection 2.3.

2.1 Notations

Given a variable x, the domain of x is the set D(x) of all values possibly taken by
x. Given a set of variables X, a valuation of X is a function v : X → ⋃

x∈X D(x)
assigning a value to each variable of X, that is, such that for all x v(x) ∈ D(x).
We denote by V(X) the set of all possible valuations of X. The restriction of
v ∈ V(X) to a subset of variables X ′ ⊆ X is the valuation v|X′ ∈ V(X ′) that
coincides with v on X ′, that is, v|X′(x) = v(x) for all x ∈ X ′. When it is not
ambiguous, we write v also for v|X′ .

Given valuations v ∈ V(X) and v′ ∈ V(X ′) of variables X and X ′ such that
X ′ ⊆ X, we denote by v[X ′ ← v′] the valuation of X that coincides with v′ for
all variables of X ′, and with v for all variables of X \ X ′. It is defined by:

v[X ′ ← v′](x) =
{

v′(x) if x ∈ X ′

v(x) otherwise.

When all variables in X have the same domain D, and given value k ∈ D,
we also denote by k the constant valuation assigning k to all variables of X.

A guard is a predicate on a set of variables X. Given a guard g on X and a
valuation v ∈ V(X), we denote by g(v) ∈ {false, true} the evaluation of g for
v. An update function f : V(X) → V(X) for variables X is used to assign new

362 A. Triki et al.

values f(v) to variables in X from their current values v. It extends to any larger
set of variables X ′ ⊇ X considering that extra variables X ′ \ X are unchanged,
i.e., f transforms v ∈ V(X ′) into v[X ← f(v)].

Timing Constraints and Time Progress Conditions. In order to measure
time progress, we use clocks that are variables advancing with the same rate [2]
and ranging over real numbers. We denote by R≥0 the set of non-negative reals,
and by Z≥0 the set of non-negative integers.

Timing constraints are used to specify when actions of a system are enabled.
Given a set of clocks C, we consider atomic constraints c ∼ k where c ∈ C,
k ∈ Z≥0, and ∼ is a comparison operator such that ∼ ∈ {≤,=,≥}. They
are used to build timing constraints defined by the following grammar: tc :=
true | false | c ∼ k | tc ∧ tc. Notice that any timing constraint tc can be put
into a conjunction of the form:

tc =
∧
c∈C

lc ≤ c ≤ uc, (1)

such that for all c ∈ C, lc ∈ Z≥0 and uc ∈ Z≥0 ∪ {+∞}. The evaluation of a
timing constraint tc for a valuation t ∈ V(C) of clocks C is the Boolean value
tc(t) obtained by replacing in tc each clock c by its value t(c).

Time progress conditions are used to specify whether time can progress at a
given state of the system. They correspond to a special case of timing constraint
in which atomic constraints are restricted to the form c ≤ k. Notice that a time
progress condition put in the form of (1) is such that for all c ∈ C, lc = 0.

2.2 Atomic Components

An atomic component is described as a 1-Safe Petri net extended with local
variables and clocks, consisting of a set of places and a set of transitions. Each
transition is labeled by a port, a guard on local variables combined with a timing
constraint on clocks, and an update function. Ports are used for communica-
tion among different components. Each port exports a subset of variables of the
component.

Definition 1. A Petri net is defined by a triple S = (L,P, T), where L is a set
of places, P is a set of ports, and T ⊆ 2L × P × 2L is a set of transitions. A
transition τ is a triple (•τ, p, τ•), where •τ is the set of input places of τ and
τ• is the set of output places of τ . �
A Petri net is often modeled as a directed bipartite graph G = (L ∪ T,E).
Places are represented by circular vertices and transitions are represented by
rectangular vertices (see Figure 1). The set of directed edges E is the union of
the sets {(�, τ) ∈ L × T | � ∈ •τ} and {(τ, �) ∈ T × L | � ∈ τ•}. We depict the
state of a Petri net by marking its places with tokens [12]. We say that a place
is marked if it contains a token. A transition τ is enabled at a state if all its
input places •τ are marked. Upon the execution of τ , tokens of input places •τ
are removed and tokens in output places in τ• are added.

Given an initial state m0 ⊆ L, a Petri net (L,P, T) is 1-Safe if for any
execution from m0, output places of enabled transitions are never marked. The

Automated Conflict-Free Concurrent Implementation 363

�1

�2

�4

�3

�5
p1

p2

p3

�1

�2

�4

�3

�5
p1

p2

p3

Fig. 1. A simple Petri net

�1

�2

c1 := 0[10≤c1≤20]

c1≤20

syncp

sync p

B1

Fig. 2. An atomic component

behavior of a 1-Safe Petri net (L,P, T) is defined as a finite labeled transition
system (2L, P,→), where 2L is the set of states, P is the set of labels, and →⊆
2L × P × 2L is the set of transitions defined as follows. We have (m, p,m′) ∈→,
denoted by m

p→ m′, if there exists τ = (•τ, p, τ•) ∈ T such that •τ ⊆ m and
m′ = (m\•τ) ∪ τ•. In this case, we say that p is enabled at m. We say that
the Petri net (L,P, T) is deterministic, if for any execution from m0 any two
transitions τ1 = τ2 labeled by same port p are not simultaneously enabled at
any state.

An atomic component is essentially a timed automaton [2] labeled by ports
and extended with variables, whose states and transitions are given by the behav-
ior of a deterministic 1-Safe Petri net.

Definition 2 (Atomic Component). An atomic component B is defined by
B = (L, P , T , C, X, {Xp}p∈P , {gτ}τ∈T , {tcτ}τ∈T , {fτ}τ∈T , {tpc�}�∈L) where:

– (L,P, T) is a deterministic 1-Safe Petri net.
– C is a set of clocks.
– X is a set of discrete variables.
– For each port p ∈ P , Xp ⊆ X is the set of variables exported by p (i.e.,

variables visible from outside the component through port p).
– For each transition τ ∈ T , gτ is a guard on X, tcτ is a timing constraint

over C, and fτ : V(X) × V(C) → V(X) × V(C) is a function that updates the
set of variables X and may reset a subset of clocks Rτ ⊆ C.

– For each place l ∈ L, tpcl is a time progress condition. �

Example 1. Figure 2 shows an atomic component. The set of clocks is {c1}. The
set of places is {�1, �2} where �1 has time progress condition c1 ≤ 20. The set
of ports is {p, sync} and there is no discrete variable. There are two transitions:
τ1 = (�1, sync, �2) and τ2 = (�2, p, �1). The transition τ1 resets clock c1 and the
transition τ2 is guarded by a timing constraint on clock c1.

Definition 3 (Atomic Component Semantics). The semantics of an atomic
component B = (L, P , T ,C, X, {Xp}p∈P , {gτ}τ∈T , {tcτ}τ∈T , {fτ}τ∈T , {tpcl}l∈L)
is defined as the labeled transition system (QB , PB ,−→

B
), where

– QB = 2L × V(X) × V(C) is the set of states.
– PB = P ∪ R≥0 is set of labels: ports or time values.
– −→

B
⊆ QB × PB × QB is the set of labeled transitions defined as follows. Let

(m, v, t) and (m′, v′, t′) be two states, p ∈ P , and δ ∈ R≥0 be a delay.

364 A. Triki et al.

Jump transitions. We have (m, v, t)
p−→
B

(m′, v′, t′), iff transition τ =

(•τ, p, τ•) is enabled at m in the Petri net (L,P, T) and gτ (v) ∧ tcτ (t) is
true. In this case, we say that p is enabled from (m, v, t). Notice that t′

satisfies t′ = t[Rτ ← 0], where Rτ is the set of clocks reset by τ .
Delay transitions. Wehave (m, v, t) δ−→

B
(m, v, t+δ) ifwehave

∧
�∈m tpc�(t+

δ) is true, where t + δ is the usual notation for the valuation defined by
(t + δ)(c) = t(c) + δ for any c ∈ C. �

An atomic component B can execute a transition τ = (•τ, p, τ•) from a state
(m, v, t) if its guard is met by the valuation v and its timing constraint is met
by the valuation t. From state (m, v, t), B can also wait for δ > 0 time units
if

∧
�∈m tpc�(t + δ) stays true. Waiting for δ time units increases all the clock

values by δ. Notice that the execution of a jump transition is instantaneous and
time elapses only on states. The semantics presented here is slightly different
from the one found in [2], as we consider time progress conditions instead of
invariants. Unlike invariants, an atomic component B may reach a state (m, v, t)
violating the corresponding time progress condition

∧
�∈m tpc�. In this case B

cannot wait and is forced to execute a transition from (m, v, t). In the following,
we consider systems that cannot reach states violating time progress conditions.

2.3 Composite Components

A composite component is built from a set of n atomic components {Bi = (Li, Pi,
Ti, Ci, Xi, {Xp}p∈Pi

, {gτ}τ∈Ti
, {tcτ}τ∈Ti

, {fτ}τ∈Ti
,{tpc�}�∈Li

)}n
i=1, such that

their respective sets of places, ports, clocks, and discrete variables are pairwise
disjoint; i.e., for any two i = j from {1, . . . , n}, we have Li ∩Lj = ∅, Pi ∩Pj = ∅,
Ci ∩ Cj = ∅, and Xi ∩ Xj = ∅. We denote P =

⋃n
i=1 Pi the set of all the ports

in the composite component, L =
⋃n

i=1 Li the set of all places, C =
⋃n

i=1 Ci the
set of all clocks, and X =

⋃n
i=1 Xi the set of all variables.

Definition 4 (Interaction). An interaction a between atomic components
{Bi}n

i=1 is a subset of ports a ⊆ P , such that it contains at most one port
of every component, that is, |a ∩ Pi| ≤ 1 for all i ∈ {1, . . . , n}.

The set Xa of variables available to an interaction a is given by Xa =⋃
p∈a Xp. We associate to a its guard Ga and its update function Fa over Xa. �

Since an interaction a uses at most one port of every component, we denote
a = {pi}i∈I , where I ⊆ {1, . . . , n}. A component Bi is involved in a if i ∈ I.

Definition 5 (Composite Component). We denote by B
def
= γ(B1, . . . , Bn)

the composite component obtained by applying a set of interactions γ to the set
of atomic components {Bi}n

i=1. It is defined by the atomic component B = (L,
γ, T , C, X, {Xa}a∈γ , {gτ}τ∈T , {tcτ}τ∈T , {fτ}τ∈T ,{tpc�}�∈L) as follows.

– Given an interaction a = {pi}i∈I of γ, a transition τ = (�, a, �′) is in T if
its projection τi = (�i, pi, �

′
i) = (� ∩ Li, a ∩ Pi, �

′ ∩ Li) on Bi is a transition
of Bi (i.e. τi ∈ Ti), for all i ∈ I.

Automated Conflict-Free Concurrent Implementation 365

– The guard gτ of transition τ is gτ = Ga ∧
∧
i∈I

gτi
.

– The timing constraint tcτ of τ is tcτ =
∧
i∈I

tcτi
.

– We have fτ (v, t) = (fτ1◦· · ·◦fτn
)(Fa(v), t), where fτi

is the identity function,
for i /∈ I. Notice that functions fτi

modify disjoint sets of variables and clocks
and, hence, can be composed in any order.

– For a control location � = (�1, . . . , �n) ∈ L, the time progress condition tpc�

is tpc� =
∧

i∈{1..n}
tpc�i

. �

A composite component B = γ(B1, . . . , Bn) can execute an interaction a =
{pi}i∈I ∈ γ from a state (m, v, t) iff (1) for each port pi, the corresponding
atomic component Bi can execute a transition labeled by pi from the projection
(mi, vi, ti) = (m ∩ Li, v|Xi

, t|Ci
) of (m, v, t) on Bi, and (2) the guard Ga of the

interaction evaluates to true on the variables exported by the ports participat-
ing in interaction a. Execution of interaction a triggers the function Fa which
modifies the variables of the components exported by ports pi. The new values
obtained are then processed by the components’ transitions. Note that the com-
ponents also reset clocks according to the update function associated to their
transition. The states of components that do not participate in the interaction
remain unchanged. We say that an interaction a ∈ γ is enabled at state q ∈ QB

of B, if there exists state q′ ∈ QB such that q
a−→
B

q′.

�11

�21

sync1
c1 := 0

p
[10≤c1≤20]

sync1 p

c1≤20B1

�12

�22

sync2
�32

r

q

err

q

sync2q r

B2

�13

�23

sync3
c3 := 0

s
[c3 = 5]

s sync3

c3≤5B3

a1

a2 a3

Fig. 3. Example of BIP composite component

Example 2. Figure 3 illustrates a composite component γ(B1, B2, B3). The set
γ of interactions is {a1, a2, a3} with no guards nor update functions. Initially,
the system is in state (�11, �

1
2, �

1
3), where c1 and c3 are set to 0. The only enabled

interaction is a1. Since time progress condition at this state is true, any delay
δ ∈ R≥0 can be taken. If interaction a1 is executed, the next state is (�21, �

2
2, �

2
3)

and clocks c1 and c3 are reset. At this state, the time progress condition and the
timing constraint in B3 impose that a3 has to be executed after a delay of δ = 5
time units. Once a3 is executed, a2 can execute after a delay of δ ∈ [5, 15] time
units according to the time progress condition and the timing constraint in B1.

3 Target Architecture

In this section, we describe the overall architecture of the source-to-source trans-
formation of BIP models. Since we target concurrent execution of interactions,

366 A. Triki et al.

if two interactions are simultaneously enabled, they can be executed in paral-
lel only if the semantics of the initial global state model is met. That is, if they
involved disjoint sets of components. This leads to the notion of conflict between
interactions. Two interactions are conflicting if they involve a shared component
and they are potentially enabled at the same time.

Definition 6. Let γ(B1, . . . , Bn) be a BIP model. We say that two interactions
a and b of γ are in structural conflict iff there exists an atomic component Bi that
has two transitions τ1 = (•τ1, p1, τ•

1) and τ2 = (•τ2, p2, τ•
2) such that (1) p1 ∈ a

and p2 ∈ b, and (2) there exists a reachable state in the Petri net (Li, Pi, Ti) of
Bi at which both τ1 and τ2 are enabled. �

Note that structural conflicts as defined in Definition 6 are an over-
approximation of conflicts, since some structural conflicts may not be reachable
due to guards and timing constraints. A special case of conflict is when two interac-
tions a and b share a common port, that is, a∩b = ∅. As already discussed, handling
conflicting interactions in a BIP model executed by a centralized Engine is quite
straightforward [4,15]. However, in a concurrent setting, detecting and avoiding
conflicts is not trivial [7].

BSR
1 BSR

2 BSR
3

o1 sync1
o2 sync2

o3 sync3p q r s

o1 o2 o3 sy
nc

1

sy
nc

2

sy
nc

3

IP1

o1 o2 o3 p q r s

IP2

Fig. 4. Concurrent model of
Figure 3

⊥�1false �1
o

tcp := [10 ≤ c1 ≤ 20]
tcsync := false
rc1 := true
tpc

BSR
1

:= c1 ≤ 20

tcp := false
tcsync := true
rc1 := false

tpc
BSR

1
:= true

syncp

⊥�2 false�2
o

sync po

BSR
1

Fig. 5. Transformation of the atomic com-
ponent in Figure 2

Consider a composite component B = γ(B1 · · · Bn) in the BIP model and
a partition of the set of interactions {γj}m

j=1 (i.e., m classes of interactions γj

are disjoint and cover all the interactions of γ). In our target concurrent model,
atomic components Bi are transformed into atomic components BSR

i . We also
add Interaction Protocol components to implement interactions, such that each
class of interaction γj is handled by a single Interaction Protocol component
IPj . The partition {γj}m

j=1 allows the designer to enforce load-balancing and
to improve the performance of the given model when running in a concurrent
fashion. It also determines whether or not a conflict between interactions can
be resolved locally. Consider conflicting interactions a ∈ γj and b ∈ γk. We dis-
tinguish between two types of conflict for a and b, according to the partition
{γj}m

j=1. A conflict is internal if a and b belong to the same class of the par-
tition, i.e., j = k. In this case, it can be resolved by the Interaction Protocol
component IPi responsible for a and b. A conflict is external if a and b belong
to the different classes of the partition, i.e., j = k. External conflicts cannot be
resolved by a single Interaction Protocol component IPj , and requires additional
synchronizations and components [7]. This is beyond the scope of this paper.

Automated Conflict-Free Concurrent Implementation 367

Consider again the example from Figure 3. Interaction a1 is conflicting with
neither a2 nor a3. However, a2 and a3 are conflicting because port q involved in
a2 and port r involved in a3 are both enabled from place �22. Partition γ1 = {a1}
and γ2 = {a2, a3} is such that all conflicts between interactions are internal. The
overall architecture of the concurrent model built for this partition is given in
Figure 4. Notice that IP1 and IP2 share BSR

2 , as the later is involved in both
a1 ∈ γ1 and a2 ∈ γ2. However, this is not a problem since a1 and a2 are never
enabled at the same time.

From now on, we consider partitions {γj}m
j=1 of interactions γ such that con-

flicts are always internal, that is, if two interactions a, b ∈ γ are conflicting, then
they belong to the same class γj . We also target Send/Receive BIP models. Intu-
itively, a Send/Receive model is a set of independent components communicating
through asynchronous message passing defined next.

Definition 7. We say that BSR = γSR(BSR
1 , . . . , BSR

n) is a Send/Receive BIP
composite component iff we can partition the set of ports of BSR into three sets
Ps, Pr, and Pu that are respectively the set of send-ports, receive-ports, and
unary interaction ports, such that:

– Each interaction a ∈ γSR, is either (1) a Send/Receive interaction with
a = (s, r1, r2, . . . , rk), s ∈ Ps, r1, . . . , rk ∈ Pr, Ga = true and Fa copies the
variables exported by port s to the variables exported by ports r1, r2, . . . , rk,
or, (2) a unary interaction a = {p} with p ∈ Pu, Ga = true, Fa is the
identity function.

– If s is a port in Ps, then there exists one and only one Send/Receive interac-
tion a ∈ γSR with a = (s, r1, r2, . . . , rk) and all ports r1, . . . , rk are receive-
ports. We say that r1, r2, . . . , rk are the receive-ports associated to s.

– If a = (s, r1, . . . , rk) is a Send/Receive interaction in γSR and s is enabled
at some global state of BSR, then all its associated receive-ports r1, . . . , rk

are also enabled at that state. �
Definition 7 defines a class of BIP models for concurrent implementation

based on asynchronous message passing. In such systems, communication is
sender-triggered, where a message is emitted by the sender, regardless of the
availability of receivers. The third property of the definition, requires that all
receivers are ready to receive whenever the sender may send a message. This
ensures that the sender is never blocked and triggers the Send/Receive
interaction.

Intuitively, a model that meets properties of Definition 7 can be seen as a set
of independent process, communicating through asynchronous message passing.
However, execution of this model according to the BIP semantics assumes that
clocks of these components advance at the same rate and communication is
instantaneous.

4 Step 1: BIP to Send/Receive-BIP

In this section, we describe a method for automated transformation of a timed
BIP model B = γ(B1, . . . , Bn) into a timed Send/Receive-BIP model BSR =
γSR(BSR

1 , . . . , BSR
m) that meets restrictions of Definition 7. Correctness of this

transformation could be found in [15].

368 A. Triki et al.

4.1 Atomic Components

For the sake of simplicity and clarity, we present the transformation for an
atomic component such that its Petri net is an automaton, that is, each of its
transitions has a single source and single target place, and its initial state consists
in a single place. Notice that the behavior of a 1-Safe Petri net defines a finite
automaton, allowing us to apply the following transformation to any arbitrary
atomic component.

We transform an atomic component B of a BIP model into a Send/Receive
atomic component BSR that is capable of communicating with the Interaction
Protocol component(s). To communicate, BSR sends offers to the Interaction
Protocol that are acknowledged by a response. An offer includes necessary infor-
mation for computing enabled interactions from the current state of BSR, i.e.,
values of variables exported by the ports, timing constraints of transitions, and
resets of clocks. When the interaction protocol selects an interaction involving
BSR for execution, BSR is notified by a response sent on the chosen port.

Since each notification from the Interaction Protocol triggers an internal
computation in a component, following [4], we split each place � into two places,
namely, � itself and a busy place ⊥�. Intuitively, reaching ⊥� marks the begin-
ning of an unobservable internal computation. We are now ready to define the
transformation from B into BSR.

Definition 8. Let B = (L, P , T , C, X, {Xp}p∈P , {gτ}τ∈T , {tcτ}τ∈T , {fτ}τ∈T ,
{tpc�}�∈L) be an atomic component. The corresponding Send/Receive atomic
component is BSR = (LSR, P SR, T SR, ∅, XSR, {XSR

p }p∈P , {gτ}τ∈T SR , ∅ ,
{fτ}τ∈T SR , ∅), such that:

– LSR = L ∪ L⊥, where L⊥ = {⊥�| � ∈ L}.
– XSR = X ∪ {tcp}p∈P ∪ {tpcBSR} ∪{rc}c∈C, where rc are Boolean variables,

tcp are timing constraint variables and tpcBSR is time progress condition
variable.

– P SR = P ∪ {o}, where the offer port o exports the variables XSR
o =⋃

p∈P Xp ∪ {tcp}p∈P ∪ {rc}c∈C. For all other ports p ∈ P , we define XSR
p =

Xp.
– For each place � ∈ L, we include an intermediate place ⊥� and an offer

transition τ� = (⊥�, o, �) in TSR. The time progress condition tpcτ�
is false,

both the guard gτ�
and the timing constraint tcτ�

are true, and the update
function fτ�

is the identity function.
– For each transition τ = (�, p, �′) ∈ T , we include a response transition τp =

(�, p,⊥�′) in TSR with no guard and timing constraint.
The function fτp

first applies function fτ of τ , and then sets time progress
condition variable to the time progress condition of next location (i.e. tpcB :=
tpc�′) and updates the timing constraint and reset variables: ∀p′ ∈ P tcp′ :={
tcτ ′ if gτ ′ ∧ τ ′ = (�′, p′, �′′) ∈ T

false otherwise.

∀c ∈ C rc :=

{
true if fτ resets c

false otherwise. �

Automated Conflict-Free Concurrent Implementation 369

In the above definition, the execution of a transition τ = (�, p, �′) of a compo-
nent B corresponds to the following two execution steps in BSR. Firstly, an offer
transition τ� = (⊥�, o, �) transmits for each port p′ ∈ P the current values of its
variables Xp′ , the timing constraint tcp′ corresponding to the enabledness of p′ at
�, as well as the time progress condition tpc�. These are used by the Interaction
Protocol for computing guards and timing constraints of interactions involving
BSR. The transition τ� also transmits for each clock c ∈ C the value of its reset
variable rc, such that rc = true, if c has been reset by the previous transition
execution. Variables rc are used to reset clocks in the Interaction Protocol before
computing timing constraints of interactions.

Secondly, a response transition τp = (�, p,⊥�′) is executed once the Interac-
tion Protocol decides to execute an interaction involving port p. Similar to τ in
B, τp updates values of variables X according to fτ . It also updates variables
tpcBSR , tcp′ and rc to set up-to-date values for the next offer (i.e. starting from
�′). Since (L,P, T) is a deterministic 1-Safe Petri net, a port p′ ∈ P enables at
most one transition at �′. If no transition labeled by p′ is enabled at �′, or if the
guard gτ ′ of the transition τ ′ enabled by p′ at �′ evaluates to false, tcp′ is set
to false to disable interactions involving p′. Otherwise, tcp′ is set to the timing
constraint tcτ ′ of transition τ ′ enabled by p′ at �′.

Notice that time progress conditions and timing constraints of BSR do not
involve clocks C. Thus, according to [9] clocks are no longer active and can be
removed from BSR. Original time progress conditions and timing constraints of
B are stored in variables of BSR, and transmitted to the Interaction Protocol
which is responsible for enforcing timeliness in interactions execution. Figure 5
illustrates the transformation of the component B1 of Figure 2 into its corre-
sponding Send/Receive component BSR

1 .

4.2 Interaction Protocol Layer

The Petri net that defines the behavior of an Interaction Protocol component IP j

handling a class γj of interactions is constructed as follows. Figure 6 illustrates
the construction of the Petri net of component IP2 handling interaction a2 and
a3 in example of Figure 4.

Variables and Clocks. For each component Bi, we include a time progress
condition variable tpcBi

. For each port p involved in interactions γj , we include
a timing constraint variable tcp and a local copy of the variables Xp exported by
p. We also include for each clock a Boolean variable rc that indicates whether
clock c has to be reset.

The set of clocks of IP j contains all the clocks defined initially in components
Bi involved in γj before being transformed into BSR

i .

Places. The Petri net has two types of places:
– For each component Bi involved in interactions of γj , we include waiting

and received places wi and rcv i, respectively. Place rcv i has a time progress
condition defined by the variable tpcBi

. Initially the IP j remains in a waiting
place until it receives an offer from the corresponding component. When an
offer from component BSR

i is received, IP j moves from wi to rcv i.

370 A. Triki et al.

w1 w2 w3

rcv1 rcv2 rcv3

if rc1
c1 := 0

o1
o2 if rc3

c3 := 0

o3

tpcB1
tpcB2

tpcB3o1
if rc1

c1 := 0

o2
o3

if rc3
c3 := 0

spfalse sqfalse sr false ss false

[tcp ∧ tcq] [tcr ∧ tcs]

a2 a3

p q r s

w1 w2 w3

Fig. 6. Component IP2 handling interactions a2 and a3 from Figure 3

– For each port p involved in interactions of γj , we include a sending place
sp. The time progress condition of sp is false. The response to an offer of a
component BSR

i is sent from this place to port p of BSR
i .

Ports. The set of ports of IP j is the following:
– For each component Bi, we include a receive-port oi, to receive offers. Each

port oi is associated to the variables tcp, and Xp associated to each port p
of Bi, the variables rc for each clock c of Bi as well as the variable tpcBi

of
Bi. These variables are updated whenever an offer from Bi is received.

– For each port p involved in interactions γj , we include a send-port p, which
exports the set of variables Xp.

– We include a unary port for each interaction a ∈ γj .

Transitions. IP j receives offers from SR components and responds to them.
The following set of transitions of IP j performs these two tasks:

– In order to receive offers from a component Bi, we include transition (wi, oi,
rcv i). We also include a transition (rcv i, oi, rcv i) to receive new offers when
Bi takes part in an external interaction. This transition resets all clocks c
such that rc is true.

– For each interaction a = {pi}i∈I in γj , we include the transition ({rcv i}i∈I ,
a, {spi

}i∈I). This transition is guarded by the predicate Ga, has the timing
constraint

∧
i∈I tcpi

and moves the tokens from receiving to sending places.
This transition triggers function Fa.

– Finally, for each port p involved in interactions γj , we include a transition
(sp, p, wi). This transition notifies the corresponding component to execute
the transition labeled p.

Note that in Interaction Protocol components, time progress conditions, tim-
ing constraints and resets of clocks depend on variables, which are not permitted
by Definition 2. However, there is only a finite number of configurations for the
values of these variables, as the number of transitions and states in atomic com-
ponents Bi is finite. In IP j , we could include multiple transitions for offers oi and
interactions a to encode all possible combinations of these configurations. In this
case, an atomic component BSR

i would send offers indicating in which config-
uration are its reset, time progress conditions and timing constraints variables,
and appropriate guards in IP j would enable the corresponding transitions.

Automated Conflict-Free Concurrent Implementation 371

4.3 Send/Receive Interactions

In this subsection, we define the interactions between the components defined
thus far. Following Definition 7, we introduce Send/Receive interactions by spec-
ifying only the sender. Given a BIP model γ(B1 · · · Bn), a partition γ1 · · · γm of γ,
the transformation gives a Send/Receive BIP model BSR = γSR(BSR

1 , . . . , BSR
n ,

IP1, . . . , IPm). We define the Send/Receive interactions of γSR as follows:

– For each component BSR
i , let IP j1 , . . . , IP jl

be the Interaction Protocol com-
ponents handling interactions involving BSR

i . We include in γSR the offer
interaction (BSR

i .o, IP j1 .oi, . . . , IP jl
.oi).

– For each port p in component BSR
i and for each Interaction Protocol compo-

nent IP j handling an interaction involving p, we include in γSR the response
interaction (IP j .p, BSR

i .p).
– For each interaction a ∈ γ, we add the unary interaction (IP j .a) to γSR,

where IP j is the Interaction Protocol component handling the interaction a.

The concurrent version obtained from the model depicted in Figure 3 is shown in
Figure 4. The transformation is parametrized by the partition of the interaction
γ1 = {a1} and γ2 = {a2, a3}, yielding two interaction protocol components.

Theorem 1. Given a timed BIP model B, we have BSR ∼ B, where ∼ denotes
observational equivalence.

5 Step 2: Use of a Single Clock

In this section, we explain how we refine Send/Receive-BIP models presented in
Section 4 into Single-Clock Send/Receive-BIP. In a Single-Clock Send/Receive-
BIP, all the time progress conditions and timing constraints of the model are
expressed based on a single global clock g that is never reset. This clock measures
the absolute time elapsed since the system starts executing.

The transformation from a Send/Receive model to a Single-Clock Send/
Receive-BIP model involves the following steps:

1. We add the global clock g to each component.
2. For each clock c of a component B, we introduce a real variable ρc in order

to store the absolute time of the last reset of the clock c with respect to
the clock g. Whenever the clock c is reset by a transition of B, we assign to
ρc the current value of g, denoted by ρc := t(g), where t(g) represents the
valuation of the clock g at the current state of the system. Notice that the
value of c can be computed from the current value of g and ρc by using the
equality c = g − ρc.

3. We express any timing constraints tc using the clock g instead of clocks C.
Using (1) we rewrite tc as follows: tc =

∧
c∈Ci

lc + ρc ≤ g ≤ uc + ρc. That is,
tc is an interval constraint on g of the form: tc = max{lc + ρc}c∈Ci

≤ g ≤
min{uc + ρc}c∈Ci

.
4. Due to the previous transformation, local clocks C are no longer used by

timing constraints, that is, they are not active [9]. Thus, we keep only the
global clock g and the variables ρc.

372 A. Triki et al.

Notice that steps 2, 3, and 4 apply only to Interaction Protocol components,
since distributed atomic components have no clock.

Single-Clock Send/Receive-BIP models are easier to map on a platform than
Send/Receive-BIP, as they require a single real-time clock to be implemented.
However, they are based on the fact that atomic components respond instan-
taneously to notification of Interaction Protocol components by sending offers.
This assumption cannot be met in practice since execution of transitions as well
as transmission of messages may take significant time.

6 Related Work

LOTOS [10] is a specification language based on process algebra, that encom-
passes multiparty interactions. In [16], the authors describe a method of exe-
cuting a LOTOS specification in a distributed fashion. This implementation is
obtained by constructing a tree at runtime. The root is the main connector of
the LOTOS specification and its children are the subprocesses that are con-
nected. A synchronization between two processes is handled by their common
ancestor. Another framework that offers automatic distributed code generation
is described in [13]. The input model consists of composition of I/O automata,
from which a Java implementation using MPI for communication is generated.
The model, as well as the implementation, can interact with the environment.
However, connections between I/O automata (binary synchronization) are less
expressive than BIP interactions, as proved in [6]. Finally, the framework in [13]
requires the designer to specify low-level elements of a distributed system such
as channels and schedulers.

In the context of the framework, automated implementation of distributed
applications from BIP models has been addressed in [7,8]. The authors propose
a 3-layer architecture or, where the first layer is concerned with behavior of
components, the second layer handles execution of interactions, and the third
layer resolves distributed conflicts. However, this line of work is not concerned
with notion of time and timing constraints. On the timed models side, in [1], the
authors study the problem of model-based implementation of sequential timed
BIP models. The closest work to this paper is the approach in [15]. This tech-
nique transforms a timed BIP model into a parallel time-aware code. The main
difference is unlike our approach, the method in [15] augments the code with
only one centralized engine. Such an engine can potentially become a bottleneck
and consequently make the generated code inefficient.

Finally, TIMES is a tool for modelling and schedulability analysis of embed-
ded real-time systems [3]. The tool is featured with a code generator for sequen-
tial C-code synthesis on LegoOS platform from the input model. Unlike our
approach in this paper, TIMES is not able to generate concurrent code.

7 Conclusion

Concurrent real-time systems have numerous applications in today’s embedded
computing systems. However, correct development of such systems is known to

Automated Conflict-Free Concurrent Implementation 373

be a notoriously difficult problem. In this paper, we focused on model-based
automated and correct-by-construction development of multi-process applica-
tions that are subject to timing constraints. We proposed a chain of transforma-
tions that starts from an abstract model of the application expressed in terms
of a set of interacting components. Each component is constrained by a set of
local logical timing requirements. In each step, a transformation obtains a model
that encompasses platform constraints, such as point-point communication and
physical real time. Each transformation ensures that all functional properties of
the input model are preserved. Our transformations are fully implemented and
validated on a framework for real-time image reconstruction system. For reasons
of space implementation and experiments parts appear in [14].

For future work, there are several research directions. An important extension
of this work is to design transformations, in which schedulers are not necessarily
conflict-free. Such schedulers potentially result in better levels of parallelism.
A more challenging (but highly needed) research direction is model-based devel-
opment of distributed real-time applications, where a global perfect clock cannot
be assumed.

References

1. Abdellatif, T., Combaz, J., Sifakis, J.: Model-based implementation of real-
time applications. In: ACM International Conference on Embedded Software
(EMSOFT), pp. 229–238 (2010)

2. Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science
126(2), 183–235 (1994)

3. Amnell, T., Fersman, E., Mokrushin, L., Pettersson, P., Yi, W.: TIMES - a tool for
modelling and implementation of embedded systems. In: Katoen, J.-P., Stevens,
P. (eds.) Tools and Algorithms for the Construction and Analysis of Systems
(TACAS). LNCS, vol. 2280, pp. 460–464. Springer, Heidelbeeg (2002)

4. Basu, A., Bidinger, P., Bozga, M., Sifakis, J.: Distributed semantics and imple-
mentation for systems with interaction and priority. In: Suzuki, K., Higashino, T.,
Yasumoto, K., El-Fakih, K. (eds.) FORTE. LNCS, vol. 5048, pp. 116–133. Springer,
Heidelberg (2008)

5. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in
BIP. In: Software Engineering and Formal Methods (SEFM), pp. 3–12 (2006)

6. Bliudze, S., Sifakis, J.: A notion of glue expressiveness for component-based sys-
tems. In: Bliudze, S., Sifakis, J. (eds.) Concurrency Theory (CONCUR). LNCS,
vol. 5201, pp. 508–522. Springer, Heidelberg (2008)

7. Bonakdarpour, B., Bozga, M., Jaber, M., Quilbeuf, J., Sifakis, J.: A framework
for automated distributed implementation of component-based models. Springer
Journal on Distributed Computing (DC) 25(1), 383–409 (2012)

8. Bonakdarpour, B., Bozga, M., Quilbeuf, J.: Automated distributed implementation
of component-based models with priorities. In: ACM International Conference on
Embedded Software (EMSOFT), pp. 59–68 (2011)

9. Daws, C., Yovine, S.: Reducing the number of clock variables of timed automata.
In: RTSS, pp. 73–81. IEEE Computer Society (1996)

10. ISO/IEC. Information Processing Systems - Open Systems Interconnection:
LOTOS, A Formal Description Technique Based on the Temporal Ordering of
Observational Behavior (1989)

374 A. Triki et al.

11. Jee, E., Wang, S., Kim, J.-K., Lee, J., Sokolsky, O., Lee, I.: A safety-assured
development approach for real-time software. In: Proceedings of the 16th IEEE
International Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA), pp. 133–142 (2010)

12. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE 77(4), 541–580 (1989)

13. Tauber, J.A., Lynch, N.A., Tsai, M.J.: Compiling IOA without global synchroniza-
tion. In: Symposium on Network Computing and Applications (NCA), pp. 121–130
(2004)

14. Triki, A., Bonakdarpoor, B., Combaz, J., Bensalem, S.: Automated conflict-free
concurrent implementation of timed component-based models. Technical report,
Verimag Research Report

15. Triki, A., Combaz, J., Bensalem, S., Sifakis, J.: Model-based implementation of
parallel real-time systems. In: Cortellessa, V., Varró, D. (eds.) FASE. LNCS, vol.
7793, pp. 235–249. Springer, Heidelberg (2013)

16. von Bochmann, G., Gao, Q., Wu, C.: On the distributed implementation of lotos.
In: FORTE, pp. 133–146 (1989)

Formal API Specification of the PikeOS
Separation Kernel

Freek Verbeek1,2(B), Oto Havle3, Julien Schmaltz4, Sergey Tverdyshev3,
Holger Blasum3, Bruno Langenstein5, Werner Stephan5, Burkhart Wolff6,

and Yakoub Nemouchi6

1 Open University of The Netherlands, Heerlen, The Netherlands
fvb@ou.nl

2 Radboud University Nijmegen, Nijmegen, The Netherlands
3 SYSGO AG, Klein-winternheim, Germany

4 Eindhoven University of Technology, Eindhoven, The Netherlands
5 DFKI GmbH, Kaiserslautern, Germany

6 University Paris-Sud, Orsay, France

Abstract. PikeOS is an industrial operating system for safety and secu-
rity critical applications in, for example, avionics and automotive con-
texts. A consortium of several European partners from industry and
academia works on the certification of PikeOS up to at least Common
Criteria EAL5+, with “+” being applying formal methods compliant
up to EAL7. We have formalized the hardware independent security-
relevant part of PikeOS that is to be used in a certification context. Over
this model, intransitive noninterference has been proven. We present the
model and the methodology used to create the model. All results have
been formalized in the Isabelle/HOL theorem prover.

1 Introduction

Separation kernels are at the heart of many modern security-critical systems.
Safety-critical embedded systems become more and more connected, requiring
an operating system that provides clear separation between the subjects run-
ning on top of it. A separation kernel is an operating system providing such an
environment [1]. A crucial security property of separation kernels is intransitive
noninterference [2,3]. This property is typically a base for the MILS1 architec-
tural approach [4] and enforced by separation kernel. It ensures that a given
security policy over different subjects of the system is obeyed. Such a security
policy dictates which subjects may flow information to which other subjects.

Software embedded in safety- and security-critical applications needs to be of
the highest quality. Formal methods are a means to meet the necessary stringent
1 We use MILS as a proper noun, historically MILS stood for multiple independent
levels of security.

c© Springer International Publishing Switzerland 2015
K. Havelund et al. (Eds.): NFM 2015, LNCS 9058, pp. 375–389, 2015.
DOI: 10.1007/978-3-319-17524-9 26

376 F. Verbeek et al.

assurance standards. Regarding PikeOS, a separation kernel used in the EURO-
MILS project, an objective is to undergo an evaluation under the Common
Criteria (CC) to a high evaluation assurance level (EAL5+) with “+” addressing
the formal models for up to EAL7. This level requires a formal model of PikeOS
and the proof that this model possesses the intransitive noninterference property.
The environment in which this project is performed imposes several constraints.

If formal methods are used in the CC, then the CC obliges the developer to
demonstrate a correspondence between the model (in our case: CISK, Sect. 2.1)
and the functional specification. When the developer chooses to do this by a
formal functional specification, then the correspondence shall be backed by a
formal proof (CC, Part 3, work unit ADV SPM.1.3D). We describe a formal
model of a generic separation kernel (Sect. 3), with a selection of features that is
motivated from a subset of PikeOS features, and thought to be applicable for a
larger set of separation kernels. Moreover, we describe the proof that this model
ensures intransitive noninterference. The environment in which this project is
performed imposes several constraints. The approach shall be executable in a
typical resource restricted environment of an SME (small and medium enter-
prise). Usually, the CC certificate expires and the product has to undergo a
maintenance evaluation. Thus, the formal model shall be feasibly adaptable
if any changes are required. Previous formal efforts about separation kernels
– including the verification of seL4 [5,6] – require changes in the product to
ease the application of formal methods. Such changes may unnecessarily restrict
the flexibility, performance, and maintainability of the product. Moreover, these
modifications constitute huge obstacles to the integration with the company’s
Verification&Validation activities. Finally, the source code used to build the
product should not contain any formal modelling artifacts.

Our main contribution is to propose a methodology (Sect. 2) supporting the
development of high-level functional specifications of separation kernels under
the aforementioned constraints. Our main result (Sect. 3) is the formalization
in the logic of Isabelle/HOL [7] of API calls of PikeOS important for secure
information flow and the proof that they ensure intransitive noninterference2.
In this paper, we illustrate our methodology on a simplified version of the IPC
(Inter Process Communication) API. The entire model includes a much more
realistic version of IPC and several other calls, like an event mechanism, and file
transfers. The end of Sect. 3 gives more details about these different calls.

2 Methodology

Fig. 1 shows an overview of our methodology. The starting point is a generic
model of a Controlled Interruptible Separation Kernel (CISK). This model defines
a state machine with some facets that are commonly present in separation ker-
nels, such as different subjects running code consisting of kernel API calls, an
information flow policy, interrupts and context switches. It includes a notion of
time, so that it can be used to model time partitions and can model and show the
2 Source code is available upon request.

Formal API Specification of the PikeOS Separation Kernel 377

Fig. 1. CISK Methodology

absence of covert channels via common data structures. Finally, it also includes
two constituents modelling the control of the kernel over its subjects. The kernel
can decide to abort and delay the API calls of the subjects.

We have defined a set of nine assumptions over the CISK constituents (we will
refer to these assumptions as proof obligations). From the proof obligations, we
prove intransitive noninterference. This is commonly referred to as the unwinding
of the proof obligations. This proof is done once and for all, i.e., when using CISK
to make an implementation model, one does not have to consider any details of
this proof. Sections 2.1 and 2.2 present an overview.

To create an implementation model, five constituents have to be defined.
Subsequently, one has to discharge all proof obligations for those constituents.
More details will be given below. After these steps, one automatically obtains a
proof of intransitive noninterference over the implementation model.

2.1 CISK

In CISK, the entire system consists of several domains running on top of the
kernel. A domain is an entity executing actions and making calls to the kernel.
Actions represent atomic instructions that are executed by the kernel. As ker-
nel actions are assumed to be atomic, an interrupt may occur after each kernel
action. Each API call that a domain can execute is represented by a sequence of
atomic actions.3 The program code of a domain is thus a list of action sequences.
The system code is a mapping of program codes to domains, i.e., it assigns to
each domain its program code. The state of the kernel is assumed to contain
information about the resources of the system, as well as which domain is cur-
rently active. A state does not need to include the program code of the domains,
as in our model the actions that are executed are modelled separately. The
observable output of the system includes, e.g., the output of executing actions
and the error codes returned when aborting API calls. Time is modelled using
3 We will use the terms ‘sequence’ and ‘list’ synonymously.

378 F. Verbeek et al.

natural numbers. Each atomic kernel action can be executed within one or more
time units. We define an enriched state to be a triple containing the state, the
current system code and the current time.

The deterministic execution by the kernel of action a in state s is defined
by kstep(s, a). The behavior observed by executing action a in state s is noted
out(s, a). When a domain instructs the kernel to execute an atomic action, it
is up to the kernel whether that action is executed, aborted or delayed. This
decision is modelled by predicates aborting(a, s) and waiting(a, s). When an
atomic action is aborted, the entire action sequence that it belongs to is aborted.
The currently active domain is noted D(s).

Each step of CISK takes the current enriched state and yields the next state.
Three cases can occur:

1. An interrupt occurs. In this case, a context switch is executed, changing the
currently active domain.

2. The next atomic action to be executed fits in the current time partition,
i.e., it can be executed before the next interrupt. In this case, the kernel
fetches the next atomic action a from the domain code. Three cases can
occur. First, based on the current state and the current action, the current
API call can be aborted. The kernel updates the domain code by removing
the entire API call. Secondly, the action can be executed. Thirdly, based
on the current state, the current action can be in a waiting state. No state
change occurs.

3. The next atomic action to be executed does not fit the current time partition.
In this case, the kernel prevents execution of this action, as otherwise an
information flow can occur as the execution of the next domain is influenced.

Non-determinism is modelled using oracles, which are functions resolving
choices. Interrupts can occur at any time. Oracle interrupt(n) returns true if
an interrupt occurs at time n. The duration of action a in state s is given by
oracle duration(s, a).

A consequence of allowing interruptible action sequences is that it is no longer
the case that any system code, i.e., any combination of atomic kernel actions, is
realistic. We let AS set(d) denote for domain d the list of kernel actions of each
system call made by domain d. We restrict our model to well-formed executions,
i.e., executions where atomic kernel actions are according to AS set.

2.2 Intransitive Noninterference

An information flow policy (denoted �) is a relation over domains. It dictates
which domains may flow information to which other domains. We assume an
intransitive security policy that allows, e.g., a configuration in which w � v � u,
but w �� u. In such a configuration, domain w may flow information to u but
only through v.

We define separation by considering the system as a Moore machine. Delay
bisimulation is used to formulate that a normal run of the system executes

Formal API Specification of the PikeOS Separation Kernel 379

similarly to a system in which some domains are replaced by attackers. A delay
bisimulation shows that each delay step in one run can be simulated by a delay
step in the other. A delay step is a step preceded by zero or more steps over
silent states, i.e., states that produce no output.

Figure 2 explains this informally. Let u be some domain of interest and let x
be the system code (we quantify over all possible u and x). We prove the existence
of a bisimulation relation R. The left hand side of relation R is a normal run
of the system. The right hand side of relation R is a run where domains that
may not influence u have been replaced by some attacker (we quantify over all
possible attackers). We will call this run a littered run. At all times, we only look
at the output of u; whenever u is inactive the output is considered to be ⊥.

〈s, x0, n0〉

〈s′′, x′′
0 , n〉

〈s′, x′
0, n

′
0〉

〈t, x1, n1〉

output = ⊥

〈t′′, x′′
1 , n〉

〈t′, x′
1, n

′
1〉

R

equal

output

R

u is active

** **

u is inactive

Fig. 2. Delay bisimulation showing intransitive noninterference. The double stars
denote zero or more steps.

Let 〈s, x0, n0〉 be the current enriched state of the normal run. Domain u
either is currently active or not. Within zero or more steps, state 〈s′′, x′′

0 , n〉 is
reached in which u is active. In this state, the time is some n and the output
observed is some o �= ⊥. This state can be simulated by the littered run. That run
first executes zero or more steps over silent states (i.e., it runs the littered system
until u is active), followed by a state in which u is active. That state produces
the same output o at the same time n. The next states again are related by R.

What the existence of bisimulation R shows is that whenever u is active, it
produces the exact same output in both runs, at the exact same time. Domain u
is undisturbed, regardless of the presence of the attacker. Whenever u is inactive,
no output or time is observed.

2.3 Proof Obligations and Their Unwinding

We introduce the proof obligations on the CISK constituents. Subsequently, we
explain the extra assumptions that are required to finish the proof.

First, we adopt Rushby’s assumptions [2]. Since these are well-known, we
introduce them only informally. Rushby defines assumptions using an equiva-
lence relation called view-partitioning. The intuition behind this relation is that

380 F. Verbeek et al.

whenever two states s and t are in the same view-partitioning for domain u, they
produce the same output. We will call such states u-equivalent (notation:

u�).
The step function must be weakly step consistent : let s and t be two u-

equivalent states. Weak step consistency states that s and t remain u-equivalent
after executing an action a, i.e., after completion of a call to function kstep. The
property locally respects states that when a state s executes an action a and
the current domain is not allowed to influence domain u, the next state remains
u-equivalent, i.e., s

u� kstep(s, a). Output consistency formalizes the fact that
two u-equivalent states produce the same output when u is active.

In addition to Rushby’s assumptions, we require the following proof obliga-
tions:
Active Domain Independent of Step:
A regular action cannot influence which domain is currently active.

D(kstep(s, a)) = D(s)

Cswitch Consistency:
A context switch preserves the view-partitioning relation.

s
u� t =⇒ cswitch(s)

u� cswitch(t)

Aborting and Waiting Consistency:
When two u-equivalent states execute action a (with u the currently active
domain), the aborting (waiting) condition is equal.

s
D(s)� t =⇒ aborting(s, a) = aborting(t, a)

s
D(s)� t =⇒ waiting(s, a) = waiting(t, a)

Context switch is state-independent:
For any two states s and t, the domain that is active after a context switch is
equal.

D(s) = D(t) =⇒ D(cswitch(s)) = D(cswitch(t))

Besides these proof obligations, we require additional assumptions on the
oracles.

Duration Consistency:
When two u-equivalent states execute action a (with u the currently active
domain), then the duration of action a is equal.

s
D(s)� t =⇒ duration(s, a) = duration(t, a)

Duration Consistency, Aborting Consistency and Waiting Consistency are
the major proof obligations to ensure time separation. Consider a situation in

Formal API Specification of the PikeOS Separation Kernel 381

which the current domain u executes a synchronous IPC to a domain d that has
no rights to influence u. If d is somehow able to let u wait, then it might be able
to exploit that for a timing attack. The IPC action sequence will be aborted,
since the information flow policy does not allow the communication. Aborting
Consistency ensures that this happens, regardless of the state of domain d. Wait-
ing consistency gives us that whenever the kernel delays some atomic stage of
the IPC call, it will do so not based on information of d. Finally, duration con-
sistency gives us that each atomic stage, if executed, has the same duration
regardless of the state of d.

State-Independent Interrupts:
Whether an interrupt occurs at a given time, is independent of the state.

interrupt :: time t �→ B

Oracle function interrupt takes as input the current time and decides whether
an interrupt occurs solely on that. We assume that there is some at-beforehand
fixed schedule dictating when which domain is active. This scheduler cannot base
its decisions on the current state.

Theorem 1. Let PO denote the set of proof obligations and assumptions defined
above. PO implies intransitive noninterference for CISK:

PO =⇒ separation

2.4 Discharging Proof Obligations

CISK supports the discharging of the proof obligations with a proof method
based on preconditions. Preconditions are especially important due to the intro-
duction of interrupts. We explain this using a simple example. Consider an artifi-
cial API call write(m, u) which triggers an action sequence of two atomic actions.
First, action w1 performs a security check whether the current domain can write
into the memory of domain u. If so, then the second atomic action w2 writes
message m. Without interrupts, the property Locally Respects is easily proven:
the state changes only when the communication is allowed, so quite trivially we
have:

D(s) �� u =⇒ s
u� kstep(s, write(m,u))

However, locally respects is required for all atomic actions. We are therefore
required to prove:

D(s) �� u =⇒ s
u� kstep(s, w2(m,u))

This statement, however, is false, as atomic action w2 writes m into the mem-
ory of u. The traditional formulation of Locally Respects is thus unprovable
when interrupts are added. In general, adding interrupts can invalidate security
properties [8,9].

382 F. Verbeek et al.

Action w2 is always executed after successful (non-aborting) execution of
w1. Since w1 aborts whenever D(s) �� u, we can safely assume that whenever
action w2 is executed, the precondition D(s) � u holds. Using this precondition,
discharging locally respects for action w2 becomes trivial.

In order to use preconditions, one must first define a function precondition
that takes the current state, an action and the domain executing that action. It
returns a Boolean indicating that the precondition holds. For example:

precondition(s, w2(m,u), d) = d � u

Let α = [a0, a1, a2] be an action sequence. The precondition for action a0 must
always be true (note that this does not mean that a0 cannot be aborted). Success-
ful execution of atomic action ai must ensure the precondition for action ai+1

(0 ≤ i < 2). If an interrupt happens, then other domains are active between
actions ai and ai+1. Those domains must not be able to influence the precon-
ditions for u. These properties have been formalized as three additional proof
obligations. All other proof obligations, e.g., Locally Respects, have been weak-
ened by adding the assumption that the preconditions for the next action hold.

3 Application to the Separation Kernel

3.1 An Illustrative Example

To illustrate the application of our methodology, we use a highly simplified
version of the IPC API. The IPC (for: inter process communication) provides
domains with a synchronous message passing system. Algorithm 1 presents
pseudo code of the simplified IPC implementation. The API provides IPC func-
tions ipc send and ipc rec. The sender provides the id of the receiver thread t′

and the message m. The receiver only provides the id of the sender thread t′.
Initially, communication rights are checked. If bidirectional communication

is not allowed, the entire API call is aborted and some error code is produced.
Otherwise, a flag rdy is set to true. This flag indicates that the current thread
is ready for the communication and thus waiting for the partner. Once both
threads are ready, the actual data transfer occurs. Finally, the flag is set to false.

Remark 1. As mentioned, in this paper, we present a simplification of our entire
formalization in Isabelle/HOL. Some of the simplifications are:

– the separation kernel supports bidirectional IPC calls, that perform both
sending and receiving. This leads to action sequences with more stages.

– The rdy variable is actually an abstraction of preparations for the IPC oper-
ation, e.g. scheduler invocations.

– the separation kernel contains partition daemons which can do restricted
IPC calls.

– The security checks are more complicated than shown here. Also, we have
modelled a dynamic state-dependent security policy.

– In our example we used only one error code, but in the real model there are
many more.

Formal API Specification of the PikeOS Separation Kernel 383

Algorithm 1. Pseudo code of the IPC send and receive operation
ipc send(t’, m) =

if t �� t′ or t′ �� t then
abort
error code IPC ERROR

else
s.t.rdy = True

end if
preemption point
while s.t’.rdy = False do

preemptive wait
end while
preemption point
send IPC data
preemption point
s.t.rdy = False
preemption point

ipc rec(t’) =

if t �� t′ or t′ �� t then
abort
error code IPC ERROR

else
s.t.rdy = True

end if
preemption point
while s.t’.rdy = False do

preemptive wait
end while
preemption point
receive IPC data
preemption point
s.t.rdy = False
preemption point

3.2 Isabelle Prerequisites

Isabelle/HOL is a theorem prover with higher order logic and facilities for data
types, records, inductive sets and recursive functions [7]. New datatypes are
introduced using command datatype. Functions can be defined over datatypes
using primitive recursion. For sake of presentation, we define all definitions and
functions using the Isabelle command fun. The commands below introduce a
simple binary tree type and a function computing the sum of all leaves:

datatype tree-t = LEAF nat | EMPTY | BRANCH tree-t tree-t
fun tree-sum :: tree-t ⇒ nat where

tree-sum (BRANCH t0 t1) = tree-sum t0 + tree-sum t1
| tree-sum (LEAF n) = n
| tree-sum - = 0

Records are datatypes generalizing tuples. Components are addressed via a
label instead of their position. An important feature of records is to be extensible.
We will use records to model the state. Adding new actions to the implemen-
tation model typically introduces new parts of the state. The extensibility of
records is key in supporting the modular development of the separation kernel
model. The commands below introduce a record representing a 2D-point. This
record is then extended to a 3D-point.

record point-2d-t = x :: nat y :: nat
record point-3d-t = point-2d-t + z :: nat

384 F. Verbeek et al.

3.3 Identifying Atomic Actions

The first step of the implementation model is to identify each preemption point
in the C code with a stage. This yields the following five possible stages:

Stage Description
1 CHECK Check the communications rights of the sender
2 SYNC Wait for the partner
3 SEND Send the data
4 REC Receive the data
5 END Finish the IPC operation

In Isabelle, this is modelled by a datatype.

datatype ipc-stage-t = CHECK | SYNC | SEND | REC | END

An atomic action consists of a stage and the id of the intended partner t′.
When a partition executes an IPC kernel call, the arguments of the call are copied
to the thread state. Thread IDs are represented by type thread id t. Messages
are modelled by type msg t. The type of actions ipc action t is defined as either
the IPC kernel call or one of the five atomic stages. We define a type for calling
ipc send which takes the id of the partner thread and the message that is to be
transmitted. The type for calling ipc rec only takes the id of the partner thread.

datatype ipc-action-t = CALL-SEND thread-id-t msg-t
| CALL-REC thread-id-t
| STAGE ipc-stage-t thread-id-t

Obviously, these actions are always executed in a specific order. We define
the possible action sequences of atomic actions that can occur due to the IPC
operations. In this definition, the lambda expressions create an action sequence
out of a given communication partner t′ and (in case of the send operation)
a message m. The set of possible action sequences are those lists that can be
created by these lambda expressions, i.e., their range.

fun ipc-AS-set :: thread-id-t ⇒ ipc-action-t list set where
ipc-AS-set t =

range (λ(t ′, m) . [CALL-SEND t ′ m,
STAGE CHECK t ′, STAGE SYNC t ′, STAGE SEND t ′, STAGE END t ′])

∪
range (λ t ′ . [CALL-REC t ′,

STAGE CHECK t ′, STAGE SYNC t ′, STAGE REC t ′, STAGE END t ′])

3.4 State and State Transformations

The basic state, i.e., before any action has been modelled, contains one field
storing which thread is active. Currently, we assume that only one thread is

Formal API Specification of the PikeOS Separation Kernel 385

active at all times. Secondly, we have a model of the memory used by the kernel
and the user applications. Our memory includes both virtual and physical mem-
ory addresses. Threads may access memory in their own partition or in shared
memory. We consider the details of the memory model out of the scope of this
paper. In Isabelle, the default state is the following record:

record state-t =
active-thread :: thread-id-t
memory :: memory-t

The IPC model extends this state record with those parts that are specific
to the IPC call. An ipc send kernel call starts with storing the given message
into a specific part of the state. The rdy variable is used to implement waiting.
Therefore, the following record extension is used to model IPC calls:

record ipc-state-t =
state-t + msg :: thread-id-t ⇒ msg-t rdy :: thread-id-t ⇒ bool

We model the semantics of the IPC actions by defining a step function that
takes as input an action and a state and returns a new state. We have imple-
mented a function store ipc msg that takes the message of the IPC call and
stores it into a specific part of the memory. Also, we have implemented a function
ipc data transfer that performs the actual data transfer. This function assumes
that both partners are ready for the data transfer.

fun ipc-step :: ipc-action-t ⇒ thread-id-t ⇒ state-t ⇒ state-t where
ipc-step (CALL-SEND t ′ m) t s = store-ipc-msg m s

| ipc-step (STAGE CHECK t ′) t s = set-rdy s t True
| ipc-step (STAGE SEND t ′) t s = ipc-data-transfer t t ′ s
| ipc-step (STAGE END t ′) t s = set-rdy s t False
| ipc-step - - s = s

The execution of an ipc send kernel call first results in storing the message
into the state. Then, a check occurs. The only state transformation that results
from this check is that the rdy flag is to to true. Note that this state transfor-
mation will only happen when the action is not aborted or delayed. During the
SEND stage, actual data transmission occurs. Finally, the END stage completes
the IPC kernel call and sets the rdy flag to false.

Note that not all stages actually do a state transformation. For example, the
SYNC stage just consists of waiting and therefore no change to the state occurs.
Also, in this model during the SEND stage the sender executes the data transfer
but in the REC stage the receiver only waits for the sender.

3.5 Aborting and Waiting

During the CHECK stage it might be possible that the IPC operation is not
allowed. In that case, the entire IPC operation is aborted. This is expressed

386 F. Verbeek et al.

by function ipc aborting. During the CHECK stage, it is checked whether the
domain is doing an IPC call to itself (i.e., whether t = t′) and whether the IPC
is not allowed by the information flow policy. In both cases, the action sequence
is aborted. In all other stages, the action will not be aborted.

fun ipc-aborting :: ipc-action-t ⇒ thread-id-t ⇒ state-t ⇒ bool where
ipc-aborting (STAGE CHECK t ′) t s = (t = t ′ ∨ ¬ t � t ′ ∨ ¬ t ′ � t)

| ipc-aborting - - - = False

When the SYNC stage is reached, the current thread has set its rdy variable
to true. It waits until the other thread t′ has done this as well. In other words, as
long as (get-rdy s t ′) is false, the IPC call waits in its SYNC stage. In the REC
stage, the receiver waits until the sender is done sending data. When the sender
finished, it set its rdy flag to false. The receiver has to wait for this. As long as
(get-rdy s t ′) is true, data transmission is going on and the receiver waits in its
REC stage. In all other stages, the action will not be delayed.

fun ipc-waiting :: ipc-action-t ⇒ thread-id-t ⇒ state-t ⇒ bool where
ipc-waiting (STAGE SYNC t ′) t s = (¬get-rdy s t ′)

| ipc-waiting (STAGE REC t ′) t s = get-rdy s t ′

| ipc-waiting - - - = False

3.6 Output

The observable output of an IPC kernel call consists of the error codes that it
generates and the effects it has on the memory. In our implementation model,
we have defined an output function that considers all operations that read or
write into memory. Since the IPC uses those operations, it is not necessary to
explicitly model the output of the sending and receiving stages. However, for
sake of presentation, we define an output function that yields both the error
codes and the data transfer.

The first case of function ipc output defines the observable output when the
action sequence is aborted in the CHECK stage. In that case, the error code
IPC ERROR is returned. The second case models the observations when data
transfer occurs. For sake of presentation, we simply retrieve the message that
has been stored into the state using function get ipc msg. In all other cases, there
is no observational output, represented by ⊥.

fun ipc-output :: state-t ⇒ ipc-action-t do ⇒ ipc-output-t where
ipc-output s (Abort (STAGE CHECK t ′)) = IPC-ERROR

| ipc-output s (Do (STAGE SEND t ′)) = get-ipc-msg s
| ipc-output - - = ⊥

3.7 Discharging Proof Obligations

In the full implementation model, many preconditions are used to complete the
proofs. A precondition takes as parameters the current state s, an action, and

Formal API Specification of the PikeOS Separation Kernel 387

Table 1. Overview of our separation kernel model: “Large” is larger than 1000
Isabelle/HOL LoC in the model, “Small” is less than 250 lines of codes in the model

Description Size Description Size

Configuration and policies Medium File providers API Medium
State definition Small IPC API Large
Proof obligations Large Port API Medium
Memory API Large Event API Medium

the thread t executing that action. For the simplified example, the following
preconditions suffice:

1. The duration of the SYNC stage depends on the communication partner. To
show the absence of timing attacks, we need to establish that whenever the
current thread t is waiting for communication partner t′, thread t′ is allowed
to interfere with thread t. This is expressed by the first line of function
ipc precondition.

2. In the SEND stage, the sender t starts transmitting data. At that stage, both
thread t and the partner t′ have to be ready to receive that data, i.e., both
their rdy state variables have to be true. This is expressed by the second line
of function ipc precondition.

fun ipc-precondition :: state-t ⇒ ipc-action-t ⇒ thread-id-t ⇒ bool where
ipc-precondition s (STAGE SYNC t ′) t = t ′ � t

| ipc-precondition s (STAGE SEND t ′) t = (get-rdy s t ∧ get-rdy s t ′)
| ipc-precondition - - - = True

3.8 Separation Kernel Model Details

Table 1 gives an impression about the formalized parts of PikeOS. The size indi-
cations include the modelled functions together with the proof of the associated
proof obligations. A separate file (proof obligations in the table) handles the
linking of all the local proofs into an instantiation of our generic model CISK. In
particular, every function has its own extension of the state record. We need to
prove that these extensions do not influence each other. Our separation kernel
model includes five key API call groups, namely, memory based file providers,
memory operations, ports, events, and IPC calls. We also modelled configuration
files defining the control access matrix making up the Partitioned Information
Flow Policy (PIFP) of the separation kernel. For each of these separation kernel
components, we have 1.) identified the atomic stages, 2.) modelled the relevant
part of the state and the state transformations, 3.) defined the aborting and
waiting predicates and 4.) modelled the observable output. Subsequently, we
have discharged all proof obligations.

388 F. Verbeek et al.

4 Related Work and Discussion

Intransitive noninterference (NI) has been an active research field for many
years [2,3,10–13]. Several methodologies are based on unwinding, which is also
the basis of our methodology [2,13–15]. This breaks down the proof of NI into
smaller proof obligations. These proof obligations can be checked by some man-
ual proof [2,16], model checking [17] or dedicated algorithms [18].

Our work closely relates to the abstract layers of the verification of seL4 [5,
6,19,20]. These abstract layers consist in a high-level specification on which the
main security properties are proven. This abstract model is then refined into an
abstract specification. This specification is then linked to the actual source code.
On the one hand, our model is smaller because it includes fewer API calls. On the
other hand, it is more detailed because it models time and interrupts explicitly.
Note that our approach considers an abstract specification directly extracted from
the source code. We have no counterpart to the high-level specification of seL4.

Even if the objective and the size of our proof largely differs from the verifi-
cation of seL4, there are several common aspects in both approaches. Similarly
to Klein et al. [20], API calls are divided into a checking phase and an execute
phase. The former validates the arguments and confirms the authority to exe-
cute. The latter executes “and never fails”. Functions aborting and waiting
represent the first phase. Function kstep represents the second phase. In our
methodology, this structure is reverse engineered from the requirements and the
source code. Informal arguments need to be made to ensure soundness of the
abstraction. 4

As pointed out by Klein et al., avoiding global variables to model state vari-
ables in a modular way is key. In our methodology, this is achieved using exten-
sible records. The global state contains a very limited number of variables. For
each API call, this global state is locally extended as necessary. The drawback is
that one needs to prove independence between these local extensions. This can
lead to a quadratic increase in the number of proof obligations to discharge.

5 Conclusion

We presented a pragmatic approach to the development of formal models of
separation kernels. We applied our methodology to all security relevant parts
of a separation kernel. Our effort currently focuses on extending our generic
model to multi-core processors and using this extension in the Common Criteria
evaluation of the industrial separation kernel PikeOS.

References

1. Kaiser, R., Wagner, S.: Evolution of the PikeOS microkernel. In: First International
Workshop on Microkernels for Embedded Systems, p. 50 (2007)

2. Rushby, J.: Noninterference, transitivity, and channel-control security policies. SRI
International, Computer Science Laboratory (1992)

4 This is part of the CC process.

Formal API Specification of the PikeOS Separation Kernel 389

3. van der Meyden, R.: What, indeed, is intransitive noninterference? In: Biskup, J.,
López, J. (eds.) Computer Security ESORICS 2007. LNCS, vol. 4734, pp. 235–250.
Springer, Heidelberg (2007)

4. EURO-MILS: MILS architecture (2014). http://www.euromils.eu/downloads/
2014-euro-mils-mils-architecture-white-paper.pdf

5. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P.,
Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., et al.: seL4: Formal ver-
ification of an OS kernel. In: Proceedings of the ACM SIGOPS 22nd symposium
on Operating systems principles, pp. 207–220. ACM (2009)

6. Murray, T., Matichuk, D., Brassil, M., Gammie, P., Bourke, T., Seefried, S., Lewis,
C., Gao, X., Klein, G.: seL4: from general purpose to a proof of information flow
enforcement. In: 34th IEEE Symposium on Security and Privacy (2013)

7. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: a proof assistant for higher-
order logic (2012)

8. Jacob, J.: On the derivation of secure components. In: Proceedings of the IEEE
Symposium on Security and Privacy, pp. 242–247, May 1989

9. Mantel, H., Sudbrock, H.: Comparing countermeasures against interrupt-related
covert channels in an information-theoretic framework. In: Proceedings of 20th
IEEE Computer Security Foundations Symposium (CSF 2007), pp. 326–340, July
2007

10. Goguen, J.A., Meseguer, J.: Unwinding and inference control (1984)
11. Mantel, H.: Information flow control and applications - bridging a gap -. In:

Oliveira, J., Zave, P. (eds.) Formal Methods for Increasing Software Productiv-
ity (FME 2001). LNCS, vol. 2021, pp. 153–172. Springer, Heidelberg (2001)

12. Roscoe, A.W., Goldsmith, M.H.: What is intransitive noninterference? In: Pro-
ceedings of the 12th IEEE Computer Security Foundations Workshop, pp. 228–238
(1999)

13. von Oheimb, D.: Information flow control revisited: Noninfluence = noninterference
+ nonleakage. In: Samarati, P., Ryan, P., Gollmann, D., Molva, R. (eds.) Computer
Security - ESORICS 2004. LNCS, vol. 3193, 225th edn, p. 243. Springer, Heidelberg
(2004)

14. Leslie, R.: Dynamic intransitive noninterference. In: IEEE International Sympo-
sium on Secure Software Engineering (2006)

15. Engelhardt, K., van der Meyden, R., Zhang, C.: Intransitive noninterference in non-
deterministic systems. In: Proceedings of the 2012 ACM Conference on Computer
and Communications Security, pp. 869–880. ACM (2012)

16. Haigh, J.T., Young, W.D.: Extending the noninterference version of MLS for SAT.
IEEE Trans. Softw. Eng. 13(2), 141–150 (1987)

17. Whalen, M., Greve, D., Wagner, L.: Model checking information flow. In: Hardin,
D.S. (ed.) Design and Verification of Microprocessor Systems for High-Assurance
Applications, pp. 381–428. Springer, US (2010)

18. Eggert, S., van der Meyden, R., Schnoor, H., Wilke, T.: The complexity of intran-
sitive noninterference. In: 2011 IEEE Symposium on Security and Privacy (SP),
pp. 196–211 (2011)

19. Murray, T., Matichuk, D., Brassil, M., Gammie, P., Klein, G.: Noninterference for
operating system kernels. In: Hawblitzel, C., Miller, D. (eds.) Certified Programs
and Proofs. LNCS, vol. 7679, pp. 126–142. Springer, Heidelberg (2012)

20. Klein, G., Andronick, J., Elphinstone, K., Murray, T.C., Sewell, T., Kolanski, R.,
Heiser, G.: Comprehensive formal verification of an OS microkernel. ACM Trans.
Comput. Syst. 32(1), 2 (2014)

http://www.euromils.eu/downloads/2014-euro-mils-mils-architecture-white-paper.pdf
http://www.euromils.eu/downloads/2014-euro-mils-mils-architecture-white-paper.pdf

Short Papers

Data Model Bugs

Ivan Bocić(B) and Tevfik Bultan

Department of Computer Science,
University of California, Santa Barbara, USA

{bo,bultan}@cs.ucsb.edu

Abstract. In today’s internet-centric world, web applications have
replaced desktop applications. Cloud systems are frequently used to store
and manage user data. Given the complexity inherent in web applica-
tions, it is imperative to ensure that this data is never corrupted. We
overview existing techniques for data model verification in web applica-
tions, list bugs discovered by these tools, and discuss the impact, diffi-
culty of detection, and prevention of these bugs.

1 Introduction

Software applications have migrated from desktops to the cloud, with many
benefits such as, continuous accessibility on a variety of devices, and elimination
of software installation, configuration management, updates and patching. These
benefits come with a cost in increased complexity.

In order to reduce the complexity and achieve modularity, most modern
application frameworks use the Model-View-Controller (MVC) pattern to sepa-
rate the code for the data model (Model) from the user interface logic (View) and
the navigation logic (Controller). Examples of these frameworks include Ruby on
Rails (Rails for short), Zend for PHP, Django for Python and Spring for J2EE.

Since modern web applications serve to store and manage user data, the data
model is a key component of these applications. Data models are responsible
for defining the data model schema, i.e., the sets of objects and the relations
(associations) that describe the stored data format, and data model actions which
describe the methods used to update the data. For many high profile applications
such as HealthCare.gov, DMV, and consumer applications such as Facebook and
Gmail, user data is the most valuable asset. Data model correctness is the most
significant correctness concern for these applications since erroneous actions can
lead to unauthorized access or loss of data.

In this paper we discuss and characterize data model bugs in modern software
applications, and the impact of such bugs using concrete examples discovered in
open source applications. We show that these bugs have the potential for causing
severe and potentially irreparable damage to the data. We discuss the difficulty
and plausibility of recovering from these bugs, and survey the known techniques
that can help in detecting and preventing these bugs from occurring.

This work is supported in part by the NSF grant CCF-1423623.

c© Springer International Publishing Switzerland 2015
K. Havelund et al. (Eds.): NFM 2015, LNCS 9058, pp. 393–399, 2015.
DOI: 10.1007/978-3-319-17524-9 27

394 I. Bocić and T. Bultan

2 Data Model Verification Methods

In modern software applications the interactions between the server and the
back-end data store is typically managed using an object-relational mapping
(ORM) library that maps the object-oriented view of the data model at the server
side to the relational database view of the data model at the back-end data store.
Since the ORM configuration defines the entity types managed by an application,
and actions are implemented using the ORM library, investigation of the data
model is largely equivalent to investigating the ORM. We overview the results
of using three approaches to data model verification, all of which conform to the
same overall architecture presented in Figure 1. Note that this is different from
verification techniques that are based on formal specifications [2] which impose
a semantic gap between the specification and actual source. These techniques do
not ensure that the actual implementation conforms to the specification, making
them less useful in detecting existing bugs and unable to verify that no bugs exist
in the implementation.

Fig. 1. Overview of Data Model Verification

For example, investigating the ORM configuration is useful for finding bugs
in the data model [5]. This technique translates the ORM configuration (schema)
into SMT and Alloy for unbounded and bounded verification. Real bugs were
found by using this technique, as well as many misuses of different ORM con-
structs. However, it has a more limited scope of looking at the configuration only,
which allows for false positives in case an invalidation (corruption) is possible in
the database, but not possible to create using the actions.

We previously extended this work to include action verification as well [1].
Our technique translates the ORM schema, as well as all the actions, into first
order logic. A first order logic theorem prover is then used to verify whether
model invariants are preserved by the actions, assuming that actions are executed
atomically and in any order (a reasonable assumption for RESTful applications).
This technique has found other bugs in real world web applications.

Finally, Rubicon [4] is a library for specifying generalized unit tests. These
unit tests are not specified with concrete ORM entities, but with quantification
over entity types instead. These tests are automatically translated into Alloy for
verification. Using this technique, a security vulnerability was found in a real
world web application.

Data Model Bugs 395

3 Reported Data Model Bugs

Before we proceed to discuss data model bugs in general, we will list three
web applications and show examples of data model bugs that were found in
them [1,4,5]. These bugs vary in nature, severity and potential for recovery,
presenting useful background for a deeper discussion.

FatFreeCRM 1 is an application for customer-relation management. It allows
for storing and managing customer data, leads that may potentially become
customers, contacts, campaigns for marketing etc. It spans 30359 lines of code,
30 model classes and 167 actions. Using action verification [1], we found two bugs
in FatFreeCRM that we reported to the developers, who confirmed them and
immediately fixed one of them. In future discussion we refer to these two bugs
as F1 and F2. Rubicon [4] is a tool for verification of Ruby of Rails applications
that translates abstract unit tests to Alloy [3], with the goal of ensuring that
these tests would pass when given any set of concrete objects. Bug F3, related
to access control, was detected using this technique.

Bug F1 is caused by Todo objects, normally associated with a specific
User, not being deleted when their User is deleted. We call these Todo objects
orphaned. Orphaned Todo objects are fundamentally invalid because the appli-
cation assumes that their owner exists, causing crashes whenever an orphaned
Todo’s owner is accessed. Because of the severity, this bug was acknowledged and
repaired immediately after we submitted a bug report.

Bug F2 relates to Permission objects. Permission objects serve to define
access permissions for either a User or a Group to a given Asset. Our tool
has found that it is possible to have a Permission without associated User or
Group objects. This bug is replicated by deleting a Group that has associated
Permissions. Although similar to F1 in causality, the repercussions of this bugs
are very different. If there exists an Asset object whose all Permission objects
do not have associated Users or Groups, it is possible to expose these assets to
the public without any user receiving an error message, and without any User

or Group owning and managing this asset.
Bug F3 is an access control bug that exposes a User’s private Opportunity

objects to other Users. This bug is exploited by registering a new User in a
way that it shares some of the target User’s Contacts, giving access to private
Opportunity objects through these Contacts. This bug was caused by a false
assumption by the developers that all Opportunity and Contact objects that
belong to the same person will have the same Permissions. This bug was reported
and acknowledged by the developers.

Tracks2 is an application for organizing tasks, to-do lists etc. This application
spans 18023 lines of code, 11 model classes and 70 actions. We identify four bugs
in Tracks, which we refer to as T1, T2, T3, and T4. Bug T3 was detected using
1 www.fatfreecrm.com
2 getontracks.org

www.fatfreecrm.com
getontracks.org

396 I. Bocić and T. Bultan

data model schema verification [5]. Bugs T1, T2 and T4 were discovered using
action verification [1], and were reported to and, since, fixed by the developers.

Bug T1 is related to the possibility of orphaning an instance of a Dependent

class. This bug is similar to bugs F1 and F2, except that the orphaned objects
cannot be accessed by actions in any way. Therefore, this bug does not affect the
semantics of the application. However, it does present a memory-leak like bug,
affecting performance by unnecessarily populating database tables and indexes.

Bug T2 is very similar in nature to T1. When a User is deleted, all Projects
of the User are deleted as well, but Notes of deleted Projects remain orphaned.
These orphaned Note objects are not accessible in any way, however, the orphaned
Todos take up space in the database and inflate indexes.

Bug T3 is caused by deleting a Context without correctly cleaning up related
RecurringTodo objects. This is similar to bug F1 because the orphaned
RecurringTodo objects are accessible by the application and cause the application
to crash.

We found bug T4 when the action verification method [1] reported an incon-
clusive result within the action used to create Dependent instances between two
given Todos. Semantically, there must not be dependency cycles between Todos;
this is a structural property of the application. Our method could not prove or
disprove that cycles between Todos cannot be created. Upon manual inspection
we found that, while the UI prevents this, HTTP requests can be made to create
a cycle between Todos. The repercussions of this bug are potentially enormous.
Whenever the application traverses the predecessor list of a Todo inside a depen-
dency cycle it will get stuck in an infinite loop, eventually crashing the thread
and posting an error to the User. No error is shown when the user creates this
cycle, only later upon accessing it. This creates a situation when repairing the
state of the data may be impossible, as discussed in Section 4.

LovdByLess3 is a social networking application. It allows people to create
accounts, write posts and comment on posts of other users, upload and share
images etc. It contains 29667 lines of code, 12 model classes and 100 actions.

Data model schema analysis [5] was used to find bug L1 where the Comments
of a User were not cleaned up properly when a User is deleted. The orphaned
Comments, however, remain connected to the Post they belong to, and are visible
from the said Post. The application previews these Comments, along with their
content and other data, except for the author. The author’s name field remains
blank. This is not expected behavior: either the Comments are supposed to be
deleted, or they are supposed to remain, in which case the author’s data is lost.

4 Discussion on Data Model Bugs

We identified two types of bugs: access control bugs and data integrity bugs.
Access control bugs give access to data to users with insufficient privileges. Data
integrity bugs are bugs that allow invalidation of the application’s data. Note
3 github.com/stevenbristol/lovd-by-less

github.com/stevenbristol/lovd-by-less

Data Model Bugs 397

that we draw a distinction between bugs that allow data to be invalidated and
bugs that are caused by data that has been invalidated. The latter bug is a
symptom of the former.

Severity. Access control policies are hard to correctly specify and hard to cor-
rectly enforce [4]. Access control bugs are severe bugs. Exposing private infor-
mation is not permissible in any application that stores and manages private
information, nor is allowing access to admin or root level operations.

The severity of data integrity bugs varies on the specifics of the bug, spanning
from benign bugs that at most cause minor performance problems, over bugs
causing crashes in the application, to bugs causing data loss and corruption from
which recovery is exceptionally difficult or impossible.

We identified several data integrity bugs that allow invalid data to exist in
the database, but in such a way that this invalid data is never used by the
application. We refer to these bugs as data model leaks. They are usually caused
by incorrect cleanup of related entities when an entity is deleted. This category is
demonstrated by bugs T1 and T2. These bugs are hard to detect unless the leaked
data accumulates to a certain point. Their impact is limited to performance, not
affecting the semantics of the program. They negatively impact performance by
taking up space in the database and populating indexes unnecessarily.

In most cases, the corrupted data can be accessed by the application, caus-
ing the application to misbehave in some way. We identified a wide range of
misbehavior severity. For example, orphaned objects may be visible to the user
as empty fields on the webpage (L1), allow operations and further data updates
that should not be allowed (F2), or crash the web application (F1, T3, T4).

Recovery. Access control bugs allow no recovery. Once private information has
been exposed, fixing the bug only prevents future threats. No measure exists to
make the exposed information private again. However, data integrity bugs have
recovery potential. Repairing a data integrity bug involves two steps: repairing
the data and preventing future invalidation.

In some cases, data is recoverable. For example, once a data model leak is
discovered, leaked entities can be identified and removed. The same applies in
the case of data being incorrectly deleted: bugs F1, F2, T3 are recoverable from
because the original intent of the developer was to delete data. Removing the
invalid data not only removes the corruption, but also brings the data store to
the state that was originally expected by the developers.

Data integrity bugs that do not manifest themselves through improper dele-
tion are far more difficult to recover from. Repairing the corruption implies
modifying the corrupted data into valid data, which may be impossible. T4 is
an example of a bug in which valid data is not distinguishable from invalid
data. Even clearly distinguishable corrupted data may be unrecoverable if, for
example, invalid data has overwritten correct data.

Backups can be used to recover corrupted data in certain cases. This would
be a manual and error prone effort, however, and it would rollback the user’s
data to a previous point which may be undesirable. To make matters worse, since

398 I. Bocić and T. Bultan

data integrity bugs are observable only if the data has already been invalidated,
the corruption may have been backed up in the time frame between the cause
of the corruption and the escalation of the bug, making backups unusable.

Detection and Prevention. Data model bugs are hard to anticipate, and address-
ing them after being detected by users is undesirable because recovery may be
extremely difficult. Detection of access control bugs is difficult since a malicious
user may leave no trace when accessing restricted information. Similarly, data
integrity bugs are hard to detect. They are not observed until the application
accesses the invalidated (corrupted) data and misbehaves, which may not be pos-
sible (as is the case with bugs T1 and T2). If a user does access the invalidated
data, the resulting faulty behavior cannot be replicated by the developer without
being given access to the same invalidated data. Furthermore, even given access
to this data, the code causing this strange behavior may be correct. No trace
exists on how the data was originally invalidated.

Runtime validation is a commonly used technique for the prevention of poten-
tial data model integrity bugs. We define runtime validation as any runtime check
that aborts the operation with the goal of preventing invalidation. In web appli-
cation frameworks, validation can be done in the web application layer automat-
ically (both Rails and Django support user definable model validators), or could
be manually implemented in actions (in form of conditional branches that abort
unless a specific condition is met), or in the database by defining constraints.
Frequently multiple approaches are used: for example, the database may vali-
date the integrity of foreign keys, whereas the application layer may validate
that email strings adhere to a given format. Runtime validation alone provides
an insufficient solution to the problem. This is demonstrated by the fact that
we found serious bugs in applications that heavily rely on runtime validation,
and have attempted enforcing security policies. For all the bugs we found, the
problem was caused by incorrect implementation.

Considering the difficulty of detection, potential severity and unrecoverability
of these bugs, we strongly believe that automated verification techniques should‘
be used to prevent data model bugs. Besides ensuring that static and runtime
constraints are sufficient, verification could also be used to detect unnecessary
validation. Supported by verification, runtime validation can be more effective
in successfully preventing data model bugs.

5 Conclusions

Cloud-based modern software applications store and manipulate their data on
remote servers as defined by the data model. We argue that the correctness of
the data model is an essential difficulty in building modern software applications.
We have demonstrated data model bugs in several open source applications. We
have discussed the difficulties in detection, severity, and the potential for recovery
from these bugs. Although there have been automated verification techniques
proposed for detecting data model bugs, they all have their limitations. Detection
and prevention of data model bugs remains to be an important research direction.

Data Model Bugs 399

References

1. Locić, I., Bultan, T.: Inductive verification of data model invariants for web applica-
tions. In: Proceedings of the 36th International Conference on Software Engineering
(ICSE 2014), May 2014

2. Deutsch, A., Sui, L., Vianu, V.: Specification and verification of data-driven web
applications. Journal of Computer and System Sciences 73(3), 442–474 (2007)

3. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Transactions on
Software Enginnering and Methodology (TOSEM 2002) 11(2), 256–290 (2002)

4. Near, J.P., Jackson, D.: Rubicon: bounded verification of web applications. In: Pro-
ceedings of the ACM SIGSOFT 20th Int. Symp. Foundations of Software Engineer-
ing (FSE 2012), pp. 60:1–60:11 (2012)

5. Nijjar, J.: Analysis and Verification of Web Application Data Models. PhD thesis,
University of California, Santa Barbara, January 2014

Predicting and Witnessing Data Races
Using CSP

Luis M. Carril(B) and Walter F. Tichy

Institute for Program Structures and Data Organization (IPD), Karlsruhe Institute
of Technology (KIT), Am Fasanengarten 5, 76131 Karlsruhe, Germany

{luis.carril,walter.tichy}@kit.edu

Abstract. Detecting and debugging data races is a complex task due
to the large number of interleavings possible in a parallel program. Most
tools can find the data races reliably in an observed execution, but they
miss errors in alternative reorderings of events. In this paper we describe
an automated approach to generate, from a single program trace, a model
in CSP with alternative interleavings. We check for data races patterns
and obtain a witness that allows the reproduction of errors. Reproduction
reduces the developer effort to correct the error.

Keywords: Data race · Concurrent programs · Debug · CSP

1 Introduction

Finding and debugging synchronization errors such as data races is a daunt-
ing task. As multicore processors become common, tools that help developers
cope with data races are desperately needed. A data race happens when two
threads access the same variable concurrently and at least one performs a write
operation.

Usually, dynamic approaches to race detection are based on happens-before
or lockset algorithms. Happens-before detectors [2](based on the Lamports rela-
tionship [8]) only cover a specific observed interleaving. They are conservative
and need to run multiple times to cover unexplored interleavings. Some works
[14] relax the happens-before relationship under certain conditions to cover more
cases. The lockset algorithm [12] checks for consistent locking of shared objects,
but produces a high number of false positives. Hybrid approaches alse exists
[7,10], combining advantages of both.

The interleaving presented in listing 1.1 are difficult to detect. Only if the
exact timing in listing 1.2 occurs, a happens-before detector reports the race.
Additionally, typical approaches only provide the location of the error, but no
context about thread state or how they reached that particular point.

Our approach infers alternative interleavings from an observed program trace
and finds data race patterns in these reorderings. Once a pattern matches in one

c© Springer International Publishing Switzerland 2015
K. Havelund et al. (Eds.): NFM 2015, LNCS 9058, pp. 400–407, 2015.
DOI: 10.1007/978-3-319-17524-9 28

Predicting and Witnessing Data Races Using CSP 401

reordering, these reordering is a story on how the program reaches the erroneous
state. We infer the interleavings by constructing a model that combines the inde-
pendent actions of the threads and the semantic behavior of the synchronization
operations (e.g.: a mutex can only be held by one thread at a time). This model
is described with the process algebra CSP (Communicating Sequential Processes
[5]) and the pattern search is done with CSP refinement relationships. This app-
roach not only allows the prediction races, but also provides the steps which lead
to that race.

Similar work is found in the maximal causal model [6] and witness generation
[11]. These works can also predict races and provide counterexamples from a
single observation using a read-write consistency model implemented with SMT.

Listing 1.1. Original captured trace

Thread 1 Thread 2
1 : y++
2 : l ock (m)
3 : x++
4 : unlock (m)
5 : l o ck (m)
6 : x++
7 : unlock (m)
8 : y++

Listing 1.2. Reordering with data race

Thread 1 Thread 2
1 : l o ck (m)
2 : x++
3 : unlock (m)
4 : y++
5 : y++
6 : l ock (m)
7 : x++
8 : unlock (m)

2 Detecting Races with CSP

CSP is a formal language to describe a system composed by processes (in upper-
case), each process is a sequence of atomic events (in lowercase). Then processes
communicate with each other and the environment (which can be another pro-
cess) sharing events synchronously.

Our approach consists of defining a CSP process PROGRAM , that repre-
sents all alternative interleavings of a captured trace. Using a CSP refinement
relationship we check if the PROGRAM process matches a data race pattern
(defined as a CSP process). When the relationship does not hold, a data race
is revealed along with a counterexample, that allows to reproduce the scenario
with the data race.

2.1 Modeling Events

A captured trace consists of a sequence of the following events: read, write,
start, end, fork, join, lock and unlock. The events start and end have a single
parameter: the thread identifier. The other events have two parameters: a related
thread identifier and a relevant object for the operation: a child thread, a mutex
or a variable. We map each captured event directly to a CSP event; e.g. a lock
by thread t1 on lock l1 is represented lock.t1.l1. A symbol ? represents any valid
value for a parameter; then lock?t.l1 is a lock event on l1 by any thread.

402 L.M. Carril and W.F. Tichy

2.2 Modeling the Program

To construct the process PROGRAM which represents all possible reorderings
of the trace, we model the behavior of the different threads and the semantics
of the synchronizing operations independently with CSP processes.

Each thread is modeled using the events that it had performed in the captured
trace. We only keep one access to a variable per thread between two synchro-
nizing operations. The corresponding events in CSP are concatenated using the
prefix operator →, which creates a total order for the thread trace as it has been
observed; e.g. for the thread 1 in the listing 1.1:

THREAD1 = write.t1.y → lock.t1.m → write.t1.x → unlock.t1.m → STOP

The process STOP denotes a process which performs no actions (is a reserved
CSP process). All these thread processes are combined with the CSP interleaving
operator |||. The resulting process contains all reorderings of events of the thread
processes, but obeying the total order corresponding to each thread:

T INTER =|||i∈Threads Ti

This operation is agnostic of the semantic meaning of the events, so the process
also contains a lot of traces that would not be possible in the original program, for
example the order ..., lock.t1.m, lock.t2.m, We avoid these illegal interleavings
modeling the semantic restrictions of synchronizing operations: forking, joining
and mutex accesses.

The restrictions are modeled in the process SY NC. We compose the previ-
ous T INTER process with the SY NC process using the generalized parallel
operator:

PROGRAM = T INTER ‖
sync set

SY NC

sync set = {|start, end, fork, join, lock, unlock|}

Where {|x|} denotes all events derived from x. The parallel operator ensures
that if a process wants to execute an event in the set, the other process must
be ready to execute it too, otherwise it will be blocked until the second process
is also ready. The T INTER and SY NC processes synchronize in all events
with the exception of read and write events. This combination ensures that all
traces of process PROGRAM are traces that follow the order restrictions of
T INTER (total order per thread) and the order restrictions of SY NC (order
of the synchronization operations). The process PROGRAM reflects all the
interleavings possible by our original program in the path covered by the initial
observation.

The SY NC process describes the following synchronizations: thread creation,
thread joining, mutex locking and unlocking. We define and interleave a process
for each specific synchronization class.

Predicting and Witnessing Data Races Using CSP 403

SY NC = FORKS ||| JOINS ||| MUTEXES

FORKS =|||i∈Threads FORK(i)
JOINS =|||i∈Threads JOIN(i)

MUTEXES =|||i∈Mutexes MUTEX(i)

Each of these processes represent a subgroup of restrictions on the order of the
synchronization operations.

The creation of each thread is defined by a process

FORK(i) = fork?t.i → start.i → STOP

The start event cannot happen if any other thread has not realized a fork on
the created thread. This process finally stops without doing anything else.

The join of each thread is defined by a process

JOIN(i) = end.i → join?t.i → STOP

Similar to the previous process, this is a one-shot process where any join on i
cannot be complete until the corresponding process executes its end event.

A mutex process is described as a recursive process:

MUTEX(i) = lock?t.i → unlock.t.i → MUTEX(i)

For a specific mutex i this process is the only one capable of executing lock and
unlock events on it, after one thread process executes the lock.t.i operation, the
other thread processes are blocked until the corresponding unlock event occurs.
Afterwards the process returns to the initial point where it accepts the lock event
for any thread.

2.3 Detecting Races in CSP

With a CSP process representing the observed trace and the alternative reorder-
ings along the same path, we check the model for data races. A race is the
concurrent execution of two events from different threads on the same variable,
where at least one is a write. Then a trace containing a data race has one of the
following subtraces:

read.t1.v, write.t2.v write.t1.v, read.t2.v write.t1.v, write.t2.v

read.t2.v, write.t1.v write.t2.v, read.t1.v write.t2.v, write.t1.v

The two conflicting events can be observed consecutively and without any syn-
chronization between them. We build a process PATTERN which executes an
event race when it performs one of these subtraces for a specific t1,t2 and v.
The race event works as an indicator that a race has been found. The process
PATTERN is defined as:

404 L.M. Carril and W.F. Tichy

PATTERN(t1, t2, v)=PATT ERR(t1, t2, v)

�(� x : sync set ∪ rw set@x → PATTERN(t1, t2, v))

rw set ={read.t1.v, write.t1.v, read.t2.v, write.t2.v}
PATT ERR(t1, t2, v) =read.t1.v → write.t2.v → race → STOP

� read.t2.v → write.t1.v → race → STOP

� write.t1.v → read.t2.v → race → STOP

� write.t1.v → write.t2.v → race → STOP

� write.t2.v → read.t1.v → race → STOP

� write.t2.v → write.t1.v → race → STOP

The PATT ERR process is the combination of the six cases described, it can
perform any of them. Only when one of the cases (one option of PATT ERR)
is completed, the race event is fired. The process can be restarted in any state
(with the � interrupt operator), to permit any other event combination being
the prefix of the racy subtraces.

We verify a property in CSP describing it in terms of a refinement relationship
S �T I. A refinement relationship holds if the behavior of the implementation
process I is a subset of the behavior of the specification process S. Behavior
means the set of all possible traces. We compose the PATTERN process in par-
allel with the PROGRAM process, so the process PATTERN participates in
the execution of all events of PROGRAM . But PATTERN is always available
to perform any event, so it will not interfere with PROGRAM process order-
ings. Using the hiding operator \ all events become non-observable, with the
exception of the race event, the one that reveals a matching pattern. We check
if the resulting process refines the process STOP .

STOP �T (PROGRAM ‖
rw set∪sync set

PATTERN(t1, t2, v)) \ Σ − {race}

Σ denotes all the events in the model. If the process composed of PROGRAM
and PATTERN reaches the event race then the refinement does not hold and
there is a data race between t1 and t2 for variable v. But if there is no path to
reach the race event, then the composition behaves exactly like STOP and the
refinement holds.

The corresponding model and assertions for the trace in listing 1.1 is:

THREAD1 = write.t1.y → lock.t1.m → write.t1.x → unlock.t1.m → SKIP

THREAD2 = lock.t2.m → write.t2.x → unlock.t2.m → write.t2.y → SKIP

PROGRAM = (THREAD1 ||| THREAD2) ‖
sync set

MUTEX(m)

STOP �T (PROGRAM ‖
rw set∪sync set

PATTERN(t1, t2, x)) \ Σ − {race} (1)

STOP �T (PROGRAM ‖
rw set∪sync set

PATTERN(t1, t2, y)) \ Σ − {race} (2)

The refinement on x (1) holds but the refinement on y (2) not.

Predicting and Witnessing Data Races Using CSP 405

When the refinement is violated, at least one sequence of events in the com-
position leading to the race event exists. We focus only on the trace performed
by the PROGRAM process, as the process representing the original program.
The counterexample takes the form of a sequence of only the synchronization
events. For the violated refinement (2) on x in the example, a counterexample
is:

lock.t2.m, unlock.t2.m

If we replay the program only allowing the synchronizations operations in the
counterexample and in the specified order, we reach a state where all actions
performed by the threads are happening concurrently, exposing the data race.
For example the case shown in listing 1.2.

3 Preliminary Evaluation

We implemented an automatic tool that generates the corresponding model for
a given trace. Our target programs are binaries of multithreaded C programs
using the pthread library [1]. We developed a Valgrind [9] plug-in to capture
the trace, through a combination of binary instrumentation and library hooks.
The trace is post-processed to simplify it and detect shared variables. For each
shared variable, a CSP model is built ignoring the events of other variables
so it contains the minimum number of events necessary. A refinement check is
build for each combination of two threads and shared variable. The model and
assertions are coded in CSPM (machine readable CSP) and fed to the Failures-
Divergences Refinement 3 model checker[4]. The evaluation has been done on a
dual core machine with 1.4GHz processor and 1GB RAM.

Table 1. Preliminary evaluation

Scenarios LOC Real races Trace size Checks Races HG-Races

20 952 14 20289 28 14 11

Table 1 shows the preliminary evaluation, as the aggregate values of a set
of small scenarios. The scenarios are a collection from multiple sources[13–15].
Scenarios from papers have been coded explicitly. Some scenarios are specially
complicated for a happens-before detector to reason about, as the cases in [14].
The first column is the number of scenarios, the second column the aggregated
lines of code. The third column is the total number of real races in all the
scenarios (one per location). The fourth column is the total size (number of
events) of the post-processed traces after a single execution. The fifth column is
the number of checks (refinements) made. The sixth column shows how many
races have been confirmed by the refinements and generated a counterexample.
Finally the seventh column shows how many races Helgrind finds in average of
10 executions.

406 L.M. Carril and W.F. Tichy

The results show that from a single execution our approach can find more
races than Helgrind in multiple executions. A non-predictive race detector relies
on reaching a specific timing to be able to see some races. But our solution is
time-agnostic finding the races along the same path in the program.

Also race detectors usually provide only the localization of the race, but no
information on when and how the program has reached that position. Mixing
the race detector with interactive debugging can make the erroneous state dif-
ficult to reach, because the probe effect [3]. Our tool provides a step by step
counterexample of the synchronization steps that can be use to reproduce the
observed data race.

A pure happens-before tool cannot provide false positives. Although not
shown in these examples, our approach can provide false positives; if a reordering
of the synchronization operations leads to a different path in the program that
has not been observed, the race could not exist and the counterexample is infeasi-
ble. To tackle this cases, we plan to prune this cases with automatic enforcement
and checking of the counterexample. Also improving the model with control flow
information as in [6] and implementing more synchronization primitives.

The scalability of the approach is limited by two factors: length of the trace
and number of shared variables. A longer trace produces a more complex model,
and the model checker needs more time. But our model increases in complex-
ity only with the number of synchronization operations in the trace, which is
expected to be a small fraction of the whole program trace. Further improve-
ment can be done by partitioning the trace in windows and checking only one
partition at a time. This increases the number of false negatives, as interactions
between windows are lost. The number of checks also increases with the number
of variables, but we can reduce this cost with a previous filtering step using a
cheaper algorithm, that does not produce false negatives but reduces the number
of candidates, e.g.: a relaxed happens-before without mutex edges.

4 Conclusion

This paper describes a work-in-progress approach to predict data races and gen-
erate a trace witness. We capture a single trace of a multithreaded application
and model it in CSP. This model not only includes the observed interleaving
but also the alternative reorderings of other possible executions. Using the capa-
bilities of the process algebra we find data race patterns and generate the cor-
responding counterexamples. These counterexamples reflect how the program
reached the erroneous states, and greatly facilitate the debugging process.

Acknowledgments. The authors would like to thank Siemens Corporate Technol-
ogy for their financial support. We also appreciate the support of the Initiative for
Excellence at the Karlsruhe Institute of Technology.

References

1. Barney, B.L.L.N.L.: POSIX Threads Programming. https://computing.llnl.gov/
tutorials/pthreads/

https://computing.llnl.gov/tutorials/pthreads/
https://computing.llnl.gov/tutorials/pthreads/

Predicting and Witnessing Data Races Using CSP 407

2. Flanagan, C., Freund, S.N.S.: FastTrack: efficient and precise dynamic race detec-
tion. In: PLDI 2009 Proceedings of the 2009 ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2009, pp. 121–133.
ACM, New York (2009). http://doi.acm.org/10.1145/1542476.1542490, http://dl.
acm.org/citation.cfm?id=1542490

3. Gait, J.: A probe effect in concurrent programs. Software: Practice and Experience
16(3), 225–233 (1986)

4. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3 — a
modern refinement checker for CSP. In: Ábrahám, E., Havelund, K. (eds.) TACAS
2014 (ETAPS). LNCS, vol. 8413, pp. 187–201. Springer, Heidelberg (2014)

5. Hoare, C.: Communicating Sequential Processes. Communications of the
ACM 21(8), 666–677 (1978). http://www.cs.ucf.edu/courses/cop4020/sum2009/
CSP-hoare.pdf

6. Huang, J., Meredith, P., Rosu, G.: Maximal sound predictive race detection with
control flow abstraction. In: PLDI 2014 Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation, pp. 337–348
(2014). http://dl.acm.org/citation.cfm?id=2594315

7. Jannesari, A., Tichy, W.F.: On-the-fly race detection in multi-threaded programs.
In: Proceedings of the 6th Workshop on Parallel and Distributed Systems: Test-
ing, Analysis, and Debugging, PADTAD 2008, pp. 6:1–6:10. ACM, New York
(2008). http://doi.acm.org/10.1145/1390841.1390847, http://www.cs.umd.edu/
pugh/ISSTA08/padtad2008/papers/a8-jannesari.pdf

8. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM 21(7), 558–565 (1978). http://dl.acm.org/citation.
cfm?id=359563

9. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamicbinary
instrumentation. ACM Sigplan Notices, 89–100 (2007). http://dl.acm.org/citation.
cfm?id=1250746

10. Pozniansky, E., Schuster, A.: MultiRace: efficient on the fly data race detection
in multithreaded C++ programs. Concurrency and Computation: Practice and
Experience 19(3), 327–340 (2007). http://onlinelibrary.wiley.com/doi/10.1002/
cpe.1064/abstract

11. Said, M., Wang, C., Yang, Z., Sakallah, K.: Generating data race witnesses by
an SMT-based analysis. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R.
(eds.) NFM 2011. LNCS, vol. 6617, pp. 313–327. Springer, Heidelberg (2011)

12. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser: a
dynamic data race detector for multithreaded programs. ACM Transactions on
Computer Systems 15(4), 391–411 (1997). http://doi.acm.org/10.1145/265924.
265927, http://portal.acm.org/citation.cfm?doid=265924.265927

13. Serebryany, K., Iskhodzhanov, T.: ThreadSanitizer: data race detection in prac-
tice. In: WBIA 2009 Proceedings of the Workshop on Binary Instrumentation and
Applications, pp. 62–71 (2009). http://dl.acm.org/citation.cfm?id=1791203

14. Smaragdakis, Y., Evans, J., Sadowski, C., Yi, J., Flanagan, C.: Sound predic-
tive race detection in polynomial time. In: Proceedings of the 39th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2012, p. 387 (2012). http://dl.acm.org/citation.cfm?doid=2103656.2103702

15. Valgrind: Helgrind: a data-race detector (2007). http://valgrind.org/docs/manual/
hg-manual.html

http://doi.acm.org/10.1145/1542476.1542490
http://dl.acm.org/citation.cfm?id=1542490
http://dl.acm.org/citation.cfm?id=1542490
http://www.cs.ucf.edu/courses/cop4020/sum2009/CSP-hoare.pdf
http://www.cs.ucf.edu/courses/cop4020/sum2009/CSP-hoare.pdf
http://dl.acm.org/citation.cfm?id=2594315
http://doi.acm.org/10.1145/1390841.1390847
http://www.cs.umd.edu/pugh/ISSTA08/padtad2008/papers/a8-jannesari.pdf
http://www.cs.umd.edu/pugh/ISSTA08/padtad2008/papers/a8-jannesari.pdf
http://dl.acm.org/citation.cfm?id=359563
http://dl.acm.org/citation.cfm?id=359563
http://dl.acm.org/citation.cfm?id=1250746
http://dl.acm.org/citation.cfm?id=1250746
http://onlinelibrary.wiley.com/doi/10.1002/cpe.1064/abstract
http://onlinelibrary.wiley.com/doi/10.1002/cpe.1064/abstract
http://doi.acm.org/10.1145/265924.265927
http://doi.acm.org/10.1145/265924.265927
http://portal.acm.org/citation.cfm?doid=265924.265927
http://dl.acm.org/citation.cfm?id=1791203
http://dl.acm.org/citation.cfm?doid=2103656.2103702
http://valgrind.org/docs/manual/hg-manual.html
http://valgrind.org/docs/manual/hg-manual.html

A Benchmark Suite
for Hybrid Systems Reachability Analysis

Xin Chen1, Stefan Schupp1(B), Ibtissem Ben Makhlouf1, Erika Ábrahám1,
Goran Frehse2, and Stefan Kowalewski1

1 RWTH Aachen University, Aachen, Germany
2 Verimag, Gières, France

stefan.schupp@cs.rwth-aachen.de

Abstract. Since about two decades, formal methods for continuous and
hybrid systems enjoy increasing interest in the research community. A
wide range of analysis techniques were developed and implemented in
powerful tools. However, the lack of appropriate benchmarks make the
testing, evaluation and comparison of those tools difficult. To support
these processes and to ease exchange and repeatability, we present a
manifold benchmark suite for the reachability analysis of hybrid sys-
tems. Detailed model descriptions, classification schemes, and experi-
mental evaluations help to find the right models for a given purpose.

1 Introduction

Recent advances in algorithms have turned reachability analysis into a powerful
method for continuous and hybrid systems. Techniques are available that can
compute approximations of the reachable states for systems with linear dynam-
ics and more than 200 variables [11,16], and for complex non-linear dynamics
[5,6,12]. Without any claim for completeness, some prominent tools based on dif-
ferent techniques are SpaceEx [11], Flow* [6], dReach [12], KeYmaera [17],
iSAT [10], HSolver [18], HyCreate [14], Ariadne [7] and Cora [1]. Since in
general the reachability problem is undecidable for hybrid systems, and even the
one-step successors can only be computed approximately, experimental results
are essential for validating algorithms, detecting their shortcomings, and identi-
fying where further research is necessary.

Experiments in reachability require not only algorithms, but also models of
systems and specifications that are to be verified. Such benchmarks are not easy
to come by, in particular when looking for high-dimensional systems. Research
papers typically include a small number of proprietary benchmarks, or modified
versions of benchmarks published in other papers. A notable exception is a small
collection of benchmarks in [8], and the benchmark collection of the ARCH

This work was partially supported by the German Research Council (DFG) in the
context of the HyPro project.

c© Springer International Publishing Switzerland 2015
K. Havelund et al. (Eds.): NFM 2015, LNCS 9058, pp. 408–414, 2015.
DOI: 10.1007/978-3-319-17524-9 29

A Benchmark Suite for Hybrid Systems Reachability Analysis 409

workshop series, which is tailored to industrial applications [2]. Using just a
small number of benchmarks for test and evaluation comprehends the risk to
tune tools to be efficient for certain application types only.

In this paper, we present a manifold collection of benchmarks for evaluat-
ing tools and algorithms for hybrid systems reachability, and to the best of our
knowledge it is the first of this kind. It consists of system models along with
property specifications, includes detailed descriptions, references to prior work,
input files and exemplary results for some tools. Apart from making the bench-
marks readily available in a unified form, the benchmark collection intends to
make the following contributions:
Classification: The benchmarks originate from a variety of domains and serve a
variety of purposes, e.g., testing scalability with respect to the number of vari-
ables or locations. Identifying a benchmark that suits a particular tool and helps
to evaluate a certain property is non-trivial. The collection is organized by the
model type (continuous/hybrid, linear/non-linear), which roughly corresponds
to the kind of tool to which it is applicable. Within each class, benchmarks are
listed by complexity (scalability, number of variables, locations, transitions). We
intend to identify further attributes that help to find benchmarks with certain
requested properties.
Specification: To ensure comparability of results between different tools,
the specification needs to be unambiguous and formal. We provide such formal
model specifications for all included benchmarks. Note that not all benchmarks
easily lend themselves to specifications in the typical form of a given set of “bad
states”. For example, some benchmarks for testing the accuracy of approxima-
tions give quantitative results. Finding a unified form for specifying systems as
well as their specifications is one of the long-term goals of the collection.
Evaluation criteria: Measuring the efficiency of algorithms can be done by mea-
suring the running time and memory requirements of tools implementing them.
Though comparing such measurements for different technologies is not objective,
because the results are machine- and implementation-dependent, considering a
larger experimental setting with a wider range of benchmarks allows to implic-
itly incorporate also other aspects such as accuracy, scalability and convergence
rate (which in general influence running time and memory consumption).
Identifying challenges: Though state-of-the-art hybrid systems reachability anal-
ysis tools are impressively successful and can solve a wide range of interesting
problems, they are still rarely applied outside their own community. Driving
research directions towards the needs of other scientific areas and application
domains would push this process forwards. Therefore, one of our long-term goals
is to identify benchmarks suitable for this purpose, even if current tools do not
exhibit sufficient functionalities yet.

Clearly, some of the above points will need to evolve while our benchmark
suite grows and feedback from experiments becomes available.

The remainder of the paper is organized as follows: In the next section, we
provide a brief overview of the benchmark collection. In Section 3, we show and

410 X. Chen et al.

discuss results for three tools on the benchmark suite, and conclude the paper
in Section 4. The complete benchmark collection is available at [4].

2 The Benchmark Suite

Our benchmark suite currently covers 28 benchmarks. The included benchmarks
are selected to cover different levels of expressivity in their components.

– We provide both pure continuous benchmarks as well as hybrid models.
– The continuous dynamics is described by either linear or non-linear ordinary

differential equations.
– A further classification is provided according to the number of variables

and, for hybrid behavior, the number of locations and the number of discrete
transitions. One of the benchmarks is scalable, allowing the generation of
high-dimensional models.

– The hybrid models specify transition guards varying in their form from half-
spaces or hyperplanes over linear conditions up to non-linear ones.

– Reset conditions can be absent or described by linear terms.
– Invariants are boxes in some benchmarks and polyhedra in others.
– Reachability analysis is hindered by Zeno behavior, which is present in some

of the models.

Our collection of linear benchmarks includes well-known smaller models such
as the bouncing ball or the two tank system, as well as less known benchmarks,
such as the vehicle platoon [3]. For the sake of completeness and for testing
purposes we have decided to include also small but frequently referenced bench-
marks. For the future it would be nice to have an even larger collection of small
benchmarks that set traps for the reachability analysis through various model
properties such as instability, Zeno behavior or deadlocks.

The non-linear models in our collection include benchmarks from different
research fields such as mechanics, biology or electrical engineering. We have
managed to extract benchmarks such as the non-holonomic integrator [13], the
spiking neurons [15], glycemic control [9], or the non-linear transmission line
circuits [19] from external sources, thus enhancing the collection by relevant,
non-artificial benchmarks which are of interest in the previously mentioned fields
and are now open to the formal methods community. Such non-artificial models
are important for driving tool development towards being capable to solve real-
world problems of different types.

The web page presentation [4] lists all benchmarks along with their prop-
erty specifications, classified into linear continuous, non-linear continuous, linear
hybrid, and non-linear hybrid models. For each model we list also measures
regarding their size. We explain each of the benchmarks in our collection on
its own web page, reference originating literature, provide a model description
for downloading in SpaceEx and/or Flow* input format, and show example
plottings of the reachable state set generated by those tools. In the future we
plan to provide such information also for other tools.

A Benchmark Suite for Hybrid Systems Reachability Analysis 411

Table 1. Linear hybrid benchmark results. Legends: var: #variables, unsafe: unsafe
conditions, t: running time in secs, δ: time-step size, k: Taylor model order, T.O.:
> 900 secs, fail: fail to prove the safety with δ ≥ 1e-14.

3 Experimental Results

In this section we demonstrate the advantages of our benchmark suite by using
hybrid models for the comparison of the tools SpaceEx, Flow* and dReach.
Since different tools are devoted to different problem types, we distinguish
between linear and non-linear hybrid benchmarks. All experiments were run
on a Intel Core I-7 quad-core CPU with 4.0 GHz and 16 GB memory.

3.1 Linear Hybrid Benchmarks

SpaceEx [11] and Flow* [6] are two established tools for the reachability anal-
ysis of hybrid systems. SpaceEx is well-suited to analyze linear hybrid systems,
whereas Flow* is specialized in non-linear systems but with a recent enhance-
ment for dealing with linear systems.

SpaceEx has two scenarios. One of them is based on the LGG algorithm
using support functions. The second one is the STC scenario, a recent enhance-
ment of the LGG algorithm that produces fewer convex sets for a given accuracy
and computes more precise images of discrete transitions. In SpaceEx, flowpipes
are over-approximated by boxes or octagons, both of which are computed based
on the same support functions. On the other hand, Flow* only uses Taylor
Models for over-approximations.

In Table 3, we specify for each benchmark an unsafe condition, and use both
of the tools to prove the safety of the system. For SpaceEx, we consider both
of box and octagon, because the overall accuracy of octagons are better than
that of boxes in general. From the table, it can be seen that the performance
of the tools gradually becomes worse when the benchmark scale grows. On the

412 X. Chen et al.

Table 2. Non-linear hybrid benchmark results. Legends: var: #variables, unsafe:
unsafe conditions, δ: time-step size, k in Flow*: Taylor-model order, t: running time
in secs, N : #subdivisions on the initial set, k in dReach: unrolling depth of bounded
model checking, p: value of numerical perturbation, T.O.: > 3600 secs.

Flow* dReach

benchmark var unsafe δ k t (s) N k p t (s)

non-holonomic integrator 3 x ≥ 3 0.01 5 ∼ 8 201 1 ∼ 10 ≤ 1 0.001 T.O.

spiking neuron I 2 u ≤ −25 0.02 4 ∼ 6 367 ≥ 100 ≤ 15 0.0001 fail

spiking neuron II 2 u ≥ 250 0.02 4 ∼ 6 70 1 ∼ 10 ≤ 15 0.001 T.O.

glycemic control I 3 G ≤ −2 0.05 2 ∼ 5 64 5 ≤ 2 0.01 1.1

glycemic control II 3 G ≤ −2 0.05 2 ∼ 5 95 1 ∼ 5 ≤ 2 0.01 T.O.

glycemic control III 3 G ≤ −2 0.05 2 ∼ 5 46 1 ∼ 5 ≤ 1 0.01 T.O.

line circuit n = 2 2 v1 ≥ 0.21 0.01 3 ∼ 6 2.3 1 ≤ 2 0.01 0.2

line circuit n = 4 4 v1 ≥ 0.21 0.01 3 ∼ 6 48 4 ≤ 2 0.01 9.6

line circuit n = 6 6 v1 ≥ 0.21 0.0002 ∼ 0.02 4 243 4 ≤ 2 0.01 T.O.

other hand, some of the safety properties can not be proved (with “fail” in the
table) due to the inaccuracy. Hence, the linear benchmarks from our collection
are well-suited to evaluate tools in the aspects of accuracy and scalability.

3.2 Non-linear Hybrid Benchmarks

Since SpaceEx cannot work with non-linear models, we evaluate the perfor-
mance of Flow* [6] and dReach [12] on the non-linear models in our bench-
mark suite. The main motivation to choose these tools is that Flow* is a typical
safety verification tool based on flowpipe computation, while dReach is based
on bounded model checking using constraint solving techniques. Thus we expect
them to perform differently on different benchmarks.

We selected 12 non-linear benchmark instances from our benchmark suite
for this experiment. The experimental results are listed in Table 2. The purpose
of each experiment is to prove the safety. Since dReach cannot integrate large
initial sets, for each benchmark, we divide the initial set into N parts in each
dimension. Then for n variables, there are Nn subdivisions. Unlike the linear
cases, the dynamics defined by a non-linear ODE can be very hard to handle. It
can be seen that Flow* outperforms dReach on hard dynamics, while dReach
works better when the dynamics is moderate. Therefore, our collection of non-
linear benchmarks may provide a reasonable evaluation of a tool in not only
scalability but also the ability to deal with hard dynamics.

4 Conclusion

The presented benchmark suite is an important first step to support the testing,
evaluation and comparison of hybrid systems reachability analysis tools. Next
steps will cover the extension with further benchmarks, including models with
more expressive power like, e.g., continuous dynamics involving transcendental
functions, urgent locations and transitions, or non-convex location invariants

A Benchmark Suite for Hybrid Systems Reachability Analysis 413

and transition guards. We will also investigate further classification criteria,
with special interest in providing measures for the hardness of the problems.
These steps are not only helpful for finding appropriate benchmarks and for
evaluating tools, but also for the identification of interesting future research
directions towards challenging unsolved problems.

References

1. Althoff, M., Dolan, J.M.: Online verification of automated road vehicles using
reachability analysis. IEEE Trans. on Robotics 30(4), 903–918 (2014)

2. Althoff, M., Frehse, G.: Benchmarks of the Workshop on Applied Verification
of Continuous and Hybrid Systems (ARCH) (2014). http://cps-vo.org/group/
ARCH/benchmarks

3. Ben Makhlouf, I., Diab, H., Kowalewski, S.: Safety verification of a controlled
cooperative platoon under loss of communication using zonotopes. In: Proc. of
ADHS 2012, pp. 333–338. IFAC-PapersOnLine (2012)

4. Benchmarks of continuous and hybrid systems. http://ths.rwth-aachen.de/
research/hypro/benchmarks-of-continuous-and-hybrid-systems/

5. Bouissou, O., Chapoutot, A., Djoudi, A.: Enclosing temporal evolution of dynam-
ical systems using numerical methods. In: Brat, G., Rungta, N., Venet, A. (eds.)
NFM 2013. LNCS, vol. 7871, pp. 108–123. Springer, Heidelberg (2013)

6. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044,
pp. 258–263. Springer, Heidelberg (2013)

7. Collins, P., Bresolin, D., Geretti, L., Villa, T.: Computing the evolution of hybrid
systems using rigorous function calculus. In: Proc. of ADHS 2012, pp. 284–290.
IFAC-PapersOnLine (2012)

8. Fehnker, A., Ivančić, F.: Benchmarks for hybrid systems verification. In: Alur,
R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 326–341. Springer,
Heidelberg (2004)

9. Fisher, M.: A semiclosed-loop algorithm for the control of blood glucose levels in
diabetics. IEEE Trans. on Biomedical Engineering 38(1), 57–61 (1991)

10. Fränzle, M., Herde, C., Ratschan, S., Schubert, T., Teige, T.: Efficient solving of
large non-linear arithmetic constraint systems with complex Boolean structure.
Journal on Satisfiability, Boolean Modeling and Computation 1, 209–236 (2007)

11. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In:
Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395.
Springer, Heidelberg (2011)

12. Gao, S.: Computable Analysis, Decision Procedures, and Hybrid Automata: A New
Framework for the Formal Verification of Cyber-Physical Systems. Ph.D. thesis,
Carnegie Mellon University (2012)

13. Hespanha, J., Morse, A.: Stabilization of nonholonomic integrators via logic-based
switching. Automatica 35(3), 385–393 (1999)

14. HyCreate: A tool for overapproximating reachability of hybrid automata. http://
stanleybak.com/projects/hycreate/hycreate.html

15. Izhikevich, E.: Dynamical Systems in Neuroscience. MIT Press (2007)
16. Le Guernic, C., Girard, A.: Reachability analysis of linear systems using support

functions. Nonlinear Analysis: Hybrid Systems 4(2), 250–262 (2010)

http://cps-vo.org/group/ARCH/benchmarks
http://cps-vo.org/group/ARCH/benchmarks
http://ths.rwth-aachen.de/research/hypro/benchmarks-of-continuous-and-hybrid-systems/
http://ths.rwth-aachen.de/research/hypro/benchmarks-of-continuous-and-hybrid-systems/
http://stanleybak.com/projects/hycreate/hycreate.html
http://stanleybak.com/projects/hycreate/hycreate.html

414 X. Chen et al.

17. Platzer, A., Quesel, J.-D.: KeYmaera: a hybrid theorem prover for hybrid systems
(system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS, vol. 5195, pp. 171–178. Springer, Heidelberg (2008)

18. Ratschan, S., She, Z.: Safety verification of hybrid systems by constraint propaga-
tion based abstraction refinement. In: Morari, M., Thiele, L. (eds.) HSCC 2005.
LNCS, vol. 3414, pp. 573–589. Springer, Heidelberg (2005)

19. Rewienski, M., White, J.: A trajectory piecewise-linear approach to model order
reduction and fast simulation of nonlinear circuits and micromachined devices.
IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems 22(2),
155–170 (2003)

Generalizing a Mathematical
Analysis Library in Isabelle/HOL

Jesús Aransay and Jose Divasón(B)

Departamento de Matemáticas y Computación,
Universidad de La Rioja, Logroño, Spain

{jesus-maria.aransay,jose.divasonm}@unirioja.es

Abstract. The HOL Multivariate Analysis Library (HMA) of
Isabelle/HOL is focused on concrete types such as R, C and R

n and
on algebraic structures such as real vector spaces and Euclidean spaces,
represented by means of type classes. The generalization of HMA to more
abstract algebraic structures is something desirable but it has not been
tackled yet. Using that library, we were able to prove the Gauss-Jordan
algorithm over real matrices, but our interest lied on generating verified
code for matrices over arbitrary fields, greatly increasing the range of
applications of such an algorithm. This short paper presents the steps
that we did and the methodology that we devised to generalize such a
library, which were successful to generalize the Gauss-Jordan algorithm
to matrices over arbitrary fields.

Keywords: Theorem proving · Isabelle/HOL · Type classes ·
Linear Algebra

1 Introduction

The importance and use of theorem provers grow day to day, not only involving
strictly the formalization of mathematical results but also in the verification of
software and hardware. Isabelle is one of the most used and well-known theorem
provers, on top of which different logics are implemented; the most explored of
these varieties of logics is higher-order logic (or HOL), and it is also the one where
the greatest number of tools (code generation, automatic proof procedures) are
available. It has been successfully used, for instance, in the Flyspeck project (the
largest formal proof completed to date) and in the formal verification of seL4,
an operating-system kernel.

The HOL Multivariate Analysis Library (or, HMA for short) is a set of
Isabelle/HOL theories that has been sucessfully used in concrete developments
in Analysis, Topology and Linear Algebra. It contains about 2500 lemmas and

This author is sponsored by a research grant FPI-UR-12 of Universidad de La Rioja.

c© Springer International Publishing Switzerland 2015
K. Havelund et al. (Eds.): NFM 2015, LNCS 9058, pp. 415–421, 2015.
DOI: 10.1007/978-3-319-17524-9 30

416 J. Aransay and J. Divasón

150 definitions and is based on the impressive work of J. Harrison in HOL
Light [1]. Formalization of algorithms in Linear Algebra and code generation
from datatypes and such algorithms had not been explored in HMA. To ful-
fill this goal, in [5] we presented a formalization of the Gauss-Jordan algorithm
based on HMA. In that development, we set up Isabelle to generate code from
the matrix representation presented in HMA. A refinement to immutable arrays
was carried out to improve performance. We also formalized some of its well-
known applications: computation of ranks, inverses, determinants, dimensions
and bases of the four fundamental subspaces of a matrix and solutions of sys-
tems of linear equations. Verified code of these computations is generated to
both SML and Haskell.

However, while formalizing the previous results we found a limitation in
HMA: some important results that we needed were only proven for real matrices
or for real vector spaces. Due to this fact, we were only able to generate verified
code of the Gauss-Jordan algorithm for real matrices. But we were especially
interested in matrices whose coeffients belong to some other fields. For instance,
the rank over Z2 matrices permits the computation of the number of connected
components of a digital image. In Neurobiology, this technique can be used to
compute the number of synapses in a neuron (see [2] for details). This limitation
arises since HMA derives from earlier formalizations limited to concrete types,
such as R, C and R

n. Many results presented in HMA are ported from J. Har-
rison’s work in HOL Light [1], where most theorems are proven only for R

n.
Another interesting application is the computation of determinants of Q matri-
ces: commercial software performs such computations wrong (see [12]) in cases
that could be critical in cryptology.

J. Hölzl et al. [4] improved significantly the HMA. They presented a new
hierarchy of spaces based on type classes to represent the common structures of
Multivariate Analysis, such as topological spaces, metric spaces and Euclidean
spaces. This improvement showed the power of Isabelle’s type system. Some
limitations still remain; for instance, most properties about vector spaces are only
demonstrated in HMA over real vector spaces, impeding us from working with
matrices whose elements belong to other fields. Generalizing the results in HMA
is a known problem but has not been tackled. J. Harrison already pointed it out
in his work [1]: “many proofs are morally the same and it would be appealing to
be able to use similar technology to generalize the proofs”. J. Avigad also found
this limitation when working with HMA in his formalization of the Central Limit
Theorem [3]; he said that some concepts “admit a common generalization, which
would unify the library substantially”.

This short paper presents a work in progress which aims at being the foun-
dation stone to get such a generalization. The final aim would be to generalize
the library as far as possible. As work done, we present the generalizations and
the methodology that permitted us to prove the Gauss-Jordan algorithm over
matrices whose elements belong to an arbitrary field.

Generalizing a Mathematical Analysis Library in Isabelle/HOL 417

2 Generalization of HMA

Mathematical structures presented in HMA are defined by means of type classes;
type classes are provided by Isabelle and have great advantages: they allow
to organize polymorphic specifications, to create a hierarchy among different
classes, to provide instances, to produce a simple sintax and to simplify proofs
thanks to the Isabelle type inference mechanism. A type class C specifies assump-
tions P1, . . . , Pk for constants c1, . . . , cm (that are to be overloaded) and may be
based on other type classes B1, . . . , Bn. Only one type variable α is allowed to
occur in the type class specification. Hence, if we want to prove properties of
arbitrary vector spaces (where two type variables appear), we have to use locales
instead.

Locales are an Isabelle approach for dealing with parametric theories and
they are specially suitable for Abstract Algebra as they allow to talk about
carriers, sub-structures and existence of structures. On the other hand, code
generation within locales with assumptions essentially does not work. Locales
enable to prove theorems abstractly, relative to sets of assumptions. These the-
orems can then be used in other contexts where the assumptions themselves, or
instances of the assumptions, are theorems. This form of theorem reuse is called
interpretation. Locales generalize interpretation from theorems to conclusions,
enabling the reuse of definitions and other constructs that are not part of the
specifications of the locales.

We are on the borderline: our work requires to use abstract structures such
as vector spaces or modules (we have to use locales) but we aim to preserve the
executability (code generation). Our proposal is to work with a mix between
locales and type classes: every possible lemma is generalized to newly intro-
duced locales, but lemmas required in type classes are kept (because they belong
there, or because they are obtained thanks to interpretation of the corresponding
abstract locale).

2.1 An Example of Generalization

Let us illustrate the previous methodology with an example. A key lemma in
HMA is the one which states the link between matrices and linear maps:

theorem matrix_works:

assumes "linear f"

shows "matrix f *v x = f (x ::real^’n)"

It is stated for linear maps between real vector spaces. The linear predicate
in the premise is introduced by the following locale definition:

locale linear = additive f for f :: "’a::real_vector ⇒ ’b::real_vector"

+ assumes scaleR: "f (scaleR r x) = scaleR r (f x)"

One parameter is only required: a map f . In the heading, the type of f
is fixed as a map between two real vector spaces (real vector class). In order

418 J. Aransay and J. Divasón

to generalize it to arbitrary vector spaces over the same field, we propose the
following definition:

locale linear = B: vector_space scaleB + C: vector_space scaleC

for scaleB :: "(’a::field ⇒ ’b::ab_group_add ⇒ ’b)" (infixr "*b" 75)

and scaleC :: "(’a ⇒ ’c::ab_group_add ⇒ ’c)" (infixr "*c" 75) +

fixes f :: "(’b ⇒ ’c)"

assumes cmult: "f (r *b x) = r *c (f x)"

and add: "f (a + b) = f a + f b"

This new locale has three parameters, instead of one: the scalar multiplica-
tions scaleB and scaleC, which fix both the vector spaces and the field, and the
map f . Now we can interpret F

n (where F is a field) as a vector space over F

and prove the linear interpretation for F
n (the corresponding linear map is the

multiplication of a matrix by a vector):
interpretation vec: vector_space "op *s :: ’a::field ⇒ ’a^’b ⇒ ’a^’b"

interpretation vec: linear "op *s" "op *s" "(λx. A *v (x::’a::field^_))"

After reproducing in the new locale the lemmas involved in the proof, we
prove the generalized version. Note the differences between both statements:

theorem matrix_works:

assumes "linear (op *s) (op *s) f"

shows "matrix f *v x = f (x ::’a ::field^’n)"

2.2 The Generalization of the Gauss-Jordan Algorithm

Our aim is to generalize the Gauss-Jordan algorithm to generate verified code
for matrices with elements belonging to a generic field. The algorithm itself
just requires type classes (the field) so code generation will work; neverthe-
less, proving its correctness needs generalizations of properties using locales. In
Section 2.1, we have shown an example of how to carry out this generalization.
As Harrison pointed out [1], in many cases the proof is essentially the same. How-
ever, the procedure is not immediate and almost every demonstration involves
subtle design decisions: introduce new locales, syntactic details, interpretations
inside the lemma to reuse previous facts, change the types properly and so on.
In broad terms, we have carried out four kinds of generalizations in the HMA to
achieve verified execution over matrices with elements belonging to a field:

1. Lemmas involving real vector spaces (a type class) are generalized to arbi-
trary vector spaces (a locale).

2. Lemmas involving Euclidean spaces (a type class) are generalized to finite-
dimensional vector spaces (a locale).

3. Lemmas involving real matrices are generalized to matrices over any field
(thanks to the previous two points).

4. Lemmas about determinants of matrices with coefficients in a real vector
space are proven for matrices with coefficients in a commutative ring.

Generalizing a Mathematical Analysis Library in Isabelle/HOL 419

In HMA the first time that the notion of a finite basis appeared
was in the euclidean space class. Now, we have introduced a new locale
finite dimensional vector space and generalized several proofs from the
euclidean space class to that locale. Thanks to those generalizations, some lem-
mas that were stated in HMA only over real matrices are now proven over more
general types. Let us take a look at the following lemma, which claims that a
matrix is invertible iff its determinant is not null. The following version is the
original one available in HMA, stated for integral domains:

lemma det_identical_rows:

fixes A :: "’a::linordered_idom^’n^’n"

assumes ij: "i �= j" and r: "row i A = row j A"

shows "det A = 0"

proof-
have tha: "

∧
(a::’a) b. a = b =⇒ b = - a =⇒ a = 0" by simp

have th1: "of_int (-1) = - 1" by simp

let ?p = "Fun.swap i j id"

let ?A = "χ i. A $?p i"

from r have "A = ?A" by (simp add: vec_eq_iff row_def Fun.swap_def)

then have "det A = det ?A" by simp

moreover have "det A = - det ?A" by (simp add: det_permute_rows[OF

permutes_swap_id] sign_swap_id ij th1)

ultimately show "det A = 0" by (metis tha)

qed

The original statement comes from Harrison’s formalization [1], where the
lemma is demonstrated over real matrices. The previous proof follows the one
presented in most of the literature. Essentially, in the proof it is deduced that
det A = −det A and thus detA = 0. But such a property does not hold in
rings which characteristic is 2 (such as Z2). For instance, in [6] the statement
is presented for commutative rings but it is proven without taking into account
rings with characteristic 2. The same appears in [7], but the author warns that
the demonstration fails in the case of Z2 matrices. To generalize the result to an
arbitrary ring, we had to change totally the proof and work over permutations.1

Not only change some proofs, sometimes we have to introduce new definitions.
For instance, to multiply a matrix by a scalar. HMA works with real matrices, so
the next operation is used: (op ∗R)::real ⇒ ’a ⇒ ’a. In the generalization,
we would like to multiply a matrix of type ’a^’n^’m by an element of type ’a.
We cannot use (op ∗R) to do that. The most similar operation presented in
HMA is: (op *s)::’a ⇒ ’a^’n ⇒ ’a^’n.

We cannot reuse it because is thought to multiply a vector (and not a matrix)
by a scalar. Then, we define the multiplication of a matrix by a scalar as follows:
definition matrix_scalar_mult :: "’a ⇒ ’a^’n^’m ⇒ ’a^’n^’m"

(infixl "*k" 70) where "k *k A ≡ (χ i j. k * A $ i $ j)"

The statements for the real matrix version and the general one are different:
lemma scalar_matrix_vector_assoc:

1 We followed the proof presented in http://hobbes.la.asu.edu/courses/site/442-f09/
dets.pdf

http://hobbes.la.asu.edu/courses/site/442-f09/dets.pdf
http://hobbes.la.asu.edu/courses/site/442-f09/dets.pdf

420 J. Aransay and J. Divasón

fixes A :: "real^’m^’n"

shows "k *R (A *v v) = k *R A *v v"

lemma scalar_matrix_vector_assoc:

fixes A :: "’a::field^’m^’n"

shows "k *s (A *v v) = k *k A *v v"

Some other particularities arose in the generalization. For instance, we had
to completely change other demonstration: the row rank and the column rank
of a matrix are equal. We had followed an elegant proof but only valid for real
matrices, see [9]. We based its generalization on the output of the Gauss-Jordan
algorithm (a reduced row echelon form) following [11]. This change forced us to
completely reorganize the files of our development. Another example arises in
systems of linear equations: in the real field there could be infinite solutions, but
in other fields such as Z2 there is always finitely many solutions.

Finally, we have generalized more than 2500 lines of code: about 220 theo-
rems and 9 definitions, introducing 6 new locales, 3 new sublocales and 8 new
interpretations. The generalized version of the Gauss-Jordan formalization was
published in the AFP [10]. Moreover, the generalizations are useful for another
contribution of ours: the Rank-Nullity Theorem [8].

3 Conclusions

The generalization of HMA is useful and desirable, but doing it can be over-
whelming at a first glance. The process can be partially automated with suit-
able scripts, but the full goal cannot be discharged automatically and it requires
to make some design decisions. The careful combination of locales, type classes
and interpretations has been shown to be a sensible methodology. A remarkable
number of proofs have been reused in this way. This contribution shows that the
aim is feasible and the generalization has served for our purposes of executing a
verified version of the Gauss-Jordan algorithm over fields such as Z2 and Q.

References

1. Harrison, J.: The HOL Light Theory of Euclidean Space. J. Autom. Reasoning.
50(2), 173–190 (2013)

2. Heras, J., Dénès, M., Mata, G., Mörtberg, A., Poza, M., Siles, V.: Towards
a certified computation of homology groups for digital images. In: Ferri, M.,
Frosini, P., Landi, C., Cerri, A., Di Fabio, B. (eds.) CTIC 2012. LNCS, vol. 7309,
pp. 49–57. Springer, Heidelberg (2012)

3. Avigad, J., Hölzl, J., Serafin, L.: A formally verified proof of the Central Limit
Theorem. CoRR (2014)

4. Hölzl, J., Immler, F., Huffman, B.: Type classes and filters for mathematical anal-
ysis in Isabelle/HOL. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP
2013. LNCS, vol. 7998, pp. 279–294. Springer, Heidelberg (2013)

5. http://www.unirioja.es/cu/jodivaso/Isabelle/Gauss-Jordan-2013-2/
6. Axler, S.: Linear Algebra Done Right, 2nd edn. Springer (2004)

http://www.unirioja.es/cu/jodivaso/Isabelle/Gauss-Jordan-2013-2/

Generalizing a Mathematical Analysis Library in Isabelle/HOL 421

7. Strang, G.: Introduction to Linear Algebra. Wellesley - Cambridge Press (2009)
8. Aransay, J., Divasón, J.: Rank-Nullity Theorem in Linear Algebra. AFP (2013)
9. Mackiw, G.: A Note on the Equality of the Column and Row Rank of a Matrix.

Mathematics Magazine 68(4), 285–286 (1995)
10. Aransay, J., Divasón, J.: Gauss-Jordan Algorithm and its Applications. AFP (2014)
11. http://www.math4all.in/public html/linearalgebra/chapter3.4.html
12. Durán, A.J., Pérez, M., Varona, J.L.: The Misfortunes of a Trio of Mathematicians

Using Computer Algebra Systems. Can We Trust in Them? Notices of the AMS
51(10), 1249–1252 (2014)

http://www.math4all.in/public_html/linearalgebra/chapter3.4.html

A Tool for Intersecting Context-Free
Grammars and Its Applications

Graeme Gange1, Jorge A. Navas2(B), Peter Schachte1,
Harald Søndergaard1, and Peter J. Stuckey1

1 The University of Melbourne, Melbourne, VIC 3010, Australia
{gkgange,schachte,harald,pstuckey}@unimelb.edu.au

2 NASA Ames Research Center, Moffett Field, CA 94035, USA
jorge.a.navaslaserna@nasa.gov

Abstract. This paper describes a tool for intersecting context-free
grammars. Since this problem is undecidable the tool follows a
refinement-based approach and implements a novel refinement which is
complete for regularly separable grammars. We show its effectiveness for
safety verification of recursive multi-threaded programs.

1 Introduction

Checking emptiness of intersections of context-free grammars is a well-known
undecidable problem. However, the fact that this problem is equivalent to safety
verification of recursive multi-threaded programs has kept motivating the design
of semi-decision procedures that can still be effective in practice.

In this paper, we describe covenant, a tool for checking whether the lan-
guages of an arbitrary number of context-free grammars are disjoint and show
its role as a component in the analysis of recursive multi-threaded programs.
The tool takes a grammatical approach [7], in the sense that it is formalized
in terms of context-free grammars rather than pushdown automata [1,2,10]. It
implements a counter-example guided abstraction refinement (CEGAR) of reg-
ular over-approximations and integrates a complete refinement procedure that
guarantees termination if the context-free grammars are regularly separable.1 We
show its application to safety verification of recursive multi-threaded programs.

To the best of our knowledge, our tool is the only publicly available implemen-
tation tackling the problem of intersecting unbounded context-free grammars.

2 Approach

The tool discussed in this paper follows the so-called counter-example guided
abstraction refinement (CEGAR) of regular over-approximations. Without loss
1 Two context-free grammars G1 and G2 are regularly separable if there exist two

regular languages L1 and L2 such that L(G1) ⊆ L1, L(G2) ⊆ L2 and L1 ∩ L2 = ∅.

c© Springer International Publishing Switzerland 2015
K. Havelund et al. (Eds.): NFM 2015, LNCS 9058, pp. 422–428, 2015.
DOI: 10.1007/978-3-319-17524-9 31

A Tool for Intersecting Context-Free Grammars and Its Applications 423

of generality, in this presentation we consider the intersection of just two context-
free grammars G1 and G2. The scheme is based on an initial abstraction which is
repeatedly refined until either the languages are proven disjoint, an intersection
witness has been found, or resources have been exhausted:

1. Abstraction: compute regular approximations R1 and R2 such that L(G1) ⊆
L(R1) and L(G2) ⊆ L(R2).

2. Verification: using a decision procedure for regular languages (and writing
� for disjointness), if L(R1) � L(R2) then L(G1) � L(G2), so answer “the
languages are disjoint.” If w ∈ L(R1) ∩ L(R2), w ∈ L(G1), and w ∈ L(G2)
then L(G1) ∩ L(G2) �= ∅, so answer “the languages are not disjoint” and
provide w as a witness. Otherwise, go to step 3.

3. Refinement: produce new regular approximations R′
1 and R′

2 such that for
each R′

i, i ∈ {1, 2}, we have L(Gi) ⊆ L(R′
i) ⊆ L(Ri), and L(R′

i) ⊂ L(Ri) for
some i. Update the approximations R1 ← R′

1, R2 ← R′
2, and go to step 2.

Abstraction. Note that a regular approximation always exists for any grammar
G since we can use Σ∗, where Σ is the alphabet of G. However, the precision of
the initial abstraction often has a significant impact on the convergence of the
refinement loop, so non-trivial initial abstractions such as the ith-prefix abstrac-
tion [1,2] and the downward closure with a cycle-breaking heuristic [7] are more
suitable candidates.
Verification. This step assumes a decision procedure that returns “no” if L(A1) �

L(A2) or returns a witness w if w ∈ L(A1) ∩ L(A2) �= ∅, where A1 and A2 are
finite-state automata recognizing regular languages R1 and R2, respectively (that
is, L(A1) = R1 and L(A2) = R2). This can be solved using, for instance, the clas-
sical product construction. Note that a different approach would make use of the
fact that the class of context-free languages is closedunder intersectionwith regular
languages. However, one advantage of our approach is that we are able to leverage
the latest advances made in string solving [4,6,11].
Refinement. At this point, the regular solver has found some witness w such
that w ∈ (L(A1) ∩ L(A2)), but w /∈ (L(G1) ∩ L(G2)). There are three cases: (1)
w /∈ L(G1) ∧ w ∈ L(G2), (2) w /∈ L(G1) ∧ w /∈ L(G2), and (3) w ∈ L(G1) ∧ w /∈
L(G2). For (1) and (3) we should refine A1 and A2, respectively. For (2) we could
choose to refine either A1 or A2, or both. covenant aggressively refines both.

We say a language L is a safe generalization of a witness w with respect
to a context-free grammar G if (a) L ⊇ {w} and (b) L � L(G). If w /∈ L(Gi)
then a straightforward refinement is to produce a new abstraction that recog-
nizes L(Ai) \ {w} in place of Ai. However, that refinement process will rarely
converge, as it excludes only finitely many examples. Instead, we would like to
produce safe generalizations of w containing an infinite number of words, to
hasten convergence. For this purpose, our tool implements the concept of star -
generalization [5]. Informally, a star-generalization of a word w is a language
that applies the Kleene ∗ operator (i.e., unbounded repetition) to any number
of non-overlapping, but possibly nested, subsequences of w, while ensuring the
resulting augmented language remains disjoint with the language of G.

424 G. Gange et al.

3 Covenant

The tool is publicly available at https://github.com/sav-tools/covenant.

3.1 Design and Implementation Choices

The tool is implemented in C++ and parameterized by the initial approximation,
the regular solver, and the refinement procedure.

Abstraction. One advantage of having a grammatical view is that covenant
can easily leverage the advances made in areas such as speech processing where
precise abstraction of context-free grammars into regular grammars is an active
topic of research. covenant implements the method described by Nederhof [8]
for approximating context-free grammars with strongly regular languages.

We say a grammar is strongly regular if all productions are of the form:
A → B w | w or A → w B | w, where w ∈ Σ∗ and A,B are nonterminals.
The abstraction relies on the following observation: a grammar with produc-
tions of the form A → αAβ with both α, β non-empty might not be represented
as a strongly regular grammar because α and β might be related through an
“unbounded” communication not expressible by regular languages. The abstrac-
tion consists of conservatively breaking those unbounded communications in such
a way that the grammar becomes regular while preserving the original grammar
structure as far as possible. Nederhof [8] also proposed a transformation from
strongly regular grammars to finite automata, also implemented in covenant.

Regular Solver. covenant currently implements only the naive product con-
struction for intersecting finite automata but other regular solvers can easily
be plugged in. In fact, an initial implementation of covenant was tested using
Revenant [4], an efficient regular solver based on bounded model checking with
interpolation, though the released version does not incorporate it.

Refinement. covenant implements both the greedy and maximum star-epsilon
generalizations of [5]. We explain these by example—[5] has details. Consider
witness w ≡ aab and context-free language L = {aibi+1 | i ≥ 0}. The greedy
algorithm starts by checking whether W1 ≡ a∗ab � L. As the query succeeds,
W1 is a safe generalization of w wrt . L so we could stop here. However, we can
continue and next ask whether W2 ≡ a∗a∗b � L; but b ∈ L so W2 is discarded.
Next, we try whether W3 ≡ a∗ab∗

� L; but abb ∈ L and so W3 too fails to be a
safe generalization. Finally, we query W4 ≡ a∗(ab)∗

� L and W5 ≡ (a∗(ab)∗)∗
� L

which both succeed. Thus, starting from aab, we can produce the safe gen-
eralization (a∗(ab)∗)∗. In fact, covenant generates three safe generalizations:
W1 ⊆ W4 ⊆ W5. Although this greedy method is reasonably cheap (O(|w|2)), if
resources are scarce it can stop any time, returning the weaker W1 or W4.

The maximum star-epsilon version is similar to the greedy one except it
will compute the union of all possible safe generalizations without committing
to any successful partial generalization. That is, the greedy version started by
checking W1 and since W1 succeeded the rest of queries were relative to W1.

https://github.com/sav-tools/covenant

A Tool for Intersecting Context-Free Grammars and Its Applications 425

The non-greedy version will not commit to W1 but also try other possibilities.
For instance, aa∗b, (aa)∗b, (aab)∗, and a(ab)∗ are also safe generalizations from
which we can keep generalizing. Although more expensive, it is worth mentioning
that this version ensures termination of the CEGAR loop whenever the context-
free grammars are regularly separable.

For the implementation, two operations are important: (a) intersection
between a context-free grammar and a finite automaton for checking safe gen-
eralizations, and (b) automata difference for refining the current abstraction by
discarding a safe generalization W of w. For (a), covenant uses a modified
version of the efficient pre∗ algorithm [3] and for (b) it intersects the current
abstraction with the complement of the determinization of W . Although deter-
minization of automata can have an exponential size blowup, this behavior is
rare; we have not seen it during experiments. Based on our experience, it is also
useful to minimize after (b) has been performed, to keep the abstraction small.

3.2 Preprocessing and Output

We require that the input grammars are in the following normal form: A → BC |
B | a | ε, where A,B,C are nonterminals and a ∈ Σ+, where Σ is the alphabet
of the grammar. Any context-free grammar can be converted to this form by a
linear increase in terms of the size of the original grammar. covenant performs
this normalization as a preprocessing step but it does not require any further
(more expensive) normalizations, such as Chomsky Normal Form.

If covenant proves that the language of the grammars are not disjoint it will
return a witness. The user can set the option --solutions n to ask the solver
for n solutions. The option --dot will output the automata resulting from the
initial abstraction, each of the safe generalizations, and the final abstractions
when emptiness was proven, all in the dot language of the Graphviz package.

4 Safety Verification of Multithread Programs

Bouajjani et al . [1] pioneered safety verification of recursive multi-threaded pro-
grams by reduction to checking the intersection of context free languages for
emptiness. For lack of space, we refer to [1,2,7] for details of the encoding.

We have tested covenant and compared with lcegar [7] using two classes
of programs: textbook Erlang programs and several variants of a real Bluetooth
driver. A detailed description of the programs as well as the safety properties
can be found in [2,7,9]. We ran lcegar with the setting provided by the authors
and tried with the two available initial abstractions: pseudo-downward closure
(PDC) and cycle breaking (CB). Table 1 shows the results. The symbol ∞ means
a timeout expired after 2 hours. We ran covenant with the greedy refinement.

5 Related Work

To the best of our knowledge, covenant is the first publicly available implemen-
tation for intersecting context-free grammars ensuring termination for regularly

426 G. Gange et al.

Table 1. Comparison of covenant with lcegar; times in seconds. All experiments
ran on a single core of a 2.4GHz Core i5-M520 with 8GiB of memory.

(a) Verification of multi-thread Erlang programs

Program covenant lcegar

PDC CB

SharedMem safe 0.01 14.37 24.75

Mutex safe 0.04 6.12 0.14

RA safe 0.01 ∞ 0.39

Modified RA safe 0.03 ∞ 27.90

TNA unsafe 0.01 0.02 0.25

Banking unsafe 0.01 ∞ 3.36

(b) Verification of multi-thread Bluetooth drivers

Program covenant lcegar

PDC CB

Version 1 unsafe 0.84 19.74 21.04

Version 2 unsafe 0.25 5560.00 4852.00

Version 2 w/ Heuri unsafe 0.11 44.68 38.89

Version 3 (1A2S) unsafe 0.12 217.74 217.27

Version 3 (1A2S) w/ Heuri unsafe 0.05 6.68 11.37

Version 3 (2A1S) safe 0.27 4185.00 3981.00

separable grammars. Several CEGAR approaches have been proposed before.
Here, we do not consider the effect of initial approximations, as they do not
affect the expressiveness of the refinement loop and are easily interchangeable.

The first CEGAR approach was proposed in [1] based on the concept of
refinable finite-chain abstraction which consists of computing the series (αi)i≥1

overapproximating the language of a CFG G such that L(α1(G)) ⊃ L(α2(G)) ⊃
· · · ⊇ L(G). Several refinable abstractions were described in [1] although no
experimental data was provided. Instead, we compare here with the ith-prefix
abstraction2 implemented in [2]. In this, αi(G) is the set of words of G of length
less than i, together with the set of prefixes of length i of G. We argue that
the refinement implemented in covenant is more expressive as it is not hard
to find regularly separable languages that cannot be proven so by the ith-prefix
abstraction. For instance, with R1 ≡ a∗b and R2 ≡ a∗c, we have R1 � R2, while
for every length i, the string ai forms a prefix to words in both R1 and R2.
Therefore the intersection of the two abstractions will always be non-empty.

The lcegar method described in [7] is based on a similar refinement frame-
work, but the approach differs radically. lcegar maintains a pair of context-free
grammars A1, A2, over-approximating the intersection of the original languages.
At each refinement step, an elementary bounded language Bi is generated from
2 [2] also implemented the ith-suffix abstraction which suffers from same limitations.

A Tool for Intersecting Context-Free Grammars and Its Applications 427

each grammar Ai.3 The refinement ensures Bi∩Ai �= ∅, but Bi is not necessarily
either an over- or under-approximation of Ai. After that, I = Bi ∩ L1 ∩ L2 is
computed. If I is non-empty, L1∩L2 must also be non-empty. If I is empty, then
the approximations can safely be refined by removing Bi.

Here a comparison between methods is more involved, and we refer to [5] for
details. Suffice it to say that the refinements done by lcegar and covenant
are incomparable. That is, there are grammars which are not regularly separable
for which lcegar can terminate but covenant cannot, and there are also
grammars which are regularly separable but lcegar cannot terminate.

Finally, the verification phase in covenant consists of intersecting finite
automata, for which efficient solvers are available. Instead, lcegar intersects
several context-free grammars and a bounded language which, although decid-
able, is NP-Complete. In our experience, lcegar makes a smaller number of
refinements than covenant, but each refinement in covenant is considerably
cheaper than in lcegar, resulting in the better performance.

6 Conclusions

The main contributions of this work have been to describe and implement a tool
for intersecting context-free grammars, and to show it can be effective for safety
verification of recursive multi-threaded programs.

Acknowledgments. Partially funded by the ARC through grant DP140102194.

References

1. Bouajjani, A., Esparza, J., Touili, T.: A generic approach to the static analysis of
concurrent programs with procedures. In: POPL, pp. 62–73 (2003)

2. Chaki, S., Clarke, E., Kidd, N., Reps, T., Touili, T.: Verifying concurrent message-
passing c programs with recursive calls. In: Hermanns, H., Palsberg, J. (eds.)
TACAS 2006. LNCS, vol. 3920, pp. 334–349. Springer, Heidelberg (2006)

3. Esparza, J., Rossmanith, P., Schwoon, S.: A uniform framework for problems on
context-free grammars. Bulletin of the EATCS 72, 169–177 (2000)

4. Gange, G., Navas, J.A., Stuckey, P.J., Søndergaard, H., Schachte, P.: Unbounded
model-checking with interpolation for regular language constraints. In: Piterman,
N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 277–291. Springer,
Heidelberg (2013)

5. Gange, G., Navas, J.A., Stuckey, P.J., Søndergaard, H., Schachte, P.: A com-
plete refinement procedure for regular separability of context-free languages (2014).
http://people.eng.unimelb.edu.au/gkgange/pubs/cfg preprint.pdf

6. Hooimeijer, P., Weimer, W.: StrSolve: Solving string constraints lazily. ASE 19(4),
531–559 (2012)

3 An elementary bounded language is a language of the form B = w∗
1 . . . w∗

k, where
each wi is a (finite) word in Σ∗.

http://people.eng.unimelb.edu.au/gkgange/pubs/cfg_preprint.pdf

428 G. Gange et al.

7. Long, Z., Calin, G., Majumdar, R., Meyer, R.: Language-theoretic abstraction
refinement. In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp.
362–376. Springer, Heidelberg (2012)

8. Nederhof, M.-J.: Regular approximation of CFLs: a grammatical view. In:
Advances in Probabilistic and Other Parsing Technologies, vol. 16, pp. 221–241
(2000)

9. Qadeer, S., Wu, D.: KISS: keep it simple and sequential. In: PLDI, pp. 14–24 (2004)
10. Suwimonteerabuth, D., Schwoon, S., Esparza, J.: jMoped: a java bytecode checker

based on moped. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol.
3440, pp. 541–545. Springer, Heidelberg (2005)

11. Veanes, M., de Halleux, P., Tillmann, N.: Rex: symbolic regular expression explorer.
In: ICSTVV, pp. 498–507 (2010)

UFIT: A Tool for Modeling Faults in UPPAAL
Timed Automata

Reza Hajisheykhi1(B), Ali Ebnenasir2, and Sandeep S. Kulkarni1

1 Michigan State University, East Lansing, USA
{hajishey,sandeep}@cse.msu.edu

2 Michigan Technological University, Houghton, USA
aebnenas@mtu.edu

Abstract. We present the tool UFIT (Uppaal Fault Injector for Timed
automata). In UFIT, we model five types of faults, namely, message
loss, transient, byzantine, stuck-at, and fail-stop faults. Given the fault-
free timed automata model and the selection of a type of fault, UFIT
models the faults and generates the fault-affected timed automata model
automatically. As a result, the designer can analyze the behavior of the
model in the presence of faults. Moreover, there are several tools that
extract timed automata models from higher-level programs. Hence, the
designer can use UFIT to inject the faults into the extracted models.

1 Introduction

In this paper, we present the tool UFIT for modeling different types of faults in
UPPAAL timed automata. Timed automata are important abstractions that are
able to both capture real-time behavior and be verified algorithmically (model-
checked). Moreover, there are several methods that propose how to extract a timed
automata model from higher-level programs such as SystemC programs, hybrid
systems, real-time communication protocols, digital circuits, timed asynchronous
circuits, etc. [1,2]. These programs/systems are usually subject to faults and it is
necessary to see how they behave in the presence of faults.

There are several techniques for injecting faults into high-level programs such
as C, C++, SystemC, etc. [3,4]. However, such programs are getting more com-
plex and more difficult to get verified. The faults injected also introduce some
time overhead and make the verification time even worse. A solution to that
would be extracting abstract models from the programs and inject the faults
into the extracted models. Nevertheless, most of the algorithms for extracting
the models are untimed and do not consider timing constraints. Having a timed
model extracted (e.g. timed automata) from higher-level programs, there are
several methods/tools for verifying the models in the literature [1,5,6]. How-
ever, these methods/tools verify the models in the absence of faults. Thus, there

This work is supported by NSF CCF-1116546, NSF CNS 1329807, and NSF CNS
1318678.

c© Springer International Publishing Switzerland 2015
K. Havelund et al. (Eds.): NFM 2015, LNCS 9058, pp. 429–435, 2015.
DOI: 10.1007/978-3-319-17524-9 32

430 R. Hajisheykhi et al.

is a need for a tool that models and injects faults into timed systems automati-
cally yet does not add too much overhead into the models. UFIT targets timed
automata models and considers five types of faults, namely, message loss, tran-
sient, byzantine, stuck-at, and fail-stop faults. It automates the injection of the
faults into the model and generates a fault-affected model. Hence, this model
can be analyzed with UPPAAL tool-set. In this paper, we illustrate how to use
UFIT to model the faults on the well-known Fischer’s mutual exclusion problem
and analyze the behavior of the fault-affected model. UFIT is written in Python
and its source code is available freely and can be downloaded from https://www.
cse.msu.edu/∼hajishey/ufit.html.

2 Modeling and Analysis Using UFIT

In this section, first, we explain UPPAAL timed automata and the input of UFIT.
Thereafter, using a runtime example, we introduce our fault modeling approach
and inject five types of faults into the example. Finally, we utilize the output of
UFIT to analyze the behavior of the model in the presence of faults.

2.1 Input of UFIT

The input of UFIT is a fault-intolerant timed automata model in XML format
and a set of parameters. Next, we explain the timed automata and the input XML
format. We describe the set of parameters in Section 2.2.

UPPAAL and Timed Automata. A timed automaton (TA) is a classical
finite automaton which can manipulate clocks, evolving continuously and syn-
chronously with the absolute time. Each transition (edge) of such an automaton
is labeled by a guard, or a constraint over clock values, which indicates when the
transition can be fired, and a set of clocks to be reset when the transition is fired.
Each location (vertex) is constrained by an invariant. The invariant restricts the
possible values of the clocks for being in the state, which can then enforce a
transition to be taken. UPPAAL [7] is an integrated tool environment for mod-
eling, simulation, and verification of real-time systems modeled as networks of
timed automata, extended with data types.

XML Format. Like the TA model, the XML file has a set of locations and
transitions, which are respectively defined by the following tags: “< location >
statements < /location >” and “< transition > statements < /transition >”.
The statements can be a name, an invariant, or a type (e.g., urgent, committed)
for locations, and a source, a target, or labels for transitions. The source and
target tags represent the position of the transition. The label tag shows whether
the transition has a synchronization channel, an assignment operation, or a guard
condition.

We illustrate the set of parameters and our fault modeling approach used
in UFIT utilizing a running example from the literature of UPPAAL timed
automata, the Fischer’s mutual exclusion protocol [7] (Figure 2(a)).

https://www.cse.msu.edu/~hajishey/ufit.html
https://www.cse.msu.edu/~hajishey/ufit.html

UFIT: A Tool for Modeling Faults in UPPAAL Timed Automata 431

Fig. 1. The GUI of UFIT

The Running Example. Fischer’s protocol is designed to ensure mutual
exclusion among several processes (5 processes here) competing for a critical
section using timing constraints and a shared variable id. In each process P , the
process goes to a request location req if it is the turn for no process to enter the
critical section (id==0). After x time units in req (0 ≤ x ≤ k), P goes to the
wait location and sets id to its process ID. Finally, after at least k time units, P
enters the critical section cs if it is its turn. The Fischer’s protocol satisfies the
following set of requirements/properties in the absence of faults:

SPEC1: A[] not deadlock

SPEC2: P(i).req --> P(i).wait

SPEC3: A[] P1.cs + P2.cs + P3.cs + P4.cs + P5.cs <=1

where SPEC1 checks wether the system is deadlock-free. The liveness property
SPEC2 checks that whenever a process tries to enter the critical section, it will
always eventually enter the waiting location. The safety property SPEC3 checks
for mutual exclusion of the location cs.

2.2 Internal Functionality

To generate the fault-affected model, in addition to the fault-free model, we need
to specify the type of the faults and a set of parameters (see Figure 1). The fault
types that UFIT considers are as follows.

– Message faults, where a message may be lost while forwarding from one
module to another;

– Fail-stop faults, where a module fails functionally and the other modules
cannot communicate with it;

– Byzantine faults, where the faulty component continues to run but produces
incorrect results;

– Stuck-at faults, where a signal gets stuck-at a fixed value (logical 0, 1, or X)
and cannot switch its value, and

432 R. Hajisheykhi et al.

– Transient faults, where the state of system components is perturbed without
causing any permanent damage.

In addition to the fault type, the following discrete variables can be specified:

– Variable subject to faults. We are not allowed to increase or decrease the
value of the clock variable;

– Module subject to faults. We assume any module can be subject to faults,
and

– Number of faults. The number of occurrences of the transient faults that may
take place during the computation needs to be defined. The default setting
value is 1.

Remark 1. If any of the above variables is not specified, UFIT will set a value
for them arbitrarily. For instance, if the module subject to fail-stop faults is not
specified, UFIT will fail one of the modules non-deterministically.

Brief Discussion About Modeling of Faults in UFIT. Given the param-
eters and the fault type, intuitively we model the faults as follows. To model a
message fault, we inject a new transition into the module subject to faults in
parallel to a transition that has a synchronization channel. The set of assign-
ments/guards of the new transition is similar to that of the original transition
except that the synchronization channel is changed. To model a fail-stop fault,
we define a variable down that shows if a module is failed (down=1). For exam-
ple, Figure 2(b) illustrates that automaton P1 is failed since P1 cannot go to
location wait and has to stay at location req forever. To model stuck-at faults,
UFIT finds the location of the variable subject to faults and changes it to a
random value. For example, in Figure 2(c), the value of id is stuck at 5, thereby
P1 cannot enter the critical section. For modeling byzantine faults, UFIT adds a
transition in parallel to that of the original automaton that updates the variable
subject to faults and changes its value arbitrarily. Figure 2(d) shows injecting
a byzantine faults that changes the value of id, if the faults occur. Modeling of
transient faults is similar to that of byzantine faults except that the occurrence
of transient faults is limited. UFIT utilizes the number of faults defined in the
GUI to limit the number of occurrence of this type of faults.

Extending UFIT. UFIT is easily extensible to cover more types of faults.
Specifically, UFIT is written in Python (utilizing PyQt and PySide packages [8])
and uses XML ElementTree library to parse the XML file. Thus, to add a new
class of faults, only the modeling of that class needs to be added to UFIT.

2.3 Analysis of Results

In this section, we analyze the fault-affected models. Also, in addition to Fischer’s
protocol, we include the results of the Viking problem adapted from [7]. In the
Vikings problem, four Vikings want to cross a bridge at night, but they have

UFIT: A Tool for Modeling Faults in UPPAAL Timed Automata 433

x=0

x=0,
id=1

x=0
id=0

x<=k

wait

reqA

cs

id==0

x<=k
id==0

x>k && id==1

(a) Fault-free model

x<=k

wait

req

x = 0,
id = 1

x = 0

A x = 0, down=1

cs

id = 0 id==0 &&
down==0

x>k && id==1 &&
down==0

down==0
x<=k &&
down==0

id==0 && down==0

(b) Fail-stop fault

x=0

x=0,
id=5

x=0
id=0

x<=k

wait

reqA

cs

id==0

x<=k
id==0

x>k && id==1

(c) Stuck-at 5 fault

x=0,
id=5

x=0

x=0,
id=1

x=0
id=0

x<=k

wait

reqA

cs

x<=k

id==0

x<=k
id==0

x>k && id==1

(d) Byzantine fault

Fig. 2. Fault-free and fault-affected models of Fischer’s mutual exclusion protocol. The
green texts show either the guards or synchronization, the blue texts show the updates,
and the pink texts represent the names.

only one torch and the bridge can only carry two of them. Thus, they can only
cross the bridge in pairs and one has to bring the torch back to the other side
before the next pair can cross. Each viking has different speed. The question is
whether it is possible that all the vikings cross the bridge within a certain time.
This example is comparable to the question if a packet can reach its receiver in
a given time limit in a communication network/Network on Chip (NoC) system.
The TA model satisfies the following properties in the absence of faults:

SPEC1: A[] not deadlock

SPEC2: E<> Viking1.safe

SPEC3: E<> Viking1.safe and Viking2.safe and Viking3.safe

and Viking4.safe

where SPEC2 illustrates that the first viking eventually gets to the other side of
the river and SPEC3 shows that all the vikings are in their safe location.

The results of analyzing the examples are as shown in Table 1. In this table,
if requirement x is satisfied, we include s in the table, otherwise v.

3 Conclusions and Future Work

In this paper, we presented the tool UFIT and explained how it models different
types of faults in timed automata models. For each type of faults, we utilized

434 R. Hajisheykhi et al.

Table 1. Modeling and analyzing the impact of faults

Protocol Cause Affected Locations
SPEC Total Time
1 2 3 (ms)

Fischer’s protocol

Fault-free model – s s s 1250
Fail-stop Process P1 v v s 143
Transient Process P1 v s s 79
Stuck-at Process P1 v s s 81

Byzantine Process P1 v s s 149

Viking protocol

Fault-free model – s s s 25

Fail-stop
Viking 0 v v v 23
Torch v v v 15

Message loss Viking to Torch v v v 17
Byzantine (L=1) Torch v s v 29

Stuck-at 0 Torch v s s 15
Stuck-at 1 Torch v s v 15

Transient (L=1) Torch v s v 14

a generic approach to transform the UPPAAL model to obtain a fault-affected
model. Subsequently, this model was used in UPPAAL to conclude tolerance
to faults or to obtain a counterexample. We were either able to verify that
the original specification is satisfied or find a counterexample demonstrating the
violation of the original specification. Moreover, the time for evaluating the effect
of faults was comparable (< 165%) to the verification in the absence of faults.

Future Work. Having a fault-affected timed automata mode and a set of prop-
erties which are violated, we are working on repairing the model automatically
to generate a model that eventually satisfies the set of violated properties while
preserving the set of satisfied properties. Moreover, we are working on injecting
timing faults utilizing UFIT.

References

1. Herber, P., Pockrandt, M., Glesner, S.: Transforming SystemC Transaction Level
Models into UPPAAL timed automata. In: Singh, S., Jobstmann, B., Kishinevsky,
M., Brandt, J. (eds.) MEMOCODE, pp. 161–170. IEEE (2011)

2. Olivero, A., Sifakis, J., Yovine, S.: Using abstractions for the verification of linear
hybrid systems. In: Computer Aided Verification, CAV, pp. 81–94 (1994)

3. Lisherness, P., Cheng, K.T.: SCEMIT: a systemc error and mutation injection tool.
In: Design Automation Conference, DAC, pp. 228–233 (2010)

4. Giovanni, B., Bolchini, C., Miele, A.: Multi-level fault modeling for transaction-
level specifications. In: Great Lakes Symposium on VLSI, pp. 87–92 (2009)

5. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: Verification of proba-
bilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

UFIT: A Tool for Modeling Faults in UPPAAL Timed Automata 435

6. Springintveld, J., Vaandrager, F.W., D’Argenio, P.R.: Testing timed automata.
Theor. Comput. Sci. 254 (1–2), 225–257 (2001)

7. Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004)

8. Summerfield, M.: Rapid GUI Programming with Python and Qt. Prentice Hall,
California (2008)

Blocked Literals Are Universal

Marijn J.H. Heule1(B), Martina Seidl2, and Armin Biere2

1 Department of Computer Science, The University of Texas at Austin, Austin, USA
marijn@cs.utexas.edu

2 Institute for Formal Models and Verification, JKU Linz, Linz, Austria
{martina.seidl,biere}@jku.at

Abstract. We recently introduced a new proof system for Quantified
Boolean Formulas (QBF), called QRAT, that opened up a variety of
new preprocessing techniques. This paper presents a concept that fol-
lows from the QRAT proof system: blocked literals. Blocked literals are
redundant universal literals that can be removed or added to clauses. We
show that blocked literal elimination (BLE) and blocked literal addition
are not confluent. We implemented BLE in the state-of-the-art preproces-
sor bloqqer. Our experimental results illustrate that the BLE extension
improves solver performance on the 2014 QBF evaluation benchmarks.

1 Introduction

Preprocessing a quantified Boolean formula (QBF) is crucial to effective QBF
solving, but often tricky to implement. That motivated us to develop a new proof
system for QBF [1], called QRAT, which facilitates expressing all state-of-the-
art QBF preprocessing techniques in a uniform manner. By these means, the
correctness of the output of a preprocessor can be checked efficiently. Moreover,
the QRAT proof system opened up a variety of new preprocessing techniques.
In this paper, we study two of such new preprocessing techniques.

Universal pure literal elimination [2] and blocked clause elimination (BCE) [3]
are important QBF preprocessing techniques. The QRAT proof system revealed
that universal pure literals can be generalized in a similar way as existential pure
literal elimination, i.e, via BCE. We call this new generalized concept blocked
literals. We study two new QBF preprocessing techniques: blocked literal elim-
ination (BLE) and blocked literal addition (BLA). BLE is the dual of BCE. We
show that neither BLE nor BLA are confluent, in contrast to BCE.

Additionally, this paper presents the first implementation and evaluation of
a new preprocessing technique that originated from the QRAT proof system.
The general rules in the QRAT proof system are very expensive to implement.

This work was supported by the Austrian Science Fund (FWF) through the
national research network RiSE (S11408-N23), Vienna Science and Technology Fund
(WWTF) under grant ICT10-018, DARPA contract number N66001-10-2-4087, and
the National Science Foundation under grant number CCF-1153558.

c© Springer International Publishing Switzerland 2015
K. Havelund et al. (Eds.): NFM 2015, LNCS 9058, pp. 436–442, 2015.
DOI: 10.1007/978-3-319-17524-9 33

Blocked Literals Are Universal 437

However, by focusing on BLE, a restricted version of the one of the QRAT rules,
we were able to extend the state-of-the-art preprocessor bloqqer [3] is such a way
that its performance is clearly improved.

2 Preliminaries

The language of QBF extends the language of propositional logic by existential
and universal quantifiers over the propositional variables. As usual, we assume
a QBF to be in prenex conjunctive normal form (PCNF). Note that any QBF
of arbitrary structure can be efficiently transformed to a satisfiability equivalent
formula in PCNF [4]. A QBF in PCNF has the structure Π.ψ where the prefix Π
has the form Q1X1Q2X2 . . . QnXn with disjoint variable sets Xi and Qi ∈ {∀,∃}.
The matrix ψ is a propositional formula in conjunctive normal form, i.e., a
conjunction of clauses. A clause is a disjunction of literals and a literal is either
a variable x (positive literal) or a negated variable x̄ (negative literal). The
variable of a literal is denoted by var(l) where var(l) = x if l = x or l = x̄.
The negation of a literal l is denoted by l̄. The quantifier Q(Π, l) of a literal
l is Qi if var(l) ∈ Xi. Let Q(Π, l) = Qi and Q(Π, k) = Qj , then l ≤Π k
iff i ≤ j. We consider only closed QBFs, so ψ contains only variables which
occur in the prefix. For a clause C, we denote by C the assignment that falsifies
all literals in C, i.e., C = {(l̄) | l ∈ C}. By � and ⊥ we denote the truth
constants true and false. QBFs are interpreted as follows: a QBF ∀xΠ.ψ is
false iff Π.ψ[x/�] or Π.ψ[x/⊥] is false where Π.ψ[x/t] is the QBF obtained by
replacing all occurrences of variable x by t. Respectively, a QBF ∃xΠ.ψ is false
iff both Π.ψ[x/�] and Π.ψ[x/⊥] are false. If the matrix ψ of a QBF φ contains
the empty clause after eliminating the truth constants, then φ is false as usual.
Accordingly, if the matrix ψ of QBF φ is empty, then φ is true. Two QBFs φ1

and φ2 are satisfiability equivalent (written as φ1 ∼ φ2) iff they have the same
truth value.

3 Universal Blocked Literals

This section presents the new concept of blocked literals; redundant universal
literals that can be removed or added to clauses. Removing blocked literals from
clauses is a generalization of universal pure literal elimination, which removes
universal literals that are pure, i.e., occur either only positively or only negatively
in the formula. In the popular game-based view of QBF [5]1, the optimal strategy
for the universal player is to assign pure literals to false. Such a move will only
shrink clauses and not satisfy clauses. The preprocessing techniques presented
here will have the same property, but it is literal-based instead of variable-based.
1 The evaluation of a QBF is described as a game between the existential player

who owns the existential variables and the universal player who owns the universal
variables of the formula. The existential player wants to satisfy the formula, while
the universal player wants to falsify the formula.

438 M.J.H. Heule et al.

We explain the new concept of blocked literal using the previous concepts of
blocked clauses, outer clauses, and outer formulas. These previous concepts are
defined slightly differently (i.e., simplified) compared to earlier work [1] to make
them easier to understand for readers that are less familiar with QBF.

Definition 1 (Outer Clause [1]): Let C be a clause occurring in QBF Π.ψ.
The outer clause of C on literal l ∈ C, denoted by OC(Π,C, l), is given by the
clause {k | k ∈ C, k ≤Π l, k 	= l}.

Definition 2 (Outer Formula [6]): Let l be a literal occurring in QBF Π.ψ.
The outer formula of Π.ψ on l, denoted by OF(Π,ψ, l), is given by the unquan-
tified formula {OC(Π,C, l) | l ∈ C,C ∈ ψ}.

Definition 3 (Blocking Literal and Blocked Clause, see also [3]): Let
C be a clause occurring in QBF Π.ψ. An existential literal l ∈ C is called a
blocking literal with respect to Π.ψ if and only if C satisfies OF(Π,ψ, l̄). Clause
C is called a blocked clause if and only if there exists a blocking literal l ∈ C.

Definition 4 (Blocked Literal, instance of [1]): Let C be a clause occurring
in QBF Π.ψ. Universal literal l is called a blocked literal with respect to C and
Π.ψ if and only if C satisfies OF(Π,ψ, l̄).

Notice the subtle difference in the names of the concepts: the new blocked
literals are always universal literals, while blocking literals are always existential
literals. This naming convention is motivated as follows: blocked literals are
redundant –like blocked clauses– while blocking literals [3] are not redundant, but
the reason why the clauses, in which they occur, are blocked and thus redundant.

3.1 Blocked Literal Elimination

We refer to blocked literal elimination (BLE) as removing blocked literals in a
formula until fixpoint. For the formal proof of the soundness of (a generalization
of) BLE, we refer to Theorem 2 of our IJCAR’14 paper [1]. From that theorem it
follows that BLE preserves satisfiability, but not logical equivalence. In the game-
based view of QBF, blocked literals can be ignored by the universal player, so it
makes sense to remove them to simplify the formula at hand.

Theorem 1. Blocked literal elimination is not confluent.

Proof. Consider the true QBF Π.ψSAT := ∀a, b∃x.(a ∨ b ∨ x) ∧ (ā ∨ b̄ ∨ x̄).
The outer formula OF(Π,ψSAT, ā) = (b̄) and OF(Π,ψSAT, b) = (a). BLE can
remove literal a from (a ∨ b ∨ x) because (a ∨ b ∨ x) = (ā) ∧ (b̄) ∧ (x̄) satisfies
OF(Π,ψSAT, ā). Similarly, BLE can remove literal b̄ from (ā ∨ b̄ ∨ x̄) because
(ā ∨ b̄ ∨ x̄) = (a) ∧ (b) ∧ (x) satisfies OF(Π,ψSAT, b). None of the other literals
in ψSAT is blocked (although all x and x̄ literals are blocking). BLE can remove
either a from (a∨ b∨x) or b̄ from (ā∨ b̄∨ x̄), but not both. Notice that removing
both is also unsound as the resulting formula is unsatisfiable.

Blocked Literals Are Universal 439

3.2 Blocked Literal Addition

Apart from eliminating blocked literals, one might also extend clauses by adding
blocked literals in a similar fashion as adding hidden literals [7] or covered liter-
als [8]. We will refer to blocked literal addition (BLA) as a procedure that adds
blocked literals until fixpoint to a given formula.

We expect that BLA will be less useful in practice compared to BLE, because
it weakens the formula. Weakening a formula is typically only useful when the
formula is reduced in size. This is not the case for BLA. However, one could use
BLA in combination with hidden literal and covered literal addition to check
whether a clause is redundant.

Theorem 2. Blocked literal addition is not confluent.

Proof. Let Π.ψUNSAT := ∃x, y ∀a∃z.(x∨a)∧(y∨ā)∧(x̄∨z)∧(ȳ∨z̄) be a false QBF.
Further let ψC

UNSAT be ψUNSAT with (x̄∨z) replaced by C = (ā∨x̄∨z), ψD
UNSAT be

ψUNSAT with (ȳ∨z̄) replace by D = (a∨ȳ∨z̄). Then OF(Π,ψC
UNSAT, a) = (x) and

OF(Π,ψD
UNSAT, ā) = (y). Then C = (a) ∧ (x) ∧ (z̄) satisfies OF(Π,ψC

UNSAT, a).
So BLA can add literal ā to (x̄ ∨ z) in ψUNSAT. Further BLA can add literal a to
(ȳ∨ z̄), since D = (ā)∧ (y)∧ (z̄) satisfies OF(Π,ψD

UNSAT, ā). Adding one of these
blocked literals changes the other outer formula and unblocks the other literal.

Adding one literal does not only unblock the other, but adding both ā to
(x̄ ∨ z) and a to (ȳ ∨ z̄) is unsound as it results in a satisfiable formula.

3.3 Universal Expansion

In general, we expect that BLE is more effective than BLA. However, in the con-
text of universal expansion, an effective preprocessing technique [9], the oppo-
site is true. Universal expansion eliminates the innermost universal variable by
duplicating some clauses containing innermost existential literals. More formally,
universal expansion applies the following rule [1,9]:

Π∀x∃Y.ψ,C1 ∨ x̄, . . . , Cn ∨ x̄,D1 ∨ x, . . . , Dm ∨ x,E1, . . . , Ep

Π∃Y Y ′.ψ, C1, . . . , Cn, E1, . . . , Ep,D′
1, . . . , D

′
m, E′

1, . . . , E
′
p

A copy Y ′ of the set of innermost existential variables Y is introduced. In the
primed clauses, variables from Y are replaced by variables from Y ′. For applying
universal expansion on variable x, the clauses of the formula are partitioned into
four groups: (i) those that contain literal x; (ii) those that contain literal x̄; (iii)
clauses that contain at least one innermost existential literal (i.e., from Y), but
not x nor x̄; and (iv) the others. Notice that only the clauses in the third group
are duplicated, so one would like to have that group as small as possible. Yet
BLE may remove x (or x̄) literals from clauses, thereby moving them from the
first group (or second group) to the third group. BLA on the other hand will
add literals x (or x̄), thereby moving clauses from the third group to the first
(or second group). Therefore, applying BLA to add x and x̄ literals to clauses is
a useful pre-step before universal expansion.

440 M.J.H. Heule et al.

Fig. 1. Runtimes on Formulas from QBFLib Benchmark Set 2014

4 Evaluation

We extended our state-of-the-art preprocessor bloqqer v352 with blocked literal
elimination such that BLE complements bloqqer’s preprocessing techniques.

We evaluated the impact of BLE on the QBFLib 2014 Benchmarks3 which
were used in the QBF Gallery 2014, the competition of the QBF solving com-
munity. This benchmark set consists of 345 formulas stemming from various
problem families mainly encoding verification and planning problems. The var-
ious problem families differ strongly in their formula structure, in particular in
the number of quantifier alternations. Our experiments were run on a cluster of
31 nodes with Intel Q9550 CPUs and 8 GB of memory. The memory limit was
never reached. We set an overall timeout of 900 seconds for preprocessing and
solving, and we limited the memory consumption to 7 GB. The formulas, which
could not be solved directly by bloqqer, were handed over to DepQBF 3.044, one
of the most successful solvers of the QBF Gallery 2014.

We considered different configurations of bloqqer to evaluate if and how BLE
influences the solving runtime. We ran DepQBF alone and with the following
configurations of bloqqer: (i) all options enabled, (ii) BLE disabled, and (iii)
BCE and BLE disabled. The results of our experiments are summarized in the
left diagram of Fig. 1. Combining BLE and BCE leads to the best results, i.e.,
solving 202 formulas (102 true, 100 false). When BLE is disabled, 194 formu-
las are solved (98 true, 96 false). A detailed comparison is given by the scat-
ter plot of Fig. 1. Whereas the majority of the formulas remains unaffected
by BLE, for some formulas the runtime improves noticeably. Only one formula
(test4 quant squaring2) could be solved with BLE disabled, but not without. The
average preprocessing time is 42 seconds without BLE and BCE, and 44 seconds
2 http://fmv.jku.at/bloqqer
3 http://qbf.satisfiability.org/gallery/
4 http://lonsing.github.io/depqbf/

http://fmv.jku.at/bloqqer
http://qbf.satisfiability.org/gallery/
http://lonsing.github.io/depqbf/

Blocked Literals Are Universal 441

Table 1. Formulas solved exclusively due to BLE. The columns show the number of
variables (#vars), clauses (#cl), quantifier alternations (#Q), blocked literals (#bl).

original formula preprocessing solving

formula #vars #cl #Q #bl #vars #cl #Q time time val

adder-6-sat 1727 1259 4 1278 2157 5401 2 0.74 0.36 T
C88020 0 0 inp 1046 2644 21 3 1306 3466 15 0.2 874.32 F
cache-coh-2-fixp-5 9604 28198 2 3599 – – – 9.32 – F∗

ethernet-fixpoint-3 12514 33884 2 3879 – – – 9.76 – F∗

k branch n-14 7068 33865 33 389 – – – 5.09 – T∗

k branch n-20 13821 78949 44 1397 – – – 12.45 – T∗

k branch p-15 8035 39595 34 239 – – – 6.12 – F∗

k branch p-21 15161 88627 46 1532 – – – 15.12 – F∗

s820 d7 s 24757 26960 3 5365 25115 12869 3 54.7 11.44 T
∗ solved directly by bloqqer

if they are enabled. Table 1 shows statistics on formulas which can only be solved
if BLE is turned on. With BLE, bloqqer itself (i.e., without DepQBF) solves 78
formulas (37 true, 41 false), compared to 68 formula (33 true, 35 false) without
BLE. The truth value of these formulas is certified by our checking tool [1].

5 Conclusion

We showed that blocked literal elimination—a special case of a rule in the QRAT
proof system—can be applied as preprocessing technique for QBFs. We inte-
grated BLE in our preprocessor bloqqer. Experiments showed the impact of this
technique. We further proposed and motivated a technique called blocked lit-
eral addition where blocked literals are introduced to the formulas. However,
the implementation of BLA is more involved because its application bears the
danger of annihilating the effects of other preprocessing techniques. Further, we
did not investigate the impact of the asymmetric variant of BLE yet nor the
application of the general QRAT rules. Both will be subject to future work.

References

1. Heule, M.J.H., Seidl, M., Biere, A.: A unified proof system for QBF preprocessing.
In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562,
pp. 91–106. Springer, Heidelberg (2014)

2. Cadoli, M., Schaerf, M., Giovanardi, M., Giovanardi, M.: An algorithm to evaluate
quantified boolean formulae and its experimental evaluation. Journal of Automated
Reasoning, 262–267 (1999)

3. Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: Bjørner,
N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 101–115.
Springer, Heidelberg (2011)

4. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Automa-
tion of Reasoning 2, pp. 466–483. Springer (1983)

442 M.J.H. Heule et al.

5. Ansótegui, C., Gomes, C.P., Selman, B.: The Achilles’ Heel of QBF. In: AAAI 2005,
pp. 275–281. AAAI Press / The MIT Press (2005)

6. Heule, M.J.H., Seidl, M., Biere, A.: Efficient Extraction of Skolem Functions from
QRAT Proofs. In: FMCAD 2014, pp. 107–114. IEEE (2014)

7. Heule, M.J.H., Järvisalo, M., Biere, A.: Clause elimination procedures for CNF
formulas. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp.
357–371. Springer, Heidelberg (2010)

8. Heule, M.J.H., Järvisalo, M., Biere, A.: Covered clause elimination. In: LPAR-17-
short. EPiC Series, vol. 13, pp. 41–46. EasyChair (2013)

9. Biere, A.: Resolve and expand. In: H. Hoos, H., Mitchell, D.G. (eds.) SAT 2004.
LNCS, vol. 3542, pp. 59–70. Springer, Heidelberg (2005)

Practical Formal Verification
of Domain-Specific Language Applications

Greg Eakman1, Howard Reubenstein1(B), Tom Hawkins1,
Mitesh Jain2, and Panagiotis Manolios2

1 BAE Systems, Burlington, MA 01803, USA
hbr@alum.mit.edu

2 Northeastern University, Boston, MA 02115, USA

Abstract. An application developer’s primary task is to produce perfor-
mant systems that meet their specifications. Formal methods techniques
allow engineers to create models and implementations that have a high
assurance of satisfying a specification. In this experience report, we take
a model-based approach to software development that adds the assur-
ance of formal methods to software construction while automating over
90% of the formal modeling. We discuss a software development method-
ology and two specific examples that illustrate how to integrate formal
methods and their benefits into a traditional (testing-based) software
development process.

1 Introduction

Domain-Specific Languages (DSLs) provide expressive semantics for defining
computational behavior while insulating the application developer from many
sources of error inherent in programming in the underlying target programming
language (e.g., C or Java). A DSL can be transformed using a code generator
into a traditionally compilable source language where the full expressivity of that
language can be used, assuming that the transformation technology respects the
execution semantics of the target language (Figure 1). The semantics of the
DSL, despite the intentions of the DSL designer, are really defined in the trans-
lation rules of the code generator. In this paper, we apply formal semantics to
two DSLs: a Haskell-based text DSL (Ivory developed by Galois) and a graph-
ical DSL based on a UML profile. We augment the code generation strategy to
include generation of a shallow embedding of the target DSL program in ACL2s.
We prove application level properties of the DSL program and demonstrate cor-
respondence of the ACL2s model with the source code implementation through
testing for equivalent behavior.

This work is motivated by the difficulties observed in accelerating the adop-
tion of formal methods techniques in the practicing software engineering com-
munity responsible for deploying systems. The barriers to application developers
using formal tools to get their jobs done include: the need to build a construc-
tive proof of correctness before extracting an implementation, unfamiliarity with

c© Springer International Publishing Switzerland 2015
K. Havelund et al. (Eds.): NFM 2015, LNCS 9058, pp. 443–449, 2015.
DOI: 10.1007/978-3-319-17524-9 34

444 G. Eakman et al.

Fig. 1. Properties of the application, developed in the model and proven in ACL2s,
are shown to hold in deployed code through correspondence testing

the syntax and development methodology of formal languages, the difference in
semantic models (imperative versus logical/inductive), the difficulty in extract-
ing implementations that interface with existing systems (e.g., those written in
C, C++, Java), and the difficulty in obtaining performant implementations.

2 FORMED and UML

Project FORMED (Formal Methods Engineering Desktop)1 combines software
design in the Unified Modeling Language (UML) with formal methods in a way
that allows application developers to create formal models. The FORMED DSL
is built on the fUML profile [7] which provides executable semantics to class,
operation, and association UML elements, and includes semantics for a model-
level programming language [2]. This executable UML profile is a graphical DSL,
albeit for a very broad domain. From this profile, we build on existing model
transformation and code generation tools such as PathMATE [11] to generate
a shallow mapping of an application model into ACL2s, the ACL2 Sedan [5].
ACL2s extends ACL2, an industrial strength, semi-automated theorem prover,
with a powerful termination analysis engine, a data definition framework, and
counterexample generation capabilities. Properties of the application are then
specified and proven using ACL2s. We focus on application correctness as part
of high assurance software development, rather than on general properties of
memory safety or security, which depend on the implementation language, com-
piler, operating system, and CPU architecture.

The execution semantics of the FORMED UML profile operates on a stack
and a heap, modeled in ACL2s with a reusable context data definition. The con-
text and the functions that operate on it form the platform model that supports
1 Sponsored by OSD under contract FA8750-14-C-0024.

Practical Formal Verification of Domain-Specific Language Applications 445

the operation of the UML semantics and the execution of the application. Each
context function has an associated input-output contract (proved automatically
by ACL2s) that provides assurance on the correctness of the function implemen-
tation. We specify and prove many other theorems that axiomatize the semantics
of operations on the context. These theorems assist us in abstracting the rea-
soning about UML semantics. This hierarchical approach to reasoning not only
provides a reasoning structure but it also reduces the time taken by ACL2s. For
example, it reduced a proof of an application level property from 20 minutes to
less than 15 seconds.

The code generator produces ACL2s code that stores the application state in
the stack/heap context. The imperative nature of the FORMED profile maps to
ACL2s’s functional language by providing the context as one of the input argu-
ments for an operation and requiring the operation to return an updated context.
Templatesmap theUMLelements toACL2s constructs.AUMLclass, for example,
gets mapped to an ACL2s data definition using the defdata framework, which sup-
ports automated type-like reasoning [6]. Rather than validate the transformation,
we generate theorems based on the UML profile’s semantics, such as inheritance,
associations, pointers, and class extents, to reason about the ACL2s code.

We have identified common properties of application models and formalized
the semantics of each into a theorem template to produce an instance of the the-
orem for each model location where the property holds. For example, all rooms
within a hotel must have a unique room number. The application developer
marks the number attribute of the Room class with an stereotype
indicating that all instances should have a unique value. We generate an ACL2s
theorem that proves by induction that this invariant holds for all operations
from any valid state of the application. The code generator statically analyzes
the application to assist theorem proving. The unique room number invariant
can only be invalidated by operations that write the room number attribute or
create a new room. Thus, our proof only needs to consider those critical functions
identified through static analysis.

Table 1. Just 6% of the Hotel application’s formal verification code is hand-written

Hotel Locking Example Metrics

Source UML
UML Classes 13
Lines Action Language 220
Operations 26

Java Generated Java 3895
ACL2s ACL2s SLOC 1284
Context Theorems 132

SLOC Theorems 998
Generated Executable Code 5652

UML Theorem Code 4078
Semantics Theorems Generated 175

Hand-written ACL2s
Application Theorems 18
SLOC Theorems 806

446 G. Eakman et al.

FORMED proves properties about the shallow embedding of the application
in ACL2s, but the formal model is not the deployed code. DSLs, including this
UML profile, can generate source in multiple languages (Java in this case), that
are deployed as a real application. We build an assurance case argument based on
correspondence testing that the properties proven in the ACL2s representation
also exist in the deployed code. Since both the ACL2s and deployed code are
executable representations generated from the same model, and since we apply
the same test cases to each version and verify the corresponding results, we gain
confidence that the properties also hold in the deployed code.

We have applied this process to a model of the Hotel Locking problem [9],
which describes a protocol for managing room keys to secure hotel rooms between
guests. Some metrics from the Hotel application are shown in Table 1. Prelim-
inary results indicate that only about 6% of the ACL2s code, the Application
Theorems, need to be hand written. Specifying these theorems in ACL2s requires
only moderate knowledge of formal logic. Most of the theorems were automat-
ically proved by ACL2s and some of them required us to guide the theorem
prover with appropriate lemmas.

3 SITAPS and Ivory DSL

Ivory is a DSL undergoing development by Galois for UAV control systems used
on DARPA’s HACMS program. Ivory code is currently flying on a quadcopter
UAV, running flight control algorithms and data link processing.

Embedded in Haskell, Ivory relies on Haskell’s type system to ensure type
and memory safety of the generated runtime code (Ivory compiles to C). Though
it is a language similar to C, Ivory purposely limits expressiveness to provide
memory safety. For example, Ivory does not provide pointer types, nor does it
allow arbitrary pointer operations, but it does provide mutable references that
are stack allocated and can be passed as procedure arguments. References are
ensured not to escape the enclosing stack frame, which is enforced by Haskell
types. To prevent buffer overflows, Ivory provides indexing types and bounded
loop operations to ensure array accesses are within bounds.

To increase assurance of Ivory programs, we developed a proof framework2,
based on a compilation of Ivory into ACL2s, that verifies user specified and com-
piler generated assertions. In addition to assertions, Ivory also provides input
and output contracts on procedures. Using these contracts to abstract proce-
dure calls, this proof framework is able to perform an efficient interprocedural
analysis that scales well with larger programs. The analysis walks through each
procedure, generating verification conditions (VCs) for each assertion, each sub
input contract at every sub procedure call, and each output contract at every
return point. These VCs, which are captured in a VC DSL, are optimized and
translated to ACL2s for verification. Verified assertions are removed from the
program to lower the runtime overhead and those that fail to prove remain in
2 Supported by DARPA under the SITAPS project under contract FA8750-13-C-0240.

Practical Formal Verification of Domain-Specific Language Applications 447

place to serve as runtime checks. An example Ivory procedure and translation
are illustrated below:

retractLandingGear :: Def (’[IBool, Sint32] :-> ())

retractLandingGear = proc "retractLandingGear" $

\ weightOnWheels airspeed -> body $ do

ifte_ (iNot weightOnWheels .&& airspeed >? 120) -- Better than spec

(do

assert $ iNot weightOnWheels -- Spec guarding

assert $ airspeed >? 80 -- call to GearUp

call_ commandLandingGearUp

retVoid)

retVoid

Procedure Translated to VC DSL to Verify the First Assertion:

let stack0=[] in -- Initial stack. forall
free0 in -- Free variables for forall
free1 in -- arguments var0,var1. let
env0={var0 : free0, var1 : free1} in -- Bind args into env. let
bc0=((!env0.var0)&&(env0.var1>70)) in -- Branch condition. let
vc0=(bc0->(!env0.var0)) in vc0 -- VC:not weightOnWheels.

During the development of the Ivory-ACL2s interprocedural analyzer, we
established a suite of tests to cover the interesting corners of the language.
Combining both assertions and procedure contracts, the test suite comprised
61 checks of which 54 were verified automatically by the analyzer. One set of
tests of specific interest are Ivory compiler generated assertions, which protect
loop bounds, index casting, numerical overflows, and other security impinging
aspects of the language. Our limited test suite produced 6 compiler generated
assertions, 5 of which were verified automatically. The one that failed verification
was bounds checking an index type, though it can be argued this check is not
necessary because the index’s bounds is enforced by the Ivory type system. Fur-
ther investigation is warranted to determine verification performance on larger,
real-world examples.

4 Formal Methods to Support Application Developers

Both the FORMED and SITAPS projects demonstrate the effective use of DSLs
and code generation to make formal methods accessible to developers.

Our approach in both of these projects has been to start with the goal of
supporting a developer in creating high assurance software from an environment
that includes the normal tools they are used to working with and that also sup-
ports a development process that is a consistent superset of the normal process
they might use. The development methodology we advocate consists of:

1. Model - capture the software specification in a DSL that can be used to
generate code and additional software artifacts

448 G. Eakman et al.

2. Test - perform simple unit testing to ascertain that the model properly cap-
tures the most important properties of the specification

3. Plan Proofs - define invariants, pre and post conditions, that are important
to obtaining confidence in the implementation

4. Prove - prove properties (only after initial testing indicates proof is likely to
succeed) or generate counter-examples. Repair model as needed.

5. Correspondence test - confirm correspondence of model and code and provide
traditional visible testing evidence that software meets specification

Correspondence testing is an important aspect of this approach that varies
from proof-first development approaches that derive executable code from formal
models. The derivation guarantees that the implementation refines the model
and thus that proofs at the model level apply to the implementation. This app-
roach, while principled, places the modeling and proof task ahead of the applica-
tion developer’s primary implementation task. It also exposes the development
to a common problem that formal methods do not provide an “anytime confi-
dence” approach to development. When proving properties using formal reason-
ers your confidence is either 0% (unproven) or 100% (proven). The methodology
described above provides increasing confidence as more proofs and tests pass
and limits the proof effort while focusing on producing an executable software
artifact.

5 Related Work and Conclusion

Kestrel Institute’s Specware [10] tool synthesizes deployable code from formal
specifications by process of successive refinements, with proofs of each refinement
step, but requires a proof-first approach. Coq is another, more common, proof
first language that has the ability to generate code.

Other efforts have mapped UML to various formal methods languages, such
as CSP [1], Z [3], and Alloy [4]. AADL is another example of a graphical language
used in both development and formal verification. In [8], the LLVM intermediate
language is translated into ACL2 for both testing and low-level theorem proving.

Domain-specific languages enable application development at a higher con-
ceptual level than general purpose languages, but hide their real semantics within
the code generator. A shallow embedding of these languages in a formal language
like ACL2s enables DSL semantics to be specified, reasoned about, and used to
prove properties about applications. The executability of ACL2s also allows it to
be used to verify the correct operation of deployable code through test correspon-
dence. Shallow embedding also broadens the user base of formal methods, giving
application developers the ability, through the DSL, to create formal models.

References

1. Abdelhalim, I., Schneider, S., Treharne, H.: Towards a practical approach to check
UML/fUML models consistency using CSP. In: Qin, S., Qiu, Z. (eds.) ICFEM
2011. LNCS, vol. 6991, pp. 33–48. Springer, Heidelberg (2011)

Practical Formal Verification of Domain-Specific Language Applications 449

2. http://www.omg.org/spec/ALF
3. Amálio, N., Stepney, S., Polack, F.: Formal proof from UML models. In: Davies,

J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308, pp. 418–433.
Springer, Heidelberg (2004)

4. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: UML2Alloy: a challenging model
transformation. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MoDELS
2007. LNCS, vol. 4735, pp. 436–450. Springer, Heidelberg (2007)

5. Chamarthi, H.R., Dillinger, P., Manolios, P., Vroon, D.: The ACL2 sedan theorem
proving system. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol.
6605, pp. 291–295. Springer, Heidelberg (2011)

6. Chamarthi, H.R., Dillinger, P.C., Manolios, P.: Data definitions in the ACL2 Sedan.
In: ACL2 Workshop. EPTCS, vol. 152, pp. 27–48 (2014)

7. http://www.omg.org/spec/FUML
8. Hardin, D.S., Davis, J.A., Greve, D.A., McClurg, J.R.: Development of a translator

from LLVM to ACL2. EPTCS, vol. 152
9. Jackson, D.: Software Abstractions: logic, language, and analysis. MIT press (2012)

10. Jüllig, R., Srinivas, Y., Liu, J.: SPECWARE: an advanced environment for the
formal development of complex software systems. In: Nivat, M., Wirsing, M. (eds.)
AMAST 1996. LNCS, vol. 1101, pp. 551–554. Springer, Heidelberg (1996)

11. http://www.pathmate.com

http://www.omg.org/spec/ALF
http://www.omg.org/spec/FUML
http://www.pathmate.com

Reporting Races
in Dynamic Partial Order Reduction

Olli Saarikivi(B) and Keijo Heljanko

Department of Computer Science and Engineering,
Aalto University School of Science, Espoo, Finland
{olli.saarikivi,keijo.heljanko}@aalto.fi

Abstract. Data races are a common type of bug found in multithreaded
programs. The dynamic partial order reduction algorithm (DPOR) is an
efficient algorithm for exploring a reduced set of interleavings that guar-
antees all assertion errors and deadlocks to be found. However, while
DPOR does in effect explore different outcomes of data races, it was not
originally designed to report them. In this paper a method for report-
ing data races during DPOR is presented. This allows data races to be
found even when they do not trigger assertion errors or deadlocks. Addi-
tionally, for programs written in C++11 and a large subset of Java, the
presented method allows DPOR to warn the user when it can not guar-
antee completeness due to the program having data races that trigger
weak memory model semantics for it.

Keywords: Race detection · Partial order reduction · C++ · Java ·
DPOR

1 Introduction

A data race is a situation where two threads access the same variable at the
same time and at least one of the accesses is a write. Unintentional data races
are notoriously common in multithreaded programs. Furthermore, the fact that
data races may only be present in some rare interleavings of a program makes
finding them challenging.

The dynamic partial order reduction algorithm (DPOR) [5] is an efficient
algorithm for exploring a reduced set of interleavings of a concurrent program
while still ensuring that all assertion errors and deadlocks will be found. It exe-
cutes a concurrent program while tracking the dependencies between operations
executed to identify alternate interleavings that could lead to different behavior.
Alternate interleavings are explored by adding backtracking points to a tree of
scheduling decisions that is constructed over multiple executions. The program
is repeatedly executed with alternate interleavings until no more assertion errors
or deadlocks can remain unfound.

To find all assertion errors and deadlocks DPOR essentially explores different
outcomes of interleaving concurrent operations. This includes exploring different
c© Springer International Publishing Switzerland 2015
K. Havelund et al. (Eds.): NFM 2015, LNCS 9058, pp. 450–456, 2015.
DOI: 10.1007/978-3-319-17524-9 35

Reporting Races in Dynamic Partial Order Reduction 451

outcomes of data races. However, in the original approach data races themselves
are not reported. As a data race typically is a programming error, it would make
sense to report them alongside any other errors detected.

One technical issue with DPOR is that it was designed for a memory model
with sequential consistency and is not complete for weaker memory models with-
out modification [9]. However, Java programs with data races follow a weaker
memory model (for which DPOR is not complete), and C++11 gives no seman-
tics to programs with data races [1]. Therefore, given a concurrent program
of which it is unknown whether it contains data races or not, if DPOR is to be
employed it would be useful for data races to be reported. This would inform the
user both of data races that should be considered bugs, and of benign races that
trigger a weak memory model for which DPOR can not guarantee completeness.

One way to detect races would be to employ an existing dynamic race detec-
tion tool alongside DPOR. There are two main approaches to dynamic race
detection: computing locksets [11] and tracking the happens-before relation [6].
Using a race detection tool based on locksets could be attractive, because they
can have low overhead. However, lockset-based tools are not precise and can
report false alarms for programs that communicate with, for example, Java’s
volatile variables. False alarms require manual work for checking them and in
our use case also remove confidence in the testing tool’s completeness.

Tools that track the happens-before are precise. However, they typically have
higher overhead than lockset-based tools, with some tools being able to approach
the same overhead levels [4]. This overhead also seems redundant, as DPOR
already keeps track of a happens-before relation.

This paper presents a way to retrofit DPOR for race detection. It is shown
that the proposed method is precise, and has negligible overhead over that of
DPOR itself. The method is also shown to be sound for the C++11 memory
model and a large subset of Java.

A related approach was described in a technical report by Elmas, Qadeer
and Tasiran [2], where a new sound and precise data race detection algorithm
was used to develop a partial order reduction algorithm similar to DPOR.

In Section 2 background and definitions are introduced. Section 3 gives a
proof that DPOR can find all races and describes a race detection method implied
by the proof. In Section 4 a brief evaluation is presented and finally Section 5
provides discussion and concluding remarks.

2 Preliminaries

This section contains definitions and background necessary for understanding
Section 3. DPOR will not be fully described. Instead, only the properties of
DPOR that are required for understanding this paper are introduced. For a full
description of DPOR, see [5].

The execution model used here is a simplified version of the one in [5]. A
concurrent program is composed of a set of threads, each executing a sequence
of operations written in an imperative programming language (e.g., Java). The

452 O. Saarikivi and K. Heljanko

threads communicate by performing operations on shared variables and syn-
chronization constructs. The state of the program consists of the local states
of all threads and the states of all shared variables and synchronization con-
structs. Programs are assumed to have no infinite executions. This assumption
is required due to DPOR being a stateless method.

All operations executed are considered atomic. The program induces a tran-
sition system A = (S, δ, s0), where S is the set of states, δ ⊆ S ×S and (s, s′) ∈ δ
if and only if in state s the next operation of some thread will take the program
to s′, and s0 is the initial state.

Additionally, there exists a labeling function L : δ → O, where O is the set
of operations from all threads in the program. Each thread has a distinct set of
operations. Given an operation o ∈ O and states s and s′, we write s

o−→ s′ if
and only if (s, s′) ∈ δ and L(s, s′) = o. We write the execution of a sequence
of operations w ∈ O∗ as s

w=⇒ s′. Given a state s we say that an operation o is
enabled in s if and only if ∃s′ : s

o−→ s′. Given two operations a and b we say
that a enables b in some state s if b is not enabled in s and there exists a state
s′ such that s

a−→ s′ and b is enabled in s′. Disabling is defined in an analogous
manner. Two operations a and b are said to be co-enabled in state s if both a
and b are enabled in s.

DPOR is given a dependency relation between pairs of operations. The rela-
tion is reflexive and symmetric. For all pairs (a, b) not in the relation the following
must hold:

1. If s
a−→ s′ then b is enabled in s′ if and only if it is enabled in s.

2. If a and b are enabled in s then there exists a unique s′ such that s
ab=⇒ s′

and s
ba=⇒ s′.

Two operations a and b are dependent if (a, b) is in the dependency relation.
Otherwise a and b are independent.

A Mazurkiewicz trace is a set of complete executions obtainable from each
other by swapping adjacent independent operations. Consider a program with
two threads, where the first thread always executes the operations x and a (in
this order), and the second thread executes the operations y and b. Assume
that only a and b are dependent. One complete execution is xayb. Swapping the
adjacent independent operations a and y produces xyab, which therefore belongs
to the same Mazurkiewicz trace. The Mazurkiewicz traces for this program are
{xayb, xyab, yxab} and {ybxa, yxba, xyba}. DPOR is guaranteed to explore at
least one complete execution from each Mazurkiewicz trace of the program.

Given a state s and the set of operations E which are enabled in s, a set of
operations P ⊆ E is persistent in s if and only if for all nonempty sequences
of operations o1, o2, . . . , on �∈ P such that s

o1o2...on=====⇒ s′ it holds that on is
independent with all operations in P .

DPOR explores a persistent set of operations from each visited state.

Reporting Races in Dynamic Partial Order Reduction 453

3 Detecting Races

Definition 1 (Data race). A program has a data race if there exists a reach-
able state s such that two operations on the same shared variable are co-enabled
in s and at least one of the operations is a write.

Let a and b be the operations of a data race. Given an integer n ≥ 0, let Ra,b
n

be the set of states such that for each s ∈ Ra,b
n the operation a is enabled in s

and there exists a sequence of operations t1 . . . tn such that s
t1...tn===⇒ s′ and the

operations a and b are co-enabled in s’. As a special case Ra,b
0 is the set of states

where a and b are co-enabled.

Lemma 1. Assume the program has a data race. Let a and b be the operations
in race. DPOR will at some point reach a state s ∈ Ra,b

n for some n ≥ 0.

Lemma 2. Assume DPOR explores a state s ∈ Ra,b
n . DPOR will explore a

state s′ ∈ Ra,b
m such that m ≤ n and a is explored from s′ (i.e. s′ a−→ s′′ and s′′

is explored by DPOR).

Lemmas 1 and 2 follow from the fact that DPOR explores all Mazurkiewicz
traces and a persistent set of operations from each visited state. The proofs have
been omitted for brevity.

Theorem 1. If there exists a data race between two operations a and b, then
DPOR will reach a state in which a and b are co-enabled.

Proof. Let s1 ∈ Ra,b
n be a state from which DPOR explores a. By Lemmas 1 and 2

such a state must exist. From this state there exists a sequence of operations
t1 . . . tn such that s1

t1...tn===⇒ s′
1 and a and b are co-enabled in s′

1. If n = 0 then
s1 = s′

1 and we are done. Otherwise, because DPOR explores a persistent set
of operations from s1 then s1

t1−→ s′′
1 will be explored. Now s′′

1 ∈ Ra,b
n−1 and

by Lemma 2 there exists a state s2 ∈ Ra,b
m such that m ≤ n − 1. By iteratively

applying this procedure we can prove that DPOR will reach some state sk ∈ Ra,b
0

in which a and b are co-enabled.
�
Theorem 1 directly leads to a method for detecting data races during DPOR.

Whenever a state is reached the set of enabled operations can be searched for two
operations that constitute a data race. However, this method could potentially
have a significant overhead if each pair of enabled operations is inspected. For
a more efficient method, observe that when DPOR reaches a state in which
two operations a and b are in a race, by Lemma 2 it will then in some state
s explore one of those operations. Because DPOR explores a persistent set of
operations then both a and b will be explored from s. Therefore instead of
searching all enabled operations, whenever an operation is explored from a state
it is sufficient to check this operation against any operations previously executed
from the same state.

454 O. Saarikivi and K. Heljanko

To check whether there is a race between two operations Definition 1 can
be used. Alternatively, the dependency relation in use can also be reused if it
is such that two reads on the same shared variable are considered independent.
In [10] such a variation of DPOR with independent reads is presented.

This method is precise because a data race is only reported when a state
matching Definition 1 is reached. This method is also sound w.r.t. Definition 1,
because Theorem 1 guarantees that if there exists a race then it will be found.

4 Evaluation

Race detection with DPOR was implemented as a modification to the existing
DPOR implementation in the testing tool LCT [10]. The tool warns whenever
a data race between two operations is found. Due to LCT’s client-server model,
where state that persists across test executions is stored on the server, we found
it more convenient to check executed operations against all enabled operations
instead of just previously executed ones (thus avoiding additional client-server
communication). This method could in principle have higher overhead.

Benchmark No race detection With race detection

Szymanski small 89.55 s 89.41 s
Pi 7.00 s 7.02 s
File system 1.57 s 1.61 s
Indexer 11.12 s 11.07 s
Synthetic 28.13 s 28.12 s

Fig. 1. Running times with race detection and without

A small set of benchmarks was used to evaluate the runtime overhead of race
detection. “Szymanski small” is a simplified version of a benchmark from [7]. “Pi”,
“File system”and“Indexer” are from [10]. “Synthetic”hasmultiple threads access-
ing a single shared variable. The benchmarkswere run on a Intel Core 2Q9550 quad
core CPU @ 2.83 Ghz with 4 GB of RAM. For each benchmark the time required
for a full DPOR exploration is reported. The results can be seen in Section 4. The
reported running times are averages of five test runs after a discarded initial test
run to get rid of cache effects.

5 Conclusions

Looking at the results it can be seen that almost no additional overhead can be
observed when race detection is enabled. This is as expected, as the method for
reporting races should be a very lightweight addition to DPOR.

In this paper a method for reporting data races in the DPOR algorithm has
been presented and proved sound and precise. The method guarantees that if

Reporting Races in Dynamic Partial Order Reduction 455

there is an interleaving of the program with a data race then DPOR will report
it. Additionally, reporting data races is useful because DPOR was designed for
sequential consistency, which both C++11 and Java guarantee only for race-
free programs. With the method presented in this paper, DPOR is guaranteed
either to find all assertion violations and deadlocks, or to report a data race (see
Definition 1). This is due to the fact that in both C++11 and a large subset of
Java a program is race free if and only if no sequentially consistent execution
has a race as defined by Definition 1 [1,8].

Very recent work on formalizing the Java memory model has revealed new
subtleties in the way data races may be defined for Java. A happens-before race is
present if there exists an execution where two dependent operations on a shared
variable are concurrent in the happens-before relation induced by the synchro-
nization operations executed. For C++11 happens-before races and Definition 1
are equivalent [1]. The proof has been claimed to generalize for Java [3], but
due to subtleties in the Java memory model it does not [8]. The problem arises
from the fact that Java’s language specification requires threads to communi-
cate in ways that are not covered by the memory model. This establishes covert
communication channels that allow threads to communicate reliably without
introducing synchronization in the memory model’s happens-before relation.
By exploiting these discrepancies it is possible to write a program that has a
happens-before race but does not have a race matching Definition 1 [8]. For
such programs the method proposed in this paper is not guaranteed to find all
races. We find these subtleties extremely confusing and note that according to
Lochbihler [8] the Java memory model could be changed to cover the covert
communication channels making the two different notions of races equivalent for
Java.

In addition to the synchronization constructs that enable sequential consis-
tency, C++11 offers low-level atomics that follow a weaker memory model [1].
This does not affect the soundness of our data race detection approach due to the
aforementioned equivalence of happens-before races and Definition 1. However,
tools implementing DPOR for C++11 should warn about possible incomplete-
ness when encountering low-level atomics.

Acknowledgments. We would like to thankfully acknowledge the funding from the
SARANA project in the SAFIR 2014 program and the Academy of Finland projects
139402 and 277522.

References

1. Boehm, H.J., Adve, S.V.: Foundations of the C++ concurrency memory model.
SIGPLAN Not. 43(6), 68–78 (2008)

2. Elmas, T., Qadeer, S., Tasiran, S.: Precise race detection and efficient model check-
ing using locksets. Tech. Rep. MSR-TR-2005-118, Microsoft Research (2005)

3. Elmas, T., Qadeer, S., Tasiran, S.: Goldilocks: A race and transaction-aware Java
runtime. SIGPLAN Not. 42(6), 245–255 (2007)

456 O. Saarikivi and K. Heljanko

4. Flanagan, C., Freund, S.N.: FastTrack: Efficient and precise dynamic race detec-
tion. SIGPLAN Not. 44(6), 121–133 (2009)

5. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking
software. SIGPLAN Not. 40(1), 110–121 (2005)

6. Itzkovitz, A., Schuster, A., Zeev-Ben-Mordehai, O.: Toward integration of data race
detection in DSM systems. J. Parallel Distrib. Comput. 59(2), 180–203 (1999)

7. Kähkönen, K., Heljanko, K.: Lightweight state capturing for automated testing of
multithreaded programs. In: Seidl, M., Tillmann, N. (eds.) TAP 2014. LNCS, vol.
8570, pp. 187–203. Springer, Heidelberg (2014)

8. Lochbihler, A.: Java and the java memory model — a unified, machine-checked for-
malisation. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 497–517. Springer,
Heidelberg (2012)

9. Norris, B., Demsky, B.: CDSchecker: Checking concurrent data structures written
with C/C++ atomics. SIGPLAN Not. 48(10), 131–150 (2013)

10. Saarikivi, O., Kähkönen, K., Heljanko, K.: Improving dynamic partial order reduc-
tions for concolic testing. In: 12th International Conference on Application of Con-
currency to System Design, ACSD 2012, Hamburg, Germany, June 27–29, 2012,
pp. 132–141 (2012)

11. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser: A
dynamic data race detector for multithreaded programs. ACM Trans. Comput.
Syst. 15(4), 391–411 (1997)

Author Index

Abadi, Martín 19
Ábrahám, Erika 295, 408
Amato, Gianluca 35
André, Étienne 50
Aransay, Jesús 415
As�tefănoaei, Lacramioara 66

Backes, John 82, 173
Ben Makhlouf, Ibtissem 408
Ben Rayana, Souha 66
Bensalem, Saddek 66, 359
Biere, Armin 436
Blasum, Holger 375
Bocić, Ivan 393
Bonakdarpour, Borzoo 359
Bošnački, Dragan 97
Bozga, Marius 66
Bultan, Tevfik 393

Calcagno, Cristiano 3
Carril, Luis M. 400
Chen, Xin 408
Cofer, Darren 82, 173
Combaz, Jacques 66, 359

Dal Corso, Alice 112
Dang, Thao 127
Deshmukh, Jyotirmoy V. 127
Di Nardo Di Maio, Simone 35
Distefano, Dino 3
Divasón, Jose 415
Donzé, Alexandre 127
Dreossi, Tommaso 127
Dubreil, Jeremy 3

Eakman, Greg 443
Ebnenasir, Ali 429
El Ghazi, Aboubakr Achraf 143

Fisher, Andrew N. 158
Frehse, Goran 408

Gabi, Dominik 3
Gacek, Andrew 173
Gange, Graeme 422
Gibson-Robinson, Thomas 188
Greenstreet, Mark 310
Groce, Alex 204
Grov, Gudmund 263

Hajisheykhi, Reza 429
Hansen, Henri 188
Havle, Oto 375
Hawkins, Tom 443
Heimdahl, Mats P.E. 279
Heljanko, Keijo 450
Herda, Mihai 143
Heule, Marijn J.H. 436
Hooimeijer, Pieter 3
Huang, Yu 219

Ireland, Andrew 263
Isard, Michael 19

Jain, Mitesh 443
Jakob, Robert 234
Jansen, Nils 295
Jin, Xiaoqing 127
Jovanović, Dejan 327

Kapinski, James 127
Katis, Andreas 173
Katoen, Joost-Pieter 295
Kowalewski, Stefan 408
Kulkarni, Sandeep S. 429
Kuncak, Viktor 12

Langenstein, Bruno 375
Lee, Insup 248
Li, Peng 158
Lipari, Giuseppe 50
Luca, Martino 3

Macedonio, Damiano 112
Manolios, Panagiotis 443
Meng, Wenrui 248
Mercer, Eric 219
Merro, Massimo 112
Miller, Steven 82
Murali, Rajiv 263
Murugesan, Anitha 279
Myers, Chris J. 158

Navas, Jorge A. 422
Nemouchi, Yakoub 375
Nguyen, Hoang Gia 50

O’Hearn, Peter 3

Papakonstantinou, Irene 3
Park, Junkil 248
Pathak, Shashank 295
Peng, Yan 310
Person, Suzette 279
Pinto, Jervis 204
Purbrick, Jim 3

Reubenstein, Howard 443
Rodriguez, Dulma 3
Roscoe, A.W. 188
Rümmer, Philipp 327
Rungta, Neha 279

Saarikivi, Olli 450
Schachte, Peter 422
Schäf, Martin 327

Scheffer, Mark 97
Schmaltz, Julien 375
Schupp, Stefan 408
Schwartz-Narbonne, Daniel 327
Scozzari, Francesca 35
Seidl, Martina 436
Siegel, Holger 343
Simon, Axel 343
Sokolsky, Oleg 248
Søndergaard, Harald 422
Stephan, Werner 375
Stuckey, Peter J. 422
Sun, Youcheng 50

Tacchella, Armando 295
Taghdiri, Mana 143
Thiemann, Peter 234
Tichy, Walter F. 400
Tkachuk, Oksana 279
Triki, Ahlem 359
Tverdyshev, Sergey 375

Verbeek, Freek 375

Wang, Xu 188
Weirich, Stephanie 248
Whalen, Michael W. 82, 173, 279
Wies, Thomas 327
Wolff, Burkhart 375

You, Dongjiang 279

458 Author Index

	Preface
	Organization
	Contents
	Invited Papers
	Moving Fast with Software Verification
	1 Introduction
	2 Facebook's Software Development Model
	3 Software Verification in the Perpetual Development Era
	4 Background: the INFER Static Analyser
	5 Integration with the Development Infrastructure
	6 Conclusions
	References

	Developing Verified Software Using Leon
	1 Overview
	References

	Regular Papers
	Timely Rollback: Specification and Verification
	1 Introduction
	2 Model of Computation
	2.1 Basics of Specifications and Implementations
	2.2 Basics of Timely Dataflow
	2.3 High-Level Specification

	3 An Assumption on External Outputs
	4 Auxiliary Concepts
	4.1 Sequences, Frontiers, Filtering, and Reordering
	4.2 Expressing Dependencies

	5 Low-Level Specification (with Rollback)
	6 Refinement Theorem
	7 Further Refinements
	7.1 Approximating the Clock and the Could-Result-in Relation
	7.2 Precomputations
	7.3 Choosing Frontiers
	7.4 Implementing the Guard on Notifications

	8 Conclusion
	References

	Sum of Abstract Domains
	1 Introduction
	2 Notations
	2.1 Linear Algebra
	2.2 Abstract Interpretation
	2.3 Numerical Domains

	3 Combining Domains by Minkowski Sum
	3.1 Ordering
	3.2 Sum of Standard Domains

	4 Abstract Operators
	4.1 Union
	4.2 Linear Transformations
	4.3 Translations
	4.4 Non-deterministic Assignment
	4.5 Refinement by Linear Inequality
	4.6 Widening and Narrowing

	5 An Example
	6 Precision of Abstract Operators
	6.1 An Approximate Ordering
	6.2 Abstraction Function
	6.3 Linear Refinement
	6.4 Union and Widening
	6.5 Other Operators
	6.6 The Domain Int+Parallelotope
	6.7 Analysis Kickoff and Non-deterministic Assignments

	7 Conclusion
	References

	Reachability Preservation Based Parameter Synthesis for Timed Automata
	1 Introduction
	2 Preliminaries
	3 Solving the EF-Emptiness Problem Using Reachability Preservation
	3.1 Undecidability of the Preservation of Reachability
	3.2 Parameter Synthesis Preserving the Reachability
	3.3 EF-Synthesis Using PRP

	4 Towards Distributed Parameter Synthesis
	5 Experimental Comparison
	5.1 Case Studies
	5.2 Summary of the Experiments and Discussion

	6 Conclusion
	References

	Compositional Verification of Parameterised Timed Systems
	1 Introduction
	2 Preliminaries
	3 PTSs and Their Semantics
	4 Compositional Verification of PTSs
	4.1 Component Invariants
	4.2 History Clocks and Auxiliary Constraints
	4.3 Interaction Invariants
	4.4 Parameterised (VR)

	5 Experiments
	6 Conclusion and Future Work
	References

	Requirements Analysis of a Quad-Redundant Flight Control System
	1 Introduction
	2 Compositional Verification with AGREE
	3 Requirements Formalization
	3.1 QFCS Architecture
	3.2 Flight Control System
	3.3 Flight Control Computer
	3.4 Output Signal Analysis and Selection

	4 Analysis Results
	4.1 Errors Found During Formalization
	4.2 Errors Found During Model Checking
	4.3 Errors Found During Realizability Analysis

	5 Lessons Learned
	6 Conclusion
	References

	Partial Order Reduction and Symmetry with Multiple Representatives
	1 Introduction
	2 Preliminaries
	3 Property Preserving Reductions
	3.1 Bisimulation Preserving Reduction
	3.2 Partial Order Reduction

	4 Combining Bisimulation Preserving Reductions with Partial Order Reduction
	5 Experimental Support
	6 Conclusion and Future Work
	References

	Statistical Model Checking of Ad Hoc Routing Protocols in Lossy Grid Networks
	1 Introduction
	2 AODV and DYMO: Two Different Generations of Ad-hoc Routing Protocols
	3 A Probabilistic Model for AODV and DYMO in SMC-Uppaal
	4 Experiments
	4.1 Successful Route Requests
	4.2 Number of Route Entries
	4.3 Optimal Routes

	5 Conclusions, Related and Future Work
	References

	Efficient Guiding Strategies for Testing of Temporal Properties of Hybrid Systems
	1 Introduction
	2 Preliminaries
	2.1 Dynamical System Model
	2.2 Signal Temporal Logic

	3 Coverage-Based Testing
	3.1 Star-Discrepancy Coverage

	4 Combining Coverage and Robustness
	4.1 Guiding Strategies
	4.2 Defining Branch Robustness
	4.3 Algorithm for Testing a Simulink Model Against an STL Formula

	5 Case Studies
	5.1 Sampled Polarity Integrator System (SPI)
	5.2 Mode-Specific Reference Selection Model (MRS)
	5.3 Fuel Control System (AFC)
	5.4 Diesel Air-Path Model (DAP)

	6 Conclusions
	References

	First-Order Transitive Closure Axiomatization via Iterative Invariant Injections
	1 Introduction
	2 Background
	3 Example
	4 Weak TC Axiomatization and Its Fragment
	5 R-Invariants for Axiomatizing Difficult R-Paths
	6 Algorithm for Detecting p-invariants
	7 Evaluation
	8 Related Work
	9 Conclusion
	References

	Reachability Analysis Using Extremal Rates
	1 Introduction
	2 Labeled Petri Nets
	2.1 LPN Syntax
	2.2 LPN Semantics

	3 Reachability Algorithm
	4 Correctness
	5 Related Work
	6 Experimental Results
	7 Conclusion
	References

	Towards Realizability Checking of Contracts Using Theories
	1 Introduction
	2 Motivation and Example
	3 Realizability
	4 An Algorithm for Checking Realizability
	5 Implementation
	6 Case Studies
	6.1 Quad-Redundant Flight Control System
	6.2 Medical Device Example
	6.3 Microwave Assignment

	7 Related Work
	8 Conclusions and Future Work
	References

	Practical Partial Order Reduction for CSP
	1 Introduction
	2 Background
	3 Dependency Information
	3.1 Dependency Graphs
	3.2 Supercombinator Dependency Graphs

	4 Implementing Stubborn Sets
	4.1 Deletion Algorithm
	4.2 Iterative Algorithm

	5 Preserving CSP Models
	5.1 The Traces Model
	5.2 Failures and Divergences

	6 Experiments
	7 Conclusions
	References

	A Little Language for Testing
	1 Introduction
	1.1 Domain Specific Languages for Testing
	1.2 Template Scripting

	2 The Template Scripting Testing Language (TSTL)
	2.1 Oracles
	2.2 Guards and Function Calls
	2.3 Miscellaneous Notes on TSTL
	2.4 Output Language

	3 Using the Harness to Test and Experiment
	4 Related Work
	5 Conclusions and Future Work
	References

	Detecting MPI Zero Buffer Incompatibility by SMT Encoding
	1 Introduction
	2 SMT Encoding for MCAPI
	3 Extension to MPI
	4 Zero Buffer Incompability
	4.1 Correctness

	5 Experiment
	6 Related Work
	7 Conclusion and Future Work
	References

	A Falsification View of Success Typing
	1 Introduction
	1.1 Success Typings in Erlang
	1.2 Our Approach

	2 Language
	3 Type and Crash Condition
	3.1 Analysis
	3.2 Properties

	4 Practical Considerations
	5 Related Work
	6 Conclusion
	References

	Verified ROS-Based Deployment of Platform-Independent Control Systems
	1 Introduction
	2 Proof Environment
	3 ROS-Based Control System
	3.1 Robot Operating System
	3.2 Case Study of LandShark Control System

	4 Code Generation
	4.1 ROS Node Model
	4.2 ROSGen

	5 Code Proof
	5.1 Data Delivery Correctness Property of Glue Code
	5.2 Generating Function Specifications
	5.3 Code Proof Strategy

	6 Code Generator Proof
	6.1 Property of the Code Generator
	6.2 Proof of the Three Code Generator Properties

	7 Related Work
	8 Conclusions
	References

	A Rigorous Approach to Combining Use Case Modelling and Accident Scenarios
	1 Introduction
	2 Preliminaries
	2.1 Water Tank Controller Case Study
	2.2 Use Case Modelling
	2.3 Event-B

	3 Accident Scenarios in Use Case Modelling
	3.1 Accident Case
	3.2 Safety Guided Design

	4 A Formal Use Case Specification
	5 Mapping Use Cases to Event-B via Refinement
	5.1 Generic Use Case
	5.2 Water Tank Controller

	6 Verification and Tool Support
	6.1 Generic Use Case
	6.2 Water Tank Controller
	6.3 UC-B Tool Support

	7 Related Work
	8 Conclusion and Future Work
	References

	Are We There Yet? Determining the Adequacy of Formalized Requirements and Test Suites
	1 Introduction
	2 Motivation
	3 Methodology
	3.1 Coverage of Requirements
	3.2 A More Precise Dynamic Backward Slice
	3.3 Mapping Back to the Model

	4 Evaluation
	4.1 Case Examples
	4.2 Tools and Experiment Set up
	4.3 Analysis of the Results

	5 Discussion
	6 Related Work
	7 Conclusion
	References

	A Greedy Approach for the Efficient Repair of Stochastic Models
	1 Introduction
	2 Preliminaries
	3 Local Model Repair
	3.1 The Problem
	3.2 The Algorithm
	3.3 Soundness and Completeness

	4 Evaluation
	5 Conclusion and Future Work
	References

	Integrating SMT with Theorem Proving for Analog/Mixed-Signal Circuit Verification
	1 Introduction
	2 Related Work
	3 Integrating Z3 into ACL2
	3.1 ACL2 and Z3
	3.2 The Clause Processor
	3.3 Connecting the Logics
	3.4 Soundness of the Connection

	4 Verifying a Digital PLL
	4.1 Modeling the Digital PLL
	4.2 Proving Global Convergence

	5 Conclusions
	References

	Conflict-Directed Graph Coverage
	1 Introduction
	2 Overview
	3 Preliminaries
	4 Algorithm
	4.1 Main Procedure
	4.2 Finding Feasible Paths
	4.3 Details of the FindPath Function

	5 Evaluation
	6 Related Work
	7 Conclusion
	References

	Shape Analysis with Connectors
	1 Introduction
	2 Preliminaries
	2.1 Interface to the Shape Analysis
	2.2 Separation Logic
	2.3 Three-Valued Logic Analysis (TVLA)
	2.4 Numeric Domain Operations

	3 One-Step Connectors
	4 Transitive Connectors
	5 Inferring Relational Heap Invariants
	6 Experimental Work
	7 Related Work
	8 Conclusion
	References

	Automated Conflict-Free Concurrent Implementation of Timed Component-Based Models
	1 Introduction
	2 Basic Semantic Model of BIP
	2.1 Notations
	2.2 Atomic Components
	2.3 Composite Components

	3 Target Architecture
	4 Step 1: BIP to Send/Receive-BIP
	4.1 Atomic Components
	4.2 Interaction Protocol Layer
	4.3 Send/Receive Interactions

	5 Step 2: Use of a Single Clock
	6 Related Work
	7 Conclusion
	References

	Formal API Specification of the PikeOS Separation Kernel
	1 Introduction
	2 Methodology
	2.1 CISK
	2.2 Intransitive Noninterference
	2.3 Proof Obligations and Their Unwinding
	2.4 Discharging Proof Obligations

	3 Application to the Separation Kernel
	3.1 An Illustrative Example
	3.2 Isabelle Prerequisites
	3.3 Identifying Atomic Actions
	3.4 State and State Transformations
	3.5 Aborting and Waiting
	3.6 Output
	3.7 Discharging Proof Obligations
	3.8 Separation Kernel Model Details

	4 Related Work and Discussion
	5 Conclusion
	References

	Short Papers
	Data Model Bugs
	1 Introduction
	2 Data Model Verification Methods
	3 Reported Data Model Bugs
	4 Discussion on Data Model Bugs
	5 Conclusions
	References

	Predicting and Witnessing Data Races Using CSP
	1 Introduction
	2 Detecting Races with CSP
	2.1 Modeling Events
	2.2 Modeling the Program
	2.3 Detecting Races in CSP

	3 Preliminary Evaluation
	4 Conclusion
	References

	A Benchmark Suite for Hybrid Systems Reachability Analysis
	1 Introduction
	2 The Benchmark Suite
	3 Experimental Results
	3.1 Linear Hybrid Benchmarks
	3.2 Non-linear Hybrid Benchmarks

	4 Conclusion
	References

	Generalizing a Mathematical Analysis Library in Isabelle/HOL
	1 Introduction
	2 Generalization of HMA
	2.1 An Example of Generalization
	2.2 The Generalization of the Gauss-Jordan Algorithm

	3 Conclusions
	References

	A Tool for Intersecting Context-Free Grammars and Its Applications
	1 Introduction
	2 Approach
	3 Covenant
	3.1 Design and Implementation Choices
	3.2 Preprocessing and Output

	4 Safety Verification of Multithread Programs
	5 Related Work
	6 Conclusions
	References

	UFIT: A Tool for Modeling Faults in UPPAAL Timed Automata
	1 Introduction
	2 Modeling and Analysis Using UFIT
	2.1 Input of UFIT
	2.2 Internal Functionality
	2.3 Analysis of Results

	3 Conclusions and Future Work
	References

	Blocked Literals Are Universal
	1 Introduction
	2 Preliminaries
	3 Universal Blocked Literals
	3.1 Blocked Literal Elimination
	3.2 Blocked Literal Addition
	3.3 Universal Expansion

	4 Evaluation
	5 Conclusion
	References

	Practical Formal Verification of Domain-Specific Language Applications
	1 Introduction
	2 FORMED and UML
	3 SITAPS and Ivory DSL
	4 Formal Methods to Support Application Developers
	5 Related Work and Conclusion
	References

	Reporting Races in Dynamic Partial Order Reduction
	1 Introduction
	2 Preliminaries
	3 Detecting Races
	4 Evaluation
	5 Conclusions
	References

	Author Index

