
 123

LN
CS

 9
64

1

23rd International Symposium, SPIN 2016
Co-located with ETAPS 2016
Eindhoven, The Netherlands, April 7–8, 2016, Proceedings

Model Checking
Software

Dragan Bošnacki
Anton Wijs (Eds.)

ˇ

Lecture Notes in Computer Science 9641

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Dragan Bošnački • Anton Wijs (Eds.)

Model Checking
Software
23rd International Symposium, SPIN 2016
Co-located with ETAPS 2016
Eindhoven, The Netherlands, April 7–8, 2016
Proceedings

123

Editors
Dragan Bošnački
Eindhoven University of Technology
Eindhoven
The Netherlands

Anton Wijs
Eindhoven University of Technology
Eindhoven
The Netherlands

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-32581-1 ISBN 978-3-319-32582-8 (eBook)
DOI 10.1007/978-3-319-32582-8

Library of Congress Control Number: 2016935582

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2016

Open Access Chapter 7 is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/). For further details see license information in the
chapter.

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

During the last two decades the SPIN symposiums have established themselves as
traditional annual forums for researchers and practitioners for the verification of soft-
ware systems. The evolution of the SPIN events has to a great extent mirrored the
maturing of model checking into a prevailing technology for the formal verification of
software systems. The first SPIN workshop was held in Montreal in 1995. The next
couple of subsequent editions of SPIN were intended as gatherings for presenting
extensions and applications of the model checker SPIN, to which the series owes its
name. Starting with the 2000 edition, the scope of the event clearly broadened to
include techniques for formal verification and testing in general. In addition the SPIN
events aim to promote interaction and exchange of ideas across related software
engineering areas, like static and dynamic analysis. To this end, since 1996 SPIN has
frequently been collocated with other, related conferences. Finally, since 1999, the
proceedings of the SPIN workshops have appeared in Springer’s Lecture Notes in
Computer Science series.

This volume contains the papers presented at SPIN 2016: the 23rd Interna-
tional SPIN Symposium on Model Checking of Software, held on April 7–8, 2016 in
Eindhoven, collocated with the 19th European Joint Conferences on Theory and
Practice of Software (ETAPS 2016).

SPIN 2016 received 27 submissions of which 1 was withdrawn in the early phase
of the reviewing process. Each submission was reviewed by at least 3 Program
Committee members. The Program Committee decided to accept 16 papers, of which
11 regular papers, 1 idea paper, and 4 tool demonstrations. Program Committee
members with a possible conflict of interest were excluded for the processing of the
corresponding submissions. For each submission, a decision was made by consensus
of the reviewers involved and the PC in general. This applied in particular to the
borderline papers. Three papers were accepted after an additional shepherding proce-
dure to ensure that the authors had carefully taken the suggestions of the reviewers into
account. Besides the accepted papers, the program also included three invited talks by,
respectively, Shaz Qadeer (Microsoft Research), Tim Willemse (Eindhoven University
of Technology), and Pierre Wolper (University of Liège).

We are very grateful to the members of the Program Committee and the subre-
viewers who often worked under severe time pressure, as well as to the authors for
producing camera ready copies of the papers in a relatively short time. Also, we would
like to thank our invited speakers for their valuable contribution to the program. For
their support, we thank the members of the SPIN Steering Committee, in particular
Gerard Holzmann and Stefan Leue. The latter kindly accepted to act as a technical PC
chair for two papers, for which the PC chairs themselves had a conflict of interest. We
are indebted to the organizers of the previous edition of the symposium, SPIN 2015,
Bernd Fischer and Jaco Geldenhuys. The experience they handed over to us and the
suggestions and advice was of tremendous help for the organization. Finally, we would

like to thank our colleagues from the Eindhoven University of Technology, Erik de
Vink, Hans Zantema, Margje Mommers-Lenders, Mark van den Brand, and Jan Friso
Groote for their suggestions and assistance with the local organization.

The SPIN 2016 logo was designed by Ilse Biermans. The symposium was partially
supported by the Netherlands Organization for Scientific Research (NWO) and the
company Sioux. The submission, reviewing, and discussion processes, as well as the
production of the proceedings, were done using the EasyChair conference management
system.

March 2016 Dragan Bošnački
Anton Wijs

VI Preface

Organization

Steering Committee

Dragan Bošnački Eindhoven University of Technology, The Netherlands
Susanne Graf CNRS/VERIMAG, France
Gerard Holzmann (Chair) NASA/JPL, USA
Stefan Leue University of Constance, Germany

Program Committee

Jiří Barnat Masaryk University, Czech Republic
Dragan Bošnački Eindhoven University of Technology, The Netherlands
Aleksandar Dimovski IT University of Copenhagen, Denmark
Stefan Edelkamp University of Bremen, Germany
Bernd Fischer Stellenbosch University, South Africa
Jaco Geldenhuys Stellenbosch University, South Africa
Alex Groce Oregon State University, USA
Jan Friso Groote Eindhoven University of Technology, The Netherlands
Gerard Holzmann NASA/JPL, USA
Franjo Ivančić Google, USA
Alfons Laarman Technical University of Vienna, Austria
Stefan Leue University of Constance, Germany
Alberto Lluch Lafuente Technical University of Denmark, Denmark
Radu Mateescu INRIA Rhône-Alpes, France
Eric Mercer Brigham Young University, USA
Pedro Merino University of Málaga, Spain
Alice Miller University of Glasgow, UK
Jun Pang University of Luxembourg, Luxembourg
Corina Pasareanu CMU/NASA Ames Research Center, USA
Theo Ruys RUwise, The Netherlands
Jun Sun Singapore University of Technology and Design,

Singapore
Michael Tautschnig Queen Mary University of London, UK
Mohammad Torabi Dashti ETH Zürich, Switzerland
Antti Valmari Tampere University of Technology, Finland
Martin Wehrle University of Basel, Switzerland
Anton Wijs Eindhoven University of Technology, The Netherlands
Erika Ábrahám RWTH Aachen University, Germany

Additional Reviewers

Bey, Alina
Caltais, Georgiana
Cerna, Ivana

Garavel, Hubert
Heidinger, Stephan
Serwe, Wendelin

VIII Organization

Invited Papers

On Verification Challenges at the Large
Hadron Collider

Tim A.C. Willemse

Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

The Large Hadron Collider (LHC) experiment at the European Organization for Nuclear
Research (CERN) is built in a tunnel 27 km in circumference and is designed to yield
head-on collisions of two proton (ion) beams of 7 TeV each, i.e. 14 TeV in total. Next to
three ‘small’ detectors for specialised research, the LHC hosts four large particle
detectors: the general purpose detectors for the CMS and ATLAS experiments and the
more specialised LHCb and ALICE experiments. The general purpose detectors study a
wide range of particles and phenomena produced in the high-energy collisions in the
LHC and yielded first evidence of the existence of a particle matching a Higgs boson in
2012. Typically, the experiments are made up of subdetectors, designed to stop, track or
measure different particles emerging from the collisions. In 2015, it achieved an
unprecedented successful 13 TeV collision, surpassing previous records of 8 TeV
(2012) and 7 TeV (2010) collisions. The LHC experiments provide a gold mine of
challenges for computer scientists, some of which I will address in this talk.

The Control Software. The Detector Control System takes care of control, configura-
tion, readout and monitoring of the detector status, numerous hardware devices and
various kinds of environment variables. The architecture of the control software for all
four big LHC experiments is based on the SMI++ framework [3]; this framework views
the real world as a collection of objects behaving as finite state machines (FSMs),
which are organised hierarchically. A Domain-Specific Language called the State
Manager Language (SML) is used to describe the FSMs (which are typically of low
complexity) and the entire framework takes care of the interaction between these
FSMs. To give an impression of the complexity involved: the control system for the
CMS experiment at any time contains between 25,000 and 30,000 FSM nodes, and
each FSM contains, on average, 5 logical states; this leads to a rather conservative
estimate of a state space of somewhere between 1025,000 and 1030,000 states.

Despite the modular architecture, the control system occasionally exhibited unde-
sirable behaviours, which had the potential to ruin expensive and difficult experiments.
Formal verification techniques were used in an effort to improve its quality. SML and
its underlying communication mechanisms were formalised in the process algebraic
language mCRL2 [2]. This formalisation facilitated the understanding and enabled
automated analyses of the behaviour of small constellations of cooperating FSMs. Not
entirely unexpected, the prohibitive size of modest constellations (constellations
involving more than 12 FSMs) prevented scaling the analysing to the global control
system. On the one hand, the resulting frustration with this state of affairs inspired the

development of new theory and tools for the mCRL2 toolset, see [1, 5–7]. On the other
hand, the analyses revealed that there were several interesting consistency requirements
that could be checked locally, and, indeed, log files of the control system showed that
violations of such local consistency requirements had caused prior freezes of the
control system. We subsequently developed dedicated verification tools and integrated
these in the FSM development environment. Using these tools, we found that in the
CMS experiment, up-to 20 % of the non-trivial FSMs violated a local requirement [4].

Data Acquisition. The Worldwide LHC Computing Grid launched in 2002, providing a
resource to store, distribute and analyse the mountain of data produced at 6 Gb per
second (and soon expected to increase to 25 Gb per second) by the LHC experiments.
Among the software frameworks that employ the computing grid is the Distributed
Infrastructure with Remote Agent Control (DIRAC) software framework. Programmed
in Python, DIRAC provides cooperating distributed services and a plethora of light-
weight agents that deliver the workload to the grid resources.

Despite the effort invested in making DIRAC reliable, entities occasionally get into
inconsistent states. We reverse engineered several critical subsystems related to DIRAC
and used mCRL2 for simulating, visualising and model checking to find race conditions
and livelocks, see [8]. These were subsequently confirmed to occur in the real system.
These findings led to subsequent improvements in the implementation of DIRAC.

Acknowledgements. Joint work with, a.o., Frank Glege, Robert Gomez-Reino Gar-
rido, Yi-Ling Hwong, Sander Leemans, Gijs Kant, Jeroen Keiren and Daniela
Remenska. This research was supported in part by NWO grant number 612.000.937
(VOCHS).

References

1. Cranen, S., Gazda, M., Wesselink, W., Willemse, T.A.C.: Abstraction in fixpoint logic. ACM
Trans. Comput. Logic 16(4), Article 29 (2015)

2. Cranen, S., Groote, J.F., Keiren, J.J.A., Stappers, F.P.M., de Vink, E.P., Wesselink, J.W.,
Willemse, T.A.C.: An overview of the mCRL2 toolset and its recent advances. In: Pro-
ceedings of TACAS 2013. LNCS, vol. 7795, pp. 199–213. Springer, Berlin (2013)

3. Franek, B., Gaspar, C.: SMI++ object-oriented framework for designing and implementing
distributed control systems. IEEE Trans. Nuclear Sci. 52(4), 891–895 (2005)

4. Hwong, Y.L., Keiren, J.J.A., Kusters, V.J.J., Leemans, S., Willemse, T.A.C.: Formalising and
analysing the control software of the Compact Muon Solenoid experiment at the Large
Hadron Collider. Science of Computer Programming 78(12), 2435–2452 (2013)

5. Kant, G., van de Pol, J.C.: Generating and solving symbolic parity games. In: Proceedings of
GRAPHITE 2014. EPTCS, vol. 159, pp. 2–14 (2014)

6. Keiren, J.J.A., Wesselink, J.W., Willemse, T.A.C.: Liveness analysis for parameterised
Boolean equation systems. In: Proceedings of ATVA 2014. LNCS, vol. 8837, pp. 219–234.
Springer, Berlin (2014)

XII T.A.C. Willemse

7. Koolen, R.P.M., Willemse, T.A.C., Zantema, H.: Using SMT for solving fragments of
parameterised Boolean equation systems. In: Proceedings of ATVA 2015, LNCS, vol. 9364,
pp. 1–17. Springer, Berlin (2015)

8. Remenska, D., Willemse, T.A.C., Verstoep, K., Templon, J.A., Bal, H.E.: Using model
checking to analyze the system behavior of the LHC production grid. Future Generation
Comput. Syst. 29(8), 2239–2251 (2013)

On Verification Challenges at the Large Hadron Collider XIII

Model Checking: What Have We Learned,
What Will Machines Learn?

Pierre Wolper

University of Lige, Belgium
Pierre.Wolper@ulg.ac.be

http://montefiore.ulg.ac.be/~pw/

Abstract. Model Checking was introduced more than 30 years ago and, thanks
to a steady stream of improvements and new approaches, has developed into a
widely used and quite effective tool for verifying some classes of programs.
Surveying and reflecting on these developments, this talk attempts to highlight
the main lessons learned from the last three decades of research on the topic.
Then, looking towards the future, it speculates on what the next decades could
bring and on whether it would not be time for machines to do the learning, in
order to provide developers with the effective verification assistant they are still
waiting for.

Contents

Automated Analysis of Asynchronously Communicating Systems 1
Lakhdar Akroun, Gwen Salaün, and Lina Ye

Symbolic Game Semantics for Model Checking Program Families 19
Aleksandar S. Dimovski

Compositional Semantics and Analysis of Hierarchical Block Diagrams. 38
Iulia Dragomir, Viorel Preoteasa, and Stavros Tripakis

Using SPIN for the Optimized Scheduling of Discrete Event Systems
in Manufacturing. 57

Stefan Edelkamp and Christoph Greulich

River Basin Management with SPIN . 78
María-del-Mar Gallardo, Pedro Merino, Laura Panizo,
and Alberto Salmerón

ESBMCQtOM : A Bounded Model Checking Tool to Verify Qt Applications. . . 97
Mário Garcia, Felipe Monteiro, Lucas Cordeiro,
and Eddie de Lima Filho

Autonomous Agent Behaviour Modelled in PRISM – A Case Study 104
Ruth Hoffmann, Murray Ireland, Alice Miller, Gethin Norman,
and Sandor Veres

Certification for l-Calculus with Winning Strategies 111
Martin Hofmann, Christian Neukirchen, and Harald Rueß

Real-Time Strategy Synthesis for Timed-Arc Petri Net Games
via Discretization . 129

Peter Gjøl Jensen, Kim Guldstrand Larsen, and Jiří Srba

Finite-Horizon Bisimulation Minimisation for Probabilistic Systems 147
Nishanthan Kamaleson, David Parker, and Jonathan E. Rowe

Schedulability Analysis of Distributed Real-Time Sensor Network
Applications Using Actor-Based Model Checking . 165

Ehsan Khamespanah, Kirill Mechitov, Marjan Sirjani,
and Gul Agha

smid: A Black-Box Program Driver. 182
Kareem Khazem and Michael Tautschnig

http://dx.doi.org/10.1007/978-3-319-32582-8_1
http://dx.doi.org/10.1007/978-3-319-32582-8_2
http://dx.doi.org/10.1007/978-3-319-32582-8_3
http://dx.doi.org/10.1007/978-3-319-32582-8_4
http://dx.doi.org/10.1007/978-3-319-32582-8_4
http://dx.doi.org/10.1007/978-3-319-32582-8_5
http://dx.doi.org/10.1007/978-3-319-32582-8_6
http://dx.doi.org/10.1007/978-3-319-32582-8_6
http://dx.doi.org/10.1007/978-3-319-32582-8_7
http://dx.doi.org/10.1007/978-3-319-32582-8_8
http://dx.doi.org/10.1007/978-3-319-32582-8_8
http://dx.doi.org/10.1007/978-3-319-32582-8_9
http://dx.doi.org/10.1007/978-3-319-32582-8_9
http://dx.doi.org/10.1007/978-3-319-32582-8_10
http://dx.doi.org/10.1007/978-3-319-32582-8_11
http://dx.doi.org/10.1007/978-3-319-32582-8_11
http://dx.doi.org/10.1007/978-3-319-32582-8_12

On-the-Fly Model Checking for Extended Action-Based
Probabilistic Operators . 189

Radu Mateescu and José Ignacio Requeno

SymDIVINE: Tool for Control-Explicit Data-Symbolic State
Space Exploration . 208

Jan Mrázek, Petr Bauch, Henrich Lauko, and Jiří Barnat

A Tool Integrating Model Checking into a C Verification Toolset 214
Subash Shankar and Gilbert Pajela

Fair Testing and Stubborn Sets . 225
Antti Valmari and Walter Vogler

Author Index . 245

XVI Contents

http://dx.doi.org/10.1007/978-3-319-32582-8_13
http://dx.doi.org/10.1007/978-3-319-32582-8_13
http://dx.doi.org/10.1007/978-3-319-32582-8_14
http://dx.doi.org/10.1007/978-3-319-32582-8_14
http://dx.doi.org/10.1007/978-3-319-32582-8_15
http://dx.doi.org/10.1007/978-3-319-32582-8_16

Automated Analysis of Asynchronously
Communicating Systems

Lakhdar Akroun1, Gwen Salaün1(B), and Lina Ye2

1 University of Grenoble Alpes, Inria, LIG, CNRS, Grenoble, France
{lakhdar.akroun,gwen.salaun}@inria.fr

2 LRI, University Paris-Sud,
CentraleSupélec, CNRS, Université Paris-Saclay, Orsay, France

lina.ye@lri.fr

Abstract. Analyzing systems communicating asynchronously via reli-
able FIFO buffers is an undecidable problem. A typical approach is to
check whether the system is bounded, and if not, the corresponding state
space can be made finite by limiting the presence of communication cycles
in behavioral models or by fixing the buffer size. In this paper, our focus
is on systems that are likely to be unbounded and therefore result in
infinite systems. We do not want to restrict the system by imposing any
arbitrary bound. We introduce a notion of stability and prove that once
the system is stable for a specific buffer bound, it remains stable whatever
larger bounds are chosen for buffers. This enables one to check certain
properties on the system for that bound and to ensure that the system
will preserve them whatever larger bounds are used for buffers. We also
prove that computing this bound is undecidable but we show how we
succeed in computing these bounds for many examples using heuristics
and equivalence checking.

1 Introduction

Most software systems are constructed by reusing and composing existing com-
ponents or peers. This is the case in many different areas such as component-
based systems, distributed cloud applications, Web services, or cyber-physical
systems. Software entities are often stateful and therefore described using behav-
ioral models. Moreover, asynchronous communication via FIFO buffers is a clas-
sic communication model used for such distributed, communicating systems.
A crucial problem in this context is to check whether a new system consisting of
a set of interacting peers respects certain properties. Analyzing asynchronously
communicating software has been studied extensively in the last 30 years and is
known to be undecidable in general [7]. A common approach to circumvent this
issue is to bound the state space by restricting the cyclic behaviors or imposing
an arbitrary bound on buffers. Bounding buffers to an arbitrary size during the
execution is not a satisfactory solution: if at some point buffers’ sizes change (due
to changes in memory requirements for example), it is not possible to know how
the system would behave compared to its former version and new unexpected
errors can show up.
c© Springer International Publishing Switzerland 2016
D. Bošnački and A. Wijs (Eds.): SPIN 2016, LNCS 9641, pp. 1–18, 2016.
DOI: 10.1007/978-3-319-32582-8 1

2 L. Akroun et al.

In this paper, we propose a new approach for analyzing a set of peers
described using Labeled Transition Systems (LTSs), communicating asynchro-
nously via reliable (no loss of messages) and possibly unbounded FIFO buffers.
We do not want to restrict the system by imposing any arbitrary bound on cyclic
behaviors or buffers. We introduce a notion of stability for the asynchronous ver-
sions of the system. A system is stable if asynchronous compositions exhibit the
same observable behavior (send actions) from some buffer bound. This property
can be verified in practice using equivalence checking techniques on finite state
spaces by comparing bounded asynchronous compositions, although the system
consisting of peers interacting asynchronously via unbounded buffers can result
in infinite state spaces. We prove that once the system is stable for a specific
buffer bound, it remains stable whatever larger bounds are chosen for buffers.
This enables one to check temporal properties on the system for that bound
(using model checking techniques for instance) and ensures that the system will
preserve them whatever larger bounds are used for buffers. We also prove that
computing this bound is undecidable, but we show how we succeed in computing
such bounds in practice for many examples.

Figure 1 gives an example where peers are modeled using LTSs. Transitions
are labeled with either send actions (exclamation marks) or receive actions (ques-
tion marks). Initial states are marked with incoming half-arrows. In the asynchro-
nous composition, each peer is equipped with one input buffer, and we consider
only the ordering of the send actions, ignoring the ordering of receive actions.
Focusing only on send actions makes sense for verification purposes because:
(i) send actions are the actions that transfer messages to the network and are
therefore observable, (ii) receive actions correspond to local consumptions by
peers from their buffers and can therefore be considered to be local and private
information. We can use our approach to detect that when each peer is equipped
with a buffer bound fixed to 2, the observable behavior of the system depicted in
Fig. 1 is stable. This means that we can check properties, such as the absence of
deadlocks, on the 2-bounded asynchronous version of the system and the results
hold for any asynchronous version of the system where buffer bounds are greater
or equal to 2.

We implemented our approach in a tool that first encodes the peer LTSs and
their compositions into process algebra, and then uses heuristics, search algo-
rithms, and equivalence checking techniques for verifying whether the system

Fig. 1. Motivating example

Automated Analysis of Asynchronously Communicating Systems 3

satisfies the stability property. If this is the case, we return the smallest bound
respecting this property. Otherwise, when we reach a certain maximal bound,
our check returns an inconclusive result. Heuristics and search algorithms aim
at guiding the approach towards the smallest bound satisfying stability whereas
equivalence checking techniques are used for checking the stability property given
a specific bound k. All the steps of our approach are fully automated (no human
intervention). We applied our tool support to more than 300 examples of commu-
nicating systems, many of them taken from the literature on this topic. These
experiments show that a large number of these examples are stable and can
therefore be formally analyzed using our approach.

The contributions of this paper are summarized as follows:

– The introduction of the stability property for asynchronously communicating
systems that, once acquired for a bound k, is preserved for upper bounds;

– A proof demonstrating that computing such a bound k is undecidable;
– A fully automated tool support that shows that the bound exists for a majority

of our examples.

The organization of the rest of this paper is as follows. Section 2 defines
our model for peers and their asynchronous composition. Section 3 presents the
stability property and our results on stable systems. Section 4 describes our tool
support and experiments we carried out to evaluate our approach. Finally, Sect. 5
reviews related work and Sect. 6 concludes.

2 Communicating Systems

We use Labeled Transition Systems (LTSs) for modeling peers. This behavioral
model defines the order in which a peer executes the send and receive actions.

Definition 1. A peer is an LTS P = (S, s0, Σ, T) where S is a finite set of
states, s0 ∈ S is the initial state, Σ = Σ!∪Σ?∪{τ} is a finite alphabet partitioned
into a set of send messages, a set of receive messages, and the internal action,
and T ⊆ S × Σ × S is a transition relation.

We write m! for a send message m ∈ Σ! and m? for a receive message
m ∈ Σ?. We use the symbol τ for representing internal activities. A transition is
represented as s

l−→ s′ ∈ T where l ∈ Σ. This can be directly extended to s
σ−→ s′,

σ ∈ Σ∗, where σ = l1, ..., ln, s
l1−→ s1, . . . , si

li+1−−→ si+1, . . . , sn−1
ln−→ s′ ∈ T . In

the following, for the sake of simplicity, we will denote this by s
σ−→ s′ ∈ T ∗.

We assume that peers are deterministic on observable messages meaning
that if there are several transitions going out from one peer state, and if all the
transition labels are observable, then they are all different from one another.
Nondeterminism can also result from internal choices when several transitions
(at least two) outgoing from a same state are labeled with τ . Given a set of peers
{P1, . . . ,Pn}, we assume that each message has a unique sender and a unique
receiver: ∀i, j ∈ [1, n], i �= j, Σ!

i ∩ Σ!
j = ∅ and Σ?

i ∩ Σ?
j = ∅. Furthermore, each

4 L. Akroun et al.

message is exchanged between two different peers: Σ!
i ∩Σ?

i = ∅ for all i. We also
assume that each send action has a counterpart (receive action) in another peer
(closed systems): ∀i ∈ [1, n], ∀m ∈ Σ!

i =⇒ ∃j ∈ [1, n], i �= j, m ∈ Σ?
j .

In the asynchronous composition, the peers communicate with each other
asynchronously via FIFO buffers. Each peer Pi is equipped with an unbounded
input message buffer Qi. A peer Pi can either send a message m ∈ Σ!

i to the tail
of the receiver buffer Qj of Pj at any state where this send message is available,
read a message m ∈ Σ?

i from its buffer Qi if the message is available at the
buffer head, or evolve independently through an internal transition. We focus on
send actions in this paper. We consider that reading from the buffer is private
non-observable information, which is encoded as an internal transition in the
asynchronous system.

Definition 2. Given a set of peers {P1, . . ., Pn} with Pi = (Si, s
0
i , Σi, Ti), and

Qi being its associated buffer, the asynchronous composition (P1|Q1)|...|(Pn|Qn)
is the labeled transition system LTSa = (Sa, s0a, Σa, Ta) where:

– Sa ⊆ S1 × Q1 × . . . × Sn × Qn where ∀i ∈ {1, . . . , n}, Qi ⊆ (Σ?
i)∗

– s0a ∈ Sa such that s0a = (s01, ε, . . . , s
0
n, ε) (where ε denotes an empty buffer)

– Σa = ∪iΣi

– Ta ⊆ Sa × Σa × Sa, and for s = (s1, Q1, . . . , sn, Qn) ∈ Sa and s′ =
(s′

1, Q
′
1, . . . s

′
n, Q′

n) ∈ Sa, we have three possible behaviors
• s

m!−−→ s′ ∈ Ta if ∃i, j ∈ {1, . . . , n} where i �= j : m ∈ Σ!
i ∩ Σ?

j , (i) si
m!−−→

s′
i ∈ Ti, (ii) Q′

j = Qjm, (iii) ∀k ∈ {1, . . . , n} : k �= j ⇒ Q′
k = Qk, and

(iv) ∀k ∈ {1, . . . , n} : k �= i ⇒ s′
k = sk (send action)

• s
τ−→ s′ ∈ Ta if ∃i ∈ {1, . . . , n} : m ∈ Σ?

i , (i) si
m?−−→ s′

i ∈ Ti, (ii) mQ′
i = Qi,

(iii) ∀k ∈ {1, . . . , n} : k �= i ⇒ Q′
k = Qk, and (iv) ∀k ∈ {1, . . . , n} : k �=

i ⇒ s′
k = sk (receive action)

• s
τ−→ s′ ∈ Ta if ∃i ∈ {1, . . . , n}, (i) si

τ−→ s′
i ∈ Ti, (ii) ∀k ∈ {1, . . . , n} :

Q′
k = Qk, and (iii) ∀k ∈ {1, . . . , n} : k �= i ⇒ s′

k = sk (internal action)

We use LTSk
a = (Sk

a , s0a, Σk
a , T k

a) to define the bounded asynchronous compo-
sition, where each message buffer bounded to size k is denoted Qk

i , for i ∈ [1, n].
The definition of LTSk

a can be obtained from Definition 2 by allowing send tran-
sitions only if the message buffer of the receiving peer has less than k messages
in it. Otherwise, the sender is blocked, i.e., we assume reliable communication
without message losses. The k-bounded asynchronous product can be denoted
(P1|Qk

1)|...|(Pn|Qk
n) or (P1|(Q1

1| ... |Q1
1))|...|(Pn|(Q1

n| ... |Q1
n)), where each peer is

in parallel with the parallel composition of k buffers of size one. Let us emphasize
that the encoding of an ordered bounded buffer following this pattern based on
parallel composition was originally proposed by R. Milner in [36] (see Sects. 1.2
and 3.3 of this book for details). Furthermore, we use LTSa for the asynchronous
composition where the receive actions are kept in the resulting LTS (s m?−−→ s′ ∈ Ta,
receive action rule in Definition 2) instead of being encoded as τ .

Automated Analysis of Asynchronously Communicating Systems 5

3 Stability-Based Verification

In this section, we show that systems consisting of a finite set of peers involv-
ing cyclic behaviors and communicating over FIFO buffers may stabilize from a
specific buffer bound k. We call this property stability and we say that the cor-
responding systems are stable. The class of systems that are stable corresponds
to systems whose asynchronous compositions remain the same from some buffer
bound when we observe send actions only (we ignore receive actions and buffer
contents). Since stable systems produce the same behavior from a specific bound
k, they can be analyzed for that bound to detect for instance the presence of
deadlocks or to check whether they satisfy any kind of temporal properties.
Stability ensures that these properties will be also satisfied for larger
bounds. The stability definition relies on branching bisimulation checking [41]
(Definition 3). We chose branching bisimulation because in this work receive
actions are hidden as internal behaviors, and branching bisimulation is the finest
equivalence notion in presence of internal behaviors. This equivalence preserves
properties written in ACTL\X logic [33].

Definition 3. Given two LTSs LTS1 and LTS2, they are branching bisimilar,
denoted by LTS1 ≡br LTS2, if there exists a symmetric relation R (called a
branching bisimulation) between the states of LTS1 and LTS2 satisfying the
following two conditions: (i) The initial states are related by R; (ii) If R(r, s)

and r
δ−→ r′, then either δ = τ and R(r′, s), or there exists a path s

τ∗
−→ s1

δ−→ s′,
such that R(r, s1) and R(r′, s′). For the sake of simplicity, in the following,
R(r, s) is also denoted by r ≡br s.

Definition 4. Given a set of peers {P1, . . . ,Pn}, we say that this system is
stable if and only if ∃k such that LTSk

a ≡br LTSq
a (∀q > k).

As a first result, we show a sufficient condition to ensure stability: if there
exists a bound k such that the k-bounded and the (k+1)-bounded asynchronous
systems are branching equivalent, then we prove that the system remains stable,
meaning that the observable behavior is always the same for any bound greater
than k.

Theorem 1. Given a set of peers {P1, . . . ,Pn}, if ∃k ∈ N, such that LTSk
a ≡br

LTSk+1
a , then we have LTSk

a ≡br LTSq
a,∀q > k.

Proof. We prove the theorem by induction, starting with the following base case:
If LTSk

a ≡br LTSk+1
a then LTSk

a ≡br LTSk+2
a . Let us recall that the strong and

branching bisimulations are congruences with respect to the operators of process
algebras [19], that is, if P and P ′ are branching bisimilar, then for every Q we
have P |Q ≡br P ′|Q. Now, suppose that ∃k ∈ N, such that LTSk

a ≡br LTSk+1
a ,

then:
(P1|Qk

1)|...|(Pn|Qk
n) ≡br (P1|Qk+1

1)|...|(Pn|Qk+1
n) (1)

6 L. Akroun et al.

A buffer of size k can be written as a parallel composition of k buffers of size 1
(see Sects. 1.2 and 3.3 in [36] for details), hence:

(P1|Qk+2
1)|...|(Pn|Qk+2

n) ≡br (P1|Qk+1
1 |Q1

1)|...|(Pn|Qk+1
n |Q1

n) (2)

Then, by congruence and using Eq. (1) we have:

(P1|Qk+2
1)|...|(Pn|Qk+2

n) ≡br (P1|Qk
1 |Q1

1)|...|(Pn|Qk
n|Q1

n) (3)

(P1|Qk+2
1)|...|(Pn|Qk+2

n) ≡br (P1|Qk+1
1)|...|(Pn|Qk+1

n) (4)

(P1|Qk+2
1)|...|(Pn|Qk+2

n) ≡br (P1|Qk
1)|...|(Pn|Qk

n) (5)

The same argument can be used to prove the induction case, i.e., we suppose
that LTSk

a ≡br LTSk+i
a and we demonstrate that LTSk

a ≡br LTSk+i+1
a . This

proves that if LTSk
a ≡br LTSk+1

a , then we have LTSk
a ≡br LTSq

a,∀q > k. �

The main interest of the stability property is that any temporal property
can be analyzed using existing model checking tools on the minimal k-bounded
version of the system, and this result ensures that these properties are preserved
when buffer bounds are increased or if buffers are unbounded.

Proposition 1. Given a set of peers {P1, . . . ,Pn}, if ∃k s.t. LTSk
a ≡br LTSq

a

(∀q > k), and for some property P written in ACTL\X logic, LTSk
a |= P , then

LTSq
a |= P (∀q > k).

Classic properties, such as liveness or safety properties, can be verified con-
sidering send actions only. If one wants to check a property involving receive
actions, a solution is to replace in the property a specific receive action by one of
the send actions (if there is one) occurring next in the corresponding peer LTS.

We prove now that determining whether a system is stable is an undecid-
able problem. Yet there are many cases in which stability is satisfied and the
corresponding bound can be computed in those cases using heuristics, search
algorithms, and equivalence checking (see Sect. 4).

To prove that testing the stability is an undecidable problem, we reduce
the halting problem of a Turing machine to the test of stability of a set of
peers communicating asynchronously. We start the proof with some preliminaries
and notation, then we give an overview of the proof. Afterwards, we detail the
construction of a system of two peers simulating the Turing machine and finally
we prove the undecidability result.

Preliminaries and Notation. The Turing machine used is a determinis-
tic one-way-infinite single tape model. A Turing machine is defined as M =
(QM , ΣM ,ΓM , q0, qhalt, B, δM) where QM is the set of states, ΣM is the input
alphabet, ΓM is the tape alphabet, q0 ∈ QM is the initial state and qhalt is
the accepting state. B ∈ ΓM is the blank symbol and δM : QM × ΓM →
QM × ΓM × {left, right} is the transition function. The machine M accepts
an input word w= a1, ..., am iff M halts on w. If M does not halt on w and the
word is not accepted at a state q, then M initiates a loop. This loop reads any

Automated Analysis of Asynchronously Communicating Systems 7

symbol and moves to the right. Hence, if the word w is not accepted, then the
machine executes an infinite loop by reading symbols and moving to the right.
This looping behavior is not usual in classic Turing machines and acceptance
semantics, but this simplifies the reduction without modifying the expressive-
ness of the Turing machine as shown in [18].

A configuration of the Turing machine M is a word uqv# where uv is a word
from the tape alphabet, q is a state of M (meaning that M is in the state q and
the head pointing on the first symbol of v), and # is a fixed symbol which is not
in ΓM (used to indicate the end of the word on the tape).

Overview. To facilitate the understanding of the proof, we present the reduction
in two phases. In a first phase (i), starting from a Turing machine M and an
input word w, we construct a pair of peers P1 and P2, such that whenever the
machine M halts on w or not, there always exists a k such that LTSk

a ≡br LTSa,
where LTSa is the asynchronous product of the system {P1, P2}. In a second
phase (ii), we extend P1 and P2 respectively to P

′
1 and P

′
2, and there exists k such

that LTS
′k
a ≡br LTS

′
a iff M does not halt on w, where LTS

′
a is the asynchronous

product of the system {P
′
1, P

′
2}.

Phase (i) – Construction of P1 and P2. The peer P1 simulates the execution
of the machine M on w while P2 is used to receive and re-send messages to P1.
A configuration of M of the form uqv# is encoded with the buffer of P1 with
the content uheadv#. We give in the following the construction of P1 and P2.

The peer P1 is defined as (SP1 , sq0 , ΣP1 , TP1) where SP1 is the set of states,
sq0 is the initial state where q0 is the initial state of M . The alphabet ΣP1 =
Σ!

P1
∪ Σ?

P1
is defined as follows:

– Σ!
P1

= ΣM ∪ ΓM ∪ {head} ∪ {#} where all messages sent from P1 to P2

are indexed with 2 (e.g., P1 sends B2 instead of sending the blank symbol,
inversely P2 sends B1 instead of sending B to P1).

– Σ?
P1

= ΣM ∪ ΓM ∪ {head} ∪ {#} where all messages received from P2 are
indexed with 1.

Now we present how each action of the machine M is encoded.

– For each transition of M of the form δM (q, a) = (q′, a′, right) we have the

following transitions in TP1 : sq
head1?−−−−→ s1

a1?−−→ s2
a′2!−−→ s3

head2!−−−−→ sq′ . If the
peer is in the state q and the buffer starts with head1a1 then the two messages
are read and the peer P1 sends the next configuration to P2 as depicted in
Fig. 2(a). si’s are fresh intermediary states.

– For each transition of M of the form δM (q, a) = (q′, a′, left) and for each

x ∈ ΓM we have the following transitions in TP1 : sq
x1?−−→ s1

head1?−−−−→ s2
a1?−−→

s3
head2!−−−−→ s4

x2!−−→ s5
a′2!−−→ sq′ . P1 starts by reading the letter before head,

then it reads head, the next letter, and sends the new configuration to P2 as
depicted in Fig. 2(b).

– For each state sq where q is a state of M we have the following cycle in TP1 :

sq
head1?−−−−→ s1

#1?−−→ s2
head2!−−−−→ s3

B2!−−→ s4
#2!−−→ sq. As depicted in Fig. 2(c),

8 L. Akroun et al.

the configuration of M is extended to the right with a blank symbol. Peer 1
starts by reading the current configuration of the machine, then sends the
next configuration of M to P2 (P1 adds a blank symbol before #).

– For each letter x ∈ ΓM ∪ {#} and each sq where q is a state of M , we have

the following cycle: sq
x1?−−→ s1

x2!−−→ sq where P1 reads x indexed with 1, then
sends x indexed with 2.

Note that at a state sq representing a state q of the machine M , there is only
one outgoing transition labeled with head1?, hence P1 is deterministic.

Fig. 2. Mapping the instructions of the machine M to transitions of the peer P1

The peer P2 is only used to read and re-send the messages. It is defined as
(SP2 , sinit, ΣP2 , TP2) where SP2 is the set of states and sinit is the initial state.
P2 starts by sending the initial configuration of M to P1, then reaches the state
suniv, which contains a set of cycles used to receive any message from P1 and
re-send them. ΣP2=Σ!

P2
∪ Σ?

P2
is defined as follows:

– Σ!
P2

= ΣM ∪ ΓM ∪ {head} ∪ {#} where all messages sent from P2 to P1 are
indexed with 1.

– Σ?
P2

= ΣM ∪ ΓM ∪ {head} ∪ {#} where all messages received from P1 are
indexed with 2.

P2 contains the following transitions:

– sinit
head1!−−−−→ s1

a1
1!−−→ ...

a1
n!−−→ sn

#1!−−→ suniv ∈ TP2 where w = a1a2...an.

– suniv
x2?−−→ s1

x1!−−→ suniv ∈ TP2 where x is any symbol in Σ?
P2

.

Lemma 1. Given a Turing machine M with an input word w and the peers P1

and P2 constructed as above, the system composed of {P1, P2} is stable whether
the machine M halts on w or not.

Proof. To prove that ∃k such that LTSk
a ≡br LTSa, it is sufficient to prove that

∃k such that LTSk
a ≡br LTSk+1

a (from Theorem 1). Suppose that M halts on w.

Automated Analysis of Asynchronously Communicating Systems 9

Then, the number of configurations of the machine is finite. Hence, from our
construction, the asynchronous product of {P1, P2} is finite, so there exists a k
such that LTSk

a ≡br LTSk+1
a , hence LTSk

a ≡br LTSa.
Now suppose that the machine does not halt on w. Then, the corresponding

communicating system executes infinitely two cycles: (1) one adding a blank sym-
bol, (2) another reading blank symbols and moving to the right (which occurs in
our construction when the machine does not halt on the input word w). Hence, for
a given bound k, the behavior of the system resulting from the execution of one
of the two cycles in LTSk+1

a may not be reproduced in LTSk
a , due to the buffer

bound, then LTSk
a �≡br LTSk+1

a . We prove that, with our construction, this case
never happens, that is LTSk

a ≡br LTSa when the machine M does not halt on w.
Now we detail the proof for cycles of type (1). The proof for cycles of type

(2) is straightforward because those cycles involve receive actions only and do not
make the buffer contents increase. Suppose that the machine M does not stop.
Let sk be the state of LTSk

a representing the configuration of the machine M
when starting to execute the infinite loop for the first time. From our construc-
tion, at sk the system can execute the first cycle adding a blank symbol. Note
that in sk the buffer of P1 is full (size equal to k) and the buffer of P2 is empty.
More precisely, the buffer of P1 contains the following word: head1#1a1

1...a
1
m,

where m = k − 2. It is easy to verify that such a state exists, because at a
state sq representing a state q of the machine M , P1 can enter two cycles, one
starting by reading head1, the other one reading any other symbol. Hence, if
the first symbol of the buffer of P1 is not head1, P1 reads the symbol and sends
it to P2 which re-sends the symbol to P1. Thus, in the configuration sk, the
first symbol is head1. Then, P1 executes the cycle which adds a blank symbol:

sk head1?−−−−→ s1
#1?−−→ s2

head2!−−−−→ s3
B2!−−→ s4

#2!−−→ sk′
.

At sk′
the buffer of P1 contains k − 2 messages and the buffer of P2 three

messages. The sum of the two buffers is k + 1 messages, due to the addition
of the blank symbol, but sk′

is still in LTSk
a . From our construction, at the

configuration sk′
, P1 sends a2

1,..., a2
m−1: sk′ a2

1!−−→ s1
a2
2!−−→ ...

a2
m−1!−−−−→ sk′′

.
At sk′′

the buffer of P2 contains k messages and the buffer of P1 contains
one message. At this configuration, P1 sends the message a2

m, and the system
reaches a configuration sk+1 which is in LTSk+1

a but not in LTSk
a .

Hence, LTSk+1
a and LTSk

a can send the same sequences of messages from the
initial state to the state sk′′

. Then, LTSk+1
a can send the message a2

m. Moreover,
in the configuration sk′′

, P2 can read a message (because it is in the state suniv).

Thus, in LTSk
a there is the following sequence: sk′′ τ−→ s1

a1
m!−−→ s′k. With our

construction, any sequence of send messages which exceeds the buffer size k can
be executed with a buffer size bounded by k. Hence, if the machine does not halt
on w, then ∃k such that LTSk

a ≡br LTSa.
Note that, since proving LTSk

a ≡br LTSk+1
a is sufficient to prove LTSk

a ≡br

LTSa, we do not need to prove our statement for buffer size containing more
than k or k +1 messages. The bound k depends on the execution of the machine
M and the word w, where k represents the buffer size needed to encode the
configuration of the machine M when starting to execute the infinite loop. �

10 L. Akroun et al.

Phase (ii) – Construction of P ′
1 and P ′

2. Until now, whenever the machine
M halts on w or not, the system composed of P1 and P2 is always stable. Now,
we extend P1 and P2 respectively to obtain P ′

1 and P ′
2 such that the machine

M does not halt on w iff the corresponding system (composed of P ′
1 and P ′

2) is
stable. This is achieved by adding to P1 the transition system Pa to obtain P ′

1

and adding to P2 the transition system Pb to obtain P ′
2, such that the system

{Pa, Pb} is not stable. The peers Pa and Pb are not formally defined, we can
choose any two peers which are not stable. The additional transitions used to
connect P1 to Pa and P2 to Pb are listed below:

– s0 and s′
0 are respectively the initial states of Pa and Pb. The messages

exchanged between Pa and Pb do not appear in P1 and P2.
– sqhalt

halt!−−−→ s0 ∈ TP ′
1
.

– suniv
halt?−−−→ s′

0 ∈ TP ′
2
.

– s0
x?−→ s0 ∈ TP ′

1
, where x is any letter in Σ?

P1
.

– s′
0

y?−→ s′
0 ∈ TP ′

2
, where y is any letter in Σ?

P2
.

Lemma 2. Given a Turing machine M with an input word w and the peers P ′
1

and P ′
2 constructed as above, the system composed of {P ′

1, P
′
2} is stable iff the

machine M does not halt on w.

Proof. Suppose that the machine M halts on w, then P ′
1 reaches the state sqhalt

(see the construction of P1, which simulates the execution of the machine M)
and it sends the message halt to P ′

2. Hence, it reaches the state s0. P ′
2 is in the

state suniv, hence, it reads the message halt and reaches the state s′
0. At s0 and

s′
0, the two peers empty their buffers, start executing Pa and Pb, and thus the

stability is violated.
Suppose now that M does not halt on w, then from the construction of P1

simulating the execution of M , the peer P ′
1 never reaches the state sqhalt

, and
the system executes an infinite loop. Hence, from Lemma 1, the system {P ′

1, P
′
2}

is stable. �

We can now formulate one of the main results of this paper, which asserts
that testing the stability property in an undecidable problem.

Theorem 2. Given a set of peers {P1, . . . ,Pn}, it is undecidable to determine
whether the corresponding asynchronous system is stable.

Proof. The proof is a direct consequence of the construction given above and of
both Lemmas 1 and 2. �

Another result concerns well-formed systems [3]. A system consisting of a
set of peers is well-formed iff whenever the size of the buffer, Qi, of the i-th
peer is non-empty, the system can move to a state where Qi is empty. In other
words, well-formedness concerns the ability of a system to eventually consume
all messages in any of its buffers. In order to check this property, we have to keep
receive messages and thus analyze the system on its asynchronous composition
LTSa instead of LTSa .

Automated Analysis of Asynchronously Communicating Systems 11

Definition 5. Given a set of peers {P1, . . . , Pn}, it is well-formed, denoted
by WF (LTSa), if ∀s = (s1, Q1, ..., sn, Qn) ∈ Sa,∀Qi, it holds that if |Qi| > 0,
then ∃s

σ−→ s′ ∈ Ta
∗
, where s′ = (s1′, Q1′, ..., sn′, Qn′) ∈ Sa, |Qi′| = 0. The well-

formedness property can be checked with the CTL temporal formula on LTSa:
AG(|Qi| > 0 ⇒ EF (|Qi| = 0)).

One can check whether a stable system is well-formed for the smallest k
satisfying stability for instance. If a system is both stable and well-formed for
this smallest k, then it remains well-formed for larger bound q greater than k.

Theorem 3. Given a set of peers {P1, . . . ,Pn}, if ∃k s.t. LTSk
a ≡br LTSq

a

(∀q > k) and WF (LTSk
a), then we have WF (LTSq

a) (∀q > k).

Proof. Suppose that there exists a k such that LTSk
a ≡br LTSq

a (∀q > k).
We know from Proposition 1 that the stability preserves properties written in
ACTL\X logic, i.e., when the system is stable and LTSk

a |= P , then LTSq
a |= P

(∀q > k), where P is a property written in this logic. Well-formedness is a
property expressed in ACTL\X logic. Hence, WF (LTSk

a) implies WF (LTSq
a)

(∀q > k) when the system is stable. �

4 Tool Support

Figure 3 overviews the main steps of our tool support. Given a set of peer LTSs,
we first check as a preprocessing to our approach whether this system is branch-
ing synchronizable [34]. Synchronizability is checked comparing the synchronous
composition with the 1-bounded asynchronous composition. If the system is
synchronizable, the observable behavior for the synchronous and asynchronous
composition always remains the same whatever buffer size is chosen. Therefore,
the synchronous product can be used for analysis purposes. If the set of peers
is not synchronizable, we compute an initial bound k. For that bound, we ver-
ify whether the k-bounded asynchronous system is branching equivalent to the
(k +1)-bounded system. If this is the case, the system is stable for bound k, and
properties can be analyzed using that bound. If the equivalence check returns
false, we modify k and apply the check again. We repeat the process up to a
certain arbitrary bound kmax that makes the approach abort inconclusively if
attained. All these checks are achieved using compilers, exploration tools, and
equivalence checking tools available in CADP [22].

Heuristics and Search Algorithms. Each strategy consists of the compu-
tation of an initial bound k and an algorithm calculating the next bound to
attempt.

– Strategy #1 starts from bound k equal to one and increment k one by one
until obtaining a positive result for the equivalence check or reaching kmax.

– Strategy #2 computes the longest sequence of send actions in all peer LTSs,
then starts from this number and uses a binary search algorithm. The intuition
behind the longest sequence of send actions is that in that case all peers can

12 L. Akroun et al.

Fig. 3. Methodological aspects

at least send all their messages even if no peer consumes any message from
its buffer.

– Strategy #3 uses again the longest sequence of send actions for the initial k,
but then progresses by incrementing or decrementing the bound till reaching
kmax or the smallest k satisfying stability.

– Strategy #4 computes the maximum between the longest sequence of send
actions in all peers and the highest number of send actions destinated to a
same peer, and then uses the binary search algorithm (as for #2) for comput-
ing the next bounds.

– Strategy #5 uses the same initial k computation as presented for strategy #4,
and then increments or decrements the bound till completion of the process
as in strategy #3.

Experimental Results. We used a Mac OS laptop running on a 2.3 GHz Intel
Core i7 processor with 16 GB of memory and carried out experiments on more
than 300 examples. Table 1 presents experimental results for some real-world
examples as well as larger (hand-crafted) examples for showing how our app-
roach scales. The table gives for each example the number of peers (P), the total
number of states (S) and transitions (T) involved in these peers, the bound k if
the system is stable (0 if the synchronous and 1-bounded asynchronous composi-
tion are equivalent, and kmax if this upper bound is reached during the analysis
process), the size of the k-bounded asynchronous system (minimized modulo
branching reduction), and the time for applying the whole process. During our
experiments, we used a bound kmax arbitrarily fixed to 10.

Out of the 28 examples presented in the top part of Table 1, 23 can be ana-
lyzed using the approach proposed in this paper (10 are synchronizable and 13
are stable). In most cases, LTSs are quite small and computation times rea-
sonable (up to a few minutes). These times increase due to the computation of
intermediate state spaces, which grow with the size of the buffer bounds. Exam-
ples (29) to (35) show how LTSs and computation time grow mainly with the
number of peers.

Automated Analysis of Asynchronously Communicating Systems 13

Table 1. Experimental results

Id Description |P | |S|/|T | k LTSk
a |S|/|T | Time (in seconds)

#1 #2 #3 #4 #5

(1) Estelle specification [28] 2 7/9 kmax 707/1,751 280 134 302 214 276

(2) News server [34] 2 9/9 3 14/22 89 180 65 173 85

(3) Client/server [7] 2 6/10 0 3/4 34

(4) CFSM system [28] 2 6/7 kmax 393/802 222 107 213 103 212

(5) Promela program (1) [29] 2 6/6 1 3/4 52 71 67 68 66

(6) Promela program (2) [30] 2 8/8 kmax 275/616 219 107 231 103 228

(7) Figure 1 3 8/8 1 5/6 87 208 146 208 145

(8) Web services [20] 3 13/12 0 7/7 44

(9) Trade system [17] 3 12/12 0 30/46 44

(10) Online stock broker [21] 3 13/16 kmax 197/452 >1 h 222 >1 h 223 >1 h

(11) FTP transfer [6] 3 20/17 2 15/19 91 224 155 215 155

(12) Client/server [11] 3 14/13 0 8/7 44

(13) Mars explorer [8] 3 34/34 2 21/25 93 176 142 170 140

(14) Online computer sale [14] 3 26/26 0 11/12 69

(15) E-museum [12] 3 33/40 3 27/46 146 >1 h 138 243 182

(16) Client/supplier [10] 3 31/33 0 17/19 44

(17) Restaurant service [40] 3 15/16 1 10/12 68

(18) Travel agency [39] 3 32/38 0 18/21 44

(19) Vending machine [24] 3 15/14 0 8/8 44

(20) Travel agency [4] 3 42/57 3 29/42 118 >1 h 113 >1 h 112

(21) Train station [38] 4 18/18 2 19/26 114 195 137 197 165

(22) Factory job manager [9] 4 20/20 0 12/15 54

(23) Bug report repository [25] 4 12/12 1 7/8 85 221 137 227 136

(24) Cloud application [27] 4 8/10 kmax 26,754/83,200 352 208 339 208 337

(25) Sanitary agency [37] 4 35/41 3 44/71 144 196 137 196 137

(26) SQL server [35] 4 32/38 2 22/31 165 195 137 199 170

(27) SSH protocol [31] 4 26/28 0 16/18 97

(28) Booking system [32] 5 45/53 1 27/35 179 285 165 >1 h >1 h

(29) Hand-crafted example 5 396/801 4 17,376/86,345 227 >1 h 184 313 189

(30) —— 6 16/18 5 202/559 278 641 188 641 188

(31) —— 7 38/38 6 1,716/6,468 363 763 391 767 393

(32) —— 10 48/47 8 14,904/57,600 624 800 294 804 294

(33) —— 14 85/80 4 19,840/113,520 506 1,449 483 1,442 485

(34) —— 16 106/102 3 22,400/132,400 478 1,620 454 1,621 453

(35) —— 20 128/116 4 80,640/522,480 728 2,194 698 2,183 699

Strategies #2 and #4 are less efficient than the others in terms of performance
because binary search may take time before converging to the result and may
return high values for k, which implies calculating asynchronous systems with
larger state spaces. In contrast, the advantage of binary search is that for non-
stable systems, k increases quite fast and quickly reaches kmax, see rows (1) and
(4) for instance. Strategies #3 and #5 are better than the others in most cases.
This gain is not clear for small examples and examples requiring a small buffer
bound, but it becomes obvious for examples involving more peers and for those
requiring larger buffer bounds, see the hand-crafted examples in Table 1.

14 L. Akroun et al.

Let us focus again on the example presented in Fig. 1 (row (7) in Table 1) in
order to illustrate how our approach works in practice using strategy #1. First, we
compute the synchronous composition and the 1-bounded asynchronous compo-
sition, both are shown in Fig. 4. We can see that these two systems are not equiva-
lent (i.e., not synchronizable) because in the asynchronous composition the client
can submit a second request before the server sends its log file to the database.
Therefore, we compute the 2-bounded asynchronous composition, which is equiv-
alent to the 1-bounded asynchronous composition. This means that the system
is stable from bound 1 and can be analyzed using model checking techniques for
that bound and, if the properties are satisfied for that bound, they will be sat-
isfied as well for upper bounds. Note that only send actions are preserved in the
asynchronous compositions for comparison purposes. The 1-bounded composition
with send and receive actions consists of 16 states and 24 transitions.

Fig. 4. Synchronous (left) and 1-bounded asynchronous (right) compositions

5 Related Work

Brand and Zafiropulo show in [7] that the verification problem for FSMs inter-
acting via (unbounded) FIFO buffers is undecidable. Gouda et al. [26] presents
sufficient conditions to compute a bound k from which two finite state machines
communicating through 1-directional channels are guaranteed to progress indef-
initely. Jeron and Jard [28] propose a sufficient condition for testing unbound-
edness, which can be used as a decision procedure in order to check reachability
for CFSMs. Abdulla et al. [1] propose some verification techniques for CFSMs.
They present a method for performing symbolic forward analysis of unbounded
lossy channel systems. In [29], the authors present an incomplete boundedness
test for communication channels in Promela and UML RT models. They also
provide a method to derive upper bound estimates for the maximal occupancy
of each individual message buffer. Cécé and Finkel [13] focus on the analysis
of infinite half-duplex systems and present several (un)decidability results. For
instance, they prove that a symbolic representation of the reachability set is
computable in polynomial time and show how to use this result to solve several
verification problems.

A notion of existential-boundedness was introduced in [23] for communi-
cating automata. The idea is to assume unbounded channels, but to consider

Automated Analysis of Asynchronously Communicating Systems 15

only executions that can be rescheduled on bounded ones. Darondeau et al. [15]
identify a decidable class of systems consisting of non-deterministic communicat-
ing processes that can be scheduled while ensuring boundedness of buffers. [16]
proposed a causal chain analysis to determine upper bounds on buffer sizes for
multi-party sessions with asynchronous communication. Bouajjani and Emmi [5]
consider a bounded analysis for message-passing programs, which does not limit
the number of communicating processes nor the buffers’ size. However, they
limit the number of communication cycles. They propose a decision procedure
for reachability analysis when programs can be sequentialized. By doing so, pro-
gram analysis can easily scale while previous related techniques quickly explode.

Compared to all these results, we do not impose any bound on the number
of peers, cycles, or buffer bounds. Another main difference is that we do not
want to ensure or check (universal) boundedness of the systems under analysis.
Contrarily, we are particularly interested in unbounded (yet possibly stable) sys-
tems. Existential boundedness in turn assumes structural hypothesis on models,
e.g., at most one sending transition and no mix of send/receive actions outgoing
from a same state in [15,23], whereas we do not impose any restriction on our
LTS models.

In [2], the authors rely on language equivalence and propose a result similar
to the stability property introduced here. However, they present this problem
as decidable and propose a decision procedure for checking whether a system
is stable. We have demonstrated here that the stability problem is undecidable.
Since branching bisimulation is a particular case of language equivalence, testing
stability is undecidable for language equivalence as well. Moreover, [2] uses LTL
logic whereas we consider a finest notion of equivalence in this paper (branching),
which allows one to check properties written with ACTL\X logic [33]. The tool
support provided in [2] does not provide any result (infinite loop, inconclusive
result, or error) for more than half of the examples presented in Table 1.

6 Conclusion

We have presented in this paper a framework for formally analyzing systems
communicating via (possibly unbounded) FIFO buffers. This work focuses on
cyclic behavioral models, namely Labeled Transition Systems. We have intro-
duced the stability property, which shows that several systems become stable
from a specific buffer bound k when focusing on send messages. The stabil-
ity problem is undecidable in the general case, but for many systems we can
determine whether those systems are stable using heuristics, search algorithms,
and branching equivalence checking. Experiments showed that many real-world
examples satisfy this property and this can be identified in a reasonable time.
Model checking techniques can then be used on the asynchronous version of the
system with buffers bound to the smallest k satisfying stability. If a stable sys-
tem satisfies a specific property for that k, the property will be satisfied too if
buffer bounds are increased or if buffers are unbounded.

As far as future work is concerned, a first perspective is to investigate whether
our results stand or need to be adjusted for different communication models,

16 L. Akroun et al.

e.g., when each peer is equipped with one buffer per message type or when each
couple of peers in a system is equipped with a specific communication buffer.
Many properties on send messages can be formalized using temporal logic and
verified using our approach. However, in some cases, one may also want to write
properties on receive messages or on both send and receive messages. Thus, we
plan to extend our results and define a notion of stability involving not only send
actions but also receive actions. A last perspective aims at identifying subclasses
of systems preserving the stability property. Such a sufficient condition could be
achieved by statically analyzing cycle dependencies.

Acknowledgments. We would like to sincerely thank the anonymous reviewers for
their helpful comments on this paper. This work has been supported by the Open-
Cloudware project (2012-2015), which is funded by the French Fonds national pour la
Société Numérique (FSN), and is supported by Pôles Minalogic, Systematic, and SCS.

References

1. Abdulla, P.A., Bouajjani, A., Jonsson, B.: On-the-fly analysis of systems with
unbounded, lossy FIFO channels. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol.
1427, pp. 305–318. Springer, Heidelberg (1998)

2. Basu, S., Bultan, T.: Automatic verification of interactions in asynchronous sys-
tems with unbounded buffers. In: Proceedings of ASE 2014, pp. 743–754 (2014)

3. Basu, S., Bultan, T., Ouederni, M.: Deciding choreography realizability. In: Pro-
ceedings of the POPL 2012, pp. 191–202. ACM (2012)

4. Bennaceur, A., Chilton, C., Isberner, M., Jonsson, B.: Automated mediator synthe-
sis: combining behavioural and ontological reasoning. In: Hierons, R.M., Merayo,
M.G., Bravetti, M. (eds.) SEFM 2013. LNCS, vol. 8137, pp. 274–288. Springer,
Heidelberg (2013)

5. Bouajjani, A., Emmi, M.: Bounded phase analysis of message-passing programs.
In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 451–465.
Springer, Heidelberg (2012)

6. Bracciali, A., Brogi, A., Canal, C.: A formal approach to component adaptation.
J. Softw. Syst. 74(1), 45–54 (2005)

7. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (1983)

8. Brogi, A., Popescu, R.: Automated generation of BPEL adapters. In: Dan, A.,
Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 27–39. Springer,
Heidelberg (2006)

9. Bultan, T., Ferguson, C., Fu, X.: A tool for choreography analysis using collabo-
ration diagrams. In: Proceedings of the ICWS 2009, pp. 856–863. IEEE (2009)

10. Cámara, J., Mart́ın, J.A., Salaün, G., Canal, C., Pimentel, E.: Semi-automatic
specification of behavioural service adaptation contracts. Electr. Notes Theor.
Comput. Sci. 264(1), 19–34 (2010)

11. Canal, C., Poizat, P., Salaün, G.: Synchronizing behavioural mismatch in software
composition. In: Gorrieri, R., Wehrheim, H. (eds.) FMOODS 2006. LNCS,
vol. 4037, pp. 63–77. Springer, Heidelberg (2006)

12. Canal, C., Poizat, P., Salaün, G.: Model-based adaptation of behavioural mis-
matching components. IEEE Trans. Softw. Eng. 34(4), 546–563 (2008)

Automated Analysis of Asynchronously Communicating Systems 17

13. Cécé, G., Finkel, A.: Verification of programs with half-duplex communication. Inf.
Comput. 202(2), 166–190 (2005)

14. Cubo, J., Salaün, G., Canal, C., Pimentel, E., Poizat, P.: A model-based approach
to the verification and adaptation of WF/.NET components. In: Proceedings of
the FACS 2007, vol. 215 of ENTCS, pp. 39–55 (2007)

15. Darondeau, P., Genest, B., Thiagarajan, P.S., Yang, S.: Quasi-static scheduling of
communicating tasks. Inf. Comput. 208(10), 1154–1168 (2010)

16. Deniélou, P.-M., Yoshida, N.: Buffered communication analysis in distributed mul-
tiparty sessions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol.
6269, pp. 343–357. Springer, Heidelberg (2010)

17. Deniélou, P.-M., Yoshida, N.: Multiparty session types meet communicating
automata. In: Seidl, H. (ed.) Programming Languages and Systems. LNCS, vol.
7211, pp. 194–213. Springer, Heidelberg (2012)

18. Finkel, A., McKenzie, P.: Verifying identical communicating processes is undecid-
able. Theor. Comput. Sci. 174(1–2), 217–230 (1997)

19. Fokkink, W.: Introduction to Process Algebra. Texts in Theoretical Computer
Science, 1st edn. Springer, Heidelberg (2000)

20. X. Fu, T. Bultan, and J. Su. Analysis of Interacting BPEL Web Services. In Proc.
of WWW’04, pp. 621–630. ACM Press, (2004)

21. Fu, X., Bultan, T., Su, J.: Conversation protocols: a formalism for specification
and verification of reactive electronic services. Theoret. Comput. Sci. 328(1–2),
19–37 (2004)

22. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2010: a toolbox for the
construction and analysis of distributed processes. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 372–387. Springer, Heidelberg (2011)

23. Genest, B., Muscholl, A., Seidl, H., Zeitoun, M.: Infinite-state high-level MSCs:
model-checking and realizability. J. Comput. Syst. Sci. 72(4), 617–647 (2006)

24. Gierds, C., Mooij, A.J., Wolf, K.: Reducing adapter synthesis to controller synthe-
sis. IEEE Trans. Serv. Comput. 5(1), 72–85 (2012)

25. Gössler, G., Salaün, G.: Realizability of choreographies for services interacting
asynchronously. In: Arbab, F., Ölveczky, P.C. (eds.) FACS 2011. LNCS, vol. 7253,
pp. 151–167. Springer, Heidelberg (2012)

26. Gouda, M.G., Manning, E.G., Yu, Y.-T.: On the progress of communications
between two finite state machines. Inf. Control 63(3), 200–216 (1984)

27. Güdemann, M., Salaün, G., Ouederni, M.: Counterexample guided synthesis of
monitors for realizability enforcement. In: Chakraborty, S., Mukund, M. (eds.)
ATVA 2012. LNCS, vol. 7561, pp. 238–253. Springer, Heidelberg (2012)

28. Jéron, T., Jard, C.: Testing for unboundedness of FIFO channels. Theor. Comput.
Sci. 113(1), 93–117 (1993)

29. Leue, S., Mayr, R., Wei, W.: A scalable incomplete test for message buffer overflow
in promela models. In: Graf, S., Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989,
pp. 216–233. Springer, Heidelberg (2004)

30. Leue, S., Ştefănescu, A., Wei, W.: Dependency analysis for control flow cycles in
reactive communicating processes. In: Havelund, K., Majumdar, R. (eds.) SPIN
2008. LNCS, vol. 5156, pp. 176–195. Springer, Heidelberg (2008)

31. Mart́ın, J.A., Pimentel, E.: Contracts for security adaptation. J. Log. Algebraic
Program. 80(3–5), 154–179 (2011)

32. Mateescu, R., Poizat, P., Salaün, G.: Adaptation of service protocols using process
algebra and on-the-fly reduction techniques. In: Bouguettaya, A., Krueger, I.,
Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp. 84–99. Springer, Heidelberg
(2008)

18 L. Akroun et al.

33. Nicola, R.D., Vaandrager, F.W.: Action versus state based logics for transition
systems. In: Guessarian, Irène (ed.) LITP 1990. LNCS, vol. 469, pp. 407–419.
Springer, Heidelberg (1990)

34. Ouederni, M., Salaün, G., Bultan, T.: Compatibility checking for asynchronously
communicating software. In: Fiadeiro, J.L., Liu, Z., Xue, J. (eds.) FACS 2013.
LNCS, vol. 8348, pp. 310–328. Springer, Heidelberg (2014)

35. Poizat, P., Salaün, G.: Adaptation of open component-based systems. In:
Bonsangue, M.M., Johnsen, E.B. (eds.) FMOODS 2007. LNCS, vol. 4468, pp.
141–156. Springer, Heidelberg (2007)

36. Milner, R.: Communication and Concurrency. Prentice-Hall Inc, Upper Saddle
River (1989)

37. Salaün, G., Bordeaux, L., Schaerf, M.: Describing and reasoning on web services
using process algebra. In: Proceedings of the ICWS 2004, pp. 43–50. IEEE Com-
puter Society (2004)

38. Salaün, G., Bultan, T., Roohi, N.: Realizability of choreographies using process
algebra encodings. IEEE Trans. Serv. Comput. 5(3), 290–304 (2012)

39. Seguel, R., Eshuis, R., Grefen, P.W.P.J.: Generating minimal protocol adaptors
for loosely coupled services. In: Proceedings of the ICWS 2010, pp. 417–424. IEEE
CS (2010)

40. van der Aalst, W.M.P., Mooij, A.J., Stahl, C., Wolf, K.: Service interaction: pat-
terns, formalization, and analysis. In: Bernardo, M., Padovani, L., Zavattaro, G.
(eds.) SFM 2009. LNCS, vol. 5569, pp. 42–88. Springer, Heidelberg (2009)

41. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimula-
tion semantics. J. ACM 43(3), 555–600 (1996)

Symbolic Game Semantics for Model Checking
Program Families

Aleksandar S. Dimovski(B)

IT University of Copenhagen, Copenhagen, Denmark
adim@itu.dk

Abstract. Program families can produce a (potentially huge) number
of related programs from a common code base. Many such programs
are safety critical. However, most verification techniques are designed to
work on the level of single programs, and thus are too costly to apply to
the entire program family. In this paper, we propose an efficient game
semantics based approach for verifying open program families, i.e. pro-
gram families with free (undefined) identifiers. We use symbolic rep-
resentation of algorithmic game semantics, where concrete values are
replaced with symbolic ones. In this way, we can compactly represent
program families with infinite integers as so-called (finite-state) featured
symbolic automata. Specifically designed model checking algorithms are
then employed to verify safety of all programs from a family at once and
pinpoint those programs that are unsafe (respectively, safe). We present
a prototype tool implementing this approach, and we illustrate it with
several examples.

1 Introduction

Software Product Line (SPL) [5] is an efficient method for systematic develop-
ment of a family of related programs, known as variants (valid products), from
a common code base. Each variant is specified in terms of features (statically
configured options) selected for that particular variant. While there are different
implementation strategies, many popular SPLs from system software (e.g. Linux
kernel) and embedded software (e.g. cars, phones) domains [18] are implemented
using a simple form of two staged computation in preprocessor style, where the
programming language is extended with conditional compilation constructs (e.g.
#ifdef annotations from C preprocessor). At build time, the program family
is first configured and a variant describing a particular product is derived by
selecting a set of features relevant for it, and only then the derived variant is
compiled or interpreted. One of the advantages of preprocessors is that they are
mostly independent of the object language and can be applied across paradigms.

Benefits from using program families (SPLs) are multiple: productivity gains,
shorter time to market, and greater market coverage. Unfortunately, the com-
plexity created by program families (variability) also leads to problems. The
simplest brute-force approach to verify such program families is to use a pre-
processor to generate all valid products of an SPL, and then apply an existing
c© Springer International Publishing Switzerland 2016
D. Bošnački and A. Wijs (Eds.): SPIN 2016, LNCS 9641, pp. 19–37, 2016.
DOI: 10.1007/978-3-319-32582-8 2

20 A.S. Dimovski

single-program verification technique to each resulting product. However, this
approach is very costly and often infeasible in practice since the number of pos-
sible products is exponential in the number of features. Therefore, we seek for
new approaches that rely on finding compact mathematical structures, which
take the variability within the family into account, and on which specialized
variability-aware verification algorithms can be applied.

In this work, we address the above challenges by using game semantics
models. Game semantics [1,14] is a technique for compositional modelling of
programming languages, which gives models that are fully abstract (sound and
complete) with respect to observational equivalence of programs. It has mathe-
matical elegance of denotational semantics, and step-by-step modelling of com-
putation in the style of operational semantics. In the last decade, a new line of
research has been pursued, known as algorithmic game semantics, where game
semantics models are given certain kinds of concrete automata-theoretic repre-
sentations [8,12,16]. Thus, they can serve as a basis for software model checking
and program analysis. The most distinctive property of game semantics is com-
positionality, i.e. the models are generated inductively on the structure of pro-
grams. This is the key to achieve scalable (modular) verification, where a larger
program is broken down into smaller program fragments which can be modeled
and verified independently. Moreover, game semantics yields a very accurate
model for any open program with free (undefined) identifiers such as calls to
library functions.

In [9], a symbolic representation of algorithmic game semantics has been pro-
posed for second-order Idealized Algol (IA2). It redefines the (standard) regular-
language representation [12] at a more abstract level by using symbolic values
instead of concrete ones. This allows us to give a compact representation of
programs with infinite integers by using finite-state symbolic automata. Here,
we extend the symbolic representation of game semantics models, obtaining so-
called featured symbolic automata, which are used to compactly represent and
verify safety properties of program families.

Motivating Example. To better illustrate the issues we are addressing in this
work, we now present a motivating example. Table 1 shows a simple program
family M that contains two #if commands. They increase and decrease the
local variable x by the value of a non-local expression n, depending on the
enabled features. The program uses features F = {A,B} and we assume it has
the following set of valid configurations K = {A∧B ,A∧¬B ,¬A∧B ,¬A∧¬B}.
For each valid configuration a different single program can be generated by
appropriately resolving the #if commands. For example, the single program
corresponding to the valid configuration A∧B will have both features A and B
enabled (set to true), which will make both assignment commands in #if-s to
be present in the program. Programs for A ∧ ¬B and for ¬A ∧ B are different
in one assignment command only, the earlier has the feature A enabled and the
command x := x + n, whereas the latter has the feature B enabled and the
command x := x − n. Programs corresponding to all valid configurations are

Symbolic Game Semantics for Model Checking Program Families 21

Table 1. Motivating example: the program family M and its valid products

Program family M :

n : exp intn , abort : comabort �{A,B}
newint x := 0 in
#if (A) then x := x + n;
#if (B) then x := x − n;
if (x = 1) then abort : com

Config. A∧B :

n : exp intn , abort : comabort �
newint x := 0 in
x := x + n;
x := x − n;
if (x = 1) then abort : com

Configs. A∧¬B (¬A∧B):

n : exp intn , abort : comabort �
newint x := 0 in
x := x + n; (x := x − n;)
if (x = 1) then abort : com

Config. ¬A ∧ ¬B :

n : exp intn , abort : comabort �
newint x := 0 in
if (x = 1) then abort : com

start

run qn 1n

0n

qn

qn

. . . − 1n , 1n . . .

0n

−1n. .
. − 2

n , 0
n . .

.

done

runabort

done abort

.

.

.

· · ·

(a) Model for A ∧ B .

start

run done

(b) Model ¬A∧¬B .

start

run qn

. . . 0 n
, 2 n

. . .

1n

done

runabort

do
ne

ab
or
t

(c) Model for A∧¬B .

start

run qn

. . .−
2 n
, 0 n

. . .

−1n

done

runabort

do
ne

ab
or
t

(d) Model for ¬A∧B .

Fig. 1. Automata for valid products of M .

illustrated in Table 1. Thus, to verify our family M we need to build and analyze
models of four distinct, but very similar, programs.

We show in Fig. 1, the standard regular-language representation of game
semantics for these four programs where concrete values are used [12]. We can
see that we obtain regular-languages with infinite summations (i.e. infinite-state
automata), since we use infinite integers as data type. Hence, they can be used for
automatic verification only if the attention is restricted to finite data types. For
example, the model for the product A∧¬B in Fig. 1c illustrates the observable
interactions of this term of type com with its environment consisting of free
identifiers n and abort . So in the model are only represented moves associated
with types of n and abort (which are tagged with superscripts n and abort ,
respectively) as well as with the top-level type com of this term. The environment

22 A.S. Dimovski

start

[?X=0, run〉 qn ?Nn [?X=X+N , qn 〉 ?Mn

[?X =X −M ∧X =1, runabort〉

[?X =X −M ∧X �=1, done〉

d
o
n
e a
bo

rt

d
o
n
e

(a) SA for A ∧ B .

start

[?X=0, run〉

[X=1, runabort〉
done abort

done

[X �=
1, done〉

(b) SA for ¬A ∧ ¬B .

start

[?X=0, run〉 qn ?Nn

[?X=X+N ∧X �=1, done〉

[?X=X+N ∧X =1, runabort〉
doneabort

done

(c) SA for A ∧ ¬B .

start

[?X=0, run〉 qn ?Mn

[?X=X −M ∧X �=1, done〉

[?X=X −M ∧X =1, runabort〉
doneabort

done

(d) SA for ¬A ∧ B .

Fig. 2. Symbolic automata for valid products of M .

(Opponent) starts the execution of the term by playing the move run; when the
term (Player) asks for the value of n with the move qn , the environment can
provide any integer as answer. If the answer is 1, the abort is run; otherwise the
term terminates successfully by reaching the accepting state (shown as double
circle in the model). Note that each move represents an observable action that
a term of a given type can perform. Thus, for commands we have a move run
to initiate a command and a move done to signal successful termination of a
command, whereas for expressions we have a move q to ask for the value of an
expression and an integer move to answer the question q.

If we represent the data at a more abstract level and use symbolic values
instead of concrete ones, the game models of these four programs can be repre-
sented more compactly by finite-state symbolic automata (SA) as shown in Fig. 2.
Every letter (label of transition) contains a move and a Boolean condition which
represents a constraint that needs to be fulfilled in order for the corresponding
move to be performed. Note that so-called input symbols of the form ?N are used
for generating new fresh symbolic names, which bind all occurrences of the sym-
bol N that follow in the play until a new input symbol ?N is met. The symbol X
is used to keep track of the current value of the local variable x . For example, the
answer to the question qn asked by the term for A ∧ ¬B in Fig. 2c now is a newly
instantiated symbol N . If the value of N is 1, the abort command is run. We say
that “X1 = 0∧X2 = X1+N ∧X2 = 1” is a play condition for the play in Fig. 2c:
[X1 = 0, run〉 · qn · N n · [X2 = X1 +N ∧ X2 = 1, runabort〉 · doneabort · done.
This play is obtained from: [?X = 0, run〉 · qn ·?N n · [?X = X + N ∧ X =
1, runabort〉 · doneabort · done, after instantiating its input symbols with fresh
symbolic names. We say that one play is feasible, only if its play condition is
satisfiable (i.e. there exist concrete assignments to symbols that make that con-
dition true). This can be checked by calling an SMT solver.

Symbolic Game Semantics for Model Checking Program Families 23

Now, by further enriching letters with feature expressions (propositional for-
mulae defined over the set of features), we can give a more compact single rep-
resentation of the above related programs to exploit the similarities between
them. The feature expression associated with a letter denotes for which valid
configurations that letter (in fact, the corresponding move) is feasible. Thus, we
can represent all products of M by one compact featured symbolic automaton
(FSA) as shown in Fig. 3, which is variability-aware extension of the symbolic
automata in Fig. 2. From this model, by exploring all states we can determine for
each valid product whether an unsafe behaviour (one that contains abort moves)
can be exercised. If we find such an unsafe play for a valid product, then we need
to check that the play is feasible. If its play condition is satisfiable, the SMT
solver will return concrete assignments to symbols which make that condition
true. In this way, we will generate a concrete counterexample for a valid product.
In our example, we can determine that the product ¬A ∧ ¬B is safe, whereas
products A∧B , A∧¬B , and ¬A∧B are unsafe with concrete counterexamples:
run ·qn ·1n ·qn ·0n ·runabort ·doneabort ·done, run ·qn ·1n ·runabort ·doneabort ·done,
and run ·qn ·−1n ·runabort ·doneabort ·done, respectively.

start

[tt, ?X=0, run〉

[¬A∧ ¬B, X �=1, done〉

[A, tt, qn 〉

[¬
A∧

B
, tt, q n

〉

[¬A∧¬B, X=1, runabort〉

?Nn

?Mn

[B
, ?

X=X+N , q
n 〉

[¬B, ?X=X+N ∧X �=1, done〉

[¬B, ?X=X+N ∧X=1, runabort〉

[tt, ?
X=X−M ∧X �=1, don

e〉
[tt, ?X=X−M ∧X=1, runabort〉

doneabort

do
ne

Fig. 3. Featured symbolic automaton for the program family M .

Remark. Alternatively, a program family can be verified by generating a so-
called family simulator [2], which is a single program where #if commands
(compile-time variability) are replaced with normal if commands and available
features are encoded as free (undefined) identifiers. Then the classical (single-
system) model checking algorithms [8,9] can be used to verify the generated
simulator, since it represents a single program. In case of violation, we will obtain
a single counterexample that corresponds to some unsafe products. However,
this answer is incomplete (limited) for program families since there might be
some safe products and also there might be other unsafe products with different
counterexamples. Hence, no conclusive results for all products in a family are
reported using this approach. For example, the simulator for the family M is:

24 A.S. Dimovski

n : exp int, abort : com,A : exp bool,B : exp bool � newint x := 0 in
if (A) then x := x + n; if (B) then x := x − n; if (x = 1) then abort : com

If we generate a (game) model for this term and verify it using algorithms in [8,9],
we will obtain a counterexample corresponding only to the product A ∧ ¬B .

This leads us to propose an approach that solves the general family-based
model checking problem: determine for each product whether or not it is safe,
and provide a counterexample for each unsafe product.

Contributions. In this paper, we make the following contributions:

– We introduce a compact symbolic representation, called featured symbolic
automata, which represent game semantics of so-called annotative program
families. That is, program families which are implemented by annotating
program parts that vary using preprocessor directives.

– We propose specifically designed (family-based) model checking algorithms
for verifying featured symbolic automata that represent program families.
This allows us to verify safety for all products of a family at once (in a single
execution), and to pinpoint the products that are unsafe (resp., safe).

– We describe a prototype tool implementing the above algorithms, and we
perform an evaluation to demonstrate the improvements over the brute-force
approach where all valid products are verified independently one by one.

2 The Language for Program Families

The standard approach in semantics community is to use meta-languages for the
description of certain kinds of computational behaviour. The semantic model is
defined for a meta-language, and a real programming language (C, ML, etc.) can
be studied by translating it into this meta-language and using the induced model.
We begin this section by presenting a meta-language for which algorithmic game
semantics can be defined, and then we introduce static variability into it.

Writing Single Programs. We consider the meta-language: Idealized Algol (IA)
introduced by Reynolds in [17]. It is a compact language which combines call-
by-name typed λ-calculus with the fundamental imperative features and locally-
scoped variables. We work with its second-order recursion-free fragment (IA2 for
short), because game semantics of this fragment has algorithmic properties.

The data types D are integers and booleans (D ::= int | bool). We have base
types B (B ::= expD | com | varD) and first-order function types T (T ::=B |
B → T). The syntax of the language is given by:

M ::= x |v |skip |diverge |M opM | M ; M | if M thenM elseM |whileM doM
| M := M | !M | newD x :=v in M | mkvarDMM |λ x .M | MM

where v ranges over constants of type D , which includes integers (n) and boolean
(tt ,ff). The standard arithmetic-logic operations op are employed, as well as the

Symbolic Game Semantics for Model Checking Program Families 25

usual imperative and functional constructs. Well-typed terms are given by typing
judgements of the form Γ � M : T , where Γ is a type context consisting of a
finite number of typed free identifiers. Typing rules are given in [1,17].

The operational semantics is defined by a big-step reduction relation: Γ �
M , s =⇒ V , s′, where Γ � M : T is a term in which all free identifiers from
Γ are variables, and s, s′ represent the state before and after reduction. The
state is a function assigning data values to the variables in Γ . Canonical forms
(values) are defined by V ::= x | v | λ x .M | skip | mkvarDMN . Reduction
rules are standard (see [1,17] for details). If M is a closed term (with no free
identifiers) of type com, then we abbreviate the relation M , ∅ =⇒ skip, ∅ with
M ⇓. We say that a term Γ � M : T is an approximate of a term Γ � N : T ,
written Γ � M �∼ N , if and only if for all terms-with-hole C [−] : com, such that
� C [M] : com and � C [N] : com are well-typed closed terms of type com, if
C [M] ⇓ then C [N] ⇓. If two terms approximate each other they are considered
observationally-equivalent, denoted by Γ � M ∼= N .

Writing Program Families. We use a simple form of two-staged computation
to lift IA2 from describing single programs to program families. The first stage
is controlled by a configuration k , which describes the set of features that are
enabled in the build process. A finite set of Boolean variables describes the
available features F = {A1, . . . ,An}. A configuration k is a truth assignment (a
mapping from F to bool = {tt ,ff }) which gives a truth value to any feature. If a
feature A ∈ F is enabled (included) for the configuration k , then k(A) = tt . Any
configuration k can also be encoded as a conjunction of propositional formulas:
k(A1) · A1 ∧ . . . ∧ k(An) · An , where tt · A = A and ff · A = ¬A. We write K for
the set of all valid configurations defined over F for a program family. The set of
valid configurations is typically described by a feature model [5,18], but in this
work we disregard syntactic representations of the set K.

The language IA2 extends IA2 with a new compile-time conditional term for
encoding multiple variations of a program, i.e. different valid products. The new
term “#if φ thenM elseM ′” contains a presence condition φ over features F,
such that if φ is satisfied by a configuration k ∈ K then M will be included in
the resulting product, otherwise M ′ will be included. The new syntax is:

M ::= . . . | #if φ thenM elseM ′ φ ::=A ∈ F | ¬φ | φ ∧ φ

We add a new syntactic category of feature expressions (i.e. propositional logic
formulae over F), FeatExp(F), ranged over by φ, to write compile-time conditions
over features F. Well-typed term families are given by typing judgements of the
form Γ �F M : T , where F is a set of available features1. Typing rules are those
of IA2 extended with a rule for the new construct:

Γ � M : T
Γ �F M : T

Γ �F M : T Γ �F M ′ : T φ : FeatExp(F)
Γ �F #if φ thenM elseM ′ : T

1 For the work in this paper, we assume that the set of features F is fixed and all
features are globally scoped.

26 A.S. Dimovski

The semantics of IA2 has two stages: first, given a configuration k compute
a single IA2 term without #if-s; second, evaluate the IA2 term using the stan-
dard IA2 semantics. The first stage of computation (also called projection) is
a simple preprocessor from IA2 to IA2 specified by the projection function πk

mapping an IA2 term family into a single IA2 term corresponding to the con-
figuration k ∈ K. The projection πk copies all basic terms of IA2 that are also
IA2 terms, and recursively pre-processes all sub-terms of compound terms. For
example, πk (skip) = skip and πk (M ; M ′) = πk (M); πk (M ′). The interesting case
is for the compilation-time conditional term, where one of the two alternative
branches is included in the generated valid product depending on whether the
configuration k satisfies (entails) the feature expression φ, denoted as k |= φ.

We have: πk (#if φ thenM elseM ′) =

{
πk (M) if k |= φ

πk (M ′) if k �|= φ
. The variant of a

term family Γ �F M : T corresponding to the configuration k ∈ K can now be
defined as: Γ � πk (M) : T .

3 Symbolic Representation of Game Semantics

In this section we first recall symbolic representation of algorithmic game seman-
tics for IA2 [9], and then we extend this representation for IA2.

3.1 Symbolic Models of IA2

Let Sym be a countable set of symbolic names, ranged over by upper case letters
X , Y , Z . For any finite W ⊆ Sym, the function new(W) returns a minimal sym-
bolic name which does not occur in W , and sets W := W ∪new(W). A minimal
symbolic name not in W is the one which occurs earliest in a fixed enumera-
tion X1,X2, . . . of all possible symbolic names. Let Exp be a set of expressions,
ranged over by e, inductively generated by using data values (v ∈ D), symbols
(X ∈ Sym), and standard arithmetic-logic operations (op). We use a to range
over arithmetic expressions (AExp) and b over boolean expressions (BExp).

Let A be an alphabet of letters. We define a symbolic alphabet Asym induced
by A as follows: Asym = A∪{?X , e | X ∈ Sym, e ∈ Exp}. The letters of the form
?X are called input symbols. They represent a mechanism for generating new
symbolic names, i.e. ?X means letX = new(W) inX We use α to range over
Asym . Next we define a guarded alphabet Agu induced by A as the set of pairs of
boolean conditions and symbolic letters: Agu = {[b, α〉 | b ∈ BExp, α ∈ Asym}.
A guarded letter [b, α〉 means that α occurs only if b evaluates to true, i.e.
if (b = tt) then α else ∅. We use β to range over Agu . We will often write only α
for the guarded letter [tt , α〉. A word [b1, α1〉· [b2, α2〉 . . . [bn , αn〉 over Agu can be
represented as a pair [b,w〉, where b = b1 ∧ b2 ∧ . . . ∧ bn is a boolean condition
and w = α1 · α2 . . . αn is a word of symbolic letters.

Now, we show how IA2 terms in β-normal form are interpreted by symbolic
regular languages and automata, which will be specified by extended regular

Symbolic Game Semantics for Model Checking Program Families 27

expressions R. Each type T is interpreted by a guarded alphabet of moves Agu
[[T]]

induced by A[[T]], which is defined as follows:

A[[expD]]={q}∪A[[D]],A[[com]]={run,done},A[[varD]]={write(a), read, ok, a |a∈A[[D]]}
Agu

[[B
〈1〉
1 →...→B

〈k〉
k →B]]

=
∑

1≤i≤k

Agu 〈i〉
[[Bi]]

+ Agu
[[B]]

where A[[int]] = Z, A[[bool]] = {tt ,ff }, and + denotes a disjoint union of alphabets.
Function types are tagged by a superscript 〈i〉 to keep record from which type,
i.e. which component of the disjoint union, each move comes from. The letters in
the alphabet A[[T]] represent the moves (observable actions) that a term of type
T can perform. Each of moves is either a question (a demand for information)
or an answer (a supply of information). For expressions in A[[expD]], there is a
question move q to ask for the value of the expression, and values from A[[D]]

to answer the question. For commands, there is a question move run to initiate
a command, and an answer move done to signal successful termination of a
command. For variables, there are question moves for writing to the variable,
write(a), which are acknowledged by the answer move ok; and there is a question
move read for reading from the variable, which is answered by a value from A[[D]].

For any (β-normal) term, we define a (symbolic) regular-language which
represents its game semantics, i.e. its set of complete plays. Every complete
play represents the observable effects of a completed computation of the given
term. It is given as a guarded word [b,w〉, where b is also called play condi-
tion. Assumptions about a play (computation) to be feasible are recorded in its
play condition. For infeasible plays, the play condition is inconsistent (unsat-
isfiable), thus no assignment of concrete values to symbolic names exists that
makes the play condition true. If the play condition is inconsistent, this play is
discarded from the final model of the corresponding term. The regular expression
for Γ � M : T , denoted as [[Γ � M : T]], is defined over the guarded alphabet:
Agu

[[Γ	T]] =
(∑

x :T ′∈Γ Agu 〈x〉
[[T ′]]

)
+ Agu

[[T]], where moves corresponding to types of
free identifiers are tagged with their names.

The representation of constants is standard:

[[Γ �v :expD]]=q · v [[Γ �skip :com]]=run · done [[Γ �diverge :com]]=∅

Free identifiers are represented by the so-called copy-cat regular expressions,
which contain all possible behaviours of terms of that type. For example:

[[Γ, x : expD〈x ,1〉
1 → . . . expD〈x ,k〉

k → expD〈x〉 �x : expD〈1〉
1 → . . . expD〈k〉

k → expD]]

= q · q〈x〉 · (∑
1≤i≤k

q〈x ,i〉 · q〈i〉·?Z 〈i〉 · Z 〈x ,i〉)∗·?X 〈x〉 · X

When a call-by-name non-local function x is called, it may evaluate any of its
arguments, zero or more times, in an arbitrary order and then it returns any
allowable answer from its result type. Note that whenever an input symbol ?X
(letX = new(W) inX . . .) is met in a play, the mechanism for fresh symbol

28 A.S. Dimovski

Table 2. Symbolic representations of some language constructs

[[op : expD〈1〉
1 × expD〈2〉

2 → expD]] = q · q〈1〉·?Z 〈1〉 · q〈2〉·?Z ′〈2〉 · (Z opZ ′)
[[; : com〈1〉 × com〈2〉 → com]] = run · run〈1〉 · done〈1〉 · run〈2〉 · done〈2〉 · done
[[if : expbool〈1〉 × com〈2〉 × com〈3〉 → com]] = [tt , run〉 · [tt , q〈1〉〉 · [tt , ?Z 〈1〉〉·

[Z , run〈2〉〉 · [tt , done〈2〉〉 + [¬Z , run〈3〉〉 · [tt , done〈3〉〉) · [tt , done〉
[[while : expbool〈1〉 × com〈2〉 → com]] = [tt , run〉 · [tt , q〈1〉〉 · [tt , ?Z 〈1〉〉·

[Z , run〈2〉〉 · [tt , done〈2〉〉 · [tt , q〈1〉〉 · [tt , ?Z 〈1〉〉)∗ · [¬Z , done〉
[[:= : varD〈1〉 × expD〈2〉 → com]] = run · q〈2〉·?Z 〈2〉 · write(Z)〈1〉 · ok〈1〉 · done
[[! : varD〈1〉 → expD]] = q · read〈1〉·?Z 〈1〉 · Z
cell〈x〉

v = ([?X=v , read〈x〉〉 · X 〈x〉)∗ · write(?X)〈x〉 · ok〈x〉 · (read〈x〉 · X 〈x〉)∗)∗

generation is used to instantiate it with a new fresh symbolic name, which binds
all occurrences of X that follow in the play until a new ?X is met which overrides
the previous one. For example, consider a non-local function f : expint〈1〉 →
expint. Its symbolic model is: q·q〈f 〉 ·(q〈f ,1〉 ·q〈1〉·?Z 〈1〉 ·Z 〈f ,1〉)∗·?X 〈f 〉 ·X . The play
corresponding to f which evaluates its argument two times after instantiating its
input symbols is given as: q ·q〈f 〉 ·q〈f ,1〉 ·q〈1〉 ·Z 〈1〉

1 ·Z 〈f ,1〉
1 ·q〈f ,1〉 ·q〈1〉 ·Z 〈1〉

2 ·Z 〈f ,1〉
2 ·

X 〈f 〉 ·X , where Z1 and Z2 are two different symbolic names used to denote values
of the argument when it is evaluated the first and the second time, respectively.

The representations of some language constructs are given in Table 2. Note
that letter conditions different than tt occur only in plays corresponding to “if”
and “while” constructs. In the case of “if” command, when the value of the first
argument given by the symbol Z is true then its second argument is run, other-
wise if ¬Z is true then its third argument is run. A composite term c(M1, . . . ,Mk)
built out of a language construct “c” and subterms M1, . . . ,Mk is interpreted by
composing the regular expressions for M1, . . . ,Mk and the regular expression for
“c”. Composition of regular expressions (o9) is defined as “parallel composition
plus hiding in CSP” [1]. Conditions of the shared (interacting) guarded letters in
the composition are conjoined, along with the condition that their symbolic let-
ters are equal [9]. The cell〈x〉

v regular expression in Table 2 is used to impose the
good variable behaviour on a local variable x introduced using newD x :=v inM .
Note that v is the initial value of x , and X is a symbol used to track the current
value of x . The cell〈x〉

v plays the most recently written value in x in response to
read, or if no value has been written yet then answers read with the initial value
v . The model [[newD x := v in M]] is obtained by constraining the model of M ,
[[newD x � M]], only to those plays where x exhibits good variable behaviour
described by cell〈x〉

v , and then by deleting (hiding) all moves associated with x
since x is a local variable and so not visible outside of the term [9].

The following formal results are proved in [9]. We define an effective alphabet
of a regular expression to be the set of all letters that appear in the language
denoted by that regular expression. The effective alphabet of a regular expres-
sion representing any term Γ � M : T contains only a finite subset of letters

Symbolic Game Semantics for Model Checking Program Families 29

from Agu
[[Γ	T]], which includes all constants, symbols, and expressions used for

interpreting free identifiers, language constructs, and local variables in M .

Theorem 1. For any IA2 term, the set L[[Γ � M : T]] is a symbolic regular-
language over its effective (finite) alphabet. Moreover, a finite-state symbolic
automata A[[Γ � M : T]] which recognizes it is effectively constructible.

Suppose that there is a special free identifier abort of type com. We say that
a term Γ � M is safe iff Γ � M [skip/abort]�∼ M [diverge/abort]; otherwise we
say that a term is unsafe. Hence, a safe term has no computation that leads
to running abort. Let L[[Γ � M : T]]CR denotes the (standard) regular-language
representation of game semantics for a term M obtained as in [12], where concrete
values are used. Since this representation is fully abstract, and so there is a close
correspondence with the operational semantics, the following holds [7].

Proposition 1. A term Γ � M : T is safe iff L[[Γ � M : T]]CR does not contain
any play with moves from A〈abort〉

[[com]] , which we call unsafe plays.

The following result [9] confirms that symbolic automata (models) can be used
for establishing safety of terms.

Theorem 2. L[[Γ �M :T]] is safe (all plays are safe) iff L[[Γ �M :T]]CR is safe.

For example, [[abort : comabort � skip ; abort : com]] = run · runabort · doneabort ·
done, so this term is unsafe.

Since symbolic automata are finite state, we can use model-checking tech-
niques to verify safety of IA2 terms with integers. The verification procedure
proposed in [9] searches for unsafe plays in the symbolic automata representing
a term. If an unsafe play is found, it calls an external SMT solver (Yices) to
check consistency (satisfiability) of its play condition. If the condition is con-
sistent, then a concrete counterexample is reported. We showed in [9] that the
procedure is correct and semi-terminating (terminates for unsafe terms, but may
diverge for safe terms) under assumption that constraints generated by any pro-
gram can be checked for consistency by some (SMT) solver.

Example 1. Consider the term family M from Table 1 in Sect. 1. The symbolic
model for the term A∧B is given in Fig. 2a. The term asks for a value of the non-
local expression n with the move qn two times, and the environment provides
as answers symbols N and M . When the difference N − M is 1, then abort
command is run. The symbolic model in Fig. 2a contains one unsafe play:[?X =
0, run〉 · qn ·?N n · [?X = X +N , qn〉·?M n · [?X = X −M ∧ X = 1, runabort 〉 ·
doneabort · done, which after instantiating its input symbols with fresh names
becomes: [X1 = 0, run〉 · qn · N n · [X2 = X1 +N , qn〉 · M n · [X3 = X2 −M ∧
X3 = 1, runabort〉 · doneabort · done. An SMT solver will inform us that its play
condition (X1 = 0 ∧ X2 = X1+N ∧ X3 = X2−M ∧ X3 = 1) is satisfiable, yielding
a possible assignment of concrete values to symbols: X1 = 0,N = 1,X2 =
1,M = 0, and X3 = 1. Thus, the corresponding concrete counterexample will
be: run·qn ·1n ·qn ·0n ·runabort ·doneabort ·done. Similarly, concrete counterexamples
for terms A∧¬B and ¬A∧B can be generated; and it can be verified that the
term ¬A∧¬B is safe. ��

30 A.S. Dimovski

3.2 Symbolic Models of IA2

We extend the definition of guarded alphabet Agu as the set of triples of feature
expressions, boolean conditions and symbolic letters:

Agu+f = {[φ, b, α〉 | φ ∈ FeatExp(F), b ∈ BExp, α ∈ Asym}
Thus, a guarded letter [φ, b, α〉 means that α is triggered only if b evalu-
ates to true in valid configurations k ∈ K that satisfy φ. That is, every let-
ter is labelled with a feature expression that defines products able to per-
form the letter. As before, we write only α for [tt , tt , α〉. A word [φ1, b1, α1〉 ·
[φ2, b2, α2〉 . . . [φn , bn , αn〉 over Agu+f can be written as a triple [φ1 ∧ . . . ∧
φn , b1 ∧ . . . ∧ bn , α1 · . . . ·αn〉. Its meaning is that the word α1 · . . . ·αn is feasible
only if the condition b1 ∧ . . . ∧ bn is satisfiable, and only for valid configurations
that satisfy φ1 ∧ . . . ∧ φn . Regular languages and automata defined over Agu+f

are called featured symbolic.
We can straightforwardly extend the symbolic representation of all IA2 terms

in the new setting by extending all guarded letters with the value tt for the first
(feature expression) component. Now, we are ready to give representation of the
compile-time conditional term:

[[Γ �F #if φ thenM elseM ′]] = [[Γ � M]] o
9 [[Γ � M ′]] o

9 [[#if]]φ

where o
9 is the composition operator, and the interpretation of the compile-time

conditional construct parameterized by the feature expressions φ is:

[[#if : com〈1〉 × com〈2〉 → com]]φ =

run · (
[φ, tt , run〈1〉〉 · done〈1〉 + [¬φ, tt , run〈2〉〉 · done〈2〉) · done

That is, the first argument of #if is run for those configurations that satisfy φ,
whereas the second argument of #if is run for configurations satisfying ¬φ.

Again, the effective alphabet of [[Γ �F M : T]] for any IA2 term is a finite
subset of Agu+f

[[Γ	FT]]. Hence, the automata corresponding to [[Γ �F M : T]] is effec-
tively constructible, and we call it featured symbolic automata (FSA). Basically,
an FSA is a SA augmented with transitions labelled (guarded) with feature
expressions. We denote it as FSA[[Γ �F M : T]] = (Q , i , δ,F), where Q is a set
of states, i is the initial state, δ is a transition function, and F ⊆ Q is the set
of final states. The purpose of an FSA is to model behaviours (computations) of
the entire program family and link each computation to the exact set of prod-
ucts able to execute it. From an FSA, we can obtain the model of one particular
product through projection. This transformation is entirely syntactical and con-
sists in removing all transitions (moves) linked to feature expressions that are
not satisfied by a configuration k ∈ K.

Definition 1. The projection of FSA[[Γ �F M : T]] = (Q , i , δ,F) to a config-
uration k ∈ K, denoted as FSA[[Γ �F M : T]] |k , is the symbolic automaton
A = (Q , i , δ′,F), where δ′ = {(q1, [b, a〉, q2) | (q1, [φ, b, a〉, q2) ∈ δ ∧ k |= φ}.

Symbolic Game Semantics for Model Checking Program Families 31

Theorem 3 (Correctness). FSA[[Γ �F M : T]] |k= A[[Γ � πk (M) : T]].

Example 2. Consider the term family M from Introduction. Its FSA is given in
Fig. 3. Letters represent triples, where the first component indicates which valid
configurations can enable the corresponding move. For example, we can see that
the unsafe play obtained after instantiating its input symbols with fresh names:
[tt ,X1 = 0, run〉 · [A, tt , qn〉 · N n · [B ,X2 = X1+N , qn〉 · M n · [tt ,X3 = X2−M ∧
X3 = 1, runabort 〉 · doneabort · done, is feasible when N = 1 and M = 0 for the
configuration A∧B . ��

4 Model Checking Algorithms

The general model checking problem for program families consists in determining
which products in the family are safe, and which are not safe. The goal is to
report all products that are not safe and to provide a counterexample for each.

A straightforward but rather naive algorithm to solve the above problem is
to check all valid programs individually. That is, compute the projection of each
valid configuration, generate its model, and verify it using standard algorithms.
This is so-called brute force approach, and it is rather inefficient. Indeed, all
programs (exponentially many in the worst case) will be explored in spite of
their great similarity. We now propose an alternative algorithm, which explores
the set of reachable states in the FSA of a program family rather than the
individual models of all its products. We aim to take advantage of the compact
structure of FSAs in order to solve the above general model checking problem.

A model checker is meant to perform a search in the state space of the FSA
(Q , i , δ,F) and to indicate safe and unsafe products. This boils down to checking

if an ‘unsafe’ state q ′ ∈ Q with q
[φ,b,runabort〉−→ q ′ is reachable in the FSA. This can

be accomplished with a Breadth-First Search (BFS) in the FSA that encounters
all states that are reachable from the initial state and checks whether one of
them is ‘unsafe’. In this way, the BFS finds the shortest unsafe play for any
product. The algorithm is shown in Fig. 4. It maintains a reachability relation

) that stores a set of pairs (q , px) where q is marked as a visited
state for the valid products from px ⊆ K; a queue Queue that keeps track of
all states that still have to be visited (explored), and a set of counterexamples
unsafe. R is first initialized by the initial state i ∈ Q that is reachable for all valid
products, i.e. (i , K) ∈ R. For (q , px) ∈ R, we write R(q) for the set of products
px . Queue supports the operations: remove which returns and deletes the first
element of Queue, and put which inserts a new element at the back of Queue.
In Queue along with each state q , we store a trace, trace(q), that shows how q
is reached from the initial state i . For each visited state, it is checked whether
that state is unsafe (line 6). Each time an unsafe state q is reached, the pair
(e, px ′) = complete(q , px , trace(q)) is added to unsafe where: ‘e’ is a complete
counterexample generated by looking at the trace kept on Queue along with q
and by finding the shortest trace from q to an accepting state (by performing an
embedded BFS); and px ′ is the corresponding set of unsafe products. Note that e

32 A.S. Dimovski

Input: FSA[[Γ �F M]] = (Q , i , δ,F) and valid configs. K
Output: true if M is safe; otherwise false plus a set of counterexamples
1. R := {(i ,K)}
2. Queue := [(i ,K)]
3. unsafe := ∅,Kunsafe := ∅
4. while (Queue �= [])do
5. (q , px) := remove(Queue)
6. if (q is UNSAFE) then
7. (e, px ′) := complete(q , px , trace(q))
8. unsafe := unsafe ∪ (e, px ′),Kunsafe :=Kunsafe ∪ px ′

9. Queue :=Queue − {(q , px) ∈ Queue | px ⊆ Kunsafe}
10. else new :=

{
(q ′, px ′\R(q ′)) |q[φ,b,m〉−→ q′,px ′={k∈px |k|=φ,k �∈Kunsafe},px ′\R(q′) �=∅

}

11. while (new �= ∅)do
12. (q ′, px ′) := remove(new)
13. R(q ′) :=R(q ′) ∪ px ′

14. put((q ′, px ′),Queue)}
15. end
16. end
17. end
18. return(unsafe �= ∅), unsafe

Fig. 4. Model checking algorithm for verifying safety based on specialized BFS

represents the shortest unsafe play for the products in px ′. At each iteration, the
BFS calculates the set new of unvisited successors of the current state, filtering
out states and products that are already visited in R. Assuming that we have a

transition q
[φ,b,α〉−→ q ′ and the source state q is reachable by products in px , the

target state q ′ is reachable for products in {k ∈ px | k |= φ}. Given an FSA
as input, the algorithm in Fig. 4 calculates all reachable states from the initial
state i . When the search finishes and unsafe is empty, the algorithm returns
true; otherwise it returns false and the set unsafe.

After having found an unsafe state, our algorithm will continue exploration
until the entire model is explored. Since the aim is to identify violating prod-
ucts, it can ignore products that are already known to violate, Kunsafe , that is
∪(e,px)∈unsafepx . In the BFS, this can be achieved by filtering out states with
products px ⊆ Kunsafe as part of the calculation of new . This can only eliminate
newly discovered states, not those that are already on the queue. States on the
queue can be filtered out by removing elements (q , px) for which px ⊆ Kunsafe

(line 9).
Compared to the standard BFS, where visited states are marked with

Boolean visited flags and no state is visited twice, in our algorithm visited states
are marked with sets of products (for which those states are visited) and a state
can be visited multiple times. This is due to the fact that when the BFS arrives
at a state s for the second time, such that R(q) = px , (q , px ′) ∈ new , and

Symbolic Game Semantics for Model Checking Program Families 33

The procedure checks safety of a given term family Γ �F M : T .

1 The BFS from Fig. 4 is called with arguments: FSA[[Γ �FM]] and K.
2 If no unsafe play is found, terminate with answer SAFE.
3 Otherwise, find Kunsafe = ∪(e,px)∈unsafepx . For all products in K\Kunsafe report

that they are SAFE. The mechanism for fresh symbol generation is used to
instantiate all input symbols in the unsafe plays e, and their conditions are
tested for consistency.

4 If the condition of some play e from (e, px) ∈ unsafe is consistent, report the
corresponding products px as UNSAFE with counterexample e. Otherwise
generate K

′ ⊆ Kunsafe that contains all products associated with inconsistent
plays. Then go to Step 1, i.e. call BFS with arguments: FSA[[Γ �FM]] without
all inconsistent unsafe plays and K

′.

Fig. 5. Verification procedure (VP)

px ′
� px , then s although already visited, has to be re-explored since transi-

tions that were disallowed for px during the first visit of q might be now allowed
for px ′.

The complete verification procedure for checking safety of term families is
described in Fig. 5. In each iteration, it calls the BFS from Fig. 4 and finds some
safe products and (unsafe) products for which a genuine (consistent) counterex-
ample is reported. To prevent the model checker to consider these products (for
which conclusive results are previously found), the BFS in the next iteration
is called with updated arguments, i.e. only for configurations with no conclu-
sive results. We first show that the projection πk commutes with our “lifted”
verification procedure, which is applied directly on the level of program families.

Theorem 4 (Correctness). Γ � πk (M) is safe iff FSA[[Γ �F M]] |k is safe.

As a corollary of Theorems 2, 3, 4 we obtain that the VP in Fig. 5 returns
correct answers for all products. Moreover, it terminates for all unsafe products
by generating the corresponding unsafe plays. The VP will find the shortest
consistent unsafe play t for each unsafe product after finite number of calls to
the BFS, that will first find all inconsistent unsafe plays shorter than t (which are
finitely many [9]). However, the VP may diverge for safe products, producing in
each next iteration longer and longer unsafe plays with inconsistent conditions.

5 Implementation

We have extended the prototype tool developed in [9] to implement the VP in
Fig. 5. That tool [9] converts any single (IA2) term into a symbolic automata
representing its game semantics, and then explores the automata for unsafe plays.
The extended tool takes as input a term family, and generates the corresponding
FSA, which is then explored based on the procedure described in Fig. 5. The
tool is implemented in Java along with its own library for working with featured

34 A.S. Dimovski

symbolic automata. The tool calls an external SMT solver Yices to determine
consistency of play conditions. We now illustrate our tool with an example.
The tool, further examples and detailed reports how they execute are available
from: http://www.itu.dk/∼adim/symbolicgc.htm. Consider the following version
of the linear search algorithm, Linear3.

x [k] : varintx [−], y : expinty , abort : comabort �{A,B,C}
newint i := 0 in newint j := 0 in
#if (A) then j := j + 1;
#if (B) then j := j − 1;
#if (C) then j := j + 2;
newint p := y in
while (i < k) do {

if (x [i] = p) && (j = 1) then abort else j := j − 1;
i := i + 1 } : com

The term family contains three features A, B , and C , and hence 8 products can
be produced. In the above, first depending on which features are enabled some
value from −1 to 3 is assigned to j , and then the input expression y is copied
into the local variable p. The non-local array x is searched for an occurrence of
the value stored in p. If the search succeeds j -times (for j > 0), abort is executed.

The arrays are implemented in the symbolic representation by using a special
symbol (e.g., k with an initial constraint k > 0) to represent the length of an
array. A new symbol (e.g., I) is also used to represent the index of the array
element that needs to be de-referenced or assigned to (see [9] for details). If
we also want to check for array-out-of-bounds errors, we can include in the
representation of arrays plays that perform abort moves when I ≥ k .

If the value read from the environment for y occurs j -times (for j > 0) in
the array x , then an unsafe behaviour is found in the FSA of the above term
family. Hence, all products for which the value assigned to j is less than 1 are
safe: ¬A ∧ ¬B ∧ ¬C , ¬A ∧ B ∧ ¬C , and A ∧ B ∧ ¬C . All other products are
unsafe. For example, for products A ∧ B ∧ C and ¬A ∧ ¬B ∧ C (for which j is
set to 2) the tool reports a counterexample that corresponds to a term with an
array of size k = 2, where the values read from the environment for x [0], x [1],
and y are the same, i.e. the following counterexample is generated: run · qy ·
0y · readx [0] · 0x [0] · readx [1] · 0x [1] · runabort · doneabort · done. This counterexample
is obtained after 2 iterations of the VP, and it corresponds to a computation
which runs the body of ‘while’ two times. In the first iteration, an inconsistent
unsafe play is found (its condition contains J = 2∧J = 1, where the symbol J
tracks the current value of j). A consistent counterexample is obtained in the
first iteration for products A ∧ ¬B ∧ ¬C and ¬A ∧ B ∧ C (for which j is 1),
whereas for A ∧ ¬B ∧ C (j is assigned to 3) in the third iteration. The tool
diverges for safe terms, producing longer and longer (inconsistent) unsafe plays
in each next iteration.

We ran our tool on a 64-bit Intel�CoreTM i5 CPU and 8 GB memory. All
times are reported as averages over five independent executions. For our experi-
ments, we use four families: Intro is the family from Table 1 in Sect. 1; Linear3 is

http://www.itu.dk/~adim/symbolicgc.htm

Symbolic Game Semantics for Model Checking Program Families 35

family-based approach brute-force approach
Bench. | K | Time Max Final Time Max Final

Intro 4 0.34 s 25 9 0.78 s 68 28

Linear3 8 1.34 s 51 9 3.86 s 336 72

Linear4 16 2.34 s 57 9 7.28 s 720 144

Linear5 32 4.50 s 63 9 16.27 s 1482 288

Fig. 6. Performance comparison for verifying program families.

the above family for linear search with three features; Linear4 is an extended ver-
sion of Linear3 with one more feature D and command: #if (D) then j := j +3;
and Linear5 is Linear4 extended with one additional feature E and command:
#if (E) then j := j − 2. We restrict our tool to work with bounded number of
iterations (10 in this case) since the VP loops for safe terms. For Linear4 the
tool reports 13 unsafe products with corresponding counterexamples, whereas
for Linear5 21 unsafe products are found. Figure 6 compares the effect (in terms
of Time, the number of states in the maximal model generated during analysis
Max, and the number of states in the final model Final) of verifying bench-
marks using our family-based approach vs. using brute-force approach. In the
latter case, we first compute all products, generate their models, and verify them
one by one by using the tool for single programs [9]. In this case we report the
sum of number of states for the corresponding models in all individual prod-
ucts. We can see that the family-based approach is between 2.3 and 3.6 times
faster (using considerably less space) than the brute-force. We expect even bigger
efficiency gains for families with higher number of products.

6 Related Work and Conclusion

Recently, many so-called lifted techniques have been proposed, which lift exist-
ing single-program analysis techniques to work on the level of program families
(see [18] for a survey). This includes lifted type checking [3], lifted model check-
ing [4], lifted data-flow analysis [11], etc. Classen et al. have proposed featured
transition systems (FTSs) in [4] as the foundation for behavioural specification
and verification of variational systems. An FTS, which is feature-aware exten-
sion of the standard transition systems, represents the behaviour of all instances
of a variational system. They show how the family-based model checking algo-
rithms for verifying FTSs against fLTL properties are implemented in the SNIP
model checker. The input language to SNIP is fPromela, which is a feature-aware
extension of Promela. In this work, we also propose special family-based model
checking algorithms. However, they are not applied on models of variational sys-
tems, but on game semantics models extracted from concrete program fragments
with #ifdef-s.

The first application of game semantics to model checking was proposed by
Ghica and McCusker in [12]. They show how game semantics of IA2 with finite

36 A.S. Dimovski

data-types can be represented in a remarkably simple form by regular-languages.
Subsequently, several algorithms have been proposed for model checking IA2 with
infinite data types [7,9]. The automata-theoretic representation of game seman-
tics have been also extended to programs with various features: concurrency [13],
third-order functions [16], probabilistic constructs [15], nondeterminism [6], etc.

To conclude, in this work we introduce the featured symbolic automata
(FSA), a formalism designed to describe the combined game semantics mod-
els of a whole program family. A specifically designed model checking technique
allows us to verify safety of an FSA. The proposed approach can be extended to
support multi-features and numeric features. So-called variability abstractions
[10,11] can also be used to define abstract family-based model checking.

References

1. Abramsky, S., McCusker, G.: Linearity, sharing and state: a fully abstract game
semantics for idealized algol with active expressions. Electr. Notes Theor. Comput.
Sci. 3, 2–14 (1996)

2. Apel, S., von Rhein, A., Wendler, P., Größlinger, A., Beyer, D.: Strategies for
product-line verification: case studies and experiments. In: 35th International Con-
ference on Software Engineering, ICSE 2013, pp. 482–491 (2013)

3. Chen, S., Erwig, M., Walkingshaw, E.: An error-tolerant type system for variational
lambda calculus. In: ACM SIGPLAN International Conference on Functional Pro-
gramming, ICFP 2012, pp. 29–40. ACM (2012)

4. Classen, A., Cordy, M., Schobbens, P.-Y., Heymans, P., Legay, A., Raskin, J.-F.:
Featured transition systems: foundations for verifying variability-intensive systems
and their application to LTL model checking. IEEE Trans. Softw. Eng. 39(8),
1069–1089 (2013)

5. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.
Addison-Wesley, Boston (2001)

6. Dimovski, A.: A compositional method for deciding equivalence and termination
of nondeterministic programs. In: Méry, D., Merz, S. (eds.) IFM 2010. LNCS, vol.
6396, pp. 121–135. Springer, Heidelberg (2010)

7. Dimovski, A., Ghica, D.R., Lazić, R.: Data-abstraction refinement: a game
semantic approach. In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672,
pp. 102–117. Springer, Heidelberg (2005)

8. Dimovski, A., Lazic, R.: Compositional software verification based on game seman-
tics and process algebra. STTT 9(1), 37–51 (2007)

9. Dimovski, A.S.: Program verification using symbolic game semantics. Theor. Com-
put. Sci. 560, 364–379 (2014)

10. Dimovski, A.S., Al-Sibahi, A.S., Brabrand, C., W ↪asowski, A.: Family-based model
checking without a family-based model checker. In: Fischer, B., Geldenhuys, J.
(eds.) SPIN 2015. LNCS, vol. 9232, pp. 282–299. Springer, Heidelberg (2015)

11. Dimovski, A.S., Brabrand, C., Wasowski, A.: Variability abstractions: trading
precision for speed in family-based analyses. In: 29th European Conference on
Object-Oriented Programming, ECOOP 2015. LIPIcs, vol. 37, pp. 247–270. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2015)

12. Ghica, D.R., McCusker, G.: The regular-language semantics of second-order ideal-
ized algol. Theor. Comput. Sci. 309(1–3), 469–502 (2003)

Symbolic Game Semantics for Model Checking Program Families 37

13. Ghica, D.R., Murawski, A.S.: Compositional model extraction for higher-order
concurrent programs. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS,
vol. 3920, pp. 303–317. Springer, Heidelberg (2006)

14. Hyland, J.M.E., Luke Ong, C.-H.: On full abstraction for PCF: I, II, and III. Inf.
Comput. 163(2), 285–408 (2000)

15. Legay, A., Murawski, A.S., Ouaknine, J., Worrell, J.: On automated verification
of probabilistic programs. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008.
LNCS, vol. 4963, pp. 173–187. Springer, Heidelberg (2008)

16. Murawski, A.S., Walukiewicz, I.: Third-order idealized Algol with iteration is decid-
able. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 202–218. Springer,
Heidelberg (2005)

17. Reynolds, J.C.: The essence of Algol. In: O’Hearn, P.W., Tennent, R.D. (eds.)
Algol-like Languages. Birkhaüser, Basel (1997)

18. Thüm, T., Apel, S., Kästner, C., Schaefer, I., Saake, G.: A classification and survey
of analysis strategies for software product lines. ACM Comput. Surv. 47(1), 6
(2014)

Compositional Semantics and Analysis
of Hierarchical Block Diagrams

Iulia Dragomir1(B), Viorel Preoteasa1, and Stavros Tripakis1,2

1 Aalto University, Espoo, Finland
{iulia.dragomir,viorel.preoteasa,stavros.tripakis}@aalto.fi

2 University of California, Berkeley, USA

Abstract. We present a compositional semantics and analysis frame-
work for hierarchical block diagrams (HBDs) in terms of atomic and
composite predicate transformers. Our framework consists of two com-
ponents: (1) a compiler that translates Simulink HBDs into an algebra
of transformers composed in series, in parallel, and in feedback; (2) an
implementation of the theory of transformers and static analysis tech-
niques for them in Isabelle. We evaluate our framework on several case
studies including a benchmark Simulink model by Toyota.

1 Introduction

Simulink1 is a widely used tool for modeling and simulating embedded control
systems. Simulink uses a graphical language based on hierarchical block diagrams
(HBDs). HBDs are networks of interconnected blocks, which can be either basic
blocks from Simulink’s libraries, or composite blocks (subsystems), which are
themselves HBDs. Hierarchy is the primary modularization mechanism that lan-
guages like Simulink offer. It allows to structure large models and thus master
their complexity, improve their readability, and so on.

In this paper we present a compositional semantics and analysis framework
for HBDs, including but not limited to Simulink models. By “compositional” we
mean exploiting the hierarchical structure of these diagrams, for instance, reason-
ing about individual blocks and subsystems independently, and then composing
the results to reason about more complex systems. By “analysis”, we mean differ-
ent types of checks, including exhaustive verification (model-checking), but also
static analysis such as compatibility checking, which aims to check whether the
connections between two or more blocks in the diagram are valid, i.e., whether
the blocks are compatible.

Our framework is based on the theories of relational interfaces and refine-
ment calculus of reactive systems [19,23]. The framework can express open,
non-deterministic, and non-input-receptive systems, and both safety and live-
ness properties. As syntax, we use (temporal or non) logic formulas on input,

This work has been partially supported by the Academy of Finland, the U.S. National
Science Foundation (awards #1329759 and #1139138), and by UC Berkeley’s
iCyPhy Research Center (supported by IBM and United Technologies).

1 http://www.mathworks.com/products/simulink/.

c© Springer International Publishing Switzerland 2016
D. Bošnački and A. Wijs (Eds.): SPIN 2016, LNCS 9641, pp. 38–56, 2016.
DOI: 10.1007/978-3-319-32582-8 3

http://www.mathworks.com/products/simulink/

Compositional Semantics and Analysis of Hierarchical Block Diagrams 39

Fig. 1. Three ways to view and translate the same block diagram.

output, and state variables. As semantics we use predicate and property trans-
formers [2,19]. To form complex systems from simpler ones we use composition
in series, in parallel, and in feedback. Apart from standard verification (of a sys-
tem against a property) the framework offers: (1) compatibility checking during
composition; and (2) refinement, a binary relation between components, which
characterizes substitutability (when can a component replace another one while
preserving system properties). Compatibility checking is very useful, as it offers a
lightweight alternative to verification, akin to type-checking [23]. Refinement has
multiple usages, including compositional and incremental design, and reusabil-
ity. This makes the framework compelling for application on tools like Simulink,
which have a naturally compositional hierarchical language.

In order to define the semantics of HBDs in a compositional framework, one
needs to do two things. First, define the semantics of every basic block in terms
of an atomic element of the framework. We do this by defining for each Simulink
basic block a corresponding (atomic) monotonic predicate transformer (MPT).
Second, one must define the semantics of composite diagrams. We do this by
mapping such diagrams to composite MPTs (CPTs), i.e., MPTs composed in
series, in parallel, or in feedback.

As it turns out, mapping HBDs to CPTs raises interesting problems. For
example, consider the block diagram in Fig. 1a. Let PA and PB be transformers
modeling the blocks A and B in the diagram. How should we compose PA and
PB in order to get a transformer that represents the entire diagram? As it turns
out, there are several possible options. One option is to compose first PA and PB

in series, and then compose the result in feedback, following Fig. 1a. This results
in the composite transformer feedbacka(PA ◦ (PB ‖ Id)), where ◦ is composition
in series, ‖ in parallel, and feedbackx is feedback applied on port x. Id is the
transformer representing the identity function. A has two outputs and B only one
input, therefore to connect them in series we first form the parallel composition
PB ‖ Id, which represents a system with two inputs.

Another option is to compose the blocks in series in the opposite order,
PB followed by PA, and then apply feedback. This results in the transformer
feedbackc((PB ‖ Id) ◦ PA). A third option is to compose the two blocks first
in parallel, and then apply feedback on the two ports a, c. This results in the
transformer feedbacka,c(PA ‖ PB). Although semantically equivalent, these three
transformers have different computational properties.

Clearly, for complex diagrams, there are many possible translation options.
A main contribution of this paper is the study of these options in depth.

40 I. Dragomir et al.

Specifically, we present three different translation strategies: feedback-parallel
translation which forms the parallel composition of all blocks, and then applies
feedback; incremental translation which orders blocks topologically and com-
poses them one by one; and feedbackless translation, which avoids feedback com-
position altogether, provided the original block diagram has no algebraic loops.

Having defined the compositional semantics of HBDs in terms of CPTs, we
turn to analysis. Our main focus in this paper is checking diagram compatibility,
which roughly speaking means that the input requirements of every block in
the diagram are satisfied [19,23]. We check compatibility by (1) expanding the
definitions of CPTs to obtain an atomic MPT; (2) simplifying the formulas in
the atomic MPT; and (3) checking satisfiability of the resulting formulas.

We report on a toolset which implements the framework described above. The
toolset consists of (1) the simulink2isabelle compiler which translates hierar-
chical Simulink models into CPTs implemented in the Isabelle proof assistant2,
and (2) the implementation of the theory of CPTs, together with expansion and
simplification techniques in Isabelle. We evaluate our framework on several case
studies, including a Fuel Control System benchmark by Toyota [10,11].

2 Hierarchical Block Diagrams

A hierarchical block diagram (HBD) is a network of interconnected blocks.3

Blocks can be either basic blocks (from Simulink libraries), or composite blocks
(subsystems). A basic block is described by: (1) a label, (2) a list of parameters,
(3) a list of in- and out-ports, (4) a vector of state variables with predefined
initial values (i.e., the local memory of a block) and (5) functions to compute
the outputs and next state variables. The outputs are computed from the inputs,
current state and parameters. State variables are updated by a function with the
same arguments. Subsystems are defined by their label, list of in- and out-ports,
and the list of block instances that they contain – both atomic and composite.

Simulink allows to model both discrete and continuous-time blocks. For
example, UnitDelay (graphically represented as the 1

z block in a Simulink dia-
gram) is a discrete-time block which outputs at step n the input at step n−1. An
Integrator is a continuous-time block whose output is described by a differential
equation solved with numerical methods. We interpret a Simulink model as a
discrete-time model (essentially an input-output state machine, possibly infinite-
state) which evolves in a sequence of discrete steps. Each step has duration Δt,
which is a parameter (user-defined or automatically computed by Simulink based
on the blocks’ time rates).

Algebraic-Loop-Free Diagrams. In this paper we consider diagrams which
are free from algebraic loops. By “algebraic loop” we mean a feedback loop result-
ing in instantaneous cyclic dependencies. More precisely, the way we define and
2 https://isabelle.in.tum.de/.
3 Our exposition focuses on HBDs as implemented in Simulink, but our method and
tool can also be applied to other block-diagram based languages with minor changes.

https://isabelle.in.tum.de/

Compositional Semantics and Analysis of Hierarchical Block Diagrams 41

~=

~=

f(u)

Fuel Cmd Open Pwr

f(u)

Fuel Cmd Open

f(u)

Fuel Cmd Closed

Fig. 2. An extract of Toyota’s Simulink Fuel Control System model [10,11]: this dia-
gram is algebraic-loop-free despite the fact that the feedback loop in red is not “broken”
by blocks such as Integrator or UnitDelay (Color figure online).

check for algebraic loops is the following: first, we build a directed dependency
graph whose nodes are the input/output ports of the diagram, and whose edges
correspond to connections or to input-output dependencies within a block; sec-
ond, we check whether this graph has a cycle. The class of algebraic-loop-free
diagrams includes all diagrams whose feedback loops are “broken” by blocks such
as Integrator or UnitDelay. The output of such blocks does not depend on their
input (it only depends on their state), which prevents a cycle from forming in
the dependency graph. For example, the diagram of Fig. 1 is algebraic-loop-free
if the output of block B does not depend on its input.

But algebraic-loop-free diagrams can also be diagrams where feedback loops
are not broken by Integrators or UnitDelays. An example is shown in Fig. 2.
Despite the feedback loop in red, which creates an apparent dependency cycle,
this diagram is algebraic-loop-free. The reason is that the Fuel Cmd Open block

is the function
1

14.7
(−0.366 + 0.08979u7u3 − 0.0337u7u

2
3 + 0.0001u2

7u3), where

u = (u1, u2, ..., u7) is the input vector. This function only depends on variables
u3, u7 of the vector u, and is independent from u1, u2, u4, u5, u6. Since the
output of the block does not depend on the 6th input link (i.e., u6), the cycle
is broken. Similarly, the outputs of Fuel Cmd Open Pwr and Fuel Cmd Closed
are also independent from u6, which prevents the other two feedback loops from
forming a cyclic dependency. This type of algebraic-loop-free pattern abounds
in Simulink models found in the industry.

Running Example. Throughout the paper we illustrate our methods using a
simple example of a counter, shown in Fig. 3. This is a hierarchical (two-level)
Simulink model. The top-level diagram (Fig. 3a) contains three block instances:
the step of the counter as a Constant basic block, the subsystem DelaySum, and
the Scope basic block which allows to view simulation results. The subsystem
DelaySum (Fig. 3b) contains a UnitDelay block instance which models the state
of the counter. UnitDelay can be specified by the formula a = s ∧ s′ = c, where c
is the input, a the output, s the current state and s′ the next state variable. We
assume that s is initially 0. The Add block instance adds the two input values
and outputs the result in the same time step: c = f + e. The junction after link
a (black dot in the figure) can be seen as a basic block duplicating (or splitting)
its input to its two outputs: f = a ∧ g = a.

42 I. Dragomir et al.

Fig. 3. Simulink model of a counter with step 1.

3 Basic Blocks as Monotonic Predicate Transformers

Monotonic predicate transformers [6] (MPTs) are an expressive formalism, used
within the context of programming languages to model non-determinism, cor-
rectness (both functional correctness and termination), and refinement [2]. In
this paper we show how MPTs can also be used to give semantics to HBDs. We
consider basic blocks in this section, which can be given semantics in terms of
atomic MPTs. In the next section we consider general diagrams, which can be
mapped to composite MPTs.

3.1 Monotonic Predicate Transformers

A predicate on an arbitrary set Σ is a function q : Σ → Bool. Predicate q can
also be seen as a subset of Σ: for σ ∈ Σ, σ belongs to the subset iff q(σ) is true.
Predicates can be ordered by the subset relation: we write q ≤ q′ if predicate q,
viewed as a set, is a subset of q′. Pred(Σ) denotes the set of predicates Σ → Bool.

A predicate transformer is a function S : (Σ′ → Bool) → (Σ → Bool), or
equivalently, S : Pred(Σ′) → Pred(Σ). S takes a predicate on Σ′ and returns a
predicate on Σ. S is monotonic if ∀q, q′ : q ≤ q′ ⇒ S(q) ≤ S(q′).

Traditionally, MPTs have been used to model sequential programs using
weakest precondition semantics. Given a MPT S : (Σ′ → Bool) → (Σ → Bool),
and a predicate q′ : Σ′ → Bool capturing a set of final states, S(q′) captures the
set of all initial states, such that if the program is started in any state in S(q′),
it is guaranteed to finish in some state in q′. But this is not the only possible
interpretation of S. S can also model input-output systems. For instance, S
can model a stateless system with a single inport ranging over Σ, and a single
outport ranging over Σ′. Given a predicate q′ characterizing a set of possible
output values, S(q′) characterizes the set of all input values which, when fed into
the system, result in the system outputting a value in q′. As an example, the
identity function can be modeled by the MPT Id : Pred(Σ) → Pred(Σ), defined
by Id(q) = q, for any q.

MPTs can also model stateful systems. For instance, consider the UnitDelay
described in Sect. 2. Let the input, output, and state variable of this system
range over some domain Σ. Then, this system can be modeled as a MPT S :
Pred(Σ × Σ) → Pred(Σ × Σ). The Cartesian product Σ × Σ captures pairs of
(input, current state) or (output, next state) values. Intuitively, we can think of
this system as a function which takes as input (x, s), the input x and the current

Compositional Semantics and Analysis of Hierarchical Block Diagrams 43

state s, and returns (y, s′), the output and the next state s′, such that y = s
and s′ = x. The MPT S can then be defined as follows:

S(q) = {(x, s) | (s, x) ∈ q}.

In the definition above we view predicates q and S(q) as sets.
Syntactically, a convenient way to specify systems is using formulas on input,

output, and state variables. For example, the identity system can be specified
by the formula y = x, where y is the output variable and x is the input. The
UnitDelay system can be specified by the formula y = s ∧ s′ = x. We next
introduce operators which define MPTs from predicates and relations.

For a predicate p : Σ → Bool and a relation r : Σ → Σ′ → Bool, we define
the assert MPT, {p} : Pred(Σ) → Pred(Σ), and the non-deterministic update
MPT, [r] : Pred(Σ′) → Pred(Σ), where:

{p}(q) = (p ∧ q) and [r](q) = {σ | ∀σ′ : σ′ ∈ r(σ) ⇒ σ′ ∈ q}
Transformer {p} is used to model non-input-receptive systems, that is, sys-

tems where some inputs are illegal [23]. {p} constrains the inputs so that they
must satisfy predicate p. It accepts only those inputs and behaves like the identity
function. That is, {p} models a partial identity function, restricted to the domain
p. Transformer [r] models an input-receptive but possibly non-deterministic sys-
tem. Given input σ, the system chooses non-deterministically some output σ′

such that σ′ ∈ r(σ) is true. If no such σ′ exists, then the system behaves mirac-
ulously [2]. In our framework we ensure non-miraculous behavior as explained
below, therefore, we do not detail further this term.

3.2 Semantics of Basic Blocks as Monotonic Predicate Transformers

To give semantics to basic Simulink blocks, we often combine {p} and [r] using
the serial composition operator ◦, which for predicate transformers is simply
function composition. Given two MPTs S : Pred(Σ2) → Pred(Σ1) and T :
Pred(Σ3) → Pred(Σ2), their serial composition (S ◦ T) : Pred(Σ3) → Pred(Σ1)
is defined as (S ◦ T)(q) = S(T (q)).

For example, consider a block with two inputs x, y and one output z, per-
forming the division z = x

y . We want to state that division by zero is illegal,
and therefore, the block should reject any input where y = 0. This block can be
specified as the MPT

Div = {λ(x, y) : y
= 0} ◦ [λ(x, y), z : z =
x

y
]

where we employ lambda-notation for functions.
In general, and in order to ensure non-miraculous behavior, we model non-

input-receptive systems using a suitable assert transformer {p} such that in
{p} ◦ [r], if p is true for some input x, then there exists output y such that (x, y)
satisfies r. MPTs which do not satisfy this condition are not considered in our
framework. This is the case, for example, of the MPT [λ(x, y), z : y
= 0∧z = x

y].

44 I. Dragomir et al.

For a function f : Σ → Σ′ the functional update [f] : Pred(Σ′) → Pred(Σ) is
defined as [λσ, σ′ : σ′ = f(σ)] and we have

[f](q) = {σ | f(σ) ∈ q} = f−1(q)

Functional predicate transformers are of the form {p} ◦ [f], and relational
predicate transformers are of the form {p} ◦ [r], where p is a predicate, f is a
function, and r is a relation. Atomic predicate transformers are either functional
or relational transformers. Div is a functional predicate transformer which can
also be written as Div = {λx, y : y
= 0} ◦ [λx, y : x

y].
For assert and update transformers based on Boolean expressions we intro-

duce a simplified notation that avoids lambda abstractions. If P is a Boolean
expression on some variables x1, . . . , xn, then {x1, . . . , xn : P} denotes the assert
transformer {λx1, . . . , xn : P}. Similarly if R is a Boolean expression on vari-
ables x1, . . . , xn, y1, . . . , yk and F is a tuple of expressions on variables x1, . . . , xn,
then [x1, . . . , xn � y1, . . . , yk : R] and [x1, . . . , xn � F] are notations for
[λ(x1, . . . , xn), (y1, . . . , yk) : R] and [λx1, . . . , xn : F], respectively. With these
notations the Div transformer becomes:

Div = {x, y : y
= 0} ◦ [x, y � x

y
]

Other basic Simulink blocks include constants, delays, and integrators. Let
us see how to give semantics to these blocks in terms of MPTs. A constant block
parameterized by constant c has no input, and a single output equal to c. As a
predicate transformer the constant block has as input the empty tuple (), and
outputs the constant c:

Const(c) = [() � c]

The unit delay block is modeled as the atomic predicate transformer

UnitDelay = [x, s � s, x]

Simulink includes continuous-time blocks such as the integrator, which com-
putes the integral

∫ x

0
f of a function f . Simulink uses different integration meth-

ods to simulate this block. We use the Euler method with fixed time step Δt
(a parameter). If x is the input, y the output, and s the state variable of the
integrator, then y = s and s′ = s + x · Δt . Therefore, the integrator can be
modeled as the MPT

Integrator(Δt) = [x, s � s, s + x · Δt]

All other Simulink basic blocks fall within these cases discussed above. Rela-
tion (1) introduces the definitions of some blocks that we use in our examples.

Add = [x, y � x + y] Split = [x � x, x] Scope = Id. (1)

Compositional Semantics and Analysis of Hierarchical Block Diagrams 45

4 HBDs as Composite Predicate Transformers

4.1 Composite Predicate Transformers

The semantics of basic Simulink blocks is defined using monotonic predicate
transformers. To give semantics to arbitrary block diagrams, we map them to
composite predicate transformers (CPTs). CPTs are expressions over the atomic
predicate transformers using serial, parallel, and feedback composition operators.
Here we focus on how these operators instantiate on functional predicate trans-
formers, which are sufficient for this paper. The complete formal definitions of
the operators can be found in [7] and in the Isabelle theories that accompany
this paper.4

Serial composition ◦ has already been introduced in Sect. 3.1. For two func-
tional predicate transformers S = {p} ◦ [f] and T = {p′} ◦ [f ′], it can be shown
that their serial composition satisfies:

S ◦ T = {p ∧ (p′ ◦ f)} ◦ [f ′ ◦ f] (2)

(2) states that input x is legal for S ◦ T if x is legal for S and the output of S,
f(x), is legal for T , i.e., (p ∧ (p′ ◦ f))(x) = p(x) ∧ p′(f(x)) is true. The output of
S ◦ T is (f ′ ◦ f)(x) = f ′(f(x)).

For two MPTs S : Pred(Y) → Pred(X) and T : Pred(Y ′) → Pred(X ′),
their parallel composition is the MPT S ‖ T : Pred(Y × Y ′) → Pred(X × X ′). If
S = {p} ◦ [f] and T = {p′} ◦ [f ′] are functional predicate transformers, then it
can be shown that their parallel composition satisfies:

S ‖ T = {x, x′ : p(x) ∧ p(x′)} ◦ [x, x′ � f(x), f ′(x′)] (3)

(3) states that input (x, x′) is legal for S ‖ T if x is a legal input for S and x′ is
a legal input for T , and that the output of S ‖ T is the pair (f(x), f ′(x′)).

For S : Pred(U ×Y) → Pred(U ×X) as in Fig. 4a, the feedback of S, denoted
feedback(S) : Pred(Y) → Pred(X) is obtained by connecting output v to input u
(Fig. 4b). The feedback operator that we use in this paper is a simplified version
of the one defined in [20]. It is specifically designed for a component S having
the structure shown in Fig. 4c, i.e., where the first output v depends only on the
second input x. We call such components decomposable. The result of applying
feedback to a decomposable block is depicted in Fig. 4d.

If S is a decomposable functional predicate transformer, i.e., if S = {p} ◦
[u, x � f ′(x), f(u, x)], then it can be shown that feedback(S) is functional and
it satisfies:

feedback(S) = {x : p(f ′(x), x))} ◦ [x � f(f ′(x), x)] (4)

That is, input x is legal for the feedback if p(f ′(x), x) is true, and the output for
x is f(f ′(x), x).

4 Available at: http://users.ics.aalto.fi/iulia/sim2isa.shtml.

http://users.ics.aalto.fi/iulia/sim2isa.shtml

46 I. Dragomir et al.

u

x
S

v

y

(a)

x
S y

(b)

u

x

f ′

f

v

y

(c)

f ′

x
f y

(d)

Fig. 4. (a) MPT S, (b) feedback(S), (c) decomposable S, (d) feedback of (c).

The fact that the diagram is algebraic-loop-free implies that whenever we
attempt to compute feedback(S), S is guaranteed to be decomposable. However,
we only know that S = {p} ◦ [h] for some p and h, and we do not know what
f and f ′ are. We can compute f and f ′ by setting f = snd ◦ h, f0 = fst ◦ h,
and f ′(x) = f0(u0, x) for some arbitrary fixed u0, where fst and snd are the
functions that select the first and second elements of a pair, respectively.

As an illustration of how CPTs can give semantics to HBDs, consider our
running example (Fig. 3). An example mapping of the DelaySum subsystem and
of the top-level Simulink model yields the following two CPTs:

DelaySum = feedback((Add ‖ Id) ◦ UnitDelay ◦ (Split ‖ Id))
Counter = (Const(1) ‖ Id) ◦ DelaySum ◦ (Scope ‖ Id) (5)

The Id transformers in these definitions are for propagating the state introduced
by the unit delay. Expanding the definitions of the basic blocks, and applying
properties (2), (3), and (4), we obtain the simplified MPTs for the entire system:

DelaySum = [x, s � s, s + x] and Counter = [s � s, s + 1]. (6)

4.2 Translating HBDs to CPTs

As illustrated in the introduction, the mapping from HBDs to CPTs is not
unique: for a given HBD, there are many possible CPTs that we could generate.
Although these CPTs are semantically equivalent, they have different simplifia-
bility properties (see Sects. 4.3 and 5). Therefore, the problem of how exactly to
map a HBD to a CPT is interesting both from a theoretical and from a practical
point of view. In this section, we describe three different translation strategies.

In what follows, we describe how a flat (non-hierarchical), connected diagram
is translated. If the diagram consists of many disconnected “islands”, we can
simply translate each island separately. Hierarchical diagrams are translated
bottom-up: we first translate the subsystems, then their parent, and so on.

Feedback-Parallel Translation. The feedback-parallel translation strategy
(FPT) first composes all components in parallel, and then connects outputs
to inputs by applying feedback operations. FPT is illustrated in Fig. 5a, for the
DelaySum component of Fig. 3b. The Split MPT models the junction after link a.

Applying FPT on the DelaySum diagram yields the following CPT:

DelaySum = feedback3([f, c, a, e, s � f, e, c, s, a]
◦ (Add ‖UnitDelay ‖Split) ◦ [c, a, s′, f, g � f, c, a, s′, g])

Compositional Semantics and Analysis of Hierarchical Block Diagrams 47

Fig. 5. Translation strategies for the DelaySum subsystem of Fig. 3b.

where feedback3(·) = feedback(feedback(feedback(·))) denotes application of the
feedback operator 3 times, on the variables f , c, and a, respectively (recall that
feedback works only on one variable at a time, the first input and first output of
the argument transformer). In order to apply feedback3 to the parallel composi-
tion Add ‖UnitDelay ‖Split, we first have to reorder its inputs and outputs, such
that the variables on which the feedbacks are applied come first in matching
order. This is achieved by the rerouting transformers [f, c, a, e, s � f, e, c, s, a]
and [c, a, s′, f, g � f, c, a, s′, g].

Incremental Translation. The incremental translation strategy (IT) com-
poses components one by one, after having ordered them in topological order
according to the dependencies in the diagram. When composing A with B, a
decision procedure determines which composition operator(s) should be applied,
based on dependencies between A and B. If A and B are not connected, parallel
composition is applied. Otherwise, serial composition is used, possibly together
with feedback if necessary.

The IT strategy is illustrated in Fig. 5b. First, topological sorting yields the
order Add,UnitDelay, Split. So IT first composes Add and UnitDelay. Since the
two are connected with c, serial composition is applied, obtaining the CPT

ICC1 = (Add ‖ Id) ◦ UnitDelay

As in the example in the introduction, Id is used here to match the number of
outputs of Add with the number of inputs of UnitDelay.

Next, IT composes ICC1 with Split. This requires both serial composition and
feedback, and yields the final CPT:

DelaySum = feedback(ICC1 ◦ (Split ‖ Id))
It is worth noting that composing systems incrementally in this way

might result in not the most natural compositions. For example, consider

48 I. Dragomir et al.

Fig. 6. Diagram ConstDiv.

the diagram from Fig. 6. The “natural” CPT for this diagram is probably:
(Const(1) ‖Const(0)) ◦Div ◦ Split ◦ (Scope ‖Scope). Instead, IT generates the fol-
lowing CPT: (Const(1) ‖Const(0)) ◦ Div ◦ Split ◦ (Scope ‖ Id) ◦ (Id ‖Scope). More
sophisticated methods may be developed to extract parallelism in the diagram
and avoid redundant Id compositions like in the above CPT. This study is left
for future work.

Feedbackless Translation. Simplifying a CPT which contains feedback oper-
ators involves performing decomposability tests, function compositions which
include variable renamings, and other computations which turn out to be
resource consuming (see Sect. 5). For reasons of scalability, we would there-
fore like to avoid feedback operators in the generated CPTs. The feedbackless
translation strategy (NFBT) avoids feedback altogether, provided the diagram
is algebraic-loop-free. The key idea is that, since the diagram has no algebraic
loops, we should be able to eliminate feedback and replace it with direct oper-
ations on current- and next-state variables, just like with basic blocks. In par-
ticular, we can decompose UnitDelay into two Id transformers, denoted Idud1 and
Idud2: Idud1 computes the next state from the input, while Idud2 computes the
output from the current state.

Generally, we decompose all components having multiple outputs into several
components having each a single output. For each new component we keep only
the inputs they depend on, as shown in Fig. 5c. Thus, the Split component from
Fig. 5b is also divided into two Id components, denoted Idsplt1 and Idsplt2.

Decomposing into components with single outputs allows to compute a sep-
arate CPT for each of the outputs. Then we take the parallel composition of
these CPTs to form the CPT of the entire diagram. Doing so on our running
example, we obtain:

DelaySum = [s, e � s, s, e] ◦
((

Idud2 ◦ Idsplt2
) ‖ (

((Idud2 ◦ Idsplt1) ‖ Id) ◦Add ◦ Idud1
))

Because Idud1, Idud2, Idsplt1 and Idsplt2 are all Ids, and Id ◦ A = A ◦ Id = A and
Id ‖ Id = Id (thanks to polymorphism), this CPT is reduced to DelaySum =
[s, e � s, s, e] ◦ (Id ‖Add). Our tool directly generates this simplified CPT.

4.3 Simplifying CPTs and Checking Compatibility

Once a set of CPTs has been generated, they can be subjected to various static
analysis and verification tasks. Currently, our toolset mainly supports static

Compositional Semantics and Analysis of Hierarchical Block Diagrams 49

compatibility checks, which amount to checking whether any CPT obtained from
the diagram is equivalent to the MPT Fail = {x : false}. Fail corresponds to an
invalid component, indicating that the composition of two or more blocks in the
diagram is illegal [19,23].

Compatibility checking is not a trivial task. Two steps are performed in order
to check whether a certain CPT is equivalent to Fail: the CPT is (1) expanded, and
(2) simplified. By expansion we mean replacing the serial, parallel, and feedback
composition operators by their definitions (2), (3), (4). As a result of expansion,
the CPT is turned into an MPT of the form {p}◦ [f]. By simplification we mean
simplifying the formulas p and f , e.g., by eliminating internal variables.

5 Implementation and Evaluation

Our framework has been implemented and is publicly downloadable from http://
users.ics.aalto.fi/iulia/sim2isa.shtml. The implementation consists of two compo-
nents: (1) the simulink2isabelle compiler, which takes as input Simulink dia-
grams and translates them into CPTs, using the strategies described in Sect. 4.2;
and (2) an implementation of the theory of CPTs, together with simplification
strategies and static analysis checks such as compatibility checks, in the Isabelle
theorem prover. In this section we present the toolset and report evaluation and
analysis results on several case studies, including an industrial-grade benchmark
by Toyota [10,11].

5.1 Toolset

simulink2isabelle, written in Python, takes as input Simulink files in XML
format and produces valid Isabelle theories that can be subjected to compati-
bility checking and verification. The compiler currently handles a large subset
of Simulink’s blocks, including math and logical operators, continuous, discon-
tinuous and discrete blocks, as well as sources, sinks, and subsystems (including
enabled and switch case action subsystems). This subset is enough to express
industrial-grade models such as the Toyota benchmarks.

During the parsing and preprocessing phase of the input Simulink file, the
tool performs a set of checks, including algebraic loop detection, unsupported
blocks and/or block parameters, malformed blocks (e.g., a function block refer-
ring to a nonexistent input), etc., and issues possible warnings/errors.

simulink2isabelle implements all three translation strategies as options
-fp, -ic and -nfb, and also takes two additional options: -flat (flatten dia-
gram) and -io (intermediate outputs, applicable to -ic). All options apply to
any Simulink model. Option flat flattens the hierarchy of the HBD and pro-
duces a single diagram consisting only of basic blocks (no subsystems), on which
the translation is then applied. Option io generates and names all intermediate
CPTs produced during the translation process. These names are then used in
the CPT for the top-level system, to make it shorter and more readable. In addi-
tion, the intermediate CPTs can be expanded and simplified incrementally by

http://users.ics.aalto.fi/iulia/sim2isa.shtml
http://users.ics.aalto.fi/iulia/sim2isa.shtml

50 I. Dragomir et al.

Isabelle, and used in their simplified form when computing the CPT for the next
level up. This generally results in more efficient simplification. Another benefit of
producing intermediate CPTs is the detection of incompatibilities early during
the simplification phase. Moreover, this indicates the group of components at
fault and helps localize the error.

The second component of our toolset includes a complete implementation of
the theory of MPTs and CPTs in Isabelle. In addition, we have implemented
in Isabelle a set of functions (keyword simulink) which perform expansion and
simplification automatically in the generated CPTs, and also generate automat-
ically proved theorems of the simplified formulas. After expansion and simpli-
fication, we obtain for the top-level system a single MPT referring only to the
external input, output, and state/next state variables of the system (and not to
the internal links of the diagram).

For instance, when executed on our running example (Fig. 3) with the IT
option, the tool produces the Isabelle code:

simulinkDelaySum = feedback((Add ‖ Id) ◦ UnitDelay ◦ (Split ‖ Id))
simulinkCounter = (Const(1) ‖ Id) ◦ DelaySum ◦ (Scope ‖ Id)

When executed in Isabelle, this code automatically generates the definitions
(5) as well as the simplification theorems (6), and automatically proves these
theorems. Note that the simplification theorems also contain the final MPT for
the entire system. In general, when the diagram contains continuous-time blocks
such as Integrator, the final simplified MPT will be parameterized by Δt .

As another example, when we run the tool on the example of Fig. 6, we obtain
the theorem ConstDiv = Fail, which states that the system has no legal inputs.
This reveals the incompatibility due to performing a division by zero.

5.2 Evaluation

We evaluated our toolset on several case studies, including the Foucault pendu-
lum, house heating and anti-lock braking systems from the Simulink examples
library.5 Due to space limitations, we only present here the results obtained
on the running example (Fig. 3) and the Fuel Control System (FCS) model
described in [10,11]. FCS solves the problem of maintaining the ratio of air
mass and injected fuel at the stoichiometric value [5], i.e., enough air is pro-
vided to completely burn the fuel in a car’s engine. This control problem has
important implications on lowering pollution and improving engine performance.
Three designs are presented in [10,11], all modeled in Simulink, but differing in
their complexity. The first model is the most complex, incorporating already
available subsystems from the Simulink library. The second and third models
represent abstractions of this main design, but they are still complicated for ver-
ification purposes. The second model is formalized as Hybrid I/O Automata [15],
while the third is presented as Polynomial Hybrid I/O Automata [8]. We eval-
uate our approach on the third model designed with Simulink, available from
5 http://se.mathworks.com/help/simulink/examples.html.

http://se.mathworks.com/help/simulink/examples.html

Compositional Semantics and Analysis of Hierarchical Block Diagrams 51

Table 1. Experimental results for the running example (Fig. 3).

FPT IT NFBT

HBD FBD HBD FBD IO-HBD IO-FBD

Translation Ttrans 0.082 0.093 0.081 0.087 0.081 0.085 0.096

Lcpt 722 629 1131 1246 1146 1134 1159

Ncpt 10 9 10 9 14 14 15

Expansion, simplication,
and compatibility
check

Tsimp 0.596 0.575 0.184 0.225 0.240 0.279 0.214

Psimp 0.006 0.005 0.005 0.006 0.006 0.007 0.006

Table 2. Experimental results for the FCS model.

FPT IT NFBT

HBD FBD HBD FBD IO-HBD IO-FBD

Translation Ttrans 0.249 0.329 0.213 0.222 0.220 0.260 0.605

Lcpt 18895 17432 87006 116550 86318 108001 46863

Ncpt 127 120 127 120 236 236 269

Expansion, simplification,

and compatibility check

Tsimp 894.472 3471.317 617.873 2439.229 267.052 417.05 57.425

Psimp 7.144 7.267 7.856 7.161 6.742 6.228 5.18

Lsimp 158212 158212 157791 157797 127132 127642 122001

http://cps-vo.org/group/ARCH/benchmarks. This model has a 3-level hierar-
chy with a total of 104 block instances (97 basic blocks and 7 subsystems), and
101 connections, of which 8 feedbacks.

First, we run all three translation strategies on each model using the
simulink2isabelle compiler. Then, we expand/simplify the CPTs within
Isabelle and at the same time check for incompatibilities. The translation
strategies are run with the following options: FPT without/with flattening
(HBD/FBD), IT without/with flattening and without/with io option (IO), and
NFBT. NFBT by construction generates intermediate outputs and does not
preserve the structure of the hierarchy in the result, thus, its result is identical
with/without the options. The results from the running example are shown in
Table 1 and from the FCS model in Table 2.

The notations used in the tables are as follows: (1) Ttrans: time to generate
the Isabelle CPTs from the Simulink model, (2) Lcpt: length of the produced
CPTs (# characters), (3) Ncpt: number of generated CPTs, (4) Tsimp: total time
needed for expansion and simplification, (5) Psimp: time to print the simplified
formula, (6) Lsimp: length of the simplified formula (# chars). All times are in
seconds. We report separately the time to print the final formulas (Psimp), since
printing takes significant time in the Isabelle/ML framework.

Let us now focus on Table 2 since it contains the most relevant results due to
the size and complexity of the system. Observe that the translation time (Ttrans)

http://cps-vo.org/group/ARCH/benchmarks

52 I. Dragomir et al.

is always negligible compared to the other times.6 Also, NFBT generates the
most CPTs, which are relatively short compared to the other translations. This
is one of the reasons why CPTs produced by NFBT are easier to expand/simplify
than those produced by the other methods. The other and main reason is that
applying the feedback operator requires identifying f and f ′, computing several
function compositions, etc. We note that a Simulink feedback connection can
transfer an array of n values, which is translated by our tool as n successive
applications of feedback.

Readability. An important aspect of the produced CPTs is their readability.
Defining quantitative readability measures such as number, length, nesting
depth, etc., of the generated CPTs, is beyond the scope of this paper. Neverthe-
less, we can make the following (subjective) observations: (1) IT with option -io
improves readability as the intermediate outputs allow to parse the result step
by step. (2) NFBT reduces readability because this method decomposes blocks
and does not preserve the hierarchy of the original model.

Equivalence of the Different Translations. One interesting question is
whether the different translation options generate equivalent CPTs. Proving a
meta-theorem stating that this is indeed the case for every diagram is beyond
the scope of this paper, and part of future work. Nevertheless, we did prove
that in the case of the FCS model, the final simplified MPTs resulting from
each translation method are all equivalent. These proofs have been conducted
in Isabelle.

Analysis. Our tool proves that the final simplified MPT of the entire FCS model
is not Fail. This proves compatibility of the components in the FCS model. The
obtained MPT is functional, i.e., has the form {p} ◦ [f]. Its assert condition p
states that the state value of an integrator which is fed into a square root is ≥ 0.
We proved in Isabelle that this holds for all Δt > 0. Therefore, compatibility
holds independently of the value of the time step.

We also introduced a fault in the FCS model on purpose, to demonstrate
that our tool is able to detect the error. Consider the model fragment depicted
in Fig. 7. If the constant simTime is mistakenly set to 10, the model contains
a division by zero. Our tool catches this error during compatibility checking, in
51.71 s total (including NFBT translation, expansion, and simplification, which
results in Fail).

Comparison with Simulink. In this work we give semantics of Simulink
diagrams in terms of CPTs. One question that may be raised is how the CPT

6 Ttrans for NFBT is almost twice larger than for FPT, IT and IT-IO. The reason is
that NFBT executes extra steps, such as splitting blocks with multiple outputs and
removing CPTs that are not used in calculating the system’s output.

Compositional Semantics and Analysis of Hierarchical Block Diagrams 53

1
s 1

Out1

u

simTime-10

Fig. 7. Part of the FCS model: setting simTime to 10 results in incompatibility.

semantics compares to Simulink’s own semantics, i.e., to “what the simulator
does”. Our toolset includes an option to generate simulation code (in Python)
from the Isabelle CPTs. Then, we can compare the simulation results obtained
from Simulink to those obtained from the CPT-generated simulation code. We
performed this comparison for the FCS model: the results are shown in Fig. 8.
Since the FCS model is closed (i.e., has no external inputs) and deterministic,
it only has a single behavior. Therefore, we only generate one simulation plot
for each method. The plot from Fig. 8a is obtained with variable step and the
ode45 (Dormand-Prince) solver. The difference between the values computed by
Simulink and our simulation ranges from 0 to 6.1487e-05 (in absolute value)
for this solver. Better results can be obtained by reducing the step length. For
instance, a step of 5e-05 gives an error difference of 2.0354e-06.

0 5 10 15 20 25 30 35 40 45 50
-0.01

0

0.01

(a) Simulink simulation

0 5 10 15 20 25 30 35 40 45 50
-0.01

0

0.01

(b) CPT simulation

Fig. 8. Simulation plots obtained from Simulink and the simplified CPT for a 50 s time
interval and Δt = 0.001.

6 Related Work

A plethora of work exists on translating Simulink models to various target
languages, for verification purposes or for code-generation purposes. Primar-
ily focusing on verification and targeting discrete-time fragments of Simulink,
existing works describe translations to BIP [22], NuSMV [17], or Lustre [24].
Other works study transformation of continuous-time Simulink to Timed Inter-
val Calculus [4], Function Blocks [25], I/O Extended Finite Automata [26], or
Hybrid CSP [27], and both discrete and continuous time fragments to SpaceEx
Hybrid Automata [18]. The Stateflow module of Simulink, which allows to
model hierarchical state machines, has been the subject of translation to hybrid
automata [1,16].

Contract-based frameworks for Simulink are described in [3,21]. [3] uses
pre/post-conditions as contracts for discrete-time Simulink blocks, and SDF
graphs [12] to represent Simulink diagrams. Then sequential code is generated
from the SDF graph, and the code is verified using traditional refinement-based

54 I. Dragomir et al.

techniques [2]. In [21] Simulink blocks are annotated with rich types (separate
constraints on inputs and outputs, but no relations between inputs and outputs
which is possible in our framework). Then the SimCheck tool extracts verifica-
tion conditions from the Simulink model and the annotations, and submits them
to an SMT solver for verification.

Our work offers a compositional framework which allows compatibility checks
and refinement, which is not supported in the above works. We also study dif-
ferent translation strategies from HBDs to an algebra with serial, parallel, and
feedback composition operators, which, to the best of our knowledge, have not
been previously studied.

In [9], the authors propose an n-ary parallel composition operator for the
Lotos process algebra. Their motivation, namely, that there may be several dif-
ferent process algebra terms representing a given process network, is similar to
ours. But their solution (the n-ary parallel composition operator) is different
from ours. Their setting is also different from ours, and results in some signifi-
cantly different properties. For instance, they identify certain process networks
which cannot be expressed in Lotos. In our case, every HBD can be expressed as
a CPT (this includes HBDs with algebraic loops, even though we do not consider
these in this paper).

Modular code generation methods for Simulink models are described in [13,14].
The main technical problem solved there is how to cluster subsystems in as few
clusters as possible without introducing false input-output dependencies.

7 Conclusion

In this paper we present a compositional semantics and analysis framework for
hierarchical block diagrams such as those found in Simulink and similar tools.
Our contributions are the following: (1) semantics of basic Simulink blocks (both
stateless and stateful) as atomic monotonic predicate transformers; (2) compo-
sitional semantics of HBDs as composite MPTs; (3) three translation strategies
from HBDs to CPTs, implemented in the simulink2isabelle compiler; (4) the
theory of CPTs, along with expansion and simplification methods, implemented
in Isabelle; (5) automatic static analysis (compatibility checks) implemented in
Isabelle; and (6) proof of concept and evaluation of the framework on a real-life
Simulink model from Toyota. Our approach enables compositional and correct-
by-construction system design. The top-level MPT, which can be viewed as a
formal interface or contract for the overall system, is automatically generated.
Moreover, it is formally defined and checked in Isabelle (the theorems are also
automatically generated and proved).

As future work, the current code generation process, used to compare the
Isabelle code to the Simulink code via simulation, could be extended to also gen-
erate proof-carrying, easier-to-certify embedded code, from the Isabelle theories.
Other future work directions include: (1) studying other translation strategies;
(2) improving the automated simplification methods within Isabelle or other
solvers; (3) extending the toolset with automatic verification methods (proving

Compositional Semantics and Analysis of Hierarchical Block Diagrams 55

requirements against the top-level MPT); and (4) extending the toolset with
fault localization methods whenever the compatibility or verification checks fail.

References

1. Agrawal, A., Simon, G., Karsai, G.: Semantic translation of Simulink/Stateflow
models to hybrid automata using graph transformations. Electron. Notes Theor.
Comput. Sci. 109, 43–56 (2004)

2. Back, R.-J., von Wright, J.: Refinement Calculus: A Systematic Introduction.
Springer, New York (1998)

3. Boström, P.: Contract-based verification of Simulink models. In: Qin, S., Qiu, Z.
(eds.) ICFEM 2011. LNCS, vol. 6991, pp. 291–306. Springer, Heidelberg (2011)

4. Chen, C., Dong, J.S., Sun, J.: A formal framework for modeling and validating
Simulink diagrams. Formal Aspects Comput. 21(5), 451–483 (2009)

5. Cook, J.A., Sun, J., Buckland, J.H., Kolmanovsky, I.V., Peng, H., Grizzle, J.W.:
Automotive powertrain control - A survey. Asian J. Control 8(3), 237–260 (2006)

6. Dijkstra, E.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Comm. ACM 18(8), 453–457 (1975)

7. Dragomir, I., Preoteasa, V., Tripakis, S.: Translating hierarchical block diagrams
into composite predicate transformers. CoRR, abs/1510.04873 (2015)

8. Frehse, G., Han, Z., Krogh, B.: Assume-guarantee reasoning for hybrid I/O-
automata by over-approximation of continuous interaction. In: CDC, pp. 479–484
(2004)

9. Garavel, H., Sighireanu, M.: A graphical parallel composition operator for process
algebras. In: FORTE XII. IFIP Conference Proceedings, vol. 156, pp. 185–202.
Kluwer (1999)

10. Jin, X., Deshmukh, J., Kapinski, J., Ueda, K., Butts, K.: Benchmarks for model
transformations and conformance checking. In: ARCH (2014)

11. Jin, X., Deshmukh, J.V., Kapinski, J., Ueda, K., Butts, K.: Powertrain control
verification benchmark. In: HSCC, pp. 253–262. ACM (2014)

12. Lee, E., Messerschmitt, D.: Synchronous data flow. Proc. IEEE 75(9), 1235–1245
(1987)

13. Lublinerman, R., Szegedy, C., Tripakis, S.: Modular code generation from syn-
chronous block diagrams - modularity vs. code size. In: POPL, pp. 78–89. ACM,
January 2009

14. Lublinerman, R., Tripakis, S.: Modularity vs. reusability: code generation from
synchronous block diagrams. In: DATE, pp. 1504–1509. ACM, March 2008

15. Lynch, N., Segala, R., Vaandrager, F.: Hybrid I/O automata. Inf. Comput. 185(1),
105–157 (2003)

16. Manamcheri, K., Mitra, S., Bak, S., Caccamo, M.: A step towards verification and
synthesis from Simulink/Stateflow models. In: HSCC, pp. 317–318. ACM (2011)

17. Meenakshi, B., Bhatnagar, A., Roy, S.: Tool for translating Simulink models into
input language of a model checker. In: Liu, Z., Kleinberg, R.D. (eds.) ICFEM 2006.
LNCS, vol. 4260, pp. 606–620. Springer, Heidelberg (2006)

18. Minopoli, S., Frehse, G.: SL2SX Translator: from Simulink to SpaceEx verification
tool. In: HSCC (2016)

19. Preoteasa, V., Tripakis, S.: Refinement calculus of reactive systems. In: EMSOFT,
pp. 1–10, October 2014

56 I. Dragomir et al.

20. Preoteasa, V., Tripakis, S.: Towards compositional feedback in non-deterministic
and non-input-receptive systems. CoRR, abs/1510.06379 (2015)

21. Roy, P., Shankar, N.: SimCheck: a contract type system for Simulink. Innovations
Syst. Softw. Eng. 7(2), 73–83 (2011)

22. Sfyrla, V., Tsiligiannis, G., Safaka, I., Bozga, M., Sifakis, J.: Compositional trans-
lation of Simulink models into synchronous BIP. In: SIES, pp. 217–220, July 2010

23. Tripakis, S., Lickly, B., Henzinger, T.A., Lee, E.A.: A theory of synchronous rela-
tional interfaces. ACM Trans. Program. Lang. Syst. 33(4), 14:1–14:41 (2011)

24. Tripakis, S., Sofronis, C., Caspi, P., Curic, A.: Translating discrete-time Simulink
to Lustre. ACM Trans. Embed. Comput. Syst. 4(4), 779–818 (2005)

25. Yang, C., Vyatkin, V.: Transformation of Simulink models to IEC 61499 Function
Blocks for verification of distributed control systems. Control Eng. Pract. 20(12),
1259–1269 (2012)

26. Zhou, C., Kumar, R.: Semantic translation of Simulink diagrams to input/output
extended finite automata. Discrete Event Dyn. Syst. 22(2), 223–247 (2012)

27. Zou, L., Zhany, N., Wang, S., Franzle, M., Qin, S.: Verifying Simulink diagrams
via a hybrid Hoare logic prover. In: EMSOFT, pp. 9:1–9:10, September 2013

Using SPIN for the Optimized Scheduling
of Discrete Event Systems in Manufacturing

Stefan Edelkamp(B) and Christoph Greulich

Faculty 3 – Mathematics and Computer Science,
Bremen University, Bremen, Germany

edelkamp@tzi.de

Abstract. A discrete event system (DES) is a dynamic system with dis-
crete states the transitions of which are triggered by events. In this paper
we propose the application of the Spin software model checker to a dis-
crete event system that controls the industrial production of autonomous
products. The flow of material is asynchronous and buffered. The aim
of this work is to find concurrent plans that optimize the throughput
of the system. In the mapping the discrete event system directly to the
model checker, we model the production line as a set of communicating
processes, with the movement of items modeled as channels. Experiments
shows that the model checker is able to analyze the DES, subject to the
partial ordering of the product parts. It derives valid and optimized plans
with several thousands of steps using constraint branch-and-bound.

1 Introduction

Discrete event (dynamic) systems (DES) provide a general framework for sys-
tems where the system dynamics not only follow physical laws but also additional
firing conditions. DES research is concerned about performance analysis, eval-
uation, and optimization of DES. As the systems are often only available as
computer programs, it turns out to be difficult to describe the dynamics of these
systems using closed-form equations.

In many cases, discrete event system simulation (DESS) is chosen to describe
the DES dynamics and for performance evaluation. Between consecutive events,
no change in the system is assumed to occur; thus the simulation can directly
jump in time from one event to the next. Each simulation activity is modeled by
a process. The idea of a process is similar to the notion in model checking, and
indeed one could write process-oriented simulations using independent processes.
Most DESS systems store information about pending events in a data structure
known as an event queue. Each item in the queue would at minimum contain
the following information: a timestamp and a piece of software for executing
event. The typical operations on an event queue are: inserting a new event and
removing the next event (the one with the lowest timestamp) from the queue.
It may also be necessary to cancel a scheduled event.

DESS is probably the most widely used simulation technique. Similar
approaches are system dynamics (SD), and agent-based simulation (ABS). As the
c© Springer International Publishing Switzerland 2016
D. Bošnački and A. Wijs (Eds.): SPIN 2016, LNCS 9641, pp. 57–77, 2016.
DOI: 10.1007/978-3-319-32582-8 4

58 S. Edelkamp and C. Greulich

name suggests DES model a process as a series of discrete events. They are built
using: entities (objects that move through the system; events (processes which
the entities pass through); and resources (objects, which are needed to trigger
event). SD are related to DES, focusing on flows around networks rather than
queueing systems, it considers: stocks (basic stores of objects); flows (movement
of objects between different stocks in the system); delays (between the measuring
and then acting on that measurement). ABS is a relatively new technique in OR
and consists of: autonomous agents (self-directed objects which move about the
system) and rules (which the agents follow to achieve their objectives). Agents
move about the system interacting with each other and the environment. ABS
are used to model situations in which the entities have some form of intelligence.

Earlier simulation software was efficient but platform-dependent, due to the
need for stack manipulation. Modern software systems, however, support light-
weight processes or threads. By the growing amount of non-determinism, how-
ever, DESS encounters its limits to optimize the concurrent acting of individual
processes.

With the advances in technology, more and more complex systems were built,
e.g., transportation networks, communication and computer networks, manufac-
turing lines. In these systems, the main dynamic mechanism in task succession
stems from synchronization and competition in the use of common resources,
which requires a policy to arbitrate conflicts and define priorities, all kinds of
problems generally referred to under the generic terminology of scheduling. This
type of dynamics hardly can be captured by differential equations or by their
discrete time analogues. This is certainly the reason why those systems, which
are nevertheless true dynamic systems, have long been disregarded by formal
method experts and have been rather considered by operations researchers and
specialists of manufacturing with no strong connections with system theory. The
dynamics are made up of events, which may have a continuous evolution imposed
by some called software once they start, but this is not what one is mainly inter-
ested in: the primary focus is on the beginning and the end of such events, since
ends can cause new beginnings. Hence, the word discrete includes time and state.

In this paper, we utilize the state-of-the-art model checker Spin [25] as a
performance analysis and optimization tool, together with its input language
Promela to express the flow production of goods. There are several twists needed
to adapt Spin to the optimization of DES(S) that are uncovered in the sequel
of the text. Our running case study is the Z2, a physical monorail system for
the assembling of tail-lights. Unlike most production systems, Z2 employs agent
technology to represent autonomous products and assembly stations. The tech-
niques developed, however, will be applicable to most flow production systems.
We formalize the production floor as a system of communicating processes and
apply Spin for analyzing its behavior. Using optimization mechanisms imple-
mented on top of Spin, additional to the verification of the correctness of the
model, we exploit its exploration process for optimization of the production.

For the optimization via model checking we use many new language features
from the latest version of the Spin model checker including loops and native

Using SPIN for the Optimized Scheduling of Discrete Event Systems 59

c-code verification. The optimization approach originally invented for Spin was
designed for state space trees [36,37], while the proposed approach also sup-
ports state space graphs. Scheduling via model checking has been pioneered by
Maler [1], Binksma [7], and Wijs [40].

The paper is structured as follows. First, we introduce discrete event simu-
lation and industrial (flow) production. Then, we review related work including
scheduling via model checking. Next, we introduce the industrial case study, and
its modeling as well as its simulation as a DES. The simulator is used to mea-
sure the increments of the cost function to be optimized. Afterwards, we turn
to the intricacies of the Promela model specification, to the parameterization
of SPIN, as well as to the novel branch-and-bound optimization scheme. In the
experiments, we study the effectiveness of the approach.

2 Preliminaries

2.1 Discrete Event Simulation

An entity is an object of interest in the system, and an attribute is a (rele-
vant) property of an entity. Attributes are state variables, while activities form
part of the model specification and delays form part of the simulation result.
The (system) state is a variable needed to describe the state (e.g., length of a
queue), which is aimed to be complete and minimal at any point in time. The
occurrence of a primary event (e.g. arrival) is scheduled at a certain time, while
a secondary event (e.g. queueing) is triggered by a certain condition becoming
true. An event is an occurrence which is instantaneous may change the state
of the system. The (future) event list PQ controls the simulation: it contains
all future events that are scheduled, and is ordered by increasing time of events.
Operations on the PQ are: insert an event into PQ (at an appropriate position!),
remove first event from PQ for processing, and delete an event from PQ. Thus,
PQ is a priorty queue. As operations must be performed efficiently, the common
implementation of an event queue is a (binary) heap. With such a data struc-
ture, access to the next event requires O(1) time, while inserting/deleting an
event requires O(log(n)) time, where n is the number of events currently in the
queue. Depending on the implementation (e.g., Fibonacci heaps), there are other
trade-offs, with constant-time insertion and O(log(n)) (amortized) deletion. The
generic DES simulation algorithm looks as follows:

1. IF (PQ empty) THEN exit
2. remove & process 1st primary event e from PQ
3. IF (conditional event e′ enabled) THEN remove & process e′, goto 3. ELSE

goto 1.

We assume exact timing, i.e., deterministic time. However, by different
choices points for generating successor events, the simulated DES itself is non-
deterministic. Events inserted with priority t are generally assumed to remain
unchanged until deletion at time t.

60 S. Edelkamp and C. Greulich

2.2 Flow Manufacturing

Flow manufacturing systems are DES installed for products that are produced
in high quantities. By optimizing the flow of production, manufacturers hope
to speed up production at a lower cost, and in a more environmentally sound
way. In manufacturing practice there are not only series flow lines (with stations
arranged one behind the other), but also more complex networks of stations
at which assembly operations are performed (assembly lines). The considerable
difference from flow lines, which can be analyzed by known methods, is that a
number of required components are brought together to form a single unit for
further processing at the assembly stations. An assembly operation can begin
only if all required parts are available.

Performance analysis of flow manufacturing systems is generally needed dur-
ing the planning phase regarding the system design, when the decision for a
concrete configuration of such a system has to be made. The planning problem
arises, e.g., with the introduction of a new model or the installation of a new
manufacturing plant. Because of the investments involved, an optimization prob-
lem arises. The expenditure for new machines, for buffer or handling equipment,
and the holding costs for the expected work-in-process face revenues from sold
products. The performance of a concrete configuration is characterized by the
throughput, i.e., the number of items that are produced per time unit. Other
performance measures are the expected work in process or the idle times of
machines or workers.

We consider assembly-line networks with stations, which are represented as
a directed graph. Between any two successive nodes in the network, we assume
a buffer of finite capacity. In the buffers between stations and other network
elements, work pieces are stored, waiting for service. At assembly stations, ser-
vice is given to work pieces. Travel time is measured and overall time is to be
optimized.

In a general notation of flow manufacturing, system progress is non-
deterministic and asynchronous, while the progress of time is monitored.

Definition 1 (Flow Manufacturing System). A flow manufacturing system
is a tuple F = (A,E,G,≺, S,Q) where

– A is a set of all possible assembling actions
– P is a set of n products; each Pi ∈ P , i ∈ {1, . . . , n}, is a set of assembling

actions, i.e., Pi ⊆ A
– G = (V,E,w, s, t) is a graph with start node s, goal node t, and weight function

w : E → IR≥0

– ≺ = (≺1, . . . ,≺n) is a vector of assembling plans with each ≺i ⊆ A × A,
i ∈ {1, . . . , n}, being a partial order

– S ⊆ E is the set of assembling stations induced by a labeling ρ : E → A∪{∅},
i.e., S = {e ∈ E | ρ(e) �= ∅}

– Q is a set of (FIFO) queues of finite size, i.e., ∀q ∈ Q : |q| < ∞, together
with a labeling ψ : E → Q.

Using SPIN for the Optimized Scheduling of Discrete Event Systems 61

Products Pi, i ∈ {1, . . . , n}, travel through the network G, meeting their
assembling plans/order ≺i ⊆ A × A of the assembling actions A. For defining
the cost function we use the set of predecessor edges Pred(e) = {e′ = (u, v) ∈
E | e = (v, w)}.

Definition 2 (Run, Plan, and Path). Let F = (A,E,G,≺, S,Q) be a flow
manufacturing system. A run π is a schedule of triples (ej , tj , lj) of edges ej,
queue insertion positions lj, and execution time-stamp tj, j ∈ {1, . . . , n}. The
set of all runs is denoted as Π. Each run π partitions into a set of n plans
πi = (e1, t1, l1), . . . , (em, tm, lm), one for each product Pi, i ∈ {1, . . . , n}. Each
plan πi corresponds to a path, starting at the initial node s and terminating at
goal node t in G.

The objective in a flow manufacturing system can be formally described as
follows.

Definition 3 (Product Objective, Travel and Waiting Time). The objec-
tive for product i is to minimize

max
1≤i≤n

wait(πi) + time(πi),

over all possible paths with initial node s and goal node t, where

– time(πi) is the travel time of product Pi, defined as the sum of edge costs
time(πi) =

∑
e∈πi

w(e), and
– wait(πi) the waiting time, defined as wait(πi) =

∑
(e,t,l),(e′,t′,l′)∈πi,e′∈Pred(e) t−

(t′ + w(e′)).

Definition 4 (Overall Objective). With cost(πi) = wait(πi) + time(πi), as
overall objective function we have minπ∈Π max1≤i≤n cost(πi)

= minπ∈Π max1≤i≤n

∑
e∈πi

w(e)

+
∑

(e,t,l),(e′,t′,l′)∈πi,e′∈Pred(e)
t − (t′ + w(e′))

= minπ∈Π max1≤i≤n,(e,t,l)∈πi
t + w(e)

subject to the side constraints that

– time stamps on all runs πi = (e1, t1, l1) . . . (em, tm, lm), i ∈ {1, . . . , n} are
monotonically increasing, i.e., tl ≤ tk for all 1 ≤ l < k ≤ m.

– after assembling all products are complete, i.e., all assembling actions have
been executed, so that for all i ∈ {1, . . . , n} we have Pi = ∪(ej ,tj ,lj)∈πi

{ρ(ej)}
– the order of assembling product Pi on path πi = (e1, t1, l1) . . . (em, tm, lm),

i ∈ {1, . . . , n}, is preserved, i.e., for all (a, a′) ∈≺i and a = ρ(ej), a′ = ρ(ek)
we have j < k,

– all insertions to queues respect their sizes, i.e., for all πi = (e1, t1, l1) . . .
(em, tm, lm), i ∈ {1, . . . , n}, we have that 0 ≤ lj < |ψ(ej)|.

62 S. Edelkamp and C. Greulich

3 Related Work

One of the most interesting problems in manufacturing is job shop scheduling [3].
When solving the scheduling problem, a set of n jobs has to be assigned to a set
of m machines. Consequently, the total number of possible solutions is (n!)m.
The problem complexity grows when the number of required ressources increases,
e.g. by adding specific tools or operators to run machines. For an additional set
k of necessary ressources, the number of possible solution increases to ((n!)m)k

[38]. In the related flow shop scheduling problem, a fixed sequence of tasks forms
a job [16]. It is applicable to optimize the so called makespan on assembly lines.

Flow line analysis is a more complex setting, often done with queuing theory [8,
33]. Pioneering work in analyzing assembly queuing systems with synchronization
constraints analyzes assembly-like queues with unlimited buffer capacities [22]. It
shows that the time an item has to wait for synchronization may grow without
bound, while limitation of the number of items in the system works as a control
mechanism and ensures stability. Work on assembly-like queues with finite buffers
all assume exponential service times [4,26,30].

A rare example of model checking flow production are timed automata that
were used for simulating material flow in agricultural production [23].

Since the origin of the term artificial intelligence, the automated generation
of plans for a given task has been seen as an integral part of problem solving in
a computer. In action planning [35], we are confronted with the descriptions of
the initial state, the goal (states) and the available actions. Based on these we
want to find a plan containing as few actions as possible (in case of unit-cost
actions, or if no costs are specified at all) or with the lowest possible total cost
(in case of general action costs).

The process of fully-automated property validation and correctness verifica-
tion is referred to as model checking [11]. Given a formal model of a system M
and a property specification φ in some form of temporal logic like LTL [17], the
task is to validate, whether or not the specification is satisfied in the model,
M |= φ. If not, a model checker usually returns a counterexample trace as a
witness for the falsification of the property.

Planning and model checking have much in common [9,18]. Both rely on the
exploration of a potentially large state space of system states. Usually, model
checkers only search for the existence of specification errors in the model, while
planners search for a short path from the initial state to one of the goal states.
Nonetheless, there is rising interest in planners that prove insolvability [24], and
in model checkers to produce minimal counterexamples [14].

In terms of leveraging state space search, over the last decades there has been
much cross-fertilization between the fields. For example, based on Satplan [28]
bounded model checkers exploit SAT and SMT representations [2,5] of the system
to be verified, while directed model checkers [12,29] exploit panning heuristics
to improve the exploration for falsification; partial-order reduction [19,39] and
symmetry detection [15,32] limit the number of successor states, while symbolic
planners [10,13,27] apply functional data structures like BDDs to represent sets
of states succinctly.

Using SPIN for the Optimized Scheduling of Discrete Event Systems 63

4 Case Study

We consider the simulation of the real-world Z2 production floor unit [34]. The
Z2 unit consists of six workstations where human workers assemble parts of
automotive tail-lights. The system allows production of certain product varia-
tions and reacts dynamically to any change in the current order situation, e.g.,
a decrease or an increase in the number of orders of a certain variant. As indi-
vidual production steps are performed at the different stations, all stations are
interconnected by a monorail transport system. The structure of the transport
system is shown in Fig. 1. On the rails, autonomously moving shuttles carry the
products from one station to another, depending on the products’ requirements.
The monorail system has multiple switches which allow the shuttles to enter,
leave or pass workstations and the central hubs. The goods transported by the
shuttles are also autonomous, which means that each product decides on its own
which variant to become and which station to visit. This way, a decentralized
control of the production system is possible.

Fig. 1. Assembly scenario for tail-lights.

The modular system consists of six different workstations, each is operated
manually by a human worker and dedicated to one specific production step.
Different parts can be used to assemble different variants of the tail-lights. At the
first station, the basic metal-cast parts enter the monorail on a dedicated shuttle.
The monorail connects all stations, each station is assigned to one specific task,
such as adding bulbs or electronics. Each tail-light is transported from station
to station until it is assembled completely. In the DESS implementation of the
Z2 system, every assembly station, every monorail shuttle and every product is
represented by a software process. Even the RFID readers which keep track of

64 S. Edelkamp and C. Greulich

product positions are represented by software processes, which decide when a
shuttle may pass or stop.

Most processes in this DESS resemble simple reflex methods. These processes
just react to requests or events which were caused by other processes or the
human workers involved in the manufacturing process. In contrast, the processes
which represent products are actively working towards their individual goal of
becoming a complete tail-light and reaching the storage station. In order to
complete its task, each product has to reach sub-goals which may change during
production as the order situation may change. The number of possible actions
is limited by sub-goals which already have been reached, since every possible
production step has individual preconditions.

The product processes constantly request updates regarding queue lengths
at the various stations and the overall order situation. The information is used
to compute the utility of the expected outcome of every action. High utility is
given when an action leads to fulfillment of an outstanding order and takes as
little time as possible. Time, in this case, is spent either on actions, such as
moving along the railway or being processed, or on waiting in line at a station
or a switch.

The Z2 DES was developed strictly for the purpose of controlling the Z2
monorail hardware setup. Nonetheless, due to its hardware abstraction layer
[34], the Z2 DES can be adapted into other hardware or software environ-
ments. By replacing the hardware with other processes and adapting the mono-
rail infrastructure into a directed graph, the Z2 DES has been transferred to
a DESS [21]. Such an environment, which treats the original Z2 modules like
black boxes, can easily be hosted by a DESS. Experiments showed how close the
simulated and the real-world scenarios match.

For this study, we provided the model with timers to measure the time taken
between two graph nodes. Since the hardware includes many RFID readers along

Fig. 2. Weighted graph model of the assembly scenario.

Using SPIN for the Optimized Scheduling of Discrete Event Systems 65

the monorail, which all are represented by an agent and a node within the simula-
tion, we simplified the graph and kept only three types of nodes: switches, produc-
tion station entrances and production station exits. The resulting abstract model
of the system is a weighted graph (see Fig. 2), where the weight of an edge denotes
the traveling/processing time of the shuttle between two respective nodes.

5 Promela Specification

Promela is the input language of the model checker Spin1, the ACM-awarded
popular open-source software verification tool, designed for the formal verifica-
tion of multi-threaded software applications, and used by thousands of people
worldwide. Promela defines asynchronously running communicating processes,
which are compiled to finite state machines. It has a c-like syntax, and supports
bounded channels for sending and receiving messages.

Channels in Promela follow the FIFO principle. Therefore, they implicitly
maintain order of incoming messages and can be limited to a certain buffer size.
Consequently, we are able to map edges to communication channels. Unlike the
original Z2 ABS, the products are not considered to be decision making entities
within our Promela model. Instead, the products are represented by messages
which are passed along the node processes, which resemble switches, station
entrances and exits.

Unlike the original DESS, the Promela model is designed to apply a branch-
and-bound optimization to evaluate the optimal throughput of the original
system. Instead of local decision making, the various processes have certain non-
deterministic options of handling incoming messages, each leading to a different
system state. The model checker systematically computes these states and mem-
orizes paths to desirable outcomes when it ends up in a final state. As mentioned
before, decreasing production time for a given number of products increases the
utility of the final state.

We derive a Promela model of the Z2 as follows. First, we define global setting
on the number of stations and number of switches. We also define the data type
storing the index of the shuttle/product to be byte. In the model, switches are
realized as processes and edges between the units by the following channels.

chan entrance_to_exit[STATIONS] = [1] of {shuttle};
chan exit_to_switch[STATIONS] = [BUFFERSIZE] of {shuttle};
chan switch_to_switch[SWITCHES] = [BUFFERSIZE] of {shuttle};
chan switch_to_entrance[STATIONS] = [BUFFERSIZE] of {shuttle};

As global variables, we have bit-vectors for marking the different assemblies.

bit metalcast[SHUTTLES]; bit electronics[SHUTTLES];
bit bulb[SHUTTLES]; bit seal[SHUTTLES]; bit cover[SHUTTLES];

1 http://spinroot.com/spin/whatispin.html.

http://spinroot.com/spin/whatispin.html

66 S. Edelkamp and C. Greulich

Additionally, we have a bit-vector that denotes when a shuttle with a fully
assembled item has finally arrived at its goal location. A second bit-vector is
used to set for each shuttle whether it has to acquire a colored or a clear bulb.

bit goals[SHUTTLES]; bit color[SHUTTLES];

A switch is a process that controls the flow of the shuttles. In the model, a
non-deterministic choice is added to either enter the station or to continue trav-
eling onwards on the cycle. Three of four switching options are made available,
as immediate re-entering a station from its exit is prohibited.

proctype Switch(byte in; byte out; byte station) {
shuttle s;
do
:: exit_to_switch[station]?s; switch_to_switch[out]!s;
:: switch_to_switch[in]?s; switch_to_switch[out]!s;
:: switch_to_switch[in]?s; switch_to_entrance[station]!s;
od

}

The entrance of a manufacturing station takes the item from the according
switch and moves it to the exit. It also controls that the manufacturing complies
with the capability of the station.

First, the assembling of product parts is different at each station, in the sta-
tions 1 and 3 we have the insertion of bulbs (station 1 provides colored bulbs,
station 3 provides clear bulbs), station 2 assembles the seal, station 4 the elec-
tronics and station 0 the cover. Station 5 is the storage station where empty metal
casts are placed on the monorail shuttles and finished products are removed to
be taken into storage. Secondly, there is a partial order of the respective product
parts to allow flexible processing and a better optimization based on the current
load of the ongoing production.

proctype Entrance(byte station) {

shuttle s;

do

:: switch_to_entrance[station]?s;

entrance_to_exit[station]!s

if

:: (station == 4) -> electronics[s] = 1;

:: (station == 3 && !color[s]) -> bulb[s] = 1;

:: (station == 2)-> seal[s] = 1;

:: (station == 1 && color[s]) -> bulb[s] = 1;

:: (station == 0 && seal[s] && bulb[s] && electronics[s])-> cover[s] = 1;

:: (station == 5 && cover[s]) -> goals[s] = 1;

:: else

fi

od

}

Using SPIN for the Optimized Scheduling of Discrete Event Systems 67

An exit is a node that is located at the end of a station, at which assembling
took place. It is connected to the entrance of the station and the switch linked
to it.

proctype Exit(byte station) {
shuttle s;
do
:: entrance_to_exit[station]?s; exit_to_switch[station]!s;
od

}

A hub is a switch that is not connected to a station but provides a shortcut
in the monorail network. Again, three of four possible shuttle movement options
are provided

proctype Hub(byte in1; byte out1; byte in2; byte out2) {
shuttle s;
do
:: switch_to_switch[in1]?s; switch_to_switch[out1]!s;
:: switch_to_switch[in1]?s; switch_to_switch[out2]!s;
:: switch_to_switch[in2]?s; switch_to_switch[out1]!s;
od

}

In the initial state, we start the individual processes, which represent switches
and hereby define the network of the monorail system. Moreover, initially, we
have that the metal cast of each product is already present on its carrier, the
shuttle. The coloring of the tail-lights can be defined at the beginning or in
the progress of the production. Last, but not least, we initialize the process by
inserting shuttles on the starting rail (at station 5).

init {
atomic {

byte i;
c_code { cost = 0; }
c_code { best_cost = infinity; }
for (i : 0 .. (SHUTTLES)/2)){ color[i] = 1; }
for (i : 0 .. (SHUTTLES-1)) { metalcast[i] = 1; }
for (i : 0 .. (STATIONS-1)) { run Entrance(i); run Exit(i); }
run Switch(7,0,5); run Switch(0,1,4);
run Switch(1,2,3); run Switch(3,4,2);
run Switch(4,5,1); run Switch(5,6,0);
run Hub(2,3,8,9); run Hub(6,7,9,8);
for (i : 0 .. (SHUTTLES-1)) { exit_to_switch[5]!i; }}

}

We also heavily made use of the term atomic, which enhances the exploration
for the model checker, allowing it to merge states within the search. In difference to

68 S. Edelkamp and C. Greulich

the more aggressive d step keyword, in an atomic block all communication queue
actions are blocking, so that we chose to use an atomic block around each loop.

6 Optimized Scheduling

Inspired by [7,31,36] we applied and improved branch-and-bound (BnB) opti-
mization. Branching is the process of spawning subproblems, while bounding
refers to ignoring partial solutions that cannot be better than the current best
solution. To this end, lower and upper bounds and are maintained as global
control values on the solution quality, which improves over time.

For applying BnB to general flow manufacturing systems, we extend depth-
first search (DFS) with upper (and lower) bounds. In this context, branching
corresponds to the generation of successors, so that DFS can be casted as gener-
ating a branch-and-bound search tree. One way of obtaining a lower bound L for
the problem state u is to apply an admissible heuristic h with L(u) = g(u)+h(u),
where g denotes the cost for reaching the current node from the root, and h is
a function that always underestimates the remaining cost to reach a goal.

As with standard DFS, the first solution obtained might not be optimal. With
depth-first branch-and-bound (DFBnB), however, the solution quality improves
over time together with the global value U until eventually the lower bound
L(u) at some node u is equal to U . The pseudo-code of this approach is shown
in Algorithm 1. In standard Spin, the trivial heuristic is h ≡ 0 used, but in
HSF-Spin [12], a few heuristic functions have been implemented. We obtain the
following result.

Theorem 1 (Optimality of Branch-and-Bound for Flow Manufacturing). For
a admissible heuristic function h, the DFBnB procedure in Algorithm1 will
eventually find the optimal solution to the flow manufacturing problem F =
(A,E,G,≺, S,Q).

Proof. We can compute costs for partial runs and extend partial schedules incre-
mentally. The objective function to be minimized over all possible runs Π in the
system is monotone increasing. Only inferior paths that cannot be extended to a
better path than the currently best known one are pruned. As the state space is
finite, the search will eventually terminate and return the optimal solution. q.e.d.

There are different options for finding optimized schedules with the help of
a model checker that have been proposed in the literature. First, in the Soldier
model of [37], rendezvous communication to an additional synchronized process
has been used to increase cost, dependent on the transition chosen, together with
a specialized LTL property to limit the total cost for the model checking solver.
This approach, however, turned out to be limited for our purpose. An alternative
proposal for branch-and-bound search is based on the support of native c-code in
Spin (introduced in version 4.0) [36]. One running example is the traveling sales-
man problem (TSP), but the approach is generally applicable to many other opti-
mization problems. However, as implemented, there are certain limitations to the

Using SPIN for the Optimized Scheduling of Discrete Event Systems 69

Algorithm 1. DFBnB Algorithm.

DFBnB(F = (A, E, G, ≺, S, Q))
Initialize upper bound U
π′ ← π ← ∅
DFS(F, (s, . . . , s), 0, U)
return π′

DFS(F, u, π, U)
π ← extend(π, u)
if (u = (t, . . . , t))

if (cost(π) < U) π′ ← π; U ← cost(π)
else for each v in successors(u)

if (cost(π) + h(v) < U) DFS(F, v, π, U)

scalability of state space problem graphs. Recall that the problem graph induced
by the TSP is in fact a tree, generating all possible permutations for the cities.

Following [7,12,36] we applied branch-and-bound optimization within Spin.
Essentially, the model checker can find traces of several hundreds of steps and
provides trace optimization by finding the shortest path towards a counterex-
ample if ran with the parameter ./pan –i. As these traces are step-optimized,
and not cost-optimized, Ruys [36] proposed to introduce a variable cost that we
extend as follows.

c_state "int min_cost" "Hidden" c_state "int min_cost" "Hidden"

c_code { int cost; } c_code { int cost[SHUTTLES]; }

c_track "cost" "sizeof(int)" "Matched" c_track "cost" STRING "Matched"

While the cost variable increases the amount of memory required for each
state, it also limits the power of Spins built-in duplicate detection, as two other-
wise identical states are considered different if reached by different accumulated
cost. If the search space is small, so that it can be explored even for the enlarged
state vector, then this option is sound and complete, and finally returns the opti-
mal solution to the optimization problem. However, there might be simply too
many repetitions in the model so that introducing cost to the state vector leads
to a drastic increase in state space size, so that otherwise checkable instances now
become intractable. We noticed that even by concentrating on safety properties
(such as the failed assertion mentioned), the insertion of costs causes troubles.

6.1 Guarded Branching

For our model, cost has to be tracked for every shuttle individually. The variable
cost of the most expensive shuttle indicates the duration of the whole produc-
tion process. Furthermore, the cost total provides insight regarding unnecessary
detours or long waiting times. Hence, minimizing both criteria are the optimiza-
tion goals of this model.

In Promela, every do-loop is allowed to contain an unlimited number of pos-
sible options for the model checker to choose from. The model checker randomly
chooses between these options, however, it is possible to add an if -like condition
to an option: If the first statement of a do option holds, Spin will start to execute
the following statements, otherwise, it will pick a different option.

70 S. Edelkamp and C. Greulich

Since the model checker explores any possible state of the system, many of
these states are technically reachable but completely useless from an optimiza-
tion point of view. In order to reduce state space size to a manageable level, we
add constraints to the relevant receiving options in the do-loops of every node
process.

Peeking into the incoming queue to find out, which shuttle is waiting to
be received is already considered a complete statement in Promela. There-
fore, we exploit C-expressions (c expr) to combine several operations into one
atomic statement. For every station t and every incoming channel q, a function
prerequisites(t, q) determines, if the first shuttle in q meets the prerequisites for
t, as given by Fig. ??.

shuttle s;

do

:: c_expr{prerequisites(Px->q,Px->t)} -> channel[q]?s; channel[out]!;

od

At termination of a successful run, we now extend the proposeal of [36]. We
use the integer array cost[SHUTTLES] of the Promela model. It enables each
process to keep track of its local cost vector and is increased by the cost of each
action as soon as the action is executed. This enables the model checker to print
values to the output, only if the values of the current max cost and total cost
have improved.

terminate:
c_code {
int max = 0, total = 0, j;
for (j=0; j<SHUTTLES; j++) {

total += cost[j];
if (cost[j] > max) max = cost[j]; }

if (max < min_cost) { min_cost = max; putrail(); Nr_Trails--; };
}

For solution reconstruction, we write a file for each new cost value obtained,
temporarily renaming the trail file as follows.

char mytrailfile[512];
sprintf(mytrailfile, "%s_t%d_st%d.pr", base,min_cost,total);
char* y = mytrailfile;
swap(&TrailFile, &y);
putrail();
swap(&y, &TrailFile);

6.2 Process Synchronization

Due to the nature of the state space search of the model checker, processes in
the Promela model do not make decisions. Nonetheless, the given model is a

Using SPIN for the Optimized Scheduling of Discrete Event Systems 71

distributed DES consisting of a varying number of processes, which potentially
influence each other if executed in parallel.

We addressed this problem by introducing an event-based time progress to
the Promela model. Whenever a shuttle s travels along one of the edges, the
corresponding message is put into a channel and the cost of the respective shuttle
is increased by the cost of the given edge.

shuttle s;
do
:: c_expr{ canreceive(channel,Px->q,Px->station) }

-> channel[q]?s
c_code { cost[s] += Px->c; }
channel[out] ! s;

od

We introduce an atomic C function canreceive(q) that returns true only if
the first item s of q has minimal cost(s), changing the receiving constraint to the
following.

c_code {
int canreceive(int channeltype, int arrayidx, int station) {

int channelidx = -1;
switch(channeltype) {

case xyz: channelidx = now.xyz[arrayidx]; break; [...]
}
if(channelidx > -1 && q_len(channelidx) > 0) {

int shuttle = qrecv(channelidx, 0, 0, 0);
int minimum = infinity;
for (int j=0; j<SHUTTLES; j++) {

if (cost[j] < minimum) minimum = cost[j]; }
return (minimum == cost[shuttle]); }

return 0;
}

Within Spin, the global Boolean variable timeout is automatically set to
true when all current processes are unable to proceed, e.g., because they cannot
receive a message. Consequently, for every shuttle p, all processes will be blocked
and timeout will be set to true. As suggested by Bošnački and Dams [6], we
add a process that enforces time progress, whenever timeout occurs (final is a
macro for reaching the goal).

active proctype watchdog() {
do
::timeout -> c_code{ increase(); } ; assert(!final);
od

}

72 S. Edelkamp and C. Greulich

Time delay is enforced as follows: if the minimum event in the future event
list is blocked (e.g., a shuttle is not first in its queue), we compute the wake-up
time of the second best event. If the two are of the same time, a time increment
of 1 is enforced. In the other case, the second best event time is taken as the
new one for the first. It is easy to see that this strategy eventually resolves all
possible deadlocks. Its implementation is as follows.

int increase() {
int j, l = 0, minimum = cost[0];
for (j=1; j<SHUTTLES; j++)

if (cost[j] < minimum) { minimum = cost[j]; l = j; }
int second = infinity;
for (j=0; j<SHUTTLES; j++) {

if (cost[j] < second && cost[j] > minimum)
second = cost[j]; }

cost[l] = (second == infinity) ? minimum + 1 : second;
}

As a summary, the constraint bounded depth-first exploration has turned
into the automated generation of the underlying state space of the DES, using
c-code to preserve the causality of actions and to simulate the future event list.

7 Evaluation

In this section, we present results of a series of experiments executing two differ-
ent Promela models. We compare the results of the exploration minimizing local
virtual time (LVT) [20] to the ones simulating the discrete event system (DES)
described in this paper. For comparison, we also present results of simulation
runs of the original implementation on hardware [21].

Unlike the original system, the Promela models do not rely on local deci-
sion making but searches for an optimal solution systematically. Therefore, both
Promela models resemble a centralized planning approach.

For executing the model checking, we chose version 6.4.3 of Spin. As a com-
piler we used gcc version 4.9.3, with the posix thread model. For the standard
setting of trace optimization for safety checking (option –DSAFETY), we compiled
the model as follows.

./spin -a z2.pr;
gcc -O2 -DREACH -DSAFETY -o pan pan.c;
./pan -i -m30000

Parameter –i stands for the incremental optimization of the counterexample
length. We regularly increased the maximal tail length with option –m, as in
some cases of our running example, the traces turned out to be longer than the
standard setting of at most 10000 steps. Option –DREACH is needed to warrant
minimal counterexamples at the end. To run experiments, we used a common

Using SPIN for the Optimized Scheduling of Discrete Event Systems 73

Table 1. Sequences of events for n = 3 products. (Product ⇒ Station, where ⇒
indicates a finished production step.)

ABS LVT DES

0 ⇒ 4 0 ⇒ 4 0 ⇒ 4

1 ⇒ 2 1 ⇒ 4 1 ⇒ 4

0 ⇒ 3 2 ⇒ 4 2 ⇒ 4

2 ⇒ 1 0 ⇒ 3 0 ⇒ 3

0 ⇒ 2 2 ⇒ 3 1 ⇒ 2

1 ⇒ 4 1 ⇒ 2 2 ⇒ 3

0 ⇒ 0 1 ⇒ 1 0 ⇒ 2

2 ⇒ 4 2 ⇒ 2 1 ⇒ 1

0 ⇒ 5 1 ⇒ 0 2 ⇒ 2

1 ⇒ 1 0 ⇒ 2 0 ⇒ 0

2 ⇒ 2 2 ⇒ 0 1 ⇒ 0

1 ⇒ 0 0 ⇒ 0 2 ⇒ 0

2 ⇒ 0 1 ⇒ 5 0 ⇒ 5

1 ⇒ 5 2 ⇒ 5 1 ⇒ 5

2 ⇒ 5 0 ⇒ 5 2 ⇒ 5

notebook with an Intel(R) Core(TM) i7-4710HQ CPU at 2.50 GHz, 16 GB of
RAM and Windows 10 (64 Bit).

For smaller problems we experimented with Spin’s parallel BFS (–DBFS PAR),
as it computes optimal-length counterexamples. The hash table is shared
based on compare-and-swap (CAS). We also tried supertrace/bitstate hashing
(-DBITSTATE) as a trade-off. Unfortunately, BFS interacts with c track, so we
had to drop the experiments for cost optimization. Swarm tree search (./swarm
–c3 –m16G –t1 –f) found many solutions, some of them being shorter than the
ones offered by option –i (indicating ordering effects), but due to the increased
amount of randomness, for the optimized scheduling in general no better results
that ordinary DFS were found.

In each experiment run, a number of n ∈ {2 . . . 20} shuttles carry products
through the facility. All shuttles with even IDs acquire clear bulbs, all shuttles
with odd IDs acquire colored ones.

A close look at the experiment results of every simulation run reveals that,
given the same number of products to produce, all three approaches result in
different sequences of events. However, LVT and DES propose the same sequence
of production steps for the product of each shuttle. The example given in Fig. 1
shows that for all shuttles 0 . . . 2 the scheduling sequence is exactly the same in
LVT and DES, while the original ABS often proposes a different schedule. In the
given example, both LVT and DES propose a sequence of 4, 2, 1, 0, 5 for shuttle
1. To the contrary, the ABS approach proposes 2, 1, 4, 0, 5 for shuttle 1. The
same phenomenon can be observed for every n ∈ {2 . . . 20} number of shuttles.

74 S. Edelkamp and C. Greulich

All three simulation models keep track of the local production time of each
shuttle’s product. In ABS and LVT simulation, minimizing maximum local pro-
duction time is the optimization goal. Steady, synchronized progress of time is
maintained centrally after every production step. Hence, whenever a shuttle has to
wait in a queue, its total production time increases. For the DES model, progress
of time is managed differently, as illustrated in Sect. 6.2. Results show that max.
production time in DES is lower than LVT and ABS production times in all cases.

For every experiment, the amount of RAM required by DES to determine an
optimal solution is slightly lower than the amount required by LVT as shown in
Table 2. While the LVT required several iterations to find an optimal solution,
the first valid solution found by DES was already the optimal solution in any
conducted experiment. However, the LVT model is able to search the whole state
space within the 16 GB RAM limit (given by our machine) for n ≤ 3 shuttles,
whereas the DES model is unable to search the whole state space for n > 2.
For every experiment with n > 3 (LVT) or n > 2 (DES) shuttles respectively,
searching the state space for better results was cancelled, when the 16 GB RAM
limit was reached.

Table 2. Simulated production times for n products in the original ABS and Spin
simulation, including the amount of RAM required to compute the given result.

Products ABS LVT DES

Max. Prod. Time Max. Prod. Time RAM Max. Prod. Time RAM

2 4:01 3:24 987 MBa 2:53 731 MBa

3 4:06 3:34 2154 MBa 3:04 503 MB

4 4:46 3:56 557 MB 3:13 519 MB

5 4:16 4:31 587 MB 3:25 541 MB

6 5:29 4:31 611 MB 3:34 565 MB

7 5:18 5:08 636 MB 3:45 587 MB

8 5:57 5:43 670 MB 3:55 610 MB

9 6:00 5:43 692 MB 4:06 635 MB

10 6:08 5:43 715 MB 4:15 557 MB

20 9:03 8:56 977 MB 5:59 857 MB
a indicates that the whole state space was searched within the given RAM usage

While the experiments indicate that the DES is faster and more memory
efficient than the LVT approach, we observe that the mapping cost to time in
the DES is limited. Assuming that events are processed by the time stamp while
inserted in the priority queue is a limitation. Extensions of the future event list
supporting the priority queue operation increaseKey have to be looked at. In our
experiment if one element in a process queue was delayed, all the ones behind it
were delayed as well. While DES and LVT are both sound in resolving deadlocks,
LVT has the more accurate representation for the progress of time.

Using SPIN for the Optimized Scheduling of Discrete Event Systems 75

8 Conclusions

Simulation provides a method to approximate the behaviour in a real system (and,
hence, can be used for testing scenarios). Constructing the model can prove useful
in achieving greater understanding of the system. In this paper, we presented a
novel approach for model checking (instead of simulating) DES. The research is
motivated by our interest in finding and comparing centralized and distributed
solutions to the optimization problems in autonomous manufacturing.

Using model checking for optimizing DES is a relative new playground for
formal method tools in form of a new analysis paradigm. The formal model in
Promela reflects the routing and scheduling of entities in the DES. Switches of
the rail network were modeled as processes, the edges between the switches as
communication channels. Additional constraints to the order of production steps
enable to carry out a complex planning and scheduling task. Our results clearly
indicate a lot of room for improvement in the decentralized solution, since the
model checker found more efficient ways to route and schedule the shuttles on
several occasions. Furthermore, the model checker could derive optimized plans
of several thousand steps.

References

1. Abdeddäım, Y., Maler, O.: Job-shop scheduling using timed automata. In: Berry,
G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, p. 478. Springer,
Heidelberg (2001)

2. Armando, A., Mantovani, J., Platania, L.: Bounded model checking of software
using SMT solvers instead of SAT solvers. In: Valmari, A. (ed.) SPIN 2006. LNCS,
vol. 3925, pp. 146–162. Springer, Heidelberg (2006)

3. Bagchi, T.P.: Multiobjective Scheduling by Genetic Algorithms. Springer, USA
(1999)

4. Bhat, U.: Finite capacity assembly-like queues. Queueing Syst. 1, 85–101 (1986)
5. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without

BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, p. 193. Springer,
Heidelberg (1999)

6. Bosnacki, D., Dams, D.: Integrating real time into spin: a prototype implementa-
tion. In: Budkowski, S., Cavalli, A., Najm, E. (eds.) FORTE/PSTV, pp. 423–438.
Springer, New York (1998)

7. Brinksma, E., Mader, A.: Verification and optimization of a PLC control schedule.
SPIN 1885, 73–92 (2000)

8. Burman, M.: New results in flow line analysis. Ph.D. thesis, Massachusetts Institute
of Technology (1995)

9. Cimatti, A., Giunchiglia, E., Giunchiglia, F., Traverso, P.: Planning via model
checking: a decision procedure for AR. In: Steel, S. (ed.) ECP 1997. LNCS, vol.
1348, pp. 130–142. Springer, Heidelberg (1997)

10. Cimatti, A., Roveri, M., Traverso, P.: Automatic OBDD-based generation of uni-
versal plans in non-deterministic domains. In: AAAI, pp. 875–881 (1998)

11. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(2000)

76 S. Edelkamp and C. Greulich

12. Edelkamp, S., Lluch-Lafuente, A., Leue, S.: Directed model-checking in HSF-SPIN.
In: SPIN, pp. 57–79 (2001)

13. Edelkamp, S., Reffel, F.: OBDDs in heuristic search. In: Herzog, O. (ed.) KI 1998.
LNCS, vol. 1504, pp. 81–92. Springer, Heidelberg (1998)

14. Edelkamp, S., Sulewski, D.: Flash-efficient LTL model checking with minimal coun-
terexamples. In: SEFM, pp. 73–82 (2008)

15. Fox, M., Long, D.: The detection and exploration of symmetry in planning prob-
lems. In: IJCAI, pp. 956–961 (1999)

16. Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flowshop and jobshop
scheduling. Math. Oper. Res. 1(2), 117–129 (1976)

17. Gerth, R., Peled, D., Vardi, M., Wolper, P.: Simple on-the-fly automatic verification
of linear temporal logic. In: PSTV, pp. 3–18 (1995)

18. Giunchiglia, F., Traverso, P.: Planning as model checking. In: Biundo, S., Fox, M.
(eds.) ECP 1999. LNCS, vol. 1809, pp. 1–19. Springer, Heidelberg (2000)

19. Godefroid, P.: Using partial orders to improve automatic verification methods. In:
Clarke, E., Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 176–185. Springer,
Heidelberg (1991)

20. Greulich, C., Edelkamp, S.: Branch-and-bound optimization of a multiagent system
for flow production using model checking. In: ICAART (2016)

21. Greulich, C., Edelkamp, S., Eicke, N.: Cyber-physical multiagent-simulation in
production logistics. In: Müller, J.P., et al. (eds.) MATES 2015. LNCS, vol. 9433,
pp. 119–136. Springer, Heidelberg (2015). doi:10.1007/978-3-319-27343-3 7

22. Harrison, J.: Assembly-like queues. J. Appl. Prob. 10, 354–367 (1973)
23. Helias, A., Guerrin, F., Steyer, J.-P.: Using timed automata and model-checking to

simulate material flow in agricultural production systems - application to animal
waste management. Comput. Electr. Agric. 63(2), 183–192 (2008)

24. Hoffmann, J., Kissmann, P., Torralba, Á.: “Distance”? Who cares? tailoring merge-
and-shrink heuristics to detect unsolvability. In: ECAI, pp. 441–446 (2014)

25. Holzmann, G.J.: The SPIN Model Checker - Primer and Reference Manual.
Addison-Wesley, Boston (2004)

26. Hopp, W., Simon, J.: Bounds and heuristics for assembly-like queues. Queueing
Syst. 4, 137–156 (1989)

27. Jensen, R.M., Veloso, M.M., Bowling, M.H.: OBDD-based optimistic and strong
cyclic adversarial planning. In: ECpP (2001)

28. Kautz, H., Selman, B.: Pushing the envelope: planning propositional logic, and
stochastic search. In: ECAI, pp. 1194–1201 (1996)

29. Kupferschmid, S., Hoffmann, J., Dierks, H., Behrmann, G.: Adapting an AI plan-
ning heuristic for directed model checking. In: Valmari, A. (ed.) SPIN 2006. LNCS,
vol. 3925, pp. 35–52. Springer, Heidelberg (2006)

30. Lipper, E., Sengupta, E.: Assembly-like queues with finite capacity: bounds,
asymptotics and approximations. Queueing Syst. 1(1), 67–83 (1986)

31. Liu, W., Gu, Z., Xu, J., Wang, Y., Yuan, M.: An efficient technique for analysis of
minimal buffer requirements of synchronous dataflow graphs with model checking.
In: CODES+ISSS, pp. 61–70 (2009)

32. Lluch-Lafuente, A.: Symmetry reduction and heuristic search for error detection
in model checking. In: MOCHART, pp. 77–86 (2003)

33. Manitz, M.: Queueing-model based analysis of assembly lines with finite buffers
and general service times. Comput. Oper. Res. 35(8), 2520–2536 (2008)

34. Morales Kluge, E., Ganji, F., Scholz-Reiter, B.: Intelligent products - towards
autonomous logistic processes - a work in progress paper. In: International PLM
Conference (2010)

http://dx.doi.org/10.1007/978-3-319-27343-3_7

Using SPIN for the Optimized Scheduling of Discrete Event Systems 77

35. Nau, D., Ghallab, M., Traverso, P.: Automated Planning: Theory and Practice.
Morgan Kaufmann Publishers Inc., San Francisco (2004)

36. Ruys, T.C.: Optimal scheduling using branch and bound with SPIN 4.0. In:
Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 1–17. Springer,
Heidelberg (2003)

37. Ruys, T.C., Brinksma, E.: Experience with literate programming in the mode-
lling and validation of systems. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol.
1384, p. 393. Springer, Heidelberg (1998)

38. Shen, W., Wang, L., Hao, Q.: Planning, agent-based distributed manufacturing
process scheduling: a state-of-the-art survey. IEEE Trans. Syst. Man Cybern.,
Part C (Appl. Rev.) 36(4), 563–577 (2006)

39. Valmari, A.: A stubborn attack on state explosion. Lect. Notes Comput. Sci. 531,
156–165 (1991)

40. Wijs, A.: What to do next? analysing and optimising system behaviour in time.
Ph.D. thesis, Vrije Universiteit Amsterdam (2007)

River Basin Management with Spin

Maŕıa-del-Mar Gallardo, Pedro Merino, Laura Panizo(B),
and Alberto Salmerón

Andalućıa Tech, Dept. de Lenguajes y Ciencias de la Computación,
Universidad de Málaga, Málaga, Spain

{gallardo,pedro,laurapanizo,salmeron}@lcc.uma.es

Abstract. This paper presents the use of the Spin model checker as the
core engine to build Decision Support Systems (DSSs) to control complex
river basins during flood situations. Current DSSs in this domain are
mostly based on simulators to predict the rainfall and the water flow
along the river basin.

In this paper, we propose a scheme that integrates simulators in
the water domain with additional logic in Promela to represent basin
elements, such as dams, their management rules, the evolution of dam
parameters (e.g. level or discharge capacity), and user defined constraints
in the whole basin over time. Then, we use the exploration capabilities
of Spin to find out which sequences of operations over the dams produce
a global behaviour that mitigates the effect of floods according to user
defined constraints along the river basin. Although the method is general
for any river basin with dams, it has been evaluated in a real basin in
the south of Spain.

1 Introduction

Mediterranean countries, like Spain, have built many big dams which ensure the
water supply to the population during typical long drought periods, and also
limit the damage caused by floods by means of their flood discharge capacity
(Spain is the fourth country in number of big dams, following USA, China and
India). However, experience has demonstrated [14] that during a flood episode,
the incorrect management of a dam can produce disasters worse than if the dam
did not exist. This problem is even more complex when there are several dams
in the same river basin, because of the difficulty to predict the cumulative effect
of water discharging at several points in parallel.

The most common way to manage dams during flood episodes is based on the
combination of weather forecasts and ad-hoc decision rules. The dam operators
usually estimate the input of water over time (the input hydrograph) with official
forecasts, and employ a pre-designed catalogue of management rules to decide
water discharges. These rules take into account different parameters, e.g. the

This work has been partially funded by the Regional Government of Andalusia under
grant P11-TIC-07659, and the European Comission under FP7 Environment project
SAID, Grant agreement 619132, and FEDER.

c© Springer International Publishing Switzerland 2016
D. Bošnački and A. Wijs (Eds.): SPIN 2016, LNCS 9641, pp. 78–96, 2016.
DOI: 10.1007/978-3-319-32582-8 5

River Basin Management with Spin 79

reservoir level, the weather forecast, the current downstream drainage capacity,
etc. One recent trend is the development of software systems that act as reli-
able Decision Support Systems (DSSs) to assist dam managers in floods [10,11].
These DSSs are based on simulation models that allow a detailed and faithful
representation of a real-world system with complex mathematical models. How-
ever, they can only show the effect of applying a specific management policy.
With this approach, a large number of trials is necessary to establish an optimal
policy, which can drastically reduce the time to react to the flood.

In [7], we introduced the use of model checking as a promising novel approach
to build more powerful DSSs for flood management in a single dam. The proposal
works as follows. We describe the dam’s physical components (like spillways to
discharge water) with Promela as well as a non-deterministic process simulating
the dam manager’s actions on the physical discharge elements. An external tool
provides the representation of the expected input water flow to the dam over time
as a hydrograph. Finally, we added constraints to keep the dam level between
a minimum and maximum value or to discharge a maximum flow downstream.
Constraints are encoded as a never claim, a special Promela process. Spin uses
these inputs and generates a counterexample that corresponds to the manoeuvres
over dams that satisfy the constraints.

Our previous work focused on managing a single dam. Thus, to manage a
complex river basin with more than one dam, the dam operators must manually
run our DSS for each dam and the hydrologic basin models, appropriately link-
ing the inputs and outputs to simulate the state of the basin. However, this is
unfeasible in practice. In this paper, we extend our previous work to use Spin
as the core engine of a DSS for the coordinated management of all the dams in
a river basin. We reuse the initial work in [7] to model every dam in the basin
in a single Promela model, and we integrate an external hydrologic river basin
model to simulate the effects of the dams downstream. The constraints over
basin locations are checked externally, and the result of the evaluation directly
affects the Spin exploration algorithm. The Promela model of the river basin
now includes several dams, integrates different external (hydrodynamic) mod-
els and safety constraints over the basin, and the management rules modeled
as a non-deterministic process. We make extensive use of embedded C code in
Promela, tracking a minimal number of variables and abstractions to reduce
the state space. The embedded C code is also used to deal with discretized con-
tinuous variables, and to propagate the effects of dam manoeuvres throughout
the basin, using different time references. The output of the verification process
is a sequence (or several sequences) of coordinated manoeuvres for all the dams
to assist the manager in the decision making process. We have implemented the
system for a real river basin in the south of Spain, and validated its performance
and usefulness with real scenarios.

To the best of our knowledge, there are no works on the use of model checking
to synthesize the manoeuvres in flood episodes. Compared with other works in
this domain, like FCROS [9] in Poland, DESMOF [2] in Canada, or IMSFCR [4]
in China, our approach offers several novelties. While FCROS and DESMOF

80 M.M. Gallardo et al.

only include simulation of flood policies, our DSS and IMSFCR also calculate
the necessary operations. IMSFCR makes multi-objective optimisation based on
fuzzy iteration, but it does not consider hydrological models downstream.

The rest of the paper is organized as follows. Section 2 provides some back-
ground on dam management and presents the case study used in the paper.
Section 3 describes our approach based on model checking, while Sect. 4 details
how to build the Promela models of the river basin. Section 5 explains how
to define constraints over the dam parameters and the basin flows. Section 6 is
devoted to the evaluation with the case study, and finally Sect. 7 presents the
conclusions and future work.

2 Background on Flood Management

Flood management is a complex task, especially in Mediterranean basins, which
are characterized by long drought periods and short but intense rainfalls. Dams
are an important element in this kind of basin, as they store water for two main
purposes: to supply water to the population in drought periods and to control
floods. With correct management, a dam can smooth the peak rainfall and avoid
downstream flooding.

Dams are equipped with different types of discharge elements. Figure 1 shows
the discharge elements of the Conde del Guadalhorce dam, which is included in
our case study. Spillways are gates for flood regulation. They usually have the
highest discharge capacity. Outflows can be used for flood regulation or other
water uses (supply, irrigation or energy production), and their discharge capacity
is lower. In general, the outflow capacity of a dam’s outlets depends on their
location, which is fixed, their opening degree, which is variable, and the dam

Fig. 1. Dam discharge elements

River Basin Management with Spin 81

level, which changes following Eq. 1, where V (t) and V (t − 1) are respectively,
the water stored at instant t and t − 1, Inflow(t) represents the water input
and Qsi(t) is the water discharged by outlet si. Equation 2 shows the discharge
capacity of a spillway gate, where hs1 and hs2 are the water level and the position
of the gate evolving over time. The other components, C and L, depend on the
geometry of the gates and can be considered constant.

V (t) = V (t− 1) + (Inflow(t) −
n∑

i=1

Qsi(t)) (1)

Qs(t) = CL(
√

hs1(t)3 −
√

hs2(t)3) (2)

Basin and dam management are controversial issues, especially in flood sce-
narios. Dam management has been traditionally carried out by a human opera-
tor, who has to manage in parallel the different outflow elements. In addition, a
basin can include several dams in parallel and/or cascade, and the management
of one dam can have a direct impact on the other dams and on the population
downstream. Moreover, in Mediterranean basins, with short and intense rain-
falls, dam managers have little time to decide how to operate to ensure dam
safety considering the management of the other dams.

2.1 The Guadalhorce Case Study

In this work, the case study is the Guadalhorce River basin, located in the
province of Málaga, in the South of Spain. The basin has a total area of 3,175 km2

and is responsible supplying water to the city of Málaga, a touristic city with
a population of more than 500,000 inhabitants. In addition, the basin supplies
water and irrigation to other small cities of the province. The Guadalhorce basin
has a short concentration time: water flows from the headwater to the mouth in
approximately 8 h. Figure 2 shows the basin area. The Guadalhorce is the main
river of the basin. Its flow is controlled by means of three dams (Guadalhorce,
Guadalteba and Conde del Guadalhorce), which are located at the confluence
of the Guadalhorce with the Turón and Guadalteba rivers. The three dams are
managed by the Andalusian Regional Ministry (Consejeŕıa de Medio Ambiente
y Ordenación del Territorio), and are used for flood management and water
supply. Table 1 shows the main data of the three dams.

The management of the Guadalhorce and Guadalteba dams is special. These
dams are separated by a wall measuring 355 masl (meters above sea level) from
the base. During the flood season water is usually over this level and both dams
are managed as a single dam. In fact, they have been designed to share the spill-
way, which is located in the Guadalteba dam. From now on, we will refer to the
Conde del Guadalhorce dam as CGH, and to the Guadalhorce and Guadalteba
dam jointly as GH-GT. Since the three dams and their outlets are very close, an
important aspect of their management is the synchronization of peak discharges
to avoid downstream flooding. In the main river channel there are no other
dams downstream, but there are many tributaries that flow into the Guadal-
horce River. The largest tributaries in volume are the Grande River, which flow

82 M.M. Gallardo et al.

Table 1. Main characteristics of the dams

Guadalhorce Guadalteba Conde G.

Operational level (masl) 362.25 362.25 341.3

Volume at op. level (hm3) 125.8 153.3 66.5

Extraordinary level 364.0 364.0 342.9

Crest level 367.0 367.0 344.1

Low level outflow

Number of gates 2 2 2

Level (masl) 302.5 308 304

Spillway

Number of gates - 4 2

Level(masl) - 356 338.4

masl: meters above sea level

Fig. 2. Guadalhorce river basin

into the Guadalhorce 35 km downstream, and the Campanillas River, which
merges near the river mouth.

From the point of view of flood management, the basin has 4 locations in
which water flow must be monitored. The first one is La Encantada hydroelectric
plant, which is located 7 km downstream of the dams. The second and third
locations are at the confluence of the Grande River and the Campanillas River
with the main river channel. Finally, the fourth point is the river mouth, which
is located in the city of Málaga, near the international airport.

In this work we present a DSS for this basin based on model checking. The
dam manager has to define constraints that describe the desired behaviour of

River Basin Management with Spin 83

the basin for a specific flood episode. Then, the DSS produces a sequence of
manoeuvres that satisfies the constraints. Figure 3 shows an example of the
results produced by the DSS. At the top, are the level and total outflows of
the dams. Then, the evolution of gates’ openings is displayed. Finally, on the
bottom the water flows in the basin are shown.

Fig. 3. Synthesis of manouvers

84 M.M. Gallardo et al.

3 Approach with Model Checking

We use model checking in order to synthesize management recommendations
that meet the constraints given by the dam manager. We use Spin [8] as the
underlying model checker, and, in consequence, Promela as modelling language.
In addition, the Promela model also uses an external model for the river basin,
developed independently. Given a set of constraints over the variables of the dams
and the river basin, Spin will explore exhaustively all possible manoeuvres, and
produce a suitable set of recommendations for the dam manager that fulfils the
constraints.

Figure 4 shows an overview of our approach, and how the Promela model
used by Spin and the external river basin model interact. First, we must model
the dam (or dams) which will be operated by the dam manager. The manage-
ment of the dam outlets is defined in a partially non-deterministic model, which
determines when the gates should be opened or closed according to the operation
rules, affecting variables such as the water outflow and the dam level over time,
and consequently the outflow across the river basin. The latter is provided by
an external river basin model, which is not modelled in Promela. The external
river basin model takes the outflow of the dams and other environmental aspects
as input, and computes the flow at several points across the river basin. All these
models will be described in Sect. 4. Finally, the user may set restrictions on the
outflows of the dam or at points of interest across the river basin, using timed
automata, or upper and lower curve bounds, as explained in Sect. 5.

Once the models and the restrictions are in place, the analysis can proceed.
The dam manager modelled in Spin is executed periodically to select and apply
one manoeuvre from those available from the rules. The dam model computes the
water discharged between manoeuvres. This will serve as input for the external
river basin model, which is also executed periodically to compute the outflow
along the basin.

Fig. 4. Overview of synthesis of recommendations for dam management

River Basin Management with Spin 85

Depending on the state of the dams and the set of management rules, the
management model may have several options available whenever it has to make
a decision. These options constitute the state space to be explored. Thanks to
the exhaustive exploration provided by Spin, the analysis can obtain all possible
manoeuvres that the dam manager can choose during the course of an episode.
If a particular series of actions leads to a state that violates the constraints
over the dams or the basin, Spin will backtrack and try different manoeuvres,
until the end of the episode is reached while fulfilling specified constraints. This
will produce a counterexample that contains the manoeuvres that satisfy the
constraints.

4 Dam and Basin Modelling

The management of the river basin is based on the analysis of a Promela
basin model against a set of properties that describes the constraints of dam
and basin parameters, such as dam level or water flow. It is worth noting that
some of these parameters have a continuous evolution over time and have to be
properly represented to avoid state-space explosion problems.

The global model of the basin comprises different sub-models, such as the
model of the dams and their outlets, or the model of the water flow downstream.
As mentioned above, in this work, we have used Promela as the modelling
language, embedding C code to describe some complex mathematical equations.
In addition, we have used C code to embed the interaction with external models
developed by third parties.

In this section, we describe the main structure of these sub-models, and some
specific issues for the case study.

4.1 Dam Model

There are two main aspects that must be taken into account by a dam model.
First, it must describe the evolution of the main variables of the dam over time
and how they are related, e.g. the relation between dam volume and dam level
(dam’s bathymetry), the relation of the stored water volume and the water inflow
and outflow over time, etc. Second, it must provide a mechanism to change the
state of the dam outlets, i.e. their opening degree, during the analysis.

In [7], we presented a simplified version of a dam model. We describe the dam
as a Promela proctype that receives commands from the dam manager (another
proctype) to change the opening degree of the outlets. After updating the state
of the outlets, the model computes the flow discharged by means of embedded
C code that describes the outlet equations. In this work, we have improved the
dam model such that it is now possible to describe and analyze the behaviour of
dams with more outlets, more outlet opening degrees, and longer flood episodes.
In addition, we also allow non operative outlets, i.e. outlets whose state cannot
be changed. Figure 5 shows the skeleton of the dam model used in the case study.

86 M.M. Gallardo et al.

To reduce the state space to be explored, we make extensive use of embedded
C code, and export some of the C variables into Spin’s state. Some of these
variables have been declared as UnMatched, i.e. outside the scope of Spin’s
state matching algorithm, to reduce the of number states. In other cases, we
have abstracted the values of several UnMatched variables into a single variable
in Spin’s state. For instance, the current opening degree of each gate of an
outlet is UnMatched, but we include a single matched variable that abstracts
these values. This abstract variable only provides the number of gates that are
opened or closed, and not which ones are opened or close, which is not of interest
from the point of view of the exploration. However, if Spin backtracks, the exact
state of each gate will be recovered.

Finally, we have defined a systematic way of defining this kind of dam model,
which has been implemented in a prototype tool as part of the SAID project [1].
Using this tool, it is possible to easily develop models of new dams without
errors.

4.2 River Basin Model

To manage a complete river basin, we need a hydrological model that simulates
the water inflow to the dams and the flow downstream. There exist different
hydrological models and simulation engines that fulfil our needs. In particu-
lar, other partners in the SAID project have used a basin model through the
WiMMed tool [5,13]. Instead of translating these models to Promela code, we
treat them as black boxes that produce the required output given the appropriate
inputs, such as the outflows from the dams and the environmental inflows.

Before the analysis, we first run the black box to produce the inflow hydro-
graphs of the dams for the particular flood episode we are analysing. These inflow
hydrographs are independent of the manoeuvres performed during the analysis.
Then, during the analysis with Spin, the black box model will be executed
periodically using embedded C code to simulate the water flow downstream for
different sets of manoeuvres. The model will return the resulting hydrographs at
predefined locations in the basin, showing how the manoeuvres affect the flow
along the river basin.

While the Promela model tries different manoeuvres with a short time
period, e.g. every hour, external river basin models are usually meant to simulate
longer periods of time, e.g. several days. Executing the external river basin model
for each new manoeuvre to find out their effect downstream can be very time
consuming. To solve this problem, we use a longer period to execute the external
model, i.e. the external model will be executed after the management model has
selected the manoeuvres for the past few hours.

In addition, we are only interested in the portion of the simulation which was
affected by the chosen manoeuvres. The external model provides hydrographs
at several points of interest along the river basin, which are increasingly fur-
ther away from the dam. Although the distances are constant, the time elapsed
between the manoeuvres and the water affecting these points downstream varies

River Basin Management with Spin 87

Fig. 5. Promela dam model

88 M.M. Gallardo et al.

dynamically depending on several conditions. For our analysis, we use the esti-
mated minimum of these times for each point (provided together with the river
basin model) to determine which part of the basin flows can be safely analyzed.
If a property is violated in this part, Spin will backtrack and try another set of
manoeuvres, as explained previously.

It is worth noting that we do not check the constraints in a portion of the
basin flows that has not been affected by the water discharged from the dam.
If we did, Spin could detect a constraint violation in an unaffected portion of
the basin flows, and then incorrectly assume that the chosen manoeuvres had
a negative impact. This would lead to backtracking and choosing a different
set of manoeuvres, while in reality the discarded set could be valid. If these
manoeuvres did in fact have a negative impact, this will be eventually detected
by the analysis, and they will be discarded during backtracking.

This approach to timing can be seen in Fig. 6, which shows a dam and two
points (#1 and #2) along the river basin. The Y axis shows the minimum
distance in hours between the dam and the two points. The dots along the
dam line represent manoeuvres chosen by the management model. The dashed
lines show the minimum time it takes the water released from the dam to reach
and influence the two basin points. For instance, water released in t0 will reach
points #1 and #2 at t′0 and t′′0 at the earliest, respectively. A flow is shown for
each element above its line, e.g. showing how the peak discharge in the dam is
smoothed as it flows downstream. Also note that any flow from the river basin
model before t′0 and t′′0 will not be affected by any of the manoeuvres.

Fig. 6. Timeline of different basin elements

In this example, the dam manager chooses a manoeuvre every hour, but the
external model is executed every three hours. Between t1 (inclusive) and t2 (non-
inclusive) the manager performs three manoeuvres. The shaded area shows the
part of the river basin that will be affected by these manoeuvres, i.e. interval
[t′1, t

′
2) for point #1 and [t′′1 , t

′′
2) for point #2. The constraints set by the user in

River Basin Management with Spin 89

the river basin will be checked for these intervals. If one of the constraints is not
met in these intervals, Spin will backtrack and try a different set of manoeuvres.
If the water is slower than the minimum time, possible constraint violations will
be detected later, but will result in backtracking to try new manoeuvres as well.

4.3 Management Rules

The management rules define how the dam manager has to act in flood episodes.
These rules are included in the dam manual and consider average and maximum
rainfalls. Rules are usually described as if-then statements to simplify their appli-
cation during flood episodes. Our objective is to provide the dam (basin) man-
ager with a set of manoeuvres that leave the basin and its dams in a safe and
desired state. To this end, we have extended and modelled the management rules
defined for the three dams of the Guadalhorce basin. Figure 7 shows the skeleton
of the current management rule model. It describes most of the original if-then
rules included in the dam manual. For instance, line 12 implements a rule that
closes all outlets if the dam level is under NMN C − SHELTER and the dam
level is decreasing. In addition, this model monitors the dams and operates (or
not) periodically to model the real management and also reduce the state space.
In this case study, the model can operate the dams each one or two hours (e.g.
lines 24 and 28) depending on dam’s state.

The management rule model includes non-deterministic choices, making it
possible to synthesize manoeuvres that satisfy different constraints. The number
of non-deterministic choices directly affects the state space of the model. In
addition, the coding of the model directly affects the analysis performance and
the results. For instance, we have used the order of non-deterministic choices to
first explore sequences of manoeuvres with a lower cost; that is, the DSS will
return solutions with fewer operations if possible, which are more suitable in
real flood management. Thus, this model can be refined to produce appropriate
manoeuvres in a short period of time with the resources available.

5 Constraints for Synthesis of Management Decisions

The objective of our DSS is to provide different alternatives to manage the dams
of the basin in flood episodes. Given a particular flood scenario, the DSS has to
synthesize a set of manoeuvres that preserve the safety of the dams and the basin.
For each scenario, we describe the safety of the dams and the basin as a set of
constraints. For instance, during the flood season it is desirable to maintain dam
levels lower than in other seasons, and keep the flow at the river mouth under a
threshold to avoid flooding the airport. These constraints are then transformed
into safety properties that are analyzed on the model using Spin. The non-
deterministic behaviour of the operation rule model, presented in Sect. 4.3, allows
the DSS to come up with different basin management alternatives.

In [6], we described the constraints as LTL formulas that Spin automati-
cally translates to a never claim proctype that represents the Büchi automaton

90 M.M. Gallardo et al.

Fig. 7. Promela operation rules

associated with the LTL. However, LTL is not suitable for describing properties
that refer to precise time instants. In [12], we defined the constraints as Timed
Automata [3], which are automata extended with real-valued clocks, and we pro-
posed a translation from Timed Automata to never claim, using a discretized
clock variable. In both cases, constraints were always relative to dam parame-
ters, such as the dam level or the outflow. The state space of the discretized
automaton is a subset of the original, thus we ensure that in this discrete time
instant the dam model satisfies the constraints. However, given the nature of the
variables modeled (dam level, water flow, etc.) and the small time step used, the
evolution of variables can be considered lineal between two time instants, which
allow us to guarantee that the constraints are also satisfied between two discrete
time instants.

In this work, we allow the definition of constraints over dam parameters
and flows at locations of interest in the river basin. The evaluation of these
two types of constraints is slightly different. We use the approach presented
in [12] to define and evaluate constraints over dam parameters. In this case, the
constraint is described as a timed automaton and translated into a never claim
with an acceptance state that is only reached if the constraint is satisfied. When
Spin analysis reaches the acceptance state, the analysis ends and returns the

River Basin Management with Spin 91

Fig. 8. Constraint described as (a) timed automaton and (b) never claim

sequence of states leading to this error state. The sequence of states includes
the scheduling of manoeuvres performed by the operation rule model. Figure 8
shows an example of a timed automaton and never claim used to synthesize a set
of manoeuvres. The constraint is to maintain the dam level under a threshold
level1 in period [0, t1] and under threshold level2 in period [t1, t2]. When the
never claim reaches the state accept st3, the analysis will stop and return the
execution trace of the basin model, including the management rules applied to
dams.

To analyze constraints over basin flows, we have to extend this approach.
The main reason is that the external hydrological model returns the temporal
evolution of the flows for future time instants that are not easily synchronized
with the timing of the Promela model. The constraints over basin flows are
described as curves that serve as the upper or lower limit for some of these
flows. In Sect. 4.2 we explained how the hydrological model is periodically exe-
cuted to compute the effects of the manoeuvres downstream. Figure 9 shows how
the external model is called (line 5) and how the constraints over basin flows
are evaluated (line 7). When execution of the external hydrological model fin-
ishes, its results are stored in hidden C structures. These values are checked by
the function basin check constraints, which compares the results against the
constraints set by the user. Only the interval affected by the manoeuvres since
the last time the external model was executed is checked, taking into account
the distance from the dams to each basin point of interest. Observe that the
function is called using the primitive c expr instead of c code. If the checks
succeed, the analysis can continue, but if the checks fail, the instruction is not

92 M.M. Gallardo et al.

executable and Spin has to backtrack to a state where different operation rules
can be selected.

Fig. 9. Evaluation of constraints over basin flows

When constraints are only specified over the basin flows, the never claim has
to check that time t reaches the end of the episode.

6 Evaluation

In this section, we analyze a flood episode of 60 h to evaluate the performance
of the DSS. Figure 10 shows the dam inflows and their initial state. Since the
levels of the Guadalhorce and Guadalteba were above the separation wall, we
can manage them as a single dam.

Fig. 10. Flood episode (a) inflow and (b) initial dam state

Using this initial configuration and the inflow hydrographs, we carry out
different analyses. The first one checks that the model (Promela plus embedded
C code) does not end in invalid states. For this analysis there are no constraints
over the basin or the dam, thus Spin explores all the possible execution branches
produced by the non-deterministic behaviour of the management rule model. The
analysis ends without errors, and we have obtained 15 different manoeuvre sets
for this episode.

River Basin Management with Spin 93

The following analyses include constraints to synthesize specific manoeuvres.
To this end, we configure Spin to analyze the system plus a never claim, and to
stop when the first error occurs. Constraints can be defined over dam parameters
and the basin flows, in an independent or combined way. The objective of the
second analysis is to limit the outflow of GH-GT and CGH to under 310m3/s,
and the flow at the four locations to under 310m3/s. Figure 11 shows the never
claim used to describe these constraints. The analysis ends with an error, which
means that there is at least one set of manoeuvres that satisfies the constraint.
Figure 3 shows the evolution of dam parameters, the flow downstream in different
locations, and the manoeuvres of the different outlets. In this case, the spillway
of the GH-GT dam remains closed, and the other gates are opened at different
degrees over time.

Fig. 11. Never claim for constant constraints

The last analysis uses variable constraints to synthesize manoeuvres. There
are two ways of defining variable constraints over dam parameters. The first app-
roach is to define constraints as curves that define the upper and lower bounds of
the parameters. These curves are stored in UnMatched C structures. The never
claim is modified to compare the parameter with the curves. For example, the
definition of inv1 in Fig. 11 can be modified to check that outflow c is always
under the curve stored in curve[0] as follows:

#define inv1 e expr{outflow c< curve[0][t]}
The second approach is to define constraints as a timed automaton that repre-

sents sequences of intervals. This approach does not require C structures, which
reduces the memory and time required. The timed automaton is transformed
into a never claim, as explained in Sect. 5. We use this approach to restrict the
level of CGH dam at four different time intervals. Figure 12 shows the timed
automaton that represent the variable constraint. The analysis ends with an

94 M.M. Gallardo et al.

Fig. 12. Timed automaton for variable constraints

Table 2. Spin statistics

Invalid end state Const. constraint Var. constraint

Depth 421573 432403 432393

States stored 102530 10834 12018

States matched 1 0 1

Atomic steps 3989109 421565 467584

Memory usage (MB)

For states 17.133 2.104 2.300

For hash table 2.000 2.000 2.000

For DFS stack 26.703 26.703 26.703

Other(proc and chan stacks) 29.821 30.127 30.127

Total memory 75.773 61.027 61.222

Time (sec)

Total elapsed time 175 19.2 22.4

External model 89.6 9.1 10.6

error that corresponds to the manoeuvres, which are very similar to the previ-
ous ones. In this case, the CGH spillway is completely open in two steps, while
in the previous analysis, it is opened in three steps. Since the spillways are the
gates with greatest discharge capacity, this small change has a great influence
on constraint satisfaction.

Table 2 shows the statistics of Spin for each analysis. Note that the state
space is fairly small, this is thanks to the use of UnMatched C variables and
the abstraction of outlet states described in Sect. 4.1. The time elapsed in each
analysis depends on the calls to the external model. We have measured the
execution time of the external model to determine how much time is spent on
these calls. Observe that the depth in the second and third analysis has increased,
because of the interleaved execution of the Promela model and the never claim
that defines the constraints. Finally, note that the number of matched states is
0 or 1, which means that there are no repeated states. This is mainly because of
a global timer in the Promela model, which is defined as a C Matched variable

River Basin Management with Spin 95

that counts the number of minutes of the flood episode. In addition, when Spin
backtracks to a state, the management rule model operates the dam outlets in
a different way, which causes a different evolution of the other model variables.

7 Conclusions and Future Work

We have provided a complete case study to show how the Spin model checker can
be a central part of future DSSs to help in mitigating the effects of floods. The
methodology to generate the dam and management rule models, which exports
a reduced number of C variables into Spin’s state, and reduces the interleaving
of the different process, makes the approach effective enough regarding to both
the effort to write the Promela models for each specific river basin and also to
the time needed to synthesize the appropriate manoeuvres. Since the simulators
for hydrologic models are integrated as a black box, more accurate versions of
such simulators can be easily integrated. This novel application domain opens
the use of the Spin model checker as a central component of (commercial) DSSs
demanded by the authorities that manage big dams in many countries. This is
a real need identified in the current European Research Project SAID (Smart
wAter management with Integrated DSSs) [1]. In the final stage of the project
the DSS will be fully operative, and the dam manager will evaluate the quality
of synthesized manoeuvres and the time required.

The work could be further extended to introduce additional optimisation
when there are many dams in cascade in the same basin. We are also working
on a different way of building the models in order to exploit parallel execution
of Spin for very complex river basins.

References

1. SAID Project 12 Feb 2015. http://www.said-project.eu
2. Ahmad, S., Simonovic, S.: An intelligent decision support system for management

of floods. Water Resour. Manage. 20, 391–410 (2006)
3. Alur, R., Dill, D.: The theory of timed automata. In: Huizing, C., de Bakker,

J.W., Rozenberg, G., de Roever, W.-P. (eds.) REX 1991. LNCS, vol. 600, pp.
45–73. Springer, Heidelberg (1992)

4. Cheng, C.T., Chau, K.W.: Flood control management system for reservoirs. Env-
iron. Model. Softw. 19(12), 1141–1150 (2004)

5. Dı́az, M., Soler, E., Romero, S., Gallardo, M.M., Merino, P., Panizo, L., Salmerón,
A.: Technical specification of the DSS for flood management. Deliverable 1.3, SAID
Project (2015)

6. Gallardo, M.M., Merino, P., Panizo, L., Linares, A.: Developing a decision support
tool for dam management with spin. In: Alpuente, M., Cook, B., Joubert, C. (eds.)
FMICS 2009. LNCS, vol. 5825, pp. 210–212. Springer, Heidelberg (2009)

7. Gallardo, M.M., Merino, P., Panizo, L., Linares, A.: A practical use of model
checking for synthesis: generating a dam controller for flood management. Softw.
Pract. Experience 41(11), 1329–1347 (2011)

8. Holzmann, G.: The SPIN Model Checker: Primer and Reference Manual. Addison-
Wesley Professional, Reading (2003)

http://www.said-project.eu

96 M.M. Gallardo et al.

9. Karbowski, A.: Fc-ros - decision support system for reservoir operators during
flood. Environ. Softw. 6(1), 11–15 (1991)

10. Labadie, J.W.: Optimal operation of multireservoir systems: state-of-the-art
review. J. Water Resour. Plan. Manage. 130(2), 93–111 (2004)

11. McCartney, M.P.: Decision support systems for dam planning and operation in
Africa. International Water Managment Institute, Colombo (2007)

12. Panizo, L., Gallardo, M.M., Merino, P., Sanán, D., Linares, A.: Dam management
based on model checking techniques. In: 8th International Conference on Software
Engineering and Formal Methods. SEFM 2010: Proceedings of the Posters and
Tooldemo Session, pp. 9–13. CNR, Pisa, Italy, Sept. 2010

13. Polo, M., Herrero, J., Aguilar, C., Millares, A., Moñino, A., Nieto, S., Losada, M.:
Wimmed, a distributed physically-based watershed model (i): Description and val-
idation. Environmental Hydraulics: Theoretical, Experimental & Computational
Solutions, pp. 225–228 (2010)

14. Pottinger, L.: A Flood of Dam Safety Problems, 8 Sept. 2010. https://www.
internationalrivers.org/resources/a-flood-of-dam-safety-problems-1700

https://www.internationalrivers.org/resources/a-flood-of-dam-safety-problems-1700
https://www.internationalrivers.org/resources/a-flood-of-dam-safety-problems-1700

ESBMCQtOM : A Bounded Model Checking
Tool to Verify Qt Applications

Mário Garcia(B), Felipe Monteiro, Lucas Cordeiro, and Eddie de Lima Filho

Electronic and Information Research Centre,
Federal University of Amazonas, Manaus, Brazil

marioangelpg@gmail.com

Abstract. We integrate a simplified model of the Qt framework, named
as Qt operational model (QtOM), into the efficient SMT-based context-
bounded model checker (ESBMC++), which results in ESBMCQtOM . In
particular, ESBMCQtOM is a bounded model checking tool to verify Qt-
based applications, which focuses on the verification of code properties,
such as invalid memory access and containers usage, through pre- and
postconditions, data usage evaluation, and simulation features. Experi-
mental results show that ESBMCQtOM can be effectively and efficiently
applied to verify Qt-based consumer electronics applications.

1 Introduction

Currently, in order to be competitive, consumer electronics companies tend to
provide devices with reduced prices, which are produced in large scale. As a
consequence, profit margins tend to be small, which, in turn, acts as a feedback
to the production process. In particular, such products must be as robust and
bug-free as possible, given that even medium product-return rates tend to be
unacceptable. This way, it is important to adopt reliable verification methods,
with the goal of ensuring system correctness and avoiding losses [1].

Model checking [1] is an interesting approach, due to the possibility of auto-
mated verification, which makes such a process cheap and simple. Nonetheless,
the employed verifier should provide support regarding target language and sys-
tem properties, which even include linked libraries and development frameworks.
For instance, a checker based on satisfiability modulo theories (SMT), such as
the efficient SMT-based context-bounded model checker (ESBMC++) [2], can
be employed to verify C/C++ code, but it does not support specific frameworks,
such as Qt [3]. The same happens to Java PathFinder [4], with respect to multi-
media home platform applications [5] and programs developed for the Android
operating system [6]. The former are even verified with a specific test suite,
which relies on a specialized library; however, such a problem could be overcome
through an abstract representation of the associated libraries, known as opera-
tional model (OM) [7]. Indeed, it must approximate the behavior of the original
modules to provide the same inputs and outputs to the main application.

The present work provides a Qt framework OM, which checks properties
related to Qt modules, named as Qt Operational Model (QtOM). QtOM was
c© Springer International Publishing Switzerland 2016
D. Bošnački and A. Wijs (Eds.): SPIN 2016, LNCS 9641, pp. 97–103, 2016.
DOI: 10.1007/978-3-319-32582-8 6

98 M. Garcia et al.

integrated into ESBMC++, which gave rise to ESBMCQtOM , in order to verify
specific properties in Qt/C++ programs. It is worth noticing that the com-
bination between ESBMC++ and OMs has been previously applied to verify
Qt/C++ programs [8]; however, the present work largely extended that, in order
to verify specific properties related to Qt structures, via pre and postconditions.
Besides, two real-world applications were included in the current benchmark set.

Contributions. The present paper extends a previously published work [8]. Here,
implementation and usage aspects are tackled and, in particular, QtOM now
includes new features from the Qt Essentials modules [3], in order to verify two
Qt-based applications: Locomaps [9] and GeoMessage [10], which were not part of
the previous benchmark set [8]. Besides, sequential and associative Qt containers
[2] were also included into QtOM. To the best of our knowledge, there is no other
bounded model checker for Qt-based programs, regarding consumer electronics
devices. All benchmarks, OMs, tools, and experimental results, associated with
the current evaluation, are available on a supplementary web page1.

2 Qt Operational Model (QtOM)

QtOM strictly provides the same behavior of the Qt framework, while presenting
a simplified implementation focused on property verification [8], and can be split
into functionality modules [3]. The QtOM Core module [3], as also happens to
Qt, contains all non-graphical core classes (including containers) and presents a
complete abstraction for the graphical user interface part.

QtCore also comprises container classes, which implement template-based
containers for general purpose, similar to what is offered by the standard tem-
plate libraries (STL). For instance, QVector<QWidget> or QStack<QWidget>
could be used for implementing a dynamic array of QWidgets. The former is
similar to the STL counterpart, while the latter provides a last in, first out
semantics with new methods, such as QStack::push().

Figure 1 shows the integration of QtOM into ESBMC++, i.e., ESBMCQtOM ,
where gray boxes represent the respective OM, the white ones show inputs and
outputs, the dotted ones belong to ESBMC++, and elements connected through
dotted arrows represent the components used to build QtOM. The first step is
the parser, where ESBMC++ translates the input code into an intermediate
representation (IR) tree, where each language structure is correctly identified,
by means of QtOM. The latter considers each library and its associated classes,
including attributes, method signatures, and function prototypes, through asser-
tions, as shown in Fig. 2. Indeed, assertions are of paramount importance, given
that they ultimately allow formal property verification.

Hence, QtOM aids the parser process to build a C++ IR with all necessary
assertions to verify Qt-specific properties. After that, the remaining verification
flow is normally carried out, as described by Cordeiro et al. [11].

It is clear that the usefulness of the proposed methodology relies on the
fact that QtOM correctly represents the original Qt libraries. In that sense,

1 http://esbmc.org/qtom/.

http://esbmc.org/qtom/

ESBMCQtOM : A Bounded Model Checking Tool to Verify Qt Applications 99

C++
Parser

Property
holds up to
bound k

Property
violation

Counterexample

Verification
Successful

Qt
Operational

Model

Qt/C++
Source
Code Scan

Adding
assertions

Extract/Identify
structure/properties Qt

Documentation

GOTO
Converter

Symbolic
Execution

SMT
Solver

Logical
Context

IR Type
Checked

GOTO
Program

SSA
Form

Logical
Formula

Scan

Fig. 1. Connecting QtOM to ESBMC++ architecture.

Fig. 2. QtOM development process.

all developed QtOM modules were manually verified and exhaustively compared
with the original ones, in order to guarantee the same behavior. Besides, although
QtOM is a new implementation, it consists in constructing a simplified model
of the related libraries, using the same language and through the original code
and documentation, which tends to reduce the resulting number of errors.

Even so, one may also argue that conformance testing regarding OMs [12]
would be a better approach, which is true; however, that option is not available
in the present case, albeit it is an interesting possibility for future work.

3 QtOM Features

Through the integration of QtOM into ESBMC++, ESBMCQtOM is able to
properly identify Qt/C++ programs and verify all default properties that it can
handle, such as under- and overflow arithmetic, pointer safety, memory leaks,
array bounds, and atomicity [2]. Additionally, in order to ensure the correct usage
of the Qt methods, pre- and postconditions check the following properties:

– Invalid Memory Access. QtOM assertions ensure that only valid memory
addresses are accessed, through operations with arrays, objects, and pointers.

– Time-Period Values. Some Qt features, such as those offered by the QTime
class, need time-period specifications to be properly executed. This way,
QtOM ensures that only valid time parameters are considered.

100 M. Garcia et al.

– Access to Missing Files. The Qt framework provides a set of libraries to
handle files (e.g., QIODevice and QFile). As a consequence, QtOM checks
the access and manipulation of all handled files, in a given program.

– Null Pointers. QtOM also covers pointer manipulation, by adding assertions
to ensure that NULL pointers are not used in invalid operations.

– String Manipulation. Unicode character string representations and a set of
methods to handle them are provided by the QString class. As such structures
are widely used by several Qt classes and Qt-based applications, QtOM checks
pre and postconditions, for each method from that library, with the goal of
ensuring correct string manipulation.

– Container Usage. The QtCore module provides a set of template-based
container classes to create collections and provide uniform data management.
Due to that, QtOM ensures the correct usage of such structures, as well as
their manipulation through specialized methods.

4 QtOM Usage

In order to verify C++ programs based on the Qt framework, users must call
the ESBMC++ v1.25.4 command-line version, using

esbmc<file>.cpp−−unwind <k> −I < path− to− QtOM > −I < path− to− C++− OM >,

where <file>.cpp is the Qt/C++ code to be verified, <k> is the maximum
loop unrolling, and <path− to−QtOM> and <path− to−C + +−OM> are
the locations of the QtOM files and the C++ OM [2], respectively. Thenceforth,
the verification process is completely automatic, i.e., if no bug is found, up to
a k-depth unwinding, then ESBMCQtOM reports VERIFICATION SUCCESS-
FUL; otherwise, it reports VERIFICATION FAILED, along with a counterex-
ample, which contains all necessary information for detecting and reproducing
the respective error.

5 Verifying Qt Applications with ESBMCQtOM

5.1 Locomaps Application

ESBMCQtOM was applied to verify a Qt sample application called Locomaps [9],
which demonstrates satellite, terrain, street maps, tiled map service planning,
and Qt Geo GPS Integration, among other features. By means of a unique
source code, such an application can be cross-compiled and run on Mac OS X,
Linux, and Windows. It contains two classes and 115 Qt/C++ code lines, using
five different APIs from the Qt framework: QApplication, QCoreApplication,
QDesktopWidget, QtDeclarative, and QMainWindow.

ESBMCQtOM : A Bounded Model Checking Tool to Verify Qt Applications 101

5.2 GeoMessage Application

Another verification was performed on a real-world Qt application called
GeoMessage simulator, which provides messaging for applications and system
components, in the ArcGIS platform [10]. It receives XML files as input and
generates, in different frequencies, User Datagram Protocol (UDP) broadcast
datagrams, as an output to ArcGIS’s applications and system components.

GeoMessage is also cross-platform and contains 1209 Qt/C++ code lines,
using 20 different Qt APIs, which cover several features, such as events, file
handling, and widgets. It is worth noticing that GeoMessage uses QMutex and
QMutexLocker, which are related to the Qt Threading module (classes for concur-
rent programs). Such classes were used to lock/unlock mutexes, in GeoMessage,
and, most importantly, ESBMCQtOM is able to properly verify their structures;
however, it does not provide full support to the Qt Threading module yet.

5.3 Verification Results

During the verification of Locomaps and GeoMessage, the following properties
were checked: array-bound violations, under- and overflow arithmetic, division by
zero, pointer safety, and other specific properties defined in QtOM (cf. Sect. 3).
Furthermore, ESBMCQtOM was able to fully identify the verified source code,
using five different QtOM modules for Locomaps and twenty for GeoMessage, i.e.,
one for each original counterpart. The verification process was totally automatic
and took approximately 6.7 s, for generating 32 verification conditions (VCs)
for Locomaps, and 16 s, regarding 6421 VCs for GeoMessage, on a standard
PC desktop. Additionally, ESBMCQtOM was able to find similar bugs in both
applications, which were confirmed by the respective developers.

Figure 3 shows a code fragment from Locomaps, which uses the QApplication
class present in the QtWidgets module. In that particular case, if the argv para-
meter is not correctly initialized, then the constructor called by object app does
not execute properly and the application crashes (see line 2, in Fig. 3). In order
to verify this property, ESBMCQtOM checks two assertions regarding (input)
parameters, as can be seen in Fig. 4 (see lines 4 and 5), while evaluating them as
preconditions. A similar problem was also found in the GeoMessage application.
One way to fix such a bug is to check, with conditional statements, whether argv
and argc are valid arguments, before using them in an operation.

1 int main (int argc , char ∗argv []) {
2 QApplication app (argc , argv) ;
3 return app . exec () ;
4 }

Fig. 3. Code fragment from the main file of the Locomaps benchmark.

102 M. Garcia et al.

1 c l a s s QApplication {
2 . . .
3 QApplication (int & argc , char ∗∗ argv){
4 ESBMC assert (argc > 0 , ‘ ‘ I nva l i d parameter ’ ’) ;
5 ESBMC assert (argv != NULL, ‘ ‘ I nva l i d po in t e r ’ ’) ;
6 th i s −>s t r = argv ;
7 th i s −> s i z e = s t r l e n (∗ argv) ;
8 . . .
9 }

10 . . .
11 } ;

Fig. 4. Operational model for the QApplication() constructor.

6 Conclusions

ESBMCQtOM was presented as an SMT-based BMC tool, which employs an
operational model (QtOM) to verify Qt-based applications. In particular, QtOM
comprises a simple representation of Qt, including several pre- and postcondi-
tions, data storage evaluation (e.g., container checks), and simulation features
(e.g., string and file manipulation), which are used to check code properties, such
as invalid memory access, time-period values, and container usage.

Additionally, a Qt touch screen program for browsing maps, satellite, and
terrain data [9] and another application that provides messaging for the ArcGIS
platform [10] were successfully verified, in the context of consumer electronics
devices. For the best of our knowledge, there is no other approach, employing
BMC, that is able to verify Qt-based applications. For future work, the developed
QtOM will be extended (support to more modules), with the goal of increasing
the Qt framework coverage. Besides, conformance testing procedures will be
developed for validating QtOM, which could also be applied to Qt modules.

References

1. Berard, B., Bidoit, M., Finkel, A.: Systems and Software Verification: Model-
Checking Techniques and Tool. Springer Publishing, Heidelberg (2010)

2. Ramalho, M., et al.: SMT-based bounded model checking of C++ programs. In:
ECBS, pp. 147–156 (2013)

3. The Qt Framework. http://www.qt.io/qt-framework/, April 2015
4. Mehlitz, P., Rungta, N., Visser, W.: A hands-on Java pathfinder tutorial. In: ICSE,

pp. 1493–1495 (2013)
5. Piesing, J.: The DVB multimedia home platform (MHP) and related specifications.

Proc. IEEE 94(1), 237–247 (2006)
6. van der Merwe, H., et al.: Execution and property specifications for JPF-Android.

ACM SIGSOFT Softw. Eng. Notes 39(1), 1–5 (2014)
7. van der Merwe, H., et al.: Generation of library models for verification of Android

applications. ACM SIGSOFT Softw. Eng. Notes 40(1), 1–5 (2015)

http://www.qt.io/qt-framework/

ESBMCQtOM : A Bounded Model Checking Tool to Verify Qt Applications 103

8. Monteiro, F., Cordeiro, L., de Lima Filho, E.: Bounded model checking of C++
programs based on the Qt Framework. In: GCCE, pp. 179–180 (2015)

9. Spatial Minds and CyberData Corporation: Locomaps. https://github.com/
craig-miller/locomaps. Accessed 10 Sept 2015

10. Environmental Systems Research Institute: GeoMessage Simulator. https://github.
com/Esri/geomessage-simulator-qt. Accessed 15 Sept 2015

11. Cordeiro, L., Fischer, B., Marques-Silva, J.: SMT-based bounded model checking
for embedded ANSI-C software. IEEE TSE 38(4), 957–974 (2012)

12. de la Cámara, P., Castro, J., Gallardo, M., Merino, P.: Verification support for
ARINC-653-based avionics software. JSTVR 21(4), 267–298 (2011)

https://github.com/craig-miller/locomaps
https://github.com/craig-miller/locomaps
https://github.com/Esri/geomessage-simulator-qt
https://github.com/Esri/geomessage-simulator-qt

Autonomous Agent Behaviour Modelled
in PRISM – A Case Study

Ruth Hoffmann1(B), Murray Ireland1, Alice Miller1, Gethin Norman1,
and Sandor Veres2

1 University of Glasgow, Glasgow G12 8QQ, Scotland
ruth.hoffmann@glasgow.ac.uk

2 University of Sheffield, Sheffield S1 3JD, UK

Abstract. Formal verification of agents representing robot behaviour is
a growing area due to the demand that autonomous systems have to be
proven safe. In this paper we present an abstract definition of autonomy
which can be used to model autonomous scenarios and propose the use
of small-scale simulation models representing abstract actions to infer
quantitative data. To demonstrate the applicability of the approach we
build and verify a model of an unmanned aerial vehicle (UAV) in an
exemplary autonomous scenario, utilising this approach.

1 Introduction

Autonomous systems have the ability to decide at run-time what to do and how
to do it. A critical question is how this decision making process is implemented.

Increasingly, autonomous systems are being deployed within the public
domain (e.g. driverless cars, delivery drones). Naturally, there is concern that
these systems are reliable, efficient and - most of all - safe. Although testing is a
necessary part of this process, simulation and formal verification are key tools,
especially at the early stages of design where experimental testing is both infea-
sible and dangerous. Simulation allows us to view the continuous dynamics and
monitor behaviour of a system. On the other hand, model checking allows us
to formally verify properties of a finite representation. Whereas the simulation
model is close to an implementation, simulation runs are necessarily incomplete.
Verification models, on the other hand, require us to abstract more coarsely.

The decisions made by an autonomous agent depend on the current state of
the environment, specifically in terms of data perceived by the agent from its
sensors. If model checking is to be used for the verification of autonomous systems
we must reflect the uncertainty associated with the state of the environment by
using probabilistic model checking.

We propose a framework for analysing autonomous systems, specifically to
investigate decision-making, using probabilistic model checking of an abstract
model where quantitative data for abstract actions is derived from small-scale
simulation models. We illustrate our approach for an example system composed
of a UAV searching for and collecting objects in an arena. The simulation models
c© The Author(s) 2016
D. Bošnački and A. Wijs (Eds.): SPIN 2016, LNCS 9641, pp. 104–110, 2016.
DOI: 10.1007/978-3-319-32582-8 7

Autonomous Agent Behaviour Modelled in PRISM 105

for abstract actions are generated using the object-oriented framework Simulink
and the abstract models are specified and verified using the probabilistic model
checker PRISM. In our example, autonomous decision making involves making
a weighted choice between a set of possible actions, and is loosely based on the
Belief-Desire-Intention architecture [7].

Previous work in which model checking is used to verify autonomy includes
[3] in which the decision making process is verified in isolation, while our aim is
to integrate this process with the autonomous agent as a whole. Other research
includes an investigation of the cooperative behaviour of robots, where each
robot is represented by a hybrid automaton [1], and verification of a consensus
algorithm using experimental verification and an external observer [2].

2 Autonomy

In order to formally define autonomous behaviour, we introduce finite state
machines which abstract the autonomous actions independent of the agent type.

Before we give the formal definitions we require the following notation. For a
finite set of variables V , a valuation of V is a function s mapping each variable
in V to a value in its finite domain. Let val(V) be the set of valuations of V . For
any s ∈ val(V), v ∈ V and value x of V , let s[v:=x] and s[v±x] be the valuations
where for any v′ ∈ V we have s[v:=x](v′) = x and s[v±x](v′) = s(v′)±x if v′=v
and s[v:=x](v′) = s[v±x](v′) = s(v′) otherwise. For a finite set X, a probability
distribution over X is a function μ : X → [0, 1] such that

∑
x∈X μ(x) = 1. Let

Dist(X) be the set of distributions over X.

Definition 1. A probabilistic finite-state machine is a tuple M=(V, I,A, T)
where: V is a finite set of variables; I ⊆ val(V) a set of initial states; A a
finite set of actions and T : val(V)×A → Dist(S) a (partial) transition function.

The set of states of M=(V, I,A, T), denoted S, is the set of valuations val(V)
of V . Let A(s) denote the actions available from state s, i.e. the actions a ∈ A for
which T (s, a) is defined. In state s an action is chosen non-deterministically from
the available actions A(s) and, if action a is chosen, the transition to the next
state is made according to the probability distribution T (s, a). A probabilistic
finite-state machine describes a system without autonomy, we introduce this
through a weight function adding decision making to the finite-state machine.

Definition 2. An autonomous probabilistic finite-state machine is a tuple
A = (V, I,A, T,w) where (V, I,A, T) is a probabilistic finite-state machine and
w is a weight function w : val(V)×A → [0, 1] such that for any s ∈ val(V) and
a �= b ∈ A we have w(s, a) �= w(s, b) and w(s, a)>0 implies a ∈ A(s).

In an autonomous machine the non-determinism in the first step of a transi-
tion is removed. More precisely, if a machine A=(V, I,A, T,w) is in state s, then
the action performed is that with the largest weight, that is the action:

as,w = arg max{w(s, a) | a ∈ A(s)} .

106 R. Hoffmann et al.

Requiring the weights for distinct actions and the same state to be different
ensures this action is always well defined. Having removed the non-determinism
through the introduction of a weight function, the semantics of an autonomous
finite state machine is a discrete time Markov chain.

3 UAV Example

In this case study we consider a specific example (a simple search and retrieve
example, with a UAV in a finite sized arena) to demonstrate our approach.

The UAV first takes off and checks whether the system and sensors are func-
tional. If the UAV detects an issue in the system, then it returns to base. Other-
wise it will proceed to search for a given number of objects. When an object is
found, the UAV positions itself above the object and descends until the grabber
can pick it up. The UAV then ascends to transportation height and transports
the object to the deposit site. There is the possibility that the UAV will drop
its object along the way and need to retrieve it. Once the UAV is above the
deposit site, it releases the object and ascends back to search height. It will then
decide whether it continues the search or returns to the base and complete the
mission. During operation, the UAV may return to base to recharge if it is low
on battery, or conduct an emergency landing, due to an internal system error. If
the mission time limit is reached, the UAV abandons the mission and returns to
base. Figure 1 represents this scenario, showing the different modes of the UAV
and progression between the modes.

We represent this scenario using a autonomous finite-state machine A. The
variables V of A are given by:

– obj the number of objects which have not been found;
– pos=(posx, posy) the position of the UAV in the arena;
– ret=(retx, rety) the return coordinates when search is interrupted;
– m the current mode of the UAV;
– t the mission time;
– b the battery charge level.

Each state s ∈ val(V) of A is a valuation of these variables. The transition and
weight functions T and w are based on Fig. 1. We focus on the target approach
and search modes of the UAV.

In the target approach mode (m=4), the UAV positions itself above an
observed object and we denote this abstract action by Approach. Thus, the
weight function is w(s,Approach)=1 for all states s such that s(m)=2, and for
any such state s we have for any s′ ∈ S:

T (s,Approach)(s′) =

{
1 if s′ = s[m:=5][t+Tap][b−Bap]
0 otherwise

where Tap and Bap are the time and battery charge used approaching the object,
and m=5 is the mode for descending. The abstract action Approach models

Autonomous Agent Behaviour Modelled in PRISM 107

Idle
0

start

Take-off
1

Initialise
2

Go to
Search

14

Search
3

Target
Approach

4

Descend
to grab

5

Grab
6

Land
13

Return
12

Ascend
11

Deposit
10

Descend
to deposit

9

Transport
8

Ascend
7

Return
to Object

15

{1, . . . , 11,
14, 15}

Emergency
Land
16

{0, . . . , 15}

Fig. 1. The finite state machine representing the scenario.

several different operations of the UAV including the use of its camera and
navigational system. A small-scale simulation model was built for this abstract
action to provide the required quantitative data.

When the UAV is in search mode (m=3) there are two actions that can occur:
Search and BatteryLow with the UAV continuing search if the battery charge
level is above a certain threshold, and returning to base otherwise. The weight
function for the Search action from any state s such that s(m)=3 is given by:

w(s,Search) =

{
0 if s(b) ≤ Blow

1 if s(b) > Blow

and for the BatteryLow action we have w(s,BatteryLow) = 1−w(s,Search).
Concerning the transition function we have for any s′ ∈ S:

T (s,Search)(s′) =

⎧
⎪⎨

⎪⎩

1 − α if s′ = s[pos:=Δpos][t+Δt][b−Δb]

α if s′ = s[pos:=Δpos][ret :=Δpos][m:=4][t+Δt][b−Δb]

0 otherwise

108 R. Hoffmann et al.

and T (s,BatteryLow)(s)=1 if s′=s[pos:=Δpos][ret :=Δpos][m:=12][t+Δt][b−Δb] and
0 otherwise, where Δpos denotes the movement from one discrete square in
the arena to the next, Δt and Δb are the time and battery consumption of
the UAV while moving one square. The UAV has probability α of finding an
object in a given position, if an object is found the UAV changes to mode m=4
and ret is set to the current coordinates, as the search has been interrupted.
If no object is found, the UAV continues searching.

4 Results

We have modelled our scenario in the probabilistic model checker PRISM [5],
building small-scale simulation models to determine individual abstract actions
to generate probabilistic and timing values. To encode the timing values in
PRISM as integer variables we take the floor and ceiling, introducing non-
determinism into the model and upper and lower bounds for properties [4]. The
experiments were performed on a computer with 16GB RAM and a 2.3 GHz
Intel Core i5 processor.

The main properties of interest concern the UAV successfully completing the
mission (finding and depositing all objects within the time limit) and failing the
mission (either due to an emergency landing, missing some objects or running
out of time). We have also considered other properties including how often the
UAV drops an object and how often it recharges during a mission, more details
can be found in the repository [6].

We have analysed two scenarios where there are 3 objects and a time limit of
900s, and 2 objects and a time limit of 500 s respectively. For the first scenario
the model has 116 191 709 states, was built in 488 s and verifying a property
varied between 298 s and 813 s. This is far more efficient than running Monte
Carlo simulations, as simulating 10 000 runs of the same scenario takes over
two weeks. For the second scenario the model has 35 649 503 states and model
construction time was 77 s.

For the first scenario, the maximum and minimum probabilities of the UAV
completing a mission are 0.7610 and 0.6787 respectively. The maximum and

(a) Scenario 1. (b) Scenario 2.

Fig. 2. Probability of completing the mission successfully by deadline T .

Autonomous Agent Behaviour Modelled in PRISM 109

minimum probabilities of running out of time are negligible, searching the arena
and missing some objects are 0.2617 and 0.1808, and 0.0628 and 0.0552 for
performing an emergency landing. Figure 2 shows the maximum and minimum
probability of a successful mission within a time bound as well as the results
obtained when the non-determinism is replaced by a uniform random choice.
The probability increases after a threshold time as the UAV has to search a
proportion of the arena before finding all objects.

5 Conclusions

We have proposed using small-scale simulation models to inform probabilistic
models used for verification. The simulation models can be used to provide quan-
titative data for abstract actions. The probabilistic models can be used for fast
property specific verification, that is not possible using simulations alone.

Our approach is highly adaptable; once the initial small-scale simulation and
probabilistic models have been set up, different decision algorithms can be easily
substituted and analysed. Our example illustrates the use of a weight function
for decision making. In a more extensive scenario the weight function would
be more complex (e.g. involving current values associated with all sensors and
guiding systems). Our use of non-determinism when approximating quantitative
data obtained from the small-scale simulation models allows us to provide an
range of uncertainty for our results. We aim to formally prove a link between the
simulation and the abstract model to allow us to infer results from the abstract
model for the actual system. To allow the analysis of more complex scenarios we
plan to incorporate abstraction techniques.

Acknowledgments. This work was supported by the Engineering and Physical Sci-
ences Research Council [grant number EP/N508792/1].

Open Access. This chapter is distributed under the terms of the Creative Com-
mons Attribution 4.0 International License (http://creativecommons.org/licenses/by/
4.0/), which permits use, duplication, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, a link is provided to the Creative Commons license and any changes made
are indicated.

The images or other third party material in this chapter are included in the work’s
Creative Commons license, unless indicated otherwise in the credit line; if such mate-
rial is not included in the work’s Creative Commons license and the respective action
is not permitted by statutory regulation, users will need to obtain permission from the
license holder to duplicate, adapt or reproduce the material.

References

1. Chaimowicz, L., Campos, M.F.M., Kumar, V.: Hybrid systems modeling of coop-
erative robots. In: Proceedings International Conference Robotics and Automation
(ICRA 2003), pp. 4086–4091. IEEE Press, New York (2003)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

110 R. Hoffmann et al.

2. Cook, J., Hu, G.: Experimental verification and algorithm of a multi-robot coop-
erative control method. In: Proceedings IEEE/ASME International Conference
Advanced Intelligent Mechatronics (AIM 2010), pp. 109–114. IEEE Press, New York
(2010)

3. Dennis, L., Fisher, M., Lincoln, N., Lisitsa, A., Veres, S.: Practical verification of
decision-making in agent-based autonomous systems. Autom. Softw. Eng., pp. 1–55
(2014). http://link.springer.com/article/10.1007/s10515-014-0168-9

4. Kattenbelt, M., Kwiatkowska, M., Norman, G., Parker, D.: A game-based
abstraction-refinement framework for Markov decision processes. Formal Methods
Syst. Des. 36(3), 246–280 (2010)

5. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011)

6. PRISM model repository (2016). http://dx.doi.org/10.5525/gla.researchdata.274
7. Veres, S., Molnar, L., Lincoln, N., Morice, C.: Autonomous vehicle control systems -

a review of decision making. Proc. Inst. Mech. Eng. Part I: J. Syst. Control Eng.
225(2), 155–195 (2011)

http://link.springer.com/article/10.1007/s10515-014-0168-9
http://dx.doi.org/10.5525/gla.researchdata.274

Certification for µ-Calculus
with Winning Strategies

Martin Hofmann1, Christian Neukirchen1(B), and Harald Rueß2

1 Department of Informatics, Ludwig-Maximilians-Universität, Munich, Germany
hofmann@ifi.lmu.de, chneukirchen@gmail.com

2 Fortiss, An-Institut Technische Universität München,
Guerickestr. 25, 80805 Munich, Germany

ruess@fortiss.org

Abstract. We define memory-efficient certificates for μ-calculus model
checking problems based on the well-known correspondence between
μ-calculus model checking and winning certain parity games. Winning
strategies can be independently checked, in low polynomial time, by
observing that there is no reachable strongly connected component in the
graph of the parity game whose largest priority is odd. Winning strate-
gies are computed by fixpoint iteration following the naive semantics of
μ-calculus. We instrument the usual fixpoint iteration of μ-calculus
model checking so that it produces evidence in the form of a winning
strategy; for a formula φ with fixed alternation depth, these winning
strategies can be computed in polynomial time in |S| and in space
O(|S|2|φ|2), where |S| is the size of the state space and |φ| the length of
the formula φ. On the technical level our work yields a new, simpler, and
immediate constructive proof of the correspondence between μ-calculus
and parity games. A prototypical implementation of a μ-calculus model
checker generating these certificates has been developed.

1 Introduction

We address the problems (1) of constructing concise certificates for μ-calculus
model checking problems, and (2) for efficiently and independently checking
these certificates by means of a trustworthy checker. Our main result here is
an effective and low overhead instrumentation of the usual fixpoint iteration of
μ-calculus model checking [3] for generating certificates that are independently
checkable in low polynomial time.

There are a number of results and algorithms for constructing witnesses and
counterexamples of various forms for different sublogics, including LTL, ACTL,
CTL, CTL∗, or the μ-calculus [1,6,7,14,24,27,33,34]. For example, for linear
temporal logic (LTL) restricted to the temporal operators F, U and X, a pos-
itive certificate can be given by a finite path. Model checkers for CTL∗ (for
example, SMV) are capable of generating counterexamples [7] in the form of

C. Neukirchen—The author was supported by DFG Graduiertenkolleg 1480
(PUMA).

c© Springer International Publishing Switzerland 2016
D. Bošnački and A. Wijs (Eds.): SPIN 2016, LNCS 9641, pp. 111–128, 2016.
DOI: 10.1007/978-3-319-32582-8 8

112 M. Hofmann et al.

a lasso; that is, infinite sequences of states s0, . . . , si, (si+1, . . . , sk)ω which end
up repeating periodically after some prefix of length i. Whereas lasso-shaped
sequences refute properties assumed for all possible paths, they fail, for exam-
ple, in falsifying conjectured existence of certain paths. Witnesses for full CTL
have been proposed by Shankar and Sorea [27,29]. These results are based on
a symbolic representation of witnesses that enables the extraction of explicit
witnesses (and counterexamples) for full CTL model checking.

Local model checking procedures for determining whether finite-state systems
have properties expressible in the μ-calculus incrementally construct tableau
proofs [8,31,35]. These tableaux can be proof-checked independently, but the
size of the constructed tableaux may grow exponentially in the number of
states of the underlying transition system. Based on the tableau method of local
μ-calculus model checking, Kick [18] proposes an optimized construction by iden-
tifying isomorphic subproofs. Namjoshi [20] introduces the notion of a certifying
model checker that can generate independently checkable witnesses for proper-
ties verified by a model checker. He defines witnesses for properties of labelled
transition systems expressed in the μ-calculus based on parity games over alter-
nating tree automata. These developments rely on μ-calculus signatures [32] for
termination, and are also based on the correspondence between μ-calculus model
checking with winning parity games [12].

The developments in this paper can certify full μ-calculus model checking
problems. Moreover, in order to certify that a given formula does not hold for
some state, the result of checking the dual formula (cf. Lemma 1) is certified
instead. In this way, certificates of the dual formula may be regarded as gener-
alized counterexamples of the original formula.

Our approach of instrumenting μ-calculus model checking fixpoint iteration
with the computation of witnesses, including the underlying notion and algebra
of partial winning strategies, is novel. Moreover, in contrast to the previous work
on local μ-calculus model checking, the witnesses generated by our global model
checking algorithm are rather space-efficient, as they can be represented in space
in O(|S|2|φ|2), where |S| is the size of the state space and |φ| is the length of the
formula φ.

Our constructions build on the well-known equivalence of model checking for
the μ-calculus with winning corresponding parity games [12,13,34]. Because of
the determinacy of parity games (see [19]), players of these games may restrict
themselves to considering memoryless strategies only. In particular, there are no
draws and exactly one of the players has a winning strategy for each vertex of
the game graph. Algorithms for generating witnesses for players of parity games
and their complexity are described by Jurdziński [17].

On the technical level our work can be seen as a new, simpler, and imme-
diately constructive proof of the correspondence between μ-calculus and parity
games. Winning strategies are computed by fixpoint iteration following the naive
semantics of μ-calculus. No complex auxiliary devices such as signatures [32] or
alternating automata [12] are needed. It should be possible to instrument exist-
ing implementations (such as the one integrated in the PVS theorem prover [23])
of μ-calculus based on fixpoint iteration to generate these certificates.

Certification for μ-Calculus with Winning Strategies 113

Roadmap. This paper is structured as follows. In Sects. 2 and 3 we summarize
some standard developments for the μ-calculus in order to keep the paper self-
contained. Section 3 also contains a low polynomial-time checker for certificates
which is inspired by the standard algorithm for checking for nonemptiness of
Streett automata. Section 4 elaborates the correspondence between μ-calculus
and winning parity games and in particular contains a new constructive proof of
the correspondence (Theorem 2). Section 5 provides the technical details, first,
of the central notion of partial winning strategies, and, second, for instrumenting
the usual μ-calculus fixpoint iteration with the computation of partial winning
strategies. For ease of exposition of this algorithm, we choose systems of equa-
tions as an alternative representation of μ-calculus formulas. The corresponding
implementation of a witness-generating μ-calculus model checker is presented in
Sect. 6, and the feasibility of our approach is demonstrated by means of selected
benchmark examples. Concluding remarks, including further applications of our
technical results on witness-generation and -checking, are presented in Sect. 7.

An earlier version of this paper, without implementation and the use of equa-
tion systems, has been presented at the VeriSure 2013 workshop (associated with
CAV 2013) [16].

2 Syntax and Semantics

We assume variables X ∈ X , propositions p ∈ P, and actions a ∈ A.

2.1 µ-Calculus Formulas

Definition 1. The set of μ-calculus formulas is given by the grammar

φ ::= X | p | ¬p | 〈a〉φ | [a]φ | φ1 ∧ φ2 | φ1 ∨ φ2 | μX. φ | νX. φ

The set of free variables FV (φ) ⊆ X , the size |φ| of a formula, and the substitu-
tion φ[Z := ψ] of formula ψ for any free occurrence Z ∈ FV (φ) are defined in the
usual way. Note that negation is allowed for propositions only, hence all syntac-
tically valid formulas are monotonic in their free variables and no considerations
of polarity need to be taken into account.

The notations Q ∈ {μ, ν}, M ∈ {[a], 〈a〉 | a ∈ A}, ∗ ∈ {∧,∨} are used to
simplify inductive definitions.

The semantics of μ-calculus formulas is given in terms of labelled transition
systems (LTS), consisting of a nonempty set of states S, and a family of left-
total1 relations a−→ ∈ S×S for each action a ∈ A and, finally, an assignment
T ∈ S → 2P which tells for each state s which atomic propositions p ∈ P are
true in that state. If T is an LTS, we use S(T) for its set of states; a−→T or
simply a−→ for its transition relation and T itself for its interpretation of atomic
propositions.

1 Left-total means for all s ∈ S there exists s′ ∈ S with s → s′.

114 M. Hofmann et al.

Fig. 1. Set semantics of μ-calculus formulas.

Fix a transition system T and put S = S(T). For η a finite partial function
from X to 2S with FV (φ) ⊆ dom(η) we define �φ�η ⊆ S as in Fig. 1.

The sets pre(a−→)(�φ�η) and p̃re(a−→)(�φ�η) respectively denote the preimage
and the weakest precondition of the set �φ�η with respect to the binary relation

a−→; formally:

s ∈ pre(a−→)(�φ�η) iff ∃t ∈ S. s
a−→ t and t ∈ �φ�η

s ∈ p̃re(a−→)(�φ�η) iff ∀t ∈ S. s
a−→ t implies t ∈ �φ�η

Given the functional F (U) = �φ�η[X := U], lfp(F) and gfp(F) respectively
denote the least and the greatest fixpoints of F , with respect to the subset
ordering on 2S . By Knaster-Tarski, these fixpoints exist, since F is monotone.

Proposition 1. �QX.φ�η = �φ[X := QX.φ]�η.

By the monotonicity of F , ∅ ⊆ F (∅) ⊆ F 2(∅) ⊆ . . . and S ⊇ F (S) ⊇ F 2(S) ⊇
Moreover, if S is finite then we have

�μX.φ�η = {s ∈ S | ∃t ≤ |S|. s ∈ F t(∅)},
�νX.φ�η = {s ∈ S | ∀t ≤ |S|. s ∈ F t(S)}.

Therefore, in case S is finite, the iterative algorithm in Fig. 2 computes �φ�η.

Proposition 2. �φ�η = sem(φ, η).

Lemma 1. s �∈ �φ�η iff s ∈ �φ∗�η′, where η′(X) = S\η(X) and φ∗ is the dual
of φ given by

(X)∗ = X

(p)∗ = ¬p (¬p)∗ = p

(φ1 ∧ φ2)∗ = φ∗
1 ∨ φ∗

2 (φ1 ∨ φ2)∗ = φ∗
1 ∧ φ∗

2

([a]φ)∗ = 〈a〉φ∗ (〈a〉φ)∗ = [a]φ∗

(μX.φ)∗ = νX.φ∗ (νX.φ)∗ = μX.φ∗.

Certification for μ-Calculus with Winning Strategies 115

Fig. 2. Fixpoint iteration for computing the semantics of μ-calculus formulas.

2.2 Ordered Systems of Equations

We now use an alternate representation of μ-calculus formulas considering them
to be an ordered system of equations [26]. Under this point of view, a formula
φ is represented by a set of equations (X = φX)X∈X , with one formula φX for
each variable X occurring in φ, together with a strict partial order of variables
� ⊆ X × X .

To do this, we assume that every fixpoint quantifier binds a different variable;
if needed this can be ensured by α-renaming. For example, we replace μX.X ∧
νX.X with μX.X ∧ νY.Y . For each variable X we denote qX ∈ {μ, ν} the kind
of quantifier that it stems from.

We then replace each fixpoint formula by the (unique) variable it introduces
and thereafter give for each fixpoint formula a defining equation. Formally, for
any subformula ψ of φ let ψ̂ denote the formula obtained by replacing each
fixpoint subformula by the variable it binds. The equation system then contains
one equation X = ψ̂ for each fixpoint subformula QX.ψ, with qX = Q.

In parallel, we build the strict partial order � of variables. For each variable
X bound by a fixpoint subformula QX.ψ and each variable Y bound by a fixpoint
subformula of ψ, i.e. all Y bound below X, we set X � Y .

For example let

φ := νZ.(b ∨ (μX.X ∨ [a]Z)) ∧ [a]Z

We have φ̂ = (b ∨ (μX.X ∨ [a]Z)) ∧ [a]Z = (b ∨ X) ∧ [a]Z so the equations are

Z = (b ∨ X) ∧ [a]Z (i)
X = X ∨ [a]Z (ii)

Moreover, qZ = ν, qX = μ, and Z � X.

116 M. Hofmann et al.

The order � is relevant for the restoration of the original formula: had we
instead set X � Z, we would retrieve

μX.X ∨ [a](νZ.(b ∨ X) ∧ [a]Z).

It is now clear that such systems of equations together with � are in 1-1 corre-
spondence with formulas.

In case the formula does not start with a quantifier, a fresh variable needs to
be introduced and bound to the formula in the first place. Since this variable is
not used anywhere else, either μ or ν can be chosen.

This representation is advantageous for our implementation as it avoids the
need for syntactic substitution of fixpoint formulas for their variables.

We extend �−�η to formulas ψ appearing in a given equation system accord-
ing to the following clause, under the condition that {X | X � Y, Y ∈ FV (ψ) } ⊆
dom(η), i.e. all variables of higher priority reachable from the right hand side of
the equation are already bound in η.

�X�η =

{
lfp(U �→ �φX�η[X:=U]) if X �∈ dom(η) and qX = μ

gfp(U �→ �φX�η[X:=U]) if X �∈ dom(η) and qX = ν

In particular, the following is then obvious, starting from an empty environment:

Lemma 2. Let φ be a formula and let X be the toplevel variable of the repre-
sentation of φ as an equation system. Then �X� = �φ�.

Remark. It is possible to extend the semantics to the case where the relations
a−→ are not necessarily total: The semantics carries over without changes.

The restriction to total relations is a standard one and it is vindicated by
the following translation from the general case to the one treated here:

Given a LTS T with a not necessarily total a−→ we build a new LTS T ′ with
an additional distinguished state, S(T ′) = S(T) ∪ {�}, then extend a−→ with
extra edges from any state to � (a−→T ′ = a−→T ∪{ (s, �) | s ∈ S(T ′) }) so that

a−→T ′ now is total. We also add a proposition p� which is true at state � and
nowhere else.

We can now define a translation φ̂ for formulas by setting

〈̂a〉φ =〈a〉¬p� ∧ φ̂ [̂a]φ =[a]p� ∨ φ̂.

The translation is homomorphically extended to all other connectives. It is
then easy to see that ∀s ∈ S(T) : s ∈ �φ�T ⇐⇒ s ∈ �φ̂�T ′ .

Certification for μ-Calculus with Winning Strategies 117

3 Parity Games

A parity game is given by the following data:

– a (finite or infinite) set of positions Pos partitioned into proponent’s (Player
0) and opponent’s (Player 1) positions: Pos = Pos0 + Pos1;

– a left-total edge relation → ⊆ Pos×Pos;
– a function Ω ∈ Pos → N with a finite range; we call Ω(p) the priority of

position p.

The players move a token along the edge relation →. When the token is on a
position in Pos0 then proponent decides where to move next and likewise for
opponent.

In order to formalize the notion of “to decide” we must introduce strategies.
Formally, a strategy for a player i ∈ {0, 1} is a function σ that for any nonempty
string 	p = p(0) . . . p(n) over Pos such that p(k) → p(k + 1) for k = 0 . . . n − 1
and p(n) ∈ Posi associates a position σ(p) ∈ Pos such that p(n) → σ(p).

Given a starting position p and strategies σ0 and σ1 for the two players one
then obtains an infinite sequence of positions (a “play”) p(0), p(1), p(2), . . . by

p(0) = p

p(n + 1) = σi(p(0) . . . p(n)) where p(n) ∈ Posi

We denote this sequence by play(p, σ0, σ1).
The play is won by proponent (Player 0) if the largest number that occurs

infinitely often in the sequence Ω(play(p, σ0, σ1)) is even and it is won by oppo-
nent if that number is odd. Note that Ω(−) is applied component-wise and that
a largest priority indeed exists since Ω has finite range.

Player i wins from position p if there exists a strategy σi for Player i such
that for all strategies σ1−i of the other player (Player 1 − i) Player i wins
play(p, σ0, σ1). We write Wi for the set of positions from which Player i wins.

A strategy σ is positional if σ(p(0) . . . p(n)) only depends on p(n). Player i
wins positionally from p when the above strategy σi can be chosen to be posi-
tional.

The following is a standard result [19].

Theorem 1. Every position p is either in W0 or in W1 and Player i wins posi-
tionally from every position in Wi.

Example 1. Figure 3 contains a graphical display of a parity game. Positions in
Pos0 and Pos1 are represented as circles and boxes, respectively, and labelled
with their priorities. Formally, Pos = {a, b, c, d, e, f, g, h, i}; Pos0 = {b, d, f, h};
Pos1 = {a, c, e, g, i}; Ω(a) = 3, . . . , and → = {(a, b), (b, f), . . . }.

In the right half of Fig. 3 the winning sets are indicated and corresponding
positional winning strategies are given as fat arrows. The moves from positions
that are not in the respective winning set are omitted but can of course be
filled-in in an arbitrary fashion.

118 M. Hofmann et al.

Fig. 3. A parity game and its decomposition into winning sets.

3.1 Certification of Winning Strategies

Given a parity game with finitely many positions, presented explicitly as a finite
labelled graph, and a partition of Pos into V0 and V1 we are now looking for an
easy-to-verify certificate as to the fact that V0 = W0 and V1 = W1.

In essence, such a certificate will consist of a positional strategy σi for each
Player i such that i wins using σi from every position p in Vi. Clearly, this implies
Vi = Wi and the above theorem asserts that in principle such certificates always
exist when Vi = Wi. However, it remains to explain how we can check that a
given positional strategy σi wins from a given position p.

We first note that for this it is enough that it wins against any adversarial
positional strategy because the “optimal” counterstrategy, i.e., the one that wins
from all adversarial winning positions is positional (by Theorem1). Thus, given
a positional strategy σi for Player i we can remove all edges from positions
p′ ∈ Posi that are not chosen by the strategy and in the remaining game graph
look for a cycle whose largest priority has parity 1− i and is reachable from p. If
there is such a cycle then the strategy was not good and otherwise it is indeed
a winning strategy for Player i.

Naive enumeration of all cycles in the graph will result in having to check
exponentially many cycles in the worst-case. However, the check can be per-
formed in polynomial time [17], using the standard algorithm for nonemptiness
of Streett automata [2] of which the problem at hand is actually an instance. This
algorithm uses a decomposition of the graph into nontrivial strongly connected
components (SCC).

If every reachable SCC only has positions whose priority has parity i then
obviously the strategy is good for Player i. Next, if there is a reachable SCC
where the highest priority has parity 1−i, the strategy is bad, since this particular
position can be reached infinitely often.

Otherwise, the highest priority in each SCC has parity i and of course player
1−i can win only if it is possible for them to avoid those nodes. Thus, we remove
those nodes and decompose the resulting graph in SCCs again and start over.

For our implementation, we use a variant of this algorithm based on Dijkstra’s
algorithm for SCC as presented by [9,10]. In contrast to other efficient algorithms
for this problem (such as [15]), it has the benefit of being on-the-fly and does

Certification for μ-Calculus with Winning Strategies 119

not require precomputation of the parity game graph. The checking algorithm
is described in more detail in Sect. 6.

Example 2. After removing the edges not taken by Player 0 accord-
ing to their purported winning strategy we obtain the following graph:

3 1 0

3214

4

a b c d

h igf

e

W W1

3

0

We see that the two reachable SCC from W0 are {a, b, f} and {g, h}. The first

one contains the cycles a, f and a, b, f which both have largest priority 4. The
other one is itself a cycle with largest priority 2.

Likewise, adopting the viewpoint of Player 1, after removing the edges not
taken by their strategy we obtain

3 1 0

3214

4

a b c d

h igf

e

W W1

3

0

and find the reachable (from W1) SCCs to be {c, d, i}. The only cycles therein
are d, e and d, e, i. Both are good for Player 1.

4 Game-Theoretic Characterization of µ-Calculus

Fix an LTS T and a μ-calculus formula φ. We first translate φ into an equation
system (as explained in Sect. 2.2) over the variables X written as X = φX where
X ∈ X and qX ∈ {μ, ν}.

We also fix a function Ω : X → N such that

– qX = μ ⇒ Ω(X) odd;
– qX = ν ⇒ Ω(X) even;
– X � Y ⇒ Ω(X) > Ω(Y).

If in addition η is an environment with dom(η) ⊆ X we define the game
G(T, φ, η) as follows:

Positions are pairs (s, ψ) where s ∈ S and ψ is a subformula of the right-
hand sides of the equation system and FV (ψ) ⊆ dom(η). In positions of the

120 M. Hofmann et al.

form (s, ψ) where ψ starts with ∨ or 〈a〉, it is proponent’s (Player 0) turn. The
possible moves for proponent to choose from are:

(s, ψ1 ∨ ψ2) � (s, ψ1)
(s, ψ1 ∨ ψ2) � (s, ψ2)

(s, 〈a〉ψ) � (t, ψ) where s
a−→T t.

In positions of the form (s, ψ) where ψ starts with ∧ or [a] it is the opponent’s
turn. The possible moves for opponent to choose from are:

(s, ψ1 ∧ ψ2) � (s, ψ1)
(s, ψ1 ∧ ψ2) � (s, ψ2)

(s, [a]ψ) � (t, ψ) where s
a−→T t.

From all other positions there is exactly one move so it does not matter to which
player they belong. We fix them to be proponent’s positions for definiteness.
These unique moves are:

(s,X) � (s, φX) when X /∈ dom(η)
(s,X) � (s,X) when X ∈ dom(η)
(s, p) � (s, p)

(s,¬p) � (s,¬p)

The priorities Ω(s, φ) on these positions are defined as follows:

Ω(s, p) =

{
0 if p ∈ T (s)
1 if p /∈ T (s)

Ω(s,¬p) =

{
1 if p ∈ T (s)
0 if p /∈ T (s)

Ω(s,X) =

⎧⎪⎨
⎪⎩

Ω(X) if X /∈ dom(η)
0 if s ∈ η(X)
1 if s /∈ η(X)

Ω(s, φ) = 0 otherwise

The cases for predicates p, ¬p and concrete sets X, i.e., where X ∈ dom(η) are
clear. They are winning positions iff the associated state s satisfies the corre-
sponding predicate.

The variables X �∈ dom(η) on the other hand are understood as abbreviations
of the fixpoint formula they represent. Upon reaching such a position the fixpoint
is unrolled and such unrolling is signalled by the priority Ω(X).

Example 3. Let φ = μX. p ∨ 〈a〉X which asserts that a state where p is true can
be reached.

Certification for μ-Calculus with Winning Strategies 121

Define the transition system T by S(T) = {s, t} and T (s) = ∅ and T (t) =
{p} and a−→T = { (s, s), (s, t), (t, t) }. The associated game graph is as follows:

The priorities of the positions labelled (s,X), (t,X), (s, p) are 1; the priorities
of the four other positions are 0.

Player 0 wins from every position except (s, p). The winning strategy moves
to (s, 〈a〉X) and then (t,X) and then (t, p). Note that a strategy that moves
from (s, 〈a〉X) to (s,X) loses even though it never leaves the winning set W0.
Thus, in order to compute winning strategies it is not enough to choose any
move that remains in the winning set.

Theorem 2. Fix a formula φ0 and an environment η.
If s ∈ �φ0�η then proponent wins G(T, η) from (s, φ0).

Before proving this, we note that the converse is in this case actually a relatively
simple consequence.

Corollary 1. If proponent wins G(T, η) from (s, φ) then s ∈ �φ�η.

Proof. Suppose that proponent wins G(T, η) from (s, φ) and s �∈ �φ�η. We then
have s ∈ �φ∗�η′ using Lemma 1 for the formal dualisation for formulas and com-
plementation for environments. Thus, by the theorem, proponent wins G(T, η′)
from (s, φ∗). However, it is easy to see that a winning strategy for proponent
in G(T, η′) from (s, φ∗) is tantamount to a winning strategy for opponent in
G(T, η) from (s, φ); so we get a contradiction using Theorem1. ��
Proof (of Theorem 2). The proof of Theorem 2 now works by structural induction
on the equation system generated by φ0. We note that this induction preserves
the invariant {X | X � Y, Y ∈ FV (φ) } ⊆ dom(η), such that �φ�η is always
well-defined.

For a variable X, there are three cases, the latter ones are the interesting
ones, as X denotes a fixpoint there:

(i) X ∈ dom(η), then obviously G(T, η) agrees with �X�η.
(ii) X /∈ dom(η) and qX = μ. Then we define

U := { t | proponent wins G(T, η) from (t,X) }.

We must show that �φX�η ⊆ U . By definition of �φX�η it suffices to show that
�φX�η[X �→ U] ⊆ U . Thus, suppose that t ∈ �φX�η[X �→ U]. By the induction

122 M. Hofmann et al.

hypothesis this means that proponent wins G(T, η[X �→ U]) from (t, φX). (Now
η(X) is bound while recursing the subformulas of lower priority, preserving the
condition on η.)

Call the corresponding winning strategy σ. We should prove that proponent
also wins from (t,X). We move to (t, φX) and then play according to σ. If we
never reach a position (t′,X), then by the definition of G(T, η[X �→ U]) we
actually have won G(T, η).

The first time, if ever, that we reach a position (t′,X), we know by the
definition of U that t′ ∈ U and therefore we win G(T, η) from (t′,X), so we
abandon σ and continue play according to the strategy embodied in the latter
statement. This then ensures winning from (t,X) since finite prefixes do not
affect the winning condition.

(iii) X /∈ dom(η) and qX = ν. Let U := �X�η (= �νX.φX�η). We define a
winning strategy for positions of the form (t,X) where t ∈ U as follows. First,
we move (forcedly) to (t, φX). We know that t ∈ �φX�η[X �→ U] by unwinding
so that, inductively, we have a strategy that allows us to either win right away,
or move to another position (t′,X) where t′ ∈ U and all priorities encountered
on the way are smaller than the one of X due to the definition of priorities, and
since all higher occurring priorities are bound in η, thus not resulting in a loop.

We start over and unless we eventually do win right away at some point we
would have seen the priority of X itself infinitely often which is the largest and
even. ��
We remark that while the previous result is well-known the proof presented here
is quite different from the ones in the standard literature, e.g. [4], which use the
order-theoretic concept of signatures, also known as rankings. Those proofs are
less compositional than ours, in the sense that they do not proceed directly by
structural induction on formulas but rather on the global development of all the
fixpoints.

It is essentially this new compositional proof which allows us to instrument
the usual fixpoint iteration so as to compute winning strategies alongside as we
now detail.

5 Computing Winning Strategies via Fixpoint Iteration

5.1 Fixpoint Iteration

It is well-known that the fixpoint iteration in Fig. 2 computes �φ�η in the finite
case. Our goal is to somehow instrument this algorithm so that it produces
evidence in the form of a winning strategy. In instrumenting this algorithm to
produce evidence in the form of a winning strategy it is not enough to simply
compute the winning sets using sem(−,−) and then simply choose moves that
do not leave the winning set. This is because of Example 3 which show that a
strategy that never leaves the winning set may nonetheless be losing.

Instead we will use the construction from the proof of Theorem2. Some care
needs to be taken with the exact setup of the input and output data formats;

Certification for μ-Calculus with Winning Strategies 123

in particular, our algorithm will return partial winning strategies (that win on
a subset of the whole winning set) but only require sets of states (rather than
partial winning strategies) as the values of free variables.

5.2 Partial Winning Strategies

A partial winning strategy is a partial function Σ mapping positions of the game
G(T, η) to elements of S extended with {1, 2, ∗}; it must satisfy the following
conditions:

STAR. If Σ(φ, s) = ∗ then all immediate successors of (φ, s) are in dom(Σ);
OR. If Σ(φ, s) = i ∈ {1, 2} then φ is of the form φ1 ∨ φ2 and (φi, s) ∈ dom(Σ);
DIA. If Σ(φ, s) = s′ ∈ S then φ is of the form 〈a〉ψ and s

a−→ s′ and (ψ, s′) ∈
dom(Σ).

WIN. Player 0 wins from all the positions in dom(Σ) and the obvious strategy
induced by Σ is a winning strategy for Player 0 from those positions.

Note that the empty function (denoted {}) is in particular a partial winning
strategy. To illustrate the notation we describe a (partial) winning strategy for
the entire winning set for Example 3:

Σ(φ, s) = ∗ Σ(φ, t) = ∗
Σ(P ∨ 〈a〉φ, s) = 2 Σ(P ∨ 〈a〉φ, t) = 1

Σ(〈a〉φ, s) = t Σ(P, t) = ∗ , and undefined elsewhere.

So, dom(Σ) = {(φ, s), . . . , (P, t)} and, indeed, Player 0 wins from all these posi-
tions by following the advice given by Σ. Of course, Σ′(P, t) = ∗ and undefined
elsewhere is also a partial winning strategy albeit with smaller domain of defin-
ition.

Updating of winning strategies. Suppose that Σ and Σ′ are partial winning strate-
gies. A new partial winning strategy Σ + Σ′ with dom(Σ + Σ′) is defined by

(Σ + Σ′)(φ, s) = if (φ, s) ∈ dom(Σ) then Σ(φ, s) else Σ′(φ, s).

Lemma 3. Σ + Σ′ is a partial winning strategy and dom(Σ + Σ′) = dom(Σ) ∪
dom(Σ′)

Proof. A play following Σ + Σ′ will eventually remain in one of Σ or Σ′; this,
together with the fact that initial segments do not affect the outcome of a game
implies the claim. ��

124 M. Hofmann et al.

5.3 Computing Winning Strategies by Fixpoint Iteration

For any LTS T , formula φ and environment η with dom(η) ⊇ FV (φ) we define
a partial winning strategy sem(φ)η by the following clauses:

sem(X)η = { (X, s) �→ ∗ | s ∈ η(X) } if X ∈ dom(η)
sem(p)η = { (p, s) �→ ∗ | p ∈ T (s) }

sem(¬p)η = { (p, s) �→ ∗ | p /∈ T (s) }
sem(φ ∧ ψ)η = sem(φ)η + sem(ψ)η

+ { (φ ∧ ψ, s) �→ ∗ | (φ, s) ∈ dom(sem(φ)η)
∧ (ψ, s) ∈ dom(sem(ψ)η) }

sem(φ ∨ ψ)η = sem(φ)η + sem(ψ)η

+ { (φ ∨ ψ, s) �→ 1 | (φ, s) ∈ dom(sem(φ)η) }
+ { (φ ∨ ψ, s) �→ 2 | (ψ, s) ∈ dom(sem(ψ)η) }

sem([a]φ)η = sem(φ)η

+ { ([a]φ, s) �→ ∗ | (φ, s) ∈ dom(sem(φ)η) }
sem(〈a〉φ)η = sem(φ)η

+ { (〈a〉φ, s) �→ s′ | s
a−→ s′ ∧ (φ, s′) ∈ dom(sem(φ)η) }

sem(X = φX)η = shift(νX.φX , sem(φX)η[X:=sem(φX ,η)]) if qX = ν

sem(X = φX)η = shift(μX.φX , iterX(φX , η, {})) if qX = μ

iterX(φ, η,Σ) = let Σ′ := sem(φ)η[X:={s | (φ,s)∈dom(Σ)}] in
if dom(Σ) = dom(Σ′) then Σ else iterX(φ, η,Σ′)

shift(QX.φ,Σ) = Σ + { (QX.φ, s) �→ ∗ | (φ, s) ∈ dom(Σ) }

Of particular interest is the shift function: since the only possible moves for
QX.φ formulas are to move to the subformula φ, we need to adjust the domain
of the winning strategy under construction to only allow this move when the
strategy will win for the subformula already.

Note how the fixpoint iteration in iterX stops when the domain of the partial
winning strategy does not change anymore. Since the greatest fixpoint for νX.φ
cannot be calculated from above in terms of winning strategies (which can only
grow according to our definitions), the winning set (and thus, domain of the
winning strategy) is computed using the set semantics sem(−,−) instead.

The following Lemma and Theorem are now immediate from these definitions
and Lemma 3.

Lemma 4. { s | (φ, s) ∈ dom(sem(φ)η) } = �φ�η.

Theorem 3. sem(φ)η is a winning strategy for G(T, φ, η).

Proposition 3. Given a formula φ with fixed alternation depth, sem(φ)η can
be computed in polynomial time in |S| and in space O(|S|2|φ|2), where |S| is the
size of the state space and |φ| the length of the formula φ.

Certification for μ-Calculus with Winning Strategies 125

Proof. The computation of sem(φ)η follows the one of �φ�η hence the time
bound. Just like in the usual implementations of fixpoint iteration one only
needs to remember the result of the last iteration. Storing a single partial win-
ning strategy requires space O(|S|2|φ|) (associating at most one state to each
pair of state and subformula) and the recursion stack during traversal of subfor-
mulas is limited by |φ| thus requiring us to store O(φ) partial winning strategies
at any one time. This yields the announced space bound. ��

6 Implementation and Evaluation

We have developed an implementation [22] of both computation and checking
of certificates in OCaml. Winning strategies are kept abstract, only exposing
an assoc function to look up a possible move given a model and particular
state. Computation of winning strategies happens by fixpoint iteration using a
recursive function, just like presented in Sect. 5.3.

Two algorithms for checking certificates are implemented: “Check”, a naive,
recursive one with worst-case exponential time, and “Check SCC”, a more intri-
cate one using strongly-connected components to detect cycles. Both algorithms
operate on-the-fly and do not need to pre-compute or even keep the parity game
graph in memory.

The algorithm “Check SCC” is a variant of Dijkstra’s algorithm for detecting
strongly connected components and can be found in [9,10].

This algorithm works as follows [25]: During a depth-first search of the graph,
we keep a stack of strongly connected components that have been found. Upon
finding an edge back into a SCC that closes a cycle, we merge all SCC that are
part of the cycle, since using the cycle we can now move from every SCC into
any other, i.e. their union is actually one SCC.

We provide three benchmarks that give insight into the algorithms at work.
The “Flower” benchmark is a parity game (from [5]) translated into a

μ-calculus formula, which shows the exponential runtime of fixpoint iteration
for μ-calculus. However, the certificates can be checked in polynomial time.

The “Circle” benchmark measures the overhead of the algorithms. It consists
of a single cycle that needs to be traversed to check for a reachability property.
In this case, runtime is linear, and checking is very fast.

The “Braid” benchmark focuses on checking complexity. This family of
graphs has exponentially many cycles, thus the simple checker requires expo-
nential time. The SCC algorithm is not affected and checks these strategies in
linear time (Table 1).

126 M. Hofmann et al.

Table 1. Runtimes on a AMD Phenom II X4 920 (2.80 GHz)

Problem States sem [s] SEM [s] Check [s] Check SCC [s]

Flower 8 16 0.179 0.203 0.009 0.040

Flower 10 20 3.166 1.960 0.071 0.419

Flower 12 24 32.269 11.688 0.287 2.061

Flower 14 28 320.931 61.733 1.298 10.829

Flower 16 32 3196.043 326.666 6.131 58.871

Circle 100 100 0.003 0.001 0.001 0.001

Circle 1000 1000 0.109 0.018 0.005 0.006

Circle 10000 10000 15.763 3.398 0.054 0.057

Circle 100000 100000 2027.584 811.041 0.581 0.582

Braid 6 12 0.001 0.005 1.282 0.009

Braid 8 16 0.002 0.003 31.062 0.013

Braid 10 20 0.002 0.006 711.002 0.020

Braid 100 200 0.663 0.993 — 3.674

7 Conclusion

Our main result is an effective and low overhead instrumentation of the usual
fixpoint iteration of μ-calculus model checking [3] for generating certificates or
counterexamples that are independently checkable in low polynomial time. The
notion of partial winning strategies is central to our developments and also seems
to be novel.

We have implemented our witness-generating algorithms and demonstrated
the feasibility of our approach by means of a collection of benchmark examples.
For simple formulas, manual inspection of the generated certificates yields coun-
terexamples similar to those generated by SMV, but algorithmic approaches for
extracting explicit counterexamples in general needs further investigation.

There are numerous applications for our certifying μ-calculus model checker.
In particular, it should be possible to generate checkable certificates for the
bisimulation between programs and for model checking problems for both linear
time temporal logics and computation tree logics [11] as the basis for assurance
cases and certification arguments for safety-critical systems. Moreover, certifi-
cates for μ-calculus model checking might also be used as the basis of symmet-
ric abstraction-refinement-based model checking engines for the full μ-calculus
based on refining over-approximations using spurious counterexamples and relax-
ing under-approximations using dubious witnesses along the lines of [29,30], for
sending code together with proofs of arbitrary safety and liveness properties,
which are then checked by code consumers according to the proof-carrying code
paradigm of [21], and for synthesizing correct-by-construction controllers from
these certificates [30].

Our developments may also form the underpinning for a sound integration of
μ-calculus model checking into other verification systems such as PVS [23]. Using

Certification for μ-Calculus with Winning Strategies 127

Shankar’s kernel of truth [28] approach, which is based on checking the verifica-
tion and on verifying the checker, certificates are generated using an untrusted
implementation of our μ-calculus model checking algorithms, and certificates are
then checked by means of an executable PVS function, which itself is verified in
a trusted kernel of PVS.

References

1. Biere, A., Zhu, Y., Clarke, E.: Multiple state and single state tableaux for combin-
ing local and global model checking. In: Olderog, E.-R., Steffen, B. (eds.) Correct
System Design. LNCS, vol. 1710, pp. 163–179. Springer, Heidelberg (1999)

2. Bloem, R., Gabow, H.N., Somenzi, F.: An algorithm for strongly connected com-
ponent analysis in n log n symbolic steps. Formal Methods Syst. Des. 28(1),
37–56 (2006)

3. Bradfield, J., Stirling, C.: Modal mu-calculi. Stud. Logic Pract. Reasoning 3,
721–756 (2007)

4. Bradfield, J., Stirling, C.: Modal logics and mu-calculi: an introduction. In:
Bergstra, J., Ponse, A., Smolka, S. (eds.) Handbook of Process Algebra,
pp. 293–330. Elsevier, Amsterdam (2001)

5. Buhrke, N., Lescow, H., Vöge, J.: Strategy construction in infinite games with
streett and rabin chain winning conditions. In: Margaria, T., Steffen, B. (eds.)
TACAS. LNCS, vol. 1055, pp. 207–225. Springer, Heidelberg (1996)

6. Clarke, E., Jha, S., Lu, Y., Veith, H.: Tree-like counterexamples in model checking.
In: Proceedings of the 17th Annual IEEE Symposium on Logic in Computer
Science, pp. 19–29. IEEE (2002)

7. Clarke, E., Grumberg, O., McMillan, K., Zhao, X.: Efficient generation of coun-
terexamples and witnesses in symbolic model checking. In: Proceedings of the
32nd Annual ACM/IEEE Design Automation Conference, pp. 427–432. ACM
(1995)

8. Cleaveland, R.: Tableau-based model checking in the propositional mu-calculus.
Acta Informatica 27(8), 725–747 (1990)

9. Duret-Lutz, A.: Contributions à l’approche automate pour la vérification de pro-
priétés de systèmes concurrents. Ph.D. thesis, Université Pierre et Marie Curie
(Paris 6) July 2007. https://www.lrde.epita.fr/∼adl/th.html

10. Duret-Lutz, A., Poitrenaud, D., Couvreur, J.-M.: On-the-fly emptiness check of
transition-based streett automata. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009.
LNCS, vol. 5799, pp. 213–227. Springer, Heidelberg (2009)

11. Emerson, E., Jutla, C., Sistla, A.: On model-checking for fragments of μ-calculus.
In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 385–396. Springer,
Heidelberg (1993)

12. Emerson, E., Jutla, C.: Tree automata, mu-calculus and determinacy. In: Pro-
ceedings of the 32nd Annual Symposium on Foundations of Computer Science
(FOCS 1991), pp. 368–377. IEEE (1991)

13. Grädel, E.: Back and forth between logic and games. In: Apt, K., Grädel, E.
(eds.) Lectures in Game Theory for Computer Scientists, pp. 99–138. Cambridge
University Press, Cambridge (2011)

14. Gurfinkel, A., Chechik, M.: Proof-like counter-examples. In: Garavel, H., Hatcliff,
J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 160–175. Springer, Heidelberg (2003)

https://www.lrde.epita.fr/~adl/th.html

128 M. Hofmann et al.

15. Henzinger, M.R., Telle, J.A.: Faster algorithms for the nonemptiness of streett
automata and for communication protocol pruning. In: Karlsson, R., Lingas, A.
(eds.) SWAT 1996. LNCS, vol. 1097, pp. 16–27. Springer, Heidelberg (1996)

16. Hofmann, M., Rueß, H.: Certification for μ-calculus with winning strategies.
ArXiv e-prints, January 2014

17. Jurdziński, M.: Algorithms for solving parity games. In: Apt, K., Grädel, E. (eds.)
Lectures in Game Theory for Computer Scientists, pp. 74–98. Cambridge Univer-
sity Press, Cambridge (2011)

18. Kick, A.: Generation of counterexamples for the μ-calculus. Technical report ira-
tr-1995-37, Universität Karlsruhe, Germany (1995)

19. Martin, D.A.: Borel determinacy. Ann. Math. 102(2), 363–371 (1975)
20. Namjoshi, K.S.: Certifying model checkers. In: Berry, G., Comon, H., Finkel, A.

(eds.) CAV 2001. LNCS, vol. 2102, pp. 2–13. Springer, Heidelberg (2001)
21. Necula, G.: Proof-carrying code. In: Proceedings of the 24th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, pp. 106–119.
ACM (1997)

22. Neukirchen, C.: Computation of winning strategies for μ-calculus by fixpoint iter-
ation. Master’s thesis, Ludwig-Maximilians-Universität München, November 2014

23. Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In:
Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg
(1992)

24. Peled, D.A., Pnueli, A., Zuck, L.D.: From falsification to verification. In:
Hariharan, R., Mukund, M., Vinay, V. (eds.) FSTTCS 2001. LNCS, vol. 2245,
pp. 292–304. Springer, Heidelberg (2001)

25. Renault, E., Duret-Lutz, A., Kordon, F., Poitrenaud, D.: Three SCC-based
emptiness checks for generalized Büchi automata. In: McMillan, K., Middeldorp,
A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 668–682. Springer,
Heidelberg (2013)

26. Seidl, H.: Fast and Simple Nested Fixpoints. Universität Trier, Mathe-
matik/Informatik, Forschungsbericht 96-05 (1996)

27. Shankar, N., Sorea, M.: Counterexample-driven model checking (revisited ver-
sion). Technical report SRI-CSL-03-04, SRI International (2003)

28. Shankar, N.: Rewriting, inference, and proof. In: Ölveczky, P.C. (ed.) WRLA
2010. LNCS, vol. 6381, pp. 1–14. Springer, Heidelberg (2010)

29. Sorea, M.: Dubious witnesses and spurious counterexamples. UK Model Checking
Days, York (2005). http://www.cs.man.ac.uk/∼msorea/talks/york.pdf

30. Sorea, M.: Verification of real-time systems through lazy approximations. Ph.D.
thesis, University of Ulm, Germany (2004)

31. Stirling, C., Walker, D.: Local model checking in the modal mu-calculus. In: Dı́az,
J., Orejas, F. (eds.) TAPSOFT 1989. LNCS, vol. 351, pp. 369–383. Springer,
Heidelberg (1989)

32. Streett, R.S., Emerson, E.A.: The propositional mu-calculus is elementary. In:
Paredaens, J. (ed.) Automata, Languages and Programming. LNCS, vol. 172, pp.
465–472. Springer, Heidelberg (1984)

33. Tan, L., Cleaveland, W.R.: Evidence-based model checking. In: Brinksma, E.,
Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 455–470. Springer, Heidelberg
(2002)

34. Vardi, M., Wilke, T.: Automata: from logics to algorithms. In: WAL, pp. 645–753
(2007)

35. Winskel, G.: A note on model checking the modal ν-calculus. Theor. Comput.
Sci. 83(1), 157–167 (1991)

http://www.cs.man.ac.uk/~msorea/talks/york.pdf

Real-Time Strategy Synthesis for Timed-Arc
Petri Net Games via Discretization

Peter Gjøl Jensen(B), Kim Guldstrand Larsen, and Jǐŕı Srba

Department of Computer Science, Aalborg University,
Selma Lagerlöfs Vej 300, 9220 Aalborg East, Denmark

{pgj,kgl,srba}@cs.aau.dk

Abstract. Automatic strategy synthesis for a given control objective
can be used to generate correct-by-construction controllers of reactive
systems. The existing symbolic approach for continuous timed games
is a computationally hard task and current tools like UPPAAL TiGa
often scale poorly with the model complexity. We suggest an explicit
approach for strategy synthesis in the discrete-time setting and show that
even for systems with closed guards, the existence of a safety discrete-
time strategy does not imply the existence of a safety continuous-time
strategy and vice versa. Nevertheless, we prove that the answers to the
existence of discrete-time and continuous-time safety strategies coincide
on a practically motivated subclass of urgent controllers that either react
immediately after receiving an environmental input or wait with the
decision until a next event is triggered by the environment. We then
develop an on-the-fly synthesis algorithm for discrete timed-arc Petri net
games. The algorithm is implemented in our tool TAPAAL and based
on the experimental evidence, we discuss the advantages of our approach
compared to the symbolic continuous-time techniques.

1 Introduction

Formal methods and model checking techniques have been traditionally used
to verify whether a given system model complies with its specification. How-
ever, when we consider formal (game) models where both the controller and the
environment can make choices, the question now changes to finding a controller
strategy such that any behaviour under such a fixed strategy complies with the
given specification. The model checking approach can be used as a try-and-fail
technique to check whether a given controller is correct but automatic synthesis
of a controller correct-by-construction, as already proposed by Church [12,13],
is a more difficult problem as illustrated by the SYNTCOMP competition and
SYNT workshop [1]. This area has recently seen renewed interest, partly given
the rise in computational power that makes the synthesis feasible. We focus on
the family of timed systems, where for the model of timed automata [2] synthesis
has already been proposed [33] and implemented [4,11].

In the area of model checking, symbolic continuous-time on-the-fly methods
were ensuring the success of tools such as Kronos [9], UPPAAL [5], Tina [6]
c© Springer International Publishing Switzerland 2016
D. Bošnački and A. Wijs (Eds.): SPIN 2016, LNCS 9641, pp. 129–146, 2016.
DOI: 10.1007/978-3-319-32582-8 9

130 P.G. Jensen et al.

and Romeo [21], utilizing the zone abstraction approach [2] via the data struc-
ture DBM [16]. These symbolic techniques were recently employed in on-the-
fly algorithms [28] for synthesis of controllers for timed games [4,11,33]. While
these methods scale well for classical reachability, the limitation of symbolic
techniques is more apparent when used for liveness properties and for solving
timed games. We have shown that for reachability and liveness properties, the
discrete-time methods performing point-wise exploration of the state-space can
prove competitive on a wide range of problems [3], in particular in combination
with additional techniques as time-darts [25], constant-reducing approximation
techniques [7] and memory-preserving data structures as PTrie [24].

In this paper, we benefit from the recent advances in the discrete-time veri-
fication of timed systems and suggest an on-the-fly point-wise algorithm for the
synthesis of timed controllers relative to safety objectives (avoiding undesirable
behaviour). The algorithm is described for a novel game extension of the well-
studied timed-arc Petri net formalism [8,23] and we show that in the general
setting the existence of a controller for a safety objective in the discrete-time
setting does not imply the existence of such a controller in the continuous-time
setting and vice versa, not even for systems with closed guards—contrary to
the fact that continuous-time and discrete-time reachability problems coincide
for timed models [10], in particular also for timed-arc Petri nets [30]. However,
if we restrict ourselves to the practically relevant subclass of urgent controllers
that either react immediately to the environmental events or simply wait for
another occurrence of such an event, then we can use the discrete-time meth-
ods for checking the existence of a continuous-time safety controller on closed
timed-arc Petri nets. The algorithm for controller synthesis is implemented in the
tool TAPAAL [15], including the memory optimization technique via PTrie [24],
and the experimental data show a promising performance on a large data-set of
infinite job scheduling problems as well as on other examples.

Related Work. An on-the-fly algorithm for synthesizing continuous-time con-
trollers for both safety, reachability and time-optimal reachability for time
automata was proposed by Cassez et al. [11] and later implemented in the tool
UPPAAL TiGa [4]. This work is based on the symbolic verification techniques
invented by Alur and Dill [2] in combination with ideas on synthesis by Pnueli
et al. [33] and on-the-fly dependency graph algorithms suggested by Liu and
Smolka [28]. For timed games, abstraction refinement approaches have been
proposed and implemented by Peter et al. [31,32] and Finkbeiner and Peter
[19] as an attempt to speed up synthesis, while using the same underlying sym-
bolic representation as UPPAAL TiGa. These abstraction refinement methods
are complementary to the work presented here. Our work uses the formalism
of timed-arc Petri nets that has not been studied in this context before and we
rely on the methods with discrete interpretation of time as presented by Ander-
sen et al. [3]. As an additional contribution, we implement our solution in the
tool TAPAAL, utilizing memory reduction techniques by Jensen et al. [24], and
compare the performance of both discrete-time and continuous-time techniques.

Real-Time Strategy Synthesis for TAPN Games via Discretization 131

Fig. 1. A timed-arc Petri net game model of a harddisk

Control synthesis and supervisory control was also studied for the family of Petri
net models [17,18,34,36] but these works do not consider the timing aspects.

2 Motivating Example of Disk Operation Scheduling

We shall now provide an intuitive description of the timed-arc Petri net game
of disk operation scheduling in Fig. 1, modelling the scheduler of a mechanical
harddisk drive (left) and a number of read stream requests (right) that should be
fulfilled within a given deadline D. The net consists of places drawn as circles (the
dashed circle around the places R1, R2, R3 and Buffer simply means that these
places are shared between the two subnets) and transitions drawn as rectangles
that are either filled (controllable transitions) or framed only (environmental
transitions). Places can contain tokens (like the places R1 to R3 and the place
track1) and each token carries its own age. Initially all token ages are 0. The
net also contains arcs from places to transitions (input arcs) or transitions to
places (output arcs). The input arcs are further decorated with time intervals
restricting the ages of tokens that can be consumed along the arc. If the time
interval is missing, we assume the default [0,∞] interval not restricting the ages
of tokens in any way.

In the initial marking (token configuration) depicted in our example, the
two transitions connected by input arcs to the place track1 are enabled and

132 P.G. Jensen et al.

the controller can decide to fire either of them. As the transitions contain a
white circle, they are urgent, meaning that time cannot pass as long at least
one urgent transition is enabled. Suppose now that the controller decides to fire
the transition on the left of the place track1. As a result of firing the transition,
the two tokens in R1 and track1 will be consumed and a new token of age 0
produced to the place W1. Tokens can be also transported via a pair of an input
and output transport arcs (not depicted in our example) that will transport the
token from the input to the output place while preserving its age.

In the new marking we just achieved, no transition is enabled due to the time
interval [1, 4] on the input arc of the environmental transition connected to the
place W1. However, after one time unit passes and the token in W1 becomes of
age 1, the transition becomes enabled and the environment may decide to fire it.
On the other hand, the place W1 also contains an age invariant ≤ 4, requiring
that the age of any token in that place may not exceed 4. Hence after age of the
token reaches 4, time cannot progress anymore and the environment is forced to
fire the transition, producing two fresh tokens into the places Buffer and track1.
Hence, reading the data from track 1 of the disk takes between 1 ms to 4 ms
(depending on the actual rotation of the disk) and it is the environment that
decides the actual duration of the reading operation.

The idea is that the disk has three tracks (positions of the reading head) and
at each track track i the controller has the choice of either reading the data from
the given track (assuming there is a reading request represented by a token in the
place Ri) or move the head to one of the neighbouring tracks (such a mechanical
move takes between 1 ms to 2 ms). The reading requests are produced by the
subnet on the right where the environment decides when to generate a reading
request in the interval between 6 ms to 10 ms. The number of tokens in the right
subnet represents the parallel reading streams. The net also contains inhibitor
arcs with a cirle-headed tip that prohibit the environmental transitions from
generating a reading request on a given track if there is already one. Finally, if
the reading request takes too long and the age of the token in Ri reaches the
age D, the environment has the option to place a token in the place Fail .

The control synthesis problem asks to find a strategy for firing the con-
trollable transitions that guarantees no failure, meaning that irrelevant of the
behaviour of the environment, the place Fail never becomes marked (safety con-
trol objective). The existence of such a control strategy depends on the cho-
sen value of D and the complexity of the controller synthesis problem can be
scaled by adding further tracks (in the subnet of the left) or allowing for more
parallel reading streams (in the subnet on the right). In what follows, we shall
describe how to automatically decide in the discrete-time setting (where time can
be increased only by nonnegative integer values) whether a controller strategy
exists. As the controllable transitions are urgent in our example, the existence of
such a discrete-time control strategy implies also the existence of a continuous-
time control strategy where the environment is free to fire transitions after an
arbitrary delay taken from the dense time domain.

Real-Time Strategy Synthesis for TAPN Games via Discretization 133

3 Definitions

Let N0 = N∪{0} and N
∞
0 = N0∪{∞}. Let R

≥0 be the set of all nonnegative real
numbers. A timed transition system (TTS) is a triple (S ,Act ,→) where S is the
set of states, Act is the set of actions and →⊆ S×(Act∪R

≥0)×S is the transition
relation written as s

a→ s′ whenever (s, a, s′) ∈ →. If a ∈ Act then we call it a
switch transition, if a ∈ R

≥0 we call it a delay transition. We also define the set
of well-formed closed time intervals as I def= {[a, b] | a ∈ N0, b ∈ N

∞
0 , a ≤ b} and

its subset I inv def= {[0, b] | b ∈ N
∞
0 } used in age invariants.

Definition 1 (Timed-Arc Petri Net). A timed-arc Petri net (TAPN) is a
9-tuple N = (P, T, Turg , IA,OA, g ,w ,Type, I) where

– P is a finite set of places,
– T is a finite set of transitions such that P ∩ T = ∅,
– Turg ⊆ T is the set of urgent transitions,
– IA ⊆ P × T is a finite set of input arcs,
– OA ⊆ T × P is a finite set of output arcs,
– g : IA → I is a time constraint function assigning guards to input arcs such

that
• if (p, t) ∈ IA and t ∈ Turg then g((p, t)) = [0,∞],

– w : IA ∪ OA → N is a function assigning weights to input and output arcs,
– Type : IA ∪ OA → Types is a type function assigning a type to all arcs

where Types = {Normal , Inhib} ∪ {Transportj | j ∈ N} such that
• if Type(z) = Inhib then z ∈ IA and g(z) = [0,∞],
• if Type((p, t)) = Transportj for some (p, t) ∈ IA then there is exactly one

(t, p′) ∈ OA such that Type((t, p′)) = Transportj,
• if Type((t, p′)) = Transportj for some (t, p′) ∈ OA then there is exactly

one (p, t) ∈ IA such that Type((p, t)) = Transportj,
• if Type((p, t)) = Transportj = Type((t, p′)) then w((p, t)) = w((t, p′)),

– I : P → Iinv is a function assigning age invariants to places.

Remark 1. Note that for transport arcs we assume that they come in pairs (for
each type Transportj) and that their weights match. Also for inhibitor arcs and
for input arcs to urgent transitions, we require that the guards are [0,∞]. This
restriction is important for some of the results presented in this paper and it also
guarantees that we can use DBM-based algorithms in the tool TAPAAL [15].

Before we give the formal semantics of the model, let us fix some notation.
Let N = (P, T, Turg , IA,OA, g ,w ,Type, I) be a TAPN. We denote by •x def= {y ∈
P ∪ T | (y, x) ∈ IA ∪ OA, Type((y, x))
= Inhib} the preset of a transition or a
place x. Similarly, the postset is defined as x• def= {y ∈ P ∪T | (x, y) ∈ (IA∪OA)}.
Let B(R≥0) be the set of all finite multisets over R

≥0. A marking M on N is
a function M : P −→ B(R≥0) where for every place p ∈ P and every token
x ∈ M(p) we have x ∈ I (p), in other words all tokens have to satisfy the age
invariants. The set of all markings in a net N is denoted by M(N).

134 P.G. Jensen et al.

We write (p, x) to denote a token at a place p with the age x ∈ R
≥0. Then

M = {(p1, x1), (p2, x2), . . . , (pn, xn)} is a multiset representing a marking M
with n tokens of ages xi in places pi. We define the size of a marking as |M | =∑

p∈P |M(p)| where |M(p)| is the number of tokens located in the place p.

Definition 2 (Enabledness). Let N = (P, T, Turg , IA,OA, g ,w ,Type, I) be
a TAPN. We say that a transition t ∈ T is enabled in a marking M by the
multisets of tokens In = {(p, x1

p), (p, x2
p), . . . , (p, x

w((p,t))
p) | p ∈ •t} ⊆ M and

Out = {(p′, x1
p′), (p′, x2

p′), . . . , (p′, xw((t,p′))
p′) | p′ ∈ t•} if

– for all input arcs except the inhibitor arcs, the tokens from In satisfy the age
guards of the arcs, i.e.

∀p ∈ •t. xi
p ∈ g((p, t)) for 1 ≤ i ≤ w((p, t))

– for any inhibitor arc pointing from a place p to the transition t, the number
of tokens in p is smaller than the weight of the arc, i.e.

∀(p, t) ∈ IA.Type((p, t)) = Inhib ⇒ |M(p)| < w((p, t))

– for all input arcs and output arcs which constitute a transport arc, the age of
the input token must be equal to the age of the output token and satisfy the
invariant of the output place, i.e.

∀(p, t) ∈ IA.∀(t, p′) ∈ OA.Type((p, t)) = Type((t, p′)) = Transportj

⇒ (
xi

p = xi
p′ ∧ xi

p′ ∈ I (p′)
)
for 1 ≤ i ≤ w((p, t))

– for all normal output arcs, the age of the output token is 0, i.e.

∀(t, p′) ∈ OA.Type((t, p′)) = Normal ⇒ xi
p′ = 0 for 1 ≤ i ≤ w((t, p′)).

A given TAPN N defines a TTS T (N) def= (M(N), T,→) where states are
the markings and the transitions are as follows.

– If t ∈ T is enabled in a marking M by the multisets of tokens In and Out
then t can fire and produce the marking M ′ = (M � In) � Out where � is
the multiset sum operator and � is the multiset difference operator; we write
M

t→ M ′ for this switch transition.
– A time delay d ∈ R

≥0 is allowed in M if
• (x + d) ∈ I(p) for all p ∈ P and all x ∈ M(p), and
• if M

t→ M ′ for some t ∈ Turg then d = 0.
By delaying d time units in M we reach the marking M ′ defined as M ′(p) =
{x+ d | x ∈ M(p)} for all p ∈ P ; we write M

d→ M ′ for this delay transition.

Let →def=
⋃

t∈T
t→ ∪⋃

d∈R≥0
d→. By M

d,t→ M ′ we denote that there is a

marking M ′′ such that M
d→ M ′′ t→ M ′.

The semantics defined above in terms of timed transition systems is called
the continuous-time semantics. If we restrict the possible delay transitions to
take values only from nonnegative integers and the markings to be of the form
M : P −→ B(N0), we call it the discrete-time semantics.

Real-Time Strategy Synthesis for TAPN Games via Discretization 135

3.1 Timed-Arc Petri Net Game

We shall now extend the TAPN model into the game setting by partitioning the
set of transitions into the controllable and uncontrollable ones.

Definition 3 (Timed-Arc Petri Net Game). A Timed-Arc Petri Net Game
(TAPG) is a TAPN with its set of transitions T partitioned into the controller
Tctrl and environment Tenv sets.

Let G be a fixed TAPG. Recall that M(G) is the set of all markings over the
net G. A controller strategy for the game G is a function

σ : M(G) → M(G) ∪ {wait}
from markings to markings or the special symbol wait such that

– if σ(M) = wait then either M can delay forever (M d→ for all d ∈ R
≥0), or

there is d ∈ R
≥0 where M

d→ M ′ and for all d′′ ∈ R
≥0 for all t ∈ Tctrl we

have that if M ′ d′′
→ M ′′ then M ′′ t

→, and
– if σ(M) = M ′ then there is d ∈ R

≥0 and there is t ∈ Tctrl where M
d,t→ M ′.

Intuitively, a controller can in a given marking M either decide to wait indef-
initely (assuming that it is not forced by age invariants or urgency to perform
some controllable transition) or it can suggest a delay followed by a controllable
transition firing. The environment can in the marking M also propose to wait
(unless this is not possible due to age invariants or urgency) or suggest a delay
followed by firing of an uncontrollable transition. If both the controller and envi-
ronment propose transition firing, then the one preceding with a shorter delay
takes place. In the case where both the controller and the environment propose
the same delay followed by a transition firing, then any of these two firings can
(nondeterministically) happen. This intuition is formalized in the notion of plays
following a fixed controller strategy that summarize all possible executions for
any possible environment.

Let π = M1M2 . . . Mn . . . ∈ M(G)ω be an arbitrary finite or infinite sequence
of markings over G and let M be a marking. We define the concatenation of
M with π as M ◦ π = MM1 . . . Mn . . . and extend it to the sets of sequences
Π ⊆ M(G)ω so that M ◦ Π = {M ◦ π | π ∈ Π}.

Definition 4 (Plays According to the Strategy σ). Let G be a TAPG,
M a marking on G and σ a controller strategy for G. We define a function
Pσ : M(G) → 2M(G)ω

returning for a given marking M the set of all possible
plays starting from M under the strategy σ.

– If σ(M) = wait then Pσ(M) = {M ◦ Pσ(M ′) | d ∈ R
≥0, t ∈ Tenv , M

d,t→
M ′} ∪ X where X = {M} if M

d→ for all d ∈ R
≥0, or if there is d′ ∈ R

≥0

such that M
d′
→ M ′ and M ′ d′′

→ for any d′′ > 0 and M ′ t

→ for any t ∈ Tenv ,
otherwise X = ∅.

136 P.G. Jensen et al.

– If σ(M)
= wait then according to the definition of controller strategy we have

M
d,t→ σ(M) and we define Pσ(M) = {M ◦ Pσ(σ(M))} ∪ {M ◦ Pσ(M ′) | d′ ≤

d, t′ ∈ Tenv ,M
d′,t′
→ M ′}.

The first case says that the plays from the marking M where the controller
wants to wait consist either of the marking M followed by any play from a
marking M ′ that can be reached by the environment from M after some delay
and firing a transition from Tenv , or a finite sequence finishing the marking M
if it is the case that M can delay forever, or we can reach a deadlock where no
further delay is possible and no transition can fire.

The second case where the controller suggests a transition firing after some
delay, contains M concatenated with all possible plays from σ(M) and from
σ(M ′) for any M ′ that can be reached by the environment before or at the same
time the controller suggests to perform its move.

We can now define the safety objectives for TAPGs that are boolean expres-
sions over arithmetic predicates which observe the number of tokens in the dif-
ferent places of the net. Let ϕ be so a boolean combination of predicates of
the form e �� e where e:: = p | n | e + e | e − e | e ∗ e and where p ∈ P ,
��∈ {<,≤,=,
=,≥, >} and n ∈ N0. The semantics of ϕ in a marking M is given
in the natural way, assuming that p stands for |M(p)| (the number of tokens in
the place p). We write M |= ϕ if ϕ evaluates in the marking M to true. We can
now state the safety synthesis problem.

Definition 5 (Safety Synthesis Problem). Given a marked TAPG G with
the initial marking M0 and a safety objective ϕ, decide if there is a controller
strategy σ such that

∀π ∈ Pσ(M0).∀M ∈ π.M |= ϕ. (1)

If Eq. (1) holds then we say that σ is a winning controller strategy for the objec-
tive ϕ.

4 Controller Synthesis in Continuous vs. Discrete Time

It is known that for classical TAPNs the continuous and discrete-time semantics
coincide up to reachability [30], which is what safety synthesis reduces to if the
set of controllable transitions is empty. Contrary to this, Fig. 2a and b show that
this does not hold in general for safety strategies.

For the game in Fig. 2a, there exists a strategy for the controller and the safety
objective Bad ≤ 0 but this is the case only in the continuous-time semantics as
the controller has to keep the age of the token in place P1 strictly below 1,
otherwise the environment can mark the place Bad by firing U1. However, if
the controller fires transition C1 without waiting, U2 becomes enabled and the
environment can again break the safety. Hence it is impossible to find a discrete-
time strategy as even the smallest possible delay of 1 time unit will enable
U1. However, if the controller waits an infinitesimal amount (in the continuous

Real-Time Strategy Synthesis for TAPN Games via Discretization 137

Fig. 2. Difference between continuous and discrete-time semantics

semantics) and fires C1, then U2 will not be enabled as the token in P2 aged
slightly. The controller can now fire C2 and repeat this strategy over and over
in order to keep the token in P1 from ever reaching the age of 1.

The counter example described before relies on Zeno behaviour, however,
this is not needed if we use transport arcs that do not reset the age of tokens
(depicted by arrows with diamond-headed tips), as demonstrated in Fig. 2c. Here
the only winning strategy for the controller to avoid marking the place Bad is
to delay some fraction and then fire T0. Any possible integer delay (1 or 0) will
enable the environment to fire U0 or U1 before the controller gets to fire T1.
Hence we get the following lemma.

Lemma 1. There is a TAPG and a safety objective where the controller has a
winning strategy in the continuous-time semantics but not in the discrete-time
semantics.

Figure 2b shows, on the other hand, that a safety strategy guaranteeing
Bad ≤ 0 exists only in the discrete-time semantics but not in the continuous-
time one where the environment can mark the place Bad by initially delaying
0.5 and then firing U0. This will produce a token in P1 which restricts the time
from progressing further and thus forces the controller to fire T3 as this is the
only enabled transition. On the other hand, in the discrete-time semantics the
environment can either fire U0 immediately but then T1 will be enabled, or it can

138 P.G. Jensen et al.

wait (a minimum of one time unit), however then T2 will be enabled. Hence the
controller can in both cases avoid the firing of T3 in the discrete-time semantics.
This implies the following lemma.

Lemma 2. There is a TAPG and a safety objective where the controller has a
winning strategy in the discrete-time semantics but not in the continuous-time
semantics.

This indeed means that the continuous and discrete-time semantics are incom-
parable and it makes sense to consider both of them, depending on the concrete
application domain and the fact whether we consider discretized or continuous
time. Nevertheless, there is a practically relevant subclass of the problem where
we consider only urgent controllers and where the two semantics coincide. We
say that a given TAPG is with an urgent controller if all controllable transitions
are urgent, formally Tctrl ⊆ Turg .

Theorem 1. Let G be a TAPG with urgent controller and let ϕ be a safety
objective. There is a winning controller strategy for G and ϕ in the discrete-
time semantics iff there is a winning controller strategy for G and ϕ in the
continuous-time semantics.

Proof (Sketch). The existence of a winning controller strategy in the continuous-
time semantics clearly implies the existence of such a strategy also in the discrete-
time because here the environment is restricted to playing only integer delays
and the controller can always react to these according to the continuous-time
strategy that exists by our assumption. Because the controller is making only
urgent choices or waits for the next environmental move, all transitions happen
in the discrete-time points.

For the other direction, we prove the converse via the use of linear program-
ming as used e.g. in [30]. Assuming that the urgent controller does not have a
winning strategy in the continuous-time semantics, we will argue that the con-
troller does not have a winning strategy in the discrete-time semantics either.
Due to the assumption, we know that the environment can in any current mark-
ing choose a real-time delay and an uncontrollable transition in such a way that
irrelevant of what the controller chooses, it eventually reaches a marking vio-
lating the safety condition ϕ. Such an environmental strategy can be described
as a finite tree where nodes are markings, edges contain the information about
the delay and transition firing, the branching describes all controller choices and
each leaf of the tree is a marking that satisfies ¬ϕ. The existence of this envi-
ronmental strategy follows from the determinacy of the game that guarantees
that one of the players must have a winning strategy (to see this, we realize that
the environmental strategy contains only finite branches, all of them ending in
a marking satisfying ¬ϕ, and hence we have an instance of an open game that
is determined by the result of Gale and Stewart [20]—see also [22]).

As we assume that the environment can win in the continuous-time semantics,
the delays in the tree may be nonnegative real numbers (controller’s moves in
the tree are always with delay 0). Our aim is to show that there is another

Real-Time Strategy Synthesis for TAPN Games via Discretization 139

winning tree for the environment, however, with integer delays only. This can
be done by replacing the delays in the tree by variables and reformulating the
firing conditions of the transitions in the tree as a linear program. Surely, the
constraints in the linear program have, by our assumption, a nonnegative real
solution. Moreover, the constraint system uses only closed difference constraints
(nonstrictly bounding the difference of two variables from below or above) and we
can therefore reduce the linear program to a shortest-path problem with integer
weights only and this implies that an integer solution exists too [14]. This means
that there is a tree describing an environmental winning strategy using only
integer delays and hence the controller does not have a winning strategy in the
discrete-time setting. The technical details of the proof are provided in the full
version of the paper. ��

5 Discrete-Time Algorithm for Controller Synthesis

We shall now define the discrete-time algorithm for synthesizing controller strate-
gies for TAPGs. As the state-space of a TAPG is infinite in several aspects (the
number of tokens in reachable markings can be unbounded and even for bounded
nets the ages of tokens can be arbitrarily large), the question of deciding the
existence of a controller strategy is in general undecidable (already the classical
reachability is undecidable [35] for TAPNs).

We address the undecidability issue by enforcing a given constant k, bounding
the number of tokens in any marking reached by the controller strategy. This
means that instead of checking the safety objective ϕ, we verify instead the
safety objective ϕk = ϕ ∧ k ≥ ∑

p∈P p that at the same time ensures that the
total number of tokens is at most k. This will, together with the extrapolation
technique below, guarantee the termination of the algorithm.

5.1 Extrapolation of TAPGs

We shall now recall a few results from [3] that allow us to make finite abstractions
of bounded nets (in the discrete-time semantics). The theorems and lemmas in
the rest of this section hold also for continuous-time semantics, however, the
finiteness of the extrapolated state space is not guaranteed in this case.

Let G = (P, T, Tenv , Tctrl , Turg , IA,OA, g ,w ,Type, I) be a TAPG. In [3] the
authors provide an algorithm for computing a function Cmax : P → (N0 ∪
{−1}) returning for each place p ∈ P the maximum constant associated to this
place, meaning that the ages of tokens in place p that are strictly greater than
Cmax(p) are irrelevant. The function Cmax(p) for a given place p is computed by
essentially taking the maximum constant appearing in any outgoing arc from p
and in the place invariant of p, where a special care has to be taken for places with
outgoing transport arcs (details are discussed in [3]). In particular, places where
Cmax(p) = −1 are the so-called untimed places where the age of tokens is not
relevant at all, implying that all the intervals on their outgoing arcs are [0,∞].

140 P.G. Jensen et al.

Let M be a marking of G. We split it into two markings M> and M≤ where
M>(p) = {x ∈ M(p) | x > Cmax(p)} and M≤(p) = {x ∈ M(p) | x ≤ Cmax(p)}
for all places p ∈ P . Clearly, M = M> � M≤.

We say that two markings M and M ′ in the net G are equivalent, written
M ≡ M ′, if M≤ = M ′

≤ and for all p ∈ P we have |M>(p)| = |M ′
>(p)|. In other

words M and M ′ agree on the tokens with ages below the maximum constants
and have the same number of tokens above the maximum constant.

The relation ≡ is an equivalence relation and it is also a timed bisimulation
(see e.g. [27]) where delays and transition firings on one side can be matched by
exactly the same delays and transition firings on the other side and vice versa.

Theorem 2 ([3]). The relation ≡ is a timed bisimulation.

We can now define canonical representatives for each equivalence class of ≡.

Definition 6 (Cut). Let M be a marking. We define its canonical marking
cut(M) by cut(M)(p) = M≤(p) � {

Cmax(p) + 1, . . . ,Cmax(p) + 1︸ ︷︷ ︸
|M>(p)| times

}
.

Lemma 3 ([3]). Let M , M1 and M2 be markings. Then (i) M ≡ cut(M), and
(ii) M1 ≡ M2 if and only if cut(M1) = cut(M2).

5.2 The Algorithm

After having introduced the extrapolation function cut and our enforcement of
the k-bound, we can now design an algorithm for computing a controller strategy
σ, provided such a strategy exists.

Algorithm 1 describes a discrete-time method to check if there is a controller
strategy or not. It is centered around four data structures: Waiting for storing
markings to be explored, Losing that contains marking where such a strategy
does not exist, Depend for maintaining the set of dependencies to be reinserted
to the waiting list whenever a marking is declared as losing, and Processed for
already processed markings. All markings in the algorithm are always consid-
ered modulo the cut extrapolation. The algorithm performs a forward search by
repeatedly selecting a marking M from Waiting and if it can determine that
the controller cannot win from this marking, then M gets inserted into the set
Losing while the dependencies of M are put to the set Waiting in order to back-
ward propagate this information. If the initial marking is ever inserted to the set
Losing , we can terminate and announce that a controller strategy does not exist.
If this is not the case and there are no more markings in the set Waiting , then
we terminate with success. In this case, it is also easy to construct the controller
strategy by making choices so that the set Losing is avoided.

Theorem 3 (Correctness). Algorithm 1 terminates and returns tt if and only
if there is a controller strategy for the safety objective ϕk = ϕ ∧ k ≥ ∑

p∈P p.

Real-Time Strategy Synthesis for TAPN Games via Discretization 141

Algorithm 1. Safety Synthesis Algorithm
Input: A TAPG G = (P, T, Tenv , Tctrl , Turg , IA,OA, g ,w ,Type, I), initial

marking M0, a safety objective ϕ and a bound k.
Output: tt if there exists a controller strategy ensuring ϕ and not exceeding k

tokens in any intermediate marking, ff otherwise
1 begin
2 Waiting := Losing := Processed = ∅; ϕk = ϕ ∧ k ≥∑p∈P p;

3 M ← cut(M0); Depend [M] ← ∅;
4 if M �|= ϕk then
5 Losing ← {M}
6 else
7 Waiting ← {M}
8 while Waiting �= ∅ ∧ cut(M0) �∈ Losing do
9 M ← pop(Waiting);

10 Succsenv := {cut(M ′) | t ∈ Tenv , M
t→ M ′};

11 Succsctrl := {cut(M ′) | t ∈ Tctrl , M
t→ M ′};

12 Succsdelay :=

⎧
⎨

⎩
∅ if M

1

�→
{cut(M ′)} if M

1→ M ′

13 if ∃M ′ ∈ Succsenv s.t. M ′ �|= ϕk ∨ M ′ ∈ Losing then
14 Losing ← Losing ∪ {M};
15 Waiting ← (Waiting ∪ Depend [M]) \ Losing ;

16 else
17 if Succsctrl ∪ Succsdelay �= ∅ ∧ ∀M ′ ∈ Succsctrl ∪ Succsdelay.

M ′ �|= ϕk ∨ M ′ ∈ Losing then
18 Losing ← Losing ∪ {M};
19 Waiting ← (Waiting ∪ Depend [M]) \ Losing ;

20 else
21 if M �∈ Processed then
22 foreach M ′ ∈ (Succsctrl ∪ Succsenv ∪ Succsdelay) do
23 if M ′ �∈ Losing ∧ M ′ |= ϕk then
24 Depend [M ′] ← Depend [M ′] ∪ {M};
25 Waiting ← Waiting ∪ {M ′};

26 Processed ← Processed ∪ {M};

27 return tt if cut(M0) �∈ Losing, else ff

6 Experiments

The discrete-time controller synthesis algorithm was implemented in the tool
TAPAAL [15] and we evaluate the performance of the implementation by com-
paring it to UPPAAL TiGa [4] version 0.18, the state-of-the-art continuous-time
model checker for timed games. The experiments were run on AMD Opteron

142 P.G. Jensen et al.

Table 1. Time in seconds to find a controller strategy for the disk operation scheduling
for the smallest D where such a strategy exists.

1 Stream D = 133 D = 173 D = 213 D = 253 D = 293 D = 333 D = 373
Tracks 70 90 110 130 150 170 190

TAPAAL 30.14s 69.78s 128.58s 216.44s 316.71s 491.65s 665.34s
UPPAAL 36.41s 76.63s 193.37s 351.17s 509.46s 1022.83s 1604.04s

2 Streams D = 19 D = 27 D = 35 D = 43 D = 51 D = 59 D = 67
Tracks 6 8 10 12 14 16 18

TAPAAL 1.98s 7.34s 30.73s 101.92s 210.25s 398.00s 768.11s
UPPAAL 19.11s 93.46s 436.15s 1675.85s 3328.66s

3 Streams D = 17 D = 21 D = 25 D = 29 D = 35 D = 39 D = 43
Tracks 3 4 5 6 7 8 9

TAPAAL 2.20s 16.52s 72.41s 244.28s 885.60s (2132.71s)
UPPAAL 885.56s

6376 processor limited to using 16 GB of RAM1 and with one hour timeout
(denoted by �).

6.1 Disk Operation Scheduling

In the disk operation scheduling model presented in Sect. 2 we scale the problem
by changing the number of tracks and the number of simultaneous read streams.
A similar model using the timed automata formalism was created for UPPAAL
TiGa. We then ask whether a controller exists respecting a fixed deadline D for
all requests. For each instance of the problem, we report the computation time
for the smallest deadline D such that it is possible to synthesize a controller.
Notice that the disk operating scheduling game net has an urgent controller,
hence the discrete and continuous-time semantics coincide.

The results in Table 1 show that our algorithm scales considerably better
than TiGa (that suffers from the large fragmentation of zone federations) as the
number of tracks increases and it is significantly better when we add more read
streams (and hence increase the concurrency and consequently the number of
timed tokens/clocks).

6.2 Infinite Job Shop Scheduling

In our second experiment, infinite job shop scheduling, we consider the duration
probabilistic automata [29]. Kempf et al. [26] showed that “non-lazy” schedulers
are sufficient to guarantee optimality in this class of automata. Here non-lazy
means that the controller only chooses what to schedule at the moment when
a running task has just finished (the time of this event is determined by the

1 UPPAAL TiGa only exists in a 32 bit version, but for none of the tests the 4 GB
limit was exceeded for UPPAAL TiGa.

Real-Time Strategy Synthesis for TAPN Games via Discretization 143

Table 2. Results for infinite scheduling of DPAs. The first row in each age-instance
is TAPAAL, the second line is UPPAAL TiGa. The format is (X) Y s where X the
number of solved instances (within 3600 s) out of 100 and Y is the median time needed
to solve the problem. The largest possible constant for each row is given as an upper
bound of the deadline D.

2 Processes/7-13 tokens

Max Age 10 Tasks 12 Tasks 14 Tasks 16 Tasks 18 Tasks

5 (100) 63s (100) 141s (100) 283s (100) 570s (100) 829s
D ≤ 144 (100) 100s (98) 413s (85) 1201s (35) (18)

10 (100) 318s (100) 882s (96) 1555s (65) 2911s (14)
D ≤ 288 (96) 221s (69) 1443s (43) (16) (1)

15 (99) 1054s (78) 2521s (19) (14) (2)
D ≤ 432 (87) 315s (60) 1960s (19) (8) (0)

20 (80) 2479s (22) (14) (3) (2)
D ≤ 576 (90) 554s (66) 2914s (34) (4) (1)

3 Processes/10-19 tokens

Max Age 2 Tasks 3 Tasks 4 Tasks 5 Tasks 6 Tasks

5 (100) 2s (100) 39s (99) 402s (66) 1884s (38)
D ≤ 57 (99) 16s (69) 1827s (4) (0) (0)

10 (100) 15s (97) 484s (47) (20) (6)
D ≤ 114 (98) 32s (52) 3338s (6) (0) (0)

15 (100) 51s (69) 1373s (28) (4) (0)
D ≤ 171 (98) 27s (50) (1) (0) (0)

4 Processes/13-25 tokens

Max Age 2 Tasks 3 Tasks 4 Tasks 5 Tasks 6 Tasks

5 (92) 215s (30) (7) (1) (0)
D ≤ 66 (3) (0) (0) (0) (0)

10 (60) 2286s (11) (2) (0) (0)
D ≤ 132 (0) (0) (0) (0) (0)

environment). We consider here a variant of this problem that should guarantee
an infinite (cyclic) scheduling where all processes that share various resources
and must meet their deadlines. The countdown of a process is started when
its first task is initiated and the process deadline is met if the process is able
to execute its last task within the deadline. After such a completed cycle, the
process starts from its initial configuration and the deadline-clock is restarted.
The task of the controller is now to find a schedule such that all processes always
meet their deadline. The problem can be modelled using urgent controller, so
the discrete and continuous-time semantics again coincide.

The problem is scaled by the number of parallel processes, number of tasks in
each processes and the size of constants used in guards (excepted the deadline D
that contains a considerably larger constant). For each set of scaling parameters,
we generated 100 random instances of the problem and report on the number of
cases where the tool answered the synthesis problem (within one hour deadline)
and if more than 50 instances were solved, we also compute the median of the
running time.

144 P.G. Jensen et al.

The comparison with UPPAAL TiGa in Table 2 shows a similar trend as in
the previous experiment. Our algorithm scales nicely as we increase the number
of tasks as well as the number of processes. This is due to the fact that the zone
fragmentation in TiGa increases with the number of parallel components and
more distinct guards. When scaling the size of constants, the performance of the
discrete-time method gets worse and eventually UPPAAL TiGa can solve more
instances.

7 Conclusion

We introduced timed-arc Petri net games and showed that for urgent controllers,
the discrete and continuous-time semantics coincide. The presented discrete-time
method for solving timed-arc Petri net games scales considerably better with the
growing size of problems, compared to the existing symbolic methods. On the
other hand, symbolic methods scale better with the size of the constants used in
the model. In the future work, we may try to compensate for this drawback by
using approximate techniques that “shrink” the constants to reasonable ranges
while still providing conclusive answers in many cases, as demonstrated for pure
reachability queries in [7]. Another future work includes the study of different
synthesis objectives, as well as the generation of continuous-time strategies from
discrete-time analysis techniques on the subclass of urgent controllers.

Acknowledgments. The research leading to these results has received funding from
the EU FP7 FET projects CASSTING and SENSATION, the project DiCyPS funded
by the Innovation Fund Denmark, the Sino Danish Research Center IDEA4CPS and
the ERC Advanced Grant LASSO. The third author is partially affiliated with FI MU,
Brno, Czech Republic.

References

1. SYNT 2015. Electronic Proceedings in Theoretical Computer Science (2015).
http://formal.epfl.ch/synt/2015/

2. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2),
183–235 (1994)

3. Andersen, M., Larsen, H.G., Srba, J., Sørensen, M.G., Haahr Taankvist, J.: Veri-
fication of liveness properties on closed timed-arc Petri nets. In: Kučera, A., Hen-
zinger, T.A., Nešetřil, J., Vojnar, T., Antoš, D. (eds.) MEMICS 2012. LNCS, vol.
7721, pp. 69–81. Springer, Heidelberg (2013)

4. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.:
UPPAAL-TiGa: time for playing games!. In: Damm, W., Hermanns, H. (eds.)
CAV 2007. LNCS, vol. 4590, pp. 121–125. Springer, Heidelberg (2007)

5. Behrmann, G., David, A., Larsen, K.G., Hakansson, J., Petterson, P., Yi, W.,
Hendriks, M.: UPPAAL 4.0. In: Third International Conference on Quantitative
Evaluation of Systems, pp. 125–126 (2006)

6. Berthomieu, B., Vernadat, F.: Time Petri nets analysis with TINA. In: Third Inter-
national Conference on Quantitative Evaluation of Systems, pp. 123–124. IEEE
Computer Society (2006)

http://formal.epfl.ch/synt/2015/

Real-Time Strategy Synthesis for TAPN Games via Discretization 145

7. Birch, S.V., Jacobsen, T.S., Jensen, J.J., Moesgaard, C., Nørgaard Samuelsen, N.,
Srba, J.: Interval abstraction refinement for model checking of timed-arc Petri nets.
In: Legay, A., Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711, pp. 237–251.
Springer, Heidelberg (2014)

8. Bolognesi, T., Lucidi, F., Trigila, S.: From timed Petri nets to timed LOTOS.
In: Proceedings of the IFIP WG6.1 Tenth International Symposium on Protocol
Specification, Testing and Verification X, North-Holland, pp. 395–408 (1990)

9. Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S., Yovine, S.: Kronos: a
model-checking tool for real-time systems. In: Hu, A.J., Vardi, M.Y. (eds.) CAV
1998. LNCS, vol. 1427, pp. 546–550. Springer, Heidelberg (1998)

10. Bozga, M., Maler, O., Tripakis, S.: Efficient verification of timed automata using
dense and discrete time semantics. In: Pierre, L., Kropf, T. (eds.) CHARME 1999.
LNCS, vol. 1703, pp. 125–141. Springer, Heidelberg (1999)

11. Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algo-
rithms for the analysis of timed games. In: Abadi, M., Alfaro, L. (eds.) CONCUR
2005. LNCS, vol. 3653, pp. 66–80. Springer, Heidelberg (2005)

12. Church, A.: Application of recursive arithmetic to the problem of circuit synthesis.
J. Symbolic Logic 28(4), 289–290 (1963)

13. Church, A.: Logic, arithmetic, and automata. In: Proceedings of the International
Congress of Mathematicians (Stockholm, 1962), pp. 23–35. Institute Mittag-Leffler
(1963)

14. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
Third Edition, 3rd edn. The MIT Press (2009). ISBN: 0262033844 9780262033848

15. David, A., Jacobsen, L., Jacobsen, M., Jørgensen, K.Y., Møller, M.H., Srba, J.:
TAPAAL 2.0: integrated development environment for timed-arc Petri nets. In:
Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 492–497.
Springer, Heidelberg (2012)

16. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems.
In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg
(1990)

17. Finkbeiner, B.: Bounded synthesis for Petri games. In: Meyer, R., et al. (eds.)
Olderog-Festschrift. LNCS, vol. 9360, pp. 223–237. Springer, Heidelberg (2015)

18. Finkbeiner, B., Olderog, E.: Petri games: synthesis of distributed systems with
causal memory. In: Proceedings Fifth International Symposium on Games,
Automata, Logics and Formal Verification, vol. 161 of EPTCS, pp. 217–230 (2014)

19. Finkbeiner, B., Peter, H.-J.: Template-based controller synthesis for timed systems.
In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 392–406.
Springer, Heidelberg (2012)

20. Gale, D., Stewart, F.M.: Infinite games with perfect information. In: Contributions
to the Theory of Games. Annals of Mathematics Studies, no. 28, vol. 2, pp. 245–
266. Princeton University Press, Princeton, N.J (1953)

21. Gardey, G., Lime, D., Magnin, M., Roux, O.H.: Romeo: a tool for analyzing time
Petri nets. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576,
pp. 418–423. Springer, Heidelberg (2005)

22. Gurevich, Y.: Games people play. In: Lane, S.M., Siefkes, D. (eds.) The Collected
Works of J. Richard Büchi, pp. 517–524. Springer, Berlin (1990)

23. Hanisch, H.-M.: Analysis of place/transition nets with timed arcs and its applica-
tion to batch process control. In: Marsan, M.A. (ed.) ICATPN 1993. LNCS, vol.
691, pp. 282–299. Springer, Heidelberg (1993)

146 P.G. Jensen et al.

24. Jensen, P.G., Larsen, K.G., Srba, J., Sørensen, M.G., Taankvist, J.H.: Memory
efficient data structures for explicit verification of timed systems. In: Badger, J.M.,
Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp. 307–312. Springer, Heidelberg
(2014)

25. Jørgensen, K.Y., Larsen, K.G., Srba, J.: Time-darts: a data structure for verifi-
cation of closed timed automata. In: Proceedings Seventh Conference on Systems
Software Verification, vol. 102 of EPTCS, pp. 141–155. Open Publishing Associa-
tion (2012)

26. Kempf, J.-F., Bozga, M., Maler, O.: As soon as probable: optimal scheduling under
stochastic uncertainty. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS
2013). LNCS, vol. 7795, pp. 385–400. Springer, Heidelberg (2013)

27. Larsen, K.G., Wang, Y.: Time-abstracted bisimulation: implicit specifications and
decidability. Inf. Comput. 134(2), 75–101 (1997)

28. Liu, X., Smolka, S.A.: Simple linear-time algorithms for minimal fixed points
(extended abstract). In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998.
LNCS, vol. 1443, pp. 53–66. Springer, Heidelberg (1998)

29. Maler, O., Larsen, K.G., Krogh, B.H.: On zone-based analysis of duration proba-
bilistic automata. In: Proceedings 12th International Workshop on Verification of
Infinite-State Systems, vol.39 of EPTCS, pp. 33–46 (2010)

30. Mateo, J.A., Srba, J., Sørensen, M.G.: Soundness of timed-arc workflow nets in
discrete and continuous-time semantics. Fundamenta Informaticase 140(1), 89–
121 (2015)

31. Peter, H.: Component-based abstraction refinement for timed controller synthesis.
In: IEEE, pp. 364–374. IEEE Computer Society (2009)

32. Peter, H.-J., Ehlers, R., Mattmüller, R.: Synthia: verification and synthesis for
timed automata. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 649–655. Springer, Heidelberg (2011)

33. Pnueli, A., Asarin, E., Maler, O., Sifakis, J.: Controller synthesis for timed
automata. System Structure and Control. Citeseer, Elsevier (1998)

34. Raskin, J.F., Samuelides, M., Begin, L.V.: Petri games are monotone but difficult
to decide. Technical report, Université Libre De Bruxelles (2003)

35. Ruiz, V.V., Cuartero Gomez, F., de Frutos Escrig, D.: On non-decidability of reach-
ability for timed-arc Petri nets. In: Proceedings of the 8th International Workshop
on Petri Nets and Performance Models, pp. 188–196 (1999)

36. Zhou, Q., Wang, M., Dutta, S.P.: Generation of optimal control policy for flexible
manufacturing cells: a Petri net approach. Int. J. Adv. Manuf. Technol. 10(1),
59–65 (1995)

Finite-Horizon Bisimulation Minimisation
for Probabilistic Systems

Nishanthan Kamaleson(B), David Parker, and Jonathan E. Rowe

School of Computer Science, University of Birmingham, Birmingham, UK
nxk249@cs.bham.ac.uk

Abstract. We present model reduction techniques to improve the effi-
ciency and scalability of verifying probabilistic systems over a finite time
horizon. We propose a finite-horizon variant of probabilistic bisimulation
for discrete-time Markov chains, which preserves a bounded fragment of
the temporal logic PCTL. In addition to a standard partition-refinement
based minimisation algorithm, we present on-the-fly finite-horizon min-
imisation techniques, which are based on a backwards traversal of the
Markov chain, directly from a high-level model description. We inves-
tigate both symbolic and explicit-state implementations, using SMT
solvers and hash functions, respectively, and implement them in the
PRISM model checker. We show that finite-horizon reduction can pro-
vide significant reductions in model size, in some cases outperforming
PRISM’s existing efficient implementations of probabilistic verification.

1 Introduction

Probabilistic verification is an automated technique for the formal analysis of
quantitative properties of systems that exhibit stochastic behaviour. A proba-
bilistic model, such as a Markov chain or a Markov decision process, is system-
atically constructed and then analysed against properties expressed in a formal
specification language such as temporal logic. Mature tools for probabilistic ver-
ification such as PRISM [15] and MRMC [13] have been developed, and the
techniques have been applied to a wide range of application domains, from bio-
logical reaction networks [11] to car airbag controllers [1].

A constant challenge in this area is the issue of scalability: probabilistic mod-
els, which are explored and constructed in an exhaustive fashion, are typically
huge for real-life systems, which can limit the practical applicability of the tech-
niques. A variety of approaches have been proposed to reduce the size of these
models. One that is widely used is probabilistic bisimulation [18], an equivalence
relation over the states of a probabilistic model which can be used to construct
a smaller quotient model that is equivalent to the original one (in the sense that
it preserves key properties of interest to be verified).

Typically, it preserves both infinite-horizon (long-run) properties, e.g., “the
probability of eventually reaching an error state”, finite-horizon (transient, or
time-bounded) properties, e.g. “the probability of an error occurring within k
time-steps”, and, more generally, any property expressible in an appropriate
c© Springer International Publishing Switzerland 2016
D. Bošnački and A. Wijs (Eds.): SPIN 2016, LNCS 9641, pp. 147–164, 2016.
DOI: 10.1007/978-3-319-32582-8 10

148 N. Kamaleson et al.

temporal logic such as PCTL [10]. It has been shown that, in contrast to non-
probabilistic verification, the effort required to perform bisimulation minimisa-
tion can pay off in terms of the total time required for verification [12].

In this paper, we consider model reduction techniques for finite-horizon prop-
erties of Markov chains. We propose a finite-horizon variant of probabilistic
bisimulation, which preserves stepwise behaviour over a finite number of steps,
rather than indefinitely, as in standard probabilistic bisimulation. This permits
a more aggressive model reduction, but still preserves satisfaction of PCTL for-
mulae of bounded depth (i.e., whose interpretation requires only a bounded
exploration of the model). Time-bounded properties are commonly used in
probabilistic verification, e.g., for efficiency (“the probability of task comple-
tion within k steps”) or for reliabilty (“the probability of an error occurring
within time k”).

We formalise finite-horizon probabilistic bisimulation, define the subset of
PCTL that it preserves and then give a partition-refinement based algorithm for
computing the coarsest possible finite-horizon bisimulation relation, along with
a corresponding quotient model. The basic algorithm is limited by the fact it
requires the full Markov chain to be constructed before it is minimised, which
can be a bottleneck. So, we then develop on-the-fly approaches, which construct
the quotient model directly from a high-level model description of the Markov
chain, based on a backwards traversal of its state space. We propose two versions:
one symbolic, based on SMT solvers, and one explicit-state.

We implemented all algorithms in PRISM and evaluated them on a range
of examples. First, we apply the partition-refinement based approach to some
standard benchmarks to investigate the size of the reduction that can be obtained
in a finite-horizon setting. Then, we apply the on-the-fly approach to a class of
problems to which it is particularly well suited: models with a large number of
possible initial configurations, on which we ask questions such as “from which
initial states does the probability of an error occurring within 10 s exceed 0.01?”.
We show that on-the-fly finite-horizon bisimulation can indeed provide significant
gains in both verification time and scalability, demonstrated in each case by
outperforming the existing efficient implementations in PRISM.

Related Work. For the standard notion of probabilistic bisimulation on Markov
chains [18], various decision procedure and minimisation algorithms have been
developed. Derisavi et al. [9] proposed an algorithm with optimal complexity,
assuming the use of splay trees and, more recently, a simpler solution was put
forward in [20]. Signature-based approaches, which our first, partition-refinement
algorithm adapts, have been studied in, for example, [9,22]. Also relevant is the
SMT-based bisimulation minimisation technique of [6] which, like our on-the-fly
algorithm, avoids construction of the full model when minimising. Our SMT-
based algorithm has an additional benefit in that it works on model descriptions
with state-dependent probabilities. Other probabilistic verification methods have
been developed based on backwards traversal of a model, for example for prob-
abilistic timed automata [16], but this is for a different class of models and does
not perform minimisation. Della Penna et al. considered finite-horizon verifica-
tion of Markov chains [7], but using disk-based methods, not model reduction.

Finite-Horizon Bisimulation Minimisation for Probabilistic Systems 149

2 Preliminaries

We start with some background on probabilistic verification of Markov chains.

2.1 Discrete-Time Markov Chains

A discrete-time Markov chain (DTMC) can be thought of as a state transition
system where transitions between states are annotated with probabilities.

Definition 1 (DTMC). A DTMC is a tuple D = (S,Sinit ,P,AP ,L), where:

– S is a finite set of states and Sinit ⊆ S is a set of initial states;
– P : S×S → [0, 1] is a transition probability matrix, where, for all states s ∈ S,

we have
∑

s′∈S P(s, s′) = 1;
– AP is a set of atomic propositions and L : S → 2AP is a labelling function

giving the set of propositions from AP that are true in each state.

For each pair s, s′ of states, P(s, s′) represents the probability of going from s
to s′. If P(s, s′) > 0, then s is a predecessor of s′ and s′ is a successor of s. For a
state s and set C ⊆ S, we will often use the notation P(s, C) :=

∑
s′∈C P(s, s′).

A path σ of a DTMC D is a finite or infinite sequence of states σ = s0s1s2 . . .
such that ∀i ≥ 0, si ∈ S and P(si, si+1) > 0. The ith state of the path σ is
denoted by σ[i]. We let PathD(s) denote the set of infinite paths of D that begin
in a state s. To reason formally about the behaviour of a DTMC, we define a
probability measure Prs over the set of infinite paths PathD(s) [14]. We usually
consider the behaviour from some initial state s ∈ Sinit of D.

2.2 Probabilistic Computation Tree Logic

Properties of probabilistic models can be expressed using Probabilistic Computa-
tion Tree Logic (PCTL) [10] which extends Computation Tree Logic (CTL) with
time and probabilities. In PCTL, state formulae Φ are interpreted over states of
a DTMC and path formulae φ are interpreted over paths.

Definition 2 (PCTL). The syntax of PCTL is as follows:

Φ ::= true
∣∣ a

∣∣ ¬Φ
∣∣ Φ ∧ Φ

∣∣ P��p[φ]

φ ::= Φ1 U
≤k Φ2

where a is an atomic proposition, ��∈{<,≤,≥, >}, p ∈ [0, 1] and k ∈ N ∪ {∞}.
The main operator in PCTL, in addition to those that are standard from propo-
sitional logic, is the probabilistic operator P��p[φ], which means that the proba-
bility measure of paths that satisfy φ is within the bound �� p. For path formulae
φ, we allow the (bounded) until operator Φ1 U≤k Φ2. If Φ2 becomes true within
k time steps and Φ1 is true until that point, then Φ1 U≤k Φ2 is true. In the case
where k equals ∞, the bounded until operator becomes the unbounded until
operator and is denoted by U. For simplicity of presentation, in this paper, we
omit the next (XΦ) operator, but this could easily be added.

150 N. Kamaleson et al.

Definition 3 (PCTL Semantics). Let D = (S,Sinit ,P,AP ,L) be a DTMC.
The satisfaction relation �D for PCTL formulae on D is defined by:

– s �D true ∀s ∈ S
– s �D a iff a ∈ L(s)
– s �D ¬Φ iff s �D Φ
– s �D Φ1 ∧ Φ2 iff s �D Φ1 and s �D Φ2

– s �D P��p[φ] iff Prs{σ ∈ PathD(s) | σ �D φ} �� p
– σ �D Φ1 U≤k Φ2 iff ∃i ∈ N.(i ≤ k ∧ σ[i] �D Φ2 ∧ (∀j.0 ≤ j < i.σ[j] �D Φ1))

For example, a PCTL formula such as P<0.01[¬fail1 U≤k fail2] means that the
probability of a failure of type 2 occurring within k time-steps, and before a
failure of type 1 does, is less than 0.01. Common derived operators are FΦ ≡
true UΦ, which means that Φ eventually becomes true, and F≤k Φ ≡ true U≤k Φ,
which means that Φ becomes true within k steps.

2.3 Probabilistic Bisimulation

Larsen and Skou [18] defined (strong) probabilistic bisimulation for discrete prob-
abilistic transition systems, which is an equivalence relation used to identify
states with identical labellings and (probabilistic) step-wise behaviour.

Definition 4 (Probabilistic Bisimulation). Let D = (S,Sinit ,P,AP ,L) be
a DTMC and R an equivalence relation on S. Then R is a (strong) probabilistic
bisimulation on D if, for (s1, s2) ∈ R:

(i) L(s1) = L(s2) and (ii) for all C ∈ S/R : P(s1, C) = P(s2, C)

where S/R denotes the set of equivalence classes of set S by relation R. States
s1, s2 are bisimilar if there exists a bisimulation on D containing (s1, s2).

Two states that are probabilistically bisimilar will satisfy the same properties,
including both infinite-horizon (long-run) and finite-horizon (transient) proper-
ties. Aziz et al. [3] proved that any property in the temporal logic PCTL is also
preserved in this manner. Thanks to these results, the analysis of the original
Markov chain, such as probabilistic model checking of PCTL, can be equiva-
lently performed on the quotient Markov chain, in which equivalence classes of
bisimilar states are lumped together into a single state.

Usually, we are interested in the coarsest possible probabilistic bisimulation
for a DTMC D (or, in other words, the union of all possible bisimulation rela-
tions). We denote the coarsest possible probabilistic bisimulation by ∼. The
quotient model D/∼ derived using this relation is defined as follows.

Definition 5 (Quotient DTMC). Given DTMC D = (S,Sinit ,P,AP ,L), the
quotient DTMC is defined as D/∼ = (S ′,S ′

init ,P
′,AP,L′) where:

– S ′ = S/∼ = {[s]∼ | s ∈ S}
– S ′

init = {[s]∼ | s ∈ Sinit}
– P′([s]∼, [s′]∼) = P(s, [s′]∼)
– L′([s]∼) = L(s)

and [s]∼ denotes the unique equivalence class of relation ∼ containing s.

Finite-Horizon Bisimulation Minimisation for Probabilistic Systems 151

3 Finite-Horizon Bisimulation

We now formalise the notion of finite-horizon bisimulation, a step-bounded vari-
ant of standard probabilistic bisimulation for Markov chains [18]. We fix, from
this point on, a DTMC D = (S,Sinit ,P,AP ,L). Intuitively, a k-step finite-
horizon bisimulation, for non-negative integer k, preserves the stepwise behaviour
of D over a finite horizon of k steps. We use the following inductive definition.

Definition 6 (Finite-Horizon Bisimulation). A k-step finite-horizon bisim-
ulation, for k ∈ N≥0, is an equivalence relation Rk ⊆ S × S such that, for all
states (s1, s2) ∈ Rk, the following two conditions are satisfied:

(i) L(s1) = L(s2);
(ii) P(s1, C) = P(s2, C) for each equivalence class C ∈ S/Rk−1,

where Rk−1 is a (k−1)-step finite-horizon bisimulation. A 0-step finite-horizon
bisimulation is an equivalence relation R0 satisfying only condition (i) above.

Definition 7 (Finite-Horizon Bisimulation Equivalent). We say states
s1, s2 are (k-step) finite-horizon bisimulation equivalent (bisimilar), denoted
s1 ∼k s2, if there exists a k-step finite-horizon bisimulation Rk such that
(s1, s2) ∈ Rk.

Two states s1 and s2 satisfying s1 ∼k s2 have the same stepwise behaviour over
k steps. The following simple, but useful, properties hold.

Proposition 1. Let s1, s2 ∈ S be two states. Then:

(a) if s1 ∼k s2, then s1 ∼j s2 for any 0 ≤ j ≤ k.
(b) if s1 ∼ s2, then s1 ∼k s2 for any k ≥ 0.
(c) if s1 ∼k s2 and s1 → s′

1, then s′
1 ∼k−1 s′

2 for some state s′
2 such that

s2 → s′
2.

From a model checking perspective, if s1 ∼k s2, then s1 and s2 satisfy the same
PCTL formulae up to a bounded depth k. We formalise this as follows.

Definition 8 (Formula Depth). The depth of a PCTL formula Φ, denoted
d(Φ), is a value in N ∪ {∞} defined inductively as follows:

– d(true) = d(a) = 0 for atomic proposition a;
– d(¬Φ) = d(Φ);
– d(Φ1 ∧ Φ2) = max(d(Φ1), d(Φ2));
– d(P��p[Φ1 U≤j Φ2]) = j + max(d(Φ1)−1, d(Φ2)).

For example, if a and b are atomic propositions, we have d(P��p[true U≤5 a]) = 5,
d(P��p[true U≤5 a] ∧ P��p[true U≤6 a]) = 6, and d(P��p[true U≤5 P��p[a U≤3 b]]) = 8.

If states s1 and s2 are (k-step) finite-horizon bisimilar, then they satisfy
exactly the same PCTL formulae of depth at most k.

Theorem 1. Let s1 and s2 be two states such that s1 ∼k s2, and Φ be a PCTL
formula with depth d(Φ) ≤ k, then s1 |= Φ if and only if s2 |= Φ.

152 N. Kamaleson et al.

Proof. We prove the result by induction over the structure (see Definition 2) of
PCTL formula Φ. Propositional operators are straightforward since s1 and s2
satisfy the same atomic propositions, by the definition of ∼k, and, for Φ = ¬Φ1

or Φ = Φ1∧Φ2, the subformulae Φ1 and Φ2 have depth at most k so, by induction,
we can assume that s1 |= Φi ⇔ s2 |= Φi for i ∈ {1, 2}.

The remaining case to consider is Φ = P��p[Φ1 U≤j Φ2]. We know, from
Definition 8, that the depths d(Φ1) and d(Φ2) of the two subformulae are at
most k − j + 1 and k − j. From the semantics of PCTL, we have that, for any
state s:

s |= P��p[Φ1 U
≤j Φ2] ⇔ Prs(Φ1 U

≤j Φ2) �� p

which means it suffices to show that:

Prs1(Φ1 U
≤j Φ2) = Prs2(Φ1 U

≤j Φ2) (1)

We in fact show this to be true for any states s1, s2, values j ≤ k and PCTL
subformulae Φ1, Φ2 satisfying s1 ∼k s2 and max(d(Φ1)−1, d(Φ2)) ≤ k−j, which
we prove inductively over j. From the model checking algorithm for PCTL [10],
we know that, for any state s:

Prs(Φ1 U
≤j Φ2) =

⎧⎪⎪⎨
⎪⎪⎩

1 if s |= Φ2

0 if s |= ¬Φ1∧¬Φ2

0 if s |= Φ1∧¬Φ2 and j = 0∑
s′∈S P(s, s′)Prs′(Φ1 U≤j−1 Φ2) if s |= Φ1∧¬Φ2 and j > 0.

For the base case j = 0, only the first three cases of the definition above can
apply, and we know that s1 |= Φi ⇔ s2 |= Φi for i ∈ {1, 2}, so we have that
Prs1(Φ1 U≤0 Φ2) = Prs2(Φ1 U≤0 Φ2). For the inductive case, where j > 0, we
can assume that Prs1(Φ1 U≤j−1 Φ2) = Prs2(Φ1 U≤j−1 Φ2), as long as s1 ∼j−1 s2.
Considering again the possible cases in the above definition, the first two follow
as for j = 0 and the third cannot apply since j > 0. For the fourth case, since
j > 0, we know there exists a (j−1)-step finite-horizon bisimulation Rj−1. Let
us further assume an (arbitrary) function rep : S/Rj−1 → S, which selects a
unique representative from each equivalence class of Rj−1. We have:

Prs1(Φ1 U≤j Φ2)
=

∑
s′∈S P(s1, s′)Prs′(Φ1 U≤j−1 Φ2) by definition

=
∑

C∈S/∼j−1

∑
s′∈C P(s1, s′)Prs′(Φ1 U≤j−1 Φ2) since ∼j−1 partitions S

=
∑

C∈S/∼j−1
Prrep(C)(Φ1 U≤j−1 Φ2)

∑
s′∈C P(s1, s′) by induction on j

=
∑

C∈S/∼j−1
Prrep(C)(Φ1 U≤j−1 Φ2)P(s1, C)

=
∑

C∈S/∼j−1
Prrep(C)(Φ1 U≤j−1 Φ2)P(s2, C) since s1 ∼j s2

=
∑

C∈S/∼j−1
Prrep(C)(Φ1 U≤j−1 Φ2)

∑
s′∈C P(s2, s′)

=
∑

C∈S/∼j−1

∑
s′∈C P(s2, s′)Prs′(Φ1 U≤j−1 Φ2) since s′ ∼j−1 rep(C)

=
∑

s′∈S P(s2, s′)Prs′(Φ1 U≤j−1 Φ2) since ∼j−1 partitions S
= Prs2(Φ1 U≤j Φ2) by definition

which proves (1), as required, and concludes the proof. ��

Finite-Horizon Bisimulation Minimisation for Probabilistic Systems 153

Fig. 1. (a) Example DTMC; (b–c) Finite-horizon quotient DTMCs for k = 0, 1.

In similar fashion to the standard (non-finite-horizon) case, we are typically
interested in the coarsest possible k-step finite-horizon bisimulation relation for
a given DTMC (labelled with atomic propositions) and time horizon k, which
we denote by ∼k. We can also define this as the union of all possible k-step
finite-horizon bisimulation relations. Furthermore, for ∼k (or any other finite-
horizon bisimulation relation), we can define a corresponding quotient DTMC,
whose states are formed from the equivalence classes of ∼k, and whose k-step
behaviour is identical to the original DTMC D.

This is similar, but not identical, to the process of building the quotient
Markov chain corresponding to a full minimisation (see Definition 5). We must
take care since, unlike for full bisimulation, given a state B ∈ S/ ∼k of the
quotient model, the probabilities P(s,B′) of moving to other equivalence classes
B′ ∈ S/∼k can be different for each state s ∈ B (according to the definition
of ∼k, probabilities are the same to go states with the same (k−1)-step, not
k-step, behaviour). However, when they do differ, it suffices to pick an arbitrary
representative from B. We formalise the quotient DTMC construction below,
and then present some examples.

Definition 9 (Finite-Horizon Quotient DTMC). If D = (S,Sinit ,P,
AP,L) is a DTMC and ∼k is a finite-horizon bisimulation on D, then a quotient
DTMC can be constructed as D/∼k = (S ′,S ′

init ,P
′,AP,L′) where:

– S ′ = S/∼k = {[s]∼k
| s ∈ S}

– S ′
init = {[s]∼k

| s ∈ Sinit}
– P′(B,B′) = P(rep(B), B′) for any B,B′ ∈ S ′

– L′(B) = L(rep(B)) for any B ∈ S ′,

where rep : S/∼k → S is an arbitrary function that selects a unique representa-
tive from each equivalence class of ∼k, i.e., B = [rep(B)]∼k

for all B ∈ S ′.

Example 1. Figure 1 illustrates finite-horizon bisimulation on an example
DTMC, shown in part (a). Figure 1(b) and (c) show quotient DTMCs for 0-step
and 1-step finite-horizon bisimulation minimisation, respectively, where quotient
state names indicate their corresponding equivalence class (e.g., B23 corresponds
to DTMC states s2 and s3). For 2-step minimisation (not shown), blocks B23

and B01 are both split in two, and only the states s4 and s5 remain bisimilar.

154 N. Kamaleson et al.

From the above, we see that s2 ∼1 s3, but s2 �∼2 s3. Consider the PCTL
formula Φ = P��p[true U≤k a], which has depth d(Φ) = k. Satisfaction of Φ is
equivalent in states s2 and s3 for k = 1, but not for k = 2. To give another
example, for Φ′ = P>0[P>0.5[true U≤2 a] U≤1 a], which has d(Φ′) = 1 + 2 − 1 = 2,
we have s3 |= Φ′, but s2 �|= Φ′.

In constructing the 1-step quotient model (Fig. 1(c)), we used s1 as a repre-
sentative of equivalence class B01 = {s0, s1}, which is why there is a transition
to B23. We could equally have used s0, which would yield a different quotient
DTMC, but which still preserves 1-step behaviour.

4 Finite-Horizon Bisimulation Minimisation

Bisimulation relations have a variety of uses, but our focus here is on using
them to minimise a probabilistic model prior to verification, in order to
improve the efficiency and scalability of the analysis. More precisely, we perform
finite-horizon bisimulation minimisation, determining the coarsest possible
finite-horizon bisimulation relation ∼k, for a given k, and then constructing
the corresponding quotient Markov chain. Theorem1 tells us that it is then safe
to perform verification on the smaller quotient model instead.

We begin, in this section, by presenting a classical partition-refinement based
minimisation algorithm, which is based on an iterative splitting of an initially
coarse partition of the state space until the required probabilistic bisimulation
has been identified. In the next section, we will propose on-the-fly approaches
which offer further gains in efficiency and scalability.

4.1 A Partition-Refinement Based Minimisation Algorithm

The standard approach to partition refinement is to use splitters [9,19], individ-
ual blocks in the current partition which show that one or more other blocks
contain states that should be split into distinct sub-blocks. An alternative app-
roach is to use a so-called signature-based method [8]. The basic structure of the
algorithm remains the same, however the approach to splitting differs: rather
than using splitters, a signature corresponding to the current partition is com-
puted at each iteration for each state s. This signature comprises the probability
of moving from s in one step to each block in the partition. In the next iteration,
all states with different signatures are placed in different blocks.

Because each iteration of the signature-based algorithm considers the one-
step behaviour of every state in the model, it is relatively straightforward to
adapt to finite-horizon bisimulation minimisation. Algorithm1 shows the finite-
horizon minimisation algorithm MinimiseFiniteHorizon. It takes a DTMC D
and the time horizon k as input. The partition Π is first initialised to group
states based on the different combinations of atomic propositions, i.e., states
with identical labellings are placed in one block.1 The partition is then repeat-
edly split, each time by computing the signatures for each state and splitting
1 In the algorithm, we store the signatures with the partition, so Π is a list of pairs

of blocks (state-sets) and signatures (distributions).

Finite-Horizon Bisimulation Minimisation for Probabilistic Systems 155

accordingly. The loop terminates either when k iterations have been completed
or no further splitting is possible. Finally, the quotient model is constructed, as
described in the previous section.

Correctness. The correctness of MinimiseFiniteHorizon, i.e. that it gener-
ates the coarsest k-step finite-horizon bisimulation, can be argued with direct
reference to Definition 6. For k = 0, only the initialisation step at the start of the
algorithm is needed. For k > 0 the ith iteration of the loop produces a partition
Π which groups precisely the equivalence classes of ∼i, which are constructed
from those of ∼i−1, as in Definition 6. It is also clear that we group all equivalent
states at each step, yielding the coarsest relation. If the algorithm terminates
early, at step j, then ∼i=∼k for all j ≤ i ≤ k.

Algorithm 1. MinimiseFiniteHorizon

Data: D = (S, Sinit ,P, AP, L), k

Π, Π ′ := ∅ ; // Initialise partition

for A ⊆ AP do
BA := {s ∈ S | L(s) = A}
if BA �= ∅ then Π := Π ∪ {({BA}, 〈〉)};

i := 1 ; // Splitting loop

while i ≤ k ∧ Π �= Π ′ do
Π ′ := Π ; Π := ∅
for s ∈ S do

Sig := 〈〉 ; // Compute signature

for B ∈ Π ′ do Sig(B) := 0;
for s → s′ do

Bs′ := block of Π ′ containing s′

Sig(Bs′) := Sig(Bs′) + P(s, s′)

Bs := block of Π ′ containing s
if ∃(B′, Sig) ∈ Π ∧ B′ ⊆ Bs then

B′ := B′ ∪ {s} ; // New blocks

else
Π := Π ∪ {({s}, Sig)}

i := i + 1

S ′ := ∅ ; S ′
init := ∅ ; // Build quotient

for (B, Sig) ∈ Π do
S ′ := S ′ ∪ {B}
if B ∩ Sinit �= ∅ then S ′

init := S ′
init ∪ {B};

P′(B, ·) := Sig
L′(B) := L(s) for any s ∈ B

return D′ = (S ′, S ′
init ,P

′, AP, L′)

156 N. Kamaleson et al.

5 On-the-Fly Finite-Horizon Minimisation

A key limitation of the partition-refinement approach presented in the previous
section is that it takes as input the full DTMC to be minimised, the construction
of which can be expensive in terms of both time and space. This can remove any
potential gains in terms of scalability that minimisation can provide.

To resolve this, we now propose methods to compute a finite-horizon bisimu-
lation minimisation in an on-the-fly fashion, where the minimised model is con-
structed directly from a high-level modelling language description of the original
model, bypassing construction of the full, un-reduced DTMC. In our case, the
probabilistic models are described using the modelling language of the PRISM
model checker [15], which is based on guarded commands.

Our approach works through a backwards traversal of the model, which allows
us to perform bisimulation minimisation on the fly. For simplicity, we focus on
preserving the subclass of PCTL properties comprising a single P operator, more
precisely, those of the form P��p[b1 U≤k b2] for atomic propositions b1 and b2. This
is the kind of property most commonly found in practice.

5.1 The On-the-Fly Minimisation Algorithm

The basic approach to performing finite-horizon minimisation on the fly is shown
as FiniteHorizonOnTheFly, in Algorithm2. This takes model, which is a
description of the DTMC, B1 and B2, the sets of states satisfying b1 and b2,
respectively, in the property P��p[b1 U≤k b2], and the time horizon k. The algo-
rithm does not make any assumptions about how sets of states are represented
or manipulated. Below, we will discuss two separate instantiations of it.

The algorithm is based on a backwards traversal of the model. It uses a
separate algorithm FindMergedPredecessors(model , target , restrict), which
queries the DTMC (model) to find all (immediate) predecessors of states in
target that are also in restrict (the restrict set will be used to restrict atten-
tion to the set B1 corresponding to the left-hand side b1 of the until formula).
The algorithm also groups the predecessor states in blocks according to the
probabilities with which they transition to target and returns these too. As
above, each instantiation of Algorithm2 will use a separate implementation of
the FindMergedPredecessors algorithm.

The main loop of the algorithm iterates backwards through the model: after
the ith iteration, it has found all states that can reach the target set B2 within
i steps with positive probability. The new predecessors for each iteration are
stored in a set of blocks P . A separate set P ′ is used to store predecessors of
blocks in P , which will then be considered in the next iteration.

More precisely, P (and P ′) store, like in Algorithm 1, a list of pairs (B,D)
where B is a block (a set of states) and D is a (partial) probability distribu-
tion storing probabilities of outgoing transitions (from B, to other blocks). The
set Π, which is used to construct the partition representing the finite-horizon
bisimulation relation, is also stored as a list of pairs.

Finite-Horizon Bisimulation Minimisation for Probabilistic Systems 157

Algorithm 2. FiniteHorizonOnTheFly

Data: model, B1, B2, k

P := {FindMergedPredecessors(model, B2, B1)} ; P ′ := ∅
Π := {(B2, 〈〉)}
i := 1
while P �= ∅ ∧ i ≤ k do

(B, D) := pop(P) ; // block B, (sub)distribution D
for (B′, D′) ∈ Π ∧ B �= ∅ do

if B′ ∩ B �= ∅ then
replace (B′, D′) in Π with (B′ \ B), D′) and (B′ ∩ B, D′ ∪ D)
B := B \ B′

refine all (B′′, D′′) ∈ Π and (B, D) with respect to the split of B′

end

end

if B �= ∅ then
Π := Π ∪ {(B, D)}
P ′ := P ′ ∪ {FindMergedPredecessors(model, B, B1)}

end

if (P = ∅ ∧ P ′ �= ∅) then
P := P ′ ; P ′ := ∅
i := i + 1

end

end

return FiniteHorizonQuotient(Π)

Algorithm 3. FiniteHorizonQuotient

Data: Π

S ′ := {Bsink}; L′(Bsink) = ∅; S ′
init := ∅; P′(Bsink , ·) := 〈Bsink → 1〉;

for (B, D) ∈ Π do
S ′ := S ′ ∪ {B}
if B ∩ Sinit �= ∅ then S ′

init := S ′
init ∪ {B};

psink = 1 −∑(B′,D′)∈Π D(B′)
P′(B, ·) := D ∪ 〈Bsink → psink 〉
L′(B) := L(s) for any s ∈ B

end
return D′ = (S ′, S ′

init ,P
′, AP, L′)

Algorithm 2 begins by finding all immediate predecessors of states in B2

that are also in B1 and putting them in P . In each iteration, it takes each
block-distribution pair (B,D) from P one by one: it will add this to the current
partition Π. But, before doing so, it checks whether B overlaps with any existing
blocks B′ in Π. If so, B′ is split in two, and the overlap is removed from B. At
this point, the partition Π is refined to take account of the splitting of block B′.
We repeatedly recompute the probabilities associated with each block in Π and,
if these are then different for states within that block, it is also split.

158 N. Kamaleson et al.

Each iteration of the main loop finishes when all pairs (B,D) from P have
been dealt with. If i < k, then newly found predecessors P ′ are copied to P and
the process is repeated. If i = k, then the time horizon k has been reached and
the finite-horizon bisimulation has been computed.

Finally, the quotient model is built. The basic construction is as in
Algorithm 1 but, since on-the-fly construction only partially explores the model,
we need to add an extra sink state to complete the DTMC.

Computing Predecessors. One of the main challenges in implementing the
on-the-fly algorithm is determining the predecessors of a given set of states from
the high-level modelling language description. The PRISM language, used here,
is based on guarded commands, for example:

c > 0 → c/K : (c′ = c − 1) + 1 − c/K : (c′ = c + 1);

The meaning is that, when a state satisfies the guard (c > 0), the updates (decre-
menting or incrementing variable c) can be executed, each with an associated
probability (c/K or 1 − c/K). We assume here a single PRISM module of com-
mands (multiple modules can be syntactically expanded into a single one [23]).

In the following sections, we describe two approaches to finding predecessors:
one symbolic, which represents blocks (sets of states) as predicates and uses an
SMT (satisfiability modulo theories) [5] based implementation; and one explicit-
state, which explicitly enumerates the states in each block.

5.2 Symbolic (SMT-Based) Minimisation

Our first approach represents state sets (i.e., blocks of the bisimulation partition)
symbolically, as predicates over PRISM model variables. If target is a predicate
representing a set of states, their predecessors, reached by applying some guarded
command update update, can be found using the weakest precondition, denoted
wp(update, target). More precisely, if the guard of the command is guard, and
bounds represents the lower and upper bounds of all model variables, the follow-
ing expression captures the set of states, if any, that are predecessors:

bounds ∧ guard ∧ wp(update, target)

We determine, for each guarded command update in the model description,
whether states can reach target via that update by checking the satisfiability of
the expression above using an SMT solver. FindMergedPredecessors (see
Algorithm 4) is used to determine predecessors in this way. It also restricts atten-
tion to states satisfying a further expression restrict .

The probability attached to an update in a guarded command is in general a
state-dependent expression prob (see the earlier example command) so this must
be analysed when FindMergedPredecessors groups states according to the
probability with which they transition to target . If the SMT query in the algo-
rithm is satisfiable, a valid probability is also obtained from the corresponding
valuation (p′ in Algorithm 4). The conjunction of the expression predecessor and

Finite-Horizon Bisimulation Minimisation for Probabilistic Systems 159

Algorithm 4. FindMergedPredecessors (SMT-based)
Data: model, target , restrict

P := ∅
bounds := variable bounds from model

foreach (guard, updates) in model do
foreach (prob, update) in updates do

predecessor := restrict ∧ bounds ∧ guard ∧ wp(update, target)
query := predecessor ∧ (p = prob)
while query is satisfiable do

p′ := value of p in query
if (B, 〈target → p′〉) ∈ P for some B then

replace (B, 〈target → p′〉) in P with
(B ∨ predecessor , 〈target → p′〉)

else
P := P ∪ {(predecessor , 〈target → p′〉)}

end
query := query ∧ (prob �= p′)

end

end

end

return P

p = prob denotes the set of predecessors with the same probability. To obtain
all such probabilities, the algorithm adds a blocking expression prob �= p′ to the
query and repeats the process.

SMT-based methods for probabilistic bisimulation minimisation have been
developed previously [6]. One key difference here is that our approach handles
transition probabilities expressed as state-dependent expressions, rather than
fixed constants, which are needed for some of the models we later evaluate.

5.3 Explicit-State Minimisation

As an alternative to the symbolic approach using SMT, we developed an explicit-
state implementation of finite-horizon minimisation in which the blocks of equiv-
alent states are represented by explicitly listing the states that comprise them.
As in the previous algorithm, the blocks are refined at each time step such
that states residing in the same block have equal transition probabilities to the
required blocks. To improve performance and store states compactly, we hash
them based on the valuation of variables that define them. This is done in such
a way that the hash values are bi-directional (one-to-one).

The algorithm explicitly computes the predecessor state for each update and
each state in the set target , the transition probability is then computed for each
predecessor state and these are collected in order to group states into sets. The
set restrict is not stored explicitly, but rather as a symbolic expression which is
then evaluated against each state’s variable values to compute the intersection.

160 N. Kamaleson et al.

6 Experimental Results

We have implemented the bisimulation minimisation techniques presented in this
paper as an extension of the PRISM model checker [15], and applied them to
a range of benchmark models. For both the partition-refinement based minimi-
sation of Sect. 4, and the on-the-fly methods in Sect. 5, we build on PRISM’s
“explicit” model checking engine. For the SMT-based variant, we use the Z3
solver [4], through the Z3 Java API. All our experiments were run on an Intel
Core i7 2.8 GHz machine, using 2 GB of RAM.

Our investigation is in two parts. First, we apply the partition-refinement
algorithm to several DTMCs from the PRISM benchmark suite [17] to get an
idea of the size of reductions that can be obtained on some standard models. We
use: Crowds (an anonymity protocol), EGL (a contract signing protocol) and
NAND (NAND multiplexing). Details of all models, parameters and properties
used can be found at [24]. A common feature of these models is that they have a
single initial state, from which properties are verified. Since on-the-fly approaches
explore backwards from a target set, we would usually need to consider time
horizons k high enough such that the whole model was explored.

So, to explore in more depth the benefits of the on-the-fly algorithms, we
consider another common class of models in probabilistic verification: those in
which we need to exhaustively check whether a property is true over a large set of
possible configurations. We use Approximate majority [2], a population protocol
for computing a majority value amongst a set of K agents, and two simple
models of genetic algorithms [21] in which a population of K agents evolves over
time, competing to exist according to a fitness value in the range 0, . . . , N−1.
In the first variant, tournament, the agent with the highest value wins; in the
second, modulo, the sum of the two scores is used modulo N . Again, details of
all models, parameters and properties used can be found at [24].

6.1 The Partition-Refinement Algorithm

Figure 2 shows results for the partition-refinement algorithm. The top row of
plots shows the number of blocks in the partition built by finite-horizon bisimula-
tion minimisation for different values of k on the first three benchmark examples.
For the largest values of k shown, we have generated the partition correspond-
ing to the full (non-finite-horizon) bisimulation. In most cases, the growth in
the number of blocks is close to linear in k, although it is rather less regular for
the NAND example. In all cases, it seems that the growth is slow enough that
verifying finite-horizon properties for a range of values of k can be done on a
considerably smaller model than the full bisimulation.

The bottom row of plots shows, for the same examples, the time required to
perform bisimulation minimisation and then verify a k-step finite-horizon prop-
erty (details at [24]). The black lines show the time for finite-horizon minimisa-
tion, the grey lines for full minimisation. The latter are relatively flat, indicating
that the time for verification (which is linear in k) is very small compared to
the time needed for minimisation. However, we see significant gains in the total
time required for finite-horizon minimisation compared to full minimisation.

Finite-Horizon Bisimulation Minimisation for Probabilistic Systems 161

Fig. 2. Results for partition-refinement. Top: quotient size for varying time horizon k.
Bottom: time for finite-horizon (black) and full (grey) minimisation/verification.

However, despite these gains, the times to minimise and verify the quotient
model are still larger than to simply build and verify the full model. This is
primarily because the partition refinement algorithm requires construction of the
complete model first, the time for which eclipses any gains from minimisation.
This was the motivation for the on-the-fly algorithms, which we evaluate next.

6.2 On-the-Fly Algorithms

Table 1 shows model sizes and timings for the on-the-fly algorithms on a range
of models and scenarios. The left four columns show the model (and which on-
the-fly algorithm was used), any parameters required (N or K) and the time
horizon k. Next, under the headings ‘Full Red.’ and ‘Finite Horiz.’, we show
the reductions in model size obtained using full (non-finite-horizon) and finite-
horizon minimisation (for several k), respectively. In the first case, ‘States’ and
‘Blocks’ show the size of the full DTMC and the fully reduced quotient model,
respectively. For the second case, ‘Blocks’ is the size of the finite-horizon quotient
model and, to give a fair comparison, ‘States’ is the number of states in the full
DTMC that can reach the target of the property within k steps (i.e., the number
of states across all blocks). The rightmost three columns show the time required
to build the model in three scenarios: ‘Finite Horiz.’ uses the on-the-fly approach
over k steps; ‘Full Red.’ builds the full (non-finite-horizon) quotient by repeating
the on-the-fly algorithm until all states have been found; and ‘PRISM’ builds
the full model using its most efficient (symbolic) construction engine.

First, we note that finite-horizon minimisation yields useful reductions in
model size in all cases, both with respect to the full model and to normal (non-
finite horizon) minimisation. Bisimulation reduces models by a factor of roughly
2 and 5, for the Approximate majority and Modulus examples, respectively. For
Tournament, a very large reduction is obtained since, for the property checked,
the model ends up being abstracted to only distinguish two fitness values. Finite-
horizon minimisation gives models that are smaller again, by a factor of between

162 N. Kamaleson et al.

Table 1. Experimental results for on-the-fly bisimulation minimisation.

k
Full Red. Finite Horiz.

N K States Blocks States Blocks PRISM Full Red. Finite Horiz.

n/a

100
20

20300 10201
242 122

11.0 14.2
0.2

40 882 442 0.3
60 1922 962 0.4

150
100

45450 22801
5202 2602

46.1 83.1
1.2

150 11552 5777 5.1
200 20402 10202 15.6

200
250

80600 40401
31752 15877

293.5
40.8

300 45602 22802 93.9
350 61952 30977 180.8

250
375

125750 63001
71064 35533

773.5
247.8

400 80802 40402 323.2
425 91164 45583 416.6

8

22
8

1184040 22
6435 10

19.2 5.3
0.3

9 11440 11 0.4
10 19448 12 0.4

23
8

1560780 23
6435 10

31.1 7.0
0.3

9 11440 11 0.4
10 19448 12 0.4

10

21
8

10015005 21
24310 10

59.0 43.6
0.5

9 48620 11 0.6
10 92378 12 0.7

22
8

14307150 22
24310 10

61.3 51.3
0.5

9 48620 11 0.6
10 92378 12 0.7

4

9
3

165 9
20 5

0.03 155
4.5

4 35 6 11.1
5 56 7 23.5

10
3

220 10
20 5

0.03 215
9.3

4 35 6 15.1
5 56 7 31.1

5

9
3

330 9
35 5

0.04 723.4
22.1

4 70 6 70.7
5 126 7 180.9

10
3

495 10
35 5

0.04 1998.7
48.8

4 70 6 82.0
5 126 7 233.7

7

19
8

177100 29565
22179 3638

0.4 475.3
6.8

9 39404 6491 21.6
10 66002 10914 64.3

20
8

230230 38431
22179 3637

0.5 778.6
6.9

9 39404 6488 20.3
10 66068 10914 65.9

9

11
6

75582 12707
24822 3435

0.3 79.9
7.7

7 51756 8084 32.3
8 70448 11745 58.3

12
6

125970 21145
24906 3450

0.3 253.5
7.8

7 54440 8482 37.4
8 88642 14207 102.4

2 and 10 on these examples, even for relatively large values of k on the Approxi-
mate majority models. Comparing columns 7 and 8 in Table 1 shows that much
of the reduction is indeed due to merging of bisimilar states, not just to a k-step
truncation of the state space from the backwards traversal.

Regarding performance and scalability, we first discuss results for the SMT-
based implementation. We were only able to apply this to the Tournament
example, where a very large reduction in state space is achieved. On a posi-
tive note, the SMT-based approach successfully performs minimisation here and

Finite-Horizon Bisimulation Minimisation for Probabilistic Systems 163

gives a symbolic (Boolean expression) representation for each block. However,
the process is slow, limiting applicability to DTMCs that can already be verified
without minimisation. Our experiments showed that the slow performance was
largely caused by testing for overlaps between partition blocks resulting in a very
large number of calls to the SMT solver.

The explicit-state on-the-fly implementation performed much better and
Table 1 shows results for all three models. In particular, for the Tournament
example, finite-horizon minimisation and verification is much faster than ver-
ifying the full model using the fastest engine in PRISM. This is because we
can bypass construction of the full models, which have up to 14 million states
for this example. For the Modulus example, the model reductions obtained are
much smaller and, as a result, PRISM is able to build and verify the model
faster. However, for the Approximate Majority example, the minimisation app-
roach can be applied to larger models than can be handled by PRISM. For this
example, although the state spaces of the full model are manageable, the models
prove poorly suited to PRISM’s model construction implementation (which is
based on binary decision diagram data structures).

7 Conclusions

We have presented model reduction techniques for verifying finite-horizon
properties on discrete-time Markov chains. We formalised the notion of k-step
finite-horizon bisimulation mininisation and clarified the subset of PCTL that it
preserves. We have given both a partition-refinement algorithm and an on-the-
fly approach, implemented in both a symbolic (SMT-based) and explicit-state
manner as an extension of PRISM. Experimental results demonstrated that sig-
nificant model reductions can be obtained in this manner, resulting in improve-
ments in both execution time and scalability with respect to the existing efficient
implementations in PRISM.

Future work in this area will involve extending the techniques to other classes
of probabilistic models, and adapting the on-the-fly approaches to preserve the
full time-bounded fragment of PCTL, including nested formulae.

Acknowledgements. This work has been supported by the EU-FP7-funded project
HIERATIC.

References

1. Aljazzar, H., Fischer, M., Grunske, L., Kuntz, M., Leitner, F., Leue, S.: Safety
analysis of an airbag system using probabilistic FMEA and probabilistic coun-
terexamples. In: Proceedings of the QEST 2009 (2009)

2. Angluin, D., Aspnes, J., Eisenstat, D.: A simple population protocol for fast robust
approximate majority. Distrib. Comput. 21(2), 87–102 (2008)

3. Aziz, A., Singhal, V., Balarin, F., Brayton, R.K., Sangiovanni-Vincentelli, A.L.: It
usually works: the temporal logic of stochastic systems. In: Wolper, P. (ed.) CAV
1995. LNCS, vol. 939, pp. 155–165. Springer, Heidelberg (1995)

164 N. Kamaleson et al.

4. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

5. De Moura, L., Bjørner, N.: Satisfiability modulo theories: introduction and appli-
cations. Commun. ACM 54(9), 69–77 (2011)

6. Dehnert, C., Katoen, J.-P., Parker, D.: SMT-based bisimulation minimisation of
Markov models. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013.
LNCS, vol. 7737, pp. 28–47. Springer, Heidelberg (2013)

7. Della Penna, G., Intrigila, B., Melatti, I., Tronci, E., Zilli, M.V.: Finite horizon
analysis of Markov chains with the murφ verifier. STTT 8(4–5), 397–409 (2006)

8. Derisavi, S.: Signature-based symbolic algorithm for optimal Markov chain lump-
ing. In: Proceedings of the QEST 2007, pp. 141–150. IEEE Computer Society
(2007)

9. Derisavi, S., Hermanns, H., Sanders, W.H.: Optimal state-space lumping in Markov
chains. Inf. Process. Lett. 87(6), 309–315 (2003)

10. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. FAC
6(5), 512–535 (1994)

11. Heath, J., Kwiatkowska, M., Norman, G., Parker, D., Tymchyshyn, O.: Proba-
bilistic model checking of complex biological pathways. In: Priami, C. (ed.) CMSB
2006. LNCS (LNBI), vol. 4210, pp. 32–47. Springer, Heidelberg (2006)

12. Katoen, J.-P., Kemna, T., Zapreev, I., Jansen, D.N.: Bisimulation minimisation
mostly speeds up probabilistic model checking. In: Grumberg, O., Huth, M. (eds.)
TACAS 2007. LNCS, vol. 4424, pp. 87–101. Springer, Heidelberg (2007)

13. Katoen, J.P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins
and outs of the probabilistic model checker MRMC. Perform. Eval. 68(2), 90–104
(2011)

14. Kemeny, J., Snell, J., Knapp, A.: Denumerable Markov Chains, 2nd edn. Springer,
Heidelberg (1976)

15. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011)

16. Kwiatkowska, M., Norman, G., Sproston, J., Wang, F.: Symbolic model checking
for probabilistic timed automata. Inf. Comput. 205(7), 1027–1077 (2007)

17. Kwiatkowska, M., Norman, G., Parker, D.: The PRISM benchmark suite. In: Pro-
ceedings of the QEST 2012, pp. 203–204 (2012)

18. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput.
94(1), 1–28 (1991)

19. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput.
16(6), 973–989 (1987)

20. Valmari, A., Franceschinis, G.: Simple O(m logn) time Markov chain lumping.
In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 38–52.
Springer, Heidelberg (2010)

21. Vose, M.: The Simple Genetic Algorithm: Foundations and Theory. MIT Press,
Cambridge (1999)

22. Wimmer, R., Becker, B.: Correctness issues of symbolic bisimulation computation-
for Markov chains. In: MüllerClostermann, B., Echtle, K., Rathgeb, E.P. (eds.)
MMB & DFT 2010. LNCS, vol. 5987, pp. 287–301. Springer, Heidelberg (2010)

23. http://www.prismmodelchecker.org/doc/semantics.pdf
24. http://www.prismmodelchecker.org/files/spin16fh

http://www.prismmodelchecker.org/doc/semantics.pdf
http://www.prismmodelchecker.org/files/spin16fh

Schedulability Analysis of Distributed
Real-Time Sensor Network Applications Using

Actor-Based Model Checking

Ehsan Khamespanah1,2(B), Kirill Mechitov3, Marjan Sirjani2, and Gul Agha3

1 School of ECE, University of Tehran, Tehran, Iran
e.khamespanah@ut.ac.ir

2 School of Computer Science and CRESS,Reykjavik University, Reykjavik, Iceland
3 OSL, University of Illinois at Urbana-Champaign, Champaign, USA

Abstract. Programmers often use informal worst-case analysis and
debugging to ensure schedules that satisfy real-time requirements. Not
only can this process be tedious and error-prone, it is inherently con-
servative and thus likely to lead to an inefficient use of resources. We
propose to use model checking to find a schedule which optimizes the use
of resources while satisfying real-time requirements. Specifically, we rep-
resent a Wireless sensor and actuator network (WSAN) as a collection
of actors whose behavior is specified using a C-based actor language
extended with operators for real-time scheduling and delay representa-
tion. We show how the abstraction and compositionality properties of the
actor model may be used to incrementally build a model of a WSAN’s
behavior from node-level and network models. We demonstrate the app-
roach with a case study of a distributed real-time data acquisition system
for high frequency sensing using Timed Rebeca modeling language and
the Afra model checking tool.

Keywords: Sensor network · Schedulability analysis · Actor · Timed
Rebeca · Model checking

1 Introduction

Wireless sensor and actuator networks (WSANs) can provide low-cost contin-
uous monitoring. However, building WSAN applications is particularly chal-
lenging. Because of the complexity of concurrent and distributed programming,
networking, real-time requirements, and power constraints, it can be hard to
find a configuration that satisfies these constraints while optimizing resource
use. A common approach to address this problem is to perform an informal
analysis based on conservative worst-case assumptions and empirical measure-
ments. This can lead to schedules that do not utilize resources efficiently. For
example, a workload consisting of two periodic tasks would be guaranteed to be
safe only if the sum of the two worst-case execution times (WCET) were less

c© Springer International Publishing Switzerland 2016
D. Bošnački and A. Wijs (Eds.): SPIN 2016, LNCS 9641, pp. 165–181, 2016.
DOI: 10.1007/978-3-319-32582-8 11

166 E. Khamespanah et al.

than the shorter period, whereas it is possible in practice to have many safe
schedules violating this restriction.

A second approach is trial and error. For example, in [18], an empirical
test-and-measure approach based on binary search is used to find configura-
tion parameters: worst-case task runtimes, timeslot length of the communication
protocols, etc. Trial and error is a laborious process, which nevertheless fails to
provide any safety guarantees for the resulting configuration.

A third possibility is to extend scheduling techniques that have been devel-
oped for real-time systems [19] so that they can be used in WSAN environments.
Unfortunately, this turns out to be difficult in practice. Many WSAN platforms
rely on highly efficient event-driven operating systems such as TinyOS [12].
Unlike a real-time operating system (RTOS), event-driven operating systems
generally do not provide real-time scheduling guarantees, priority-based schedul-
ing, or resource reservation functionality. Without such support, many schedu-
lability analysis techniques cannot be effectively employed. For example, in the
absence of task preemption and priority-based scheduling, unnecessarily conser-
vative assumptions must be used to guarantee correctness in the general case.

We propose an actor-based modeling approach that allows WSAN application
programmers to assess the performance and functional behavior of their code
throughout the design and implementation phases. The developed models are
analyzed using model checking to determine the parameter values resulting in
the highest system efficiency. Note that our use of model checking is similar to
the work of Jorgerden et al. who use it to maximize the life-time of batteries in
embedded systems [14].

We represent a WSAN application as a collection of actors [2]. The model
can be incrementally extended and refined during the application design process,
adding new interactions and scheduling constraints. We use Timed Rebeca [25]
as the modeling language and its model checking tool Afra [1,15] for analysis of
WSAN applications. Timed Rebeca is a high-level actor-based language capable
of representing functionality and timing behavior at an abstract level. Afra sup-
ports modeling and analysis of both of Rebeca and Timed Rebeca models; we
use the timed model checking engine. Afra uses the concept of Floating Time
Transition System (FTTS) [15] for the analysis of Timed Rebeca models. FTTS
significantly reduces the state space that needs to be searched. The idea is to
focus on event-based properties while relaxing the constraint requiring the gen-
eration of states where all the actors are synchronized. As the examples in [16]
suggest, this approach can reduce the size of the state space by 50 to 90 %. Using
FTTS fits with the computation model of WSAN applications and the properties
that we are interested in.

We present a case study involving real-time continuous data acquisition for
structural health monitoring and control (SHMC) of civil infrastructure [18].
This system has been implemented on the Imote2 wireless sensor platform,
and used in several long-term development of several highway and railroad
bridges [29]. SHMC application development has proven to be particularly chal-
lenging: it has the complexity of a large-scale distributed system with real-
time requirements, while having the resource limitations of low-power embedded

Schedulability Analysis Using Actor-Based Model Checking 167

WSAN platforms. Ensuring safe execution requires modeling the interactions
between the CPU, sensor and radio within each node, as well as interactions
among the nodes. Moreover, the application tasks are not isolated from other
aspects of the system: they execute alongside tasks belonging to other appli-
cations, middleware services, and operating system components. In the appli-
cation we consider, all periodic tasks (sample acquisition, data processing, and
radio packet transmission) are required to complete before the next iteration
starts. Our results show that a guaranteed-safe application configuration can be
found using the Afra model checking tool. Moreover, this configuration improves
resource utilization compared to the previous informal schedulability analysis
used in [18], supporting a higher sampling rate or a larger number of nodes
without violating schedulability constraints.

Contributions. This paper makes the following contributions:

– We show how a WSAN application may be modeled naturally as a system of
actors. The abstraction and modularity of the actor model makes the approach
scalable.

– We present a real-world case study that illustrates the effectiveness of our
approach for a real WSAN application.

– We show how model checking toolsets can be used for an efficient schedula-
bility analysis of WSAN application. Our case study shows we can compare
the effects of different communication protocols on system performance.

2 Preliminaries

A WSAN application is a distributed system with multiple sensor nodes, each
comprised of the independent concurrent entities: CPU, sensor, radio system, and
bridged together via a wireless communication device which uses a transmission
control protocol. Interactions between these components, both within a node and
across nodes, are concurrent and asynchronous. Moreover, WSAN applications
are sensitive to timing, with soft deadlines at each step of the process needed to
ensure correct and efficient operation.

Due to performance requirements, and latencies of operations on sensor
nodes, sensing, data processing, and communication processes must be coordi-
nated. In particular, once a sample is acquired from a sensor, its corresponding
radio transmission activities must be performed. Concurrently, data processing
tasks–such as compensating sensor data for the effects of temperature changes–
must be executed. Moreover, the timing of radio transmissions from different
nodes must be coordinated using a communication protocol.

2.1 The Actor Model of WSAN Applications

The Actor model is a well-established paradigm for modeling distributed and
asynchronous component-based systems. This model was originally introduced

168 E. Khamespanah et al.

by Hewitt as an agent-based language where goal directed agents did logical rea-
soning [11]. Subsequently, the actor model developed as a model of concurrent
computation for open distributed systems where actors are the concurrently exe-
cuting entities [2]. One way to think of actors is as a service oriented framework:
each actor provides services that may be requested via messages from other
actors. A message is buffered until the provider is ready to execute the message.
As a result of processing a message, an actor may send messages to other actors,
and to itself. Extensions of the actor model have been used for real-time systems,
in particular: RT-synchronizer [24], real-time Creol [6], and Timed Rebeca [25].

The characteristics of real-time variants of the actor model make them use-
ful for modeling WSAN applications: many concurrent processes and interdepen-
dent real-time deadlines. Observe that common tasks such as sample acquisition,
sample processing, and radio transmission are periodic and have well-known or
easily measurable periods. This makes analysis of worst-case execution times
feasible. However, because of the event-triggered nature of applications, initial
offsets between the tasks are variable.

Fig. 1. Modeling the behavior of a WSAN application in its real-world installation in
the actor model

We represent components of each WSAN node capable of independent action
as an actor. Specifically, as shown in Fig. 1, a sensor node is modeled using four
actors: Sensor (for the data acquisition) CPU (processor), RCD (a radio communi-
cation device) and Misc (carrying out miscellaneous tasks unrelated to sensing
or communication). Sensor collects data and send it to CPU for further data
processing. Meanwhile, CPU may respond to messages from Misc by carrying
out other computations. The processed data is sent to RCD to forward it to a
data collector node actor. We model the communication medium as an actor
(Ether) and the receiver node also by the actor RCD. Using the actor Ether
facilitates modularity: specifically, implementation of the Media Access Control
(MAC) level details of communication protocols is localized, making it is easy
to replace component sub-models for modeling different communication proto-
cols without significantly impacting the remainder of the model. During the
application design phase, different components, services, and protocols may be
considered. For example, TDMA [8] as a MAC-level communication protocol
may be replaced by B-MAC [23] with minimal changes.

Schedulability Analysis Using Actor-Based Model Checking 169

Although schedulability analysis of WSAN applications can be challenging
in the absence of a real-time scheduler, we reduce the problem of checking for
deadline violations to the problem of reachability from a relatively small set of
possible initial configurations. Model checking is the natural approach to this
class of problems, and it is the approach we explore in this paper.

2.2 Timed Rebeca and the Model Checking Toolset

A Timed Rebecca (TR) model consists of reactive classes and a main program
which instantiates actors (called rebecs in TR). As usual, actors have an encap-
sulated state, a local time, and their own thread of control. Each actor contains
a set of state variables, methods and a set of actors it knows. An actor may
only send messages to actor that it knows. Message passing is implemented by
method calls: calling a method of an actor (target) results in sending a message
to the target. Each actor has a message bag in which arriving messages may be
buffered; the maximum capacity of the bag is defined by the modeler.

Timing behavior in TR is represented using three timing primitives: delay,
after, and deadline. A delay term models the passing of time for an actor.
The primitives after and deadline can be used in conjunction with a message
send: after n indicates it takes n time units for the message to be delivered
to its receiver; deadline n indicates that if the message is not taken in n time
units, it should be purged from the receiver’s bag.

Afra 1.0 supports model checking of Rebeca models against LTL and CTL
properties. Afra 2.0 supports deadlock detection and schedulability analysis of
TR models; we use Afra 2.0 in this work. TR and Afra toolset have previously
been used to model and analyze realtime actor based models such as routing
algorithms and scheduling policies in NoC (Network on Chip) designs [26,27].

3 Schedulability Analysis of a Stand-Alone Node

We now illustrate our approach using a node-level TR model of a WSAN appli-
cation to check for possible deadline violations. Specifically, by changing the
timing parameters of our model, we find the maximum safe sampling rate in
the presence of other (miscellaneous) tasks in the node. Then, we show how the
specification of a node-level model can be naturally extended to network-wide
specifications.

Following the mapping in Fig. 1, the TR model for the four different reactive
classes in Fig. 2 through Fig. 4.

As shown in Fig. 2, the maximum capacity of the message bag of Sensor is set
to 10, the only actor Sensor knows about is of type CPU (line 4), and Sensor does
not have any state variables (line 5). The behavior of Sensor is to periodically
acquire data and send it to CPU. Sensor is implemented using a message server
sensorLoop (lines 13–17) which sends the acquired data to CPU (line 15). The
sent data must be serviced before the start time of the next period, specified
by the value of period as the parameter of deadline. Recall that there is a

170 E. Khamespanah et al.

1 env int samplingRate = 25; // Hz
2
3 reactiveclass Sensor(10) {

4 knownrebecs { CPU cpu; }

5 statevars { }

6
7 Sensor() {

8 self.sensorFirst();

9 }

10 msgsrv sensorFirst() {

11 self.sensorLoop() after(?(10, 20, 30)); // ms
12 }

13 msgsrv sensorLoop() {

14 int period = 1000 / samplingRate;

15 cpu.sensorEvent() deadline(period);

16 self.sensorLoop() after(period);

17 }

18 }

Fig. 2. Reactive class of the Sensor

1 env int sensorTaskDelay = 2; // ms
2 env int miscTaskDelay = 10; // ms
3 env int bufferSize = 3; // samples
4
5 reactiveclass CPU(10) {

6 knownrebecs { RCD senderDevice, receiverDevice; }

7 statevars { int collectedSamplesCounter; }

8
9 CPU() { collectedSamplesCounter = 0; }

10
11 msgsrv miscEvent() {

12 delay(miscTaskDelay);

13 }

14 msgsrv sensorEvent() {

15 delay(sensorTaskDelay);

16 collectedSamplesCounter += 1;

17 if (collectedSamplesCounter == bufferSize) {

18 senderDevice.send(receiverDevice, 1);

19 collectedSamplesCounter = 0;

20 }

21 }

22 }

Fig. 3. Reactive class of the CPU

Schedulability Analysis Using Actor-Based Model Checking 171

nondeterministic initial offset after which the data acquisition becomes a periodic
task. To represent this property, Sensor which sends a sendLoop message to
itself; the message is nondeterministically delivered after one of 10, 20, and 30
(line 11). After this random offset, a sensor’s periodic behavior is initiated (line
13). Note that in line 1, the sampling rate is defined as a constant. A similar
approach is used in the implementation of the Misc reactive class.

The behavior of CPU as the target of Sensor and Misc events is more compli-
cated (Fig. 3). Upon receiving a miscEvent, CPU waits for miscTaskDelay units
of time; this represents computation cycles consumed by miscellaneous tasks.
Similarly, after receiving the sensorEvent message from Sensor, CPU waits for
sensorTaskDelay units of time; this represents cycles required for intra-node
data processing. Data must be packed in a packet of a specified bufferSize. The
number of collected samples + 1 is computed (line 16) and when the threshold
is reached (line 17), CPU asks senderDevice, to send the collected data in one
packet (line 18). As this is a node-level model, communication between nodes
is omitted. The behavior of RCD is limited to waiting for some amount of time
(line 6); this represents the sending time of a packet.

1 env int OnePacketTransmissionTime = 7; // ms
2
3 reactiveclass RCD (2) {

4 RCD() { }

5 msgsrv send(RCD receiverDevice, byte numberOfPackets) {

6 delay(OnePacketTransmissionTime);

7 }

8 }

Fig. 4. The node-level implementation of RCD

Note that computation times (delay’s) depend on the low-level aspects of
the system and are application-independent; they can be measured before the
application design. For schedulability analysis, we set the deadline for messages
in a way that any scheduling violations are caught by the model checker.

4 Schedulability Analysis of Multi-node Model
with a Distributed Communication Protocol

Transitioning from a stand-alone node model a network model requires that
the wireless communication medium Ether to be specified in order to model
the communication protocol it supports. Then both the node-level and multi-
node models must be considered. Recall that nodes in the multi-node model
periodically send their data to an aggregator node (Fig. 1). The sending process
is controlled by a wireless network communication protocol. The reactive class
of Ether (Fig. 5) has three message servers: these are responsible for sending
the status of the medium, broadcasting data, and resetting the condition of the
medium after a successful transmission. Broadcasting data takes place by sending

172 E. Khamespanah et al.

data to a RCD which is addressed by the receiverDevice variable. So, we can
easily examine the status of the Ether using the value of receiverDevice (i.e.,
medium is free if receiverDevice is not null, line 13). This way, after sending
data, the value of receiverDevice and senderDevice must be set to null to
show that the transmission is completed (lines 28 and 29). Data broadcasting is
the main behavior of Ether (lines 15 to 26). Before the start of broadcasting, the
Ether status is checked (line 16) and data-collision error is raised in case of two
simultaneous broadcasts (line 24). With a successful data broadcast, Ether sends
an acknowledgment to itself (line 19) and the sender (line 20), and informs the
receiver of the number of packets sent to it (line 21). In addition to the functional
requirements of Ether, there may be non-functional requirements. For example,
the Imote2 radio offers a theoretical maximum transfer speed of 250 kbps. When
considering only the useful data payload (goodput), this is reduced to about
125 kbps.

We now extend RCD to support communication protocols. Figure 6 shows the
model of TDMA protocol implementation. TDMA protocol defines a cycle, over
which each node in the network has one or more chances to transmit a packet
or a series of packets. If a node has data available to transmit during its alloted
time slot, it may be sent immediately. Otherwise, packet sending is delayed until
its next transmission slot. The periodic behavior of TDMA slot is handled by
handleTDMASlot message server which sets and unsets inActivePeriod to show
that whether the node is in its alloted time slot. Upon entering into it’s slot, a
device checks for pending data to send (line 31) and schedules handleTDMASlot
message to leave the slot (line 30). On the other hand, when CPU sends a packet
(message) to a RCD, the message is added to the other pending packets which
are waiting for the next alloted time slot. tdmaSlotSize is the predefined size
of the tdma slots, and currentMessageWaitingTime is the waiting time of this
message in the bag of its receiver.

For the sake of simplicity, the details of RCD are omitted in Fig. 6. The com-
plete source code (which implements the B-MAC protocol) is available on the
Rebeca web page [1].

Once a complete model of the distributed application has been created, the
Afra model checking tool can verify whether the schedulability properties hold
in all reachable states of the system. If there are any deadline violations, a
counterexample will be produced, indicating the path—sequence of states from
an initial configuration—that results in the violation. This information can be
helpful with changing the system parameters, such as increasing the TDMA time
slot length, to prevent such situations.

5 Experimental Results and a Real-World Case Study

We examined the applicability of our approach using a WSAN model intended
for use in structural health monitoring and control (SHMC) applications1.
1 The TR code of this case study, some complimentary shell scripts, the model checking

toolset, and the details of the specifications of the state spaces in different configu-
rations are accessible from the Rebeca homepage [1].

Schedulability Analysis Using Actor-Based Model Checking 173

1 env int OnePacketTT = 7; // ms (transmission time)
2
3 reactiveclass Ether(5) {

4 statevars {

5 RCD senderDevice, receiverDevice;

6 }

7
8 Ether() {

9 senderDevice = null;

10 receiverDevice = null;

11 }

12 msgsrv getStatus() {

13 ((RCD)sender).receiveStatus(receiverDevice != null);

14 }

15 msgsrv broadcast(RCD receiver, int packetsNumber) {

16 if(senderDevice == null) {

17 senderDevice = (RCD)sender;

18 receiverDevice = receiver;

19 self.broadcastingIsCompleted() after(packetsNumber * OnePacketTT);

20 ((RCD)sender).receiveResult(true) after(packetsNumber * OnePacketTT);

21 receiver.receiveData(receiver, packetsNumber);

22 } else {

23 ((RCD)sender).receiveResult(false);

24 }

25 }

26 msgsrv broadcastingIsCompleted() {

27 senderDevice = null;

28 receiverDevice = null;

29 }

30 }

Fig. 5. Reactive class of the Ether

Wireless sensors deployed on civil structures for SHMC collect high-fidelity data
such as acceleration and strain. Structural health monitoring (SHM) involves
identifying and detecting potential damages to the structure by measuring
changes in strain and vibration response. SHM can also be employed with struc-
tural control, where it is fed into algorithms that control centralized or distributed
control elements such as active and semi-active dampers. The control algorithms
attempt to minimize vibration and maintain stability in response to excitations
from rare events such as earthquakes, or more mundane sources such as wind and
traffic. The system we examine has been implemented on the Imote2 wireless
sensor platform [18], which features a powerful embedded processor, sufficient
memory size, and a high-fidelity sensor suite required to collect data of sufficient
quality for SHMC purposes. These nodes run the TinyOS operating system,
supported by middleware services of the Illinois SHM Services Toolsuite [13].

This flexible data acquisition system can be configured to support real-time
collection of high-frequency, multi-channel sensor data from up to 30 wireless
smart sensors at frequencies up to 250 Hz. As it is designed for high-throughput

174 E. Khamespanah et al.

1 env int OnePacketTT = 7; ms (transmission time)

2
3 reactiveclass RCD (3) {

4
5 knownrebecs { Ether ether; }

6
7 statevars {

8 byte id;

9 int slotSize;

10 boolean inActivePeriod;

11
12 int sendingPacketsNumber;

13 RCD receiverDevice;

14 boolean busyWithSending;

15 }

16
17 RCD(byte myId) {

18 id = myId;

19 inActivePeriod = false;

20 busyWithSending = false;

21 sendingPacketsNumber = 0;

22 receiverDevice = null;

23
24 if (id != 0) { handleTDMASlot(); }

25 }

26 msgsrv handleTDMASlot() {

27 inActivePeriod = !inActivePeriod;

28 if(inActivePeriod) {

29 assertion(tmdaSlotSize - currentMessageWaitingTime > 0);

30 self.handleTDMASlot() after(tmdaSlotSize -

currentMessageWaitingTime);

31 self.checkPendingData();

32 } else {

33 self.handleTDMASlot() after((tmdaSlotSize * (numberOfNodes - 1))-

currentMessageWaitingTime);

34 }

35 }

36
37 msgsrv send(RCD receiver, int packetsNumber) {

38 assertion(receiverDevice == null);

39 sendingPacketsNumber = packetsNumber;

40 receiverDevice = receiver;

41 self.checkPendingData();

42 }

43 msgsrv checkPendingData() { ... }

44
45 msgsrv receiveResult(boolean result) { ... }

46 }

Fig. 6. Reactive class of the RCD

Schedulability Analysis Using Actor-Based Model Checking 175

sensing tasks that necessitate larger networks sizes with relatively high sampling
rates, it falls into the class of data-intensive sensor network applications, where
efficient resource utilization is critical, since it directly determines the achiev-
able scalability (number of nodes) and fidelity (sampling frequency) of the data
acquisition process. Configured on the basis of network size, associated sampling
rate, and desired data delivery reliability, it allows for near-real-time acquisition
of 108 data channels on up to 30 nodes—where each node may provide mul-
tiple sensor channels, such as 3-axis acceleration, temperature, or strain—with
minimal data loss. In practice, these limits are determined primarily by the avail-
able bandwidth of the IEEE 802.15.4 wireless network and sample acquisition
latency of the sensors. The accuracy of estimating safe limits for sampling and
data transmission delays directly impacts the system’s efficiency.

To illustrate the applicability of this work, we considered applications where
achieving the highest possible sampling rate that does not result in any missed
deadline is desired. This is a very common requirement in WSAN applications in
the SHMC domain in particular. We begin by setting the value of OnePacketTT
to 7 ms (i.e., the maximum transmission time of this type of applications) and
fixed the value of sensorTaskDelay, miscPeriod, and miscTaskDelay to some
predefined values. In addition to the sampling rate, the number of nodes in the
network and the packet size remain variable. By assuming different values for
the number of nodes and the packet size, different maximum sampling rates
are achieved, shown as a 3D surface in Fig. 7. As shown in the figure, higher
sampling rates are possible when the buffer size is set to a larger number (there
is more space for data in each packet). Similarly, increasing the number of nodes
decreases the sampling rate: in competition among three different parameters of
Fig. 7, the cases with the maximum buffer size (i.e., 9 data points) and minimum
number of nodes (i.e., 1 node) results in the highest possible maximum sampling
rates. Decreasing the buffer size or increasing the number of nodes, non-linearly
reduces the maximum possible sampling rate.

A server with Intel Xeon E5645 @ 2.40 GHz CPUs and 50 GB of RAM, run-
ning Red Hat 4.4.6-4 as the operating system was used as the model-checking
host. We varied the size of the state space from < 500 to >140 K states, result-
ing in model checking times ranging from 0 to 6 s. Analyzing the specifications
of the state spaces, some relations between the size of the state spaces and
the configurations of the models are observed. For example, the largest state
spaces correspond to configurations where sensorTaskDelay, bufferSize, and
numberOfNodes are set to large values.

We also wanted to compare the effect of the communication protocol and
the value of sensorTaskDelay in the supported maximum sampling rate, con-
sidering 648 different configurations. The maximum sampling rates found for
each configuration is depicted in Fig. 8; they show that increasing the value of
sensorTaskDelay as the representor of intra-node activities, decreases the sam-
pling rate dramatically. They also show that using B-MAC results in achieving
higher sampling rates in comparison to TDMA.

176 E. Khamespanah et al.

Fig. 7. The maximum sampling rate in case of using TDMA protocol and setting the
value of sensorTaskDelay to 2 ms

The parameters used in our analysis of configurations were determined
through a real-world installation of an SHMC application. Our results show
that the current manually-optimized installation can be tuned to an even more
optimized one: by changing the configuration, the performance of the system
can be safely improved by another 7 %.

6 Related Work

Three different approaches have been used for analysis of WSANs: system sim-
ulation, analytical approach, and formal verification.

System Simulation. Simulation of WSAN applications is useful for their early
design exploration. Simulation toolsets for WSANs have enabled modeling of
networks [17], power consumption [28], and deployment environment [31]. Sim-
ulators can adequately estimate performance of systems and sometimes detect
conditions which lead to deadline violations. But even extensive simulation does
not guarantee that deadline misses will never occur in the future [5]. For WSAN
applications with hard real-time requirements this is not satisfactory. More-
over, none of available simulators is suitable for the analysis WSAN application
software.

Schedulability Analysis Using Actor-Based Model Checking 177

(a) TDMA, Sensor task delay is 5 ms (b) B-MAC, Sensor task delay is 5 ms

(c) TDMA, Sensor task delay is 10 ms (d) B-MAC, Sensor task delay is 10 ms

(e) TDMA, Sensor task delay is 20 ms (f) B-MAC, Sensor task delay is 20 ms

(g) TDMA, Sensor task delay is 30 ms (h) B-MAC, Sensor task delay is 30 ms

Fig. 8. Maximum possible sampling rate in case of different communication protocols,
number of nodes, sensor internal task delays, and radio packet size

178 E. Khamespanah et al.

Analytical Approach. A number of algorithms and heuristics have been suggested
for schedulability analysis of real-time systems with periodic tasks and sporadic
tasks with constraints, e.g. [20]. Although these classic techniques are efficient
in analyzing schedulability of real-time systems with periodic tasks and sporadic
tasks, their lack of ability to model random tasks make them inappropriate for
WSAN applications.

Formal Verification. Real-time model checking is an attractive approach for
schedulability analysis with guarantees [5]. Model checking tools systematically
check whether a model satisfies a given property [4]. The strength of model
checking is not only in providing a rigorous correctness proof, but also in the
ability to generate counter-examples, as diagnostic feedback in case a property
is not satisfied. This information can be helpful to find flaws in the system.
Norström et al. suggest an extension of timed automata to support schedulability
analysis of real-time systems with random tasks [21]. Feresman et al. studied an
extension of timed automata which its main idea is to associate each location of
timed automata with tasks, called task automata [10].

TIMES [3] is a toolset which is implemented based on the approach of Feres-
man et al. [9] for analysis of task automata using UPPAAL as back-end model
checker. TIMES assumes that tasks are executed on a single processor. This
assumption is the main obstacle against using TIMES for schedulability analy-
sis of WSAN applications, which are real-time distributed applications. De Boer
et al. in [7] presented a framework for schedulability analysis of real-time concur-
rent objects. This approach supports both multi-processor systems and random
task definition, which are required for schedulability analysis of WSAN applica-
tions. But asynchronous communication among concurrent elements of WSAN
application results in generation of complex behavioral interfaces which lead to
a state space explosion even for small size examples.

Real-Time Maude is used in [22] for performance estimation and model check-
ing of WSAN algorithms. The approach supports modeling of many details such
as communication range and energy use. The approach requires some knowl-
edge of rewrite logic. Our tool may be easier to use by engineers unfamiliar
with rewriting logic: our language extends straight-forward C-like syntax with
actor concurrency constructs and primitives for sensing and radio communica-
tion. This requires no formal methods experience from the WSAN application
programmer, as the language and structure of the model closely mirror those of
the real application.

7 Conclusion

We have shown one of the applications of real-time model checking method in
analyzing schedulability and resource utilization of WSAN applications. WSAN
applications are very sensitive to their configurations: the effects of even minor
modifications to configurations must be analyzed. With little additional effort
required on behalf of the application developer, our approach provides a much

Schedulability Analysis Using Actor-Based Model Checking 179

more accurate view of an WSAN application’s behavior and its interaction with
the operating system and distributed middle-ware services than can be obtained
by the sort of informal analysis or trial-and-error methods commonly in use
today.

Our realistic—but admittedly limited—experimental results support the idea
that the use of formal tools may result in more robust WSAN applications.
This would greatly reduce development time as many potential problems with
scheduling and resource utilization may be identified early.

An important direction for future research is the addition of probabilis-
tic behavior analysis support to the tool. In many non-critical applications,
infrequent scheduling violations may be considered a reasonable trade-off for
increased efficiency in the more common cases. Development of a probabilistic
extension is currently underway.

Acknowledgments. The work on this paper has been supported in part by the
project “Timed Asynchronous Reactive Objects in Distributed Systems: TARO” (nr.
110020021) of the Icelandic Research Fund, by Air Force ResearchLaboratory and the
Air Force Office of Scientific Research under agreement number FA8750-11-2-0084, and
by National Science Foundation under grant number CCF-1438982. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The authors acknowledge the helpful
comments by the anonymous referees and by Karl Palmskog.

References

1. Rebeca Formal Modeling Language. http://www.rebeca-lang.org/
2. Agha, G.A.: ACTORS - A Model of Concurrent Computation in Distributed Sys-

tems. MIT Press Series in Artificial Intelligence. MIT Press, Cambridge (1990)
3. Amnell, T., Fersman, E., Mokrushin, L., Pettersson, P., Yi, W.: TIMES: a tool

for schedulability analysis and code generation of real-time systems. In: Larsen,
K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 60–72. Springer,
Heidelberg (2004)

4. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

5. David, A., Illum, J., Larsen, K.G., Skou, A.: Model-based framework for schedu-
lability analysis using UPPAAL 4.1. In: Nicolescu, G., Mosterman, P.J. (eds.)
Model-Based Design for Embedded Systems, pp. 93–119. CRC Press, Boca Raton
(2010)

6. de Boer, F.S., Chothia, T., Jaghoori, M.M.: Modular schedulability analysis of
concurrent objects in Creol. In: Arbab, F., Sirjani, M. (eds.) FSEN 2009. LNCS,
vol. 5961, pp. 212–227. Springer, Heidelberg (2010)

7. de Boer, F.S., Jaghoori, M.M., Johnsen, E.B.: Dating concurrent objects: real-
time modeling and schedulability analysis. In: Gastin, P., Laroussinie, F. (eds.)
CONCUR 2010. LNCS, vol. 6269, pp. 1–18. Springer, Heidelberg (2010)

8. El-Hoiydi, A.: Spatial TDMA and CSMA with preamble sampling for low power
ad hoc wireless sensor networks. In: Proceedings of the Seventh IEEE Symposium
on Computers and Communications (ISCC 2002), 1–4 July 2002, Taormina, Italy,
pp. 685–692. IEEE Computer Society (2002)

http://www.rebeca-lang.org/

180 E. Khamespanah et al.

9. Fersman, E., Mokrushin, L., Pettersson, P., Yi, W.: Schedulability analysis of
fixed-priority systems using timed automata. Theor. Comput. Sci. 354(2),
301–317 (2006)

10. Fersman, E., Pettersson, P., Yi, W.: Timed automata with asynchronous processes:
schedulability and decidability. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002.
LNCS, vol. 2280, pp. 67–82. Springer, Heidelberg (2002)

11. Hewitt, C., Bishop, P., Steiger, R.: A universal modular ACTOR formalism for
artificial intelligence. In: Nilsson, N.J. (ed.) IJCAI, pp. 235–245. William Kaufmann
(1973)

12. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System architec-
ture directions for networked sensors. In: SIGPLAN Notices, vol. 35, pp. 93–104,
November 2000

13. Illinois SHM Services Toolsuite. http://shm.cs.illinois.edu/software.html
14. Jongerden, M.R., Mereacre, A., Bohnenkamp, H.C., Haverkort, B.R., Katoen, J.-P.:

Computing optimal schedules for battery usage in embedded systems. IEEE Trans.
Industr. Inf. 6(3), 276–286 (2010)

15. Khamespanah, E., Sirjani, M., Sabahi-Kaviani, Z., Khosravi, R., Izadi, M.-J.:
Timed Rebeca schedulability and deadlock freedom analysis using bounded floating
time transition system. Sci. Comput. Program. 98, 184–204 (2015)

16. Khamespanah, E., Sirjani, M., Viswanathan, M., Khosravi, R.: Floating time tran-
sition system: more efficient analysis of timed actors. In: Braga, C., Ölveczky, P.C.
(eds.) FACS 2015. LNCS, vol. 9539, pp. 237–255. Springer, Heidelberg (2016)

17. Levis, P., Lee, N., Welsh, M., Culler, D.E.: TOSSIM: accurate and scalable sim-
ulation of entire tinyos applications. In Akyildiz, I.F., Estrin, D., Culler, D.E.,
Srivastava, M.B. (eds.), Proceedings of the 1st International Conference on Embed-
ded Networked Sensor Systems, SenSys 2003, Los Angeles, California, USA, 5–7
November 2003, pp. 126–137. ACM (2003)

18. Linderman, L., Mechitov, K., Spencer, B.F.: TinyOS-based real-time wireless data
acquisition framework for structural health monitoring and control. Struct. Control
Health Monit. (2012)

19. Lipari, G., Buttazzo, G.: Schedulability analysis of periodic and aperiodic tasks
with resource constraints. J. Syst. Architect. 46(4), 327–338 (2000)

20. Liu, J.W.S.: Real-Time Systems, 1st edn. Prentice Hall PTR, Upper Saddle River
(2000)

21. Norström, C., Wall, A., Yi, W.: Timed automata as task models for event-driven
systems. In: RTCSA, pp. 182–189. IEEE Computer Society (1999)

22. Ölveczky, P.C., Thorvaldsen, S.: Formal modeling, performance estimation, and
model checking of wireless sensor network algorithms in real-time maude. Theor.
Comput. Sci. 410(2–3), 254–280 (2009)

23. Polastre, J., Hill, J.L., Culler, D.E.: Versatile low power media access for wireless
sensor networks. In: Stankovic et al. [30], pp. 95–107

24. Ren, S., Agha, G.: RTsynchronizer: language support for real-time specifications in
distributed systems. In: Gerber, R., Marlowe, T.J. (eds.) Workshop on Languages,
Compilers and Tools for Real-Time Systems, pp. 50–59. ACM (1995)

25. Reynisson, A.H., Sirjani, M., Aceto, L., Cimini, M., Jafari, A., Ingólfsdóttir, A.,
Sigurdarson, S.H.: Modelling and simulation of asynchronous real-time systems
using Timed Rebeca. Sci. Comput. Program. 89, 41–68 (2014)

26. Sharifi, Z., Mohammadi, S., Sirjani, M.: Comparison of NoC routing algorithms
using formal methods. In: Proceedings of PDPTA 2013 (2013, to be published)

http://shm.cs.illinois.edu/software.html

Schedulability Analysis Using Actor-Based Model Checking 181

27. Sharifi, Z., Mosaffa, M., Mohammadi, S., Sirjani, M.: Functional and performance
analysis of network-on-chips using actor-based modeling and formal verification.
In: ECEASST, vol. 66 (2013)

28. Shnayder, V., Hempstead, M., Chen, B.-R., Werner-Allen, G., Welsh, M.: Simulat-
ing the power consumption of large-scale sensor network applications. In: Stankovic
et al. [30], pp. 188–200

29. Spencer Jr., B.F., Jo, H., Mechitov, K., Li, J., Sim, S.-H., Kim, R., Cho, S.,
Linderman, L., Moinzadeh, P., Giles, R., Agha, G.: Recent advances in wireless
smart sensors for multi-scale monitoring and control of civil infrastructure. J. Civil
Struct. Health Monit. 1–25 (2015)

30. Stankovic, J.A., Arora, A., Govindan, R. (eds.): Proceedings of the 2nd Interna-
tional Conference on Embedded Networked Sensor Systems, SenSys 2004, Balti-
more, MD, USA, 3–5 November 2004. ACM (2004)

31. Sundresh, S., Kim, W.Y., Agha, G.: Sens: a sensor, environment and network simu-
lator. In: Proceedings 37th Annual Simulation Symposium (ANSS-37 2004), 18–22
April 2004, Arlington, VA, USA, pp. 221–228. IEEE Computer Society (2004)

smid: A Black-Box Program Driver

Kareem Khazem1(B) and Michael Tautschnig2

1 University College London, London, UK
karkhaz@karkhaz.com

2 Queen Mary University of London, London, UK

Abstract. We aim to perform dynamic analysis at large scale and across
a wide range of programs. A key problem to overcome is driving inter-
active programs effectively and efficiently. To address this problem, we
developed smid—an open-source tool that autonomously interacts with
computer programs, based on a specification of which user interactions
(key presses, mouse events) are valid. Users can define the space of valid
user interactions as a state machine in the smid language. smid can then
generate ‘sensible’ program runs (sequences of user interactions), which
it sends to the target program. Runs can be saved and played back,
facilitating the reproduction of bugs. We have used smid to reproduce
and help explain a bug in the cmus music player. It is possible to use
smid to drive a wide variety of desktop programs, including those with
a graphical, console, or even non-interactive user interface.

1 Introduction

Multiple efforts at automated static analysis of large software repositories exist,
and have had a measurable impact on software quality. Notably, the experiment
described in [9] has resulted in hundreds of bug reports, many of which have
since been closed as fixed; and the Debile1 effort has provided developers with
the results of running several static analysers through a uniform interface.

We wished to have a tool with several features that would enable similar
experiments to be run with dynamic program analyses. These features are:

Automation. We require the ability to automatically drive the user interfaces
of computer programs.

Wide Applicability. We require that our tool can be used to drive a wide
variety of software, regardless of the high-level user interface toolkit used.

Reproducibility. If a certain sequence of user inputs gives rise to an interesting
behaviour (e.g. a crash), we require the ability to ‘play back’ that sequence
in order to reproduce the behaviour.

Realism. We do not wish to spam target programs with random inputs, but
would like to be able to exercise target programs with only those sequences
of user inputs that a real user might issue.

Conciseness. On the other hand, we do not wish to define every possible use
case as a set of user interaction ‘scripts’, but would rather have a concise
definition of the desired user interactions with the target program.

1 http://debile.debian.net.

c© Springer International Publishing Switzerland 2016
D. Bošnački and A. Wijs (Eds.): SPIN 2016, LNCS 9641, pp. 182–188, 2016.
DOI: 10.1007/978-3-319-32582-8 12

http://debile.debian.net

smid: A Black-Box Program Driver 183

1.1 Overview

We have implemented smid (the state machine interface driver)—an open-
source2 tool that autonomously interacts with desktop computer programs,
driving them with user input in the same way that a real user might. In this
paper, we outline the aims and motivation of the tool in Sect. 1; describe smid’s
input language in Sect. 2; and describe the tool’s usage and how we used it to
reproduce a bug in Sect. 3. A video demo of the tool can be viewed on YouTube3.

With smid, the space of valid interactions with a program is understood as
a state machine—that is, a directed graph whose nodes are states and whose
transitions are sequences of user interactions. A state is a point during the pro-
gram’s execution where a certain set of transitions are possible; these are often
referred to as ‘modes’ in the user interaction literature [12].

Example: In a graphical web browser such as Firefox or Chromium, the main
browser window, as well as each of the auxiliary windows (download window,
print dialog, etc.) can be understood as states. Transitions (key presses and
mouse events) may cause the state to remain the same (e.g. when pressing Ctrl+R
to reload a web page), or change the state (e.g. clicking on the ‘Options’ menu
item changes the state to the Options window). Different views in the same
window may also be understood as separate states.

To use smid, users describe such a state machine by writing a file in the
smid language. The file is parsed by the smid tool, which outputs a single ‘run’
(a finite path through the state machine, from the initial to a final state). smid
then autonomously ‘drives’ the program by ‘playing back’ this run—that is, by
sending the sequence of user interactions to the target program. By playing back
a large number of runs, the target program can be rigorously tested.

1.2 Comparison with Existing Tools

Tools that we have explored, both in academia and in the wider software devel-
opment community, fell short of one or more of the requirements listed above.

In both academia and industry, the majority of black-box driving tools are
only able to interact with programs using one particular user interface toolkit
(UIT). The tools Selenium [15], Mozmill [14], Watir [11] and Canoo [8] can
only be used to autonomously interact with web applications. EXSYST [7] is a
Java GUI automator, although its search-based technique is not limited to Java
programs. A tool that does not have the single-UIT limitation is Jubula [16],
which is able to drive applications using one of several web and desktop UITs.

Jubula and the web application drivers mentioned above work by executing
a ‘script’ of user interactions, which corresponds to a single use case. To test the
target program on all use cases, one must write a large number of scripts; changes
in the underlying program then require updates to all affected scripts. We find
this method to be fragile, and mention how smid negates the need for redundant

2 https://github.com/karkhaz/smid.
3 https://www.youtube.com/watch?v=x45jjr5dIiY&feature=youtu.be.

https://github.com/karkhaz/smid
https://www.youtube.com/watch?v=x45jjr5dIiY&feature=youtu.be

184 K. Khazem and M. Tautschnig

specification in Sect. 3. There has been some work in academia on automati-
cally determining the behaviour of the target program. Amalfitano et al. [1,2]
describe techniques for determining the behaviour of Android applications and
web applications, respectively. A formal approach to designing, specifying, and
subsequently generating tests for graphical user interfaces is described in [3].
There has also been work to automatically understand user interface behaviour
using techniques from artificial intelligence [10] or machine learning [5]. Nev-
ertheless, these techniques have each been implemented for only a single UIT.
One possibility for future work is to use the Linux Desktop Testing Project [4]
(LDTP) to provide the highly semantic information that is needed for these
‘behaviour-learning’ tools, for a wide range of UITs and platforms.

In contrast, smid allows the specification of the set of user interactions that
are sensible for the target program using the language described in Sect. 2, with-
out burdening the user with writing interaction ‘scripts’ and repeatedly specify-
ing common interaction sequences. The fact that smid sends events directly to
the X Window System—which underlies all graphical user interface toolkits on
desktop Linux and BSD operating systems—means that smid is able to drive all
interactive desktop applications, as well as console-based applications (through
interaction with a terminal emulator), that run on an X-based operating sys-
tem. The smid language itself is UIT-agnostic, and we hope to use LDTP in the
future in order to provide smid users with interactions that are more semantic
than raw interactions with X—for example, by specifying graphical widgets by
name rather than by coordinate.

1.3 Scope and Limitations

smid is aimed at running experiments on the large body of software supplied
with a Linux distribution. Accordingly, while the language described in Sect. 2
is UIT-agnostic, our implementation of smid targets desktop applications; we
did not attempt to implement driving of touch- or voice-based user interfaces.
The back-end to our tool is xdotool [13], an API for sending events to an X
server, but we expect that smid can be modified to use a different back-end
(like LDTP) in order to make it usable on other systems. While smid is used to
drive target programs toward error states, smid does not implement any error
detection itself; we leave application-specific error-detection to the user.

2 The SMID Language

The smid language is used to describe a user interface as a state machine. Files
written in the smid language consist mostly of transition statements; in this
section, we describe the various forms that transitions can take, as well as other
features of the smid language. The most up-to-date guide to the language is the
reference manual4 found on the smid web site.

4 http://karkhaz.com/smid/refman.html.

http://karkhaz.com/smid/refman.html

smid: A Black-Box Program Driver 185

Figure 1 is a minimal smid file. It shows the five kinds of statements in
the smid language: initial and final state declarations, a transition (containing
actions), and region declarations. The states in the state machine are all states
declared as the start or end state of a transition (i.e., smid checks that there is a
path from the initial state to a final state through every state)—in Fig. 1, those
are nice state and boring state.

i n i t i a l nice_state

f ina l boring_state

nice_state --

keys [Control+b Return]

text "A random string"

move zork

c l ick (1 right)

--> boring_state

region zork = (30 110 50 145)

Fig. 1. A minimal smid file

The indented lines from nice
state to boring state in Fig. 1
describe a transition. The syntax
for transitions is start states --
list of actions --> end state. At
any point during smid’s execution,
smid has a ‘current state’. At each
step of the program run, smid
chooses a random transition enabled
at the current state; it then performs
the actions of that transition, and
then changes the current state to be
the end state of the transition. The

possible actions include keys, text and line for sending keypresses to the tar-
get program; move, move-rel, click and scroll for mouse events; as well as
actions for switching windows, executing shell code, and changing the probabil-
ity of following transition (smid performs a random walk over the state machine
by default). Complex user interfaces beget large numbers of similar transitions,
so the smid language includes syntactic sugar to make it possible to represent
several transitions in a single statement—shown in Figs. 2 and 3. This allows us
to specify large state machines using fewer statements, as noted in Sect. 3.

a l l -- keys [q] --> quit

foo -- keys [q] --> quit

bar -- keys [q] --> quit

baz -- keys [q] --> quit

Fig. 2. The first line is equivalent to
the next three taken together, if foo,
bar, baz and quit are the only states
in the state machine and quit is a final
state.

foo bar -- keys [r] --> stay

foo -- keys [r] --> foo

bar -- keys [r] --> bar

Fig. 3. The first line is equivalent to
the next two taken together.

3 SMID Usage and Case Study

Given a smid file with the syntax described in Sect. 2, one can use the smid tool
for several functions:

186 K. Khazem and M. Tautschnig

Visualising the State Machine. smid can generate a diagram representing
the state machine described by a smid file. Figure 5 shows a state machine
diagram generated from the smid file in Fig. 4.

Generating a Run. smid can output a list of user actions, called a ‘run,’ by
accumulating the actions along a finite-length walk of the state machine.

Playing Back a Run. smid can read a run and sends the specified interactions
to the target program. Thus, given a run, smid can autonomously interact
with the target program in the same way a real user might.

i n i t i a l new_window

f ina l quit

a l l -- keys [Control+Q] --> quit

a l l -- keys [Control+N] --> new_window

al l -except print_dialog -- keys [Control+P] --> print_dialog

new_window load_window --

move url_bar

c l ick (1 left)

l ine "URLs.txt"

keys [Return]

--> load_window

load_window -- keys [Control+S] --> save_dialog

save_dialog -- keys [Return] --> new_window

save_dialog -- keys [Escape] --> load_window

region url_bar = (30 5 200 15)

Fig. 4. A smid file containing several states.

In this section, we describe using smid to pinpoint crashes in the target program.
We wrote a smid file (available on GitHub5) for the cmus6 console music

player. This file had 25 transitions, which smid expanded into a 103-transition
state machine. Hence, we find that the smid language allows us to specify a wide
range of behaviour in a concise format and with little redundancy.

We used this smid file to reproduce a reported7 segmentation fault. The
bug report suggested that the bug was triggered when playing MP4-encoded
media files. We set up a large library of audio and video containers, and a smid
specification designed to hone in on the reported bug. smid caused cmus to
browse to one of the media files, seek to a random point in the file, and play the

5 https://github.com/karkhaz/smid/blob/master/state-machines/cmus.sm.
6 https://cmus.github.io.
7 https://github.com/cmus/cmus/issues/204.

https://github.com/karkhaz/smid/blob/master/state-machines/cmus.sm
https://cmus.github.io
https://github.com/cmus/cmus/issues/204

smid: A Black-Box Program Driver 187

Fig. 5. State machine diagram corresponding to the smid file in Fig. 4.

data for several seconds. Using this setup, smid triggered the segfault in many
of the several hundred runs that we ran.

By logging cmus using the SystemTap [6] instrumentation framework while
running it with smid, we were able to discover several scenarios under which this
bug was triggered, but which were not described in the original bug report. This
demonstrates the utility of our approach—namely, sending a diverse range of
inputs to the target program, from the space of ‘sensible’ user interactions.

4 Conclusions

The smid language, described in Sect. 2, is UIT and platform agnostic. The
current implementation of the smid tool uses this fact to drive programs by
sending user interactions directly to the underlying window system, rather than
to a specific UIT. This means that we are able to drive the large variety of
applications that can render a window under the X Window System.

Existing approaches either try to learn the state machine—tying them down
to particular UITs, or drive the interface using a script—an approach which
is not scaleable. The case study in Sect. 3 shows the value of our approach:
by specifying all reasonable behaviours of the target program, we were able to
quickly hone in on a bug without spamming the target program with unrealistic
inputs.

Acknowledgements. We thank Carsten Fush and Tyler Sorensen, as well as several
anonymous reviewers, for constructive feedback.

188 K. Khazem and M. Tautschnig

References

1. Amalfitano, D., Fasolino, A.R., Tramontana, P.: Reverse engineering finite state
machines from rich internet applications. In: WCRE (2008)

2. Amalfitano, D., Fasolino, A.R., Tramontana, P., Carmine, S.D., Memon, A.M.:
Using GUI ripping for automated testing of Android applications. In: ASE (2012)

3. Berstel, J., Crespi-Reghizzi, S., Roussel, G., Pietro, P.S.: A scalable formal method
for design and automatic checking of user interfaces. In: ICSE (2001)

4. Chen, E., LDTP contributors: Linux desktop testing project. http://ldtp.
freedesktop.org/

5. Dan, H., Harman, M., Krinke, J., Li, L., Marginean, A., Wu, F.: Pidgin crasher:
searching for minimised crashing GUI event sequences. In: Goues, C., Yoo, S. (eds.)
SSBSE 2014. LNCS, vol. 8636, pp. 253–258. Springer, Heidelberg (2014)

6. Eigler, F.C., Stone, D., Stone, J., Wielaard, M., SystemTap contributors: System-
Tap. https://sourceware.org/systemtap/

7. Gross, F., Fraser, G., Zeller, A.: EXSYST: search-based GUI testing. In: ICSE
(2012)

8. Huber, M., Schlichting, M., Canoo contributors: Canoo WebTest. http://webtest.
canoo.com/

9. Kroening, D., Tautschnig, M.: Automating software analysis at large scale. In:
Hliněný, P., Dvořák, Z., Jaroš, J., Kofroň, J., Kořenek, J., Matula, P., Pala, K.
(eds.) MEMICS 2014. LNCS, vol. 8934, pp. 30–39. Springer, Heidelberg (2014)

10. Memon, A.M., Pollack, M.E., Soffa, M.L.: Using a goal-driven approach to generate
test cases for GUIs. In: ICSE (1999)

11. Pertman, J., McHowan, H., Rodionov, A.: Watir. http://watir.com/
12. Raskin, J.: The Humane Interface: New Directions for Designing Interactive Sys-

tems. ACM Press/Addison-Wesley Publishing Co., New York, NY (2000)
13. Sissel, J.: xdotool–fake keyboard/mouse input, window management, and more.

http://www.semicomplete.com/projects/xdotool/
14. Skupin, H., Hammel, J., Rogers, M., Mozmill contributors: Mozmill. https://

developer.mozilla.org/en-US/docs/Mozilla/Projects/Mozmill
15. Stewart, S., Selenium contributors: Selinium WebDriver. http://www.seleniumhq.

org/projects/webdriver/
16. Tiede, M., Struckmann, S., Mueller, M., Jubula contributors: The Jubula func-

tional testing tool. http://www.eclipse.org/jubula/

http://ldtp.freedesktop.org/
http://ldtp.freedesktop.org/
https://sourceware.org/systemtap/
http://webtest.canoo.com/
http://webtest.canoo.com/
http://watir.com/
http://www.semicomplete.com/projects/xdotool/
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Mozmill
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Mozmill
http://www.seleniumhq.org/projects/webdriver/
http://www.seleniumhq.org/projects/webdriver/
http://www.eclipse.org/jubula/

On-the-Fly Model Checking for Extended
Action-Based Probabilistic Operators

Radu Mateescu1,2(B) and José Ignacio Requeno1,2

1 Inria, CNRS, LIG, 38000 Grenoble, France
radu.mateescu@inria.fr

2 University of Grenoble Alpes, LIG, 38000 Grenoble, France

Abstract. The quantitative analysis of concurrent systems requires
expressive and user-friendly property languages combining temporal,
data-handling, and quantitative aspects. In this paper, we aim at facili-
tating the quantitative analysis of systems modeled as PTSs (Probabilis-
tic Transition Systems) labeled by actions containing data values and
probabilities. We propose a new regular probabilistic operator that com-
putes the probability measure of a path specified by a generalized regular
formula involving arbitrary computations on data values. This operator,
which subsumes the Until operators of PCTL and their action-based
counterparts, can provide useful quantitative information about paths
having certain (e.g., peak) cost values. We integrated the regular prob-
abilistic operator into MCL (Model Checking Language) and we devised
an associated on-the-fly model checking method, based on a combined
local resolution of linear and Boolean equation systems. We implemented
the method in the EVALUATOR model checker of the CADP toolbox
and experimented it on realistic PTSs modeling concurrent systems.

1 Introduction

Concurrent systems, which are becoming ubiquitous nowadays, are complex
software artifacts involving qualitative aspects (e.g., concurrent behaviour, syn-
chronization, data communication) as well as quantitative aspects (e.g., costs,
probabilities, timing information). The rigorous design of such systems based
on formal methods and model checking techniques requires versatile temporal
logics able to specify properties about qualitative and quantitative aspects in a
uniform, user-friendly way. During the past two decades, a wealth of temporal
logics dealing with one or several of these aspects were defined and equipped with
analysis tools [3,8]. One of the first logics capturing behavioral, discrete-time,
and probabilistic information is PCTL (Probabilistic CTL) [16].

In this paper, we propose a framework for specifying and checking tempo-
ral logic properties combining actions, data, probabilities, and discrete-time on
PTSs (Probabilistic Transition Systems) [21], which are suitable models for rep-
resenting value-passing concurrent systems with interleaving semantics. In PTSs,
transitions between states are labeled by actions that carry, in addition to prob-
abilistic information, also data values sent between concurrent processes during
handshake communication. Our contributions are twofold.
c© Springer International Publishing Switzerland 2016
D. Bošnački and A. Wijs (Eds.): SPIN 2016, LNCS 9641, pp. 189–207, 2016.
DOI: 10.1007/978-3-319-32582-8 13

190 R. Mateescu and J.I. Requeno

Regarding the specification of properties, we propose a new regular proba-
bilistic operator, which computes the probability measure of a path (specified
as a regular formula on actions) in a PTS. Several probabilistic logics have been
proposed in the action-based setting. PML (Probabilistic Modal Logic) [21] is a
variant of HML with modalities indexed by probabilities, and was introduced
as a modal characterization of probabilistic bisimulation. GPL (Generalized
Probabilistic Logic) [9] is a probabilistic variant of the alternation-free modal
μ-calculus, able to reason about execution trees, and equipped with a model
checking algorithm relying on the resolution of non-linear equation systems.
Compared to these logics, our probabilistic operator is a natural (action-based)
extension of the Until operator of PCTL: besides paths of the form a∗.b (the
action-based counterpart of Until operators), we consider more general paths,
specified by regular formulas similar to those of PDL (Propositional Dynamic
Logic) [13]. To handle the data values present on PTS actions, we rely on the
regular formulas with counters of MCL (Model Checking Language) [27], which
is an extension of first-order μ-calculus with programming language constructs.
Moreover, we enhance the MCL regular formulas with a generalized iteration
operator parameterized by data values, thus making possible the specification of
arbitrarily complex paths in a PTS.

Regarding the evaluation of regular probabilistic formulas on PTSs, we devise
an on-the-fly model checking method based on translating the problem into the
simultaneous local resolution of a linear equation system (LES) and a Boolean
equation system (BES). For probabilistic operators containing dataless MCL
regular formulas, the sizes of the LES and BES are linear (resp. exponential)
w.r.t. the size of the regular formula, depending whether it is deterministic or
not. In the action-based setting, the determinism of formulas is essential for a
sound translation of the verification problem to a LES. For general data han-
dling MCL regular formulas, the termination of the model checking procedure is
guaranteed for a large class of formulas (e.g., counting, bounded iteration, aggre-
gation of values, computation of costs over paths, etc.) and the sizes of the equa-
tion systems depend on the data parameters occurring in formulas. It is worth
noticing that on-the-fly verification algorithms for PCTL were proposed only
recently [22], all previous implementations, e.g., in PRISM [19] having focused
on global algorithms. Our method provides on-the-fly verification for PCTL and
its action-based variant PACTL, and also for PPDL (Probabilistic PDL) [18],
which are subsumed by the regular probabilistic operator of MCL. We imple-
mented the method in the EVALUATOR [27] on-the-fly model checker of the
CADP toolbox [15] and experimented it on various examples of value-passing
concurrent systems.

The paper is organized as follows. Section 2 defines the dataless regular prob-
abilistic operator and Sect. 3 presents the on-the-fly model checking method.
Section 4 is devoted to the data handling extensions. Section 5 briefly describes
the implementation of the method within CADP and illustrates it for the quan-
titative analysis of mutual exclusion protocols. Finally, Sect. 6 gives concluding
remarks and directions of future work.

Model Checking for Action-Based Probabilistic Operators 191

2 Dataless Regular Probabilistic Operator

As interpretation models, we consider PTSs (Probabilistic Transition Sys-
tems) [21], in which transitions between states carry both action and proba-
bilistic information. A PTS M = 〈S,A, T, L, si〉 comprises a set of states S, a
set of actions A, a transition relation T ⊆ S × A × S, a probability labeling
L : T → (0, 1], and an initial state si ∈ S. A transition (s1, a, s2) ∈ T (also
written s1

a→ s2) indicates that the system can move from state s1 to state s2
by performing action a with probability L(s1, a, s2). For each state s ∈ S, the
probability sum

∑
s

a→s′ L(s, a, s′) = 1.

A path σ = s(= s0)
a0→ s1

a1→ · · · an−1→ sn · · · going out of a state s is an
infinite sequence of transitions in M . The i-th state and i-th action of a path
σ are noted σ[i] and σa[i], respectively. An interval σ[i, j] with 0 ≤ i ≤ j is the
subsequence σ[i] ai→ · · · aj−1→ σ[j], which is empty if i = j. The suffix starting
at the i-th state of a path σ is noted σi. The set of paths going out from s is
noted pathsM (s). The probability measure of a set of paths sharing a common
prefix is defined as μM ({σ ∈ pathsM (s) | σ[0, n] = s0

a0→ · · · an−1→ sn}) =
L(s0, a0, s1) × · · · × L(sn−1, an−1, sn).

The regular probabilistic operator that we propose computes the probability
measure of paths characterized by regular formulas. For the dataless version
of the operator, we use the regular formulas of PDL (Propositional Dynamic
Logic) [13], defined over the action formulas of ACTL (Action-based CTL) [28].
Figure 1 shows the syntax and semantics of the operators.

Action formulas α are built over the set of actions by using standard Boolean
connectors. Derived action operators can be defined as usual: true = ¬false,
α1∧α2 = ¬(¬α1∨¬α2), etc. Regular formulas β are built from action formulas by
using the testing (?), concatenation (.), choice (|), and transitive reflexive closure
(∗) operators. Derived regular operators can be defined as usual: nil = false∗ is
the empty sequence operator, β+ = β.β∗ is the transitive closure operator, etc.
State formulas ϕ are built from Boolean connectors, the possibility modality (〈 〉)
and the probabilistic operators ({ }≥p and { }>p) containing regular formulas.
Derived state operators can be defined as usual: true = ¬false, ϕ1∧ϕ2 = ¬(¬ϕ1∨
¬ϕ2), and [β] ϕ = ¬〈β〉¬ϕ is the necessity modality.

Action formulas are interpreted on the set of actions A in the usual way.
A path satisfies a regular formula β if it has a prefix belonging to the regular
language defined by β. The testing operator specifies state formulas that must
hold in the intermediate states of a path. Boolean connectors on states are
defined as usual. A state s satisfies the possibility modality 〈β〉ϕ1 (resp. the
necessity modality [β] ϕ1) iff some (resp. all) of the paths in pathsM (s) have
a prefix satisfying β and leading to a state satisfying ϕ1. A state s satisfies
the probabilistic operator {β}≥p iff the probability measure of the paths in
pathsM (s) with a prefix satisfying β is greater or equal to p (and similarly for
the strict version of the operator). A PTS M = 〈S,A, T, L, si〉 satisfies a formula
ϕ, denoted by M |= ϕ, iff si |=M ϕ (the subscript M will be omitted when it is
clear from the context).

192 R. Mateescu and J.I. Requeno

Action formulas:
α ::= a

| false
| ¬α1

| α1 ∨ α2

b |=A a iff b = a
b |=A false iff false
b |=A ¬α1 iff b �|=M α1

b |=A α1 ∨ α2 iff b |=M α1 or b |=M α2

Regular formulas:
β ::= α

| ϕ?
| β1.β2

| β1|β2

| β∗
1

σ[i, j] |=M α iff i + 1 = j and σa[i] |=A α
σ[i, j] |=M ϕ? iff σ[i] |=M ϕ
σ[i, j] |=M β1.β2 iff ∃k ∈ [i, j].σ[i, k] |=M β1 and σ[k, j] |=M β2

σ[i, j] |=M β1|β2 iff σ[i, j] |=M β1 or σ[i, j] |=M β2

σ[i, j] |=M β∗
1 iff ∃k ≥ 0.σ[i, j] |=M βk

1

State formulas:
ϕ ::= false

| ¬ϕ1

| ϕ1 ∨ ϕ2

| 〈β〉 ϕ1

| {β}≥p

| {β}>p

s |=M false iff false
s |=M ¬ϕ1 iff s �|=M ϕ1

s |=M ϕ1 ∨ ϕ2 iff s |=M ϕ1 or s |=M ϕ2

s |=M 〈β〉 ϕ1 iff ∃σ ∈ pathsM (s).∃i ≥ 0.
σ[0, i] |=M β and σ[i] |=M ϕ

s |=M {β}≥p iff μM ({σ ∈ pathsM (s) | σ |=M β}) ≥ p
s |=M {β}>p iff μM ({σ ∈ pathsM (s) | σ |=M β}) > p

Fig. 1. Modal and probabilistic operators over regular paths

The operator {β}≥p generalizes naturally the Until operators of classical
probabilistic branching-time logics. The Until operator of PCTL [16], and prob-
abilistic versions of the two Until operators of ACTL are expressed as follows:

[ϕ1 U ϕ2]≥p = {(ϕ1?.true)∗.ϕ2?}≥p

[
ϕ1α1

U ϕ2

]
≥p

= {(ϕ1?.α1)
∗.ϕ2?}≥p[

ϕ1α1
Uα2 ϕ2

]
≥p

= {(ϕ1?.α1)
∗.ϕ2?.α2.ϕ2?}≥p

In addition, regular formulas are strictly more expressive than Until operators,
enabling to specify more complex paths in the PTS. For example, the formula:

Ψ1 = {send .(true∗.retry)∗.recv}≥0.9

unexpressible in P(A)CTL due to the nested ∗-operators, specifies that the prob-
ability of receiving a message after zero or more retransmissions is at least 90%.

3 Model Checking Method

We propose below a method for checking a regular probabilistic formula on a
PTS on the fly, by reformulating the problem as the simultaneous resolution
of a linear equation system (LES) and a Boolean equation system (BES). The
method consists of five steps, each one translating the problem into an increas-
ingly concrete intermediate formalism. The first four steps operate syntactically

Model Checking for Action-Based Probabilistic Operators 193

on formulas and their intermediate representations, whereas the fifth step makes
use of semantic information contained in the PTS. A detailed formalization of
the first four steps, in a state-based setting, can be found in [24]. We illustrate the
method by checking the formula Ψ1 on the PTS of a very simple communication
protocol adapted from [3, Chap. 10], shown in Fig. 2(a).

1. Translation to PDL with Recursion. To evaluate an operator {β}≥p on a
PTS M = 〈S,A, T, L, si〉 on the fly, one needs to determine the set of paths going
out of si and satisfying β, to compute the probability measure of this set, and to
compare it with p. For this purpose, it is more appropriate to use an equational
representation of β, namely PDLR (PDL with recursion), which already served
for model checking PDL formulas in the non-probabilistic setting [26]. A PDLR
specification is a system of fixed point equations having propositional variables
X ∈ X in their left hand side and PDL formulas ϕ in their right hand side:

{Xi = ϕi}1≤i≤n

where ϕi are modal state formulas (see Fig. 1) and X1 is the variable of interest
corresponding to the desired property. Since formulas ϕi may be open (i.e., con-
tain occurrences of variables Xj), their interpretation is defined w.r.t. a propo-
sitional context δ : X → 2S , which assigns state sets to all variables occurring
in ϕi. The interpretation of a PDLR specification is the value of X1 in the least
fixed point μΦ of the functional Φ : (2S)n → (2S)n defined by:

Φ(U1, ..., Un) = 〈[[ϕi]] δ[U1/X1, ..., Un/Xn]〉1≤i≤n

where [[ϕi]] δ = {s ∈ S | s |=δ ϕi}, and the interpretation of ϕi (see Fig. 1) is
extended with the rule s |=δ X = s ∈ δ(X). The notation δ[U1/X1, ..., Un/Xn]
stands for the context δ in which Xi were replaced by Ui.

In the sequel, we consider PDLR specifications in der ivative normal form
(RNF), which are the modal logic counterparts of Brzozowski’s (generalized)
derivatives of regular expressions [5]:

{Xi =
∨ni

j=1(ϕij ∧ 〈βij〉Xij) ∨ ϕi}1≤i≤n

where ϕij and ϕi are closed state formulas. Note that, in the right hand side
of equation i, the same variable Xij ∈ {X1, ...,Xn} may occur several times
in the first disjunct. Intuitively, a variable Xi denotes the set of states from
which there exists a path with a prefix satisfying some of the regular formulas
βij and whose last state satisfies Xij . This is formalized using path predicates
Pi : pathsM → bool, defined by the following system of equations:

{Pi(σ) =
∨ni

j=1∃lij ≥ 0.(σ[0] |= ϕij ∧ σ[0, lij] |= βij ∧ Pij(σlij)) ∨ σ[0] |= ϕi}1≤i≤n

More precisely, (μΦ)i = {s ∈ S | ∃σ ∈ pathsM (s).Pi(σ)}.
The PDLR specification in RNF associated to a formula β is defined below:

{X1 = 〈β〉X2 X2 = true}

194 R. Mateescu and J.I. Requeno

in which the variable of interest X1 denotes the PDL formula 〈β〉true, expressing
the existence of a path with a prefix satisfying β and leading to some final state
denoted by X2. The corresponding path predicates are:

{P1(σ) = ∃l ≥ 0.(σ[0, l] |= β ∧ P2(σl)) P2(σ) = true}

According to the interpretation of regular formulas (see Fig. 1), the path predi-
cate P1(σ) holds iff σ |= β, and also (μΦ)1 = {s ∈ S | ∃σ ∈ pathsM (s).σ |= β}.

2. Translation to HML with Recursion. To bring the PDLR specification
closer to an equation system suitable for verification, one must simplify it by
removing the regular operators occurring in modalities. This yields a HMLR
(HML with recursion) specification [20], which contains only HML modalities on
action formulas. Regular operators can be eliminated by applying the following
substitutions, which are valid equalities in PDL [13]:

〈ϕ?〉X = ϕ ∧ 〈nil〉X 〈β1.β2〉X = 〈β1〉X ′ where X ′ = 〈β2〉X
〈β1|β2〉X = 〈β1〉X ∨ 〈β2〉X 〈β∗〉X = 〈nil〉X ′ where X ′ = 〈nil〉X ∨ 〈β〉X ′

The rules for the ‘.’ and ‘*’ operators create new equations, necessary for
maintaining the PDLR specification in RNF (the insertion of 〈nil〉X modalities,
which are equivalent to X, serves the same purpose). The rule for the ‘|’ operator
creates two occurrences of the same variable X, reflecting that a same state can
be reached by two different paths. These rules preserve the path predicates Pi

associated to the PDLR specification, and in particular P1(σ), which specifies
that a path σ satisfies the initial formula β.

The size of the resulting HMLR specification (number of variables and oper-
ators) is linear w.r.t. the size of β (number of operators and action formulas).
Besides pure HML modalities, the HMLR specification may also contain occur-
rences of 〈nil〉X modalities, which will be eliminated in the next step.

3. Transformation to Guarded Form. The right hand side of an equation i of
the HMLR specification may contain modalities of the form 〈αij〉Yij and 〈nil〉Yij

(equivalent to Yij), which correspond to guarded and unguarded occurrences of
variables Yij , respectively. To facilitate the formulation of the verification prob-
lem in terms of equation systems, it is useful to remove unguarded occurrences of
variables. The general procedure for transforming arbitrary μ-calculus formulas
to guarded form [17] can be specialized for HMLR specifications by applying the
following actions for each equation i: (a) Remove the unguarded occurrences of
Xi in the right hand side of the equation by replacing them with false, which
amounts to apply the μ-calculus equality μX.(X ∨ϕ) = μX.ϕ. (b) Substitute all
unguarded occurrences of Xi in other equations with the right hand side formula
of equation i, and rearrange the right hand sides to maintain the equations in
RNF. This produces a guarded HMLR specification:

{Xi =
∨ni

j=1(ϕij ∧ 〈αij〉Xij) ∨ ϕi}1≤i≤n

which is the exact modal logic counterpart of Brzozowski’s derivatives of regular
expressions [5] defined on the alphabet of action formulas. The transformation

Model Checking for Action-Based Probabilistic Operators 195

Fig. 2. Model checking formula ψ1 on a PTS

to guarded form keeps the same number of equations in the HMLR specification,
but may increase the number of operators in the right hand sides.

4. Determinization. A HMLR specification may contain, in the right hand
side of an equation i, several modalities 〈αij〉Xij whose action formulas are not
disjoint, i.e., they can match the same action. This denotes a form of nondeter-
minism, meaning that the same transition s

a→ s′ can start a path σ satisfying
the path predicate Pi(σ) in several ways, corresponding to alternative suffixes of
the initial regular formula β. To ensure a correct translation of the verification
problem into a LES, it is necessary to determinize the HMLR specification. This
can be done by applying the classical subset construction, yielding a determin-
istic HMLR specification defined on sets of propositional variables:

{XI =
∨

∅⊂J⊆alt(I)((
∧

k∈Jϕk) ∧ 〈∧k∈Jαk ∧∧l∈alt(I)\J¬αl〉XJ) ∨∨i∈Iϕi}I⊆[1,n]

where alt(I) = {ij | i ∈ I∧j ∈ [1, ni]}. Basically, each alternative ϕij∧〈αij〉Xij in
an equation i ∈ I is combined with each alternative in the other equations having
their index in I, taking care that the action formulas in the resulting modalities
are mutually exclusive. As shown in [24] for a similar construction in the state-
based setting, the determinization preserves the path predicate associated to the
variables of interest X1 and X{1} in the HMLR before and after determinization,
i.e., P1(σ) = P{1}(σ) for any path σ ∈ pathsM .

196 R. Mateescu and J.I. Requeno

In the worst case, determinization may yield an exponential increase in the
size of the HMLR specification. However, this happens on pathological examples
of regular formulas, which rarely occur in practice; most of the time, the nonde-
terminism contained in a formula β is caused by a lack of precision regarding the
iteration operators, which can be easily corrected by constraining the action for-
mulas corresponding to iteration “exits”. For example, the regular formula con-
tained in Ψ1 can be made deterministic by specifying precisely the retries and the
fact that they must occur before receptions: send .((¬retry∧¬recv)∗.retry)∗.recv .

5. Translation to Linear and Boolean Equation Systems. Consider a
determinized HMLR specification in RNF corresponding to a regular formula β:

{Xi =
∨ni

j=1(ϕij ∧ 〈αij〉Xij) ∨ ϕi}1≤i≤n

where αij ∧ αik = false for each i ∈ [1, n] and j, k ∈ [1, ni]. The associated path
predicates are defined as follows:

{Pi(σ) =
∨ni

j=1(σ[0] |= ϕij ∧ σa[0] |= αij ∧ Pij(σ1)) ∨ σ[0] |= ϕi}1≤i≤n

They are related to the HMLR specification by (μΦ)i = {s ∈ S | ∃σ ∈
pathsM (s).Pi(σ)}, and to the initial regular formula β by P1(σ) = σ |= β.

The last step of the model checking method reformulates the problem of
verifying the determinized HMLR specification on a PTS in terms of solving a
LES (∗) and a BES (∗∗) defined as follows:

Zi,s = if s �|= Xi then 0
else if s |= ϕi then 1

else
∑ni

j=1 if s �|= ϕij then 0

else
∑

s
a→s′,a|=αij

L(s, a, s′) × Zij,s′

(∗)

Xs
i =
∨ni

j=1(s |= ϕij ∧∨
s

a→s′(a |= αij ∧ Xs′
ij)) ∨ s |= ϕi (∗∗)

The LES (∗) is obtained by a translation similar to the classical one defined
originally for PCTL [16]. A numerical variable Zi,s denotes the probability mea-
sure of the paths going out of state s and satisfying the path predicate Pi.
Determinization guarantees that the sum of coefficients in the right-hand side of
each equation is at most 1. The BES (∗∗) is produced by the classical transla-
tion employed for model checking modal μ-calculus formulas on LTSs [2,10]. A
Boolean variable Xs

i is true iff state s satisfies the propositional variable Xi of
the HMLR specification. The on-the-fly model checking consists in solving the
variable Z1,si , which denotes the probability measure of the set of paths going
out of the initial state si of the PTS and satisfying the initial regular formula
β. This is carried out using local LES and BES resolution algorithms, as will be
explained in Sect. 5. The conditions s |= Xi occurring in the LES (∗) and the
conditions s |= ϕij , s |= ϕi occurring in both equation systems are checked by
applying the on-the-fly model checking method for solving the variable Xs

i of
the BES (∗∗) and evaluating the closed state formulas ϕij , ϕi on state s.

By solving the LES obtained in Fig. 2(f), we obtain Z1,0 = 1.0, meaning that
a message sent will be received (after zero or more retransmissions) with 100%
probability, and therefore the formula Ψ1 is true on the PTS.

Model Checking for Action-Based Probabilistic Operators 197

4 Extension with Data Handling

The regular formulas that we used so far belong to the dataless fragment [26] of
MCL, which considers actions simply as names of communication channels. In
practice, the analysis of value-passing concurrent systems, whose actions typi-
cally consist of channel names and data values, requires the ability to extract
and manipulate these elements. For this purpose, MCL [27] provides action pred-
icates extracting and/or matching data values, regular formulas involving data
variables, and parameterized fixed point operators. The regular probabilistic
operator {β}≥p can be naturally extended with the data handling regular for-
mulas of MCL, which enable to characterize complex paths in a PTS modeling
a value-passing concurrent system.

To improve versatility, we extend the regular formulas of MCL with a general
iteration operator “loop”, which subsumes the classical regular operators with
counters, and can also specify paths having a certain cost calculated from the
data values carried by its actions. After briefly recalling the main data handling
operators of MCL, we define below the “loop” operator, illustrate its expressive-
ness, and show how the on-the-fly model checking procedure previously described
is generalized to deal with the data handling probabilistic operator.

4.1 Overview of Data Handling MCL Operators

In the PTSs modeling value-passing systems, actions are of the form
“C v1 . . . vn”, where C is a channel name and v1, ..., vn are the data values
exchanged during the rendezvous on C. To handle the data contained in actions,
MCL provides action predicates of the form “{C ... !e ?x:T where b}”, where “...”
is a wildcard matching zero or more data values of an action, e is an expression
whose value matches the corresponding data value, x is a data variable of type T
that is initialized with the corresponding data value extracted from the action,
and b is an optional boolean expression (guard) typically expressing a condition
on x. An action predicate may contain several clauses “!e” and “?x:T”, all vari-
ables defined by “?x:T” clauses being visible in the guard b and also outside
the action predicate. An action satisfies an action predicate if its structure is
compatible with the clauses of the predicate, and the guard evaluates to true in
the context of the data variables extracted from the action.

Regular formulas in MCL are built over action predicates using the classical
operators shown in Sect. 2, as well as constructs inspired from sequential pro-
gramming languages: conditional (“if-then-else”), counting, iteration (“for” and
“loop”, described in the next subsection), and definition of variables (“let”). The
testing operator of PDL is expressed in MCL as ϕ? = if ¬ϕ then false end if.

Finally, the state formulas of MCL are built using modalities containing regu-
lar formulas, parameterized fixed point operators, quantifiers over finite domains,
and programming language constructs (“if” and “let”).

198 R. Mateescu and J.I. Requeno

4.2 Generalized Iteration on Regular Formulas

The general iteration mechanism that we propose on regular formulas consists
of three operators having the following syntax:

β :: = loop (x:T :=e0) : (x′:T ′) in β end loop | continue (e) | exit (e′)

The “loop” operator denotes a path made by concatenation of (zero or more)
path fragments satisfying β, each one corresponding to an iteration of the loop
with the current value of variable x. Variable x, which is visible inside β, is
initialized with the value of expression e0 at the first loop iteration and can be
updated to the value of e by using the operator “continue (e)”, which starts a
new iteration of the loop. The loop is terminated by means of the “exit (e′)”
operator, which sets the return variable x′, visible outside the “loop” formula,
to the value of e′.

The iteration and return variables (x and x′) are both optional; if they are
absent, the “in” keyword is also omitted. For simplicity, we used only one vari-
able x and x′, but several variables of each kind are allowed. The arguments of
the operators “continue” and “exit” invoked in the loop body β must be compat-
ible with the declarations of iteration and return variables, respectively. Every
occurrence of “continue” and “exit” refers to the immediately enclosing “loop”,
which enforces a specification style similar to structured programming.

For brevity, we define the semantics of the “loop” operator by translating it
to plain MCL in the context of an enclosing diamond modality. The translation
is parameterized by a profile Z/x:T/x′:T ′, where x and x′ are the iteration and
return data variables of the immediately enclosing “loop”, and Z is a propo-
sitional variable associated to it. We show below the translation of the three
general iteration operators, the other regular operators being left unchanged.
⎛

⎝
〈 loop (x:T :=e0) : (x′:T ′) in

β
end loop

〉
ϕ

⎞

⎠

Z/x:T/x′:T ′

def
= μW (x:T :=e0).〈(β)W/x:T/x′:T ′〉ϕ

(〈continue (e)〉ϕ)Z/x:T/x′:T ′
def
= Z(e)

(〈exit (e′)〉ϕ)Z/x:T/x′:T ′
def
= let x′:T ′ := e′ in ϕ end let

Basically, a possibility modality enclosing a “loop” operator is translated into
a minimal fixed point operator parameterized by the iteration variable(s). The
occurrences of “continue” in the body of the loop are translated into invoca-
tions of the propositional variable with the corresponding arguments, and the
occurrences of “exit” are translated into “let” state formulas defining the return
variables and setting them to the corresponding return values.

All iteration operators on MCL regular formulas can be expressed in terms of
the “loop” operator, as shown in the table below. For simplicity, we omitted the
definitions of β{e} (iteration e times) and β{... e} (iteration at most e times),
which are equivalent to β{e ... e} and β{0 ... e}, respectively.

Model Checking for Action-Based Probabilistic Operators 199

Syntax Meaning Encoding using “loop”

β∗ ≥ 0 times loop exit | β . continue end loop
β+ ≥ 1 times loop β . (exit | continue) end loop
β{e1 ... e2} between loop (c1:nat := e1, c2:nat := e2 − e1) in

e1 and e2 if c1 > 0 then β . continue (c1 − 1, c2)
times elsif c2 > 0 then exit | β . continue (c1, c2 − 1)

else exit end if
end loop

for n:nat from e1 to e2 stepwise loop (n:nat := e1) in
step e3 do if n < e2 then β . continue (n + e3)
β else exit end if

end for end loop

To illustrate the semantics of general iteration, consider the formula
〈β{e}〉true stating the existence of a path made of e path fragments satisfy-
ing β. By encoding bounded iteration as a “loop” and applying the translation
rules of general iteration, we obtain:

〈β{e}〉true =

〈
loop (c:nat := e) in

if c > 0 then
β . continue (c − 1)

else exit end if
end loop

〉
true =

μZ(c:nat := e).
if c > 0 then 〈β〉Z(c − 1)
else

true
end if

The bounded iteration operators β{e}, β{... e}, and β{e1 ... e2} are natural
means for counting actions (ticks), and hence describing discrete-time properties.
The full Until operator of PCTL, and its action-based counterparts derived from
ACTL, can be expressed as follows (t ≥ 0 is the number of ticks until ϕ2):

[ϕ1 U ϕ2]
≤t
≥p = {(ϕ1?.true){0 ... t}.ϕ2?}≥p[

ϕ1α1
U ϕ2

]≤t

≥p
= {(ϕ1?.α1){0 ... t}.ϕ2?}≥p[

ϕ1α1
Uα2 ϕ2

]≤t

≥p
= {(ϕ1?.α1){0 ... t}.ϕ1?.α2.ϕ2?}≥p

Besides counting, the general iteration operators are able to characterize complex
paths in a PTS, by collecting the data values (costs) present on actions and using
them in arbitrary computations (see the examples in Sect. 5).

4.3 Model Checking Method with Data Handling

The on-the-fly model checking method shown in Sect. 3 can be generalized to
deal with the data handling constructs of MCL by adding data parameters to the
various equation systems used as intermediate forms. We illustrate the complete
method by checking the formula Ψ2 on the PTS shown on Fig. 2:

Ψ2 = { send .((¬retry ∧ ¬recv)∗.retry){... n}.recv }≥0.9

Formula Ψ2, which is a determinized data-based variant of Ψ1, specifies that
the probability of receiving a message after at most n retransmissions (where n
is a parameter to be instantiated) is at least 90%.

200 R. Mateescu and J.I. Requeno

The various translation phases are illustrated on Fig. 3. The translation rules
for standard regular operators given in Sect. 3 are applied for eliminating the
“.” operators in the PDLR specification (Fig. 3(c)). Then, the iteration at most
n times is translated into a “loop” operator (Fig. 3(d)), and the corresponding
modality is further refined using the semantics of “loop” defined in Sect. 4.2,
yielding a HMLR specification parameterized by a counter (Fig. 3(e)). After
bringing this specification to guarded form (Fig. 3(f)), a parameterized LES
is produced (Fig. 3(g)) by the translation scheme given in Sect. 3, extended to
handle data parameters. For instance, variable Z5,1(v) in the LES denotes the
probability measure of the paths starting from state s1 and satisfying the path
predicate denoted by X5 with the parameter c set to value v.

Fig. 3. Model checking formula ψ2 on a PTS

Model Checking for Action-Based Probabilistic Operators 201

Finally, a plain LES is generated (Fig. 3(h)) by instantiating n = 2 in the
parameterized LES. Note that the guarded HMLR specification was already
deterministic (since the regular formula in Ψ2 was determinized), and hence the
LES has a unique solution. By solving this LES (e.g., using substitution), we
obtain Z1,0 = 0.999, which is the probability measure of the paths starting from
the initial state s0 of the PTS and satisfying the regular formula specified in Ψ2.
In other words, n = 2 retransmissions ensure that a message is received with
99.9% probability.

Termination. The presence of data parameters (with infinite domains) implies
that the whole model checking procedure relies on the termination of the instan-
tiation phase, which must create a finite LES solvable using numerical methods.
This is in general undecidable, similarly to the termination of term rewriting [11].
Such situations happen for “pathological” formulas, which carry on divergent
computations on data unrelated to the data values contained in the PTS actions.
For example, the modality 〈loop (k:nat:=0) in a . continue (k + 1) end loop〉true
will not converge on the PTS consisting of a single loop s

a→ s, since it will
entail the construction of an infinite LES {Zs(0) = Zs(1), Zs(1) = Zs(2), ...}.
However, the model checking procedure terminates for most practical cases of
data handling regular formulas (counting, accumulating or aggregating values,
computing costs over paths).

5 Tool Support and Use

In this section, we show how the on-the-fly model checking method for the regular
probabilistic operator works in practice. After briefly presenting the implemen-
tation of the method within the CADP toolbox [15], we illustrate its application
for the quantitative analysis of shared-memory mutual exclusion protocols.

5.1 Implementation

We extended MCL with the general iteration operator “loop” on regular formu-
las and the regular probabilistic operator {β}�� p, where 	
 ∈ {<,≤, >,≥,=}.
Temporal and probabilistic operators can be freely combined, e.g., [β1] {β2}≥p

specifies that, from all states reached after a path satisfying β1, the probability
measure of an outgoing path satisfying β2 is at least p.

We also enhanced the EVALUATOR [27] on-the-fly model checker with the
translation of {β}�� p formulas into BESs (for checking the existence of path
suffixes) and LESs (for computing probability measures) as described in Sects. 3
and 4. The on-the-fly resolution of BESs is carried out by the algorithms of
the CAESAR SOLVE library [23], which already serves as verification back-end
for (non-probabilistic) MCL formulas. For the on-the-fly resolution of LESs,
we designed a local algorithm operating on the associated Signal Flow Graphs
(SFG) [7], in a way similar to the BES resolution algorithms, which operate
on the associated Boolean graphs [2]. The LES resolution algorithm consists

202 R. Mateescu and J.I. Requeno

of a forward exploration of the SFG to build dependencies between variables,
followed by a backward variable elimination (a.k.a. substitution) and a final
propagation to update the right-hand sides of equations with the solutions of
variables. This substitution method, implemented with a careful bookkeeping
of variable dependencies, performs well on the very sparse LESs resulting from
{β}�� p operators (typically, for a PTS with 106 states and a branching factor
of 10, there are about 10−5 = 0.001% non-null elements in the LES matrix).
Connections to general purpose solvers for (less sparse) LESs are planned as
future work.

5.2 Case Study: Analysis of Mutual Exclusion Protocols

We illustrate the application of the regular probabilistic operator by carrying
out a quantitative analysis of several shared-memory mutual exclusion protocols,
using their formal descriptions in LNT [6] given in [25]. We focus here on a subset
of the 27 protocols studied in [25], namely the CLH, MCS, Burns&Lynch (BL),
TAS and TTAS protocols, by considering configurations of N ≤ 4 concurrent
processes competing to access the critical section. Each process executes cycli-
cally a sequence of four sections: non critical, entry, critical, and exit. The entry
and exit sections represent the algorithm specific to each protocol for demanding
and releasing the access to the critical section, respectively. In the PTS models
of the protocols, all transitions going out from each state are assumed to have
equal probabilities. We formulate four probabilistic properties using MCL and
evaluate them on the fly on each LNT protocol description (for MCL formulas
consisting of a single {β}�� p operator, the model checker also yields the proba-
bility measure in addition to the Boolean verdict). For each property requiring
several invocations of the model checker with different values for the data para-
meters in the MCL formula, we automate the analysis using SVL scripts [14].

Critical Section. First of all, for each i ∈ [0, N −1], we compute the probability
that process Pi is the first one to enter its critical section. For this purpose, we
use the following MCL formula:

{ (¬{CS !”ENTER”...})∗.{CS !”ENTER” !i} }≥0

which computes the probability that, from the initial state, process Pi accesses
its critical section before any (other) process. Symmetric protocols guarantee
that this probability is equal to 1/N for all processes, while asymmetric protocols
(such as BL) may favor certain processes w.r.t. the others. This is indeed reflected
by the results of model checking the above formula for N = 3: for the BL
protocol, which gives higher priority to processes of lower index, the probabilities
computed are 72.59% (for P0), 21.66% (for P1), and 5.73% (for P2), whereas
they are equal to 33.33% for the other protocols, which are symmetric.

Memory Latency. The analysis of critical section reachability can be refined by
taking into account the cost of memory accesses (e.g., read, write, test-and-set
operations on shared variables) that a process Pi must perform before enter-
ing its critical section. The protocol modeling provided in [25] also considers

Model Checking for Action-Based Probabilistic Operators 203

non-uniform memory accesses, assuming that concurrent processes execute on a
cache-coherent multiprocessor architecture. The cost c (or latency) of a memory
access depends on the placement of the memory in the hierarchy (local caches,
shared RAM, remote disks) and is captured in the PTS by actions “MU !c” [25].

The MCL formula aside computes the probability that a process Pi performs
memory accesses of a total cost max before entering its critical section. The
regular formula expresses that, after executing its non critical section for the
first time, process Pi begins its entry section and, after a number of memory
accesses, enters its critical section.

{ (¬{NCS !i})∗.{NCS !i}
loop (total cost :nat:=0) in

(¬({MU ... !i} ∨ {CS !”ENTER” !i}))∗

if total cost < max then
{MU ... ?c:nat !i}
continue (total cost + c)

else exit end if
end loop
{CS !”ENTER” !i}

}≥0

The “loop” subformula denotes the entry section of Pi and requires that it
terminates when the cost of all memory accesses performed by Pi (accumulated
in the iteration parameter total cost) exceeds a given value max. The other
processes can execute freely during the entry section of Pi, in particular they
can overtake Pi by accessing their critical sections before it. Figure 4(a) shows
the probability of entering the critical section for various values of max. Since
the entry section contains waiting loops, the number of memory accesses of Pi

before entering its critical section is unbounded (and hence, also the cost max).
However, the probability that a process waits indefinitely before entering its
critical section tends to zero in long-term runs of starvation-free protocols. This
explains the asymptotic probability 1.0 observed in Fig. 4(a): a process has better
chances to reach its critical section when the memory cost of its entry section
increases.

Overtaking. Even if a mutual exclusion protocol is starvation-free, a process
Pi that begins its entry section (and hence, starts requesting the access to the
critical section) may be overtaken one or several times by another process Pj

that accesses its own critical section before Pi does so. A qualitative measure of a
starvation-free protocol is given by its overtaking degree, which is the maximum
number of overtakes per couple of processes. This number should be as small
as possible, and may vary among process couples for asymmetric protocols. A
qualitative study of the overtaking degree was carried out in [25] using MCL reg-
ular formulas with counters. Here we use the same property in the probabilistic
setting, which enables to compute the probability that process Pj overtakes Pi a
given number of times. Figure 4(b) shows the results for the BL protocol, which
outline its intrinsic asymmetry: lower index processes, with higher priority, also
have better chances to overtake the other processes.

204 R. Mateescu and J.I. Requeno

(a)

(c)

(b)

Fig. 4. Probabilities computed using on-the-fly model checking. (a) Accessing the crit-
ical section after memory accesses of cost MAX. (b) Overtaking of Pi by Pj (Pj Pi) in
the BL protocol. (c) Standalone execution of Pi.

Standalone Execution. As opposed to overtaking, it is also interesting to
examine the dual situation, in which a process Pi executes its cycle in stand-
alone, i.e., without any interference with the other processes. This situation
was explicitly formulated in [12] as the independent progress requirement, which
should be satisfied by any mutual exclusion protocol. We can analyze this situ-
ation by computing the probability measure of a complete execution of process
Pi without any other action being performed meanwhile by other processes.

This execution can be specified by the MCL formula aside, where max denotes
the number of consecutive executions of Pi.

{ ((¬{CS ... ?j:nat where j �= i})∗.{NCS !i}
(¬{... ?j:nat where j �= i})∗.{CS !”ENTER” !i}
(¬{... ?j:nat where j �= i})∗.{CS !”LEAVE” !i}
) {max} }≥0

Figure 4(c) shows that the probability of standalone execution of Pi decreases
with max, which reflects the starvation-free nature of the protocols.

Model Checking for Action-Based Probabilistic Operators 205

Performance of Analysis. All model checking experiments have been carried
out in a single core of an Intel(R) Xeon(R) E5-2630v3 @2.4 GHz with 128 GBytes
of RAM and Linux Debian 7.9 within a cluster of Grid’5000 [4]. The sizes of
the PTSs including the additional transitions of memory access costs (available
in [25, Table 4]), range from 3 252 states and 6 444 transitions (for the TAS
protocol) to 18 317 849 states and 31 849 616 transitions (for the CLH protocol).

The computing resources needed for on-the-fly verification depend on the
complexity of the MCL regular formulas, and in particular the number and
domains of their data parameters. For example, the analysis of the first access
to the critical section takes between 3.25–5.5 s and 36.5–77 MBytes for all pro-
tocol configurations considered. For other properties, such as those concern-
ing the memory latency or the overtaking, some peaks arrive up to 2–3 h and
12–14 GBytes because of the manipulation of data (cost of memory accesses)
and iterations (number of overtakes). The analysis of the standalone execution
of Pi may take up to 285 s and 1 230 MBytes for the BL protocol because of the
complex cycles present in the PTS, while the same analysis takes less than 100 s
(or even 10 s) for the other protocols.

6 Conclusion and Future Work

We proposed a regular probabilistic operator for computing the probability mea-
sure of complex paths in a PTS whose actions contain data values. Paths are
specified using the action-based, data handling regular formulas of MCL [27] that
we extended with a general iteration operator “loop” enabling the specification
of arbitrarily complex paths. These new operators subsume those of P(A)CTL,
and make possible the study of paths whose associated cost (calculated from the
data values present on their actions) has a given value. We defined an on-the-fly
model checking method based on reformulating the problem as the resolution
of a linear equation system (LES) and a Boolean equation system (BES), and
implemented it in the EVALUATOR model checker of the CADP toolbox.

To assess and finely tune our on-the-fly model checking method, we will
experiment it on further examples and compare it (for properties expressible in
PCTL) with explicit-state PRISM [19]. The on-the-fly analysis back-end (which
is currently sequential) can be enhanced with distributed capabilities by connect-
ing it with the MUMPS distributed solver [1] for sparse LESs. Finally, we will
seek to extend our approach (which deals only with finite paths described using
data-handling regular formulas) to handle infinite paths satisfying ω-regular
properties, along the lines of [3, Chap. 10].

Acknowledgments. This work was supported by the European project SENSATION
(Self Energy-Supporting Autonomous Computation) FP7-318490.

206 R. Mateescu and J.I. Requeno

References

1. Amestoy, P.R., Duff, I.S., L’Excellent, J.-Y., Koster, J.: MUMPS: a general pur-
pose distributed memory sparse solver. In: Sørevik, T., Manne, F., Moe, R.,
Gebremedhin, A.H. (eds.) PARA 2000. LNCS, vol. 1947, pp. 121–130. Springer,
Heidelberg (2001)

2. Andersen, H.R.: Model checking and boolean graphs. TCS 126(1), 3–30 (1994)
3. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge

(2008)
4. Bolze, R., Cappello, F., Caron, E., Daydé, M.J., Desprez, F., Jeannot, E., Jégou,

Y., Lanteri, S., Leduc, J., Melab, N., Mornet, G., Namyst, R., Primet, P., Quétier,
B., Richard, O., Talbi, E.-G., Touche, I.: Grid’5000: a large scale and highly recon-
figurable experimental grid testbed. IJHPCA 20(4), 481–494 (2006)

5. Brzozowski, J.A.: Derivatives of regular expressions. JACM 11(4), 481–494 (1964)
6. Champelovier, D., Clerc, X., Garavel, H., Guerte, Y., McKinty, C., Powazny, V.,

Lang, F., Serwe, W., Smeding, G.: Reference manual of the LNT to LOTOS trans-
lator (Version 6.2). Inria/Vasy and Inria/Convecs, p. 130 (2015)

7. Chua, L.O., Lin, P.M.: Computer Aided Analysis of Electronic Circuits. Prentice
Hall, Upper Saddle River (1975)

8. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(2000)

9. Cleaveland, R., Iyer, S.P., Narasimha, M.: Probabilistic temporal logics via the
modal μ-calculus. TCS 342(2–3), 316–350 (2005)

10. Cleaveland, R., Steffen, B.: A linear-time model-checking algorithm for the
alternation-free modal mu-calculus. FMSD 2(2), 121–147 (1993)

11. Dershowitz, N.: Termination of rewriting. J. Symb. Comput. 3(1), 69–115 (1987)
12. Dijkstra, E.W.: Solution of a problem in concurrent programming control. CACM

8(9), 569 (1965)
13. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. JCSS

18(2), 194–211 (1979)
14. Garavel, H., Lang, F.: SVL: a scripting language for compositional verification. In:

FORTE 2001, pp. 377–392. Kluwer (2001)
15. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the

construction and analysis of distributed processes. STTT 15(2), 89–107 (2013)
16. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal

Asp. Comput. 6(5), 512–535 (1994)
17. Kozen, D.: Results on the propositional μ-calculus. TCS 27, 333–354 (1983)
18. Kozen, D.: A probabilistic PDL. JCSS 30(2), 162–178 (1985)
19. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic

real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011)

20. Larsen, K.G.: Proof systems for hennessy-milner logic with recursion. In: Dauchet,
M., Nivat, M. (eds.) CAAP 1988. LNCS, vol. 299. Springer, Heidelberg (1988)

21. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput.
94(1), 1–28 (1991)

22. Latella, D., Loreti, M., Massink, M.: On-the-fly fast mean-field model-checking. In:
Abadi, M., Lluch Lafuente, A. (eds.) TGC 2013. LNCS, vol. 8358, pp. 297–314.
Springer, Heidelberg (2014)

23. Mateescu, R.: Caesar solve: a generic library for on-the-fly resolution of alternation-
free boolean equation systems. STTT 8(1), 37–56 (2006)

Model Checking for Action-Based Probabilistic Operators 207

24. Mateescu, R., Monteiro, P.T., Dumas, E., de Jong, H.: CTRL: extension of CTL
with regular expressions and fairness operators to verify genetic regulatory net-
works. TCS 412(26), 2854–2883 (2011)

25. Mateescu, R., Serwe, W.: Model checking and performance evaluation with CADP
illustrated on shared-memory mutual exclusion protocols. SCP 78(7), 843–861
(2013)

26. Mateescu, R., Sighireanu, M.: Efficient on-the-fly model-checking for regular
alternation-free μ-calculus. SCP 46(3), 255–281 (2003)

27. Mateescu, R., Thivolle, D.: A model checking language for concurrent value-passing
systems. In: Cuellar, J., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 148–164.
Springer, Heidelberg (2008)

28. R. De Nicola and F. W. Vaandrager. Action versus State Based Logics for Transi-
tion Systems. In Semantics of concurrency, LNCS vol. 469, pp. 407–419. Springer,
(1990)

SymDIVINE: Tool for Control-Explicit
Data-Symbolic State Space Exploration

Jan Mrázek, Petr Bauch, Henrich Lauko, and Jǐŕı Barnat(B)

Faculty of Informatics, Masaryk University,
Botanicka 68a, 602 00 Brno, Czech Republic

{xmrazek7,bauch,xlauko,barnat}@fi.muni.cz

Abstract. We present SymDIVINE: a tool for bit-precise model check-
ing of parallel C and C++ programs. It builds upon LLVM compiler
infrastructure, hence, it uses LLVM IR as an input formalism. Internally,
SymDIVINE extends the standard explicit-state state space exploration
with SMT machinery to handle non-deterministic data values. As such,
SymDIVINE is on a halfway between a symbolic executor and an explicit-
state model checker. The key differentiating aspect present in SymDIVINE
is the ability to decide about equality of two symbolically represented
states preventing thus repeated exploration of the state space graph.
This is crucially important in particular for verification of parallel pro-
grams where the state space graph is full of diamond-shaped subgraphs.

1 Introduction

Automatic program analysis, e.g. detection of use of invalid memory or division
by zero, is commonly used by both academia and industry for some time now. On
the other hand, automatic program verification has not been widely accepted by
the industry and remains mostly exclusively within the academic interest. This
situation did not change even after the arrival of modern multi-core CPUs that
made the concurrency related problems such as data races quite common, yet
difficult to detect and solve by humans — an ideal opportunity for automated
formal verification. The reasons for failure are numerous, however, the most
tampering factor is the need for remodeling the input program in a modeling
language of the model checker [1].

To address this specific issue, we present SymDIVINE– a tool for verification
of real parallel C and C++ programs with non-deterministic inputs. The tool
is built on top of the LLVM framework in order to avoid the need of modeling
and, at the same time, to achieve precise semantics of C and C++ programming
languages. SymDIVINE is motivated as an extension of our purely explicit model
checker DIVINE [3] that is capable of handling full parallel C/C++ programs
without inputs. To properly handle programs with inputs, SymDIVINE relies on
Control-Explicit Data-Symbolic approach [2], which we detail below.

This work has been partially supported by the Czech Science Foundation grant
No. 15-08772S.

c© Springer International Publishing Switzerland 2016
D. Bošnački and A. Wijs (Eds.): SPIN 2016, LNCS 9641, pp. 208–213, 2016.
DOI: 10.1007/978-3-319-32582-8 14

SymDIVINE: Tool for Control-Explicit Data-Symbolic State 209

2 Control-Explicit Data-Symbolic Approach

In the standard explicit state model checking, the state space graph of a program
is explored by an exhaustive enumeration of its states. SymDIVINE basically fol-
lows the same idea, but it employs a control-explicit data-symbolic approach to
alleviate the state space explosion caused by the non-deterministic input val-
ues. While a purely explicit-state model checker has to produce a new state for
each and every possible input value, in SymDIVINE a set of states that differ
only in data values is represented with a single data structure, the so called
multi-state. Multi-state is composed of explicit control location and a set of pro-
gram’s memory valuations. The model checking engine in SymDIVINE operates
on multi-states, which is the key differentiating factor of SymDIVINE if compared
to other, purely explicit approaches. Relying on multi-states is computationally
more demanding, but may bring up to exponential time and memory savings.
See Fig. 1. Moreover, with an equality check for multi-states, we can easily mimic
most explicit-state model checking algorithms – from simple reachability of error
states to full LTL model checking [6].

DIVINE

init

a = 65534

a = 65535

...

...

a = 0

a = 2^32

a = 65534; b = 0

a = 65535; b = 1

...

...

a = 0; b = 0

a = 2^32; b = 1

call

call

call

call

icmp

icmp

icmp

icmp

SymDIVINE

init a = {0,...,2^32}

a = {0,...,65534}
b = {0}

a = {65535,...,2^32}
b = {1}

call

icmp

icmp

Fig. 1. The figure compares state exploration in the explicit approach of DIVINE and in
the control-explicit data-symbolic approach of SymDIVINE on LLVM program example.
From init state DIVINE explores states for every possible value of a (232 values), hence
exponentially expands state space. In contrast SymDIVINE approach of symbolic rep-
resentation generates only two different states. One where the condition on branching
(a ≥ 65535) is satisfied and the other one where the condition is violated.

210 J. Mrázek et al.

2.1 Representation of Multi-states

To perform verification of a program of size that is interesting from an indus-
trial point of view, an efficient data structure for representation of multi-states is
needed. While the representation of the explicit control-flow location is straight-
forward and easy, the representation of the set of program’s variable valuations
(the symbolic part) is rather challenging. We have tested several different rep-
resentations during the development of SymDIVINE. Since our aim was to stick
with a bit-precise verification, we only considered representations that were suit-
able for that. In particular, we dealt with binary decision diagrams, integer inter-
vals and SMT formulae [4]. For the rest of the paper, we refer to the symbolic
part as symbolic data.

In the current version of SymDIVINE, only quantified bit-vector SMT formu-
lae are supported to represent symbolic data. The tool does not support dynamic
memory allocation and manipulation at the moment, which makes the represen-
tation of symbolic data much simpler. Nevertheless, an unambiguous program
variable naming scheme needs to be established so that different local variables
with the same name are uniquely identified. Note that identifying variables with
the index of a function they belong to, and an offset within the function in the
LLVM bitcode is not satisfactory for the purpose of verification. In such scheme,
we cannot differentiate the individual instances of the same variable within dif-
ferent function calls during recursion or in the presence of parallel threads. To
deal with that we adopted the natural way the program’s memory is organized
– a stack divided into segments. Each function call made is linked with the cor-
responding segment on the stack, and so is every live instance of a variable.
Therefore, individual instances can be identified by the index of the stack seg-
ment and an offset within that segment. Note that the first segment on the stack
is reserved for global variables.

The code represents a simple LLVM program, where a is initialized with a
non-deterministic 32-bit integer, then it is checked whether it is greater or equal
to 65535. The result of the check is stored to b and used for branching.

%a = call i32 @__VERIFIER_nondet_int()
%b = icmp sge i32 %a, 65535
br i1 %b, label %5, label %6

Another issue the model checker has to deal with is the fact that for some
variables, old values have to be remembered. To that end, SymDIVINE maintains
the so called generations of variables. These are used to keep previous values of
variables that have been redefined since the beginning of the execution of the pro-
gram. Basically, each assignment to a variable generates a new generation of it.
Consider, for example, the following C code: int x = 5; int y = x; x = 42;
after execution of which the model checker have to remember that the variable
y equals to an old value stored at the variable x.

Symbolic data part of a multi-state itself is further structured. In particular,
it contains two sections – the so called path condition and definitions. The path
condition is a conjunction of formulae that represents a restriction of the data

SymDIVINE: Tool for Control-Explicit Data-Symbolic State 211

that have been collected during the branching along the path leading to the
current location. Definitions, on the other hand, are made of a set of formulae in
the form variable = expression that describe internal relations among variables.
Definitions are produced as a result of an assignment and arithmetic instructions.
The structure of symbolic data representation allows for a precise description of
what is needed for the model checking, but it lacks the canonical representation.
As a matter of fact, the equality of multi-states cannot be performed as a syntax
equality, instead, SymDIVINE employs an SMT solver and quantified formulae
to check the satisfiability of a path condition and to decide the equality of two
multi-states. For more details, we kindly refer to [2].

2.2 State Space Generation

SymDIVINE is built on top of the LLVM framework to simplify interpretation
of complicated C/C++ semantics. To generate successors of a given multi-state
we have implemented an interpreter of a subset of LLVM instructions. When
generating new multi-states, the interpreter first checks if the input multi-state
has a satisfiable path condition. If not, no successors are generated and the
multi-state is marked as empty (invalid state). In the other case, the control
location is systematically advanced for one of the threads, the corresponding
instruction is executed and a new multi-state is emitted. After that the input
multi-state is restored and the procedure is repeated for other threads. In this
way, all thread interleavings are generated at the very fine-grained level of indi-
vidual LLVM instructions. This would result in an enormous state space explosion
unless SymDIVINE employed τ -reduction [7] to avoid emitting of invisible multi-
states. With τ -reduction the penalty for fine-grained parallelism is eliminated.
Moreover, to avoid repeated exploration of already visited states, a set of already
seen symbolic data is maintained for each control location. Only new multi-states
are further explored. Note that since there is no canonical representation for the
symbolic data part, linear search is used to check for the presence of a multi-
state in the list. At the moment, SymDIVINE relies on the Z3 SMT solver. To
further reduce the length of symbolic data lists associated with the individual
control-flow locations, SymDIVINE employs the so called explication [2]. If the
definition part for a single variable leads to one single possible data value, the
variable is removed from the symbolic data part of the multi-state and is treated
as a regular explicit value. The process of explication is rather expensive, but
it pays off, as it reduces the number of SMT calls made due to the multi-state
equality tests.

As for interpretation of LLVM bitcode, most instructions (including arith-
metic instructions) are implemented with the corresponding formula manipu-
lation in the definitions section of a multi-state. Branching instructions for a
condition ϕ always produce two succeeding states, where ϕ is conjuncted with
the path condition of the first successor, and ¬ϕ with the condition of the sec-
ond successor. Function calls result in a initialization of a new stack segment,
upon function return, the variables in the stack segment from where the function
was called are substituted with the returned values and the corresponding stack

212 J. Mrázek et al.

segment is deleted. To support parallel C/C++ programs, SymDIVINE contains
its own limited implementation of PThread library.

3 Using SymDIVINE

Given a C/C++ program, its verification using SymDIVINE is quite straight-
forward and simple. We adopted SV-COMP notation [5] to mark a non-
deterministic input of the verified program. Using this notation a user can bring
the input to the program by calling VERIFIER nondet {type} function. We
also support input assumptions, atomic sections, and asserts from SV-COMP
notation. Beside this denotation of non-deterministic inputs, no other annota-
tion is needed. To verify the annotated program, it has to be first compiled into
the LLVM bitcode using Clang. The user can either do it manually with any
compiler flags needed, or may use our script compile to bitcode to compile
the program source code with the default compiler flags. After that the user has
to choose if the program should be verified for an assertion safety or against
an LTL property. To verify the program for the assertion safety, the user has to
run ./symdivine reachability {program.ll}. Optional arguments verbose
or vverbose can be used to track the progress of verification. If there is no run
violating any assertion (both C and SV-COMP style) SymDIVINE responds that
the model is safe. Otherwise, it outputs a single state in which the assertion is
violated.

To verify the program against an LTL property, the user has to run
./symdivine ltl {property} {program.ll}. The LTL formula is passed as a
plain text and is parsed by SymDIVINE internally. The format follows the stan-
dard LTL syntax. Atomic propositions are embedded into the formula and are
bounded within square brackets. An atomic proposition can refer to any global
variable in the verified program or a constant with a given bit-width. Since the
support for debugging information in the bit code is not fully implemented yet,
the global variables are referred to using their offset in a global segment (this
offset can be read in the bitcode file). Note that for a bitcode file, Clang keeps
the same order of variables as is the order of the variables in the source file.
An example of LTL formula for SymDIVINE is as follows: !F(G[seg1 off0 =
0(32)]).

SymDIVINE does not currently support the debug information stored in bit
code files, so all counterexamples are in the form of internal representation and
with no link to the original source code file. However, since the internal repre-
sentation follows strict and simple rules and the information obtained from the
path condition is clearly readable, it is possible for a user to reconstruct the
counterexample simply by following it in the source code file. This is currently
the weakest part of SymDIVINE user interface.

4 Conclusions and Future Work

The main advantage of SymDIVINE is the fact that it performs a direct bit-precise
verification of C/C++ programs with no need for modeling. Using a bit-vector

SymDIVINE: Tool for Control-Explicit Data-Symbolic State 213

theory, SymDIVINE can be bit-precise and handle bit-shifts, unsigned overflows,
etc. Unlike symbolic executors or bounded model checkers, SymDIVINE also han-
dles programs with infinite behavior, provided that the semi-symbolic state space
is finite. The LLVM approach allows us to reflect compiler optimizations and
architecture specific issues such as bit-width of variables. With a proper LLVM
frontend, SymDIVINE is also applicable to various programming languages.

In the current state SymDIVINE is able to verify pieces of real world code.
These pieces are, however, limited by the subset of LLVM instructions that is
supported by our tool. The most limiting factor for SymDIVINE is the lack of
support for dynamic memory. Besides that, our tool also misses advanced tech-
niques that reduce resource usage and are incorporated within other tools, such
as efficient memory compression. Absence of these techniques makes our tool
more resource wasteful compared to the others. However, majority of the limi-
tations are purely of technique nature and will be solved in the future. From the
conceptional point of view, SymDIVINE approach does not deal well with cycles
whose number of iterations depends on an input. SymDIVINE also cannot handle
programs that run an infinite number of threads. However, this is not a limiting
factor for real world use.

On the other hand, SymDIVINE demonstrates that the Control-Explicit Data-
Symbolic approach can be used for verification of parallel programs with nonde-
terministic inputs, and we plan to further support it. SymDIVINE source code
can be found at https://github.com/yaqwsx/SymDIVINE.

References

1. Alglave, J., Donaldson, A.F., Kroening, D., Tautschnig, M.: Making software veri-
fication tools really work. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS,
vol. 6996, pp. 28–42. Springer, Heidelberg (2011)

2. Barnat, J., Bauch, P., Havel, V.: Model checking parallel programs with inputs.
In: 2014 22nd Euromicro International Conference on Parallel, Distributed and
Network-Based Processing (PDP), pp. 756–759 (2014)

3. Barnat, J., et al.: DiVinE 3.0 – An explicit-state model checker for multithreaded C
& C++ programs. In: Sharygina, N., Veith, H. (eds.) Computer Aided Verification
(CAV 2013). LNCS, vol. 8044, pp. 863–868. Springer, Heidelberg (2013)

4. Bauch, P., Havel, V., Barnat, J.: LTL model checking of LLVM bitcode with
symbolic data. In: Hliněný, P., Dvořák, Z., Jaroš, J., Kofroň, J., Kořenek, J.,
Matula, P., Pala, K. (eds.) MEMICS 2014. LNCS, vol. 8934, pp. 47–59. Springer,
Heidelberg (2014)

5. Beyer, D.: Software verification and verifiable witnesses. In: Baier, C., Tinelli, C.
(eds.) TACAS 2015. LNCS, vol. 9035, pp. 401–416. Springer, Heidelberg (2015)

6. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press,
Cambridge (1999)

7. Ročkai, P., Barnat, J., Brim, L.: Improved state space reductions for LTL model
checking of C and C++ programs. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM
2013. LNCS, vol. 7871, pp. 1–15. Springer, Heidelberg (2013)

https://github.com/yaqwsx/SymDIVINE

A Tool Integrating Model Checking
into a C Verification Toolset

Subash Shankar(B) and Gilbert Pajela

City University of New York (CUNY), New York, USA
subash.shankar@hunter.cuny.edu, gpajela@gradcenter.cuny.edu

Abstract. Frama-C is an extensible C verification framework that
includes support for abstract interpretation and deductive verification.
We have extended it with model checking based on counterexample
guided refinement. This paper discusses our tool and outlines the major
challenges faced here, and likely to be faced in other similar tools.

1 Introduction and Motivation

Program verification has a long history with a more recent growth in tools for
semi-automatic and automatic verification, even though the general problem is
undecidable. Three major underlying approaches are abstract interpretation [9],
deductive verification based on Floyd-Hoare logic along with its weakest pre-
condition interpretation [10–12], and model checking [7]. Unfortunately, no one
approach can verify all programs in practice, with major tradeoffs including
automatability, generality, scalability, and efficiency. In particular, while deduc-
tive verification techniques require deep user understanding to provide manual
guidance (e.g., to identify loop invariants) but can be used for all programs
(given a suitably powerful theorem prover), model checking is completely auto-
matic but suffers from state space explosion. Given the pros and cons of each
technique, it is desirable to integrate them, enabling a ‘verification engineer’ to
select tools as appropriate.

The Frama-C toolset is an extensible framework that integrates multiple
static analysis techniques including abstract interpretation and deductive ver-
ification, for C programs. We have implemented a prototype model checking
plugin to Frama-C that allows the user to mix-and-match all of these verifica-
tion techniques. The end goal is to provide a software verification system that
can exploit the benefits of all three underlying approaches in a convenient and
integrated manner so program parts can be verified using the most appropriate
approach, and the results integrated in a seamless fashion. We believe this is the
first tool to combine these approaches.

2 Frama-C Overview

Frama-C is a platform for static analysis of C programs, and we outline the
relevant parts in this section though the reader is referred to [13] for a more
c© Springer International Publishing Switzerland 2016
D. Bošnački and A. Wijs (Eds.): SPIN 2016, LNCS 9641, pp. 214–224, 2016.
DOI: 10.1007/978-3-319-32582-8 15

A Tool Integrating Model Checking into a C Verification Toolset 215

extensive discussion. It is extensible through plugins that may share information
and interact through a common interface. The plugins will typically interface
with C Intermediate Language (CIL) and other tool results, as supported by the
Frama-C kernel. All code is open-source and written in OCaml.

Frama-C analyses generally act on specifications written using the ANSI/ISO
C Specification Language (ACSL) [1]. ACSL allows for specification of contracts
on functions and statements (among other features), and we support three types
of clauses in contracts:

– requires: pre-condition for the contract
– ensures: post-condition for the contract. When in a statement contract, it

is conditional on normal termination; that is, not through a goto, break,
continue, return, or exit statement (ACSL is a rich language that also
includes analogs for the abnormal termination case, but we currently do not
support these).

– assigns: The set of variables potentially modified by the statement/function
(including those modified on abnormal execution paths). If there is no assign
statement, any variable is assumed to be potentially modified.

Arguments for requires and ensures clauses are standard C expressions with
numerous extensions to support simpler expression of properties. In particular,
we support two functions:

– \result: evaluates to the return value of a function
– \at(e,id): evaluates to the value of the expression e at label id, where the

label may be in the C program or one of 6 ACSL-defined labels. We support
4 predefined labels:
• Pre: The prestate of the function, when in a statement contract.
• Post: The poststate of the contract (visible in ensures clauses).
• Old: The prestate of the contract (visible in ensures clauses).
• Here: the prestate when in a requires clause, and the poststate when in an

ensures clause.

Frama-C comes with a number of plugins, and we are primarily interested
in interfacing with two of these: value and wp. Value analysis applies forward
dataflow analysis on domain-dependent abstract interpretation lattices to com-
pute conservative approximations to all variable values. Some typical abstrac-
tions include intervals and mod fields for integers, intervals for reals, offsets
into memory regions for pointers, etc. Loops must be unrolled by a constant
user-selected number of iterations, which unfortunately may not be efficient
for large iteration counts. It is possible to perform unbounded loop unrolling,
but this results in a potentially non-terminating fixed point computation and is
thus not recommended. The wp plugin performs deductive verification based on
Dijkstra’s weakest precondition calculus. As with all deductive verification tech-
niques, there are limitations imposed by undecidability and the capabilities of
underlying backend engines (SMT solvers and/or proof assistants). Additionally,
loops are problematic since they require the manual identification of loop invari-
ants, and it is generally recognized that software developers are not typically
adept at identifying sufficiently strong invariants.

216 S. Shankar and G. Pajela

3 Model Checking for Software Verification

Traditional model checking automatically verifies liveness/reachability and
safety properties expressed in temporal logic on a state machine representing
the system being verified. Since an explicit representation of the state machine
is often impractical, symbolic model checking uses a symbolic representation and
has been used to verify very large systems [4]. However, even small programs
lead to huge state spaces, and its direct use is thus limited. For example, a pro-
gram with just 10 32-bit variables requires ∼1096 states, which approaches the
limits of symbolic model checking.

Counter-example guided refinement (CEGAR) alleviates this problem by
applying predicate abstraction to construct and verify a Boolean program
abstracting the original program [6]. Initially, the predicates used for abstrac-
tion are typically either null (thus, abstracting the program into its control flow
graph) or a subset of conditions in the program/contract. If the property is verifi-
able in the abstraction, it must be true; otherwise, the produced counterexample
is validated on the original program. If validation fails (i.e., the counterexample
was spurious), the counterexample is analyzed to produce additional new pred-
icates for refining the abstraction. This verify-validate-refine cycle is iterated
until the property is proven (see Fig. 1), hopefully within a reasonable number
of iterations.

Predicates Counterexample

Spurious
Counterexample

(true)

(false)

Verification
Successful

(false) (true) Verification
Fails

Verify
(model
check)

Abstract
Program

Refine Validate

Fig. 1. CEGAR algorithm

There are several CEGAR-based tools for C program verification, with 2 com-
mon ones being SATABS [5] and Blast [2] which is now extended and embodied
in the CPAchecker tool [3]. Both augment C with a VERIFIER assume(expr)
statement that restricts the state space to paths in which expr is true (at the
point of the statement), and both can be used to verify C assertions. CPAchecker
is a configurable tool that allows for multiple analysis techniques, mostly related
to reachability analysis. Configurations differ on underlying assumptions such

A Tool Integrating Model Checking into a C Verification Toolset 217

as the approximation of C data types with mathematical types. CEGAR tool
performances vary due largely to differing refinement strategies, and the app-
roach in our plugin is to allow multiple user-selectable CEGAR backends. Since
we wish to interact with other Frama-C tools that may be strict, we use a
conservative configuration that does reachability analysis on bit-precise approxi-
mations (named predicateAnalysis-bitprecise), and all further mentions of
CPAchecker in this paper should be understood to refer to this configuration.

4 The cegarmc Plugin

Our plugin, called cegarmc1, verifies statements (which may of course contain
arbitrarily nested statements) using SATABS and CPAchecker backends called
through the Frama-C GUI. Cegarmc currently supports the following C99 and
ACSL constructs:

– Variables/Types: Scalars including standard variations of integers and floats,
arrays, structs/unions, and pointers (to these). Automatic and static storage
classes are both supported. Type attributes (e.g., for alignment, storage) are
not supported.

– Statements: all constructs excluding exceptions. This includes function calls.
– ACSL: Statement contracts containing ensures and requires calls, with

clauses that may be C expressions possibly using the ACSL functions men-
tioned in Sect. 2. For inter-procedural verification (discussed later), we also
utilize function contracts in called functions along with assigns clauses. We
do not verify function contracts themselves, since Frama-C can handle those
given proofs of individual statement contracts.

These form a fairly complete C and ACSL subset, though there is in principle no
reason why other constructs can’t be supported (provided they have well-defined
semantics across C standards, and a CEGAR backend supports them).

4.1 Cegarmc Implementation

Cegarmc functions by translating the CIL representation of the statement being
verified along with its ACSL contract into an equivalent well-formed single-
function C program that can be verified by SATABS or CPAchecker. Figure 2
illustrates the resulting architecture. Frama-C includes a mechanism for main-
taining/combining validity statuses for contracts (possibly from multiple analy-
ses) along with dependencies between contracts [8], and cegarmc emits a ‘true’
or ‘dont know’ status depending on results.

Figure 3 illustrates an abstract statement and its translation, where S’ is
essentially the CIL version of S. Each variable that appears in S is declared in
the same order (thus ensuring parsability), though not necessarily contiguously

1 The tool is open-source and available at http://www.compsci.hunter.cuny.edu/
∼sshankar/cegarmc.html.

http://www.compsci.hunter.cuny.edu/~sshankar/cegarmc.html
http://www.compsci.hunter.cuny.edu/~sshankar/cegarmc.html

218 S. Shankar and G. Pajela

Cegarmc

Frama-C

[Core] Plugins

. . . WPVal

Frama-C Core

(including APIs for CIL and

abstract interpretation lattices)

SATABS

CPA

checker

Fig. 2. System architecture

(see Sect. 4.2 for a discussion of resulting ramifications with respect to memory
models). The labels CMCGOODEND and CMCBADEND capture normal and
abnormal termination of S respectively, and S’ also replaces abnormal termina-
tions with branches to CMCBADEND (since ACSL statement contracts don’t
apply to abnormal terminations). Multiple requires clauses are translated to
multiple assumes clauses. If there are multiple ensures clauses, this translation
is repeated for each one, calling the CEGAR checker once per clause. It is easy
to see that this simple translation is sound.

/*@ requires R;

ensures E;

*/

S;

⇒
Declarations

__VERIFIER_assume(R);

S’;

CMCGOODEND:

assert(E);

CMCBADEND: return;

Fig. 3. Translation of statement

Inter-procedural verification is substantially more complicated. Model check-
ers require callee expansion, resulting in state space explosion. Assuming a
contract can be written for the callee, our approach exploits this contract to
implement a form of assume-guarantee reasoning, thus avoiding state space
explosion. Our basic approach is to automatically replace function calls with
assumes clauses capturing the corresponding contract. Figure 4 illustrates an
abstract example of this translation for the non-void 1-argument side-effect-free
case, where P[x:=y] is the substitution operator that replaces all free occur-
rences of x in P with y. If there are multiple [syntactic] instances of calls to foo
in S, distinct identifiers are given to each call variable (e.g., CMCfoo1, CMC-
foo2, . . .) – note that multiple calls themselves (e.g., in a loop) are only given
one variable since they are declared in a local scope/lifetime. The extensions
to multi-argument and void functions are simple to see. Any proofs of S’s con-
tract are marked as conditional on foo’s contract; thus, vacuous local proofs of
S are possible, though the global proof would still fail since foo’s contract would
be false.

A Tool Integrating Model Checking into a C Verification Toolset 219

// S’s body:

...

S1 // calls foo(actual);

...

/*@

requires R2;

assigns A2;

ensures E2;

*/

SomeType foo(formal) {

...

};

⇒

...

SomeType CMCfoo;

__VERIFIER_assume(

!R2[formal:=actual] ||

E2[\result:=CMCfoo]

[\old(formal):=actual]

)

S1’[foo(actual):=CMCfoo]

...

Fig. 4. Inter-procedural translation of S

However, this is complicated by side-effects arising from interference between
the statement and called function (e.g., assigning of a static global variable).
Cegarmc also checks for such interferences using ACSL assigns clauses to iden-
tify potentially modified variables and proceeds with the proof only if no poten-
tial interference is found. Additionally, if no assigns clause is present, cegarmc
attempts to determine modified variables and marks resulting proofs conditional
on independence (which may be proven separately).

Figure 5 illustrates the algorithm for handling such interferences, where
Θ(S,C) denotes the transformation of S illustrated in Fig. 4. The algorithm works
by first identifying which variables are modified by S and any functions called
in S’s body, in a manner consistent with ACSL semantics for assigns clauses.
This essentially amounts to using the assigns clause when one is available, and
analyzing the code to determine assigned variables otherwise. Then, it checks
for side effects of called functions that may potentially interfere, and aborts if so
(this case results in the desired property marked with a ‘dont know’ status). We
currently do not support pointers in assigns clauses, though there may be side
effects from, for example, static variables. Finally, it calls the CEGAR checker on
the transformed program. Frama-C introduces the notion of emitters, whereby
a proof is marked with the name of the supporting tool, and we exploit this to
mark proofs as proven by MC or MC.ind depending on whether an independence
assumption needed to be made. This latter case occurs when the called function
has a null body (i.e., it is a stub, declared in the caller as an extern) and no
assigns clause. Of course, the user may later decide to supply more information
and retry for an unconditional proof.

Figure 6 illustrates this translation on a simple interprocedural program con-
taining a statement that repeatedly decrements a positive number s until it is
zero2. In this case, id’s function contract has neither an assigns clause nor a

2 For readability reasons, only an abstracted translation is shown since the actual
translation occurs at the CIL level.

220 S. Shankar and G. Pajela

Given the statement and functions (a schema is shown):

/∗@
requ i r e s R1 ;
a s s i gn s A1 ;
ensures E1 ;

∗/
S ; // c a l l s foo

/∗@
requ i r e s R2 ;
a s s i gn s A2;
ensures E2 ;

∗/
f oo (Formals) { . . . } ;

Translation:

Rename multiple calls to the same function with distinct identifiers
IndepFlag ← false
if A1 = ∅ then

A1 ← variables modified in S
end if
for all calls foo(actuals) ∈ S (denote the call C) do

if foo’s body is null and A2 = ∅ then
IndepFlag ← true

else if foo has a body and A2 = ∅ then
A2 ← variables modified in foo

end if
if A1 ∩ A2 �= ∅ then

abort “Interference with Called Function”
end if
S ← Θ(S, C)

end for
if not IndepFlag then

Call CEGAR checker on program S with emitter MC
else

Call CEGAR checker on program S with emitter MC.Ind
end if

Fig. 5. Translation for inter-procedural code

body, and cegarmc thus marks the proof with an MC.ind emitter. If the body
for id (or an assigns clause) had been supplied, cegarmc would have been able to
determine that there is no interference, and the proof would have been emitted
with an MC emitter. In either case, the proof of the statement contract would
be marked as conditional on the proof of id’s function contract, which could be
proved using either cegarmc or other Frama-C tools such as wp.

4.2 Cegarmc Issues

Although cegarmc’s implementation is conceptually simple, there are numerous
semantic issues to ensure soundness. Additionally, there are numerous compli-
cating underlying issues, and we highlight the major ones below. We believe
these issues are also likely to be faced by other such tools.

A Tool Integrating Model Checking into a C Verification Toolset 221

Sample Program

/∗@ requ i r e s n>=0;
ensures \ r e s u l t == n ;

∗/
int id (int n) ;

void main () {
int s , k ;
/∗@ requ i r e s s>0;

ensures s==0;
∗/
{

k=1;
while (s>0)

s = s−id (k) ;
}

}

Translation

void main () {
auto int s , k ;
VERIFIER assume (s > 0) ;

k=1;
while (s>0)

int CMCid1 ;
VERIFIER assume (
(! (k >= 0) | |
(CMCid1 == k))) ;

s = s−CMCid1 ;
}

CMCGOODEND:
a s s e r t (s == 0) ;

CMCBADEND: return ;
}

Fig. 6. Example program and (abstracted) translation

Tool Philosophy: Verification tools differ on whether analyses are guaranteed
correct or merely approximations, and combination techniques additionally may
be based on confidences/probabilities assigned to the tools. Frama-C’s combi-
nation algorithm assumes all analyses are correct, and its analyses combination
algorithms result in inconsistent statuses if, for example, two plugins emit dif-
ferent statuses for the same contract. In contrast, many CPAchecker analyses
use approximations (e.g., rationals for integers) for improved efficiency. Since
cegarmc is intended to perform seamlessly in the Frama-C platform, it uses
only sound tools/configurations where possible and provides feedback otherwise
(though constrained by information available in tool documentation).

Language Semantics: Whereas Frama-C supports C99, SATABS and CPAchecker
are based on ANSI C and C11, respectively. Cegarmc does not account for any
resulting semantic issues, and is thus not suitable for verifying any program relying
on the intricacies of a particular C standard. Syntactically, cegarmc only supports
C99 constructs. This (typically unstated) issue is faced by all verification tools,
and even within the CEGAR tools themselves since they may use other C-targeted
tools.

Memory Model: Any analysis of programs with pointers (or more precisely,
pointer arithmetic) is dependent on the underlying memory model. Cegarmc
is by its nature restricted to supporting the most restrictive memory model
of tools that it interfaces with. Thus, it uses the memory model of Frama-C’s
value analysis, which assumes that each declared variable defines exactly one dis-
tinct base address, and a pointer is not allowed to ‘jump’ across base addresses

222 S. Shankar and G. Pajela

(though it may, of course, still point to different elements in the same array
or struct/union). Value analysis also generates proof obligations capturing such
conditions, which may be independently proven. CEGAR tools also make such
assumptions, though they may simply produce unsound results or be unable to
prove a valid contract instead of producing a proof conditional on the obliga-
tions. Note that with this memory model, cegarmc need not preserve relative
memory addresses (as discussed with the translation algorithm).

Efficiency: Our goal in cegarmc (at least in the initial prototype) is to inte-
grate existing CEGAR-based model checkers into a verification toolset, enabling
further research in integrated multi-technique verification. Since model checking
efficiency is determined primarily by the backend CEGAR tools, the appropriate
measure of efficiency is the number of extra variables added by our translation.
The only constructs for which extra variables are added are:

– Function calls: each function call results in one new variable of the return
value type. Note that these variables may be local to a scope inside the verified
statement, thus creating (and destroying) one new variable for each entry to
the scope (e.g., one per loop iteration).

– ACSL labels: For each supported label, one additional variable of the same
type.

Thus, cegarmc is unlikely to significantly aggravate state space explosion.

4.3 Integration of Approaches

One of the major advantages of our approach is the integration of multiple
verification techniques, and we believe our tool can provide a framework for
research into various such types of integration. Indeed, the interprocedural app-
roach outlined previously may be considered as a simple integration of deductive
verification and model checking if the called function is verified using wp and the
calling statement is verified using cegarmc.

We have also implemented one simple integration of abstract interpretation
(value) and cegarmc, which we dub contextual verification. A function will
typically contain multiple statements (say, statements S1,. . .,Sn), and the com-
position may not be provable (or take too long) using a pure CEGAR approach,
partly because different predicate abstractions are needed for each constituent
statement. However, value analysis may be used to determine the values of all
variables in the initial state of Sk, and cegarmc can then be used to verify
Sk’s contract under this context. This is implemented through a user-selectable
option, in which case cegarmc queries Frama-C’s internal databases (see Fig. 2)
for value results that can be used to compute Sk’s initial state.

Strictly speaking, a statement contract is a standalone entity, and all infor-
mation about the statement’s initial state should be reflected in its requires
clauses. Thus, we use a different emitter to indicate that the proof is contextual.
When reviewing the final proof, a user must then ensure that value analysis
was performed before the proof (or rerun value analysis and any cegarmc proofs
marked as contextual).

A Tool Integrating Model Checking into a C Verification Toolset 223

5 Conclusions and Further Research

As mentioned earlier, the cegarmc prototype covers a fairly complete C subset.
Its performance is almost completely dependent on that of the CEGAR model
checker (which is in general highly variable), and cegarmc does not add signif-
icant inefficiencies. Although our primary goal is to enable the convenience of
model checking in a powerful multi-approach system, we believe that we have
also increased the power of CEGAR tools. In particular, contextual verification
allows for CEGAR verification of program parts within procedures, while our
inter-procedural approach enables verification without the typical state space
explosion.

We believe that cegarmc is a framework for research into integrating verifi-
cation approaches, both by us and others. In particular, we plan on integrating
different verification approaches to: (1) more fully automate the integration of
deductive verification and model checking, (2) exploit abstract interpretation
and deductive verification techniques to configure CEGAR tools for better per-
formance, and (3) combine partial results from different techniques for more
complete verification.

Acknowledgements. This project was partially supported by Digiteo Foreign Guest
Research Grant 2013-0376D and PSC-CUNY Grant 67776-00-45. Much thanks is due
to Zachary Hutchinson, who contributed to some parts of the code. We would also
like to thank the entire Frama-C team for invaluable guidance without which this tool
would not have been possible.

References

1. Baudin, P., Cuoq, P., Filliâtre, J.-C., Marché, C., Monate, B., Moy, Y.,
Prevosto, V.: ACSL: ANSI/ISO C specification language, version 1.8

2. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification: con-
cretizing the convergence of model checking and program analysis. In: Damm, W.,
Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 504–518. Springer, Heidelberg
(2007)

3. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable software verifi-
cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
184–190. Springer, Heidelberg (2011)

4. Burch, J., Clarke, E.M., McMillan, K., Dill, D., Hwang, L.: Symbolic model check-
ing: 10e20 states and beyond. In: Proceedings of the Fifth Annual IEEE Symposium
on Logic in Computer Science (LICS), pp. 428–439 (1990)

5. Clarke, E., Kroning, D., Sharygina, N., Yorav, K.: SATABS: SAT-based predicate
abstraction for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,
vol. 3440, pp. 570–574. Springer, Heidelberg (2005)

6. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

7. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

224 S. Shankar and G. Pajela

8. Correnson, L., Signoles, J.: Combining analyses for C program verification. In:
Stoelinga, M., Pinger, R. (eds.) FMICS 2012. LNCS, vol. 7437, pp. 108–130.
Springer, Heidelberg (2012)

9. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Fourth
ACM Symposium on Principles of Programming Languages (POPL), pp. 238–252
(1977)

10. Dijkstra, E.W.: Guarded commands, nondeterminacy, and formal derivation of
program. Commun. ACM (CACM) 18(8), 453–457 (1975)

11. Floyd, R.: Assigning meanings to programs. Proc. Symp. Appl. Math. 19, 19–32
(1967)

12. Hoare, C.: An axiomatic basic for computer programming. Commun. ACM 12(10),
576–580 (1969)

13. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-c,
a software analysis perspective. Form. Asp. Comput. 27, 573–609 (2015)

14. Shankar, S.: A tool for integrating abstract interpretation, model checking, and
deductive verification (presentation). In: Clarke Symposium: Celebrating 25 Years
of Model Checking, Pittsburgh (2014)

Fair Testing and Stubborn Sets

Antti Valmari1(B) and Walter Vogler2

1 Department of Mathematics, Tampere University of Technology,
P.O. Box 553, 33101 Tampere, Finland

antti.valmari@tut.fi
2 Institut für Informatik, University of Augsburg, 86135 Augsburg, Germany

walter.vogler@informatik.uni-augsburg.de

Abstract. Partial-order methods alleviate state explosion by consider-
ing only a subset of transitions in each constructed state. The choice
of the subset depends on the properties that the method promises to
preserve. Many methods have been developed ranging from deadlock-
preserving to CTL∗- and divergence-sensitive branching bisimilarity
preserving. The less the method preserves, the smaller state spaces it
constructs. Fair testing equivalence unifies deadlocks with livelocks that
cannot be exited, and ignores the other livelocks. It is the weakest con-
gruence that preserves whether the ability to make progress can be lost.
We prove that a method that was designed for trace equivalence also
preserves fair testing equivalence. We describe a fast algorithm for com-
puting high-quality subsets of transitions for the method, and demon-
strate its effectiveness on a protocol with a connection and data transfer
phase. This is the first practical partial-order method that deals with a
practical fairness assumption.

Keywords: Partial-order methods · Fairness · Progress · Fair testing
equivalence

1 Introduction

State spaces of systems that consist of many parallel components are often
huge. Usually many states arise from executing concurrent transitions in dif-
ferent orders. So-called partial-order methods [2,3,5–7,10,11,14,16–18,20] try
to reduce the number of states by, roughly speaking, studying only some orders
that represent all of them. This is achieved by only investigating a subset of
transitions in each state. This subset is usually called ample, persistent, or stub-
born. In this study we call it aps, when the differences between the three do not
matter.

This intuition works well only with executions that lead to a deadlock.
However, traces and divergence traces, for instance, arise from not necessarily
deadlocking executions. With them, to obtain good reduction results, a con-
structed execution must often lack transitions and contain additional transitions
compared to the executions that it represents. With branching-time properties,
thinking in terms of executions is insufficient to start with.
c© Springer International Publishing Switzerland 2016
D. Bošnački and A. Wijs (Eds.): SPIN 2016, LNCS 9641, pp. 225–243, 2016.
DOI: 10.1007/978-3-319-32582-8 16

226 A. Valmari and W. Vogler

As a consequence, a wide range of aps set methods has been developed. The
simplest only preserve the deadlocks (that is, the reduced state space has pre-
cisely the same deadlocks as the full state space) [14], while at the other end the
CTL∗ logic (excluding the next state operator) and divergence-sensitive branch-
ing bisimilarity are preserved [5,11,16]. The more a method preserves, the worse
are the reduction results that it yields. The preservation of the promised prop-
erties is guaranteed by stating conditions that the aps sets must satisfy. Various
algorithms for computing sets that satisfy the conditions have been proposed.
In an attempt to improve reduction results, more and more complicated condi-
tions and algorithms have been developed. There is a trade-off between reduction
results on the one hand, and simplicity and the time that it takes to compute
an aps set on the other hand.

Consider a cycle where the system does not make progress, but there is a path
from it to a progress action. As such, traditional methods for proving liveness
treat the cycle as a violation against liveness. However, this is not always the
intention. Therefore, so-called fairness assumptions are often formulated, stating
that the execution eventually leaves the cycle. Unfortunately, how to take them
into account while retaining good reduction results has always been a problem
for aps set methods. For instance, fairness is not mentioned in the partial order
reduction chapter of [2]. Furthermore, as pointed out in [3], the most widely used
condition for guaranteeing linear-time liveness (see, e.g., [2, p. 155]) often works
in a way that is detrimental to reduction results.

Fair testing equivalence [12] always treats this kind of cycles as progress.
If there is no path from a cycle to a progress action, then both fair testing
equivalence and the traditional methods treat it as non-progress. This makes
fair testing equivalence suitable for catching many non-progress errors, without
the need to formulate fairness assumptions; for an application, see Sect. 7.

Fair testing equivalence implies trace equivalence. So it cannot have better
reduction methods than trace equivalence. Fair testing equivalence is a branching
time notion. Therefore, one might have guessed that any method that preserves
it would rely on strong conditions, resulting in bad reduction results. Suprisingly,
it turned out that a 20 years old trace-preserving stubborn set method [16] also
preserves fair testing equivalence. This is the main result of the present paper.
It means that no reduction power is lost compared to trace equivalence.

Background concepts are introduced in Sect. 2. Sections 3 and 4 present the
trace-preserving method and discuss how it can be implemented. This material
makes this publication self-contained, but it also contains some improvements
over earlier publications. Section 5 discusses further why it is good to avoid strong
conditions. The proof that the method also applies to fair testing equivalence is
in Sect. 6. Some performance measurements are presented in Sect. 7.

2 Labelled Transition Systems and Equivalences

In this section we first define labelled transition systems and some opera-
tors for composing systems from them. We also define some useful notation.

Fair Testing and Stubborn Sets 227

Then we define the well-known trace equivalence and the fair testing equiv-
alence of [12]. We also define tree failure equivalence, because it is a strictly
stronger equivalence with a related but much simpler definition.

The symbol τ denotes the invisible action. A labelled transition system or
LTS is a tuple L = (S,Σ,Δ, ŝ) such that τ /∈ Σ, Δ ⊆ S × (Σ ∪ {τ}) × S
and ŝ ∈ S. The elements of S, Σ, and Δ are called states, visible actions, and
transitions, respectively. The state ŝ is the initial state. An action is a visible
action or τ .

We adopt the convention that, unless otherwise stated, L′ = (S′, Σ′,Δ′, ŝ′),
Li = (Si, Σi,Δi, ŝi), and so on.

The empty string is denoted with ε. We have ε �= τ and ε /∈ Σ.
Let n ≥ 0, s and s′ be states, and a1, . . . , an be actions. The notation

s − a1 · · · an→ s′ denotes that there are states s0, . . . , sn such that s = s0,
sn = s′, and (si−1, ai, si) ∈ Δ for 1 ≤ i ≤ n. The notation s − a1 · · · an→
denotes that there is s′ such that s − a1 · · · an→ s′. The set of enabled actions
of s is defined as en(s) = {a ∈ Σ ∪ {τ} | s − a→}.

The reachable part of L is defined as the LTS (S′, Σ,Δ′, ŝ), where

– S′ = {s ∈ S | ∃σ ∈ (Σ ∪ {τ})∗ : ŝ − σ→ s} and
– Δ′ = {(s, a, s′) ∈ Δ | s ∈ S′}.

The parallel composition of L1 and L2 is denoted with L1 || L2. It is the
reachable part of (S,Σ,Δ, ŝ), where S = S1 × S2, Σ = Σ1 ∪ Σ2, ŝ = (ŝ1, ŝ2),
and ((s1, s2), a, (s′

1, s
′
2)) ∈ Δ if and only if

– (s1, a, s′
1) ∈ Δ1, s′

2 = s2 ∈ S2, and a /∈ Σ2,
– (s2, a, s′

2) ∈ Δ2, s′
1 = s1 ∈ S1, and a /∈ Σ1, or

– (s1, a, s′
1) ∈ Δ1, (s2, a, s′

2) ∈ Δ2, and a ∈ Σ1 ∩ Σ2.

That is, if a belongs to the alphabets of both components, then an a-transition
of the parallel composition consists of simultaneous a-transitions of both com-
ponents. If a belongs to the alphabet of one but not the other component, then
that component may make an a-transition while the other component stays in its
current state. Also each τ -transition of the parallel composition consists of one
component making a τ -transition without the other participating. The result of
the parallel composition is pruned by only taking the reachable part.

It is easy to check that (L1 || L2) || L3 is isomorphic to L1 || (L2 || L3). This
means that || can be considered associative, and that L1 || · · · ||Ln is well-defined
for any positive integer n.

The hiding of an action set A in L is denoted with L\A. It is L\A =
(S,Σ′,Δ′, ŝ), where Σ′ = Σ\A and Δ′ = {(s, a, s′) ∈ Δ | a /∈ A} ∪ {(s, τ, s′) |
∃a ∈ A : (s, a, s′) ∈ Δ}. That is, labels of transitions that are in A are replaced
by τ and removed from the alphabet. Other labels of transitions are not affected.

Let σ ∈ Σ∗. The notation s =σ⇒ s′ denotes that there are a1, . . . , an such
that s − a1 · · · an→ s′ and σ is obtained from a1 · · · an by leaving out each τ .
We say that σ is the trace of the path s − a1 · · · an→ s′. The notation s = σ⇒
denotes that there is s′ such that s =σ⇒ s′. The set of traces of L is

Tr(L) = {σ ∈ Σ∗ | ŝ =σ⇒}.

228 A. Valmari and W. Vogler

The LTSs L1 and L2 are trace equivalent if and only if Σ1 = Σ2 and Tr(L1) =
Tr(L2).

Let L be an LTS, K ⊆ Σ+, and s ∈ S. The state s refuses K if and only
if for every σ ∈ K we have ¬(s =σ⇒). For example, ŝ refuses K if and only if
K∩Tr(L) = ∅. Because s = ε⇒ holds vacuously for every state s, this definition is
equivalent to what would be obtained with K ⊆ Σ∗. The pair (σ,K) ∈ Σ∗ ×2Σ+

is a tree failure of L, if and only if there is s ∈ S such that ŝ =σ⇒ s and s
refuses K. The set of tree failures of L is denoted with Tf(L). The LTSs L1 and
L2 are tree failure equivalent if and only if Σ1 = Σ2 and Tf(L1) = Tf(L2).

To define the main equivalence of this publication, we also need the following
notation: For ρ ∈ Σ∗ and K ⊆ Σ∗, we write ρ−1K for {π | ρπ ∈ K} and call ρ
a prefix of K if ρ−1K �= ∅.

Definition 1. The LTSs L1 and L2 are fair testing equivalent if and only if

1. Σ1 = Σ2,
2. if (σ,K) ∈ Tf(L1), then either (σ,K) ∈ Tf(L2) or there is a prefix ρ of K

such that (σρ, ρ−1K) ∈ Tf(L2), and
3. Part 2 holds with the roles of L1 and L2 swapped.

If K �= ∅, then the first option “(σ,K) ∈ Tf(L2)” implies the other by letting
ρ = ε. Therefore, the “either”-part could equivalently be written as “K = ∅ and
(σ, ∅) ∈ Tf(L2)”. The way it has been written makes it easy to see that tree
failure equivalence implies fair testing equivalence.

If L1 and L2 are fair testing equivalent, then σ ∈ Tr(L1) implies by the
definitions that (σ, ∅) ∈ Tf(L1), (σ, ∅) ∈ Tf(L2), and σ ∈ Tr(L2). So fair testing
equivalence implies trace equivalence and cannot have better reduction methods.

3 The Trace-Preserving Strong Stubborn Set Method

The trace-preserving strong stubborn set method applies to LTS expressions of
the form

L = (L1 || · · · || Lm)\A.

To discuss the method, it is handy to first give indices to the τ -actions of the
Li. Let τ1, . . . , τm be symbols that are distinct from each other and from all
elements of Σ = Σ1 ∪· · ·∪Σm. For 1 ≤ i ≤ m, we let L̄i = (Si, Σ̄i, Δ̄i, ŝi), where

– Σ̄i = Σi ∪ {τi} and
– Δ̄i = {(s, a, s′) | a ∈ Σi ∧ (s, a, s′) ∈ Δi} ∪ {(s, τi, s

′) | (s, τ, s′) ∈ Δi}.

The trace-preserving strong stubborn set method computes a reduced version of

L′ = (L̄1 || · · · || L̄m)\(A ∪ {τ1, . . . , τm}).

For convenience, we define

– L̄ = L̄1 || · · · || L̄m,

Fair Testing and Stubborn Sets 229

– V = Σ\A (the set of visible actions), and
– I = (Σ ∩ A) ∪ {τ1, . . . , τm} (the set of invisible actions).

Now we can write L′ = (L̄1 || · · · || L̄m)\I = L̄\I.
It is obvious from the definitions that L′ is the same LTS as L. The only

difference between L̄ and L1 || · · · || Lm is that the τ -transitions of the latter
are τi-transitions of the former, where i reveals the Li from which the transition
originates. The hiding of I makes them τ -transitions again. We have V ∩ I = ∅,
V ∪ I = Σ̄ = Σ ∪ {τ1, . . . , τm}, and L̄ has no τ -transitions at all (although it
may have τi-transitions). Therefore, when discussing the trace-preserving strong
stubborn set method, the elements of V and I are called visible and invisible,
respectively.

The method is based on a function T that assigns to each s ∈ S a subset
of Σ̄, called stubborn set. Before discussing the definition of T , let us see how it
is used. The stubborn set method computes a subset of S called Sr and a subset
of Δ called Δr. It starts by letting Sr = {ŝ} and Δr = ∅. For each s that it has
put to Sr and for each a ∈ T (s), it puts to Sr every s′ that satisfies (s, a, s′) ∈ Δ̄
(unless s′ is already in Sr). Furthermore, it puts (s, a′, s′) to Δr (even if s′ is
already in Sr), where a′ = τ if a ∈ I and a′ = a otherwise. The only difference
to the computation of L′ is that in the latter, every a ∈ Σ̄ is used instead of
every a ∈ T (s).

The LTS Lr = (Sr, Σ,Δr, ŝ) is the reduced LTS, while L = L′ = (S,Σ,Δ, ŝ)
is the full LTS. We will refer to concepts in Lr with the prefix “r-”, and to L
with “f-”. For instance, if s ∈ Sr and ¬(s =σ⇒) holds in Lr for all σ ∈ K, then
s is an r-state and s r-refuses K. Because Sr ⊆ S and Δr ⊆ Δ, every r-state is
also an f-state and every r-trace is an f-trace. We will soon state conditions on T
that guarantee that also the opposite holds, that is, every f-trace is an r-trace.

Typically many different functions could be used as T , and the choice between
them involves trade-offs. For example, a function may be easy and fast to com-
pute, but it may also tend to give worse reduction results (that is, bigger Sr

and Δr) than another more complex function. Therefore, we will not specify a
unique function T . Instead, in the remainder of this section we will only give
four conditions that it must satisfy, and in the next section we will discuss how
a reasonably good T is computed quickly.

A function from states to subsets of Σ̄ qualifies as T if and only if for every
s ∈ Sr it satisfies the four conditions below (the first two are illustrated in Fig. 1):

a a

a1a2 · · · an

a1a2 · · · an

s

sn

a a

a1a2 · · · an

a1a2 · · · an

s

s

sn

sn

Fig. 1. Illustrating D1 (left) and D2 (right). The solid states and transition sequences
are assumed to exist and the condition promises the existence of the dashed ones. The
yellow (grey in black/white print) part is in the reduced LTS, the rest is not necessarily

230 A. Valmari and W. Vogler

D1 If a ∈ T (s), a1, . . . , an are not in T (s), and s − a1 · · · ana→ s′
n, then

s − aa1 · · · an→ s′
n.

D2 If a ∈ T (s), a1, . . . , an are not in T (s), s − a→ s′, and s − a1 · · · an→ sn,
then there is s′

n such that s′ − a1 · · · an→ s′
n and sn − a→ s′

n.
V If T (s) ∩ V ∩ en(s) �= ∅, then V ⊆ T (s).
S For each a ∈ V there is an r-state sa and an r-path from s to sa such that

a ∈ T (sa).

Intuitively, D1 says two things. First, it says that a sequence of actions that
are not in the current stubborn set (a1 · · · an in the definition) cannot enable an
action that is in the current stubborn set (a in the definition). That is, disabled
actions in a stubborn set remain disabled while actions outside the set occur.
Second, together with D2 it says that the enabled actions inside the current
stubborn set are in a certain kind of a commutativity relation with enabled
sequences of outside actions. In theories where actions are deterministic (that
is, for every s, s1, s2, and a, s − a→ s1 and s − a→ s2 imply s1 = s2), the
then-part of D2 is usually written simply as sn − a→. It, D1, and determinism
imply our current version of D2. However, we do not assume that actions are
deterministic.

Certain partial-order semantic models of concurrency use a so-called indepen-
dence relation [9]. Unlike in the present study, actions are assumed to be deter-
ministic. If a1 and a2 are independent, then (1) if s − a1→ s1 and s − a2→ s2,
then there is an s′ such that s1 − a2→ s′ and s2 − a1→ s′; (2) if s − a1a2→ then
s − a2→; and (3) if s − a2a1→ then s − a1→. It is often claimed that ample,
persistent, and stubborn set methods rely on an independence relation. This is
why they are classified as “partial-order methods”. In reality, they rely on var-
ious strictly weaker relations. For instance, even if determinism is assumed, D1
and D2 do not imply independence of a1 from a, because they fail to yield (3).

The names D1 and D2 reflect the fact that together with a third condition
called D0, they guarantee that the reduced LTS has precisely the same terminal
states – also known as deadlocks – as the full LTS. D0 is not needed in the
present method, because now the purpose is not to preserve deadlocks but traces.
However, because we do not yet have an implementation that has been optimized
to the present method, in our experiments in Sect. 7 we used a tool that relies
on D0 and implements it. Therefore, we present its definition:

D0 If en(s) �= ∅, then T (s) ∩ en(s) �= ∅.

That is, if s is not a deadlock, then T (s) contains an enabled action. We skip
the (actually simple) proof that D0, D1, and D2 guarantee that deadlocks are
preserved, see [16].

The condition V says that if the stubborn set contains an enabled visible
action, then it contains all visible actions (also disabled ones). It guarantees
that the reduction preserves the ordering of visible actions, in a sense that will
become clear in the proof of Lemma 3.

The function T∅ that always returns the empty set satisfies D1, D2, and V.
Its use as T would result in a reduced LTS that has one state and no transitions.

Fair Testing and Stubborn Sets 231

It is thus obvious that D1, D2, and V alone do not guarantee that the reduced
LTS has the same traces as the full LTS.

The condition S forces the method to investigate, intuitively speaking, every-
thing that is relevant for the preservation of the traces. It does that by guar-
anteeing that every visible action is taken into account, not necessarily in the
current state but necessarily in a state that is r-reachable from the current state.
Taking always all visible actions into account in the current state would make
the reduction results much worse. The name is S because, historically, a similar
condition was first used to guarantee the preservation of what is called safety
properties in the linear temporal logic framework. Again, the details of how S
does its job will become clear in the proof of Lemma 3.

If V = ∅, then T∅ satisfies also S. Indeed, then Tr(L) = {ε} = Tr(Lr) even
if Lr is the one-state LTS that has no transitions. That is, if V = ∅, then T∅
satisfies the definition and yields ideal reduction results.

No matter what V is, the function T (s) = Σ̄ always satisfies D1, D2, V,
and S. However, it does not yield any reduction. The problem of computing sets
that satisfy D1, D2, V, and S and do yield reduction will be discussed in Sect. 4.
In Sect. 6 we prove that D1, D2, V, and S guarantee that the reduced LTS is
fair testing equivalent (and thus also trace equivalent) to the full LTS.

4 On Computing Trace-Preserving Stubborn Sets

To make the abstract theory in the remainder of this publication more concrete,
we present in this section one new good way of computing sets that satisfy D1,
D2, V, and S. It is based on earlier ideas but has been fine-tuned for the present
situation. We emphasize that it is not the only good way. Other possibilities
have been discussed in [17,20], among others.

Because the expression under analysis is of the form (L̄1 || · · · || L̄m)\I, its
states are of the form (s1, . . . , sm), where si ∈ Li for each 1 ≤ i ≤ m. We employ
the notation eni(si) = {a | ∃s′

i : (si, a, s′
i) ∈ Δi}, that is, the set of actions that

are enabled in si in Li. We have τ /∈ eni(si) ⊆ Σ̄i = Σi ∪ {τi}. Furthermore,
if a /∈ en(s), then there is at least one i such that a ∈ Σ̄i and a /∈ eni(si). Let
dis(s, a) denote the smallest such i.

We start by presenting a sufficient condition for D1 and D2 that does not
refer to other states than the current.

Theorem 2. Assume that the following hold for s = (s1, . . . , sm) and for every
a ∈ T (s):

1. If a /∈ en(s), then there is i such that a ∈ Σ̄i and a /∈ eni(si) ⊆ T (s).
2. If a ∈ en(s), then for every i such that a ∈ Σ̄i we have eni(si) ⊆ T (s).

Then T (s) satisfies D1 and D2.

Proof. Let a1 /∈ T (s), . . . , an /∈ T (s).
Let first a /∈ en(s). Obviously s − a→ does not hold, so D2 is vacuously

true. We prove now that D1 is as well. By assumption 1, there is i such that Li

232 A. Valmari and W. Vogler

disables a and eni(si) ⊆ T (s). To enable a, it is necessary that Li changes its
state, which requires that some action in eni(si) occurs. These are all in T (s)
and thus distinct from a1, . . . , an. So s − a1 · · · ana→ cannot hold.

Let now a ∈ en(s). Our next goal is to show that there are no 1 ≤ k ≤ n
and 1 ≤ j ≤ m such that both a ∈ Σ̄j and ak ∈ Σ̄j . To derive a contradiction,
consider a counterexample where k has the smallest possible value. So none of
a1, . . . , ak−1 is in Σ̄j . If s − a1 · · · an→, then there is s′ such that s − a1 · · · ak−1→
s′ − ak→. Obviously ak ∈ enj(s′

j). This implies ak ∈ enj(sj), because Lj does
not move between s and s′ since none of a1, . . . , ak−1 is in Σ̄j . By assumption 2,
enj(sj) ⊆ T (s). This contradicts ak /∈ T (s).

This means that the Lj that participate in a are disjoint from the Lj that
participate in a1 · · · an. From this D1 and D2 follow by well-known properties of
the parallel composition operator. �

Theorem 2 makes it easy to represent a sufficient condition for D1 and D2
as a directed graph that depends on the current state s. The set of the vertices
of the graph is Σ̄. There is an edge from a ∈ Σ̄ to b ∈ Σ̄, denoted with a � b,
if and only if either a /∈ en(s) and b ∈ eni(si) where i = dis(s, a), or a ∈ en(s)
and there is i such that a ∈ Σ̄i and b ∈ eni(si). By the construction, if T (s) is
closed under the graph (that is, for every a and b, if a ∈ T (s) and a � b, then
b ∈ T (s)), then T (s) satisfies D1 and D2.

It is not necessary for correctness to use the smallest i, when more than
one Li disables a. The choice to use the smallest i was made to obtain a fast
algorithm. An alternative algorithm (called deletion algorithm in [17]) is known
that exploits the freedom to choose any i that disables a. It has the potential to
yield smaller reduced LTSs than the algorithm described in this section. On the
other hand, it consumes more time per constructed state.

Furthermore, the condition in Theorem 2 is not the weakest possible, as
shown by the following useful observation: Assume a writes to a finite-capacity
fifo Lf , ā reads from it, and they have no other Li in common; although Σ̄f links
them, we need not declare a � ā when a is enabled, and we need not declare
ā � a when ā is enabled, since they commute if both are enabled. Trying to
make the condition as weak as possible would have made it very hard to read.

It is trivial to also take the condition V into account in the graph representa-
tion of the stubborn set computation problem. It suffices to add the edge a � b
from each a ∈ V ∩ en(s) to each b ∈ V .

Let “�∗” denote the reflexive transitive closure of “�”. By the definitions,
if a ∈ Σ̄, then {b | a �∗ b} satisfies D1, D2, and V. We denote it with clsr(a). It
can be computed quickly with well-known elementary graph search algorithms.

However, we can do better. The better algorithm is denoted with esc(a), for
“enabled strong component”. Applied at some state s, it uses a as the start-
ing point of a depth-first search in (Σ̄, “�”). During the search, the strong
components (i.e., the maximal strongly connected subgraphs) of (Σ̄, “�”) are
recognized using Tarjan’s algorithm [4,13]. It recognizes each strong component
at the time of backtracking from it. When esc(a) finds a strong component C
that contains an action enabled at s, it stops and returns C as the result; note

Fair Testing and Stubborn Sets 233

that a might not be in C. In principle, the result should also contain actions
that are reachable from C but are not in C. However, they are all disabled, so
leaving them out does not change Lr, which we are really interested in. If esc(a)
does not find such a strong component, it returns ∅.

Obviously esc(a) ⊆ clsr(a). So esc(a) has potential for better reduction
results. Tarjan’s algorithm adds very little overhead to depth-first search. There-
fore, esc(a) is never much slower than clsr(a). On the other hand, it may happen
that esc(a) finds a suitable strong component early on, in which case it is much
faster than clsr(a).

To discuss the implementation of S, let V = {a1, . . . , a|V |}. Let S(s, i) denote
that there is an si and an r-path from s to si such that ai ∈ T (si). Our algorithm
constructs Lr in depth-first order. The root of a strong component C of Lr is the
state in C that was found first. Our algorithm recognizes the roots with Tarjan’s
algorithm. In each root sC , it enforces S(sC , i) for each 1 ≤ i ≤ n in a manner
which is discussed below. This suffices, because if S(s, i) holds for one state in a
strong component, then it clearly holds for every state in the component.

Each state s has an attribute ν such that if ν > |V |, then S(s, i) is known to
hold for a1, . . . , aν−|V |. When a state is processed for the first time, its ν value is
set to 1 and esc(a1) is used as its stubborn set. When the algorithm is about to
backtrack from a root sC , it checks its ν value. The algorithm actually backtracks
from a root only when ν = 2|V |. Otherwise it increments ν by one. Then it
extends T (sC) by esc(aν) if ν ≤ |V |, and by clsr(aν−|V |) if |V | < ν ≤ 2|V |.
The extension may introduce new outgoing transitions for sC , and sC may cease
from being a root. If sC remains a root, then its ν eventually grows to 2|V | and
S holds for sC . The purpose of making T (sC) grow in steps with esc-sets first is
to obtain as small a stubborn set as possible, if sC ceases from being a root.

During the depth-first search, information on ν-values is backward propa-
gated and the maximum is kept. This way, if sC ceases from being a root, the
new root benefits from the work done at sC . Furthermore, non-terminal strong
components automatically get ν = 2|V |. To exploit situations where V ⊆ T (s)
by condition V, if a visible action is in en(s) ∩ T (s), then the algorithm makes
the ν value of s be 2|V |.

Unfortunately, we do not yet have an implementation of this algorithm.
Therefore, in our experiments in Sect. 7 we used a trick. A system is always
may-terminating if and only if, from every reachable state, the system is able to
reach a deadlock. For each deadlock s, we can pretend that T (s) = Σ̄ and thus
that V ⊆ T (s), because T (s) contains no enabled actions no matter how we
choose it. This implies that S holds automatically for always may-terminating
systems. In [18] it was proven that if, instead of S, the condition D0 is used,
then it is easy to check from the reduced LTS whether the system is always
may-terminating. So we will use the following new approach in Sect. 7:

1. Try to make the system always may-terminating.
2. Construct L′

r obeying D0, D1, D2, and V.
3. If L′

r is always may-terminating, then extract a reduced LTS for the original
system from L′

r as will be described in Sect. 7. Otherwise, go back to 1.

234 A. Valmari and W. Vogler

Stubborn sets obeying D0, D1, D2, and V can be computed by, in each state
that is not a deadlock, choosing an enabled a and computing esc(a).

5 On the Performance of Various Conditions

The goal of aps set methods is to alleviate the state explosion problem. There-
fore, reducing the size of the state space is a main issue. However, if the reduction
introduces too much additional work per preserved state, then time is not saved.
So the cost of computing the aps set is important. Also the software engineering
issue plays a role. Little is known on the practical performance of ideas that
have the biggest theoretical reduction potential, because they are complicated
to implement, so few experiments have been made. For instance, first big experi-
ments on weak stubborn sets [17] and the deletion algorithm [17] appeared in [8].

Often a state has more than one aps set. Let T1 and T2 be two of them and
let E(T1) and E(T2) be the sets of enabled transitions in T1 and T2. It is obvious
that if the goal is to preserve deadlocks and if E(T1) ⊆ E(T2), then T1 can lead
to better but cannot lead to worse reduction results than T2. We are not aware
of any significant result on the question which should be chosen, T1 or T2, if both
are aps, E(T1) �⊆ E(T2), and E(T2) �⊆ E(T1). Let us call it the non-subset choice
problem. Already [15] gave an example where always choosing the set with the
smallest number of enabled transitions does not yield the best reduction result.

We now demonstrate that the order in which the components of a system are
given to a tool can have a tremendous effect on the running time and the size
of the reduced state space. Assume that L1 || · · · || Lm has deadlocks. Consider

L1 || · · · || Lm || Lm+1, where Lm+1 = τ . This extended system has no dead-
locks. If the deadlock-preserving stubborn set method always investigates Lm+1

last, then it finds the deadlocks of the original system in the original fashion,
finds that Lm+1 is enabled in them, and eventually concludes that the system
has no deadlocks. So it does approximately the same amount of work as it does
with L1 || · · · || Lm. If, in the initial state ŝ, the method happens to investigate
Lm+1 first, it finds a τ -loop ŝ − τ→ ŝ. D0, D1, and D2 do not tell it to inves-
tigate anything else. So it stops extremely quickly, after constructing only one
state.

For this and other reasons, measurements are not as reliable for comparing
different methods as we would like them to be.

Technically, optimal sets could be defined as those (not necessarily aps) sets of
enabled transitions that yield the smallest reduced state space that preserves the
deadlocks. Unfortunately, it was shown in [20] that finding subsets of transitions
of a 1-safe Petri net that are optimal in this sense is at least as hard as testing
whether the net has a deadlock. Another similar result was proven in [2, p. 154].
Therefore, without additional assumptions, optimal sets are too hard to find.

This negative result assumes that optimality is defined with respect to all
possible ways of obtaining information on the behaviour of the system. Indeed,
optimal sets can be found by first constructing and investigating the full state
space. Of course, aps set methods do not do so, because constructing the full

Fair Testing and Stubborn Sets 235

p1

t1

p2

t2

p3

t3 t6

p4

t4

p5

t5

p6

t1

t2

t4

t3

t1

t5

t2 t3

t1

t6

t4

t4

t3
t5

t5

t2

t6

t6

100100

010100

001100

100010

010010

001010

010001

001001

100001

Fig. 2. Transitions are tried in the order of their indices until one is found that does
not close a cycle. If such a transition is not found, then all transitions are taken

state space is what they try to avoid. In [20], a way of obtaining information
was defined such that most (but not all) deadlock-preserving aps set methods
conform to it. Using non-trivial model-theoretic reasoning, it was proven in [20]
that, in the case of 1-safe Petri nets, the best possible (not necessarily aps) sets
that can be obtained in this context are of the form E(Ts), where Ts is stubborn.
In this restricted but nevertheless meaningful sense, stubborn sets are optimal.

The situation is much more complicated when preserving other properties
than deadlocks. We only discuss one difficulty. Instead of S, [2, p. 155] assumes
that the reduced state space is constructed in depth-first order and tells to
choose an aps set that does not close a cycle if possible, and otherwise use all
enabled transitions. Figure 2 shows an example where this condition leads to the
construction of all reachable states, although the processes do not interact at
all. The condition S is less vulnerable to but not totally free from this kind of
difficulties. Far too little is known on this problem area.

The approach in Sects. 4 and 7 that does not use S is entirely free of this
difficulty. This is one reason why it seems very promising.

In general, it is reasonable to try to find as weak conditions as possible
in place of D1, V, S, and so on, because the weaker a condition is, the more
potential it has for good reduction results. Because of the non-subset choice
problem and other similar problems, it is not certain that the potential can be
exploited in practice. However, if the best set is ruled out already by the choice
of the condition, then it is certain that it cannot be exploited.

For instance, instead of V, [2, p. 149] requires that if T (s) ∩ V ∩ en(s) �= ∅,
then T (s) must contain all enabled transitions. This condition is strictly stronger
than V and thus has less potential for reduction. Furthermore, the algorithm in
Sect. 4 can exploit the additional potential of V at least to some extent.

This also illustrates why stubborn sets are defined such that they may contain
disabled transitions. The part V ⊆ T (s) in the definition of condition V could
not be formulated easily, or perhaps not at all, if T (s) cannot contain disabled
transitions. The following example reveals both that V ∩ en(s) ⊆ T (s) fails

236 A. Valmari and W. Vogler

(it loses the trace b) and that V yields better reduction than the condition in [2]
({a, b, u, τ2} is stubborn, satisfies V, but τ3 ∈ en(s) �⊆ {a, b, u, τ2}):

(a u a || u τ2 v b || τ3 v) \ {u, v}

6 The Fair Testing Equivalence Preservation Theorem

In this section we assume that Lr = (Sr, Σ,Δr, ŝ) has been constructed with the
trace-preserving strong stubborn set method, that is, obeying D1, D2, V, and S.
We show that Lr is fair testing equivalent to L, where L = (S,Σ,Δ, ŝ) denotes
the corresponding full LTS, based on a series of lemmata. Lemma 4 shows that
a trace leaving Sr can be found inside Sr, and Lemma 3 treats a step for this.
Similarly, Lemmas 5 and 6 show how to transfer a refusal set in a suitable way.

ε ε

σn

σn−1λn−1
ai

sns0,0

sh,0
sn−1

sn
s0,n

sn−1
sh,n

σ ε

σ

ε

s

z

s

z

Fig. 3. Illustrating Lemma 3 (left) and Lemma 4 (right)

Lemma 3. Assume that n ∈ N, sn ∈ Sr, s′
n ∈ S, ε �= σn ∈ V ∗, and there is

an f-path of length n from sn to s′
n such that its trace is σn. There are sn−1 ∈

Sr, s′
n−1 ∈ S, λn−1 ∈ V ∪ {ε}, and σn−1 ∈ V ∗ such that λn−1σn−1 = σn,

sn = λn−1⇒ sn−1 in Lr, s′
n = ε⇒ s′

n−1 in L, and there is an f-path of length
n − 1 from sn−1 to s′

n−1 such that its trace is σn−1.

Proof. Let s0,0 = sn and s0,n = s′
n. Let the f-path of length n be

s0,0 − a1 · · · an→ s0,n. Because σn �= ε, there is a smallest v such that 1 ≤ v ≤ n
and av ∈ V . By S, there are k ∈ N, s1,0, . . . , sk,0, and b1, . . . , bk such that
av ∈ T (sk,0) and s0,0 − b1→ s1,0 − b2→ . . . − bk→ sk,0 in Lr. Let h be
the smallest natural number such that {a1, . . . , an} ∩ T (sh,0) �= ∅. Because
av ∈ T (sk,0), we have 0 ≤ h ≤ k. By h applications of D2 at s0,0, . . . , sh−1,0,
there are s1,n, . . . , sh,n such that si,0 − a1 · · · an→ si,n in L for 1 ≤ i ≤ h and
s0,n − b1→ s1,n − b2→ . . . − bh→ sh,n in L. If bi ∈ V for some 1 ≤ i ≤ h, then
V ⊆ T (si−1,0) by V. It yields av ∈ T (si−1,0), which contradicts the choice of h.
As a consequence, s0,0 = ε⇒ sh,0 in Lr and s0,n = ε⇒ sh,n in L.

Because {a1, . . . , an} ∩ T (sh,0) �= ∅, there is a smallest i such that 1 ≤ i ≤ n
and ai ∈ T (sh,0). By D1 at sh,0, there is sn−1 such that sh,0 − ai→ sn−1 in Lr

and sn−1 − a1 · · · ai−1ai+1 · · · an→ sh,n in L. We choose s′
n−1 = sh,n and let σn−1

be the trace of a1 · · · ai−1ai+1 · · · an. If ai /∈ V , then we choose λn−1 = ε, yielding
λn−1σn−1 = σn. If ai ∈ V , then V ⊆ T (sh,0) by V, so none of a1, . . . , ai−1 is in V ,

Fair Testing and Stubborn Sets 237

and by choosing λn−1 = ai we obtain λn−1σn−1 = σn. That sn =λn−1⇒ sn−1

in Lr follows from s0,0 = ε⇒ sh,0 − ai→ sn−1 in Lr. The rest of the claim is
obtained by replacing s′

n for s0,n and s′
n−1 for sh,n in already proven facts. �

Lemma 4. Let n ∈ N. Assume that s ∈ Sr, s′ ∈ S, σ ∈ V ∗, and s =σ⇒ s′

in L due to an f-path of length n. Then there are z ∈ Sr and z′ ∈ S such that
s = σ⇒ z in Lr, z = ε⇒ z′ in L, and s′ = ε⇒ z′ in L.

Proof. The proof is by induction on n. We start with the observation that, in
case σ = ε, the claim holds with choosing z = s and z′ = s′. This settles the
base case n = 0 and a subcase of the induction step, and it leaves us with the
case n > 0 and σ �= ε.

We apply Lemma 3 and get s1 ∈ Sr, s′
1 ∈ S, σ1 ∈ V ∗, and λ1 ∈ V ∪ {ε}

such that λ1σ1 = σ, s = λ1⇒ s1 in Lr, and s′ = ε⇒ s′
1 in L. Furthermore,

s1 =σ1⇒ s′
1 in L due to an f-path of length n − 1, for which the lemma holds;

hence, there are z ∈ Sr and z′ ∈ S such that s1 =σ1⇒ z in Lr, z = ε⇒ z′ in L,
and s′

1 = ε⇒ z′ in L. Together, these also give s =λ1⇒ s1 =σ1⇒ z in Lr and
s′ = ε⇒ s′

1 = ε⇒ z′ in L, so we are done. �

σn σn

ε

ε

sns0,0
sn
s0,n

sk,0 sk,n

or
σn

ρn−1 ρn−1

ε

ε
ai

sns0,0

sh,0
sn−1

sn
s0,n

sn−1
sh,n

sk,0

Fig. 4. Illustrating Lemma 5; ai is invisible

Lemma 5. Assume that n ∈ N, sn ∈ Sr, s′
n ∈ S, σn ∈ V ∗, sn =σn⇒ in Lr,

and there is an f-path of length n from sn to s′
n such that its trace is ε. Either

s′
n =σn⇒ in L or there are sn−1 ∈ Sr, s′

n−1 ∈ S, and ρn−1 such that ρn−1 is
a prefix of σn, sn = ρn−1⇒ sn−1 in Lr, s′

n = ρn−1⇒ s′
n−1 in L, and there is an

f-path of length n − 1 from sn−1 to s′
n−1 such that its trace is ε.

Proof. Let s0,0 = sn and s0,n = s′
n. Let the f-path of length n be

s0,0 − a1 · · · an→ s0,n; obviously, the ai are invisible. By the assumption, there
is a path s0,0 − b1→ s1,0 − b2→ . . . − bk→ sk,0 in Lr such that its trace is σn.

If {a1, . . . , an} ∩ T (si,0) = ∅ for 0 ≤ i < k, then k applications of D2 yield
s1,n, . . . , sk,n such that s0,n − b1→ s1,n − b2→ . . . − bk→ sk,n in L. This implies
s′

n =σn⇒ in L.
Otherwise, there is a smallest h such that 0 ≤ h < k and {a1, . . . , an} ∩

T (sh,0) �= ∅. There also is a smallest i such that 1 ≤ i ≤ n and ai ∈ T (sh,0).
Applying D2 h times yields s1,n, . . . , sh,n such that s0,n − b1→ . . . − bh→ sh,n in
L and sh,0 − a1 · · · an→ sh,n in L. By D1 there is sn−1 such that sh,0 − ai→ sn−1

in Lr and sn−1 − a1 · · · ai−1ai+1 · · · an→ sh,n in L. The claim follows by choosing
s′

n−1 = sh,n and letting ρn−1 be the trace of s0,0 − b1 · · · bh→ sh,0. �

238 A. Valmari and W. Vogler

Lemma 6. Let n ∈ N. Assume K ⊆ V ∗, ρ ∈ K, z ∈ Sr, z′ ∈ S, and z = ε⇒ z′

due to an f-path of length n; assume further that z′ f-refuses K and z = ρ⇒ in
Lr. Then there exist s ∈ Sr and a prefix π of K such that z = π⇒ s in Lr and s
r-refuses π−1K.

Proof. The proof is by induction on n. The case n = 0 holds vacuously, since it
would imply z′ = ρ⇒, contradicting ρ ∈ K.

So we assume the lemma to hold for n − 1, and also the assumptions in the
lemma for n. We apply Lemma 5 to z, z′, and ρ. In the first case, we would again
have the impossible z′ = ρ⇒. So according to the second case, we have a z1, z′

1,
and prefix ρ′ of ρ and thus of K with z = ρ′⇒ z1 in Lr, z′ = ρ′⇒ z′

1 in L, and
z1 = ε⇒ z′

1 due to an f-path of length n − 1.
Since z′ f-refuses K, z′

1 must f-refuse ρ′−1K. If z1 r-refuses ρ′−1K, we are
done. Otherwise, we can apply the induction hypothesis to z1 = ε⇒ z′

1 and
ρ′−1K. This results in an s ∈ Sr and a prefix π′ of ρ′−1K such that z1 = π′⇒ s
in Lr and s r-refuses π′−1ρ′−1K = (ρ′π′)−1K. We also have that ρ′π′ is a prefix
of K and z = ρ′π′⇒ s in Lr, so we are done. �

Theorem 7. The LTS Lr is fair testing equivalent to L.

Proof. Part 1 of Definition 1 is immediate from the construction.
Let (σ,K) be a tree failure of Lr. That is, there is s ∈ Sr such that ŝ = σ⇒ s in

Lr and s r-refuses K. Consider any ρ ∈ V ∗ such that s = ρ⇒ in L. By Lemma 4,
s = ρ⇒ also in Lr. This implies that s refuses K in L and that (σ,K) is a tree
failure of L. In conclusion, Part 2 of Definition 1 holds.

Let (σ,K) be a tree failure of L. That is, there is s′ ∈ S such that ŝ =σ⇒ s′

in L and s′ f-refuses K. By Lemma 4 there are z ∈ Sr and z′ ∈ S such that
ŝ =σ⇒ z in Lr, s′ = ε⇒ z′ in L, and z = ε⇒ z′ in L. Since s′ f-refuses K, also
z′ f-refuses K.

Either z r-refuses K and we are done, or we apply Lemma 6, giving us an
s ∈ Sr and a prefix π of K such that z = π⇒ s in Lr and s r-refuses π−1K.
Hence, (σπ, π−1K) ∈ Tf(Lr) and Part 3 of Definition 1 also holds. �

Let us conclude this section with a counterexample that shows that the
method does not preserve tree failure equivalence.

L1

a u

L2

u τ

(L1 || L2) \ {u}

a

τ

a
τ

τa

Fig. 5. A counterexample to the preservation of all tree failures. In (L1 ||L2)\{u}, the
solid states and transitions are in the reduced and the dashed ones only in the full LTS

Consider (L1 ||L2)\{u}, where L1 and L2 are shown in Fig. 5 left and middle.
Initially two sets are stubborn: {a} and {a, u, τ2}. If {a} is chosen, then the LTS

Fair Testing and Stubborn Sets 239

is obtained that is shown with solid arrows on the right in Fig. 5. The full LTS
also contains the dashed arrows. The full LTS has the tree failure (ε, {aa}) that
the reduced LTS lacks.

7 Example

Figure 6 shows the example system used in the measurements in this section.
It is a variant of the alternating bit protocol [1]. Its purpose is to deliver data
items from a sending client to a receiving client via unreliable channels that may
lose messages at any time. There are two kinds of data items: N and Y. To avoid
cluttering Fig. 6, the data items are not shown in it. In reality, instead of sen,
there are the actions senN and senY, and similarly with rec, d0, d̄0, d1, and d̄1.

sen ok err rec

Sender

Receiver

Dloss

Aloss

D D D· · ·

A A A· · ·

Sender
sen f0

err

ā0ā1

d1

err
senf1

err

ā1
ā0

d0

err
ā0
ā1

ok sen

ā1
ā0

oksen

Receiver
d̄0 rec

f̄0

a0d̄0 f̄0
d̄1rec

f̄1

a1d̄1 f̄1

D
f̄0 f0

f̄1

f1
d̄0d0

d̄1

d1

A ā0

a0ā1

a1

Dloss f̄0

f̄1

d̄0

d̄1

Aloss
ā1 ā0

Fig. 6. The example system: architecture, Sender, Receiver, D, A, Dloss, and Aloss. Each
sen, rec, d0, d1, d̄0, and d̄1 carries a parameter that is either N or Y. Each black state
corresponds to two states, one for each parameter value. Each x̄ synchronizes with x
along a line in the architecture picture. The output of the rightmost D is consumed
either by Receiver or Dloss, and similarly with the leftmost A

Because messages may be lost in the data channel, the alternating bit pro-
tocol has a timeout mechanism. For each message that it receives, the receiver
sends back an acknowledgement message. After sending any message, the sender
waits for the acknowledgement for a while. If it does not arrive in time, then
the sender re-sends the message. To prevent the sender and receiver from being
fooled by outdated messages, the messages carry a number that is 0 or 1.

The alternating bit protocol is impractical in that if either channel is totally
broken, then the sender sends without limit in vain, so the protocol diverges.

240 A. Valmari and W. Vogler

The variant in Fig. 6 avoids this problem. For each sen action, Sender tries sending
at most a fixed number of times, which we denote with �. (In the figure, � = 1
for simplicity.) The protocol is expected to behave as follows. For each sen, it
eventually replies with ok or err. If it replies with ok, it has delivered the data
item with rec. If it replies with err, delivery is possible but not guaranteed, and it
may occur before or after the err. There are no unsolicited or double deliveries.
If the channels are not totally broken, the protocol cannot lose the ability to
reply with ok.

After err, Sender does not know whether any data message got through and
therefore it does not know which bit value Receiver expects next. For this rea-
son, initially and after each err, the protocol performs a connection phase before
attempting to deliver data items. It consists of sending a flush message and
expecting an acknowledgement with the same bit value. When the acknowledge-
ment comes, it is certain that there are no remnant messages with the opposite
bit value in the system, so the use of that value for the next data message is
safe. This is true despite the fact that the acknowledgement with the expected
bit value may itself be a remnant message.

Assume that neither channel can lose infinitely many messages in a row. This
is a typical fairness assumption. It guarantees that if there are infinitely many
sen-actions, then infinitely many flush actions go through and infinitely many
acknowledgements come back. However, it does not guarantee that any data
message ever gets through. To guarantee that, it is necessary to further assume
that if the acknowledgement channel delivers infinitely many messages, then
eventually the data channel delivers at least one of the next � messages that have
been sent via it after the acknowledgement channel delivered a message. This
assumption is very unnatural, because it says that the channels must somehow
coordinate the losses of messages.

As a consequence, the traditional approach of proving liveness that is based
on fairness assumptions is not appropriate for this protocol. On the other hand,
fair testing equivalence can be used to prove a weaker but nevertheless useful
property: the protocol cannot lose the ability to deliver data items and reply ok.
This is why the protocol was chosen for the experiments in this section.

To implement Steps 1 and 3 in Sect. 4, we add to Sender a new state sd
and a transition labelled with t to sd from each state that has an outgoing
transition labelled with senN or senY. Let the resulting LTS be called Sender′.
Clearly Sender = (Sender′ || Block t)\{t}, where Block t is the single-state LTS
whose alphabet is {t} and that has no transitions. After computing the reduced
LTS L′

r using Sender′ and treating t as visible, the final result is obtained as
(L′

r || Block t)\{t}, which is trivial to compute from L′
r. This is correct, because

fair testing equivalence is a congruence.
Table 1 shows analysis results obtained with the ASSET tool [18,19]. ASSET

does not input parallel compositions of LTSs, but it allows to mimic their behav-
iour with C++ code. It also allows to express the “�” relation in C++ and
computes stubborn sets with the esc algorithm. Thus it can be used to com-
pute Step 2 of Sect. 4. ASSET verified that each LTS with the t-transitions is

Fair Testing and Stubborn Sets 241

Table 1. Each channel consists of c separate cells. Times are in seconds

c Full LTS Full, with t-transitions Stubborn sets

States Edges Time States Edges Time States Edges Time

1 380 1068 0.0 440 1254 0.1 372 700 0.0

2 1880 6212 0.0 2224 7360 0.1 1234 1992 0.0

3 9200 34934 0.1 10976 41560 0.1 2986 4382 0.0

4 44000 188710 0.2 52672 224928 0.3 6104 8360 0.1

5 205760 983614 0.5 246656 1173536 0.6 11140 14494 0.1

6 944000 4977246 2.3 1132288 5941760 2.7 18726 23432 0.2

7 4263680 24582270 11.4 5115392 29357952 13.8 29578 35906 0.2

8 19013120 119011454 63.4 22813696 142177792 77.2 44496 52732 0.3

10 90150 103124 0.4

20 946520 1005784 3.6

30 4083190 4238144 18.8

40 11854160 12170204 68.2

Table 2. Each channel is a single reduced LTS

c Full LTS Full, with t-transitions Stubborn sets

States Edges Time States Edges Time States Edges Time

10 42680 183912 0.3 51128 216300 0.4 16818 29756 0.2

20 287280 1278742 2.1 344568 1502900 2.4 84928 144116 0.7

30 913880 4112572 9.0 1096408 4831900 10.7 236438 391276 2.0

40 2102480 9513402 25.9 2522648 11175300 30.6 503348 819236 4.6

50 4033080 18309232 60.4 4839288 21505100 71.9 917658 1475996 9.3

60 1511368 2409556 17.7

70 2316478 3667916 29.1

80 3364988 5299076 45.9

90 4688898 7351036 70.3

100 6320208 9871796 102.8

indeed always may-terminating. To gain confidence that the modelling with C++
is correct, additional runs were conducted where the ASSET model contained
machinery that verified most of the correctness properties listed above, including
that the protocol cannot lose the ability to execute ok (except by executing t).

Table 1 shows spectacular reduction results, but one may argue that the
model of the channels in Fig. 6 is unduly favourable to stubborn sets. The mes-
sages travel through the channels step by step. Without stubborn sets, any
combination of empty and full channel slots may be reached, creating an expo-
nential number of states. If a message is ready to move from a cell to the
next one, then the corresponding action constitutes a singleton stubborn set.

242 A. Valmari and W. Vogler

Therefore, the stubborn set method has the tendency to quickly move messages
to the front of the channel, dramatically reducing the number of constructed
states.

To not give stubborn sets unfair advantage, another series of experiments was
made where the messages are always immediately moved as close to the front
of the channel as possible during construction of the full LTS. The fact about
fifo queues and the “�” relation that was mentioned in Sect. 4 is also exploited.
The results are shown in Table 2. Although they are less spectacular, they, too,
show great benefit by the stubborn set method.

Acknowledgements. We thank the anonymous reviewers for their comments. Unfor-
tunately, space constraints prevented us from implementing some of these.

References

1. Bartlett, K.A., Scantlebury, R.A., Wilkinson, P.T.: A note on reliable full-duplex
transmission over half-duplex links. Commun. ACM 12(5), 260–261 (1969)

2. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking, p. 314. MIT Press,
Cambridge (1999)

3. Evangelista, S., Pajault, C.: Solving the ignoring problem for partial order reduc-
tion. Softw. Tools Technol. Transf. 12(2), 155–170 (2010)

4. Eve, J., Kurki-Suonio, R.: On computing the transitive closure of a relation. Acta
Inform. 8(4), 303–314 (1977)

5. Gerth, R., Kuiper, R., Peled, D., Penczek, W.: A partial order approach to branch-
ing time logic model checking. In: Proceedings of Third Israel Symposium on the
Theory of Computing and Systems, pp. 130–139. IEEE (1995)

6. Godefroid, P.: Using partial orders to improve automatic verification methods. In:
Proceedings of CAV 1990, AMS-ACM DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, vol. 3, pp. 321–340 (1991)

7. Godefroid, P. (ed.): Partial-Order Methods for the Verification of Concurrent Sys-
tems: An Approach to the State-Explosion Problem. LNCS, vol. 1032. Springer,
Heidelberg (1996)

8. Laarman, A., Pater, E., van de Pol, J., Hansen, H.: Guard-based partial-order
reduction. Softw. Tools Technol. Transf. 1–22 (2014)

9. Mazurkiewicz, A.: Trace theory. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
Petri Nets 1986. LNCS, vol. 255, pp. 279–324. Springer, Heidelberg (1987)

10. Peled, D.: All from one, one for all: on model checking using representatives.
In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer,
Heidelberg (1993)

11. Peled, D.: Partial order reduction: linear and branching temporal logics and process
algebras. In: Proceedings of POMIV 1996, Workshop on Partial Order Methods in
Verification, DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, vol. 29, pp. 233–257. American Mathematical Society (1997)

12. Rensink, A., Vogler, W.: Fair testing. Inf. Comput. 205(2), 125–198 (2007)
13. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput.

1(2), 146–160 (1972)
14. Valmari, A.: Error Detection by reduced reachability graph generation. In: Pro-

ceedings of the 9th European Workshop on Application and Theory of Petri Nets,
pp. 95–122 (1988)

Fair Testing and Stubborn Sets 243

15. Valmari, A.: State space generation: efficiency and practicality. Dr. Techn. thesis,
Tampere University of Technology Publications 55, Tampere (1988)

16. Valmari, A.: Stubborn set methods for process algebras. Peled, D.A., Pratt, V.R.,
Holzmann, G.J. (eds.) Partial Order Methods in Verification: DIMACS Workshop,
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol.
29, pp. 213–231. American Mathematical Society (1997)

17. Valmari, A.: The state explosion problem. In: Reisig, W., Rozenberg, G. (eds.)
APN 1998. LNCS, vol. 1491, pp. 429–528. Springer, Heidelberg (1998)

18. Valmari, A.: Stop it, and be stubborn! In: Haar, S., Meyer, R. (eds.) 15th Inter-
national Conference on Application of Concurrency to System Design, pp. 10–19.
IEEE Computer Society (2015). doi:10.1109/ACSD.2015.14

19. Valmari, A.: A state space tool for concurrent system models expressed in C++.
In: Nummenmaa, J., Sievi-Korte, O., Mäkinen, E. (eds.) SPLST 2015 Symposium
on Programming Languages and Software Tools, vol. 1525, pp. 91–105. CEUR
Workshop Proceedings (2015)

20. Valmari, A., Hansen, H.: Can stubborn sets be optimal? Fundamenta Informaticae
113(3–4), 377–397 (2011)

http://dx.doi.org/10.1109/ACSD.2015.14

Author Index

Agha, Gul 165
Akroun, Lakhdar 1

Barnat, Jiří 208
Bauch, Petr 208

Cordeiro, Lucas 97

de Lima Filho, Eddie 97
Dimovski, Aleksandar S. 19
Dragomir, Iulia 38

Edelkamp, Stefan 57

Gallardo, María-del-Mar 78
Garcia, Mário 97
Greulich, Christoph 57
Guldstrand Larsen, Kim 129

Hoffmann, Ruth 104
Hofmann, Martin 111

Ireland, Murray 104

Jensen, Peter Gjøl 129

Kamaleson, Nishanthan 147
Khamespanah, Ehsan 165
Khazem, Kareem 182

Lauko, Henrich 208

Mateescu, Radu 189
Mechitov, Kirill 165
Merino, Pedro 78
Miller, Alice 104
Monteiro, Felipe 97
Mrázek, Jan 208

Neukirchen, Christian 111
Norman, Gethin 104

Pajela, Gilbert 214
Panizo, Laura 78
Parker, David 147
Preoteasa, Viorel 38

Requeno, José Ignacio 189
Rowe, Jonathan E. 147
Rueß, Harald 111

Salaün, Gwen 1
Salmerón, Alberto 78
Shankar, Subash 214
Sirjani, Marjan 165
Srba, Jiří 129

Tautschnig, Michael 182
Tripakis, Stavros 38

Valmari, Antti 225
Veres, Sandor 104
Vogler, Walter 225

Ye, Lina 1

	Preface
	Organization
	Invited Papers
	On Verification Challenges at the Large Hadron Collider
	Model Checking: What Have We Learned, What Will Machines Learn?

	Contents
	Automated Analysis of Asynchronously Communicating Systems
	1 Introduction
	2 Communicating Systems
	3 Stability-Based Verification
	4 Tool Support
	5 Related Work
	6 Conclusion
	References

	Symbolic Game Semantics for Model Checking Program Families
	1 Introduction
	2 The Language for Program Families
	3 Symbolic Representation of Game Semantics
	3.1 Symbolic Models of IA2
	3.2 Symbolic Models of IA2

	4 Model Checking Algorithms
	5 Implementation
	6 Related Work and Conclusion
	References

	Compositional Semantics and Analysis of Hierarchical Block Diagrams
	1 Introduction
	2 Hierarchical Block Diagrams
	3 Basic Blocks as Monotonic Predicate Transformers
	3.1 Monotonic Predicate Transformers
	3.2 Semantics of Basic Blocks as Monotonic Predicate Transformers

	4 HBDs as Composite Predicate Transformers
	4.1 Composite Predicate Transformers
	4.2 Translating HBDs to CPTs
	4.3 Simplifying CPTs and Checking Compatibility

	5 Implementation and Evaluation
	5.1 Toolset
	5.2 Evaluation

	6 Related Work
	7 Conclusion
	References

	Using SPIN for the Optimized Scheduling of Discrete Event Systems in Manufacturing
	1 Introduction
	2 Preliminaries
	2.1 Discrete Event Simulation
	2.2 Flow Manufacturing

	3 Related Work
	4 Case Study
	5 Promela Specification
	6 Optimized Scheduling
	6.1 Guarded Branching
	6.2 Process Synchronization

	7 Evaluation
	8 Conclusions
	References

	River Basin Management with Spin
	1 Introduction
	2 Background on Flood Management
	2.1 The Guadalhorce Case Study

	3 Approach with Model Checking
	4 Dam and Basin Modelling
	4.1 Dam Model
	4.2 River Basin Model
	4.3 Management Rules

	5 Constraints for Synthesis of Management Decisions
	6 Evaluation
	7 Conclusions and Future Work
	References

	ESBMC: A Bounded Model Checking Tool to Verify Qt Applications
	1 Introduction
	2 Qt Operational Model (QtOM)
	3 QtOM Features
	4 QtOM Usage
	5 Verifying Qt Applications with ESBMCQtOM
	5.1 Locomaps Application
	5.2 GeoMessage Application
	5.3 Verification Results

	6 Conclusions
	References

	Autonomous Agent Behaviour Modelled in PRISM -- A Case Study
	1 Introduction
	2 Autonomy
	3 UAV Example
	4 Results
	5 Conclusions
	References

	Certification for -Calculus with Winning Strategies
	1 Introduction
	2 Syntax and Semantics
	2.1 -Calculus Formulas
	2.2 Ordered Systems of Equations

	3 Parity Games
	3.1 Certification of Winning Strategies

	4 Game-Theoretic Characterization of -Calculus
	5 Computing Winning Strategies via Fixpoint Iteration
	5.1 Fixpoint Iteration
	5.2 Partial Winning Strategies
	5.3 Computing Winning Strategies by Fixpoint Iteration

	6 Implementation and Evaluation
	7 Conclusion
	References

	Real-Time Strategy Synthesis for Timed-Arc Petri Net Games via Discretization
	1 Introduction
	2 Motivating Example of Disk Operation Scheduling
	3 Definitions
	3.1 Timed-Arc Petri Net Game

	4 Controller Synthesis in Continuous vs. Discrete Time
	5 Discrete-Time Algorithm for Controller Synthesis
	5.1 Extrapolation of TAPGs
	5.2 The Algorithm

	6 Experiments
	6.1 Disk Operation Scheduling
	6.2 Infinite Job Shop Scheduling

	7 Conclusion
	References

	Finite-Horizon Bisimulation Minimisation for Probabilistic Systems
	1 Introduction
	2 Preliminaries
	2.1 Discrete-Time Markov Chains
	2.2 Probabilistic Computation Tree Logic
	2.3 Probabilistic Bisimulation

	3 Finite-Horizon Bisimulation
	4 Finite-Horizon Bisimulation Minimisation
	4.1 A Partition-Refinement Based Minimisation Algorithm

	5 On-the-Fly Finite-Horizon Minimisation
	5.1 The On-the-Fly Minimisation Algorithm
	5.2 Symbolic (SMT-Based) Minimisation
	5.3 Explicit-State Minimisation

	6 Experimental Results
	6.1 The Partition-Refinement Algorithm
	6.2 On-the-Fly Algorithms

	7 Conclusions
	References

	Schedulability Analysis of Distributed Real-Time Sensor Network Applications Using Actor-Based Model Checking
	1 Introduction
	2 Preliminaries
	2.1 The Actor Model of WSAN Applications
	2.2 Timed Rebeca and the Model Checking Toolset

	3 Schedulability Analysis of a Stand-Alone Node
	4 Schedulability Analysis of Multi-node Model with a Distributed Communication Protocol
	5 Experimental Results and a Real-World Case Study
	6 Related Work
	7 Conclusion
	References

	smid: A Black-Box Program Driver
	1 Introduction
	1.1 Overview
	1.2 Comparison with Existing Tools
	1.3 Scope and Limitations

	2 The SMID Language
	3 SMID Usage and Case Study
	4 Conclusions
	References

	On-the-Fly Model Checking for Extended Action-Based Probabilistic Operators
	1 Introduction
	2 Dataless Regular Probabilistic Operator
	3 Model Checking Method
	4 Extension with Data Handling
	4.1 Overview of Data Handling MCL Operators
	4.2 Generalized Iteration on Regular Formulas
	4.3 Model Checking Method with Data Handling

	5 Tool Support and Use
	5.1 Implementation
	5.2 Case Study: Analysis of Mutual Exclusion Protocols

	6 Conclusion and Future Work
	References

	SymDIVINE: Tool for Control-Explicit Data-Symbolic State Space Exploration
	1 Introduction
	2 Control-Explicit Data-Symbolic Approach
	2.1 Representation of Multi-states
	2.2 State Space Generation

	3 Using SymDIVINE
	4 Conclusions and Future Work
	References

	A Tool Integrating Model Checking into a C Verification Toolset
	1 Introduction and Motivation
	2 Frama-C Overview
	3 Model Checking for Software Verification
	4 The cegarmc Plugin
	4.1 Cegarmc Implementation
	4.2 Cegarmc Issues
	4.3 Integration of Approaches

	5 Conclusions and Further Research
	References

	Fair Testing and Stubborn Sets
	1 Introduction
	2 Labelled Transition Systems and Equivalences
	3 The Trace-Preserving Strong Stubborn Set Method
	4 On Computing Trace-Preserving Stubborn Sets
	5 On the Performance of Various Conditions
	6 The Fair Testing Equivalence Preservation Theorem
	7 Example
	References

	Author Index

