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Preface

These are the proceedings of the 15th European Conference on Logics in Artificial
Intelligence (JELIA 2016), held during November 9—-11, 2016, in Larnaca, Cyprus, and
organized by the University of Cyprus and the Open University of Cyprus.

The European Conference on Logics in Artificial Intelligence (or Journées
Européennes sur la Logique en Intelligence Artificielle — JELIA) began back in 1988,
as a workshop, in response to the need for a European forum for the discussion of
emerging work in this field. Since then, JELIA has been organised biennially, with
proceedings published in the Springer series Lecture Notes in Artificial Intelligence.
Previous meetings took place in Roscoff, France (1988), Amsterdam, The Netherlands
(1990), Berlin, Germany (1992), York, UK (1994), Evora, Portugal (1996), Dagstuhl,
Germany (1998), Malaga, Spain (2000), Cosenza, Italy (2002), Lisbon, Portugal
(2004), Liverpool, UK (2006), Dresden, Germany (2008), Helsinki, Finland (2010),
Toulouse, France (2012), and Madeira, Portugal (2014).

The aim of JELIA is to bring together active researchers interested in all aspects
concerning the use of logics in artificial intelligence (Al) to discuss current research,
results, problems, and applications of both theoretical and practical nature. JELIA
strives to foster links and facilitate cross-fertilization of ideas among researchers from
various disciplines, among researchers from academia and industry, and between
theoreticians and practitioners.

The increasing interest in this forum, its international level with growing partici-
pation of researchers from outside Europe, and the overall technical quality have turned
JELIA into a major biennial forum for the discussion of logic-based approaches to Al

For the 2016 edition of JELIA, authors were invited to submit papers presenting
original and unpublished research in all areas related to the use of logics in Al
To encourage a discussion of the links and synergies between Al and cognitive psy-
chology, this year's edition of JELIA encouraged submissions on logics in Al and
cognition, and included invited talks related to this topic.

There were 88 submissions, each reviewed by three Program Committee members.
The committee decided to accept 32 full papers for regular presentations or system
demonstrations, and ten short papers for spotlight/poster presentations. The accepted
papers span a number of areas within logics in Al including: belief revision, answer set
programming, argumentation, probabilistic reasoning, handling inconsistencies, tem-
poral logics and planning, description logics, and decidability and complexity results.
The program also included five invited talks by Costas Bekas, Tarek R. Besold, Marc
Denecker, Torsten Schaub, and Keith Stenning.

We would like to thank the authors of all the submitted papers and the members
of the Program Committee and the additional experts who helped during the reviewing
process, for contributing and ensuring the high scientific quality of JELIA 2016.
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We would also like to acknowledge the support of the University of Cyprus, the
Open University of Cyprus, the Cyprus Tourism Organisation, Austrian Airlines, IBM,
Springer, and EasyChair.

September 2016 Loizos Michael
Antonis Kakas
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Frontiers of Cognitive Computing

Costas Bekas

IBM Research - Zurich, Zurich, Switzerland
bek@zurich. ibm. com

Cognitive Computing is the new frontier of the information age. Computers have
evolved into indispensable tools of our modern societies, having modernized numerous
aspects of our everyday lives. Computers have facilitated the acquisition, storage and
access of huge amounts of data since the very first electronic general purpose machines
of the 1940s. Since then, we learned how to program computers in order to allow uses
that even the wildest imagination of computer pioneers of the 50s and 60s did not
capture, such as the internet, social networks and simulations of nature of incredible
fidelity. Cognitive computing turns our trusted programmable machines, into cognitive
companions. The systems are not programmed to simply achieve a task, but rather they
are developed to reason with us in ways that are natural for us. They can debate with
us, test our ideas, as these are expressed in natural language, against incredible volumes
of data and give us insights that ultimately free us and let us focus on and use our
deepest of human capabilities: intuition and intelligence. Cognitive systems mimic the
way we humans reason, allowing us to express in unstructured ways, such as speech
and vision in order to achieve in a small fraction of the previously required time feats
such as pharmaceuticals and materials discovery, attacking cancer, understand complex
natural ecosystems as well as man-made ecosystems such as the economy and tech-
nology. We will discuss the remarkable progress of cognitive computing and give a
glimpse of what the future may look like.



To the Extent that You Are Like a Grape:
Symbolic Models of Analogy and Concept
Blending in Cognitive AI

Tarek R. Besold

University of Bremen, Bremen, Germany
tbesold@uni-bremen. de

Analogy is one of the most studied representatives of a family of non-classical forms of
reasoning working across different domains, usually taken to play a crucial role in
creative thought and problem-solving. In the first part of the talk, I will shortly introduce
general principles of computational analogy models (relying on a generalisation-based
approach to analogy-making). We will then have a closer look at Heuristic-Driven
Theory Projection (HDTP) as an example for a theoretical framework and implemented
system: HDTP computes analogical relations and inferences for domains which are
represented using many-sorted first-order logic languages, applying a restricted form of
higher-order anti-unification for finding shared structural elements common to both
domains. The presentation of the framework will be followed by a few reflections on the
“cognitive plausibility” of the approach motivated by theoretical complexity and
tractability considerations.

In the second part of the talk I will discuss an application of HDTP to modeling
essential parts of concept blending processes as current “hot topic” in Cognitive Sci-
ence. Here, I will sketch an analogy-inspired formal account of concept blending —
developed in the European FP7-funded Concept Invention Theory (COINVENT)
project— which, among others, combines HDTP with mechanisms from Case-Based
Reasoning.



The FO(.) Knowledge Base System Project

Marc Denecker

Katholieke Universiteit Leuven, Leuven, Belgium
Marc.Denecker@cs. kuleuven. be

The goal of this project is to build a Knowledge Base System for an expressive
knowledge representation language. Such systems allow to separate declarative
knowledge from the problems that arise in the application domain, allowing to reuse
the knowledge base to solve different computational tasks by applying different forms
of inference. On the logical level, we start from classical first order logic (FO) (the
notation FO(.) is used here as a generic term to denote extensions of classical first order
logic FO). In this logic, we integrate various language constructs from different
computational logic paradigms: types, inductive definitions, aggregates, (bounded)
arithmetic, ... The goal is to achieve an expressive, cleanly integrated knowledge
representation language with possible world semantics and a well-understood informal
semantics of mathematical precision. On the computational level, the project aims to
integrate and extend technologies developed in various computational logic fields to
build a Knowledge Base System that supports various forms of inference.

Motivations, principles and research questions raised by such a project will be
discussed. I will give an overview and demonstration of the current IDP system and
some applications. An application for interactive configuration will serve to highlight a
principle that distinguishes declarative modelling from programming: the separation of
knowledge from problems and the possibility to apply multiple forms of inference on
the knowledge base to solve different computational tasks. We discuss how even
interactive systems can be described and “run” within FO(.).



Hybrid Reasoning with Answer Set
Programming

Torsten Schaub

University of Potsdam, Potsdam, Germany
Inria Rennes, Rennes, France
torsten@cs.uni-potsdam. de

Answer Set Programming (ASP) provides an approach to declarative problem solving
that combines a rich yet simple modeling language with effective Boolean constraint
solving capacities. This makes ASP a model, ground, and solve paradigm, in which a
problem is expressed as a set of first-order rules, which are subsequently turned into a
propositional format by systematically replacing all variables, before finally the models
of the resulting propositional rules are computed. ASP is particularly suited for mod-
eling problems in the area of Knowledge Representation and Reasoning involving
incomplete, inconsistent, and changing information due to its non-monotonic semantic
foundations. From a formal perspective, ASP allows for solving all search problems in
NP (and NP"") in a uniform way. Hence, more generally, ASP is well-suited for
solving hard combinatorial search (and optimization) problems. Interesting applications
of ASP include decision support systems for NASA shuttle controllers, industrial team-
building, music composition, natural language processing, package configuration,
phylogenetics, robotics, systems biology, timetabling, and many more.

However, despite its growing popularity, ASP is not a silver bullet. For instance, it
became clear early on that ASP fails to handle large numeric domains. This was
addressed by Gelfond et al. in 2005 by proposing an integration of ASP and Constraint
Processing (CP). This influential work has given rise to the subarea of Constraint ASP
(CASP). Although this is an exemplar of hybridizing ASP, the need for integrating
special-purpose reasoning is omnipresent when it comes to attacking real-world appli-
cations. This includes the integration of ASP with linear programming in bio-infor-
matics, with geometrical reasoning in robotics, simulation in hardware design, and many
more. This reveals the need for a principled way of integrating ASP with dedicated
reasoning formalisms, both at the semantic and implementation level. Although this
development has already been anticipated in the area of Satisfiability Testing (SAT),
leading to the subfield of SAT Modulo Theories (SMT), it only serves as a limited
blueprint for ASP. This is because (i) it only deals with solving and ignores modeling
and grounding and (ii) it is monotonic and thus follows different semantic principles.

The talk will start with an introduction to CASP and sketch important aspects and
insights gained in the development of the CASP solver clingcon. Building on this, we
will describe the general framework for integrating theory reasoning into ASP offered
by the fifth generation of the ASP system clingo. And finally we sketch a novel
semantic approach to integrating ASP and CP, called the logic of Here-and-There with
constraints.



We Reason in Uncertainty,
But of What Kinds?

Keith Stenning

The University of Edinburgh, Scotland, UK
k. stenning@ed. ac. uk

If logic is to be helpful in analysing human reasoning, we first need to acknowledge the
heterogeneity of the kinds of reasoning that people do. There has been a strong shift in
the study of human reasoning away from classical logic toward probability theory as the
formal framework, and for many researchers probability is all that is needed to analyse
any human reasoning. Reasoning in this respect is held to be homogeneous. We
have argued elsewhere that this move is from the frying pan into the fire, not because
probability (or classical logic) cannot be useful, but because homogeneity is empirically
and formally disastrous (Stenning et al. (submitted); Stenning and van Lambalgen
(2008); Besold et al. (submitted)). We take it that in Al, this is all commonplace. But
some of the insights arising in cognition may be of interest to Al researchers. Engaging
with logical multiplicity focusses attention on qualitatively different kinds of uncer-
tainty, and how to characterise them. This talk will present some current thinking on that
question. The idea is to use logics to individuate kinds of uncertainty. In particular we
contrast Logic Programming (LP) as a nonmonotonic logic, here specialised for ana-
lysing human discourse processing, and with some track record in modelling discourse
semantics, with, on the one hand classical logic, and on the other probability. When
examined close up, it is emerges just how what different kinds of things the uncertainties
of these three system are.

References

Besold, T.R., Garcez, A., Stenning, K., Torre, L.V.D.: Reasoning in Non-probabilistic Uncer-
tainty: Logic Programming and Neural- Symbolic Computing as Examples. Minds and
Machines (submitted)

Stenning, K., Martignon, L., Varga, A.: Adaptive Reasoning: Integrating Fast and Frugal
Heuristics with a Logic of Interpretation. Decision (submitted)

Stenning, K., van Lambalgen, M.: Human Reasoning and Cognitive Science. MIT Press,
Cambridge (2008)
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Abstract. Metabolic Networks, formed by series of metabolic pathways,
are made of intracellular and extracellular reactions that determine the
biochemical properties of a cell and by a set of interactions that guide
and regulate the activity of these reactions. Cancers, for example, can
sometimes appear in a cell as a result of some pathology in a metabolic
pathway. Most of these pathways are formed by an intricate and complex
network of chain reactions, and they can be represented in a human
readable form using graphs which describe the cell signaling pathways.

In this paper we present a logic, called Molecular Equilibrium Logic,
a nonmonotonic logic which allows representing metabolic pathways. We
also show how this logic can be presented in terms of a syntactical subset
of Temporal Equilibrium Logic, the temporal extension of Equilibrium
Logic, called Splittable Temporal Logic Programs.

1 Introduction

Molecular Interaction Maps [20], formed by a series of metabolic pathways, are
made of intracellular and extracellular reactions that determine the biochemical
properties of a cell by consuming and producing proteins, and by a set of interac-
tions that guide and regulate the activity of these reactions. These reactions are
at the center of a cell’s existence, and are regulated by other proteins, which can
either activate these reactions or inhibit them. These pathways form an intricate
and complex network of chain reactions, and can be represented using graphs.
Molecular Interaction Maps (MIM’s) [1] are such a representation, and it is pos-
sible to write these graphs using editors such as Pathvisio [17] (which outputs
its own XML representation) or System Biology Markup Language (SBML) [2]
editors.
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These graphs can become extremely large, and although essential for knowl-
edge capitalization and formalization, they are difficult to use because: (1) Read-
ing is complex due to the very large number of elements, and reasoning is even
more difficult; (2) Using a graph to communicate goals is only partially suitable
because the representation formalism requires expertise; (3) Graphs often con-
tain implicit knowledge, that is taken for granted by one expert, but is missed
by another one.

Our aim consists in providing a logical framework that helps users to detect
possible inconsistencies as well as reasoning on such kind of maps. We have
chosen to use Pathvisio and its XML representation as our editor/representation
of choice for representing these graphs, but this work could be extended to SBML
and SBML editors. In [11], we modelled a restricted subclass of MIM’s in terms
of first-order logic with equality. This work was simplified into propositional
logic in [6], which enabled to use all propositional calculus tools such as solving
abductive queries on MIM’s. Unfortunately that representation was unable to
express the temporal properties of MIM, which are implicit in the formalisations.
So we extended our work with temporal logic in [5]. This representation was
enhanced with a naive approach to abductive temporal reasoning by assuming
bounded time and the so-called closed world assumption [27], a concept tightly
connected with Logic Programming and Non-Monotonic reasoning'. The use of
non-monotonicity allows us to use defaults and inertia rules to express things
like “a protein remains in the environment if it is not used in one reaction”,
which greatly enhances our temporal descriptions.

In order to incorporate such kind of defaults and to justify the use of the
closed world assumption in [5], we present in this paper Molecular Equilibrium
Logic (MEL), a reformulation of the temporal version of Molecular Interaction
Logic [5] in terms of Equilibrium Logic [25], a well-known logical characterisation
of Stable Models [15] and Answer Sets [9]. Moreover we show the existence of
a connection between MEL and Temporal Equilibrium Logic (TEL) [3], the
temporal extension of the Equilibrium Logic. By going one step further, we
show that MEL can be encoded in a syntactic subclass of TEL called splittable
temporal logic programs (STLP’s) [4], which allows us to capture the set of
Molecular Equilibrium Models (explained in Sect.4) in terms of a Linear Time
Temporal Logic (LTL) formula [22] (see Sect. 7).

The rest of this paper is organized as follows: Sect. 2 presents several biolog-
ical concepts used along this paper as well as describes the problems to solve
in layman’s words and with a simple example. Section 3 describes the concepts
of production and regulation which are the basic operations present in a MIM.
Sections 4 and 5 respectively describe two different semantics based on equilibrium
logic: Molecular Equilibrium Logic and Temporal Equilibrium Logic. The former is
capable of describing general pathways while the latter is the best-known temporal

! Regarding non-monotonic approaches to model biological systems, there are several
contributions in the area of Answer Set Programming [9,28], action languages [29]
or Inductive Logic Programming [12]. In these contributions the temporal behaviour
is considered in [29] but both representation and query languages are different.
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extension of Equilibrium Logic. In Sect. 6 we establish the relation between the two
aforementioned formalisms, which is studied in detail in Sect. 7 where we prove
that the Equilibrium Models of our temporal theories can be expressed in Linear
Time Temporal Logic [22] via Temporal Completion [4,10].

2 A Simple Classical Example

In this section we introduce the example of the regulation of the lac
operon [19]%:3, which will be used and developed in the rest of this paper. The lac
operon (lactose operon) is an operon required for the transport and metabolism
of lactose in many bacteria. Although glucose is the preferred carbon source for
most bacteria, the lac operon allows for the effective digestion of lactose when
glucose is not available. The lac operon is a sequence of three genes (lacZ, lacY
and lacA) which encode 3 enzymes. Then, these enzymes carry the transforma-
tion of lactose into glucose. We will concentrate here on lacZ. LacZ encodes the
(B-galactosidase which cleaves lactose into glucose and galactose. The lac operon
uses a two-part control mechanism to ensure that the cell expends energy pro-
ducing the enzymes encoded by the lac operon only when necessary. First, in the
absence of lactose, the lac repressor halts production of the enzymes encoded
by the lac operon. Second, in the presence of glucose, the catabolite activator
protein (CAP), required for production of the enzymes, remains inactive.
Figure 1(a) describes this regulatory mechanism. The expression of lacZ gene
is only possible when RNA polymerase (pink) can bind to a promotor site

e
lacl cap P o lacZ lacYy lacA . zeN":S

binding
site

AUG AUG AUG
RNA

CAP protein  RNA polymerase

[ S
- lac genes strongly expressed
Repressor protein lacZ A H#:’
— ot actos available
-
_CAPP 0O High glucose
7 binding Lactose available @ @
(a) The Lac Operon (b) MIM representing the Lac Operon

Fig. 1. Graphical and MIM representation of the Lac Operon. (Color figure online)

2 The Nobel prize was awarded to Monod, Jacob and Lwoff in 1965 partly for the
discovery of the lac operon by Monod and Jacob [18], which was the first genetic
regulatory mechanism to be understood clearly, and is now a “standard” introduc-
tory example in molecular biology classes.

3 A less formal explanation can be found in https://en.wikipedia.org/wiki/Lac_operon.
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(marked P, black) upstream the gene. This binding is aided by the cyclic adeno-
sine monophosphate (cAMP in blue) which binds before the promotor on the
CAP site (dark blue). The lacl gene (yellow) encodes the repressor protein Lacl
(yellow) which binds to the promotor site of the RNA polymerase when lactose
is not available, preventing the RNA polymerase to bind to the promoter and
thus blocking the expression of the following genes (lacZ, lacY and lacA): this is
a negative requlation, or inhibition, as it blocks the production of the proteins.
When lactose is present, the repressor protein Lacl binds with lactose and is
converted to allolactose, which is not able to bind to the promotor site, thus
enabling RNA polymerase to bind to the promotor site and to start expressing
the lacZ gene if cAMP is bound to CAP. cAMP is on the opposite a positive
requlation, or an activation, as its presence is necessary to express the lacZ gene.
However, cAMP is itself regulated negatively by glucose: when glucose is present,
the concentration of cAMP becomes low, and thus cAMP does not bind to the
CAP site, blocking the expression of lacZ. In this figure, we have three kinds of
entities which have different initial settings and temporal dynamics:

— lacl, lacZ and cAMP are initial external conditions of the model and they do
not evolve in time.

— galactosidase and the repressor protein can only be produced inside the graph,
and are always absent at the start (time 0) of the modeling. Their value will
then evolve in time according to the processes described by the graph.

— glucose and lactose also evolve in time (like galactosidase and the repressor
protein) according to the processes described by the graph, but they are also
initial conditions of the system, and can either be present or absent at time
0, like lacl, lacZ and cAMP.

So, an entity must be classified according to two main characteristics: C1:
It can evolve in time according to the cell reactions (appear and disappear), or
it can be fixed, such as a condition which is independent of the cell reactions
(temperature, protein always provided in large quantities by the external envi-
ronment, etc. .. ). C2: It can be an initial condition of the cell model (present or
absent at the beginning of the modeling), or can only be produced by the cell.
There are thus three kinds of entities, which have three kind of behaviour:

Exogenous entities: an exogenous entity satisfies C'1 and —C2; their status
never change through time: they are set once and for all by the environment
or by the experimenter at the start of the simulation; the graph never modifies
their value, and if they are used in a reaction, the environment will always
provide “enough” of them.

Pure endogenous entities: on the opposite, a pure endogenous entity satisfies
—C1 and C2; their status evolves in time and is set only by the dynamic of
the graph. They are absent at the beginning of the reaction, and can only
appear if they are produced inside the graph.

Weak endogenous entities: weak endogenous entities satisfy C2 and C'1; they
can be present or absent at the beginning of the process (they are initial
conditions of the model), however their value after the start of the process is



Metabolic Pathways as Temporal Logic Programs 7

entirely set by the dynamic of the graph. So they roughly behave like pure
endogenous entities, but the initial condition can be set by the experimenter.

The status of a protein/condition is something which is set by the biolo-
gist, regarding his professional understanding of the biological process described
by the graph?. However a rule of thumb is that exogenous entities are almost
never produced inside the graph (they never appear at the right side of a pro-
duction arrow), while endogenous entities always appear on the right side of
a production arrow (but they can also appear on the left side of a production
rule, especially weak endogenous entities). These distinctions are fundamental,
because the dynamics of these entities are different and they will have to be
formalized differently.

3 Fundamental Operations

The mechanism described in the previous section is summarized in the simplified
graph in Fig. 1(b). This example contains all the relationship operators that will
be used in the rest of this document. In order to make their presentation clearer,
we will distinguish between productions and regulations:

Productions can take two different forms, depending on whether the reac-
tants are consumed by the reactions or not: In Fig. 1(b), lactose and galactosi-
dase produce glucose, and are consumed while doing so, which is thus noted
(galactosidase, lactose —» glucose). On the opposite, the expression of the lacZ
gene to produce galactosidase (or of the lacl gene to produce the Lacl repressor
protein) does not consume the gene, and we have thus (lacZ — galactosidase).
Generally speaking, If the reaction consumes completely the reactant(s) we write:
ai,asg, -+ ,a, = b while if the reactants are not consumed by the reaction, we
write a1, as, ...a, = b. In the former representation the production of b completely
consumes ai, ds...a,, whereas in the latter ai,as...a,, are not consumed when b
is produced.

Regulations can also take two forms: every reaction can be either inhibited
or activated by other proteins or conditions. In the Diagram of Fig.1(b), the
production of galactosidase from the expression of the lacZ gene is activated
by cAMP (we use cAM P — to express activation). At the same time the same
production of galactosidase is blocked (or inhibited) by the Lacl repressor protein
(noted Repressor —).

Generally speaking, we write a,as, ...a, = if the simultaneous presence of
ai,as, ...a, activates a production or another regulation. Similarly we write

4 Tt is important here to notice that lactose can be either considered as a weak endoge-
nous variable, or as an exogenous variable if we consider that the environment is
always providing “enough” lactose. It is a simple example which shows that vari-
ables in a graph can be interpreted differently according to what is going to be
observed.
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Title: Activations and inhibitions Title: Stacking regulations

f1,£2,...fn ele2..en

alaz,.an e | b

cl,c2,..cn d1,d2,...dn
(a) Activations/Inhibitions (b) Stacking

Fig. 2. Examples of activations and inhibitions and stacking contexts.

ai,as,...a, — if the simultaneous presence of ai,as,...a, inhibits a produc-
tion or another regulation. On Fig.2(a), we have a summary of basic inhibi-
tions/activations on a reaction: the production of b from ay,--- ,a, is activated
by the simultaneous presence of ¢y, - , ¢, or by the simultaneous presence of
di,- - ,dp, and inhibited by the simultaneous presence of ey, --- ,e, or by the
simultaneous presence of f1,--- , f,. These regulations are often “stacked”, on
many levels (see Fig.2(b)). For example in Fig. 1(b), the inhibition by the Lacl
repressor protein of the production of galactosidase can itself be inhibited by
the presence of lactose, while the activation of the same production by cAMP is
inhibited by the presence of glucose.

A final word of warning is necessary. Graphs pragmatically describe sequences
of operations that biologists find important. They are only a model of some of
the biological, molecular and chemical reactions that take place inside the cell;
they can also be written in many different ways, depending on the functional
block or operations that biologists want to describe, and some relationships are
sometimes simply left out because they are considered not important for the
function which is described in a particular graph.

4 Molecular Equilibrium Logic

In this section we introduce Molecular Equilibrium Logic. The syntax of this
logic consists of two elementary building blocks: pathway context and pathway
formula. The former corresponds to the representation of the activation and
inhibition conditions while the latter allows representing the production of new
substances (see Sect. 3). A pathway context is formed by expressions defined by
the following grammar:

Q= <{Oél,"' aan}P_Da{an-‘rlf" ,Oén+m}Q _‘>7

where P and @ are sets (finite and possibly empty) of propositional variables
representing the conditions of activation (= ) and inhibition ( —) of the reaction.
Every context can be associated with a (possibly empty) set of activation (v,
with 1 < ¢ < n) and inhibition (a;, with 1 < j < m) contexts. One or both
sets can be empty. Broadly speaking, the context associated with a pathway
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formula represents the set of substances that must be present or absent in order
to make the reaction possible. As an example of context, let us consider the
example of the Lac Operon, whose graph is displayed in Fig. 1(b). The context
associated with the production rule lacZ - Galactosidase corresponds to the
following expression:

v = ({{&~,{Glucose} =) }{CAM P} { (@ {Lactose} — ) }{ Repressor} —).

(1)

A Pathway formula is a rule built from the grammar F ::= [a] (P" —o q) |

F A F, where « represents a context, —o€ { -, = }, P" stands for a conjunction

of all atoms in the finite set P and ¢ corresponds to a propositional variable.

Regarding our running example, which is shown in Fig. 1(b), consists of three

different pathways, each of them corresponds to one of the following pathway
formulas:®

(g2 —,2@ —)] (Lactose, Galactosidase + Glucose) (2)
(0@ —,20 —)](lacl - Repressor) (3)
[v] (lacZ - Galactosidase) . (4)

From a biological point of view, substances can be created or destroyed by
reactions that might take place in parallel. Therefore, we must take into account
situations where a protein is produced and consumed at the same time or where
a protein remains present because it was not involved in a reaction which would
have consumed it. We model this aspect by extending the set of propositional
variables X' to the set X' = YU{Pr (p1),--- ,Pr(p,)}U{Cn(p1),---,Cn(pn)},
where pi1,---,p, are either a weak or pure endogenous variables. Informally
speaking, every atom of the form Pr (p) means that p is produced as a result of
a chemical reaction while Cn (p) means that the reactive p is consumed in a reac-
tion. Regarding our running example, we notice that the production of Glucose
implies that Galactosidase is consumed. However, Lactose, as an exogenous
variable is never consumed. From now on, we will use the symbols X and X
referring to, respectively, the signature (set of entities occurring in a MIM) and
its corresponding extension.

The semantics of MEL is based on the monotonic logic of Molecular Here
and There (MHT) plus a minimisation criterion among the Here and There
models. Given a set of propositional variables X' we define a Molecular Here
and There® interpretation M as an infinite sequence of pairs m; = (H;, T;) with
i =0,1,2,... where H; C T; C b5 satisfying the following properties: for all
endogenous variable p € X and for all exogenous variable ¢ € X and for all
i>0,

5 Notice that only the pathway formula associated with the production of
Galactosidase has an associated context, defined in (1), while the rest of pathway
formulas have an empty context.

6 Here and There [16] is an intermediate logic which severs as a monotonic basis for
the Equilibrium Models [25], a logical characterisation of the Stable Model seman-
tics [15].
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(A) if Pr(p) € H; then p € H;11; (D) if p € T; and Cn (p) ¢ T;then p €
(B) if p € H; and Cn (p)¢&l; then p € Tit1;

Hiy1; (E) if g € H; then ¢ € Hyyq;
(C) if Pr(p) € T; then p € Tjy1; (F) if ¢ € T; then g € Tj4;.

For simplicity, given a MHT interpretation, we write H (resp. T) to represent the
sequence of pair components Hg, Hy,... (resp. Tp, T4, ... ). Using this notation,
we will sometimes abbreviate the interpretation as M = (H, T). f H = T, we
will call M total model.

Before presenting the satisfaction relation we introduce the activation (A(a))
and inhibition (Z(«)) expressions associated with a pathway context a =
{or, -+ ;an}P =, {Bnt1, s Bntm @ —). Informally speaking, A(«) char-
acterizes when the context « is active while Z(«) describes when it is inhibited.
These expressions, which will be used in the definition of the satisfaction relation,
are defined as follows:

Al@)= A\ pA NA@) A (N —av N\ Z(5))

peP i=1 qeQ Jj=n+1
Z(a) = \/ Vv \/ Z(e) V(N an N\ AB)).
peP i=1 q€Q Jj=n+1

If one part of the context « is empty, then the corresponding part is of course
absent in A(«) and Z(«). For instance, the activation and inhibition expressions
of the context v described in (1) correspond to the Boolean expressions: A(y) =
CAMP A=Glucose \ (- Repressor V Lactose) and Z(y) = ~CAM PV Glucose V
(Repressor A —Lactose).

Given a MHT interpretation M, ¢ > 0 and a pathway formula F' on X, we
define the satisfaction relation (M, i = F) as follows:

- M,: = piff p € H;, for any variable p € X,

-M,i E -piff pgT;, withpe X;

— disjunction and conjunction are satisfied in usual way;

M,i = [o](P"—>q) iff foral H € {H,T} and j >, if (H,T"),j = A(«®)

and P C H; , then {Pr(q),Cn(p) | p € P an endogenous variable} C H’;

- M,i E [a](P"—>q)iff forall H € {H, T} and j >, if (H,T'),j £ A(«a)
and P C Hj , then Pr(q) € H};

As in other equilibrium logic extensions, we relate two MHT models M = (H, T)
and M’ = (H', T") as follows: M’ < M iff T = T and for all ¢ > 0 H] C H;.
M <Mif M <M and M’ # M. We say that a MHT interpretation M is
a Molecular Equilibrium Model of a set of pathway formulas I" iff M is total,
M,0 = I' an there is no M’ such that M’ < M such that M',0 = I.
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5 Temporal Equilibrium Logic

Temporal Equilibrium Logic (TEL) [3] extends Equilibrium Logic [25]7 with tem-
poral operators from Linear Time Temporal Logic [22]. TEL can also be seen
as a temporal extension of the stable models semantics [15] for logic program-
ming. This formalism is very suitable for representing the temporal behaviour
of biological systems, since the use of the laws of inertia allows us to avoid the
specification of the large number of frame axioms [24] that should be considered
in the representation. The TEL formulas we will consider along this paper are
built from the following grammar:

pu=LlplorApa | w1V |er— o2 | 0pr | Opr | O,

where 1 and o are also temporal formulas. Regarding the modal operators, O
is read “next”, O is read “forever” and ¢ stands for “eventually” or “at some
future point”.

The semantics of TEL is defined, in the same spirit as in Equilibrium Logic, in
terms of a temporal extension of the logic of Here and There [16], called Temporal
Here and There (THT), plus a minimisation criterion among the THT models.
We define a Temporal Here and There interpretation M as an infinite sequence of
pairs m; = (H;,T;) with ¢ =0,1,2,... where H; C T; C X For simplicity, given
a temporal interpretation, we write H (resp. T') to represent the sequence of pair
components Hy, Hy, ... (resp. Ty, T4, . .. ). Using this notation, we will sometimes
abbreviate the interpretation as M = (H, T). An interpretation M = (H, T) is
said to be total when H = T. The satisfaction relation |= is interpreted as
follows on THT models (M is a THT model and & € N):

1. M,k FpiﬁpEHk,foranypef.

2. MLk E oAy if Mk | g and M,k |= 9.

3. Mk = VY if Mk |E por Mk = .

4. M,k E p—oyiff forall H € {H, T}, (H,T),k fz ¢ or (H,T),k = ¢.
5 Mk = opif Myk+1 E .

6. M,k = Oy iff forall j >k, M,j = .

7. M,k = Oy iff there is j > k such that M,j E .

8. never M,k =L

Note that, as happens in Equilibrium logic, —¢ def p— L.

Proposition 1. Let M be a model. For all pathway context o and for all i € N,
(a) M,i Epar Ala) iff Myi Erar A(a); (b) M, i Eyar Z(a) iff M, i Erar
I(a);

Proof. First note that A(a) and Z(«) are build on the language p, —p (with
p € X), A and V. Second, remark that, regarding the aforementioned language,
MHT and THT have the same satisfaction relation (note that when negation
only affects to atoms of X, M, i rgr —p iff p € T; iff M, i Epgr —p). From
all those facts it is easy to prove, by induction, (a) and (b). |

7 Modal extensions of Equilibrium Logic and the logic of Here and There can be
considered as promising lines of research which lead to several remarkable results,
among others, [7,13].
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A formula ¢ is THT-valid if M,0 = ¢ for any M. An interpretation M
is a THT-model of a theory I', written M = I', if M,0 | ¢, for all formula
@ € I'. Notice that when we disregard temporal operators, we obtain the logic
of HT. On the other hand, if we restrict the semantics to total interpretations,
(T, T) & ¢ corresponds to satisfaction of formulas T & ¢ in LTL. Given two
interpretations M = (H, T) and M’ = (H', T') we say that M’ is lower or equal
than M, written M’ < M, when T = T and for all ¢ > 0, H] C H;. As usual,
M’ < M stands for M’ < M and M’ # M. Finally, an interpretation M is said
to be a temporal equilibrium model of a theory I' if M is a total model of I" and
there is no other M’ < M, such that M’ = I.

6 From Molecular Equilibrium Logic to Temporal
Equilibrium Logic

In this section we first show how MEL can be embedded in TEL by providing
a translation between their monotonic basis, MHT and THT. The reader might
have noticed that the only differences between MHT and THT interpretations
are the constraints (A)-(F), which are imposed on the MHT. Those restrictions
can be captured in THT by adding the following rule of inertia, for any variable
p € X as follows:

O((Pr(p)V(pA—-Cn(p))) — Op) if pis an endogenous variable
O(p — op) if p is an exogenous variable.

inertia(p) ef {

Informally speaking, endogenous variables are true in the next state if they
are produced or if they are present and not consumed. On the other hand,
exogenous variables are automatically passed to the next state since they are
never produced or consumed. They are just present in the environment.

Proposition 2. Given a signature X, let M be a THT interpretation on 558
M is a MHT model (that is, M satisfies conditions (A)—(F)) iff M,0 EruT
inertia(p), for all variable p € X.

Proof. From right to left, let us assume that M, 0 Ergr inertia(p). It follows
for all i > 0 M, E=rpr Pr(p) V (pA—Cn(p)) — Op, if p is an endogenous
variable or M, i |=rgr (p — Op) if p is exogenous. Using the THT satisfaction
relation, it can be easily seen that satisfying both implications implies to meet
conditions (A)—(F). Therefore M is a MHT model.

Conversely, if M is an MHT model, M satisfies conditions (A)—(F). It is easy
to prove, by using the satisfiability of THT, that conditions (A)—(D) imply that
M, 0 |=rur inertia(p) for endogenous variables while conditions (E)—(F) imply
that M, 0 [=rur inertia(p) for exogenous. [ |

~

Given a pathway formula F', we define the THT formula tr (F') (on X) as:

tr([e](P"+q)=0(Ala) AP" = [Pr(g)r /\ Cn(p)] |;
tr (o] (P" —q)) = O(A(a) A P" — Pr(q));
tr (Fl /\Fg) =tr (Fl) Ntr (Fl),
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where F; and F5 are arbitrary pathway formulas and both p and ¢ are endogenous
variables. Going back to our running example, the temporal theory associated
with (2)—(4) would correspond to the following THT formula:

O (Lactose A Galactosidase — (Pr (Glucose) A Cn (Galactosidase))) (2)
AO (lacl — Pr (Repressor)) (3)
AO (A(7) AlacZ — Pr (Galactosidase)) (4)

Theorem 1 (Correspondence). Let F' be a pathway formula built on X and
M be a THT interpretation on X. It holds that:

(a) M, 0 ):MHT F iff M, 0 ):THT tr (F) VAN /\ inertia(p);
peX

(b) M,0 Eppr F iff M,0 Ergr tr (F)A N inertia(p).
pey

Proof. We first consider Case (a). Thanks to Proposition 2, we can reduce the
whole proof to the claim: M, 0 |=ppr F iff M0 Ergr tr (F). Tt is easily to
check that this claim for elements of X' as well as conjuntion and disjunction of
elements of X' (see Proposition 1). For the case of pathway formulas we proceed
by induction on the form of the pathway formulas: base cases, [a] (P - ¢) and
[a] (P = q), are proved by means of the satisfaction relation of THT and MHT,
Condition (A)-(F) and Proposition 1. The conjunction of pathway formulas fol-
lows directly from the induction hypothesis. Finally, Case (b) follows from (a)
since the minimisation used for computing the equilibrium models is the same
in both formalisms. ]

7 MIM’s as Splittable Temporal Logic Programs

In this section we show how tr (F') can be turned into an splittable temporal logic
program (STLP), a syntactical subset of TEL which has been studied in detail
in [4]. A Temporal Logic Program II on 5 is said to be splittable if IT consists
of rules of any of the forms:

(1) BAN — H,; (3) O(BAN — H);
(2) BAOB'ANAON' — OH/; (4) O(BAOB'ANANON'— OH'),

where B and B’ are conjunctions of atoms, N and N " are conjunctions of neg-
ative literals like —p with p € X, and H and H’ are disjunctions of atoms.
The (positive) dependency graph, of an STLP II, noted G(IT), is a graph whose
nodes are the atoms of II and the edges are defined by the expression below:

E={(p,p)|pe E}U{(p,q) | 3B — H € Il s.t. p€ H and q € B}.

A set of atoms L is called a loop of a logic program II iff the subgraph
of G(IT) induced by L is strongly connected. Notice that reflexivity of G(IT)
implies that for any atom p, the singleton {p} is also a loop. Every loop of G(II)
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generates an implication which is called loop formula [4,14,21]8. By LF(II) we
refer to the conjunction of all loop formulas of II.

Theorem 2 (from [4]). Let IT be an STLP and T an LTL model of II. Then
<T,T> ):TELH’L‘[]CT ):LTL H/\LF(H) |

tr (I') A\ inertia(p) can be expressed as a STLP, thanks to the following
pey
THT equivalences:

(1) O(((p1 Vp2) A1) < ((p1 A) V (2 A1)));
(2) O(((p1 Ap2) Vap) < ((p1 V) A (02 V1)));
(3) O(( = (p1 Ag2)) = (¥ = 1) A (P — 2)));
(4) O(((p1 V2) = ¥) < ((p1 = ) Ap2 = ¥)));
(5) O(p1 A pa) < (Op1 ADOpa).

For example, the following STLP corresponds to rules (2)—(4) plus the rules of
inertia for the atoms Glucose, Repressor, Lac, LacZ, Galactosidase, Lactose
and CAMP :

O (Lactose A Galactosidase — Pr (Glucose)) @)
O (Lactose A Galactosidase — Cn (Galactosidase))
O (lacl — Pr (Repressor)) }(3)
O(CAMP A =Glucose N =Repressor AlacZ — Pr (Galactosidase)) )
O(CAMP A =Glucose A Lactose A lacZ — Pr (Galactosidase))
O (Pr (Glucose) — OGlucose) ) )
O (Glucose A =Cn (Glucose) — OGlucose) inertia(Glucose)
O (Pr (Repressor) — ORepressor) ) .
O (Repressor A =Cn (Repressor) — ORepressor) inertia(Repressor)
O (Pr (Galactosidase) — OGalactosidase)
O (Galactosidase A =Cn (Galactosidase) — inertia(Galactosidase)
OGalactosidase)
O (Lactose — OLactose) }inertia( Lactose)
O(CAMP — oCAMP) }inertia(CAM P)
O(Lacl — OLacl) }inertia(Lacl)
O(LacZ — oLacZ) }inertia(LacZ)

Observation 1. Let I' be a set of pathway formulas and II = tr(I") A

N\ inertia(p), expressed as an STLP. Then
peX

8 We refer the reader to [4] for details about the computation of such loop formulas.
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(a) G(IT) has only unitary loops;

(b) Since G(II) has only unitary loops, Temporal Equilibrium Models of IT
coincide with the LTL models of the temporal extension of Clark’s comple-
tion [4,10], denoted by COMP(II) [4]. |

Temporal Completion consists in specifying, along time, that the truth value of
an atom p € X must be logically equivalent to the disjunction of all its possible
causes (see [4] for details). More precisely, COM P(IT) corresponds, in our case,
to the following expression:

COMP(IT)=0(op < (Pr(p)V(pA—-Cn(p)))AO (Pr (p) < \/ PMA A(a))
[a](PN—op)EF

ADO (Cn (p) < PN A A(a)) .

[a](PN »p)eF

Theorem 3 (Main result). Let I' be a set of pathway formulas, I = tr (I") A
N\ inertia(p) and T be an LTL model of II.

peX
) <T7T> ):MEL I iff T )ZLTL COMP(H).

Proof. From Theorem 1 we get that (T, T) Eppr I'iff (T, T) E=rgr I1. From
Theorem 2 it follows that (T, T) =rgr IT iff T =rrr I A LF(II). Finally,
regarding Observation 1 we can reduce IT A LF(IT) to COM P(IT) so, therefore
T =1, COMP(II). N

8 Conclusion and Future Work

In this paper we gave a formal representation of MIM’s in terms of Temporal
Equilibrium Logic. To do so, we first defined Molecular Equilibrium Logic, a
nonmonotonic logic for dealing with general pathways. Then we showed that
this logic can be captured by an LTL formula via a translation into Splittable
Temporal Logic Programs under TEL semantics.

As a follow up, we are looking for a way to solve abductive temporal queries
on MIM’s. Abductive query express important properties; for example the abduc-
tive solution to 001 A (p <> Op) is the set of all possible conditions that make

pEX

the cell reach a stable state. An idea to undertake this problem is to combine the
works on abduction in Equilibrium Logic [26] and in modal logic [23] in order to
define a procedure for abduction in Temporal Equilibrium Logic. Furthermore,
finding the complexity of our fragment of temporal equilibrium logic is an open
problem. Although in the general case it is known to be EXPSPACE (8], this
bound might be lower in our case as the problem is restricted to STLP’s with
only unitary loops.

9 We omitted the completion at time step 0 since the formula at the initial state
depends on the extensional database, which is not considered here.
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Abstract. Gossip protocols aim at arriving, by means of point-to-point
or group communications, at a situation in which all the agents know
each other secrets, see, e.g., [11]. In [1], building upon [3], we studied dis-
tributed epistemic gossip protocols, which are examples of knowledge
based programs introduced in [6]. These protocols use as guards for-
mulas from a simple epistemic logic. We show here that these protocols
are implementable by proving that it is decidable to determine whether
a formula with no nested modalities is true after a sequence of calls.
Building upon this result we further show that the problems of partial
correctness and of termination of such protocols are decidable, as well.

1 Introduction

1.1 Background and Motivation

Knowledge-based programs were introduced in [6]—these are programs that
use tests for knowledge. Examples are protocols for the sequence transmission
problem, such as the alternating bit protocol, studied in [7]. A more recent
example are the distributed epistemic gossip protocols introduced in [3] and
further studied in a slightly different setting in [1].

In gossip protocols each agent holds a secret initially known only to him.
The secrets spread by means of communications. During them, e.g., point-to-
point or group communications, the participating agents exchange all secrets
they know. The aim of the gossip protocols is to arrive at a situation in which
all the agents know each other secrets, see, e.g., the early survey [8], the book
coverage [10] or a more recent paper [11].

As shown in [1], the formulation of distributed gossip protocols as knowledge-
based programs considerably simplifies the task of their verification. The reason
is that these protocols are strikingly simple in their syntax based on epistemic
logic (though not semantics)—they are just parallel compositions of loops in
which the agents repeatedly perform a call assuming the corresponding epistemic
guard evaluates to true. One issue ignored in [1] was the natural question: are
these gossip protocols implementable?

In this paper we provide a positive answer to this question. More precisely,
we show that it is decidable to determine whether a formula with no nested
modalities is true after a sequence of calls. All gossip protocols studied in [3] use
only such formulas as guards.

© Springer International Publishing AG 2016
L. Michael and A. Kakas (Eds.): JELIA 2016, LNAI 10021, pp. 18-33, 2016.
DOI: 10.1007/978-3-319-48758-8 2
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We also study correctness and termination of these protocols. Building upon
the just mentioned result we show that it is decidable to determine whether a
given distributed epistemic gossip protocol is correct. Namely, the formula that
expresses its correctness is with no nested modalities and we show that for such
formulas truth is decidable. The final result allows us to solve the halting problem
for these protocols. This shows that the distributed epistemic gossip protocols
are very specific programs that in particular do not have the full power of the
Turing machines.

The obtained results, while sufficient for a study of the considered protocols,
do not address more general questions concerning both the logic itself and the
protocols, which remain open and to which we return in the conclusions.

Finally, let us mention here some recent works on gossip protocols. In [2] a
tool is presented that given a high level description of an epistemic protocol in the
setting of [3] generates the characteristics of the protocol. The calls considered
there differ from ours, so this approach is not applicable to our setting. Further,
[13] presents a study of dynamic distributed gossip protocols in which the calls
allow the agents not only to share the secrets but also to transmit the links. The
purpose of the paper is to characterize such protocols in terms of the class of
graphs for which they terminate. Such protocols then differ from the ones here
considered, which are static. Next, in [9] gossip protocols are studied that aim
at achieving higher-order shared knowledge. Finally, in [4] gossip protocols are
studied as an instance of multi-agent epistemic planning that is subsequently
translated into the classical planning language PDDL.

1.2 Plan

The paper is organized as follows. In the next two sections we recall the syntax
and semantics introduced in [1]. Then, in Sect.4 we introduce an alternative,
equivalent, semantics, which helps us to prove the desired decidability results.
In Sect. 5 we prove the decidability of checking whether a formula with no nested
modalities is true after a given sequence of calls, and in Sect. 6 we show how to
extend this result to checking whether such a formula is true (so true after
any sequence of calls). In turn, in Sect.7 we show that it is also decidable to
determine whether a given gossip protocol terminates. Then, in the final section,
we list some related open problems and clarify the difference between the type
of calls studied in [1,3].

2 Syntax

Throughout the paper we assume a fixed finite set A of at least three agents.
We assume that each agent holds exactly one secret and that there exists a
bijection between the set of agents and the set of secrets. We denote by P the
set of all secrets. Our aim is to analyze what the agents know after a sequence
of calls took place. So first we introduce the calls and then consider an epistemic
language allowing us to refer to agents’ knowledge.
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Assume a fixed ordering on the agents. Each call concerns two different
agents, say a and b, and is written as ab, where agent a precedes agent b in the
assumed ordering.

Calls are denoted by c, d. Abusing notation we write a € c to denote that
agent a is one of the two agents involved in the call ¢ (e.g., for ¢ := ab we have
a€candbdEc).

We consider formulas in a simple epistemic language defined by the following
grammar:

¢ u=Fap| ¢ | oN¢| Kad,

where p € P and a € A. Each secret is viewed a distinct constant. We denote the
secret of agent a by A, the secret of agent b by B and so on. We denote the set
of so defined formulas by £ and we refer to its members as epistemic formulas.

We read F,p as ‘agent a is familiar with the secret p’ and K,¢ as ‘agent
a knows that formula ¢ is true’. So Fyp is an atomic formula, while K ¢ is a
compound formula. In fact, all atomic formulas of £ are of the form F,p.

In [1], as a follow up on [3], we also introduced distributed epistemic gossip
protocols. We do not discuss them here and only mention that formulas of £
are used in them as guards. All guards used in [1] are built from the formulas
F,B and K, F,C, where a and b are different agents, by means of the Boolean
connectives. Thus no nested modalities are used in the guards.

3 Semantics

We now recall from [1] semantics of the epistemic formulas. To this end we recall
first the concept of a gossip situation.

3.1 Gossip Situations and Their Modifications

A gossip situation (in short a situation) is a sequence s = (Qq)qca, Where
Q. CP for each agent a. Intuitively, Q, is the set of secrets a is familiar with in
situation s. The initial gossip situation is the one in which each Q, equals
{A} and is denoted by root. We say that an agent a is an expert in a situation
s if he is familiar in s with all the secrets, i.e., if Q, = P. The initial gossip
situation reflects the fact that initially each agent is familiar only with his own
secret.

In this paper we do not study particular gossip protocols. We mention only
that their goal is to reach a gossip situation in which each agent is an expert.

We will use the following concise notation for gossip situations. Sets of secrets
will be written down as lists. e.g., the set {4, B,C'} will be written as ABC.
Gossip situations will be written down as lists of lists of secrets separated by
dots. E.g., if there are three agents, then root = A.B.C and the gossip situation
({A, B}, {A, B}, {C?}) will be written as AB.AB.C.

Each call transforms the current gossip situation by modifying the set of
secrets the agents involved in the call are familiar with. Consider a gossip situa-
tion s := (Qq)dea. Then ab(s) := (Q})den, where Q, = Q) = Q. U Qp, Q. = Q.
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for ¢ # a,b. This simply says that the only effect of a call is that the secrets are
shared between the two agents involved in it.

3.2 Call Sequences

In [1] computations of the gossip protocols were studied, so both finite and infi-
nite call sequences were used. Here we limit ourselves to the finite call sequences
as we are only interested in the semantics of epistemic formulas.

So in this paper, in contrast to [1], a call sequence is a finite sequence of
calls. The empty sequence is denoted by e. We use ¢ to denote a call sequence
and C to denote the set of all call sequences. Given call sequences ¢ and d and
a call ¢ we denote by c.c the outcome of adding c at the end of the sequence ¢
and by c.d the outcome of appending the sequences ¢ and d. We write ¢ < d to
denote the fact that d extends c, i.e., that for some ¢’ we have c.c’ = d.

The result of applying a call sequence to a situation s is defined inductively
as follows:

[Base] €(s) :=s,
[Step] (c.c)(s) := c(c(s)).

Ezample 1. Let A = {a,b,c}. Consider the call sequence (ac, be, ac). It generates
the following successive gossip situations starting from root:

A.B.C 5 AC.B.AC 5 AC.ABC.ABC -5 ABC.ABC.ABC.
Hence (ac, be, ac)(root) = (ABC.ABC.ABC). O

3.3 Gossip Models and Truth

A gossip situation is a set of possible combinations of secret distributions among
the agents. As calls progress in sequence from the initial situation, agents may
be uncertain about which one of such secrets distributions is the actual one.
This uncertainty is captured by appropriate equivalence relations on the call
sequences.

Definition 1. A gossip model is a tuple M := (C,{~a},ca), where each
~,C C x C is defined inductively as follows.

[Base] € ~q €;
[Step] Suppose ¢ ~, d.
(i) If a & c, then c.c ~, d and ¢ ~, d.c.
(i) If a € c and c.c(root), = d.c(root),, then c.c ~, d.c.

A gossip model with a designated call sequence is called a pointed gossip
model.

For instance, by (i) we have ab,bc ~, ab,bd. But we do not have bc,ab ~,
bd, ab since (bc, ab)(root), = ABC # ABD = (bd, ab)(root),.
We recall now from [1] the following two properties of ~.
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Fact 1

(i) Each ~, is an equivalence relation;
(i) For all c,d € C if ¢ ~, d, then c(root), = d(root),.

Finally, we recall the definition of truth.

Definition 2. Let (M,c) be a pointed gossip model with M = (C,(~g)qcA)
and c € C. We define the satisfaction relation |= inductively as follows (clauses
for Boolean connectives are as usual and omitted):

(M, €) = Fop iff p € c(root),,
(M, €) = K,¢ iff Vd s.t. € ~q d, (M, d) = ¢.

Further

M | ¢ iff Ve (M,c) = ¢.
When M = ¢ we say that ¢ is true. O

So formula F,p is true whenever secret p belongs to the set of secrets agent a is
familiar with in the situation generated by the designated call sequence ¢ applied
to the initial situation root. The knowledge operator is interpreted as customary
in epistemic logic using the equivalence relations ~.

4 An Alternative Equivalence Relation

In this section we provide an alternative equivalence relation between the call
sequences that is easier to work with. To this end we introduce a view of agent
a of a call sequence c, written as c,, and defined by induction as follows.
[Base]

€q 1= root,

[Step]

(c.0) c, —s ifacc
C.C)g =
“ C, otherwise

where for d € A
c.c(root)y ifdec
Sd ‘= , .
Sy otherwise

where s’ is the last gossip situation in c,.

Intuitively, a view of agent a of a call sequence c is the information he acquires
by means of the calls in ¢ he is involved in. It consists of a sequence of gossip
situations connected by the calls in which a is involved in. After each such call,
say ab, agent a updates the set of gossips he and b are currently familiar with.
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Ezample 2. Let us return to Example 1. So A = {a, b, ¢} and we consider the call
sequence (ac, be, ac). We noticed there that it generates the following successive
gossip situations starting from root:

A.B.C % AC.B.AC % AC.ABC.ABC -*“~ ABC.ABC.ABC.
We now compare it with the view of agent a of the sequence (ac, b, ac), which is

A.B.C %% AC.B.AC *> ABC.B.ABC.

Thus, in the final gossip situation of this view, agent b is familiar with neither
the secret A nor C'. However, the final gossip situation of a view does not reflect
agents’ knowledge. In fact, as we shall see, according to the semantics, after
the above sequence of calls, agent a knows that agent b is familiar both with A
and C. g

We now introduce for each agent a an equivalence relation =, between the
call sequences, defined as follows:

c=,diff ¢, =d,.

So according to this definition two call sequences are equivalent for agent a if
his views of them are the same. The following result shows that the equivalence
relations ~, and =, coincide.

Theorem 2 (Equivalence). For each agenta the relations ~, and =, coincide.
Proof. Omitted. O

So two call sequences are ~, equivalent iff their views by agent a coincide.
This alternative definition of the equivalence relation between the call sequences
makes it simpler to determine various properties of our semantics.

Below, given a call ¢, we denote by c* a sequence consisting of zero or more
calls c and by c™ a sequence consisting of one or more calls c.

Ezample 3. Note that we have (M, (ac,bc,ac)) = K FyA. To see this recall
from Example 2 that the view of agent a of the sequence (ac, be, ac) is

A.B.C %% AC.B.AC %% ABC.B.ABC.

So if (ac,bec,ac) =, d, then d is of the form ac, (bc)™, ac, (be)*, which implies
that (M,d) E F,A.

We conclude that it is possible that an agent, here a, knows that another
agent, here b, is familiar with his (so a’s) secret even though no communication
took place between them. The same argument shows that (M, (ac,bec,ac)) |
K, F,C, as claimed in Example 2. a

In the examples and proofs below we use the =, relation instead of ~,
and repeatedly appeal to the Equivalence Theorem 2. First we show that an
immediate repetition of a call has no effect on the truth of the formulas. More
precisely, the following holds.
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Theorem 3 (Stuttering). Suppose that ¢ := c1,¢,ca and d := c1,¢,¢, Cs.
Then for all formulas ¢, (M,c) = ¢ iff (M,d) = ¢.

Proof. We proceed by induction of the structure of ¢. For the formulas of the
form F,p it suffices to note that c(root) = d(root). The only induction step of
interest is for the formulas of the form K,¢. Suppose first that a ¢ c. Then
c=,d,50 (M,c) E K¢ iff ( M,d) E Ky¢.

Assume now that a € c. Suppose that (M,c) = K,¢. Take d’ such that
d =, d’. Then d’ is of the form df,c,c,dj. Let ¢’ := d},c,d,. By the induction
hypothesis (M, d’) = ¢ iff (M,c’) | ¢. Further, d =, d’ implies that ¢ =, c’.
So (M,c') | ¢. Hence (M,d’) |= ¢ and consequently (M,d) | K,é.

The proof in the other direction is analogous. a

The above result cannot be extended to a repetition of the call sequences.
Indeed, we have (M, (ab,bc)) = —F,C, and (M, (ab,be,ab,bc)) = F,C. On
the other hand a monotonicity result holds for positive formulas.

Theorem 4 (Monotonicity). Suppose that ¢ is a formula that does not con-
tain the = symbol. Then

c <d and (M, c) = ¢ implies (M, d) = ¢.

Proof. We proceed by induction on the structure of ¢. The only case of interest
is when ¢ is of the form K. Suppose that ¢ < d and (M, c) | ¢. Take some
call sequence d’ such that d =, d’. Then for some call sequences d; and d} such
that dl,d'1 =d’ we have c =, d;.

We have by the assumption (M,d;) E 1, so by the induction hypothesis
(M,d") | 9. As d’ was arbitrarily chosen we conclude that (M,d) = ¢. O

Here and below we say that a call is a b-call if agent b is involved in it. Before
we deal with the decidability matters consider the formula K, F,C for pairwise
different agents a, b, c. The following example reveals that it can be true in some
subtle ways.

Ezample 4

(i) First, note that a can learn (that is, know) that agent b is familiar with the
secret C' through a direct communication with b.
Indeed, we have (M, (be, ab)) = K,FpC. Namely the view of agent a of the
sequence (be, ab) is
A.B.C % ABC.ABC.C.

So if (bc,ab) =, d, then d is of the form (bc)™,ab, (bc)*, which implies that
M,d) & FC.

(i) Further, it is also possible that a learns that b is familiar with the secret C
through a direct communication with c.
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Indeed, we have (M, (bc,ac)) E K F,C. To see this note that the view of
agent a of the sequence (be, ac) is

A.B.C %% ABC.B.ABC.

So if (bc,ac) =, d, then d is of the form (bc)™,ac, (bc)*, which implies that
M,d) & FC.

(#ii) Also, it is possible that a learns that b is familiar with the secret C' without
ever communicating with b or c.
Namely, we have (M, (cd, ad, bd, ad)) | K,F,C. Indeed, the view of agent a
of the sequence (cd, ad, bd, ad) is

A.B.C.D 4 ACD.B.C.ACD “*“s ABCD.B.C.ABCD.

So if (cd,ad,bd,ad) =, d, then d is of the form (cd)*, (be)*,ad,d’, ad,d”,
where in d’ a call bd took place or a call be followed by a call cd took place,
and in d’ and d” no a-call took place. This implies that (M,d) = F,C.

(iv) In (i7i) agent a learned that b is familiar with ¢ by communicating with
agent d twice. But it is also possible that a learns that b is familiar with the
secret C' without communicating with any agent twice.

To see this note that (M, (cd, ad, be,ac)) = KoF,C. Indeed, the view of
agent a of the sequence (cd, ad, be, ac) is

A.B.C.D % ACD.B.C.ACD -*s ABCD.B.ABCD.ACD.

So if (ed,ad, be,ac) =, d, then d is of the form (cd)*,ad,d’, ac,d”, where in d’
a call be took place or a call bd followed by a call cd took place, and in d’ and
d” no a-call took place. This implies that (M,d) = F,C. O

We conclude by noting that the Monotonicity Theorem 4 does not hold when
we extend the call sequences to the left. Indeed, as observed in Example 4
(i1), (M, (be,ac)) E K F,C. However, (M, (cd,be,ac)) = —K,F,C, since
(cd,be,ac) =, (bd, cd, ac) and (M, (bd, cd, ac)) = —FpC.

5 Decidability of Semantics

In this section we show that the definition of semantics given in Definition 2 is
decidable for formulas that do not use nested modalities.

Consider a call sequence c. If for some prefix c;.c of ¢, ¢;(root) = ¢;.c(root),
then we say that c is redundant in c. First note the following observation.

Lemma 1 (Semantic Stuttering). Suppose thatc :=¢c1,c,c2 andd := ¢y, ca,
where ¢ is redundant in c. Then for all propositional formulas ¢, (M,c) E ¢
iff (M, d) = ¢.
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Proof. We proceed by induction on the structure of ¢. The only case of interest
is when ¢ is of the form F,p. The redundancy of ¢ implies that c(root) = d(root).
Hence (M, c) | Fup iff p € c(root), iff p € d(root), iff (M,d) | Fup. O

The following example shows that Lemmal does not extend to arbitrary
formulas of L.

Ezample 5. In the call sequence ab, ac, be, ab the second call ab is redundant since
(ab, ac, be, ab)(root) = (ab, ac, be)(root) = ABC.ABC.ABC.

However, (M, (ab, ac,bc, ab)) | K F,C, because if d =, (ab, ac, be, ab) then
d is of the form (ab,ac,bct,ab,bc*). At the same time, (M, (ab,ac,bc)) =
- K, F,C since (ab, ac, be) =, (ab, ac). O

Now, consider an agent a and a call sequence c. Starting from c we repeatedly
remove from the current call sequence a redundant call that does not involve
agent a. We call each outcome of such an iteration an a-reduction of c.

Corollary 1. Let d be an a-reduction of c. Then

(i) €=, d,
(i) for all propositional formulas ¢, (M,c) = ¢ iff (M,d) = ¢.

Proof

(i) Tt suffices to note that a removal of a redundant call that does not involve
agent a does not affect his view of the call sequence.
(i) By the repeated use of the Semantic Stuttering Lemma 1. O

Given an agent a we now say that a call sequence c is a-redundant free if
no call ¢ from c such that a ¢ c is redundant in it. Clearly each a-reduction is
a-redundant free.

We now prove the following crucial lemma.

Lemma 2. For each agent a and a call sequence c the set of a-redundant free
call sequences d such that ¢ =, d is finite.

Proof. Consider an a-redundant free call sequence d such that ¢ =, d. Then d
has the same number, say k, of a-calls as c.

Associate with d the sequence of gossip situations d”(root),d’(root), ...,
d™(root), where m is the length of d, d® = ¢, and d* = di,ds,...,d; for
k =1,...,m. This sequence monotonically grows, where we interpret the inclu-
sion relation component wise. Moreover, for all calls d; such that a ¢ d; the
corresponding inclusion is strict. Consequently, m, the length of d, is bounded
by k + |A|?, the sum of the number of a-calls in ¢ and of the total number of
secrets in the gossip situation in which each agent is an expert.

But for each m there are only finitely many call sequences of length at most m.
This concludes the proof. a

We can now state and prove the desired result.
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Theorem 5 (Decidability of Semantics). For each call sequence ¢ it is
decidable whether for a formula ¢ with no nested modalities (M,c) = ¢ holds.

Proof. We use the definition of semantics as the algorithm. We only need to
show that the case of the formulas of the form K,¢, where ¢ is a propositional
formula, can be rewritten by referring to a finite set of call sequences d that can
be explicitly constructed. Thanks to the Equivalence Theorem 2 and Corollary 1
we can rewrite the clause for K ¢ as:

(M,c) = Ky¢ iff ¥d s.t. ¢ ~, d and d is a-redundant free, (M,d) = ¢,

and according to Lemma2 this definition indeed refers to an explicitly con-
structed finite set of call sequences d. a

6 Decidability of Truth

Next, we show that truth for formulas that do not use nested modalities is
decidable. This implies that the verification problem of gossip protocols, i.e.,
the problem of determining whether upon protocol’s termination every agent is
an expert, is decidable for protocols that do not use nested modalities. These
include all protocols discussed in [1].

The key notion in our approach is that of an epistemic view. It is a function
of a call sequence ¢, denoted by EV(c), defined by

— putting for each agent a € A, EV(c)(a) = {d(root) | c ~, d}, and setting
— EV(c)(x) = c(root).

So EV(c)(a) is the set of all gossip situations consistent with agent a’s obser-
vations made throughout ¢ and EV(c)(x) is the actual gossip situation after c
takes place. Note that if ¢ ~, d then EV(c)(a) = EV(d)(a).

Lemma 3. For each call sequence ¢ and agent a the set EV(c)(a) is finite and
can be effectively constructed.

Proof. Fix an agent a. By Corollary 1, Equivalence Theorem 2, and Fact 1(i7) to
construct the set EV'(c)(a) it suffices to consider a-redundant free call sequences
d and by Lemma 2 there are only finitely many such call sequences d for which
d~,c m|

Our interest in epistemic views stems from the following result.

Lemma 4. Suppose that EV(c) = EV(d). Then for all epistemic formulas with
no nested modalities ¢, (M,c) = ¢ iff (M,d) = .

Proof. A simple proof by induction shows that for a propositional formula v and
arbitrary call sequences ¢’ and d’, ¢/(root) = d’(root) implies that (M,c’) | ¥
iff (M,d’) = 4. Since EV(c)(x) = c(root) and EV (d)(*) = d(root), this settles
the case for ¢ = Fyp.
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The above observation also implies that for a propositional formula v and
an agent a,

(M,c) E K, iff Ve s.t. /(root) € EV(c)(a), (M,c) E .

Since EV'(c)(a) = EV(d)(a), this settles the case for ¢ = K.
The remaining cases of negation and conjunction follow directly by the
induction. O

The above lemma is useful because the set of epistemic views is finite, in
contrast to the set of call sequences. Next, we provide an inductive definition of
EV(c.c)(a) the importance of which will become clear in a moment.

Lemma 5. For any call sequence c, call c, and agent a such that a € ¢
EV(c.c)(a) = {c(s) | s € EV(c)(a) andc(s), = c(c(root)),}.

Proof. Intuitively the condition c(s), = c(c(root)), states that s is consistent
with the observation agent a gets after call ¢ is made in the gossip situation
c(root).

(C) Take s’ € EV(c.c)(a). By the definition of EV(c.c)(a) there exists a call
sequence d.c such that d.c ~, c.c and s’ = d.c(root). So s’ = c(s), where s =
d(root). We also have d ~, c, so d(root) € EV(c)(a). Moreover, c(d(root)), =
c(c(root)),, because d.c ~, c.c.

(2) Take s’ € {c(s) | s € EV(c)(a) and c(s), = c(c(root)),}. So for some gossip
situation s we have s’ = c(s), s € EV(c)(a) and c(s), = c(c(root)),. The second
fact implies that there exists a call sequence d such that d ~, c and s = d(root).
Now, this and the third fact imply that d.c ~, c.c. So d.c(root) € EV(c.c)(a).
Consequently also s’ € EV(c.c)(a), since s’ = ¢(s) = d.c(root). O

This brings us to the following important conclusion stating that EV'(c.c)
can be computed using EV(c) and c only, i.e., without referring to c. Denote the

set of epistemic views by EV and recall that C denotes the set of calls.

Corollary 2. There exists a function f : EV x C — EV such that for any call
sequence ¢ and call c
EV(c.c)(a) = f(EV(c),c).

Proof. By the definition of ~, we have EV(c.c)(a) = EV(c)(a) if a & c,
EV(c.c)(*) = c(EV(c)(x)). This in conjunction with the above lemma implies
the claim. 0

Consider a call sequence c. If for some prefix c;.cz of ¢, we have EV(cy) =
EV(c;.c2), then we say that the call subsequence ¢y is epistemically redun-
dant in c and that c is epistemically redundant.
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We say that c is epistemically non-redundant if it is not epistemi-
cally redundant. Equivalently, a call sequence c;.cs. .. .. ck is epistemically non-
redundant if the set

{EV(Cl.C2 ..... Ci) | 1€ {1, ey k}}

has k elements.
We now show a counterpart of the Semantic Stuttering Lemma 1 for epistemic
views.

Lemma 6 (Epistemic Stuttering). Suppose that ¢ := ¢j.ca.c5 and d := c;.
c3, where ¢y is epistemically redundant in c. Then EV(c) = EV(d).

Proof. Let ¢c3 = «c1.Cco..... ck. First note that thanks to Corollary2 we
have EV(Cl.CQ.Cl) = EV(Cl.Cl), since EV(Cl.CQ.Cl) = f(EV(Cl.Cg),Cl) =
f(EV(c1),c1) = EV(cy.c1) due to the epistemic redundancy of ¢, in c. Repeat-
ing this argument for all ¢ € {1,...,k} we get that EV(cj.ca.c1.Co.. ... ¢) =
EV(Cl.Cl.CQ ..... Ci).

In particular EV'(c) = EV(d). O

I
o
8
o
(]

Corollary 3. For every call sequence ¢ there exists an epistemically non-
redundant call sequence d such that for all epistemic formulas with no nested

modalities ¢, (M, c) = ¢ iff (M,d) E ¢.
Proof. By the repeated use of the Epistemic Stuttering Lemmas4 and 6. O
Next, we prove the following crucial lemma.

Lemma 7. For any given model M, there are only finitely many epistemically
non-redundant call sequences.

Proof. Note that each epistemic view is a function from A U {*} to the set
of functions from A to 2/Pl (this is an overestimation because for  this set
has only one element). There are k = 20AI+12*" quch functions, so any call
sequence longer than k£ has an epistemically redundant call subsequence. But
there are only finitely many call sequences of length at most k. This concludes the

proof. O
Finally, we can establish the announced result.

Theorem 6 (Decidability of Truth). For any formula ¢ with no nested
modalities, it is decidable whether M = ¢ holds.

Proof. Recall that M | ¢ iff Ve (M,c) | ¢. Thanks to Corollary 3 we can
rewrite the latter as

Vc s.t. ¢ is epistemically non-redundant, (M, c) E ¢.

But according to Lemma7 there are only finitely many epistemically non-
redundant call sequences and by Lemmad3 their set can be explicitly
constructed. O
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As an easy consequence we obtain the following.

Corollary 4. It is decidable to determine whether a given gossip situation can
be an outcome of a call sequence.

Proof. Each gossip situation s = (Q4)4ea can be encoded as a conjunction

é(s) = /\( N\ F.BA N\ —|FaB).

a€A  BEQ, BZQ.

Then Jc(c(root) =s) iff Ic((M,c) = ¢(s)) iff ~(M E —é(s)). O

7 Decidability of Termination

Finally, we show that it is decidable to determine whether a gossip protocol
terminates. First, we establish monotonicity of gossip situations and epistemic
views with respect to call sequence extensions. Intuitively, we claim that as the
call sequence gets longer each agent acquires more information. This can be
seen as a counterpart of the Monotonicity Theorem 4. First we need to define
suitable partial orderings <; and <., over gossip situations and epistemic views,
respectively.

Definition 3. For any two gossip situations s,s’ we writes <, s’ if for alla € A
we have s, C s),.

Note 1. For all call sequences ¢ and d such that ¢ < d we have c(root) <, d(root).

Proof. For any gossip situation s and call ¢ we have by definition s <; c(s). By
induction this implies that for any call sequence ¢’ we have s <; ¢/(s). Now ¢ < d
implies that d = c.c’ for some ¢’. Therefore, c(root) <, c’(c(root)) = d(root). O

Definition 4. For any two epistemic views V, V' € EV we write V <., V'’ if for
all a € A there exists X C V(a) and an surjective (onto) function g : X — V'(a)
such that for alls € X we have s <; ¢(s).

Lemma 8. <., is a partial order.
Proof. Omitted. a

The next lemma formalizes the intuition that epistemic information grows
along a call sequence.

Lemma 9. For all two call sequences such that ¢ < d we have EV(c) <., EV(d).

Proof. Let d = c.c’. Take a € A. Note that by a repeated application of Lemma 5
we can show that EV(c.c’)(a) = {c/(s) | s € EV(c)(a) and Ver<e €’(s)y =
c’(c(root)), }. It suffices then to pick X = {s € EV(c)(a) | Ver=ze €'(5)a =
c”(c(root))s}, and set g(s) = c/(s) for all s € X. It is easy to check that such
g : X — EV(d) is surjective, so EV(c) <., EV(d). O
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We can now draw the following useful conclusion.

Lemma 10. Suppose that ¢ is epistemically redundant. Then a prefix ci.c of it
exists such that cy is epistemically non-redundant and EV (c;.c) = EV(cy).

Proof. Let c1.c2 be the shortest prefix of ¢ such that EV(c;) = EV(ci.ca).
Then c; is epistemically non-redundant. Let co = c;..... ¢;. By Lemma9 we
have EV(c;) <5 EV(ci.c1) <s EV(ci.c1.c2) <5 ... <5 EV(ci.c1.Co..... c) =
EV(ci.c2) = EV(cy). Since <j is a partial order, EV(c;y.c;) = EV(cy) holds. O

Finally we can establish the desired result.

Theorem 7 (Decidability of Termination). Given a gossip protocol it is
decidable to determine whether it always terminates.

Proof. We first prove that a gossip protocol may fail to terminate iff it can
generate a call sequence c.c such that c is epistemically non-redundant and
EV(c.c) = EV(c).

(=) Let € be an infinite sequence of calls generated by the protocol. There
are only finitely many epistemic views, so some prefix ¢ of € is epistemically
redundant. The claim now follows by Lemma 10.

(<) Suppose that the protocol generates a sequence of calls c.c such that c is
epistemically non-redundant and EV (c.c) = EV (c).

Let ¢ be the guard associated with the call c. By assumption (M, c) E ¢.
By the assumption about the gossip protocols the formula ¢ is without nested
modalities, so by Lemma4 (M,c.c) | ¢. Hence by the repeated use of the
Stuttering Theorem 3, for all i > 1, (M,c.c’) E ¢. Consequently, c.c” is an
infinite sequence of calls that can be generated by the protocol.

The above equivalence shows that determining whether the protocol always
terminates is equivalent to checking that it cannot generate a call sequence c.c
such that c is epistemically non-redundant and EV'(c.c) = EV (c).

But given a call sequence, by the Decidability of Semantics Theorem 5, it
is decidable to determine whether it can be generated by the protocol and by
Lemma3 it is decidable to determine whether a call sequence is epistemically
non-redundant. Further, by Lemma 7 there are only finitely many epistemically
non-redundant call sequences, so the claim follows. a

8 Conclusions

In this paper we studied decidability questions concerning a natural epistemic
logic appropriate for expressing gossip protocols. One of our aims was to show that
the gossip protocols considered in [1] are executable. A self-contained summary is
that the semantics of the introduced epistemic language L is decidable for formu-
las with no nested modalities. Another aim was to prove that partial correctness
of the gossip protocols studied in [1] is decidable. To this end we showed that truth
of formulas of £ with no nested modalities is decidable. This implies the former
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since partial correctness of such a gossip protocol means that a specific epistemic
formula, namely the conjunction of the negation of all guards implies that each
agent is an expert, is true and such a formula has no nested modalities. Finally,
we showed the problem of determining termination of a gossip protocol is decid-
able. An interesting open question is whether all of these results can be extended
to arbitrary formulas of the language £. The main stumbling block in generalizing
our proofs is that, as Example 5 shows, the crucial Semantic Stuttering Lemma 1
cannot be extended to arbitrary formulas of L.

These considerations lead to another interesting open problem. Gossip pro-
tocols studied in [1] are parametric in the sense that they are formulated in such
a way that they do not depend on the underlying graph (for instance a ring).
The results we proved allow us only to consider each specific gossip protocol (for
example for a ring formed by 5 agents) separately. What is needed is a deci-
sion procedure that would allow us to consider all instances of a protocol (for
example for all rings) simultaneously. We conjecture that this decision problem
is undecidable both for partial correctness and for termination.

The semantics we introduced in Sect. 3 stipulates through the definition of
c(s) that a call ab is not noted by any agent ¢ # a, b. In [3] different type of calls
were studied, namely

— ab~, which stipulates that every agent ¢ # a, b noted that a called b,

— ab®, which stipulates that every agent ¢ # a, b noted that some call took place,
though not between whom,

— ab™ which stipulates that every agent ¢ # a,b noted that possibly some call
took place, though not between whom.

It would be interesting to check whether our results hold for these types of calls,
as well.

Another issue interesting to study is the synthesis of a distributed epistemic
gossip protocol from epistemic specifications. For a related work on a synthesis
of a knowledge-based programs see, e.g. [12]. Finally, it would be interesting
to study the decidability of the problems considered here for a variant of our
logic in which the only modal operator is the common knowledge operator Cg¢.
This operator states that the formula ¢ is commonly known among the group
of agents G. The standard semantics of this operator is given in [5].
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Abstract. In this paper we introduce a sound and complete axiomati-
zation for XPath with data constraints extended with hybrid operators.
First, we define HXPath—(7]), an extension of vertical XPath with nomi-
nals and the hybrid operator @. Then, we introduce an axiomatic system
for HXPath=(1]), and we prove it is complete with respect to the class
of abstract data trees, i.e., data trees in which data values are abstracted
as equivalence relations. As a corollary, we also obtain completeness with
respect to the class of concrete data trees.

Keywords: XPath - Modal logic - Hybrid logic - Data tree -
Axiomatization

1 XPath as a Modal Logic with Data Tests

XPath is arguably the most widely used XML query language. Indeed, XPath is
implemented in XSLT and XQuery and it is used in many specification and
update languages. XPath is, fundamentally, a general purpose language for
addressing, searching, and matching pieces of an XML document. It is an open
standard and constitutes a World Wide Web Consortium (W3C) Recommen-
dation [14]. [21] adapts the definition of XPath to be used as a powerful query
language over knowledge bases. Core-XPath [20] is the fragment of XPath 1.0
containing the navigational behavior of XPath. It can express properties of the
underlying tree structure of the XML document, such as the label (tag name)
of a node, but it cannot express conditions on the actual data contained in the
attributes. In other words, it is essentially a classical modal logic [8,10]. Core-
XPath has been well studied from a modal point of view. For instance, its satis-
fiability problem is known to be decidable even in the presence of DTDs [6,22].
Moreover, it is known that it is equivalent to FO2 (first-order logic with two vari-
ables over an appropriate signature on trees) in terms of expressive power [23],
and that it is strictly less expressive than PDL with converse over trees [7]. Sound
and complete axiomatizations for Core-XPath have been introduced in [12,13].

However, from a database perspective, Core-XPath is not expressive enough
to define the most important construct in a query language: the join. Without
the ability to relate nodes based on the actual data values of the attributes,
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Fig. 1. An example of a data tree.

the logic’s expressive power is inappropriate for many applications. The exten-
sion of Core-XPath with (in)equality tests between attributes of elements in an
XML document is named Core-Data-XPath in [11]. Here, we will call this logic
XPath_. Models of XPath_ are data trees which can be seen as XML documents.
A data tree is a tree whose nodes contain a label from a finite alphabet and a
data value from an infinite domain (see Fig.1 for an example). We will relax
the condition on finiteness and consider also infinite data trees, although all our
results hold also on finite structures. The main characteristic of XPath_ is to
allow formulas of the form (o = ) and (« # ), where «, 8 are path expressions
that navigate the tree using axes: descendant, child, ancestor, next-sibling, etc.
and can make tests in intermediate nodes. The formula (o« = ) (respectively
(a #£ B)) is true at a node x of a data tree if there are nodes y, z that can be
reached by paths denoted by «, § respectively, and such that the data value of y
is equal (respectively different) to the data value of z. For instance, in Fig. 1 the
expression “there is a one-step descendant and a two-steps descendant sharing
the same data value” is satisfied at x, given the presence of u and z. The expres-
sion “there are two children with distinct data value” is also true at x, because
y and z have different data.

Notice that XPath_ allows to compare data values at the end of a path, by
equality or inequality. However, it does not allow the access to the concrete data
value of nodes (in the example, 0, 1 or 2). Hence, it is possible to work with an
abstraction of data trees: instead of having concrete data values in each node,
we have an equivalence relation between nodes. In the data tree from Fig. 1, the
relation consists of three equivalence classes: {z,v,w}, {u, 2} and {y}.

Recent articles investigate XPath— from a modal perspective. For exam-
ple, satisfiability and evaluation are discussed in [15,16,19], while model theory
and expressivity are studied in [2,3,17,18]. We will focus in the proof theory of
XPath_ extended with hybrid operators. In [5], a Gentzen-style sequent calculus
is given for a very restricted fragment of XPath—, named DataGL. In DataGL,
data comparisons are allowed only between the evaluation point and its succes-
sors. An extension of the equational axiomatic system from [12] is introduced
in [1], allowing downward navigation and equality/inequality tests.

In this article we will continue the investigation of axiomatic systems for
XPath_. In particular, we will introduce a Hilbert-style axiomatization for
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the logic with downward and upward navigation, where node expressions are
extended with nominals (special labels that are valid in only one node), and
path expressions are extended with the hybrid operator @ (allowing the naviga-
tion to some particular named node). We call this logic Hybrid Vertical XPath
(denoted HXPath_(1])). We will take advantage of hybrid operators to prove
completeness using a Henkin-style model construction (see [8] for details).

The article is organized as follows. In Sect.2 we introduce the syntax and
semantics of HXPath—_(7]). Then we define the axiomatic system HXP in Sect. 3
and we prove its completeness in Sect.4. In Sect.5 we extend HXP to prove
completeness with respect to the class of data trees. To conclude, in Sect. 6 we
introduce some remarks and future lines of research.

2 Preliminaries

In this section we introduce the syntax and semantics for the logic we call Hybrid
Vertical XPath (HXPath_(7]) for short). We assume basic knowledge of classical
modal logic (see [8] for further details).

We start by defining the structures that will be used to evaluate formulas in
the language.

Definition 1 (Hybrid Data Models). Let LAB (the set of labels) and NOM
(the set of nominals) be two infinite countable sets. An abstract hybrid data
model is a tuple M = (M, ~,—, label, nom), where M is a non-empty set of
elements, ~ C M x M is an equivalence relation between elements of M, — C
M x M s the accessibility relation, label : M — 2Y2B s o labeling function and
nom : NOM — M is a function that assigns nominals to certain elements.

A concrete hybrid data model is a tuple M = (M, D, — label, nom, data),
where M is a non-empty set of elements, D is a non-empty set of data, — C
M x M is the accessibility relation, label : M — 2B s the labeling function,
nom : NOM — M is a function which names the nodes and data : M — D is
the function which assigns a data value to each node of the model.

We often write w|v and viw when w — v.

Concrete data models are most commonly used in application, where we
encounter data from an infinite alphabet (e.g., alphabetic strings) associated to
the nodes in a semi-structured database. It is easy to see that each concrete
data model has an associated, equivalent abstract data model where data is
replaced by an equivalence relation that links all nodes with the same data.
Vice-versa, each abstract data model can be “concretized” by assigning to each
node its equivalence data class as data. We will prove sound and completeness
over the class of abstract data models and, as a corollary, obtain completeness
over concrete data models.

We are now ready to introduce the syntax and semantics of HXPath_(T]).
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Definition 2 (Syntax). The set of path expressions (which we will note as a,
B, v, ...) and node expressions (which we will note as ¢, ¥, 0, ...) of
HXPath_(7]) are defined by mutual recursion as follows:

a, B u=1111@|[¢]]|ap
o i=ali]-p oAy | {a=0)]|(a#pB), aclAB,icNOM.

Notice that path expressions occur in node expressions in data comparison
formulas of the form (o = 3) and (« # ), while node expressions occur in path
expressions in test formulas of the form [p].

In what follows we will always use § to represent the | and T operators and
x for = and #. Other Boolean operators are defined as usual. We define the
following operators as abbreviations.

Definition 3 (Abbreviations). Let «,[ be path expressions, 1,72 path
expressions or the empty string, @ a node expression, i a nominal, and p an
arbitrary symbol in LAB:

Node Expressions Path Expressions
T=pV-p e=[T]
1=-T (m(aUB)y2 xy3) = (r1ay2 *y3) V(71872 * 73)
() = (alp] = alp]) | (n1*72(aUB)ys) = (11 *72073) V (11 * 72673)
[ale = ~{a)—p
Qip = (Qi)p

As a corollary of the definition below, the diamond and box expressions (a)p
and [a]¢ will have their classical meaning, and the same will be true for hybrid
“at” formulas of the form @;p. Notice that we use @; both as a path expression
and as a modality; the intended meaning will always be clear by context. Notice
also that, following the standard notation in XPath logics and in modal logics,
the [ ] operation is overloaded: for ¢ a node expression and « a path expression,
both [a]¢ and [p]a are well-formed expressions; the former is a node expression
where [a] is a box modality, the later is a path expression where [¢] is a test.

Definition 4 (Semantics). Let M = (M, ~,—, label, nom) be an abstract data
model, and x,y € M. We define the semantics of HXPath_(1]) as follows:

M,y iff v -y
Mz, y =T iff y—z
M,z,y = Q; iff nom(i) =y
Mo,y lgl iff =y and M,z =
M,z y = af iff there is some z € M s.t. M,z,z Ea and M, z,y E 8
M,z Ea iff a € label(z)
M,z =i iff nom(i) ==z
M,z = iff M,x =
MzEeAY iff Mzl @ and M,z =1
M,z = (a=p0) iff there are y,zeM s.t. Mz, yl=Ea, M,z,z =B andy ~ z
M,z = (a#pB) iff there arey,zeM s.t. Mz, y=Ea, M,z,z|= 03 andy # z.
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Corollary 1

M,z |E Qi iff M,nom(i) = ¢
M,z = (8)p iff there is somey € M s.t. xdy and M,y = ¢
M,z = [0)le iff forally e M, xdy then M,y | ¢.

The addition of the hybrid operators to XPath increases its expressive power.
The following examples should serve as illustration.

Ezample 1. We list below some HXPath_(T|) expressions together with their
intuitive meaning:

ali] There exists an « path between the current point of evaluation
and the node named i

Q;« There exists an a path between the node named ¢ and some
other node

(@; =@;) The node named ¢ has the same data than the node named j

(e = @;8) There exists a node accessible from the current point of
evaluation by an « path that has the same data than a node
accessible from the point named i by a 3 path

3 Axiomatic System

In this section we introduce the axiomatic system HXP for HXPath_(T]). It
is an extension of an axiomatic system for the hybrid logic HL(@) which adds
nominals and the @ operator to the basic modal language (see [8]). In particular,
we include axioms to handle data equality and inequality.

We present axioms and rules step by step, providing brief comments to help
the reader understand their role. In all cases, we provide axiom and rule schemes,
i.e., they can be instantiated with arbitrary path and node expressions (but
always respecting types). In all axioms and rules ¢, ¥ and 6 are node expressions,
«, § and ~ are path expressions, ¢, j and k are nominals. We use I~ ¢ to indicate
that ¢ is a theorem of HXP.

In addition to an arbitrary set of axiom and rule schemes for propositional
logic, we include generalizations of the K axiom and the Necessitation rule for
the basic modal logic to handle modalities with arbitrary path expressions.

Axiom and rule for classical modal logic

Kle](e = ¢) = ([ — [al9)

l_
? Nec

 [a]e

Then we introduce generalizations of the rules for the hybrid logic HL(Q).

Hybrid rules

Fi—o EQi(y)j A (QjaxB) — 6
— name paste
Fo F(Qyaxg) — 0

j is a nominal different from ¢ that does not occur in ¢, 6, a, 3,.
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Now we introduce axioms that handle @. Notice that @; is a path expression
of HXPath_(7]) and as a result, some of the standard hybrid axioms for @ have
been generalized. In particular, the K axiom and Nec rule above also apply to
@;. In addition, we provide axioms to ensure that the relation induced by @ is

a congruence.

Axioms for @

Congruence for @

@-self-dual —@;p «— Q;—¢p
@-intro iAo — Qp

@-refl.
@-sym.
nom
agree
back

@,
Q@;j A(Qia * B) — (Qja ()
(yQia * B) — (Qia * B)

Axioms involving the classical XPath operators can be found below. We orga-
nize them in three groups. First, we have axioms for the interaction between |
and . These axioms are the classical ones characterizing “future” and “past”
modalities (see [8]). Then, we introduce axioms to handle complex path expres-
sions in data comparisons. Finally, we introduce axioms to handle data tests.

Axioms for |, -interaction

down-up ¢ — [[[(T)e
up-down ¢ — [T[{L)¢

Axioms for paths

comp-assoc
comp-neutral

((@B)y * ) = (a(B7) * )
(afp xy) < {aef x ) (a or B can be empty)

comp-dist (aB)p = () (B)¢
Axioms for data

equal (e=¢€)

distinct (e # €

Q@-data —(@;=Q;) <~ (@;#Q;)
e-trans (e=a) A (e=p) — (a=0)
*-COIMMm (a*B) « (Bxa)

*-test ([pla* B) < p A (a* ()
Q@x-dist (Qia* @Q;8) «— Qi(a* 3)
compx-dist  (a)(B *xv) — (af * ay)

Proposition 1. The following formulas are theorems in HXP.

1. test-distt {[o] = [W]) < p A
2. test-L+ ([p] # [Y]) < (e # €)

3. Q-swapk Q;{a* Q;3) — Q;(F * Q;a)

4. bridget ()i A Qo — (o)

Proof (test-dist and test-1 ). Let * be = or #. Then:

F([p] * [¢]) < ([@]e * [¢]) by comp-neutral.
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F ([ole * [¥]) < @ A (e [¢]) by *-test.

F o A{ex[]) « @ A([¢] x €) by *-comm.

F o A{[t)] x€) < ¢ A ([Pp]e x €) by comp-neutral.
F oA ([Y]exe) < o A A lex€) by x-test.

Replacing * by = we get ¢ A ¢ by equal. Replacing it by # we get (¢ # €).
(Q-swap).

= @,‘<O¢ = @]ﬁ> <~ <@i01 = @z@]ﬁ> by @ =-dist.
F{(Q,a=©,Q,8) — (@;Q,;5 = Q;«a) by =-comm.
F(@;Q;8 = Q;a) < (Q;5 = Q;a) by agree.
F(Q;5 = Q;a) < (Q;a = Q;3) by =-comm.
F(Q,a=@,8) « (Q;Q;a = Q;f) by agree.
F(Q,;Q,a =Q;8) < Q;(Q;a = ) by agree.
F@;(Q;a = f) « Q;(3 = Q;a) by =-comm.

(bridge). Using contrapositive, bridge is equivalent to (a)i A [a]¢p — @;¢. Using
the modal theorem F (a)p A [a]y) — (a)(p A1), we reason:

F{a)iAlale — (@) (i A ).
F(a)(i A @) — (a)(Q;p) by Q-intro.
F (o) (Q;) — Q;¢ by back.

4 Completeness

It is a fairly straightforward exercise to prove that the axioms and rules of
HXP are sound for the intended semantics. We will now show that the axiomatic
system is also complete. The completeness argument follows the lines of the com-
pleteness proof for HL(@) (see [8]), which is a Henkin-style proof with nominals
playing the role of first-order constants.

In what follows, we will write I" F ¢ if and only if ¢ can be obtained from a
set of formulas I" by applying the inference rules of HXP.

Definition 5. Let I' be a set of formulas, we say that I' is an HXP maximal
consistent set (HXP-MCS, or MCS for short) if and only if I' ¥ L and for all
p & I' we have I'U{p}+ L.

Proposition 2. Let I' be an HXP-MCS. Then, the following facts hold:

1. {i,o} C I then Qup eI,
2. Q;(a=0) €I then (Q;a0 =Q@;8) € I', and
3. (a=Q,;0) € I' then (a« =Q;Q,;5) € I'.

Proof. Ttem 1 is a consequence of Q-intro, 2 follows from @Q=-dist and 3 can be
proved using agree and =-comm. a

The next corollary follows from the definition of MCS, as expected:

Corollary 2. Let I' be a MCS. Then for all p, either o € I" or p & I
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In the same way as for hybrid logic, inside every MCS there are a collection
of MCSs with some desirable properties:

Lemma 1. Let I' be an HXP-MCS. For any nominal i € I', let us define A; =
{¢ | Qo eI} Then

1. A; is an HXP-MCS.

2. For all nominals 1,7, if i € Aj then A; = A;.

3. For all nominals i, j, we have Q;p € A; iff Q;p € I
4. If k € I then I' = Ay.

Proof. See [8, Lemma 7.24] for details.

Definition 6 (Named and Pasted MCS). Let I' be an HXP-MCS. We say
that I' is named if for some nominal i we have that i € I' (and we will say that
I' is named by i). We say that I' is pasted if the following holds:

1. (Q;da = B) € I implies that for some nominal j, Q;(0)j N (Qja = () € I’
2. (Q;6a # B) € I' implies that for some nominal j, Q;(6)j N (Qjo # 3) € I'.

Now we are going to prove a crucial property in our completeness proof: the
Extended Lindenbaum Lemma. Intuitively, it says that the rules of HXP allow us
to extend MCSs to named and pasted MCSs, provided we enrich the language
with new nominals. This lemma will be useful to obtain the models we need
from an MCS.

Lemma 2 (Extended Lindenbaum Lemma). Let NOM' be a (countably)
infinite set of nominals disjoint from NOM, and let HXPath_(1]) be the lan-
guage obtained by adding these new nominals to HXPath—(1]). Then, every
HXP-consistent set of formulas in HXPath—(1]) can be extended to a named
and pasted HXP-MCS in HXPath—(T])’.

Proof. Enumerate NOM'. Given X a consistent set in HXPath_(T]), define Xy
to be X U{k}, where k is the first nominal in our enumeration. X, is consistent,
otherwise for some conjunction 8 from X, - k — —6. By the name rule, - =,
contradicting the consistency of X.

Now enumerate all formulas in HXPath_(T])’. Define X° to be X} and sup-
pose we have defined X™, for m > 0. Let .41 be the m + 1th formula in our
enumeration of HXPath_(T])’. Define X,,;1 as follows. If ™ U {p,, 41} is
inconsistent, then X™+! = ™. Otherwise:

1. Ymtl = ymy{pna1} if omar is not of the form (@Q;5a * 3).
2. X = X UL o1 FU{@; (8)jA(Q % B) }, if o1 is of the form (@;5a3).
Here j is the first nominal in the enumeration that does not occur in X™ or

(Q;c * ).

Let Xt = J,,>o 2™ This set is named (by k), maximal and pasted. Further-
more, it is consistent as a direct consequence of the paste rule. O
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From a named and pasted HXP-MCS we can extract a model:

Definition 7 (Extracted Model). Let I' be a named and pasted HXP-MCS,
then we define the extracted model from I', Mp = (M, ~,—, label, nom) as:

- M ={A; | Aywas obtained fromI'}
- A=A iff(l)je A

— a € label(4;) iff a € A;

- nom(i) = 4;

- A; NAJ‘ Zﬁ<€:@J> € A;.

Proposition 3. Let Mp = (M,~,—, label, nom) be the extracted model, for
some I'. Then,

1. A; — Aj if and only if (1)i € 4;, and
2. Ay 4 A if and only if (e # Q;) € A,.

Proof. Ttem 1 uses the same argument as for HL(@) in addition to the axioms
for 7; item 2 follows from @Q-data.

We need to prove that, in fact, M is an abstract hybrid data model.
Proposition 4. M is well defined, i.e., the following properties hold:

1. nom(i) = Ay and nom(i) = Ay then Ay = Ag, and
2. ~ is an equivalence relation.

Proof. Ttem 1 follows from the axioms for the hybrid operators in a standard
way. Let us prove that ~ is an equivalence relation.

— Reflexivity: A; ~ A; iff (e = Q;) € A; iff Q;(e =€) € A;, which is true because
(e =€) is a theorem.

— Symmetry: A; ~ A; iff (e = Q;) € A;. By definition of A;, we have @Q;(e =
Q;) € I', and by neutral and =-comm we get Q;(¢ = Q;e) € I'. Then, by
Q-swap Q; (e = Q;e). Therefore (¢ = Q;) € A; (by neutral), iff A; ~ A;.

— Transitivity: Suppose A; ~ Aj and Aj ~ Ay, iff (e = Q;) € A; and (e = Q) €
Aj;. This means that we have Q;(e = Q;) € I' iff (by @-swap) Q;(e = Q;) € I,
and @;(e = @) € I'. Then (e = Q;) A (e = Q) € A;, and by e-trans we have
(@; = @) € A;. By agree and Q=-dist we get Q;(¢ = Qi) € A,, iff by
definition of A;, @;Q;(e = Q) € I'. By agree we obtain @;(¢ = Q) € I,
then (e = @) € A;. Hence, we have A; ~ Ay. O

Now, given a named and pasted MCS I" we can prove the following Existence
Lemma:

Lemma 3 (Existence Lemma). Let I' be an HXP-MCS and let Mp = (M,
~, —, label, nom) be the extracted model from I'. Suppose A € M and i € A.
Then
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1. (ba = B) € A implies there exists ¥ € M s.t. AdY and (o = Q;8) € X,
2. (0o # B) € A implies there exists ¥ € M s.t. AdX and (o # Q;8) € X.

Proof. We discuss the case for = (the case for # is similar). Because A € M,
for some nominal i we have A = A;. As (6o = ) € A, @Q;(6ax = 3) € I'. Then,
by Axiom Q=-dist, (Q;0ax = @;3) € I'. Because I" is pasted @;(6)j A (Q;a =
Q@;8) € I'. As I is MCS, @Q;(8)j € I' and (Q;a = @;3) € I". By Axiom agree, we
have (Qjo = @;@;3) € I'. Then, Q;(«v = @;3) € I' by @=-dist. By definition,
(0)j € A; and (o = @;5) € A;. Taking X' as A;, we complete the proof. O

Now we are ready to prove the Truth Lemma that states that membership
in an MCS of the extracted model is equivalent to being true in that MCS.

Lemma 4 (Truth Lemma). Let Mp = (M, ~,—, label, nom) be the extracted
model from a MCS I', and let A; € M. Then, for any formula @,

Mr, A = iff pe A

Proof. In fact we will prove a stronger result. Let A;, A; € M, ¢ be a node
expression and « be a path expression.

(IHZ) MF,AZ‘,AJ' ':Oé iff <Oé>j € A;.

The proof proceeds by induction in the complexity of ¢ and «. First, we
prove the base cases:

— a = |: Suppose Mp, A, A; = | iff A, — A; (by ), iff (|)j € A; (by
definition of extracted model).

— a = 1: Suppose Mp,A;, A; =Tif Aj — A, (by =), iff (1)j € A; (by 1 of
Proposition 3).

— a = Q@ Suppose Mp, A, A; = @ iff nom(k) = A;. But by definition of
nom, A; = Ay, and because we know j € A; we have j € Ay. Then, we have
Qj € I', and by Axiom agree, @;Qyj € I'. Therefore, Qxj € A;.

—p=a: Mp,A; Eaiff a € label(4;), iff a € A;.

- @ =7 MF,Ai ):j iff nom(j) = Ai, iff A; = Aj lffj € A;.

Now we prove the inductive cases:

— @ =19 Apand ¢ = p: are direct from (TH1).

—a=[]: Mp, A, Aj = W] iff A; = A; and Mp, A; = 4. By (IH1), we have
Y € A; and j € A;. By A; MCS, we have ¥ A j € A;, and by idempotence
of the conjunction we have ¥ A AjAj € A;. Also, we have (¢ =€) € A,
then we can use Axioms =-test and =-comm to obtain ([¢][7] = [¥][1]) € A;
(which is the same as ([¢])j) as we wanted.

- a = By Mp,A;, A; = By iff there is some Ay such that Mp, A;, Ay = 8
and Mp, Ag, Aj, = ~. By (IH2), we have (8)k € A; and (y)j € Ag. We can
conclude @;(8)k € I' and Q(y)j € I, then Q;(B)k A Qr(y)j € I'. By agree,
we have @Q;(8)k A @Q;Qp(v)j € I', and with a very simple hybrid argument
we get @Q;((BYk A Qi(vy)j) € I'. By bridge, we have Q;((8){v)j) € I', and by
Axiom comp-dist Q;({87)j) € I'. Hence, (87)j € A;.
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For node expressions of the form {« * 8) we need to do induction on the length
of a and f (defined in the obvious way).

First notice that by x-comm, (o x 3) € A; iff (8 x«a) € A;. And by the
semantic definition, Mp, A; = (ax 8) iff Mp, A; | (8 % a). So we need only
discuss the case for ae. Moreover, by comp-neutral, b (a * §) < (e * ) which is
also a validity. So we can assume that every path ends in a test. The base case
then is when |a| + |5] = 2, and both « and (3 are tests.

— ¢ = ([¢)] = [p]): direct from test-dist.
— @ = ([¢)] # [p]): it is a contradiction from test-L, then this case has not to be
considered.

Now, let us consider |a| + |5] > 3:

—p = (If = 7): Mp, A, E (I = ) iff there are A;, Ap such that
Mp, A, A = |18, Mp, A, Ay = v and A; ~ Ap. Then, by (IH2) and
definition of M we have:

L (IB)j € A,

2. (v)k € A;, and

3. <€ = @k> S Aj.
By 1 and the Existence Lemma, there is A; such that both A; — A; and
Mr, Ay, A; |= B hold. Then by (IH2) we have

4. (B)j € Ar.

(®) From 2 we have (7)k € A; and from 3 we can obtain (e = @Q;) € Ay, then
we have (Q;7)kAQy (e = Q;) € I', by definition and Axiom comp-dist. By bridge,
(Q;v)(e = Q) € I', then by comp=-dist and back, we get (Q;y = Q;) € I
Applying =-comm, comp-neutral, agree and Q-dist, Q;(e = Q;v) € I'.

Also, from 4 we have @;(8)j € I', then Q;(e = Q;y) A (Q5)j € I' (by
MCS and comp-dist), and by bridge we get (Q;3)(e = Q;v) € I'. By comp=-dist
and comp-neutral, (Q;5 = @ 3Q;y) € I', then by back and Q=-dist we have
@;(8 = Q;v) € I'. Therefore, we have (§ = Q;v) € A;.

Then, because A; — A; and the previous paragraph, we can use the Existence
Lemma to obtain (|3 = Q;y) € A,, if and only if (|8 =) € 4A; (by @=-dist),
hence (|3 =7) € A;, as we wanted.

— o= (18 =7) and ¢ = (60 * ) are similar to the previous one but using also
Proposition 3.

— ¢ = (Q;f = ) Mp,A; = (Qjf = ~) iff there are Ay, A; such that
Mp, A, Ay = QB Mp,Ai, Ay = v and A ~ A;. Then, by (IH2) and
definition of M we have:

1. (Q;0)k € A, iff @Q(Q;8)k e I'iff Q;(B)k € T,
2. (Mle A, it QB e, and
3. <6 = @k> S Aj, iff @k<6 = @l> el.
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By 1 and 2 we have @Q;(8)(e¢ = Q;) € I', iff (by comp=-dist) Q;(8 = Q) € I.
By back, we get @Q;(8 = @Q;) € I', which is equivalent to @;(¢ = Q;5) € I' (by
agree and =-dist). Together with 2 and bridge we get @Q,()(e = @Q;3) € I', hence
Q;(y =~@Q,B) e I' iff (by back and =-comm) @;(Q;5 = ) € I'. Using definition
of A;, we finally get (Q;3 =~) € A;.

- = (W = 7): Mp,A; = (@]B = v) iff there are A;, Ay such that
Mp, A Ay | @W]8, Mp, A, A = v and A; ~ Ay, Then, by (IH2) and
definition of M we have:

1. (8)) € A,

2. (Mk € A,

3. (e=Qp) € Aj, and
4. P € A,.

Using the same argument as in (®) the proof that ([¢)]3 = ) € A, is straight-
forward.

— Cases involving # are analogous, using Proposition 3 to obtain (e = Q) ¢ A;
in item 3 above. o

As a result we obtain the completeness result.

Theorem 1. The axiomatic system HXP is complete for abstract hybrid data
models.

Proof. We need to prove that every HXP-consistent set of HXPath_(T])-
formulas Y it satisfiable in a countable hybrid model. For any Y, we can use
the Extended Lindenbaum Lemma to obtain X1 which is named and pasted
in HXPath_(7])". Let M = (M, ~, —, label, nom) be the extracted model from
YT, As X7 is named, then ¥™ € M. Then by Truth Lemma, for all ¢ € ¥
we have M, YT = ¢. Because each state is named by some nominal from a
countable set NOM’, the model is countable.

Because the class of abstract data models is a conservative abstraction of
concrete data models, we can conclude:

Corollary 3. The aziomatic system HXP is complete for concrete hybrid data
models.

5 Completeness for Tree Models

As we mentioned in the introductory section, XPath_ is a query language for
XML documents, and that it is possible to work with some abstractions called
data trees. So far, we introduced an axiomatic system which is sound and com-
plete with respect of a more general class of structures, which are the hybrid
data models from Definition 1. We will show that it is possible to extend the
axiomatic system HXP to handle data trees, the most interesting structures for
HXPath_(7]) applications.
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The table below introduces two groups of axioms. Those in the first column
guarantee that the evaluation model is a tree. In the second column, we have
two axioms which impose a standard property required in abstractions of XML
documents: the set of labels LAB is assumed to be finite and each node is labeled
exactly by one tag name.

Axioms for trees Axioms for labels

lab-some \V a
a€LAB
lab-uniq (e Ab) (for a #b)

no-circle i — =(|)"i,n>1
no join MiA(1)g — Qj

We need to consider a point-generated sub-model of My to ensure that the
resulting model is a tree.

Definition 8 (Generated Sub-model). Let I' be o named and pasted MCS
using the aziomatic system HXP extended with the axioms for trees and labels,
and Mp = (M, ~,—,label, nom) the extracted model from I'. We define Tr as
the point-generated sub-model of Mp obtained from I', i.e., T is the smallest
sub-model of Mp that includes I' in its domain, and such that for all points w,
the following closure condition holds:

Ifwe Trandw — v, thenv € Tp.
Proposition 5. 7 is a tree.

Proof. By construction I' is the root of 7. We have to prove that the accessibil-
ity relation is (a) irreflexive, (b) asymmetric and (c¢) that every node except the
root has exactly one immediate predecessor. The proof is standard using axioms
for |, 7 interaction and the axioms for trees. |

It should be obvious that the axioms for labels ensure that exactly one label
holds in a node. Using 7 in the Truth Lemma gives the desired result.

Theorem 2. The axiomatic system HXP extended with the axioms for trees and
labels is complete for abstract named data trees (and consequently, for concrete
named data trees).

6 Final Remarks

We introduced a sound and complete axiomatization for HXPath_(1]), i.e., the
language XPath with upward and downward navigation and data comparisons,
extended with nominals and the hybrid operator @. The hybridization of XPath
allowed us to replicate the completeness argument for the hybrid logic HL(@)
shown, e.g., in [8].

As future work we would like to take advantage of the hybridization of
XPath— to obtain general axiomatizations as in [4,9]. The idea is to define
minimal proof systems that are not only complete for the class of all models,
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but which can also be extended with additional axioms that are pure in some
sense, ensuring completeness with respect to the corresponding class of models.
Our goal is to explore this general framework and obtain complete axiomatic
systems for some natural extensions of HXPath_(T]):

— HXPath_(1]) with reflexive-transitive closure for downward/upward naviga-
tion (i.e., allowing |* and 7%), and sibling navigation.

— Exploring new kind of data comparisons, for instance, including the relation
< in addition to = and #.

Another aspect we would like to explore is decidability and complezity. A fil-
tration argument (see [8]) can be applied to prove that HXPath_(T]) is decidable
over the class of all models, obtaining a NEXPTIME upper bound for the satis-
fiability problem. We conjecture that the satisfiability problem is also decidable
over the class of finite data trees, and that this result can be proved adapting
the automata proof given in [15], with the method used to account for hybrid
operators presented in [24].
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2013-2011, STIC-AmSud “Foundations of Graph Structured Data (FoG)” and the
Laboratoire International Associé “INFINIS.”
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Abstract. Unification in description logics (DLs) has been introduced
as a novel inference service that can be used to detect redundancies in
ontologies, by finding different concepts that may potentially stand for
the same intuitive notion. It was first investigated in detail for the DL
F Lo, where unification can be reduced to solving certain language equa-
tions. In order to increase the recall of this method for finding redundan-
cies, we introduce and investigate the notion of approximate unification,
which basically finds pairs of concepts that “almost” unify. The meaning
of “almost” is formalized using distance measures between concepts. We
show that approximate unification in FLy can be reduced to approxi-
mately solving language equations, and devise algorithms for solving the
latter problem for two particular distance measures.

1 Introduction

Description logics [1] are a well-investigated family of logic-based knowledge
representation formalisms. They can be used to represent the relevant concepts of
an application domain using concept descriptions, which are built from concept
names and role names using certain concept constructors. In this paper, we
concentrate on the DL F Ly, which offers the constructors conjunction (I1), value
restriction (Vr.C'), and the top concept (T).

Unification in DLs has been introduced as a novel inference service that can
be used to detect redundancies in ontologies, and was first investigated in detail
for F Ly [5]. For example, assume that one developer of a medical ontology defines
the concept of a patient with severe head injury as

Patient M Vfinding.(Head_injury M Vseverity.Severe), (1)
whereas another one represents it as

Patient M Vfinding.(Severe_finding M Injury M Vfinding_site.Head). (2)
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Formally, these two concept descriptions are not equivalent, but they are nev-
ertheless meant to represent the same concept. They can obviously be made
equivalent by treating the concept names Head_injury and Severe_finding as vari-
ables, and substituting the first one by Injury M Vfinding_site.Head and the second
one by Vseverity.Severe. In this case, we say that the descriptions are unifiable,
and call the substitution that makes them equivalent a unifier. Intuitively, such
a unifier proposes definitions for the concept names that are used as variables: in
our example, we know that, if we define Head_injury as Injury MVfinding_site.Head
and Severe_finding as Vseverity.Severe, then the two concept descriptions (1) and
(2) are equivalent w.r.t. these definitions.

Of course, this example was constructed such that a unifier providing sensible
definitions for the concept names used as variables actually exists. It is based
on the assumption that both knowledge engineers had the same definition of the
concept patient with severe head injury in mind, but have modeled certain sub-
concepts on different levels of granularity. Whereas the first knowledge engineer
used Head_injury as a primitive (i.e., not further defined) concept, the other one
provided a more detailed definition for head injury; and the other way round for
severe finding. But what if there are more differences between the two concepts,
maybe due to small modeling errors? For example, assume that a third knowl-
edge engineer has left out the concept name Severe_finding from (2), based on
the assumption that all injuries with finding site head are severe:

Patient M Vfinding.(Injury M Vfinding_site.Head). (3)

The concept descriptions (1) and (3) cannot be unified if only Head_injury is
used as a variable. Nevertheless, the substitution that replaces Head_injury by
Injury MVfinding_site.Head makes these two descriptions quite similar, though not
equivalent. We call such a substitution an approzimate unifier.

The purpose of this paper is to introduce and investigate the notion of approx-
imate unification for the DL, F L. Basically, to formalize approximate unifica-
tion, we first need to fix the notion of a distance between F L, concept descrip-
tions. An approximate unifier is then supposed to make this distance as small
as possible. Of course, there are different ways of defining the distance between
concept descriptions, which then also lead to different instances of approximate
unification. In this paper, we consider two such distance functions, which are
based on the idea that differences at larger role depth (i.e., further down in the
nesting of value restrictions) are less important than ones at smaller role depth.
The first distance considers only the smallest role depth ¢ where the difference
occurs (and then uses 27 as distance), whereas the second one “counts” all
differences, but the ones at larger role depth with a smaller weight. This idea
is in line with work on nonstandard inferences in DLs that approximate least
common subsumers and most specific concepts by fixing a bound on the role
depth [9].

Exact unification in FLy was reduced in [5] to solving certain language equa-
tions, which in turn was reduced to testing certain tree automata for emptiness.
We show that this approach can be extended to approximate unification. In fact,
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by linking distance functions on concept descriptions with distance functions on
languages, we can reduce approximate unification in F L to approximately solv-
ing language equations. In order to reduce this problem to a problem for tree
automata, we do not employ the original construction of [5], but the more sophis-
ticated one of [6]. Using this approach, both the decision variant (is there a sub-
stitution that makes the distance smaller than a threshold) and the computation
variant (compute the infimum of the achievable distances) of approximate uni-
fication can be solved in exponential time, and are thus of the same complexity
as exact unification in FLg.

Due to space constraints, we cannot give detailed proofs of all our results.
They can be found in the accompanying technical report [2].

2 Unification in FL,

We will first recall syntax and semantics of FLy and describe the normal form
of FLy concept descriptions that is based on representing value restrictions as
finite languages over the alphabet of role names. Then, we introduce unification
in FLq and recall how it can be reduced to solving language equations.

Syntaz and Semantics. The concept descriptions C' of the DL FL( are built
recursively over a finite set of concept names N, and a finite set of role names
N, using the following syntax rules:

C:=T|A|CNnC|VvrC, (4)

where A € N, and r € N,.. In the following, we assume that N, = {44,..., Ax}
and N, = {ry,...,m}.

The semantics of FLy is defined in the usual way, using the notion of an
interpretation T = (AT, .T), which consists of a nonempty domain A and an
interpretation function -Z that assigns binary relations on AZ to role names and
subsets of A to concept names. The interpretation function - is extended to
FLy concept descriptions as follows: TZ := AL, (C 1 D)% := C*T n D%, and
(vr.C)? :={d e AT | for all ec AT: if (d,e) € 7%, then e € CT}.

Equivalence and Normal Form. Two FLq concept descriptions C, D are equiv-
alent (written C = D) if CT = D7 holds for all interpretations Z.

As an easy consequence of the semantics of F Ly, we obtain that value restric-
tions (Vs.-) distribute over conjunction (M), i.e., Vs.(C 1 D) = Vs.C M Vs.D
holds for all FLy concept descriptions C, D. Using this equivalence from left to
right, we can rewrite every F Ly concept description into a finite conjunction of
descriptions Vs;. - --Vs,,.A, where m > 0,581,...,8, € N,,, and A € N.. We fur-
ther abbreviate Vsy.- - Vs, .A as V(s1 ... 8m).A, where s1 ... s, is viewed to be
a word over the alphabet of all role names NN, i.e., an element of N;*. For m = 0,
this is the empty word . Finally, grouping together value restrictions that end
with the same concept name, we abbreviate conjunctions Vwi. A M ... M Vwg. A
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as V{wi,...,we}.A, where {wr,...,ws} C N is viewed to be a (finite) lan-
guage over N,. Additionally we use the convention that V(.A is equivalent
to T. Then, any FLy concept description C (over N, = {A1,...,Ar} and
N, ={ry,...,rp}) can be rewritten into the normal form VLi. A1 M...MV L. Ag,
where L1, ... L are finite languages over the alphabet N,.. For example, if &k = 3,
then the concept description A;MVry.(A;MVr.A2MVre.Ap) has the normal form
V{e,r1,m1r2}. A1 M V{rir1 }.As MVP.A;. Using this normal form, equivalence of
F Ly concept descriptions can be characterized as follows (see [5] for a proof).

Lemma 1. Let C =VL;. Ay N...MVLg. Ax and D =VM1. A1 M. .MV M. Ay be
FLy concept descriptions in normal form. Then

C=Diff Li=M,..., L= M.

Consider the head injury example from the introduction, where for brevity we
replace the concept and role names by single letters: (1) thus becomes ANVr.(XT1
Vs.B) and (2) becomes AMVr.(Y M D MV¢.E). The normal forms of these two
concept descriptions are

V{e}. ANV{rs}.BNVO.DNVY.ENV{r}. X Nv.y, 5
V{e}. ANVO.Bv{r}.DNV{rt}. ENV).X NV{r}.Y. (5)

Unification. In order to define unification in FLj, we need to introduce an
additional set of concept names N,,, whose elements we call concept variables.
Intuitively, N, contains the concept names that have possibly been given another
name or been specified in more detail in another concept description describing
the same notion. From a syntactic point of view, concept variables are treated
like concept names when building concepts. We call expressions built using the
syntax rules (4), but with A € N. U N,, concept patterns, to distinguish them
from concept descriptions, where only A € N, is allowed. The difference between
elements of IV, and N, is that concept variables can be replaced by substitutions.

A substitution o is a function that maps every variable X € N, to a concept
description o(X). This function can be extended to concept patterns, by setting
o(A):=Afor Ae NU{T}, o(CMND):=0c(C)No(D), and o(Vr.C) := ¥r.o(C).
We denote the set of all substitutions as Sub.

Definition 1 (Unification). The substitution o is a unifier of the two FLg
concept patterns C, D if o(C) = o(D). If C, D have a unifier, then we call them
unifiable. The F Ly unification problem asks whether two given FLy concept
patterns are unifiable or not.

In [5] it is shown that the F Ly unification problem is ExpTime-complete. The
ExpTime upper bound is proved by a reduction to language equations, which in
turn are solved using tree automata. Here we sketch the reduction to language
equations. The reduction to tree automata will be explained in Sect. 4. Without
loss of generality, we can assume that the input patterns are in normal form
(where variables are treated like concept names), i.e.,

C =VYSo1.A ... (VS Ap MVYSLX1 M. .. (YSm. X,

6
D =VYTy1. Ay ... VT 4 A VT X1 M O T X, (6)
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where Sy ;, 70, 5;,1; are finite languages over N,. The unification problem for
C, D can be reduced to (independently) solving the language equations

SQJUSl 'X17iU...USm-Xm7i :T07iUT1 ~X1}iU...UTm 'Xm,i (7)
fori=1,...,k, where “” stands for concatenation of languages. A solution o;
of such an equation is an assignment of languages (over N,) to the variables X ;
such that Soﬂ‘ usi - Ui(Xl,i> U...us,, - O'i(XmJ') = TOJ' Uty - O'i(Xlﬂ') U...uTt,,-
0i(Xm,;). This assignment is called finite if all the languages o;(X ;) are finite.
We denote the set of all assignments as Ass and the set of all finite assignments
as finAss.

As shown in [5], C, D are unifiable iff the language equations of the form (7)
have finite solutions for all s = 1,..., k. In fact, given finite solutions o1, ..., o
of these equations, a unifier of C, D can be obtained by setting

U(Xl) = VO’Z‘(XZ"l).Al [l ...HVJi(Xi,k).Ak, (8)

and every unifier of C; D can be obtained in this way. Of course, this construction
of a substitution from a k-tuple of finite assignments can be applied to arbitrary
finite assignments (and not just to finite solutions of the Eq. (7)), and it yields
a bijection p between k-tuples of finite assignments and substitutions.

Coming back to our example (5), where we now view X,Y as variables, the
language equations for the concept names A and B are

{E}U{T}-XAU@-YA:{€}U®-XAU{T}-YA7
{TS}U{T}'XBU(Z)'YBZQUQ]'XBU{T}-YB.

Among others, the first equation has X 4 = Y4 = ) as a solution, and the second
Xp = 0 and Yp = {s}. The equations for D, E are built in a similar way, and
Xp ={e},Yp =0 and Xg = {t},Yg = 0 are solutions of these equations. Using
(8), but leaving out the value restrictions for (}, these solutions yield the unifier
o with o(X) =V{e}.DNV{t}.E = DNVt.E and o(Y) =V{s}.B = Vs.B.

3 Approximate Unifiers and Solutions

As motivated in the introduction, it makes sense to look for substitutions o that
are actually not unifiers, but come close to being unifiers, in the sense that the
distance between o(C) and o (D) is small. We call such substitutions approximate
unifiers. In the following, we will first recall some definitions regarding distances
from metric topology [15]. Subsequently, we will first introduce approximate
unification based on distances between concept descriptions, and then approxi-
mately solving language equations based on distances between languages. Next,
we will show how distances between languages can be used to define distances
between concept descriptions, and that approximate unification for distances
obtained this way can be reduced to approximately solving language equations.
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Metric Topology. Given a set X, a metric (or distance) on X is a mapping
d: X x X — [0,00) that satisfies the properties:

(M1) d(a,b) =0 < a=b
(M2) d(a,b) = d(b,a)
(M3) d(a,c) < d(a,b) +d(b,c)

In this case, (X,d) is called a metric space. Given a metric space (X,d), a

sequence (a,) of elements of X is said to converge to a € X (written a, <, a)
if for every ¢ > 0 there is an ng € N s.t. d(a,,a) < € for every n > ng.

Approximate Unification. In order to define how close o(C) and o(D) are, we
need to use a function that measures the distance between these two concept
descriptions. We say that a function that takes as input a pair of FLy concept
descriptions and yields as output an element of [0, 00) is a concept distance for
F Ly if it satisfies the following three properties:

— equivalence closedness: m(C,D) =0 < C =D,
— symmetry: m(C, D) = m(D, C),
— equivalence invariance: C = D = m(C,E) = m(D, E).

Note that equivalence closedness corresponds to (M1) and symmetry to (M2) in
the definition of a metric. Equivalence invariance ensures that m can be viewed
as operating on equivalence classes of concept descriptions.

Definition 2 (Approximate Unification). Given a concept distance m, FLy
concept patterns C, D, and a substitution o, the degree of violation of o is defined
as vy (0,C, D) :=m(o(C),o(D)). For p € Q, we say that o is a p-approximate
unifier of C, D if 27P > v, (0,C, D).

Equivalence closedness of m yields that v, (o, C, D) = 0 iff ¢ is a unifier of C, D.
The decision problem for approximate unification asks, for a given threshold
p € Q, whether C, D have a p-approximate unifier or not. In addition, we consider
the following computation problem: compute inf,egup Vi (o, Cy D).
The following lemma, which is immediate from the definitions, shows that
a solution of the computation problem also yields a solution of the decision
problem.

Lemma 2. Let m be a concept distance and C, D FLy concept patterns. Then
C, D have a p-approzimate unifier iff 2P > inf e gup vm (0, C, D).

The reduction of the decision problem to the computation problem obtained
from this lemma is actually polynomial. In fact, though the size of a represen-
tation of the number 277 may be exponential in the size of a representation
of p, the number 277 need not be computed. Instead, we can compare p with
log, inf,esup vm (0, C, D), where for the comparison we only need to compute as
many digits of the logarithm as p has.
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Approximately Solving Language Equations. Following [6], we consider a more
general form of language equations than the one given in (7). Here, all Boolean
operators (and not just union) are available. Language expressions are built
recursively over a finite alphabet Y using union, intersection, complement, and
concatenation of regular languages from the left, as formalized by the following
syntax rules:
pu=L|X[oUd|dNd|~p]|L-¢, (9)

where L can be instantiated with any regular language over X' and X with any
variable. We assume that all the regular languages occurring in an expression are
given by finite automata. Obviously, the left- and the right-hand sides of (7) are
such language expressions. As before, an assignment o € Ass maps variables to
languages over Y. It is extended to expressions in the obvious way (where ~ is
interpreted as set complement). The assignment o solves the language equation
¢ = if o(¢) = o(¢). For finite solvability we require the languages o(X) to be
finite, i.e., o should be an element of finAss.

In order to define approximate solutions, we need the notion of distances
between languages. A function d : 2% x 2% — [0, 00) satisfying (M1), (M2),
and (M3) is called a language distance.

Definition 3 (Approximate Solutions). Given a language distance d, lan-
guage expressions ¢, ¥, and an assignment o, the degree of violation of o is defined
asvg(o, ¢,) := d(o(9),o()). Forp € Q, we say that o is a p-approximate solu-
tion of ¢ & ¢ if 27P > vy(o, ¢, V).

The decision and the computation problem for approximately solving language
equations are defined analogously to the case of unification. In addition, the
analog of Lemma 2 also holds in this case, and thus the decision problem can be
reduced to the computation problem.

Recall that unification in FLq is reduced to finite solvability of language
equations. The above definition of approximate solutions and of the decision and
the computation problem can also be restricted to finite assignments, in which
case we talk about finite approzimate solvability. However, we will show that
finite approximate solvability can actually be reduced to approximate solvability.
For this to be the case, we need the language distance to satisfy an additional
property (M4). Given a natural number ¢, we call two languages K,L C X*
equal up to length ¢ (and write K =, L) if K and L coincide on all words of
length at most £.

(M4) Let L be a language and (L,) a sequence of languages over X.
Then, L,, =, L for all n > 0 implies L, BN )

If (M4) is satisfied for d, then the computation problem for finite assignments
has the same solution as for arbitrary assignments.

Lemma 3. Let d be a language distance satisfying (M4) and ¢,v language
expressions. Then,

] f = 1 f .
O'E}CL‘I’}LASS ’Ud(0'7 ¢a w) (Tghss ’Ud(O', (ba w)
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Before showing that language distances can be used to construct concept
distances, we give two concrete examples of language distances satisfying (M4).

Two Language Distances Satisfying (M4). The following two mappings from
25" % 2% to [0, 00) are defined by looking at the words in the symmetric differ-
ence KAL := (K\L) U (L\K) of the languages K and L':

di(K,L):=2"* where ¢ = min {|Jw| | w € KAL},

do(K, L) == p(KAL) where p(M) =33, c,2[2)7 10

The intuition underlying both functions is that differences between the two lan-
guages are less important if they occur for longer words. The first function
considers only the length ¢ of the shortest word for which such a difference
occurs and yields 27¢ as distance, which becomes smaller if ¢ gets larger. The
second function also takes into account how many such differences there are, but
differences for longer words count less than differences for shorter ones. More
precisely, a difference for the word u counts as much as the sum of all differences
for words uv properly extending u. The following lemma is easy to show (see [2]
for details).

Lemma 4. The functions di,dy are language distances satisfying (M4).

From Language Distances to Concept Distances. Based on the normal form of
F Ly concept descriptions introduced in Sect. 3, we can use a language distance
d to define a concept distance. Basically, given FLq concept descriptions C' =
VL1.Ai...MVLg. A and D = VM;.A1 M ... 1 VM. Ay in normal form, we
can use the distances e; = d(L;, M;) to define a distance between C' and D. For
this, we need an appropriate function that combines the k values eq, ..., ex into
a single value. We say that the function f : [0,00)* — [0,00) is a combining
Sfunction if it is

— commutative: f(ai,...,ar) = f(ar@),--.,ax(x)) for all permutations 7 of the
indices 1,...,k,

— monotone: algbl,..., g & f(al,..., k) < f(b1,...,bk),

— zero closed: f(aq,.. ) = ay=---=ag =0,

— and continuous.
The following are simple examples of combining functions:
- max(ay,...,ax),
- sum(aq,...,ar) =ai + - - + ag,
k
—avg(ai,...,ax) = >, ai/k.
Given a language distance d and a combining function f, the concept distance
mgq, ¢ induced by d, f is defined as follows. If C, D are F Ly concept descriptions
with normal forms C =VL,.A;M...MVYLg. A and D =VM,. A1 1. . NV M. Ag,

then we set
md’f(C, D) = f(d(Ll, Ml), N 7d(Lk7 Mk))

! In the first line below we assume, as usual, that min @ = oo and 27°° = 0.
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Using one of the language distances d1, ds introduced above in this setting means
that differences between the concepts C, D at larger role depth count less than
differences at smaller role depth.

Lemma 5. Let d be a language distance and f be a combining function. Then
the concept distance induced by f,d is indeed a concept distance, i.e., it is equiv-
alence closed, symmetric, and equivalence invariant.

Reducing Approximate Unification to Approximately Solving Language Equa-
tions. In the following, we assume that d is a language distance, f a combin-
ing function, and mg,; the concept distance induced by f,d. Let C,D be FLg
concept patterns in normal form, as shown in (6), and (7) the corresponding
language equations, for ¢ = 1,...,k. We denote the left- and right-hand sides
of the equations (7) with ¢; and v;, respectively. The following lemma shows
that the degree of violation transfers from finite assignments oq,..., 0 to the
induced substitution p(o1,...,0%) as defined in (8).

Lemma 6. Letoy,... o € finAss. Then f(va(o1, d1,%1), .-, va(0k, Ok, Vk)) =
vmd,f’(p(017 S vok)vca D)

Since the combining function is continuous, the equality stated in this lemma
is preserved under building the infimum. In addition, Lemma3 shows that the
restriction to finite assignments can be dispensed with if d satisfies (M 4).

Lemma 7. Assume that d satisfies (M4). Then,
inf ,Uma.s (0,C,D) =

g€Su
= f( inf wg(o1,¢1,%1),..., inf  vg(on, dr, Yr))

o1E€finAss ok EfinAss

= f( inf wy(o1,d1,¢1),..., inf wv(ok, dr, ¥r))-
o1€EAss orEAss
In case f is computable (in polynomial time), this lemma yields a (polynomial
time) reduction of the computation problem for approximate FLq unification
to the computation problem for approximately solving language equations. In
addition, we know that the decision problem can be reduced to the computation
problem. Thus, it is sufficient to devise a procedure for the computation problem
for approximately solving language equations.
In our example, the normal forms of the abbreviated concept descriptions (1)

and (3) are

V{e}. ANVY{rs}.BNV0.DNVY.ENV{r}.X,

V{e}. AnV0.BNv{r}.DNV{rt}.ENV0.X.

It is easy to see that the language equations for the concept names A, D, E are
solvable, and thus these solutions contribute distance 0 to the overall concept
distance. The language equation for the concept name B is {rs} U{r} - Xp =
PUD- Xp, and the assignment Xpg = ) leads to the smallest possible symmetric
difference {rs}, which w.r.t. d; yields the value 272 = 1/4. It is easy to see that
this is actually the infimum for this equation. If we use the combining function
avg, then this gives us the infimum 1/16 for our approximate unification problem.
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4 Approximately Solving Language Equations

In the following, we show how to solve the computation problem for the language
distances d; and dy introduced above. Our solution uses the automata-based
approach for solving language equations introduced in [6].

The first step in this approach is to transform the given system of language
equations into a single equation of the form ¢ = ) such that the language
expression ¢ is normalized in the sense that all constant languages L occurring
in ¢ are singleton languages {a} for a € X' U {e}. This normalization step can
easily be adapted to approximate equations, but in addition to a normalized
approximate equation ¢, ~ () it also generates a normalized strict equation

d)s:@

Lemma 8. Let ¢,v¢ be language expressions. Then we can compute in polyno-
mial time normalized language expressions ¢, and ¢s such that the following
holds for d € {dy,ds}:

{va(o,0,¢) | 0 € Ass} = {va(0,¢a,0) | 0 € Ass Na(¢s) = 0}

This lemma shows that, to solve the computation problem for ¢ =~ 1, we must
solve the computation problem for ¢, ~ @), but restrict the infimum to assign-
ments that solve the strict equation ¢, = 0.

In a second step, [6] shows how a normalized language equation can be trans-
lated into a tree automaton working on the infinite, unlabeled n-ary tree (where
n = |X|). The nodes of this tree can obviously be identified with X*. The
automata considered in [6] are such that the state in each successor of a node
is determined independently of the choice of the states in its siblings. These
automata are called looping tree automata with independent transitions (ILTA).

Definition 4. An ILTA is of the form A = (X,Q,Qo,9), where X is a finite
alphabet, Q is a finite set of states, with initial states Qo C Q, and 6: Q X X —
29 s a transition function that defines possible successors of a state for each
a € X. A run of this ILTA is any function r: X* — Q with r(¢) € Qo and
r(wa) € §(r(w),a) for allw € X* and a € X.

According to this definition, ILTAs do not have a fixed set of final states. How-
ever, by choosing any set of states F' C (Q, we can use runs r of A to define
languages over X' as follows: L, (A, F) := {w € X* | r(w) € F}.

Given a normalized language equation ¢ = () with variables {X1,..., X},
it is shown in [6] how to construct an ILTA A% = (¥, Q% QF,5%) and subsets
F, Fy,...,F, C Q? such that the following holds:

Proposition 1. If r is a run of A?, then the induced assignment o, with
0. (X;) == L.(A?, Fy), for i = 1,...,m, satisfies 0,(¢) = L.(A?, F). In addi-

tion, every assignment is induced by some run of Ag.

The size of this ILTA is exponential in the size of ¢. In order to decide whether
the language equation ¢ = () has a solution, one thus needs to decide whether
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A? has a run in which no state of F' occurs. This can easily be done by removing
all states of F from A?, and then checking the resulting automaton A? p for
emptiness. In fact, as an easy consequence of the above proposition we obtain
that there is a 1-1-correspondence between the runs of Ai’ r and the solutions
of ¢ =0 (Proposition 2 in [6]).

This approach can easily be adapted to the situation where we have an
approximate equation ¢, =~ @ and a strict equation ¢, = (). Basically, we
apply the construction of [6] to ¢, U ¢s, but instead of one set of states F'
we construct two sets F, and F, such that 0,.(¢q) = L.(A%Y% F,) and
o (¢s) = L.(A%Y%s F,) holds for all runs r of A%?Y%:. By removing all states of
F, from A%Y?s we obtain an automaton whose runs are in 1-1-correspondence
with the assignments that solve ¢, = (). In addition, we can make this automaton
trim? using the polytime construction in the proof of Lemma2 in [6].

Theorem 1. Given an approximate equation ¢, ~ 0 and a strict equation ¢s =
(0, we can construct in exponential time a trim ILTA A = (X, Q, Qo,d) and sets of
states Fy, Fy, ..., F, C Q such that every runr of A satisfies 0,.(¢p,) = L.(A, Fy)
and o.(¢ps) = 0. In addition, every assignment o with o(ps) = 0 is induced by
some run of A.

The Measure d;

Using Lemma 8, Theorem 1, and the definition of d1, it is easy to see that the com-
putation problem for an approximate language equation ¢ ~ 1) can be reduced to
solving the following problem for the trim ILTA A = (X, Q, Qo, ) of Theorem 1:
compute Sup,. ., o5 4 Min{|w| | r(w) € Fy}.

In order to compute this supremum, it is sufficient to compute, for every
state g € Q, the length lpr(q) of the longest partial run of A starting with q that
does not have states of F, at non-leaf nodes. More formally, we define:

Definition 5. Let XS denote the set of all words over X of length at most £.
Given a trim ILTA A = (X, Q,Qo,0), a partial run of A of length ¢ from a state
q € Q is a mapping p : XY — Q such that p(e) = q and p(wa) € §(p(w),a) for
allw € X1 and a € X. The leaves of p are the words of length ¢.

Lemma 9. The function lpr : Q — NU{oo} can be computed in time polynomial
in the size of A.

Proof. In order to compute Ipr, we use an iteration similar to the emptiness test
for looping tree automata [7].

If g € F,, then clearly Ipr(q) = 0 and otherwise ¢ has an appropriate partial
run of length > 0 (recall that A is trim). For this reason, we start the iteration
with

Q(O) = F,.

2 An ILTA (%, Q,Qo,9) is trim if every state is reachable from an initial state and
0(q,a) #0 for all g € Q,a € X.
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Next, for i > 0, we define
QU =QWU{geQ3ac ¥ :b(g,0) QY.

We have Q© € QW C Q) C ... C Q. Since Q is finite, there is an index
§ < |Q| such that QU) = Q(JH) and thus the iteration becomes stable.
It is easy to show that

Ipr(q) = {min{i lqe Q) ifge QU

6] if g ¢ QU
Since the number of iterations is linear in |@| and every iteration step can obvi-
ously be performed in polynomial time, this completes the proof. O

The function Ipr can now be used to solve the computation problem as
follows:
sup min{|w| | r(w) € F,} = max{lpr(q) | ¢ € Qo}.
rrunof A
If this maximum is co, then the measure d; yields value 0 and the approximate
equation was actually solvable as a strict one.

Theorem 2. For the distance di and a polytime computable combining func-
tion, the computation problem (for approzimate F Ly unification and for approz-
imately solving language equations) can be solved in exponential time, and the
decision problem is FExpTime-complete.

Proof. The ExpTime-upper bounds follow from our reductions and the fact that
the automaton A can be computed in exponential time and is thus of at most
exponential size. Hardness can be shown by a reduction of the strict problems,
which are known to be ExpTime-complete [5,6]. In fact, the proof of Lemma 9
shows that d either yields the value 0 = 27°° (in which case the strict equation
is solvable) or a value larger than 2~ (QI+1) (in which case the strict equation is
not solvable). O

The Measure do

Recall that the value of ds is obtained by applying the function p to the symmet-
ric difference of the input languages. In case one of the two languages is empty,
its value is thus obtained by applying p to the other language. It is easy to show
that p(L) for L C X* satisfies the following recursive equation:

ML) = 330) + 5 Y nla L), (10)

acX

where a 'L := {w € X* | aw € L} and xy, is the characteristic function of the
language L.

Using Lemma 8, Theorem 1, and the definition of ds, it is easy to see that the
computation problem for an approximate language equation ¢ =~ ¥ w.r.t. ds can
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be reduced to solving the following problem for the trim ILTA A = (X, Q, Qo, 9)
of Theorem 1: compute inf, .y of 4 t(Lr(A, Fy)).

Using (10), we now show that this infimum can be computed by solving a
system of recursive equations that is induced by the transitions of A. Given an
arbitrary (not necessarily initial) state ¢ € Q, we say that r: X* — Q is a ¢-run
of Aif r(e) = q and r(wa) € §(r(w),a) for all w € X* and a € X. We denote
the set of all g-runs of A with R4(q). Since each run of A is a go-run for some
qo € Qo, we have

inf Lo(A,F,))= min inf u(L.(A,F,)).
rrul'rILlofAM( ( )) qf)rélgorellgflx(qo)u( ( ))

For all ¢ € @, we define u(q) := inf,cr,(q) #(Lr(A, Fy)). The identity above
shows that we can solve the computation problem for approximate language
equations w.r.t. ds if we can devise a procedure for computing the values p(q) € R
for all ¢ € Q. The identity (10) can now be used to show the following lemma.

Lemma 10. For all states g € Q we have

o) = 50,0+ 7 >,

peé(q a)

where xr, denotes the characteristic function of the set Fy.

By introducing variables z, (for ¢ € Q) that range over R, we can rephrase
this lemma by saying that the values p(q) yield a solution to the system of
equations 1

Zq 2|E| Z peg(qna) z, (¢€Q). (11)
Using Banach’s fixed point theorem [8,12], one can show that the system (11) has
a unique solution in R. Thus, to compute the values p(q) for ¢ € @ it is sufficient
to compute a solution of (11). This can be realized using Linear Programming
[16]. The only non-trivial step in the translation of (11) into an LP problem is to
express the minimum operator. For this, we introduce additional variables v q,
which intuitively stand for minycs(g,q) ©p. Then (11) is transformed into

1 1
Tq = 5XF. (@) + o5 aezzyq,a (g€ Q). (12)

To express the intuitive meaning of the variables y, 4, we add the inequalities
Yga <xp forall g€ @ and pe€d(g,a) (13)

as well as the objective to maximize the values of these variables:

z = max Z Z Ya.a- (14)

qeQ acy
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Lemma 11. The LP problem consisting of the Eq. (12), the inequations (13),
and the objective (14) has the unique solution

{wg = 1(q) | g€ QY U{yga— perg(iqna)u(p) |p€Q,ae X}

Since LP problems can be solved in polynomial time and the size of the LP prob-
lem in the above lemma is polynomial in the size of A, we obtain an ExpTime-
upper bound for the computation problem and the decision problem. ExpTime-
hardness can again be shown by a reduction of the strict problem (see [2]).

Theorem 3. For the distance do and a polytime computable combining func-
tion, the computation problem (for approzimate F Ly unification and for approz-
imately solving language equations) can be solved in exponential time, and the
decision problem is FxpTime-complete.

For this theorem to hold, the exact definition of the distance ds is actually not
important. Our approach works as long as the distance induces a system of
equations similar to (11) such that Banach’s fixed point theorem ensures the
existence of a unique solution, which can be found using linear programming
(see [2] for an example).

5 Conclusion

We have extended unification in DLs to approximate unification in order to
enhance the recall of this method of finding redundancies in DL-based ontolo-
gies. For the DL FLg, unification can be reduced to solving certain language
equations [5]. We have shown that, w.r.t. two particular distance measures, this
reduction can be extended to the approximate case. Interesting topics for future
research are considering approximate unification for other DLs such as ££ [4];
different distance measures for F Ly and other DLs, possibly based on similar-
ity measures between concepts [14,17]; and approximately solving other kinds
of language equations [13]. Approximate unification has been considered in the
context of similarity-based Logic Programming [10], based on a formal defin-
ition of proximity between terms. The definition of proximity used in [10] is
quite different from our distances, but the major difference to our work is that
[10] extends syntactic unification to the approximate case, whereas unification
in FLy corresponds to unification w.r.t. the equational theory ACUIh (see [5]).
Another topic for future research is to consider unification w.r.t. other equa-
tional theories. First, rather simple, results for the theory ACUI, which extend
the results for strict ACUI-unification [11], can be found in [3].
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Abstract. Generalising the state of the art, an inconsistency-tolerant
semantics can be seen as a couple composed of a modifier operator and an
inference strategy. In this paper we deepen the analysis of such general
setting and focus on two aspects. First, we investigate the rationality
properties of such semantics for existential rule knowledge bases. Second,
we unfold the broad landscape of complexity results of inconsistency-
tolerant semantics under a specific (yet expressive) subclass of existential
rules.

1 Introduction

Within the Ontology-Based Data Access [17,18] setting, this paper addresses
the problem of query answering when the assertional base (which stores data)
is inconsistent with the ontology (which represents generic knowledge about
a domain). Recently, a general framework for inconsistency-tolerant semantics
was proposed in [2]. This framework considers two key notions: modifiers and
inference strategies. Inconsistency-tolerant query answering is seen as made out
of a modifier, which transforms the original ABox into a so-called MBox, which
is a set of consistent ABoxes (w.r.t. the TBox), and an inference strategy, which
evaluates queries against this MBox knowledge base. Interestingly enough, such
setting unifies main existing work and captures various semantics in the literature
(see e.g., [1,6,16]). The obtained semantics were compared with respect to the
productivity of their inference.
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L. Michael and A. Kakas (Eds.): JELIA 2016, LNAI 10021, pp. 64-80, 2016.
DOI: 10.1007/978-3-319-48758-8_5



Inconsistency-Tolerant Query Answering 65

This paper goes one step further in the characterization of these
inconsistency-tolerant semantics by carrying out an analysis in terms of ratio-
nality properties and data complexity. The rationality properties are considered
for existential rule knowledge bases [3,9] (a prominent ontology language that
generalizes lightweight description logics). On the one hand we study basic prop-
erties of semantics such as their behaviour with respect to the conjunction and
consistency of inferred conclusions. On the other hand, starting from the obvious
observation that inconsistency-tolerant semantics are inherently nonmonotonic,
we investigate their behaviour with respect to properties introduced for non-
monotonic inference [14] that we rephrase in our framework. Entailment with
general existential rules being undecidable, complexity is studied for a specific
(yet expressive) subclass of existential rules known as Finite Unification Sets
(FUS) [3], which in particular generalizes the description logic DL-Liteg dedi-
cated to query answering [10] (see also the OWL2-QL profile).

Before presenting our contributions, we provide some preliminaries on the
logical setting and briefly recall the unified framework for inconsistency-tolerant
semantics.

2 Preliminaries

We consider first-order logical languages without function symbols, hence a term
is a variable or a constant. An atom is of the form p(t1,...,¢x) where p is a
predicate name of arity k, and the ¢; are terms. A (factual) assertion is an atom
without variables (also named a ground atom). A Boolean conjunctive query’
(and simply query in the following) is an existentially closed conjunction of
atoms, that we will consider as a set of atoms, leaving quantifiers implicit. Given
a set of assertions A and a query ¢, the answer to ¢ over A is yes iff A | g,
where = denotes the standard logical consequence. Given two sets of atoms S
and Sy (with disjoint sets of variables), a homomorphism h from S; to Sy is
a substitution of the variables in S; by the terms in Sy such that h(S;) C S
(where h(S7) is obtained from S; by substituting each variable according to h).
It is well-known that, given two existentially closed conjunctions of atoms f;
and fy (for instance queries and conjunctions of factual assertions), fi = fo iff
there is a homomorphism from the set of atoms in fo to the set of atoms in fi.

A knowledge base can be seen as a database enhanced with an ontological
component. Since inconsistency-tolerant query answering has been mostly stud-
ied in the context of description logics (DLs), and especially DL-Lite, we will
use some DL vocabulary, like ABox for the data and TBox for the ontology.
However, our framework is not restricted to DLs, hence we define TBoxes and
ABoxes in terms of first-order logic (and more precisely in the existential rule
framework). We assume the reader familiar with the basics of DLs and their
logical translation.

! For readability, we restrict our focus to Boolean conjunctive queries, however the
framework and the obtained results can be directly extended to general conjunctive
queries.
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An ABoz is a set of factual assertions. As a special case we have DL asser-
tions restricted to unary and binary predicates. A positive axiom is of the form
VxVy(B[x,y| — 3z H[y,z|) where B and H are conjunctions of atoms; in other
words, it is a positive existential rule. As a special case, we have for instance con-
cept and role inclusions in DL-Liter, which are respectively of the form B; C By
and S; C Sy, where B; := A | 35 and S; := P | P~ (with A an atomic concept,
P an atomic role and P~ the inverse of an atomic role). A negative aziom is
of the form Vx(B[x] — 1) where B is a conjunction of atoms; in other words,
it is a megative constraint. As a special case, we have for instance disjointness
axioms in DL-Liter, which are inclusions of the form By C =By and S; C —.S5,
or equivalently By M By C 1L and S;M Sy E L.

A TBox T =71,U7T, is partitioned into a set 7, of positive axioms and a set
7,, of negative axioms. Finally, a knowledge base (KB) is of the form K=(7, A)
where A is an ABox and 7 is a TBox. Such a KB is logically interpreted as
the conjunction of its elements. K is said to be consistent if 7 U A is satisfiable,
otherwise it is said to be inconsistent. We also say that A is consistent (or
inconsistent) with 7, which reflects the assumption that the TBox is reliable
while the ABox may not. The answer to a query ¢ over a consistent KB K is yes
iff (T, A) = q. When K is inconsistent, standard consequence is not appropriate
since all queries would be positively answered.

The notion of a (virtual) repair is a key notion in inconsistency-tolerant
query answering. A repair is a subset of the ABox consistent with the TBox
and inclusion-maximal for this property: R C A is a repair of A w.r.t. T if (i)
(T,R) is consistent, and (ii) VR’ C A, if R & R’ (R is strictly included in R’)
then (7, R') is inconsistent. We denote by R(A) the set of A’s repairs (for easier
reading, we often leave 7 implicit in our notations). Note that R(A)={A} iff A is
consistent. The most commonly considered semantics for inconsistency-tolerant
query answering, inspired from previous works in databases, is the following:
q is said to be a consistent consequence of K if it is a standard consequence
of each repair of A [1]. Several variants of this semantics have been proposed,
which differ in their behaviour (cautiousness w.r.t. inconsistencies) and their
computational complexity, see in particular [1,6,16].

3 A Unified Framework for Inconsistency-Tolerant Query
Answering

In this section we recall the framework introduced in [2] for the study of
inconsistency-tolerant query answering semantics. In this framework, semantics
are defined by two components: a modifier and an inference strategy, applied on
MBox knowledge bases. An MBox KB is simply a KB with multiple ABoxes of
the form Ky=(T, M) where T=T7,U 7, is a TBox and M={A;,..., A,,} is a
set of ABoxes, called an MBox. A standard KB will be seen as an MBox with
m = 1. An MBox KB K, is said to be consistent, or M is said to be consis-
tent (with 7), if each A; in M is consistent (with 7). A modifier transforms a
possibly inconsistent MBox KB into an MBox KB such that, when the latter is
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consistent, it can be provided as input to the inference strategy that determines
if the query is entailed.

A (composite) modifier is a finite combination of elementary modifiers. In [2]
the three following kinds of elementary modifiers are introduced:

— Expansion modifiers, which expand an MBox by explicitly adding some
inferred assertions to its ABoxes. A natural expansion modifier is the ground
positive closure of an MBox, which computes the closure of each ABox with
respect to the positive axioms of the TBox, keeping only ground atoms:

o (M) = {Cl(A;)|A; € M}, where CI(A;) = {ground atom a [(7,, A;) = a}.

— Splitting modifiers, which replace each A; of an MBox by one or several of its
maximally consistent subsets (hence, they always produce consistent MBoxes).
A natural splitting modifier splits each ABox into the set of its repairs:

Orep(M) = U 4, e m{R(A)}-
— Selection modifiers, which select some elements of an MBox. A natural selec-

tion modifier is the cardinality-based selection modifier, which selects the
largest ABoxes of an MBox:

Ocard(M) = {A; € MIVA; € M, |A;| < |Ail}

Note that the cardinality-based selection function fully makes sense when
inconsistency is due to the presence of multiple sources. Other selection func-
tions, such as the ones based on rational closure or System Z [11] may be used,
especially when inconsistency reflects the presence of exceptions in axioms of the
TBox.

Many composite modifiers can be potentially defined using the three above
“natural” modifiers, however this number is considerably reduced if we focus on
non-equivalent modifiers: indeed, any composite modifier that produces a con-
sistent MBox from a standard ABox, and obtained by combining the elementary
modifiers oy¢p, Ocqrq and og, is equivalent to one of the eight modifiers listed
in Table 1. To ease reading, these modifiers are also denoted by abbreviations
reflecting the order in which the elementary modifiers are applied, and using the
following letters: R for o,.p, C for o, and M for o.q,q. Different kinds of inclusion
relations hold between modifiers (see [2] for details).

Ezample 1. Let Kpq = (T, M) be an MBox KB where T={A(z)AB(z)— L,
A(z) N C(z)— L, B(x)ANC(z)— L, A(x)—D(x), B(x)—D(x), C(z)—D(z),
B(z)—E(x), C(z)—E(z)} and M={{A(a), B(a),C(a), A(b)}}. With R, we get
o (M)={{A(a), A®)}1B(a), AB)}C(a), AB)}}. With CR: o(M)={{A(a),
(@), A(B), D)}, {B(a), D{a), E(a), A().D(B)}, {C(a), D(a), E(a), A®b),
(( i},}él( ;’Vltfé )'}/l}CR os(M) = {{B(a), D(a), E(a), A(b), D(b)},{C(a), D(a),

An inference strategy takes as input a consistent MBox KB Ky =(7, M) and
a query g and determines if g is entailed from X . Four main inference strategies

D
D
E
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Table 1. The eight composite modifiers for an MBox Kym=(7, M = {A})

Modifier | Combination MBox

R 01 = Orep(.) M =o01(M)
MR Og = Ocard(orep(-)) My = OQ(M)
CMR 03 = 0c1(0card(Orep(-))) M3z = o3(M)
MCMR | o4 = ocard(0ct(0card(Orep(.)))) | Ma = 04(M)
CR 05 = 01 (Orep(.)) Ms = o5(M)
MCR 06 = Ocard(0ct(Orep(.))) Mg = 0g(M)
RC 07 = Orep(0a(.)) M7 = o07(M)
MRC 08 = Ocard(Orep(0c(.))) Mg = 0g(M)

are considered, namely universal (also known as skeptical), safe, majority-based
and existential (also called brave). They are formally defined as follows:

— universal consequence: Ky v q if VA; € M(T, A) = q.
— safe consequence: Ky = q if (T, 4, e Ai) E ¢
— majority-based consequence: Kaq Fmaj ¢ if ‘Ai:Aie/\‘/lA’/g‘T’Am:q‘ > 1/2.
— emistential consequence: K =3 ¢ if 3A; € M, (T, A;) E q.

Given two inference strategies s; and s;, s; is said to be more cautious than s;,
denoted s; < s, if for any consistent MBox K and any query g, if Ky =, ¢
then ICpq =5, q. The considered inference strategies are totally ordered by < as
follows: N <V < maj < 3.

(R, M)
(MR, N) (CR, N) (R, V) = (CR, V)
[(CMR, M) | [(MCR, )| [(RC,N)] [(MR,¥)=(CMR, V)| [(MCR,%)| [(RC,")]
(MCMR, N) (MRC, n) (MCMR, V) (MRC, V)
(a) Relationships between N-based semantics (b) Relationships between V-based semantics

(MCMR, 3)

l (R, maj) = (CR, maj) ‘

[(MR,maj) = (CMR, maj)] [(MCR.3)|  [(MR,3) = (CMR, 3)| [(MRC, )]

le—

[ (MCMR, maj) |[ (MCR, maj) |[ (MRC, maj) |[ (RC, maj) | [(R.3) = (CR, 3) —{(RC, 3) ]

(c) Relationships between maj-based semantics  (d) Relationships between 3-based semantics

Fig. 1. Productivity of inconsistency-tolerant semantics where X —Y means that ¥
is strictly more productive than X.
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An inconsistency-tolerant query answering semantics is then defined by a
composite modifier and an inference strategy.

Definition 1. Let K=(T,A) be a standard KB, o; be a composite modifier and
s; be an inference strategy. A query q is said to be an (o;, s;)-consequence of I,
denoted by K |=(o,.s;) ¢, if it is entailed from the MBox KB (T ,0;({A})) by the
strategy s;.

Note that the main semantics from the literature [1,6,16] are covered by this
definition: AR, TAR and ICR semantics respectively correspond to (R, V), (R,N),
and (CR,N).?

Ezample 2. Consider the input KB Ky=(7, M) from Example 1. o;(M) =
My = {{A(a), A1)}, {B(a), A(0)},{C(a), A(D)}}. Since A(b) € My, pq, and
A(z)—=D(x), K =, n D(b) holds. Hence, we also have K =, vy D(b). Fur-
thermore K =5, v D( ). By (o1,mayj), E(a) is furthermore entailed. Indeed,
(T, (B(a), A()}) L~ E(a) and (T, {C(a), A(b)}) = E(a) and |M1[=3. By (o1,3).
A(a) is also entailed. Let ¢ = JxD(x) AE(z). Then ¢ is a consequence of (o1, maj)
and (oq, 3).

The obtained semantics have been compared from a productivity point of view.
Formally, a semantics (o;, si) is less productive than a semantics (o;,s;) if, for
any KB K=(7,A) and any query ¢, if £ F(,,) ¢ then K =, ) ¢ This
productivity relation is a preorder, which can be established by considering on
the one hand the inclusion relations between composite modifiers and on the
other hand the cautiousness total order on inference, as detailed below. Figure 1
depicts the results about semantics defined with the same inference strategy
(note that transitivity edges are not drawn and no other edges hold). Then
Theorem 1 extends these results to semantics possibly based on different infer-
ence strategies. In particular, if s; < s; then, for all modifiers o; and o;, (o;, si)
is strictly less productive than (o;, s;), and (o, s;) is at least as productive as
<Oia 5k>'

Theorem 1 (Productivity of semantics [2]). The inclusion relation C is
the smallest relation that contains the inclusions (o, sk) T (oj,si) defined by
the inclusions in Fig. 1a to d and satisfying the two following conditions: (1) for
all sj, sp and o, if s; < s, then (0;,55) T (05, 8p); (2) it is transitive.

It follows from Theorem 1 that 26 different semantics are obtained (out of the
possible 32 inference relations used in Fig. 1). We point out that this result holds
even when KBs are restricted to DL-Liteg TBoxes. Finally, note that when the
initial KB is consistent, all semantics correspond to standard entailment, i.e.,
given a consistent standard KB K and a query ¢, K [=(, s q iff £ = g, for all
1<i<8andse{NY,3maj}.

2 Note however that CAR and ICAR [16] are close to (RC,V) and (RC,N) resp., but
not equivalent. They could be covered by considering other elementary modifiers.
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4 Rationality Properties of Inconsistency-Tolerant
Semantics

This section is dedicated to the logical properties of inconsistency-tolerant
semantics. We first analyze the behaviour of these semantics w.r.t the conjunc-
tion (or set union) and the consistency of inferred conclusions for a fixed KB.
We then turn our attention to the fact that these semantics are inherently non-
monotonic. Indeed, if some query ¢ is entailed from a KB using a semantics
(04,55, then ¢ may be questionable in the light of new factual assertions. We
will assume that these new factual assertions are sure (and will speak of con-
ditional inference, opposed to unconditional inference when the KB is fixed).
Hence, we also analyze inconsistency-tolerant semantics w.r.t rationality prop-
erties introduced for nonmonotonic inference that we recast in our framework.

4.1 Properties of Unconditional Inference

Let Ky=(T,{A}) be a possibly inconsistent KB and (o;, s) denote any semantics
with o; € {R, MR, CMR, MCMR, CR,;MCR, RC, MRC} and s € {V,N,3,maj}.
We define the following desirable properties:

QCE (Query Conjunction Elimination) For any KB K¢ and any queries ¢;
and gz, if Kaq Fo,,s) @1 A g2 then Kaq Fo, ) @1 and K F(o, ) G-

QCI (Query Conjunction Introduction) For any KB K and any queries ¢;
and q2, if ’CM }:(oi,s) q1 and ’CM }:(oi,s) q2 then ’C./\/l ':<oi,s> a1 N Q-

Cons (Consistency) For any set of assertions A’, if pq = (o, ,s) A’ then (T, A")
is consistent.

ConsC (Consistency of Conjunction) For any set of assertions A, if for all f €
A, Km Fo,,s) f then (7, A) is consistent.

ConsS (Consistency of Support) For any set of assertions A’, if Kt F=(o,,5) A’
then there is R € R(A), such that (7,R) = A'.

Note that in the three last properties, the sets of assertions could be extended to
queries with a more complex formulation. We first remind that, when K4 is con-
sistent, all semantics correspond to standard entailment, hence g = (o, s) q1/Aq2
iff Kamt Fro,,s) @1 and Kag F(o,,s) g2- When K is inconsistent, one direction
is still true for all semantics, namely Property QCE, which relies on the con-
sistency of a repair. The converse direction, namely Property QCI, is obviously
satisfied by universal and safe semantics but not by brave and majority-based
semantics, even when ¢; and ¢ are ground atoms and the TBox contains only
disjointness inclusions as shown by the next examples.

Example 3 (Magority-based semantics does not satisfy QCI).> Let T={BMNC C
1, AnNDC 1,CnDEC 1} and A={A(a), B(a),C(a),D(a)}. The repairs are
{A(a),B(a)}, {A(a), C(a)} and {B(a),D(a)}. All modifiers give the same MBox
since 7,=0 and the repairs have the same size. A(a) and B(a) are each entailed
by a majority of repairs but their conjunction is not.

3 Most examples in this section are provided in DL-Liter in order to show that some
rationality properties do not hold even in this simple fragment of existential rules.
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Ezxample 4 (Brave semantics does not satisfy properties QCI and ConsC). Let
T={AN B C 1} and A={A(a),B(a)}. The repairs are {A(a)} and {B(a)}. All
modifiers lead to the same MBox since 7,=() and the repairs have the same size.
A(a) and B(a) are both brave consequences but their conjunction is not. Besides
ConsC is not satisfied since (7, {A(a), B(a)}) is inconsistent.

Property Cons is true for any semantics (again by the consistency of a repair).
Property ConsC holds for universal and safe semantics, and is false for any brave
semantics, even for |A;|=|Ax|=1 and DL-Lite TBoxes restricted to disjointness
inclusions (see Example 3). Majority-based semantics are an interesting case,
since the expressivity of the ontological language plays a role: Property ConsC
is satisfied by all majority-based semantics when the language is restricted to
DL-Liter and not satisfied as soon as we allow concept inclusions of the form
AN B C C or ternary disjointness axioms of the form AN BMC C 1, even
with ground queries (see Example 6). The fundamental reason why majority-
based semantics satisfy Property ConsC over DL-Liteg KBs is that, in these
KBs, conflicts (i.e., minimal inconsistent subsets of the ABox) are necessarily of
size two. When two ground atoms a; and ao are inferred with a majority-based
strategy, at least one of element of the considered (consistent) MBox classically
entails both a; and as, hence a; A as is consistent; when conflicts are of size
two, pairwise consistency entails global consistency. Note that this property still
holds if we extend DL-Liteg to n-ary predicates.

Ezample 5 (Majority-based semantics does not satisfy Property ConsC for slight
generalizations of DL-Liter). Let T={AN BN C C L} and A={A(a), B(a),
C(a)}. The repairs are {A(a), B(a)}, {A(a),C(a)} and {B(a),C(a)}. All modi-
fiers give the same MBox since 7,=( and all the repairs have the same size. Each
atom from A is entailed (by 2/3 repairs), however A itself is not.

Finally, Property ConsS, which expresses that every conclusion has a con-
sistent support in the ABox, is satisfied by all semantics except those involving
modifiers RC and MRC (as illustrated by the next example).

Example 6 ((M)RC-based semantics do not satisfy Property ConsS).* Let
T={ANBLC 1, AC C,,BLC Cy} and A={A(a), B(a)}. The (maximal) repairs
of the ABox’ closure are {A(a), Ci(a),Ca(a)} and {B(a), C1(a),Ca(a)}. The set
of atoms A; = {C1(a),C2(a)} is entailed by all semantics based on RC and
MRC, however no consistent subset of A allows to entail A; using 7.

Proposition 1 (Properties of unconditional inference). The behaviour
of semantics (o;,s), with o; € {R, MR,CMR,MCMR, CR, MCR, RC, MRC} and
s € {N,V,maj, 3}, with respect to Properties QCE, QCI, Cons, ConsC and
ConsS, is stated in Table 2.

* This example also shows that CAR and ICAR [16] do not satisfy ConsS (although
they do when the conclusion is a single atom).
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Table 2. Properties of unconditional inferences.

Properties (01,M) | {04, V) | {04, Maj) | {0i,3)
QCE v v v v
QCI N4 v X X
Cons v v v v
ConsC Vv 4 x [*] X
ConsS o; € {RC,MRC} | x X X X
otherwise N4 v Vv Vv

*. Except for languages where conflict sets involve at most two
elements, like DL-Liter

4.2 Properties of Conditional Inferences

We now analyze more finely the inconsistency-tolerant semantics by considering
their properties in terms of nonmonotonic inference. Within propositional logic
setting, several approaches have been proposed for nonmonotonic inference (e.g.
[5,12,14]). In such approaches nonmonotonicity is essentially caused by the fact
that initial knowledge used for inference process is incomplete, and thus, later
information may come to enrich them, which generally leads to revise some of
the a priori considered hypotheses.

Let Kym=(T,{A}) be a possibly inconsistent KB and A,, Az be two sets
of assertions such that (7,.A,) and (7, Ag) are consistent. Assume that A,
is the newly added knowledge. Since A, is considered as more reliable than
the assertions in the KB, we have to keep A, in every selected repair of the
KB. For the sake of simplicity, we define the notion of the set of repairs of
K in presence of a new consistent set of assertions A, with respect to a
modifier o;: M¥={R:R € o;({AU A,})and A, C R}. Now, we say that Ag
is a nonmonotonic consequence of A, w.r.t. K, denoted by Aq|~o, s Ag, if
(T, M2) =, As.

In this study, we focus on the situation where the considered conclusions are
sets of assertions, which can also be seen as conjunctions of ground queries. We
first rephrase within our framework some KLM rationality properties [14]. Let
Aq, Ag and A, be consistent sets of assertions w.r.t 7 and p be an inference
relation, the KLM logical properties that we consider are the following®.

R (Reflexivity) AghAq.

LLE (Left Logical Equivalence) If (7,A4,) = (7,As) and AypA, then
AgA,.

RW (Right Weakening) If (7, A.) = (7, Ag) and A,pA, then A Ag.

Cut If A,pApz and A, U AgpheA, then Ay A,.

5 We have adopted here a formulation close to the one of KLM logical properties, even
at the cost of simplicity. For instance (7, A.) |= (7, Ag) could have been simplified
in (7, As) = Ag. We remind that = and = denote standard logical entailment and
equivalence.
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CM (Cautious Monotony) If A,prAg and AyA, then A, U AghA,.
And If A,pAg and AypAy then Ay Ag U A,.

R means that the additional assertions have to be a consequence of the infer-
ence relation. LLE expresses the fact that two equivalent sets of assertions have
the same consequences. RW says that consequences of the plausible assertions
are plausible assertions too. Cut expresses the fact that if a plausible conse-
quence is as secure as the assumptions it is based on, then it may be added
into the assumptions. CM expresses that learning new assertions that could be
plausibly inferred should not invalidate previous consequences. And expresses
that the conjunction of two plausible consequences is a plausible consequence.
The first five properties correspond to the system C [14] while the And property
is derived from the previous ones. Clearly the And property is closely related
to the QCI property given in Sect. 4.2. Indeed when A,=0 (empty set, no addi-
tional information) and if ¢; and g2 used in CQI are sets of assertions then And
is equivalent to CQI. We now give the properties of the inference relations.

Proposition 2 (Properties of conditional inference). The behaviour of
inference relations o, s, with o; € {R, MR,CMR,MCMR, CR, MCR, RC, MRC}
and s € {N,V, maj, 3}, with respect to Properties R, LLE, RW, Cut, CM,
And, is given in Table 5.

Proof: [Sketch of proof]. Properties R, LLE and RW follow from the definition
of M¢. For s € {V,n,3} and for o; € {R,MR} the satisfaction of Properties
Cut and CM stems from the fact that VR € M?UB we have R'=R U Ag with
R € M. Moreover, for o; € {CMR, CR,RC, MRC} the satisfaction of Properties
Cut and CM holds due the fact that VR’ € M?Uﬁ we have R'=RU Cl(Ag) with
R € M$'. The following counter-examples show the non-satisfaction cases. O

Ezample 7 (| ~o, s with o, € {MCMR,MCR} and s € {Vv,3,n} does not
satisfy Cut). For MCMR: Let 7={A C -B, A T -G, F C -B,
B C C,CC D, AC E}, and A={A(a),B(a), F(a), G(a)}, A.=0,

Table 3. Properties of conditional inferences.

Properties Roos v | Moin Foo;,maj
R

LLE

RW

Cut o; € {MCMR, MCR}
otherwise

CM o; € {MCMR, MCR}
otherwise

And

XX XSO XIS
X [ x x| x x| | |<

L X X
X0 X
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As={C(a), D(a)}, A,={A(a)}. We have Mi={{B(a),G(a), C(a),D(a)}}
and MTP={{A(a), F(a),C(a), D(a), E(a)}}. Thus (T, M) =y Az and
(T, M$9P) =y A, but (T, M§) ey A,. Cut is not satisfied even for s € {3,N}.
MCR: Let T {AEﬁB F C -B, BEC C C D}, A= {A(a),B(a), F(a)},
Aa=0, A5={C(a), D(a)}, A, = {A(a)}. We have Mg={{B(a),C(a), D(a)}},
MGV ={{ A(a), F(a),C(a), D(a)}}. Thus (T, Mg) |=v As and (T, Mg} =y
A, but (T, Mg) vy A,. Cut is not satisfied either for s € {3,N}.

Ezxample 8 (| ~o, s with o, € {MCMR,MCR} and s € {V,N} does not
satisfy CM). Let 7T={A C -B, B C C(C}, and A={A(a),B(a)},
Au=b, Ag={C(a)}, Ay={B(a)}. We have M§=Mg={{B(a), C(a)}}, M=
ME={{A(a), C(a)}.{B(a).C(a)}}. Thus (T, M) oy Ag and (T, M) v
A, but (T, M§YP) £y A,. Moreover, (T, Mg) =y Ag and (T, M%) =y A, but
(T, MG £y A,. CM is not satisfied even for s=n.

Example 9 (| ~o,maj with any o, does not satisfy Cut). For i = 1
(R), let T={A T -B, A T -C, A C -D, B C =D, C C
D, A C E,BC E, C C E, D C -E, ACG B C
G}, and A={A(1),B(a).C(a).D(a)}, Acm{F(a)}, As={E(a)}, Ay= {G(a)}.
We have M§ = {{A(a),F(a)}{B(a),F(@)}{C(a).F(a)}{D(a),F(a)}}, thus
(T, M) Fmaj As. Moreover, M{*’={{A(a),F(a),E(a)}{B(a), F(a), E(a)},
{C(a), F(a), E(a)}} and (T, MSP) k=,.4; A, however (T, M) Fpnaj A, Cut

is not satisfied for any other o,.

Ezxample 10 (| ~o, 3 with any o; does not satisfy CM). For i=1 (R): Let
T ={AC -C,AC B.CLC BAC D,C C E,DC ~-C,E C —-A}, and
A ={A(a),C(a)}, Ay = {B(a)}, Ag = {D(a)}, A, = {E(a)}. We have M =
{{A(a), B(w)}, {C(a), B(a)}}, thus (T, M§) £3 Ay and (T, M§) 5 A, More-
over MPP={{A(a), B(a), D(a)}} and (T, MP) |5 A,. CM is not satisfied
for any other o,.

Ezxample 11 (|~o; maj with any o, does not satisfy CM). For i=1 (R): Let
T={AC -B,AC-C,BC ~-C, AC D,BC D,C C D,AC E,BC
E,C C FFBC F,AC —F}, and A = {A(a), B(a), C(a)}, o« = {D(a)},
A ={E(a)}, Ay = {F(a)}. We have MY = {{A(a), D(a)},{B(a), D(a)}, R3 =
{C(a),D(a)}}, thus (T, M$) Emaj Ag. Moreover (T, M$) =54 Ay. We have
MP={{A(a), D(a), E(a)},{B(a), D(a), E(a)}}, thus (T, M) [pna; A

CM is not satisfied for any other o;.

Ezxample 12 (o, s with any o; and s € {3,maj} does not satisfy And). For
i =1and s = 3 (R): Let 7 and A from Example 10. (7, M{) 3 Ag and
(T,M¢$) =3 A, but (T, M{) 3 Ag U A,. And is not satisfied for any other
o;. Fori=1and s = maj (R): Let 7 and A from Example 11. (7, M$) Emna; Ag
and (7, M$) Emaej Ay. but (T, M) FEma; Ag U A, And is not satisfied for
any other o;.
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From Table3, one can see that, for the composite modifiers o; €
{R,MR,CMR,CR,RC, MRC}, the semantics based on universal and safe conse-
quence satisfy all the properties of the system C. In LLE A, can be replaced by
a Conjunctive Query (CQ), in RW A, (resp. Ag) can be replaced by CQ and
And A, (resp. Ag) can be replaced by a CQ.

5 Complexity of Inconsistency-Tolerant Query Answering

In this section we study the data complexity® of CQ entailment under the various
semantics for classes of TBoxes 7=7, U7, that fulfill the following property: 7,
is a Finite Unification Set (FUS) of existential rules [3], while 7, remains any
set of negative constraints. A set of rules 7, fulfills the FUS property when, for
any CQ ¢, there exists a finite set of CQs Q (called the set of rewritings of q)
such that for any ABox A, (7,, A) = ¢ iff 3¢, € Qsuch that A = ¢;; in other
words, ¢ can be rewritten into a union of CQs Q, which allows to forget the
rules. Since query rewriting does not depend on any ABox, CQ entailment has
the same data complexity as the classical database problem, which is in the low
complexity class ACy. Note also that when 7, satisfies the FUS property, the
consistency of a standard KB can be checked by rewriting the query L with 7 (or
equivalently, rewriting each body of a negative constraint with 7,,) and checking
if one of the obtained rewritings is entailed by 4. Such TBoxes encompass DL-
Litegr TBoxes as well as more expressive classes of existential rules, e.g., linear
and sticky [8,9]. All the following membership results apply to FUS rules, while
all hardness results hold as soon as DL-Liter TBoxes are considered.

We first briefly recall the definition of the complexity classes that we use.
The class AY = PNP refers to problems solvable in polynomial time by a
deterministic Turing Machine provided with an NP oracle, and its subclass
6F=AFl[0(log n)] is allowed to make only logarithmically many calls to an NP
oracle. A Probabilistic Turing Machine (PTM) is a non-deterministic TM allowed
to “toss coins” to make decisions: we will use the Probabilistic Polynomial-time
(PP) class that contains the problems solvable in polynomial time with proba-
bility strictly greater than § by a PTM [13].7 We also recall that A}, ©F and
PP are all closed under complement. CQ entailment with DL-Liter TBoxes is
coN P-complete under (R,V) and (RC,V) semantics, and in ACy under (R,N)
and (RC,N) semantics (semantics respectively known as AR, CAR, AR and
ICAR [16)). It is coN P-complete under (CR,N) semantics (known as ICR [6]),
and O©F-complete under (MR,V) and (MR,N) semantics [7]. We first show that
these complexity results also hold for FUS existential rules.

Proposition 3. If CQ-entailment under (R/RC/MR,Y) and (R/RC/CR,N)
belongs to some complexity class C for DL-Litegx TBoxes, then CQ-entailment
remains in the same complezity class C for the more general FUS existential
rules.

5 This complexity measure is usually considered for query answering problems. Only
the data (here the ABox) are considered in the problem input.
" PP includes NP, co-NP and 67 .
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Table 4. Complexity: tight complexity results are in black font (completely new results
marked by a star, the other being generalizations of known results to FUS). Member-
ship results are in gray font.

Modifier | N v Maj 3

R AC) coNP-c| PP-c* ACy *
MR |0 |©F~< | PP POl | oF
CMR (_)f 85-0 * PPNP[O(Iog n)] (_)_g’
MCMR | ©&7f OF-c* | ppNTIOltos m] 1 oF
CR coNP-c|coNP-c| PP-c* ACy *
MCR 95 @5-0 * PPNP[()(ZO(] n)] (_)5’
RC ACy coNP-c| PP P
MRC @5 QQP-C * PPNP[O(ZU_{] n)] (_)_:;"

Proof: [Sketch] Let us first consider (R/RC,V). One can obviously guess a repair
R and check in polynomial time (actually in ACy) if (T,R) = L (by rewrit-
ing all negative constraints and looking for a homomorphism from one of those
rewritings into R), and if (7,R) F~ ¢ via rewriting methods as well. Concerning
(MR,V), the membership holds for any FUS rules for similar reasons, and by
observing that one can compute the maximum size of a repair through logarith-
mically many calls to an NP oracle. For (R/MRC,N) the technique from [16]
still holds; whereas for (CR,N), we guess a set of repairs R={R1, ..., Ry}, with
k polynomially bounded by the number of homomorphisms from rewritings of
the query g to CI(A), such that: for any homomorphism h from a rewriting ¢’
of g to Cl(A) there is R; € R with h(q¢’) € R;. There is a polynomial number of
rewritings (for data complexity), hence a polynomial number of homomorphisms
from these rewritings to the CI(A). O

The previous observations explain the complexity results written in black
font without star in Table4. We now provide some new complexity results for
other universal-based and existential-based semantics.

Proposition 4. CQ entailment under (R,3) (hence (CR,3)) is in ACy.

Proof: [Sketch] We first compute a set Q that contains all the rewritings of ¢ with
the rules from 7, as well as all their specialisations according to all possible parti-
tions on terms. We also rewrite L (i.e., all negative constraints) into the set A/. We
remove from Q all rewritings ¢’ such that an element of A" maps to ¢’ by homomor-
phism. Finally, we add to each remaining rewriting ¢” € Q all inequalities between
its terms, which yields Q'. @’ can be seen as a union of CQs with inequality pred-
icates, hence a first-order query. We have that K |=r 5y ¢ iff A = Q'. Therefore ¢
is first-order rewritable w.r.t. 7, under (R, 3) semantics. O

Proposition 5. For o, € {CMR, MCMR, MCR, MRC}, CQ entailment under
(04,V) and (o;,3) semantics is in OF.
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Proof: [Sketch] Notice that we can compute the maximum size of a repair and the
maximum size of the ground positive closure of a maximum-sized repair through
logarithmically many calls to an NP oracle. Then with one more call to this
oracle, we can check whether there is a repair R that satisfies the cardinality
constraints and such that (7,R) (£ ¢ (resp. (7,R) E q). Therefore, (o;,V)
(resp. (0;,3)) is in OF. O

Proposition 6. For o; € {CMR, MCMR, MCR, MRC}, CQ entailment under
(04,V) semantics is OF -hard.

Proof: We adapt the reduction from the problem ParitySAT built in [7] (which
is a reduction to (MR,V) with an instance query). We “tweak” the query and
the T'Box so that the positive part of the T Box is empty; this ensures that
(04,V) = (04,V) for any o;,0; € {MR, CMR, MCMR, MCR, MRC}. O

For majority-based semantics, we rely on probabilistic algorithms and provide
two completeness results, as stated by the next proposition.

Proposition 7. Conjunctive Query entailment under (R, Maj) and (CR, Maj)
semantics is PP-complete.

Proof: [Sketch] Membership: We use the following algorithm: first choose a sub-
set S of atoms from 4 randomly, then if S is not a repair of I, output NO with
probability 1. Otherwise (S is a repair), if (7,5) = ¢, output NO with prob-
ability zm7; else ((7,5) K~ q), output NO with probability 1. This procedure
obviously runs in polynomial time and the idea is that each repair has the same
probability of being selected in the first step (%), and by answering NO a few
times when (7, 5) | ¢ we ensure that the algorithm will give the right answer
with probability strictly greater than %

Hardness: We consider the following problem coMajSAT: given a Boolean SAT
formula, is the number of unsatisfying affectations strictly greater than half of
all possible affectations? We recall that PP is closed under complement. We
notice that the reduction from SAT to (S,¥) built in [15], ensures that each
repair corresponds exactly to an affectation of the SAT formula, and the obtained
query q is evaluated to true iff there is at least one invalid affectation. Hence, the
majority of affectations are invalid iff ¢ is entailed by the majority of the repairs.
Hence, this transformation yields a reduction from coMajSAT to (R, Maj). Since
(R, Maj)=(CR, Mayj), the result also holds for (CR, Mayj). O

To further clarify the complexity picture, we give some complexity class mem-
bership results for the remaining semantics (Table4, in gray font). CQ entail-
ment under (RC,3) semantics is clearly in P since we can first compute the
ground positive closure of the ABox in polynomial time and (R,3) is in ACj.
For (MRC, Maj) semantics, the membership proof from Proposition 7 holds as
soon as we have observed that we could first compute the ground positive closure
of the ABox. For the remaining majority-based semantics, we use an argument
similar to the one in Proposition 5 to show membership to PPNFIOU0g n)]: e
only need logarithmically many calls to an NP oracle to get the maximum cardi-
nality of a repair. Concerning the remaining intersection-based semantics (o;, N},
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we observe that by calling independently the corresponding universal problem
(0;,V) on each atom from the ABox, we can build the intersection of all repairs,
hence the ©F membership. Finally, an interesting question is to what extent pre-
processing the data, independently from any query, can reduce the complexity
of query entailment. It seems reasonable to require that the result of this pre-
processing step takes space at most linear in the size of the data. For instance,
let us consider (MR, V): if we precompute the maximum cardinality of a repair
(stored in loga(].A]) space), the complexity of CQ entailment drops from ©F-c
to coN P-c, i.e., the complexity of (R, V).

6 Concluding Remarks

The framework for inconsistency-tolerant query answering recently proposed in
[2] covers some well-known semantics and introduces new ones. These seman-
tics were compared with respect to productivity. We broaden the analysis by
considering two other points of view. First, we initiate a study of rationality
properties of inconsistency-tolerant semantics. Second, we complement known
complexity results, on the one hand by extending them to the more general case
of FUS existential rules, and on the other hand by providing tight complexity
results on some newly considered semantics (computation of repairs or closed
repairs with majority-based or brave inference, as well several cardinality-based
modifiers with universal inference).

The most efficiently computable semantics are (R,N) and (R,3) (equal to
(CR,3)). The (R,N) semantics is the least productive semantics in the frame-
work. However, if one considers the closure of the repairs to increase the produc-
tivity of (R,N), i.e., (CR,N), one obtains a semantics that computationally costs
as the “natural” semantics (R, V). At the opposite, (R,3) may be considered as
too adventurous and does not behave well from a rationality point of view since
it produces conclusions that may be inconsistent with the ontology. More gen-
erally, universal and safe semantics satisfy the rationality properties for most
modifiers, which is not the case of majority-based and existential semantics. In
addition, for all semantics, RC and MRC, which compute the closure of an incon-
sistent ABox, may lead to consider as plausible a conclusion with a contestable
support, and since they do not seem to bring any advantage compared to other
semantics, they should be discarded. Despite majority-based semantics do not
fulfil some desirable logical properties, they remain interesting for several rea-
sons: they are only slightly more complex to compute than universal semantics
(w.r.t. the same modifier) while being more productive, without being as adven-
turous as existential semantics. Hence, they may be considered as a good tradeoff
between both semantics when the universal semantics appear to be insufficiently
productive. We also recall that majority-based semantics behave better from
a logical viewpoint when they are restricted to DL-Liteg (and more generally,
when the ontological language ensures that the size of the conflicts is at most
two). Regarding the use of cardinality, cardinality-based modifiers can be used
to counteract troublesome assertions that conflict with many others, however
they behave strangely when the cardinality criterion is applied to closed repairs.
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In summary, no semantics appears to outperform all the others in all of
the considered criteria. Selecting a semantics means selecting a suitable trade-
off between productivity (or, inversely, cautiousness), satisfaction of rationality
properties and computational complexity. We believe that this choice depends
on the applicative context.

In a future work, new semantics could be considered within the unified frame-
work, like no-objection semantics [4]. Besides, the study of rationality proper-
ties could be extended to other properties, and the exact complexity of several
semantics remains an open issue.
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Abstract. Temporal Here and There (THT) constitutes the logical
foundations of Temporal Equilibrium Logic. Nevertheless, it has never
been studied in detail since results about axiomatisation and interdefin-
ability of modal operators remained unknown. In this paper we provide
a sound and complete axiomatic system for THT together with several
results on interdefinability of modal operators.

1 Introduction

In [10], Michael Gelfond and Vladimir Lifschitz introduced the so-called 0 seman-
tics that subsumed many of the existing Logic Programming alternatives but
without the syntactic restrictions made by previous approaches. The model-
based orientation of this semantics led to a paradigm suitable for constraint-
satisfaction problems that is known nowadays as Answer Set Programming
(ASP) [17,18] and that became one of the most prominent and successful
approaches for Knowledge Representation. During the evolution of ASP, many
hints have pointed out its relevance inside the theoretical foundations of Non-
Monotonic Reasoning. One result had a particular success in the study of foun-
dations of ASP: Equilibrium Logic (EQL). Introduced by David Pearce [19], this
characterisation has shown interesting features such as the theorem of Strong
equivalence [15] as well as extensions to first-order and modal logics [4,8,20]
without imposing any syntactic restriction on the formulas.

Among this modal extensions, we remark Temporal Equilibrium Logic
(TEL) [4], which extends the language of EQL with temporal operators from
Linear Time Temporal Logic (LTL) [21]. Following the same spirit as EQL, TEL
strongly relies on Logic of Temporal Here and There (THT), an extension of the
logic of Here and There (HT) [12]. However, contrary to HT, THT has not been
studied in detail. Only its role in the theorem of Temporal Strong Equivalence [2]
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and a pair of connections with other logics based on HT [5] are known. In this
paper we deal with two problems that remained open in THT. The first prob-
lem consists in determining whether modal operators are interdefinable or not
while the second problem corresponds to the definition of a sound an complete
axiomatic system for THT.

The temporal constructs of THT will be [, O, and ¢, the constructs
[J and ¢ being interpreted by the successor relation between integers whereas
the constructs X and ¢ being interpreted by the precedence relation between
integers. As usual when one has to axiomatise modal logics where some modal
constructs are interpreted by the reflexive transitive closure of the accessibility
relation used to interpret other modal constructs, our axiomatisation will use
inference rules for induction. In this setting, traditional proofs of completeness
(see [11, Chap. 9]) are based on canonical model and filtration. In our HT setting,
however, the usual filtration method does not allow to transform, as it is the
case in ordinary temporal logic, the canonical model into a model where [x] and
¢ are interpreted by the precedence relation between integers. For this reason,
we had to redefine the filtration method in an appropriate way (see Sect.6 for
details). Moreover, the determinisation of the filtrated model requires, in the case
of ordinary temporal logic, the use of a characteristic formula that cannot be
expressed in our language. As a result, we had to redefined the determinisation
of the filtrated model.

This paper is organised as follows: in Sect.2 we introduce syntax and two
equivalent semantics for THT. In Sect.3 we go through the problem of inter-
definability by defining the notion of bisimulation in the HT setting. The proof
of completeness of the axiomatic system described in Sect. 4 is described along
Sects. 5—7 and we finish the paper with conclusions and future work.

2 Syntax and Semantics

Let At be a finite or countable set of atomic formulas (with typical members
denoted by p, g, etc.). We inductively define the set of all formulas (with typical
members denoted by ¢, ¢, etc.) as follows:

¢pu=plLI(@VY) [ (dAY)[(¢ =) [T |06 R | &0

Note that, following the tradition in Intuitionistic Modal Logic, we have
added the new temporal constructs [, ¢, x] and ¢ to the ordinary language of
IPL. As it will soon become clear, the constructs [] and ¢ are equivalent in THT
while %] and ¢ are independent. We define —¢ as the abbreviation —¢ 1= ¢ — L.
For all sets of formulas z, let Oz = {¢ | O¢ € 2} and ¢z = {Q¢ | ¢ € x}. The
sets Kz and ¢z are similarly defined. We shall say that a set X' of formulas is
closed if (1) X' is closed under subformulas; (2) if Fe € X' then [Txlp € X; (3) if
$p € X then Oy € X; (4) if p € X then —p € Y. Remark that the least closed
set of formulas containing a given formula is infinite. Nevertheless, its quotient by
the relation of logical equivalence will be finite in the context of THT. We define
the degree of a formula ¢ (in symbols deg(¢)) by induction as follows: (i) deg(p) =
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deg(L) = 0; (i) deg(¢ V1)) = deg(p A1p) = deg(¢ — ) =maz{deg(¢),deg(¥)};
(ili) deg(0e) = deg(0¢) = 1+ deg(¢); (iv) deg(Hp) = deg($¢) = deg(¢). We
define a temporal model as a structure M = (H,T) where H : N — 24 and
T : N — 24% are such that H(i) > T(i) for all i > 0. If an atomic formula belongs
to H (i), € N, then it means that p holds here in M at time i whereas if p belongs
to T'(7) then it means that p holds there at time i. The satisfaction relation in
a temporal model M = (H,T) of a formula ¢ at the pair (i,«) € N x {h,t},
denoted by M, (i,a) | ¢, is inductively defined as follows:

- M, (i,h) |= piff p e H(i);

- M, (i,t) |= piff p e T(i);

- M, (i,a) E o AP ff M, (i,a) E pand M, (i,a) E ¥;

- M, (i,a) E oVt M, (i,a) E por M, (i,a) E ¥;

- M, (i,a) E ¢ — ¢ iff for all g € {a,t} M, (i,8) E ¢ or M, (i,05) E ¢;
- M, (i0) =D i M, (i + 1,0) = ¢

- M,('L,Ol) ': Ocplﬁ‘M (Z+1 Oé) }: ©;

- M, (i,a) EEp iff for all j > i, M, (j,a) E ¢;

- M, (i,a) = $p iff there exists j > i s.t. M, (j,a) E ¢;

We will say that a formula ¢ is THT-valid (denoted by THT [ ¢) iff
M, (0,h) = ¢ for all THT models M.

Proposition 1 (Persistence). For all formulas o, for all THT models M and
foralli e N, if M, (i,h) E ¢ then M, (i,t) = ».

Our aim, in this paper, is to completely axiomatise the set of all THT-
valid formulas. This will be done from Sect.4 on. In the meantime we study
an alternative semantics for THT formulas that will be used in the proof of
completeness of our axiomatisation. A birelational model is a structure of the

form M = (W, <, RP, R™® , V) such that:

— W is a non-empty set of worlds;

— < is a partial order on W;

~ RP and R® are binary relations on W;

~ V: W — 24 is such that for all z, y € W, if 2 < y then V(z) C V(y).

Given a birelational model M = (W, <, R", R@, V), a world x € W and a
formula ¢, the satisfaction relation is defined as follows:

- M,z = piff p e V(x);

- M,z = (pAY) if M,z = pand M,z =

- M,z E (pVy)if M,z = ¢ or M,z E

- M,z |E p—oyiffforall 2’ € W, if x < 2’ then M, 2" = ¢ or M, 2’ = 9;
~ M,z =y iff for all 2/, y € W, if z < 2’RYy then M,y = ¢;

— M,z = Oy iff there exists y € W s. t. 2Ry and M,y = ¢;

- M,z =Ry iff for all ',y € W, if 2 < 2/ R™y then M, y E v;

- M,z |= $p iff there exists y € W s. t. J:R@y and M,y E .
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Notice that the clauses concerning the temporal constructs [ ] and [x] imitate
the clause for the quantifier V in first-order intuitionistic logic whereas the clauses
concerning ¢ and ¢ imitate the clause for 3. See [7, Lemma 5.3.2] for details.
We shall say that M is normal if (1) for all z, y, z € W, if z < y and = < 2
then either z = yor x = zor y = z; (2) for all z, y, z € W, if z < y and
xRPz (respectively 2R¥ ) then yRPt (respectively yR@t) and z < t for some
t € W; (3) for all z, y, z € W, if Ry (respectively +R% y) and y < z then
x < t and tRPz (respectively tR@z) for some t € W. If M is normal then for all
x € W, either z is a maximal element with respect to <, or there exists y € W
such that ¢ < y and = + y. In the former case let T be z. In the latter case,
there exists exactly one y € W such that z < y and « ¥ y; let & be this y. A

normal model M = (W, <,RD,R@, V) is said to be standard if RV is serial,

RY is deterministic and R™® is equal to the reflexive transitive closure of RY.
We say that a formula ¢ is standard-valid iff for all standard birelational models

M = (W, S,RD,RE,‘O and for all xg € W, M,z9 E ¢. We now relate this
alternative semantics to the THT semantics. Let M = (H,T) be a THT model.

We define the birelational model M’ = (W, <, RY, R , V) as follows:
- W =Nx{h,t};

~ (i1,0q) < (12, aw) iff i1 = is and either a; = h or ay = t;

- (il,al) (ZQ,O[Q) iff 21+1:?,2 and a1 = (g

- (i1,a1)R (22,042) iff i1 <19 and oy = ao;

- V((i,a)) = H(7) if a = h else T(4).

Obviously, M’ is a standard birelational model. Moreover, as the reader can show
by structural induction, for all formulas ¢, for all i« € N and for all a € {h,t},

M, (i,a) E piff M',(i,a) E ¢. Reciprocally, let M’ = (W, <7RD,R@,V>
be a standard birelational model. Hence, R" is serial, deterministic and for all
x € W and for all i € N, there exists exactly one y € W such that z (RD)Z Y
let (RD)l (z0) be this y. Let mop € W. We define the functions H,T : N — 24¢
as H(i) = V((RD)i (o)) and T'(i) = V((RD)i (0)). Remark that for all ¢ € N,
H(i) CT(i). Let M = (H,T). Thus, M is a THT model. As the reader can show
by structural induction, for all formulas ¢ and for all ¢ € N, M’, (RD)z (zo) E
e iff M, (i,h) E ¢ and M/, (Rm)i(xo) E o iff M, (i,t) E ¢. As a result,

THT semantics and the alternative semantics are equivalent.

3 Interdefinability

As it is well-known, disjunction is definable in terms of conjunction and impli-
cation within the context of HT [16].

Lemma 1. For all formulas ¢, ¥, THT E ¢V iy <o (6 —¢)—¢) A
(¥ —¢)—9).
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Below, we show the non-interdefinability of conjunction in THT.

Lemma 2. Let My = (Hy,T1), Mo = (Hs,To) and M3 = (Hs,T3) be the
THT models such that for alli € N, Hy(i) = {p,q}, T: (i) = {p, ¢}, H2(3) = {p},
T5(i) = {p,q} , Hs(i) = {q} and T5(i) = {p,q}. For all A-free formulas ¢ and
for alli € N, My, (i,h) = ¢ iff Ma, (i,h) = ¢ or M3, (i,h) = ¢.

Proof. By structural induction on ¢.

Lemma 3. Let p,q € At. There is no A-free formula v such that THT |=
PAG ).

Proof. Remark that My, (0,h) | pAg, Ms, (0,h) = pAgand M3, (0,h) = pAg.
Hence, by Lemma 2, p A q is THT-equivalent to no A-free formula.

In the HT setting, the non-interdefinability of A has also been proved by
Aguado et al. [1] by means of a denotational semantics based on sets of models.
Our proof is simpler, seeing that it does not require the use of sets of models.
Before considering the interdefinability of the modal operators in THT, we must
remark that the following equivalences are THT-valid:

- OL < 1; - Q0L e 1

- O(p V) < Oe VI = 0 (p V1) < OV OY;

— O(p AY) < O ALIY; = O(p A1) & Op A0

- O(p = ¥) < Oy — W) = 0= 9) < (Op — OY);
- xp < FHp; = Oy < EOw;

- O%p < ¢ w; = 0% < $0p.

As a result, every formula is equivalent to a formula in which 1, vV, A, —,
and ¢ do not appear within the scope of [J or . In order to prove the non-
interdefinability of and ¢, we introduce the notions of -bisimulation and
$-bisimulation between THT models. Let D = {(i,«) | i € Nand o € {h,t}}
and let £ € N. A binary relation Z on D is said to be a k-X-bisimulation between
the THT models M7 and M, if the following conditions are satisfied:

1. if (i1, 1) Z (d2,9) then for all j, 0 < j < k, and for all propositional vari-
ables p, My (i1 + j,c1) [ p iff My, (i2 + j,a2) = p;

2. lf (il,al) Z (ig,ag) then (il,t) Z(Zg,t) or bOth (il,Oél) Z (ig,t) and (il,t) Z
(7:2,0[2);

3. if (i1,01) Z (i2,a2) and 47 < j; then there exists jo € Ns.t. io < jo and
either (j1,a1)Z (ja2, a0) or (J1, 1) Z (Jo,t);

4. if (i1, 1) Z (i2,a2) and iz < jo then there exists j; € Ns.t. i3 < 41 and
(J1,1) Z (ja, ) or (j1,t) Z (j2, a2).

A binary relation Z on D is said to be a k-$-bisimulation between the THT
models M7 and M, if the following conditions are satisfied:

1. if (41,1) Z (i2, ) then for all j, 0 < j < k, and for all propositional variable
p, My, (i1 + j,a1) F piff My, (i2 +j,a2) | p;
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2. if (i1,a1) Z (i2, ) then (i1,t) Z (ig,t) or both (i1,a1) Z (ie,t) and (i1,t)
Z (i2, 2);

3. if (i1,01) Z (i2,a2) and 47 < j1 then there exists jo € Ns.t. io < jo and
either (j1, 1) Z (jo2, a2) or (j1,t) Z (jo2, a2);

4. if (i1, 1) Z (i2,a2) and is < jo then there exists j; € Ns.t. i; < j; and
(J1,00) Z (j2,a2) or (j1,01) Z (jo,1);

The proof of the following lemmas can be done by induction on ¢.

Lemma 4 (Bisimulation Lemmal). Given THT models My and My and
a k-Ix-bisimulation Z between them, for all &-free formulas ¢, deg(¢) < k,
and for all (i1,a1) and (iz,a0) € D, if (i1, 1) Z (i2, a2) then My, (i1,01) E
¢ iff M, (i2,2) = ¢.

Lemma 5 (Bisimulation Lemma?2). Given THT models My and My and
a k-§-bisimulation Z between them, for all F-free formulas ¢, deg(¢p) < k,
and for all (i1,a1) and (i2,a2) € D. if (i1,a1) Z (i2,aa) then My, (i1,01) |E
¢ iff Ma, (i2,2) = ¢.

Proposition 2. Let p € At. There is no &-free formula v such that THT |=
p = V.

Proof. Suppose that 1 is a é-free formula such that THT = ép < . Let
k > 0 be the degree of ¥. Without loss of generality we can assume that L,
V, A, — and do not appear in 1 within the scope of the connectives []
and ¢. Let My = (Hy,T1) and My = (Hs,T) be the THT models such that
foralli e N, Hi(i) = @, Th (i) = {p} if i mod k + 2 = k + 1 and & otherwise,
Hy(i) = {p}ifi = k+ 1 and @ otherwise, T5(i) = {p} fimod k+2 =k +1
and @ otherwise. Let Z be the binary relation on D such that (i1, ) Z (ia, ag)
iff one of the following condition holds: (1) either a;; = ag = h and i; = i3 = 0,
or ap = g = t and i1 = ig; (2) a1 = as = h and iy = i1 + k + 2; (3)
a; = oz = t and g :Zl+1€+2, (4) a; = t, ag = hand i; = iy < k+ 2.
The reader may easily verify that Z is a k-[x-bisimulation between M; and
Ma. Since My, (0,h) §= ép, therefore My, (0,h) = . Hence, by Lemma4,
Mo, (0,h) = 1. Thus My, (0,h) = ép: a contradiction.

Proposition 3. Let p € At. There is no K-free formulas ¥ such that THT |=
Ep < .

Proof. Similarly to the proof of Proposition 2, by using the THT models M; =
(Hy,Ty) and My = (Hs,Ts) such that for all i« € N, Hy (i) = {p}, T1(i) = {p},
Hy(i) = @ if i = k4 1 and {p} otherwise, T2(i) = {p} and the binary relation
Z on D such that (i1, 1) Z (i2, az) iff one of the following condition holds: (1)
either ay =ag =handi; =is =0; (2) a1 =ags =tandi; =i2;(3) a1 =az=h
and22:zl+k+2, (4) a1 = ap = h and 11 = i >k+1, (5) (%} :h, ag =1
and ’il = ig.



Temporal Here and There 87

4 Axiomatisation

The axiomatic system of THT consists of the axioms of Intuitionistic Proposi-
tional Logic [6, Chap. 5] plus the following axioms and inference rules:

Hosoi axiom: (1) pV (p — q) V —g;

Axioms for [] and ¢:

(2) Op < Op; (5) O(pAq) < OpAOg;

(3) Op — q) < (Op — Og); (6) 0L < L

(4) O(pVq) < OpV Oy

Fisher Servi axioms for % and $:

(7) FL < L (10) ¢(pVva) — épV &g

(8) Mp — q) — (Hp — Ha); (11) (ép — FHg) — H(p — q);
(9) Hp — q) — (¥p — ¢9);

Axioms combining [, 0, x and ¢: (12) Fp — pALTxlp; (13) pV O¢p — ép;

Induction: (14) 2= =P . (15 PP
p—bp ép —p
Modus ponens: (16) Iy . Necessitation: (17) : (18) Dip

Proposition 4 (Soundness). The aziomatic system presented in this section
is sound.

Proof. Left to the reader. It is sufficient to check that all axioms are valid and
the inference rules preserve validity.

The Hosoi axiom corresponds to the fact that, in a normal model, M=(W, <, RO,
R@7 V), if <y and z < z then either z =y or £ = z or y = z. Axioms (2)—(4)
correspond to the fact that in a standard model M = (W, <, R™, R@, V), RP is
serial and deterministic. The Fisher Servi axioms for x] and ¢ are similar to the
axioms considered in [9,22]. Remark that the corresponding Fisher Servi axioms
for RY are easily derivable. Axioms combining [J, ¢, B and ¢ correspond to

the fact that, in a standard model M = (W, <, R™, R@, V), R¥ is reflexive and
RY90 R¥ € R¥. As for the rules of inference (14) and (15), they will be used in
the proof of Lemma 15, where the canonical model M, = (W,, <., RY, RC@, Vo)

of THT is filtrated into a model My = (Wx, <y, RE, R@, Vx) such that R@ is
the reflexive transitive closure of RE.

Lemma 6. For all m,n € N, the following rules are derivable:

’le/\.../\’(/Jm—>¢\/X1\/...\/Xn .
L A AR, — EHOV @x1 V.V x|




88 P. Balbiani and M. Diéguez

OANUVLA ... AN Yy — X1V ...V Xn
SONEL A .. AWM — &x1 V...V dXn

Proof. These rules are derivable by means of Fisher Servi axioms. See [9,22].

Lemma 7. The following formulas are derivable: o ALTXp — Ky €p — VO

5 Canonical Model Construction

As usual, we will base our proof of completeness on the canonical model con-
struction.

5.1 Prime Sets

Given two sets of formulas x and y, we say that y is a consequence of x (denoted
by x b y) iff there exists ¢1,...,¢m € x and ¥, ..., 1, € y such that ¢; A... A
Om — Y1 V...V, € THT. We shall say that a set = of formulas is prime if it
satisfies the following conditions: (1) L & z; (2) for all formulas ¢, ¢, if V) € x
then either ¢ € x, or ¢ € x; (3) for all formulas ¢, if = - ¢ then ¢ € x.

Lemma 8 (Lindenbaum Lemma). Let x and y be sets of formulas. If x I/ y
then there ezists a prime set z of formulas such that x C z and z 1/ y.

The next Lemma shows the connection between Hosoi axiom and the relation
of inclusion between prime sets of formulas.

Lemma 9. Let x,y, z be prime sets of formulas. If xt C y and x C z then either
T=y,orx=z 0rYy=2.

Proof. By Hosoi axiom.

Proposition 5. Let = be a prime set of formulas. There exists at most one
prime set of formulas strictly containing x.

Hence, for all prime sets z, either x is maximal, for inclusion, among all prime
sets, or there exists a prime set y such that  C y and x § y. In the former case,
let £ = z. In the latter case, there exists exactly one prime set y such that x C y
and x + y; let T be this y. In our HT setting, one can easily show that for all
formulas ¢, ¢ € T iff - € x.

5.2 Canonical Model

The canonical model M. is defined as the structure M. = (W, <., RY, RC@7 Vo)
where:

— W, is the set of all prime sets;
— <, is the partial order on W, defined by: z <. y iff x C y;
— R is the binary relation on W, defined by: 2Ry iff [(Jz C y and Oy C ;
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- RCE is the binary relation on W, defined by: :cR?y iff Wz C y and $y C z;
~ V. : W, — 24 is the valuation function defined by: p € V.(z) iff p € z;

Proposition 6. M, is normal.

Proof. The condition (1) of normality follows from Lemma9. In order to prove
the conditions (2) and (3) it suffices to prove that for all z,y € W, if 2Ry
then ZRJP. Firstly remark that == [Jp — [J-—p and O—-—p — ——Op are in
THT seeing that these formulas are derivable in the axiom systems considered
in [9,22]. Secondly, let z and y be prime sets such that J;R'C:’y and suppose that
ffﬁclz@ Hence, either [0z € 5 or Oy € Z. Let ¢ be a formula such that either
(p € T but p € Yor o € § but O & Z. In the former case, == [J ¢ € z,
(- € z, 7~ € y and ¢ € y: a contradiction. In the latter case, =—p € y,
Q== € x, 70 € x and Qv € T: a contradiction.

Proposition 7. RY is serial and deterministic.

Proof. Seriality: Let € W.. We define y = [Jz. By means of Axiom (2) the
reader can easily show that y is a prime set such that [Jx C y and Qy C x, thus
xREy. Determinism: Suppose that there exists x,y,z € W, such that xRCDy
and chDz but y £ z. Without loss of generality, let ¢ € y be such that ¢ ¢ z.
As a consequence Q¢ € x but [J¢ ¢ x, which contradicts Axiom (2).

Proposition 8. RC@ is reflexive and transitive.

Proof. Reflexivity: Use the first parts of Axioms (12) and (13). Transitivity:
Use the second parts of Axioms (12) and (13) together with the induction rules.

Remark also that Axioms (12) and (13) guarantee that (RE)* C RC@. Nev-
ertheless, as it is usually the case when one axiomatises a modal logic in which
one connective is interpreted by the reflexive transitive closure of the relation
interpreting another connective, it might be the case that (RCD)* + Rc@.

Lemma 10 (Truth Lemma). For all formulas ¢ and for all x € W, (1) If
p € x then Mo,z |= ; (2) if ¢ &€ © then M.,z k= .

Proof. By induction on . We only present the proof for the case of &. Assume
that K € x but M.,z = &h). From the latter assumption it follows that there
exists z',y € W, such that z <. 2/, x’Rc@y and M.,y = . Since z <. 2
then &y € /. On the other hand, from x’Rc@y, M.,y b= ¢ and the induction
hypothesis we conclude that &) & 2/, which is a contradiction.

Reciprocally, assume that M.,z |= &l but &) € x. Let u = xlz. Remark
that u t/ {¢p} U {x | $x € z}. By Lindenbaum Lemma, let y € W, be such that
uCyandyl/ {YIU{x | &x & x}. Note that Kz C y and $y C z. Hence, chEy.
Since y F 1, therefore ¢ ¢ y and, by induction hypothesis, M.,y f 1, which
contradicts M.,z =¥y and xRC@y.
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6 Filtration

In order to repair the main defect of M., namely (RCD)* + RC@, the traditional
tool, filtration, consists in identifying prime sets in W, that contain the same
formulas from the least closed set of formulas containing a given formula. We
had to change the definition of filtration, seeing that, within the context of THT,
the ordinary definition of filtration as the one presented in [11, Chap. 9] is not
appropriate. Given a normal THT model M = (W, <, R™, R@, V) and a closed
set X of formulas, we define the equivalence relation =5 on W as: © =y y iff for
allp e X, M,z E ¢ it M,y E o.

Lemma 11. For all x,y € W, if x =5 y then T =5 .

The equivalence class of © € W with respect to =5 is denoted by [x]. We say that
a THT model My = (Wx, <y, R'g, R%, Vx) is a filtration of M, with respect
to X, iff Wy = W=, and for all z,y € W:

1. if z <y then [z] <5 [y];

2. forall p = ¢p € X if [z] <z [y], M,z E ¢ — ¢ and M,y | ¢ then
M,y = ¢

if #RPy then there exists z € W s. t. [2]RE[z] and [y] <s [2];
if #RPy then there exists t € W s. t. [t]RS[y] and [z] <x [t];
for all [l € X, if [x] RS[y] and M, 2 |= (e then M,y = ¢;
for all Oy € X, if [z] RE[y] and M,y | ¢ then M,z = Op;
if xR@y then there exists z € W s. t. [x]R@ [2] and [y] <z [2];
if 2 R¥y then there exists ¢t € W s. t. [t]R@ [y] and [z] <5 [t];
for all Ky € X, if [a:]R%][y] and M,z = Hp then M,y E o¢;
for all ¢p € X, if [x]R%[y] and M,y |= ¢ then M,z | $¢p;
forallpe AtN X, p e Vy([z]) iff pe V(x).

o © 0N ootk

—_ =

Lemma 12 (Filtration Lemma). Let M = (W, <,RY,RH, V) be a normal

THT model, X be a closed set of formulas and My = (W, <2,R'§,R%’, Vs)
be a filtration of M with respect to X. For all ¢ € X and for all x € W,

M,z |E ¢ iff Mx,[z] E ¢.
Proof. By induction on ¢.

We will be interested in the filtration My of M, with respect to the least
closed set X' containing a given formula ¢g. Remind that the quotient of W, by

=y is finite. The relational structure My = (Wyx, <y, RE, R@7 Vx) is defined
as follows:

1. Wy = WcI_Ez§ 4. [:r]R@[y] iff [z] (RE)* [y];
2. 7l <z [yliff r=p o< 0=xy;
3. [#]RR[y] iff z =5 oRJo =5 y; 5. Ve(lz]) = Ve(z) N X.
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Lemma 13. Forallz,y € W, [z] <z [y|l iff cr=xy orT=xy.
In the sequel, ¢ and ¥ will be X-formulas. For each t € W, let

o= Nen N-en N\ —en N (g—w).
pEt gt pe t\t @, peEL\ t
By using the results proved in [3] we can deduce that for all s € W, M., s & &,
iff [s] = [t] or [s] = [f]. Now Wy is finite, as X is, so for all D C Wy let
Uy = \/ .
[tleD

Lemma 14. For any set D C Wy and for allx € W, M.,z |= ¥p iff 2] €
D s. t. [z] = [7] or [z] = [Z].

Lemma 15 (Filtrated Model). The aforementioned filtrated model, My, is
a filtration of the canonical model M.

Proof. We only study the Conditions 7 and 9.

— Condition 7: Suppose mRC@y and let D = {[z] € Wx | thereexistst €
W, st. [z]RE[f] and [2] <y [f]}. Let us prove that [y] € D. Remark
that for all [z] € Wy, if [z2] € D then [2] € D. Suppose by contradic-
tion that [y] € (Wg\D). Remark that [z] € D. Let ¥y ,\p be the char-
acteristic formula of Wx\D. Since [y] € (Wx\D) then, by Lemma 14,
M,y | Yw,\p- Since xR?y, it holds that M.,z |= ¥y ,\ p. Since [z] € D,
then M.,z = Wy ,\p and, therefore, M.,z = $¥ \p — Py ,\p. Conse-
quently &%y, \p — Yw,\p € THT. From the Induction rule (15) we conclude
that Q¥ \p — Yw,\p € THT. This means that there exists u € W, such
that M.,u | O¥w,\p and M., u f= Wy, \p (therefore [u] € D). From

the latter it follows that there exists ¢t € W, s.t. [x]R@[t] and [u] < [t],
while from the former we get that there exists v € W, such that uRJv and
Me,v | Wwo\p (thus [v] ¢ D). Since [u] <s [t], therefore by Lemma 13

either u =5 t or 4 =5 t. In the former case [u] = [t] and we have: [u] RZ[v],
[t]RS[v] and [w]R% [v]. Thus [v] € D and M., v f= ¥y, p: a contradiction. In
the latter case, [t] = [i] and we have: [2]RE[0], [t] R%[0] and [x]R@ [0]. Hence,

[v] € D and M., v f= Wy, \p: a contradiction.

— Condition 9: Suppose [:c]R% [y] and let Hp € X. Suppose M.,z = Fyp and
let k € N be such that [z] (RE)’c [y]. Such k exists by definition of RE. By
induction on k, we demonstrate M.,y = ¢. Firstly, assume k = 0, therefore
[z] = [y], which means that x =5 y. From M.,z E Fyp and Axiom (12) we
conclude that M.,y = ¢. For the inductive step, assume k& > 1 and let [z]
be such that [z]RE[2] and [2] (Rg)k_l [y]. From M.,z = Ky and Axiom (12)
we conclude that M.,z | [THp. Since X' is closed and FHy € X, therefore
X € X. From [x]RE [z] and Condition 5 of Filtration we conclude that
M.,z = Hp. Finally from [z] (R%)lﬁl [y] and the induction hypothesis it
follows that M.,y = .
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Lemma 16. For all [z],[y], [2] € Wy, if [z] <x [y] and [z] <5 [2] then [x] = [y]
or [z] = [2] or [y] = [z].

Proof. Suppose that [x] <y [y] and [z] <z [#]. Let 2/, 2", ' and 2" in W, be
such that z =5 2/ <, ¢y =x vy and z =5 2" <, 2’ =5 z. Moreover, suppose
that [2][y], [z] + [2] and [y] & [2]. Without loss of generality, let ¢, ¢ and x
in X be such that (M., z = ¢ and M.,y = ¢), M,z x and M.,z E x)
and (M.,y E ¥ and M.,z k= 9). Since M.,y E 9 then M.,y f —¢ and,
together with the definition of [z] <x [y], M., x f —. Moreover, from x =5 z”
and M.,z ¢ we conclude that M.,z"” = ¢ V —¢ and, by means of Hosoi
axiom, it follows that M., 2" &= ¢ — . Since 2 <, 2" then M., 2" = ¢ — 4.
Apart from this, since 2" =5 z, M.,z E ¢ and M.,z = ¢ then M., 2" = ¢
and M., z"” = ¢. Finally, from M., 2" E ¢ — 1 we reach a contradiction.

Proposition 9. My is normal.

Proof. Condition (1) of normality follows from Lemma 16. To prove Conditions
(2) and (3) it is sufficient to prove that if [x] RS[y] (respectively [z]RS[y]) then
[Z]R2[7] (respectively [’x\]Rg [9]). The proof for RS follows from Lemma 11 and
Proposition 6 while the proof for R% follows a similar argument.

Lemma 17. For any formula ¢ and x € W,.

(1) If Ay € X and Ky € x then there exists y € W, such that [x}R%[y] and

P Ey;
(2) If $p € X and $p € x then there exists y € W, such that [m]RE@[y] and

vey;

Proof. (1) From Fp ¢ 2 and Lemma 10 we conclude that M.,z §= &y, so
there exists z € W, such that xRC@z and M.,z = ¢. From Condition 8 of
filtration we conclude that either [x]R% [2] or [E]R@ [2]. In the first case, take
y = z. In the second case, we follow the argument as follows: from M.,z f= ¢
and Condition 9 of filtration we conclude that M.,z = Fy. By following an
argument as in Proposition6 M.,z f FK——¢, thus there exists ¢ € W, such
that xRCEt and M,,t = ——¢ (as a consequence, M,,t = ¢ and Mt = ¢).
Finally by applying the Condition 7 of filtration, we conclude that [x]R@ [t] or
[x]R@ [t]. In the first case take y = ¢ while, in the second one take y = t. (2) From
$p € X, ¢ € x and Lemma 10 we conclude that M.,z = ¢ and, therefore,
there exists y € W, such that ch@y and M.,y E ¢ (and M.,J E ¢). Then,
due to Condition 7 of filtration it follows that either [x]R% [y] or [:c}R% [y]. We
conclude the proof by saying that it is sufficient to take y in the first case and 7
in the second one to reach the condition.

Lemma 18. Let [Ip € X be a temporal formula and x € W.. The following
conditions are equivalent: (1) Mc,z = Oyp. (2) Yy € We, if ([2]RE[y] then
Mey = 9) (3) Fy € We ([2]RS[y] and Mo,y = ¢).
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Proof. (1)= (2): Assume there exists y € W, such that [z] RZ[y] and M.,y f= ¢.
Thanks to the Condition 5 of filtration we get M.,y = ¢: a contradiction. (2)=
(3): Take [x] € W... Since RY is serial, there exists [y] € W such that [z] RZ[y].
From 18 and [z] RS [y] we obtain (3). (3) = (1): By definition of [x] RS [y], there
exist 2,y € W, such that z =5 2’RYy’ =5 y. From M.,y |= ¢ and Axiom (2)
it follows that M.,z = Ce.

Lemma 19. Let O € X be a temporal formula and x € W,. The following con-
ditions are equivalent: (1) Mc,z f= Owp. (2) 3y € We. (2] RS[y] and M.,y = ¢)
(3)Vy € We, if ([2]R3y] then Me,y l= ).

Proof. Similar to the proof of Lemma 18.

7 Determinisation

The filtrated model defined in Sect.6 possesses the normality conditions (1)
and (2). Since R is serial and R% is equal to the reflexive transitive closure
of the RE, M would be standard if RE were deterministic. The property
of determinism is not preserved by filtration. In this section we show how to
extract a deterministic model from Mjy. Before that, we must introduce the
concepts of chain and defect. Let S = N x {&, ¢} x Y. Remark that S is

countable. Let (ko, 00, %0), (k1,01,%1), -+ be an enumeration on S where each
triple is repeated infinitely many times. A chain consists of a finite sequence
([wo], -+, [xn]) of elements of Wy such that for all i < n, [2;]RR[zir1]. A

triple (k,, %) € S is a defect of the chain ([z¢],---[x,]) if (1) k& < n; (2)
Ey & xp; (3) for all 4, k < i < n,v € x;. Similarly, a triple (k, $,v) € S is
a defect of the sequence ([xo],- - [x,]) if (1) k < n; (2) ¢ € xy; (3) for all 4,
kE<i<ny ¢z Let g9 be a formula such that g ¢ THT. Let xg € W,

be such that ¢o & 9. We define an infinite sequence ([zo], [x1], ) of ele-
ments of Wy such that [zo]RE[21]RSE [z3]--- as follows: let Sy = ([z0]). Let
a > 0 and S, = ([xo], - ,[zm]) be a sequence of elements of Wy such that

[20] RS - - - RS[x,,]. We consider the following cases:

— Case “(kq,04,14) is not a defect of S,”: In this case let [y] € Wy be such that
(] RS [y] and define Syi1 = ([zo), - , [, ).

— Case “(kq,04,%,) is a defect of S, and o, = &": Hence, ky < T, MYy & T
and for all 4, k, < i < m, ¥, € x;. By Lemma7, Ky, & x,,,. By Lemma 17,

let [y] € Wx be such that [mm]Rg [y] and ¥, & y. Let [yol, -, [yn] € Wx
be such that [yo] = [Tm], [yn] = [y] and [yo]RE[y1] - RE[yn]. We define
Sat1 = ([m(ﬂ? T [mm]’ [ylL T [ynD

— Case “(kq, 0k, ¥x) is a defect of S, and o, = ¢”: This case is similar to the
previous one.

Now, let My = (Wy, <4, Rd':’, Rdm, Va) be the model defined as follows:
- Wy =Nx {h,t};
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— (i1,a1) <q (i2, ) iff i1 =iy and either oy = h or ay =t;
— (i1,01)R (z o) iff i1 +1 =12 and a1 = aw;

- (il,al)Rd (ig, ) iff 41 < ig and a1 = aw;

- Val(i,a)) ={pe At|pex;NX}ifa=hand {p € At | p € ;NX} otherwise.

Lemma 20 (Truth Lemma). Let p € X. For alli € N and for all a € {h,t},
the following conditions are equivalent: (1) Mg, (3, ) = ¢; (2) Mz, [z:] = o.

Proof. By induction on ¢. The case for atomic formulas follows from the defi-
nition of V. The cases for 1, A, V and — are left to the reader. The cases for
[ and ¢ follow from Lemmas 18 and 19. The cases for & and ¢ follow from the
definition of M.

And now, the grand finale:

Proposition 10. Let ¢ be a formula. The following conditions are equivalent:
(1) p € THT; (2) THT = o.

Proof. (1) = (2): By proposition 4. (2) = (1): Suppose ¢ ¢ THT. Let z¢ € W,
be such that ¢ € z¢. By Lemma 10, M., zo = ¢. Let X be the least closed set
of formulas containing ¢. By Lemmas 12 and 15, Mz, [xo] £ ¢. By Lemma 20,
Mg, (0,a) = ¢. Since My is standard, therefore THT f= .

8 Conclusion

Much remains to be done. For example, suppose the language is extended by the
temporal constructs U (until) and R (release). In that case, within the context of
THT-models, can we demonstrate that these temporal constructs are not inter-
definable? And how to axiomatise the set of all T'HT-valid formulas? One may
also consider, for this extended language, a van Benthem characterization theo-
rem. Its proof will probably necessitates the definition of an appropriate notion of
bisimulation similar to the one considered by de Rijke and Kurtonina [14]. Now,
what do these problems become when the language, restricted to the temporal
constructs U and R, is interpreted over the nonnegative rationals or the non-
negative reals? In that case, THT-models will be of the form M = (H,T) where
H: Qt (or RY) — 24% and T: QF (or RT) — 24% are such that H(i) C T(i)
for each i > 0. In other respect, for the language extended by the temporal con-
structs U (until), R (release), S (since) and 7 (trigger), when interpreted over
the set of all integers, can we demonstrate that these temporal constructs are
not interdefinable? When interpreted over Dedekind-complete linear orders, can
one obtain for this language a THT version of Kamp’s Theorem [13]? Finally, if
one prefers partial orders to linear orders then one may want to axiomatise the
HT version of branching time logics like CT'L.
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Abstract. In the study of group belief formation, groups of agents are
often assumed to possess a topological structure. Here we investigate
some ways in which this topological structure may provide the semantical
basis for logics of group belief. We impose a partial order on a set of
agents first to be able to express preferences of agents by their doxastic
abilities, secondly to express the idea of a coalition (well formed group)
and thirdly to give a natural semantics for the group belief operator.
We define the group belief of a set of agents in two different ways and
study their corresponding logics. We also study a logic where doxastic
preference is expressed by a binary operator. We prove completeness and
discuss correspondences between the logics.

1 Introduction

An important concept in the study of collective intentionality as well as group
reasoning is that of group belief. The nature of group belief has been analysed by
a number of scholars and is of interest in areas such as philosophy, psychology,
logic, social sciences and computer science. Quinton [9] for example discussed the
summative view whereby a group G has a group belief in a proposition p if most
of the members of G believe that p; here ‘most’ can refer to a simple numerical
majority or perhaps to a majority of members of a certain kind. More recent
work in the field of social ontology has taken a non-summative view according to
which individual beliefs do not play such an important role in forming the group
belief [6,10]. To have a group belief that p, in this kind of a non-summative,
agreement-based sense, it is neither sufficient nor even necessary that the group
members individually believe p. Instead, it is required that they together agree
that as a group they believe that p. Different versions of the summative and
non-summative views have recently been analysed by Gaudou et al. [5] who
develop in detail a modal logic of group belief and compare their formal system
to different philosophical accounts of the group belief concept.

In the discussion of group belief an important feature is that a group should
be a constituted collective. In the approach of [5] the nature of the constituted
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group is given by the logic. More precisely, the logic is equipped with a possible
worlds semantics whose accessibility relation determines the nature of the group.
This idea seems to work well if one assumes that each group is constituted by a
unique set of agents A, but it may be problematic if a given set of individuals
constitutes two or more different groups. Suppose for example that the university
darts team happens to be co-extensive with the graduate admissions committee.
Their group beliefs will no doubt be different in the two contexts in which they
act. For instance the judgement that Phil Taylor is the greatest ever darts player
might be a belief of the darts team but not of the admission committee. This
difference in group beliefs will not be manifest in approaches like that of [5].
The authors are aware of this limitation. In another paper devoted to the logic
of group acceptance [8] they have introduced the idea of an institutional context
that enters into the semantics of group attitudes. This is a formal device that
allows one to distinguish the set of agents from the group or team situation
in which they are acting. It supplies an additional parameter of evaluation but
doesn’t impose any structure on the groups themselves.

A different kind of approach has been explored in work on judgement aggre-
gation. For example, List and Pettit [7] discuss group agency and group beliefs
by assuming that some organizational structure is associated with the groups.
This structure can be understood in at least two apparently different senses.
In one sense it refers to mechanisms such as voting rights and procedures that
may be in place in order for group judgements to be obtained by some ratio-
nal process from the beliefs and preferences of individual group members. Such
mechanisms may be thought of as external to the agents themselves, since they
reflect group features that may persist even if the set of agents that constitutes
the group changes over time. However, [7] also discusses ways in which a group
may be structured in a more internal sense. An example is when large judg-
mental tasks are decomposed into several smaller tasks and the corresponding
group judgements for these tasks are allocated to suitable subgroups. As List
and Pettit observe [7] (pp. 94-97), not all group members may have the same
level of expertise, so it may be rationally justified (at least in theory) to assign
judgement subtasks to say expert subgroups and then use a further aggregation
mechanism to form a final collective judgement for the whole group. In such
cases the chosen decomposition may reflect properties of individual members
(e.g. their expertise) and hence need not persist when members leave and enter
the group. Nevertheless it seems clear that such structures are group-specific in
kind, since if two different groups are composed of the same set of members, the
associated group structures will carve up that set in different ways.

In this paper we also study the idea of groups having a structure, but using a
different approach from that of [7]. We explore the effects of imposing a topologi-
cal structure directly on the set of agents and without assuming that judgmental
tasks are split into subtasks for resolution by a subgroup. One effect of our app-
roach is that even if say the university darts team and the humanities graduate
committee are composed of the same individuals, their constitution qua groups
(hence their collective beliefs) may be different. Another effect is that the topo-
logical structure may reflect a natural ordering among agents, such as their level
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of knowledge of a certain domain, their abilities, their degree of commitment to
a certain cause, or some other relevant criterion. We will deal with finite sets of
agents and therefore the topological structure will amount to a partial ordering.!
In real life situations one observes that arbitrary subsets of agents do not form
a coalition. Usually coalitions are closed under some specific properties. Having
structured groups makes it possible to formalise different versions of group belief
and also explore the connections and differences between different approaches.
In this paper we attempt to model both ideas simultaneously by considering
partial orders on the sets of agents. It is known that such orders naturally model
many existing real life social commitments.? Moreover with partial orders we
may understand coalitions as those sets of agents which have certain properties
according to the given order. In particular that they are downsets.

The paper is organised as follows. In Sect. 3 we define a logic GB1 of group
belief where group belief is defined in terms of shared belief. The group belief
defined in this way inherits some properties of group belief discussed in [5]
although it lacks the important property that group belief p implies that it is
common belief that p is a group belief. To remedy this in Sect. 4 we define a logic
GB2 where group belief is defined in terms of common belief. This logic gains the
property that was missing for the logic GB1 but it loses another property satis-
fied by GB1, in particular: that group belief does not imply the common belief of
group members. In both Sects. 3 and 4 we extend the logics with a modal depen-
dency axiom which links the partial order of agents to their belief sets. In both
extended logics group belief collapses to the shared belief of group members. In
Sect. 5 we consider pure multi-modal logic with an additional operator a < b to
take control over the structure of agents. We prove several completeness results.
Completeness for the logics GB1 and GB2 is relatively simple and closely based
on already existing results, while completeness for the logic GB from Sect.5 is
nonstandard and uses a selection method.

2 Preliminaries

We recall some basic definitions and notions which will be used throughout the
paper.

Definition 1. A partial order on a set A is a relation <C A x A which is
reflexive Va € A)(a < a) and transitive (Va,b,c € A)(a <bAb<c—a<c).

Every partial order has a distinguished class of subsets called downsets

! Topological structures in groups are also used to formalise group attitudes in Dunin-
Keplicz and Verbrugge [3]. As they emphasise, this structure may be based on power
or dependency relations that reflect different social commitments. [3] considers differ-
ent group topologies but the approach is somewhat different from ours. The topolo-
gies are mainly used to model different forms of communication between agents in
a group. A related, formal account of group beliefs is studied in [2] using a concept
of (group) epistemic profile to model doxastic reasoning. However epistemic profiles
are an additional feature, not derived from the group topological structure.

2 See e.g. [3] and further references given there.
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Definition 2. A subset D of a partial order (A, <) is a downset if for every
d € D and everya € A ifa < d then a € D. The minimal downset containing the
set J C A will be denoted by J. In other words J ={a € A|3be J s.t. a < b}.

Throughout the paper we will be working in a standard multimodal language
enriched with different operators for common belief, shared belief group belief,
etc. The language £ is defined with an infinite set of propositional letters p, g, ..
and connectives V, A, -, [,, for each a € A, where A is a finite, partially ordered
set (A, <) of agents. Observe that the ordering of a set of agents A is common
for both the syntax and semantics. Formulas are constructed in a standard way
from the following recursive definition:

¢p:=lpleVolong|—¢|Uag

for every a € A and G C A. For extensions of £ with additional operators we
will use the abbreviation L({O; | 1 < i < n}) where each O; is a new operator
and the set of formulas is extended in an appropriate way i.e. in the construction
of formulas we will have additional clauses

¢:=lploVolone|—¢ Lo | Oi

for every a € A and i € {1,..,n}. For example L({E; | J C A} denotes the
language L extended with operators E; for each J C A. Throughout the paper
the operators E;, C'; and GB; will stand for the shared belief, common belief
and group belief operators respectively.

Shared belief is defined as the conjunction of beliefs of individual members
of the group. i.e. a proposition p is a shared belief of the group J (abbreviated
as E;p) if every member of the group believes that p which means A, ; O;p.
The shared belief operator is definable in the basic language and hence the
languages £ and L({E; | J C A}) have the same expressive power. This is not
the case for common belief. Common belief is defined as the infinite iteration
of individual beliefs of group members. Formally C;p iff A, . E%p which is an
infinite conjunction and therefore is not a formula of the language L({E; | J C
A}. In general it is known that L({C; | J C A} is strictly more expressive
then L.

3 Logics of Group Belief

We define a modal logic of group belief in a structured set (4, <) of agents, where
the structure <C A x A is a partial order. Coalitions are formed by downsets.
Therefore the structure of coalitions of agents will depend on the relation < in
question.

3.1 Syntax of GB1

The language has two operators: for shared belief and for group belief. Shared
belief (analogous to shared knowledge) has been considered and studied inten-
sively, see for example [4]. We enrich the logic with a group belief operator where
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group belief is defined as the shared belief of the coalition to which the group
belongs. Hence the two groups J and J’ of agents have the same group belief if
they both belong to the same coalition.

Definition 3. The normal modal logic GB1 is defined in a modal language
L{{E;,GBy | J C A}). Operators Ej and GBj, stand for shared belief and
group belief respectively.

The azxioms of GB1 are all classical tautologies. Fach box satisfies the K4
axioms for every a € A, and in addition we have one axiom scheme for shared
belief and one axiom scheme for the group belief,

Oa(p — Q) - (Dap - DaQ) (1)
Oap — OOep (2)
Ejp < /\ Uap (3)
acJ
GBjp < E5p (4)

for every J C A. The rules of inference are: modus ponens, substitution and
necessitation for each box modality.

Observe that the axiom of group belief operator uses symbol J from
Definition 2, hence implicitly refers to the partial order on the set of agents
A. As it was mentioned in the introduction the order on agents is needed to
form coalitions and coalitions are exactly downsets according to the order on
agents. In these terms the group belief axiom from Definition 3 says that p is
a group belief of the a group of agents J if p is a shared belief of the minimal
coalition .J to which the group J belongs.

Example 4 Every group forms a coalition. Assume that < is an empty
relation. In this case the downset J = J. Hence every subset of agents forms a
coalition and hence group belief coincides with shared belief. GByp < E5p <
E!]p.

Example 5 The only coalition. Assume that <= AX A. In this case we have
only one coalition as far as J = A for every J C A. Hence something is a group
belief only if it is a shared belief of all agents.

Example 6. Let A = {w,u,v} and <= {(w,w), (u,u), (v,v), (w,u), (w,v)}. In
this case we have 4 different coalitions {w,u}, {w,v}, {w,u,v} and {w}. Group
belief for this case depends on the group. If J = {u,w}, J = {v,w} or J = {w},
group belief coincides with shared belief GByp < Ejp, while when J = {u,v}
we have GByp < Eap and in cases when J = {u} or J = {v} group belief is a
shared belief of a corresponding coalition GBp < Eqy wyp and GByp < Ey )P
respectively.
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3.2 Semantics
Semantics for the modal logics GB1 is provided by OUR-models.

Definition 7. An OUR-structure for a partially ordered set of agents (A, <) is
a tuple (W,{Rsla € A}) where W is a set of worlds, R, for each a € A is a
transitive relation on W. An OUR-model is an OUR-structure together with a
valuation function V : Prop x W — 2.

Notice that the structure on a set of agent as well as the set of agents itself is
common both to the syntax and semantics. It is true that the syntax does not
contain any symbol for the relation < but it interacts with this relation by the
group belief axiom. The semantics, as is clear from the next definition, has a
more straightforward interaction with the structure on the set of agents.

Definition 8. For a given OUR-model M = (W,{R,la € A}, V), the satisfac-
tion of a formula at a point w € W is defined inductively as follows:
w = p iff w € V(p);
the boolean cases are standard;
w =00 iff (Yv)(wRev = v = ¢);
w = Ej¢ iff (Vv)(wRv = v = ¢) where R = J,c; Ra;
w E GBy¢ iff (Yo)(wR'v = v |= ¢) where R =7 Ra;

A formula is valid in an OUR-structure if it is satisfiable at every point
w € W under every valuation V. A formula is valid in a class € of OUR-
structures if it is valid in every OUR-structure § € €.

What does the last definition imply in different examples? The idea is to
think of coalitions as downsets. In such a setting each member of a group J may
believe the sentence p but the coalition J may have additional members who
do not share this belief and hence the group J as part of the coalition does not
have p as a group belief of a coalition. In other words only those sentences are
believed by the group which are shared beliefs of the coalition to which the group
belongs. We might call this kind of belief “coalition dependent”.

The group belief operator defined in this sense has the following properties
discussed in [5]:

Proposition 9

1. No combination of individual beliefs implies group belief;
2. Not all sets of agents form coalitions;
3. Group belief does not imply the common belief of the group;

Proof. 2 follows by the definition of coalition. 3 is an easy application of the
definitions of common belief and shared belief. See Sect. 2. For 1 let us consider
a partial order ({a,b,c}, <) of agents where a < b < c¢. Let J = {b,c}. As
for the set of possible worlds and relations, let us take W = {w,u,v}, R, =
{(w,u), (w,v), (u,v)} and Ry = R. = {(v,u), (v,w), (u,w)} let w = pand v |~ q.
See Fig. 1.
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In this case u = Opp A Ocp since the only successor of u both by R, and R,
is w which on its own models p. This means that all members of the group J
believe in p but still p is not a group belief of the group. This is because the
coalition J containing the group also contains agent a. u = [,p as there is an
R, successor v of u which does not model p. So u [ E+p.

Note that Oyp A Op is just one particular combination of individual beliefs
and hence it is not enough to claim that no combination of individual beliefs
implies group belief. But an easy argument shows that indeed no formula written
in a restricted language which only contains [, and 0. can imply group belief.
The full proof of this claim needs additional definitions and properties and is
given in the appendix.

The other two important properties from [5] “Goup belief does not imply
individual beliefs of the group members” and “Group belief does not imply
subgroup belief” are not satisfied. This is because the group is always contained
in the coalition and as well every subgroup is contained in a coalition formed
by a bigger group. Now what happens if we add the belief dependency axiom?
Does it effect the structure. The answer is yes. The belief dependency axiom sets
some constraints on the structure of frames.

3.3 Completeness

One way to prove completeness is via a standard canonical model construction.
Here we use a different method and prove completeness by applying results from
[11]. First we show that the axiom for the group belief modality is a relational
modal definition. Secondly we will use the result that modal logic with the shared
belief modality is complete, and lastly we will apply the result that extensions
of complete logics with relational modal definitions yield complete logics.

Definition 10. A modal definition Bp < ¢(p,p1,...,pn) is called o relational
modal definition if there exists a first-order formula Wy (x,y) with two free
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variables using only symbols that occur in ST.[p(p,p1,...,pn)] such that for
every formula ¢ in the language without B it holds that

(Vy) (W (z,y) = ST,[¢]) is logically equivalent to ST,[p(Y,p1, ..., pn)]-

Let ¥, (x,y) be the first-order formula corresponding to a relational modal
definition. Given a model MM = (F,V), we uniquely construct the model
M, = (F+,V), where the underlying frame F, is obtained from § by adding
the binary relation R, C W? defined as:

(z,y) € Ry if, and only if, M = ¥, (z,y).

For a class C of models, we denote by Cy the class consisting of the models 91, ,
where 91 ranges over the models in C.

Fact 11. Let L be the modal language for a signature (II, M), and let L, be
the modal language for (IT, M U {+}) for some fresh symbol +’. Let L C L be
a modal logic that is complete w.r.t. a class C of models. Let Ly C L be the
modal logic obtained by extending L with the relational modal definition Hp «—
a(p,p1,---,pn)- Then Ly is complete w.r.t. C4.

Another result which we are going to use is completeness of the modal logic
obtained by eliminating the group belief operator from logic GB1. The result as
stated does not appear anywhere but an exact analog of the result is known for
the shared knowledge operator, see [4]. And the distinction between the two is
insignificant for these results.

Proposition 12. The modal logic of shared belief (The logic obtained by elim-
inating operator GBy together with the group belief axziom from GB1) is sound
and complete w.r.t. possible world structures (Kripke structures), where each
relation is transitive.

Lastly, to obtain the completeness for the logic GB1 it remains to show that
the group belief axiom is a relational modal definition and describe the class of
frames it specifies.

Proposition 13. The aziom GBg¢ < Ez¢ is a relational modal definition.

Proof. Immediate if we take W, (z,y) in Definition 10 to be xRy where R =
UaGé Ra'

Corollary 14. The modal logic GB1 is sound and complete w.r.t. OUR-
structures.

3.4 Fibered Structures

By ordering the set of agents we want to reflect the intuition that not all agents
have the same belief sets. Moreover it is natural to think that the structure of
agents is connected with the structure of their belief sets. Which is not the case
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in OUR-frames from previous section. For instance if a < b, then belief set of a
is smaller then belief set of b. At this point we don’t have such a requirement.
One could obtain this property by adding the law a < b =+ Oyp — O, p, which
we encode by the following axiom:

e Belief dependency axiom

Dap — GB{a}p

Now the meta-rule a < b =+ Oyp — O,p becomes satisfied. For, assume a < b,
by the belief dependency axiom we have U,p — GB{,}p, and by the axiom for
the group belief operator we get Cyp — E{T}p and, as a < b, we know that

a € {b}. By the axiom for shared belief we obtain Egyp — A, ey Hip which
on its own implies (,p. Hence we get Upp — Ogp. Thus, despite the fact that
our language does not contain the symbol <, it is strong enough to express the
property of belief dependency. By GB1< we denote the extension of GB1 by the
belief dependency axiom.

Definition 15. Let us call an OUR-structure (W,{Rg|a € A}) a fibered frame
iff a < b implies R, C Ryp.

Proposition 16. The belief dependency axiom is valid in an OUR-frame § =
(W, {Rs|a € A}) iff § is a fibered frame.

Proof. Assume for the contradiction that an OUR-structure § is not fibered. By
definition this means that there exists a and b in the set of agent A such that
a < b while R, € Ry, i.e. there are points w,u € W such that wR,u while not
wRpu. Take a valuation such that p is true everywhere in a frame except at u,
then it is clear that w = Opp while w = Ogp sincet wR,u and u = p. Hence
w [~ GByyyp which falsifies the axiom.

Now assume that § is a fibered OUR-structure. Let V' be an arbitrary val-
uation on §. Let us take an arbitrary point w € W and show that w | Opp —
GByyyp for an arbitrary b € A. Assume that w = Opp. Hence for every Ry suc-
cessor v of w it holds that v = p. Let us show that w = Emp. By the axiom of
shared belief Egp «— A, 3 Oap, it suffices to show that w = O,p for every a < b.
Now since § is fibered, a < b implies that R, C Rj. Hence every R, successor u
of w is also an R}, successor and we already know that every such u satisfies p.

The following proposition shows that fibered frames do not preserve the
property of group belief from Proposition9. Proof of the following proposition
can be found in Appendix.

Proposition 17. In every fibered OUR-structure, the group belief of a set of
agents is implied by the conjunction of the individual beliefs of those agents that
have mazimal belief sets from the group.

Corollary 18. In every fibered OUR-structure, the group belief of a set of agents
s equivalent to the shared belief of the same set of agents.
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This shows that the notion of group belief as defined above does not make
much sense in the class of fibered frames and the language collapses to a simple
modal language with many modalities. In Sect.5 we will consider the logic of
a pure modal language of ordered agents with an additional operator reflecting
the order of agents and derive the completeness of the logic w.r.t. the class of
fibered structures.

4 Syntax of GB2

An important property of group belief discussed in [5], which our definition of
group belief lacks, is the following: ‘If p is a group belief of a group G, then it is a
common belief that p is a group belief of the group’. As we saw from the example
this property is not satisfied for GB1. In this section is modify the logic GB1 so
that the desirable properties of GB1 are preserved but additionally group belief
satisfies the above condition. We consider a modal logic G52 in which shared
belief is replaced by common belief.

4.1 Syntax

Definition 19. The language of the normal modal logic GB2 is L({C;,GBy |
J C A}) where the operators Cj stand for common belief. The axioms are all
classical tautologies, each box satisfies K4 azioms O,(p — q) — (Hup — 0uq)
and Ogp — O,04p for every a € A. In addition we have an equilibrium axiom
for common belief:

(equi) : Cyp < /\ Oap A /\ O0.Cyp
acJ a€J

And a new axiom for the group belief operator
GBjp < Cyp

for every J C A. The rules of inference are: modus ponens, substitution and
necessitation for each boxr modality and additionally an induction rule for the
common believe operator:

Fp— NocsDalp A q)
Fp—Cjq

(ind) :

4.2 Semantics

A semantics for GB2 is provided by OUR-models. Let us first recall the definition
of the transitive closure of a binary relation.

Definition 20. The transitive closure RT of the relation R is defined in the
following way: xRTy < (3z1, Ixe, ..., A, ) (z = 21 Az1 Rra AT2 RT3 A ... AN 20 RY)
for somen € w.

Now we are ready to define the satisfaction of modal formulas on OUR-models.
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Definition 21. For a given OUR-model M = (W, {R,|a € A,V'}), the satisfac-
tion of a formula at a point w € W is defined inductively as follows:
w = p iff w e V(p);
the boolean cases are standard;
w Oy iff (Vo)(wRev = v = ¢);
w = Cr¢ iff (Yv)(wRv = v |= ¢) where R = (U, ey Ra)™:
w = GB¢ iff (W)(wRv = v = ¢) where R = (Uoe7 Ra)t

A formula is valid in an OUR-structure if it is satisfiable at every point
w € W under every valuation V. A formula is valid in a class € of OUR-
structures if it is valid in every OUR-structure § € €.

The following result for GB2 shows that some of the good properties of group
belief defined the previous section are preserved for the group belief operator of
GB2 and additionally the latter has the property that ‘If p is a group belief of a
group J then it is a common belief that p is a group belief of the group.” Proof
is given in Appendix.

Proposition 22

1. No combination of individual beliefs imply group belief;

2. Not all sets of agents form coalitions;

3. If a sentence p is a group belief of a set of agents J then is is common belief
(of the set of agents J) that p is a group belief of the set of agents J;

4.3 Completeness

The main result for this section is that the logic GB2 is the logic of all OUR-
structures with the given semantics. Observe that completeness for this case can
not be obtained by the technique of Sect. 3.3 since the axiom GBjp <+ C5p is not
a relational modal definition. The reason is that the transitive closure used for
defining the semantics of the common belief operator is not first order definable.
Nevertheless we are able to prove the completeness of the logic G52 by a slight
modification of the completeness proof for the logic of common belief [4]. A proof
sketch can be found in Appendix.

Theorem 23. The logic GB2 is sound and complete w.r.t. the class of all OUR-
structures.

5 The Logic of Fibered Structures

In this section we introduce the logic of fibered structures in a simpler language
which does not contain a group belief operator. Instead we have an operator <
which captures the partial order of agents. An analogous approach with geomet-
ric interpretations of the operator < has been introduced in [1]. The set FOR of
all formulas (with typical members denoted ¢, ¢, etc.) is now inductively defined
as follows:

~ou=pl L]0 (0VY)|Tad|a =0
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We define the other Boolean constructs as usual. The formula a 4 b is an abbre-
viation for: —a <X b. We omit parentheses if this does not lead to any ambi-
guity. The notion of a subformula is standard. For all sets x of formulas, let

Oux ={¢: Ou¢ € x}.

5.1 Semantics

For a given OUR-model M = (W,{R, | a € A},V), the satisfaction relation is
defined as follows for formulas of the form a < b:

—wEa Xbiff (Vo)(wR,v = wRyv).

Therefore, in our setting, “a < b” means that a believes everything that b
believes.
We remark that

Lemma 24. The following formulas are satisfied in any world of any model:

7Da¢_>[]a|:|a¢;
-a=xa,
—a=xbANb=c—a=<gc
—a=xb— Oy — O,9),
- d,L —a=<0.

Proof. Since OUR-models are based on transitive relations, formulas of the form
e — O,0,¢ are valid. The validity of formulas of the form a < a and a <
bAb < ¢ — a = ¢ comes from the fact that the relation of inclusion between sets
is reflexive and transitive. For formulas of the form a < b — (O — O, ), they
are valid because in an OUR-model M = (W, {R, | a € A}, V), if w Fa <X
then R,(w) C Ry(w) where R(w) denotes the set of all accessible porints from
w. Concerning formulas of the form O, L — a < b, they are valid because in an
OUR-model M = (W,{R, | a € A}, V), if Ry(w) =0 then w = a <.

5.2 Axiomatization/Completeness

Let L be the least normal modal logic in our language containing the formulas of
Lemma 24. We want to show that L provides a sound and complete axiomatiza-
tion of the set of all valid formulas. By Lemma 24, L is sound. To prove complete-
ness, we must show that every valid formula is in L. It suffices to prove that every
consistent formula is satisfiable. To reach this goal, we use a step-by-step method.
We define a subordination model to be a structure S = (W, {R, | a € A},0)
where W is a nonempty subset of N, R, is an irreflexive transitive relation on
W and o is a function assigning to each z € W a maximal L-consistent set o(z)
of formulas such that

— if Ou¢ € o(x) then for all y € W, if xR,y then ¢ € o(y),
— if a 2 b € o(z) then Ry(x) C Ry(z).
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For all maximal L-consistent sets I' of formulas, let ST = (W {RL | a €
A}, 1) be the structure where W1 = {0}, RL' = (), o1'(0) = I'. The reader may
easily verify that

Lemma 25. ST is a finite subordination model.

Consider a finite subordination model S" = (W', {R/ | a € A},c’). We define a
O-imperfection in S’ to be a triple of the form (x,a, ¢) where x € W', a is an
agent and ¢ is a formula such that O,¢ & o/(x) and for all y € W, if xR}y then
¢ €o'(y)

Lemma 26. Let (z,a,¢) be a O-imperfection in S’. Let I’ be a mazimal L-
consistent set of formulas such that O,0'(x) C I and ¢ ¢ I'. Let y be a new
nonnegative integer. Let S = (W,{R, | a € A}, 0) be the structure where

-W=wu {y}>

— 2Ryt iff one of the following conditions holds:
e ze W', te W and zRjt,
o zeW'\{z}, t=y, 2Rjx anda = b€ d'(x),
e z=u,t=yanda=3beco'(z),

- o(z) =if z=y then I else o'(z).

Then, S is a finite subordination model. We shall say that S is the local comple-
tion of S" with respect to the O-imperfection (x,a, ¢).

We define a <-imperfection in S’ to be a triple of the form (x, a,b) where x € W’
and a, b are agents such that a < b ¢ ¢’(x) and R, (z) C R}(x).

Lemma 27. Let (x,a,b) be a <-imperfection in S’. Let I' be a mazimal L-
consistent set of formulas such that Oy,0'(x) C I'. Let y be a new nonnegative
integer. Let S = (W, {R, | a € A}, o) be the structure where

W =W Uy},

— zR.t iff one of the following conditions holds:
e ze W' te W' and zR.t,
e zeW'\{z}, t =y, 2R,z and a < c € o' (),
e z=zx,t=y and a 3 c € o'(x),

—o(z) =if z=1y then I else d'(z).

Then, S is a finite subordination model. We shall say that S is the local comple-
tion of S’ with respect to the <-imperfection (z,a,b).

Let (x9, ag, o), (x1,a1,b1), (X2, as, ¢2), (x3,as,bs), ... be an enumeration of (N x
Ax FOR)U (N x A x A) in which each item appears infinitely many times. For
all maximal L-consistent sets I" of formulas, let T° = (W {R) | a € A},00),
T = (WL {R. | a € A},o'), etc., be the infinite sequence of subordina-
tion models defined as follows. Let T° = S’". Let n be a nonnegative integer.
Given T2*" let T?*"*1 be the local completion of 72" with respect to the OJ-
imperfection (Zaxn, @2xn, P2xn) When (Taxn, Gaxn, Paxn) is @ O-imperfection of
T2%"_ Otherwise, let T2X"*1 be T?2*". Now, let T2%"*2 be the local completion
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of T?*"*1 with respect to the <-imperfection (Z2xni1,@2xn+1,b2xns+1) When
(Toxni1,G2xni1;baxni1) is a <-imperfection of T?*"*1. Otherwise, let T2*"+2
be T?*"+1 Now, we put T% = (W« ,{R% | a € A}, ) to be the subordination
model defined as follows:

— W« = J{W": n is a nonnegative integer},

— if x € W™ for some nonnegative integer m and y € W™ for some nonnegative
integer n then zR¥y iff xRy,

— if z € W™ for some nonnegative integer n then o¥(z) = o™ (x).

The reader may easily verify that 7% has no imperfection. The result that
emerges from the discussion above is:

Proposition 28. The following conditions are equivalent for every formula ¢:

1. ¢ isin L.
2. ¢ is valid.

Proof. 1. = 2.: By Lemma 24.

2. = 1.: Suppose ¢ € L. Let I" be a maximal L-consistent set of formulas such
that ¢ ¢ I'. Let T¥ = (W¥ {RY | a € A},0%) be the subordination model
associated to I" as above. Let M = (W,{R, | a € A}, V) be the model defined
as follows:

W =W¢<, xR,y iff xRYy, V(p)={z|p € o*(x)}.

By induction on 1, the reader may easily verify that for all x € W, z IF ¢ iff
¥ € 0¥ (x). Since ¢ & I', therefore 0 I ¢. Consequently, ¢ is not valid.

6 Summary and Future Work

In this preliminary study we have explored different ways in which group belief
might be modeled when a certain structure is imposed on the set of agent.
Group belief in the resulting logics displays different properties, suggesting that
the logics may have different types of application - a topic for further study in
the future.

As we have seen both logics, GB1 and GB2, collapse to standard multi-modal
languages when a belief dependency axiom is added. This shows that on a seman-
tical level there is natural correspondence between the GB1< and GB2< and the
logic of all fibered structures from Sect. 5. This suggests the possibility of syn-
tactic connections between the three logics which we aim to explore in future
work.
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Abstract. We put forward an abstraction technique, based on a three-
value semantics, for the verification of epistemic properties of agents
participating in a multi-agent system. First we introduce a three-value
interpretation of epistemic logic, based on a notion of order defined on
the information content of the local states of each agent. Then, we use
the three-value semantics to introduce an abstraction technique to verify
epistemic properties of agents in infinite-state multi-agent systems.

Keywords: Logics in multi-agent systems - Epistemic logic + Formal
verification by model checking

1 Introduction

Modal logics for knowledge representation and reasoning, including epistemic
logics, have been proved to be a valuable formal tool for the modelling and analy-
sis of multi-agent systems [15,21,29]. These logical languages typically include
an operator K; to represent the knowledge of an agent i, as well as possibly
modalities for collective, common and distributed, knowledge. In combination
with techniques for automated verification by model checking, epistemic logics
have been used to model and verify complex multi-agents scenarios [26], among
which communication and security protocols [6], auction-based mechanisms [5],
business process workflows [4,20].

The application of methods from knowledge representation and reasoning to
the verification of multi-agent systems (MAS) depends crucially on the devel-
opment of efficient model checking methodologies and algorithms. In particular,
abstraction techniques are key to tackle the state-space explosion problem [9,23].
Moreover, whenever agents manipulate infinite data types (e.g., natural numbers,
integers, reals, lists, arrays, etc.), finite abstractions are often the only chance to
obtain a decidable model checking problem [1,4,13].

Inspired by the considerations above, in this paper we put forward an abstrac-
tion technique, based on a three-value semantics, for the verification of epistemic
properties of agents participating in a MAS. Specifically, the contribution of the
paper is twofold. Firstly, we introduce a three-value interpretation of epistemic
© Springer International Publishing AG 2016
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logic, which is based on a partial order < defined on the information content
of the local states of each agent. According to this intuition, agent i considers
epistemically possible not just states that are indistinguishable to her, i.e., in
which 4’s local state is identical, but also states comparable by order <. We
illustrate the formal machinery with examples from agent-based systems, par-
ticularly infinite-state systems that are not directly amenable to standard model
checking techniques. Secondly, we use the three-value semantics to introduce an
abstraction technique to model check epistemic properties of agents in infinite-
state MAS. As a result, our contribution is meant to advance the state-of-the-art
both in the theory of epistemic logic and the verification of MAS.

Related works. The area of epistemic logics has reached such a level of matu-
rity nowadays that it is extremely difficult to provide an exhaustive account.
Here we only mention the contributions most closely related to the verifica-
tion of multi-agent systems by abstraction. Techniques to model check epis-
temic properties of agents in MAS have witnessed a growing interest in recent
years, with a number of tools made publicly available [18,22,27]. This work pur-
sues the same research direction, but we target explicitly infinite-state MAS, for
which the verification task is considerably more complex. Abstraction techniques
for epistemic properties of MAS have appeared in [10,11], but the underlying
logic is two-valued, and therefore only its “universal” fragment is preserved by
the abstraction procedure. Instead, here we adopt the abstraction method via
under- and over-approximations, which has been applied mainly to the verifica-
tion of simple transitions systems against temporal properties [2,7,19,28]. Previ-
ous contributions on three-value abstractions for epistemic logics have appeared
in [14,20,24,25]. However, the settings and the three-value semantics are differ-
ent w.r.t. the account here put forward. Specifically, in [14] there is no notion
of under- and over-approximation, as the three-value semantics follows [16,17].
This implies that only (universal and existential) fragments of the original lan-
guage are preserved. Hence, the class of verifiable specifications is somewhat
limited, while here we are able to verify the full language in principle. Further,
in [24,25] the proposed three-value semantics is not a conservative extension of
the standard two-value semantics for epistemic logic, in particular no analogue to
Proposition 1 below can be proved. As a consequence, verification results avail-
able for the three-value semantics do not immediately transfer to the two-
value semantics. Finally, differently from [20], we ground under- and over-
approximations on a relation < of order between local states, which provides
guidance as to the definition of the abstract system, while making the abstrac-
tion process more transparent in our opinion.

Scheme of the paper. In Sect. 2 we introduce the multi-agent epistemic logic
K that includes operators for distributed and common knowledge, and we pro-
vide K with a three-value semantics based on an order < on the local states of
each agent. We illustrate the formal machinery with examples of (infinite-state)
multi-agent systems. In Sect. 3 we develop an agent-based abstraction technique
that we prove to preserve the three-value interpretation of formulas in K. We
conclude by discussing applications of these results to the verification of epis-
temic properties of infinite-state MAS.
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2 Preliminaries

In this section we introduce the formalism of three-value epistemic logic. First,
we present the language of multi-agent epistemic logic, including modalities for
collective knowledge. Then, we provide this logic with a Kripke-style semantics,
which allows to compare the local information possessed by agents, thus inducing
a natural three-value semantics suitable for abstractions.

In the following Ag = {1,...,m} is a set of indexes for agents and AP is
a set of atomic propositions. Also, we denote the i + 1-th element of a tuple v
as v;.

The Language. To reason about multi-agent systems and to describe properties
pertaining to the agents’ knowledge, we make use of the multi-modal epistemic
logic K defined by the following BNF:

pu=q|-p|e—¢|Cr¢|Dre

where g € AP and I' C Ag.

The informal meaning of formulas Cr¢ is that “p is common knowledge in
group I”; while D is read as “p is distributed knowledge in group I"”. As
customary, we can introduce individual knowledge formulas K;p as shorthands
for either C;3¢ or Dy;y. Also, we omit group I" whenever I' = Ag. Notice that
K is not to be confused with the homonymous normal modal logic.

The Models. To provide a formal interpretation to the epistemic formulas in
K, we introduce a notion of agent and interpreted systems.

Definition 1 (Agent). Given a set Ag of agent indezxes, an agent is a tuple
i = (L, Act, Pr,T) such that

— L is the (possibly infinite) set of local states with a partial order < on L;

— Act is the set of actions;

— Pr: L — (24¢\ {0}) is the protocol function;

~ 7: Lx ACT — 2% is the local transition function, where ACT = Acty X - - - x
Act|ag) is the set of joint actions, such that 7(l,a) is defined iff a; € Pr(l).

The notion of agent in Definition 1 is typical of the literature on interpreted
systems [15,27]: each agent is assumed to be situated in some local state, and
to perform the actions in Act according to protocol Pr. The evolution of her
local state is determined by the transition function 7. Differently from the state-
of-the-art, we also consider a partial order < on local states, i.e., a reflexive,
antisymmetric, and transitive relation on L. Intuitively, I < I’ means that in
local state I’ agent 4 has at least as much information as in I. The partial order
< is key to approximate the knowledge of agent i, whenever computing the
exact information of i is too costly computationally, not dissimilarly to the use
of over- and under-approximations in system verification [2,28]. Further, the
standard notion of agent appearing in the literature can be seen as a particular
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case of Definition 1, in which the partial order < is the identity. If this is the
case, we say that the agent is standard.

Given a set Ag of agents, a global state is a tuple s = (I1,...,[j44) of local
states, one for each agent in the system. We denote the set L1 X ... X L 44 of all
global states as G. We now introduce interpreted systems to describe formally
the interactions of agents in a multi-agent environment.

Definition 2 (IS). An interpreted system is a tuple M = (Ag, I, 7, II) where

— every i € Ag is an agent;

— I C G is the set of (global) initial states;

-7 : G x ACT — 29 is the global transition function such that 7(s,a) =
T1(81,a) X ... X T)ag|(5|ag],@);

- IT: G x AP — {tt,ff,uu} is the labelling function.

According to Definition 2, an interpreted system describes the evolution of a
group Ag of agents from any initial state in I, according to the global transition
function 7. By the constraint on each 7, 7(s,a) is defined iff a; € Pr(s;) for
every i € Ag. In the following we also make use of the local transition relation
— such that I — " iff I’ € 7(l,a) for some a € ACT, as well as its reflexive
and transitive closure —*. A global transition relation — and its reflexive and
transitive closure —* are defined similarly on global states in G. Then, the set S
of reachable states is introduced as the closure of I under —*, that is, s € S iff
so —* s for some initial sy € I. Hereafter we assume that only reachable states
count as epistemic alternatives for the agents in the interpreted system. That
is, states that are not reachable in the system are not considered epistemically
possible by the agents. This is in line with current accounts of IS [15,27].

Atomic propositions in AP can be assigned value true (tt), false (ff), or
undefined (uu). This last value can be used to describe situations in which the
truth of an atom is not set, or it is unknown, or underspecified. We will see
examples of these instances at the end of the section. We say that the truth
value t is defined whenever ¢t € {tt, ff'}. If all agents in Ag are standard and the
truth value of all atoms is defined, then we say that the IS is standard as well.

In the two-value semantics for epistemic logic the interpretation of knowl-
edge formulas is normally given by means of an individual indistinguishability
relation ~; on global states, which is defined by the identity of local states,
that is, s ~; &' iff s; = s} [15]. Here we define over-approximation R;"* and
under-approximation R[™* of relation ~; by leveraging on the fact that we
consider the partial order < on local states, rather than simply their identity.
Specifically, for each agent i € Ag, we define relation R;"*Y on global states such
that R"*(s,s’) iff for some reachable s” € S, s/ > s; and s/ > s}. Further,
R™st(s, ¢") iff s} < s;. Notice that in particular R["™'(s, s") implies R;"*(s,s’).
Intuitively, R;"* can be thought of as over-approximating the knowledge of
agent i. Indeed, states s and s" are related by R;"* if the information of agent
iin s and s’ can be consistently combined in some reachable state s (which
is indeed an over-approximation of both s; and s}); while R"“*(s, s") holds iff
s under-approximates the information contained in s;,. We remark that the use
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of over- and under-approximations R;"* and R“* is customary in multi-valued
logics and abstraction for transition systems [2,28]. Here we apply approxima-
tions to epistemic logic by grounding them on an order defined on information
states.

To interpret common and distributed knowledge, for « € {may, must}, we
consider the intersection RP* = (,. R¥ and the transitive closure RY" =
(User RE)T of the union of accessibility relations. Then, RR2*(s,s’) holds iff
R?(s,s") holds for all i € I'; while R%%(s,s’) is the case iff for some sequence
80, - - 8n Of states, (i) sp = s and s, = ¢; and (ii) for every k < n, R¥ (s, Sk+1)
for some i € I'. Finally, notice that R]"*Y and R"“** are both reflexive and R;""Y
is also symmetric. However, they are not transitive in general, and therefore
they are not equivalence relations. As a result, relations R;"® and R"™' do
not define an S5-modality. This is to be expected and not really an issue in the
present context, as we are interested in truth of formulas in a model as opposed to
validity in a class of models. In particular, if the interpreted system is standard,
then R"* = R is an equivalence relation and we are back to the standard
mdlstlngulbhablhty relation ~; of the two-value semantics for epistemic logic.

Finally, we introduce a three-value interpretation of epistemic formulas in
the logic K.

Definition 3 (Satisfaction). The three-value satisfaction relation =2 for an
IS M, state s € S, and formula ¢ is inductively defined as follows:

(M, s) =% q) = iff II(s,q) =t, forte{tt T}

(M, s) B> ~p)=tt  iff (M,s)[E*¢)=

(M, s) E° —~¢) = ft if (M,s) F° ¢) =

(M, s) B2 ¢ —¢') =tt iff (M,s)[E>¢)= ff or (M,s) E* ¢') = tt
(M,s) E> ¢ — ') = iff (M )|=3 ¢) = tt and (M, s) = ¢) =

(M, s) =% Cro) =ttt iff for all s’ €S, RE™(s,s') implies (M, s") =% o) = tt
((M,s) |:3 Cro)=ff  iff for somes €S, RE™(s,s") and (M, s) ):3 p) =ff
((M,s) =° Dry) =tt  iff foralls' €S, RR™(s,s') implies (M,s') =° ¢) = tt
((M,s) =* Dro) =ff iff for some s’ €S, RE™(s,s") and (M, s') =% ¢) = ff

In all other cases, the value of ¢ is undefined (uu).

By Definition 3 we can derive the satisfaction clauses for individual knowledge
formulas as follows:

(M, s) B3 Kip) = tt iff for all s €S, R"™(s,s’) implies ((M,s") E2 ) = tt
(M, s) B3 K;p) =ff iff for some s’ € S, R™(s,s') and ((M,s") E3 ¢) =

Intuitively, agent 7 knows ¢ at state s iff in all states s’ that are epistemi-
cally compatible with s (in the sense that the information of s and s’ can be
consistently combined in a third reachable state s”), ¢ holds at s’. This can be
seen as a conservative notion of knowledge, as ¢ has to be true in all such states
s’, in which 4 might have strictly more information than in s. Symmetrically, for
K;¢ to be false at s, ¢ has to be false in some state s’ in which ¢ has at most as
much information as in s.
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We remark that the logic K does not contain temporal operators, and there-
fore in K we cannot describe notions pertaining to the evolution of knowl-
edge, nor the knowledge of temporal facts. Nonetheless, we provided a dynamic
account of agents and interpreted systems, which is apparent in Definition 3 as
the interpretation of epistemic formulas is restricted to the set S of reachable
states. Indeed, in line with the standard semantics of interpreted systems [15,27],
we assume that agents consider epistemically possible only the reachable states
in S, and therefore the dynamics of IS is accounted for also in the semantics of
static epistemic properties. In Sect. 3 we will see that this has a major impact
on the definition of abstractions.

The two-value satisfaction relation =2 for standard IS can be derived from
=3 by considering clauses for tt only, as well as identity of local states and classic
negation (clauses for propositional connectives are immediate and thus omitted):

(M,s) E? q iff I(s,q) =tt
(M,s) =2 Cre iff forall s’ €S, s~% s implies (M,s') E2 ¢
(M,s) =2 Dry iff for all s’ € S, s ~2 s implies (M, s) =2 ¢

An IS M satisfies a formula o, or M =2 ¢, iff for all states s € S, (M, s) 2 .
Similarly, (M |2 ¢) = tt (resp. ff) iff for all (resp. some) s € S, ((M,s) =3
©) = tt (resp. ff). In all other cases, (M =3 ) = uu.

We now state the model checking problem for this setting.

Definition 4 (Model Checking Problem). Given an IS M and a formula ¢
in K, determine whether M = ¢.

Since we defined agents on possibly infinite sets of local states, interpreted
systems are really infinite-state systems and the model checking problem is unde-
cidable in general. In Sect.3 we develop abstraction techniques to tackle the
model checking problem. For the time being, we prove the following auxiliary
result, which shows that for standard IS the two-value and three-value semantics
for K coincide.

Proposition 1. In every standard IS M, for every state s and formula ¢ in K,

(M,5) E° ¢) =tt if f (M,s) E* &
((M,S) |:3 ¢) =ft iff (Mvs) %2 o)

Proof. The proof is by induction on ¢, the interesting cases concern the knowl-
edge formulas. We prove the case for ¢ = K;p. We remarked above that in
standard IS the distinction between over- and under-approximations collapse,
and R"" = Rt =~,;. Hence, ((M,s) 3 ¢) = tt iff for all &' € S, R]"™(s, ')
implies ((M,s') E* ¢) = tt. Since R;"™(s,s') iff s ~; s and by induction
hypothesis, the above is equivalent to s ~; s’ implies (M,s') 2 ¢, for all
s’ € 8, that is, (M, s) 2 ¢. The case for ((M,s) E> K;p) = ff is symmetric;
while the inductive cases for ¢ = Cry and ¢ = Dy are proved similarly.
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By Proposition 1 on standard IS the three-value semantics for K is a con-
servative extension of the typical two-value semantics. This result has a major
impact on the abstraction procedure put forward in Sect. 3.

We conclude this section with two examples of interpreted systems. In partic-
ular, we consider two types of systems: (i) systems with a natural partial order
defined on the local states of agents, and (ii) infinite-state IS for which we will
define finite, three-value abstractions in Sect. 3.

Ezxample 1. We first consider an example of an interpreted system with a partial
order defined on each agent’s local states. We introduce a variant of the muddy
children puzzle [15], in which each child sees some of the other children, but she
might not see all of them, and she does not know how many children are exactly
taking part in the puzzle. Hence, we assume that the local state of child 7 is a
tuple (s1,...,8;_1,8i41,...,5/44|) that registers whether any other child j # i
is either clean (0), muddy (1), or unknown (—). We define an order < on local
states such that [ <" iff I; = 1; for every child j # i with [; # —.

Now consider a global state s = (0,1, —), in which child 1 sees that child
2 is muddy, while she has no information on 3. In particular, child 1 knows
that, provided that child 2 is actually active in the puzzle (i.e., 2’s local state is
different from —), then she is not muddy, but 1 does not know this about child
3. Formally, we can check that (s = Kj(actives — ms)) = tt as for all states ¢/,
R{"Y(s,s") implies that s} € {1,—}, and therefore 2 is muddy whenever she is
active. On the other hand, we have that (s = K (actives — mg)) # tt, as for
state s” = (0,1,0), R"™(s, s”) holds, that is, child 3 is active but clean. Also,
(s = Ki(actives — mg)) # ff, as for every s, R7"S!(s,s’) implies sy = —, i.e.,
actives — mg is vacuously true. As a result, (s | Kj(actives — m3)) = uu.
By reasoning similarly, we can check that (s | D(activea; — mg)) = tt, while
(s = Clactives — mg)) = uu.

Furthermore, we consider the impact of the system’s evolution on the epis-
temic properties of agents. In the classic muddy children puzzle, the father
announces that at least one child is muddy. As a consequence, no child con-
siders state (0,0,0) epistemically possible any longer. In particular, after the
father’s announcement, at state v = (1,0,0) child 1 knows that she is muddy,
as for all reachable states v’, R]"Y(v,v’) implies v; = 1. Hence, it is the case
that (v | Kimi) = tt. On the other hand, for state u = (1,0,—), we have
that (u = Kimq) # tt, as R7"¥(u, (0,0,1)) and ((0,0,1) = m;) = ff. Further,
(u = Kymy) # ff as, if R (u,u’), then u) = 1 because at least one child has
to be muddy, and therefore (v’ |=m;) # ff. As a result, (u = K1mq) = uu, that
is, child 1 is not able to see any other muddy child, but she cannot infer that she
is muddy, as she is unsure about 3. Most importantly, the epistemic properties
of agents depends essentially on the states reachable in the system’s execution.

Ezxample 2. The second example we analyse hinges on a standard IS, but with
an infinite number of states. In Sect.3 we will show how a finite, three-value
abstraction can be defined on such infinite-state IS, in order to make the model
checking problem decidable.
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In this scenario we consider agents 1 and 2, whose local states are represented
by integer variables x and y respectively, taking values in Z, together with the
environment e. Agents 1 and 2 can increase or decrease the value of their integers
at any time, but in selected cases the joint action takes effect only if they increase
or decrease their values simultaneously. Formally, we define agents 1 and 2 so that
(i) L1 = Lo = Z; (ii) Acty = Acta = {inc, dec}; and (iil) Pri(z) = Pra(z) = Acty
for all z € Z. Moreover, as regards the environment e, we have L. = {(z,y) |
x,y € Z}; and Act, = {ok,no} with Pr.((z,y)) = {ok} iff 2 = 4 o y = -2
orx =5%<y=23; Pr.((z,y)) = {no}, otherwise. Then, the transition function
71 is given as follows. If 2 # —4, x # 5, and a = (a1, as, ok), then the updated
value 2z’ is obtained by applying the increase or decrease action a;. Further, if
r = —4orx =5, and a; # as or a3 = no, then the updated value z’ is equal
to x; else, if a = (a1, aq,0k) for a1 = ag, then the updated value z’ is obtained
by applying the corresponding action ai. The definition of 75 is symmetric for

y=—2and y = 3, and it is given as follows:
72(y, (a1, a2,0k)) = az(y) ~ for y # =2 and y # 3;
72(y, (a1,a2,a3)) =y for y = —2 or y = 3, and ag = no or a; # as;

T2(y, (a1, a2,0k)) = az(y) for y=—2or y =3, and a1 = as.

Intuitively, agents 1 and 2 freely increment and decrement their local variable,
but synchronise in states (—4, —2) and (5,3) to either increment or decrement
simultaneously. Since each agent can only view her local variable, the environ-
ment e acts as to guarantee their synchronisation. In particular, the environ-
ment’s transition function 7. is given as follows:

Te((zvy)v (a1’a2’0k)) = (al(x)va2(y)) for (xvy) 7é (74’ 72) and (xvy) 7é (573)7

Te((x,y), (a1?a23a3)) = (l',y) for (xay) = (743 72) or (fﬂ,y) = (573)a
and ag = no or aj # ag;

Te((l‘,y), (a17a270k>) = (al(x),ag(y)) fOI“d(CC,y) = (_47 _2> or (mvy) = (573)a
and a; = as.

Finally, we introduce the interpreted system M on the set Ag = {1,2,e} of
agents, starting from initial state (0,0).

By the definition of M, we can check informally that if x < 3, then agent
1 knows that y < 3, that is, the specification (z < 3) — K;(y < 3) is true
in M. Moreover, specification (z < 3) — Dy; 23(y < 3) holds as well. However,
to verify such formulas at some state s = (x,y) such that s | 2 < 3 we have
in principle to check that y < 3 on an infinite number of states s’ = (x,y’),
for y' € Z, which are indistinguishable for agent 1. As a consequence, model
checking epistemic specification on infinite-state IS is undecidable in principle.
In the case in hand we can reason about the particular protocol and specification
considered, and reach a conclusive answer. However, our aim is to develop an
abstraction-based general-purpose verification procedure that does not rely on
system-specific features and can be applied as generally as possible.
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3 Abstraction

In this section we introduce an abstraction-based technique for the verification
of epistemic properties on standard, possibly infinite interpreted systems. Specif-
ically, for every agent i € Ag in a standard IS M, we define an abstract agent i
and the corresponding abstract IS M4. Then, we prove that any formula ¢ in
K is preserved by the abstraction, that is, if ¢ receives a defined truth value in
MA, then this value is preserved in M. As a result, given an infinite-state stan-
dard IS M, we can define a verification procedure by model checking a suitable
finite-state abstraction M 4. However, the abstraction M4 of a standard IS M
is not necessarily standard, and some specification ¢ can receive an undefined
truth value in M#. Therefore, the outlined procedure defines a partial verifica-
tion technique, which is to be expected given that model checking infinite-state
systems is undecidable in the most general instance.

To define abstraction M# we introduce some preliminary notions. Given a
standard agent i € Ag, we say that a set U = {Uy,...,Ux} C 2F\ {0} of
non-empty subsets U C L of local states is a cover of L iff for every [ € L,
l € U for some U € U. Then, we define a partial order < on sets U,U’ in the
cover U so that U < U’ iff U’ C U. Intuitively, a set U’ of local states contains
more information than U iff U’ is a subset of U. This is in line with the informal
meaning of local states as epistemic alternatives: if agent ¢ considers possible less
epistemic alternatives, then she has more information about what the current
state actually looks like. In the limit case, for U a singleton, ¢« knows exactly the
current state.

Given a cover U for a standard agent i € Ag, we define the abstraction i4.

Definition 5 (Abstract Agent). Given a standard agent i = (L, Act, Pr, )
and a cover U, we introduce the abstraction i* = (L4, Act?®, PrA, 74 such that

— LA =U with partial order < such that U < U’ iff U' CU;

— Act = Act?;

— for every U € LA, Pra(U) = U,y Pr(l);

~ U’ € 72U, a) iff for somel € U, ' € U’, we have ' € 7(l,a).

Notice that the size of an abstract agent i, given as the cardinality |L4| of
the set LA of her abstract local states, is finite although the set L of concrete
local states might be infinite. Indeed, while in such a case cover L* must contain
at least one subset U C L with infinitely many local states, the size |L#| of LA
given as its cardinality is finite. Further, an action a is enabled in abstract state
U iff it is enabled in some local state in U; while a transition U — U’ holds iff
I — I’ for some local states [ € U and I’ € U’. Observe that the definition of the
abstract transition function 74 is in line with similar notions for the abstraction
of simple transition systems [8]. As a consequence, it is also prone to some of the
related issues. In particular, the abstract transition might generate reachable
states for which there is no corresponding concrete transition and reachable
states, that is, the abstract transition might be spurious. Hereafter, we impose
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constraints on our abstract agents and interpreted systems to avoid spurious
transitions.

Next we define a kind of simulation relation between the global states built
on the concrete and abstract agents respectively, and say that s’ € G4 simulates
s €G,ors =<¢,iff for every i € Ag, s; € s. Notice that, since each U; is a
cover, for every s € G, s < s’ for some s’ € GA.

We now introduce the abstraction M4 of a standard IS M, defined on
abstract agents i1 € Ag?, as follows.

Definition 6 (Abstract IS). Given a standard IS M = (Ag,I,7,1I), the
abstract IS M4 = (Ag?, 14,74, IT4) is such that

— Ag? is the set of abstract agents i?, for each agent i € Ag;

- 1A ={s"€GA| s =<5 for somesel};

— 74 is defined as in Definition 2;

~ for every s' € G4, for t € {tt,ff}, HA(s',p) =t iff for all s € G, s =< &
implies II(s,p) = t; otherwise, ITA(s',p) = uu.

Since each U; is a cover, the set I of abstract initial states is non-empty
whenever I is. Further, the global abstract transition function 74 is indeed the
composition of the various local TZ»A, as per Definition 2; while an atom is either
true or false at abstract state s’ iff it is such in all concrete states simulated by
s, otherwise it is undefined.

Above we mentioned that the abstract transition function can introduce
reachable states in the abstract IS M, for which there is no corresponding
concrete state reachable in M. In particular, in M4 an agent might consider
reachable epistemic alternatives, that are not really such in M. This remark
motivates the introduction of the following notion.

Definition 7 (Admissibility). A set Ag? of abstract agents is admissible iff
for every s' € GA and s,t € G, if s < s’ andt < s then s —7T t.

Intuitively, this condition on IS says that any state simulated by s’ € G4 is
eventually reachable from any other state simulated by s’. Then, an abstraction
M4 of an IS is admissible iff all its abstract agents in Ag? are.

By this notion of admissibility we are able to prove the following key result,
which intuitively states that the epistemic relations in IS M and abstraction M4
commute with the simulation relation <.

Lemma 1. Let M be a standard IS with admissible abstraction MA. If s < s
and RA™SY(s' 1), then s ~; t for some t € S such that t < t'. Moreover, if

s =s" and s ~; t, then R?may(s’, t') for some t' such thatt < t'.

Proof. Suppose that s < s'. Then, RA™u(s' ¢') iff ) < &), iff s; C t,. In
particular, for [ = s;, s < s’ and s} C t, imply [ € t/. Further, if ¢ € I is initial,
then either t < ¢’ for some initial ¢ € I such that ¢; = [, and therefore s ~; ¢ for
t € S; or for some t € I, t° <t but t¥ # I. However, we assumed that M4 is
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admissible, that is, t < ¢’ is reachable from t° < ¢’. Hence, we obtain a reachable
state t € SA such that ¢t <t and t; =1 = s;, i.e., s ~; t.

On the other hand, suppose that ¢’ is reachable in M4 via executiont’® — ... —
t’* such that '° € I4 and t'* = #'. By induction on k, we can prove that there exists
an execution O, ..., t* in M, for K’ > k, and integers j' < k" such that t/ < 7" and
tfl = [. The case for k = 0, that is, t’ € I, goes as above. Hence suppose that the
induction hypothesis holds for & — 1. Further, we have t*~1 — /¥ In particular,
v — v for some v < t* 1 and v/ < t’*. Since M4 is admissible, v is reachable
from t* ~! and t*" is reachable from v’. Hence, by reasoning similarly to the case for
k = 0, we obtain an execution t* — ... — t*" in M such that ¢* < t*" and tf/ =1.
In particular, for t = tH e S,wehave s ~; tandt < t'.

Finally, suppose that s ~; t, that is, s; = t,. Hence, for ¢, = s, we have
t; C t; and t; C s}. Moreover, for every j # i, there exists U; such that ¢; € U;.
Define t' = (Uo, ..., Ui—1,ti,Uit1, ..., U aq)). By Definition 6 abstract state ¢’ is
reachable in M# by the same sequence of joint actions as ¢ in M. Hence, ¢’ € S4
and R™Y(s' 1) holds.

Notice that the need for admissibility stems from the presence of spurious
executions in the abstract system. Various methodologies have been put forward
for refining abstractions w.r.t. spurious behaviours [8]. Here we remark that our
notion of admissibility is only meant to preserve reachability, and in general it
is not sufficient to preserve more elaborate temporal properties. Nonetheless, it
is enough to preserve epistemic properties, as shown by the next result.

Theorem 1. Let M be a standard IS with admissible abstraction M*, s < &,
and t € {tt,ff'}. Then for every formula ¢ in K,

(MA,s") P @) =t implies (M, s) ° ¢) =t

Proof. The proof is by induction on the structure of ¢. We only consider the
cases for knowledge formulas, with ¢ = K;. If ((M, s) [E3 ¢) # tt then for some
teS,s~;tand (M,t) =3 o) #tt. If s < s’ and s ~; t, then by Lemma 1, for
some t' € 84, RA*™¥(s/ ') and t < t'. In particular, ((M,t) =3 ) # tt implies
(M4, t") =% ¢) # tt by induction hypothesis, that is, (M4, s') =3 ¢) # tt. As
regards the case for ¢ = K;p being false. If (M4,s) =% ¢) = ff then for some
t' € SA RA™SY (s ') and (MA, 1) |3 ¢) = ff. If s < s’ and RA™"(s' '), then
again by Lemma 1, for some t € S, s ~; t and ¢ < ¢'. In particular, by induction
hypothesis we obtain ((M,t) =3 ) = ff, and therefore ((M,s) =3 ¢) = ff. The
cases for the distributed and common knowledge formulas are proved similarly.

By Proposition 1 and Theorem 1 the next result follows immediately.

Corollary 1. Let M be a standard IS with admissible abstraction M4, and
s = s'. Then for every formula ¢ in K,

(M) 9 ) = tt implies (M, s) 1 6
(MA,s") =3 ¢) =ff implies (M,s) 2 ¢
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By Theorem 1 and Corollary 1 we obtain the following (partial) decision
procedure to verify a multi-agent epistemic specification ¢ against infinite-state
IS. Given a standard IS M we build an admissible abstraction M4 and then
model check ¢ against M4, If the outcome is either true tt or false ff, then by
Corollary 1 we obtain that ¢ is true (resp. false) in M as well. In case that ¢ is
undefined in M4, then no conclusive answer can be drawn. As we mentioned,
this limitation is to be expected, since the state-space of M is infinite, and
the model checking problem for infinite-state systems is undecidable in general.
Nonetheless, we may think of refinement procedures on the abstraction M4, in
order to obtain a refined abstraction M’4 that is able to decide ¢. We leave
abstraction refinement for future work, while here we observe that the abstract
IS M4 depends crucially on the cover I; chosen for each agent i € Ag. Here
we did not provide details as to how such covers can be effectively found. In
most cases of interest covers can be obtained by an analysis of the protocol
and transition function of each agents, as well as the specification at hand. We
consider an instance of such cases in the following example.

Ezxample 3. We reconsider Example 2. By an analysis of the protocols and tran-

sition functions of agents 1 and 2, we identify predicates p; := (z < —4),
py = (1; = —4), p3 = (—4 < x < 5), P4 = (l‘ = 5)7 and Ps = (1‘ > 5)
regarding agent 1, as well as predicates ¢1 := (y < —2), g2 := (y = —2),

g3 :=(—2<y<3),q:=(y=3), and g5 := (y > 3) for agent 2. With an abuse
of notation, we identify a predicate p with the set of local states satisfying p, as
it is customary, for instance, in predicate abstraction [12].

Consider again specification (z < 3) — Ki(y < 3), and a new predicate
pe := (—4 < 2 < 3). Then, condition = < 3 can be rewritten as p; V p2 V pg, and
y < 3 is tantamount to g1 V g2 V g3 V q4. Further, observe that Uy = {p1,...,ps}
is a cover of L1, and Us = {q1,...,q5} is a cover of Ly (actually a partition).
Then, we define abstract agents 14 and 24 such that

— L{ =Uy = {p1,...,ps} with order p3 < pg, and L' =Us = {qu,...,q5};
Act? = Act§1 = Acty = Acto;
— Pri{}(p) = Acty, for all p € L{"; and Prs'(q) = Acty, for all ¢ € L;

the abstract transition function 71 is such that, for 1 < j <5, j # 3,

T]é(p_]’ (dec7 a270k)) = {pjap]—l} T]fq(p]a (inc, a‘270k)) = {p]7p]+l}

with the proviso that p;_1 = p; for j =1, and p;11 = p; for j = 5.
Moreover,

TlA(pSa (d@C, a270k)) = {p27p37p6} TlA(p?n (inc, a’270k)) = {p37p47p6}
TlA(pﬁa (d@C, CLQ,O]C)) = {p67p27p3} TlA(pﬁa (’l:’fLC, a270k)) = {p67p3}

and for all p € L, 7{*(p, (a1, az,n0)) = p.
— the abstract transition function 73 is defined similarly to 1.

Observe that the definitions of the abstract agents 14 and 24 are in accor-
dance with Definition 5. Also, the abstract environment e is given as follows:
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Ly ={(p,q) | p € L{',q € L3'};

— Act? = Acty;

~ Pri{((pi,q;)) = {ok} iff i = 2 & j =2o0ri =4 & j = 4; otherwise,
Pri((pi,g5)) = {no}

we omit the detailed presentation of 72 for reasons of space, but this can be
obtained immediately by Definition 5.

Moreover, all agents 14, 24, and e? are admissible, as in the concrete IS
M, every state is reachable from any other state by an appropriate sequence of
actions. The abstract IS M# is defined on the set Ag* = {14, 24, e} of abstract
agents as above, while the set I of abstract initial states contains pairs (ps, g3)
and (ps,qs) only. The abstract global transition function 74 is defined as in
Definition 6, and the labelling of abstract states is immediate. In particular,
MA# is a finite-state system.

Now, we check specification (z < 3) — K;(y < 3) on abstraction M.
Specifically, if ((M#,s) = o < 3) = tt then s; = p1, 51 = p2, or 51 = Pg.
In the first case, R:™(s,s') implies s} = p; and s) = ¢ or sh = ¢o. In
both cases ((M4,s') = y < 3) = tt. Further, s; = py and R:™%(s,s') imply
sh = po and s, = g9, and again ((M4,s') = y < 3) = tt. Finally, s; = pg
and R{™™(s,s') imply s) = pg or §§ = ps. In the former case we have that
sh = g or sh = g3, and therefore (M*,s') =y < 3) = tt. In the latter, sj, = go,
sh = g3, or sh = q4. In all these cases we obtain ((M4,s') Ey < 3) = tt. As
a result, if (M4,s) = = < 3) = tt, then for all &' € 84, R (s, ') implies
(MA,s") =y < 3) = tt, that is, (M4,s) = Ki(y < 3)) = tt. Hence, the
specification is true in the abstract model, and by the transfer result Theorem 1
we obtain that it holds in the concrete IS M as well.

4 Conclusions

In this paper we introduced a three-value semantics for the multi-agent epistemic
logic K, based on a notion of order defined on the local states of each agent.
Intuitively, in the standard, two-value interpretation of epistemic logic, a notion
of i-indistinguishability is defined on global states by the identity of the local
states for agent i. Here we generalised this idea by considering a partial order <
on local state, instead of the identity =. This semantic choice allows us to define
an abstraction technique, in which local states are bundled together in sets that
are then compared according to set-theoretic inclusion. Most importantly, we
are able to model check an epistemic specification ¢ on a concrete, infinite-state
IS M, by verifying the same formula on some suitable abstraction M4, and then
transfer the result to M by means of Theorem 1. We observe that the abstraction
technique developed in Sect.3 has a key advantage over similar contributions
in [3,25]. In fact, in [3,25] abstract states are defined as satisfiable cubes of
predicates, which are generated by means of an SMT solver with considerable
computational cost. Nothing similar is needed in the present context, where
predicates, seen as sets of states, can be arbitrary as long as they satisfy the
admissibility condition.
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Admittedly, powerful as it is, the proposed methodology has a number of
limitations. We provided an heuristic for building the abstraction M*, by using
the predicates mentioned in the system description as well as the specification
at hand, but did not provide any algorithmic procedure to build a suitable,
finite M4, nor any correctness proof of such a procedure. Further, we require
our predicates, agents, and interpreted system to be admissible, that is, being
closed under reachability. While we conjecture that in most cases of interest,
this property hold, further investigations are needed on this point. These are all
directions we aim to explore in future work, in order to develop a fully automated
verification methodology for epistemic properties of infinite-state multi-agent
systems. Finally, we plan to implement this verification procedure as an extension
of the MCMAS model checker [27].
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Abstract. In Weighted Abstract Argumentation Frameworks (WAAFs),
weights on attacks bring more information. An advantage is the possibil-
ity to define a different notion of defence, which also checks if the weight
associated with defence is compared with the weight of attacks. We study
and merge together two different relaxations of classically crisp-concepts
in WA AFs: one is related to a new notion of weighted defence (defence can
be stronger or weaker at will), while the second one is related to how much
inconsistency one is willing to tolerate inside an extension (which can be
not totally conflict-free now). These two relaxations are strictly related
and influence each other: allowing a small conflict may lead to have more
arguments in an extension, and consequently result in a stronger or weaker
defence. We model weights with a semiring structure, which can be instan-
tiated to different metrics used in the literature (e.g., fuzzy WAAFs).

1 Introduction

The aim of this work is to relax classically exact and sharp concepts in Weighted
Abstract Argumentation Frameworks (WAAFs, see works in Sect.6). This is
accomplished (i) by allowing an internal conflict inside the extensions satisfying
a given semantics (e.g., admissible), and (i) by relaxing the defence of arguments
w.r.t. (the weight of) the attacks coming from outside an extension. Such two
issues mutually influence each other, hence they need to be studied together:
allowing a small conflict may lead to have one more argument inside an extension,
which consequently may be more strongly defended by exploiting the attacks of
this additional argument, or more weakly, in case such additional taken-argument
receives attacks from external ones.

A flexible computational framework should consider ¢ and i, in order to
let an agent cope with both such two factors simultaneously. In this way, an
autonomous reasoning-agent has more instruments to understand, for instance,
whether tolerating a small conflict among its arguments considerably changes its
point of view: as a possible scenario, a debate can be permeated by arguments
advanced by trolls [18], which can accordingly generate noise in an abstract
framework. Internal inconsistency arises in many areas of Al and computing:
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merging information from heterogeneous sources, negotiation in multi-agent sys-
tems, or understanding natural language dialogues [4].

On the other hand, an agent could be interested in defending its arguments
with a higher or lower level of strength. Even this choice impacts on the final
outcome: by requiring a weaker defence one finds more extensions with the same
given semantics. The strictest (not relaxed) level of defence corresponds to w-
defence [7]. Differently from [14], where the aggregation of all the attack weights
from a set of arguments % to an attacker a needs to be only stronger than the
attack from a to b, in w-defence we aggregate all the attack weights from a to
AB: attacks are collectively considered.

With such aims in mind, we design a”-semantics, where « is the amount
of internal conflict tolerated inside an extension, and + is the weight-difference
between a “full” defence (we newly define and call it w-defence) and the “weaker”
defence it holds instead. By progressively relaxing defence (i.e., increasing ) we
show that we reconnect to related definitions in the literature, as [14] and Dung’s
seminal work [15]. Hence, we define a”-conflict-free, a7-admissible, a”-complete,
«o”-preferred, and a”-stable. These new semantics nevertheless inherit some orig-
inal properties [15], as their implications (e.g., a?-stable = a"-preferred), or the
fact that T--semantics are equivalent to their correspondent in [15], and T '-
semantics are equivalent to [7].

To represent weights and operations (e.g., their aggregation), we adopt a
parametric algebraic framework based on c-semirings [6]. Hence, it is possible to
consider different metrics within the same computational framework (e.g., fuzzy
or probabilistic).

The paper is structured as follows: in Sect.2.1 we introduce c-semirings [6]
(the general structure we adopt to represent weights) and we summarise the
basic definitions of AAF given in [15]. Section 3 presents WAAF's and w-defence.
Section 3.1 relaxes w-defence by proposing y-defence, where v is the amount
by which defence is weakened. In Sect.4 we propose «a”-semantics (e.g., a”-
admissible), which extend classical ones by considering an internal amount of
conflict v, and « at the same time. In Sect.5 we describe an implementation
of the proposed framework, and we show the tests obtained on a set of 100
random WAAFSs; we also present an application scenario and contextualise the
motivations behind the work. In Sect.6 we describe related work, and, finally,
Sect. 7 wraps up the paper by drawing final conclusions and suggesting future
work.

2 Background

We first introduce c-semirings (Sect.2.1), and then (Sect.2.2) we recollect the
main definitions behind AAFs [15]. C-semirings here represent a parametric
framework where to evaluate and compose attack-weights. By changing the
underlying c-semiring instantiation, it is possible to capture different metrics
with the purpose to model e.g., fuzzy or probabilistic WAAFs (see Sect. 6).
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2.1 Semirings

In practice, c-semirings [6] are commutative (® is commutative) and idempotent
semirings (i.e., @ is idempotent), where @ defines a complete lattice: every subset
of elements have a least upper bound, or lub, and a greatest lower bound, or glb.
In fact, c-semirings are semirings where & is used as a preference operator, while
® is used to compose preference-values together.

Definition 1 (C-semirings [6]). A commutative semiring is a tuple S =
(S,®,®,L,T) such that S is a set, T,L €S, and ®,® : S x S — S are binary
operators making the triples (S, ®, L) and (S, ®, T) commutative monoids (semi-
groups with identity), satisfying (1) Vs, t,u € S.s® (t+u) = (s®@t)+(s®@u) (dis-
tributivity), and (ii) Vs € S.s @ L = L (annihilator). IfVs,t € S.s D (s®t) = s,
the semiring is said to be absorptive. In short, c-semirings are defined as com-
mutative and absorptive semirings.

The idempotency of @ leads to the definition of a partial ordering <g over
the set S (S is a poset). Such partial order is defined as s <g t if and only if
s@®t =t, and @ returns the lub of s and ¢ (defined also as LI, while the glb
is defined by M). This intuitively means that ¢ is “better” than s. Some more
properties can be derived on c-semirings [6]: () both @ and ® are monotone over
<s, (i) ® is intensive (i.e., s®t <g s), and (iii) (S, <s) is a complete lattice. L
and T are respectively the bottom and top elements of such lattice. When also
® is idempotent, (i) @ distributes over ®, (i) ® returns the glb of two values
in S, and (i7) (S, <s) is a distributive lattice.

Well-known c-semiring instances are: Spooican = ({false, true},V,A, false,
true)t, Spuzzy = ([0, 1], max, min, 0, 1), Spottiencck = (RTU{+00}, max, min, 0, 0o),
Sprovavitistic = ([0,1], max, x,0,1) (or Viterbi semiring), Syeightea = (RT U

{400}, min, +, 400, 0).

Although c-semirings have been historically used as monotonic structures
where to aggregate costs (and find best solutions), the need of removing values
has raised in local consistency algorithms and non-monotonic algebras using
constraints (e.g., [5]). A solution comes from residuation theory [11], a standard
tool on tropical arithmetics that allows for obtaining a division operator that
represents a “weak” inverse of ®.

Definition 2 (Division [5]). Let S be a tropical semiring. S is residuated if the
set {x € S |t®ax < s} admits a mazimum for all elements s,t € S, denoted
sOt.

Since a complete? tropical-semiring is also residuated, we have that all the
classical instances of c-semiring presented above are residuated, i.e., each element
in S admits an “inverse”, which can be also unique:

! Boolean c-semirings can be used to model crisp problems and classical Argumenta-
tion [15].

2'S is complete if it is closed with respect to infinite sums, and the distributivity law
holds also for an infinite number of summands [5].



130 S. Bistarelli et al.

Definition 3 (Unique invertibility [5]). IfS is absorptive and invertible, then
it is uniquely invertible iff it is cancellative, i.e., Vs, t,u € S.(s@u = t@u) A (u #
0)=s=t.

Since all the previously listed instances of c-semirings are cancellative, they
are uniquely invertible as well. For instance, the unique “inverse” s @ t in the
weighted c-semiring is T =0ift > s (e.g., s=7,t =8) and s —t if s > ¢ (e.g.,
8—7 = 1), while in the fuzzy c-semiring itis T = 1ift < s (e.g., s = 0.8,t = 0.7)
and s if s <t (e.g., s = 0.7,¢t = 0.8); this is also known as Godel implication. In
the following of the paper we will use “semiring” as a synonym of “c-semiring”.

2.2 Argument Systems
In his pioneering work [15], Dung proposes Abstract Argumentation Frameworks:

Definition 4. An Abstract Argumentation Framework (AAF) is a pair (4, R)
of a set .45 of arguments and a binary relation R on o4, called the attack rela-
tion. Ya;, a; € g5, a;Raj (or R(a;,a;)) means that a; attacks a;.

An argumentation semantics is the formal definition of a method (either
declarative or procedural) ruling the argument evaluation process. In the exten-
sion-based approach, a semantics definition specifies how to derive from an AAF
a set of extensions, where an extension # of an AAF (47,45, R) is simply a subset
of #,4s. In Definition 5 we define the first semantics, which is at the basis of all
the others:

Definition 5 (Conflict-free). A set # C 7,45 is conflict-free iff no two argu-
ments a and b in B exist such that a attacks b.

All the other semantics presented in this section rely (explicitly or implicitly)
upon the concept of defence:

Definition 6 (Defence D). An argument b is defended by a set B C 7,45 (or
B defends b) iff for any argument a € g5, if R(a,b) then Ic € A s.t., R(c,a).

An admissible set of arguments is a conflict-free set that defends all its ele-
ments. Formally:

Definition 7 (Admissible). A conflict-free set B C o5 is admissible iff
each argument in % is defended by % (from the arguments in g5\ %B).

Three classical semantics [15] refining admissibility are defined in the follow-
ing definitions:

Definition 8 (Complete). An admissible extension 9B C ofy4s is a complete
extension iff each argument which is defended by A is in AB.
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Definition 9 (Preferred). A preferred extension is a mazimal (w.r.t. set
inclusion) admissible subset of yqs.

Definition 10 (Stable). A conflict-free set B C o4 is a stable extension iff
for each argument which is not in B, there exists an arqgument in B that attacks it.

If o = {cf, adm, com, stb, prf} respectively stand for conflict-free, admissible,
complete, stable, and preferred semantics, we recall that given any framework
F, sth(F) C prf(F) C com(F) C adm(F) always holds. Moreover, for each o
except stb we have o(F) # () holds.

3 Weighted Abstract AFs

In the following of this section we rephrase some of the classical definitions given
in [15], with the purpose to parametrise them with the notion of weighted attack
and c-semiring. The following definition presents semiring-based WAAF [8]:

Definition 11 (Semiring-based WAAF [8]). A semiring-based Weighted
AAF (WAAFs) is a quadruple (<45, R,W.,S), where S is a c-semiring
(S,8,®,L,T), Hrgs is a set of arguments, R the attack binary-relation on o4,
and W : @lpgs X Apgs — S is a binary function. Given a,b € @45, ¥(a,b) € R,
W(a,b) = s means that a attacks b with a weight s € S. Moreover, we require
that R(a,b) iff W(a,b) <s T.

In Fig.1 we provide an example of a weighted interaction graph describing
the WAAFs defined by 7,45 = {a,b,c,d, e}, R = {(a,b), (c,b), (c,d), (d, c), (d,e),
(e,e)}, with W(a,b) = 7,W(c,b) = 8,W(e,d) = 9,W(d,c) = 8, W(d,e) =
5 W(e,e) =6, and S = (R U {cc}, min, +,00,0) (i.e., the weighted semiring).

8
7 8 5
ke
a — bh «—— ¢ d — e D6
9

Fig. 1. An example of WAAF.

Hence, each attack is associated with a semiring value that represents the
“strength” of an attack between two arguments. We can consider the weights
in Fig. 1 as supports to the associated attack, as similarly suggested in [16,17].
A semiring value equal to the top element of the c-semiring T (e.g., 0 for the
weighted semiring) represents a no-attack relation between two arguments. On
the other side, the bottom element, i.e., L (e.g., co for the weighted semiring),
represents the strongest attack possible.

In Definition 12 we define the attack strength for a set of arguments that
attacks an argument, a different set of arguments, or an argument that attacks a
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set of arguments; the former and the latter are what we need to define w-defence.
In the following, we will use ® to indicate the ® operator of the c-semiring S
on a set of values:

Definition 12 (Attacks to/from sets of arguments). Given a WAAFs,
(Drgs, R,W.S),

- a set of arguments % attacks an argument a with a weight of k € S if

W(B,a) = Q) W(b,a) =k;
beB
— an argument a attacks a set of arguments B with a weight of k € S if

W(a, B) = Q) W(a,b) = k;
be A
- a set of arguments B attacks a set of arguments 9 with a weight of k € S if

W(#B,2)= @K Wbd =k

beB,deD

For example, looking at Fig. 1 we have that W ({a, c},b) = 15, W(e,{b,d}) =
17, and W({a,c},{b,d}) = 24. We are now ready to introduce our version of
weighted defence, i.e., w-defence:

Definition 13 (w-defence (D,)). Given a WAAFs, WF = (45, R,W.S),
B C dpgs w-defends b € o,q5 from a iff, given a € 45 s.t. R(a,b), then
W(a, B U {b}) >s W(RB,a); B w-defends b iff it defends b from any a s.t.
R(a,b).

As previously advanced, a set # C 4, defends an argument b, if the ®
of all the attack weights from % to a (for any a s.t. R(a,b)) is worse-equal
(w.r.t. <g) than the ® of the attacks from a to U {b}. For example, the set
{c} in Fig.1 defends ¢ from d because W(d, {c}) >s W({c},d), i.e., (8 < 9).
On the other hand, {d} in Fig.1 does not defend d (i.e., itself) from ¢ because
W(c.{d}) 2s W({d},c).

Definition 13 can be seen as an extension of the defence in [14]: both pro-
posals implement a collective defence from % to a (composing the weights of
the counter-attacks together), but while in [14] the weight of the defence is com-
pared against each single attack from a, in Definition 13 we consider the group of
attacks from a to Z as a single entity, i.e., with a single global weight; thus, the
comparison is only against such a weight, leading to a more balanced approach
between attack and defence. In Definition 14 we represent the defence in [14] in
the same semiring-based framework.

Definition 14 (D). Given WF = (.45, R, W,S), an argument b is defended
by a subset of arqguments B if Ya € oyys s.t. R(a,b), we have that W(a,b) >s
W(%A,a).

In Fig. 2 we show an example of the difference between D,, and ;. What we
obtain is something stricter than both [14,15]:
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Proposition 1 (Defence implications [7]). D, = Dy and D,, = D;.

A more detailed comparison of w-defence and the notions of defence in [14,
15,24] can be found in [7]. For instance, we prove that, when using the Boolean
semiring, w-defence and [14,15,24] are equivalent.

3.1 Relaxing w-Defence

Even if stricter than Dy [15] and Dq [14], w-defence can be relaxed in order to
meet Dy and, ultimately, since D; = Dy [7], the classical defence given by Dung,
i.e., Dg. This relaxation, called ~y-defence, is parametrised on a threshold-value
v, which quantifies how much defence is relaxed: if v grows then the relaxation
is greater. y-defence is used to reach and defend arguments that are not “fully”
w-defended according to Definition 13, i.e., for which W (a, ZU{b}) #s W (%, a):

Definition 15 (y-defence (D,)). Given (% 45, R, W,S = (S,8,®, L, T)) and
v €S, B C oy y-defends b € g5 iff Ya € g5 such that R(a,b) we have
that W(%B,a) # T and (W (a, BU{b}) @ W(AB,a)) >s 7.

Considering the example in Fig. 1 (Syeighted), for instance {d} 1-defends d
from ¢ (i.e., v = 1): (W(e,{d}) — W({d},¢)) < 1,since 9—8 =1and 1 < 1.
Next proposition shows how it is possible to reconnect y-defence to w-defence
(see Definition 13):

Proposition 2. T-defence (v = T) is equivalent to w-defence (Definition 13),
ie. DT & Dy,

Next proposition shows how it is possible to reconnect y-defence to Dung’s
original definition of defence.

Proposition 3. L-defence (v = L) is equivalent to the original definition of
defence given by Dung [15], i.e., D) < Dy.

In the following two propositions we relate ., and ID; when all the arguments
attack at most one other argument (Proposition4), and when there are more
attacks (Proposition 5).

Proposition 4. Given a € s, we define T, as Ubedms R(a,b). If VT, the
cardinality is |Ty| < 1, then Dy < D+ (by Proposition 2, also Dy < D, holds).

Proposition 5 (D1 = D5). With T, defined as in Proposition 4, if 3T,.|Tg| >
2, we find the n subsets T! of T, with cardinality |T,| — 1. Then we define

Yo = [lic1.n(Ilr@pyer: W(a,b)), and 5 =[]va (M is the glb of S). Finally, we
obtain that Dy = Dy always holds.

Finally, we can define an implication relation with respect to different ~y:

Proposition 6. If # ~v,-defends b and v, >s 72, then B yo-defends b, i.e.,
D, =D,,.
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4 o7-Semantics

In this section we redefine all the classical semantics [15] by exploiting both the
notion of (i) an inconsistency amount « inside an extension (to be tolerated), and
(ii) the concept of y-defence. In Definition 16 we redefine the notion of conflict-
free semantics: conflicts can be now part of the solution up to a cost-threshold a.

Definition 16 (a-conflict-free semantics). Given a WAAFs, WF =
(rgs, R,W,S), a subset of arguments B C g5 is a-conflict-free iff
W(#,%8) >s a.

With respect to the WAAFs in Fig. 1, while the set {a, b, ¢} is not conflict-free
in the crisp version of the problem (since it includes the attacks between a and
b, and between ¢ and b), {a,b,c} is instead 15-conflict-free because W(a,b) +
W(c,b) = 15 (as a reminder, we are using S,eighteq for such examples).

Hence, by raising « we further relax the requirements behind conflict-freeness.
No constraint is given on the amount of conflict internal to an extension, thus
all arguments can coexist together.

Proposition 7. Given any (45, R, W,S), the set of L-conflict free extensions
correspond to the power-set of Hpqs.

We now define two propositions that derive from Definition 16 and from the
semiring properties explained in Sect.2.1.

Proposition 8. If an extension is ay-conflict-free and oy >s ao, then the same
extension is also as-conflict-free.

For instance, {a,b,c} is 16-conflict-free because it is a 15-conflict-free
(15 >5,,mea 16). Therefore, this states than in a-conflict-free extensions we
tolerate an internal inconsistency-amount better than a.

The notion of y-defence (see Definition 15) brings to the definition of the first
semantics taking advantage of the notion of defence, that is the a”-admissible
semantics:

Definition 17 (o”-admissible semantics). Given WF = (4,45, R,W,S), an
a-conflict-free set B C s is o -admissible iff the arguments in % are -
defended by A from the arguments in .45\ 8.

Considering the framework in Fig.1 as unweighted, Dung’s admissible sets
are: 0,{a},{c},{d},{a,c},{a,d}. T "-admissible extensions (i.e., 0°-extensions
in Syeighted) are {a}, {c}, and {a,c} instead: {a} because is not attacked by
any other argument, {c} and {a,c} because they both w-defends ¢ from the
attack performed by d, i.e., W(d,c) >s,,..a W(c,d) (ie., 8 <9). For instance
{d} is not 0%-admissible because it is not able to 0-defend (or to w-defend, see
Proposition 2) itself from the attack of c¢. For the same reason, {a,d} is not
0%-admissible.
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Considering an example with an internal inconsistency a # T, the extension
{a,b,c} is 15%-admissible: it is 15-conflict-free, and {a, b, c} 0-defends its argu-
ments, i.e., ¢ from d. All the 15°-admissible extensions are (), {c}, {c, e}, {a},
{a,c}, {a,c, e}, and {a,b,c}. In order to provide an example with both a # T
and v # T (still considering Fig. 1), the set {d, e} is 11'-admissible, since it is
11-conflict-free, and d defends itself (and the whole {d,e}) from ¢ by paying a
penalty of 9 — 8 < 1.

Fig. 2. A WAAF where 8 = {b,c,d, e} Fig.3. An example of 2°-complete
defends its arguments from f accord- extension, & = {b,c,d}; BU{f} is 4°-
ing to D1, but not according to Dy, complete, while Z U {f} and £ U {e}
(using Sweighted). The attack from a is are two 5%-complete extensions (using
defended according to both D; and D,. Suweighted)-

Four further semantics, which refine a”-admissibility, are introduced from
Definitions 18 to 20:

Definition 18 (a”-complete). Given (<745, R, W,S), an o7-admissible B C
Grgs 15 o -complete iff each argument b € .4, that is y-defended by % and s.t.
W(BU{b}, BU{b}) >s v is in B (i.e., be B).

Therefore, in the a”-complete semantics we need to bring in all the ~-
defended arguments while respecting the a-threshold at the same time. An exam-
ple is given in Fig.3 (we still suppose to adopt Sieighted), where Z = {b, ¢, d}
is the only 2°-complete extension: even if % 0-defends f from e, it is not possi-
ble to bring f in 2 because we can tolerate only 2 as internal conflict (already
W(b,c) + W(c,d) = 2). However, by relaxing the problem to find 4°-complete
extensions, {b, ¢, d, e} is sole solution, while both {b,¢,d,e} and {b,c,d, f} are
two 5%-complete extensions.

Definition 19 (a7-preferred). An o7-preferred extension is a mazximal (with
respect to set inclusion) a” -admissible subset of <7y.4s.

Still considering Fig.1, {a,c} and {a,d} are the two preferred extensions
according to [15] (i.e., not considering weights). However, {a,c} is the only 0°-
preferred extension, while {{a, c}, {a,d}} is the set of 0'-preferred extensions.

Definition 20 proposes Dung’s stable semantics revisited in a WAAFs.
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Definition 20 (a”-stable). Given (45, R, W,S), an a”-admissible set B is
also an a-stable extension iff Va ¢ B,3b € B.W (b,a) # T, and BU{a} is not
o -admissible.

For example, the set {a,d} is not 0°-stable, because W(c,d) Zs,.me
W({{a,d},c), ie., 9 £ 8. However, it is 0'-stable, since W (c,d) @ W({a,d},c) =
9 — 8 < 1 satisfies v = 1. Thus, in such example there is no 0°-stable extension.

4.1 Properties of a”-Semantics

In the following we provide general considerations on a-semantics: for example,
classical inclusion-relations [15] among the a-semantics are still valid:

Theorem 1 (a”-semantics inclusions). Given any (4, R, W,S), with S =
(S,®,®, L, T), and a,y € S,

1. each o”-admissible extension is also a-conflict-free.
2. each a”-complete extension is also oV -admissible.
3. each o -preferred extension is also oY -complete.

4. each o7 -stable extension is also o -preferred.

Theorem 1 leads to Corollary 1, which states that the classical implication
chain between semantics [15] also holds for a”-semantics.

Corollary 1. By setting o,y € S, the following implications hold between a-
semantics: o -stable = a7 -preferred = «”-complete = «7-admissible = «-
conflict-free.

Theorem 2 shows when a”-semantics can be used to exactly obtain the clas-
sical semantics [15].

Theorem 2. Given F = (45, R), and WF = (@45, R, W,S), with S as
desired, then

1. the set of T-conflict-free extensions in WF is equal to the set of conflict-free
extenstons in F.

2. the set of T-admissible extensions in WF is a equal of the set of admissible
extensions in F'.

3. the set of T--complete extensions in WF is equal to the set of complete exten-
sions in F.

4. the set of TL-preferred extensions is equal to the set of preferred extensions
in F.

5. the set of TL-stable extensions in WFE is equal to the set of stable extensions
m F.

Theorem 3 relates «”-semantics using T-defence) and no internal conflict
(i.e., « = T), to their counterpart in the classical ones [15].?

3 Theorem 3 refines the results in [7].



A Relaxation of Internal Conflict and Defence 137

Theorem 3. Given F = (.45, R), and WF = (45, R, W,S), with S as
desired, then

1. the set of T-conflict-free extensions in WF is equal to the set of conflict-free
extensions in F.

2. the set of T -admissible extensions in WF is a subset of the set of admissible
extensions in F'.

3. for each T T-complete extension Byr in WF, there exists a complete exten-
sion Br in F, s.t., Bwr C Br.

4. for each T T -preferred extension Bwr in WF, there exists a preferred exten-
sion Br in F, s.t. Bwr C Br.

5. for each T T -stable extension By in WF, there exists a stable extension By
m F, s.t. L%)WF g %F.

Theorem 4 shows what happens to a”-semantics when « and v change.

Theorem 4. Given (45, R,W,S = (5,®,®, L, T)), and a1, ez, 71,72 € A s.t.
ay >s ag and Y1 >s Yo, then

1. the set of ay-conflict-free extensions is a subset of the set of as-conflict-free
extensions.

2. the set of a]*-admissible extensions is a subset of the set of a3*-admissible
extensions.

3. for each ai*-complete extension %, there exists an ag’-complete extension
B, such that B, C B-.

4. for each of*-preferred extension %y, there exists an ag?-preferred extension
By, such that B, C Bs.

5. for each af'-stable extension %y, there exists an ag*-stable extension PBs,
such that %, C $Bs.

5 Implementation, Tests, and Applications

We have implemented a”-semantics in ConArg* [9,10], which is a tool that
exploits Gecode® (a constraint-programming library) to solve several problems
related to Argumentation. All the following tests have been collected on a bench-
mark of 100 graphs (25 arguments each) generated according to the Erdés-Rényi
random model [19]: a generator in the NetworkX library® has been used. Each
directed edge is added to a graph with an independent probability p. To each
edge we associate a random natural number in the interval [1..10] (in order to
test Sweighted), and [1..10]/10 (to test Spyuzay).

Figures4 and 5 respectively show the average number (on 100 graphs) of
a”-admissible and «a7-stable extensions (other semantics are omitted for the
sake of space) for all the 78 combinations of o = {0,1,2,4,6,8,9, 10,11,12}

* http://www.dmi.unipg.it/conarg/.
5 http://www.gecode.org.
5 https://networkx.github.io.
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and v = {0,1,2,4,6,8} (using Syeighted): hence we can appreciate what happens
when both « and 7 change. The two sets of extensions grow in the same way, even
if they reach a cardinality of 525 and 21. Figure6 reports instead the average
number of a”-admissible, a”-complete, a”-preferred, and a”-stable extensions
using Syy..y- In the two plots we change only « (resp. ) while we keep v = T
(resp. @ = T). From these figures see that the number of extensions remains
quite stable (except for the a”-admissible).

5.1 An Application Scenario

Relaxing a framework allows us to mitigate the disturbing effect of poorly spec-
ified or unsound attacks (e.g., from trolls) [18]. In Fig.7 we show the same
framework (with the same weights) reported in [18], where several participants
argue about the role of the government in what banning smoking is concerned
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9 5
d — ¢ d —— ¢ (\5
8.5 8 e 8.5 811, €
7 7 /’
b — a ;A b — a A
~_ ~_
9 9
Fig. 7. The troll framework example in Fig. 8. {a,d} is T3-admissible, {a, d, ¢}
[18], using Suweighted- is 2T -admissible.

(please refer to [18] for a description of what arguments really stand for). Weights
represent a strength score for each attack. The attack from e to a is meant to
represent a troll attack (its strength is very low, i.e., 1). In [18] the authors show
how their computational framework is able to mitigate the disturbing effect of
such attack: e is not attacked, thus, with the classical semantics [15], it is capable
of always ruling a out (its impact is strong).

However, we can mitigate it also by using our framework: if we compute the
T-+-stable extensions (by using v = L we consider classical defence [15]) we
obtain {d, e} as the sole solution: in [18] these are the same two most preferred
arguments before mitigating the troll attack. If we instead relax the problem by
computing the 1+-stable semantics, the solution becomes {a,d,e}. This exten-
sion contains the same three most preferred arguments in [18] (i.e., a, d, and
e) after mitigating the troll attack: thus, we remove the effect of e on a in the
framework. Note that e is a “good” argument in [18], thus it is not surprising it
can be part of a “good” extension. It is the attack from e to a to be fake: the
aim is to remove the effect of the attack from e, not e itself.

Figure 8 is instead presented to show how internal and defence relaxations
are strictly linked together: the set {a,d} is T3-admissible, since a is attacked
by ¢ with weight of 8, but only a counter-attack with weight 5 is present from d
to ¢ (hence, in the weighted semiring, the difference to be tolerated is 8 — 5 = 3).
However, if an internal inconsistency of 2 can be tolerated, the set {a,d, e} is
2T -admissible: by allowing a small internal conflict, the defence against b and ¢
becomes stronger (no relaxation is needed to defend them). Therefore, we provide
a means to an agent to decide between {a,d} or {a,d, e}, satisfying either the
first or the second semantics.”

6 Related Work

We begin by showing that a parametric structure to represent weights is useful,
since other approaches in the literature are specialised on a single metric only.

" Defining a (multi-criteria) ranking is outside the scope of this work: see future work
in Sect. 7.



140 S. Bistarelli et al.

For instance, an argument can be seen as a chain of possible events that makes a
hypothesis true [23]. The credibility of a hypothesis can then be measured by the
total probability that it is supported by arguments; to solve this problem we can
use the probabilistic semiring. The Fuzzy Argumentation approach presented in
[25] enriches the expressive power of the classical argumentation model by allow-
ing to represent the relative strength of the attack relations between arguments,
as well as the degree to which they are accepted. In this case, the fuzzy semiring
can model such scenario.

We took inspiration from [16,17] for allowing internal inconsistency: the
authors define the notion of inconsistency budget for the first time, even if with
the purpose to compute more (than one [15]) grounded extensions (see Sect.7
for an hint on this issue).

A recent quantitative study is proposed in [22], where the authors define
Social Abstract Argumentation Frameworks, which basically associate positive
and negative votes to each argument. Afterwards, it is defined how to aggregate
these votes together, and how to associate it with an unique social model. This
framework has been extended in [18] by considering weights on attacks as well.

In [24] attacks are relatively ordered by their force, i.e., R(a,b) > R(b,a)
means that the former attack is stronger than the latter. This is accordingly
reflected by the defence definition, where considering R(a,b) and R(c,a) we
can have that c¢ is a strong or weak defender of b. Therefore, an argument b
is defended by 4 if, and only if, for any argument a such that R(a,b), there
is an argument ¢ € £ such that R(c,a), and according to the desired defence
strength, R(c,a) > R(a,b) or R(c,a) < R(a,b).

In [13] the authors review the works in [1,12,16,21], focusing on how to relate
preference-values and weights, on either arguments or attacks. In [8], if R(a,b)
and R(b,c), a defends ¢ if W(a,b) is worse than W (b, c) (as in [21]), thus the
defence is not collective as instead in [14] and this paper, and the attack is not
collective as in this work. In [21] the difference between the weight associated
with a is related to both the weights of b and ¢, with the purpose to check how
much a defends b (thus obtaining “varied-strength defeat relations”).

In [2] the authors investigate the case where several weak attacks may com-
pensate one strong attack. Then they propose new semantics that originate from
this idea, i.e., a-BBS, which satisfy compensation at different degrees. The new
semantics assign to every argument a score which represents how heavily the
argument is attacked; a score increases when the number and/or the quality of
the attackers increase.

The two principles in [20] are, (i) having fewer attackers is better than having
more, and (%) having more defenders is better than having fewer. The result
is the definition of a graded defence d,, (&), which defines different levels of
defence-strength: if d,,, (&) holds, & is a set of arguments for which each a € &
does not have at least m attackers that are not counter-attacked by at least n
arguments in &.

Finally, it is worth to mention two well-known works that deal with values or
preferences [1,3]. In [3], AAFs have been extended to Value Based AAFs (VAFs).
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A VAF is a five-tuple (.45, R, V, val, P), where <7, 45 is a finite set of arguments,
R is an irreflexive binary relation on A (i.e. (<45, R) is a standard AAF), V is
a non-empty set of values, val is a function which maps from elements of A to
elements of V', and P is the set of possible audiences (i.e. total orders on V). We
say that an argument a relates to value v if accepting A promotes or defends
v: the value in question is given by wval(a). For every a € .45, val(a) € V. A
Preference Based argumentation AAF [1] is a triplet (@45, R, Pref) where Prefis
a partial pre-ordering (reflexive and transitive binary relation) on o7.gs X ©7.¢s.
The notion of defence changes accordingly: let a and b be two arguments, b
attacks a iff R(b,a) and not a > b.

7 Conclusion and Future Work

We have shown two different kinds of relaxations of classically crisp concepts
in Abstract Argumentation. Firstly, arguments inside an extension can attack
each other, and, secondly, a new notion of weighted defence (i.e., w-defence [7])
can be relaxed to 7-defence, with the purpose to be less restrictive. Classical
implications between semantics [15] still hold also in this framework, which can
be adopted to directly represent [15] and other works in the literature. Tests show
that for small o or v the average number of extensions slowly increases, thus
permitting to catch few very “close” solutions characterised by a low amount
of inconsistency (see Sect.5). Relaxing internal conflict or defence (which are
linked together, as exemplified in Sect.5.1), or both at the same time, provides
an agent with a much finer-grained level of analysis than it is typically possible,
since inconsistency is ubiquitous in every-day life [4,17].

In the future we will investigate the a”-grounded semantics, which deserves
separate considerations: a straightforward definition, along the line presented in
Sect. 4, would lead to more than one grounded extension (as in [17]). To have a
single extension requires a definition alternative to the minimal set-inclusion of
«a”-complete extensions; e.g., we can consider the set of all sceptically accepted
arguments (in the a¥-complete semantics). In the presented framework it is pos-
sible to define a single grounded extension that coincides with the intersection
of all the a”-complete extensions (and with the union of all sceptically-accepted
arguments). We will also study two-criteria (o and «y) decision-making proce-
dures to help an agent choose between internal or defence relaxations (as for
Fig.8), as introduced at the end of Sect. 5.1.
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Abstract. Ockhamist Propositional Dynamic Logic (OPDL) is a logic
unifying the family of dynamic logics and the family of branching-time
temporal logics, two families of logic widely used in Al to model reactive
systems and multi-agent systems (MAS). In this paper, we present two
variants of this logic. These two logics share the same language and
differ only in one semantic condition. The first logic embeds Bundled
CTL* while the second embeds CTL*. We provide a 2EXPTIME decision
procedure for the satisfiability problem of each variant. The decision
procedure for the first variant of OPDL is based on the elimination of
Hintikka sets while the decision procedure for the second variant relies
on automata.

1 Introduction

In [2] a new logic, called Ockhamist Propositional Dynamic Logic (OPDL) has
been introduced. This logic connects the family of dynamic logics with the fam-
ily of branching-time temporal logics, two families of logic that are traditionally
used in artificial intelligence for the verification of programs and for modelling
autonomous agents and multi-agent systems (MAS). On the one hand, dynamic
logics have been used to model actions of agents and their consequences as
well as deontic notions such as obligation and permission. On the other hand,
branching-time temporal logics have been used to model the evolution of the
agents’ attitudes and dispositions including beliefs, preferences and intentions
as well as to specify communication protocols and to model dynamics of com-
mitments in a multi-agent setting.

As shown in [2], OPDL offers the right “bridge” between these two fami-
lies of logics, as it embeds in a natural and polynomial way both Propositional
Dynamic Logic (PDL) [10] and Full Computation Tree Logic (CTL*) [14]. Exist-
ing embeddings of both PDL and CTL* are rather complicated and unnatural.
For example, it is well-known that PDL and CTL* can be embedded in modal
p-calculus. However, although the embedding of PDL into modal p-calculus is
simple and direct, the embedding of CTL* into modal u-calculus is rather com-
plicated and doubly exponential in the length of the input formula [5]. Another
logic that links PDL with CTL" is the extension of PDL with a repetition con-
struct (PDL-A) by [16]. But again, the embedding of CTL" into PDL-A is rather
complicated and doubly exponential in the length of the input formula [19].
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OPDL can be conceived as the logic in the dynamic logic family based
on the Ockhamist view of time. Ockhamist semantics for temporal logic have
been widely studied [4,17,20]. The logic of agency STIT (the logic of “seeing
to it that”) by Belnap et al. [3] is based on such semantics. According to the
Ockhamist conception of time (also called indeterminist actualist, see [20]) the
truth of statements is evaluated with respect to a moment and to a particular
actual linear history passing through that moment.!

The original semantics for OPDL given by [2] is based on the concept of OPDL
Ockhamist model, which can be seen as an extension with a program component
of Zanardo’s Ockhamist model for branching-time temporal logics [20]. Specif-
ically, in an OPDL Ockhamist model, temporal transitions between states are
labelled with sets of atomic programs. A second variant of OPDL is studied
by [2], called OPDL"*. Like PDL, OPDL'* is interpreted in labelled transition
systems (LTS). However, while in PDL the truth of a formula is evaluated with
respect to a state, in OPDL" it is evaluated with respect to a path.

The present paper furthers the study of OPDL by providing complexity
results of the satisfiability problems of its different variants. Specifically, we
introduce a new path semantics for OPDL, which allows for finer analyses of its
different variants. The OPDL Ockhamist semantics is proved to correspond to
the fusion closure condition in the path semantics. Observing that OPDL"® stud-
ied by [2] lacks the conservative property, a new variant of OPDL, called OPDL',
is devised by adding the limit closure property to the path semantics, thereby
imitating the difference between the semantics for Bundled CTL* (BCTL*) and
the semantics for CTL*. We show that the satisfiability problems of OPDL and
OPDL" are both 2EXPTIME-complete, the same complexity as for CTL*.

The rest of the paper is organized as follows. In the next section, the OPDL
language and the Ockhamist semantics for OPDL are recalled from [2]. The path
semantics framework is also introduced. Then, optimal decision procedures for
the satisfiability of OPDL and OPDL' are presented in Sects.3 and 4, respec-
tively. We conclude in Sect. 5.2

2 Ockhamist Propositional Dynamic Logics

OPDL and OPDL" share the same language which is the language of PDL where
one special atomic program = called the branching program is distinguished.
Formally, assume a countable set Prop = {p,q,...} of atomic propositions and
a countable set Atm = {a,b, ...} of atomic programs (or actions). The language
LoppL(Prop, Atm) of OPDL consists of a set Prg of programs and a set Fml of
formulas, defined as follows:

Prg: az=a|=]|(a;a2) | (1 Uae) | o* | ¢?
Fml:pu=pl-o]|(p1Ae2) | [y

! The Ockhamist view of branching time is traditionally opposed to the Peircean view
[13,17]. According to the Peircean view, the truth of a temporal formula should be
evaluated with respect either to some history or all histories starting in a given state.

2 Due to space restriction, this version of the paper contains only sketches of proofs
of some theorems.
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where = is a syntactic symbol distinct from atomic programs. We adopt the stan-
dard definitions for the remaining Boolean operations. Implicit elimination of dou-

ble negations is assumed: —— is identified with ¢. The dual {(«)) of the modality

[o] is defined by ()¢ % =[a]-p. We write |a| and |¢| to denote the numbers

of occurrences of symbols in the program « and the formula ¢. Like for PDL, the
formula [a]e has to be read as “p holds after all possible executions of a”.

2.1 Ockhamist Semantics

OPDL models are structures with two dimensions: a vertical dimension corre-
sponding to the concept of history, a horizontal dimension corresponding to the
concept of moment.

Definition 1. An OPDL model is a tuple M = (W, Q, L, R=,V) where:

— W is a nonempty set of states (or worlds),

— @ is a partial function Q : W — W assigning a successor to states,

~ L is a mapping L : W x W — 248" from pairs of states to sets of atomic
programs such that L(w,v) # 0 iff v is the successor of w, i.e., v = Q(w),

- R= CW x W is an equivalence relation between states in W,

~V: W — 2P7P s q valuation function for atomic propositions,

and such that for all w,v,u € W:

(C1) if Q(w) =v and (v,u) € R= then there is z € W such that (w,z) € R=,
Q(2) =u and L(z,u) = L(w,v).
(C2) if (w,v) € R= then V(w) = V(v).

R=-equivalence classes are called moments. A history starting in w; is a
maximal sequence o = wy,ws, ... of states such that wipy1 = Q(wy) for all
positive k less than the length of o.

Constraint C1 corresponds to what in Ockhamist semantics is called property
of weak diagram completion. This means that if two worlds v and u are in the
same moment and world w is a predecessor of v then, there exists a world z such
that (i) w and z are in the same moment, (ii) w is the successor of z, (iii) the
transition from w to v and the transition from z to u are labeled with the same
set of action names. Constraint C2 just means that two worlds belonging to the
same moment agree on the truth values of the atoms.

The truth of an OPDL formula is evaluated with respect to a world w in an
OPDL model M.

Definition 2. Let M = (W, Q, L, R=,V) be an OPDL model. Given a program
a, we define a binary relation Ry on W with (w,v) € Ry (or w Ry v) meaning
that v is accessible from w by performing a. We also define a binary relation =
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between worlds in M and formulas with M,w = ¢ meaning that formula ¢ is
true at w in M. The rules inductively defining R, and = are:

Ro={(w,v) | Q(w) =v and a € L(w,v)}
Raizas = Ray © Ra,
Rquag = R(Xl U R(XQ

Ra* :(Ra)*
Ryr = {(w,w) | M,w | ¢}
and M,w = p<= peV(w);

Mw = ~p <= M,w ¥ ¢
MwE oAy <= M,w E ¢ and M,w E ;
M,w | [a] <= Yv e W, if w R, v then M,v | .

An OPDL formula ¢ is OPDL valid, denoted by =oppL ¢, iff for every OPDL
model M and for every world w in M, we have M,w = ¢. An OPDL formula ¢
is OPDL satisfiable iff —¢ is not OPDL valid.

2.2 Path Semantics

In this section we describe the path semantics for Loppi(Prop, Atm), inspired
by the path semantics for branching time temporal logics [14]. In this semantics,
the set of all histories is explicit in the model and formulas are interpreted
over histories. We show that one variant of this semantics is equivalent to the
Ockhamist semantics of the previous section, while another variant defines the
OPDL' logic.

Notation. Given an alphabet X', X* denotes the set of finite words over X', X
the set of infinite words and X°° the union of X* and X¥. Let 0 = wjwsy. ..
be a finite or infinite word. The length of o is denoted by |o|. If o is infinite
then |o| = w. For any i € 1..|o|, we use 0!, 0= and 02! to denote respectively
the i*" element w; in o, the prefix ws ... w; of o up to its " element and the
suffix w;w;1; ... of o from its i*" element. The notations 0<%, ¢>% and ¢*/ are

shorthands for ¢==1, ¢2*1 and (0=7)2%, respectively.

Definition 3. A path model is a tuple M = (W, L, B,V) where W is non-
empty set of states, L : W x W — 24%™ s o function assigning a set of atomic
programs to each pair of states, the bundle B C W is a non-empty set of
sequences of states (histories) such that for each sequence o = wiy,ws,... € B
and all k > 1 less than the length of o, L(wy, wry1) # 0 and V : W — 2870P
is a valuation for the propositional variables. The binary relations R, over B
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for all programs « and the forcing relation = between M, sequences in B and
formulas are defined by simultaneous induction such that:

Ro ={(01,02) | 02 = 0122 and a € L(o},03)}
R= = {(01,09) | o1 = 03}
and M,o | p<=pe V(o)
M,o E o< M,o ¥ ¢;
Mo = pANY <= M,oc = ¢ and M,o0 | ;
M,o | [a]p < Vo' € B, if 0 Ry 0’ then M,d’ = .

the missing cases being identical as to Definition 2.

The main interest in the path semantics is that, by adding additional condi-
tions restricting the possible bundles, it gives a convenient framework to analyse
and distinguish different logics based on the same language. We list some such
conditions and discuss their impact on logics. We abusively write that a model
has one of these conditions whenever its bundle has it.

Suffiz closure. B is suffix closed iff for any sequence ¢ € B and any k € 1..|0|,
=% € B.In contrast with CTL*, as long as seriality is not imposed, this condition
does not change the logic. But since this condition makes the definition of R,
more natural, we will assume path models have it.

. . . . . /
Fusion closure. B is fusion closed iff for any two sequences 01,09 € B, if of = ok

>k .. . "
for some k and &k’ then the sequence afkagk is in B. This condition corresponds

to condition (C1). Indeed, we have the following theorem.

Theorem 1. OPDL is the logic obtained by interpreting Loppr(Prop, Atm) in
the class of all suffiz and fusion closed path models.

Limit closure. B is limit closed iff whenever an infinite sequence o € W¥ is such
that for all £ > 1, there is a sequence o} € B such that ngk = 0= then o € B.
A similar condition makes the difference between BCTL" and CTL" [14]. The
logic obtained by interpreting LoppL(Prop, Atm) in the class of suffix, fusion
and limit closed models is called OPDL".

Seriality. B is serial iff all paths in B are infinite (B C W%). Combining this
condition with the suffix closure corresponds, in the Ockhamist semantics, to
enforcing Q to be a total function. If Atm is infinite, then any path model
satisfying a formula ¢y can be turned into a serial path model satisfying g by
choosing an atomic program e not occurring in ¢ and by adding for each finite
sequence o € B a state w, such that w, is a successor by {e} of itself and of the
last state in o. This transformation preserves satisfiability and the suffix closed,
fusion closed and limit closed conditions. Therefore, since OPDL and OPDL"
are conservative, we can assume that these logics are interpreted in serial path
models.
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Total seriality. B is totally serial iff B is the set of all infinite paths. By the
constructions used in the proofs of Corollary 1 or Theorem 4, we can prove as
a corollary of any of these theorems that the logic obtained by interpreting

LoppL(Prop, Atm) in the class of all suffix closed, fusion closed and totally serial
models is OPDL.

Total maximality. B is totally maximal iff B is the set of all maximal paths.
In [2], the logic obtained by interpreting Loppr (Prop, Atm) in the class of totally
maximal models, called OPDthS(Prop, Atm), have been considered. But, in con-
trast with OPDL and OPDL', OPDths(Prop,Atm) is not conservative. We
define a logic L1 in the language L(Prop, Atm) as being conservative iff every
extensions L2 of L1 to the language L(Prop’, Atm’) where Prop C Prop’ and
Atm C Atm/, is a conservative extension, i.e., the set of validities of L2 in the
language L(Prop, Atm) is exactly the set of validities of L1. Intuitively, a logic
is conservative if the validity of any formula is independent of the propositional
variables and atomic program which does not occur in the formula. To prove that
OPDL"(Prop,{a}) is not conservative, consider the formula [a]L A (=;a))T.
This formula is not OPDL' (Prop, {a}) satisfiable but is OPDL"*(Prop, {a, b})
satisfiable. In the present work, we will study OPDL' (which is conservative)
instead of OPDL"(Prop, Atm). It can easily be proved that if A¢m is infinite
then OPDL" and OPDths(Prop, Atm) are the same logic. Moreover, the proof
from [2] that CTL" can be embedded into OPDL"* can easily be adapted to prove
that CTL* can be embedded into OPDL'.

3 Optimal Decision Procedure for OPDL

We describe a decision procedure for the satisfiability problem of OPDL, based
on the elimination of Hintikka sets procedure devised for PDL by Pratt [12]
and adapted to BCTL" by Reymnolds [15]. The general idea is to construct a
syntactic structure which contains all the possible states then to eliminate the
states preventing the structure to be a model. For PDL the possible states are
Hintikka sets (hues in [15]). For BCTL", states are sets of Hintikka sets, called
clusters in this paper (colors in [15]). For OPDL, states must be clusters too, but
because of formulas like {(a))p A [b]—p A (=) ((b)p, the atomic programs labeling
edges have to be considered. Hence the syntactic structures are more involved
than for PDL or BCTL*. We study these syntactic structures before introducing
the decision procedure for OPDL. Properties of syntactic structures are used for
the automata-based procedure of Sect. 4 too.

3.1 Syntactic Structures

Given a formula ¢g, the Fischer-Ladner closure F'L (pg) of g is defined as for
PDL (see [9] for details) except that we enforce F'L (o) to be closed under
negation: ¢ € FL (pg) iff =9 € FL (¢g). Since implicit elimination of double
negation is assumed, the well-known result that the cardinal of F'L () is linear
in || remains. We write SP (¢g) to denote the set {« | I, {a))¢ € FL (po)}.
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Definition 4. A set H C FL (pp) is o Hintikka set for ¢q iff all the following
conditions are satisfied:

~ for any =p € FL(p0), p € H iff ~p ¢ H

— forany o A € FL(po), pAY EH iff o€ H andp € H

~ for any [o; Bl € FL (o), [o; Blp € H iff [o][B]le € H

~ for any [a U Blp € FL(po), [aUBly € H iff [a]y € H and [B]p € H
— for any [o*]e € FL(¢0o), [a*]le € H iff ¢ € H and [o][a*]e € H

— for any [p?]Y € FL(¢o), [ e H iff ~ o € H or ¢ € H

—if [E]le € H then p € H

Definition 5. A set C of Hintikka sets for g is a cluster for @q iff C # 0 and
for any Hy, Ha € C the following conditions are satisfied:

— for any propositional variable p € FL (¢o), p € H1 iff p € Ha
— for any formula [=]p € FL (vo), [E]e € H1 iff [E]p € Ha

Given a set P C Atm of atomic programs, the successor relation Sp over
Hintikka sets is defined such that H; Sp Hs iff (i) for any formula ((a))¢ € Hi,
a € P and (ii) for any formula ((a)¢ € F'L (po) such that a € P, {(a)p € Hy iff
€ Ho. This relation is extended to clusters: C; Sp Cq iff for all Hy € Cy there
exists Hy € Cq such that H; Sp Ho.

A syntactic structure is a pseudo-model where the valuation has been
replaced with a function assigning clusters and where the bundle is implicit.
Intuitively, each Hintikka set in the cluster associated to a state w corresponds
to the set of formulas satisfied by a history starting at w.

Definition 6. A syntactic structure for a formula g is a tuple S = (W, L, €)
where W is a non-empty set of states, L assigns a set of atomic programs to each
pair of states, € assigns a cluster for g to each state such that for allw,z € W,
if Llw,x) # O then €(w) Sr(w.w) €(x). A syntactic structure is standard iff
(i) vo € H for some H € €(w) and some w € W and (ii) for all w € W, there
exists x € W such that L(w,x) # 0.

A path in a syntactic structure S is a (possibly infinite) non-empty sequence 7
over the alphabet composed by the special branching symbol e and all the couples
(H,w) where w € W and ‘H € €(w). Any path 7 must satisfy all the following
conditions, for all k € 1.. |n|:

~ !l £ eand if 7| < w, 717l #

— if 7% = e then 77! = (H,w) and 7**1(H’, w) for some w € W and some
H, H € C(w);

—if 7% = (Hp,wy) and 781 = (Hpi1,wri1) then L(wg,wry1) # O and
Hy Sﬁ(wk,warl) Hk+1~

Intuitively, a finite path 7 corresponds to a possible execution of some programs
(different programs may have some common possible executions). When this is
the case, we say that the path carries the program. This relation between a
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finite path and a program is defined formally as the least relation satisfying the
following conditions:

— (H1,w1)(Ha,ws) carries a iff a € L(w1,ws).

— (H1,w) e (Ha,w) carries =.

— (H1,wy) carries p? iff ¢ € H;.

7 carries (U @) iff 7 carries a or f.

— 7 carries (a; 3) iff for some m € 1..|7|, 7™ carries @ and 7=™ carries 3.

— m carries o* iff there is a non-empty list ko, . .., &k, such that ko = 1, k,;, = |7
and for all © < m, k; < k;41 and whi-kit1 carries o

m

An unbranching path is a path which contains no occurrences of the branching
symbol e. The trunk of a path is its longest unbranching prefix. The support of
an unbranching path (Hi,ws)(Ha, ws) ... is the sequence wyws .. ..

An eventuality chain is a non-empty sequence 7 = aj...a,p where the
last element is a formula and the other elements are programs. To an eventu-
ality chain = aq ... anp corresponds the formula form (1) = {a1)) ... {an)e.
This correspondence is not injective, for instance the eventuality chains aap,
a{{a)p and ((a)){a)p all correspond to the same formula {(a)){a)p. The maz-
imal eventuality chain for a formula ¢ is the longest eventuality chain 1 such
that form (n) = ¢. Fulfillment of an eventuality chain n by a path 7 is defined
inductively as follows:

— The path 7 fulfills a one-element eventuality chain = ¢ iff 7 = (H;,w;) and
¢ € H; for some state wy and some Hintikka set H; € €(wy);

— The path 7 fulfills an eventuality chain n = an’ iff there is k& € 1..|n| such
that 7=F carries a and 7=* fulfills 7’.

For any eventuality chain 7 = a of length two, the corresponding formula ()
is called an eventuality and any path fulfilling n is said to fulfill the eventuality
{a)p. A state w € W is fulfilling if for any Hintikka set H € €(w) and any
eventuality {a))p € H, there is a path 7w from (H, w) fulfilling {a))p. A syntactic
structure S fulfills all eventualities iff all its states are fulfilling. A justifying path
is an infinite unbranching path 7 such that for all k, if 7 = (Hy,wy) for some
Hy, and wy, then for any eventuality ()¢ € Hy, there is a fulfilling path 7’ for
{a)p starting at (Hy,wy) such that the trunk of 7/ is a prefix of 7=*.
We can now state the main result of this section.

Theorem 2. A formula ¢ is OPDL satisfiable if and only if there is a standard
syntactic structure for @q fulfilling all eventualities.

Proof (Proof sketch). We only detail the right-to-left direction. Given a standard
syntactic structure S = (W, L, €) for ¢ fulfilling all eventualities, we define the
path model M = (W, L, B, V) such that B is the set of supports of the justifying
paths in S and V(w) = H N Prop for any H € €(w). Two steps are difficult
in proving that M is an OPDL path model satisfying ¢¢: the proof that B is
fusion-closed and the proof of the following Existence Lemma.
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Lemma 1 (Existence Lemma). For any finite unbranching path 7 in a stan-
dard syntactic structure S fulfilling all eventualities, there is a justifying path '
in S such that  is a prefix of 7'.

For BCTL™, these two points are resolved by the fact that any eventuality
@ U 1 is either resolved at the current state or still satisfied in the successor
state. For OPDL, we need the Witness Lemma below. To state this lemma,
we inductively define the function next from eventuality chains to sets of pairs
composed of a set of formulas (the guard) and an eventuality chain:

next(p) = {(0, )} next (1) = {(G U {¢},n') | (G, ') € next(n)}
next(an) = {(0,an)} next((B1 U B2)n) = next(H1n) Unext(L2n)
next(=n) = {(0,=n)}  next((Br; B2)n) = next(51521)
next(a*n) = next(n) U{(G,B1...Bw_1a*n) |n’ > 1 and

(G, B ... Bp—1form (a*n)) € next(aform (a*n))}

Lemma 2 (Witness Lemma). For any syntactic structure S = (W, L, ),
any state w € W, any Hintikka set H € €(w), any eventuality chain 1y such
that form (m) € H and any path 7 in S from (H,w), m fulfills n1 if and only if
there is (G,n2) € next(n1) such that G U {form (n2)} CH and 7 fulfills 1.

The proof of the Witness Lemma is by induction on the sum Zanlll_l ‘nﬂ of the
length of the programs in 7. a

In the proof of Theorem 2, we construct from a standard syntactic structure
S = (W, L,¢) for pg the path model M = (W, L, B,V) in which B is the set
of supports of the justifying paths in S. Therefore if the set of the supports of
the justifying paths in S is limit closed then B is limit closed too. Hence the
following corollary can be deduced from Theorem 2.

Corollary 1. A formula pq is OPDL' satisfiable if and only if there is a stan-
dard syntactic structure S for pg which fulfills all eventualities and such that the
set of the supports of the justifying paths in S is limit closed.

3.2 The Optimal Decision Procedure

We describe a procedure which, given a formula ¢, either fails or exhibits a
standard syntactic structure for g fulfilling all eventualities. The procedure
inductively constructs a finite sequence Sy, ..., S, of syntactic structures for .
The initial syntactic structure Sop = (Wo, Lo, o) is defined such that:

— Wy is the set of all pairs (P,C) where P is a non-empty subset of SP (po)U{e}
for some fixed e ¢ SP (pg) and C is a cluster for g,

— L((P1,C1), (P2,C3)) = Py if C; Sp, Co and is empty otherwise,

- ¢(P,C)=C.
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Then for all k, the syntactic structure Siyi is constructed from S =
(Wi, Lk, €) by removing from Wy, the states (P,C) which are not fulfilling or
such that for some H € C, there is no (P’,C’) € Wy and H' € C’ such that
C Sp/ C/ and ‘H Sp/ 'H’.

There exists a constant C' such that the number of states in Wy for any ¢q
is bounded by 22" where ¢ = |eo|. Therefore, for some n < 22" 1o state
can be eliminated from &,,. The procedure terminates successfully iff there is a
state (P,C) € W,, and a Hintikka set H € C such that ¢g € H. By Theorem 2,
the decision procedure is sound and complete. Since the satisfiability problem of
OPDL is 2EXPTIME-hard [2], we have the following theorem.

Theorem 3. The satisfiability problem of OPDL is 2EXPTIME-complete.

4 Optimal Decision Procedure for OPDL%

The procedure of the Sect. 3 is difficult to adapt to OPDL" because no simple
condition can be checked during the construction of the syntactic structure to
guarantee that the set of the supports of all justifying paths is limit closed.
Therefore, we first prove that OPDLY has a particular tree model property.
Then we use this property to reduce the satisfiability problem of OPDL" to
the (dual of) the emptiness problem of an automaton on infinite trees. Because
syntactic structures are more convenient than models for decision procedures,
we prove a tree syntactic structure property, from which the usual tree model
property can be deduced using the construction of Sect. 3.1.

4.1 Tree Model Property of OPDL"

An N-ary w-tree over an alphabet X' is a function T : [1..N]* — Y. In such a
tree, nodes are labeled with elements of X. A branch in T is an infinite sequence
01 = AAg... for which there exists oo € [1..N]¥ and ¢ € N such that for all
k>0 A\ = 0’2§i+k. Like in the previous section, we need nodes to be labeled
with pairs (P,C) where P is the set of atomic programs labeling the incoming
edge and C is a cluster. To simulate incomplete trees, we allow P to be empty,
in which case the branch is said to be pruned.

Definition 7. An N-ary syntactic tree for a formula @ is an N-ary w-tree T
over X = 24% x Clusters(pg) where Clusters(pg) is the set of clusters on g
and such that:

1. Tp(€e) = 0 and there is o € [1..N]* such that for all i > 0, Tp(c<?) # 0;
2. for all A € [1.N]* and k € 1..N, Tp(Ak) = 0 or Tc(X) Stpak) To(AE).

where Tp and T¢ are the projections of T on 24t™ and Clusters(yq), respectively.
A branch o in T is valid if for all k > 1, Tp(c*) # ) and pruned otherwise.
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To any N-ary syntactic tree T' = (Tp, T¢) naturally corresponds the syntactic
structure S(T) = ([1..N]*, £, T¢) where L(A\1,\2) = Tp(Ag) if Ao = Mk for
some k € 1..N and is the empty set otherwise. Therefore, an N-ary syntactic
tree can be seen as a tree syntactic structure. Indeed, we will abusively write
about paths in syntactic trees. For the following definition of a good syntactic
tree, since we do not assume that the corresponding syntactic structure fulfills
all eventualities, we adapt the definition of a justifying path. A pseudo-justifying
path is an infinite unbranching path 7 such that for all k > 0, if 7% = (Hy, wy)
then for any eventuality (o)) € Hy there is £ > k such that 7¢ = (H,, wy) and
either 7% fulfills {a))¢ or there is an eventuality chain 7 such that n' = =,
form (n) € H, and for any path o from 7¢ fulfilling », 7%~y fulfills ().
By the Witness Lemma, any justifying path is a pseudo-justifying path.

Definition 8. An N-ary syntactic tree T = (Tp,T¢) for a formula ¢q is good
iff all the following conditions hold:

1. any valid branch o is the support of a pseudo-justifying path;

2. for any node X inT, if Tp(X) # 0 and there is H € Tc () such that (=) € H
for some formula 1, then there is a finite path w in T from (H',\) fulfilling
the maximal eventuality chain for ¢;

3. there is a pseudo-justifying path in T from (H,€) such that @9 € H.

Let NZ be the number of eventualities of the form (=))7 in F'L (¢o) plus
one. The tree property of OPDL is stated as follows.

Theorem 4. A formula ¢y is OPDL' satisfiable iff there is a good Ng, -ary
syntactic tree for ¢q.

Proof (Proof sketch). We only detail the construction for the left-to-right direc-
tion, which is inspired by a similar construction for CTL* [7]. Suppose ¢ is
satisfiable. By Corollary 1, there is a standard syntactic structure S = (W, L, €)
for ¢ which fulfills all eventualities and such that the set of the supports of the
justifying paths in S is limit closed. Let (=)va,..., <<E)>¢N§O be an ordering
of the eventualities of the form (=))1 in F'L (¢o). We first define the NZ -ary
w-tree Tpaen over the alphabet of all the paths in & plus the empty word e. By
Lemma 1, there is a justifying path mo from (Ho, wo). We label the root of Tpatn
with this path: Tpan(€) = mo. For each node A € [1..N§0}*, if Thatn(A) # €, the
labeling path continues with the first successor: Tpatn (A1) = Tpath()\)zz. For the
other successors k € 2.N5. of A, let (Hx,wx) = Tparn (M) If (=)thr € Ha then
let m; be the shortest path fulfilling the maximal eventuality chain for v, and
such that 73 = (H’,w,) for some H'. By Lemma 1, there is a justifying path
7k Wwhose prefix is the trunk of 7. We label the k'™ successor of A with it:
Toatn(Ak) = 7T§k2 Otherwise, if (=)vp—1 ¢ Hx then Than(Ak) = e. All suc-
cessors of a node labeled with € are labeled with e. Finally, the good Ng -ary
syntactic tree T" for ¢ is constructed from Tp,an as follows. For the root node,
T(e) = (0,&(wp)). For X € [1.NZ]* and k € 1.N_,, if Tpamn(A)' = (Ha, wy)
and Tpath()\k')l = (Hxg,wxr) then T(Ak) = (L(wx, wrg), C(wyg)). Otherwise,
T(Ak) = (0,C) for some arbitrary cluster C. O
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4.2 Automata-based Decision Procedure for OPDL

By Theorem 4, whenever a formula ¢ is satisfiable, there is a good NZ -ary
syntactic tree for ¢g. Therefore, we construct an automaton which recognizes
exactly the good NZ -ary syntactic trees for ¢o. We first recall the definitions
of the automata used in the procedure before describing the construction of our
automaton.

A Biichi word automaton is a tuple A = (X, S, p, So, F') where X is the input
alphabet, S is the set of states of the automaton, p : S x ¥ — 2 is a non-
deterministic transition function, Sy C S is the set of initial states and FF C S
is the termination condition. Given an infinite word p over X', a run of A on p
is a word r over S such that 7! € Sy and for all k > 1, 7**1 € p(r* u*). The
set of states occurring infinitely often in a run r is denoted by inf(r). A word
1 is accepted by A iff there is a run 7 of A on pu such that inf(r) N F # 0. By
extension, a Biichi word automaton accepts a tree iff it accepts all its branches
seen as words over the labels of the trees’s nodes.

A Street tree automaton is a tuple A = (X, S, p, So, F) similar to a Biichi
word automaton except that p: S x Y — 25" assigns a set of N-ary tuples of
states and F' C 25 x 29 is a set of pairs of set of states. Given an N-ary w-tree
T over X, a run of A on T is a tree T, over S such that T,(e) € Sy and for
all A € [1..N]*, (T-(A\1),...,T-(AN)) € p(T(N),T(N)). For all branch o in T,
the set of states occurring infinitely often in o is denoted by inf(c). A tree T is
accepted by A iff there is a run 7, of A on T such that for any branch o in 7T,
and any pair (A4, B) € F, if inf(0) N A # () then inf(c) N B # 0.

Given a formula ¢y we devise a Streett tree automaton A which recognizes
exactly the good N -ary syntactic trees for pg. We first describe three automata,
each checking conditions from Definitions 7 and 8. Let X = 24%™ x Clusters(pg).

Condition (2) of Definition7 is checked by the “successor” Biichi word
automaton Ag = (X, Sg, ps, Ss,0, F) where Sg is the set of clusters on ¢g plus
the special state I, Sgo = {I}, Fs = Sg and s1 € ps(so, (P,C)) iff (i) s1 =C
and (ii) P =0 or so Sp s1.

Condition (1) of Definition8 is checked by the “justifying” Biichi word
automaton A; = (X, S, ps, 570, Fr) where

— S is the set of pairs (H, E') where E is a set of eventuality chains to be fulfilled
and H is either a Hintikka set of the parent cluster or the empty set if the
current node is the root or FL (¢g) if the current branch is pruned;

- SJ70 = {(@,@)} and F; = {(H,E) €Sy | H 75 0 and E = @},

- (H1, Er) € ps((Ho, Ep), (P,C)) if one of the following condition holds:

e My is a Hintikka set, Eg # 0, Hy € C, P # 0, Ho Sp H1 and for all ng € Ey,
form (o) € H; and there is (G1,m1) € next(ng) such that G;U{form (1)} C
H; and if n{ € Atm then 77122 e E;.

o Ho 75 FL(QOO), Eo = @, Hl S C, ifHo ?é @ then P 75 (Z) and Ho SP Hl
and for any eventuality (o)) € Hy, there is (G1,m1) € next(ay) such that
Gy U {form (n1)} C Hy and if n} € Atm then 7]122 c F.

® H1 :FL(QDQ) and E1 #@

e Hy =FL(pp), By =0 and either Ey = 0 or Hy # () and P = (.
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Finally, the “existential” Biichi tree automaton Ag = (X, Sg, pr,SE0, FE)
ensures that there is a pseudo-justifying path 7 from (H;y, €) where o € H; and
such that the support of 7 is the branch obtained by always choosing the first
successor (conditions (1) of Definition 7 and (3) of Definition 8). Moreover, Ag
checks conditions (2) of Definition 8. It is defined such that:

— Sg is the set of triples (H, E,t) where H and E play the same role as in Ay
and t is a Boolean value (T or L) indicating whether the state is final;
~ Sgo={(0,0,1)} and Fg = {(Sg, F)} where F = {(H,E,t) € Sg |t =T}.

The transition function pg is defined such that if
(M1, Ev,ta), ..., (Hnz , Enz s tnz))) € pe((Ho, Eo, to), (P,C))
then all the following conditions hold:

— for all k € 1..NZ, , either Hj, € C or Hy = F'L(¢o);

— if Ho = 0 then H; is a Hintikka set, ¢o € H; and P = (J;

— if Hy is a Hintikka set then P # (), H; is a Hintikka set and Hq Sp Hi;

— if H; is a Hintikka set and Ey = () then for all eventuality {(a))¢ € H; there
is (Ga,m2) € next(ag) such that Gy U {form (12)} C Hy, if n3 € Atm then
ng? € Fy and if n} = = and Ej, # 0 for k such that form (1) = (=)¢r_1
then t, = 1;

— if H; is a Hintikka set then for all n; € Ep, form (n;) € H; and there is
(G2,m2) € mnext(n;) such that Ga U {form (n2)} C Hi, if n} € Atm then
77222 € Ey and if i = = and Ej # 0 for k such that form (n2) = (=)r_1
then tp = 1;

— for all k € 2.N_, if Hy is a Hintikka set and {(=ENr—1 € Hy then Hy is
a Hintikka set, ¢¥x_1 € Hj and there is (Ga,72) € next(n;) where 7 is the
maximal eventuality chain for ¢;_; such that G U {form (1)} C Hy and if
ns € Atm then 77222 € Ey;

- 1fE1 7&(0 then tl = 1.

Ag is deterministic and the number of its states is double exponential in |pq].
It can be directly translated into a Streett tree automaton with no termination
pair. A has an exponential number of states but it must be determinized before
being transformed into a tree automaton, because the choice of the Hintikka
sets depends on the successor of the node. By the construction of Piterman [11],
any nondeterministic Biichi word automaton with s states can be transformed
into an equivalent deterministic Streett word automaton with s25*2 states and
s pairs. Hence, the resulting Streett tree automaton corresponding to Ay has a
double exponential number of states and an exponential number of termination
pairs. Ag has an exponential number of states and a single termination pair.
The product of these three tree automata gives a Streett tree automaton A
with a double exponential number of states and an exponential number of pairs.
Emerson and Jutla [8] proved that the emptiness of a Streett tree automaton with
s states and p termination pairs can be decided in deterministic time (s - p)o(p).
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Since A recognizes exactly the good syntactic trees for ¢, by Theorem4, the
satisfiability problem of OPDL is in 2EXPTIME. Moreover, the proof from 2]
that OPDL"® is 2EXPTIME-hard can easily be adapted to OPDL!. Hence we
have the following result.

Theorem 5. The satisfiability problem of OPDLY is 2EXPTIME-complete.

5 Conclusion

In this work, we have first shown that the logic OPDL! proposed by [2] does
not have the good property of being conservative. Using the more convenient
path semantics framework, the semantics of this logic has been slightly modified
to obtain the new logic OPDL' which is conservative and in which PDL and
CTL* can still be embedded. Then, we have answered the question, left open
in [2], of the complexity of the satisfiability problems of OPDL and OPDL',
We have proved that both problems are 2EXPTIME-complete. However, the
methods used to prove these results are quite different. Whereas for OPDL a
finite model with bounded size is constructed, for OPDL" infinite branches must
be considered using automata on infinite trees. This highlights the difference
between OPDL and OPDL™ as a consequence of the limit closure property of the
path semantics.

Some questions about OPDL and OPDL' have been left open for future
research. For instance, there is still no axiomatization for OPDL and OPDL.
Furthermore, it would be interesting to study the relative expressive power of
these logics and other logics embedding both PDL and CTL" like the automata-
based logic YAPL [18] or the extension PDL—A of PDL with repetition [16].

Another issue of future research is the relation between OPDL, OPDLY and
ATL*, the full version of Alternating-time Temporal Logic (ATL) introduced in
[1]. There have recently been interesting results by [6], providing a tableau-based
decision procedure for ATL*, which has been proved to be in 2EXPTIME as well,
and to also work for CTL*. The procedure has been implemented. Future research
will be devoted to verify whether a similar solution can be found for OPDL and
OPDL'" in order to have an implemented procedure for checking satisfiability in
these logics.
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Abstract. We investigate expressiveness issues of Temporal Equilib-
rium Logic (TEL), a promising nonmonotonic logical framework for tem-
poral reasoning. TEL shares the syntax of standard linear temporal logic
LTL, but its semantics is an orthogonal combination of the LTL seman-
tics with the nonmonotonic semantics of Equilibrium Logic. We establish
that TEL is more expressive than LTL, and captures a strict subclass of w-
regular languages. We illustrate the expressive power of TEL by showing
that LTL-conformant planning, which is not expressible in LTL, can be
instead expressed in TEL. Additionally, we provide a systematic study of
the expressiveness comparison between the LTL semantics and the TEL
semantics for various natural syntactical fragments.

1 Introduction

Answer Set Programming (ASP) is now well established as a successful paradigm
for declarative programming, with its roots in the fields of knowledge represen-
tation (KR), logic programming, and nonmonotonic reasoning (NMR) [3]. An
adequate and well-known logical foundation for ASP is provided by Equilibrium
Logic [19,20], a nonmonotonic extension of the superintuitionistic logic of here-
and-there (HT) [17]. This provides useful logical tools for the metatheory of ASP
and a framework for defining extensions of the basic ASP language, for example
to arbitrary propositional and first-order theories, to languages with intensional
functions, and to hybrid theories that combine classical and rule-based reason-
ing [7,10,14,21].

ASP has been applied to a wide range of temporal reasoning problems, includ-
ing prediction, planning, diagnosis and verification. However, since it is not an
intrinsically temporal formalism, it suffers some important limitations. Most
ASP solvers deal with finite domains, which hampers the solution of temporal
reasoning problems dealing with unbounded time, like proving the non-existence
of a plan. Temporal scenarios dealing with unbounded time are typically best
suited for modal temporal logics, a fundamental framework for the specification

An authors’ online version of this paper is available at https://www.dropbox.com/
s/x0fmjzhjwira780/ TEL%20Expression.pdf?dl=0. Its appendix includes proofs that
are omitted here for lack of space.
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of the dynamic behavior of reactive systems. However, standard modal tem-
poral logics, such as propositional linear-time temporal logic LTL [22], are not
designed to deal with many issues in KR. These logics (like classical logics) have
a monotonic consequence relation, meaning that adding a formula to a theory
never produces a reduction of its set of consequences. A monotonic logic cannot
handle various commonsense reasoning tasks such as reasoning by default.

Temporal Equilibrium Logic (TEL). TEL was proposed by Cabalar and
Vega [8] as a nonmonotonic temporal logic, able to capture temporal reason-
ing problems not representable in ASP. It is apparently the only nonmonotonic
extension of a standard modal temporal logic (viz. LTL) that does not use addi-
tional operators or constructions.

TEL shares the syntax of standard LTL, but its semantics is an orthogonal
combination of the LTL semantics with the nonmonotonic semantics of Equilib-
rium Logic. As for Equilibrium Logic, the non-monotonic semantics of TEL is
based on a selection criterion (a kind of minimization) among the models of the
intermediate monotonic temporal logic of Here-and-There (THT), a combination
of LTL and the propositional superintuitionistic logic of Here-and-There (HT).

Many works have been dedicated to the theoretical study of TEL, and some
tools have been developed for computing models of temporal programs under
TEL semantics (see e.g. [5]). Theoretical key results include the use of TEL to
translate action languages [8], an automata-theoretic approach for checking the
existence of TEL models [4], a decidable criterion for proving strong equivalence
of two TEL theories [6], and a systematic study of the computational cost of TEL
satisfiability [2] (a problem which is in general EXPSPACE-complete).

Our Contribution. We investigate expressiveness issues for the TEL frame-
work. It is known [4] that like LTL, TEL allows to specify only w-regular tem-
poral properties. As a first contribution, we show that TEL is in general more
expressive than LTL. In particular, the class of TEL-definable languages strictly
includes the class of LTL-definable languages and is strictly included in the class
of w-regular languages. We also illustrate the expressive power of TEL by con-
sidering the problem of finding conformant plans for temporal goals in dynamic
systems in the presence of incomplete information! when the goal and the sys-
tem behavior are specified in LTL [9]. We show that this problem, which is not
expressible in LTL [9], can be instead expressed in TEL.

As an additional non-trivial theoretical contribution, we provide a systematic
study of the expressiveness comparison between the LTL semantics and the TEL
semantics for various natural syntactical fragments. The considered fragments
are obtained by restricting the set of allowed temporal modalities and/or by
imposing a bound on the nesting depth of temporal modalities. The expressive
power of LTL semantics for these fragments has been made relatively clear by
numerous researchers. Thus, since for some of these fragments, TEL satisfiability
is known to be relatively tractable [2], the aim is also to understand what kind of
temporal reasoning problems can be captured by these fragments under the TEL

1 On both the initial situation and on the full effects of actions.
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semantics. Furthermore, we consider the class of splittable temporal programs
[5], a TEL fragment which is known to be LTL-expressible and for which a solver
has been implemented [5]. We show that a slight syntactical generalization of
this fragment, obtained by relaxing a constraint on the use of temporal literals
in the dynamic rules (intuitively ensuring that “the past does not depend on the
future”), already leads to a fragment more expressive than LTL.

Some of the expressiveness results obtained also point to a peculiar difference
between LTL and TEL: due to the interpretation of the implication connective,
in TEL, a temporal modality cannot be expressed in terms of its ‘dual’ modality.
Thus, in TEL, dual temporal modalities, such as F (‘eventually’) and G (‘always’),
need to be considered independently from one another. This is illustrated by
one of our results: while for the syntactical fragment whose allowed temporal
modalities are F and X (‘next’), the TEL semantics is less expressive than the
LTL semantics, for the dual fragment, the TEL semantics already allows one to
express non-LTL-definable requirements.

Related Work. Several research areas of Al have combined modal temporal
logics with formalisms from knowledge representation for reasoning about actions
and planning (see e.g. [12]). Combinations of NMR with modal logics designed
for temporal reasoning are much more infrequent in the literature. The few
exceptions are typically modal action languages with a nonmonotonic semantics
defined under some syntactical restrictions. Recently, an alternative to TEL has
been introduced, namely, Temporal Answer Sets (TAS), which relies on dynamic
linear-time temporal logic [16], a modal approach more expressive than LTL.
However, while the non-monotonic semantics of TEL covers any arbitrary theory
in the syntax of LTL, TAS uses a syntactic transformation that is only defined
for theories with a rather restricted syntax. A framework unifying TEL and TAS
has been proposed in [1].

2 Preliminaries

Let N be the set of natural numbers and for all 4,5 € N, let [i,5] :={h € N |i <
h < j}. For an infinite word w over some alphabet and for all ¢ > 0, w(4) is the
i*" symbol of w. Let P and P’ be two disjoint finite sets of atomic propositions.
Given an infinite word w over 2F and an infinite word w’ over 2° /7 w o w
denotes the infinite word over 2PYF" given by w(0) Uw’(0), w(1)Uw’(1),..., and
w @ P’ denotes the infinite word over 2PYF" given by w(0) U P/, w(1) U P, . ...
A proposition p is flat in w if p € w(i) for all ¢ > 0. Note that each proposition
p’ € P’ is flat in w @ P’. We extend the operator @ to w-languages £ over 2°
in the obvious way: £ @ P’ denotes the w-language over gPUP’ consisting of the
infinite words of the form w & P’ where w € L.

2.1 Temporal Equilibrium Logic

We recall the framework of Temporal Equilibrium Logic (TEL) [8]. TEL is defined
by first introducing a monotonic and intermediate version of standard linear tem-
poral logic LTL [22], the so-called logic of Temporal Here-and-There (THT) [8].
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The nonmonotonic semantics of TEL is then defined by introducing a criterion
for selecting models of THT.

Syntax and Semantics of THT. While the syntax of THT coincides with
that of LTL, the semantics of THT is instead an orthogonal combination of the
superintuitionistic propositional logic of Here-and-There (HT) [17] and LTL. Fix
a finite set P of atomic propositions. The set of THT formulas ¢ over P is defined
by the following abstract syntax.

e=p|L|eVe|leAp|e—e|Xe|eUp|eRp

where p € P and X, U, and R, are the standard ‘next’, ‘until’, and ‘release’

temporal modalities. Negation is defined as —p &t @ — L while T 4 1. The

classical temporal operators G (‘always’) and F (‘eventually’) can be defined in

terms of U and R as follows: F¢ def TUp and Gy dof LRep. The size |p| of a

formula ¢ is the number of distinct subformulas of ¢. The temporal depth of ¢
is the maximum number of nested temporal modalities in ¢.

Recall that LTL over P is interpreted on infinite words over 27, called in
the following LTL interpretations. By contrast, the semantics of THT is defined
in terms of infinite words over 2F x 2¥, which can also be viewed as pairs
of LTL-interpretations. Formally, a THT interpretation is a pair M = (H,T)
consisting of two LTL interpretations: H (the ‘here’ interpretation) and T (the
‘there’ interpretation) such that

for all i > 0, H(i) C T(4)

Intuitively, H(7) represents the set of propositions which are true at position 4,
while T(¢)\H(¢) is the set of propositions which may be true (i.e. which are not
falsified in an intuitionistic sense). A THT interpretation M = (H, T) is said to
be total whenever H = T. In the following, for interpretation, we mean a THT
interpretation. Given an interpretation M = (H, T), a position ¢ > 0, and a THT
formula ¢, the satisfaction relation M,i |= ¢ is inductively defined as follows:

M,i L

M,i = p < p e H(®)

M,i = @V <& either Myi = por M,i = ¥

Mi = oAy & MiE gand M,i E ¢

M,i | ¢ — 9 < for all H' € {H, T}, either (H',T),i ¥ @ or (H,T),i = ¢

M,i = Xe eMit+lEe

M,i = Uy < thereis j >isothat M,j = ¢ and forall k € [i,5 — 1], Mk E ¢
M,i |E @Ry < for all j > i, either M,j = ¢ or M,k = ¢ for some k € [i,j — 1]

We say that M is a (THT) model of ¢, written M |= ¢, whenever M,0 = ¢. A
THT formula ¢ is THT satisfiable if it admits a THT model. A formula ¢ is THT
valid if every interpretation M is a THT model of . Note that the semantics of
THT is defined similarly to that of LTL except for the clause for the implication
connective — which must be checked in both the components H and T of M. As a
consequence M, i ¥ ¢ does not correspond to M, i = —p (i.e., M,i = —¢ implies
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that M,i ¥ ¢, but the converse direction does not hold in general). However,
if we restrict the semantics to total interpretations, (T, T) = ¢ corresponds to
the satisfaction relation T | ¢ in LTL. More precisely, the LTL models T of ¢
correspond to the total interpretations (T, T) which are THT models of ¢. With
regard to THT wvalidity, a THT valid formula is also an LTL valid formula, but the
converse in general does not hold. For example, the excluded middle axiom ¢V-p
is not a valid THT formula since, as highlighted above, for an interpretation
M = (H,T), M ¥ ¢ does not imply that M | —¢. Similarly, the temporal
formulas Fy < =Gy and ¢1Upy <> =91 R—ps, which are well-known valid LTL
formulas (and allow to express, in LTL, a temporal modality in terms of its dual
modality), are not THT valid formulas. Thus, in THT, dual temporal modalities,
like F and G, or U and R, need to be considered independently from one another.
The following proposition summarizes some observations made above, where we
use =1L to denote the satisfaction relation in LTL.

Proposition 1. Let (H, T) be an interpretation and ¢ be a THT formula.

1. If (H, T),i = ¢, then (T, T),i = ¢ (for alli >0).
2. (H,T),i = —¢ iff (T,T),i |E ~¢ (foralli=0).
ST E e iff TEww ¢

The non-monotonic logic TEL. This logic is obtained from THT by restricting
the semantics to a subclass of models of the given formula, called temporal equi-
librium models. For LTL interpretations H and T, H C T means that H(i) C T(¢)
for all i > 0, and H C T means that HC T and H # T.

Definition 1 (Temporal Equilibrium Model). Given a THT formula ¢, a
(temporal) equilibrium model of ¢ is a total model (T, T) of ¢ satisfying the
following minimality requirement: whenever HC T, then (H, T) ¥ .

If we restrict the syntax to HT formulas (i.e., THT formulas where no tem-
poral modality is allowed) and the semantics to HT interpretations (H(0), T(0)),
then (non-temporal) equilibrium models coincide with stable models of answer
set programs in their most general form [13]. In particular, the interpretation
of negation is that of default negation in logic programming: formula —¢ holds
(¢ is false by default) if there is no evidence regarding ¢, i.e., ¢ cannot be
derived by the rules of the logic program. As a first example, let us consider the
THT formula ¢ given by ¢ = G(—p — Xp). Its intuitive meaning corresponds to
the first-order logic program consisting of rules of the form p(s(X)) <« notp(X),
where time has been reified as an extra parameter X = 0, s(0), s(s(0)), . ... Thus,
at any time instant, if there is no evidence regarding p, then p will become true at
the next instant. Initially, we have no evidence regarding p, so this will imply Xp.
To derive XXp, the only possibility would be the rule =Xp — XXp, an instance
of ¢. As the body of this rule is false, XXp becomes false by default, and so on.
It is easy to see that the unique equilibrium model of ¢ is ((0{p})“, (B{p})*).

Note that an LTL satisfiable formula may have no temporal stable model. As
an example, consider the formula ¢ given by ¢ = G(=Xp — p) AG(Xp — p). The
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unique LTL model is T = {p}*. However, (T, T) is not an equilibrium model of
©, since the interpretation (H, T), where H = (§)“ is a THT model of .

For a THT formula ¢, we denote by LteL(¢) (resp., LiTL(¢)) the w-language
over 2F consisting of the LTL interpretations T such that (T, T) is an equilibrium
model of ¢ (resp., T is an LTL model of ). Note that by Proposition 1, L1g () C
LitL(p). A TEL language (resp., LTL language) is an w-language of the form
LreL(p) (resp., LiTL(p)) for some THT formula ¢. We now observe the following.

Remark 1. LTL-definable languages are TEL-definable.

Indeed, by Proposition 1, the set of LTL models of a THT formula ¢ over P
corresponds to the set of TEL models of ¢ A 1 1ot(P), where formula ¢ 7,:(P)
(we exploit this formula in many parts of the paper) captures, under the THT
semantics, the total interpretations over P.

Vro(P) = /\ G(pV —p)

peP

Next, we observe that like LTL, the class of languages definable by TEL is strictly
included in the class of w-regular languages. Indeed, by [4], every TEL language
is effectively w-regular. Moreover, let us consider the w-reqular language Lcyen
consisting of the LTL interpretations T over P = {a} of the form 02" - {a} - (¥
for some n > 0 (where the maximal prefix preceding the unique a-position has
even length). One can trivially check that Leyen is not TEL definable. Hence:

Proposition 2. The class of TEL languages is strictly included in the class of
w-regular languages.

2.2 Problems Investigated and Summary of the Main Results

In this paper, we compare the expressive power of the LTL semantics and the
TEL semantics for full THT and various syntactical THT fragments.

In particular, we consider the syntactical fragments of THT obtained by
restricting the set of allowed temporal modalities and/or by bounding the
temporal depth. Formally, given O1,03,... € {X,F,G,U,R}, we denote by
THT(O1,0s4,...) the fragment of THT for which only the temporal modalities
01,04, ... are allowed. For k > 0, THT(O1,02,...) denotes the fragment of
THT(O4, 04, ...) where the temporal depth is at most k. We write nothing for k
when no bound is imposed. For instance, THT5(G) denotes the fragment where
the unique allowed temporal modality is G and the temporal depth is at most
2. We also consider a syntactical fragment of THT, we call splittable THT, cor-
responding to a generalization of splittable temporal programs introduced in
[5]. A temporal literal is either an ordinary literal or a literal preceded by the
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next operator X. A splittable THT formula is a conjunction of formulas of the
following types:

— Initial rules: a formula of the form B — H, where B is a conjunction of
temporal literals and H is a disjunction of temporal literals.

— Dynamic rules: formulas of the form Gr, where r is an initial rule.

— Constraints: formulas of the form —¢ for arbitrary THT formulas ¢ (such
formulas impose constraints only on the ‘there’ part of an interpretation).

| THT fragments under TEL semantics |LTL| ‘

THT, THT(X,R), splittable THT > | Theorem 6

THT(X,U), THTx 1 (X, U) (k> 1) L | Theorem 6

THT(U), THT;12(U) (k> 1) 1 | Theorem 6

THT,4+1(X,R), THT(R), THT;12(R) (k> 1)| L | Theorem 6
THT(X,G), THT;+1(X,G) (k> 1) £ |Proposition 4

THT(X,F) < | Theorem 3

THT(F, G) < | Theorem 2

THT, < | Theorem 5

Fig. 1. Expressive comparison between TEL fragments and full LTL

For two THT fragments F and F' and §,8" € {LTL,TEL}, we say that
F under the S-semantics is subsumed by F’ under the &’-semantics, written
(F)s < (F)s, if for each F-formula ¢, there is a F'-formula ¢’ s.t. Ls/(¢') =
Ls (). Moreover, ' under the §’-semantics is more expressive than F under the
S-semantics, denoted by (F)s < (F')s, if (F)s < (F')s but not (F')s: < (F)s.
Additionally, we say that F under the S-semantics is expressively incomparable
with 7’ under the §’-semantics, written (F')’s L (F)s, if neither (F)s < (F')s
nor (F')s < (F)s. Sometime, we simply write LTL to mean (THT).1..

Figure 1 summarises some of the obtained results concerning the expressive-
ness comparison between the considered THT fragments under the TEL seman-
tics and full THT under the LTL semantics.

3 Expressing LTL-conformant Planning in TEL

In this section, we illustrate the expressive power of TEL by showing that the
LTL-conformant planning problem considered in [9], which is not expressible in
LTL [9], can be instead expressed in TEL. Some other approaches in ASP for the
formalization of conformant planning can be reformulated in the LTL-conformant
planning framework such as the one based on Gelfond’s action language [15].
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In the context of reasoning about actions and planning, we consider a setting
where we have incomplete information on the dynamic system and the knowledge
about the system is represented in LTL. In particular, the system is described
by introducing a set of atomic facts, called fluents, whose truth value changes as
the system evolves, and by specifying through LTL the effects of actions on such
a set of facts. Thus, we consider two disjoint finite sets of atomic propositions: F’
— the set of fluents — and A — the set of actions. The behavior of the given system
is specified by an LTL formula ¢, over AU F' which describes the set of possible
evolutions of the system, each of which is represented as an infinite sequence
of situations, where transitions from one situation to the next are caused by
actions. Note that with this formalization, we may have incomplete information
both on the initial situation and on the actual effects of actions so that, given
a sequence of actions, we will have multiple possible evolutions, one of which is
the actual one. The LTL-conformant planning problem consists in constructing
a plan, i.e. a sequence of actions that guarantees the satisfaction of a temporal
goal expressed in LTL whenever the conditions specified by ¢ are satisfied.

Formally, the LTL-conformant planning problem is the problem of finding,
given two LTL formulas ¢, and ¢, over AU F' (representing the system specifica-
tion and the temporal goal, respectively), an infinite sequence T4 = {ag}, {a1},. ..
of actions such that for all LTL interpretations T g over F' (i.e. for all the possible
infinite sequences of truth assignments to fluents), it holds that

Ta®Tr FE ps — ¢y

Let Con(yps, g) be theset of such conformant plans T 4. Such a set cannot be in gen-
eral expressed in LTL [9]. Here, we show that, unless an additional set of flat propo-
sitions, Con(ps, ¢4) can be instead expressed in TEL. We construct in linear-time a
THT formula ¢ ., whose set of equilibrium models corresponds to Con(gs, ¢4 ) DF’,
where F = F U {u}, and u is a fresh (dummy) proposition nonin AU F.

Before defining ¢.on, we need additional definitions. A THT formula is in
negation normal form (NNF) if the implication connective occurs only as nega-
tion and, additionally, negation is applied only to atomic propositions. By using
De Morgan’s laws, the duality between U and R, and the fact that in LTL, §&; — &
can be rewritten as =&; V &, we can convert the THT formula =(¢s — ¢g4) into
a THT formula Esg in NNF having the same set of LTL models.

Let K, (,,) be the THT formula obtained from the NNF formula ¢, b
replacing each occurrence of a negative literal —p with p — wu. Intuitively, p — u
is used to express negation on the ‘here’ part H of an interpretation (H, T) such
that « is flat in T and u ¢ H(¢) for all ¢ > 0. Formally, one can easily show
by structural induction that for such an interpretation, (H,T) f= K, (¢,,) iff
H =Tl ¢y Hence, (H,T) | Ky (v,5) iff HE 105 — 0.

The THT formula ¢.,, over AU F’ is then defined as follows:

Geon 1= G(\/(a/\ /\ —a)) A (Yrot (AU F") /\ Gp) A
acA a’eA\{a} o pEF!
(Fu — o (AUF)) A (uV Ku(ihy,))
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The first conjunct captures the THT interpretations (H, T) such that H and T
agree over the set A of actions, and exactly one action occurs at any timestamp.
The second and third conjuncts ensure that every proposition in F’ = FU{u} is
flat in T and whenever H # T, u ¢ H(7) for every i > 0. Finally, the last conjunct
is fulfilled iff whenever H # T, H =1 Ku(ags). Formally, the following holds,
which proves the result (for details see the online version of this paper at https://

www.dropbox.com/s/x0fnjzhjwira780/ TEL%20Expression.pdf?d1=0).
Claim. L1e(peon) = Conlps, pg) ® F'.

4 Maximal Fragments Expressible in LTL

In this section, we individuate maximal THT fragments which under the TEL
semantics are subsumed by full LTL.

The fragment THT(F,G). We show that full THT under the LTL semantics
is more expressive than the fragment THT(F, G) under the TEL semantics. On
the other hand, we additionally establish that for the considered fragment, the
TEL semantics is more expressive than the LTL semantics. For the first result, we
exploit a well-known characterization of the w-regular languages which are LTL-
expressible [18,24]. In the following, we also consider finite (THT) interpretations
which are non-empty prefixes of (THT) interpretations.

Definition 2 (N-stutter Closure [18,24]). For N > 1, an w-language L over
an alphabet ¥ is N-stutter closed if for all finite words x,y,u,w and infinite
words v over X,

w-w veLliffu-whNttvel
- (u-wh oy el iffr (u-wVNt oy el

Proposition 3 ([18,24]). If L is an w-reqular language over 2T which is N-
stutter closed for some N > 1, then L is LTL-expressible.

For ¢ € THT(F,G), let N, := n?(h + 1)?", where n = 22| and h is the
temporal depth of ¢. We demonstrate that the language L1e (@) is N -stutter
closed. For this, we use an additional notion, we call h-bisimilarity.

Definition 3 (h-bisimilarity). Let w and w’ be two finite words over an alpha-
bet ¥ and i and i’ be two positions of w and w', respectively. Given h > 0, (w,1)
and (w', i) are h-bisimilar if w(i) = w'(i") and whenever h > 0, then:
- for all i < j < |w| (resp., i < j' < |w'|), there exists i < j' < |w'| (resp.,
i < j<|w|) such that (w,j) and (w',j") are (h — 1)-bisimilar.

We say that w and w' are h-bisimilar if (w,0) and (w’,0) are h-bisimilar.

For each h > 0, a formula in THT,(F, G) cannot distinguish under the THT
semantics two interpretations where one is obtained from the other one by replac-

ing finite segments with h-bisimilar ones. Formally, we establish the following
result.


https://www.dropbox.com/s/x0fnjzhjwira780/TEL%20Expression.pdf?dl=0
https://www.dropbox.com/s/x0fnjzhjwira780/TEL%20Expression.pdf?dl=0
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Lemma 1. Let h >0, ¢ € THT,(F, G), and N and N’ be two finite h-bisimilar
interpretations. For all finite interpretations My, My, M3 and infinite interpreta-
tions My,

MlNM4 ): "2} iﬁMlN/M4 ': (2]

Mi(M2NM3)* |= ¢ iff Mi(MaN"M3)* |= ¢

The following lemma is based on a counting argument, asserts that for all
h > 1 and finite interpretations consisting of concatenations of N segments,
where N > n?(h 4 1)2" and n = 22/PI, there always exists a segment whose
removal or pumping preserves h-bisimilarity.

Lemma 2. Let h > 1 and M be a finite interpretation of the form M =
My ... My such that N > n?(h + 1)2n, where n = 22171 Then,

— for some j € [1,N], M and M" = My ... M;_1 - Mj41... My are h-bisimilar.
Moreover, M’ is non-total if M is non-total.
— for some j € [1,N], M and My ... M; - M; - Mjy1... My are h-bisimilar.

By Lemmas 1 and 2, we deduce the desired result.
Theorem 1. For each ¢ € THT(F, G), L1eL(p) is Ny-stutter closed.

Proof. Let ¢ € THT(F,G) and h be the temporal height of ¢. We assume that
h > 0 (otherwise, the result is obvious). Recall that N, = n?(h + 1)2", where
n = 22" Let T and T’ be two LTL interpretations such that

N N+1 .

T=u-wN vand T =u-w v
(resp., T=a - (u-wh -y)¥ and T' =2 - (u- wN+L . y)¥)

for some finite words x, u, y, w and infinite words v, where N > N, and n = 22171
We show that T € Ly (¢) iff T' € L1eL(¢). By Lemma?2, w" and w™*! are
h-bisimilar. Thus, by Lemma 1, (T, T) is a THT model of ¢ iff (T, T’) is a THT
model of p. We prove the following, hence, the result follows:

1. for all HC T, there is H' C T’ such that (H,T) | ¢ iff (H',T') = «.
2. for all H' © T', there is H C T such that (H, T) & ¢ iff (H,T") E ¢.

We focus on Condition 1 (the proof of Condition 2 being similar). Let H C T and
M = (H,T). Assume that T = u-w" -v (the other case, where T = z- (u-w™ -y)*,
being similar). Then, M can be written in the form M = M; Ny ... Ny My such
that [M1| = Ju| and |N;| = |w| for all ¢ € [1, N]. By Lemma?2, there exists
J € [1,N] such that Ny ... Ny is h-bisimilar to Ny ... Nj - N; N1 ... Ny. Let
M = MiN; ... N; N; Njiq1...Ny Ma. Since M is non-total, M’ is non-total too,
and by Lemma 1, M = ¢ iff M’ |= ¢'. Moreover, since T' = u - w™N+! . v, the
non-total interpretation M’ is of the form (H’, T'), and we are done. O

We now establish the main result for the fragment THT(F, G).

Theorem 2. (THT(F, G))TEL < LTL and (THT(F, G))TEL > (THT(F, G))LTL'
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Proof. One can easily show that the LTL-expressible w-language consisting of the
LTL interpretation (-{a}-0* cannot be expressed by any THT(F, G) formula under
the TEL semantics. Thus, since TEL languages are w-regular, by Proposition 3
and Theorem 1, we obtain that (THT(F,G))te. < LTL. For the second part of
the theorem, first, we observe that for a THT(F, G) formula ¢, the set of LTL
models of ¢ corresponds to the set of TEL models of the THT(F,G) formula
© AN 7oi(P). Hence, (THT(F,G))teL > (THT(F, G))1L. It remains to show that
(THT(F,G))ter £ (THT(F,G))irL. For this, let P = {b,u} and (T;,T1) and
(T2, T2) be two total interpretations defined as follows: Ty = {u}{b,u}?{u}*
and Ty = {u}{b, u}{u}*. No THT(F, G) formula can distinguish T; and Ty under
the LTL semantics. On the other hand, we show that there exists a THT;(F, G)
formula ¢ such that (T3, T3) is a TEL model of ¢, and (T, Ty) is not.

Let ¢ := G(—=—u) AFb A (Fu — ¥1o:(P)) AF((b — u) A =—d)

Under the THT semantics, the first three conjuncts capture the interpretations
(H,T) such that (i) for all ¢ > 0, w € T(d), (ii) if H # T, then for all 4 > 0,
u ¢ H(i), and (iii) there is h > 0 such that b € H(h). Additionally, the fourth
conjunct is fulfilled whenever either T = H, or there is k > 0 such that b ¢ H(k)
and b € T(k). It easily follows that the set of TEL models of o is {u}*-{b, u}-{u}*,
where there is exactly one occurrence of {b,u}, and the result follows. a

The fragment THT(X,F). For the fragment THT(X, F), we crucially use the
following known result [2], where for a total interpretation (T,T), a position
i >0 is non-empty in (T,T) if T(i) # 0.

Lemma 3 ([2]). Let ¢ be a THT(X, F) formula. Then, every equilibrium model
of ¢ has at most |p|? non-empty positions.

Since there are THT (X, F) formulas whose LTL models contain infinite occur-
rences of non-empty positions (for example, the formula —F—p), by Lemma 3 we
easily deduce the following result.

Theorem 3. Given a THT(X, F) formula ¢, one can build a THT(X, F) formula
Y such that Li11(¥) = Lre(p). Moreover, (THT(X, F))rer < (THT(X, F))r7t-

The fragment THT,. For the fragment THT;, where there is no nesting of
temporal modalities, we first establish the following result.

Theorem 4. Given a THT; formula ¢, one can construct a THT formula whose
LTL models correspond to the TEL models of .

Sketched Proof. For the fixed finite set P of atomic propositions, it is possible to
define an equivalence relation of finite index on total interpretations such that
the following holds: (1) each equivalence class C' is finitely representable and no
THT; formula over P can distinguish elements of C' under the TEL semantics, (2)
given an equivalence class C' and a THT; formula ¢ over P, one can effectively
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check whether C' is associated with TEL models of ¢, and (3) each equivalence
class C is effectively LTL-characterizable. ad

The construction in Theorem 4 cannot be done remaining in THT;