
Loizos Michael
Antonis Kakas (Eds.)

 123

LN
AI

 1
00

21

15th European Conference, JELIA 2016
Larnaca, Cyprus, November 9–11, 2016
Proceedings

Logics in
Artificial Intelligence

Lecture Notes in Artificial Intelligence 10021

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/1244

http://www.springer.com/series/1244

Loizos Michael • Antonis Kakas (Eds.)

Logics in
Artificial Intelligence
15th European Conference, JELIA 2016
Larnaca, Cyprus, November 9–11, 2016
Proceedings

123

Editors
Loizos Michael
Open University of Cyprus
Nicosia
Cyprus

Antonis Kakas
University of Cyprus
Nicosia
Cyprus

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-319-48757-1 ISBN 978-3-319-48758-8 (eBook)
DOI 10.1007/978-3-319-48758-8

Library of Congress Control Number: 2016955503

LNCS Sublibrary: SL7 – Artificial Intelligence

© Springer International Publishing AG 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

These are the proceedings of the 15th European Conference on Logics in Artificial
Intelligence (JELIA 2016), held during November 9–11, 2016, in Larnaca, Cyprus, and
organized by the University of Cyprus and the Open University of Cyprus.

The European Conference on Logics in Artificial Intelligence (or Journées
Européennes sur la Logique en Intelligence Artificielle — JELIA) began back in 1988,
as a workshop, in response to the need for a European forum for the discussion of
emerging work in this field. Since then, JELIA has been organised biennially, with
proceedings published in the Springer series Lecture Notes in Artificial Intelligence.
Previous meetings took place in Roscoff, France (1988), Amsterdam, The Netherlands
(1990), Berlin, Germany (1992), York, UK (1994), Évora, Portugal (1996), Dagstuhl,
Germany (1998), Málaga, Spain (2000), Cosenza, Italy (2002), Lisbon, Portugal
(2004), Liverpool, UK (2006), Dresden, Germany (2008), Helsinki, Finland (2010),
Toulouse, France (2012), and Madeira, Portugal (2014).

The aim of JELIA is to bring together active researchers interested in all aspects
concerning the use of logics in artificial intelligence (AI) to discuss current research,
results, problems, and applications of both theoretical and practical nature. JELIA
strives to foster links and facilitate cross-fertilization of ideas among researchers from
various disciplines, among researchers from academia and industry, and between
theoreticians and practitioners.

The increasing interest in this forum, its international level with growing partici-
pation of researchers from outside Europe, and the overall technical quality have turned
JELIA into a major biennial forum for the discussion of logic-based approaches to AI.

For the 2016 edition of JELIA, authors were invited to submit papers presenting
original and unpublished research in all areas related to the use of logics in AI.
To encourage a discussion of the links and synergies between AI and cognitive psy-
chology, this year's edition of JELIA encouraged submissions on logics in AI and
cognition, and included invited talks related to this topic.

There were 88 submissions, each reviewed by three Program Committee members.
The committee decided to accept 32 full papers for regular presentations or system
demonstrations, and ten short papers for spotlight/poster presentations. The accepted
papers span a number of areas within logics in AI, including: belief revision, answer set
programming, argumentation, probabilistic reasoning, handling inconsistencies, tem-
poral logics and planning, description logics, and decidability and complexity results.
The program also included five invited talks by Costas Bekas, Tarek R. Besold, Marc
Denecker, Torsten Schaub, and Keith Stenning.

We would like to thank the authors of all the submitted papers and the members
of the Program Committee and the additional experts who helped during the reviewing
process, for contributing and ensuring the high scientific quality of JELIA 2016.

We would also like to acknowledge the support of the University of Cyprus, the
Open University of Cyprus, the Cyprus Tourism Organisation, Austrian Airlines, IBM,
Springer, and EasyChair.

September 2016 Loizos Michael
Antonis Kakas

VI Preface

Organization

Conference Chair

Antonis Kakas University of Cyprus, Cyprus

Program Chair

Loizos Michael Open University of Cyprus, Cyprus

Program Committee

Natasha Alechina University of Nottingham, UK
Jose Julio Alferes CENTRIA, New University of Lisbon, Portugal
Leila Amgoud IRIT-CNRS, University of Toulouse, France
Carlos Areces National University of Córdoba, Argentina
Franz Baader Technical University of Dresden, Germany
Peter Baumgartner NICTA, Australia
Salem Benferhat CRIL-CNRS, University of Artois, France
Philippe Besnard IRIT-CNRS, University of Toulouse, France
Alexander Bochman Holon Institute of Technology, Israel
Gerhard Brewka University of Leipzig, Germany
Jan Broersen Utrecht University, The Netherlands
Nils Bulling Delft University of Technology, The Netherlands
Pedro Cabalar University of Coruna, Spain
Walter Carnielli State University of Campinas, Brazil
Giovanni Casini University of Luxembourg, Luxembourg
Mehdi Dastani Utrecht University, The Netherlands
James Delgrande Simon Fraser University, Canada
Marc Denecker Katholieke Universiteit Leuven, Belgium
Didier Dubois IRIT-CNRS, University of Toulouse, France
Barbara Dunin-Keplicz Warsaw University and Polish Academy of Sciences,

Poland
Paul Dunne University of Liverpool, UK
Wolfgang Faber University of Huddersfield, UK
Luis Farinas del Cerro IRIT-CNRS, University of Toulouse, France
Eduardo Fermé University of Madeira, Portugal
Raul Fervari Universidad Nacional de Córdoba, Argentina
Michael Fisher University of Liverpool, UK
Nina Gierasimczuk University of Amsterdam, The Netherlands
Laura Giordano University of Eastern Piemonte, Italy
Valentina Gliozzi University of Turin, Italy

Lluis Godo Artificial Intelligence Research Institute, CSIC, Spain
Valentin Goranko Stockholm University, Sweden
Andreas Herzig IRIT-CNRS, University of Toulouse, France
Tomi Janhunen Aalto University, Finland
Tommi Junttila Aalto University, Finland
Gabriele Kern-Isberner Technical University of Dortmund, Germany
Sébastien Konieczny CRIL-CNRS, University of Artois, France
Roman Kontchakov Birkbeck, University of London, UK
Jérôme Lang LAMSADE-CNRS, University of Paris-Dauphine, France
Joohyung Lee Arizona State University, USA
Joao Leite CENTRIA, New University of Lisbon, Portugal
Maurizio Lenzerini University of Rome La Sapienza, Italy
Nicola Leone University of Calabria, Italy
Vladimir Lifschitz University of Texas, USA
Emiliano Lorini IRIT-CNRS, University of Toulouse, France
Pierre Marquis CRIL-CNRS, University of Artois, France
Jérôme Mengin IRIT-CNRS, University of Toulouse, France
George Metcalfe University of Bern, Switzerland
Thomas Meyer University of Cape Town and CAIR, South Africa
Luís Moniz Pereira CENTRIA, New University of Lisbon, Portugal
Angelo Montanari University of Udine, Italy
Manuel Ojeda-Aciego University of Malaga, Spain
Magdalena Ortiz Vienna University of Technology, Austria
Jeff Z. Pan University of Aberdeen, UK
David Pearce Technical University of Madrid, Spain
Henri Prade IRIT-CNRS, University of Toulouse, France
Maurício Reis University of Madeira, Portugal
Christian Retoré LIRMM-CNRS, University of Montpellier, France
Jussi Rintanen Aalto University, Finland
Sebastian Rudolph Technical University of Dresden, Germany
Vladislav Ryzhikov Free University of Bozen-Bolzano, Italy
Torsten Schaub University of Potsdam, Germany
Steven Schockaert Cardiff University, UK
Theresa Swift NOVALINKS, New University of Lisbon, Portugal
Jakub Szymanik University of Amsterdam, The Netherlands
Paolo Torroni University of Bologna, Italy
Mirek Truszczynski University of Kentucky, USA
Leon van der Torre University of Luxembourg, Luxembourg
Ivan Varzinczak CRIL-CNRS, University of Artois, France
Joost Vennekens Catholic University of Leuven, Belgium
Rineke Verbrugge University of Groningen, The Netherlands
Carlos Viegas Damásio CENTRIA, New University of Lisbon, Portugal
Toby Walsh NICTA and UNSW, Australia
Mary-Anne Williams University of Technology Sydney, Australia
Frank Wolter University of Liverpool, UK
Stefan Woltran Vienna University of Technology, Austria

VIII Organization

Additional Reviewers

Alviano, Mario
Antoniou, Grigoris
Bogaerts, Bart
Cuteri, Bernardo
Dennis, Louise
Diller, Martin
Diéguez, Martín
Dvořák, Wolfgang
Fandinno, Jorge
Fernandez Gil, Oliver
Gonçalves, Ricardo
Hoffmann, Guillaume
Jansen, Joachim
Janssens, Laurent
Lagniez, Jean Marie
Lapauw, Ruben
Linsbichler, Thomas
Madrid, Nicolas
Manna, Marco
Maubert, Bastien

Mora Bonilla, Angel
Motik, Boris
Obermeier, Philipp
Ostrowski, Max
Peppas, Pavlos
Peñaloza, Rafael
Pieris, Andreas
Ricca, Francesco
Schellhorn, Sebastian
Schwind, Nicolas
Szalas, Andrzej
Tabatabaei, Masoud
Thiele, Sven
Valverde, Agustin
van der Hallen, Matthias
Velázquez-Quesada, Fernando R.
Vitacolonna, Nicola
Wheeler, Gregory
Zhuang, Zhiqiang

Organization IX

Abstracts of Invited Talks

Frontiers of Cognitive Computing

Costas Bekas

IBM Research - Zurich, Zurich, Switzerland
bek@zurich.ibm.com

Cognitive Computing is the new frontier of the information age. Computers have
evolved into indispensable tools of our modern societies, having modernized numerous
aspects of our everyday lives. Computers have facilitated the acquisition, storage and
access of huge amounts of data since the very first electronic general purpose machines
of the 1940s. Since then, we learned how to program computers in order to allow uses
that even the wildest imagination of computer pioneers of the 50s and 60s did not
capture, such as the internet, social networks and simulations of nature of incredible
fidelity. Cognitive computing turns our trusted programmable machines, into cognitive
companions. The systems are not programmed to simply achieve a task, but rather they
are developed to reason with us in ways that are natural for us. They can debate with
us, test our ideas, as these are expressed in natural language, against incredible volumes
of data and give us insights that ultimately free us and let us focus on and use our
deepest of human capabilities: intuition and intelligence. Cognitive systems mimic the
way we humans reason, allowing us to express in unstructured ways, such as speech
and vision in order to achieve in a small fraction of the previously required time feats
such as pharmaceuticals and materials discovery, attacking cancer, understand complex
natural ecosystems as well as man-made ecosystems such as the economy and tech-
nology. We will discuss the remarkable progress of cognitive computing and give a
glimpse of what the future may look like.

To the Extent that You Are Like a Grape:
Symbolic Models of Analogy and Concept

Blending in Cognitive AI

Tarek R. Besold

University of Bremen, Bremen, Germany
tbesold@uni-bremen.de

Analogy is one of the most studied representatives of a family of non-classical forms of
reasoning working across different domains, usually taken to play a crucial role in
creative thought and problem-solving. In the first part of the talk, I will shortly introduce
general principles of computational analogy models (relying on a generalisation-based
approach to analogy-making). We will then have a closer look at Heuristic-Driven
Theory Projection (HDTP) as an example for a theoretical framework and implemented
system: HDTP computes analogical relations and inferences for domains which are
represented using many-sorted first-order logic languages, applying a restricted form of
higher-order anti-unification for finding shared structural elements common to both
domains. The presentation of the framework will be followed by a few reflections on the
“cognitive plausibility” of the approach motivated by theoretical complexity and
tractability considerations.

In the second part of the talk I will discuss an application of HDTP to modeling
essential parts of concept blending processes as current “hot topic” in Cognitive Sci-
ence. Here, I will sketch an analogy-inspired formal account of concept blending —
developed in the European FP7-funded Concept Invention Theory (COINVENT)
project— which, among others, combines HDTP with mechanisms from Case-Based
Reasoning.

The FO(.) Knowledge Base System Project

Marc Denecker

Katholieke Universiteit Leuven, Leuven, Belgium
Marc.Denecker@cs.kuleuven.be

The goal of this project is to build a Knowledge Base System for an expressive
knowledge representation language. Such systems allow to separate declarative
knowledge from the problems that arise in the application domain, allowing to reuse
the knowledge base to solve different computational tasks by applying different forms
of inference. On the logical level, we start from classical first order logic (FO) (the
notation FO(.) is used here as a generic term to denote extensions of classical first order
logic FO). In this logic, we integrate various language constructs from different
computational logic paradigms: types, inductive definitions, aggregates, (bounded)
arithmetic, … The goal is to achieve an expressive, cleanly integrated knowledge
representation language with possible world semantics and a well-understood informal
semantics of mathematical precision. On the computational level, the project aims to
integrate and extend technologies developed in various computational logic fields to
build a Knowledge Base System that supports various forms of inference.

Motivations, principles and research questions raised by such a project will be
discussed. I will give an overview and demonstration of the current IDP system and
some applications. An application for interactive configuration will serve to highlight a
principle that distinguishes declarative modelling from programming: the separation of
knowledge from problems and the possibility to apply multiple forms of inference on
the knowledge base to solve different computational tasks. We discuss how even
interactive systems can be described and “run” within FO(.).

Hybrid Reasoning with Answer Set
Programming

Torsten Schaub

University of Potsdam, Potsdam, Germany
Inria Rennes, Rennes, France

torsten@cs.uni-potsdam.de

Answer Set Programming (ASP) provides an approach to declarative problem solving
that combines a rich yet simple modeling language with effective Boolean constraint
solving capacities. This makes ASP a model, ground, and solve paradigm, in which a
problem is expressed as a set of first-order rules, which are subsequently turned into a
propositional format by systematically replacing all variables, before finally the models
of the resulting propositional rules are computed. ASP is particularly suited for mod-
eling problems in the area of Knowledge Representation and Reasoning involving
incomplete, inconsistent, and changing information due to its non-monotonic semantic
foundations. From a formal perspective, ASP allows for solving all search problems in
NP (and NPNP) in a uniform way. Hence, more generally, ASP is well-suited for
solving hard combinatorial search (and optimization) problems. Interesting applications
of ASP include decision support systems for NASA shuttle controllers, industrial team-
building, music composition, natural language processing, package configuration,
phylogenetics, robotics, systems biology, timetabling, and many more.

However, despite its growing popularity, ASP is not a silver bullet. For instance, it
became clear early on that ASP fails to handle large numeric domains. This was
addressed by Gelfond et al. in 2005 by proposing an integration of ASP and Constraint
Processing (CP). This influential work has given rise to the subarea of Constraint ASP
(CASP). Although this is an exemplar of hybridizing ASP, the need for integrating
special-purpose reasoning is omnipresent when it comes to attacking real-world appli-
cations. This includes the integration of ASP with linear programming in bio-infor-
matics, with geometrical reasoning in robotics, simulation in hardware design, and many
more. This reveals the need for a principled way of integrating ASP with dedicated
reasoning formalisms, both at the semantic and implementation level. Although this
development has already been anticipated in the area of Satisfiability Testing (SAT),
leading to the subfield of SAT Modulo Theories (SMT), it only serves as a limited
blueprint for ASP. This is because (i) it only deals with solving and ignores modeling
and grounding and (ii) it is monotonic and thus follows different semantic principles.

The talk will start with an introduction to CASP and sketch important aspects and
insights gained in the development of the CASP solver clingcon. Building on this, we
will describe the general framework for integrating theory reasoning into ASP offered
by the fifth generation of the ASP system clingo. And finally we sketch a novel
semantic approach to integrating ASP and CP, called the logic of Here-and-There with
constraints.

We Reason in Uncertainty,
But of What Kinds?

Keith Stenning

The University of Edinburgh, Scotland, UK
k.stenning@ed.ac.uk

If logic is to be helpful in analysing human reasoning, we first need to acknowledge the
heterogeneity of the kinds of reasoning that people do. There has been a strong shift in
the study of human reasoning away from classical logic toward probability theory as the
formal framework, and for many researchers probability is all that is needed to analyse
any human reasoning. Reasoning in this respect is held to be homogeneous. We
have argued elsewhere that this move is from the frying pan into the fire, not because
probability (or classical logic) cannot be useful, but because homogeneity is empirically
and formally disastrous (Stenning et al. (submitted); Stenning and van Lambalgen
(2008); Besold et al. (submitted)). We take it that in AI, this is all commonplace. But
some of the insights arising in cognition may be of interest to AI researchers. Engaging
with logical multiplicity focusses attention on qualitatively different kinds of uncer-
tainty, and how to characterise them. This talk will present some current thinking on that
question. The idea is to use logics to individuate kinds of uncertainty. In particular we
contrast Logic Programming (LP) as a nonmonotonic logic, here specialised for ana-
lysing human discourse processing, and with some track record in modelling discourse
semantics, with, on the one hand classical logic, and on the other probability. When
examined close up, it is emerges just how what different kinds of things the uncertainties
of these three system are.

References

Besold, T.R., Garcez, A., Stenning, K., Torre, L.V.D.: Reasoning in Non-probabilistic Uncer-
tainty: Logic Programming and Neural- Symbolic Computing as Examples. Minds and
Machines (submitted)

Stenning, K., Martignon, L., Varga, A.: Adaptive Reasoning: Integrating Fast and Frugal
Heuristics with a Logic of Interpretation. Decision (submitted)

Stenning, K., van Lambalgen, M.: Human Reasoning and Cognitive Science. MIT Press,
Cambridge (2008)

Over, D.E.: New paradigm psychology of reasoning. Think. Reason. 15(4), 431–438 (2009)

Contents

Full Papers

Metabolic Pathways as Temporal Logic Programs . 3
Jean-Marc Alliot, Martín Diéguez, and Luis Fariñas del Cerro

On Decidability of a Logic of Gossips. 18
Krzysztof R. Apt and Dominik Wojtczak

Hilbert-Style Axiomatization for Hybrid XPath with Data 34
Carlos Areces and Raul Fervari

Approximate Unification in the Description Logic FL0 49
Franz Baader, Pavlos Marantidis, and Alexander Okhotin

Inconsistency-Tolerant Query Answering: Rationality Properties
and Computational Complexity Analysis . 64

Jean François Baget, Salem Benferhat, Zied Bouraoui,
Madalina Croitoru, Marie-Laure Mugnier, Odile Papini, Swan Rocher,
and Karim Tabia

Temporal Here and There . 81
Philippe Balbiani and Martín Diéguez

On Logics of Group Belief in Structured Coalitions. 97
Philippe Balbiani, David Pearce, and Levan Uridia

A Three-Value Abstraction Technique for the Verification of Epistemic
Properties in Multi-agent Systems . 112

Francesco Belardinelli and Alessio Lomuscio

A Relaxation of Internal Conflict and Defence in Weighted Argumentation
Frameworks . 127

Stefano Bistarelli, Fabio Rossi, and Francesco Santini

Decidability and Expressivity of Ockhamist Propositional Dynamic Logics. . . 144
Joseph Boudou and Emiliano Lorini

On the Expressiveness of Temporal Equilibrium Logic 159
Laura Bozzelli and David Pearce

Introducing Role Defeasibility in Description Logics 174
Katarina Britz and Ivan Varzinczak

http://dx.doi.org/10.1007/978-3-319-48758-8_1
http://dx.doi.org/10.1007/978-3-319-48758-8_2
http://dx.doi.org/10.1007/978-3-319-48758-8_3
http://dx.doi.org/10.1007/978-3-319-48758-8_4
http://dx.doi.org/10.1007/978-3-319-48758-8_5
http://dx.doi.org/10.1007/978-3-319-48758-8_5
http://dx.doi.org/10.1007/978-3-319-48758-8_6
http://dx.doi.org/10.1007/978-3-319-48758-8_7
http://dx.doi.org/10.1007/978-3-319-48758-8_8
http://dx.doi.org/10.1007/978-3-319-48758-8_8
http://dx.doi.org/10.1007/978-3-319-48758-8_9
http://dx.doi.org/10.1007/978-3-319-48758-8_9
http://dx.doi.org/10.1007/978-3-319-48758-8_10
http://dx.doi.org/10.1007/978-3-319-48758-8_11
http://dx.doi.org/10.1007/978-3-319-48758-8_12

Opposition Frameworks . 190
Cosmina Croitoru and Kurt Mehlhorn

Prompt Interval Temporal Logic . 207
Dario Della Monica, Angelo Montanari, Aniello Murano,
and Pietro Sala

Exploiting Contextual Knowledge for Hybrid Classification of Visual
Objects . 223

Thomas Eiter and Tobias Kaminski

Reasoning About Justified Belief Based on the Fusion of Evidence 240
Tuan-Fang Fan and Churn-Jung Liau

Writing Declarative Specifications for Clauses . 256
Martin Gebser, Tomi Janhunen, Roland Kaminski, Torsten Schaub,
and Shahab Tasharrofi

Standard Sequent Calculi for Lewis’ Logics of Counterfactuals. 272
Marianna Girlando, Björn Lellmann, Nicola Olivetti,
and Gian Luca Pozzato

Incremental Computation of Deterministic Extensions for Dynamic
Argumentation Frameworks . 288

Sergio Greco and Francesco Parisi

Revising Possibilistic Knowledge Bases via Compatibility Degrees 305
Yifan Jin, Kewen Wang, Zhe Wang, and Zhiqiang Zhuang

Proving Craig and Lyndon Interpolation Using Labelled Sequent Calculi 320
Roman Kuznets

Efficient Reasoning for Inconsistent Horn Formulae 336
Joao Marques-Silva, Alexey Ignatiev, Carlos Mencía,
and Rafael Peñaloza

Information Flow Under Budget Constraints . 353
Pavel Naumov and Jia Tao

A Tool for Probabilistic Reasoning Based on Logic Programming
and First-Order Theories Under Stable Model Semantics 369

Matthias Nickles

Pakota: A System for Enforcement in Abstract Argumentation 385
Andreas Niskanen, Johannes P. Wallner, and Matti Järvisalo

Kinetic Consistency and Relevance in Belief Revision 401
Pavlos Peppas and Mary-Anne Williams

XX Contents

http://dx.doi.org/10.1007/978-3-319-48758-8_13
http://dx.doi.org/10.1007/978-3-319-48758-8_14
http://dx.doi.org/10.1007/978-3-319-48758-8_15
http://dx.doi.org/10.1007/978-3-319-48758-8_15
http://dx.doi.org/10.1007/978-3-319-48758-8_16
http://dx.doi.org/10.1007/978-3-319-48758-8_17
http://dx.doi.org/10.1007/978-3-319-48758-8_18
http://dx.doi.org/10.1007/978-3-319-48758-8_19
http://dx.doi.org/10.1007/978-3-319-48758-8_19
http://dx.doi.org/10.1007/978-3-319-48758-8_20
http://dx.doi.org/10.1007/978-3-319-48758-8_21
http://dx.doi.org/10.1007/978-3-319-48758-8_22
http://dx.doi.org/10.1007/978-3-319-48758-8_23
http://dx.doi.org/10.1007/978-3-319-48758-8_24
http://dx.doi.org/10.1007/978-3-319-48758-8_24
http://dx.doi.org/10.1007/978-3-319-48758-8_25
http://dx.doi.org/10.1007/978-3-319-48758-8_26

DRAT Proofs for XOR Reasoning . 415
Tobias Philipp and Adrián Rebola-Pardo

Understanding the Abstract Dialectical Framework 430
Sylwia Polberg

Extensional Semantics for Higher-Order Logic Programs with Negation. 447
Panos Rondogiannis and Ioanna Symeonidou

Reactive Policies with Planning for Action Languages 463
Zeynep G. Saribatur and Thomas Eiter

Correct Grounded Reasoning with Presumptive Arguments 481
Bart Verheij

Characterizability in Horn Belief Revision . 497
Jon Yaggie and György Turán

Short Papers

Formalizing Goal Serializability for Evaluation of Planning Features 515
Reza Basseda and Michael Kifer

Rule-based Stream Reasoning for Intelligent Administration
of Content-Centric Networks . 522

Harald Beck, Bruno Bierbaumer, Minh Dao-Tran, Thomas Eiter,
Hermann Hellwagner, and Konstantin Schekotihin

Inconsistency Management in Reactive Multi-context Systems 529
Gerhard Brewka, Stefan Ellmauthaler, Ricardo Gonçalves,
Matthias Knorr, João Leite, and Jörg Pührer

Iteratively-Supported Formulas and Strongly Supported Models for Kleene
Answer Set Programs (Extended Abstract) . 536

Patrick Doherty, Jonas Kvarnström, and Andrzej Szałas

Forgetting in ASP: The Forgotten Properties. 543
Ricardo Gonçalves, Matthias Knorr, and João Leite

On Hierarchical Task Networks . 551
Andreas Herzig, Laurent Perrussel, and Zhanhao Xiao

Refinement of Intentions . 558
Andreas Herzig, Laurent Perrussel, Zhanhao Xiao, and Dongmo Zhang

GenB: A General Solver for AGM Revision. 564
Aaron Hunter and Eric Tsang

Contents XXI

http://dx.doi.org/10.1007/978-3-319-48758-8_27
http://dx.doi.org/10.1007/978-3-319-48758-8_28
http://dx.doi.org/10.1007/978-3-319-48758-8_29
http://dx.doi.org/10.1007/978-3-319-48758-8_30
http://dx.doi.org/10.1007/978-3-319-48758-8_31
http://dx.doi.org/10.1007/978-3-319-48758-8_32
http://dx.doi.org/10.1007/978-3-319-48758-8_33
http://dx.doi.org/10.1007/978-3-319-48758-8_34
http://dx.doi.org/10.1007/978-3-319-48758-8_34
http://dx.doi.org/10.1007/978-3-319-48758-8_35
http://dx.doi.org/10.1007/978-3-319-48758-8_36
http://dx.doi.org/10.1007/978-3-319-48758-8_36
http://dx.doi.org/10.1007/978-3-319-48758-8_37
http://dx.doi.org/10.1007/978-3-319-48758-8_38
http://dx.doi.org/10.1007/978-3-319-48758-8_39
http://dx.doi.org/10.1007/978-3-319-48758-8_40

A Two-Phase Dialogue Game for Skeptical Preferred Semantics 570
Zohreh Shams and Nir Oren

Measuring Inconsistency in Answer Set Programs . 577
Markus Ulbricht, Matthias Thimm, and Gerhard Brewka

Author Index . 585

XXII Contents

http://dx.doi.org/10.1007/978-3-319-48758-8_41
http://dx.doi.org/10.1007/978-3-319-48758-8_42

Full Papers

Metabolic Pathways as Temporal
Logic Programs

Jean-Marc Alliot1, Mart́ın Diéguez2(B), and Luis Fariñas del Cerro3

1 IRIT - Toulouse University, Toulouse, France
jean-marc.alliot@irit.fr

2 IRIT - CIMI - Toulouse University, Toulouse, France
martin.dieguez@irit.fr

3 IRIT - CNRS - Toulouse University, Toulouse, France
farinas@irit.fr

Abstract. Metabolic Networks, formed by series of metabolic pathways,
are made of intracellular and extracellular reactions that determine the
biochemical properties of a cell and by a set of interactions that guide
and regulate the activity of these reactions. Cancers, for example, can
sometimes appear in a cell as a result of some pathology in a metabolic
pathway. Most of these pathways are formed by an intricate and complex
network of chain reactions, and they can be represented in a human
readable form using graphs which describe the cell signaling pathways.

In this paper we present a logic, called Molecular Equilibrium Logic,
a nonmonotonic logic which allows representing metabolic pathways. We
also show how this logic can be presented in terms of a syntactical subset
of Temporal Equilibrium Logic, the temporal extension of Equilibrium
Logic, called Splittable Temporal Logic Programs.

1 Introduction

Molecular Interaction Maps [20], formed by a series of metabolic pathways, are
made of intracellular and extracellular reactions that determine the biochemical
properties of a cell by consuming and producing proteins, and by a set of interac-
tions that guide and regulate the activity of these reactions. These reactions are
at the center of a cell’s existence, and are regulated by other proteins, which can
either activate these reactions or inhibit them. These pathways form an intricate
and complex network of chain reactions, and can be represented using graphs.
Molecular Interaction Maps (MIM’s) [1] are such a representation, and it is pos-
sible to write these graphs using editors such as Pathvisio [17] (which outputs
its own XML representation) or System Biology Markup Language (SBML) [2]
editors.

This research was partially supported by the French Spanish Laboratory for
Advanced Studies in Information, Representation and Processing (LEA-IREP).
Mart́ın Diéguez was supported by the Centre international de mathématiques
et d’informatique (contract ANR-11-LABX-0040-CIMI).

c© Springer International Publishing AG 2016
L. Michael and A. Kakas (Eds.): JELIA 2016, LNAI 10021, pp. 3–17, 2016.
DOI: 10.1007/978-3-319-48758-8 1

4 J.-M. Alliot et al.

These graphs can become extremely large, and although essential for knowl-
edge capitalization and formalization, they are difficult to use because: (1) Read-
ing is complex due to the very large number of elements, and reasoning is even
more difficult; (2) Using a graph to communicate goals is only partially suitable
because the representation formalism requires expertise; (3) Graphs often con-
tain implicit knowledge, that is taken for granted by one expert, but is missed
by another one.

Our aim consists in providing a logical framework that helps users to detect
possible inconsistencies as well as reasoning on such kind of maps. We have
chosen to use Pathvisio and its XML representation as our editor/representation
of choice for representing these graphs, but this work could be extended to SBML
and SBML editors. In [11], we modelled a restricted subclass of MIM’s in terms
of first-order logic with equality. This work was simplified into propositional
logic in [6], which enabled to use all propositional calculus tools such as solving
abductive queries on MIM’s. Unfortunately that representation was unable to
express the temporal properties of MIM, which are implicit in the formalisations.
So we extended our work with temporal logic in [5]. This representation was
enhanced with a naive approach to abductive temporal reasoning by assuming
bounded time and the so-called closed world assumption [27], a concept tightly
connected with Logic Programming and Non-Monotonic reasoning1. The use of
non-monotonicity allows us to use defaults and inertia rules to express things
like “a protein remains in the environment if it is not used in one reaction”,
which greatly enhances our temporal descriptions.

In order to incorporate such kind of defaults and to justify the use of the
closed world assumption in [5], we present in this paper Molecular Equilibrium
Logic (MEL), a reformulation of the temporal version of Molecular Interaction
Logic [5] in terms of Equilibrium Logic [25], a well-known logical characterisation
of Stable Models [15] and Answer Sets [9]. Moreover we show the existence of
a connection between MEL and Temporal Equilibrium Logic (TEL) [3], the
temporal extension of the Equilibrium Logic. By going one step further, we
show that MEL can be encoded in a syntactic subclass of TEL called splittable
temporal logic programs (STLP’s) [4], which allows us to capture the set of
Molecular Equilibrium Models (explained in Sect. 4) in terms of a Linear Time
Temporal Logic (LTL) formula [22] (see Sect. 7).

The rest of this paper is organized as follows: Sect. 2 presents several biolog-
ical concepts used along this paper as well as describes the problems to solve
in layman’s words and with a simple example. Section 3 describes the concepts
of production and regulation which are the basic operations present in a MIM.
Sections 4 and 5 respectively describe two different semantics based on equilibrium
logic: Molecular Equilibrium Logic and Temporal Equilibrium Logic. The former is
capable of describing general pathways while the latter is the best-known temporal

1 Regarding non-monotonic approaches to model biological systems, there are several
contributions in the area of Answer Set Programming [9,28], action languages [29]
or Inductive Logic Programming [12]. In these contributions the temporal behaviour
is considered in [29] but both representation and query languages are different.

Metabolic Pathways as Temporal Logic Programs 5

extension of Equilibrium Logic. In Sect. 6 we establish the relation between the two
aforementioned formalisms, which is studied in detail in Sect. 7 where we prove
that the Equilibrium Models of our temporal theories can be expressed in Linear
Time Temporal Logic [22] via Temporal Completion [4,10].

2 A Simple Classical Example

In this section we introduce the example of the regulation of the lac
operon [19]2,3, which will be used and developed in the rest of this paper. The lac
operon (lactose operon) is an operon required for the transport and metabolism
of lactose in many bacteria. Although glucose is the preferred carbon source for
most bacteria, the lac operon allows for the effective digestion of lactose when
glucose is not available. The lac operon is a sequence of three genes (lacZ, lacY
and lacA) which encode 3 enzymes. Then, these enzymes carry the transforma-
tion of lactose into glucose. We will concentrate here on lacZ. LacZ encodes the
β-galactosidase which cleaves lactose into glucose and galactose. The lac operon
uses a two-part control mechanism to ensure that the cell expends energy pro-
ducing the enzymes encoded by the lac operon only when necessary. First, in the
absence of lactose, the lac repressor halts production of the enzymes encoded
by the lac operon. Second, in the presence of glucose, the catabolite activator
protein (CAP), required for production of the enzymes, remains inactive.

Figure 1(a) describes this regulatory mechanism. The expression of lacZ gene
is only possible when RNA polymerase (pink) can bind to a promotor site

(a) The Lac Operon (b) MIM representing the Lac Operon

Fig. 1. Graphical and MIM representation of the Lac Operon. (Color figure online)

2 The Nobel prize was awarded to Monod, Jacob and Lwoff in 1965 partly for the
discovery of the lac operon by Monod and Jacob [18], which was the first genetic
regulatory mechanism to be understood clearly, and is now a “standard” introduc-
tory example in molecular biology classes.

3 A less formal explanation can be found in https://en.wikipedia.org/wiki/Lac operon.

https://en.wikipedia.org/wiki/Lac_operon

6 J.-M. Alliot et al.

(marked P, black) upstream the gene. This binding is aided by the cyclic adeno-
sine monophosphate (cAMP in blue) which binds before the promotor on the
CAP site (dark blue). The lacl gene (yellow) encodes the repressor protein Lacl
(yellow) which binds to the promotor site of the RNA polymerase when lactose
is not available, preventing the RNA polymerase to bind to the promoter and
thus blocking the expression of the following genes (lacZ, lacY and lacA): this is
a negative regulation, or inhibition, as it blocks the production of the proteins.
When lactose is present, the repressor protein Lacl binds with lactose and is
converted to allolactose, which is not able to bind to the promotor site, thus
enabling RNA polymerase to bind to the promotor site and to start expressing
the lacZ gene if cAMP is bound to CAP. cAMP is on the opposite a positive
regulation, or an activation, as its presence is necessary to express the lacZ gene.
However, cAMP is itself regulated negatively by glucose: when glucose is present,
the concentration of cAMP becomes low, and thus cAMP does not bind to the
CAP site, blocking the expression of lacZ. In this figure, we have three kinds of
entities which have different initial settings and temporal dynamics:

– lacl, lacZ and cAMP are initial external conditions of the model and they do
not evolve in time.

– galactosidase and the repressor protein can only be produced inside the graph,
and are always absent at the start (time 0) of the modeling. Their value will
then evolve in time according to the processes described by the graph.

– glucose and lactose also evolve in time (like galactosidase and the repressor
protein) according to the processes described by the graph, but they are also
initial conditions of the system, and can either be present or absent at time
0, like lacl, lacZ and cAMP.

So, an entity must be classified according to two main characteristics: C1:
It can evolve in time according to the cell reactions (appear and disappear), or
it can be fixed, such as a condition which is independent of the cell reactions
(temperature, protein always provided in large quantities by the external envi-
ronment, etc. . .). C2: It can be an initial condition of the cell model (present or
absent at the beginning of the modeling), or can only be produced by the cell.
There are thus three kinds of entities, which have three kind of behaviour:

Exogenous entities: an exogenous entity satisfies C1 and ¬C2; their status
never change through time: they are set once and for all by the environment
or by the experimenter at the start of the simulation; the graph never modifies
their value, and if they are used in a reaction, the environment will always
provide “enough” of them.

Pure endogenous entities: on the opposite, a pure endogenous entity satisfies
¬C1 and C2; their status evolves in time and is set only by the dynamic of
the graph. They are absent at the beginning of the reaction, and can only
appear if they are produced inside the graph.

Weak endogenous entities: weak endogenous entities satisfy C2 and C1; they
can be present or absent at the beginning of the process (they are initial
conditions of the model), however their value after the start of the process is

Metabolic Pathways as Temporal Logic Programs 7

entirely set by the dynamic of the graph. So they roughly behave like pure
endogenous entities, but the initial condition can be set by the experimenter.

The status of a protein/condition is something which is set by the biolo-
gist, regarding his professional understanding of the biological process described
by the graph4. However a rule of thumb is that exogenous entities are almost
never produced inside the graph (they never appear at the right side of a pro-
duction arrow), while endogenous entities always appear on the right side of
a production arrow (but they can also appear on the left side of a production
rule, especially weak endogenous entities). These distinctions are fundamental,
because the dynamics of these entities are different and they will have to be
formalized differently.

3 Fundamental Operations

The mechanism described in the previous section is summarized in the simplified
graph in Fig. 1(b). This example contains all the relationship operators that will
be used in the rest of this document. In order to make their presentation clearer,
we will distinguish between productions and regulations:

Productions can take two different forms, depending on whether the reac-
tants are consumed by the reactions or not: In Fig. 1(b), lactose and galactosi-
dase produce glucose, and are consumed while doing so, which is thus noted
(galactosidase, lactose−▸ glucose). On the opposite, the expression of the lacZ
gene to produce galactosidase (or of the lacl gene to produce the Lacl repressor
protein) does not consume the gene, and we have thus (lacZ −▹ galactosidase).
Generally speaking, If the reaction consumes completely the reactant(s) we write:
a1, a2, · · · , an −▸ b while if the reactants are not consumed by the reaction, we
write a1, a2, ...an −▹ b. In the former representation the production of b completely
consumes a1, a2...an whereas in the latter a1, a2...an are not consumed when b
is produced.

Regulations can also take two forms: every reaction can be either inhibited
or activated by other proteins or conditions. In the Diagram of Fig. 1(b), the
production of galactosidase from the expression of the lacZ gene is activated
by cAMP (we use cAMP −▹ to express activation). At the same time the same
production of galactosidase is blocked (or inhibited) by the Lacl repressor protein
(noted Repressor �).

Generally speaking, we write a1, a2, ...an −▹ if the simultaneous presence of
a1, a2, ...an activates a production or another regulation. Similarly we write

4 It is important here to notice that lactose can be either considered as a weak endoge-
nous variable, or as an exogenous variable if we consider that the environment is
always providing “enough” lactose. It is a simple example which shows that vari-
ables in a graph can be interpreted differently according to what is going to be
observed.

8 J.-M. Alliot et al.

Fig. 2. Examples of activations and inhibitions and stacking contexts.

a1, a2, ...an � if the simultaneous presence of a1, a2, ...an inhibits a produc-
tion or another regulation. On Fig. 2(a), we have a summary of basic inhibi-
tions/activations on a reaction: the production of b from a1, · · · , an is activated
by the simultaneous presence of c1, · · · , cn or by the simultaneous presence of
d1, · · · , dn, and inhibited by the simultaneous presence of e1, · · · , en or by the
simultaneous presence of f1, · · · , fn. These regulations are often “stacked”, on
many levels (see Fig. 2(b)). For example in Fig. 1(b), the inhibition by the Lacl
repressor protein of the production of galactosidase can itself be inhibited by
the presence of lactose, while the activation of the same production by cAMP is
inhibited by the presence of glucose.

A final word of warning is necessary. Graphs pragmatically describe sequences
of operations that biologists find important. They are only a model of some of
the biological, molecular and chemical reactions that take place inside the cell;
they can also be written in many different ways, depending on the functional
block or operations that biologists want to describe, and some relationships are
sometimes simply left out because they are considered not important for the
function which is described in a particular graph.

4 Molecular Equilibrium Logic

In this section we introduce Molecular Equilibrium Logic. The syntax of this
logic consists of two elementary building blocks: pathway context and pathway
formula. The former corresponds to the representation of the activation and
inhibition conditions while the latter allows representing the production of new
substances (see Sect. 3). A pathway context is formed by expressions defined by
the following grammar:

α ::= 〈{α1, · · · , αn}P −▹ , {αn+1, · · · , αn+m}Q � 〉,

where P and Q are sets (finite and possibly empty) of propositional variables
representing the conditions of activation (−▹) and inhibition (�) of the reaction.
Every context can be associated with a (possibly empty) set of activation (αi,
with 1 ≤ i ≤ n) and inhibition (αj , with 1 ≤ j ≤ m) contexts. One or both
sets can be empty. Broadly speaking, the context associated with a pathway

Metabolic Pathways as Temporal Logic Programs 9

formula represents the set of substances that must be present or absent in order
to make the reaction possible. As an example of context, let us consider the
example of the Lac Operon, whose graph is displayed in Fig. 1(b). The context
associated with the production rule lacZ −▹Galactosidase corresponds to the
following expression:

γ = 〈{〈∅−▹ , {Glucose}� 〉}{CAMP}−▹ ,{〈∅−▹ ,{Lactose}� 〉}{Repressor}� 〉.
(1)

A Pathway formula is a rule built from the grammar F ::= [α] (P∧ � q) |
F ∧F , where α represents a context, �∈ {−▸ , −▹ }, P∧ stands for a conjunction
of all atoms in the finite set P and q corresponds to a propositional variable.
Regarding our running example, which is shown in Fig. 1(b), consists of three
different pathways, each of them corresponds to one of the following pathway
formulas:5

[〈∅∅−▹ , ∅∅ � 〉] (Lactose,Galactosidase−▸Glucose) (2)
[〈∅∅−▹ , ∅∅ � 〉] (lacl −▹Repressor) (3)
[γ] (lacZ −▹Galactosidase) . (4)

From a biological point of view, substances can be created or destroyed by
reactions that might take place in parallel. Therefore, we must take into account
situations where a protein is produced and consumed at the same time or where
a protein remains present because it was not involved in a reaction which would
have consumed it. We model this aspect by extending the set of propositional
variables Σ to the set ̂Σ = Σ∪{Pr (p1) , · · · ,Pr (pn)}∪{Cn (p1) , · · · ,Cn (pn)},
where p1, · · · , pn are either a weak or pure endogenous variables. Informally
speaking, every atom of the form Pr (p) means that p is produced as a result of
a chemical reaction while Cn (p) means that the reactive p is consumed in a reac-
tion. Regarding our running example, we notice that the production of Glucose
implies that Galactosidase is consumed. However, Lactose, as an exogenous
variable is never consumed. From now on, we will use the symbols Σ and ̂Σ
referring to, respectively, the signature (set of entities occurring in a MIM) and
its corresponding extension.

The semantics of MEL is based on the monotonic logic of Molecular Here
and There (MHT) plus a minimisation criterion among the Here and There
models. Given a set of propositional variables Σ we define a Molecular Here
and There6 interpretation M as an infinite sequence of pairs mi = 〈Hi, Ti〉 with
i = 0, 1, 2, . . . where Hi ⊆ Ti ⊆ ̂Σ satisfying the following properties: for all
endogenous variable p ∈ Σ and for all exogenous variable q ∈ Σ and for all
i ≥ 0,
5 Notice that only the pathway formula associated with the production of
Galactosidase has an associated context, defined in (1), while the rest of pathway
formulas have an empty context.

6 Here and There [16] is an intermediate logic which severs as a monotonic basis for
the Equilibrium Models [25], a logical characterisation of the Stable Model seman-
tics [15].

10 J.-M. Alliot et al.

(A) if Pr (p) ∈ Hi then p ∈ Hi+1;
(B) if p ∈ Hi and Cn (p)
∈Ti then p ∈

Hi+1;
(C) if Pr (p) ∈ Ti then p ∈ Ti+1;

(D) if p ∈ Ti and Cn (p)
∈ Tithen p ∈
Ti+1;

(E) if q ∈ Hi then q ∈ Hi+1;
(F) if q ∈ Ti then q ∈ Ti+1.

For simplicity, given a MHT interpretation, we write H (resp. T) to represent the
sequence of pair components H0,H1, . . . (resp. T0, T1, . . .). Using this notation,
we will sometimes abbreviate the interpretation as M = 〈H,T〉. If H = T, we
will call M total model.

Before presenting the satisfaction relation we introduce the activation (A(α))
and inhibition (I(α)) expressions associated with a pathway context α =
〈{α1, · · · , αn}P −▹ , {βn+1, · · · , βn+m}Q � 〉. Informally speaking, A(α) char-
acterizes when the context α is active while I(α) describes when it is inhibited.
These expressions, which will be used in the definition of the satisfaction relation,
are defined as follows:

A(α) =
∧

p∈P

p ∧
n
∧

i=1

A(αi) ∧ (
∨

q∈Q

¬q ∨
m
∧

j=n+1

I(βj))

I(α) =
∨

p∈P

¬p ∨
n
∨

i=1

I(αi) ∨ (
∧

q∈Q

q ∧
m
∧

j=n+1

A(βj)).

If one part of the context α is empty, then the corresponding part is of course
absent in A(α) and I(α). For instance, the activation and inhibition expressions
of the context γ described in (1) correspond to the Boolean expressions: A(γ) =
CAMP ∧¬Glucose∧ (¬Repressor ∨ Lactose) and I(γ) = ¬CAMP ∨Glucose∨
(Repressor ∧ ¬Lactose).

Given a MHT interpretation M, i ≥ 0 and a pathway formula F on Σ, we
define the satisfaction relation (M, i |= F) as follows:

– M, i |= p iff p ∈ Hi, for any variable p ∈ Σ;
– M, i |= ¬p iff p
∈ Ti, with p ∈ Σ;
– disjunction and conjunction are satisfied in usual way;
– M, i |= [α] (P∧

−▸ q) iff for all H′ ∈ {H,T} and j ≥ i , if 〈H′,T′〉, j |= A(α)
and P ⊆ H ′

j , then {Pr (q) ,Cn (p) | p ∈ P an endogenous variable} ⊆ H ′
j ;

– M, i |= [α] (P∧
−▹ q) iff for all H′ ∈ {H,T} and j ≥ i , if 〈H′,T′〉, j |= A(α)

and P ⊆ H ′
j , then Pr (q) ∈ H ′

j ;

As in other equilibrium logic extensions, we relate two MHT models M = 〈H,T〉
and M′ = 〈H′,T′〉 as follows: M′ ≤ M iff T = T′ and for all i ≥ 0 H ′

i ⊆ Hi.
M′ < M if M′ ≤ M and M′
= M. We say that a MHT interpretation M is
a Molecular Equilibrium Model of a set of pathway formulas Γ iff M is total,
M, 0 |= Γ an there is no M′ such that M′ < M such that M′, 0 |= Γ .

Metabolic Pathways as Temporal Logic Programs 11

5 Temporal Equilibrium Logic

Temporal Equilibrium Logic (TEL) [3] extends Equilibrium Logic [25]7 with tem-
poral operators from Linear Time Temporal Logic [22]. TEL can also be seen
as a temporal extension of the stable models semantics [15] for logic program-
ming. This formalism is very suitable for representing the temporal behaviour
of biological systems, since the use of the laws of inertia allows us to avoid the
specification of the large number of frame axioms [24] that should be considered
in the representation. The TEL formulas we will consider along this paper are
built from the following grammar:

ϕ ::= ⊥ | p | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 → ϕ2 | ◯ϕ1 | �ϕ1 | ♦ϕ2,

where ϕ1 and ϕ2 are also temporal formulas. Regarding the modal operators, ◯
is read “next”, � is read “forever” and ♦ stands for “eventually” or “at some
future point”.

The semantics of TEL is defined, in the same spirit as in Equilibrium Logic, in
terms of a temporal extension of the logic of Here and There [16], called Temporal
Here and There (THT), plus a minimisation criterion among the THT models.
We define a Temporal Here and There interpretation M as an infinite sequence of
pairs mi = 〈Hi, Ti〉 with i = 0, 1, 2, . . . where Hi ⊆ Ti ⊆ ̂Σ. For simplicity, given
a temporal interpretation, we write H (resp. T) to represent the sequence of pair
components H0,H1, . . . (resp. T0, T1, . . .). Using this notation, we will sometimes
abbreviate the interpretation as M = 〈H,T〉. An interpretation M = 〈H,T〉 is
said to be total when H = T. The satisfaction relation |= is interpreted as
follows on THT models (M is a THT model and k ∈ N):

1. M, k |= p iff p ∈ Hk, for any p ∈ ̂Σ.
2. M, k |= ϕ ∧ ψ iff M, k |= ϕ and M, k |= ψ.
3. M, k |= ϕ ∨ ψ iff M, k |= ϕ or M, k |= ψ.
4. M, k |= ϕ → ψ iff for all H′ ∈ {H,T}, 〈H′,T〉, k
 |= ϕ or 〈H′,T〉, k |= ψ.
5. M, k |= ◯ϕ iff M, k + 1 |= ϕ.
6. M, k |= �ϕ iff for all j ≥ k, M, j |= ϕ.
7. M, k |= ♦ϕ iff there is j ≥ k such that M, j |= ϕ.
8. never M, k |=⊥.

Note that, as happens in Equilibrium logic, ¬ϕ
def= ϕ → ⊥.

Proposition 1. Let M be a model. For all pathway context α and for all i ∈ N,
(a) M, i |=MHT A(α) iff M, i |=THT A(α); (b) M, i |=MHT I(α) iff M, i |=THT

I(α);

Proof. First note that A(α) and I(α) are build on the language p, ¬p (with
p ∈ Σ), ∧ and ∨. Second, remark that, regarding the aforementioned language,
MHT and THT have the same satisfaction relation (note that when negation
only affects to atoms of Σ, M, i |=THT ¬p iff p
∈ Ti iff M, i |=MHT ¬p). From
all those facts it is easy to prove, by induction, (a) and (b). �
7 Modal extensions of Equilibrium Logic and the logic of Here and There can be

considered as promising lines of research which lead to several remarkable results,
among others, [7,13].

12 J.-M. Alliot et al.

A formula ϕ is THT-valid if M, 0 |= ϕ for any M. An interpretation M
is a THT-model of a theory Γ , written M |= Γ , if M, 0 |= ϕ, for all formula
ϕ ∈ Γ . Notice that when we disregard temporal operators, we obtain the logic
of HT. On the other hand, if we restrict the semantics to total interpretations,
〈T,T〉 |= ϕ corresponds to satisfaction of formulas T |= ϕ in LTL. Given two
interpretations M = 〈H,T〉 and M′ = 〈H′,T′〉 we say that M′ is lower or equal
than M, written M′ ≤ M, when T′ = T and for all i ≥ 0, H ′

i ⊆ Hi. As usual,
M′ < M stands for M′ ≤ M and M′
= M. Finally, an interpretation M is said
to be a temporal equilibrium model of a theory Γ if M is a total model of Γ and
there is no other M′ < M, such that M′ |= Γ .

6 From Molecular Equilibrium Logic to Temporal
Equilibrium Logic

In this section we first show how MEL can be embedded in TEL by providing
a translation between their monotonic basis, MHT and THT. The reader might
have noticed that the only differences between MHT and THT interpretations
are the constraints (A)-(F), which are imposed on the MHT. Those restrictions
can be captured in THT by adding the following rule of inertia, for any variable
p ∈ Σ as follows:

inertia(p)
def
=

{
� ((Pr (p) ∨ (p ∧ ¬Cn (p))) → ◯p) if p is an endogenous variable
� (p → ◯p) if p is an exogenous variable.

Informally speaking, endogenous variables are true in the next state if they
are produced or if they are present and not consumed. On the other hand,
exogenous variables are automatically passed to the next state since they are
never produced or consumed. They are just present in the environment.

Proposition 2. Given a signature Σ, let M be a THT interpretation on ̂Σ.
M is a MHT model (that is, M satisfies conditions (A)–(F)) iff M, 0 |=THT

inertia(p), for all variable p ∈ Σ.

Proof. From right to left, let us assume that M, 0 |=THT inertia(p). It follows
for all i ≥ 0 M, i |=THT Pr (p) ∨ (p ∧ ¬Cn (p)) → ◯p, if p is an endogenous
variable or M, i |=THT (p → ◯p) if p is exogenous. Using the THT satisfaction
relation, it can be easily seen that satisfying both implications implies to meet
conditions (A)–(F). Therefore M is a MHT model.

Conversely, if M is an MHT model, M satisfies conditions (A)–(F). It is easy
to prove, by using the satisfiability of THT, that conditions (A)–(D) imply that
M, 0 |=THT inertia(p) for endogenous variables while conditions (E)–(F) imply
that M, 0 |=THT inertia(p) for exogenous. �

Given a pathway formula F , we define the THT formula tr (F) (on ̂Σ) as:

tr ([α] (P∧
−▸ q)) = �

⎛

⎝A(α) ∧ P∧ →
⎛

⎝Pr (q) ∧
∧

p∈P

Cn (p)

⎞

⎠

⎞

⎠ ;

tr ([α] (P∧
−▹ q)) = � (A(α) ∧ P∧ → Pr (q)) ;

tr (F1 ∧ F2) = tr (F1) ∧ tr (F1) ,

Metabolic Pathways as Temporal Logic Programs 13

where F1 and F2 are arbitrary pathway formulas and both p and q are endogenous
variables. Going back to our running example, the temporal theory associated
with (2)–(4) would correspond to the following THT formula:

� (Lactose ∧ Galactosidase → (Pr (Glucose) ∧ Cn (Galactosidase))) (2)
∧� (lacl → Pr (Repressor)) (3)
∧� (A(γ) ∧ lacZ → Pr (Galactosidase)) (4)

Theorem 1 (Correspondence). Let F be a pathway formula built on Σ and
M be a THT interpretation on ̂Σ. It holds that:

(a) M, 0 |=MHT F iff M, 0 |=THT tr (F) ∧ ∧

p∈Σ

inertia(p);

(b) M, 0 |=MEL F iff M, 0 |=TEL tr (F) ∧ ∧

p∈Σ

inertia(p).

Proof. We first consider Case (a). Thanks to Proposition 2, we can reduce the
whole proof to the claim: M, 0 |=MHT F iff M, 0 |=THT tr (F). It is easily to
check that this claim for elements of Σ as well as conjuntion and disjunction of
elements of Σ (see Proposition 1). For the case of pathway formulas we proceed
by induction on the form of the pathway formulas: base cases, [α] (P∧

−▸ q) and
[α] (P∧

−▹ q), are proved by means of the satisfaction relation of THT and MHT,
Condition (A)-(F) and Proposition 1. The conjunction of pathway formulas fol-
lows directly from the induction hypothesis. Finally, Case (b) follows from (a)
since the minimisation used for computing the equilibrium models is the same
in both formalisms. �

7 MIM’s as Splittable Temporal Logic Programs

In this section we show how tr (F) can be turned into an splittable temporal logic
program (STLP), a syntactical subset of TEL which has been studied in detail
in [4]. A Temporal Logic Program Π on ̂Σ is said to be splittable if Π consists
of rules of any of the forms:

(1) B ∧ N → H;
(2) B ∧ ◯B′ ∧ N ∧ ◯N ′ → ◯H ′;

(3) �(B ∧ N → H);
(4) �(B ∧ ◯B′ ∧ N ∧ ◯N ′ → ◯H ′),

where B and B′ are conjunctions of atoms, N and N ′ are conjunctions of neg-
ative literals like ¬p with p ∈ ̂Σ, and H and H ′ are disjunctions of atoms.
The (positive) dependency graph, of an STLP Π, noted G(Π), is a graph whose
nodes are the atoms of Π and the edges are defined by the expression below:

E = {(p, p) | p ∈ E} ∪ {(p, q) | ∃B → H ∈ Π s.t. p ∈ H and q ∈ B}.

A set of atoms L is called a loop of a logic program Π iff the subgraph
of G(Π) induced by L is strongly connected. Notice that reflexivity of G(Π)
implies that for any atom p, the singleton {p} is also a loop. Every loop of G(Π)

14 J.-M. Alliot et al.

generates an implication which is called loop formula [4,14,21]8. By LF (Π) we
refer to the conjunction of all loop formulas of Π.

Theorem 2 (from [4]). Let Π be an STLP and T an LTL model of Π. Then
〈T,T〉 |=TEL Π iff T |=LTL Π ∧ LF (Π). �

tr (Γ) ∧ ∧

p∈Σ

inertia(p) can be expressed as a STLP, thanks to the following

THT equivalences:

(1) � (((ϕ1 ∨ ϕ2) ∧ ψ) ↔ ((ϕ1 ∧ ψ) ∨ (ϕ2 ∧ ψ)));
(2) � (((ϕ1 ∧ ϕ2) ∨ ψ) ↔ ((ϕ1 ∨ ψ) ∧ (ϕ2 ∨ ψ)));
(3) � ((ψ → (ϕ1 ∧ ϕ2)) ↔ ((ψ → ϕ1) ∧ (ψ → ϕ2)));
(4) � (((ϕ1 ∨ ϕ2) → ψ) ↔ ((ϕ1 → ψ) ∧ (ϕ2 → ψ)));
(5) � (ϕ1 ∧ ϕ2) ↔ (�ϕ1 ∧ �ϕ2).

For example, the following STLP corresponds to rules (2)–(4) plus the rules of
inertia for the atoms Glucose, Repressor, Lac, LacZ, Galactosidase, Lactose
and CAMP :

� (Lactose ∧ Galactosidase → Pr (Glucose))
� (Lactose ∧ Galactosidase → Cn (Galactosidase))

}

(2)

� (lacl → Pr (Repressor)) } (3)

� (CAMP ∧ ¬Glucose ∧ ¬Repressor ∧ lacZ → Pr (Galactosidase))
� (CAMP ∧ ¬Glucose ∧ Lactose ∧ lacZ → Pr (Galactosidase))

}

(4)

� (Pr (Glucose) → ◯Glucose)
� (Glucose ∧ ¬Cn (Glucose) → ◯Glucose)

}

inertia(Glucose)

� (Pr (Repressor) → ◯Repressor)
� (Repressor ∧ ¬Cn (Repressor) → ◯Repressor)

}

inertia(Repressor)

� (Pr (Galactosidase) → ◯Galactosidase)
� (Galactosidase ∧ ¬Cn (Galactosidase) →

◯Galactosidase)

⎫

⎬

⎭

inertia(Galactosidase)

� (Lactose → ◯Lactose) } inertia(Lactose)
� (CAMP → ◯CAMP) } inertia(CAMP)
� (Lacl → ◯Lacl) } inertia(Lacl)
� (LacZ → ◯LacZ) } inertia(LacZ)

Observation 1. Let Γ be a set of pathway formulas and Π = tr (Γ) ∧
∧

p∈Σ

inertia(p), expressed as an STLP. Then

8 We refer the reader to [4] for details about the computation of such loop formulas.

Metabolic Pathways as Temporal Logic Programs 15

(a) G(Π) has only unitary loops;
(b) Since G(Π) has only unitary loops, Temporal Equilibrium Models of Π

coincide with the LTL models of the temporal extension of Clark’s comple-
tion [4,10], denoted by COMP (Π) [4]. �

Temporal Completion consists in specifying, along time, that the truth value of
an atom p ∈ ̂Σ must be logically equivalent to the disjunction of all its possible
causes (see [4] for details). More precisely, COMP (Π) corresponds, in our case,
to the following expression:9

COMP (Π) = �(◯p ↔ (Pr (p) ∨ (p ∧ ¬Cn (p))) ∧ �

⎛

⎝Pr (p) ↔
∨

[α](P ∧�p)∈F

P∧ ∧ A(α)

⎞

⎠

∧ �

⎛

⎝Cn (p) ↔
∨

[α](P ∧
−▸ p)∈F

P∧ ∧ A(α)

⎞

⎠.

Theorem 3 (Main result). Let Γ be a set of pathway formulas, Π = tr (Γ) ∧
∧

p∈Σ

inertia(p) and T be an LTL model of Π.

〈T,T〉 |=MEL Γ iff T |=LTL COMP (Π).

Proof. From Theorem 1 we get that 〈T,T〉 |=MEL Γ iff 〈T,T〉 |=TEL Π. From
Theorem 2 it follows that 〈T,T〉 |=TEL Π iff T |=LTL Π ∧ LF (Π). Finally,
regarding Observation 1 we can reduce Π ∧ LF (Π) to COMP (Π) so, therefore
T |=LTL COMP (Π). �

8 Conclusion and Future Work

In this paper we gave a formal representation of MIM’s in terms of Temporal
Equilibrium Logic. To do so, we first defined Molecular Equilibrium Logic, a
nonmonotonic logic for dealing with general pathways. Then we showed that
this logic can be captured by an LTL formula via a translation into Splittable
Temporal Logic Programs under TEL semantics.

As a follow up, we are looking for a way to solve abductive temporal queries
on MIM’s. Abductive query express important properties; for example the abduc-
tive solution to ♦�

∧

p∈Σ

(p ↔ ◯p) is the set of all possible conditions that make

the cell reach a stable state. An idea to undertake this problem is to combine the
works on abduction in Equilibrium Logic [26] and in modal logic [23] in order to
define a procedure for abduction in Temporal Equilibrium Logic. Furthermore,
finding the complexity of our fragment of temporal equilibrium logic is an open
problem. Although in the general case it is known to be EXPSPACE [8], this
bound might be lower in our case as the problem is restricted to STLP’s with
only unitary loops.

9 We omitted the completion at time step 0 since the formula at the initial state
depends on the extensional database, which is not considered here.

16 J.-M. Alliot et al.

References

1. Molecular interaction maps site. http://discover.nci.nih.gov/mim/. Accessed 6
Sept 2016

2. The systems biology markup language site. http://sbml.org/Documents. Accessed
6 Sept 2016

3. Aguado, F., Cabalar, P., Diéguez, M., Pérez, G., Vidal, C.: Temporal equilibrium
logic: a survey. J. Appl. Non-Classical Logics 23(1–2), 2–24 (2013)

4. Aguado, F., Cabalar, P., Pérez, G., Vidal, C.: Loop formulas for splitable temporal
logic programs. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS (LNAI),
vol. 6645, pp. 80–92. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20895-9 9

5. Alliot, J.M., Demolombe, R., Diéguez, M., Fariñas del Cerro, L., Favre, G., Faye,
J.C., Obeid, N., Sordet, O.: Temporal modeling of biological systems. In: Akama,
S. (ed.) Towards Paraconsistent Engineering: From Pure Logic to Applied Logic.
Springer (2016, to appear)

6. Alliot, J.M., Demolombe, R., Fariñas del Cerro, L., Diéguez, M., Obeid, N.: Abduc-
tive reasoning on molecular interaction maps. In: 7th European Symposium on
Computational Intelligence and Mathematics. Springer, Cádiz, Spain (2015)

7. Balbiani, P., Diéguez, M.: Temporal here and there (2016, unpublished)
8. Bozzelli, L., Pearce, D.: On the complexity of temporal equilibrium logic. In: LICS

2015, pp. 645–656. IEEE, Kyoto, Japan (2015)
9. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance.

Commun. ACM 54(12), 92–103 (2011)
10. Clark, K.L.: Negation as failure. In: Logic and Databases, pp. 293–322. Plenum

Press (1978)
11. Demolombe, R., Fariñas del Cerro, L., Obeid, N.: A logical model for molecular

interactions maps. In: Fariñas del Cerro, L., Inoue, K. (eds.) Logical Modeling of
Biological Systems, pp. 93–123. Wiley, New York (2014)

12. Doncescu, A., Yamamoto, Y., Inoue, K.: Biological systems analysis using inductive
logic programming. In: AINA 2007, pp. 690–695, Niagara Falls, Canada (2007)

13. Fariñas del Cerro, L., Herzig, A., Su, E.I.: Epistemic equilibrium logic. In: IJCAI
2015, pp. 2964–2970. AAAI Press, Buenos Aires, Argentina (2015)

14. Ferraris, P., Lee, J., Lifschitz, V.: A generalization of the Lin-Zhao theorem. Ann.
Math. Artif. Intell. 47(1–2), 79–101 (2006)

15. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
ICLP 1988, pp. 1070–1080. MIT Press, Cambridge (1988)

16. Heyting, A.: Die formalen Regeln der intuitionistischen Logik. In: Sitzungsberichte
der Preussischen Akademie der Wissenschaften, Physikalisch-mathematische
Klasse, pp. 42–56 (1930)

17. Iersel, M.V., Kelder, T., Pico, A., Hanspers, K., Coort, S., Conklin, B., Evelo,
C.: Presenting and exploring biological pathways with PathVisio. BMC Bioinform.
(2008). doi:10.1186/1471-2105-9-399

18. Jacob, F., Monod, J.: Genetic regulatory mechanisms in the synthesis of proteins.
J. Mol. Biol. 3, 318–356 (1961)

19. Kennell, D., Riezman, H.: Transcription and translation initiation frequencies of
the Escherichia Coli lac operon. J. Mol. Biol. 114(1), 1–21 (1977)

20. Kohn, K.W., Pommier, Y.: Molecular interaction map of the p53 and Mdm2 logic
elements, which control the off-on swith of p53 response to DNA damage. Biochem.
Biophys. Res. Commun. 331(3), 816–827 (2005)

http://discover.nci.nih.gov/mim/
http://sbml.org/Documents
http://dx.doi.org/10.1007/978-3-642-20895-9_9
http://dx.doi.org/10.1186/1471-2105-9-399

Metabolic Pathways as Temporal Logic Programs 17

21. Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by SAT
solvers. Artif. Intell. 157(1–2), 112–117 (2002)

22. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer, New York (1991)

23. Mayer, M.C., Pirri, F.: Propositional abduction in modal logic. Logic J. IGPL 3(6),
907–919 (1995)

24. McCarthy, J., Hayes, P.: Some philosophical problems from the standpoint of arti-
ficial intelligence. Mach. Intell. J. 4, 463–512 (1969)

25. Pearce, D.: A new logical characterisation of stable models and answer sets. In:
Dix, J., Pereira, L.M., Przymusinski, T.C. (eds.) NMELP 1996. LNCS, vol. 1216,
pp. 57–70. Springer, Heidelberg (1997). doi:10.1007/BFb0023801

26. Pearce, D., Valverde, A.: Abduction in equilibrium logic. In: ASP 2001 Workshop,
Stanford, USA (2001)

27. Reiter, R.: On closed world data bases. In: Logic and Data Bases, pp. 55–76 (1977)
28. Schaub, T., Thiele, S.: Metabolic network expansion with answer set programming.

In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 312–326.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-02846-5 27

29. Tran, N., Baral, C.: Reasoning about non-immediate triggers in biological networks.
Ann. Math. Artif. Intell. 51(2–4), 267–293 (2007)

http://dx.doi.org/10.1007/BFb0023801
http://dx.doi.org/10.1007/978-3-642-02846-5_27

On Decidability of a Logic of Gossips

Krzysztof R. Apt1 and Dominik Wojtczak2(B)

1 CWI, Amsterdam, The Netherlands
2 University of Liverpool, Liverpool, UK

d.wojtczak@liverpool.ac.uk

Abstract. Gossip protocols aim at arriving, by means of point-to-point
or group communications, at a situation in which all the agents know
each other secrets, see, e.g., [11]. In [1], building upon [3], we studied dis-
tributed epistemic gossip protocols, which are examples of knowledge
based programs introduced in [6]. These protocols use as guards for-
mulas from a simple epistemic logic. We show here that these protocols
are implementable by proving that it is decidable to determine whether
a formula with no nested modalities is true after a sequence of calls.
Building upon this result we further show that the problems of partial
correctness and of termination of such protocols are decidable, as well.

1 Introduction

1.1 Background and Motivation

Knowledge-based programs were introduced in [6]—these are programs that
use tests for knowledge. Examples are protocols for the sequence transmission
problem, such as the alternating bit protocol, studied in [7]. A more recent
example are the distributed epistemic gossip protocols introduced in [3] and
further studied in a slightly different setting in [1].

In gossip protocols each agent holds a secret initially known only to him.
The secrets spread by means of communications. During them, e.g., point-to-
point or group communications, the participating agents exchange all secrets
they know. The aim of the gossip protocols is to arrive at a situation in which
all the agents know each other secrets, see, e.g., the early survey [8], the book
coverage [10] or a more recent paper [11].

As shown in [1], the formulation of distributed gossip protocols as knowledge-
based programs considerably simplifies the task of their verification. The reason
is that these protocols are strikingly simple in their syntax based on epistemic
logic (though not semantics)—they are just parallel compositions of loops in
which the agents repeatedly perform a call assuming the corresponding epistemic
guard evaluates to true. One issue ignored in [1] was the natural question: are
these gossip protocols implementable?

In this paper we provide a positive answer to this question. More precisely,
we show that it is decidable to determine whether a formula with no nested
modalities is true after a sequence of calls. All gossip protocols studied in [3] use
only such formulas as guards.
c© Springer International Publishing AG 2016
L. Michael and A. Kakas (Eds.): JELIA 2016, LNAI 10021, pp. 18–33, 2016.
DOI: 10.1007/978-3-319-48758-8 2

On Decidability of a Logic of Gossips 19

We also study correctness and termination of these protocols. Building upon
the just mentioned result we show that it is decidable to determine whether a
given distributed epistemic gossip protocol is correct. Namely, the formula that
expresses its correctness is with no nested modalities and we show that for such
formulas truth is decidable. The final result allows us to solve the halting problem
for these protocols. This shows that the distributed epistemic gossip protocols
are very specific programs that in particular do not have the full power of the
Turing machines.

The obtained results, while sufficient for a study of the considered protocols,
do not address more general questions concerning both the logic itself and the
protocols, which remain open and to which we return in the conclusions.

Finally, let us mention here some recent works on gossip protocols. In [2] a
tool is presented that given a high level description of an epistemic protocol in the
setting of [3] generates the characteristics of the protocol. The calls considered
there differ from ours, so this approach is not applicable to our setting. Further,
[13] presents a study of dynamic distributed gossip protocols in which the calls
allow the agents not only to share the secrets but also to transmit the links. The
purpose of the paper is to characterize such protocols in terms of the class of
graphs for which they terminate. Such protocols then differ from the ones here
considered, which are static. Next, in [9] gossip protocols are studied that aim
at achieving higher-order shared knowledge. Finally, in [4] gossip protocols are
studied as an instance of multi-agent epistemic planning that is subsequently
translated into the classical planning language PDDL.

1.2 Plan

The paper is organized as follows. In the next two sections we recall the syntax
and semantics introduced in [1]. Then, in Sect. 4 we introduce an alternative,
equivalent, semantics, which helps us to prove the desired decidability results.
In Sect. 5 we prove the decidability of checking whether a formula with no nested
modalities is true after a given sequence of calls, and in Sect. 6 we show how to
extend this result to checking whether such a formula is true (so true after
any sequence of calls). In turn, in Sect. 7 we show that it is also decidable to
determine whether a given gossip protocol terminates. Then, in the final section,
we list some related open problems and clarify the difference between the type
of calls studied in [1,3].

2 Syntax

Throughout the paper we assume a fixed finite set A of at least three agents.
We assume that each agent holds exactly one secret and that there exists a
bijection between the set of agents and the set of secrets. We denote by P the
set of all secrets. Our aim is to analyze what the agents know after a sequence
of calls took place. So first we introduce the calls and then consider an epistemic
language allowing us to refer to agents’ knowledge.

20 K.R. Apt and D. Wojtczak

Assume a fixed ordering on the agents. Each call concerns two different
agents, say a and b, and is written as ab, where agent a precedes agent b in the
assumed ordering.

Calls are denoted by c, d. Abusing notation we write a ∈ c to denote that
agent a is one of the two agents involved in the call c (e.g., for c := ab we have
a ∈ c and b ∈ c).

We consider formulas in a simple epistemic language defined by the following
grammar:

φ ::= Fap | ¬φ | φ ∧ φ | Kaφ,

where p ∈ P and a ∈ A. Each secret is viewed a distinct constant. We denote the
secret of agent a by A, the secret of agent b by B and so on. We denote the set
of so defined formulas by L and we refer to its members as epistemic formulas.

We read Fap as ‘agent a is familiar with the secret p’ and Kaφ as ‘agent
a knows that formula φ is true’. So Fap is an atomic formula, while Kaφ is a
compound formula. In fact, all atomic formulas of L are of the form Fap.

In [1], as a follow up on [3], we also introduced distributed epistemic gossip
protocols. We do not discuss them here and only mention that formulas of L
are used in them as guards. All guards used in [1] are built from the formulas
FaB and KaFbC, where a and b are different agents, by means of the Boolean
connectives. Thus no nested modalities are used in the guards.

3 Semantics

We now recall from [1] semantics of the epistemic formulas. To this end we recall
first the concept of a gossip situation.

3.1 Gossip Situations and Their Modifications

A gossip situation (in short a situation) is a sequence s = (Qa)a∈A, where
Qa⊆P for each agent a. Intuitively, Qa is the set of secrets a is familiar with in
situation s. The initial gossip situation is the one in which each Qa equals
{A} and is denoted by root. We say that an agent a is an expert in a situation
s if he is familiar in s with all the secrets, i.e., if Qa = P. The initial gossip
situation reflects the fact that initially each agent is familiar only with his own
secret.

In this paper we do not study particular gossip protocols. We mention only
that their goal is to reach a gossip situation in which each agent is an expert.

We will use the following concise notation for gossip situations. Sets of secrets
will be written down as lists. e.g., the set {A,B,C} will be written as ABC.
Gossip situations will be written down as lists of lists of secrets separated by
dots. E.g., if there are three agents, then root = A.B.C and the gossip situation
({A,B}, {A,B}, {C}) will be written as AB.AB.C.

Each call transforms the current gossip situation by modifying the set of
secrets the agents involved in the call are familiar with. Consider a gossip situa-
tion s := (Qd)d∈A. Then ab(s) := (Q′

d)d∈A, where Q′
a = Q′

b = Qa ∪ Qb, Q′
c = Qc,

On Decidability of a Logic of Gossips 21

for c �= a, b. This simply says that the only effect of a call is that the secrets are
shared between the two agents involved in it.

3.2 Call Sequences

In [1] computations of the gossip protocols were studied, so both finite and infi-
nite call sequences were used. Here we limit ourselves to the finite call sequences
as we are only interested in the semantics of epistemic formulas.

So in this paper, in contrast to [1], a call sequence is a finite sequence of
calls. The empty sequence is denoted by ε. We use c to denote a call sequence
and C to denote the set of all call sequences. Given call sequences c and d and
a call c we denote by c.c the outcome of adding c at the end of the sequence c
and by c.d the outcome of appending the sequences c and d. We write c � d to
denote the fact that d extends c, i.e., that for some c′ we have c.c′ = d.

The result of applying a call sequence to a situation s is defined inductively
as follows:

[Base] ε(s) := s,
[Step] (c.c)(s) := c(c(s)).

Example 1. Let A = {a, b, c}. Consider the call sequence (ac, bc, ac). It generates
the following successive gossip situations starting from root:

A.B.C
ac−→ AC.B.AC

bc−→ AC.ABC.ABC
ac−→ ABC.ABC.ABC.

Hence (ac, bc, ac)(root) = (ABC.ABC.ABC). 	

3.3 Gossip Models and Truth

A gossip situation is a set of possible combinations of secret distributions among
the agents. As calls progress in sequence from the initial situation, agents may
be uncertain about which one of such secrets distributions is the actual one.
This uncertainty is captured by appropriate equivalence relations on the call
sequences.

Definition 1. A gossip model is a tuple M := (C, {∼a}a∈A), where each
∼a⊆ C × C is defined inductively as follows.

[Base] ε ∼a ε;
[Step] Suppose c ∼a d.

(i) If a �∈ c, then c.c ∼a d and c ∼a d.c.
(ii) If a ∈ c and c.c(root)a = d.c(root)a, then c.c ∼a d.c.

A gossip model with a designated call sequence is called a pointed gossip
model.

For instance, by (i) we have ab, bc ∼a ab, bd. But we do not have bc, ab ∼a

bd, ab since (bc, ab)(root)a = ABC �= ABD = (bd, ab)(root)a.
We recall now from [1] the following two properties of ∼a.

22 K.R. Apt and D. Wojtczak

Fact 1

(i) Each ∼a is an equivalence relation;
(ii) For all c,d ∈ C if c ∼a d, then c(root)a = d(root)a.

Finally, we recall the definition of truth.

Definition 2. Let (M, c) be a pointed gossip model with M := (C, (∼a)a∈A)
and c ∈ C. We define the satisfaction relation |= inductively as follows (clauses
for Boolean connectives are as usual and omitted):

(M, c) |= Fap iff p ∈ c(root)a,

(M, c) |= Kaφ iff ∀d s.t. c ∼a d, (M,d) |= φ.

Further

M |= φ iff ∀c (M, c) |= φ.

When M |= φ we say that φ is true. 	

So formula Fap is true whenever secret p belongs to the set of secrets agent a is
familiar with in the situation generated by the designated call sequence c applied
to the initial situation root. The knowledge operator is interpreted as customary
in epistemic logic using the equivalence relations ∼a.

4 An Alternative Equivalence Relation

In this section we provide an alternative equivalence relation between the call
sequences that is easier to work with. To this end we introduce a view of agent
a of a call sequence c, written as ca, and defined by induction as follows.
[Base]

εa := root,

[Step]

(c.c)a :=

{

ca
c−→ s if a ∈ c

ca otherwise

where for d ∈ A

sd :=

{

c.c(root)d if d ∈ c

s′d otherwise

where s′ is the last gossip situation in ca.
Intuitively, a view of agent a of a call sequence c is the information he acquires

by means of the calls in c he is involved in. It consists of a sequence of gossip
situations connected by the calls in which a is involved in. After each such call,
say ab, agent a updates the set of gossips he and b are currently familiar with.

On Decidability of a Logic of Gossips 23

Example 2. Let us return to Example 1. So A = {a, b, c} and we consider the call
sequence (ac, bc, ac). We noticed there that it generates the following successive
gossip situations starting from root:

A.B.C
ac−→ AC.B.AC

bc−→ AC.ABC.ABC
ac−→ ABC.ABC.ABC.

We now compare it with the view of agent a of the sequence (ac, bc, ac), which is

A.B.C
ac−→ AC.B.AC

ac−→ ABC.B.ABC.

Thus, in the final gossip situation of this view, agent b is familiar with neither
the secret A nor C. However, the final gossip situation of a view does not reflect
agents’ knowledge. In fact, as we shall see, according to the semantics, after
the above sequence of calls, agent a knows that agent b is familiar both with A
and C. 	

We now introduce for each agent a an equivalence relation ≡a between the
call sequences, defined as follows:

c ≡a d iff ca = da.

So according to this definition two call sequences are equivalent for agent a if
his views of them are the same. The following result shows that the equivalence
relations ∼a and ≡a coincide.

Theorem 2 (Equivalence). For each agent a the relations ∼a and ≡a coincide.

Proof. Omitted. 	

So two call sequences are ∼a equivalent iff their views by agent a coincide.
This alternative definition of the equivalence relation between the call sequences
makes it simpler to determine various properties of our semantics.

Below, given a call c, we denote by c∗ a sequence consisting of zero or more
calls c and by c+ a sequence consisting of one or more calls c.

Example 3. Note that we have (M, (ac, bc, ac)) |= KaFbA. To see this recall
from Example 2 that the view of agent a of the sequence (ac, bc, ac) is

A.B.C
ac−→ AC.B.AC

ac−→ ABC.B.ABC.

So if (ac, bc, ac) ≡a d, then d is of the form ac, (bc)+, ac, (bc)∗, which implies
that (M,d) |= FbA.

We conclude that it is possible that an agent, here a, knows that another
agent, here b, is familiar with his (so a’s) secret even though no communication
took place between them. The same argument shows that (M, (ac, bc, ac)) |=
KaFbC, as claimed in Example 2. 	

In the examples and proofs below we use the ≡a relation instead of ∼a

and repeatedly appeal to the Equivalence Theorem2. First we show that an
immediate repetition of a call has no effect on the truth of the formulas. More
precisely, the following holds.

24 K.R. Apt and D. Wojtczak

Theorem 3 (Stuttering). Suppose that c := c1, c, c2 and d := c1, c, c, c2.
Then for all formulas φ, (M, c) |= φ iff (M,d) |= φ.

Proof. We proceed by induction of the structure of φ. For the formulas of the
form Fap it suffices to note that c(root) = d(root). The only induction step of
interest is for the formulas of the form Kaφ. Suppose first that a �∈ c. Then
c ≡a d, so (M, c) |= Kaφ iff (M,d) |= Kaφ.

Assume now that a ∈ c. Suppose that (M, c) |= Kaφ. Take d′ such that
d ≡a d′. Then d′ is of the form d′

1, c, c,d
′
2. Let c′ := d′

1, c,d
′
2. By the induction

hypothesis (M,d′) |= φ iff (M, c′) |= φ. Further, d ≡a d′ implies that c ≡a c′.
So (M, c′) |= φ. Hence (M,d′) |= φ and consequently (M,d) |= Kaφ.

The proof in the other direction is analogous. 	

The above result cannot be extended to a repetition of the call sequences.

Indeed, we have (M, (ab, bc)) |= ¬FaC, and (M, (ab, bc, ab, bc)) |= FaC. On
the other hand a monotonicity result holds for positive formulas.

Theorem 4 (Monotonicity). Suppose that φ is a formula that does not con-
tain the ¬ symbol. Then

c � d and (M, c) |= φ implies (M,d) |= φ.

Proof. We proceed by induction on the structure of φ. The only case of interest
is when φ is of the form Kaψ. Suppose that c � d and (M, c) |= φ. Take some
call sequence d′ such that d ≡a d′. Then for some call sequences d1 and d′

1 such
that d1,d

′
1 = d′ we have c ≡a d1.

We have by the assumption (M,d1) |= ψ, so by the induction hypothesis
(M,d′) |= ψ. As d′ was arbitrarily chosen we conclude that (M,d) |= φ. 	

Here and below we say that a call is a b-call if agent b is involved in it. Before
we deal with the decidability matters consider the formula KaFbC for pairwise
different agents a, b, c. The following example reveals that it can be true in some
subtle ways.

Example 4

(i) First, note that a can learn (that is, know) that agent b is familiar with the
secret C through a direct communication with b.
Indeed, we have (M, (bc, ab)) |= KaFbC. Namely the view of agent a of the
sequence (bc, ab) is

A.B.C
ab−→ ABC.ABC.C.

So if (bc, ab) ≡a d, then d is of the form (bc)+, ab, (bc)∗, which implies that
(M,d) |= FbC.

(ii) Further, it is also possible that a learns that b is familiar with the secret C
through a direct communication with c.

On Decidability of a Logic of Gossips 25

Indeed, we have (M, (bc, ac)) |= KaFbC. To see this note that the view of
agent a of the sequence (bc, ac) is

A.B.C
ac−→ ABC.B.ABC.

So if (bc, ac) ≡a d, then d is of the form (bc)+, ac, (bc)∗, which implies that
(M,d) |= FbC.

(iii) Also, it is possible that a learns that b is familiar with the secret C without
ever communicating with b or c.
Namely, we have (M, (cd, ad, bd, ad)) |= KaFbC. Indeed, the view of agent a
of the sequence (cd, ad, bd, ad) is

A.B.C.D
ad−→ ACD.B.C.ACD

ad−→ ABCD.B.C.ABCD.

So if (cd, ad, bd, ad) ≡a d, then d is of the form (cd)+, (bc)∗, ad,d′, ad,d′′,
where in d′ a call bd took place or a call bc followed by a call cd took place,
and in d′ and d′′ no a-call took place. This implies that (M,d) |= FbC.

(iv) In (iii) agent a learned that b is familiar with c by communicating with
agent d twice. But it is also possible that a learns that b is familiar with the
secret C without communicating with any agent twice.

To see this note that (M, (cd, ad, bc, ac)) |= KaFbC. Indeed, the view of
agent a of the sequence (cd, ad, bc, ac) is

A.B.C.D
ad−→ ACD.B.C.ACD

ac−→ ABCD.B.ABCD.ACD.

So if (cd, ad, bc, ac) ≡a d, then d is of the form (cd)+, ad,d′, ac,d′′, where in d′

a call bc took place or a call bd followed by a call cd took place, and in d′ and
d′′ no a-call took place. This implies that (M,d) |= FbC. 	

We conclude by noting that the Monotonicity Theorem4 does not hold when
we extend the call sequences to the left. Indeed, as observed in Example 4
(ii), (M, (bc, ac)) |= KaFbC. However, (M, (cd, bc, ac)) |= ¬KaFbC, since
(cd, bc, ac) ≡a (bd, cd, ac) and (M, (bd, cd, ac)) |= ¬FbC.

5 Decidability of Semantics

In this section we show that the definition of semantics given in Definition 2 is
decidable for formulas that do not use nested modalities.

Consider a call sequence c. If for some prefix c1.c of c, c1(root) = c1.c(root),
then we say that c is redundant in c. First note the following observation.

Lemma 1 (Semantic Stuttering). Suppose that c := c1, c, c2 and d := c1, c2,
where c is redundant in c. Then for all propositional formulas φ, (M, c) |= φ
iff (M,d) |= φ.

26 K.R. Apt and D. Wojtczak

Proof. We proceed by induction on the structure of φ. The only case of interest
is when φ is of the form Fap. The redundancy of c implies that c(root) = d(root).
Hence (M, c) |= Fap iff p ∈ c(root)a iff p ∈ d(root)a iff (M,d) |= Fap. 	

The following example shows that Lemma 1 does not extend to arbitrary
formulas of L.

Example 5. In the call sequence ab, ac, bc, ab the second call ab is redundant since
(ab, ac, bc, ab)(root) = (ab, ac, bc)(root) = ABC.ABC.ABC.

However, (M, (ab, ac, bc, ab)) |= KaFbC, because if d ≡a (ab, ac, bc, ab) then
d is of the form (ab, ac, bc+, ab, bc∗). At the same time, (M, (ab, ac, bc)) |=
¬KaFbC since (ab, ac, bc) ≡a (ab, ac). 	

Now, consider an agent a and a call sequence c. Starting from c we repeatedly
remove from the current call sequence a redundant call that does not involve
agent a. We call each outcome of such an iteration an a-reduction of c.

Corollary 1. Let d be an a-reduction of c. Then

(i) c ≡a d,
(ii) for all propositional formulas φ, (M, c) |= φ iff (M,d) |= φ.

Proof

(i) It suffices to note that a removal of a redundant call that does not involve
agent a does not affect his view of the call sequence.

(ii) By the repeated use of the Semantic Stuttering Lemma 1. 	

Given an agent a we now say that a call sequence c is a-redundant free if

no call c from c such that a �∈ c is redundant in it. Clearly each a-reduction is
a-redundant free.

We now prove the following crucial lemma.

Lemma 2. For each agent a and a call sequence c the set of a-redundant free
call sequences d such that c ≡a d is finite.

Proof. Consider an a-redundant free call sequence d such that c ≡a d. Then d
has the same number, say k, of a-calls as c.

Associate with d the sequence of gossip situations d0(root),d1(root), ...,
dm(root), where m is the length of d, d0 = ε, and dk = d1, d2, . . . , dk for
k = 1, . . . ,m. This sequence monotonically grows, where we interpret the inclu-
sion relation component wise. Moreover, for all calls di such that a �∈ di the
corresponding inclusion is strict. Consequently, m, the length of d, is bounded
by k + |A|2, the sum of the number of a-calls in c and of the total number of
secrets in the gossip situation in which each agent is an expert.

But for each m there are only finitely many call sequences of length at most m.
This concludes the proof. 	

We can now state and prove the desired result.

On Decidability of a Logic of Gossips 27

Theorem 5 (Decidability of Semantics). For each call sequence c it is
decidable whether for a formula φ with no nested modalities (M, c) |= φ holds.

Proof. We use the definition of semantics as the algorithm. We only need to
show that the case of the formulas of the form Kaφ, where φ is a propositional
formula, can be rewritten by referring to a finite set of call sequences d that can
be explicitly constructed. Thanks to the Equivalence Theorem 2 and Corollary 1
we can rewrite the clause for Kaφ as:

(M, c) |= Kaφ iff ∀d s.t. c ∼a d and d is a-redundant free, (M,d) |= φ,

and according to Lemma 2 this definition indeed refers to an explicitly con-
structed finite set of call sequences d. 	

6 Decidability of Truth

Next, we show that truth for formulas that do not use nested modalities is
decidable. This implies that the verification problem of gossip protocols, i.e.,
the problem of determining whether upon protocol’s termination every agent is
an expert, is decidable for protocols that do not use nested modalities. These
include all protocols discussed in [1].

The key notion in our approach is that of an epistemic view . It is a function
of a call sequence c, denoted by EV (c), defined by

– putting for each agent a ∈ A, EV (c)(a) = {d(root) | c ∼a d}, and setting
– EV (c)(∗) = c(root).

So EV (c)(a) is the set of all gossip situations consistent with agent a’s obser-
vations made throughout c and EV (c)(∗) is the actual gossip situation after c
takes place. Note that if c ∼a d then EV (c)(a) = EV (d)(a).

Lemma 3. For each call sequence c and agent a the set EV (c)(a) is finite and
can be effectively constructed.

Proof. Fix an agent a. By Corollary 1, Equivalence Theorem2, and Fact 1(ii) to
construct the set EV (c)(a) it suffices to consider a-redundant free call sequences
d and by Lemma 2 there are only finitely many such call sequences d for which
d ∼a c. 	

Our interest in epistemic views stems from the following result.

Lemma 4. Suppose that EV (c) = EV (d). Then for all epistemic formulas with
no nested modalities φ, (M, c) |= φ iff (M,d) |= φ.

Proof. A simple proof by induction shows that for a propositional formula ψ and
arbitrary call sequences c′ and d′, c′(root) = d′(root) implies that (M, c′) |= ψ
iff (M,d′) |= ψ. Since EV (c)(∗) = c(root) and EV (d)(∗) = d(root), this settles
the case for φ = Fap.

28 K.R. Apt and D. Wojtczak

The above observation also implies that for a propositional formula ψ and
an agent a,

(M, c) |= Kaψ iff ∀c′ s.t. c′(root) ∈ EV (c)(a), (M, c′) |= ψ.

Since EV (c)(a) = EV (d)(a), this settles the case for φ = Kaψ.
The remaining cases of negation and conjunction follow directly by the

induction. 	

The above lemma is useful because the set of epistemic views is finite, in

contrast to the set of call sequences. Next, we provide an inductive definition of
EV (c.c)(a) the importance of which will become clear in a moment.

Lemma 5. For any call sequence c, call c, and agent a such that a ∈ c

EV (c.c)(a) = {c(s) | s ∈ EV (c)(a) and c(s)a = c(c(root))a}.

Proof. Intuitively the condition c(s)a = c(c(root))a states that s is consistent
with the observation agent a gets after call c is made in the gossip situation
c(root).

(⊆) Take s′ ∈ EV (c.c)(a). By the definition of EV (c.c)(a) there exists a call
sequence d.c such that d.c ∼a c.c and s′ = d.c(root). So s′ = c(s), where s =
d(root). We also have d ∼a c, so d(root) ∈ EV (c)(a). Moreover, c(d(root))a =
c(c(root))a, because d.c ∼a c.c.

(⊇) Take s′ ∈ {c(s) | s ∈ EV (c)(a) and c(s)a = c(c(root))a}. So for some gossip
situation s we have s′ = c(s), s ∈ EV (c)(a) and c(s)a = c(c(root))a. The second
fact implies that there exists a call sequence d such that d ∼a c and s = d(root).
Now, this and the third fact imply that d.c ∼a c.c. So d.c(root) ∈ EV (c.c)(a).
Consequently also s′ ∈ EV (c.c)(a), since s′ = c(s) = d.c(root). 	

This brings us to the following important conclusion stating that EV (c.c)
can be computed using EV (c) and c only, i.e., without referring to c. Denote the
set of epistemic views by ˜EV and recall that C denotes the set of calls.

Corollary 2. There exists a function f : ˜EV × C → ˜EV such that for any call
sequence c and call c

EV (c.c)(a) = f(EV (c), c).

Proof. By the definition of ∼a we have EV (c.c)(a) = EV (c)(a) if a �∈ c,
EV (c.c)(∗) = c(EV (c)(∗)). This in conjunction with the above lemma implies
the claim. 	

Consider a call sequence c. If for some prefix c1.c2 of c, we have EV (c1) =
EV (c1.c2), then we say that the call subsequence c2 is epistemically redun-
dant in c and that c is epistemically redundant .

On Decidability of a Logic of Gossips 29

We say that c is epistemically non-redundant if it is not epistemi-
cally redundant. Equivalently, a call sequence c1.c2.ck is epistemically non-
redundant if the set

{EV (c1.c2.ci) | i ∈ {1, . . . , k}}
has k elements.

We now show a counterpart of the Semantic Stuttering Lemma1 for epistemic
views.

Lemma 6 (Epistemic Stuttering). Suppose that c := c1.c2.c3 and d := c1.
c3, where c2 is epistemically redundant in c. Then EV (c) = EV (d).

Proof. Let c3 = c1.c2.ck. First note that thanks to Corollary 2 we
have EV (c1.c2.c1) = EV (c1.c1), since EV (c1.c2.c1) = f(EV (c1.c2), c1) =
f(EV (c1), c1) = EV (c1.c1) due to the epistemic redundancy of c2 in c. Repeat-
ing this argument for all i ∈ {1, . . . , k} we get that EV (c1.c2.c1.c2.ci) =
EV (c1.c1.c2.ci).

In particular EV (c) = EV (d). 	

Corollary 3. For every call sequence c there exists an epistemically non-
redundant call sequence d such that for all epistemic formulas with no nested
modalities φ, (M, c) |= φ iff (M,d) |= φ.

Proof. By the repeated use of the Epistemic Stuttering Lemmas 4 and 6. 	

Next, we prove the following crucial lemma.

Lemma 7. For any given model M, there are only finitely many epistemically
non-redundant call sequences.

Proof. Note that each epistemic view is a function from A ∪ {∗} to the set
of functions from A to 2|P| (this is an overestimation because for ∗ this set
has only one element). There are k = 2(|A|+1)·2|A|·|P|

such functions, so any call
sequence longer than k has an epistemically redundant call subsequence. But
there are only finitely many call sequences of length at most k. This concludes the
proof. 	

Finally, we can establish the announced result.

Theorem 6 (Decidability of Truth). For any formula φ with no nested
modalities, it is decidable whether M |= φ holds.

Proof. Recall that M |= φ iff ∀c (M, c) |= φ. Thanks to Corollary 3 we can
rewrite the latter as

∀c s.t. c is epistemically non-redundant, (M, c) |= φ.

But according to Lemma 7 there are only finitely many epistemically non-
redundant call sequences and by Lemma 3 their set can be explicitly
constructed. 	

30 K.R. Apt and D. Wojtczak

As an easy consequence we obtain the following.

Corollary 4. It is decidable to determine whether a given gossip situation can
be an outcome of a call sequence.

Proof. Each gossip situation s = (Qd)d∈A can be encoded as a conjunction

φ(s) =
∧

a∈A

(
∧

B∈Qa

FaB ∧
∧

B �∈Qa

¬FaB
)

.

Then ∃c(c(root) = s) iff ∃c((M, c) |= φ(s)) iff ¬(M |= ¬φ(s)). 	

7 Decidability of Termination

Finally, we show that it is decidable to determine whether a gossip protocol
terminates. First, we establish monotonicity of gossip situations and epistemic
views with respect to call sequence extensions. Intuitively, we claim that as the
call sequence gets longer each agent acquires more information. This can be
seen as a counterpart of the Monotonicity Theorem4. First we need to define
suitable partial orderings ≤s and ≤ev over gossip situations and epistemic views,
respectively.

Definition 3. For any two gossip situations s, s′ we write s ≤s s′ if for all a ∈ A
we have sa ⊆ s′a.

Note 1. For all call sequences c and d such that c � d we have c(root) ≤s d(root).

Proof. For any gossip situation s and call c we have by definition s ≤s c(s). By
induction this implies that for any call sequence c′ we have s ≤s c′(s). Now c � d
implies that d = c.c′ for some c′. Therefore, c(root) ≤s c′(c(root)) = d(root). 	

Definition 4. For any two epistemic views V, V ′ ∈ ˜EV we write V ≤ev V ′ if for
all a ∈ A there exists X ⊆ V (a) and an surjective (onto) function g : X → V ′(a)
such that for all s ∈ X we have s ≤s g(s).

Lemma 8. ≤ev is a partial order.

Proof. Omitted. 	

The next lemma formalizes the intuition that epistemic information grows

along a call sequence.

Lemma 9. For all two call sequences such that c � d we have EV (c) ≤ev EV (d).

Proof. Let d = c.c′. Take a ∈ A. Note that by a repeated application of Lemma 5
we can show that EV (c.c′)(a) = {c′(s) | s ∈ EV (c)(a) and ∀c′′�c′ c′′(s)a =
c′′(c(root))a}. It suffices then to pick X = {s ∈ EV (c)(a) | ∀c′′�c′ c′′(s)a =
c′′(c(root))a}, and set g(s) = c′(s) for all s ∈ X. It is easy to check that such
g : X → EV (d) is surjective, so EV (c) ≤ev EV (d). 	

On Decidability of a Logic of Gossips 31

We can now draw the following useful conclusion.

Lemma 10. Suppose that c is epistemically redundant. Then a prefix c1.c of it
exists such that c1 is epistemically non-redundant and EV (c1.c) = EV (c1).

Proof. Let c1.c2 be the shortest prefix of c such that EV (c1) = EV (c1.c2).
Then c1 is epistemically non-redundant. Let c2 = c1.cl. By Lemma 9 we
have EV (c1) ≤s EV (c1.c1) ≤s EV (c1.c1.c2) ≤s . . . ≤s EV (c1.c1.c2.cl) =
EV (c1.c2) = EV (c1). Since ≤s is a partial order, EV (c1.c1) = EV (c1) holds. 	

Finally we can establish the desired result.

Theorem 7 (Decidability of Termination). Given a gossip protocol it is
decidable to determine whether it always terminates.

Proof. We first prove that a gossip protocol may fail to terminate iff it can
generate a call sequence c.c such that c is epistemically non-redundant and
EV (c.c) = EV (c).

(⇒) Let c be an infinite sequence of calls generated by the protocol. There
are only finitely many epistemic views, so some prefix c of c is epistemically
redundant. The claim now follows by Lemma 10.
(⇐) Suppose that the protocol generates a sequence of calls c.c such that c is
epistemically non-redundant and EV (c.c) = EV (c).

Let φ be the guard associated with the call c. By assumption (M, c) |= φ.
By the assumption about the gossip protocols the formula φ is without nested
modalities, so by Lemma 4 (M, c.c) |= φ. Hence by the repeated use of the
Stuttering Theorem 3, for all i ≥ 1, (M, c.ci) |= φ. Consequently, c.cω is an
infinite sequence of calls that can be generated by the protocol.

The above equivalence shows that determining whether the protocol always
terminates is equivalent to checking that it cannot generate a call sequence c.c
such that c is epistemically non-redundant and EV (c.c) = EV (c).

But given a call sequence, by the Decidability of Semantics Theorem 5, it
is decidable to determine whether it can be generated by the protocol and by
Lemma 3 it is decidable to determine whether a call sequence is epistemically
non-redundant. Further, by Lemma7 there are only finitely many epistemically
non-redundant call sequences, so the claim follows. 	

8 Conclusions

In this paper we studied decidability questions concerning a natural epistemic
logic appropriate for expressing gossip protocols. One of our aims was to show that
the gossip protocols considered in [1] are executable. A self-contained summary is
that the semantics of the introduced epistemic language L is decidable for formu-
las with no nested modalities. Another aim was to prove that partial correctness
of the gossip protocols studied in [1] is decidable. To this end we showed that truth
of formulas of L with no nested modalities is decidable. This implies the former

32 K.R. Apt and D. Wojtczak

since partial correctness of such a gossip protocol means that a specific epistemic
formula, namely the conjunction of the negation of all guards implies that each
agent is an expert, is true and such a formula has no nested modalities. Finally,
we showed the problem of determining termination of a gossip protocol is decid-
able. An interesting open question is whether all of these results can be extended
to arbitrary formulas of the language L. The main stumbling block in generalizing
our proofs is that, as Example 5 shows, the crucial Semantic Stuttering Lemma1
cannot be extended to arbitrary formulas of L.

These considerations lead to another interesting open problem. Gossip pro-
tocols studied in [1] are parametric in the sense that they are formulated in such
a way that they do not depend on the underlying graph (for instance a ring).
The results we proved allow us only to consider each specific gossip protocol (for
example for a ring formed by 5 agents) separately. What is needed is a deci-
sion procedure that would allow us to consider all instances of a protocol (for
example for all rings) simultaneously. We conjecture that this decision problem
is undecidable both for partial correctness and for termination.

The semantics we introduced in Sect. 3 stipulates through the definition of
c(s) that a call ab is not noted by any agent c �= a, b. In [3] different type of calls
were studied, namely

– ab−, which stipulates that every agent c �= a, b noted that a called b,
– ab0, which stipulates that every agent c �= a, b noted that some call took place,

though not between whom,
– ab+ which stipulates that every agent c �= a, b noted that possibly some call

took place, though not between whom.

It would be interesting to check whether our results hold for these types of calls,
as well.

Another issue interesting to study is the synthesis of a distributed epistemic
gossip protocol from epistemic specifications. For a related work on a synthesis
of a knowledge-based programs see, e.g. [12]. Finally, it would be interesting
to study the decidability of the problems considered here for a variant of our
logic in which the only modal operator is the common knowledge operator CGφ.
This operator states that the formula φ is commonly known among the group
of agents G. The standard semantics of this operator is given in [5].

Acknowledgments. We thank the reviewers for helpful comments. First author is
also a Visiting Professor at the University of Warsaw. He was partially supported by
the NCN grant nr 2014/13/B/ST6/01807. The second author was partially supported
by EPSRC grant EP/M027287/1.

On Decidability of a Logic of Gossips 33

References

1. Apt, K.R., Grossi, D., Van der Hoek, W.: Epistemic protocols for distributed gos-
siping. In: Proceedings of the 15th Conference on Theoretical Aspects of Rational-
ity and Knowledge (TARK 2015). EPTCS, vol. 215, pp. 51–66 (2016)

2. Attamah, M., Ditmarsch, H., Grossi, D., Hoek, W.: A framework for epistemic
gossip protocols. In: Bulling, N. (ed.) EUMAS 2014. LNCS (LNAI), vol. 8953, pp.
193–209. Springer, Heidelberg (2015). doi:10.1007/978-3-319-17130-2 13

3. Attamah, M., van Ditmarsch, H., Grossi, D., Van der Hoek, W.: Knowledge and
gossip. In Proceedings of ECAI 2014. IOS Press (2014)

4. Cooper, M.C., Herzig, A., Maffre, F., Maris, F., Régnier, P.: A simple account of
multiagent epistemic planning. In: Proceedings of ECAI 2016, pp. 193–201. IOS
Press (2016)

5. Fagin, R., Halpern, J., Vardi, M., Moses, Y.: Reasoning About Knowledge. MIT
Press, Cambridge (1995)

6. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Knowledge-based programs. Dis-
trib. Comput. 10(4), 199–225 (1997)

7. Halpern, J.Y., Zuck, L.D.: A little knowledge goes a long way: knowledge-based
derivations and correctness proofs for a family of protocols. J. ACM 39(3), 449–478
(1992)

8. Hedetniemi, S.M., Hedetniemi, S.T., Liestman, A.L.: A survey of gossiping and
broadcasting in communication networks. Networks 18(4), 319–349 (1988)

9. Herzig, A., Maffre, F.: How to share knowledge by gossiping. In: Rovatsos, M.,
Vouros, G., Julian, V. (eds.) EUMAS/AT -2015. LNCS (LNAI), vol. 9571, pp.
249–263. Springer, Heidelberg (2016). doi:10.1007/978-3-319-33509-4 20

10. Hromkovic, J., Klasing, R., Pelc, A., Ruzicka, P., Unger, W.: Dissemination of
Information in Communication Networks - Broadcasting, Gossiping, Leader Elec-
tion, and Fault-Tolerance. Texts in Theoretical Computer Science. An EATCS
Series. Springer, New York (2005)

11. Kermarrec, A., van Steen, M.: Gossiping in distributed systems. Oper. Syst. Rev.
41(5), 2–7 (2007)

12. Meyden, R., Wilke, T.: Synthesis of distributed systems from knowledge-based
specifications. In: Abadi, M., Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653,
pp. 562–576. Springer, Heidelberg (2005). doi:10.1007/11539452 42

13. van Ditmarsch, H., van Eijck, J., Pardo, P., Ramezanian, R., Schwarzentruber, F.:
Dynamic gossip (2015). CoRR, abs/1511.00867

http://dx.doi.org/10.1007/978-3-319-17130-2_13
http://dx.doi.org/10.1007/978-3-319-33509-4_20
http://dx.doi.org/10.1007/11539452_42

Hilbert-Style Axiomatization for Hybrid XPath
with Data

Carlos Areces(B) and Raul Fervari

FaMAF, Universidad Nacional de Córdoba, Argentina CONICET,
Córdoba, Argentina

{areces,fervari}@famaf.unc.edu.ar

Abstract. In this paper we introduce a sound and complete axiomati-
zation for XPath with data constraints extended with hybrid operators.
First, we define HXPath=(↑↓), an extension of vertical XPath with nomi-
nals and the hybrid operator @. Then, we introduce an axiomatic system
for HXPath=(↑↓), and we prove it is complete with respect to the class
of abstract data trees, i.e., data trees in which data values are abstracted
as equivalence relations. As a corollary, we also obtain completeness with
respect to the class of concrete data trees.

Keywords: XPath · Modal logic · Hybrid logic · Data tree ·
Axiomatization

1 XPath as a Modal Logic with Data Tests

XPath is arguably the most widely used XML query language. Indeed, XPath is
implemented in XSLT and XQuery and it is used in many specification and
update languages. XPath is, fundamentally, a general purpose language for
addressing, searching, and matching pieces of an XML document. It is an open
standard and constitutes a World Wide Web Consortium (W3C) Recommen-
dation [14]. [21] adapts the definition of XPath to be used as a powerful query
language over knowledge bases. Core-XPath [20] is the fragment of XPath 1.0
containing the navigational behavior of XPath. It can express properties of the
underlying tree structure of the XML document, such as the label (tag name)
of a node, but it cannot express conditions on the actual data contained in the
attributes. In other words, it is essentially a classical modal logic [8,10]. Core-
XPath has been well studied from a modal point of view. For instance, its satis-
fiability problem is known to be decidable even in the presence of DTDs [6,22].
Moreover, it is known that it is equivalent to FO2 (first-order logic with two vari-
ables over an appropriate signature on trees) in terms of expressive power [23],
and that it is strictly less expressive than PDL with converse over trees [7]. Sound
and complete axiomatizations for Core-XPath have been introduced in [12,13].

However, from a database perspective, Core-XPath is not expressive enough
to define the most important construct in a query language: the join. Without
the ability to relate nodes based on the actual data values of the attributes,
c© Springer International Publishing AG 2016
L. Michael and A. Kakas (Eds.): JELIA 2016, LNAI 10021, pp. 34–48, 2016.
DOI: 10.1007/978-3-319-48758-8 3

Hilbert-Style Axiomatization for Hybrid XPath with Data 35

a, 0

b, 2

a, 1 b, 0 a, 0

a, 1

x

y z

u v w

Fig. 1. An example of a data tree.

the logic’s expressive power is inappropriate for many applications. The exten-
sion of Core-XPath with (in)equality tests between attributes of elements in an
XML document is named Core-Data-XPath in [11]. Here, we will call this logic
XPath=. Models of XPath= are data trees which can be seen as XML documents.
A data tree is a tree whose nodes contain a label from a finite alphabet and a
data value from an infinite domain (see Fig. 1 for an example). We will relax
the condition on finiteness and consider also infinite data trees, although all our
results hold also on finite structures. The main characteristic of XPath= is to
allow formulas of the form 〈α = β〉 and 〈α �= β〉, where α, β are path expressions
that navigate the tree using axes: descendant, child, ancestor, next-sibling, etc.
and can make tests in intermediate nodes. The formula 〈α = β〉 (respectively
〈α �= β〉) is true at a node x of a data tree if there are nodes y, z that can be
reached by paths denoted by α, β respectively, and such that the data value of y
is equal (respectively different) to the data value of z. For instance, in Fig. 1 the
expression “there is a one-step descendant and a two-steps descendant sharing
the same data value” is satisfied at x, given the presence of u and z. The expres-
sion “there are two children with distinct data value” is also true at x, because
y and z have different data.

Notice that XPath= allows to compare data values at the end of a path, by
equality or inequality. However, it does not allow the access to the concrete data
value of nodes (in the example, 0, 1 or 2). Hence, it is possible to work with an
abstraction of data trees: instead of having concrete data values in each node,
we have an equivalence relation between nodes. In the data tree from Fig. 1, the
relation consists of three equivalence classes: {x, v, w}, {u, z} and {y}.

Recent articles investigate XPath= from a modal perspective. For exam-
ple, satisfiability and evaluation are discussed in [15,16,19], while model theory
and expressivity are studied in [2,3,17,18]. We will focus in the proof theory of
XPath= extended with hybrid operators. In [5], a Gentzen-style sequent calculus
is given for a very restricted fragment of XPath=, named DataGL. In DataGL,
data comparisons are allowed only between the evaluation point and its succes-
sors. An extension of the equational axiomatic system from [12] is introduced
in [1], allowing downward navigation and equality/inequality tests.

In this article we will continue the investigation of axiomatic systems for
XPath=. In particular, we will introduce a Hilbert-style axiomatization for

36 C. Areces and R. Fervari

the logic with downward and upward navigation, where node expressions are
extended with nominals (special labels that are valid in only one node), and
path expressions are extended with the hybrid operator @ (allowing the naviga-
tion to some particular named node). We call this logic Hybrid Vertical XPath
(denoted HXPath=(↑↓)). We will take advantage of hybrid operators to prove
completeness using a Henkin-style model construction (see [8] for details).

The article is organized as follows. In Sect. 2 we introduce the syntax and
semantics of HXPath=(↑↓). Then we define the axiomatic system HXP in Sect. 3
and we prove its completeness in Sect. 4. In Sect. 5 we extend HXP to prove
completeness with respect to the class of data trees. To conclude, in Sect. 6 we
introduce some remarks and future lines of research.

2 Preliminaries

In this section we introduce the syntax and semantics for the logic we call Hybrid
Vertical XPath (HXPath=(↑↓) for short). We assume basic knowledge of classical
modal logic (see [8] for further details).

We start by defining the structures that will be used to evaluate formulas in
the language.

Definition 1 (Hybrid Data Models). Let LAB (the set of labels) and NOM
(the set of nominals) be two infinite countable sets. An abstract hybrid data
model is a tuple M = 〈M,∼,→, label ,nom〉, where M is a non-empty set of
elements, ∼ ⊆ M × M is an equivalence relation between elements of M , → ⊆
M × M is the accessibility relation, label : M → 2LAB is a labeling function and
nom : NOM → M is a function that assigns nominals to certain elements.

A concrete hybrid data model is a tuple M = 〈M,D,→, label ,nom, data〉,
where M is a non-empty set of elements, D is a non-empty set of data, → ⊆
M × M is the accessibility relation, label : M → 2LAB is the labeling function,
nom : NOM → M is a function which names the nodes and data : M → D is
the function which assigns a data value to each node of the model.

We often write w↓v and v↑w when w → v.

Concrete data models are most commonly used in application, where we
encounter data from an infinite alphabet (e.g., alphabetic strings) associated to
the nodes in a semi-structured database. It is easy to see that each concrete
data model has an associated, equivalent abstract data model where data is
replaced by an equivalence relation that links all nodes with the same data.
Vice-versa, each abstract data model can be “concretized” by assigning to each
node its equivalence data class as data. We will prove sound and completeness
over the class of abstract data models and, as a corollary, obtain completeness
over concrete data models.

We are now ready to introduce the syntax and semantics of HXPath=(↑↓).

Hilbert-Style Axiomatization for Hybrid XPath with Data 37

Definition 2 (Syntax). The set of path expressions (which we will note as α,
β, γ, . . .) and node expressions (which we will note as ϕ, ψ, θ, . . .) of
HXPath=(↑↓) are defined by mutual recursion as follows:

α, β ::= ↓ | ↑ | @i | [ϕ] | αβ

ϕ, ψ ::= a | i | ¬ϕ | ϕ ∧ ψ | 〈α = β〉 | 〈α �= β〉, a ∈ LAB, i ∈ NOM.

Notice that path expressions occur in node expressions in data comparison
formulas of the form 〈α = β〉 and 〈α �= β〉, while node expressions occur in path
expressions in test formulas of the form [ϕ].

In what follows we will always use δ to represent the ↓ and ↑ operators and
∗ for = and �=. Other Boolean operators are defined as usual. We define the
following operators as abbreviations.

Definition 3 (Abbreviations). Let α, β be path expressions, γ1, γ2 path
expressions or the empty string, ϕ a node expression, i a nominal, and p an
arbitrary symbol in LAB:

Node Expressions Path Expressions

 ≡ p ∨ ¬p ε ≡ [
]
⊥ ≡ ¬
 〈γ1(α ∪ β)γ2 ∗ γ3〉 ≡ 〈γ1αγ2 ∗ γ3〉 ∨ 〈γ1βγ2 ∗ γ3〉

〈α〉ϕ ≡ 〈α[ϕ] = α[ϕ]〉 〈γ1 ∗ γ2(α ∪ β)γ3〉 ≡ 〈γ1 ∗ γ2αγ3〉 ∨ 〈γ1 ∗ γ2βγ3〉
[α]ϕ ≡ ¬〈α〉¬ϕ
@iϕ ≡ 〈@i〉ϕ

As a corollary of the definition below, the diamond and box expressions 〈α〉ϕ
and [α]ϕ will have their classical meaning, and the same will be true for hybrid
“at” formulas of the form @iϕ. Notice that we use @i both as a path expression
and as a modality; the intended meaning will always be clear by context. Notice
also that, following the standard notation in XPath logics and in modal logics,
the [] operation is overloaded: for ϕ a node expression and α a path expression,
both [α]ϕ and [ϕ]α are well-formed expressions; the former is a node expression
where [α] is a box modality, the later is a path expression where [ϕ] is a test.

Definition 4 (Semantics). Let M = 〈M,∼,→, label ,nom〉 be an abstract data
model, and x, y ∈ M . We define the semantics of HXPath=(↑↓) as follows:

M, x, y |= ↓ iff x → y

M, x, y |= ↑ iff y → x

M, x, y |= @i iff nom(i) = y

M, x, y |= [ϕ] iff x = y and M, x |= ϕ

M, x, y |= αβ iff there is some z ∈ M s.t. M, x, z |= α and M, z, y |= β

M, x |= a iff a ∈ label(x)

M, x |= i iff nom(i) = x

M, x |= ¬ϕ iff M, x �|= ϕ

M, x |= ϕ ∧ ψ iff M, x |= ϕ and M, x |= ψ

M, x |= 〈α = β〉 iff there are y, z∈M s.t. M, x, y |= α, M, x, z |= β and y ∼ z

M, x |= 〈α �= β〉 iff there are y, z∈M s.t. M, x, y |= α, M, x, z |= β and y �∼ z.

38 C. Areces and R. Fervari

Corollary 1

M, x |= @iϕ iff M,nom(i) |= ϕ
M, x |= 〈δ〉ϕ iff there is some y ∈ M s.t. xδy and M, y |= ϕ
M, x |= [δ]ϕ iff for all y ∈ M , xδy then M, y |= ϕ.

The addition of the hybrid operators to XPath increases its expressive power.
The following examples should serve as illustration.

Example 1. We list below some HXPath=(↑↓) expressions together with their
intuitive meaning:

α[i] There exists an α path between the current point of evaluation
and the node named i

@iα There exists an α path between the node named i and some
other node

〈@i = @j〉 The node named i has the same data than the node named j
〈α = @iβ〉 There exists a node accessible from the current point of

evaluation by an α path that has the same data than a node
accessible from the point named i by a β path

3 Axiomatic System

In this section we introduce the axiomatic system HXP for HXPath=(↑↓). It
is an extension of an axiomatic system for the hybrid logic HL(@) which adds
nominals and the @ operator to the basic modal language (see [8]). In particular,
we include axioms to handle data equality and inequality.

We present axioms and rules step by step, providing brief comments to help
the reader understand their role. In all cases, we provide axiom and rule schemes,
i.e., they can be instantiated with arbitrary path and node expressions (but
always respecting types). In all axioms and rules ϕ, ψ and θ are node expressions,
α, β and γ are path expressions, i, j and k are nominals. We use � ϕ to indicate
that ϕ is a theorem of HXP.

In addition to an arbitrary set of axiom and rule schemes for propositional
logic, we include generalizations of the K axiom and the Necessitation rule for
the basic modal logic to handle modalities with arbitrary path expressions.

Axiom and rule for classical modal logic

K [α](ϕ → ψ) → ([α]ϕ → [α]ψ)
� ϕ

Nec� [α]ϕ

Then we introduce generalizations of the rules for the hybrid logic HL(@).

Hybrid rules

� j → ϕ
name� ϕ

� @i〈γ〉j ∧ 〈@jα ∗ β〉 → θ
paste� 〈@iγα ∗ β〉 → θ

j is a nominal different from i that does not occur in ϕ, θ, α, β, γ.

Hilbert-Style Axiomatization for Hybrid XPath with Data 39

Now we introduce axioms that handle @. Notice that @i is a path expression
of HXPath=(↑↓) and as a result, some of the standard hybrid axioms for @ have
been generalized. In particular, the K axiom and Nec rule above also apply to
@i. In addition, we provide axioms to ensure that the relation induced by @ is
a congruence.

Axioms for @ Congruence for @

@-self-dual ¬@iϕ ↔ @i¬ϕ
@-intro i ∧ ϕ → @iϕ

@-refl. @ii
@-sym. @ij → @ji
nom @ij ∧ 〈@iα ∗ β〉 → 〈@jα ∗ β〉
agree 〈@j@iα ∗ β〉 ↔ 〈@iα ∗ β〉
back 〈γ@iα ∗ β〉 → 〈@iα ∗ β〉

Axioms involving the classical XPath operators can be found below. We orga-
nize them in three groups. First, we have axioms for the interaction between ↓
and ↑. These axioms are the classical ones characterizing “future” and “past”
modalities (see [8]). Then, we introduce axioms to handle complex path expres-
sions in data comparisons. Finally, we introduce axioms to handle data tests.

Axioms for ↓, ↑-interaction
down-up ϕ → [↓]〈↑〉ϕ
up-down ϕ → [↑]〈↓〉ϕ
Axioms for paths
comp-assoc 〈(αβ)γ ∗ η〉 ↔ 〈α(βγ) ∗ η〉
comp-neutral 〈αβ ∗ γ〉 ↔ 〈αεβ ∗ γ〉 (α or β can be empty)
comp-dist 〈αβ〉ϕ ↔ 〈α〉〈β〉ϕ
Axioms for data
equal 〈ε = ε〉
distinct ¬〈ε �= ε〉
@-data ¬〈@i=@j〉 ↔ 〈@i �=@j〉
ε-trans 〈ε = α〉 ∧ 〈ε = β〉 → 〈α = β〉
∗-comm 〈α ∗ β〉 ↔ 〈β ∗ α〉
∗-test 〈[ϕ]α ∗ β〉 ↔ ϕ ∧ 〈α ∗ β〉
@∗-dist 〈@iα ∗ @iβ〉 ↔ @i〈α ∗ β〉
comp∗-dist 〈α〉〈β ∗ γ〉 → 〈αβ ∗ αγ〉

Proposition 1. The following formulas are theorems in HXP.

1. test-dist� 〈[ϕ] = [ψ]〉 ↔ ϕ ∧ ψ
2. test-⊥ � 〈[ϕ] �= [ψ]〉 ↔ 〈ε �= ε〉
3. @-swap� @i〈α ∗ @jβ〉 ↔ @j〈β ∗ @iα〉
4. bridge� 〈α〉i ∧ @iϕ → 〈α〉ϕ
Proof (test-dist and test-⊥). Let ∗ be = or �=. Then:

� 〈[ϕ] ∗ [ψ]〉 ↔ 〈[ϕ]ε ∗ [ψ]〉 by comp-neutral.

40 C. Areces and R. Fervari

� 〈[ϕ]ε ∗ [ψ]〉 ↔ ϕ ∧ 〈ε ∗ [ψ]〉 by ∗-test.
� ϕ ∧ 〈ε ∗ [ψ]〉 ↔ ϕ ∧ 〈[ψ] ∗ ε〉 by ∗-comm.
� ϕ ∧ 〈[ψ] ∗ ε〉 ↔ ϕ ∧ 〈[ψ]ε ∗ ε〉 by comp-neutral.
� ϕ ∧ 〈[ψ]ε ∗ ε〉 ↔ ϕ ∧ ψ ∧ 〈ε ∗ ε〉 by ∗-test.

Replacing ∗ by = we get ϕ ∧ ψ by equal. Replacing it by �= we get 〈ε �= ε〉.
(@-swap).

� @i〈α = @jβ〉 ↔ 〈@iα = @i@jβ〉 by @ =-dist.
� 〈@iα = @i@jβ〉 ↔ 〈@i@jβ = @iα〉 by =-comm.
� 〈@i@jβ = @iα〉 ↔ 〈@jβ = @iα〉 by agree.
� 〈@jβ = @iα〉 ↔ 〈@iα = @jβ〉 by =-comm.
� 〈@iα = @jβ〉 ↔ 〈@j@iα = @jβ〉 by agree.
� 〈@j@iα = @jβ〉 ↔ @j〈@iα = β〉 by agree.
� @j〈@iα = β〉 ↔ @j〈β = @iα〉 by =-comm.

(bridge). Using contrapositive, bridge is equivalent to 〈α〉i ∧ [α]ϕ → @iϕ. Using
the modal theorem � 〈α〉ϕ ∧ [α]ψ → 〈α〉(ϕ ∧ ψ), we reason:

� 〈α〉i ∧ [α]ϕ → 〈α〉(i ∧ ϕ).
� 〈α〉(i ∧ ϕ) → 〈α〉(@iϕ) by @-intro.
� 〈α〉(@iϕ) → @iϕ by back.

4 Completeness

It is a fairly straightforward exercise to prove that the axioms and rules of
HXP are sound for the intended semantics. We will now show that the axiomatic
system is also complete. The completeness argument follows the lines of the com-
pleteness proof for HL(@) (see [8]), which is a Henkin-style proof with nominals
playing the role of first-order constants.

In what follows, we will write Γ � ϕ if and only if ϕ can be obtained from a
set of formulas Γ by applying the inference rules of HXP.

Definition 5. Let Γ be a set of formulas, we say that Γ is an HXP maximal
consistent set (HXP-MCS, or MCS for short) if and only if Γ � ⊥ and for all
ϕ /∈ Γ we have Γ ∪ {ϕ} � ⊥.

Proposition 2. Let Γ be an HXP-MCS. Then, the following facts hold:

1. {i, ϕ} ⊆ Γ then @iϕ ∈ Γ ,
2. @i〈α = β〉 ∈ Γ then 〈@iα = @iβ〉 ∈ Γ , and
3. 〈α = @iβ〉 ∈ Γ then 〈α = @j@iβ〉 ∈ Γ .

Proof. Item 1 is a consequence of @-intro, 2 follows from @=-dist and 3 can be
proved using agree and =-comm. ��

The next corollary follows from the definition of MCS, as expected:

Corollary 2. Let Γ be a MCS. Then for all ϕ, either ϕ ∈ Γ or ϕ /∈ Γ .

Hilbert-Style Axiomatization for Hybrid XPath with Data 41

In the same way as for hybrid logic, inside every MCS there are a collection
of MCSs with some desirable properties:

Lemma 1. Let Γ be an HXP-MCS. For any nominal i ∈ Γ , let us define Δi =
{ϕ | @iϕ ∈ Γ}. Then

1. Δi is an HXP-MCS.
2. For all nominals i, j, if i ∈ Δj then Δi = Δj.
3. For all nominals i, j, we have @iϕ ∈ Δj iff @iϕ ∈ Γ .
4. If k ∈ Γ then Γ = Δk.

Proof. See [8, Lemma 7.24] for details.

Definition 6 (Named and Pasted MCS). Let Γ be an HXP-MCS. We say
that Γ is named if for some nominal i we have that i ∈ Γ (and we will say that
Γ is named by i). We say that Γ is pasted if the following holds:

1. 〈@iδα = β〉 ∈ Γ implies that for some nominal j, @i〈δ〉j ∧ 〈@jα = β〉 ∈ Γ
2. 〈@iδα �= β〉 ∈ Γ implies that for some nominal j, @i〈δ〉j ∧ 〈@jα �= β〉 ∈ Γ .

Now we are going to prove a crucial property in our completeness proof: the
Extended Lindenbaum Lemma. Intuitively, it says that the rules of HXP allow us
to extend MCSs to named and pasted MCSs, provided we enrich the language
with new nominals. This lemma will be useful to obtain the models we need
from an MCS.

Lemma 2 (Extended Lindenbaum Lemma). Let NOM′ be a (countably)
infinite set of nominals disjoint from NOM, and let HXPath=(↑↓)′ be the lan-
guage obtained by adding these new nominals to HXPath=(↑↓). Then, every
HXP-consistent set of formulas in HXPath=(↑↓) can be extended to a named
and pasted HXP-MCS in HXPath=(↑↓)′.

Proof. Enumerate NOM′. Given Σ a consistent set in HXPath=(↑↓), define Σk

to be Σ ∪{k}, where k is the first nominal in our enumeration. Σk is consistent,
otherwise for some conjunction θ from Σ, � k → ¬θ. By the name rule, � ¬θ,
contradicting the consistency of Σ.

Now enumerate all formulas in HXPath=(↑↓)′. Define Σ0 to be Σk and sup-
pose we have defined Σm, for m ≥ 0. Let ϕm+1 be the m + 1th formula in our
enumeration of HXPath=(↑↓)′. Define Σm+1 as follows. If Σm+1 ∪ {ϕm+1} is
inconsistent, then Σm+1 = Σm. Otherwise:

1. Σm+1 = Σm ∪ {ϕm+1} if ϕm+1 is not of the form 〈@iδα ∗ β〉.
2. Σm+1 = Σm∪{ϕm+1}∪{@i〈δ〉j∧〈@jα∗β〉}, if ϕm+1 is of the form 〈@iδα∗β〉.

Here j is the first nominal in the enumeration that does not occur in Σm or
〈@iδα ∗ β〉.
Let Σ+ =

⋃

n≥0 Σn. This set is named (by k), maximal and pasted. Further-
more, it is consistent as a direct consequence of the paste rule. ��

42 C. Areces and R. Fervari

From a named and pasted HXP-MCS we can extract a model:

Definition 7 (Extracted Model). Let Γ be a named and pasted HXP-MCS,
then we define the extracted model from Γ , MΓ = 〈M,∼,→, label ,nom〉 as:

– M = {Δi | Δiwas obtained fromΓ}
– Δi → Δj iff 〈↓〉j ∈ Δi

– a ∈ label(Δi) iff a ∈ Δi

– nom(i) = Δi

– Δi ∼ Δj iff 〈ε = @j〉 ∈ Δi.

Proposition 3. Let MΓ = 〈M,∼,→, label ,nom〉 be the extracted model, for
some Γ . Then,

1. Δi → Δj if and only if 〈↑〉i ∈ Δj, and
2. Δi �∼ Δj if and only if 〈ε �= @j〉 ∈ Δi.

Proof. Item 1 uses the same argument as for HL(@) in addition to the axioms
for ↑; item 2 follows from @-data.

We need to prove that, in fact, MΓ is an abstract hybrid data model.

Proposition 4. MΓ is well defined, i.e., the following properties hold:

1. nom(i) = Δ1 and nom(i) = Δ2 then Δ1 = Δ2, and
2. ∼ is an equivalence relation.

Proof. Item 1 follows from the axioms for the hybrid operators in a standard
way. Let us prove that ∼ is an equivalence relation.

– Reflexivity: Δi ∼ Δi iff 〈ε = @i〉 ∈ Δi iff @i〈ε = ε〉 ∈ Δi, which is true because
〈ε = ε〉 is a theorem.

– Symmetry: Δi ∼ Δj iff 〈ε = @j〉 ∈ Δi. By definition of Δi, we have @i〈ε =
@j〉 ∈ Γ , and by neutral and =-comm we get @i〈ε = @jε〉 ∈ Γ . Then, by
@-swap @j〈ε = @iε〉. Therefore 〈ε = @i〉 ∈ Δj (by neutral), iff Δj ∼ Δi.

– Transitivity: Suppose Δi ∼ Δj and Δj ∼ Δk, iff 〈ε = @j〉 ∈ Δi and 〈ε = @k〉 ∈
Δj . This means that we have @i〈ε = @j〉 ∈ Γ iff (by @-swap) @j〈ε = @i〉 ∈ Γ ,
and @j〈ε = @k〉 ∈ Γ . Then 〈ε = @i〉 ∧ 〈ε = @k〉 ∈ Δj , and by ε-trans we have
〈@i = @k〉 ∈ Δj . By agree and @=-dist we get @i〈ε = @k〉 ∈ Δj , iff by
definition of Δj , @j@i〈ε = @k〉 ∈ Γ . By agree we obtain @i〈ε = @k〉 ∈ Γ ,
then 〈ε = @k〉 ∈ Δi. Hence, we have Δi ∼ Δk. ��

Now, given a named and pasted MCS Γ we can prove the following Existence
Lemma:

Lemma 3 (Existence Lemma). Let Γ be an HXP-MCS and let MΓ = 〈M,
∼,→, label ,nom〉 be the extracted model from Γ . Suppose Δ ∈ M and i ∈ Δ.
Then

Hilbert-Style Axiomatization for Hybrid XPath with Data 43

1. 〈δα = β〉 ∈ Δ implies there exists Σ ∈ M s.t. ΔδΣ and 〈α = @iβ〉 ∈ Σ,
2. 〈δα �= β〉 ∈ Δ implies there exists Σ ∈ M s.t. ΔδΣ and 〈α �= @iβ〉 ∈ Σ.

Proof. We discuss the case for = (the case for �= is similar). Because Δ ∈ M ,
for some nominal i we have Δ = Δi. As 〈δα = β〉 ∈ Δ, @i〈δα = β〉 ∈ Γ . Then,
by Axiom @=-dist, 〈@iδα = @iβ〉 ∈ Γ . Because Γ is pasted @i〈δ〉j ∧ 〈@jα =
@iβ〉 ∈ Γ . As Γ is MCS, @i〈δ〉j ∈ Γ and 〈@jα = @iβ〉 ∈ Γ . By Axiom agree, we
have 〈@jα = @j@iβ〉 ∈ Γ . Then, @j〈α = @iβ〉 ∈ Γ by @=-dist. By definition,
〈δ〉j ∈ Δi and 〈α = @iβ〉 ∈ Δj . Taking Σ as Δj , we complete the proof. ��

Now we are ready to prove the Truth Lemma that states that membership
in an MCS of the extracted model is equivalent to being true in that MCS.

Lemma 4 (Truth Lemma). Let MΓ = 〈M,∼,→, label ,nom〉 be the extracted
model from a MCS Γ , and let Δi ∈ M . Then, for any formula ϕ,

MΓ ,Δi |= ϕ iff ϕ ∈ Δi.

Proof. In fact we will prove a stronger result. Let Δi,Δj ∈ M , ϕ be a node
expression and α be a path expression.

(IH1): MΓ ,Δi |= ϕ iff ϕ ∈ Δi.
(IH2): MΓ ,Δi,Δj |= α iff 〈α〉j ∈ Δi.

The proof proceeds by induction in the complexity of ϕ and α. First, we
prove the base cases:

– α = ↓: Suppose MΓ ,Δi,Δj |= ↓ iff Δi → Δj (by |=), iff 〈↓〉j ∈ Δi (by
definition of extracted model).

– α = ↑: Suppose MΓ ,Δi,Δj |= ↑ iff Δj → Δi (by |=), iff 〈↑〉j ∈ Δi (by 1 of
Proposition 3).

– α = @k: Suppose MΓ ,Δi,Δj |= @k iff nom(k) = Δj . But by definition of
nom, Δj = Δk, and because we know j ∈ Δj we have j ∈ Δk. Then, we have
@kj ∈ Γ , and by Axiom agree, @i@kj ∈ Γ . Therefore, @kj ∈ Δi.

– ϕ = a: MΓ ,Δi |= a iff a ∈ label(Δi), iff a ∈ Δi.
– ϕ = j: MΓ ,Δi |= j iff nom(j) = Δi, iff Δi = Δj iff j ∈ Δi.

Now we prove the inductive cases:

– ϕ = ψ ∧ ρ and ϕ = ¬ψ: are direct from (IH1).
– α = [ψ]: MΓ ,Δi,Δj |= [ψ] iff Δi = Δj and MΓ ,Δi |= ψ. By (IH1), we have

ψ ∈ Δi and j ∈ Δi. By Δi MCS, we have ψ ∧ j ∈ Δi, and by idempotence
of the conjunction we have ψ ∧ ψ ∧ j ∧ j ∈ Δi. Also, we have 〈ε = ε〉 ∈ Δi,
then we can use Axioms =-test and =-comm to obtain 〈[ψ][j] = [ψ][j]〉 ∈ Δi

(which is the same as 〈[ψ]〉j) as we wanted.
– α = βγ: MΓ ,Δi,Δj |= βγ iff there is some Δk such that MΓ ,Δi,Δk |= β

and MΓ ,Δk,Δj , |= γ. By (IH2), we have 〈β〉k ∈ Δi and 〈γ〉j ∈ Δk. We can
conclude @i〈β〉k ∈ Γ and @k〈γ〉j ∈ Γ , then @i〈β〉k ∧ @k〈γ〉j ∈ Γ . By agree,
we have @i〈β〉k ∧ @i@k〈γ〉j ∈ Γ , and with a very simple hybrid argument
we get @i(〈β〉k ∧ @k〈γ〉j) ∈ Γ . By bridge, we have @i(〈β〉〈γ〉j) ∈ Γ , and by
Axiom comp-dist @i(〈βγ〉j) ∈ Γ . Hence, 〈βγ〉j ∈ Δi.

44 C. Areces and R. Fervari

For node expressions of the form 〈α ∗ β〉 we need to do induction on the length
of α and β (defined in the obvious way).

First notice that by ∗-comm, 〈α ∗ β〉 ∈ Δi iff 〈β ∗ α〉 ∈ Δi. And by the
semantic definition, MΓ ,Δi |= 〈α ∗ β〉 iff MΓ ,Δi |= 〈β ∗ α〉. So we need only
discuss the case for α. Moreover, by comp-neutral, � 〈α ∗ β〉 ↔ 〈αε ∗ β〉 which is
also a validity. So we can assume that every path ends in a test. The base case
then is when |α| + |β| = 2, and both α and β are tests.

– ϕ = 〈[ψ] = [ρ]〉: direct from test-dist.
– ϕ = 〈[ψ] �= [ρ]〉: it is a contradiction from test-⊥, then this case has not to be

considered.

Now, let us consider |α| + |β| ≥ 3:

– ϕ = 〈↓β = γ〉: MΓ ,Δi |= 〈↓β = γ〉 iff there are Δj ,Δk such that
MΓ ,Δi,Δj |= ↓β, MΓ ,Δi,Δk |= γ and Δj ∼ Δk. Then, by (IH2) and
definition of MΓ we have:
1. 〈↓β〉j ∈ Δi,
2. 〈γ〉k ∈ Δi, and
3. 〈ε = @k〉 ∈ Δj .

By 1 and the Existence Lemma, there is Δl such that both Δi → Δj and
MΓ ,Δl,Δj |= β hold. Then by (IH2) we have

4. 〈β〉j ∈ Δl.

(⊗) From 2 we have 〈γ〉k ∈ Δi and from 3 we can obtain 〈ε = @j〉 ∈ Δk then
we have 〈@iγ〉k∧@k〈ε = @j〉 ∈ Γ , by definition and Axiom comp-dist. By bridge,
〈@iγ〉〈ε = @j〉 ∈ Γ , then by comp=-dist and back, we get 〈@iγ = @j〉 ∈ Γ .
Applying =-comm, comp-neutral, agree and @-dist, @i〈ε = @iγ〉 ∈ Γ .

Also, from 4 we have @l〈β〉j ∈ Γ , then @j〈ε = @iγ〉 ∧ 〈@lβ〉j ∈ Γ (by
MCS and comp-dist), and by bridge we get 〈@lβ〉〈ε = @iγ〉 ∈ Γ . By comp=-dist
and comp-neutral, 〈@lβ = @lβ@iγ〉 ∈ Γ , then by back and @=-dist we have
@l〈β = @iγ〉 ∈ Γ . Therefore, we have 〈β = @iγ〉 ∈ Δl.

Then, because Δi → Δl and the previous paragraph, we can use the Existence
Lemma to obtain 〈↓β = @iγ〉 ∈ Δi, if and only if 〈↓β = γ〉 ∈ Δi (by @=-dist),
hence 〈↓β = γ〉 ∈ Δi, as we wanted.

– ϕ = 〈↑β = γ〉 and ϕ = 〈δβ ∗ γ〉 are similar to the previous one but using also
Proposition 3.

– ϕ = 〈@jβ = γ〉: MΓ ,Δi |= 〈@jβ = γ〉 iff there are Δk,Δl such that
MΓ ,Δi,Δk |= @jβ, MΓ ,Δi,Δl |= γ and Δk ∼ Δl. Then, by (IH2) and
definition of MΓ we have:
1. 〈@jβ〉k ∈ Δi, iff @i〈@jβ〉k ∈ Γ iff @j〈β〉k ∈ Γ ,
2. 〈γ〉l ∈ Δi, iff @i〈β〉l ∈ Γ , and
3. 〈ε = @k〉 ∈ Δj , iff @k〈ε = @l〉 ∈ Γ .

Hilbert-Style Axiomatization for Hybrid XPath with Data 45

By 1 and 2 we have @j〈β〉〈ε = @l〉 ∈ Γ , iff (by comp=-dist) @j〈β = β@l〉 ∈ Γ .
By back, we get @j〈β = @l〉 ∈ Γ , which is equivalent to @l〈ε = @jβ〉 ∈ Γ (by
agree and =-dist). Together with 2 and bridge we get @i〈γ〉〈ε = @jβ〉 ∈ Γ , hence
@i〈γ = γ@jβ〉 ∈ Γ iff (by back and =-comm) @i〈@jβ = γ〉 ∈ Γ . Using definition
of Δi, we finally get 〈@jβ = γ〉 ∈ Δi.

– ϕ = 〈[ψ]β = γ〉: MΓ ,Δi |= 〈[ψ]β = γ〉 iff there are Δj ,Δk such that
MΓ ,Δi,Δj |= [ψ]β, MΓ ,Δi,Δk |= γ and Δj ∼ Δk. Then, by (IH2) and
definition of MΓ we have:
1. 〈β〉j ∈ Δi,
2. 〈γ〉k ∈ Δi,
3. 〈ε = @k〉 ∈ Δj , and
4. ψ ∈ Δi.

Using the same argument as in (⊗) the proof that 〈[ψ]β = γ〉 ∈ Δi is straight-
forward.

– Cases involving �= are analogous, using Proposition 3 to obtain 〈ε = @k〉 /∈ Δj

in item 3 above. ��
As a result we obtain the completeness result.

Theorem 1. The axiomatic system HXP is complete for abstract hybrid data
models.

Proof. We need to prove that every HXP-consistent set of HXPath=(↑↓)-
formulas Σ it satisfiable in a countable hybrid model. For any Σ, we can use
the Extended Lindenbaum Lemma to obtain Σ+ which is named and pasted
in HXPath=(↑↓)′. Let M = 〈M,∼,→, label ,nom〉 be the extracted model from
Σ+. As Σ+ is named, then Σ+ ∈ M . Then by Truth Lemma, for all ϕ ∈ Σ
we have M, Σ+ |= ϕ. Because each state is named by some nominal from a
countable set NOM′, the model is countable.

Because the class of abstract data models is a conservative abstraction of
concrete data models, we can conclude:

Corollary 3. The axiomatic system HXP is complete for concrete hybrid data
models.

5 Completeness for Tree Models

As we mentioned in the introductory section, XPath= is a query language for
XML documents, and that it is possible to work with some abstractions called
data trees. So far, we introduced an axiomatic system which is sound and com-
plete with respect of a more general class of structures, which are the hybrid
data models from Definition 1. We will show that it is possible to extend the
axiomatic system HXP to handle data trees, the most interesting structures for
HXPath=(↑↓) applications.

46 C. Areces and R. Fervari

The table below introduces two groups of axioms. Those in the first column
guarantee that the evaluation model is a tree. In the second column, we have
two axioms which impose a standard property required in abstractions of XML
documents: the set of labels LAB is assumed to be finite and each node is labeled
exactly by one tag name.

Axioms for trees Axioms for labels

no-circle i → ¬〈↓〉ni, n ≥ 1
no join 〈↑〉i ∧ 〈↑〉j → @ij

lab-some
∨

a∈LAB

a

lab-uniq ¬(a ∧ b) (for a �= b)

We need to consider a point-generated sub-model of MΓ to ensure that the
resulting model is a tree.

Definition 8 (Generated Sub-model). Let Γ be a named and pasted MCS
using the axiomatic system HXP extended with the axioms for trees and labels,
and MΓ = 〈M,∼,→, label ,nom〉 the extracted model from Γ . We define TΓ as
the point-generated sub-model of MΓ obtained from Γ , i.e., TΓ is the smallest
sub-model of MΓ that includes Γ in its domain, and such that for all points w,
the following closure condition holds:

If w ∈ TΓ and w → v, then v ∈ TΓ .

Proposition 5. TΓ is a tree.

Proof. By construction Γ is the root of TΓ . We have to prove that the accessibil-
ity relation is (a) irreflexive, (b) asymmetric and (c) that every node except the
root has exactly one immediate predecessor. The proof is standard using axioms
for ↓, ↑ interaction and the axioms for trees. ��

It should be obvious that the axioms for labels ensure that exactly one label
holds in a node. Using TΓ in the Truth Lemma gives the desired result.

Theorem 2. The axiomatic system HXP extended with the axioms for trees and
labels is complete for abstract named data trees (and consequently, for concrete
named data trees).

6 Final Remarks

We introduced a sound and complete axiomatization for HXPath=(↑↓), i.e., the
language XPath with upward and downward navigation and data comparisons,
extended with nominals and the hybrid operator @. The hybridization of XPath
allowed us to replicate the completeness argument for the hybrid logic HL(@)
shown, e.g., in [8].

As future work we would like to take advantage of the hybridization of
XPath= to obtain general axiomatizations as in [4,9]. The idea is to define
minimal proof systems that are not only complete for the class of all models,

Hilbert-Style Axiomatization for Hybrid XPath with Data 47

but which can also be extended with additional axioms that are pure in some
sense, ensuring completeness with respect to the corresponding class of models.
Our goal is to explore this general framework and obtain complete axiomatic
systems for some natural extensions of HXPath=(↑↓):

– HXPath=(↑↓) with reflexive-transitive closure for downward/upward naviga-
tion (i.e., allowing ↓∗ and ↑∗), and sibling navigation.

– Exploring new kind of data comparisons, for instance, including the relation
< in addition to = and �=.

Another aspect we would like to explore is decidability and complexity. A fil-
tration argument (see [8]) can be applied to prove that HXPath=(↑↓) is decidable
over the class of all models, obtaining a NExpTime upper bound for the satis-
fiability problem. We conjecture that the satisfiability problem is also decidable
over the class of finite data trees, and that this result can be proved adapting
the automata proof given in [15], with the method used to account for hybrid
operators presented in [24].

Acknowledgments. This work was partially supported by grant ANPCyT-PICT-
2013-2011, STIC-AmSud “Foundations of Graph Structured Data (FoG)” and the
Laboratoire International Associé “INFINIS.”

References

1. Abriola, S., Descotte, M., Fervari, R., Figueira, S.: Axiomatizations for downward
XPath on data trees. CoRR, abs/1605.04271 (2016)

2. Abriola, S., Descotte, M., Figueira, S.: Model theory of XPath on data trees. Part
II: Binary bisimulation and definability. Information and Computation (to appear).
http://www.glyc.dc.uba.ar/santiago/papers/xpath-part2.pdf

3. Abriola, S., Descotte, M.E., Figueira, S.: Definability for downward and vertical
XPath on data trees. In: Kohlenbach, U., Barceló, P., Queiroz, R. (eds.) WoL-
LIC 2014. LNCS, vol. 8652, pp. 20–35. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44145-9 2

4. Areces, C., ten Cate, B.: Hybrid logics. In: Blackburn, P., Wolter, F., van Benthem,
J. (eds.) Handbook of Modal Logics, pp. 821–868. Elsevier, Amsterdam (2006)

5. Baelde, D., Lunel, S., Schmitz, S.: A sequent calculus for a modal logic on finite
data trees. In: 25th EACSL Annual Conference on Computer Science Logic, CSL
2016, pp. 32:1–32:16 (2016)

6. Benedikt, M., Fan, W., Geerts, F.: XPath satisfiability in the presence of DTDs.
J. ACM 55(2), 1–79 (2008)

7. Benedikt, M., Koch, C.: XPath leashed. ACM Comput. Surv. 41(1), 1–54 (2008)
8. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theo-

retical Computer Science, vol. 53. Cambridge University Press, Cambridge (2001)
9. Blackburn, P., ten Cate, B.: Pure extensions, proof rules, and hybrid axiomatics.

Studia Logica 84(2), 277–322 (2006)
10. Blackburn, P., van Benthem, J.: Modal logic: a semantic perspective. In: van

Benthem, J., Blackburn, P., Wolter, F. (eds.) Handbook of Modal Logic, pp. 1–84.
Elsevier, Amsterdam (2006)

http://www.glyc.dc.uba.ar/santiago/papers/xpath-part2.pdf
http://dx.doi.org/10.1007/978-3-662-44145-9_2
http://dx.doi.org/10.1007/978-3-662-44145-9_2

48 C. Areces and R. Fervari

11. Bojańczyk, M., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable logic on
data trees and XML reasoning. J. ACM 56(3), 1–48 (2009)

12. ten Cate, B., Litak, T., Marx, M.: Complete axiomatizations for XPath fragments.
J. Appl. Logic 8(2), 153–172 (2010)

13. ten Cate, B., Marx, M.: Axiomatizing the logical core of XPath 2.0. Theory Com-
put. Syst. 44(4), 561–589 (2009)

14. Clark, J., DeRose, S.: XML path language (XPath). Website. W3C Recommenda-
tion (1999). http://www.w3.org/TR/xpath

15. Figueira, D.: Reasoning on words and trees with data. Ph.D. thesis, Laboratoire
Spécification et Vérification, ENS Cachan, France (2010)

16. Figueira, D.: Decidability of downward XPath. ACM Trans. Comput. Logic 13(4),
34 (2012)

17. Figueira, D., Figueira, S., Areces, C.: Basic model theory of XPath on data trees.
In: International Conference on Database Theory, pp. 50–60 (2014)

18. Figueira, D., Figueira, S., Areces, C.: Model theory of XPath on data trees. Part
I: Bisimulation and characterization. J. Artif. Intell. Res. 53, 271–314 (2015)

19. Figueira, D., Segoufin, L.: Bottom-up automata on data trees and vertical XPath.
In: 28th International Symposium on Theoretical Aspects of Computer Science
(STACS 2011), pp. 93–104 (2011)

20. Gottlob, G., Koch, C., Pichler, R.: Efficient algorithms for processing XPath
queries. ACM Trans. Database Syst. 30(2), 444–491 (2005)

21. Kostylev, E., Reutter, J., Vrgoč, D.: Xpath for DL ontologies. In: Proceedings
of the Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI 2015, pp.
1525–1531. AAAI Press (2015)

22. Marx, M.: XPath with conditional axis relations. In: Bertino, E., Christodoulakis,
S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.)
EDBT 2004. LNCS, vol. 2992, pp. 477–494. Springer, Heidelberg (2004). doi:10.
1007/978-3-540-24741-8 28

23. Marx, M., de Rijke, M.: Semantic characterizations of navigational XPath. ACM
SIGMOD Rec. 34(2), 41–46 (2005)

24. Sattler, U., Vardi, M.Y.: The hybrid μ-calculus. In: Goré, R., Leitsch, A., Nipkow,
T. (eds.) IJCAR 2001. LNCS, vol. 2083, pp. 76–91. Springer, Heidelberg (2001).
doi:10.1007/3-540-45744-5 7

http://www.w3.org/TR/xpath
http://dx.doi.org/10.1007/978-3-540-24741-8_28
http://dx.doi.org/10.1007/978-3-540-24741-8_28
http://dx.doi.org/10.1007/3-540-45744-5_7

Approximate Unification in the Description
Logic FL0

Franz Baader1(B), Pavlos Marantidis1, and Alexander Okhotin2

1 Theoretical Computer Science, TU Dresden, Dresden, Germany
{franz.baader,pavlos.marantidis}@tu-dresden.de

2 Chebyshev Laboratory, St. Petersburg State University, Saint Petersburg, Russia
alexander.okhotin@utu.fi

Abstract. Unification in description logics (DLs) has been introduced
as a novel inference service that can be used to detect redundancies in
ontologies, by finding different concepts that may potentially stand for
the same intuitive notion. It was first investigated in detail for the DL
FL0, where unification can be reduced to solving certain language equa-
tions. In order to increase the recall of this method for finding redundan-
cies, we introduce and investigate the notion of approximate unification,
which basically finds pairs of concepts that “almost” unify. The meaning
of “almost” is formalized using distance measures between concepts. We
show that approximate unification in FL0 can be reduced to approxi-
mately solving language equations, and devise algorithms for solving the
latter problem for two particular distance measures.

1 Introduction

Description logics [1] are a well-investigated family of logic-based knowledge
representation formalisms. They can be used to represent the relevant concepts of
an application domain using concept descriptions, which are built from concept
names and role names using certain concept constructors. In this paper, we
concentrate on the DL FL0, which offers the constructors conjunction (�), value
restriction (∀r.C), and the top concept (�).

Unification in DLs has been introduced as a novel inference service that can
be used to detect redundancies in ontologies, and was first investigated in detail
for FL0 [5]. For example, assume that one developer of a medical ontology defines
the concept of a patient with severe head injury as

Patient � ∀finding.(Head injury � ∀severity.Severe), (1)

whereas another one represents it as

Patient � ∀finding.(Severe finding � Injury � ∀finding site.Head). (2)

F. Baader—Supported by the Cluster of Excellence ‘Center for Advancing Electron-
ics Dresden’.
P. Marantidis—Supported by DFG Graduiertenkolleg 1763 (QuantLA).

c© Springer International Publishing AG 2016
L. Michael and A. Kakas (Eds.): JELIA 2016, LNAI 10021, pp. 49–63, 2016.
DOI: 10.1007/978-3-319-48758-8 4

50 F. Baader et al.

Formally, these two concept descriptions are not equivalent, but they are nev-
ertheless meant to represent the same concept. They can obviously be made
equivalent by treating the concept names Head injury and Severe finding as vari-
ables, and substituting the first one by Injury�∀finding site.Head and the second
one by ∀severity.Severe. In this case, we say that the descriptions are unifiable,
and call the substitution that makes them equivalent a unifier. Intuitively, such
a unifier proposes definitions for the concept names that are used as variables: in
our example, we know that, if we define Head injury as Injury�∀finding site.Head
and Severe finding as ∀severity.Severe, then the two concept descriptions (1) and
(2) are equivalent w.r.t. these definitions.

Of course, this example was constructed such that a unifier providing sensible
definitions for the concept names used as variables actually exists. It is based
on the assumption that both knowledge engineers had the same definition of the
concept patient with severe head injury in mind, but have modeled certain sub-
concepts on different levels of granularity. Whereas the first knowledge engineer
used Head injury as a primitive (i.e., not further defined) concept, the other one
provided a more detailed definition for head injury ; and the other way round for
severe finding. But what if there are more differences between the two concepts,
maybe due to small modeling errors? For example, assume that a third knowl-
edge engineer has left out the concept name Severe finding from (2), based on
the assumption that all injuries with finding site head are severe:

Patient � ∀finding.(Injury � ∀finding site.Head). (3)

The concept descriptions (1) and (3) cannot be unified if only Head injury is
used as a variable. Nevertheless, the substitution that replaces Head injury by
Injury�∀finding site.Head makes these two descriptions quite similar, though not
equivalent. We call such a substitution an approximate unifier.

The purpose of this paper is to introduce and investigate the notion of approx-
imate unification for the DL FL0. Basically, to formalize approximate unifica-
tion, we first need to fix the notion of a distance between FL0 concept descrip-
tions. An approximate unifier is then supposed to make this distance as small
as possible. Of course, there are different ways of defining the distance between
concept descriptions, which then also lead to different instances of approximate
unification. In this paper, we consider two such distance functions, which are
based on the idea that differences at larger role depth (i.e., further down in the
nesting of value restrictions) are less important than ones at smaller role depth.
The first distance considers only the smallest role depth � where the difference
occurs (and then uses 2−� as distance), whereas the second one “counts” all
differences, but the ones at larger role depth with a smaller weight. This idea
is in line with work on nonstandard inferences in DLs that approximate least
common subsumers and most specific concepts by fixing a bound on the role
depth [9].

Exact unification in FL0 was reduced in [5] to solving certain language equa-
tions, which in turn was reduced to testing certain tree automata for emptiness.
We show that this approach can be extended to approximate unification. In fact,

Approximate Unification in the Description Logic FL0 51

by linking distance functions on concept descriptions with distance functions on
languages, we can reduce approximate unification in FL0 to approximately solv-
ing language equations. In order to reduce this problem to a problem for tree
automata, we do not employ the original construction of [5], but the more sophis-
ticated one of [6]. Using this approach, both the decision variant (is there a sub-
stitution that makes the distance smaller than a threshold) and the computation
variant (compute the infimum of the achievable distances) of approximate uni-
fication can be solved in exponential time, and are thus of the same complexity
as exact unification in FL0.

Due to space constraints, we cannot give detailed proofs of all our results.
They can be found in the accompanying technical report [2].

2 Unification in FL0

We will first recall syntax and semantics of FL0 and describe the normal form
of FL0 concept descriptions that is based on representing value restrictions as
finite languages over the alphabet of role names. Then, we introduce unification
in FL0 and recall how it can be reduced to solving language equations.

Syntax and Semantics. The concept descriptions C of the DL FL0 are built
recursively over a finite set of concept names Nc and a finite set of role names
Nr using the following syntax rules:

C ::= � | A | C � C | ∀r.C, (4)

where A ∈ Nc and r ∈ Nr. In the following, we assume that Nc = {A1, . . . , Ak}
and Nr = {r1, . . . , rn}.

The semantics of FL0 is defined in the usual way, using the notion of an
interpretation I = (ΔI , ·I), which consists of a nonempty domain ΔI and an
interpretation function ·I that assigns binary relations on ΔI to role names and
subsets of ΔI to concept names. The interpretation function ·I is extended to
FL0 concept descriptions as follows: �I := ΔI , (C � D)I := CI ∩ DI , and
(∀r.C)I := {d ∈ ΔI | for all e ∈ ΔI : if (d, e) ∈ rI , then e ∈ CI}.

Equivalence and Normal Form. Two FL0 concept descriptions C,D are equiv-
alent (written C ≡ D) if CI = DI holds for all interpretations I.

As an easy consequence of the semantics of FL0, we obtain that value restric-
tions (∀s.·) distribute over conjunction (�), i.e., ∀s.(C � D) ≡ ∀s.C � ∀s.D
holds for all FL0 concept descriptions C,D. Using this equivalence from left to
right, we can rewrite every FL0 concept description into a finite conjunction of
descriptions ∀s1. · · · ∀sm.A, where m ≥ 0, s1, . . . , sm ∈ Nr, and A ∈ Nc. We fur-
ther abbreviate ∀s1. · · · ∀sm.A as ∀(s1 . . . sm).A, where s1 . . . sm is viewed to be
a word over the alphabet of all role names Nr, i.e., an element of N∗

r . For m = 0,
this is the empty word ε. Finally, grouping together value restrictions that end
with the same concept name, we abbreviate conjunctions ∀w1.A � . . . � ∀w�.A

52 F. Baader et al.

as ∀{w1, . . . , w�}.A, where {w1, . . . , w�} ⊆ N∗
r is viewed to be a (finite) lan-

guage over Nr. Additionally we use the convention that ∀∅.A is equivalent
to �. Then, any FL0 concept description C (over Nc = {A1, . . . , Ak} and
Nr = {r1, . . . , rn}) can be rewritten into the normal form ∀L1.A1� . . .�∀Lk.Ak,
where L1, . . . Lk are finite languages over the alphabet Nr. For example, if k = 3,
then the concept description A1�∀r1.(A1�∀r1.A2�∀r2.A1) has the normal form
∀{ε, r1, r1r2}.A1 � ∀{r1r1}.A2 � ∀∅.A3. Using this normal form, equivalence of
FL0 concept descriptions can be characterized as follows (see [5] for a proof).

Lemma 1. Let C = ∀L1.A1 � . . . � ∀Lk.Ak and D = ∀M1.A1 � . . . � ∀Mk.Ak be
FL0 concept descriptions in normal form. Then

C ≡ D iff L1 = M1, . . . , Lk = Mk.

Consider the head injury example from the introduction, where for brevity we
replace the concept and role names by single letters: (1) thus becomes A�∀r.(X�
∀s.B) and (2) becomes A � ∀r.(Y � D � ∀t.E). The normal forms of these two
concept descriptions are

∀{ε}.A � ∀{rs}.B � ∀∅.D � ∀∅.E � ∀{r}.X � ∀∅.Y,
∀{ε}.A � ∀∅.B � ∀{r}.D � ∀{rt}.E � ∀∅.X � ∀{r}.Y.

(5)

Unification. In order to define unification in FL0, we need to introduce an
additional set of concept names Nv, whose elements we call concept variables.
Intuitively, Nv contains the concept names that have possibly been given another
name or been specified in more detail in another concept description describing
the same notion. From a syntactic point of view, concept variables are treated
like concept names when building concepts. We call expressions built using the
syntax rules (4), but with A ∈ Nc ∪ Nv, concept patterns, to distinguish them
from concept descriptions, where only A ∈ Nc is allowed. The difference between
elements of Nc and Nv is that concept variables can be replaced by substitutions.

A substitution σ is a function that maps every variable X ∈ Nv to a concept
description σ(X). This function can be extended to concept patterns, by setting
σ(A) := A for A ∈ Nc ∪{�}, σ(C �D) := σ(C)�σ(D), and σ(∀r.C) := ∀r.σ(C).
We denote the set of all substitutions as Sub.

Definition 1 (Unification). The substitution σ is a unifier of the two FL0

concept patterns C,D if σ(C) ≡ σ(D). If C,D have a unifier, then we call them
unifiable. The FL0 unification problem asks whether two given FL0 concept
patterns are unifiable or not.

In [5] it is shown that the FL0 unification problem is ExpTime-complete. The
ExpTime upper bound is proved by a reduction to language equations, which in
turn are solved using tree automata. Here we sketch the reduction to language
equations. The reduction to tree automata will be explained in Sect. 4. Without
loss of generality, we can assume that the input patterns are in normal form
(where variables are treated like concept names), i.e.,

C = ∀S0,1.A1 � . . . � ∀S0,k.Ak � ∀S1.X1 � . . . � ∀Sm.Xm,

D = ∀T0,1.A1 � . . . � ∀T0,k.Ak � ∀T1.X1 � . . . � ∀Tm.Xm,
(6)

Approximate Unification in the Description Logic FL0 53

where S0,i, T0,i, Sj , Tj are finite languages over Nr. The unification problem for
C,D can be reduced to (independently) solving the language equations

S0,i ∪ S1 · X1,i ∪ . . . ∪ Sm · Xm,i = T0,i ∪ T1 · X1,i ∪ . . . ∪ Tm · Xm,i (7)

for i = 1, . . . , k, where “·” stands for concatenation of languages. A solution σi

of such an equation is an assignment of languages (over Nr) to the variables Xj,i

such that S0,i ∪S1 ·σi(X1,i)∪ . . .∪Sm ·σi(Xm,i) = T0,i ∪T1 ·σi(X1,i)∪ . . .∪Tm ·
σi(Xm,i). This assignment is called finite if all the languages σi(Xj,i) are finite.
We denote the set of all assignments as Ass and the set of all finite assignments
as finAss.

As shown in [5], C,D are unifiable iff the language equations of the form (7)
have finite solutions for all i = 1, . . . , k. In fact, given finite solutions σ1, . . . , σk

of these equations, a unifier of C,D can be obtained by setting

σ(Xi) := ∀σi(Xi,1).A1 � . . . � ∀σi(Xi,k).Ak, (8)

and every unifier of C,D can be obtained in this way. Of course, this construction
of a substitution from a k-tuple of finite assignments can be applied to arbitrary
finite assignments (and not just to finite solutions of the Eq. (7)), and it yields
a bijection ρ between k-tuples of finite assignments and substitutions.

Coming back to our example (5), where we now view X,Y as variables, the
language equations for the concept names A and B are

{ε} ∪ {r} · XA ∪ ∅ · YA = {ε} ∪ ∅ · XA ∪ {r} · YA,
{rs} ∪ {r} · XB ∪ ∅ · YB = ∅ ∪ ∅ · XB ∪ {r} · YB .

Among others, the first equation has XA = YA = ∅ as a solution, and the second
XB = ∅ and YB = {s}. The equations for D,E are built in a similar way, and
XD = {ε}, YD = ∅ and XE = {t}, YE = ∅ are solutions of these equations. Using
(8), but leaving out the value restrictions for ∅, these solutions yield the unifier
σ with σ(X) = ∀{ε}.D � ∀{t}.E ≡ D � ∀t.E and σ(Y) = ∀{s}.B ≡ ∀s.B.

3 Approximate Unifiers and Solutions

As motivated in the introduction, it makes sense to look for substitutions σ that
are actually not unifiers, but come close to being unifiers, in the sense that the
distance between σ(C) and σ(D) is small. We call such substitutions approximate
unifiers. In the following, we will first recall some definitions regarding distances
from metric topology [15]. Subsequently, we will first introduce approximate
unification based on distances between concept descriptions, and then approxi-
mately solving language equations based on distances between languages. Next,
we will show how distances between languages can be used to define distances
between concept descriptions, and that approximate unification for distances
obtained this way can be reduced to approximately solving language equations.

54 F. Baader et al.

Metric Topology. Given a set X, a metric (or distance) on X is a mapping
d : X × X → [0,∞) that satisfies the properties:

(M1) d(a, b) = 0 ⇐⇒ a = b
(M2) d(a, b) = d(b, a)
(M3) d(a, c) � d(a, b) + d(b, c)

In this case, (X, d) is called a metric space. Given a metric space (X, d), a
sequence (an) of elements of X is said to converge to a ∈ X (written an

d−→ a)
if for every ε > 0 there is an n0 ∈ N s.t. d(an, a) < ε for every n � n0.

Approximate Unification. In order to define how close σ(C) and σ(D) are, we
need to use a function that measures the distance between these two concept
descriptions. We say that a function that takes as input a pair of FL0 concept
descriptions and yields as output an element of [0,∞) is a concept distance for
FL0 if it satisfies the following three properties:

– equivalence closedness: m(C,D) = 0 ⇐⇒ C ≡ D,
– symmetry: m(C,D) = m(D,C),
– equivalence invariance: C ≡ D =⇒ m(C,E) = m(D,E).

Note that equivalence closedness corresponds to (M1) and symmetry to (M2) in
the definition of a metric. Equivalence invariance ensures that m can be viewed
as operating on equivalence classes of concept descriptions.

Definition 2 (Approximate Unification). Given a concept distance m, FL0

concept patterns C,D, and a substitution σ, the degree of violation of σ is defined
as vm(σ,C,D) := m(σ(C), σ(D)). For p ∈ Q, we say that σ is a p-approximate
unifier of C,D if 2−p > vm(σ,C,D).

Equivalence closedness of m yields that vm(σ,C,D) = 0 iff σ is a unifier of C,D.
The decision problem for approximate unification asks, for a given threshold

p ∈ Q, whether C,D have a p-approximate unifier or not. In addition, we consider
the following computation problem: compute infσ∈Sub vm(σ,C,D).

The following lemma, which is immediate from the definitions, shows that
a solution of the computation problem also yields a solution of the decision
problem.

Lemma 2. Let m be a concept distance and C,D FL0 concept patterns. Then
C,D have a p-approximate unifier iff 2−p > infσ∈Sub vm(σ,C,D).

The reduction of the decision problem to the computation problem obtained
from this lemma is actually polynomial. In fact, though the size of a represen-
tation of the number 2−p may be exponential in the size of a representation
of p, the number 2−p need not be computed. Instead, we can compare p with
log2 infσ∈Sub vm(σ,C,D), where for the comparison we only need to compute as
many digits of the logarithm as p has.

Approximate Unification in the Description Logic FL0 55

Approximately Solving Language Equations. Following [6], we consider a more
general form of language equations than the one given in (7). Here, all Boolean
operators (and not just union) are available. Language expressions are built
recursively over a finite alphabet Σ using union, intersection, complement, and
concatenation of regular languages from the left, as formalized by the following
syntax rules:

φ ::= L | X | φ ∪ φ | φ ∩ φ | ∼φ | L · φ, (9)

where L can be instantiated with any regular language over Σ and X with any
variable. We assume that all the regular languages occurring in an expression are
given by finite automata. Obviously, the left- and the right-hand sides of (7) are
such language expressions. As before, an assignment σ ∈ Ass maps variables to
languages over Σ. It is extended to expressions in the obvious way (where ∼ is
interpreted as set complement). The assignment σ solves the language equation
φ = ψ if σ(φ) = σ(ψ). For finite solvability we require the languages σ(X) to be
finite, i.e., σ should be an element of finAss.

In order to define approximate solutions, we need the notion of distances
between languages. A function d : 2Σ∗ × 2Σ∗ → [0,∞) satisfying (M1), (M2),
and (M3) is called a language distance.

Definition 3 (Approximate Solutions). Given a language distance d, lan-
guage expressions φ, ψ, and an assignment σ, the degree of violation of σ is defined
as vd(σ, φ, ψ) := d(σ(φ), σ(ψ)). For p ∈ Q, we say that σ is a p-approximate solu-
tion of φ ≈ ψ if 2−p > vd(σ, φ, ψ).

The decision and the computation problem for approximately solving language
equations are defined analogously to the case of unification. In addition, the
analog of Lemma 2 also holds in this case, and thus the decision problem can be
reduced to the computation problem.

Recall that unification in FL0 is reduced to finite solvability of language
equations. The above definition of approximate solutions and of the decision and
the computation problem can also be restricted to finite assignments, in which
case we talk about finite approximate solvability. However, we will show that
finite approximate solvability can actually be reduced to approximate solvability.
For this to be the case, we need the language distance to satisfy an additional
property (M4). Given a natural number �, we call two languages K,L ⊆ Σ∗

equal up to length � (and write K ≡� L) if K and L coincide on all words of
length at most �.

(M4) Let L be a language and (Ln) a sequence of languages over Σ.
Then, Ln ≡n L for all n ≥ 0 implies Ln

d−→ L.

If (M4) is satisfied for d, then the computation problem for finite assignments
has the same solution as for arbitrary assignments.

Lemma 3. Let d be a language distance satisfying (M4) and φ, ψ language
expressions. Then,

inf
σ∈finAss

vd(σ, φ, ψ) = inf
σ∈Ass

vd(σ, φ, ψ).

56 F. Baader et al.

Before showing that language distances can be used to construct concept
distances, we give two concrete examples of language distances satisfying (M4).

Two Language Distances Satisfying (M4). The following two mappings from
2Σ∗ × 2Σ∗

to [0,∞) are defined by looking at the words in the symmetric differ-
ence K�L := (K\L) ∪ (L\K) of the languages K and L1:

d1(K,L) := 2−� where � = min {|w| | w ∈ K�L},
d2(K,L) := μ(K�L) where μ(M) = 1

2

∑

w∈M (2|Σ|)−|w|.

The intuition underlying both functions is that differences between the two lan-
guages are less important if they occur for longer words. The first function
considers only the length � of the shortest word for which such a difference
occurs and yields 2−� as distance, which becomes smaller if � gets larger. The
second function also takes into account how many such differences there are, but
differences for longer words count less than differences for shorter ones. More
precisely, a difference for the word u counts as much as the sum of all differences
for words uv properly extending u. The following lemma is easy to show (see [2]
for details).

Lemma 4. The functions d1, d2 are language distances satisfying (M4).

From Language Distances to Concept Distances. Based on the normal form of
FL0 concept descriptions introduced in Sect. 3, we can use a language distance
d to define a concept distance. Basically, given FL0 concept descriptions C =
∀L1.A1 � . . . � ∀Lk.Ak and D = ∀M1.A1 � . . . � ∀Mk.Ak in normal form, we
can use the distances ei = d(Li,Mi) to define a distance between C and D. For
this, we need an appropriate function that combines the k values e1, . . . , ek into
a single value. We say that the function f : [0,∞)k → [0,∞) is a combining
function if it is

– commutative: f(a1, . . . , ak) = f(aπ(1), . . . , aπ(k)) for all permutations π of the
indices 1, . . . , k,

– monotone: a1 � b1, . . . , ak � bk =⇒ f(a1, . . . , ak) � f(b1, . . . , bk),
– zero closed: f(a1, . . . , ak) = 0 ⇐⇒ a1 = · · · = ak = 0,
– and continuous.

The following are simple examples of combining functions:

– max(a1, . . . , ak),
– sum(a1, . . . , ak) = a1 + · · · + ak,
– avg(a1, . . . , ak) =

∑k
i=1 ai/k.

Given a language distance d and a combining function f , the concept distance
md,f induced by d, f is defined as follows. If C,D are FL0 concept descriptions
with normal forms C ≡ ∀L1.A1 � . . .�∀Lk.Ak and D ≡ ∀M1.A1 � . . .�∀Mk.Ak,
then we set

md,f (C,D) := f
(

d(L1,M1), . . . , d(Lk,Mk)
)

.

1 In the first line below we assume, as usual, that min ∅ = ∞ and 2−∞ = 0.

Approximate Unification in the Description Logic FL0 57

Using one of the language distances d1, d2 introduced above in this setting means
that differences between the concepts C,D at larger role depth count less than
differences at smaller role depth.

Lemma 5. Let d be a language distance and f be a combining function. Then
the concept distance induced by f, d is indeed a concept distance, i.e., it is equiv-
alence closed, symmetric, and equivalence invariant.

Reducing Approximate Unification to Approximately Solving Language Equa-
tions. In the following, we assume that d is a language distance, f a combin-
ing function, and md,f the concept distance induced by f, d. Let C,D be FL0

concept patterns in normal form, as shown in (6), and (7) the corresponding
language equations, for i = 1, . . . , k. We denote the left- and right-hand sides
of the equations (7) with φi and ψi, respectively. The following lemma shows
that the degree of violation transfers from finite assignments σ1, . . . , σk to the
induced substitution ρ(σ1, . . . , σk) as defined in (8).

Lemma 6. Let σ1, . . . , σk ∈ finAss. Then f(vd(σ1, φ1, ψ1), . . . , vd(σk, φk, ψk)) =
vmd,f

(ρ(σ1, . . . , σk), C,D).

Since the combining function is continuous, the equality stated in this lemma
is preserved under building the infimum. In addition, Lemma3 shows that the
restriction to finite assignments can be dispensed with if d satisfies (M4).

Lemma 7. Assume that d satisfies (M4). Then,

inf
σ∈Sub

vmd,f
(σ,C,D) =

= f(inf
σ1∈finAss

vd(σ1, φ1, ψ1), . . . , inf
σk∈finAss

vd(σk, φk, ψk))

= f(inf
σ1∈Ass

vd(σ1, φ1, ψ1), . . . , inf
σk∈Ass

vd(σk, φk, ψk)).

In case f is computable (in polynomial time), this lemma yields a (polynomial
time) reduction of the computation problem for approximate FL0 unification
to the computation problem for approximately solving language equations. In
addition, we know that the decision problem can be reduced to the computation
problem. Thus, it is sufficient to devise a procedure for the computation problem
for approximately solving language equations.

In our example, the normal forms of the abbreviated concept descriptions (1)
and (3) are

∀{ε}.A � ∀{rs}.B � ∀∅.D � ∀∅.E � ∀{r}.X,
∀{ε}.A � ∀∅.B � ∀{r}.D � ∀{rt}.E � ∀∅.X.

It is easy to see that the language equations for the concept names A,D,E are
solvable, and thus these solutions contribute distance 0 to the overall concept
distance. The language equation for the concept name B is {rs} ∪ {r} · XB =
∅ ∪ ∅ · XB , and the assignment XB = ∅ leads to the smallest possible symmetric
difference {rs}, which w.r.t. d1 yields the value 2−2 = 1/4. It is easy to see that
this is actually the infimum for this equation. If we use the combining function
avg, then this gives us the infimum 1/16 for our approximate unification problem.

58 F. Baader et al.

4 Approximately Solving Language Equations

In the following, we show how to solve the computation problem for the language
distances d1 and d2 introduced above. Our solution uses the automata-based
approach for solving language equations introduced in [6].

The first step in this approach is to transform the given system of language
equations into a single equation of the form φ = ∅ such that the language
expression φ is normalized in the sense that all constant languages L occurring
in φ are singleton languages {a} for a ∈ Σ ∪ {ε}. This normalization step can
easily be adapted to approximate equations, but in addition to a normalized
approximate equation φa ≈ ∅ it also generates a normalized strict equation
φs = ∅.

Lemma 8. Let φ, ψ be language expressions. Then we can compute in polyno-
mial time normalized language expressions φa and φs such that the following
holds for d ∈ {d1, d2}:

{vd(σ, φ, ψ) | σ ∈ Ass} = {vd(σ, φa, ∅) | σ ∈ Ass ∧ σ(φs) = ∅}.
This lemma shows that, to solve the computation problem for φ ≈ ψ, we must
solve the computation problem for φa ≈ ∅, but restrict the infimum to assign-
ments that solve the strict equation φs = ∅.

In a second step, [6] shows how a normalized language equation can be trans-
lated into a tree automaton working on the infinite, unlabeled n-ary tree (where
n = |Σ|). The nodes of this tree can obviously be identified with Σ∗. The
automata considered in [6] are such that the state in each successor of a node
is determined independently of the choice of the states in its siblings. These
automata are called looping tree automata with independent transitions (ILTA).

Definition 4. An ILTA is of the form A = (Σ,Q,Q0, δ), where Σ is a finite
alphabet, Q is a finite set of states, with initial states Q0 ⊆ Q, and δ : Q × Σ →
2Q is a transition function that defines possible successors of a state for each
a ∈ Σ. A run of this ILTA is any function r : Σ∗ → Q with r(ε) ∈ Q0 and
r(wa) ∈ δ(r(w), a) for all w ∈ Σ∗ and a ∈ Σ.

According to this definition, ILTAs do not have a fixed set of final states. How-
ever, by choosing any set of states F ⊆ Q, we can use runs r of A to define
languages over Σ as follows: Lr(A,F) := {w ∈ Σ∗ | r(w) ∈ F}.

Given a normalized language equation φ = ∅ with variables {X1, . . . , Xm},
it is shown in [6] how to construct an ILTA Aφ = (Σ,Qφ, Qφ

0 , δφ) and subsets
F, F1, . . . , Fm ⊆ Qφ such that the following holds:

Proposition 1. If r is a run of Aφ, then the induced assignment σr with
σr(Xi) := Lr(Aφ, Fi), for i = 1, . . . ,m, satisfies σr(φ) = Lr(Aφ, F). In addi-
tion, every assignment is induced by some run of Aφ.

The size of this ILTA is exponential in the size of φ. In order to decide whether
the language equation φ = ∅ has a solution, one thus needs to decide whether

Approximate Unification in the Description Logic FL0 59

Aφ has a run in which no state of F occurs. This can easily be done by removing
all states of F from Aφ, and then checking the resulting automaton Aφ

−F for
emptiness. In fact, as an easy consequence of the above proposition we obtain
that there is a 1–1-correspondence between the runs of Aφ

−F and the solutions
of φ = ∅ (Proposition 2 in [6]).

This approach can easily be adapted to the situation where we have an
approximate equation φa ≈ ∅ and a strict equation φs = ∅. Basically, we
apply the construction of [6] to φa ∪ φs, but instead of one set of states F
we construct two sets Fa and Fs such that σr(φa) = Lr(Aφa∪φs , Fa) and
σr(φs) = Lr(Aφa∪φs , Fs) holds for all runs r of Aφa∪φs . By removing all states of
Fs from Aφa∪φs , we obtain an automaton whose runs are in 1–1-correspondence
with the assignments that solve φs = ∅. In addition, we can make this automaton
trim2 using the polytime construction in the proof of Lemma 2 in [6].

Theorem 1. Given an approximate equation φa ≈ ∅ and a strict equation φs =
∅, we can construct in exponential time a trim ILTA A = (Σ,Q,Q0, δ) and sets of
states Fa, F1, . . . , Fm ⊆ Q such that every run r of A satisfies σr(φa) = Lr(A,Fa)
and σr(φs) = ∅. In addition, every assignment σ with σ(φs) = ∅ is induced by
some run of A.

The Measure d1

Using Lemma 8, Theorem 1, and the definition of d1, it is easy to see that the com-
putation problem for an approximate language equation φ ≈ ψ can be reduced to
solving the following problem for the trim ILTA A = (Σ,Q,Q0, δ) of Theorem 1:
compute supr run of A min{|w| | r(w) ∈ Fa}.

In order to compute this supremum, it is sufficient to compute, for every
state q ∈ Q, the length lpr(q) of the longest partial run of A starting with q that
does not have states of Fa at non-leaf nodes. More formally, we define:

Definition 5. Let Σ�� denote the set of all words over Σ of length at most �.
Given a trim ILTA A = (Σ,Q,Q0, δ), a partial run of A of length � from a state
q ∈ Q is a mapping p : Σ�� → Q such that p(ε) = q and p(wa) ∈ δ(p(w), a) for
all w ∈ Σ��−1 and a ∈ Σ. The leaves of p are the words of length �.

Lemma 9. The function lpr : Q → N∪{∞} can be computed in time polynomial
in the size of A.

Proof. In order to compute lpr , we use an iteration similar to the emptiness test
for looping tree automata [7].

If q ∈ Fa, then clearly lpr(q) = 0 and otherwise q has an appropriate partial
run of length > 0 (recall that A is trim). For this reason, we start the iteration
with

Q(0) := Fa.

2 An ILTA (Σ, Q, Q0, δ) is trim if every state is reachable from an initial state and
δ(q, a) �= ∅ for all q ∈ Q, a ∈ Σ.

60 F. Baader et al.

Next, for i ≥ 0, we define

Q(i+1) := Q(i) ∪ {q ∈ Q | ∃a ∈ Σ : δ(q, a) ⊆ Q(i)}.

We have Q(0) ⊆ Q(1) ⊆ Q(2) ⊆ . . . ⊆ Q. Since Q is finite, there is an index
j ≤ |Q| such that Q(j) = Q(j+1), and thus the iteration becomes stable.

It is easy to show that

lpr(q) =
{

min{i | q ∈ Q(i)} if q ∈ Q(j)

∞ if q �∈ Q(j)

Since the number of iterations is linear in |Q| and every iteration step can obvi-
ously be performed in polynomial time, this completes the proof. ��

The function lpr can now be used to solve the computation problem as
follows:

sup
r run of A

min{|w| | r(w) ∈ Fa} = max{lpr(q) | q ∈ Q0}.

If this maximum is ∞, then the measure d1 yields value 0 and the approximate
equation was actually solvable as a strict one.

Theorem 2. For the distance d1 and a polytime computable combining func-
tion, the computation problem (for approximate FL0 unification and for approx-
imately solving language equations) can be solved in exponential time, and the
decision problem is ExpTime-complete.

Proof. The ExpTime-upper bounds follow from our reductions and the fact that
the automaton A can be computed in exponential time and is thus of at most
exponential size. Hardness can be shown by a reduction of the strict problems,
which are known to be ExpTime-complete [5,6]. In fact, the proof of Lemma9
shows that d1 either yields the value 0 = 2−∞ (in which case the strict equation
is solvable) or a value larger than 2−(|Q|+1) (in which case the strict equation is
not solvable). ��

The Measure d2

Recall that the value of d2 is obtained by applying the function μ to the symmet-
ric difference of the input languages. In case one of the two languages is empty,
its value is thus obtained by applying μ to the other language. It is easy to show
that μ(L) for L ⊆ Σ∗ satisfies the following recursive equation:

μ(L) =
1
2
χL(ε) +

1
2|Σ|

∑

a∈Σ

μ(a−1L), (10)

where a−1L := {w ∈ Σ∗ | aw ∈ L} and χL is the characteristic function of the
language L.

Using Lemma 8, Theorem 1, and the definition of d2, it is easy to see that the
computation problem for an approximate language equation φ ≈ ψ w.r.t. d2 can

Approximate Unification in the Description Logic FL0 61

be reduced to solving the following problem for the trim ILTA A = (Σ,Q,Q0, δ)
of Theorem 1: compute infr run of A μ(Lr(A,Fa)).

Using (10), we now show that this infimum can be computed by solving a
system of recursive equations that is induced by the transitions of A. Given an
arbitrary (not necessarily initial) state q ∈ Q, we say that r : Σ∗ → Q is a q-run
of A if r(ε) = q and r(wa) ∈ δ(r(w), a) for all w ∈ Σ∗ and a ∈ Σ. We denote
the set of all q-runs of A with RA(q). Since each run of A is a q0-run for some
q0 ∈ Q0, we have

inf
r run of A

μ(Lr(A,Fa)) = min
q0∈Q0

inf
r∈RA(q0)

μ(Lr(A,Fa)).

For all q ∈ Q, we define μ(q) := infr∈RA(q) μ(Lr(A,Fa)). The identity above
shows that we can solve the computation problem for approximate language
equations w.r.t. d2 if we can devise a procedure for computing the values μ(q) ∈ R

for all q ∈ Q. The identity (10) can now be used to show the following lemma.

Lemma 10. For all states q ∈ Q we have

μ(q) =
1
2
χFa

(q) +
1

2|Σ|
∑

a∈Σ

min
p∈δ(q,a)

μ(p),

where χFa
denotes the characteristic function of the set Fa.

By introducing variables xq (for q ∈ Q) that range over R, we can rephrase
this lemma by saying that the values μ(q) yield a solution to the system of
equations

xq =
1
2
χFa

(q) +
1

2|Σ|
∑

a∈Σ

min
p∈δ(q,a)

xp (q ∈ Q). (11)

Using Banach’s fixed point theorem [8,12], one can show that the system (11) has
a unique solution in R. Thus, to compute the values μ(q) for q ∈ Q it is sufficient
to compute a solution of (11). This can be realized using Linear Programming
[16]. The only non-trivial step in the translation of (11) into an LP problem is to
express the minimum operator. For this, we introduce additional variables yq,a,
which intuitively stand for minp∈δ(q,a) xp. Then (11) is transformed into

xq =
1
2
χFa

(q) +
1

2|Σ|
∑

a∈Σ

yq,a (q ∈ Q). (12)

To express the intuitive meaning of the variables yq,a, we add the inequalities

yq,a ≤ xp for all q ∈ Q and p ∈ δ(q, a) (13)

as well as the objective to maximize the values of these variables:

z = max
∑

q∈Q

∑

a∈Σ

yq,a. (14)

62 F. Baader et al.

Lemma 11. The LP problem consisting of the Eq. (12), the inequations (13),
and the objective (14) has the unique solution

{xq �→ μ(q) | q ∈ Q} ∪ {yq,a �→ min
p∈δ(q,a)

μ(p) | p ∈ Q, a ∈ Σ}.

Since LP problems can be solved in polynomial time and the size of the LP prob-
lem in the above lemma is polynomial in the size of A, we obtain an ExpTime-
upper bound for the computation problem and the decision problem. ExpTime-
hardness can again be shown by a reduction of the strict problem (see [2]).

Theorem 3. For the distance d2 and a polytime computable combining func-
tion, the computation problem (for approximate FL0 unification and for approx-
imately solving language equations) can be solved in exponential time, and the
decision problem is ExpTime-complete.

For this theorem to hold, the exact definition of the distance d2 is actually not
important. Our approach works as long as the distance induces a system of
equations similar to (11) such that Banach’s fixed point theorem ensures the
existence of a unique solution, which can be found using linear programming
(see [2] for an example).

5 Conclusion

We have extended unification in DLs to approximate unification in order to
enhance the recall of this method of finding redundancies in DL-based ontolo-
gies. For the DL FL0, unification can be reduced to solving certain language
equations [5]. We have shown that, w.r.t. two particular distance measures, this
reduction can be extended to the approximate case. Interesting topics for future
research are considering approximate unification for other DLs such as EL [4];
different distance measures for FL0 and other DLs, possibly based on similar-
ity measures between concepts [14,17]; and approximately solving other kinds
of language equations [13]. Approximate unification has been considered in the
context of similarity-based Logic Programming [10], based on a formal defin-
ition of proximity between terms. The definition of proximity used in [10] is
quite different from our distances, but the major difference to our work is that
[10] extends syntactic unification to the approximate case, whereas unification
in FL0 corresponds to unification w.r.t. the equational theory ACUIh (see [5]).
Another topic for future research is to consider unification w.r.t. other equa-
tional theories. First, rather simple, results for the theory ACUI , which extend
the results for strict ACUI -unification [11], can be found in [3].

Approximate Unification in the Description Logic FL0 63

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press (2003)

2. Baader, F., Marantidis, P., Okhotin, A.: Approximate unification in the description
logic FL0. LTCS-Report 16–04, Chair for Automata Theory, Institute for Theoret-
ical Computer Science, Technische Universität Dresden, Dresden (2016). http://
lat.inf.tu-dresden.de/research/reports.html

3. Baader, F., Marantidis, P., Okhotin, A.: Approximately solving set equations.
In: Ghilardi, S., Schmidt-Schauß, M. (eds.) Proceedings of the 30th International
Workshop on Unification (UNIF 2016), Porto (2016)

4. Baader, F., Morawska, B.: Unification in the description logic EL. Log. Methods
Comput. Sci. 6(3), 350–364 (2010)

5. Baader, F., Narendran, P.: Unification of concept terms in description logics. J.
Symb. Comput. 31(3), 277–305 (2001)

6. Baader, F., Okhotin, A.: On language equations with one-sided concatenation.
Fundamenta Informaticae 126(1), 1–35 (2013)

7. Baader, F., Tobies, S.: The inverse method implements the automata approach
for modal satisfiability. In: Goré, R., Leitsch, A., Nipkow, T. (eds.) IJCAR
2001. LNCS, vol. 2083, pp. 92–106. Springer, Heidelberg (2001). doi:10.1007/
3-540-45744-5 8

8. Banach, S.: Sur les opérations dans les ensembles abstraits et leur application aux
équations intégrales. Fundamenta Mathematicae 3(1), 133–181 (1922)

9. Ecke, A., Peñaloza, R., Turhan, A.-Y.: Computing role-depth bounded generaliza-
tions in the description logic ELOR. In: Timm, I.J., Thimm, M. (eds.) KI 2013.
LNCS (LNAI), vol. 8077, pp. 49–60. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40942-4 5

10. Iranzo, P.J., Rubio-Manzano, C.: Proximity-based unification theory. Fuzzy Sets
Syst. 262, 21–43 (2015)

11. Kapur, D., Narendran, P.: Complexity of unification problems with associative-
commutative operators. J. Autom. Reason. 9, 261–288 (1992)

12. Kreyszig, E.: Introductory Functional Analysis With Applications. Wiley, New
York (1978). Wiley Classics Library

13. Kunc, M.: What do we know about language equations? In: Harju, T., Karhumäki,
J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 23–27. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-73208-2 3

14. Lehmann, K., Turhan, A.-Y.: A framework for semantic-based similarity mea-
sures for ELH-concepts. In: Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012.
LNCS (LNAI), vol. 7519, pp. 307–319. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-33353-8 24

15. Munkres, J.: Topology. Featured Titles for Topology Series. Prentice Hall, Upper
Saddle River (2000)

16. Schrijver, A.: Theory of Linear and Integer Programming. Wiley-Interscience Series
in Discrete Mathematics and Optimization. Wiley, New York (1999)

17. Tongphu, S., Suntisrivaraporn, B.: On desirable properties of the structural
subsumption-based similarity measure. In: Supnithi, T., Yamaguchi, T., Pan, J.Z.,
Wuwongse, V., Buranarach, M. (eds.) JIST 2014. LNCS, vol. 8943, pp. 19–32.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-15615-6 2

http://lat.inf.tu-dresden.de/research/reports.html
http://lat.inf.tu-dresden.de/research/reports.html
http://dx.doi.org/10.1007/3-540-45744-5_8
http://dx.doi.org/10.1007/3-540-45744-5_8
http://dx.doi.org/10.1007/978-3-642-40942-4_5
http://dx.doi.org/10.1007/978-3-642-40942-4_5
http://dx.doi.org/10.1007/978-3-540-73208-2_3
http://dx.doi.org/10.1007/978-3-642-33353-8_24
http://dx.doi.org/10.1007/978-3-642-33353-8_24
http://dx.doi.org/10.1007/978-3-319-15615-6_2

Inconsistency-Tolerant Query Answering:
Rationality Properties and Computational

Complexity Analysis

Jean François Baget1, Salem Benferhat2, Zied Bouraoui3(B),
Madalina Croitoru4, Marie-Laure Mugnier4, Odile Papini5, Swan Rocher4,

and Karim Tabia2

1 Inria, Paris, France
baget@lirmm.fr

2 Artois University, Arras, France
{benferhat,tabia}@cril.fr

3 Cardiff University, Cardiff, UK
BouraouiZ@cardiff.ac.uk

4 Montpellier University, Montpellier, France
{croitoru,mugnier,rocher}@lirmm.fr

5 Aix-Marseille University, Marseille, France
odile.papini@lsis.org

Abstract. Generalising the state of the art, an inconsistency-tolerant
semantics can be seen as a couple composed of a modifier operator and an
inference strategy. In this paper we deepen the analysis of such general
setting and focus on two aspects. First, we investigate the rationality
properties of such semantics for existential rule knowledge bases. Second,
we unfold the broad landscape of complexity results of inconsistency-
tolerant semantics under a specific (yet expressive) subclass of existential
rules.

1 Introduction

Within the Ontology-Based Data Access [17,18] setting, this paper addresses
the problem of query answering when the assertional base (which stores data)
is inconsistent with the ontology (which represents generic knowledge about
a domain). Recently, a general framework for inconsistency-tolerant semantics
was proposed in [2]. This framework considers two key notions: modifiers and
inference strategies. Inconsistency-tolerant query answering is seen as made out
of a modifier, which transforms the original ABox into a so-called MBox, which
is a set of consistent ABoxes (w.r.t. the TBox), and an inference strategy, which
evaluates queries against this MBox knowledge base. Interestingly enough, such
setting unifies main existing work and captures various semantics in the literature
(see e.g., [1,6,16]). The obtained semantics were compared with respect to the
productivity of their inference.

c© Springer International Publishing AG 2016
L. Michael and A. Kakas (Eds.): JELIA 2016, LNAI 10021, pp. 64–80, 2016.
DOI: 10.1007/978-3-319-48758-8 5

Inconsistency-Tolerant Query Answering 65

This paper goes one step further in the characterization of these
inconsistency-tolerant semantics by carrying out an analysis in terms of ratio-
nality properties and data complexity. The rationality properties are considered
for existential rule knowledge bases [3,9] (a prominent ontology language that
generalizes lightweight description logics). On the one hand we study basic prop-
erties of semantics such as their behaviour with respect to the conjunction and
consistency of inferred conclusions. On the other hand, starting from the obvious
observation that inconsistency-tolerant semantics are inherently nonmonotonic,
we investigate their behaviour with respect to properties introduced for non-
monotonic inference [14] that we rephrase in our framework. Entailment with
general existential rules being undecidable, complexity is studied for a specific
(yet expressive) subclass of existential rules known as Finite Unification Sets
(FUS) [3], which in particular generalizes the description logic DL-LiteR dedi-
cated to query answering [10] (see also the OWL2-QL profile).

Before presenting our contributions, we provide some preliminaries on the
logical setting and briefly recall the unified framework for inconsistency-tolerant
semantics.

2 Preliminaries

We consider first-order logical languages without function symbols, hence a term
is a variable or a constant. An atom is of the form p(t1, . . . , tk) where p is a
predicate name of arity k, and the ti are terms. A (factual) assertion is an atom
without variables (also named a ground atom). A Boolean conjunctive query1

(and simply query in the following) is an existentially closed conjunction of
atoms, that we will consider as a set of atoms, leaving quantifiers implicit. Given
a set of assertions A and a query q, the answer to q over A is yes iff A |= q,
where |= denotes the standard logical consequence. Given two sets of atoms S1

and S2 (with disjoint sets of variables), a homomorphism h from S1 to S2 is
a substitution of the variables in S1 by the terms in S2 such that h(S1) ⊆ S2

(where h(S1) is obtained from S1 by substituting each variable according to h).
It is well-known that, given two existentially closed conjunctions of atoms f1
and f2 (for instance queries and conjunctions of factual assertions), f1 |= f2 iff
there is a homomorphism from the set of atoms in f2 to the set of atoms in f1.

A knowledge base can be seen as a database enhanced with an ontological
component. Since inconsistency-tolerant query answering has been mostly stud-
ied in the context of description logics (DLs), and especially DL-Lite, we will
use some DL vocabulary, like ABox for the data and TBox for the ontology.
However, our framework is not restricted to DLs, hence we define TBoxes and
ABoxes in terms of first-order logic (and more precisely in the existential rule
framework). We assume the reader familiar with the basics of DLs and their
logical translation.
1 For readability, we restrict our focus to Boolean conjunctive queries, however the

framework and the obtained results can be directly extended to general conjunctive
queries.

66 J.F. Baget et al.

An ABox is a set of factual assertions. As a special case we have DL asser-
tions restricted to unary and binary predicates. A positive axiom is of the form
∀x∀y(B[x,y] → ∃z H[y, z]) where B and H are conjunctions of atoms; in other
words, it is a positive existential rule. As a special case, we have for instance con-
cept and role inclusions in DL-LiteR, which are respectively of the form B1 � B2

and S1 � S2, where Bi := A | ∃S and Si := P | P− (with A an atomic concept,
P an atomic role and P− the inverse of an atomic role). A negative axiom is
of the form ∀x(B[x] → ⊥) where B is a conjunction of atoms; in other words,
it is a negative constraint. As a special case, we have for instance disjointness
axioms in DL-LiteR, which are inclusions of the form B1 � ¬B2 and S1 � ¬S2,
or equivalently B1 � B2 � ⊥ and S1 � S2 � ⊥.

A TBox T = Tp ∪Tn is partitioned into a set Tp of positive axioms and a set
Tn of negative axioms. Finally, a knowledge base (KB) is of the form K=〈T ,A〉
where A is an ABox and T is a TBox. Such a KB is logically interpreted as
the conjunction of its elements. K is said to be consistent if T ∪ A is satisfiable,
otherwise it is said to be inconsistent. We also say that A is consistent (or
inconsistent) with T , which reflects the assumption that the TBox is reliable
while the ABox may not. The answer to a query q over a consistent KB K is yes
iff 〈T ,A〉 |= q. When K is inconsistent, standard consequence is not appropriate
since all queries would be positively answered.

The notion of a (virtual) repair is a key notion in inconsistency-tolerant
query answering. A repair is a subset of the ABox consistent with the TBox
and inclusion-maximal for this property: R ⊆ A is a repair of A w.r.t. T if (i)
〈T ,R〉 is consistent, and (ii) ∀R′ ⊆ A, if R � R′ (R is strictly included in R′)
then 〈T ,R′〉 is inconsistent. We denote by R(A) the set of A’s repairs (for easier
reading, we often leave T implicit in our notations). Note that R(A)={A} iff A is
consistent. The most commonly considered semantics for inconsistency-tolerant
query answering, inspired from previous works in databases, is the following:
q is said to be a consistent consequence of K if it is a standard consequence
of each repair of A [1]. Several variants of this semantics have been proposed,
which differ in their behaviour (cautiousness w.r.t. inconsistencies) and their
computational complexity, see in particular [1,6,16].

3 A Unified Framework for Inconsistency-Tolerant Query
Answering

In this section we recall the framework introduced in [2] for the study of
inconsistency-tolerant query answering semantics. In this framework, semantics
are defined by two components: a modifier and an inference strategy, applied on
MBox knowledge bases. An MBox KB is simply a KB with multiple ABoxes of
the form KM=〈T ,M〉 where T =Tp ∪ Tn is a TBox and M={A1, . . . ,Am} is a
set of ABoxes, called an MBox. A standard KB will be seen as an MBox with
m = 1. An MBox KB KM is said to be consistent, or M is said to be consis-
tent (with T), if each Ai in M is consistent (with T). A modifier transforms a
possibly inconsistent MBox KB into an MBox KB such that, when the latter is

Inconsistency-Tolerant Query Answering 67

consistent, it can be provided as input to the inference strategy that determines
if the query is entailed.

A (composite) modifier is a finite combination of elementary modifiers. In [2]
the three following kinds of elementary modifiers are introduced:

– Expansion modifiers, which expand an MBox by explicitly adding some
inferred assertions to its ABoxes. A natural expansion modifier is the ground
positive closure of an MBox, which computes the closure of each ABox with
respect to the positive axioms of the TBox, keeping only ground atoms:

◦cl(M) = {Cl(Ai)|Ai ∈ M}, where Cl(Ai) = {ground atom a |〈Tp,Ai〉 |= a}.

– Splitting modifiers, which replace each Ai of an MBox by one or several of its
maximally consistent subsets (hence, they always produce consistent MBoxes).
A natural splitting modifier splits each ABox into the set of its repairs:

◦rep(M) =
⋃

Ai∈M{R(Ai)}.

– Selection modifiers, which select some elements of an MBox. A natural selec-
tion modifier is the cardinality-based selection modifier, which selects the
largest ABoxes of an MBox:

◦card(M) = {Ai ∈ M|∀Aj ∈ M, |Aj | ≤ |Ai|}.

Note that the cardinality-based selection function fully makes sense when
inconsistency is due to the presence of multiple sources. Other selection func-
tions, such as the ones based on rational closure or System Z [11] may be used,
especially when inconsistency reflects the presence of exceptions in axioms of the
TBox.

Many composite modifiers can be potentially defined using the three above
“natural” modifiers, however this number is considerably reduced if we focus on
non-equivalent modifiers: indeed, any composite modifier that produces a con-
sistent MBox from a standard ABox, and obtained by combining the elementary
modifiers ◦rep, ◦card and ◦cl, is equivalent to one of the eight modifiers listed
in Table 1. To ease reading, these modifiers are also denoted by abbreviations
reflecting the order in which the elementary modifiers are applied, and using the
following letters: R for ◦rep, C for ◦cl and M for ◦card. Different kinds of inclusion
relations hold between modifiers (see [2] for details).

Example 1. Let KM = 〈T ,M〉 be an MBox KB where T ={A(x)∧B(x)→ ⊥,
A(x) ∧ C(x)→ ⊥, B(x)∧C(x)→ ⊥, A(x)→D(x), B(x)→D(x), C(x)→D(x),
B(x)→E(x), C(x)→E(x)} and M={{A(a), B(a), C(a), A(b)}}. With R, we get
◦1(M)={{A(a), A(b)},{B(a), A(b)},{C(a), A(b)}}. With CR: ◦5(M)={{A(a),
D(a), A(b),D(b)}, {B(a),D(a), E(a), A(b),D(b)}, {C(a),D(a), E(a), A(b),
D(b)}}. With MCR: ◦6(M) = {{B(a),D(a), E(a), A(b),D(b)}, {C(a),D(a),
E(a), A(b), D(b)}}.

An inference strategy takes as input a consistent MBox KB KM=〈T ,M〉 and
a query q and determines if q is entailed from KM. Four main inference strategies

68 J.F. Baget et al.

Table 1. The eight composite modifiers for an MBox KM=〈T , M = {A}〉

Modifier Combination MBox

R ◦1 = ◦rep(.) M1 = ◦1(M)

MR ◦2 = ◦card(◦rep(.)) M2 = ◦2(M)

CMR ◦3 = ◦cl(◦card(◦rep(.))) M3 = ◦3(M)

MCMR ◦4 = ◦card(◦cl(◦card(◦rep(.)))) M4 = ◦4(M)

CR ◦5 = ◦cl(◦rep(.)) M5 = ◦5(M)

MCR ◦6 = ◦card(◦cl(◦rep(.))) M6 = ◦6(M)

RC ◦7 = ◦rep(◦cl(.)) M7 = ◦7(M)

MRC ◦8 = ◦card(◦rep(◦cl(.))) M8 = ◦8(M)

are considered, namely universal (also known as skeptical), safe, majority-based
and existential (also called brave). They are formally defined as follows:

– universal consequence: KM |=∀ q if ∀Ai ∈ M,〈T ,Ai〉 |= q.
– safe consequence: KM |=∩ q if 〈T ,

⋂

Ai∈M Ai〉 |= q.
– majority-based consequence: KM |=maj q if |Ai:Ai∈M,〈T ,Ai〉|=q|

|M| > 1/2.
– existential consequence: KM |=∃ q if ∃Ai ∈ M, 〈T ,Ai〉 |= q.

Given two inference strategies si and sj , si is said to be more cautious than sj ,
denoted si ≤ sj , if for any consistent MBox KM and any query q, if KM |=si

q
then KM |=sj

q. The considered inference strategies are totally ordered by ≤ as
follows: ∩ ≤ ∀ ≤ maj ≤ ∃.

〈R,∩〉

〈MR,∩〉 〈CR,∩〉

〈CMR,∩〉

〈MCMR,∩〉

〈MCR,∩〉 〈RC,∩〉

〈MRC,∩〉

(a) Relationships between ∩-based semantics

〈R, ∀〉 ≡ 〈CR, ∀〉

〈MCR, ∀〉〈MR, ∀〉≡〈CMR, ∀〉

〈MCMR, ∀〉

〈RC, ∀〉

〈MRC, ∀〉

(b) Relationships between ∀-based semantics

〈R,maj〉 ≡ 〈CR,maj〉

〈MR,maj〉 ≡ 〈CMR,maj〉

〈MCMR,maj〉 〈MCR,maj〉 〈MRC,maj〉 〈RC,maj〉

(c) Relationships betweenmaj-based semantics

〈MCMR, ∃〉

〈MR, ∃〉 ≡ 〈CMR, ∃〉

〈R, ∃〉 ≡ 〈CR, ∃〉

〈MCR, ∃〉

〈RC, ∃〉

〈MRC, ∃〉

(d) Relationships between ∃-based semantics

Fig. 1. Productivity of inconsistency-tolerant semantics where X−→Y means that Y
is strictly more productive than X.

Inconsistency-Tolerant Query Answering 69

An inconsistency-tolerant query answering semantics is then defined by a
composite modifier and an inference strategy.

Definition 1. Let K=〈T ,A〉 be a standard KB, ◦i be a composite modifier and
sj be an inference strategy. A query q is said to be an 〈◦i, sj〉-consequence of K,
denoted by K |=〈◦i,sj〉 q, if it is entailed from the MBox KB 〈T , ◦i({A})〉 by the
strategy sj.

Note that the main semantics from the literature [1,6,16] are covered by this
definition: AR, IAR and ICR semantics respectively correspond to 〈R,∀〉, 〈R,∩〉,
and 〈CR,∩〉.2

Example 2. Consider the input KB KM=〈T ,M〉 from Example 1. ◦1(M) =
M1 = {{A(a), A(b)}, {B(a), A(b)},{C(a), A(b)}}. Since A(b) ∈ ⋂

Ai∈M1
and

A(x)→D(x), K |=〈◦1,∩〉 D(b) holds. Hence, we also have K |=〈◦1,∀〉 D(b). Fur-
thermore K |=〈◦1,∀〉 D(a). By 〈◦1,maj〉, E(a) is furthermore entailed. Indeed,
〈T , {B(a), A(b)}〉 |= E(a) and 〈T , {C(a), A(b)}〉 |= E(a) and |M1|=3. By 〈◦1,∃〉,
A(a) is also entailed. Let q = ∃xD(x)∧E(x). Then q is a consequence of 〈◦1,maj〉
and 〈◦1,∃〉.
The obtained semantics have been compared from a productivity point of view.
Formally, a semantics 〈◦i, sk〉 is less productive than a semantics 〈◦j , sl〉 if, for
any KB K=〈T ,A〉 and any query q, if K |=〈◦i,sk〉 q then K |=〈◦j ,sl〉 q. This
productivity relation is a preorder, which can be established by considering on
the one hand the inclusion relations between composite modifiers and on the
other hand the cautiousness total order on inference, as detailed below. Figure 1
depicts the results about semantics defined with the same inference strategy
(note that transitivity edges are not drawn and no other edges hold). Then
Theorem 1 extends these results to semantics possibly based on different infer-
ence strategies. In particular, if sk < sl then, for all modifiers ◦i and ◦j , 〈◦i, sk〉
is strictly less productive than 〈◦i, sl〉, and 〈◦j , sl〉 is at least as productive as
〈◦i, sk〉.
Theorem 1 (Productivity of semantics [2]). The inclusion relation � is
the smallest relation that contains the inclusions 〈◦i, sk〉 � 〈◦j , sk〉 defined by
the inclusions in Fig. 1a to d and satisfying the two following conditions: (1) for
all sj, sp and oi, if sj ≤ sp then 〈◦i, sj〉 � 〈◦i, sp〉; (2) it is transitive.

It follows from Theorem 1 that 26 different semantics are obtained (out of the
possible 32 inference relations used in Fig. 1). We point out that this result holds
even when KBs are restricted to DL-LiteR TBoxes. Finally, note that when the
initial KB is consistent, all semantics correspond to standard entailment, i.e.,
given a consistent standard KB K and a query q, K |=〈◦i,s〉 q iff K |= q, for all
1 ≤ i ≤ 8 and s ∈ {∩,∀,∃,maj}.

2 Note however that CAR and ICAR [16] are close to 〈RC, ∀〉 and 〈RC, ∩〉 resp., but
not equivalent. They could be covered by considering other elementary modifiers.

70 J.F. Baget et al.

4 Rationality Properties of Inconsistency-Tolerant
Semantics

This section is dedicated to the logical properties of inconsistency-tolerant
semantics. We first analyze the behaviour of these semantics w.r.t the conjunc-
tion (or set union) and the consistency of inferred conclusions for a fixed KB.
We then turn our attention to the fact that these semantics are inherently non-
monotonic. Indeed, if some query q is entailed from a KB using a semantics
〈◦i, sj〉, then q may be questionable in the light of new factual assertions. We
will assume that these new factual assertions are sure (and will speak of con-
ditional inference, opposed to unconditional inference when the KB is fixed).
Hence, we also analyze inconsistency-tolerant semantics w.r.t rationality prop-
erties introduced for nonmonotonic inference that we recast in our framework.

4.1 Properties of Unconditional Inference

Let KM=〈T , {A}〉 be a possibly inconsistent KB and 〈oi, s〉 denote any semantics
with ◦i ∈ {R, MR, CMR, MCMR, CR,MCR, RC, MRC} and s ∈ {∀,∩,∃,maj}.
We define the following desirable properties:

QCE (Query Conjunction Elimination) For any KB KM and any queries q1
and q2, if KM |=〈◦i,s〉 q1 ∧ q2 then KM |=〈◦i,s〉 q1 and KM |=〈◦i,s〉 q2.

QCI (Query Conjunction Introduction) For any KB KM and any queries q1
and q2, if KM |=〈◦i,s〉 q1 and KM |=〈◦i,s〉 q2 then KM |=〈◦i,s〉 q1 ∧ q2.

Cons (Consistency) For any set of assertions A′, if KM |=〈◦i,s〉 A′ then 〈T ,A′〉
is consistent.

ConsC (Consistency of Conjunction) For any set of assertions A, if for all f ∈
A, KM |=〈◦i,s〉 f then 〈T ,A〉 is consistent.

ConsS (Consistency of Support) For any set of assertions A′, if KM |=〈◦i,s〉 A′

then there is R ∈ R(A), such that 〈T , R〉 |= A′.

Note that in the three last properties, the sets of assertions could be extended to
queries with a more complex formulation. We first remind that, when KM is con-
sistent, all semantics correspond to standard entailment, hence KM |=〈◦i,s〉 q1∧q2
iff KM |=〈◦i,s〉 q1 and KM |=〈◦i,s〉 q2. When KM is inconsistent, one direction
is still true for all semantics, namely Property QCE, which relies on the con-
sistency of a repair. The converse direction, namely Property QCI, is obviously
satisfied by universal and safe semantics but not by brave and majority-based
semantics, even when q1 and q2 are ground atoms and the TBox contains only
disjointness inclusions as shown by the next examples.

Example 3 (Majority-based semantics does not satisfy QCI).3 Let T ={B�C �
⊥, A � D � ⊥, C � D � ⊥} and A={A(a), B(a), C(a),D(a)}. The repairs are
{A(a),B(a)}, {A(a), C(a)} and {B(a),D(a)}. All modifiers give the same MBox
since Tp=∅ and the repairs have the same size. A(a) and B(a) are each entailed
by a majority of repairs but their conjunction is not.
3 Most examples in this section are provided in DL-LiteR in order to show that some

rationality properties do not hold even in this simple fragment of existential rules.

Inconsistency-Tolerant Query Answering 71

Example 4 (Brave semantics does not satisfy properties QCI and ConsC). Let
T ={A� B � ⊥} and A={A(a),B(a)}. The repairs are {A(a)} and {B(a)}. All
modifiers lead to the same MBox since Tp=∅ and the repairs have the same size.
A(a) and B(a) are both brave consequences but their conjunction is not. Besides
ConsC is not satisfied since 〈T , {A(a), B(a)}〉 is inconsistent.

Property Cons is true for any semantics (again by the consistency of a repair).
Property ConsC holds for universal and safe semantics, and is false for any brave
semantics, even for |Aj |=|Ak|=1 and DL-Lite TBoxes restricted to disjointness
inclusions (see Example 3). Majority-based semantics are an interesting case,
since the expressivity of the ontological language plays a role: Property ConsC
is satisfied by all majority-based semantics when the language is restricted to
DL-LiteR and not satisfied as soon as we allow concept inclusions of the form
A � B � C or ternary disjointness axioms of the form A � B � C � ⊥, even
with ground queries (see Example 6). The fundamental reason why majority-
based semantics satisfy Property ConsC over DL-LiteR KBs is that, in these
KBs, conflicts (i.e., minimal inconsistent subsets of the ABox) are necessarily of
size two. When two ground atoms a1 and a2 are inferred with a majority-based
strategy, at least one of element of the considered (consistent) MBox classically
entails both a1 and a2, hence a1 ∧ a2 is consistent; when conflicts are of size
two, pairwise consistency entails global consistency. Note that this property still
holds if we extend DL-LiteR to n-ary predicates.

Example 5 (Majority-based semantics does not satisfy PropertyConsC for slight
generalizations of DL-LiteR). Let T ={A � B � C � ⊥} and A={A(a), B(a),
C(a)}. The repairs are {A(a), B(a)}, {A(a), C(a)} and {B(a), C(a)}. All modi-
fiers give the same MBox since Tp=∅ and all the repairs have the same size. Each
atom from A is entailed (by 2/3 repairs), however A itself is not.

Finally, Property ConsS, which expresses that every conclusion has a con-
sistent support in the ABox, is satisfied by all semantics except those involving
modifiers RC and MRC (as illustrated by the next example).

Example 6 ((M)RC-based semantics do not satisfy Property ConsS).4 Let
T ={A � B � ⊥, A � C1, B � C2} and A={A(a), B(a)}. The (maximal) repairs
of the ABox’ closure are {A(a), C1(a), C2(a)} and {B(a), C1(a), C2(a)}. The set
of atoms Aj = {C1(a), C2(a)} is entailed by all semantics based on RC and
MRC, however no consistent subset of A allows to entail Aj using T .

Proposition 1 (Properties of unconditional inference). The behaviour
of semantics 〈◦i, s〉, with ◦i ∈ {R, MR,CMR,MCMR, CR, MCR, RC, MRC} and
s ∈ {∩,∀,maj,∃}, with respect to Properties QCE, QCI, Cons, ConsC and
ConsS, is stated in Table 2.

4 This example also shows that CAR and ICAR [16] do not satisfy ConsS (although
they do when the conclusion is a single atom).

72 J.F. Baget et al.

Table 2. Properties of unconditional inferences.

Properties 〈◦i, ∩〉 〈◦i, ∀〉 〈◦i, Maj〉 〈◦i, ∃〉
QCE

√ √ √ √

QCI
√ √ × ×

Cons
√ √ √ √

ConsC
√ √ × [*] ×

ConsS ◦i ∈ {RC,MRC} × × × ×
otherwise

√ √ √ √
*: Except for languages where conflict sets involve at most two
elements, like DL-LiteR

4.2 Properties of Conditional Inferences

We now analyze more finely the inconsistency-tolerant semantics by considering
their properties in terms of nonmonotonic inference. Within propositional logic
setting, several approaches have been proposed for nonmonotonic inference (e.g.
[5,12,14]). In such approaches nonmonotonicity is essentially caused by the fact
that initial knowledge used for inference process is incomplete, and thus, later
information may come to enrich them, which generally leads to revise some of
the a priori considered hypotheses.

Let KM=〈T , {A}〉 be a possibly inconsistent KB and Aα, Aβ be two sets
of assertions such that 〈T ,Aα〉 and 〈T ,Aβ〉 are consistent. Assume that Aα

is the newly added knowledge. Since Aα is considered as more reliable than
the assertions in the KB, we have to keep Aα in every selected repair of the
KB. For the sake of simplicity, we define the notion of the set of repairs of
KM in presence of a new consistent set of assertions Aα with respect to a
modifier ◦i: Mα

i ={R:R ∈ ◦i({A ∪ Aα}) andAα ⊆ R}. Now, we say that Aβ

is a nonmonotonic consequence of Aα w.r.t. KM, denoted by Aα|∼◦i,s Aβ , if
〈T ,Mα

i 〉 |=s Aβ .
In this study, we focus on the situation where the considered conclusions are

sets of assertions, which can also be seen as conjunctions of ground queries. We
first rephrase within our framework some KLM rationality properties [14]. Let
Aα, Aβ and Aγ be consistent sets of assertions w.r.t T and |∼ be an inference
relation, the KLM logical properties that we consider are the following5.

R (Reflexivity) Aα|∼Aα.
LLE (Left Logical Equivalence) If 〈T ,Aα〉 ≡ 〈T ,Aβ〉 and Aα|∼Aγ then

Aβ |∼Aγ .
RW (Right Weakening) If 〈T ,Aα〉 |= 〈T ,Aβ〉 and Aγ |∼Aα then Aγ |∼Aβ .
Cut If Aα|∼Aβ and Aα ∪ Aβ |∼Aγ then Aα|∼Aγ .

5 We have adopted here a formulation close to the one of KLM logical properties, even
at the cost of simplicity. For instance 〈T , Aα〉 |= 〈T , Aβ〉 could have been simplified
in 〈T , Aα〉 |= Aβ . We remind that |= and ≡ denote standard logical entailment and
equivalence.

Inconsistency-Tolerant Query Answering 73

CM (Cautious Monotony) If Aα|∼Aβ and Aα|∼Aγ then Aα ∪ Aβ |∼Aγ .
And If Aα|∼Aβ and Aα|∼Aγ then Aα|∼Aβ ∪ Aγ .

R means that the additional assertions have to be a consequence of the infer-
ence relation. LLE expresses the fact that two equivalent sets of assertions have
the same consequences. RW says that consequences of the plausible assertions
are plausible assertions too. Cut expresses the fact that if a plausible conse-
quence is as secure as the assumptions it is based on, then it may be added
into the assumptions. CM expresses that learning new assertions that could be
plausibly inferred should not invalidate previous consequences. And expresses
that the conjunction of two plausible consequences is a plausible consequence.
The first five properties correspond to the system C [14] while the And property
is derived from the previous ones. Clearly the And property is closely related
to the QCI property given in Sect. 4.2. Indeed when Aα=∅ (empty set, no addi-
tional information) and if q1 and q2 used in CQI are sets of assertions then And
is equivalent to CQI. We now give the properties of the inference relations.

Proposition 2 (Properties of conditional inference). The behaviour of
inference relations |∼◦i,s, with ◦i ∈ {R, MR,CMR,MCMR, CR, MCR, RC, MRC}
and s ∈ {∩,∀, maj, ∃}, with respect to Properties R, LLE, RW, Cut, CM,
And, is given in Table 3.

Proof: [Sketch of proof]. Properties R, LLE and RW follow from the definition
of Mα

i . For s ∈ {∀,∩,∃} and for ◦i ∈ {R,MR} the satisfaction of Properties
Cut and CM stems from the fact that ∀R′ ∈ Mα∪β

i we have R′=R ∪ Aβ with
R ∈ Mα

i . Moreover, for ◦i ∈ {CMR,CR,RC,MRC} the satisfaction of Properties
Cut and CM holds due the fact that ∀R′ ∈ Mα∪β

i we have R′=R∪Cl(Aβ) with
R ∈ Mα

i . The following counter-examples show the non-satisfaction cases. ��
Example 7 (| ∼◦i,s with ◦i ∈ {MCMR,MCR} and s ∈ {∀,∃,∩} does not
satisfy Cut). For MCMR: Let T ={A � ¬B, A � ¬G, F � ¬B,
B � C, C � D, A � E}, and A={A(a),B(a), F (a), G(a)}, Aα=∅,

Table 3. Properties of conditional inferences.

Properties |∼◦i,∀ |∼◦i,∩ |∼◦i,∃ |∼◦i,maj

R
√ √ √ √

LLE
√ √ √ √

RW
√ √ √ √

Cut ◦i ∈ {MCMR,MCR} × × × ×
otherwise

√ √ √ ×
CM ◦i ∈ {MCMR,MCR} × × × ×
otherwise

√ √ × ×
And

√ √ × ×

74 J.F. Baget et al.

Aβ={C(a),D(a)}, Aγ={A(a)}. We have Mα
4 ={{B(a),G(a), C(a),D(a)}}

and Mα∪β
4 ={{A(a), F (a), C(a),D(a), E(a)}}. Thus 〈T ,Mα

4 〉 |=∀ Aβ and
〈T ,Mα∪β

4 〉 |=∀ Aγ but 〈T ,Mα
4 〉 �|=∀ Aγ . Cut is not satisfied even for s ∈ {∃,∩}.

MCR: Let T ={A � ¬B, F � ¬B, B � C, C � D}, A = {A(a), B(a), F (a)},
Aα=∅, Aβ={C(a),D(a)}, Aγ = {A(a)}. We have Mα

6 ={{B(a), C(a),D(a)}},
Mα∪β

6 ={{ A(a), F (a), C(a),D(a)}}. Thus 〈T ,Mα
6 〉 |=∀ Aβ and 〈T ,Mα∪β

6 〉 |=∀
Aγ but 〈T ,Mα

6 〉 �|=∀ Aγ . Cut is not satisfied either for s ∈ {∃,∩}.

Example 8 (| ∼◦i,s with ◦i ∈ {MCMR,MCR} and s ∈ {∀,∩} does not
satisfy CM). Let T ={A � ¬B, B � C}, and A={A(a), B(a)},
Aα=∅, Aβ={C(a)}, Aγ={B(a)}. We have Mα

4 =Mα
6 ={{B(a), C(a)}}, Mα∪β

4 =
Mα∪β

6 ={{A(a), C(a)},{B(a),C(a)}}. Thus 〈T ,Mα
4 〉 |=∀ Aβ and 〈T ,Mα

4 〉 |=∀
Aγ but 〈T ,Mα∪β

4 〉 �|=∀ Aγ . Moreover, 〈T ,Mα
6 〉 |=∀ Aβ and 〈T ,Mα

6 〉 |=∀ Aγ but
〈T ,Mα∪β

6 〉 �|=∀ Aγ . CM is not satisfied even for s=∩.

Example 9 (| ∼◦i,maj with any ◦i does not satisfy Cut). For i = 1
(R), let T ={A � ¬B, A � ¬C, A � ¬D, B � ¬D, C �
¬D, A � E, B � E, C � E, D � ¬E, A � G, B �
G}, and A={A(a),B(a),C(a),D(a)}, Aα={F (a)}, Aβ={E(a)}, Aγ= {G(a)}.
We have Mα

1 = {{A(a),F (a)},{B(a),F (a)},{C(a),F (a)},{D(a),F (a)}}, thus
〈T ,Mα

1 〉 |=maj Aβ . Moreover, Mα∪β
1 ={{A(a),F (a),E(a)},{B(a), F (a), E(a)},

{C(a), F (a), E(a)}} and 〈T ,Mα∪β
1 〉 |=maj Aγ , however 〈T ,Mα

1 〉 �|=maj Aγ . Cut
is not satisfied for any other ◦i.

Example 10 (| ∼◦i,∃ with any ◦i does not satisfy CM). For i=1 (R): Let
T = {A � ¬C,A � B,C � B,A � D,C � E,D � ¬C,E � ¬A}, and
A = {A(a), C(a)}, Aα = {B(a)}, Aβ = {D(a)}, Aγ = {E(a)}. We have Mα

1 =
{{A(a), B(a)}, {C(a), B(a)}}, thus 〈T ,Mα

1 〉 |=∃ Aβ and 〈T ,Mα
1 〉 |=∃ Aγ . More-

over Mα∪β
i ={{A(a), B(a), D(a)}} and 〈T ,Mα∪β

1 〉 �|=∃ Aγ . CM is not satisfied
for any other ◦i.

Example 11 (|∼◦i,maj with any ◦i does not satisfy CM). For i=1 (R): Let
T ={A � ¬B, A � ¬C, B � ¬C, A � D, B � D,C � D,A � E,B �
E,C � F,B � F,A � ¬F}, and A = {A(a), B(a), C(a)}, Aα = {D(a)},
Aβ = {E(a)}, Aγ = {F (a)}. We have Mα

1 = {{A(a),D(a)}, {B(a),D(a)}, R3 =
{C(a),D(a)}}, thus 〈T ,Mα

1 〉 |=maj Aβ . Moreover 〈T ,Mα
1 〉 |=maj Aγ . We have

Mα∪β
1 ={{A(a),D(a), E(a)}, {B(a),D(a), E(a)}}, thus 〈T ,Mα∪β

1 〉 �|=maj Aγ .
CM is not satisfied for any other ◦i.

Example 12 (|∼◦i,s with any ◦i and s ∈ {∃,maj} does not satisfy And). For
i = 1 and s = ∃ (R): Let T and A from Example 10. 〈T ,Mα

1 〉 |=∃ Aβ and
〈T ,Mα

1 〉 |=∃ Aγ but 〈T ,Mα
1 〉 �|=∃ Aβ ∪ Aγ . And is not satisfied for any other

◦i. For i = 1 and s = maj (R): Let T and A from Example 11. 〈T ,Mα
i 〉 |=maj Aβ

and 〈T ,Mα
i 〉 |=maj Aγ . but 〈T ,Mα

i 〉 �|=maj Aβ ∪ Aγ . And is not satisfied for
any other ◦i.

Inconsistency-Tolerant Query Answering 75

From Table 3, one can see that, for the composite modifiers ◦i ∈
{R,MR,CMR,CR,RC, MRC}, the semantics based on universal and safe conse-
quence satisfy all the properties of the system C. In LLE Aγ can be replaced by
a Conjunctive Query (CQ), in RW Aα (resp. Aβ) can be replaced by CQ and
And Aγ (resp. Aβ) can be replaced by a CQ.

5 Complexity of Inconsistency-Tolerant Query Answering

In this section we study the data complexity6 of CQ entailment under the various
semantics for classes of TBoxes T =Tp ∪Tn that fulfill the following property: Tp

is a Finite Unification Set (FUS) of existential rules [3], while Tn remains any
set of negative constraints. A set of rules Tp fulfills the FUS property when, for
any CQ q, there exists a finite set of CQs Q (called the set of rewritings of q)
such that for any ABox A, 〈Tp,A〉 |= q iff ∃qi ∈ Q such that A |= qi; in other
words, q can be rewritten into a union of CQs Q, which allows to forget the
rules. Since query rewriting does not depend on any ABox, CQ entailment has
the same data complexity as the classical database problem, which is in the low
complexity class AC0. Note also that when Tp satisfies the FUS property, the
consistency of a standard KB can be checked by rewriting the query ⊥ with T (or
equivalently, rewriting each body of a negative constraint with Tp) and checking
if one of the obtained rewritings is entailed by A. Such TBoxes encompass DL-
LiteR TBoxes as well as more expressive classes of existential rules, e.g., linear
and sticky [8,9]. All the following membership results apply to FUS rules, while
all hardness results hold as soon as DL-LiteR TBoxes are considered.

We first briefly recall the definition of the complexity classes that we use.
The class ΔP

2 = PNP refers to problems solvable in polynomial time by a
deterministic Turing Machine provided with an NP oracle, and its subclass
ΘP

2 =ΔP
2 [O(log n)] is allowed to make only logarithmically many calls to an NP

oracle. A Probabilistic Turing Machine (PTM) is a non-deterministic TM allowed
to “toss coins” to make decisions: we will use the Probabilistic Polynomial-time
(PP) class that contains the problems solvable in polynomial time with proba-
bility strictly greater than 1

2 by a PTM [13].7 We also recall that ΔP
2 , ΘP

2 and
PP are all closed under complement. CQ entailment with DL-LiteR TBoxes is
coNP -complete under 〈R,∀〉 and 〈RC,∀〉 semantics, and in AC0 under 〈R,∩〉
and 〈RC,∩〉 semantics (semantics respectively known as AR, CAR, IAR and
ICAR [16]). It is coNP -complete under 〈CR,∩〉 semantics (known as ICR [6]),
and ΘP

2 -complete under 〈MR,∀〉 and 〈MR,∩〉 semantics [7]. We first show that
these complexity results also hold for FUS existential rules.

Proposition 3. If CQ-entailment under 〈R/RC/MR,∀〉 and 〈R/RC/CR,∩〉
belongs to some complexity class C for DL-LiteR TBoxes, then CQ-entailment
remains in the same complexity class C for the more general FUS existential
rules.
6 This complexity measure is usually considered for query answering problems. Only

the data (here the ABox) are considered in the problem input.
7 PP includes NP, co-NP and ΘP

2 .

76 J.F. Baget et al.

Table 4. Complexity: tight complexity results are in black font (completely new results
marked by a star, the other being generalizations of known results to FUS). Member-
ship results are in gray font.

Modifier ∩ ∀ Maj ∃
R AC0 coNP -c PP -c � AC0

�

MR ΘP
2 -c ΘP

2 -c PP NP [O(log n)] ΘP
2

CMR ΘP
2 ΘP

2 -c � PP NP [O(log n)] ΘP
2

MCMR ΘP
2 ΘP

2 -c � PP NP [O(log n)] ΘP
2

CR coNP -c coNP -c PP -c � AC0
�

MCR ΘP
2 ΘP

2 -c � PP NP [O(log n)] ΘP
2

RC AC0 coNP -c PP P

MRC ΘP
2 ΘP

2 -c � PP NP [O(log n)] ΘP
2

Proof: [Sketch] Let us first consider 〈R/RC,∀〉. One can obviously guess a repair
R and check in polynomial time (actually in AC0) if 〈T ,R〉 |= ⊥ (by rewrit-
ing all negative constraints and looking for a homomorphism from one of those
rewritings into R), and if 〈T ,R〉 �|= q via rewriting methods as well. Concerning
〈MR,∀〉, the membership holds for any FUS rules for similar reasons, and by
observing that one can compute the maximum size of a repair through logarith-
mically many calls to an NP oracle. For 〈R/MRC,∩〉 the technique from [16]
still holds; whereas for 〈CR,∩〉, we guess a set of repairs R={R1, ...,Rk}, with
k polynomially bounded by the number of homomorphisms from rewritings of
the query q to Cl(A), such that: for any homomorphism h from a rewriting q′

of q to Cl(A) there is Ri ∈ R with h(q′) �⊆ Ri. There is a polynomial number of
rewritings (for data complexity), hence a polynomial number of homomorphisms
from these rewritings to the Cl(A). ��

The previous observations explain the complexity results written in black
font without star in Table 4. We now provide some new complexity results for
other universal-based and existential-based semantics.

Proposition 4. CQ entailment under 〈R,∃〉 (hence 〈CR,∃〉) is in AC0.

Proof: [Sketch] We first compute a set Q that contains all the rewritings of q with
the rules from Tp, as well as all their specialisations according to all possible parti-
tions on terms. We also rewrite ⊥ (i.e., all negative constraints) into the set N . We
remove from Q all rewritings q′ such that an element of N maps to q′ by homomor-
phism. Finally, we add to each remaining rewriting q′′ ∈ Q all inequalities between
its terms, which yields Q′. Q′ can be seen as a union of CQs with inequality pred-
icates, hence a first-order query. We have that K |=〈R,∃〉 q iff A |= Q′. Therefore q
is first-order rewritable w.r.t. T , under 〈R,∃〉 semantics. ��
Proposition 5. For ◦i ∈ {CMR, MCMR, MCR, MRC}, CQ entailment under
〈◦i,∀〉 and 〈◦i,∃〉 semantics is in ΘP

2 .

Inconsistency-Tolerant Query Answering 77

Proof: [Sketch] Notice that we can compute the maximum size of a repair and the
maximum size of the ground positive closure of a maximum-sized repair through
logarithmically many calls to an NP oracle. Then with one more call to this
oracle, we can check whether there is a repair R that satisfies the cardinality
constraints and such that 〈T ,R〉 �|= q (resp. 〈T ,R〉 |= q). Therefore, 〈◦i,∀〉
(resp. 〈◦i,∃〉) is in ΘP

2 . ��
Proposition 6. For ◦i ∈ {CMR, MCMR, MCR, MRC}, CQ entailment under
〈◦i,∀〉 semantics is ΘP

2 -hard.

Proof: We adapt the reduction from the problem ParitySAT built in [7] (which
is a reduction to 〈MR,∀〉 with an instance query). We “tweak” the query and
the TBox so that the positive part of the TBox is empty; this ensures that
(◦i,∀) = (◦j ,∀) for any ◦i, ◦j ∈ {MR, CMR, MCMR, MCR, MRC}. ��

For majority-based semantics, we rely on probabilistic algorithms and provide
two completeness results, as stated by the next proposition.

Proposition 7. Conjunctive Query entailment under 〈R,Maj〉 and 〈CR,Maj〉
semantics is PP -complete.

Proof: [Sketch] Membership: We use the following algorithm: first choose a sub-
set S of atoms from A randomly, then if S is not a repair of K, output no with
probability 1

2 . Otherwise (S is a repair), if (T , S) |= q, output no with prob-
ability 1

2n+1 ; else ((T , S) �|= q), output no with probability 1. This procedure
obviously runs in polynomial time and the idea is that each repair has the same
probability of being selected in the first step (1

2n), and by answering no a few
times when (T , S) |= q we ensure that the algorithm will give the right answer
with probability strictly greater than 1

2 .

Hardness: We consider the following problem coMajSAT: given a Boolean SAT
formula, is the number of unsatisfying affectations strictly greater than half of
all possible affectations? We recall that PP is closed under complement. We
notice that the reduction from SAT to 〈S,∀〉 built in [15], ensures that each
repair corresponds exactly to an affectation of the SAT formula, and the obtained
query q is evaluated to true iff there is at least one invalid affectation. Hence, the
majority of affectations are invalid iff q is entailed by the majority of the repairs.
Hence, this transformation yields a reduction from coMajSAT to 〈R,Maj〉. Since
〈R,Maj〉=〈CR,Maj〉, the result also holds for 〈CR,Maj〉. ��

To further clarify the complexity picture, we give some complexity class mem-
bership results for the remaining semantics (Table 4, in gray font). CQ entail-
ment under 〈RC,∃〉 semantics is clearly in P since we can first compute the
ground positive closure of the ABox in polynomial time and 〈R,∃〉 is in AC0.
For 〈MRC,Maj〉 semantics, the membership proof from Proposition 7 holds as
soon as we have observed that we could first compute the ground positive closure
of the ABox. For the remaining majority-based semantics, we use an argument
similar to the one in Proposition 5 to show membership to PPNP [O(log n)]: we
only need logarithmically many calls to an NP oracle to get the maximum cardi-
nality of a repair. Concerning the remaining intersection-based semantics 〈◦i,∩〉,

78 J.F. Baget et al.

we observe that by calling independently the corresponding universal problem
(◦i,∀) on each atom from the ABox, we can build the intersection of all repairs,
hence the ΘP

2 membership. Finally, an interesting question is to what extent pre-
processing the data, independently from any query, can reduce the complexity
of query entailment. It seems reasonable to require that the result of this pre-
processing step takes space at most linear in the size of the data. For instance,
let us consider 〈MR,∀〉: if we precompute the maximum cardinality of a repair
(stored in log2(|A|) space), the complexity of CQ entailment drops from ΘP

2 -c
to coNP -c, i.e., the complexity of 〈R,∀〉.

6 Concluding Remarks

The framework for inconsistency-tolerant query answering recently proposed in
[2] covers some well-known semantics and introduces new ones. These seman-
tics were compared with respect to productivity. We broaden the analysis by
considering two other points of view. First, we initiate a study of rationality
properties of inconsistency-tolerant semantics. Second, we complement known
complexity results, on the one hand by extending them to the more general case
of FUS existential rules, and on the other hand by providing tight complexity
results on some newly considered semantics (computation of repairs or closed
repairs with majority-based or brave inference, as well several cardinality-based
modifiers with universal inference).

The most efficiently computable semantics are 〈R,∩〉 and 〈R,∃〉 (equal to
〈CR,∃〉). The 〈R,∩〉 semantics is the least productive semantics in the frame-
work. However, if one considers the closure of the repairs to increase the produc-
tivity of 〈R,∩〉, i.e., 〈CR,∩〉, one obtains a semantics that computationally costs
as the “natural” semantics 〈R,∀〉. At the opposite, 〈R,∃〉 may be considered as
too adventurous and does not behave well from a rationality point of view since
it produces conclusions that may be inconsistent with the ontology. More gen-
erally, universal and safe semantics satisfy the rationality properties for most
modifiers, which is not the case of majority-based and existential semantics. In
addition, for all semantics, RC and MRC, which compute the closure of an incon-
sistent ABox, may lead to consider as plausible a conclusion with a contestable
support, and since they do not seem to bring any advantage compared to other
semantics, they should be discarded. Despite majority-based semantics do not
fulfil some desirable logical properties, they remain interesting for several rea-
sons: they are only slightly more complex to compute than universal semantics
(w.r.t. the same modifier) while being more productive, without being as adven-
turous as existential semantics. Hence, they may be considered as a good tradeoff
between both semantics when the universal semantics appear to be insufficiently
productive. We also recall that majority-based semantics behave better from
a logical viewpoint when they are restricted to DL-LiteR (and more generally,
when the ontological language ensures that the size of the conflicts is at most
two). Regarding the use of cardinality, cardinality-based modifiers can be used
to counteract troublesome assertions that conflict with many others, however
they behave strangely when the cardinality criterion is applied to closed repairs.

Inconsistency-Tolerant Query Answering 79

In summary, no semantics appears to outperform all the others in all of
the considered criteria. Selecting a semantics means selecting a suitable trade-
off between productivity (or, inversely, cautiousness), satisfaction of rationality
properties and computational complexity. We believe that this choice depends
on the applicative context.

In a future work, new semantics could be considered within the unified frame-
work, like no-objection semantics [4]. Besides, the study of rationality proper-
ties could be extended to other properties, and the exact complexity of several
semantics remains an open issue.

Acknowledgments. This work was supported by the projects ASPIQ (ANR-12-
BS02-0003), PAGOGA (ANR-12-JS02-007-01) and the ERC Starting Grant 637277.

References

1. Arenas, M., Bertossi, L.E., Chomicki, J.: Consistent query answers in inconsistent
databases. In: Proceedings of the Eighteenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, pp. 68–79 (1999)

2. Baget, J.-F., Benferhat, S., Bouraoui, Z., Croitoru, M., Mugnier, M.-L., Papini,
O., Rocher, S., Tabia, K.: A general modifier-based framework for inconsistency-
tolerant query answering. In: Proceedings of the Fifteenth International Conference
on Principles of Knowledge Representation and Reasoning, KR (2016)

3. Baget, J.-F., Leclère, M., Mugnier, M.-L., Salvat, E.: On rules with existential
variables: Walking the decidability line. Artif. Intell. 175(9–10), 1620–1654 (2011)

4. Benferhat, S., Bouraoui, Z., Croitoru, M., Papini, O., Tabia, K.: Non-objection
inference for inconsistency-tolerant query answering. In: Proceedings of the
Twenty-Fifth International Joint Conference on Artificial Intelligence (2016)

5. Benferhat, S., Cayrol, C., Dubois, D., Lang, J., Prade, H.: Inconsistency manage-
ment and prioritized syntax-based entailment. In: Proceedings of the 13th Inter-
national Joint Conference on Artificial Intelligence, pp. 640–647 (1993)

6. Bienvenu, M.: On the complexity of consistent query answering in the presence
of simple ontologies. In: Proceedings of the Twenty-Sixth Conference on Artificial
Intelligence (2012)

7. Bienvenu, M., Bourgaux, C., Goasdoué, F.: Querying inconsistent description logic
knowledge bases under preferred repair semantics. In: Proceedings of the Twenty-
Eighth AAAI Conference on Artificial Intelligence, pp. 996–1002 (2014)

8. Cal̀ı, A., Gottlob, G., Pieris, A.: Towards more expressive ontology languages: the
query answering problem. Artif. Intell. 193, 87–128 (2012)

9. Cal̀ı, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework for
tractable query answering over ontologies. J. Web Sem. 14, 57–83 (2012)

10. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: the DL-Lite family.
J. Autom. Reason. 39(3), 385–429 (2007)

11. Casini, G., Straccia, U.: Rational closure for defeasible description logics. In:
Janhunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS (LNAI), vol. 6341, pp. 77–90.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-15675-5 9

12. Gärdenfors, P., Makinson, D.: Nonmonotonic inference based on expectations.
Artif. Intell. 65(2), 197–245 (1994)

http://dx.doi.org/10.1007/978-3-642-15675-5_9

80 J.F. Baget et al.

13. Gill, J.: Computational complexity of probabilistic turing machines. SIAM J. Com-
put. 6(4), 675–695 (1977)

14. Kraus, S., Lehmann, D.J., Magidor, M.: Nonmonotonic reasoning, preferential
models and cumulative logics. Artif. Intell. 44(1–2), 167–207 (1990)

15. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-
tolerant semantics for description logics. In: Hitzler, P., Lukasiewicz, T. (eds.)
RR 2010. LNCS, vol. 6333, pp. 103–117. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-15918-3 9

16. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant
query answering in ontology-based data access. J. Web Sem. 33, 3–29 (2015)

17. Lenzerini, M.: Ontology-based data management. In: Proceedings of the 6th
Alberto Mendelzon International Workshop on Foundations of Data Management
2012, pp. 12–15 (2012)

18. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.:
Linking data to ontologies. J. Data Semant. 10, 133–173 (2008)

http://dx.doi.org/10.1007/978-3-642-15918-3_9
http://dx.doi.org/10.1007/978-3-642-15918-3_9

Temporal Here and There

Philippe Balbiani1(B) and Mart́ın Diéguez2(B)

1 Institut de recherche en informatique de Toulouse, Toulouse University,
118 route de Narbonne, 31062 Toulouse Cedex 9, France

philippe.balbiani@irit.fr
2 Centre International de Mathématiques et d’Informatique, IRIT,

Toulouse University, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
martin.dieguez@irit.fr

Abstract. Temporal Here and There (THT) constitutes the logical
foundations of Temporal Equilibrium Logic. Nevertheless, it has never
been studied in detail since results about axiomatisation and interdefin-
ability of modal operators remained unknown. In this paper we provide
a sound and complete axiomatic system for THT together with several
results on interdefinability of modal operators.

1 Introduction

In [10], Michael Gelfond and Vladimir Lifschitz introduced the so-called 0 seman-
tics that subsumed many of the existing Logic Programming alternatives but
without the syntactic restrictions made by previous approaches. The model-
based orientation of this semantics led to a paradigm suitable for constraint-
satisfaction problems that is known nowadays as Answer Set Programming
(ASP) [17,18] and that became one of the most prominent and successful
approaches for Knowledge Representation. During the evolution of ASP, many
hints have pointed out its relevance inside the theoretical foundations of Non-
Monotonic Reasoning. One result had a particular success in the study of foun-
dations of ASP: Equilibrium Logic (EQL). Introduced by David Pearce [19], this
characterisation has shown interesting features such as the theorem of Strong
equivalence [15] as well as extensions to first-order and modal logics [4,8,20]
without imposing any syntactic restriction on the formulas.

Among this modal extensions, we remark Temporal Equilibrium Logic
(TEL) [4], which extends the language of EQL with temporal operators from
Linear Time Temporal Logic (LTL) [21]. Following the same spirit as EQL, TEL
strongly relies on Logic of Temporal Here and There (THT), an extension of the
logic of Here and There (HT) [12]. However, contrary to HT, THT has not been
studied in detail. Only its role in the theorem of Temporal Strong Equivalence [2]

Special acknowledgement is heartly granted to Pedro Cabalar and Luis Fariñas del
Cerro for their feedback on a preliminary version of our paper. Mart́ın Diéguez was
supported by the Centre international de mathématiques et d’informatique (contract
ANR-11-LABX-0040-CIMI).

c© Springer International Publishing AG 2016
L. Michael and A. Kakas (Eds.): JELIA 2016, LNAI 10021, pp. 81–96, 2016.
DOI: 10.1007/978-3-319-48758-8 6

82 P. Balbiani and M. Diéguez

and a pair of connections with other logics based on HT [5] are known. In this
paper we deal with two problems that remained open in THT. The first prob-
lem consists in determining whether modal operators are interdefinable or not
while the second problem corresponds to the definition of a sound an complete
axiomatic system for THT.

The temporal constructs of THT will be l, ♦, �l and �♦, the constructs
l and ♦ being interpreted by the successor relation between integers whereas
the constructs �l and �♦ being interpreted by the precedence relation between
integers. As usual when one has to axiomatise modal logics where some modal
constructs are interpreted by the reflexive transitive closure of the accessibility
relation used to interpret other modal constructs, our axiomatisation will use
inference rules for induction. In this setting, traditional proofs of completeness
(see [11, Chap. 9]) are based on canonical model and filtration. In our HT setting,
however, the usual filtration method does not allow to transform, as it is the
case in ordinary temporal logic, the canonical model into a model where �l and
�♦ are interpreted by the precedence relation between integers. For this reason,
we had to redefine the filtration method in an appropriate way (see Sect. 6 for
details). Moreover, the determinisation of the filtrated model requires, in the case
of ordinary temporal logic, the use of a characteristic formula that cannot be
expressed in our language. As a result, we had to redefined the determinisation
of the filtrated model.

This paper is organised as follows: in Sect. 2 we introduce syntax and two
equivalent semantics for THT. In Sect. 3 we go through the problem of inter-
definability by defining the notion of bisimulation in the HT setting. The proof
of completeness of the axiomatic system described in Sect. 4 is described along
Sects. 5–7 and we finish the paper with conclusions and future work.

2 Syntax and Semantics

Let At be a finite or countable set of atomic formulas (with typical members
denoted by p, q, etc.). We inductively define the set of all formulas (with typical
members denoted by φ, ψ, etc.) as follows:

φ ::= p | ⊥ | (φ ∨ ψ) | (φ ∧ ψ) | (φ → ψ) | lφ | ♦φ | �lφ | �♦φ.

Note that, following the tradition in Intuitionistic Modal Logic, we have
added the new temporal constructs l, ♦, �l and �♦ to the ordinary language of
IPL. As it will soon become clear, the constructs l and ♦ are equivalent in THT
while �l and �♦ are independent. We define ¬φ as the abbreviation ¬φ ::= φ → ⊥.
For all sets of formulas x, let lx = {ϕ | lϕ ∈ x} and ♦x = {♦ϕ | ϕ ∈ x}. The
sets �lx and �♦x are similarly defined. We shall say that a set Σ of formulas is
closed if (1) Σ is closed under subformulas; (2) if �lϕ ∈ Σ then l�lϕ ∈ Σ; (3) if
�♦ϕ ∈ Σ then ♦�♦ϕ ∈ Σ; (4) if ϕ ∈ Σ then ¬ϕ ∈ Σ. Remark that the least closed
set of formulas containing a given formula is infinite. Nevertheless, its quotient by
the relation of logical equivalence will be finite in the context of THT. We define
the degree of a formula φ (in symbols deg(φ)) by induction as follows: (i) deg(p) =

Temporal Here and There 83

deg(⊥) = 0; (ii) deg(φ∨ψ) = deg(φ∧ψ) = deg(φ → ψ) =max{deg(φ), deg(ψ)};
(iii) deg(lφ) = deg(♦φ) = 1 + deg(φ); (iv) deg(�lφ) = deg(�♦φ) = deg(φ). We
define a temporal model as a structure M = 〈H,T 〉 where H : N → 2At and
T : N → 2At are such that H(i) � T (i) for all i � 0. If an atomic formula belongs
to H(i), i ∈ N, then it means that p holds here in M at time i whereas if p belongs
to T (i) then it means that p holds there at time i. The satisfaction relation in
a temporal model M = 〈H,T 〉 of a formula ϕ at the pair (i, α) ∈ N × {h, t},
denoted by M, (i, α) |= ϕ, is inductively defined as follows:

– M, (i, h) |= p iff p ∈ H(i);
– M, (i, t) |= p iff p ∈ T (i);
– M, (i, α) |= ϕ ∧ ψ iff M, (i, α) |= ϕ and M, (i, α) |= ψ;
– M, (i, α) |= ϕ ∨ ψ iff M, (i, α) |= ϕ or M, (i, α) |= ψ;
– M, (i, α) |= ϕ → ψ iff for all β ∈ {α, t} M, (i, β) ||= ϕ or M, (i, β) |= ψ;
– M, (i, α) |= lϕ iff M, (i + 1, α) |= ϕ;
– M, (i, α) |= ♦ϕ iff M, (i + 1, α) |= ϕ;
– M, (i, α) |= �lϕ iff for all j � i, M, (j, α) |= ϕ;
– M, (i, α) |= �♦ϕ iff there exists j � i s.t. M, (j, α) |= ϕ;

We will say that a formula ϕ is THT -valid (denoted by THT |= ϕ) iff
M, (0, h) |= ϕ for all THT models M.

Proposition 1 (Persistence). For all formulas ϕ, for all THT models M and
for all i ∈ N, if M, (i, h) |= ϕ then M, (i, t) |= ϕ.

Our aim, in this paper, is to completely axiomatise the set of all THT-
valid formulas. This will be done from Sect. 4 on. In the meantime we study
an alternative semantics for THT formulas that will be used in the proof of
completeness of our axiomatisation. A birelational model is a structure of the
form M = 〈W,�, R�, R��, V 〉 such that:

– W is a non-empty set of worlds;
– � is a partial order on W ;
– R� and R�� are binary relations on W ;
– V : W → 2At is such that for all x, y ∈ W , if x � y then V (x) ⊆ V (y).

Given a birelational model M = 〈W,�, R�, R��, V 〉, a world x ∈ W and a
formula ϕ, the satisfaction relation is defined as follows:

– M, x |= p iff p ∈ V (x);
– M, x |= (ϕ ∧ ψ) iff M, x |= ϕ and M, x |= ψ;
– M, x |= (ϕ ∨ ψ) iff M, x |= ϕ or M, x |= ψ;
– M, x |= ϕ → ψ iff for all x′ ∈ W , if x � x′ then M, x′ ||= ϕ or M, x′ |= ψ;
– M, x |= lϕ iff for all x′, y ∈ W , if x � x′R�y then M, y |= ϕ;
– M, x |= ♦ϕ iff there exists y ∈ W s. t. xR�y and M, y |= ϕ;
– M, x |= �lϕ iff for all x′, y ∈ W , if x � x′R��y then M, y |= ϕ;
– M, x |= �♦ϕ iff there exists y ∈ W s. t. xR��y and M, y |= ϕ.

84 P. Balbiani and M. Diéguez

Notice that the clauses concerning the temporal constructs l and �l imitate
the clause for the quantifier ∀ in first-order intuitionistic logic whereas the clauses
concerning ♦ and �♦ imitate the clause for ∃. See [7, Lemma 5.3.2] for details.
We shall say that M is normal if (1) for all x, y, z ∈ W , if x � y and x � z
then either x = y or x = z or y = z; (2) for all x, y, z ∈ W , if x � y and
xR�z (respectively xR��z) then yR�t (respectively yR��t) and z � t for some
t ∈ W ; (3) for all x, y, z ∈ W , if xR�y (respectively xR��y) and y � z then
x � t and tR�z (respectively tR��z) for some t ∈ W . If M is normal then for all
x ∈ W , either x is a maximal element with respect to �, or there exists y ∈ W
such that x � y and x |= y. In the former case let x̂ be x. In the latter case,
there exists exactly one y ∈ W such that x � y and x |= y; let x̂ be this y. A
normal model M = 〈W,�, R�, R��, V 〉 is said to be standard if R� is serial,
R� is deterministic and R�� is equal to the reflexive transitive closure of R�.
We say that a formula ϕ is standard-valid iff for all standard birelational models
M = 〈W,�, R�, R��, V 〉 and for all x0 ∈ W , M, x0 |= ϕ. We now relate this
alternative semantics to the THT semantics. Let M = 〈H,T 〉 be a THT model.
We define the birelational model M′ = 〈W,�, R�, R��, V 〉 as follows:

– W = N × {h, t};
– (i1, α1) � (i2, α2) iff i1 = i2 and either α1 = h or α2 = t;
– (i1, α1)R�(i2, α2) iff i1 + 1 = i2 and α1 = α2;
– (i1, α1)R��(i2, α2) iff i1 � i2 and α1 = α2;
– V ((i, α)) = H(i) if α = h else T (i).

Obviously, M′ is a standard birelational model. Moreover, as the reader can show
by structural induction, for all formulas ϕ, for all i ∈ N and for all α ∈ {h, t},
M, (i, α) |= ϕ iff M′, (i, α) |= ϕ. Reciprocally, let M′ = 〈W,�, R�, R��, V 〉
be a standard birelational model. Hence, R� is serial, deterministic and for all
x ∈ W and for all i ∈ N, there exists exactly one y ∈ W such that x

(

R�)i
y;

let
(

R�)i
(x0) be this y. Let x0 ∈ W . We define the functions H,T : N → 2At

as H(i) = V (
(

R�)i
(x0)) and T (i) = V (̂(

R�)i (x0)). Remark that for all i ∈ N,
H(i) ⊆ T (i). Let M = 〈H,T 〉. Thus, M is a THT model. As the reader can show
by structural induction, for all formulas ϕ and for all i ∈ N, M′,

(

R�)i
(x0) |=

ϕ iff M, (i, h) |= ϕ and M′, ̂(

R�)i (x0) |= ϕ iff M, (i, t) |= ϕ. As a result,
THT semantics and the alternative semantics are equivalent.

3 Interdefinability

As it is well-known, disjunction is definable in terms of conjunction and impli-
cation within the context of HT [16].

Lemma 1. For all formulas φ, ψ, THT |= φ ∨ ψ ↔ ((φ → ψ) → ψ) ∧
((ψ → φ) → φ).

Temporal Here and There 85

Below, we show the non-interdefinability of conjunction in THT.

Lemma 2. Let M1 = 〈H1, T1〉, M2 = 〈H2, T2〉 and M3 = 〈H3, T3〉 be the
THT models such that for all i ∈ N, H1(i) = {p, q}, Ti(i) = {p, q}, H2(i) = {p},
T2(i) = {p, q} , H3(i) = {q} and T3(i) = {p, q}. For all ∧-free formulas ϕ and
for all i ∈ N, M1, (i, h) |= ϕ iff M2, (i, h) |= ϕ or M3, (i, h) |= ϕ.

Proof. By structural induction on ϕ.

Lemma 3. Let p, q ∈ At. There is no ∧-free formula ψ such that THT |=
p ∧ q ↔ ψ.

Proof. Remark that M1, (0, h) |= p∧q, M2, (0, h) ||= p∧q and M3, (0, h) ||= p∧q.
Hence, by Lemma 2, p ∧ q is THT-equivalent to no ∧-free formula.

In the HT setting, the non-interdefinability of ∧ has also been proved by
Aguado et al. [1] by means of a denotational semantics based on sets of models.
Our proof is simpler, seeing that it does not require the use of sets of models.
Before considering the interdefinability of the modal operators in THT, we must
remark that the following equivalences are THT-valid:

– l⊥ ↔ ⊥;
– l (ϕ ∨ ψ) ↔ lϕ ∨lψ;
– l (ϕ ∧ ψ) ↔ lϕ ∧lψ;
– l (ϕ → ψ) ↔ (lϕ → lψ);
– l�lϕ ↔ �ll ϕ;
– l�♦ϕ ↔ �♦ l ϕ;

– ♦⊥ ↔ ⊥;
– ♦ (ϕ ∨ ψ) ↔ ♦ϕ ∨ ♦ψ;
– ♦ (ϕ ∧ ψ) ↔ ♦ϕ ∧ ♦ψ;
– ♦ (ϕ → ψ) ↔ (♦ϕ → ♦ψ);
– ♦�lϕ ↔ �l♦ϕ;
– ♦�♦ϕ ↔ �♦♦ϕ.

As a result, every formula is equivalent to a formula in which ⊥, ∨, ∧, →, �l
and �♦ do not appear within the scope of l or ♦. In order to prove the non-
interdefinability of �l and �♦, we introduce the notions of �l-bisimulation and
�♦-bisimulation between THT models. Let D = {(i, α) | i ∈ N and α ∈ {h, t}}
and let k ∈ N. A binary relation Z on D is said to be a k -�l-bisimulation between
the THT models M1 and M2 if the following conditions are satisfied:

1. if (i1, α1) Z (i2, α2) then for all j, 0 � j � k, and for all propositional vari-
ables p, M1 (i1 + j, α1) |= p iff M2, (i2 + j, α2) |= p;

2. if (i1, α1) Z (i2, α2) then (i1, t)Z (i2, t) or both (i1, α1) Z (i2, t) and (i1, t) Z
(i2, α2);

3. if (i1, α1) Z (i2, α2) and i1 � j1 then there exists j2 ∈ N s.t. i2 � j2 and
either (j1, α1)Z (j2, α2) or (j1, α1) Z (j2, t);

4. if (i1, α1) Z (i2, α2) and i2 � j2 then there exists j1 ∈ N s.t. i1 � j1 and
(j1, α1) Z (j2, α2) or (j1, t) Z (j2, α2).

A binary relation Z on D is said to be a k-�♦-bisimulation between the THT
models M1 and M2 if the following conditions are satisfied:

1. if (i1, α1) Z (i2, α2) then for all j, 0 � j � k, and for all propositional variable
p, M1, (i1 + j, α1) |= p iff M2, (i2 + j, α2) |= p;

86 P. Balbiani and M. Diéguez

2. if (i1, α1) Z (i2, α2) then (i1, t) Z (i2, t) or both (i1, α1) Z (i2, t) and (i1, t)
Z (i2, α2);

3. if (i1, α1) Z (i2, α2) and i1 � j1 then there exists j2 ∈ N s.t. i2 � j2 and
either (j1, α1) Z (j2, α2) or (j1, t) Z (j2, α2);

4. if (i1, α1) Z (i2, α2) and i2 � j2 then there exists j1 ∈ N s.t. i1 � j1 and
(j1, α1) Z (j2, α2) or (j1, α1) Z (j2, t);

The proof of the following lemmas can be done by induction on φ.

Lemma 4 (Bisimulation Lemma 1). Given THT models M1 and M2 and
a k-�l-bisimulation Z between them, for all �♦-free formulas φ, deg(φ) � k,
and for all (i1, α1) and (i2, α2) ∈ D, if (i1, α1)Z (i2, α2) then M1, (i1, α1) |=
φ iff M2, (i2, α2) |= φ.

Lemma 5 (Bisimulation Lemma 2). Given THT models M1 and M2 and
a k-�♦-bisimulation Z between them, for all �l-free formulas φ, deg(φ) � k,
and for all (i1, α1) and (i2, α2) ∈ D. if (i1, α1)Z (i2, α2) then M1, (i1, α1) |=
φ iff M2, (i2, α2) |= φ.

Proposition 2. Let p ∈ At. There is no �♦-free formula ψ such that THT |=
�♦p ↔ ψ.

Proof. Suppose that ψ is a �♦-free formula such that THT |= �♦p ↔ ψ. Let
k � 0 be the degree of ψ. Without loss of generality we can assume that ⊥,
∨, ∧, → and �l do not appear in ψ within the scope of the connectives l
and ♦. Let M1 = 〈H1, T1〉 and M2 = 〈H2, T2〉 be the THT models such that
for all i ∈ N, H1(i) = ∅, T1(i) = {p} if i mod k + 2 = k + 1 and ∅ otherwise,
H2(i) = {p} if i = k + 1 and ∅ otherwise, T2(i) = {p} if i mod k + 2 = k + 1
and ∅ otherwise. Let Z be the binary relation on D such that (i1, α1)Z (i2, α2)
iff one of the following condition holds: (1) either α1 = α2 = h and i1 = i2 = 0,
or α1 = α2 = t and i1 = i2; (2) α1 = α2 = h and i2 = i1 + k + 2; (3)
α1 = α2 = t and i2 = i1 + k + 2; (4) α1 = t, α2 = h and i1 = i2 < k + 2.
The reader may easily verify that Z is a k-�l-bisimulation between M1 and
M2. Since M1, (0, h) ||= �♦p, therefore M1, (0, h) ||= ψ. Hence, by Lemma 4,
M2, (0, h) ||= ψ. Thus M2, (0, h) ||= �♦p: a contradiction.

Proposition 3. Let p ∈ At. There is no �l-free formulas ψ such that THT |=
�lp ↔ ψ.

Proof. Similarly to the proof of Proposition 2, by using the THT models M1 =
〈H1, T1〉 and M2 = 〈H2, T2〉 such that for all i ∈ N, H1(i) = {p}, T1(i) = {p},
H2(i) = ∅ if i = k + 1 and {p} otherwise, T2(i) = {p} and the binary relation
Z on D such that (i1, α1)Z (i2, α2) iff one of the following condition holds: (1)
either α1 = α2 = h and i1 = i2 = 0; (2) α1 = α2 = t and i1 = i2; (3) α1 = α2 = h
and i2 = i1 + k + 2; (4) α1 = α1 = h and i1 = i2 > k + 1; (5) α1 = h, α2 = t
and i1 = i2.

Temporal Here and There 87

4 Axiomatisation

The axiomatic system of THT consists of the axioms of Intuitionistic Proposi-
tional Logic [6, Chap. 5] plus the following axioms and inference rules:

Hosoi axiom: (1) p ∨ (p → q) ∨ ¬q;

Axioms for l and ♦:

(2) lp ↔ ♦p;

(3) l (p → q) ↔ (lp → lq);

(4) l (p ∨ q) ↔ lp ∨lq;

(5) l (p ∧ q) ↔ lp ∧lq;

(6) l⊥ ↔ ⊥

Fisher Servi axioms for �l and �♦:

(7) �l⊥ ↔ ⊥
(8) �l(p → q) → (�lp → �lq);

(9) �l(p → q) → (�♦p → �♦q);

(10) �♦(p ∨ q) → �♦p ∨ �♦q;

(11) (�♦p → �lq) → �l(p → q);

Axioms combining l, ♦, �l and �♦: (12) �lp → p∧l�lp; (13) p ∨ ♦�♦p → �♦p;

Induction: (14)
p → lp

p → �lp
; (15)

♦p → p

�♦p → p
;

Modus ponens: (16)
p → q, p

q
. Necessitation: (17)

p

�lp
; (18)

p

lp
.

Proposition 4 (Soundness). The axiomatic system presented in this section
is sound.

Proof. Left to the reader. It is sufficient to check that all axioms are valid and
the inference rules preserve validity.

The Hosoi axiom corresponds to the fact that, in a normal model, M=〈W,�, R�,

R��, V 〉, if x � y and x � z then either x = y or x = z or y = z. Axioms (2)–(4)
correspond to the fact that in a standard model M = 〈W,�, R�, R��, V 〉, R� is
serial and deterministic. The Fisher Servi axioms for �l and �♦ are similar to the
axioms considered in [9,22]. Remark that the corresponding Fisher Servi axioms
for R� are easily derivable. Axioms combining l, ♦, �l and �♦ correspond to
the fact that, in a standard model M = 〈W,�, R�, R��, V 〉, R�� is reflexive and
R� ◦R�� ⊆ R��. As for the rules of inference (14) and (15), they will be used in
the proof of Lemma 15, where the canonical model Mc = 〈Wc,�c, R

�
c , R��

c , Vc〉
of THT is filtrated into a model MΣ = 〈WΣ ,�Σ , R�

Σ , R��
Σ , VΣ〉 such that R��

Σ is
the reflexive transitive closure of R�

Σ .

Lemma 6. For all m,n ∈ N, the following rules are derivable:

1.
ψ1 ∧ . . . ∧ ψm → φ ∨ χ1 ∨ . . . ∨ χn

�lψ1 ∧ . . . ∧ �lψm → �lφ ∨ �♦χ1 ∨ . . . ∨ �♦χn

;

88 P. Balbiani and M. Diéguez

2.
φ ∧ ψ1 ∧ . . . ∧ ψm → χ1 ∨ . . . ∨ χn

�♦φ ∧ �lψ1 ∧ . . . ∧ �lψm → �♦χ1 ∨ . . . ∨ �♦χn

.

Proof. These rules are derivable by means of Fisher Servi axioms. See [9,22].

Lemma 7. The following formulas are derivable: ϕ∧l�lϕ → �lϕ; �♦ϕ → ϕ∨♦�♦ϕ.

5 Canonical Model Construction

As usual, we will base our proof of completeness on the canonical model con-
struction.

5.1 Prime Sets

Given two sets of formulas x and y, we say that y is a consequence of x (denoted
by x � y) iff there exists φ1, . . . , φm ∈ x and ψ1, . . . , ψn ∈ y such that φ1 ∧ . . . ∧
φm → ψ1 ∨ . . . ∨ ψn ∈ THT . We shall say that a set x of formulas is prime if it
satisfies the following conditions: (1) ⊥ �∈ x; (2) for all formulas φ, ψ, if φ∨ψ ∈ x
then either φ ∈ x, or ψ ∈ x; (3) for all formulas φ, if x � φ then φ ∈ x.

Lemma 8 (Lindenbaum Lemma). Let x and y be sets of formulas. If x �� y
then there exists a prime set z of formulas such that x ⊆ z and z �� y.

The next Lemma shows the connection between Hosoi axiom and the relation
of inclusion between prime sets of formulas.

Lemma 9. Let x, y, z be prime sets of formulas. If x ⊆ y and x ⊆ z then either
x = y, or x = z, or y = z.

Proof. By Hosoi axiom.

Proposition 5. Let x be a prime set of formulas. There exists at most one
prime set of formulas strictly containing x.

Hence, for all prime sets x, either x is maximal, for inclusion, among all prime
sets, or there exists a prime set y such that x ⊆ y and x |= y. In the former case,
let x̂ = x. In the latter case, there exists exactly one prime set y such that x ⊆ y
and x |= y; let x̂ be this y. In our HT setting, one can easily show that for all
formulas ϕ, ϕ ∈ x̂ iff ¬¬ϕ ∈ x.

5.2 Canonical Model

The canonical model Mc is defined as the structure Mc = 〈Wc,�c, R
�
c , R��

c , Vc〉
where:

– Wc is the set of all prime sets;
– �c is the partial order on Wc defined by: x �c y iff x ⊆ y;
– R�

c is the binary relation on Wc defined by: xR�
c y iff l x ⊆ y and ♦y ⊆ x;

Temporal Here and There 89

– R��
c is the binary relation on Wc defined by: xR��

c y iff �lx ⊆ y and �♦y ⊆ x;
– Vc : Wc → 2At is the valuation function defined by: p ∈ Vc(x) iff p ∈ x;

Proposition 6. Mc is normal.

Proof. The condition (1) of normality follows from Lemma9. In order to prove
the conditions (2) and (3) it suffices to prove that for all x, y ∈ Wc, if xR�

c y
then x̂R�

c ŷ. Firstly remark that ¬¬ l p → l¬¬p and ♦¬¬p → ¬¬♦p are in
THT seeing that these formulas are derivable in the axiom systems considered
in [9,22]. Secondly, let x and y be prime sets such that xR�

c y and suppose that
x̂��R�

c ŷ. Hence, either lx̂ �⊆ ŷ or ♦ŷ �⊆ x̂. Let ϕ be a formula such that either
lϕ ∈ x̂ but ϕ �∈ ŷ or ϕ ∈ ŷ but ♦ϕ �∈ x̂. In the former case, ¬¬ l ϕ ∈ x,
l¬¬ϕ ∈ x, ¬¬ϕ ∈ y and ϕ ∈ ŷ: a contradiction. In the latter case, ¬¬ϕ ∈ y,
♦¬¬ϕ ∈ x, ¬¬♦ϕ ∈ x and ♦ϕ ∈ x̂: a contradiction.

Proposition 7. R�
c is serial and deterministic.

Proof. Seriality: Let x ∈ Wc. We define y = lx. By means of Axiom (2) the
reader can easily show that y is a prime set such that lx ⊆ y and ♦y ⊆ x, thus
xR�

c y. Determinism: Suppose that there exists x, y, z ∈ Wc such that xR�
c y

and xR�
c z but y |= z. Without loss of generality, let ϕ ∈ y be such that ϕ �∈ z.

As a consequence ♦ϕ ∈ x but lϕ �∈ x, which contradicts Axiom (2).

Proposition 8. R��
c is reflexive and transitive.

Proof. Reflexivity: Use the first parts of Axioms (12) and (13). Transitivity:
Use the second parts of Axioms (12) and (13) together with the induction rules.

Remark also that Axioms (12) and (13) guarantee that
(

R�
c

)� ⊆ R��
c . Nev-

ertheless, as it is usually the case when one axiomatises a modal logic in which
one connective is interpreted by the reflexive transitive closure of the relation
interpreting another connective, it might be the case that

(

R�
c

)� |= R��
c .

Lemma 10 (Truth Lemma). For all formulas ϕ and for all x ∈ Wc, (1) If
ϕ ∈ x then Mc, x |= ϕ; (2) if ϕ �∈ x then Mc, x ||= ϕ.

Proof. By induction on ϕ. We only present the proof for the case of �l. Assume
that �lψ ∈ x but Mc, x ||= �lψ. From the latter assumption it follows that there
exists x′, y ∈ Wc such that x �c x′, x′R��

c y and Mc, y ||= ψ. Since x �c x′

then �lψ ∈ x′. On the other hand, from x′R��
c y, Mc, y ||= ψ and the induction

hypothesis we conclude that �lψ �∈ x′, which is a contradiction.
Reciprocally, assume that Mc, x |= �lψ but �lψ �∈ x. Let u = �lx. Remark

that u �� {ψ} ∪ {χ | �♦χ �∈ x}. By Lindenbaum Lemma, let y ∈ Wc be such that
u ⊆ y and y �� {ψ}∪{χ | �♦χ �∈ x}. Note that �lx ⊆ y and �♦y ⊆ x. Hence, xR��

c y.
Since y �� ψ, therefore ψ �∈ y and, by induction hypothesis, Mc, y ||= ψ, which
contradicts Mc, x |= �lψ and xR��

c y.

90 P. Balbiani and M. Diéguez

6 Filtration

In order to repair the main defect of Mc, namely
(

R�
c

)� |= R��
c , the traditional

tool, filtration, consists in identifying prime sets in Wc that contain the same
formulas from the least closed set of formulas containing a given formula. We
had to change the definition of filtration, seeing that, within the context of THT,
the ordinary definition of filtration as the one presented in [11, Chap. 9] is not
appropriate. Given a normal THT model M = 〈W,�, R�, R��, V 〉 and a closed
set Σ of formulas, we define the equivalence relation ≡Σ on W as: x ≡Σ y iff for
all ϕ ∈ Σ, M, x |= ϕ iff M, y |= ϕ.

Lemma 11. For all x, y ∈ Wc, if x ≡Σ y then x̂ ≡Σ ŷ.

The equivalence class of x ∈ W with respect to ≡Σ is denoted by [x]. We say that
a THT model MΣ = 〈WΣ ,�Σ , R�

Σ , R��
Σ , VΣ〉 is a filtration of M, with respect

to Σ, iff WΣ = W|≡Σ
and for all x, y ∈ W :

1. if x � y then [x] �Σ [y];
2. for all ϕ → ψ ∈ Σ, if [x] �Σ [y], M, x |= ϕ → ψ and M, y |= ϕ then

M, y |= ψ;
3. if xR�y then there exists z ∈ W s. t. [x]R�

Σ [z] and [y] �Σ [z];
4. if xR�y then there exists t ∈ W s. t. [t]R�

Σ [y] and [x] �Σ [t];
5. for all lϕ ∈ Σ, if [x]R�

Σ [y] and M, x |= lϕ then M, y |= ϕ;
6. for all ♦ϕ ∈ Σ, if [x]R�

Σ [y] and M, y |= ϕ then M, x |= ♦ϕ;
7. if xR��y then there exists z ∈ W s. t. [x]R��

Σ [z] and [y] �Σ [z];
8. if xR��y then there exists t ∈ W s. t. [t]R��

Σ [y] and [x] �Σ [t];
9. for all �lϕ ∈ Σ, if [x]R��

Σ [y] and M, x |= �lϕ then M, y |= ϕ;
10. for all �♦ϕ ∈ Σ, if [x]R��

Σ [y] and M, y |= ϕ then M, x |= �♦ϕ;
11. for all p ∈ At ∩ Σ, p ∈ VΣ([x]) iff p ∈ V (x).

Lemma 12 (Filtration Lemma). Let M = 〈W,�, R�, R��, V 〉 be a normal
THT model, Σ be a closed set of formulas and MΣ = 〈WΣ ,�Σ , R�

Σ , R��
Σ , VΣ〉

be a filtration of M with respect to Σ. For all ϕ ∈ Σ and for all x ∈ W ,
M, x |= ϕ iff MΣ , [x] |= ϕ.

Proof. By induction on ϕ.

We will be interested in the filtration MΣ of Mc with respect to the least
closed set Σ containing a given formula ϕ0. Remind that the quotient of Wc by
≡Σ is finite. The relational structure MΣ = 〈WΣ ,�Σ , R�

Σ , R��
Σ , VΣ〉 is defined

as follows:

1. WΣ = Wc|≡Σ
;

2. [x] �Σ [y] iff x ≡Σ ◦ �c ◦ ≡Σ y;
3. [x]R�

Σ [y] iff x ≡Σ ◦R�
c ◦ ≡Σ y;

4. [x]R��
Σ [y] iff [x]

(

R�
Σ

)∗
[y];

5. VΣ([x]) = Vc(x) ∩ Σ.

Temporal Here and There 91

Lemma 13. For all x, y ∈ Wc, [x] �Σ [y] iff x ≡Σ y or x̂ ≡Σ y.

In the sequel, ϕ and ψ will be Σ-formulas. For each t ∈ Wc, let

Φt =
∧

ϕ∈t

ϕ ∧
∧

ϕ �∈t

¬ϕ ∧
∧

ϕ∈ t \ t

¬¬ϕ ∧
∧

ϕ, ψ∈ t \ t

(ϕ → ψ).

By using the results proved in [3] we can deduce that for all s ∈ Wc, Mc, s |= Φt

iff [s] = [t] or [s] = [̂t]. Now WΣ is finite, as Σ is, so for all D ⊆ WΣ let
ΨD =

∨

[t]∈D

Φt.

Lemma 14. For any set D ⊆ WΣ and for all x ∈ Wc, Mc, x |= ΨD iff ∃[z] ∈
D s. t. [x] = [z] or [x] = [ẑ].

Lemma 15 (Filtrated Model). The aforementioned filtrated model, MΣ, is
a filtration of the canonical model Mc.

Proof. We only study the Conditions 7 and 9.

– Condition 7: Suppose xR��
c y and let D = {[z] ∈ WΣ | there exists t ∈

Wc s.t. [x]R��
Σ [t] and [z] �Σ [t]}. Let us prove that [y] ∈ D. Remark

that for all [z] ∈ WΣ , if [ẑ] ∈ D then [z] ∈ D. Suppose by contradic-
tion that [y] ∈ (WΣ\D). Remark that [x] ∈ D. Let ΨWΣ\D be the char-
acteristic formula of WΣ\D. Since [y] ∈ (WΣ\D) then, by Lemma 14,
Mc, y |= ΨWΣ\D. Since xR��

c y, it holds that Mc, x |= �♦ΨWΣ\D. Since [x] ∈ D,
then Mc, x ||= ΨWΣ\D and, therefore, Mc, x ||= �♦ΨWΣ\D → ΨWΣ\D. Conse-
quently �♦ΨWΣ\D → ΨWΣ\D �∈ THT . From the Induction rule (15) we conclude
that ♦ΨWΣ\D → ΨWΣ\D �∈ THT . This means that there exists u ∈ Wc such
that Mc, u |= ♦ΨWΣ\D and Mc, u ||= ΨWΣ\D (therefore [u] ∈ D). From
the latter it follows that there exists t ∈ Wc s.t. [x]R��

Σ [t] and [u] � [t],
while from the former we get that there exists v ∈ Wc such that uR�

c v and
Mc, v |= ΨWΣ\D (thus [v] �∈ D). Since [u] �Σ [t], therefore by Lemma 13
either u ≡Σ t or û ≡Σ t. In the former case [u] = [t] and we have: [u]R�

Σ [v],
[t]R�

Σ [v] and [x]R��
Σ [v]. Thus [v] ∈ D and Mc, v ||= ΨWΣ\D: a contradiction. In

the latter case, [t] = [û] and we have: [û]R�
Σ [v̂], [t]R�

Σ [v̂] and [x]R��
Σ [v̂]. Hence,

[v] ∈ D and Mc, v ||= ΨWΣ\D: a contradiction.
– Condition 9: Suppose [x]R��

Σ [y] and let �lϕ ∈ Σ. Suppose Mc, x |= �lϕ and
let k ∈ N be such that [x]

(

R�
Σ

)k
[y]. Such k exists by definition of R��

Σ . By
induction on k, we demonstrate Mc, y |= ϕ. Firstly, assume k = 0, therefore
[x] = [y], which means that x ≡Σ y. From Mc, x |= �lϕ and Axiom (12) we
conclude that Mc, y |= ϕ. For the inductive step, assume k � 1 and let [z]
be such that [x]R�

Σ [z] and [z]
(

R�
Σ

)k−1
[y]. From Mc, x |= �lϕ and Axiom (12)

we conclude that Mc, x |= l�lϕ. Since Σ is closed and �lϕ ∈ Σ, therefore
l�lϕ ∈ Σ. From [x]R�

Σ [z] and Condition 5 of Filtration we conclude that
Mc, z |= �lϕ. Finally from [z]

(

R�
Σ

)k−1
[y] and the induction hypothesis it

follows that Mc, y |= ϕ.

92 P. Balbiani and M. Diéguez

Lemma 16. For all [x], [y], [z] ∈ WΣ, if [x] �Σ [y] and [x] �Σ [z] then [x] = [y]
or [x] = [z] or [y] = [z].

Proof. Suppose that [x] �Σ [y] and [x] �Σ [z]. Let x′, x′′, y′ and z′′ in Wc be
such that x ≡Σ x′ �c y′ ≡Σ y and x ≡Σ x′′ �c z′′ ≡Σ z. Moreover, suppose
that [x][y], [x] |= [z] and [y] |= [z]. Without loss of generality, let φ, ψ and χ
in Σ be such that (Mc, x ||= φ and Mc, y |= φ), (Mc, x ||= χ and Mc, z |= χ)
and (Mc, y |= ψ and Mc, z ||= ψ). Since Mc, y |= ψ then Mc, y ||= ¬ψ and,
together with the definition of [x] �Σ [y], Mc, x ||= ¬ψ. Moreover, from x ≡Σ x′′

and Mc, x ||= φ we conclude that Mc, x
′′ ||= φ ∨ ¬ψ and, by means of Hosoi

axiom, it follows that Mc, x
′′ |= φ → ψ. Since x′′ �c z′′ then Mc, z

′′ |= φ → ψ.
Apart from this, since z′′ ≡Σ z, Mc, z |= φ and Mc, z ||= ψ then Mc, z

′′ ||= ψ
and Mc, z

′′ |= φ. Finally, from Mc, z
′′ |= φ → ψ we reach a contradiction.

Proposition 9. MΣ is normal.

Proof. Condition (1) of normality follows from Lemma16. To prove Conditions
(2) and (3) it is sufficient to prove that if [x]R�

Σ [y] (respectively [x]R�
Σ [y]) then

[x̂]R�
Σ [ŷ] (respectively [x̂]R��

Σ [ŷ]). The proof for R�
Σ follows from Lemma 11 and

Proposition 6 while the proof for R��
Σ follows a similar argument.

Lemma 17. For any formula ϕ and x ∈ Wc.

(1) If �lϕ ∈ Σ and �lϕ �∈ x then there exists y ∈ Wc such that [x]R��
Σ [y] and

ϕ �∈ y;
(2) If �♦ϕ ∈ Σ and �♦ϕ ∈ x then there exists y ∈ Wc such that [x]R��

Σ [y] and
ϕ ∈ y;

Proof. (1) From �lϕ �∈ x and Lemma 10 we conclude that Mc, x ||= �lϕ, so
there exists z ∈ Wc such that xR��

c z and Mc, z ||= ϕ. From Condition 8 of
filtration we conclude that either [x]R��

Σ [z] or [x̂]R��
Σ [z]. In the first case, take

y = z. In the second case, we follow the argument as follows: from Mc, z ||= ϕ
and Condition 9 of filtration we conclude that Mc, x̂ ||= �lϕ. By following an
argument as in Proposition 6 Mc, x ||= �l¬¬ϕ, thus there exists t ∈ Wc such
that xR��

c t and Mc, t ||= ¬¬ϕ (as a consequence, Mc, t ||= ϕ and Mc,̂t ||= ϕ).
Finally by applying the Condition 7 of filtration, we conclude that [x]R��

Σ [t] or
[x]R��

Σ [̂t]. In the first case take y = t while, in the second one take y = ̂t. (2) From
�♦ϕ ∈ Σ, �♦ϕ ∈ x and Lemma 10 we conclude that Mc, x |= �♦ϕ and, therefore,
there exists y ∈ Wc such that xR��

c y and Mc, y |= ϕ (and Mc, ŷ |= ϕ). Then,
due to Condition 7 of filtration it follows that either [x]R��

Σ [y] or [x]R��
Σ [ŷ]. We

conclude the proof by saying that it is sufficient to take y in the first case and ŷ
in the second one to reach the condition.

Lemma 18. Let lϕ ∈ Σ be a temporal formula and x ∈ Wc. The following
conditions are equivalent: (1) Mc, x |= lϕ. (2) ∀y ∈ Wc, if

(

[x]R�
Σ [y] then

Mc, y |= ϕ) (3) ∃y ∈ Wc

(

[x]R�
Σ [y] and Mc, y |= ϕ).

Temporal Here and There 93

Proof. (1)⇒ (2): Assume there exists y ∈ Wc such that [x]R�
Σ [y] and Mc, y ||= ϕ.

Thanks to the Condition 5 of filtration we get Mc, y |= ϕ: a contradiction. (2)⇒
(3): Take [x] ∈ Wc. Since R�

Σ is serial, there exists [y] ∈ WΣ such that [x]R�
Σ [y].

From 18 and [x]R�
Σ [y] we obtain (3). (3) ⇒ (1): By definition of [x]R�

Σ [y], there
exist x′, y′ ∈ Wc such that x ≡Σ x′R�

c y′ ≡Σ y. From Mc, y |= ϕ and Axiom (2)
it follows that Mc, x |= lϕ.

Lemma 19. Let ♦ϕ ∈ Σ be a temporal formula and x ∈ Wc. The following con-
ditions are equivalent: (1) Mc, x ||= ♦ϕ. (2) ∃y ∈ Wc

(

[x]R�
Σ [y] and Mc, y ||= ϕ)

(3) ∀y ∈ Wc, if
(

[x]R�
Σ [y] then Mc, y ||= ϕ).

Proof. Similar to the proof of Lemma 18.

7 Determinisation

The filtrated model defined in Sect. 6 possesses the normality conditions (1)
and (2). Since R�

Σ is serial and R��
Σ is equal to the reflexive transitive closure

of the R�
Σ , MΣ would be standard if R�

Σ were deterministic. The property
of determinism is not preserved by filtration. In this section we show how to
extract a deterministic model from MΣ . Before that, we must introduce the
concepts of chain and defect. Let S = N × {�l, �♦} × Σ. Remark that S is
countable. Let (k0, σ0, ψ0) , (k1, σ1, ψ1) , · · · be an enumeration on S where each
triple is repeated infinitely many times. A chain consists of a finite sequence
([x0], · · · , [xn]) of elements of WΣ such that for all i < n, [xi]R�

Σ [xi+1]. A
triple (k, �l, ψ) ∈ S is a defect of the chain ([x0], · · · [xn]) if (1) k � n; (2)
�lψ �∈ xk; (3) for all i, k � i � n, ψ ∈ xi. Similarly, a triple (k, �♦, ψ) ∈ S is
a defect of the sequence ([x0], · · · [xn]) if (1) k � n; (2) �♦ψ ∈ xk; (3) for all i,
k � i � n, ψ �∈ xi. Let ϕ0 be a formula such that ϕ0 �∈ THT. Let x0 ∈ Wc

be such that ϕ0 �∈ x0. We define an infinite sequence ([x0], [x1], · · ·) of ele-
ments of WΣ such that [x0]R�

Σ [x1]R�
Σ [x3] · · · as follows: let S0 = ([x0]). Let

a � 0 and Sa = ([x0], · · · , [xm]) be a sequence of elements of WΣ such that
[x0]R�

Σ · · ·R�
Σ [xm]. We consider the following cases:

– Case “(ka, σa, ψa) is not a defect of Sa”: In this case let [y] ∈ WΣ be such that
[xm]R�

Σ [y] and define Sa+1 = ([x0], · · · , [xm], [y]).
– Case “(ka, σa, ψa) is a defect of Sa and σa = �l”: Hence, ka � xm, �lψa �∈ xm

and for all i, ka � i � m, ψa ∈ xi. By Lemma 7, �lψa �∈ xm. By Lemma 17,
let [y] ∈ WΣ be such that [xm]R��

Σ [y] and ψa �∈ y. Let [y0], · · · , [yn] ∈ WΣ

be such that [y0] = [xm], [yn] = [y] and [y0]R�
Σ [y1] · · ·R�

Σ [yn]. We define
Sa+1 = ([x0], · · · , [xm], [y1], · · · , [yn]).

– Case “(ka, σk, ψk) is a defect of Sa and σa = �♦”: This case is similar to the
previous one.

Now, let Md = 〈Wd,�d, R
�
d , R��

d , Vd〉 be the model defined as follows:

– Wd = N × {h, t};

94 P. Balbiani and M. Diéguez

– (i1, α1) �d (i2, α2) iff i1 = i2 and either α1 = h or α2 = t;
– (i1, α1)R�

d (i2, α2) iff i1 + 1 = i2 and α1 = α2;
– (i1, α1)R��

d (i2, α2) iff i1 � i2 and α1 = α2;
– Vd((i, α)) = {p ∈ At | p ∈ xi∩Σ} if α = h and {p ∈ At | p ∈ x̂i∩Σ} otherwise.

Lemma 20 (Truth Lemma). Let ϕ ∈ Σ. For all i ∈ N and for all α ∈ {h, t},
the following conditions are equivalent: (1) Md, (i, α) |= ϕ; (2) MΣ , [xi] |= ϕ.

Proof. By induction on ϕ. The case for atomic formulas follows from the defi-
nition of Vd. The cases for ⊥, ∧, ∨ and → are left to the reader. The cases for
l and ♦ follow from Lemmas 18 and 19. The cases for �l and �♦ follow from the
definition of Md.

And now, the grand finale:

Proposition 10. Let ϕ be a formula. The following conditions are equivalent:
(1) ϕ ∈ THT ; (2) THT |= ϕ.

Proof. (1) ⇒ (2): By proposition 4. (2) ⇒ (1): Suppose ϕ �∈ THT . Let x0 ∈ Wc

be such that ϕ �∈ x0. By Lemma 10, Mc, x0 ||= ϕ. Let Σ be the least closed set
of formulas containing ϕ. By Lemmas 12 and 15, MΣ , [x0] ||= ϕ. By Lemma 20,
Md, (0, α) ||= ϕ. Since Md is standard, therefore THT ||= ϕ.

8 Conclusion

Much remains to be done. For example, suppose the language is extended by the
temporal constructs U (until) and R (release). In that case, within the context of
THT-models, can we demonstrate that these temporal constructs are not inter-
definable? And how to axiomatise the set of all THT -valid formulas? One may
also consider, for this extended language, a van Benthem characterization theo-
rem. Its proof will probably necessitates the definition of an appropriate notion of
bisimulation similar to the one considered by de Rijke and Kurtonina [14]. Now,
what do these problems become when the language, restricted to the temporal
constructs U and R, is interpreted over the nonnegative rationals or the non-
negative reals? In that case, THT-models will be of the form M = 〈H,T 〉 where
H : Q

+ (or R
+) → 2At and T : Q

+ (or R
+) → 2At are such that H(i) ⊆ T (i)

for each i � 0. In other respect, for the language extended by the temporal con-
structs U (until), R (release), S (since) and T (trigger), when interpreted over
the set of all integers, can we demonstrate that these temporal constructs are
not interdefinable? When interpreted over Dedekind-complete linear orders, can
one obtain for this language a THT version of Kamp’s Theorem [13]? Finally, if
one prefers partial orders to linear orders then one may want to axiomatise the
HT version of branching time logics like CTL.

Temporal Here and There 95

References

1. Aguado, F., Cabalar, P., Pearce, D., Pérez, G., Vidal, C.: A denotational semantics
for equilibrium logic. TPLP 15(4–5), 620–634 (2015)

2. Cabalar, P., Diéguez, M.: Strong equivalence of non-monotonic temporal theories.
In: Proceedings of the 14th International Conference on Principles of Knowledge
Representation and Reasoning (KR 2014), Vienna (2014)

3. Cabalar, P., Ferraris, P.: Propositional theories are strongly equivalent to logic
programs. Theory Pract. Log. Program. 7(6), 745–759 (2007)

4. Cabalar, P., Pérez Vega, G.: Temporal equilibrium logic: a first approach.
In: Moreno Dı́az, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST
2007. LNCS, vol. 4739, pp. 241–248. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-75867-9 31

5. Cabalar, P., Diéguez, M., Vidal, C.: An infinitary encoding of temporal equilibrium
logic. TPLP 15(4–5), 666–680 (2015)

6. Dalen, D.V.: Intuitionistic logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook
of Philosophical Logic, vol. 166, pp. 225–339. Springer, Netherlands (1986)

7. van Dalen, D.: Logic and Structure. Universitext. Springer, Heidelberg (1989)
8. Fariñas del Cerro, L., Herzig, A., Su, E.I.: Epistemic equilibrium logic. In: Proceed-

ings of the Twenty-Fourth International Joint Conference on Artificial Intelligence,
IJCAI 2015, Buenos Aires, 25–31 July 2015, pp. 2964–2970 (2015)

9. Servi, G.F.: Axiomatisations for some intuitionistic modal logics. Rend. Sem. Mat.
Univers. Polit. Torino. 42, 179–194 (1984). Torino, Italy

10. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Proceedings of the 5th International Conference on Logic Programming (ICLP
1988), Seattle, pp. 1070–1080 (1988)

11. Goldblatt, R.: Logics of time and computation. No. 7 in CSLI Lecture Notes,
Center for the Study of Language and Information, Stanford, 2 edn. (1992)

12. Heyting, A.: Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte
der Preussischen Akademie der Wissenschaften. Physikalisch-mathematische
Klasse, Deütsche Akademie der Wissenschaften zu Berlin, Mathematisch-
Naturwissenschaftliche Klasse (1930)

13. Kamp, H.: Tense logic and the theory of linear order. Ph.D. thesis, University of
California, Los Angeles (1968)

14. Kurtonina, N., de Rijke, M.: Bisimulations for temporal logic. J. Log. Lang. Inf.
6(4), 403–425 (1997)

15. Lifschitz, V., Pearce, D., Valverde, A.: A characterization of strong equivalence for
logic programs with variables. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR
2007. LNCS (LNAI), vol. 4483, pp. 188–200. Springer, Heidelberg (2007). doi:10.
1007/978-3-540-72200-7 17

16. Lukasiewicz, J.: Die logik und das grundlagenproblem. Les Entreties de Zürich sur
les Fondaments et la Méthode des Sciences Mathématiques 12(6–9), 82–100 (1938)

17. Marek, V., Truszczyński, M.: Stable Models and an Alternative Logic Programming
Paradigm, pp. 169–181. Springer, Heidelberg (1999)

18. Niemelä, I.: Logic programs with stable model semantics as a constraint program-
ming paradigm. Ann. Math. Artif. Intell. 25(3–4), 241–273 (1999)

19. Pearce, D.: Equilibrium logic. Ann. Math. Artif. Intell. 47(1–2), 3–41 (2006)
20. Pearce, D., Valverde, A.: Quantified equilibrium logic and foundations for answer

set programs. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol.
5366, pp. 546–560. Springer, Heidelberg (2008). doi:10.1007/978-3-540-89982-2 46

http://dx.doi.org/10.1007/978-3-540-75867-9_31
http://dx.doi.org/10.1007/978-3-540-75867-9_31
http://dx.doi.org/10.1007/978-3-540-72200-7_17
http://dx.doi.org/10.1007/978-3-540-72200-7_17
http://dx.doi.org/10.1007/978-3-540-89982-2_46

96 P. Balbiani and M. Diéguez

21. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, Providence, pp. 46–57 (1977)

22. Simpson, A.K.: The proof theory and semantics of intuitionistic modal logic.
Ph.D. thesis, University of Edinburgh (1994). http://homepages.inf.ed.ac.uk/als/
Research/thesis.ps.gz

http://homepages.inf.ed.ac.uk/als/Research/thesis.ps.gz
http://homepages.inf.ed.ac.uk/als/Research/thesis.ps.gz

On Logics of Group Belief
in Structured Coalitions

Philippe Balbiani1, David Pearce2, and Levan Uridia3(B)

1 Université de Toulouse, Toulouse, France
Philippe.Balbiani@irit.fr

2 Universidad Politécnica de Madrid, Madrid, Spain
david.pearce@upm.es

3 Razmadze Institute of Mathematics, Tbilisi, Georgia
l.uridia@freeuni.edu.ge

Abstract. In the study of group belief formation, groups of agents are
often assumed to possess a topological structure. Here we investigate
some ways in which this topological structure may provide the semantical
basis for logics of group belief. We impose a partial order on a set of
agents first to be able to express preferences of agents by their doxastic
abilities, secondly to express the idea of a coalition (well formed group)
and thirdly to give a natural semantics for the group belief operator.
We define the group belief of a set of agents in two different ways and
study their corresponding logics. We also study a logic where doxastic
preference is expressed by a binary operator. We prove completeness and
discuss correspondences between the logics.

1 Introduction

An important concept in the study of collective intentionality as well as group
reasoning is that of group belief. The nature of group belief has been analysed by
a number of scholars and is of interest in areas such as philosophy, psychology,
logic, social sciences and computer science. Quinton [9] for example discussed the
summative view whereby a group G has a group belief in a proposition p if most
of the members of G believe that p; here ‘most’ can refer to a simple numerical
majority or perhaps to a majority of members of a certain kind. More recent
work in the field of social ontology has taken a non-summative view according to
which individual beliefs do not play such an important role in forming the group
belief [6,10]. To have a group belief that p, in this kind of a non-summative,
agreement-based sense, it is neither sufficient nor even necessary that the group
members individually believe p. Instead, it is required that they together agree
that as a group they believe that p. Different versions of the summative and
non-summative views have recently been analysed by Gaudou et al. [5] who
develop in detail a modal logic of group belief and compare their formal system
to different philosophical accounts of the group belief concept.

In the discussion of group belief an important feature is that a group should
be a constituted collective. In the approach of [5] the nature of the constituted
c© Springer International Publishing AG 2016
L. Michael and A. Kakas (Eds.): JELIA 2016, LNAI 10021, pp. 97–111, 2016.
DOI: 10.1007/978-3-319-48758-8 7

98 P. Balbiani et al.

group is given by the logic. More precisely, the logic is equipped with a possible
worlds semantics whose accessibility relation determines the nature of the group.
This idea seems to work well if one assumes that each group is constituted by a
unique set of agents A, but it may be problematic if a given set of individuals
constitutes two or more different groups. Suppose for example that the university
darts team happens to be co-extensive with the graduate admissions committee.
Their group beliefs will no doubt be different in the two contexts in which they
act. For instance the judgement that Phil Taylor is the greatest ever darts player
might be a belief of the darts team but not of the admission committee. This
difference in group beliefs will not be manifest in approaches like that of [5].
The authors are aware of this limitation. In another paper devoted to the logic
of group acceptance [8] they have introduced the idea of an institutional context
that enters into the semantics of group attitudes. This is a formal device that
allows one to distinguish the set of agents from the group or team situation
in which they are acting. It supplies an additional parameter of evaluation but
doesn’t impose any structure on the groups themselves.

A different kind of approach has been explored in work on judgement aggre-
gation. For example, List and Pettit [7] discuss group agency and group beliefs
by assuming that some organizational structure is associated with the groups.
This structure can be understood in at least two apparently different senses.
In one sense it refers to mechanisms such as voting rights and procedures that
may be in place in order for group judgements to be obtained by some ratio-
nal process from the beliefs and preferences of individual group members. Such
mechanisms may be thought of as external to the agents themselves, since they
reflect group features that may persist even if the set of agents that constitutes
the group changes over time. However, [7] also discusses ways in which a group
may be structured in a more internal sense. An example is when large judg-
mental tasks are decomposed into several smaller tasks and the corresponding
group judgements for these tasks are allocated to suitable subgroups. As List
and Pettit observe [7] (pp. 94–97), not all group members may have the same
level of expertise, so it may be rationally justified (at least in theory) to assign
judgement subtasks to say expert subgroups and then use a further aggregation
mechanism to form a final collective judgement for the whole group. In such
cases the chosen decomposition may reflect properties of individual members
(e.g. their expertise) and hence need not persist when members leave and enter
the group. Nevertheless it seems clear that such structures are group-specific in
kind, since if two different groups are composed of the same set of members, the
associated group structures will carve up that set in different ways.

In this paper we also study the idea of groups having a structure, but using a
different approach from that of [7]. We explore the effects of imposing a topologi-
cal structure directly on the set of agents and without assuming that judgmental
tasks are split into subtasks for resolution by a subgroup. One effect of our app-
roach is that even if say the university darts team and the humanities graduate
committee are composed of the same individuals, their constitution qua groups
(hence their collective beliefs) may be different. Another effect is that the topo-
logical structure may reflect a natural ordering among agents, such as their level

On Logics of Group Belief in Structured Coalitions 99

of knowledge of a certain domain, their abilities, their degree of commitment to
a certain cause, or some other relevant criterion. We will deal with finite sets of
agents and therefore the topological structure will amount to a partial ordering.1

In real life situations one observes that arbitrary subsets of agents do not form
a coalition. Usually coalitions are closed under some specific properties. Having
structured groups makes it possible to formalise different versions of group belief
and also explore the connections and differences between different approaches.
In this paper we attempt to model both ideas simultaneously by considering
partial orders on the sets of agents. It is known that such orders naturally model
many existing real life social commitments.2 Moreover with partial orders we
may understand coalitions as those sets of agents which have certain properties
according to the given order. In particular that they are downsets.

The paper is organised as follows. In Sect. 3 we define a logic GB1 of group
belief where group belief is defined in terms of shared belief. The group belief
defined in this way inherits some properties of group belief discussed in [5]
although it lacks the important property that group belief p implies that it is
common belief that p is a group belief. To remedy this in Sect. 4 we define a logic
GB2 where group belief is defined in terms of common belief. This logic gains the
property that was missing for the logic GB1 but it loses another property satis-
fied by GB1, in particular: that group belief does not imply the common belief of
group members. In both Sects. 3 and 4 we extend the logics with a modal depen-
dency axiom which links the partial order of agents to their belief sets. In both
extended logics group belief collapses to the shared belief of group members. In
Sect. 5 we consider pure multi-modal logic with an additional operator a � b to
take control over the structure of agents. We prove several completeness results.
Completeness for the logics GB1 and GB2 is relatively simple and closely based
on already existing results, while completeness for the logic GB from Sect. 5 is
nonstandard and uses a selection method.

2 Preliminaries

We recall some basic definitions and notions which will be used throughout the
paper.

Definition 1. A partial order on a set A is a relation ≤⊆ A × A which is
reflexive ∀a ∈ A)(a ≤ a) and transitive (∀a, b, c ∈ A)(a ≤ b ∧ b ≤ c → a ≤ c).

Every partial order has a distinguished class of subsets called downsets
1 Topological structures in groups are also used to formalise group attitudes in Dunin-

Keplicz and Verbrugge [3]. As they emphasise, this structure may be based on power
or dependency relations that reflect different social commitments. [3] considers differ-
ent group topologies but the approach is somewhat different from ours. The topolo-
gies are mainly used to model different forms of communication between agents in
a group. A related, formal account of group beliefs is studied in [2] using a concept
of (group) epistemic profile to model doxastic reasoning. However epistemic profiles
are an additional feature, not derived from the group topological structure.

2 See e.g. [3] and further references given there.

100 P. Balbiani et al.

Definition 2. A subset D of a partial order (A,≤) is a downset if for every
d ∈ D and every a ∈ A if a ≤ d then a ∈ D. The minimal downset containing the
set J ⊆ A will be denoted by J . In other words J = {a ∈ A | ∃b ∈ J s.t. a ≤ b}.

Throughout the paper we will be working in a standard multimodal language
enriched with different operators for common belief, shared belief group belief,
etc. The language L is defined with an infinite set of propositional letters p, q, r..
and connectives ∨,∧,¬,�a, for each a ∈ A, where A is a finite, partially ordered
set (A,≤) of agents. Observe that the ordering of a set of agents A is common
for both the syntax and semantics. Formulas are constructed in a standard way
from the following recursive definition:

φ :=| p | φ ∨ φ | φ ∧ φ | ¬φ | �aφ

for every a ∈ A and G ⊆ A. For extensions of L with additional operators we
will use the abbreviation L({Oi | 1 ≤ i ≤ n}) where each Oi is a new operator
and the set of formulas is extended in an appropriate way i.e. in the construction
of formulas we will have additional clauses

φ :=| p | φ ∨ φ | φ ∧ φ | ¬φ | �aφ | Oiφ

for every a ∈ A and i ∈ {1, .., n}. For example L({EJ | J ⊆ A} denotes the
language L extended with operators EJ for each J ⊆ A. Throughout the paper
the operators EJ , CJ and GBJ will stand for the shared belief, common belief
and group belief operators respectively.

Shared belief is defined as the conjunction of beliefs of individual members
of the group. i.e. a proposition p is a shared belief of the group J (abbreviated
as EJp) if every member of the group believes that p which means

∧

i∈J �ip.
The shared belief operator is definable in the basic language and hence the
languages L and L({EJ | J ⊆ A}) have the same expressive power. This is not
the case for common belief. Common belief is defined as the infinite iteration
of individual beliefs of group members. Formally CJp iff

∧

n∈ω En
J p which is an

infinite conjunction and therefore is not a formula of the language L({EJ | J ⊆
A}. In general it is known that L({CJ | J ⊆ A} is strictly more expressive
then L.

3 Logics of Group Belief

We define a modal logic of group belief in a structured set (A,≤) of agents, where
the structure ≤⊆ A × A is a partial order. Coalitions are formed by downsets.
Therefore the structure of coalitions of agents will depend on the relation ≤ in
question.

3.1 Syntax of GB1

The language has two operators: for shared belief and for group belief. Shared
belief (analogous to shared knowledge) has been considered and studied inten-
sively, see for example [4]. We enrich the logic with a group belief operator where

On Logics of Group Belief in Structured Coalitions 101

group belief is defined as the shared belief of the coalition to which the group
belongs. Hence the two groups J and J ′ of agents have the same group belief if
they both belong to the same coalition.

Definition 3. The normal modal logic GB1 is defined in a modal language
L({EJ , GBJ | J ⊆ A}). Operators EJ and GBJ , stand for shared belief and
group belief respectively.

The axioms of GB1 are all classical tautologies. Each box satisfies the K4
axioms for every a ∈ A, and in addition we have one axiom scheme for shared
belief and one axiom scheme for the group belief,

�a(p → q) → (�ap → �aq) (1)
�ap → �a�ap (2)

EJp ↔
∧

a∈J

�ap (3)

GBJp ↔ EJp (4)

for every J ⊆ A. The rules of inference are: modus ponens, substitution and
necessitation for each box modality.

Observe that the axiom of group belief operator uses symbol J from
Definition 2, hence implicitly refers to the partial order on the set of agents
A. As it was mentioned in the introduction the order on agents is needed to
form coalitions and coalitions are exactly downsets according to the order on
agents. In these terms the group belief axiom from Definition 3 says that p is
a group belief of the a group of agents J if p is a shared belief of the minimal
coalition J to which the group J belongs.

Example 4 Every group forms a coalition. Assume that ≤ is an empty
relation. In this case the downset J = J . Hence every subset of agents forms a
coalition and hence group belief coincides with shared belief. GBJp ↔ EJp ↔
EJp.

Example 5 The only coalition. Assume that ≤= A×A. In this case we have
only one coalition as far as J = A for every J ⊆ A. Hence something is a group
belief only if it is a shared belief of all agents.

Example 6. Let A = {w, u, v} and ≤= {(w,w), (u, u), (v, v), (w, u), (w, v)}. In
this case we have 4 different coalitions {w, u}, {w, v}, {w, u, v} and {w}. Group
belief for this case depends on the group. If J = {u,w}, J = {v, w} or J = {w},
group belief coincides with shared belief GBJp ↔ EJp, while when J = {u, v}
we have GBJp ↔ EAp and in cases when J = {u} or J = {v} group belief is a
shared belief of a corresponding coalition GBJp ↔ E{u,w}p and GBJp ↔ E{v,w}p
respectively.

102 P. Balbiani et al.

3.2 Semantics

Semantics for the modal logics GB1 is provided by OUR-models.

Definition 7. An OUR-structure for a partially ordered set of agents (A,≤) is
a tuple (W, {Ra|a ∈ A}) where W is a set of worlds, Ra for each a ∈ A is a
transitive relation on W . An OUR-model is an OUR-structure together with a
valuation function V : Prop × W → 2.

Notice that the structure on a set of agent as well as the set of agents itself is
common both to the syntax and semantics. It is true that the syntax does not
contain any symbol for the relation ≤ but it interacts with this relation by the
group belief axiom. The semantics, as is clear from the next definition, has a
more straightforward interaction with the structure on the set of agents.

Definition 8. For a given OUR-model M = (W, {Ra|a ∈ A}, V), the satisfac-
tion of a formula at a point w ∈ W is defined inductively as follows:
w |= p iff w ∈ V (p);
the boolean cases are standard;
w |= �aφ iff (∀v)(wRav ⇒ v |= φ);
w |= EJφ iff (∀v)(wRv ⇒ v |= φ) where R =

⋃

a∈J Ra;
w |= GBJφ iff (∀v)(wR′v ⇒ v |= φ) where R′ =

⋃

a∈J Ra;
A formula is valid in an OUR-structure if it is satisfiable at every point

w ∈ W under every valuation V . A formula is valid in a class C of OUR-
structures if it is valid in every OUR-structure F ∈ C.

What does the last definition imply in different examples? The idea is to
think of coalitions as downsets. In such a setting each member of a group J may
believe the sentence p but the coalition J may have additional members who
do not share this belief and hence the group J as part of the coalition does not
have p as a group belief of a coalition. In other words only those sentences are
believed by the group which are shared beliefs of the coalition to which the group
belongs. We might call this kind of belief “coalition dependent”.

The group belief operator defined in this sense has the following properties
discussed in [5]:

Proposition 9

1. No combination of individual beliefs implies group belief;
2. Not all sets of agents form coalitions;
3. Group belief does not imply the common belief of the group;

Proof. 2 follows by the definition of coalition. 3 is an easy application of the
definitions of common belief and shared belief. See Sect. 2. For 1 let us consider
a partial order ({a, b, c},≤) of agents where a ≤ b ≤ c. Let J = {b, c}. As
for the set of possible worlds and relations, let us take W = {w, u, v}, Ra =
{(w, u), (w, v), (u, v)} and Rb = Rc = {(v, u), (v, w), (u,w)} let w |= p and v
|= q.
See Fig. 1.

On Logics of Group Belief in Structured Coalitions 103

a b c

w

u

v

Ra

Ra

v

u

w

Rb

Rb

v

u

w

Rc

Rc

≤ ≤

Fig. 1. .

In this case u |= �bp ∧ �cp since the only successor of u both by Rb and Rc

is w which on its own models p. This means that all members of the group J
believe in p but still p is not a group belief of the group. This is because the
coalition J containing the group also contains agent a. u
|= �ap as there is an
Ra successor v of u which does not model p. So u
|= EJp.

Note that �bp ∧ �cp is just one particular combination of individual beliefs
and hence it is not enough to claim that no combination of individual beliefs
implies group belief. But an easy argument shows that indeed no formula written
in a restricted language which only contains �b and �c can imply group belief.
The full proof of this claim needs additional definitions and properties and is
given in the appendix.

The other two important properties from [5] “Goup belief does not imply
individual beliefs of the group members” and “Group belief does not imply
subgroup belief” are not satisfied. This is because the group is always contained
in the coalition and as well every subgroup is contained in a coalition formed
by a bigger group. Now what happens if we add the belief dependency axiom?
Does it effect the structure. The answer is yes. The belief dependency axiom sets
some constraints on the structure of frames.

3.3 Completeness

One way to prove completeness is via a standard canonical model construction.
Here we use a different method and prove completeness by applying results from
[11]. First we show that the axiom for the group belief modality is a relational
modal definition. Secondly we will use the result that modal logic with the shared
belief modality is complete, and lastly we will apply the result that extensions
of complete logics with relational modal definitions yield complete logics.

Definition 10. A modal definition �p ↔ φ(p, p1, . . . , pn) is called a relational
modal definition if there exists a first-order formula Ψ+(x, y) with two free

104 P. Balbiani et al.

variables using only symbols that occur in STx[φ(p, p1, . . . , pn)] such that for
every formula ψ in the language without � it holds that

(∀y)(Ψ+(x, y) ⇒ STy[ψ]) is logically equivalent to STx[φ(ψ, p1, . . . , pn)].

Let Ψ+(x, y) be the first-order formula corresponding to a relational modal
definition. Given a model M = (F, V), we uniquely construct the model
M+ = (F+, V), where the underlying frame F+ is obtained from F by adding
the binary relation R+ ⊆ W 2 defined as:

(x, y) ∈ R+ if, and only if, M |= Ψ+(x, y).

For a class C of models, we denote by C+ the class consisting of the models M+,
where M ranges over the models in C.

Fact 11. Let L be the modal language for a signature 〈Π,M〉, and let L+ be
the modal language for 〈Π,M ∪ {+}〉 for some fresh symbol ‘+’. Let L ⊆ L be
a modal logic that is complete w.r.t. a class C of models. Let L+ ⊆ L+ be the
modal logic obtained by extending L with the relational modal definition �p ↔
α(p, p1, . . . , pn). Then L+ is complete w.r.t. C+.

Another result which we are going to use is completeness of the modal logic
obtained by eliminating the group belief operator from logic GB1. The result as
stated does not appear anywhere but an exact analog of the result is known for
the shared knowledge operator, see [4]. And the distinction between the two is
insignificant for these results.

Proposition 12. The modal logic of shared belief (The logic obtained by elim-
inating operator GBJ together with the group belief axiom from GB1) is sound
and complete w.r.t. possible world structures (Kripke structures), where each
relation is transitive.

Lastly, to obtain the completeness for the logic GB1 it remains to show that
the group belief axiom is a relational modal definition and describe the class of
frames it specifies.

Proposition 13. The axiom GBGφ ↔ EGφ is a relational modal definition.

Proof. Immediate if we take Ψ+(x, y) in Definition 10 to be xRy where R =
⋃

a∈G Ra.

Corollary 14. The modal logic GB1 is sound and complete w.r.t. OUR-
structures.

3.4 Fibered Structures

By ordering the set of agents we want to reflect the intuition that not all agents
have the same belief sets. Moreover it is natural to think that the structure of
agents is connected with the structure of their belief sets. Which is not the case

On Logics of Group Belief in Structured Coalitions 105

in OUR-frames from previous section. For instance if a ≤ b, then belief set of a
is smaller then belief set of b. At this point we don’t have such a requirement.
One could obtain this property by adding the law a ≤ b ⇒� �bp → �ap, which
we encode by the following axiom:

• Belief dependency axiom
�ap → GB{a}p

Now the meta-rule a ≤ b ⇒� �bp → �ap becomes satisfied. For, assume a ≤ b,
by the belief dependency axiom we have �ap → GB{a}p, and by the axiom for
the group belief operator we get �bp → E{b}p and, as a ≤ b, we know that

a ∈ {b}. By the axiom for shared belief we obtain E{b}p → ∧

i∈{b} �ip which
on its own implies �ap. Hence we get �bp → �ap. Thus, despite the fact that
our language does not contain the symbol ≤, it is strong enough to express the
property of belief dependency. By GB1≤ we denote the extension of GB1 by the
belief dependency axiom.

Definition 15. Let us call an OUR-structure (W, {Ra|a ∈ A}) a fibered frame
iff a ≤ b implies Ra ⊆ Rb.

Proposition 16. The belief dependency axiom is valid in an OUR-frame F =
(W, {Ra|a ∈ A}) iff F is a fibered frame.

Proof. Assume for the contradiction that an OUR-structure F is not fibered. By
definition this means that there exists a and b in the set of agent A such that
a ≤ b while Ra
⊆ Rb, i.e. there are points w, u ∈ W such that wRau while not
wRbu. Take a valuation such that p is true everywhere in a frame except at u,
then it is clear that w |= �bp while w
|= �ap sincet wRau and u
|= p. Hence
w
|= GB{b}p which falsifies the axiom.

Now assume that F is a fibered OUR-structure. Let V be an arbitrary val-
uation on F. Let us take an arbitrary point w ∈ W and show that w |= �bp →
GB{b}p for an arbitrary b ∈ A. Assume that w |= �bp. Hence for every Rb suc-
cessor v of w it holds that v |= p. Let us show that w |= E{b}p. By the axiom of
shared belief Ebp ↔ ∧

a∈b �ap, it suffices to show that w |= �ap for every a ≤ b.
Now since F is fibered, a ≤ b implies that Ra ⊆ Rb. Hence every Ra successor u
of w is also an Rb successor and we already know that every such u satisfies p.

The following proposition shows that fibered frames do not preserve the
property of group belief from Proposition 9. Proof of the following proposition
can be found in Appendix.

Proposition 17. In every fibered OUR-structure, the group belief of a set of
agents is implied by the conjunction of the individual beliefs of those agents that
have maximal belief sets from the group.

Corollary 18. In every fibered OUR-structure, the group belief of a set of agents
is equivalent to the shared belief of the same set of agents.

106 P. Balbiani et al.

This shows that the notion of group belief as defined above does not make
much sense in the class of fibered frames and the language collapses to a simple
modal language with many modalities. In Sect. 5 we will consider the logic of
a pure modal language of ordered agents with an additional operator reflecting
the order of agents and derive the completeness of the logic w.r.t. the class of
fibered structures.

4 Syntax of GB2

An important property of group belief discussed in [5], which our definition of
group belief lacks, is the following: ‘If p is a group belief of a group G, then it is a
common belief that p is a group belief of the group’. As we saw from the example
this property is not satisfied for GB1. In this section is modify the logic GB1 so
that the desirable properties of GB1 are preserved but additionally group belief
satisfies the above condition. We consider a modal logic GB2 in which shared
belief is replaced by common belief.

4.1 Syntax

Definition 19. The language of the normal modal logic GB2 is L({CJ , GBJ |
J ⊆ A}) where the operators CJ stand for common belief. The axioms are all
classical tautologies, each box satisfies K4 axioms �a(p → q) → (�ap → �aq)
and �ap → �a�ap for every a ∈ A. In addition we have an equilibrium axiom
for common belief:

(equi) : CJp ↔
∧

a∈J

�ap ∧
∧

a∈J

�aCJp

And a new axiom for the group belief operator

GBJp ↔ CJp

for every J ⊆ A. The rules of inference are: modus ponens, substitution and
necessitation for each box modality and additionally an induction rule for the
common believe operator:

(ind) :
� p → ∧

a∈J �a(p ∧ q)
� p → CJq

4.2 Semantics

A semantics for GB2 is provided by OUR-models. Let us first recall the definition
of the transitive closure of a binary relation.

Definition 20. The transitive closure R+ of the relation R is defined in the
following way: xR+y ⇔ (∃x1,∃x2, ...,∃xn)(x = x1 ∧x1Rx2 ∧x2Rx3 ∧ ...∧xnRy)
for some n ∈ ω.

Now we are ready to define the satisfaction of modal formulas on OUR-models.

On Logics of Group Belief in Structured Coalitions 107

Definition 21. For a given OUR-model M = (W, {Ra|a ∈ A, V }), the satisfac-
tion of a formula at a point w ∈ W is defined inductively as follows:
w |= p iff w ∈ V (p);
the boolean cases are standard;
w |= �aφ iff (∀v)(wRav ⇒ v |= φ);
w |= CJφ iff (∀v)(wRv ⇒ v |= φ) where R = (

⋃

a∈J Ra)+;
w |= GBJφ iff (∀v)(wRv ⇒ v |= φ) where R = (

⋃

a∈J Ra)+;
A formula is valid in an OUR-structure if it is satisfiable at every point

w ∈ W under every valuation V . A formula is valid in a class C of OUR-
structures if it is valid in every OUR-structure F ∈ C.

The following result for GB2 shows that some of the good properties of group
belief defined the previous section are preserved for the group belief operator of
GB2 and additionally the latter has the property that ‘If p is a group belief of a
group J then it is a common belief that p is a group belief of the group.’ Proof
is given in Appendix.

Proposition 22

1. No combination of individual beliefs imply group belief;
2. Not all sets of agents form coalitions;
3. If a sentence p is a group belief of a set of agents J then is is common belief

(of the set of agents J) that p is a group belief of the set of agents J ;

4.3 Completeness

The main result for this section is that the logic GB2 is the logic of all OUR-
structures with the given semantics. Observe that completeness for this case can
not be obtained by the technique of Sect. 3.3 since the axiom GBJp ↔ CJp is not
a relational modal definition. The reason is that the transitive closure used for
defining the semantics of the common belief operator is not first order definable.
Nevertheless we are able to prove the completeness of the logic GB2 by a slight
modification of the completeness proof for the logic of common belief [4]. A proof
sketch can be found in Appendix.

Theorem 23. The logic GB2 is sound and complete w.r.t. the class of all OUR-
structures.

5 The Logic of Fibered Structures

In this section we introduce the logic of fibered structures in a simpler language
which does not contain a group belief operator. Instead we have an operator �
which captures the partial order of agents. An analogous approach with geomet-
ric interpretations of the operator � has been introduced in [1]. The set FOR of
all formulas (with typical members denoted φ, ψ, etc.) is now inductively defined
as follows:

– φ, ψ ::= p | ⊥ | ¬φ | (φ ∨ ψ) | �aφ | a � b.

108 P. Balbiani et al.

We define the other Boolean constructs as usual. The formula a
� b is an abbre-
viation for: ¬a � b. We omit parentheses if this does not lead to any ambi-
guity. The notion of a subformula is standard. For all sets x of formulas, let
�ax = {φ : �aφ ∈ x}.

5.1 Semantics

For a given OUR-model M = (W, {Ra | a ∈ A}, V), the satisfaction relation is
defined as follows for formulas of the form a � b:

– w |= a � b iff (∀v)(wRav ⇒ wRbv).

Therefore, in our setting, “a � b” means that a believes everything that b
believes.

We remark that

Lemma 24. The following formulas are satisfied in any world of any model:

– �aφ → �a�aφ,
– a � a,
– a � b ∧ b � c → a � c,
– a � b → (�bφ → �aφ),
– �a⊥ → a � b.

Proof. Since OUR-models are based on transitive relations, formulas of the form
�aφ → �a�aφ are valid. The validity of formulas of the form a � a and a �
b∧ b � c → a � c comes from the fact that the relation of inclusion between sets
is reflexive and transitive. For formulas of the form a � b → (�bφ → �aφ), they
are valid because in an OUR-model M = (W, {Ra | a ∈ A}, V), if w |= a � b
then Ra(w) ⊆ Rb(w) where R(w) denotes the set of all accessible porints from
w. Concerning formulas of the form �a⊥ → a � b, they are valid because in an
OUR-model M = (W, {Ra | a ∈ A}, V), if Ra(w) = ∅ then w |= a � b.

5.2 Axiomatization/Completeness

Let L be the least normal modal logic in our language containing the formulas of
Lemma 24. We want to show that L provides a sound and complete axiomatiza-
tion of the set of all valid formulas. By Lemma24, L is sound. To prove complete-
ness, we must show that every valid formula is in L. It suffices to prove that every
consistent formula is satisfiable. To reach this goal, we use a step-by-step method.
We define a subordination model to be a structure S = (W, {Ra | a ∈ A}, σ)
where W is a nonempty subset of N, Ra is an irreflexive transitive relation on
W and σ is a function assigning to each x ∈ W a maximal L-consistent set σ(x)
of formulas such that

– if �aφ ∈ σ(x) then for all y ∈ W , if xRay then φ ∈ σ(y),
– if a � b ∈ σ(x) then Ra(x) ⊆ Rb(x).

On Logics of Group Belief in Structured Coalitions 109

For all maximal L-consistent sets Γ of formulas, let SΓ = (WΓ , {RΓ
a | a ∈

A}, σΓ) be the structure where WΓ = {0}, RΓ
a = ∅, σΓ (0) = Γ . The reader may

easily verify that

Lemma 25. SΓ is a finite subordination model.

Consider a finite subordination model S′ = (W ′, {R′
a | a ∈ A}, σ′). We define a

�-imperfection in S′ to be a triple of the form (x, a, φ) where x ∈ W ′, a is an
agent and φ is a formula such that �aφ
∈ σ′(x) and for all y ∈ W , if xR′

ay then
φ ∈ σ′(y).

Lemma 26. Let (x, a, φ) be a �-imperfection in S′. Let Γ be a maximal L-
consistent set of formulas such that �aσ′(x) ⊆ Γ and φ
∈ Γ . Let y be a new
nonnegative integer. Let S = (W, {Ra | a ∈ A}, σ) be the structure where

– W = W ′ ∪ {y},
– zRbt iff one of the following conditions holds:

• z ∈ W ′, t ∈ W ′ and zR′
bt,

• z ∈ W ′ \ {x}, t = y, zR′
bx and a � b ∈ σ′(x),

• z = x, t = y and a � b ∈ σ′(x),
– σ(z) = if z = y then Γ else σ′(z).

Then, S is a finite subordination model. We shall say that S is the local comple-
tion of S′ with respect to the �-imperfection (x, a, φ).

We define a �-imperfection in S′ to be a triple of the form (x, a, b) where x ∈ W ′

and a, b are agents such that a � b
∈ σ′(x) and R′
a(x) ⊆ R′

b(x).

Lemma 27. Let (x, a, b) be a �-imperfection in S′. Let Γ be a maximal L-
consistent set of formulas such that �aσ′(x) ⊆ Γ . Let y be a new nonnegative
integer. Let S = (W, {Ra | a ∈ A}, σ) be the structure where

– W = W ′ ∪ {y},
– zRct iff one of the following conditions holds:

• z ∈ W ′, t ∈ W ′ and zR′
ct,

• z ∈ W ′ \ {x}, t = y, zR′
cx and a � c ∈ σ′(x),

• z = x, t = y and a � c ∈ σ′(x),
– σ(z) = if z = y then Γ else σ′(z).

Then, S is a finite subordination model. We shall say that S is the local comple-
tion of S′ with respect to the �-imperfection (x, a, b).

Let (x0, a0, φ0), (x1, a1, b1), (x2, a2, φ2), (x3, a3, b3), . . . be an enumeration of (N×
A × FOR) ∪ (N× A × A) in which each item appears infinitely many times. For
all maximal L-consistent sets Γ of formulas, let T 0 = (W 0, {R0

a | a ∈ A}, σ0),
T 1 = (W 1, {R1

a | a ∈ A}, σ1), etc., be the infinite sequence of subordina-
tion models defined as follows. Let T 0 = SΓ . Let n be a nonnegative integer.
Given T 2×n, let T 2×n+1 be the local completion of T 2×n with respect to the �-
imperfection (x2×n, a2×n, φ2×n) when (x2×n, a2×n, φ2×n) is a �-imperfection of
T 2×n. Otherwise, let T 2×n+1 be T 2×n. Now, let T 2×n+2 be the local completion

110 P. Balbiani et al.

of T 2×n+1 with respect to the �-imperfection (x2×n+1, a2×n+1, b2×n+1) when
(x2×n+1, a2×n+1, b2×n+1) is a �-imperfection of T 2×n+1. Otherwise, let T 2×n+2

be T 2×n+1. Now, we put Tω = (Wω, {Rω
a | a ∈ A}, σω) to be the subordination

model defined as follows:

– Wω =
⋃{Wn: n is a nonnegative integer},

– if x ∈ Wm for some nonnegative integer m and y ∈ Wn for some nonnegative
integer n then xRω

a y iff xRm+n
a y,

– if x ∈ Wn for some nonnegative integer n then σω(x) = σn(x).

The reader may easily verify that Tω has no imperfection. The result that
emerges from the discussion above is:

Proposition 28. The following conditions are equivalent for every formula φ:

1. φ is in L.
2. φ is valid.

Proof. 1. ⇒ 2.: By Lemma 24.
2. ⇒ 1.: Suppose φ
∈ L. Let Γ be a maximal L-consistent set of formulas such
that φ
∈ Γ . Let Tω = (Wω, {Rω

a | a ∈ A}, σω) be the subordination model
associated to Γ as above. Let M = (W, {Ra | a ∈ A}, V) be the model defined
as follows:

W = Wω, xRay iff xRω
a y, V (p) = {x | p ∈ σω(x)}.

By induction on ψ, the reader may easily verify that for all x ∈ W , x � ψ iff
ψ ∈ σω(x). Since φ
∈ Γ , therefore 0
� φ. Consequently, φ is not valid.

6 Summary and Future Work

In this preliminary study we have explored different ways in which group belief
might be modeled when a certain structure is imposed on the set of agent.
Group belief in the resulting logics displays different properties, suggesting that
the logics may have different types of application - a topic for further study in
the future.

As we have seen both logics, GB1 and GB2, collapse to standard multi-modal
languages when a belief dependency axiom is added. This shows that on a seman-
tical level there is natural correspondence between the GB1≤ and GB2≤ and the
logic of all fibered structures from Sect. 5. This suggests the possibility of syn-
tactic connections between the three logics which we aim to explore in future
work.

On Logics of Group Belief in Structured Coalitions 111

References

1. Balbiani, P., Gasquet, O., Schwarzentruber, F.: Agents that look at one another.
Logic J. IGPL 21(3), 438–467 (2013)

2. Dunin-K ↪eplicz, B., Sza�las, A.: Epistemic profiles and belief structures. In: Jezic,
G., Kusek, M., Nguyen, N.-T., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2012.
LNCS (LNAI), vol. 7327, pp. 360–369. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-30947-2 40

3. Dunin-Keplicz, B., Verbrugge, R.: Teamwork in Multi-Agent Systems: A Formal
Approach, 1st edn. Wiley, New York (2010)

4. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning About Knowledge. MIT
Press, Cambridge (1995)

5. Gaudou, B., Herzig, A., Longin, D., Lorini, E.: On modal logics of group belief. In:
Herzig, A., Lorini, E. (eds.) The Cognitive Foundations of Group Attitudes and
Social Interaction. SPS, vol. 5, pp. 75–106. Springer, Heidelberg (2015). doi:10.
1007/978-3-319-21732-1 4

6. Gilbert, M.: Modelling collective belief. Synthese 73(1), 185–204 (1987)
7. List, C., Pettit, P.: Group Agency: The Possibility, Design and Status of Corporate

Agents. OUP, Cambridge (2011)
8. Lorini, E., Longin, D., Gaudou, B., Herzig, A.: The logic of acceptance: grounding

institutions on agents’ attitudes. J. Logic Comput. 19(6), 901–940 (2009)
9. Quinton, A.: Social objects. In: Proceedings of the Aristotelian Society, pp. 1–27

(1976)
10. Tuomela, R.: Group beliefs. Synthese 91(3), 285–318 (1992)
11. Uridia, L., Walther, D.: Completeness via modal definitions. In: Proceedings of

TBILLS16. (submitted to)

http://dx.doi.org/10.1007/978-3-642-30947-2_40
http://dx.doi.org/10.1007/978-3-642-30947-2_40
http://dx.doi.org/10.1007/978-3-319-21732-1_4
http://dx.doi.org/10.1007/978-3-319-21732-1_4

A Three-Value Abstraction Technique
for the Verification of Epistemic Properties

in Multi-agent Systems

Francesco Belardinelli(B) and Alessio Lomuscio(B)

Department of Computing, Imperial College London, London, UK
belardinelli@ibisc.fr, a.lomuscio@imperial.ac.uk

Abstract. We put forward an abstraction technique, based on a three-
value semantics, for the verification of epistemic properties of agents
participating in a multi-agent system. First we introduce a three-value
interpretation of epistemic logic, based on a notion of order defined on
the information content of the local states of each agent. Then, we use
the three-value semantics to introduce an abstraction technique to verify
epistemic properties of agents in infinite-state multi-agent systems.

Keywords: Logics in multi-agent systems · Epistemic logic · Formal
verification by model checking

1 Introduction

Modal logics for knowledge representation and reasoning, including epistemic
logics, have been proved to be a valuable formal tool for the modelling and analy-
sis of multi-agent systems [15,21,29]. These logical languages typically include
an operator Ki to represent the knowledge of an agent i, as well as possibly
modalities for collective, common and distributed, knowledge. In combination
with techniques for automated verification by model checking, epistemic logics
have been used to model and verify complex multi-agents scenarios [26], among
which communication and security protocols [6], auction-based mechanisms [5],
business process workflows [4,20].

The application of methods from knowledge representation and reasoning to
the verification of multi-agent systems (MAS) depends crucially on the devel-
opment of efficient model checking methodologies and algorithms. In particular,
abstraction techniques are key to tackle the state-space explosion problem [9,23].
Moreover, whenever agents manipulate infinite data types (e.g., natural numbers,
integers, reals, lists, arrays, etc.), finite abstractions are often the only chance to
obtain a decidable model checking problem [1,4,13].

Inspired by the considerations above, in this paper we put forward an abstrac-
tion technique, based on a three-value semantics, for the verification of epistemic
properties of agents participating in a MAS. Specifically, the contribution of the
paper is twofold. Firstly, we introduce a three-value interpretation of epistemic
c© Springer International Publishing AG 2016
L. Michael and A. Kakas (Eds.): JELIA 2016, LNAI 10021, pp. 112–126, 2016.
DOI: 10.1007/978-3-319-48758-8 8

A Three-Value Abstraction Technique for the Verification 113

logic, which is based on a partial order ≤ defined on the information content
of the local states of each agent. According to this intuition, agent i considers
epistemically possible not just states that are indistinguishable to her, i.e., in
which i’s local state is identical, but also states comparable by order ≤. We
illustrate the formal machinery with examples from agent-based systems, par-
ticularly infinite-state systems that are not directly amenable to standard model
checking techniques. Secondly, we use the three-value semantics to introduce an
abstraction technique to model check epistemic properties of agents in infinite-
state MAS. As a result, our contribution is meant to advance the state-of-the-art
both in the theory of epistemic logic and the verification of MAS.

Related works. The area of epistemic logics has reached such a level of matu-
rity nowadays that it is extremely difficult to provide an exhaustive account.
Here we only mention the contributions most closely related to the verifica-
tion of multi-agent systems by abstraction. Techniques to model check epis-
temic properties of agents in MAS have witnessed a growing interest in recent
years, with a number of tools made publicly available [18,22,27]. This work pur-
sues the same research direction, but we target explicitly infinite-state MAS, for
which the verification task is considerably more complex. Abstraction techniques
for epistemic properties of MAS have appeared in [10,11], but the underlying
logic is two-valued, and therefore only its “universal” fragment is preserved by
the abstraction procedure. Instead, here we adopt the abstraction method via
under- and over-approximations, which has been applied mainly to the verifica-
tion of simple transitions systems against temporal properties [2,7,19,28]. Previ-
ous contributions on three-value abstractions for epistemic logics have appeared
in [14,20,24,25]. However, the settings and the three-value semantics are differ-
ent w.r.t. the account here put forward. Specifically, in [14] there is no notion
of under- and over-approximation, as the three-value semantics follows [16,17].
This implies that only (universal and existential) fragments of the original lan-
guage are preserved. Hence, the class of verifiable specifications is somewhat
limited, while here we are able to verify the full language in principle. Further,
in [24,25] the proposed three-value semantics is not a conservative extension of
the standard two-value semantics for epistemic logic, in particular no analogue to
Proposition 1 below can be proved. As a consequence, verification results avail-
able for the three-value semantics do not immediately transfer to the two-
value semantics. Finally, differently from [20], we ground under- and over-
approximations on a relation ≤ of order between local states, which provides
guidance as to the definition of the abstract system, while making the abstrac-
tion process more transparent in our opinion.

Scheme of the paper. In Sect. 2 we introduce the multi-agent epistemic logic
K that includes operators for distributed and common knowledge, and we pro-
vide K with a three-value semantics based on an order ≤ on the local states of
each agent. We illustrate the formal machinery with examples of (infinite-state)
multi-agent systems. In Sect. 3 we develop an agent-based abstraction technique
that we prove to preserve the three-value interpretation of formulas in K. We
conclude by discussing applications of these results to the verification of epis-
temic properties of infinite-state MAS.

114 F. Belardinelli and A. Lomuscio

2 Preliminaries

In this section we introduce the formalism of three-value epistemic logic. First,
we present the language of multi-agent epistemic logic, including modalities for
collective knowledge. Then, we provide this logic with a Kripke-style semantics,
which allows to compare the local information possessed by agents, thus inducing
a natural three-value semantics suitable for abstractions.

In the following Ag = {1, . . . , m} is a set of indexes for agents and AP is
a set of atomic propositions. Also, we denote the i + 1-th element of a tuple v
as vi.

The Language. To reason about multi-agent systems and to describe properties
pertaining to the agents’ knowledge, we make use of the multi-modal epistemic
logic K defined by the following BNF:

ϕ ::= q | ¬ϕ | ϕ → ϕ | CΓ ϕ | DΓ ϕ

where q ∈ AP and Γ ⊆ Ag.
The informal meaning of formulas CΓ ϕ is that “ϕ is common knowledge in

group Γ”; while DΓ ϕ is read as “ϕ is distributed knowledge in group Γ”. As
customary, we can introduce individual knowledge formulas Kiϕ as shorthands
for either C{i}ϕ or D{i}ϕ. Also, we omit group Γ whenever Γ = Ag. Notice that
K is not to be confused with the homonymous normal modal logic.

The Models. To provide a formal interpretation to the epistemic formulas in
K, we introduce a notion of agent and interpreted systems.

Definition 1 (Agent). Given a set Ag of agent indexes, an agent is a tuple
i = 〈L,Act, Pr, τ〉 such that

– L is the (possibly infinite) set of local states with a partial order ≤ on L;
– Act is the set of actions;
– Pr : L → (2Act \ {∅}) is the protocol function;
– τ : L×ACT → 2L is the local transition function, where ACT = Act1 ×· · ·×

Act|Ag| is the set of joint actions, such that τ(l, a) is defined iff ai ∈ Pr(l).

The notion of agent in Definition 1 is typical of the literature on interpreted
systems [15,27]: each agent is assumed to be situated in some local state, and
to perform the actions in Act according to protocol Pr. The evolution of her
local state is determined by the transition function τ . Differently from the state-
of-the-art, we also consider a partial order ≤ on local states, i.e., a reflexive,
antisymmetric, and transitive relation on L. Intuitively, l ≤ l′ means that in
local state l′ agent i has at least as much information as in l. The partial order
≤ is key to approximate the knowledge of agent i, whenever computing the
exact information of i is too costly computationally, not dissimilarly to the use
of over- and under-approximations in system verification [2,28]. Further, the
standard notion of agent appearing in the literature can be seen as a particular

A Three-Value Abstraction Technique for the Verification 115

case of Definition 1, in which the partial order ≤ is the identity. If this is the
case, we say that the agent is standard.

Given a set Ag of agents, a global state is a tuple s = 〈l1, . . . , l|Ag|〉 of local
states, one for each agent in the system. We denote the set L1 × . . .×L|Ag| of all
global states as G. We now introduce interpreted systems to describe formally
the interactions of agents in a multi-agent environment.

Definition 2 (IS). An interpreted system is a tuple M = 〈Ag, I, τ,Π〉 where

– every i ∈ Ag is an agent;
– I ⊆ G is the set of (global) initial states;
– τ : G × ACT → 2G is the global transition function such that τ(s, a) =

τ1(s1, a) × . . . × τ|Ag|(s|Ag|, a);
– Π : G × AP → {tt,ff,uu} is the labelling function.

According to Definition 2, an interpreted system describes the evolution of a
group Ag of agents from any initial state in I, according to the global transition
function τ . By the constraint on each τi, τ(s, a) is defined iff ai ∈ Pr(si) for
every i ∈ Ag. In the following we also make use of the local transition relation
→ such that l → l′ iff l′ ∈ τ(l, a) for some a ∈ ACT , as well as its reflexive
and transitive closure →∗. A global transition relation → and its reflexive and
transitive closure →∗ are defined similarly on global states in G. Then, the set S
of reachable states is introduced as the closure of I under →∗, that is, s ∈ S iff
s0 →∗ s for some initial s0 ∈ I. Hereafter we assume that only reachable states
count as epistemic alternatives for the agents in the interpreted system. That
is, states that are not reachable in the system are not considered epistemically
possible by the agents. This is in line with current accounts of IS [15,27].

Atomic propositions in AP can be assigned value true (tt), false (ff), or
undefined (uu). This last value can be used to describe situations in which the
truth of an atom is not set, or it is unknown, or underspecified. We will see
examples of these instances at the end of the section. We say that the truth
value t is defined whenever t ∈ {tt,ff}. If all agents in Ag are standard and the
truth value of all atoms is defined, then we say that the IS is standard as well.

In the two-value semantics for epistemic logic the interpretation of knowl-
edge formulas is normally given by means of an individual indistinguishability
relation ∼i on global states, which is defined by the identity of local states,
that is, s ∼i s′ iff si = s′

i [15]. Here we define over-approximation Rmay
i and

under-approximation Rmust
i of relation ∼i by leveraging on the fact that we

consider the partial order ≤ on local states, rather than simply their identity.
Specifically, for each agent i ∈ Ag, we define relation Rmay

i on global states such
that Rmay

i (s, s′) iff for some reachable s′′ ∈ S, s′′
i ≥ si and s′′

i ≥ s′
i. Further,

Rmust
i (s, s′) iff s′

i ≤ si. Notice that in particular Rmust
i (s, s′) implies Rmay

i (s, s′).
Intuitively, Rmay

i can be thought of as over-approximating the knowledge of
agent i. Indeed, states s and s′ are related by Rmay

i if the information of agent
i in s and s′ can be consistently combined in some reachable state s′′

i (which
is indeed an over-approximation of both si and s′

i); while Rmust
i (s, s′) holds iff

s′
i under-approximates the information contained in si. We remark that the use

116 F. Belardinelli and A. Lomuscio

of over- and under-approximations Rmay
i and Rmust

i is customary in multi-valued
logics and abstraction for transition systems [2,28]. Here we apply approxima-
tions to epistemic logic by grounding them on an order defined on information
states.

To interpret common and distributed knowledge, for x ∈ {may,must}, we
consider the intersection RDx

Γ =
⋂

i∈Γ Rx
i and the transitive closure RCx

Γ =
(
⋃

i∈Γ Rx
i)+ of the union of accessibility relations. Then, RDx

Γ (s, s′) holds iff
Rx

i (s, s′) holds for all i ∈ Γ ; while RCx
Γ (s, s′) is the case iff for some sequence

s0, . . . , sn of states, (i) s0 = s and sn = s′; and (ii) for every k < n, Rx
i (sk, sk+1)

for some i ∈ Γ . Finally, notice that Rmay
i and Rmust

i are both reflexive and Rmay
i

is also symmetric. However, they are not transitive in general, and therefore
they are not equivalence relations. As a result, relations Rmay

i and Rmust
i do

not define an S5-modality. This is to be expected and not really an issue in the
present context, as we are interested in truth of formulas in a model as opposed to
validity in a class of models. In particular, if the interpreted system is standard,
then Rmay

i = Rmust
i is an equivalence relation and we are back to the standard

indistinguishability relation ∼i of the two-value semantics for epistemic logic.
Finally, we introduce a three-value interpretation of epistemic formulas in

the logic K.

Definition 3 (Satisfaction). The three-value satisfaction relation |=3 for an
IS M , state s ∈ S, and formula φ is inductively defined as follows:

((M, s) |=3 q) = t iff Π(s, q) = t, for t ∈ {tt, ff}
((M, s) |=3 ¬φ) = tt iff ((M, s) |=3 φ) = ff
((M, s) |=3 ¬φ) = ff iff ((M, s) |=3 φ) = tt
((M, s) |=3 φ → φ′) = tt iff ((M, s) |=3 φ) = ff or ((M, s) |=3 φ′) = tt
((M, s) |=3 φ → φ′) = ff iff ((M, s) |=3 φ) = tt and ((M, s) |=3 φ′) = ff

((M, s) |=3 CΓ ϕ) = tt iff for all s′ ∈ S, RCmay
Γ (s, s′) implies ((M, s′) |=3 ϕ) = tt

((M, s) |=3 CΓ ϕ) = ff iff for some s′ ∈ S, RCmust
Γ (s, s′) and ((M, s′) |=3 ϕ) = ff

((M, s) |=3 DΓ ϕ) = tt iff for all s′ ∈ S, RDmay
Γ (s, s′) implies ((M, s′) |=3 ϕ) = tt

((M, s) |=3 DΓ ϕ) = ff iff for some s′ ∈ S, RDmust
Γ (s, s′) and ((M, s′) |=3 ϕ) = ff

In all other cases, the value of φ is undefined (uu).

By Definition 3 we can derive the satisfaction clauses for individual knowledge
formulas as follows:

((M, s) |=3 Kiϕ) = tt iff for all s′ ∈ S, Rmay
i (s, s′) implies ((M, s′) |=3 ϕ) = tt

((M, s) |=3 Kiϕ) = ff iff for some s′ ∈ S, Rmust
i (s, s′) and ((M, s′) |=3 ϕ) = ff

Intuitively, agent i knows φ at state s iff in all states s′ that are epistemi-
cally compatible with s (in the sense that the information of s and s′ can be
consistently combined in a third reachable state s′′), φ holds at s′. This can be
seen as a conservative notion of knowledge, as φ has to be true in all such states
s′, in which i might have strictly more information than in s. Symmetrically, for
Kiφ to be false at s, φ has to be false in some state s′ in which i has at most as
much information as in s.

A Three-Value Abstraction Technique for the Verification 117

We remark that the logic K does not contain temporal operators, and there-
fore in K we cannot describe notions pertaining to the evolution of knowl-
edge, nor the knowledge of temporal facts. Nonetheless, we provided a dynamic
account of agents and interpreted systems, which is apparent in Definition 3 as
the interpretation of epistemic formulas is restricted to the set S of reachable
states. Indeed, in line with the standard semantics of interpreted systems [15,27],
we assume that agents consider epistemically possible only the reachable states
in S, and therefore the dynamics of IS is accounted for also in the semantics of
static epistemic properties. In Sect. 3 we will see that this has a major impact
on the definition of abstractions.

The two-value satisfaction relation |=2 for standard IS can be derived from
|=3 by considering clauses for tt only, as well as identity of local states and classic
negation (clauses for propositional connectives are immediate and thus omitted):

(M, s) |=2 q iff Π(s, q) = tt
(M, s) |=2 CΓ ϕ iff for all s′ ∈ S, s ∼C

Γ s′ implies (M, s′) |=2 ϕ
(M, s) |=2 DΓ ϕ iff for all s′ ∈ S, s ∼D

Γ s′ implies (M, s′) |=2 ϕ

An IS M satisfies a formula ϕ, or M |=2 ϕ, iff for all states s ∈ S, (M, s) |=2 ϕ.
Similarly, (M |=3 ϕ) = tt (resp. ff) iff for all (resp. some) s ∈ S, ((M, s) |=3

ϕ) = tt (resp. ff). In all other cases, (M |=3 ϕ) = uu.
We now state the model checking problem for this setting.

Definition 4 (Model Checking Problem). Given an IS M and a formula φ
in K, determine whether M |= φ.

Since we defined agents on possibly infinite sets of local states, interpreted
systems are really infinite-state systems and the model checking problem is unde-
cidable in general. In Sect. 3 we develop abstraction techniques to tackle the
model checking problem. For the time being, we prove the following auxiliary
result, which shows that for standard IS the two-value and three-value semantics
for K coincide.

Proposition 1. In every standard IS M , for every state s and formula φ in K,

((M, s) |=3 φ) = tt iff (M, s) |=2 φ

((M, s) |=3 φ) = ff iff (M, s) �|=2 φ

Proof. The proof is by induction on φ, the interesting cases concern the knowl-
edge formulas. We prove the case for φ = Kiϕ. We remarked above that in
standard IS the distinction between over- and under-approximations collapse,
and Rmay

i = Rmust
i =∼i. Hence, ((M, s) |=3 φ) = tt iff for all s′ ∈ S, Rmay

i (s, s′)
implies ((M, s′) |=3 ϕ) = tt. Since Rmay

i (s, s′) iff s ∼i s′ and by induction
hypothesis, the above is equivalent to s ∼i s′ implies (M, s′) |=2 ϕ, for all
s′ ∈ S, that is, (M, s) |=2 φ. The case for ((M, s) |=3 Kiϕ) = ff is symmetric;
while the inductive cases for φ = CΓ ϕ and φ = DΓ ϕ are proved similarly.

118 F. Belardinelli and A. Lomuscio

By Proposition 1 on standard IS the three-value semantics for K is a con-
servative extension of the typical two-value semantics. This result has a major
impact on the abstraction procedure put forward in Sect. 3.

We conclude this section with two examples of interpreted systems. In partic-
ular, we consider two types of systems: (i) systems with a natural partial order
defined on the local states of agents, and (ii) infinite-state IS for which we will
define finite, three-value abstractions in Sect. 3.

Example 1. We first consider an example of an interpreted system with a partial
order defined on each agent’s local states. We introduce a variant of the muddy
children puzzle [15], in which each child sees some of the other children, but she
might not see all of them, and she does not know how many children are exactly
taking part in the puzzle. Hence, we assume that the local state of child i is a
tuple 〈s1, . . . , si−1, si+1, . . . , s|Ag|〉 that registers whether any other child j �= i
is either clean (0), muddy (1), or unknown (−). We define an order ≤ on local
states such that l ≤ l′ iff l′j = lj for every child j �= i with lj �= −.

Now consider a global state s = (0, 1,−), in which child 1 sees that child
2 is muddy, while she has no information on 3. In particular, child 1 knows
that, provided that child 2 is actually active in the puzzle (i.e., 2’s local state is
different from −), then she is not muddy, but 1 does not know this about child
3. Formally, we can check that (s |= K1(active2 → m2)) = tt as for all states s′,
Rmay

1 (s, s′) implies that s′
2 ∈ {1,−}, and therefore 2 is muddy whenever she is

active. On the other hand, we have that (s |= K1(active3 → m3)) �= tt, as for
state s′′ = (0, 1, 0), Rmay

1 (s, s′′) holds, that is, child 3 is active but clean. Also,
(s |= K1(active3 → m3)) �= ff, as for every s′, Rmust

1 (s, s′) implies s′
3 = −, i.e.,

active3 → m3 is vacuously true. As a result, (s |= K1(active3 → m3)) = uu.
By reasoning similarly, we can check that (s |= D(active2 → m2)) = tt, while
(s |= C(active3 → m3)) = uu.

Furthermore, we consider the impact of the system’s evolution on the epis-
temic properties of agents. In the classic muddy children puzzle, the father
announces that at least one child is muddy. As a consequence, no child con-
siders state (0, 0, 0) epistemically possible any longer. In particular, after the
father’s announcement, at state v = (1, 0, 0) child 1 knows that she is muddy,
as for all reachable states v′, Rmay

1 (v, v′) implies v1 = 1. Hence, it is the case
that (v |= K1m1) = tt. On the other hand, for state u = (1, 0,−), we have
that (u |= K1m1) �= tt, as Rmay

1 (u, (0, 0, 1)) and ((0, 0, 1) |= m1) = ff. Further,
(u |= K1m1) �= ff as, if Rmust

1 (u, u′), then u′
1 = 1 because at least one child has

to be muddy, and therefore (u′ |= m1) �= ff. As a result, (u |= K1m1) = uu, that
is, child 1 is not able to see any other muddy child, but she cannot infer that she
is muddy, as she is unsure about 3. Most importantly, the epistemic properties
of agents depends essentially on the states reachable in the system’s execution.

Example 2. The second example we analyse hinges on a standard IS, but with
an infinite number of states. In Sect. 3 we will show how a finite, three-value
abstraction can be defined on such infinite-state IS, in order to make the model
checking problem decidable.

A Three-Value Abstraction Technique for the Verification 119

In this scenario we consider agents 1 and 2, whose local states are represented
by integer variables x and y respectively, taking values in Z, together with the
environment e. Agents 1 and 2 can increase or decrease the value of their integers
at any time, but in selected cases the joint action takes effect only if they increase
or decrease their values simultaneously. Formally, we define agents 1 and 2 so that
(i) L1 = L2 = Z; (ii) Act1 = Act2 = {inc, dec}; and (iii) Pr1(z) = Pr2(z) = Act1
for all z ∈ Z. Moreover, as regards the environment e, we have Le = {(x, y) |
x, y ∈ Z}; and Acte = {ok, no} with Pre((x, y)) = {ok} iff x = −4 ⇔ y = −2
or x = 5 ⇔ y = 3; Pre((x, y)) = {no}, otherwise. Then, the transition function
τ1 is given as follows. If x �= −4, x �= 5, and a = (a1, a2, ok), then the updated
value x′ is obtained by applying the increase or decrease action a1. Further, if
x = −4 or x = 5, and a1 �= a2 or a3 = no, then the updated value x′ is equal
to x; else, if a = (a1, a2, ok) for a1 = a2, then the updated value x′ is obtained
by applying the corresponding action a1. The definition of τ2 is symmetric for
y = −2 and y = 3, and it is given as follows:

τ2(y, (a1, a2, ok)) = a2(y) for y �= −2 and y �= 3;
τ2(y, (a1, a2, a3)) = y for y = −2 or y = 3, and a3 = no or a1 �= a2;
τ2(y, (a1, a2, ok)) = a2(y) for y = −2 or y = 3, and a1 = a2.

Intuitively, agents 1 and 2 freely increment and decrement their local variable,
but synchronise in states (−4,−2) and (5, 3) to either increment or decrement
simultaneously. Since each agent can only view her local variable, the environ-
ment e acts as to guarantee their synchronisation. In particular, the environ-
ment’s transition function τe is given as follows:

τe((x, y), (a1, a2, ok)) = (a1(x), a2(y)) for (x, y) �= (−4,−2) and (x, y) �= (5, 3);
τe((x, y), (a1, a2, a3)) = (x, y) for (x, y) = (−4,−2) or (x, y) = (5, 3),

and a3 = no or a1 �= a2;
τe((x, y), (a1, a2, ok)) = (a1(x), a2(y)) for (x, y) = (−4,−2) or (x, y) = (5, 3),

and a1 = a2.

Finally, we introduce the interpreted system M on the set Ag = {1, 2, e} of
agents, starting from initial state (0, 0).

By the definition of M , we can check informally that if x ≤ 3, then agent
1 knows that y ≤ 3, that is, the specification (x ≤ 3) → K1(y ≤ 3) is true
in M . Moreover, specification (x ≤ 3) → D{1,2}(y ≤ 3) holds as well. However,
to verify such formulas at some state s = (x, y) such that s |= x ≤ 3 we have
in principle to check that y ≤ 3 on an infinite number of states s′ = (x, y′),
for y′ ∈ Z, which are indistinguishable for agent 1. As a consequence, model
checking epistemic specification on infinite-state IS is undecidable in principle.
In the case in hand we can reason about the particular protocol and specification
considered, and reach a conclusive answer. However, our aim is to develop an
abstraction-based general-purpose verification procedure that does not rely on
system-specific features and can be applied as generally as possible.

120 F. Belardinelli and A. Lomuscio

3 Abstraction

In this section we introduce an abstraction-based technique for the verification
of epistemic properties on standard, possibly infinite interpreted systems. Specif-
ically, for every agent i ∈ Ag in a standard IS M , we define an abstract agent iA

and the corresponding abstract IS MA. Then, we prove that any formula φ in
K is preserved by the abstraction, that is, if φ receives a defined truth value in
MA, then this value is preserved in M . As a result, given an infinite-state stan-
dard IS M , we can define a verification procedure by model checking a suitable
finite-state abstraction MA. However, the abstraction MA of a standard IS M
is not necessarily standard, and some specification φ can receive an undefined
truth value in MA. Therefore, the outlined procedure defines a partial verifica-
tion technique, which is to be expected given that model checking infinite-state
systems is undecidable in the most general instance.

To define abstraction MA we introduce some preliminary notions. Given a
standard agent i ∈ Ag, we say that a set U = {U1, . . . , Uk} ⊆ 2L \ {∅} of
non-empty subsets U ⊆ L of local states is a cover of L iff for every l ∈ L,
l ∈ U for some U ∈ U . Then, we define a partial order ≤ on sets U,U ′ in the
cover U so that U ≤ U ′ iff U ′ ⊆ U . Intuitively, a set U ′ of local states contains
more information than U iff U ′ is a subset of U . This is in line with the informal
meaning of local states as epistemic alternatives: if agent i considers possible less
epistemic alternatives, then she has more information about what the current
state actually looks like. In the limit case, for U a singleton, i knows exactly the
current state.

Given a cover U for a standard agent i ∈ Ag, we define the abstraction iA.

Definition 5 (Abstract Agent). Given a standard agent i = 〈L,Act, Pr, τ〉
and a cover U , we introduce the abstraction iA = 〈LA, ActA, P rA, τA〉 such that

– LA = U with partial order ≤ such that U ≤ U ′ iff U ′ ⊆ U ;
– Act = ActA;
– for every U ∈ LA, PrA(U) =

⋃

l∈U Pr(l);
– U ′ ∈ τA(U, a) iff for some l ∈ U , l′ ∈ U ′, we have l′ ∈ τ(l, a).

Notice that the size of an abstract agent iA, given as the cardinality |LA| of
the set LA of her abstract local states, is finite although the set L of concrete
local states might be infinite. Indeed, while in such a case cover LA must contain
at least one subset U ⊆ L with infinitely many local states, the size |LA| of LA

given as its cardinality is finite. Further, an action a is enabled in abstract state
U iff it is enabled in some local state in U ; while a transition U −→ U ′ holds iff
l −→ l′ for some local states l ∈ U and l′ ∈ U ′. Observe that the definition of the
abstract transition function τA is in line with similar notions for the abstraction
of simple transition systems [8]. As a consequence, it is also prone to some of the
related issues. In particular, the abstract transition might generate reachable
states for which there is no corresponding concrete transition and reachable
states, that is, the abstract transition might be spurious. Hereafter, we impose

A Three-Value Abstraction Technique for the Verification 121

constraints on our abstract agents and interpreted systems to avoid spurious
transitions.

Next we define a kind of simulation relation between the global states built
on the concrete and abstract agents respectively, and say that s′ ∈ GA simulates
s ∈ G, or s
 s′, iff for every i ∈ Ag, si ∈ s′

i. Notice that, since each Ui is a
cover, for every s ∈ G, s
 s′ for some s′ ∈ GA.

We now introduce the abstraction MA of a standard IS M , defined on
abstract agents iA ∈ AgA, as follows.

Definition 6 (Abstract IS). Given a standard IS M = 〈Ag, I, τ,Π〉, the
abstract IS MA = 〈AgA, IA, τA,ΠA〉 is such that

– AgA is the set of abstract agents iA, for each agent i ∈ Ag;
– IA = {s′ ∈ GA | s
 s′ for some s ∈ I};
– τA is defined as in Definition 2;
– for every s′ ∈ GA, for t ∈ {tt,ff}, ΠA(s′, p) = t iff for all s ∈ G, s
 s′

implies Π(s, p) = t; otherwise, ΠA(s′, p) = uu.

Since each Ui is a cover, the set IA of abstract initial states is non-empty
whenever I is. Further, the global abstract transition function τA is indeed the
composition of the various local τA

i , as per Definition 2; while an atom is either
true or false at abstract state s′ iff it is such in all concrete states simulated by
s′, otherwise it is undefined.

Above we mentioned that the abstract transition function can introduce
reachable states in the abstract IS MA, for which there is no corresponding
concrete state reachable in M . In particular, in MA an agent might consider
reachable epistemic alternatives, that are not really such in M . This remark
motivates the introduction of the following notion.

Definition 7 (Admissibility). A set AgA of abstract agents is admissible iff
for every s′ ∈ GA and s, t ∈ G, if s
 s′ and t
 s′ then s →+ t.

Intuitively, this condition on IS says that any state simulated by s′ ∈ GA is
eventually reachable from any other state simulated by s′. Then, an abstraction
MA of an IS is admissible iff all its abstract agents in AgA are.

By this notion of admissibility we are able to prove the following key result,
which intuitively states that the epistemic relations in IS M and abstraction MA

commute with the simulation relation
.

Lemma 1. Let M be a standard IS with admissible abstraction MA. If s
 s′

and RAmust
i (s′, t′), then s ∼i t for some t ∈ S such that t
 t′. Moreover, if

s
 s′ and s ∼i t, then RAmay
i (s′, t′) for some t′ such that t
 t′.

Proof. Suppose that s
 s′. Then, RAmust
i (s′, t′) iff t′i ≤ s′

i, iff s′
i ⊆ t′i. In

particular, for l = si, s
 s′ and s′
i ⊆ t′i imply l ∈ t′i. Further, if t′ ∈ IA is initial,

then either t
 t′ for some initial t ∈ I such that ti = l, and therefore s ∼i t for
t ∈ S; or for some t0 ∈ I, t0
 t′, but t0i �= l. However, we assumed that MA is

122 F. Belardinelli and A. Lomuscio

admissible, that is, t
 t′ is reachable from t0
 t′. Hence, we obtain a reachable
state t ∈ SA such that t
 t′ and ti = l = si, i.e., s ∼i t.

On the other hand, suppose that t′ is reachable inMA via execution t′0 → . . . →
t′k such that t′0 ∈ IA and t′k = t′. By induction on k, we can prove that there exists
an execution t0, . . . , tk

′
in M , for k′ ≥ k, and integers j′ ≤ k′ such that tj
 tj

′
and

tk
′

i = l. The case for k = 0, that is, t′ ∈ IA, goes as above. Hence suppose that the
induction hypothesis holds for k − 1. Further, we have t′k−1 → t′k. In particular,
v → v′ for some v
 t′k−1 and v′
 t′k. Since MA is admissible, v is reachable
from tk

′−1 and tk
′
is reachable from v′. Hence, by reasoning similarly to the case for

k = 0, we obtain an execution t0 → . . . → tk
′
in M such that tk
 tk

′
and tk

′
i = l.

In particular, for t = tk
′ ∈ S, we have s ∼i t and t
 t′.

Finally, suppose that s ∼i t, that is, si = ti. Hence, for t′i = s′
i we have

t′i ⊆ t′i and t′i ⊆ s′
i. Moreover, for every j �= i, there exists Uj such that tj ∈ Uj .

Define t′ = 〈U0, . . . , Ui−1, ti, Ui+1, . . . , U|Ag|〉. By Definition 6 abstract state t′ is
reachable in MA by the same sequence of joint actions as t in M . Hence, t′ ∈ SA

and RAmay
i (s′, t′) holds.

Notice that the need for admissibility stems from the presence of spurious
executions in the abstract system. Various methodologies have been put forward
for refining abstractions w.r.t. spurious behaviours [8]. Here we remark that our
notion of admissibility is only meant to preserve reachability, and in general it
is not sufficient to preserve more elaborate temporal properties. Nonetheless, it
is enough to preserve epistemic properties, as shown by the next result.

Theorem 1. Let M be a standard IS with admissible abstraction MA, s
 s′,
and t ∈ {tt,ff}. Then for every formula φ in K,

((MA, s′) |=3 φ) = t implies ((M, s) |=3 φ) = t

Proof. The proof is by induction on the structure of φ. We only consider the
cases for knowledge formulas, with φ = Kiϕ. If ((M, s) |=3 φ) �= tt then for some
t ∈ S, s ∼i t and ((M, t) |=3 ϕ) �= tt. If s
 s′ and s ∼i t, then by Lemma 1, for
some t′ ∈ SA, RAmay

i (s′, t′) and t
 t′. In particular, ((M, t) |=3 ϕ) �= tt implies
((MA, t′) |=3 ϕ) �= tt by induction hypothesis, that is, ((MA, s′) |=3 φ) �= tt. As
regards the case for φ = Kiϕ being false. If ((MA, s′) |=3 φ) = ff then for some
t′ ∈ SA, RAmust

i (s′, t′) and ((MA, t′) |=3 ϕ) = ff. If s
 s′ and RAmust
i (s′, t′), then

again by Lemma 1, for some t ∈ S, s ∼i t and t
 t′. In particular, by induction
hypothesis we obtain ((M, t) |=3 ϕ) = ff, and therefore ((M, s) |=3 φ) = ff. The
cases for the distributed and common knowledge formulas are proved similarly.

By Proposition 1 and Theorem 1 the next result follows immediately.

Corollary 1. Let M be a standard IS with admissible abstraction MA, and
s
 s′. Then for every formula φ in K,

((MA, s′) |=3 φ) = tt implies (M, s) |=2 φ

((MA, s′) |=3 φ) = ff implies (M, s) �|=2 φ

A Three-Value Abstraction Technique for the Verification 123

By Theorem 1 and Corollary 1 we obtain the following (partial) decision
procedure to verify a multi-agent epistemic specification φ against infinite-state
IS. Given a standard IS M we build an admissible abstraction MA and then
model check φ against MA. If the outcome is either true tt or false ff, then by
Corollary 1 we obtain that φ is true (resp. false) in M as well. In case that φ is
undefined in MA, then no conclusive answer can be drawn. As we mentioned,
this limitation is to be expected, since the state-space of M is infinite, and
the model checking problem for infinite-state systems is undecidable in general.
Nonetheless, we may think of refinement procedures on the abstraction MA, in
order to obtain a refined abstraction M ′A that is able to decide φ. We leave
abstraction refinement for future work, while here we observe that the abstract
IS MA depends crucially on the cover Ui chosen for each agent i ∈ Ag. Here
we did not provide details as to how such covers can be effectively found. In
most cases of interest covers can be obtained by an analysis of the protocol
and transition function of each agents, as well as the specification at hand. We
consider an instance of such cases in the following example.

Example 3. We reconsider Example 2. By an analysis of the protocols and tran-
sition functions of agents 1 and 2, we identify predicates p1 := (x < −4),
p2 := (x = −4), p3 := (−4 < x < 5), p4 := (x = 5), and p5 := (x > 5)
regarding agent 1, as well as predicates q1 := (y < −2), q2 := (y = −2),
q3 := (−2 < y < 3), q4 := (y = 3), and q5 := (y > 3) for agent 2. With an abuse
of notation, we identify a predicate p with the set of local states satisfying p, as
it is customary, for instance, in predicate abstraction [12].

Consider again specification (x ≤ 3) → K1(y ≤ 3), and a new predicate
p6 := (−4 < x ≤ 3). Then, condition x ≤ 3 can be rewritten as p1 ∨ p2 ∨ p6, and
y ≤ 3 is tantamount to q1 ∨ q2 ∨ q3 ∨ q4. Further, observe that U1 = {p1, . . . , p6}
is a cover of L1, and U2 = {q1, . . . , q5} is a cover of L2 (actually a partition).
Then, we define abstract agents 1A and 2A such that

– LA
1 = U1 = {p1, . . . , p6} with order p3 ≤ p6, and LA

2 = U2 = {q1, . . . , q5};
– ActA1 = ActA2 = Act1 = Act2;
– PrA

1 (p) = Act1, for all p ∈ LA
1 ; and PrA

2 (q) = Act1, for all q ∈ LA
2 ;

– the abstract transition function τA
1 is such that, for 1 ≤ j ≤ 5, j �= 3,

τA
1 (pj , (dec, a2, ok)) = {pj , pj−1} τA

1 (pj , (inc, a2, ok)) = {pj , pj+1}
with the proviso that pj−1 = pj for j = 1, and pj+1 = pj for j = 5.
Moreover,

τA
1 (p3, (dec, a2, ok)) = {p2, p3, p6} τA

1 (p3, (inc, a2, ok)) = {p3, p4, p6}
τA
1 (p6, (dec, a2, ok)) = {p6, p2, p3} τA

1 (p6, (inc, a2, ok)) = {p6, p3}
and for all p ∈ LA

1 , τA
1 (p, (a1, a2, no)) = p.

– the abstract transition function τA
2 is defined similarly to τA

1 .

Observe that the definitions of the abstract agents 1A and 2A are in accor-
dance with Definition 5. Also, the abstract environment eA is given as follows:

124 F. Belardinelli and A. Lomuscio

– LA
3 = {(p, q) | p ∈ LA

1 , q ∈ LA
2 };

– ActAe = Acte;
– PrA

e ((pi, qj)) = {ok} iff i = 2 ⇔ j = 2 or i = 4 ⇔ j = 4; otherwise,
PrA

e ((pi, qj)) = {no}
– we omit the detailed presentation of τA

e for reasons of space, but this can be
obtained immediately by Definition 5.

Moreover, all agents 1A, 2A, and eA are admissible, as in the concrete IS
M , every state is reachable from any other state by an appropriate sequence of
actions. The abstract IS MA is defined on the set AgA = {1A, 2A, eA} of abstract
agents as above, while the set IA of abstract initial states contains pairs (p3, q3)
and (p6, q3) only. The abstract global transition function τA is defined as in
Definition 6, and the labelling of abstract states is immediate. In particular,
MA is a finite-state system.

Now, we check specification (x ≤ 3) → K1(y ≤ 3) on abstraction MA.
Specifically, if ((MA, s) |= x ≤ 3) = tt then s1 = p1, s1 = p2, or s1 = p6.
In the first case, RAmay

1 (s, s′) implies s′
1 = p1 and s′

2 = q1 or s′
2 = q2. In

both cases ((MA, s′) |= y ≤ 3) = tt. Further, s1 = p2 and RAmay
1 (s, s′) imply

s′
1 = p2 and s′

2 = q2, and again ((MA, s′) |= y ≤ 3) = tt. Finally, s1 = p6
and RAmay

1 (s, s′) imply s′
1 = p6 or s′

1 = p3. In the former case we have that
s′
2 = q2 or s′

2 = q3, and therefore ((MA, s′) |= y ≤ 3) = tt. In the latter, s′
2 = q2,

s′
2 = q3, or s′

2 = q4. In all these cases we obtain ((MA, s′) |= y ≤ 3) = tt. As
a result, if ((MA, s) |= x ≤ 3) = tt, then for all s′ ∈ SA, RAmay

1 (s, s′) implies
((MA, s′) |= y ≤ 3) = tt, that is, ((MA, s) |= K1(y ≤ 3)) = tt. Hence, the
specification is true in the abstract model, and by the transfer result Theorem 1
we obtain that it holds in the concrete IS M as well.

4 Conclusions

In this paper we introduced a three-value semantics for the multi-agent epistemic
logic K, based on a notion of order defined on the local states of each agent.
Intuitively, in the standard, two-value interpretation of epistemic logic, a notion
of i-indistinguishability is defined on global states by the identity of the local
states for agent i. Here we generalised this idea by considering a partial order ≤
on local state, instead of the identity =. This semantic choice allows us to define
an abstraction technique, in which local states are bundled together in sets that
are then compared according to set-theoretic inclusion. Most importantly, we
are able to model check an epistemic specification φ on a concrete, infinite-state
IS M , by verifying the same formula on some suitable abstraction MA, and then
transfer the result to M by means of Theorem 1. We observe that the abstraction
technique developed in Sect. 3 has a key advantage over similar contributions
in [3,25]. In fact, in [3,25] abstract states are defined as satisfiable cubes of
predicates, which are generated by means of an SMT solver with considerable
computational cost. Nothing similar is needed in the present context, where
predicates, seen as sets of states, can be arbitrary as long as they satisfy the
admissibility condition.

A Three-Value Abstraction Technique for the Verification 125

Admittedly, powerful as it is, the proposed methodology has a number of
limitations. We provided an heuristic for building the abstraction MA, by using
the predicates mentioned in the system description as well as the specification
at hand, but did not provide any algorithmic procedure to build a suitable,
finite MA, nor any correctness proof of such a procedure. Further, we require
our predicates, agents, and interpreted system to be admissible, that is, being
closed under reachability. While we conjecture that in most cases of interest,
this property hold, further investigations are needed on this point. These are all
directions we aim to explore in future work, in order to develop a fully automated
verification methodology for epistemic properties of infinite-state multi-agent
systems. Finally, we plan to implement this verification procedure as an extension
of the MCMAS model checker [27].

References

1. Bagheri, B., Calvanese, D., Montali, M., Giacomo, G., Deutsch, A.: Verification of
relational data-centric dynamic systems with external services. In: Proceedings of
the 32nd Symposium on Principles of Database Systems (PODS13), pp. 163–174.
ACM (2013)

2. Ball, T., Kupferman, O.: An abstraction-refinement framework for multi-agent sys-
tems. In: Proceedings of the 21st Annual IEEE Symposium on Logic in Computer
Science (LICS06), pp. 379–388. IEEE (2006)

3. Belardinelli, F., Lomuscio, A., Michaliszyn, J.: Agent-based refinement for pred-
icate abstraction of multi-agent systems. In: Proceedings of the 22nd European
Conference on Artificial Intelligence (ECAI16), pp. 286–294. IOS Press (2016)

4. Belardinelli, F., Lomuscio, A., Patrizi, F.: Verification of agent-based artifact sys-
tems. J. Artif. Intell. Res. 51, 333–376 (2014)

5. Belardinelli, F.: Model checking auctions as artifact systems: decidability via finite
abstraction. In: Proceedings of the 21st European Conference on Artificial Intelli-
gence (ECAI14), pp. 81–86 (2014)

6. Boureanu, I., Kouvaros, P., Lomuscio, A.: Verifying security properties in
unbounded multi-agent systems. In: Proceedings of the 15th International Con-
ference on Autonomous Agents and Multi-Agent Systems (AAMAS16), pp. 1209–
1218. IFAAMAS (2016)

7. Bruns, G., Godefroid, P.: Model checking with multi-valued logics. Technical report
ITD-03-44535H, Bell Labs (2003)

8. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000). doi:10.1007/10722167 15

9. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1999)

10. Cohen, M., Dam, M., Lomuscio, A., Qu, H.: A data symmetry reduction technique
for temporal-epistemic logic. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol.
5799, pp. 69–83. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04761-9 6

11. Cohen, M., Dam, M., Lomuscio, A., Russo, F.: Abstraction in model check-
ing multi-agent systems. In: Proceedings of the 8th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS09), pp. 945–952. IFAA-
MAS Press (2009)

http://dx.doi.org/10.1007/10722167_15
http://dx.doi.org/10.1007/978-3-642-04761-9_6

126 F. Belardinelli and A. Lomuscio

12. Das, S., Dill, D.L., Park, S.: Experience with predicate abstraction. In: Halbwachs,
N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp. 160–171. Springer, Heidelberg
(1999). doi:10.1007/3-540-48683-6 16

13. De Giacomo, G., Lespérance, Y., Patrizi, F.: Bounded situation calculus action
theories and decidable verification. In: Proceedings of the 13th International Con-
ference on Principles of Knowledge Representation and Reasoning (KR 2012), pp.
467–477 (2012)

14. Enea, C., Dima, C.: Abstractions of multi-agent systems. In: Burkhard, H.-D.,
Lindemann, G., Verbrugge, R., Varga, L.Z. (eds.) CEEMAS 2007. LNCS (LNAI),
vol. 4696, pp. 11–21. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75254-7 2

15. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge.
MIT Press, Cambridge (1995)

16. Fitting, M.: Many-valued modal logics. Fundam. Inform. 15(3–4), 335–350 (1991)
17. Fitting, M.: Many-valued modal logics II. Fundam. Inform. 17, 55–73 (1992)
18. Gammie, P., Meyden, R.: MCK: model checking the logic of knowledge. In:

Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 479–483. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-27813-9 41

19. Godefroid, P., Jagadeesan, R.: On the expressiveness of 3-valued models. In: Zuck,
L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003. LNCS, vol.
2575, pp. 206–222. Springer, Heidelberg (2003). doi:10.1007/3-540-36384-X 18

20. Gonzalez, P., Griesmayer, A., Lomuscio, A.: Verification of GSM-based artifact-
centric systems by predicate abstraction. In: Barros, A., Grigori, D., Narendra,
N.C., Dam, H.K. (eds.) ICSOC 2015. LNCS, vol. 9435, pp. 253–268. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-48616-0 16

21. van der Hoek, W., Meyer, J.J.C.: Possible logics for belief. Logique et Analyse
127–128, 177–194 (1989)

22. Kacprzak, M., Nabialek, W., Niewiadomski, A., Penczek, W., Pólrola, A., Szreter,
M., Woźna, B., Zbrzezny, A.: Verics 2007 - a model checker for knowledge and
real-time. Fundam. Inform. 85(1), 313–328 (2008)

23. Katoen, C.: Principles of Model Checking (Representation and Mind Series). MIT
Press, Cambridge (2008)

24. Lomuscio, A., Michaliszyn, J.: Verifying multi-agent systems by model checking
three-valued abstractions. In: Proceedings of the 14th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS15), pp. 189–198 (2015)

25. Lomuscio, A., Michaliszyn, J.: Verification of multi-agent systems via predicate
abstraction against ATLK specifications. In: Proceedings of the 15th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS16), pp. 662–
670 (2016)

26. Lomuscio, A., Penczek, W.: Model checking temporal epistemic Logic. In: van
Ditmarsch, H., Halpern, J.Y., van der Hoek, W., Kooi, B. (eds.) Handbook of
Epistemic Logic. College Publications, London (2015)

27. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: A model checker for the verification
of multi-agent systems. Software Tools for Technology Transfer (2015). http://dx.
doi.org/10.1007/s10009-015-0378-x

28. Shoham, S., Grumberg, O.: Monotonic abstraction-refinement for CTL. In: Jensen,
K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 546–560. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-24730-2 40

29. Wooldridge, M.: An Introduction to MultiAgent Systems, 2nd edn. Wiley, Chich-
ester (2009)

http://dx.doi.org/10.1007/3-540-48683-6_16
http://dx.doi.org/10.1007/978-3-540-75254-7_2
http://dx.doi.org/10.1007/978-3-540-27813-9_41
http://dx.doi.org/10.1007/3-540-36384-X_18
http://dx.doi.org/10.1007/978-3-662-48616-0_16
http://dx.doi.org/10.1007/s10009-015-0378-x
http://dx.doi.org/10.1007/s10009-015-0378-x
http://dx.doi.org/10.1007/978-3-540-24730-2_40

A Relaxation of Internal Conflict and Defence
in Weighted Argumentation Frameworks

Stefano Bistarelli, Fabio Rossi, and Francesco Santini(B)

Dipartimento di Informatica e Matematica, Università di Perugia, Perugia, Italy
{bista,rossi,francesco.santini}@dmi.unipg.it

Abstract. In Weighted Abstract Argumentation Frameworks (WAAFs),
weights on attacks bring more information. An advantage is the possibil-
ity to define a different notion of defence, which also checks if the weight
associated with defence is compared with the weight of attacks. We study
and merge together two different relaxations of classically crisp-concepts
in WAAFs: one is related to a new notion of weighted defence (defence can
be stronger or weaker at will), while the second one is related to how much
inconsistency one is willing to tolerate inside an extension (which can be
not totally conflict-free now). These two relaxations are strictly related
and influence each other: allowing a small conflict may lead to have more
arguments in an extension, and consequently result in a stronger or weaker
defence. We model weights with a semiring structure, which can be instan-
tiated to different metrics used in the literature (e.g., fuzzy WAAFs).

1 Introduction

The aim of this work is to relax classically exact and sharp concepts in Weighted
Abstract Argumentation Frameworks (WAAFs, see works in Sect. 6). This is
accomplished (i) by allowing an internal conflict inside the extensions satisfying
a given semantics (e.g., admissible), and (ii) by relaxing the defence of arguments
w.r.t. (the weight of) the attacks coming from outside an extension. Such two
issues mutually influence each other, hence they need to be studied together:
allowing a small conflict may lead to have one more argument inside an extension,
which consequently may be more strongly defended by exploiting the attacks of
this additional argument, or more weakly, in case such additional taken-argument
receives attacks from external ones.

A flexible computational framework should consider i and ii, in order to
let an agent cope with both such two factors simultaneously. In this way, an
autonomous reasoning-agent has more instruments to understand, for instance,
whether tolerating a small conflict among its arguments considerably changes its
point of view: as a possible scenario, a debate can be permeated by arguments
advanced by trolls [18], which can accordingly generate noise in an abstract
framework. Internal inconsistency arises in many areas of AI and computing:

Research supported by: “VisColla” funded by Fondazione Cassa di Risparmio di
Perugia, and “BitCoins” funded by Banca d’Italia and Cassa di Risparmio di Perugia.

c© Springer International Publishing AG 2016
L. Michael and A. Kakas (Eds.): JELIA 2016, LNAI 10021, pp. 127–143, 2016.
DOI: 10.1007/978-3-319-48758-8 9

128 S. Bistarelli et al.

merging information from heterogeneous sources, negotiation in multi-agent sys-
tems, or understanding natural language dialogues [4].

On the other hand, an agent could be interested in defending its arguments
with a higher or lower level of strength. Even this choice impacts on the final
outcome: by requiring a weaker defence one finds more extensions with the same
given semantics. The strictest (not relaxed) level of defence corresponds to w-
defence [7]. Differently from [14], where the aggregation of all the attack weights
from a set of arguments B to an attacker a needs to be only stronger than the
attack from a to b, in w-defence we aggregate all the attack weights from a to
B: attacks are collectively considered.

With such aims in mind, we design αγ-semantics, where α is the amount
of internal conflict tolerated inside an extension, and γ is the weight-difference
between a “full” defence (we newly define and call it w-defence) and the “weaker”
defence it holds instead. By progressively relaxing defence (i.e., increasing γ) we
show that we reconnect to related definitions in the literature, as [14] and Dung’s
seminal work [15]. Hence, we define αγ-conflict-free, αγ-admissible, αγ-complete,
αγ-preferred, and αγ-stable. These new semantics nevertheless inherit some orig-
inal properties [15], as their implications (e.g., αγ-stable ⇒ αγ-preferred), or the
fact that �⊥-semantics are equivalent to their correspondent in [15], and ��-
semantics are equivalent to [7].

To represent weights and operations (e.g., their aggregation), we adopt a
parametric algebraic framework based on c-semirings [6]. Hence, it is possible to
consider different metrics within the same computational framework (e.g., fuzzy
or probabilistic).

The paper is structured as follows: in Sect. 2.1 we introduce c-semirings [6]
(the general structure we adopt to represent weights) and we summarise the
basic definitions of AAF given in [15]. Section 3 presents WAAFs and w-defence.
Section 3.1 relaxes w-defence by proposing γ-defence, where γ is the amount
by which defence is weakened. In Sect. 4 we propose αγ-semantics (e.g., αγ-
admissible), which extend classical ones by considering an internal amount of
conflict α, and γ at the same time. In Sect. 5 we describe an implementation
of the proposed framework, and we show the tests obtained on a set of 100
random WAAFs; we also present an application scenario and contextualise the
motivations behind the work. In Sect. 6 we describe related work, and, finally,
Sect. 7 wraps up the paper by drawing final conclusions and suggesting future
work.

2 Background

We first introduce c-semirings (Sect. 2.1), and then (Sect. 2.2) we recollect the
main definitions behind AAFs [15]. C-semirings here represent a parametric
framework where to evaluate and compose attack-weights. By changing the
underlying c-semiring instantiation, it is possible to capture different metrics
with the purpose to model e.g., fuzzy or probabilistic WAAFs (see Sect. 6).

A Relaxation of Internal Conflict and Defence 129

2.1 Semirings

In practice, c-semirings [6] are commutative (⊗ is commutative) and idempotent
semirings (i.e., ⊕ is idempotent), where ⊕ defines a complete lattice: every subset
of elements have a least upper bound, or lub, and a greatest lower bound, or glb.
In fact, c-semirings are semirings where ⊕ is used as a preference operator, while
⊗ is used to compose preference-values together.

Definition 1 (C-semirings [6]). A commutative semiring is a tuple S =
〈S,⊕,⊗,⊥,�〉 such that S is a set, �,⊥ ∈ S, and ⊕,⊗ : S × S → S are binary
operators making the triples 〈S,⊕,⊥〉 and 〈S,⊗,�〉 commutative monoids (semi-
groups with identity), satisfying (i) ∀s, t, u ∈ S.s⊗ (t+u) = (s⊗ t)+(s⊗u) (dis-
tributivity), and (ii) ∀s ∈ S.s ⊗ ⊥ = ⊥ (annihilator). If ∀s, t ∈ S.s ⊕ (s ⊗ t) = s,
the semiring is said to be absorptive. In short, c-semirings are defined as com-
mutative and absorptive semirings.

The idempotency of ⊕ leads to the definition of a partial ordering ≤S over
the set S (S is a poset). Such partial order is defined as s ≤S t if and only if
s ⊕ t = t, and ⊕ returns the lub of s and t (defined also as
, while the glb
is defined by �). This intuitively means that t is “better” than s. Some more
properties can be derived on c-semirings [6]: (i) both ⊕ and ⊗ are monotone over
≤S, (ii) ⊗ is intensive (i.e., s ⊗ t ≤S s), and (iii) 〈S,≤S〉 is a complete lattice. ⊥
and � are respectively the bottom and top elements of such lattice. When also
⊗ is idempotent, (i) ⊕ distributes over ⊗, (ii) ⊗ returns the glb of two values
in S, and (iii) 〈S,≤S〉 is a distributive lattice.

Well-known c-semiring instances are: Sboolean = 〈{false, true},∨,∧, false,
true〉1, Sfuzzy = 〈[0, 1],max,min, 0, 1〉, Sbottleneck = 〈R+∪{+∞},max,min, 0,∞〉,
Sprobabilistic = 〈[0, 1],max,×, 0, 1〉 (or Viterbi semiring), Sweighted = 〈R+ ∪
{+∞},min,+,+∞, 0〉.

Although c-semirings have been historically used as monotonic structures
where to aggregate costs (and find best solutions), the need of removing values
has raised in local consistency algorithms and non-monotonic algebras using
constraints (e.g., [5]). A solution comes from residuation theory [11], a standard
tool on tropical arithmetics that allows for obtaining a division operator that
represents a “weak” inverse of ⊗.

Definition 2 (Division [5]). Let S be a tropical semiring. S is residuated if the
set {x ∈ S | t ⊗ x ≤ s} admits a maximum for all elements s, t ∈ S, denoted
s � t.

Since a complete2 tropical-semiring is also residuated, we have that all the
classical instances of c-semiring presented above are residuated, i.e., each element
in S admits an “inverse”, which can be also unique:
1 Boolean c-semirings can be used to model crisp problems and classical Argumenta-

tion [15].
2
S is complete if it is closed with respect to infinite sums, and the distributivity law
holds also for an infinite number of summands [5].

130 S. Bistarelli et al.

Definition 3 (Unique invertibility [5]). If S is absorptive and invertible, then
it is uniquely invertible iff it is cancellative, i.e., ∀s, t, u ∈ S.(s⊗u = t⊗u)∧(u �=
0) ⇒ s = t.

Since all the previously listed instances of c-semirings are cancellative, they
are uniquely invertible as well. For instance, the unique “inverse” s � t in the
weighted c-semiring is � = 0 if t ≥ s (e.g., s = 7, t = 8) and s − t if s > t (e.g.,
8−7 = 1), while in the fuzzy c-semiring it is � = 1 if t ≤ s (e.g., s = 0.8, t = 0.7)
and s if s < t (e.g., s = 0.7, t = 0.8); this is also known as Gödel implication. In
the following of the paper we will use “semiring” as a synonym of “c-semiring”.

2.2 Argument Systems

In his pioneering work [15], Dung proposes Abstract Argumentation Frameworks:

Definition 4. An Abstract Argumentation Framework (AAF) is a pair 〈Args, R〉
of a set Args of arguments and a binary relation R on Args called the attack rela-
tion. ∀ai, aj ∈ Args, aiR aj (or R(ai, aj)) means that ai attacks aj.

An argumentation semantics is the formal definition of a method (either
declarative or procedural) ruling the argument evaluation process. In the exten-
sion-based approach, a semantics definition specifies how to derive from an AAF
a set of extensions, where an extension B of an AAF 〈Args, R〉 is simply a subset
of Args. In Definition 5 we define the first semantics, which is at the basis of all
the others:

Definition 5 (Conflict-free). A set B ⊆ Args is conflict-free iff no two argu-
ments a and b in B exist such that a attacks b.

All the other semantics presented in this section rely (explicitly or implicitly)
upon the concept of defence:

Definition 6 (Defence D0). An argument b is defended by a set B ⊆ Args (or
B defends b) iff for any argument a ∈ Args, if R(a, b) then ∃c ∈ B s.t., R(c, a).

An admissible set of arguments is a conflict-free set that defends all its ele-
ments. Formally:

Definition 7 (Admissible). A conflict-free set B ⊆ Args is admissible iff
each argument in B is defended by B (from the arguments in Args\B).

Three classical semantics [15] refining admissibility are defined in the follow-
ing definitions:

Definition 8 (Complete). An admissible extension B ⊆ Args is a complete
extension iff each argument which is defended by B is in B.

A Relaxation of Internal Conflict and Defence 131

Definition 9 (Preferred). A preferred extension is a maximal (w.r.t. set
inclusion) admissible subset of Args.

Definition 10 (Stable). A conflict-free set B ⊆ Args is a stable extension iff
for each argument which is not in B, there exists an argument in B that attacks it.

If σ = {cf, adm, com, stb, prf} respectively stand for conflict-free, admissible,
complete, stable, and preferred semantics, we recall that given any framework
F , stb(F) ⊆ prf(F) ⊆ com(F) ⊆ adm(F) always holds. Moreover, for each σ
except stb we have σ(F) �= ∅ holds.

3 Weighted Abstract AFs

In the following of this section we rephrase some of the classical definitions given
in [15], with the purpose to parametrise them with the notion of weighted attack
and c-semiring. The following definition presents semiring-based WAAF [8]:

Definition 11 (Semiring-based WAAF [8]). A semiring-based Weighted
AAF (WAAFS) is a quadruple 〈Args, R,W,S〉, where S is a c-semiring
〈S,⊕,⊗,⊥,�〉, Args is a set of arguments, R the attack binary-relation on Args,
and W : Args ×Args −→ S is a binary function. Given a, b ∈ Args, ∀(a, b) ∈ R,
W (a, b) = s means that a attacks b with a weight s ∈ S. Moreover, we require
that R(a, b) iff W (a, b) <S �.

In Fig. 1 we provide an example of a weighted interaction graph describing
the WAAFS defined by Args = {a, b, c, d, e}, R = {(a, b), (c, b), (c, d), (d, c), (d, e),
(e, e)}, with W (a, b) = 7,W (c, b) = 8,W (c, d) = 9,W (d, c) = 8,W (d, e) =
5,W (e, e) = 6, and S = 〈R+ ∪ {∞},min,+,∞, 0〉 (i.e., the weighted semiring).

a b c d e
7 8 5

9

8

6

Fig. 1. An example of WAAF.

Hence, each attack is associated with a semiring value that represents the
“strength” of an attack between two arguments. We can consider the weights
in Fig. 1 as supports to the associated attack, as similarly suggested in [16,17].
A semiring value equal to the top element of the c-semiring � (e.g., 0 for the
weighted semiring) represents a no-attack relation between two arguments. On
the other side, the bottom element, i.e., ⊥ (e.g., ∞ for the weighted semiring),
represents the strongest attack possible.

In Definition 12 we define the attack strength for a set of arguments that
attacks an argument, a different set of arguments, or an argument that attacks a

132 S. Bistarelli et al.

set of arguments; the former and the latter are what we need to define w-defence.
In the following, we will use

⊗

to indicate the ⊗ operator of the c-semiring S

on a set of values:

Definition 12 (Attacks to/from sets of arguments). Given a WAAFS,
〈Args, R,W,S〉,

– a set of arguments B attacks an argument a with a weight of k ∈ S if
W (B, a) =

⊗

b∈B

W (b, a) = k;

– an argument a attacks a set of arguments B with a weight of k ∈ S if
W (a,B) =

⊗

b∈B

W (a, b) = k;

– a set of arguments B attacks a set of arguments D with a weight of k ∈ S if
W (B,D) =

⊗

b∈B,d∈D

W (b, d) = k.

For example, looking at Fig. 1 we have that W ({a, c}, b) = 15, W (c, {b, d}) =
17, and W ({a, c}, {b, d}) = 24. We are now ready to introduce our version of
weighted defence, i.e., w-defence:

Definition 13 (w-defence (Dw)). Given a WAAFS, WF = 〈Args, R,W,S〉,
B ⊆ Args w-defends b ∈ Args from a iff, given a ∈ Args s.t. R(a, b), then
W (a,B ∪ {b}) ≥S W (B, a); B w-defends b iff it defends b from any a s.t.
R(a, b).

As previously advanced, a set B ⊆ Args defends an argument b, if the ⊗
of all the attack weights from B to a (for any a s.t. R(a, b)) is worse-equal
(w.r.t. ≤S) than the ⊗ of the attacks from a to B ∪ {b}. For example, the set
{c} in Fig. 1 defends c from d because W (d, {c}) ≥S W ({c}, d), i.e., (8 ≤ 9).
On the other hand, {d} in Fig. 1 does not defend d (i.e., itself) from c because
W (c, {d}) �≥S W ({d}, c).

Definition 13 can be seen as an extension of the defence in [14]: both pro-
posals implement a collective defence from B to a (composing the weights of
the counter-attacks together), but while in [14] the weight of the defence is com-
pared against each single attack from a, in Definition 13 we consider the group of
attacks from a to B as a single entity, i.e., with a single global weight; thus, the
comparison is only against such a weight, leading to a more balanced approach
between attack and defence. In Definition 14 we represent the defence in [14] in
the same semiring-based framework.

Definition 14 (D1). Given WF = 〈Args, R,W,S〉, an argument b is defended
by a subset of arguments B if ∀a ∈ Args s.t. R(a, b), we have that W (a, b) ≥S

W (B, a).

In Fig. 2 we show an example of the difference between Dw and D1. What we
obtain is something stricter than both [14,15]:

A Relaxation of Internal Conflict and Defence 133

Proposition 1 (Defence implications [7]). Dw ⇒ D0 and Dw ⇒ D1.

A more detailed comparison of w-defence and the notions of defence in [14,
15,24] can be found in [7]. For instance, we prove that, when using the Boolean
semiring, w-defence and [14,15,24] are equivalent.

3.1 Relaxing w-Defence

Even if stricter than D0 [15] and D1 [14], w-defence can be relaxed in order to
meet D1 and, ultimately, since D1 ⇒ D0 [7], the classical defence given by Dung,
i.e., D0. This relaxation, called γ-defence, is parametrised on a threshold-value
γ, which quantifies how much defence is relaxed: if γ grows then the relaxation
is greater. γ-defence is used to reach and defend arguments that are not “fully”
w-defended according to Definition 13, i.e., for which W (a,B∪{b}) �≥S W (B, a):

Definition 15 (γ-defence (Dγ)). Given 〈Args, R,W,S = 〈S,⊕,⊗,⊥,�〉〉 and
γ ∈ S, B ⊆ Args γ-defends b ∈ Args iff ∀a ∈ Args such that R(a, b) we have
that W (B, a) �= � and (W (a,B ∪ {b}) � W (B, a)) ≥S γ.

Considering the example in Fig. 1 (Sweighted), for instance {d} 1-defends d
from c (i.e., γ = 1): (W (c, {d}) − W ({d}, c)) ≤ 1, since 9 − 8 = 1 and 1 ≤ 1.
Next proposition shows how it is possible to reconnect γ-defence to w-defence
(see Definition 13):

Proposition 2. �-defence (γ = �) is equivalent to w-defence (Definition 13),
i.e. D� ⇔ Dw.

Next proposition shows how it is possible to reconnect γ-defence to Dung’s
original definition of defence.

Proposition 3. ⊥-defence (γ = ⊥) is equivalent to the original definition of
defence given by Dung [15], i.e., D⊥ ⇔ D0.

In the following two propositions we relate Dγ and D1 when all the arguments
attack at most one other argument (Proposition 4), and when there are more
attacks (Proposition 5).

Proposition 4. Given a ∈ Args, we define Ta as
⋃

b∈Args
R(a, b). If ∀Ta the

cardinality is |Ta| ≤ 1, then D1 ⇔ D� (by Proposition 2, also D1 ⇔ Dw holds).

Proposition 5 (D1 ⇒ Dγ̄). With Ta defined as in Proposition 4, if ∃Ta.|Ta| ≥
2, we find the n subsets T i

a of Ta with cardinality |Ta| − 1. Then we define
γa =

�
i=1..n(

∏

R(a,b)∈T i
a
W (a, b)), and γ̄ =

�
γa (� is the glb of S). Finally, we

obtain that D1 ⇒ Dγ̄ always holds.

Finally, we can define an implication relation with respect to different γ:

Proposition 6. If B γ1-defends b and γ1 ≥S γ2, then B γ2-defends b, i.e.,
Dγ1 ⇒ Dγ2 .

134 S. Bistarelli et al.

4 αγ-Semantics

In this section we redefine all the classical semantics [15] by exploiting both the
notion of (i) an inconsistency amount α inside an extension (to be tolerated), and
(ii) the concept of γ-defence. In Definition 16 we redefine the notion of conflict-
free semantics: conflicts can be now part of the solution up to a cost-threshold α.

Definition 16 (α-conflict-free semantics). Given a WAAFS, WF =
〈Args, R,W,S〉, a subset of arguments B ⊆ Args is α-conflict-free iff
W (B,B) ≥S α.

With respect to the WAAFS in Fig. 1, while the set {a, b, c} is not conflict-free
in the crisp version of the problem (since it includes the attacks between a and
b, and between c and b), {a, b, c} is instead 15-conflict-free because W (a, b) +
W (c, b) = 15 (as a reminder, we are using Sweighted for such examples).

Hence, by raising α we further relax the requirements behind conflict-freeness.
No constraint is given on the amount of conflict internal to an extension, thus
all arguments can coexist together.

Proposition 7. Given any 〈Args, R,W,S〉, the set of ⊥-conflict free extensions
correspond to the power-set of Args.

We now define two propositions that derive from Definition 16 and from the
semiring properties explained in Sect. 2.1.

Proposition 8. If an extension is α1-conflict-free and α1 ≥S α2, then the same
extension is also α2-conflict-free.

For instance, {a, b, c} is 16-conflict-free because it is a 15-conflict-free
(15 ≥Sweighted

16). Therefore, this states than in α-conflict-free extensions we
tolerate an internal inconsistency-amount better than α.

The notion of γ-defence (see Definition 15) brings to the definition of the first
semantics taking advantage of the notion of defence, that is the αγ-admissible
semantics:

Definition 17 (αγ-admissible semantics). Given WF = 〈Args, R,W,S〉, an
α-conflict-free set B ⊆ Args is αγ-admissible iff the arguments in B are γ-
defended by B from the arguments in Args\B.

Considering the framework in Fig. 1 as unweighted, Dung’s admissible sets
are: ∅, {a}, {c}, {d}, {a, c}, {a, d}. ��-admissible extensions (i.e., 00-extensions
in Sweighted) are {a}, {c}, and {a, c} instead: {a} because is not attacked by
any other argument, {c} and {a, c} because they both w-defends c from the
attack performed by d, i.e., W (d, c) ≥Sweighted

W (c, d) (i.e., 8 ≤ 9). For instance
{d} is not 00-admissible because it is not able to 0-defend (or to w-defend, see
Proposition 2) itself from the attack of c. For the same reason, {a, d} is not
00-admissible.

A Relaxation of Internal Conflict and Defence 135

Considering an example with an internal inconsistency α �= �, the extension
{a, b, c} is 150-admissible: it is 15-conflict-free, and {a, b, c} 0-defends its argu-
ments, i.e., c from d. All the 150-admissible extensions are ∅, {c}, {c, e}, {a},
{a, c}, {a, c, e}, and {a, b, c}. In order to provide an example with both α �= �
and γ �= � (still considering Fig. 1), the set {d, e} is 111-admissible, since it is
11-conflict-free, and d defends itself (and the whole {d, e}) from c by paying a
penalty of 9 − 8 ≤ 1.

a

b

c

d

e

f

7
5

5

2

6

2

3

B

Fig. 2. A WAAF where B = {b, c, d, e}
defends its arguments from f accord-
ing to D1, but not according to Dw

(using Sweighted). The attack from a is
defended according to both D1 and Dw.

a

b

c

d

e

f

1

1

1

1

3

1
1

13

B

Fig. 3. An example of 20-complete
extension, B = {b, c, d}; B ∪ {f} is 40-
complete, while B ∪ {f} and B ∪ {e}
are two 50-complete extensions (using
Sweighted).

Four further semantics, which refine αγ-admissibility, are introduced from
Definitions 18 to 20:

Definition 18 (αγ-complete). Given 〈Args, R,W,S〉, an αγ-admissible B ⊆
Args is αγ-complete iff each argument b ∈ Args that is γ-defended by B and s.t.
W (B ∪ {b},B ∪ {b}) ≥S α is in B (i.e., b ∈ B).

Therefore, in the αγ-complete semantics we need to bring in all the γ-
defended arguments while respecting the α-threshold at the same time. An exam-
ple is given in Fig. 3 (we still suppose to adopt Sweighted), where B = {b, c, d}
is the only 20-complete extension: even if B 0-defends f from e, it is not possi-
ble to bring f in B because we can tolerate only 2 as internal conflict (already
W (b, c) + W (c, d) = 2). However, by relaxing the problem to find 40-complete
extensions, {b, c, d, e} is sole solution, while both {b, c, d, e} and {b, c, d, f} are
two 50-complete extensions.

Definition 19 (αγ-preferred). An αγ-preferred extension is a maximal (with
respect to set inclusion) αγ-admissible subset of Args.

Still considering Fig. 1, {a, c} and {a, d} are the two preferred extensions
according to [15] (i.e., not considering weights). However, {a, c} is the only 00-
preferred extension, while {{a, c}, {a, d}} is the set of 01-preferred extensions.

Definition 20 proposes Dung’s stable semantics revisited in a WAAFS.

136 S. Bistarelli et al.

Definition 20 (αγ-stable). Given 〈Args, R,W,S〉, an αγ-admissible set B is
also an αγ-stable extension iff ∀a �∈ B,∃b ∈ B.W (b, a) �= �, and B ∪ {a} is not
αγ-admissible.

For example, the set {a, d} is not 00-stable, because W (c, d) �≥Sweighted

W ({a, d}, c), i.e., 9 �≤ 8. However, it is 01-stable, since W (c, d) � W ({a, d}, c) =
9 − 8 ≤ 1 satisfies γ = 1. Thus, in such example there is no 00-stable extension.

4.1 Properties of αγ-Semantics

In the following we provide general considerations on α-semantics: for example,
classical inclusion-relations [15] among the α-semantics are still valid:

Theorem 1 (αγ-semantics inclusions). Given any 〈Args, R,W,S〉, with S =
〈S,⊕,⊗, ⊥,�〉, and α, γ ∈ S,

1. each αγ-admissible extension is also α-conflict-free.
2. each αγ-complete extension is also αγ-admissible.
3. each αγ-preferred extension is also αγ-complete.
4. each αγ-stable extension is also αγ-preferred.

Theorem 1 leads to Corollary 1, which states that the classical implication
chain between semantics [15] also holds for αγ-semantics.

Corollary 1. By setting α, γ ∈ S, the following implications hold between αγ-
semantics: αγ-stable ⇒ αγ-preferred ⇒ αγ-complete ⇒ αγ-admissible ⇒ α-
conflict-free.

Theorem 2 shows when αγ-semantics can be used to exactly obtain the clas-
sical semantics [15].

Theorem 2. Given F = 〈Args, R〉, and WF = 〈Args, R,W,S〉, with S as
desired, then

1. the set of �-conflict-free extensions in WF is equal to the set of conflict-free
extensions in F .

2. the set of �⊥-admissible extensions in WF is a equal of the set of admissible
extensions in F .

3. the set of �⊥-complete extensions in WF is equal to the set of complete exten-
sions in F .

4. the set of �⊥-preferred extensions is equal to the set of preferred extensions
in F .

5. the set of �⊥-stable extensions in WF is equal to the set of stable extensions
in F .

Theorem 3 relates αγ-semantics using �-defence) and no internal conflict
(i.e., α = �), to their counterpart in the classical ones [15].3

3 Theorem 3 refines the results in [7].

A Relaxation of Internal Conflict and Defence 137

Theorem 3. Given F = 〈Args, R〉, and WF = 〈Args, R,W,S〉, with S as
desired, then

1. the set of �-conflict-free extensions in WF is equal to the set of conflict-free
extensions in F .

2. the set of ��-admissible extensions in WF is a subset of the set of admissible
extensions in F .

3. for each ��-complete extension BWF in WF, there exists a complete exten-
sion BF in F , s.t., BWF ⊆ BF .

4. for each ��-preferred extension BWF in WF, there exists a preferred exten-
sion BF in F , s.t. BWF ⊆ BF .

5. for each ��-stable extension BWF in WF, there exists a stable extension BF

in F , s.t. BWF ⊆ BF .

Theorem 4 shows what happens to αγ-semantics when α and γ change.

Theorem 4. Given 〈Args, R,W,S = 〈S,⊕,⊗,⊥,�〉〉, and α1, α2, γ1, γ2 ∈ A s.t.
α1 ≥S α2 and γ1 ≥S γ2, then

1. the set of α1-conflict-free extensions is a subset of the set of α2-conflict-free
extensions.

2. the set of αγ1
1 -admissible extensions is a subset of the set of αγ2

2 -admissible
extensions.

3. for each αγ1
1 -complete extension B1, there exists an αγ2

2 -complete extension
B2, such that B1 ⊆ B2.

4. for each αγ1
1 -preferred extension B1, there exists an αγ2

2 -preferred extension
B2, such that B1 ⊆ B2.

5. for each αγ1
1 -stable extension B1, there exists an αγ2

2 -stable extension B2,
such that B1 ⊆ B2.

5 Implementation, Tests, and Applications

We have implemented αγ-semantics in ConArg4 [9,10], which is a tool that
exploits Gecode5 (a constraint-programming library) to solve several problems
related to Argumentation. All the following tests have been collected on a bench-
mark of 100 graphs (25 arguments each) generated according to the Erdős-Rényi
random model [19]: a generator in the NetworkX library6 has been used. Each
directed edge is added to a graph with an independent probability p. To each
edge we associate a random natural number in the interval [1..10] (in order to
test Sweighted), and [1..10]/10 (to test Sfuzzy).

Figures 4 and 5 respectively show the average number (on 100 graphs) of
αγ-admissible and αγ-stable extensions (other semantics are omitted for the
sake of space) for all the 78 combinations of α = {0, 1, 2, 4, 6, 8, 9, 10, 11, 12}
4 http://www.dmi.unipg.it/conarg/.
5 http://www.gecode.org.
6 https://networkx.github.io.

http://www.dmi.unipg.it/conarg/
http://www.gecode.org
https://networkx.github.io

138 S. Bistarelli et al.

0
4

8
0

4
0

250

500

α
γ

A
vg

.#
E
xt
en
si
on

s

Fig. 4. Avg. number of αγ-admissible
ext. (changing α and γ); with Sweighted.

0
4

8
0

4
0

10

20

α
γ

Fig. 5. Avg. number of αγ-stable ext.
(changing α and γ); with Sweighted.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2

4

6

8

10

12

14

16

18

α (γ= � = 1)

A
vg
.#
E
xt
en
si
on
s

Avg. 0.11-admissible = 878.5
Avg. 0.21-admissible = 40.14

αγ -adm.
αγ -com.
αγ -prf.
αγ -stb.

0.1 0.2 0.3 0.4 0.5 0.6

1

2

3

4

5

6

7

8

9

γ (α= � = 1)

Avg. 10.1-admissible = 21.4

αγ -adm.
αγ -com.
αγ -prf.
αγ -stb.

Fig. 6. αγ-admissible (), -complete (), -preferred (), and -stable ()
number of average extensions (on 100 graphs), using the Fuzzy semiring.

and γ = {0, 1, 2, 4, 6, 8} (using Sweighted): hence we can appreciate what happens
when both α and γ change. The two sets of extensions grow in the same way, even
if they reach a cardinality of 525 and 21. Figure 6 reports instead the average
number of αγ-admissible, αγ-complete, αγ-preferred, and αγ-stable extensions
using Sfuzzy. In the two plots we change only α (resp. γ) while we keep γ = �
(resp. α = �). From these figures see that the number of extensions remains
quite stable (except for the αγ-admissible).

5.1 An Application Scenario

Relaxing a framework allows us to mitigate the disturbing effect of poorly spec-
ified or unsound attacks (e.g., from trolls) [18]. In Fig. 7 we show the same
framework (with the same weights) reported in [18], where several participants
argue about the role of the government in what banning smoking is concerned

A Relaxation of Internal Conflict and Defence 139

ab

cd

e

9

8.5 8

9

7
1

Fig. 7. The troll framework example in
[18], using Sweighted.

ab

cd

e

5

8.5 8

9

7
1

5

1

Fig. 8. {a, d} is �3-admissible, {a, d, e}
is 2�-admissible.

(please refer to [18] for a description of what arguments really stand for). Weights
represent a strength score for each attack. The attack from e to a is meant to
represent a troll attack (its strength is very low, i.e., 1). In [18] the authors show
how their computational framework is able to mitigate the disturbing effect of
such attack: e is not attacked, thus, with the classical semantics [15], it is capable
of always ruling a out (its impact is strong).

However, we can mitigate it also by using our framework: if we compute the
�⊥-stable extensions (by using γ = ⊥ we consider classical defence [15]) we
obtain {d, e} as the sole solution: in [18] these are the same two most preferred
arguments before mitigating the troll attack. If we instead relax the problem by
computing the 1⊥-stable semantics, the solution becomes {a, d, e}. This exten-
sion contains the same three most preferred arguments in [18] (i.e., a, d, and
e) after mitigating the troll attack: thus, we remove the effect of e on a in the
framework. Note that e is a “good” argument in [18], thus it is not surprising it
can be part of a “good” extension. It is the attack from e to a to be fake: the
aim is to remove the effect of the attack from e, not e itself.

Figure 8 is instead presented to show how internal and defence relaxations
are strictly linked together: the set {a, d} is �3-admissible, since a is attacked
by c with weight of 8, but only a counter-attack with weight 5 is present from d
to c (hence, in the weighted semiring, the difference to be tolerated is 8−5 = 3).
However, if an internal inconsistency of 2 can be tolerated, the set {a, d, e} is
2�-admissible: by allowing a small internal conflict, the defence against b and c
becomes stronger (no relaxation is needed to defend them). Therefore, we provide
a means to an agent to decide between {a, d} or {a, d, e}, satisfying either the
first or the second semantics.7

6 Related Work

We begin by showing that a parametric structure to represent weights is useful,
since other approaches in the literature are specialised on a single metric only.

7 Defining a (multi-criteria) ranking is outside the scope of this work: see future work
in Sect. 7.

140 S. Bistarelli et al.

For instance, an argument can be seen as a chain of possible events that makes a
hypothesis true [23]. The credibility of a hypothesis can then be measured by the
total probability that it is supported by arguments; to solve this problem we can
use the probabilistic semiring. The Fuzzy Argumentation approach presented in
[25] enriches the expressive power of the classical argumentation model by allow-
ing to represent the relative strength of the attack relations between arguments,
as well as the degree to which they are accepted. In this case, the fuzzy semiring
can model such scenario.

We took inspiration from [16,17] for allowing internal inconsistency: the
authors define the notion of inconsistency budget for the first time, even if with
the purpose to compute more (than one [15]) grounded extensions (see Sect. 7
for an hint on this issue).

A recent quantitative study is proposed in [22], where the authors define
Social Abstract Argumentation Frameworks, which basically associate positive
and negative votes to each argument. Afterwards, it is defined how to aggregate
these votes together, and how to associate it with an unique social model. This
framework has been extended in [18] by considering weights on attacks as well.

In [24] attacks are relatively ordered by their force, i.e., R(a, b) � R(b, a)
means that the former attack is stronger than the latter. This is accordingly
reflected by the defence definition, where considering R(a, b) and R(c, a) we
can have that c is a strong or weak defender of b. Therefore, an argument b
is defended by B if, and only if, for any argument a such that R(a, b), there
is an argument c ∈ B such that R(c, a), and according to the desired defence
strength, R(c, a) � R(a, b) or R(c, a) � R(a, b).

In [13] the authors review the works in [1,12,16,21], focusing on how to relate
preference-values and weights, on either arguments or attacks. In [8], if R(a, b)
and R(b, c), a defends c if W (a, b) is worse than W (b, c) (as in [21]), thus the
defence is not collective as instead in [14] and this paper, and the attack is not
collective as in this work. In [21] the difference between the weight associated
with a is related to both the weights of b and c, with the purpose to check how
much a defends b (thus obtaining “varied-strength defeat relations”).

In [2] the authors investigate the case where several weak attacks may com-
pensate one strong attack. Then they propose new semantics that originate from
this idea, i.e., α-BBS, which satisfy compensation at different degrees. The new
semantics assign to every argument a score which represents how heavily the
argument is attacked; a score increases when the number and/or the quality of
the attackers increase.

The two principles in [20] are, (i) having fewer attackers is better than having
more, and (ii) having more defenders is better than having fewer. The result
is the definition of a graded defence dm,n(E), which defines different levels of
defence-strength: if dm,n(E) holds, E is a set of arguments for which each a ∈ E
does not have at least m attackers that are not counter-attacked by at least n
arguments in E .

Finally, it is worth to mention two well-known works that deal with values or
preferences [1,3]. In [3], AAFs have been extended to Value Based AAFs (VAFs).

A Relaxation of Internal Conflict and Defence 141

A VAF is a five-tuple 〈Args,R,V, val,P〉, where Args is a finite set of arguments,
R is an irreflexive binary relation on A (i.e. 〈Args, R〉 is a standard AAF), V is
a non-empty set of values, val is a function which maps from elements of A to
elements of V , and P is the set of possible audiences (i.e. total orders on V). We
say that an argument a relates to value v if accepting A promotes or defends
v: the value in question is given by val(a). For every a ∈ Args, val(a) ∈ V . A
Preference Based argumentation AAF [1] is a triplet 〈Args, R,Pref〉 where Pref is
a partial pre-ordering (reflexive and transitive binary relation) on Args × Args.
The notion of defence changes accordingly: let a and b be two arguments, b
attacks a iff R(b, a) and not a > b.

7 Conclusion and Future Work

We have shown two different kinds of relaxations of classically crisp concepts
in Abstract Argumentation. Firstly, arguments inside an extension can attack
each other, and, secondly, a new notion of weighted defence (i.e., w-defence [7])
can be relaxed to γ-defence, with the purpose to be less restrictive. Classical
implications between semantics [15] still hold also in this framework, which can
be adopted to directly represent [15] and other works in the literature. Tests show
that for small α or γ the average number of extensions slowly increases, thus
permitting to catch few very “close” solutions characterised by a low amount
of inconsistency (see Sect. 5). Relaxing internal conflict or defence (which are
linked together, as exemplified in Sect. 5.1), or both at the same time, provides
an agent with a much finer-grained level of analysis than it is typically possible,
since inconsistency is ubiquitous in every-day life [4,17].

In the future we will investigate the αγ-grounded semantics, which deserves
separate considerations: a straightforward definition, along the line presented in
Sect. 4, would lead to more than one grounded extension (as in [17]). To have a
single extension requires a definition alternative to the minimal set-inclusion of
αγ-complete extensions; e.g., we can consider the set of all sceptically accepted
arguments (in the αγ-complete semantics). In the presented framework it is pos-
sible to define a single grounded extension that coincides with the intersection
of all the αγ-complete extensions (and with the union of all sceptically-accepted
arguments). We will also study two-criteria (α and γ) decision-making proce-
dures to help an agent choose between internal or defence relaxations (as for
Fig. 8), as introduced at the end of Sect. 5.1.

References

1. Amgoud, L., Cayrol, C.: On the acceptability of arguments in preference-based
argumentation. In: UAI 1998: Proceedings of the Fourteenth Conference on Uncer-
tainty in Artificial Intelligence, pp. 1–7. Morgan Kaufmann (1998)

2. Amgoud, L., Ben-Naim, J., Doder, D., Vesic, S.: Ranking arguments with
compensation-based semantics. In: Principles of Knowledge Representation and
Reasoning: Proceedings of the Fifteenth International Conference, KR, pp. 12–21.
AAAI Press (2016)

142 S. Bistarelli et al.

3. Bench-Capon, T.J.M.: Persuasion in practical argument using value-based argu-
mentation frameworks. J. Log. Comput. 13(3), 429–448 (2003)

4. Bertossi, L., Hunter, A., Schaub, T. (eds.): Inconsistency Tolerance. LNCS, vol.
3300. Springer, Heidelberg (2005)

5. Bistarelli, S., Gadducci, F.: Enhancing constraints manipulation in semiring-based
formalisms. In: ECAI, Frontiers in Artificial Intelligence and Applications, vol. 141,
pp. 63–67. IOS Press (2006)

6. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and
optimization. J. ACM 44(2), 201–236 (1997)

7. Bistarelli, S., Rossi, F., Santini, F.: A collective defence against grouped attacks for
weighted abstract argumentation frameworks. In: Proceedings of the Twenty-Ninth
International Florida Artificial Intelligence Research Society Conference, FLAIRS
2016, pp. 638–643. AAAI Press (2016)

8. Bistarelli, S., Santini, F.: A common computational framework forsemiring-based
argumentation systems. In: Coelho, H., Studer, R., Wooldridge, M. (eds.) ECAI,
Frontiers in Artificial Intelligence and Applications, vol. 215, pp. 131–136. IOS
Press (2010)

9. Bistarelli, S., Santini, F.: Conarg: a constraint-based computational framework
for argumentation systems. In: IEEE 23rd International Conference on Tools with
Artificial Intelligence, ICTAI 2011, pp. 605–612. IEEE (2011)

10. Bistarelli, S., Santini, F.: Modeling and solving AFs with a constraint-based tool:
ConArg. In: Modgil, S., Oren, N., Toni, F. (eds.) TAFA 2011. LNCS (LNAI), vol.
7132, pp. 99–116. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29184-5 7

11. Blyth, T.S., Janowitz, M.F.: Residuation Theory, vol. 102. Pergamon Press, Oxford
(1972)

12. Cayrol, C., Devred, C., Lagasquie-Schiex, M.C.: Acceptability semantics account-
ing for strength of attacks in argumentation. In: ECAI 2010 - 19th European
Conference on Artificial Intelligence, vol. 215, pp. 995–996. IOS Press (2010)

13. Cayrol, C., Lagasquie-Schiex, M.C.: From preferences over arguments to prefer-
ences over attacks in abstract argumentation: a comparative study. In: 2013 IEEE
25th International Conference on Tools with Artificial Intelligence, pp. 588–595.
IEEE Computer Society (2013)

14. Coste-Marquis, S., Konieczny, S., Marquis, P., Ouali, M.A.: Weighted attacks in
argumentation frameworks. In: Principles of Knowledge Representation and Rea-
soning: Proceedings of the Thirteenth International Conference, KR 2012, Rome,
Italy, June 10–14, 2012. AAAI Press (2012)

15. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2),
321–357 (1995)

16. Dunne, P.E., Hunter, A., McBurney, P., Parsons, S., Wooldridge, M.: Inconsistency
tolerance in weighted argument systems. In: Conference on Autonomous Agents
and Multiagent Systems, pp. 851–858. IFAAMS (2009)

17. Dunne, P.E., Hunter, A., McBurney, P., Parsons, S., Wooldridge, M.: Weighted
argument systems: basic definitions, algorithms, and complexity results. Artif.
Intell. 175(2), 457–486 (2011)

18. Eğilmez, S., Martins, J., Leite, J.: Extending Social abstract argumentation
with votes on attacks. In: Black, E., Modgil, S., Oren, N. (eds.) TAFA 2013.
LNCS (LNAI), vol. 8306, pp. 16–31. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-54373-9 2

19. Erdős, P., Rényi, A.: On the evolution of random graphs. Bull. Inst. Internat.
Statist 38(4), 343–347 (1961)

http://dx.doi.org/10.1007/978-3-642-29184-5_7
http://dx.doi.org/10.1007/978-3-642-54373-9_2
http://dx.doi.org/10.1007/978-3-642-54373-9_2

A Relaxation of Internal Conflict and Defence 143

20. Grossi, D., Modgil, S.: On the graded acceptability of arguments. In: Proceedings of
the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI,
pp. 868–874. AAAI Press (2015)

21. Kaci, S., Labreuche, C.: Arguing with valued preference relations. In: Liu, W. (ed.)
ECSQARU 2011. LNCS (LNAI), vol. 6717, pp. 62–73. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-22152-1 6

22. Leite, J., Martins, J.: Social abstract argumentation. In: IJCAI, Proceedings of
the 22nd International Joint Conference on Artificial Intelligence, pp. 2287–2292.
IJCAI/AAAI (2011)

23. Li, H., Oren, N., Norman, T.J.: Probabilistic argumentation frameworks. In:
Modgil, S., Oren, N., Toni, F. (eds.) TAFA 2011. LNCS (LNAI), vol. 7132,
pp. 1–16. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29184-5 1

24. Mart́ınez, D.C., Garćıa, A.J., Simari, G.R.: Anabstract argumentation framework
with varied-strength attacks. In: Principles of Knowledge Representation and Rea-
soning: Proceedings of the Eleventh International Conference, pp. 135–144. AAAI
Press (2008)

25. Schroeder, M., Schweimeier, R.: Fuzzy argumentation for negotiating agents. In:
AAMAS, pp. 942–943. ACM (2002)

http://dx.doi.org/10.1007/978-3-642-22152-1_6
http://dx.doi.org/10.1007/978-3-642-29184-5_1

Decidability and Expressivity
of Ockhamist Propositional Dynamic Logics

Joseph Boudou(B) and Emiliano Lorini

IRIT-CNRS, Toulouse University, Toulouse, France
{joseph.boudou,lorini}@irit.fr

Abstract. Ockhamist Propositional Dynamic Logic (OPDL) is a logic
unifying the family of dynamic logics and the family of branching-time
temporal logics, two families of logic widely used in AI to model reactive
systems and multi-agent systems (MAS). In this paper, we present two
variants of this logic. These two logics share the same language and
differ only in one semantic condition. The first logic embeds Bundled
CTL∗ while the second embeds CTL∗. We provide a 2EXPTIME decision
procedure for the satisfiability problem of each variant. The decision
procedure for the first variant of OPDL is based on the elimination of
Hintikka sets while the decision procedure for the second variant relies
on automata.

1 Introduction

In [2] a new logic, called Ockhamist Propositional Dynamic Logic (OPDL) has
been introduced. This logic connects the family of dynamic logics with the fam-
ily of branching-time temporal logics, two families of logic that are traditionally
used in artificial intelligence for the verification of programs and for modelling
autonomous agents and multi-agent systems (MAS). On the one hand, dynamic
logics have been used to model actions of agents and their consequences as
well as deontic notions such as obligation and permission. On the other hand,
branching-time temporal logics have been used to model the evolution of the
agents’ attitudes and dispositions including beliefs, preferences and intentions
as well as to specify communication protocols and to model dynamics of com-
mitments in a multi-agent setting.

As shown in [2], OPDL offers the right “bridge” between these two fami-
lies of logics, as it embeds in a natural and polynomial way both Propositional
Dynamic Logic (PDL) [10] and Full Computation Tree Logic (CTL∗) [14]. Exist-
ing embeddings of both PDL and CTL∗ are rather complicated and unnatural.
For example, it is well-known that PDL and CTL∗ can be embedded in modal
μ-calculus. However, although the embedding of PDL into modal μ-calculus is
simple and direct, the embedding of CTL∗ into modal μ-calculus is rather com-
plicated and doubly exponential in the length of the input formula [5]. Another
logic that links PDL with CTL∗ is the extension of PDL with a repetition con-
struct (PDL-Δ) by [16]. But again, the embedding of CTL∗ into PDL-Δ is rather
complicated and doubly exponential in the length of the input formula [19].
c© Springer International Publishing AG 2016
L. Michael and A. Kakas (Eds.): JELIA 2016, LNAI 10021, pp. 144–158, 2016.
DOI: 10.1007/978-3-319-48758-8 10

Decidability and Expressivity of Ockhamist Propositional Dynamic Logics 145

OPDL can be conceived as the logic in the dynamic logic family based
on the Ockhamist view of time. Ockhamist semantics for temporal logic have
been widely studied [4,17,20]. The logic of agency STIT (the logic of “seeing
to it that”) by Belnap et al. [3] is based on such semantics. According to the
Ockhamist conception of time (also called indeterminist actualist, see [20]) the
truth of statements is evaluated with respect to a moment and to a particular
actual linear history passing through that moment.1

The original semantics for OPDL given by [2] is based on the concept of OPDL
Ockhamist model, which can be seen as an extension with a program component
of Zanardo’s Ockhamist model for branching-time temporal logics [20]. Specif-
ically, in an OPDL Ockhamist model, temporal transitions between states are
labelled with sets of atomic programs. A second variant of OPDL is studied
by [2], called OPDLlts . Like PDL, OPDLlts is interpreted in labelled transition
systems (LTS). However, while in PDL the truth of a formula is evaluated with
respect to a state, in OPDLlts it is evaluated with respect to a path.

The present paper furthers the study of OPDL by providing complexity
results of the satisfiability problems of its different variants. Specifically, we
introduce a new path semantics for OPDL, which allows for finer analyses of its
different variants. The OPDL Ockhamist semantics is proved to correspond to
the fusion closure condition in the path semantics. Observing that OPDLlts stud-
ied by [2] lacks the conservative property, a new variant of OPDL, called OPDLlc ,
is devised by adding the limit closure property to the path semantics, thereby
imitating the difference between the semantics for Bundled CTL∗ (BCTL∗) and
the semantics for CTL∗. We show that the satisfiability problems of OPDL and
OPDLlts are both 2EXPTIME-complete, the same complexity as for CTL∗.

The rest of the paper is organized as follows. In the next section, the OPDL
language and the Ockhamist semantics for OPDL are recalled from [2]. The path
semantics framework is also introduced. Then, optimal decision procedures for
the satisfiability of OPDL and OPDLlc are presented in Sects. 3 and 4, respec-
tively. We conclude in Sect. 5.2

2 Ockhamist Propositional Dynamic Logics

OPDL and OPDLlc share the same language which is the language of PDL where
one special atomic program ≡ called the branching program is distinguished.
Formally, assume a countable set Prop = {p, q, . . .} of atomic propositions and
a countable set Atm = {a, b, . . .} of atomic programs (or actions). The language
LOPDL(Prop,Atm) of OPDL consists of a set Prg of programs and a set Fml of
formulas, defined as follows:

Prg : α ::= a | ≡ | (α1;α2) | (α1 ∪ α2) | α∗ | ϕ?
Fml : ϕ ::= p | ¬ϕ | (ϕ1 ∧ ϕ2) | [[α]]ϕ

1 The Ockhamist view of branching time is traditionally opposed to the Peircean view
[13,17]. According to the Peircean view, the truth of a temporal formula should be
evaluated with respect either to some history or all histories starting in a given state.

2 Due to space restriction, this version of the paper contains only sketches of proofs
of some theorems.

146 J. Boudou and E. Lorini

where ≡ is a syntactic symbol distinct from atomic programs. We adopt the stan-
dard definitions for the remaining Boolean operations. Implicit elimination of dou-
ble negations is assumed: ¬¬ϕ is identified with ϕ. The dual 〈〈α〉〉 of the modality
[[α]] is defined by 〈〈α〉〉ϕ def= ¬[[α]]¬ϕ. We write |α| and |ϕ| to denote the numbers
of occurrences of symbols in the program α and the formula ϕ. Like for PDL, the
formula [[α]]ϕ has to be read as “ϕ holds after all possible executions of α”.

2.1 Ockhamist Semantics

OPDL models are structures with two dimensions: a vertical dimension corre-
sponding to the concept of history, a horizontal dimension corresponding to the
concept of moment.

Definition 1. An OPDL model is a tuple M = (W,Q,L,R≡,V) where:

– W is a nonempty set of states (or worlds),
– Q is a partial function Q : W −→ W assigning a successor to states,
– L is a mapping L : W × W −→ 2Atm from pairs of states to sets of atomic

programs such that L(w, v) �= ∅ iff v is the successor of w, i.e., v = Q(w),
– R≡ ⊆ W × W is an equivalence relation between states in W ,
– V : W −→ 2Prop is a valuation function for atomic propositions,

and such that for all w, v, u ∈ W :

(C1) if Q(w) = v and (v, u) ∈ R≡ then there is z ∈ W such that (w, z) ∈ R≡,
Q(z) = u and L(z, u) = L(w, v).

(C2) if (w, v) ∈ R≡ then V(w) = V(v).

R≡-equivalence classes are called moments. A history starting in w1 is a
maximal sequence σ = w1, w2, . . . of states such that wk+1 = Q(wk) for all
positive k less than the length of σ.

Constraint C1 corresponds to what in Ockhamist semantics is called property
of weak diagram completion. This means that if two worlds v and u are in the
same moment and world w is a predecessor of v then, there exists a world z such
that (i) w and z are in the same moment, (ii) u is the successor of z, (iii) the
transition from w to v and the transition from z to u are labeled with the same
set of action names. Constraint C2 just means that two worlds belonging to the
same moment agree on the truth values of the atoms.

The truth of an OPDL formula is evaluated with respect to a world w in an
OPDL model M .

Definition 2. Let M = (W,Q,L,R≡,V) be an OPDL model. Given a program
α, we define a binary relation Rα on W with (w, v) ∈ Rα (or w Rα v) meaning
that v is accessible from w by performing α. We also define a binary relation |=

Decidability and Expressivity of Ockhamist Propositional Dynamic Logics 147

between worlds in M and formulas with M,w |= ϕ meaning that formula ϕ is
true at w in M . The rules inductively defining Rα and |= are:

Ra = {(w, v) | Q(w) = v and a ∈ L(w, v)}
Rα1;α2 = Rα1 ◦ Rα2

Rα1∪α2 = Rα1 ∪ Rα2

Rα∗ = (Rα)∗

Rϕ? = {(w,w) | M,w |= ϕ}
and M,w |= p ⇐⇒ p ∈ V(w);

M,w |= ¬ϕ ⇐⇒ M,w � ϕ;
M,w |= ϕ ∧ ψ ⇐⇒ M,w |= ϕ and M,w |= ψ;
M,w |= [[α]]ϕ ⇐⇒ ∀v ∈ W, if w Rα v then M,v |= ϕ.

An OPDL formula ϕ is OPDL valid, denoted by |=OPDL ϕ, iff for every OPDL
model M and for every world w in M , we have M,w |= ϕ. An OPDL formula ϕ
is OPDL satisfiable iff ¬ϕ is not OPDL valid.

2.2 Path Semantics

In this section we describe the path semantics for LOPDL(Prop,Atm), inspired
by the path semantics for branching time temporal logics [14]. In this semantics,
the set of all histories is explicit in the model and formulas are interpreted
over histories. We show that one variant of this semantics is equivalent to the
Ockhamist semantics of the previous section, while another variant defines the
OPDLlc logic.

Notation. Given an alphabet Σ, Σ∗ denotes the set of finite words over Σ, Σω

the set of infinite words and Σ∞ the union of Σ∗ and Σω. Let σ = w1w2 . . .
be a finite or infinite word. The length of σ is denoted by |σ|. If σ is infinite
then |σ| = ω. For any i ∈ 1.. |σ|, we use σi, σ≤i and σ≥i to denote respectively
the ith element wi in σ, the prefix w1 . . . wi of σ up to its ith element and the
suffix wiwi+1 . . . of σ from its ith element. The notations σ<i, σ>i and σi..j are
shorthands for σ≤i−1, σ≥i+1 and (σ≤j)≥i, respectively.

Definition 3. A path model is a tuple M = (W,L, B,V) where W is non-
empty set of states, L : W ×W −→ 2Atm is a function assigning a set of atomic
programs to each pair of states, the bundle B ⊆ W∞ is a non-empty set of
sequences of states (histories) such that for each sequence σ = w1, w2, . . . ∈ B
and all k ≥ 1 less than the length of σ, L(wk, wk+1) �= ∅ and V : W −→ 2Prop

is a valuation for the propositional variables. The binary relations Rα over B

148 J. Boudou and E. Lorini

for all programs α and the forcing relation |= between M , sequences in B and
formulas are defined by simultaneous induction such that:

Ra = {(σ1, σ2) | σ2 = σ≥2
1 and a ∈ L(σ1

1 , σ
1
2)}

R≡ = {(σ1, σ2) | σ1
1 = σ1

2}
and M,σ |= p ⇐⇒ p ∈ V(σ1)

M,σ |= ¬ϕ ⇐⇒ M,σ � ϕ;
M,σ |= ϕ ∧ ψ ⇐⇒ M,σ |= ϕ and M,σ |= ψ;
M,σ |= [[α]]ϕ ⇐⇒ ∀σ′ ∈ B, if σ Rα σ′ then M,σ′ |= ϕ.

the missing cases being identical as to Definition 2.

The main interest in the path semantics is that, by adding additional condi-
tions restricting the possible bundles, it gives a convenient framework to analyse
and distinguish different logics based on the same language. We list some such
conditions and discuss their impact on logics. We abusively write that a model
has one of these conditions whenever its bundle has it.

Suffix closure. B is suffix closed iff for any sequence σ ∈ B and any k ∈ 1.. |σ|,
σ≥k ∈ B. In contrast with CTL∗, as long as seriality is not imposed, this condition
does not change the logic. But since this condition makes the definition of Ra

more natural, we will assume path models have it.

Fusion closure. B is fusion closed iff for any two sequences σ1, σ2 ∈ B, if σk
1 = σk′

2

for some k and k′ then the sequence σ<k
1 σ≥k′

2 is in B. This condition corresponds
to condition (C1). Indeed, we have the following theorem.

Theorem 1. OPDL is the logic obtained by interpreting LOPDL(Prop,Atm) in
the class of all suffix and fusion closed path models.

Limit closure. B is limit closed iff whenever an infinite sequence σ ∈ Wω is such
that for all k ≥ 1, there is a sequence σk ∈ B such that σ≤k

k = σ≤k then σ ∈ B.
A similar condition makes the difference between BCTL∗ and CTL∗ [14]. The
logic obtained by interpreting LOPDL(Prop,Atm) in the class of suffix, fusion
and limit closed models is called OPDLlc .

Seriality. B is serial iff all paths in B are infinite (B ⊆ Wω). Combining this
condition with the suffix closure corresponds, in the Ockhamist semantics, to
enforcing Q to be a total function. If Atm is infinite, then any path model
satisfying a formula ϕ0 can be turned into a serial path model satisfying ϕ0 by
choosing an atomic program e not occurring in ϕ0 and by adding for each finite
sequence σ ∈ B a state wσ such that wσ is a successor by {e} of itself and of the
last state in σ. This transformation preserves satisfiability and the suffix closed,
fusion closed and limit closed conditions. Therefore, since OPDL and OPDLlc

are conservative, we can assume that these logics are interpreted in serial path
models.

Decidability and Expressivity of Ockhamist Propositional Dynamic Logics 149

Total seriality. B is totally serial iff B is the set of all infinite paths. By the
constructions used in the proofs of Corollary 1 or Theorem 4, we can prove as
a corollary of any of these theorems that the logic obtained by interpreting
LOPDL(Prop,Atm) in the class of all suffix closed, fusion closed and totally serial
models is OPDLlc .

Total maximality. B is totally maximal iff B is the set of all maximal paths.
In [2], the logic obtained by interpreting LOPDL(Prop,Atm) in the class of totally
maximal models, called OPDLlts(Prop,Atm), have been considered. But, in con-
trast with OPDL and OPDLlc , OPDLlts(Prop,Atm) is not conservative. We
define a logic L1 in the language L(Prop,Atm) as being conservative iff every
extensions L2 of L1 to the language L(Prop′,Atm ′) where Prop ⊆ Prop′ and
Atm ⊆ Atm ′, is a conservative extension, i.e., the set of validities of L2 in the
language L(Prop,Atm) is exactly the set of validities of L1. Intuitively, a logic
is conservative if the validity of any formula is independent of the propositional
variables and atomic program which does not occur in the formula. To prove that
OPDLlts(Prop, {a}) is not conservative, consider the formula [[a]]⊥ ∧ 〈〈≡; a〉〉�.
This formula is not OPDLlts(Prop, {a}) satisfiable but is OPDLlts(Prop, {a, b})
satisfiable. In the present work, we will study OPDLlc (which is conservative)
instead of OPDLlts(Prop,Atm). It can easily be proved that if Atm is infinite
then OPDLlc and OPDLlts(Prop,Atm) are the same logic. Moreover, the proof
from [2] that CTL∗ can be embedded into OPDLlts can easily be adapted to prove
that CTL∗ can be embedded into OPDLlc.

3 Optimal Decision Procedure for OPDL

We describe a decision procedure for the satisfiability problem of OPDL, based
on the elimination of Hintikka sets procedure devised for PDL by Pratt [12]
and adapted to BCTL∗ by Reynolds [15]. The general idea is to construct a
syntactic structure which contains all the possible states then to eliminate the
states preventing the structure to be a model. For PDL the possible states are
Hintikka sets (hues in [15]). For BCTL∗, states are sets of Hintikka sets, called
clusters in this paper (colors in [15]). For OPDL, states must be clusters too, but
because of formulas like 〈〈a〉〉p∧ [[b]]¬p∧ 〈〈≡〉〉〈〈b〉〉p, the atomic programs labeling
edges have to be considered. Hence the syntactic structures are more involved
than for PDL or BCTL∗. We study these syntactic structures before introducing
the decision procedure for OPDL. Properties of syntactic structures are used for
the automata-based procedure of Sect. 4 too.

3.1 Syntactic Structures

Given a formula ϕ0, the Fischer-Ladner closure FL (ϕ0) of ϕ0 is defined as for
PDL (see [9] for details) except that we enforce FL (ϕ0) to be closed under
negation: ψ ∈ FL (ϕ0) iff ¬ψ ∈ FL (ϕ0). Since implicit elimination of double
negation is assumed, the well-known result that the cardinal of FL (ϕ0) is linear
in |ϕ0| remains. We write SP (ϕ0) to denote the set {α | ∃ϕ, 〈〈α〉〉ϕ ∈ FL (ϕ0)}.

150 J. Boudou and E. Lorini

Definition 4. A set H ⊂ FL (ϕ0) is a Hintikka set for ϕ0 iff all the following
conditions are satisfied:

– for any ¬ϕ ∈ FL (ϕ0), ϕ ∈ H iff ¬ϕ /∈ H
– for any ϕ ∧ ψ ∈ FL (ϕ0), ϕ ∧ ψ ∈ H iff ϕ ∈ H and ψ ∈ H
– for any [[α;β]]ϕ ∈ FL (ϕ0), [[α;β]]ϕ ∈ H iff [[α]][[β]]ϕ ∈ H
– for any [[α ∪ β]]ϕ ∈ FL (ϕ0), [[α ∪ β]]ϕ ∈ H iff [[α]]ϕ ∈ H and [[β]]ϕ ∈ H
– for any [[α∗]]ϕ ∈ FL (ϕ0), [[α∗]]ϕ ∈ H iff ϕ ∈ H and [[α]][[α∗]]ϕ ∈ H
– for any [[ϕ?]]ψ ∈ FL (ϕ0), [[ϕ?]]ψ ∈ H iff ¬ϕ ∈ H or ψ ∈ H
– if [[≡]]ϕ ∈ H then ϕ ∈ H
Definition 5. A set C of Hintikka sets for ϕ0 is a cluster for ϕ0 iff C �= ∅ and
for any H1,H2 ∈ C the following conditions are satisfied:

– for any propositional variable p ∈ FL (ϕ0), p ∈ H1 iff p ∈ H2

– for any formula [[≡]]ϕ ∈ FL (ϕ0), [[≡]]ϕ ∈ H1 iff [[≡]]ϕ ∈ H2

Given a set P ⊆ Atm of atomic programs, the successor relation SP over
Hintikka sets is defined such that H1 SP H2 iff (i) for any formula 〈〈a〉〉ϕ ∈ H1,
a ∈ P and (ii) for any formula 〈〈a〉〉ϕ ∈ FL (ϕ0) such that a ∈ P , 〈〈a〉〉ϕ ∈ H1 iff
ϕ ∈ H2. This relation is extended to clusters: C1 SP C2 iff for all H2 ∈ C2 there
exists H1 ∈ C1 such that H1 SP H2.

A syntactic structure is a pseudo-model where the valuation has been
replaced with a function assigning clusters and where the bundle is implicit.
Intuitively, each Hintikka set in the cluster associated to a state w corresponds
to the set of formulas satisfied by a history starting at w.

Definition 6. A syntactic structure for a formula ϕ0 is a tuple S = (W,L,C)
where W is a non-empty set of states, L assigns a set of atomic programs to each
pair of states, C assigns a cluster for ϕ0 to each state such that for all w, x ∈ W ,
if L(w, x) �= ∅ then C(w) SL(w,x) C(x). A syntactic structure is standard iff
(i) ϕ0 ∈ H for some H ∈ C(w) and some w ∈ W and (ii) for all w ∈ W , there
exists x ∈ W such that L(w, x) �= ∅.

A path in a syntactic structure S is a (possibly infinite) non-empty sequence π
over the alphabet composed by the special branching symbol • and all the couples
(H, w) where w ∈ W and H ∈ C(w). Any path π must satisfy all the following
conditions, for all k ∈ 1.. |π|:
– π1 �= • and if |π| < ω, π|π| �= •;
– if πk = • then πk−1 = (H, w) and πk+1(H′, w) for some w ∈ W and some

H,H′ ∈ C(w);
– if πk = (Hk, wk) and πk+1 = (Hk+1, wk+1) then L(wk, wk+1) �= ∅ and

Hk SL(wk,wk+1) Hk+1.

Intuitively, a finite path π corresponds to a possible execution of some programs
(different programs may have some common possible executions). When this is
the case, we say that the path carries the program. This relation between a

Decidability and Expressivity of Ockhamist Propositional Dynamic Logics 151

finite path and a program is defined formally as the least relation satisfying the
following conditions:

– (H1, w1)(H2, w2) carries a iff a ∈ L(w1, w2).
– (H1, w) • (H2, w) carries ≡.
– (H1, w1) carries ϕ? iff ϕ ∈ H1.
– π carries (α ∪ β) iff π carries α or β.
– π carries (α;β) iff for some m ∈ 1.. |π|, π≤m carries α and π≥m carries β.
– π carries α∗ iff there is a non-empty list k0, . . . , km such that k0 = 1, km = |π|

and for all i < m, ki < ki+1 and πki...ki+1 carries α.

An unbranching path is a path which contains no occurrences of the branching
symbol •. The trunk of a path is its longest unbranching prefix. The support of
an unbranching path (H1, w1)(H2, w2) . . . is the sequence w1w2

An eventuality chain is a non-empty sequence η = α1 . . . αnϕ where the
last element is a formula and the other elements are programs. To an eventu-
ality chain η = α1 . . . αnϕ corresponds the formula form (η) = 〈〈α1〉〉 . . . 〈〈αn〉〉ϕ.
This correspondence is not injective, for instance the eventuality chains aap,
a〈〈a〉〉p and 〈〈a〉〉〈〈a〉〉p all correspond to the same formula 〈〈a〉〉〈〈a〉〉p. The max-
imal eventuality chain for a formula ϕ is the longest eventuality chain η such
that form (η) = ϕ. Fulfillment of an eventuality chain η by a path π is defined
inductively as follows:

– The path π fulfills a one-element eventuality chain η = ϕ iff π = (H1, w1) and
ϕ ∈ H1 for some state w1 and some Hintikka set H1 ∈ C(w1);

– The path π fulfills an eventuality chain η = αη′ iff there is k ∈ 1.. |π| such
that π≤k carries α and π≥k fulfills η′.

For any eventuality chain η = αϕ of length two, the corresponding formula 〈〈α〉〉ϕ
is called an eventuality and any path fulfilling η is said to fulfill the eventuality
〈〈α〉〉ϕ. A state w ∈ W is fulfilling if for any Hintikka set H ∈ C(w) and any
eventuality 〈〈α〉〉ϕ ∈ H, there is a path π from (H, w) fulfilling 〈〈α〉〉ϕ. A syntactic
structure S fulfills all eventualities iff all its states are fulfilling. A justifying path
is an infinite unbranching path π such that for all k, if πk = (Hk, wk) for some
Hk and wk then for any eventuality 〈〈α〉〉ϕ ∈ Hk, there is a fulfilling path π′ for
〈〈α〉〉ϕ starting at (Hk, wk) such that the trunk of π′ is a prefix of π≥k.

We can now state the main result of this section.

Theorem 2. A formula ϕ0 is OPDL satisfiable if and only if there is a standard
syntactic structure for ϕ0 fulfilling all eventualities.

Proof (Proof sketch). We only detail the right-to-left direction. Given a standard
syntactic structure S = (W,L,C) for ϕ0 fulfilling all eventualities, we define the
path model M = (W,L, B,V) such that B is the set of supports of the justifying
paths in S and V(w) = H ∩ Prop for any H ∈ C(w). Two steps are difficult
in proving that M is an OPDL path model satisfying ϕ0: the proof that B is
fusion-closed and the proof of the following Existence Lemma.

152 J. Boudou and E. Lorini

Lemma 1 (Existence Lemma). For any finite unbranching path π in a stan-
dard syntactic structure S fulfilling all eventualities, there is a justifying path π′

in S such that π is a prefix of π′.

For BCTL∗, these two points are resolved by the fact that any eventuality
ϕ U ψ is either resolved at the current state or still satisfied in the successor
state. For OPDL, we need the Witness Lemma below. To state this lemma,
we inductively define the function next from eventuality chains to sets of pairs
composed of a set of formulas (the guard) and an eventuality chain:

next(ϕ) = {(∅, ϕ)} next(ψ?η) = {(G ∪ {ψ}, η′) | (G, η′) ∈ next(η)}
next(aη) = {(∅, aη)} next((β1 ∪ β2)η) = next(β1η) ∪ next(β2η)
next(≡η) = {(∅,≡η)} next((β1;β2)η) = next(β1β2η)

next(α∗η) = next(η) ∪ {(G, β1 . . . βn′−1α
∗η) | n′ > 1 and

(G, β1 . . . βn′−1form (α∗η)) ∈ next(αform (α∗η))}

Lemma 2 (Witness Lemma). For any syntactic structure S = (W,L,C),
any state w ∈ W , any Hintikka set H ∈ C(w), any eventuality chain η1 such
that form (η1) ∈ H and any path π in S from (H, w), π fulfills η1 if and only if
there is (G, η2) ∈ next(η1) such that G ∪ {form (η2)} ⊆ H and π fulfills η2.

The proof of the Witness Lemma is by induction on the sum
∑|η1|−1

k=1

∣

∣ηk
1

∣

∣ of the
length of the programs in η. ��

In the proof of Theorem2, we construct from a standard syntactic structure
S = (W,L,C) for ϕ0 the path model M = (W,L, B,V) in which B is the set
of supports of the justifying paths in S. Therefore if the set of the supports of
the justifying paths in S is limit closed then B is limit closed too. Hence the
following corollary can be deduced from Theorem 2.

Corollary 1. A formula ϕ0 is OPDLlc satisfiable if and only if there is a stan-
dard syntactic structure S for ϕ0 which fulfills all eventualities and such that the
set of the supports of the justifying paths in S is limit closed.

3.2 The Optimal Decision Procedure

We describe a procedure which, given a formula ϕ0, either fails or exhibits a
standard syntactic structure for ϕ0 fulfilling all eventualities. The procedure
inductively constructs a finite sequence S0, . . . ,Sn of syntactic structures for ϕ0.
The initial syntactic structure S0 = (W0,L0,C0) is defined such that:

– W0 is the set of all pairs (P, C) where P is a non-empty subset of SP (ϕ0)∪{e}
for some fixed e /∈ SP (ϕ0) and C is a cluster for ϕ0,

– L((P1, C1), (P2, C2)) = P2 if C1 SP2 C2 and is empty otherwise,
– C(P, C) = C.

Decidability and Expressivity of Ockhamist Propositional Dynamic Logics 153

Then for all k, the syntactic structure Sk+1 is constructed from Sk =
(Wk,Lk,Ck) by removing from Wk the states (P, C) which are not fulfilling or
such that for some H ∈ C, there is no (P ′, C′) ∈ Wk and H′ ∈ C′ such that
C SP ′ C′ and H SP ′ H′.

There exists a constant C such that the number of states in W0 for any ϕ0

is bounded by 22
C·�

where � = |ϕ0|. Therefore, for some n ≤ 22
C·�

no state
can be eliminated from Sn. The procedure terminates successfully iff there is a
state (P, C) ∈ Wn and a Hintikka set H ∈ C such that ϕ0 ∈ H. By Theorem 2,
the decision procedure is sound and complete. Since the satisfiability problem of
OPDL is 2EXPTIME-hard [2], we have the following theorem.

Theorem 3. The satisfiability problem of OPDL is 2EXPTIME-complete.

4 Optimal Decision Procedure for OPDLlc

The procedure of the Sect. 3 is difficult to adapt to OPDLlc because no simple
condition can be checked during the construction of the syntactic structure to
guarantee that the set of the supports of all justifying paths is limit closed.
Therefore, we first prove that OPDLlc has a particular tree model property.
Then we use this property to reduce the satisfiability problem of OPDLlc to
the (dual of) the emptiness problem of an automaton on infinite trees. Because
syntactic structures are more convenient than models for decision procedures,
we prove a tree syntactic structure property, from which the usual tree model
property can be deduced using the construction of Sect. 3.1.

4.1 Tree Model Property of OPDLlc

An N -ary ω-tree over an alphabet Σ is a function T : [1..N]∗ −→ Σ. In such a
tree, nodes are labeled with elements of Σ. A branch in T is an infinite sequence
σ1 = λ1λ2 . . . for which there exists σ2 ∈ [1..N]ω and i ∈ N such that for all
k > 0, λk = σ≤i+k

2 . Like in the previous section, we need nodes to be labeled
with pairs (P, C) where P is the set of atomic programs labeling the incoming
edge and C is a cluster. To simulate incomplete trees, we allow P to be empty,
in which case the branch is said to be pruned.

Definition 7. An N -ary syntactic tree for a formula ϕ0 is an N -ary ω-tree T
over Σ = 2Atm × Clusters(ϕ0) where Clusters(ϕ0) is the set of clusters on ϕ0

and such that:

1. TP (ε) = ∅ and there is σ ∈ [1..N]ω such that for all i > 0, TP (σ≤i) �= ∅;
2. for all λ ∈ [1..N]∗ and k ∈ 1..N , TP (λk) = ∅ or TC(λ) STP (λk) TC(λk).

where TP and TC are the projections of T on 2Atm and Clusters(ϕ0), respectively.
A branch σ in T is valid if for all k > 1, TP (σk) �= ∅ and pruned otherwise.

154 J. Boudou and E. Lorini

To any N -ary syntactic tree T = (TP , TC) naturally corresponds the syntactic
structure S(T) = ([1..N]∗,L, TC) where L(λ1, λ2) = TP (λ2) if λ2 = λ1k for
some k ∈ 1..N and is the empty set otherwise. Therefore, an N -ary syntactic
tree can be seen as a tree syntactic structure. Indeed, we will abusively write
about paths in syntactic trees. For the following definition of a good syntactic
tree, since we do not assume that the corresponding syntactic structure fulfills
all eventualities, we adapt the definition of a justifying path. A pseudo-justifying
path is an infinite unbranching path π such that for all k > 0, if πk = (Hk, wk)
then for any eventuality 〈〈α〉〉ϕ ∈ Hk there is � ≥ k such that π	 = (H	, w) and
either πk..	 fulfills 〈〈α〉〉ϕ or there is an eventuality chain η such that η1 = ≡,
form (η) ∈ H	 and for any path π2 from π	 fulfilling η, πk..(−1)π2 fulfills 〈〈α〉〉ϕ.
By the Witness Lemma, any justifying path is a pseudo-justifying path.

Definition 8. An N -ary syntactic tree T = (TP , TC) for a formula ϕ0 is good
iff all the following conditions hold:

1. any valid branch σ is the support of a pseudo-justifying path;
2. for any node λ in T , if TP (λ) �= ∅ and there is H ∈ TC(λ) such that 〈〈≡〉〉ψ ∈ H

for some formula ψ, then there is a finite path π in T from (H′, λ) fulfilling
the maximal eventuality chain for ψ;

3. there is a pseudo-justifying path in T from (H, ε) such that ϕ0 ∈ H.

Let N≡
ϕ0

be the number of eventualities of the form 〈〈≡〉〉ψ in FL (ϕ0) plus
one. The tree property of OPDLlc is stated as follows.

Theorem 4. A formula ϕ0 is OPDLlc satisfiable iff there is a good N≡
ϕ0

-ary
syntactic tree for ϕ0.

Proof (Proof sketch). We only detail the construction for the left-to-right direc-
tion, which is inspired by a similar construction for CTL∗ [7]. Suppose ϕ0 is
satisfiable. By Corollary 1, there is a standard syntactic structure S = (W,L,C)
for ϕ0 which fulfills all eventualities and such that the set of the supports of the
justifying paths in S is limit closed. Let 〈〈≡〉〉ψ2, . . . , 〈〈≡〉〉ψN≡

ϕ0
be an ordering

of the eventualities of the form 〈〈≡〉〉ψ in FL (ϕ0). We first define the N≡
ϕ0

-ary
ω-tree Tpath over the alphabet of all the paths in S plus the empty word ε. By
Lemma 1, there is a justifying path π0 from (H0, w0). We label the root of Tpath

with this path: Tpath(ε) = π0. For each node λ ∈ [1..N≡
ϕ0

]∗, if Tpath(λ) �= ε, the
labeling path continues with the first successor: Tpath(λ1) = Tpath(λ)≥2. For the
other successors k ∈ 2..N≡

ϕ0
of λ, let (Hλ, wλ) = Tpath(λ)1. If 〈〈≡〉〉ψk ∈ Hλ then

let π1 be the shortest path fulfilling the maximal eventuality chain for ψk and
such that π1

1 = (H′, wλ) for some H′. By Lemma 1, there is a justifying path
πλk whose prefix is the trunk of π1. We label the kth successor of λ with it:
Tpath(λk) = π≥2

λk . Otherwise, if 〈〈≡〉〉ψk−1 /∈ Hλ then Tpath(λk) = ε. All suc-
cessors of a node labeled with ε are labeled with ε. Finally, the good N≡

ϕ0
-ary

syntactic tree T for ϕ0 is constructed from Tpath as follows. For the root node,
T (ε) = (∅,C(w0)). For λ ∈ [1..N≡

ϕ0
]∗ and k ∈ 1..N≡

ϕ0
, if Tpath(λ)1 = (Hλ, wλ)

and Tpath(λk)1 = (Hλk, wλk) then T (λk) = (L(wλ, wλk),C(wλk)). Otherwise,
T (λk) = (∅, C) for some arbitrary cluster C. ��

Decidability and Expressivity of Ockhamist Propositional Dynamic Logics 155

4.2 Automata-based Decision Procedure for OPDLlc

By Theorem 4, whenever a formula ϕ0 is satisfiable, there is a good N≡
ϕ0

-ary
syntactic tree for ϕ0. Therefore, we construct an automaton which recognizes
exactly the good N≡

ϕ0
-ary syntactic trees for ϕ0. We first recall the definitions

of the automata used in the procedure before describing the construction of our
automaton.

A Büchi word automaton is a tuple A = (Σ,S, ρ, S0, F) where Σ is the input
alphabet, S is the set of states of the automaton, ρ : S × Σ −→ 2S is a non-
deterministic transition function, S0 ⊆ S is the set of initial states and F ⊆ S
is the termination condition. Given an infinite word μ over Σ, a run of A on μ
is a word r over S such that r1 ∈ S0 and for all k ≥ 1, rk+1 ∈ ρ(rk, μk). The
set of states occurring infinitely often in a run r is denoted by inf(r). A word
μ is accepted by A iff there is a run r of A on μ such that inf(r) ∩ F �= ∅. By
extension, a Büchi word automaton accepts a tree iff it accepts all its branches
seen as words over the labels of the trees’s nodes.

A Street tree automaton is a tuple A = (Σ,S, ρ, S0, F) similar to a Büchi
word automaton except that ρ : S × Σ −→ 2SN

assigns a set of N -ary tuples of
states and F ⊆ 2S × 2S is a set of pairs of set of states. Given an N -ary ω-tree
T over Σ, a run of A on T is a tree Tr over S such that Tr(ε) ∈ S0 and for
all λ ∈ [1..N]∗, (Tr(λ1), . . . , Tr(λN)) ∈ ρ(Tr(λ), T (λ)). For all branch σ in Tr,
the set of states occurring infinitely often in σ is denoted by inf(σ). A tree T is
accepted by A iff there is a run Tr of A on T such that for any branch σ in Tr

and any pair (A,B) ∈ F , if inf(σ) ∩ A �= ∅ then inf(σ) ∩ B �= ∅.
Given a formula ϕ0 we devise a Streett tree automaton A which recognizes

exactly the good N≡
ϕ0

-ary syntactic trees for ϕ0. We first describe three automata,
each checking conditions from Definitions 7 and 8. Let Σ = 2Atm ×Clusters(ϕ0).

Condition (2) of Definition 7 is checked by the “successor” Büchi word
automaton AS = (Σ,SS , ρS , SS,0, F) where SS is the set of clusters on ϕ0 plus
the special state I, SS,0 = {I}, FS = SS and s1 ∈ ρS(s0, (P, C)) iff (i) s1 = C
and (ii) P = ∅ or s0 SP s1.

Condition (1) of Definition 8 is checked by the “justifying” Büchi word
automaton AJ = (Σ,SJ , ρJ , SJ,0, FJ) where

– SJ is the set of pairs (H, E) where E is a set of eventuality chains to be fulfilled
and H is either a Hintikka set of the parent cluster or the empty set if the
current node is the root or FL (ϕ0) if the current branch is pruned;

– SJ,0 = {(∅, ∅)} and FJ = {(H, E) ∈ SJ | H �= ∅ and E = ∅};
– (H1, E1) ∈ ρJ((H0, E0), (P, C)) if one of the following condition holds:

• H0 is a Hintikka set, E0 �= ∅, H1 ∈ C, P �= ∅, H0 SP H1 and for all η0 ∈ E0,
form (η0) ∈ H1 and there is (G1, η1) ∈ next(η0) such that G1∪{form (η1)} ⊆
H1 and if η1

1 ∈ Atm then η≥2
1 ∈ E1.

• H0 �= FL (ϕ0), E0 = ∅, H1 ∈ C, if H0 �= ∅ then P �= ∅ and H0 SP H1

and for any eventuality 〈〈α〉〉ϕ ∈ H1, there is (G1, η1) ∈ next(αϕ) such that
G1 ∪ {form (η1)} ⊆ H1 and if η1

1 ∈ Atm then η≥2
1 ∈ E1.

• H1 = FL (ϕ0) and E1 �= ∅.
• H1 = FL (ϕ0), E1 = ∅ and either E0 = ∅ or H0 �= ∅ and P = ∅.

156 J. Boudou and E. Lorini

Finally, the “existential” Büchi tree automaton AE = (Σ,SE , ρE , SE,0, FE)
ensures that there is a pseudo-justifying path π from (H1, ε) where ϕ0 ∈ H1 and
such that the support of π is the branch obtained by always choosing the first
successor (conditions (1) of Definition 7 and (3) of Definition 8). Moreover, AE

checks conditions (2) of Definition 8. It is defined such that:

– SE is the set of triples (H, E, t) where H and E play the same role as in AJ

and t is a Boolean value (� or ⊥) indicating whether the state is final;
– SE,0 = {(∅, ∅,⊥)} and FE = {(SE , F)} where F = {(H, E, t) ∈ SE | t = �}.

The transition function ρE is defined such that if

((H1, E1, t1), . . . , (HN≡
ϕ0

, EN≡
ϕ0

, tN≡
ϕ0

)) ∈ ρE((H0, E0, t0), (P, C))

then all the following conditions hold:

– for all k ∈ 1..N≡
ϕ0

, either Hk ∈ C or Hk = FL (ϕ0);
– if H0 = ∅ then H1 is a Hintikka set, ϕ0 ∈ H1 and P = ∅;
– if H0 is a Hintikka set then P �= ∅, H1 is a Hintikka set and H0 SP H1;
– if H1 is a Hintikka set and E0 = ∅ then for all eventuality 〈〈α〉〉ϕ ∈ H1 there

is (G2, η2) ∈ next(αϕ) such that G2 ∪ {form (η2)} ⊆ H1, if η1
2 ∈ Atm then

η≥2
2 ∈ E1 and if η1

2 = ≡ and Ek �= ∅ for k such that form (η2) = 〈〈≡〉〉ψk−1

then tk = ⊥;
– if H1 is a Hintikka set then for all η1 ∈ E0, form (η1) ∈ H1 and there is

(G2, η2) ∈ next(η1) such that G2 ∪ {form (η2)} ⊆ H1, if η1
2 ∈ Atm then

η≥2
2 ∈ E1 and if η1

2 = ≡ and Ek �= ∅ for k such that form (η2) = 〈〈≡〉〉ψk−1

then tk = ⊥;
– for all k ∈ 2..N≡

ϕ0
, if H1 is a Hintikka set and 〈〈≡〉〉ψk−1 ∈ H1 then Hk is

a Hintikka set, ψk−1 ∈ Hk and there is (G2, η2) ∈ next(η1) where η1 is the
maximal eventuality chain for ψk−1 such that G2 ∪ {form (η2)} ⊆ Hk and if
η1
2 ∈ Atm then η≥2

2 ∈ Ek;
– if E1 �= ∅ then t1 = ⊥.

AS is deterministic and the number of its states is double exponential in |ϕ0|.
It can be directly translated into a Streett tree automaton with no termination
pair. AJ has an exponential number of states but it must be determinized before
being transformed into a tree automaton, because the choice of the Hintikka
sets depends on the successor of the node. By the construction of Piterman [11],
any nondeterministic Büchi word automaton with s states can be transformed
into an equivalent deterministic Streett word automaton with s2s+2 states and
s pairs. Hence, the resulting Streett tree automaton corresponding to AJ has a
double exponential number of states and an exponential number of termination
pairs. AE has an exponential number of states and a single termination pair.
The product of these three tree automata gives a Streett tree automaton A
with a double exponential number of states and an exponential number of pairs.
Emerson and Jutla [8] proved that the emptiness of a Streett tree automaton with
s states and p termination pairs can be decided in deterministic time (s · p)O(p).

Decidability and Expressivity of Ockhamist Propositional Dynamic Logics 157

Since A recognizes exactly the good syntactic trees for ϕ0, by Theorem 4, the
satisfiability problem of OPDLlc is in 2EXPTIME. Moreover, the proof from [2]
that OPDLlts is 2EXPTIME-hard can easily be adapted to OPDLlc . Hence we
have the following result.

Theorem 5. The satisfiability problem of OPDLlc is 2EXPTIME-complete.

5 Conclusion

In this work, we have first shown that the logic OPDLlts proposed by [2] does
not have the good property of being conservative. Using the more convenient
path semantics framework, the semantics of this logic has been slightly modified
to obtain the new logic OPDLlc which is conservative and in which PDL and
CTL∗ can still be embedded. Then, we have answered the question, left open
in [2], of the complexity of the satisfiability problems of OPDL and OPDLlc .
We have proved that both problems are 2EXPTIME-complete. However, the
methods used to prove these results are quite different. Whereas for OPDL a
finite model with bounded size is constructed, for OPDLlc infinite branches must
be considered using automata on infinite trees. This highlights the difference
between OPDL and OPDLlc as a consequence of the limit closure property of the
path semantics.

Some questions about OPDL and OPDLlc have been left open for future
research. For instance, there is still no axiomatization for OPDL and OPDLlc .
Furthermore, it would be interesting to study the relative expressive power of
these logics and other logics embedding both PDL and CTL∗ like the automata-
based logic YAPL [18] or the extension PDL−Δ of PDL with repetition [16].

Another issue of future research is the relation between OPDL, OPDLlc and
ATL∗, the full version of Alternating-time Temporal Logic (ATL) introduced in
[1]. There have recently been interesting results by [6], providing a tableau-based
decision procedure for ATL∗, which has been proved to be in 2EXPTIME as well,
and to also work for CTL∗. The procedure has been implemented. Future research
will be devoted to verify whether a similar solution can be found for OPDL and
OPDLlc in order to have an implemented procedure for checking satisfiability in
these logics.

References

1. Alur, R., Henzinger, T., Kupferman, O.: Alternating-time temporal logic. J. ACM
49(5), 672–713 (2002)

2. Balbiani, P., Lorini, E.: Ockhamist propositional dynamic logic: a natural link
between PDL and CTL*. In: Libkin, L., Kohlenbach, U., Queiroz, R. (eds.) WoLLIC
2013. LNCS, vol. 8071, pp. 251–265. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39992-3 22

3. Belnap, N., Perloff, M., Xu, M.: Facing the Future: Agents and Choices in Our
Indeterminist World. Oxford University Press, New York (2001)

http://dx.doi.org/10.1007/978-3-642-39992-3_22
http://dx.doi.org/10.1007/978-3-642-39992-3_22

158 J. Boudou and E. Lorini

4. Brown, M., Goranko, V.: An extended branching-time Ockhamist temporal logic.
J. Logic Lang. Inform. 8(2), 143–166 (1999)

5. Dam, M.: CTL* and ECTL* as fragments of the modal mu-calculus. Theoret.
Comput. Sci. 126(1), 77–96 (1994)

6. David, A., Schewe, S.: Deciding ATL∗ satisfiability by tableaux. Technical report,
Laboratoire IBISC - Université d’Evry Val-d’Essonne (2016)

7. Emerson, E., Sistla, A.: Deciding full branching time logic. Inf. Control 61, 175–201
(1984)

8. Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics of pro-
grams. SIAM J. Comput. 29(1), 132–158 (1999)

9. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J.
Comput. Syst. Sci. 18(2), 194–211 (1979)

10. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
11. Piterman, N.: From nondeterministic Büchi and Streett automata to determinis-

tic parity automata. In: Logic in Computer Science (LICS), pp. 255–264. IEEE
Computer Society (2006)

12. Pratt, V.R.: Models of program logics. In: 20th Annual Symposium on Foundations
of Computer Science, pp. 115–122. IEEE Computer Society (1979)

13. Prior, A.: Past, Present, and Future. Clarendon Press, Oxford (1967)
14. Reynolds, M.: An axiomatization of full computation tree logic. J. Symbol. Logic

66(3), 1011–1057 (2001)
15. Reynolds, M.: A tableau for bundled CTL*. J. Logic Comput. 17(1), 117–132

(2007)
16. Streett, R.S.: Propositional dynamic logic of looping and converse is elementarily

decidable. Inf. Control 54(1–2), 121–141 (1982)
17. Thomason, R.: Combinations of tense and modality. In: Gabbay, D., Guenthner,

F. (eds.) Handbook of Philosophical Logic, vol. 2, 2nd edn, pp. 135–165. Reidel,
Dordrecht (1984)

18. Vardi, M.Y., Wolper, P.: Yet another process logic (preliminary version). In: Clarke,
E., Kozen, D. (eds.) Logic of Programs 1983. LNCS, vol. 164, pp. 501–512. Springer,
Heidelberg (1984). doi:10.1007/3-540-12896-4 383

19. Wolper, P.: A translation from full branching time temporal logic to one letter
propositional dynamic logic with looping (unpublished manuscript)

20. Zanardo, A.: Branching-time logic with quantification over branches: the point of
view of modal logic. J. Symbol. Logic 61(1), 143–166 (1996)

http://dx.doi.org/10.1007/3-540-12896-4_383

On the Expressiveness
of Temporal Equilibrium Logic

Laura Bozzelli(B) and David Pearce

Technical University of Madrid (UPM), Madrid, Spain
laura.bozzelli@fi.upm.es

Abstract. We investigate expressiveness issues of Temporal Equilib-
rium Logic (TEL), a promising nonmonotonic logical framework for tem-
poral reasoning. TEL shares the syntax of standard linear temporal logic
LTL, but its semantics is an orthogonal combination of the LTL seman-
tics with the nonmonotonic semantics of Equilibrium Logic. We establish
that TEL is more expressive than LTL, and captures a strict subclass of ω-
regular languages. We illustrate the expressive power of TEL by showing
that LTL-conformant planning, which is not expressible in LTL, can be
instead expressed in TEL. Additionally, we provide a systematic study of
the expressiveness comparison between the LTL semantics and the TEL
semantics for various natural syntactical fragments.

1 Introduction

Answer Set Programming (ASP) is now well established as a successful paradigm
for declarative programming, with its roots in the fields of knowledge represen-
tation (KR), logic programming, and nonmonotonic reasoning (NMR) [3]. An
adequate and well-known logical foundation for ASP is provided by Equilibrium
Logic [19,20], a nonmonotonic extension of the superintuitionistic logic of here-
and-there (HT) [17]. This provides useful logical tools for the metatheory of ASP
and a framework for defining extensions of the basic ASP language, for example
to arbitrary propositional and first-order theories, to languages with intensional
functions, and to hybrid theories that combine classical and rule-based reason-
ing [7,10,14,21].

ASP has been applied to a wide range of temporal reasoning problems, includ-
ing prediction, planning, diagnosis and verification. However, since it is not an
intrinsically temporal formalism, it suffers some important limitations. Most
ASP solvers deal with finite domains, which hampers the solution of temporal
reasoning problems dealing with unbounded time, like proving the non-existence
of a plan. Temporal scenarios dealing with unbounded time are typically best
suited for modal temporal logics, a fundamental framework for the specification

An authors’ online version of this paper is available at https://www.dropbox.com/
s/x0fnjzhjwira780/TEL%20Expression.pdf?dl=0. Its appendix includes proofs that
are omitted here for lack of space.

c© Springer International Publishing AG 2016
L. Michael and A. Kakas (Eds.): JELIA 2016, LNAI 10021, pp. 159–173, 2016.
DOI: 10.1007/978-3-319-48758-8 11

https://www.dropbox.com/s/x0fnjzhjwira780/TEL%20Expression.pdf?dl=0
https://www.dropbox.com/s/x0fnjzhjwira780/TEL%20Expression.pdf?dl=0

160 L. Bozzelli and D. Pearce

of the dynamic behavior of reactive systems. However, standard modal tem-
poral logics, such as propositional linear-time temporal logic LTL [22], are not
designed to deal with many issues in KR. These logics (like classical logics) have
a monotonic consequence relation, meaning that adding a formula to a theory
never produces a reduction of its set of consequences. A monotonic logic cannot
handle various commonsense reasoning tasks such as reasoning by default.

Temporal Equilibrium Logic (TEL). TEL was proposed by Cabalar and
Vega [8] as a nonmonotonic temporal logic, able to capture temporal reason-
ing problems not representable in ASP. It is apparently the only nonmonotonic
extension of a standard modal temporal logic (viz. LTL) that does not use addi-
tional operators or constructions.

TEL shares the syntax of standard LTL, but its semantics is an orthogonal
combination of the LTL semantics with the nonmonotonic semantics of Equilib-
rium Logic. As for Equilibrium Logic, the non-monotonic semantics of TEL is
based on a selection criterion (a kind of minimization) among the models of the
intermediate monotonic temporal logic of Here-and-There (THT), a combination
of LTL and the propositional superintuitionistic logic of Here-and-There (HT).

Many works have been dedicated to the theoretical study of TEL, and some
tools have been developed for computing models of temporal programs under
TEL semantics (see e.g. [5]). Theoretical key results include the use of TEL to
translate action languages [8], an automata-theoretic approach for checking the
existence of TEL models [4], a decidable criterion for proving strong equivalence
of two TEL theories [6], and a systematic study of the computational cost of TEL
satisfiability [2] (a problem which is in general Expspace-complete).

Our Contribution. We investigate expressiveness issues for the TEL frame-
work. It is known [4] that like LTL, TEL allows to specify only ω-regular tem-
poral properties. As a first contribution, we show that TEL is in general more
expressive than LTL. In particular, the class of TEL-definable languages strictly
includes the class of LTL-definable languages and is strictly included in the class
of ω-regular languages. We also illustrate the expressive power of TEL by con-
sidering the problem of finding conformant plans for temporal goals in dynamic
systems in the presence of incomplete information1 when the goal and the sys-
tem behavior are specified in LTL [9]. We show that this problem, which is not
expressible in LTL [9], can be instead expressed in TEL.

As an additional non-trivial theoretical contribution, we provide a systematic
study of the expressiveness comparison between the LTL semantics and the TEL
semantics for various natural syntactical fragments. The considered fragments
are obtained by restricting the set of allowed temporal modalities and/or by
imposing a bound on the nesting depth of temporal modalities. The expressive
power of LTL semantics for these fragments has been made relatively clear by
numerous researchers. Thus, since for some of these fragments, TEL satisfiability
is known to be relatively tractable [2], the aim is also to understand what kind of
temporal reasoning problems can be captured by these fragments under the TEL

1 On both the initial situation and on the full effects of actions.

On the Expressiveness of Temporal Equilibrium Logic 161

semantics. Furthermore, we consider the class of splittable temporal programs
[5], a TEL fragment which is known to be LTL-expressible and for which a solver
has been implemented [5]. We show that a slight syntactical generalization of
this fragment, obtained by relaxing a constraint on the use of temporal literals
in the dynamic rules (intuitively ensuring that “the past does not depend on the
future”), already leads to a fragment more expressive than LTL.

Some of the expressiveness results obtained also point to a peculiar difference
between LTL and TEL: due to the interpretation of the implication connective,
in TEL, a temporal modality cannot be expressed in terms of its ‘dual’ modality.
Thus, in TEL, dual temporal modalities, such as F (‘eventually’) and G (‘always’),
need to be considered independently from one another. This is illustrated by
one of our results: while for the syntactical fragment whose allowed temporal
modalities are F and X (‘next’), the TEL semantics is less expressive than the
LTL semantics, for the dual fragment, the TEL semantics already allows one to
express non-LTL-definable requirements.

Related Work. Several research areas of AI have combined modal temporal
logics with formalisms from knowledge representation for reasoning about actions
and planning (see e.g. [12]). Combinations of NMR with modal logics designed
for temporal reasoning are much more infrequent in the literature. The few
exceptions are typically modal action languages with a nonmonotonic semantics
defined under some syntactical restrictions. Recently, an alternative to TEL has
been introduced, namely, Temporal Answer Sets (TAS), which relies on dynamic
linear-time temporal logic [16], a modal approach more expressive than LTL.
However, while the non-monotonic semantics of TEL covers any arbitrary theory
in the syntax of LTL, TAS uses a syntactic transformation that is only defined
for theories with a rather restricted syntax. A framework unifying TEL and TAS
has been proposed in [1].

2 Preliminaries

Let N be the set of natural numbers and for all i, j ∈ N, let [i, j] := {h ∈ N | i ≤
h ≤ j}. For an infinite word w over some alphabet and for all i ≥ 0, w(i) is the
ith symbol of w. Let P and P ′ be two disjoint finite sets of atomic propositions.
Given an infinite word w over 2P and an infinite word w′ over 2P ′

, w ⊕ w′

denotes the infinite word over 2P∪P ′
given by w(0)∪w′(0), w(1)∪w′(1), . . ., and

w ⊕ P ′ denotes the infinite word over 2P∪P ′
given by w(0) ∪ P ′, w(1) ∪ P ′,

A proposition p is flat in w if p ∈ w(i) for all i ≥ 0. Note that each proposition
p′ ∈ P ′ is flat in w ⊕ P ′. We extend the operator ⊕ to ω-languages L over 2P

in the obvious way: L ⊕ P ′ denotes the ω-language over 2P∪P ′
consisting of the

infinite words of the form w ⊕ P ′ where w ∈ L.

2.1 Temporal Equilibrium Logic

We recall the framework of Temporal Equilibrium Logic (TEL) [8]. TEL is defined
by first introducing a monotonic and intermediate version of standard linear tem-
poral logic LTL [22], the so-called logic of Temporal Here-and-There (THT) [8].

162 L. Bozzelli and D. Pearce

The nonmonotonic semantics of TEL is then defined by introducing a criterion
for selecting models of THT.

Syntax and Semantics of THT. While the syntax of THT coincides with
that of LTL, the semantics of THT is instead an orthogonal combination of the
superintuitionistic propositional logic of Here-and-There (HT) [17] and LTL. Fix
a finite set P of atomic propositions. The set of THT formulas ϕ over P is defined
by the following abstract syntax.

ϕ := p
∣

∣ ⊥ ∣

∣ ϕ ∨ ϕ
∣

∣ ϕ ∧ ϕ
∣

∣ ϕ → ϕ
∣

∣ Xϕ
∣

∣ ϕUϕ
∣

∣ ϕRϕ

where p ∈ P and X, U, and R, are the standard ‘next’, ‘until’, and ‘release’
temporal modalities. Negation is defined as ¬ϕ

def= ϕ → ⊥ while � def= ¬⊥. The
classical temporal operators G (‘always’) and F (‘eventually’) can be defined in
terms of U and R as follows: Fϕ

def= �Uϕ and Gϕ
def= ⊥Rϕ. The size |ϕ| of a

formula ϕ is the number of distinct subformulas of ϕ. The temporal depth of ϕ
is the maximum number of nested temporal modalities in ϕ.

Recall that LTL over P is interpreted on infinite words over 2P , called in
the following LTL interpretations. By contrast, the semantics of THT is defined
in terms of infinite words over 2P × 2P , which can also be viewed as pairs
of LTL-interpretations. Formally, a THT interpretation is a pair M = (H,T)
consisting of two LTL interpretations: H (the ‘here’ interpretation) and T (the
‘there’ interpretation) such that

for all i ≥ 0, H(i) ⊆ T(i)

Intuitively, H(i) represents the set of propositions which are true at position i,
while T(i)\H(i) is the set of propositions which may be true (i.e. which are not
falsified in an intuitionistic sense). A THT interpretation M = (H,T) is said to
be total whenever H = T. In the following, for interpretation, we mean a THT
interpretation. Given an interpretation M = (H,T), a position i ≥ 0, and a THT
formula ϕ, the satisfaction relation M, i |= ϕ is inductively defined as follows:

M, i � ⊥
M, i |= p ⇔ p ∈ H(i)
M, i |= ϕ ∨ ψ ⇔ either M, i |= ϕ or M, i |= ψ
M, i |= ϕ ∧ ψ ⇔ M, i |= ϕ and M, i |= ψ
M, i |= ϕ → ψ ⇔ for all H′ ∈ {H,T}, either (H′,T), i � ϕ or (H′,T), i |= ψ
M, i |= Xϕ ⇔ M, i + 1 |= ϕ
M, i |= ϕUψ ⇔ there is j ≥ i so that M, j |= ψ and for all k ∈ [i, j − 1], M, k |= ϕ
M, i |= ϕRψ ⇔ for all j ≥ i, either M, j |= ψ or M, k |= ϕ for some k ∈ [i, j − 1]

We say that M is a (THT) model of ϕ, written M |= ϕ, whenever M, 0 |= ϕ. A
THT formula ϕ is THT satisfiable if it admits a THT model. A formula ϕ is THT
valid if every interpretation M is a THT model of ϕ. Note that the semantics of
THT is defined similarly to that of LTL except for the clause for the implication
connective → which must be checked in both the components H and T of M. As a
consequence M, i � ϕ does not correspond to M, i |= ¬ϕ (i.e., M, i |= ¬ϕ implies

On the Expressiveness of Temporal Equilibrium Logic 163

that M, i � ϕ, but the converse direction does not hold in general). However,
if we restrict the semantics to total interpretations, (T,T) |= ϕ corresponds to
the satisfaction relation T |= ϕ in LTL. More precisely, the LTL models T of ϕ
correspond to the total interpretations (T,T) which are THT models of ϕ. With
regard to THT validity, a THT valid formula is also an LTL valid formula, but the
converse in general does not hold. For example, the excluded middle axiom ϕ∨¬ϕ
is not a valid THT formula since, as highlighted above, for an interpretation
M = (H,T), M � ϕ does not imply that M |= ¬ϕ. Similarly, the temporal
formulas Fϕ ↔ ¬G¬ϕ and ϕ1Uϕ2 ↔ ¬ϕ1R¬ϕ2, which are well-known valid LTL
formulas (and allow to express, in LTL, a temporal modality in terms of its dual
modality), are not THT valid formulas. Thus, in THT, dual temporal modalities,
like F and G, or U and R, need to be considered independently from one another.
The following proposition summarizes some observations made above, where we
use |=LTL to denote the satisfaction relation in LTL.

Proposition 1. Let (H,T) be an interpretation and ϕ be a THT formula.

1. If (H,T), i |= ϕ, then (T,T), i |= ϕ (for all i ≥ 0).
2. (H,T), i |= ¬ϕ iff (T,T), i |= ¬ϕ (for all i ≥ 0).
3. (T,T) |= ϕ iff T |=LTL ϕ.

The non-monotonic logic TEL. This logic is obtained from THT by restricting
the semantics to a subclass of models of the given formula, called temporal equi-
librium models. For LTL interpretations H and T, H � T means that H(i) ⊆ T(i)
for all i ≥ 0, and H � T means that H � T and H �= T.

Definition 1 (Temporal Equilibrium Model). Given a THT formula ϕ, a
(temporal) equilibrium model of ϕ is a total model (T,T) of ϕ satisfying the
following minimality requirement: whenever H � T, then (H,T) � ϕ.

If we restrict the syntax to HT formulas (i.e., THT formulas where no tem-
poral modality is allowed) and the semantics to HT interpretations (H(0),T(0)),
then (non-temporal) equilibrium models coincide with stable models of answer
set programs in their most general form [13]. In particular, the interpretation
of negation is that of default negation in logic programming: formula ¬ϕ holds
(ϕ is false by default) if there is no evidence regarding ϕ, i.e., ϕ cannot be
derived by the rules of the logic program. As a first example, let us consider the
THT formula ϕ given by ϕ = G(¬p → Xp). Its intuitive meaning corresponds to
the first-order logic program consisting of rules of the form p(s(X)) ← not p(X),
where time has been reified as an extra parameter X = 0, s(0), s(s(0)), Thus,
at any time instant, if there is no evidence regarding p, then p will become true at
the next instant. Initially, we have no evidence regarding p, so this will imply Xp.
To derive XXp, the only possibility would be the rule ¬Xp → XXp, an instance
of ϕ. As the body of this rule is false, XXp becomes false by default, and so on.
It is easy to see that the unique equilibrium model of ϕ is ((∅{p})ω, (∅{p})ω).

Note that an LTL satisfiable formula may have no temporal stable model. As
an example, consider the formula ϕ given by ϕ = G(¬Xp → p)∧G(Xp → p). The

164 L. Bozzelli and D. Pearce

unique LTL model is T = {p}ω. However, (T,T) is not an equilibrium model of
ϕ, since the interpretation (H,T), where H = (∅)ω is a THT model of ϕ.

For a THT formula ϕ, we denote by LTEL(ϕ) (resp., LLTL(ϕ)) the ω-language
over 2P consisting of the LTL interpretations T such that (T,T) is an equilibrium
model of ϕ (resp., T is an LTL model of ϕ). Note that by Proposition 1, LTEL(ϕ) ⊆
LLTL(ϕ). A TEL language (resp., LTL language) is an ω-language of the form
LTEL(ϕ) (resp., LLTL(ϕ)) for some THT formula ϕ. We now observe the following.

Remark 1. LTL-definable languages are TEL-definable.

Indeed, by Proposition 1, the set of LTL models of a THT formula ϕ over P
corresponds to the set of TEL models of ϕ ∧ ψTot(P), where formula ψTot(P)
(we exploit this formula in many parts of the paper) captures, under the THT
semantics, the total interpretations over P .

ψTot(P) :=
∧

p∈P

G(p ∨ ¬p)

Next, we observe that like LTL, the class of languages definable by TEL is strictly
included in the class of ω-regular languages. Indeed, by [4], every TEL language
is effectively ω-regular. Moreover, let us consider the ω-regular language Leven

consisting of the LTL interpretations T over P = {a} of the form ∅2n · {a} · ∅ω

for some n ≥ 0 (where the maximal prefix preceding the unique a-position has
even length). One can trivially check that Leven is not TEL definable. Hence:

Proposition 2. The class of TEL languages is strictly included in the class of
ω-regular languages.

2.2 Problems Investigated and Summary of the Main Results

In this paper, we compare the expressive power of the LTL semantics and the
TEL semantics for full THT and various syntactical THT fragments.

In particular, we consider the syntactical fragments of THT obtained by
restricting the set of allowed temporal modalities and/or by bounding the
temporal depth. Formally, given O1, O2, . . . ∈ {X,F,G,U,R}, we denote by
THT(O1, O2, . . .) the fragment of THT for which only the temporal modalities
O1, O2, . . . are allowed. For k ≥ 0, THTk(O1, O2, . . .) denotes the fragment of
THT(O1, O2, . . .) where the temporal depth is at most k. We write nothing for k
when no bound is imposed. For instance, THT2(G) denotes the fragment where
the unique allowed temporal modality is G and the temporal depth is at most
2. We also consider a syntactical fragment of THT, we call splittable THT, cor-
responding to a generalization of splittable temporal programs introduced in
[5]. A temporal literal is either an ordinary literal or a literal preceded by the

On the Expressiveness of Temporal Equilibrium Logic 165

next operator X. A splittable THT formula is a conjunction of formulas of the
following types:

– Initial rules: a formula of the form B → H, where B is a conjunction of
temporal literals and H is a disjunction of temporal literals.

– Dynamic rules: formulas of the form G r, where r is an initial rule.
– Constraints: formulas of the form ¬ϕ for arbitrary THT formulas ϕ (such

formulas impose constraints only on the ‘there’ part of an interpretation).

THT fragments under TEL semantics LTL

THT, THT(X,R), splittable THT > Theorem 6

THT(X,U), THTk+1(X,U) (k ≥ 1) ⊥ Theorem 6

THT(U), THTk+2(U) (k ≥ 1) ⊥ Theorem 6

THTk+1(X,R), THT(R), THTk+2(R) (k ≥ 1) ⊥ Theorem 6

THT(X,G), THTk+1(X,G) (k ≥ 1) �≤ Proposition 4

THT(X,F) < Theorem 3

THT(F,G) < Theorem 2

THT1 < Theorem 5

Fig. 1. Expressive comparison between TEL fragments and full LTL

For two THT fragments F and F ′ and S,S ′ ∈ {LTL,TEL}, we say that
F under the S-semantics is subsumed by F ′ under the S ′-semantics, written
(F)S ≤ (F ′)S′ , if for each F-formula ϕ, there is a F ′-formula ϕ′ s.t. LS′(ϕ′) =
LS(ϕ). Moreover, F ′ under the S ′-semantics is more expressive than F under the
S-semantics, denoted by (F)S < (F ′)S′ , if (F)S ≤ (F ′)S′ but not (F ′)S′ ≤ (F)S .
Additionally, we say that F under the S-semantics is expressively incomparable
with F ′ under the S ′-semantics, written (F ′)′

S ⊥ (F)S , if neither (F)S ≤ (F ′)S′

nor (F ′)′
S ≤ (F)S . Sometime, we simply write LTL to mean (THT)LTL.

Figure 1 summarises some of the obtained results concerning the expressive-
ness comparison between the considered THT fragments under the TEL seman-
tics and full THT under the LTL semantics.

3 Expressing LTL-conformant Planning in TEL

In this section, we illustrate the expressive power of TEL by showing that the
LTL-conformant planning problem considered in [9], which is not expressible in
LTL [9], can be instead expressed in TEL. Some other approaches in ASP for the
formalization of conformant planning can be reformulated in the LTL-conformant
planning framework such as the one based on Gelfond’s action language [15].

166 L. Bozzelli and D. Pearce

In the context of reasoning about actions and planning, we consider a setting
where we have incomplete information on the dynamic system and the knowledge
about the system is represented in LTL. In particular, the system is described
by introducing a set of atomic facts, called fluents, whose truth value changes as
the system evolves, and by specifying through LTL the effects of actions on such
a set of facts. Thus, we consider two disjoint finite sets of atomic propositions: F
– the set of fluents – and A – the set of actions. The behavior of the given system
is specified by an LTL formula ϕs over A ∪ F which describes the set of possible
evolutions of the system, each of which is represented as an infinite sequence
of situations, where transitions from one situation to the next are caused by
actions. Note that with this formalization, we may have incomplete information
both on the initial situation and on the actual effects of actions so that, given
a sequence of actions, we will have multiple possible evolutions, one of which is
the actual one. The LTL-conformant planning problem consists in constructing
a plan, i.e. a sequence of actions that guarantees the satisfaction of a temporal
goal expressed in LTL whenever the conditions specified by ϕs are satisfied.

Formally, the LTL-conformant planning problem is the problem of finding,
given two LTL formulas ϕs and ϕg over A ∪ F (representing the system specifica-
tion and the temporal goal, respectively), an infinite sequenceTA = {a0}, {a1}, . . .
of actions such that for all LTL interpretations TF over F (i.e. for all the possible
infinite sequences of truth assignments to fluents), it holds that

TA ⊕ TF |= ϕs → ϕg

LetCon(ϕs, ϕg) be the set of such conformantplansTA. Sucha set cannotbe in gen-
eral expressed in LTL [9]. Here, we show that, unless an additional set of flat propo-
sitions, Con(ϕs, ϕg) can be instead expressed inTEL. We construct in linear-time a
THT formulaϕcon whose setof equilibriummodels corresponds toCon(ϕs, ϕg)⊕F ′,
where F ′ = F ∪ {u}, and u is a fresh (dummy) proposition non in A ∪ F .

Before defining ϕcon, we need additional definitions. A THT formula is in
negation normal form (NNF) if the implication connective occurs only as nega-
tion and, additionally, negation is applied only to atomic propositions. By using
De Morgan’s laws, the duality between U and R, and the fact that in LTL, ξ1 → ξ2
can be rewritten as ¬ξ1 ∨ ξ2, we can convert the THT formula ¬(ϕs → ϕg) into
a THT formula ψsg in NNF having the same set of LTL models.

Let Ku(ψsg) be the THT formula obtained from the NNF formula ψgs by
replacing each occurrence of a negative literal ¬p with p → u. Intuitively, p → u
is used to express negation on the ‘here’ part H of an interpretation (H,T) such
that u is flat in T and u /∈ H(i) for all i ≥ 0. Formally, one can easily show
by structural induction that for such an interpretation, (H,T) |= Ku(ψgs) iff
H |=LTL ψgs. Hence, (H,T) |= Ku(ψgs) iff H � LTLϕs → ϕg.

The THT formula ϕcon over A ∪ F ′ is then defined as follows:

ϕcon := G(
∨

a∈A

(a ∧
∧

a′∈A\{a}
¬ a)) ∧ (ψTot (A ∪ F ′) →

∧

p∈F ′
Gp)∧

(Fu → ψTot (A ∪ F ′)) ∧ (u ∨ Ku(ψgs))

On the Expressiveness of Temporal Equilibrium Logic 167

The first conjunct captures the THT interpretations (H,T) such that H and T
agree over the set A of actions, and exactly one action occurs at any timestamp.
The second and third conjuncts ensure that every proposition in F ′ = F ∪{u} is
flat in T and whenever H �= T, u /∈ H(i) for every i ≥ 0. Finally, the last conjunct
is fulfilled iff whenever H �= T, H |=LTL Ku(ψgs). Formally, the following holds,
which proves the result (for details see the online version of this paper at https://
www.dropbox.com/s/x0fnjzhjwira780/TEL%20Expression.pdf?dl=0).

Claim. LTEL(ϕcon) = Con(ϕs, ϕg) ⊕ F ′.

4 Maximal Fragments Expressible in LTL

In this section, we individuate maximal THT fragments which under the TEL
semantics are subsumed by full LTL.

The fragment THT(F,G). We show that full THT under the LTL semantics
is more expressive than the fragment THT(F,G) under the TEL semantics. On
the other hand, we additionally establish that for the considered fragment, the
TEL semantics is more expressive than the LTL semantics. For the first result, we
exploit a well-known characterization of the ω-regular languages which are LTL-
expressible [18,24]. In the following, we also consider finite (THT) interpretations
which are non-empty prefixes of (THT) interpretations.

Definition 2 (N-stutter Closure [18,24]). For N ≥ 1, an ω-language L over
an alphabet Σ is N -stutter closed if for all finite words x, y, u, w and infinite
words v over Σ,

u · wN · v ∈ L iff u · wN+1 · v ∈ L
x · (u · wN · y)ω ∈ L iff x · (u · wN+1 · y)ω ∈ L

Proposition 3 ([18,24]). If L is an ω-regular language over 2P which is N -
stutter closed for some N ≥ 1, then L is LTL-expressible.

For ϕ ∈ THT(F,G), let Nϕ := n2(h + 1)2
n

, where n = 22|P | and h is the
temporal depth of ϕ. We demonstrate that the language LTEL(ϕ) is Nϕ-stutter
closed. For this, we use an additional notion, we call h-bisimilarity.

Definition 3 (h-bisimilarity). Let w and w′ be two finite words over an alpha-
bet Σ and i and i′ be two positions of w and w′, respectively. Given h ≥ 0, (w, i)
and (w′, i′) are h-bisimilar if w(i) = w′(i′) and whenever h > 0, then:

– for all i ≤ j < |w| (resp., i′ ≤ j′ < |w′|), there exists i′ ≤ j′ < |w′| (resp.,
i ≤ j < |w|) such that (w, j) and (w′, j′) are (h − 1)-bisimilar.

We say that w and w′ are h-bisimilar if (w, 0) and (w′, 0) are h-bisimilar.

For each h ≥ 0, a formula in THTh(F,G) cannot distinguish under the THT
semantics two interpretations where one is obtained from the other one by replac-
ing finite segments with h-bisimilar ones. Formally, we establish the following
result.

https://www.dropbox.com/s/x0fnjzhjwira780/TEL%20Expression.pdf?dl=0
https://www.dropbox.com/s/x0fnjzhjwira780/TEL%20Expression.pdf?dl=0

168 L. Bozzelli and D. Pearce

Lemma 1. Let h ≥ 0, ϕ ∈ THTh(F,G), and N and N ′ be two finite h-bisimilar
interpretations. For all finite interpretations M1,M2,M3 and infinite interpreta-
tions M4,

M1NM4 |= ϕ iff M1N
′M4 |= ϕ

M1(M2NM3)ω |= ϕ iff M1(M2N
′M3)ω |= ϕ

The following lemma is based on a counting argument, asserts that for all
h ≥ 1 and finite interpretations consisting of concatenations of N segments,
where N ≥ n2(h + 1)2

n

and n = 22|P |, there always exists a segment whose
removal or pumping preserves h-bisimilarity.

Lemma 2. Let h ≥ 1 and M be a finite interpretation of the form M =
M1 . . .MN such that N ≥ n2(h + 1)2

n

, where n = 22|P |. Then,

– for some j ∈ [1, N], M and M ′ = M1 . . .Mj−1 · Mj+1 . . .MN are h-bisimilar.
Moreover, M ′ is non-total if M is non-total.

– for some j ∈ [1, N], M and M1 . . .Mj · Mj · Mj+1 . . .MN are h-bisimilar.

By Lemmas 1 and 2, we deduce the desired result.

Theorem 1. For each ϕ ∈ THT(F,G), LTEL(ϕ) is Nϕ-stutter closed.

Proof. Let ϕ ∈ THT(F,G) and h be the temporal height of ϕ. We assume that
h > 0 (otherwise, the result is obvious). Recall that Nϕ = n2(h + 1)2

n

, where
n = 22|P |. Let T and T′ be two LTL interpretations such that

T = u · wN · v and T′ = u · wN+1 · v
(resp., T = x · (u · wN · y)ω and T′ = x · (u · wN+1 · y)ω)

for some finite words x, u, y, w and infinite words v, where N ≥ Nϕ and n = 22|P |.
We show that T ∈ LTEL(ϕ) iff T′ ∈ LTEL(ϕ). By Lemma 2, wN and wN+1 are
h-bisimilar. Thus, by Lemma 1, (T,T) is a THT model of ϕ iff (T′,T′) is a THT
model of ϕ. We prove the following, hence, the result follows:

1. for all H � T, there is H′ � T′ such that (H,T) |= ϕ iff (H′,T′) |= ϕ.
2. for all H′ � T′, there is H � T such that (H,T) |= ϕ iff (H′,T′) |= ϕ.

We focus on Condition 1 (the proof of Condition 2 being similar). Let H � T and
M = (H,T). Assume that T = u·wN ·v (the other case, where T = x·(u·wN ·y)ω,
being similar). Then, M can be written in the form M = M1 N1 . . .NN M2 such
that |M1| = |u| and |Ni| = |w| for all i ∈ [1, N]. By Lemma 2, there exists
j ∈ [1, N] such that N1 . . . NN is h-bisimilar to N1 . . . Nj · Nj Nj+1 . . .NN . Let
M′ = M1N1 . . . Nj Nj Nj+1 . . .NN M2. Since M is non-total, M′ is non-total too,
and by Lemma 1, M |= ϕ iff M′ |= ϕ′. Moreover, since T′ = u · wN+1 · v, the
non-total interpretation M′ is of the form (H′,T′), and we are done. ��

We now establish the main result for the fragment THT(F,G).

Theorem 2. (THT(F,G))TEL < LTL and (THT(F,G))TEL > (THT(F,G))LTL.

On the Expressiveness of Temporal Equilibrium Logic 169

Proof. One can easily show that the LTL-expressible ω-language consisting of the
LTL interpretation ∅·{a}·∅ω cannot be expressed by any THT(F,G) formula under
the TEL semantics. Thus, since TEL languages are ω-regular, by Proposition 3
and Theorem 1, we obtain that (THT(F,G))TEL < LTL. For the second part of
the theorem, first, we observe that for a THT(F,G) formula ϕ, the set of LTL
models of ϕ corresponds to the set of TEL models of the THT(F,G) formula
ϕ ∧ ψTot(P). Hence, (THT(F,G))TEL ≥ (THT(F,G))LTL. It remains to show that
(THT(F,G))TEL �≤ (THT(F,G))LTL. For this, let P = {b, u} and (T1,T1) and
(T2,T2) be two total interpretations defined as follows: T1 = {u}{b, u}2{u}ω

and T2 = {u}{b, u}{u}ω. No THT(F,G) formula can distinguish T1 and T2 under
the LTL semantics. On the other hand, we show that there exists a THT1(F,G)
formula ϕ such that (T2,T2) is a TEL model of ϕ, and (T1,T1) is not.

Let ϕ := G(¬¬u) ∧ Fb ∧ (Fu → ψTot(P)) ∧ F((b → u) ∧ ¬¬b)

Under the THT semantics, the first three conjuncts capture the interpretations
(H,T) such that (i) for all i ≥ 0, u ∈ T(i), (ii) if H �= T, then for all i ≥ 0,
u /∈ H(i), and (iii) there is h ≥ 0 such that b ∈ H(h). Additionally, the fourth
conjunct is fulfilled whenever either T = H, or there is k ≥ 0 such that b /∈ H(k)
and b ∈ T(k). It easily follows that the set of TEL models of ϕ is {u}∗·{b, u}·{u}ω,
where there is exactly one occurrence of {b, u}, and the result follows. ��
The fragment THT(X,F). For the fragment THT(X,F), we crucially use the
following known result [2], where for a total interpretation (T,T), a position
i ≥ 0 is non-empty in (T,T) if T(i) �= ∅.

Lemma 3 ([2]). Let ϕ be a THT(X,F) formula. Then, every equilibrium model
of ϕ has at most |ϕ|2 non-empty positions.

Since there are THT(X,F) formulas whose LTL models contain infinite occur-
rences of non-empty positions (for example, the formula ¬F¬p), by Lemma 3 we
easily deduce the following result.

Theorem 3. Given a THT(X,F) formula ϕ, one can build a THT(X,F) formula
ψ such that LLTL(ψ) = LTEL(ϕ). Moreover, (THT(X,F))TEL < (THT(X,F))LTL.

The fragment THT1. For the fragment THT1, where there is no nesting of
temporal modalities, we first establish the following result.

Theorem 4. Given a THT1 formula ϕ, one can construct a THT formula whose
LTL models correspond to the TEL models of ϕ.

Sketched Proof. For the fixed finite set P of atomic propositions, it is possible to
define an equivalence relation of finite index on total interpretations such that
the following holds: (1) each equivalence class C is finitely representable and no
THT1 formula over P can distinguish elements of C under the TEL semantics, (2)
given an equivalence class C and a THT1 formula ϕ over P , one can effectively

170 L. Bozzelli and D. Pearce

check whether C is associated with TEL models of ϕ, and (3) each equivalence
class C is effectively LTL-characterizable. ��

The construction in Theorem 4 cannot be done remaining in THT1. Indeed,
the following holds.

Theorem 5. (THT1)TEL < LTL and (THT1)TEL > (THT1)LTL.

Proof. Let us consider the LTL-expressible ω-language consisting of the LTL
interpretation ∅3 · {a} · ∅ω. One can easily show that such a language can-
not be expressed by any THT1 formula under the TEL semantics. Thus, by
Theorem 4, we obtain that (THT1)TEL < LTL. For the second part of the the-
orem, first, we observe that for a THT1 formula ϕ, the set of LTL models of
ϕ corresponds to the set of TEL models of the THT1 formula ϕ ∧ ψTot(P).
Hence, (THT1)TEL ≥ (THT1)LTL. It remains to show that there exists a THT1

formula whose set of TEL models cannot be captured by any THT1 formula
under the LTL semantics. For this, let P = {b, u}, T1 = {u}{b, u}2{u}ω, and
T2 = {u}{b, u}{u}ω. Evidently, no THT1 formula can distinguish T1 and T2

under the LTL semantics. On the other hand, by the proof of Theorem2, there
exists a THT1(F,G) formula ϕ such that (T2,T2) is a TEL model of ϕ, and
(T1,T1) is not. Hence, the result follows. ��

5 TEL Fragments Non-subsumed by LTL

In this section, we derive an almost complete picture of the TEL fragments (w.r.t.
the considered THT syntactical hierarchy) which are expressively incomparable
with LTL. We also show that under the TEL semantics, the fragment THT(X,R)
and splittable THT are more expressive than LTL. We conclude the section by
providing a characterization of ω-regular languages in terms of TEL languages.

We first individuate minimal THT fragments which under the TEL semantics
are not subsumed by LTL.

Proposition 4. Let F denote any of the following THT fragments: THT2(X,U),
THT3(U), THT3(R), and splittable THT2(X,G). Then (F)TEL �≤ LTL.

Proof. Here, we focus on splittable THT2(X,G) (for the other fragments, see the
authors’ full paper online). Let Lodd be the ω-regular language given by

Lodd := {T | T = {a, b, u}2n+1 ∅ω for some n > 0}

where a, b, and u are distinct atomic propositions. One can easily show that Lodd

is not LTL expressible (see e.g. [11]). We exhibit a splittable THT2(X,G) formula
ϕodd over P = {a, b, u} whose set of TEL models corresponds to Lodd.

Formula ϕodd is the conjunction of the following three splittable THT2(X,G)
formulas, where ψ∅ := ¬a ∧ ¬b ∧ ¬u characterizes the empty positions of the
“there” interpretation.

¬¬u ∧ ¬¬G(ψ∅ ∨ (a ∧ b ∧ u)) ∧ ¬¬G(ψ∅ → Xψ∅) (1)

On the Expressiveness of Temporal Equilibrium Logic 171

G(u → a ∧ b) ∧ G(Xu → u) ∧ G(u → Xu ∨ X¬u) (2)

a ∧ G(a ∧ b → u) ∧ G(a → Xb) ∧ G(b → Xa ∨ X¬u) (3)

Formula (1), which is a conjunction of constraints in a splittable THT formula,
captures the interpretations (H,T) such that T ∈ {a, b, u}+ ∅ω. Formula (2) addi-
tionally ensures that whenever H �= T, then u /∈ H(i) for all positions i. Finally,
formula (3) requires that whenever H �= T, the prefix of H corresponding to the
slice of T (i.e., the maximal prefix of T which does not contain empty positions)
is in ({a}{b})+. This last condition can be satisfied iff the length of the slice of
T is even. Hence, it easily follows that the TEL language of ϕodd is exactly Lodd,
and we are done. ��

We now establish the main results of Sect. 5.

Theorem 6. The following holds, where k ≥ 2 and O ∈ {U,R}:
1. (THT(X,U))TEL ⊥ LTL and (THTk(X,U))TEL ⊥ LTL;
2. (THT(X,R))TEL > LTL and (THTk(X,R))TEL ⊥ LTL;
3. (THT(O))TEL ⊥ LTL and (THTk+1(O))TEL ⊥ LTL;
4. (THTk(X,R))TEL > (THTk(X,R))LTL and (THTk−1)TEL > (THTk−1)LTL;
5. (splittable THT)TEL > LTL.

Proof. In [2], it is shown that every TEL model of a THT(X,U) has a finite
set of non-empty positions. Since there are THT formulas whose LTL models
have infinitely many non-empty positions, by Proposition 4, Properties 1 and 3
with O = U follow. One can trivially check that the LTL-expressible ω-language
L = ∅{a}ω is not expressible in the fragment THT(R) under the TEL semantics.
Hence, by Proposition 4, Property 3 for the case O = R follows as well. For
Properties 2 and 4, let n ≥ 1 and Ln be the LTL-expressible ω-language consisting
of the LTL interpretation ∅n · {a} · ∅ω. One can easily check that no THTh

formula with h < n can capture Ln under the TEL semantics. Since THT is
expressively equivalent to THT(X,R) under the LTL semantics and for all h ≥ 1
and ϕ ∈ THTh(X,R), the set of LTL models of ϕ corresponds to the set of TEL
models of the THTh(X,R) formula ϕ∧ψTot(P), by Theorem 5 and Proposition 4,
Properties 2 and 4 follows. Finally, for Property 5, we exploit Proposition 4 and
the fact that the set of LTL models of a THT formula ϕ corresponds to the set
of TEL models of the splittable THT formula ¬¬ϕ ∧ ψTot(P). ��

We conclude this section by showing that TEL languages capture in a weak
sense the full class of ω-regular languages. In fact, this weak equivalence, as
formalized by the following Theorem7, is similar to the well-known equivalence
between ω-regular languages and ω-languages defined by formulas of Quanti-
fied propositional LTL (QLTL)[23], where for capturing a given ω-regular lan-
guage over 2P by a QLTL-formula, one needs to use quantification over addi-
tional propositions not in P . Intuitively, flat propositions in TEL play the role
of bounded propositions in QLTL.

Theorem 7. Let L be an ω-language over 2P . Then, L is ω-regular iff there
exists a finite set Q disjoint from P such that L ⊕ Q is a TEL language.

172 L. Bozzelli and D. Pearce

6 Conclusion

We have provided a systematic study of the expressiveness comparison between
the LTL semantics and the TEL semantics for various natural THT syntactical
fragments. Some interesting questions remain open: for example, we don’t know
whether the TEL semantics of the fragment THT(F,G,X) is able to capture full
LTL. Additionally, it is well-known that the class of LTL-definable languages is
algebraically robust, being, in particular, closed under all boolean operations.
It is an intriguing open question whether the same holds for the class of TEL-
definable languages.

References

1. Aguado, F., Pérez, G., Vidal, C.: Integrating temporal extensions of answer set
programming. In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013. LNCS (LNAI), vol.
8148, pp. 23–35. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40564-8 3

2. Bozzelli, L., Pearce, D.: On the complexity of temporal equilibrium logic. In: Pro-
ceedings of 30th LICS, pp. 645–656. IEEE Computer Society (2015)

3. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011)

4. Cabalar, P., Demri, S.: Automata-based computation of temporal equilibrium mod-
els. In: Vidal, G. (ed.) LOPSTR 2011. LNCS, vol. 7225, pp. 57–72. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-32211-2 5

5. Cabalar, P., Diéguez, M.: STeLP– a tool for temporal answer set programming.
In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS (LNAI), vol. 6645, pp.
370–375. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20895-9 43

6. Cabalar, P., Diéguez, M.: Strong equivalence of non-monotonic temporal theories.
In: Proceedings of 14th KR. AAAI Press (2014)

7. Cabalar, P., Cerro, L.F., Pearce, D., Valverde, A.: A free logic for stable mod-
els with partial intensional functions. In: Fermé, E., Leite, J. (eds.) JELIA 2014.
LNCS (LNAI), vol. 8761, pp. 340–354. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-11558-0 24

8. Cabalar, P., Pérez Vega, G.: Temporal equilibrium logic: a first approach.
In: Moreno Dı́az, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST
2007. LNCS, vol. 4739, pp. 241–248. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-75867-9 31

9. Calvanese, D., De Giacomo, G., Vardi, M.Y.: Reasoning about actions and planning
in LTL action theories. In: Proceedings of 8th KR, pp. 593–602. Morgan Kaufmann
(2002)

10. Bruijn, J., Pearce, D., Polleres, A., Valverde, A.: Quantified equilibrium logic and
hybrid rules. In: Marchiori, M., Pan, J.Z., Marie, C.S. (eds.) RR 2007. LNCS, vol.
4524, pp. 58–72. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72982-2 5

11. Etessami, K.: Stutter-invariant languages, ω-automata, and temporal logic. In:
Halbwachs, N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp. 236–248. Springer,
Heidelberg (1999). doi:10.1007/3-540-48683-6 22

12. Fagin, R., Halpern, J., Vardi, M.: Reasoning About Knowledge, vol. 4. MIT Press,
Cambridge (1995)

http://dx.doi.org/10.1007/978-3-642-40564-8_3
http://dx.doi.org/10.1007/978-3-642-32211-2_5
http://dx.doi.org/10.1007/978-3-642-20895-9_43
http://dx.doi.org/10.1007/978-3-319-11558-0_24
http://dx.doi.org/10.1007/978-3-319-11558-0_24
http://dx.doi.org/10.1007/978-3-540-75867-9_31
http://dx.doi.org/10.1007/978-3-540-75867-9_31
http://dx.doi.org/10.1007/978-3-540-72982-2_5
http://dx.doi.org/10.1007/3-540-48683-6_22

On the Expressiveness of Temporal Equilibrium Logic 173

13. Ferraris, P.: Answer sets for propositional theories. In: Baral, C., Greco, G., Leone,
N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 119–131.
Springer, Heidelberg (2005). doi:10.1007/11546207 10

14. Fink, M., Pearce, D.: A logical semantics for description logic programs. In:
Janhunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS (LNAI), vol. 6341, pp. 156–168.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-15675-5 15

15. Gelfond, M., Morales, A.: Encoding conformant planning in A-Prolog. In: Proceed-
ings of DRT. LNCS. Springer (2004)

16. Giordano, L., Martelli, A., Dupré, D.T.: Reasoning about actions with temporal
answer sets. TPLP 13(2), 201–225 (2013)

17. Heyting, A.: Die formalen Regeln der intuitionistischen Logik. In: Three Parts,
Sitzungsberichte der preussischen Akademie der Wissenschaften, pp. 311–327
(2011). English translation of Part I in Mancosu

18. Kucera, A., Strejcek, J.: The stuttering principle revisited. Acta Informatica
41(7–8), 415–434 (2005)

19. Pearce, D.: A new logical characterisation of stable models and answer sets. In:
Dix, J., Pereira, L.M., Przymusinski, T.C. (eds.) NMELP 1996. LNCS, vol. 1216,
pp. 57–70. Springer, Heidelberg (1997). doi:10.1007/BFb0023801

20. Pearce, D.: Equilibrium logic. Ann. Math. Artif. Intell. 47(1–2), 3–41 (2006)
21. Pearce, D., Valverde, A.: Towards a first order equilibrium logic for nonmonotonic

reasoning. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229,
pp. 147–160. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30227-8 15

22. Pnueli, A.: The temporal logic of programs. In: Proceedings of 18th FOCS, pp.
46–57. IEEE Computer Society (1977)

23. Sistla, A., Vardi, M., Wolper, P.: The complementation problem for Büchi
automata with appplications to temporal logic. Theor. Comput. Sci. 49, 217–237
(1987)

24. Wu, Z.: On the expressive power of QLTL. In: Jones, C.B., Liu, Z., Woodcock, J.
(eds.) ICTAC 2007. LNCS, vol. 4711, pp. 467–481. Springer, Heidelberg (2007).
doi:10.1007/978-3-540-75292-9 32

http://dx.doi.org/10.1007/11546207_10
http://dx.doi.org/10.1007/978-3-642-15675-5_15
http://dx.doi.org/10.1007/BFb0023801
http://dx.doi.org/10.1007/978-3-540-30227-8_15
http://dx.doi.org/10.1007/978-3-540-75292-9_32

Introducing Role Defeasibility
in Description Logics

Katarina Britz1 and Ivan Varzinczak2(B)

1 CSIR-SU CAIR, Stellenbosch University, Stellenbosch, South Africa
abritz@sun.ac.za

2 CRIL, Univ. Artois & CNRS, 62300 Lens, France
varzinczak@cril.fr

Abstract. Accounts of preferential reasoning in Description Logics
often take as point of departure the semantic notion of a preference order
on objects in a domain of interpretation, which allows for the develop-
ment of notions of defeasible subsumption and entailment. However, such
an approach does not account for defeasible roles, interpreted as partially
ordered sets of tuples. We state the case for role defeasibility and intro-
duce a corresponding preferential semantics for a number of defeasible
constructs on roles. We show that this does not negatively affect decid-
ability or complexity of reasoning for an important class of DLs, and
that existing notions of preferential reasoning can be expressed in terms
of defeasible roles.

Keywords: Description Logics · Defeasible reasoning · Preferential
semantics

1 Introduction

Description Logics (DLs) [2] are a family of logic-based knowledge representa-
tion formalisms with appealing computational properties and a variety of appli-
cations at the confluence of modern artificial intelligence and other areas. In
this regard, endowing DLs and their associated reasoning services with the abil-
ity to cope with defeasibility is a natural step in their development. Indeed,
the past two decades have witnessed the surge of many attempts to introduce
non-monotonic reasoning capabilities in a DL setting. These range from preferen-
tial approaches [14,15,20,22,25,27,39,40] to circumscription-based ones [6,7,41],
amongst others [3,4,23,29–31,37,38,43].

Given the special status of subsumption in DLs in particular and the his-
torical importance of entailment in logic in general, the bulk of the effort in
this direction has quite naturally been put in the definition of a proper account
of defeasible subsumption and in the characterisation of appropriate notions of
defeasible entailment relations. Semantically, in the latter, orderings on the class
of first-order interpretations are usually considered [7,12,27,28,39], whereas in
the former, a typicality ordering on the objects of the domain of interpretation
is put forward [14,15,25,26].
c© Springer International Publishing AG 2016
L. Michael and A. Kakas (Eds.): JELIA 2016, LNAI 10021, pp. 174–189, 2016.
DOI: 10.1007/978-3-319-48758-8 12

Introducing Role Defeasibility in Description Logics 175

Here we investigate a complementary notion, namely that of relativised role
defeasibility. Our motivation stems essentially from the observation that a given
relationship holding between some objects may be deemed more normal than
between others, and that this may be the case irrespective of whether the relevant
objects are typical in one way or another. As an example, consider the role
name guardianOf: ‘Normal’ tuples in its extension (the relation it is interpreted
as) may be guardian-ward tuples where the ward is a minor and the guardian
a parent or natural guardian, while an ‘exceptional’ tuple may be a guardian-
ward tuple where the ward is an adult with an appointed legal guardian. In
this example, there is nothing exceptional about either the legal guardian or the
ward — the exceptionality rather lies in the nature of their relationship. The role
name therefore provides a primitive context relative to which exceptionality is
determined, while exceptionality is evaluated semantically by comparing tuples
in the role extension.

As a semantic means to capture the nuances of normality at the level of roles
as motivated above, in this work we propose placing a parameterised preference
order on binary relations over the domain. Armed with the semantic construc-
tions we shall define and study here, we will see that it becomes possible to:

• Define plausible value restrictions [13] of the form
∨∼r.C, as in

∨∼guardianOf.Minor, which intuitively refers to those individuals whose nor-
mal guardianship relations are of minors, whilst being, for instance, the legal
guardian of a developmentally disabled adult;

• Define plausible (qualified) number restrictions of the form � nr.C or � nr.C
(or � nr.C), as in � 2hasSibling.Female, referring to the individuals in at
most two normal sibling relationships with sisters (but who can still have a
stepsister), or even � 1marriedTo.�, which describes the individuals in one
normal marriage (but who can nevertheless be in a type of wedlock with
someone else);

• State plausible role inclusions of the form r1�∼ r2, as in parentOf �∼ progenitorOf,
stipulating that the role of being a parent is usually (but not necessarily) that
of also being the progenitor;

• State role-typicality axioms of the form �r1 � �r2 and �r(a, b), where �
is an extension of typicality operators [9,10,25,27] that we shall define
for role names (and, more generally, for compound roles). For example,
�progenitorOf � �hasChild says that typical procreation implies typical par-
enthood, while the assertion �hasChild(john, anne) conveys the information
that the tuple (john, anne) is to be regarded as a typical one in the interpre-
tation of role hasChild;

• State plausible role disjointness of the form �r1 � �r2 � ⊥, as for instance in
�hasSibling � �marriedTo � ⊥, the meaning of which speaks for itself;

• State plausible role characteristics, for instance saying that role marriedTo is
normally functional and that partOf is usually transitive, while still allowing
for exceptions, i.e., for exceptional tuples to fail the relation’s property under
consideration, thereby not ruling out, in the former example, the existence of
polygamous mariages.

176 K. Britz and I. Varzinczak

Moreover, we shall see that, with our enriched semantics, it also becomes
possible to provide an alternative account of plausible concept subsumptions [14,
15,22,26] of the form C �∼ D, as for instance in Mother�∼ ∃hasPartner.�, of which
the intuition is that, usually, mothers have a partner.

By putting all of that into place, we hope to open up an avenue for further
explorations of defeasibility in Description Logics, in particular in extensions of
the preferential approach therein.

In the remainder of the present paper, we take the following route: after
presenting the required background on DLs (Sect. 2), we introduce the semantic
construction the core of the paper builds upon (Sect. 3). We then move on by
studying new defeasible constructs capturing several aspects of role defeasibility
(Sect. 4). In Sect. 5, we show that the important notion of plausible concept
subsumption can be embedded within our framework. We then conclude with
some remarks on related work and possible strands for future investigation.

2 The Description Logic ALC
The (concept) language of ALC is built upon a finite set of atomic concept
names NC , a finite set of role names NR and a finite set of individual names NI

such that NC , NR and NI are pairwise disjoint. With A,B, . . . we denote atomic
concepts, with r, s, . . . role names, and with a, b, . . . individual names. Complex
concepts are denoted with C,D, . . . and are built according to the rule:

C ::= � | ⊥ | A | ¬C | C � C | C � C | ∀r.C | ∃r.C

With LALC we denote the language of all ALC concepts.
The semantics of LALC is the standard set theoretic Tarskian semantics. An

interpretation is a structure I := 〈ΔI , ·I〉, where ΔI is a non-empty set called
the domain, and ·I is an interpretation function mapping concept names A to
subsets AI of ΔI , role names r to binary relations rI over ΔI , and individual
names a to elements of the domain ΔI , i.e., AI ⊆ ΔI , rI ⊆ ΔI × ΔI , aI ∈ ΔI .

As an example, let NC := {A1, A2, A3}, NR := {r1, r2} and NI :=
{a1, a2, a3}. Figure 1 depicts the DL interpretation I1 = 〈ΔI1 , ·I1〉, where ΔI1 =
{xi | 1 ≤ i ≤ 9}, AI1

1 = {x1, x4, x6}, AI1
2 = {x3, x5, x9}, AI1

3 = {x6, x7, x8},
rI1
1 = {(x1, x6), (x4, x8), (x2, x5)}, rI1

2 = {(x4, x4), (x6, x4), (x5, x8), (x9, x3)},
aI1
1 = x5, aI1

2 = x1, aI1
3 = x2.

Given an interpretation I = 〈ΔI , ·I〉, ·I is extended to interpret complex
concepts of LALC in the following way:

�I := ΔI , ⊥I := ∅, (¬C)I := ΔI \ CI

(C � D)I := CI ∩ DI , (C � D)I := CI ∪ DI

(∃r.C)I := {x ∈ ΔI | rI(x) ∩ CI �= ∅}, (∀r.C)I := {x ∈ ΔI | rI(x) ⊆ CI}

As an example, in the interpretation I1, we have (A1�A3)I1 = {x1, x4, x6, x7,
x8}, (A1 � A3)I = {x6, x7}, (∃r1.A3)I1 = {x1, x4} and (∀r2.A2)I = {x9}.

Introducing Role Defeasibility in Description Logics 177

ΔI :1

AI1

I1

1 AI1
2

AI1
3

xa2
1 xa3

2
x3

x4 xa1
5

x6 x7 x8 x9

r1

r2 r1 r2

r1

r2

r2

Fig. 1. An interpretation for NC = {A1, A2, A3}, NR = {r1, r2} and NI = {a1, a2, a3}.

Given C,D ∈ LALC , C � D is a subsumption statement, read “C is subsumed
by D” (or, alternatively, “D is more general than C” or “C is more specific than
D”). C ≡ D is an abbreviation for both C � D and D � C. An ALC TBox T is
a finite set of subsumption statements and formalises the intensional knowledge
about a given domain of application. Given C ∈ LALC , r ∈ NR and a, b ∈ NI , an
assertional statement (assertion, for short) is an expression of the form C(a) or
r(a, b). An ALC ABox A is a finite set of assertional statements formalising
the extensional knowledge of the domain. We shall denote statements, both
subsumption and assertional, with α, β, Given T and A, with K := T ∪ A
we denote an ALC knowledge base.

An interpretation I satisfies a subsumption statement C � D (denoted I �
C � D) if and only if CI ⊆ DI . (And then I � C ≡ D if and only if CI = DI .)
In the example of Fig. 1, we have I1 � ∃r1.A3 � A1 and I1 �� A1 � A3 �
∀r2.A2. An interpretation I satisfies an assertion C(a) (respectively, r(a, b)),
denoted I � C(a) (respectively, I � r(a, b)), if and only if aI ∈ CI (respectively,
(aI , bI) ∈ rI). In the above example, we have both I1 � A1 � ¬A3(a2) and
I1 � r1(a3, a1), but I1 �� ∀r1.A2(a2).

We say that an interpretation I is a model of a TBox T (denoted I � T)
if and only if I � α for every α ∈ T . Analogously, I is a model of an ABox A
(denoted I � A) if and only if I � α for every α ∈ A. We say that I is a
model of a knowledge base K = T ∪ A if and only if I � T and I � A. A
statement α is (classically) entailed by a knowledge base K, denoted K |= α, if
and only if every model of K satisfies α. If K = ∅, then we have that I � α for
all interpretations I, in which case we say α is a validity and denote with |= α.

For more details on Description Logics in general and on ALC in particular,
the reader is invited to consult the Description Logic handbook [2].

178 K. Britz and I. Varzinczak

3 r-Ordered Interpretations

We now formalise the intuitive notions we briefly presented in the Introduction.
Given a DL interpretation I, we enrich it with a collection of preference relations,
one for (the interpretation of) each role name in NR.

Definition 1 (r-Ordered Interpretation). An r-ordered interpretation is a
tuple R := 〈ΔR, ·R,≺R〉 in which 〈ΔR, ·R〉 is a (classical) DL interpretation (see
Sect. 2), and ≺R:= 〈≺R

1 , . . . ,≺R
n 〉, where each ≺R

i ⊆ rR
i × rR

i , for 1 ≤ i ≤ n, is
a well-founded strict partial order on rR

i , i.e., each ≺R
i is irreflexive, transitive

and every non-empty R ⊆ rR
i has minimal elements w.r.t. ≺R

i (see Definition 2
below).

As an example, let NC := {A1, A2, A3}, NR := {r1, r2}, NI := {a1, a2, a3},
and let the r-ordered interpretation R1 = 〈ΔR1 , ·R1 ,≺R1〉, where ΔR1 = ΔI1 ,
·R1 = ·I1 , and ≺R1= 〈≺R1

1 ,≺R1
2 〉, where ≺R1

1 = {(x4x8, x2x5), (x2x5, x1x6),
(x4x8, x1x6)} and ≺R1

2 = {(x6x4, x4x4), (x5x8, x9x3)}. (For the sake of readabil-
ity, we shall henceforth sometimes write tuples of the form (x, y) as xy.) Figure 2
below depicts the r-ordered interpretation R1. In the picture, ≺R1

1 and ≺R1
2 are

represented, respectively, by the dashed and the dotted arrows. (Note the direc-
tion of the ≺R-arrows, which point from more preferred to less preferred pairs of
objects.) Also for the sake of readability, we shall omit the transitive ≺R-arrows.

R1 : ΔR1

AR1
1 AR1

2

AR1
3

xa2
1 xa3

2
x3

x4 xa1
5

x6 x7 x8 x9

r1

r2 r1 r2

r1

r2

r2

Fig. 2. An r-ordered interpretation for NC , NR and NI as in Fig. 1.

Given R = 〈ΔR, ·R,≺R〉, the intuition of ΔR and ·R is the same as in
a standard DL interpretation. The intuition underlying each of the orderings
in ≺R is that they play the role of preference relations (or normality orderings),
in a sense similar to that introduced by Shoham [42] with a preference on worlds
in a propositional setting and as extensively investigated by Kraus et al. [32,33]
and others [11,14,25]: the pairs (x, y) that are lower down in the ordering ≺R

i

are deemed as the most normal (or typical, or expected) in the context of (the
interpretation of) ri. Technically, the difference between our definitions and those

Introducing Role Defeasibility in Description Logics 179

in the aforementioned work lies on the fact that our ≺R
i are orderings on binary

relations on the domain ΔR, instead of orderings on propositional valuations or
on plain objects of ΔR.

It is worth spelling out that we do not require that pairs of objects intrinsi-
cally possess certain features that render some of them more normal than others.
Rather, the intention is to provide a framework in which to express all conceiv-
able ways in which such pairs can be ordered, in the same way that the class
of all classical DL interpretations constitute a framework representing all con-
ceivable (logically allowed) ways of representing the properties of objects and
their relationships with other objects. It is up to the knowledge base at hand to
impose constraints on the allowed orderings on pairs of objects in r-ordered DL
interpretations in the same way as it imposes constraints on the allowed exten-
sions of classes and roles in standard DL interpretations. (This point will become
more clear from Sect. 4 onwards.)

Definition 2 (Minimality w.r.t. ≺R
i). Let R = 〈ΔR, ·R,≺R〉 be an r-ordered

interpretation and let R ⊆ rR
i , for some 1 ≤ i ≤ n. Then min≺R

i
R := {(x, y) ∈

R | there is no (x′, y′) ∈ R such that (x′, y′) ≺R
i (x, y)}, i.e., min≺R

i
R denotes

the minimal elements of R w.r.t. the preference relation ≺R
i associated to rR

i .

Since we assume each ≺R
i to be a well-founded strict partial order on the

respective rR
i , we are guaranteed that for every R ⊆ rR

i such that R �= ∅,
min≺R

i
R is well defined. (The reader familiar with the KLM approach [32] will

immediately see that this implies a version of the smoothness condition for pairs
of objects.) As an example, in Fig. 2, min≺R1

1
rR1
1 = {x4x8}.

An r-ordered interpretation R satisfies a (classical) subsumption statement
C � D (denoted R � C � D) if and only if CR ⊆ DR. It satisfies an assertion
C(a) (respectively, r(a, b)), denoted R � C(a) (respectively, R � r(a, b)), if and
only if aR ∈ CR (respectively, (aR, bR) ∈ rR). It is easy to see that the addition
of the ≺R-component preserves the truth of all classical statements holding in
the remaining structure. That is, if R = 〈ΔR, ·R,≺R〉, then for every α, R � α
if and only if 〈ΔR, ·R〉 � α. The role of the ≺R-components will become patent
in the next section.

4 Role-Plausibility Constructs

In this section, we present the defeasible role constructs promised in the Intro-
duction. Before doing so, we recall some distinguishing properties of general
operators for defeasible reasoning, against which we shall check each of the oper-
ators to be introduced in the sequel: Given n+1 partially ordered sets of objects
〈Si,≤i〉, 0 ≤ i ≤ n, an n-ary function f : Πn−1

i=0 Si → Sn is:

– monotone (increasing) on Sn if the following holds:
If xi ≤ yi for 0 ≤ i < n, then f(x0, . . . , xn−1) ≤ f(y0, . . . , yn−1);

– ampliative with respect to an n-ary function h : Πn−1
i=0 Si → Sn if:

h(x1, . . . , xn) ≤ f(x1, . . . , xn), for all xi ∈ Si, 0 ≤ i < n;

180 K. Britz and I. Varzinczak

– strictly ampliative with respect to h if it is ampliative w.r.t. h, and also:
h(x1, . . . , xn) < f(x1, . . . , xn), for some xi ∈ Si, 0 ≤ i < n.

A function is non-monotonic if it is not monotone, i.e., if it fails monotonicity
in at least one argument. We then observe that the concept constructor ∃ induces
a monotone increasing function f∃ : P(ΔI × ΔI) × P(ΔI) −→ P(ΔI), with
sets ordered by set inclusion, such that f∃ : 〈rI , CI〉 �→ (∃r.C)I . Likewise, ∀
induces a non-monotonic function f∀ : 〈rI , CI〉 �→ (∀r.C)I , which is monotone
in its second argument, but not in the first. We note that strict ampliativity is
a necessary condition for a concept constructor to be deemed defeasible.

In the remainder of the present section, we shall use r
R|x
i as an abbreviation

for rR
i ∩ ({x} × ΔR), i.e., the restriction of the domain of rR

i to {x}.

4.1 Plausible Value Restriction

Classical value restrictions of the form ∀r.C constrain objects (in its interpre-
tation) to those that are related by r only to objects in C. This requirement
can be (and, in practice, often is) too strong. For instance, consider the con-
cept ∀guardianOf.Minor, which we have encountered in the Introduction. An
individual who has several children, but is also the legal guardian of a devel-
opmentally disabled adult would not belong to this class, even though we may
want to include such an individual when referring to parents whose ‘normal’
guardianship role is with minors. In order to single out this case, while still
being able to draw conclusions on what is typically the case about guardianship,
we here make a case for plausible value restrictions of the form

∨∼r.C. Intuitively,
∨∼guardianOf.Minor should cater for the example we have just seen.

Let ALC
∨∼ denote ALC extended with plausible value restrictions. We can

give
∨∼ a natural semantics in terms of our r-ordered interpretations as follows:

(
∨∼ri.C)R := {x ∈ ΔR | for all y ∈ ΔR, if (x, y) ∈ min≺R

i
(rR|x

i), then y ∈ CR}

Then,
∨∼ induces a ternary function f∨∼, with the strict partial order on the

participating role as third argument, that is f∨∼ : 〈rR
i , CR,≺R

ri
〉 �→ (

∨∼ri.C)R.

Proposition 1. The function f∨∼ is non-monotonic in its first argument,
monotone in its second and third arguments and is strictly ampliative w.r.t. f∀.

Another useful application of plausible value restrictions is in the specification
of the normal range of a role, as in � � ∨∼r.C (‘the range of r is normally C’). If
we allow for role inverses, we can also specify the normal domain of a role with
� � ∨∼r−.C (‘the domain of r is normally C’).

Introducing Role Defeasibility in Description Logics 181

Theorem 1. ALC
∨∼ has the finite-model property and is therefore decidable.

The proof of Theorem1 is via the standard technique of filtration redefined for r-
ordered interpretations and making sure the resulting preference relations in the
filtered model are each a strict partial order on the respective role interpretation.

Theorem 2. In ALC
∨∼, concept satisfiability and subsumption w.r.t. acyclic

TBoxes are pspace-complete problems. Concept satisfiability and subsumption
w.r.t. general TBoxes are exptime-complete problems.

The lower bound follows from the lower-bound result for ALC alone. The proof
of the upper bound is along the lines of that for classical ALC via automata
but with an extra data structure to account for the preference relations. It can
be shown that the look-up at the preference relations changes neither the time
complexity (the number of nodes in the search tree remains single exponential)
nor the size of each branch in the depth-first search that is carried out.

4.2 Plausible Number Restriction

Next we consider qualified number restrictions, which, in the classical case, take
the form ≥ nr.C, ≤ nr.C or = nr.C, where n is a positive integer, and which
allow us to specify cardinality constraints on roles with role fillers falling under
a certain concept. The classical semantics of these constructs is given by:

(≥ nri.C)I := {x ∈ ΔI | #{y ∈ ΔI | (x, y) ∈ rI
i and y ∈ CI} ≥ n}

(≤ nri.C)I := {x ∈ ΔI | #{y ∈ ΔI | (x, y) ∈ rI
i and y ∈ CI} ≤ n}

and = nr.C is seen as an abbreviation for (≥ nr.C) � (≤ nr.C). The extension
of ALC with qualified number restrictions is called ALCQ.

It turns out such constructs, too, can be too rigid, as the following example
illustrates. The concept ≤ 2hasSibling.Female denotes the class of people with
at most two sisters and, of course, does not admit the case of individuals whose
father becomes the legal guardian of a girl, thereby finding themselves with a
new, unexpected sibling. In this case, we would like to be able to say that such
individuals are in at most two normal sibling relationships.

To cope with cases such as this, we here introduce plausible versions of qual-
ified number restrictions of the form � nr.C, � nr.C (and � nr.C). Let ALCQ�

denote ALCQ extended with plausible number restrictions. These new concept
constructors can be given a semantics in terms of our r-ordered interpretations
in the following way:

(� nri.C)R := {x ∈ ΔR | #{y ∈ ΔR | (x, y) ∈ min≺R
i

(rR|x
i) and y ∈ CR} ≥ n}

(� nri.C)R := {x ∈ ΔR | #{y ∈ ΔR | (x, y) ∈ min≺R
i

(rR|x
i) and y ∈ CR} ≤ n}

Hence, � nr.C is just an abbreviation for (� nr.C) � (� nr.C).
With these new constructs, one can revisit the example above and define the

concept � 2hasSibling.Female, which is coherent in the given scenario.

182 K. Britz and I. Varzinczak

Just as with
∨∼, � n and � n induce ternary functions f�n : 〈rR

i , CR,≺R
ri

〉 �→
(� nri.C)R and f�n : 〈rR

i , CR,≺R
ri

〉 �→ (� nri.C)R. We then have:

Proposition 2. f�n is monotone in its first two arguments (the participating
role and concept extensions) and non-monotonic in its third argument (the par-
ticipating preference order). f�n is non-monotonic in its first two arguments and
monotone in its third argument.

Theorem 3. ALCQ� has the finite-model property and is therefore decidable.

Theorem 4. In ALCQ�, concept satisfiability and subsumption w.r.t. acyclic
TBoxes are pspace-complete problems. Concept satisfiability and subsumption
w.r.t. general TBoxes are exptime-complete problems.

4.3 Plausible Role Inclusion and Role Characteristics

Some expressive DLs [19] allow for the specification of (atomic) role inclusions of
the form ri � rj , whose semantics is given by I � ri � rj if and only if rI

i ⊆ rI
j ,

capturing the intuition according to which an ri-relationship is a special case of
an rj-one. ALCHQ denotes the extension of ALCQ with role hierarchies.

That this characterisation of role subsumption does not suffice for reasoning
under uncertainty is already clear from the vast literature on non-monotonic
reasoning. As a concrete example in a DL setting, consider the role inclu-
sions guardianOf � parentOf and parentOf � progenitorOf. In the absence
of a construct to account for exceptions to these inclusions, it follows that
guardianOf � progenitorOf, a clearly undesirable consequence.

In order to cope with such cases, we here introduce plausible role inclusions
of the form ri �∼ rj , inspired by the meaning of defeasible consequence in propo-
sitional logic [32] and by defeasible concept subsumption in DLs [14], with the
reading ‘usually, a relationship via ri is also an rj-relationship.’

Let ALCH̃Q denote ALCHQ extended with plausible atomic role inclusions.
Here, too, our r-ordered interpretations come in handy in providing an intuitive
semantics for such a construct:

R � ri �∼ rj if and only if min≺R
i

rR
i ⊆ rR

j

With the notion of plausible role inclusion, stating guardianOf�∼ parentOf and
parentOf �∼ progenitorOf captures in a better way the expected intuition in the
above example.

Monotonicity for role inclusions coincides with transitivity: ri � rj and rj �
rk implies ri � rk. That is, strengthening rj to ri preserves the role subsumption
by rk. Monotonicity of plausible role inclusions can be defined analogously, i.e.,
if ri � rj and rj �∼ rk, then ri �∼ rk. It then follows that �∼ , as expected, fails the
monotonicity property:

Proposition 3. Plausible atomic role inclusion in ALCH̃Q is non-monotonic.

Introducing Role Defeasibility in Description Logics 183

Theorem 5. ALCH̃Q has the finite-model property and is therefore decidable.

Theorem 6. In ALCH̃Q, concept satisfiability and subsumption w.r.t. general
TBoxes are exptime-complete problems.

Besides role hierarchies, some DLs also allow for the expression of role char-
acteristics such as functionality, transitivity, disjointness, and others, often via
the special notation func(ri), trans(ri), disj(ri, rj), etc., of which the intuition is
that “ri is functional”, “ri is transitive”, “ri and rj are disjoint”, and so on.
Semantically, this corresponds to requiring, in every interpretation I, that rI

i be
a function, that rI

i be a transitive relation, that rI
i ∩ rI

j = ∅, etc.
It turns out that, in real-world applications, such general, universal require-

ments can be too strong, as we have seen in the Introduction for the roles
marriedTo (functional) and partOf (transitive). In each of these cases, the prop-
erty under consideration does not hold globally, but it is still interesting to be
able to express that it usually holds, or that it holds at least for the typical
instances of the relation. We can achieve that in our framework via defeasi-
ble versions of the above characteristic specifiers, namely ˜func(ri), t̃rans(ri) and
˜disj(ri, rj), of which the intuition is that, respectively, “ri is normally functional”,
“ri is normally transitive” and “ri and rj are normally disjoint”. The seman-
tics of such constructs could be taken as: min≺R

i
rR
i is functional, min≺R

i
rR
i is

transitive, min≺R
i

rR
i ∩ min≺R

j
rR
j = ∅.

Theorem 7. ALCHQ with defeasible role characteristics has the finite-model
property and is therefore decidable.

Theorem 8. In ALCHQ with defeasible role characteristics, concept satisfia-
bility and subsumption w.r.t. general TBoxes are exptime-complete problems.

As in the classical case, it turns out that role-characteristics axioms are just
syntactic sugar, since all role properties can be expressed using the constructors
we have previously introduced. For instance, that a role r is usually functional
can be captured via plausible qualified number restrictions (see Sect. 4.2) by
stating axioms of the form � �� 1r.� in the TBox.

An alternative characterisation of defeasible transitivity can be obtained
in terms of role composition and defeasible role subsumption. This, of course,
requires a generalisation of preferences on role names to operations on roles so
that one can talk about e.g. the most preferred pairs of a compound relation.
This is what we address in the remainder of the present section.

Given an r-ordered interpretation R and role names r1 and r2, together with
their respective preference relations ≺R

r1
and ≺R

r2
, the following are questions that

naturally arise in the context of role composition: What is ≺R
r1◦r2

? Can ≺R
r1◦r2

be
defined in terms of ≺R

r1
and ≺R

r2
? More generally, do ≺R

r1
, . . . ,≺R

rn
completely define

the respective preference relation associated with any composition of r1, . . . , rn?
Intuitively, a tuple is more plausible in a composed relation if it arises as the

composition of two more preferred tuples in the component relations, and it does
not also arise as the composition of two less preferred tuples. The latter condition is

184 K. Britz and I. Varzinczak

necessary to eliminate conflicting preferences in the composite order. Technically,
it ensures that the resulting relation is a strict partial order. Formally,

≺R
r1◦r2 := {(x1y1, x2y2) | for some z1, z2 [(x1z1, x2z2) ∈≺R

r1 and (z1y1, z2y2) ∈≺R
r2]

and for no z1, z2 [(x2z2, x1z1) ∈≺R
r1 and (z2y2, z1y1) ∈≺R

r2]}.

As an example, a typical tuple in the relation (hasChild ◦ hasChild)R could be a
grandparent and biological grandchild.

Armed with a definition of plausible role composition, we can now provide an
alternative characterisation of defeasible role transitivity: ri is plausibly transi-
tive if and only if ri ◦ri �∼ ri. This definition requires only the most typical tuples
in the composite relation (ri ◦ri)R to be in rR

i , and is therefore not equivalent to
the requirement that min≺R

i
rR
i be transitive. Which of these two definitions is

correct depends on what we want to model, and warrants further investigation.

4.4 Typicality of Roles

Plausible role inclusions of the form ri �∼ rj (or, more generally, r1 ◦ · · · ◦ rk �∼ rj)
carry an implicit notion of typicality, namely that typical ris are rjs (or that
the typical instances of r1 ◦ · · · ◦ rk are in the extension of rj). Such a notion is
implicit inasmuch as one cannot directly refer to the typical instances of ri (or
even of r1 ◦ · · · ◦ rk) in the object language. (An analogous observation can be
made about plausible concept inclusions of the form C �∼ D — see Sect. 5.)

As has been argued in a propositional setting [9,10], having an explicit notion
of typicality at one’s disposal comes in handy from a modeling perspective,
besides increasing the expressive power of the language at no extra computa-
tional cost. The modeling interest translates into the freedom to refer to typ-
icality anywhere within a sentence and not just in the antecedent (LHS) of
‘implication-like’ statements [16,17], as with plausible subsumptions.

In a DL setting, this need is mainly felt when stating ABox assertions, namely
in specifying that an individual is a typical instance of a class or that a pair of
individuals is a typical instance of a role.

This issue has partially been addressed in the literature in that explicit
notions of concept typicality have been introduced [5,25], where with T(C) or
N(C) one can refer, in both the TBox and the ABox, to the most typical (or most
normal) members of a class. To the best of our knowledge, typicality of roles has
never been considered before. Therefore, here we make a case for introducing
a typicality operator for roles, with which one can capture the most normal or
typical instances of a relationship.

Let � denote a unary operator on roles of which the intuition is precisely as
motivated above and whose semantics is given by:

(�ri)R := min≺R
i

rR
i

In a logic equipped with �, plausible role subsumption becomes redundant,
since for every ri, rj , R � ri �∼ rj iff R � �ri � rj . A concrete example is
�parentOf � progenitorOf, which we have seen in the previous section. Other

Introducing Role Defeasibility in Description Logics 185

examples involving the use of � are �marriedTo � �hasPartner (with typicality
also in the RHS) and �marriedTo(john,mary) (an explicit instantiation of the
typical portion of a role).

Let f� : 〈rR
i ,≺R

i 〉 �→ min≺R
i

rR
i denote the function induced by �.

Proposition 4. f� is monotone (increasing) in its first argument, monotone
(decreasing) in its second argument, and non-monotonic in general.

Theorem 9. ALCHQ with role typicality has the finite-model property.

Theorem 10. In ALCHQ with role typicality, concept satisfiability and sub-
sumption w.r.t. general TBoxes are exptime-complete problems.

We conclude this section with a remark on further fruitfulness of role typ-
icality from a modeling perspective. First, in DLs also allowing for Boolean
operators on roles, with a statement of the form �ri � �rj � ⊥ one can express
plausible role disjointness (see Sect. 4.3). Second, role typicality may be useful
in further constraining certain roles via role constructors, e.g. �hasGrandChild �
�hasChild ◦ �hasChild (typical grandparenthoods are compositions of typical par-
enthoods). Both cases go beyond ALCHQ and we shall leave for future work.

5 Embedding Plausible Concept Subsumption

As an approach to the formalisation of defeasible inheritance in DLs,
Britz et al. [14] introduced the notion of plausible concept subsumption, which
is captured by statements of the form C �∼ D, read “usually, C is subsumed
by D”. Building up on the work by Kraus et al. [32] in the propositional case,
Britz et al. [12] have put forward the following list of properties that �∼ ought
to satisfy in order to be considered as appropriate in a non-monotonic setting:

(Cons) � ��∼ ⊥ (Ref) C �∼ C (LLE)
|= C ≡ D, C �∼ E

D �∼ E
(And)

C �∼ D, C �∼ E

C �∼ D � E

(Or)
C �∼ E, D �∼ E

C � D �∼ E
(RW)

C �∼ D, |= D � E

C �∼ E
(CM)

C �∼ D, C �∼ E

C � D �∼ E

The last six properties are the obvious translations of the properties for pref-
erential consequence relations proposed by Kraus et al. [32] in the propositional
setting. They have been discussed at length in the literature for both the propo-
sitional and the DL cases [26,32,33] and we shall not do so here.

A plausible concept subsumption �∼ satisfying all seven properties above is
called a preferential subsumption. One can require �∼ to satisfy other properties
as well. Of particular interest is the property of rational monotonicity below:

(RM)
C �∼ D, C ��∼ ¬C ′

C � C ′ �∼ D

186 K. Britz and I. Varzinczak

A plausible subsumption also satisfying (RM) is called a rational subsumption.
The intuition for the semantics of a statement of the form C �∼ D is that

those most typical C-objects are also D-objects. In Britz et al.’s approach, this
is captured by placing a preference relation on the domain ΔI of every DL
interpretation and evaluating C �∼ D to true whenever the minimal C-objects
are included in DI .

In what follows, we show one possible way in which plausible concept inclu-
sions can be given a semantics within our r-ordered interpretations framework.

The starting point is to also allow for a universal role u and role identity
constructs of the form id(C) [19], where C ∈ LALC , and of which the semantics
is given by

uR := ΔR × ΔR id(C)R := {(x, x) ∈ ΔR × ΔR | x ∈ CR}

Next, one has to place an ordering ≺R
u on the elements of uR in the same way as

for the other role interpretations. The intuition of doing so is that the most nor-
mal id(C)-pairs w.r.t. ≺R

u correspond (implicitly) to the most normal C-objects,
i.e., we get an ordering on the elements of CR induced by the absolute ordering
on the elements of uR. Armed with these ideas, we can provide a semantics for
the notion of plausible concept inclusion as follows:

R � C �∼ D if and only if min≺R
u
id(C)R ⊆ id(D)R

Proposition 5. �∼ is strictly ampliative and non-monotonic.

Proposition 6. �∼ is a preferential subsumption relation.

If we also require ≺R
u to be a modular order, then the above construction

delivers a rational �∼ . Previous results for Rational Closure in DLs [12] carry
over to ALC with plausible concept inclusions as defined above.

Theorem 11. ALCQ extended with plausible concept inclusions has the finite-
model property and is therefore decidable.

Theorem 12. In ALCQ with plausible concept inclusions, concept satisfiability
and subsumption w.r.t. general TBoxes are exptime-complete problems.

6 Related and Future Work

We start by observing that the operators we have introduced here do not
aim at providing a formal account of the notion of most, as addressed in the
study of generalised quantifiers [36] and, more recently, in a modal context by
Veloso et al. [44] and Askounis et al. [1]. Clearly, our defeasible operators are
not about degrees of truth as has been studied in fuzzy logics, nor about degrees
of possibility and necessity as addressed by possibilistic logics [24]. They rather
relate to and generalise the notions of defeasible modalities [17,18] and defeasible
quantifiers [13] we studied previously.

Introducing Role Defeasibility in Description Logics 187

In a sense, the notions we investigated here can be seen as the qualitative
counterpart of possibilistic modalities [34,35]. There, each possible world w is
associated with a possibility distribution πw : W −→ [0, 1], the intuition of which
is to capture the degree of likelihood (in terms of belief) of all possible worlds
w.r.t. w. In that setting, the pairs (w,w′) for which πw(w′) is maximal correspond
here to the most preferred pairs in the interpretation of a single role name.

In this paper, we have assumed ALC, ALCQ or ALCHQ as the underlying DL
and we have investigated individual extensions of each one with the constructors
we introduced. As a next step, we shall consider different combinations of our
defeasible constructs, also together with other DL operators not considered here,
like inverse roles, and study the resulting computational properties.

Finally, here we have not addressed the question as to what an appropriate
notion of non-monotonic entailment for the different extensions of ALC with
defeasible operators is, especially in the presence of ABoxes. Indeed, in this paper
we have contented ourselves with the standard (Tarskian) definition, which is
monotonic (and therefore not suitable in some contexts). The recent extensions
of the notion of Rational Closure [33] by Booth et al. [8,9], Casini et al. [21]
and Giordano et al. [27,28] may provide us with a springboard with which to
investigate this matter in the more expressive languages we introduced here.

Acknowledgements. This work is based on research supported in part by the
National Research Foundation of South Africa (Grant Numbers 103345 and 85482).

References

1. Askounis, D., Koutras, C.D., Zikos, Y.: Knowledge Means ‘All ’, Belief Means
‘Most ’. In: Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS (LNAI),
vol. 7519, pp. 41–53. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33353-8 4

2. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.):
The Description Logic Handbook: Theory, Implementation and Applications, 2nd
edn. Cambridge University Press, Cambridge (2007)

3. Baader, F., Hollunder, B.: How to prefer more specific defaults in terminological
default logic. In: Bajcsy, R. (ed.) Proceedings of the 13th International Joint Con-
ference on Artificial Intelligence (IJCAI), pp. 669–675. Morgan Kaufmann Pub-
lishers (1993)

4. Baader, F., Hollunder, B.: Embedding defaults into terminological knowledge rep-
resentation formalisms. J. Autom. Reasoning 14(1), 149–180 (1995)

5. Bonatti, P., Faella, M., Petrova, I., Sauro, L.: A new semantics for overriding in
description logics. Artif. Intell. 222, 1–48 (2015)

6. Bonatti, P., Faella, M., Sauro, L.: Defeasible inclusions in low-complexity DLs. J.
Artif. Intell. Res. 42, 719–764 (2011)

7. Bonatti, P., Lutz, C., Wolter, F.: The complexity of circumscription in description
logic. J. Artif. Intell. Res. 35, 717–773 (2009)

8. Booth, R., Casini, G., Meyer, T., Varzinczak, I.: On the entailment problem for a
logic of typicality. In: Proceedings of the 24th International Joint Conference on
Artificial Intelligence (IJCAI) (2015)

http://dx.doi.org/10.1007/978-3-642-33353-8_4

188 K. Britz and I. Varzinczak

9. Booth, R., Meyer, T., Varzinczak, I.: PTL: a propositional typicality logic. In:
Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS (LNAI), vol. 7519,
pp. 107–119. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33353-8 9

10. Booth, R., Meyer, T., Varzinczak, I.: A propositional typicality logic for extending
rational consequence. In: Fermé, E., Gabbay, D., Simari, G. (eds.) Trends in Belief
Revision and Argumentation Dynamics. Studies in Logic - Logic and Cognitive
Systems, vol. 48, pp. 123–154. King’s College Publications, London (2013)

11. Boutilier, C.: Conditional logics of normality: a modal approach. Artif. Intell.
68(1), 87–154 (1994)

12. Britz, K., Casini, G., Meyer, T., Moodley, K., Varzinczak, I.: Ordered interpre-
tations and entailment for defeasible description logics. Technical report, CAIR,
CSIR Meraka and UKZN, South Africa (2013). http://tinyurl.com/cydd6yy

13. Britz, K., Casini, G., Meyer, T., Varzinczak, I.: Preferential role restrictions. In:
Proceedings of the 26th International Workshop on Description Logics, pp. 93–106
(2013)

14. Britz, K., Heidema, J., Meyer, T.: Semantic preferential subsumption. In: Lang, J.,
Brewka, G. (eds.) Proceedings of the 11th International Conference on Principles
of Knowledge Representation and Reasoning (KR), pp. 476–484. AAAI Press/MIT
Press (2008)

15. Britz, K., Meyer, T., Varzinczak, I.: Semantic foundation for preferential descrip-
tion logics. In: Wang, D., Reynolds, M. (eds.) AI 2011. LNCS (LNAI), vol. 7106,
pp. 491–500. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25832-9 50

16. Britz, K., Varzinczak, I.: Defeasible modes of inference: a preferential perspective.
In: Proceedings of the 14th International Workshop on Nonmonotonic Reasoning
(NMR) (2012)

17. Britz, K., Varzinczak, I.: Defeasible modalities. In: Proceedings of the 14th Con-
ference on Theoretical Aspects of Rationality and Knowledge (TARK), pp. 49–60
(2013)

18. Britz, K., Varzinczak, I.: Preferential modalities revisited. In: Proceedings of the
16th International Workshop on Nonmonotonic Reasoning (NMR) (2016)

19. Calvanese, D., Giacomo, G.: Expressive description logics. In: Baader, F., et al.
[2], Chap. 5, pp. 193–236

20. Casini, G., Meyer, T., Moodley, K., Sattler, U., Varzinczak, I.: Introducing defea-
sibility into OWL ontologies. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol.
9367, pp. 409–426. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25010-6 27

21. Casini, G., Meyer, T., Moodley, K., Varzinczak, I.: Nonmonotonic reasoning in
description logics: Rational closure for the ABox. In: Proceedings of the 26th Inter-
national Workshop on Description Logics. pp. 600–615 (2013)

22. Casini, G., Straccia, U.: Rational closure for defeasible description logics. In:
Janhunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS (LNAI), vol. 6341, pp. 77–90.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-15675-5 9

23. Donini, F., Nardi, D., Rosati, R.: Description logics of minimal knowledge and
negation as failure. ACM Trans. Comput. Logic 3(2), 177–225 (2002)

24. Dubois, D., Lang, J., Prade, H.: Possibilistic logic. In: Gabbay, D., Hogger, C.,
Robinson, J. (eds.) Handbook of Logic in Artificial Intelligence and Logic Pro-
gramming, vol. 3, pp. 439–513. Oxford University Press, Oxford (1994)

25. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Preferential description log-
ics. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790,
pp. 257–272. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75560-9 20

26. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.: ALC + T : a preferential exten-
sion of description logics. Fundamenta Informaticae 96(3), 341–372 (2009)

http://dx.doi.org/10.1007/978-3-642-33353-8_9
http://tinyurl.com/cydd6yy
http://dx.doi.org/10.1007/978-3-642-25832-9_50
http://dx.doi.org/10.1007/978-3-319-25010-6_27
http://dx.doi.org/10.1007/978-3-642-15675-5_9
http://dx.doi.org/10.1007/978-3-540-75560-9_20

Introducing Role Defeasibility in Description Logics 189

27. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.: A non-monotonic description
logic for reasoning about typicality. Artif. Intell. 195, 165–202 (2013)

28. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.: Semantic characterization of
rational closure: from propositional logic to description logics. Artif. Intell. 226,
1–33 (2015)

29. Governatori, G.: Defeasible description logics. In: Antoniou, G., Boley, H. (eds.)
RuleML 2004. LNCS, vol. 3323, pp. 98–112. Springer, Heidelberg (2004). doi:10.
1007/978-3-540-30504-0 8

30. Grosof, B., Horrocks, I., Volz, R., Decker, S.: Description logic programs: combining
logic programs with description logic. In: Proceedings of the 12th International
Conference on World Wide Web (WWW), pp. 48–57. ACM (2003)

31. Heymans, S., Vermeir, D.: A defeasible ontology language. In: Meersman, R., Tari,
Z. (eds.) OTM 2002. LNCS, vol. 2519, pp. 1033–1046. Springer, Heidelberg (2002).
doi:10.1007/3-540-36124-3 66

32. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential mod-
els and cumulative logics. Artif. Intell. 44, 167–207 (1990)

33. Lehmann, D., Magidor, M.: What does a conditional knowledge base entail? Artif.
Intell. 55, 1–60 (1992)

34. Liau, C.J.: On the possibility theory-based semantics for logics of preference. Int.
J. Approximate Reasoning 20(2), 173–190 (1999)

35. Liau, C.J., Lin, B.P.: Possibilistic reasoning-a mini-survey and uniform semantics.
Artif. Intell. 88(1–2), 163–193 (1996)

36. Lindström, P.: First-order predicate logic with generalized quantifiers. Theoria 32,
286–195 (1966)

37. Padgham, L., Zhang, T.: A terminological logic with defaults: a definition and an
application. In: Bajcsy, R. (ed.) Proceedings of the 13th International Joint Confer-
ence on Artificial Intelligence (IJCAI), pp. 662–668. Morgan Kaufmann Publishers
(1993)

38. Qi, G., Pan, J.Z., Ji, Q.: Extending description logics with uncertainty reasoning
in possibilistic logic. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS (LNAI), vol.
4724, pp. 828–839. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75256-1 72

39. Quantz, J., Royer, V.: A preference semantics for defaults in terminological logics.
In: Proceedings of the 3rd International Conference on Principles of Knowledge
Representation and Reasoning (KR), pp. 294–305 (1992)

40. Quantz, J., Ryan, M.: Preferential default description logics. Technical report, TU
Berlin (1993). www.tu-berlin.de/fileadmin/fg53/KIT-Reports/r110.pdf

41. Sengupta, K., Krisnadhi, A.A., Hitzler, P.: Local closed world semantics: grounded
circumscription for OWL. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein,
A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 617–
632. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25073-6 39

42. Shoham, Y.: Reasoning about Change: Time and Causation from the Standpoint
of Artificial Intelligence. MIT Press, Massachusetts (1988)

43. Straccia, U.: Default inheritance reasoning in hybrid KL-ONE-style logics. In:
Bajcsy, R. (ed.) Proceedings of the 13th International Joint Conference on Artificial
Intelligence (IJCAI), pp. 676–681. Morgan Kaufmann Publishers (1993)

44. Veloso, P., Veloso, S., Viana, J., de Freitas, R., Benevides, M., Delgado, C.: On
vague notions and modalities: a modular approach. Logic J. IGPL 18(3), 381–402
(2009)

http://dx.doi.org/10.1007/978-3-540-30504-0_8
http://dx.doi.org/10.1007/978-3-540-30504-0_8
http://dx.doi.org/10.1007/3-540-36124-3_66
http://dx.doi.org/10.1007/978-3-540-75256-1_72
www.tu-berlin.de/fileadmin/fg53/KIT-Reports/r110.pdf
http://dx.doi.org/10.1007/978-3-642-25073-6_39

Opposition Frameworks

Cosmina Croitoru1,2(B) and Kurt Mehlhorn1

1 Max Planck Institut for Informatics, Saarbrücken, Germany
cosmina.croitoru@gmail.com

2 Saarbrücken Graduate School in Computer Science, Saarland University,

Saarbrücken, Germany

Abstract. In this paper we introduce opposition frameworks, a gener-
alization of Dung’s argumentation frameworks.

While keeping the attack relation as the sole type of interaction
between nodes and the abstract level of argumentation frameworks,
opposition networks add more flexibility, reducing the gap between struc-
tured and abstract argumentation. A guarded attack calculus is developed
in order to obtain proper generalizations of Dung’s admissibility-based
semantics. The high modeling capabilities of our new setting offer an
alternative instantiation solution (of other existing argumentation frame-
works) for arguments evaluation.

1 Introduction

Dung [15], in a landmark paper in the area of Computational Argumentation,
initiated the study of the following problem:

If the edges of a given directed graph are seen as attacks, how can a satis-
factory set of winner nodes be rationally selected and justified?

By interpreting the nodes of such directed graphs as arguments and designing
a conflict-resolution formalism to make distinction among acceptable and unac-
ceptable arguments, Dung introduced Argumentation Frameworks (AFs for
short) and developed an interesting calculus of opposition, as coined in Brewka
[6]. More precisely, the acceptability of an argument is defined based on its mem-
bership in an admissible set of arguments satisfying certain additional properties.
An admissible set of arguments is conflict-free (i.e., there is no attack between
its members) and defends itself against any attack : for each attack from an
argument a against one of its members there is a counter-attack from one of its
members against a. This kind of rationality based on the possibility of extend-
ing a specified argument to a set of “collectively acceptable” arguments is called
extension based semantics. The grounded, preferred and stable semantics defined
by Dung (see Sect. 2) formalize different intuitions about “collective acceptance”
on the basis of a given framework.

In this paper we introduce Opposition Frameworks (OFs for short) that
generalize Dung’s framework without self-attacks, by considering more fine-
grained notions of conflict-freeness and admissibility.
c© Springer International Publishing AG 2016
L. Michael and A. Kakas (Eds.): JELIA 2016, LNAI 10021, pp. 190–206, 2016.
DOI: 10.1007/978-3-319-48758-8 13

Opposition Frameworks 191

An OF is a labeled directed multigraph whose directed edges represent attacks
between its nodes. A node is no longer an atomic argument as in AFs, but a com-
posed object, interpreted as the position of an agent in a debate. The position
of a node v is a finite set g(v) of facts granted by v. Depending on the real
world problem modeled, the facts can be statements, claims, pieces of evidence,
locutions, issues, etc. The set g(v) of facts granted by a node v has no mathe-
matical structure associated; it is, simply, a list of facts approved by the node v,
based on which v develops its attacks. Each attack a has a source node s(a), a
target node t(a), and is labeled by a pair (γ(a), δ(a)) of (disjoint) sets of facts.
Here γ(a) ⊆ g(s(a)) is the guard of the attack a, and δ(a) is a nonempty subset
of g(t(a)) − g(s(a)), representing the facts (granted by the node t(a)) that are
denied by the source node, s(a), of the attack a. So, if a node v attacks a node
w via the attack a, that is s(a) = v and t(a) = w, then the guard γ(a) specifies
the set of facts – granted by v – based on which v does not admit the facts in
δ(a) – granted by w.

It follows that, in OFs, arguments are seen as ensembles formed by the facts
granted by a node together with the attacks issuing from this node. To illustrate
how this can arise in real world situations, let us consider the following possible
political debate.

Example 1 (adapted from Wang and Luo [29]). Let us construct an OF by
assigning a node for each of the 5 positions in the following debate on the set
{f1, . . . , f9} of facts:

v1 : “Reducing emissions of greenhouse gases
f1 is crucially for the

protection of our health
f2 and, clearly, it is more important than

developing economy
f3 .”

v2 : “Developing economy
f3 will ensure creating job positions

f4 and it is more
significant than protecting the environment

f8 .”
v3 : “We need not to focus on developing economy

f3

and urgently should take measures to protect environment
f8 , e.g.,

reduce emissions of greenhouse gases
f1 , and save waterf5 .”

v4 : “Currently it is more important to
create job positions

f4 for increasing number of graduates
f6 , than being con-

cerned with reducing emissions of greenhouse gases
f1 . It is obvious that by

hiring new people
f9 it is not necessary to be concerned with

protecting human health
f2 .”

v5 : “Instead of creating several job positions
f4 in order to

increase the number of graduates
f6 , we should concentrate on

protecting the environment
f8 to guarantee earth security

f7 .”

Graphically, in Fig. 1 below, each node is decorated with its granted set and
each attack a, with source s(a) = vi and target t(a) = vj , is labeled with the
pair (γ(a), δ(a)).

192 C. Croitoru and K. Mehlhorn

v1 v2

v5v4

v3

{ f1, f2} { f3, f4}

{ f7, f8}{ f4, f6, f9}

{ f1, f5, f8}
({ f1 , f2},{ f3})

({ f7 , f8},{ f4 , f6})

({ f4 , f6},{ f1})

({ f9},{ f2})

({ f4},{ f8})

({ f8},{ f4})

({ f4},{ f8})

({ f1 , f5 , f8},{ f3})

Fig. 1. OF modeling the political debate in Example 1.

Note that we have two attacks from v4 to v1 which differ by their labels, and
this kind of multiple attacks does not exist in Dung’s argumentation frameworks.

This example is considered only for illustration purpose. A software system
for automatically modeling such a debate, that is to construct positions, facts
and attack’s labels, must use appropriate natural language processing tools,
e.g., Finegan-Dollak and Radev [18], and/or specialized debating websites, e.g.,
Debatepedia1, (see also Rahwan et al. [27], or Leite and Martins [20]), but it is
beyond the scope of this paper.

The above example shows that an OF can model which precise part of an
“argument” is in conflict with which part of another “argument”, without requir-
ing a logical language and an inference relation. Our new formalism is more
abstract than the existing structured AFs and it is well suited to represent com-
plex non-logical information.

Intuitively, a guarded attack shows the reason why a node attacks another
one. Let a be an attack on the node w (that is, t(a) = w). We say that a is
harmful to w if w can not counter-attack a: there is no attack a′ from w to the
source of a denying at least one fact in the guard of a (∀a′ with s(a′) = w and
t(a′) = s(a) we have δ(a′) ∩ γ(a) = ∅). We develop a guarded attack calculus in
order to extend the basic notions which underly the classical Dung’s semantics,
so preserving the diversity of reasoning schemes for AFs. Our new formalism is
based on the graph operation of contraction and can be described as follows. To
decide if a given node v can be accepted, we look at the attacks on v; if there is
no attack harmful to v, then it is accepted; otherwise, we search a node w which
is not in “conflict” with v (no fact denied by an attack from one is granted by
the other) and denies at least one fact of the guard of an attack harmful to v;
if w does not exist, then v can not be accepted ; if w exists, we consider their
coalition {v, w} as a new super-node v{v,w} with g(v{v,w}) = g(v) ∪ g(w), delete
the nodes v and w, and replace them by the super-node v{v,w} as the source or
the target of each attack from or to v and w; the decision process is continued
using the super-node in the new OF. Adapting the notions of conflict-freeness
1 http://dbp.idebate.org.

http://dbp.idebate.org

Opposition Frameworks 193

and defense, we show that there is a sequence of coalition choices for which the
above outlined process ends with an accepted (super)node if and only if there
is an admissible set of nodes containing v. Since AFs are particular OFs (see the
end of Subsect. 3.1), we obtain a more intuitive and algorithmic way of handling
classical admissibility argumentation semantics.

Returning to the Example 1, if we want to see the status of v2 in this OF using
the above outlined process, it is obvious that it needs to make a coalition with
v4 in order to deny a fact in the guard of the attack from v1. The super-node
v{v2,v4} has no harmful attack in the contracted OF, therefore v2 is accepted. If
we delete the set-labels, replace the multiple attack by a single directed edge and
call the nodes arguments in the OF in Fig. 1, we obtain (the digraph of) an AF;
in this AF the set of arguments {v2, v4} is a preferred and stable extension (see
Sect. 2). Hence the outputs of the two frameworks agree. On the other hand,
the set {v1, v3, v5} is another preferred and stable extension in the AF. However,
the set of nodes {v1, v3, v5} can not be considered as a “solution” in the OF in
Fig. 1, since it does not (collectively) defend the node v1 against the attack with
source v4 and labeled ({f9}, {f2}). It follows that the use of guards, on which OFs
are developed, provides more accurate outputs than the dichotomy between the
existence and lack of attacks, on which Dung’s frameworks are based (further
differences are highlighted in Subsect. 3.1 in the comments after Fig. 2).

Note the difference between our OFs and structured/deductive argumenta-
tion frameworks [1,11,19,26]: while in these logic based frameworks the internal
structure of the arguments generates and explains the (inferential) nature of the
attacks expressed as uniform (i.e., the same for all nodes) rules, the users of
OF’s are free to choose between uniform or non-uniform rules to construct the
attack’s labels. These labels can be automatically constructed if the content of a
node (that is, its granted set of facts) is equipped with a mathematical (logical,
combinatorial, algebraic, etc.) structure. The gain over the AF’s instantiation
approach is that our model is more general and the use of attack’s labels reduces
the number of “arguments” to be considered (see also the discussion after the
Proposition 6 in the end of Sect. 3).

The remainder of this paper is organized as follows. In Sect. 2 we give a short
introduction in Dung’s abstract argumentation. In Sect. 3, we define formally
OFs, show that AFs are particular OFs, extend Dung’s acceptability semantics,
discuss complexity issues, develop a new DPLL type acceptance algorithm, and
define logical semantics for OFs. Finally, in Sect. 4 we conclude the paper and
discuss future work.

2 Argumentation Frameworks

In this section we present the basic concepts used for defining classical semantics
in abstract argumentation frameworks as introduced by Dung [15].

Definition 1. An Argumentation Framework is a digraph AF = (A,E), where
A is a finite and nonempty set; the vertices in A are called arguments, and if
(a, b) ∈ E is a directed edge, then argument a attacks argument b.

194 C. Croitoru and K. Mehlhorn

Definition 2. An extension-based acceptability semantics is a map σ assigning
to each AF = (A,E) a set σ(AF) ⊆ 2A. A member S ∈ σ(AF) is called a
σ-extension in AF . If AF = (A,E) is an AF, σ a semantics and a ∈ A, then
a is σ-credulously accepted if a ∈ ⋃

S∈σ(AF) S and a is σ-sceptically accepted if
a ∈ ⋂

S∈σ(AF) S.

For a ∈ A we denote a+ = {b ∈ A| (a, b) ∈ E} the set of all arguments
attacked by a, and a− = {b ∈ A| (b, a) ∈ E} the set of all arguments attacking
a. These notations can be extended to sets S ⊆ A: S+ =

⋃

a∈S a+, and S− =
⋃

a∈S a−.
The set S of arguments defends an argument a ∈ A if a− ⊆ S+. The set of all

arguments defended by a set S of arguments is denoted by F (S). For M ⊆ 2A,
max(M) (min(M)) denotes the set of maximal (minimal) members of M. The
main extension-based acceptability semantics are:

Definition 3. Let AF = (A,E) be an AF.

• A conflict-free set in AF is a set S ⊆ A such that S ∩ S+ = ∅ . We will
denote cf(AF) = {S ⊆ A|S is conflict-free set }.

• An admissible set in AF is a set S ∈ cf(AF) with S− ⊆ S+.
• A complete extension in AF is a set S ∈ cf(AF) s.t. S = F (S). We will denote
comp(AF) = {S ⊆ A|S is complete extension}.

• A preferred extension in AF is a set S ∈ max(comp(AF)).
• A grounded extension in AF is a set S ∈ min(comp(AF)).
• A stable extension in AF is a set S ∈ cf(AF) s.t. S+ = A − S.

3 Opposition Frameworks

3.1 Defining the New Framework

In this subsection, we define OFs, discuss their compatibility with Dung’s struc-
tures and specify how to see AFs as OFs.

Definition 4 (Opposition Framework (OF)). An opposition framework is
a tuple OF = (N,F, g,A, s, t, γ, δ) where:

• N is a finite set of nodes; F is a finite set of facts; g : N → 2F is a function
that associates to each node v ∈ N , its granted set g(v) of facts in F ,

• A is a finite set of attacks; s, t : A → N are functions that associate to each
attack a ∈ A its source node s(a), and its target node t(a),

• γ, δ : A → 2F are functions that associate to each attack a ∈ A its guard
γ(a) ⊆ g(s(a)), and its denied set of facts δ(a), with δ(a) ⊆ g(t(a)) −
g(s(a)).

Opposition Frameworks 195

In words, an OF is a labeled multi-digraph in which each directed edge (v, w)
corresponds to an attack a from the node s(a) = v to node t(a) = w, that is
based on a set of facts γ(a) ⊆ g(v) granted by v, and denies the set δ(a) ⊆ g(w)
of facts granted by w. Throughout this paper we assume that the sets g(v), γ(a),
δ(a) are non-empty.

The condition δ(a) ⊆ g(t(a)) − g(s(a)) forbids the attack a to deny the facts
granted by its source. In particular, there is no attack in A such that s(a) = t(a)
(there are no self-attacks). However, we can have parallel attacks: a set of attacks
A0 ⊆ A with |A0| ≥ 2 and s(a) = s(a′) and t(a) = t(a′), for every a, a′ ∈ A0.

Graphically, each node is decorated with its granted set and each attack a
with source s(a) = v and target t(a) = w is labeled with the pair (γ(a), δ(a)),
as depicted in Fig. 1. Let us observe that the granted sets of nodes v1 and v4
are g(v1) = {f1, f2} and g(v4) = {f4, f6, f9}. The two attacks (a1 and a2) from
v4 to v1 form a multiple attack of v4 against v1. They differ by their labels:
(γ(a1), δ(a1)) = ({f4, f6}, {f1}) and (γ(a2), δ(a2)) = ({f9}, {f2}). The meaning
is that the attack a1, based on f4 and f6 (granted by the source node of a1),
denies f1, one of the facts granted by the target of a1, while the attack a2, based
on f9, denies f2. We will assume in the following that multiple attacks have
different labels.

The granted set g(v) of a node v can be interpreted as a node interface,
exhibiting its pieces of evidence which can be accepted or attacked by the other
nodes. The set g(v) can not be replaced in the digraph representing the OF
by a set of non-conflicting nodes (viewing the items in g(v) as sub-arguments)
due to the rule-based way the attacks are conceived. For example, in Fig. 2(i),
we consider an OF having only two nodes v1 and v2, with g(v1) = {f1, f2, f3}
and g(v2) = {f2, f4}, and a symmetric pair of attacks a1 and a2. In Fig. 2(ii), we
transform this OF into a digraph (AF) with vertices set {f1, f2, f3, f4} and attacks
generated by the rules associated to a1 (({f2}, {f1}) gives the attack (f2, f1))
and a2 (({f3}, {f4}) gives the attack (f3, f4)). But then, the set {f1, f2, f3} is not
conflict free, which contradicts the intuition that in the OF the set g(v) granted
by a node v is not conflicting.

v1 v2

{ f1, f2, f3} { f2, f4}

a1

({ f3},{ f4})

a2

({ f2},{ f1})

f2

f1

f4

f3

(i) (ii) (iii)

v1 v2

Fig. 2. Trying to model an OF as an AF.

196 C. Croitoru and K. Mehlhorn

Hence OFs offer a more general approach of modeling collective attacks as
the one proposed in Nielson and Parsons [23], where sets of arguments rather
than single arguments may be needed to attack another argument. On the other
hand, if we view the OF in (i) simply as the AF with two arguments v1 and v2
attacking each other (as in Fig. 2(iii)), then each argument is credulously stable
accepted (see Coste-Marquis et al. [12]), which is not what the OF suggests (the
attack a2 against v1 can not be defended, because of f2, which is not denied,
and the attack a1 against v2 can not be defended, because of f3). It follows
that the semantics of the two models (AF and OF) differ. Hence the acceptability
based semantics for OFs must be defined in an appropriate way in order to catch
the intended intuition and to have stronger versions of the Dung’s semantics
imposed by the fined-grained environment considered in OFs.

We close this subsection by noting that any AF without self-attacks can be
seen as a (trivial) OF, specified (for further use) in the following definition, and
illustrated by a simple example in Fig. 3.

Definition 5 (OF associated to an AF). Let AF = (Arg(AF),Def(AF)) be
an argumentation framework without self-attacks. The opposition framework
associated to AF is OFAF = (N,F, g,A, s, t, γ, δ), where:

• N = F = Arg(AF); g(a) = {a}, ∀a ∈ Arg(AF); A = Def(AF);
• ∀d = (a, b) ∈ Def(AF), s(d) = a and t(d) = b, γ(d) = {a} and δ(d) = {b}.

a b c

AF

a b c

{a} {b} {c}

OFAF

({a},{b})

({b},{a}) ({b},{c})

Fig. 3. OF associated to an AF.

3.2 Conflict-Freeness

Let OF = (N,F, g,A, s, t, γ, δ) be an opposition framework. For S ⊆ N , we
denote by α−(S) (α+(S)) the set of attacks having the target (source) in S:

α−(S) = {a ∈ A| t(a) ∈ S} and α+(S) = {a ∈ A| s(a) ∈ S}.

We write α+(v) (α−(v)) instead of α+({v}) (α−({v})).
A weak conflict-free (wcf) set of nodes is any set S ⊆ N such that there

is no attack a with s(a), t(a) ∈ S. Clearly, singletons {v}, for v ∈ N , are wcf
sets.

In AFs, wcf sets are simple called conflict-free sets, and can be conceived as
collective (super)arguments. Formally, if S is a conflict-free set of arguments

Opposition Frameworks 197

in an AF, we can replace it by a (super)node aS and each attack from (to)
an argument in S is replaced by an attack from (to) vS (multiple attacks are
replaced by a single attack). This graph operation (called contraction) creates
no self-attacks, since S is a conflict-free set. The contraction operation of a wcf
set S in an OF assigns the union of the granted sets of the members of S as the
granted set of vS , the sources (or targets) of attacks from (to) a member of S
are replaced by vS (multiple attacks are accepted). The problem that can arise
is that for some new attack a with s(a) = vS we can have δ(a) ∩ g(vS)
= ∅.

A strong conflict-free (scf) set of nodes is any set S ⊆ N such that
∀a ∈ α+(S), δ(a) ∩ g(s′) = ∅, for every s′ ∈ S. In words, no attack with source
in S denies a fact granted by a node in S. The following lemma holds.

Lemma 1. (i) In an OF any scf set is a wcf set. (ii) If in an OF the granted sets,
g(v), are disjoint (i.e. g(v) ∩ g(w) = ∅, for all distinct v, w ∈ N) then a set of
nodes is wcf if and only if it is scf. In particular, if OFAF is the OF associated
to an AF AF , then a set S of arguments in AF is conflict-free if and only if it
is scf in OFAF .

Scf sets can be safely used in the OF’s contraction operation:

Proposition 1. Let OF = (N,F, g,A, s, t, γ, δ) be an opposition framework and
S ⊆ N a wcf set of nodes. Let OF |S = (N1, F1, g1, A1, s1, t1, γ1, δ1) be the tuple,
where

N1 = (N − S)∪̇{vS}, F1 = F , A1 = A, γ1 = γ, δ1 = δ,

g1(v) =

{

g(v) if v ∈ N − S
⋃

w∈S g(w) if v = vS

s1(a) =

{

s(a) if a
∈ α+(S)
vS if a ∈ α+(S)

and t1(a) =

{

t(a) if a
∈ α−(S)
vS if a ∈ α−(S)

.

Then OF |S is an OF (obtained by contraction of S) if and only if S is a
scf set of nodes.

Proof. Suppose that OF |S is an opposition framework. To show that S is a scf
set in OF , let a ∈ A with s(a) ∈ S. In OF |S we have s1(a) = vS and therefore
δ1(a) ∩ g1(vS) = ∅. By the definition of functions δ1 and g1, it follows that in
OF we have δ(a) ∩ ⋃

w∈S g(w) = ∅, that is δ(a) ∩ g(w) = ∅, for every w ∈ S.
Hence S is a scf set in OF .

Conversely, suppose that S is a scf set in OF . To show that OF |S is an OF, we
have to prove that δ1(a) ⊆ g1(t1(a)) − g1(s1(a)),∀a ∈ A1 = A. By the definition
of OF |S , this holds trivially for every a with s1(a)
= vS . If s1(a) = vS , then
t1(a)
∈ S (since S is wcf set) and, therefore, δ1(a) = δ(a), t1(a) = t(a), and
g1(t1(a)) = g(t(a)). Because g1(s1(a)) = g1(vS) =

⋃

w∈S g(w) we have to prove
that δ(a) ⊆ g(t(a)) − ⋃

w∈S g(w). But this holds, since s(a) ∈ S and S is a scf
set (i.e., δ(a) ∩ g(w) = ∅ for every w ∈ S). ��

198 C. Croitoru and K. Mehlhorn

3.3 Extending Dung’s Semantics

Let OF = (N,F, g,A, s, t, γ, δ) be an opposition framework, S ⊆ N and v ∈ N .
Let us denote g(S) =

⋃

s∈S g(s). We say that v is defended by S if

• ∀a ∈ α+(v) we have δ(a) ∩ g(S) = ∅, and
• ∀a ∈ α−(v), ∃ac ∈ α+(S) such that t(ac) = s(a) and δ(ac) ∩ γ(a)
= ∅.

In words, a node v is defended by a set S of nodes if, firstly, no attack with
the source v denies a fact granted by a node in S, and, secondly, for any attack
a targeting v there is a counter-attack coming from S, targeting the source of a,
and denying at least one fact of the guard of a. In Fig. 4, the set {v3} defends
the node v1, but the set {v4} does not defend v1 despite of the attack of {v4}
(against the attacker v2 of v1), which doesn’t deny the fact f4. Note that there
is no attack with source v1, hence the first condition in the definition of defense
holds trivially.

v4 v2

v3

{ f1, f2} { f3, f4}

{ f3}

({ f1 , f2},{ f3})

({ f3},{ f4})

({ f4},{ f1})
v1

{ f1}

Fig. 4. {v3} defends v1, but {v4} does not defend v1.

The set of arguments defended by a set S is denoted by D(S).
An admissible set is any scf set S ⊆ N with the property that for any

a ∈ α−(S) there is ac ∈ α+(S) such that t(ac) = s(a) and δ(ac) ∩ γ(a)
= ∅. In
words, a scf set is admissible if the guard of any attack targeting a member of S
has at least one fact that is denied by an attack with source in S. The following
proposition gives some basic properties of admissible sets.

Proposition 2

(i) In an OF a set S of nodes is admissible if and only if S ⊆ D(S).
(ii) (Dung’s Fundamental Lemma for OFs) Let OF = (N,F, g,A, s, t, γ, δ) be an

OF, S ⊆ N an admissible set, and u, v ∈ D(S). Then
1. S′ = S ∪ {u} is an admissible set, and
2. if {u, v} is a scf set then v ∈ D(S′).

(iii) A set S of arguments in an argumentation framework AF is admissible in
AF if and only if it is admissible in OFAF .

Opposition Frameworks 199

Proof

(i) If S ⊆ D(S) then, by the first condition in the definition of the defense of a
node by a set of nodes, it follows that S is a scf set. The second condition
in the same definition shows that S is an admissible set. Conversely, if S is
an admissible set and v ∈ S, since S is a scf set it follows that ∀a ∈ α+(v)
we have δ(a)∩g(s′) = ∅, for every s′ ∈ S. By the definition of an admissible
set, it follows that any attack targeting v has at least one fact that is denied
by an attack with source in S. Hence v ∈ D(S).

(ii) Since S is admissible, it is a scf set. From u ∈ D(S) it follows that S′ =
S ∪ {u} is a scf set. Any attack targeting a member of S′ has at least one
fact that is denied by an attack with source in S, since S is admissible and
u ∈ D(S). Hence S′ is an admissible set. To prove the second statement,
observe that it is sufficient to prove that S′ ∪ {v} is a scf set. This follows
since S ∪ {u} and S ∪ {v} are scf sets and the hypothesis that {u, v} is a
scf set (note that this hypothesis is not necessary for AFs).

(iii) If S is an admissible set of arguments in AF then it is conflict-free in AF
and therefore is a scf set in OFAF , by Lemma 1 (ii). Furthermore in AF we
have S− ⊆ S+ and, by Definition 5, any attack targeting a member of S
has at least one fact that is denied by an attack with source in S. Hence, S
is an admissible set in OFAF . The converse implication can be proved in a
similar way. ��

By Proposition 2, Dung’s admissibility based extensions for AFs can be
extended to OFs as follows: in an OF a complete extension is an admissi-
ble set S satisfying D(S) = S, a preferred extension is a maximal (w.r.t. set
inclusion) complete extension, a grounded extension is a minimal (w.r.t. set
inclusion) complete extension, and a stable extension is an admissible set S
with the property that each node v
∈ S is the target of an attack in α+(S).

To keep things simple, we will consider here a simple form of acceptance of
a node in an OF, which corresponds to credulously preferred acceptance in AFs.
A node v is accepted in an OF if there is an admissible set S in OF containing
v; otherwise it is rejected. The node v is inceptively accepted if {v} is an
admissible set. Using the definition of an admissible set, Propositions 1 and 2, we
can prove the following result, which is very useful from the algorithmic point
of view.

Proposition 3. A node v is accepted in an opposition framework OF if and
only if there is a scf set S such that v ∈ S and vS is inceptively accepted in
OF |S.

Since AFs are very special cases of OFs, using Proposition 2 (iii), we obtain
the following result on the complexity of deciding if a node can be accepted.

200 C. Croitoru and K. Mehlhorn

Proposition 4. Deciding if a node is accepted in an OF is an NP-complete
problem.

Proof. The hardness follows by adapting a known polynomial reduction from
the satisfiability problem Dimopoulos and Torres [14] or Dunne and Bench-
Capon [16] for AFs. Obviously, verifying if a guessed set contains the given node
and is admissible can be done in polynomial time (in the “size” of the OF), so
the decision problem is in NP. ��

3.4 A DPLL Type Acceptance Algorithm

In this subsection, we give a Davis-Putnam-Logemann-Loveland (DPLL) type
(Davis et al. [13]) algorithm for deciding the acceptance of a node in an OF, that
improves a backtrack search exhaustive algorithm by the eager use of a “unit
rule” at each step in the construction of a scf set S as in Proposition 3.

Let OF = (N,F, g,A, s, t, γ, δ) be an OF and v ∈ N . If we denote by Δ(v) =
⋃

a∈α+(v) δ(a) the set of facts denied by the attacks out of v, then the set of
harmful attacks to v is

α−
harm(v) = {a ∈ α−(v) | γ(a) ∩ Δ(v) = ∅ or s(a)
∈

⋃

a′∈α+(v)

t(a′)}.

If α−
harm(v) = ∅ then v is inceptively accepted, otherwise we are looking for a

node w to make a coalition with v in order to deny as many attacks as possible
from α−

harm(v). The coalition {v, w} must be a scf set, therefore w must belong
to the backing set of nodes associated to v:

bck(v) = {w ∈ N | {v, w} is scf, Δ(w) ∩ (
⋃

a∈α−
harm(v)

γ(a)
)
= ∅}.

For each attack a ∈ α−
harm(v), we denote by nem(a) the set of nemeses nodes

in bck(v) which have at least one attack that denies at least one fact in the guard
of a:

nem(a) = {w ∈ bck(v) | ∃a′ ∈ α+(w) ∩ α−(s(a)) s.t. δ(a′) ∩ γ(a)
= ∅}.

If there is a ∈ α−
harm(v) with nem(a) = ∅, then v can make no coalition in

order to counterattack a, so v can not be accepted. If nem(a) is a singleton,
nem(a) = {w0}, then v is forced to make a coalition with w0 for denying at
least one fact in γ(a) (there is no scf set S such that v ∈ S, w0
∈ S and S
counterattacks the attack a on v). This is the “unit rule” which will be followed
every time when a candidate for coalition is searched.

If |nem(a)| ≥ 2, then v must try to make coalitions with each node in nem(a)
to see if it can extend to a self-defending scf set.

Opposition Frameworks 201

The resulting algorithm can be described as follows:

−−−
Accept(OF, v)

−−−
Input : OF = (N, F, g, A, s, t, γ, δ) an OF , v ∈ N .
Output : Y ES i f v i s accepted , NO o t h e rw i s e .

(ACCEPT) if α−
harm(v) = ∅ then return Y ES .

(REJECT) if ∃a ∈ α−
harm(v) s.t. nem(a) = ∅ then return NO .

(UNIT RULE) if ∃a ∈ α−
harm(v) s.t. |nem(a)| = 1 then

let w ∈ N s.t. nem(a) = {w};
return Accept(OF |{v,w}, v{v,w}) .

(BRANCH) Candidates ← ⋃
a∈α−

harm
(v)

nem(a)

while Candidates �= ∅ do
w ← a node in Candidates
if Accept(OF |{v,w}, v{v,w})

then return Y ES
else Candidates ← Candidates − {w}.

Proposition 5. Accept(OF, v) returns YES if and only if there is an admissible
set S in the OF OF such that v ∈ S.

Proof. The proof follows from Proposition 3 and the discussion before the
description of the algorithm. ��

To see the advantages of this algorithm over chronological backtracking
schemes, we consider the OF associated to the AF in Fig. 5 (showing also its
favorable position over similar algorithms for AFs, e.g. Nofal et al. [25]).

y w

zv

u1 u2 un−1 un

Fig. 5. No scf set {v} ∪ A is admissible, for A ⊆ {u1, . . . , un}.

Applying Accept(OF, v), the attack a with s(a) = z and t(a) = v is from
α−(v), and since nem(a) = {w}, the “unit rule” Accept(OF |{v,w}, v{v,w}) is
called, which returns YES, that is v is accepted since {v, w} is an admissible set.
On the other hand, a chronological backtrack search could try any of the 2n scf

202 C. Croitoru and K. Mehlhorn

sets {v} ∪ A, for A ⊆ {u1, . . . , un}, (which are not admissible sets) before the
solution {v, w} is discovered.

Note that the algorithm described can be easily modified to return the “expla-
nation set” S in case of acceptance.

3.5 Logical Semantics

In this subsection, we characterize admissible sets in an OF by the models of a
formula expressed in propositional logic (for AFs this is done by Besnard and
Doutre [4]).

More precisely, if OF = (N,F, g,A, s, t, γ, δ) is an OF, then we consider a
propositional variable xv for each v ∈ N . We want to construct a formula Φ over
variables {xv|v ∈ N} such that S ⊆ N is an admissible set in OF if and only if
there is a model m of Φ with S = {v ∈ N |m(xv) = true}.

To characterize the scf sets, let us consider the formula AtMostOne(x, y) =
¬(x ∧ y). Two nodes v and w belong to the same scf set if and only if there
are no facts granted by one and denied by the other: g(v) ∩ Δ(w) = ∅ and
g(w) ∩ Δ(v) = ∅. Therefore the formula

Φ1 =
∧

v,w∈N,v �=w
g(v)∩ Δ(w) �=∅

AtMostOne(xv, xw)

has the property that if m is a model of Φ1, then S = {v ∈ V |m(xv) = true}
is a scf set, and if S is a scf set then taking m(xv) := true for v ∈ S and
m(xv) := false for v ∈ N − S, we obtain a model of Φ1.

To characterize the admissible sets, let us consider

Φ2 =
∧

v∈V

(

xv →
∧

a∈α−(v)

(
∨

u: ∃a′∈α+(u) s.t.
t(a′)=s(a)& δ(a′)∩γ(a) �=∅

xu

))

.

If m is a model of Φ2 and S = {v ∈ V |m(xv) = true}, then each vertex v
in S is either not attacked (α−(v) = ∅ and

∧

a∈α−(v)

(

. . .
)

is true), or for each
attack a on v at least one fact in the guard of a is denied by an attack from a
vertex u in S (that is, m(xu) = true and ∃a′ ∈ α+(u) such that t(a′) = s(a) and
δ(a′) ∩ γ(a)
= ∅). It follows that if m is also a model for Φ1 then S is a scf set
counterattacking each attack against it, that is S is an admissible set. Conversely,
if S is an admissible set then it is easy to see that taking m(xv) := true for v ∈ S
and m(xv) := false for v ∈ N −S, we obtain a model of Φ1 ∧Φ2. Hence we have
the following proposition.

Proposition 6. If m is a model of Φ = Φ1∧Φ2 then S = {v ∈ N |m(xv) = true}
is an admissible set in OF . Conversely, if S is an admissible set in OF then m,
given by m(xv) := true for v ∈ S and m(xv) := false for v ∈ N − S, is a model
of Φ.

Opposition Frameworks 203

Proof. Let S = {v ∈ N |m(xv) = true}, for some model m of Φ = Φ1∧Φ2. If S is
not a scf set, then there are v, w ∈ S such that Δ(w)∩ g(v)
= ∅. Hence m(xv) =
m(xw) = true and m does not satisfy AtMostOne(xv, xw). Since Δ(w)∩g(v)
= ∅,
it follows that AtMostOne(xv, xw) occurs in Φ1. Therefore m does not satisfy Φ1

and hence m is not a model of Φ, a contradiction. To prove that S is an admissible
set, suppose that there is an attack a ∈ α−(S) which is not counterattacked by S.
If t(a) = v and s(a) = w then m(xv) = true and m(xw) = false, since S is a scf
set. Since a is not counterattacked by S, it follows that for each u ∈ N such that
there is a′ ∈ α+(u) with t(a′) = w and δ(a′) ∩ γ(a)
= ∅, we have u
∈ S, that is,
m(xu) = false. We have obtained that the conjunction in Φ2 corresponding to
xv evaluates to false under m and hence m is not a model of Φ2, a contradiction.

Conversely, let S be an admissible set in OF , and m the assignment given by
m(xv) = true if and only if v ∈ S. Then, m is a model of Φ1 since S is a scf set.
Also, m is a model of Φ2 since for v /∈ S the implication xv → . . . evaluates to
true and for v ∈ S the same implication evaluates to true since S counterattacks
any attack on v. ��

Example. For the OF in Fig. 4 the above Φ1, Φ2 are:
Φ1 = AtMostOne(xv1 , xv2) ∧ AtMostOne(xv2 , xv3) ∧ AtMostOne(xv2 , xv4) ∧

AtMostOne(xv3 , xv4).

Let us write Φ2 = Φ21

∧

Φ22

∧

Φ23

∧

Φ24, where Φ2i =
(

xvi
→ . . .

)

, for
i ∈ {1, 2, 3, 4}, are the following implications: Φ21 = xv1 → xv3 , Φ22 = xv2 →
false = ¬xv2 , Φ23 = xv3 → true, Φ24 = xv4 → true. Hence, Φ2 = (xv1 →
xv3) ∧ ¬xv2 . It is not difficult to see that the only models of Φ1 ∧ Φ2 are those
obtained by setting xv to true, for v ∈ S, where S is an admissible set of the OF:
∅, {v3}, {v4}, {v1, v3}.

The above proposition shows also that it is not possible to simulate an OF with
the set of facts F , by considering an argumentation framework AF = (A,E) with
A ⊆ 2F . Indeed, as Φ = Φ1∧Φ2 shows, we have to consider additional constraints
to bind the subsets of F (nodes in AF) corresponding to the guards of the attacks
issuing from each node in OF. In structured (logical) argumentation this is done
by considering an argument together with all its sub-arguments, but this is not
practical for most of OFs.

4 Discussion

In this paper we introduced a new generalization of Dung’s argumentation frame-
work which is conceptually different from other generalized abstract argumenta-
tion frameworks, see Brewka et al. [7], or Modgil [21]. More precisely, for the first
time, it formally exploits the link that exists between “attacks” and “node’s posi-
tions” capturing some high-level intuition, not addressed by other proposals. The
main idea is to keep the abstract level of the original structures, its simplicity and
intuitive approach but, at the same time, to increase their modeling capabilities.
The “nodes” of our OFs have a minimal content expressed as finite non-empty
sets of facts (the node’s position), which are used to relate the “attacks” between
two nodes to their positions. This gives a new perspective on the “consistent sets

204 C. Croitoru and K. Mehlhorn

of nodes” which goes beyond the usual conflict-freeness (which is responsible for
some rationality violations observed in the instantiation-based argumentation,
Caminada and Amgoud [11], Amgoud [1]). More precisely, in our strong conflict-
free sets we forbid not only the attacks between their members but also require
that the outside attacks are not in contradiction with their members positions.
Unfortunately, this does not prevent that (when our OFs are used as instantiation
destination of logical structured argumentation frameworks) nodes with mutu-
ally consistent positions to be globally contradictory. This happens because the
attack relation is binary.

We introduced a simple recursive definition of acceptance: a node (the posi-
tion expressed by a node) is accepted in an OF if either it can counterattack all
attacks targeting it or there is another “compatible” node such that in the OF
obtained by “contracting” these two nodes in a single “supernode” this supern-
ode is accepted. Note that this type of acceptance is different from that consid-
ered in abstract dialectical frameworks Brewka and Woltran [8], or GRaph-based
Argument Processing with Patterns of Acceptance Brewka and Woltran [9], where
the acceptance of a node is a function defined on the set of its parents (that is
the nodes having a directed edge to it). Also our approach is conceptually dif-
ferent from proof procedures, see Modgil and Caminada [22]. Technically, using
“guarded attacks” and a suitable graph operation of contraction, we proved that
this type of acceptance is compatible in the particular case of AFs with Dung’s
admissibility-based semantics, showing that it is actually a proper generalization
of the Dung semantics. Hence, if we use OFs instead of AFs as a target system
to evaluate arguments in structured argumentation frameworks, then we obtain
the same results if the OFAF (see Definition 5) is considered for reusability
reasons. However, a more fine-grained generation of the target OF – by explic-
itly devising rules of attacks (via their guards), which are non-uniform (depend
on the source/target node) – may be used to obtain improved modeling. We
note also that in our guarded attack calculus, the attacks on the attacks Villata
et al. [28]) are implicitly considered. The use of the set of attacks (α−(v) in OFs)
instead of the set of parents (v− in AFs or ADFs) in the study of the acceptability
of a node v simplifies the description of acceptability algorithms. A novel DPLL
type backtracking acceptance algorithm is described. Some improvements can
be further obtained by using abstract DPLL with learning, Nieuwenhuis et al.
[24] (see also Brochenin et al. [10]). The idea is to add dummy facts to nodes
in order to learn that some (set of) nodes are not useful in finding a successful
coalition for the acceptance of a given node v.

The characterization of admissible sets in an OF by the models of a formula
expressed in propositional logic shows a lazy way to map an OF to an AF (via naive
transformations of this formula) in a manner preserving semantic properties of
the first one. The study of the efficiency of such a mapping (similar to that
initiated by Brewka et al. [8] for ADFs) is an interesting future research direction.

There are a number of ways to extend this work. One future direction consists
of extending the guarded attack calculus by replacing the simple attack labels,
(γ(a), δ(a)), with more involved logical constraints. Also, moving to temporal

Opposition Frameworks 205

(modal) logic for the interpretation of harmful attacks represents an interest-
ing future extension. Another compelling future direction opened by the multi-
digraph approach of this paper is to use some other graph operations together
with a minimal (logical or combinatorial) structure on the sets g(v) in order to
improve the modeling capabilities of OFs. For example, adding minimal (logi-
cal or combinatorial) structure on the sets g(v) of facts granted by a node v
and suitable graph operations of contraction or expansion, it is possible to con-
sider hierarchical structures in which the nodes are OFs (or AFs) and the guarded
attacks as explicated discordances between the outputs of their source and target
(sub)structures. AFs have been generalized (see, e.g., Bench-Capon [3], Bourguet
et al. [5], Dunne et al. [17]) by adding weights to arguments or attacks in order
to increase their modeling capacity. We can consider a similar extension for OFs,
by providing the facts and attacks with weights, called vitality for facts, and
strength for attacks. The facts effectively denied by an attack a are those facts
in δ(a) having a vitality smaller than the strength of the attack a. In this way,
an weighted OF could be used to represent families of OFs. Finally, we intend
to study how the set of accepted nodes in a given OF changes, when the sets of
granted facts of some nodes are restricted or expanded, modeling the usual “what
if ...?” questions in (political) practice, aiming to use our OFs in argumentative
decision-making systems (see, e.g., Baroni et al. [2]).

References

1. Amgoud, L.: Postulates for logic-based argumentation systems. Int. J. Approximate
Reasoning 55, 2028–2048 (2014)

2. Baroni, P., Romano, M., Toni, F., Aurisicchio, M., Bertanza, G.: Automatic evalu-
ation of design alternatives with quantitative argumentation. Argum. Comput. 6,
24–49 (2015)

3. Bench-Capon, T.: Persuasion in practical argument using value-based argumenta-
tion frameworks. J. Logic Comput. 13, 429–448 (2003)

4. Besnard, P., Doutre, S.: Checking the acceptability of a set of arguments. In:
Proceedings of NMR, pp. 59–64 (2004)

5. Bourguet, J.-R., Amgoud, L., Thomopoulos, R.: Towards a unified model
of preference-based argumentation. In: Link, S., Prade, H. (eds.) FoIKS
2010. LNCS, vol. 5956, pp. 326–344. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-11829-6 21

6. Brewka, G.: Nonmonotonic tools for argumentation. In: Janhunen, T., Niemelä, I.
(eds.) JELIA 2010. LNCS (LNAI), vol. 6341, pp. 1–6. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-15675-5 1

7. Brewka, G., Polberg, S., Woltran, S.: Generalizations of dung frameworks and their
role in formal argumentation. IEEE Intell. Syst. 29, 30 (2014)

8. Brewka, G., Woltran, S.: Abstract dialectical frameworks. In: Proceedings of KR
2010, pp. 102–111 (2010)

9. Brewka, G., Woltran, S.: GRAPPA: a semantical framework for graph-based argu-
ment processing. In: Proceedings of ECAI 2014, pp. 153–158 (2014)

10. Brochenin, R., Linsbichler, B., Wallner, J.P., Woltran, S.: Abstract solvers for
dung’s argumentation frameworks. In: Proceedings of TAFA (2015)

http://dx.doi.org/10.1007/978-3-642-11829-6_21
http://dx.doi.org/10.1007/978-3-642-11829-6_21
http://dx.doi.org/10.1007/978-3-642-15675-5_1

206 C. Croitoru and K. Mehlhorn

11. Caminada, M., Amgoud, L.: On the evaluation of argumentation formalisms. Artif.
Intell. 171, 286–310 (2007)

12. Coste-Marquis, S., Devred, C., Marquis, P.: Symmetric argumentation frame-
works. In: Godo, L. (ed.) ECSQARU 2005. LNCS (LNAI), vol. 3571, pp. 317–328.
Springer, Heidelberg (2005). doi:10.1007/11518655 28

13. Davis, M., Logemann, G., Loveland, D.V.: A machine program for theorem-
proving. Commun. ACM 5, 394–397 (1962)

14. Dimopoulos, Y., Torres, A.: Graph theoretical structures in logic programs and
default theories. Theor. Comput. Sci. 170, 209–244 (1996)

15. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77,
321–357 (1995)

16. Dunne, P., Bench-Capon, T.: Coherence in finite argument systems. Artif. Intell.
141, 187–203 (2002)

17. Dunne, P.E., Hunter, A., McBurney, P., Parsons, S., Wooldridge, M.: Weighted
argument systems: basic definitions, algorithms, and complexity results. Artif.
Intell. 175, 457–486 (2011)

18. Finegan-Dollak, C., Radev, D.R.: Sentence simplification, compression, and disag-
gregation for summarization of sophisticated documents. J. Assoc. Inf. Sci. Technol.
67, 2437 (2015)

19. Hunter, A., Gorogiannis, N.: Instantiating abstract argumentation with classical
logic arguments: postulates and properties. Artif. Intell. 175, 1479–1497 (2011)

20. Leite, J., Martins, J.: Social abstract argumentation. In: Proceedings of IJCAI
(2011)

21. Modgil, S.: Revisiting abstract argumentation frameworks. In: Black, E., Modgil, S.,
Oren, N. (eds.) TAFA 2013. LNCS (LNAI), vol. 8306, pp. 1–15. Springer, Heidelberg
(2014). doi:10.1007/978-3-642-54373-9 1

22. Modgil, S., Caminada, M.: Proof theories and algorithms for abstract argumenta-
tion frameworks. In: Simari, G., Rahwan, I. (eds.) Argumentation in Artificial Intel-
ligence, pp. 105–129. Springer, Heidelberg (2009). doi:10.1007/978-0-387-98197-0 6

23. Nielson, S., Parsons, S.: A generalization of dung’s abstract framework for argu-
mentation: arguing with sets of attacking arguments. In: Proceedings of ArgMAS
2006, pp. 54–73 (2006)

24. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
from an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J.
ACM 53, 937–977 (2006)

25. Nofal, S., Atkinson, K., Dunne, P.: Algorithms for decision problems in argument
systems under preferred semantics. Artif. Intell. 207, 23–51 (2014)

26. Prakken, H.: An abstract framework for argumentation with structured arguments.
Argum. Comput. 1, 93–124 (2010)

27. Rahwan, I., Zablith, F., Reed, C.: Laying the foundations for a world wide argument
web. Artif. Intell. 171, 897–921 (2007)

28. Villata, S., Boella, G., van der Torre, L.: Attack semantics for abstract argumen-
tation. In: Proceedings of IJCAI 2011, pp. 406–413 (2011)

29. Wang, B., Luo, G.: Extend argumentation frameworks based on degree of attack.
In: Proceedings of the 9th IEEE International Conference on Cognitive Informatics,
ICCI 2010, pp. 771–776 (2010)

http://dx.doi.org/10.1007/11518655_28
http://dx.doi.org/10.1007/978-3-642-54373-9_1
http://dx.doi.org/10.1007/978-0-387-98197-0_6

Prompt Interval Temporal Logic

Dario Della Monica1(B), Angelo Montanari2, Aniello Murano1,
and Pietro Sala3

1 Università degli Studi di Napoli “Federico II”, Napoli, Italy
dario.dellamonica@unina.it, murano@na.infn.it

2 University of Udine, Udine, Italy
angelo.montanari@uniud.it

3 University of Verona, Verona, Italy
pietro.sala@univr.it

Abstract. Interval temporal logics are expressive formalisms for tem-
poral representation and reasoning, which use time intervals as primitive
temporal entities. They have been extensively studied for the past two
decades and successfully applied in AI and computer science. Unfor-
tunately, they lack the ability of expressing promptness conditions, as
it happens with the commonly-used temporal logics, e.g., LTL: whenever
we deal with a liveness request, such as “something good eventually hap-
pens”, there is no way to impose a bound on the delay with which it is
fulfilled. In the last years, such an issue has been addressed in automata
theory, game theory, and temporal logic. In this paper, we approach it
in the interval temporal logic setting. First, we introduce PROMPT-PNL,
a prompt extension of the well-studied interval temporal logic PNL, and
we prove the undecidability of its satisfiability problem; then, we show
how to recover decidability (NEXPTIME-completeness) by imposing a
natural syntactic restriction on it.

1 Introduction

Interval temporal logics provide a powerful framework suitable for reasoning
about time. Unlike classic temporal logics, such as Linear Temporal Logic
(LTL) [21] and the like, they use time intervals, instead of time points, as prim-
itive temporal entities. Such a distinctive feature turns out to be very useful in
various Computer Science and AI application domains, ranging from hardware
and real-time system verification to natural language processing, from constraint
satisfaction to planning [1,2,10,20,22,23]. As concrete applications, we mention
TERENCE [14], an adaptive learning system for poor comprehenders and their
educators (based on Allen’s interval algebra IA [1]), and RISMA [17], an algo-
rithm to analyze behavior and performance of real-time data systems (based on
Halpern and Shoham’s modal logic of Allen’s relations HS [15]).

A fundamental class of properties that can be expressed in (both interval- and
point-based) temporal logics is that of liveness properties, which allow one to
state that something “good” will eventually happen. However, a limitation that
is common to most temporal logics is the lack of support for promptness: it is
c© Springer International Publishing AG 2016
L. Michael and A. Kakas (Eds.): JELIA 2016, LNAI 10021, pp. 207–222, 2016.
DOI: 10.1007/978-3-319-48758-8 14

208 D. Della Monica et al.

not possible to bound the delay with which a liveness request is fulfilled, despite
the fact that this is desirable for many practical applications (see [16] for a con-
vincing argument). To overcome such a shortcoming, a whole body of work has
been recently devoted to the study of promptness. In [4,16], the authors extend
LTL with the ability of bounding the delay with which a temporal request is sat-
isfied. In [3], the use of prompt accepting conditions in the context of ω-regular
automata is explored by introducing prompt-Büchi automata, whose accepting
condition imposes the existence of a bound on the number of non-accepting
states in between two consecutive occurrences of accepting ones. Prompt exten-
sions of LTL have also been investigated outside the realm of closed systems.
Two-player turn-based games with perfect information have been explored in
the prompt LTL setting in [24]. In [9], the authors lift the prompt semantics
to ω-regular games, under the parity winning condition, by introducing finitary
parity games. They make use of the concept of distance between positions in a
play that refers to the number of edges traversed in the game arena; the classical
parity winning condition is then reformulated to take into consideration only
those states occurring with a bounded distance. Such an idea has been gener-
alised to deal with more involved prompt parity conditions [13,19]. In the field of
formal languages, promptness comes into play in [6], where ωB-regular languages
and their automata counterpart, known as ωB-automata, are studied. Intuitively,
ωB-regular languages extend ω-regular ones with the ability of bounding the dis-
tance between occurrences of sub-expressions in consecutive ω-iterations, within
each word of the language. Finally, an extension of alternating-time epistemic
temporal logic with prompt-eventuality has been recently investigated in [5].

In this paper, we show that interval temporal logics can be successfully pro-
vided with a support for prompt-liveness specifications by lifting the work done
in [4,16] to the interval-based setting.

In [4], the language of LTL is enriched with parameterized versions of tempo-
ral modalities F (eventually) and U (until), as well as of the dual modalities G
(globally) and R (release). The resulting logic, called PLTL, features the follow-
ing parameterized modalities: F≤x, F>y, G≤y, G>x, U≤x, U>y, R≤y, and R>x,
where x ∈ X, y ∈ Y , and X and Y are two disjoint sets of bounding variables.
Intuitively, a formula F≤xφ is true if φ is satisfied within x time units, according
to the valuation of x (the other parameterized modalities have an analogous
interpretation). Thus, PLTL models are LTL models, i.e., words over the powerset
of the set of atomic propositions, enriched with a valuation for the bounding
variables in X ∪ Y . The satisfiability problem for PLTL is PSPACE-complete,
as for LTL. The assumption that X and Y are disjoint is crucial in retaining
decidability. In [16], the authors introduce the logic PROMPT-LTL, which restricts
PLTL in three ways: (i) a parameterized version is introduced for the modality
F only (parameterized versions of modalities G, U , and R are not included);
(ii) only upper bounds appear in parameterized modalities, i.e., no subscript
of the form >x occurs; (iii) there is only one bounding variable. The restriction
imposed by PROMPT-LTL is less strong than it looks like: as shown in [4], operator
F≤x, along with the classic LTL constructs, is enough to define operators G>x,

Prompt Interval Temporal Logic 209

U≤x, R>x (i.e., all the operators involving in their subscript variables in X).
As PROMPT-LTL enriches LTL with the ability of limiting the amount of time a
fulfillment of an existential request (corresponding to a liveness property) can
be delayed, it can be thought of as an extension of LTL with prompt liveness.
In [16], it is shown that reasoning about PROMPT-LTL is not harder than reason-
ing about LTL, with respect to a series of basic problems, including satisfiability
(PSPACE-complete).

In the present paper, we show how to extend the logic PNL of temporal
neighborhood (a well-known fragment of HS whose satisfiability problem is
NEXPTIME-complete [8]), with the ability of expressing prompt-liveness prop-
erties. Following the approach of [16], we introduce ‘prompt’ versions (i.e., upper
bounds only) of all modalities of PNL. The resulting modality templates are as
follows: the prompt-right-adjacency 〈Ax〉 and the prompt-left-adjacency 〈Ax〉,
capturing prompt-liveness in the future and in the past, respectively, as well as
the dual modalities [Ax] and [Ax]. Intuitively, a modality 〈Ax〉 (for some upper
bound x) forces the existence of an event starting exactly when the current one
terminates and ending within an amount of time bounded above by the value
of x. Similarly, 〈Ax〉 forces the existence of an event ending exactly when the
current one begins and starting at most x time units before the beginning of
the current one. Modalities [Ax] and [Ax] express dual properties in the stan-
dard way, namely, [Ax]ψ stands for ¬〈Ax〉¬ψ and [Ax]ψ stands for ¬〈Ax〉¬ψ.
We name the proposed logic PROMPT-PNL (Sect. 2).

We first prove that the future fragment of PROMPT-PNL (PROMPT-RPNL),
involving the future modalities 〈A〉, [A], 〈Ax〉, and [Ax] only, is expressive
enough to encode the finite colouring problem, known to be undecidable [18].
Undecidability of PROMPT-RPNL (and PROMPT-PNL) immediately follows (Sect. 3).
Notably, unlike LTL, PNL is strictly more expressive than its future fragment RPNL
(see [12]); such a separation result holds between PROMPT-PNL and PROMPT-RPNL
as well. Our undecidability result hinges on the unrestricted use of bounding
variables within prompt modalities, which allows one to somehow establish tight
bounds for the length of intervals. We show that decidability can be recovered
by using two disjoint sets of bounding variables, one for existential modalities
and the other for universal ones. Formulas of the resulting logic, which we name

PROMPT
d
-PNL, enjoy some useful monotonicity property, i.e., the truth of a formula

〈Ax〉ψ under a certain interpretation σ(x) of the bounding variable x implies its
truth under every interpretation σ′, with σ′(x) ≥ σ(x). This allows us to prove

a small (pseudo-)model property for PROMPT
d
-PNL, from which we conclude that

the satisfiability problem for PROMPT
d
-PNL is NEXPTIME-complete (Sect. 4). Due

to lack of space, most of the proofs are omitted (see [11] for full proofs).

2 The Logic PROMPT-PNL

Let us start with some basic notions of interval-based temporal logics. A linear
order D is a pair 〈D,<〉, where D is a set, called domain, whose elements are

210 D. Della Monica et al.

referred to as points, and < is a strict total order over D. A (strongly) dis-
crete linear order is a linear order such that there are only finitely many points
in between any two points. In the rest of the paper, we tacitly assume every
domain to be discrete. For the sake of simplicity, we identify the domain of a lin-
ear order with the linear order itself, e.g., we write “d ∈ D” instead of “d ∈ D”.
Let d ∈ D. The successors (resp., predecessors) of d in D are the points d′ ∈ D

such that d < d′ (resp., d′ < d); the immediate successor (resp., immediate pre-
decessor) of d in D, denoted by succD(d) (resp., pred

D
(d)), is (if any) the point

d′ ∈ D such that d′ is a successor (resp., predecessor) of d in D and no point
d′′ ∈ D exists with d < d′′ < d′ (resp., d′ < d′′ < d). Note that succD(d) (resp.,
pred

D
(d)) is defined unless d is the greatest (resp., least) element in D. Given

a linear order D and two points a, b ∈ D, with a < b, we denote by [a, b] an
interval (over D). The set of intervals over a linear order D is denoted by I(D).
An interval structure (over a countable set AP of atomic propositions) is a pair
〈D, V 〉, where D is a linear order and V : I(D) → 2AP is a valuation function,
which assigns to each interval over D the set of atomic proposition that are true
over it. Given a linear order D and a, b ∈ D, we denote by D

≥a (resp., D>a, D≤a,
D

<a, D[a,b], D]a,b[, D[a,b[, D]a,b]) the set of elements d ∈ D such that d ≥ a (resp.,
d > a, d ≤ a, d < a, a ≤ d ≤ b, a < d < b, a ≤ d < b, a < d ≤ b). For instance,
we denote by R

>0 the set of positive reals.

Syntax and Semantics. Let AP (atomic propositions) and X (bounding vari-
ables) be two countable sets. Formulas of PROMPT-PNL in negation normal form
are defined as follows:

ϕ :: = p | ϕ ∧ ϕ | 〈A〉ϕ | 〈A〉ϕ | 〈Ax〉ϕ | 〈Ax〉ϕ
| ¬p | ϕ ∨ ϕ | [A]ϕ | [A]ϕ | [Ax]ϕ | [Ax]ϕ

where p ∈ AP and x ∈ X. We also use other standard Boolean connectives,
e.g., →, and logical constants � and ⊥, which are defined in the usual way.
We denote by PROMPT-RPNL the PROMPT-PNL fragment obtained by excluding
past modalities 〈A〉, [A], 〈Ax〉, and [Ax], and we write PROMPT-(R)PNL when we
refer to both formalisms. In the following, we will take the liberty of writing
PROMPT-(R)PNL formulas not in negation normal form when useful.

PROMPT-(R)PNL models are interval structures enriched with a valuation func-
tion for bounding variables in X and a metric over the underlying domain. For-
mally, a model for PROMPT-(R)PNL (over AP and X) is a quadruple 〈D, V, σ, δ〉,
where 〈D, V 〉 is an interval structure (D is the domain of the model), σ : X →
R

>0 is a valuation function for bounding variables, and δ : D×D → R
>0 is a met-

ric over D (i.e., the pair (D, δ) is a metric space) satisfying the additional proper-
ties: for every d, d′, d′′ ∈ D (i) if d < d′ < d′′, then δ(d, d′′) = δ(d, d′) + δ(d′, d′′),
(ii) if d has infinitely many successors in D, then the set {δ(d, d̄) | d < d̄} is not
bounded above, and (iii) if d has infinitely many predecessors in D, then the
set {δ(d̄, d) | d̄ < d} is not bounded above. For a model M = 〈D, V, σ, δ〉, we let
DM = D, VM = V , σM = σ, and δM = δ, that is, DM , VM , σM , and δM denote
the four components of M . A PROMPT-(R)PNL model is finite (resp., infinite) if
so is its domain.

Prompt Interval Temporal Logic 211

The truth value of a PROMPT-PNL formula over a model and an interval in it
is inductively defined as follows:

– M, [a, b] |= p if and only if p ∈ VM ([a, b]), for every p ∈ AP;
– M, [a, b] |= ¬p if and only if p
∈ VM ([a, b]), for every p ∈ AP;
– M, [a, b] |= ϕ1 ∧ ϕ2 if and only if M, [a, b] |= ϕ1 and M, [a, b] |= ϕ2;
– M, [a, b] |= ϕ1 ∨ ϕ2 if and only if M, [a, b] |= ϕ1 or M, [a, b] |= ϕ2;
– M, [a, b] |= 〈A〉ϕ if and only if there is c ∈ D

>b
M such that M, [b, c] |= ϕ;

– M, [a, b] |= [A]ϕ if and only if for all c ∈ D
>b
M it holds M, [b, c] |= ϕ;

– M, [a, b] |= 〈A〉ϕ if and only if there is c ∈ D
<a
M such that M, [c, a] |= ϕ;

– M, [a, b] |= [A]ϕ if and only if for all c ∈ D
<a
M it holds M, [c, a] |= ϕ;

– M, [a, b] |= 〈Ax〉ϕ if and only if there is c ∈ D
>b
M , with δM (b, c) ≤ σM (x),

such that M, [b, c] |= ϕ, for every x ∈ X;
– M, [a, b] |= [Ax]ϕ if and only if for all c ∈ D

>b
M , with δM (b, c) ≤ σM (x),

it holds M, [b, c] |= ϕ, for every x ∈ X;
– M, [a, b] |= 〈Ax〉ϕ if and only if there is c ∈ D

<a
M , with δM (c, a) ≤ σM (x),

such that M, [c, a] |= ϕ, for every x ∈ X;
– M, [a, b] |= [Ax]ϕ if and only if for all c ∈ D

<a
M , with δM (c, a) ≤ σM (x),

it holds M, [c, a] |= ϕ, for every x ∈ X.

The truth value of a PROMPT-RPNL formula is obtained, as expected, by restricting
to the relevant clauses only.

In PNL, modalities 〈L〉 and 〈L〉, corresponding to Allen’s relations later and
before, are definable as: 〈L〉ϕ ≡ 〈A〉〈A〉ϕ and 〈L〉ϕ ≡ 〈A〉〈A〉ϕ. Additionally,
in PROMPT-PNL it is possible to define the ‘prompt’ counterparts of modalities
〈L〉 and 〈L〉 as: 〈Lx〉ϕ ≡ 〈Ax〉〈Ax〉ϕ and 〈Lx〉ϕ ≡ 〈Ax〉〈Ax〉ϕ. The resulting
semantic interpretation for 〈Lx〉 and 〈Lx〉 is as follows:

– M, [a, b] |= 〈Lx〉ϕ if and only if there is [c, d] ∈ I(DM) such that b < c,
δM (b, c) ≤ σM (x), δM (c, d) ≤ σM (x), and M, [c, d] |= ϕ;

– M, [a, b] |= 〈Lx〉ϕ if and only if there is [c, d] ∈ I(DM) such that d < a,
δM (d, a) ≤ σM (x), δM (c, d) ≤ σM (x), and M, [c, d] |= ϕ.

Intuitively, a modality 〈Lx〉, for some bounding variable x, requires the exis-
tence of an event starting and ending within a bounded amount of time after the
termination of the current one (modalities 〈Lx〉 impose an analogous constraint
in the past). Obviously, only 〈Lx〉 is definable in PROMPT-RPNL (〈Lx〉 is not).

The globally-in-the-future modality [G] is defined as [G]ψ ≡ ψ∧[A]ψ∧[A][A]ψ,
for every PROMPT-PNL formula ψ; analogously the prompt-globally-in-the-future
modality [Gx] is defined as [Gx]ψ ≡ ψ ∧ [Ax]ψ ∧ [A][Ax]ψ, for every PROMPT-PNL
formula ψ and x ∈ X. Given a PROMPT-(R)PNL model M , modalities [G] and [Gx]
induce the sets G[a,b]

M = {[a, b]} ∪ {[c, d] ∈ I(DM) | b ≤ c} and G[a,b],x
M = {[a, b]} ∪

{[c, d] ∈ I(DM) | b ≤ c and δM (c, d) ≤ σM (x)}. We omit the subscript M when it
is clear from the context. For every PROMPT-(R)PNL model M , [a, b] ∈ I(DM), and
PROMPT-PNL formula ψ, it holds that M, [a, b] |= [G]ψ if and only if M, [c, d] |= ψ
for every [c, d] ∈ G[a,b] and M, [a, b] |= [Gx]ψ if and only if M, [c, d] |= ψ for every
[c, d] ∈ G[a,b],x. Finally, for a model M and [a, b] ∈ I(DM), we define the length

212 D. Della Monica et al.

of [a, b] (in M) as the value δM (a, b) and, for every p ∈ AP, if M, [a, b] |= p, then
we say that [a, b] is a p-interval (in M).

The Satisfiability Problem. A PROMPT-(R)PNL formula ϕ is satisfiable if, and
only if, there exist a PROMPT-(R)PNL model M and an interval [x, y] in M such
that M, [x, y] |= ϕ. Moreover, a satisfiable formula is said to be finitely satisfiable
if there exists a finite model for it; otherwise it is non-finitely satisfiable. The
satisfiability (resp., finite satisfiability) problem for PROMPT-(R)PNL consists in
deciding whether a given PROMPT-(R)PNL formula is satisfiable (resp., finitely
satisfiable).

3 Undecidability of PROMPT-RPNL

We prove the undecidability of the satisfiability problem for the logic
PROMPT-RPNL (and thus for PROMPT-PNL as well), by a reduction from the
finite coloring problem (FCP) [18]. An instance of FCP (aka finite tiling prob-
lem) is a tuple Δ = 〈C,H, V, ci, cf 〉, where C is a finite, non-empty set of
colours, H,V ⊆ C × C are total binary relations over the set of colours C, and
ci, cf ∈ C are distinguished colours. A solution to Δ is a pair 〈C, (K,L)〉, where
K,L ∈ N and C : {0, . . . , K} × {0, . . . , L} → C is a colouring function such that
C(0, 0) = ci, C(K,L) = cf , and, in addition,

– (C(i, j), C(i + 1, j)) ∈ H, for each i < K and j ≤ L (horizontal constraint),
and

– (C(i, j), C(i, j + 1)) ∈ V , for each i ≤ K and j < L (vertical constraint).

FCP consists in establishing whether there are two natural numbers K and
L, and a colouring of the plane {0, . . . , K} × {0, . . . , L} such that horizontal
and vertical constraints are fulfilled, and bottom-left and top-right colours are
given. CFP is undecidable [18, Proposition 7.2]. We encode CFP by means of
a PROMPT-RPNL formula. The different aspects of the problem are encoded by
means of (blocks of) formulas and the correctness of such partial encodings is
testified by the corresponding lemmas below. Clearly, the conjunction of all these
formulas is satisfiable if and only if CFP admits a solution. In what follows, we
fix an interval model M = 〈D, V, σ, δ〉.

For every d ∈ D and x ∈ X, we define �σ�d(x) = max{δ(d, d′) ∈ R
>0 |

d′ ∈ D
>d and δ(d, d′) ≤ σ(x)}. It clearly holds that �σ�d(x) ≤ σ(x) and, for

every d′ ∈ D
≥d, we have that δ(d, d′) ≤ σ(x) implies δ(d, d′) ≤ �σ�d(x). For

every x ∈ X, there is exactly one point d′ ∈ D
≥d such that δ(d, d′) = �σ�d(x);

we call such a point the x-canonical successor of d. The length of an interval
[d, d′] ∈ I(D), where d′ is the x-canonical successor of d, is said to be x-canonical,
for every x ∈ X.

Let succ-upperbound be the formula [G](〈A〉� → 〈As〉�), where s ∈ X.

Lemma 1. If M, [a, b] |= succ-upperbound for some [a, b], then for every c ∈
D

≥b that is not the greatest element in D it holds δ(c, succD(c)) ≤ �σ�c(s).
Moreover, let c′ be the x-canonical successor of c. If c′ is not the greatest element
in D, then �σ�c(x) + σ(s) > σ(x), for every x ∈ X.

Prompt Interval Temporal Logic 213

Let less-than(x , y) be the formula [G](〈A〉� → 〈Ay〉auxx ,y)∧ [G][Ax]¬auxx ,y

(it is a parametric formula to be instantiated with some x, y ∈ X).

Lemma 2. If M, [a, b] |= less-than(x , y) for some [a, b], then σ(x) < �σ�c(y)
holds for every c ∈ D

≥b, unless c is the greatest element in D.

Let ∃-last be the conjunction of the following formulas:

¬last ∧ 〈A〉〈A〉last ∧ [G](〈A〉last →
∧

p∈AP [A](¬p ∧ [A]¬p)) (1)

[G](〈A〉last → [A]¬〈A〉last) (2)
[G]((last → 〈A〉unique) ∧ (〈A〉unique → [A]¬〈A〉unique)) (3)

Lemma 3. If M, [a, b] |= ∃-last for some [a, b], then there is exactly one last-
interval in G[a,b], say it [c, d]. Moreover, it holds c > b and there is no p-interval
starting in c or after it, for every p ∈ AP \ {last}.

Let a ∈ D and [c, d] ∈ I(D) be the unique last-interval (see Lemma 3). Given
p ∈ AP, a p -chain starting at a (or, simply, p -chain) is a finite sequence of
p-intervals [a0, b0], [a1, b1], . . . , [am, bm] such that a = a0, bm = c, and bi = ai+1

for every i ∈ {0, 1, . . . ,m − 1}. Let chain(p, x) be the parametric formula, to be
instantiated with some p ∈ AP and x ∈ X, defined as the conjunction of the
following ones:

succ-upperbound ∧ ∃-last (4)
¬p ∧ 〈Ax〉p ∧ [G]((p ∧ ¬〈A〉last) → 〈Ax〉p) (5)
[G](p → p1 ∨ p2) (6)

[G](〈A〉pi → [Ax][A]p+i) i ∈ {1, 2} (7)

[Gx](〈A〉p+i → p−
i) i ∈ {1, 2} (8)

[G](pi → ¬〈A〉p−
i) i ∈ {1, 2} (9)

[G](〈A〉p → [Ax](¬p → [A]¬p)) (10)

Lemma 4. If M, [a, b] |= chain(p, x) for some [a, b], then there is a finite p-
chain starting at b whose intervals have x-canonical length. Moreover, no other
p-interval exists in G[a,b],x besides the ones in such a p-chain.

We now provide an encoding of a finite plane {0, . . . , K} × {0, . . . , L}, for
some K,L ∈ N. The idea is to use a u-chain whose intervals are either tile-
intervals, encoding some point of the finite plane, or ∗-intervals, which are used
as separators between rows of the plane. Let plane be the conjunction of the
following formulas:

214 D. Della Monica et al.

less-than(s, x) ∧ less-than(x , y) ∧ chain(u, x) ∧ chain(row, y) (11)
[G]((u ↔ ∗ ∨ tile) ∧ (∗ → ¬tile)) (12)
〈A〉∗ ∧ [G]((∗ → 〈A〉tile) ∧ (u ∧ 〈A〉last → tile)) (13)
[G](〈A〉row → 〈A〉∗) (14)
[G](〈A〉∗ → [Ay](〈A〉∗ → row)) (15)

Lemma 5. If M, [a, b] |= plane for some [a, b], then there is a finite sequence of
points b = p10 < p11 < . . . < p1n1

= p20 < p21 < . . . < p2n2
= p30 < . . . < pr−1

nr−1
=

pr
0 < . . . < pr

nr
, with r ≥ 1 and ni > 1 for every i ∈ {1, . . . , r} such that: (i)

[pi
0, p

i
1] is a ∗-interval and its length is x-canonical, for every i ∈ {1, . . . , r}; (ii)

[pi
j , p

i
j+1] is a tile-interval and its length is x-canonical, for every i ∈ {1, . . . , r}

and j ∈ {1, . . . , ni − 1}; (iii) [pi
0, p

i+1
0] is a row-interval and its length is y-

canonical, for every i ∈ {1, . . . , r−1}; (iv) M, [pr
nr

, p′] is the unique last-interval,
for some p′ > pr

nr
. Moreover, no other ∗-interval (resp., tile-interval) exists in

G[a,b],x.

The encoding of the finite plane {0, . . . , K}×{0, . . . , L} we have obtained so
far is incomplete, the problem being that rows (row-intervals) do not necessarily
contain the same number of tiles (tile-intervals). In order to overcome such a
problem, we introduce below corr-intervals, which are used to link the ith tile-
interval of a row to the ith tile-interval of the next row (if any) and to the ith
tile-interval of the previous row (if any). This will guarantee that each row of
our encoding features the same number of tiles.

Let w -def be the conjunction of the following formulas:

less-than(x ,w) ∧ less-than(w , y) (16)
[Ay]¬〈A〉∗-aux ∧ (〈Ay〉(row ∧ ¬〈Ax〉last) → 〈A〉〈A〉∗-aux) (17)
〈As〉〈Aw〉([A](¬last ∧ [A]¬last) ∨ 〈A〉∗-aux) (18)

Lemma 6. If M, [a, b] |= plane ∧ w-def for some [a, b], then σ(w) < �σ�c(y) ≤
σ(y) < σ(w) + σ(s) for every c ∈ D

≥b, unless c is the greatest element in D.

Let correspondence be the conjunction of the following formulas:

plane ∧ w -def ∧ less-than(s, z) ∧ less-than(z , x) (19)
[G](〈Ax〉u → [Az]〈Az〉(u-suffix ∧ (〈Ax〉u ∨ 〈A〉last))) (20)
[Gs]¬u-suffix (21)
[G]((row ∧ ¬〈A〉last) → corr) (22)
[G]((〈Ax〉tile ∧ 〈A〉〈Ax〉∗) → 〈Ay〉corr) (23)
[Gw]¬corr (24)
[G](corr → 〈A〉tile) (25)
[G](〈Ax〉(tile ∧ 〈Ax〉∗) → [Ay](corr → 〈Ax〉(tile ∧ 〈Ax〉∗))) (26)

Prompt Interval Temporal Logic 215

Lemma 7. If M, [a, b] |= correspondence for some [a, b], then [pi
j , p

i+1
j] is a corr-

interval, with σ(w) < δ(pi
j , p

i+1
j) ≤ σ(y), for every i ∈ {1, . . . , r − 1} and j ∈

{0, . . . , ni − 1}. Moreover, for every i ∈ {1, . . . , r − 1}, it holds that ni = ni+1.

Now, let Δ = 〈C,H, V, ci, cf 〉 be an instance of FCP and let ϕΔ be the
conjunction of the following formulas:

correspondence ∧ 〈Ax〉ci ∧ [Gx]((tile ∧ 〈A〉last) → cf) (27)

[Gx](tile ↔
∨

c∈C
c) ∧ [G](

∧

c,c′∈C,c �=c′ ¬(c ∧ c′)) (28)

[G](〈Ax〉(tile ∧ 〈Ax〉tile) →
∨

(c,c′)∈H
〈Ax〉(c ∧ 〈Ax〉c′)) (29)

[Gx]((〈Ax〉tile ∧ 〈Ay〉corr) →
∨

(c,c′)∈V
(〈Ax〉c ∧ [Ay](corr → 〈Ax〉c′))) (30)

Lemma 8. The formula ϕΔ is satisfiable iff the CFP instance Δ has a positive
answer.

Theorem 1. The satisfiability problem for PROMPT-RPNL, and thus the one for
PROMPT-PNL, is undecidable.

4 Decidability of PROMPT
d
-PNL

In this section, we show how to restrict the use of prompt modalities to get a
fragment of PROMPT-PNL with a decidable satisfiability problem.

We define PROMPT
d
-PNL as the fragment of PROMPT-PNL obtained by using dis-

joint sets of bounding variables for existential and universal prompt modalities.
Formally, let us partition the set X of bounding variables into sets X♦ and X�.

The syntax of PROMPT
d
-PNL is defined as:

ϕ :: = p | ϕ ∧ ϕ | 〈A〉ϕ | 〈A〉ϕ | 〈Ax〉ϕ | 〈Ax〉ϕ
| ¬p | ϕ ∨ ϕ | [A]ϕ | [A]ϕ | [Ay]ϕ | [Ay]ϕ

where p ∈ AP, x ∈ X♦, and y ∈ X�. Since PROMPT
d
-PNL is a syntactic restric-

tion of PROMPT-PNL, both formalisms share the same semantics. In particular,

a PROMPT-PNL model is a PROMPT
d
-PNL model as well. Analogously to the unre-

stricted case, we define PROMPT
d
-RPNL as PROMPT

d
-PNL devoid of past modalities

〈A〉, [A], 〈Ax〉, and [Ay].

PROMPT
d
-PNL is not closed under negation. For any given PROMPT

d
-PNL formula

ψ, we inductively define neg(ψ) as shown in Table 1 (neg(ψ) is not necessarily a

PROMPT
d
-PNL formula). If ψ is a (non-prompt) PNL formula, then neg(ψ) ≡ ¬ψ.

Moreover, we define neg(∼ψ) as ψ and thus we have that neg(neg(ψ)) ≡ ψ, for

every PROMPT
d
-PNL formula ψ.

216 D. Della Monica et al.

Table 1. Definition of neg(ψ), for a PROMPT
d
-PNL formula ψ

ψ negeg(ψ) ψ negeg(ψ)

p ¬p ¬p p

ψ1 ∧ ψ2 neg(ψ1) ∨ neg(ψ2) ψ1 ∨ ψ2 neg(ψ1) ∧ neg(ψ2)

〈A〉ψ1 [A]neg(ψ1) [A]ψ1 〈A〉neg(ψ1)

〈A〉ψ1 [A]neg(ψ1) [A]ψ1 〈A〉neg(ψ1)

ψ negeg(ψ)

〈Ax〉ψ1 or 〈Ax〉ψ1 or [Ay]ψ1 or [Ay]ψ1 ∼ψ

A close analysis of the proof of the undecidability of PROMPT-(R)PNL reveals
that the unrestricted use of bounding variables within prompt modalities allows
one to somehow establish tight bounds for the length of intervals, and this ability
is crucial to the encoding. We are going to show that decidability can be recov-
ered by not allowing both existential and universal prompt quantification on
the same bounding variable. Intuitively, decidability follows from the fact that,
when disjoint sets of bounding variables are used within existential and universal
prompt modalities, formulas enjoy a monotonicity property, which does not hold
for unrestricted PROMPT-(R)PNL formulas.

Let M = 〈D, V, σ, δ〉 be a PROMPT-PNL model, x ∈ X, and r ∈ R
>0. We denote

by M[x:=r] the model 〈D, V, σ′, δ〉, where σ′(x) = r and σ′(x′) = σ(x′) for every
x′ ∈ X with x′
= x.

Proposition 1 (monotonicity). Let ψ be a formula of PROMPT
d
-PNL, M be

a model of PROMPT
d
-PNL, and [a, b] be an interval in M . If M, [a, b] |= ψ, then

M[x:=r], [a, b] |= ψ for all x ∈ X♦ and r ∈ R
>0, with r ≥ σM (x). In a dual

fashion, if M, [a, b] |= ψ, then M[y:=r], [a, b] |= ψ for all y ∈ X� and r ∈ R
>0,

with r ≤ σM (y).

Checking that the above monotonicity property holds for PROMPT
d
-PNL is imme-

diate. To see that it does not hold for PROMPT-PNL, consider the formula
ψ = [Ay]¬p ∧ 〈Ax〉p ∧ [Ax]¬q ∧ 〈Az〉q. Clearly, ψ is satisfiable and all of its
models are such that the value of x is bounded below by the value of y and
above by the value of z.

By Proposition 1, when studying the (finite) satisfiability problem for

PROMPT
d
-PNL we can assume, w.l.o.g., that |X♦| = |X�| = 1, as every formula ψ,

featuring (possibly) more than one bounding variable in X♦ or X�, can be trans-
formed into an equisatisfiable one ψ′, obtained by replacing two distinguished
(chosen randomly) variables x̂ ∈ X♦ and ŷ ∈ X� for every x ∈ X♦ and y ∈ X�,
respectively. It is not difficult to check that, due to monotonicity, ψ is (finitely)
satisfiable if and only if so is ψ′. Therefore, for the remainder of the section, we
set X♦ = {x} and X� = {y}.

Prompt Interval Temporal Logic 217

Finite Satisfiability. The finite satisfiability problem for PROMPT
d
-PNL can be

reduced to the one for plain PNL, known to be NEXPTIME-complete [8]. Let ψ

be a formula of PROMPT
d
-PNL and let plain(ψ) be the PNL formula obtained from

ψ by:

(i) replacing existential prompt modalities by the corresponding non-prompt
versions (i.e., substituting 〈A〉 for 〈Ax〉 and 〈A〉 for 〈Ax〉), and

(ii) replacing all sub-formulas of the forms [Ay]ψ and [Ay]ψ by the constant �.

It is not difficult to show by induction on the structure of ψ that if ψ is finitely
satisfiable, so is plain(ψ). On the other hand, if plain(ψ) is finitely satisfiable,
then let Mplain(ψ) = 〈D, V 〉 be a PNL model such that Mplain(ψ), [a, b] |= plain(ψ)
for some [a, b] ∈ I(D). We define δ(d, d′) = |{d′′ ∈ D | d < d′′ ≤ d′}| for every
d, d′ ∈ D. Since D is finite, both maxδ = max {δ(d, d′) | d, d′ ∈ D and d
= d′}
and minδ = min {δ(d, d′) | d, d′ ∈ D and d
= d′} are well defined, thus we can
set σ(x) = maxδ, and σ(y) = minδ

2 . It is possible to show that M = 〈D, V, σ, δ〉
is such that M, [a, b] |= ψ. Therefore, ψ is finitely satisfiable, too.

Theorem 2. The finite satisfiability problem for PROMPT
d
-PNL is NEXPTIME-

complete.

In order to deal with formulas that are non-finitely satisfiable, in what follows
we show how the search for an infinite model can be reduced to the search for a
finite witness for it, within a finite search space. Decidability of the satisfiability

problem for PROMPT
d
-PNL immediately follows.

4.1 Prompt Labeled Interval Structures

In this subsection we define labeled interval structures for PROMPT
d
-PNL formulas,

which are, intuitively, extended models, where intervals are labeled with sets of
sub-formulas (instead of sets of atomic propositions) of the considered formula.

From now on, we let ϕ be a generic PROMPT
d
-PNL formula.

Let Sub(ϕ) be the set of all sub-formulas of ϕ and let Sub¬(ϕ) = {neg(ψ) |
ψ ∈ Sub(ϕ)}. The closure of ϕ, denoted by Cl(ϕ), is the set Sub(ϕ)∪Sub¬(ϕ)∪
{〈A〉ϕ, neg(〈A〉ϕ)}. Clearly, |Cl(ϕ)| ≤ 2 · |ϕ| + 2 holds.

A future temporal request of ϕ is a formula in Cl(ϕ) having one of the following
forms: 〈A〉ψ, neg(〈A〉ψ), 〈Ax〉ψ, neg(〈Ax〉ψ), [Ay]ψ, neg([Ay]ψ), for some ψ.
Analogously, a past temporal request of ϕ is a formula in Cl(ϕ) having one of
the following forms: 〈A〉ψ, neg(〈A〉ψ), 〈Ax〉ψ, neg(〈Ax〉ψ), [Ay]ψ, neg([Ay]ψ),
for some ψ. We denote by TRf (ϕ) (resp., TRp(ϕ)) the set of future (resp., past)
temporal requests of ϕ. In addition, the set of temporal requests of ϕ, denoted
by TR(ϕ), is defined as TRf (ϕ) ∪ TRp(ϕ).

A ϕ-atom is a subset A of Cl(ϕ) such that, for every ψ,ψ1, ψ2 ∈ Cl(ϕ), (i)
ψ ∈ A if and only if neg(ψ) /∈ A, and (ii) ψ1 ∨ ψ2 ∈ A if and only if ψ1 ∈ A

218 D. Della Monica et al.

or ψ2 ∈ A. Notice that conditions (i) and (ii) imply ψ1 ∧ ψ2 ∈ A if and only if
ψ1 ∈ A and ψ2 ∈ A. We denote the set of ϕ-atoms by Aϕ.

A prompt ϕ-labeled interval structure (pLISϕ) is a 5-tuple L = 〈D,L, δ,X ,Y〉,
where (D, δ) is a metric space, L : I(D) → Aϕ is a labeling function (or simply
labeling) such that ϕ ∈ L([a, b]) for some [a, b] ∈ I(D), and X ,Y ∈ N are the
existential and the universal bound, respectively. Sometimes, for the sake of
brevity, we omit the last three components of the 5-tuple and we denote a pLISϕ

as a 2-tuple 〈D,L〉 instead. Moreover, given a pLISϕ L = 〈D,L〉, we denote by
DL its underlying domain D and by LL the labeling function L. A pLISϕ L is
finite (resp., infinite) if so is DL.

Given a pLISϕ L and a point d ∈ DL we define the set of future requests of
d in L, denoted by f-REQL(d), as

⋃

d′∈D<d(LL(d′, d) ∩ TRf (ϕ)), the set of past
requests of d in L, denoted by p-REQL(d), as

⋃

d′∈D>d(LL(d, d′)∩TRp(ϕ)), and
the set of requests of d in L, denoted by REQL(d), as f-REQL(d) ∪ p-REQL(d).
We denote by REQϕ the class of all sets of requests, i.e., REQϕ = {R | R =
REQL(d) for some pLISϕ L and d ∈ DL}. We have that |REQϕ| ≤ 2|Cl(ϕ)| ≤
22·|ϕ|+2.

An existential request of ϕ is a temporal request of ϕ of one the following
forms: 〈A〉ψ, 〈A〉ψ, 〈Ax〉ψ, 〈Ax〉ψ, neg([Ay])ψ, and neg([Ay])ψ, for some ψ.
A universal request of ϕ is a temporal request of ϕ that is not an existential
one. Let L = 〈D,L, δ,X ,Y〉 be a pLISϕ and d ∈ D. We define ∃-REQL(d) =
{ψ ∈ REQL(d) | ψ is an existential request of ϕ} and ∀-REQL(d) = REQL(d) \
∃-REQL(d).

For ψ ∈ ∃-REQL(d), we say that ψ is fulfilled in (L, d) by d′ ∈ D if, and only
if, one of the following holds:

– ψ = 〈A〉ψ′ for some ψ′ and ψ′ ∈ L([d, d′]),
– ψ = 〈A〉ψ′ for some ψ′ and ψ′ ∈ L([d′, d]),
– ψ = 〈Ax〉ψ′ for some ψ′, ψ′ ∈ L([d, d′]), and δ(d, d′) ≤ X ,
– ψ = 〈Ax〉ψ′ for some ψ′, ψ′ ∈ L([d′, d]), and δ(d′, d) ≤ X ,
– ψ = neg([Ay]ψ′) for some ψ′, neg(ψ′) ∈ L([d, d′]), and δ(d, d′) ≤ Y ,
– ψ = neg([Ay]ψ′) for some ψ′, neg(ψ′) ∈ L([d′, d]), and δ(d′, d) ≤ Y .

ψ is fulfilled in (L, d) if and only if there is d′ such that ψ is fulfilled in (L, d)
by d′.

For ψ ∈ ∀-REQL(d), we say that ψ is fulfilled in (L, d) if, and only if, one of
the following holds:

– ψ = [A]ψ′ for some ψ′ and ψ′ ∈ L([d, d′]) for every d′ ∈ D
>d,

– ψ = [A]ψ′ for some ψ′ and ψ′ ∈ L([d′, d]) for every d′ ∈ D
<d,

– ψ = [Ay]ψ′ for some ψ′ and ψ′ ∈ L([d, d′]) for every d′ ∈ D
>d with δ(d, d′) ≤ Y ,

– ψ = [Ay]ψ′ for some ψ′ and ψ′ ∈ L([d′, d]) for every d′ ∈ D
<d with δ(d′, d) ≤ Y ,

– ψ = neg(〈Ax〉ψ′) for some ψ′ and neg(ψ′) ∈ L([d, d′]) for every d′ ∈ D
>d with

δ(d, d′) ≤ X ,
– ψ = neg(〈Ax〉ψ′) for some ψ′ and neg(ψ′) ∈ L([d′, d]) for every d′ ∈ D

>d with
δ(d′, d) ≤ X .

Prompt Interval Temporal Logic 219

d is ∃-fulfilled in L if, and only if, every ψ ∈ ∃-REQL(d) is fulfilled; d is ∀-fulfilled
in L if, and only if, every ψ ∈ ∀-REQL(d) is fulfilled; d is fulfilled in L if, and
only if, it is both ∃- and ∀-fulfilled in L.

An existentially fulfilling (resp., universally fulfilling, fulfilling) pLISϕ, aka
∃-pLISϕ (resp., ∀-pLISϕ, ∃∀-pLISϕ), is a pLISϕ L such that every d ∈ DL is
∃-fulfilled (resp., ∀-fulfilled, fulfilled) in it.

Proposition 2. ϕ is satisfiable if and only if there exists a ∃∀-pLISϕ, and it is
finitely satisfiable if and only if there exists a finite ∃∀-pLISϕ.

Before showing the decidability of PROMPT
d
-PNL, we prove a result that will

later come in handy. A set of requests REQL(d) (for a pLISϕ L and d ∈ DL) is
consistent if for each ψ ∈ REQL(d), we have that neg(ψ) /∈ REQL(d); otherwise,
it is inconsistent.

Proposition 3. Let L be a pLISϕ and d ∈ DL. The following properties hold,
unless REQL(d) is inconsistent:

– if D
<d
= ∅, then f-REQL(d) = LL(d′, d) ∩ TRf (ϕ), for any given d′ ∈ D

<d,
unless f-REQL(d) is inconsistent;

– if D>d
= ∅, then p-REQL(d) = LL(d, d′) ∩ TRp(ϕ), for any given d′ ∈ D
>d,

unless p-REQL(d) is inconsistent.

4.2 A Bounded Witness for Non-finitely Satisfiable Formulas

Let L be a pLISϕ and d ∈ DL. A set of essentials of d (in L) is any
minimal (with respect to set inclusion) set E ⊆ DL such that for every
ψ ∈ ∃-REQL(d) there is d′ ∈ E for which ψ is fulfilled in (L, d) by d′.
We denote by EL(d) the class containing all sets of essentials of d in L, i.e.,
EL(d) = {E ⊆ DL | E is a set of essentials of d in L}. Intuitively, a set of essen-
tials of d is a collection of points that jointly make d ∃-fulfilled in L. Clearly
EL(d)
= ∅ if and only if d is ∃-fulfilled in L. We lift this concept to a higher
order: a set of essentials of essentials (or 2nd-order essentials) of d (in L) is
any minimal (with respect to set inclusion) set E2 ⊆ DL such that (i) E1 ⊆ E2

for some E1 ∈ EL(d) and (ii) for every d′ ∈ E1 there is Ed′ ∈ EL(d′) for which
Ed′ ⊆ E2. We denote by E2

L(d) the class containing all sets of 2nd-order essentials
of d in L, i.e., E2

L(d) = {E ⊆ DL | E is a set of 2nd-order essentials of d in L}.

Definition 1 (representative). Let L be a finite pLISϕ and d ∈ DL.
If d /∈ {minDL,maxDL}, then a representative of d in L is a point e ∈ DL

such that REQL(d) = REQL(e), e is fulfilled in L, and so are points in E2, for
some E2 ∈ E2

L(e) with E2 ∩ {minD,maxD} = ∅.
If d = minDL (resp., d = maxDL), then a representative of d in L is

a point e ∈ DL that is a representative of d′ in L for some d′ ∈ DL, with
p-REQL(d′) = p-REQL(d) (resp., f-REQL(d′) = f-REQL(d)).

220 D. Della Monica et al.

A convex subset of a domain D is a subset D
′ of D such that for every

d′, d′′ ∈ D
′ and d ∈ D, if d′ < d < d′′, then d ∈ D

′. A right-convex (resp., left-
convex) subset of a domain D is a convex subset D

′ of D such that maxD ∈ D
′

(resp., minD ∈ D
′).

Given a pLISϕ L and D
′ ⊆ DL, we let request-setsL(D′) = {R | REQL(d) =

R for some d ∈ D
′}.

Definition 2 (left- and right-periodic pLISϕ). Let L be a finite pLISϕ. A
left-period for L is a left-convex subset E of DL such that, for every d ∈ E, if d
is not fulfilled in L or d = minE, then there is d′ ∈ E

>d for which the following
holds:

(a) d′ is a representative of d in L;
(b) request-setsL(E \ {minE}) is equal to request-setsL(E<d′ \ {minE}), which

is equal to request-setsL(E>d′
), and there are d′′ ∈ E

<d′ \ {minE} and d′′′ ∈
E

>d′
such that p-REQL(minE) = p-REQL(d′′) = p-REQL(d′′′);

(c) every 〈Ax〉ψ ∈ f-REQL(d′) is fulfilled in (L, d′) by a point belonging to E.

A right-period for L is defined symmetrically.
L is periodic if, and only if, there exist both a left- and a right-period for it.

Definition 3 (ϕ-witness). A ϕ-witness is a finite, periodic ∀-pLISϕ L, such
that every d ∈ DL \ (E ∪ F) is fulfilled in L, where E and F are, respectively, a
left- and a right-period for L, with E ∩ F = ∅ and DL \ (E ∪ F)
= ∅.
Lemma 9. An infinite ∃∀-pLISϕ L = 〈D,L, δ,X ,Y〉 exists if and only if a
ϕ-witness L′ = 〈D′,L′, δ′,X ′ ,Y ′〉 exists.

Thanks to the previous lemma, we can reduce the search for an infinite
model for a formula to the search for a finite witness. However, since such a
finite witness can be arbitrarily large, the search space is still infinite. In what
follows, we provide a bound on the size of the finite witness, thus obtaining a

finite search space. Decidability of PROMPT
d
-PNL immediately follows.

Let Bϕ = |REQϕ| · (2 · |Cl(ϕ)|2 + 2 · |Cl(ϕ)|) + |REQϕ| · |Cl(ϕ)| + |Cl(ϕ)|.
Lemma 10. Let L = 〈D,L, δ,X ,Y〉 be a ϕ-witness, E and F being, respectively,
a left- and a right-period for it. If |E| > Bϕ (resp., |F| > Bϕ, |D\ (E∪F)| > Bϕ),
then there is a ϕ-witness L′ = 〈D′,L′, δ′,X ′,Y ′〉 with |D′| = |D| − 1.

The size of a pLISϕ L is the size of the underlying domain DL. The following
corollary immediately follows from the above lemma.

Corollary 1 (small model property). A ϕ-witness exists if and only if there
is one of size at most 3 · Bϕ ≤ 3 · [22·|ϕ|+2 · (2 · (2 · |ϕ| + 2)2 + 2 · (2 · |ϕ| + 2)) +
22·|ϕ|+2 · (2 · |ϕ| + 2) + (2 · |ϕ| + 2)].

Theorem 3. The satisfiability problem for PROMPT
d
-PNL is NEXPTIME-complete.

Prompt Interval Temporal Logic 221

5 Conclusions

In this paper, we have studied the problem of enriching the well-known propo-
sitional logic of temporal neighborhood PNL with support for prompt-liveness
specifications. We first proved that the logic obtained from PNL by introducing
“prompt” versions of its modalities with no restriction on the use of bounding
variables, that we call PROMPT-PNL, is undecidable. Then, we showed that decid-
ability can be recovered by introducing a partition of bounding variables into
two classes, one for the existential modalities, the other for the universal ones.

The satisfiability problem for the resulting logic, named PROMPT
d
-PNL, is indeed

NEXPTIME-complete.
The work done can be further developed in various directions.
First, we are interested in identifying the minimum number of bounding

variables that suffice to make PROMPT-PNL undecidable. We believe it possible
to prove that when the set of variables is small enough, e.g., when it includes
two bounding variables only, the logic is still expressive enough to capture some
meaningful promptness conditions and remains decidable.

We also aim at investigating the more powerful setting of parametric exten-
sions of PNL. Parametric PNL can be viewed as a natural generalization of
PROMPT-PNL, as parametric modalities allow one to express both lower and upper
bounds on the delay with which a request is fulfilled (PROMPT-PNL only copes
with the latter).

Last but not least, we are interested in comparing the expressiveness of the

logics PROMPT-PNL and PROMPT
d
-PNL with that of metric PNL , that is, the metric

extension of PNL introduced and systematically studied in [7].

Acknowledgements. The authors acknowledge the support from the Italian GNCS
project Logics, automata, and games for auto-adaptive systems. In addition, Dario
Della Monica and Aniello Murano acknowledge the support from the POR Campania
project Strategic reasoning for multi-agent systems.

References

1. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM
26(11), 832–843 (1983)

2. Allen, J.F.: Towards a general theory of action and time. Artif. Intell. 23(2),
123–154 (1984)

3. Almagor, S., Hirshfeld, Y., Kupferman, O.: Promptness in ω-regular automata.
In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 22–36.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-15643-4 4

4. Alur, R., Etessami, K., La Torre, S., Peled, D.: Parametric temporal logic for
“model measuring”. ACM Trans. Comput. Log. 2(3), 388–407 (2001). http://doi.
acm.org/10.1145/377978.377990

5. Aminof, B., Murano, A., Rubin, S., Zuleger, F.: Prompt alternating-time epistemic
logics. In: Baral, C., Delgrande, J.P., Wolter, F. (eds.) Proceedings of the 15th KR,
pp. 258–267. AAAI Press (2016)

http://dx.doi.org/10.1007/978-3-642-15643-4_4
http://doi.acm.org/10.1145/377978.377990
http://doi.acm.org/10.1145/377978.377990

222 D. Della Monica et al.

6. Bojańczyk, M., Colcombet, T.: Bounds in ω-regularity. In: LICS, pp. 285–296.
IEEE Computer Society (2006)

7. Bresolin, D., Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G.: Metric
propositional neighborhood interval logics on natural numbers. Softw. Syst. Model.
(SoSyM) 12(2), 245–264 (2013)

8. Bresolin, D., Goranko, V., Montanari, A., Sciavicco, G.: Propositional interval
neighborhood logics: expressiveness, decidability, and undecidable extensions.
Ann. Pure Appl. Logic 161(3), 289–304 (2009). http://dx.doi.org/10.1016/
j.apal.2009.07.003

9. Chatterjee, K., Henzinger, T.A., Horn, F.: Finitary winning in ω-regular games.
ACM Trans. Comput. Logic 11(1) (2009)

10. Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G.: Interval temporal
logics: a journey. Bull. Eur. Assoc. Theoret. Comput. Sci. 105, 73–99 (2011)

11. Della Monica, D., Montanari, A., Murano, A., Sala, P.: Prompt interval temporal
logic (extended version) (2016). http://wpage.unina.it/dario.dellamonica/techrep/
promptPNL ext.pdf

12. Della Monica, D., Montanari, A., Sala, P.: The importance of the past in inter-
val temporal logics: the case of propositional neighborhood logic. In: Artikis, A.,
Craven, R., Kesim Çiçekli, N., Sadighi, B., Stathis, K. (eds.) Logic Programs,
Norms and Action. LNCS (LNAI), vol. 7360, pp. 79–102. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-29414-3 6

13. Fijalkow, N., Zimmermann, M.: Cost-Parity and Cost-Streett Games. In: FSTTCS.
LIPIcs, vol. 18, pp. 124–135 (2012)

14. Gennari, R., Tonelli, S., Vittorini, P.: An AI-based process for generating games
from flat stories. In: Proceedings of the 33rd SGAI, pp. 337–350 (2013)

15. Halpern, J.Y., Shoham, Y.: A propositional modal logic of time intervals. J. ACM
38(4), 935–962 (1991). http://doi.acm.org/10.1145/115234.115351

16. Kupferman, O., Piterman, N., Vardi, M.Y.: From liveness to promptness. Formal
Methods Syst. Des. 34(2), 83–103 (2009)

17. Laban, S., El-Desouky, A.: RISMA: a rule-based interval state machine algorithm
for alerts generation, performance analysis and monitoring real-time data process-
ing. In: Proceedings of the EGU General Assembly 2013. Geophysical Research
Abstracts, vol. 15 (2013)

18. Lodaya, K., Parikh, R., Ramanujam, R., Thiagarajan, P.: A logical study of dis-
tributed transition systems. Inf. Comput. 119(1), 91–118 (1995). http://www.
sciencedirect.com/science/article/pii/S0890540185710784

19. Mogavero, F., Murano, A., Sorrentino, L.: On promptness in parity games. In:
McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312,
pp. 601–618. Springer, Heidelberg (2013). doi:10.1007/978-3-642-45221-5 40

20. Moszkowski, B.: Reasoning about digital circuits. Technical report. stan-cs-83-970,
Dept. of Computer Science, Stanford University, Stanford, CA (1983)

21. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual
Symposium on Foundations of Computer Science (FOCS), pp. 46–57. IEEE Com-
puter Society (1977)

22. Pratt-Hartmann, I.: Temporal prepositions and their logic. Artif. Intell. 166(1–2),
1–36 (2005)

23. Zhou, C., Hansen, M.R.: Duration calculus: a formal approach to real-time systems.
EATCS Monographs in Theoretical Computer Science. Springer, Heidelberg (2004)

24. Zimmermann, M.: Optimal bounds in parametric LTL games. Theor. Comput. Sci.
493, 30–45 (2013). http://dx.doi.org/10.1016/j.tcs.2012.07.039

http://dx.doi.org/10.1016/j.apal.2009.07.003
http://dx.doi.org/10.1016/j.apal.2009.07.003
http://wpage.unina.it/dario.dellamonica/techrep/promptPNL_ext.pdf
http://wpage.unina.it/dario.dellamonica/techrep/promptPNL_ext.pdf
http://dx.doi.org/10.1007/978-3-642-29414-3_6
http://doi.acm.org/10.1145/115234.115351
http://www.sciencedirect.com/science/article/pii/S0890540185710784
http://www.sciencedirect.com/science/article/pii/S0890540185710784
http://dx.doi.org/10.1007/978-3-642-45221-5_40
http://dx.doi.org/10.1016/j.tcs.2012.07.039

Exploiting Contextual Knowledge
for Hybrid Classification of Visual Objects

Thomas Eiter and Tobias Kaminski(B)

Institute of Information Systems, TU Wien, Vienna, Austria
{eiter,kaminski}@kr.tuwien.ac.at

Abstract. We consider the problem of classifying visual objects in a
scene by exploiting the semantic context. For this task, we define hybrid
classifiers (HC) that combine local classifiers with context constraints,
and can be applied to collective classification problems (CCPs) in gen-
eral. Context constraints are represented by weighted ASP constraints
using object relations. To integrate probabilistic information provided
by the classifier and the context, we embed our encoding in the for-
malism LPMLN , and show that an optimal labeling can be efficiently
obtained from the corresponding LPMLN program by employing an ordi-
nary ASP solver. Moreover, we describe a methodology for constructing
an HC for a CCP, and present experimental results of applying an HC
for object classification in indoor and outdoor scenes, which exhibit sig-
nificant improvements in terms of accuracy compared to using only a
local classifier.

1 Introduction

For several decades, AI research has devoted huge efforts to automate logical rea-
soning in knowledge representation and reasoning (KRR) and to develop meth-
ods for statistical learning and inference in machine learning (ML). While these
areas are rather mature, it became evident that many real-world domains require
both logical and statistical reasoning as they comprise complex relational as well
as uncertain information. Consequently, statistical relational learning (SRL) has
gained momentum, and many approaches which combine statistical and logical
methods have been developed (see [9] for an overview).

One of the basic tasks in SRL is collective classification, which is simul-
taneously finding correct labels for a number of interrelated objects; this has
applications in many concrete domains, e.g. classification of interlinked docu-
ments, part-of-speech tagging and optical character recognition [21]. A further
such application is to predict the labels (i.e., class memberships) of objects in
a complex visual scene that contains many objects of different classes. Even
if advanced and robust algorithms for object recognition have been developed,
e.g. SIFT descriptors [12] and the bag of keypoints approach [4], they may fail

This research has been supported by the Austrian Science Fund (FWF) projects
P27730 and W1255-N23.

c© Springer International Publishing AG 2016
L. Michael and A. Kakas (Eds.): JELIA 2016, LNAI 10021, pp. 223–239, 2016.
DOI: 10.1007/978-3-319-48758-8 15

224 T. Eiter and T. Kaminski

Fig. 1. Objects in a scene with predicted labels (from the LabelMe dataset [19])

unavoidably and yield ambiguous results due to few training data, noisy inputs,
or inherent ambiguity of visual appearance (e.g. a lemon and a tennis ball might
be indistinguishable in a low resolution image [16]). It is then still possible to
draw on further information from the scene in which an object occurs to dis-
ambiguate its label. For an example, consider the street scene in Fig. 1, where
object 2 is wrongly labeled as ‘building’ in the center image. This misclassifica-
tion could be resolved by considering all object labels simultaneously, drawing
on background knowledge that wheels normally appear at the bottom of a car;
thus, the probability for labeling object 2 as ‘car’ increases.

In KRR, a natural approach to formalize admissible labelings of objects
respecting their interrelations would consist in imposing logical constraints on
labelings and using constraint programming techniques to compute ‘possible
worlds’ represented by complete labelings. While this approach yields all consis-
tent labelings, it neglects (hidden) features of the concrete classification prob-
lem. Hence, it is desirable to combine constraints over label assignments with the
output of a probabilistic classifier processing (low-level) object features. A naive
such combination is to use a ranking over all labels for each object induced by
the probability distributions given by a classifier, and to compute the labeling
that maximizes the rank of the assigned labels while satisfying all constraints.
However, in real-world domains this approach turns out to be too restrictive.
First, real data necessarily has exceptions that cannot all be modeled, which
may prevent that a consistent solution is found; second, this approach retains
no information about the metric distance between label probabilities, which is
essential for deciding whether a label should be changed to a less likely one in
order to satisfy some constraint.

In this paper, we bridge the gap between combinatorial and probabilistic
object classification by encoding the context of a concrete collective classification
problem (CCP) in a set of answer set programming (ASP) rules and constraints
that we assign a probabilistic semantics. Using ASP to formalize context knowl-
edge, we can combine multiple context relations in even complex constraints
and utilize closed world reasoning to express e.g. that objects not containing car
parts should not be labeled as cars.

Exploiting Contextual Knowledge for Hybrid Classification of Visual Objects 225

Our main contributions are briefly summarized as follows.

(1) We define a general framework for solving CCPs that combines a generic
local classifier and context constraints into a hybrid classifier, which is given
semantics via an embedding into LPMLN [10]. We then show how solu-
tions can be obtained efficiently with a backtranslation from LPMLN into
classical answer set programs with weak constraints [2], and by leveraging
combinatorial optimization capabilities of state-of-the-art ASP solvers.

(2) We describe a methodology for constructing a hybrid classifier for a specific
domain by designing and tuning a context encoding. To the best of our
knowledge, this has not been considered before.

(3) We examine the usefulness of our methodology with an extensive empiri-
cal evaluation in the domain of visual object classification in indoor as well
as outdoor scenes. The results provide evidence that hybrid classifiers can
significantly improve accuracy, provided that the local classifier works rea-
sonably well, given the outset of few training data, noisy data or ambiguous
data. Furthermore, they show that tuning and the use of a validation set are
important elements for increasing accuracy gains.

Notably, in our approach knowledge representation and reasoning is a first-
class citizen, while SRL approaches often rely on statistical formulations and
probabilistic solving methods; this seems less geared towards combinatorial prob-
lem solving. Moreover, our encoding can be easily extended by spatial reasoning
via rules over extracted facts, as well as by a component for taxonomical rea-
soning over label categories.

2 Preliminaries

Answer set programs with weak constraints [2] constitute the host language of
our hybrid classification encoding. A normal logic program P is a finite set of
rules of the form

H ← B1, ..., Bk,notBk+1, ...,notBm, (1)

where H and all Bi are function-free first-order atoms from a classical first-order
signature. Given a rule r, H is called the head of r, B+(r) = {B1, ..., Bk} its
positive body and B−(r) = {Bk+1, ..., Bm} its negative body. A rule without a
head is called a constraint. The grounding Pg of P is obtained by replacing all
variables by constants occurring in P in all possible ways, as usual. Stable models
(or answer sets) are the minimal models of the GL-reduct (cf. [8]).

A weak constraint is written as follows:

:∼ B1, ..., Bk,notBk+1, ...,notBm [w]. (2)

The weight w of a weak constraint c, denoted weight(c), is either an integer
constant or a variable occurring in the positive body of the constraint. A ground
weak constraint has the same weight as the constraint it originates from. For a

226 T. Eiter and T. Kaminski

Herbrand interpretation I and a set C of weak constraints, the violation cost of C
wrt. I is costI(C) =

∑

c′∈C′ weight(c′), where C ′ ⊆ C are the weak constraints
such that B+ ⊆ I and B− ∩I = ∅. The answer sets of P ∪C are all those answer
sets I of P such that no answer set I ′ of P with costI′(C) < costI(C) exists.

We assign a probabilistic semantics to our encoding by utilizing the formal-
ism LPMLN [10], which employs weighted rules for combining ASP with proba-
bilistic graphical models based on Markov logic networks (MLNs) [18]. LPMLN

programs generalize normal logic programs by assigning a weight w to every
rule r of form (1) in the program. The weight w is either a real number or α,
representing the infinite weight. When grounding an LPMLN program, every
ground weighted rule w : rg is mapped to the same weight w as its non-ground
counterpart w : r. A probabilistic semantics is defined for LPMLN programs as
follows.

Definition 1 (Unnormalized weight [10]). For an LPMLN program Π and
a Herbrand interpretation I, the unnormalized weight of I under Π is given by

WΠ(I) =

⎧

⎨

⎩

exp
(

∑

w:r∈ΠI

w
)

if I ∈ SM [Π],

0 otherwise,
(3)

where ΠI represents all weighted rules w : r in Π s.t. I |= r, and SM [Π] contains
all I s.t. I is a classical answer set of ΠI , omitting the weights.

In order to obtain a probability distribution over all Herbrand interpretations
wrt. an LPMLN program, the corresponding weights have to be normalized.

Definition 2 (Normalized weight [10]). For an LPMLN program Π and a
Herbrand interpretation I, the normalized weight of I under Π is given by

PΠ(I) = lim
α→∞

WΠ(I)
∑

J∈SM [Π] WΠ(J)
. (4)

Lee and Wang [10] define a (probabilistic) stable model of an LPMLN program
Π to be a Herbrand interpretation I s.t. PΠ(I) 	= 0.

Since our goal is to use LPMLN programs for finding the global best labeling
for a set of objects, i.e. the answer set encoding the label assignment with the
highest probability, we do not discuss conditional probability queries here. Lee
and Wang show a close relationship between ASP with weak constraints and
LPMLN programs, such that under certain conditions the answer set with the
highest normalized probability can be computed directly by an ordinary answer
set solver that exhibits optimization capabilities. The authors define a translation
τ(P) = Π from an answer set program with weak constraints P to an LPMLN

program Π, and show the following correspondence.

Proposition 1 (adapted from [10]). For an answer set program with weak
constraints P that has an answer set, its answer sets are the Herbrand interpre-
tations {I| 	 ∃I ′ : PΠ(I ′) > PΠ(I)}, where Π = τ(P).

Exploiting Contextual Knowledge for Hybrid Classification of Visual Objects 227

For translating an LPMLN program into an answer set program with weak
constraints, we apply τ−1, which is only applicable to LPMLN programs in which
all rules are assigned the infinite weight α and only constraints of the form (2)
are assigned arbitrary weights. The translation τ−1 works by omitting the weight
of rules with non-empty head and by replacing constraints of the form w : ←
B1, ..., Bk,notBk+1, ...,notBm by a rule H ← B1, ..., Bk,notBk+1, ...,notBm

together with the weak constraint :∼ notH [−w], where H is a fresh atom not
occurring elsewhere.1 Under the mentioned restrictions, Proposition 1 still holds.

3 Hybrid Classification

We aim at applying LPMLN programs for simultaneously classifying all objects
in a visual scene. In order to obtain a complete labeling that is as close as
possible to the ground truth, we exploit two sources of probabilistic information
regarding the most likely label for a given object. On the one hand, we use a
classifier that is trained on vectors of object features and predicts the probability
of each local label given the features of a single new object. On the other hand,
we exploit the relational context defined by relations between several objects,
by learning the probability of certain label combinations for sets of objects that
are related in specific ways, e.g. some objects in an image may be contained
in some other objects more or less frequently. In this way, the notion of the
best label for some object is probabilistically constrained from two sides, and we
strive for an optimal label on the basis of all probabilistic information available.
We refer to our combination of local classifier and relational context as hybrid
classifier (HC); notably, their classification results increasingly disagree with
context elaboration, and the relational component has a richer structure than in
most related approaches on collective classification.

In this section, we define an HC in form of an LPMLN encoding that combines
a local classifier with a set of weighted context constraints over label assignments
wrt. the relational structure. We start by defining collective classification prob-
lems (CCPs) based on the definition in [21], but we generalize the neighborhood
function used there to arbitrary relations between objects. First, we introduce a
schema on the basis of which a group of CCPs can be defined.

Definition 3 (CCS). A collective classification schema (CCS) is represented
by a pair S = 〈L,R〉 consisting of

– a set L = {l1, ..., lm} of possible object labels,
– a family R = {R0, ..., Rk} of sets of 0- to k-ary context relation names.

The sets Ri ∈ R contain names for i-ary relations between objects that can,
for instance, be extracted from a scene image, e.g. a binary relation entailing
all pairs of objects where the first object is contained in the second object, or a
1 As the logic program rules here are more restricted than in [10], we adapt the trans-

lation defined there. Real-valued weights can be approximated by integers in weak
constraints.

228 T. Eiter and T. Kaminski

ternary relation stating that an object is located in-between two other objects.
The set L contains possible object labels, e.g. ‘car’ and ‘tree’ for objects in a
street scene.

A CCS is instantiated by a CCP, by fixing the set of objects that need to
be classified together with their local object features as well as the concrete
relations occurring between them, as follows.

Definition 4 (CCP). A collective classification problem (CCP) is represented
by a triple C = 〈S,O, e〉 consisting of

– a CCS S = 〈L,R〉,
– a set O = {o1, ..., on} of objects with associated features f(oi) for each oi ∈ O,
– a function e :

⋃

Ri∈R → Ok that maps each i-ary relation name to a concrete
i-ary relation over objects.

A solution for a CCP is a complete labeling represented by a mapping λ : O → L,
assigning a label from L to each object in O.

Next, we introduce local classifiers, where we abstract from the level of par-
ticular object features and assume a classifier that is able to return a probability
distribution over all labels for each object by processing their corresponding fea-
tures. Subsequently, we draw on the information provided by local classifier c
for hybrid classification by integrating c with a context encoding into an HC.

Definition 5 (Local classifier). Given a CCS S = 〈L,R〉, a local classifier
c is a function that maps the feature vector f(o) of an object o to a discrete
probability distribution P c

o over all labels in L (on the basis of their associated
feature vectors).

Due to the generality of the approach, different kinds of classifiers, e.g. Logis-
tic Regression or Neural Networks, can be utilized to instantiate the local clas-
sifier c.

Example 1. For the scene in Fig. 1, we construct a corresponding CCP C =
〈S,O, e〉 with S = 〈{car, building, wheel}, {∅, ∅, {contains}}〉, O = {o1, o2}
(omitting ‘object 3’) and e(contains) = {〈o1, o2〉}. We assume that the clas-
sifier c for C yields, based on the object features f(oi) extracted from the
image, P c

o1
(car) = 0.4, P c

o1
(building) = 0.5, P c

o1
(wheel) = 0.1, P c

o2
(car) = 0.1,

P c
o2

(building) = 0.1 and P c
o2

(wheel) = 0.8.

In other approaches [1,6,16], relations between objects are often used to
conditionalize the probability distribution of label combinations of the involved
objects. As we use ASP constraints to describe the relational context, we use the
relations in the sets Ri differently, i.e. to state restrictions over expected label
assignments via relations that may be derived from further relations together
with other supposed label assignments.

Following Richardson and Domingos [18], the weight of a context constraint
in LPMLN can be interpreted as the logarithm of the odds between a possi-
ble world where it is satisfied and one where it is not (called the log odds),

Exploiting Contextual Knowledge for Hybrid Classification of Visual Objects 229

other things being equal. In general, context constraints are not independent
from each other, thus changing their truth value also changes the value of other
constraints. However, as we consider cases with only few training data (such
that the classifier output can still be improved by considering the context), it is
unfeasible to learn all interactions between constraints from it. Thus, we assume
bona fide independence of context constraints and straight use the log odds for
the constraints calculated from the training instances as weights.

The restrictions over label assignments in terms of the relational context are
formalized by a context encoding as follows:

Definition 6 (Context encoding). Given a CCS S = 〈L,R〉, we use the
following designated predicates: context relation predicates R =

⋃

Ri∈R Ri and
helper predicates H ranging over tuples of objects, and the label assignment
predicate a label ranging over pairs of objects and labels. A context encoding E
for S is an LPMLN program that consists of rules of the form

α : h(X) ← b1(X), . . . , bk(X),not bk+1(X), . . . ,not bm(X), (5)

where h ∈ H and b1, . . . , bm ∈ R ∪ H ∪ {a label}; and constraints of the form

w : ← b1(X), . . . , bk(X),not bk+1(X), . . . ,not bm(X), (6)

where b1, . . . , bm ∈ R ∪ H ∪ {a label}, and w is the log odds for the constraint
being satisfied given the extensions of the predicates in R ∪ H (as learned from
training data).

The helper predicates in H are used to recursively aggregate relations and label
assignments into new relations, which can be utilized to restrict permissible
assignments.

Example 2 (cont’d). We define a simple context encoding E for S from Exam-
ple 1, using the context relation predicate contains and the helper predicate
has car part:

α : has car part(X) ← contains(X,Y), a label(Y,wheel) (7)
1.95 : ← not a label(X, car), has car part(X) (8)

The particular weight is chosen for the context constraint because we assume
here that we have observed 28 cases in our training data where an object that
has a car part is actually a car, and four cases where it is not, i.e. the log odds
for the constraint being true given the extension of the predicate has car part
are ln(28/4) ≈ 1.95.

Taxonomic reasoning can easily be added by introducing, e.g. a rule that
derives all labels representing car parts. Likewise, spatial reasoning can be imple-
mented by inferring further relations from the given relations (e.g., an object
overlaps with another object if one contains the other).

230 T. Eiter and T. Kaminski

We combine a local classifier for a CCS S = 〈L,R〉 and a context encoding
for S into an HC that yields a solution for a CCP C = 〈S,O, e〉 as follows:

Definition 7 (Hybrid classifier encoding). Given a CCP C = 〈S,O, e〉 for
a CCS S = 〈L,R〉, a local classifier c, and a context encoding E for S, the
hybrid classifier (HC) for C is represented by an LPMLN program ΠC(c, E) =
E ∪ A(c,O) ∪ I(C) where the classifier assignment encoding A(c,O) contains
(1) the weighted facts

α : label(li) for each label li ∈ L,
α : clf(oi, lj , p) for each oi ∈ O and lj ∈ L, where p = ln

(

P c
oi

(lj)

1−P c
oi

(lj)

)

,
(2) the two guessing rules

α : a label(O,L) ← object(O), label(L), not n a label(O,L),
α : n a label(O,L) ← object(O), label(L), not a label(O,L),

(3) the unique assignment constraint
α : ← #count{L : a label prob(X,L, P)} 	= 1, object(X),

(4) the weighted classifier constraint
P : ← not a label prob(O,L, P), clf(O,L, P)

and the rule
α : a label prob(O,L, P) ← a label(O,L), clf(O,L, P),

and the CCP instance encoding I(C) contains
(5) the weighted facts

α : object(oi) for each object oi ∈ O, and
α : ri(o1, . . . , oi) for each ri ∈ Ri and each 〈o1, . . . , oi〉 ∈ e(ri).

Here, (5) represents the input part of the HCP, while (2)–(4) are fixed; (2) and
(3) ensure that each object gets exactly one label, and (4) assigns the weights by
the local classifier to the separate label assignments. Again, we use the log odds
between a complete label assignment where a label is assigned vs. not assigned
from the local classifier as weight.

Intuitively, a solution of an HCP should minimize the violation costs of con-
text constraints, but at the same time maximize the joint classifier probability
of the label assignment. As the two optimization criteria are opposite in general,
the goal is a good compromise that yields a better label assignment than the one
of the local classifier. As it is not clear a priori how much influence the classifier
and the context constraints should have on a solution, the probabilities returned
by the local classifier in (4) could be scaled by an influence factor such that its
impact on a solution can be varied for tuning an HC.

A solution for a CCP wrt. an HC is defined as follows.

Definition 8 (HCsolution). Asolution for aCCPC provided by anHCΠC(c, E)
is a solution λ for C s.t. for some Herbrand interpretation I, no Herbrand interpre-
tation I ′ withPΠC(c,E)(I ′) > PΠC(c,E)(I) exists and a label(oi, li) ∈ I iffλ(oi) = li.

Definition 7 encodes the optimization problem by an LPMLN program that can
be translated into an ordinary answer set program with weak constraints, such
that a solution according to Definition 8 can be extracted from any answer set
(cf. Proposition 1).

Exploiting Contextual Knowledge for Hybrid Classification of Visual Objects 231

Example 3 (cont’d). The LPMLN program ΠC(c, E) representing the HC for C,
c and E as in the previous examples consists of E, with the weighted facts
α : obj(o1), α : obj(o2), α : label(c), α : label(b), α : label(w), α : clf(o1, c, -0.41),
α : clf(o1, b, 0), α : clf(o1, w, -2.2), α : clf(o2, c, -2.2), α : clf(o2, b, -2.2), α :
clf(o2, w, 1.39) and α : contains(o1, o2) (abbreviating the labels), and (2) to
(4) from Definition 7.

Without the context encoding E, the single stable model of the program with
the highest normalized weight would contain a label(o1, b) and a label(o2, w);
this does not correspond to the correct labeling of the scene shown rightmost in
Fig. 1. The previous assignment would not satisfy the constraint in E. Hence,
when considering E, there are three ways to satisfy it by changing the assigned
labels: changing (1) the label of o1 to car; or (2) the label of o2 to either (2)
building or (3) car. As the constraint has weight 1.95 and the label adaptations
result in a weight difference of −0.41 for (1) and −3.59 for (2) and (3) for
the classifier constraints, only (1) would yield an overall weight improvement.
Thus, labeling o1 as car and o2 as wheel is the only solution for C via ΠC(c, E)
according to Definition 8; this is the correct labeling of the scene.

Note that if the difference between the probability that o2 is a wheel and e.g.
a building would be small enough, satisfying the constraint (7) in E by changing
the label of o2 could actually result in a higher overall weight. Thus, context
constraints can also decrease the accuracy of the resulting labeling, depending
on the quality of the probabilities provided by the classifier.

4 Hybrid Classifier Construction

After having defined HCs abstractly above, we now describe a methodology
for constructing a concrete HC for a given CCP, which we also employ in our
empirical evaluation. We suggest the following strategy for obtaining a good HC,
where the objective is high accuracy of the corresponding solution.

(1) Data and local classifier preparation. We assume that we are given a set of
CCPs that are all defined over the same CCS for training the HC, together
with a solution λ for each CCP representing the ground truth. Obviously,
the concrete relations e are usually different in each CCP and first must be
extracted from the raw data. For testing the influence of different context
constraints, it is crucial to use part of the data for validation to avoid over-
fitting of the designed constraint encoding. Hence, we split the initial data
set into a training set, a validation set and a test set. The local classifier is
trained on the associated features of all objects in the CCPs in the training
set separately.

(2) Designing the context encoding. Although context constraints theoretically
could be learned, e.g. by ILP techniques, the current approach assumes that
a domain expert with background knowledge on the particular task for the
HC has designed the context encoding. However, failure patterns in the
output of the local classifier can be used to guide the design process. For

232 T. Eiter and T. Kaminski

this purpose, the local classifier is first used to classify all objects in the
validation set and a confusion matrix is compiled, which reveals objects
that are difficult to classify for the local classifier and the pairs of labels
confused most often. This way, the constraint encoding can be tailored to
counter the shortcomings of the local classifier that might result from few,
noisy or ambiguous data.

For a constraint c of the form (6) (see Definition 6), its weight w is
computed as follows. Determine in the training set the number of ground
instances where the label assignment specified by atoms in L is false (resp.,
true), denoted by fc (resp., tc), provided the context described by the atoms
in R ∪ H of (6) is satisfied. If we would not fix these atoms for counting,
e.g. in Example 2 for (8) each object not containing a car part would count
as positive instance. However, in this case we are interested in the odds for
an object being a car if it has a car part. The weight w of the constraint c
is then ln(fc/tc).

(3) Constraint selection and influence tuning. After having designed the con-
straint encoding, the resulting HC could be evaluated already on the test
set and used on new CCP instances. However, as discussed in Example 3,
context constraints may also decrease the overall accuracy of the results.
Hence, the constraint encoding E should be evaluated on the validation set
first. As constraints may interact, in general each subset C of constraints
must be tested to single out the optimal one wrt. the validation set. As
there are exponentially many C, a heuristics is to assess the influence of
each constraint c separately and keep it if the accuracy does not decrease
if c is applied alone resp. increase if c is dropped from the set of all con-
straints. In addition, the validation set can be used to tune the influence
of the local classifier and the context encoding on the solution, by testing
different influence factors.

Example 4 (HC in visual scenes). In the context of visual object classification
in scene images, a CCS S = 〈L,R〉 is created by defining the set L of possible
labels for the objects in a class of scenes, e.g. ‘car’, ‘building’ and ‘tree’ for
outdoor scenes, and ‘table’, ‘chair’ and ‘shelf’ for indoor scenes, and by fixing the
considered set R of relations between objects. Spatial relations such as ‘contains’,
‘intersects’ and ‘touches’ are arguably most prevalent in visual scenes, but R may
include also other relations, even relating local features of different objects, such
as the binary relation ‘has same color’.

To turn a set of scene images into a set of CCPs, the image first must be
segmented into regions containing single objects. Many procedures for image
segmentation exist (see e.g. the survey in [25]); we simply assume here that the
image is already segmented. The visual features of the separate segments repre-
sent the input to the local classifier, which needs to be trained on a training set
of segments representing objects O from training CCPs 〈S,O, e〉 and the corre-
sponding set L of labels. The extension e of the relations R must be extracted for
each CCP separately from the information provided by the scene image and its
segmentation, e.g. by computing spatial relations wrt. their bounding boxes or

Exploiting Contextual Knowledge for Hybrid Classification of Visual Objects 233

polygon coordinates. Further, implicitly entailed spatial relations can be derived
e.g. by employing a spatial reasoning calculus such as RCC8 [17].

Suppose we examine the confusion matrix for the local classifier on the vali-
dation set for indoor scenes, and we observe that doors are often misclassified as
tables (their surfaces look nearly identical). We then could add a constraint c to
the encoding E which states that tables are not contained in walls. We compute
fc and tc by counting the objects in the training set contained in a wall that are
non-tables resp. tables; presumably the resulting weight ln(fc/tc) is quite high.
After having added several constraints to E, we test how removing single con-
straints (or sets of them) affects the accuracy on the validation set. In that, we
might observe that the constraint prohibiting tables in walls actually decreases
the overall accuracy, even if it is mostly satisfied on the training data. Indeed,
possibly some doors are still wrongly labeled as ‘table’ while the correct label
‘wall’ of a wall is changed to an incorrect one. This might have further implica-
tions; e.g. if a constraint states that windows only occur in walls, many windows
are misclassified too. This illustrates the importance of constraint selection for
HC construction.

5 Evaluation

In this section, we evaluate two concrete HCs for two different sets of benchmark
instances in order to empirically investigate the effect of applying context con-
straints. Our goal is to ascertain (Q1) whether a higher classification accuracy is
achievable by employing an HC instead of a local classifier, (Q2) which influence
the quality of the local classifier has on HC performance, and (Q3) which impact
constraint selection and influence tuning have on the solution quality.

We expected that HCs improve the accuracy provided that the local classifier
yields sufficiently many correct labels, as a basis to correct the other labels;
furthermore, that the accuracy gain can be increased by tuning an HC on the
validation set.

Experimental Setup. For experimentation, we implemented an HC frame-
work in Python that enables construction and evaluation of HCs for object
classification in scene images. As local classifier, we used Logistic Regression
from the scikit-learn library [14], which we trained on features extracted from
image segments obtained by the bag of keypoints approach [4], which uses vector
quantization of invariant image descriptors. For creating the visual vocabulary,
we employed k-means clustering and Scale Invariant Feature Transform (SIFT)
descriptors [12]; they are suited for our purpose as they are invariant wrt. trans-
formations, varying illumination and overlapping objects. To detect and compute
SIFT descriptors, we used the OpenCV 2 library.

Furthermore, we used the Shapely3 package for Python to calculate concrete
spatial relations between object-polygons in each scene, based on the DE-9IM
2 http://opencv.org/.
3 https://pypi.python.org/pypi/Shapely.

http://opencv.org/
https://pypi.python.org/pypi/Shapely

234 T. Eiter and T. Kaminski

Fig. 2. Example of a typical indoor and outdoor scene from the LabelMe dataset [19]

Table 1. Results for local classifier and HC with (+sel) or without (−sel) constraint
selection and with (+tun) or without (−tun) influence tuning

Data set Local classifier HC −sel −tun HC −sel +tun HC +sel −tun HC +sel +tun

(E1) validation 46.3% 53.3% 52.9% 57.1% 58.0%

(E1) test 46.5% 52.2% 52.7% 54.4% 55.5%

(E2) validation 59.7% 63.3% 67.7% 68.8% 70.6%

(E2) test 58.1% 59.6% 69.0% 71.0% 73.2%

model [23]. Moreover, for computing the optimal solution of an HC encoding,
we utilized Clasp 3.1.2 and Gringo 4.5.1 [7].

Benchmark Instances. The experiments have been conducted on two sets
of scene images from the LabelMe dataset [19]. We used a custom segmentation
obtained manually, as for testing the impact of context constraints the quality of
the available segmentations as well as the user-defined labels varied considerably.
The data sets used in our experiments, the segmentation data, the constraint
encodings and all results are available at http://www.kr.tuwien.ac.at/research/
projects/inthex/hc-experiments/.

We use (E1) a set of indoor office scenes and (E2) a set of outdoor street
scenes, each containing 120 images, which we split into a training set and vali-
dation set of 30 images each, and a test set of 60 images. A typical scene from
each data set is shown in Fig. 2. For both types, we defined 12 labels for the
objects that occur most frequently:

– indoor: ‘chair’ (c), ‘monitor’ (mn), ‘keyboard’ (k), ‘mouse’ (ms), ‘table’ (t),
‘book’ (bk), ‘shelf’ (s), ‘wall’ (wl), ‘board’ (br), ‘person’ (p), ‘door’ (d) and
‘window’ (wi),

– outdoor: ‘sign’ (sg), ‘person’ (p), ‘tree’ (tr), ‘window’ (wi), ‘door’ (d), ‘street’
(st), ‘car’ (c), ‘sky’ (sk), ‘building’ (b), ‘sidewalk’ (si), ‘wheel’ (wh) and ‘trunk’
(trn).

Indoor scenes contain 7 to 23 objects, outdoor scenes 7 to 28. In total, (E1) con-
tains 2046 objects, and (E2) has 2280 objects. We extracted the binary spatial rela-
tions ‘contains’, ‘close to’, ‘above’, ‘under’, ‘overlaps’, ‘contains in bottom part’

http://www.kr.tuwien.ac.at/research/projects/inthex/hc-experiments/
http://www.kr.tuwien.ac.at/research/projects/inthex/hc-experiments/

Exploiting Contextual Knowledge for Hybrid Classification of Visual Objects 235

Fig. 3. Confusion matrices of local classifier and HC test results for indoor and outdoor
scenes

and ‘higher’ from the images for use in our constraint encodings, from which we
created an HC for each dataset.

Experimental Results. After training the local classifiers on all objects in
the training sets, we applied them to the validation sets; for indoor scenes, the
average accuracy was 46.3 % and for outdoor scenes 59.7 %. We then constructed
HCs, following the methodology from Sect. 4, by setting up 20 constraints in each
case and selecting a subset of 13 constraints after testing different combinations.
The accuracy increased for the indoor validation set to 57.1 % and for the outdoor
validation set to 69.0 %.

In addition, we tested different influence factors, viz. 0.1, 1, 10, and 100 for
the classifier weights; for both data sets, factor 10 yielded the best results due to
less erroneous changes of labels correctly predicted by the local classifier. This

236 T. Eiter and T. Kaminski

value is thus suggestive as a default for our use case, and we fixed the influence
factors to these values.

We then applied the final HCs to the test sets. Overall, for indoor scenes
the accuracy increased from 46.5 % to 55.5 %, and the HC was better than the
local classifier on 38 scenes and worse on 11 out of 60. For outdoor scenes, the
accuracy increased from 58.1 % to 73.2 %, and the HC was better than the local
classifier on 57 cases and worse in 1 case. Thus (Q1), whether an HC can be
better than a local classifier, has in these use cases a positive answer. The test
results are summarized in Table 1.

Regarding (Q3), i.e., the impact of constraint selection and influence tun-
ing, simply adding all 20 constraints increased the accuracy for indoor scenes
from 46.5 % to 52.2 % and for outdoor scenes from 58.1 % to merely 59.6 %; this
confirms that constraint selection is a crucial step in HC construction. Influence
tuning also proved beneficial and helped to increase the accuracy further in both
cases (cf. Table 1).

To provide more details on the effect of the context constraints on the par-
ticular labels, Fig. 3 shows the confusion matrices of the local classifiers and the
final HCs wrt. both test sets. As can be seen e.g. from the rows for books and
shelves in the matrix for the indoor local classifier, it misclassifies them more
than half of the time. By adding a constraint that books are contained in shelves
(weight 5.067) and that shelves contain books (weight 3.967), the number of cor-
rectly classified shelves increased from 56 to 86, and for books from 40 to 53.
Similarly, considering the matrix for the outdoor local classifier, adding a con-
straint that windows are contained in buildings or in the upper parts of cars
(weight 3.863) decreases wrong window classifications from 269 to 37.

As for (Q2), we artificially decreased the quality of the local classifier by
training it on a gradually shrunken training set. Notably the benefit of adding
context constraints decreased with the accuracy of the local classifier, and when
it was below ≈35 % for indoor resp. ≈45 % for outdoor scenes, the local classifier
outperformed the HC.

Finding the optimal solution for an HC encoding for a given scene by Clasp
usually took just a few seconds, on a Linux machine with an 2.5 GHz Intel Core i5
CPU and 8 GB RAM. We used a timeout of 20 s, which was only reached by few
instances containing many objects, and did not show to have a negative impact
on the results.

6 Related Work

As context information is valuable for simultaneous classification of visual
objects, many approaches—mainly in Computer Vision—exploit scene infor-
mation and provide either a statistical summary of the image (also called Gist)
as additional input to the classifier, or exploit relationships between particu-
lar objects in a scene (often called the semantic context) [15]. Rabinovich and
Belongie [15] argue that by considering semantic context, stronger contextual
constraints can be imposed (e.g. also spatial relations), and show empirically

Exploiting Contextual Knowledge for Hybrid Classification of Visual Objects 237

that they can greatly improve recognition performance. Most approaches using
semantic context for label prediction employ some kind of graphical model, e.g.
conditional random fields [16] or Markov logic networks [3,13,24] in which the
mutual influence of labelings is directly encoded by conditional probabilities.
Another approach that is very effective for object classification in complex scenes
[1] and for collective classification in general [22] is the iterative classification
algorithm (ICA) [21], which iteratively predicts and updates the label of each
object based on the current labeling.

Clearly, our approach is related to approaches that consider semantic con-
text or use graphical models. Those above are different from ours as they usually
employ probabilistic inference methods such as Markov chain Monte Carlo and
do not use combinatorial optimization techniques. In addition, often only simple
relations such as the co-occurrence frequency of objects were addressed [1,16]. In
contrast, we consider diverse relations between objects extracted from an image
(e.g. their position, height and spatial relation to other objects) and they can
be combined into more complex relations. Notably, closed world reasoning can
directly be employed in our approach. In Markov logic, this is not straightfor-
ward since in the worst case an exponential number of loop formulas has to be
computed in order to translate LPMLN to Markov logic [10].

An approach similar to ours is presented in [20], where spatial context is also
formalized as constraints to increase collective classification accuracy. However,
Fuzzy CSPs and Branch and Bound are used instead of probabilistic semantics,
and only basic relation types are considered. From a bird’s eye view, our proba-
bilistic approach achieves a higher accuracy gain with considerably less training
data, but further research (requiring an implementation of [20] and suitable
benchmarks) is needed for a clear picture.

7 Conclusion

In this paper, we have introduced a general framework for solving CCPs and
a methodology for its application. Our tests show that classification of objects
can be significantly improved by considering their semantic context. At the same
time, the achievable improvement highly depends on the selected constraints and
their interaction, as well as on the quality of the local classifier. If the latter labels
most objects incorrectly, the context constraints intuitively lack a reasonable
base for correction as wrong labels do not help to infer correct labels of other
objects. Overall, we found that best HC results can be obtained when the local
classifier performs reasonably well but there is still room for improvement, and
when the right set of constraints is selected using a validation set.

Even though we address a specific application, our framework is applicable to
a wide range of tasks. For instance, linked data (e.g. social networks or citation
graphs) has been considered as a domain for collective classification [11]. Previ-
ous work in this area mostly focuses on uniform neighborhood relations, where
complex reasoning over context relations is not required. However, there is much
room for exploiting rich relational structures in these domains as well, similar to

238 T. Eiter and T. Kaminski

the ones provided by spatial relations in the visual domain, e.g., by integrating
an ontology that defines a number of properties of and relations between people
and utilizing, e.g., the transitive closure of the friend-of relation computed in the
ASP part.

Outlook. Regarding future work, we aim to integrate our framework into the
HEX formalism [5], which extends ASP with external sources and would allow
us to interface an ontology reasoner and a spatial reasoning calculus, such as
RCC8, directly from within our encoding. In addition, the local classifier could be
implemented as an external source as well, resulting in a more modular approach.
This way, the classifier could be oriented based on information derived in the
ASP part. For instance, if there are two rules stating that the object attached to
a car and a bicycle is a wheel, and the label ’wheel’ is assigned to some object,
abduction could be used to find that the object is either attached to a car or
to a bicycle. Subsequently, the classifier could be queried to find the most likely
explanation for discovering a wheel.

References

1. Angin, P., Bhargava, B.: A confidence ranked co-occurrence approach for accurate
object recognition in highly complex scenes. J. Internet Technol. 14(1), 13–19
(2013)

2. Buccafurri, F., Leone, N., Rullo, P.: Enhancing disjunctive datalog by constraints.
IEEE Trans. Knowl. Data Eng. 12(5), 845–860 (2000)

3. Chechetka, A., Dash, D., Philipose, M.: Relational learning for collective classifica-
tion of entities in images. In: AAAI Workshops on Statistical Relational Artificial
Intelligence, AAAI Workshop 2010. AAAI (2010)

4. Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization
with bags of keypoints. In: Workshop on Statistical Learning in Computer Vision,
ECCV 2004, pp. 1–22 (2004)

5. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-
order reasoning and external evaluations in answer-set programming. In: Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 2005, pp. 90–96. Profes-
sional Book Center (2005)

6. Galleguillos, C., Rabinovich, A., Belongie, S.J.: Object categorization using co-
occurrence, location and appearance. In: IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, CVPR 2008. IEEE Computer Society
(2008)

7. Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider,
M.T.: Potassco: the potsdam answer set solving collection. AI Commun. 24(2),
107–124 (2011)

8. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Gener. Comput. 9(3/4), 365–386 (1991)

9. Getoor, L.: Introduction to Statistical Relational Learning. MIT Press, Cambridge
(2007)

10. Lee, J., Wang, Y.: Weighted rules under the stable model semantics. In: Proceed-
ings of the Fifteenth International Conference on Principles of Knowledge Repre-
sentation and Reasoning, KR 2016, pp. 145–154. AAAI Press (2016)

Exploiting Contextual Knowledge for Hybrid Classification of Visual Objects 239

11. London, B., Getoor, L.: Collective classification of network data. In: Aggarwal,
C.C. (ed.) Data Classification: Algorithms and Applications, pp. 399–416. CRC
Press, Boca Raton (2014)

12. Lowe, D.G.: Object recognition from local scale-invariant features. In: 7th IEEE
International Conference on Computer Vision, ICCV 1999, pp. 1150–1157 (1999)

13. Marton, Z.C., Rusu, R.B., Jain, D., Klank, U., Beetz, M.: Probabilistic categoriza-
tion of kitchen objects in table settings with a composite sensor. In: International
Conference on Intelligent Robots and Systems, IEEE/RSJ 2009, pp. 4777–4784.
IEEE (2009)

14. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., VanderPlas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine
learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

15. Rabinovich, A., Belongie, S.J.: Scenes vs. objects: a comparative study of two
approaches to context based recognition. In: IEEE Conference on Computer Vision
and Pattern Recognition, CVPR Workshops 2009, pp. 92–99. IEEE Computer
Society (2009)

16. Rabinovich, A., Vedaldi, A., Galleguillos, C., Wiewiora, E., Belongie, S.J.: Objects
in context. In: IEEE 11th International Conference on Computer Vision, ICCV
2007, pp. 1–8. IEEE Computer Society (2007)

17. Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection.
In: Proceedings of the 3rd International Conference on Principles of Knowledge
Representation and Reasoning, KR 1992, pp. 165–176. Morgan Kaufmann (1992)

18. Richardson, M., Domingos, P.M.: Markov logic networks. Mach. Learn. 62(1–2),
107–136 (2006)

19. Russell, B.C., Torralba, A., Murphy, K.P., Freeman, W.T.: LabelMe: a database
and web-based tool for image annotation. Int. J. Comput. Vis. 77(1–3), 157–173
(2008)

20. Saathoff, C., Staab, S.: Exploiting spatial context in image region labelling using
fuzzy constraint reasoning. In: Ninth International Workshop on Image Analysis
for Multimedia Interactive Services, WIAMIS 2008, pp. 16–19. IEEE Computer
Society (2008)

21. Sen, P., Namata, G., Bilgic, M., Getoor, L.: Collective classification. In: Sammut,
C., Webb, G.I. (eds.) Encyclopedia of Machine Learning, pp. 189–193. Springer,
US (2010)

22. Sen, P., Namata, G., Bilgic, M., Getoor, L., Gallagher, B., Eliassi-Rad, T.: Collec-
tive classification in network data. AI Mag. 29(3), 93–106 (2008)

23. Strobl, C.: Dimensionally extended nine-intersection model (DE-9IM). In: Shekhar,
S., Xiong, H. (eds.) Encyclopedia of GIS, pp. 240–245. Springer, US (2008)

24. Tran, S.D., Davis, L.S.: Event modeling and recognition using Markov logic net-
works. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5303,
pp. 610–623. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88688-4 45

25. Zhang, H., Fritts, J.E., Goldman, S.A.: Image segmentation evaluation: a survey
of unsupervised methods. Comput. Vis. Image Underst. 110(2), 260–280 (2008)

http://dx.doi.org/10.1007/978-3-540-88688-4_45

Reasoning About Justified Belief
Based on the Fusion of Evidence

Tuan-Fang Fan1 and Churn-Jung Liau2(B)

1 Department of Computer Science and Information Engineering,
National Penghu University of Science and Technology, Penghu 880, Taiwan

dffan@npu.edu.tw
2 Institute of Information Science, Academia Sinica, Taipei 115, Taiwan

liaucj@iis.sinica.edu.tw

Abstract. In this paper, we propose logics for reasoning about belief
and evidence. Starting from justification logic (JL) in which the reasons
why a fact is believed are explicitly represented as justification terms,
we explore the relationship between justified belief and fused information
from different evidential sources. We argue that the expressive power of
JL is inadequate for our purpose, because, while a justification formula
can represent that a piece of evidence is admissible for the belief, it can-
not express whether the evidence has been actually observed. Therefore,
to address the issue, we propose more fine-grained JL’s that can express
the informational content of evidence, and the actual observation of evi-
dence is definable in such logics. As a byproduct, we also show that the
proposed logics are easily extended to accommodate dynamic evidential
reasoning. Consequently, we can integrate JL and dynamic epistemic
logic (DEL) paradigms in a natural way.

1 Introduction

Modal logic has been a standard approach for reasoning about knowledge and
belief of intelligent agents [13,22] since the seminal work by Hintikka [18].
Because the formula �ϕ is interpreted as “ϕ is believable” or “ϕ is knowable”
in the epistemic/doxastic reading of modal logics1, explicit justifications are not
represented in the logic. By contrast, justification logics (JL) supply the missing
component by adding justification terms to epistemic formulas [2,5,6,15]. The
first member of the JL family is the logic of proofs (LP) proposed in [1]. Although
the original purpose of LP is to formalize the Brouwer-Heyting-Kolmogorov
semantics for intuitionistic logic and establish the completeness of intuitionistic
logic with respect to this semantics, in a more general setting, JL has evolved

The work is partially supported by the Ministry of Science and Technology of
Taiwan under Grants MOST 105-2410-H-346-006-MY2 and MOST 104-2221-E-001-
010-MY3.

1 For the purpose of the paper, the difference among belief, knowledge, and information
is not important. Hence, hereafter, we use epistemic reasoning to denote reasoning
about any kind of informational attitude for an agent.

c© Springer International Publishing AG 2016
L. Michael and A. Kakas (Eds.): JELIA 2016, LNAI 10021, pp. 240–255, 2016.
DOI: 10.1007/978-3-319-48758-8 16

Reasoning About Justified Belief Based on the Fusion of Evidence 241

into a kind of explicit epistemic logic and received much attention in computer
science and AI [2,6].

Currently, the most prominent semantics of JL is based on Fitting mod-
els, which are essentially extensions of Kripke models for epistemic logic with
an admissible evidence function, i.e., a mapping from justification terms and
formulas to states that stipulates in what state the evidence is admissible for
the formula. However, Fitting semantics suffers the ambiguous interpretation
of a justification formula as justified belief or simply the admissibility relation
between evidence and belief. The ambiguity arises mainly from the inadequate
expressive power of JL. While a justification formula can represent that a piece of
evidence is admissible for the belief, it cannot express whether the evidence has
been actually observed. Therefore, to facilitate the more fine-grained distinction
between admissible and actual evidence, we must enhance the expressive power
of the JL language. To address the issue, we propose a JL that can express the
informational contents of justification terms; and the fact that a piece of evi-
dence has been actually observed is definable in such logics. Furthermore, the
recent development on dynamic epistemic logic (DEL) has shown that modeling
dynamics of information plays a crucial role in epistemic reasoning [8,12]. As
a byproduct, we also show that the proposed logics can be extended to accom-
modate dynamic evidential reasoning and hence we can easily integrate JL and
DEL paradigms.

The remainder of the paper is organized as follows. In Sect. 2, we review JL
and its semantics. In Sect. 3, we present a detailed analysis on the ambiguity
problem of JL. In Sect. 4, we propose a fine-grained JL with informational con-
tents of evidence that is expressive enough to overcome the problem. In Sect. 5,
we present an alternative fine-grained JL that can differentiate the distinction
between direct and indirect observations of evidences with the same informa-
tional contents. In Sect. 6, we extend the proposed logics to their dynamic ver-
sions. Section 7 contains the comparison with related work. In Sect. 8, we present
the conclusion and indicate future research directions.

2 Preliminaries

2.1 Modal Logic

We start with a brief account of classical modal epistemic logic [11]. Let Φ denote
the set of propositional symbols. Then, the formulas of the propositional modal
logic are defined as follows:

ϕ ::= p | ⊥ | ϕ → ϕ | �ϕ,

where p ∈ Φ, ⊥ is the logical constant representing falsum , → is the material
implication, and � is the epistemic modality. Other logical connectives such as
�,¬,∧,∨,≡ and modality � are defined as abbreviations as usual. We use L�

to denote the propositional modal language.

242 T.-F. Fan and C.-J. Liau

The standard semantics of modal logic is based on Kripke model, which is a
triple M = 〈W,R,�〉, where W is a set of possible worlds (states), R ⊆ W ×W is
a binary accessibility relation on W , and �⊆ W ×Φ is a forcing relation between
possible worlds and propositional symbols such that w � p means that p is
satisfied in w. As usual, for any w ∈ W , we use R(w) to denote the set of worlds
accessible from w, i.e., R(w) = {u ∈ W | (w, u) ∈ R}. The forcing relation
can be extended to a relation �M between W and L� by the semantic rules. In
addition to the standard rules for classical connectives, we have w �M �ϕ iff for
any u such that (w, u) ∈ R, u �M ϕ. We usually drop the subscript and simply
write � for the extended forcing relation when the model M is clear from the
context. The definitions of semantic consequence and validity are standard. Let
Σ ∪ {ϕ} be a set of formulas. Then, we use Σ |= ϕ and |= ϕ to denote that ϕ
is a semantic consequence of Σ and that ϕ is valid respectively.

2.2 Justification Logic

To represent justifications, JL provides formal terms built up from constants
and variables using various operation symbols. Constants represent justifica-
tions for commonly accepted truths—typically axioms, whereas variables denote
unspecified justifications. While different variants of JL allow different operation
symbols, most of them contain application and sum. Specifically, the justification
terms and formulas of the basic JL are defined as follows:

t ::= a | x | t · t | t + t,

ϕ ::= p | ⊥ | ϕ → ϕ | t :ϕ,

where p ∈ Φ, a is a justification constant, and x is a justification variable. We use
LJ to denote the basic JL language and Tm to denote the set of all justification
terms.

JL furnishes an evidence-based foundation for epistemic logic by using jus-
tification formulas t : ϕ to denote “t is a justification of ϕ”, or more strictly,
“t is accepted as a justification of ϕ” [2]. Semantically, the formula t : ϕ can
be regarded as indicating that t is an admissible evidence for ϕ and based
on the evidence, ϕ is believed. Thus, the model of JL is the Kripke model
enriched with an additional evidence component [2,15]. This kind of model,
called Kripke-Fitting model or simply Fitting model , is formally defined as a
quadruple M = 〈W,R,E,�〉, where 〈W,R,�〉 is a Kripke model and E is an
admissible evidence function such that E(t, ϕ) ⊆ W for any justification term t
and formula ϕ. Intuitively, E(t, ϕ) specifies the set of possible worlds in which t
is regarded as admissible evidence for ϕ. In this paper, we consider the basic JL
in which it is required that E must satisfy the closure condition with respect to
the application and sum operations:

– Application: E(s, ϕ → ψ) ∩ E(t, ϕ) ⊆ E(s · t, ψ);
– Sum: E(s, ϕ) ∪ E(t, ϕ) ⊆ E(s + t, ϕ);

Reasoning About Justified Belief Based on the Fusion of Evidence 243

The first condition states that an admissible evidence for ϕ → ψ, which can be
regarded as a function that transforms a justification of ϕ to a justification of ψ,
can be applied to an admissible evidence for ϕ to obtain an admissible evidence
for ψ. The second condition guarantees that adding a piece of new evidence does
not defeat the original evidence. That is, s + t is still an admissible evidence for
ϕ whenever either s or t is an admissible evidence for ϕ. The forcing relation �
between W and the justification formula t :ϕ satisfies the following condition:

– w � t :ϕ iff w ∈ E(t, ϕ) and for any u such that (w, u) ∈ R, u � ϕ.

We will use (F1) and (F2) to denote the conditions “w ∈ E(t, ϕ)” and “for any
u such that (w, u) ∈ R, u � ϕ” respectively.

Fig. 1. The axiomatic system J

The basic JL system, denoted by J, is comprised of the axioms and infer-
ence rules presented in Fig. 1. The Axiom Internalization Rule behaves like the
necessitation rule in modal logic2. The intuition is that because an axiom ϕ is
assumed to be justified, the formula c1 : ϕ is postulated for some justification
constant c1. In addition, because we assume that the new principle c1 :ϕ is also
justified, we can postulate c2 : c1 :ϕ for a constant c2, etc. For the soundness of
the rule, a further restriction on the admissible evidence function is needed:

– for any instance ϕ of the axiom schemata above and any sequence of justifi-
cation constants c1, c2, . . . , cn(n ≥ 1), E(cn, cn−1 : · · · c1 : ϕ) = W .

2 An arbitrary subset of formulas of the form cn : cn−1 : · · · c1 : ϕ is called a constant
specification (CS) [2]. More generally, we can replace the rule with a CS. Then, the
rule corresponds to the special case of total CS in which the CS is the set of all such
formulas.

244 T.-F. Fan and C.-J. Liau

3 On the Twofold Interpretation of Justification Formulas

In [1], it is claimed that the intended semantics of t :ϕ in LP is “t is a proof of
ϕ”, which is exactly captured by the condition (F1) in Fitting semantics. When
the justification t represents a proof in some mathematical or logical system,
(F1) naturally implies condition (F2) of Fitting semantics. The fact that (F1)
implies (F2) is called the principle of justification yielding belief (JYB) in [3]
and formalized in the modular semantics introduced there. However, when LP is
evolving into the more general JL for epistemic reasoning, the principle becomes
less convincing because t :ϕ has the following two ambiguous interpretations:

1. t is a piece of actually observed evidence for ϕ: then the JYB principle holds
and the truth condition of t :ϕ can be formalized in Fitting semantics. How-
ever, in this case, the axiom Sum seems doubtful because t being actually
observed does not imply that t + s has been also actually observed.

2. t is regarded as admissible or relevant evidence for ϕ: it means that ϕ will
be believed once t is observed. However, it does not assert that t has been
actually observed. Hence, it is possible that ϕ is not believed currently. In this
case, the axiom Sum is valid but the JYB principle fails. Therefore, condition
(F2) in Fitting semantics must be dropped.

The following running example illustrates this ambiguity.

Example 1. Ann is a biologist who has conjectured a grand theory regarding
human brain, and to confirm the theory, she forms two testable hypotheses p
and q. In other words, the truth of the hypotheses will provide confirmation
of the theory to a large degree. To test these hypotheses, she must design and
conduct a series of experiments to observe their outcomes. Because Ann is also a
good reasoner, she can envision several outcomes that will justify her hypotheses.
Among the outcomes, she knows that t1 and t2 are good reasons for believing p
and q respectively. Hence, t1 and t2 are regarded as potential evidence. However,
because of the shortage of budget, she can only conduct the experiments to test
p and after the experiments, she indeed observe the outcome t1. Consequently,
among the two pieces of evidence, only t1 is actually observed and become actual
evidence. Then, by the first interpretation, t1 : p is true but t1 + t2 : p does
not hold because according to the interpretation, t1 + t2 : p is true only when
both t1 and t2 are actually observed. That is, the axiom Sum is violated for the
first interpretation. On the other hand, in the second interpretation, t : ϕ simply
means that t is potential evidence for ϕ no matter whether t is actually observed.
Thus, both t1 : p and t2 : q are true according to the interpretation. However,
while p is believed in this situation, q is not necessarily believed because t2 is not
actually observed yet. In addition, t1 + t2, which means the joint observation of
t1 and t2, is also potential evidence for both p and q because once t1 and t2 are
simultaneously observed, the joint evidence is a good reason for believing p and
q. Therefore, the axiom Sum is indeed valid for the second interpretation. �

Reasoning About Justified Belief Based on the Fusion of Evidence 245

4 Justification Logic with Informational Contents of
Evidence

The analysis in the preceding section shows that the ambiguity arises because of
the inadequate expressive power of JL for reasoning about justified belief based
on fusion of evidence. During the evolution from LP to JL, while the semantic
meaning of justification has been extended from mathematical proof to general
evidence, the syntax of the language remains unchanged and hence the expressive
power is no longer adequate for explicit epistemic reasoning. Therefore, to over-
come the problem, we need a more fine-grained language that can differentiate
these two interpretations of justification formulas.

The key point to clarify the ambiguity is whether a piece of evidence has been
actually observed. The basic idea is that evidence has some informational con-
tents and if a piece of evidence has been observed, then its informational contents
should have been assimilated into the current belief. Thus, our language must
be extended with modal operators �t to represent the informational contents
of t for each justification term t. In addition, we have a special constant ε and
a corresponding epistemic operator �ε that represent the agent’s belief based
on the accumulation of evidence so far. To represent the fusion of the agent’s
belief and evidence, we employ the Boolean modal logic (BML) encompassing
union, intersection and complement of modalities [16]. Moreover, we need a rela-
tional symbol to compare the relative strength of informational contents between
different justification terms or between ε and justification terms.

To implement these ideas, we present a JL with informational contents of
evidence (JL-ICE). For the language of JL-ICE, the definition of justification
terms remains the same as that of JL and the formation rules of Boolean modality
expressions and formulas are as follows:

α ::= ε | t | 1 | α | α ∩ α | α ∪ α

ϕ ::= p | ⊥ | ϕ → ϕ | t :ϕ | �αϕ | σ � σ,

where p ∈ Φ, t ∈ Tm is a justification term, and σ is a pseudo-justification term
(or simply pseudo-term), which is defined as a finite conjunction of justification
terms or ε, i.e. a special kind of Boolean modality expression t1 ∩ t2 ∩ · · · ∩ tk,
where each ti(1 ≤ i ≤ k) is either a justification term or ε. The resultant language
is denoted by Lice

J . We abbreviate 1 as 0, σ1 � σ2 ∧ σ2 � σ1 as σ1 ∼ σ2, and
�αϕ ∧ �α¬ϕ as �αϕ. Also, as usual, �αϕ is the abbreviation of ¬�α¬ϕ. Let
Tm+ and Bn denote the set of pseudo-terms and the set of Boolean modality
expressions respectively. Then, by definition, we have Tm ⊂ Tm+ ⊂ Bn. Because
we regard Bn as a Boolean algebra that is the closure of atomic terms in Tm∪{ε}
with respect to the algebraic operations ∩,∪, and −, we identify expressions that
are equal under the Boolean equational theory. For example, t is regarded as
identical to t.

In the logical language, a pseudo-term σ denotes the accumulation of evidence
and belief terms appearing in σ and �σ represents its informational contents.

246 T.-F. Fan and C.-J. Liau

Intuitively, �εϕ means that the agent (implicitly) believes ϕ or has the infor-
mation ϕ based on the fusion of evidence observed so far; and �tϕ means that
the informational contents of t implies ϕ. Metaphorically, t can also be regarded
as a virtual agent so that �tϕ means that the virtual agent t believes ϕ. There-
fore, �σ is simply the distributed knowledge operator defined in [13] to denote
the belief fusion of an agent group σ. Furthermore, the formula σ1 � σ2 means
that the informational content of σ1 is at least as informative as that of σ2

3. To
characterize σ1 � σ2 in terms of modal operator, we need �αϕ to denote that
the exact informational content of α is ϕ (see the axiom CIC2 below). As we
need both the intersection and complement of modalities for denoting informa-
tion fusion and exact information, the whole Boolean algebra of modalities is
available in the language due to De Morgan law and the law of excluded middle.

The rich language facilitates the expression of the fact that the evidence t has
been actually observed as the formula ε � t, i.e. the informational contents of t
have been assimilated into the current belief represented by ε. In the language,
the justification formula t : ϕ is reserved for representing the admissibility of t
with respect to ϕ. That is, t :ϕ means that t is potential evidence for believing
ϕ. Then, we can abbreviate (t : ϕ) ∧ (ε � t) as t�ϕ which intuitively means
that ϕ is a belief justified by the actual observation of t. Note that we cannot
simplemindedly define “t being actual evidence for ϕ” as t : ϕ ∧ �εϕ because
there may exist multiple pieces of potential evidence with different informational
contents for the same formula ϕ. Hence, only one of them being actualized (so
that �εϕ is true) does not imply that all of them are actually observed.

For the semantics of JL-ICE, its Kripke-Fitting model is defined as a tuple
M = 〈W,Rε, (Rt)t∈Tm, E,�〉, where 〈W,Rε, E,�〉 is a Fitting model of JL, and
Rt ⊆ W × W is a binary relation for each justification term t such that the
coherence condition Rs+t = Rs·t = Rs ∩ Rt is satisfied. At first glance, it seems
odd that the accessibility relations for Rs+t and Rs·t are the same while s+t and
s · t are different terms. However, from the perspective of informational contents,
s + t and s · t both stand for the fusion of informational contents of s and t. In
other words, s+ t and s · t represent two different ways to combine the evidences
s and t. On one hand, s+ t denotes the simultaneous presentation of both pieces
of evidences; and on the other hand, s · t means that the evidence s for a rule is
applied to the evidence t for the antecedent of the rule to obtain the evidence
s · t for the consequent. Nevertheless, no matter how s and t are combined, their
informational contents are exactly assimilated into the merged evidence. Hence,
although s + t and s · t have different operational meaning, the denotational
meanings of their informational contents are the same. On the other hand, this
does not mean that one of · and + is redundant because they can keep track of
different derivation paths of justified belief. By induction, we can define Rα for
any α ∈ Bn such that the following conditions are satisfied:

– R1 = W × W ,
– Rα = Rα = W × W − Rα,
3 Syntactically, it seems more natural to use σ1 � σ2 to denote that σ1 is at most as

informative as σ2. However, our reading is based on the semantic viewpoint, which
means that the set of accessible worlds for σ1 is a subset of that for σ2.

Reasoning About Justified Belief Based on the Fusion of Evidence 247

– Rα∩β = Rα ∩ Rβ ,
– Rα∪β = Rα ∪ Rβ .

According to the definition, it can be easily seen that Rs+t = Rs·t = Rs∩t.
The forcing relation � is extended to a binary relation between W and Lice

J

as follows:

– w � t :ϕ iff w ∈ E(t, ϕ),
– w � �αϕ iff for any u such that (w, u) ∈ Rα, u � ϕ,
– w � σ′ � σ iff Rσ′(w) ⊆ Rσ(w).

Furthermore, we require that the admissible evidence function has the following
connection with informational contents of evidence:

– if w ∈ E(t, ϕ), then for any u such that (w, u) ∈ Rt, we have u � ϕ, i.e.
w � �tϕ.

That is, t is regarded as admissible evidence for ϕ only when ϕ is derivable from
informational contents of t.

We use |=Jice to denote the validity and semantic consequence in JL-ICE.
The validity in JL-ICE can be characterized by the Hilbert-style axiomatization
Jice presented in Fig. 2.

Although the semantic meaning of t :ϕ in our logic is different than that in
JL, the axioms and rules in J are still valid because of the closure conditions
on the admissible evidence function. Axioms K and rule Nec indicate that �α

is a normal modal operator. Axiom Con is a connection axiom between justifi-
cation formulas and informational content formulas. It requires that t is a good
reason for ϕ only if ϕ is derivable from informational contents of t. Axioms Coh
formulate the coherence condition on binary relations Rt in the Kripke-Fitting
model. Axiom BML is the complete axiomatization of Boolean modal logic intro-
duced in [16], which reflects the properties of Boolean modalities. In particular,
because R1 is the universal relation, the axioms (ii)–(iv) indicate that �1 is an
S5 modality. In addition, axiom (vi) represent a kind of monotonicity, where
�BA denotes the derivation in Boolean algebra. Hence, �BA α ∩ β = β means
that β ≤ α according to the ordering on the Boolean algebra. Axioms CIC1
and CIC2 stipulate the comparison of informational contents. CIC1 asserts that
if the informational content of σ′ is richer than that of σ, then anything that
can be derived from the informational contents of σ is also derivable from σ′.
However, the latter is simply a necessary consequence of σ′ � σ. In general,
the converse implication of CIC1 does not hold because the contingent truth of
�σϕ → �σ′ϕ for a particular ϕ does not imply that the informational content
of σ′ is richer than that of σ. To have the sufficient condition of σ′ � σ, we must
require that �σϕ → �σ′ϕ holds for any formula ϕ. However, the requirement
can be represented only by an infinitary conjunction (or the universal quanti-
fier). To address the difficulty in our finitary language, axiom CIC2 employs the
�σ modality, which corresponds to the only-knowing operator defined in [21].

248 T.-F. Fan and C.-J. Liau

Fig. 2. The axiomatic system Jice

According to the semantics of Boolean modalities, �σϕ means that the informa-
tional content of σ is exactly represented by ϕ. Hence, �σϕ ∧ �σ′ϕ means that
the informational content of σ′ implies the exact informational content of σ, i.e.,
σ′ � σ. More formally, w � (�σ′ϕ ∧ �σϕ) iff Rσ′(w) ⊆ |ϕ| and Rσ(w) = |ϕ|4,
which implies Rσ′(w) ⊆ Rσ(w), i.e., the truth condition of σ′ � σ in w. Axiom
PO� asserts that � is a pre-order (i.e., reflexive and transitive) relation. Axiom
Mon means that the Boolean conjunction ∩ is a monotonic operation in its both
arguments with respect to the information ordering �. Finally, rule Bool requires
that the information ordering respects the ordering on the Boolean algebra.

The notions of proof (or derivations) and theoremhood in an axiomatic sys-
tem are standard. Let Σ ∪ {ϕ} be a subset of JL-ICE formulas. Then, we use
Σ �Jice ϕ and �Jice ϕ to denote that ϕ is derivable from Σ and that ϕ is a
theorem in Jice respectively. A set Σ is inconsistent if Σ �Jice ⊥, otherwise,
Σ is consistent. Then, we conjecture the following soundness and completeness
(meta-)theorem for the system Jice (in the presentation of the theorem, we omit
the subscripts J ice and Jice from |=Jice and �Jice respectively).

4 |ϕ| = {u ∈ W | u � ϕ} is the truth set of ϕ.

Reasoning About Justified Belief Based on the Fusion of Evidence 249

Theorem 1. For any Σ ∪ {ϕ} ⊆ Lice
J , we have Σ � ϕ iff Σ |= ϕ.

Several sample theorems in Jice include t � ϕ → �εϕ, s � (ϕ → ψ) →
(t�ϕ → s · t�ψ), and (s�ϕ ∧ t�ψ) → s + t�ϕ. However, t : ϕ → �εϕ and
s�ϕ → s + t�ϕ are invalid.

5 Justification Logic with Direct Observations

In the JL-ICE, we do not distinguish direct or indirect observations of evidences.
Therefore, if the informational contents of two pieces of evidences are the same,
then the actual observation of one piece of evidence can also be regarded as the
observation of the other one even though the latter is not directly observed.

Example 2. Returning to our running example, assume that Ann, without
enough budget for experiments to test q, decides to search the literature to see
if there are some alternative ways to test the hypothesis. Upon reading her col-
league Bob’s articles, she learns that Bob ever observed outcomes s1 and s2 in his
experiments. Although the experiments are not originally designed for testing q,
Ann finds that the joint evidence s1 and s2 is in fact equivalent to the outcome
t2 in her intended experiments. In such case, Ann decides to accept q and it
seems reasonable to say that she believes q due to the justification t2, i.e., t2�q,
although t2 has not been observed directly by herself. However, if Ann simply
finds that the joint evidence s1 and s2 can verify her hypothesis q but does not
realize that the joint evidence is in fact equivalent to the outcome t2. Then, it
seems doubtful to say that she believes q due to the justification t2, although we
can say that she believes q due to the justification s1 + s2. �

From the example above, we can see that it is sometimes necessary to distin-
guish between different pieces of evidences with the same informational contents.
To achieve this, we propose the following JL with direct observation (JL-DO).
In the logic, we no longer use ε � t to express that the evidence t has been
observed. Hence, we do not need the type of comparison formula any more. The
corresponding axioms for the comparison of informational contents are then
removable. Consequently, the full expressive power of BML is not necessary.
This results in a reduced set of modalities.

The modalities and formulas of the JL-DO language are formed as follows:

α ::= ε | t | α ∩ α

ϕ ::= p | ⊥ | ϕ → ϕ | t :ϕ | �αϕ | do(t),

where p ∈ Φ and t ∈ Tm is a justification term. In the language, the set of
modalities is simply the set of pseudo-terms. We use Ldo

J to denote the lan-
guage. Then, we can define t ↪→ϕ as the abbreviation of t : ϕ ∧ do(t) to rep-
resent that ϕ is justified belief by the direct observation of the evidence t.
For the semantics, the Kripke-Fitting model for JL-DO is defined as a tuple
M = 〈W,Rε, (Rt)t∈Tm, E,D,�〉, which is the extension of a model for JL-ICE

250 T.-F. Fan and C.-J. Liau

with a function D : W → 2Tm such that for each w ∈ W , D(w) is closed under
· and +. Intuitively, D(w) means the set of evidences that have been directly
observed in w. The closure condition means that, if both evidences s and t are
directly observed in w, then the combined evidences s+t and s·t are also regarded
as being directly observed. In addition to the coherence conditions imposed on
models for JL-ICE, we require that a JL-DO model must satisfy

Rε(w) ⊆
⋂

t∈D(w)

Rt(w)

for each w ∈ W . Therefore, if a piece of evidence has been directly observed in
w, then its informational contents should be assimilated into the agent’s belief.
However, we do not require the converse implication any longer. In other words,
it is possible that Rε(w) ⊆ Rt(w) for some evidence t but t is not directly
observed. The semantic condition for the newly added formula is

– w � do(t) iff t ∈ D(w).

The axiomatic system for Jdo is presented in Fig. 3, which is essentially a
reduced set of axioms for Jice with a slight modification and the addition of
two new axioms Do and Cls for direct observation. Axioms and rules for sys-
tem J, axioms K and Con, and rule Nec are preserved. Axiom Coh is modified
to express the equivalence between formulas instead of equal informativeness
between modalities, because the latter is no longer in the language. For axiom
BML, only the monotonicity axiom is kept. The newly added axiom Do exactly
represents the condition imposed on JL-DO models, whereas axiom Cls corre-
sponds to the closure condition on the function D. Then, we have the soundness
and completeness of Jdo as follows (as above, we omit the subscripts Jdo and Jdo):

Fig. 3. The axiomatic system Jdo

Reasoning About Justified Belief Based on the Fusion of Evidence 251

Theorem 2. For any Σ ∪ {ϕ} ⊆ Ldo
J , we have Σ � ϕ iff Σ |= ϕ.

Several sample theorems in Jdo include t ↪→ ϕ → �εϕ, s ↪→ (ϕ → ψ) →
(t↪→ϕ → s · t↪→ψ), and (s↪→ϕ ∧ t↪→ψ) → s + t↪→ϕ. However, t : ϕ → �εϕ and
s↪→ϕ → s + t↪→ϕ are invalid.

6 Dynamic Justification Logic

In our running example, we can see that Ann’s belief is changed by the experi-
mental outcome t1. Hence, the observation of the outcome t1 is a kind of infor-
mative or epistemic action for Ann that leads to her belief update. So far, the
logics JL-ICE and JL-DO can only reason about an agent’s static belief and its
justification. However, modeling the dynamic change of belief and information
is the theme of the dynamic epistemic logic (DEL) paradigm which has grown
significantly and found a lot of applications to AI, computer science, multi-agent
systems, philosophy, and cognitive science in recent years [8,12].

The operators for epistemic action correspond to a type of dynamic modal-
ity that is interpreted by transforming the models themselves rather than by
the accessibility relation between worlds within a fixed model. In our systems,
the dynamic modality corresponds to the observation of evidence. Therefore,
the dynamic JL-ICE (DJL-ICE) and dynamic JL-DO (DJL-DO) languages are
respectively the extensions of the JL-ICE and JL-DO languages with a class of
dynamic modalities [↓ t] for every t ∈ Tm, and formulas of the resultant lan-
guage are defined by adding formulas of the form [↓ t]ϕ to the static languages.
Formally, the formulas of the dynamic languages are defined by

ϕ ::= ϕ0 | ⊥ | ϕ → ϕ | �αϕ | σ � σ | [↓ t]ϕ,

and
ϕ ::= ϕ0 | ⊥ | ϕ → ϕ | �αϕ | do(t) | [↓ t]ϕ

respectively, where ϕ0 denotes a formula of the static language. Note that we
do not allow the occurrence of dynamic formula inside t : because a dynamic
formula can generally be rewritten into an equivalent static formula (see below).
However, the rule for substitution of equivalents is not valid for t : ϕ (i.e., t : ϕ
and ϕ ≡ ψ do not imply t : ψ in general). Hence, the occurrence of dynamic
formula inside the scope of the t : operator will block our derivation system. We
denote the languages by Lice

DJ and Ldo
DJ respectively.

For the semantics, the model of the dynamic language is completely the
same as that of the static one. The extra feature is the extended forcing relation
between possible worlds and the new type of formulas. Let the static model
be M = 〈W,Rε, (Rt)t∈Tm, E,�〉 or M = 〈W,Rε, (Rt)t∈Tm, E,D,�〉. Then, the
relation satisfies

– w �M [↓ t]ϕ iff w �Mt
ϕ, where

Mt = 〈W,R′
ε, (Rt)t∈Tm, E,�〉

252 T.-F. Fan and C.-J. Liau

or
Mt = 〈W,R′

ε, (Rt)t∈Tm, E,D′,�〉
is a new model such that R′

ε = Rε ∩ Rt and D′(w) = D(w) ∪ {t} for any
w ∈ W .

Reasoning about belief change in the dynamic logics can be achieved by using
an axiomatic system. As in the typical case of DEL, the complete axiomatizations
DJice and DJdo are comprised of a complete axiomatization for the static base
language (i.e., Jice and Jdo), and on top of that, a number of reduction axioms
that analyze effects of epistemic action. The set of reduction axioms is presented
in Fig. 4, where, for every α ∈ Bn (and also σ ∈ Tm+) and t ∈ Tm, we define
αt as the simultaneous replacement of every occurrence of ε in α with ε ∩ t.
Obviously, if ε does not occur in α, then αt = α.

Fig. 4. Reduction axioms for DJice and DJdo

The reduction axioms describe how the dynamic modality [↓ t] interacts with
other logical operators of the static language. These axioms move each logical
operator of the static language outside the scope of the dynamic modality or
simply remove the dynamic modality in the cases of atomic formulas, justification
formulas, informational comparison formulas, and direct observation formulas.
As a side-effect, working inside out in a stepwise manner, such a “recursion
equation” allows us to translate any formula from the dynamic language into
an equivalent formula of the static language. Consequently, the completeness
of the systems DJice and DJdo follows from the completeness of Jice and Jdo

respectively.

Theorem 3. Let Σ ∪ {ϕ} be a subset of formulas in the dynamic language.
Then, we have Σ � ϕ iff Σ |= ϕ, where � and |= correspond to the derivation
and consequence relations in the dynamic logic respectively.

Reasoning About Justified Belief Based on the Fusion of Evidence 253

Example 3. Let us continue with Example 1 and consider the JL-ICE models at
two moments—the model M = 〈W,Rε, (Rt)t∈Tm, E,�〉 before Ann conducts the
experiments and the model Mt1 = 〈W,R′

ε, (Rt)t∈Tm, E,�〉 after she has observed
the outcome t1. Obviously, an observation does not change the components
W,E,Rt’s, and �. In particular, the informational contents of each piece of evi-
dence remain constant during the observation process5. Because we are concerned
with only the two hypotheses p and q, we can assume that W has four possible
worlds which correspond to their truth assignments, i.e. W = {00, 01, 10, 11}.
In addition, we assume that the two hypotheses indeed hold and Ann does not
have any a prior knowledge about their truth or falsehood. Thus, the actual world
w = 11 and Rε = W ×W . Because t1 and t2 are good reasons for p and q respec-
tively, we can reasonably set E(t1, p) = E(t2, q) = W and let Rt1 = W ×{10, 11}
and Rt2 = W × {01, 11}. For our purpose here, we do not have to completely
specify the function E. However, we do assume that it is minimally closed under
the closure conditions for Kripke-Fitting models. Hence, for example, we can
safely assume that E(t1, q) = E(t2, p) = ∅. Then, according to dynamic seman-
tics, R′

ε = Rt1 . Furthermore, � is defined according to the obvious specification
of each world. For example, 01 � q, 11 � p, 11 � p, etc.

From the models above, we can list some formulas that are satisfied in M, w:

t1 : p, t2 : q,¬�εp,¬�εq,�t1p,�t2q,¬(ε � t1);

and derive the following consequences (among others) by using the axiomatic
systems and definitions:

t1 + t2 : p, [↓ t1](ε � t1), [↓ t1]t1�p, [↓ t1]�εp.

However, [↓ t1](t1 + t2)�p is false because t1�p → (t1 + t2)�p is not valid. �

7 Related Work

In recent years, logic for reasoning about evidence and belief has received much
attention [7,9,10,24]. Among them, the work that is closet to ours is a very
expressive logic JB proposed in [7]. In the logic, the status of evidence has a
much finer distinction and a salient feature of the logic is that its evidence term
t must be formed by the following formation rule

t ::= cϕ | t + t | t · t,

where each cϕ is an evidential certificate (a canonical piece of evidence in sup-
port) of the formula ϕ. Hence, unlike JL and our logic in which admissibility
of evidence with respect to a formula is determined by the admissible evidence
function E in Kripke-Fitting models, the admissibility relation in JB, denoted
by �, can be syntactically determined as the smallest relation between terms
5 We ignore the quantum observation that may change the outcome of observation

itself.

254 T.-F. Fan and C.-J. Liau

and formulas satisfying the following three conditions: (1) cϕ � ϕ; (2) if s � ϕ
and t � (ϕ → ψ), then s · t � ψ; (3) if s � ϕ or t � ϕ, then s + t � ϕ.
In some sense, evidence cϕ is an evidential constant which explicitly encodes its
informational content. However, unlike the informational content operator �c in
our logic, the logical consequence of ϕ is not regarded as the informational con-
tent of cϕ. In other words, because �c is a normal modal operator, �cϕ implies
�cψ for any logical consequence ψ of ϕ, but cψ and cϕ are simply regarded as
two independent evidential certificates and cϕ is not necessarily an evidential
certificate of ψ.

While JL regards justification terms and formulas as two sorts of syntacti-
cally separate entities and JB regards justification terms as comprised only from
primitive constants representing certificates of formulas, the logic of evidence
Log in [9,10] completely abandons the notion of using a separate sort of terms
to represent evidence. Consequently, although Log can express some relation-
ship between evidence and belief, the justified belief t�ϕ or t↪→ϕ is no longer
expressible.

8 Conclusion

In this paper, we enrich JL with modalities that can represent informational
contents of accumulated evidence. In the enriched languages, we can clarify
the ambiguous interpretation of justification formulas. While the clarification
is unnecessary when justification terms are regarded as mathematical proofs as
in the case of LP, it become crucially important when LP is evolved into general
JL for reasoning about explicit belief. The resultant languages are expressive
enough to address the issue of the mismatch between the formal semantics and
the intuitive explanation of the Sum axiom. Moreover, as a byproduct, we show
that the DEL-like dynamic modalities can be easily integrated into the enriched
logics and this leads to logics for dynamic evidential reasoning with justifications.

In classical JL, when both s and t are admissible evidences for ϕ, it is impos-
sible that one of s : ϕ and t : ϕ is true and the other is false. Thus, it is implicitly
assumed that all or no pieces of admissible evidence are actually observed in the
logic. By contrast, our logics can represent the situation that some but not all
pieces of admissible evidence for a formula has been actualized. Theoretically,
the more actual observations should imply stronger belief on the formula. Hence,
it is possible to extend our logics to cover reasoning about fusion of uncertain
beliefs. There have been a few works on combining uncertainty reasoning with JL
in recent years [4,14,19,20,23]. Along this direction, the next step on our agenda
will be the fine-grained JL for reasoning about belief fusion and uncertainty. In
addition, although we have provided a Hilbert-style axiomatization for JL-ICE
and JL-DO, from the practical viewpoint, exploring the possibility of more effi-
cient proof systems for the logic remains an important open question. Finally,
inspired by Gettier’s example [17], we would like to formulate the distinction
between proper and improper justifications in our framework.

Reasoning About Justified Belief Based on the Fusion of Evidence 255

References

1. Artemov, S.: Explicit provability and constructive semantics. Bull. Symb. Logic 7,
1–36 (2001)

2. Artemov, S.: The logic of justification. Rev. Symb. Logic 1, 477–513 (2008)
3. Artemov, S.: The ontology of justifications in the logical setting. Stud. Logica

100(1–2), 17–30 (2012)
4. Artemov, S.: On aggregating probabilistic evidence. In: Artemov, S., Nerode, A.

(eds.) LFCS 2016. LNCS, vol. 9537, pp. 27–42. Springer, Heidelberg (2016). doi:10.
1007/978-3-319-27683-0 3

5. Artemov, S., Fitting, M.: Justification logic. In: Zalta, E. (ed.) The Stanford Ency-
clopedia of Philosophy, Fall 2012 edn. Stanford University, Stanford (2012)

6. Artemov, S., Nogina, E.: Introducing justification into epistemic logic. J. Logic
Comput. 15(6), 1059–1073 (2005)

7. Baltag, A., Renne, B., Smets, S.: The logic of justified belief change, soft evidence
and defeasible knowledge. In: Ong, L., Queiroz, R. (eds.) WoLLIC 2012. LNCS, vol.
7456, pp. 168–190. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32621-9 13

8. van Benthem, J.: Logical Dynamics of Information and Interaction. Cambridge
University Press, Cambridge (2014)

9. van Benthem, J., Duque, D.F., Pacuit, E.: Evidence and plausibility in neighbor-
hood structures. Ann. Pure Appl. Logic 165(1), 106–133 (2014)

10. van Benthem, J., Pacuit, E.: Dynamic logics of evidence-based beliefs. Stud. Logica
99(1), 61–92 (2011)

11. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press,
Cambridge (2001)

12. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic.
Springer, New York (2008)

13. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning about Knowledge. MIT
Press, Cambridge (1996)

14. Fan, T., Liau, C.: A logic for reasoning about justified uncertain beliefs. In: Pro-
ceedings of the Twenty-Fourth International Joint Conference on Artificial Intelli-
gence (IJCAI), pp. 2948–2954 (2015)

15. Fitting, M.: The logic of proofs, semantically. Ann. Pure Appl. Logic 132(1), 1–25
(2005)

16. Gargov, G., Passy, S.: A note on boolean modal logic. In: Petrov, P. (ed.) Mathe-
matical Logic, pp. 299–309. Springer, New York (1990)

17. Gettier, E.: Is justified true belief knowledge? Analysis 23, 121–123 (1963)
18. Hintikka, J.: Knowledge and Belief. Cornell University Press, Ithaca (1962)
19. Kokkinis, I., Maksimovic, P., Ognjanovic, Z., Studer, T.: First steps towards prob-

abilistic justification logic. Logic J. IGPL 23(4), 662–687 (2015)
20. Kokkinis, I., Ognjanović, Z., Studer, T.: Probabilistic justification logic. In: Arte-

mov, S., Nerode, A. (eds.) LFCS 2016. LNCS, vol. 9537, pp. 174–186. Springer,
Heidelberg (2016). doi:10.1007/978-3-319-27683-0 13

21. Levesque, H.: All I know: a study in autoepistemic logic. Artif. Intell. 42(2), 263–
309 (1990)

22. Meyer, J.J.C., van der Hoek, W.: Epistemic Logic for AI and Computer Science.
Cambridge University Press, Cambridge (1995)

23. Milnikel, R.: The logic of uncertain justifications. Ann. Pure Appl. Logic 165,
305–315 (2014)

24. Menasché Schechter, L.: A logic of plausible justifications. In: Ong, L., Queiroz, R.
(eds.) WoLLIC 2012. LNCS, vol. 7456, pp. 306–320. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-32621-9 23

http://dx.doi.org/10.1007/978-3-319-27683-0_3
http://dx.doi.org/10.1007/978-3-319-27683-0_3
http://dx.doi.org/10.1007/978-3-642-32621-9_13
http://dx.doi.org/10.1007/978-3-319-27683-0_13
http://dx.doi.org/10.1007/978-3-642-32621-9_23

Writing Declarative Specifications for Clauses

Martin Gebser2, Tomi Janhunen1(B), Roland Kaminski2, Torsten Schaub2,3,
and Shahab Tasharrofi1

1 Helsinki Institute for Information Technology HIIT,
Aalto University, Espoo, Finland

Tomi.Janhunen@aalto.fi
2 Institute for Informatics and Computational Science,

University of Potsdam, Potsdam, Germany
3 INRIA Rennes, Bretagne Atlantique Research Centre, Rennes, France

Abstract. Modern satisfiability (SAT) solvers provide an efficient
implementation of classical propositional logic. Their input language,
however, is based on the conjunctive normal form (CNF) of proposi-
tional formulas. To use SAT solver technology in practice, a user must
create the input clauses in one way or another. A typical approach is
to write a procedural program that generates formulas on the basis of
some input data relevant for the problem domain and translates them
into CNF. In this paper, we propose a declarative approach where the
intended clauses are specified in terms of rules in analogy to answer set
programming (ASP). This allows the user to write first-order specifica-
tions for intended clauses in a schematic way by exploiting term variables.
We develop a formal framework required to define the semantics of such
specifications. Moreover, we provide an implementation harnessing state-
of-the-art ASP grounders to accomplish the grounding step of clauses.
As a result, we obtain a general-purpose clause-level grounding approach
for SAT solvers. Finally, we illustrate the capabilities of our specification
methodology in terms of combinatorial and application problems.

1 Introduction

Satisfiability (SAT) solvers [1] provide an efficient way to implement classical
propositional logic. The conjunctive normal form (CNF) of formulas, which is
based on disjunctions of literals also known as clauses, forms the standard input
language supported by solvers. However, writing clauses directly is not very
practical from the modeling perspective. This suggests the use of a more expres-
sive language supporting the entire range of logical connectives and allowing for
(universally quantified) first-order variables to write formulas in a schematic way.
E.g., the following formula aims to deny occurrences of triangles in a directed
graph represented by the edge/2 predicate:

edge(X,Y) ∧ edge(Y,Z) ∧ (X �= Y) ∧ (X �= Z) ∧ (Y �= Z) → ¬edge(Z,X). (1)

T. Schaub—Affiliated with Simon Fraser University, Canada, and IIIS Griffith Uni-
versity, Australia.

c© Springer International Publishing AG 2016
L. Michael and A. Kakas (Eds.): JELIA 2016, LNAI 10021, pp. 256–271, 2016.
DOI: 10.1007/978-3-319-48758-8 17

Writing Declarative Specifications for Clauses 257

On the one hand, variables seem crucial to achieve the flexibility required in
modeling but, on the other hand, they lead to the problem of instantiating or
grounding the variables when actual inference is performed. In the presence of
facts edge(a, b), edge(b, c), and edge(c, a), the essential step is to substitute the
universally quantified variables X, Y , and Z in (1) by the constants a, b, and c.
While 33 = 27 different substitutions are applicable, only one of them is useful
for showing unsatisfiability. The theory of grounding goes back to Herbrand’s
seminal work, and it has been addressed in many contexts, such as first-order
model generation and theorem proving (see, e.g., [2,3]) as well as AI planning
(cf. [4]). The substitution of variables by constants or more generally ground
terms is subject to combinatorial explosion when the underlying domain grows.
To cut down the number of resulting ground instances, a variety of techniques
have been proposed, including clause splitting, structural constraints, and con-
traction techniques to discard or simplify instances [5]. Also, by carefully ana-
lyzing variable ranges, it is possible to reduce the number of clauses or formulas
generated [3,6].

The approach proposed in this paper also relies on domain information, but
we suggest to use declarative specifications based on closed world assumption
(CWA) for controlling domains. In case of (1), this means that there is no edge
between any given pair of nodes, thus falsifying the implication antecedent,
unless specified otherwise. We provide an implementation harnessing state-of-
the-art answer set programming (ASP) [7] grounders for the computation of
domains and variable instantiation, since they offer built-in support for CWA
and a rich rule-based language to express domain knowledge.

What remains is choosing the kind of formulas to ground. While free choice
among logical connectives seems desirable from the modeling perspective, trans-
lation into CNF is necessary to use SAT solvers. The classification of proposi-
tional (ground) formulas often requires the introduction of new variables, e.g.,
using the Tseitin transformation, to avoid exponential blow-ups, and in some
cases the auxiliary variables significantly affect solver performance [8–10]. The
idea of this paper is to write declarative specifications for clauses, thus enabling
a user to define the input of a SAT solver directly. Following the traditional what
you see is what you get principle, clauses in the grounder output can be traced
back to the schematic specification. The trade-off is that the user has to decide
about potential new variables in a formalization, but specifying such variables
at the schematic level also provides more direct access than an implicit clause
compilation. In fact, given the expressiveness of modeling languages supported
by off-the-shelf ASP grounders [11,12], we expect that declarative specifications
are easier to develop and maintain than their procedural counterparts. For one,
it is possible to separate domain descriptions from logical axioms, which enables
uniform encodings that are independent of particular instance data [13]. For
another, the level of abstraction provided by first-order rules makes specifica-
tions highly elaboration tolerant [14].

The rest of this paper is organized as follows. The syntax and semantics of
the clause specification language is defined in Sect. 2. In Sect. 3, we illustrate the

258 M. Gebser et al.

proposed language on practical modeling scenarios. Section 4 presents a stream-
lined implementation, interfacing the state-of-the-art ASP grounder gringo [15]
with SAT or MaxSAT solvers, and an experimental evaluation where haplotype
inference is remodeled using clause programs. Finally, we discuss related work
and conclude the paper in Sect. 5.

2 Clause Programs

We begin by presenting the syntax of clause programs and then concentrate on
defining their semantics. To specify clause programs in the first-order case with
variables, we define terms as expressions built from function symbols f , also
called constants in case of arity zero, or variable symbols X. The signature for
predicate symbols, denoted by P, splits into Pd and Pv, i.e., domain predicates
being minimized and those allowed to vary as typical in classical logic. A first-
order atom p(t1, . . . , tn), or an atom for short, consists of an n-ary predicate
symbol p ∈ P and terms t1, . . . , tn listed as its arguments. A literal is either an
atom a or its negation ¬a.

A clause program P can have rules of two kinds: domain rules of the form (2),
also known as normal rules in ASP, as well as clause rules of the form (3):

a ← c1, . . . , cm, ∼d1, . . . , ∼dn. (2)
a1 ∨ · · · ∨ ak ∨ ¬b1 ∨ · · · ∨ ¬bl ← c1, . . . , cm, ∼d1, . . . , ∼dn. (3)

In the rules above, a, c1, . . . , cm, and d1, . . . , dn are domain atoms expressed
in Pd, and the symbol ∼ stands for default negation. Domain rules (2) are
used to specify appropriate domain relations for variable instantiation. The
atoms a1, . . . , ak and b1, . . . , bl in a clause rule (3) are expressed in Pv. The
head a1 ∨ · · · ∨ ak ∨ ¬b1 ∨ · · · ∨ ¬bl is a schema for propositional clauses where
∨ and ¬ stand for classical disjunction and negation, respectively. The body
c1, . . . , cm, ∼d1, . . . , ∼dn essentially provides the conditions for creating the
head clause, including the determination of variable assignments.

The semantics of clause programs is defined using Herbrand models as fol-
lows. Given a clause program P , we define its Herbrand universe Hu(P) and
Herbrand base Hb(P) in the standard way. The base Hb(P) is partitioned into
Hbd(P) and Hbv(P) based on the signatures Pd and Pv, respectively. A (Her-
brand) interpretation I of P is written as a subset of Hb(P). Moreover, we
distinguish its projections Id = I ∩ Hbd(P) and Iv = I ∩ Hbv(P). Assuming
that P is variable-free or ground, the body of (2) or (3) is satisfied in I iff
{c1, . . . , cm} ⊆ Id and {d1, . . . , dn} ∩ Id = ∅. The head of (2) is satisfied in I
iff a ∈ Id, while the head of (3) is satisfied in I iff {b1, . . . , bl} ⊆ Iv implies
{a1, . . . , ak}∩ Iv �= ∅. An interpretation I ⊆ Hb(P) is a model of P iff, for every
rule (2) or (3) of P , the satisfaction of the body in I implies the satisfaction of the
head in I. To enforce the minimal interpretation of domain predicates, we define
the domain reduct P I of P with respect to I to contain a rule a ← c1, . . . , cm
for every domain rule (2) of P such that {d1, . . . , dn} ∩ Id = ∅. The program

Writing Declarative Specifications for Clauses 259

P I is a Horn theory and guaranteed to have a unique ⊆-minimal model over
Hbd(P), the least model of P I .

Definition 1. Let P be a clause program and Gnd(P) the respective Herbrand
instantiation of P over Hu(P). An interpretation I ⊆ Hb(P) is a domain stable
model of P iff I is a model of Gnd(P) such that Id is the least model of Gnd(P)I .

While the abstract criteria for domain stable models are formulated in terms
of the full Herbrand instantiation Gnd(P), the actual goal is to generate small
subsets of Gnd(P) without affecting domain stable models. The intended way of
applying Definition 1 in practice is to let an ASP grounder calculate Id, which
also determines the relevant clauses. After that, a SAT solver can be invoked
to compute Iv such that I = Id ∪ Iv is a model of Gnd(P). In order to use
ASP grounders, we have to restrict variable occurrences in rules. A rule of the
form (2) or (3) is called safe if all variables occurring in the head also appear in
the positive conditions c1, . . . , cm of the body, which thereafter constrain their
domains. Moreover, it is reasonable to assume that the domain part of a clause
program P has a total well-founded model (cf. [16]) that can be calculated by
an ASP grounder. We therefore require domain rules (2) of P to be stratified
(cf. [17]), which confines recursive dependencies of a predicate in Pd on itself
to be purely based on c1, . . . , cm in the positive body parts of rules. All clause
programs considered in the following are safe and their domain rules stratified.
This means that rule bodies are fully evaluated during grounding, and the heads
of clause rules (3) provide the input of a SAT solver, searching for (classical)
models of the propositional clauses.

Example 1. Let us consider the following clause program for graph coloring:

node(X) ← edge(X,Y). (4)
node(Y) ← edge(X,Y). (5)
b(X) ∨ g(X) ∨ r(X) ← node(X). (6)
¬b(X) ∨ ¬b(Y) ← edge(X,Y). (7)
¬g(X) ∨ ¬g(Y) ← edge(X,Y). (8)
¬r(X) ∨ ¬r(Y) ← edge(X,Y). (9)

The idea is that these rules are conjoined with facts representing an input graph.
To this end, let us use the three facts from the context of (1). Together with the
domain rules (4) and (5), such facts give rise to the following least model Id:

edge(a, b), edge(b, c), edge(c, a), node(a), node(b), and node(c).

The atoms in Id determine the domains of variables in (6)–(9), resulting in the
clauses:

b(a) ∨ g(a) ∨ r(a), b(b) ∨ g(b) ∨ r(b), b(c) ∨ g(c) ∨ r(c),
¬b(a) ∨ ¬b(b), ¬b(b) ∨ ¬b(c), ¬b(c) ∨ ¬b(a),
¬g(a) ∨ ¬g(b), ¬g(b) ∨ ¬g(c), ¬g(c) ∨ ¬g(a),
¬r(a) ∨ ¬r(b), ¬r(b) ∨ ¬r(c), ¬r(c) ∨ ¬r(a).

260 M. Gebser et al.

These clauses can be satisfied, e.g., by letting Iv = {b(a), g(b), r(c)}, which gives
rise to a domain stable model I = Id ∪ Iv. �

3 Modeling Methodology and Applications

We have above introduced the paradigm of clause programs in a simple setting
where the domain part is written in normal ASP-style rules. Using syntactic
sugar available in gringo, however, the compactness and flexibility of clause
programs can be further enhanced. We below illustrate the practice of clause
programs on several use cases.

Graph Coloring. To begin with, we generalize the program in Example 1 to n
colors:

color(1 . . . n). (10)
node(X;Y) ← edge(X,Y). (11)
∨

hc(X,C) : color(C) ← node(X). (12)

¬hc(X,C) ∨ ¬hc(Y,C) ← edge(X,Y), color(C). (13)

By setting the constant n to some integer, say 3, it defines a range of colors
by (10): color(1), color(2), and color(3). The separator “;” in the second domain
rule (11) is used to specify alternative terms for which the head atom is instan-
tiated, so that (11) amalgamates (4) and (5). Unlike (6), the clause rule (12),
applying to each term X from node(X), is parameterized by a conditional lit-
eral hc(X,C), where instances over all terms C from color(C) are included in
a disjunction. This enables the specification of clauses whose length depends
dynamically on a problem instance, such as the number of colors in this case.
Finally, the clause rule (13) generalizes (7)–(9).

Example 2. Based on the least model Id from Example 1, augmented with
color(1), color(2), and color(3), the clauses obtained from (12) and (13) are as
follows:
hc(a, 1) ∨ hc(a, 2) ∨ hc(a, 3), hc(b, 1) ∨ hc(b, 2) ∨ hc(b, 3), hc(c, 1) ∨ hc(c, 2) ∨ hc(c, 3),

¬hc(a, 1) ∨ ¬hc(b, 1), ¬hc(a, 2) ∨ ¬hc(b, 2), ¬hc(a, 3) ∨ ¬hc(b, 3),
¬hc(b, 1) ∨ ¬hc(c, 1), ¬hc(b, 2) ∨ ¬hc(c, 2), ¬hc(b, 3) ∨ ¬hc(c, 3),
¬hc(c, 1) ∨ ¬hc(a, 1), ¬hc(c, 2) ∨ ¬hc(a, 2), ¬hc(c, 3) ∨ ¬hc(a, 3).

The clauses resemble those in Example 1, yet using the generic predicate hc(X,C)
for node X having color C, rather than dedicated predicates b/1, g/1, and
r/1 for blue, green, and red, respectively. Accordingly, an assignment of dis-
tinct colors to the three nodes at hand is expressed by a projection like
Iv = {hc(a, 1), hc(b, 2), hc(c, 3)}. �

n-Queens. The next clause program, encoding the well-known n-queens problem,
illustrates the use of built-in integer arithmetic supported by ASP grounders like
gringo:

Writing Declarative Specifications for Clauses 261

coord(1 . . . n). dir(0,−1). dir(−1, 0). dir(−1,−1). dir(−1, 1). (14)
target(X,Y,R,C) ← coord(X;Y ;X+R;Y +C), dir(R,C). (15)
attack(X+R, Y +C,R,C) ∨ ¬queen(X,Y) ← target(X,Y,R,C). (16)
attack(X+R, Y +C,R,C) ∨ ¬attack(X,Y,R,C) (17)

← target(X,Y,R,C), target(X−R, Y −C,R,C).
¬attack(X+R, Y +C,R,C) ∨ queen(X,Y) ∨ (18)

∨

attack(X,Y,R,C) : target(X−R, Y −C,R,C) ← target(X,Y,R,C).

¬queen(X+R, Y +C) ∨ ¬attack(X+R, Y +C,R,C) ← target(X,Y,R,C). (19)

queen(X, 1) ∨
∨

attack(X, 1, 0,−1) : target(X, 2, 0,−1) ← coord(X). (20)

queen(1, Y) ∨
∨

attack(1, Y,−1, 0) : target(2, Y,−1, 0) ← coord(Y). (21)

The facts in (14) provide row and column coordinates, ranging from 1
to some integer value for n, as well as the differences between the coordi-
nates of adjacent cells in horizontal, vertical, and diagonal directions. Par-
ticular adjacent cells are indicated by the domain rule (15), where an
instance of target(X,Y,R,C) expresses that the cells at coordinates (X,Y) and
(X+R, Y +C) are adjacent. Given this, the clause rules (16)–(18) specify condi-
tions enforcing that attack(X+R, Y +C,R,C) is true iff some cell with coordi-
nates (X−k∗R, Y − k∗C) for k ≥ 0 hosts a queen, represented by a correspond-
ing instance of queen(X,Y). The clauses specified by (19) then forbid a queen
at (X+R, Y +C) if the cell is horizontally, vertically, or diagonally attacked.
Finally, the clause rules (20) and (21) express that any row or column must
contain some queen, which can be checked at the first row or column position,
respectively.

Example 3. For n = 4, the least model Id includes the following atoms indicating
horizontal attacks along the first row, obtained by instantiating X, R, and C with
1, 0, and −1 in (15): target(1, 2, 0,−1), target(1, 3, 0,−1), and target(1, 4, 0,−1).
These atoms induce nine instances of (16)–(18), whose conjunction is equivalent
to formulas

attack(1, 1, 0,−1) ↔ queen(1, 2) ∨ attack(1, 2, 0,−1),
attack(1, 2, 0,−1) ↔ queen(1, 3) ∨ attack(1, 3, 0,−1),
attack(1, 3, 0,−1) ↔ queen(1, 4).

Clauses from (19) exclude horizontal attacks: ¬queen(1, 1)∨¬attack(1, 1, 0,−1),
¬queen(1, 2) ∨ ¬attack(1, 2, 0,−1), ¬queen(1, 3) ∨ ¬attack(1, 3, 0,−1). �

Propositional Logic. Next we illustrate how the satisfiability problem of full
propositional logic can be captured in a declarative way. To this end, a meta-
representation of a propositional theory is needed, using function symbols (sup-

262 M. Gebser et al.

ported by ASP grounders like gringo) to represent Boolean connectives. For
brevity, we only consider disjunction and negation here, but note that our app-
roach easily extends to other connectives as well. We use constants for atoms,
the functions or/2 and neg/1 for disjunction and negation, and the predicate
sentence/1 to declare sentences in a theory. Given this, we axiomatize the satis-
faction of the theory as follows:

subformula(F) ← sentence(F). (22)
subformula(F) ← subformula(neg(F)). (23)
subformula(F ;G) ← subformula(or(F,G)). (24)
sat(neg(F)) ∨ sat(F) ← subformula(neg(F)). (25)
sat(or(F,G)) ∨ ¬sat(F) ← subformula(or(F,G)). (26)
sat(or(F,G)) ∨ ¬sat(G) ← subformula(or(F,G)). (27)
¬sat(neg(F)) ∨ ¬sat(F) ← subformula(neg(F)). (28)
¬sat(or(F,G)) ∨ sat(F) ∨ sat(G) ← subformula(or(F,G)). (29)
sat(F) ← sentence(F). (30)

Here, the domain rules (22)–(24) derive the subformulas of the given theory,
and the clause rules (25)–(29) evaluate these subformulas according to the inter-
pretation of atoms and the semantics of propositional connectives. Finally, the
clause rule (30) asserts that all sentences in the given theory must be satisfied.
For instance, the sentence ¬p ∨ ¬q is represented by the following clauses:

sat(neg(p)) ∨ sat(p), ¬sat(neg(p)) ∨ ¬sat(p),
sat(neg(q)) ∨ sat(q), ¬sat(neg(q)) ∨ ¬sat(q),
sat(or(neg(p), neg(q))) ∨ ¬sat(neg(p)), sat(or(neg(p), neg(q))) ∨ ¬sat(neg(q)),
¬sat(or(neg(p), neg(q))) ∨ sat(neg(p)) ∨ sat(neg(q)), sat(or(neg(p), neg(q))).

In summary, the above use cases illustrate how clause programs can uniformly
model non-trivial combinatorial as well as application problems. The presented
encodings exploit built-in integer arithmetic, aggregation operations, function
symbols, and the closed world assumption of ASP in concise first-order specifi-
cations of schematic clauses. In particular, fixpoint constructions enable deriving
(implicit) domains of variables from instance data, thus reducing the need for
involved procedural computations.

4 Implementation

To implement the grounding of clause programs, we utilize the state-of-the-art
ASP grounder gringo [15]. This is feasible because gringo (from version 2 on)
supports classical literals and disjunctive rule heads as in (3). By hiding and
hence omitting the domain part of a clause program P , the ground program
Gnd(P) is essentially a set of ground disjunctions a1 ∨ · · · ∨ ak ∨ ¬b1 ∨ · · · ∨ ¬bl.
From the perspective of gringo, the semantics of Gnd(P) is based on consistent

Writing Declarative Specifications for Clauses 263

sets of classical literals, also known as answer sets [18], which can be viewed as
minimal hitting sets for the disjunctions in Gnd(P). For the purposes of this
work, however, we re-establish the semantic connection between an atom a and
its classical negation ¬a by transforming disjunctions into a set Cl(Gnd(P))
of clauses in DIMACS format, serving as input of SAT solvers, or optionally
into pseudo-Boolean constraints in OPB format. This step is implemented by a
tool called satgrnd (v. 1.24), which passes the symbolic names of atoms on as
comments in its output. The transformation preserves classical models and sat-
isfiability, so that satisfying assignments of Cl(Gnd(P)) correspond to domain
stable models of P .1 Additionally, the file formats for satisfiability modulo the-
ories (SMT) and mixed integer programming (MIP) are supported.

Beyond this basic transformation, satgrnd can be used to extract graph
information from symbolic atom names, as exploited in the SAT modulo graphs
approach [20,21]. Both in plain SAT and SAT modulo graphs, models may be
subject to optimization, expressible by optimization statements in the input lan-
guage of gringo, in which case satgrnd generates (weighted partial) MaxSAT
problems in DIMACS format, or again optionally OPB format, which supports
objective functions. Moreover, satgrnd permits the computation of classical
models for (disjunctive) logic programs in general and is provided along with
sample encodings for the use cases in the previous section.2

G 1 2 3 H 1 2 3
g1 1 1 0 h1 1 1 0
g2 1 2 0 h2 1 0 0
g3 2 1 2 h3 0 1 1

In order to compare satgrnd’s declarative approach
with a procedural implementation producing a solver’s
input, we investigated the optimization problem of hap-
lotype inference [22,23]. The task is to compute a
cardinality-minimal set H of haplotypes that explain a
set G of genotypes, as given on the right.

Genotypes gi are determined by strings of some fixed length l, consisting
of the symbols ‘0’, ‘1’, and ‘2’. Haplotypes hj are also strings of length l, yet
admitting ‘0’ and ‘1’ only. Two (not necessarily distinct) haplotypes hj1 , hj2

explain a genotype gi if, for each string position 1 ≤ k ≤ l, we have that gki = 2
implies hk

j1
�= hk

j2
, while hk

j1
= hk

j2
= gki otherwise. In the above table, g1 is

explained by h1, h1, g2 by h1, h2, and g3 by h1, h3. Moreover, one can check
that at least three haplotypes are needed to explain g1, g2, and g3, so that
H = {h1, h2, h3} is an optimal solution.

The tool rpoly3 provides a reference implementation of haplotype inference,
using a generator to convert instance data into a problem representation in OPB
format, which is then passed on to a pseudo-Boolean solver like minisat+ [24].
The pseudo-Boolean constraints produced by the generator, described in [22,23],
exploit domain knowledge to achieve a compact representation: duplicated geno-
types as well as isomorphic string positions in the input are conflated, and static
symmetry breaking is applied to disambiguate pairs of haplotypes used to explain

1 Classical models can be encoded in ASP, e.g., using choice rules and integrity con-
straints [19].

2 http://research.ics.aalto.fi/software/asp/satgrnd/.
3 http://sat.inesc-id.pt/software/rpoly/.

http://research.ics.aalto.fi/software/asp/satgrnd/
http://sat.inesc-id.pt/software/rpoly/

264 M. Gebser et al.

genotypes. For instance, the string positions 1 and 3 are isomorphic for the above
genotypes G = {g1, g2, g3}, given that the other column is reproduced by swap-
ping ‘0’ and ‘1’ in one of the columns. In such a case, either of the isomorphic
positions can be reproduced from the other, and only one representative needs to
be computed by a solver. Moreover, for each genotype gi, an arbitrary occurrence
of ‘2’ at remaining positions can be picked to statically fix one of the haplotypes
explaining gi to ‘0’, and the other to ‘1’ at this position. In fact, the combina-
tion of both techniques directly leads to the above haplotypes H = {h1, h2, h3},
simply by applying static symmetry breaking to the occurrences of ‘2’ at the
second position of g2 (which gives h1 = g1 and h2 to explain g2) and the first
position of g3, and then using the opposite symbol among ‘0’ and ‘1’ for aligning
the ‘2’ at the isomorphic third position of g3 (thus reproducing h1 along with
its counterpart h3 to explain g3).

In general, not all occurrences of ‘2’ can be fixed a priori, and the problem
representation generated by rpoly includes variables tki to indicate whether a
remaining occurrence of ‘2’ at the k-th position of gi is split up similar or opposite
to the statically fixed ‘2’ in the two haplotypes explaining gi. This determines
the used haplotypes, and further variables xe1,e2

i1,i2
for genotypes gi1 , gi2 such that

i1 < i2 and e1, e2 ∈ {0, 1} are implied when any pair of some of the (at most)
two haplotypes to explain gi1 or gi2 , respectively, is different. Finally, variables
ue2
i2

, indicating haplotypes used first in explaining gi2 , i.e., xe1,e2
i1,i2

holds for all
i1 < i2 and e1 ∈ {0, 1}, are to be minimized.

We took the ideas implemented by rpoly as basis for a corresponding encod-
ing of haplotype inference by a clause program, (see Footnote 5) as shown in
Fig. 1. A problem instance specifies genotypes like the above by facts

gene(1), symb(1, 1, 1), symb(1, 2, 1), symb(1, 3, 0), position(1),
gene(2), symb(2, 1, 1), symb(2, 2, 2), symb(2, 3, 0), position(2),
gene(3), symb(3, 1, 2), symb(3, 2, 1), symb(3, 3, 2), and position(3).

Given such facts, the domain rules (31) and (32) take care of filtering duplicates,
where the conditional literal diff(G1, G2) in (32) checks whether any genotype G1

whose identifier is smaller than G2 differs from G2 at some string position. If
so, an instance of keep(G2) indicates that genotype G2 is not a duplicate and to
be explained by haplotypes. Similar to (31), the domain rules (33)–(35) derive
instances of dist(K1,K2), expressing that a string position K2 is not isomorphic
to the smaller position K1. To this end, (33) and (34) apply if ‘0’ and ‘1’ both
occur at K1 and K2 in some genotype as well as either of them twice in another
genotype. Moreover, (35) checks for an occurrence of ‘2’ at either K1 or K2 to
signal a difference between the two positions. The domain rule (36) then derives
pick(K2) if the conditional literal dist(K1,K2) yields that no smaller position K1

is isomorphic to K2. For the given problem instance, we obtain keep(1), keep(2),
and keep(3), as none of the three genotypes is a duplicate, along with keep(1)
and keep(2), since the third string position is isomorphic to the first.

The final domain rule (37) determines the number of occurrences of ‘2’ at
non-isomorphic string positions in order to perform static symmetry breaking
by means of the clause rule (38). In the latter rule, we use the min aggregation

Writing Declarative Specifications for Clauses 265

Fig. 1. A clause program encoding haplotype inference

operation of gringo to pick an occurrence of ‘2’ (if there is any) in a genotype gi
such that the overall number of ‘2’s at the respective position k is minimal.
This in turn maximizes the number of ‘0’s and ’1’s at position k, following the
rationale that fixing such a position to ‘0’ or ‘1’ directly discards plenty options

266 M. Gebser et al.

of sharing one of the two haplotypes used to explain gi. The atom vary(gi, k) in
a unit clause expressed by (38) stands for the variable tki , whose truth signals
that the first haplotype explaining gi contains ‘0’ at position k and the second
‘1’, while ‘0’ and ‘1’ are swapped when tki or vary(gi, k), respectively, is false.

The purpose of the clause rules (39)–(45) is to assert a literal
¬same(gi1 , e1, gi2 , e2) for genotypes gi1 , gi2 such that i1 ≤ i2 and e1, e2 ∈ {0, 1}
when two of the haplotypes explaining gi1 and gi2 are different, so that the lit-
erals correspond to the aforementioned variables xe1,e2

i1,i2
. In a nutshell, rule (39)

applies to haplotypes whose genotypes differ on ‘0’ and ‘1’ at a position, (40)
and (41) align a ‘0’ or ‘1’ in either gi1 or gi2 with the interpretation of tki2 or
tki1 , respectively, and (42)–(45) compare tki1 and tki2 in case both gi1 and gi2 con-
tain ‘2’ at position k. Note that (45) yields ¬same(gi, 0, gi, 1) for genotypes gi
with some occurrence of ‘2’, and all clauses have in common that they imply
¬same(gi1 , e1, gi2 , e2) for pairs of haplotypes that differ at some position. For
instance, the facts given above along with the domain rules (37)–(37) lead to the
clauses:

¬same(1, 0, 2, 0) ∨ ¬vary(2, 2), ¬same(1, 1, 2, 0) ∨ ¬vary(2, 2),
¬same(2, 0, 3, 0) ∨ ¬vary(2, 2), ¬same(2, 0, 3, 1) ∨ ¬vary(2, 2),
¬same(1, 0, 2, 1) ∨ vary(2, 2), ¬same(1, 1, 2, 1) ∨ vary(2, 2), ¬same(2, 0, 2, 1),
¬same(2, 1, 3, 0) ∨ vary(2, 2), ¬same(2, 1, 3, 1) ∨ vary(2, 2),
¬same(1, 0, 3, 0) ∨ ¬vary(3, 1), ¬same(1, 1, 3, 0) ∨ ¬vary(3, 1),
¬same(2, 0, 3, 0) ∨ ¬vary(3, 1), ¬same(2, 1, 3, 0) ∨ ¬vary(3, 1),
¬same(1, 0, 3, 1) ∨ vary(3, 1), ¬same(1, 1, 3, 1) ∨ vary(3, 1),
¬same(2, 0, 3, 1) ∨ vary(3, 1), ¬same(2, 1, 3, 1) ∨ vary(3, 1), ¬same(3, 0, 3, 1).

That is, the two haplotypes explaining g2 or g3, respectively, are inherently differ-
ent from one another, and the unit clauses ¬same(2, 0, 2, 1) and ¬same(3, 0, 3, 1)
represent the truth of x0,1

2,2 and x0,1
3,3. Moreover, the clauses including, e.g.,

¬same(1, e, 3, 0) and ¬same(1, e, 3, 1) with e ∈ {0, 1} stand for xe,0
1,3 ∨ ¬t13 and

xe,1
1,3 ∨ t13, thus reflecting differences between the haplotypes for g1 that contain

‘1’ at position 1 and either of the two haplotypes for g3. Also note that none of
the clauses refers to ‘2’ at the third position of g3 or t33, respectively, since the
third string position is isomorphic to the first.

The last clause rule (46) implies used(gi2 , e2), corresponding to variables ue2
i2

for genotypes gi2 and e2 ∈ {0, 1}, to indicate first uses of haplotypes. Such
atoms are subject to minimization in view of the minimize statement in (47),
instantiated as follows:

used(1, 0),
used(1, 1) ∨ same(1, 0, 1, 1),
used(2, 0) ∨ same(1, 0, 2, 0) ∨ same(1, 1, 2, 0),
used(2, 1) ∨ same(1, 0, 2, 1) ∨ same(1, 1, 2, 1) ∨ same(2, 0, 2, 1),
used(3, 0) ∨ same(1, 0, 3, 0) ∨ same(1, 1, 3, 0) ∨ same(2, 0, 3, 0) ∨ same(2, 1, 3, 0),

Writing Declarative Specifications for Clauses 267

used(3, 1) ∨ same(1, 0, 3, 1) ∨ same(1, 1, 3, 1) ∨ same(2, 0, 3, 1) ∨ same(2, 1, 3, 1)
∨ same(3, 0, 3, 1),

minimize |{(1, 0) : used(1, 0), (1, 1) : used(1, 1), (2, 0) : used(2, 0),
(2, 1) : used(2, 1), (3, 0) : used(3, 0), (3, 1) : used(3, 1)}|.

One can check that all clauses are satisfied by a domain stable model I such
that

Iv = {vary(2, 2), vary(3, 1), same(1, 0, 1, 1), same(1, 0, 2, 1), same(1, 0, 3, 1),
used(1, 0), used(2, 0), used(3, 0)}.

The number of distinct haplotypes, given by the predicate used/2, is minimal,
and in total there are 21 optimal models comprising the above haplotypes H =
{h1, h2, h3}.

In the pseudo-Boolean constraints of rpoly as well as the encoding in Fig. 1,
the variables xe1,e2

i1,i2
and ue2

i2
, signaling differences between haplotypes and those

to count in the objective function, are handled by implications forcing them to
true. In the following, we refer to this encoding approach by “Implication”. We
also implemented an encoding variant, indicated by “Equivalence”, where such
derived variables are matched to the conditions they express and cannot vary in
case a condition does not apply. The stronger assertions of “Equivalence” thus
reduce combinatorics to the prize of an increased number of clauses. Moreover,
[22] mentions a condition under which at least three of four haplotypes explaining
two genotypes gi1 , gi2 must be different, which can be expressed by clauses of
the form ¬xe1,e2

i1,i2
∨ ¬xe3,e4

i1,i2
for e1, e2, e3, e4 ∈ {0, 1} such that e1 �= e3 or e2 �= e4.

Interestingly, respective pseudo-Boolean constraints are not generated by rpoly,
while the encoding variants denoted by “Implication-LB” and “Equivalence-LB”
include such clauses. The four available encoding variants can be activated easily
via command-line switches of gringo, and the encoding extensions for enabling
flexibility amount to another ten selectively used schematic clause rules (see
Footnote 5).

To compare solving performance relative to input generated by rpoly or by
using clause programs and satgrnd, we ran the pseudo-Boolean solvers min-
isat+ (v. 1.0) and clasp (v. 3.1.4), the latter performing unsatisfiability-based
optimization (cf. [25]), sequentially on a Linux machine equipped with Intel
Xeon E5-4650 2.70 GHz processors. Instance data, out of which we selected the
63 instances such that some of the two solvers took more than ten seconds in
a preliminary screening phase, was kindly provided by the authors of rpoly.
All solver runs were completed with an optimal solution, i.e., no effective time
or memory limit was enforced. Table 1 provides averages over the 63 selected
instances in terms of runtime and numbers of conflicts as well as constraints,
the latter as reported by clasp and minisat+, relative to input generated by
rpoly or satgrnd with the four encoding variants outline above. The conver-
sion of instance data to a problem representation in OPB format, using rpoly or
satgrnd, was done offline and does thus not contribute to measured runtimes.
Clearly, the procedural implementation by rpoly is noticeably quicker than the
grounding step of satgrnd, as the latter is geared for modeling flexibility rather
than low-level performance.

268 M. Gebser et al.

Table 1. Experiments with clasp and minisat+ on haplotype inference benchmarks

RPOLY Implication Implication-LB Equivalence Equivalence-LB
Runtime 182.3 3.3 3.5 4.7 5.5 C

L
A
SP

Conflicts 466,933 47,262 52,420 57,789 67,178
Constraints 36,299 28,318 28,454 49,054 49,192

Runtime 133.6 1789.8 1402.7 2639.1 2467.4 M
IN

ISA
T+

Conflicts 863,514 6,779,058 6,441,567 6,769,964 5,866,433
Constraints 36,859 28,500 28,638 51,003 51,142

Considering the average runtimes of both solvers, the best highlighted in
boldface, clasp is an order of magnitude faster on input provided by satgrnd,
while the opposite effect applies to minisat+ on input generated by rpoly. We
attribute such inverse behavior to different selections of string positions for static
symmetry breaking. In our encoding in Fig. 1, we use a greedy approach aiming to
reduce the resulting number of clauses: for each genotype, pick some occurrence
of ‘2’ that maximizes the number of ‘0’s and ’1’s at this position. The strategy
applied by rpoly is, to our knowledge, not documented in the literature, and
the apparent difference to ours can be observed on the numbers of constraints
reported by clasp and minisat+ in the first two columns of Table 1. In fact,
there is a lot of room for different strategies, and declarative specifications by
clause programs offer means for the rapid prototyping of alternative approaches.

Regarding the runtime differences between clasp and minisat+, we want
to stress that clasp is a recent system, whereas minisat+ is not actively main-
tained. Hence, rather than further comparing the solvers to each other, it is
more meaningful to concentrate on the effect of the encoding variants in the
last three columns of Table 1, whose clauses differ from the pseudo-Boolean con-
straints of rpoly. Here, we observe an expected rough doubling of size, wit-
nessed by numbers of constraints, for the two “Equivalence” approaches. Since
the size increase deteriorates runtimes and does not reduce conflicts significantly,
the more relaxed approach taken by rpoly and the “Implication” encoding is
clearly the right choice. Moreover, the addition of clauses asserting necessary
differences between haplotypes explaining different genotypes in “Implication-
LB” (and “Equivalence-LB”) modestly improves the runtime of minisat+ and
its reported conflicts, yet not by a substantial amount. There are, however, no
gains for clasp, which again confirms the choice of rpoly not to generate such
constraints as appropriate. In summary, our practical case study demonstrates
the utility of clause programs to implement a problem encoding, investigate the
effect of alternative formulations, and identify parts that are critical for solving
performance.

5 Discussion of Related Work and Conclusion

In this paper, we promote declarative domain specifications in contrast to pro-
cedural ones that are typical when solvers are interfaced with a programming

Writing Declarative Specifications for Clauses 269

library (see, e.g., the Python interface of Microsoft’s z3). Naturally, other declar-
ative approaches exist. In the context of pseudo-Boolean solvers, the system
psgrnd [26] can be used to ground clauses and their extensions. The domain
information, however, is given by type declarations for predicates, and it is
not possible to define types in terms of others. The first-order approaches of
[2,6,27,28] also aim to restrict variable domains recursively over the structure
of first-order formulas, where the CWA is limited to predicates that are defined
(inductively) in terms of those allowed to vary. The same can be stated about
the methods proposed for effectively propositional logic [3,5], although domain
constraints are imposed. The IDP3 system [29] exploits PROLOG-style rules
to express domain information, but it processes them through query answering
rather than bottom-up evaluation. In [4], the grounding problem is addressed
in the context of planning domain definition language (PDDL) descriptions
over finite domains. While this approach explores a Datalog representation and
grounding techniques similar to ASP, it is specialized to planning tasks. The
interface provided by gringo is more general, in particular, given that domains
need not be finitely bounded a priori. Last but not least, note that traditional
constraint models [30,31] can also be translated into CNF (see, e.g., [10]), yet
expressing recursive domain specifications remains difficult.

Since its initial conception [32], satgrnd has been used in several lines of
work: firstly as a grounder to support high-level declarative specifications for
the sat-to-sat solver [33], and also as a tool to convert meta-representations
of quantified Boolean formulas to layers of CNFs [34]. Secondly, satgrnd has
been used in [35] to support declarative solver development for knowledge repre-
sentation languages. Specifically, we took advantage of satgrnd to specify and
implement a solver for combined logic programs [36].

In conclusion, we suggest to utilize ASP grounders for instantiating first-
order clauses involving term variables. This provides us with means to control
the resulting propositional clauses in a declarative way and to avoid the implicit
introduction of new Boolean variables, which is practically necessary otherwise,
e.g., when translating logic programs into SAT [37]. The combination of gringo
and satgrnd forms a general-purpose grounding tool not confined to a partic-
ular application domain. Due to the versatile and eventually Turing-complete
input language of gringo, complex domain specifications can be written to sup-
port fine-grained instantiation of term variables. The uniform rule-based syntax
makes specifications highly elaboration tolerant and independent of particular
instance data. We expect that the grounding methodology introduced in this
paper can be beneficial for SAT application developers in order to rapidly devise
and experiment with encodings directly at clause level.

Acknowledgments. This work was funded by the Academy of Finland (251170),
DFG (SCHA 550/9), as well as DAAD and the Academy of Finland (57071677 and
279121). We are grateful to João Marques-Silva and Inês Lynce for kindly providing
us with the benchmark instances used in Sect. 4.

270 M. Gebser et al.

References

1. Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfiability. IOS
Press, Amsterdam (2009)

2. Aavani, A., Wu, X.N., Tasharrofi, S., Ternovska, E., Mitchell, D.: Enfragmo: a
system for modelling and solving search problems with logic. In: Bjørner, N.,
Voronkov, A. (eds.) LPAR 2012. LNCS, vol. 7180, pp. 15–22. Springer, Heidel-
berg (2012). doi:10.1007/978-3-642-28717-6 4

3. Navarro, J.A., Voronkov, A.: Proof systems for effectively propositional logic. In:
Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol.
5195, pp. 426–440. Springer, Heidelberg (2008). doi:10.1007/978-3-540-71070-7 36

4. Helmert, M.: Concise finite-domain representations for PDDL planning tasks. Artif.
Intell. 173(5–6), 503–535 (2009)

5. Schulz, S.: A comparison of different techniques for grounding near-propositional
CNF formulae. In: Proceedings of FLAIRS 2002, pp. 72–76. AAAI Press (2002)

6. Wittocx, J., Mariën, M., Denecker, M.: Grounding FO and FO(ID) with bounds.
J. Artif. Intell. Res. 38, 223–269 (2010)

7. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance.
Commun. ACM 54, 92–103 (2011)

8. Aśın, R., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E.: Cardinality net-
works: a theoretical and empirical study. Constraints 16(2), 195–221 (2011)

9. Audemard, G., Katsirelos, G., Simon, L.: A restriction of extended resolution for
clause learning SAT solvers. In: Proceedings of AAAI 2010, pp. 15–20. AAAI Press
(2010)

10. Huang, J.: Universal booleanization of constraint models. In: Stuckey, P.J. (ed.)
CP 2008. LNCS, vol. 5202, pp. 144–158. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-85958-1 10

11. Gebser, M., Kaminski, R., Ostrowski, M., Schaub, T., Thiele, S.: On the input
language of ASP grounder gringo. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR
2009. LNCS (LNAI), vol. 5753, pp. 502–508. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-04238-6 49

12. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The
DLV system for knowledge representation and reasoning. ACM Trans. Comput.
Logic 7(3), 499–562 (2006)

13. Schlipf, J.: The expressive powers of the logic programming semantics. J. Comput.
Syst. Sci. 51, 64–86 (1995)

14. McCarthy, J.: Elaboration tolerance (2003). http://www-formal.stanford.edu/
jmc/elaboration.ps

15. Gebser, M., Kaminski, R., König, A., Schaub, T.: Advances in gringo series 3.
In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS (LNAI), vol. 6645, pp.
345–351. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20895-9 39

16. Van Gelder, A., Ross, K., Schlipf, J.: The well-founded semantics for general logic
programs. J. ACM 38(3), 620–650 (1991)

17. Ullman, J.: Principles of Database and Knowledge-Base Systems. CS Press, New
York (1988)

18. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Gener. Comput. 9(3–4), 365–386 (1991)

19. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model
semantics. Artif. Intell. 138(1–2), 181–234 (2002)

http://dx.doi.org/10.1007/978-3-642-28717-6_4
http://dx.doi.org/10.1007/978-3-540-71070-7_36
http://dx.doi.org/10.1007/978-3-540-85958-1_10
http://dx.doi.org/10.1007/978-3-540-85958-1_10
http://dx.doi.org/10.1007/978-3-642-04238-6_49
http://dx.doi.org/10.1007/978-3-642-04238-6_49
http://www-formal.stanford.edu/jmc/elaboration.ps
http://www-formal.stanford.edu/jmc/elaboration.ps
http://dx.doi.org/10.1007/978-3-642-20895-9_39

Writing Declarative Specifications for Clauses 271

20. Gebser, M., Janhunen, T., Rintanen, J.: Answer set programming as SAT modulo
acyclicity. In: Proceedings of ECAI 2014, pp. 351–356. IOS Press (2014)

21. Gebser, M., Janhunen, T., Rintanen, J.: SAT modulo graphs: acyclicity. In: Fermé,
E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 137–151. Springer,
Heidelberg (2014). doi:10.1007/978-3-319-11558-0 10

22. Graça, A., Marques-Silva, J., Lynce, I., Oliveira, A.L.: Efficient haplotype inference
with combined CP and OR techniques. In: Perron, L., Trick, M.A. (eds.) CPAIOR
2008. LNCS, vol. 5015, pp. 308–312. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-68155-7 28

23. Graça, A., Marques-Silva, J., Lynce, I., Oliveira, A.L.: Efficient haplotype inference
with pseudo-Boolean optimization. In: Anai, H., Horimoto, K., Kutsia, T. (eds.)
AB 2007. LNCS, vol. 4545, pp. 125–139. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-73433-8 10

24. Eén, N., Sörensson, N.: Translating pseudo-Boolean constraints into SAT. J. Sat-
isfiability Boolean Model. Comput. 2, 1–26 (2006)

25. Andres, B., Kaufmann, B., Matheis, O., Schaub, T.: Unsatisfiability-based opti-
mization in clasp. In: Technical Communications of ICLP 2012, pp. 212–221. LIPIcs
(2012)

26. East, D., Iakhiaev, M., Mikitiuk, A., Truszczyński, M.: Tools for modeling and
solving search problems. AI Commun. 19(4), 301–312 (2006)

27. Blockeel, H., Bogaerts, B., Bruynooghe, M., De Cat, B., De Pooter, S., Denecker,
M., Labarre, A., Ramon, J., Verwer, S.: Modeling machine learning and data min-
ing problems with FO(.). In: Technical Communications of ICLP 2012, pp. 14–25.
LIPIcs (2012)

28. Jansen, J., Dasseville, I., Devriendt, J., Janssens, G.: Experimental evaluation of a
state-of-the-art grounder. In: Proceedings of PPDP 2014, pp. 249–258. ACM Press
(2014)

29. Jansen, J., Jorissen, A., Janssens, G.: Compiling input* FO(.) inductive definitions
into tabled prolog rules for IDP3. Theor. Pract. Logic Program. 13(4–5), 691–704
(2013)

30. Cadoli, M., Schaerf, A.: Compiling problem specifications into SAT. Artif. Intell.
162(1–2), 89–120 (2005)

31. Stuckey, P., Feydy, T., Schutt, A., Tack, G., Fischer, J.: The MiniZinc challenge
2008–2013. AI Mag. 35(2), 55–60 (2014)

32. Gebser, M., Janhunen, T., Kaminski, R., Schaub, T., Tasharrofi, S.: Writing declar-
ative specifications for clauses. In: Proceedings of GTTV (2015)

33. Janhunen, T., Tasharrofi, S., Ternovska, E.: SAT-to-SAT: declarative extension of
SAT solvers with new propagators. In: Proceedings of AAAI 2016, pp. 978–984.
AAAI Press (2016)

34. Bogaerts, B., Janhunen, T., Tasharrofi, S.: Solving QBF instances with nested
SAT solvers. In: Proceedings of AAAI-16 Workshop on Beyond NP, pp. 307–313.
AAAI Press (2016). http://www.aaai.org/ocs/index.php/WS/AAAIW16/paper/
view/12603/12381

35. Bogaerts, B., Janhunen, T., Tasharrofi, S.: Declarative solver development: case
studies. In: Proceedings of KR 2016, pp. 74–83. AAAI Press (2016)

36. Bogaerts, B., Janhunen, T., Tasharrofi, S.: Stable-unstable semantics: beyond NP
with normal logic programs. Theory and Practice of Logic Programming (2016, to
appear)

37. Janhunen, T.: Some (in)translatability results for normal logic programs and
propositional theories. J. Appl. Non-Class. Logics 16(1–2), 35–86 (2006)

http://dx.doi.org/10.1007/978-3-319-11558-0_10
http://dx.doi.org/10.1007/978-3-540-68155-7_28
http://dx.doi.org/10.1007/978-3-540-68155-7_28
http://dx.doi.org/10.1007/978-3-540-73433-8_10
http://dx.doi.org/10.1007/978-3-540-73433-8_10
http://www.aaai.org/ocs/index.php/WS/AAAIW16/paper/view/12603/12381
http://www.aaai.org/ocs/index.php/WS/AAAIW16/paper/view/12603/12381

Standard Sequent Calculi
for Lewis’ Logics of Counterfactuals

Marianna Girlando1(B), Björn Lellmann2,
Nicola Olivetti1, and Gian Luca Pozzato3

1 Aix Marseille Univ, CNRS, ENSAM, Université de Toulon,
LSIS UMR 7296, 13397 Marseille, France

{marianna.girlando,nicola.olivetti}@univ-amu.fr
2 Technische Universität Wien, Vienna, Austria

lellmann@logic.at
3 Dipartimento di Informatica, Universitá di Torino, Turin, Italy

gianluca.pozzato@unito.it

Abstract. We present new sequent calculi for Lewis’ logics of coun-
terfactuals. The calculi are based on Lewis’ connective of comparative
plausibility and modularly capture almost all logics of Lewis’ family.
Our calculi are standard, in the sense that each connective is handled
by a finite number of rules with a fixed and finite number of premises;
internal, meaning that a sequent denotes a formula in the language, and
analytical. We present two equivalent versions of the calculi: in the first
one, the calculi comprise simple rules; we show that for the basic case of
logic V, the calculus allows for syntactic cut-elimination, a fundamental
proof-theoretical property. In the second version, the calculi comprise
invertible rules, they allow for terminating proof search and semanti-
cal completeness. We finally show that our calculi can simulate the only
internal (non-standard) sequent calculi previously known for these logics.

1 Introduction

In his seminal works [14], Lewis proposed a formalization of conditional logics
in order to represent a kind of hypothetical reasoning that cannot be captured
by the material implication of classical logic. His original motivation was to for-
malize counterfactuals, that is to say, conditionals of the form “if A were the
case then B would be the case”, where A is false. Independently from counter-
factuals, conditional logics have found an interest in several fields of knowledge
representation; for instance, they have been used to model belief change [10].
To this regard, a multi-agent version of Lewis’ conditional logic VTA [2,3] has

B. Lellmann—Funded by the European Union’s Horizon 2020 research and innova-
tion programme under the Marie Sk�lodowska-Curie grant agreement No 660047.
G.L. Pozzato—Partially supported by the project “ExceptionOWL”, Università di
Torino and Compagnia di San Paolo, call 2014 “Excellent (young) PI”.
M. Girlando—Partially supported by the LabEx Archimède, AMU.

c© Springer International Publishing AG 2016
L. Michael and A. Kakas (Eds.): JELIA 2016, LNAI 10021, pp. 272–287, 2016.
DOI: 10.1007/978-3-319-48758-8 18

Standard Sequent Calculi for Lewis’ Logics of Counterfactuals 273

been used to formalize epistemic change in a multi-agent setting, where the con-
ditional operator expresses the “conditional beliefs” of an agent. In a different
context, conditional logics have been used to reason about prototypical proper-
ties [5,8], and to provide an axiomatic foundation of non-monotonic reasoning
[11], in which a conditional A � B is read as “in normal circumstances, if A
then B”.

The family of logics studied by Lewis is semantically characterized by sphere
models, a particular kind of neighbourhood models introduced by Lewis himself.
In Lewis’ terminology, a sphere denotes a set of worlds; in sphere models, each
world is equipped with a nested system of such spheres. From the viewpoint of
the given world, inner sets represent the “most plausible worlds”, while worlds
belonging only to outer sets are considered as less plausible. In order to treat
the conditional operator, Lewis takes as primitive the comparative plausibility
connective �: a formula A � B means “A is at least as plausible as B”. The
conditional A� B can be then defined as “A is impossible” or “A ∧ ¬B is less
plausible than A ∧ B”. However, the latter assertion is equivalent to the simpler
one “A ∧ ¬B is less plausible than A”1.

From the point of view of proof theory and automated deduction, conditional
logics do not have a state of the art comparable with, say, the one of modal
logics, for which there exist well-established calculi with well-understood proof-
theoretical and computational properties. Calculi for some weaker conditional
logics are given, e.g., in [1,18] and more recently in [15,19]. Regarding Lewis’
counterfactual logics, external labelled calculi have been proposed in [9] and in
[16], both based on a relational reformulation of the sphere semantics. We are
interested in internal sequent calculi, where a sequent denotes a formula of the
language. Calculi of this kind have been proposed by Gent [7] and de Swart
[20], and more recently in [12,13]. They are analytical and provide a decision
procedure for the respective logics; on the other hand, they comprise an infinite
set of rules with a variable number of premises.

Our aim is to provide internal calculi for the whole family of Lewis’ logics.
We sought the calculi to display the following features: (i) they should be stan-
dard, i.e. each connective should be handled by a fixed finite set of rules with a
fixed finite set of premises; (ii) they should be modular, i.e. it should be possi-
ble to obtain calculi for stronger logics adding independent rules to calculi for
weaker ones; (iii) they should have good proof-theoretical properties, first they
should allow a syntactic proof of cut admissibility; (iv) they should provide a
decision procedure for the respective logics; finally (v) they should be of optimal
complexity with respect to the known complexity of the logic. In our opinion
requirement (i) is particularly important: a standard calculus could provide a
self-explanatory presentation of the logic, thus a kind of proof-theoretic seman-
tics. A first step in this direction is the calculus IV presented in [17] for logic V: it
is internal and it is formulated in terms of structured sequents containing blocks
encoding disjunctions of �-formulas. The calculus provides an optimal decision
procedure for V; however, no syntactic proof of cut admissibility is known for it.

1 It is worth noticing that in turn the connective � can be defined in terms of �.

274 M. Girlando et al.

In this work we make a further step towards the objectives mentioned above,
extending the results of [17]. We present internal, standard, cut-free calculi for
most logics of the Lewis family, namely logics V, VN, VT, VW, VC, VA and
VNA (hereafter denoted by L). Our calculi make use of a simplified block struc-
ture with respect to IV . We first present the calculi IL, containing particularly
perspicuous non-invertible rules together with explicit contraction rules. As a
preliminary result we provide a syntactic proof of the admissibility of the cut
rule for the basic case of logic V, obtaining, as a by-product, a syntactic proof
of completeness of the calculus. We then present the calculi I i

L, an alternative
version of IL with invertible rules and provably admissible contraction rules.
We show that calculi I i

L are equivalent to IL, and that they allow terminating
proof-search; therefore they provide a decision procedure for the respective logics.
Moreover, we also prove the semantic completeness of I i

L calculi for all logics of
Lewis family not including the absoluteness condition. As a final result, we show
that calculi IL (whence I i

L) can simulate the non-standard calculi of [12,13].
This result is interesting in itself as it clarifies the relation between rather differ-
ent proof-systems, and moreover it provides an alternative completeness proof
of both IL and I i

L calculi, in particular for the missing cases of logics VA and
VNA. For the remaining logics of Lewis’ family such as VTA, VWA, and VCA

the issue of completeness of our calculi is open and will be dealt with in future
research.

2 Preliminaries

We consider the conditional logics defined by Lewis in [14]. The set of conditional
formulae is given by F ::=p | ⊥ | F → F | F � F , where p ∈ V is a propositional
variable. The other boolean connectives are defined in terms of ⊥,→ as usual.
Intuitively, a formula A � B is interpreted as “A is at least as plausible as B”.

As mentioned above, Lewis’ counterfactual implication� can be defined in
terms of comparative plausibility � as A� B ≡ (⊥ � A)∨¬((A∧¬B) � A).

The semantics of this logic is defined by Lewis in terms of sphere semantics:

Definition 1. A sphere model (or model) is a triple 〈W,SP, �. �〉, consisting of
a non-empty set W of elements, called worlds, a mapping SP : W → P(P(W)),
and a propositional valuation �. � : V → P(W). Elements of SP(x) are called
spheres. We assume the following conditions: for every α ∈ SP(w) we have
α
= ∅, and for every α, β ∈ SP(w) we have α ⊆ β or β ⊆ α. The latter
condition is called sphere nesting.

The valuation �. � is extended to all formulae by: �⊥� = ∅; �A → B� = (W −
�A�) ∪ �B�; �A � B� = {w ∈ W | for all α ∈ SP(w). if �B� ∩ α
= ∅, then �A� ∩
α
= ∅}. For w ∈ W we also write w � A instead of w ∈ �A�. As for spheres,
we write α �∀ A meaning ∀x ∈ α. x � A and α �∃ A meaning ∃x ∈ α. x � A2.
Validity and satisfiability of formulae in a class of models are defined as usual.
Conditional logic V is the set of formulae valid in all sphere models.
2 Employing this notation, satisfiability of a �-formula in a model becomes the fol-

lowing: x � A � B iff for all α ∈ SP(x). α �∀ ¬B or α �∃ A.

Standard Sequent Calculi for Lewis’ Logics of Counterfactuals 275

Extensions of V are semantically given by specifying additional conditions
on the class of sphere models, namely:

– normality : for all w ∈ W we have SP(w)
= ∅;
– total reflexivity : for all w ∈ W we have w ∈ ⋃

SP(w);
– weak centering : normality holds and for all α ∈ SP(w) we have w ∈ α;
– centering : for all w ∈ W we have {w} ∈ SP(w);
– absoluteness: for all w, v ∈ W we have SP(w) = SP(v)3.

Extensions of V are denoted by concatenating the letters for these properties:
N for normality, T for total reflexivity, W for weak centering, C for centering,
and A for absoluteness. All the above logics can be characterized by axioms in a
Hilbert-style system [14, Chap. 6]. The modal axioms formulated in the language
with only the comparative plausibility operator are presented in Table 1 (where
∨ and ∧ bind stronger than �). The propositional axioms and rules are standard.

Table 1. Lewis’ logics and axioms.

CPR
� B → A

� A � B
CPA (A � A ∨ B) ∨ (B � A ∨ B)

TR (A � B) ∧ (B � C) → (A � C) CO (A � B) ∨ (B � A)
N ¬(⊥ �
) W A → (A �
)
T (⊥ � ¬A) → A A1 (A � B) → ⊥ � ¬(A � B)

)
C (A �
) → A A2 ¬(A � B) → ⊥ � (A � B)

)

AV := {CPR,CPA,TR,CO}
AVN := AV ∪ {N} AVT := AV ∪ {N,T} AVW := AV ∪ {N,T,W}
AVC := AV ∪ {N,T,W,C} AVA := AV ∪ {A1,A2} AVNA := AV ∪ {N,A1,A2}

3 A Sequent Calculus for Lewis’ Logic and Extensions

We propose internal sequent calculi for the basic Lewis’ logic V as well as for
some extensions. Our calculi are based on a modification of the sequent format
from [17]. To make contraction explicit we consider sequents based on multi-
sets, and write Γ,Δ for multiset union and An for the multiset containing n
copies of the formula A. The basic constituent of sequents are blocks of the
form [A1, . . . , Am � A], with A1, . . . , Am, A formulas, representing disjunctions
of �-formulas.

Definition 2. A block is a tuple consisting of a multiset Σ of formulae and a
single formula A, written [Σ � A]. A sequent is a tuple Γ ⇒ Δ, where Γ is a

3 Lewis’ original presentation in [14] is slightly different: he did not assume the gen-
eral condition on sphere models that for every α ∈ SP(w): α �= ∅, and formu-
lated normality as ∀w ∈ W :

⋃
SP(w) �= ∅ and weak centering as normality plus

∀w ∈ W α ∈ SP(w), if α �= ∅ then w ∈ α. Furthermore, note that absoluteness can
be equally stated as local absoluteness: ∀w ∈ W∀v ∈ ⋃SP(w) SP(w) = SP(v).

276 M. Girlando et al.

multiset of conditional formulae, and Δ is a multiset of conditional formulae and
blocks. The formula interpretation of a sequent is given by (all blocks shown):

ι(Γ ⇒ Δ′, [Σ1 � A1] , . . . , [Σn � An]) :=
∧

Γ →
∨

Δ′ ∨
∨

1≤i≤n

∨

B∈Σi

(B � Ai)

Table 2 presents non-invertible calculi for logic V and its extensions, including
rules for contraction both on the sequent level and inside blocks4. We write
[Θ,Σ � A] for [(Θ,Σ) � A], with Θ,Σ standing for multiset union.

Table 2. The calculus IV and its extensions

Γ, ⊥ ⇒ Δ
⊥L

Γ, p ⇒ Δ, p
init

Γ, B ⇒ Δ Γ ⇒ Δ, A

Γ, A → B ⇒ Δ
→L

Γ, A ⇒ Δ, B

Γ ⇒ Δ, A → B
→R

Γ ⇒ Δ, [A � B]

Γ ⇒ Δ, A � B
�R

Γ ⇒ Δ, [D, Σ � A] Γ ⇒ Δ, [Σ � C]

Γ, C � D ⇒ Δ, [Σ � A]
�L

Γ ⇒ Δ, [Σ1, Σ2 � A] Γ ⇒ Δ, [Σ1, Σ2 � B]

Γ ⇒ Δ, [Σ1 � A] , [Σ2 � B]
com

A ⇒ Σ

Γ ⇒ Δ, [Σ � A]
jump

A, A, Γ ⇒ Δ

A, Γ ⇒ Δ
ConL

Γ ⇒ Δ, A, A

Γ ⇒ Δ, A
ConR

Γ ⇒ Δ, [Σ � A] , [Σ � A]

Γ ⇒ Δ, [Σ � A]
ConS

Γ ⇒ Δ, [Σ, A, A � B]

Γ ⇒ Δ, [Σ, A � B]
ConB

Γ ⇒ Δ, [⊥ �
]

Γ ⇒ Δ
N

Γ ⇒ Δ, B Γ ⇒ Δ, [⊥ � A]

Γ, A � B ⇒ Δ
T

Γ ⇒ Δ, Σ

Γ ⇒ Δ, [Σ � A]
W

Γ, C ⇒ Δ Γ ⇒ D, Δ

Γ, C � D ⇒ Δ
C

Γ �, B ⇒ Δ�, Σ

Γ ⇒ Δ, [Σ � B]
A

Here Γ � ⇒ Δ� is Γ ⇒ Δ restricted to formulae of the form C � D and blocks.

IV := {⊥L, init, →L, →R, �R, �L, com, jump,ConR,ConL,ConS}

IVN := IV ∪ {N} IVW := IV ∪ {N,T,W} IVA := IV ∪ {A}
IVT := IV ∪ {N,T} IVC := IV ∪ {N,T,W,C} IVNA := IV ∪ {N,A}

For notational convenience in the following we take L to range over the
logics V, VN, VT, VW, VC, VA, VNA, unless specified otherwise. As usual, given
a formula G ∈ L, in order to check whether G is valid we look for a derivation of
⇒ G. Given a sequent Γ ⇒ Δ, we say that it is derivable, written IL � Γ ⇒ Δ,
if it admits a derivation, namely a tree where the root is Γ ⇒ Δ, every leaf is
an instance of axioms init or ⊥L, and every non-leaf node is (an instance of) the
conclusion of a rule having (an instance of) the premises of the rule as children.

Given the definition of� in terms of �, rules for counterfactual implication
can be explicitly stated as follows:

⊥ � A, Γ ⇒ Δ Γ ⇒ Δ, [A ∧ ¬B � A]

A� B, Γ ⇒ Δ
�L

(A ∧ ¬B) � A, Γ ⇒ Δ, [⊥ � A]

Γ ⇒ Δ, A� B
�R

4 Actually, the rules ConS and ConB are not needed for completeness (refer to Sect. 6);
we have included them in our official formulation of the calculi for technical conve-
nience.

Standard Sequent Calculi for Lewis’ Logics of Counterfactuals 277

Theorem 3 (Soundness). If IL � Γ ⇒ Δ, then ι(Γ ⇒ Δ) is a theorem of L.

Example 4. To illustrate the use of the calculus we show a derivation of the
characteristic axiom (⊥ � ¬A) → A for logic VT in the calculus IVW and a
derivation of it in the calculus VC (where ¬A = (A → ⊥)):

A ⇒ A,⊥,⊥ init

⇒ A,A → ⊥,⊥ →R

⇒ A, [(A → ⊥),⊥ � �]
W

⊥ ⇒ ⊥ ⊥L

⇒ A, [⊥ � ⊥]
jump

⊥ � (A → ⊥) ⇒ A, [⊥ � �]
�L

⊥ � (A → ⊥) ⇒ A
N

⇒ (⊥ � (A → ⊥)) → A
→R

⊥ ⇒ A
⊥L

A ⇒ A,⊥ init

⇒ A,A → ⊥ →R

⊥ � (A → ⊥) ⇒ A
C

Therefore, rule T could be omitted in the rule sets IVW and IVC.

Completeness of the calculi is shown in next section. We now provide the cut
elimination proof in presence of the contraction rules (ConL, ConR, ConS and
ConB). The general strategy, adapted from the hypersequent setting [4], con-
sists of eliminating topmost applications of cut of maximal complexity by first
permuting them into the left premise until we reach an occurrence of the cut
formula which is principal, and then permuting them into the right one. The cut
rules are:

Γ ⇒ Δ,A A,Σ ⇒ Π

Γ,Σ ⇒ Δ,Π
cut1

Γ ⇒ Δ, [Ω � A] Σ ⇒ Π, [A,Θ � B]
Γ,Σ ⇒ Δ,Π [Ω,Θ � B]

cut2

Definition 5. We write ILCut for the calculus IL extended with the cut rules
cut1 and cut2. The complexity of an application of cut1 or cut2 is the complexity
of the cut formula, i.e., the number |A| of symbols of the cut formula A. Given a
derivation D in ILCut, its formula cut rank rkcut1(D) is the maximal complexity
of an application of cut1 in it. Analogously, its structural cut rank rkcut2(D) is
the maximal complexity of an application of cut2 in it. The height of a derivation
is the number of nodes of its longest branch minus one. Thus, a derivation of
height 0 is an axiom. We write IL �n Γ ⇒ Δ if there exists a derivation of
height n in IL with endsequent Γ ⇒ Δ. Similarly for ILCut.

By straightforward induction on the height of the derivation we obtain:

Lemma 6. The weakening rules are height-preserving admissible in IL and
ILCut, i.e. (using the uniform notation IL(Cut) for both cases): If IL(Cut) �n

Γ ⇒ Δ, then IL(Cut) �n Γ,Σ ⇒ Δ,Π and if IL(Cut) �n Γ ⇒ Δ, [Σ � A], then
IL(Cut) �n Γ ⇒ Δ, [Σ,Ω � A]. Moreover, both the formula cut rank and the
structural cut rank are preserved.

Lemma 7 (cut1-reduction). Suppose IVCut � Γ ⇒ Δ,An and IVCut �
Am, Σ ⇒ Π by derivations D1 and D2 with rkcut1(D1) < |A| > rkcut1(D2)
and rkcut2(D1) < |A| > rkcut2(D2), where An and Am are n and m occur-
rences of A. Then there is a derivation D in IVCut of Γ,Σ ⇒ Δ,Π with
rkcut1(D) < |A| > rkcut2(D).

278 M. Girlando et al.

Proof. By induction on the sum of the heights of D1 and D2. We write R1 and R2

for the last rules in D1 resp. D2, and count the atom p in init and the contracted
formula in the contraction rules as principal. If none of the occurrences of A
is principal in R1, we apply the induction hypothesis on the premise(s) of R1

followed by R1. Otherwise, if none of the occurrences of A is principal in R2, we
apply the induction hypothesis to the premise(s) of R2 followed by R2.

If at least one occurrence of A was principal both in R1 and R2, we apply the
induction hypothesis to the premise(s) of R1 and the conclusion of R2 and vice
versa to delete the occurrences of A in the context. If either of the rules was a
contraction rule we are done, otherwise apply cut1 or cut2 on formulae of smaller
complexity. The propositional cases are standard, the case where A = C � D is
straightforward. Applying contraction rules then yields the result. ��
Lemma 8 (Shift-right). Suppose for k1, . . . , kn ≥ 1 we have IVCut-
derivations D1 and D2 of Γ ⇒ Δ, [Ω � A] and Σ ⇒ Π,

[

Ak1 , Θ1 � B1

]

,

. . . ,
[

Akn , Θn � Bn

]

respectively with rkcut1(D1) ≤ |A| ≥ rkcut1(D2) and
rkcut2(D1) < |A| > rkcut2(D2) such that the last applied rule in D1 is jump. Then
there is a derivation D in IVCut with rkcut1(D) ≤ |A| > rkcut2(D) of the sequent

Γ,Σ ⇒ Δ,Π, [Ω,Θ1 � B1] , . . . , [Ω,Θn � Bn]

Proof. By induction on the height of D2, distinguishing cases according to the
last applied rule R. If R is a rule other than jump, com we apply the induction
hypothesis to the premise(s) of R, followed by R if necessary. In particular, the
general induction hypothesis immediately takes care of ConS and ConB . If R
is jump, we apply cut1 several times to the occurrence of A in the premise of
the application of jump in D1 and the occurrences of A in the premise of R,
followed by applications of ConL and an application of jump. These new cuts
have complexity |A|. If R is com, again we apply the induction hypothesis on
the premises of R, but now we might need to apply weakening inside a block
before applying com again. ��
Lemma 9 (cut2-reduction). Suppose we have IV-derivations D1 and D2 of
Γ ⇒ Δ, [Ω1 � A] , . . . , [Ωn � A] and Σ ⇒ Π, [A,Θ � B] with rkcut1(D1) ≤ |A| ≥
rkcut1(D2) and rkcut2(D1) < |A| > rkcut2(D2). Then there is a derivation D in
IVCut with rkcut1(D) ≤ |A| > rkcut2(D) of the sequent

Γ,Σ ⇒ Δ,Π, [Ω1, Θ � B] , . . . , [Ωn, Θ � B]

Proof. By induction on the height of D1, distinguishing cases according to the
last applied rule R. If none of the occurrences of A in the conclusion of R is
in an active block we apply the induction hypothesis to the premise(s) of R
followed by an application of R. Suppose A occurs in an active block. If R is
com or �L we apply the induction hypothesis on the premises, followed possibly
by admissibility of Weakening (Lemma 6) and finally an application of R. If R
is ConB, we simply apply the induction hypothesis to its premise. If R is jump,
we apply Lemma 8. ��

Standard Sequent Calculi for Lewis’ Logics of Counterfactuals 279

Theorem 10 (Cut Elimination). If IVCut � Γ ⇒ Δ, then IV � Γ ⇒ Δ. In
particular, there is a procedure to eliminate cuts from a derivation in IVCut.

Proof. We show how to convert an IVCut-derivation D into a cut-free derivation
with same conclusion by induction on the tuples 〈rkcut1(D),#cut2(D),#cut1(D)〉 in
the lexicographic ordering, where #cut1(D) is the number of applications of cut1
in D with cut formula of complexity max{rkcut1(D), rkcut2(D)}, and analogous for
#cut2(D) with respect to cut2. A topmost application of cut1 with complexity
max{rkcut1(D), rkcut2(D)} is eliminated using Lemma 7. A topmost application of
cut2 with complexity max{rkcut1(D), rkcut2(D)} is eliminated using Lemma 9. It
follows from the lemmas that in both cases the induction measure decreases. ��
As a consequence of the admissibility of cut, we can provide a syntactical proof
of completeness of logic V:

Corollary 11 (Completeness via cut elimination). If a formula F is valid
in V, then there is a derivation of ⇒ F in IV.

Proof. By deriving the rules and axioms of the Hilbert-calculus for V (Table 1) in
IVCut and using Theorem 10. For rule CPR from ⇒ B → A by propositional rules
and cut1 we obtain B ⇒ A, and applications of jump and �R yield ⇒ A � B. ��

4 The Invertible Calculus

In Table 3 we present fully invertible calculi for Lewis’ logics. The equivalence
between IL and I i

L is proved via admissibility of weakening and contraction;
furthermore, we shall use I i

L to semantically prove completeness of logics V,
VN, VT, VW and VC. It can be shown that weakening is height preserving
admissible in I i

V
and its extensions, and that all the rules are invertible, with

the exception of jump and Ai. Given these properties, we can prove that:

Lemma 12 (Adm. of Contraction). 1. Rules ConL and ConR are admissible
in I i

L; 2. Rule ConS is admissible in I i
L; 3. Rule ConB is admissible in I i

L.

Theorem 13 (Equivalence). For A arbitrary formula, A is derivable in the
calculus IL iff A is derivable in the invertible calculus I i

L.

Proof. Both directions are proved by easy induction on the height of the deriva-
tion, modulo weakening and contraction. Note that for the [if] direction applica-
tion of weakening is justified, since the rule is admissible in the calculus IL, and
for direction [only if] applications of weakening and contraction are legitimate
since both rules are admissible in I i

L. ��
Standard reasoning shows that the calculi I i

L can be used in a decision procedure
for the logic L as follows. Since contractions and weakenings are admissible we

280 M. Girlando et al.

Table 3. The invertible calculus I i
V and its extensions

Γ, ⊥ ⇒ Δ
⊥L

Γ, p ⇒ Δ, p
init

Γ, B ⇒ Δ Γ ⇒ Δ, A

Γ, A → B ⇒ Δ
→L

Γ, A ⇒ Δ, B

Γ ⇒ Δ, A → B
→R

Γ ⇒ Δ, [A � B]

Γ ⇒ Δ, A � B
�R

Γ, A � B ⇒ Δ, [B, Σ � C] Γ, A � B ⇒ Δ, [Σ � A] , [Σ � C]

Γ, A � B ⇒ Δ, [Σ � C]
�i

L

Γ ⇒ Δ, [Σ1, Σ2 � A] , [Σ2 � B] Γ ⇒ Δ, [Σ1 � A] , [Σ1, Σ2 � B]

Γ ⇒ Δ, [Σ1 � A] , [Σ2 � B]
comi

A ⇒ Σ

Γ ⇒ Δ, [Σ � A]
jump

Γ ⇒ Δ, [⊥ �
]

Γ ⇒ Δ
N

Γ, A � B ⇒ Δ, B Γ, A � B ⇒ Δ, [⊥ � A]

Γ, A � B ⇒ Δ
Ti

Γ ⇒ Δ, [Σ � A] , Σ

Γ ⇒ Δ, [Σ � A]
Wi

Γ, A � B ⇒ Δ, B Γ, A � B, A ⇒ Δ

Γ, A � B ⇒ Δ
Ci

Γ �, B ⇒ Δ�, [Σ � B] , Σ

Γ ⇒ Δ, [Σ � B]
Ai

Here Γ � ⇒ Δ� is Γ ⇒ Δ restricted to formulae of the form C � D and blocks.

I i
V

:= {⊥L, init, →L, →R, �R, �i
L, comi

, jump}
I i
VN

:= I i
V

∪ {N} I i
VW

:= I i
V

∪ {N,Ti,Wi} I i
VA

:= I i
V

∪ {Ai}
I i
VT

:= I i
V

∪ {N,Ti} I i
VC

:= I i
V

∪ {N,Ti,Wi,Ci} I i
VNA

:= I i
V

∪ {N,Ai}

may assume that a derivation of a duplication-free sequent (containing dupli-
cates neither of formulae nor of blocks) only contains duplication-free sequents:
whenever a (backwards) application of a rule introduces a duplicate of a formula
already in the sequent, it is immediately deleted in the next step using a back-
wards application of weakening. While officially our calculi do not contain the
weakening rules, the proof of admissibility of weakening yields a procedure to
transform a derivation with these rules into one without. Since all rules have the
subformula property, the number of duplication-free sequents possibly relevant
to a derivation of a sequent is bounded in the number of subformulae of that
sequent, and hence enumerating all possible loop-free derivations of the above
form yields a decision procedure for the logic. This argument is sufficient to show
termination; however, it is clear that the complexity of the resulting procedure
is far from the optimal PSPACE or coNP complexities of the logics [6,20].

Theorem 14. Proof search for a sequent Γ ⇒ Δ in calculus I i
L always comes

to an end in a finite number of steps.

5 Semantic Completeness

In this section we prove the semantic completeness of I i
L. In order to simplify

the proof we adopt a cumulative version of rules →L, →R, �R and comi. This
allows us to consider only the upper sequent of each derivation branch, instead
of taking into account whole branches of the derivation.

Γ,A → B,B ⇒ Δ Γ,A → B ⇒ Δ,B

Γ,A → B ⇒ Δ
→c

L

Standard Sequent Calculi for Lewis’ Logics of Counterfactuals 281

Γ,A ⇒ Δ,A → B,B

Γ ⇒ Δ,A → B
→c

R

Γ ⇒ Δ,A � B, [A � B]
Γ ⇒ Δ,A � B

�c
R

Γ ⇒ Δ, [Σ1, Σ2 � A] , [Σ1 � A] , [Σ2 � B] Γ ⇒ Δ, [Σ1, Σ2 � B] [Σ1 � A] , [Σ2 � B]

Γ ⇒ Δ, [Σ1 � A] , [Σ2 � B]
comc

Definition 15. The modal degree of a formula resp. sequent is defined as
follows: md(⊥) = md(P) = 0, for P atomic formula; md(A → B) =
max(md(A),md(B)); md(A � B) = max(md(A),md(B)) + 1; md([Σ � A]) =
max(md(Σ),md(A)) + 1; md(Γ ⇒ Δ) = max{md(G) | G ∈ Γ ∪
Δ,G formula or block}.
Proposition 16. All rules of I i

V
preserve the modal degree: the premises of the

rule have a modal degree no greater than the one of the respective conclusion.

Observe that jump is the only rule which decreases the modal degree. Further-
more, an application of a rule is said to be redundant if the conclusion of the
rule can be derived from one of its premises by weakening or contraction. If
a sequent is derivable it has a non redundant derivation, since the redundant
applications of the rules can be removed without affecting the correctness of the
derivation. If an application of comc is non redundant, then it must respect the
restriction (∗) Σ1 � Σ2 and Σ2 � Σ1. To see this: if (∗) is not respected then
either Σ1 ⊆ Σ2 or Σ2 ⊆ Σ1; in both cases we get a redundant application of
comc.

Definition 17. A sequent is saturated if it has the form Π1 ⇒ Π2,
[Σ1 � C1] , ..., [Σn � Cn] where Π1, Π2 are a multi-set of formulas such that
(init) Π1 ∩ Π2 = ∅; (⊥L) ⊥ /∈ Π1 and � /∈ Π2; (→c

L) if A → B ∈ Π1 then
either A ∈ Π2 or B ∈ Π1; (→c

R) if A → B ∈ Π2 then A ∈ Π1 and B ∈ Π2;
(comc) for every [Σi � Ci], [Σj � Cj] it holds that either Σi ⊆ Σj or Σj ⊆ Σi;
(�c

R) for every A � B ∈ Π2 it holds that [A � B] ∈ {[Σ1 � C1] , ..., [Σn � Cn]};
(�i

L) for every A � B ∈ Π1 and for every [Σi � Ci], where 1 � i � n, it holds
that either B ∈ Σi or there exists [Π,Σ � A] ∈ {[Σ1 � C1] , ..., [Σn � Cn]}; (N)
either Γ ⇒ Δ has the form ⊥ ⇒ � or [⊥ � �] belongs to Δ; (Ti) for every A � B
in Π1, it holds that either B ∈ Π2 or [⊥ � A] ∈ {[Σ1 � C1] , ..., [Σn � Cn]}; (Wi)
for every block [Σ � A], it holds that Σ ⊆ Π2; (Ci) for every A � B in Π1, it
holds that either B ∈ Π2 or A ∈ Π1. For each logic L, the definition of satu-
rated sequent takes into account only the saturation conditions of the rules of the
corresponding calculus.

All the blocks [Σ1 � C1] , ..., [Σn � Cn] of a saturated sequent can be considered
as ordered with respect to set inclusion5. We call static all the rules except for
jump and Ai. By finished sequent we mean a sequent for which every further
static rule application is redundant. Note that a finished sequent is saturated.
5 A quick argument: once all non redundant comc have been applied, it holds that

either Σi ⊆ Σj or Σj ⊆ Σi; we then order the blocks: Σ1 ⊆ Σ2 ⊆ ... ⊆ Σn.

282 M. Girlando et al.

Proposition 18. After finitely many non redundant static rule applications we
reach an axiom or a finished sequent.

Proof. Let Γ ⇒ Δ be the root sequent of a derivation. We consider any branch
of a derivation (i) without applications of jump or Ai (ii) without redundant
applications of rules. Observe that each rule application must add at least one
formula or block to each premise, and the number of formulas or blocks (each one
is finite in itself) that can occur within a sequent is finite. Thus the branch must
be finite: if not, then it would not contain axioms and some formula or block
would be added infinitely many times by eventually redundant applications of
a rule. Moreover, once a rule (R) has been applied to a formula or block, the
saturation condition with respect to the rule (R) and the involved formulas or
blocks will be satisfied by the premises of (R). Thus the last node of the branch,
if it is not an axiom, must be finished. ��
Corollary 19. Given a sequent Γ ⇒ Δ, every branch of any derivation tree
starting with Γ ⇒ Δ ends in a finite number of steps with a saturated sequent
of no greater modal degree than that of Γ ⇒ Δ.

Theorem 20. If a sequent Γ0 ⇒ Δ0 is valid, then it is derivable in I i
V
.

Proof. We first prove completeness for I i
V
, then show how to extend the proof

to I i
VN

, I i
VT

, I i
VW

, I i
VC

6. The proof strategy is the same in all cases, and it
proceeds by induction on the modal degree of the sequent. If md(Γ0 ⇒ Δ0) = 0,
Γ0 ⇒ Δ0 is composed only of propositional formulas, and its completeness can
be proved from the completeness of sequent calculus for propositional logic. If
md(Γ0 ⇒ Δ0) > 0, by Proposition 16 and Corollary 19 we have that Γ0 ⇒ Δ0

can be derived from a set of saturated sequents Γk ⇒ Δk of no greater modal
degree. Since all the rules are invertible, except jump, and since by hypothesis
Γ0 ⇒ Δ0 is valid, also all saturated sequents Γk ⇒ Δk are valid. Thus, either
(i) Γk ⇒ Δk is an axiom, or (ii) it must have been obtained by jump from a
valid sequent Γk+1 ⇒ Δk+1. In the first case the theorem is trivially proved. We
shall prove (ii): if Γk ⇒ Δk is valid and saturated, and it is not an axiom, there
exists a valid sequent Γk+1 ⇒ Δk+1 from which Γk ⇒ Δk is obtained by jump.
We shall prove the statement by contraposition. Let Γk ⇒ Δk be the saturated
sequent Π1 ⇒ Π2, [Σ1 � C1] , ..., [Σk � Ck]. Suppose that none of the sequents
C1 ⇒ Σ1, ..., Ck ⇒ Σk is valid. We prove that the sequent Γk ⇒ Δk is not valid.

By hypothesis there are models M1, ...,Mk which falsify the sequents C1 ⇒
Σ1, ..., Ck ⇒ Σk. For 1 � j � k, let Mj = 〈Wj ,SP

j , �. �j〉 and for some elements
xj ∈ Wj let Mj , xj � Cj and Mj , xj � S for all S ∈ Σj . Suppose all Wj are
disjoint, i.e. Wj ∩ Wj′ = ∅. From these models we build a new model M =
〈W,SP, �. �〉 as follows: W = ∪Wl ∪ {x}, for x new; SP(z) = SPj(z), if z ∈
Wj ; SP(x) = {α1, ..., αk}, where αk = {xk}; αk−1 = {xk, xk−1}, ... , α1 =

6 The proof uses in an essential way the fact that a backwards application of jump
reduces the modal degree of a sequent. Although rule Ai plays a similar role as jump,
it does not reduce the modal degree when applied backwards. Thus we need another
argument for handling logics including A; this is object of further investigation.

Standard Sequent Calculi for Lewis’ Logics of Counterfactuals 283

{xk, ..., x1}; �P � = ∪ �P �j , for P atomic and P ∈ Π2; �P � = ∪ �P �j ∪ {x}, for P
atomic and P ∈ Π1. One can easily check that for E arbitrary formula or block,
it holds that if Mj , xj � E, then M, xj � E, for 1 � j � k.

To complete the proof we show that M falsifies each formula or block occur-
ring in Γk ⇒ Δk. Thus, we have to prove that (a) if G ∈ Γk, then M, x � G, for
G formula; (b) if G ∈ Δk, then M, x � G, for G formula; (c) if [Σj � Aj] ∈ Δk,
then M, x � [Σj � Aj]. The proof proceeds by induction on the modal degree
of formulas. The base case and the inductive step for the propositional cases are
immediate. Proof of a. Let G = C � D. For the saturation conditions (comc)
and (�c

L), it holds that for all blocks [Σj � Aj] in the saturated sequent, either
D ∈ Σj or there exists in the saturated sequent a block [Π,Σl � C], for l � j.
Consider an arbitrary sphere αj = {xk, ..., xj} and the corresponding block
[Σj � Aj]. There are two cases to consider: if (i) D ∈ Σj , by construction of the
model it holds that αj �

∃ D, i.e. αj �∀ ¬D. Suppose that (ii) there exists a block
[Π,Σl � C] belonging to the saturated sequent Γk ⇒ Δk. By construction of the
model, we have that there exists a world xl such that xl � C; thus, αl �∃ C.
However, since the spheres are incremental, αl ⊆ αj ; thus, αj �∃ C. We have
that for αj arbitrary block, either αj �∀ ¬D or αj �∃ C; thus, M, x � C � D.
Proof of b. Let G = C � D. By the saturation condition (�c

R) there exists a
block [Σj � Aj] belonging to Γk ⇒ Δk such that C ∈ Σj and D = Aj . Let us
consider αj = {xk, ..., xj}. We have that C ∈ Σj+1, ..., C ∈ Σk. By construction,
xj � C; therefore, xj � C, ..., xk � C. Furthermore, xj � Aj ; thus xj � D. There
exists αj ∈ SP(x) such that αj �

∀ ¬D and αj �
∃ C; thus, M, x � C � D. Proof

of c. The same as in the previous case.
We have thus proven that if Γk ⇒ Δk is valid and saturated, and it is not

an axiom, then there exists a valid sequent Γk+1 ⇒ Δk+1 from which Γk ⇒ Δk

is obtained by jump. Since md(Γk+1 ⇒ Δk+1) < md(Γk ⇒ Δk), by inductive
hypothesis we have that Γk+1 ⇒ Δk+1 is derivable; therefore, Γk ⇒ Δk is
derivable as well, by the jump rule.

Completeness of I i
VN

. If md(Γ0 ⇒ Δ0) = 0, then any saturated sequent derived
from it will have the form Γk ⇒ Δk, [⊥ � �], where Γk and Δk are composed
only of propositional formulas. If Γk ⇒ Δk is an axiom, we are done. If Γk ⇒ Δk

is not an axiom, it has a propositional countermodel. Associate this countermodel
to a world x, and build a model with W = {x} and SP(x) = {{x}}. The reader
can easily check that the model satisfies N. If md(Γ0 ⇒ Δ0) > 0, the proof
proceeds in the same way as for I i

V
. Notice that by inductive hypothesis all the

models Mi involved in the construction satisfy N .

Completeness of I i
VT

. We modify the definition of SP(x) in the model M by
adding a new sphere α0, in order to account for total reflexivity. Thus, SP(x) =
{α0, α1, α2, ..., αk}, where αk = {xk}, αk−1 = {xk, xk−1}, ..., α1 = {xk, ..., x1},
α0 = α1 ∪ {x}. Cases (b) and (c) remain the same as in the completeness proof
for I i

V
. As for (a), consider SP(x) = {α0, α1, α2, ..., αk}. For spheres αk, ..., α1

(a) holds; we have to prove that also for α0 either α0 �∀ ¬D or α0 �∃ C. We
know that either (i) α1 �∀ ¬D or (ii) α1 �∃ C. If (i) holds, the theorem is
proved, since α0 �∃ C. If it holds that (∗) α1 �

∀ ¬D then (ii) holds. By absurd,

284 M. Girlando et al.

suppose α0 �
∀ ¬D; thus, (∗∗) x � D (since all the other worlds did not satisfy

D). By saturation condition (Ti), we have that either D ∈ Δ or [⊥ � C] ∈ Δ.
There are two cases to consider. If D ∈ Δ, since md(D) < md(C � D), by
inductive hypothesis we have x � D, against (∗∗). If [⊥ � C] ∈ Δ, there exists a
block [Σu � Au] in the saturated sequent Γk ⇒ Δk such that Au = C. Thus, by
construction αu �∃ C, and xu � C for some xu ∈ αu. By construction xu ∈ α1;
thus, α1 �∃ C against (∗). We reached a contradiction; thus, also for α0 it holds
that α0 �∀ ¬D or α0 �∃ C, and M, x � C � D.

Completeness of I i
VW

. We modify SP(x) in order to account for weak centering
by adding world x to each sphere, as follows: SP(x) = {α1, α2, ..., αk}, where
αk = {xk, x}; αk−1 = {xk, xk−1, x}, ..., α1 = {xk, ..., x1, x}. We have to prove
that conditions (a), (b) and (c) hold. The proof makes an essential use of the
saturation condition (Wi), and it is omitted for space reasons.

Completeness of I i
VC

. For centering, we modify SP(x) by adding a new sphere
αk+1, which contains only x. Namely: αk+1 = {x}; αk = {xk, x}; αk−1 =
{xk, xk−1, x},..., α1 = {xk, ..., x1, x}. Conditions (b) and (c) are as in the proof
for I i

VW
; case (a) is slightly different and employs the saturation condition (Ci). ��

6 Completeness via Translation

We can give quick alternative completeness proofs for the proposed calculi by
simulating derivations in the corresponding sequent calculi from [12,13], shown
in Table 4. The main difficulty is to simulate the rules for �.

Table 4. The rules and rule sets for extensions of V� .

{Bk ⇒ D1, . . . , Dm, A1, . . . , An | 1 ≤ k ≤ n}
∪ {Ck ⇒ D1, . . . , Dk−1, A1, . . . , An | 1 ≤ k ≤ m}

Γ, C1 � D1, . . . , Cm � Dm ⇒ A1 � B1, . . . , An � Bn, Δ
Rm,n

{Ck ⇒ D1, . . . , Dk−1 | 1 ≤ k ≤ m}
∪ {Γ ⇒ D1, . . . , Dm, Δ}

Γ, C1 � D1, . . . , Cm � Dm ⇒ Δ
Tm

Γ, C ⇒ Δ Γ ⇒ D, Δ

Γ, C � D ⇒ Δ
C2

{Bk ⇒ D1, . . . , Dm, A1, . . . , An | 1 ≤ k ≤ n}
∪ {Γ ⇒ D1, . . . , Dm, A1, . . . , An, Δ}

Γ, C1 � D1, . . . , Cm � Dm ⇒ A1 � B1, . . . , An � Bn, Δ
Wm,n

Γ ⇒ A, Δ

Γ ⇒ A � B, Δ
W2

{
Γ �, Bk ⇒ D1, . . . , Dm, A1, . . . , An, Δ� | 1 ≤ k ≤ n

}

∪
{

Γ �, Ck ⇒ D1, . . . , Dk−1, A1, . . . , An, Δ� | 1 ≤ k ≤ m
}

Γ, C1 � D1, . . . , Cm � Dm ⇒ A1 � B1, . . . , An � Bn, Δ
Am,n

Γ � is the restriction of Γ to formulae of the form A � B; RV� := {Rm,n | m ≥ 0, n ≥ 1};
RVN� := {Rm,n | m + n ≥ 1} RVC� := RV� ∪ {RW2,RC2}
RVT� := RV� ∪ {Tm | m ≥ 1} RVA� := {Am,n | m ≥ 0, n ≥ 1}
RVW� := RV� ∪ {Wm,n | m + n ≥ 1} RVNA� := {Am,n | m + n ≥ 1}

Standard Sequent Calculi for Lewis’ Logics of Counterfactuals 285

Theorem 21. Every rule of RL is derivable in IL �{ConS ,ConB}. Hence IL �

{ConS ,ConB} is cut-free complete for L.

Proof. We only consider the rules for �, the remaining rules are straightforward.
For the sake of readability for k < � we abbreviate Ck � Dk, . . . , C� � D� by
(C � D)�

k. Similarly, we write A�
k for Ak, . . . , A�, and D�

k for Dk, . . . , D�. To
simulate rule Rm,n, for every k ≤ n we have the following derivation:

Bk ⇒ An
1 , Dm

1

Γ ⇒ Δ, [An
1 , Dm

1 � Bk]
jump

Cm ⇒ An
1 , D

m−1
1

Γ ⇒ Δ,
[
An

1 , D
m−1
1 � Cm

] jump

Γ, Cm � Dm ⇒ Δ,
[
An

1 , D
m−1
1 � Bk

] �L

.

.

.

.
Γ, (C � D)m

2 ⇒ Δ, [An
1 , D1 � Bk]

C1 ⇒ An
1

Γ, (C � D)m
2 ⇒ Δ, [An

1 � C1]
jump

Γ, (C � D)m
1 ⇒ Δ, [An

1 � Bk]
�L

The conclusion is obtained by weakening (Lemma 6) and multiple applications
of com to these sequents, followed by the derivation

Γ, (C � D)m
1 ⇒ Δ, [A1 � B1] , . . . , [An � Bn]

Γ,C1 � D1, . . . , Cm � Dm ⇒ Δ,A1 � B1, . . . , An � Bn
�R

The simulations for the remaining rules apart from Tm are only slight modifi-
cations. For instance, to simulate Rm,0 we would have the rule N instead of the
blocks of �R and com at the bottom, for Wm,n with n ≥ 1 we replace the top
leftmost application of jump by an application of W, for Wm,0 we apply N at
the bottom, and for Am,n we replace all applications of jump by A. Rule C2 is
simulated straightforwardly by W followed by �R. For rule Tm finally, we first
construct for �, k ≥ 0 derivations D�,�+k+1 of the sequents

Ω, (C � D)�
1 ⇒ Θ,

[

⊥,D�+k
�+1 , Σ � C�+k+1

]

for arbitrary Ω,Θ,Σ from the premises {Ci ⇒ Di−1
1 | 1 ≤ i ≤ � + k + 1} as

follows. The derivation D0,k+1 is straightforward using the rules of weakening
(Lemma 6) and jump. The derivation D�+1,�+1+k+1 is obtained by

Ω, (C � D)�
1 ⇒ Θ,

[
⊥, D

�+1+k
�+1

, Σ � C�+1+k+1

]Ω, (C � D)�
1 ⇒ Θ,

[
⊥, D

�+1+k
�+2

, Σ � C�+1

]

Ω, (C � D)
�+1
1 ⇒ Θ,

[
⊥, D

�+1+k
�+2

, Σ � C�+1+k+1

] �L

286 M. Girlando et al.

where the premises are derived by D�,�+1+k+1 and D�,�+1. We obtain Tm as:

Γ ⇒ Δ, Dm
1 Γ ⇒ Δ, Dm

2 , [⊥ � C1]

Γ, C1 � D1 ⇒ Δ, Dm
2

T
Γ, C1 � D1 ⇒ Δ, Dm

3 , [⊥ � C2]

Γ, (C � D)21 ⇒ Δ, Dm
3

T

.

.

.

.

Γ, (C � D)
m−1
1 ⇒ Δ, Dm Γ, (C � D)

m−1
1 ⇒ Δ, [⊥ � Cm]

Γ, (C � D)m
1 ⇒ Δ

T

where the premises are derived using D0,1,D1,2, . . . ,Dm−1,m. Note that none of
the simulations uses ConS . ��
Corollary 22. Let L ∈ {V, VN, VT, VW, VA, VNA}. Then the calculus I i

L is
complete for L. ��

7 Conclusions

We have introduced internal, standard, cut-free calculi for Lewis’ logics V, VN,
VT, VW, VC, VA and VNA, extending the basic ideas of the calculi pro-
posed in [17] for the basic system V. The same logics have been considered in
[12,13], where calculi comprising an infinite set of rules with a variable number
of premises are introduced, whereas the calculi we have introduced here are stan-
dard in the sense that each connective is handled by a fixed finite set of rules
with a fixed finite set of premises. As far as we know, these are the first standard
and internal calculi covering most, if not all, logics of the Lewis’ family.

In future research we aim at extending the proof of cut elimination to exten-
sions of V. Moreover, we aim at providing a semantic completeness proof also for
the logics with the absoluteness condition. Finally we shall study how to obtain
optimal decision procedures for the respective logics based on our calculi.

References

1. Alenda, R., Olivetti, N., Pozzato, G.L.: Nested sequent calculi for normal condi-
tional logics. J. Log. Comput. 26(1), 7–50 (2013)

2. Baltag, A., Smets, S.: The logic of conditional doxastic actions. Texts Logic Games
4, 9–31 (2008). Special Issue on New Perspectives on Games and Interaction

3. Board, O.: Dynamic interactive epistemology. Games Econ. Behav. 49(1), 49–80
(2004)

4. Ciabattoni, A., Metcalfe, G., Montagna, F.: Algebraic and proof-theoretic charac-
terizations of truth stressers for MTL and its extensions. Fuzzy Sets Syst. 161,
369–389 (2010)

5. Delgrande, J.P.: On first-order conditional logics. Artif. Intell. 105(1), 105–137
(1998)

6. Friedman, N., Halpern, J.Y.: On the complexity of conditional logics. In: Doyle, J.,
Sandewall, E., Torasso, P. (eds.) KR 1994, pp. 202–213. Morgan Kaufmann (1994)

Standard Sequent Calculi for Lewis’ Logics of Counterfactuals 287

7. Gent, I.P.: A sequent or tableaux-style system for Lewis’s counterfactual logic VC.
Notre Dame J. Formal Logic 33(3), 369–382 (1992)

8. Ginsberg, M.L.: Counterfactuals. Artif. Intell. 30(1), 35–79 (1986)
9. Giordano, L., Gliozzi, V., Olivetti, N., Schwind, C.: Tableau calculus for preference-

based conditional logics: PCL and its extensions. ACM Trans. Comput. Logic
(TOCL) 10(3), 21 (2009)

10. Grahne, G.: Updates and counterfactuals. J. Logic Comput. 8(1), 87–117 (1998)
11. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential mod-

els and cumulative logics. Artif. Intell. 44(1–2), 167–207 (1990)
12. Lellmann, B.: Sequent calculi with context restrictions and applications to condi-

tional logic. Ph.D. thesis, Imperial College London. http://hdl.handle.net/10044/
1/18059

13. Lellmann, B., Pattinson, D.: Sequent Systems for Lewis’ Conditional Logics. In:
Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS (LNAI), vol. 7519,
pp. 320–332. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33353-8 25

14. Lewis, D.: Counterfactuals. Blackwell, Oxford (1973)
15. Negri, S., Olivetti, N.: A sequent calculus for preferential conditional logic

based on neighbourhood semantics. In: Nivelle, H. (ed.) TABLEAUX 2015.
LNCS (LNAI), vol. 9323, pp. 115–134. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-24312-2 9

16. Negri, S., Sbardolini, G.: Proof analysis for Lewis counterfactuals. Rev. Symbolic
Logic 9(1), 44–75 (2016)

17. Olivetti, N., Pozzato, G.L.: A standard internal calculus for Lewis’ counterfactual
logics. In: Nivelle, H. (ed.) TABLEAUX 2015. LNCS (LNAI), vol. 9323, pp. 270–
286. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24312-2 19

18. Pattinson, D., Schröder, L.: Generic modal cut elimination applied to conditional
logics. Log. Methods Comput. Sci. 7(1: 4), 1–28 (2011)

19. Poggiolesi, F.: Natural deduction calculi and sequent calculi for counterfactual
logics. Stud. Logica 104, 1003–1036 (2016)

20. de Swart, H.C.M.: A Gentzen- or Beth-type system, a practical decision procedure
and a constructive completeness proof for the counterfactual logics VC and VCS.
J. Symbolic Logic 48(1), 1–20 (1983)

http://hdl.handle.net/10044/1/18059
http://hdl.handle.net/10044/1/18059
http://dx.doi.org/10.1007/978-3-642-33353-8_25
http://dx.doi.org/10.1007/978-3-319-24312-2_9
http://dx.doi.org/10.1007/978-3-319-24312-2_9
http://dx.doi.org/10.1007/978-3-319-24312-2_19

Incremental Computation of Deterministic
Extensions for Dynamic Argumentation

Frameworks

Sergio Greco and Francesco Parisi(B)

DIMES Department, University of Calabria, Rende, Italy
{greco,fparisi}@dimes.unical.it

Abstract. We address the problem of efficiently recomputing the exten-
sions of abstract argumentation frameworks (AFs) which are updated
by adding/deleting arguments or attacks. In particular, after identifying
some properties that hold for updates of AFs under several well-known
semantics, we focus on the two most popular ‘deterministic’ semantics
(namely, grounded and ideal) and present two algorithms for their incre-
mental computation, well-suited to dynamic applications where updates
to an initial AF are frequently performed to take into account new avail-
able knowledge. We experimentally validated the proposed approach.

1 Introduction

Abstract argumentation has emerged as a central field in Artificial Intelli-
gence [3,10,27,39,41,42]. Although the underlying idea is very simple and intu-
itive, most of the semantics proposed so far suffer from a high computational
complexity [22,24–26,29–33]. Complexity bounds and evaluation algorithms for
argumentation frameworks (AFs) have been deeply studied in the literature, but
this research focused on ‘static’ frameworks, whereas, in practice, AFs are not
static systems [4,5,19,28,37]. Typically an AF represents a temporary situa-
tion as new arguments and attacks continuously can be added/removed to take
into account new available knowledge. This may change significantly the conclu-
sions that can be derived. For instance, when a new attack is added to an AF,
existing attacks may cease to apply and new attacks become applicable. Sur-
prisingly, the definition of evaluation algorithms and the analysis of the compu-
tational complexity taking into account such dynamic aspects have been mostly
neglected, whereas in these situations incremental computation techniques can
greatly improve performance. Sometimes changes to the AF can make small
changes to the set of conclusions, and recomputing the whole semantics from
scratch can be avoided. For instance, consider the situation shown in Fig. 1: the
initial AF A0, where h is not attacked by any other argument, is updated to AF
A by adding attack (g, h). According to the most popular argumentation seman-
tics, i.e. grounded, complete, ideal, preferred, stable, and semi-stable [15,20,21],
the initial AF A0 admits the extension E0 = {a, h, g, e, l,m, o}, whereas the
extension for the updated framework A becomes E = {a, c, g, e, l,m, o}. As it
c© Springer International Publishing AG 2016
L. Michael and A. Kakas (Eds.): JELIA 2016, LNAI 10021, pp. 288–304, 2016.
DOI: 10.1007/978-3-319-48758-8 19

Incremental Computation of Deterministic Extensions 289

b

c

da fe

gh li
+(g, h)

nm

o

Fig. 1. AFs A0 and A = +(g, h)(A0)

will be shown later, for the grounded and ideal semantics, which are determin-
istic, the extension E can be efficiently computed incrementally by looking only
at a small part of the AF, which is “influenced by” the update operation. This
part is just {h, c} in our example, and we will show that the membership of the
other arguments to E does not depend on the update operation, and thus we do
not need to compute them again after performing update +(g, h).

Contributions. The main contributions are as follows:

– We introduce the concept of influenced set consisting of the arguments whose
status could change after an update. The influenced set refines the previously
proposed set of affected arguments [4,37] and is used to compute extensions
more efficiently.

– We present an incremental algorithm for recomputing the grounded exten-
sion. It is very efficient as it (iteratively) computes the status of influenced
arguments only.

– We show that an argument a belongs to the ideal extension if and only if there
is a coherent winning strategy for it and there is no coherent winning strategy
for all arguments which attack (even indirectly) a.

– We present an incremental algorithm for the efficient recomputation of the
ideal extensions which is based on the previously mentioned result and takes
advantage of both the set of influenced arguments and the incremental algo-
rithm for computing the grounded extensions.

– We report on experiments showing the effectiveness of our approach on both
real and synthetic AFs.

2 Related Work

There have been several efforts coping with dynamics aspects of abstract argu-
mentation. In [12,13] the principles according to which the extension does not
change when the set of arguments/attacks are changed have been studied. How-
ever, this work does not consider how the extensions of an AF evolve when new
arguments are added or some of the old ones are removed. [17,18] addressed
the problem of revising the set of extensions of an AF, and studied how the
extensions can evolve when a new argument is considered. However, they focus
on adding only one argument interacting with one initial argument (i.e. an argu-
ment which is not attacked by any other argument). The work in [17,18] has
been extended in [11], where the evolution of the set of extensions after perform-
ing a change operation (addition/removal of arguments/interaction) is studied.

290 S. Greco and F. Parisi

Dynamic argumentation has been applied to decision-making of an autonomous
agent in [1], where it is studied how the acceptability of arguments evolves when
a new argument is added to the decision system. However, they do not compute
the whole extensions and also focused on the case where only one argument is
added to the system.

The division-based method, proposed in [37] and refined in [4], divides the
updated framework into two parts: affected and unaffected, where only the status
of affected arguments is recomputed after updates. However, the set of affected
arguments consists of those that are reachable from the updated arguments,
which is often larger than the set that actually needs to be considered when
recomputing the extension. For the AF of Fig. 1, all the arguments in the chains
originated by h turn out to be ‘affected’. But we only need to recompute the
status of h and c after the update. Recently, [45] introduced a matrix represen-
tation of AFs and proposed a matrix reduction that when applied to dynamic
AFs resembles the division-based method proposed in [37]. In [5,9] an approach
exploiting the concept of splitting of logic programs [38] was adopted to deal
with dynamic argumentation. However, the technique considers weak expan-
sions of the initial AF, where added arguments never attack previous ones.
Recently, [16] studied the relationship between argumentation and logic pro-
gramming [14,34,35].

[8] investigated whether and how it is possible to modify a given AF in
such a way that a desired set of arguments becomes an extension, whereas
[40] studied equivalence between two AFs when further information (another
AF) is added to both simultaneously. [6] focused on specific expansions where
new arguments and attacks may be added but the attacks among the old argu-
ments remain unchanged, while [7] characterized update and deletion equiva-
lence, where adding as well as deleting arguments and attacks is allowed (dele-
tions were not considered in [6,40]).

To the best of our knowledge, this is the first paper that exploits the ini-
tial extension E0 of an AF A0 not only for computing the set I(u,A0, E0) of
arguments influenced by an update u but also for recomputing the status of
the arguments in I(u,A0, E0) by applying early termination conditions. A short
version of this paper appeared in [36].

3 Preliminaries

We assume the existence of a set Arg whose elements are called arguments. An
(abstract) argumentation framework [20] (AF) is a pair 〈A,Σ〉, where A ⊆ Arg
and Σ ⊆ A × A is a binary relation over A whose elements are referred to
as attacks. Essentially, an AF is a directed graph in which the arguments are
represented by the nodes and the attack relation is represented by the set of
directed edges. An argument is an abstract entity whose role is determined by
its relationships with other arguments.

Given arguments a, b ∈ A, we say that a attacks b iff (a, b) ∈ Σ. An argument
a attacks a set S ⊆ A iff ∃ b ∈ S such that a attacks b. We use S+ = {b | ∃a ∈ S :

Incremental Computation of Deterministic Extensions 291

(a, b) ∈ Σ} and S− = {b | ∃a ∈ S : (b, a) ∈ Σ} to denote the sets of all arguments
that are attacked by S and attack S, respectively. A set S ⊆ A defends a iff
∀b ∈ A such that b attacks a, there is c ∈ S such that c attacks b. S is said to
be (i) conflict-free, if there are no a, b ∈ S such that a attacks b; (ii) admissible,
if it is conflict-free and it defends all its arguments.

A semantics specifies the criteria for identifying a set of arguments consid-
ered to be “reasonable” together, called extension. A complete extension (co) is
an admissible set that contains all the arguments that it defends. A complete
extension S is said to be: (i) preferred (pr) iff it is maximal; (ii) semi-stable (ss)
iff S ∪ S+ is maximal; (iii) stable (st) iff it attacks each argument in A \ S; (iv)
grounded (gr) iff it is minimal; (v) ideal (id) iff it is contained in every preferred
extension and it is maximal.

Given an AF A and a semantics S ∈{co,pr, ss, st, gr, id}, we use ES(A) to
denote the set of S-extensions of A. All the above-mentioned semantics except
the stable admit at least one extension, and the grounded and ideal admit exactly
one extension [15,20,21]. Semantics gr and id are called deterministic or unique
status as |Egr(A)| = |Eid(A)| = 1. It is well-known that, for any AF A, Egr(A) ⊆
Eco(A) and Eid(A) ⊆ Eco(A), and Est(A) ⊆ Ess(A) ⊆ Epr(A) ⊆ Eco(A).

Example 1. Consider the AF A0 shown in Fig. 2. Then, the set of admissible sets
is { ∅, {a}, {d}, {a, d}, {b, d} }, and ES(A0) with S ∈{co, pr, ss, st, gr, id} is
as reported in the second column of the table in Fig. 3. �

b

c

a

d

Fig. 2. AF A0 of Example 1.

S ES(A0) ES(A1) ES(A2)

co {{d}, {a, d}, {b, d}} {∅, {a, d}} {∅, {a, d}, {b, c}}
pr { {a, d}, {b, d} } { {a, d} } { {a, d}, {b, c} }
ss { {a, d}, {b, d} } { {a, d} } { {a, d}, {b, c} }
st { {a, d}, {b, d} } { {a, d} } { {a, d}, {b, c} }
gr { {d} } { ∅ } { ∅ }
id { {d} } { {a, d} } { ∅ }

Fig. 3. Sets of extensions for the AF of
Example 1, and changes in the sets after
performing updates +(b, d) and −(c, b).

The argumentation semantics can be also defined in terms of labelling. A
labelling for an AF A = 〈A,Σ〉 is a total function L : A → {in,out,un}
assigning to each argument a label. L(a) = in means that argument a is accepted,
L(a) = out means that a is rejected, while L(a) = un means that a is undecided.

Let in(L) = {a | a ∈ A ∧ L(a) = in}, out(L) = {a | a ∈ A ∧ L(a) = out},
and un(L) = {a | a ∈ A ∧ L(a) = un}. In the following, we also use the triple
〈in(L), out(L), un(L)〉 to represent L. A labelling L is said to be admissible (or
legal) if ∀a ∈ in(L) ∪ out(L) (i) if L(a) = out then ∃ b ∈ A such that (b, a) ∈ Σ
and L(b) = in; and (ii) if L(a) = in then L(b) = out for all b ∈ A such that
(b, a) ∈ Σ. L is a complete labelling iff conditions (i) and (ii) hold for all a ∈ A.

292 S. Greco and F. Parisi

Between complete extensions and complete labellings there is a bijective
mapping defined as follows: for each extension E there is a unique labelling
L = 〈E,E+, A \ (E ∪ E+)〉 and for each labelling L there is a unique extension
in(L). We say that L is the labelling corresponding to E.

In the following, we say that the status of an argument a w.r.t. a labelling L
(or its corresponding extension in(L)) is in (resp., out, un) iff L(a) = in (resp.,
L(a) = out, L(a) = un). We will avoid to mention explicitly the labelling (or
the extension) whenever it is understood.

Updates. An update u for an AF A0 consists in modifying A0 into an AF
A by adding or removing arguments or attacks. As explained below, we can
focus on updates consisting of adding/deleting an attack (a, b) between arguments
belonging to A0. We use +(a, b) (resp. −(a, b)) to denote the addition (resp.
deletion) of (a, b), and u(A0) to denote the application of update u = ±(a, b) to
A0 (with ± meaning either + or −).

Updating an AF implies that its semantics (sets of extensions or labellings)
changes.

Example 2. Consider the AF A0 of Example 1. For each semantics S, the set
ES(A1) of extensions for A1 = +(b, d)(A0) is reported in the third column in
Fig. 3. If update −(c, b) is performed on A1, then ES(A2) with A2 = −(c, b)(A1)
is as shown on the last column in Fig. 3. �

Remark (general updates). It is worth noting that focusing on single attack
updates of the form u = ±(a, b) is not a limitation as multiple (attack) updates
to be performed simultaneously can be simulated by performing a single attack
update to a new AF obtained by suitably modifying the initial AF A0. In
fact, performing a set of updates U = {+(a1, b1), . . . ,+(an, bn), −(a′

1, b
′
1),

. . . ,−(a′
m, b′

m)} on A0 can be reduced to performing a single update +(v, w)
on the AF AU

0 which is obtained from A0 by (i) adding arguments xi, yi and
the chain of attacks between ai and bi as shown in Fig. 4, for each update
+(ai, bi) ∈ U ; (ii) replacing each attack (a′

j , b
′
j) in A0 with the chain of attacks

between a′
j and b′

j as shown in Fig. 4, for each update −(a′
j , b

′
j) ∈ U ; and (iii)

adding the new arguments v, w,w′ and the attacks involving them as shown
in Fig. 4. For instance, for the AF A0 of Example 1 and the set of updates
U = {+(b, d), −(c, b)}, we obtain the AF AU

0 shown in Fig. 5. The formal defini-
tion of the construction above as well as proofs of equivalence (A0 and AU

0 have
the same extensions under projection to the arguments of A0) will be provided
in the extended version of this paper.

Concerning the addition (resp. deletion) of a set of isolated arguments, it is
easy to see that if A is obtained from A0 through the addition (resp. deletion)
of a set S of isolated arguments, then, let E0 be an extension for A0, E =
E0 ∪ S (resp. E = E0 \ S) is an extension for A that can be trivially computed.
Of course, if arguments in S are not isolated, we can first delete all attacks
involving arguments in S; adding an attack between an argument in A0 and a
new argument can be simulated as well. In our experiments we have considered
both single and multiple attack updates.

Incremental Computation of Deterministic Extensions 293

w
+(v, w)

w′

a′
m x′

m y′
m b′

m

a′
1 x′

1 y′
1 b′

1a1 x1 y1 b1

an xn yn bn

v

Fig. 4. Simulating multiple updates by a
single one.

b x′
1a cy′

1 d

w′ w v

y1x1

+(v, w)

Fig. 5. AU
0 for U={+(b, d), −(c, b)}.

4 Influenced Arguments

In this section, we first identify conditions ensuring that a given S-extension
continues to be an S-extension after an update, and then introduce the influenced
set that will be used to limit the set of arguments that needs to be recomputed
after an update.

The following two propositions introduce sufficient conditions guaranteeing
that a given S-extension is still an S-extension after performing an update.

Proposition 1. Let A0 be an AF, u = +(a, b) an update, S a semantics, E0 ∈
ES(A0) an extension of A0 under semantics S, and L0 the labelling corresponding
to E0. Then E0 ∈ ES(u(A0)) if

– S ∈{co, st, gr} and one of the following conditions holds:
• L0(a)
= in and L0(b)
= in,
• L0(a) = in and L0(b) = out;

– S ∈{pr, ss, id} and L0(b) = out.

Proposition 2. Let A0 be an AF, u = −(a, b), S ∈ {co, pr, ss, st, gr}, and
E0 ∈ ES(A0) an extension of A0 under S. Then E0 ∈ ES(u(A0)) if one of the
following conditions holds: 1) L0(a)=out; 2) L0(a)=un and L0(b)=out.

Example 3. Consider the AFs A1=+(b, d)(A0) and A2=−(c, b)(A1), where A0

is the AF of Example 2. For S ∈ {co, pr, ss, st}, extension {a, d} of A1 is still
an extension of A2 as L0(c)=out (see Fig. 3). The grounded extension ∅ of A1

is still a grounded extension of A2, whereas the ideal extension {a, d} of A1 is
not the ideal extension of A2. �

Given an AF A = 〈A,Σ〉 and an argument b ∈ A, we denote as ReachA(b) the
set of arguments that are reachable from b in A. We now introduce the influenced
set.

Definition 1 (Influenced set). Let A = 〈A,Σ〉 be an AF, u = ±(a, b) an
update, E an extension of A under a given semantics S, and let

– I0(u,A, E)=

⎧

⎨

⎩

∅ if E ∈ ES(u(A)) [e.g., the conditions of Prop. 1/2 hold] or

∃(z, b) ∈ Σ s.t. z ∈ E ∧ z �∈ ReachA(b);

{b} otherwise;

294 S. Greco and F. Parisi

– Ii+1(u,A, E) = Ii(u,A, E) ∪ {y | ∃(x, y) ∈ Σ s.t. x ∈ Ii(u,A, E) ∧
 ∃(z, y) ∈
Σ s.t. z ∈ E ∧ z
∈ ReachA(b)}.

The influenced set of u w.r.t. A and E is I(u,A, E) = In(u,A, E) such that
In(u,A, E) = In+1(u,A, E). �

Thus, the set of arguments that are influenced by an update of the status of
b are those that can be reached from b without using any intermediate argument
y whose status is known to be out because it is determined by an argument
z ∈ E which is not reachable from (and thus not influenced by) b.

Example 4. For the AF A0 = 〈A0, Σ0〉 of Fig. 1, whose grounded extension is
E0 = {a, h, g, e, l,m, o}, we have that ReachA0(h)=A0 \{a, b}, and the influenced
set of u = +(g, h) is I(u,A0, E0) = {h, c}. Note that d
∈ I(u,A0, E0) since it is
attacked by a ∈ E0. Thus the arguments that can be reached only using d cannot
belong to I(u,A0, E0) either. For A = u(A0), whose grounded extension is
E = {a, c, g, e, l,m, o}, we have that S = I(u,A, E) is still {h, c}. Therefore, only
the status of arguments in S could change and their status can be determined
by considering a restricted AF containing only arguments in S ∪ S−. �

Proposition 3. Given an AF A = 〈A,Σ〉, an update u = ±(a, b), and an
extension E, the complexity of computing the influenced set of u w.r.t. A and E
is O(|Σ|).

All the arguments not belonging to the influenced set of an update will still
belong to an extension of the updated AF.

Theorem 1. Let A0 be an AF, and A = u(A0) be the AF resulting from per-
forming update u = ±(a, b) on A0. Let E0 ∈ ES(A0) be an extension for A0

under any semantics S ∈ {co, pr, ss, st, gr, id}. Let I = Arg \ I(u,A0, E0) be
the set of the arguments that are not influenced by u in A0 w.r.t. E0. Then, either
ES(A) = ∅ or there is an extension E ∈ ES(A) for A such that (E∩I) = (E0∩I).

We conclude this section by introducing a refinement of Proposition 1.

Proposition 4. Let A0 be an AF, u = +(a, b), S ∈ {co, pr, ss, st, gr}, and
E0 ∈ ES(A0) an extension of A0 under S. Then E0 ∈ ES(u(A0)) if one of
the conditions of Proposition 1 holds or all the next three conditions hold: (1)
L0(a) = out, (2) L0(b) = in and (3) either (i) S ∈ {co, st, ss, pr} or (ii)
a
∈ I(u,A0, E0) and S = gr.

Example 5. Consider AFs A0 and A1 =+(b, d)(A0) of Examples 1 and 3. For
S ∈ {co, pr, ss, st}, extension E0 = {a, d} for A0 is still an extension of the
AF A1 as L0(b) = out and L0(d) = in (see Fig. 3). However, the grounded
extension E′

0 = {d} for A0 is not guaranteed to be a grounded extension for A1

as neither Proposition 1 nor conditions (1) and 3.(ii) of Proposition 4 hold (b is
un and b ∈ I(+(b, d),A0, E

′
0)).

Incremental Computation of Deterministic Extensions 295

5 Recomputing Unique Status Semantics

Given an AF A0, a deterministic semantics S ∈ {gr, id}, the extension E0 for
A0 under S, an update u for A0 yielding A = u(A0), we address the problem of
efficiently computing the S-extension E of the updated AF A starting from E0.

For any AF A = 〈A,Σ〉 and set S ⊆ A of arguments, we denote with
Π(S,A) = 〈S,Σ ∩ S × S〉 the subgraph of A induced by the nodes in S.
Moreover, given two AFs A1 = 〈A1, Σ1〉 and A2 = 〈A2, Σ2〉, we denote as
A1 � A2 = 〈A1 ∪ A1, Σ1 ∪ Σ2〉 the union of the two AFs.

5.1 Grounded Semantics

Our algorithm first identifies the restricted subgraph of the given AF containing
the arguments influenced by the update.

Definition 2 (Restricted AF for grounded semantics). Given an AF
A = 〈A,Σ〉, a grounded extension E for A, and an update u = ±(a, b), the
restricted AF of A w.r.t. E and u (denoted as Rgr(u,A, E)) is as follows.

– Rgr(u,A, E) is empty if I(u,A, E) = ∅ or one of the conditions of Proposition 4
holds.

– Rgr(u,A, E) = Π(I(u,A, E), u(A)) � T1 � T2 where:
• T1 is the union of the AFs 〈{a, b}, {(a, b)}〉 s.t. (a, b) is an attack of u(A)

and a
∈ I(u,A, E), a ∈ E, and b ∈ I(u,A, E);
• T2 = 〈{c |Check(c)}, {(c, c) |Check(c)}〉, where Check(c) is true if

∃(e, c) ∈ Σ such that c ∈ I(u,A, E) and e
∈ I(u,A, E) and e
∈ E∪E+. �

Hence, AF Rgr(u,A, E) contains, in addition to the subgraph of u(A) induced
by I(u,A, E), additional nodes and edges containing needed information on the
“external context”, i.e. information about the status of arguments which are
attacking some argument in I(u,A, E). Specifically, if there is in u(A) an edge
from node a
∈ I(u,A, E) whose status in in to node b ∈ I(u,A, E), then we
add the edge (a, b) so that, as a does not have incoming edges in Rgr(u,A, E),
its status is confirmed to be in. Moreover, if there is in u(A) an edge from a
node e
∈ I(u,A, E) to c ∈ I(u,A, E) such that e is un, we add edge (c, c) to
Rgr(u,A, E) so that the status of c cannot be in. Using fake arguments/attacks
to represent external contexts has been exploited in a similar way in [2], where
decomposability properties of argumentation semantics are studied.

Example 6. Continuing Example 4, Rgr(+(g, h),A0, E0) consists of the subgraph
induced by I(u,A0, E0) = {h, c} as well as the edge (g, h) which is an attack
towards argument h ∈ I(u,A0, E0) coming from argument g outside I(u,A0, E0)
labelled as in. Hence, Rgr(+(g, h),A0, E0) = 〈Ad, Σd〉 with Ad = {g, h, c} and
Σd = {(g, h), (h, c)}.

296 S. Greco and F. Parisi

Example 7. Consider the AF A0 = 〈{a, b, c, d, e, f, g}, {(a, b), (b, a), (c, d),
(d, c), (a, c), (b, c), (f, c), (g, f)}〉 and the update u = +(e, d). We have that (i) the
grounded extension of A0 is E0 = {g, e} (i.e. arguments a, b, c, d are all labeled
as un); (ii) the influenced set is I(u,A0, E0) = {c, d}; and (iii) the restricted
AF is Rgr(u,A0, E0) = 〈{c, d}, {(c, d), (d, c)}〉 � T1 � T2 where T1 = 〈{e, d},
{(e, d)}〉 and T2 = 〈{c}, {(c, c)}〉. That is, Rgr(u,A0, E0) = 〈{c, d, e}, {(c, d),
(d, c), (e, d), (c, c)}〉. �

Algorithm 1 first checks if the restricted AF (computed w.r.t. update u =
±(a, b)) is empty (Line 3). If this is the case, then E = E0. Otherwise, the status
of arguments in S = I(u,A0, E0) needs to be recomputed and the extension E of
u(A0) is constructed at Line 4 by combining the arguments in E0 not belonging
to the influenced part and the arguments returned by Function IFP (incremental
fixpoint), which is invoked with AF Ad = 〈Ad, Σd〉 (the restricted graph of A)
and starting extension E0 ∩ Ad (the restriction of E0 to Ad). Function IFP first
computes the initial set of nodes which are labelled in or out. If no argument
can be labelled in, it returns the empty set. Otherwise, it iteratively applies
function G that takes as input the set of arguments Sout which have been labeled
out so far and the subset Δout ⊆ Sout of arguments which have been labelled
out in the last step, and returns the arguments b ∈ Δ+

out such that for every
attack (a, b) ∈ Σ, argument a ∈ Sout (i.e. a is labelled out). Similarly to the
characteristic function of an AF [20], function G infers new arguments that can
be labelled in; but it is more efficient as it only uses arguments labelled in the
last step. Function G returns the set Δin of arguments which are labeled in at
Line 5. Arguments labeled out are immediately derived by taking Δ+

in, that is
the arguments which are attacked by some argument which has been labelled as
in (Line 6). Function G is iteratively applied until, in the last step of the repeat
loop, all arguments derived are confirmed to be in the extension E0 of the AF
A0 being updated (i.e., Δin ⊆ E0).

Example 8. Consider the AF A0 of Fig. 1 where E0 = {a, h, g, e, l,m, o} and
I(u,A0, E0) = {h, c}. Algorithm 1 computes the grounded extension E of the AF
A = +(g, h)(A0) as follows. The restricted AF Ad = 〈Ad, Σd〉 = Rgr(u,A0, E0)
is computed (at Line 2) obtaining Ad = {g, h, c} and Σd = {(g, h), (h, c)}. As
Ad is not empty, Function IFP with actual parameters Ad and E0 ∩ Ad =
{g, h} is called at Line 4. Function IFP first computes Sin = Δin = {g} and
Sout = Δout = {h}. Next, at the first iteration of the repeat loop, it is computed
Δin = G({h}, {h}) = {c} (Line 5) and Δout = ∅ (Line 6) as there is no argument
attacked by c in Ad. The loop is entered a second time, where Δin stay empty
and the until-condition is fulfilled. Then the function returns the set {g, c} and
E turns out to be the set {a, g, e, l,m, o} ∪ {g, c}.

Theorem 2. For any AF A = 〈A,Σ〉, the complexity of computing IFP(A, E0),
with E0 ⊂ A, is O(|A| × d̄ 2), where d̄ is the maximum input degree of a node
(i.e., the maximum number of attacks towards an argument in A).

Incremental Computation of Deterministic Extensions 297

Algorithm 1. Incr-Grounded-Sem(A0, u, E0)
Input: AF A0 = 〈A0, Σ0〉, u = ±(a, b), grounded

extension E0;

Output: Revised grounded extension E
1: Let S = I(u, A0, E0);
2: Let Ad = 〈Ad, Σd〉 = Rgr(u, A0, E0);

3: if (Ad = ∅) then E = E0;

4: else E = (E0 \ S) ∪ IFP(Ad ,E0 ∩ Ad);

Function 1. IFP(A, E0)
Input: AF A = 〈A, Σ〉, Extension E0;
Output: Extension E
1: Sin = Δin = { a | � ∃(c, a) ∈ Σ };
2: if (Sin = ∅) return Sin;

3: Sout = Δout = Δ+
in ;

4: repeat
5: Δin = G(Sout, Δout) \ Sin;

6: Δout = Δ+
in \ Sout;

7: Sin = Sin ∪ Δin;
8: Sout = Sout ∪ Δout;
9: until Δin ⊆ E0
10: if (Δin = ∅) return Sin;
11: else return Sin∪(E0\(Sin∪Sout));

Theorem 3. For any AF A0 = 〈A0, Σ0〉 with grounded extension E0, and u =
±(a, b), the complexity of Algorithm Incr-Grounded-Sem(A0, u, E0) is O(|Σ0| +
|I(u,A0, E0)| × d̄ 2), where d̄ is the maximum input degree of a node.

Theorem 4. Given an AF A0, an update u = ±(a, b) for A0 yielding A=u(A0),
and the grounded extension E0 of A0, Algorithm1 computes the grounded exten-
sion E of A.

5.2 Ideal Semantics

Before introducing the restricted AF for ideal semantics, denoted as
Rid(u,A, E), we define the paths, providing the information on the “context”
outside the influenced set S = I(u,A, E), that need to be added to determine
the new status of arguments in S. Given an AF A = 〈A,Σ〉 with ideal exten-
sion E and a set S ⊆ A, Node(A, S, E) (resp. Edge(A, S, E)) denotes a set of
arguments x1, ..., xn (resp. attacks (x1, x2), ..., (xn−1, xn)) in A such that there
is a path x1 . . . xn in A with xn ∈ S, x1, . . . , xn1
∈ S and x1, ..., xn1
∈ E ∪ E+

(i.e., x1, ..., xn1 are un). Essentially, if S is the influenced set of an update, to
determine the status of nodes in S we must also consider all nodes and attacks
occurring in paths (of any length) ending in S whose nodes outside S are all
labeled as un. The motivation to also consider the paths ending in S is that
some of the undecided arguments occurring in these paths could be labelled in
or out in some preferred labelling and, therefore, together they could determine
a change in the status of nodes in S.

Definition 3 (Restricted AF for ideal semantics). Given an AF A =
〈A,Σ〉, an ideal extension E for A and an update u = ±(a, b), the restricted AF
of A w.r.t. E and u (denoted as Rid(u,A, E)) is as follows.

– Rid(u,A, E) is empty if I(u,A, E) is empty.
– Rid(u,A, E) = Π(I(u,A, E), u(A)) � T1 � T2 where, let S = I(u,A, E):

• T1 is the union of the AFs 〈{a, b}, {(a, b)}〉 s.t. (a, b) is an attack of u(A)
and a
∈ I(u,A, E), a ∈ E, and b ∈ I(u,A, E);

• T2 is the union of the AFs 〈Node(A, S, E), Edge(A, S, E)〉. �

298 S. Greco and F. Parisi

Example 9. Continuing Example 7 we have that (i) the ideal extension of A
is E′

0 = {g, e, d} (i.e. arguments a and b are both labeled as un); and (ii) the
restricted AF is Rid(u,A0, E

′
0)=〈{c, d}, {(c, d), (d, c)}〉�T1�T2 where T1=〈{e, d},

{(e, d)}〉 and T2=〈{a, b, c}, {(a, b), (b, c), (b, a), (a, c)}〉. That is, Rid(u,A0, E
′
0) =

〈{a, b, c, d, e}, {(a, b), (b, a), (c, d), (d, c), (a, c), (b, c), (e, d)}〉. �

Once identified the restricted AF, our algorithm for computing the ideal
extension uses the novel concept of coherent winning strategy (CWS) that we
introduce below after briefly recalling Two Party Immediate Response Dis-
putes [23,44].

In a dispute two players, proponent (PRO) and opponent (OPP), move argu-
ments to each other. A dispute for an argument a1 is a sequence of arguments
d = a1, . . . , an where a1 is moved by PRO and consecutive arguments ai, ai+1 in
d are such that (ai+1, ai) ∈ Σ and are moved by different players. A dispute is
legal iff i) OPP never uses the same argument twice, and ii) PRO never uses a
self-attacking argument or an argument attacking one previously used by him.

Given an AF A = 〈A,Σ〉 and an argument a ∈ A, the dispute tree T (a,A)
for A is the maximal tree whose root is a and whose branches (disputes) are legal
disputes for a. For any subtree t of T (a,A), we denote by PRO(t) (resp. OPP(t))
the set of arguments moved by PRO (resp., OPP) occurring in t. Moreover,
ST (a,A) denotes the set of subtrees w derived from T (a,A) by pruning branches
in such a way that each node in OPP (w) has only one child node (the set of
child nodes of any node in PRO(w) remains the same).

Definition 4 (Coherent Winning Strategy (CWS)). Let A = 〈A,Σ〉 and
a ∈ A. A subtree w ∈ ST (a,A) is a winning strategy for a iff all leaf nodes
of w belong to PRO(T (a,A)). w is said to be coherent w.r.t. E ⊆ A iff (i)
PRO(w) ∩ E+ = ∅ and (ii) OPP(w) ∩ E = ∅. The set of CWSs for a in A w.r.t.
E is denoted as CW(a,A, E). �

Checking whether an argument belongs to the ideal extension of an updated
AF can be accomplished using CSWs.

Theorem 5. Let A0 = 〈A0, Σ0〉, E0 the ideal extension of A0, u = ±(a, b),
S = I(u,A0, E0), and A = u(A0). Then, the ideal extension E of A contains
argument c iff there is a CWS w ∈ CW(c,Rid(u,A0, E0), E0 \ S) such that ∀c′ ∈
OPP(w),
 ∃ CWS w′ ∈ CW(c′,Rid(u,A0, E0), E0 \ S).

A CWS w ∈ CW(c,A, E) is successful if it satisfies the condition of
Theorem 5.

Corollary 1. Let A0 = 〈A0, Σ0〉, E0 the ideal extension of A0, and u = ±(a, b)
an update. Then, PRO(w) ⊆ E where E is the ideal extension of A = u(A0) and
w is a successful CWS in CW(c,Rid(u,A0, E0), E0 \ I(u,A, E0)).

Incremental Computation of Deterministic Extensions 299

Algorithm 2. Incr-Ideal-Sem(A0, u, E0)
Input: AF A0=〈A0, Σ0〉, u=±(a, b), Ideal

extension E0;
Output: Revised ideal extension E;
1: Let A = u(A0);
2: S = I(u, A0, E0);
3: E = E0 \ S;
4: if (S = ∅) then return
5: while (S �= ∅) do
6: Ad = 〈Ad, Σd〉 = Rgr(u, A0, E);
7: Δin = IFP (Ad, E ∩ Ad);

8: S = S \ (Δin ∪ Δ+
in);

9: E = E ∪ Δin;
10: Ad = Rid(u, A0, E);
11: Select an argument c ∈ S;
12: if ∃ successful CWS w ∈ CW(c, Ad, E)

then
13: Δin = PRO(w);

14: S = S \ (Δin ∪ Δ+
in);

15: E = E ∪ Δin;
16: else S = S \ {c};

Fig. 6. Run times (ms) of BaseG
and IncrG for 1, 20, and 40 updates
over REAL.

Algorithm 2 computes the ideal extension E of an updated AF A = u(A0)
using the ideal extension E0 of AF A0. It starts by identifying the set S of argu-
ments whose status need to be recomputed (Line 2) and the starting extension
that will be iteratively incremented to obtain the ideal extension (Line 3). It
first checks if the influenced set is empty (Line 4); in such a case E = E0 and
then it stops. If this is not the case, it iterates to reach a fixpoint. At each step it
first computes the grounded semantics (lines 6–9) and next search for a CWS for
some unlabelled argument (lines 10–16). More specifically, before computing the
grounded semantics (Line 7), the (restricted) AF is computed using Rgr (Line
6). Using the result of Function IFP , extension E and the set S of unlabelled
arguments are updated at lines 8-9 by including in the current ideal extension E
all the arguments belonging to the grounded extension Δin and removing from
S all new arguments that have been decided. Analogously, before searching for
a successful CWS (Line 12), the restricted AF is computed using Rid (Line 10).
Finally, the existence of a successful CWS w is exploited for updating extension
E and the set S of unlabelled arguments (lines 14–16).

Theorem 6. Given an AF A0 whose ideal extension is E0, and an update u =
±(a, b) such that u(A0) = A, Algorithm2 computes the ideal extension E of A.

6 Experiments

We implemented a prototype for incremental computation of argumentation
semantics using the Java argumentation libraries provided by the Tweety
project [43].

Datasets. For the experiments on the grounded semantics, we used two datasets
provided as benchmarks at ICCMA (http://argumentationcompetition.org):

http://argumentationcompetition.org

300 S. Greco and F. Parisi

(i) REAL consists of 19 AFs 〈A0, Σ0〉 with |A0| ∈ [5K, 100K] and |Σ0| ∈
[7K, 143K]; (ii) SYN1 consists of 24 AFs 〈A0, Σ0〉 with |A0| ∈ [1K, 4K] and
|Σ0| ∈ [14K, 172K]. The AFs in the two datasets have a different structure: on
average, |ReachA0

(a)| is around 2200 for arguments a in SYN1, while it is about
10 for REAL; moreover, the average number of attacks per argument for REAL is
1.5 while it is 26 for SYN1.

For the experiments on the ideal semantics, we built dataset SYN2 that con-
sists of AFs whose size is smaller than those in REAL and SYN1 because computing
the initial ideal extension for the datasets above is prohibitive due to its exponen-
tial complexity (specifically, computing the ideal extension is FPNP

|| -hard [22]).
SYN2 consists of 20 AFs for each of the number of arguments in {50, 75, . . . , 175}.
Each AF in SYN2 was obtained by first generating its arguments and then adding
for each argument on average 2 attacks toward arguments in the AF being gen-
erated. Finally, for each argument not yet connected, an attack from or to this
argument from the others was added.

Fig. 7. Run times (ms) of BaseG and
IncrG for 1, 20, and 40 updates over
SYN1.

Fig. 8. Run times (ms) of BaseI and
IncrI for 1 and 5 updates over SYN2

Algorithms. For each AF A0 = 〈A0, Σ0〉 in each dataset, we first computed the
grounded (resp. ideal) extension E0. Then, when considering a single update,
we randomly selected an update u of the form +(a, b) (with a, b ∈ A0 and
(a, b)
∈ Σ0) or −(a, b) (with (a, b) ∈ Σ0). For the case of multiple updates, we
randomly generated a set U of updates of the above form. Next, we executed
the following algorithms:

– BaseG and BaseI which compute, respectively, the grounded and ideal
semantics E of the updated AF u(A0) from scratch (these algorithms were
also used to compute the initial extension E0 which is taken as input by the
incremental algorithms). BaseG finds the fixpoint of the characteristic func-
tion of an AF as implemented in the libraries of Tweety [43], while BaseI uses
the algorithm implemented by Dung-O-Matic engine (http://www.arg-tech.
org/index.php/projects/dung-o-matic).

http://www.arg-tech.org/index.php/projects/dung-o-matic
http://www.arg-tech.org/index.php/projects/dung-o-matic

Incremental Computation of Deterministic Extensions 301

– Incr-Grounded-Sem and Incr-Ideal-Sem (IncrG and IncrI for short) which
incrementally compute the grounded and ideal extension E by implementing
Algorithms 1 and 2, respectively.

The construction of Fig. 4 was used for computing extensions of AFs updated
by a set U of updates (multiple updates) by the incremental algorithms IncrG
and IncrI.

Results. Figures 6 and 7 report the run times (log scale) of BaseG and IncrG
for computing the grounded extensions of the updated AFs versus the number
of arguments over REAL and SYN1, respectively. The figures also report the run
times of IncrG for computing the grounded extensions after performing 20 and 40
updates, where for multiple updates the restricted AF and the starting extension
also take into account arguments and attacks added to the construction of Fig. 4.
The experiments also showed that, on average, the size of the influenced set w.r.t.
that of the input AF for REAL (resp. SYN1) is about 0.01% (resp. 1%) for single
update, 0.1% (resp. 9%) for 20 updates, and 0.5% (resp. 15%) for 40 updates.
Figure 8 reports the run times (log scale) of BaseI and IncrI for computing
the ideal extensions after performing one and five updates versus the number of
arguments over SYN2. The experiments showed that the size of the influenced
set w.r.t. that of the input AF for SYN2 is 6% for single update and 43% for 5
updates.

From these results, we can draw the following conclusions:

– The time needed by our algorithms for incrementally computing the grounded
and ideal extensions is orders of magnitude better than the time needed to
recompute the whole extension from scratch. This holds even in the case of
multiple updates where there is an overload due to the construction of Fig. 4.

– While the improvement obtained for the grounded semantics is almost con-
stant w.r.t. the size of the input AFs, the improvement obtained for the ideal
semantics increases with the size of the input AFs. In fact, since computing
the ideal semantics is exponential in the size of the input AF, the improve-
ment derived from considering the restricted AF is exponential in the size of
the restriction (arguments and attacks in the input AF not occurring in the
restricted AF).

– The definition of influenced set substantially restricts the portion of the AF
to be analysed for recomputing the semantics of an AF after performing an
update. It is worth noting that this means that even using any non-incremental
algorithm taking as input the restricted AF would result in a performance
improvement, since the size of the input data to be processed would be signif-
icantly smaller.

The experiments also showed the trade-off between applying a number n of
updates by using the construction of Fig. 4 (i.e., multiple updates) and perform-
ing a sequence of n single updates by running n times the incremental algorithms:
the former approach is preferable for more than 20 (resp., 5) updates for REAL
(resp. SYN1) under the grounded semantics, while under the ideal semantics it

302 S. Greco and F. Parisi

is preferable for less than 7 updates, on average. In fact, the overhead due to
the construction of Fig. 4 is relatively small and turns to be more and more
convenient for a sizeable set of updates under the grounded semantics. However,
it increases with the size of the input AF and becomes relatively large for (the
smaller dataset) SYN2 under the ideal semantics, making the approach based on
performing sequence of single updates more suitable in this case.

7 Conclusion and Future Work

We presented two incremental algorithms for computing deterministic exten-
sions of updated AFs. The algorithms exploit the initial extension of an AF
for computing the set of arguments influenced by an update, and for detecting
early termination conditions during the recomputation of the status of the argu-
ments. Although our presentation focused on adding/removing one attack, our
technique can be used in the case of general updates. The experiments, conducted
considering also multiple updates, showed that the incremental computation out-
performs that of the base (non-incremental) computation. The experiments also
showed that our definition of influenced set drastically restricts the portion of
the AF to be analysed for recomputing the semantics after an update.

Our current research is concentrated on the application of the techniques
developed in this paper to other (multiple status) semantics. In this regard, there
are two interesting aspects that deserve more investigation. First, the identifi-
cation of restricted AFs for these semantics would enable the use of existing
(non-incremental) algorithms taking as input a smaller AF for computing exten-
sions. Second, we envisage the definition of incremental algorithms that make
use of initial extensions for computing extensions after updates for multiple sta-
tus semantics where we need to deal with the additional issue that extensions
can be split/merged after an update.

References

1. Amgoud, L., Vesic, S.: Revising option status in argument-based decision systems.
J. Log. Comput. 22(5), 1019–1058 (2012)

2. Baroni, P., Boella, G., Cerutti, F., Giacomin, M., van der Torre, L.W.N., Villata,
S.: On the input/output behavior of argumentation frameworks. Artif. Intell. 217,
144–197 (2014)

3. Baroni, P., Caminada, M., Giacomin, M.: An introduction to argumentation
semantics. Knowl. Eng. Rev. 26(4), 365–410 (2011)

4. Baroni, P., Giacomin, M., Liao, B.: On topology-related properties of abstract
argumentation semantics. a correction and extension to dynamics of argumentation
systems: A division-based method. Artif. Intell. 212, 104–115 (2014)

5. Baumann, R.: Splitting an argumentation framework. In: Proceedings of Interna-
tional Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR),
pp. 40–53 (2011)

6. Baumann, R.: Normal and strong expansion equivalence for argumentation frame-
works. Artif. Intell. 193, 18–44 (2012)

Incremental Computation of Deterministic Extensions 303

7. Baumann, R.: Context-free and context-sensitive kernels: update and deletion
equivalence in abstract argumentation. In: Proceedings of ECAI, pp. 63–68 (2014)

8. Baumann, R., Brewka, G.: Expanding argumentation frameworks: enforcing and
monotonicity results. In: Proceedings of COMMA, pp. 75–86 (2010)

9. Baumann, R., Brewka, G., Dvorák, W., Woltran, S.: Parameterized splitting: a sim-
ple modification-based approach. In: Correct Reasoning - Essays on Logic-Based
AI in Honour of Vladimir Lifschitz, pp. 57–71 (2012)

10. Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in artificial intelligence. Artif.
Intell. 171(1015), 619–641 (2007)

11. Bisquert, P., Cayrol, C., de Saint-Cyr, F.D., Lagasquie-Schiex, M.: Characterizing
change in abstract argumentation systems. Trends Belief Revision Argum. Dyn.
48, 75–102 (2013)

12. Boella, G., Kaci, S., van der Torre, L.W.N.: Dynamics in argumentation with single
extensions: abstraction principles and the grounded extension. In: Proceedings of
ECSQARU, pp. 107–118 (2009)

13. Boella, G., Kaci, S., van der Torre, L.W.N.: Dynamics in argumentation with
single extensions: attack refinement and the grounded extension. In: Proceedings
of ArgMAS, pp. 150–159 (2009)

14. Calautti, M., Greco, S., Trubitsyna, I.: Detecting decidable classes of finitely
ground logic programs with function symbols. In: 15th International Symposium on
Principles and Practice of Declarative Programming, PPDP 2013, Madrid, Spain,
16–18 September 2013, pp. 239–250 (2013)

15. Caminada, M.: Semi-stable semantics. In: Proceedings of COMMA, pp. 121–130
(2006)

16. Caminada, M., Sá, S., Alcântara, J., Dvorák, W.: On the equivalence between logic
programming semantics and argumentation semantics. Int. J. Approx. Reason. 58,
87–111 (2015)

17. Cayrol, C., de Saint-Cyr, F.D., Lagasquie-Schiex, M.: Revision of an argumentation
system. In: Proceedings of KR, pp. 124–134 (2008)

18. Cayrol, C., de Saint-Cyr, F.D., Lagasquie-Schiex, M.: Change in abstract argu-
mentation frameworks: adding an argument. J. Artif. Intell. Res. 38, 49–84 (2010)

19. Charwat, G., Dvorák, W., Gaggl, S.A., Wallner, J.P., Woltran, S.: Methods for
solving reasoning problems in abstract argumentation - a survey. Artif. Intell. 220,
28–63 (2015)

20. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2),
321–358 (1995)

21. Dung, P.M., Mancarella, P., Toni, F.: Computing ideal sceptical argumentation.
Artif. Intell. 171(10–15), 642–674 (2007)

22. Dunne, P.E.: The computational complexity of ideal semantics. Artif. Intell.
173(18), 1559–1591 (2009)

23. Dunne, P.E., Bench-Capon, T.J.M.: Two party immediate response disputes: prop-
erties and efficiency. Artif. Intell. 149(2), 221–250 (2003)

24. Dunne, P.E., Wooldridge, M.: Complexity of abstract argumentation. In: Argu-
mentation in Artificial Intelligence, pp. 85–104 (2009)

25. Dvorák, W., Pichler, R., Woltran, S.: Towards fixed-parameter tractable algorithms
for argumentation. In: Proceedings of KR (2010)

26. Dvorák, W., Woltran, S.: Complexity of semi-stable and stage semantics in argu-
mentation frameworks. Inf. Process. Lett. 110(11), 425–430 (2010)

304 S. Greco and F. Parisi

27. Eiter, T., Strass, H., Truszczyński, M., Woltran, S. (eds.): Advances in Knowledge
Representation, Logic Programming, and Abstract Argumentation. LNCS (LNAI),
vol. 9060. Springer, Heidelberg (2015)

28. Falappa, M.A., Garcia, A.J., Kern-Isberner, G., Simari, G.R.: On the evolving
relation between belief revision and argumentation. Knowl. Eng. Rev. 26(1), 35–
43 (2011)

29. Fazzinga, B., Flesca, S., Parisi, F.: Efficiently estimating the probability of exten-
sions in abstract argumentation. In: Proceedings of SUM, pp. 106–119 (2013)

30. Fazzinga, B., Flesca, S., Parisi, F.: On the complexity of probabilistic abstract
argumentation. In: Proceedings of IJCAI, pp. 898–904 (2013)

31. Fazzinga, B., Flesca, S., Parisi, F.: On the complexity of probabilistic abstract
argumentation frameworks. ACM Trans. Comput. Log. 16(3), 22 (2015)

32. Fazzinga, B., Flesca, S., Parisi, F.: On efficiently estimating the probability of
extensions in abstract argumentation frameworks. Int. J. Approx. Reason. 69,
106–132 (2016)

33. Fazzinga, B., Flesca, S., Parisi, F., Pietramala, A.: PARTY: a mobile system for
efficiently assessing the probability of extensions in a debate. In: Proceedings of
DEXA, pp. 220–235 (2015)

34. Greco, S., Molinaro, C., Trubitsyna, I.: Logic programming with function symbols:
checking termination of bottom-up evaluation through program adornments. TPLP
13(4–5), 737–752 (2013)

35. Greco, S., Molinaro, C., Trubitsyna, I., Zumpano, E.: NP datalog: a logic language
for expressing search and optimization problems. TPLP 10(2), 125–166 (2010)

36. Greco, S., Parisi, F.: Efficient computation of deterministic extensions for dynamic
abstract argumentation frameworks. In: Proceedings of ECAI, pp. 1668–1669
(2016)

37. Liao, B.S., Jin, L., Koons, R.C.: Dynamics of argumentation systems: a division-
based method. Artif. Intell. 175(11), 1790–1814 (2011)

38. Lifschitz, V., Turner, H.: Splitting a logic program. In: Proceedings of ICLP, pp.
23–37 (1994)

39. Modgil, S., Prakken, H.: Revisiting preferences and argumentation. In: Proceedings
of IJCAI, pp. 1021–1026 (2011)

40. Oikarinen, E., Woltran, S.: Characterizing strong equivalence for argumentation
frameworks. Artif. Intell. 175(14–15), 1985–2009 (2011)

41. Pollock, J.L.: Perceiving and reasoning about a changing world. Comput. Intell.
14(4), 498–562 (1998)

42. Rahwan, I., Simari, G.R.: Argumentation in Artificial Intelligence. Springer,
New York (2009)

43. Thimm, M.: Tweety: a comprehensive collection of java libraries for logical aspects
of artificial intelligence and knowledge representation. In: Proceedings of KR (2014)

44. Vreeswijk, G., Prakken, H.: Credulous and sceptical argument games for preferred
semantics. In: Proceedings of JELIA, pp. 239–253 (2000)

45. Xu, Y., Cayrol, C.: The matrix approach for abstract argumentation frameworks.
In: Proceedings of International TAFA Workshop, pp. 243–259 (2015)

Revising Possibilistic Knowledge Bases
via Compatibility Degrees

Yifan Jin(B), Kewen Wang, Zhe Wang, and Zhiqiang Zhuang

Griffith University, 170 Kessels Rd, Nathan, QLD 4111, Australia
yifan.jin@griffithuni.edu.au, {k.wang,zhe.wang,z.zhuang}@griffith.edu.au

Abstract. Possibilistic logic is a weighted logic for dealing with incom-
plete and uncertain information by assigning weights to propositional
formulas. A possibilistic knowledge base (KB) is a finite set of such for-
mulas. The problem of revising a possibilistic KB by possibilistic formula
is not new. However, existing approaches are limited in two ways. Firstly,
they suffer from the so-called drowning effect. Secondly, they handle cer-
tain and uncertain formulas separately and most only handle certain
inputs. In this paper, we propose a unified approach that caters for revi-
sion by both certain and uncertain inputs and relieves the drowning
effect. The approach is based on a refined inconsistency degree function
called compatibility degree which provides a unifying framework (called
cd-revision) for defining specific revision operators for possibilistic KBs.
Our definition leads to an algorithm for computing the result of the pro-
posed revision. The revision operators defined in cd-revision possess some
desirable properties including those from classic belief revision and some
others that are specific to possibilistic revision. We also show that several
major revision operators for possibilistic, stratified and prioritised KBs
can be embedded in cd-revision.

1 Introduction

The area of belief revision deals with incorporating new information into a knowl-
edge base (KB) while preserving its consistency. A set of postulates is given in
[1] for characterizing the intuitions behind rational belief revision.

Possibilistic logic is a weighted logic for dealing with incomplete and uncer-
tain information. A possibilistic KB is a set of weighted formulas, denoted as
(φ, α), where φ is a classical formula and α a number that represents how cer-
tain we are about the truth of φ. Belief revision for possibilistic KBs has been
studied in for example [7,12]. Syntactically, the approaches come down to adding
a formula to a belief base at a certain prescribed level. The problem is non-trivial
as we have to keep the prescribed priority of the added formula in the KB.

After revising a possibilistic KB by a weighted formula (φ, α), we expect that
φ is believed to a degree of certainty α in the revised KB. There are two views of
this certainty in the literature. One sees it as enforcing a constraint [7]. Another
is by taking it into account only if it leads to a strengthening of the certainty
[12]. The two views have been extended in [5,6] to form a series of belief revision
c© Springer International Publishing AG 2016
L. Michael and A. Kakas (Eds.): JELIA 2016, LNAI 10021, pp. 305–319, 2016.
DOI: 10.1007/978-3-319-48758-8 20

306 Y. Jin et al.

operators. However, many of them suffer from the so called “drowning effect”.
That is, after revising a KB, formulas with weights lower than a certain degree of
the KB are either totally neglected or heavily modified. Consider the possibilistic
KB {(¬rainy → go outing , 0.9), (rainy ∨ windy , 0.8), (¬go outing , 0.8)}, which
says it is quite possible that (1) if it does not rain then we will go outing,
(2) it will be rainy or windy, and (3) we will not go outing. When revising
the KB by the fact that it is not rainy, i.e., (¬rainy , 1), methods in [5,6] will
discard (rainy ∨ windy , 0.8), even though this formula has nothing to do with
the inconsistency. The problem gets worse if the inconsistency degree is high.
Many efforts have been made to deal with this problem [4,8,17–19]. Some does
it by restricting the input to be certain ones (i.e., formulas with weight 1) and
some are based on semantic approaches.

Our goal is to establish a unified belief revision function that deals with both
certain and uncertain inputs and at the same time avoids the drowning effect as
much as possible. The function adapts the view of seeing (φ, α) as a constraint,
which means that the formula φ should be believed to a degree of certainty α
exactly. In this respect, [7,18] are closely related to ours. The revision operators
in both [7,18] are based on possibility distributions. The former is defined for
arbitrary possibilistic formulas (φ, α) (0 < α ≤ 1) while the latter is defined for
certain inputs (φ, 1). In addition, a syntactic approach based on inconsistency
only is also provided in [7], which is sound and complete with respect to their
semantic revision.

We first propose a syntactic characterization for inconsistency of possibilis-
tic KBs, called compatibility degree, which measures the inconsistency for each
collection of formulas. Based on the characterization, we establish a framework
for defining revision in possibilistic logic, called to as compatibility degree based
revision or simply cd-revision. cd-revision satisfies major postulates for classic
belief revision. An algorithm is developed for the proposed revision. Significantly,
the revision framework is general enough to subsume many earlier approaches
[5,7,18] thus providing a unifying framework for possibilistic logic belief revision.

The rest of this paper is organized as follows. We first introduce possibilistic
logic in Sect. 2. We then define the notion of compatibility degree in possibilistic
logic in Sect. 3. In Sect. 5, we define our revision framework as well as a related
algorithm based on compatibility level. Section 6 is devoted to the logical prop-
erties of our revision approach. Finally we discuss how our methods are related
to previous work in Sect. 7 and give conclusion in Sect. 8.

2 Possibilistic Logic

We work with propositional possibilistic logic [10], which is built on classical
propositional logic. A formula in possibilistic logic is of the form (φ, α) where
φ is a propositional formula and α ∈ (0, 1] is the weight of φ. Intuitively, (φ, α)
expresses that φ is certain at least to the degree of α. Such formulas are referred
to as possiblistic formulas. A possibilistic KB is a finite set of possibilistic formu-
las. Each possibilistic KB K can be transformed into an equivalent possibilistic

Revising Possibilistic Knowledge Bases via Compatibility Degrees 307

KB K ′ in clausal form where for each φ in K ′ is a clause (i.e., a disjunction of
possibly negated atoms). For simplicity, in what follows we assume w.l.o.g. that
each possibilistic KB is in clausal form. We define the classical projection of a
possibilistic KB K as the KB K∗ = {φ | (φ, α) ∈ K}. We use |= to represent
classical entailment.

The semantics of possibilistic logic is based on the notion of possibility dis-
tributions. A possibility distribution π is a mapping from all interpretations to
the interval [0, 1]. For an interpretation I, π(I) represents the degree of compat-
ibility of I with the real world. Such that, π(I) = 0 means that I is impossible
to be the real world; π(I) = 1 means that nothing prevent I from being the real
world; and 0 < π(I) < 1 means that I is somewhat possible to be the real world.

A possibility distribution π satisfies a possibilistic KB K if π(I) ≤ πK(I) for
all I, where πK is obtained as follows

πK(I) =
{

1, if I |= φ for every (φ, α) ∈ K
1 − max{α | (φ, α) ∈ K and I � φ}, otherwise

πK is in fact the least specific possibility distribution satisfying K [10].
From πK , two dual measures can be determined for a propositional for-

mula φ. The necessity degree of φ denoted as N(φ) is defined as N(φ) =
1 − max{πK(I) | I |= ¬φ}; and the possibility degree of φ denoted as Π(φ)
is defined as Π(φ) = 1 − N(¬φ). Intuitively, the possibility degree says to what
extent φ is consistent with K and the necessity degree says to what extend φ is
entailed by K. We refer the readers to [10] for further details.

A possibilistic KB K is consistent if K∗ is consistent, and inconsistent as
otherwise. The inconsistency degree of K is defined as

Inc(K) = 1 − max{πK(I) | I ∈ Ω}.

The inconsistency degree indicates to what extent K is consistent, which can
be seen from the fact that K>Inc(K) = {(φi, αi) | (φi, αi) ∈ K,αi > Inc(K)} is
consistent whereas for any α ≤ Inc(K), K>Inc(K) ⊂ K≥α ⊆ K is inconsistent.

Given a possibilistic KB K, a propositional formula φ is a plausible con-
sequence of K, denoted K |=p φ, if K∗

>Inc(K) |= φ. For simplicity, we also
say K entails φ. A possibilistic formula (φ, α) is a consequence of K, denoted
K |= (φ, α), if α > Inc(K) and K∗

≥α |= φ. Moreover, φ is a consequence of K to
a degree α, denoted K |=π (φ, α), if K |= (φ, α) and ∀β > α, K � (φ, β).

3 Compatibility Degree

To avoid the “drowning effect”, we introduce a degree that can characterise the
consistency of all subsets of a possibilistic KB. Inspired by [2,3], we define the
following degree function called compatibility degree.

Definition 1. Given a possibilistic KB K, the compatibility degree CK : 2K 	→
[0, 1] is such that for each K ′ ⊆ K,

CK(K′) =

{
1 − max{α | (φ, α) ∈ K \ K′} if K′∗ is consistent
0 otherwise

308 Y. Jin et al.

Intuitively, only a consistent subset K ′ of K has a positive compatibility
degree and the degree is higher (closer to 1) if K ′ contains formulas (from K)
with higher certainty. When the background KB K is clear, we will omit the
subscript.

Example 1. Let K = {(p∨r, 0.9), (p∨¬q, 0.8), (¬r, 0.8)}. Consider the following
sub-KB: K1 = {(p∨r, 0.9)}, K2 = {(p∨¬q, 0.8)}, K3 = {(p∨r, 0.9), (p∨¬q, 0.8)},
K4 = K. We have CK(K1) = 0.2, CK(K2) = 0.1, CK(K3) = 0.2 and
CK(K4) = 1.

It is easy to see that the compatibility degree is monotonically non-decreasing.

Lemma 1. Given a possibilistic KB K, if K ′ and K ′′ are consistent and K ′′ ⊆
K ′ ⊆ K, then CK(K ′′) ≤ CK(K ′).

Proof. If K ′′ ⊆ K ′ ⊆ K then we have K \K ′ ⊆ K \K ′′ Thus max{α | (φ, α) ∈
K\K ′} ≤ max{α | (φ, α) ∈ K\K ′′}. As a result, CK(K ′′) = 1−max{α | (φ, α) ∈
K \ K ′′} ≤ CK(K ′) = 1 − max{α | (φ, α) ∈ K \ K ′}. �

While the compatibility degree is defined syntactically, it is able to charac-
terise the semantics of possibilistic logic. The following proposition shows that
the least specific possibility distribution satisfying K can be characterised by
the compatibility degree function.

Proposition 1. Let K be a possibilistic KB. For every interpretation I the least
specific possibility distribution w.r.t.I corresponds to the compatibility degree of
some subset K ′ of K, such that πK(I) = CK(K ′).

Proof. Given an interpretation I, let K ′ = {(φ, α) | (φ, α) ∈ K and I |= φ}
and for each formula (φ, α) ∈ K \ K ′ we require I � φ. Thus, πK(I) = 1 −
max{α | (φ, α) ∈ K and I � φ)} = 1 − max{α | (φ, α) ∈ K \ K ′} = CK(K ′). �

A corallary of Proposition 1 is that the necessity degree and inconsistency
degree can both be characterised by the compatibility degree.

Corollary 1. Let K be a possibilistic KB, I be an interpretation and φ be a
propositional formula. Then the following three statements hold:

1. πK(I) ≥ CK(K ′) for each I and K ′ such that K ′ ⊆ K and I |= K ′∗.
2. N(φ) = 1 − max{CK(K ′) | K ′ ⊆ K and K ′∗

� φ}.
3. Inc(K) = 1 − max{CK(K ′) | K ′ ⊆ K}.

4 Revision Based on Compatibility Degrees

In this section, we study the problem of revising a possibilistic KB K by a
possibilistic formula (μ, α). As usual, we assume K is consistent. Similar to
classic belief revision, when (μ, α) is added to K, the union K ∪ {(μ, α)} can be
inconsistent and thus we need to obtain a new KB K ′ such that K ′ ∪ {(μ, α)}

Revising Possibilistic Knowledge Bases via Compatibility Degrees 309

is consistent and K ′ is as close to K as possible. The basic idea of our approach
is to find subsets of K that are consistent with (μ, α) and have the maximum
compatibility degree. To formalise this idea, we first propose a unified revision
method based on compatibility degree. This method can be applied to both the
cases of α = 1 (i.e., revision by certain information) and α < 1 (i.e., revision
by uncertain information). Then we give the details of our revision for the two
cases.

4.1 Definition of Possibilistic Revision

Our revision operator is based on a selection function. A selection function γ
maps each collection of classical KBs S to a subset of S such that γ(S) is
non-empty whenever S is so. Two concrete selection functions are γmax, which
maps a set of classical KBs to the set of its maximal elements w.r.t. subset
relation, and γmin, which maps a set of classical KBs to the set of its minimal
elements w.r.t. subset relation. For instance, let S = {{ϕ}, {ψ}, {ϕ,ψ}}, then
γmax(S) = {{ϕ,ψ}} and γmin(S) = {{ϕ}, {ψ}}.

When revising possibilistic KB K with a possibilistic formula (μ, α) (0 <
α ≤ 1), we have three possible cases.

Case 1, K∗
� μ and K∗

� ¬μ. This case is trivial since K does not contain any
information about μ. Then the revision result is simply K ∪ {(μ, α)}.

Case 2, K∗ |= ¬μ, that is, K∗ is inconsistent with μ. In this case, we need
to select subsets of K that are consistent with μ and have the maximum
compatibility degree, so as to preserve as many formulas from K with high
certainty as possible.

Case 3, K∗ |= μ, then μ is believed to a degree β in K and it is possible that
β > α. In this case, adding (μ, α) to K can not guarantee μ to have a certainty
degree α. We need to first identify subsets K ′ of K that do not entail μ and
have the maximum compatibility degree (which is again to preserve as many
formulas from K with their initial certainty as possible), and then adjust the
weights of the remaining formulas in K (not in K ′) according to α.

Before defining our revision, we need to introduce some preparatory nota-
tions. For a possibilistic KB K and a propositional formula φ, let c(K,φ) =
max{C(K ′) | K ′ ⊆ K,K ′∗

� φ} and S(K,φ) = {K ′ ⊆ K | C(K ′) =
c(K,φ),K ′∗

� φ}. We are also interested in the set S(K,¬μ) and S(K,μ). The
first set is the set of subsets K ′ of K that are consistent with μ (i.e., K ′∗

� ¬μ)
and with the maximum compatibility degree c(K,¬μ), and the second is the
set of subsets K ′ of K that do not entail μ (i.e., K ′∗

� μ) with the maximum
compatibility degree c(K,μ).

As we use a selection function to determine the result of revision, forming the
multiple subsets of K amy be returned, resulting in multiple candidates for revi-
sion results. A common practice to handle multiple candidates in classic belief
revision is to intersect them. To avoid lost of information, we define the inter-
section of multiple possibilistic KBs as the intersection of their logical closures.

310 Y. Jin et al.

Given a possibilistic logic KB K, its logical consequences are the possibilistic
formulas obtained by exhaustively applying the following inference rules [11]:

(φ, α), (¬φ ∨ ψ, β) � (ψ,min{α, β})
(φ, α) � (φ, β) if β ≤ α.

In theory, the second inference rule will lead to an infinite number of possi-
bilistic formulas. In practice, however, for each propositional formula φ in K, we
keep only the possibilistic formula (φ, α) that has the maximum weight α for φ.
That is, if α1 > α2, then (φ, α2) is omitted. In this way, the set of consequences
of (φ, α) has a finite representation although it is essentially infinite.

Without loss of generality, in what follows, we assume K is logically closed,
that is, K contains all of its logical consequences.

Now we are ready to give our compatibility degree-based framework cd-
revision, for revising a possibilistic KB by a possibilistic formula.

Definition 2. Let K be a possibilistic KB, (μ, α) be a possibilistic formula, and
γ a selection function. The result of revising K by (μ, α), denoted as K◦(μ, α), is

–
⋂

γ(S(K,¬μ)) ∪ {(μ, α)}, if K∗
� μ; and

–
⋂{K ′ ∪ K̃ ′ | K ′ ∈ γ(S(K,μ))} ∪ {(μ, α)} where K̃ ′ = {(φ, β′) | (φ, β) ∈
K \ K ′, β′ = min(α, β)}, otherwise.

Note that cases 1 and 2 correspond to the first item, while case 3 corresponds
to the second item in which K̃ ′ is obtained by revising the weights of certain
formulas so that K ◦ (μ, α) |=π (μ, α) holds. The basic idea of the possibilistic
revision is similar to classical revision, that is, the revision of possibilistic K
by (μ, α) is defined in terms of a generalised notion of “maximal subsets of K
that are consistent with (μ, α)”. However, the problem of possibilistic revision
is more complex than classical revision in that we need to take care of weights
of formulas while resolving inconsistency.

Existing approaches to possibilistic revision provide different definitions for
the case when the new information (φ, α) is certain (α = 1) and when it is
uncertain (α < 1). Definition 2 provides a unifying revision framework for both
cases. In the following two subsections, we will discuss in detail the properties
of our cd-revision in the two cases, and provide some further discussions on the
definition of cd-revision as well as some examples.

4.2 Revision by Certain Information

When the new information (μ, α) is certain, i.e., α = 1, case 3 (Sect. 4.1) does
not occur. Thus, we have from Definition 2: K◦(μ, 1) =

⋂

γ(S(K,¬μ))∪{(μ, 1)}.
The next proposition shows that c(K,¬μ) can be obtained from the incon-

sistency degree of the union of K and {(μ, 1)}. It will be useful for computing
the revision K ◦ (μ, 1). The following proposition shows that the maximal com-
patibility in this case can be obtained via inconsistency degree.

Revising Possibilistic Knowledge Bases via Compatibility Degrees 311

Proposition 2. Given a possibilistic KB K and a propositional formula φ, then
c(K,φ) = 1 − Inc(K ∪ {(¬φ, 1)}) = N(φ).

The following example shows that cd-revision is able to avoid the “drowning
effect” occurring in some existing approaches to revision by certain information
[5,7].

Example 2. Let K = {(p∨ r, 0.9), (p∨¬q, 0.8), (¬r, 0.8)} and μ = ¬p. We have
c(K,¬μ) = 0.2 and S(K,¬μ) = {{(p∨r, 0.9), (p∨¬q, 0.8)}, {(p∨r, 0.9)}}. Taking
the selection function γmax, the result of revising K by (μ, 1) is K ◦ (¬p, 1) =
{(p ∨ r, 0.9), (p ∨ ¬q, 0.8), (¬p, 1)}.

On the other hand, both approaches in [5,7] suffer from the drowning effect
since they discard (p ∨ ¬q, 0.8).

The following result relates the necessity degree of a formula in the result of
revision to those of the same formula in the selected subsets of K.

Proposition 3. Let K be a possibilistic KB, μ and φ be two propositional
formulas.
Then the necessity degree of φ w.r.t. K ◦ (μ, 1) is N(φ) = min{N ′(φ) | K ′ ∈
γ(S(K,¬μ)) and N ′(φ) is the necessity degree of φ w.r.t.K ′}.
Proof. Suppose two knowledge bases K ′ and K ′′ are elements of γ(S(K,¬μ)).
Let K ′ |=π (φ, α), K ′′ |=π (φ, β), and α ≥ β. Following the inference rules
above, we have (φ, α) |= (φ, β). Therefore, N(φ) = min{N ′(φ) | K ′ ∈
γ(S(K,¬μ)) and N ′(φ) is the necessity degree of φ w.r.t.K ′}. �

By the above proposition, it is easy to see the following corollary, which
relates the possibility distribution to those of the selected subsets of K.

Corollary 2. Let K be a possibilistic KB, μ be a propositional formula and π
be the most specific possibility distribution of K ◦ (μ, 1). Then, for each interpre-
tation I, π(I) = max{π′

K′(I) | K ′ ∈ γ(S(K,¬μ))} where π′
K′ is the least specific

possibility distribution of K ′.

4.3 Revision by Uncertain Information

When the new information (μ, α) is uncertain, i.e., 0 < α < 1, in contrast to the
case of revision by certain information, we need to take care of formula weights
as well as inconsistency. In particular, the necessity degree of μ in the result of
revision must be N(μ) = α. This difference is reflected in case 3 in Sect. 4.1 and
the second item of Definition 2. In this subsection, we will focus on this case, i.e.,
when the initial KB entails μ.

Given the selection function, in this case, the result of revision is determined
by the set S(K,μ), which consists of the subsets of K that do not entail μ and
is in turn determined by the maximum compatibility degree c(K,μ). As shown
in Proposition 2, c(K,μ) = 1 − Inc(K ∪ {(¬μ, 1)}).

312 Y. Jin et al.

Existing approaches [5,7] also suffer from the drowning effect when revising
a possibilistic KB K by uncertain information (μ, α), especially when K entails
μ. In this case all formulas in K with weight less or equal to c(K,μ) would be
changed. Such changes are often unnecessary and can be avoided by cd-revision,
as shown in the following example.

Example 3. Let K = {(p ∨ ¬r, 0.9), (r, 0.8), (a, 0.8)} and μ = p. We have
c(K,μ) = 0.2 and S(K,μ) = {{(p ∨ ¬r, 0.9), (a, 0.8)}, {(p ∨ ¬r, 0.9)}}. Taking
the selection function γmax, the result of revising K by (p, 0, 9) is K ◦ (p, 0.9) =
{(p, 0.9), (p ∨ ¬r, 0.9), (r, 0.8), (a, 0.8)}, where all the initial weights are pre-
served. The result of revising K by (p, 0, 3) is K ◦ (p, 0.3) = {(p, 0.3), (p ∨
¬r, 0.9), (r, 0.3), (a, 0.8)}, where only initial formula (r, 0.8) is changed to (r, 0.3).
This is because only r is relevant to the necessity degree of p.

However, methods in [7] will also change the weight of a to 0.3, which is
unnecessary.

5 Revision Algorithm

In this section, we present an algorithm for our revision approach with a specific
selection function γmax. For the case where the initial possibilistic KB K does
not entail μ (i.e., the first item in Definition 2), the revision operator behaves in
a similar way as classic belief revision and hence can be computed by adapting
algorithms for classic belief revision. The interesting and challenging case is when
K does entail μ (i.e., the second item in Definition 2).

The algorithm manages a set S of subsets of K such that each subset does
not entail μ if K∗ entails μ or does not entail ¬μ when K∗ does not entail μ.
Initially, S contains only the empty set (line 1); then the algorithm incrementally
extends the sets in S till each set has the maximum compatibility degree. This
is achieved by first dividing the formulas in K into m tiers according to their
weights (lines 2 and 4), then attempting to add the formulas (in decreasing order
of their weights) to the sets S in S, as long as the extended set S ∪ T does not
entail μ if K∗ entails μ (lines 6–7), or as long as the extended set S ∪T does not
entail ¬μ if K∗ does not entail μ. Finally, S consists of all the subsets of K that
does not entail μ if K∗ entails μ or does not entail ¬μ if K∗ does not entail μ.
The sets in S will have the maximum compatibility degree, that is S(K,μ) in
Sect. 4.1. The rest of the algorithm (lines 12–16) implements the second item of
Definition 2 and returns the result of revision respectively.

Example 4. (Example 3 cont.) To revise K by (p, 0.3), Algorithm1 first divides
the formulas in K into two tiers T1 = {(p∨¬r, 0.9)} and T2 = {(r, 0.8), (a, 0.8)}.
For i = 1 and S = ∅, it computes in line 7 TS = {{(p ∨ ¬r, 0.9)}}, and adds it
to S in line 10. As a result, the new S = {{(p ∨ ¬r, 0.9)}}. For i = 2 and
S = {(p ∨ ¬r, 0.9)}, TS = {{(a, 0.8)}}, and S = {{(p ∨ ¬r, 0.9), (a, 0.8)}}.
After this, the algorithm takes (line 12) S = {(p ∨ ¬r, 0.9), (a, 0.8)} and
DS = {(r, 0.8)}, and modifies (lines 14–15) DS to D′

S = {(r, 0.3)}. Finally,
the KB {(p, 0.3), (p ∨ ¬r, 0.9), (a, 0.8), (r, 0.3)} is returned, which is the revision
result defined in Definition 2.

Revising Possibilistic Knowledge Bases via Compatibility Degrees 313

Algorithm 1. Computing the result of revision
Input: A possibilistic KB K and a possibilistic formula (μ, α)
Output: K ◦ (μ, α)
1: initially, assign S := {∅} and i := 1
2: let l1 > l2 > · · · > lm > 0 be the sequence of all the distinct weights in K
3: while i ≤ m do
4: Ti := {(φ, β) ∈ K | β = li}
5: for all S ∈ S do
6: if K∗ |= μ then
7: TS := {T ⊆ Ti | T ∗ ∪ S∗

� μ, and T ′∗ ∪ S∗ |= μ for all T ′s.t. T ⊂ T ′ ⊆
Ti}

8: else
9: TS := {T ⊆ Ti | T ∗ ∪ S∗

� ¬μ, and T ′∗ ∪ S∗ |= ¬μ for all T ′s.t. T ⊂
T ′ ⊆ Ti}

10: S := {S ∪ T | S ∈ S, T ∈ TS}
11: i := i + 1
12: if K∗ |= μ then
13: for all S ∈ S and DS = K \ S do
14: for all (φ, β) ∈ DS do
15: if β > α then DS := DS \ {(φ, β)} ∪ {(φ, α)}
16: return

⋂{S ∪ DS | S ∈ S} ∪ {(μ, α)}
17: else
18: return

⋂{S | S ∈ S} ∪ {(μ, α)}

When revising K by (μ, α) in the case that K∗ entails μ, the revision amounts
to adjusting the weights of some formulas in K to α and adding (μ, α) to K.
Algorithm 1 searches for the formulas in K whose weights need to be adjusted
according to the definition of revision, that is, by computing γmax(S(K,μ)) and
checking the complements of the sets in γmax(S(K,μ)). The following result
shows that Algorithm 1 correctly computes the revision.

Proposition 4. Let K be a possibilistic KB, (μ, α) be a formula and γmax be
the selection function. Then, Algorithm1 returns K ◦ (μ, α).

Proof. Let us consider the case such that K∗ |= μ. This could be proved by
induction. For all formulas in K such that l1 > l2 > · · · > lm > 0 is the
sequence of all the distinct weights in K. First consider when m = 1. In this case,
γmax(S(K,μ)) select all maximal subset of K such that its classical projection
does not entail μ, this equals to S in Algorithm 1. Thus the result holds.

Now assume when m = n the result holds, then for m = n + 1, if K ′ =
{(φi, αi) | αi ∈ {l1, . . . , ln}} � μ then γmax(S(K,μ)) in Definition 2 contains K ′

and maximal subsets of {(φi, αi) | αi = ln+1} which does not entail μ, this coin-
cide with S in Algorithm 1. Next, if K ′ = {(φi, αi) | αi ∈ {l1, . . . , ln}} |= μ, by
induction, we have for all previous n layers, γmax(S(K,μ)) and S in Algorithm 1
are equal. Moreover, adding formulas in the n + 1 level to sets in γmax(S(K,μ))
will not change its compatibility degree since ln+1 < ln. Thus the result holds
for m = n + 1. �

314 Y. Jin et al.

It is also possible to slightly change lines 7 and 9 in this algorithm to han-
dle other selection functions. For example, let TS := {T ⊆ Ti | T ∗ ∪ S∗

�

μ and T ′∗ ∪ S∗ |= μ for all T ′s.t. |T | < |T ′| and T ′ ⊆ Ti}, and this corresponds
to cardinality-maximal selection function.

According to the algorithm, if there are m distinct weights in K, we need
to apply line 7 or 9 m times. Suppose we use γmax as selection function, then
the complexity of this algorithm is not much harder than that of full meet base
revision operator in [17]. That is, it needs at most [O(log n)] calls to a NP oracle
to generate a revised base.

6 Properties of the Proposed Possibilistic Revision

In this section, we present some logical properties of our possibilistic revision. We
first adapt the well know KM postulates to revision of possibilistic revision and
show that they are satisfied by our cd-revision (for both certain and uncertain
information). Then we study properties that characterise the change of formula
weights in possibilistic revision.

AGM postulates are commonly accepted as the best set of postulates for
capturing the intuition behind rational belief revision. A reformulation of these
postulates is given in [14], which are often referred to as the KM postulates.

The KM postulates have been adapted for belief revision in [15,18], however
the adapted postulates are either only defined for revision by certain information,
or only take into account uncertainty input if it leads to stronger certainty. Here,
we further generalise the postulates for revision by both certain and uncertain
information.

Proposition 5. Let ◦ be the cd-revision operator defined by the selection func-
tion γmax. Then the following statements hold:

(R1) K ◦ (μ, α) |=π (μ, α).
(R2) If μ is consistent, then K ◦ (μ, α) is consistent.
(R3) If μ1 ≡ μ2 then K ◦ (μ1, α) ≡ K ◦ (μ2, α).
(R4) ((K ◦ (μ, α)) ∪ (φ, β))∗ |= (K ◦ (μ ∧ φ,min(α, β)))∗.
(R5) If (K◦(μ, α))∗ |= φ and (K◦(φ, β))∗ |= μ, then (K◦(μ, α))∗ ≡ (K◦(φ, β))∗.
(R6) (K ◦ (μ, α))∗ ∪ (K ◦ (φ, β))∗ |= (K ◦ (μ ∨ φ,max(α, β)))∗.

The (R1) says the new information is firmly believed “as is”, that is, the
necessity degree of the new formula μ will keep the same after revision. In this
way, we are seeing the new information as a constraint. (R2) says the revision
result will be consistent. Notice we do not have K ◦ (μ, α) ≡ K ∪ {(μ, α)} if
K ∪{(μ, α)} is consistent in general. This is due to the fact that formula weights
in K can be changed during revision. However, we do have a modified version
of the postulate in place: K ◦ (μ, α) ≡ K ∪ {(μ, α)} if K ∪ {(μ, α)} is consistent
and N(μ) ≤ α in K. (R3) is a weakening version of the syntactic independent
postulate. (R4) − (R6) are natural variants of KM postulates in possibilistic
revision.

Revising Possibilistic Knowledge Bases via Compatibility Degrees 315

In the case when K∗ |= ¬μ, the correctness of these postulates have been
shown in [18]. In addition, for K∗ |= μ, the cd-revision operator will only change
the weights, not the the classic formulas. Thus the postulates still hold. However,
as the problem of drowning effect is our focus, we are more interested in the
formula necessity degree changes before and after revision. We now consider the
logical properties of cd-revision that characterise the change of formula necessity
degrees (as well as formula change).

First, we consider the case when K∗ |= ¬μ. Recall that the inconsistency
degree Inc(K ∪{μ, α}) can be defined in terms of compatibility degree as shown
in Corollary 1. Thus, we have the following proposition.

Proposition 6. Let ◦ be the cd-revision operator defined by the selection func-
tion γmax. If K∗ |= ¬μ. Then the following statements hold:

(R7−) If K |=π (φ, β), β ≤ Inc(K ∪ {μ, α}) and ((K ◦ (μ, α))≥β)∗ |= φ, then
K ◦ (μ, α) |=π (φ, β).

(R7+) If K |=π (φ, β), β > Inc(K ∪ {μ, α}), then K ◦ (μ, α) |=π (φ, β).

(R7−) and (R7+) characterise the change of necessity degrees in possibilistic
revision in case when K∗ |= ¬μ. Specifically, (R7−) says if a formula φ can be
entailed before and after revision, and its necessity degree is lower or equal to the
inconsistency degree, then its necessity degree will not be changed after revision.
This is an advantage compared to existing revision methods that suffer from the
drowning effect. In those methods, all formulas with necessity degree lower than
or equal to Inc(K) will be removed. (R7+) says if a formula φ can be entailed
before revision, and its necessity degree is higher than the inconsistency degree,
then its necessity degree will not change after revision.

Now we consider the case where K∗ |= μ, in this case, we have.

Proposition 7. Let ◦ be the cd-revision operator defined by the selection func-
tion γmax. If K∗ |= μ, then the following statements hold:

(R8−) If K |=π (φ, β), β ≤ α, then K ◦ (μ, α) |=π (φ, β).
(R8+) If K |=π (φ, β), β > α, then K ◦ (μ, α) |= (φ, α).

(R8−) and (R8+) characterise the necessity degree changes before and after
revision if K∗ |= μ. Specifically, (R8−) states that if a formula φ’s necessity
degree is lower than or equal to the weight of the revision formula μ, then its
necessity degree will not be changed. On the contrary, (R8+) states that if a
formula’s necessity degree is higher than the weight of the revision formula μ
before revision, then its necessity degree might be lower after revision. Note
that we use |= instead of |=π. This is because not all formulas with higher
necessity degree than α will be lowered to α, compared to existing revision
methods where all necessity degrees of such formulas will be lowered to α, our
cd-revision operator is more fine-grained.

316 Y. Jin et al.

7 Relation to Other Possibilistic Revisions

As explained previously, our possibilistic revision is a generalisation of classic
belief revision if each propositional formula φ is regarded as a possibilistic for-
mula with weight 1, i.e., (φ, 1). In this section, we show that the approaches to
possibilistic revision in [7,18] can be also embedded in our compatibility degree
based framework.

Firstly, we show that compatibility degree based revision of a possibilistic
KB by a certain formula is expressible in possibilistic logic.

We first present the following lemma which states that γmin can always return
a unique (minimum) element.

Lemma 2. Let K be a possibilistic KB and (μ, 1) be a certain formula. Then
the set S(K,¬μ) always has a (unique) minimum element.

Proof. Let K0 = {(φ, α) | (φ, α) ∈ K,α > 1 − c(K,¬μ)}. Then C(K0) =
c(K,¬μ). Also, K∗

0 �|= ¬μ. Thus, K0 ∈ S(K,¬μ).
On the other hand, if K ′ ∈ S(K,¬μ), then C(K ′) = c(K,¬μ), which implies

that every formula whose weight is strictly greater than 1 − c(K,¬μ) must be
in K ′. That is, K0 ⊆ K ′ and thus K0 is the minimum element of S(K,¬μ). �

In [7] a revision operator is defined for both certain input and uncertain input.
For convenience, we name it as b-revision. We will show that their revision for
certain input is equivalent to ours. Example 3 demonstrates that b-revision for
uncertain inputs is different from our cd-revision in general. However, we will
also show that b-revision can be characterised using our compatibility degree
based approach.

Proposition 8. Let K be a possibilistic KB and (μ, 1) be a possibilistic formula.
If the selection function is γmin, then the compatibility degree based revision of
K by (μ, 1) coincides with the revision in [7].

Proposition 9. Let K be a possibilistic logic KB K and (μ, α) be a possibilistic
formula with (μ, α) such that K∗ is inconsistent with ¬μ. Set S = γmin(S(K,μ))
and define K � (μ, α) = {(μ, α)} ∪ S ∪ {(φ ∨ ¬μ, α) | (φ, α) ∈ K \ S)}. Then
K � (μ, α) coincides with b-revision.

This result follows directly from Corollary 1 and Lemma 2.
A syntactic revision operator for possibilistic revision by certain information

(abbreviated q-revision) is proposed by Qi in [18]. We show that q-revision can
also be embedded in our compatibility degree based approach.

Proposition 10. Let K be a possibilistic KB, (μ, 1) be a certain formula and
the selection function be γmax. Then q-revision coincides with cd-revision.

The above result implies that the syntactical algorithm (Algorithm 2) in [18]
computes our cd-revision. So, cd-revision is actually a semantic counterpart of
q-revision.

Revising Possibilistic Knowledge Bases via Compatibility Degrees 317

Moreover, some revision methods developed for other prioritized/stratified
KBs can also be embedded in our cd-revision framework by using different selection
functions. We note that each stratified knowledge base KS = (K1,K2, . . . ,Km)
be expressed as a possibilistic logic base K = (K ′

1,K
′
2, . . . ,K

′
m) where K ′

i =
{(φ, α) | φ ∈ Ki, α = li} and l1 > l2 > · · · > lm > 0 is a sequence of distinct
weights.

In [9,16], the authors introduced the discrimin revision operator ◦discrimin

for stratified KBs. In Definition 2 in Sect. 4, by choosing the selection function
as γmax, we can define a cd-revision operator ◦m as K ◦m (μ, 1) = ∩{K ′ ∪
{(μ, 1)} | K ′ ∈ γmax(S(K,¬μ))}. Then we have the following proposition.

Proposition 11. Let KS be a stratified knowledge base, K be its associated possi-
bilistic logic, and ◦discrimin be the discrimin revision operator. Then KS ◦discrimin

μ = (K ◦m (μ, 1))∗.

Aside from selection function γmax, it is possible to use cardinality-maximal
selection function γcmax. Thus we are able to define another cd-revision operator
◦cm as K ◦cm (μ, 1) = ∩{K ′ ∪ {(μ, 1)} | K ′ ∈ γcmax(S(K,¬μ))}. It is interesting
to observe that this cd-revision operator is essentially the lex-preferred revision
operator ◦leximin for stratified knowledge bases in [4].

Proposition 12. Let KS be a stratified knowledge base, K be its associated possi-
bilistic logic, and ◦leximin be the lex-preferred revision operator. Then KS ◦leximin

μ = (K ◦cm (μ, 1))∗.

The above results show that several major revision operator for certain inputs
in stratified/prioritised knowledge bases can be seen as special cases or variations
of cd-revision in possibilistic logic.

In addition, there are some other methods for revising stratified/prioritised
KBs such as [4,9]. These revisions are quite different from ours in that they aim
to provide a more fine-grained result for belief revision in propositional logic.
Thus, in their approaches, the preference/stratification information is used only
for better resolving inconsistency. For this reason, the result of their revision
is still a KB in propositional logic, while possibilistic revisions including the
proposed cd-revsiion, b-revision and q-revision require the revision result is a
possibilistic KB.

8 Conclusion

In this paper, we have proposed the notion of compatibility degrees for bet-
ter characterising or as an alternative measure for the inconsistency degree of
a possibilistic KB. Based on this notion, we have developed a novel syntactic
approach to revision in possibilistic logic, which serves as a unifying framework
for defining possibilistic revision by both certain and uncertain new information.
Significantly, our approach is able to lessen the undesired drowning effect. We
have shown that our cd-revision satisfies major postulates adapted from clas-
sic belief revision. We have also developed a sound and complete algorithm for

318 Y. Jin et al.

computing the results of revision. Finally, we have shown that our approach
subsumes two major approaches for possibilistic revision.

As an on-going work, we are looking into establishing representation theo-
rem for cd-revision framework. This is not straightforward, as possibilistic logic
with disjunction is not a straightforward extension of possibilistic logic [13], and
disjunction among possibilistic KBs may be required in establishing the repre-
sentation theorem. To this end, we might need to consider alternate postulates or
methods other than intersection of candidates. Also, when revised by uncertain
input, degrees for formulas in a KB can decrease. This kind of change is more like
contraction than revision. Therefore, comparing this approach with contraction
operators in belief revision is also interesting. Moreover, a more detailed analysis
about different selection functions and their properties is also desired. Finally,
our current algorithm implements the definition in a direct manner, thus opti-
mised search methods for identifying formulas whose weights need to be adjusted
can improve efficiency of the algorithm.

Acknowledgement. We would like to thank three anonymous referees for their con-
structive comments. This work was supported by Australian Research Council (ARC)
under grant DP130102302.

References

1. Alchourrón, C., Gärdenfors, P., Makinson, D.: On the logic of theory change: partial
meet contraction and revision functions. J. Symb. Log. 50(2), 510–530 (1985)

2. Bauters, K., Schockaert, S., Cock, M., Vermeir, D.: Possible and necessary answer
sets of possibilistic answer set programs. In: Proceedings of the 24th International
Conference on Tools with Artificial Intelligence, ICTAI, pp. 836–843 (2012)

3. Bauters, K., Schockaert, S., Cock, M., Vermeir, D.: Semantics for possibilistic
answer set programs: uncertain rules versus rules with uncertain conclusions. Int.
J. Approx. Reason. 55(2), 739–761 (2014)

4. Benferhat, S., Cayrol, C., Dubois, D., Lang, J., Prade, H.: Inconsistency manage-
ment and prioritized syntax-based entailment. IJCAI 93, 640–645 (1993)

5. Benferhat, S., da Costa Pereira, C., Tettamanzi, A.: Hybrid possibilistic condition-
ing for revision under weighted inputs. In: 20th European Conference on Artificial
Intelligence, pp. 151–156 (2012)

6. Benferhat, S., da Costa Pereira, C., Tettamanzi, A.: Syntactic computation of
hybrid possibilistic conditioning under uncertain inputs. In: Proceedings of the
Twenty-Third international joint conference on Artificial Intelligence, pp. 739–745
(2013)

7. Benferhat, S., Dubois, D., Prade, H., Williams, M.: A practical approach to revising
prioritized knowledge bases. Stud. Logica 70(1), 105–130 (2002)

8. Benferhat, S., Dubois, D., Prade, H., Williams, M.: A framework for iterated belief
revision using possibilistic counterparts to jeffrey’s rule. Fundamenta Informaticae
99(2), 147 (2010)

9. Brewka, G.: Preferred subtheories: an extended logical framework for default rea-
soning. IJCAI 89, 1043–1048 (1989)

10. Dubois, D., Lang, J., Prade, H.: Possibilistic logic (1994)

Revising Possibilistic Knowledge Bases via Compatibility Degrees 319

11. Dubois, D., Lang, J., Prade, H.: Possibilistic logic. In: Gabbay, D.M., et al. (eds.)
Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 3, pp.
439–513. Oxford University Press, New York (1997)

12. Dubois, D., Prade, H.: A synthetic view of belief revision with uncertain inputs in
the framework of possibility theory. Int. J. Approx. Reason. 17, 295–324 (1997)

13. Dubois, D., Prade, H.: Generalized Possibilistic Logic, pp. 428–432. Springer, Berlin
(2011)

14. Katsuno, H., Mendelzon, A.: Propositional knowledge base revision and minimal
change. Artif. Intell. 52(3), 263–294 (1992)

15. Ma, J., Liu, W.: A framework for managing uncertain inputs: an axiomization of
rewarding. Int. J. Approx. Reason. 52(7), 917–934 (2011)

16. Nebel, B.: Belief revision and default reasoning: syntax-based approaches. In: KR,
pp. 417–428 (1991)

17. Nebel, B.: How hard is it to revise a belief base? In: Dubois, D., Prade, H.
(eds.) Handbook of Defeasible Reasoning and Uncertainty Management Systems.
Springer, Netherlands (1998)

18. Qi, G.: A semantic approach for iterated revision in possibilistic logic. In: Proceed-
ings of the 23rd AAAI Conference on Artificial Intelligence, pp. 523–528 (2008)

19. Qi, G., Wang, K.: Conflict-based belief revision operators in possibilistic logic. In:
AAAI (2012)

Proving Craig and Lyndon Interpolation Using
Labelled Sequent Calculi

Roman Kuznets(B)

Institut für Computersprachen, TU Wien, Vienna, Austria
roman@logic.at

Abstract. Interpolation is a fundamental logical property with applica-
tions in mathematics, computer science, and artificial intelligence. In this
paper, we develop a general method of translating a semantic descrip-
tion of modal logics via Kripke models into a constructive proof of the
Lyndon interpolation property (LIP) via labelled sequents. Using this
method we demonstrate that all frame conditions representable as Horn
formulas imply the LIP and that all 15 logics of the modal cube, as well
as the infinite family of transitive Geach logics, enjoy the LIP.

Keywords: Craig interpolation · Lyndon interpolation · Labelled
sequents · Modal logic · Geach formulas

1 Introduction

Interpolation is a fundamental logical property with applications in mathematics,
computer science, and artificial intelligence. For instance, uniform interpolation
is related to variable forgetting. The Craig Interpolation Property (CIP) states
that, for any valid fact A → B of the logic, there must exist an interpolant C
in the common language of A and B such that both A → C and C → B are
valid. The CIP is used, e.g., to prove correctness of algorithms for reasoning
about knowledge bases with overlap in content [1]. The Lyndon Interpolation
Property (LIP) strengthens the CIP by requiring that not just propositional
atoms in C but their literals, i.e., polarized propositional atoms, be common
to A and B. The LIP and CIP are known to imply the Beth definability property,
which can be applied to rewritings in description logics [4], commonly used in
knowledge representation [18].

In this paper, we develop a general method of translating a semantic descrip-
tion of a modal logic (with classical propositional background) via Kripke mod-
els into a constructive proof of the LIP. Hence, the common language is to be
understood as common literals. While we formulate our results for the LIP, they
are directly applicable to the weaker CIP too. The proof-theoretic method of
proving the LIP is to construct an interpolant by induction on a derivation of

This material is based upon work supported by the Austrian Science Fund (FWF)
Lise Meitner Grant M 1770-N25.

c© Springer International Publishing AG 2016
L. Michael and A. Kakas (Eds.): JELIA 2016, LNAI 10021, pp. 320–335, 2016.
DOI: 10.1007/978-3-319-48758-8 21

Proving Craig and Lyndon Interpolation Using Labelled Sequent Calculi 321

(a representation of) A → B in a suitable analytic sequent calculus. The method
is modular: if the sequent system is strengthened by an extra rule, only this addi-
tional rule needs to be checked to extend the LIP to the resulting stronger logic.

Until recently, a major weakness of the method was the limited expressivity
of analytic sequent calculi. Recent advances extended the reach of the method
to nested sequents ([6]) and hypersequents ([12]). These results were unified
and generalized to a wide range of internal sequent-like formalisms in [13]. In
this paper, we develop a similar method for the external formalism of labelled
sequents1, which is strictly more expressive [8] and was just recently shown in [5]
to capture all modal logics complete w.r.t. first-order definable frame conditions.
Moreover, labelled sequent rules can be effectively generated from these frame
conditions. In this paper, we harness this strength by outlining sufficient criteria
on the frame conditions to guarantee the LIP. We also provide an algorithm for
constructing an interpolant.

The paper is structured as follows. In Sect. 2, we describe the formalism of
labelled sequents (closely following [16]) and outline the method of proving the
LIP using labelled sequents. In Sect. 3, we show how to construct an interpolant
for all the labelled rules of the basic normal modal logic K. In Sect. 4, we prove
that all logics complete w.r.t. quantifier-free Horn formulas enjoy the LIP and
argue that the restriction to Horn clauses is essential. We also extend these results
to labelled sequents with equality atoms. In Sect. 5, we extend the method to
several common types of Horn-like geometric rules and apply our findings to the
infinite family of Geach logics. Section 6 contains related work, a summary of
our results, and a discussion of future research.

2 Interpolation for Labelled Sequent Calculi

Definition 1 (Labelled sequent). A labelled sequent, from now on a sequent,
is an object Γ ⇒ Δ with Γ and Δ being multisets2 of labelled formulas w : A and
relational atoms wRo, where w and o are labels from a fixed countable set Lab
and A is a modal formula in negation normal form (NNF)3.

Definition 2 (Kripke model). A Kripke frame is (W,R) where W �= ∅ and
R ⊆ W ×W . A Kripke model M is (W,R, V) where V : Prop → 2W is a function
on the set Prop of propositional atoms. The satisfaction relation between w ∈ W
and modal formulas is defined recursively: M, w � P iff w ∈ V (P); M, w � P iff
w /∈ V (P); ∧ and ∨ behave classically; M, w � �A iff M, u � A whenever wRu;
M, w � ♦A iff M, u � A for some u such that wRu.

1 Unlike internal formalisms, external ones cannot generally be translated into formu-
las, typically because of the essential use of semantic elements, e.g., Kripke worlds.

2 The method also works for sequence- and set-based sequents.
3 NNF is used here to simplify the notation rather than out of necessity and means

that negation is restricted to propositional atoms, creating two literals P and P for
each atom. Primary connectives are ∧, ∨, �, and ♦. Negation A is a function of a
formula A defined via De Morgan laws. A → B := A ∨ B.

322 R. Kuznets

Table 1. Initial sequents

w :P, Γ ⇒ Δ,w :P w :P , Γ ⇒ Δ,w :P w :⊥, Γ ⇒ Δ

w :P,w :P , Γ ⇒ Δ Γ ⇒ Δ,w :P,w :P Γ ⇒ Δ,w :�

Table 2. Propositional rules for NNF

w :A,w :B, Γ ⇒ Δ
L∧

w :A ∧ B, Γ ⇒ Δ

Γ ⇒ Δ,w :A Γ ⇒ Δ,w :B
R∧

Γ ⇒ Δ,w :A ∧ B

w :A, Γ ⇒ Δ w :B, Γ ⇒ Δ
L∨

w :A ∨ B, Γ ⇒ Δ

Γ ⇒ Δ,w :A,w :B
R∨

Γ ⇒ Δ,w :A ∨ B

Definition 3 (Labelled semantics). An interpretation into a Kripke model
M = (W,R, V) is a map [[·]] : Lab → W from labels to worlds. � �Γ ⇒ Δ�, if
the following holds: if M, �w� � A for each w : A ∈ Γ and �w� R �o� for each
wRo ∈ Γ , then M, �u� � B for some u : B ∈ Δ. A sequent Γ ⇒ Δ is valid in a
class CL of Kripke models, written CL � Γ ⇒ Δ, if � �Γ ⇒ Δ� for each M ∈ CL

and each interpretation [[·]] into M.

The rules of the calculus SK for the basic normal modal logic K can be
found in Tables 1, 2 and 3 (this calculus is a trivial modification of the calculus
G3K from [16, Table 11.5] for the NNF language). As is standard, we omit
initial sequents wRo, Γ ⇒ Δ,wRo, which do not affect completeness because the
satisfaction relation ignores relational atoms in the consequent. Unless stated
otherwise, from now on CL stands for an arbitrary class of Kripke models.

We replace a formula-level interpolation statement with a sequent-level Com-
ponent wise Interpolation Property (CWIP). While the concept of the CWIP
for (labelled) sequents is the same as for nested sequents and hypersequents,
the labelled notation facilitates a much simpler presentation. Interpolants are
objects of the following type:

Definition 4 (Multiformula). The grammar

� ::=w : C | (� � �) | (� � �)

defines multiformulas, where w : C is a labelled formula. For an interpretation [[·]]
into a model M, we say

1. � �w : C� iff M, �w� � C;
2. � ��1 � �2� iff � ��i� for some i = 1, 2;
3. � ��1 � �2� iff � ��i� for each i = 1, 2.

Thus, the external � and � on multiformulas correspond to ∧ and ∨ on formulas.

Proving Craig and Lyndon Interpolation Using Labelled Sequent Calculi 323

Table 3. Modal rules. For L♦ and R�, the eigenvariable o does not occur in the
conclusion

o :A,w :�A,wRo, Γ ⇒ Δ
L�

w :�A,wRo, Γ ⇒ Δ

wRo, Γ ⇒ Δ, o :A
R�

Γ ⇒ Δ,w :�A

wRo, o :A, Γ ⇒ Δ
L♦

w :♦A, Γ ⇒ Δ

wRo, Γ ⇒ Δ,w :♦A, o :A
R♦

wRo, Γ ⇒ Δ,w :♦A

Table 4. Interpolating initial sequents

w :P, Γ
w:P
==⇒ Δ,w :P w :P , Γ

w:P
==⇒ Δ,w :P w :⊥, Γ

w:⊥
==⇒ Δ

w :P,w :P , Γ
w:⊥
==⇒ Δ Γ

w:�
==⇒ Δ,w :P,w :P Γ

w:�
==⇒ Δ,w :�

Definition 5 (Antf , Conf , Antr). For an interpretation [[·]] into a model M and
a multiset Γ of labelled formulas and relational atoms, we write

� �Antf(Γ)� iff M, �w� � A for each w : A ∈ Γ ,
� �Antr(Γ)� iff �w� R �o� for each wRo ∈ Γ , and
� �Conf(Γ)� iff M, �w� � A for some w : A ∈ Γ .

Definition 6 (CWIP). A multiformula � is a CL-interpolant of Γ ⇒ Δ, writ-
ten Γ

�=⇒ Δ, if all of the following conditions hold:

1. each label w occurring in � occurs in Γ or in a labelled formula from Δ;
2. each literal P or P occurring in � occurs in both Γ and Δ;
3. for any interpretation [[·]] into a model M ∈ CL with � �Antr(Γ)�:

� �Antf(Γ)� implies � ��� , (1)
� ��� implies � �Conf(Δ)� . (2)

A calculus SL has the CWIP w.r.t. CL iff every SL-derivable sequent has a CL-
interpolant.

The modularity of the proof-theoretic method follows from the trivial.

Fact 7. If � is a CL-interpolant of Γ ⇒ Δ, it is also a C′
L-interpolant of the

same sequent w.r.t. any class C′
L ⊆ CL.

Definition 8 (Duality). We say that a labelled calculus SL has the duality
property whenever

SL 	 w : A,Γ ⇒ Δ iff SL 	 Γ ⇒ Δ,w : A.

Theorem 9 (Reducing LIP to CWIP). Let SL be a labelled calculus for a
logic L such that SL has the duality property and invertible rule R∨ and such
that both L and SL are sound and complete (adequate) w.r.t. CL. If SL has the
CWIP w.r.t. CL, then L has the LIP.

324 R. Kuznets

Proof. Assume that SL satisfies the CWIP and L 	 A → B. Then CL � A → B by
soundness of L and SL 	⇒ w : A∨B by completeness of SL. SL 	⇒ w : A,w : B

by invertibility of R∨ and SL 	 w : A ⇒ w : B by duality. By CWIP, w : A
�=⇒

w : B for some � that has only w as a label. It is easy to see that w : A
w:C==⇒ w : B

for C obtained from � by omitting all labels and replacing � and � with ∧ and ∨
respectively. It immediately follows that C is a Lyndon interpolant of A → B.
�
Remark 10. Only a derivation of w : A ⇒ w : B is needed for the reduction.
Since relational atoms cannot occur in the consequents in such derivations, from
now on we allow only labelled formulas in consequents.

3 Interpolation Basis: Basic Normal Modal Logic K

The modularity of the proof-theoretic method means that each sequent rule can
be treated separately as long as the logic and its labelled calculus satisfy the
conditions of Theorem9. As all labelled calculi we consider extend SK for the
basic normal modal logic K, we start by describing interpolant transformations
for all rules of SK. Table 4 presents interpolants for all initial sequents from
Table 1. Since many single-premise rules require no change in the interpolant,
we describe a sufficient condition for this to happen:

Definition 11 (Local rules). A rule

Γp ⇒ Δp
r

Γc ⇒ Δc

is called CL-local if

1. each label from the premise occurs in the conclusion;
2. each literal from Γp (from Δp) occurs in Γc (in Δc);
3. for any interpretation [[·]] into any M ∈ CL,

(a) � �Antr(Γc)� implies � �Antr(Γp)�;
(b) � �Antr(Γc)� and � �Antf(Γc)� imply � �Antf(Γp)�;
(c) � �Antr(Γc)� and � �Conf(Δp)� imply � �Conf(Δc)�.

Example 12. The rules L∧ and R∨ from Table 2 and L� and R♦ from Table 3
are CL-local for any CL.

Lemma 13 (Local). Given a CL-local rule, each CL-interpolant of the rule’s
premise Γp ⇒ Δp is also a CL-interpolant of its conclusion Γc ⇒ Δc.

Proof. Let � be a CL-interpolant of Γp ⇒ Δp. The conditions on labels and on
common literals for Γc ⇒ Δc are inherited from the premise by the definition
of local rules. Consider an interpretation [[·]] into an M ∈ CL with � �Antr(Γc)�.
Then � �Antr(Γp)�. If � �Antf(Γc)�, then � �Antf(Γp)�, and, hence, � ���. If
� ���, then � �Conf(Δp)�, and, hence, � �Conf(Δc)�.
�

Proving Craig and Lyndon Interpolation Using Labelled Sequent Calculi 325

Lemma 14 (R∧, L∨)
1. If �1 and �2 are CL-interpolants of the premises of the rule R∧, then �1 ��2

is a CL-interpolant of its conclusion.
2. If �1 and �2 are CL-interpolants of the premises of the rule L∨, then �1 ��2

is a CL-interpolant of its conclusion.

Proof. Similar to that of Lemma 13.
�
Lemma 15 (L♦, R�). Let o �= w and o occur in neither Γ nor Δ. If

�p =
n

�
i=1

⎛

⎝

mi

�
j=1

wij : Dij �

li

�
k=1

o : Cik

⎞

⎠

is a CL-interpolant of the L♦’s premise wRo, o : A,Γ ⇒ Δ, then

�c =
n

�
i=1

(mi

�
j=1

wij : Dij � w :

(

♦
li
∧

k=1

Cik

))

is a CL-interpolant of its conclusion w : ♦A,Γ ⇒ Δ. If

�p =
n

�
i=1

⎛

⎝

mi

�
j=1

wij : Dij �

li

�
k=1

o : Cik

⎞

⎠

is a CL-interpolant of the R�’s premise wRo, Γ ⇒ Δ, o : A, then

�c =
n

�
i=1

(mi

�
j=1

wij : Dij � w :

(

�
li
∨

k=1

Cik

))

is a CL-interpolant of its conclusion Γ ⇒ Δ,w : �A.
W.l.o.g. �p is assumed to be in DNF or CNF respectively, which is achieved by
the standard conversion method applied to � and �.

Definition 16. Given an interpretation [[·]] into a model M = (W,R, V), a
sequence of distinct labels o = o1, . . . , on from Lab, and a sequence of worlds
u = u1, . . . , un from W , a new interpretation [[·]]uo into M is defined as follows:

�oi�
u
o := ui , �w�

u
o := �w� if w /∈ {o1, . . . , on}.

Proof (of Lemma 15). The proofs for the two rules are similar. We give the one
for L♦. The label and common literal conditions are clearly satisfied. Consider
any interpretation [[·]] into an M = (W,R, V) ∈ CL such that � �Antr(w : ♦A,Γ)�.

Assume � �Antf(w : ♦A,Γ)�. Since M, �w� � ♦A, there is u ∈ W such that
�w� Ru and M, u � A. Clearly, � �Antr(wRo, o : A,Γ)�uo because o does not occur
in Γ . Since � �Antf(wRo, o : A,Γ)�uo , for some disjunct 1 ≤ i ≤ n of �p

�

�

�
mi

�
j=1

wij : Dij �

li

�
k=1

o : Cik

�

	

u

o

, (3)

326 R. Kuznets

in particular, M, u � Cik for all k = 1, . . . , li. Given that �w� Ru, we see that

M, �w� � ♦∧li
k=1Cik.4 Thus, �

�mi

j=1wij : Dij � w :
(

♦ ∧li
k=1 Cik

)�u

o
. Further,

given that neither w nor any of wij is o, we have � ��c�, which completes the
proof of (1) for the conclusion of L♦.

Assume now that � ��c�. Then �

�mi

j=1wij : Dij � w :
(

♦ ∧li
k=1 Cik

)�
for

some disjunct 1 ≤ i ≤ n of �c. In particular, M, �w� � ♦ ∧li
k=1 Cik. Thus, there

is u ∈ W such that �w� Ru and M, u � Cik for all k = 1, . . . , li. Again we have
� �Antr(wRo, o : A,Γ)�uo and (3) holds for one of disjuncts of �p. It follows that
� �Conf(Δ)�uo and, since o does not occur in Δ, also � �Conf(Δ)�.
�
Corollary 17. K enjoys the LIP.

Proof. The CWIP for SK w.r.t. to the class K of all Kripke models follows from
Table 4 and Lemmas 13–15. Adequacy of K w.r.t. K is due to Kripke [11]. Invert-
ibility of all rules of SK including R∨ is proved in [16]. The height-preserving
duality property is proved by induction on the derivation depth.
�

4 Mathematical Rules with or without Equality Atoms

Now that the minimal modal logic having Kripke semantics is dealt with, we start
considering frame conditions that preserve the LIP. In this section, we explore
the exact scope of our method for quantifier-free frame conditions, which gener-
ate mathematical rules [16]. As noted in [16, Proposition 6.8], any quantifier-free
property of Kripke frames can be represented as P1 ∧ . . . ∧ Pm → Q1 ∨ . . . ∨ Qn

where Pi and Qj are relational atoms. It is, however, clear that the case of n ≥ 2
cannot be generally treated by our or, indeed, any other method. The logic S4.3
of transitive, reflexive, and connected frames does not enjoy even Craig interpo-
lation [14]. Later, we successfully deal with reflexivity and transitivity, hence, it
is connectedness (wRo∧wRu → oRu∨uRo) that is to blame for the breakdown
of interpolation. Thus, we concentrate on the cases of n ≤ 1, or Horn clauses.
For n = 0, restricting a class CL by a frame condition w1Ru1∧ . . .∧wmRum → ⊥
corresponds to adding initial sequents w1Ru1, . . . ,wmRum, Γ ⇒ Δ to the labelled
calculus (for some 1–1 onto map of metavariables w1, u1, . . . , wm, um onto labels
w1, u1, . . . ,wm, um. In particular, the adequacy of the labelled calculus is pre-
served [16].

Lemma 18. If all frames in CL satisfy

w1Ru1 ∧ . . . ∧ wmRum → ⊥,

then w1 : ⊥ is a CL-interpolant of w1Ru1, . . . ,wmRum, Γ ⇒ Δ.

Proof. Similar to initial sequents w : ⊥, Γ ⇒ Δ for SK.
�

4 It also holds for li = 0: the empty conjunction is � and M, �w� � ♦�.

Proving Craig and Lyndon Interpolation Using Labelled Sequent Calculi 327

Table 5. Common Horn frame conditions

Reflexivity Transitivity

wRw wRo ∧ oRr → wRr

wRw, Γ ⇒ Δ
Ref †

Γ ⇒ Δ

wRr,wRo, oRr, Γ ⇒ Δ
Trans

wRo, oRr, Γ ⇒ Δ

wRw,wRw, Γ ⇒ Δ
Trans∗

wRw, Γ ⇒ Δ

Symmetry Euclideanness

wRo → oRw wRo ∧ wRr → oRr

oRw,wRo, Γ ⇒ Δ
Sym

wRo, Γ ⇒ Δ

oRr,wRo,wRr, Γ ⇒ Δ
Eucl

wRo,wRr, Γ ⇒ Δ

oRo,wRo, Γ ⇒ Δ
Eucl∗

wRo, Γ ⇒ Δ

Definition 19. A labelled rule has the subterm property if each label from each
premise, except for eigenvariables, occurs in the conclusion. Restricting a rule r
to those instances that have the subterm property yields the rule r†.

It was shown in [16, Theorem 11.27 and Corolloray 11.29] that restricting
a class of frames by a Horn clause w1Ru1 ∧ . . . ∧ wmRum → vRz for n = 1
corresponds to adding to the labelled calculus both

– the rule
vRz,w1Ru1, . . . ,wmRum, Γ ⇒ Δ

Math†
w1Ru1, . . . ,wmRum, Γ ⇒ Δ

(4)

with the subterm property, i.e., restricted to instances with both v and z
occurring in the conclusion, and

– rules obtained from it by the closure condition, i.e., by contracting identical
relational atoms wiRui and wjRuj from the conclusion in both premise and
conclusion for those instances of the rule that contain such identical atoms.

Example 20. Common examples of such Horn restrictions and their correspond-
ing rules can be found in Table 5. Rules Trans∗ and Eucl∗ are added due to the
closure condition and correspond to wRo = oRr in Trans and wRo = wRr in Eucl
respectively. Note that all rules but Ref already have the subterm property.

Lemma 21. An interpolant transformation for a rule r is also applicable for the
rules r∗ obtained from r by the closure condition. More precisely, applying the
interpolant transformation for r to an interpolant for the premise of a rule r∗

yields an interpolant for the conclusion of r∗.

Proof. This observation follows from the fact that the definition of component-
wise interpolant is not sensitive to the multiplicities of relational atoms.
�

Thus, from now on we consider r∗-variants obtained from r by the closure
condition to be “instances” of r and do not mention them explicitly.

328 R. Kuznets

Table 6. Rules for equality atoms († means the subterm property restriction)

w = w, Γ ⇒ Δ †
Γ ⇒ Δ

oRr,w = o,wRr, Γ ⇒ Δ

w = o,wRr, Γ ⇒ Δ

wRr, o = r,wRo, Γ ⇒ Δ

o = r,wRo, Γ ⇒ Δ

o = r,w = o,w = r, Γ ⇒ Δ

w = o,w = r, Γ ⇒ Δ

o :A,w = o,w :A, Γ ⇒ Δ

w = o,w :A, Γ ⇒ Δ

Lemma 22 (Horn). If all frames in CL satisfy

w1Ru1 ∧ . . . ∧ wmRum → vRz,

then a CL-interpolant of the premise of (4) is a CL-interpolant of its conclusion.

Proof. This follows from Lemma 13 as (4) (and all its contracted versions) is
CL-local, e.g., the locality condition 1. follows from the subterm property.
�

The formalism of labelled sequents can be enriched with equality atoms w = o
and the rules in Table 6 without affecting the adequacy results ([16, Sect. 11.6]).
Equality atoms can be treated the same way as relational atoms, e.g., � �AntrΓ �
now means that �w� R �o� for each wRo ∈ Γ and �w� = �o� for each w = o ∈ Γ .
It follows from the definition of local rules that

Lemma 23. All rules from Table 6 are CL-local for any CL.

Further, it is easy to see that the proof of Lemma 13 directly applies also
to labelled calculi with equality. Using the same construction of labelled rules
from Horn clauses as Math† in the previous section and assuming w.l.o.g. that no
equality atoms occur among Pi, we can prove that such rules with the subterm
property are still CL-local in the presence of equality atoms:

Lemma 24. If all frames in CL satisfy

w1Ru1 ∧ . . . ∧ wmRum → v = z,

then a CL-interpolant of the premise of (4) with v = z instead of vRz is also a
CL-interpolant of its conclusion.

5 Geometric Rules

Dyckhoff and Negri [5] showed how to geometrize any first-order frame condition.
Once again, we restrict our attention to single-conclusion canonical geometric
implications

w1Ro1 ∧ . . . ∧ wmRom → ∃y1 . . . ∃yk
(

Q1(y) ∧ . . . ∧ Ql(y)
)

,

Proving Craig and Lyndon Interpolation Using Labelled Sequent Calculi 329

where yj /∈ {w1, o1, . . . , wm, om} for any pairwise distinct y1, . . . , yk = y and,
w.l.o.g., Qi(y) are relational atoms. They correspond to the rules

Q1(y), . . . , Ql(y),w1Ro1, . . . ,wmRom, Γ ⇒ Δ
Geom†

w1Ro1, . . . ,wmRom, Γ ⇒ Δ
(5)

where the eigenvariables y1, . . . , yk = y do not occur in the conclusion. We con-
sider first a subset of such rules that we call telescopic.

5.1 Telescopic Rules

Definition 25 (Telescopic). Telescopic frame conditions have the form

m
∧

i=1

wiRoi → ∃y1 . . . ∃yk
(

xRy1 ∧ y1Ry2 ∧ . . . ∧ yk−1Ryk
)

(6)

where {y1, . . . , yk} ∩ {x,w1, o1, . . . , wm, om} = ∅.

Corresponding rules
xRy1, y1Ry2, . . . , yk−1Ryk,w1Ro1, . . . ,wmRom, Γ ⇒ Δ

Tele†
w1Ro1, . . . ,wmRom, Γ ⇒ Δ

have x occurring in the conclusion and pairwise distinct eigenvariables y1, . . . , yk
(and may generate contracted versions by the closure condition).

Lemma 26. Let all frames in a class CL satisfy (6). For any CL-interpolant5

�p =
n

�
i=1

⎛

⎝

mi

�
b=1

uib : Dib �

k

�
j=1

yj : Cij

⎞

⎠

of the the premise of Tele†, we have that

�c =
n

�
i=1

(mi

�
b=1

uib : Dib � x : Ti

)

is a CL-interpolant of the rule’s conclusion, where

Ti := ♦(Ci,1 ∧ ♦(Ci,2 ∧ ♦(. . . ∧ ♦(Ci,k−1 ∧ ♦Cik) . . .))).

Proof. Let us abbreviate the premise and conclusion sequents as Γp ⇒ Δ and
Γc ⇒ Δ respectively. The common literal condition is clearly preserved. Eigen-
variables yj occur neither in Γc ⇒ Δ nor in �c. Consider an interpretation [[·]]
into a model M = (W,R, V) ∈ CL such that � �Antr(Γc)�.

5 For each eigenvariable yj we have collected all formulas labelled with yj within each
disjunct into one labelled formula by transforming v : A � v : B into v : (A ∧ B) if
more than one formula has this label or by adding yj : � if no formula has.

330 R. Kuznets

Assume � �Antf(Γc)�. Since �wl�R �ol� for all l, by (6) there are yj ∈ W such
that �x� Ry1R . . . Ryk−1Ryk. Since yj does not occur in Γc ⇒ Δ, it follows that
� �Antr(Γp)�

y
y and � �Antf(Γp)�

y
y . Thus, for some disjunct 1 ≤ i ≤ n of �p,

�

�

�
mi

�
b=1

uib : Dib �

k

�
j=1

yj : Cij

�

	

y

y

, (7)

in particular, M, yj � Cij for all j = 1, . . . , k for this i. It is easy to show by
induction that M, yj � Cij∧♦(Ci,j+1∧♦(. . .∧♦(Ci,k−1∧♦Cik) . . .)) culminating
in M, �x� � Ti. Since neither of uib coincides with any of yj , it follows that � ��c�.

Assume now that � ��c�. Then � ��mi

b=1uib : Dib � x : Ti� holds for some
1 ≤ i ≤ n. In particular, M, �x� � Ti. Thus, there exist worlds yj ∈ W such
that �x� Ry1Ry2R . . . Ryk−1Ryk and M, yj � Cij for all j = 1, . . . , k. Again,
� �Antr(Γp)�

y
y and, hence, (7) holds for some disjunct of �p. It follows that

� �Conf(Δ)�yy . Since none of yj occurs in Δ, we have � �Conf(Δ)�.
�
Example 27. The simplest and most familiar example of a telescopic frame con-

dition is seriality : ∃y(xRy). The corresponding rule is
xRy, Γ ⇒ Δ

Ser†
Γ ⇒ Δ

where

x occurs in the conclusion and the eigenvariable y doesn’t. Thus, for any class CL

whose models have serial frames, if �n
i=1 (�mi

b=1uib : Dib � y : Ci) is a CL-inter-
polant of xRy, Γ ⇒ Δ, then �n

i=1 (�mi

b=1uib : Dib � x : ♦Ci) is a CL-interpolant
of Γ ⇒ Δ, where x occurs in Γ or Δ, y does not, and y does not coincide with
any of uib. This is essentially the same transformation as used for L♦.

5.2 Non-telescopic Geometric Rules

While ♦ helps describe one accessible world, more complex configurations of
eigenvariables are hard to describe by modal formulas. Consider convergence
wRo1∧wRo2 → ∃y(o1Ry∧o2Ry), a single-conclusion canonical geometric impli-
cation that cannot be handled using Lemma26. It is not clear which formulas
are to be true at w, o, o1, and o2 in order to ensure that the interpolant infor-
mation from the conclusion can be lifted to the premise. For instance, for the
case of convergence, oi : ♦C only describes a world satisfying C and accessible
from �oi�. It is not clear how to pinpoint a world satisfying C and simultane-
ously accessible from �o1� and �o2�. Indeed, o1 : ♦C � o2 : ♦C only implies that
each of the two worlds has an accessible world, o′

1 and o′
2 respectively, satisfy-

ing C but cannot guarantee that o′
1 = o′

2. To overcome this difficulty, we use a
convergence-like property to find a third C-world y accessible from both o′

1 and
o′
2 and a transitivity-like property to ensure that y is directly accessible from

both original worlds �o1� and �o2�.
In this section, we outline general conditions and an interpolant transfor-

mation that enable us to carry the interpolation proof beyond geometric rules
whose eigenvariables form disjoint telescopes. While the conditions themselves
are a bit technical, they can be viewed as weakened forms of transitivity and

Proving Craig and Lyndon Interpolation Using Labelled Sequent Calculi 331

convergence adapted to the particulars of a given sequent rule. As a result, both
density and convergence become amenable to our method in presence of some
additional frame properties.

W.l.o.g. we assume that each Qj(y) is a relational atom containing an occur-
rence of one of yj ’s because eigenvariable-free conjuncts can be pulled out and
handled using Lemma 22. We demonstrate interpolation for frame conditions

m
∧

i=1

wiRoi → ∃y1 . . . ∃yk

l
∧

j=1

xjRej , (8)

where each xjRej contains a yi and each yi occurs among xj ’s and ej ’s. The cor-

responding rule is
x1Re1, . . . , xlRel,w1Ro1, . . . ,wmRom, Γ ⇒ Δ

GI†
w1Ro1, . . . ,wmRom, Γ ⇒ Δ

with eigen-

variables y1, . . . , yk where each xj and ej that is not an eigenvariable must occur
in the conclusion sequent.

Definition 28 (Conmap and premap). An interpretation [[·]] into M is called

an r-conmap (an r-premap) for a rule
Γp ⇒ Δp

r
Γc ⇒ Δc

if � �Antr(Γc)� (� �Antr(Γp)�).

Lemma 29. If M is a model satisfying (8), any GI†-conmap [[·]] into M can be
modified into a GI†-premap [[·]]yy into M.

Proof. It immediately follows from (8).
�
Definition 30 (Interpolable rule). Let all frames of a class CL satisfy (8).
A rule GI† is CL-interpolable for an order 〈y1, . . . , yk〉 on its eigenvariables if a
parent function par : Lab → Lab exists satisfying the following three properties:

– for each yj, there is i such that par(yj)Ryj = xiRei where xi must either occur
in the conclusion of GI† or be yj′ for some j′ < j; (connectedness)

given any model M = (W,R, V) ∈ CL, any GI†-conmap [[·]] into M and any
GI†-premap [[·]]y1,...,yk

y1,...,yk into M, for each j = 1, . . . , k

– if yjRy′
j, there is a GI†-premap [[·]]y1,...,yj−1,y

′
j ,...,y

′
k

y1,...,yj−1,yj ,...yk into M; (pushability)
– if �par(yj)�

y1,...,yk

y1,...,yk
Rzl for all 1 ≤ l ≤ s, there exists y′

j such that zlRy′
j for all

1 ≤ l ≤ s and a GI†-premap [[·]]y1,...,yj−1,y
′
j ,...,y

′
k

y1,...,yj−1,yj ,...yk into M. (conjoinability)

Definition 31 (Geach properties). The Scott–Lemmon generalizations of the
Geach convergence axiom are known to correspond to the hijk-convergence prop-
erties wRhv ∧wRju → ∃y(vRiy ∧uRky) [7, Sect. 9]. We only consider the cases
of h, i, j, k ≥ 1. Each hijk-convergence property can be written as a canonical
geometric implication:

wRv1 ∧ . . . ∧ vh−1Rv ∧ wRu1 ∧ . . . ∧ uj−1Ru →
∃z1 . . . ∃zi−1∃y1 . . . ∃yk−1∃y(vRz1 ∧ . . . ∧ zi−1Ry ∧ uRy1 ∧ . . . ∧ yk−1Ry). (9)

332 R. Kuznets

It is tedious but not hard to prove the following two lemmas:

Lemma 32. If all frames in CL are hijk-convergent and transitive (shift-transitive
if h, j ≥ 2), then GI† for the case of (8) being the hijk-convergence property (9) is
CL-interpolable for the order 〈z1, . . . , zi−1, y1, . . . , yk−1, y〉.
Lemma 33. Let m < n and all frames in CL be transitive, Euclidean, and
(n,m)-transitive, i.e., satisfy wRmx → wRnx. Then taking the frame condi-
tion (8) to be wRv1 ∧ . . . ∧ vm−1Rx → ∃y1 . . . ∃yn−1(wRy1 ∧ . . . ∧ yn−1Rx), the
rule GI† is CL-interpolable for the order 〈y1, . . . , yn−1〉.
Definition 34 (Transformation for interpolable rules). For

� =
s

�
r=1

tr

�
b=1

vrb : Drb

in CNF and arbitrary labels y and x such that y �= x,

rem (y, x, �) :=
s

�
r=1

(

x : ♦�
∨

vrb=y

Drb � �
vrb �=y

vrb : Drb

)

.

It is clear that y does not occur in rem(y, x, �). Let a rule GI† be CL-interpolable
for the order 〈y1, . . . , yk〉 = y and parent function par. For each j = 0, . . . , k,

remj(y,GI†, �) :=

{

� if j = k,
rem(yj+1, par(yj+1), remj+1(y,GI†, �)) if j ≤ k − 1.

(10)

Note that remj(y,GI†, �) is in CNF and yj+1, . . . , yk don’t occur in it. Finally,
rem(y,GI†, �) := rem0(y,GI†, �) and contains no eigenvariables of GI†.

Lemma 35. Let CL satisfy (8) and GI† be CL-interpolable for the order y =
〈y1, . . . , yk〉 and a parent function par. Then for any CL-interpolant � of the
premise of GI† in CNF, rem(y,GI†, �) is a CL-interpolant of the conclusion of GI†.

Proof. Let Γp ⇒ Δ and Γc ⇒ Δ be the premise and conclusion of GI†. Let

Γp
�=⇒ Δ for some � in CNF, let M ∈ CL, and let [[·]] be a GI†-conmap into M.

The label and common language conditions are satisfied because of the sub-
term property and the absence of eigenvariables in rem(y,GI†, �) and because
no labelled formula is changed by GI† and rem(y,GI†, �) has the same literals
as � respectively.

Given � �Antf(Γc)�, let us show �

rem(y,GI†, �)

�
. We abbreviate �j :=

remj(y,GI†, �). It can be proved by induction on j = k, . . . , 0 that � ��j�
y1,...,yj

y1,...,yj

for any GI†-premap [[·]]yy into M. In particular, � ��0� for any GI†-premap [[·]]yy
into M. It remains to note that such premaps exist by Lemma 29 and that
�0 = rem(y,GI†, �). This completes the proof of (1).

Proving Craig and Lyndon Interpolation Using Labelled Sequent Calculi 333

Given �

rem(y,GI†, �)

�
, let us show � �Conf(Δ)�. We can prove by induction

on j = 0, . . . , k that there is a GI†-premap [[·]]y
1
1 ,...,y

j
j ,y

j
j+1,...,y

j
k

y1,...,yj ,yj+1,...,yk into M such that

� ��j�
y1
1 ,...,y

j
j

y1,...,yj
. In particular, since � = �k, we have � ���

y
y for y = y1

1 , . . . , y
k
k .

Since Γp
�=⇒ Δ, it follows that � �Conf(Δ)�yy . But Δ contains no eigenvariables.

Hence, � �Conf(Δ)�. This completes the proof of (2).
�
Corollary 36. Modal logics complete w.r.t. Kripke models defined via

– Horn properties, including reflexivity, transitivity, symmetry, Euclideanness,
(1, n)-transitivity, and functionality, as well as the shift versions thereof,

– telescopic properties, including seriality, and
– properties generating interpolable rules, including hijk-convergence with

h, i, j, k ≥ 1 (in presence of transitivity or, for h, j ≥ 2, shift transitivity);
density (in presence of transitivity and Euclideanness); (n,m)-transitivity for
m < n (in presence of transitivity and Euclideanness)

enjoy LIP. In particular, logics with LIP proved using labelled sequents include
all 15 logics of the so-called modal cube from [7, Sect. 8], K4.2, S4.2, and K41,n,
as well as the infinite family of non-degenerate Geach logics over K4 and almost
the full family of Geach logics over K5 (due to the shift transitivity of the latter).

6 Related Work, Conclusion, and Future Work

The body of work on interpolation is so great and so varied that it is hope-
less to try giving even a restricted overview of the field. While this is the first
result on proving interpolation using labelled sequent calculi, there were several
recent advances in other proof formalisms. Brotherston and Goré [3] developed
a method of using display calculi for proving interpolation for displayable sub-
structural logics. B́ılková [2] and Herzig and Mengin [9] used nested sequent
calculi and resolution respectively to show the stronger and, consequently, rarer
uniform interpolation. Pattinson [17] provided a blanket proof of uniform inter-
polation for the somewhat restricted class of rank-1 modal logics. Iemhoff [10]
connected the existence of ordinary sequent calculi to the property of uniform
interpolation, which can be used to show the absence of such sequent calculi,
but can only prove uniform interpolation for logics with sequent systems.

By using a non-constructive method based on duality theory, Marx proved
a similar but slightly weaker result than ours [15, Corollary B.4.1]: a non-
constructive proof of Craig interpolation for logics defined by frame conditions
given by universal Horn sentences, compared to our constructive proof of Lyndon
interpolation for the same logics. It would be interesting to compare the seman-
tic restrictions of his method with those of our method. Perhaps, a more exact
upper bound and a better description of both methods’ applicability area(s) can
be obtained by such comparative analysis.

We developed a constructive and modular method of proving the Lyndon
(and Craig) Interpolation Property for modal logics by using labelled sequent

334 R. Kuznets

calculi. The method is sufficient to establish the LIP for all frame conditions
described by quantifier-free Horn formulas. For geometric formulas, the method
generally requires additional conditions similar to transitivity and convergence
in nature, but is still sufficient to tackle an infinite family of standard modal
logics.

Many questions remain open. The extension to multimodal logics and to
first-order languages is long overdue. Intuitionistic systems have so far evaded
this method. Logics like GL can be captured by labelled sequents even though
they are not first-order definable. Thus, our method should extend to them too.

Acknowledgments. I am grateful to M. Fitting, whose idea started this interpola-
tion project. I thank S. Negri for encouragement, V. Sikimić for procuring a source
not available online, Y. Venema and M. Marx for valuable information on the non-
constructive method. I am deeply indebted to B. Lellmann, who is always ready to
listen and has provided many inspiring suggestions for improving this paper. I thank
the anonymous reviewers for the suggestions on terminology.

References

1. Amir, E., McIlraith, S.: Partition-based logical reasoning for first-order and propo-
sitional theories. Artif. Intell. 162(1–2), 49–88 (2005)

2. B́ılková, M.: A note on uniform interpolation proofs in modal deep inference calculi.
In: Bezhanishvili, N., Löbner, S., Schwabe, K., Spada, L. (eds.) TbiLLC 2009.
LNCS (LNAI), vol. 6618, pp. 30–45. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22303-7 3

3. Brotherston, J., Goré, R.: Craig interpolation in displayable logics. In: Brünnler,
K., Metcalfe, G. (eds.) TABLEAUX 2011. LNCS (LNAI), vol. 6793, pp. 88–103.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-22119-4 9

4. ten Cate, B., Franconi, E., Seylan, İ.: Beth definability in expressive description
logics. J. Arti. Intell. Res. 48(1), 347–414 (2013)

5. Dyckhoff, R., Negri, S.: Geometrisation of first-order logic. Bull. Symbolic Logic
21(2), 123–163 (2015)

6. Fitting, M., Kuznets, R.: Modal interpolation via nested sequents. Ann. Pure Appl.
Logic 166(3), 274–305 (2015)

7. Garson, J.: Modal logic. In: Zalta, E.N., (ed.) The Stanford Encyclopedia of Phi-
losophy (2016). http://plato.stanford.edu/entries/logic-modal/

8. Goré, R., Ramanayake, R.: Labelled tree sequents, tree hypersequents and nested
(deep) sequents. In: Bolander, T., Braüner, T., Ghilardi, S., Moss, L. (eds.)
Advances in Modal Logic, vol. 9, pp. 279–299. College Publications (2012)

9. Herzig, A., Mengin, J.: Uniform interpolation by resolution in modal logic. In:
Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA 2008. LNCS (LNAI), vol. 5293,
pp. 219–231. Springer, Heidelberg (2008). doi:10.1007/978-3-540-87803-2 19

10. Iemhoff, R.: Uniform interpolation and sequent calculi in modal logic. Preprint
325, Logic Group Preprint Series (2015)

11. Kripke, S.A.: Semantical analysis of modal logic I: normal modal propositional
calculi. Z. Math. Logik Grundlagen Math. 9(5–6), 67–96 (1963)

12. Kuznets, R.: Craig interpolation via hypersequents. In: Probst, D., Schuster, P.
(eds.) Concepts of Proof in Mathematics, Philosophy, and Computer Science. Ontos
Mathematical Logic, vol. 6, pp. 193–214. De Gruyter, Berlin (2016)

http://dx.doi.org/10.1007/978-3-642-22303-7_3
http://dx.doi.org/10.1007/978-3-642-22303-7_3
http://dx.doi.org/10.1007/978-3-642-22119-4_9
http://plato.stanford.edu/entries/logic-modal/
http://dx.doi.org/10.1007/978-3-540-87803-2_19

Proving Craig and Lyndon Interpolation Using Labelled Sequent Calculi 335

13. Kuznets, R.: Interpolation method for multicomponent sequent calculi. In: Artemov,
S., Nerode, A. (eds.) LFCS 2016. LNCS, vol. 9537, pp. 202–218. Springer, Heidelberg
(2016). doi:10.1007/978-3-319-27683-0 15

14. Maksimova, L.L.: Absence of the interpolation property in the consistent normal
modal extensions of the Dummett logic. Algebra Logic 21(6), 460–463 (1982)

15. Marx, M., Venema, Y.: Multi-dimensional Modal Logic. Applied Logic Series, vol.
4. Springer, Heidelberg (1997)

16. Negri, S., von Plato, J.: Proof Analysis: A Contribution to Hilbert’s Last Problem.
Cambridge University Press, Cambridge (2011)

17. Pattinson, D.: The logic of exact covers: completeness and uniform interpolation.
In: 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science, pp.
418–427. IEEE (2013)

18. Thomason, R.: Logic and artificial intelligence. In: Zalta, E.N. (ed.) The Stanford
Encyclopedia of Philosophy (2014). http://plato.stanford.edu/entries/logic-ai/

http://dx.doi.org/10.1007/978-3-319-27683-0_15
http://plato.stanford.edu/entries/logic-ai/

Efficient Reasoning for Inconsistent
Horn Formulae

Joao Marques-Silva1(B), Alexey Ignatiev1,4, Carlos Menćıa2,
and Rafael Peñaloza3

1 University of Lisbon, Lisbon, Portugal
{jpms,aignatiev}@ciencias.ulisboa.pt

2 University of Oviedo, Oviedo, Spain
cmencia@gmail.com

3 Free University of Bozen-Bolzano, Bolzano, Italy
rafael.penaloza@unibz.it

4 ISDCT SB RAS, Irkutsk, Russia

Abstract. Horn formulae are widely used in different settings that
include logic programming, answer set programming, description log-
ics, deductive databases, and system verification, among many others.
One concrete example is concept subsumption in lightweight description
logics, which can be reduced to inference in propositional Horn formulae.
Some problems require one to reason with inconsistent Horn formulae.
This is the case when providing minimal explanations of inconsistency.
This paper proposes efficient algorithms for a number of decision, func-
tion and enumeration problems related with inconsistent Horn formu-
lae. Concretely, the paper develops efficient algorithms for finding and
enumerating minimal unsatisfiable subsets (MUSes), minimal correction
subsets (MCSes), but also for computing the lean kernel. The paper also
shows the practical importance of some of the proposed algorithms.

1 Introduction

Horn formulae have been studied since at least the middle of the past cen-
tury [18,19]. More recently, Horn formulae have been used in a number of
different settings, which include logic programming, answer set programming
and deductive databases, but also description logics. In addition, there is a
growing interest on Horn formula reasoning in formal methods [12,13]. In the
area of description logics, there is a tight relationship between description
logic reasoning and Horn formulae. This is true for lightweight description log-
ics [2,3,5,23,32,42,44,46], but there exists recent work suggesting the wider
application of Horn formulae to (non-lightweight) description logic reasoning [9].

It is well-known that the decision problem for Horn formulae is in P [18],
with linear-time algorithms known since the 80s [16,20,37]. Nevertheless, other
decision, function and enumeration problems are of interest when reasoning
about Horn formulae, which find immediate application in other settings, that
include description logics. Moreover, related problems on Horn formulae have
c© Springer International Publishing AG 2016
L. Michael and A. Kakas (Eds.): JELIA 2016, LNAI 10021, pp. 336–352, 2016.
DOI: 10.1007/978-3-319-48758-8 22

Efficient Reasoning for Inconsistent Horn Formulae 337

been studied earlier in other contexts [17,31]. This paper extends earlier work
on developing efficient algorithms for reasoning about Horn formulae [3,5,42].
Concretely, the paper investigates the complexity of finding and enumerating
MUSes, MCSes, but also the complexity of computing the lean kernel [24–27].
The paper also studies MUS and MCS membership and related problems. In
addition, the paper also investigates the practical significance of some of these
new algorithms.

The paper is organized as follows. Section 2 introduces the notation used
throughout the paper. Section 3 revisits the well-known linear time unit reso-
lution (LTUR) algorithm, and proposes two algorithms used extensively in the
remainder of the paper. Section 4 develops the main results in the paper. The
practical significance of the work is briefly addressed in Section 5, before con-
cluding in Section 6.

2 Preliminaries

This section introduces the notation and definitions used throughout the paper.
We assume that the reader is familiar with the basic notions of propositional
logic (see e.g. [11]). CNF formulae are defined over a finite set of propositional
variables. A literal is a variable or its complement. A clause is a disjunction
of literals, also interpreted as a set of literals. A CNF formula F is a finite
conjunction of clauses, also interpreted as a finite set of clauses. In some settings,
it is convenient to view a CNF formula as a multiset of clauses, where the same
clause can appear more than once. The set of variables associated with a CNF
formula F is denoted by var(F). We often use X � var(F), with n � |X|.
m � |F| represents the number of clauses in the formula, and the number of
literal occurrences in F is represented by ||F||. An assignment is a mapping
from X from {0, 1}, and total assignments are assumed throughout. Moreover,
the semantics of propositional logic is assumed. For a formula F , we write F � ⊥
(resp. F � ⊥) to express that F is satisfiable (resp. unsatisfiable).

In this paper we focus on Horn formulae. Intuitively, Horn formulae are sets
of implications of the form A1 ∧ A2 ∧ . . . ∧ Akj

→ Ij , where all Ar are positive
literals defined over the variables in X, and Ij is either a positive literal or ⊥.
Formally, a Horn formula F is a CNF formula where each clause contains at most
one positive literal. Clauses without a positive literal are called goal clauses, and
those with a positive literal are called definite. Given a (Horn) clause c ∈ F ,
P (c) denotes the set of variables appearing positively in c. For Horn clauses,
P (c) always contains at most one element. Likewise, N(c) denotes the set of
variables appearing negatively in c. We apply a similar notation for variables v.
In this case, N(v) (resp. P (v)) denotes the set of clauses where v occurs as a
negative (resp. positive) literal.

We are interested in inconsistent formulae F , i.e. F � ⊥, such that some
clauses in F can be relaxed (i.e. allowed not to be satisfied) to restore consis-
tency, whereas others cannot. Thus, we assume that F is partitioned into two
subformulae F = B ∪ R, where R contains the relaxable clauses, and B contains

338 J. Marques-Silva et al.

the non-relaxable clauses. B can be viewed as background knowledge, which
must always be kept. As we will see in this paper, allowing B �= ∅ can affect
the computational complexity and the runtime behavior of the tasks that we
consider.

Given an inconsistent CNF formula F , we are interested in detecting the
clauses that are responsible for unsatisfiability among those that can be relaxed,
as defined next.

Definition 1 (Minimal Unsatisfiable Subset (MUS)). Let F = B ∪ R
denote an inconsistent set of clauses (F � ⊥). M ⊆ R is a Minimal Unsatisfiable
Subset (MUS) iff B ∪ M� ⊥ and ∀M′�M, B ∪ M′

� ⊥.
⋃

MU(F) denotes the
union of all MUSes.

Informally, an MUS provides the minimal information that needs to be added
to the background knowledge B to obtain an inconsistency; thus, it explains the
causes for this inconsistency. Alternatively, one might be interested in correcting
the formula, removing some clauses to achieve consistency.

Definition 2 (MCS, MSS). Let F = B ∪ R denote an inconsistent set of
clauses (F � ⊥). C ⊆ R is a Minimal Correction Subset (MCS) iff B ∪ R \ C � ⊥
and ∀C′�C, B ∪ R \ C′ � ⊥. We use

⋃

MC(F) to denote the union of all MCSes.
S ⊆ R is a Maximal Satisfiable Subset (MSS) iff B∪S � ⊥ and ∀S′�S , B∪S ′ � ⊥.

It is well known that there is a close connection between MUSes, MCSes, and
MSSes. Indeed, it is easy to see that a set C is an MCS iff R\C is an MSS. More-
over, there exists a minimal hitting set duality between MUSes and MCSes [43].
In particular this means that

⋃

MU(F) =
⋃

MC(F).
The lean kernel [24–27] represents an (easier to compute) over-approximation

of
⋃

MU(F), containing all clauses that can be included in a resolution refutation
of F , with F � ⊥. The lean kernel of a CNF formula is tightly related with the
maximum autarky of the formula, one being the complement of the other [24–27].
Computation of the lean kernel for Horn formulae is analyzed in Section 4.3.

For arbitrary CNF formulae, there exists recent work on extracting
MUSes [7,10], and on extracting MCSes [6,33,35,36]. The complexity of extract-
ing MUSes for Horn formulae has also been studied in the context of so-called
axiom pinpointing for light-weight description logics [5,41,42]. In particular, it
has been shown that axiom pinpointing for the EL family of description log-
ics [4,5] can be reduced to the problem of computing MUSes of a Horn formula
with B �= ∅ (see [2,3,44] for details).

We also assume that the reader is familiar with the basic notions of com-
putational complexity; for details, see [22,39,40]. Throughout the paper, the
following abbreviations are used. For decision problems [39], NPC stands for NP-
complete, and PNP (or Δp

2) denotes the class of problems that can be decided
with a polynomial number of calls (on the problem representation) to an NP ora-
cle. Similarly, PNP[log] denotes the class of problems that can be decided with
a logarithmic number of calls to an NP oracle (where n denotes the size of the
problem instance). For enumeration problems [22], OP stands for output polyno-
mial and PD stands for polynomial delay, denoting respectively algorithms that

Efficient Reasoning for Inconsistent Horn Formulae 339

run in time polynomial on the size of the input and already computed solutions
(i.e. the output), and algorithms that compute each solution in time polyno-
mial solely on the size of the input. Finally, for function (or search problems),
the notation used for characterizing the complexity of decision problems is pre-
fixed with F [39]. For example, FPNP denotes the class of function problems
solved with a polynomial number of calls to an NP oracle. Similarly, FPNP[log]
(respectively FPNP[wit,log]) denotes the class of function problems solved with a
logarithmic number of calls to an NP oracle (respectively to a witness producing
NP oracle [14]).

3 Basic LTUR and Saturation

It is well-known that consistency of Horn formulae can be decided in linear time
on the size of the formula [16,20,37]. A simple algorithm that achieves this linear-
time behavior on the number of literals appearing in the formula, is known as
linear time unit resolution (LTUR) [37]. Motivated by the different uses in the
remainder of the paper, a possible implementation is analyzed next. In addition,
we also introduce an extension of LTUR that saturates the application of unit
propagation rules, without affecting the linear-time behavior. We then show how
the result of this saturation can be used to trace the causes of all consequences
derived by LTUR.

3.1 Linear Time Unit Resolution

LTUR can be viewed as one-sided unit propagation, in the sense that only vari-
ables assigned value 1 are propagated. The algorithm starts with all variables
assigned value 0, and repeatedly flips variables to 1, one at a time. Let η : F → N0

associate a counter with each clause, representing the number of negative liter-
als not assigned value 0. Given an assignment, a goal clause c ∈ F is falsified if
η(c) = 0. Similarly, a definite clause c ∈ F is unit and requires the sole positive
literal to be assigned value 1 when η(c) = 0. LTUR maintains the η counters,
propagates assignments due to unit definite clauses and terminates either when
a falsified goal clause is identified or when no more definite clauses require that
their sole positive literal be assigned value 1. The procedure starts with unit pos-
itive clauses cr for which η(cr) = 0. Clearly, a Horn formula without unit positive
clauses is trivially satisfied. In the following, γ : F → {0, 1} denotes whether a
clause c ∈ F is a goal clause, in which case γ(c) = 1. Finally, α : var(F) → 2F is
a function that assigns to each variable v a set of clauses α(v) that are deemed
responsible for assigning value 1 to v. If the value of v is not determined to be 1,
then α(v) = ∅. As is standard in CDCL SAT solving [11], α(v) will be referred
to as the antecedent (set) of v. The organization of LTUR is summarized in
Algorithm 1. The initialization step sets the initial values of the η counters, the
α values, and the value of the γ flag. Q is initialized with the variables in the
unit positive clauses. For every v ∈ Q, α(v) contains the unit clause v. For all
other variables, the value of α is ∅. Clearly, this initialization runs in time linear

340 J. Marques-Silva et al.

Function LTUR(F)

Input : F : input Horn formula
Output: falsified clause, if any; α: antecedents

1 (Q, η, γ, α) ← Initialize(F)
2 while Q �= ∅ do // Q: queue of variables assigned 1
3 vj ← ExtractFirstVariable(Q)
4 foreach ci ∈ N(vj) do
5 η(ci) ← η(ci) − 1
6 if η(ci) = 0 then
7 if γ(ci) then return ({ci}, α)
8 vr ← PickVariable(P (ci))
9 if α(vr) = ∅ then

10 AppendToQueue(Q, vr)
11 α(vr) ← {ci}
12 return (∅, α)

Algorithm 1. The LTUR algorithm

on the number of literals. The main loop analyzes the variables assigned value
1 in order. Notice that a variable v is assigned value 1 iff α(v) �= ∅. For each
variable v ∈ Q, the counter η of the clauses where v occurs as a negative literal
is decreased. If the η(c) = 0 for some clause c, then either the formula is incon-
sistent, if c is a goal clause, or the positive literal of c is assigned value 1 and
added to Q. The operation of LTUR is such that |α(v)| ≤ 1 for v ∈ var(F). It
is easy to see that LTUR runs in linear time on the number of literals of F [37]:
each variable v is analyzed only once, since v is added to the queue Q only if
α(v) = ∅, and after being added to Q, α(v) �= ∅ and α(v) will not be set to ∅
again. Thus, v will not be added to Q more than once. For each variable v, its
clauses are analyzed at most once, in case v was added to Q. Thus, the number
of times literals are analyzed during the execution of LTUR is O(||F||).

It is often convenient to run LTUR incrementally. Given F = R ∪ B, one
can add a unit positive clause at a time, and run LTUR while consistency is
preserved. If no inconsistency is identified for any of the unit positive clauses, the
total run time is O(||F||). In contrast, if inconsistency is identified for some unit
positive clause, consistency may be recovered by undoing only the last sequence
of variables assigned value 1. Incremental LTUR plays an important role in the
algorithms described in Sect. 4, concretely for MUS and MCS extraction.

3.2 LTUR Saturation

We will often resort to a modified version of LTUR, which we call LTUR satu-
ration (LTURs). LTURs also runs in linear time on the number of literals, but
exhibits properties that are relevant when analyzing inconsistent Horn formu-
lae. The basic idea is not to terminate the execution of LTUR when a falsified
goal clause is identified. Instead, the falsified clause is recorded, and the one-
sided unit propagation of LTUR continues to be executed. The procedure only

Efficient Reasoning for Inconsistent Horn Formulae 341

Function LTURs(F)

Input : F : input Horn formula
Output: U : falsified clauses; α: antecedent sets

1 (Q, η, γ, α, U) ← Initialize(F)
2 while Q �= ∅ do // Q: queue of variables assigned 1
3 vj ← ExtractFirstVariable(Q)
4 foreach ci ∈ N(vj) do
5 η(ci) ← η(ci) − 1
6 if η(ci) = 0 then
7 if γ(ci) then
8 U ← U ∪ {ci}
9 else

10 vr ← PickVariable(P (ci))
11 if α(vr) = ∅ then
12 AppendToQueue(Q, vr)
13 α(vr) ← α(vr) ∪ {ci}
14 return (U , α)

Algorithm 2. The LTURs algorithm

terminates when Q is empty. Besides U , in this case the value of α(v) is updated
with any clause that can serve to determining the assignment of v to value 1.

Algorithm 2 summarizes the main steps of LTURs. When compared with
LTUR, the main difference is the set U , initially set to ∅, and to which the
falsified clauses are added to. Using the same arguments presented in Sect. 3.1,
it can be shown that LTURs also runs in time O(||F||).

3.3 Tracing Antecedents

Another important step when analyzing inconsistent Horn formulae is to trace
antecedents. Algorithm 3 describes an approach for tracing that is based on

Function TraceClauses(U , α)
Input : U : falsified clause(s); α: antecedents
Output: M: traced clauses from F , given U and α

1 (S, M, φ) ← Initialize(U)
2 while not Empty(S) do
3 ci ← PopClause(S)
4 foreach vr ∈ N(ci) do
5 foreach ca ∈ α(vr) do
6 if φ(ca) = 0 then
7 φ(ca) ← 1
8 PushClause(S, ca)
9 M ← M ∪ {ca}
10 return M

Algorithm 3. Tracing antecedents

342 J. Marques-Silva et al.

knowing at least one antecedent for each variable assigned 1. Thus, this method
can be used after running LTUR or LTURs. In the algorithm, φ is used as a flag
to ensure each clause is traced at most once. The stack S is initialized with the
clauses in U . Algorithm 3 implements a depth-first traversal of the graph induced
by the antecedent sets, starting from the clauses in U . Hence, the algorithm runs
in O(||F||) time.

4 Efficient Reasoning for Inconsistent Horn Formulae

In this section we analyze a number of computational problems related with the
analysis of inconsistent Horn formulae. The main results obtained are summa-
rized in Table 1. Some of the results, depicted with slanted text, are adapted from
the literature. We briefly recall these results before presenting our contributions.

An algorithm for enumerating all MUSes of an inconsistent Horn formula
without background knowledge can be obtained through a straightforward modi-
fication of the method presented in [42]. In the presence of background knowledge
(that is, when B �= ∅), it was shown in [5, Theorem 4] that no output polynomial
algorithm exists for enumerating all MUSes (unless P = NP). A similar approach
was used to prove that MCSes for formulae with background knowledge cannot
be enumerated in output polynomial time in [41, Theorem 6.15], unless P = NP.
In [42, Theorems 17 and 18] is was also shown that deciding MUS membership
for a clause is NP-complete. A simple algorithm for finding one MUS requires
one inconsistency check for every relaxable clause in the formula [8,15]. The
linear runtime of LTUR [16,37] guarantees that one MUS can be computed in
quadratic time. This upper bound was further refined to O(|M| · ||F||), where
M is the size of the largest MUS, in [3]. In the following we provide more details
on these results, and prove the remaining claims from Table 1.

Table 1. Summary of results

B? 1 MUS MUS Enum 1 MCS MCS Enum Lean Kernel ∈ MUS ∈ MCS
⋃

MU,
⋃

MC

B = ∅ linear PD linear PD linear NPC NPC FPNP[wit,log]

B �= ∅ poly not OP poly not OP linear NPC NPC FPNP[wit,log]

4.1 MUS Extraction and Enumeration

We first focus on the problems related to extracting and enumerating MUSes.
As mentioned already, to compute one MUS one can simply perform a linear
number of inconsistency tests—one for each clause in R. This yields an overall
quadratic behaviour. As we show next, in the absence of background knowledge,
one MUS can be extracted in linear time.

Proposition 1 (MUS Extraction, B = ∅). Let F � ⊥, with B = ∅. One MUS
of F can be computed in time O(||F||).

Efficient Reasoning for Inconsistent Horn Formulae 343

Proof. Horn formulae are decided by LTUR, that implements (one-sided) unit
propagation and runs in O(||F||). It is well-known that unsatisfiable subsets
computed with unit propagation are MUSes [29, Proposition 1]. Thus, tracing
antecedents, starting from the falsified goal clause c ∈ F returned by LTUR,
yields an MUS of F . Algorithm 3 illustrates an implementation of clause tracing
that runs in O(||F||). Overall, both LTUR and clause tracing are run once.
Hence, an MUS is extracted in time O(||F||). �

One important observation is that the polynomial delay enumeration algorithm
presented in [42] uses an arbitrary polynomial-time MUS extraction algorithm
as a black-box. Thus, the linear time extraction method presented above can be
exploited to enumerate all MUSes more efficiently.

When the formula F contains background knowledge, MUS extraction
becomes more expensive. As shown recently in [3] through an insertion-based
algorithm, in this case an MUS can be computed in O(|M| · ||F||) time, where
M is the size of the largest MUS. This is achieved by running LTUR incremen-
tally, allowing the run time of successive consistent runs of LTUR to amortize
to ||F||. Unfortunately, background knowledge has a more important effect on
the enumeration problem. Indeed, as shown in [5], if B �= ∅, it is impossible to
enumerate all MUSes in output polynomial time, unless P = NP.

4.2 MCS Extraction and Enumeration

A simple algorithm for computing one MCS consists in running LTUR first over
all the clauses in B, and then incrementally adding each clause c in R = F \ B
to the execution of LTUR. As soon as LTUR detects an inconsistency, the latest
clause c inserted is known to belong to an MCS and is added to a set C; this
clause is retracted, and the process continues. When all clauses have been tested,
C contains an MCS, and its complement is an MSS. Overall, by running LTUR
incrementally, the consistent calls to LTUR amortize to ||F||. For the inconsistent
calls to LTUR, i.e. those producing clauses added to C, one needs to undo the
incremental run of LTUR, which in the worst-case runs in ||F||. This process
needs to be executed once for each clause in C. Taking into account that the
(amortized) running time of LTUR is O(||F||), an MCS can be computed in
time O(|C| · ||F||), where C is the size of the largest MCS in F .

As it was the case for MUSes, the MCS extraction procedure can be improved
to run in linear time in the case where B = ∅. Consider again the execution of
LTURs (see Algorithm 2). Since B = ∅, any clause can be included in an MCS.
This observation yields the following result.

Proposition 2. Given F , with F � ⊥, the set U computed by LTURs is an MCS
of F .

Proof. First, we show that U is a correction set. Observe that U is composed
of goal clauses. Goal clauses do not serve to propagate other variables to value
1 and do not serve to prevent variables from being assigned value 1 when run-
ning LTURs. Thus, removing these clauses will not elicit further propagation

344 J. Marques-Silva et al.

Function MCSEnum(F , τ)
Global : M: MCS register
Input : F : input Horn formula; τ : clause tags

1 (U , α) ← LTURs(F) // Use LTUR saturation to find MCS candidate
2 if U = ∅ then return
3 (C, V) ← PickVariables(U) // V: variables of negative literals in U
4 if MCSRegistered(C, M) then return
5 RegisterMCS(C, M) // Record computed MCS in MCS register
6 foreach v ∈ V do
7 W ← DropClauses(F , ¬v) // Drop clauses with literal ¬v

// Next, drop literal v in clauses of W and tag clauses
8 (W, τ) ← DropLitsTagCls(W, τ, v)
9 MCSEnum(W, τ) // Recursive call of MCS enumeration

Algorithm 4. MCS enumeration with polynomial delay

of variables to value 1. Since these are the only falsified clauses, if the clauses
in U are removed, what remains is satisfiable; hence U is a correction set. To
show that U is minimal, observe that if any clause in U is not removed, then it
will remain unsatisfied, again because removing clauses in U does not alter the
variables assigned value 1. Thus, U is a correction set for F and it is minimal,
and so it is an MCS for F . �

Corollary 1. LTURs computes an MCS in linear time on the number of literals.

In different settings, enumeration of MUSes and MCSes is paramount [5,42,44].
We can use the linear time algorithm for MCS extraction to develop a polynomial
delay algorithm for enumerating MCSes of a Horn formula when B = ∅. We know
how to compute one MCS in linear time, by applying LTURs and falsifying
goal clauses. The question is then how to iterate the computation of MCSes.
The approach we follow is to transform the formula, so that different sets of
falsified goal clauses are obtained. Given a goal clause c with a negative literal
� on variable v, the transformation is to remove the clauses with literal ¬v, and
remove the literal v from each clause c′ containing that literal. The resulting
clause cr = c′ \ {v} becomes a goal clause. The newly created goal clause is
tagged with the variable v. As the formula is transformed, τ(c) indicates whether
c is tagged, taking value ⊥ if not, or being assigned some variable otherwise. As
a result, when LTURs is used to find a set of falsified goal clauses, the computed
MCSes must also account for the set of tags associated with these falsified goal
clauses.

Algorithm 4 summarizes the main steps of the MCS enumeration algorithm
with polynomial delay. At each step, LTURs is used to find a set of falsified goal
clauses which, together with the tag associated with each falsified goal clause
(if any), represents an MCS for F . V represents the negative literals in falsified
goal clauses, and will be used to create additional subproblems. In contrast, C
represents the literals in V and also includes the variables in the tags of the
falsified goal clauses. If the computed MCS has already been seen before, then

Efficient Reasoning for Inconsistent Horn Formulae 345

Table 2. MCS enumeration example

Formula F Depth False clauses MCS Literals Picked
literal

F1 � {(x1), (¬x1), (x2), (¬x2)} 0 {(¬x1), (¬x2)} {(¬x1), (¬x2)} {x1, x2} x1

F2 � {(), (x2), (¬x2)} 1 {(), (¬x2)} {(x1), (¬x2)} {x2} x2

F3 � {(), ()} 2 {(), ()} {(x1), (x2)} ∅ –

F1 0 – – {x1, x2} x2

F4 � {(x1), (¬x1), ()} 1 {(¬x1), ()} {(¬x1), (x2)} {x1} x1

F5 � {(), ()} 2 {(), ()} {(x1), (x2)} ∅ –

the algorithm returns without further action. Otherwise, the MCS has not been
computed before, and it is recorded in a global register of MCSes M. This MCS
is then used to generate a number of modified formulas, from which additional
MCSes of the original F can be computed. Observe that line 7 and line 8 in
Algorithm 4 can be viewed as forcing some variable to be assigned value 0, hence
blocking the one-sided unit propagation of LTUR.

Example 1. Consider the formula: F � {(x1), (¬x1), (x2), (¬x2)}. Table 2 sum-
marizes the execution of Algorithm 4. For each recursion depth (0, 1 or 2), the
literal picked is the literal selected in line 6 of Algorithm4. Given the falsified
clauses identified by LTURs, the actual MCS is obtained from these clauses,
each augmented with its own tagging literal, if any.

Proposition 3. Algorithm4 is sound and complete; i.e., it computes all MCSes.

Proof (Sketch). Algorithm 4 iterates the enumeration of MCSes by selecting some
variable v assigned value 1 by LTURs (see line 6), and then changing the for-
mula such that the variable is removed. This step corresponds to replacing the
variable v with value 0, or alternatively by forcing v to be assigned value 0. This
process changes the set of falsified clauses. These observations enable us to prove
soundness and completeness.

Soundness. The proof is by induction on i, the number of variables forced to
be assigned value 0 in, which uniquely identify each MCS. For the base case
(i = 1), consider the MCS associated with no variables yet forced to be assigned
value 0. Force some 1-valued variable in the MCS to be assigned value 0. Re-run
LTURs. The set of falsified clauses is an MCS, provided we augment the falsified
goal clauses with their tag variable. For the inductive step, suppose we have i
variables forced to be assigned value 0 and some current MCS. Force some other
1-valued variable in the MCS to be assigned value 0. Run LTURs. Again, the
set of falsified clauses is an MCS.

Completeness. Consider the operation of moving from one MCS to another,
obtained from assigning some variables to value 0. This consists in reverting
some unit propagation step, where a variable was assigned value 1 and is now
forced to be assigned value 0. The algorithm reverts unit propagation steps in

346 J. Marques-Silva et al.

order, creating a search tree. Each node in this search tree represents one MCS
and is expanded into k children. Each child node is associated with one of the 1-
valued literals in the MCS to be forced to be assigned value 0. Thus, Algorithm4
will enumerate all subsets of variables assigned value 1, which lead to a conflict
being identified, and so all MCSes are enumerated. �

Proposition 4. Algorithm4 enumerates the MCSes of an inconsistent Horn
formula F with polynomial delay.

Proof (Sketch). At each iteration, Algorithm4 runs LTURs in linear time, and
transforms the current working formula, also a linear time operation, once for
each literal in the target set of literals. The algorithm must check whether the
MCS has already been computed, which can be done in time logarithmic on
the number of MCSes stored in the MCS registry, e.g. by representing the reg-
istry with a balanced search tree. The additional work done by Algorithm4 in
between computed MCSes is polynomial on the formula size. The iterations that
do not produce an MCS are bounded by a polynomial as follows. An MCS can
be repeated from a recursive call, but only after one new MCS is computed.
Each new MCS can recursively call Algorithm 4 O(|F|) times, in the worst-case
each call leading to an MCS not being computed. Thus, the overall cost of recur-
sive calls to Algorithm 4 leading to an MCS not being computed is polynomial.
Therefore, Algorithm 4 computes MCSes of an inconsistent Horn formula with
polynomial delay. �

4.3 Finding the Lean Kernel

The lean kernel is the set of all clauses that can be used in some resolution
refutation of a propositional formula, and has been shown to be tightly related
with the concept of maximum autarky [24–26]. Autarkies were proposed in the
mid 80s [38] with the purpose of devising an algorithm for satisfiability requir-
ing less than 2n steps. Later work revealed the importance of autarkies when
analyzing inconsistent formulas [24,25,27,34]. Indeed, the lean kernel represents
an over-approximation of

⋃

MU [24–27], that is in general easier to compute for
arbitrary CNF formulae. As shown in this section, the same holds true for Horn
formulae.

Example 2. Consider the Horn formula: F � {(a), (¬a∨b), (¬b∨x), (¬x∨b), (¬b∨
c), (¬c), (¬b ∨ d)}. It is easy to see that the lean kernel of F is: K � {(a), (¬a ∨
b), (¬b ∨ x), (¬x ∨ b), (¬b ∨ c), (¬c)}. Indeed, there exists a resolution proof that
resolves on x once and on b twice in addition to resolving on a and c. On the
other hand, F has only one MUS, and hence

⋃

MU is given by: U � {(a), (¬a ∨
b), (¬b ∨ c), (¬c)}.

The most efficient practical algorithms for computing the maximum autarky,
and by extension the lean kernel, exploit intrinsic properties of maximum
autarkies and reduce the problem to computing one MCS [34]. Other recently
proposed algorithms require asymptotically fewer calls in the worst case [28].

Efficient Reasoning for Inconsistent Horn Formulae 347

Function LeanKernel(F)

Input : F : input Horn formula
Output: K: lean kernel of F

1 (U , α) ← LTURs(F) // See Algorithm 2
2 K ← TraceAntecedents(U , α) // See Algorithm 3
3 return K

Algorithm 5. Computing the Lean Kernel

The reduction of maximum autarky to the problem of computing one MCS
involves calling a SAT solver on an arbitrary CNF formula a logarithmic num-
ber of times, in the worst-case. In contrast, it is possible to obtain a polynomial
(non-linear) time algorithm by exploiting LTUR [37] and the maximum autarky
extraction algorithm based on the iterative removal of resolution refutations [26].
This simple polynomial time algorithm can be further refined to achieve a linear
time runtime behavior for computing the lean kernel for Horn formulae, even in
the presence of background knowledge, as shown next.

Algorithm 5 exploits LTUR saturation for computing a set of clauses K
that corresponds to the lean kernel.The algorithm simply traverses all possi-
ble antecedents, starting from the falsified clauses until the unit positive clauses
are reached. The set of all traced clauses corresponds to the lean kernel, as they
are all clauses that can appear in a resolution refutation, by construction (see
Proposition 5). Notice that the correctness of this algorithm does not depend on
the presence or absence of background knowledge. Thus, the lean kernel can be
computed in linear time also for formulas with B �= ∅.

Example 3. Consider again the formula F from Example 2. After applying
LTURs to F , we obtain the antecedent sets of all activated variables. Observe
that, among others, (¬b ∨ x) and (¬x ∨ b) are antecedents of x and b, respec-
tively. After tracing the antecedents of the falsified clauses, we obtain the set of
clauses U .

Proposition 5. Algorithm5 computes the lean kernel of the input Horn
formula F .

Proof. Recall that LTURs only assigns the value 1 to a variable v when this is
necessary to satisfy some clause in F . In order to trace the causes for incon-
sistency, all such clauses are stored by LTURs as antecedents for the variable
activation. Thus, for every clause c in α(v) there exists a proof derivation for the
assignment of 1 to v that uses this clause c. Thus all the traced clauses from F
given the falsified clauses and α appear in some resolution refutation of F ; that
is, they belong to the lean kernel.

Conversely, notice that resolving two Horn clauses yields a new Horn clause.
Moreover, the number of variables in a clause can only be reduced by resolving
with a clause containing only a single (positive) variable. Thus, every resolution
refutation of F can be transformed into a sequence of steps of LTUR leading to a
conflict, with the resolving clauses appearing as antecedents for each activation.

348 J. Marques-Silva et al.

In particular, all clauses in the lean kernel are found while tracing antecedents
of falsified clauses. �

4.4 MUS and MCS Membership

As stated already, the lean kernel is an over-approximation of
⋃

MU [25] that
can be computed in linear time. In contrast, finding the precise set

⋃

MU is
significantly harder. In fact, deciding whether a given clause c belongs to

⋃

MU
is NP-complete, even if B = ∅.

Definition 3 (MUS/MCS Membership). Let F be a formula and c ∈ F \B.
The MUS membership problem is to decide whether there exists an MUS M of
F such that c ∈ M. The MCS membership problem is to decide whether there
exists an MCS C of F such that c ∈ C.

It was previously shown that MUS membership is a computationally hard
problem. Indeed, for Horn formulae this problem is already NP-complete
[42, Theorems 17 and 18], and for arbitrary CNF formulae, its complexity
increases to Σp

2-complete [30].
Interestingly, the hitting set duality between MUSes and MCSes [43] implies

that a clause is in some MCS if and only if it is in some MUS. In other words, the
identity

⋃

MU(F) =
⋃

MC(F) holds. From this fact, it automatically follows
that MCS membership is also NP-complete [41, Theorem 6.5].

Proposition 6. The MCS membership problem is NP-complete.

Through the non-deterministic algorithm that decides MUS membership, it is
then possible to prove, using the techniques from [21] that

⋃

MU can be com-
puted through logarithmically many calls to a witness oracle.

Proposition 7.
⋃

MU(F) is in FPNP[wit,log].

Proof (Sketch). Notice first that
⋃

MU(F) can be computed through a linear
number of parallel queries to an NP oracle. More precisely, for every clause c in F
we decide the MUS membership problem for c. As shown in [21, Remark 4], these
parallel queries can be replaced by a logarithmic number of calls to a witness
oracle. It then follows that

⋃

MU(F) is in FPNP[wit,log]. �

Remark 1. Since

⋃

MU(F) =
⋃

MC(F), then
⋃

MC(F) is also in FPNP[wit,log].

5 Experimental Results

To illustrate the importance of the algorithms developed in Sect. 4, we inves-
tigate the size of the lean kernel (see Algorithm 5) for 1000 unsatisfiable Horn
formulae that encode axiom pinpointing problems in the description logic EL+

using the encoding from [44–46]. These instances were used in [3] as bench-
marks for enumerating MUSes of Horn formulae (with B �= ∅). There are two

Efficient Reasoning for Inconsistent Horn Formulae 349

100 101 102 103 104 105 106 107

lean kernel size, |K|
100

101

102

103

104

105

106

107
fo
rm

ul
a
si
ze
,|

F|

(a) Scatter plot for COI instances

0 100 200 300 400 500
instances

10−3

10−2

10−1

100

101

102

|K
|

|F
|×

10
0
(%

)

COI instances

(b) Cactus plot for COI instances

0 100 200 300 400 500
instances

100

101

102

|K
|

|F
|×

10
0
(%

)

x2 instances

(c) Cactus plot for x2 instances

Fig. 1. Formula reductions for COI and x2 instances

kinds of instances that correspond to two different reduction techniques proposed
in [45,46], namely COI and the more effective x2 optimization. The experiments
include 500 instances of each kind. Earlier work [3,45,46] showed that the size
of the formulae has a great impact in the efficiency of MUS enumeration, being
the COI instances (much) harder to solve than the x2 instances.

We computed the lean kernel of each of the 1000 test formulae and com-
pared the size of the result with the size of the original formula. The results
of these comparisons are depicted in Fig. 1. The scatter plot in Fig. 1a summa-
rizes the formulae reductions for the COI instances. The cactus plots summarize
the formulae reductions for the COI and x2 instances, respectively. As can be
observed, for the COI instances with more than 100 clauses, the size of the lean
kernel (i.e. an over-approximation of the clauses that are relevant for comput-
ing MUSes and MCSes) is often around 1 % (or less) of the original formula.
Figure 1b confirms that for around 50 % of the instances, the lean kernel size
is less than 1 % of the original problem instance size. In other words, the lean
kernel is at least two orders of magnitude smaller than the input formula in most
of these cases. In practical terms, this means that for many of the Horn formulae
used for axiom pinpointing in the recent past based on COI reduction, around
more than 99 % of the clauses are irrelevant for the computation of MUSes and
MCSes. The results obtained for the x2 instances (Fig. 1c) are not as dramatic.
This was expected as the x2 reduction is more effective in removing irrelevant
clauses from the formula. However, even in this case the lean kernel is strictly
smaller than the input formula in all but 19 instances. From these 19 instances,
one has 25 clauses, and all others contain 6 clauses; thus, it is not surprising that

350 J. Marques-Silva et al.

no reduction was achieved through the lean kernel. Interestingly, about half of
the instances observed a reduction of over 20 %, and in some extreme cases the
size of the formula was reduced in more than 90 %. To the best of our knowledge,
these are the first practical problem instances for which the size of the maximum
autarky (i.e., the complement of the lean kernel) is non-negligible.

6 Conclusions

We have developed several new results related to reasoning about inconsistent
Horn formulae. These results complement earlier work [3,5,42], and find applica-
tion in a number of settings, including axiom pinpointing of lightweight descrip-
tion logics. In particular, we presented a polynomial delay algorithm for enu-
merating all MCSes, and a linear-time method for computing the lean kernel of
a formula.

We illustrate the relevance of our work by analyzing Horn formulae that
encode axiom pinpointing problems in the description logic EL+. The experi-
mental results show that commonly used Horn formulae [2,3,44] contain a very
large proportion of irrelevant clauses, i.e. clauses that do not interfere with con-
sistency. With the exception of a few outliers related with very small formulae,
most formulae have around 99 % of irrelevant clauses, which can be identified
with a linear time algorithm. From a practical perspective, a natural step is to
exploit the linear time lean kernel identification in state of the art axiom pin-
pointing tools [1–3,32] and other problems where MUS enumeration and mem-
bership are important.

References

1. Arif, M.F., Menćıa, C., Ignatiev, A., Manthey, N., Peñaloza, R., Marques-Silva, J.:
BEACON: an efficient SAT-based tool for debugging EL+ ontologies. In: Creignou,
N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 521–530. Springer,
Heidelberg (2016). doi:10.1007/978-3-319-40970-2 32

2. Arif, M.F., Menćıa, C., Marques-Silva, J.: Efficient axiom pinpointing with
EL2MCS. In: Hölldobler, S., Krötzsch, M., Peñaloza, R., Rudolph, S. (eds.) KI
2015. LNCS (LNAI), vol. 9324, pp. 225–233. Springer, Heidelberg (2015). doi:10.
1007/978-3-319-24489-1 17

3. Arif, M.F., Menćıa, C., Marques-Silva, J.: Efficient MUS enumeration of horn for-
mulae with applications to axiom pinpointing. In: Heule, M., Weaver, S. (eds.)
SAT 2015. LNCS, vol. 9340, pp. 324–342. Springer, Heidelberg (2015). doi:10.
1007/978-3-319-24318-4 24

4. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: IJCAI, pp. 364–369
(2005)

5. Baader, F., Peñaloza, R., Suntisrivaraporn, B.: Pinpointing in the description logic
EL+. In: Hertzberg, J., Beetz, M., Englert, R. (eds.) KI 2007. LNCS (LNAI), vol.
4667, pp. 52–67. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74565-5 7

6. Bacchus, F., Davies, J., Tsimpoukelli, M., Katsirelos, G.: Relaxation search: a
simple way of managing optional clauses. In: AAAI, pp. 835–841 (2014)

http://dx.doi.org/10.1007/978-3-319-40970-2_32
http://dx.doi.org/10.1007/978-3-319-24489-1_17
http://dx.doi.org/10.1007/978-3-319-24489-1_17
http://dx.doi.org/10.1007/978-3-319-24318-4_24
http://dx.doi.org/10.1007/978-3-319-24318-4_24
http://dx.doi.org/10.1007/978-3-540-74565-5_7

Efficient Reasoning for Inconsistent Horn Formulae 351

7. Bacchus, F., Katsirelos, G.: Using minimal correction sets to more efficiently
compute minimal unsatisfiable sets. In: Kroening, D., Păsăreanu, C.S. (eds.)
CAV 2015. LNCS, vol. 9207, pp. 70–86. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-21668-3 5

8. Bakker, R.R., Dikker, F., Tempelman, F., Wognum, P.M.: Diagnosing and solving
over-determined constraint satisfaction problems. In: IJCAI, pp. 276–281 (1993)

9. Bate, A., Motik, B., Grau, B.C., Simancik, F., Horrocks, I.: Extending consequence-
based reasoning to SRIQ. In: KR, pp. 187–196 (2016)

10. Belov, A., Lynce, I., Marques-Silva, J.: Towards efficient MUS extraction. AI Com-
mun. 25(2), 97–116 (2012)

11. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfia-
bility. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press,
Amsterdam (2009)

12. Bjørner, N., Fioravanti, F., Rybalchenko, A., Senni, V. (eds.) Proceedings First
Workshop on Horn Clauses for Verification and Synthesis, HCVS 2014, Vienna,
Austria, 17 July 2014. EPTCS, vol. 169 (2014)

13. Bjørner, N., Gurfinkel, A., McMillan, K., Rybalchenko, A.: Horn clause solvers for
program verification. In: Beklemishev, L.D., Blass, A., Dershowitz, N., Finkbeiner,
B., Schulte, W. (eds.) Fields of Logic and Computation II: Essays Dedicated to
Yuri Gurevich on the Occasion of his 75th Birthday. LNCS, vol. 9300, pp. 24–51.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-23534-9 2

14. Buss, S.R., Kraj́ıček, J., Takeuti, G.: Provably total functions in the bounded
arithmetic theories Ri

3, U i
2, and V i

2 . In: Clote, P., Kraj́ıček, J. (eds.) Arithmetic,
Proof Theory, and Computational Complexity, pp. 116–161. OUP (1995)

15. Chinneck, J.W., Dravnieks, E.W.: Locating minimal infeasible constraint sets in
linear programs. INFORMS J. Comput. 3(2), 157–168 (1991)

16. Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing the satisfiability
of propositional Horn formulae. J. Log. Program. 1(3), 267–284 (1984)

17. Eiter, T., Gottlob, G.: The complexity of logic-based abduction. J. ACM 42(1),
3–42 (1995)

18. Henschen, L.J., Wos, L.: Unit refutations and Horn sets. J. ACM 21(4), 590–605
(1974)

19. Horn, A.: On sentences which are true of direct unions of algebras. J. Symb. Log.
16(1), 14–21 (1951)

20. Itai, A., Makowsky, J.A.: Unification as a complexity measure for logic program-
ming. J. Log. Program. 4(2), 105–117 (1987)

21. Janota, M., Marques-Silva, J.: On the query complexity of selecting minimal sets
for monotone predicates. Artif. Intell. 233, 73–83 (2016)

22. Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: On generating all maximal
independent sets. Inf. Process. Lett. 27(3), 119–123 (1988)

23. Kazakov, Y., Krötzsch, M., Simancik, F.: The incredible ELK - from polynomial
procedures to efficient reasoning with ontologies. J. Autom. Reasoning 53(1), 1–61
(2014)

24. Kleine Büning, H., Kullmann, O.: Minimal unsatisfiability and autarkies. In: Biere,
A., et al. [11], pp. 339–401

25. Kullmann, O.: Investigations on autark assignments. Discrete Appl. Math. 107
(1–3), 99–137 (2000)

26. Kullmann, O.: On the use of autarkies for satisfiability decision. Electron. Notes
Discrete Math. 9, 231–253 (2001)

http://dx.doi.org/10.1007/978-3-319-21668-3_5
http://dx.doi.org/10.1007/978-3-319-21668-3_5
http://dx.doi.org/10.1007/978-3-319-23534-9_2

352 J. Marques-Silva et al.

27. Kullmann, O., Lynce, I., Marques-Silva, J.: Categorisation of clauses in conjunctive
normal forms: minimally unsatisfiable sub-clause-sets and the lean kernel. In: Biere,
A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 22–35. Springer, Heidelberg
(2006). doi:10.1007/11814948 4

28. Kullmann, O., Marques-Silva, J.: Computing maximal autarkies with few and sim-
ple oracle queries. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp.
138–155. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24318-4 11

29. Li, C.M., Manyà, F., Mohamedou, N.O., Planes, J.: Resolution-based lower bounds
in MaxSAT. Constraints 15(4), 456–484 (2010)

30. Liberatore, P.: Redundancy in logic I: CNF propositional formulae. Artif. Intell.
163(2), 203–232 (2005)

31. Liberatore, P.: Redundancy in logic II: 2CNF and Horn propositional formulae.
Artif. Intell. 172(2–3), 265–299 (2008)

32. Manthey, N., Peñaloza, R., Rudolph, S.: Efficient axiom pinpointing in EL using
SAT technology. In: DL (2016)

33. Marques-Silva, J., Heras, F., Janota, M., Previti, A., Belov, A.: On computing
minimal correction subsets. In: IJCAI, pp. 615–622 (2013)

34. Marques-Silva, J., Ignatiev, A., Morgado, A., Manquinho, V.M., Lynce, I.: Efficient
autarkies. In: ECAI, pp. 603–608 (2014)

35. Menćıa, C., Ignatiev, A., Previti, A., Marques-Silva, J.: MCS extraction with sub-
linear oracle queries. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol.
9710, pp. 342–360. Springer, Heidelberg (2016). doi:10.1007/978-3-319-40970-2 21

36. Menćıa, C., Previti, A., Marques-Silva, J.: Literal-based MCS extraction. In:
IJCAI, pp. 1973–1979 (2015)

37. Minoux, M.: LTUR: a simplified linear-time unit resolution algorithm for Horn
formulae and computer implementation. Inf. Process. Lett. 29(1), 1–12 (1988)

38. Monien, B., Speckenmeyer, E.: Solving satisfiability in less than 2n steps. Discrete
Appl. Math. 10(3), 287–295 (1985)

39. Papadimitriou, C.H.: Computational Complexity. Addison Wesley, Redwood City
(1993)

40. Papadimitriou, C.H.: NP-completeness: a retrospective. In: Degano, P., Gorrieri, R.,
Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 2–6. Springer,
Heidelberg (1997). doi:10.1007/3-540-63165-8 160

41. Peñaloza, R.: Axiom-pinpointing in description logics and beyond. Ph.D. thesis,
Dresden University of Technology, Germany (2009)

42. Peñaloza, R., Sertkaya, B.: On the complexity of axiom pinpointing in the EL
family of description logics. In: KR (2010)

43. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95
(1987)

44. Sebastiani, R., Vescovi, M.: Axiom pinpointing in lightweight description logics
via Horn-SAT encoding and conflict analysis. In: Schmidt, R.A. (ed.) CADE 2009.
LNCS (LNAI), vol. 5663, pp. 84–99. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-02959-2 6

45. Sebastiani, R., Vescovi, M.: Axiom pinpointing in large EL+ ontologies via SAT
and SMT techniques. Technical report DISI-15-010, DISI, University of Trento,
Italy. http://disi.unitn.it/∼rseba/elsat/elsat techrep.pdf

46. Vescovi, M.: Exploiting SAT and SMT techniques for automated reasoning and
ontology manipulation in description logics. Ph.D. thesis, University of Trento
(2011)

http://dx.doi.org/10.1007/11814948_4
http://dx.doi.org/10.1007/978-3-319-24318-4_11
http://dx.doi.org/10.1007/978-3-319-40970-2_21
http://dx.doi.org/10.1007/3-540-63165-8_160
http://dx.doi.org/10.1007/978-3-642-02959-2_6
http://dx.doi.org/10.1007/978-3-642-02959-2_6
http://disi.unitn.it/~rseba/elsat/elsat_techrep.pdf

Information Flow Under Budget Constraints

Pavel Naumov1(B) and Jia Tao2

1 Vassar College, Poughkeepsie, NY, USA
pgn2@cornell.edu

2 The College of New Jersey, Ewing, NJ, USA
taoj@tcnj.edu

Abstract. Although first proposed in the database theory as proper-
ties of functional dependencies between attributes, Armstrong’s axioms
capture general principles of information flow by describing properties of
dependencies between sets of pieces of information. This paper general-
izes Armstrong’s axioms to a setting in which there is a cost associated
with information. The proposed logical system captures general prin-
ciples of dependencies between pieces of information constrained by a
given budget.

1 Introduction

1.1 Functional Dependency

Armstrong [4] introduced a system of three axioms describing the properties of
functional dependencies between sets of attributes in a database. The applica-
bility of these axioms goes far beyond the domain of databases. They capture
the properties of functional dependency between any two sets of pieces of infor-
mation. To describe this setting informally, one can think of an agent that has
knowledge of some of the pieces of information and is interested in uncovering
some other pieces. For example, knowing a cyphertext c and the decryption key
k, one can determine the plain text message m. We write this as c, k � m. Yet,
one cannot determine the original message from the cyphertext alone without
the encryption key, and thus, ¬(c � m). Keeping the intended epistemic inter-
pretation in mind, we refer to the pieces of information as secrets.

The property c, k � m is valid when secrets c, k, and m are a cyphertext, a
decryption key, and the corresponding plain text message. However, it may not
be valid under some other interpretation of these secrets. Armstrong’s axioms
capture the most general properties of functional dependencies that are valid in
all settings. These axioms are:

(A1) Reflexivity: A � B, if B ⊆ A,
(A2) Augmentation: A � B → A,C � B,C,
(A3) Transitivity: A � B → (B � C → A � C),

where A,B denotes the union of sets of secrets A and B, and ϕ → ψ denotes the
logical implication. Armstrong [4] proved the soundness and the completeness of
this logical system with respect to a database semantics.
c© Springer International Publishing AG 2016
L. Michael and A. Kakas (Eds.): JELIA 2016, LNAI 10021, pp. 353–368, 2016.
DOI: 10.1007/978-3-319-48758-8 23

354 P. Naumov and J. Tao

The above axioms became known in database literature as Armstrong’s
axioms, see Garcia-Molina, Ullman, and Widom [8, p. 81]. Beeri, Fagin, and
Howard [5] suggested a variation of Armstrong’s axioms that describes proper-
ties of multi-valued dependency. Hartmann, Link, and Schewe [10] investigated
a “weak” version of functional dependency. Väänänen [18] proposed a first order
version of these principles. Naumov and Nicholls [14] developed a similar set of
axioms for what they called the rationally functional dependency.

1.2 Approximate Dependency

There have been two different approaches to extending Armstrong’s axioms to
handle approximate reasoning. Bělohlávek and Vychodil [6] described a complete
logical system that formally captures the relation approximate values of secrets
in set A functionally determine approximate values of secrets in set B. In his
upcoming work [19], Väänänen considered the relation secrets in set A determine
secrets in set B with exception of p fraction of possible combinations of values
of all secrets. We denote this relation by A �p B. For example, A �0.05 B means
that secrets in set A determine secrets in set B in all but 5 % of the possible
combinations. Väänänen [19] proposed a complete axiomatic system for this
relation, consisting of the following principles for all real numbers p, q ∈ [0, 1]:

1. Reflexivity: A �0 B, where B ⊆ A,
2. Totality: A �1 B,
3. Weakening: A �p C,D → A,B �p C,
4. Augmentation: A �p B → A,C �p B,C,
5. Transitivity: A �p B → (B �q C → A �p+q C), where p + q ≤ 1,
6. Monotonicity: A �p B → A �q B, where p ≤ q.

Note that Väänänen’s relation A �p B, when p = 0, is exactly the original
Armstrong’s functional dependency relation. In the case of an arbitrary p, rela-
tion A �p B could be considered as a “weaker” form of functional dependency,
which might hold even in the cases where the functional dependency does not
hold.

1.3 Budget-Constrained Dependency

In this paper we propose another interpretation of atomic predicate A�p B that
we call the budget-constrained dependency. Just like Väänänen’s approximate
dependency, the budget-constrained dependency is a weaker form of the original
Armstrong’s functional dependency relation. Intuitively, A �p B means that an
agent who already knows secrets in set A can recover secrets in set B at cost no
more than p. More formally, we assume that a non-negative cost is assigned to
each secret and that A �p B means that there is a way to add several secrets
with the total cost no more than p to set A in such a way that the extended set
of secrets functionally determines all secrets in set B.

Information Flow Under Budget Constraints 355

One example of such a setting is fees associated with information access: crim-
inal background check fees, court records obtaining fees, etc. Another example
is geological explorations, where learning about deposits of mineral resources
often requires costly drilling. Although it is convenient to think about a budget
constraint as a financial one, a budget constraint can also refer to a limit on
time, space, or some other resource.

In this paper we introduce a sound and complete logical system for the
budget-constrained dependency which is based on the following three principles
that generalize Armstrong’s axioms:

1. Reflexivity: A �p B, if B ⊆ A,
2. Augmentation: A �p B → A,C �p B,C,
3. Transitivity: A �p B → (B �q C → A �p+q C).

1.4 Functional vs. Budget-Constrained Dependencies

Armstrong’s axioms of functional dependency as well as our axioms of budget-
constrained functional dependency can be formulated into two different ways
using languages with different expressive power.

One approach is to allow only statements in our language that have the
form A �p B and not allow Boolean combinations of such statements. In this
case, Armstrong’s axioms should be stated as inference rules that allow to derive
statements of the form A �p B from other statements of the same form.

The other approach is to include Boolean connectives into the language.
In this case, statements of the form A �p B become atomic statements in the
language. Then, Armstrong’s axioms can be stated as actual axioms that would
be used in the logical system along with the propositional tautologies and Modus
Ponens inference rule.

The second approach clearly yields a more expressive language. While the
proofs of the completeness of original Armstrong’s axioms of functional depen-
dency are surprisingly similar for these two cases, the situation is different when it
comes to budget-constrained dependency. The more expressive language requires
a significantly more sophisticated argument to prove the completeness theorem.
In this paper we only consider the more expressive language. In the rest of this
section we look at several examples to compare challenges raised by the proofs
of the completeness for Armstrong’s functional dependency and our budget-
constrained dependency.

As the first example, consider the formula a � b → b � a in the language
without budget constraints. To construct a counterexample for this formula we
need to describe a model in which secret a functionally determines secret b but
not vice versa. Informally, to construct this model, imagine a and b to be two
paper folders. Let folder a contain copies of two different (and unrelated to each
other) documents: X and Y , and let folder b contain only a copy of document
Y . In this case, an agent can recover the content of folder b based on folder a
but not vice versa.

356 P. Naumov and J. Tao

a

X

b

Fig. 1. Formula a � b is true, but formula b � a is false.

There is even a simpler counterexample for formula a � b → b � a. Namely,
consider a model in which folder a stores a copy of document X and folder b
is empty, see Fig. 1. In this model, based on the content of folder a one can
vacuously recover the content of empty folder b. At the same time, based on the
content of empty folder b one cannot recover the content of folder a. Thus, in
this model formula a � b → b � a is false.

a

X

b

Y

Fig. 2. Formulas a � b and b � a are both false.

Now consider formula a� b∨ b�a. To construct its counterexample, one can
consider a model in which folders a and b containing copies of two different (and
unrelated to each other) documents X and Y respectively, see Fig. 2.

To construct counterexamples for more complicated formulas, one can con-
sider models with multiple folders containing copies of multiple documents. An
example of such a model is depicted in Fig. 3. In this model a, b � c is true
because anyone with access to folders a and b knows the content of folder c. The
folder/document model informally described here is sufficiently general to create
a counterexample for each formula unprovable from Armstrong’s axioms.

cb

Y

Y

a

Z

XX

Fig. 3. Formula a, b � c is true.

Information Flow Under Budget Constraints 357

In fact, the original Armstrong’s proof of the completeness for his rule-based
system and the proof of the completeness for the corresponding axiom-based sys-
tem [11] could be viewed as formalizations of this folder/document construction.

b

X

a

$5$3

Fig. 4. Formula a �4 b is false.

The situation becomes significantly more complicated once the cost of infor-
mation is added to the language. Let us start with a very simple example. If we
want to construct a counterexample for formula a �4 b, then we can consider a
model depicted in Fig. 4 with two folders: a and b, priced at $3 and $5, respec-
tively. The first folder is empty and the second contains a copy of the document
X. It is clear that in this model anyone who knows the content of folder a still
needs to spend $5 to learn the content of folder b. Thus, budget-constrained
dependency a �p b is not satisfied in this model for each p < 5.

b

X

a

$5$3

c

Encrypt(X,P)

$4

P

Fig. 5. Formula a �4 b → ∅ �4 b is false.

Let us now consider a more interesting example. Suppose that we want to
construct a counterexample for the formula a �4 b → ∅ �4 b. That is, we want
to construct a model where anyone who knows the content of folder a can recon-
struct the content of folder b after spending at most $4. Yet, the same can-
not be done without access to folder a. To construct such a model we use the

358 P. Naumov and J. Tao

cryptographic tool called one-time encryption pad1. Our model consists of three
folders a, b, and c priced at $3, $5, and $4, respectively, see Fig. 5. Let folder
b contain a copy of a document X, folder c contain an encryption pad P , and
folder a contain the encrypted version of the document. In this model, ∅ �4 b is
false because $4 buys either access to the encryption pad in folder c or access to
the encrypted text in folder a, but not both. However, formula a �4 b is true in
the same model because anyone who knows encrypted text Encrypt(X,P) can
spend $4 on pad P , decode message X, and thus, learn the content of folder b.

The one-time pad encryption is known in cryptography as a symmetric-key
algorithm because the same key (i.e. the one-time pad) could be used to encrypt
and to decrypt the text. As a result, in the model depicted in Fig. 5, not only
formula a �4 b is true, but formula b �4 a is true as well.

For the next example, we construct a counterexample for formula

a �4 b → (∅ �4 b ∨ b �4 a).

b

X

a

$5$7

c

Encrypt(X,P)

$4

P

Y

Fig. 6. Formula a �4 b → (∅ �4 b ∨ b �4 a) is false.

This is an easier task than one might think because one just needs to modify the
previous model by adding to the folder a some extra document not related to
the document X and to raise the price of this folder, see Fig. 6. This guarantees
that the only way to learn all the content of folder a is to buy folder a directly.

The situation becomes much more complicated if we want (i) the value of
secret a to be recoverable from the value of secret b and (ii) the value of secret b
to be recoverable from the value of secret a, but at a different price. For instance,
if we want to construct a counterexample for the following formula:

a �1 b ∧ b �5 a → (∅ �5 a ∨ ∅ �1 b ∨ b �4 a). (1)

At first glance, this goal could be achieved using asymmetric key cryptography,
commonly used in the public-key encryption. For instance, suppose that folder

1 The one-time encryption pad is not the only way to construct a counterexample for
formula a �4 b → ∅ �4 b. We introduce one-time pads to prepare readers for the
general proof of the completeness presented later in this paper.

Information Flow Under Budget Constraints 359

a contains a document X and folder b contains the same document encrypted
with an encryption key ke, see Fig. 7. To obtain the content of folder b based
on the content of folder a, one only needs to know the encryption key ke. To
restore the content of folder a based on folder b one needs to know the value
of the decryption2 key kd. If the encryption key and the decryption key are
priced at $1 and $5 respectively, the formula b �4 a is not satisfied from the
cryptographic point of view. Since folders a and b are priced in this model at
$100 each, formulas ∅ �5 a and ∅ �1 b are not satisfied either. Thus, the entire
formula (1) is not satisfied from the cryptographic point of view.

a

X

$100

b

$100

AsymEncrypt(X,ke)

c

$1

ke

d

kd

$5

Fig. 7. Formula a �1 b ∧ b �5 a → (∅ �5 a ∨ ∅ �1 b ∨ b �4 a) is false.

Note, however, that cryptographic asymmetric-key algorithms are only poly-
nomial time secure and the proof of polynomial time security requires an appro-
priate computational hardness assumption [13, Chap. 2]. In other words, in
public-key cryptography, the encrypted text can be decrypted using only the
public encryption key if one has exponential time for the decryption. Neither
Armstrong’s [4] definition of functional dependency nor our definition of budget-
constrained functional dependency, given in Definition 6 below, assumes any
upper bound on the computability of the functional dependency. From our point
of view, one would be able to eventually restore the content of folder a based on
folder b by spending $1 on the content of folder c. Thus, in the above setting,
without polynomial restriction on computability, not only formula b�4 a is true,
but formula b �1 a is true as well.

Figure 8 shows a counterexample for statement (1) that uses non-computable
functional dependency. Assume that folders a and b contain copies of unre-
lated documents X and Y , folder c contains an infinite supply of one-time
encryption pads P1, P2, P3, . . . and folder d contains another infinite set of
one-time encryption pads Q1, Q2, Q3, First, encrypt document Y with one-
time pad P1 and place a copy of the resulting cyphertext Encrypt(Y, P1) into
folder a. Next, encrypt Encrypt(Y, P1) with pad Q2 and place a copy of the
2 In public-key cryptography, an encryption key is known as the public key and a
decryption key as the private key. We do not use these terms here because in our
setting neither of the keys is public in the sense that both of them have associated
costs.

360 P. Naumov and J. Tao

resulting cyphertext Encrypt(Encrypt(Y, P1), Q2) into folder b. Then, use pad
P3 to encrypt Encrypt(Encrypt(Y, P1), Q2) and place a copy of the resulting
cyphertext Encrypt(Encrypt(Encrypt(Y, P1), Q2), P3) into folder a, and so on
ad infinitum. Perform similar steps with the document X, as shown in Fig. 8.

To show that the model depicted in Fig. 8 is a counterexample for formula (1),
we need to prove that both formulas a�1 b and b�5 a are satisfied in this model
and each of the formulas ∅ �5 a, ∅ �1 b, and b �4 a is not satisfied. First,
notice that formula a �1 b is satisfied because folder a contains all documents in
folder b encrypted with one-time pads P1, P2, . . . and that all these pads could be
acquired for $1 by buying folder c. Second, formula b�5a is satisfied for a similar
reason using pads Q1, Q2, Third, formula ∅ �5 a is not satisfied because for
$5 one can only buy either folder c or folder d, both containing only one-time
pads. In the absence of folder b, one-time encryption pads can not be used to
recover document X stored in folder a. Formula ∅�1b is not satisfied for a similar
reason. Finally, b�4a is not satisfied because $4 is not enough to buy the content
of folder d. This amount of money can only be used to buy pads P1, P2, . . . in
folder c. Knowing the content of folder b and one-time pads P1, P2, . . . , one can
not recover document X contained in folder a. The counterexample described
above produces non-computable functional dependency because the number of
folders is infinite.

In the full version [15] of this paper we prove the completeness of our logical
system. At the core of this proof is a generalized version of the construction
presented in Fig. 8.

b

Encrypt(Encrypt(Y,P1),Q2)

a

Encrypt(Encrypt(X,Q1),P2)

$100

$100

c

$1

P1

Y

d

Encrypt(X,Q1)

X

Encrypt(Y,P1)

Encrypt(Encrypt(Encrypt(X,Q1),P2),Q3)

Encrypt(Encrypt(Encrypt(Y,P1),Q2),P3)

......

......

P2
P3

......

Q1 Q2
Q3

......

$5

Fig. 8. Formula a �1 b ∧ b �5 a → (∅ �5 a ∨ ∅ �1 b ∨ b �4 a) is false.

Information Flow Under Budget Constraints 361

As we have seen in the examples above, the complexity of constructing coun-
terexamples arises from the formulas that contain disjunctions in the conclusions.
Such formulas cannot be expressed in the logical systems that have no Boolean
connectives and express Armstrong’s axioms as inference rules. Although we did
not work out the details, we believe that, in the case of such a less expressive
logical system, the proof of the completeness presented in the full version [15] of
this paper could be significantly simplified.

1.5 Related Literature

The axiomatic system proposed in this paper is related to other logical systems
for reasoning about bounded resources. The classical logical system for reason-
ing about resources is the linear logic of Girard [9]. Alechina and Logan [1]
presented a family of logical systems for reasoning about beliefs of a perfect
reasoner that can only derive consequences of her beliefs after some time delay.
This approach has been further developed into the multi-agent Timed Reason-
ing Logic in [3]. Bulling and Farwer [7] proposed Resource-Bounded Tree Logics
for reasoning about resource-bounded computations and obtained preliminary
results on the complexity and decidability of model checking for these logics.
Alechina, Logan, Nga, and Rakib [2] incorporated resource requirements into
Coalition logic and gave a sound and complete axiomatization of the resulting
system. Another logical system for reasoning about knowledge under bounded
resources was proposed by Jamroga and Tabatabaei [12]. Their paper focuses
on the expressive power of the language of the system and the model check-
ing algorithm. Naumov and Tao introduced sound and complete modal logics
for reasoning about budget-constrained knowledge [16] and cost of privacy [17].
Unlike our current system all of the above logics do not provide a language for
expressing functional dependencies.

1.6 Outline

The rest of the paper is organized as follows. In Sect. 2 we formally define the
language of our logical system and its informational semantics. In Sect. 3 we list
the axioms of the system that have already been discussed in the introduction. In
Sect. 4 we give several examples of formal proofs in our logical system. In Sect. 5
we prove the soundness of our axioms with respect to the informational seman-
tics. Section 6 states the completeness theorem. The proof of the completeness
theorem can be found in the full version of this paper [15].

2 Syntax and Semantics

In this section we introduce the language of our system and formally describe
its intended semantics that we call informational semantics.

Definition 1. For any set of “secrets” S, let language Φ(S) be the minimum
set of formulas such that

362 P. Naumov and J. Tao

1. A �p B ∈ Φ(S) for all finite sets A,B ⊆ S and all real numbers p ≥ 0,
2. if ϕ ∈ Φ(S), then ¬ϕ ∈ Φ(S),
3. if ϕ,ψ ∈ Φ(S), then ϕ → ψ ∈ Φ(S).

Next, we introduce the formal informational semantics of our logical system.
The only significant difference between our semantics and the one used by Arm-
strong [4] is the costs function ‖·‖ that assigns a non-negative cost to each secret.
Note that we assume that the cost is assigned to a secret, not to its value. For
example, if we assign a certain cost to a folder with documents, then this cost
is uniform and does not depend on the content of the documents in this folder.

Definition 2. An informational model is a tuple 〈S, {Da}a∈S , ‖ · ‖,L〉, where
1. S is an arbitrary set of “secrets”,
2. Da is a set representing the domain of secret a ∈ S,
3. ‖ · ‖ is a cost function that maps each secret a ∈ S into a non-negative real

number or infinity +∞,
4. L ⊆ ∏

a∈S Da is the set of vectors of values of secrets that satisfy the con-
straints imposed by the informational model.

Note that we allow infinite attribute costs in our semantics captured in Defi-
nition 2 to include the possibility of attributes that cannot be bought. For the
same reason, we do not allow infinite costs in our syntax given in Definition 1.
In the example depicted in Fig. 8, folders are secrets and the information stored
in the documents contained in a folder is a value of such a secret. The set of
all possible values of a secret is its domain. The cost of different secrets is spec-
ified explicitly in Fig. 8. Note that there is a certain dependency between the
plaintext, one-time encryption pads, and the cyphertext. In other words, not all
combinations of values of different secrets are possible. The set L is the set of
all possible combinations of these values.

We allow the cost ‖a‖ of a secret a to be infinity. Informally, one can interpret
this as secret a not being available for purchase at any cost. If all secrets are
available for sale, then we say that the informational model is finite cost.

As an example, the setting described in Fig. 4 could be formally captured in
informational model I0 = 〈{a, b}, {Dx}x∈{a,b}, ‖ · ‖,L〉, where the domain (range
of values) Da of the empty folder a is a single element set: {null}, the domain
Db of secret b is the set of all, say binary, strings {0, 1}∗, cost ‖a‖ of secret a
is 3, cost ‖b‖ of secret b is 5, and set of vectors L is the set of all pairs in set
Da × Db = {〈null, s〉 | s ∈ {0, 1}∗}.

Definition 3. Informational model 〈S, {Da}a∈S , ‖ · ‖,L〉 is finite cost if ‖a‖ <
+∞ for each a ∈ S.
For example, informational model I0 for the setting described in Fig. 4 is a finite
cost model, because ‖a‖ = 3 < ∞ and ‖b‖ = 5 < ∞.

Information Flow Under Budget Constraints 363

Definition 4. For any vector �1 = 〈f1
a 〉a∈S ∈ L, any vector �2 = 〈f2

a 〉a∈S ∈ L,
and any set A ⊆ S, let �1 =A �2 if f1

a = f2
a for each secret a ∈ A.

For example, 〈null, 01〉 ={a} 〈null, 1011〉 and 〈null, 01〉
={a,b} 〈null, 1011〉 for
model I0.

Definition 5. For each finite set A ⊆ S, let ‖A‖ =
∑

a∈A ‖a‖.
Thus, ‖{a, b}‖ = ‖a‖ + ‖b‖ = 3 + 5 = 8 for model I0.

The next definition is the key definition of this section. It specifies the formal
semantics of our logical system. Item 1 of this definition provides the exact
meaning of the budget-constrained dependency. In this definition and throughout
the rest of the paper, by A,B we denote the union of sets A and B.

Definition 6. For each informational model I = 〈S, {Da}a∈S , ‖ ·‖,L〉 and each
formula ϕ ∈ Φ(S), the satisfiability relation I � ϕ is defined as follows:

1. I � A �p B when there is a finite set C ⊆ S such that ‖C‖ ≤ p and for each
pair of vectors �1, �2 ∈ L, if �1 =A,C �2, then �1 =B �2,

2. I � ¬ψ if I � ψ,
3. I � ψ → χ if I � ψ or I � χ.

Then, I0 � ∅ �0 a because �1 =a �2 for any two vectors �1, �2 ∈ {nill} × {0, 1}∗.

3 Axioms

For any set of secrets S, our logical system, in addition to the propositional
tautologies in language Φ(S) and the Modus Ponens inference rule, contains the
following axioms:

1. Reflexivity: A �p B, where B ⊆ A,
2. Augmentation: A �p B → A,C �p B,C,
3. Transitivity: A �p B → (B �q C → A �p+q C).

We write � ϕ if formula ϕ is derivable in our system. Also, we write X � ϕ if
formula ϕ is derivable in our system extended by the set of additional axioms X.

4 Examples of Proofs

We prove the soundness of our logical system in the next section. Here we pro-
vide several examples of formal proofs in this system. We start by showing
that Väänänen’s Weakening and Monotonicity axioms [19] are derivable in our
system.

Proposition 1 (Weakening). � A �p C,D → A,B �p C.

364 P. Naumov and J. Tao

Proof. By Augmentation axiom,

� A �p C,D → A,B �p B,C,D. (2)

By Reflexivity axiom,
� B,C,D �0 C. (3)

By Transitivity axiom,

A,B �p B,C,D → (B,C,D �0 C → A,B �p C). (4)

Finally, from (2), (3), and (4), by the laws of propositional logic,

� A �p C,D → A,B �p C.

��
Proposition 2 (Monotonicity). � A �p B → A �q B, where p ≤ q.

Proof. By Reflexivity axiom,

� B �q−p B. (5)

By Transitivity axiom,

� A �p B → (B �q−p B → A �q B). (6)

Finally, from (5) and (6), by the laws of propositional logic,

� A �p B → A �q B.

��
As our last example, we prove a generalized version of Augmentation axiom.

Proposition 3. � A �p B → (C �q D → A,C �p+q B,D).

Proof. By Augmentation axiom,

� A �p B → A,C �p B,C (7)

and
� C �q D → B,C �q B,D. (8)

At the same time, by Transitivity axiom,

� A,C �p B,C → (B,C �q B,D → A,C �p+q B,D). (9)

Finally, from (7), (8), and (9), by the laws of propositional logic,

� A �p B → (C �q D → A,C �p+q B,D).

��

Information Flow Under Budget Constraints 365

5 Soundness

In this section we prove the soundness of our logical system.

Theorem 1. If ϕ ∈ Φ(S) and � ϕ, then I � ϕ for each informational model
I = 〈S, {Da}a∈S , ‖ · ‖,L〉.
The soundness of propositional tautologies and the Modus Ponens inference rule
follows from Definition 6 in the standard way. Below we prove the soundness of
the remaining axioms as separate lemmas.

Lemma 1. For all finite sets A,B ⊆ S, if B ⊆ A, then I � A �p B.

Proof. Let C = ∅. Thus, ‖C‖ = ‖∅‖ = 0 ≤ p. Consider any two vectors
�1, �2 ∈ L such that �1 =A,C �2. It suffices to show that �1 =B �2, which is true
due to Definition 4 and the assumption B ⊆ A. ��
Lemma 2. For all finite sets A,B,C ⊆ S, if I � A�pB, then I � A,C�pB,C.

Proof. By Definition 6, assumption I � A�p B implies that there is a set D ⊆ S
such that (i) ‖D‖ ≤ p and (ii) for each �1, �2 ∈ L, if �1 =A,D �2, then �1 =B �2.

Consider now �1, �2 ∈ L such that �1 =A,C,D �2. It suffices to show that
�1 =B,C �2. Note that assumption �1 =A,C,D �2 implies that �1 =A,D �2
and �1 =C �2 by Definition 4. Due to condition (ii) above, the former implies
that �1 =B �2. Finally, statements �1 =B �2 and �1 =C �2 together imply that
�1 =B,C �2. ��
Lemma 3. For all finite sets A,B,C ⊆ S, if I � A �p B and I � B �q C, then
I � A �p+q C.

Proof. By Definition 6, assumption I � A�pB implies that there is D1 ⊆ S such
that (i) ‖D1‖ ≤ p and (ii) for each �1, �2 ∈ L, if �1 =A,D1 �2, then �1 =B �2.

Similarly, assumption I � B �q C implies that there is D2 ⊆ S such that (iii)
‖D2‖ ≤ q and (iv) for each �1, �2 ∈ L, if �1 =B,D2 �2, then �1 =C �2.

Let D = D1,D2. By Definition 5, ‖D‖ ≤ ‖D1‖ + ‖D2‖. Taking into account
statements (i) and (iii) above, we conclude that ‖D‖ ≤ p + q. Consider any two
vectors �1, �2 ∈ L such that �1 =A,D �2. It suffices to show that �1 =C �2. Indeed,
by Definition 4, assumption �1 =A,D �2 implies that �1 =A,D1 �2. Hence, �1 =B �2
due to condition (ii). At the same time, assumption �1 =A,D �2 also implies that
�1 =D2 �2 by Definition 4. Thus, �1 =B,D2 �2 by Definition 4. Therefore, �1 =C �2
due to condition (iv). ��

This concludes the proof of Theorem1.

366 P. Naumov and J. Tao

6 On the Completeness Theorem

The main result of this paper is a completeness theorem for our logical system
with respect to the informational semantics. The completeness could be stated
in different non-equivalent forms that we discuss and compare in this section.

Informally, a completeness theorem states that if a formula ϕ is not provable
in our system, then there is an informational model I such that I � ϕ. To state
the theorem formally, we need to decide if model I must use only secrets explicitly
mentioned in formula ϕ or a set of secrets of model I could be a superset of the
set of secrets used in formula ϕ.

This distinction applies not only to our system, but to other logical systems
as well. For example, formulas in first order logic can have constants. When we
prove the completeness of the first order logic, we allow universes that have more
elements than the number of constants. This is significant because, for example,
formula

∀x(c1 = c2 ∨ x = c1 ∨ x = c2) (10)

is not provable in the first order logic, but it is true in any model with a universe
consisting of only elements that are interpretations of c1 and c2. Thus, to con-
struct a counterexample for this formula one needs to consider first order models
with more than two elements in the universe.

The situation with our logical system is similar. To prove the completeness of
the system we often need to introduce additional secrets not explicitly mentioned
in the formula. An analog of formula (10) is, for example, formula

¬(a �1 b) → (¬(b �1 a) → ¬(∅ �2 a, b)). (11)

This formula is true in any informational model that has only two secrets explic-
itly mentioned in the formula: secret a and secret b. Indeed, the assumption
¬(a �1 b) implies that costs of secret b is more than 1. Similarly, assumption
¬(b �1 a) implies that costs of secret a is more than 1. So, given a budget of
only 2, one can buy at most one of secrets a and b. Without loss of generality,
assume that secret a is bought. After that purchase, the amount left is less than
1. Per assumption ¬(a �1 b), the value of b is not attainable on this budget.

At the same time, formula (11) is not true in the information model that has
three secrets: a, b, and c, all priced at 1.5, where values of a and b are unrelated
and c is pair 〈a, b〉. One can think about this example as a formalization of “buy
one, get one free” marketing.

In this paper we study the most general logical principles of budget-
constrained dependency. Thus, we do not include principles like formula (11),
that are true only for a specific set of secrets. In other words, when constructing
a counterexample for the completeness theorem, we allow additional secrets that
are not explicitly mentioned in the original formula. The completeness theorem
is stated below.

Theorem 2. For each formula ϕ ∈ Φ(S), if � ϕ, then there is a finite informa-
tional model I = 〈S, {Da}a∈S , ‖ · ‖,L〉 such that I � ϕ.

The proof of this theorem can be found in the full version of this paper [15].

Information Flow Under Budget Constraints 367

7 Conclusion

In this paper we have introduced a notion of budget-constrained dependency
that generalizes the notion of functional dependency previously studied by Arm-
strong [4]. We propose a sound and complete axiomatization that captures the
properties of the budget-constrained dependency. Although the axioms of our
system are generalizations of Armstrong’s original axioms, the proof of the com-
pleteness for our system is significantly more complicated than Armstrong’s
counterpart.

References

1. Alechina, N., Logan, B.: Ascribing beliefs to resource bounded agents. In: Pro-
ceedings of the First International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS 2002), vol. 2, pp. 881–888. ACM Press, Bologna,
July 2002

2. Alechina, N., Logan, B., Nga, N.H., Rakib, A.: Logic for coalitions with bounded
resources. J. Logic Comput. 21(6), 907–937 (2011)

3. Alechina, N., Logan, B., Whitsey, M.: A complete and decidable logic for resource-
bounded agents. In: Jennings, N.R., Sierra, C., Sonenberg, L., Tambe, M. (eds.)
Proceedings of the Third International Joint Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS 2004), pp. 606–613. ACM Press, New York
(2004)

4. Armstrong, W.W.: Dependency structures of data base relationships. In: Infor-
mation Processing, Proceedings of IFIP Congress, Stockholm, 1974, vol. 74, pp.
580–583. North-Holland, Amsterdam (1974)

5. Beeri, C., Fagin, R., Howard, J.H.: A complete axiomatization for functional and
multivalued dependencies in database relations. In: Proceedings of the 1977 ACM
SIGMOD International Conference on Management of Data, SIGMOD 1977, pp.
47–61. ACM, New York (1977)

6. Bělohlávek, R., Vychodil, V.: Data tables with similarity relations: functional
dependencies, complete rules and non-redundant bases. In: Lee, M., Tan, K.-L.,
Wuwongse, V. (eds.) DASFAA 2006. LNCS, vol. 3882, pp. 644–658. Springer,
Heidelberg (2006). doi:10.1007/11733836 45

7. Bulling, N., Farwer, B.: Expressing properties of resource-bounded systems: the
logics RTL* and RTL. In: Dix, J., Fisher, M., Novák, P. (eds.) CLIMA 2009.
LNCS (LNAI), vol. 6214, pp. 22–45. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-16867-3 2

8. Garcia-Molina, H., Ullman, J., Widom, J.: Database Systems: The Complete Book,
2nd edn. Prentice-Hall, Upper Saddle River (2009)

9. Girard, J.Y.: Linear logic. Theoret. Comput. Sci. 50, 1–102 (1987)
10. Hartmann, S., Link, S., Schewe, K.-D.: Weak functional dependencies in higher-

order datamodels. In: Seipel, D., Turull-Torres, J.M. (eds.) FoIKS 2004. LNCS, vol.
2942, pp. 116–133. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24627-5 9

11. Heckle, Z., Naumov, P.: Common knowledge semantics of Armstrong’s axioms. In:
Kohlenbach, U., Barceló, P., Queiroz, R. (eds.) WoLLIC 2014. LNCS, vol. 8652,
pp. 181–194. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44145-9 13

http://dx.doi.org/10.1007/11733836_45
http://dx.doi.org/10.1007/978-3-642-16867-3_2
http://dx.doi.org/10.1007/978-3-642-16867-3_2
http://dx.doi.org/10.1007/978-3-540-24627-5_9
http://dx.doi.org/10.1007/978-3-662-44145-9_13

368 P. Naumov and J. Tao

12. Jamroga, W., Tabatabaei, M.: Accumulative knowledge under bounded resources.
In: Leite, J., Son, T.C., Torroni, P., Torre, L., Woltran, S. (eds.) CLIMA 2013.
LNCS (LNAI), vol. 8143, pp. 206–222. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40624-9 13

13. Katz, J.: Digital Signatures. Springer Science & Business Media, New York (2010)
14. Naumov,P.,Nicholls, B.: Rationally functional dependence. J. Philos. Logic 43(2–3),

603–616 (2014)
15. Naumov, P., Tao, J.: The budget-constrained functional dependency. arXiv

preprint arXiv:1507.05964 (2015)
16. Naumov, P., Tao, J.: Budget-constrained knowledge in multiagent systems. In: Pro-

ceedings of the 2015 International Conference on Autonomous Agents and Multia-
gent Systems, pp. 219–226. International Foundation for Autonomous Agents and
Multiagent Systems (2015)

17. Naumov, P., Tao, J.: Price of privacy. In: 12th Conference on Logic and the Foun-
dations of Game and Decision Theory (LOFT), Maastricht, the Netherlands (2016)

18. Väänänen, J.: Dependence Logic: A New Approach To Independence Friendly
Logic, vol. 70. Cambridge University Press, New York (2007)

19. Väänänen, J.: The logic of approximate dependence. arXiv preprint
arXiv:1408.4437 (2014)

http://dx.doi.org/10.1007/978-3-642-40624-9_13
http://dx.doi.org/10.1007/978-3-642-40624-9_13
http://arxiv.org/abs/1507.05964
http://arxiv.org/abs/1408.4437

A Tool for Probabilistic Reasoning Based
on Logic Programming and First-Order
Theories Under Stable Model Semantics

Matthias Nickles1,2(B)

1 INSIGHT Centre for Data Analytics, Galway, Ireland
matthias.nickles@deri.org

2 Discipline of Information Technology, National University of Ireland,
Galway, Ireland

Abstract. This System Description paper describes the software frame-
work PrASP (“Probabilistic Answer Set Programming”). PrASP is both
an uncertainty reasoning and machine learning software and a proba-
bilistic logic programming language based on Answer Set Programming
(ASP). Besides serving as a research software platform for non-monotonic
(inductive) probabilistic logic programming, our framework mainly tar-
gets applications in the area of uncertainty stream reasoning. PrASP
programs can consist of ASP (AnsProlog) as well as First-Order Logic
formulas (with stable model semantics), annotated with conditional or
unconditional probabilities or probability intervals. A number of alter-
native inference algorithms allow to attune the system to different task
characteristics (e.g., whether or not independence assumptions can be
made).

Keywords: Artificial intelligence · Answer set programming · Proba-
bilistic logic programming · Statistical-relational learning · SAT

1 Introduction

With this System Description paper we present the software and probabilistic
logic programming language PrASP (Probabilistic Answer Set Programming)1.
In contrast to previous publications on PrASP, we mainly focus on PrASP as a
software tool for probabilistic reasoning in this work.

PrASP is both a probabilistic logic programming language and an inference
tool for probabilistic inference and inductive weight learning based on Answer
Set Programming (ASP). Reasoning in the presence of uncertainty and rela-
tional structures such as social networks or Linked Data is an important aspect
of knowledge discovery and representation for the Web, the Internet Of Things,
and other heterogeneous and complex domains. Probabilistic logic programing,
and the ability to learn probabilistic logic programs from data, can provide an

1 http://ubuntu1.it.nuigalway.ie:8977/PrASP WebInterface/static/ABOUT.html

c© Springer International Publishing AG 2016
L. Michael and A. Kakas (Eds.): JELIA 2016, LNAI 10021, pp. 369–384, 2016.
DOI: 10.1007/978-3-319-48758-8 24

http://ubuntu1.it.nuigalway.ie:8977/PrASP_WebInterface/static/ABOUT.html

370 M. Nickles

attractive approach to uncertainty reasoning and statistical relational learning,
since it combines the deduction power and declarative nature of logic program-
ming (including the ability to work with inductive definitions) with probabilistic
inference abilities traditionally known from graphical models, such as Bayesian
and Markov networks. ASP, which has been gaining an increasing amount of
interest in recent years as a declarative problem solving and knowledge rep-
resentation approach, adds a fully declarative approach to logic programming
(contrasting, e.g., Prolog), reasoning with incomplete information, preferences
and defaults, and a powerful semantics of negation-as-failure to this picture.

We build upon existing approaches in the area of probabilistic (inductive)
logic programming and an approach to FOL-syntax formulas with stable model-
semantics [1], in order to provide a new ASP-based probabilistic logic program-
ming language and inference tool which combines the benefits of non-monotonic
reasoning using state-of-the-art ASP solvers with probabilistic inference and
machine learning. Over (non-probabilistic) ASP as well as existing probabilis-
tic approaches to ASP, PrASP provides an expressive unified syntax (includ-
ing the possibility to annotate arbitrary ground or non-ground ASP as well as
FOL formulas with point or interval (i.e., imprecise) and conditional as well
as non-conditional probabilities) in combination with a hybrid set of inference
approaches: in addition to precise inference algorithms for obtaining probabil-
ity intervals, PrASP includes specialized, more scalable inference algorithms for
cases where certain optional assumptions hold (in particular mutual indepen-
dence of events) or where a maximum entropy solution is desired.

Envisaged application areas generally include fields where non-monotonic
reasoning about dynamic information (in particular data streams) shall be com-
bined with uncertainty reasoning and prediction, for example:

– Uncertainty reasoning about data streams. Various real-world applications
involve data streams (e.g., messaging events, web searches and other infor-
mation streams on the Internet, or sensor data streams). Stream reasoning
allows for reasoning about such data streams in a reactive, incremental man-
ner, making it an ideal application for non-monotonic approaches. However,
in some scenarios (in particular with streams of sensor data), stream data is
prone to inconsistencies and noise (stemming from inaccurate data sources
such as sensors), which makes them a use case for uncertainty reasoning.

– Prediction of facts and rule learning. While this is not specific to probabilistic
(inductive) non-monotonic reasoning, we expect synergies by combining logical
approaches such as reasoning with default assumptions with machine learning
approaches, as it is realized in PrASP in form of weight learning from (possibly
noisy) examples.

The remainder of this paper is organized as follows: after describing related
works in the next section, Sect. 3 presents the formal language and semantics of
PrASP. Section 4 provides an overview of technical aspects of the implementation
(including information about where PrASP and its user manual can be down-
loaded). Section 6 briefly outlines how PrASP can be used for stream reasoning,
and Sect. 7 concludes.

A Tool for Probabilistic Reasoning Based on Logic Programming 371

2 Related Works

Approaches related to PrASP include, e.g., [2–10] which support probabilistic
inference based on monotonic reasoning and [11–14] which are based on non-
monotonic logic programming. Like P-log [12], our approach computes proba-
bility distributions over answer sets (that is, possible worlds are identified with
answer sets). However, P-log as well as [13] do not allow for annotating arbitrary
formulas (including FOL formulas) with probabilities. [6] is a recent approach to
probabilistic logic programming which combines Markov Logic Network (MLN)-
style rules with stable model semantics, with the benefits of being robust against
inconsistencies and allowing for inductive definitions (something mere MLN does
not). [14] allows to associate probabilities with abducibles (only) and to learn
both rules and probabilistic weights from given data (in form of literals). Again,
PrASP does not impose such restrictions on probabilistic annotations or exam-
ple data. On the other hand, PrASP cannot make use of abduction for learning.
Various less closely related approaches to probabilistic reasoning exist (either
not based on logic programming at all, or not in the realm of non-monotonic
logic programming): Stochastic Logic Programs (SLP) [3] are an influential app-
roach where sets of rules in form of range-restricted clauses can be labeled with
probabilities. Parameter learning for SLPs is approached in [4] using the EM-
algorithm. Approaches which combine concepts from Bayesian network theory
with relational modeling and learning are, e.g., [5,7]. Probabilistic Relational
Models (PRM) [5] can be seen as relational counterparts to Bayesian networks. In
contrast to these, our approach does not directly relate to graphical models such
as Bayesian or Markov Networks but works on arbitrary possible worlds which
are generated by ASP solvers in form of stable models (answer sets). ProbLog [8]
allows for probabilistic facts, Annotated Disjunctions [15] and definite clauses,
and approaches to probabilistic rule and parameter learning (from interpreta-
tions). ProbLog builds upon the influential Distribution Semantics approach [16],
which is also used by other influential approaches, such as PRISM [2] and Inde-
pendent Choice Logic (ICL) [9]. Another important approach outside the area of
ASP are Markov Logic Networks (MLN) [10]. A Markov Logic Network consists
of first-order formulas annotated with weights (which are, in contrast to PrASP,
not in general probabilities). MLNs are used as templates for the construction of
Markov networks. The (ground) Markov network generated from the MLN then
determines a probability distribution over possible worlds, with inference per-
formed using weighted SAT solving (which is related to but different from ASP).
MLNs are syntactically roughly similar to the logic programs in our framework
(where weighted formulas can also be seen as soft or hard constraints for possible
worlds).

3 Syntax and Semantics

In this section, we describe the formal language and its semantics. Compared
to [17], the syntax of PrASP programs has been extended (in particular by

372 M. Nickles

allowing interval and non-ground weights) and a variety of approximate inference
algorithms have been added (see next section) to the default inference approach
which is described below and which still underlies the formal semantics of PrASP
programs.

PrASP (now seen as a formal language) is a Nilsson-style [18] probabilistic
logic language and despite of its support for non-ground formulas and even FOL
syntax essentially of propositional nature [19]. In contrast to most approaches
to PLP, it is not based on (but influenced by) Distribution Semantics (DS)
[16,20]. A PrASP program (called background knowledge) consists of a finite set
of PrASP formulas. The software tool PrASP uses a PrASP program to compute
the probabilities of another set of formulas, the so-called query formulas. The
precise syntax of formulas depends on the external ASP grounder being employed
by PrASP- in principle, any ASP grounder can be used. The current implemen-
tation has been tested with Gringo/Clingo 3 and 4 (http://potassco.sourceforge.

net). Using Gringo/Clingo 4 and the internal FOL→ASP converter, each PrASP
formula can be either in ASP-Core 2 syntax or in FOL syntax, more concretely a
variant of F2LP syntax [1]. The full description of ASP-Core 2 syntax would go
far beyond the scope of this paper, so we restrict ourselves here to the following
simplified definition of ASP/FOL formulas which covers disjunctive programs as
well as programs with F2LP-style FOL formulas: a non-weighted formula is an
ASP-style-rule or a FOL-style-rule. An ASP-style- (disjunctive logic program)
rule is an expression of the form

L1|...|Lk|not Lk+1|...|not Ll : − Ll+1, ..., Lm, not Lm+1, ..., not Ln.

where not denotes default negation, | denotes disjunction and the Li are literals,
0 ≤ k ≤ l ≤ m ≤ n. A literal is an atom or has the form not a or −a where a
is an atom. − denotes strong negation. An atom is an expression of the form p
or p(t1, ..., tn) where the ti are terms, n ≥ 1 and p is a predicate symbol. (ASP
“specialties” such as choice constructs can be seen as syntactic sugar which we
omit here). As usual in ASP, variable names start with upper-case letters whereas
predicate names start with lower-case letters.

A FOL-style-rule has the form F ← G. where F and G are first-order for-
mulas over the following symbols: & (denoting conjunction), | (as before), →
(implication), not (as before), − (as before), ![X1, ...,Xn, d1(X1), ..., dn(Xn)] : H
denoting ∀X1, d1(X1), ...,Xn, dn(Xn) : H (the di are called domain predicates, as
they specify the domain of variable Xi), and ?[X1, ...,Xn, d1(X1), ..., dn(Xn)] : H
denoting ∃X1, d1(X1), ...,Xn, dn(Xn) : H. H is a first-order formula. As usual,
brackets can be used to enforce precedence (omitted here). FOL-style rules are
understood to have a stable model (i.e., answer set) semantics as specified in [1].
Φ is the set of all predicate and term symbols as specified above.

A PrASP program (background knowledge) is a non-empty finite set Λ =
{[li;ui]fi} ∪ {[li;ui|ci]fi} ∪ {indep({f i

1, ..., f
i
n})} of annotated non-weighted for-

mulas (each concluded by a dot) and optional independence constraints (PrASP
does not require an independence assumption but some of its inference algo-
rithms can make use of declared or automatically discovered probabilistic inde-
pendence. Alternatively, independence could be encoded indirectly by means of

http://potassco.sourceforge.net
http://potassco.sourceforge.net

A Tool for Probabilistic Reasoning Based on Logic Programming 373

conditional probabilities). The [li;ui|ci] and [li;ui] are called weights or annota-
tions of the respective formulas. [l;u]f asserts that the imprecise probability of f
is within interval [l, u] (i.e., l ≤ Pr(f) ≤ u) whereas [l;u|c]f states that the prob-
ability of f conditioned on formula c is within interval [l, u] (l ≤ Pr(f |c) ≤ u).

Formulas can be non-ground (including existentially or universally quanti-
fied variables in FOL formulas). For the purpose of this paper, weights need to
be ground (real numbers), however, the prototype implementation also allows
for certain non-ground weights. An independence constraint indep({f i

1, ..., f
i
n})

specifies that the set of formulas {f i
1, ..., f

i
n} is mutually independent in the prob-

abilistic sense. Independence can also be discovered by PrASP by analyzing the
background knowledge or expressed using conditional probabilities, but this is
computationally more costly.

If the weight of a formula is omitted, [1; 1] is assumed. Point probability
weights [p] are translated into weights of the form [p; p] (analogously for con-
ditional probabilities). Weighted formulas can intuitively be seen as constraints
which specify which possible worlds (in the form of answer sets) are indeed pos-
sible, and with which probability. w(f) denotes the weight of formula f . The fi

and ci are formulas either in FOL syntax and supported by means of the trans-
formation of FOL into ASP syntax described in [1]) or plain AnsProlog syntax,
e.g., [0.5] win :- coin(heads). Informally, every FOL formula or program with
FOL formulas results in a finite set of ASP formulas.

The semantics of PrASP is defined in terms of probability distributions over
possible worlds which are identified with answer sets (models) - an assumption
inspired by P-Log [12]. Let M = (D,Θ, π, μ) be a probability structure where D
is a finite discrete domain of objects, Θ is a non-empty set of possible worlds, π
is a function which assigns to the symbols in Φ predicates, functions and objects
over/from D, and μ = (μl, μu) is a discrete probability function over Θ, a PrASP
program and a query formula, as defined further below.

Each possible world is a Herbrand interpretation over Φ. Since we use answer
sets as possible worlds, we define Γ (a) to be the set of all answer sets of a
(disjunctive) answer set program a.

We define a (non-probabilistic) satisfaction relation of possible worlds and
unannotated programs as follows: let Λ− be is an unannotated program and lp a
transformation which transforms such a program (which might contain formulas
in first-order logic syntax as well as formulas in ASP syntax) into a disjunctive
program.

We define (M, θ) �Θ Λ−: ⇔ θ ∈ Γ (lp(Λ−)) and θ ∈ Θ. For a disjunctive
program ψ, we define (M, θ) �Θ ψ: ⇔ θ ∈ Γ (ψ) and θ ∈ Θ. Note that there is
no need to distinguish between brave and cautious ASP inference in PrASP -
inference of queries is performed by summing over possible world probabilities,
as explained further below.

Probabilistic inference is defined based on a probability distribution over a
finite set of possible worlds in form of answer sets (stable models) of the spanning
program [17] ρ(Λ) of PrASP program Λ. Informally, the spanning program ρ(Λ)

374 M. Nickles

of a PrASP program Λ is a non-probabilistic disjunctive program2 generated
from Λ by removing all weights and transforming each formerly weighted formula
f in Λ into a disjunctive spanning formula, as follows: If f is in FOL syntax,
its spanning formula is the disjunction f |not(f) (where as before not stands for
default negation). If f is in ASP syntax (under stable model semantics), rules
are interpreted as their FOL equivalent (i.e., with : − representing implication
←, etc.) and the spanning formula is also f |not(f). If f is an atom, the spanning
formula can be expressed as a so-called choice rule which is equivalent to f
:- not not f (or f :- {not f}0 in Lparse/Gringo 3 syntax). Such rules (or
more basic: disjunctions) stemming from weighted formulas are the main vehicle
for expressing unweighted uncertainty in PrASP. We assume that all predicates
which occur in Λ are defined (they occur in the head of at least one rule). After
transforming each weighted formula into its spanning formula, the resulting FOL
program under stable model semantics is transformed into ASP syntax which
results in the spanning program from which in the next step the possible worlds
are generated in form of the spanning program’s answer sets.

Remark: alternatively, our software system can be instructed to use strong (clas-
sical) negation for modeling “opposite beliefs” Pr(¬φ) = 1 − Pr(φ). With the
default settings, default negation (negation-as-failure) is used, i.e., Pr(not φ) =
1 − Pr(φ).

To do groundwork for the computation of a probability distribution over
possible worlds (answer sets) Θ from a given PrASP program Λ, we define a (non-
probabilistic) satisfaction relation of possible worlds and unannotated formulas:

Let φ be a PrASP formula (without weight) and θ be a possible world.
Furthermore, let (M, θ) �Λ φ iff (M, θ) �Θ ρ(Λ) ∪ lp(φ) and Θ = Γ (ρ(Λ)) (we
say formula φ is true in possible world θ). Sometimes we will just write θ |=Λ φ
if M is given by the context. We abbreviate (M, θ) �Λ φ as θ �Λ φ.

We can now define the minimizing parameterized probability distribution
μl(Λ,Θ, q) over the set Θ = {θ1, ..., θm} = Γ (ρ(Λ)) of answer sets (possi-
ble worlds) of a PrASP program Λ = {([pi]fi, i = 1..n)} ∪ {([pi|ci]fc

i)} ∪
{indep({f i

1, ..., f
i
k})} and a query formula q as {θi �→ Pr(θi) : θi ∈ Θ}

where (Pr(θ1), ..., P r(θm)) is any solution of the following system of linear
constraints (the inequalities and equalities 1–6 below) such that Prl(q) =
∑

θi∈Θ:θi�Λq Pr(θi) is minimal. Analogously, μu denotes a probability distrib-
ution over answer sets such that the Pr(θ1), ..., P r(θm) maximize Pru(q) =
∑

θi∈Θ:θi�Λq Pr(θi).

l(f1) ≤
∑

θi∈Θ:θi�Λf1

Pr(θi) ≤ u(f1) · · · l(fn) ≤
∑

θi∈Θ:θi�Λfn

Pr(θi) ≤ u(fn) (1)

∑
θi∈Θ

θi = 1 (2)

∀θi ∈ Θ : 0 ≤ Pr(θi) ≤ 1 (3)
2 PrASP’s default ASP grounder/solver Clingo also allows for function symbols, but

for simplicity we ignore functions in the rest of this section.

A Tool for Probabilistic Reasoning Based on Logic Programming 375

At this, l(fi) and u(fi) denote the lower and upper endpoints of the probabil-
ity interval (imprecise probability) of unconditional formula fi (analogous for
interval endpoints l(fc

i |ci) and u(fc
i |ci) of conditional probabilities).

In addition, any indep-declaration indep(F i) in the program induces for every
subset {f i

1, ..., f
i
r} ⊆ F i, r > 1 further constraints of the following form:
∏

fi
k=1..r

l(f i
k) ≤

∑
θj∈Θ:θj�Λ

∧
fi

k=1..r

Pr(θj) ≤
∏

fi
k={1..r}

u(f i
k) (4)

In the case of point (i.e., precise) probabilities, these encode

Pr(
∧

k=1..r f i
k) =

∏

k=1..r Pr(f i
k).

Furthermore, any conditional probability formula [pi|ci]fc
i) in the program

induces constraints for ensuring l(fc
i |ci) ≤ Pr(fc

i |ci) ≤ u(fc
i |ci)

(with pi = [l(fc
i |ci);u(fc

i |ci)]), namely
∑

θj∈Θ

Pr(θj)ν(θj , f
c
i ∧ ci) +

∑
θj∈Θ

−l(fc
i |ci)Pr(θj)ν(θj , ci) > 0 (5)

∑
θj∈Θ

Pr(θj)ν(θj , f
c
i ∧ ci) +

∑
θj∈Θ

−u(fc
i |ci)Pr(θj)ν(θj , ci) < 0 (6)

At this, we define ν(θ, f) =

{

1, if θ �Λ f

0, otherwise
For small systems, PrASP can compute minimizing and maximizing proba-

bility distributions directly using the (in)equalities above using a straightforward
linear programming (linear optimization) task, resulting in interval probabilities
as query results. Even more simple, if there are no probability intervals (and
where the system above therefore becomes a system of linear equations), one
or more candidate solution distributions can be found by PrASP using a Non-
Negative Least Squares (NNLS) approach, optionally with a subsequent search
for a distribution with maximum entropy. However, for obvious reasons (with
these approaches, we need to compute all answer sets and the width of the linear
system is identical to the number of answer sets), we need to use other inference
approaches for other but very small systems, as described in the next section.
Therefore the system of equations and inequalities above serves mainly as a vehi-
cle to define the formal semantics of PrASP programs and queries, whereas its
practical use is quite limited.

Finally, marginal inference results are obtained as follows: the result of a
query of form [?] q is defined as the interval [Prl(q), P ru(q)] and the result of
conditional queries of form [?|c] f (which stands for Pr(f |c), where c is some
evidence) is computed using Pr(f ∧ c)/Pr(c).
Example (using ASP-style rules only):

coin(1..5).

[0.4;0.6] coin_out(1,heads).

[[0.5]] coin_out(N,heads) :- coin(N), N != 1.

376 M. Nickles

1{coin_out(N,heads); coin_out(N,tails)}1 :- coin(N).

n_win :- coin_out(N,tails), coin(N).

win :- not n_win.

[0.8|win] happy.

:- happy, not win.

The line starting with [[0.5]]... is syntactic sugar for a set of ground
weighted rules where variable N is instantiated with all its possible values (i.e.,
[0.5] coin out(2,heads) :- coin(2), 2 != 1 and
[0.5] coin out(3,heads) :- coin(3), 3 != 1). It would also be possible to use
[0.5] as annotation of this rule, in which case the weight 0.5 would specify the
probability of the entire non-ground formula instead.
1{coin out(N,heads); coin out(N,tails)}1 (Gringo4 AnsProlog syntax) denotes
that a coin comes up with either heads or tails but not both.
[0.8|win] happy represents the conditional probability Pr(happy|win) = 0.8.

Besides ASP syntax, PrASP also understands formulas in FOL syntax. E.g.,
the following represents a formula with a universal quantifier. ![X,coin(X)]
expresses that variable X ranges over all coins in the subformula after“:”:
![X,coin(X)]: not coin out(X,heads) <-> coin out(X,tails).

Like ASP formulas, FOL formulas can optionally be annotated with prob-
abilities or probability intervals, and they can also be used as conditions in
conditional probabilities. Additionally, Annotated Disjunctions [15] can be used
as syntactic sugar for regular PrASP formulas (not covered in this paper, for
lack of space).

Our system accepts query formulas in various formats, including [?] a,
which ask PrASP for the marginal probability of a and [?|b] a which com-
putes the conditional probability Pr(a|b). E.g., query [?|coin out(2,tails)]

happy results in [0;0]. Query formulas can be in FOL syntax - for example,
[?] coin out(1,heads) & coin out(2,heads) & coin out(3,heads)

results in probability 0.15 (the & denoting conjunction).
Another small example shows how PrASP’s syntax can be used to model the

famous Monty Hall problem3 in concise form:

[[0.333333]] c(1..3).

[[[0.333333|x1]]] c(1..3).

[0.5|2{c(1);x1}2] h3.

[1|2{c(2);x1}2] h3.

[0|2{c(3);x1}2] h3.

[.] x1.

c(i) stands for “The car is behind door i”, x1 represents “contestant
initially selected door 1” and h3 stands for “Monty opened door 3”. For-
mula [[[0.333333|x1]]] c(1..3) represents three conditional probabilities
Pr(c(i)|x1) = 0.33333, i = 0..3. Query [?|2{h3;x1}2] c(2) results in the prob-
ability 0.66666 that the candidate wins if she switches from door 1 to door 2.
The m{l1;l2;...}n are so-called ASP aggregates which are true if between m

3 https://en.wikipedia.org/wiki/Monty Hall problem

https://en.wikipedia.org/wiki/Monty_Hall_problem

A Tool for Probabilistic Reasoning Based on Logic Programming 377

and n of the literals l1, l2, ... are true (so in the example above we could have
likewise used FOL formulas of the form c(i) & x1). [.] x1 is an abbrevation
of x1 | not x1.

Further examples can be found and run online using PrASP’s Web Interface:
http://ubuntu1.it.nuigalway.ie:8977/PrASP WebInterface/static/ABOUT.html

4 Probabilistic Inference Approaches

PrASP (now seen as a software system) contains a variety of exact and approx-
imate sampling and deductive as well as inductive inference algorithms. Using
command line options, the user selects a pipeline of alternative simplification,
sampling and inference or learning steps (depending on the nature of the respec-
tive problem). E.g., the user might chose to sample possible worlds using uni-
form sampling and to pass on the resulting models to a simulated annealing
algorithm which computes a probability distribution over the sampled possible
worlds. Finally, this distribution is used to compute the probabilities of the query
formulas.

Figure 1 shows the inference pipeline (configurable using command line argu-
ments). The user provides a knowledge base (called background knowledge) in
form of a PrASP program file (top of the figure), consisting of annotated (i.e.,
probabilistic) and/or unannotated formulas. At this, formulas in ASP syntax
(AnsProlog) can be freely mixed with FOL formulas. After an initial preprocess-
ing step (“Preprocessing (1)”) in order to resolve macro definitions and ground-
ing of formulas annotated with weights within double-square brackets (see previ-
ous section), PrASP generates the spanning program, as described before. After-
wards, it can optionally apply various simplifications (“Preprocessing (2)”), in
particular a simplification step found in many PILPs (such as in MLN), namely
removal of all parts of the program which do not influence query results (com-
mand line option --mod1). The following step is called initial sampling. It either
computes possible worlds in form of all answer sets of the spanning program or it
samples a subset of these, in order to make inference tractable (as PrASP in its
current version does not apply lifted inference but works, being based on ASP,
basically on the propositional level, such as MLN or ProbLog). Various sampling
algorithms are at choice, depending on the structure of the background knowl-
edge. If the initial sampling step is not already sufficient to provide a probability
distribution over possible worlds (which is the case if all weighted formulas are
mutually independent, see below), the next step applies one of several solving
algorithms, including the “vanilla” linear programming approach described in
the previous section. The outcome is a probability distribution over possible
worlds from which in the final step the point or interval probability of each [?]-
annotated formula in the query file is computed. A large number of options can
be used to configure each of these steps - please refer to the user manual linked
in the next section for details.

http://ubuntu1.it.nuigalway.ie:8977/PrASP_WebInterface/static/ABOUT.html

378 M. Nickles

Fig. 1. PrASP v0.9 inference pipeline paths

Inference algorithms available in PrASP version 0.9.3:

Linear programming or Non-Negative Least Squares: Solution of the
linear (in)equalities system as described before. With linear programming, we
obtain probability intervals as query results. Very fast and precise for very small
systems, intractable otherwise.

Various sampling algorithms (“initial sampling”): This step can some-
times directly compute a probability distribution over possible worlds which
complies with the constraints expressed in the PrASP program, or which pro-
vides a good starting point for further solution search. If there are mutually
independent probabilistic facts, initial sampling can obtain a multiset of possi-
ble worlds where the frequency of each possible world reflects the probability of
such a fact (queries can then be solved merely by counting those possible worlds
in which the query holds, with an additional normalization step).

A Tool for Probabilistic Reasoning Based on Logic Programming 379

Parallel simulated annealing: Can be used in combination with an initial
sampling stage. This approach performs simulated annealing for inference prob-
lems where no assumptions can be made about independence or other properties
of the program (except consistency). This algorithm is described in [21].

Iterative refinement: An adaptation of the algorithm described in [22] which
reaches minimal Kullback−Leibler divergence to the uniform distribution (i.e.,
maximum entropy) given the full set of possible worlds. A brief description is
provided further below.

Direct counting: Weights are transformed into unweighted ASP formulas and
queries are then solved by mere counting of models (of the query) in a multiset
of models (please see [17] for details). This approach essentially requires only
disjunctions and choice constructs to express probabilistic uncertainty.

Induction (parameter learning): Weights of given formulas (the hypotheses)
are learned from examples (facts). Please see [21] for details.

Initial evaluation results with a variant of the well-known “smokers network”
task [21] indicate that PrASP inference is, for this task, competitive with a stan-
dard Markov Logic Network implementation but slower than ProbLog2 (whose
syntax, however, is significantly restricted compared to PrASP and which makes
strong assumptions about formula independence).

For lack of space, we present only one of the aforementioned inference algo-
rithm here:

Algorithm 1 - called Iterative Refinement4 - is based on the entropy maximiz-
ing inference approach introduced in [22] which makes use of the Kuhn-Tucker
theorem, with the difference that PrASP optionally provides only a sampled
subset of all models as input to the algorithms, in order to allow for (faster)
approximation results. The algorithm either starts, as in [22], from the uniform
distribution over the possible worlds delivered by the initial sampling step (with
duplicates removed), or from the (possibly non-uniform) probability distribution
obtained by the initial sampling step with duplicates retained. In the former case,
the algorithm guarantees that the Kullback-Leibler divergence to the uniform
distribution is minimal (and thus the final distribution’s entropy is maximal).
However, entropy is relative to the number of models sampled by initial sam-
pling - if initial sampling provides only a true subset of all models of the spanning
program (a concept which does not appear in [22]), entropy will also be lower
compared to using the full set of possible worlds as input for iterative refinement
as in [22]. In the latter case (retaining of duplicates), the counts of worlds within
the multiset of possible worlds specifies the possible world probabilities which
are then iteratively refined.

PrASP can also be used as an inductive logic programming tool for learning
the weights of given hypotheses (PrASP formulas) from learning examples (facts
or rules), however, for lack of space we refer the reader to [21] for details.

4 Not related to the Iterative Refinement method in linear systems solving.

380 M. Nickles

Algorithm 1. The algorithm (based on the algorithm presented in [22]) uses
initSamples as a multiset; the original form of this algorithm without multiple
instances of the same possible world is obtained by using initSamples as a set.
We show a somewhat simplified variant for point probabilities (as opposed to
probability intervals).
Require: maxIterations, ε, initSamples, Λ (a PrASP program), set of uncertain

conditional probability formulas with (point) weights ufw = {(uf f
i , uf c

i , wi) :
[wi|uf c

i]uf
f
i ∈ Λ ∧ wi < 1} (the non-conditional case can simply be obtained with

uf c
i = true), convergence threshold ε

1: Pr0(pwi) = frq(pwi)
|initSamples| ⇔ initSamples = (pw, frq) � frq(pwi) is the count of

answer set (possible world) pwi within multiset initSamples
2: k ← 1
3: repeat
4: for (uf f

i , uf c
i , wi) ∈ uf do

5: for pwi ∈ initSamples do
6: Prk−1(φ) ← ∑

{pwi∈initSamples:pwi|=Λφ} Prk−1(pwi)

7: for all φ ∈ {uf c
i ∧ uf f

i , uf c
i ∧ ¬uf f

i , ¬uf c
i}

8: b ← Prk−1(uf c
i ∧ uf f

i)wiPrk−1(uf c
i ∧ ¬uf f

i)1−wi

9: a ← b
b+Prk−1(¬uf c

i)w
wi
i (1−wi)1−wi

10: Prk(pwi) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Prk−1(pwi)
1−a

Prk−1(¬uf c
i)

if pwi |=Λ ¬uf c
i

Prk−1(pwi)
(1−wi)a

Prk−1(uf c
i ∧¬uf

f
i)

if pwi |=Λ uf c
i ∧ ¬uf f

i

Prk−1(pwi)
wia

Prk−1(uf c
i ∧uf

f
i)

if pwi |=Λ uf c
i ∧ uf f

i

11: end for
12: end for
13: d ←

√∑
pwi∈initSamples (Prk(pwi) − Prk−1(pwi))2

14: k ← k + 1
15: until k > maxIterations ∨ d ≤ ε

Ensure: {Prk(pwi)} = μapprox(Λ) approximates the probability distribution μ(Λ) =
Pr(Γ (ρ(Λ))) over the set Γ (ρ(Λ)) of possible worlds. μ(Λ) is as defined in the prvi-
ous Section. Prk, P rk+1, ... converges to the probability distribution with maximum
entropy among all distributions over {pwi} where the constraints imposed by the
formula weights hold, provided Pr0 is the uniform distribution [22].

5 Implementation

The current version of PrASP is in beta state, but it already supports all features
described so far (and additionally a few more experimental features which are
described in the user manual - please see below).

PrASP can be tried out online using a web interface or downloaded, both
from the following link:
http://ubuntu1.it.nuigalway.ie:8977/PrASP WebInterface/static/ABOUT.html

http://ubuntu1.it.nuigalway.ie:8977/PrASP_WebInterface/static/ABOUT.html

A Tool for Probabilistic Reasoning Based on Logic Programming 381

Please note that the online version of PrASP typically works slower compared
to a local installation of PrASP.
The link above also provides a comprehensive user manual with further examples.

PrASP is written in Scala and therefore requires a recent Java Runtime
Environment (Java 8). The downloadable version works with Linux, MacOS X
and Windows. Clingo and Gringo 4 (or higher) should be installed, as support for
other ASP systems (in particular DLV) is still experimental. Due to the relatively
high degree of parallelization of statistical inference and learning tasks, PrASP
strongly profits from a large number of processor cores.

Requirements for further external tools depend on the inference and learning
setup: PrASP contains its own Scala-written FOL→ASP converter (using the
algorithm introduced in [1]) but it can optionally also use the F2LP tool [1]
(which needs to be downloaded and installed separately). For cases where the
internal equation solver is unable to compute a representative set of probabil-
ity distributions, PrASP can optionally employ the SMT solver CVC4 (a form
of constraint programming tool, conceptually closely related to ASP and SAT
solving) in order to compute further solutions using a set of linear inequalities
(relaxed forms of the original system of linear equations). Furthermore, PrASP
can optionally make use of native (NN)LS solver libraries for the CPU and the
GPU (if a CUDA-conforming GPU is present).

6 Uncertainty Stream Reasoning with PrASP

A major envisaged application area of PrASP is uncertainty stream reasoning.
For that purpose, PrASP contains preliminary support for acting as a reasoning
and relational machine learning server fed by a data stream from a local or remote
host on the Internet. Clients send a stream of data in RDF or PrASP syntax
to PrASP (the reasoning server). PrASP uses this data either as incrementally
provided beliefs (adding to the background knowledge) or as learning examples
for parameter learning.

Currently there are two clients: (1) a console client, where the stream data
is entered manually in the console in ASP/PrASP syntax (mainly for testing
and debugging purposes) and (2) an RDF/SPARQL streaming client (PrASP
CQELS client) which uses the linked data stream processing engine CQELS
for the preprocessing of RDF streams. More precisely, PrASP uses results of
CQELS queries as incremenally provided updates to its knowledge base and/or
as learning examples.

With the console client, the users enters new uncertain (probabilistic) or cer-
tain beliefs in order to incrementally add them to PrASP’s background knowl-
edge, or retracts existing belief. Analogously, the user can add/retract learning
examples. PrASP responds with updates of the results of specified queries or
updates of the weights of given hypotheses. The console client can be seen as a
basic REPL for PrASP, although for trying out PrASP, the Web Interface (see
Sect. 5) might be better suitable.

The RDF streaming client (also called PrASP CQELS client) works similarly,
however, the data stream (a stream of RDF triples) is preprocessed here by a

382 M. Nickles

Fig. 2. PrASP stream reasoning overview

RDF stream processing engine (CQELS) whose output is translated into PrASP
facts which are then used as incrementally provided belief or learning examples in
the same way as with the console client. Apart from the data stream source, the
user needs to specify an extended CQELS query (which is itself an extension of
the SPARQL query format). This query also comprises a pattern for translating
CQELS results into PrASP syntax.

Figure 2 shows the architecture of PrASP’s RDF stream processing extension.
An extensive example and further details are provided in the user manual (under
the link in the previous section) and in [23]. For how to setup and use the
extension, please refer to the user manual (see link in Sect. 5).

7 Conclusion

With this paper, we have presented a new software framework for probabilistic
(inductive) logic programming based on Answer Set Programming. A strength
of PrASP over related approaches is that it imposes virtually no restrictions
in terms of syntax of probabilistic knowledge, queries, learning examples and
hypotheses, while keeping a fundamentally simple approach to uncertainty based
on the notion of spanning programs (see Sect. 3) and linear constraints imple-
mented using various alternative approximation inference algorithms. Ongoing
work is mainly focusing on the addition of further inference and sampling algo-
rithms with improved performance characteristics. In particular, we are inves-
tigating a new, faster approach based on lifted inference which exploits sym-
metries discovered in the background knowledge. Aspects of future work are an
empirical evaluation with real-world application scenarios (in particular in the

A Tool for Probabilistic Reasoning Based on Logic Programming 383

area of probabilistic stream reasoning) and the investigation of viable, scalable
approaches to structure learning (that is, the induction of new formulas from
examples instead of “just” learning the weights of given hypotheses as in the
current version of our software).

References

1. Lee, J., Palla, R.: System f2lp – computing answer sets of first-order formulas. In:
Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS (LNAI), vol. 5753, pp.
515–521. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04238-6 51

2. Sato, T., Kameya, Y.: Prism: a language for symbolic-statistical modeling. In:
Proceedings of the 15th International Joint Conference on Artificial Intelligence,
IJCAI 1997, pp. 1330–1335 (1997)

3. Muggleton, S.: Learning stochastic logic programs. In: Electronic Transactions in
Artificial Intelligence (2000)

4. Cussens, J.: Parameter estimation in stochastic logic programs. Mach. Learn. 44,
245–271 (2000)

5. Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning probabilistic relational
models. In: IJCAI, pp. 1300–1309. Springer (1999)

6. Lee, J., Meng, Y., Wang, Y.: Markov logic style weighted rules under the stable
model semantics. In: ICLP 2015 (Technical Communications), vol. 1433, (2015)

7. Kersting, K., Raedt, L.D.: Bayesian logic programs. In: Proceedings of the 10th
International Conference on Inductive Logic Programming (2000)

8. Raedt, L.D., Kimmig, A., Toivonen, H.: Problog: a probabilistic prolog and its
application in link discovery. In: IJCAI, pp. 2462–2467 (2007)

9. Poole, D.: The independent choice logic for modelling multiple agents under uncer-
tainty. Artif. Intell. 94, 7–56 (1997)

10. Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62, 107–136
(2006)

11. Ng, R.T., Subrahmanian, V.S.: Stable semantics for probabilistic deductive data-
bases. Inf. Comput. 110, 42–83 (1994)

12. Baral, C., Gelfond, M., Rushton, N.: Probabilistic reasoning with answer sets.
Theory Pract. Log. Program. 9, 57–144 (2009)

13. Saad, E., Pontelli, E.: Hybrid probabilistic logic programs with non-monotonic
negation. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp.
204–220. Springer, Heidelberg (2005). doi:10.1007/11562931 17

14. Corapi, D., Sykes, D., Inoue, K., Russo, A.: Probabilistic rule learning in non-
monotonic domains. In: Leite, J., Torroni, P., Ågotnes, T., Boella, G., Torre, L.
(eds.) CLIMA 2011. LNCS (LNAI), vol. 6814, pp. 243–258. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-22359-4 17

15. Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic programs with annotated
disjunctions. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp.
431–445. Springer, Heidelberg (2004). doi:10.1007/978-3-540-27775-0 30

16. Sato, T.: A statistical learning method for logic programs with distribution seman-
tics. In: International Conference on Logic Programming, pp. 715–729 (1995)

17. Nickles, M., Mileo, A.: Probabilistic inductive logic programming based on answer
set programming. In: 15th International Workshop on Non-Monotonic Reasoning
(NMR 2014) (2014)

18. Nilsson, N.J.: Probabilistic logic. Artif. Intell. 28(1), 71–87 (1986)

http://dx.doi.org/10.1007/978-3-642-04238-6_51
http://dx.doi.org/10.1007/11562931_17
http://dx.doi.org/10.1007/978-3-642-22359-4_17
http://dx.doi.org/10.1007/978-3-540-27775-0_30

384 M. Nickles

19. de Bona, G., Cozman, F.G., Finger, M.: Towards classifying propositional proba-
bilistic logics. J. Appl. Logic 12(3), 349–368 (2014)

20. Riguzzi, F., Swift, T.: Probabilistic logic programming under the distribution
semantics. In: Kifer, M., Liu, Y.A. (eds.) Declarative Logic Programming: The-
ory, Systems, and Applications, LNCS. Springer (2016)

21. Nickles, M., Mileo, A.: A hybrid approach to inference in probabilistic non-
monotonic logic programming. In: 2015 Probabilistic Logic Programming (PLP
2015), CEUR (2015)

22. Rödder, W., Meyer, C.: Coherent knowledge processing at maximum entropy by
SPIRIT. In: Proceedings of the 12th Conference on Uncertainty in Artificial Intel-
ligence (UAI 1996) (1996)

23. Nickles, M., Mileo, A.: Web stream reasoning using probabilistic answer set pro-
gramming. In: Proceedings of Web Reasoning and Rule Systems - 8th International
Conference (RR 2014) (2014)

Pakota: A System for Enforcement
in Abstract Argumentation

Andreas Niskanen(B), Johannes P. Wallner, and Matti Järvisalo

Helsinki Institute for Information Technology HIIT, Department of Computer Science,
University of Helsinki, Helsinki, Finland

{andreas.niskanen,matti.jarvisalo}@helsinki.fi

Abstract. In this paper we describe Pakota, a system implementation that
allows for solving enforcement problems over argumentation frameworks. Via
harnessing Boolean satisfiability (SAT) and maximum satisfiability (MaxSAT)
solvers, Pakota implements algorithms for extension and status enforcement
under various central AF semantics, covering a range of NP-complete—via direct
MaxSAT encodings—and ΣP

2 -complete—via MaxSAT-based counterexample-
guided abstraction refinement—enforcement problems. We overview the algo-
rithmic approaches implemented in Pakota, and describe in detail the system
architecture, features, interfaces, and usage of the system. Furthermore, we
present an empirical evaluation on the impact of the choice of MaxSAT solvers
on the scalability of the system, and also provide benchmark generators for exten-
sion and status enforcement.

1 Introduction

Argumentation is a core area of modern artificial intelligence research, with strong con-
nections to knowledge representation and classical and non-monotonic logics. Argu-
mentation frameworks (AFs) [23], a central graph-based knowledge representation for-
malism, provide a formal basis for abstract argumentation.

Motivated also by practical applications, AFs under various semantics give rise to
important—and often computationally very hard—reasoning problems over AFs. This
includes what we refer to as static (or non-dynamic) AF reasoning tasks, such as the
much studied problems of skeptical and credulous acceptance of arguments. Static AF
reasoning tasks have been extensively studied, to the point that today several systems
implementing static AF reasoning [13,14,24,26,30,31,33] are available. Most often
these systems are based on declarative approaches, using propositional satisfiability
(SAT) solver technology or extensions thereof for solving the core reasoning task at
hand [13,14,24,26]. However, argumentation is intrinsically a dynamic process, and
hence understanding and reasoning about the dynamics of AFs is a central and recent
direction of research [8–10,12,18,19,21,22,29,34]. In contrast to static AF reasoning
problems, few system implementations are currently available for reasoning about dif-
ferent aspects of AF dynamics [17,29,34].

Work funded by Academy of Finland, grants 251170 COIN, 276412, and 284591; and
Research Funds of the University of Helsinki.

c© Springer International Publishing AG 2016
L. Michael and A. Kakas (Eds.): JELIA 2016, LNAI 10021, pp. 385–400, 2016.
DOI: 10.1007/978-3-319-48758-8 25

386 A. Niskanen et al.

In this paper, we describe in detail Pakota, a system for optimal extension enforce-
ment [8,12,17,34] and status enforcement [29], two recently proposed hard compu-
tational problems dealing with dynamics (in connection to belief change) in abstract
argumentation. In short, enforcement deals with the question of how a given AF should
be revised (changed) in order for it to support (in terms of, e.g., skeptical or credulous
acceptance) specific arguments.

Pakota implements algorithms for solving optimally—in terms of structural modi-
fications to a given AF—various variants of NP-complete and ΣP

2 -complete extension
and status enforcement problems under various AF semantics, being the first system
for optimal enforcement in its generality. Pakota is based on NP-encoding enforce-
ment problems using the Boolean optimization paradigm of maximum satisfiabil-
ity (MaxSAT), and further implements counterexample-guided abstraction refinement
(CEGAR) [15,16] algorithms based on SAT and MaxSAT solvers for ΣP

2 -complete
enforcement.

2 Enforcement in Abstract Argumentation

We start by reviewing argumentation frameworks and their semantics [7,23], and the
extension enforcement and status enforcement problems central to this work.

2.1 Argumentation Frameworks

Definition 1. An argumentation framework (AF) is a pair F = (A,R), where A is a
finite set of arguments and R ⊆ A×A is the attack relation. The pair (a, b) ∈ R means
that a attacks b. An argument a ∈ A is defended (in F) by a set S ⊆ A if, for each
b ∈ A such that (b, a) ∈ R, there exists a c ∈ S such that (c, b) ∈ R.

Semantics for AFs are defined by functions σ which assign to each AF F = (A,R)
a set σ(F) ⊆ 2A of extensions. We consider for σ the functions stb, adm , com and
prf , which stand for stable, admissible, complete and preferred, respectively.

Definition 2. Given an AF F = (A,R), the characteristic function FF : 2A → 2A of
F is FF (S) = {a ∈ A | a is defended by S}. Moreover, for a set S ⊆ A, the range of
S is S+

R = S ∪ {a ∈ A | (b, a) ∈ R, b ∈ S}.
Definition 3. Let F = (A,R) be an AF. A set S ⊆ A is conflict-free (in F), if there are
no a, b ∈ S such that (a, b) ∈ R. We denote the collection of conflict-free sets of F by
cf (F). For a conflict-free set S ∈ cf (F), it holds that

– S ∈ stb(F) iff S+
R = A;

– S ∈ adm(F) iff S ⊆ FF (S);
– S ∈ com(F) iff S = FF (S);
– S ∈ prf (F) iff S ∈ adm(F) and there is no T ∈ adm(F) with S ⊂ T ;

We use “σ-extension” to refer to an extension under a semantics σ ∈
{stb, adm, com, prf }.

Pakota: A System for Enforcement in Abstract Argumentation 387

Fig. 1. An argumentation framework (a); enforcing {a, b} to be a stable extension (b); credulous
(c) and skeptical (d) status enforcement of P = {a, b}, N = ∅ under stable semantics

Example 1. As an example AF, consider F = (A,R) with three arguments, A =
{a, b, c}, and attacks R = {(a, b), (b, a), (b, c), (c, b), (c, a)}, with a graphical illus-
tration shown in Fig. 1(a). This AF has the following stable extensions which, in this
particular case, coincide with the preferred extensions: stb(F) = {{b}, {c}}.

When comparing attack structures of two AFs F = (A,R) and F ′ = (A,R′) with
the same set of arguments, we make use of the cardinality of the symmetric difference
of the attack relations defined by |RΔR′| = |R \ R′| + |R′ \ R|.

2.2 Extension Enforcement

We continue by recalling the problem of extension enforcement [8,17,34], where we
are given an AF F = (A,R) and a subset T ⊆ A of its arguments, and the goal is to
modify the attack structure R such that T becomes (a subset of) an extension under the
semantics σ in the modified AF F ′ = (A,R′).

Strict enforcement requires that the given set T of arguments has to be exactly a σ-
extension. In non-strict enforcement, T is required to be a subset of some σ-extension.
We denote the set of attack structures that strictly enforce T under σ for F by

enf (s, F, T, σ) = {R′ | F ′ = (A,R′), T ∈ σ(F ′)},

and by enf (ns, F, T, σ) = {R′ | F ′ = (A,R′), ∃T ′ ∈ σ(F ′) : T ′ ⊇ T}
for non-strict enforcement. The number of changes of an enforcement is the size of
the symmetric difference of the attack structures R and R′. From the computational
perspective, we view extension enforcement as an optimization problem, seeking to
minimize the number of changes to the attack structure.

Extension enforcement (x ∈ {s, ns})
Input: AF F = (A,R), T ⊆ A, semantics σ.
Task: Find an AF F ∗ = (A,R∗) with

R∗ ∈ arg min
R′∈enf (x,F,T,σ)

|RΔR′|.

388 A. Niskanen et al.

Table 1. Complexity of extension and status enforcement.

σ Extension enf. Status enf. (N = ∅) Status enf. (unrestr. case)

Strict Non-strict Credulous Skeptical Credulous Skeptical

Conflict-free in P in P in P trivial in P trivial

Admissible in P NP-c NP-c trivial ΣP
2 -c trivial

Stable in P NP-c NP-c ΣP
2 -c ΣP

2 -c ΣP
2 -c

Complete NP-c NP-c NP-c NP-c ΣP
2 -c NP-c

Preferred ΣP
2 -c NP-c NP-c in ΣP

3 ΣP
2 -c in ΣP

3

Example 2. Consider AF F from Example 1 (shown in Fig. 1(a)). For enforcing set
{a, b} to be a stable extension, an optimal solution AF is shown in Fig. 1(b) where the
mutual attacks between a and b are removed. In this modified AF both {a, b} and {c}
are stable extensions.

In the corresponding decision problem we are given in addition an integer k ≥ 0
and are asked whether it is possible to enforce T with |RΔR′| ≤ k. We recall the com-
putational complexity results from [34] for this decision problem in Table 1. Note that
non-strict extension enforcement under admissible, complete, and preferred semantics
coincide; thus it suffices to implement an algorithm for one of these problems to cover
all three.

2.3 Status Enforcement

In the status enforcement problem [29] we are given an AF F = (A,R) and two disjoint
subsets P,N ⊆ 2A, P ∩N = ∅. The goal is to enforce the arguments in P positively and
arguments in N negatively, i.e., to modify the attack structure R so that all arguments
in P are credulously or skeptically accepted and all arguments in N are not accepted in
the modified AF F ′ = (A,R′).

For credulous status enforcement, we denote the set of attack structures that enforce
(P,N) under σ for F by

cr(F, P,N, σ) = {R′ | F ′ = (A,R′), P ⊆
⋃

σ(F ′), N ∩
⋃

σ(F ′) = ∅},

and, for skeptical status enforcement,

sk(F, P,N, σ) = {R′ | F ′ = (A,R′), P ⊆
⋂

σ(F ′), N ∩
⋂

σ(F ′) = ∅}.

For σ = stb we additionally require for skeptical status enforcement that a solution
AF F ′ has at least one stable extension. Like extension enforcement, we view status
enforcement as an optimization problem, where the goal is to minimize the cardinality
of the symmetric difference of the original and the modified attack structures R and R′.

Pakota: A System for Enforcement in Abstract Argumentation 389

Optimal Credulous Status Enforcement
Input: AF F = (A,R), P,N ⊆ A, semantics σ.
Task: Find an AF F ∗ = (A,R∗) with

R∗ ∈ arg min
R′∈cr(F,P,N,σ)

|RΔR′|.

Optimal Skeptical Status Enforcement
Input: AF F = (A,R), P,N ⊆ A, semantics σ.
Task: Find an AF F ∗ = (A,R∗) with

R∗ ∈ arg min
R′∈sk(F,P,N,σ)

|RΔR′|.

Example 3. For the AF from Example 1, we see in Fig. 1(c) credulous and (d) skeptical
status enforcement for P = {a, b}, N = ∅ under the stable semantics. In the modified
AF shown in Fig. 1(c) we have added an attack from a to c, which results in an AF
where {a}, {b}, and {c} are all stable extensions. In the AF shown in Fig. 1(d) we have
removed the mutual attacks between a and b, and removed the attack from c to b. This
results in {a, b} being the unique stable extension of this modified AF.

The decision problem corresponding to status enforcement is the following: given
an AF F = (A,R), positive and negative sets P,N ⊆ A of argument statuses, a
semantics σ, and an integer k ≥ 0, can the statuses in P and N be enforced under σ
with at most k modifications to the attack structure R. The computational complexity of
the decision problem was established in [29]; Table 1 provides an overview. Note that
credulous status enforcement under the admissible, complete, and preferred semantics
coincide [29].

3 Maximum Satisfiability

For solving variants of extension and status enforcement problems, Pakota employs
constraint optimization encodings using (partial) maximum satisfiability (MaxSAT for
short) as the underlying declarative language. In MaxSAT, for each variable x, we have
two literals, x and ¬x. A clause is a disjunction (∨) of literals. A truth assignment is
a function from variables to {0, 1}. A clause c is satisfied by a truth assignment τ ,
τ(c) = 1, if τ(x) = 1 for a literal x in c or τ(x) = 0 for a literal ¬x in c; otherwise
τ does not satisfy c, τ(c) = 0. An instance ϕ = (ϕh, ϕs) of the MaxSAT problem
consists of a set ϕh of hard clauses, and a set ϕs of soft clauses. Any truth assignment
τ which satisfies each hard clause is a solution to ϕ. The cost of a solution is defined
by COST(ϕ, τ) =

∑

c∈ϕs
(1 − τ(c)), which is the number of soft clauses not satisfied

by τ . A solution τ is optimal for ϕ if COST(ϕ, τ) ≤ COST(ϕ, τ ′) for all solutions τ ′

to ϕ. The output of a MaxSAT solver is an optimal solution to ϕ.

390 A. Niskanen et al.

4 Pakota

The Pakota system is implemented in the C++ programming language. The source code
is available at http://www.cs.helsinki.fi/group/coreo/pakota/ under the MIT license. In
what follows, we describe the main components and system architecture of the system
(Sect. 4.1) and main features of Pakota (Sect. 4.2), detail the implemented algorithms
(Sect. 4.3), input and output specifications (Sect. 4.4), and usage (Sect. 4.5).

4.1 System Architecture

The system architecture of Pakota is shown in Fig. 2. Pakota accepts input for the
extension enforcement problem and for the credulous and skeptical status enforcement
problem in the so-called APX format (see Sect. 4.4), which is parsed into an enforce-
ment instance. The algorithms implemented in Pakota that solve the given enforcement
instance form the main component of the system and are described in Sect. 4.3, employ-
ing a MaxSAT solver, or, for problem variants beyond NP, interacting MaxSAT and
SAT solvers. Pakota offers a generic MaxSAT interface for plugging in the MaxSAT
solver of choice and already includes MaxSAT solvers Open-WBO [27] (version 1.3.1)
and LMHS [32] (version 2015.11), and the SAT solvers MiniSAT [25] (version 2.2.0,
included with LMHS) and Glucose [4–6] (version 3.0, included with Open-WBO). We
detail usage of the MaxSAT interface in Sect. 4.2.

The implemented algorithms for the enforcement problems can be classified accord-
ing to whether they solve an NP problem or a second-level problem. For the former,
the enforcement instance is encoded in a MaxSAT instance and the solution given by

Fig. 2. System architecture of Pakota

http://www.cs.helsinki.fi/group/coreo/pakota/

Pakota: A System for Enforcement in Abstract Argumentation 391

a MaxSAT solver is decoded to construct a solution AF to the enforcement problem,
again in the APX format. In the case that the given task is a second-level problem,
the algorithms implement a counterexample-guided abstraction refinement procedure,
thereby iteratively querying the MaxSAT solver to construct candidate solutions and
checking whether the candidate is indeed a solution to the enforcement problem via a
SAT solver. In case the candidate is a solution, the decoded AF is returned in the APX
format. Otherwise, i.e., in case the candidate is a non-solution, the current MaxSAT
encoding is iteratively refined until an actual optimal solution is found.

4.2 Features

Supported Semantics and Reasoning Modes. An overview of the semantics and rea-
soning modes currently supported by Pakota is given in Table 2. Implementation of
different parameter choices are discussed in more detail in Sect. 4.3.

MaxSAT and SAT Solver Interfaces. Essentially any MaxSAT solver whose source
code is available can be plugged into the system. This is enabled in Pakota by offering
two interfaces, MaxSATSolver.h and SATSolver.h. By creating new classes that
implement these interfaces and defining the pure virtual functions declared in them, one
can compile and link these to the Pakota system, which will then use the corresponding
MaxSAT and SAT solvers for solving the enforcement problems. As an implementation-
level detail, note that, if the MaxSAT solver uses a SAT solver internally, which is
usually the case, an easy solution to potential naming conflicts is to use the same SAT
solver as the SAT solver in CEGAR procedures within Pakota. The source code of
Pakota already includes implementations of these interfaces for two different MaxSAT
solvers, Open-WBO [27] and LMHS [32], allowing the use of these solvers simply by
editing the MAXSAT SOLVER parameter in the included Makefile before compiling.

MaxSAT and IP Encodings. In addition to directly solving extension and status
enforcement instances, Pakota can for the NP variants of the problems output the inter-
nal MaxSAT encodings both in the standard WCNF MaxSAT input format as well as
integer programs (IPs) in the standard LP format (applying the standard textbook encod-
ing of MaxSAT as IP [3]). The latter option allows for calling state-of-the-art IP solvers,
such as CPLEX or Gurobi, on the encodings.

4.3 Algorithms

Depending on the inherent complexity of the problems, Pakota solves the extension
or status enforcement problem at hand by either encoding the problem in MaxSAT
(NP-complete problems), or within a counterexample-guided abstraction refinement
(CEGAR) scheme utilizing a MaxSAT solver in an iterative or incremental fashion
(problems complete for the second level of polynomial hierarchy). Table 2 provides
details, depending on the chosen parameters and semantics, for each problem variant,
whether it is solved via direct encoding to MaxSAT (detailed in Fig. 3) or via a MaxSAT-
based CEGAR algorithm (detailed as Algorithms 1 and 2).

392 A. Niskanen et al.

Table 2. Extension and status enforcement problems currently supported by Pakota.

Problem Parameters Semantics Encoding/Algorithm

Extension enforcement ns adm , com , prf EXT(ns, F, T, adm)

Extension enforcement ns stb EXT(ns, F, T, stb)

Extension enforcement s adm EXT(s, F, T, adm)

Extension enforcement s com EXT(s, F, T, com)

Extension enforcement s stb EXT(s, F, T, stb)

Extension enforcement s prf Algorithm 1

Status enforcement cr , N = ∅ adm , com , prf STAT(cr , A, P, ∅, adm)

Status enforcement cr , N = ∅ stb STAT(cr , A, P, ∅, stb)

Status enforcement cr adm , com , prf Algorithm 2

Status enforcement cr stb Algorithm 2

Status enforcement sk adm Trivial

Status enforcement sk stb Algorithm 2

Encoding NP Enforcement inMaxSAT. Let F = (A,R) be an AF. We utilize Boolean
variables xa and xp

a for a, p ∈ A, and variables ra,b for a, b ∈ A. The intended meaning
of these variables is that if xa (xp

a) is assigned true in an assignment then a is con-
tained in a σ-extension in a specific AF. The AF we are referring to is either directly
encoded in the formula or encoded via a truth assignment on variables ra,b, i.e., if ra,b

is assigned true, then there is an attack from a to b. For all considered problems, soft
clauses are defined by ϕs(F) =

∧

a,b∈A r′
a,b, where r′

a,b is ra,b if (a, b) ∈ R, and ¬ra,b

if (a, b) �∈ R. Violating a soft clause corresponds to an attack being removed or added,
and incurs an associated unit cost.

Hard clauses are problem dependent. The complete list of encodings used in Pakota
is provided in Fig. 3. In particular, EXT refers to encodings for extension enforcement
for strict (s) and non-strict (ns) modes. The other parameters are an AF F = (A,R),
a semantics σ ∈ {adm, com, stb, prf }, and T ⊆ A. For encoding the semantics, we
adapt Boolean formulas from [11], originally presented for static AF reasoning prob-
lems. We also note that [17] apply similar encodings to ours in an integer program-
ming based approach to the specific case of extension enforcement under admissible
semantics.

Figure 2 shows for each NP-complete extension enforcement problem the corre-
sponding MaxSAT encoding for which it holds that an optimal MaxSAT solution
directly corresponds to an optimal solution for the extension enforcement problem.
For instance, to optimally solve non-strict extension enforcement under the admissi-
ble semantics, we encode the input AF and set of arguments to be enforced via formula
EXT(ns, F, T, adm) and subsequently call MAXSAT(EXT(ns, F, T, adm), ϕs(F)) to
compute an optimal MaxSAT solution (c, τ), with cost c and assignment τ , from which

Pakota: A System for Enforcement in Abstract Argumentation 393

we can infer an optimal solution to the corresponding problem by extracting a new AF
F ′ = (A,R′) with R′ = {(a, b) | τ(ra,b) = 1}.

For the NP-complete status enforcement problems of credulous status enforcement
under the admissible and stable semantics with empty negative set N = ∅, we imple-
mented an analogous procedure. For the input to this problem, i.e., AF F = (A,R) and
positive set P ⊆ A, we give the MaxSAT solver the encoding STAT(cr , A, P, ∅, σ), with
σ ∈ {adm, stb}. From an optimal MaxSAT solution we can infer an optimal solution
to the status enforcement problem similarly as for extension enforcement by generating
a new AF F ′ = (A,R′) with R′ = {(a, b) | τ(ra,b) = 1}.

The remaining encodings in Fig. 3 are used in our CEGAR algorithms for the
second-level complete problems.

Counterexample-guided Abstraction Refinement. Pakota implements the second-
level complete problems arising in status enforcement and extension enforcement by a
counterexample-guided abstraction refinement (CEGAR) approach. Concretely, we let
a MaxSAT solver compute a candidate solution from an NP abstraction of the second-
level complete problem, and subsequently check whether the candidate is a solution
with a SAT solver. In case a solution is found, i.e., the SAT solver reports unsatisfiabil-
ity, we extract from the MaxSAT solution an optimal solution to the enforcement prob-
lem. Otherwise, we call the MaxSAT solver again on a refined formula which includes
further hard clauses extracted from the counterexample delivered by the SAT solver.

The CEGAR algorithms implemented in Pakota are shown in Algorithm 1 for exten-
sion enforcement, and in Algorithm 2 for status enforcement. We describe the algorithm
for extension enforcement, as the CEGAR algorithm for status enforcement is similar
(the main difference lies in the used formulas).

For extension enforcement, we implemented the second-level complete problem of
strict extension enforcement under the preferred semantics as shown in Algorithm 1.
Given an AF F = (A,R), a set T ⊆ A to enforce, we define the initial hard clauses ϕh

to be the same as for the NP-complete strict extension enforcement problem under the
complete semantics. In the while-loop, we call the MaxSAT solver on this set of hard
clauses augmented with the same soft clauses, ϕs(F), as for the NP-complete variants.
From an optimal solution τ delivered by the MaxSAT solver, we check whether this
candidate is a solution to strict extension enforcement under the preferred semantics
using the formula CHECK(τ) (see Fig. 3). If the SAT solver reports unsatisfiability of
this formula, we terminate and return the AF encoded in τ . Otherwise we refine, i.e.,
increment, the hard clauses by REFINE(τ) (see again Fig. 3 for details).

For status enforcement we implemented Algorithm 2. For a given input to the
second-level complete problems for status enforcement we consider here, i.e., credu-
lous status enforcement under the admissible and stable semantics, and skeptical status
enforcement under the stable semantics, this algorithm computes an optimal solution
AF. The input for this problem consists of an AF F = (A,R) and sets P,N ⊆ A.

394 A. Niskanen et al.

Fig. 3. Encoding extension and status enforcement

Algorithm 1. Extension enforcement
1: ϕh ← EXT(s, F, T, com)
2: while true do
3: (c, τ) ← MAXSAT(ϕh, ϕs(F))
4: r ← SAT(CHECK(τ))
5: if r = unsat then return (c, τ)

6: else ϕh ← ϕh ∧ REFINE(τ)

Algorithm 2. Status enforcement
1: ϕh ← STAT(M, A, P, N, σ)

2: while true do
3: (c, τ) ← MAXSAT(ϕh, ϕs(F))
4: r ←SAT(CHECK(M, A, τ, P, N, σ))
5: if r = unsat then return (c, τ)

6: else ϕh ← ϕh ∧ REFINE(τ)

Pakota: A System for Enforcement in Abstract Argumentation 395

4.4 Input Format

For extension enforcement, the input AF and enforcement request are specified using
the following predicates, extending the APX format for specifying AFs.

arg(X): X is an argument
att(X,Y): there is an attack from X to Y
enf(X): enforce argument X

Example 4. The enforcement of argument a for the AF in Fig. 4(a) is specified in the
Pakota input format as shown in Fig. 4(b). On this input, Pakota may return the output
shown in Fig. 4(c), i.e., the AF in Fig. 4(d).

Fig. 4. Example of Pakota input and output formats

As in extension enforcement, for status enforcement the AF is represented using the
arg and att predicates. The arguments to be positively and negatively enforced are
represented via the pos and neg predicates, respectively. For example, pos(a). enforces
argument a positively. The reasoning mode between credulous and skeptical is chosen
from the command line.

4.5 Usage and Options

After compilation, the Pakota system is used from the command line with

./pakota <file> <mode> <sem> [options]

The command line arguments enabling the choice of AF semantics and reasoning mode
are the following.

<file> : Input filename for enforcement instance in apx format.
<mode> : Enforcement variant: mode={strict|non-strict|cred|skept}

strict : strict extension enforcement
non-strict : non-strict extension enforcement
cred : credulous status enforcement
skept : skeptical status enforcement

<sem> : Argumentation semantics. sem={adm|com|stb|prf}
adm : admissible
com : complete
stb : stable
prf : preferred

396 A. Niskanen et al.

Furthermore, command line options -h (for help message), -v (for version number),
-o (for specifying output to file) and -t (for outputting NP-encodings in WCNF and
LP formats) are available.

4.6 Benchmarks and Generators

The Pakota webpage also offers sets of benchmarks for both extension enforcement and
status enforcement in the Pakota input format. Furthermore, we provide via the web-
page our benchmark generator software, AfGen and EnfGen, which we used to generate
the benchmark sets. The AF generator AfGen forms argumentation frameworks in APX
format implementing the Erdős-Rényi random digraph model. The generator is called
as

./afgen <args> <prob>

where parameters <args> and <prob> specify the number of arguments and the
probability of an attack in the output AF. The generator forms an argumentation frame-
work with arguments 1, . . . ,<args>, including an attack between each pair of argu-
ments independently with probability <prob>.

The enforcement instance generator EnfGen takes as input an AF in APX format,
and produces an enforcement instance. It is called as

./enfgen <file> <mode> <enfs>

where <file> is the input AF and <mode> is either ext or status, corresponding
to extension and status enforcement, respectively. In case of extension enforcement,
<enfs> is an integer stating the number of arguments to be enforced, and for status
enforcement, <enfs> is a pair of integers, corresponding to the number of positively
and negatively enforced arguments. The generator reads the arguments from the AF and
samples the enforced arguments uniformly at random without replacement.

5 Performance Overview

We empirically evaluate the impact of the choice of the underlying MaxSAT solver
on the performance of Pakota on various NP-complete and ΣP

2 -complete variants
of extension and status enforcement. This complements the scalability experiments
using only a single solver presented in [29,34], as well as the comparison presented
in [34] with the IP-based approach to extension enforcement under admissible seman-
tics described in [17]. For the NP problems, we used five state-of-the-art MaxSAT
solvers: MaxHS [20], Maxino [1], MSCG [28], Open-WBO [27], and WPM [2], using
the newest MaxSAT Evaluation 2015 versions, as well as the commercial IBM CPLEX
integer programming solver (version 12.6). For CEGAR, we compare the performance
of Open-WBO and LMHS [32] as the underlying MaxSAT solvers, as supported by
Pakota. The experiments were run on 2.83-GHz Intel Xeon E5440 quad-core machines
with 32-GB RAM and Debian GNU/Linux 8 using a timeout of 900 seconds per
instance.

Pakota: A System for Enforcement in Abstract Argumentation 397

Fig. 5. MaxSAT solver comparison on NP-complete extension enforcement. Left: non-strict
admissible; middle: non-strict stable; right: strict complete

We generated the benchmarks using our AfGen and EnfGen generators. For exten-
sion enforcement, for each number of arguments |A| ∈ {25, 50, . . . } and each edge
probability p ∈ {0.05, 0.1, 0.2, 0.3}, we generated five AFs. For each AF, we gen-
erated five enforcement instances with |T | enforced arguments, for each |T |/|A| ∈
{0.05, 0.1, 0.2, 0.3}. We thus obtained 400 instances for each |A|. For status enforce-
ment, for each |A| ∈ {20, 40, . . . , 200} and p ∈ {0.05, 0.1, . . . , 0.35}, we generated
10 AFs. For each AF, we generated an enforcement instance containing (|P |, |N |) ∈
{(1, 0), (2, 0) . . . , (5, 0), (5, 1), (2, 2), (1, 5)} positively and negatively enforced argu-
ments. This gave a total of 560 status enforcement instances for each |A|.

An overview of the results, comparing the different underlying MaxSAT solvers,
is provided in Fig. 5 (NP-complete extension enforcement), Fig. 6 (NP-complete sta-
tus enforcement), and Fig. 7 (CEGAR for extension and status enforcement). Fig. 5
left and middle show the number of instances solved (x-axis) by different MaxSAT
solvers under different per-instance timeouts (y-axis) for non-strict extension enforce-
ment under the admissible (left) and stable semantics (middle). Interestingly, in both
cases CPLEX performs well (although on admissible, on a majority of the instances is
solved faster by most of the other solvers).

Fig. 6. NP-complete credulous status
enforcement under admissible

On strict extension enforcement under the
complete semantics (Fig. 5 right), the median
runtimes for CPLEX scale noticeably worse than
for the rest of the solvers wrt the number of argu-
ments. However, here we note that only CPLEX
and Maxino were able to solve all instances; thus
Maxino turned out to be clearly the best solver on
strict complete. Fig. 6 provides an overview for
credulous status enforcement under the admis-
sible semantics. Here we observe that the so-
called core-guided MaxSAT solvers perform the
best, while the SAT-IP hybrid solver MaxHS—
typically competitive mainly on weighted MaxSAT instances—performs the worst. We
also observed similar performance under the stable semantics. Overall, for the NP-
complete enforcement problems, CPLEX and Maxino tend to provide the best choice of

398 A. Niskanen et al.

solvers, but the choice of the single best solver tends to depend on the problem variant
(strict/non-strict, semantics).

Turning to the ΣP
2 -complete enforcement problems Fig. 7 gives an overview of

the performance of Open-WBO and LMHS within our CEGAR procedures for strict
extension enforcement under the preferred semantics (left), and credulous (middle)
and skeptical (right) status enforcement under the stable semantics. Evidently, on these
instances generated with our EnfGen, out of the two solvers Open-WBO provides the
best MaxSAT solver for the CEGAR procedures.

Fig. 7. MaxSAT solver comparison within CEGAR. Left: strict extension enforcement under pre-
ferred; credulous (middle) and skeptical (right) status enforcement under stable

6 Conclusions

The Pakota system is a first system implementation in its generality for solving NP-
complete and ΣP

2 -complete problem instances of extension enforcement and status
enforcement—two related problems motivated by the study of dynamic aspects of
argumentation frameworks. We provided a detailed overview of the Pakota system—
available in open source—including the input-output format, system design, function-
ality, details on the underlying MaxSAT encodings and MaxSAT-based CEGAR algo-
rithms implemented in Pakota, and its API allowing for plugging in different SAT and
MaxSAT solvers used as core search engines. We also provided a detailed evaluation
of the impact of the choice of MaxSAT solvers (including the use of the state-of-the-art
integer programming system CPLEX) on the performance of Pakota on various variants
of extension and status enforcement problems. In addition to Pakota, we also provide
open-source benchmark generators for extension and status enforcement for the use of
the research community at large through the Pakota system webpage. Future work on
Pakota includes extensions to support further central AF semantics, including grounded,
semi-stable, and stage.

Pakota: A System for Enforcement in Abstract Argumentation 399

References

1. Alviano, M., Dodaro, C., Ricca, F.: A MaxSAT algorithm using cardinality constraints of
bounded size. In: Proceedings of IJCAI, pp. 2677–2683. AAAI Press/IJCAI (2015)

2. Ansótegui, C., Didier, F., Gabàs, J.: Exploiting the structure of unsatisfiable cores in
MaxSAT. In: Proceedings of the IJCAI, pp. 283–289. AAAI Press/IJCAI (2015)

3. Ansótegui, C., Gabàs, J.: Solving (weighted) partial MaxSAT with ILP. In: Gomes, E., Sell-
mann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 403–409. Springer, Heidelberg (2013)

4. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers. In: Pro-
ceedings of IJCAI, pp. 399–404. AAAI Press/IJCAI (2009)

5. Audemard, G., Simon, L.: GLUCOSE 2.1: aggressive - but reactive - clause database man-
agement, dynamic restarts. In: Pragmatics of SAT (Workshop of SAT 2012) (2012)

6. Audemard, G., Simon, L.: Refining restarts strategies for SAT and UNSAT. In: Milano, M.
(ed.) CP 2012. LNCS, vol. 7514, pp. 118–126. Springer, Heidelberg (2012)

7. Baroni, P., Caminada, M., Giacomin, M.: An introduction to argumentation semantics.
Knowl. Eng. Rev. 26(4), 365–410 (2011)

8. Baumann, R.: What does it take to enforce an argument? minimal change in abstract argu-
mentation. In: Proceedings of ECAI. Frontiers in Artificial Intelligence and Applications,
vol. 242, pp. 127–132. IOS Press (2012)

9. Baumann, R.: Normal and strong expansion equivalence for argumentation frameworks.
Artif. Intell. 193, 18–44 (2012)

10. Baumann, R., Brewka, G.: AGM meets abstract argumentation: Expansion and revision for
Dung frameworks. In: Proceedings of IJCAI, pp. 2734–2740. AAAI Press/IJCAI (2015)

11. Besnard, P., Doutre, S.: Checking the acceptability of a set of arguments. In: Proceedings of
NMR, pp. 59–64 (2004)

12. Bisquert, P., Cayrol, C., Saint-Cyr, F.D., Lagasquie-Schiex, M.-C.: Enforcement in argu-
mentation is a kind of update. In: Liu, W., Subrahmanian, V.S., Wijsen, J. (eds.) SUM
2013. LNCS (LNAI), vol. 8078, pp. 30–43. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40381-1 3

13. Cerutti, F., Dunne, P.E., Giacomin, M., Vallati, M.: Computing preferred extensions in
abstract argumentation: A SAT-based approach. In: Black, E., Modgil, S., Oren, N. (eds.)
TAFA 2013. LNCS (LNAI), vol. 8306, pp. 176–193. Springer, Heidelberg (2014). doi:10.
1007/978-3-642-54373-9 12

14. Cerutti, F., Giacomin, M., Vallati, M.: ArgSemSAT: Solving argumentation problems using
SAT. In: Proceedings of COMMA. Frontiers in Artificial Intelligence and Applications, vol.
266, pp. 455–456. IOS Press (2014)

15. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction
refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

16. Clarke, E.M., Gupta, A., Strichman, O.: SAT-based counterexample-guided abstraction
refinement. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 23(7), 1113–1123 (2004)

17. Coste-Marquis, S., Konieczny, S., Mailly, J., Marquis, P.: Extension enforcement in abstract
argumentation as an optimization problem. In: Proceedings of IJCAI, pp. 2876–2882. AAAI
Press (2015)

18. Coste-Marquis, S., Konieczny, S., Mailly, J., Marquis, P.: On the revision of argumentation
systems: Minimal change of arguments statuses. In: Proceedings of KR, pp. 52–61. AAAI
Press (2014)

19. Coste-Marquis, S., Konieczny, S., Mailly, J.-G., Marquis, P.: A translation-based app-
roach for revision of argumentation frameworks. In: Fermé, E., Leite, J. (eds.) JELIA
2014. LNCS (LNAI), vol. 8761, pp. 397–411. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-11558-0 28

http://dx.doi.org/10.1007/978-3-642-40381-1_3
http://dx.doi.org/10.1007/978-3-642-40381-1_3
http://dx.doi.org/10.1007/978-3-642-54373-9_12
http://dx.doi.org/10.1007/978-3-642-54373-9_12
http://dx.doi.org/10.1007/978-3-319-11558-0_28
http://dx.doi.org/10.1007/978-3-319-11558-0_28

400 A. Niskanen et al.

20. Davies, J., Bacchus, F.: Exploiting the power of MIP solvers in MAXSAT. In: Järvisalo,
M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 166–181. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-39071-5 13

21. Delobelle, J., Konieczny, S., Vesic, S.: On the aggregation of argumentation frameworks. In:
Proceedings of IJCAI, pp. 2911–2917. AAAI Press/IJCAI (2015)

22. Diller, M., Haret, A., Linsbichler, T., Rümmele, S., Woltran, S.: An extension-based approach
to belief revision in abstract argumentation. In: Proceedings of IJCAI, pp. 2926–2932. AAAI
Press/IJCAI (2015)

23. Dung, P.: On the acceptability of arguments and its fundamental role in nonmonotonic rea-
soning, logic programming and n-person games. Artif. Intell. 77(2), 321–358 (1995)

24. Dvořák, W., Järvisalo, M., Wallner, J.P., Woltran, S.: Complexity-sensitive decision proce-
dures for abstract argumentation. Artif. Intell. 206, 53–78 (2014)

25. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.)
SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24605-3 37

26. Egly, U., Gaggl, S.A., Woltran, S.: Answer-set programming encodings for argumentation
frameworks. Argum. Comput. 1(2), 147–177 (2010)

27. Martins, R., Manquinho, V., Lynce, I.: Open-WBO: A modular MaxSAT solver,. In: Sinz,
C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 438–445. Springer, Heidelberg (2014).
doi:10.1007/978-3-319-09284-3 33

28. Morgado, A., Ignatiev, A., Marques-Silva, J.: MSCG: Robust core-guided MaxSAT solving.
J. Satisf., Bool. Model. Comput. 9, 129–134 (2015)

29. Niskanen, A., Wallner, J.P., Järvisalo, M.: Optimal status enforcement in abstract argumen-
tation. In: Proceedings of IJCAI. AAAI Press/IJCAI (2016)

30. Nofal, S., Atkinson, K., Dunne, P.E.: Algorithms for decision problems in argument systems
under preferred semantics. Artif. Intell. 207, 23–51 (2014)

31. Nofal, S., Atkinson, K., Dunne, P.E.: Looking-ahead in backtracking algorithms for abstract
argumentation. Int. J. Approx. Reason. 78, 265–282 (2016)

32. Saikko, P., Berg, J., Järvisalo, M.: LMHS: A SAT-IP hybrid MaxSAT solver. In: Creignou,
N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 539–546. Springer, Heidelberg
(2016). doi:10.1007/978-3-319-40970-2 34

33. Thimm, M., Villata, S., Cerutti, F., Oren, N., Strass, H., Vallati, M.: Summary report of the
first international competition on computational models of argumentation. AI Mag. 37(1),
102 (2016)

34. Wallner, J.P., Niskanen, A., Järvisalo, M.: Complexity results and algorithms for extension
enforcement in abstract argumentation. In: Proceedings of the AAAI, pp. 1088–1094. AAAI
Press (2016)

http://dx.doi.org/10.1007/978-3-642-39071-5_13
http://dx.doi.org/10.1007/978-3-540-24605-3_37
http://dx.doi.org/10.1007/978-3-540-24605-3_37
http://dx.doi.org/10.1007/978-3-319-09284-3_33
http://dx.doi.org/10.1007/978-3-319-40970-2_34

Kinetic Consistency and Relevance in Belief Revision

Pavlos Peppas1,2(B) and Mary-Anne Williams2

1 Department of Business Administration, University of Patras, Patras, Greece
pavlos@upatras.gr

2 QCIS, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, Australia

Abstract. A critical aspect of rational belief revision that has been neglected by
the classical AGM framework is what we call the principle of kinetic consistency.
Loosely speaking, this principle dictates that the revision policies employed by a
rational agent at different belief sets, are not independent, but ought to be related
in a certain way. We formalise kinetic consistency axiomatically and semanti-
cally, and we establish a representation result explicitly connecting the two. We
then combine the postulates for kinetic consistency, with Parikh’s postulate for
relevant change, and add them to the classical AGM postulates for revision; we
call this augmented set the extended AGM postulates. We prove the consistency
and demonstrate the scope of the extended AGM postulates by showing that a
whole new class of concrete revision operators introduced hererin, called PD
operators, satisfies all extended AGM postulates. PD operators are of interest in
their own right as they are natural generalisations of Dalal’s revision operator. We
conclude the paper with some examples illustrating the strength of the extended
AGM postulates, even for iterated revision scenarios.

1 Introduction

The classical AGM postulates for belief revision, named (K*1) - (K*8), [1], although
immensely successful, [10], have left certain crucial aspects of the revision process
unattended. One of them is the notion of relevant change discussed by Parikh in [9].
Parikh argues that during belief revision a rational agent does not change her entire
belief corpus, but only the portion of it that is relevant to the new information. This
intuition is formally captured by means of a new postulate called herein (wP).

Another aspect of rational belief revision, that surprisingly has received little atten-
tion in the literature, if any, is what we call the principle of kinetic consistency. Loosely
speaking, this principle dictates that the revision policies of a rational agent over differ-
ent theories, are not independent, but ought to be related in a certain way.

Our aim in this paper is, firstly, to formally capture the principle of kinetic consis-
tency, and secondly, to investigate the implications of combining the AGM postulates
for revision, together with the postulates for kinetic consistency and Parikh’s postulate
for relevant change; we call this combination the extended AGM postulates.

More precisely, in the first part of the paper we discuss the intuition behind the prin-
ciple of kinetic consistency and we formulate two new postulates, named (KC1) - (KC2),
to encode it. We also characterise kinetic consistency semantically and a representation
result is provided connecting the new postulates with the semantic characterization.
c© Springer International Publishing AG 2016
L. Michael and A. Kakas (Eds.): JELIA 2016, LNAI 10021, pp. 401–414, 2016.
DOI: 10.1007/978-3-319-48758-8 26

402 P. Peppas and M.-A. Williams

We then proceed to investigate the extended AGM postulates; i.e., the postulates
(K*1) - (K*8), (wP), and (KC1) - (KC2). A by-product of our investigation is the intro-
duction of a whole new class of concrete revision operators, called parametrised dif-
ference revision operators, or PD operators for short, that are of interest in their own
right. PD operators are natural generalisations of Dalal’s revision operator, with a much
greater range of applicability.

We prove that every PD operator satisfies all extended AGM postulates. This result
not only establishes the consistency of the extended AGM postulates but also sheds
light into the scope and nature of the revision functions satisfying these postulates. The
latter is an important contribution since hitherto it was clear how many, and what kind,
of classical AGM revision functions survive the addition of postulate (wP) (let alone
the addition of (wP) and (KC1)-(KC2)).1

We conclude the paper by illustrating the strength of the extended AGM postulates
in a number of examples that are out of reach for vanilla AGM. These include (some)
iterated revision scenarios, [12].

The paper is structured as follows. In the next section we introduce the necessary
notation and terminology. Section 3 gives a brief overview of the AGM framework. In
Sect. 4 we introduce and formalise the kinetic consistency principle; we also provide a
representation result connecting the new postulates and semantics. Section 5 provides a
brief review of relevant change. In Sect. 6 we introduce the class of PD operators and
we prove that they all satisfy the extended AGM postulates. Section 7 lists a number
of examples that demonstrate the strength of the extended AGM postulates. The last
section contains some concluding remarks.

2 Preliminaries

Throughout this article we shall be working with a propositional language L built over
finitely many propositional variables. The finite, nonempty set of all propositional vari-
ables is denoted by P. A literal is a variable in P or the negation of a variable. For a
variable q ∈ P we shall often write q instead of ¬q. The set of all interpretations over P
is denoted�. Interpretations will also be called possible worlds. We will often identify
a possible world with the set (or sequence) of literals it satisfies. Moreover, we will
sometimes abuse notation and use a possible world as a sentence, namely, the conjunc-
tion of all the literals it satisfies; for example, for possible worlds w, r, we may write
¬w or w ∨ r.

For a set of sentences Γ of L, we denote byCn(Γ) the set of all logical consequences
of Γ, i.e., Cn(Γ) = {ϕ ∈ L : Γ |= ϕ}. A theory K of L is any set of sentences of L closed
under |=, i.e., K = Cn(K). We shall denote the set of all theories of L by �. The set
of all consistent theories of L is denoted by �. A theory K of L is complete iff for all
sentences ϕ ∈ L, ϕ ∈ K or ¬ϕ ∈ K.

For a set of sentences Γ of L, [Γ] denotes the set of all possible worlds that satisfy Γ.
Often we shall use the notation [ϕ] for a sentence ϕ ∈ L, as an abbreviation of [{ϕ}]. For
a theory K and a set of sentences Γ of L, we shall denote by K + Γ the closure under |=

1 In fact in [9], Parikh conjectured that no classical AGM revision function survives (wP). This
was later refuted in [11].

Kinetic Consistency and Relevance in Belief Revision 403

of K ∪ Γ, i.e., K + Γ = Cn(K ∪ Γ). For a sentence ϕ ∈ L, we shall often write K + ϕ
as an abbreviation of K + {ϕ}. For any two sentences ϕ, ψ, we shall write ϕ ≡ ψ as an
abbreviation of Cn(ϕ) = Cn(ψ).

3 The AGM Framework

In the AGM framework, [1], an agent’s belief set is modelled as a theory of L. Epistemic
input is represented as a logical sentence of L, and the process of belief revision is
modelled as a function ∗ mapping a theory K and a sentence ϕ to a new theory K ∗ ϕ.

An AGM revision function, [1], or revision function for short, is any function ∗ :
� × L �→ � that satisfies certain constraints known as the AGM postulates for revision.
There are eight such postulates, numbered (K*1) - (K*8). They are widely considered
to have captured the essence of the revision process:

(K ∗ 1) K ∗ ϕ is a theory of L.
(K ∗ 2) ϕ ∈ K ∗ ϕ.
(K ∗ 3) K ∗ ϕ ⊆ K + ϕ.
(K ∗ 4) If ¬ϕ � K then K + ϕ ⊆ K ∗ ϕ.
(K ∗ 5) If ϕ is consistent then K ∗ ϕ is also consistent.
(K ∗ 6) If ϕ ≡ ψ then K ∗ ϕ = K ∗ ψ.
(K ∗ 7) K ∗ (ϕ ∧ ψ) ⊆ (K ∗ ϕ) + ψ.
(K ∗ 8) If ¬ψ � K ∗ ϕ then (K ∗ ϕ) + ψ ⊆ K ∗ (ϕ ∧ ψ).

In addition to the postulates, a constructive model for revision functions based on
possible worlds was proposed in [4]. Katsuno and Mendelzon, [6], subsequently simpli-
fied this model by constraining it to propositional logic over finite variables. In partic-
ular, to every belief set K, Katsuno and Mendelzon assign a total preorder �K over the
set of possible worlds�.2 We recall that a preorder �K over�, is any binary relation
in� that is reflexive and transitive. The preorder is total iff for all w,w′ ∈�, w �K w′
or w′ � w (we shall be using infix notation throughout this paper). As usual, ≺K denotes
the strict part of �K ; i.e., w ≺K w′ iff w �K w′ and w′ ��K w. Moreover, we shall write
w ≈K w′ iff w �K w′ and w′ �K w.

The preorder �K is assumed to satisfy the following constraints:

(i) If w1, w2 ∈ [K], then w1 ≈K w2.
(ii) If w1 ∈ [K] and w2 � [K], then w1 ≺K w2.

For any theory K and total preorder �K over�, we shall say that �K is faithful to
K iff it satisfies the constraints (i) - (ii) above.

When � appears without a subscript, it represents a function, mapping a theory K to
a total preorder �K over�. If for all K ∈ �, the preorder �K is faithful to K, then the
function � is called a faithful assignment.

2 To be precise, Katsuno and Mendelzon represent an agent’s beliefs by a sentence rather than
a theory. Hence they assign preorders to sentences rather than to theories. We use theories in
order to adhere more closely to the original AGM approach. Since we deal only with languages
built over finitely many variables, the difference is immaterial.

404 P. Peppas and M.-A. Williams

Intuitively, �K represents comparative plausibility: w �K w′ iff given the agent’s
current beliefs K, w is at least as plausible as w′. Based on this reading, Katsuno and
Mendelzon define K ∗ ϕ as follows:

(�∗) [K ∗ ϕ] = min([ϕ],�K).

In the above definition, min(S ,�K) is the set of minimal elements of the set S with
respect to �K ; i.e., min(S ,�K) = {w ∈ S : for all w′ ∈ S , if w′ �K w, then w �K w′}.
Katsuno and Mendelzon proved the following representation theorem:

Theorem 1 [6]. A revision operator * satisfies postulates (K*1) - (K*8) iff there exists
a faithful assignment � such that (�∗) holds for every K ∈ � and ϕ ∈ L.

For ease of presentation, in the rest of the paper we shall focus only on revision of
consistent theories by consistent input. Hence from now, unless explicitly stated other-
wise, we assume that the initial belief set K is a consistent theory, and that the epistemic
input ϕ is a consistent sentence.

4 Kinetic Consistency

Consider a rational agent whose current belief set is K and who uses the revision func-
tion ∗ to respond to new information. We stress that ∗ is defined as a binary function
in the AGM framework; ∗ : � × L �→ �. Hence, in view of Theorem 1, the agent
is equipped with faithful preorders, not just for K, but for every other theory as well.
Through these preorders, the agent is able to answer hypothetical questions like “would
ψ be true after revision by φ, had the initial belief set been H instead of K?”

Should the faithful preorders assigned to different theories be related? Or does every
collection {�H}H∈� of faithful preorders correspond to a rational revision policy? The
AGM postulates support the latter view, since they place no constraints on the preorders
assigned to different theories. This is too liberal for a wide range of applications where
there needs to be some kind of consistency in the epistemic choices that a rational agent
makes across different belief sets.

Consider for example two different consistent complete theories K and H. Then for
some distinct worlds w1, w2, [K] = {w1} and [H] = {w2}. Let r, r′ be another two distinct
worlds, different from w1,w2. Moreover assume that from the perspective of w1 as well
as from the perspective of w2, r is at least as plausible as r′; in symbols, r �K r′ and
r �H r′. Consider now the preorder �K∩H assigned to the theory K ∩ H. As far as the
agent knows at K ∩ H, the real world can be either w1 or w2. Since in both cases r is
at least as plausible as r′, we argue that it is unreasonable to reverse their plausibility at
K ∩ H. This is the main intuition for what we call the principle of kinetic consistency.

Generalising this simple intuition to arbitrary consistent theories K, H leads us to
the following constraints:

(KS1) If r �K r′ and r �H r′, then r �K∩H r′.
(KS2) If r ≺K r′ and r ≺H r′, then r ≺K∩H r′.

Kinetic Consistency and Relevance in Belief Revision 405

The two constraints deal with different cases of the same intuitive idea: since the
preorders assigned to K and H encode (part of) the revision strategy of a single agent,
then if �K and �H agree on the relative plausibility of two worlds r, r′, then �K∩H should
also agree. This is because [K ∩ H] = [K] ∪ [H], and since the view that, say, r is more
plausible than r′, has prevailed among the K-worlds and moreover it has also prevailed
among the H-worlds, it would be unreasonable to have a reversal of this perception
when the K-worlds and the H-worlds are grouped together in [K ∩ H].

Depending on the class of scenarios under investigation, additional constraints
between faithful preorders may be required. However, (KS1) - (KS2) are the core
domain-independent constraints for kinetic consistency.

The postulates corresponding to the above constraints are listed below:

(KC1) If T ∗ (ϕ ∨ ψ) ∪ H ∗ (ϕ ∨ ψ) ||= ¬ϕ, then ¬ϕ � (T ∩ H) ∗ (ϕ ∨ ψ).
(KC2) If ¬ψ ∈ T ∗ (ϕ ∨ ψ), ¬ψ ∈ H ∗ (ϕ ∨ ψ), and T ∗ (ϕ ∨ ψ) ∪ H ∗ (ϕ ∨ ψ) is

consistent, then ¬ψ ∈ (T ∩ H) ∗ (ϕ ∨ ψ).

Theorem 2. Let ∗ be an AGM revision function and � a faithful assignment corre-
sponding to ∗ via (� ∗). Then ∗ satisfies (KC1) - (KC2) iff � satisfies (KS1) - (KS2)
respectively.

Proof

(⇒)
Assume that ∗ satisfies (KC1). We show that � satisfies (KS1). Let T , H be any

two theories of L and w,w′ ∈ � any two worlds such that w �T w′ and w �H w′.
Clearly then w ∈ min([w ∨ w′],�T), and w ∈ min([w ∨ w′],�H). Hence by (�∗), w ∈
[T ∗ (w ∨ w′)] ∩ [H ∗ (w ∨ w′)], and therefore T ∗ (w ∨ w′) ∪ H ∗ (w ∨ w′) ||= ¬w.
Consequently, from (KC1), ¬w � (T ∩H) ∗ (w∨w′). This again entails that w �T∩H w′.
Hence (KS1) is satisfied.

Assume that ∗ satisfies (KC2). We show that � satisfies (KS2). Let T , H be any
two theories of L and w,w′ ∈ � any two worlds such that w ≺T w′ and w ≺H w′.
Then clearly, w � w′ and moreover, min([w ∨ w′],�T) = min([w ∨ w′],�H) = {w}.
Hence, T ∗ (w ∨ w′) is consistent with H ∗ (w ∨ w′). Moreover, ¬w′ ∈ T ∗ (w ∨ w′) and
¬w′ ∈ H ∗ (w ∨ w′). Therefore by (KC2), ¬w′ ∈ (T ∩ H) ∗ (w ∨ w′). This again entails
that w ≺T∩H w′. Hence (KS2) is satisfied.

(⇐)
Assume that � satisfies (KS1). We show that ∗ satisfies (KC1). Let T , H be any two

theories of L and ϕ, ψ ∈ L any two sentences such that T ∗(ϕ∨ψ)∪H∗(ϕ∨ψ) ||= ¬ϕ. Then
there is a world w ∈ [T ∗ (ϕ∨ψ)]∩ [H ∗ (ϕ∨ψ)] such that w |= ϕ. From w ∈ [T ∗ (ϕ∨ψ)]
we derive that w �T w′ for all w′ ∈ [ϕ ∨ ψ]. Similarly, from w ∈ [H ∗ (ϕ ∨ ψ)] it
follows that w �H w′ for all w′ ∈ [ϕ ∨ ψ]. Hence from (KS1), w �T∩H w′ for all
w′ ∈ [ϕ∨ψ]. This again entails that w ∈ [(T ∩H)∗ (ϕ∨ψ)], and since w |= ϕ, we derive
that ¬ϕ � (T ∩ H) ∗ (ϕ ∨ ψ).

Assume that � satisfies (KS2). We show that ∗ satisfies (KC2). Let T , H be any two
theories of L and ϕ, ψ ∈ L any two sentences such that ¬ψ ∈ T ∗(ϕ∨ψ), ¬ψ ∈ H∗(ϕ∨ψ),
and T ∗ (ϕ ∨ ψ) is consistent with H ∗ (ϕ ∨ ψ). If ψ is inconsistent, then by (K*1) we

406 P. Peppas and M.-A. Williams

immediately derive that ¬ψ ∈ (T ∩ H) ∗ (ϕ ∨ ψ) as desired. Assume therefore that ψ
is consistent. Since T ∗ (ϕ ∨ ψ) is consistent with H ∗ (ϕ ∨ ψ), there exists a world
w ∈ [T ∗ (ϕ∨ψ)]∩ [H ∗ (ϕ∨ψ)]. Moreover, from ¬ψ ∈ T ∗ (ϕ∨ψ) and (K*2) we derive
that ϕ ∈ T ∗ (ϕ ∨ ψ). Consequently, w |= ϕ and w |= ¬ψ. From w ∈ [T ∗ (ϕ ∨ ψ)] and
¬ψ ∈ T ∗(ϕ∨ψ) it follows that w ≺T w′ for all w′ ∈ [ψ]. Similarly, from w ∈ [H∗(ϕ∨ψ)]
and ¬ψ ∈ H ∗ (ϕ ∨ ψ) it follows that w ≺H w′ for all w′ ∈ [ψ]. Hence by (KS2),
w ≺T∩H w′, for all w′ ∈ [ψ]. Therefore, since w |= ϕ, ¬ψ ∈ (T ∩ H) ∗ (ϕ ∨ ψ). Hence
(KC2) is satisfied. ��

5 Relevant Change

As already mentioned, relevant change is also not properly addressed in the classical
AGM framework. In this section we briefly review recent work on the subject; in the
following section relevant change will be combined with kinetic consistency.

Relevant change was studied by Parikh in [9], where a new postulate for it was
introduced, called (P). Postulate (P) was further analysed in [11] and two different inter-
pretations of it were identified, called the weak and the strong version of (P). The weak
version of postulate (P), which we denote (wP), is much more general and intuitive, and
it is this version we shall use herein.

Before presenting (wP) we need some more notation: for any sentence x, Lx denotes
the (unique) smallest language in which x can be expressed. Moreover, Lx denotes the
complement language, that is the language built from the propositional variables that
do not appear in Lx. With this additional notation we can now present (wP):

(wP) If K = Cn({x, y}), Lx ∩ Ly = ∅, and ϕ ∈ Lx, then (K ∗ ϕ) ∩ Lx = K ∩ Lx.

Postulate (wP) essentially says the following. Suppose that the initial belief set K
is divided into two disjoint compartments x, y, in the sense that the minimal languages
in which the two sentences x and y can be expressed, do not share any propositional
variable. If the epistemic input ϕ happens to be expressible solely within the language of
the first compartment, then the second compartment remains unaffected by the revision
of K by ϕ, since arguably, it is not relevant to the epistemic input.

In [11], (wP) was characterised semantically in terms of constrains over faithful
preorders. This semantic characterisation of (wP) will be used later in the proof of
Theorem 4 and is therefore presented below. First however we need some additional
terminology and notation.

The difference between two possible worlds w, r, denoted Diff (w, r), is defined to be
the set of variables over which the two worlds disagree. Formally, Diff (w, r) = {q ∈ P :
w |= q and r |= ¬q} ∪ {q ∈ P : w |= ¬q and r |= q}.

The definition of Diff can be extended to include the difference between a theory K
and a world r, [11]. For this however we need some more notation: for any nonempty
set of propositional variables S ⊆ P, by LS we denote the propositional language built
from the variables in S .

Consider now a consistent theory K, and let Q = {Q1, . . . ,Qn} be a partition of P;
i.e.,
⋃

Q = P, Qi � ∅, and Qi ∩ Qj = ∅, for all 1 � i � j � n. We say that Q =
{Q1, . . . ,Qn} is a K-splitting iff there exist sentences φ1 ∈ LQ1 , . . . , φn ∈ LQn , such that

Kinetic Consistency and Relevance in Belief Revision 407

K = Cn({φ1, . . ., φn}). Parikh has shown in [9] that for every theory K there is a unique
finest K-splitting, i.e., one which refines every other K-splitting.3

We can now define the difference between an arbitrary consistent theory K and a
world r using the finest splitting of K, call it F, as follows: Diff (K, r) =

⋃{Fi ∈ F : for
some φ ∈ LFi , K |= φ and r |= ¬φ} (see [11] for a detailed discussion on this definition).
With the extended definition of Diff, it was shown in [11] that (wP) can be semantically
characterised by the following two constraints:

(Q1) If Diff (K, r) ⊂ Diff (K, r′) and Diff (r, r′) ∩ Diff (K, r) = ∅, then r ≺ r′.
(Q2) If Diff (K, r) = Diff (K, r′) and Diff (r, r′) ∩ Diff (K, r) = ∅, then r ≈ r′.

Theorem 3 [11]. Let ∗ be a revision function satisfying (K*1) - (K*8), K a consistent
theory, and �K a preorder faithful to K, that corresponds to ∗ at K by means of (�∗).
Then ∗ satisfies (wP) at K iff �K satisfies (Q1) - (Q2).

It was furthermore shown in [11] that (wP) is consistent with the AGM postulates
(K*1) - (K*8). Our next aim herein is to show that (KC1) - (KC2) can also be added
consistently to (K*1) - (K*8) and (wP). This is the subject of the next section.

6 Parametrised Difference Operators

To prove the consistency of the extended AGM postulates it suffices to show that there
is at least one concrete revision function that satisfies them all. A good candidate would
be Dalal’s revision operator, [2], since it is already known to satisfy (K*1) - (K*8) and
(wP), [11].

Yet consistency would be all that such a result would demonstrate; the scope of
the extended AGM postulates would still be undetermined. We will therefore prove
something stronger. We shall introduce a whole new class of revision operators, called
parametrised difference operators, or PD operators for short, and show that each one of
them satisfies (K*1) - (K*8), (wP), and (KC1) - (KC2). By doing so, we would not only
prove the consistency of the extended AGM postulates, but we will also shed light to the
scope and nature of the revision functions satisfying these postulates. This is important,
since up to now it is not known how restrictive the addition of (wP) to (K*1) - (K*8)
might be.

The PD operators are natural generalizations of Dalal’s operator, so we will look at
Dalal’s operator first.

Dalal defines his operator, which we denote �, as the function induced by means of
(�∗), from the following preorders (one for each theory K):

r �K r′ iff there is a w ∈ [K] such that for all w′ ∈ [K], |Diff (w, r)| � |Diff (w′, r′)|

3 A partition Q′ refines another partition Q, iff for every Q′i ∈ Q′ there is Qj ∈ Q, such that
Q′i ⊆ Qj.

408 P. Peppas and M.-A. Williams

Let us examine the above definition in more details through an example. Consider a
language L built from only three variables a, b, c, and suppose that K is the theory K =
Cn({a, b, c}). Then the preorder that Dalal attaches to K is the following:

abc abc
abc �K abc �K abc �K abc

abc abc

According to Dalal, the plausibility of a world r is determined by the number of
propositional variables on which r differs from the initial world abc. A silent assump-
tion in Dalal’s approach is that all variables have the same epistemic value; hence for
example, a change in the variable a is assumed to be as plausible (or implausible) as a
change in variable b. In many scenarios though this is not true. Suppose for example that
K describes our beliefs about a circuit consisting of a multiplier and two adders. Vari-
able a represents the fact that “adder1 is working”, variable b that “adder2 is working”,
and variable c that “the multiplier is working”. Given that multipliers are less reliable
than adders, if we observe that the circuit is malfunctioning, it is plausible to put the
blame on the multiplier rather than on one of the adders (this is a modified version of an
example in [3]). In other worlds, a change in a or b is less plausible than a change in c.
We can represent this with a preorder Ĳ over variables, were variables appearing latter
in the preorder are more resistant to change than the ones appearing earlier: c Ĳ a,
c Ĳ b, a Ĳ b, b Ĳ a, a Ĳ a, b Ĳ b, and c Ĳ c.

Given Ĳ we can now refine Dalal’s preorder in a way that takes into account the
difference in epistemic value between the three propositional variables. The resulting
preorder is denoted �Ĳ

K (with �Ĳ
K denoting its strict part), and it is shown below:

abc abc
abc �Ĳ

K abc �Ĳ
K �Ĳ

K �Ĳ
K abc �Ĳ

K abc
abc abc

Observe that according to �Ĳ
K , abc is more plausible than abc, although both worlds

differ in only one variables from the initial world abc. This is because, according to Ĳ,
a change in a induces greater epistemic loss than a change in c. For similar reasons, abc
is more plausible than abc, although both worlds differ in two variables from abc.

The example above illustrates the basic idea in our generalisation of Dalal’s app-
roach with PD preorders. Given a user-defined preorder Ĳ, the comparative plausibility
of any two worlds r and r′ relative to an initial belief set K, is determined, firstly, by the
number of switches in the sign of variables that are needed to take us from a K-world
to r and to r′ respectively. If the number of necessary switches for r is smaller than
the number of necessary switches for r′, then r is defined to be strictly more plausible
that r′. This first step is identical to Dalal’s definition. The differentiation appears when
the two worlds r and r′ require the same number of switches: Dalal defines them to be
equally plausible, whereas we take into account Ĳ to order them. More precisely, we
define r to be more plausible than r′ if the set of variables that need to be switched to
reach r from K, lexicographically proceeds (with respect to Ĳ) the set of variables that
need to be switched to reach r′ from K. Below we present this more formally.

Kinetic Consistency and Relevance in Belief Revision 409

Let Ĳ be any total preorder over P (the set of propositional variables). For a set of
propositional variables S and a variable q ∈ P, by S q we denote the set S q = {x ∈
S : x Ĳ q}. We can now extend the definition of Ĳ to sets of propositional variables.
In particular, for any two sets of propositional variables S , S ′ ⊆ P, we define S Ĳ S ′ iff
one of the following three conditions holds:

(a) |S | < |S ′|.
(b) |S | = |S ′|, and for all q ∈ P, |S q| = |S ′q|.
(c) |S | = |S ′|, and for some q ∈ P, |S q| > |S ′q|, and for all p Ÿ q, |S p| = |S ′p|

In the above definition, condition (b) states that S and S ′ are lexicographically indis-
tinguishable with respect to Ĳ, whereas (c) states that S lexicographically proceeds S ′
(wrt Ĳ). It is not hard to verify that Ĳ is a total preorder over 2P; moreover the empty
set precedes every other set with respect to Ĳ.

We can now define the PD preorder �Ĳ
K over�, induced from Ĳ and associated to

a theory K, as follows:

r �Ĳ
K r′ iff there is aw ∈ [K] such that for allw′ ∈ [K], Diff (w, r) Ĳ Diff (w′, r′).

Observe that when Ĳ= P × P, then �Ĳ
K reduces to Dalal’s preorder �K . In what

follows we will prove that, for any total preorder Ĳ over P, the revision function induced
by the PD preorders {�Ĳ

K }K∈� satisfies all the extended AGM postulates. To this aim we
recall the following lemma from [9]:

Lemma A [9]. Let K be a theory and {Q1, . . . ,Qn} a partition of P. If {Q1, . . . ,Qn} is
a K-splitting, then for any r1, . . . , rn ∈ [K], Mix(r1, . . . , rn; Q1, . . . ,Qn) belongs to [K].
Conversely, if Mix(r1, . . . , rn; Q1, . . . ,Qn) belongs to [K] for all r1, . . . , rn ∈ [K], then
{Q1, . . . ,Qn} is a K − splitting.

In the lemma above, Mix(r1, . . . , rn; Q1, . . . ,Qn) denotes the unique world r that
agrees with r1 on the variables in Q1, with r2 on the variables in Q2, . . ., and with rn on
the variables in Qn.

We can now prove the theorem alluded earlier.

Theorem 4. Let Ĳ be a total preorder over P and ∗ the revision function induced from
the family of PD preorders { �Ĳ

K }K∈�. Then ∗ satisfies (K*1) - (K*8), (wP), and (KC1) -
(KC2).

Proof. To prove that ∗ satisfies (K*1) - (K*8), it suffices to show that for any consistent
theory K, �Ĳ

K is a total preorder and moreover that it is faithful to K.
For reflexivity, let r be any possible world. Define Q to be the set Q = {Diff (z, r) :

z ∈ [K]}. Since K is consistent, Q � ∅. Let Diff (w, r) be a minimal element of Q with
respect to Ĳ.4 Clearly then, w ∈ [K] and Diff (w, r) Ĳ Diff (w′, r), for all w′ ∈ [K].
Hence r �Ĳ

K r as desired.
For transitivity, let r, r′, r′′ be any three worlds such that r �Ĳ

K r′ �Ĳ
K r′′. From

r′ �Ĳ
K r′′ we derive that there is a world w′ ∈ [K] such that Diff (w′, r′) Ĳ Diff (w′′, r′′),

4 Since Ĳ is a total preorder and [K] is finite (because P is assumed to be finite), such a minimal
element always exists.

410 P. Peppas and M.-A. Williams

for all w′′ ∈ [K]. Moreover, from r �Ĳ
K r′ it follows that there is a w ∈ [K] such that

Diff (w, r) Ĳ Diff (w′, r′). Hence, since Ĳ is transitive, Diff (w, r) Ĳ Diff (w′′, r′′), for all
w′′ ∈ [K]. Consequently, r �Ĳ

K r′′, and therefore �Ĳ
K is transitive.

For totality, let r, r′ be any two worlds and assume that r′ ��Ĳ
K r. Let Q be the

set Q = {Diff (z, r) : z ∈ [K]}. Since K is consistent, Q � ∅. Let Diff (w, r) be a
minimal element of Q with respect to Ĳ. Then w ∈ [K] and Diff (w, r) Ĳ Diff (z, r),
for all z ∈ [K]. Next consider any world w′ ∈ [K]. From r′ ��Ĳ

K r, it follows that
there is a z ∈ [K] such that Diff (w′, r′) �Ĳ Diff (z, r), and consequently, since Ĳ is
a total preorder, Diff (z, r) Ĳ Diff (w′, r′). On the other hand, by the definition of w,
Diff (w, r) Ĳ Diff (z, r). Consequently, by the transitivity of Ĳ, Diff (w, r) Ĳ Diff (w′, r′).
Since w′ was chosen arbitrarily, it follows that r �Ĳ

K r′, and therefore �Ĳ
K is total.

Next we show that �Ĳ
K is faithful to K. Let r, r′ be any two worlds. Moreover assume

that r ∈ [K]. Clearly, Diff (r, r) = ∅ and consequently, Diff (r, r) Ĳ Diff (w′, r′) for all
w′ ∈ [K]; thus, since r ∈ [K], r �Ĳ

K r′. This clearly entails the first condition for
faithfulness. For the second condition, assume that r, r′ are two worlds such that r ∈ [K]
and r′ � [K]. Then Diff (r, r) = ∅ and Diff (w′, r) � ∅ for all w′ ∈ [K]. Hence, for all
w′ ∈ [K], |Diff (r, r)| < |Diff (w′r′)|, which again entails r �Ĳ

K r′ as desired.
We have thus shown that �Ĳ

K is a total preorder that is faithful to K. By Theorem 1
it then follows that the induced revision function ∗ satisfies (K*1) - (K*8).

For (KC1), consider two arbitrary consistent theories K, H. It suffices to show that
(KS1) is satisfied. Let r, r′ be any two worlds such that r �Ĳ

K r′ and r �Ĳ
H r′. From

r �Ĳ
K r′ it follows that there is a w1 ∈ [K] such that Diff (w1, r) Ĳ Diff (w′, r′), for

all w′ ∈ [K]. Similarly, form r �Ĳ
H r′ it follows that there is a w2 ∈ [H] such that

Diff (w2, r) Ĳ Diff (w′′, r′), for all w′′ ∈ [H]. Since Ĳ is total, Diff (w1, r) Ĳ Diff (w2, r)
or Diff (w2, r) Ĳ Diff (w1, r). We assume without loss of generality that Diff (w1, r) Ĳ
Diff (w2, r). Then from the transitivity of Ĳ we derive that Diff (w1, r) Ĳ Diff (z, r′), for
all z ∈ [K] ∪ [H]. Given that [K] ∪ [H] = [K ∩ H], we then derive that r �Ĳ

K∩H r′ as
desired.

For (KC2), consider two arbitrary consistent theories K, H. It suffices to show that
(KS2) is satisfied. This is done with a totally symmetric argument as the one above. In
particular, let r, r′ be two worlds such that r �Ĳ

K r′ and r �Ĳ
H r′. From r �Ĳ

K r′ it follows
that there is a w1 ∈ [K] such that Diff (w1, r) Ÿ Diff (w′, r′), for all w′ ∈ [K]. Similarly,
form r �Ĳ

H r′ it follows that there is a w2 ∈ [H] such that Diff (w2, r) Ÿ Diff (w′′, r′), for
all w′′ ∈ [H]. Since Ĳ is total, Diff (w1, r) Ĳ Diff (w2, r) or Diff (w2, r) Ĳ Diff (w1, r).
We assume without loss of generality that Diff (w1, r) Ĳ Diff (w2, r). Then from the
transitivity of Ĳ we derive that Diff (w1, r) ŸDiff (z, r′), for all z ∈ [K]∪ [H]. Given that
[K] ∪ [H] = [K ∩ H], we then derive that r �Ĳ

K∩H r′ as desired.
Finally for (wP), we shall prove instead that conditions (Q1) and (Q2) are satisfied.

The proof of (Q1) follows that same line of reasoning used in the proof of Theorem 7
in [11]; the proof of (Q2) is somewhat different.

Starting with condition (Q1), let K be a consistent theory and let r, r′ be any two
possible worlds such that Diff (K, r) ⊂ Diff (K, r′) and Diff (r, r′) ∩ Diff (K, r) = ∅. Then
clearly, P − Diff (K, r) � ∅. Let u be a world in K that agrees with r on all variables in

Kinetic Consistency and Relevance in Belief Revision 411

P−Diff (K, r). 5 Moreover, let z be a K-world that differs in the least number of variables
from r when restricted to Diff (K, r); i.e., |Diff (z, r)∩Diff (K, r)| � |Diff (z′, r)∩Diff (K, r)|
for all z′ ∈ [K]. Define w to be the world that agrees with z on the variables in Diff (K, r)
and agrees with u on the remaining variables. Clearly, Diff (w, r) ⊆ Diff (K, r). Moreover,
by the definition of Diff, {Diff (K, r), P − Diff (K, r)} is a K-splitting, and consequently
from Lemma A and the fact that z, u ∈ [K], we derive that w ∈ [K].

Consider now any world w′ ∈ [K]. Since Diff (K, r) ⊂ Diff (K, r′), there is at least
one sentence x, built entirely from variables in P − Diff (K, r), such that K |= x and
r′ |= ¬x. Hence from w′ ∈ [K], we derive that Diff (w′, r′)∩(P−Diff (K, r)) � ∅ and con-
sequently, |Diff (w′, r′)∩(P−Diff (K, r))| > 0. Moreover, since r and r′ agree on the vari-
ables in Diff (K, r) it follows that |Diff (w′, r′) ∩ Diff (K, r))| = |Diff (w′, r) ∩ Diff (K, r))|.
Consequently, |Diff (w′, r′)| = |Diff (w′, r′)∩Diff (K, r))|+ |Diff (w′, r′)∩ (P−Diff (K, r))|
> |Diff (w′, r′) ∩ Diff (K, r))| = |Diff (w′, r) ∩ Diff (K, r))| ≥ |Diff (z, r) ∩ Diff (K, r))|
= |Diff (w, r) ∩ Diff (K, r))| = |Diff (w, r)|. Hence we have shown that |Diff (w, r)| <
|Diff (w′, r′)| for all w′ ∈ [K]. This again entails that r �Ĳ

K r′ as desired.
For (Q2), let K be a consistent theory and let r, r′ be any two possible worlds such

that Diff (K, r) = Diff (K, r′) and Diff (r, r′)∩Diff (K, r) = ∅. If Diff (K, r) = P then r = r′
and (Q2) trivially holds. Moreover, if Diff (K, r) = ∅, then r, r′ ∈ [K] and therefore (Q2)
follows from the fact that �Ĳ

K is faithful to K. Assume therefore that ∅ � Diff (K, r) ⊂ P.
Let Q be the set, Q = {Diff (z, r) : z ∈ [K]} and let Diff (w, r) be a minimal element

of Q with respect of Ĳ. Then, w ∈ [K] and for all z ∈ [K], Diff (w, r) Ĳ Diff (z, r).
Next we show that Diff (w, r) ⊆ Diff (K, r). Assume on the contrary that Diff (w, r)∩

(P − Diff (K, r)) � ∅. Since r does not differ from K in any variables in P − Diff (K, r),
we derive that there is a u ∈ [K] that agrees with r on all variables in P−Diff (K, r) (see
Footnote 5). Define z to be the world that agrees with w on the variables in Diff (K, r)
and agrees with u on the remaining variables. Then Diff (z, r) ⊂ Diff (w, r) and moreover,
since {Diff (K, r), P − Diff (K, r)} is a K-splitting, by Lemma A, z ∈ [K]. This however
contradicts our assumption that Diff (w, r) is Ĳ-minimal in Q. Hence we have shown
that Diff (w, r) ⊆ Diff (K, r); i.e., w agrees with r over all variables in P − Diff (K, r).

Now pick a world w′ ∈ [K] such that Diff (w′, r′) is Ĳ-minimal in the set Q′ =
{Diff (z′, r′) : z′ ∈ [K]}. By a similar argument as the one above, we derive that
Diff (w′, r′) ⊆ Diff (K, r).

Next we show that Diff (w, r) Ĳ Diff (w′, r′). Assume towards contradiction that
Diff (w′, r′) Ÿ Diff (w, r). Define z to be the world that agrees with w′ over the variables
in Diff (K, r), and it agrees with w over all remaining variables. By Lemma A, z ∈ [K].
Moreover by construction, Diff (z, r) ⊆ Diff (K, r). Hence, since r and r′ agree over
the variables in Diff (K, r), and so do z and w′, we derive that Diff (z, r) = Diff (w′, r′).
From Diff (w′, r′) Ÿ Diff (w, r) we then derive that Diff (z, r) Ÿ Diff (w, r). This of course
contradicts our initial assumption that Diff (w, r) is Ĳ-minimal in {Diff (z′, r) : z′ ∈ [K]}.

5 To see that such a world indeed exists, consider the sentence ϕ defined as the conjunction of
all literals in r that are built from variables in P − Diff (K, r). Clearly then, r |= ψ. Moreover,
¬ψ � K, for otherwise Diff (K, r) would include variables from P − Diff (K, r), which is of
course a contradiction. Hence there is a u ∈ [K] such that u |= ψ. By the construction of ψ it
follows that u agrees with r on all variables outside Diff (K, r).

412 P. Peppas and M.-A. Williams

Thus we have shown that Diff (w, r) Ĳ Diff (w′, r′). Since Diff (w′, r′) is Ĳ-minimal
in {Diff (z′, r′) : z′ ∈ [K]} we derive that Diff (w, r) Ĳ Diff (z′, r′), for all z′ ∈ [K].
Consequently, r �Ĳ

K r′.
By a totally symmetric argument we also derive that r′ �Ĳ

K r, thus proving (Q2). ��

7 Examples

The extended AGM postulates are clearly stronger than the original ones. In [9], Parikh
has already demonstrated the benefits of adding (wP) to (K*1) - (K*8). In this section
we provide further examples in support of the extended AGM postulates.

Yet instead of following the path set by Parikh, we choose a different direction which
better illustrates the diversity of the implications of adding (wP) and (KC1) - (KC2) to
the classical AGM postulates. In particular, the first two examples below, introduced
in [5,7] respectively, relate to iterated revision scenarios, [12], which are known to be
out of reach for vanilla AGM. It is shown below that the extended AGM postulates,
although not specifically designed to deal with iteration, are nevertheless strong enough
to produce the desired conclusions in these examples.

Example 1 [7]. “Consider a circuit containing an adder and a multiplier. In this exam-
ple, we have two atomic propositions, adder ok and multiplier ok, denoting respec-
tively the fact that the adder and the multiplier are working. We have initially no infor-
mation about this circuit (Ψ ≡ �) and we learn that the adder and the multiplier are
working (μ = adder ok ∧ multiplier ok). Then someone tells us that the adder is not
working (α = ¬adder ok). There is, then, no reason to “forget” that the multiplier is
working.”

The extended AGM postulates turn the right results: since initially Ψ = Cn(∅), μ
is consistent with Ψ , and therefore Ψ ∗ μ = Cn({adder ok,multiplier ok}); (wP) then
entails that Ψ ∗ μ ∗ α = Cn({¬adder ok,multiplier ok}) as desired.

Example 2 [5]. “We encounter a strange new animal and it appears to be a bird, so we
believe the animal is a bird. As it comes closer to our hiding place, we see clearly that
the animal is red, so we believe that it is a red bird. To remove further doubts about the
animal’s birdhood, we call in a bird expert who takes it for examination and concludes
that it is not really a bird but some sort of mammal. The question now is whether we
should still believe that the animal is red.”

Once again the extended AGM postulates deliver the anticipated results. Let us
denote by a the proposition “the animal is red” and by b the proposition “the animal
is a bird”. Our initial belief set is K = Cn({b}). Since a is consistent with K it follows
that K ∗ a = Cn({a, b}). Hence (wP) entails that K ∗ a ∗ ¬b = Cn({a,¬b}) as desired.

It should be noted that, not only classical AGM, but even Darwiche and Pearl’s iter-
ated revision approach, [3], has trouble dealing such examples (see [5,7,8] for details).

In Examples 1 and 2, the addition of (wP) alone to (K*1) - (K*8), suffices to produce
the desired results. The last example is new and requires the full strength of the extended
AGM postulates.

Kinetic Consistency and Relevance in Belief Revision 413

Example 3. A circuit consists of a multiplier and two adders. Let us denote by m the
proposition “the multiplier is working”, and by a1, a2 the propositions “the first adder is
working” and “the second adder is working” respectively. After performing some tests
on the circuit, we discover that the multiplier or adder 1 is malfunctioning; in symbols,
¬m ∨ ¬a1. Suppose that our initial belief set is Cn({m, a1, a2}). Since it is known that
multipliers are less reliable than adders, we end up with the belief set Cn({m, a1, a2}).
For the same reason, if our initial belief set was Cn({m, a1, a2}), then ¬m ∨ ¬a1 would
have taken us to Cn({m, a1, a2}). What would then be our response to ¬m ∨ ¬a1 had
our initial belief set been Cn({m, a1})? Given our past preference to adder 1 over the
multiplier (regardless of the status of adder 2), we argue that it is reasonable to once
again put the blame on the multiplier. Moreover, since adder 2 is independent from
the other two components, our beliefs about adder 2 should not be effected. Indeed
from (KC2) (or rather (KS2)) and (wP) we derive that the resulting belief set is indeed
Cn({m, a1}) as desired.

8 Conclusion

There are three main contributions in this paper. Firstly, we identified and formalised
an aspect of rational belief revision that has been neglected in the classical AGM
framework. We call it the principle of kinetic consistency. We modelled this principle
axiomatically and semantically and proved a representation result connecting the two.

Secondly, we investigated the model that results from combining the AGM postu-
lates for revision (K*1) - (K*8), with the postulates for kinetic consistency (KC1) -
(KC2), and Parikh’s postulate (wP) for relevant change. The extended AGM postulates
were shown to be consistent and their strength was demonstrated in a number of exam-
ples that are out of reach for vanilla AGM.

Thirdly, we introduced a whole new class of concrete revision operators, called PD
operators that are natural generalisations of Dalal’s revision operator. We proved that
every PD operator satisfies all extended AGM postulates. This result not only estab-
lished the consistency of the extended AGM postulates, but also sheds light into the
nature and scope of the revision functions satisfying these postulates.

We conclude with a note on future work. Firstly, we intend to examine more thor-
oughly the relationship revealed by the examples of the previous section, between the
extended AGM postulates and iterated revision. Secondly, in future work we will inves-
tigate the possibility for an axiomatic characterisation of PD operators. Theorem 4
shows that all PD operators satisfy the extended AGM postulates; the converse however
may not be true. If so, new axioms need to be formulated to characterise parametrised
difference revision.

Acknowledgements. We are grateful to Fanis Aravanis and to the anonymous reviewers for
valuable comments on this work.

414 P. Peppas and M.-A. Williams

References

1. Alchourron, C., Gardenfors, P., Makinson, D.: On the logic of theory change: partial meet
functions for contraction and revision. J. Symbol. Logic 50, 510–530 (1985)

2. Dalal, M.: Investigations into theory of knowledge base revision: preliminary report. In: Pro-
ceedings of 7th National Conference of the American Association for Artificial Intelligence
(AAAI 1988), pp. 475–479 (1988)

3. Darwiche, A., Pearl, J.: On the logic of iterated belief revision. Artif. Intell. 89, 1–29 (1997)
4. Grove, A.: Two modellings for theory change. J. Philos. Logic 17, 157–170 (1988)
5. Jin, Y., Thielscher, M.: Iterated belief revision, revised. Artif. Intell. 171, 1–18 (2007)
6. Katsuno, H., Mendelzon, A.: Propositional knowledge base revision and minimal change.

Artif. Intell. 52(3), 263–294 (1991)
7. Konieczny, S., Perez, R.P.: A framework for iterated revision. J. Appl. Non-Classical Logics

10, 339–367 (2000)
8. Nayak, A., Pagnucco, M., Peppas, P.: Dynamic belief revision operators. Artif. Intell. 146,

193–228 (2003)
9. Parikh, R.: Beliefs, belief revision, and splitting languages. In: Logic, Language, and Com-

putation - CSLI Lecture Notes, vol. 2, pp. 266–278. CSLI Publications (1999)
10. Peppas, P.: Belief revision. In: van Harmelen, F., Lifschitz, V., Porter, B. (eds.) Handbook of

Knowledge Representation, pp. 317–359. Elsevier Science (2008)
11. Peppas, P., Williams, M.-A., Chopra, S., Foo, N.: Relevance in belief revision. Artif. Intell.

229, 126–138 (2015)
12. Peppas, P.: A panorama of iterated revision. In: Ove Hansson, S. (ed.) David Makinson on

Classical Methods for Non-Classical Problems. Outstanding Contributions to Logic, pp. 71–
94. Springer, Netherlands (2014)

DRAT Proofs for XOR Reasoning

Tobias Philipp1(B) and Adrián Rebola-Pardo2

1 International Center for Computational Logic,
Technische Universität Dresden, 01062 Dresden, Germany

tobias.philipp@tu-dresden.de
2 TU Wien, Wien, Austria

arebolap@forsyte.tuwien.ac.at

Abstract. Unsatisfiability proofs in the DRAT format became the de
facto standard to increase the reliability of contemporary SAT solvers.
We consider the problem of generating proofs for the XOR reasoning
component in SAT solvers and propose two methods: direct translation
transforms every XOR constraint addition inference into a DRAT proof,
whereas T-translation avoids the exponential blow-up in direct transla-
tions by using fresh variables. T-translation produces DRAT proofs from
Gaussian elimination records that are polynomial in the size of the input
CNF formula. Experiments show that a combination of both approaches
with a simple prediction method outperforms the BDD-based method.

1 Introduction

The satisfiability problem (SAT) is a paramount problem in computer science
and artificial intelligence. Modern SAT solvers based on the DPLL algorithm [10]
use many advanced techniques such as clause learning [27], clause removal [2,12],
formula simplifications [11,19] and specialized reasoning procedures such as
XOR reasoning [20,21,29,31]. These improvements led to a spectacular perfor-
mance of conflict-driven satisfiability solvers. However, even intensively-tested
systems contain bugs [7,24], and today, unsatisfiability proofs in the DRAT
proof format [32] are the de facto standard in the SAT community. In fact,
DRAT format proof generation is a requirement in the main track of the SAT
competition 2016. Recently, the DRAT format received media attention because
SAT solvers solved the Pythagorean Triples Problem and its 200 TB proof was
expressed in this format [17].

XOR constraints frequently arise in applications such as logical cryptanaly-
sis [9] and pseudo-Boolean encodings [13]; 71 % of instances in the application
track of the SAT Competition 2014 contain XOR constraints. Gaussian elimina-
tion can be used as an efficient reasoning procedure over XOR constraints [31].
Currently, none of the state-of-the-art SAT solvers, like Lingeling [5], Riss [23]

A. Rebola-Pardo—Supported by the LogiCS doctoral program W1255-N23 of the
Austrian Science Fund (FWF), and by the Vienna Science and Technology Fund
(WWTF) through grant VRG11-005.

c© Springer International Publishing AG 2016
L. Michael and A. Kakas (Eds.): JELIA 2016, LNAI 10021, pp. 415–429, 2016.
DOI: 10.1007/978-3-319-48758-8 27

416 T. Philipp and A. Rebola-Pardo

F P P ′ F ∪ F ′ UNSAT

Preprocessor SAT Solver

Gaussian
elimination CDCL

σ

proof of F � F ∪ F ′

π

proof of F ∪ F ′ � �

σπ CORRECT

DRAT checker

proof
checking

Fig. 1. Certificate-based approach for XOR reasoning: F is the input formula, P an
XOR formula which is simplified to P ′; F ′ represents the encoding as a CNF formula of
P ′, which is then refuted. DRAT proofs π and σ are generated from Gaussian elimina-
tion preprocessing and CDCL execution. Together, they provide a full unsatisfiability
certificate for F .

and CryptoMiniSAT [30], are able to produce proofs for XOR reasoning. Inabil-
ity to produce unsatisfiability proofs for XOR reasoning can seriously hinder the
performance of SAT solvers when certificate generation is required, since XOR
reasoning must then be disabled. This makes the solver much less efficient for
some problems, e.g. in cryptography.

The problem we address here is to generate DRAT proofs in XOR reasoning,
stated as an open problem in [16,28]. As shown in Fig. 1, SAT solvers with XOR
reasoning modules [29,31] detect XOR constraints P in the input formula F and
apply Gaussian elimination to find small (unary and binary in CoProcessor),
implied XOR constraints P ′, which are then encoded back to the formula as F ′.
A standard CDCL-driven SAT solver solves the new formula, producing a DRAT
refutation π for F ∪ F ′. Still, the DRAT refutation does not include a witness
that the XOR detection and reasoning procedure in the SAT solver was correct.
To obtain a full unsatisfiability proof of F , a DRAT proof σ of F ∪ F ′ from F is
needed. In this paper, we discuss how to generate such a DRAT proof.

Sinz and Biere proposed a BDD-based approach [28] which can be modified
to express DRAT proofs for XOR reasoning. Heule et al. have shown that sym-
metry breaking [1] can be expressed in DRAT [15]. Although these techniques
could be covered by allowing additional inference rules in the proof system, novel
efficient methods for proof checking would need to be developed. Hence, verifi-
cation of proof checkers would become much more costly; by generating DRAT
proofs verification is avoided, since the proof itself is a certificate of correctness.
Furthermore, the obtained DRAT proof is a refutation of the original clauses, so
the XOR constraint detection algorithm needs not be verified.

Our Contributions.

1. We present direct translations which are based on DP-like variable elimina-
tion, and T-translations that avoid the exponential blow up by introducing

DRAT Proofs for XOR Reasoning 417

Tseitin variables. Moreover, we describe how one can adapt the BDD-based
approach [28] to handle XOR constraints.

2. We prove that T-translations are polynomial in the size of the input formula,
when Gaussian elimination was used, whereas the direct translation is an
exponential proof in general.

3. Experiments show that the T-translation is practical as it produces proofs of
reasonable size for the problems in the SAT Competition 2014. Moreover, the
direct and the T-translation outperform the BDD-based approach.

2 Background

2.1 Propositional Logic and XOR Constraints

We consider a totally ordered, countably infinite set of propositional variables. A
literal L is either a variable A or its negation ¬A. The complement of a literal L
is denoted by L. A clause is a finite disjunction of literals (L1 ∨ · · · ∨ Ln). XOR
constraints are expressions of the form [A1, . . . , An]k, where Ai is a variable for
every 1 ≤ i ≤ n, and k ∈ {0, 1}. A finite set of clauses (XOR constraints, resp.)
F is called a CNF formula (XOR formula, resp.).

Semantics are given by interpretations that map formulas to truth values:
the interpretation I satisfies a clause C = (L1 ∨ · · · ∨ Ln), if I satisfies some
literal among L1, . . . , Ln; it satisfies an XOR constraint X = [A1, . . . , An]k if
the number of the variables Ai satisfied by I has the parity of k (i.e. odd if k = 1
and even if k = 0); and it satisfies a formula F if I satisfies all elements of F .
We follow the usual notion of semantic equivalence.

We assume that clauses and XOR constraints are normalized: a literal may
appear only once in a clause, and a variable at most once in an XOR constraint.
The normal form can be obtained by removing duplicated literals in CNF clauses
as well as pairs of occurrences of the same variable in XOR constraints. Observe
that these operations preserve semantic equivalence, e.g. [p, q, r, r, q]0 is seman-
tically equivalent to [p]0. Consider two XOR constraints

X = [A1, . . . , An, B1, . . . , Bp]k Y = [A1, . . . , An, B′
1, . . . , B

′
q]

l

where the Ai, Bi and B′
i are pairwise distinct variables. The addition of X and

Y , denoted by X � Y , is [B1, . . . , Bp, B
′
1, . . . , B

′
q]

k⊕l where ⊕ represents the
binary XOR operation. The resolvent of clauses C and D upon L is the clause
obtained by removing L from C, and L from D, and afterwards combining them
disjunctively. A tautology is a clause containing a complementary pair of literals.

2.2 Gaussian Elimination-Based XOR Reasoning in SAT Solvers

Contemporary SAT solvers such as CryptoMiniSAT detect XOR constraints in
their direct encoding in the input formula [18]. The direct encoding [14] D(X)
of an XOR constraint X = [A1, . . . , An]k is the CNF formula that contains all
clauses of the form (L1 ∨ · · · ∨ Ln), where the Li are either Ai or ¬Ai, and the
number of negated literals Li is not equal to k modulo 2. The direct encoding
of an XOR constraint is the unique CNF formula semantically equivalent to it.

418 T. Philipp and A. Rebola-Pardo

X Y
add

X � Y
def

[A, B1, . . . , Bn]k

Fig. 2. XOR proof system inference rules: addition (left) and XOR definition (right),
where A is a fresh variable and k ∈ {0, 1}

Example 1 (Direct Encoding). Let X = [p, q, r]0, Y = [p, q, s]1 and Z = [r, s]1.
Their direct encodings are:

D(X) = {(¬p ∨ ¬q ∨ ¬r), (¬p ∨ q ∨ r), (p ∨ ¬q ∨ r), (p ∨ q ∨ ¬r)}
D(Y) = {(p ∨ q ∨ s), (p ∨ ¬q ∨ ¬s), (¬p ∨ q ∨ ¬s), (¬p ∨ ¬q ∨ s)}
D(Z) = {(r ∨ s), (¬r ∨ ¬s)}

Note that D([]0) is the empty formula, while D([]1) is the unsatisfiable singleton
formula consisting of the empty clause. �	
For an XOR formula P , we define D(P) as the union of the direct encodings
of XOR constraints in P . We formalize XOR reasoning as a proof system with
two inference rules, given in Fig. 2. An XOR proof of an XOR formula Q from a
formula P is a proof using only additions and XOR definitions, where all premises
are in P and all XOR constraints in Q are either in P or occurring along the
proof. Note that the addition rule subsumes Gaussian elimination steps [29], and
therefore XOR proofs subsumes Gaussian elimination procedures.

Example 2. Consider the XOR formula P =
{

[p, q, r]0, [p, q]1
}

. We obtain the
following XOR proofs of [r]1, with and without the use of a single XOR definition:

def
[x, p, q]0 [p, q, r]0

add
[x, r]0

def
[x, p, q]0 [p, q]1

add
[x]1

add
[r]1

[p, q, r]0 [p, q]1
add

[r]1

�	

2.3 DRAT Proofs

The DRAT (Deletion Resolution Asymmetric Tautology) format [32] is based
on the notion of asymmetric literal addition [19]. Given a CNF formula F and a
clause C, the set AL(F,C) contains all literals L such that, for literals L1, . . . , Ln

occurring in C, the clause (L1 ∨ . . . ∨ Ln ∨ L) belongs to F . We define the
asymmetric literal addition function ALAF that maps a clause C to the clause
ALAF (C) = C ∨ ∨

L∈AL(F,C) L. We consider the repeated application of ALAF :

ALAF (C) ↑ 0 = C ALAF (C) ↑ n + 1 = ALAF (ALAF (C) ↑ n)

A clause C is an asymmetric tautology (AT) w.r.t. F if, for some n ≥ 0,
ALAF (C) ↑ n is a tautology. Asymmetric tautologies can also be character-
ized in terms of unit propagation, i.e. (L1 ∨ . . .∨Ln) is AT w.r.t. F if and only if

DRAT Proofs for XOR Reasoning 419

unit propagation in F ∧¬L1 ∧ . . .∧¬Ln detects an inconsistency [3]. A clause C
is a resolution asymmetric tautology (RAT) [19] upon L w.r.t. F if the resolvent
of C and D upon L is an AT w.r.t. F for all clauses D ∈ F with L ∈ D.

Example 3. Consider the formula F = {(p ∨ q), (p ∨ ¬q ∨ r), (¬q ∨ ¬r)} Then,
the application of asymmetric literal addition for p shows that the unit clause p
is an AT in F , while the unit clause q is not an AT:

ALAF (p) ↑ 1 = (p ∨ ¬q) ALAF (q) ↑ 1 = (q ∨ ¬p)
ALAF (p) ↑ 2 = (p ∨ ¬q ∨ ¬r ∨ r) ALAF (q) ↑ 2 = ALAF (q) ↑ 1
ALAF (p) ↑ 3 = (p ∨ ¬q ∨ ¬r ∨ r ∨ q)
ALAF (p) ↑ 4 = ALAF (p) ↑ 3

Moreover, the unit clause ¬q is a RAT, since it can only be resolved with (p∨q),
yielding p which is an AT. �	
Introduction of asymmetric tautologies to a formula preserves semantic equiva-
lence, while introduction of resolution asymmetric tautologies to a formula pre-
serves satisfiability [19]. A DRAT proof in a formula F is then a sequence of
clauses such that every clause is either AT or RAT with respect to the formula
F together with the preceding clauses. In the following we will use the fact that
resolvents of C and D are asymmetric tautologies in {C,D} [19]. This allows to
regard any resolution proof using resolution inferences of the form

C ∨ L D ∨ L
res

C ∨ D

as a DRAT proof by traversing the proof tree in a breadth-first top-down manner.

3 Variable-Elimination-Based Approach

In this section we present the direct translation, a method to construct DRAT
proofs from XOR proofs based on the direct encoding of XOR constraints. Each
inference in the XOR proof system is translated to a DRAT proof; concatenation
of partial translations is the direct translation of an XOR proof into a DRAT
proof. In the following, we give translations for the two inference rules in XOR
reasoning, namely additions and XOR definitions. In general, the direct encoding
of an addition is not a DRAT proof from the direct encoding of its premisses:

Example 4. Consider the XOR constraints [p, q]0 and [p, q]1. By addition we
obtain []1, whose direct encoding only contains the empty clause. However, the
empty clause is not a RAT in the direct encoding of the premises, given by
D([p, q]0) ∪ D([p, q]1) = {(¬p ∨ q), (p ∨ ¬q), (¬p ∨ ¬q), (p ∨ q)} �	
In fact, the problem arises when two or more variables are eliminated by addition.
We propose to eliminate the variables stepwise. Consider XOR constraints X,
Y and Z = X � Y defining a general addition inference of the form:

[A1, . . . , An, B1, . . . , Bp]k � [A1, . . . , An, B′
1, . . . , B

′
q]

l = [B1, . . . , Bp, B′
1, . . . , B

′
q]

k⊕l

420 T. Philipp and A. Rebola-Pardo

The proof is constructed in a bottom-up fashion: starting from each clause
C in D(Z), a resolution proof of C from D(X) ∪ D(Y) is generated. We know
that C is a clause of the form C = (L1 ∨ · · · ∨ Lp ∨ L′

1 ∨ · · · ∨ L′
q), where literals

Li are either Bi or ¬Bi, and similarly for L′
i.

C can be obtained by resolving the two clauses C ∨A1 and C ∨¬A1 upon A1.
These clauses contain the literals corresponding to all the Bi, B

′
i as well as to A1.

In general, we can consider a clause C ′ of the form C ∨ K1 ∨ · · · ∨ Kj , where the
literals Ki are either Ai or ¬Ai. C ′ can be further obtained as the resolvent of
(C ∨ K1 ∨ · · · ∨ Kj ∨ Aj+1) and (C ∨ K1 ∨ · · · ∨ Kj ∨ ¬Aj+1). Generating these
resolution steps recursively gives a resolution proof, where clauses in level j are
of the form C ∨ K1 ∨ · · · ∨ Kj .

.
res

C ∨ A1 ∨ A2

.
res

C ∨ A1 ∨ ¬A2
res

C ∨ A1

.
res

C ∨ ¬A1 ∨ A2

.
res

C ∨ ¬A1 ∨ ¬A2
res

C ∨ ¬A1
res

C

Clauses in the (n − 1)-th level are of the form C ∨ K1 ∨ · · · ∨ Kn−1. Such clauses
can be guaranteed to be AT in the CNF formula D(X) ∪ D(Y). Let P(X,Y) be
the sequence of clauses obtained from traversing the above proof tree in breadth-
first, top-down manner. Then, P(X,Y) is a DRAT proof of the D(X � Y) from
D(X) ∪ D(Y).

On the other hand, translation of XOR definitions is straightforward. If the
XOR constraint X contains a variable that does not occur in F , and D(X) =
{C1, . . . , Cn}, then (C1, . . . , Cn) is a DRAT proof of D(X) from F .

The direct translation of an XOR proof is then given by the concatenation
of such partial translations of the addition and XOR definition inferences along
the XOR proof.

4 T-Translation of XOR Proofs

In this section we introduce T-translations that avoid the exponential blow-up in
the proof length by expressing single XOR constraints as conjunction of several
XOR constraints of fixed size. We assume from now on that variables in XOR
constraints are sorted. The natural splitting [14] of X = [A1, . . . , An]k, denoted
by S(X), is {X} if |X| ≤ 3, and otherwise the set containing the following XOR
constraints:

splitting matrix
︷ ︸︸ ︷

[A1, A2, s0]0 [s0, A3, s1]0 . . . [sn−4, An−2, sn−3]0
independent constraint
︷ ︸︸ ︷

[sn−3, An−1, An]k (1)

where the si are fresh variables. The set of XOR constraints in the left is called
the splitting matrix of X, denoted by Ŝ(X). The rightmost XOR constraint is
called the independent constraint of X, denoted by IX ; in the case when |X| ≤ 3
we define Ŝ(X) = ∅ and IX = X.

DRAT Proofs for XOR Reasoning 421

Example 5. We show three XOR constraints with their respective splittings,
where the xi, zi are fresh variables. Each independent constraint is underlined.

X =[p1, p2, p3, p4, p5]1 S(X) = {[p1, p2, x0]0, [x0, p3, x1]0, [x1, p4, p5]1}
Y = [p4, p5, p6]0 S(Y) = {[p4, p5, p6]0}
Z = [p1, p2, p3, p6]1 S(Y) = {[p1, p2, z0]0, [z0, p3, p6]1} �	

The linear encoding of X, is L(X) = D(S(X)), i.e. the direct encoding of the
splitting. Notice that the linear encoding is equivalent w.r.t. satisfiability to the
direct encoding of the XOR constraint itself, and has polynomial size. Given an
XOR proof of an XOR formula Q from an XOR formula P , its T-translation is
a DRAT proof of D(Q) from D(P) constructed as follows:

1. Obtain a splitter XOR proof of S(P) from P ; its direct translation, called the
prefix proof, is a DRAT proof of L(P) from D(P).

2. Generate an intermediate XOR proof of S(Q) from S(P); its direct transla-
tion, called the lift proof, is a DRAT proof of L(Q) from L(P).

3. Derive D(Q) from L(Q) through the suffix proof ; the concatenation of prefix,
lift and suffix is a proof of D(Q) from D(P).

4.1 Prefix Proof – Towards the Splitted Representation

In general, given the direct encoding of the splitted XOR constraint L(X) =
D(S(X)) = {C1, . . . , Cn}, the sequence (C1, . . . , Cn) is not a DRAT proof from
D(X). We therefore propose to generate a splitter XOR proof of S(X) from an
XOR constraint X; applying the direct translation to this splitter yields a DRAT
proof of L(X) from D(X) as follows.

Consider X = [A1, . . . , An]k. Observe that X = �Y ∈S(X)Y . Hence, we can
conclude that IX = X � (�Y ∈Ŝ(X)Y). The procedure to construct the splitter
of X consists on, firstly, introducing all XOR constraints in Ŝ(X) as XOR defini-
tions, which is possible as long as this is done in the order shown in (1). Secondly,
the missing constraint IX can be derived by, starting with X, iteratively apply-
ing addition inferences with all constraints from Ŝ(X). Furthermore, provided
this operation is performed in the order from (1), we are able to guarantee that
this process never involves an XOR constraint larger than X, which is essential
to bound the length of the obtained DRAT proof.

Example 6. Consider again the constraints in Example 5. Since the splitting of
Y is {Y }, its splitter is the empty proof. The splitter of X is given by:

[p1, p2, p3, p4, p5]1
def

[p1, p2, x0]0
add

[x0, p3, p4, p5]1
def

[x0, p3, x1]0
add

[x1, p4, p5]1 �	
Applying direct translation results in a DRAT proof of L(X) from D(X),

which we refer to as the prefix proof. In the case the aforementioned orders are
used, the obtained proof is polynomial in the size of the input CNF formula.

422 T. Philipp and A. Rebola-Pardo

4.2 Lifted Proof

We generate now an intermediate XOR proof of S(Q) from S(P); its direct
translation will be the lift DRAT proof. It suffices to give proofs of S(Z) from
S(X) ∪ S(Y) for every addition inference Z = X � Y ; the intermediate XOR
proof is the concatenation of such proofs for every addition inference along the
original XOR proof. Assume that the XOR constraints X,Y,Z contain exactly
the variables A1 < · · · < An.

Similarly to the prefix proof, XOR constraints in the matrix Ŝ(Z) can be
introduced in the same order as in (1) as XOR definitions. The rest of the proof
is directed towards deriving the independent XOR constraint IZ by addition. It
is possible to show that:

IZ = (�X′∈S(X)X
′) � (�Y ′∈S(Y)Y

′) � (�Z′∈Ŝ(Z)Z
′)

As before, the result holds regardless of the order on which addition inferences are
applied. However, it is possible to choose an order which produces intermediate
XOR constraints of size bounded by 5, which is needed to avoid an exponential
blow-up. This is attained by first adding the XOR constraints containing the
literal A1, afterwards adding those containing A2, and so on.

Example 7. Consider X,Y and Z = X � Y as in Example 5. Then, one can
derive S(Z) from S(X) ∪ S(Y) as follows:

[p1, p2, x0]0
def

[p1, p2, z0]0
add

[x0, z0]0 [x0, p3, x1]0
add

[x1, z0, p3]0 [x1, p4, p5]1
add

[z0, p3, p4, p5]1 [p4, p5, p6]0
add

[z0, p3, p6]1

The only XOR constraint in the matrix of Z has been introduced by XOR
definition on z0. To derive the independent constraint [z0, p3, p6]1, we have first
used up the XOR constraints containing p1, then the remaining ones containing
p2 (in this case, none), then the remaining ones containing p3 and so forth. �	
The lift proof is a DRAT proof of L(Q) from L(P) obtained by applying the
direct translation to the intermediate translation described above for every addi-
tion inference along the original XOR proof.

4.3 Suffix Proof – Towards the Direct Encoding

Suffix proofs are generated by listing all clauses in the direct encoding of X,
since every such clause is an AT w.r.t. L(X). Once the three parts of the proof
have been generated, the T-translation consists of their concatenation.

Theorem 8 (Main Theorem). Let P,Q be XOR formulae, and π be an XOR
proof of Q from P . Consider the prefix πp, lift πl and suffix πs obtained from P ,
π and Q respectively. Then, πp πl πs is a DRAT proof of D(Q) from D(P).

Proof. See [25, Corollary 7.30]. �	

DRAT Proofs for XOR Reasoning 423

5 Proof Generation Using BDDs

An alternative to the proposed method consists in expressing XOR constraint
addition as an operation over binary decision diagrams (BDDs) [8]. A DRAT
proof can then be generated using a method proposed by Sinz and Biere [28].

Let us consider two XOR constraints X and Y , and assume we have computed
their BDDs BX and BY . The binary Boolean function f is defined by f(x, y) = 1
if and only if x = y. Then, as shown by Fig. 3, the BDD of the XOR constraint
X � Y can be computed by applying the binary Boolean function f to BX and
BY using a well-known algorithm to apply Boolean functions to BDDs [8].

Sinz and Biere [28] propose a proof method for BDD operations as extended
resolution proofs. In particular, for the encoding of a BDD B as a CNF formula
E(B) described in [28], a method to derive E(B1 ∧ B2) from E(B1) ∪ E(B2) by
an extended resolution proof is proposed. Due to space constraints, we do not
discuss this method in detail; it can however be adapted to our problem:

– By performing minor changes in the case where the operated BDDs are leaves,
it is possible to extend the method so that BDDs are operated with the afore-
mentioned Boolean function f instead of ∧. This outlines another method to
lift an XOR proof into an extended resolution proof.

– Extended resolution proofs can be easily transformed into DRAT proofs [19].
– Given a clause C and its BDD encoding BC , clauses in E(BC) can be derived

by simply enumerating them. The encoding E(BX) of the BDD of an XOR
constraint X is derived by conjoining all the clauses in D(X) as BDDs, and
then lifting this operation into a DRAT proof as above.

– In an analogous way to the T-translation suffix, clauses in the direct encoding
of an XOR constraint X can be derived as asymmetric tautologies in E(BX).

Example 9. Consider XOR constraints X and Y with direct encodings:

D(X) = {C1, C2} D(Y) = {C3, C4} D(X � Y) = {D1,D2,D3,D4}
The encodings of the BDDs corresponding to clauses Ci can be derived by enu-
merating the clauses in E(Ci). Now, since X is semantically equivalent to C1∧C2

X = [p, q, r]0 Y = [p, r, s]1 X ⊕ Y f(X,Y) = X � Y

p
q q

r r

1 0

p
r r

s s

1 0

q
s s

1 0

q
s s

0 1

Fig. 3. BDD representation of two XOR constraints X, Y , as well as of X ⊕ Y and
f(X, Y). A dotted (solid) line from variable A indicates the BDD after assigning A to
false (true, resp.). The correct BDD for the XOR constraint X � Y is that of f(X, Y).

424 T. Philipp and A. Rebola-Pardo

and ROBDDs are canonical [8], we have that BX = BC1 ∧ BC2 . Applying the
method from [28] yields a DRAT proof of E(BX) from E(BC1) ∪ E(BC2); and
analogously for Y . Our variation in this method replacing ∧ by f can then pro-
vide a DRAT proof of E(BX�Y) from E(BX) ∪ E(BY). The direct encoding of
X � Y can be derived from E(BX�Y) by introducing every clause as an AT.

C1

C2

C3

C4

E(BC1)

E(BC2)

E(BC2)

E(BC2)

�

�

�

�

∧ E(BC1∧C2) = E(BX)

∧ E(BC3∧C4) = E(BY)

f E(BX�Y) {D1, . . . , D4} = D(X � Y)�

�	

6 Length Analysis of the Constructed DRAT Proofs

Table 1 presents the exact length measures of direct translations. Translation
of addition inferences is exponential on the u measure, which is the motivation
behind T-translations: by bounding the maximum size of intermediate XOR
constraints, we are able to asymptotically reduce the size of the lift translation.

In order to relate the number of variables occurring in the input formula
to the size of the input formula, we assume that the XOR proof was obtained
by Gaussian elimination, which is a safe assumption in all practical cases. In
particular, we consider an XOR proof of an XOR formula Q from an XOR
formula P of size n2, where n is the number of variables in P .

Theorem 10. If Gaussian elimination was used to obtain an XOR proof π of
Q from P , then the length of the DRAT proof obtained from π by T-translation
is bounded by O((|D(P)| + |D(Q)|)3).
Proof. See [25, Theorem 8.2] for a proof for a regularized version of the
T-translation. The proof can easily be adapted to the setting explained here.
Observe this is a very loose bound, since the cubic exponent only applies to the
involved XOR constraints in every inference. �	

Table 1. Above, (exact) proof lengths of direct translations for each inference in the
input XOR proof. Below, proof length bounds for each T-translation part. We use the
following measures: l(X) = |X�|, u(X, Y) = |X� ∪ Y �| and d(X, Y) = |(X � Y)�|
where X� = {A1, . . . , An} for an XOR constraint X = [A1, . . . , An]k.

Translation Length

Direct addition Z = X � Y 2u(X,Y)−1 − 2d(X,Y)−1 if d(X,Y) > 0, 2u(X,Y)−1 if d(X,Y) = 0

Direct XOR definition X 2l(X)−1 if l(X) > 0, and 1 if l(X) = 0

Prefix proof of XOR

constraint X

4(l(X) − 4) + 3 · 2l(X)−1

Lifted proof of addition

Z = X � Y

36u(X,Y)

Suffix proof of XOR

constraint X

5 · 2l(X)−1

DRAT Proofs for XOR Reasoning 425

Note that the size of the suffix subproof can be ignored if simplified XOR
constraints are introduced back in the SAT solver with the linear encoding.
T-translations are then polynomial in the size of the input CNF formula. This
bound does not contradict the exponential bounds for prefix and suffix proofs: the
size of XOR constraints is logarithmic in the usual measure of a proof generation
method, which is the size of the input CNF formula, in our case D(P). This
bound allows us to show a complexity gap between direct and T-translations.
While the T-translation has polynomial length in the size of the input formula,
this is not true in general for the direct translation. The following example shows
a family of XOR proofs whose direct translation is of exponential length on the
size of the input CNF formula.

Example 11. Consider XOR constraints Xk = [pk−1, pk+1, qk+1]0 and Yk =
[pk, pk+1, q1, . . . , qk+1]0 for k ≥ 0, and the XOR formula Pk = {Y0,X1, . . . , Xk}.
A family of XOR proofs is given by ϕk = Y1, . . . , Yk, where the i-th XOR con-
straint is obtained by the addition Yi = Yi−1 � Xi; these correspond to records
of Gaussian elimination over Pk. Note that all premises in Pk are of length
3, so the size of D(Pk) is 4(k + 1). However, the i-th addition has measures
u(Yi−1,Xi) = i + 4 and d(Yi−1,Xi) = i + 3. Thus, the direct translation of the
i-th addition is of length 2i+2, totaling to translation length 2O(k) for ϕk. �	

7 Experimental Evaluation

We implemented the three approaches for proof generation in the Scala pro-
gramming language. Our algorithms for BDD manipulation are described in [6],
and we based our implementation in the one released by J.C. Filliâtre1. We ran
experiments over the instances of the application track of the SAT Competition
2014 and obtained XOR proofs from the preprocessor CoProcessor [22]. 210 out
of 300 instances yielded nonempty XOR proofs, which constituted our bench-
marks. The average length of these benchmarks was 36, 000 XOR constraints,
with some instances up to 10 times longer; benchmarks contain XOR constraints
averaging 3.47 in size. For each benchmark we computed DRAT proofs using the
direct translation, the T-translation, and the BDD-based approach. The experi-
ments were run on an 2-core 3.5 GHz AMD Opteron machine with 192 GB RAM.
A 5 min timeout was set, and proofs were generated in memory but not stored
in disk. Figures 4a, b and c compare these lengths.

Our results show that the BDD-based approach performs consistently worse
than both direct and T-translations. In particular, it times out on 15 % of
the benchmarks, compared to 13 % for direct translations and none for T-
translations; all terminating instances for the BDD-based approach terminate
for direct and T-translation, as shown by Figs. 4a and b.

Comparison between direct and T-translation is more complex, partly due
to timeouts for direct translations. Given the sheer size of some direct transla-
tions, they would have been impossible to generate within any reasonable time.
1 https://github.com/zhihan/bdd-scala.

https://github.com/zhihan/bdd-scala

426 T. Philipp and A. Rebola-Pardo

a)

100
101
102
103
104
105
106
107
108
109

102 103 104 105 106 107 108 109

pr
oo

f l
en

gt
h

di
re

ct
 tr

an
sl

at
io

n

proof length BDD

b)

100

101

102

103

104

105

106

107

108

102 103 104 105 106 107 108 109

pr
oo

f l
en

gt
h

T
-t

ra
ns

la
tio

n

proof length BDD

c)

100
101
102
103
104
105
106
107
108
109

100 105 1010 1015 1020 1025 1030 1035

pr
oo

f l
en

gt
h

T
-t

ra
ns

la
tio

n

proof length direct translation

d)

10-5

100

105

1010

1015

1020

1025

1030

 0 20 40 60 80 100 120

re
la

tiv
e

pr
oo

f l
en

gt
h

di
re

ct
 /

T
maximum u-measure along XOR proof

Fig. 4. Graphs (a), (b), (c) compare the three different forms of proof construction:
the direct translation, the T-translation, and the BDD-based approach. The gray line
indicates equal length. In Graph (c), green points correspond to the instances where
BDD-based generation yields shorter proofs than direct translation; black points are the
instances where the converse holds; and purple points are those where direct translation
times out, where length was computed using Table 1. Graph (d) compares relative
length of direct translations w.r.t. T-translations to the maximum value of the u-
measure along the input XOR proof. Gray line indicates equal length of direct and
T-translations; the proposed threshold value of 15 is indicated by a red dashed line.
(Color figure online)

A length comparison is nevertheless possible, since direct translation length can
be predicted by using the results from Table 1. Figure 4c shows these results,
where predicted data is provided where the direct translation times out. Direct
translations are strictly shorter than T-translations on 46 % of the instances.
Moreover, whereas in some cases direct translation yields up to 300 times shorter
proofs, in some other instances direct translation produces proofs 25 orders of
magnitude larger than T-translation, which is consistent with our theoretical
analysis in Sect. 6. Furthermore, Fig. 4c shows that, whenever T-translation is
outperformed by direct translation, then so is the BDD-based approach. This
suggests that the latter should not be considered for proof generation.

Further data are presented in Fig. 4d, showing a tight relation between the
maximum u measure (defined in Table 1) along the input XOR proof and a length
comparison of direct and T-translations. In particular, we find that T-translation
outperforms direct translation in proof size whenever the former measure is
larger than 15. The obtained data suggest an approach for proof generation by
computing the maximum u measure in the input, and then comparing it to a
threshold value of 15 to decide for the direct encoding or the linear encoding.

The particular order on which clauses in D(X) are conjoined to construct
the BDD of the XOR constraint X does not have a significant influence on the

DRAT Proofs for XOR Reasoning 427

Table 2. Sizes of generated prefixes with the BDD-based method and with
T-translation. BDD prefixes were generated by conjoining BDDs in random orders,
for a sample of size 30; minimum and maximum recorded prefix lengths are shown.

Size of XOR constraint 3 5 7 9 11 13

Minimum length of BDD prefix 209 1704 15436 151855 1633456 19384645

Maximum length of BDD prefix 216 1879 16507 156914 1668015 19523431

Length of T-translation prefix 0 44 196 780 3092 12316

length of the prefix, as shown in Table 2. In particular, data suggests an average
difference of around 4 % between the minimum and the maximum BDD-based
prefix length, and in all cases a worse behaviour than the T-translation prefix.

8 Conclusion

Contemporary SAT solvers employ XOR reasoning techniques to efficiently solve
the propositional satisfiability problem. It was an open problem [16,28] to effi-
ciently express XOR reasoning in terms of the DRAT format. We have adapted a
known BDD-based approach [28] to generate such proofs, although this method
is resource-intensive and generated proofs are very long. We propose two alterna-
tives: direct translation transforms every XOR step into a DRAT proof, whereas
T-translation avoids the exponential blow-up of the direct translation by first
generating a new XOR proof using Tseitin variables, and afterwards apply-
ing the direct translation. For XOR proofs produced by Gaussian elimination,
T-translations are polynomial in the size of the input CNF formula. Experiments
have shown that direct and T-translations outperform the BDD-based approach.
The direct encoding sometimes generates proofs of enormous size; however, it is
possible to predict instances where this happens, so that T-translation is applied
instead. Our approach allows efficient XOR reasoning when certificates of cor-
rectness are needed, producing unsatisfiability proofs of adequate size.

In the future, we plan to implement both translations in CoProcessor and
apply similar ideas to obtain proofs for cardinality resolution [26], as suggested
in [16]. Another interesting problem is adapting the presented approaches to SAT
solvers where XOR reasoning takes place within the CDCL procedure [20,21].

Acknowledgements. We would like to thank an anonymous reviewer who pointed
out that the BDD-based approach could be used as a baseline.

References

1. Aloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A.: Solving difficult SAT
instances in the presence of symmetry. In: DAC 2002, pp. 731–736. ACM (2002)

2. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: Boutilier, C. (ed.) IJCAI 2009, pp. 399–404. Morgan Kaufmann Publishers Inc.,
Pasadena (2009)

428 T. Philipp and A. Rebola-Pardo

3. Beame, P., Kautz, H., Sabharwal, A.: Towards understanding and harnessing the
potential of clause learning. J. Artif. Intell. Res. 22(1), 319–351 (2004)

4. Belov, A., Diepold, D., Heule, M.J., Järvisalo, M. (eds.): Proceedings of SAT Com-
petition 2014, Department of Computer Science Series of Publications B, vol. B-
2014-2. University of Helsinki, Helsinki (2014)

5. Biere, A.: Yet another local search solver and lingeling and friends entering the
SAT competition 2014. In: Belov et al. [4], pp. 39–40

6. Brace, K.S., Rudell, R.L., Bryant, R.E.: Efficient implementation of a BDD pack-
age. In: DAC, pp. 40–45 (1990)

7. Brummayer, R., Biere, A.: Fuzzing and delta-debugging SMT solvers. In: Workshop
SMT 2010, pp. 1–5. ACM (2009)

8. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput. 35(8), 677–691 (1986)

9. Courtois, N.T., Bard, G.V.: Algebraic cryptanalysis of the data encryption stan-
dard. In: Galbraith, S.D. (ed.) Cryptography and Coding 2007. LNCS, vol. 4887,
pp. 152–169. Springer, Heidelberg (2007). doi:10.1007/978-3-540-77272-9 10

10. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Commun. ACM 5(7), 394–397 (1962)

11. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp.
61–75. Springer, Heidelberg (2005). doi:10.1007/11499107 5

12. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-24605-3 37

13. Eén, N., Sörensson, N.: Translating pseudo-Boolean constraints into SAT. J. Satisf.
Boolean Model. Comput. 2, 1–26 (2006)

14. Gwynne, M., Kullmann, O.: On SAT representations of XOR constraints. In:
Dediu, A.-H., Mart́ın-Vide, C., Sierra-Rodŕıguez, J.-L., Truthe, B. (eds.) LATA
2014. LNCS, vol. 8370, pp. 409–420. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-04921-2 33

15. Heule, M.J.H., Hunt, W.A., Wetzler, N.: Expressing symmetry breaking in DRAT
proofs. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195,
pp. 591–606. Springer, Heidelberg (2015). doi:10.1007/978-3-319-21401-6 40

16. Heule, M.J.H., Biere, A.: Proofs for satisfiability problems. In: All About Proofs,
Proofs for All (2015)

17. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the Boolean
Pythagorean Triples problem via cube-and-conquer. CoRR abs/1605.00723 (2016)

18. Heule, M.: March. Towards a lookahead SAT solver for general purposes. Master’s
thesis (2004)

19. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 355–370. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-31365-3 28

20. Laitinen, T.: Extending SAT solver with parity reasoning. Ph.D. thesis (2014)
21. Laitinen, T., Junttila, T., Niemelä, I.: Classifying and propagating parity con-

straints. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 357–372. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-33558-7 28

22. Manthey, N.: Coprocessor 2.0 – a flexible CNF simplifier. In: Cimatti, A., Sebas-
tiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 436–441. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-31612-8 34

23. Manthey, N.: Riss 4.27. In: Belov et al. [4], pp. 65–67

http://dx.doi.org/10.1007/978-3-540-77272-9_10
http://dx.doi.org/10.1007/11499107_5
http://dx.doi.org/10.1007/978-3-540-24605-3_37
http://dx.doi.org/10.1007/978-3-319-04921-2_33
http://dx.doi.org/10.1007/978-3-319-04921-2_33
http://dx.doi.org/10.1007/978-3-319-21401-6_40
http://dx.doi.org/10.1007/978-3-642-31365-3_28
http://dx.doi.org/10.1007/978-3-642-33558-7_28
http://dx.doi.org/10.1007/978-3-642-31612-8_34

DRAT Proofs for XOR Reasoning 429

24. Manthey, N., Lindauer, M.: SpyBug: automated bug detection in the configuration
space of SAT solvers. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol.
9710, pp. 554–561. Springer, Heidelberg (2016). doi:10.1007/978-3-319-40970-2 36

25. Rebola-Pardo, A.: Unsatisfiability proofs in SAT solving with parity reasoning.
Master thesis, Technische Universität Dresden, Informatik Fakultät (2015)

26. Roussel, O., Manquinho, V.M.: Pseudo-Boolean and cardinality constraints. In:
Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications,
vol. 185, pp. 695–733. IOS Press (2009)

27. Silva, J.P.M., Sakallah, K.A.: GRASP - a new search algorithm for satisfiability.
In: ICCAD 1996, pp. 220–227. IEEE Computer Society, Washington (1996)

28. Sinz, C., Biere, A.: Extended resolution proofs for conjoining BDDs. In: Grigoriev,
D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 600–611.
Springer, Heidelberg (2006). doi:10.1007/11753728 60

29. Soos, M.: Enhanced Gaussian elimination in DPLL-based SAT solvers. In: POS
2010 (2010)

30. Soos, M.: Cryptominisat v4. In: Belov et al. [4], pp. 23–34
31. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-

lems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-02777-2 24

32. Wetzler, N., Heule, M.J.H., Hunt, W.A.: DRAT-trim: efficient checking and
trimming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) SAT
2014. LNCS, vol. 8561, pp. 422–429. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-09284-3 31

http://dx.doi.org/10.1007/978-3-319-40970-2_36
http://dx.doi.org/10.1007/11753728_60
http://dx.doi.org/10.1007/978-3-642-02777-2_24
http://dx.doi.org/10.1007/978-3-319-09284-3_31
http://dx.doi.org/10.1007/978-3-319-09284-3_31

Understanding the Abstract
Dialectical Framework

Sylwia Polberg(B)

University College London, Gower Street 66–72, London WC1E 6EA, UK
sylwia.polberg@gmail.com

Abstract. Among the most general structures extending the framework
by Dung are the abstract dialectical frameworks (ADFs). They come
equipped with various types of semantics, with the most prominent –
the labeling–based one – being analyzed in the context of computational
complexity, instantiations and software support. This makes the abstract
dialectical frameworks valuable tools for argumentation. However, there
are fewer results available concerning the relation between the ADFs
and other argumentation frameworks. In this paper we would like to
address this issue by introducing a number of translations from various
formalisms into ADFs. The results of our study show the similarities and
differences between them, thus promoting the use and understanding of
ADFs. Moreover, our analysis also proves their capability to model many
of the existing frameworks, including those that go beyond the attack
relation. Finally, translations allow other structures to benefit from the
research on ADFs in general and from the existing software in particular.

1 Introduction

Argumentation has become an influential subfield of AI [1]. Within this domain,
we distinguish the abstract argumentation, at the heart of which lies Dung’s
framework (AF) [2]. A number of its generalizations has been proposed [3],
including the abstract dialectical framework (ADF) [4]. ADFs come equipped
with various types of semantics [5–8], the most prominent of which – the labeling–
based one – is analyzed in the context of computational complexity [9], instanti-
ations [10] and software support [11]. This makes ADFs valuable tools for argu-
mentation. Unfortunately, their unusual structure can be a deterrent against
their more widespread use. Moreover, at the first glance it is also difficult to say
what is the relation between the ADFs and the other argumentation frameworks,
in particular those that can express support [12–14].

The author is a member of the Vienna PhD School of Informatics. This research
was funded by project I1102 supported by the Austrian Science Fund FWF. The
author is currently supported by EPSRC Project EP/N008294/1 “Framework for
Computational Persuasion”.

c© Springer International Publishing AG 2016
L. Michael and A. Kakas (Eds.): JELIA 2016, LNAI 10021, pp. 430–446, 2016.
DOI: 10.1007/978-3-319-48758-8 28

Understanding the Abstract Dialectical Framework 431

In this paper we would like to tackle these issues by introducing a number of
translations from various formalisms into the ADFs. This includes the Dung’s
framework [2], the Nielsen’s and Parson’s framework with joint attacks [15], the
extended argumentation framework [16] and the argumentation framework with
necessities [13]. The results of our study show the similarities and differences
between ADFs and other argumentation formalisms, thus promoting the use
and understanding of ADFs. Moreover, our analysis also proves their capability
to model many of the existing frameworks, including those that go beyond the
attack relation. Furthermore, a wider range of extended argumentation frame-
works can be translated into ADFs than into AFs [17].

This paper is structured as follows. In Sects. 2 and 3 we recall the aforemen-
tioned argumentation frameworks. We also provide a discussion on certain design
differences between the ADFs and the other structures. In Sect. 5 we present our
translations. We close the paper with final remarks and comments on shifting
other frameworks to ADFs.

2 Argumentation Frameworks

In this section we will recall the relevant argumentation frameworks and their
extension–based semantics. Despite the various structural differences between
the frameworks, their semantics tend to follow the design patterns established
by Dung [2]. We can obtain most of them by combining conflict–freeness, accept-
ability and various ways to maximize or minimize the extensions. Thus, many
frameworks tend to redefine these “building blocks”, and then reuse the original
(or similar) definitions from [2]. Therefore, when recalling the relevant structures
in this section, we will mostly provide only the necessary notions. Throughout
this work, we will be focusing on finite structures.

2.1 Dung’s Argumentation Framework

Let us start with the famous Dung’s framework [2], which is based on binary
attack.

Definition 1. A Dung’s abstract argumentation framework (AF) is a
pair F = (A,R), where A is a set of arguments and R ⊆ A × A is the attack
relation.

Definition 2. Let F = (A,R) be a Dung’s framework and X ⊆ A a set of
arguments.

– the attacker set of X is X − = {a | ∃b ∈ X , aRb}.
– the discarded set of X is X+ = {a | ∃b ∈ X , bRa}.
– X defends1 an argument a ∈ A iff every argument b ∈ A that attacks a is

in X+.
– X is conflict–free in F iff there are no a, b ∈ X s.t. a attacks b.
1 Defense is often substituted with acceptability, i.e. X defends a iff a is acceptable

w.r.t. X .

432 S. Polberg

Definition 3. Let F = (A,R) be an AF. A set X ⊆ A is:

– admissible in F iff it is conflict–free in F and defends in F all of its members.
– preferred in F iff it is maximal w.r.t. ⊆ admissible in F .
– complete in F iff it is admissible and every a ∈ A that is defended by X , is

in X .
– grounded in F iff it is the least fixed point of the characteristic operator

FF : 2A → 2A defined as FF (X) = {a | a is defended by X in F}.
– stable in F iff it is conflict–free in F and A \ X = X+.

Different types of semantics can be related to each other in a number of ways
[2], however, it is usually the following properties that will hold:

Theorem 1. Let F = (A,R) be an AF. The following holds:

1. Every stable extension of F is also preferred, but not vice versa.
2. Every preferred extension of F is also complete, but not vice versa.
3. The grounded extension of F is the least w.r.t. ⊆ complete extension of F .

2.2 Framework with Sets of Attacking Arguments

In some cases, a single argument might not be enough to carry out an attack
on another argument. For example, all of the means, motive, opportunity and
evidence might be required to prove guilt. In order to grasp such problems, a
framework with group conflict was developed [15]. The semantics of SETAFs are
almost identical to the AF ones. Given a set X ⊆ A, the attacks will now be
carried out not by single arguments in X , but its subsets. Thus, in the interest
of space, we will not formally give their definitions.

Definition 4. A framework with sets of attacking arguments (SETAF)
is a pair SF = (A,R), where A is the set of arguments and R ⊆ (2A \ ∅) × A
is the attack relation.

Example 1. Let us consider the SETAF SF = (A,R), where A = {a, b, c, d, e}
and R = {({a}, c), ({b}, a),({b}, b), ({c}, d), ({e}, a), ({b, d}, e)}. The only admis-
sible extensions are ∅ and {c, e}; both of them are complete. {c, e} is the preferred
extension, while ∅ is grounded. Because of b, this particular framework has no
stable extensions.

2.3 Extended Argumentation Framework with Collective Attacks

The extended argumentation framework with collective defense attacks [16] is
an improvement of the framework studied in [17,18]. It introduces the notion
of defense attacks, which occur between sets of arguments and binary conflicts.
They can “override” a given attack due to e.g. the target’s importance, which
is a common approach in the preference–based argumentation [19,20,24]. The
added value of defense attacks is the fact that the arguments carrying them out
can also be attacked and questioned.

Understanding the Abstract Dialectical Framework 433

Definition 5. An extended argumentation framework with collective
defense attacks (EAFC) is a tuple EFC = (A,R,D), where A is a set of
arguments, R ⊆ A × A is a set of attacks and D ⊆ (2A \ ∅) × R) is the set of
collective defense attacks.

We can observe that a given attack can be successful (referred to as a defeat)
or not, depending on the presence of suitable defense attacks. The defense has
to include not just defending the arguments, but also a form of “protection” of
the important defeats:

Definition 6. Let EFC = (A,R,D) be an EAFC and X ⊆ A a set of arguments.

– an argument a defeatsX an argument b in EFC w.r.t. X iff (a, b) ∈ R and
there is no C ⊆ X s.t. (C, (a, b)) ∈ D.

– a set of pairs RX = {(x1, y1), ..., (xn, yn)} s.t. xi defeatsX yi in EFC and for
i = 1...n, xi ∈ X , is a reinstatement set on X for a defeatX by argument
a on argument b iff (a, b) ∈ RX and for every pair (x, y) ∈ RX and set of
arguments C ⊆ A s.t. (C, (x, y)) ∈ D, there is a pair (x′, y′) ∈ RX for some
y′ ∈ C.

– the discarded set of X is X+ = {a | ∃b ∈ X s.t. b defeatsX a and there is a
reinstatement set on X for this defeatX }.

– X defends and argument a ∈ A in EFC iff every argument b ∈ A s.t. b
defeatsX a in EFC is in X+.

– X ⊆ A is conflict–free in EFC iff there are no a, b ∈ X s.t. a defeatsX b in
EFC.

With the exception of the grounded semantics, all extensions are defined
in the same way as in Definition 3. Unfortunately, despite these similarities,
Theorem 1 cannot be entirely extended to EAFCs. Finally, within EAFCs we
can distinguish the bounded hierarchical subclass, enforcing certain restrictions
on the attacks and defense attacks.

Definition 7. Let EFC = (A,R,D) be a finitiary2 EAFC, X ⊆ A a set of argu-
ments and 2CF the set of all conflict–free sets of EFC. The characteristic func-
tion FEFC : 2CF → 2A of EFC is defined as FEFC(X) = {a | a is defended by X
in EFC}. We define a sequence of subsets of A s.t. F0

EFC = ∅ and F i+1
EFC =

FEFC(F i
EFC). The grounded extension of EFC is

⋃∞
i=0(F i

EFC).

Theorem 2. Let EFC = (A,R,D) be a finitary EAFC. The following holds:

1. Every preferred extension is complete, but not vice versa.
2. Every stable extension is complete, but not vice versa.
3. The grounded extension is a minimal w.r.t. ⊆ complete extension.

2 An EAFC is finitiary if for every argument and attack, the collection of its (defense)
attackers is finite.

434 S. Polberg

Definition 8. An EAFC EFC = (A,R,D) is bounded hierarchical iff there
exists a partition δH = (((A1, R1),D1), ..., ((An, Rn),Dn)) s.t. Dn = ∅, A =
⋃n

i=1 Ai, R =
⋃n

i=1 Ri, D =
⋃n

i=1 Di, for every i = 1...n (Ai, Ri) is a Dung’s
framework, and (c, (a, b)) ∈ Di implies (a, b) ∈ Ri, c ⊆ Ai+1.

Example 2 [21]. Let EFC = ({a, b, c, d, e, f, g}, {(a, b), (d, c), (b, e), (e, f), (f, g)},
{({b}, (d, c)), ({c}, (a, b))}) be an EAFC. Let us look at some of its conflict–free
extensions. We can see that {a, b} and {c, d} are not conflict–free. However, both
{a, b, c} and {b, c, d} are, due to the presence of defense attackers. Addition-
ally, also {a, b, c, d}, {a, d, e, g} and {b, c, a, d, f} are conflict–free. The admis-
sible extensions of EFC include ∅, {a}, {d}, {a, d}, {b, c}, {a, b, c}, {b, c, d},
{a, d, e}, {b, c, f}, {a, b, c, f}, {b, c, d, f}, {a, d, e, g}, {a, b, c, d} and {a, b, c, d, f}.
We can observe that the set X = {b, c} is admissible. Neither a nor d defeatX
any of its elements, and thus there is nothing to defend from. The set {a, d, e}
is admissible since the defeat of b by a has a reinstatement set {(d, c), (a, b)}.
Although its behavior appears cyclic, it suffices for defense. The sets {a, d, e, g}
and {a, b, c, d, f} are complete. We can observe they are incomparable and do not
follow the typical semi–lattice structure of complete extensions. The grounded
extension is {a, d, e, g}; it is minimal, but not the least complete extension. Both
{a, d, e, g} and {a, d, b, c, d, f} are stable and preferred.

2.4 Argumentation Framework with Necessities

Various types of support have been studied in abstract argumentation [12–14].
Due to limited space, we will focus on the necessary support, though based on
the research in [12,14] our results can be extended to other relations as well.
We say that a set of arguments X necessarily supports b if we need to assume
at least one element of X in order to accept b. Using this relation has certain
important implications. First of all, argument’s supporters need to be present
in an extension. Secondly, an argument can be now indirectly attacked by the
means of its supporters, i.e. we can “discard” an argument not just by providing
a direct conflict, but also by cutting off its support. Finally, a certain notion
of a validity of an argument is introduced, stemming from its participation in
support cycles. It affects the acceptance and attack capabilities of an argument.
Let us now recall the framework with necessities [13]:

Definition 9. An abstract argumentation framework with necessities
(AFN) is a tuple FN = (A,R,N) where A is a set of arguments, R ⊆ A × A
represents the attack relation and N ⊆ (2A \ ∅) × A represents the necessity
relation.

The acyclicity restrictions are defined through the powerful sequences and the
related coherent sets. By joining conflict–freeness and coherence, we obtain a new
semantics which replaces conflict–freeness as the basis of stable and admissible
extensions. The remaining notions are defined similarly as in Definition 3 and
satisfy Theorem 1.

Understanding the Abstract Dialectical Framework 435

Definition 10. Let FN = (A,R,N) be an AFN and X ⊆ A a set of arguments.
An argument a ∈ A is powerful in X iff a ∈ X and there is a sequence a0, ..., ak

of elements of X s.t. : (i) ak = a (ii) there is no B ⊆ A s.t. BNa0 (iii) for
1 ≤ i ≤ k: for each B ⊆ A s.t. BNai, it holds that B ∩ {a0, ..., ai−1} 	= ∅. A set
of arguments X ⊆ A is coherent in FN iff each a ∈ X is powerful in X .

Definition 11. Let FN = (A,R,N) be an AFN and X ⊆ A a set of arguments.

– the discarded set of X in FN is defined as X att = {a | for every coherent
C ⊆ A s.t. a ∈ C, ∃c ∈ C, e ∈ X s.t. eRc}3.

– X defends an argument a ∈ A in FN iff X ∪ {a} is coherent and for each
b ∈ A, if bRa then b ∈ X att.

– X is conflict–free in FN iff there are no a, b ∈ X s.t. a attacks b.

Definition 12. Let FN = (A,R,N) be an AFN. A set of arguments X ⊆ A is:

– strongly coherent in FN iff it is conflict–free and coherent in FN
– admissible in FN iff it is strongly coherent and defends all of its arguments

in FN .
– stable in FN iff it is strongly coherent in FN and X att = A \ X .

Example 3. Let ({a, b, c, d, e, f}, {(a, e), (d, b), (e, c), (f, d)}, {({b, c}, a), ({f},
f)}) be an AFN. Its coherent sets include ∅, {a, b}, {a, c}, {b}, {c}, {d}, {e}
and any of their combinations. In total, we have six admissible extensions. ∅ is
trivially admissible. So is {d} due to the fact that f does not possess a powerful
sequence in FN . However, {e} is not admissible; it does not attack one of the
coherent sets of a, namely {a, b}. Fortunately, {d, e} is already admissible. We
can observe that b can never be defended and will not appear in an admissi-
ble set. The last two admissible sets are {a, c} and {a, c, d}. The extensions {d},
{d, e} and {a, c, d} are complete, with the first one being grounded and the latter
two preferred. In this case, both {d, e} and {a, c, d} are stable.

3 Abstract Dialectical Frameworks

Abstract dialectical frameworks have been defined in [4] and further studied in
[5–10]. Their main goal was to be able to express a wide range relations and try
to avoid the need of introducing a new relation set each time it is needed. This is
achieved by the means of acceptance conditions, which define when an argument
can be accepted or rejected. They can be defined either as total functions over
the parents of an argument [4] or as propositional formulas over them.

Definition 13. An abstract dialectical framework (ADF) is a tuple DF =
(A,L,C), where A is a set of arguments, L ⊆ A×A is a set of links and C =
{Ca}a∈A is a set of acceptance conditions, one condition per each argument.
An acceptance condition is a total function Ca : 2par(a) → {in, out}, where
par(a) = {p ∈ A | (p, a) ∈ L} is the set of parents of an argument a.
3 Please note that we do not denote the AFN discarded set with X+ as in the previous

cases in order not to confuse it with the notion of the deactivated set from [13], which
is less restrictive.

436 S. Polberg

Due to the fact that the set of links can be inferred from the conditions,
we will write simply (A,C) to denote an ADF. The basic “building blocks” of
the extension–based ADF semantics from [7,8] are the decisively in interpre-
tations and various types of evaluations we derive from them. A two–valued
interpretation is simply a mapping that assigns truth values {t, f} to (a sub-
set of) arguments. For an interpretation v, vx is the set of elements mapped to
x ∈ {t, f} by v. A decisive interpretation v for an argument a ∈ A represents an
assignment for a set of arguments X ⊆ A s.t. independently of the status of the
arguments in A \ X , the outcome of the condition of a stays the same.

Definition 14. Let A be a collection of elements, X ⊆ A its subset and v a two–
valued interpretation defined on X . A completion of v to a set Z where X ⊆
Z ⊆ A, is an interpretation v′ defined on Z in a way that ∀a ∈ X v(a) = v′(a).
v′ is a t/f completion of v iff all arguments in Z \ X are mapped respectively
to t/f .

Definition 15. Let DF = (A,L,C) be an ADF, X ⊆ A a set of arguments
and v a two–valued interpretation defined on X . v is decisive for an argument
s ∈ A iff for any two completions vpar(s) and v′

par(s) of v to X ∪ par(s), it holds
that vpar(s)(Cs) = v′

par(s)(Cs). s is decisively out/in w.r.t. v if v is decisive
and all of its completions evaluate Cs to respectively out, in.

From now on we will focus on the minimal interpretations, i.e. those in which
both vt and vf are minimal w.r.t. ⊆. By min dec(x, s) we denote the set of mini-
mal two–valued interpretations that are decisively x for s, where s is an argument
and x ∈ {in, out}. From the positive parts of a decisively in interpretation for a
we can extract arguments required for the acceptance of a. With this informa-
tion, we can define various types of evaluations, not unlike the powerful sequences
in AFNs. However, due to the fact that ADFs are more expressive than AFNs,
it is also the f parts of the used interpretations that need to be stored [7,8]:

Definition 16. Let DF = (A,L,C) be an ADF and X ⊆ A a set of argu-
ments. A positive dependency function (pd–function) on X is a function
pdDF

X assigning every argument a ∈ X an interpretation v ∈ min dec(in, a) s.t.
vt ⊆ X , or N for null iff no such v can be found. pdDF

X is sound on X iff
for no a ∈ X , pdDF

X (a) = N . pdDF
X is maximally sound on X iff it is sound

on X ′ ⊆ X and there is no other sound function pd′DF
X on X ′′ s.t. ∀a ∈ X ′,

pdDF
X (a) = pd′DF

X (a), where X ′ ⊂ X ′′ ⊆ X .

Definition 17. Let DF = (A,L,C) be an ADF, S ⊆ A and pdDF
X a maximally

sound pd–function of S defined over X ⊆ S. A partially acyclic positive
dependency evaluation based on pdDF

X for an argument x ∈ X is a triple
(F, (a0, ..., an), B), where F ∩{a0, ..., an} = ∅, (a0, ..., an) is a sequence of distinct
elements of X satisfying the following requirements:

– if the sequence is non–empty, then an = x; otherwise, x ∈ F
– ∀n

i=1, pdDF
X (ai)t ⊆ F ∪ {a0, ..., ai−1}, pdDF

X (a0)t ⊆ F

Understanding the Abstract Dialectical Framework 437

– ∀a ∈ F, pdDF
X (a)t ⊆ F

– ∀a ∈ F,∃b ∈ F s.t. a ∈ pdDF
X (b).

Finally, B =
⋃

a∈F pdDF
X (a)f ∪⋃n

i=0 pdDF
X (ai)f . We refer to F as the pd–set, to

(a0, ..., an) as the pd–sequence and to B as the blocking set of the evaluation.
A partially acyclic evaluation (F, (a0, ..., an), B) for an argument x ∈ X is an
acyclic positive dependency evaluation for x iff F = ∅.

We will use the shortened notation ((a0, ..., an), B) for the acyclic evaluations.
There are two ways we can “attack” an evaluation. Either we accept an argument
that needs to be rejected (i.e. it is in the blocking set), or we are able to discard
one that needs to be accepted (i.e. is in the pd–sequence or the pd–set). We will
be mostly concerned with the first type. We can now define various discarded
sets in ADFs4:

Definition 18. Let DF = (A,L,C) be an ADF and X ⊆ A a set of arguments.
The standard discarded set of X is X+ = {a ∈ A | for every partially acyclic
evaluation (F,G,B) for a, B∩X 	= ∅}. The partially acyclic discarded set of
X is X p+ = {a ∈ A | there is no partially acyclic evaluation (F ′, G′, B′) for a s.t.
F ′ ⊆ X and B′ ∩ X = ∅}. The acyclic discarded set of X is X a+ = {a ∈ A |
for every pd–acyclic evaluation (F,B) for a, B ∩ X 	= ∅}.

Given a set of arguments X and its discarded set S, we can build a special
interpretation – called range – with which we can check for decisiveness. The
range can be constructed by assigning t to arguments in X and f to those in
S\X . Under certain conditions X and S are disjoint, which brings us to the
conflict–free semantics:

Definition 19. Let DF = (A,L,C) be an ADF. A set X ⊆ A is a conflict–
free extension of DF if for all s ∈ X we have Cs(X ∩ par(s)) = in. X is
a pd–acyclic conflict–free extension of DF iff every a ∈ X has an acyclic
evaluation (F,B) on X s.t. B ∩ X = ∅.
Lemma 1. Let DF = (A,L,C) be an ADF and X ⊆ A a set of arguments. If
X is conflict–free in DF , then X ∩X+ = ∅ and X ∩X p+ = ∅. Moreover, it holds
that X+ ⊆ X p+ ⊆ X a+. If X is pd–acyclic conflict–free, then X ∩ X a+ = ∅ and
X p+ = X a+.

By combining a given type of a discarded set and a given type of conflict–
freeness, we have developed various families of extension–based semantics [7,8].
We have classified them into the four main types and used an xy−prefixing
system to denote them. In the context of this work, three of the families will
be relevant. We will now recall their definitions and refer the readers to [8] for
proofs and further explanations.

4 The presented definitions are generalizations of the ones from [7,8].

438 S. Polberg

Definition 20. Let DF = (A,L,C) be an ADF. Let X ⊆ A be a set of argu-
ments and vX , va

X and vp
X its standard, acyclic and partially acyclic ranges.

If X is conflict–free and every e ∈ X is decisively in w.r.t. vX (vp
X), then

X is cc–admissible (ca2–admissible) in DF . If X is pd–acyclic conflict–free
and every e ∈ X is decisively in w.r.t. va

X , then X is aa–admissible in DF .
If X is cc–admissible (ca2–admissible, aa–admissible) and every argument

e ∈ A decisively in w.r.t. vX (vp
X , va

X) is in X , then X is cc–complete
(ca2–complete, aa–complete) in DF . If X is maximal w.r.t. set inclusion xy–
admissible extension, where x, y ∈ {a, c}, then it is an xy–preferred extensions
of DF .

If X is conflict–free and for every a ∈ A \ X , Ca(X ∩ par(a)) = out, then X
is a model of DF . If X is pd–acyclic conflict–free and X a+ = A \X , then X is
a stable extension of DF .

If X is the least w.r.t. ⊆ cc–complete extension, then it is the grounded
extension of DF . If X is the least w.r.t. ⊆ aa–complete extension, then it is the
acyclic grounded extension of DF .

Finally, we can define the two important ADF subclasses. The bipolar ADFs
consist only of links that are supporting or attacking. This class is particularly
valuable due to its computational complexity properties [9]. The other subclass,
referred to as AADF+, consists of ADFs in which our semantics classification
collapses. By this we understand that e.g. every cc–complete extension is aa–
complete and vice versa. Moreover, this class provides a more precise correspon-
dence between the extension and labeling–based semantics for ADFs [8]. This
means that for these frameworks, we can use the DIAMOND software [11] and
other results for the labeling–based semantics [9,10].

Definition 21. Let DF = (A,L,C) be an ADF. A link (r, s) ∈ L is: (i) sup-
porting iff for no R ⊆ par(s) we have that Cs(R) = in and Cs(R∪{r}) = out (ii)
attacking iff for no R ⊆ par(s) we have that Cs(R) = out and Cs(R∪{r}) = in.
DF is a bipolar ADF (BADF) iff it contains only links that are supporting
or attacking. DF is a positive dependency acyclic ADF (AADF+) iff every
partially acyclic evaluation (F,G,B) of DF is acyclic.

Theorem 3. Let DF = (A,L,C) be an AADF+. The following holds:

– Every conflict–free extension of DF is pd–acyclic conflict–free in DF .
– Every model of DF is stable in DF .
– The aa/cc/ca2–admissible extensions of DF coincide.
– The aa/cc/ca2–complete extensions of DF coincide.
– The aa/cc/ca2–preferred extensions of DF coincide.
– The grounded and acyclic grounded extensions of DF coincide.

Example 4. Let us consider the framework is DF = ({a, b, c, d, e, f, g}, {Ca :

, Cb : ¬a ∨ c, Cc : ¬d ∨ b, Cd :
, Ce : ¬b, Cf : ¬e, Cg : ¬f}). We can observe
that both a and d have trivial acyclic evaluations ((a), ∅) and ((d), ∅). For e,
f and g we can construct ((e), {b}), ((f), {e}) and ((g), {f}). The situation

Understanding the Abstract Dialectical Framework 439

only gets complicated with b and c; we have the acyclic evaluations ((b), {a}),
((c, b), {d}), ((c), {d}), ((b, c), {a}) and the partially acyclic one ({b, c}, ∅). We
can observe that ∅ is an admissible extension of any type; all of its discarded sets
are empty. Decisively in w.r.t. its ranges are thus a and d. The set {a, d} is again
admissible. Its standard discarded set is ∅, however, the acyclic and partially
acyclic ones are {b, c}. Therefore, {a, d} is only cc–complete. Discarding b leads
to the acceptance of e and g. Hence, {a, d, e, g} is an aa– and ca2–complete
extension, though it does not even qualify as a cc–admissible set. We can now
consider the set {a, b, c, d}. It is conflict–free, but not pd–acyclic conflict–free. Its
standard and partially acyclic discarded set is {e}, which means that f can be
accepted. Hence, {a, b, c, d, f} is cc and ca2–complete. Thus, in total we obtain
two cc–complete, one aa–complete and two ca2–complete sets. Our grounded and
acyclic grounded extensions are {a, d} and {a, d, e, g} respectively. The latter set
is also the only stable extension of our framework. However, both {a, d, e, g} and
{a, b, c, d, f} are models.

4 Conceptual Differences Between ADFs and Other
Frameworks

The more direct descendants of the Dung’s framework explicitly state “this is a
supporter”, “this is an attacker” and so on. Thus, in order to know if a given
argument can be accepted along with the other arguments, i.e. whether it is
attacked, defeated or receives sufficient support, we need to go through all the
relations it is a target of. In contrast, the acceptance conditions “zoom out”
from singular relations. They tell us whether the argument can be accepted or
not w.r.t. a given set of arguments in a straightforward manner. The focus is
put on what would usually be seen as a target of a relation, while in other
frameworks the attention is on the relation source. As a consequence, in order
to say if a parent of an argument is its supporter, attacker or none of these,
we need analyze the condition further, as seen in e.g. Definition 21. This is also
one of the reasons why finding support cycles in ADFs is more difficult than in
other support frameworks. Finally, since the role of parent is derived from how it
affects the behavior of an argument, not whether it is in e.g. the support relation
N , an attacker or a supporter in a given framework may not have the same role
in the corresponding ADF:

Example 5. Let ({a, b, c}, {(b, a), (a, c)}, {({b}, a)}) be an AFN, where the argu-
ment a is at the same time supported and attacked by b. In a certain sense, the
(a, b) relation is difficult to classify as positive or negative. Although a cannot be
accepted, it is still a valid attacker that one needs to defend from. In the ADF
setting, the acceptance condition of a is unsatisfiable – whether we include or
exclude b, we always reject a. It can also be seen as a b ∧ ¬b formula. a does
not possess any type of an evaluation and will always end up in any type of
a discarded set. This also means that we do not have to “defend” from it. In
this particular example, the set {c} would not be considered admissible in our

440 S. Polberg

AFN, but it would be considered an admissible extension of any type in the
ADF ({a, b, c}, {Ca = b ∧ ¬b, Cb =
, Cc = ¬a}).

Thus, there is an important difference between the design of ADFs and other
argumentation frameworks. If we were to represent the situation as a proposi-
tional formula, it is like comparing an atom based and a literal based evaluation.
The same issue arises when we consider standard and ultimate versions of logic
programming semantics, as already noted in [5]. This means that if we want
to translate e.g. an AFN into an ADF while still preserving the behavior of
the semantics, we need to make sure that no argument is at the same time an
attacker and a supporter of the same argument. A similar issue also appears
in the extended argumentation frameworks. The defense attack is a type of a
positive, indirect relation towards the “defended” argument. The difference is
that while in the first case it is also a negative relation towards the argument
carrying out the attack, in the latter the attacker and the defense attacker might
be unrelated. It is not unlike what is informally referred to as the “overpowering
support” in ADFs. A typical example is a condition of the form Ca = ¬b ∨ c,
where b has the power to out the condition unless c is present. Therefore, defense
attackers from EAFC become directly related to the arguments they “protect”
in ADFs, which can lead to inconsistencies.

Definition 22. Let FN = (A,R,N) be an AFN and a an argument in A. By
N(a) = {b | ∃B ⊆ A s.t. b ∈ B,BNa} and R(a) = {b | bRa} we denote the
sets of arguments supporting and attacking a. Then a is strongly consistent iff
N(a) ∩ R(a) = ∅. FN is strongly consistent iff all of its arguments are strongly
consistent.

Let EFC = (A,R,D) be an EAFC. EFC is strongly consistent iff there
are no x, y, z ∈ A and X ⊆ A s.t. (x, y) ∈ R, x ∈ X and (X , (z, y)) ∈ D.

Any AFN can be made strongly consistent with the help of no more than |A|
arguments. We basically introduce extra arguments, that we call “bypasses”, that
take over the support links leading to inconsistency and connect them to the orig-
inal sources of these relations. For example, the AFN ({a, b}, {(a, b)}, {({a}, b)})
is extended to ({a, a′, b}, {(a, b)}, {({a}, a′), ({a′}, b)}). The auxiliary arguments
then need to be removed from the extensions. We can also turn them into self–
attackers, which addresses the removal issue, but it also affects the stable seman-
tics. Similar techniques can be used in the translations for EAFCs. Unfortunately,
due to the space restrictions, we cannot focus on this approach here.

Please note that this analysis does not in any way imply that a given (a, b) link
is assigned a single permanent “role” in ADFs, such as “attack” or “support”.
The framework is flexible and a link can be positive on one occasion an negative
on another. A more accurate description is that a link (or its source) should
have a defined role “at a point”, i.e. w.r.t. a given set of arguments. ADFs
ensure consistency, not constancy.

Understanding the Abstract Dialectical Framework 441

5 Translations

In this section we will show how to translate the recalled frameworks to ADFs.
We will provide both functional and propositional acceptance conditions. For the
latter, we would like to introduce the following notations. For a set of arguments
X = {x1, ..., xn}, we will abbreviate the formula x1 ∧ ... ∧ xn with

∧

X and
¬x1 ∧ ... ∧ ¬xn with

∧ ¬X. Similarly, x1 ∨ ... ∨ xn and ¬x1 ∨ ... ∨ ¬xn will be
shortened to

∨

X and
∨ ¬X.

5.1 Translating SETAFs and AFs into ADFs

A straightforward translation from AFs to ADFs has already been introduced
in [6]. Let a ∈ A be an argument and {a}− = {x1, .., xn} its attacker set in an
AF. Whenever any of xi

′s is present, a cannot be accepted. Only when all of
them are absent, we can assume a. The SETAF translation is quite similar. Let
{a}− = {X1, ...,Xn} be the collection of all sets that attack an argument a, i.e.
sets s.t. XiRa. Only the presence of all members of any Xi, not just some of
them, renders a unacceptable. Therefore given any set of arguments that does
not fully include at least one attacking set, the acceptance condition of a is in.
This brings us to the following two translations:

Translation 1. Let F = (A,R) be a Dung’s framework. The ADF correspond-
ing to F is DFF = (A,R,C), where C = {Ca}a∈A and every Ca is as follows:

– Functional form: Ca(∅) = in and for all nonempty B ⊆ {a}−, Ca(B) = out.
– Propositional form: Ca =

∧ ¬{a}−. In case {a}− is empty, Ca =
.

Translation 2. Let SF = (A,R) be a SETAF. The ADF corresponding to SF is
DFSF = (A,L,C), where L = {(x, y) | ∃B ⊆ A, x ∈ B s.t. BRy}, C = {Ca}a∈A

and every Ca is created in the following way:

– Functional form: for every B ⊆ ⋃{a}−, if ∃Xi ∈ {a}− s.t. Xi ⊆ B, then
Ca(B) = out; otherwise, Ca(B) = in.

– Propositional form: Ca =
∨ ¬X1 ∧ ... ∧ ∨ ¬Xn. If {a}− is empty, Ca =
.

Neither AFs nor SETAFs rely on any form of support. Therefore, their asso-
ciated ADFs are both AADF+s and BADFs. Consequently, our semantics clas-
sification collapses and it does not matter which type of ADF semantics we work
with.

Theorem 4. Let SF = (A,R) be a SETAF or AF and DFSF = (A,L,C) its
corresponding ADF. Then DFSF is an AADF+ and a BADF.

Theorem 5. Let SF = (A,R) be a SETAF or AF and DFSF = (A,L,C) its
corresponding ADF. A set of arguments X ⊆ A is a conflict–free extensions of
SF iff it is (pd–acyclic) conflict–free in DFF . X ⊆ A is a stable extensions
of SF iff it is (stable) model of DFF . X ⊆ A is a grounded extensions of SF
iff it is (acyclic) grounded in DFF . X ⊆ A is a σ–extensions of SF , where
σ ∈ {admissible, preferred, complete} iff it is an xy–σ–extension of DFF for
x, y ∈ {a, c}.

442 S. Polberg

Example 6. Let us continue Example 1. The ADF associated with SF is
DFSF = ({a, b, c, d, e}, {Ca : ¬a ∧ ¬e, Cb : ¬b, Cc : ¬a,Cd : ¬c, Ce : ¬b ∨ ¬d}).
∅ is an admissible extension of any type; its discarded set is also empty. We
can observe that {c, e} is conflict–free in DFSF . Its discarded set is {a, d}, thus
making the set admissible in DFSF . No other argument is decisively in w.r.t.
the produced ranges and thus both sets are also complete. This makes ∅ the
grounded and {c, e} the preferred extension. Since b is not contained in any
discarded set, DFSF has no stable or model extensions.

5.2 Translating EAFCs into ADFs

We can now focus on translating EAFCs into ADFs. Let us assume we have an
attack (b, a) that is defense attacked by sets {c, d} and {e}. We can observe that
a is rejected only if b is present and none of the defense attacking sets is fully
present. On the other hand, if b is not there or either {c, d} or {e} are accepted,
then the requirements for a are satisfied. Therefore, for a given EAFC, we can
create an ADF in the following way:

Translation 3. Let EFC = (A,R,D) be a strongly consistent EAFC. Its corre-
sponding ADF is DFEFC = (A,L,C), where L = {(a, b) | aRb or ∃c ∈ A,X ⊆ A
s.t. a ∈ X , (X , (c, b)) ∈ D}, C = {Ca | a ∈ A} and every Ca is as follows:

– Functional form: for every set B ⊆ par(a), if ∃x ∈ B s.t. (x, a) ∈ R and
�B′ ⊆ B s.t. (B′, (x, a)) ∈ D, then Ca(B) = out; otherwise, Ca(B) = in

– Propositional form: if {a}− = ∅, then Ca =
; otherwise, Ca =
∧

b∈A,(b,a)∈R attba, where attba = ¬b∨(
∧

B1∨...
∧

Bm) and Db,a = {B1, ..., Bm}
is the collection of all sets Bi ⊆ A s.t. (B, (b, a)) ∈ D. If Db,a is empty, then
attba = ¬b.

Although EAFCs are more advanced than e.g. AFs, their associated ADFs
are still bipolar. However, only in the case of bounded hierarchical EAFCs they
are also AADF+s. The EAFC semantics are now connected to the ca2–semantics
family. Since the ADF associated with the framework from Example 2 is precisely
the one we have considered in Example 4; we refer the reader there for further
details.

Theorem 6. Let EFC = (A,R,D) be a strongly consistent EAFC and
DFEFC = (A,L,C) its corresponding ADF. DFEFC is a BADF. If EFC is
bounded hierarchical, then DFEFC is an AADF+.

Theorem 7. Let EFC be a strongly consistent EAFC and DFEFC = (A,L,C)
its corresponding ADF. A set of arguments X ⊆ A is a conflict–free extension
of EFC iff it is conflict–free in DFEFC . X is a stable extension of EFC iff it
is a model of DFEFC . X is a grounded extension of EFC iff it is the acyclic
grounded extension of DFEFC . Finally, X is a σ–extension of EFC, where
σ ∈ {admissible, complete, preferred}, iff it is a ca2–σ–extension of DFEFC .

Understanding the Abstract Dialectical Framework 443

5.3 Translating AFNs into ADFs

In order to accept an AFN argument, two conditions need to be met. First of all,
just like in AFs, the attackers of a given argument need to be absent. However, in
addition, at least one member of every supporting set needs to be present. This
gives us a description of an acceptance condition; the acyclicity will be handled
by the appropriate semantics.

Translation 4. Let FN = (A,R,N) be a strongly consistent AFN. The cor-
responding ADF is DFFN = (A,L,C), where L = {(x, y) | (x, y) ∈ R or
∃B ⊆ A, x ∈ B s.t. BNy}, C = {Ca | a ∈ A} and every Ca is as follows:

– Functional form: for every P ′ ⊆ par(a), if ∃p ∈ P ′ s.t. pRa or ∃Z ⊆ A s.t.
ZNa and Z ∩ P ′ = ∅, then Ca(P ′) = out; otherwise, Ca(P ′) = in.

– Propositional form: Ca = atta ∩ supa, where:
• atta =

∧ ¬{a}− or atta =
 if {a}− = ∅
• supa = (

∨

Z1 ∧ ...∧∨

Zm), where Z1, ..., Zm are all subsets of A s.t. ZiNa,
or supa =
 if no such set exists

The produced ADFs are still bipolar. However, whether a given ADF is an
AADF+ or not, depends on the support relation in the source AFN.

Theorem 8. Let FN = (A,R,N) be a strongly consistent AFN and DFFN =
(A,L,C) its corresponding ADF. Then DFFN is a BADF.

The AFN semantics are built around the notion of coherence, which requires
all relevant arguments to be (support–wise) derived in an acyclic manner. Thus,
not surprisingly, it is the aa–family of ADF semantics that will be associated
with the AFN semantics. In particular, we can relate powerful sequences to
the acyclic evaluations. This also allows us to draw the connection between the
acyclic discarded set in ADFs and the discarded set X att in AFNs. Hence, there
is a correspondence between the defense in AFNs and being decisively in w.r.t.
a given interpretation in ADFs. This in turns tells us the relation between the
extensions of AFNs and ADFs:

Lemma 2. Let FN = (A,R,N) be a strongly consistent AFN and DFFN =
(A,L,C) its corresponding ADF. For a given powerful sequence for an argument
a ∈ A we can construct an associated pd–acyclic evaluation and vice versa.

Theorem 9. Let FN = (A,R,N) be a strongly consistent AFN, DFFN =
(A,L,C) its corresponding ADF. X is strongly coherent in FN iff it is pd–acyclic
conflict–free in DFFN . X is a σ–extension of FN , where σ ∈ {admissible,
complete, preferred} iff it is an aa–σ–extension of DFFN . X is stable in FN iff
it is stable in DFFN . X is grounded in FN iff it is acyclic grounded in DFFN .

Example 7. Let us continue Example 3. The ADF associated with our AFN is
({a, b, c, d, e, f}, {Ca : b ∨ c, Cb : ¬d, Cc : ¬e, Cd : ¬f , Ce : ¬a,Cf : f}). ∅ is
trivially aa–admissible. Its acyclic discarded set is {f}, thus making d decisively
in. Hence, ∅ is not aa–complete. The set {d} discards f and b. This is not enough

444 S. Polberg

to accept any other argument. Hence, it is both aa–admissible and aa–complete.
The set {e} is pd–acyclic conflict–free, but not aa–admissible (it discards f
and c). However, {d, e} is aa–admissible (discarded set is {a, b, f, c}) and aa–
complete. We can also show that {a, c, d} is aa–admissible and aa–complete
(discarded set is {b, f, e}). Therefore, {d} is the acyclic grounded extension,
while {d, e} and {a, c, d} are aa–preferred and stable.

6 Conclusions and Final Remarks

In this paper we have presented a number of translations from different argumen-
tation frameworks to ADFs. We could have observed that for every structure,
we have found a family of the extension–based ADF semantics which followed
similar principles and thus were able to retrieve exactly the extensions of the
framework we were translating. We have also identified to which ADF subclass
a given translation–produced framework belongs, so that the results from [9–11]
can be exploited. Our results also show the differences between ADFs and other
formalisms; in particular, we had to introduce consistency constraints in order
to perform a translation. Nevertheless, this shortcoming can be addressed by the
introduction of linearly many new arguments that take over the support rela-
tion. Unfortunately, due to the space constraints we did not describe the bypass
method in detail. For the same reasons, we could not have presented certain
translations. In particular, we have omitted the approach for evidential argu-
mentation systems [14,22]. However, based on the SETAF and AFN methods
and the results from [14], this approach can be easily extrapolated. We hope we
will manage to present these results in the extended version of this work.

In establishing the connections between the semantics of argumentation
frameworks and ADFs, we have focused on the extension–based family. Nev-
ertheless, the labeling–based approach is also a prominent one, and at least in
the case of ADFs, better studied. However, as analyzed in [8], the usual relation
between extensions and labelings that is found e.g. in the Dung’s framework,
does not hold for the dialectical framework. Due to the specialized nature the
semantics we have presented here, all of the available approaches can sometimes
produce different results when faced with support cycles. This means that the
labeling–based method can give us complete, preferred or grounded interpreta-
tions that do not necessarily correspond to the complete, preferred or grounded
extensions of arbitrary AFNs and EAFCs. This can be addressed by limiting
ourselves to those frameworks that are associated with AADF+s. Therefore,
although the approaches for AFs and SETAFs can be used without any modi-
fications, we would have to distinguish a support acyclic subclass of AFNs and
work only with bounded hierarchical EAFCs. Consequently, we have decided to
focus on the extension–based semantics for ADFs which can be used without
such restrictions.

Our research falls into the area of framework intertranslatability [12,14,17,
22,23]. However, in this case we are moving from less to more complex structures,
not the other way around. Moreover, the fact that we are working with ADFs

Understanding the Abstract Dialectical Framework 445

means that the currently established methods are not particularly applicable.
To the best of our knowledge, our work is the first one to focus on analyzing the
relations between ADFs and other argumentation frameworks.

References

1. Rahwan, I., Simari, G.R.: Argumentation in Artificial Intelligence, 1st edn.
Springer, New York (2009)

2. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77,
321–357 (1995)

3. Brewka, G., Polberg, S., Woltran, S.: Generalizations of Dung frameworks and
their role in formal argumentation. IEEE Intell. Syst. 29, 30–38 (2014)

4. Brewka, G., Woltran, S.: Abstract dialectical frameworks. In: Proceedings of KR
2010, pp. 102–111. AAAI Press (2010)

5. Strass, H.: Approximating operators and semantics for abstract dialectical frame-
works. Artif. Intell. 205, 39–70 (2013)

6. Brewka, G., Ellmauthaler, S., Strass, H., Wallner, J.P., Woltran, S.: Abstract
dialectical frameworks revisited. In: Proceedings of IJCAI 2013, pp. 803–809. AAAI
Press (2013)

7. Polberg, S.: Extension-based semantics of abstract dialectical frameworks. In: Pro-
ceedings of STAIRS 2014. FAIA, vol. 264, pp. 240–249. IOS Press (2014)

8. Polberg, S.: Revisiting extension-based semantics of abstract dialectical frame-
works. Technical report DBAI-TR-2015-88, Institute for Information Systems,
Technical University of Vienna (2015)

9. Strass, H., Wallner, J.P.: Analyzing the computational complexity of abstract
dialectical frameworks via approximation fixpoint theory. In: Proceedings of KR
2014, Vienna, Austria, pp. 101–110. AAAI Press (2014)

10. Strass, H.: Instantiating knowledge bases in abstract dialectical frameworks. In:
Leite, J., Son, T.C., Torroni, P., van der Torre, L., Woltran, S. (eds.) CLIMA XIV
2013. LNCS, vol. 8143, pp. 86–101. Springer, Heidelberg (2013)

11. Ellmauthaler, S., Strass, H.: The DIAMOND system for computing with abstract
dialectical frameworks. In: Proceedings of COMMA 2014. FAIA, vol. 266, pp. 233–
240. IOS Press (2014)

12. Cayrol, C., Lagasquie-Schiex, M.C.: Bipolarity in argumentation graphs: towards
a better understanding. Int. J. Approx. Reasoning 54, 876–899 (2013)

13. Nouioua, F.: AFs with necessities: further semantics and labelling characterization.
In: Liu, W., Subrahmanian, V.S., Wijsen, J. (eds.) SUM 2013. LNCS, vol. 8078,
pp. 120–133. Springer, Heidelberg (2013)

14. Polberg, S., Oren, N.: Revisiting support in abstract argumentation systems. In:
Proceedings of COMMA 2014. FAIA, vol. 266, pp. 369–376. IOS Press (2014)

15. Nielsen, S.H., Parsons, S.: A generalization of Dung’s abstract framework for argu-
mentation: arguing with sets of attacking arguments. In: Maudet, N., Parsons, S.,
Rahwan, I. (eds.) ArgMAS 2006. LNCS (LNAI), vol. 4766, pp. 54–73. Springer,
Heidelberg (2007)

16. Modgil, S., Prakken, H.: Reasoning about preferences in structured extended argu-
mentation frameworks. In: Proceedings of COMMA 2010, pp. 347–358 (2010)

17. Modgil, S., Bench-Capon, T.J.M.: Metalevel argumentation. J. Log. Comput. 21,
959–1003 (2011)

446 S. Polberg

18. Modgil, S.: Revisiting abstract argumentation frameworks. In: Black, E., Modgil,
S., Oren, N. (eds.) TAFA 2013. LNCS, vol. 8306, pp. 1–15. Springer, Heidelberg
(2014)

19. Bench-Capon, T.J.M.: Persuasion in practical argument using value-based argu-
mentation frameworks. J. Log. Comput. 13, 429–448 (2003)

20. Amgoud, L., Vesic, S.: A new approach for preference-based argumentation frame-
works. Ann. Math. Artif. Intell. 63, 149–183 (2011)

21. Modgil, S.: Reasoning about preferences in argumentation frameworks. Artif. Intell.
173, 901–934 (2009)

22. Oren, N., Reed, C., Luck, M.: Moving between argumentation frameworks. In:
Proceedings of COMMA 2010, Amsterdam, The Netherlands, pp. 379–390. IOS
Press (2010)

23. Boella, G., Gabbay, D.M., van der Torre, L., Villata, S.: Meta-argumentation mod-
elling I: methodology and techniques. Stud. Logica. 93, 297–355 (2009)

24. Amgoud, L., Cayrol, C.: A reasoning model based on the production of
acceptable arguments. Ann. Math. Artif. Intell. 34(1–3), 197–215 (2002).
http://dblp.uni-trier.de

http://dblp.uni-trier.de

Extensional Semantics for Higher-Order Logic
Programs with Negation

Panos Rondogiannis(B) and Ioanna Symeonidou

Department of Informatics and Telecommunications,
National and Kapodistrian University of Athens, Athens, Greece

prondo@di.uoa.gr, i.symeonidou@di.uoa.gr

Abstract. We develop an extensional semantics for higher-order logic
programs with negation, generalizing the technique that was introduced
in [2,3] for positive higher-order programs. In this way we provide an
alternative extensional semantics for higher-order logic programs with
negation to the one proposed in [6]. As an immediate useful consequence
of our developments, we define for the language we consider the notions
of stratification and local stratification, which generalize the familiar such
notions from classical logic programming. We demonstrate that for strat-
ified and locally stratified higher-order logic programs, the proposed
semantics never assigns the unknown truth value.

1 Introduction

Research results developed in [2,3,7,13,17] have explored the possibility of
designing higher-order logic programming languages with purely extensional
semantics. The key idea behind this line of research is that if we appropriately
restrict the syntax of higher-order logic programming, then we can get lan-
guages that are simple both from a semantic as-well-as from a proof-theoretic
point of view. For such languages, we can show that program predicates essen-
tially denote sets and therefore one can use standard extensional set theory
in order to understand the meaning of programs and reason about them. A
main difference between the extensional and the more traditional intensional
approaches [9,15] is that the latter have richer syntax and expressive capabili-
ties but a non-extensional semantics.

There exist at present two main extensional semantic approaches for cap-
turing the meaning of positive (i.e., negationless) higher-order logic programs.
The first approach, developed in [7,13,17], uses classical domain-theoretic tools.
The second approach, developed in [2,3], builds on a fixed-point construction on
the ground instantiation of the source program. Despite their different philoso-
phies, these two approaches have recently been shown to agree [8] for a broad
and useful class of programs. This fact suggests that the two aforementioned
techniques can be employed as useful alternatives for the further development
of higher-order logic programming.

c© Springer International Publishing AG 2016
L. Michael and A. Kakas (Eds.): JELIA 2016, LNAI 10021, pp. 447–462, 2016.
DOI: 10.1007/978-3-319-48758-8 29

448 P. Rondogiannis and I. Symeonidou

A natural question that arises is whether one can still obtain an exten-
sional semantics if negation is added to programs. This question was recently
undertaken in [6], where it was demonstrated that the domain-theoretic results
obtained for positive logic programs in [7,13,17], can be extended to apply to pro-
grams with negation. More specifically, as demonstrated in [6], every higher-order
logic program with negation has a distinguished extensional model constructed
over a logic with an infinite number of truth values. It is therefore natural to
wonder whether the alternative extensional technique introduced in [2,3], can
also be extended to higher-order logic programs with negation. It is exactly this
question that we answer affirmatively. This brings us to the following contribu-
tions of the present paper:

– We extend the technique of [2,3] to the class of higher-order logic programs
with negation. In this way we demonstrate that Bezem’s approach is more
widely applicable than possibly initially anticipated.

– The extensional semantics we propose appears to be simpler compared to [6]
because it relies on the ground instantiation of the higher-order program and
does not require the rather involved domain-theoretic constructions of [6].
However, each technique has its merits and we believe that both will prove to
be useful tools in the further study of higher-order logic programming.

– As a case study of the applicability of the new semantics, we define the notions
of stratification and local stratification for higher-order logic programs with
negation and demonstrate that for such programs the proposed semantics
never assigns the unknown truth value. It is worth noting that such a result
under the semantics of [6] has not yet been obtained.

The rest of the paper is organized as follows. Section 2 presents in an intuitive
way the semantics that will be developed in this paper. Section 3 contains back-
ground material on the infinite-valued semantics that will be the basis of our
construction. Section 4 introduces the syntax and Sect. 5 the semantics of our
source language. Section 6 demonstrates that the proposed semantics is exten-
sional. In Sect. 7 the notions of stratification and local stratification are intro-
duced. Section 8 concludes the paper with pointers to future work.

2 An Intuitive Overview of the Proposed Approach

In this paper we consider the technique for positive higher-order logic programs
proposed in [2,3], and we extend it in order to apply to programs with nega-
tion in clause bodies. Given a positive higher-order logic program, the starting
idea behind Bezem’s approach is to take its “ground instantiation”, in which we
replace variables with terms created using only predicate and individual con-
stants that appear in the program. For example, the table below depicts (in the
right) the ground instantiation of a higher-order program (in the left); we use
ad-hoc Prolog-like syntax:

Extensional Semantics for Higher-Order Logic Programs with Negation 449

q(a). q(a).
q(b). q(b).
p(Q):-Q(a). p(q):-q(a).
id(R)(X):-R(X). id(q)(a):-q(a).

p(id(q)):-id(q)(a).
id(id(q))(a):-id(q)(a).

· · ·
One can now treat the new program as an infinite propositional one (i.e.,

each ground atom can be seen as a propositional one). This implies that we can
use the standard least fixed-point construction of classical logic programming
(see for example [14]) in order to compute the set of atoms that should be taken
as “true”. In our example, the least fixed-point will contain atoms such as q(a),
q(b), p(q), id(q)(a), p(id(q)), and so on.

The main contribution of Bezem’s work was that he established that the least
fixed-point semantics of the ground instantiation of every positive higher-order
logic program of the language considered in [2,3], is extensional in a sense that
can be intuitively explained as follows. It is obvious in the above example that q
and id(q) are equal since they are both true of only the constant a. Therefore,
we would expect that (for example) if p(q) is true then p(id(q)) is also true,
because q and id(q) should be considered as interchangeable. This property
of “interchangeability” is formally defined in [2,3] and it is demonstrated that
it holds in the least fixed-point of the immediate consequence operator of the
ground instantiation of every program.

The key idea behind extending Bezem’s semantics in order to apply to higher-
order logic programs with negation, is straightforward to state: given such a pro-
gram, we first take its ground instantiation. The resulting program is a (possibly
infinite) propositional program with negation, and therefore we can compute its
semantics in any standard way that exists for obtaining the meaning of such
programs. For example, one could use the well-founded semantics (or the sta-
ble model semantics), and then proceed to show that the well-founded model
(respectively, each stable model) is extensional in the sense of [2,3]. Instead of
using the well-founded or the stable model semantics, we have chosen to use a
relatively recent proposal for assigning meaning to classical logic programs with
negation, namely the infinite-valued semantics [16]. As it has been demonstrated
in [16], the infinite-valued semantics is compatible with the well-founded: if we
collapse the infinite-valued model to three truth values, we get the well-founded
one. There are two main reasons for choosing to proceed with the infinite-valued
approach:

– An extension of the infinite-valued approach was used in [6] to give the first
extensional semantics for higher-order logic programs with negation. By devel-
oping our present approach using the same underlying logic, we facilitate the
future comparison between the two approaches.

– As it was recently demonstrated in [5,11], the infinite-valued approach sat-
isfies all identities of iteration theories [4], while the well-founded semantics
does not. Since iteration theories (intuitively) provide an abstract framework

450 P. Rondogiannis and I. Symeonidou

for the comparison of various semantic approaches for languages that involve
recursion, the results just mentioned give an extra incentive for the further
study and use of the infinite-valued approach.

We demonstrate that the infinite-valued semantics of the ground instantiation
of every higher-order logic program with negation, is extensional. In this way
we extend the results of [2,3] which applied only to positive programs. The
proof of extensionality is quite intricate and is performed by a tedious induction
on the approximations of the minimum infinite-valued model. As an immediate
application of our result, we show how one can define the notions of stratification
and local stratification for higher-order logic programs with negation.

It is left as an open problem whether one can extend Bezem’s technique
in order to get extensional models under the well-founded or the stable-model
semantics. More discussion on this issue will be given in the concluding section.

3 The Infinite-Valued Semantics

In this section we give an overview of the infinite-valued approach of [16]. As
in [16], we consider (possibly countably infinite) propositional programs, consist-
ing of clauses of the form p ← L1, . . . , Ln, where each Li is either a propositional
variable or the negation of a propositional variable. The key idea of the infinite-
valued approach is that, in order to give a logical semantics to negation-as-failure
and to distinguish it from ordinary negation, one needs to extend the domain of
truth values. For example, consider the program:

p ←
r ← ∼p

s ← ∼q

According to negation-as-failure, both p and s receive the value True. How-
ever, p seems “truer” than s because there is a rule which says so, whereas s
is true only because we are never obliged to make q true. In a sense, s is true
only by default. For this reason, it was proposed in [16] to introduce a “default”
truth value T1 just below the “real” true T0, and (by symmetry) a weaker false
value F1 just above (“not as false as”) the real false F0. Then, negation-as-failure
is a combination of ordinary negation with a weakening. Thus ∼F0 = T1 and
∼T0 = F1. Since negations can be iterated, the new truth domain has a sequence
. . . , T3, T2, T1 of weaker and weaker truth values below T0 but above the neutral
value 0; and a mirror image sequence F1, F2, F3, . . . above F0 and below 0. Since
our propositional programs are possibly countably infinite, we need a Tα and a
Fα for every countable ordinal α. Then the truth domain V is shaped as follows:

F0 < F1 < · · · < Fω < · · · < Fα < · · · < 0 < · · · < Tα < · · · < Tω < · · · < T1 < T0

and the notion of “Herbrand interpretation of a program” can be generalized:

Extensional Semantics for Higher-Order Logic Programs with Negation 451

Definition 1. An (infinite-valued) interpretation I of a propositional program
P is a function from the Herbrand Base BP of P to the set V of truth values.

We will use ∅ to denote the interpretation that assigns the F0 value to all
atoms of a program. If v ∈ V is a truth value, we will use I ‖ v to denote the
set of atoms which are assigned the value v by I. In order to define the notion
of “model”, we need the following definitions:

Definition 2. Let I be an interpretation of a given propositional program P.
For every negative literal ∼p appearing in P we extend I as follows:

I(∼p) =

⎧

⎨

⎩

Tα+1, if I(p) = Fα

Fα+1, if I(p) = Tα

0, if I(p) = 0

Moreover, for every conjunction of literals L1, . . . , Ln appearing as the body of a
clause in P, we extend I by I(L1, . . . , Ln) = min{I(L1), . . . , I(Ln)}.
Definition 3. Let P be a propositional program and I an interpretation of P.
Then, I satisfies a clause p ← L1, . . . , Ln of P if I(p) ≥ I(L1, . . . , Ln). Moreover,
I is a model of P if I satisfies all clauses of P.

As it is demonstrated in [16], every program has a minimum infinite-valued model
under an ordering relation �, which compares interpretations in a stage-by-stage
manner. To formally state this result, the following definitions are necessary:

Definition 4. The order of a truth value is defined as follows: order(Tα) = α,
order(Fα) = α and order(0) = +∞.

Definition 5. Let I and J be interpretations of a given propositional program P
and α be a countable ordinal. We write I =α J , if for all β ≤ α, I ‖ Tβ = J ‖ Tβ

and I ‖ Fβ = J ‖ Fβ. We write I �α J , if for all β < α, I =β J and, moreover,
I ‖ Tα ⊆ J ‖ Tα and I ‖ Fα ⊇ J ‖ Fα. We write I �α J , if I �α J but I =α J
does not hold.

Definition 6. Let I and J be interpretations of a given propositional program P.
We write I � J , if there exists a countable ordinal α such that I �α J . We write
I � J if either I = J or I � J .

It is easy to see [16] that � is a partial order, �α is a preorder, and =α is an
equivalence relation. As in the case of positive programs, the minimum Herbrand
model of a program P coincides with the least fixed-point of an operator TP:

Definition 7. Let P be a propositional program and let I be an interpretation
of P. The immediate consequence operator TP of P is defined as follows:

TP(I)(p) = lub{I(L1, . . . , Ln) | p ← L1, . . . , Ln ∈ P}

452 P. Rondogiannis and I. Symeonidou

The least fixed-point MP of TP is constructed as follows. We start with ∅,
namely the interpretation that assigns to every atom of P the value F0. We
iterate TP on ∅ until the set of atoms having a F0 value and the set of atoms
having a T0 value, stabilize. Then we reset the values of all remaining atoms
to F1. The procedure is repeated until the F1 and T1 values stabilize, and we
reset the remaining atoms to F2, and so on. It is shown in [16] that there exists
a countable ordinal δ for which this process will not produce any new atoms
having Fδ or Tδ values. At this point we reset all remaining atoms to 0. The
following definitions formalize this process.

Definition 8. Let P be a propositional program and let I be an interpretation
of P. We define the interpretation Tω

P,α(I) as follows:

Tω
P,α(I)(p) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

I(p), if order(I(p)) < α
Tα, if p ∈ ⋃

n<ω(Tn
P (I) ‖ Tα)

Fα, if p ∈ ⋂

n<ω(Tn
P (I) ‖ Fα)

Fα+1, otherwise

Definition 9. Let P be a propositional program. For each countable ordinal α,
let Mα = Tω

P,α(Iα) where I0 = ∅, Iα = Mα−1 if α is a successor ordinal, and

Iα(p) =
{

Mβ(p), if order(Mβ(p)) = β for someβ < α
Fα, otherwise

if α is a limit ordinal. The M0,M1, . . . ,Mα, . . . are called the approximations to
the minimum model of P.

In [16] it is shown that the above sequence of approximations is well-defined. We
will make use of the following lemma from [16]:

Lemma 1. Let P be a propositional program and let α be a countable ordinal.
For all n < ω, Tn

P (Iα) �α Mα.

The following lemma from [16] states that there exists a certain ordinal, after
which new approximations do not introduce new truth values:

Lemma 2. Let P be a propositional program. Then, there exists a countable
ordinal δ, called the depth of P, such that:

1. for all countable ordinals γ ≥ δ, Mγ ‖ Tγ = ∅ and Mγ ‖ Fγ = ∅
2. for all β < δ, Mβ ‖ Tβ
= ∅ or Mβ ‖ Fβ
= ∅.
We can now define the following interpretation MP of a given program P:

MP(p) =
{

Mδ(p), if order(Mδ(p)) < δ
0, otherwise

Extensional Semantics for Higher-Order Logic Programs with Negation 453

The following two theorems from [16], establish important properties of MP:

Theorem 1. The infinite-valued interpretation MP is a model of P. Moreover,
it is the least (with respect to �) among all infinite-valued models of P.

Theorem 2. The interpretation NP obtained by collapsing all true values of MP

to True and all false values to False, coincides with the well-founded model of P.

The next lemma states a fact already implied earlier, namely that new approxi-
mations do not affect the sets of atoms stabilized by the preceding ones.

Lemma 3. Let P be a propositional program and let α be a countable ordinal.
For all countable ordinals β > α, Mα =α Mβ. Moreover, Mα =α MP.

4 The Syntax of H
In this section we define the syntax of the language H that we use throughout the
paper. H is based on a simple type system with two base types: o, the boolean
domain, and ι, the domain of data objects. The composite types are partitioned
into three classes: functional (assigned to function symbols), predicate (assigned
to predicate symbols) and argument (assigned to parameters of predicates).

Definition 10. A type can either be functional, predicate, or argument,
denoted by σ, π and ρ respectively and defined as:

σ := ι | (ι → σ)
π := o | (ρ → π)
ρ := ι | π

We will use τ to denote an arbitrary type (either functional, predicate or
argument one). As usual, the binary operator → is right-associative. A functional
type that is different than ι will often be written in the form ιn → ι, n ≥ 1.
Moreover, it can be easily seen that every predicate type π can be written in the
form ρ1 → · · · → ρn → o, n ≥ 0 (for n = 0 we assume that π = o). We proceed
by defining the syntax of H:

Definition 11. The alphabet of H consists of the following:

1. Predicate variables of every predicate type π (denoted by capital letters such
as Q,R,S, . . .).

2. Individual variables of type ι (denoted by capital letters such as X,Y,Z, . . .).
3. Predicate constants of every predicate type π (denoted by lowercase letters

such as p, q, r, . . .).
4. Individual constants of type ι (denoted by lowercase letters such as a, b, c, . . .).
5. Function symbols of every functional type σ
= ι (denoted by lowercase letters

such as f, g, h, . . .).

454 P. Rondogiannis and I. Symeonidou

6. The inverse implication constant ←, the negation constant ∼, the comma, the
left and right parentheses, and the equality constant ≈ for comparing terms
of type ι.

Arbitrary variables will be usually denoted by V and its subscripted versions.

Definition 12. The set of terms of H is defined as follows:

– Every predicate variable (respectively, predicate constant) of type π is a term
of type π; every individual variable (respectively, individual constant) of type
ι is a term of type ι;

– if f is an n-ary function symbol and E1, . . . ,En are terms of type ι then
(f E1 · · ·En) is a term of type ι;

– if E1 is a term of type ρ → π and E2 a term of type ρ then (E1 E2) is a term
of type π.

Definition 13. The set of expressions of H is defined as follows:

– A term of type ρ is an expression of type ρ;
– if E is a term of type o then (∼E) is an expression of type o;
– if E1 and E2 are terms of type ι, then (E1 ≈ E2) is an expression of type o.

We write vars(E) to denote the set of all the variables in E. Expressions (respec-
tively, terms) that have no variables will often be referred to as ground expres-
sions (respectively, ground terms). We will omit parentheses when no confusion
arises. To denote that an expression E has type ρ we will often write E : ρ.
Expressions of type o that do not contain negation will often be referred to
as atoms or positive literals, while expressions of the form (∼E) will be called
negative literals. A literal is either a positive literal or a negative literal.

Definition 14. A clause of H is a formula p V1, . . . ,Vn ← L1, . . . , Lm, where p
is a predicate constant, V1, . . . ,Vn are distinct variables, p V1, . . . ,Vn is a term
of type o and L1, . . . , Lm are literals. The term p V1, . . . ,Vn is the head of the
clause and the conjunction L1, . . . , Lm is its body. A program P of H is a finite
set of clauses.

Example 1. The program below defines the subset relation over unary predi-
cates:

subset S1 S2 :- ∼(nonsubset S1 S2).
nonsubset S1 S2 :- S1 X,∼(S2 X).

Given unary predicates p and q, subset p q is true iff p is a subset of q. ��
In the following, we will often talk about the “ground instantiation of a program”.
This notion is formally defined below.

Definition 15. A substitution θ is a finite set of the form {V1/E1, . . . ,Vn/En}
where the Vi’s are different variables and each Ei is a term having the same
type as Vi. We write dom(θ) to denote the domain {V1, . . . ,Vn} of θ. If all the
expressions E1, . . . ,En are ground terms, θ is called a ground substitution.

Extensional Semantics for Higher-Order Logic Programs with Negation 455

We can now define the application of a substitution to an expression.

Definition 16. Let θ be a substitution and E be an expression. Then, Eθ is an
expression obtained from E as follows:

– Eθ = E if E is a predicate constant or individual constant;
– Vθ = θ(V) if V ∈ dom(θ); otherwise, Vθ = V;
– (f E1 · · ·En)θ = (f E1θ · · ·Enθ);
– (E1 E2)θ = (E1θ E2θ);
– (∼E)θ = (∼Eθ);
– (E1 ≈ E2)θ = (E1θ ≈ E2θ).

If θ is a ground substitution such that vars(E) ⊆ dom(θ), then the ground expres-
sion Eθ is called a ground instance of E.

Definition 17. Let P be a program. A ground instance of a clause p V1 · · ·Vn ←
L1, . . . , Lm of P is a formula (p V1 · · ·Vn)θ ← L1θ, . . . , Lmθ, where θ is a ground
substitution whose domain is the set of all variables that appear in the clause,
such that for every V ∈ dom(θ) with V : ρ, θ(V) is a ground expression of type ρ
that has been formed with predicate constants, function symbols, and individual
constants that appear in P. The ground instantiation of a program P, denoted
by Gr(P), is the (possibly infinite) set that contains all the ground instances of
the clauses of P.

5 The Semantics of H
In this section we develop the semantics of H. Our developments generalize
the semantics of [2,3] for positive higher-order logic programs to programs with
negation. Notice that the semantics of [2,3] is based on classical two-valued logic,
while ours on the infinite-valued logic of Sect. 3.

In order to interpret the programs of H, we need to specify the semantic
domains in which the expressions of each type τ are assigned their meanings.
The following definition implies that the expressions of predicate types should
be understood as representing functions.

Definition 18. A functional type structure S for H consists of two non-empty
sets D and A together with an assignment �τ� to each type τ of H, so that the
following are satisfied:

– �ι� = D;
– �ιn → ι� = Dn → D;
– �o� = A;
– �ρ → π� ⊆ �ρ� → �π�.

Given a functional type structure S, any function v : �o� → V will be called
an infinite-valued valuation function (or simply valuation function) for S.

456 P. Rondogiannis and I. Symeonidou

Definition 19. For a program P, we define the Herbrand universe for every
argument type ρ, denoted by UP,ρ to be the set of all ground terms of type ρ, that
can be formed out of the individual constants, function symbols and predicate
constants in the program.

When studying the semantics of a program P, it is customary to restrict
attention to the Herbrand universe and Herbrand base of the program, instead
of the entirety of the language. Following [2,3], we take D and A in Definition 18
to be equal to UP,ι and UP,o respectively. Then, each element of UP,ρ→π can
itself be perceived as a function mapping elements of �ρ� to elements of �π�,
through syntactic application mapping. That is, E ∈ UP,ρ→π can be viewed as
the function mapping each E′ ∈ UP,ρ to the expression EE′ ∈ UP,π.

Definition 20. A Herbrand interpretation I of a program P consists of

1. a functional type structure SI , such that D = UP,ι, A = UP,o and �ρ → π� =
UP,ρ→π for every predicate type ρ → π;

2. an assignment to each individual constant c in P, of the element I(c) = c;
to each predicate constant p in P, of the element I(p) = p; to each function
symbol f in P, of the element I(f) = f;

3. a valuation function for SI , vI(·), assigning to each element of UP,o an ele-
ment in V .

We call vI(·) the valuation function of I and omit the reference to SI , since the
latter is common to all Herbrand interpretations of a program. In fact, individual
Herbrand interpretations are only set apart by their valuation functions.

Definition 21. A Herbrand state (or simply state) s of a program P is a func-
tion that assigns to each variable V of type ρ an element of UP,ρ.

Given a Herbrand interpretation I and state s, we can define the semantics of
expressions with respect to I and s.

Definition 22. Let P be a program, I be a Herbrand interpretation of P and s
be a Herbrand state. Then the semantics of expressions with respect to I and s
is defined as follows:

– �c�s(I) = I(c), for every individual constant c;
– �p�s(I) = I(p), for every predicate constant p;
– �V�s(I) = s(V), for every variable V;
– �(f E1, · · · En)�s(I) = (f �E1�s(I) · · · �En�s(I)), for every function symbol f :

ιn → ι;
– �(E1 E2)�s(I) = (�E1�s(I) �E2�s(I));
– �(E1 ≈ E2)�s(I) = (�E1�s(I) ≈ �E2�s(I));
– �(∼E)�s(I) = (∼�E�s(I)).

Since we are dealing with Herbrand interpretations, it is easy to see that for
every Herbrand state s and ground expression E, we have �E�s(I) = E. Therefore,
if E is a ground atom, we can write vI(E) instead of vI(�E�s(I)). Stretching this
abuse of notation a little further, we can extend a valuation function to assign
truth values to ground formulas:

Extensional Semantics for Higher-Order Logic Programs with Negation 457

Definition 23. Let P be a program and I be a Herbrand interpretation of P.
Then the truth value of ground formulas with respect to I is defined as follows:

– vI((E1 ≈ E2)) =

{

F0, if E1
= E2

T0, if E1 = E2

;

– vI(∼A) =

⎧

⎪

⎨

⎪

⎩

Fα+1, if vI(A) = Tα

0, if vI(A) = 0
Tα+1, if vI(A) = Fα

;

– vI(L1, · · · , Ln) = min{vI(L1), . . . , vI(Ln)}.
Based on the above definition, we can define the concept of Herbrand models for
our higher-order programs in the same way as in classical logic programming.

Definition 24. Let P be a program and I be a Herbrand interpretation of P.
We say I is a model of P if vI(�A�s(I)) ≥ vI(�L1�s(I), · · · , �Lm�s(I)) holds for
every clause A ← L1, · · · , Lm and every Herbrand state s of P.

Bezem’s semantics is based on the observation that, given a positive higher-order
program, we can use the minimum model semantics of its ground instantiation
as a (two-valued) valuation function defining a Herbrand interpretation for the
initial program itself. We use the same idea for H programs; the only difference
is that we employ the infinite-valued model of the ground instantiation of the
program as the valuation function.

Definition 25. Let P be a program. Also, let Gr(P) be the ground instantiation
of P and let MGr(P) be the infinite-valued model of Gr(P). We define MP to be the
Herbrand interpretation of P such that vMP

(A) = MGr(P)(A) for every A ∈ UP,o.

We adopt the notation I ‖ v from Sect. 3, to signify the set of atoms which
are assigned a certain truth value v ∈ V by a Herbrand interpretation I; that
is, I ‖ v = {A | A ∈ UP,o and vI(A) = v}. Then the relations �α, �α, =α, �
and � on Herbrand interpretations of a higher-order program can be defined in
exactly the same manner as in the first-order case.

The next theorem verifies that our semantics is well-defined, in the sense that
the interpretation we chose as the meaning of a program P is indeed a model
of P. In fact it is its minimum, with respect to �, model.

Theorem 3. MP is the minimum (with respect to �) Herbrand model of P.

The proof of the theorem is relatively straightforward and is omitted due to
space limitations.

6 Extensionality of the Proposed Semantics

In this section we show that the infinite-valued model we defined in the previous
section enjoys the extensionality property, as this was defined in [2].

458 P. Rondogiannis and I. Symeonidou

Definition 26. Let S be a functional type structure and v be a valuation func-
tion for S. For every type τ we define the relations ∼=v,τ on �τ� as follows: Let
d1, d2 ∈ �τ�; then d1 ∼=v,τ d2 if and only if

1. τ = ιn → ι, n ≥ 0, and d1 = d2, or
2. τ = o and v(d1) = v(d2), or
3. τ = ρ → π and d1 e1 ∼=v,π d2 e2 for all e1, e2 ∈ �ρ�, such that e1 ∼=v,ρ e2.

Generally, it is not guaranteed that such relations will be equivalence relations;
rather they are partial equivalences. However, we are going to see that the min-
imum model of a program defines true equivalence relations for all types τ .

Definition 27. Let P be a program and let I be a Herbrand interpretation of P.
We say I is extensional if for all types τ the relations ∼=vI ,τ are reflexive, i.e.
for all E ∈ �τ�, it holds that E ∼=vI ,τ E.

Theorem 4 (Extensionality). MP is extensional.

Proof. Since the valuation function of MP is MGr(P), effectively we need to show
that E ∼=MGr(P),τ E, for every type τ and every E ∈ �τ�. We perform an induction
on the structure of τ . For the base types ι and o the statement holds by definition,
as it also does for functional types ιn → ι. So, for the induction step, we prove
the statement for a predicate type τ , assuming that it holds for all types simpler
than τ . Let A be any atom of the following form: A is headed by a predicate con-
stant and all variables in vars(A) are of types simpler than τ . Let θ, θ′ be ground
substitutions, such that vars(A) ⊆ dom(θ), dom(θ′) and θ(V) ∼=MGr(P),ρ θ′(V) for
any V : ρ in vars(A). Then it suffices to show the following two properties, for all
ordinals α: Property P1(α) states that if Mα(Aθ) = Tα then MGr(P)(Aθ′) = Tα;
property P2(α) states that if Mα(Aθ) = Fα then MGr(P)(Aθ′) = Fα.

To see why proving the above properties is enough to establish that E ∼=MGr(P),τ

E, observe the following: first of all, if τ is of the form ρ1 → · · · → ρm → o and
V1 : ρ1, . . . ,Vm : ρm are variables, then E V1 · · · Vm is an atom of the form
described above. Also, by Lemma 3 we have that MGr(P)(E θ(V1) · · · θ(Vm)) =
Tα iff Mα(E θ(V1) · · · θ(Vm)) = Tα. If P1(α) holds, the latter implies that
MGr(P)(E θ′(V1) · · · θ′(Vm)) = Tα. Because the relations ∼=MGr(P),ρi

are sym-
metric, θ and θ′ are interchangeable. Therefore the same argument can be used
to infer the reverse implication, i.e. MGr(P)(E θ′(V1) · · · θ′(Vm)) = Tα ⇒
MGr(P)(E θ(V1) · · · θ(Vm)) = Tα, and thus an equivalence. If P2(α) holds, the
analogous equivalence can be shown for the value Fα, in the same way. Finally,
the equivalence for the 0 value follows by a simple elimination argument.

We will proceed by a second induction on α. For the second induction
basis, we have M0 = Tω

Gr(P),0(∅). Observe that Tω
Gr(P),0(∅)(Aθ) will evaluate

to T0 iff there exists some n < ω for which Tn
Gr(P)(∅)(Aθ) = T0. On the

other hand, it will evaluate to F0 iff there does not exist a n < ω for which
Tn
Gr(P)(∅)(Aθ)
= F0. Therefore, in order to prove P1(0) and P2(0), we first need

to perform a third induction on n and prove the following two properties: Prop-
erty P ′

1(0, n), stating that if Tn
Gr(P)(∅)(Aθ) = T0 then MGr(P)(Aθ′) = T0; and

Extensional Semantics for Higher-Order Logic Programs with Negation 459

property P ′
2(0, n), stating that if Tn

Gr(P)(∅)(Aθ) > F0 then MGr(P)(Aθ′) > F0.
The third induction basis case is trivial. For the third induction step,
first we show P ′

1(0, n + 1). If Tn+1
Gr(P)(∅)(Aθ) = T0, then there exists a clause

Aθ ← L1, . . . , Lk in Gr(P) such that for each i ≤ k, Tn
Gr(P)(∅)(Li) = T0. This

implies that each Li is a positive literal, since a negative one cannot be assigned
the value T0 in any interpretation. This clause is a ground instance of a clause
pV1 · · · Vm ← B1, . . . ,Bk in the higher-order program and there exists a substi-
tution θ′′, such that (pV1 · · · Vm)θ′′ = A and, for any variable V
∈ {V1, . . . ,Vm}
appearing in the body of the clause, θ′′(V) is an appropriate ground term, so
that Li = Biθ

′′θ for all i ≤ k. Observe that the variables appearing in the clause
(pV1 · · · Vm)θ′′ ← B1θ

′′, . . . ,Bkθ′′ are exactly the variables appearing in A and
they are all of types simpler than τ . Also, the clause Aθ′ ← B1θ

′′θ′, . . . ,Bkθ′′θ′

is in Gr(P) and for each i ≤ k, MGr(P)(Biθ
′′θ′) = T0 can be shown to follow

from Tn
Gr(P)(∅)(Li) = T0, by examining all possible forms each Biθ

′′, i ≤ k, may
take. Therefore MGr(P)(Aθ′) = T0 must also hold. Property P ′

2(0, n + 1) can be
shown using very similar arguments. We can now use these two properties in
order to show P1(0) and P2(0). By definition, if M0(Aθ) = Tω

Gr(P),0(∅)(Aθ) = T0,
then there exists some n < ω such that Tn

Gr(P)(∅)(Aθ) = T0. Applying P ′
1(0, n) to

Aθ we immediately conclude that MGr(P)(Aθ′) = T0, which establishes property
P1(0). Now let M0(Aθ) = F0 and assume MGr(P)(Aθ′)
= F0. By Lemma 3, the
latter can only hold if M0(Aθ′) = Tω

Gr(P),0(∅)(Aθ′)
= F0 and this, in turn, means
that there exists at least one n < ω such that Tn

Gr(P)(∅)(Aθ′) > F0. Then, revers-
ing the roles of θ and θ′, we can apply property P ′

2(0, n) to Aθ′ and conclude that
MGr(P)(Aθ) > F0, which, again by Lemma 3, contradicts M0(Aθ) = F0. Therefore
it must be MGr(P)(Aθ′) = F0. For the second induction step, it remains to
prove properties P1(α) and P2(α) for an arbitrary countable ordinal α. Again,
the proof follows arguments very similar to the ones used in the basis case and
is omitted due to space limitations. ��

7 Stratified and Locally Stratified Programs

In this section we define the notions of stratified and locally stratified programs
and argue that atoms of such programs never obtain the truth value 0 under the
proposed semantics. The notion of local stratification is a straightforward gen-
eralization of the corresponding notion for classical (first-order) logic programs.
However, the notion of stratification is a genuine extension of the corresponding
notion for first-order programs.

Definition 28. A program P is called locally stratified if and only if it is pos-
sible to decompose the Herbrand base UP,o of P into disjoint sets (called strata)
S1, S2, . . . , Sα, . . . , α < γ, where γ is a countable ordinal, such that for every
clause H ← A1, . . . ,Am,∼B1, . . . ,∼Bn in Gr(P), we have that for every i ≤ m,
stratum(Ai) ≤ stratum(H) and for every i ≤ n, stratum(Bi) < stratum(H), where
stratum(C) = β, if the atom C ∈ UP,o belongs to Sβ, and stratum(C) = 0, if
C
∈ UP,o and is of the form (E1 ≈ E2).

460 P. Rondogiannis and I. Symeonidou

All atoms in the minimum Herbrand model of a locally stratified program have
non-zero values:

Lemma 4. Let P be a locally stratified logic program. Then, for every atom
A ∈ UP,o it holds MP(A)
= 0.

Proof. Theorem 2 implies that the infinite-valued model MGr(P) of the ground
instantiation of P assigns the truth value 0 to an atom iff the same atom is
assigned this value by the well-founded model. It is trivial to see that P is
a locally stratified higher-order program (in the sense of Definition 28) iff its
ground instantiation is a locally stratified propositional program. Recall that
the well-founded model of a locally stratified first-order program does not assign
the truth value 0 to any atom [12], so neither does MGr(P) or MP. ��

Since Definition 28 generalizes the corresponding one for classical logic pro-
grams, the undecidability result [10] for detecting whether a given program is
locally stratified, extends directly to the higher-order case.

Lemma 5. The problem of determining whether a given logic program P is
locally stratified, is undecidable.

However, there exists a notion of stratification for higher-order logic programs
that is decidable and has as a special case the stratification for classical logic
programs [1]. In the following definition, a predicate type π is understood to be
greater than a second predicate type π′, if π is of the form ρ1 → · · · → ρn → π′,
where n ≥ 1.

Definition 29. A program P is called stratified if and only if it is possible to
decompose the set of all predicate constants that appear in P into a finite number
r of disjoint sets (called strata) S1, S2, . . . , Sr, such that for every clause H ←
A1, . . . ,Am,∼B1, . . . ,∼Bn in P, where the predicate constant of H is p, we have:

1. for every i ≤ m, if Ai is a term that starts with a predicate constant q, then
stratum(q) ≤ stratum(p);

2. for every i ≤ m, if Ai is a term that starts with a predicate variable Q, then
for all predicate constants q that appear in P such that the type of q is greater
than or equal to the type of Q, it holds stratum(q) ≤ stratum(p);

3. for every i ≤ n, if Bi starts with a predicate constant q, then stratum(q) <
stratum(p);

4. for every i ≤ n, if Bi starts with a predicate variable Q, then for all predicate
constants q that appear in P such that the type of q is greater than or equal
to the type of Q, it holds stratum(q) < stratum(p);

where stratum(r) = i if the predicate symbol r belongs to Si.

Example 2. It is straightforward to see that the program:

p Q:-∼(Q a).
q X:-(X ≈ a).

Extensional Semantics for Higher-Order Logic Programs with Negation 461

is stratified. However, it can easily be checked that the program:

p Q:-∼(Q a).
q X Y:-(X ≈ a), (Y ≈ a), p (q a).

is not stratified nor locally stratified, because if the term q a is substituted for
Q we get a circularity through negation. Notice that the type of q is ι → ι → o
and it is greater than the type of Q which is ι → o. ��

Since the set of predicate constants that appear in a program P is finite, and
since the number of predicate constants of the program that have a greater or
equal type than a given type is also finite, it follows that checking whether a given
program is stratified, is decidable. Moreover, we have the following theorem:

Theorem 5. If P is stratified then it is locally stratified.

Proof. Consider a decomposition S1, . . . , Sr of the set of predicate constants of P.
This defines a decomposition S′

1, . . . , S
′
r of the Herbrand base of P, as follows:

S′
i = {A ∈ UP,o | the leftmost predicate constant of A belongs to Si}

It is easy to check that S′
1, . . . , S

′
r corresponds to a local stratification of UP,o.��

8 Future Work

We have defined a novel extensional semantics for higher-order logic programs
with negation based on the infinite-valued logic of [16], and used it in order to
define notions of stratification for such programs. We conjecture that one can
define extensional semantics based on the well-founded and the stable-model
approaches. Notice that despite the fact that the minimum infinite-valued model
of a program collapses to the well-founded one (Theorem 2), this fact can not be
used directly in order to argue about the possible extensionality of a semantics
that will be based on the well-founded approach. It seems that a novel proof
must be devised for this case, and we are currently investigating this issue.

References

1. Apt, K.R., Blair, H.A., Walker, A.: Towards a theory of declarative knowledge. In:
Minker, J. (ed.) Foundations of Deductive Databases and Logic Programming, pp.
89–148. Morgan Kaufmann (1988)

2. Bezem, M.: Extensionality of simply typed logic programs. In: Schreye, D.D. (ed.)
Logic Programming: The 1999 International Conference, Las Cruces, 29 November–
4 December 1999, pp. 395–410. MIT Press (1999)

3. Bezem, M.: An improved extensionality criterion for higher-order logic programs.
In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS, vol. 2142, pp. 203–216.
Springer, Heidelberg (2001). doi:10.1007/3-540-44802-0 15

http://dx.doi.org/10.1007/3-540-44802-0_15

462 P. Rondogiannis and I. Symeonidou

4. Bloom, S.L., Ésik, Z.: Iteration Theories - The Equational Logic of Itera-
tive Processes. EATCS Monographs on Theoretical Computer Science. Springer,
Heidelberg (1993)

5. Carayol, A., Ésik, Z.: An analysis of the equational properties of the well-founded
fixed point. In: Baral, C., Delgrande, J.P., Wolter, F. (eds.) Principles of Knowl-
edge Representation and Reasoning: Proceedings of the Fifteenth International
Conference, KR 2016, Cape Town, 25–29 April 2016, pp. 533–536. AAAI Press
(2016)

6. Charalambidis, A., Ésik, Z., Rondogiannis, P.: Minimum model semantics for
extensional higher-order logic programming with negation. TPLP 14(4–5), 725–
737 (2014)

7. Charalambidis, A., Handjopoulos, K., Rondogiannis, P., Wadge, W.W.: Exten-
sional higher-order logic programming. ACM Trans. Comput. Log. 14(3), 21 (2013)

8. Charalambidis, A., Rondogiannis, P., Symeonidou, I.: Equivalence of two fixed-
point semantics for definitional higher-order logic programs. In: Matthes, R., Mio,
M. (eds.) Proceedings Tenth International Workshop on Fixed Points in Computer
Science, FICS 2015, Berlin, 11–12 September 2015. EPTCS, vol. 191, pp. 18–32
(2015)

9. Chen, W., Kifer, M., Warren, D.S.: HILOG: a foundation for higher-order logic
programming. J. Log. Program. 15(3), 187–230 (1993)

10. Cholak, P., Blair, H.A.: The complexity of local stratification. Fundam. Inform.
21(4), 333–344 (1994)

11. Ésik, Z.: Equational properties of stratified least fixed points (extended abstract).
In: de Paiva, V., de Queiroz, R., Moss, L.S., Leivant, D., de Oliveira, A. (eds.)
WoLLIC 2015. LNCS, vol. 9160, pp. 174–188. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-47709-0 13

12. Gelder, A.V., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general
logic programs. J. ACM 38(3), 620–650 (1991)

13. Kountouriotis, V., Rondogiannis, P., Wadge, W.W.: Extensional higher-order dat-
alog. In: Short Paper Proceedings of the 12th International Conference on Logic for
Programming, Artificial Intelligence and Reasoning (LPAR), pp. 1–5, December
2005

14. Lloyd, J.W.: Foundations of Logic Programming. Springer, Heidelberg (1987)
15. Miller, D., Nadathur, G.: Programming with Higher-Order Logic, 1st edn.

Cambridge University Press, New York (2012)
16. Rondogiannis, P., Wadge, W.W.: Minimum model semantics for logic programs

with negation-as-failure. ACM Trans. Comput. Log. 6(2), 441–467 (2005)
17. Wadge, W.W.: Higher-order horn logic programming. In: Saraswat, V.A., Ueda, K.

(eds.) Proceedings of the 1991 International Symposium on Logic Programming,
San Diego, 28 October–1 November 1991, pp. 289–303. MIT Press (1991)

http://dx.doi.org/10.1007/978-3-662-47709-0_13
http://dx.doi.org/10.1007/978-3-662-47709-0_13

Reactive Policies with Planning
for Action Languages

Zeynep G. Saribatur(B) and Thomas Eiter

Technische Universität Wien, Vienna, Austria
{zeynep,eiter}@kr.tuwien.ac.at

Abstract. Action languages are an important family of formalisms to
represent action domains in a declarative manner and to reason about
them. For this reason, the behavior of an agent in an environment may
be governed by policies which take such action domain descriptions into
account. In this paper, we describe a formal semantics for describing
policies that express a reactive behavior for an agent, and connect our
framework with the representation power of action languages. In this
framework, we mitigate the large state spaces by employing the notion
of indistinguishability, and combine components that are efficient for
describing reactivity such as target establishment and (online) planning.
Our representation allows one to analyze the flow of executing the given
reactive policy, and lays foundations for verifying properties of policies.
Additionally, the flexibility of the representation opens a range of possi-
bilities for designing behaviors.

1 Introduction

Reactive agents are a particular type of autonomous agents that are able to
interact with the environment. They can perceive the current state of the world
and figure out their next actions by consulting a given policy and their knowledge
base, which describes their capabilities and represents the world’s model. After
executing these actions, they are able to observe the outcomes and reiterate
the process. As such agents become more common in our lives, the issue of
verifying that they behave as intended becomes increasingly important. It would
be highly costly, time consuming and sometimes even fatal to realize on runtime
that following a given policy does not provide the desired results.

For example, in search scenarios, an agent needs to find a missing person in
unknown environments. A naive approach is to search for a plan that achieves
the main goal, which easily becomes troublesome, since the planner needs to
consider all possibilities to find a plan that guarantees finding the person. Alter-
natively, a reactive policy can be described for the agent (e.g., “move to the far-
thest visible point”) that determines its course of actions and guides the agent
in the environment towards the main goal, while the agent gains information

This work has been supported by Austrian Science Fund (FWF) project W1255-N23.

c© Springer International Publishing AG 2016
L. Michael and A. Kakas (Eds.): JELIA 2016, LNAI 10021, pp. 463–480, 2016.
DOI: 10.1007/978-3-319-48758-8 30

464 Z.G. Saribatur and T. Eiter

(e.g., obstacle locations) through its sensors on the way. Then, one can check
whether this policy works or not. Verifying beforehand whether the designed
policy satisfies the desired goal (e.g., can the agent always find the person?), in
all possible instances of the environment is nontrivial.

As action languages [18] are a convenient tool to describe dynamic systems,
one can use them in representing reactive agents and defining reactive policies.
However, the shortage of representations of reactive policies using action lan-
guages with formal semantics prevents us from verifying such policies before
putting them into use. We thus aim for a general model that allows for verifying
the reactive behavior of agents. In that model, we want to use the representa-
tion power of the transition systems described by action languages and combine
components that are efficient for describing reactivity.

We consider in this paper agents with a reactive behavior that decide their
course of actions by determining targets as stepping stones to achieve during
their interaction with the environment. Such agents come with an (online) plan-
ning capability that computes plans to reach the targets. This method matches
the observe-think-act cycle in [20], but involves a planner that considers tar-
gets. The flexibility in the two components—target development and external
planning—allows for a range of possibilities for designing behaviors. For exam-
ple, one can use HEX [15] to describe a program that determines a target
given the current agent state, and finds a suitable plan and execution sched-
ule. ACTHEX programs [17], in particular, are a tool to define such reactive
behaviors by allowing iterative program evaluation. Specifically, we make the
following contributions:

(1) We introduce a novel framework for describing the semantics of a policy that
follows a reactive behavior, by integrating components of target establish-
ment and online planning. Our aim is not synthesis, but to lay foundations
for verification of behaviors of (human-designed) reactive policies. The out-
sourced planning might also lend itself for modular, hierarchic planning,
where macro actions (as targets) are turned into a plan of micro actions.
Furthermore, outsourced planning may also be exploited to abstract from
correct sub-behaviors (e.g., going always to the farthest point).

(2) We employ the notion of indistinguishable states and cluster states to reduce
the large state spaces by omitting information irrelevant to the agent’s
behavior.

(3) We discuss complexity issues regarding the representation and show that
verifying policy correctness over this framework is in PSPACE (with matching
hardness instances).

(4) We connect the framework with action languages and discuss possibilities
for policy formulation. In particular, we consider the action language C [19]
for an application.

We proceed as follows. After some preliminaries in Sect. 2, we present a running
example in Sect. 3. In Section 4, we introduce the general framework for modeling
policies. Then, in Sect. 5, we show the relation with action languages. After
some discussion and considering related work in Sect. 6, we conclude in Sect. 7

Reactive Policies with Planning for Action Languages 465

with issues for ongoing and future work. Throughout the paper, we consider
(a fragment of) the action language C as a particular application, and provide
example formulations.

2 Preliminaries

We define state transition systems as follows.

Definition 1. An (original) transition system is a tuple T = 〈S, S0,A, Φ〉 where

– S is the finite set of states,
– S0 ⊆ S is the (finite) set of possible initial states,
– A is the finite set of possible actions, and
– Φ : S × A → 2S is the transition function, which returns the set of possible

successor states after applying a possible action in the current state.

For any states s, s′ ∈ S, we say that there is a trajectory between s and s′,
denoted by s →σ s′ for some action sequence σ = 〈a1, . . . , an〉 where n ≥ 0, if
there exist s0, . . . , sn ∈ S such that s = s0, s

′ = sn and si+1 ∈ Φ(si, ai+1) for all
0 ≤ i < n.

If knowing the actions taken in the transitions is not necessary, then one can
project away the actions and consider the transition function as Φ : S → 2S ,
which returns the set of successor states after applying some action.

Action Languages. Rooted in the work in knowledge representation, action
languages [18] describe a particular type of transition systems that are based on
action signatures. An action signature consists of a set V of value names, a set
F of fluent names and a set A of action names. Any fluent has a value in any
state of the world.

A transition system of an action signature 〈V,F,A〉 is similar to Definition 1,
where A = A and Φ ⊆ S ×A×S is the transition relation. In addition, we have
a value function V : F× S → V, where V (P, s) shows the value of P in state s.
A transition system can be thought as a labeled directed graph, where a state s
is represented by a vertex labeled with P → V (P, s), that gives the value of the
fluents. Every triple 〈s, a, s′〉 ∈ Φ is represented by an edge leading from a state
s to s′ and labeled by a.

An action a is executable at a state s, if there is at least one state s′ such
that 〈s, a, s′〉 ∈ R and a is deterministic at state s, if there is at most one such
state. Concurrent execution of actions can be defined by considering transitions
〈s,A, s′〉 with a set A ⊆ A of actions, where each action a∈ A is executable at s.
Here we confine to propositional action signatures, which have truth values as
value names, V = {f, t}.

The transition system allows one to answer queries about the domain descrip-
tion. For example, one can find a plan to reach a goal state from an initial state,
by searching for a path between the respective vertices. The properties about
the paths can be expressed using an action query language.

466 Z.G. Saribatur and T. Eiter

The action language C [19] is based on causality, where one distinguishes the
cases that a fact “holds” and that it is “caused”. Its syntax consists of static
and dynamic laws of the form

caused F if G,
caused F if G after U

respectively, where F and G are formulas of fluents, and U is a formula containing
fluents and elementary actions. For details, see [18,19]. We focus on a fragment
of the language C where the heads of the static and dynamic laws only consist of
literals. This restriction on the laws reduces the cost of evaluating the transitions
to polynomial time.

3 Running Example: Search Scenarios

Consider a memoryless agent that can sense horizontally and vertically, in an
unknown n × n grid cell environment with obstacles, where a missing person
needs to be found. Suppose we are given a policy of “always go to the farthest
reachable point in visible distance (until a person is found)”. Following this
policy, the agent would determine a target (i.e., the farthest point) at its current
state, compute the course of actions to reach the target, execute it and observe
the outcomes.

Target determination at the states according to the given policy can be done
using a logic program as shown below.

targetCell(X1 ,Y1) ← farthest(X ,Y ,X1 ,Y1), robotAt(X ,Y),
not personDetected .

personDetected ← personDetected(X ,Y).
targetPerson(X ,Y) ← personDetected(X ,Y).
personFound ← personDetected(X ,Y), robotAt(X ,Y).

(1)

The target of a state can be computed through joint evaluation of these
rules over the state with the known/observed fluents about the agent’s location
and the reachable points. The target can either be moving to the farthest cell,
targetCell(X1 ,Y1), if the person is not detected, or moving to the cell of the per-
son, targetPerson(X ,Y), if the person is detected. Then, an outsourced planner
can be used to determine the course of actions from the agent’s current location
to the target location.

Given such a policy, it needs to be checked whether or not the agent can
always find the person, in all instances of the environment. Note that we assume
that the obstacles are always placed in a way that the person is reachable.

Figures 1(a) to (c) show some instances for n = 3 to demonstrate that the
given policy might not always work. Firstly, notice that these initial states pro-
vide the same observations for the agent, which is shown in Fig. 1(d), since it can
only observe horizontally and vertically. In these states, the agent only sees that
the first column is clear of obstacles, and the first row has one obstacle. Since the

Reactive Policies with Planning for Action Languages 467

1 2 3
1

2

3

(a)

1 2 3
1

2

3

(b)

1 2 3
1

2

3

(c)

?

??

?

1 2 3
1

2

3

(d)

Fig. 1. (a)–(c): Possible instances of a search scenario in a grid-cell environment, (d):
Agent’s observation in the instances, �:agent, •:person, ×:obstacle, ?:unknown

rest of the environment can not be observed, these states are indistinguishable
to the agent.

The farthest reachable point in these states is (3,1), which is determined as
the target. Then the policy computes the course of actions to reach this target.
Clearly, in Fig. 1(a) the person will be found when moved to (3,1). However, in
Fig. 1(b) after reaching (3,1), the agent/policy will decide to move to (1,1) again,
which results in a loop. Also, in Fig. 1(c), after reaching (3,1), the agent/policy
can either choose to move to (3,3) (which results in seeing the person), or to
move back to (1,1). So there is a possibility for the agent to go in a loop. Hence,
the policy does not work for the last two instances.

4 Modeling Policies in Transition Systems

We consider a general notion of a policy, that guides the agent by setting up
targets and determining the course of actions to bring about these targets, and
describe how such a policy can be represented with transition systems.

Definition 2. A policy is a function Pg∞,KB : S→2Σ that outputs the set of
courses of actions, i.e., plans, given the current state, where Σ is the set of
plans, while considering the main goal and the knowledge base, which is the
formal representation of the world’s model with a transition system view.

We define a transition system that shows the policy execution, while also
employing the notion of indistinguishability to do state clustering. The deter-
mination of targets for a given state is done by a target component, while the
(higher level) transition between states is determined by the course of actions
computed by a (online) planner component.

Having a classification on states and defining higher level transitions helps
in reducing the state space/the number of transitions. Furthermore, it aids in
abstraction and allows one to emulate a modular hierarchic approach, in which
a higher level (macro) action, expressed by a target, is realized by a sequence of
(micro) actions that is compiled by the external planner, which may use different
ways (planning on the fly, using scripts etc.)

4.1 State Profiles According to the Policy

Large state spaces are a major issue for the (original) transition system when
dealing with large environments. However, depending on the agent’s designed

468 Z.G. Saribatur and T. Eiter

behavior, and its determination of its course of actions at a state, some infor-
mation in the state may not be necessary, relevant or even observable. In this
sense, the states that contain different facts about such information can be seen
as indistinguishable to the agent. Such indistinguishable states can be clustered
into one with respect to the profiles they provide and only the relevant informa-
tion to the agent/policy can be kept.

Definition 3. A profile scheme is a tuple p = 〈a1, .., an〉 of attributes ai that
can take values from a set Vi; a (concrete) profile is a tuple 〈v1, ..., vn〉 of values.

Note that the agent has the capability to gain knowledge, and this knowl-
edge can eventually become relevant to the policy. So it would be useful to keep
such potentially relevant knowledge in the states to pass on to the successor
states even though this knowledge might not be currently relevant to the policy.
Therefore the profile scheme consists of all attributes that may be relevant to
the policy. A profile at a state consists of values of attributes that are parti-
tioned as currently relevant, irrelevant and not yet observed, depending on the
observability of the environment and the policy. Currently relevant attributes at
a state can be regarded as the active profile.

Example 1. Reconsider Fig. 1. Due to partial observability, the agent is unable
to distinguish its state, and the policy does not consider the unobservable
parts. The agent’s observation, “robotAt(1, 1), obstacleAt(1, 3), reachable(1, 2),
reachable(2, 1), reachable(3, 1)” that is currently relevant and the rest of the
environment that is not yet observed, is viewed as a profile, and the states with
this profile can be clustered in one group (Fig. 1(d)).

The profile of a state is determined by evaluating a set of formulas that yield
the attribute values. We consider a classification function, h : S→Ωh, where
Ωh is the set of possible state clusters with respect to the profiles. For partially
observable environments, same observations yield the same profile. However, in
fully observable environments, observability is not of concern. One needs to check
the policy to determine profiles.

Definition 4. An equalized state relative to the classification function h is a
state ŝ∈ Ωh.

The term equalized comes from the fact that the states in the same cluster
are considered as the same, i.e., equal. We abuse the notation s∈ ŝ when talking
about a state s that is clustered into an equalized state ŝ, and identify ŝ with
its pre-image (i.e., the set of states that are mapped to ŝ according to h).

4.2 Transition Systems According to the Policy

We now define the notion of a transition system that is able to represent the
evaluation of the policy on the state clusters.

Given a set of equalized states ̂S, for an equalized state ŝ ∈ ̂S, the policy
Pg∞,KB uses a target function B(ŝ) to determine a target gB from a set of possible

Reactive Policies with Planning for Action Languages 469

targets, GB , and then an outsourced planner Reach(ŝ, gB) to compute a plan to
reach the target from the current equalized state, i.e., Pg∞,KB(ŝ) = {σ | σ ∈
Reach(ŝ, gB), gB ∈ B(ŝ)}.

Definition 5. Reach is an outsourced function that returns a set of plans needed
to reach a state that meets the target condition gB from the current equalized
state ŝ ∈ ̂S:

Reach(ŝ, gB) ⊆ {σ | ∀ŝ′ ∈ Res(ŝ, σ) : ŝ′ |= gB}
where ŝ |= gB ⇔ ∀s∈ ŝ : s |= gB , and Res gives the resulting states of executing
a sequence of actions at a state ŝ: Res(ŝ, 〈〉) = {ŝ}, and

Res(ŝ, 〈a1, . . . , an〉) =

{

⋃

ŝ′∈Φ̂(ŝ,a1)
Res(ŝ′, 〈a2, . . . , an〉) Φ̂(ŝ, a1) �= ∅

{ŝerr} Φ̂(ŝ, a1) = ∅

for n ≥ 1. Here ŝerr is an artifact state that does not satisfy any target, and Φ̂
is a transition relation of executing an action at a state ŝ:

Φ̂(ŝ, a) = {ŝ′ | ∃s′ ∈ ŝ′ ∃s ∈ ŝ : s′ ∈ Φ(s, a)}.

The transition system that represents the policy evaluation is defined over
the original transition system by taking into account the classification function
and the policy.

Definition 6. An equalized (higher level) transition system Th,Pg∞,KB
, with

respect to the classification function h and the policy Pg∞,KB , is defined as
Th,Pg∞,KB

= 〈̂S, ̂S0, Σ,GB ,B, ΦB〉, where

– ̂S is the finite set of equalized states;
– ̂S0 ⊆ ̂S is the finite set of initial equalized states, where ŝ ∈ ̂S0 if there is some

si ∈ ŝ such that si ∈ S0 holds;
– Σ is the set of possible plans σ = 〈a1, a2, . . . , an〉 where ai ∈A, for all

i, 1≤ i≤ n.
– GB is the finite set of possible targets relative to the behavior, where a target

can be satisfied by more than one equalized state;
– B : ̂S → 2GB , is the target function that returns the possible targets to achieve

from the current equalized state, according to the policy;
– ΦB : ̂S × Σ → 2Ŝ is the transition function according to the policy, called the
policy execution function, where

ΦB(ŝ, σ) = {ŝ′ | ŝ′ ∈ Res(ŝ, σ), σ ∈ Reach(ŝ, gB), gB ∈ B(ŝ)};

it returns the possible resulting equalized states after applying the plan deter-
mined by the policy in the current equalized state.

The target function gets the equalized state as input and produces the possi-
ble targets to achieve. These targets may be expressed as formulas over the states

470 Z.G. Saribatur and T. Eiter

Fig. 2. A transition in the equalized transition system

(in particular, of states that are represented by fluents or state variables), or in
some other representation. The aim is to intend to reach a state that satisfies
the conditions of the target.

The equalized transition system 〈̂S, ̂S0, Σ, ΦB〉 can be viewed as a transi-
tion system 〈S, S0,A, Φ〉 with an infinite set of actions. Additionally, it contains
auxiliary definitions 〈GB ,B〉 that are used in defining the policy.

Figure 2 demonstrates a transition in the equalized transition system.
Depending on the current state, ŝ, a plan σ can be executed if it is returned
by Reach to reach the target gB that is determined by the policy. There may
be more than one equalized state satisfying gB , and the policy execution func-
tion ΦB(ŝ, σ) executes σ and finds a transition into one of these states, ŝ′. In
our case, the actions taken in the transitions are not of concern. Therefore, we
project away the knowledge of the executed action sequences, and only consider
ΦB : ̂S → 2Ŝ . Thus, the transition ΦB becomes a big jump between states, where
the actions taken and the states passed in between are omitted.

Example 2. Figure 3 shows a part of the equalized transition system constructed
according to the policy. The indistinguishable states due to partial observability
are clustered into one. The policy is applied according to current observations,
and the possible successor states are shown. The policy is targeting the farthest
reachable point, which for ŝ1 is (3,1). Since the agent gains knowledge about the
environment while moving, there are several possibilities for the resulting state
that satisfy the target gB = robotAt(3,1).

Notice that we assume that the outsourced Reach function is able to return
conformant plans that guarantee to reach a state that satisfies the determined
targets. For practical reasons, we consider Reach to be able to return a subset
of all conformant plans. The maximal possible Reach, where we have equality,
is denoted with Reach0.

Reactive Policies with Planning for Action Languages 471

Fig. 3. Parts of an equalized transition system

Consider the case of uncertainty, where the agent requires to do some action,
e.g., checkDoor , to gain further knowledge about its state. The target function
can be modified to return dummy fluents as targets to ensure that the action is
made, e.g., doorIsChecked , and given this target, the Reach function can return
the desired action as the plan. The nondeterminism of the environment is mod-
eled through the possible outcomes of Res .

Our generic definition allows for the possibility of representing well-known
concepts like purely reactive systems or conformant planning. Reactive systems
can be represented with the policy “pick some action”, which models systems
that immediately react to the environment without reasoning. As for conformant
planning, one can set the target as the main goal. Then, Reach would have the
difficult task of finding a plan that guarantees reaching the main goal. If however,
such a plan is available, then we have the following.

Proposition 1. Let P = 〈a1, . . . , an〉, n ≥ 1, be a conformant plan that reaches
a goal state g from the initial states s01, . . . , s0r in the original transition system.
The plan P can be polynomially expressed in an equalized transition system.

Proof (Sketch). One can mimic the plan by modifying the targets GB and the
target function B in a way that at each point in time the next action in the plan
is returned by Reach, and the corresponding transition is made. For that, one
needs to record information in the states and keep track of the targets.

4.3 Complexity Issues

As the function Reach is outsourced, we rely on an implementation that returns
conformant plans to achieve transitions in the equalized transition systems. This
raises the issue whether a given such implementation is suitable, and leads to the
question of soundness (only correct plans are output) and completeness (some
plan will be output, if one exists). We next assess how expensive it is to test this,
under some assumptions about the representation and computational properties
of (equalized) transition systems, which will then also be used for assessing the
cost of policy checking.

472 Z.G. Saribatur and T. Eiter

Assumptions. We assume that given a state s ∈ S which is implicitly given using
a binary encoding, the cost of evaluating the classification h(s), the (original)
transition Φ(s, a) for some action a, and recognizing the initial state, say with
Φinit(s), is polynomial. The cost could also be in NP, if projective (i.e., existen-
tially quantified) variables are allowed. Furthermore, we assume that the size
of the representation of a “target” in GB is polynomial in size of the state, so
that given a string, one can check in polynomial time if it is a correct target
description gB . This test can also be relaxed to be in NP by allowing projective
variables.

Given these assumptions, we have the following two results on the cost of
checking whether a given implementation of Reach is sound and complete; we
assume here that testing whether σ ∈ Reach(ŝ, gB) is feasible in Πp

2 (i.e., it is no
worse than a naive guess and check algorithm that verifies conformant plans).

Theorem 1 (Soundness of Reach). Let Th=〈̂S, ̂S0, GB ,B, ΦB〉 be a transition
system w.r.t. a classification function h. Checking whether every transition found
by the policy execution function ΦB induced by a given implementation Reach is
correct is in Πp

3 .

The result for soundness of Reach1 is complemented with another result for
completeness with respect to short (polynomial size) conformant plans that it
returns.

Theorem 2 (Completeness of Reach). Let Th = 〈̂S, ̂S0, GB , B, ΦB〉 be a
transition system w.r.t. a classification function h. Deciding whether for a given
implementation Reach, ΦB fulfills ŝ′ ∈ ΦB(ŝ) whenever a short conformant plan
from ŝ to some gB ∈ B(ŝ) exists and ŝ′ is the resulting state after the execution
of the plan in Th, is in Πp

4 .

The complexities drop if checking the output of Reach is lower (e.g., it drops to
Πp

2 for soundness and to Πp
3 for completeness, if output checking is in co-NP).

Throughout the paper we assume that Reach is complete. We also restrict
the plans σ that are returned by Reach to have polynomial size. This constraint
would not allow for exponentially long conformant plans (even if they exist).
Thus, the agent is forced to develop targets that it can reach in polynomially
many steps. Informally, this does not limit the capability of the agent in general.
The “long” conformant plans can be split into short plans with a modified policy
and by encoding specific targets into the states, such that at each state, one
chooses the next action with respect to the conformant plan. The targets can be
encoded to give the stage of the plan execution so that the respective action is
taken, or they can be encoded to assign the latest action in the conformant plan
that is done from the current state.

The main goal that the policy is aiming for, denoted by g∞, can be expressed
as a formula that should be satisfied at a state. Note that the policy could be
easily modified to stop or to loop in any state ŝ that satisfies the goal.
1 Proof sketches of this and further results are in the extended version at http://goo.

gl/FXktqP.

http://goo.gl/FXktqP
http://goo.gl/FXktqP

Reactive Policies with Planning for Action Languages 473

Definition 7. The policy works w.r.t. the main goal g∞, if for each run ŝ0, ŝ1, . . .
such that ŝ0 ∈ ̂S0 and ŝi+1 ∈ ΦB(ŝi), for all i ≥ 0, there is some j ≥ 0 such that
ŝj |= g∞.

One can also make use of temporal operators, and define g∞ by a temporal
formula (e.g., AF(personFound)) and then check whether the initial states in
̂S0 satisfy the formula.

Under the assumptions from above, we obtain the following.

Theorem 3. The problem of determining whether the policy works is in PSPACE.

In the proof of Theorem3, for a counterexample, a run of at most exponential
length from some initial state in which the main goal is not satisfied can be
nondeterministically built in polynomial space.

Note that in this formulation, we have tacitly assumed that the main goal
can be established in the original system, thus at least some trajectory from
some initial state to a state fulfilling the goal exists. In a more refined version,
we could define the working of a policy relative to the fact that some abstract
plan would exist that makes g∞ true; naturally, this may impact the complexity
of the policy checking.

The results in Theorems 1–3 are all complemented by lower bounds for real-
istic parameter instantiations (notably, for action languages such as fragments
of C).

4.4 Constraining Equalization

The definition of Φ̂ allows for certain transitions that do not have corresponding
concrete transitions in the original transition system. However, the aim of defin-
ing such an equalized transition system is not to introduce new features, but to
keep the structure of the original transition system and discard the unnecessary
parts with respect to the policy. Therefore, one needs to give further restrictions
on the transitions.

Let us consider the following condition.

ŝ′ ∈ Φ̂(ŝ, a) ⇔ ∀s′ ∈ ŝ′, ∃s ∈ ŝ : s′ ∈ Φ(s, a) (2)

This condition ensures that a transition between two states ŝ1, ŝ2 in the equalized
transition system represents that any state in ŝ2 has a transition from some state
in ŝ1. An equalization is called proper if condition (2) is satisfied.

Theorem 4. Let Th=〈̂S, ̂S0, GB ,B, ΦB〉 be a transition system w.r.t. a classi-
fication function h. Let Φ̂ be the transition function that the policy execution
function ΦB is based on. The problem of checking whether Φ̂ is proper is in Πp

2 .

This result is also complemented by a lower bound similar to the results in
Theorems 1–3.

The following proposition shows that the policy execution function is sound.

474 Z.G. Saribatur and T. Eiter

Proposition 2 (Soundness). Let Th=〈̂S, ̂S0, GB ,B, ΦB〉 be a transition sys-
tem w.r.t. a classification function h. Let ŝ1, ŝ2 ∈ ̂S be equalized states that are
reachable2 from some initial states, and ŝ2 ∈ ΦB(ŝ1). For any concrete state
s2 ∈ ŝ2, assuming (2), there is a concrete state s1 ∈ ŝ1 such that s1 →σ s2 for
some action sequence σ, in T .

Proof of Proposition 2 is based on the possibility of backwards tracking with any
of the plans σ executed to reach ŝ2 from ŝ1.

Thus, we obtain the following corollary, with the requirement of only having
initial states clustered into the equalized initial states (i.e., no “non-initial” state
is mapped to an initial equalized state). Technically, it should hold that ∀s ∈
S0 : h−1(h(s)) ⊆ S0.

Corollary 1. If there is a trajectory in the equalized transition system with
initial state clustering from an equalized initial state ŝ0 to g∞, then for any
g ∈ g∞ a trajectory can be found in the original transition system from some
concrete initial state s0 ∈ ŝ0.

Our aim is to analyze the reactive policy through the equalized transition
system. If the policy does not work as expected, there will be trajectories showing
the failure. Knowing that any such trajectory found in the equalized transition
system exists in the original transition system is enough to conclude that the
policy indeed does not work.

Current assumptions can not avoid the case where a plan σ returned by Reach
on the equalized transition system does not have a corresponding trajectory from
some initial state in the original transition system. Therefore, we consider as an
additional condition

ŝ′ ∈ Φ̂(ŝ, a) ⇔ ∀s ∈ ŝ, ∃s′ ∈ ŝ′ : s′ ∈ Φ(s, a) (3)

that strengthens the properness condition (2). Under this condition, every plan
returned by Reach can be successfully executed from any initial state in the
original transition system T . However, still we may lose trajectories of T as
clustering the states might restrain conformant plans; for this, also stronger
conditions like exact approximation [8], ŝ′ ∈ Φ̂(ŝ, a)⇔∀s∈ ŝ, ∀s′ ∈ ŝ′ : s′ ∈ Φ(s, a),
is not enough. One would need to modify the target determination, i.e., the set
of targets GB and the function B.

5 Bridging to Action Languages

We now describe how our representation of the behavior of the policy can fit into
action languages. Given a domain description defined by an action language and
its respective (original) transition system, we now show how to model a reactive
policy and how to construct the corresponding equalized transition system.
2 For a formal definition of reachability, see the extended version at http://goo.gl/

FXktqP.

http://goo.gl/FXktqP
http://goo.gl/FXktqP

Reactive Policies with Planning for Action Languages 475

Classifying the State Space. The approach to classify the (original) state
space relies on defining a function that classifies the states. There are at least
two kinds of such classification; one can classify the states depending on the
observed values of the fluents, or introduce a new set of fluents and classify the
states depending on their values:

Type 1: Extend the set of truth values by V′ = V ∪ {u}, where u denotes the
value to be unknown. Consider an observability relation O : F × S → V′ which
returns how the fluents’ values are observed at the states. Then, consider a set of
clusters, ̂S, where a cluster ŝi ∈ ̂S contains all the states s ∈ S that have the same
observed values, i.e., ̂S = {ŝ | ∀d, e ∈ S, d, e ∈ ŝ ⇐⇒ ∀p ∈ F : O(p, d)=O(p, e) }.
The value function for the clusters is ̂V : F × ̂S → V′.

Type 2: Consider a set of (auxiliary) fluent names Fa, where each fluent p ∈ Fa

is related with some fluents of F. The relation can be shown with a mapping
Δ : 2F×V → Fa × V. Then, consider a new set of clusters, ̂S, where a cluster
ŝi ∈ ̂S contains all the states s ∈ S that give the same values for all p ∈ Fa, i.e.,
̂S = {ŝ | ∀d, e ∈ S, d, e ∈ ŝ ⇐⇒ ∀p ∈ Fa : V (p, d)=V (p, e) }. The value function
for the clusters is ̂V : Fa × ̂S → V.

We can consider the states in the same classification to have the same profile,
and the classification function h as a membership function that assigns the states
into groups.

Remarks.

(1) In Type 1, introducing the value unknown allows for describing sensing
actions and knowing a fluent’s true value later. Also, one needs to impose
constraints; e.g., a fluent related to a grid cell can not be unknown while the
robot can observe it.

(2) In Type 2, one needs to modify the action descriptions according to the newly
defined fluents and define abstract actions. However, this is not necessary in
Type 1, assuming that the action descriptions only use fluents that have
known values.

Example 3. In C, we introduce unknown values by auxiliary fluents as follows.

caused uReachable(X,Y) if not reachable(X,Y) ∧ not ¬reachable(X ,Y).

i.e. if it is not known that a grid cell is reachable or not, then the fluent
uReachable becomes true. Additional rules are added to express that it becomes
false otherwise.

Defining a Target Language. A policy is defined through a target language
which figures out the targets and helps in determining the course of actions. The
target determination formulas, denoted as a set of formulas FB(̂F), is constructed
over ̂F, the set of fluents that the equalized transition system is built upon.
The possible targets that can be determined via the evaluation of FB(̂F) are
denoted as a set FGB

(̂F).

476 Z.G. Saribatur and T. Eiter

Example 4. FB(̂F) corresponds to the set of causal laws in (1) and
FGB

(̂F) consists of all atoms targetCell(X ,Y) and targetPerson(X ,Y) for
1≤X ≤n, 1≤Y ≤n.

Notice that the separation of formulas FB(̂F) and the targets FGB
(̂F) is to

allow for outsourced planners that understand simple target formulas. These
planners need no knowledge to find plans. However, if one is able to use planners
that are powerful enough, then the target language can be given as input to the
planner, so that the planner determines the target and finds the corresponding
plan.

Transition Between States. The transitions in the (projected) equalized tran-
sition system can be denoted with ̂R ⊆ ̂S×̂S, where ̂R corresponds to the pro-
jection of the policy execution function ΦB that uses (a) the target language
to determine targets, (b) an outsourced planner (corresponding to the function
Reach) to find conformant plans and (c) the computation of executing the plans
(corresponding to the function Res). Thus, ̂R shows the resulting states after
applying the policy.

Equalized Transition System over Action Language C. The equalized transition
system 〈̂S, ̂V , ̂R〉 that describes a policy is defined as follows:

(i) ̂S is the set of all interpretations of ̂F such that, ŝ satisfies every static law
in FB(̂F).

(ii) ̂V (P, ŝ) = ŝ(P), where P ∈ ̂F,
(iii) ̂R ⊆ ̂S × ̂S is the set of all 〈ŝ, ŝ′〉 such that

(a) for every s′ ∈ ŝ′ there is a trajectory from some s ∈ ŝ of the form
s,A1, s1, . . . , An, s′ in the original transition system;

(b) for static laws f1, f2, . . . , fm ∈ FB(̂F) for which ŝ satisfies the body, it
holds that ŝ′ |= g for some g ∈ M(f1, . . . , fm), where M is a mapping
M : 2FB(F̂)→2FGB

(F̂), that gives the relation between the formulas and
the targets.

Notice that ̂R in (iii) has no prescription of (a) how a trajectory is computed
or (b) how a target is determined. This makes the implementation of these
components flexible.

By focusing on a fragment of C, we match the above conditions on complexity.
Furthermore, by well-known results on the complexity of action language C [14,
27], the results in Theorems 1–4 can be turned into completeness results already
for this fragment. Other languages can be similarly used to describe the equalized
transition system, as long as they are powerful enough to express the concepts
in the previous section.

Reactive Policies with Planning for Action Languages 477

6 Discussion

The notions of profiles and state clustering help in reducing the state space by
omitting irrelevant information. This also comes in handy when dealing with par-
tial observability, since it omits the unobservable information that is irrelevant
to the policy.

In the equalized transition system, the trajectories from the initial states
correspond to the policy execution, where one can check and verify properties
of the policy. The properness condition ensures that any counterexample found
in the equalized transition system stating a failure of the policy has a concrete
trajectory in the original transition system. This way, the shortcomings of the
policy can be detected, and thus improved.

For target language definitions, we can use other formalisms with different
expressiveness capabilities, e.g., answer set programming. Target descriptions
can be made more complex by considering formulas. In particular, target for-
mulas with disjunctions would express nondeterminism in the environment that
affects the target determination. Handling this within the framework requires
further study.

It is also possible to use other plans, e.g., short conditional plans, in the plan-
ner component. Furthermore, this component can be extended by considering a
plan library of precomputed plans. This offline planning component can provide
the frequently used plans and reduce the calls to the online planner.

6.1 Related Work

There are works being conducted on the verification of GOLOG programs [22],
a family of high-level action programming languages defined on top of action
theories expressed in the situation calculus. The method of verifying properties
of non-terminal processes are sound, but incomplete as the verification problem
is undecidable [9,11]. By resorting to action formalisms based on description
logic, decidability can be achieved [1].

Verifying temporal properties of dynamic systems in the context of data man-
agement is studied by [5] for description logic knowledge bases. However, target
establishment and planning components, and real-life environment settings are
not considered.

The BDI model [24] is based on beliefs, desires and intentions, in which
agents are viewed as being rational and acting in accordance with their beliefs
and goals. There are many different agent programming languages and platforms
based on it. Some works considered verifying properties of agents represented
in these languages [4,12]. These approaches consider very complex architectures
that even contain a plan library where plans are matched with the intentions or
the agent’s state and manipulate the intentions. Verification for such complex
BDI architecture gets very challenging.

Verification of multi-agent systems with specifications defined in the epis-
temic logic is studied by [23], while our focus is on single agents with target
determination and planning components which help in reasoning about the
behavior of the agent in the environment.

478 Z.G. Saribatur and T. Eiter

Synthesizing and Verifying Plans. Synthesizing plans via symbolic model
checking techniques was considered, e.g., in [3,6,7]. The approaches could solve
difficult planning problems like strong planning and strong cyclic planning. Son
and Baral [25] extend the action language A by allowing sensing actions and
allow to query conditional plans. The latter are general plans that consist of
sensing actions and conditional statements. They also consider a “combined-
state” which consists of the real state of the world and the states that the agent
thinks it may be in, while we combine the real states into one state if they provide
the same profile for the agent. The equalization of states allows for omitting the
details that are irrelevant to the behavior of the agent.

These works address a different problem than ours. Under nondeterminism
and partial observability, finding a plan that satisfies the desired results in the
environment is highly demanding. Our framework is capable of emulating the
plans found by these works, and verifying policies relates to an intertwined plan
generation and checking task.

Verifying whether a given plan is a solution to a planning problem considering
knowledge-based programs as plans [21] or HTN plans [2] has been studied,
while the policies that we focus on are more enriched, making use of target
determination and outsourced planning.

Execution Monitoring. There are logic-based monitoring frameworks for plan
execution and recovery in case of failure. Some of the approaches are replanning
[10], backtracking to the point of failure and continuing from there [26], or diag-
nosing the failure and recovering from the failure situation [13,16]. These works
consider the execution of a given plan, while we consider a given reactive policy
that determines targets and uses (online) planning to reach them.

7 Conclusion and Future Work

In this paper, we described a high-level representation that models reactive
behaviors, and integrates target development and online planning capabilities.
Flexibility in these components does not bound one to only use action languages,
but allows for the use of other formalizations as well. For future work, one could
imagine targets to depend on further parameters or to incorporate learning from
experience in the framework. Furthermore, to instantiate the framework for a
range of action languages besides C.

The long-term goal of this work is to check and verify properties of the reac-
tive policies for action languages. In order to solve these problems practically, it
is necessary to use techniques from model checking, such as abstraction, compo-
sitional reasoning and parameterization. Also, the use of temporal logic formulas
is needed to express complex goals such as properties of the policies. Our main
target is to work with action languages, and to incorporate their syntax and
semantics with such model checking techniques. The general structure of our
framework allows one to focus on action languages, and to investigate how to
merge these techniques.

Reactive Policies with Planning for Action Languages 479

References

1. Baader, F., Zarrieß, B.: Verification of Golog programs over description
logic actions. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS
2013. LNCS, vol. 8152, pp. 181–196. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40885-4 12

2. Behnke, G., Höller, D., Biundo, S.: On the complexity of htn plan verification and
its implications for plan recognition. In: Proceedings of ICAPS, pp. 25–33 (2015)

3. Bertoli, P., Cimatti, A., Riveri, M., Traverso, P.: Strong planning under partial
observability. Artif. Intell. 170(4), 337–384 (2006)

4. Bordini, R.H., Fisher, M., Visser, W., Wooldridge, M.: Verifying multi-agent pro-
grams by model checking. Auton. Agents Multi-agent Syst. 12(2), 239–256 (2006)

5. Calvanese, D., De Giacomo, G., Montali, M., Patrizi, F.: Verification and synthe-
sis in description logic based dynamic systems. In: Faber, W., Lembo, D. (eds.)
RR 2013. LNCS, vol. 7994, pp. 50–64. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39666-3 5

6. Cimatti, A., Riveri, M., Traverso, P.: Automatic OBDD-based generation of uni-
versal plans in non-deterministic domains. In: Proceedings of AAAI/IAAI, pp.
875–881 (1998)

7. Cimatti, A., Riveri, M., Traverso, P.: Strong planning in non-deterministic domains
via model checking. AIPS 98, 36–43 (1998)

8. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
Trans. Program. Lang. Syst. (TOPLAS) 16(5), 1512–1542 (1994)

9. Claßen, J., Lakemeyer, G.: A logic for non-terminating Golog programs. In: Pro-
ceedings of KR, pp. 589–599 (2008)

10. De Giacomo, G., Reiter, R., Soutchanski, M.: Execution monitoring of high-level
robot programs. In: Proceedings of KR, pp. 453–465 (1998)

11. De Giacomo, G., Ternovskaia, E., Reiter, R.: Non-terminating processes in the
situation calculus. In: Working Notes of Robots, Softbots, Immobots: Theories of
Action, Planning and Control, AAAI 1997 Workshop (1997)

12. Dennis, L.A., Fisher, M., Webster, M.P., Bordini, R.H.: Model checking agent
programming languages. Autom. Softw. Eng. 19(1), 5–63 (2012)

13. Eiter, T., Erdem, E., Faber, W., Senko, J.: A logic-based approach to finding expla-
nations for discrepancies in optimistic plan execution. Fundamenta Informaticae
79(1–2), 25–69 (2007)

14. Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: A logic programming
approach to knowledge-state planning: semantics and complexity. ACM Trans.
Comput. Log. 5(2), 206–263 (2004). http://doi.acm.org/10.1145/976706.976708

15. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-
order reasoning and external evaluations in answer-set programming. In: Proceed-
ings of IJCAI, pp. 90–96 (2005)

16. Fichtner, M., Großmann, A., Thielscher, M.: Intelligent execution monitoring in
dynamic environments. Fundamenta Informaticae 57(2–4), 371–392 (2003)

17. Fink, M., Germano, S., Ianni, G., Redl, C., Schüller, P.: ActHEX: implement-
ing HEX programs with action atoms. In: Cabalar, P., Son, T.C. (eds.) LPNMR
2013. LNCS, vol. 8148, pp. 317–322. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40564-8 31

18. Gelfond, M., Lifschitz, V.: Action languages. Electron. Trans. AI 3(16), 193–210
(1998)

http://dx.doi.org/10.1007/978-3-642-40885-4_12
http://dx.doi.org/10.1007/978-3-642-40885-4_12
http://dx.doi.org/10.1007/978-3-642-39666-3_5
http://dx.doi.org/10.1007/978-3-642-39666-3_5
http://doi.acm.org/10.1145/976706.976708
http://dx.doi.org/10.1007/978-3-642-40564-8_31
http://dx.doi.org/10.1007/978-3-642-40564-8_31

480 Z.G. Saribatur and T. Eiter

19. Giunchiglia, E., Lifschitz, V.: An action language based on causal explanation:
Preliminary report. In: Proceedings of AAAI/IAAI, pp. 623–630 (1998)

20. Kowalski, R.A., Sadri, F.: From logic programming towards multi-agent systems.
Ann. Math. Artif. Intell. 25(3–4), 391–419 (1999). http://dx.doi.org/10.1023/A:
1018934223383

21. Lang, J., Zanuttini, B.: Knowledge-based programs as plans - the complexity of
plan verification. In: Proceedings of ECAI, pp. 504–509 (2012)

22. Levesque, H.J., Reiter, R., Lesperance, Y., Lin, F., Scherl, R.B.: GOLOG: a logic
programming language for dynamic domains. J. Log. Program. 31(1), 59–83 (1997)

23. Lomuscio, A., Michliszyn, J.: Verification of multi-agent systems via predicate
abstraction against ATLK specifications. In: Proceedings of AAMAS, pp. 662–670
(2016)

24. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture. In:
Proceedings of KR, pp. 473–484 (1991)

25. Son, T.C., Baral, C.: Formalizing sensing actions - a transition function based
approach. Artif. Intell. 125(1), 19–91 (2001)

26. Soutchanski, M.: High-level robot programming and program execution. In: Pro-
ceedings of ICAPS Workshop on Plan Execution (2003)

27. Turner, H.: Polynomial-length planning spans the polynomial hierarchy. In: Flesca,
S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424,
pp. 111–124. Springer, Heidelberg (2002). doi:10.1007/3-540-45757-7 10

http://dx.doi.org/10.1023/A:1018934223383
http://dx.doi.org/10.1023/A:1018934223383
http://dx.doi.org/10.1007/3-540-45757-7_10

Correct Grounded Reasoning
with Presumptive Arguments

Bart Verheij(B)

Artificial Intelligence, University of Groningen, Groningen, The Netherlands
Bart.Verheij@rug.nl

Abstract. We address the semantics and normative questions for rea-
soning with presumptive arguments: How are presumptive arguments
grounded in interpretations; and when are they evaluated as correct?
For deductive and uncertain reasoning, classical logic and probability
theory provide canonical answers to these questions. Staying formally
close to these, we propose case models and their preferences as formal
semantics for the interpretation of presumptive arguments. Arguments
are evaluated as presumptively valid when they make a case that is max-
imally preferred. By qualitative and quantitative representation results,
we show formal relations between deductive, uncertain and presumptive
reasoning. In this way, the work is a step to the connection of logical and
probabilistic approaches in AI.

1 Introduction

There is a growing and productive research community in artificial intelligence
focusing on argumentation. Some use artificial intelligence tools to study natural
argumentation, others focus on computational properties, and there is work on
formal foundations [12]. The present paper considers the formal foundations of
argumentation, interpreted as reasoning with presumptive, possibly defeasible
arguments. Studying the formal foundations of argumentation can help answer-
ing two questions:

1. The semantics question. How are presumptive arguments grounded in
interpretations? This question is about grounded argumentation.

2. The normative question. When are presumptive arguments evaluated as
correct? This question is about correct argumentation.

For deductive and uncertain reasoning, canonical answers to these questions
exist. For deductive reasoning, arguments are interpreted in logical models (ques-
tion 1), and logical validity characterizes correct deductive reasoning, such as
formal proof (question 2). Uncertain reasoning is interpreted in probability dis-
tributions, and the probability calculus characterizes correct uncertain reasoning,
such as Bayesian updating.

For reasoning with presumptive arguments, the answers to the two questions
are less well-developed. In today’s state of the art, a key role is played by Dung’s
c© Springer International Publishing AG 2016
L. Michael and A. Kakas (Eds.): JELIA 2016, LNAI 10021, pp. 481–496, 2016.
DOI: 10.1007/978-3-319-48758-8 31

482 B. Verheij

ground-breaking work on abstract argumentation [11]. One can say that Dung’s
work provides an answer to the semantics question 1 by interpreting argument
attack in directed graphs, and to the normative question 2 by formalizing an
argumentative winning criterion in terms of argument admissibility. We distin-
guish two complications.

One complication is that these answers depend on the choice of one of
the available abstract argumentation semantics. Dung himself suggested sev-
eral extension types as interpretations of directed graphs (the grounded, com-
plete, preferred, stable extensions; each based on the important notion of admis-
sible set), and the number of proposals expanded quickly thereafter (see the
review [3]).

A second complication is that these answers focus on argument attack,
abstracting from argument support. Extending to include argument support has
led to a variety of approaches, some referred to as structured argumentation.
A recent special issue of the journal ‘Argument and Computation’ [5] usefully
explains how four leading models connect in different ways to Dung’s semantics:
ABA [8], ASPIC+ [22], DeLP [13], deductive argumentation [6].

We propose case models and their preferences as a formal semantics used
for the interpretation of presumptive arguments (answering question 1), and
evaluate arguments as acceptable when they make a case that is maximally
preferred (answering question 2). The proposed formalism is designed in close
connection with classical logic and probability theory, in order to show formal
relations between deductive, uncertain and presumptive reasoning. The formal-
ism presented builds on an existing line of research [29–32]. [29,30] study formal
connections between arguments, logic and probabilities, but do not provide a
model-theoretic semantics as we do here. The case model semantics presented
here formalizes ideas semi-formally presented in [31], which in turn is inspired by
issues arising when modeling argument-based and scenario-based evidential rea-
soning about crimes using Bayesian networks [32] (cf. the discussion in Sect. 4).

2 General Idea

The argumentation theory developed in this paper considers arguments that can
be presumptive (also called ampliative), in the sense of logically going beyond
their premises. Against the background of classical logic, an argument from
premises P to conclusions Q goes beyond its premises when Q is not logically
implied by P . Many arguments used in practice are presumptive. For instance,
the prosecution may argue that a suspect was at the crime scene on the basis of
a witness testimony. The fact that the witness has testified as such does not log-
ically imply the fact that the suspect was at the crime scene. In particular, when
the witness testimony is intentionally false, based on inaccurate observations or
inaccurately remembered, the suspect may not have been at the crime scene at
all. Denoting the witness testimony by P and the suspect being at the crime
scene as Q, the argument from P to Q is presumptive since P does not logically
imply Q. For presumptive arguments, it is helpful to consider the case made by

Correct Grounded Reasoning with Presumptive Arguments 483

¬P

P

Q

¬Q

P ∧ ¬QP ∧ Q P ∧ ¬Q

P¬P

>

>
¬P

P ∧ Q

P ∧ ¬Q

Fig. 1. Arguments and cases

the argument, defined as the conjunction of the premises and conclusions of the
argument [28,29]. The case made by the argument from P to Q is P ∧ Q, using
the conjunction of classical logic. An example of a non-presumptive argument
goes from P ∧ Q to Q. Here Q is logically implied by P ∧ Q. Presumptive argu-
ments are often defeasible [20,27], in the sense that extending the premises may
lead to the retraction of conclusions.

Figure 1 shows (on the left) two presumptive arguments from the same
premises P . They make cases that are conflicting: one supports the case P ∧ Q,
the other the case P ∧ ¬Q. The >-sign indicates that one argument makes a
stronger case than the other, resolving the conflict: the argument for the case
P ∧ Q is stronger than that for P ∧ ¬Q. The figure also shows two assump-
tions P and ¬P , that can be considered as arguments from logically tautologous
premises. Here the assumption ¬P makes the strongest case when compared
to the assumption P . Logically such assumptions can be treated as arguments
from logical truth �. In the figure on the right one sees which conclusions follow
presumptively from which premises: ¬P follows as an assumption, and Q follows
from P . ¬Q blocks the inference from P to Q. From premises P ∧¬Q no further
conclusions follow. The arguments make three cases: ¬P , P ∧ Q and P ∧ ¬Q
(Fig. 1; middle). Their sizes suggest a preference relation.

The comparison of arguments and of cases are closely related in our approach,
which can be illustrated as follows. The idea is that a case is preferred to another
case if there is an argument with premises that supports the former case more
strongly than the latter case. Hence, in the example in the figures, ¬P is preferred
to both P ∧ Q and P ∧ ¬Q, and P ∧ Q is preferred to P ∧ ¬Q. Conversely, given
the cases and their preferences, we can compare arguments. The argument from
P to Q is stronger than from P to Q′ when the best case that can be made from
P ∧ Q is preferred to the best case that can be made from P ∧ Q′.

3 Formalism and Properties

We now formalize case models and how they can be used to interpret argu-
ments (Sect. 3.1). Then follow qualitative and quantitative representation results
(Sects. 3.2 and 3.3).

484 B. Verheij

3.1 Case Models and Arguments

The formalism uses a classical logical language L generated from a set of propo-
sitional constants in a standard way. We write ¬ for negation, ∧ for conjunction,
∨ for disjunction, ↔ for equivalence, � for a tautology, and ⊥ for a contra-
diction. The associated classical, deductive, monotonic consequence relation is
denoted |=. We assume a finitely generated language.

First we define case models, formalizing the idea of cases and their prefer-
ences. The cases in a case model must be logically consistent, mutually incom-
patible and different; and the comparison relation must be total and transi-
tive (hence is what is called a total preorder, commonly modeling preference
relations [23]).

Definition 1. A case model is a pair (C,≥) with finite C ⊆ L, such that the
following hold, for all ϕ, ψ and χ ∈ C:

1.
|= ¬ϕ;
2. If
|= ϕ ↔ ψ, then |= ¬(ϕ ∧ ψ);
3. If |= ϕ ↔ ψ, then ϕ = ψ;
4. ϕ ≥ ψ or ψ ≥ ϕ ;
5. If ϕ ≥ ψ and ψ ≥ χ, then ϕ ≥ χ.

The strict weak order > standardly associated with a total preorder ≥ is defined
as ϕ > ψ if and only if it is not the case that ψ ≥ ϕ (for ϕ and ψ ∈ C). When
ϕ > ψ, we say that ϕ is (strictly) preferred to ψ. The associated equivalence
relation ∼ is defined as ϕ ∼ ψ if and only if ϕ ≥ ψ and ψ ≥ ϕ.

Example. Figure 1 shows a case model with cases ¬P , P ∧ Q and P ∧ ¬Q.
¬P is (strictly) preferred to P ∧ Q, which in turn is preferred to P ∧ ¬Q.

Next we define arguments from premises ϕ ∈ L to conclusions ψ ∈ L.

Definition 2. An argument is a pair (ϕ,ψ) with ϕ and ψ ∈ L. The sentence
ϕ expresses the argument’s premises, the sentence ψ its conclusions, and the
sentence ϕ ∧ ψ the case made by the argument. Generalizing, a sentence χ ∈ L
is a premise of the argument when ϕ |= χ, a conclusion when ψ |= χ, and
a position in the case made by the argument when ϕ ∧ ψ |= χ. An argument
(ϕ,ψ) is (properly) presumptive when ϕ
|= ψ; otherwise non-presumptive. An
argument (ϕ,ψ) is an assumption when |= ϕ, i.e., when its premises are logically
tautologous.

Note our use of the plural for an argument’s premises, conclusions and positions.
This terminological convention allows us to speak of the premises p and ¬q and
conclusions r and ¬s of the argument (p ∧ ¬q, r ∧ ¬s). Also the convention fits
our non-syntactic definitions, where for instance an argument with premise χ
also has logically equivalent sentences such as ¬¬χ as a premise.

Coherent arguments are defined as arguments that make a case that is logi-
cally implied by a case in the case model.

Correct Grounded Reasoning with Presumptive Arguments 485

Definition 3. Let (C,≥) be a case model. Then we define, for all ϕ and ψ ∈ L:

(C,≥) |= (ϕ,ψ) if and only if ∃ω ∈ C: ω |= ϕ ∧ ψ.

We then say that the argument from ϕ to ψ is coherent with respect to the case
model. We define, for all ϕ and ψ ∈ L:

(C,≥) |= ϕ ⇒ ψ if and only if ∃ω ∈ C: ω |= ϕ ∧ ψ and ∀ω ∈ C: if ω |= ϕ,
then ω |= ϕ ∧ ψ.

We then say that the argument from ϕ to ψ is conclusive with respect to the case
model.

Example (continued). In the case model of Fig. 1, the arguments from � to ¬P
and to P , and from P to Q and to ¬Q are coherent and not conclusive in the sense
of this definition. Denoting the case model as (C,≥), we have (C,≥) |= (�,¬P),
(C,≥) |= (�, P), (C,≥) |= (P,Q) and (C,≥) |= (P,¬Q). The arguments from
a case (in the case model) to itself, such as from ¬P to ¬P , or from P ∧ Q to
P ∧ Q are conclusive. The argument (P ∨ R,P) is also conclusive in this case
model, since all P ∨ R-cases are P -cases. Similarly, (P ∨ R,P ∨ S) is conclusive.

The notion of presumptive validity considered here is based on the idea
that some arguments make a better case than other arguments from the same
premises. More precisely, an argument is presumptively valid if there is a case
implying the case made by the argument that is at least as preferred as all cases
implying the premises.

Definition 4. Let (C,≥) be a case model. Then we define, for all ϕ and ψ ∈ L:

(C,≥) |= ϕ � ψ if and only if ∃ω ∈ C:
1. ω |= ϕ ∧ ψ; and
2. ∀ω′ ∈ C : if ω′ |= ϕ, then ω ≥ ω′.

We then say that the argument from ϕ to ψ is (presumptively) valid with respect
to the case model. A presumptively valid argument is defeasible, when it is not
conclusive.

Circumstances χ are defeating when (ϕ ∧ χ, ψ) is not presumptively valid.
Defeating circumstances are rebutting when (ϕ ∧ χ,¬ψ) is presumptively valid;
otherwise they are undercutting. Defeating circumstances are excluding when
(ϕ ∧ χ, ψ) is not coherent.

Example (continued). In the case model of Fig. 1, the arguments from � to
¬P , and from P to Q are presumptively valid in the sense of this definition.
Denoting the case model as (C,≥), we have formally that (C,≥) |= � � ¬P
and (C,≥) |= P � Q. The coherent arguments from � to P and from P to ¬Q
are not presumptively valid in this sense.

Example. Arguments typically consist of multiple steps. Figure 2 shows a two
step argument on the left. The first step is from P to Q, the second from Q
to R. Both steps have defeating circumstances: the first ¬Q, the second ¬R.

486 B. Verheij

P

Q

R

¬Q

¬R

¬P P ∧ Q ∧ R

P ∧ Q ∧ ¬R
P ∧ ¬Q

Fig. 2. An argument with two steps, each with exceptions

In the case model shown, Q follows presumptively from P since P ∧ Q ∧ R is
a (here: the) preferred case given P . From Q follows R. ¬Q is defeating for
the former presumptive inference, since there is no preferred case of P ∧ ¬Q in
which R holds. (That preferred case is P ∧ ¬Q.) ¬R is a defeater for the second
presumptive inference. Formally, we have:

(C,≥) |= P � Q (C,≥)
|= P ∧ ¬Q � Q
(C,≥) |= Q � R (C,≥)
|= Q ∧ ¬R � R

Note that in the case model also the following hold:

(C,≥) |= P � Q ∧ R (C,≥) |= Q ⇒ P
(C,≥) |= R ⇒ P ∧ Q (C,≥) |= R ⇒ Q
(C,≥) |= � � ¬P

The following properties follow directly from the definitions. Conclusive argu-
ments are coherent, but there are case models with a coherent, yet inconclu-
sive argument. Conclusive arguments are presumptively valid, but there are
case models with a presumptively valid, yet inconclusive argument. Presump-
tively valid arguments are coherent, but there are case models with a coherent,
yet presumptively invalid argument. The next proposition provides key logical
properties of this notion of presumptive validity. Many have been studied for
nonmonotonic inference relations [4,16,18]. Given a case model (C,≥), we write
ϕ |∼ ψ for (C,≥) |= ϕ � ψ. We write C(ϕ) for the set {ω ∈ C | ω |= ϕ}.

(LE), for Logical Equivalence, expresses that in a valid argument the premises
and the conclusions can be replaced by a logical equivalent (in the sense of |=).
(Cons), for Consistency, expresses that the conclusions of presumptively valid
arguments must be logically consistent. (Ant), for Antededence, expresses that
when certain premises validly imply a conclusion, the case made by the argument
is also validly implied by these premises. (RW), for Right Weakening, expresses
that when the premises validly imply a composite conclusion also the intermedi-
ate conclusions are validly implied. (CCM), for Conjunctive Cautious Monotony,

Correct Grounded Reasoning with Presumptive Arguments 487

expresses that the case made by a valid argument is still validly implied when an
intermediate conclusion is added to the argument’s premises. (CCT), for Con-
junctive Cumulative Transitivity, is a variation of the related property Cumula-
tive Transitivity property (CT, also known as Cut). (CT)—extensively studied
in the literature—has ϕ |∼ χ instead of ϕ |∼ ψ∧χ as a consequent. The variation
is essential in our setting where the (And) property does not hold generally (If
ϕ |∼ ψ and ϕ |∼ χ, then ϕ |∼ ψ ∧ χ). Assuming (Ant), (CCT) expresses the
validity of chaining valid implication from ϕ via the case made in the first step
ϕ ∧ ψ to the case made in the second step ϕ ∧ ψ ∧ χ. (See [28,29], introducing
(CCT).)

Proposition 5. Let (C,≥) be a case model. For all ϕ, ψ and χ ∈ L:

(LE) If ϕ |∼ ψ, |= ϕ ↔ ϕ′ and |= ψ ↔ ψ′, then ϕ′ |∼ ψ′.
(Cons) ϕ
|∼ ⊥.
(Ant) If ϕ |∼ ψ, then ϕ |∼ ϕ ∧ ψ.
(RW) If ϕ |∼ ψ ∧ χ, then ϕ |∼ ψ.
(CCM) If ϕ |∼ ψ ∧ χ, then ϕ ∧ ψ |∼ χ.
(CCT) If ϕ |∼ ψ and ϕ ∧ ψ |∼ χ, then ϕ |∼ ψ ∧ χ.

Proof. (LE): Direct from the definition. (Cons): Otherwise there would be an
inconsistent element of C, contradicting the definition of a case model. (Ant):
When ϕ |∼ ψ, there is an ω with ω |= ϕ ∧ ψ that is ≥-maximal in C(ϕ). Then
also ω |= ϕ∧ϕ∧ψ, hence ϕ |∼ ϕ∧ψ. (RW): When ϕ |∼ ψ ∧χ, there is an ω ∈ C
with ω |= ϕ ∧ ψ ∧ χ that is maximal in C(ϕ). Since then also ω |= ϕ ∧ ψ, we
find ϕ |∼ ψ. (CCM): By the assumption, we have an ω ∈ C with ω |= ϕ ∧ ψ ∧ χ
that is maximal in C(ϕ). Since C(ϕ∧ψ) ⊆ C(ϕ), ω is also maximal in C(ϕ∧ψ),
and we find ϕ ∧ ψ |∼ χ. (CCT): Assuming ϕ |∼ ψ, there is an ω ∈ C with
ω |= ϕ ∧ ψ, maximal in C(ϕ). Assuming also ϕ ∧ ψ |∼ χ, there is an ω′ ∈ C with
ω |= ϕ ∧ ψ ∧ χ, maximal in C(ϕ ∧ ψ). Since ω ∈ C(ϕ ∧ ψ), we find ω′ ≥ ω. By
transitivity of ≥, and the maximality of ω in C(ϕ), we therefore have that ω′ is
maximal in C(ϕ). As a result, ϕ |∼ ψ ∧ χ. ��
We speak of coherent premises when the argument from the premises to them-
selves is coherent. The following proposition provides some equivalent charac-
terizations of coherent premises.

Proposition 6. Let (C,≥) be a case model. The following are equivalent, for
all ϕ ∈ L:

1. ϕ |∼ ϕ;
2. ∃ω ∈ C : ω |= ϕ and ∀ω′ ∈ C: If ω′ |= ϕ, then ω ≥ ω′;
3. ∃ω ∈ C : ϕ |∼ ω.
4. ∃ω ∈ C : ω |= ϕ.

488 B. Verheij

Proof. 1 and 2 are equivalent by the definition of |∼. Assume 2. Then there is a
≥-maximal element ω of C(ϕ). By the definition of |∼, then ϕ |∼ ω; proving 3.
Assume 3. Then there is a ≥-maximal element ω′ of C(ϕ) with ω′ |= ϕ ∧ ω. For
this ω′ also ω′ |= ϕ, showing 2. 4 logically follows from 2. Assume 4. Hence C(ϕ)
is a finite, non-empty set, and 2 follows. ��
Hence coherent and presumptively valid arguments have coherent premises. The
next corollary shows that logical generalisations of coherent premises are coher-
ent.

Corollary 7. Let (C,≥) be a case model. Then:

If ϕ |∼ ϕ and ϕ |= ψ, then ψ |∼ ψ.

In the representation result of the next subsection, additional properties are
needed. We use the set of case expressions L∗ ⊆ L consisting of the logical
combinations of the cases of the case model using negation, conjunction and
logical equivalence (cf. the algebra underlying probability functions [23]).

(Coh), for Coherence, expresses that coherent premises correspond to a con-
sistent case expression implying the premises. (Ch), for Choice, expresses that,
given two coherent case expressions, at least one of three options follows validly:
the conjunction of the case expression, or the conjunction of one of them with
the negation of the other. (OC), for Ordered Choice, expresses that preferred
choices between case expressions are transitive. Here we say that a case expres-
sion is a preferred choice over another, when the former follows validly from
the disjunction of both. A preferred case given certain premises is a case that
presumptively follows from those premises.

Proposition 8. Let (C,≥) be a case model, and L∗ ⊆ L the closure of C under
negation, conjunction and logical equivalence. Writing |∼∗ for the restriction of
|∼ to L∗, we have, for all ϕ, ψ and χ ∈ L∗:

(Coh) ϕ |∼ ϕ if and only if ∃ϕ∗ ∈ L∗ with ϕ∗
|= ⊥ and ϕ∗ |= ϕ;
(Ch) If ϕ |∼∗ ϕ and ψ |∼∗ ψ, then ϕ ∨ ψ |∼∗ ¬ϕ ∧ ψ or

ϕ ∨ ψ |∼∗ ϕ ∧ ψ or ϕ ∨ ψ |∼∗ ϕ ∧ ¬ψ;
(OC) If ϕ ∨ ψ |∼∗ ϕ and ψ ∨ χ |∼∗ ψ, then ϕ ∨ χ |∼∗ ϕ.

Proof. (Coh): By Proposition 6, ϕ |∼ ϕ if and only if there is an ω ∈ C with
ω |= ϕ. The property (Coh) follows since C ⊆ L∗ and, for all consistent ϕ∗ ∈ L∗,
there is an ω ∈ C with ω |= ϕ∗.

(Ch): Consider sentences ϕ and ψ ∈ L∗ with ϕ |∼∗ ϕ and ψ |∼∗ ψ. Then, by
Corollary 7, ϕ∨ψ |∼ ϕ∨ψ. By Proposition 6, there is an ω ∈ C, with ω |= ϕ∨ψ.
The sentences ϕ and ψ are elements of L∗, hence also the sentences ϕ ∧ ¬ψ,
ϕ∧ψ and ¬ϕ∧ψ ∈ L∗. All are logically equivalent to disjunctions of elements of
C (possibly the empty disjunction, logically equivalent to ⊥). Since ω |= ϕ ∨ ψ,
|= ϕ ∨ ψ ↔ (ϕ ∧ ¬ψ) ∨ (ϕ ∧ ψ) ∨ (¬ϕ ∧ ψ), and the elements of C are mutually
incompatible, we have ω |= ϕ∧¬ψ or ω |= ϕ∧ψ or ω |= ¬ϕ∧ψ. By Proposition 6,
it follows that ϕ ∨ ψ |∼∗ ¬ϕ ∧ ψ or ϕ ∨ ψ |∼∗ ϕ ∧ ψ or ϕ ∨ ψ |∼∗ ϕ ∧ ¬ψ.

Correct Grounded Reasoning with Presumptive Arguments 489

(OC): By ϕ ∨ ψ |∼∗ ϕ, there is an ω |= ϕ maximal in C(ϕ ∨ ψ). By ψ ∨ χ |∼∗ ψ,
there is an ω′ |= ψ maximal in C(ψ ∨ χ). Since ω |= ϕ, ω ∈ C(ϕ ∨ χ). Since
ω′ |= ψ, ω′ ∈ C(ϕ ∨ ψ), hence ω ≥ ω′. Hence ω is maximal in C(ϕ ∨ χ), hence
ϕ ∨ χ |∼ ϕ. Since χ ∈ L∗, ϕ ∨ χ |∼∗ ϕ. ��

3.2 Representation Results (Qualitative)

In this section, we show that an inference relation with the properties listed in the
Propositions 5 and 8 can be represented by the presumptively valid arguments
of a case model. The cases of the representing case model are the extensions of
the inference relation, i.e., those valid consequences that are logically maximally
specific:

Definition 9. Let |∼⊆ L×L, and ϕ and ω ∈ L. Then ω expresses an extension
of ϕ when:

1. ϕ |∼ ω; and
2. ω |= ϕ; and
3. For all ψ ∈ L, if ϕ |∼ ψ and ψ |= ω, then ω |= ψ.

Proposition 10. Let |∼⊆ L × L have the property (Ant) (as in Proposition 5).
Then, for all ϕ ∈ L, if ϕ |∼ ϕ, there is an ω ∈ L that expresses an extension of ϕ.

Proof. Consider the set of sentences S = {ψ | ϕ |∼ ψ} and pick a sentence ω ∈ S
that is logically maximally specific. Such a sentence exists since S is not empty
(as ϕ ∈ S) and L is assumed to be generated by finitely many propositional
constants, hence has a finite number of logical equivalence classes. We show that
ω is an extension of ϕ (Definition 9): (i) ϕ |∼ ω since ω ∈ S. (ii) By (Ant),
ϕ |∼ ϕ ∧ ω; hence ϕ ∧ ω ∈ S. Since ω is maximally specific in S, it follows that
ω |= ϕ. (iii) Consider ψ ∈ L for which ϕ |∼ ψ and ψ |= ω. Then ψ ∈ S. Since ω
is maximally specific in S, ω |= ψ. ��
We define the counterpart of the logical algebra L∗ used in Proposition 8.

Definition 11. Let |∼⊆ L×L with the property (Ant) (as in Proposition 5), and
C ⊆ L the set of sentences expressing extensions. Then L∗ denotes the closure
of C under negation, conjunction and logical equivalence, and |∼∗ the restriction
of |∼ to L∗.

We can now formulate the representation theorem.

Theorem 12. Let |∼⊆ L × L have the following properties:

(LE) If ϕ |∼ ψ, |= ϕ ↔ ϕ′ and |= ψ ↔ ψ′, then ϕ′ |∼ ψ′;
(Cons) ϕ
|∼ ⊥;
(Ant) If ϕ |∼ ψ, then ϕ |∼ ϕ ∧ ψ;
(RW) If ϕ |∼ ψ ∧ χ, then ϕ |∼ ψ;
(CCM) If ϕ |∼ ψ ∧ χ, then ϕ ∧ ψ |∼ χ;
(CCT) If ϕ |∼ ψ and ϕ ∧ ψ |∼ χ, then ϕ |∼ ψ ∧ χ;

490 B. Verheij

(Coh) ϕ |∼ ϕ if and only if ∃ϕ∗ ∈ L∗ with ϕ∗
|= ⊥ and ϕ∗ |= ϕ;
(Ch) If ϕ |∼∗ ϕ and ψ |∼∗ ψ, then ϕ ∨ ψ |∼∗ ¬ϕ ∧ ψ or

ϕ ∨ ψ |∼∗ ϕ ∧ ψ or ϕ ∨ ψ |∼∗ ϕ ∧ ¬ψ;
(OC) If ϕ ∨ ψ |∼∗ ϕ and ψ ∨ χ |∼∗ ψ, then ϕ ∨ χ |∼∗ ϕ.

Then there is a case model (C,≥) with the property:

ϕ |∼ ψ if and only if (C,≥) |= ϕ � ψ.

Proof. Given |∼ with the properties mentioned, we consider the set of all exten-
sion expressions E := {ω ∈ L | ∃ϕ ∈ L : ω expresses an extension of ϕ}. Let
C be a set containing one element for each logical equivalence class in E. For ω
and ω′ ∈ C, define ω ≥ ω′ := ω ∨ω′ |∼ ω. We show that the pair (C,≥) is a case
model with the property of the theorem.

(i) (C,≥) is a case model.
We check the properties of the definition of a case model. 1. Let ϕ ∈ C. Then
ϕ |∼ ϕ. If |= ¬ϕ, by (LE) and (RW), ϕ |∼ ⊥, contradicting (Cons).

2 & 3. Consider ϕ and ψ ∈ C. Then ϕ |∼∗ ϕ and ψ |∼∗ ψ. By (Ch), ϕ ∨ ψ |
∼∗ ¬ϕ∧ψ or ϕ∨ψ |∼∗ ϕ∧ψ or ϕ∨ψ |∼∗ ϕ∧¬ψ. Since ϕ and ψ are extensions,
when ϕ ∨ ψ |∼∗ ¬ϕ ∧ ψ, ϕ |= ¬ψ. When ϕ ∨ ψ |∼∗ ϕ ∧ ψ, ϕ |= ψ and ψ |= ϕ, so
ϕ = ψ. When ϕ ∨ ψ |∼∗ ϕ ∧ ¬ψ, ψ |= ¬ϕ.

4. Consider ϕ and ψ ∈ C. By (Ch), we have three cases: When ϕ ∨ ψ |∼∗

¬ϕ ∧ ψ, by (RW): ϕ ∨ ψ |∼∗ ψ, i.e., ψ ≥ ϕ. When ϕ ∨ ψ |∼∗ ϕ ∧ ψ, by (RW):
ϕ ∨ ψ |∼∗ ϕ, i.e., ϕ ≥ ψ (and in this case also ψ ≥ ϕ). When ϕ ∨ ψ |∼∗ ϕ ∧ ¬ψ,
by (RW): ϕ ∨ ψ |∼∗ ψ, i.e., ϕ ≥ ψ.

5. Consider ϕ, ψ and χ ∈ C. Assume ϕ ≥ ψ and ψ ≥ χ. In other words, by
the definitions, ϕ ∨ ψ |∼∗ ϕ and ψ ∨ χ |∼∗ ψ. Then (OC) gives ϕ ∨ χ |∼∗ ϕ, i.e.,
ϕ ≥ χ.
(ii) If ϕ |∼ ψ, then (C,≥) |= ϕ � ψ.
Assume ϕ |∼ ψ. Then, by (Ant), ϕ |∼ ϕ ∧ ψ. By (CCM), ϕ ∧ ψ |∼ ϕ ∧ ψ. By
Proposition 10, there is an ω ∈ C that is an extension of ϕ ∧ ψ. In particular,
ω |= ϕ ∧ ψ and ω ∈ C(ϕ). Let ω′ ∈ C(ϕ). Then ω |= ω ∨ ω′ and ω ∨ ω′ |= ϕ.
Hence, by ϕ |∼ ω and (CCM), ω ∨ ω′ |∼ ω, i.e., ω ≥ ω′. In other words, ω is
maximal in C(ϕ).
(iii) If (C,≥) |= ϕ � ψ,then ϕ |∼ ψ.
By definition, if (C,≥) |= ϕ � ψ, there is an ω ∈ C with ω |= ϕ ∧ ψ, maximal
in C(ϕ). Hence ω |= ϕ and, by (Coh), ϕ |∼ ϕ. By Proposition 10, there is an
ω′ ∈ C(ϕ) that expresses an extension of ϕ. So ϕ |∼ ω′. By (RW) (and (LE)),
ϕ |∼ ω ∨ ω′. Since ω is maximal in C(ϕ), ω ≥ ω′, i.e., ω ∨ ω′ |∼ ω. By (CCT), it
follows that ϕ |∼ ω. So ω also expresses an extension of ϕ. Since ω |= ψ, (RW)
gives ϕ |∼ ψ. ��

3.3 Representation Results (Quantitative)

In this section, we show that our notion of presumptively valid inference can
also be quantitatively represented. We use the following lemma that the pref-
erence relations of our case models are exactly those that can be numerically
represented.

Correct Grounded Reasoning with Presumptive Arguments 491

Lemma 13. Let C ⊆ L be finite with elements that are logically consistent,
mutually incompatible and different (properties 1, 2 and 3 in the definition of
case models). Then the following are equivalent:

1. (C,≥) is a case model;
2. ≥ is numerically representable, i.e., there is a real valued function v on C

such that for all ϕ and ψ ∈ C, ϕ ≥ ψ if and only if v(ϕ) ≥ v(ψ).

The function v can be chosen with only positive integer values.

Proof. It is a standard result in order theory that total preorders on countable
sets are the ones that are representable by a real-valued function [23]. In our
finite setting, the numbers can be chosen as positive integer values. ��
Definition 14. Let (C,≥) be a non-empty case model and v a positive numeric
function that represents ≥. Then we define, for all ϕ and ψ ∈ L:

1. v(ϕ) := max{v(ω) | ω ∈ C,ω |= ϕ};
2. w(ϕ) :=

∑ {v(ω) | ω ∈ C,ω |= ϕ};
3. s(ϕ) := w(ϕ)/w(�);
4. s(ϕ,ψ) := w(ϕ ∧ ψ)/w(ϕ) = s(ϕ ∧ ψ)/s(ϕ) (with s(ϕ) > 0);
5. v(ϕ,ψ) := v(ϕ ∧ ψ).

We say that v(ϕ) is the value of ϕ and w(ϕ) its weight. We say that s(ϕ,ψ) is
the strength of the argument from ϕ to ψ, and v(ϕ,ψ) its value.

Corollary 15. Let L∗ denote the closure of C under negation, conjunction and
logical equivalence. Then the function s restricted to L∗ obeys the axioms of
probability functions, i.e., for all ϕ and ψ ∈ L∗:

1. s(ϕ) ≥ 0;
2. s(�) = 1;
3. If ϕ ∧ ψ |= ⊥, then s(ϕ ∨ ψ) = s(ϕ) + s(ψ).

The coherence and conclusiveness of arguments can be represented in terms of
these numeric functions, as in the following theorems.

Theorem 16. (Coherence) Let (C,≥) be a non-empty case model and v and s
as above. Then the following are equivalent, for all ϕ and ψ ∈ L:

1. The argument from ϕ to ψ is coherent;
2. v(ϕ ∧ ψ) > 0;
3. s(ϕ ∧ ψ) > 0.

Proof. An argument is coherent if and only there is a case implying the case
made by the argument. This is exactly so when the case made has posi-
tive value. This is equivalent to the strength of the argument having positive
value. ��
Theorem 17. (Conclusiveness) Let (C,≥) be a non-empty case model and w
and s as above. Then the following are equivalent, for all ϕ and ψ ∈ L:

492 B. Verheij

1. The argument from ϕ to ψ is conclusive;
2. w(ϕ ∧ ψ) = w(ϕ) > 0;
3. s(ϕ,ψ) = 1.

Proof. An argument is conclusive if and only if it is coherent and all cases imply-
ing the premises also imply the conclusions. This is exactly so when the cases
implying the premises coincide with the cases implying the case made by the
argument, i.e., when the weights of premises and case made are equal. That is
exactly the case when the argument’s strength is equal to 1. ��
The next theorem characterizes presumptive validity using a value function v.
We restrict to L∗.

Theorem 18. (Presumptive validity; in terms of value) Let (C,≥) be a non-
empty case model and L∗, v as above. Then the following are equivalent, for all
ϕ and ψ ∈ L∗:

1. The argument from ϕ to ψ is presumptively valid;
2. v(ϕ ∧ ψ) = v(ϕ).

Proof. An argument is presumptively valid if and only if there is a case implying
the case made by the argument that is at least as preferred as all cases implying
the premises. This is exactly so when the value of ϕ ∧ ψ is equal to that of ϕ. ��
In order to characterize presumptive validity in terms of a strength function s,
we choose the value function from which it is derived with special care, as in
this lemma:

Lemma 19. Let α be a positive number. Then the function v in Definition 14
can be chosen such that, for all ω ∈ C:

v(ω) > (α + 1)w(κ), where κ := ∨{ω∗ ∈ C | ω > ω∗}.
We say that v is α-separating.

Theorem 20. (Presumptive validity; in terms of strength) Let (C,≥) be a non-
empty case model and α the maximal number of elements in an equivalence class
of the preference relation. Let L∗, v, w and s be as above, with v α-separating
(as in the lemma). Then the following are equivalent, for all ϕ and ψ ∈ L∗:

1. The argument from ϕ to ψ is presumptively valid;
2. s(ϕ,ψ) > 1/(α + 1).

Proof. From 1 to 2: Let the argument from ϕ to ψ be presumptively valid. Then
(and only then) the values of ϕ and ϕ ∧ ψ are equal to the value v(ω) of a case
ω ∈ C that is an extension of ϕ. The case ω can be chosen such that it implies
the case made by the argument, but that makes no difference for the value v(ω).
Let κ denote the disjunction of all cases of value smaller than v(ω) (cf. the use
of κ in the lemma). We have the following inequalities:

Correct Grounded Reasoning with Presumptive Arguments 493

w(ϕ ∧ ψ)
w(ϕ)

≥ v(ω)
αv(ω) + w(κ)

>
v(ω)

αv(ω) + v(ω)/(α + 1)
=

(α + 1)v(ω)
α(α + 1)v(ω) + v(ω)

=
(α + 1)

α(α + 1) + 1
>

(α + 1)
α(α + 1) + (α + 1)

=
1

α + 1
.

From 2 to 1: Let the argument from ϕ to ψ be presumptively invalid. Then (and
only then) the value of ϕ, say v(ω) for a case ω ∈ C, is higher than the value of
ϕ∧ψ. Let κ be as before. Then we have these inequalities, completing the proof:

w(ϕ ∧ ψ)
w(ϕ)

≤ w(κ)
v(ω)

<
v(ω)/(α + 1)

v(ω)
=

1
α + 1

. ��

4 Discussion and Conclusion

We set out to answer the semantics and normative questions for reasoning with
presumptive arguments: How are presumptive arguments grounded in interpre-
tations; and when are they evaluated as correct? Our formalism answers these
questions, as follows.

As to the semantics question, we have proposed to interpret arguments in
models consisting of cases and their preferences. Cases are structured expressions
of what can be the case, formalized as consistent sentences in a classical logical
language. Our cases are akin to exemplars, observations, precedents, situations,
prototypes, schemes, scenarios, scripts, and other structured representations of
parts of the world we live in. Our cases are to be contrasted with formal models
or worlds that represent completely specified representations, in the sense that
all properties are evaluated (as used for instance in preferential model seman-
tics [16]). Key properties of our definition of cases are their logical consistency
and mutual incompatibility. Hence, our cases can be thought of as distinguish-
able coherent combinations of properties. In a case model, the cases come with a
preference relation expressing their relative value. Such values can be interpreted
objectively, for instance as derived from frequencies or probabilities. However
there is no reason to restrict to objective interpretations, and one can also think
of subjective values, e.g., derived from utilities, as used in theories of decision
making and preference-based choice.

The normative question is answered in terms of this case semantics. We
have distinguished coherent, presumptively valid and conclusive arguments. For
coherent arguments, there must be a case that implies the case made by the
argument. For presumptively valid arguments, there must be a case implying
the case made by the argument that is of at least as high value as the other
cases implying the argument’s premises. For conclusive arguments, there must
be a case implying the case made by the argument, and all cases implying the
premises should imply the argument’s conclusions. When a presumptively valid
argument is not conclusive, the argument is defeasible.

494 B. Verheij

We have shown qualitative properties that characterize presumptively valid
arguments. We have proven that coherence, presumptive validity and conclusive-
ness also can be defined in terms of quantitative interpretations. In particular,
we have shown a characterization of presumptively valid arguments in terms of
two kinds of numeric functions. The first (used in Theorem18) is a value func-
tion v that maximizes (instead of sums) the values of cases. The second (used
in Theorem 20) is an argument strength function s that obeys the probabil-
ity axioms. This provides a probabilistic representation of presumptive validity,
which is interesting now that our proposal does not exclude an interpretation
of arguments for subjective, preference-based choices, more typically associated
with utility functions. The value function v maximizes instead of sums the values
of cases, hence reminds of how possibilistic logic [10] contrasts with probabilistic
approaches (see also [29]).

By these answers to the semantics and normative questions, we have pro-
vided a theory of presumptive arguments with close ties to classical logic and
standard probability theory. In contrast, in his influential work on argumenta-
tion in artificial intelligence [20,21], Pollock argued against approaches based
on classical logic and standard probability theory. Before him, the philosopher
and argumentation theorist Toulmin argued similarly [27], without developing
an alternative formal and computational perspective, as did Pollock.

[6] focus on the development of the theory of deductive arguments, while
our proposal emphasises ampliative argument in their relation to deductive
(here: conclusive) and defeasible (here: presumptively valid) arguments. Com-
pared to [19], who provide a framework of argumentation with preferences that
can be instantiated with different abstract argumentation semantics, the present
proposal gives a model-based formal semantics leading to a formal definition of
presumptive validity. Connections between argumentation and uncertain reason-
ing have been investigated [14,15,17,26], several focusing on abstract argumen-
tation. Our proposal has a model-based definition of presumptive validity that
comes with both a qualitative and a quantitative interpretation.

This work connects semantics and properties of inference relations (cf. the
research program proposed by [25]; see also [1]). [2] discuss the postulates clo-
sure, direct consistency and indirect consistency for the evaluation of argumen-
tation formalisms. Analogs of these properties obtain for presumptively valid
arguments. A property akin to closure under strict rules is that a presumptively
valid argument remains valid when conclusive consequences of the case made
are added. A property related to direct and indirect consistency is that in the
present proposal extensions are consistent. A question that arises is how the
present proposal is formally connected to related formalisms. In particular, it
is natural to study connections with preferential modal logics. Also the place
of this work among other studies of nonmonotonic inference relations [18] is a
relevant topic of further study, in particular also [7].

The case model semantics presented here formalizes ideas semi-formally pre-
sented in [31]. That work was inspired by research using Bayesian networks
for modeling argument-based and scenario-based reasoning with evidence [32],

Correct Grounded Reasoning with Presumptive Arguments 495

where well-known issues with Bayesian network modeling were encountered,
namely first that such modeling typically requires many more numbers than
are reasonably available, and second that—notwithstanding their transparent
formal definition—Bayesian networks are easily misinterpreted, e.g., in causal
terms (cf. [9]). In contrast with Bayesian networks, the present formalism is
probabilistic, but does not require many numbers, and provides a formal inter-
pretation of arguments in case models.

In conclusion, the present paper has contributed a logic of presumptively
valid arguments using case models as semantics. The resulting formalism mod-
els correct grounded reasoning with presumptive arguments. As such, we have
provided a perspective on how to formally combine logic, probability theory and
argumentation, suggesting applications that require the representational power
of logic, the data-analytic strength of probability theory, and the interactive
social construction of argumentation.

By the combination of logical and probabilistic modeling primitives using an
argumentation perspective, the present proposal is a step in the much-needed
unification of logic and probability in AI [24].

References

1. Amgoud, L.: Postulates for logic-based argumentation systems. Int. J. Intell. Syst.
55(9), 2028–2048 (2014)

2. Amgoud, L., Caminada, M.: On the evaluation of argumentation formalisms. Artif.
Intell. 172, 286–310 (2007)

3. Baroni, P., Caminada, M., Giacomin, M.: Review: an introduction to argumenta-
tion semantics. Knowl. Eng. Rev. 26(4), 365–410 (2011)

4. Benthem, J. van: Foundations of conditional logic. J. Philos. Logic 13, 303–349
(1984)

5. Besnard, P., Garćıa, A.J., Hunter, A., Modgil, S., Prakken, H., Simari, G.R., Toni,
F.: Introduction to structured argumentation. Argument Comput. 5, 1–4 (2014)

6. Besnard, P., Hunter, A.: A logic-based theory of deductive arguments. Artif. Intell.
128, 203–235 (2001)

7. Bochman, A.: A Logical Theory of Nonmonotonic Inference and Belief Change.
Springer, Berlin (2001)

8. Bondarenko, A., Dung, P.M., Kowalski, R.A., Toni, F.: An abstract,
argumentation-theoretic approach to default reasoning. Artif. Intell. 93, 63–101
(1997)

9. Dawid, A.P.: Beware of the DAG! In: Guyon, I., Janzing, D., Schölkopf, B. (eds.)
JMLR Workshop and Conference Proceedings. Causality: Objectives and Assess-
ment (NIPS 2008 Workshop), vol. 6, pp. 59–86 (2010). jmlr.org

10. Dubois, D., Prade, H.: Possibility theory, probability theory and multiple-valued
logics: a clarification. Ann. Math. Artif. Intell. 32(1), 35–66 (2001)

11. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77,
321–357 (1995)

12. Eemeren, F. H. van, Garssen, B., Krabbe, E.C.W., Henkemans, A.F.S., Verheij,
B., Wagemans, J.H.M.: Argumentation in artificial intelligence. In: Eemeren, F. H.
van, et al. (eds.) Handbook of Argumentation Theory. Springer, Berlin (2014)

http://jmlr.org/

496 B. Verheij

13. Garćıa, A.J., Simari, G.R.: Defeasible logic programming: an argumentative app-
roach. Theory Pract. Logic Program. 4(2), 95–138 (2004)

14. Hunter, A.: A probabilistic approach to modelling uncertain logical arguments. Int.
J. Approx. Reason. 54, 47–81 (2012)

15. Hunter, A.: Probabilistic qualification of attack in abstract argumentation. Int. J.
Approx. Reason. 55, 607–638 (2014)

16. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential mod-
els and cumulative logics. Artif. Intell. 44, 167–207 (1990)

17. Li, H., Oren, N., Norman, T.J.: Probabilistic argumentation frameworks. In: Mod-
gil, S., Oren, N., Toni, F. (eds.) TAFA 2011. LNCS, vol. 7132, pp. 1–16. Springer,
Heidelberg (2012)

18. Makinson, D.: General patterns in nonmonotonic reasoning. In: Gabbay, D.M.,
Hogger, C.J., Robinson, J.A. (eds.) Handbook of Logic in Artificial Intelligence
and Logic Programming, Nonmonotonic Reasoning and Uncertain Reasoning, vol.
3, pp. 35–110. Clarendon Press, Oxford (1994)

19. Modgil, S., Prakken, H.: A general account of argumentation with preferences.
Artif. Intell. 195, 361–397 (2013)

20. Pollock, J.L.: Defeasible reasoning. Cogn. Sci. 11(4), 481–518 (1987)
21. Pollock, J.L.: Cognitive Carpentry: A Blueprint for How to Build a Person. The

MIT Press, Cambridge (1995)
22. Prakken, H.: An abstract framework for argumentation with structured arguments.

Argument Comput. 1(2), 93–124 (2010)
23. Roberts, F.S.: Measurement Theory with Applications to Decisionmaking, Utility,

and the Social Sciences. Cambridge University Press, Cambridge (1985)
24. Russell, S.: Unifying logic and probability. Commun. ACM 58(7), 88–97 (2015)
25. Simari, G.R.: On the properties of the relation between argumentation semantics

and argumentation inference operators. In: Parsons, S., Oren, N., Reed, C., Cerutti,
F. (eds.) Computational Models of Argument, Proceedings of COMMA 2014, pp.
3–8. IOS Press, Amsterdam (2014)

26. Thimm, M.: A probabilistic semantics for abstract argumentation. In: Proceedings
of the European Conference on Artificial Intelligence (ECAI 2012), pp. 750–755.
IOS Press, Amsterdam (2012)

27. Toulmin, S.E.: The Uses of Argument. Cambridge University Press, Cambridge
(1958)

28. Verheij, B.: Argumentation and rules with exceptions. In: Computational Models
of Argument: Proceedings of COMMA 2010, Desenzano del Garda, Italy, 8–10
September 2010, pp. 455–462. IOS Press, Amsterdam (2010)

29. Verheij, B.: Jumping to conclusions. In: del Cerro, L.F., Herzig, A., Mengin, J.
(eds.) JELIA 2012. LNCS, vol. 7519, pp. 411–423. Springer, Heidelberg (2012)

30. Verheij, B.: Arguments and their strength: revisiting Pollock’s anti-probabilistic
starting points. In: Parsons, S., Oren, N., Reed, C., Cerutti, F. (eds.) Computa-
tional Models of Argument. Proceedings of COMMA 2014, pp. 433–444. IOS Press,
Amsterdam (2014)

31. Verheij, B.: To catch a thief with and without numbers: arguments, scenarios and
probabilities in evidential reasoning. Law Probab. Risk 13, 307–325 (2014)

32. Verheij, B., Bex, F.J., Timmer, S.T., Vlek, C.S., Meyer, J.J., Renooij, S., Prakken,
H.: Arguments, scenarios and probabilities: connections between three normative
frameworks for evidential reasoning. Law Probab. Risk 15, 35–70 (2016)

Characterizability in Horn Belief Revision

Jon Yaggie1(B) and György Turán1,2

1 University of Illinois at Chicago, Chicago, USA
jyaggi2@uic.edu

2 MTA-SZTE Research Group on Artificial Intelligence, Szeged, Hungary

Abstract. Delgrande and Peppas characterized Horn belief revision
operators obtained from Horn compliant faithful rankings by minimiza-
tion, showing that a Horn belief revision operator belongs to this class
if and only if it satisfies the Horn AGM postulates and the acyclicity
postulate scheme. The acyclicity scheme has a postulate for every n ≥ 3
expressing the non-existence of a certain cyclic substructure. We show
that this class of Horn belief revision operators cannot be character-
ized by finitely many postulates. Thus the use of infinitely many postu-
lates in the result of Delgrande and Peppas is unavoidable. The proof
uses our finite model theoretic approach to characterizability, consid-
ering universal monadic second-order logic with quantifiers over closed
sets, and using predicates expressing minimality. We also give another
non-characterizability result and add some remarks on strict Horn com-
pliance.

1 Introduction

The problem of belief change is how to modify a knowledge base of imperfect
knowledge if new information is received. Belief contraction refers to the case
when knowledge in the knowledge base should be removed. Belief revision refers
to the case when new knowledge is to be incorporated into the knowledge base,
which may be inconsistent with the current knowledge. The standard approach
to the problem is to formulate rationality postulates, which should be satisfied by
every belief change operator, and characterize the class of belief change operators
satisfying those postulates. The basic example of this approach is the work of
Alchourrón et al. [3]. Belief change operators satisfying the AGM postulates for
belief contraction and belief revision have been characterized in many different
ways (see, e.g., Hansson [13]).

Theorem 1 (Katsuno, Mendelzon [16]). A belief revision operator satisfies the
AGM postulates iff it can be obtained from a faithful ranking using minimization.

The standard setup for the AGM framework is full propositional logic. Recent
work also considered similar questions for other logics, in particular, for frag-
ments of propositional logic such as Horn logic [1,5–7,9,10,12,17,24,25]. Most
of the results on Horn belief change are about Horn belief contraction. Horn belief
revision was considered by Delgrande and Peppas [8] and Zhuang et al. [26] and
c© Springer International Publishing AG 2016
L. Michael and A. Kakas (Eds.): JELIA 2016, LNAI 10021, pp. 497–511, 2016.
DOI: 10.1007/978-3-319-48758-8 32

498 J. Yaggie and G. Turán

Horn belief merging was considered by Haret et al. [14]. Delgrande and Peppas
gave a characterization of a class of Horn belief revision operators.

Theorem 2 (Delgrande, Peppas [8]). A Horn belief revision operator satis-
fies the Horn AGM postulates and the acyclicity postulate scheme iff it can be
obtained from a Horn compliant faithful ranking using minimization.

Theorem 1 differs from Theorem 2 in two aspects. In Theorem 1 the preference
structure has to be a total preorder, but the mapping of truth assignments to
the elements of the total preorder is arbitrary. In Theorem2 this is not the
case: the mapping has to be Horn-compliant. The other difference is that the
characterization of Theorem 1 is in terms of finitely many postulates, while that
of Theorem 2 is in terms of infinitely many postulates, as the acyclicity postulate
scheme has a postulate about cycles of length n for every n ≥ 3.

As infinite postulate characterizations are unusual in belief revision, it is nat-
ural to ask whether it is necessary to use infinitely many postulates in Theorem2.
In this paper we give an affirmative answer to this question.

Theorem 3. The class of Horn belief revision operators obtained from Horn
compliant faithful rankings using minimization cannot be characterized by a finite
set of postulates.

This result is one of few non-characterizability results in belief revision. The
first such negative results are due to Schlechta and Ben-Naim [4,18,22]. In [23] we
developed a method to prove non-characterizability results using tools from finite
model theory. Postulates are translated into a fragment of universal monadic
second-order logic and Ehrenfeucht-Fräıssé games are used to prove undefinabil-
ity. Impossibility results are also proved by Reis et al. [21].

The framework developed in [23] has to be modified for the present applica-
tion, especially due to the constraint on Horn compliance. The version of uni-
versal monadic second order logic needed here has an unusual kind of quantifier,
quantifying over closed subsets of the ground set consisting of truth assignments.
Here closure is meant in the sense of being closed under componentwise intersec-
tion of truth assignments, the property characterizing Horn formulas. Also, the
natural class of preference structures to consider (implicit in [8] and formalized
here) goes beyond total, or even partial, preorders, and contains structures with
cyclic substructures as well. This observation is due to [8], and the structures
used in our proof generalize an example of that paper. The reason for infinitely
many postulates is that finitely many postulates are not able to distinguish
between Horn belief revision operators obtained from Horn compliant faithful
rankings and those obtained from faithful structures which falsify some of the
acyclicity postulates, but only those corresponding to long cycles.

A motivation to develop methods for proving non-characterizability is that
the study of belief change for logics other than full propositional logic is
“uncharted territory”, where it is not clear what kind of characterizations can be
expected. Horn belief revision with Horn compliant faithful rankings, considered
in this paper, is a case in point. Another candidate is the class of Horn belief

Characterizability in Horn Belief Revision 499

revision operators with strictly Horn compliant faithful rankings, introduced by
Zhuang et al. [26]. Characterizability of this class of revision operators is an open
problem, and approaching it from the point of view of non-characterizability
might be useful. An understanding of the properties of strictly Horn compliant
faithful rankings might be helpful for the study of their characterizability, and
therefore we include some remarks on their properties and their connections to
classes of efficiently computable Horn belief revision operators introduced in [8].

The paper is structured as follows. Sections 2–6 develop the framework for
proving non-characterizability. Section 7 describes the structures used in the non-
characterizability proof. Section 8 contains the proof of Theorem 3 and the state-
ment of another non-characterizability result. The final section contains remarks
on strict Horn compliance.

2 Preliminaries

We consider knowledge bases over a fixed finite set of propositional variables.
The set {0, 1}n of truth assignments over n variables is denoted by Tn. The
weight of a truth assignment is the number of its ones. The intersection of two
truth assignments is the truth assignment formed by taking componentwise ∧’s,
e.g., (1, 0, 1) ∩ (0, 1, 1) = (0, 0, 1). A Boolean function is a function of the form
f : {0, 1}n → {0, 1}. The set of truth assignments a for which f(a) = 1 is denoted
by |f |, and the set of truth assignments satisfying a propositional formula ϕ is
denoted by |ϕ|.

A clause is a disjunction of literals. A clause is Horn if it contains at most
one unnegated literal. A Horn formula is a conjunction of Horn clauses.

A Boolean function is a Horn function if it is represented by a Horn formula.
It is a basic fact that a Boolean function f is Horn iff |f | is closed under intersec-
tion [15,20]. In what follows we refer to sets of truth assignments closed under
intersection as closed. Given a closed set A of truth assignments, 〈A〉 denotes
some Horn formula ϕ such that |ϕ| = A.

A Horn knowledge base H is a Horn formula. We write Hn to indicate that
H is over n variables. Given a Horn knowledge base H, a belief revision operator
∗ assigns a Horn formula H ∗ ϕ to every Horn formula ϕ. Here ϕ is called the
revising formula, and H ∗ ϕ is called the revised knowledge base.

3 Pseudo-orders and Horn Revision by Minimization

A pseudo-order R = (V,≤) is a total binary relation over a finite ground set V ,
i.e., for every u, v ∈ V at least one of u ≤ v and v ≤ u hold. Thus, in particular,
pseudo-orders are reflexive. The strict order relation u < v holds if u ≤ v but
v �≤ u. It is convenient to think of a pseudo-order as a directed graph, containing
edges (u, v) such that v < u. (Thus edges between two vertices can go one way
or both ways.)

For a subset S ⊆ V , an element u ∈ S is minimal in S if there is no v ∈ S
such that v < u. The set of minimal elements of S is denoted by min≤ S. Note

500 J. Yaggie and G. Turán

that min≤ S may be empty. This happens, for example, if S can be covered with
a set of directed cycles of edges (u, v) such v < u. As ≤ is always clear from the
context, we write min S for min≤ S.

The notion of a pseudo-order is used in [8] informally, and the definition above
is one of the possible formalizations. Another possible formalization would be
to require reflexivity only, i.e., to allow for vertices having no directed edges
between them. For our purposes both versions would work. The use of the term
“order” in this general context is explained by the possibility of formulating
minimality as above.

A total preorder R = (V,≤) is a total, transitive binary relation. A total
preorder determines a partition (V1, . . . , Vm) of its elements into levels: V1 is the
set of minimal elements, V2 is the set of minimal elements in V \ V1, etc.

Definition 1 (Faithful structure). A faithful structure F for a Horn knowledge
base Hn is a pseudo-order over Tn, such that min Tn = |Hn|, and if u ∈ min Tn

and v �∈ min Tn then u < v.

Definition 2 (Horn compliance). A faithful structure is Horn compliant if for
every Horn formula ϕ it holds that min |ϕ| is closed.

In a Horn compliant faithful structure there are two relations: the prefer-
ence relation ≤ of the underlying pseudo-order, and the componentwise partial
ordering on truth assignments. The latter is only used implicitly when we refer to
closed sets. The notion of a Horn compliant faithful structure generalizes that of
a Horn compliant faithful ranking, where total preorders are considered instead
of pseudo-preorders.

Definition 3 (Horn revision by minimization). The revision operator ∗
F

for H,
determined by a Horn compliant faithful structure F for H, by minimization is

H ∗
F

ϕ = 〈min |ϕ|〉.

The assumption of Horn compliance guarantees that H ∗
F

ϕ is well-defined.
Horn revision operators defined by some Horn compliant faithful structure are
called pseudo-order based.

4 Horn Postulates and Characterizability

In order to be able to prove non-characterizability, one needs a formal definition
of postulates and characterizability. These definitions are provided in this section.
We begin with an example of a Horn postulate.

The acyclicity postulate scheme of Theorem 2 is the following. Here indices
are meant cyclically, i.e., n + 1 = 1.

Definition 4 (Acyclicity). The acyclicity postulate Acycn for n ≥ 3 is the fol-
lowing: if (H ∗ϕi)∧ϕi+1 is satisfiable for i = 1, . . . , n then (H ∗ϕ1)∧ϕn is also
satisfiable.

Characterizability in Horn Belief Revision 501

Theorem 2 also uses the Horn AGM postulates, which are slight modifications
of the AGM postulates, and are not presented here.

We now give a general definition of a postulate for Horn logic. The difference
between this definition and the general definition in [23] is that here we allow
conjunctions only as arguments of the belief revision operator, instead of arbi-
trary Boolean combinations, as the class of Horn formulas is not closed under
negation. The definition seems to be a natural one in the present context, but
other definitions could be considered as well. For example, one could include
predicates or functions on truth assignments, such as the componentwise par-
tial ordering, in the language. A framework allowing the acyclicity scheme to
be considered a single postulate would allow the inclusion of natural numbers
and a variable number of formulas; this seems to be hard to deal with and it is
perhaps less natural in view of the types of postulates used in belief revision.

Definition 5 (Horn postulate). A Horn postulate P is a first-order sentence
with unary predicate symbols H,ϕ1, . . . , ϕ� and H ∗ μ1, . . . , H ∗ μm, where
μ1, . . . , μm are conjunctions of ϕ1, . . . , ϕ�.

A Horn revision operator satisfies a postulate for a Horn knowledge base H if
the postulate holds for all Horn revision formulas ϕ1, . . . , ϕ�, with the variables
ranging over the set of closed sets of truth assignments.

The acyclicity postulates can be rewritten in this form as follows:
(

n
∧

i=1

∃x((H ∗ ϕi(x)) ∧ ϕi+1(x))

)

→ ∃x((H ∗ ϕ1(x)) ∧ ϕn(x)).

Theorem 2 gives a postulate characterization of Horn belief revision oper-
ators obtained from Horn compliant faithful structures. The framework to be
developed applies to a generalization of this setup.

Definition 6 (F-revision operator). Let F be a family of faithful structures. Let
H be a Horn knowledge base and ∗ be a Horn revision operator for H. Then ∗
is an F-revision operator iff there is a faithful structure F ∈ F for H such that
∗ = ∗

F
, i.e., F represents ∗ using minimization.

Definition 7 (Characterization, characterizability). Let F be a family of faithful
structures. A finite set of Horn postulates P characterizes F-revision operators
if for every Horn knowledge base H and every Horn revision operator ∗ for H
the following holds: ∗ satisfies the postulates in P iff ∗ is an F-revision operator.
The family of F-revision operators is characterizable if there is a finite set of
postulates characterizing F-revision operators.

The class considered in [8] is the following.

Definition 8. Let T be the class of Horn compliant faithful rankings, i.e., the
class of faithful structures where the underlying pseudo-order is a total preorder.

502 J. Yaggie and G. Turán

Note that even if P characterizes F-revision operators, it may happen that
an F-revision operator ∗ can also be represented by a faithful structure F ′ �∈ F .
For example, for T , Fig. 2 in [8] gives an example of a revision operator generated
by a Horn compliant faithful structure based on a pseudo-order which is not a
total preorder, such that the same revision operator can also be generated by
a Horn compliant faithful ranking. The following concept is useful to deal with
this phenomenon.

Definition 9. For a family F of faithful structures let

F̃ = {F : F is a faithful structure such that ∗F is an F − revision operator}.

Thus F ∈ ˜F if there is an F ′ ∈ F such that ∗
F

= ∗
F ′

5 Hmin-Formulas and Translation

We define a translation of Horn postulates into sentences over an extension of
the first-order language of pseudo-orders. The language of pseudo-orders contains
the binary relation symbol ≤ and equality.

The translated sentences also contain additional unary predicate symbols
A1, . . . , A�, corresponding to Horn formulas ϕ1, . . . , ϕ� occurring in the postu-
lates. In other words, the predicates A1, . . . , A� range over closed subsets of the
ground set Tn.

Definition 10 (Hat). Given a conjunction μ of ϕ1, . . . , ϕ�, we denote by μ̂ the
first-order formula obtained by replacing the ϕ’s with A’s.

For instance, for μ(x) = ϕ1(x) one has μ̂(x) = A1(x), and for μ(x) = ϕ1(x) ∧
ϕ2(x) one has μ̂(x) = A1(x) ∧ A2(x).

Given a formula ν over the language ≤, A1, . . . , A� with a single free variable
x we write minν

≤ for a formula expressing that x is a minimal element satisfying
ν, i.e.,

minν
≤(x) ≡ ν(x) ∧ ∀y(ν(y) → ¬(y < x)).

When ≤ is clear from the context it is omitted as a subscript. Minimal elements
in the pseudo-order are defined by

min(x) ≡ ∀y(¬(y < x)).

We need the special cases when the formula ν is a conjunction of the unary
predicates A1, . . . , A�.

Definition 11 (Hmin-formula). A Hmin-formula over the unary predicate sym-
bols A1, . . . , A� is a first-order formula built from the Ais and formulas of the
form minν

≤(x), where the ν’s are arbitrary conjunctions of the Ais.

Now we can define the translation of a postulate.

Characterizability in Horn Belief Revision 503

Definition 12 (Translation). The translation τ(P) of a Horn postulate P is the
Hmin-sentence obtained from P by replacing

1. every occurrence of H(x) with min(x)
2. every occurrence μi(x) with its “hat” version
3. every occurrence of H ∗ μi with minμ̂i(x).

Note that Part 2 in the definition is redundant as the definition for ϕi is a
special case of the definition for μi.

Example 1 (Translation of the acyclicity postulates). Applying Definition 12 we
get the Hmin-sentence

(

n
∧

i=1

∃x(minAi(x) ∧ Ai+1(x))

)

→ ∃x(minA1(x) ∧ An(x)),

where, again, indices are meant cyclically.

The following is a direct consequence of the definitions, as τ is a simple
syntactic transformation.

Proposition 4. The mapping τ is a bijection between Horn postulates con-
taining revising formulas ϕ1, . . . , ϕ� and Hmin-sentences over unary predicates
A1, . . . , A�.

In order to interpret Hmin-formulas let us introduce the following.

Definition 13. (�-extension). Let F = (X,≤) be a faithful structure. An �-
extension of F is a structure

F ′ = (X,≤, A1, . . . , A�),

where A1, . . . , A� are unary relations and every Ai is a closed set of truth assign-
ments1.

Given Horn formulas H,ϕ1, . . . , ϕ� and a faithful structure F for H, the
definition of the (ϕ1, . . . , ϕ�)-extension of F is standard, obtained by interpreting
the unary predicate symbols A1, . . . , A� by Ai(a) = ϕi(a). Again, the following
proposition is a direct consequence of the definitions.

Proposition 5. Let H be a Horn knowledge base, F = (X,≤) be a faithful
structure for H and let ∗

F
be the Horn revision operator determined by F using

minimization. Let ϕ1, . . . , ϕ� be Horn formulas and P be a postulate. Then P is
satisfied by ∗

F
for ϕ1, . . . , ϕ� iff the (ϕ1, . . . , ϕ�)-extension of F satisfies τ(P).

1 With an abuse of notation, we use the same notation for a predicate symbol and its
interpretation over a structure, assuming that the structure is clear from the context.

504 J. Yaggie and G. Turán

6 ∀MSOHmin
-Definability and Games

In this section we introduce the concepts needed from finite model theory (see,
e.g., Ebbinghaus and Flum [11] and Libkin [19]).

A universal monadic second-order (∀MSO) sentence is of the form

Φ = ∀A1, . . . , A� Ψ,

where A1, . . . , A� range over unary predicates (or subsets) of the universe, and Ψ
is a first-order sentence using the unary predicate symbols A1, . . . , A� in addition
to the original language (in our case ≤ and equality). An existential second-order
(∃MSO) sentence is of the form Φ = ∃A1, . . . , A�Ψ .

We will actually use the following modified version of monadic second-order
quantifiers.

Definition 14 (Closed set quantifier). The closed-set quantifiers ∀c and ∃c are
generalized monadic second-order quantifiers interpreted in faithful structures,
ranging over closed subsets of truth assignments.

Definition 15 (∀MSOHminsentence). A ∀MSOHminsentence is a second order
sentence with universal closed-set quantifiers, of the form

Φ = ∀cA1, . . . , A� Ψ,

where Ψ is a Hmin-sentence.

The definition of ∃MSOHminsentences is analogous.

Definition 16 (∀MSOHmin-definability). A family F of faithful structures is
∀MSOHmin-definable if there is a ∀MSOHminsentence Φ such that for every faith-
ful structure F it holds that F ∈ F iff F satisfies Φ.

The following theorem establishes the link between characterizability and
definability. It follows directly from the definitions and its proof is omitted.

Theorem 6. Let F be a family of faithful structures. The family of F-revision
operators is characterizable iff the family ˜F is ∀MSOHmin-definable.

This theorem reduces questions about characterizability to questions about
∀MSOHmin-definability. We now develop tools for proving undefinability.

The q-round first-order Ehrenfeucht-Fräıssé game over two relational struc-
tures is played by two players, Spoiler and Duplicator. In each round Spoiler picks
one of the structures and an element of that structure. Duplicator responds by
picking an element in the other structure. After q rounds Duplicator wins if the
substructures of picked elements in the two structures are isomorphic. Other-
wise Spoiler wins. A basic result about this game is that a class of structures is
first-order definable iff there is a q such that if the q-round game is played on a
structure belonging to the class and a structure not belonging to the class, then
Spoiler has a winning strategy.

Characterizability in Horn Belief Revision 505

The first-order Ehrenfeucht-Fräıssé game has a variant corresponding to
∃MSO definability. Ajtai and Fagin [2] defined a modified version, which is
easier to use for proving undefinability results.

We introduce a version of the Ajtai-Fagin game defined for faithful structures
only. We refer to this game as the Horn-KM game. First let us introduce the
notion of a variant.

Let A1, . . . , A� be unary predicate symbols. There are L = 2� conjunctions
μ of A1, . . . , A�. Let us pick unary predicate symbols M1, . . . ,ML representing
them.

Definition 17 (�-min-variant). Let F = (X,≤) be a faithful structure. An �-
min-variant of F is a structure

F ′′ = (X,A1, . . . , A�,M1, . . . ,ML),

where F ′ = (X,≤, A1, . . . , A�) is an �-extension of F , and M1, . . . ,ML are the
interpretations of the formulas minν

≤(x) in F ′, for conjunctions ν of the Ais.

Note that F ′′ is a structure with unary predicates only, the relation ≤ is not
included, it is “forgotten”. The relation ≤ is used, however, in the intermediate
structure F ′ which determines the Mis. So F ′′ is not an extension of F ; therefore,
it is referred to as a variant.

Definition 18 ((G, �, q)-∃MSOHmingame, or Horn-KM game). Given a class G
of faithful structures and parameters � and q, the (G, �, q)-∃MSOHmingame is
played by Spoiler and Duplicator as follows:

1. Duplicator picks a faithful structure F1 = (X1,≤1) in G,
2. Spoiler picks closed subsets A1, . . . , A� of X1,
3. Duplicator picks a faithful structure F2 = (X2,≤2) �∈ G, and closed subsets

B1, . . . , B� of X2,
4. Form the �-min-variant F ′′

1 of F1 determined by the �-extension F ′
1 = (X1,≤1

, A1, . . . , A�), and the �-min-variant F ′′
2 of F2 determined by the �-extension

F ′
2 = (X2,≤2, B1, . . . , B�),

5. Spoiler and Duplicator play a q-round first-order Ehrenfeucht-Fräıssé game
on F ′′

1 and F ′′
2 .

The following theorem shows how to use these games to prove undefinability
(which, by Theorem 6, implies non-characterizability). The proof is standard
and is omitted.

Theorem 7. Let G be a class of faithful structures. Then G is not ∃MSOHmin-
definable iff for every � and q, Duplicator has a winning strategy in the (G, �, q)-
∃MSOHmingame.

506 J. Yaggie and G. Turán

011110

001111

111100

011111 111101

111110

100100

000000

Fig. 1. An ab wheel for n = 6

7 Ab Wheels

After having developed the machinery to prove non-characterizability, we
describe the structures used in the proof of Theorem3. These structures gen-
eralize the example of Fig. 1 in [8].

Consider the knowledge base Hn = 〈0n〉. Let Cn = {a1, . . . , an} ⊂ Tn be the
set of truth assignments of weight n − 1, where ai is the truth assignment with
a zero in the i’th position. Let Un = {b1, . . . , bn} be the set of truth assignments
of weight n − 2 with two consecutive zeros. The truth assignment bi has zeros
in positions i and i + 1. Indices are meant cyclically, i.e., b5 = 01110. Thus
ai ∩ ai+1 = bi, and so {ai, ai+1, bi} is closed. Finally, let Gn be the directed
graph on the vertex set Cn, containing one-way edges (ai, ai+1) (where addition
is again meant cyclically) and the other edges both ways.

Definition 19 (Ab wheel2). An ab wheel Wn is a faithful structure for Hn with
vertices Tn and < corresponding to the following cases:

1. upper chain: truth assignments in Un form a linear order and are greater than
any other truth assignment,

2. cycle: truth assignments in Cn are below Un and form the directed graph
structure Gn as described above,

3. lower chain: all other truth assignments form a linear order and are smaller
than any other truth assignment, with the all-zero truth assignment at the
bottom.

2 The name refers to a gym tool resembling the structure.

Characterizability in Horn Belief Revision 507

Note that
min{ai, ai+1, bi} = {ai+1}. (1)

Lemma 1. Every closed subset of Tn has a unique minimum in Wn.

Proof. Let S be a closed subset of Tn. The statement is clear if S is contained
in the upper chain, or if it has an element in the lower chain. Otherwise assume
that S contains k ≥ 1 elements in the cycle, and possibly some elements in the
upper chain.

If k = 1 then the statement is clear again. If k = 2 and the two elements
in the cycle are consecutive, i.e., of the form ai, ai+1, then the unique minimal
element of S is ai+1. Other cases are not possible: if k = 2 and the two elements
are non-consecutive, or if k ≥ 3, the closure of S implies that it contains at least
one element from the lower chain.

Lemma 2. The ab wheel Wn

1. is a Horn compliant faithful structure for Hn,
2. ∗

Wn
is Horn revision operator which is not in ˜T , i.e., it is not generated by

any Horn compliant faithful ranking.

Proof. For 1., only Horn compliance needs to be proved and it follows directly
from Lemma 1. Part 2. follows from the facts that Horn compliant faithful rank-
ings generate revision operators satisfying the acyclicity postulate scheme [8],
and, on the other hand, ∗

Wn
falsifies Acycn. The latter claim follows from con-

sidering ϕi = 〈{ai, ai+1, bi}〉. By (1) it holds that (min |ϕi|) ∩ |ϕi+1| = {ai+1},
but

min |ϕ1| ∩ |ϕn| = {a2} ∩ {an, a1, bn} = ∅.

The following statement is not used later on, but it may be of interest in
itself.

Proposition 1. The Horn revision operator ∗
Wn

1. satisfies the Horn AGM postulates,
2. satisfies the acyclicity postulates Acyc� for 3 ≤ � ≤ n − 1.

8 Proof of Theorem3 and Statement of Another
Non-characterizability Result

Theorems 6 and 7 yield the following “characterization of characterizability”.

Lemma 3. Let F be a class of faithful structures and let G be the class of faith-
ful structures not in ˜F . The class of F-revision operators is not characteriz-
able iff for every � and q, Duplicator has a winning strategy in the (G, �, q)-
∃MSOHmingame.

508 J. Yaggie and G. Turán

Thus to show that the class of T -revision operators is not characterizable, we
need to describe a winning strategy of Duplicator in the (G, �, q)-∃MSOHmingame
for G, the class of faithful structures not in ˜T .

In the first round Duplicator picks the ab wheel Wn for n = 2� + 1. Assume
that Spoiler picks closed subsets A1, . . . , A� of Tn in the second round.

Let I ⊆ {1, . . . , �}. Then SI = ∩i∈IAi is closed and has a unique minimum
mI . Let aj ∈ Cn be a truth assignment which is never minimal, i.e., aj �= mI for
every I.

The Horn compliant faithful structure picked by Duplicator in the third round
is a linear order where the upper and lower chains are the same as in Wn, and
the cyclic structure Gn between them is replaced by the linear order

aj > aj+1 > . . . > an > a1 > . . . > aj−1.

In other words, the cycle Gn is cut and it is made into a chain (referred to as the
middle chain) by placing aj on top. The closed sets B1, . . . , B� are the same as
the ones selected by Spoiler in Wn. (Note that closedness is defined in terms of
the truth assignments only, independently of the underlying pseudo-preorder.)

We claim that the �-min variants of the two structures are the same (as
structures with unary relations over Tn), thus Duplicator wins the first-order
game in the last part of the Horn − KM game.

We need to show that for every I ⊆ {1, . . . , �} the set of minimal truth
assignments in SI and S′

I = ∩i∈IBi are the same (in each case with respect
to the corresponding pseudo-order). As we know that in both structures every
closed subset has a unique minimum, it is sufficient to show that the minimal
element mI of SI is also minimal in S′

I . This follows directly if mI is in the upper
or lower chain.

If mI is in the cycle then we distinguish two cases. If mI is the only element
of SI in the cycle, then all other elements of SI are in the upper chain. In the
second structure mI is in the middle chain and all the other elements of S′

I are
in the upper chain, so mI is indeed minimal in S′

I .
Otherwise, it must be the case that SI has two elements in the cycle, mI and

its predecessor m′
I on the cycle, and all other elements of SI are in the upper

chain. The choice of aj guarantees that mI �= aj , thus m′
I is greater than mI in

the second structure, and all other elements of S′
I are in the upper chain. Thus

mI is again minimal in S′
I . This completes the proof of Theorem 3.

We formulate a non-characterizability result for another class of Horn revision
operators as well. Let

B = {F : F �∈ ˜T }
be the class of Horn compliant faithful structures not in ˜T .

Theorem 8. The class of B-revision operators is not characterizable.

The proof is similar to the proof of Theorem3, with the Duplicator starting
with a sufficiently large linear order with truth assignments of weight n − 3 and

Characterizability in Horn Belief Revision 509

n − 1 at the bottom, and producing a faithful structure similar to an ab wheel
in the third round.

9 Remarks on Strict Horn Compliance

Strictly Horn compliant faithful rankings are introduced by Zhuang et al. [26].
In this section we make some observations on the properties of strictly Horn
compliant faithful rankings and their connections to classes studied in [8].

Horn compliance for a faithful ranking is equivalent to the requirement that
the intersection of two equivalent truth assignments is not above the two truth
assignments [26]. A faithful ranking is strictly Horn compliant if the intersection
of two arbitrary truth assignments is not above both assignments. The following
is a direct consequence of the definitions.

Proposition 9. Let R be a total preorder on Tn with level sets V1, . . . , Vr. Then
R is strictly Horn compliant iff V1∪ . . .∪Vi is closed under intersection for every
i, 1 ≤ i ≤ r.

In other words, strictly Horn compliant total preorders can be thought of as
a sequence of Horn formulas ϕ0, . . . , ϕr, where ϕ0 = H is the knowledge base,
ϕr is identically true, ϕi implies ϕi+1 for every i, and the level of a truth assign-
ment is determined by the first formula it satisfies. This also implies that strictly
Horn compliant total preorders have a syntactic definition as well, using the com-
pleteness of unit resolution for Horn formulas, as each formula can be obtained
from the previous one using a sequence of unit resolutions and weakenings which
preserve the Horn property of clauses.

Strictly Horn compliant belief revision operators turn out to be of interest
from the point of view of relating contractions and revisions for Horn logic [26].
Strictly Horn compliant belief revision operators are related to basic and canon-
ical Horn belief revision operators introduced in [8].

A faithful ranking is basic if truth assignments not in the knowledge base are
ranked according to their weight, with lower weight truth assignments having
lower rank. A canonical faithful ranking is specified by a Horn knowledge base
H and a partition (P1, . . . , Pr) of the variables. This determines a sequence
ϕ0, . . . , ϕr+1 of Horn formulas, where ϕ0 = H and ϕi is obtained from H by
adding the negations of every variable in P1 ∪ . . . Pi to every Horn clause of H.
This, in turn, determines a total preorder on the truth assignments, where a
truth assignment is on the i’th level if ϕi is the first formula it satisfies. There
is an additional level added for truth assignments not satisfying ϕr.

It is clear, then, that both basic and canonical revisions are strongly Horn
compliant. Proposition 9 implies that strictly Horn compliant revision operators,
given their syntactic description, can be computed efficiently.

10 Conclusion

Delgrande and Peppas proved a characterization result for Horn belief revi-
sion related to the Katsuno-Mendelzon characterization of general belief revision

510 J. Yaggie and G. Turán

operators. Their characterization, besides minor modifications of the AGM pos-
tulates, includes the acyclicity postulate scheme which contains infinitely many
postulates. In this paper we showed that the postulates in their characterization
cannot be replaced with a finite set of postulates. Thus any characterization of
Horn belief revision operators obtained from a Horn compliant faithful ranking
by minimization will inevitability include an infinite number of postulates.

Several open problems remain related to this topic. For instance, even though
the formulation of Definition 5 was chosen to cover a broad spectrum of postu-
lates, alternative definitions could be considered. One direction is to include
the predicate for componentwise partial ordering of truth assignments, or other
Boolean relations, in the language used by postulates. Considering alternative
frameworks for characterizability could provide further insights into the logical
structure of revision operators.

Strictly Horn compliant belief revision operators form a natural class based
on total preorders with Horn “fallback sets” [8] having good computational prop-
erties. Characterizability of Horn revision operators obtained from such faithful
rankings is an open problem. Should this class be non-characterizable, the app-
roach of this paper offers a framework to prove such a result.

Finally, Horn logic is only one of many logics of interest in belief revision.
The adaptation of the framework of [23] and this paper to other logics may yield
further results.

References

1. Adaricheva, K., Sloan, R.H., Szörényi, B., Turán, G.: Horn belief contraction:
remainders, envelopes and complexity. In: Proceedings of the 13th International
Conference on Principles of Knowledge Representation and Reasoning (KR), May
2012

2. Ajtai, M., Fagin, R.: Reachability is harder for directed than for undirected finite
graphs. J. Symbolic Logic 55(1), 113–150 (1990)

3. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change:
partial meet contraction and revision functions. J. Symbolic Logic 50(2), 510–530
(1985)

4. Ben-Naim, J.: Lack of finite characterizations for the distance-based revision. In:
10th International Conference on Principles of Knowledge Representation and Rea-
soning (KR 2006), pp. 239–248 (2006)

5. Booth, R., Meyer, T., Varzinczak, I., Wassermann, R.: A contraction core for
Horn belief change: preliminary report. In: 13th International Workshop on Non-
monotonic Reasoning (NMR) (2010)

6. Booth, R., Meyer, T.A., Varzinczak, I.J.: Next steps in propositional Horn con-
traction. In: IJCAI, pp. 702–707 (2009)

7. Delgrande, J.: Horn clause belief change: contraction functions. In: 11th Inter-
national Conference on Principles of Knowledge Representation and Reasoning
(KR-2008), pp. 156–165. AAAI Press (2008)

8. Delgrande, J.P., Peppas, P.: Belief revision in Horn theories. Artif. Intell. 218, 1–22
(2015)

Characterizability in Horn Belief Revision 511

9. Delgrande, J.P., Wassermann, R.: Horn clause contraction functions: belief set and
belief base approaches. In: Proceedings of the Twelfth International Conference on
the Principles of Knowledge Representation and Reasoning (KR 2010) (2010)

10. Delgrande, J.P., Wassermann, R.: Horn clause contraction functions. J. Artif. Intell.
Res. (JAIR) 48, 475–511 (2013)

11. Ebbinghaus, H.D., Flum, J.: Finite Model Theory. Springer Monographs in Math-
ematics. Springer, Berlin (2006)

12. Fotinopoulos, A.M., Papadopoulos, V.: Semantics for Horn contraction. In: Pro-
ceedings of the 7th Panhellenic Logic Symposium, pp. 42–47. Patras University
Press (2009)

13. Hansson, S.O.: A Textbook of Belief Dynamics. Applied Logic Series. Springer,
Netherlands (1999)

14. Haret, A., Rümmele, S., Woltran, S.: Merging in the Horn fragment. In: Proceed-
ings of the Twenty-Fourth International Joint Conference on Artificial Intelligence,
IJCAI 2015, Buenos Aires, Argentina, July 25–31, 2015, pp. 3041–3047 (2015)

15. Horn, A.: On sentences which are true on direct unions of algebras. J. Symbolic
Logic 16, 14–21 (1951)

16. Katsuno, H., Mendelzon, A.O.: Propositional knowledge base revision and minimal
change. Artif. Intell. 52(3), 263–294 (1991)

17. Langlois, M., Sloan, R.H., Szörényi, B., Turán, G.: Horn complements: towards
horn-to-horn belief revision. In: AAAI National Conference on Artificial Intelli-
gence (AAAI-2008) (2008)

18. Lehmann, D.J., Magidor, M., Schlechta, K.: Distance semantics for belief revision.
J. Symbolic Logic 66(1), 295–317 (2001)

19. Libkin, L.: Elements of Finite Model Theory. Texts in Theoretical Computer Sci-
ence: An EATCS Series. Springer, Berlin (2004)

20. McKinsey, J.C.C.: The decision problem for some classes without quantifiers. J.
Symbolic Logic 8, 61–76 (1943)

21. Reis, M.D.L., Fermé, E., Peppas, P.: Construction of system of spheres-based tran-
sitively relational partial meet multiple contractions: an impossibility result. Artif.
Intell. 233, 122–141 (2016)

22. Schlechta, K.: Coherent Systems. Studies in Logic and Practical Reasoning. Else-
vier Science, Amsterdam (2004)

23. Turán, G., Yaggie, J.: Characterizability in belief revision. In: Proceedings of the
Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI
2015, Buenos Aires, Argentina, July 25–31, 2015, pp. 3236–3242 (2015)

24. Zhuang, Z.Q., Pagnucco, M.: Horn contraction via epistemic entrenchment. In:
Janhunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS, vol. 6341, pp. 339–351.
Springer, Heidelberg (2010)

25. Zhuang, Z.Q., Pagnucco, M.: Transitively relational partial meet Horn contraction.
In: IJCAI, pp. 1132–1138 (2011)

26. Zhuang, Z., Pagnucco, M., Zhang, Y.: Inter-definability of Horn contraction and
Horn revision. J. Philos. Logic (2016). doi:10.1007/s10992-016-9401-2

http://dx.doi.org/10.1007/s10992-016-9401-2

Short Papers

Formalizing Goal Serializability for Evaluation
of Planning Features

Reza Basseda(B) and Michael Kifer

Stony Brook University, Stony Brook, NY 11794, USA
{rbasseda,kifer}@cs.stonybrook.edu

Abstract. Evaluation of the properties of various planning techniques
such as completeness and termination plays an important role in choosing
an appropriate planning technique for a particular planning problem. In
this paper, we use the already existing formal specification of two well-
known and classic state space planning techniques, forward state space
planning and goal stack state space planning techniques, in Transaction
Logic(T R) to study their completeness. Our study shows that using T R,
we can formally specify the serializability of planning problems and prove
the completeness of STRIPS planning problems for planning problems
with serializable goals.

Keywords: Deductive planning · STRIPS planning · Transaction Logic

1 Introduction

Evaluation of different properties of planning techniques such as termination
and completeness becomes more essential when, in many cases, different search
strategies of a planning technique may affect the performance of planning process
while different properties such as completeness and termination is required. For
example, forward state space planning and goal stack space planning techniques
may have different execution time when they are used by a robot in the famous
block world example while Sussman Anomaly [1] shows that goal stack space
planning is not guaranteed to succeed. Such considerations need appropriate
formal frameworks to represent the planning techniques properly.

Using logical deduction to solve a planning problem has been a popular app-
roach for more than three decades [2–6]. However, none of the existing logical
frameworks of deductive planners are used to study the different properties of
planning techniques because these planners are just relying on their correspond-
ing inference systems to search for a plan and they are not expressive enough
to formally represent more complicated planning techniques such as goal state
space planning. Therefore, the requirement of a formal, neat, and expressive
logical framework for such studies seems to be inevitable.

This work was supported, in part, by the NSF grant 0964196.

c© Springer International Publishing AG 2016
L. Michael and A. Kakas (Eds.): JELIA 2016, LNAI 10021, pp. 515–521, 2016.
DOI: 10.1007/978-3-319-48758-8 33

516 R. Basseda and M. Kifer

In this paper, we are using the encoding of forward state space planning
and goal stack state space planning techniques in Transaction Logic(T R) for
the evaluation of their completeness. Our paper shows that T R is an appro-
priate logical framework for such evaluation. Unlike above mentioned logical
frameworks, the well-defined model theory of T R together with its sound and
complete proof theory let us easily prove different properties of planning tech-
niques such as completeness. It also lets us formally redefine the concept of goal
serializablity in planning that is used to examine the completeness of goal stack
state space planning technique for planning problems. Our simple and straight-
forward proofs for two classic planning techniques, forward state space planning
(called näıve1) and goal stack state space (called STRIPS2) are evidences for
this claim.

The next section briefly characterizes a planning problem. The third section
explains how we formally encode planning techniques in T R and the last section
concludes our paper.

2 Characterization of a Planning Problem

In a STRIPS planning problem, actions update the state of a system. We assume
denumerable sets of variables X , constants C, and disjoint sets of predicate sym-
bols, extensional (Pext) and intensional (Pint) ones. A term is a variable or con-
stant. Extensional (resp. intensional) Atoms have the form p(t1, ..., tn), where ti
is a term and p ∈ Pext (resp. p ∈ Pint). A ground atom is a variable free atom.
A literal is either an atom or a negated extensional atom, ¬p(t1, ..., tn). Note
that negative intensional atoms cannot form literals. A substitution θ is a set of
expressions of the form X ←− c, where X ∈ X and c ∈ C. Given a substitution
θ, an atom aθ is obtained from atom a by replacing its variables with constants
according to θ.

Intensional predicate symbols are defined by rules. A rule r, shown as
head(r) ← b1 ∧ · · · ∧ bn, consists of an intensional atom head(r) in the head
and a conditional body, a (possibly empty) conjunction of literals b1, . . . , bn,
where bi ∈ body(r). A ground instance of a rule, rθ, is any rule obtained from
r by a substitution of head(r) and body(r) with ground atoms head(r)θ and
body(r)θ respectively. Given a set of literals S and a ground rule rθ, the rule
is true in S if either head(r)θ ∈ S or body(r)θ �⊆ S. A (possibly non-ground)
rule is true in S if all of its ground instances are true in S. A set S of literals is
consistent if there is no atom, a, such that {a,¬a} ⊆ S.

Definition 1 (State). Given a set of rules R, a consistent set S of literals is
called a state if and only if

1. For each ground extensional atom a, either, a ∈ S, or ¬a ∈ S.
2. Every rule of R is true in S.

1 Due to its simple nature.
2 As it was originally proposed by [7] in STRIPS.

Formalizing Goal Serializability for Evaluation of Planning Features 517

Definition 2 (STRIPS action). A STRIPS action α = 〈pα(X1, ...,Xn),
P re(α), E(α)〉 consists of an intensional atom pα(X1, ...,Xn) in which pα ∈ Pint

is a predicate that is reserved to represent the action α and can be used for no
other purpose, a set of literals Pre(α), called the precondition of α, and a con-
sistent set of extensional literals E(α), called the effect of α. The variables in
Pre(α) and E(α) must occur in {X1, ...,Xn}.
Note that the literals in Pre(α) can be both extensional and intensional, while
the literals in E(α) can be extensional only.

Definition 3 (Execution of a STRIPS action). A STRIPS action α is exe-
cutable in a state S if there is a substitution θ such that θ(Pre(α)) ⊆ S.
A result of the execution (with respect to θ) is the state S′ such that
S′ = (S \ ¬θ(E(α))) ∪ θ(E(α)), where ¬E = {¬�|� ∈ E}.
Note that S is well-defined since E(α) is consistent. Observe also that, if α has
variables, the result of an execution, S, may depend on the chosen substitution θ.

Definition 4 (Planning problem). Given a set of rules R, a set of STRIPS
actions A, a set of literals G, called the goal, and an initial state S, a planning
solution (or simply a plan) for the planning Π = 〈R,A, G,S〉 is a sequence of
ground actions σ = α1, . . . , αn such that for each 1 ≤ i ≤ n;

– there is a substitution θi and a STRIPS action α′
i ∈ A such that α′

iθ = αi;
and

– there is a sequence of states S0,S1, . . . ,Sn such that
• S = S0 and G ⊆ Sn (i.e., G is satisfied in the final state);
• αi is executable in state Si−1 and the result of that execution is the state Si.

The following definition of goal serializable planning problems constitutes
a measure that recognizing planning problems, for which the STRIPS planning
technique is proven to be complete.

Definition 5 (Goal serializable planning problem). Given a planning
problem Π = 〈R,A,S, G〉, let σ be the shortest solution plan for Π and G′ ⊂ G
be any arbitrary set of literals such that G �= G′. We call Π a goal serializable
planning problem if and only if, for every σ′, that is a planning solution for
Π ′ = 〈R,A, G′,S〉 and the result of its execution is S′ where |σ′| ≤ |σ|, there is
a planning solution σ′′ for Π ′′ = 〈R,A, G,S′〉 such that |σ′′| < |σ|.

A brief introduction to the subset of T R [8–11] has been appeared in [12–14].
Although such introduction is required to make our paper self-contained, we omit
that introduction to save space and refer the reader to [14].

3 The T R Planners

The informal idea of using T R as a planning formalism and an encoding of
STRIPS and naive planning as a set of T R rules first appeared in an unpublished

518 R. Basseda and M. Kifer

report [8]. We extend and slightly modify the original methods to prove different
properties of each planning technique.

Given a set of extensional literals G, we define Enf(G) to be the set of elemen-
tary updates that makes G true. Next we introduce a natural correspondence
between STRIPS actions and T R rules.

Definition 6 (Actions as T R rules). Let α = 〈pα(X), P re(α), E(α)〉 be a
STRIPS action. We define its corresponding TR rule, tr(α), to be a rule of
the form

pα(X) ← (∧�∈Pre(α)�) ⊗ (⊗u∈Enf(E(α))u). (1)

Note that in (1) the actual order of action execution in the last component,
⊗u∈Enf(E(α))u, is immaterial, since all such executions happen to lead to the
same state.

We now define a set of T R clauses that simulate naive and STRIPS [7]
planning techniques. Moreover, for convenience, we use a ̂⊗ b as a shorthand for
a ⊗ b ∨ b ⊗ a. This connective is called the shuffle operator in [8]. We define it
to be commutative and associative and thus extend it to arbitrary number of
operands.

Definition 7 (Näıve planning rules). Given a STRIPS planning problem
Π = 〈R,A, G,S〉 (see Definition 4), we define a set of T R rules, P(Π), which
simulate naive planning technique to provide a planning solution to the planning
problem. P(Π) has two parts, Pgeneral, PA, described below.

– The Pgeneral part: contains a couple of rules as follows;

plan ← .
plan ← execute action ⊗ plan.

(2)

These rules construct a sequence of actions and bind them to the plan.
– The Pactions part: for each α ∈ A, Pactions has a couple of rules as follows;

pα(X) ← (∧�∈Pre(α)�) ⊗ (⊗u∈Enf(E(α))u).
execute action ← pα(X).

(3)

This is the T R rule that corresponds to the action α, introduced in Definition 6
and generally links an action to a plan.

Definition 8 (STRIPS planning rules). Let Π = 〈R,A, G,S〉 be a STRIPS
planning problem (see Definition 4). We define a set of T R rules, P(Π), which
simulate STRIPS planning technique to provide a planning solution to the plan-
ning problem. P(Π) has three disjoint parts, PR, PA, and PG, described below.

– The PR part: for each rule p(X) ← p1(X1) ∧ · · · ∧ pk(Xn) in R, PR has a rule
of the form

achieve p(X) ← ̂⊗n
i=1achieve pi(Xi). (4)

Rule (4) is an extension to the classical STRIPS planning algorithm. It cap-
tures intentional predicates and ramification of actions, and it is the only
major aspect of our T R-based rendering of STRIPS that was not present in
the original in one way or another.

Formalizing Goal Serializability for Evaluation of Planning Features 519

– The part PA = Pactions ∪ Patoms ∪ Pachieves is constructed out of the actions
in A as follows:
• Pactions: similar to Definition 7.
• Patoms = Pachieved ∪ Penforced has two disjoint parts as follows:

– Pachieved: for each extensional predicate p ∈ Pext, Pachieved has the rules

achieve p(X) ← p(X).
achieve not p(X) ← ¬p(X).

(5)

These rules say that if an extensional literal is true in a state then that
literal has already been achieved as a goal.

– Penforced: for each action α = 〈pα(X), P re(α), E(α)〉 in A and each
e(Y) ∈ E(α), Penforced has the following rule:

achieve e(Y) ← ¬e(Y) ⊗ execute pα(X). (6)

This rule says that one way to achieve a goal that occurs in the effects
of an action is to execute that action.

• Pachieves: for each action α = 〈pα(X), P re(α), E(α)〉 in A, Pachieves has
the following rule:

execute pα(X) ← (̂⊗�∈Pre(α)achieve �) ⊗ pα(X). (7)

This means that to execute an action, one must first achieve the precon-
dition of the action and then perform the state changes prescribed by the
action.

– PG: Let G = {g1, ..., gk}. Then PG has a rule of the form:

achieveG ← (̂⊗k

gi=1achieve gi) ⊗ (∧k
i=1gi). (8)

Given a STRIPS planning problem Π = 〈R,A, G,S〉, each of Defini-
tions 7 and 8 gives a set of T R rules that specifies the corresponding planning
strategy for that problem. To find a solution for that planning problem, one
simply needs to place the request (9) (resp. (10)) in the initial state and use the
set of rules from Definition 7 (resp. Definition 8) and the T R’s inference system
to find a proof.

? − plan ⊗ (∧gi∈Ggi). (9)

? − achieveG . (10)

Completeness of a planning strategy means that, for any STRIPS planning
problem, if there is a solution, the planner will find at least one plan.

Theorem 1 (Completeness of naive planning). If there is a plan that
achieves the goal G from the initial state D0 then the T R-based naive planner
will find a plan.

520 R. Basseda and M. Kifer

Proof (Sketch). The proof is a direct consequence of T R inference system com-
pleteness.

Theorem 2 (Completeness of STRIPS planning). Given a goal serializ-
able planning problem Π = 〈R,A, G,D0〉, if there is a plan that achieves the goal
G from the initial state D0 then the T R-based STRIPS planner will find a plan.

Proof (Sketch). By induction on the length of the plan. The full proof can be
found in the full report.3

4 Conclusion

This paper has demonstrated that the use of Transaction Logic opens up new
possibilities for generalizations and considerations of the properties of existing
planning techniques. For instance, we have shown that once the STRIPS algo-
rithm is cast as a set of rules in T R, the different properties of the framework can
be studied, almost for free, to recognize and define such advanced concepts as
goal serializability of planning. The concept of serializability, not only classifies
planning problem regarding to the completeness of STRIPS planning technique,
but also establishes further explorations in different areas such as algorithms
and graph theory.

References

1. Sacerdoti, E.D.: The nonlinear nature of plans. In: Proceedings of the 4th Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 1975, vol. 1, pp. 206–214.
Morgan Kaufmann Publishers Inc., San Francisco (1975)

2. Bibel, W.: A deductive solution for plan generation. In: Schmidt, J.W., Thanos,
C. (eds.) Foundations of Knowledge Base Management. Topics in Information Sys-
tems, pp. 453–473. Springer, Heidelberg (1989)

3. Kahramanoğulları, O.: On linear logic planning and concurrency. In: Mart́ın-Vide,
C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 250–262. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-88282-4 24

4. Cresswell, S., Smaill, A., Richardson, J.: Deductive synthesis of recursive plans in
linear logic. In: Biundo, S., Fox, M. (eds.) ECP 1999. LNCS (LNAI), vol. 1809, pp.
252–264. Springer, Heidelberg (2000). doi:10.1007/10720246 20

5. Guglielmi, A.: Concurrency and plan generation in a logic programming language
with a sequential operator. In: Hentenryck, P.V. (ed.) ICLP, pp. 240–254. MIT
Press (1994)

6. Kahramanogullari, O.: Towards planning as concurrency. In: Hamza, M.H. (ed.)
Artificial Intelligence and Applications, pp. 387–393. IASTED/ACTA Press (2005)

7. Fikes, R.E., Nilsson, N.J.: STRIPS: a new approach to the application of theorem
proving to problem solving. Artif. Intell. 2, 189–208 (1971)

8. Bonner, A., Kifer, M.: Transaction logic programming (or a logic of declarative
and procedural knowledge). Technical report CSRI-323, University of Toronto,
November 1995. http://www.cs.toronto.edu/∼bonner/transaction-logic.html

3 http://ewl.cewit.stonybrook.edu/planning/Goal-Serializability.pdf.

http://dx.doi.org/10.1007/978-3-540-88282-4_24
http://dx.doi.org/10.1007/10720246_20
http://www.cs.toronto.edu/~bonner/transaction-logic.html
http://ewl.cewit.stonybrook.edu/planning/Goal-Serializability.pdf

Formalizing Goal Serializability for Evaluation of Planning Features 521

9. Bonner, A., Kifer, M.: A logic for programming database transactions. In:
Chomicki, J., Saake, G. (eds.) Logics for Databases and Information Systems, pp.
117–166. Kluwer Academic Publishers, March 1998

10. Bonner, A.J., Kifer, M.: An overview of transaction logic. Theoret. Comput. Sci.
133(32), 205–265 (1994)

11. Bonner, A., Kifer, M.: Transaction logic programming. In: International Conference
on Logic Programming, Budapest, Hungary, pp. 257–282. MIT Press, June 1993

12. Basseda, R., Kifer, M., Bonner, A.J.: Planning with transaction logic. In:
Kontchakov, R., Mugnier, M.-L. (eds.) RR 2014. LNCS, vol. 8741, pp. 29–44.
Springer, Heidelberg (2014). doi:10.1007/978-3-319-11113-1 3

13. Basseda, R., Kifer, M.: Planning with regression analysis in transaction logic.
In: Cate, B., Mileo, A. (eds.) RR 2015. LNCS, vol. 9209, pp. 45–60. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-22002-4 5

14. Basseda, R., Kifer, M.: State space planning using transaction logic. In: Pontelli,
E., Son, T.C. (eds.) PADL 2015. LNCS, vol. 9131, pp. 17–33. Springer, Heidelberg
(2015). doi:10.1007/978-3-319-19686-2 2

http://dx.doi.org/10.1007/978-3-319-11113-1_3
http://dx.doi.org/10.1007/978-3-319-22002-4_5
http://dx.doi.org/10.1007/978-3-319-19686-2_2

Rule-based Stream Reasoning for Intelligent
Administration of Content-Centric Networks

Harald Beck1(B), Bruno Bierbaumer2, Minh Dao-Tran1, Thomas Eiter1,
Hermann Hellwagner2, and Konstantin Schekotihin2

1 TU Wien, Vienna, Austria
{beck,dao,eiter}@kr.tuwien.ac.at

2 Alpen-Adria-Universität Klagenfurt, Klagenfurt, Austria
bruno@itec.aau.at, {bruno.bierbaumer,hermann.hellwagner,

konstantin.schekotihin}@aau.at

Abstract. Content-Centric Networking (CCN) research addresses the
mismatch between the modern usage of the Internet and its outdated
architecture. Importantly, CCN routers use various caching strategies to
locally cache content frequently requested by end users. However, it is
unclear which content shall be stored and when it should be replaced. In
this work, we employ novel techniques towards intelligent administration
of CCN routers. Our approach allows for autonomous switching between
existing strategies in response to changing content request patterns using
rule-based stream reasoning framework LARS which extends Answer Set
Programming for streams. The obtained possibility for flexible router
configuration at runtime allows for faster experimentation and may result
in significant performance gains, as shown in our evaluation.

1 Introduction

Various future Internet research efforts are being pursued for efficient multimedia
distribution, among them Content-Centric Networking (CCN) [14]. The opera-
tion of a CCN network relies on two packet types, Interest and Data. Clients
issue Interest packets containing the content name they want to retrieve. CCN
routers forward the Interest packets until they reach a content provider, which
answers with a Data packet. The latter travels back to the content consumer
following the way of Interest packets. In addition, the CCN routers have the
possibility to cache Data packets in their Content Stores. Thus, the Interest
packets of another consumer can be directly satisfied out of a Content Store.
These caches make it possible to satisfy popular content requests directly out of
caches and reduce the network load [14].

A caching strategy defines which content is stored and for how long before
being replaced. There is a rich literature of strategies for CCN [21,24]. Examples

This work was partly funded by the Austrian Science Fund (FWF) under the CHIST-
ERA project CONCERT (A Context-Adaptive Content Ecosystem Under Uncer-
tainty), project number I1402, as well as projects P26471 and W1255-N23.

c© Springer International Publishing AG 2016
L. Michael and A. Kakas (Eds.): JELIA 2016, LNAI 10021, pp. 522–528, 2016.
DOI: 10.1007/978-3-319-48758-8 34

Rule-based Stream Reasoning for Intelligent Administration 523

of most popular strategies include: (a) Least Recently Used (LRU), which orders
items in cache by access time stamps and replaces the oldest item; (b) First-
In-First-Out (FIFO) implementing a queue; (c) Least Frequently Used (LFU)
which orders items by access frequency and replaces the least accessed item; or
(d) Random that replaces a random item in the cache. However, selection of an
appropriate strategy is complicated.

Example 1. Consider a situation in which some music clips go viral, i.e., get
very popular over a short period of time. In this case, network administrators
may manually configure the routers to cache highly popular content for some
time period, and to switch back to the usual caching strategy when the consumer
interests get more evenly distributed. However, as this period of time is hard to
predict, it would be desirable that routers autonomously switch their caching
strategy to ensure high quality of service. �

Evaluations, like [4,24], show that no “silver bullet” strategy is superior in
all tested scenarios, since for every strategy there are conditions in which it
works best. There conditions can often be characterized by parameters of a
consumer interests distribution. Usually, the content popularity is described in

the literature with a Zipf distribution [18]: P (X = i) =
(

iα
∑C

j=1 1/jα
)−1

,
where C is a number of items in the content catalog, α is a value of the exponent
characterizing the distribution and i is a rank of an item in the catalog. The
variation of the exponent α allows to characterize different popularity models
for consumers interests: (i) if α is high, the popular content is limited to a small
number of items; (ii) if α is low, every content is almost equally popular.

As real CCNs are not deployed yet, there is currently no real-world experience
to rely on, and developing selection methods for caching strategies is not well
supported. Motivated by all this, we consider a router architecture that allows
for dynamic switching of caching strategies in reaction to the current network
traffic, based on stream reasoning, i.e., reasoning over recent snapshots of data
streams.

Contributions. (i) We present an Intelligent Caching Agent (ICA) for the
administration of CCN routers using stream reasoning, which allows for the
first implementation of a local and dynamic caching strategy selection. (ii) To
simulate various CCN application scenarios, router architectures and rule-based
administration policies, we propose an extension of the well-known CCN sim-
ulator ndnSIM [15]. (iii) The evaluation results of our methods on two sample
scenarios (as in Example 1) indicate a clear performance gain when basic caching
strategies are dynamically switched by routers in reaction to the observed stream
of requested data packets.

In summary, we provide a feasibility study for using logic-based stream rea-
soning techniques to guide selection of caching strategies in CCNs. Moreover,
we also provide a detailed showcase of analytical, declarative stream reasoning
tools for intelligent administration problems; to the best of our knowledge, no
similar work exists to date.

524 H. Beck et al.

2 Stream Reasoning

Router administration requires evaluation of streaming data. To the best of our
knowledge, declarative stream reasoning [6] methods [2,11,12,16,23] have not
been used.

Example 2 (con’t). Consider the following rules to select a caching strategy. If
in the last 30 s there was always a high α̂ value (some content is very popular),
use LFU, and for a medium value, take LRU. Furthermore, use FIFO if the
value is low but once in the last 20 s 50 % was real-time content. Otherwise, use
Random. �

Example 2 illustrates that a fully declarative, rule-based language would assist
the readability of a router’s module that controls (potentially far more complex)
decisions. We employ the rule-based LARS [2] which can be seen as extension
of Answer Set Programming (ASP) [3,10] for streams. In particular, it provides
window operators to limit limit reasoning to so-called snapshots as in CQL [1].
We give a high-level intuition.

LARS. A LARS program is a set of rules of form α ← β1, ..., βj ,
notβj+1, ...,not βn, (n ≥ 0) where α, β1, . . . , βn are formulas and not denotes
negation-as-failure. Let a be an atom and t ∈ N. Then, the set F of LARS for-
mulas is defined by the grammar ϕ ::= a | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ → ϕ | ♦ϕ | �ϕ |
@tϕ | �wϕ. It uses the following:

– The window operator �w limits evaluation of a formula ϕ to the substream
returned by a function w, which takes a stream and a time point. We only use
a special window operator �k which returns the snapshot of the last k s.

– The temporal quantifiers ♦ and � are used to query whether a formula ϕ holds
at some time point in a selected window, or at all time points.

– The @-operator allows a jump in time, i.e., @tϕ evaluates ϕ at time t.

Example 3. Figure 1 formalizes the rules of Example 2 in LARS, where
atom α̂(V) is used to retrieve from the router an estimation of the α value V .
Similarly, rtm50 is true if at least 50 % of the content forwarded by the router
was real-time. Rule (r1) says the following. If in the last 30 s (�30), at a specific
(variable) time T (@T) we had atom α̂(V) for some value V ≥ 1.8, then high is
true at T . Then, rule (r4) states that, if high is true at all (�) of the last 30 s,

Fig. 1. Program P deciding which caching strategy to use

Rule-based Stream Reasoning for Intelligent Administration 525

then (←) we shall use lfu. If use(X) cannot by derived for any X ∈ {lfu, lru,fifo}
by rules (r4) − (r6), the disjunction in (r7) fails, thus done will not be derived,
and due to (r8) we will then use random. �

3 System Description

As shown in Fig. 2, ICA extends the architecture of a common CCN router
with a decision unit, which consists of three main components: (1) a database
(DB) storing snapshots of parameters observed by the controller, (2) a knowl-
edge base (KB) containing the ICA logic and (3) a reasoner that decides about
configuration of the controller given the KB and a series of events in the DB.
This architecture was implemented in ndnSim [15] and used in the evaluation as
presented in Sect. 4.

Fig. 2. Architecture of an Intelligent Caching Agent (ICA)

The components (2) and (3) are based on the LARS framework, which
we implemented using DLVHEX 2.5 [9] as language of this system, i.e.,
higher-order logic programs with external atoms. We define an external
atom &w[S,E, F](T, V) representing the described time-based LARS window
operator. The terms S,E ∈ N define the time interval of the window and F
is a string comprising a function name. Our DLVHEX plug-in evaluates the
function over events registered in the database within the given time interval
and returns its results as a set of tuples {(t1, v1), . . . , (tk, vk)}, where ti and
vi indicate the time point and the value of a function, respectively. E.g. for
F = alpha the estimated values α̂ of the parameter α of the Zipf distribution
will be returned. To define rules that respect only recent events, we use an
external atom &getSolverTime[](E) which has no inputs. It outputs the current
system time E. The DLVHEX encoding for ICA is presented in Listing 1.1, which
corresponds to the LARS encoding presented in Fig. 1 and could be in principle
automatically generated from it.

526 H. Beck et al.

1 intv1(S,E) :- &getSolverTime [](E), S=E -30.
2 intv2(S,E) :- &getSolverTime [](E), S=E -20.

3 val(high ,S,E,T):- &w[S,E,alpha](T,V), V>=18, intv1(S,E).
4 val(mid ,S,E,T) :- &w[S,E,alpha](T,V), 12<=V, V<18, intv1(S,E).
5 val(low ,S,E,T) :- &w[S,E,alpha](T,V), V<12, intv1(S,E).
6 val(rtm50 ,S,E,T):- &w[S,E,rtc](T,V), V>50, intv2(S,E).

7 some(ID,S,E) :- val(ID,S,E,_).
8 always(ID,S,E) :- val(ID,S,E,_), val(ID,S,E,T):T=S..E.

9 use(lfu) :- always(high ,S,E), intv1(S,E).
10 use(lru) :- always(mid ,S,E), intv1(S,E).
11 use(fifo):- always(low ,S1,E1), intv1(S1,E1), some(rtm50 ,S2,E2),

intv2(S2,E2).

12 done :- use(X), X!= random.
13 use(random) :- not done.

Listing 1.1. DLVHEX encoding for ICA

4 Evaluation

We selected the Abilene topology [20]. For every simulation run (see below), we
connected 1000 consumers and all content providers randomly to one of the 11
routers.

Scenarios. As popularity change scenarios, we used (i) LHL that starts with
α = 0.4 (low), then changes to 2.5 (high), and then back to low; (ii) HLH is
dual. The values are from [17,21]. Each simulation is 1800 s, α changes at 600
and 1200. Each consumer starts downloading a video at a random time point in
each interval.

Caching Strategies. To measure the potential effect of switching strategies, we
compare against the static ones Random and and LFU [21]. Dynamic strategy
Admin is hypothetical, where all routers change their caching strategy exactly
at phase changes L to H and H to L; in L they use Random, in H they use LFU.
Finally, Intelligent Caching Agent (ICA) dynamically selects for each router a
strategy due to locally observed data.

Simulation System Parameters. Following [14,17,19], we use 1000 users ×
50 videos, in 1000 chunks of 10KB. Routers store 0.1, 0.5, 1, 4 or 10 % of all
chunks.

Performance Metrics. The cache hit ratio should be high; it is the number of
hits an Interest packet is satisfied by a router’s content store per total number
of requests. The cache hit distance should be low; it is the average number of
hops for a Data packet from request to a router that returns it, i.e., the number
of routers travelled between the router answering a request and the consumer
that had issued it. See [24] for details.

Results. We determined 1% of chunks to be a reasonable storage size. We
observed that the reaction to changing content access for ICA was close to the

Rule-based Stream Reasoning for Intelligent Administration 527

(a) LHL cache hit ratio (b) HLH cache hit ratio (c) LHL cache hit dist. (d) HLH cache hit dist.

Fig. 3. Aggregated evaluation results over 30 runs for each caching strategy

ideal preconfiguration of Admin. Interestingly, up to 5 routers used the Random
strategy in the H phase under the ICA strategy. Here, the advantage of dynamic
and local switching kicked in.

Figure 3 shows performance comparisons of caching strategies LFU, Admin
and ICA in relation to Random (100 %), where plots show aggregated results over
30 individual runs. Figure 3a/b depict cache hit ratios for LHL/HLH; Fig. 3c/d
show cache hit distances. In summary, dynamic switching is advantageous in all
settings. ICA is at least as good as Admin for LHL scenarios, and proves to be
the best strategy for HLH due to the advantage of choosing strategies locally
for each router. Notably, both dynamic strategies lead to a decreased cache hit
distance relative to the Random strategy.

5 Conclusion

In our paper we focused on a principled approach of automated decision making
by means of high-level reasoning on stream data. This allowed us to design a
purely declarative control unit for automated administration of CCN routers.
A comprehensive feasibility study shows how reasoning techniques can be used
for dynamic switching of caching strategies in reaction to changing user behav-
ior may give significant savings due to performance gains. These observations
clearly motivate the advancement of stream reasoning research, especially on the
practical side. In particular, stream processing engines are in need that have an
expressive power similar to LARS.

References

1. Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic
foundations and query execution. VLDB J. 15(2), 121–142 (2006)

2. Beck, H., Dao-Tran, M., Eiter, T., Fink, M.: LARS: a logic-based framework for
analyzing reasoning over streams. In: AAAI (2015)

3. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011)

528 H. Beck et al.

4. Cha, M., Kwak, H., Rodriguez, P., Ahn, Y., Moon, S.B.: Analyzing the video pop-
ularity characteristics of large-scale user generated content systems. IEEE/ACM
Trans. Netw. 17(5), 1357–1370 (2009)

5. Cisco Visual Networking Index: Forecast and Methodology, 2014–2019. White
Paper (2016)

6. Della Valle, E., Ceri, S., van Harmelen, F., Fensel, D.: It’s a streaming world!
Reasoning upon rapidly changing information. IEEE Intell. Syst. 24, 83–89 (2009)

7. Do, T.M., Loke, S.W., Liu, F.: Answer set programming for stream reasoning.
In: Butz, C., Lingras, P. (eds.) AI 2011. LNCS (LNAI), vol. 6657, pp. 104–109.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-21043-3 13

8. Eiter, T., Fink, M., Krennwallner, T., Redl, C.: Domain expansion for ASP-
programs with external sources. Artif. Intell. 233, 84–121 (2014)

9. Eiter, T., Mehuljic, M., Redl, C., Schüller, P.: User guide: dlvhex 2.x. Technical
report INFSYS RR-1843-15-05, TU Vienna (2015)

10. Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic pro-
grams: semantics and complexity. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004.
LNCS (LNAI), vol. 3229, pp. 200–212. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-30227-8 19

11. Gebser, M., Grote, T., Kaminski, R., Obermeier, P., Sabuncu, O., Schaub, T.:
Stream reasoning with answer set programming: preliminary report. In: KR, pp.
613–617 (2012)

12. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.:
Engineering an incremental ASP solver. In: Garcia de la Banda, M., Pontelli, E.
(eds.) ICLP 2008. LNCS, vol. 5366, pp. 190–205. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-89982-2 23

13. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Gener. Comput. 9(3–4), 365–386 (1991)

14. Jacobson, V., Smetters, D.K., Thornton, J.D., Plass, M.F., Briggs, N.H., Braynard,
R.: Networking named content. In: CoNEXT, pp. 1–12 (2009)

15. Mastorakis, S., Afanasyev, A., Moiseenko, I., Zhang, L.: ndnSIM 2.0: a new version
of the NDN simulator for NS-3. Technical report NDN-0028, NDN (2015)

16. Mileo, A., Abdelrahman, A., Policarpio, S., Hauswirth, M.: Streamrule: a non-
monotonic stream reasoning system for the semantic web. In: RR, pp. 247–252
(2013)

17. Rossi, D., Rossini, G.: Caching performance of content centric networks under
multi-path routing (and more). Relatório técnico, Telecom ParisTech (2011)

18. Rossi, D., Rossini, G.: On sizing CCN content stores by exploiting topological
information. In: IEEE INFOCOM, pp. 280–285 (2012)

19. Rossini, G., Rossi, D., Garetto, M., Leonardi, E.: Multi-terabyte and multi-gbps
information centric routers. In: IEEE INFOCOM, pp. 181–189 (2014)

20. Spring, N.T., Mahajan, R., Wetherall, D., Anderson, T.E.: Measuring ISP topolo-
gies with rocketfuel. IEEE/ACM Trans. Netw. 12(1), 2–16 (2004)

21. Tarnoi, S., Suksomboon, K., Kumwilaisak, W., Ji, Y.: Performance of probabilistic
caching and cache replacement policies for content-centric networks. In: IEEE LCN,
pp. 99–106 (2014)

22. Yu, H., Zheng, D., Zhao, B.Y., Zheng, W.: Understanding user behavior in large-
scale video-on-demand systems. In: EuroSys, pp. 333–344 (2006)

23. Zaniolo, C.: Logical foundations of continuous query languages for data streams.
In: Barceló, P., Pichler, R. (eds.) Datalog 2.0 2012. LNCS, vol. 7494, pp. 177–189.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-32925-8 18

24. Zhang, M., Luo, H., Zhang, H.: A survey of caching mechanisms in information-
centric networking. IEEE Commun. Surv. Tutor. 17(3), 1473–1499 (2015)

http://dx.doi.org/10.1007/978-3-642-21043-3_13
http://dx.doi.org/10.1007/978-3-540-30227-8_19
http://dx.doi.org/10.1007/978-3-540-30227-8_19
http://dx.doi.org/10.1007/978-3-540-89982-2_23
http://dx.doi.org/10.1007/978-3-642-32925-8_18

Inconsistency Management in Reactive
Multi-context Systems

Gerhard Brewka1, Stefan Ellmauthaler1, Ricardo Gonçalves2,
Matthias Knorr2(B), João Leite2, and Jörg Pührer1

1 Institute of Computer Science, Leipzig University, Leipzig, Germany
{brewka,ellmauthaler,puehrer}@informatik.uni-leipzig.de

2 NOVA LINCS & Departamento de Informática,
Universidade NOVA de Lisboa, Caparica, Portugal

{rjrg,mkn,jleite}@fct.unl.pt

Abstract. We address the problem of global inconsistency in reactive
multi-context systems (rMCSs), a framework for reactive reasoning in
the presence of heterogeneous knowledge sources that can deal with con-
tinuous input streams. Their semantics is given in terms of equilibria
streams. The occurrence of inconsistencies, where rMCSs fail to have an
equilibria stream, can render the entire system useless. We discuss vari-
ous methods for handling this problem, following different strategies such
as repairing the rMCS, or even relaxing the notion of equilibria stream
so that it can go through inconsistent states.

1 Introduction

The occurrence of inconsistencies within frameworks that aim at integrating
knowledge from different sources cannot be neglected, even more so in dynamic
settings where knowledge changes over time. In this paper, we deal with reactive
Multi-Context Systems (rMCSs) [5,6,13] that allow for integrating heteroge-
neous knowledge bases with streams of incoming information and to use them
for continuous online reasoning, reacting, and evolving the knowledge bases by
internalizing relevant knowledge. There are many reasons why rMCSs may fail to
have an equilibria stream. These include the absence of an acceptable belief set
for one of its contexts given its current knowledge base, some occurring conflict
between the operations in the heads of bridge rules, or simply because the input
stream is such that the bridge rules prevent the existence of such an equilibria
stream. We address the problem of inexistent equilibria streams, also known as
global inconsistency. We begin by defining a notion of coherence associated with
individual contexts which allows us to first establish sufficient conditions for the
existence of equilibria streams, and then abstract away from problems due to
specific incoherent contexts and focus on those problems essentially caused by
the way the flow of information in rMCSs is organized through its bridge rules.
We introduce the notion of a repair, which modifies an rMCS by changing its
bridge rules at some particular point in time in order to obtain some equilibria

c© Springer International Publishing AG 2016
L. Michael and A. Kakas (Eds.): JELIA 2016, LNAI 10021, pp. 529–535, 2016.
DOI: 10.1007/978-3-319-48758-8 35

530 G. Brewka et al.

stream, which we dub repaired equilibria stream. We establish sufficient condi-
tions for the existence of repaired equilibria streams and briefly discuss different
possible strategies to define such repairs. However, repaired equilibria streams
may not always exist, because, for example, some particular context is inco-
herent. To deal with such situations, we relax the concept of equilibria stream
and introduce the notion of partial equilibria stream, which essentially allows the
non-existence of equilibria at some time points. It turns out that partial equi-
libria streams always exist thus solving the problem of global inconsistency for
rMCSs.

2 Inconsistency Management

We assume that the reader is familiar with rMCSs and refer to [5] for a thorough
discussion of their background and the notation used in the following.

In [8], the authors addressed the problem of global inconsistency in the con-
text of managed multi-context systems (mMCSs) [4]. Just as we do here, they
begin by establishing sufficient conditions for the existence of equilibria. Then,
they define the notions of diagnosis and explanation, the former corresponding
to bridge rules that need to be altered to restore consistency, and the latter cor-
responding to combinations of rules that cause inconsistency. These two notions
turn out to be dual of each other, and somehow correspond to our notion of
repair, the main difference being that, unlike in [8], we opt not to allow the
(non-standard) strengthening of bridge-rule to restore consistency, and the fact
that our repairs need to take into account the dynamic nature of rMCSs. We
start by introducing two notions of global consistency differing only on whether
we consider a particular input stream or all possible input streams.

Definition 1. Let M be an rMCS, KB a configuration of knowledge bases for
M , and I an input stream for M . Then, M is consistent with respect to KB
and I if there exists an equilibria stream of M given KB and I. M is strongly
consistent with respect to KB if, for every input stream I for M , M is consistent
with respect to KB and I.

Obviously, for a fixed configuration of knowledge bases, strong consistency
implies consistency w.r.t. any input stream, but not vice-versa. Unfortunately,
verifying strong consistency is in general highly complex since it requires check-
ing all possible equilibria streams. Nevertheless, we can establish conditions that
ensure that an rMCS M is strongly consistent with respect to a given configu-
ration of knowledge bases KB, hence guaranteeing the existence of an equilibria
stream independently of the input. It is based on two notions – totally coherent
contexts and acyclic rMCSs – that together are sufficient to ensure (strong) con-
sistency. Total coherence imposes that each knowledge base of a context always
has at least one acceptable belief set.

Definition 2. A context Ci is totally coherent if acci(kb) �= ∅, for every
kb ∈ KB i.

Inconsistency Management in Reactive Multi-context Systems 531

The second notion describes cycles between contexts which may be a cause
of inconsistency. Acyclic rMCSs are those whose bridge rules have no cycles.

Definition 3. Given an rMCS M = 〈〈C1, . . . ,Cn〉, IL,BR〉, �M is the binary
relation over contexts of M such that (Ci,Cj) ∈ �M if there is a bridge rule
r ∈ BRi and j:b ∈ bd(r) for some b. If (Ci,Cj) ∈ �M , also denoted by Ci �M Cj,
we say that Ci depends on Cj in M . An rMCS M is acyclic if the transitive
closure of �M is irreflexive.

These two conditions together are indeed sufficient to ensure strong
consistency.

Proposition 1. Let M = 〈〈C1, . . . ,Cn〉, IL,BR〉 be an acyclic rMCS such that
every Ci, 1 ≤ i ≤ n, is totally coherent, and KB a configuration of knowledge
bases for M . Then, M is strongly consistent with respect to KB.

These conditions can be rather restrictive since there are many useful cyclic
rMCSs which only under some particular configurations of knowledge bases and
input streams may have no equilibria streams. To deal with these, and recover
an equilibria stream, one possibility is to repair the rMCSs by locally, and selec-
tively, eliminating some of its bridge rules. Towards introducing the notion of
repair, given an rMCS M = 〈〈C1, . . . ,Cn〉, IL,BR〉, we denote by brM the set of
all bridge rules of M , i.e., brM =

⋃

1≤i≤n BRi. Moreover, given a set R ⊆ brM ,
denote by M [R] the rMCS obtained from M by restricting the bridge rules to
those not in R.

Definition 4 (Repair). Let M = 〈C, IL,BR〉 be an rMCS, KB a configuration
of knowledge bases for M , and I an input stream for M until τ where τ ∈
N ∪ {∞}. Then, a repair for M given KB and I is a function R : [1..τ] → 2brM
such that there exists a function B : [1..τ] → BelM such that

– Bt is an equilibrium of M [Rt] given KBt and It, with KBt inductively
defined as
• KB1 = KB
• KBt+1 = updM [Rt](KBt, It,Bt).

We refer to B as a repaired equilibria stream of M given KB, I and R.

The notion of repair is quite general, and includes repairs that unnecessarily
eliminate bridge rules, and even the empty repair, i.e., the repair R∅ such that
Rt

∅ = ∅ for every t, whenever M already has an equilibria stream given KB and
I, ensuring that repaired equilibria streams properly extend equilibria streams.

Proposition 2. Every equilibria stream of M given KB and I is a repaired
equilibria stream of M given KB, I and the empty repair R∅.

It turns out that for rMCSs composed of totally coherent contexts, repaired
equilibria streams always exist.

532 G. Brewka et al.

Proposition 3. Let M = 〈〈C1, . . . ,Cn〉, IL,BR〉 be an rMCS such that each Ci,
i ∈ {1, . . . , n}, is totally coherent, KB a configuration of knowledge bases for M ,
and I an input stream for M until τ . Then, there exists R : [1..τ] → 2brM and
B : [1..τ] → BelM such that B is a repaired equilibria stream given KB, I and R.

Whenever repair operations are considered in the literature, e.g., in the con-
text of databases [2], there is a special emphasis on seeking repairs that are
somehow minimal, the rational being that we want to change things as little as
possible to regain consistency. In the case of repairs of rMCS, we can establish
an order relation between them, based on a comparison of the bridge rules to be
deleted at each time point.

Definition 5. Let Ra and Rb be two repairs for some rMCS M given a config-
uration of knowledge bases for M , KB and I, an input stream for M until τ . We
say that Ra ≤ Rb if Ri

a ⊆ Ri
b for every i ≤ τ , and that Ra < Rb if Ra ≤ Rb

and Ri
a ⊂ Ri

b for some i ≤ τ .

This relation can be directly used to check whether a repair is minimal, and
we can restrict ourselves to adopting minimal repairs. However, there may be
good reasons to adopt non-minimal repairs, e.g., so that they can be determined
as we go, or so that deleted bridge rules are not reinstated, etc. Even though
investigating specific types of repairs falls outside the scope of this paper, we
nevertheless discuss some possibilities.

Definition 6 (Types of Repairs). Let R be a repair for some rMCS M given
KB and I. We say that R is a:

Minimal Repair if there is no repair Ra for M given KB and I such that
Ra < R.

Global Repair if Ri = Rj for every i, j ≤ τ .
Minimal Global Repair if R is global and there is no global repair Ra for M

given KB and I such that Ra < R.
Incremental Repair if Ri ⊆ Rj for every i ≤ j ≤ τ .
Minimally Incremental Repair if R is incremental and there is no incre-

mental repair Ra and j ≤ τ such that Ri
a ⊂ Ri for every i ≤ j.

Minimal repairs perhaps correspond to the ideal situation in that they never
unnecessarily remove bridge rules. Sometimes, it may be the case that if a bridge
rule is somehow involved in some inconsistency, it should not be used at any time
point, leading to the notion of global repair. Given the set of all repairs, checking
which are global is also obviously less complex than checking which are minimal.
A further refinement – minimal global repairs – would be to only consider repairs
that are minimal among the global ones, which would be much simpler to check
than checking whether it is simply minimal. Note that a minimal global repair
is not necessarily a minimal repair. One of the problems with these types of
repairs is that we can only check whether they are of that type once we know
the entire input stream I. This was not the case with plain repairs, as defined in
Definition 4, which could be checked as we go, i.e., we can determine what bridge

Inconsistency Management in Reactive Multi-context Systems 533

rules to include in the repair at a particular time point by having access to the
input stream I up to that time point only, important so that rMCSs can be used
to effectively react to their environment. The last two types of repairs defined
above allow for just that. Incremental repairs essentially impose that removed
bridge rules cannot be reused in the future, while minimally incremental repairs
further impose that only minimal sets of bridge rules can be added at each time
point. Other types of repairs could be defined, e.g., based on a priority relation
between bridge rules, or a distance measure between subsets of bridge rules.
Repairs could also be extended to allow for the strengthening of bridge rules,
besides their elimination, such as in [4,8].

Despite the existence of repaired equilibria streams for large classes of sys-
tems, two problems remain: first, computing a repair may be excessively complex,
and second, there remain situations where no repaired equilibria stream exists,
namely when the rMCS contains contexts that are not totally coherent. The
second issue could be dealt with by ensuring that for each non-totally coherent
context there would be some bridge rule with a management operation in its
head that would always restore consistency of the context, and that such rule
could always be activated through a repair. But this would require special care
in the way the system is specified, and its analysis would require a very com-
plex analysis of the entire system including the specific behavior of management
functions. In practice, it would be quite hard – close to impossible in general – to
ensure the existence of repaired equilibria streams, and we would still be faced
with the first problem, that of the complexity of determining the repairs.

This can be addressed by relaxing the notion of equilibria stream so that it
does not require an equilibrium at every time point. This way, if no equilibrium
exists at some time point, the equilibria stream would be undefined at that point,
but possibly defined again in subsequent time points, leading to the notion of
partial equilibria stream.

Definition 7 (Partial Equilibria Stream). Let M = 〈C, IL,BR〉 be an rMCS,
KB a configuration of knowledge bases for M , and I an input stream for M until
τ where τ ∈ N ∪ {∞}. Then, a partial equilibria stream of M given KB and I
is a partial function B : [1..τ] � BelM such that

– Bt is an equilibrium of M given KBt and It, with KBt inductively defined as

• KB1 = KB

• KBt+1 =

{

updM (KBt, It,Bt), if Bt is not undefined.

KBt, otherwise.

– or Bt is undefined.

Partial equilibria streams generalize equilibria streams and do always exist.

Proposition 4. Every equilibria stream of M given KB and I is a partial equi-
libria stream of M given KB and I.

534 G. Brewka et al.

Proposition 5. Let M be an rMCS, KB a configuration of knowledge bases for
M , and I an input stream for M until τ . Then, there exists B : [1..τ] � BelM
such that B is a partial equilibria stream given KB and I.

Partial equilibria streams not only do allow us to deal with situations where
equilibria do not exist at some time instants, they also open the ground to
consider other kinds of situations where we do not wish to consider equilibria, for
example because we were not able to compute them on time, or simply because
we do not wish to process the input at every time point, e.g., whenever we just
wish to sample the input with a lower frequency than it is generated. To restrict
that partial equilibria streams only relax equilibria streams when necessary, we
can further impose the following condition on Definition 7: Btis undefined ⇒
there is no equilibrium ofM given KBt and It.

3 Conclusions

Following the efforts done in the combination of knowledge bases integration and
knowledge dynamics [1,3,7,9,10,12,14,16], this paper addresses the problem of
how inconsistencies can be managed within the framework of reactive Multi-
Context Systems (rMCSs). The occurrence of inconsistencies within rMCSs can-
not be neglected, especially as we deal with dynamic settings where knowledge
changes over time. Even with the power of management operations that allow
the specification of, e.g., belief revision operations, many reasons remain why
rMCSs may fail to have an equilibria stream. Since the absence of equilibria
at certain time points ultimately render the entire system useless, we addressed
this problem first by showing sufficient conditions on the contexts and the bridge
rules that ensure the existence of an equilibria stream. In the cases where these
conditions are not met, we presented two possible solutions, one following an app-
roach based on repairs and a second by relaxing the notion of equilibria stream
to ensure that intermediate inconsistent states can be recovered. In future work,
we would like to explore an alternative to deal with inconsistent states, following
a paraconsistent approach, as proposed for hybrid knowledge bases in [11,15].

Acknowledgments. R. Gonçalves, M. Knorr and J. Leite were partially supported
by FCT strategic project NOVA LINCS (UID/CEC/04516/2013). R. Gonçalves was
partially supported by FCT grant SFRH/BPD/100906/2014 and M. Knorr by FCT
grant SFRH/BPD/86970/2012. G. Brewka, S. Ellmauthaler, and J. Pührer were par-
tially supported by the German Research Foundation (DFG) grants BR-1817/7-1 and
FOR 1513.

References

1. Alferes, J.J., Brogi, A., Leite, J., Moniz Pereira, L.: Evolving logic programs. In:
Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol.
2424, pp. 50–61. Springer, Heidelberg (2002)

Inconsistency Management in Reactive Multi-context Systems 535

2. Arenas, M., Bertossi, L.E., Chomicki, J.: Consistent query answers in inconsis-
tent databases. In: Vianu, V., Papadimitriou, C.H. (eds.) Proceedings of ACM
SIGACT-SIGMOD-SIGART, pp. 68–79. ACM Press (1999)

3. Brewka, G., Eiter, T.: Equilibria in heterogeneous nonmonotonic multi-context
systems. In: Proceedings of AAAI, pp. 385–390. AAAI Press (2007)

4. Brewka, G., Eiter, T., Fink, M., Weinzierl, A.: Managed multi-context systems. In:
Walsh, T. (ed.) Proceedings of IJCAI, pp. 786–791. IJCAI/AAAI (2011)

5. Brewka, G., Ellmauthaler, S., Gonçalves, R., Knorr, M., Leite, J., Pührer, J.:
Reactive multi-context systems: heterogeneous reasoning in dynamic environments
(2016). http://arxiv.org/abs/1609.03438

6. Brewka, G., Ellmauthaler, S., Pührer, J.: Multi-context systems for reactive rea-
soning in dynamic environments. In: Proceedings of ECAI, pp. 159–164 (2014)

7. Brewka, G., Roelofsen, F., Serafini, L.: Contextual default reasoning. In: Veloso,
M.M. (ed.) Proceedings of IJCAI, pp. 268–273 (2007)

8. Eiter, T., Fink, M., Schüller, P., Weinzierl, A.: Finding explanations of inconsis-
tency in multi-context systems. Artif. Intell. 216, 233–274 (2014)

9. Ellmauthaler, S.: Generalizing multi-context systems for reactive stream reasoning
applications. In: Jones, A.V., Ng, N. (eds.) Proceedings of ICCSW, OASICS, vol.
35, pp. 19–26. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2013)

10. Ellmauthaler, S., Pührer, J.: Asynchronous multi-context systems. In: Eiter, T.,
Strass, H., Truszczyński, M., Woltran, S. (eds.) Advances in Knowledge Represen-
tation. LNCS, vol. 9060, pp. 141–156. Springer, Heidelberg (2015)

11. Fink, M.: Paraconsistent hybrid theories. In: Brewka, G., Eiter, T., McIlraith, S.A.
(eds.) Proceedings of KR. AAAI Press (2012)

12. Gonçalves, R., Knorr, M., Leite, J.: Evolving bridge rules in evolving multi-context
systems. In: Bulling, N., van der Torre, L., Villata, S., Jamroga, W., Vasconcelos,
W. (eds.) CLIMA 2014. LNCS, vol. 8624, pp. 52–69. Springer, Heidelberg (2014)

13. Gonçalves, R., Knorr, M., Leite, J.: Evolving multi-context systems. In: Proceed-
ings of ECAI, pp. 375–380 (2014)

14. Gonçalves, R., Knorr, M., Leite, J.: Minimal change in evolving multi-context
systems. In: Pereira, F., Machado, P., Costa, E., Cardoso, A. (eds.) EPIA 2015.
LNCS, vol. 9273, pp. 611–623. Springer, Heidelberg (2015)

15. Kaminski, T., Knorr, M., Leite, J.: Efficient paraconsistent reasoning with ontolo-
gies and rules. In: Yang, Q., Wooldridge, M. (eds.) Proceedings of IJCAI, pp.
3098–3105. AAAI Press (2015)

16. Knorr, M., Gonçalves, R., Leite, J.: On efficient evolving multi-context systems.
In: Pham, D.-N., Park, S.-B. (eds.) PRICAI 2014. LNCS, vol. 8862, pp. 284–296.
Springer, Heidelberg (2014)

http://arxiv.org/abs/1609.03438

Iteratively-Supported Formulas and Strongly
Supported Models for Kleene

Answer Set Programs

(Extended Abstract)

Patrick Doherty1, Jonas Kvarnström1, and Andrzej Sza�las1,2(B)

1 Department of Computer and Information Science, Linköping University,
581 83 Linköping, Sweden

{patrick.doherty,jonas.kvarnstrom,andrzej.szalas}@liu.se
2 Institute of Informatics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland

andrzej.szalas@mimuw.edu.pl

Abstract. In this extended abstract, we discuss the use of iteratively-
supported formulas (ISFs) as a basis for computing strongly-supported
models for Kleene Answer Set Programs (ASPK). ASPK programs have
a syntax identical to classical ASP programs. The semantics of ASPK

programs is based on the use of Kleene three-valued logic and strongly-
supported models. For normal ASPK programs, their strongly supported
models are identical to classical answer sets using stable model semantics.
For disjunctive ASPK programs, the semantics weakens the minimality
assumption resulting in a classical interpretation for disjunction. We use
ISFs to characterize strongly-supported models and show that they are
polynomially bounded.

1 Introduction

Classical answer set programming, ASP, has been intensively studied during
the past three decades [3,5,9]. In addition, a great deal of attention has been
devoted to ASP implementations [4,7,8,12,16]. One of the prominent techniques
proposed earlier for computing answer sets is based on translating ASP programs
into classical propositional formulas and then applying SAT solvers to generate
answer sets. In [6,12] it is shown that Clark’s completion together with loop
formulas characterize answer sets for ASP programs. One of the obstacles in
characterizing answer sets using propositional formulas is their ΣP

2 complexity.
Loop formulas contribute to this because one may require exponentially many of
them [10]. The current extended abstract provides an alternative to loop formu-
las, iteratively-supported formulas, that ameliorates this problem. Polynomial
translations of normal ASP programs have also been considered in [11,13,14].
However, our translation is extended to disjunctive programs in a natural way.

In [15] a possible model semantics for disjunctive programs is proposed. It is
formulated with the use of split programs and there can be exponentially many

c© Springer International Publishing AG 2016
L. Michael and A. Kakas (Eds.): JELIA 2016, LNAI 10021, pp. 536–542, 2016.
DOI: 10.1007/978-3-319-48758-8 36

Iteratively-Supported Formulas and Strongly Supported Models 537

of them comparing to the original program. Similar semantics was independently
proposed in [1] under the name of the possible world semantics. In [2] we have
analyzed minimality and supportedness in the context of ASPs and proposed
Kleene Answer Set Programs (ASPK) using the concept of strongly supported
models. The semantics used for Kleene Answer Set programs is based on Kleene
logic, K3, with an extra weak negation. In [2] it is shown that the problem of
showing whether an ASPK program has a strongly supported model is in NP
(i.e., in ΣP

1). This result applies to both normal and disjunctive ASPK programs.
For disjunctive ASPK programs, the minimality assumption is relaxed, resulting
in a classical interpretation of disjunction.1 The ability to fine-tune the separa-
tion of supportedness and minimality in the disjunctive case results in a lower
complexity for generating strongly supported models. In comparison to [15],
ASPK programs allow for strong negation and a three-valued model-theoretic
semantics is provided. The presence of both default and strong negation in ASPK

provides a tool to close the world locally in a contextual manner, more flexible
than possible model negation proposed in [15]. Though defined independently
and using different foundations, both semantics appear compatible on positive
programs, so the results of the current paper apply to possible model semantics
of [15], too.

The main contribution of the current paper is the definition and use of ISFs to
characterize strongly supported models for both normal and disjunctive ASPK

programs. Such formulas are shown to be polynomially bounded in both cases.
As a derivative result, in the case of normal ASP programs and due to a corre-
spondence between answer sets and strongly supported models, ISFs provide a
more efficient alternative to loop formulas when using SAT solvers. For disjunc-
tive ASPK programs, the use of supported models and ISFs provide an efficient
means for using SAT solvers, but with an alternative semantics that interprets
disjunction classically due to a relaxation of minimality assumptions.

The paper is structured as follows. In Sect. 2 we introduce basic definitions
related to both classical ASP programs and ASPK programs in addition to
strong supportedness. Section 3 introduces ISFs used to characterize normal and
disjunctive ASPK programs. Section 4 concludes the paper.

2 Kleene Answer Set Programs

In this paper, the syntax for Kleene ASPK programs is identical for that of
classical ASP programs. The semantics for Kleene ASPK programs is based
on the use of a three-valued Kleene logic K3 and strongly-supported models
presented in [2]. The semantics for classical ASP programs is based on stable
model semantics [9]. For the sake of clarity we consider propositional programs
only. Truth values are denoted by T (true), F (false) and U (unknown). The
empty conjunction is T and the empty disjunction is F.

1 Note that minimality is sometimes not required or may even be undesirable [2,3,15,
17], e.g., in the context of programs that use disjunctive rules.

538 P. Doherty et al.

Definition 1. By a positive literal (or an atom) we mean any propositional
variable of P. A negative literal is an expression of the form ¬r, where r ∈ P.
A classical literal is a positive or a negative literal. A set of literals is consistent
if it does not contain a literal � together with its negation ¬�.2 By an extended
literal we understand a classical literal or an expression of the form not �, where �

is a classical literal. If γ is an expression (formula, program, etc.) then Lit(γ)def=
{p,¬p | p∈P occurs in γ} and P(Π) def= P ∩ Lit(Π).

An interpretation is a finite consistent set of literals. Interpretation I satisfies
a classical literal � iff � ∈ I and I satisfies an extended literal not � iff � �∈ I. The
satisfiability relation is denoted by I |= �. �

Definition 2. By an ASPK rule we understand an expression � of the form:

�1 ∨ . . . ∨ �k ← �k+1, . . . , �m,not �m+1, . . . ,not �n, (1)

where n ≥ m ≥ k ≥ 0, �1, . . . , �k, �k+1, . . . , �m, �m+1, . . . �n are (positive or nega-
tive) literals. The expression at the lefthand side of ‘←’ in (1), denoted by h(�),
is called the head and the righthand side of ‘←’, denoted by B(�), is called the
body of the rule. The rule is called disjunctive if k > 1.

An ASPK program Π is a finite set of rules. A program is normal if each of
its rules has at most one literal in its head. If a program contains a disjunctive
rule, we call it disjunctive. By Disj (Π) we denote the set of disjunctive rules
appearing in Π.

The set of rules with the empty body is denoted by Fct(Π) and the set
of rules with the empty head is denoted by Ctr(Π). Members of Fct(Π) and
Ctr(Π) are called facts and constraints, respectively. The set of rules whose
bodies and heads are nonempty is denoted by Rul(Π).

An interpretation I satisfies a rule � of the form (1), denoted by I |= �,
if whenever �k+1, . . . , �m ∈ I and �m+1, . . . , �n �∈ I, we have �i ∈ I for some
1 ≤ i ≤ k. An interpretation I satisfies an ASPK program Π, denoted by
I |= Π, if for all rules � ∈ Π, I |= �. �

The following definition is needed to define strong supportedness (a construc-
tion similar in spirit is considered in [18]).

Definition 3. Given interpretations I and J , the value of a formula A w.r.t.
(I, J), denoted by (I, J)(A), is defined as follows:

(I, J)(A) def=

⎧

⎨

⎩

T when I |= reductJ (A);
F when I |= reductJ (¬A);
U otherwise.

(2)

where reductJ (A) (respectively, reductJ(¬A)) is a formula obtained from A (¬A)
by substituting subformulas of the form not � by their truth values evaluated
in J . �

2 We always remove double strong negations using ¬(¬�)
def
= �.

Iteratively-Supported Formulas and Strongly Supported Models 539

Definition 4. An interpretation N is a strongly supported model of an ASPK

program Π provided that N satisfies Π and there exists a sequence of inter-
pretations I0 ⊆ I1 ⊆ . . . ⊆ In where n ≥ 0 such that I0 = Fct(Π), N = In,
and:

1. for every 1 ≤ i ≤ n and every rule �1 ∨ . . . ∨ �k ← B of Π,
if

(

Ii−1, N
)

(B) = T then a nonempty subset of {�1, . . . , �k}
is included in Ii;

2. for i = 1, . . . , n, Ii can only contain literals obtained by applying point 1. �

3 Iteratively-Supported Formulas

Let p be a propositional variable. Then pi (respectively p̄i) denotes the fact that
in the i-th iteration, p (respectively, ¬p) is in the computed candidate for a
strongly supported model. Thus, ¬pi (respectively ¬p̄i) denotes the fact that in
the i-th iteration pi (respectively, ¬pi) is not in the computed candidate for a
strongly supported model.

The number of different literals in heads of Rul(Π) is denoted by #Π. Since
support can only be generated for up to #Π distinct literals, #Π iterations will
be sufficient to provide support for all literals in any strongly supported model.

Definition 5. The translation function is defined as follows, where 1 ≤ i ≤ #Π
and � is an extended literal:

TrΠ(i, �) def=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

pi when � = p;
p̄i when � = ¬p;
¬p#Π when � = not p;
¬p̄#Π when � = not ¬p.

(3)

We extend the translation for bodies and heads of rules by setting:
TrΠ(i, B) def=

∧

�∈B TrΠ(i, �) and TrΠ(i,H) def=
∨

�∈H

TrΠ(i, �).

Definition 6. By a support of a classical literal � in a normal ASPK program
Π at i (i > 0) we understand the formula:

Suppi
Π(�) def=

[

TrΠ(i, �) ≡ (

TrΠ(i − 1, �) ∨
∨

�∈Π:�=h(�)

TrΠ(i − 1, B(�))
)]

. (4)

Definition 7. By the iteratively-supported formula for a normal ASPK program
Π we understand the following formula of classical propositional calculus:

ISF (Π) def=
∧

0≤i≤#Π

∧

p∈P(Π)

¬(

pi ∧ p̄i

) ∧ (5)

540 P. Doherty et al.

∧

F∈Fct(Π)

TrΠ(0, h(F)) ∧
∧

�∈Lit(Π)−{h(F)|F∈Fct(Π)}
¬TrΠ(0, �) ∧ (6)

∧

1≤i≤#Π

∧

�∈Lit(Π)

Suppi
Π(�) ∧ (7)

∧

�∈Π

(

TrΠ(#Π,B(�)) → TrΠ(#Π,h(�))
)

. (8)

We have the following theorem for normal ASPK programs.

Theorem 1. For any normal ASPK program Π, I is a strongly supported model
of Π iff there is a valuation v satisfying ISF (Π) such that:

I = {p | v(p#Π) = T} ∪ {¬p | v(p̄#Π) = T}. �

Since for normal ASPK programs strongly supported models are also classical
answer sets, Theorem 1 applies to classical ASP, too.

Given a disjunctive ASPK program Π, the support of literals appearing only
in non-disjunctive heads remains unchanged. For literals appearing in disjunctive
heads we have the following definition.

Definition 8. By a support of a classical literal � occurring in a disjunctive head
in an ASPK program Π at i (i > 0) we understand the formula:

Suppi
Π(�) def=

[

TrΠ(i, �) → (

TrΠ(i − 1, �) ∨
∨

�∈Π:�∈h(�)

TrΠ(i − 1, B(�))
)] ∧

[

TrΠ(i − 1, �) → TrΠ(i, �)
]

.

(9)

For other literals, the support of � is still specified by formula (4) in
Definition 6. �

Definition 9. By an iteratively-supported formula for a disjunctive ASPK

program Π we understand the formula (7) with Suppi
Π() understood as in

Definition 8. �

We now have the following generalization of Theorem 1.

Theorem 2. For any (normal or disjunctive) ASPK program Π, I is a strongly
supported model of Π iff there is a valuation v satisfying ISF (Π) such that:

I = {p | v(p#Π) = T} ∪ {¬p | v(p̄#Π) = T}. �

Note that for any ASPK program Π, the number of different literals in heads
of Rul(Π) (i.e., #Π) is linear in the size of Π. Therefore we have the following
lemma.

Lemma 1. For any (normal or disjunctive) ASPK program Π, the size of
ISF (Π) is polynomial in the size of Π. �

Iteratively-Supported Formulas and Strongly Supported Models 541

4 Conclusions

In this extended abstract, we have defined iteratively-supported formulas
expressed in classical propositional logic and used them to characterize strongly
supported models for ASPK programs. For normal ASPK programs, I is a classi-
cal answer set of the program iff I is a strongly supported model of the program.
Since iteratively-supported formulas provide polynomially bounded character-
izations of supported models for normal ASPK programs, they also provide
polynomially bounded characterizations of classical answer sets for normal ASP
programs. In contrast, use of loop formulas could result in formulas of exponen-
tial size for normal ASP programs.

ISFs also characterize strongly supported models for disjunctive ASPK pro-
grams and guarantee that all conclusions are grounded in facts or default reason-
ing based on extended literals (using default negation not). Additionally, due
to a weakened minimization assumption, disjunction is interpreted classically
which results in a semantics enjoying among other properties, a ΣP

1 complex-
ity for computing strongly-supported models. This, together with a polynomial
bound on ISFs, is a striking theoretical improvement compared to the ΣP

2 com-
plexity of computing classical answer sets for ASP programs.

Acknowledgments. This work is partially supported by the Swedish Research Coun-
cil (VR) Linnaeus Center CADICS, the ELLIIT network organization for Informa-
tion and Communication Technology, the Swedish Foundation for Strategic Research
(CUAS Project, SymbiKCloud Project), the EU FP7 project SHERPA (grant agree-
ment 600958), and Vinnova NFFP6 Project 2013-01206.

References

1. Chan, P.: A possible world semantics for disjunctive databases. IEEE Trans. Knowl.
Data Eng. 5(2), 282–292 (1993)

2. Doherty, P., Sza�las, A.: Stability, supportedness, minimality and kleene answer set
programs. In: Eiter, T., Strass, H., Truszczyński, M., Woltran, S. (eds.) Advances
in Knowledge Representation. LNCS, vol. 9060, pp. 125–140. Springer, Heidelberg
(2015)

3. Ferraris, P., Lifschitz, V.: On the minimality of stable models. In: Balduccini,
M., Son, T.C. (eds.) Logic Programming, Knowledge Representation, and Non-
monotonic Reasoning. LNCS, vol. 6565, pp. 64–73. Springer, Heidelberg (2011)

4. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: a conflict-driven
answer set solver. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS
(LNAI), vol. 4483, pp. 260–265. Springer, Heidelberg (2007)

5. Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of
Intelligent Agents -The Answer-Set Programming Approach. Cambridge University
Press, Cambridge (2014)

6. Lee, J., Lifschitz, V.: Loop formulas for disjunctive logic programs. In: Palamidessi,
C. (ed.) ICLP 2003. LNCS, vol. 2916, pp. 451–465. Springer, Heidelberg (2003)

7. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The
DLV system for knowledge representation and reasoning. ACM Trans. Comput.
Log. 7(3), 499–562 (2006)

542 P. Doherty et al.

8. Lierler, Y.: cmodels – SAT-based disjunctive answer set solver. In: Baral, C.,
Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662,
pp. 447–451. Springer, Heidelberg (2005)

9. Lifschitz, V.: Thirteen definitions of a stable model. In: Blass, A., Dershowitz, N.,
Reisig, W. (eds.) Fields of Logic and Computation. LNCS, vol. 6300, pp. 488–503.
Springer, Heidelberg (2010)

10. Lifschitz, V., Razborov, A.: Why are there so many loop formulas? ACM Trans.
Comput. Log. 7(2), 261–268 (2006)

11. Lin, F., Zhao, J.: On tight logic programs and yet another translation from normal
logic programs to propositional logic. In: Gottlob, G., Walsh, T. (eds.) Proceedings
of the IJCAI-03, pp. 853–858. Morgan Kaufmann (2003)

12. Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by SAT
solvers. Artif. Intell. 157(1–2), 115–137 (2004)

13. Liu, G., Janhunen, T., Niemelä, I.: Answer set programming via mixed integer
programming. In: Brewka, G., T., E., McIlraith, S. (eds.) Proceedings of the KR
2012. AAAI Press (2012)

14. Pelov, N., Ternovska, E.: Reducing inductive definitions to propositional satisfiabil-
ity. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp. 221–234.
Springer, Heidelberg (2005)

15. Sakama, C., Inoue, K.: An alternative approach to the semantics of disjunctive logic
programs and deductive databases. J. Autom. Reasoning 13(1), 145–172 (1994)

16. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model
semantics. Artif. Intell. 138(1–2), 181–234 (2002)

17. Soininen, T., Niemelä, I.: Developing a declarative rule language for applications
in product configuration. In: Gupta, G. (ed.) PADL 1999. LNCS, vol. 1551, pp.
305–319. Springer, Heidelberg (1999)

18. Son, T., Pontelli, E.: A constructive semantic characterization of aggregates in
answer set programming. TPLP 7(3), 355–375 (2007)

Forgetting in ASP: The Forgotten Properties

Ricardo Gonçalves, Matthias Knorr(B), and João Leite

NOVA LINCS & Departamento de Informática,
Universidade Nova de Lisboa, Caparica, Portugal

{rjrg,mkn,jleite}@fct.unl.pt

Abstract. Many approaches for forgetting in Answer Set Programming
(ASP) have been proposed in recent years, in the form of specific opera-
tors, or classes of operators, following different principles and obeying dif-
ferent properties. A recently published comprehensive overview of exist-
ing operators and properties provided a uniform picture of the landscape,
including many novel (even surprising) results on relations between prop-
erties and operators. Yet, this overview largely missed an additional set
properties for forgetting, proposed by Wong, and this paper aims to close
this gap. It turns out that, while some of these properties are closely
related to the properties previously studied, four of them are distinct
providing novel results and insights, further strengthening established
relations between existing operators.

1 Introduction

Forgetting – or variable elimination – is an operation that allows for the removal,
from a knowledge base, of middle variables no longer deemed relevant, whose
importance is witnessed by its application to cognitive robotics [1,2], resolving
conflicts [3–5], and ontology abstraction and comparison [6,7]. With its early
roots in Boolean Algebra, it has been extensively studied within classical logic
[3,8].

Only more recently, the operation of forgetting began to receive attention in
the context of non-monotonic logic programming, notably of Answer Set Pro-
gramming (ASP). It turns out that the rule-based nature and non-monotonic
semantics of ASP create very unique challenges to the development of forgetting
operators – just as with other belief change operators such as those for revision
and update, c.f. [9–12] – making it a special endeavour with unique characteris-
tics distinct from those for classical logic.

Over the years, many have proposed different approaches to forgetting in
ASP, through the characterization of the result of forgetting a set of atoms from
a given program up to some equivalence class, and/or through the definition of
concrete operators that produce a program given an input program and atoms
to be forgotten [4,5,13–17]. These approaches were typically proposed to obey
some specific set of properties deemed adequate by their authors, some adapted
from the literature on classical forgetting [16,18], others introduced for the case
of ASP [5,13–15,17].
c© Springer International Publishing AG 2016
L. Michael and A. Kakas (Eds.): JELIA 2016, LNAI 10021, pp. 543–550, 2016.
DOI: 10.1007/978-3-319-48758-8 37

544 R. Gonçalves et al.

The result is a complex landscape filled with operators and properties, that
is difficult to navigate. This problem was tackled in [19] by presenting a system-
atic study of forgetting in ASP, thoroughly investigating the different approaches
found in the literature, their properties and relationships, giving rise to a com-
prehensive guide aimed at helping users navigate this topic’s complex landscape
and ultimately assist them in choosing suitable operators for each application.

However, [19] ignores to a large extent the postulates on forgetting in ASP
introduced by Wong in [13].1 In this paper, we close this gap by thoroughly
investigating them, their relationships with other properties and existing opera-
tors, concluding that, while some of them are straightforwardly implied by one
of the previously studied properties, hence ultimately weaker than these and
thus of less importance, others turn out to be distinct and provide additional
novel results further strengthening the relations between properties and classes
of operators as established previously.

2 Preliminaries

We assume a propositional language LA over a signature A, a finite set of propo-
sitional atoms. The formulas of LA are inductively defined using connectives ⊥,
∧, ∨, and ⊃:

ϕ ::=⊥ | p | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ ⊃ ϕ (1)

where p ∈ A. In addition, ¬ϕ and � are shortcuts for ϕ ⊃ ⊥ and ⊥ ⊃ ⊥,
resp. Given a finite set S of formulas,

∨

S and
∧

S denote resp. the disjunction
and conjunction of all formulas in S. In particular,

∨ ∅ and
∧ ∅ stand for resp.

⊥ and �, and ¬S and ¬¬S represent resp. {¬ϕ | ϕ ∈ S} and {¬¬ϕ | ϕ ∈ S}.
We assume that the underlying signature for a particular formula ϕ is A(ϕ), the
set of atoms appearing in ϕ.

Regarding the semantics of propositional formulas, we consider the monotonic
logic here-and-there (HT) and equilibrium models [20]. An HT -interpretation is
a pair 〈H,T 〉 s.t. H ⊆ T ⊆ A. The satisfiability relation in HT, denoted |=HT, is
recursively defined as follows for p ∈ A and formulas ϕ and ψ:

– 〈H,T 〉 |=HT p if p ∈ H; 〈H,T 〉 �|=HT ⊥;
– 〈H,T 〉 |=HT ϕ ∧ ψ if 〈H,T 〉 |=HTϕ and 〈H,T 〉 |=HTψ;
– 〈H,T 〉 |=HT ϕ ∨ ψ if 〈H,T 〉 |=HT ϕ or 〈H,T 〉 |=HT ψ;
– 〈H,T 〉 |=HT ϕ ⊃ ψ if (i) T |= ϕ ⊃ ψ,2 and (ii) 〈H,T 〉 |=HT ϕ ⇒ 〈H,T 〉 |=HT ψ.

An HT -interpretation is an HT -model of a formula ϕ if 〈H,T 〉 |=HT ϕ. We
denote by HT (ϕ) the set of all HT-models of ϕ. In particular, 〈T, T 〉 ∈ HT (ϕ) is
an equilibrium model of ϕ if there is no T ′ ⊂ T s.t. 〈T ′, T 〉 ∈ HT (ϕ). Given two

1 We use the term postulate to follow [13] and easily distinguish them from the proper-
ties discussed in [19]. However, their role is the same as the role of other properties.

2 |= is the standard consequence relation from classical logic.

Forgetting in ASP: The Forgotten Properties 545

formulas ϕ and ψ, if HT (ϕ) ⊆ HT (ψ), then ϕ entails ψ in HT, written ϕ |=HT ψ.
Also, ϕ and ψ are HT-equivalent, written ϕ ≡HT ψ, if HT (ϕ) = HT (ψ).

An (extended) logic program P is a finite set of rules r, i.e., formulas of the
form

∧

¬¬D ∧
∧

¬C ∧
∧

B ⊃
∨

A , (2)

where all elements in A = {a1, . . . , ak}, B = {b1, . . . , bl}, C = {c1, . . . , cm},
D = {d1, . . . , dn} are atoms.3

Given r, we distinguish its head, head(r) = A, and its body, body(r) = B ∪
¬C ∪ ¬¬D , representing a disjunction and a conjunction.

As shown by Cabalar and Ferraris [22], any set of (propositional) formulas is
HT-equivalent to an (extended) logic program which is why we can focus solely
on these.

The class of logic programs, Ce, i.e., the set of all (extended) logic programs,
includes a number of special kinds of rules r: notably if n = 0, then we call r
disjunctive. Then, the class of disjunctive programs, Cd is defined as a finite set
of disjunctive rules.

We recall the following from [19]. Given a class of logic programs C over A, a
forgetting operator is a partial function f : C × 2A → C s.t. f(P, V) is a program
over A(P)\V , for each P ∈ C and V ∈ 2A. We call f(P, V) the result of forgetting
about V from P . Furthermore, f is called closed for C′ ⊆ C if, for every P ∈ C′

and V ∈ 2A, we have f(P, V) ∈ C′. A class F of forgetting operators is a set of
forgetting operators.

Previous work on forgetting in ASP has introduced a variety of desirable
properties and operators satisfy differing subsets of these. For lack of space, we
refer to [19].

3 Wong’s Properties of Forgetting

With all concepts and notation in place, we can now turn our attention to the
postulates introduced by Wong [13]. These postulates were defined in a some-
what different way when compared to the properties presented in [19]. Namely,
they only considered forgetting a single atom, were defined for disjunctive pro-
grams (the maximal class of programs considered in [13]), and used a generic
formulation which allowed different notions of equivalence. Here, we only con-
sider HT-equivalence, i.e., strong equivalence, as, in the literature, this is clearly
the more relevant of the two notions considered in [13] (the other one being the
non-standard T-equivalence) and in line with previously presented material here
and in [19].

3 Extended logic programs [21] are actually more expressive, but this form is sufficient
here.

546 R. Gonçalves et al.

We start by recalling these postulates4 adjusting them to our notation and
extending them to the most general class of extended logic programs considered
here.

(F0) F satisfies (F0) if, for each f ∈ F, P, P ′ ∈ C and a ∈ A: if P ≡HT P ′, then
f(P, {a}) ≡HT f(P ′, {a}).

(F1) F satisfies (F1) if, for each f ∈ F, P, P ′ ∈ C and a ∈ A: if P |=HT P ′, then
f(P, {a}) |=HT f(P ′, {a}).

(F2) F satisfies (F2) if, for each f ∈ F, P, P ′ ∈ C and a ∈ A: if a does not
appear in R, then f(P ∪ R, {a}) ≡HT f(P ′, {a}) ∪ R for all R ∈ C.

(F2-) F satisfies (F2-) if, for each f ∈ F, P ∈ C, and a ∈ A: if P |=HT r and a
does not occur in r, then f(P, {a}) |=HT r for all rules r expressible in C.

(F3) F satisfies (F3) if, for each f ∈ F, P ∈ C and a ∈ A: f(P, {a}) does not
contain any atoms that are not in P .

(F4) F satisfies (F4) if, for each f ∈ F, P ∈ C and a ∈ A: if f(P, {a}) |=HT r,
then f({r′}, {a}) |=HT r for some r′ ∈ CnA(P).

(F5) F satisfies (F5) if, for each f ∈ F, P ∈ C and a ∈ A: if
f(P, {a}) |=HT A ← B ∪ ¬C ∪ ¬¬D , then P |=HT A ← B ∪ ¬C ∪ {¬a} ∪
¬¬D .

(F6) F satisfies (F6) if, for each f ∈ F, P ∈ C and a, b ∈ A: f(f(P, {b}), {a}) ≡HT

f(f(P, {a}), {b}).

These postulates represent the following: Forgetting about atom a from HT-
equivalent programs preserves HT-equivalence (F0); if a program is an HT-
consequence of another program, then forgetting about atom a from both pro-
grams preserves this HT-consequence (F1); when forgetting about an atom a,
it does not matter whether we add a set of rules over the remaining language
before or after forgetting (F2); any consequence of the original program not
mentioning atom a is also a consequence of the result of forgetting about a
(F2-); the result of forgetting about an atom from a program only contains
atoms occurring in the original program (F3); any rule which is a consequence
of the result of forgetting about an atom from program P is a consequence
of the result of forgetting about that atom from a single rule among the HT-
consequences of P (F4); a rule obtained by extending with not a the body of
a rule which is an HT-consequence of the result of forgetting about an atom a
from program P is an HT-consequence of P (F5); and the order is not relevant
when sequentially forgetting two atoms (F6).

Note that CnA(P) for (F4) is defined over the class of programs considered
in each operator, and, likewise, that the kind of rules considered in (F5) is
restricted according to the class of programs considered in a given operator.

The following proposition relates these postulates and the properties in [19].

Proposition 1. The following relations hold for all F:

4 As mentioned before, we use the term postulate to follow [13] and ease readability.
Technically, they are treated as every other property.

Forgetting in ASP: The Forgotten Properties 547

1. (F1) implies (F0); [13]
2. (F2) and (F1) imply (F2-); [13]
3. (SE) implies (F0);
4. (W)and (PP) together imply (F1);

5. (SI) implies (F2);

6. (PP) implies (F2-);

7. (W) implies (F5).

Postulates (F0), (F2), (F2-), and (F5) are implied by existing properties
presented in [19], while (F1) is implied by a pair of these. This may impact
on the question we investigate next, namely which classes of operators from the
literature satisfy which of the new postulates. For that purpose, we verified for
all classes of operators presented in [19] which of these postulates they satisfy.
The results are summarized in the main theorem of our paper, illustrated in one
easy-to-read table.

Theorem 1. All results in Fig. 1 hold.

It turns out that for three of the four postulates directly implied by existing
properties, (F0), (F2), and (F2-), the classes of operators that satisfy them
coincide with their existing generalization (see Proposition 1). Also, postulate
(F3) is always satisfied, which is not surprising given the definition of forgetting
operators. Three of the remaining four properties, (F1), (F4), and (F5), are
in fact distinct (even though (F5) is implied by an existing property), and no
other already existing property is satisfied by precisely the same set of classes of
forgetting operators in each of these cases (see [19]). Notably, unlike the weaker
property (F0) and the related (SE), FSM and FSas do not satisfy (F1), most
likely because the premise in the condition for satisfying (F1) is weaker than
that of (F0). Finally, postulate (F6) is not always satisfied, but it seems that
this is solely tied to the incompatibility with the crucial property (SP), further
discussed in [23].

(F0) (F1) (F2) (F2-) (F3) (F4) (F5) (F6)
Fstrong × × � × � � � �
Fweak × × � � � � � �
Fsem × × × × � × × �
FS � � × � � � � �
FW � � � � � � � �
FHT � � � � � � � �
FSM � × × � � × × �
FSas � × � � � × × ×
FSE � � × � � � � �

Fig. 1. Satisfaction of properties for known classes of forgetting operators. For class F
and property (P), ‘�’ represents that F satisfies (P), ‘×’ that F does not satisfy (P).

548 R. Gonçalves et al.

4 Conclusions

We have studied eight postulates of forgetting in ASP introduced in [13], to fill
a gap in a recent comprehensive guide on properties and classes of operators for
forgetting in ASP, and relations between these [19]. It turns out that four of them
can safely be ignored because they either basically coincide with already existing
properties or are trivially satisfied by any forgetting operator. The others are in
fact distinct, and no other already existing property is satisfied by precisely the
same set of classes of forgetting operators in each of these cases.

Left open is the investigation of these postulates for semantics other than
ASP, such as [16] based on the FLP-semantics [24], or [15,25] based on the well-
founded semantics, as well as forgetting in the context of hybrid theories [26–28]
and reactive/evolving multi-context systems [29,30], as well as the development
of concrete syntactical forgetting operators that can be integrated in reasoning
tools such as [31–33].

Acknowledgments. All authors were partially supported by FCT under strate-
gic project NOVA LINCS (UID/CEC/04516/2013). R. Gonçalves was partially
supported by FCT grant SFRH/BPD/100906/2014 and M. Knorr by FCT grant
SFRH/BPD/86970/2012.

References

1. Lin, F., Reiter, R.: How to progress a database. Artif. Intell. 92(1–2), 131–167
(1997)

2. Rajaratnam, D., Levesque, H.J., Pagnucco, M., Thielscher, M.: Forgetting in
action. In: Baral, C., Giacomo, G.D., Eiter, T. (eds.) Proceedings of KR. AAAI
Press (2014)

3. Lang, J., Liberatore, P., Marquis, P.: Propositional independence: formula-variable
independence and forgetting. J. Artif. Intell. Res. (JAIR) 18, 391–443 (2003)

4. Zhang, Y., Foo, N.Y.: Solving logic program conflict through strong and weak
forgettings. Artif. Intell. 170(8–9), 739–778 (2006)

5. Eiter, T., Wang, K.: Semantic forgetting in answer set programming. Artif. Intell.
172(14), 1644–1672 (2008)

6. Kontchakov, R., Wolter, F., Zakharyaschev, M.: Logic-based ontology comparison
and module extraction, with an application to DL-Lite. Artif. Intell. 174(15), 1093–
1141 (2010)

7. Konev, B., Lutz, C., Walther, D., Wolter, F.: Model-theoretic inseparability and
modularity of description logic ontologies. Artif. Intell. 203, 66–103 (2013)

8. Larrosa, J., Morancho, E., Niso, D.: On the practical use of variable elimination
in constraint optimization problems: ‘still-life’ as a case study. J. Artif. Intell. Res.
(JAIR) 23, 421–440 (2005)

9. Alferes, J., Leite, J., Pereira, L.M., Przymusinska, H., Przymusinski, T.: Dynamic
updates of non-monotonic knowledge bases. J. Log. Program. 45(1–3), 43–70
(2000)

10. Eiter, T., Fink, M., Sabbatini, G., Tompits, H.: On properties of update sequences
based on causal rejection. Theor. Pract. Log. Program. (TPLP) 2(6), 721–777
(2002)

Forgetting in ASP: The Forgotten Properties 549

11. Leite, J.A.: Evolving Knowledge Bases. Frontiers of Artificial Intelligence and
Applications, xviii + 307 p. Hardcover, vol. 81. IOS Press (2003)

12. Slota, M., Leite, J.: A unifying perspective on knowledge updates. In: del Cerro,
L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS, vol. 7519, pp. 372–384.
Springer, Heidelberg (2012)

13. Wong, K.S.: Forgetting in Logic Programs, Ph.D. thesis. The University of New
South Wales (2009)

14. Wang, Y., Wang, K., Zhang, M.: Forgetting for answer set programs revisited. In:
Rossi, F. (ed.) Proceedings of IJCAI. IJCAI/AAAI (2013)

15. Knorr, M., Alferes, J.J.: Preserving strong equivalence while forgetting. In: Fermé,
E., Leite, J. (eds.) JELIA 2014. LNCS, vol. 8761, pp. 412–425. Springer, Heidelberg
(2014)

16. Wang, Y., Zhang, Y., Zhou, Y., Zhang, M.: Knowledge forgetting in answer set
programming. J. Artif. Intell. Res. (JAIR) 50, 31–70 (2014)

17. Delgrande, J.P., Wang, K.: A syntax-independent approach to forgetting in dis-
junctive logic programs. In: Bonet, B., Koenig, S. (eds.) Proceedings of AAAI, pp.
1482–1488. AAAI Press (2015)

18. Zhang, Y., Zhou, Y.: Knowledge forgetting: properties and applications. Artif.
Intell. 173(16–17), 1525–1537 (2009)

19. Gonçalves, R., Knorr, M., Leite, J.: The ultimate guide to forgetting in ASP. In:
Baral, C., Delgrande, J.P., Wolter, F. (eds.) Proceedings of KR, pp. 135–144. AAAI
Press (2016)

20. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM
Trans. Comput. Log. 2(4), 526–541 (2001)

21. Lifschitz, V., Tang, L.R., Turner, H.: Nested expressions in logic programs. Ann.
Math. Artif. Intell. 25(3–4), 369–389 (1999)

22. Cabalar, P., Ferraris, P.: Propositional theories are strongly equivalent to logic
programs. TPLP 7(6), 745–759 (2007)

23. Gonçalves, R., Knorr, M., Leite, J.: You can’t always forget what you want: on
the limits of forgetting in answer set programming. In: Fox, M.S., Kaminka, G.A.
(eds.) Proceedings of ECAI. IOS Press (2016)

24. Truszczynski, M.: Reducts of propositional theories, satisfiability relations, and
generalizations of semantics of logic programs. Artif. Intell. 174(16–17), 1285–1306
(2010)

25. Alferes, J.J., Knorr, M., Wang, K.: Forgetting under the well-founded semantics. In:
Cabalar, P., Son, T.C. (eds.) LPNMR 2013. LNCS, vol. 8148, pp. 36–41. Springer,
Heidelberg (2013)

26. Knorr, M., Alferes, J.J., Hitzler, P.: Local closed world reasoning with description
logics under the well-founded semantics. Artif. Intell. 175(9–10), 1528–1554 (2011)

27. Gonçalves, R., Alferes, J.J.: Parametrized logic programming. In: Janhunen, T.,
Niemelä, I. (eds.) JELIA 2010. LNCS, vol. 6341, pp. 182–194. Springer, Heidelberg
(2010)

28. Slota, M., Leite, J., Swift, T.: On updates of hybrid knowledge bases composed of
ontologies and rules. Artif. Intell. 229, 33–104 (2015)

29. Gonçalves, R., Knorr, M., Leite, J.: Evolving multi-context systems. In: Schaub,
T., Friedrich, G., O’Sullivan, B. (eds.) Proceedings of ECAI, pp. 375–380. IOS
Press (2014)

30. Brewka, G., Ellmauthaler, S., Pührer, J.: Multi-context systems for reactive rea-
soning in dynamic environments. In: Schaub, T., Friedrich, G., O’Sullivan, B. (eds.)
Proceedings of ECAI, pp. 159–164. IOS Press (2014)

550 R. Gonçalves et al.

31. Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider,
M.T.: Potassco: the potsdam answer set solving collection. AI Commun. 24(2),
107–124 (2011)

32. Ivanov, V., Knorr, M., Leite, J.: A query tool for EL with non-monotonic rules.
In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 216–231. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-41335-3 14

33. Costa, N., Knorr, M., Leite, J.: Next step for NoHR: OWL 2 QL. In: Arenas,
M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 569–586. Springer, Heidelberg
(2015). doi:10.1007/978-3-319-25007-6 33

http://dx.doi.org/10.1007/978-3-642-41335-3_14
http://dx.doi.org/10.1007/978-3-319-25007-6_33

On Hierarchical Task Networks

Andreas Herzig1, Laurent Perrussel1, and Zhanhao Xiao1,2(B)

1 University of Toulouse, IRIT, Toulouse, France
zhanhaoxiao@gmail.com

2 AIRG, Western Sydney University, Penrith, Australia

Abstract. In planning based on hierarchical task networks (HTN),
plans are generated by refining high-level actions (‘compound tasks’)
into lower-level actions, until primitive actions are obtained that can be
sent to execution. While a primitive action is defined by its precondition
and effects, a high-level action is defined by zero, one or several methods:
sets of (high-level or primitive) actions decomposing it together with a
constraint. We give a semantics of HTNs in terms of dynamic logic with
program inclusion. We propose postulates guaranteeing soundness and
completeness of action refinement. We also show that hybrid planning
can be analysed in the same dynamic logic framework.

1 Introduction

The two main approaches to deterministic AI planning are classical state-based
planning [13] and Hierarchical Task Network (HTN) planning [5]. The former is
based on action preconditions and effects. The latter is based on domain-specific
heuristics about the decomposition of high-level actions (‘compound tasks’) into
lower-level actions, until primitive actions (‘primitive tasks’) are obtained. It has
no generally agreed semantics [7]. We here propose a semantics in terms of an
extension of Propositional Dynamic Logic PDL [8] by a program inclusion oper-
ator. This framework sheds light on a problem that had not been investigated
before: the soundness of HTN domain descriptions.

Let us illustrate HTNs and the soundness issue by an abstract example. Sup-
pose the only method for high-level action α is 〈α, 〈{(β, t)}(t, p)〉〉. The couple
〈{(β, t)}(t, p)〉 is a task network : (β, t) instantiates the action β by the temporal
label t, and the constraint (t, p) stipulates that p should be true immediately
after t. So the only way to perform α is by performing β, with postcondition p.
Suppose moreover that β is also a high-level action and that its only method
is 〈β, 〈{(b, t′)}(t′,¬p)〉〉. So the only way to perform β is to apply b, with post-
condition ¬p. No task involving α can ever be solved, and we call such an HTN
domain description unsound. It is reasonable to expect HTN domain descriptions
not to contain unsound methods. This is a simple example, and more complex
unsound methods can be designed. In this paper we show that PDL provides
a framework where we can characterise sound domain descriptions. The PDL
semantics also allows us to study whether the set of methods for a high-level

c© Springer International Publishing AG 2016
L. Michael and A. Kakas (Eds.): JELIA 2016, LNAI 10021, pp. 551–557, 2016.
DOI: 10.1007/978-3-319-48758-8 38

552 A. Herzig et al.

action α is complete, in the sense that when the precondition of α is true then
there is a method for α that is executable.

Beyond traditional HTN planning, we can show that PDL with program
inclusion also provides a semantics for so-called hybrid planning. There, domain
descriptions have preconditions and effects not only for primitive actions, but
also for high-level actions. Following [11,12], we consider that the effect of a
high-level action is its main, primary effect. Indeed, it is not obvious to describe
the effects of a high-level action α exhaustively. One of the reasons is that these
effects depend on the way α is refined. For example, consider the high-level action
of building a house. While its primary effect is that I have a house, its side effects
depend on whether I build the house myself or hire a builder: I either have a
bad back, or an empty bank account. We therefore consider that non-primitive
actions are not described by their effects but only by their postconditions.

Our paper is organised as follows. In Sect. 2 we define PDL. In Sect. 3 we define
HTN planning domains in PDL. In Sect. 4 we propose postulates of soundness,
completeness and modularity. Section 5 concludes.1

2 PDL with Inclusion of Programs

We define syntax and semantics of a version of Propositional Dynamic Logic
PDL having intersection and inclusion of programs and, for simplicity, with only
boolean tests. Let Prp be a finite set of propositional variables, with typical
elements p, q,. . . The set of boolean formulas built from Prp is noted Fmlbool.
Let Act be a finite set of actions, with typical elements α, β,. . . In examples
we use capital letters for propositional variables (such as HasHouse) and small
letters for actions (such as buildHouse).

The set of programs PgmPDL is defined by the following grammar:

π ::= α | π;π | π � π | π � π | π∗ | ϕ0?

where α ∈ Act and ϕ0 ∈ Fmlbool. The program operators “;”, “�”, and “�” are
sequential, nondeterministic and parallel composition, “∗” is bounded iteration,
and “?” is test. The set of formulas FmlPDL is defined by:

ϕ ::= p | ⊥ | ϕ → ϕ | 〈π〉ϕ | π	π

〈π〉ϕ reads “there is a possible execution of π after which ϕ is true” and π′	π
reads “every execution of π′ is also an execution of π”. Subsets of FmlPDL are
called theories. As usual, [π]ϕ abbreviates ¬〈π〉¬ϕ.

A model is a triple M = 〈W,R, V 〉 where W is a non-empty set of possible
worlds, R : PgmPDL −→ 2W×W associates accessibility relations Rπ to programs,
and V : Prp −→ 2W is a valuation. The function R must satisfy some constraints:

1 Our work is supported by CSC and CIMI. Thanks are due to the JELIA 2016
reviewers for their thorough comments. A long version of the paper with formal
results and proofs is at www.irit.fr/∼Andreas.Herzig/P/Jelia16htn.html.

www.irit.fr/~Andreas.Herzig/P/Jelia16htn.html

On Hierarchical Task Networks 553

Rπ1;π2 = Rπ1 ◦ Rπ2 Rπ∗ = (Rπ)∗

Rπ1�π2 = Rπ1 ∪ Rπ2 Rϕ0? = {〈w,w〉 : M,w � ϕ0}
Rπ1�π2 = Rπ1 ∩ Rπ2

Letting Rπ(w) = {v : 〈w, v〉 ∈ Rπ}, the truth conditions for formulas are:

M,w � p iff w ∈ V (p) M,w � ϕ → ϕ′ iff M,w
� ϕ or M,w � ϕ′

M,w
� ⊥ M,w � 〈π〉ϕ iff M,v � ϕ for some v ∈ Rπ(w)
M,w � π	π′ iff Rπ(w) ⊆ Rπ′(w)

For Γ ⊆ FmlPDL, we define Γ |= ϕ as: for every model M , if M � ψ for every
ψ ∈ Γ then M � ϕ, where M � ϕ stands for: M,w � ϕ for all w ∈ W .

3 HTN Planning in the PDL Framework

HTN planning presupposes that the set of actions Act is partitioned into two
sets: the set of primitive actions Act0 and the set of high-level actions Act\Act0.
We use a, b, . . . for typical elements of Act0 (and, as before, α, β, . . . for arbitrary
elements of Act). A primitive plan is a sequence of primitive actions. A primitive
program is a program where only elements of Act0 occur.

We suppose that all actions have pre- and postconditions. The postconditions
of primitive actions describe STRIPS-like effects in terms of add- and delete-lists.
Non-primitive actions can have arbitrary boolean formulas as an postconditions.
For example, the high-level action of leaving France may have postcondition
¬InFrance ∧ (InGermany ∨ InChina ∨ . . .). In traditional HTNs, high-level actions
have no postcondition, which can be captured by setting them to �.

3.1 HTN Planning Domains

An HTN planning domain is a couple Dhtn = 〈Pre,Post,Ref〉 where Pre,Post :
Act −→ Fmlbool and Ref : Act −→ 2PgmPDL such that for every a ∈ Act0, Ref(a) =
∅ and Post(a) is of the form

(∧

p∈eff+(a) p
)∧(∧

p∈eff−(a) ¬p
)

, for some eff+(a) and
eff−(α) such that eff+(a)∩eff−(a) = ∅. The refinement function Ref associates to
each α its methods: the set of programs refining α. For the introductory example
we have Ref(α) = {(β; p?)}, Ref(β) = {(b;¬p?)}, Ref(b) = ∅, and, say, that all
pre- and postconditions equal �, except that Post(b) = ¬p.

Example 1. An domain that can be found in almost all papers on HTN is that
of an agent travelling from A to B:

Pre(goAB) = AtA Post(goAB) = AtB Ref(goAB) = {taxiAB,walkAB}
Pre(taxiAB) = AtA Post(taxiAB) = AtB Ref(taxiAB) = {(rideAB; pay)}
Pre(walkAB) = AtA Post(walkAB) = AtB∧¬AtA Ref(walkAB) = ∅
Pre(rideAB) = AtA Post(rideAB) = AtB∧¬AtA Ref(rideAB) = ∅

Pre(pay) = Money Post(pay) = ¬Money Ref(pay) = ∅

554 A. Herzig et al.

The last three actions are primitive. Note that Post(goAB) does not mention the
possible effect ¬Money, which is only produced when goAB is refined to taxiAB.

An HTN planning domain is captured in PDL by the following theory:

Fml(Pre) = {〈α〉� ↔ Pre(α) : α ∈ Act}
Fml(Post) = {[α]Post(α) : α ∈ Act} ∪ { p → [a]p : a ∈ Act0 and p /∈ eff−(a)}

∪ {¬p → [a]¬p : a ∈ Act0 and p /∈ eff+(a)}
Fml(Ref) = {〈α〉� → π	α : α ∈ Act, π ∈ Ref(α)}

So primitive actions behave like STRIPS actions, while high-level actions are less
constrained, leaving room for conditional effects and other side effects. The the-
ory of an HTN planning domain is Fml(Dhtn) = Fml(Pre)∪Fml(Post)∪Fml(Ref).

3.2 HTN Planning Problems and Their Solutions

A HTN planning problem is a triple Phtn = 〈Dhtn, I, π〉 where Dhtn is an HTN
planning domain, I ∈ Fmlbool is a boolean formula, and π ∈ PgmPDL is a
program (‘initial task network’). For our travelling domain we may e.g. have
〈DAB

htn, I, goAB〉 with I = AtA ∧ ¬AtB ∧ Money. (Usually I is a complete descrip-
tion of a state, but this is not necessary here.)

Traditionally, solutions of Phtn are obtained by a fixed-point definition, in
three steps. First, the reduction of a program π is:

red(Dhtn, π) = {πα
Pre(α)?;π′ : α occurs in π and π′ ∈ Ref(α)}

where πα
Pre(α)?;π′ is obtained from π by replacing some occurrence of α in π

by Pre(α)?;π′. For the introductory example: red(Dhtn, (β; p?)) = {(b;¬p?; p?)}.
Second, for a primitive π0 we define its completion as follows:

compl(Dhtn, I, π0) = {a1;· · ·;an : Fml(Post) |= I → 〈(a1;· · ·;an) � π0〉�}

For example, compl(Dhtn, I, (b;¬p?; p?)) = ∅. Third, the solutions of an HTN
planning problem are primitive plans that are defined recursively as follows:

sol1(Dhtn, I, π) =

{

compl(Dhtn, I, π) if π is primitive
∅ otherwise

solk+1(Dhtn, I, π) = solk(Dhtn, I, π) ∪
⋃

π′∈red(Dhtn,π)

solk(Dhtn, I, π
′)

Letting sol(Dhtn, I, π) =
⋃

k solk(Dhtn, I, π) we are able to connect the traditional
solutions of HTN planning problems and logical consequence in PDL:

Theorem 1. If a1;· · ·;an ∈sol(Dhtn, I, π) then Fml(Dhtn) |=I→〈(a1;· · ·;an)�π〉�.

On Hierarchical Task Networks 555

4 Rationality Postulates for HTN Planning

We now introduce postulates of refinement soundness and completeness. Further
postulates of modularity are discussed in the long report.

When α is executable then all refinements of α should guarantee the post-
conditions of α. This has to be conditioned: if Pre(α) is false then there is no
point in refining.

Definition 1. Action α is soundly refinable at (M,w) if and only if either
M,w
� Pre(α) or for every π ∈ Ref(α) and v ∈ Rπ(w), M,v � Post(α).

Clearly, a reasonable HTN domain should be such that every action is soundly
refinable at every pointed model (M,w). This can be characterised in PDL.

Theorem 2. Let Dhtn be an HTN domain. An action α ∈ Act is soundly refin-
able at every pointed model (M,w) iff Fml(Dhtn) |= Pre(α) → [⊔

Ref(α)
]

Post(α).

One may also define complete refinability: when the precondition of a high-
level action is true then there should be a way of refining it.

Definition 2. High-level action α ∈ Act\Act0 is completely refinable at (M,w)
if and only if either M,w
� Pre(α) or there is a π ∈ Ref(α) such that Rπ(w)
= ∅.
In other words, as long as the precondition of α is true, one of the programs
refining α should be executable.

Theorem 3. An action α ∈ Act \ Act0 is completely refinable at every pointed
model (M,w) iff Fml(Dhtn) |= Pre(α) → 〈 ⊔

Ref(α)
〉�.

As discussed in [12], even when some refinement is physically possible, there may
be reasons for not including it in the Ref function. There are two possible such
reasons: either the refinement is legally impossible, or it is not preferred. This
former case of incompleteness can be illustrated with the help of Example 1:
the primitive plan rideAB of taking the taxi without paying also achieves the
postconditions of goAB. However, the domain designer did not want to allow
such a refinement and deliberately omitted it from Ref(goAB).

Complete refinability can be weakened by requiring refinability unless there
is no primitive plan achieving the postconditions of α. This is similar to what
is called planner completeness in [12], which, as we understand it, requires that
every solution that can be obtained by a classical planner is also obtainable by
the HTN planner. It can be characterized by the PDL formula

Fml(Dhtn) |= (

Pre(α) ∧ 〈(⊔

Act0
)∗〉

Post(α)
) → 〈 ⊔

Ref(α)
〉�.

5 Conclusion

We have proposed a representation of HTN in PDL with program inclusion,
identifying HTN methods with PDL programs. We have formulated soundness
and completeness postulates and have characterised them in PDL. It is clear

556 A. Herzig et al.

that methods with linear constraints can be expressed in this way by sequential
composition and tests. We leave the exact correspondence with more general
constraints to future work and just note that the PDL program operators are
expressive enough to capture the standard examples in the literature. Given
results on grammar logics [2,4], our extension of PDL is undecidable, and it can
be conjectured that fragments corresponding to regular grammars are decidable.

Previous work embedding HTN in the Situation Calculus [1,6,7] is discussed
in more detail in the long report. Relations between HTN planning with the
semantics of BDI logics are investigated in [3,9,10,14].

References

1. Baral, C., Son, T.C.: Extending ConGolog to allow partial ordering. In: Jennings,
N.R., Lespérance, Y. (eds.) ATAL 1999. LNCS (LNAI), vol. 1757, pp. 188–204.
Springer, Heidelberg (2000). doi:10.1007/10719619 14

2. del Cerro, L.F., Penttonen, M.: Grammar logics. Logique Et Analyse 31(121–122),
123–134 (1988)

3. De Silva, L., Sardina, S., Padgham, L.: First principles planning in BDI systems.
In: Proceedings of the 8th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), vol. 2, pp. 1105–1112. International Foundation
for Autonomous Agents and Multiagent Systems (2009)

4. Demri, S.: The complexity of regularity in grammar logics and related modal log-
ics. J. Log. Comput. 11(6), 933–960 (2001). http://dx.doi.org/10.1093/logcom/
11.6.933

5. Erol, K., Hendler, J., Nau, D.S.: HTN planning: complexity and expressivity. In:
Proceedings of the 12th National Conference on Artificial Intelligence (AAAI), vol.
94, pp. 1123–1128 (1994)

6. Gabaldon, A.: Programming hierarchical task networks in the situation calculus. In:
Proceedings of the 5th International Conference on Artificial Intelligence Planning
and Scheduling Systems Workshop on On-line Planning and Scheduling (2002)

7. Goldman, R.P.: A semantics for HTN methods. In: Gerevini, A., Howe, A.E., Cesta,
A., Refanidis, I. (eds.) Proceedings of the 19th International Conference on Auto-
mated Planning and Scheduling, (ICAPS). AAAI (2009)

8. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
9. Herzig, A., Lorini, E., Perrussel, L., Xiao, Z.: BDI logics for BDI architectures: old

problems, new perspectives. Künstliche Intelligenz (to appear)
10. Herzig, A., Perrussel, L., Xiao, Z., Zhang, D.: Refinement of intentions. In: Michael,

L., Kakas, A.C. (eds.) JELIA 2016. LNCS (LNAI), vol. 10021, pp. xx–yy. Springer,
Heidelberg (2016)

11. Kambhampati, S., Cutkosky, M.R., Tenenbaum, J.M., Lee, S.H.: Integrating gen-
eral purpose planners and specialized reasoners: case study of a hybrid planning
architecture. IEEE Trans. Syst. Man Cybern. 23(6), 1503–1518 (1993)

12. Kambhampati, S., Mali, A., Srivastava, B.: Hybrid planning for partially hierar-
chical domains. In: Proceedings of the 17th National Conference on Artificial Intel-
ligence and 12th Conference on Innovative Applications of Artificial Intelligence
(AAAI/IAAI), pp. 882–888 (1998)

http://dx.doi.org/10.1007/10719619_14
http://dx.doi.org/10.1093/logcom/11.6.933
http://dx.doi.org/10.1093/logcom/11.6.933

On Hierarchical Task Networks 557

13. Nau, D., Ghallab, M., Traverso, P.: Automated Planning: Theory & Practice.
Morgan Kaufmann Publishers Inc., San Francisco (2004)

14. Sardina, S., de Silva, L., Padgham, L.: Hierarchical planning in BDI agent pro-
gramming languages: a formal approach. In: Proceedings of the 5th International
Conference on Autonomous Agents and Multiagent Systems, pp. 1001–1008. ACM
(2006)

Refinement of Intentions

Andreas Herzig1, Laurent Perrussel1, Zhanhao Xiao1,2(B), and Dongmo Zhang2

1 IRIT, University of Toulouse, Toulouse, France
zhanhaoxiao@gmail.com

2 AIRG, Western Sydney University, Penrith, Australia

Abstract. According to Bratman, future-directed intentions are high-
level plans. We view such plans as high-level actions that can typically
not be executed directly: they have to be progressively refined until exe-
cutable basic actions are obtained. Higher- and lower-level actions are
linked by the means-end relation, alias instrumentality relation. In this
paper we extend Shoham’s database perspective of Bratman’s theory by
the notions of refinement and instrumentality.

1 Introduction

Bratman highlighted the fundamental role of an agent’s future-directed inten-
tions: they are high-level plans to which the agent is committed [3,5]. Such
high-level plans cannot be executed directly: they have to be refined as time
goes by, resulting in more and more elaborate plans. The lower-level intentions
that are inserted are instrumental for the high-level intention they refine [4]. At
the end of the refinement process plans only have in basic actions: actions the
agent can perform intentionally. Bratman’s theory is at the basis of the by now
huge literature on Belief-Desire-Intention (BDI) agents. However and as more
extensively discussed in [12], the literature only contains few BDI logics where
refinement is a central ingredient: essentially [2,14,17]. It is notably absent from
Cohen and Levesque’s logic [6] and Shoham’s database perspective [15,18,19].
The latter is a simple account that is based on databases of time-indexed basic
actions and beliefs. We believe it to be a promising basis for a logical analysis
of intentions.

In order to extend Shoham’s approach by an account of intention refinement,
the first thing to do is to add high-level, temporally extended actions. We are
also going to tackle another of its shortcomings, viz. that it does not solve the
frame problem: the beliefs at time point t together with the intention at t fail
to determine the beliefs at t+1. The reason is that Shoham’s databases do not
account for environment actions, alias events. We here add them to the picture.
Just as in PDDL+ planning [10], we suppose that while the planning agent is
proactive, the environment is reactive (or, more precisely, the planning agent

This work was partially supported by ANR-11-LABX-0040-CIMI within the program
ANR-11-IDEX-0002-02 and CSC (Chinese Scholarship Council). A long version is
available at www.irit.fr/∼Andreas.Herzig/P/Jelia16db.html.

c© Springer International Publishing AG 2016
L. Michael and A. Kakas (Eds.): JELIA 2016, LNAI 10021, pp. 558–563, 2016.
DOI: 10.1007/978-3-319-48758-8 39

www.irit.fr/~Andreas.Herzig/P/Jelia16db.html

Refinement of Intentions 559

believes so). Indeed, without such reactive events we would not be able to refine
intentions. For example, consider the refinement of my intention to submit a
paper to JELIA, which involves clicking Easychair’s ‘upload’ button: I have to
believe that my click action triggers the upload event in order to believe that
clicking is a means for submitting. It is within this framework of high-level actions
and reactive events we then study relations of refinement and instrumentality
between intentions.

2 Belief-Intention Databases

Let Act = {α, β, . . .} be a finite set of actions. It contains a set of basic actions
Act0 = {a, b, . . .}: actions that can be directly executed by the planning agent.
Let Evt0 = {e, f, . . .} be a finite set of basic events. Basic events and basic
actions take one time unit to be executed. Let P = {p, q, . . .} be a finite set
of propositional variables. The language of boolean formulas built from P is
noted LP.

Definition 1. A dynamic theory is a tuple T = 〈pre, post〉 with pre, post : Act∪
Evt0 −→ LP, such that that the postconditions of basic actions and events are
conjunctions of literals: there are functions eff +, eff − : Act0 ∪ Evt0 −→ 2P such
that for every x ∈ Act0 ∪ Evt0, post(x) =

(

∧

p∈eff +(x) p
)

∧
(

∧

p∈eff −(x) ¬p
)

.

We extend the functions pre, post , eff + and eff − to sets: pre(X) =
∧

x∈X pre(x). We say that a dynamic theory T is coherent if and only if for
every a ∈ Act0 and E ⊆ Evt0, if pre({a} ∪ E) is consistent then post({a} ∪ E) is
consistent.

Example 1. Alice has a high-level action buy of buying a movie ticket and a
basic action of buying a ticket online buyWeb. There is an event deliver of the
website delivering the electronic ticket. Here is its coherent dynamic theory:

pre(buy) = 	 post(buy) = Ticket
pre(wait) = 	 post(wait) = 	
pre(buyWeb) = 	 post(buyWeb) = PaidWeb
pre(deliver) = PaidWeb ∧ ¬Delivered post(deliver) = Ticket ∧ Delivered

In the rest of the paper we suppose a fixed background dynamic theory T .
An agent’s database contains her (incomplete) beliefs about the facts and

about event occurrences together with her intentions. Occurrence of event e ∈
Evt0 at time point t ∈ N is noted (t, e). We also consider the agent’s beliefs
about non-occurrence of events. For that we define the set of event complements
Evt0 = {ē : e ∈ Evt0} and write (t, ē) for non-occurrence of e at t. An intention
is a triple i = (t, α, d) ∈ N×Act×N with t < d. It represents that the agent
wants to perform α in the time interval [t, d]: it should start at or after t and
end before or at deadline d. We define end(t, α, d) = d. When α ∈ Act0 then i is
a basic intention.

560 A. Herzig et al.

Definition 2. A belief-intention database is a finite set

Δ ⊆ (N × LP) ∪ (N × Evt0) ∪ (N × Evt0) ∪ (N × Act × N).

For example, ΔA = {(0,buy, 3)} is a database describing Alice’s intention
to buy a movie ticket within the temporal interval [0, 3].

3 Semantics

The semantics of dynamic theories and belief-intention databases is in terms of
paths defining for each time point which propositional variables are true, which
basic events will occur, and which (single) basic action the agent will perform.

Definition 3. A path is a triple π = 〈V,H,D〉 with V : N −→ 2P, H : N →
2Evt0 , and D : N → Act0. It is a T -model iff T is coherent and for every t ∈ N:

V (t+1) =
(

V (t) \ eff −(

H(t)∪{D(t)})) ∪ eff +
(

H(t)∪{D(t)}))

H(t) = {e ∈ Evt0 | V (t) |= pre(e)}
D(t) ∈ {a ∈ Act0 | V (t) |= pre(a)}

So in a T -model: (1) the state at t+1 is determined by the state at t and the
basic action and events occurring at t; (2) event e occurs iff pre(e) is true (the
environment is reactive); (3) basic action a occurs implies that pre(a) is true
(the agent is autonomous and may or may not perform executable actions).

Definition 4. A T -model π = 〈V,H,D〉 satisfies intention i = (t, α, d), noted
π �T i, if there are t′, d′ such that t≤t′<d′≤d, V (t′) |= pre(α), V (d′) |= post(α),
and α ∈ Act0 implies D(t′) = α.

So π satisfies (t, α, d) if α is executable at some point after t and can end
before the deadline at a point where the postcondition of α is true. Moreover,
when α is basic then it conforms to the ‘do’-function D of π.

Definition 5. A T -model π = 〈V,H,D〉 is a T -model of Δ, noted π �T Δ, if

– (t, ϕ) ∈ Δ implies V (t) |= ϕ;
– (t, e) ∈ Δ implies e ∈ H(t);
– (t, e) ∈ Δ implies e �∈ H(t);
– i ∈ Δ implies π �T i.

We say that Δ is T -satisfiable if there exists a T -model of Δ. Δ is a T -
consequence of Δ′, noted Δ′ |=T Δ, if every T -model of Δ′ is also a T -model of
Δ. We write Δ′ |=T i when Δ is a singleton {i}.

Proposition 1. T -satisfiability and T -consequence are decidable, for every T .

Refinement of Intentions 561

4 Refining an Intention

A high-level intention cannot be executed directly by the agent: it can only
be refined into lower-level intentions, until basic intentions are produced. For
example, my high-level intention i to submit a paper to JELIA before its deadline
June 30 is refined into the intention i1 to register it on Easychair before June
30, the intention i2 to upload it as a PDF file, etc.

Refinement consists in adding new intentions to the database while staying
consistent. Intuitively, to refine an intention i means to add a minimal set of new
intentions J to the database which, together with other intentions but i, suffice
to entail i. Moreover, the deadlines of the refining intentions should be before
that of the refined intention.

Definition 6. Intention i is refinable to intention set J in Δ, noted Δ |=T i�J ,
iff

1. there is no j ∈ J such that Δ |=T j;
2. Δ ∪ J has a T -model;
3. (Δ ∪ J) \ {i} |=T i;
4. (Δ ∪ J ′) \ {i} �|=T i for every J ′ ⊂ J ;
5. end(j) ≤ end(i) for every j ∈ J .

For our running example we have ΔA |=T (0,buy, 3) � {(0, buyWeb, 1)}.

Proposition 2. It is decidable whether Δ |=T i � J .

5 Refinement and Instrumentality

A higher-level intention and the lower-level intentions refining it should stand in
a means-end relation: the lower-level means contribute to the higher-level end.
This is also called the instrumentality relation [1,4,8,16].

Instrumentality cannot be defined from an action theory alone. First, the
time point of action execution matters. For example, let us take up our inten-
tion of attending JELIA in November. Suppose I also have to go to the con-
ference host city, Larnaca, in May, for some other reason. The postcondition of
that action—to be in Larnaca—entails one of the preconditions of the attending
JELIA action. However, my May intention does not contribute to my November
intention. So the former is not necessarily instrumental for the latter. Second,
the preconditions of the means are typically more demanding than the precon-
ditions of the end; similarly, the postconditions of the means are more detailed
than those of the end. For example, buying a movie ticket should a priori not
require an adequate amount of money because there are other ways to buy a
ticket, such as online with a credit card.

Formally, the instrumentality relation relates a refined high-level intention to
a set of lower-level intentions, given a background database.

Definition 7. Let Δ be a T -satisfiable database. Let intention i ∈ Δ and let
intention set J ⊆ Δ. Then J is instrumental for i in Δ, noted Δ |=T J � i, iff

562 A. Herzig et al.

1. Δ \ J �|=T i;
2. (Δ \ J) ∪ {j} |=T i for every j ∈ J ;
3. end(j) ≤ end(i) for every j ∈ J .

When Δ |=T J � i then J is a minimal set of intentions satisfying the coun-
terfactual “if J was not in Δ then i would no longer be guaranteed by Δ” and all
intentions of J terminate before or together with i. Note that when Δ |=T J � i
then J cannot be empty (because we require i ∈ J).

We now relate intention refinement and instrumentality: when Δ |=T i � J
then every element of J is instrumental for i in the refined database Δ ∪ J .

Theorem 1. If Δ |=T i � J then Δ ∪ J |=T {i, j} � i for every j ∈ J .

The converse does not hold: instrumentality cannot guarantee that the added
intentions are new, so item 1 of Definition 6 does not necessarily hold.

6 Conclusion

We have extended Shoham’s database view by temporally extended high-level
intentions and STRIPS-like reactive environment events. The successive refine-
ment of high-level intentions into lower-level intentions relies on the consequence
relation of our semantics. The refined databases contain high- and low-level
intentions that are related by the instrumentality relation. We have shown that
satisfiability and consequence checking are still decidable in our extended data-
base perspective.

The closest domain concerning intention refinement would be Hierarchical
Task Networks (HTN) [9] which considering refinement of actions in a prede-
fined and primitive way. With an HTN planner, a BDI agent system has been
developed [7,17]. In this paper we focus on refinement which is, in some way, a
well-founded belief-intention database expansion. More general expansion may
lead to unsatisfiable database and raises issues about withdrawal or revision of
intentions. This is further explored in [13].

The next step is to investigate the revision of belief-intention databases. This
is typically required when the agent learns a new piece of information about the
environment. For example, suppose (t, e) ∈ Δ and the agent learns that e will
not happen at t. This requires not only to contract other beliefs about facts
and events, but also some of the agent’s intentions. The instrumentality relation
is of fundamental importance here: when Δ |=T J � i then the end intention
i is deeper entrenched in the belief-intention database Δ than the means J to
achieve i. So the agent should only abandon i once all possible ways of refining i
have turned out to be unavailable. One possible relational postulate for revision
is that the end intentions in the revised database should be a subset of the
end intentions of the original database. There is currently little work on linking
intention revision with instrumentality, with the exception of [11,19]. However,
these contributions are still preliminary as many issues are not yet solved, such
as the frame problem or the relation between basic and non-basic actions. We
intend to explore in future work the revision of a belief-intention database where
rational change relies on instrumentality.

Refinement of Intentions 563

References

1. Audi, R.: A theory of practical reasoning. J. Am. Philos. Q. 19, 25–39 (1982)
2. Baral, C., Gelfond, M.: Reasoning about intended actions. In: Proceedings of the

20th National Conference on Artificial Intelligence (AAAI), vol. 20, pp. 689–694.
AAAI Press, MIT Press, Menlo Park, Cambridge, London (1999) (2005)

3. Bratman, M.: Intention, Plans, and Practical Reason. Harvard University Press,
Cambridge (1987). Reedited 1999 with CSLI Publications

4. Bratman, M.: Intention, belief, and instrumental rationality. Reasons for action,
pp. 13–36 (2009)

5. Bratman, M.E., Israel, D.J., Pollack, M.E.: Plans and resource-bounded practical
reasoning. J. Comput. Intell. 4, 349–355 (1988)

6. Cohen, P.R., Levesque, H.J.: Intention is choice with commitment. J. Artif. Intell.
42(2), 213–261 (1990)

7. De Silva, L., Sardina, S., Padgham, L.: First principles planning in BDI systems.
In: Proceedings of the 8th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), vol. 2, pp. 1105–1112 (2009)

8. Dignum, F., Conte, R.: Intentional agents and goal formation. In: Singh, M.P., Rao,
A., Wooldridge, M.J. (eds.) ATAL 1997. LNCS, vol. 1365, pp. 231–243. Springer,
Heidelberg (1998). doi:10.1007/BFb0026762

9. Erol, K., Hendler, J., Nau, D.S.: HTN planning: complexity and expressivity. In:
Proceedings of the 12th National Conference on Artificial Intelligence (AAAI), vol.
94, pp. 1123–1128 (1994)

10. Fox, M., Long, D.: Modelling mixed discrete-continuous domains for planning. J.
Artif. Intell. Res. (JAIR) 27, 235–297 (2006)

11. Grant, J., Kraus, S., Perlis, D., Wooldridge, M.: Postulates for revising BDI struc-
tures. Synthese 175(1), 39–62 (2010)

12. Herzig, A., Lorini, E., Perrussel, L., Xiao, Z.: BDI logics for BDI architectures: old
problems, new perspectives. Knstliche Intelligenz (to appear)

13. Herzig, A., Perrussel, L., Xiao, Z.: On hierarchical task networks. In: Michael, L.,
Kakas, A.C. (eds.) JELIA 2016. LNCS(LNAI), vol. 10021, pp. xx–yy. Springer,
Heidelberg (2016)

14. Hunsberger, L., Ortiz, Jr., C.: Dynamic intention structures I: a theory of intention
representation. In: Proceedings of Autonomous Agents and Multi-Agent Systems
(AAMAS), vol. 16, no. 3, pp. 298–326 (2008)

15. Icard, T., Pacuit, E., Shoham, Y.: Joint revision of belief and intention. In: Pro-
ceedings of the 12th International Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR), pp. 572–574 (2010)

16. Lorini, E., Herzig, A.: A logic of intention and attempt. Synthese 163(1), 45–77
(2008)

17. Sardina, S., de Silva, L., Padgham, L.: Hierarchical planning in BDI agent pro-
gramming languages: a formal approach. In: Proceedings of the 5th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 1001–
1008. ACM (2006)

18. Shoham, Y.: Logical theories of intention and the database perspective. J. Philos.
Logic 38(6), 633–647 (2009)

19. Van Zee, M., Doder, D., Dastani, M., Van Der Torre, L.: AGM revision of beliefs
about action and time. In: Proceedings of the 24th International Joint Conference
on Artificial Intelligence (IJCAI), pp. 3250–3256 (2015)

http://dx.doi.org/10.1007/BFb0026762

GenB: A General Solver for AGM Revision

Aaron Hunter(B) and Eric Tsang

British Columbia Institute of Technology, Burnaby, Canada
aaron hunter@bcit.ca

Abstract. We describe a general tool for solving belief revision prob-
lems with a range of different operators. Our tool allows a user to flexibly
specify a total pre-order over states, using simple selection boxes in a
graphic user interface. In this manner, we are able to calculate the result
of any AGM revision operator. The user is also able to specify so-called
trust partitions to calculate the result of trust-sensitive revision. The
overall goal is to provide users with a simple tool that can be used in
applications involving AGM-style revision. While the tool can be demon-
strated and tested as a standalone application with a fixed user interface,
what we have actually developed is a set of libraries and functions that
can flexibly be incorporprated in other systems. It is anticipated that
this tool will be useful for experimentation, education, and prototyping
to solve problems in formal reasoning.

1 Introduction

We describe GenB, a general tool for solving belief revision problems. While the
theory of belief revision has been well-studied, there has been comparatively little
work on the development of tools to calculate the result of revision. Moreover,
the belief revision solvers that have appeared in the literature have commonly
focused on implementing a specific revision operator as effeciently as possible.
Our approach differs in that we develop a general tool that can capture any
AGM revision operator.

Due to well-known results on the complexity of revision [4], it is certainly
not possible to develop a solver that runs quickly for all instances of any given
AGM revision operator. Nevertheless, we suggest that a general tool that can
calculate the result of AGM revision would be useful in the development of
prototype reasoning systems. For instance, many reasoning problems involve
selective revision, where the input is pre-processed in some way [5]. Our tool can
be extended to solve such problems. GenB can also be useful for solving inverse
belief revision problems. For example, there are problems in which we have data
about the revision that has occurred, and we want to determine what sort of
plausibility ordering was used [9]. There are also problems where we know the
revision operator, but we want to find a formula to announce in order to bring
about a certain result [7]. Our tool can be useful for addressing this kind of
problem.

c© Springer International Publishing AG 2016
L. Michael and A. Kakas (Eds.): JELIA 2016, LNAI 10021, pp. 564–569, 2016.
DOI: 10.1007/978-3-319-48758-8 40

GenB: A General Solver for AGM Revision 565

This paper makes several contributions to existing work. First, we present
a fully general solver that can capture all AGM revision operators. The devel-
opment of such a tool should, in principle, facilitate prototyping for systems
that involve belief revision. Second, implementing a general solver allows us to
explore a new approach to revision that can be used in cases where no faithful
assignment is forthcoming. Finally, to the best of our knowledge, this is the first
implemented system for solving problems involving selective revision and trust.

2 Preliminaries

Belief revision is the process in which an agent’s beliefs change to incorporate new
information. One of the most influential models of belief revision has been the
AGM approach [1]. In AGM belief revision, the beliefs of an agent are represented
by a belief set, which is just a set of formulas K that is closed under consequence.
An AGM belief revision operator ∗ is a function that takes a belief set K and
a new formula φ as input, and it returns a new belief set K ∗ φ. Moreover, an
AGM revision operator must satisfy the so-called AGM postulates for revision.

We use the term state to refer to a propositional interpretation over the
underlying signature, and we use the term belief state to refer to a set of states.
A faithful assignment is a function that maps every belief set K to a total pre-
order ≺K over states, where the models of K are minimal. A representation result
has been proved to show that every AGM revision operator is characterized by
a faithful assignment [8]. To be slightly more precise, for every AGM revision
operator ∗, there is a faithful assignment such that K ∗ φ is the set of formulas
true in the ≺K-minimal models of φ. The converse also holds.

3 Implementation

We provide the user with a mechanism for entering a belief set and a new formula
for revision. Each of these is entered as a propositional formula; the underlying
vocabulary is just the set of proprositional variables that occur in the input.
In addition to these inputs, the user must also specify a total pre-order over
possible states. The basic revision algorithm operates as follows:

1. Input: sentence φ, comparator �
2. Set sentenceModels = {M | M |= φ}
3. Set nearestModel = M ′ where M ′ is �-minimal in sentenceModels
4. Set nearestModels = {M | M ′ � M � M ′}
5. Return nearestModels

GenB is implemented in Kotlin, which is essentially a variant of Java1. Inter-
nally, we use a Comparator object to capture the ordering over possible states.
However, in order to facilitate the use of our program, we give users a few basic
revision operators to choose from. The GenB interface is actually inspired by the
interface of COBA 2.0, a belief revision system described in [3]. The interface is
displayed in Fig. 1.
1 Technical documentation and download available at http://kotlinlang.org.

http://kotlinlang.org

566 A. Hunter and E. Tsang

Fig. 1. GenB interface

The components identified in the interface above are as follows:

1. File Menu: Allows inputs to be loaded or saved to a file.
2. Initial Belief State: The initial beliefs of the agent can be entered and

displayed as a set of models or a set of formulas.
3. Sentences for Revision: Entry and display can be through sets of models

or formulas.
4. Resulting Belief State: Display can be through sets of models or formulas.
5. Belief Revision Strategy: This is a combo box that allows the user to

specify different belief revision strategies, to be discussed below.
6. Trust Partition: Allows a trust partition to be specified, for trust-sensitive

belief revision.
7. Revise Button: Pressing the revise button causes the revision to be per-

formed, and displays the output.
8. Commit button: Pressing the commit button moves the new belief state to

the initial belief box.
9. Display Method: Combo boxes for toggling between different ways to show

information.

Users can toggle between the different display modes freely, switching from the
model display to several different formula options.

4 Revision Strategies

4.1 Hamming Distance

GenB supports several different revision strategies. For the purposes of this
paper, we focus primarily on the so-called Comparator-based revision strate-
gies. These strategies correspond to AGM revision.

GenB: A General Solver for AGM Revision 567

The first revision option is the Dalal revision operator based on the Hamming
distance [2]. In order to use this operator, the user simply selects Hamming
Distance from the combo box. No additional information is required for revision,
because GenB is able to automatically define the comparator � by calculating
the minimal Hamming distance from each state to a model of the input sentence.

Example 1. Suppose that we initially believe both p and q are true, but we want
to revise by ¬p ∨ ¬q. We proceed as follows:

1. Click Add on the Initial Belief State panel, enter p and q in the pop-up.
2. Click Add on the Sentences for Revision panel, enter −p or −q in the pop-up.
3. Select the Hamming Distance option.
4. Click the Revise button.

The resulting beliefs will be ¬p ∨ ¬q, as expected.

4.2 Weighted Hamming Distance

In some cases, we want to use a variation of the Dalal operator where certain
variables are understood to carry greater “importance.” In GenB, this can be
done by selecting the Weighted Hamming Distance, where each propositional
formula has an associated priority. In this manner, the distance between two
states will vary depending on the ‘wieght’ of the variables where they differ.

Example 2. Modifying the previous example, if we select the Weighted Hamming
Distance at step 3, we will be prompted to list the propositional variables in order
of importance. If we enter p, q as the ordering, then states are considered more
plausible when the they differ on q as opposed to when they differ on p. As such,
in this case, GenB will return q as the resulting set of beliefs.

4.3 Ordered Sets

The third revision option is based on Ordered Sets. When this option is selected,
the user is prompted to provide an ordered list of formulas. Intuitively, the user
is actually specifying the most plausible states for the comparator. Hence, if a
user enters p, q in the corresponding dialog, they are saying that models of p are
more plausible than models of q. It is possible (though tedious) to specify any
total pre-order over states in this manner. The system also allows a randomized
ordering, for users that do not want to produce a list.

We suggest that Ordered Sets revision can be used for experimentation. For
example, we can iterated over all orderings and then look at credulous or skep-
tical reasoning. By using GenB as a library, we can address this kind of novel
approach to revision.

568 A. Hunter and E. Tsang

4.4 Trust-Sensitive Revision

One issue with AGM revision for practical applications is the fact that the source
of new information is always trusted. This can be addressed by trust-sensitive
belief revision operators [6]. In trust-sensitive revision, we associate a partition
Π over states with each information source. When we are given a sentence φ for
revision, we first find {s | Π(s, s′) and s′ |= φ}. Rather than revising by φ, we
then revise by this set. In other words, we consider φ to be evidence for every
state that is Π-related to a model of φ. In this manner, the partition Π identifies
the states that we trust a particular source to be capable of distinguishing.

GenB allows the user to define a trust-partition, and then perform trust-
sensitive revision.

Example 3. Suppose that a particular agent is trusted on the value of the variable
S, but not on the variable D. Using GenB, we can model and solve this problem
as follows:

1. Click Add on the Initial Belief State panel, enter −S and D in the pop-up.
2. Click Add on the Sentences for Revision panel, enter S and −D in the pop-up.
3. Select the formula option on the Trust Partition combo box, enter S in the

pop-up.
4. Click the Revise button.

Note that, if step 3 is omitted, then normal revision is performed and the result
will include −D. However, using the trust-partition option, the result is not
forced to include this information.

5 Discussion

In this preliminary report, we have described the development of an automated
tool that can calculate the result of any AGM revision operator. To demonstrate
potential applications, we included an implementation of trust-sensitive revision
in our tool. We have addressed several interface design issues, such as providing
the user a means for specifying a total pre-order in a flexible manner. In practice,
however, we expect GenB to be deployed as a set of libraries that can easily be
integrated into more complex reasoning systems.

There are several directions for future research. First, although the practical
performance is strong, the effeciency of the system could be improved. Second,
we are interested in using GenB to find propositional announcements for belief
revision. Following the general approach in [7], we would like to use GenB to
implement a practical robot controller involving public announcements. Finally,
we would like to use GenB to address problems in security. To the best of our
knowledge, no existing protocol verification tools actually implement any app-
roach to belief revision. By implementing a general solver, we hope to explore the
utlility of belief revision for security through exploration and experimentation.

GenB: A General Solver for AGM Revision 569

References

1. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change:
partial meet functions for contraction and revision. J. Symbolic Logic 50(2), 510–
530 (1985)

2. Dalal, M.: Investigations into a theory of knowledge base revision. In: Proceedings
of the National Conference on Artificial Intelligence (AAAI), pp. 475–479 (1988)

3. Delgrande, J.P., Liu, D.H., Schaub, T., Thiele, S.: COBA 2.0: a consistency-based
belief change system. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS (LNAI), vol.
4724, pp. 78–90. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75256-1 10

4. Eiter, T., Gottlob, G.: On the complexity of propositional knowledge base revision,
updates and counterfactuals. Artif. Intell. 57(2–3), 227–270 (1992)

5. Fermé, E., Hansson, S.O.: Selective revision. Stud. Logica. 63(3), 331–342 (1999)
6. Hunter, A., Booth, R.: Trust-sensitive belief revision. In: International Joint Con-

ference on Artificial Intelligence (IJCAI), pp. 3062–3068 (2015)
7. Hunter, A., Schwarzentruber, F.: Arbitrary announcements in propositional belief

revision. In: Proceedings of the Workshop on Declarative and Ampliative Reasoning
(DARE) (2015)

8. Katsuno, H., Mendelzon, A.O.: Propositional knowledge base revision and minimal
change. Artif. Intell. 52(2), 263–294 (1992)

9. Liberatore, P.: Revision by history. J. Artif. Intell. Res. 52, 287–329 (2015)

http://dx.doi.org/10.1007/978-3-540-75256-1_10

A Two-Phase Dialogue Game for Skeptical
Preferred Semantics

Zohreh Shams1 and Nir Oren2(B)

1 Department of Computer Science, University of Bath, Bath, UK
z.shams@bath.ac.uk

2 Department of Computing Science, University of Aberdeen, Aberdeen, UK
n.oren@abdn.ac.uk

Abstract. In this paper we propose a labelling based dialogue game for
determining whether a single argument within a Dung argumentation
framework is skeptically preferred. Our game consists of two phases, and
determines the membership of a single argument within the extension,
assuming optimal play by dialogue participants. In the first phase, one
player attempts to advance arguments to construct an extension not
containing the argument under consideration, while the second phase
verifies that the extension is indeed a preferred one. Correctness within
this basic game requires perfect play by both players, and we therefore
also introduce an overarching game to overcome this limitation.

1 Introduction

It has been argued that proof dialogues, while providing equivalent results to
standard argumentation semantics, can decrease the gap between intuitive and
formal accounts of argumentation [1,11–13], and have been used in human-
computer interactions to aid understanding [4,6,16]. While the credulous accep-
tance problem under preferred semantics has been modelled using dialogue
games in the past [3,7,12,16], the skeptical preferred semantics has received
less attention.

In this paper, we propose a dialogue game for skeptical preferred acceptance
that is similar to [10,16], but (i) differs from [16] in that it is not restricted to
cases when the preferred and stable semantics coincide; (ii) differs to approaches
such as [8,12] in that it does not use a meta-dialogue based approach; and
(iii) also differs from existing approaches in that it uses argument labellings
within the dialogue. Moreover, we believe that this dialogue is more intuitive
than [8,10,12,16]. The principal aim of our dialogue is to facilitate explanation
as to why an argument is — or is not — skeptically preferred to a human user
(similar to the work of Caminada and Podlaszewski [5]).

Our dialogue utilises two phases. In the first, one participant (the opponent)
identifies an extension in which the argument under discussion is not present. In
the second phase, the other participant (the proponent) attempts to prove that
the opponent has (in some loose sense) cheated — that the extension advanced is
not a preferred extension. Under perfect play, this dialogue will identify whether
c© Springer International Publishing AG 2016
L. Michael and A. Kakas (Eds.): JELIA 2016, LNAI 10021, pp. 570–576, 2016.
DOI: 10.1007/978-3-319-48758-8 41

A Two-Phase Dialogue Game for Skeptical Preferred Semantics 571

an argument is skeptically preferred or not. In the presence of imperfect play,
we extend this basic game to an overarching one, which allows the two phases
to repeat until both parties are satisfied as to the presence or absence of the
argument within all extensions.

Next, we introduce the argumentation system and labelling based semantics.
Section 3 describes our dialogue. Note that a longer version of this paper con-
taining proofs of our results, extensions of the basic dialogue, and additional
details has appeared as a technical report [14].

2 Preliminaries

We begin with basic concepts from argumentation theory. Note that throughout
this paper, we consider only finite argumentation frameworks.

Definition 1 (Argumentation Framework [9]). An argumentation frame-
work is a pair AF = (Arg,Def), where Arg is a finite set of arguments and Def
is a defeat relation between arguments: Def ⊆ Arg × Arg.

Argumentation semantics focus on arguments that are justified in an argu-
mentation framework, whereas argument labellings (c.f., [15]) consider the
status of all arguments. In Caminada’s approach [2], an (partial) argument
labelling is described as a function L : Arg → {in, out, undec} such that
in(L) = {a ∈ Arg s.t. L(a) = in}, out(L) = {a ∈ Arg s.t. L(a) = out}, and
undec(L) = {A ∈ Arg s.t. L(a) = undec}. Thus, a labelling may be presented
as a triple of the form (in(L), out(L), undec(L)). An equivalence exists between
those arguments labelled in according to specific labelling procedures, and the
various standard argumentation semantics. To define labelling procedures cor-
responding to the preferred extensions, we need to first recall the definition of
legal and complete labellings.

Definition 2 (Labellings [2,12]). Let L be a labelling for AF = (Arg,Def).
An argument belong to Arg is legally:

– in iff all its defeaters are labelled out;
– out iff there is at least one of its defeaters that is labelled in;
– undec iff not all of its defeaters are labelled out and there is none of its

defeaters that is in.

An argument is labelled illegally iff its label is not legal. We say that a labelling
is legal if all its arguments are labelled legally.

A complete labelling is a non-partial labelling without arguments that are
illegally in, out, or undec.

A complete labelling is called a preferred labelling iff its set of in-labelled
arguments is maximal (with respect to set inclusion); or equivalently, iff its set
of out-labelled arguments is maximal (with respect to set inclusion).

572 Z. Shams and N. Oren

Note that an argument can only be labelled undecided if one or more of its
defeater are also undecided, and none of its defeaters are labelled in.

For a given argumentation framework, multiple preferred labellings may be
found. An argument is skeptically accepted under preferred labellings (and equiv-
alently, semantics) if it is labelled in within every preferred labelling. If an argu-
ment is labelled in within a subset of labellings, then it is credulously accepted
under the labelling.

3 A Dialogue Game for Skeptical Preferred Semantics

We now describe a dialogical proof procedure for the skeptically preferred seman-
tics. Two players — P and O take part, with P seeking to prove that a single
focal argument f is skeptically preferred. Our dialogue has two phases, and we
describe the legal moves and protocosl for each phase.

Intuitively, within the first phase, O aims to find a preferred labelling where
f is not in. In the second phase, P verifies that this labelling is maximally in
or out. The first phase thus allows O to identify a labelling where the focal
argument is not justified, and the second phase verifies that O did not cheat in
Phase one.

Note that we need to consider only a subset of arguments in the framework,
namely those arguments which directly or indirectly defeat or defend the focal
argument1. We refer to the labelling of such arguments as a sub-labelling. Where
the context is clear, we may refer to a sub-labelling as a labelling.

Definition 3 (Dialogue Moves). The following moves are available to the
dialogue participants.

What is — WI (a). This move is used to request that a label be assigned to a,
where a ∈ Arg.

Claim — CL(L(a)). This move is used to assign a label L ∈ {in, out, undec}
to a, where a ∈ Args.

3.1 Phase One

In this phase, O seeks to create a complete sub-labelling of arguments in which
the focal argument f is undec or out. If O fails to construct such a labelling, it
loses the game. If on the other hand O succeeds, then the result of this phase is a
complete sub-labelling, which is evaluated by P in the second phase to determine
whether it is a preferred sub-labelling.

In this phase, P utters only WI moves, while O plays only CL moves. The
proponent P initiates the dialogue with the move WI (f), where f is the focal
argument whose status is to be determined. Following this, O and P take turns

1 i.e., only those arguments for which there is a directed path according to the defeat
relation to the focal argument in the graph generated by the argumentation frame-
work.

A Two-Phase Dialogue Game for Skeptical Preferred Semantics 573

to make an utterance (with O making the second move). A CL(L(a)) move by
O provides a labelling for the directly preceding WI (a) move of P , where L(a)
is the label assigned to a. Note that WI moves (and therefore CL moves) cannot
be repeated. The Phase one protocol is formally specified as follows.

Definition 4 (Phase One Dialogue). Let AF = (Arg,Def) be an argu-
mentation framework. A phase one dialogue is a sequence Δo = [δ1, δ2, · · · , δn]
(n ≥ 1) satisfying the following conditions:

– odd moves (δi, 1 ≤ i ≤ n, i ∈ 2Z+ + 1) belong to P and even moves (δi, 2 ≤
i ≤ n, i ∈ 2Z+) belong to O.

– δ1 = WI (f), where f is the focal argument.
– each δi (2 ≤ i ≤ n, i ∈ 2Z+) is of the form CL(L(a)), where δi−1 = WI (a).
– each δi (3 ≤ i ≤ n, i ∈ 2Z+ + 1) is of form WI (a) s.t. ∃δj = CL(L(b))(j < i)

and (a, b) ∈ Def .
– there exist no two WI moves δi and δj (i �= j) for which δi = δj.

Phase one terminates when no more moves are possible. O loses the game if it

1. utters CL(in(x)), where x is the focal argument in the dialogue; or
2. labels an argument in, having previously labelled one of its defeater in or

undec; or
3. labels an argument undec, having previously labelled one of its defeaters in;

or
4. when no more moves are possible, there is an argument labelled undec for

which no defeaters are labelled undec; or
5. when no more moves are possible, there is an argument labelled out for which

no defeaters are labelled in.

If O does not lose the game when Phase one terminates, Phase two begins.
Alternatively, if O loses the game, then P wins. If O does not lose the game
during Phase one, then we must wait until Phase two terminates to determine
whether O or P win the game.

3.2 Phase Two

Here, P tries to prove that the labelling of Phase one is not preferred. If success-
ful, P wins the game and otherwise O wins. The latter occurs when O explores
the consequences of claims made by P .

This phase utilises the same moves as previously. However, now P utters
CL moves while O advances WI moves. As in Phase one, the proponent (P)
and opponent (O) take turns to advance arguments. P makes the first move
by putting forward CL(in(x)), where x was labelled undec in the Phase one. O
responds to a CL move with a WI move, and P responds to such a move with
a CL move.

As in Phase one, the argument of a WI move must be one that defeats the
argument labelled by a CL move, with the additional constraint that a CL move

574 Z. Shams and N. Oren

may only be made over arguments which were labelled undec in Phase one. The
CL move then changes the label of such an argument. Again, WI moves cannot
be repeated. Formally, the second phase of the dialogue is described as follows.

Definition 5 (Phase Two Dialogue). Let AF = (Arg,Def) be an argu-
mentation framework and Δo = [δ1, δ2, · · · , δn] (n ≥ 1) be a Phase one dia-
logue in which O did not lose. A Phase two dialogue is a sequence of moves
Δt = [δ′

1, δ
′
2, · · · , δ′

m] (m ≥ 0) satisfying the following conditions:

– odd moves (δ′
i, 1 ≤ i ≤ m, i ∈ 2Z+ + 1) belong to P and even moves (δ′

i, 2 ≤
i ≤ m, i ∈ 2Z+) belong to O.

– δ′
1 = CL(in(a)) for a ∈ Arg such that ∃CL(undec(a)) ∈ Δo

– For any 2 ≤ i ≤ m, i ∈ 2Z+, δ′
i is a move by O of the form WI(a) where

a, b ∈ Arg and
• (a, b) ∈ Def
• CL(L(b)) ∈ Δt; and
• CL(undec(a)) ∈ Δo but CL(L(a)) /∈ Δt; and

– each δ′
i where 3 ≤ i ≤ m, i ∈ 2Z+ + 1, is a move by P of form CL(L(a)),

where δ′
i−1 = WI (a).

– there exists no two WI moves δ′
i and δ′

j (i �= j) while δ′
i = δ′

j.

The dialogue terminates when no further moves are possible. P wins the game
iff it has made at least one move during Phase 2 and the labelling at the end of
Phase two is legal. Otherwise, O is the winner.

The second phase requires P to demonstrate that the labelling advanced by
O in Phase one is not a preferred labelling. Since such labellings are maximally
in, P does so by changing the label of an argument labelled undec in Phase
one to in. Once such a change is made, Phase two continues by relabelling
the undecided defeaters of the changed argument until no further changes are
required or possible. If P is able to perform the relabelling in such a way so that
the resultant labelling is legal, then it wins the game as it has shown that the
labelling advanced by O in Phase one is not maximally in. If P fails in doing
this, then O wins the game.

Note that the relabelling in Phase two does not require all undecided argu-
ments to be relabelled. Also, if no undecided arguments exist at the start of
Phase two, the game ends immediately, with O winning the game. Finally, note
that while P was required to relabel an undec argument to in, it would be
equivalent to require undec arguments to be labelled out.

Theorem 1. There is a winning strategy for P (under which they will win all
games) iff the focal argument is skeptically preferred. Similarly, there is a strategy
for O (under which O will win all games) iff the focal argument is not skeptically
preferred.

A Two-Phase Dialogue Game for Skeptical Preferred Semantics 575

This theorem requires perfect play by O and P is required for the dialogue
to correctly identify skeptically preferred arguments. However, as we describe
in [14], it is possible to introduce a strategy, together with an extended form of
the game, which guarantees that the dialogue will be sound and complete even
under imperfect play, though at the cost of additional computational complexity
(note that a single iteration of the dialogue has complexity linear in the number
of arguments). Unsurprisingly, O’s strategy in Phase one involves advancing a
preferred labelling, while in Phase two, P should label the focal argument in and
then proceed to label other undec arguments appropriately. Since pursuing such
a strategy may be computationally infeasible, the extended form of the game
(effectively) allows multiple games to take place, exploring alternative labellings
until both parties are satisfied as to the outcome of the game.

4 Conclusions

In this short paper we introduced a dialogue game for the skeptical preferred
semantics which exploits argument labellings. The basic game requires perfect
play by both opponents, but is useful in human-computer interaction settings
where argument status is explained by the computer to a human (c.f., [4]). As
future work, we intend to investigate whether our approach can be more generally
applied to any complete-based skeptical semantics (e.g., skeptical stable).

References

1. Caminada, M.: Dialogues and HY-arguments. In: Delgrande, J., Schaub, T. (eds.)
10th International Workshop on Non-Monotonic Reasoning, pp. 94–99 (2004)

2. Caminada, M.: On the issue of reinstatement in argumentation. In: Fisher, M.,
Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS (LNAI), vol. 4160, pp.
111–123. Springer, Heidelberg (2006). doi:10.1007/11853886 11

3. Caminada, M.W.A., Dvořák, W., Vesic, S.: Preferred semantics as socratic discus-
sion. J. Log. Comput. 26(4), 1257–1292 (2016). doi:10.1093/logcom/exu005

4. Caminada, M., Kutlak, R., Oren, N., Vasconcelos, W.W.: Scrutable plan enactment
via argumentation and natural language generation. In: Bazzan, A.L.C., Huhns,
M.N., Lomuscio, A., Scerri, P. (eds.) International conference on Autonomous
Agents and Multi-Agent Systems, pp. 1625–1626 (2014)

5. Caminada, M., Podlaszewski, M.: Grounded semantics as persuasion dialogue. In:
Verheij, B., Szeider, S., Woltran, S. (eds.) Computational Models of Argument,
vol. 245, pp. 478–485 (2012)

6. Caminada, M., Podlaszewski, M.: User-computer persuasion dialogue for grounded
semantics. In: Benelux Conference on Artificial Intelligence, pp. 343–344 (2012)

7. Cayrol, C., Doutre, S., Mengin, J.: Dialectical proof theories for the credulous pre-
ferred semantics of argumentation frameworks. In: Benferhat, S., Besnard, P. (eds.)
Symbolic, Quantitative Approaches to Reasoning with Uncertainty, vol. 2143, pp.
668–679 (2001)

8. Doutre, S., Mengin, J.: On sceptical vs credulous acceptance for abstract argument
systems. In: Delgrande, J., Schaub, T. (eds.) 10th International Workshop on Non-
Monotonic Reasoning, pp. 134–139 (2004)

http://dx.doi.org/10.1007/11853886_11
http://dx.doi.org/10.1093/logcom/exu005

576 Z. Shams and N. Oren

9. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2),
321–358 (1995)

10. Dung, P.M., Thang, P.M.: A sound and complete dialectical proof procedure for
sceptical preferred argumentation. In: LPNMR-Workshop on Argumentation and
Nonmonotonic Reasoning, pp. 49–63 (2007)

11. Jakobovits, H., Vermeir, D.: Dialectic semantics for argumentation frameworks.
In: Seventh International Conference on Artificial Intelligence and Law, pp. 53–62
(1999)

12. Modgil, S., Caminada, M.: Proof theories and algorithms for abstract argumen-
tation frameworks. In: Simari, G., Rahwan, I. (eds.) Argumentation in Artificial
Intelligence, pp. 105–129. Springer, US (2009)

13. Prakken, H.: Combining sceptical epistemic reasoning with credulous practical rea-
soning. In: Dunne, P.E., Bench-Capon, T.J.M. (eds.) Computational Models of
Argument, vol. 144, pp. 311–322 (2006)

14. Shams, Z., Oren, N.: A labelling based dialogue game for skeptical preferred seman-
tics, Technical report ABDN-CS-2016-02. http://homepages.abdn.ac.uk/n.oren/
pages/abdn-CS2016-02.pdf

15. Verheij, B.: Two approaches to dialectical argumentation: admissible sets and argu-
mentation stages. In: International Conference on Formal and Applied Practical
Reasoning, pp. 357–368 (1996)

16. Vreeswik, G.A.W., Prakken, H.: Credulous and sceptical argument games for pre-
ferred semantics. In: Ojeda-Aciego, M., Guzmán, I.P., Brewka, G., Pereira, L. (eds.)
JELIA 2000. LNCS (LNAI), vol. 1919, pp. 239–253. Springer, Heidelberg (2000).
doi:10.1007/3-540-40006-0 17

http://homepages.abdn.ac.uk/n.oren/pages/abdn-CS2016-02.pdf
http://homepages.abdn.ac.uk/n.oren/pages/abdn-CS2016-02.pdf
http://dx.doi.org/10.1007/3-540-40006-0_17

Measuring Inconsistency in Answer
Set Programs

Markus Ulbricht1(B), Matthias Thimm1,2, and Gerhard Brewka1

1 Department of Computer Science, Leipzig University, Leipzig, Germany
mulbricht@informatik.uni-leipzig.de

2 Institute for Web Science and Technologies (WeST),

University of Koblenz-Landau, Koblenz, Germany

Abstract. We address the issue of quantitatively assessing the sever-
ity of inconsistencies in logic programs under the answer set semantics.
While measuring inconsistency in classical logics has been investigated
for some time now, taking the non-monotonicity of answer set semantics
into account brings new challenges that have to be addressed by reason-
able accounts of inconsistency measures. We investigate the behavior of
inconsistency in logic programs by revisiting existing rationality postu-
lates for inconsistency measurement and developing novel ones taking
non-monotonicity into account. Further, we develop new measures for
this setting and investigate their properties.

1 Introduction

Answer set programming (ASP, see [2] for an overview) is a popular non-mono-
tonic formalism for knowledge representation and reasoning. We consider a finite
set L of literals. An extended logic program P (over L) is a set of rules of the
form

r : l0 ← l1, . . . , lk,not lk+1, . . . ,not lm. (1)

with l0, . . . , lm ∈ L, 0 ≤ k ≤ m. Let P be the set of all extended logic programs.
We abbreviate head(r) = l0, pos(r) = {l1, . . . , lk} and neg(r) = {lk+1, . . . , lm}.
For two sets M and L of literals, we say M satisfies L (M � L) iff l ∈ M for
each l ∈ L . Now let P be a classical program (without default negation not).
For a rule r ∈ P , M � r iff M � {head(r)} whenever M � pos(r) and M � P iff
M � r for each rule r ∈ P . We let Cl(P) be the unique M ⊆ L with M � P and
M ′

� P for each set M ′
� M .

Definition 1. A set M of literals is called an answer set of a classical program
P if M = Cl(P). M is an answer set of an extended logic program P if M is the
answer set of PM , where PM = {head(r) ← pos(r) | r ∈ P, neg(r) ∩ M = ∅} is
the reduct of P with respect to M .

A set M of literals is called consistent if it does not contain both a and ¬a for
an atom a. A program P is called consistent if it has at least one consistent
c© Springer International Publishing AG 2016
L. Michael and A. Kakas (Eds.): JELIA 2016, LNAI 10021, pp. 577–583, 2016.
DOI: 10.1007/978-3-319-48758-8 42

578 M. Ulbricht et al.

answer set, otherwise it is called inconsistent. Let Ans(P) denote the set of all
answer sets of P and AnsInc(P) and AnsCon(P) the inconsistent and consistent
ones, respectively. Note that, motivated by the goals of this paper, our defini-
tion slightly differs from the original definition in [3] which allows for a single
inconsistent answer set only, namely L.

In the classical literature on inconsistency measurement—see e. g. [4,5,10]—
inconsistency measures are functions that aim at assessing the severity of the
inconsistency in knowledge bases formalized in propositional logic. Here, we are
interested in measuring inconsistency for (extended) logic programs and only
consider measures defined on those. Let R

∞
≥0 be the set of non-negative real

values including ∞.

Definition 2. An inconsistency measure I is a function I : P → R
∞
≥0.

The basic intuition behind an inconsistency measure I is that the larger the
inconsistency in P the larger the value I(P). However, even in the setting of
propositional logic, inconsistency is a concept that is not easily quantified and
there have been a couple of proposals for inconsistency measures in this setting,
see [10] for a recent survey.

The issue of measuring inconsistency in logic programs is more challenging
compared to the classical setting due to the non-monotonicity of answer set
semantics. This becomes apparent when considering the monotonicity postu-
late which is usually satisfied by classical inconsistency measures and demands
I(P ′) ≥ I(P) whenever P ⊆ P ′, i. e., the severity of inconsistency cannot be
decreased by adding new information. Consider now the two logic programs P1

and P2 given as follows:

P1 : b ← not a. P2 : b ← not a.
¬b ← not a. ¬b ← not a.

a.

We have P1 ⊆ P2 but P1 is inconsistent while P2 is not, so we would expect
I(P2) < I(P1) for any reasonable measure I. Therefore, simply taking classical
inconsistency measures and applying them to the setting of logic programs does
not yield the desired behavior.

Many rationality postulates such as monotonicity from above are already
disputed in the classical setting, cf. [1]. Taking non-monotonicity of the knowl-
edge representation formalism into account, a rational account of the severity
of inconsistency calls for a specific investigation, which we will undertake in
the remainder of this paper. In particular, we will discuss rationality postulates
for inconsistency measures in logic programs in Sect. 2 and propose some novel
measures in Sect. 3. An extended version of this paper can be found online1.

1 http://www.mthimm.de/misc/utb incasp.pdf.

http://www.mthimm.de/misc/utb_incasp.pdf

Measuring Inconsistency in Answer Set Programs 579

2 Rationality Postulates

Research in inconsistency measurement is driven by rationality postulates, i. e.,
desirable properties that should hold for concrete approaches. There is a growing
number of rationality postulates for inconsistency measurement but not every
postulate is generally accepted, see [1] for a recent discussion on this topic. In
the following, we revisit a selection of the most popular postulates—see e. g.
[6,9]—and phrase them within our context of logic programs. To do so, we need
some further notation.

Definition 3. The dependency graph DP of a program P is a labeled directed
graph having all literals of the program as vertices and there is an edge (li, lj , s)
iff P contains a rule r such that head(r) = lj and li ∈ pos(r)∪neg(r). The label
s ∈ {+,−} indicates whether li ∈ pos(r) or li ∈ neg(r). For any literal l, let
Path(P, l) be the set of all literals l′ (including l itself) such that there is a path
from l to l′ in DP .

Definition 4. A set U of literals is called a splitting set [7] for P , if head(r) ∈
U implies that all literals of atoms appearing in r are contained in U , for every
rule r ∈ P . For a splitting set U , let botU (P) be the set of all rules r ∈ P with
head(r) ∈ U . This set of rules is called the bottom part of P with respect to U .

Definition 5. A rule r∗ ∈ P is called safe with respect to P if the atom occurring
in the head of r∗ does not appear elsewhere in the program and pos(r∗) ∪ neg(r∗)
is a subset of the literals occurring in P \ {r∗}.
Now let I be an inconsistency measure. The postulate Consistency establishes
that 0 is the minimal inconsistency value and that it is reserved for consistent
programs.

Consistency. P is consistent iff I(P) = 0.

Satisfaction of Monotonicity. is generally not desirable for ASP. However, as we
still wish to require some form of monotonicity in special cases, we consider the
weaker postulate CLP-Monotonicity (CLP stands for “classical logic program”).
If a program does not contain any default negation and we only add new infor-
mation without default negation, we are in the classical setting and monotonicity
should hold. A stronger version of CLP-Monotonicity is I-Monotonicity which
is applicable when the head of a new rule is independent of the defaults in the
program. Similarly, Split-Monotonicity considers monotonicity with respect to
the bottom part of splitting sets.

Monotonicity. I(P) ≤ I(P ′) whenever P ⊆ P ′.
CLP-Monotonicity. If P is a classical logic program and r∗ a classical rule,

then I(P) ≤ I(P ∪ {r∗}).
I-Monotonicity. If r∗ is a rule with Path(P ∪ r∗, head(r∗)) ∩ neg(P ∪ r∗) = ∅,

then I(P) ≤ I(P ∪ {r∗}).
Split-Monotonicity. If U is a splitting set of P , then I(botU (P)) ≤ I(P).

580 M. Ulbricht et al.

Finally, Safe-rule independence demands that the addition of safe rules does not
change the inconsistency value.

Safe-rule independence. If P is a logic program and r∗ safe with respect to
P , then I(P) = I(P ∪ {r∗}).

3 Inconsistency Measures

We now propose concrete inconsistency measures for logic programs. Inconsis-
tency of programs can occur due to two different reasons, namely because the
program has no answer set at all or because all answer sets are inconsistent, cf.
[8]. Different measures should assess those reasons differently. Furthermore, to
measure inconsistency of a program, one could either take the program itself or
the answer sets into account. We will cover both approaches.

Our first measure I± aims at measuring the distance of the program to a con-
sistent one. More specifically, it quantifies the number of modifications in terms
of deleting and adding rules, necessary in order to restore consistency. Deleting
certain rules can surely be sufficient to prevent P from entailing contradictions,
but as already pointed out before, adding rules can also resolve inconsistency.

Definition 6. Define I± : P → R
∞
≥0 via

I±(P) = min{|A| + |D| | A,D ∈ P such that (P ∪ A) \ D is consistent}
for all P ∈ P.

Example 1. Consider the program P3 defined via

P3 : a1 ← not b. a1 ← not c. a1 ← not d.
¬a1 ← not b. ¬a1 ← not c. ¬a1 ← not d.

and P4 given as follows.

P4 : a1 ← not b. a2 ← not b. a3 ← not b.
¬a1 ← not b. ¬a2 ← not b. ¬a3 ← not b.

Note that P3 contains three contradicting pairs of rules. Since one can delete one
rule in each of them (or make the rule inapplicable by adding the corresponding
fact), I±(P3) = 3. Even though P4 is similar, I±(P4) = 1 since P4 ∪ {b.} is
consistent.

The measure I± performs a hypothetical modification of the original program P
itself to obtain consistency. Another approach is to relax the definition of answer
sets and consider modifications of the reduct PM instead.

Definition 7. A consistent set M of literals is called a k-l-model of a classical
logic program P if M is a model of (P ∪ A) \ D with A,D ∈ P and |A| ≤ k,
|D| ≤ l. M is called a k-l-answer set of an extended logic program P if M is a
k-l-model of PM .

Measuring Inconsistency in Answer Set Programs 581

Definition 8. Define I± : P → R
∞
≥0 via

I±(P) = min
M⊆L

{k + l | M is a k-l-answer set of P}

for all P ∈ P.

Interestingly, however, these two different points of view—considering the reduct
or the program itself—are equivalent.

Proposition 1. For any extended logic program P , I±(P) = I±(P).

While for any program P , one can find a set M of literals such that M is a
model of PM , one cannot always guarantee M being the minimal model of the
reduct. Our next measure minimizes the distance between M and Cl(PM). We
only consider the number of literals in the symmetric difference of two sets.
Investigating other distances is left for future work. Recall that the symmetric
difference dsd of two sets M and M ′ is defined via dsd(M,M ′) = |(M ∪ M ′) \
(M ∩ M ′)|.
Definition 9. Define Isd : P → R

∞
≥0 via

Isd(P) = min
M∈ConClP

dsd(M,Cl(PM))

with ConClP = {M ⊆ L | M,Cl(PM) is consistent} and min ∅ = ∞.

Example 2. If a program P contains two contradicting facts, Isd(P) = ∞ since
in this case, Cl(PM) is inconsistent for any set M of literals. For the programs
P3 and P4 from Example 1, we have Isd(P3) = 3 and Isd(P4) = 1.

Our last measure I# takes the answer sets of a program into account rather
than the rules. For this purpose, we need the following notion.

Definition 10. A set M of literals is called k-inconsistent, k ∈ N∪{0}, if there
are exactly k atoms a such that a ∈ M and ¬a ∈ M .

Furthermore, programs might have no answer set at all, which is a special case
for I#.

Definition 11. Define I# : P → R
∞
≥0 via

I#(P) = min
M∈Ans(P)

{k | M is k-inconsistent}

with min ∅ = ∞.

Example 3. For I#, we obtain I#(P3) = 1 and I#(P4) = 3.

Table 1 gives an overview on the compliance of our measures with respect to
the rationality postulates from Sect. 2. Note that, naturally, none of our measures
satisfies the classical monotonicity postulate which is also not desired for ASP.

582 M. Ulbricht et al.

Table 1. Compliance of inconsistency measures with respect to our rationality
postulates

I± = I± Isd I#

Consistency � � �
Monotonicity ✗ ✗ ✗

CLP-Monotonicity � � �
I-Monotonicity � � �
Split-Monotonicity � � �
Safe-rule independence � � �

4 Summary

In this paper, we addressed the challenge of measuring inconsistency in ASP by
critically reviewing the classical framework of inconsistency measurement and
taking non-monotonicity into account. We developed novel rationality postulates
and measures that are more apt for analyzing inconsistency in ASP than classical
approaches. Intuitively, some of our measures take the effort needed to restore
the consistency of programs into account (I±, I±), and our results show that
it does not matter whether this is done on the level of the original program
or on the level of the reduct. Others measure inconsistency in terms of the
quality of the produced output, e. g., I# which considers the minimal number
of inconsistencies in an answer set.

Acknowledgements. This work has been partially funded by the DFG Research
Training Group 1763.

References

1. Besnard, P.: Revisiting postulates for inconsistency measures. In: Fermé, E., Leite,
J. (eds.) JELIA 2014. LNCS, vol. 8761, pp. 383–396. Springer, Heidelberg (2014).
doi:10.1007/978-3-319-11558-0 27

2. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Com-
mun. ACM 54(12), 92–103 (2011). http://doi.acm.org/10.1145/2043174.2043195

3. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Gener. Comput. 9(3/4), 365–386 (1991). http://dx.doi.org/10.
1007/BF03037169

4. Grant, J., Hunter, A.: Measuring inconsistency in knowledgebases. J. Intell. Inf.
Syst. 27, 159–184 (2006)

5. Hunter, A., Konieczny, S.: Approaches to measuring inconsistent information. In:
Bertossi, L., Hunter, A., Schaub, T. (eds.) Inconsistency Tolerance. LNCS, vol.
3300, pp. 191–236. Springer, Heidelberg (2005). doi:10.1007/978-3-540-30597-2 7

6. Hunter, A., Konieczny, S.: On the measure of conflicts: shapley inconsistency val-
ues. Artif. Intell. 174(14), 1007–1026 (2010)

http://dx.doi.org/10.1007/978-3-319-11558-0_27
http://doi.acm.org/10.1145/2043174.2043195
http://dx.doi.org/10.1007/BF03037169
http://dx.doi.org/10.1007/BF03037169
http://dx.doi.org/10.1007/978-3-540-30597-2_7

Measuring Inconsistency in Answer Set Programs 583

7. Lifschitz, V., Turner, H.: Splitting a logic program. In: Logic Programming, Pro-
ceedings of the Eleventh International Conference on Logic Programming, Santa
Marherita Ligure, Italy, 13–18 June 1994, pp. 23–37 (1994)

8. Schulz, C., Satoh, K., Toni, F.: Characterising and explaining inconsistency in
logic programs. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.) LPNMR 2015.
LNCS, vol. 9345, pp. 467–479. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-23264-5 39

9. Thimm, M.: Inconsistency measures for probabilistic logics. Artif. Intell. 197, 1–24
(2013)

10. Thimm, M.: On the expressivity of inconsistency measures. Artif. Intell. 234, 120–
151 (2016)

http://dx.doi.org/10.1007/978-3-319-23264-5_39
http://dx.doi.org/10.1007/978-3-319-23264-5_39

Author Index

Alliot, Jean-Marc 3
Apt, Krzysztof R. 18
Areces, Carlos 34

Baader, Franz 49
Baget, Jean François 64
Balbiani, Philippe 81, 97
Basseda, Reza 515
Beck, Harald 522
Belardinelli, Francesco 112
Benferhat, Salem 64
Bierbaumer, Bruno 522
Bistarelli, Stefano 127
Boudou, Joseph 144
Bouraoui, Zied 64
Bozzelli, Laura 159
Brewka, Gerhard 529, 577
Britz, Katarina 174

Croitoru, Cosmina 190
Croitoru, Madalina 64

Dao-Tran, Minh 522
del Cerro, Luis Fariñas 3
Della Monica, Dario 207
Diéguez, Martín 3, 81
Doherty, Patrick 536

Eiter, Thomas 223, 463, 522
Ellmauthaler, Stefan 529

Fan, Tuan-Fang 240
Fervari, Raul 34

Gebser, Martin 256
Girlando, Marianna 272
Gonçalves, Ricardo 529, 543
Greco, Sergio 288

Hellwagner, Hermann 522
Herzig, Andreas 551, 558
Hunter, Aaron 564

Ignatiev, Alexey 336

Janhunen, Tomi 256
Järvisalo, Matti 385
Jin, Yifan 305

Kaminski, Roland 256
Kaminski, Tobias 223
Kifer, Michael 515
Knorr, Matthias 529, 543
Kuznets, Roman 320
Kvarnström, Jonas 536

Leite, João 529, 543
Lellmann, Björn 272
Liau, Churn-Jung 240
Lomuscio, Alessio 112
Lorini, Emiliano 144

Marantidis, Pavlos 49
Marques-Silva, Joao 336
Mehlhorn, Kurt 190
Mencía, Carlos 336
Montanari, Angelo 207
Mugnier, Marie-Laure 64
Murano, Aniello 207

Naumov, Pavel 353
Nickles, Matthias 369
Niskanen, Andreas 385

Okhotin, Alexander 49
Olivetti, Nicola 272
Oren, Nir 570

Papini, Odile 64
Parisi, Francesco 288
Pearce, David 97, 159
Peñaloza, Rafael 336
Peppas, Pavlos 401
Perrussel, Laurent 551, 558
Philipp, Tobias 415

Polberg, Sylwia 430
Pozzato, Gian Luca 272
Pührer, Jörg 529

Rebola-Pardo, Adrián 415
Rocher, Swan 64
Rondogiannis, Panos 447
Rossi, Fabio 127

Sala, Pietro 207
Santini, Francesco 127
Saribatur, Zeynep G. 463
Schaub, Torsten 256
Schekotihin, Konstantin 522
Shams, Zohreh 570
Symeonidou, Ioanna 447
Szałas, Andrzej 536

Tabia, Karim 64
Tao, Jia 353
Tasharrofi, Shahab 256
Thimm, Matthias 577

Tsang, Eric 564
Turán, György 497

Ulbricht, Markus 577
Uridia, Levan 97

Varzinczak, Ivan 174
Verheij, Bart 481

Wallner, Johannes P. 385
Wang, Kewen 305
Wang, Zhe 305
Williams, Mary-Anne 401
Wojtczak, Dominik 18

Xiao, Zhanhao 551, 558

Yaggie, Jon 497

Zhang, Dongmo 558
Zhuang, Zhiqiang 305

586 Author Index

	Preface
	Organization
	Abstracts of Invited Talks
	Frontiers of Cognitive Computing
	To the Extent that You Are Like a Grape: Symbolic Models of Analogy and Concept Blending in Cognitive AI
	The FO(.) Knowledge Base System Project
	Hybrid Reasoning with Answer Set Programming
	We Reason in Uncertainty, But of What Kinds?
	Contents
	Full Papers
	Metabolic Pathways as Temporal Logic Programs
	1 Introduction
	2 A Simple Classical Example
	3 Fundamental Operations
	4 Molecular Equilibrium Logic
	5 Temporal Equilibrium Logic
	6 From Molecular Equilibrium Logic to Temporal Equilibrium Logic
	7 MIM's as Splittable Temporal Logic Programs
	8 Conclusion and Future Work
	References

	On Decidability of a Logic of Gossips
	1 Introduction
	1.1 Background and Motivation
	1.2 Plan

	2 Syntax
	3 Semantics
	3.1 Gossip Situations and Their Modifications
	3.2 Call Sequences
	3.3 Gossip Models and Truth

	4 An Alternative Equivalence Relation
	5 Decidability of Semantics
	6 Decidability of Truth
	7 Decidability of Termination
	8 Conclusions
	References

	Hilbert-Style Axiomatization for Hybrid XPath with Data
	1 XPath as a Modal Logic with Data Tests
	2 Preliminaries
	3 Axiomatic System
	4 Completeness
	5 Completeness for Tree Models
	6 Final Remarks
	References

	Approximate Unification in the Description Logic FL0
	1 Introduction
	2 Unification in FL0
	3 Approximate Unifiers and Solutions
	4 Approximately Solving Language Equations
	5 Conclusion
	References

	Inconsistency-Tolerant Query Answering: Rationality Properties and Computational Complexity Analysis
	1 Introduction
	2 Preliminaries
	3 A Unified Framework for Inconsistency-Tolerant Query Answering
	4 Rationality Properties of Inconsistency-Tolerant Semantics
	4.1 Properties of Unconditional Inference
	4.2 Properties of Conditional Inferences

	5 Complexity of Inconsistency-Tolerant Query Answering
	6 Concluding Remarks
	References

	Temporal Here and There
	1 Introduction
	2 Syntax and Semantics
	3 Interdefinability
	4 Axiomatisation
	5 Canonical Model Construction
	5.1 Prime Sets
	5.2 Canonical Model

	6 Filtration
	7 Determinisation
	8 Conclusion
	References

	On Logics of Group Belief in Structured Coalitions
	1 Introduction
	2 Preliminaries
	3 Logics of Group Belief
	3.1 Syntax of GB1
	3.2 Semantics
	3.3 Completeness
	3.4 Fibered Structures

	4 Syntax of GB2
	4.1 Syntax
	4.2 Semantics
	4.3 Completeness

	5 The Logic of Fibered Structures
	5.1 Semantics
	5.2 Axiomatization/Completeness

	6 Summary and Future Work
	References

	A Three-Value Abstraction Technique for the Verification of Epistemic Properties in Multi-agent Systems
	1 Introduction
	2 Preliminaries
	3 Abstraction
	4 Conclusions
	References

	A Relaxation of Internal Conflict and Defence in Weighted Argumentation Frameworks
	1 Introduction
	2 Background
	2.1 Semirings
	2.2 Argument Systems

	3 Weighted Abstract AFs
	3.1 Relaxing w-Defence

	4 -Semantics
	4.1 Properties of -Semantics

	5 Implementation, Tests, and Applications
	5.1 An Application Scenario

	6 Related Work
	7 Conclusion and Future Work
	References

	Decidability and Expressivity of Ockhamist Propositional Dynamic Logics
	1 Introduction
	2 Ockhamist Propositional Dynamic Logics
	2.1 Ockhamist Semantics
	2.2 Path Semantics

	3 Optimal Decision Procedure for OPDL
	3.1 Syntactic Structures
	3.2 The Optimal Decision Procedure

	4 Optimal Decision Procedure for OPDLlc
	4.1 Tree Model Property of OPDLlc
	4.2 Automata-based Decision Procedure for OPDLlc

	5 Conclusion
	References

	On the Expressiveness of Temporal Equilibrium Logic
	1 Introduction
	2 Preliminaries
	2.1 Temporal Equilibrium Logic
	2.2 Problems Investigated and Summary of the Main Results

	3 Expressing LTL-conformant Planning in TEL
	4 Maximal Fragments Expressible in LTL
	5 TEL Fragments Non-subsumed by LTL
	6 Conclusion
	References

	Introducing Role Defeasibility in Description Logics
	1 Introduction
	2 The Description Logic ALC
	3 r-Ordered Interpretations
	4 Role-Plausibility Constructs
	4.1 Plausible Value Restriction
	4.2 Plausible Number Restriction
	4.3 Plausible Role Inclusion and Role Characteristics
	4.4 Typicality of Roles

	5 Embedding Plausible Concept Subsumption
	6 Related and Future Work
	References

	Opposition Frameworks
	1 Introduction
	2 Argumentation Frameworks
	3 Opposition Frameworks
	3.1 Defining the New Framework
	3.2 Conflict-Freeness
	3.3 Extending Dung's Semantics
	3.4 A DPLL Type Acceptance Algorithm
	3.5 Logical Semantics

	4 Discussion
	References

	Prompt Interval Temporal Logic
	1 Introduction
	2 The Logic PROMPT-PNL
	3 Undecidability of PROMPT-RPNL
	4 Decidability of PROMPT-d-PNL
	4.1 Prompt Labeled Interval Structures
	4.2 A Bounded Witness for Non-finitely Satisfiable Formulas

	5 Conclusions
	References

	Exploiting Contextual Knowledge for Hybrid Classification of Visual Objects
	1 Introduction
	2 Preliminaries
	3 Hybrid Classification
	4 Hybrid Classifier Construction
	5 Evaluation
	6 Related Work
	7 Conclusion
	References

	Reasoning About Justified Belief Based on the Fusion of Evidence
	1 Introduction
	2 Preliminaries
	2.1 Modal Logic
	2.2 Justification Logic

	3 On the Twofold Interpretation of Justification Formulas
	4 Justification Logic with Informational Contents of Evidence
	5 Justification Logic with Direct Observations
	6 Dynamic Justification Logic
	7 Related Work
	8 Conclusion
	References

	Writing Declarative Specifications for Clauses
	1 Introduction
	2 Clause Programs
	3 Modeling Methodology and Applications
	4 Implementation
	5 Discussion of Related Work and Conclusion
	References

	Standard Sequent Calculi for Lewis' Logics of Counterfactuals
	1 Introduction
	2 Preliminaries
	3 A Sequent Calculus for Lewis' Logic and Extensions
	4 The Invertible Calculus
	5 Semantic Completeness
	6 Completeness via Translation
	7 Conclusions
	References

	Incremental Computation of Deterministic Extensions for Dynamic Argumentation Frameworks
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Influenced Arguments
	5 Recomputing Unique Status Semantics
	5.1 Grounded Semantics
	5.2 Ideal Semantics

	6 Experiments
	7 Conclusion and Future Work
	References

	Revising Possibilistic Knowledge Bases via Compatibility Degrees
	1 Introduction
	2 Possibilistic Logic
	3 Compatibility Degree
	4 Revision Based on Compatibility Degrees
	4.1 Definition of Possibilistic Revision
	4.2 Revision by Certain Information
	4.3 Revision by Uncertain Information

	5 Revision Algorithm
	6 Properties of the Proposed Possibilistic Revision
	7 Relation to Other Possibilistic Revisions
	8 Conclusion
	References

	Proving Craig and Lyndon Interpolation Using Labelled Sequent Calculi
	1 Introduction
	2 Interpolation for Labelled Sequent Calculi
	3 Interpolation Basis: Basic Normal Modal Logic K
	4 Mathematical Rules with or without Equality Atoms
	5 Geometric Rules
	5.1 Telescopic Rules
	5.2 Non-telescopic Geometric Rules

	6 Related Work, Conclusion, and Future Work
	References

	Efficient Reasoning for Inconsistent Horn Formulae
	1 Introduction
	2 Preliminaries
	3 Basic LTUR and Saturation
	3.1 Linear Time Unit Resolution
	3.2 LTUR Saturation
	3.3 Tracing Antecedents

	4 Efficient Reasoning for Inconsistent Horn Formulae
	4.1 MUS Extraction and Enumeration
	4.2 MCS Extraction and Enumeration
	4.3 Finding the Lean Kernel
	4.4 MUS and MCS Membership

	5 Experimental Results
	6 Conclusions
	References

	Information Flow Under Budget Constraints
	1 Introduction
	1.1 Functional Dependency
	1.2 Approximate Dependency
	1.3 Budget-Constrained Dependency
	1.4 Functional vs. Budget-Constrained Dependencies
	1.5 Related Literature
	1.6 Outline

	2 Syntax and Semantics
	3 Axioms
	4 Examples of Proofs
	5 Soundness
	6 On the Completeness Theorem
	7 Conclusion
	References

	A Tool for Probabilistic Reasoning Based on Logic Programming and First-Order Theories Under Stable Model Semantics
	1 Introduction
	2 Related Works
	3 Syntax and Semantics
	4 Probabilistic Inference Approaches
	5 Implementation
	6 Uncertainty Stream Reasoning with PrASP
	7 Conclusion
	References

	Pakota: A System for Enforcement in Abstract Argumentation
	1 Introduction
	2 Enforcement in Abstract Argumentation
	2.1 Argumentation Frameworks
	2.2 Extension Enforcement
	2.3 Status Enforcement

	3 Maximum Satisfiability
	4 Pakota
	4.1 System Architecture
	4.2 Features
	4.3 Algorithms
	4.4 Input Format
	4.5 Usage and Options
	4.6 Benchmarks and Generators

	5 Performance Overview
	6 Conclusions
	References

	Kinetic Consistency and Relevance in Belief Revision
	1 Introduction
	2 Preliminaries
	3 The AGM Framework
	4 Kinetic Consistency
	5 Relevant Change
	6 Parametrised Difference Operators
	7 Examples
	8 Conclusion
	References

	DRAT Proofs for XOR Reasoning
	1 Introduction
	2 Background
	2.1 Propositional Logic and XOR Constraints
	2.2 Gaussian Elimination-Based XOR Reasoning in SAT Solvers
	2.3 DRAT Proofs

	3 Variable-Elimination-Based Approach
	4 T-Translation of XOR Proofs
	4.1 Prefix Proof -- Towards the Splitted Representation
	4.2 Lifted Proof
	4.3 Suffix Proof -- Towards the Direct Encoding

	5 Proof Generation Using BDDs
	6 Length Analysis of the Constructed DRAT Proofs
	7 Experimental Evaluation
	8 Conclusion
	References

	Understanding the Abstract Dialectical Framework
	1 Introduction
	2 Argumentation Frameworks
	2.1 Dung's Argumentation Framework
	2.2 Framework with Sets of Attacking Arguments
	2.3 Extended Argumentation Framework with Collective Attacks
	2.4 Argumentation Framework with Necessities

	3 Abstract Dialectical Frameworks
	4 Conceptual Differences Between ADFs and Other Frameworks
	5 Translations
	5.1 Translating SETAFs and AFs into ADFs
	5.2 Translating EAFCs into ADFs
	5.3 Translating AFNs into ADFs

	6 Conclusions and Final Remarks
	References

	Extensional Semantics for Higher-Order Logic Programs with Negation
	1 Introduction
	2 An Intuitive Overview of the Proposed Approach
	3 The Infinite-Valued Semantics
	4 The Syntax of H
	5 The Semantics of H
	6 Extensionality of the Proposed Semantics
	7 Stratified and Locally Stratified Programs
	8 Future Work
	References

	Reactive Policies with Planning for Action Languages
	1 Introduction
	2 Preliminaries
	3 Running Example: Search Scenarios
	4 Modeling Policies in Transition Systems
	4.1 State Profiles According to the Policy
	4.2 Transition Systems According to the Policy
	4.3 Complexity Issues
	4.4 Constraining Equalization

	5 Bridging to Action Languages
	6 Discussion
	6.1 Related Work

	7 Conclusion and Future Work
	References

	Correct Grounded Reasoning with Presumptive Arguments
	1 Introduction
	2 General Idea
	3 Formalism and Properties
	3.1 Case Models and Arguments
	3.2 Representation Results (Qualitative)
	3.3 Representation Results (Quantitative)

	4 Discussion and Conclusion
	References

	Characterizability in Horn Belief Revision
	1 Introduction
	2 Preliminaries
	3 Pseudo-orders and Horn Revision by Minimization
	4 Horn Postulates and Characterizability
	5 Hmin-Formulas and Translation
	6 MSOHmin-Definability and Games
	7 Ab Wheels
	8 Proof of Theorem3 and Statement of Another Non-characterizability Result
	9 Remarks on Strict Horn Compliance
	10 Conclusion
	References

	Short Papers
	Formalizing Goal Serializability for Evaluation of Planning Features
	1 Introduction
	2 Characterization of a Planning Problem
	3 The TR Planners
	4 Conclusion
	References

	Rule-based Stream Reasoning for Intelligent Administration of Content-Centric Networks
	1 Introduction
	2 Stream Reasoning
	3 System Description
	4 Evaluation
	5 Conclusion
	References

	Inconsistency Management in Reactive Multi-context Systems
	1 Introduction
	2 Inconsistency Management
	3 Conclusions
	References

	Iteratively-Supported Formulas and Strongly Supported Models for Kleene Answer Set Programs
	1 Introduction
	2 Kleene Answer Set Programs
	3 Iteratively-Supported Formulas
	4 Conclusions
	References

	Forgetting in ASP: The Forgotten Properties
	1 Introduction
	2 Preliminaries
	3 Wong's Properties of Forgetting
	4 Conclusions
	References

	On Hierarchical Task Networks
	1 Introduction
	2 PDL with Inclusion of Programs
	3 HTN Planning in the PDL Framework
	3.1 HTN Planning Domains
	3.2 HTN Planning Problems and Their Solutions

	4 Rationality Postulates for HTN Planning
	5 Conclusion
	References

	Refinement of Intentions
	1 Introduction
	2 Belief-Intention Databases
	3 Semantics
	4 Refining an Intention
	5 Refinement and Instrumentality
	6 Conclusion
	References

	GenB: A General Solver for AGM Revision
	1 Introduction
	2 Preliminaries
	3 Implementation
	4 Revision Strategies
	4.1 Hamming Distance
	4.2 Weighted Hamming Distance
	4.3 Ordered Sets
	4.4 Trust-Sensitive Revision

	5 Discussion
	References

	A Two-Phase Dialogue Game for Skeptical Preferred Semantics
	1 Introduction
	2 Preliminaries
	3 A Dialogue Game for Skeptical Preferred Semantics
	3.1 Phase One
	3.2 Phase Two

	4 Conclusions
	References

	Measuring Inconsistency in Answer Set Programs
	1 Introduction
	2 Rationality Postulates
	3 Inconsistency Measures
	4 Summary
	References

	Author Index

