
Jouko Väänänen · Åsa Hirvonen
Ruy de Queiroz (Eds.)

 123

LN
CS

 9
80

3

23rd International Workshop, WoLLIC 2016
Puebla, Mexico, August 16–19th, 2016
Proceedings

Logic, Language,
Information,
and Computation

Lecture Notes in Computer Science 9803

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK Takeo Kanade, USA
Josef Kittler, UK Jon M. Kleinberg, USA
Friedemann Mattern, Switzerland John C. Mitchell, USA
Moni Naor, Israel C. Pandu Rangan, India
Bernhard Steffen, Germany Demetri Terzopoulos, USA
Doug Tygar, USA Gerhard Weikum, Germany

FoLLI Publications on Logic, Language and Information
Subline of Lectures Notes in Computer Science

Subline Editors-in-Chief

Valentin Goranko, Technical University, Lynbgy, Denmark
Michael Moortgat, Utrecht University, The Netherlands

Subline Area Editors

Nick Bezhanishvili, Utrecht University, The Netherlands

Anuj Dawar, University of Cambridge, UK

Philippe de Groote, Inria-Lorraine, Nancy, France
Gerhard Jäger, University of Tübingen, Germany

Fenrong Liu, Tsinghua University, Beijing, China

Eric Pacuit, University of Maryland, USA

Ruy de Queiroz, Universidade Federal de Pernambuco, Brazil

Ram Ramanujam, Institute of Mathematical Sciences, Chennai, India

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Jouko Väänänen • Åsa Hirvonen
Ruy de Queiroz (Eds.)

Logic, Language,
Information,
and Computation
23rd International Workshop, WoLLIC 2016
Puebla, Mexico, August 16–19th, 2016
Proceedings

123

Editors
Jouko Väänänen
Department of Mathematics and Statistics
University of Helsinki
Helsinki
Finland

Åsa Hirvonen
Department of Mathematics and Statistics
University of Helsinki
Helsinki
Finland

Ruy de Queiroz
Centro de Informática
Recife, Pernambuco
Brazil

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-52920-1 ISBN 978-3-662-52921-8 (eBook)
DOI 10.1007/978-3-662-52921-8

Library of Congress Control Number: 2016944475

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer-Verlag GmbH Berlin Heidelberg

Preface

This volume contains the papers presented at the 23rd Workshop on Logic, Language,
Information and Computation (WoLLIC 2016) held during August 16–19, 2016, at the
Department of Computer Science, Benemérita Universidad Autónoma de Puebla,
Puebla, Mexico. The WoLLIC series of workshops started in 1994 with the aim of
fostering interdisciplinary research in pure and applied logic. The idea is to have a
forum that is large enough in the number of possible interactions between logic and the
sciences related to information and computation, and yet is small enough to allow for
concrete and useful interaction among participants.

There were 41 submissions this year. Each submission was reviewed by at least
three Program Committee members. The committee decided to accept 23 papers. The
program also included six invited lectures by Pablo Barceló (Universidad de Chile,
Chile), Dana Bartošová (University of Sáo Paulo, Brazil), Johann A. Makowsky
(Technion - Israel Institute of Technology, Israel), Alessandra Palmigiano (TU Delft,
The Netherlands), Sonja Smets (University of Amsterdam, The Netherlands), and
Andrés Villaveces (Universidad Nacional de Colombia, Colombia). There were also
five tutorials given by Barceló, Makowsky, Palmigiano, Smets, and Villaveces.

As a tribute to a recent breakthrough in mathematics, there was also a screening of
Csicsery’s “Counting from Infinity: Yitang Zhang and the Twin Prime Conjecture”
(2015), which centers on the life and work of Yitang Zhang in the celebrated twin
prime conjecture, his result being that there are infinitely many pairs of primes sepa-
rated by at most 70 million.

We would very much like to thank all Program Committee members and external
reviewers for the work they put into reviewing the submissions. The help provided by
the EasyChair system created by Andrei Vorokonkov is gratefully acknowledged.
Finally, we would like to acknowledge the generous financial support by the Bene-
mérita Universidad Autónoma de Puebla’s Department of Computer Science, and the
scientific sponsorship of the following organizations: Interest Group in Pure and
Applied Logics (IGPL), The Association for Logic, Language and Information
(FoLLI), Association for Symbolic Logic (ASL), European Association for Theoretical
Computer Science (EATCS), European Association for Computer Science Logic
(EACSL), Sociedade Brasileira de Computação (SBC), and Sociedade Brasileira de
Lógica (SBL).

May 2016 Åsa Hirvonen
Ruy de Queiroz
Jouko Väänänen

Organization

Program Committee

Samson Abramsky Oxford University, UK
Dietmar Berwanger CNRS and Université Paris-Saclay, France
Guram Bezhanishvili New Mexico State University, USA
Ruy de Queiroz Centro de Informatica, Universidade Federal

de Pernambuco, Brazil
Arnaud Durand Université Paris 7, France
Pietro Galliani University of Sussex, UK
Nina Gierasimczuk University of Amsterdam, The Netherlands
Jeroen Groenendijk University of Amsterdam, The Netherlands
Lauri Hella University of Tampere, Finland
Wesley Holliday University of California, USA
Juha Kontinen University of Helsinki, Finland
Larry Moss Indiana University, USA
Andre Nies University of Auckland, New Zealand
Aarne Ranta University of Gothenburg, Sweden
Mehrnoosh Sadrzadeh Queen Mary University of London, UK
Norma Short Aix en Provence, France
Rineke Verbrugge University of Groningen, The Netherlands
Heribert Vollmer Leibniz Universität Hannover, Germany
Jouko Väänänen University of Helsinki and University of Amsterdam,

Finland and The Netherlands
Dag Westerståhl University of Stockholm, Sweden

Tutorial/Abstracts

Ultrafilters in Dynamics and Ramsey Theory

Dana Bartošová

Department of Mathematics, University of Toronto, Toronto, Canada
dana.bartosova@mail.utoronto.ca

Abstract. I will recall some famous Ramsey-type statements that admit a simple
proof with the use of ultrafilter on discrete semigroups. Gowers’ Ramsey the-
orem will be an example that up-to-date does not posses an ultrafilter-free proof.
Stepping up from discrete (semi)groups to groups of automorphisms of homo-
geneous structures, I will show how their dynamics connects with structural
Ramsey theory and how combinatorics on ultrafilters is relevant to dynamical
problems. This is partially a joint work with Andrew Zucker (Carnegie Mellon
University).

When isPA ¼ NPA overArbitraryStructuresA?
(A tutorial)

J.A. Makowsky

Department of Computer Science, Technion - Israel Institute of Technology,
Haifa, Israel

janos@cs.technion.ac.il

Abstract. In a series of lectures we review the complexity theory for compu-
tations over arbitrary relational and algebraic structures A.

We will cover the following topics:

(i) Register machines over arbitrary relational and algebraic structures A. Some
history, H. Friedman’s work of the 1970 ties, [FM92]. The Blum-Shub-Smale
approach to complexity, [BCSS96, BCSS98].

(ii) What do we expect from a theory of computability over the reals? Critical
evaluations, [Fef15, BC06, Mam14].

(iii) The role of quantifier elimination: B. Poizat’s characterization of P = NP overA,
[Poi95, Pru06].

(iv) Proving quantifier elimination. Presburger arithmetic and the field of complex
numbers. Shoenfield’s quantifier elimination theorem, [KK67, Hod93].

(v) Disproving quantifier elimination. The missing predicates.
(vi) For which structures A can we prove PA 6¼ NPA? Abelian groups and boolean

algebras, [Pru02, Pru03]
(vii) The logical content of the P = NP problem. Fast quantifier elimination vs.

descriptive complexity, [Lib04].

Similar courses were given:

2013: At the Computer Science Department of the Technion–Israel Institute of
Technology as Graduate Seminar 238900 under the title The millennium question P =
NP over the real numbers.
2014: At the 5th Indian School of Logic and Applications (ISLA-2014) at Tezpur
University, Assam, India, under the title P =? NP over arbitrary structures.
2014: At the 26th European Summer School in Logic, Language and Information
(ESSLLI 2014) in an enlarged form together with K. Meer, also under the title P =? NP
over arbitrary structures.

See www.cs.technion.ac.il/*janos/#invitations.

Partially supported by a grant of Technion Research Authority. Work done in part while the au-
thor was visiting the Simons Institute for the Theory of Computing in Spring 2016.

http://www.cs.technion.ac.il/~janos/#invitations

References

[BC06] Braverman, M., Cook, S.: Computing over the reals: foundations for scientific
computing. Not. AMS 53(3), 318–329 (2006)

[BCSS96] Blum, L., Cucker, F., Shub, M., Smale, S.: Algebraic settings for the problem “P 6¼
NP?”. In: The Mathematics of Numerical Analysis, Number 32 in Lectures in
Applied Mathematics, pp. 125–144. Amer. Math. Soc. (1996)

[BCSS98] Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation.
Springer (1998)

[Fef15] Feferman, S.: Theses for computation and recursion on concrete and abstract
structures. In: Turing’s Revolution, pp. 105–126. Springer (2015)

[FM92] Friedman, H., Mansfield, R.: Algorithmic procedures. Trans. Am. Math. Soc. 297–
312 (1992)

[Hod93] Hodges, W.: Model theory, vol. 42. In: Encyclopedia of Mathematics and its
Applications. Cambridge University Press (1993)

[KK67] Kreisel, G., Krivine, J.L.: Elements of Mathematical Logic: Model Theory. North
Holland (1967)

[Lib04] Libkin, L.: Elements of Finite Model Theory. Springer (2004)
[Mam14] Mamino, M.: On the computing power of +, −, and �. In: Proceedings of the Joint

Meeting of the Twenty-Third EACSL Annual Conference on Computer Science
Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), p. 68. ACM (2014)

[Poi95] Poizat, B.: Les Petits Cailloux: Une Approche Modèle-Théorique De L’algorithmie.
Aléas, Paris (1995)

[Pru02] Prunescu, M.: A model-theoretic proof for p 6¼ np over all infinite abelian
group. J. Symbolic Logic 67(01), 235–238 (2002)

[Pru03] Prunescu, M.: P 6¼ np for all infinite Boolean algebras. Math. Logic Q. 49(2), 210–
213 (2003)

[Pru06] Prunescu, M.: Fast quantifier elimination means p = np. In: Logical Approaches to
Computational Barriers, pp. 459–470. Springer (2006)

When is PA ¼ NPA over Arbitrary Structures A? XI

Proof Systems for the Logics
for Social Behaviour

Alessandra Palmigiano

Technical University of Delft, Delft, The Netherlands

The range of ‘logics for social behaviour’ (by which I mean those logics aimed at
capturing aspects such as agency and information flow) is rapidly expanding, and their
theory is being intensively investigated, especially w.r.t. their semantic aspects.
However, these logics typically lack a comparable proof-theoretic development. More
often than not, the hurdles preventing their standard proof-theoretic development are
due to the very features which make them capture essential aspects of the real world,
such as their not being closed under uniform substitution, or the presence of certain
extralinguistic labels and devices encoding key interactions between logical connec-
tives [5].

In this talk I will focus on multi-type calculi, a methodology introduced in [3, 4, 7]
to provide DEL and PDL with analytic calculi, and pursued also in [1, 2, 6].

Multi-type languages allow the upgrade of actions, agents, coalitions, etc. from
parameters in the generation of formulas, to terms. Like formulas, they thus become
first-class citizens of the framework, endowed with their corresponding structural
connectives and rules. In this richer environment, many features which were insur-
mountable hurdles to the standard treatment can be understood as symptoms of the
original languages of these logics lacking the necessary expressivity to encode certain
key interactions within the language. The success of the multi-type methodology in
defining analytic calculi for logics as proof-theoretically impervious as DEL lies in its
providing a mathematical environment in which the expressivity problems can be
clearly identified.

I will argue that multi-type calculi can provide a platform for a uniform
proof-theoretic account of the logics for social behaviour.

References

1. Bilkova, M., Greco, G., Palmigiano, A., Tzimoulis, A., Wijnberg, N.: Logic of resources and
capabilities (In preparation, 2016)

2. Frittella, S., Greco, G., Palmigiano, A., Yang, F.: Structural multi-type sequent calculus for
inquisitive logic. In: Proceedings of the WoLLIC 2016 (2016). arXiv:1604.00936v1

3. Frittella, S., Greco, G., Kurz, A., Palmigiano, A.: Multi-type display calculus for propositional
dynamic logic. J. Logic Comput. (2014). Special Issue on Substructural Logic and Infor-
mation Dynamics

http://arxiv.org/abs/1604.00936v1

4. Frittella, S., Greco, G., Kurz, A., Palmigiano, A., Sikimić, V.: A multi-type display calculus
for dynamic epistemic logic. J. Logic Comput. (2014). Special Issue on Substructural Logic
and Information Dynamics

5. Frittella, S., Greco, G., Kurz, A., Palmigiano, A., Sikimić, V.: A proof-theoretic semantic
analysis of dynamic epistemic logic. J. Logic Comput. (2014). Special Issue on Substructural
Logic and Information Dynamics

6. Frittella, S., Greco, G., Kurz, A., Palmigiano, A., Sikimić, V.: Multi-type sequent calculi. In:
Proceedings of the Trends in Logic, vol. XIII, pp. 81–93 (2014)

7. Greco, G., Kurz, A., Palmigiano, A.: Dynamic epistemic logic displayed. Logic, rationality
and interaction. In: Proceedings of the Fourth International Workshop. LORI 2013

Proof Systems for the Logics for Social Behaviour XIII

Sahlqvist Correspondence via Duality
and Its Applications

Alessandra Palmigiano

Technical University of Delft, Delft, The Netherlands

Since the 1970s, correspondence theory has been one of the most important items in the
toolkit of modal logicians. Unified correspondence [6] is a very recent approach, which
has imported techniques from duality, algebra and formal topology [10] and exported
the state of the art of correspondence theory well beyond normal modal logic, to a wide
range of logics including, among others, intuitionistic and distributive lattice-based
(normal modal) logics [8], non-normal (regular) modal logics [18], substructural logics
[5, 7, 9], hybrid logics [13], and mu-calculus [2, 3, 4].

The breadth of this work has stimulated many and varied applications. Some are
closely related to the core concerns of the theory itself, such as the understanding of the
relationship between different methodologies for obtaining canonicity results [7, 17], or
of the phenomenon of pseudo-correspondence [11]. Other, possibly surprising appli-
cations include the dual characterizations of classes of finite lattices [14], the identi-
fication of the syntactic shape of axioms which can be translated into analytic rules of
proper display and Gentzen calculi [15, 16], and the design of display-type calculi for
the logics of resources and capabilities, and their applications to the logical modelling
of business organizations [1]. Finally, the insights of unified correspondence theory
have made it possible to determine the extent to which the Sahlqvist theory of classes
of normal DLEs can be reduced to the Sahlqvist theory of normal Boolean expansions,
by means of Gödel-type translations [12].

The most important technical tools in unified correspondence are: (a) a very general
syntactic definition of the class of Sahlqvist formulas, which applies uniformly to each
logical signature and is given purely in terms of the order-theoretic properties of the
algebraic interpretations of the logical connectives; (b) the algorithm ALBA, which
effectively computes first-order correspondents of input term-inequalities, and is
guaranteed to succeed on a wide class of inequalities (the so-called inductive
inequalities) which, like the Sahlqvist class, can be defined uniformly in each men-
tioned signature, and which properly and significantly extends the Sahlqvist class.

In this tutorial, the fundamental principles and conceptual insights underlying these
developments will be illustrated in the setting of Boolean algebras with operators [10].

References

1. Bilkova, M., Greco, G., Palmigiano, A., Tzimoulis, A., Wijnberg, N.: The logic of resources
and capabilities (In preparation, 2016)

2. Conradie, W., Craig, A.: Canonicity results for mu-calculi: an algorithmic approach. J. Logic
Comput. (forthcoming). arXiv:1408.6367 (arXiv Preprint)

http://arxiv.org/abs/1408.6367

3. Conradie, W., Craig, A., Palmigiano, A., Zhao, Z.: Constructive canonicity for lattice-based
fixed point logics (Submitted). arXiv:1603.06547 (arXiv preprint)

4. Conradie, W., Fomatati, Y., Palmigiano, A., Sourabh, S.: Algorithmic correspondence for
intuitionistic modal mu-calculus. Theoret. Comput. Sci. 564, 30–62 (2015)

5. Conradie, W., Frittella, S., Palmigiano, A., Piazzai, M., Tzimoulis, A., Wijnberg, N.: Cat-
egories: how I learned to stop worrying and love two sorts (Submitted). arXiv:1604.00777
(arXiv preprint)

6. Conradie, W., Ghilardi, S., Palmigiano, A.: Unified correspondence. In: Baltag, A., Smets,
S. (eds.) Johan van Benthem on Logic and Information Dynamics. Outstanding Contribu-
tions to Logic, vol. 5, pp. 933–975. Springer International Publishing (2014)

7. Conradie, W., Palmigiano, A.: Constructive canonicity of inductive inequalities (Submitted).
arXiv:1603.08341 (arXiv preprint)

8. Conradie, W., Palmigiano, A.: Algorithmic correspondence and canonicity for distributive
modal logic. Annals Pure Applied Logic 163(3), 338–376 (2012)

9. Conradie, W., Palmigiano, A.: Algorithmic correspondence and canonicity for
non-distributive logics. J. Logic Comput. (forthcoming). arXiv:1603.08515 (arXiv preprint)

10. Conradie, W., Palmigiano, A., Sourabh, S.: Algebraic modal correspondence: Sahlqvist and
beyond (Submitted)

11. Conradie, W., Palmigiano, A., Sourabh, S., Zhao, Z.: Canonicity and relativized canonicity
via pseudo-correspondence: an application of ALBA (Submitted). arXiv:1511.04271 (arxiv
preprint)

12. Conradie, W., Palmigiano, A., Zhao, Z.: Sahlqvist via translation (Submitted). arXiv:1603.
08220 (arXiv preprint)

13. Conradie, W., Robinson, C.: On Sahlqvist theory for hybrid logic. J. Logic Comput.
doi:10.1093/logcom/exv045

14. Frittella, S., Palmigiano, A., Santocanale, L.: Dual characterizations for finite lattices via
correspondence theory for monotone modal logic. J. Logic Comput. (forthcoming). arXiv:
1408.1843 (arXiv preprint)

15. Greco, G., Ma, M., Palmigiano, A., Tzimoulis, A., Zhao, Z.: Unified correspondence as a
proof-theoretic tool. J. Logic Comput. (forthcoming). arXiv:1603.08204 (arXiv preprint)

16. Ma, M., Zhao, Z.: Unified correspondence and proof theory for strict implication. J. Logic
Comput. (forthcoming). arXiv:1604.08822 (arXiv preprint)

17. Palmigiano, A., Sourabh, S., Zhao, Z.: Jónsson-style canonicity for ALBA-inequalities.
J. Logic Comput. doi:10.1093/logcom/exv041

18. Palmigiano, A., Sourabh, S., Zhao, Z.: Sahlqvist theory for impossible worlds. J. Logic
Comput. (forthcoming). arXiv:1603.08202 (arXiv preprint)

Sahlqvist Correspondence via Duality and Its Applications XV

http://arxiv.org/abs/1603.06547
http://arxiv.org/abs/1604.00777
http://arxiv.org/abs/1603.08341
http://arxiv.org/abs/1603.08515
http://arxiv.org/abs/1511.04271
http://arxiv.org/abs/1603.08220
http://arxiv.org/abs/1603.08220
http://arxiv.org/abs/1408.1843
http://arxiv.org/abs/1408.1843
http://arxiv.org/abs/1603.08204
http://arxiv.org/abs/1604.08822
http://arxiv.org/abs/1603.08202

Informational Cascades:
A Test for Rationality?

Sonja Smets

Institute for Logic, Language and Computation,
University of Amsterdam, Amsterdam, The Netherlands

Abstract. I report on joint work with A. Baltag, Z. Christoff and J.U. Hansen in
[3], based on our investigation of the decision processes of individuals that lead
to the social herding phenomenon known as informational cascades. The
question we address in our paper deals with whether rational agents who use
their higher-order reasoning powers and who can reflect on the fact that they are
part of an informational cascade, can ultimately stop the cascade from hap-
pening. To answer this question we use dynamic epistemic logic to give a
complete analysis of the information flow in an informational cascade, capturing
the agent’s observations, their communication and their higher-order reasoning
power. Our models show that individual rationality isn’t always a cure that can
help us to stop a cascade. However, other factors that deal with the underlying
communication protocol or that focus on the reliability of agents in the group,
give rise to conditions that can be imposed to prevent or stop an informational
cascade from happening in certain scenarios.

Informational cascades are social herding phenomena in which individual agents in a
sequence decide to follow the decisions of their predecessors while simply ignoring
their own private evidence. In such situations, individuals are given information about
their predecessors’ decisions but not about the reasons or the evidence on which these
decisions are based. So when the first agents in the sequence made a correct decision,
their followers will all get it right. However, the opposite can easily happen and when
everyone gets it wrong we end up with a potential social-epistemic catastrophe. Such
phenomena can illustrate a clear case of when social features interfere with agent’s
truth-tracking abilities. Hence not all situations involving communication and rational
deliberation seem to be epistemically beneficial at the group level.

In this context we study the logical mechanism behind such informational cascades.
It is important to note that we are looking at situations in which the total sum of private
information should in principle be enough for the group to track the truth, yet in an
informational cascade the group fails to do so. To gain a better understanding of this
phenomenon, it is our aim to check whether this failure to track the truth can be due to
any form of irrationality present when agents form or aggregate their beliefs. Our
investigation is driven by questions such as: are rational and introspective agents, who
reflect upon their own knowledge and beliefs and who can reason about the knowledge
and beliefs of their predecessors, able to stop or prevent a cascade? Even more, are
agents with unboundedly rational powers, and who are aware of the dangers of the

sequential deliberation protocol that they are part of, able to block a cascade? Indeed, in
some cases a cascade can be prevented by making agents aware of it. However, as is
shown in [3] this is not always the case.

There are examples of informational cascades in which no amount of higher-order
reasoning is enough to stop an informational cascade. Our argument is based on a
model of examples of informational cascades in [3], allowing us to represent the
individual reasoning of each agent involved. Formally, we use the tools of dynamic
epistemic logic [4, 5, 6, 9]. On the one hand we use a probabilistic dynamic epistemic
logic to represent agents who apply probabilistic conditioning. On the other hand we
also model the situation in which agents do not use sophisticated probabilistic tools but
rather apply a simply non-Bayesian form of heuristic reasoning. We note that a full
syntactic encoding of an informational cascade in the presence of a common knowl-
edge operator, is offered in [2] based on a logic that combines a variant of the Logic of
Communication and Change from [7] and a variant of Probabilistic Dynamic Epistemic
Logic in [8].

Based on our logical analysis in [3], we conclude that cascades cannot always be
avoided by rational means. Our model of unboundedly rational agents, equipped with
full higher-order reasoning powers, shows that these agents (irrespective of whether
they adopt Bayesian reasoning or another non-Bayesian heuristic) still end up in a
cascade. Even more, the group’s inability to track the truth may actually be a direct
consequence of each agent’s rational attempt to track the truth individually.

Investigations of different cascade scenarios point out that changes in the under-
lying communication protocol can make a difference. In most cascade scenarios, agents
announce their decisions to their followers, i.e. they communicate about their opinions
and beliefs but not about the reasons for their beliefs. Following [3], one can argue that
exactly the fact that this communication protocol is based on the exchange of partial
information, is the problem. Indeed allowing for more communication in which agents
can share not only their beliefs but also their justifications, may stop the cascade. In
ideal cases, when total communication can be achieved and agents share all their
evidence, reasons, beliefs, etc., we can effectively stop a cascade. It is interesting to
investigate different types of communication protocols and their effect on the formation
of cascades. An analysis in which such protocols are formalised as strategies in a game
theoretic setting, is provided in [1]. Further investigations point out that other social
factors can similarly affect the outcome of an informational cascade. For instance the
level of trust among agents in a group can make a difference. In [10] the results of an
experiment are shown which indicates that agent’s perceived reliability of their pre-
decessors can affect the formation of a cascade.

Acknowledgement. Sonja Smets’ research on this topic is funded by the European
Research Council under the European Community’s Seventh Framework Programme
(FP7/2007-2013)/ERC Grant agreement no. 283963.

Informational Cascades: A Test for Rationality? XVII

References

1. Achimescu, A.: Games and Logics for Informational Cascades. Master’s thesis, ILLC
University of Amsterdam, master of Logic Thesis, MoL-2014-04 (2014)

2. Achimescu, A., Baltag, A., Sack, J.: The probabilistic logic of communication and change.
J. Logic Comput. (2016)

3. Baltag, A., Christoff, Z., Hansen, J.U., Smets, S.: Logical models of informational cascades.
In: van Benthem, J., Lui, F. (eds.) Logic across the University: Foundations and Applica-
tions, pp. 405–432. Studies in Logic, College Publications (2013)

4. Baltag, A., Moss, L.: Logics for epistemic programs. Synthese 139, 165–224 (2004)
5. Baltag, A., Moss, L., Solecki, S.: The logic of public announcements, common knowledge

and private suspicions. In: Proceedings of TARK 1998 (Seventh Conference on Theoretical
Aspects of Rationality and Knowledge), pp. 43–56. Morgan Kaufmann Publishers (1998)

6. van Benthem, J.: Logical Dynamics of Information and Interaction. Cambridge University
Press (2011)

7. van Benthem, J., Eijck, J., Kooi, B.: Logics of communication and change. Inf. Commun.
204, 1620–1662 (2006)

8. van Benthem, J., Gerbrandy, J., Kooi, B.: Dynamic update with probabilities. Stud. Logica.
93, 67–96 (2009)

9. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic epistemic logic, vol. 337. In:
Synthese Library, Springer, The Netherlands (2008)

10. van Weegen, L.: Informational cascades under variable reliability assessments. A formal and
empirical investigation. Master’s thesis, ILLC University of Amsterdam, master of Logic
Thesis, MoL-2014-21 (2014)

XVIII Informational Cascades: A Test for Rationality?

Belief Dynamics in a Social Context

Sonja Smets

University of Amsterdam, Amsterdam, The Netherlands

This tutorial is addressed to researchers and students who are interested in the
logical/philosophical study of notions of belief and knowledge, including group
beliefs and collective “knowledge”. We are interested both in the representation
of these different types of attitudes as well as in their dynamics, i.e. how these
attitudes change in communities of interconnected agents capable of reflection,
communication, reasoning, argumentation etc. I will start by introducing the
basic concepts and models, using standard techniques from Dynamic Epistemic
Logic and their adaptations for dealing with belief revision. I will further focus
on characterizing a group’s “epistemic potential” and I touch on cases in which a
group’s ability to track the truth is higher than that of each of its members. This
tutorial paves the way for my invited lecture in which I focus on situations in
which the group’s dynamics leads to informational distortions (i.e. the “madness
of the crowds”, in particular the phenomenon of informational cascades). This
tutorial is based on a number of recent papers that make use of a variety of
formal tools ranging over dynamic epistemic logics, game theory and network
theory.

Generalized Amalgamation Classes
and Limit Models: Implicit Logics

Andrés Villaveces

Departamento de Matemáticas, Universidad Nacional de Colombia
Bogotá 111321, Colombia

avillavecesn@unal.edu.co

Abstract. This is a two-hour tutorial on two kinds of (generalized) amalga-
mation classes and the emergence of language (implicit logic) from their
semantical properties: abstract elementary classes and sheaves of structures.
I will provide definitions, examples and a description of the emergence of logic
from their purely semantical properties.

– Amalgamation classes. Ordered and controlled by topologies. Examples and
problems.

– Examples: sheaves of structures and abstract elementary classes with amal-
gamation. Orbital (Galois) types and language.

– Implicit language from semantics. The Presentation Theorem.
– Interpolation in AECs: comparing languages.

Contents

The Useful MAM, a Reasonable Implementation of the Strong k-Calculus . . . 1
Beniamino Accattoli

Compactness in Infinitary Gödel Logics. 22
Juan P. Aguilera

Cut Elimination for Gödel Logic with an Operator Adding a Constant. 36
Juan P. Aguilera and Matthias Baaz

A Classical Propositional Logic for Reasoning About Reversible Logic
Circuits . 52

Holger Bock Axelsen, Robert Glück, and Robin Kaarsgaard

Foundations of Mathematics: Reliability and Clarity: The Explanatory Role
of Mathematical Induction . 68

John T. Baldwin

Justified Belief and the Topology of Evidence . 83
Alexandru Baltag, Nick Bezhanishvili, Aybüke Özgün, and Sonja Smets

Semantic Acyclicity for Conjunctive Queries: Approximations and
Constraints . 104

Pablo Barceló

Expressivity of Many-Valued Modal Logics, Coalgebraically 109
Marta Bílková and Matěj Dostál

Second-Order False-Belief Tasks: Analysis and Formalization 125
Torben Braüner, Patrick Blackburn, and Irina Polyanskaya

Categories: How I Learned to Stop Worrying and Love Two Sorts 145
Willem Conradie, Sabine Frittella, Alessandra Palmigiano,
Michele Piazzai, Apostolos Tzimoulis, and Nachoem M. Wijnberg

A Logical Approach to Context-Specific Independence 165
Jukka Corander, Antti Hyttinen, Juha Kontinen, Johan Pensar,
and Jouko Väänänen

Descriptive Complexity of Graph Spectra. 183
Anuj Dawar, Simone Severini, and Octavio Zapata

Causality in Bounded Petri Nets is MSO Definable 200
Mateus de Oliveira Oliveira

http://dx.doi.org/10.1007/978-3-662-52921-8_1
http://dx.doi.org/10.1007/978-3-662-52921-8_1
http://dx.doi.org/10.1007/978-3-662-52921-8_2
http://dx.doi.org/10.1007/978-3-662-52921-8_3
http://dx.doi.org/10.1007/978-3-662-52921-8_4
http://dx.doi.org/10.1007/978-3-662-52921-8_4
http://dx.doi.org/10.1007/978-3-662-52921-8_5
http://dx.doi.org/10.1007/978-3-662-52921-8_5
http://dx.doi.org/10.1007/978-3-662-52921-8_6
http://dx.doi.org/10.1007/978-3-662-52921-8_7
http://dx.doi.org/10.1007/978-3-662-52921-8_7
http://dx.doi.org/10.1007/978-3-662-52921-8_8
http://dx.doi.org/10.1007/978-3-662-52921-8_9
http://dx.doi.org/10.1007/978-3-662-52921-8_10
http://dx.doi.org/10.1007/978-3-662-52921-8_11
http://dx.doi.org/10.1007/978-3-662-52921-8_12
http://dx.doi.org/10.1007/978-3-662-52921-8_13

A Multi-type Calculus for Inquisitive Logic . 215
Sabine Frittella, Giuseppe Greco, Alessandra Palmigiano,
and Fan Yang

A Model-Theoretic Characterization of Constant-Depth Arithmetic Circuits . . . 234
Anselm Haak and Heribert Vollmer

True Concurrency of Deep Inference Proofs . 249
Ozan Kahramanoğulları

On the Complexity of the Equational Theory of Residuated Boolean
Algebras . 265

Zhe Lin and Minghui Ma

Semantic Equivalence of Graph Polynomials Definable
in Second Order Logic. 279

Johann A. Makowsky and Elena V. Ravve

Sheaves of Metric Structures . 297
Maicol A. Ochoa and Andrés Villaveces

A Curry–Howard View of Basic Justification Logic 316
Konstantinos Pouliasis

On the Formalization of Some Results of Context-Free Language Theory . . . 338
Marcus Vinícius Midena Ramos, Ruy J.G.B. de Queiroz, Nelma Moreira,
and José Carlos Bacelar Almeida

The Semantics of Corrections . 358
Deniz Rudin, Karl DeVries, Karen Duek, Kelsey Kraus,
and Adrian Brasoveanu

The Expressive Power of k-ary Exclusion Logic . 375
Raine Rönnholm

Characterizing Relative Frame Definability in Team Semantics
via the Universal Modality . 392

Katsuhiko Sano and Jonni Virtema

Negation and Partial Axiomatizations of Dependence and Independence
Logic Revisited. 410

Fan Yang

Anaphors and Quantifiers. 432
R. Zuber

Author Index . 447

XXII Contents

http://dx.doi.org/10.1007/978-3-662-52921-8_14
http://dx.doi.org/10.1007/978-3-662-52921-8_15
http://dx.doi.org/10.1007/978-3-662-52921-8_16
http://dx.doi.org/10.1007/978-3-662-52921-8_17
http://dx.doi.org/10.1007/978-3-662-52921-8_17
http://dx.doi.org/10.1007/978-3-662-52921-8_18
http://dx.doi.org/10.1007/978-3-662-52921-8_18
http://dx.doi.org/10.1007/978-3-662-52921-8_19
http://dx.doi.org/10.1007/978-3-662-52921-8_20
http://dx.doi.org/10.1007/978-3-662-52921-8_21
http://dx.doi.org/10.1007/978-3-662-52921-8_22
http://dx.doi.org/10.1007/978-3-662-52921-8_23
http://dx.doi.org/10.1007/978-3-662-52921-8_24
http://dx.doi.org/10.1007/978-3-662-52921-8_24
http://dx.doi.org/10.1007/978-3-662-52921-8_25
http://dx.doi.org/10.1007/978-3-662-52921-8_25
http://dx.doi.org/10.1007/978-3-662-52921-8_26

The Useful MAM, a Reasonable Implementation
of the Strong λ-Calculus

Beniamino Accattoli(B)

INRIA and LIX, École Polytechnique, Palaiseau, France
beniamino.accattoli@inria.fr

Abstract. It has been a long-standing open problem whether the strong
λ-calculus is a reasonable computational model, i.e. whether it can be
implemented within a polynomial overhead with respect to the number of
β-steps on models like Turing machines or RAM. Recently, Accattoli and
Dal Lago solved the problem by means of a new form of sharing, called
useful sharing, and realised via a calculus with explicit substitutions. This
paper presents a new abstract machine for the strong λ-calculus based
on useful sharing, the Useful Milner Abstract Machine, and proves that it
reasonably implements leftmost-outermost evaluation. It provides both
an alternative proof that the λ-calculus is reasonable and an improve-
ment on the technology for implementing strong evaluation.

1 Introduction

The higher-order computational model of reference is the λ-calculus, that comes
in two variants, weak or strong. Introduced at the inception of computer sci-
ence as a mathematical approach to computation, it later found applications in
the theoretical modelling of programming languages and, more recently, proof
assistants. The weak λ-calculus is the backbone of functional languages such as
LISP, Scheme, OCAML, or Haskell. It is weak because evaluation does not enter
function bodies and, usually, terms are assumed to be closed. By removing these
restrictions one obtains the strong λ-calculus, that underlies proof assistants like
Coq, Isabelle, and Twelf, or higher-order logic programming languages such as
λ-prolog or the Edinburgh Logical Framework. Higher-order features nowadays
are also part of mainstream programming languages like Java or Python.

The abstract, mathematical character is both the advantage and the draw-
back of the higher-order approach. The advantage is that it enhances the modu-
larity and the conciseness of the code, allowing to forget about low-level details at
the same time. The drawback is that the distance from low-level details makes its
complexity harder to analyse, in particular its main computational rule, called β-
reduction, at first sight is not an atomic operation. In particular, β can be nasty,
and make the program grow at an exponential rate. The number of β-steps,
then, does not even account for the time to write down the result, suggesting
that it is not a reasonable cost model. This is the size-explosion problem [6], and
affects both the weak and the strong λ-calculus.

c© Springer-Verlag Berlin Heidelberg 2016
J. Väänänen et al. (Eds.): WoLLIC 2016, LNCS 9803, pp. 1–21, 2016.
DOI: 10.1007/978-3-662-52921-8 1

2 B. Accattoli

The λ-Calculus is Reasonable, Indeed. A cornerstone of the theory is that,
nonetheless, in the weak λ-calculus the number of β-steps is a reasonable cost
model for time complexity analyses [9,14,25], where reasonable formally means
that it is polynomially related to the cost model of RAM or Turing machines.

For the strong λ-calculus, the techniques developed for the weak one do not
work, as wilder forms of size-explosion are possible. A natural candidate cost
model from the theory of λ-calculus is the number of (Lévy) optimal parallel
steps, but it has been shown by Asperti and Mairson that such a cost model is
not reasonable [8].

It is only very recently that the strong case has been solved by Accattoli and
Dal Lago [6], who showed that the number of leftmost-outermost β-steps to full
normal form is a reasonable cost model. The proof of this result relies on two
theoretical tools. First, the Linear Substitution Calculus (LSC), an expressive
and simple decomposition of the λ-calculus via linear logic and rewriting theory,
developed by Accattoli and Kesner [3] as a variation over a calculus by Robin
Milner [24]. Second, useful sharing, a new form of shared evaluation introduced
by Accattoli and Dal Lago on top of the LSC. Roughly, the LSC is a calculus
where the meta-level operation of substitution used by β-reduction is internalised
and decomposed in micro steps, i.e. it is what is usually called a calculus with
explicit substitutions. The further step is to realise that some of these micro
substitution steps are useless: they do not lead to the creation of other β-redexes,
their only aim is to unshare the result and provide the full normal form. Useful
evaluation then performs only those substitution steps that are useful, i.e. not
useless. By avoiding useless unsharing steps, it computes a shared representation
of the normal form of size linear in the number of steps, whose unsharing may
cause an exponential blow up in size. This is how the size-explosion problem is
circumvented, see [6] for more explanations.

This Paper. In this paper we provide an alternative proof that the strong λ-
calculus is reasonable (actually only of the hard half, that is the simulation of
λ-calculus on RAM, the other half being much easier, see [5]), by replacing the
LSC with the Useful Milner Abstract Machine. The aim of the paper is threefold:
1. Getting Closer To Implementations: the LSC decomposes β-reduction in

micro-steps but omits details about the search for the next redex to reduce.
Moreover, in [6] useful sharing is used as a sort of black box on top of the LSC.
Switching to abstract machines provides a solution closer to implementations
and internalises useful sharing.

2. The First Reasonable Strong Abstract Machine: the literature on abstract
machines for strong evaluation is scarce (see below) and none of the machines
in the literature is reasonable. This work thus provides an improvement of
the technology for implementing strong evaluation.

3. Alternative Proof : the technical development in [6] is sophisticated, because a
second aim of that paper is to connect some of the used tools (namely useful
sharing and the subterm property) with the seemingly unrelated notion of
standardisation from rewriting theory. Here we provide a more basic, down-
to-earth approach, not relying on advanced rewriting theory.

The Useful MAM, a Reasonable Implementation of the Strong λ-Calculus 3

The Useful MAM. The Milner Abstract Machine (MAM) is a variant with just
one global environment of the Krivine Abstract Machine (KAM), introduced
in [1] by Accattoli, Barenbaum, and Mazza. The same authors introduce in [2]
the Strong MAM, i.e. the extension of the MAM to strong evaluation, that
is a version with just one global environment of Cregut’s Strong KAM [13],
essentially the only other abstract machine for strong (call-by-name) evaluation
in the literature. Both are not reasonable. The problem is that these machines
do not distinguish between useful and useless steps.

The Useful MAM introduced in this paper improves the situation, by refining
the Strong MAM. The principle is quite basic, let us sketch it. Whenever a
β-redex (λx.t)u is encountered, the Strong MAM adds an entry [x�u] to the
environment E. The Useful MAM, additionally, executes an auxiliary machine on
u—the Checking Abstract Machine (Checking AM)—to establish its usefulness.
The result of this check is a label l that is attached to the entry [x�u]l. Later
on, when an occurrence of x is found, the Useful MAM replaces x with u only if
the label on [x�u]l says that it is useful. Otherwise the machine backtracks, to
search for the next redex to reduce.

The two results of the paper are:

1. Qualitative (Theorem 2): the Useful MAM correctly and completely imple-
ments leftmost-outermost (LO for short) β-evaluation—formally, the two are
weakly bisimilar.

2. Quantitative (Theorem 5): the Useful MAM is a reasonable implementation,
i.e. the work done by both the Useful MAM and the Checking AM is poly-
nomial in the number of LO β-steps and in the size of the initial term.

Related Work. Beyond Crégut’s [12,13] and Accattoli, Barenbaum, and Mazza’s
[2], we are aware of only two other works on strong abstract machines, Garćıa-
Pérez, Nogueira and Moreno-Navarro’s [22] (2013), and Smith’s [27] (unpub-
lished, 2014). Two further studies, de Carvalho’s [11] and Ehrhard and Regnier’s
[19], introduce strong versions of the KAM but for theoretical purposes; in par-
ticular, their design choices are not tuned towards implementations (e.g. rely on
a näıve parallel exploration of the term). Semi-strong machines for call-by-value
(i.e. dealing with weak evaluation but on open terms) are studied by Grégoire
and Leroy [23] and in a recent work by Accattoli and Sacerdoti Coen [4] (see
[4] for a comparison with [23]). More recent work by Dénès [18] and Boutiller
[10] appeared in the context of term evaluation in Coq. None of the machines for
strong evaluation in the literature is reasonable, in the sense of being polynomial
in the number of β-steps. The machines developed by Accattoli and Sacerdoti
Coen in [4] are reasonable, but they are developed in a semi-strong setting only.
Another difference between [4] and this work is that call-by-value simplifies the
treatment of usefulness because it allows to compute the labels for usefulness
while evaluating the term, that is not possible in call-by-name.

Global environments are explored by Fernández and Siafakas in [20], and used
in a minority of works, e.g. [17,25]. Here we use the terminology for abstract
machines coming from the distillation technique in [1], related to the refocusing

4 B. Accattoli

semantics of Danvy and Nielsen [16] and introduced to revisit the relationship
between the KAM and weak linear head reduction pointed out by Danos and
Regnier [15]. We do not, however, employ the distillation technique itself.

Proofs. All proofs have been omitted. Those of the main lemmas and theorems
concerning the Useful MAM can be found in the appendix. The other ones can
be found in the longer version on the author’s web page.

2 λ-Calculus and Leftmost-Outermost Evaluation

The syntax of the λ-calculus is given by the following grammar for terms:

λ − Terms t, u, w, r ::= x | λx.t | tu.

We use t{x�u} for the usual (meta-level) notion of substitution. An abstrac-
tion λx.t binds x in t, and we silently work modulo α-equivalence of bound
variables, e.g. (λy.(xy)){x�y} = λz.(yz). We use fv(t) for the set of free vari-
ables of t.

Contexts. One-hole contexts C and the plugging C〈t〉 of a term t into a
context C are defined by:

Contexts Plugging

C ::= 〈·〉 | λx.C | Ct | tC
〈·〉〈t〉 := t (Cu)〈t〉 := C〈t〉u

(λx.C)〈t〉 := λx.C〈t〉 (uC)〈t〉 := uC〈t〉
As usual, plugging in a context can capture variables, e.g. (λy.(〈·〉y))〈y〉 =

λy.(yy). The plugging C〈C ′〉 of a context C ′ into a context C is defined analo-
gously. A context C is applicative if C = C ′〈〈·〉u〉 for some C ′ and u.

We define β-reduction →β as follows:

Rule at Top Level Contextual closure
(λx.t)u �→β t{x�u} C〈t〉 →β C〈u〉 if t �→β u

A term t is a normal form, or simply normal, if there is no u such that t →β u,
and it is neutral if it is normal and it is not of the form λx.u (i.e. it is not an
abstraction). The position of a β-redex C〈t〉 →β C〈u〉 is the context C in which
it takes place. To ease the language, we will identify a redex with its position.
A derivation d : t →k u is a finite, possibly empty, sequence of reduction steps.
We write |t| for the size of t and |d| for the length of d.

Leftmost-Outermost Derivations. The left-to-right outside-in order on redexes
is expressed as an order on positions, i.e. contexts.

Definition 1 (Left-to-Right Outside-In Order).

1. The outside-in order:
(a) Root: 〈·〉 ≺O C for every context C �= 〈·〉;
(b) Contextual closure: If C ≺O C ′ then C ′′〈C〉 ≺O C ′′〈C ′〉 for any C ′′.

The Useful MAM, a Reasonable Implementation of the Strong λ-Calculus 5

2. The left-to-right order: C ≺L C ′ is defined by:
(a) Application: If C ≺p t and C ′ ≺p u then Cu ≺L tC ′;
(b) Contextual closure: If C ≺L C ′ then C ′′〈C〉 ≺L C ′′〈C ′〉 for any C ′′.

3. The left-to-right outside-in order: C ≺LO C ′ if C ≺O C ′ or C ≺L C ′:

The following are a few examples. For every context C, it holds that 〈·〉 �≺L C.
Moreover (λx.〈·〉)t ≺O (λx.(〈·〉u))t and (〈·〉t)u ≺L (wt)〈·〉.
Definition 2 (LO β-Reduction). Let t be a λ-term and C a redex of t. C
is the leftmost-outermost β-redex (LO β for short) of t if C ≺LO C ′ for every
other β-redex C ′ of t. We write t →LOβ u if a step reduces the LO β-redex.

The next immediate lemma guarantees that we defined a total order.

Lemma 1 (Totality of ≺LO). If C ≺p t and C ′ ≺p t then either C ≺LO C ′ or
C ′ ≺LO C or C = C ′. Therefore, →LOβ is deterministic.

LO Contexts. For the technical development of the paper we need two character-
isations of when a context is the position of the LO β-redex. The first, following
one, is used in the proofs of Lemma5.2 and Lemma 6.4.

Definition 3 (LO Contexts). A context C is LO if

1. Right Application: whenever C = C ′〈tC ′′〉 then t is neutral, and
2. Left Application: whenever C = C ′〈C ′′t〉 then C ′′ �= λx.C ′′′.

The second characterisation is inductive, and it used to prove Lemma10.3

Definition 4 (iLO Context). Inductive LO β (or iLO) contexts are defined
by induction as follows:

(ax-iLO)
〈·〉 is iLO

C is iLO C �= λx.C ′
(@l-iLO)

Ct is iLO

C is iLO (λ-iLO)
λx.C is iLO

t is neutral C is iLO (@r-iLO)
tC is iLO

As expected,

Lemma 2 (→LOβ-steps and Contexts). Let t be a λ-term and C a redex in t.
C is the LO β redex in t iff C is LO iff C is iLO.

3 Preliminaries on Abstract Machines

We study two abstract machines, the Useful MAM (Fig. 4) and an auxiliary
machine called the Checking AM (Fig. 2).

The Useful MAM is meant to implement LO β-reduction strategy via a decod-
ing function · mapping machine states to λ-terms. Machine states s are given
by a code t, that is a λ-term t not considered up to α-equivalence (which is why

6 B. Accattoli

it is over-lined), and some data-structures like stacks, frames, and environments.
The data-structures are used to implement the search for the next LO-redex and
a form of micro-steps substitution, and they decode to evaluation contexts for
→LOβ . Every state s decodes to a term s, having the shape Cs〈t〉, where t is the
code currently under evaluation and Cs is the evaluation context given by the
data-structures.

The Checking AM tests the usefulness of a term (with respect to a given
environment) and outputs a label with the result of the test. It uses the same
states and data-structures of the Useful MAM.

The Data-Structures. First of all, our machines are executed on well-named
terms, that are those α-representants where all variables (both bound and free)
have distinct names. Then, the data-structures used by the machines are defined
in Fig. 1, namely:

– Stack π: it contains the arguments of the current code;
– Frame F : a second stack, that together with π is used to walk through the

term and search for the next redex to reduce. The items φ of a frame are
of two kinds. A variable x is pushed on the frame F whenever the machines
starts evaluating under an abstraction λx. A head argument context t♦π is
pushed every time evaluation enters in the right subterm u of an application
tu. The entry saves the left part t of the application and the current stack π,
to restore them when the evaluation of the right subterm u is over.

– Global Environment E: it is used to implement micro-step evaluation (i.e. the
substitution on a variable occurrence at the time), storing the arguments of β-
redexes that have been encountered so far. Most of the literature on abstract
machines uses local environments and closures. Having just one global envi-
ronment E removes the need for closures and simplifies the machine. On the
other hand, it forces to use explicit α-renamings (the operation t

α in �ered

and �eabs
in Fig. 4), but this does not affect the overall complexity, as it

speeds up other operations, see [1]. The entries of E are of the form [x�t]l,
i.e. they carry a label l used to implement usefulness, to be explained later on
in this section. We write E(x) = [x�t]l when E contains [x�t]l and E(x) = ⊥
when in E there are no entries of the form [x�t]l.

The Decoding. Every state s decodes to a term s (see Fig. 3), having the shape
Cs〈t → E〉, where

– t

→

E
is a λ-term, roughly obtained by applying to the code the substitution

induced by the global environment E. More precisely, the operation t

→

E
is

called unfolding and it is properly defined at the end of this section.
– Cs is a context, that will be shown to be a LO context, obtained by decoding

the stack π and the dump F and applying the unfolding. Note that, to improve
readability, π is decoded in postfix notation for plugging.

The Useful MAM, a Reasonable Implementation of the Strong λ-Calculus 7

Fig. 1. Grammars.

Fig. 2. The Checking Abstract Machine (Checking AM).

Fig. 3. Decoding.

The Transitions. According to the distillation approach of [1] we distinguish
different kinds of transitions, whose names reflect a proof-theoretical view, as
machine transitions can be seen as cut-elimination steps [1,7]:

– Multiplicatives �m: they fire a β-redex, except that if the argument is not a
variable then it is not substituted but added to the environment;

– Exponentials �e: they perform a clashing-avoiding substitution from the envi-
ronment on the single variable occurrence represented by the current code.
They implement micro-step substitution.

– Commutatives �c: they locate and expose the next redex according to the
LO evaluation strategy, by rearranging the data-structures.

Both exponential and commutative transitions are invisible on the λ-calculus.
Garbage collection is here simply ignored, or, more precisely, it is encapsulated
at the meta-level, in the decoding function.

8 B. Accattoli

Labels for Useful Sharing. A label l for a code in the environment can be of
three kinds. Roughly, they are:

– Neutral, or l = neu: it marks a neutral term, that is always useless as it
is β-normal and its substitution cannot create a redex, because it is not an
abstraction;

– Abstraction, or l = abs: it marks an abstraction, that is a term that is at
times useful to substitute. If the variable that it is meant to replace is applied,
indeed, the substitution of the abstraction creates a β-redex. But if it is not
applied, it is useless.

– Redex, or l = red: it marks a term that contains a β-redex. It is always useful
to substitute these terms.

Actually, the explanation we just gave is oversimplified, but it provides a first
intuition about labels. In fact in an environment [x�t]l : E it is not really t
that has the property mentioned by its label, rather the term t

→

E
obtained by

unfolding the rest of the environment on t. The idea is that [x�t]red states that
it is useful to substitute t to later on obtain a redex inside it (by potential
further substitutions on its variables coming from E). The precise meaning of
the labels will be given by Definition 6, and the properties they encode will be
made explicit by Lemma 11.

A further subtlety is that the label red for redexes is refined as a pair (red, n),
where n is the number of substitutions in E that are needed to obtain the LO
redex in t

→

E
. Our machines never inspect these numbers, they are only used for

the complexity analysis of Sect. 5.2.

Grafting and Unfoldings. The unfolding of the environment E on a code t is
defined as the recursive capture-allowing substitution (called grafting) of the
entries of E on t.

Definition 5 (Grafting and Environment Unfolding). The operation of
grafting t{{x�u}} is defined by

(wr){{x�u}} := w{{x�u}}r{{x�u}} (λy.w){{x�u}} := λy.w{{x�u}}
x{{x�u}} := u y{{x�u}} := y

Given an environment E we define the unfolding of E on a code t as follows:

t

→

ε
:= t t

→

[x�u]l:E
:= t{{x�u}}→

E

or equivalently as:

(uw)

→

E
:= u

→

E
w

→

E
x

→

[x�u]l:E′ := u

→

E′

(λx.u)

→

E
:= λx.u

→

E
x

→

[y�u]l:E′ := x

→

E′ x

→

ε
:= x

For instance, (λx.y)

→

[y�xx]neu = λx.(xx). The unfolding is extended to contexts
as expected (i.e. recursively propagating the unfolding and setting 〈·〉→

E
= E).

The Useful MAM, a Reasonable Implementation of the Strong λ-Calculus 9

Let us explain the need for grafting. In [2], the Strong MAM is decoded to
the LSC, that is a calculus with explicit substitutions, i.e. a calculus able to
represent the environment of the Strong MAM. Matching the representation of
the environment on the Strong MAM and on the LSC does not need grafting
but it is, however, a quite technical affair. Useful sharing adds many further
complications in establishing such a matching, because useful evaluation com-
putes a shared representation of the normal form and forces some of the explicit
substitutions to stay under abstractions. The difficulty is such, in fact, that we
found much easier to decode directly to the λ-calculus rather than to the LSC.
Such an alternative solution, however, has to push the substitution induced by
the environment through abstractions, which is why we use grafting.

Lemma 3 (Properties of Grafting and Unfolding).

1. If the bound names of t do not appear free in u then t{x�u} = t{{x�u}}.
2. If moreover they do not appear free in E then t

→

E
{x�u

→

E
} = t{x�u}→

E
.

4 The Checking Abstract Machine

The Checking Abstract Machine (Checking AM) is defined in Fig. 2. It starts exe-
cutions on states of the form (ε, t, ε, E,�), with the aim of checking the usefulness
of t with respect to the environment E, i.e. it walks through t and whenever it
encounters a variable x it looks up its usefulness in E.

The Checking AM has six commutative transitions, noted ⇀ci with i =
1, .., 6, used to walk through the term, and five output transitions, noted ⇀oj

with j = 1, .., 5, that produce the value of the test for usefulness, to be later
used by the Useful MAM. The exploration is done in two alternating phases,
evaluation � and backtracking �. Evaluation explores the current code towards
the head, storing in the stack and in the frame the parts of the code that it
leaves behind. Backtracking comes back to an argument that was stored in the
frame, when the current head has already been checked. Note that the Checking
AM never modifies the environment, it only looks it up.

Let us explain the transitions. First the commutative ones:

– ⇀�c1 : the code is an application tu and the machine starts exploring the left
subterm t, storing u on top of the stack π.

– ⇀�c2 : the code is an abstraction λx.t and the machine goes under the abstrac-
tion, storing x on top of the frame F .

– ⇀�c3 : the machine finds a variable x that either has no associated entry in the
environment (if E(x) = ⊥) or its associated entry [x�t]l in the environment is
useless. This can happen if either l = neu, i.e. substituting t would only lead
to a neutral term, or l = abs, i.e. substituting t would provide an abstraction,
but the stack is empty, and so it is useless to substitute the abstraction
because no β-redexes will be obtained. Thus the machine switches to the
backtracking phase (�), whose aim is to undo the frame to obtain a new
subterm to explore.

10 B. Accattoli

– ⇀�c4 : it is the inverse of ⇀�c2 , it puts back on the code an abstraction that
was previously stored in the frame.

– ⇀�c5 : backtracking from the evaluation of an argument u, it restores the
application tu and the stack π that were previously stored in the frame.

– ⇀�c6 : backtracking from the evaluation of the left subterm t of an application
tu, the machine starts evaluating the right subterm (by switching to the
evaluation phase �) with an empty stack ε, storing on the frame the pair t♦π
of the left subterm and the previous stack π.

Then the output transitions:

– ⇀o1 : the machine finds a β-redex, namely (λx.t)u and thus outputs a label
saying that it requires only one substitution step (namely substituting the
term the machine was executed on) to eventually find a β-redex.

– ⇀o2 : the machine finds a variable x whose associated entry [x�t](red,n) in the
environment is labeled with (red, n), and so outputs a label saying that it
takes n + 1 substitution steps to eventually find a β-redex (n plus 1 for the
term the machine was executed on).

– ⇀o3 : the machine finds a variable x whose associated entry [x�t]abs in the
environment is labeled with abs, so t is an abstraction, and the stack is non-
empty. Since substituting the abstraction will create a β-redex, the machine
outputs a label saying that it takes two substitution steps to obtain a β-redex,
one for the term the machine was executed on and one for the abstraction t.

– ⇀o4 : the machine went through the whole term, that is an application, and
found no redex, nor any redex that can be obtained by substituting from
the environment. Thus that term is neutral and so the machine outputs the
corresponding label.

– ⇀o5 : as for the previous transition, except that the term is an abstraction,
and so the output is the abs label.

The fact that commutative transitions only walk through the code, without
changing anything, is formalised by the following lemma, that is crucial for the
proof of correctness of the Checking AM (forthcoming Theorem 1).

Lemma 4 (Commutative Transparency).
Let s = (F, u, π,E, ϕ) �c1,2,3,4,5,6 (F ′, u′, π′, E, ϕ′) = s′. Then

1. Decoding Without Unfolding: F 〈〈u〉π〉 = F ′〈〈u′〉π′〉, and
2. Decoding With Unfolding: s = s′.

For the analysis of the properties of the Checking AM we need a notion
of well-labeled environment, i.e. of environment where the labels are consis-
tent with their intended meaning. It is a technical notion also providing enough
information to perform the complexity analysis, later on. Moreover, it includes
two structural properties of environments: (1) in [x�t]l the code t cannot be a
variable, and (2) there cannot be two entries associated to the same variables.

Definition 6 (Well-Labeled Environments). Well-labeled global environ-
ments E are defined by

The Useful MAM, a Reasonable Implementation of the Strong λ-Calculus 11

1. Empty: ε is well-labeled;
2. Inductive: [x�t]l : E′ is well-labeled if E′ is well-labeled, x is fresh with respect

to t and E′, and
(a) Abstractions: if l = abs then t and t

→

E′ are normal abstractions;
(b) Neutral Terms: if l = neu then t is an application and t

→
E′ is neutral.

(c) Redexes: if l = (red, n) then t is not a variable, t

→
E′ contains a β-redex.

Moreover, t = C〈u〉 with C a LO context and
– if n = 1 then u is a β-redex,
– if n > 1 then u = x and E′ = E′′ : [y�u]l : E′′′ with

• if n > 2 then l = (red, n − 1)
• if n = 2 then l = (red, 1) or (l = abs and C is applicative).

Remark 1. Note that by the definition it immediately follows that if E = E′ :
[x�t](red,n) : E′′ is well-labeled then the length of E′′, and thus of E, is at least n.
This fact is used in the proof of Theorem 3.1

The study of the Checking AM requires some terminology and two invariants.
A state s is initial if it is of the form (ε, t, ε, E, ϕ) with E well-labeled and it is
reachable if there are an initial state s′ and a Checking AM execution ρ : s′ ⇀∗ s.
Both invariants are used to prove the correctness of the Checking AM: the normal
form invariant to guarantee that codes labeled with neu and abs are indeed
normal or neutral, while the decoding invariant is used for the redex labels.

Lemma 5 (Checking AM Invariants). Let s = F | u | π | E | ϕ be a
Checking AM reachable state and E be a well-labeled environment.

1. Normal Form:
(a) Backtracking Code: if ϕ = �, then u

→

E
is normal, and if π is non-empty,

then u

→

E
is neutral;

(b) Frame: if F = F ′ : w♦π′ : F ′′, then w

→

E
is neutral.

2. Decoding: Cs is a LO context.

Finally, we can prove the main properties of the Checking AM, i.e. that when
executed on t and E it provides a label l to extend E with a consistent entry
for t (i.e. such that [x�t]l : E is well-labeled), and that such an execution takes
time linear in the size of t.

Theorem 1 (Checking AM Properties). Let t be a code and E a global
environment.

1. Determinism and Progress: the Checking AM is deterministic and there
always is a transition that applies;

2. Termination and Complexity: the execution of the Checking AM on t and E
always terminates, taking O(|t|) steps, moreover

3. Correctness: if E is well-labeled, x is fresh with respect to E and t, and l is
the output then [x�t]l : E is well-labeled.

12 B. Accattoli

5 The Useful Milner Abstract Machine

The Useful MAM is defined in Fig. 4. It is very similar to the Checking AM,
in particular it has exactly the same commutative transitions, and the same
organisation in evaluating and backtracking phases. The difference with respect
to the Useful MAM is that the output transitions are replaced by micro-step
computational rules that reduce β-redexes and implement useful substitutions.
Let us explain them:

– Multiplicative Transition �m1 : when the argument of the β-redex (λx.t)y is a
variable y then it is immediately substituted in t. This happens because (1)
such substitution are not costly and (2) because in this way the environment
stays compact, see also Remark 2 at the end of the paper.

– Multiplicative Transition �m2 : if the argument u is not a variable then the
entry [x�u]l is added to the environment. The label l is obtained by running
the Checking AM on u and E.

– Exponential Transition �ered : the environment entry associated to x is
labeled with (red, n) thus it is useful to substitute t. The idea is that in at most
n additional substitution steps (shuffled with commutative steps) a β-redex
will be obtained. To avoid variable clashes the substitution α-renames t.

– Exponential Transition �eabs
: the environment associates an abstraction to

x and the stack is non empty, so it is useful to substitute the abstraction
(again, α-renaming to avoid variable clashes). Note that if the stack is empty
the machine rather backtracks using ��c3 .

Fig. 4. The Useful Milner Abstract Machine (Useful MAM).

The Useful MAM starts executions on initial states of the form (ε, t, ε, ε),
where t is such that any two variables (bound or free) have distinct names, and

The Useful MAM, a Reasonable Implementation of the Strong λ-Calculus 13

any other component is empty. A state s is reachable if there are an initial state
s′ and a Useful MAM execution ρ : s′ �∗ s, and it is final if no transitions apply.

5.1 Qualitative Analysis

The results of this subsection are the correctness and completeness of the Useful
MAM. Four invariants are required. The normal form and decoding invariants
are exactly those of the Checking AM (and the proof for the commutative transi-
tions is the same). The environment labels invariant follows from the correctness
of the Checking AM (Theorem 1.2. The name invariant is used in the proof of
Lemma 7.

Lemma 6 (Useful MAM Qualitative Invariants). Let s = F | u | π | E | ϕ
be a state reachable from an initial term t0. Then:

1. Environment Labels: E is well-labeled.
2. Normal Form:

(a) Backtracking Code: if ϕ = �, then u

→

E
is normal, and if π is non-empty,

then u

→

E
is neutral;

(b) Frame: if F = F ′ : w♦π′ : F ′′, then w

→

E
is neutral.

3. Name:
(a) Substitutions: if E = E′ : [x�t] : E′′ then x is fresh wrt t and E′′;
(b) Abstractions and Evaluation: if ϕ = � and λx.t is a subterm of u, π, or

π′ (if F = F ′ : w♦π′ : F ′′) then x may occur only in t;
(c) Abstractions and Backtracking: if ϕ = � and λx.t is a subterm of π or

π′ (if F = F ′ : w♦π′ : F ′′) then x may occur only in t.
4. Decoding: Cs is a LO context.

We can now show how every single transition projects on the λ-calculus, and
in particular that multiplicative transitions project to LO β-steps.

Lemma 7 (One-Step Weak Simulation, Proof at Page 17). Let s be a
reachable state.

1. Commutative: if s �c1,2,3,4,5,6 s′ then s = s′;
2. Exponential: if s �ered,eabs

s′ then s = s′;
3. Multiplicative: if s �m1,m2 s′ then s →LOβ s′.

We also need to show that the Useful MAM computes β-normal forms.

Lemma 8 (Progress, Proof at Page 18). Let s be a reachable final state.
Then s is β-normal.

The theorem of correctness and completeness of the machine with respect
to →LOβ follows. The bisimulation is weak because transitions other than �m are
invisible on the λ-calculus. For a machine execution ρ we denote with |ρ| (resp.
|ρ|x) the number of transitions (resp. x-transitions for x ∈ {m, e, c, . . .}) in ρ.

14 B. Accattoli

Theorem 2 (Weak Bisimulation, Proof at Page 18). Let s be an initial
Useful MAM state of code t.

1. Simulation: for every execution ρ : s �∗ s′ there exists a derivation d : s →∗
LOβ

s′ such that |d| = |ρ|m;
2. Reverse Simulation: for every derivation d : t →∗

LOβ u there is an execution
ρ : s �∗ s′ such that s′ = u and |d| = |ρ|m.

5.2 Quantitative Analysis

The complexity analyses of this section rely on two additional invariants of the
Useful MAM, the subterm and the environment size invariants.

The subterm invariant bounds the size of the duplicated subterms and it is
crucial. For us, u is a subterm of t if it does so up to variable names, both free
and bound. More precisely: define t− as t in which all variables (including those
appearing in binders) are replaced by a fixed symbol ∗. Then, we will consider u
to be a subterm of t whenever u− is a subterm of t− in the usual sense. The key
property ensured by this definition is that the size |u| of u is bounded by |t|.
Lemma 9 (Useful MAM Quantitative Invariants). Let s = F | u | π |
E | ϕ be a state reachable by the execution ρ from the initial code t0.

1. Subterm: environment, which is a subterm of the initial term by
(a) Evaluating Code: if ϕ = �, then u is a subterm of t0;
(b) Stack: any code in the stack π is a subterm of t0;
(c) Frame: if F = F ′ : w♦π′ : F ′′, then any code in π′ is a subterm of t0;
(d) Global Environment: if E = E′ : [x�w]l : E′′, then w is a subterm of t0;

2. Environment Size: the length of the global environment E is bound by |ρ|m.

The proof of the polynomial bound of the overhead is in three steps. First,
we bound the number |ρ|e of exponential transitions of an execution ρ using the
number |ρ|m of multiplicative transitions of ρ, that by Theorem2 corresponds to
the number of LO β-steps on the λ-calculus. Second, we bound the number |ρ|c
of commutative transitions of ρ by using the number of exponential transitions
and the size of the initial term. Third, we put everything together.

Multiplicative vs Exponential Analysis. This step requires two auxiliary lemmas.
The first one essentially states that commutative transitions eat normal and
neutral terms, as well as LO contexts.

Lemma 10. Let s = F | t | π | E | � be a state and E be well-labeled. Then

1. If t

→

E
is a normal term and π = ε then s �∗

c F | t | π | E | �.
2. If t

→

E
is a neutral term then s �∗

c F | t | π | E | �.
3. If t = C〈u〉 with C

→

E
a LO context then there exist F ′ and π′ such that

s �∗
c F ′ | u | π′ | E | �;

The Useful MAM, a Reasonable Implementation of the Strong λ-Calculus 15

The second lemma uses Lemma 10 and the environment labels invariant
(Lemma 6.1 to show that the exponential transitions of the Useful MAM are
indeed useful, as they head towards a multiplicative transition, that is towards
β-redexes.

Lemma 11 (Useful Exponentials Lead to Multiplicatives). Let s be a
reachable state such that s �e(red,n) s′.

1. If n = 1 then s′ �∗
c�m s′′;

2. If n = 2 then s′ �∗
c�eabs

�m s′′ or s′ �∗
c�e(red,1) s′′;

3. If n > 1 then s′ �∗
c�e(red,n−1) s′′.

Finally, using the environment size invariant (Lemma9.2) we obtain the local
boundedness property, that is used to infer a quadratic bound via a standard
reasoning (already employed in [6]).

Theorem 3 (Exponentials vs Multiplicatives, Proof at Page 19). Let
s be an initial Useful MAM state and ρ : s �∗ s′.

1. Local Boundedness: if σ : s′ �∗ s′′ and |σ|m = 0 then |σ|e ≤ |ρ|m;
2. Exponentials are Quadratic in the Multiplicatives: |ρ|e ∈ O(|ρ|2m).

Commutative vs Exponential Analysis. The second step is to bound the number
of commutative transitions. Since the commutative part of the Useful MAM is
essentially the same as the commutative part of the Strong MAM of [2], the
proof of such bound is essentially the same as in [2]. It relies on the subterm
invariant (Lemma 9.1).

Theorem 4 (Commutatives vs Exponentials, Proof at Page 20). Let
ρ : s �∗ s′ be a Useful MAM execution from an initial state of code t. Then:

1. Commutative Evaluation Steps are Bilinear: |ρ|�c ≤ (1 + |ρ|e) · |t|.
2. Commutative Evaluation Bounds Backtracking: |ρ|�c ≤ 2 · |ρ|�c.
3. Commutative Transitions are Bilinear: |ρ|c ≤ 3 · (1 + |ρ|e) · |t|.

The Main Theorem. Putting together the matching between LO β-steps and
multiplicative transitions (Theorem2), the quadratic bound on the exponentials
via the multiplicatives (Theorem3.2) and the bilinear bound on the commuta-
tives (Theorem 4.3) we obtain that the number of the Useful MAM transitions to
implement a LO β-derivation d is at most quadratic in the length of d and linear
in the size of t. Moreover, the subterm invariant (Lemma9.1) and the analysis
of the Checking AM (Theorem 1.2) allow to bound the cost of implementing the
execution on RAM.

Theorem 5 (Useful MAM Overhead Bound, Proof at Page 20). Let
d : t →∗

LOβ u be a leftmost-outermost derivation and ρ be the Useful MAM
execution simulating d given by Theorem2.2. Then:

16 B. Accattoli

1. Length: |ρ| = O((1 + |d|2) · |t|).
2. Cost: ρ is implementable on RAM in O((1 + |d|2) · |t|) steps.

Remark 2. Our bound is quadratic in the number of the LO β-steps but we
believe that it is not tight. In fact, our transition �m1 is a standard optimisation,
used for instance in Wand’s [28] (Sect. 2), Friedman et al.’s [21] (Sect. 4), and
Sestoft’s [26] (Sect. 4), and motivated as an optimization about space. In Sands,
Gustavsson, and Moran’s [25], however, it is shown that it lowers the overhead
for time from quadratic to linear (with respect to the number of β-steps) for
call-by-name evaluation in a weak setting. Unfortunately, the simple proof used
in [25] does not scale up to our setting, nor we have an alternative proof that
the overhead is linear. We conjecture, however, that it does.

Proofs of the Main Lemmas and Theorems

Proof of One-Step Weak Bisimulation Lemma (Lemma7, p. 13)

1. Commutative: the proof is exactly as the one for the Checking AM
(Lemma 4.2), that can be found in the longer version of this paper on the
author’s webpage.

2. Exponential :

– Cases = (F, x, π,E,�) �ered (F, t
α
, π, E,�) = s′ with E(x) =

[x�t](red,n) Then E = E′ : [x�t](red,n) : E′′ for some environments E′,
and E′′. Remember that terms are considered up to α-equivalence.

s = Cs′〈x→

E
〉 = Cs′〈t →

E′′〉 = Cs′〈t →

E
〉 = s′

In the chain of equalities we can replace t

→

E′′ with t

→

E
because by well-

labeledness the variables bound by E′ are fresh with respect to t.
– Case s = (F, x, u : π,E,�) �eabs

(F, t
α
, u : π,E,�) = s′ with E(x) =

[x�t]abs The proof that s = s′ is exactly as in the previous case.
3. Multiplicative:

– Case s = (F, λx.t, y : π,E,�) �m1 (F, t{x�y}, π, E,�) = s′ Note that
Cs = F 〈π〉→

E
is LO by the decoding invariant (Lemma6.4). Note also

that by the name invariant (Lemma 6.3b) x can only occur in t. Then:

(F, λx.t, y : π,E,�) = F 〈〈λx.t〉y : π〉→

E

= F 〈〈(λx.t)y〉π〉→

E
= Cs′〈(λx.t

→

E
)y

→

E
〉

→LOβ Cs′〈t →

E
{x�y

→

E
}〉

=L. 6.3b&L. 3.2 Cs′〈t{x�y}→

E
〉

= (F, t{x�y}, π, E,�)

– Case s = (F, λx.t, u : π,E,�) �m2 (F, t, π, [x�u]l : E,�) = s′ with u
not a variable. Note that Cs′ = F 〈〈·〉π〉→

E
= F

→

E
〈〈·〉π →

E
〉 is LO by the

The Useful MAM, a Reasonable Implementation of the Strong λ-Calculus 17

decoding invariant (Lemma 6.4). Note also that by the name invariant
(Lemma 6.3b) x can only occur in t. Then:

(F, λx.t, u : π,E,�) = F 〈〈λx.t〉u : π〉→
E

= F 〈〈(λx.t)u〉π〉→
E

= F

→

E
〈〈(λx.t

→
E

)u
→

E
〉π →

E
〉

→LOβ F

→

E
〈〈t →

E
{x�u

→

E
}〉π →

E
〉

=L. 6.3b&L. 3.2 F

→
E

〈〈t{x�u}→

E
〉π →

E
〉

= F 〈〈t{x�u}〉π〉→

E
=L. 6.3b&L. 3.1 F 〈〈t{{x�u}}〉π〉→

E
=L. 6.3b F 〈〈t〉π〉{{x�u}}→

E
= F 〈〈t〉π〉→

[x�u]l:E

= (F, t, π, [x�u]l : E,�) �

Proof of the Progress Lemma (Lemma8, p. 13)

A simple inspection of the machine transitions shows that final states have the
form (ε, t, ε, E,�). Then by the normal form invariant (Lemma6.2a) s = t

→

E
is

β-normal. �

Proof of the Weak Bisimulation Theorem (Theorem2, p. 13)

1. By induction on the length |ρ| of ρ, using the one-step weak simulation lemma
(Lemma 7). If ρ is empty then the empty derivation satisfies the statement.
If ρ is given by σ : s �∗ s′′ followed by s′′ � s′ then by i.h. there exists
e : s →∗

LOβ s′′ s.t. |e| = |σ|m. Cases of s′′ � s′:
(a) Commutative or Exponential. Then s′′ = s′ by Lemmas 7.1 and 7.2, and

the statement holds taking d := e because |d| = |e| =i.h. |σ|m = |ρ|m.
(b) Multiplicative. Then s′′ →LOβ s′ by Lemma 7.3 and defining d as e followed

by such a step we obtain |d| = |e| + 1 =i.h. |σ|m + 1 = |ρ|m.
2. We use nfec(s) to denote the normal form of s with respect to exponential

and commutative transitions, that exists and is unique because �c ∪ �e

terminates (termination is given by forthcoming Theorems 3 and 4, that are
postponed because they actually give precise complexity bounds, not just
termination) and the machine is deterministic (as it can be seen by an easy
inspection of the transitions). The proof is by induction on the length of d. If
d is empty then the empty execution satisfies the statement.
If d is given by e : t →∗

LOβ w followed by w →LOβ u then by i.h. there
is an execution σ : s �∗ s′′ s.t. w = s′′ and |σ|m = |e|. Note that since
exponential and commutative transitions are mapped on equalities, σ can be
extended as σ′ : s �∗ s′′ �∗

ered,eabs,c1,2,3,4,5,6 nfec(s′′) with nfec(s′′) = w

and |σ′|m = |e|. By the progress property (Lemma 8) nfec(s′′) cannot be a
final state, otherwise w = nfec(s′′) could not reduce. Then nfec(s′′) �m s′

(the transition is necessarily multiplicative because nfec(s′′) is normal with
respect to the other transitions). By the one-step weak simulation lemma

18 B. Accattoli

(Lemma 7.3) nfec(s′′) = w →LOβ s′ and by determinism of →LOβ (Lemma 1)
s′ = u. Then the execution ρ defined as σ′ followed by nfec(s′′) �m s′ satisfy
the statement, as |ρ|m = |σ′|m + 1 = |σ|m + 1 = |e| + 1 = |d|. �

Proof of the Exponentials vs Multiplicatives Theorem (Theorem3,
p. 15)

1. We prove that |σ|e ≤ |E|. The statement follows from the environment size
invariant (Lemma 9.2), for which |E| ≤ |ρ|m.

If |σ|e = 0 it is immediate. Then assume |σ|e > 0, so that there is a first
exponential transition in σ, i.e. σ has a prefix s′ �∗

c�e s′′′ followed by an
execution τ : s′′′ �∗ s′′ such that |τ |m = 0. Cases of the first exponential
transition �e:

– Case �eabs
: the next transition is necessarily multiplicative, and so τ is

empty. Then |σ|e = 1. Since the environment is non-empty (otherwise
�eabs

could not apply), |σ|e ≤ |E| holds.
– Case �e(red,n) : we prove by induction on n that |σ|e ≤ n, that gives what

we want because n ≤ |E| by Remark 1. Cases:
• n = 1) Then τ has the form s′′′ �∗

c s′′ by Lemma 11.1, and so |σ|e = 1.
• n = 2) Then τ is a prefix of �∗

c�eabs
or �∗

c�e(red,1) by Lemma 11.2.
In both cases |σ|e ≤ 2.

• n > 2) Then by Lemma 11.3 τ is either shorter or equal to
�∗

c�e(red,n−1) , and so |σ|e ≤ 2, or it is longer than �∗
c�e(red,n−1) , i.e.

it writes as �∗
c followed by an execution τ ′ starting with �e(red,n−1) .

By i.h. |τ ′| ≤ n − 1 and so |σ| ≤ n.
2. This is a standard reasoning: since by local boundedness (the previous point)

m-free sequences have a number of e-transitions that are bound by the number
of preceding m-transitions, the sum of all e-transitions is bound by the square
of m-transitions. It is analogous to the proof of Theorem 7.2.3 in [6]. �

Proof of Commutatives vs Exponentials Theorem (Theorem4, p. 15)

1. We prove a slightly stronger statement, namely |ρ|�c + |ρ|m ≤ (1 + |ρ|e) · |t|,
by means of the following notion of size for stacks/frames/states:

|ε| := 0 |x : F | := |F |
|t : π| := |t| + |π| |t♦π : F | := |π| + |F |

|(F, t, π,E,�)| := |F | + |π| + |t| |(F, t, π,E,�)| := |F | + |π|
By direct inspection of the rules of the machine it can be checked that:

– Exponentials Increase the Size: if s �e s′ is an exponential transition,
then |s′| ≤ |s| + |t| where |t| is the size of the initial term; this is a
consequence of the fact that exponential steps retrieve a piece of code from
the environment, which is a subterm of the initial term by Lemma9.1;

The Useful MAM, a Reasonable Implementation of the Strong λ-Calculus 19

– Non-Exponential Evaluation Transitions Decrease the Size: if s �a s′

with a ∈ {m1, m2,�c1,�c2,�c3} then |s′| < |s| (for �c3 because the
transition switches to backtracking, and thus the size of the code is no
longer taken into account);

– Backtracking Transitions do not Change the Size: if s �a s′ with a ∈
{�c4,�c5,�c6} then |s′| = |s|.

Then a straightforward induction on |ρ| shows that

|s′| ≤ |s| + |ρ|e · |t| − |ρ|�c − |ρ|m
i.e. that |ρ|�c + |ρ|m ≤ |s| + |ρ|e · |t| − |s′|.
Now note that | · | is always non-negative and that since s is initial we have
|s| = |t|. We can then conclude with

|ρ|�c + |ρ|m ≤ |s| + |ρ|e · |t| − |s′|
≤ |s| + |ρ|e · |t| = |t| + |ρ|e · |t| = (1 + |ρ|e) · |t|

2. We have to estimate |ρ|�c = |ρ|�c4 + |ρ|�c5 + |ρ|�c6 . Note that
(a) |ρ|�c4 ≤ |ρ|�c2 , as ��c4 pops variables from F , pushed only by ��c2 ;
(b) |ρ|�c5 ≤ |ρ|�c6 , as ��c5 pops pairs t♦π from F , pushed only by ��c6 ;
(c) |ρ|�c6 ≤ |ρ|�c3 , as ��c6 ends backtracking phases, started only by ��c3 .
Then |ρ|�c ≤ |ρ|�c2 + 2|ρ|�c3 ≤ 2|ρ|�c.

3. We have |ρ|c = |ρ|�c + |ρ|�c ≤P.2 |ρ|�c + 2|ρ|�c ≤P.1 3 · (1 + |ρ|e) · |t|. �

Proof of the Useful MAM Overhead Bound Theorem (Theorem5, p.
15)

1. By definition, the length of the execution ρ simulating d is given by |ρ| = |ρ|m+
|ρ|e+|ρ|c. Now, by Theorem 3.2 we have |ρ|e = O(|ρ|2m) and by Theorem 4.3 we
have |ρ|c = O((1+ |ρ|e) · |t|) = O((1+ |ρ|2m) · |t|). Therefore, |ρ| = O((1+ |ρ|e) ·
|t|) = O((1+|ρ|2m)·|t|). By Theorem 2.2 |ρ|m = |d|, and so |ρ| = O((1+|d|2)·|t|).

2. The cost of implementing ρ is the sum of the costs of implementing the multi-
plicative, exponential, and commutative transitions. Remember that the idea
is that variables are implemented as references, so that environment can be
accessed in constant time (i.e. they do not need to be accessed sequentially):
(a) Commutative: every commutative transition evidently takes constant

time. At the previous point we bounded their number with O((1+|d|2)·|t|),
which is then also the cost of all the commutative transitions together.

(b) Multiplicative: a �m1 transition costs O(|t|) because it requires to rename
the current code, whose size is bound by the size of the initial term by
the subterm invariant (Lemma 9.1a). A �m2 transition also costs O(|t|)
because executing the Checking AM on u takes O(|u|) commutative steps
(Theorem 1.2), commutative steps take constant time, and the size of u
is bound by |t| by the subterm invariant (Lemma 9.1b). Therefore, all
together the multiplicative transitions cost O(|d| · |t|).

20 B. Accattoli

(c) Exponential : At the previous point we bounded their number with |ρ|e =
O(|d|2). Each exponential step copies a term from the environment, that
by the subterm invariant (Lemma 9.1d) costs at most O(|t|), and so their
full cost is O((1 + |d|) · |t|2) (note that this is exactly the cost of the
commutative transitions, but it is obtained in a different way).

Then implementing ρ on RAM takes O((1 + |d|) · |t|2) steps. �

References

1. Accattoli, B., Barenbaum, P., Mazza, D.: Distilling abstract machines. In: ICFP
2014, pp. 363–376 (2014)

2. Accattoli, B., Barenbaum, P., Mazza, D.: A strong distillery. In: Feng, X., Park,
S. (eds.) APLAS 2015. LNCS, vol. 9458, pp. 231–250. Springer, Heidelberg (2015).
doi:10.1007/978-3-319-26529-2 13

3. Accattoli, B., Bonelli, E., Kesner, D., Lombardi, C.: A nonstandard standardization
theorem. In: POPL, pp. 659–670 (2014)

4. Accattoli, B., Coen, C.S.: On the relative usefulness of fireballs. In: LICS 2015, pp.
141–155 (2015)

5. Accattoli, B., Dal Lago, U.: On the invariance of the unitary cost model for head
reduction. In: RTA, pp. 22–37 (2012)

6. Accattoli, B., Lago, U.D.: (Leftmost-Outermost) Beta reduction is invariant,
indeed. Logical Methods Comput. Sci. 12(1), 1–46 (2016)

7. Ariola, Z.M., Bohannon, A., Sabry, A.: Sequent calculi and abstract machines.
ACM Trans. Program. Lang. Syst. 31(4), 13:1–13:48 (2009)

8. Asperti, A., Mairson, H.G.: Parallel beta reduction is not elementary recursive. In:
POPL, pp. 303–315 (1998)

9. Blelloch, G.E., Greiner, J.: Parallelism in sequential functional languages. In:
FPCA, pp. 226–237 (1995)

10. Boutiller, P.: De nouveaus outils pour manipuler les inductif en Coq. Ph.D. thesis,
Université Paris Diderot, Paris 7 (2014)

11. de Carvalho, D.: Execution time of lambda-terms via denotational semantics and
intersection types (2009). CoRR abs/0905.4251

12. Crégut, P.: An abstract machine for lambda-terms normalization. In: LISP and
Functional Programming, pp. 333–340 (1990)

13. Crégut, P.: Strongly reducing variants of the Krivine abstract machine. Higher
Order Symbol. Comput. 20(3), 209–230 (2007)

14. Dal Lago, U., Martini, S.: The weak lambda calculus as a reasonable machine.
Theoret. Comput. Sci. 398(1–3), 32–50 (2008)

15. Danos, V., Regnier, L.: Head linear reduction. Technical report (2004)
16. Danvy, O., Nielsen, L.R.: Refocusing in reduction semantics. Technical report RS-

04-26, BRICS (2004)
17. Danvy, O., Zerny, I.: A synthetic operational account of call-by-need evaluation.

In: PPDP, pp. 97–108 (2013)
18. Dénès, M.: Étude formelle d’algorithmes efficaces en algèbre linéaire. Ph.D. thesis,

Université de Nice - Sophia Antipolis (2013)
19. Ehrhard, T., Regnier, L.: Böhm trees, Krivine’s machine and the Taylor expansion

of lambda-terms. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE
2006. LNCS, vol. 3988, pp. 186–197. Springer, Heidelberg (2006)

http://dx.doi.org/10.1007/978-3-319-26529-2_13

The Useful MAM, a Reasonable Implementation of the Strong λ-Calculus 21

20. Fernández, M., Siafakas, N.: New developments in environment machines. Electron.
Notes Theoret. Comput. Sci. 237, 57–73 (2009)

21. Friedman, D.P., Ghuloum, A., Siek, J.G., Winebarger, O.L.: Improving the lazy
Krivine machine. Higher Order Symbol. Comput. 20(3), 271–293 (2007)

22. Garćıa-Pérez, Á., Nogueira, P., Moreno-Navarro, J.J.: Deriving the full-reducing
Krivine machine from the small-step operational semantics of normal order. In:
PPDP, pp. 85–96 (2013)

23. Grégoire, B., Leroy, X.: A compiled implementation of strong reduction. In: ICFP
2002, pp. 235–246 (2002)

24. Milner, R.: Local bigraphs and confluence: two conjectures. Electron. Notes The-
oret. Comput. Sci. 175(3), 65–73 (2007)

25. Sands, D., Gustavsson, J., Moran, A.: Lambda calculi and linear speedups. In:
Mogensen, T.Æ., Schmidt, D.A., Sudborough, I.H. (eds.) The Essence of Compu-
tation. LNCS, vol. 2566, pp. 60–82. Springer, Heidelberg (2002)

26. Sestoft, P.: Deriving a lazy abstract machine. J. Funct. Program. 7(3), 231–264
(1997)

27. Smith, C.: Abstract machines for higher-order term sharing. Presented at IFL 2014
(2014)

28. Wand, M.: On the correctness of the Krivine machine. Higher Order Symbol. Com-
put. 20(3), 231–235 (2007)

Compactness in Infinitary Gödel Logics

Juan P. Aguilera(B)

Vienna University of Technology, 1040 Vienna, Austria
aguilera@logic.at

Abstract. We outline some model-building procedures for infinitary
Gödel logics, including a suitable ultrapower construction. As an appli-
cation, we provide two proofs of the fact that the usual characteriza-
tions of cardinals κ such that the Compactness and Weak Compactness
Theorems hold for the infinitary language Lκ,κ are also valid for the
corresponding Gödel logics.

Keywords: Gödel logic · Infinitary logic · Compactness

1 Introduction

Infinitary logics, or logics with infinitely long expressions, were first studied by
Scott and Tarski [7,8]. Specifically, let κ and λ be cardinal numbers and consider
a language Lκ,λ consisting of the following non-logical symbols:

1. finitary predicate symbols,
2. finitary function symbols,
3. constants,

and the following logical symbols:

4. a set of variables of size κ,
5. conjunctions

∧
ι<δ Aι and disjunctions

∨
ι<δ Aι for δ < κ,

6. implication and negation,
7. quantifier chains ∀ι<δxι and ∃ι<δxι, for δ < λ.

Note, in particular, that we do not necessarily include equality in the language.
We give ourselves as much notational freedom as the context allows. For example,
we might write ∀�x or

∧
Aι if the precise length of the connective is not important.

Infinitary languages quickly gathered interest due to their rich model-
theoretic properties and expressive power. For example, the following formula
separates the standard model of arithmetic from non-standard models:

∀x
∨

n<ω

n > x.

Partially supported by FWF grants P-26976-N25, I-1897-N25, I-2671-N35, and
W1255-N23.

c© Springer-Verlag Berlin Heidelberg 2016
J. Väänänen et al. (Eds.): WoLLIC 2016, LNCS 9803, pp. 22–35, 2016.
DOI: 10.1007/978-3-662-52921-8 2

Compactness in Infinitary Gödel Logics 23

As is well known, the usual finitary logic (Lω,ω in this notation) is compact.
The natural question arose as to whether the languages Lκ,λ could satisfy suit-
able analogs of compactness. Recall that a cardinal κ is weakly compact if, and
only if, it is inaccessible and satisfies the tree property, i.e., any tree of size κ such
that every level has < κ nodes has a branch B of length κ. If so, we say B is a
branch through the tree. A filter1 U on some set is κ-complete if the intersection
of less than κ-many sets in U is also in U . A cardinal κ is strongly compact if
any κ-complete filter on any set can be extended to a κ-complete ultrafilter. If
U is an ultrafilter and X ∈ U , we say X has measure one with respect to U (and
X has measure zero if X �∈ U). Let

PκA = {S ⊂ A : |S| < κ}.

We say an ultrafilter on PκA is a fine measure if it contains all sets of the form

A ↑ := {S ∈ PκA : A ⊂ S}.

It is well known (see, for example, [4,5]) that a cardinal κ is strongly compact
if, and only if, for every cardinal λ, there exists a fine measure on Pκλ. By results
of Keisler and Tarski [6] and Hanf [3], the languages Lκ,ω and Lκ,κ satisfy a
strong (resp. weak) analog of the usual compactness theory for classical logic
if, and only if, κ is a strongly (resp. weakly) compact cardinal. Specifically,
whenever Σ is an arbitrary set (resp. a set where at most κ-many non-logical
symbols appear) of formulae such that every subset of Σ of cardinality < κ has a
model, then Σ has a model. We show that, in a sense made precise below, this is
also true when the underlying logic is replaced by any first-order Gödel logic. As
we will see, although the proofs are essentially as in the classical case, we need
to circumvent a few minor technicalities that arise. In particular, we will need to
introduce the notion of coherent models for Gödel logics and prove �Loś’s Theorem
for a suitable ultrapower construction. It has a similar flavor to the analog in
continuous model theory (for example, see [2]). An important difference is that,
of course, not all logical connectives in Gödel logics are continuous.

2 Gödel Logics

Definition 1. Let U be a set and2 V ⊂ [0, 1] be closed and containing 0 and 1.
A valuation �·� of Lκ,λ for U and V consists of

1. For each variable v, a value �v� ∈ U ;
2. For each function symbol f of arity n, a function �f� : Un → U
3. Similarly, for each predicate symbol, a function �P � : Un → V ;

A model (or V -model, if we want to be precise) is a structure (U, �·�).
1 Recall that a (proper) filter U �= ℘(X) on a set X is a collection of subsets of X
that is closed under binary intersections and supersets.

2 As unfortunate as it is, ‘V ’ is the usual notation for this.

24 J.P. Aguilera

In this paper, the term’model’ is used both as in Definition 1 and in the
classical sense. The meaning shall always be clear from the context. Also, V will
always denote a closed subset of [0, 1] containing 0 and 1. Valuations are naturally
extended to map any term t to an element �t� ∈ U and any Lκ,λ-formula to a
truth value r ∈ V :

�

∧

ι<δ

Aι� = inf{�Aι� : ι < δ};

�

∨

ι<δ

Aι� = sup{�Aι� : ι < δ};

�A → B� =

{
�B� if �A� > �B�,

1 if �A� ≤ �B�;

�∀ι<δxι A(�x)� = inf{�A(�u)� : uι ∈ U for each ι < δ};
�∃ι<δxι A(�x)� = sup{�A(�u)� : uι ∈ U for each ι < δ}.

We will also sometimes abuse terminology by making statements about ‘all
�u ⊂ U ,’ when in reality we mean ‘all �u ⊂ U of the appropriate length.’ Hence,
the last line of the above definition could have been written as

�∃ι<δxι A(�x)� = sup{�A(�u)� : �u ⊂ U}.

Negation is defined by ¬A = A → ⊥, so that

�¬A� =

{
0 if �A� > 0,

1 if �A� = 0;
(1)

in particular:

�¬¬A� =

{
0 if �A� = 0,

1 if �A� > 0.
(2)

If Γ is a set of formulae, we define �Γ � = inf{�B� : B ∈ Γ}. We say that a
set Γ of Lκ,λ-formulae 1-entails A, and write Γ |= A, if 1 = �Γ � implies 1 = �A�

for any valuation �·�. Given a language Lκ,λ and a truth-value set V , we can
formally define the Gödel logic GV as the set of pairs (Γ,A) such that Γ |= A.

Indeed, a notion of entailment is usually taken as the central semantic notion
for Gödel logics, instead of that of satisfiability. This is due to the fact that
satisfiability can in general be defined from entailment, but not conversely (for
a general treatment of first-order Gödel logics, see [1]).

Suppose Γ is a set of Lκ,λ-sentences. We say that a set S ⊂ Γ of cardinality
< κ is a κ-reduction for (Γ,A) if Γ |= A implies S |= A. The following is the
main definition:

Definition 2.
– We say that Lκ,λ satisfies the Weak Compactness Theorem for GV if every

pair (Γ,A) where at most κ-many non-logical symbols appear has a κ-
reduction.

Compactness in Infinitary Gödel Logics 25

– We say that Lκ,λ satisfies the Compactness Theorem for GV if every pair
(Γ,A) has a κ-reduction.

The first-order language L under consideration is not important for the previous
definition. It should rather be regarded as a statement about κ, λ, and/or V .

2.1 Models Coherent with an Enumeration

Note that our valuations include both interpretations and variable assignments.
Hence, we might find two morally equal models that differ only in this regard.
To remedy this, we consider the following notion:

Definition 3. Let U = (U, �·�) and W = (U, �·�) be models over the same lan-
guage. We say U and W are equivalent if they coincide except perhaps for the
values of variables, i.e., �P (�u)� = �P (�u)� and �f(�u)� = �f(�u)� for each �u ⊂ U ,
each predicate symbol P and each function symbol f .

We denote by T (Lκ,κ) the set of all terms in the language Lκ,κ. In the future,
we might be tempted to assume that the set of Lκ,κ-formulae has cardinality κ.
This occurs, e.g., if κ = κ<κ and only κ-many non-logical symbols appear in
Lκ,κ, as this implies that the set of Lκ,κ-formulae has cardinality κ<κ.

Under this assumption, we shall describe a procedure to replace a GV -model
by an equivalent one where quantified formulae are nicely witnessed. Although it
is tailored for our purposes, it can easily be adapted to different contexts. This
procedure and its kin will usually be used as Skolemnization supplements for
Gödel logics. Let F(Lκ,κ) = {Fι : ι < κ} be an enumeration of all Lκ,κ-formulae
and {yξ,i

ι : ξ, ι < κ, i < ω} be a set of distinguished variables whose complement
has size κ.

We say an occurrence of a formula Fι in F(Lκ,κ) is irregular if ι is of the
form γ + k with γ limit, 0 < k < ω, �x are free variables in Fι and Fγ = ∀�xFι or
Fγ = ∃�xFι. We say an occurrence of a formula is regular if it is not irregular.

Lemma 4. If κ is uncountable and the set of Lκ,κ-formulae has cardinality κ,
then there is an enumeration F(Lκ,κ) of Lκ,κ such that:

1. each formula appears unboundedly often;
2. each formula appears regularly at least once;
3. yξ,i

ι does not appear in {Fγ : γ < ι} for any ι, ξ, i;
4. whenever Fι = ∀ξ<δxξ F (xξ)ξ<δ or Fι = ∃ξ<δxξ F (xξ)ξ<δ appears regularly

for the first time in the sequence, then Fι+i = F (yξ,i
ι)ξ<δ for each 0 < i < ω.

Proof. Assign a formula to each limit ordinal < κ in such a way that conditions
1 and 3 are verified. Condition 2 is verified automatically, as a formula can only
be irregular at a successor stage. If Fι is a regular-for-the-first-time occurrence of
a formula whose outermost symbol is a chain of quantifiers, define Fι+i for i < ω
in such a way that condition 4 is witnessed to hold; otherwise, set Fι+i = Fι for
i < ω. ��

26 J.P. Aguilera

We say an enumeration F(Lκ,κ) = {Fι : ι < κ} is suitable if either κ = ℵ0 or
F(Lκ,κ) satisfies conditions 1–4 in the statement of Lemma 4.

Definition 5. We say a model (U, �·�) is F(Lκ,κ)-coherent if F(Lκ,κ) is suitable
and whenever a formula Fι = ∀ξ<δxξ F (xξ)ξ<δ or Fι = ∃ξ<δxξ F (xξ)ξ<δ appears
regularly for the first time in the sequence, then

�Fι� = lim
i<ω

�Fι+i� (3)

Proposition 6. Suppose the set of Lκ,κ-formulae has cardinality κ. Let F =
F(Lκ,κ) be a suitable enumeration and U = (U, �·�). Then, there exists an F-
coherent model W = (U, �·�) equivalent to U.

Proof. This is clear if κ = ℵ0. Suppose ℵ1 ≤ κ and partition the set of variables
in the language into Y = {yξ,i

ι : ξ, ι < κ, i < ω} and its complement, Y ′ and fix
a bijection g from Y ′ onto the set of all variables. We define the valuation �·�
to be equal to �·� except for the values of variables. Set �v� = �g(v)� whenever
v ∈ Y ′. It remains to define �·� at Y . Let u0 be an arbitrary, fixed element of U
such that �v� = u0 for some variable v.

Suppose A is a formula with a chain (or a block of chains) of quantifiers as
outermost symbol, e.g., A = ∀�x F (�x). We have that �∀�xF (�x)� = inf{F (�t) : �t ⊂
U}. Let η = lh(�t). Fix an ω-sequence of η-sequences {�ti ⊂ U : i < ω} such that
limi<ω F (�ti) = �∀�xF (�x)�. Let Fι be the first regular occurrence of ∀�x F (�x) in F .
We define

�yξ,i
ι � =

{
(tξ)i if ξ < η

u0 otherwise.

By construction, clearly (3) holds whenever Fι has a chain (or a block of
chains) of quantifiers as outermost symbol and appears regularly for the first
time. Moreover, �B(�u)� and �B(�u)� coincide for every formula B and every
�u ⊂ U . ��

2.2 Ultraproducts

Let U be an ultrafilter on some set I and let {Uι : ι ∈ I} be a family of models
in the language Lκ,λ. We define the ultraproduct of {Uι : ι ∈ I} in the obvious
way, namely, by setting U =

∏
ι∈I Uι/ ≡, where

f ≡ g if, and only if, {ι : f(ι) = g(ι)} ∈ U.

For a function symbol F , we set

F [f] = [g] if, and only if, {ι : F (f(ι)) = g(ι)} ∈ U.

For a predicate symbol P , we define �P [f]� = r if, and only if,

for every ε > 0, {ι : |P (f(ι)) − r| < ε} ∈ U.

The ultraproduct is well-defined:

Compactness in Infinitary Gödel Logics 27

Lemma 7. Assume P is atomic. Then {ι : |P (f(ι)) − r| < ε} ∈ U for exactly
one r ∈ [0, 1], so that the ultraproduct is well-defined. Moreover, if U is (2ℵ0)+-
complete, then �P [f]� = r if, and only if, {ι : P (f(ι)) = r} ∈ U .

Proof. Suppose that for no r is it the case that {ι : |P (f(ι)) − r| < ε} ∈ U for
every ε. For each r, choose εr > 0 witnessing this. By (topological) compactness
of V , finitely-many intervals (r−εr, r+εr) cover V . However, by finite additivity
of the ultrafilter, not all of the sets

{ι : |P (f(ι)) − r| < εr}
can have measure zero—a contradiction. Similarly, let r0 and r1 be distinct and
ε < |r2 − r1|/2. Then Ai = {ι : |P (f(ι)) − ri| < ε} cannot have measure one for
both i = 0 and i = 1, as A0 ∩ A1 = ∅. A similar argument shows that if U is
(2ℵ0)+-complete, then

{ι : P (f(ι)) = r} ∈ U

for exactly one r ∈ V . ��
We now show that �Loś’s Theorem holds in most cases of interest:

Proposition 8. Assume U is a (κ + ℵ1)-complete ultrafilter on I. Let U =
(W, �·�) be the ultraproduct of {Uι : ι ∈ I} by U . Then, �Loś’s Theorem holds for
Lκ,λ, i.e., for any formula ϕ ∈ Lκ,λ,

�ϕ[f]ξ<δ� = r if, and only if, for every ε > 0, {ι : |�ϕ(f(ι))ξ<δ�−r| < ε} ∈ U. (4)

Moreover, if 2ℵ0 < κ, then

�ϕ[f]ξ<δ� = r if, and only if, {ι : �ϕ(f(ι))ξ<δ� = r} ∈ U. (5)

Proof. To spare the reader from an otherwise unreadable proof, we will some-
times identify formulae with their truth values and assume predicates are
monadic. The proof is by a straightforward induction as usual.

(
∧

) Let ϕ[f] =
∧

γ ϕγ [f]. Write r = �

∧
γ ϕγ [f]� = infγ�ϕγ [f]� and �ϕγ [f]� = rγ .

Let ε > 0. The induction hypothesis gives that for every γ,

Aγ := {ι : |ϕγ(f(ι)) − rγ | < ε/3} ∈ U.

By κ-completeness, A :=
⋂

γ Aγ ∈ U . Pick γ0 such that rγ0 − r < ε/3. Since

|ϕ(f(ι)) − r| ≤ |ϕ(f(ι)) − ϕγ0(f(ι))|
+ |ϕγ0(f(ι)) − rγ0 | + |rγ0 − r|,

it suffices to show that |ϕ(f(ι)) − ϕγ0(f(ι))| ≤ ε/3 in some measure-one set.
Suppose not, so that for every ι in some A′ ∈ U , there is some γ(ι) such
that ϕγ0(f(ι)) > ϕγ(ι)(f(ι)) + ε/3. Since U is κ-complete and the set of all

28 J.P. Aguilera

possible γ has cardinality < κ, then γ(ι) must take a constant value, say γ∗,
in a measure-one subset of A′. We apply the induction hypothesis to ϕγ0 to
obtain a refinement A′′ of A′ such that

A′′ := A′ ∩ {ι : |ϕγ0(f(ι)) − rγ0 | < ε/6} ∈ U, (6)

and once more to obtain a further refinement of A′′ that witnesses the analog
of (6) for γ∗. From this follows that ϕγ∗ [f] ≤ ϕγ0 [f] − ε/3. Hence, r =
infγ rγ ≤ rγ∗ ≤ rγ0 − ε/3; a contradiction.
Conversely, if ϕ[f] = r′ �= r, then by the argument above,

{ι : |ϕ(f(ι)) − r| < |r′ − r|/2} �∈ U.

(∀) Let r = �∀ξ<δxξ ϕ(xξ)ξ<δ� = �∀�xϕ(�x)� = inf 	f{�ϕ[�f]�}. Choose a sequence

of (sequences of) terms {�fi : i < ω} such that ϕ(�fi) converges to r and let
ri = �ϕ[�fi]�. From the induction hypothesis follows that for any i < ω, and
any ε > 0,

{ι : |ϕ(�fi(ι)) − ri| < ε} ∈ U.

In fact, ℵ1-completeness gives that for any ε > 0,

A := {ι : |ϕ(�fi(ι)) − ri| < ε for every i} ∈ U.

Hence, ∀�xϕ(�x) ≤ r in a measure-one set. We show that for every ε > 0,

{ι : r − ∀�xϕ�x(ι) ≤ ε} ∈ U.

Suppose towards a contradiction that for some 0 < ε∗ < 1/2, we have
∀�xϕ(�x) + ε∗ < r in a measure-one subset of A. Define �g ∈ (∏

ι∈I Uι

)δ by
setting

�g(ι) =

{
some sequence of terms �t such that �ϕ(�t)�ι + ε∗/2 < r if it exists
some arbitrary term otherwise.

We claim that �g(ι) is defined using the first clause in a measure-one set.
This follows from the fact that A′ := {ι : �∀�xϕ(�x)�ι + ε∗ < r} ∈ U . Indeed,
for each ι ∈ A′, there must exist some sequence of terms �tι such that 0 ≤
�ϕ(�tι)�ι − �∀�xϕ(�x)�ι < ε∗/2. But then �ϕ(�tι)�ι + ε∗/2 < r. Hence the claim
follows.
Let r′ < r be such that for all ε > 0, {ι : |ϕ(�g(ι)) − r′| < ε} ∈ U . We must
necessarily have r′ + ε∗/2 ≤ r. We apply the induction hypothesis to obtain,
say, ϕ[�g] + ε∗/3 < r, which contradicts r = inf 	f{ϕ[�f]}.
To obtain the converse implication, we use the one we just proved as in the
first case to show that if ∀�xϕ(�x) = r′ �= r, then

{ι : |∀�xϕ(�x(ι)) − r| < |r′ − r|/2} �∈ U.

Compactness in Infinitary Gödel Logics 29

(→) Let r = A[f] → B[f], s = A[f], and t = B[f]. First suppose s ≤ t so that
r = 1, and let 0 < ε < (t − s)/2. By induction hypothesis,

{ι : |A(f(ι)) − s| < ε and |B(f(ι)) − t| < ε} ∈ U, (7)

so that A(f(ι)) → B(f(ι)) = 1 on a measure-one set. Now suppose s > t, so
that r = t and 0 < ε < (t−s)/2. As above, the induction hypothesis gives (7)
and so A(f(ι)) → B(f(ι)) = t on a measure-one set. The converse is obtained
as before.

The remaining cases are similar. Finally, if 2ℵ0 < κ, then (5) holds for atomic
formulae by Lemma 7 and the same inductive argument goes through. ��
Corollary 9. �Loś’s Theorem holds for the language Lω,ω and the logic GV for
ultraproducts by countably complete ultrafilters.

Also, from the proof of Proposition 8 follows that:

Corollary 10. �Loś’s Theorem holds for the language Lω,ω and the logic GV

whenever V is finite.

3 Compactness Theorems

3.1 Weak Compactness

Theorem 11. Let κ be an uncountable cardinal.

1. If Lκ,κ satisfies the Weak Compactness Theorem for GV , then κ is weakly
compact;

2. If κ is weakly compact, then Lκ,κ satisfies the Weak Compactness Theorem
for GV .

Proof. 1. We only need the seemingly weaker assumption that Lκ,ω satisfies the
Weak Compactness Theorem. Assume Lκ,ω contains a unary predicate symbol
P and a set of constant symbols {cα : α < κ}. To see that κ is inaccessible, note
that if {κα : α < λ} were a sequence of length λ < κ cofinal in κ, then there
would be no κ-reduction for (Γ,⊥), where Γ is the set consisting of the sentences

–
∨

α<λ

∨
ι<κα

P(cι),
– ¬P(cι) for ι < κ.

Clearly S �|= ⊥ for any proper subset S of Γ—a model witnessing this is provided
by interpreting cι as ι and setting �P�(ι) = 1 for each ι ∈ {ξ < κ : ¬P(cξ) �∈ Γ}
and �P�(ι) = 0 for all other ι (if it is in Γ ,

∨
α<λ

∨
ι<κα

P(cι) is witnessed to be
true by any ι such that ¬P(cι) �∈ Γ); while Γ |= ⊥ vacuously. Hence, κ is regular.

If κ were not a strong limit, so that 2λ ≥ κ for some λ < κ, then there would
be no κ-reduction for (Γ,⊥) if Γ is the set consisting of the formulae

¬
∧

α<λ

¬1+f(α)P(cα), for f : λ → 2, (8)

30 J.P. Aguilera

where ¬n has the obvious meaning. Indeed, if S is a proper subset of Γ , then
let g : λ → 2 be such that the corresponding instance of (8) does not belong
to S. Interpret each cα as α and set �P�(α) to be 0 or 1 according as g(α) equals
0 or 1. Then �¬1+f(α)P(cα)� = 1 for each α < λ if, and only if, f = g, and
�¬1+f(α)P(cα)� = 0 for some α otherwise (negated formulae only take values 0
and 1 by (1)), so that (8) takes value 1 if, and only if, f �= g; in particular,
�S� = 1. However, Γ |= ⊥ vacuously as �Γ � = 1 is impossible, for the function g
on λ defined by g(α) = �¬¬P(cα)� must be distinct from each f : λ → 2. To see
this, notice that for any such f , we must have by (8) that �¬1+f(α)P(cα)� = 0
for some α, but

�¬1+�¬¬P(cα)�P(cα)� = 1

for each α < λ. To see this, notice that it follows by (2) we have:

�¬1+�¬¬P(cα)�P(cα)� =

{
�¬P (cα)� if �P(cα)� = 0,

�¬¬P (cα)� if �P(cα)� > 0.

The claim then follows by (1) and (2). Hence, κ is inaccessible.
It remains to show κ has the tree property. Let T be a tree of size κ such that

each level has cardinality < κ. Denote by l(α) the αth level of T . We consider
the set of sentences Γ consisting of

– ¬(P(cα) ∧ P(cβ)), for every α and β that are T -incomparable, and
–

∨
ξ∈l(α) P(cξ), for every α.

For any subset S of Γ of cardinality < κ, there is a model witnessing S �|=
⊥; namely, choose a large-enough downwards-closed fragment of T as universe,
assign α to the constant cα and have P take value 1 along a sufficiently-large
well-ordered set and 0 everywhere else. By the Weak Compactness Theorem,
there is also a model witnessing Γ �|= ⊥. For each T -incomparable α and β,

�¬(P(cα) ∧ P(cβ))� = 1

i.e.,
either �P(cα)� = 0 or �P(cβ)� = 0.

In particular, all points lying on the same level are incomparable, so that

�

∨

ξ∈l(α)

P(cξ)� = 1

implies that P must evaluate to 1 on one point in each level. The ordinals α
such that �P(cα)� = 1 determine a branch through T . Therefore, T has the tree
property.

2. Let Γ be a set of Lκ,κ-formulae of cardinality κ. Suppose κ is a weakly
compact cardinal and S �|= A for every S ⊂ Γ of cardinality < κ. We will assume
all symbols in Lκ,κ appear in Γ , so that there are only κ-many Lκ,κ-formulae,

Compactness in Infinitary Gödel Logics 31

and construct a model (U, �·�) such that �B� = 1 for each B ∈ Γ and �A� < 1.
The assumption that all symbols in Lκ,κ appear in Γ results in no loss of general-
ity, for any symbol not appearing in Γ can be evaluated arbitrarily by the model
while preserving the conclusion. Fix some T = T (Lκ,κ), and some suitable (in
the sense of Sect. 2.1) enumeration F = F(Lκ,κ).

Let T be the subtree of V <κ consisting of all t : γ → V such that γ < κ and
there exists an F-coherent model (W, �·�) fulfilling the following three conditions:

1. �Fι� = t(ι) for all ι < γ;
2. t(ι) = 1 if Fι ∈ Γ ;
3. t(ι) < 1 if Fι = A;

By hypothesis and Proposition 6, there is one such t for each subset of Γ
of cardinality < κ. Additionally, each level of T has size |V | and κ has the tree
property, whereby there exists a branch B through T . This branch assigns a
unique value in V to each formula in F . For each initial segment t of B, there
exists a model agreeing with t on all valuations.

Define a relation ≡ to hold between two terms r, s ∈ T whenever for each
atomic P (x), there exists ι < κ such that P (r) and P (s) appear before Fι in
F and are assigned the same value by the branch. We let the universe U of the
model to be equal to T / ≡. For each atomic formula Fι ∈ F , we set

�Fι� = r if, and only if, t(ι) = r for some t ∈ B. (9)

This is well-defined, by the definition of ≡. In order to finish the proof, it
remains to check that Eq. (9) holds true for arbitrary formulae. If so, then we
will have a model where �Γ � = 1 and �A� < 1. We will check that the following
properties hold:

1. �B → C� = �C� if �B� > �C�, and �B → C� = 1 otherwise.
2. �

∨
ι<δ Bι� = sup{�B�ι : ι < δ}.

3. �

∧
ι<δ Bι� = inf{�B�ι : ι < δ}.

4. �∀ι<δxι B(�x)� = inf{�B(�u)� : uι ∈ T for each ι < δ}.
5. �∃ι<δxι B(�x)� = sup{�B(�u)� : uι ∈ T for each ι < δ}.

Notice that B evaluates all validities to 1 and respects entailment: if t(ι) = 1
and Fι |= Fξ, then t(ξ) = 1. The following observation will be used repeatedly:
if t(ι) = 1 and Fι = B → C, then �B� ≤ �C�. This follows from the fact that
in every model where �B → C� = 1, we must have �B� ≤ �C�. This already
gives one half of property (1). Conversely, assume t(ι) < 1 and Fι = B → C.
Let ξ be large enough so that both B and C appear before Fξ. In any model
agreeing with B up to ξ, necessarily �B → C� < 1, whence �B → C� = �C� and
so �B → C� = �C�.

For property (2), notice that Bξ → ∨
ι<δ Bι is valid and thus �

∨
ι<δ Bι� ≥

sup{�B�ι : ι < δ}. Conversely, let ι∗ be an ordinal such that all Bι appear before
Fι∗ . Since any model must evaluate

∨
ι Bι to the infimum of the values of the Bι

and there exists a model agreeing with B up to ι∗, it follows that �

∨
ι<δ Bι� =

sup{�B�ι : ι < δ}. Property (3) is proved analogously.

32 J.P. Aguilera

We show (4): clearly �∀ι<δxι B(�x)� ≤ �B(�u)� for any sequence of terms �u
in T , as ∀ι<δxι B(�x) → B(�u) is valid. To see that equality holds, it suffices to
notice that, if Fι is the first regular occurrence of ∀ι<δxι B(�x), since there exists
an F-coherent model agreeing with B up to level ι+ω, then �Fι� = limi<ω �Fι+i�.

As for property (5), we clearly have �∃ι<δxι B(�x)� ≥ �B(�u)� for any sequence
of terms �u. Suppose �D� ≥ �B(�u)� for any sequence of terms �u and some
formula D. Then we have �B(�u) → D� = 1 by property (1). This implies
�∀�x(B(�x) → D)� = 1 by property (4), whereby also �∃�xB(�x) → D� = 1, for

∀�x(B(�x) → D) |= ∃�xB(�x) → D.

This yields �∃�xB(�x)� ≤ �D� as desired and finishes the proof. ��

3.2 Strong Compactness

Theorem 12. Let κ be a cardinal.

1. If Lκ,κ satisfies the Compactness Theorem for GV , then κ is strongly compact;
2. If κ is strongly compact, then Lκ,κ satisfies the Compactness Theorem for

GV .

Proof. 1. The classical proof goes through. As before, we only suppose for the
first claim that Lκ,ω satisfies the Compactness Theorem for GV . Let F be a
κ-complete filter on some set I. Assume Lκ,ω contains a unary predicate S for
every subset S of I and a constant c. Let Γ be the set of

– (extension) sentences S(c) for every S ∈ F ;
– all sentences true in the (classical) structure (I, {S}S⊂I), in particular:
– (monotonicity) S(c) → S′(c) for every S ⊂ S′ ⊂ I,
– (κ-completeness)

∧
ι<δ Sι(c) → S(c), for δ < κ and S =

⋃
ι<δ Sι,

– (maximality) S(c) ∨ ¬S(c) for every S ⊂ I.

For every subset Δ of Γ of cardinality < κ, there is a model witnessing Δ �|= ⊥.
In fact, there is a model that takes only values 0 and 1 obtained by taking I
as universe and interpreting S as S for each predicate S appearing in Δ and c
as some element belonging to

⋂
S∈Δ S, which exists by κ-completeness. By the

Compactness Theorem, there is a model (U, �·�, {S∗}S⊂I , c) witnessing Γ �|= ⊥.
Define

S ∈ F ∗ if, and only if, �S(c)� = 1.

Clearly, F ∗ extends F , as S(c) ∈ Γ for every S ∈ F , whence �S(c)� = 1. Also,
F ∗ is a κ-complete filter: suppose S ∈ F ∗, so that �S(c)� = 1, and S′ ⊃ S. Since
S(c) → S′(c) ∈ Γ , then �S(c) → S′(c)� = 1, which implies �S(c)� = �S′(c)� = 1.

Suppose Sι ∈ F ∗ for every ι < δ and δ < κ. It follows that �Sι(c)� = 1 for
each ι < δ. Letting S =

⋂
ι<δ Sι, we have that

∧
ι<δ Sι(c) → S(c) ∈ Γ , whence

�S(c)� = 1. Hence, F ∗ is a κ-complete filter. In fact, F ∗ is an ultrafilter, for
S(c) ∨ ¬S(c) ∈ Γ , so that if S �∈ F ∗, then �S(c)� < 1, and so the fact that
�S(c) ∨ ¬S(c)� = 1 implies that �¬S(c)� = 1.

Compactness in Infinitary Gödel Logics 33

2. Conversely, suppose that κ is a strongly compact cardinal and that for
any S ⊂ Γ of cardinality Γ , we have S �|= A, as witnessed by a model US =
(US , �·�S). Consider the ultraproduct U = (U, �·�) by a fine measure on PκΓ . By
Proposition 8 and the fact that κ > (2ℵ0)+ (κ is inaccessible), the ultraproduct
satisfies (5), i.e., for any formula ϕ(xξ)ξ<δ,

�ϕ[f]ξ<δ� = r if, and only if, {S ∈ PκΓ : �ϕ(f(S))ξ<δ� = r} has measure one.

Fineness of the measure implies that {ϕ} ↑= {S ∈ PκΓ : {ϕ} ⊂ S} has measure
one for any ϕ ∈ Γ . Moreover, �ϕ�S = 1 for any S ∈ {ϕ} ↑, and so �ϕ� = 1.
Similarly, �A� < 1, because �A�S < 1 for all S ∈ PκΓ . ��

4 An Alternative Proof

(The proofs of) Theorems 11 and 12 are evidence that, sufficiently high up Can-
tor’s realm, the influence of logics’ size on their behavior becomes progressively
more prevalent, and, that of other traits, progressively less. An example of this
is the fact that, for Gödel logics, the truth-value set V seems to play no role
whatsoever, in clear contrast to usual finitary first-order logics.

This should not be surprising. Indeed, large cardinalities allow us to diffuse
otherwise-characteristic properties of logics by means of codings. Herein, a key
ingredient is the regularity of the models Proposition 6 yields. This provides
us with alternative proofs of 11.2 and 12.2. These proofs are somewhat more
extensive than the ones provided originally, although they do have the clear
advantage that with little or no effort, they can be adapted into other contexts.
For definiteness, we focus on weak compactness in the following.

Another proof of 11.2 Suppose κ is a weakly compact cardinal and S �|= A
for every S ⊂ Γ of cardinality < κ. As before, without loss of generality, we
assume all symbols in Lκ,κ appear in Γ . Define a first-order infinitary language
L′

κ,κ consisting of

– the same set of variables Var as Lκ,κ,
– the same set of function and constant symbols as Lκ,κ,
– a predicate PC

r (�x) for every r ∈ V whenever C(�x) is a Lκ,κ-formula,
– predicates SC,B(�x, �y) and WC,B(�x, �y) whenever C(�x) and B(�y) are Lκ,κ-

formulae.

Only κ-many non-logical symbols appear in Lκ,κ; thus, the set of Lκ,κ-
formulae has cardinality κ. Consequently, only κ-many non-logical symbols
appear in L′

κ,κ. We will interpret the infinitary GV -logic over Lκ,κ in classical
logic. The intended interpretation of PC

r (�x) is ‘C(�x) has truth value r.’ Simi-
larly, the intended interpretations of SC,B(�x, �y) and WC,B(�x, �y) are, respectively,
‘C(�x) has a (strictly) smaller truth value than B(�y).’ Let F(Lκ,κ) = {Fι : ι < κ}
be a suitable enumeration of all Lκ,κ-formulae with distinguished set of variables
{yξ,i

ι : ξ, ι < κ, i < ω}. If C = ∀ξ<δxξF (xξ)ξ<δ or C = ∃ξ<δxξF (xξ)ξ<δ and Fι

34 J.P. Aguilera

is the first regular appearance of C in F , we denote by Var(F, (xξ)ξ<δ) the set
{yξ,i

ι : ξ < δ, i < ω}.
We use the fact that if κ is weakly compact, then Lκ,κ satisfies the Weak

Compactness Theorem for classical logic, as recalled in Sect. 1. Let Σ consist of
all sentences of one of the following forms:

1.
∨

r∈V PC
r (�x), for each C(�x) ∈ Lκ,κ;

2. PC
r (�x) → ¬PC

s (�x), for each C(�x) ∈ Lκ,κ and each r �= s in V ;
3. SC,B(�x, �y) ↔ ∨

r∈V

∨
s∈V ∩(r,1]

(
PC

r (�x) ∧ PB
s (�y)

)
, for each C(�x), B(�y) ∈

Lκ,κ;
4. WC,B(�x, �y) ↔ ∨

r∈V

∨
s∈V ∩[r,1]

(
PC

r (�x) ∧ PB
s (�y)

)
, for each C(�x), B(�y) ∈

Lκ,κ;
5. W

∧
ι<δ Cι,Cξ((�xι)ι<δ, �xξ) for each ξ < δ < κ and each C(�x) ∈ Lκ,κ;

6. P
∧

ι<δ Cι

r (�yι)ι<δ ↔ ∧
ε>0

∨
ξ<δ

∨
t∈V ∩[r,r+ε] P

Cξ

t (�yξ), for each sequence of for-
mulae Cι(�yι) ∈ Lκ,κ;

7. WCξ,
∨

ι<δ Cι(�xξ, (�xι)ι<δ) for each ξ < δ < κ and each C(�x) ∈ Lκ,κ;
8. P

∨
ι<δ Cι

r (�yι)ι<δ ↔ ∧
ε>0

∨
ξ<δ

∨
t∈V ∩[r−ε,r] P

Cξ

t (�yξ), for each sequence of for-
mulae Cι(�yι) ∈ Lκ,κ;

9. W ∀	xC,C(�y) for each C(�y) ∈ Lκ,κ;
10. P

∀	xC(x)
r (�y) ↔ ∧

ε>0

∨
	z∈Var(C,	x)

∨
t∈V ∩[r,r+ε] P

C
t (�z, �y), for each C(�z, �y) ∈

Lκ,κ;
11. WC,∃	xC(�y) for each C(�y) ∈ Lκ,κ;
12. P

∃	xC(x)
r (�y) ↔ ∧

ε>0

∨
	z∈Var(C,	x)

∨
t∈V ∩[r−ε,r] P

C
t (�z, �y), for each C(�z, �y) ∈

Lκ,κ;
13. WC,B(�x, �y) → PC→B

1 (�x, �y), for every C(�x), B(�y) ∈ Lκ,κ;
14.

(
SB,C(�x, �y) ∧ PB

r (�x)
) → PC→B

r (�x, �y), for every C(�x), B(�y) ∈ Lκ,κ;
15.

∧
r∈V ∩[0,1) PA

r ;
16. PB

1 (�x), for every B(�x) ∈ Γ .

The first two conditions above state that each formula has exactly one truth
value. Conditions 3 and 4 define the predicates SC,B(�x, �y) and WC,B(�x, �y).
Conditions 5–14 define how truth values should behave in nonatomic formu-
lae. Specifically, conditions 5–8 define conjunctions and disjunctions, conditions
9–12 define quantifiers, and conditions 13 and 14 define implication.

The restriction of the domain of the conjunction in conditions 10 and 12 is
necessary in order to avoid a conjunction of length κ. The last two conditions
state that any formula in Γ must have truth value 1 and A must not.

Let Δ be a subset of Σ of cardinality < κ and

Δ0 = {B ∈ Lκ,κ : PB
1 ∈ Δ}.

By hypothesis, there is a GV -model witnessing Δ0 �|= A. The key point is that,
by Proposition 6, we can find an F-coherent model W = (U, �·�) witnessing
Δ0 �|= A. We define a (classical) model U for Δ with the same universe:

– For any function symbol f , we set

U |= f(�x) = y if, and only if, �f�(�x) = y. (10)

Compactness in Infinitary Gödel Logics 35

– For any atomic formula C, we set

U |= PC
r (�a) if, and only if, �C(�a)� = r. (11)

Any F ∈ Δ of the form 1–16 is satisfied: one verifies by induction that (11)
holds for arbitrary formulae C(�a). For example, if F is of the form 10 or 12, then
U |= F because W is F-coherent.

Hence, any subset of Σ of cardinality < κ has a classical model, whereby the
Weak Compactness Theorem for classical logic yields a model of Σ, say, U. Let
U be the universe of this model. We define a GV -model with universe U via (10)
and (11).

The classical model U satisfies sentences 1–16. Since it satisfies 1 and 2, each
formula is assigned exactly one truth value in the GV -model. One verifies—once
more by induction—that (11) holds for arbitrary formulae C(�a). For example,
suppose C = ∀xF (x). Let r = �∀xF (x)� and ru = �F (u)�, so that r = infu∈T ru.
By induction hypothesis, U |= P

F (u)
ru for each u. By Eqs. 1, 2, 4, and 9, U |=

P
∀xF (x)
s for some s ≤ r. But necessarily s = r, for {ru : u ∈ Var(C, �x)} converges

to r by 10. The other cases are treated similarly. Finally, the model witnesses
Γ �|= A by 15 and 16. ��

References

1. Baaz, M., Preining, N., Zach, R.: First-order Gödel logics. Ann. Pure Appl. Logic
147, 23–47 (2008)

2. Yaacov, I.B., Berenstein, A., Henson, C.W., Usvyatsov, A.: Model theory for metric
structures. In: Lecture Notes Series of the London Mathematical Society, vol. 350,
pp. 315–427 (2008)

3. Hanf, W.P.: On a problem of Erdös and Tarski. Fundamenta Mathematicae 53,
325–334 (1964)

4. Jech, T.: Set Theory. Springer, New York (2003)
5. Kanamori, A.: The Higher Infinite. Springer, New York (2009)
6. Keisler, H.J., Tarski, A.: From accessible to inaccessible cardinals. Fundamenta

Mathematicae 53, 225–308 (1964)
7. Scott, D., Tarski, A.: The sentential calculus with infinitely long expressions. Col-

loquium Mathematicum 16, 166–170 (1958)
8. Tarski, A.: Remarks on predicate logic with infinitely long expressions. Colloquium

Mathematicum 16, 171–176 (1958)

Cut Elimination for Gödel Logic
with an Operator Adding a Constant

Juan P. Aguilera(B) and Matthias Baaz

Vienna University of Technology, 1040 Vienna, Austria
aguilera@logic.at

Abstract. We consider an extension of propositional Gödel logic by an
unary operator that enables the addition of a positive real to truth values.
We provide a suitable calculus of relations and show completeness and
cut elimination.

Keywords: Gödel logic · Cut elimination · Calculus of relations

1 Introduction

Propositional Gödel logic is an extension of intuitionistic logic that takes truth
values in the set [0, 1]. We consider an extension of Gödel logic by a unary
operator ◦ that adds a positive constant to truth values. This logic can be con-
sidered as a logic extending Gödel logic by properties of �Lukasiewicz logic that
themselves imply the non-recursive-enumerability of the first-order analog. The
propositional fragment of this extension can be axiomatized by adding to an
axiomatization of Gödel logic the following two simple formulae [2]:

1. A ≺ ◦A, and
2. ◦(A → B) ↔ (◦A → ◦B).

We construct an analytic sequents-of-relations calculus based on the relations
< and ≤, where ≤ corresponds to implication (A → B) and < corresponds to the
connective ≺, where A ≺ B is defined as (B → A) → B. In Sect. 4, we prove cut
elimination of the calculus using a Gentzen-style argument based on inductive
decomposition of formulae. This calculus is surprisingly more closely related to
usual sequent calculi than to the only known analytic calculus for �Lukasiewicz
propositional logic (see [3,4]). Although it is very simple, its cut elimination is
not that straightforward due to the asymmetry of the new operator ◦. Indeed,
we make use of two technical tools that are not otherwise required: the first one
is Avron’s communication rule; the second one is the following artificial-looking
cut:

A < A

1 < A

This rule is eliminated together with the other cuts.

Partially supported by FWF grants P-26976-N25, I-1897-N25, I-2671-N35, and
W1255-N23.

c© Springer-Verlag Berlin Heidelberg 2016
J. Väänänen et al. (Eds.): WoLLIC 2016, LNCS 9803, pp. 36–51, 2016.
DOI: 10.1007/978-3-662-52921-8 3

Cut Elimination for Gödel Logic with an Operator Adding a Constant 37

2 Preliminaries

Definition 1. We consider the language L of propositional logic, augmented
with a unary operator ◦. A propositional Gödel ◦-valuation I is a function from
the set of propositional variables into [0, 1] with I(⊥) = 0 and I(�) = 1, together
with a real number c ∈ (0, 1]. This valuation can be extended to a function
mapping formulas from L into [0, 1] as follows:

I(A ∧ B) = min{I(A),I(B)},

I(A ∨ B) = max{I(A),I(B)},

I(A → B) =

{
I(B) if I(A) > I(B),
1 if I(A) ≤ I(B),

I(◦A) = min{I(A) + c, 1}.

We define ¬A by A → ⊥ and A ≺ B by (B → A) → B. Thus, we get

I(¬A) =

{
0 if I(A) > 0,

1 otherwise,

I(A ≺ B) =

{
1 if I(A) < I(B),
I(B) if I(A) ≥ I(B).

Note, in particular, that I(A ≺ B) = 1 if I(A) = I(B) = 1. A formula is
called valid if it is mapped to 1 for all valuations. The set of all formulas which
are valid is called the ◦-propositional Gödel logic and will be denoted by G◦.

Proposition 2. A Hilbert-type axiom system for G◦ is given by the following
axioms and rules:

I1 ⊥ → A I8 (A → B) → [(C → A) → (C → B)]
I2 A → (B → A) I9 [A → (C → B)] → [C → (A → B)]
I3 (A ∧ B) → A I10 (A → C) ∧ (B → C) → ((A ∨ B) → C)
I4 (A ∧ B) → B I11 (C → A) ∧ (C → B) → (C → (A ∧ B))
I5 A → (B → (A ∧ B)) I12 (A → (B → C)) → (A ∧ B → C)
I6 A → (A ∨ B) I13 [A → (A → B)] → (A → B)
I7 B → (A ∨ B) I14 A ≺ �

R1 A ≺ ◦A R2 ◦ (A → B) ↔ (◦A → ◦B)

G1 (A → B) ∨ (B → A) MP
A A → B

B

Proof (Soundness). The axioms (I1)–(I14), as well as G1 and MP, are well known
to be sound for any extension of Gödel Logic. If I(◦A) = 1, then A ≺ ◦A holds. If
I(◦A) < 1, then I(A) < I(◦A), whence A ≺ ◦A holds as well. Hence, R1 is valid.

38 J.P. Aguilera and M. Baaz

To show validity of R2, we distinguish two cases: (i) if I(A) ≤ I(B), then
I(◦A) ≤ I(◦B), whereby 1 = I(◦(A → B)) = I(◦B). Hence, R2 holds. (ii) If
I(A) > I(B), then I(A → B) = I(B), and so I(◦(A → B)) = I(◦B). Thus,
◦(A → B) → (◦A → ◦B). Now, either I(◦A) ≤ I(◦B) holds, whence 1 =
I(◦B) = I(◦A) follows, or I(◦A) > I(◦B) holds, whence I(◦A → ◦B) = I(◦B).
In any case, R2 holds.

(Completeness). In [2, Theorem 3, (c)], it was shown that the axiom system
obtained by replacing R1 by the two axioms

1. (⊥ ≺ ◦⊥) → (A ≺ ◦A),
2. (⊥ ↔ ◦⊥) → (A ↔ ◦A),

is complete for G◦+, a variation of G◦ where c could be taken to be zero. (⊥ ≺
◦⊥) is an instance of R1 and therefore R1 and R2 are sufficient to derive 1 and
2 above if c is not zero. �
We remark that the deduction theorem holds for the axiom system given by
Proposition 2 because it holds for its restriction without the operator ◦.

3 The Calculi RG−
◦ and RG◦

We will define a sequents-of-relations calculus RG◦, as well as a fragment thereof,
called RG−

◦ . As we show, the calculus RG−
◦ is already sound and complete

(Proposition 4). Moreover, RG◦ admits cut elimination. This is proved in Sect. 4.
Herein a sequent is a finite set of components of the form A < B or A ≤ B

for formulae A, B. We denote sequents by expressions of the form

A1 �1 B1| . . . |An �n Bn,

where the sign �i is either < or ≤ and plays a role similar to the sequent arrow
in traditional sequent calculi. By ‘component,’ we always mean ‘an occurrence
of the component,’ e.g., the sequent A < B|A < B has two components.

We say a component A < B is satisfied by an interpretation I if I(A ≺ B) = 1
and a component A ≤ B is satisfied by an interpretation I if I(A → B) = 1. A
sequent Σ is satisfied by I if I satisfies at least one of its components. Thus, the
separation sign “|” is interpreted as disjunction at the meta-level. A sequent Σ
is valid if it is satisfied by all interpretations.

The axioms of RG−
◦ are:

A1. A ≤ A A2. 0 ≤ A A3. A < 1.

The external structural rules are1:

H|A < B|A < B

H|A < B
c1

H|A ≤ B|A ≤ B

H|A ≤ B
c2

1 c stands for ‘contraction’; w stands for ‘weakening’; com stands for ‘communication.’

Cut Elimination for Gödel Logic with an Operator Adding a Constant 39

H
H|A < B

w1
H|A �1 B H|C �3 D

H|A �3 D|C �4 B
com

where either �1 = �2 =≤ and {�3,�4} = {<,≤}, or < ∈ {�1,�2} and
�3 = �4 =<. The internal structural rules are

H|A < B

H|A ≤ B
w2

H|A ≤ B

H|A < C|C ≤ B
w3

H|A ≤ B

H|A ≤ C|C < B
w4

H|A < B

H|A < C|C < B
w5

H|A < B H|B < C

H|A < C
cut1

H|A < B H|B ≤ C

H|A < C
cut2

H|A ≤ B H|B < C

H|A < C
cut3

H|A ≤ B H|B ≤ C

H|A ≤ C
cut4

We proceed to logical inferences. The rules for conjunction and disjunction
are obtained by replacing � by < or ≤ in the following rules:

H|C � A H|C � B

H|C � (A ∧ B)
∧�
1

H|A � C|B � C

H|(A ∧ B) � C
∧�
2

H|C � A|C � B

H|C � (A ∨ B)
∨�
1

H|A � C H|B � C

H|(A ∨ B) � C
∨�
2

The rules for implication are:

H|A ≤ B | C < B

H|C < (A → B)
→1

H|1 < C|B < A H|B < C

H|(A → B) < C
→2

H|A ≤ B | C ≤ B

H|C ≤ (A → B)
→3

H|1 ≤ C | B < A H|B ≤ C

H|(A → B) ≤ C
→4

Finally, the rules for the operator ◦ are as follows:

H|A ≤ B

H|A < ◦B
◦1 H|A ≤ B

H| ◦ A ≤ ◦B ◦2

The rule w1 is an internal weakening. By external weakening we mean one
of w2–w5. The critical components of an inference are those displayed above,
i.e., all components not in H. We say a component is introduced by an inference
if it appears in its conclusion but is not among its premises. The concept of a
formula being introduced by an inference is defined analogously. An end-segment
of a proof π is a downwards-closed subset of π taken as a tree.

Lemma 3

1. Modus ponens, i.e., the sequent A ≤ B|A → B ≤ B, is derivable in RG−
◦ .

2. RG−
◦ derives 1 ≤ A → B if, and only if, it derives A ≤ B.

3. RG−
◦ derives 1 < A ≺ B if, and only if, it derives A < B.

40 J.P. Aguilera and M. Baaz

4. RG−
◦ derives 1 ≤ A ∨ B if, and only if, it derives 1 ≤ A|1 ≤ B. RG−

◦ derives
1 < A ∨ B if, and only if, it derives 1 < A|1 < B.

Proof. 1. Modus ponens is derived as follows:

A ≤ A

A ≤ B|B < A
w3

A ≤ B|1 ≤ B|B < A
w1 + w2

A ≤ B|A → B ≤ B
→4

2. From A ≤ B, we derive 1 ≤ A → B by w1 and →3. Assume 1 ≤ A → B
is derivable. The following computation, starting from modus ponens, shows
A ≤ B is derivable:

A < 1
A ≤ 1

w2
1 ≤ A → B A → B ≤ B|A ≤ B

1 ≤ B|A ≤ B
cut4

A ≤ B
cut4

3. Proceed as follows, where (*) as is obtained from 1 ≤ (B → A) → B as in 2:

A < 1
(∗)B → A ≤ B

B ≤ B

B ≤ A|A < B
w4

1 ≤ A|B ≤ A|A < B
w1 + w2

1 ≤ B → A|A < B
→3

1 ≤ B|A < B
cut4

A < B|A < B
cut2

A < B
c2

4. We deal only with ≤. The other case is analogous. One implication is
obtained immediately by applying ∨�

1 . For the converse:

1 ≤ A ∨ B

A ≤ A

B ≤ B

B ≤ A|A ≤ B
w3 + w2

A ∨ B ≤ A|A ≤ B
∨2

B ≤ B

A ∨ B ≤ A|A ∨ B ≤ B
∨2

1 ≤ A|A ∨ B ≤ B
cut4 1 ≤ A ∨ B

1 ≤ A|1 ≤ B
cut4

�
Proposition 4. The calculus RG−

◦ is sound and complete for the intended inter-
pretation.

Proof (Soundness). The proof relies on a sequents-of-relations calculus for Gödel
Logic formulated in [1]. Therein < is interpreted in such a way that A < B is
satisfied if and only if I(A) < I(B). All axioms and rules coincide under both

Cut Elimination for Gödel Logic with an Operator Adding a Constant 41

interpretations of < except for rule (→2) and axiom A3. Axiom A3 is clearly
sound. To verify that rule (→2) is valid, note that A → B < C is equivalent to
(A ≤ B ∧ 1 < C) ∨ (B < A ∧ B < C). By distributing, we see that it is also
equivalent to the formula

(A ≤ B ∨ B < A) ∧ (A ≤ B ∨ B < C) ∧ (1 < C ∨ B < A) ∧ (1 < C ∨ B < C).

The first conjunct is a tautology. As 1 < C implies B < C, the fourth conjunct
reduces to B < C, which subsumes the second one. This gives the validity of the
rule. Finally, axioms ◦1 and ◦2 are clearly sound.

(Completeness). It suffices to note that any cut-free proof in the complete cal-
culus in [1] can be simulated by the axioms and rules of RG−

◦ using axioms and
weakening rules to obtain the axioms of the former. Any proof of 1 ≤ A, where
A is a formula already valid in Gödel Logic can be simulated in RG−

◦ . The only
rule in [1] which is different to the corresponding rule in RG−

◦ has premises which
are weakenings of the premises of the original rule. Thus, it suffices to verify that
the axioms involving ◦ are derivable in RG−

◦ . Axiom (R1) can be derived directly
by rule ◦1. Axiom (R2) can be derived from modus ponens by the following two
inferences:

A ≤ A

A ≤ B|B ≤ A
w3 + w2

A ≤ B|1 ≤ B|B < A
w1 + w2

1 ≤ A → B|B < A
→3

1 ≤ ◦(A → B)|B < A
◦1

1 ≤ ◦(A → B)| ◦ B < ◦A
◦2

B ≤ B

B ≤ A|A ≤ B
w3 + w2

B ≤ A → B
→3

1 ≤ A → B|B ≤ A → B
w1 + w2

1 ≤ ◦(A → B)|B ≤ A → B
◦1

1 ≤ ◦(A → B)| ◦ B ≤ ◦(A → B)
◦2

◦A → ◦B ≤ ◦(A → B)|1 ≤ ◦(A → B)
→4

1 ≤ (◦A → ◦B) → ◦(A → B)
→3

A ≤ B|A → B ≤ B

A ≤ B| ◦ (A → B) ≤ ◦B ◦2
◦A ≤ ◦B| ◦ (A → B) ≤ ◦B ◦2
◦(A → B) ≤ (◦A → ◦B)

→3

◦(A → B) ≤ (◦A → ◦B)|1 ≤ ◦A → ◦B
w1 + w2

1 ≤ ◦(A → B) → (◦A → ◦B)
→3

Since we can derive 1 ≤ A for all instances of any axiom, as well as modus
ponens, we can use rule cut4 to obtain 1 ≤ A for any formula derivable in the
Hilbert-style calculus given by Proposition 2. �
Corollary 5. All true sequents are derivable in RG−

◦ .

Proof. Assume A1 � B1|...|An � Bn is a true sequent, where each occurrence of
� is either < or ≤. By Proposition 4, the sequent 1 ≤ ∨

i Ai � Bi is derivable,
where each occurrence of � is either → or ≺, as appropriate. By Lemma 3.4,

42 J.P. Aguilera and M. Baaz

the sequent 1 � A1 � B1|...|1 � An � Bn is derivable. Finally, by Lemmas 3.2
and 3.3, A1 � B1|...|An � Bn is derivable, as desired. �
Proposition 6. Compound axioms are derivable in RG−

◦ from atomic axioms.

Proof. We consider only the axiom F ≤ F for simplicity. The others are similar.
Proceed by induction:

1. F = A ∧ B:
A ≤ A

A ∧ B ≤ A
∧1

B ≤ B

A ∧ B ≤ B
∧1

A ∧ B ≤ A ∧ B
∧2

2. F = A ∨ B:
A ≤ A

B ≤ A ∨ B
∨1

B ≤ B

A ≤ A ∨ B
∨1

A ∨ B ≤ A ∨ B
∨2

3. F = A → B:

A ≤ A

A ≤ B|B < A
w4

1 ≤ B|A ≤ B|B < A
w1 + w2

1 ≤ A → B|B < A
→4

B ≤ B

A ≤ B|B ≤ B
w1 + w2

B ≤ A → B
→3

A → B ≤ A → B
→4

4. F = ◦A:
A ≤ A

◦A ≤ ◦A◦2 �

3.1 An Extension

We consider an auxiliary extension of RG−
◦ by the following self-cut rule:

H|A < A

H|1 < A
m

It is easy to see that this rule is valid.

Definition 7. The calculus RG◦ is the extension of RG−
◦ resulting by the addi-

tion of the self-cut rule.

In the following section, we show that RG◦ admits cut elimination. By a cut,
we mean either any instance of cut1–cut4, or an instance of m. This addition
corresponds operationally to the extension of LK or LJ by the mix rule.

Cut Elimination for Gödel Logic with an Operator Adding a Constant 43

4 Cut Elimination

The following is the main theorem:

Theorem 8. RG◦ admits cut elimination; hence, so too does RG−
◦ .

To prove Theorem 8, we need a few auxiliary lemmata. We state and prove
them now. As the reader will notice, we will sometimes omit cases and/or labeling
of rules if we deem it harmless.

Lemma 9. If there exists a cut-free proof of a sequent H, then there exists a cut-
free proof of H where all instances of w3–w5 are such that the formula introduced
in the critical components is either atomic or of the form ◦C.

Proof. This can be checked by induction on the size of the introduced formula.
We consider the inference w5. The others are taken care of analogously. For
example, a weakening introducing A ∧ B, can be replaced as follows:

C < D
C < A|A < D

w5
C < D

C < B|B < D
w5

C < A ∧ B|A < D|B < D

C < A ∧ B|A ∧ B < D|B < D

C < A ∧ B|A ∧ B < D|A ∧ B < D

C < A ∧ B|A ∧ B < D

If the introduced formula is of the form A → B, then consider the following
derivation:

A ≤ A

A ≤ B|B < A
w5

A ≤ B|B < A|1 ≤ D
C < D

C < B|B < D
w5

C < B|A ≤ B|A → B < D

C < A → B|A → B < D|B < D

The other cases are treated similarly. �
Lemma 10. For any proof π ending with an instance of m cutting an atomic A
and otherwise cut-free, there exists a proof agreeing with π up to that inference,
with no instances of m, and such that all cuts have A as cut formula.

Proof. We proceed by going upwards through π up to the point where A < A
was introduced and modifying π as follows:

1. If the inference is some weakening, say w3, of the form

H|A ≤ B

H|A < A|A ≤ B
w3

then modify π by omitting this inference. At the end of the proof, add an
instance of w1 as follows:

H
H|1 < A

w1

44 J.P. Aguilera and M. Baaz

2. If the inference is an instance of com, say

H|A < B H|C < A

H|A < A|C < B
com

Replace this inference with appropriate instances of cut1 and w1.
3. If the inference is a contraction, apply these three steps to each of the two

occurrences of A < A.

The resulting proof is as required.
�

Lemma 11. If π is an otherwise-cut-free proof of H whose last inference is an
atomic instance of one of cut1–cut4, then there is a cut-free proof of H.

Proof. Suppose for definiteness that the last inference is an atomic instance of
cut4. Consider the end-segment of the proof of the form

G|C < A

...ρ
H|C < A H|A < D

H|C < D

where G|C < A is the sequent that introduces the indicated instance of C < A.
We proceed by cases according to how C < A was inferred. Repeatedly apply
any of the following steps until the proof is as desired:

1. If the inference is an instance of w5 of the form

G′|C < B

G′|C < A|A < B
w5

we apply an instance of communication as follows:

G′|C < B H|A < D

G′|H|C < D|A < B
com

but then the lower hypersequent is simply G|H|C < D. Repeat the proof ρ
below this hypersequent to obtain H|C < D.

2. If the inference is an instance of w1, instead, weaken to introduce the sequent
C < D and apply ρ to arrive at H|C < D.

3. If the inference is an instance of com, say,

G′|B < A G′|C < E

G′|C < A|B < E
com

we apply the cut rule before this instance of communication as follows:

G′|B < A H|A < D

G′|H|B < D
cut1 G′|C < E

G′|H|C < D|B < E
com

Cut Elimination for Gödel Logic with an Operator Adding a Constant 45

4. If the inference is a contraction, then apply the four steps at the inference
where each of the two instances of C < A is introduced.

5. A remaining possibility is that the cut formula A is the constant 1 introduced
via an axiom in the left-hand side. In this case, the component 1 < D on the
right-hand side can only be introduced either via an external weakening, in
which case we proceed as in case 1, or via an internal weakening, in which
case we replace the inference by an instance of com. �

Lemma 12. Suppose π is a cut-free proof of H|◦A ≤ B. Then there is a cut-free
proof of H|A < B.

Proof. We proceed according as how the sequent ◦A ≤ B is inferred. There are
three cases. (i) If ◦A ≤ B is inferred by an instance of w1, then simply apply w1

to infer A < B. Else, either (ii) ◦A ≤ B is the critical sequent of an inference

H|A ≤ C

H| ◦ A ≤ ◦C ◦2 (1)

in which case we replace (1) by

H|A ≤ C

H|A < ◦C
◦1

or (iii) the sequent is obtained through a weakening:

H|C ≤ D

H|C < ◦A| ◦ A ≤ D

If so, we replace this inference as follows:

H|C ≤ D

H|C ≤ A|A < D

H|C < ◦A|A < D
◦1 �

Lemma 13. For any proof π ending with an instance of m cutting a formula ◦A
and otherwise cut-free, there exists a proof agreeing with π up to that inference,
with no instances of m, and such that all cuts have A as cut formula.

Proof. As before, let G|◦A < ◦A be the hypersequent where ◦A < ◦A is inferred.
If G| ◦ A < ◦A is the lower sequent of an inference ◦1, then apply Lemma 12 to
obtain a cut-free proof of G|A < A and infer G|1 < A by m. Apply Lemma 10
to obtain a proof agreeing with π up to this point and where all cuts have A as
cut formula and infer G|1 < ◦A using ◦1. Finally, adjoin to the resulting proof
the second half of π.

If G| ◦ A < ◦A is the lower sequent of an inference

G′|C < ◦A G′| ◦ A < D

G′| ◦ A < ◦A|C < D
com

46 J.P. Aguilera and M. Baaz

then replace this inference with an instance of cut1 and w1 to obtain G′|C <
D|1 < ◦A.

Finally, if G| ◦ A < ◦A is the lower sequent of an instance of an internal
weakening, say,

G′| ◦ A ≤ D

G′| ◦ A < ◦A| ◦ A ≤ D

then simply replace this weakening with an external weakening w1 with critical
formula 1 < ◦A. �
Lemma 14. If π is an otherwise cut-free proof of H whose last inference is an
instance of cut1–cut4 with cut formula ◦A, then there is a proof of H whose only
cuts have A as cut formula.

The proof of Lemma 14 may be found in the Appendix. With this, we can
proceed to:

Proof of Theorem 8. We proceed by going downwards through the proof. By
induction, assume we are given a proof whose only cut is the last inference I.
We proceed by a simultaneous induction on the complexity of the cut formula
and the type of cut. Specifically, we successively transform the proof to obtain
one of the following:

1. a proof whose only cuts have as cut formula a proper subformula of the initial
cut formula, provided I is an instance of one of cut1–cut4;

2. if I is an instance of m, then we obtain either a proof whose only cuts are
instances of cut1–cut4 with the same cut formula as I, or a proof whose only
cut is an instance of m and with a proper subformula of the initial cut formula
as cut formula.

If the cut formula is atomic (including the case where it is the constant 1),
proceed by applying Lemma 10 or Lemma 11, as appropriate. If it is of the
form ◦A, apply Lemma 13 or Lemma 14. We consider only one more case—
implication. For example, suppose there is an end-segment of the proof of the
form F|A < B|C < B

F|C < A → B

...ρ1
H|C < A → B

G|1 < D|B < A G|B < D

G|A → B < D

...ρ2
H|A → B < D

H|C < D
cut1

Cut Elimination for Gödel Logic with an Operator Adding a Constant 47

Replace the end-segment of the proof with

H|C < 1

H|A < B|C < B H|1 < D|B < A

H|B < B|C < B|1 < D
cut1

H|1 < B|C < B|1 < D
m

H|C < B|C < B|1 < D
cut1 H|C < 1

H|C < B|C < B|C < D
cut1

H|C < B|C < D
c1 H|B < D

H|C < D|C < D
cut1

H|C < D
c1

Suppose the last inference is an instance of m with cut formula A → B. Since
both the left-hand and right-hand sides of the component must be introduced, we
can assume by Lemma 9 that they are introduced by a logical inference. Hence,
the proof must have an end-segment with one of the following forms:

1. F|A ≤ B|1 < A → B F|A ≤ B|B < B

F|A ≤ B|A → B < B
→2

...ρ1
G|A ≤ B|A → B < B

G|A → B < A → B
→1

...ρ2
H|A → B < A → B

H|1 < A → B
m

2.

G|1 < A → B|B < A

F|A ≤ B|B < B

F|B < A → B
→1

...ρ1
G|B < A → B

G|A → B < A → B
→2

...ρ2
H|A → B < A → B

H|1 < A → B
m

In this case, replace the end-segment with the following:

F|A ≤ B|B < B

...ρ1, ρ2
H|A ≤ B|B < B

H|A ≤ B|1 < B
m

H|1 < A → B
→1 �

48 J.P. Aguilera and M. Baaz

As a consequence of the cut-elimination theorem, we obtain the following
result. Say a rule A/B is strongly sound if under every interpretation I, I(A) = 1
implies I(B) = 1.

Corollary 15. Every strongly sound rule can be eliminated.

Proof. As the deduction theorem holds for the Hilbert-style calculus, every
strongly sound rule can be eliminated by the addition of a valid formula and
cuts. The valid formula can be proved and the cuts eliminated. �

5 Conclusion

It is not clear whether the communication rule is actually essential for the proof.
It remains open whether it can be eliminated from the cut-free calculus. If this
were the case, then one could arrive at a Maehara-style proof of interpolation,
i.e., construct interpolants by induction on the depth of cut-free proofs (see [5]
for the classical and intuitionistic formulation of the lemma).

Appendix

Proof of Lemma 14. The end-segment of the proof will be of the form

G|C < ◦A

...ρ1
H|C < ◦A

F| ◦ A < D

...ρ2
H| ◦ A < D

H|C < D

where C < ◦A and ◦A < D are inferred, respectively, at the hypersequents
G|C < ◦A and F| ◦ A < D. We proceed according to which inferences were used
above G|C < ◦A and F| ◦ A < D.

1. If the inferences were respectively ◦1 or ◦2, so that the proof is

G|C ≤ A

G|C < ◦A

...ρ1
H|C < ◦A

F|A ≤ E

F| ◦ A ≤ ◦E
...ρ2

H| ◦ A < ◦E

H|C < ◦E
cut

then replace it with

G|C ≤ A F|A ≤ E

G|F|C ≤ E
cut

...ρ1, ρ2
H|C ≤ E

H|C < ◦E

Cut Elimination for Gödel Logic with an Operator Adding a Constant 49

2. If the inferences were both ◦2, so that the proof is

G|C ≤ A

G| ◦ C ≤ ◦A
...ρ1

H| ◦ C ≤ ◦A

F|A ≤ E

F| ◦ A ≤ ◦E
...ρ2

H| ◦ A ≤ ◦E
H| ◦ C ≤ ◦E cut

then replace it with

G|C ≤ A F|A ≤ E

G|F|C ≤ E
cut

...ρ1, ρ2
H|C ≤ E

H| ◦ C ≤ ◦E
3. If the inference on the left-hand side is ◦1 and the inference on the right-hand

side is an internal weakening, the proof will be of the form

G|B ≤ A

G|B < ◦A

...ρ1
H|B < ◦A

F|B ≤ C

F|B ≤ ◦A| ◦ A < C

...ρ2
H|B ≤ ◦A| ◦ A < C

H|B ≤ A|B < C
cut

Replace it with

G|B ≤ A

F|B ≤ C

F|B ≤ A|A < C

F|B < ◦A|A < C

F|G|B < ◦A|B < C
cut

...ρ1, ρ2
H|B < ◦A|B < C

H|B ≤ ◦A|B < C

4. If the inference on the left-hand side is ◦2 and the inference on the right-hand
side is an internal weakening, the proof will be of the form

G|B ≤ A

G| ◦ B ≤ ◦A
...ρ1

H| ◦ B ≤ ◦A

F|B ≤ C

F|B ≤ ◦A| ◦ A < C

...ρ2
H|B ≤ ◦A| ◦ A < C

H| ◦ B ≤ A|B < C
cut

50 J.P. Aguilera and M. Baaz

Replace it with

G|B ≤ A

F|B ≤ C

F|B ≤ C|A < C

F|G|B ≤ A|B < C
cut

F|G|B < ◦A|B < C

...ρ1, ρ2
H|B < ◦A|B < C

H|B ≤ ◦A|B < C

5. If the inference on the right-hand side is ◦2 and the inference on the left-hand
side is an internal weakening, the proof will be of the form

F|B ≤ D

F|B ≤ ◦A| ◦ A < D

...ρ2
H|B ≤ ◦A| ◦ A < D

G|A ≤ C

G| ◦ A ≤ ◦C
...ρ1

H| ◦ A ≤ ◦C
H|B ≤ ◦C| ◦ A < D

cut

Replace it with

F|B ≤ D

G|A ≤ C

G| ◦ A ≤ ◦C
F|G|B ≤ ◦C| ◦ A < D

com

...ρ1, ρ2
H|B ≤ ◦C| ◦ A < D

6. The final case is that both inferences are internal weakenings:

F|B ≤ D

F|B ≤ ◦A| ◦ A < D

...ρ1
H|B ≤ ◦A| ◦ A < D

G|E ≤ F

G|E ≤ ◦A| ◦ A < F

...ρ2
H|E ≤ ◦A| ◦ A < F

H|B < F | ◦ A < D|E ≤ ◦A cut

Replace it with

F|B ≤ D G|E ≤ F

F|G|B ≤ F |E ≤ D
com

...ρ1, ρ2
H|B < F |E < D

A ≤ A

◦A ≤ ◦A
H|B < F | ◦ A < D|E ≤ ◦A com

�

Cut Elimination for Gödel Logic with an Operator Adding a Constant 51

References

1. Baaz, M., Ciabattoni, A., Fermüller, C.G.: Cut-elimination in a sequents-of-relations
calculus for Gödel logic. In: Proceedings of The International Symposium on
Multiple-Valued Logic, pp. 181–186 (2001)

2. Baaz, M., Fasching, O.: Monotone operators on Gödel logic. Arch. Math. Logic 53,
261–284 (2014)

3. Gabbay, D.M., Metcalfe, G., Olivetti, N.: Analytic sequent calculi for Abelian and
�Lukasiewicz logics. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS
(LNAI), vol. 2381, pp. 191–205. Springer, Heidelberg (2002)

4. Gabbay, D., Metcalfe, G., Olivetti, N.: Proof Theory for Fuzzy Logics. Applied
Logic, vol. 36. Springer, Netherlands (2008)

5. Takeuti, G.: Proof Theory. North-Holland, Amsterdam (1987)

A Classical Propositional Logic for Reasoning
About Reversible Logic Circuits

Holger Bock Axelsen, Robert Glück, and Robin Kaarsgaard(B)

DIKU, Department of Computer Science,
University of Copenhagen, Copenhagen, Denmark

{funkstar,glueck,robin}@di.ku.dk

Abstract. We propose a syntactic representation of reversible logic cir-
cuits in their entirety, based on Feynman’s control interpretation of Tof-
foli’s reversible gate set. A pair of interacting proof calculi for reasoning
about these circuits is presented, based on classical propositional logic
and monoidal structure, and a natural order-theoretic structure is devel-
oped, demonstrated equivalent to Boolean algebras, and extended cat-
egorically to form a sound and complete semantics for this system. We
show that all strong equivalences of reversible logic circuits are prov-
able in the system, derive an equivalent equational theory, and describe
its main applications in the verification of both reversible circuits and
template-based reversible circuit rewriting systems.

1 Introduction

Reversible computing–the study of computing models deterministic in both the
forward and backward directions–is primarily motivated by a potential to reduce
the power consumption of computing processes, but has also seen applications
in topics such as static average-case program analysis [17], unified descriptions
of parsers and pretty-printers [16], and quantum computing [6]. The potential
energy reduction was first theorized by Rolf Landauer in the early 1960s [12], and
has more recently seen experimental verification [2,14]. Reaping these potential
benefits in energy consumption, however, requires the use of a specialized gate
set guaranteeing reversibility, when applied at the level of logic circuits.

Boolean logic circuits correspond immediately to propositions in classical
propositional logic (CPL): This is done by identifying input lines with proposi-
tional atoms, and logic gates with propositional connectives, reducing the prob-
lem of reasoning about circuits to that of reasoning about arbitrary propositions
in a classical setting. However, although Toffoli’s gate set for reversible circuit
logic is equivalent to the Boolean one in terms of what can be computed [22],
it falls short of this immediate and pleasant correspondence. This article seeks

The authors acknowledge support from the Danish Council for Independent
Research | Natural Sciences under the Foundations of Reversible Computing project,
and partial support from COST Action IC1405 Reversible Computation.
Colors in electronic version.

c© Springer-Verlag Berlin Heidelberg 2016
J. Väänänen et al. (Eds.): WoLLIC 2016, LNCS 9803, pp. 52–67, 2016.
DOI: 10.1007/978-3-662-52921-8 4

Propositional Reasoning About Reversible Logic Circuits 53

to establish such a correspondence by proposing a standardized way of syntac-
tically representing and reasoning about reversible logic circuits. This is done
by considering a reformulation, and slight extension, of the toolset of classical
propositional logic. The main contributions of this article are the following:

– A syntactic representation of entire reversible logic circuits as propositions,
and a pair of proof calculi for reasoning about the semantics of thusly repre-
sented reversible logic circuits, sound and complete with respect to

– a categorical/algebraic semantics based on the free strict monoidal category
over a Toffoli lattice, an order structure proven equivalent to Boolean rings,

– a proof that all strong equivalences of reversible logic circuits are provable,
and

– an illustration of how the presented logic can be used to show strong equiv-
alences of reversible circuits, and in particular to verify template-based
reversible logic circuit rewriting systems.

The complexity of reversible circuits has been increasing while at the
same time entirely new functional designs have been found (e.g. linear trans-
forms [5], reversible microprocessors [21]). Established tools employing conven-
tional Boolean logic are not geared towards the synthesis, transformation and
verification of reversible circuits. Thus, it is important to find better ways of
handling this new type of circuits, and some work has been approaching these
problems from different angles (e.g. [4,23]). Our goal is to formally model the
semantics of reversible circuits, and in particular to capture strong equivalence
of such circuits as provable equivalence of propositions.

Overview: Sect. 2 introduces the syntax and intuitive interpretation of the
connectives, and shows how reversible logic circuits can be represented as propo-
sitions by way of a simple annotation algorithm. Section 3 describes the proof
calculi used to reason about circuits thus represented, and relates them to exist-
ing systems. Section 4 develops the concept of a Toffoli lattice as a semantics
for the central proof calculus and extends it, via a categorical view on such a
structure, into the final model category T⊗. Section 5 sketches the fundamental
metatheorems of soundness, completeness and circuit completeness, Sect. 6 out-
lines the applications of the developed theory in reversible circuit rewriting, and
Sect. 7 presents ideas for future work, and concludes on the results presented.

2 Circuits as Propositions

The correspondence between Boolean circuits and propositions, in all of its con-
venience to areas such as circuit design and computational complexity, did not
happen by mistake: It is a well-known result that any Boolean function can
be computed by a circuit composed of only nand gates and constants, yet the
Boolean gate set is still, in all of its redundancies, considered the lingua franca
of logic circuit design, precisely due to this correspondence.

54 H.B. Axelsen et al.

Fig. 1. Toffoli’s reversible gate set–consisting of, from top to bottom, the identity
gate, the not gate, and the generalized Toffoli gate–annotated with their Boolean
ring semantics, as well as our propositional semantics.

x1 x2 x3 x1 x2 x3

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 �→ 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

Reversible circuits are usually depicted as gate net-
works where computation flows from left to right. Here,
we consider circuits composed of the gates in Tof-
foli’s reversible gate set, shown in Fig. 1a. (This widely
used gate set is known as the Multiple-Control Tof-
foli (MCT) library.) We provide a brief exposition,
which the reader familiar with reversible circuit logic
can safely skip.

The only gate that warrants particular explanation
is the generalized toffoli gate, since the remaining
gates behave exactly as they do in Boolean circuit logic: This gate takes n > 1
input lines, of which n − 1 are control lines (marked with black dots), and the
remaining one is the target line (marked with ⊕). If all control lines carry a value
of 1, the value on the target line is negated – if not, the input of the target line
simply passes through unchanged. As such, the control lines control whether the
not operation should be carried out on the target line; in either case, the inputs
to all control lines are carried through to the output unchanged (see also the
truth table to the right for the generalized Toffoli gate where n = 3; x1 and x2

are control lines, x3 is the target line). Circuits may be composed horizontally
(i.e., by ordinary function composition) and vertically (i.e., by computation in
parallel) so long as they remain finite in size and contain neither loops, fan-in,
nor fan-out. Note also that even though the target line is placed at the bottom
in Fig. 1a for purposes of illustration, it may be placed anywhere relative to the
control lines.

Contrary to Toffoli’s Boolean ring semantics for the gate set [22], our pre-
sentation embraces Feynman’s control interpretation [6] not just in the intuitive
explanation given above, but also directly in the formalism. Following Kaars-
gaard [11], this is done by replacing exclusive disjunction (here, · ⊕ ·) with the
connective · •− ·, read as control, and introducing the usual negation connective
¬· on the target. This results in the propositional semantics shown in Fig. 1b.
In this case, the semantics of the target line for the generalized toffoli gate

Propositional Reasoning About Reversible Logic Circuits 55

Fig. 2. An example of the annotation algorithm.

pleasingly reads as “x1 and · · · and xn−1 control not xn”. While Soeken and
Thomsen [20] have shown (with their box rules) that control is a general con-
cept corresponding (roughly) to conditional execution of a subcircuit, it turns
out that, at the level of individual circuit lines, control carries the same meaning
as material bi-implication in CPL. We postpone the proof of equivalence of these
two approaches to Sect. 5.

Although the target line of the generalized toffoli gate is, in many ways, the
heart of this gate’s semantics, it only paints part of the picture. Since reversible
circuits are, by definition, required to have the same number of output lines
as input lines, parallelism plays a much larger role in reversible circuits than
in Boolean ones: To capture the semantics of reversible logic circuits in their
entirety, we need a way to capture this parallelism. We do this by introducing
yet another connective, · � ·, read as while, with the meaning of A � B as the
multiplicative ordered conjunction of propositions A and B, i.e. as string con-
catenation in a free monoid. Order is important: as stated earlier, we wish the
provable equivalence relation to capture strong equivalence of reversible circuits
(reversible circuits are strongly equivalent if they compute the same function
up to function extensionality [8]), rather than equivalence up to arbitrary per-
mutation of output lines.

Using these two new connectives, along with the usual connectives for con-
junction (here, ·& ·) and negation, we can produce a straightforward annotation
algorithm for extracting the semantics of reversible logic circuits as a proposi-
tion in this syntax. As also done for Boolean circuits, we identify each input
line with a (fresh) propositional atom, and then propagate the semantics (as
given in Fig. 1b) through until the entire circuit has been annotated, at which
point we terminate and return the multiplicative ordered conjunction of these
propositions, from top to bottom. An example of the annotation algorithm can
be found in Fig. 2.

As also noted by Kaarsgaard [11], the syntax of propositions for forming
reversible logic circuits using Toffoli’s gate set in Fig. 1b is more restrictive
than, e.g., CPL; that is, (ordinary) conjunctions only appear as subpropositions

56 H.B. Axelsen et al.

of controls. Further, linear ordered conjunctions only appear as a way of “glue-
ing” the propositions of individual circuit lines together (see, e.g., the final step
in Fig. 2).

This structure suggests a syntactic hierarchy, which we will illustrate by
means of color: Blue propositions will be those that correspond to the semantics
of a single circuit line (perhaps of many in a circuit), red propositions correspond
to the semantics of entire circuits (or subcircuits), and yellow (or recolorable)
propositions will be those that can be either of these two. Formally, we define
such propositions to be those produced by the grammars

AB , BB , CB := AY | ¬AB | AB & BB (Blue propositions)
AY , BY , CY := a | 0 | 1 | ¬AY | AB •− BY | AY •− BB (Yellow propositions)
AR, BR, CR := AY | AR � BR | e (Red propositions)

where a denotes any propositional atom; we will assume that there is a denu-
merable set P of these. For readability, we adopt the convention that ¬· binds
tighter than · & ·, which binds tighter than · •− ·, which finally binds tighter
than ·� ·. Further, we will omit subscripts when the syntactic class is clear from
the context.

Starting with blue and recolorable propositions, 0 and 1 represent the false
respectively true proposition (corresponding to ancillae, lines of constant value,
in circuit terms), ¬AY the usual negation of a proposition, AB •− BY and AY •−
BB as “A control B”, and finally AB & BB as the usual (additive) conjunction.
Red propositions are interpreted as circuit structures, with AR�BR representing
the ordered (parallel) structure made up of AR and BR, and e representing the
empty structure (i.e., the empty circuit). Further, we will denote the set of all
such well-formed blue respectively red propositions by ΦB respectively ΦR.

In the same manner, well-formed blue and red contexts (a notion of a recol-
orable context is unnecessary) are those produced by the grammars

ΓB ,ΔB ,ΠB := · | ΓB, AB (Blue contexts)
ΓR,ΔR,ΠR := · | ΓR, AR (Red contexts)

The distinction between the empty blue context and the empty red one is impor-
tant, since the two types of contexts will be interpreted in two different ways;
blue contexts are interpreted as an additive (blue) conjunction with 1 as unit,
while red contexts are interpreted as an ordered multiplicative (red) conjunc-
tion with e as unit. As we did for propositions, we will denote the set of all
well-formed blue respectively red contexts by Φ∗

B respectively Φ∗
R.

3 Proof Calculi

As the syntax presented in the previous section perhaps already alludes to,
we will use not one but two proof calculi to reason about propositions thus
formed. Figures 3 and 4 show the two proof calculi–the blue and the red fragment,
respectively–that make up the logic which we shall call LRS�.

Propositional Reasoning About Reversible Logic Circuits 57

Fig. 3. The blue fragment of LRS� . (Color figure online)

There are two judgment forms, ΓB �B ϕB and ΓR �R ϕR, which differ not
only by syntax, but also by the interpretation of the context: Blue contexts are
understood to be an additive (ordinary) conjunction of its constituent proposi-
tions (as usual) with 1 as unit, while red contexts are understood as a multi-
plicative ordered conjunction of its constituent propositions with e as unit. This
difference of interpretation is reflected directly in the core rules of the calculi;
while the identity and cut rules for the red fragment use careful bookkeeping to
ensure that order and linearity are not broken, the corresponding rules in the
blue fragment display implicit use of the structural rules available in the blue
fragment. More explicitly, the blue fragment contains the usual structural rules
of CPL–weakening, contraction, and exchange–while the red fragment has none
of these.

The blue fragment, largely similar to the sequent calculus of LRS [11],
presents itself as a reformulation of CPL in which control (corresponding to
material bi-implication) is taken as a fundamental connective, while implication
and disjunction are omitted. In particular, the omission of disjunction as a con-
nective presents a challenge for classical reasoning, as we can no longer express
the law of the excluded middle axiomatically in a way which facilitates its easy
use in derivations. To resolve this, we present the rule instead as an explicit case
analysis, corresponding to a proof tree of the form

58 H.B. Axelsen et al.

Fig. 4. The red fragment of LRS� . (Color figure online)

(Lem)

Γ � A ∨ ¬A

...

Γ, A � B

...

Γ, ¬A � B
(∨E)

Γ � B

in CPL, which not only presents the common use case of the law of the excluded
middle, but is also strong enough to derive the double negation elimination rule
in the straightforward way. (Proof theoretically inclined buyers beware: Though
this rule is sufficiently powerful, it threatens the subformula property [3] even
in the face of cut-elimination.) Note that as we are not aiming for minimality,
both rules are included in the blue fragment.

The red fragment offers little in terms of rules, since the only structure we
are interested in is the parallel structure of circuit lines, captured by the rules for
ordered multiplicative conjunction – essentially corresponding to concatenation of
strings (though our formulation follows the conjunctive fragment of Polakow’s pre-
sentation [15] of the Lambek calculus), with e corresponding to the empty string.

In our setting, by far the most interesting rule of the red fragment is the
recoloring rule, which states that any logical deduction from a single recolorable
proposition can be inserted into a structure of unit length, as long as the succe-
dent is likewise recolorable. Recall that the recolorable propositions are precisely
those that are well-formed as both blue and red propositions, so this (purely syn-
tactic) side condition is entirely reasonable. Figure 5 gives a larger example of
an LRS� derivation, showing ¬x1 � x1 •− ¬x2 �R ¬x1 � ¬¬x1 •− ¬x2.

Finally, it is worth noting that the syntax of red propositions is not strong
enough to ensure that only reversible circuits can be represented. For example,
the red proposition x1 � x1 & x2 •− ¬x3 is perfectly well-formed, but does not
correspond directly to a reversible circuit. On the other hand, every reversible cir-
cuit can adequately, and with minimal work, be represented as a red proposition,
as we saw in Sect. 2. This turned out to result in an interesting tradeoff in the
proof calculi: Naturally, it would be desirable if we could guarantee that every red
proposition corresponded precisely to a reversible circuit–however, by not guar-
anteeing this property, we may consider the semantics of a single line or group of
lines in isolation, without having to take the overall structure of the circuit into
account at every step of a derivation, making for simpler overall logic.

Propositional Reasoning About Reversible Logic Circuits 59

4 Semantics

Given the obvious similarities between CPL and the blue fragment of LRS�,
it would seem highly natural to adopt truth-functional semantics here as well.
While this approach certainly works when considering the blue fragment in iso-
lation, extending this approach to the red fragment runs into the problem of
defining a single truth value–and for good reason, since truth should be inter-
preted relative to a circuit structure, taking order and resource use (i.e., viewing
circuit lines as ordered resources) into consideration.

For this reason, we will instead take the algebraic approach to semantics
by considering what we call a Toffoli lattice, an order structure with obvious
similarities to the blue fragment of LRS�. This approach has the immediate
benefit that order structures can very easily be interpreted as categories, giving
us a whole suite of tools to extend the semantics to the red fragment. We define
Toffoli lattices, and their corresponding homomorphisms, as follows:

Definition 1. A Toffoli lattice A = (A,≤,�,⊥,∧,�, ·) consists of a partially
ordered set (A,≤) furnished with the following operations and conditions:

(i) There is a greatest element � such that x ≤ � for any element x.
(ii) There is a least element ⊥ such that ⊥ ≤ x for any element x.
(iii) Given elements a, b there is an element a ∧ b such that x ≤ a ∧ b iff x ≤ a

and x ≤ b.
(iv) Given elements a, b there is an element a � b, the relative equivalence of

a and b, such that x ≤ a � b iff x ∧ a ≤ b and x ∧ b ≤ a.
(v) Given an element a, there is an element a satisfying x ≤ a iff x ∧ a ≤ ⊥,

a ∧ a ≤ ⊥, and if x ∧ a ≤ b and x ∧ a ≤ b then x ≤ b.

As is often done, we will use |A| to denote the carrier set A.

Definition 2. Let A and B be Toffoli lattices. A Toffoli lattice homomorphism
is a function h : |A| → |B| that preserves all lattice operations and constants,
i.e., h(�) = �, h(⊥) = ⊥, h(a ∧ b) = h(a) ∧ h(b), h(a � b) = h(a) � h(b), and
h(a) = h(a) for all a, b ∈ |A|.

From this definition, the truth-functional semantics appear by considering
the set {0, 1}:

Example 1. The set {0, 1} equipped with the usual partial order is a Toffoli
lattice: Assigning the usual truth table semantics to �, ⊥, ∧, and complement,
and defining

0 � 0 = 1 0 � 1 = 0 1 � 0 = 0 1 � 1 = 1

it is straightforward to verify that this yields a Toffoli lattice.

Though no explicit join operation is given, joins may be defined using meets
and complements–i.e., analogously to Boolean algebras, one can show that x ∧ y
is the least upper bound of x and y.

60 H.B. Axelsen et al.

Lemma 1. Let h : A → B be a Toffoli lattice homomorphism. Then h is specif-
ically monotonic, i.e. if a ≤ b then h(a) ≤ h(b).

Like so many other structured sets, these definitions lead us, without much
trouble, to show that Toffoli lattices with homomorphisms between them form a
concrete category; a useful feature which we will use shortly to characterize the
free Toffoli lattice.

Theorem 1. The class of all Toffoli lattices with Toffoli lattice homomorphisms
between them forms a category, TL.

Careful inspection of the definition of a Toffoli lattice reveals a correspon-
dence with the blue fragment of LRS� – of course, this is entirely by design,
though this correspondence is missing one part, namely the propositional atoms
(recall the assumption that these form a denumerable set P). To account for
these, we observe that Toffoli lattices may be freely constructed, and apply this
free construction to the set of propositional atoms P to form an order theoretic
model of the blue fragment.

Theorem 2. Toffoli lattices may be freely constructed, i.e., the forgetful functor
U : TL → Sets has a left adjoint F : Sets → TL.

Using this theorem, we take T = FP (where P is the set of propositonal
atoms) to be our model of the blue fragment. This allows us to define blue
denotation and entailment:

Definition 3. The denotation of a blue proposition ϕB ∈ ΦB, denoted [[ϕB]], is
given by the function [[·]] : Φ → |T| defined as follows:

[[1]] = � [[a]] = a [[AB & BB]] = [[AB]] ∧ [[BB]]

[[0]] = ⊥ [[¬AB]] = [[AB]] [[AB •− BB]] = [[AB]] � [[BB]]

where a denotes any propositional atom in P . Further, the denotation of a blue
context ΓB ∈ Φ∗

B is given by the overloaded function [[·]] : Φ∗
B → |T| defined by

[[·]] = � [[Γ ′
B , AB]] = [[Γ ′

B]] ∧ [[AB]]

Definition 4 (Blue entailment). Let Γ be a well-formed blue context, and ϕ
be a well-formed blue formula. Then we define the blue entailment relation by
Γ �B ϕ iff [[Γ]] ≤ [[ϕ]] in T.

In the same manner as for any other partially ordered set, we can regard
a single Toffoli lattice A as a (skeletal preorder) category by considering each
element of |A| as an object of the category, and placing a morphism between
objects X and Y iff X ≤ Y in A. This allows us to extend our model lattice
T by categorical means to form a model of the red fragment. A key insight in
this regard is the role of monoidal categories in modelling linear logic [18]; in
particular, a strict monoidal category is sufficient to model the red fragment.
This leads to the following construction:

Propositional Reasoning About Reversible Logic Circuits 61

Definition 5. Let T⊗ denote the free strict monoidal category over T. That is,
T⊗ has as objects all strings X1X2 . . . Xn where all Xi are objects of T, and as
morphisms all strings of morphisms f1f2 . . . fn : X1X2 . . . Xn → Y1Y2 . . . Yn for
morphisms fi : Xi → Yi of T. It has a monoidal tensor − ⊗ − : T⊗ × T⊗ → T⊗
defined by concatenation; thus it is strictly associative and has a strict unit i,
denoting the empty string.

See, e.g., Joyal and Street [9,10] for the construction of the free strict
monoidal category (or, in their nomenclature, free strict tensor category) over a
given category C; it simply amounts to be the coproduct of all functor categories
of the form Cn, where n is the discrete category of n objects. This allows us to
characterize T⊗ by means of a (Grothendieck) fibration (see, e.g., Jacobs [7])
into the discrete category ΔN which has, as objects, all natural numbers1:

Theorem 3. The functor Ψ : T⊗ → ΔN defined by mapping objects to
their lengths as strings, and morphisms to the corresponding identities is a
Grothendieck fibration and a monoidal functor. Specifically, each inverse image
Ψ−1(k) for k in (ΔN)0 is a full subcategory of T⊗.

Proof. (Proof sketch). Since ΔN is discrete, for any object X1X2 . . . Xn of T⊗,
the only possible morphism in ΔN of the form u : K → Ψ(X1X2 . . . Xn) is
the identity 1Ψ(X1X2...Xn), which the identity morphism 1X1X2...Xn

is trivially
cartesian over.

To see that Ψ is a strict monoidal functor, we note the obvious tensor product
in ΔN given by addition, i.e., by mapping objects A⊗B to their sum (as natural
numbers) A+B, and likewise morphisms 1A ⊗1B to 1A+B . From this, it follows
directly that Ψ(A ⊗ B) = Ψ(A) ⊗ Ψ(B). ��

This approach is closely related to the theory of PROs, PROPs, and operads
(see, e.g., Leinster [13])–indeed, T⊗ is a PRO–but we will avoid relying on this
theory for the sake of a more coherent presentation.

In order to define denotation and entailment in the red propositions, we
need one last lemma, stating the obvious isomorphism between Ψ−1(1) (the
subcategory of strings of objects of T of length precisely 1) and T:

Lemma 2. There exist functors I : T → Ψ−1(1) and J : Ψ−1(1) → T witnessing
Ψ−1(1) ∼= T.

Definition 6. The denotation of a red proposition ϕR ∈ ΦR, denoted [[ϕR]], is
given by the function [[·]] : ΦR → (T⊗)0 defined as follows:

[[e]] = i [[AR � BR]] = [[AR]] ⊗ [[BR]] [[AR]] = I([[AB]]) if ARis a recolorable.

As we did for blue propositions, we overload the denotation function to apply to
(in this case, red) contexts as well, by defining the function [[·]] : Φ∗

R → (T⊗)0 as

[[·]] = i [[ΓR, AR]] = [[ΓR]] ⊗ [[AR]]

1 We use the notation ΔN for the discrete category specifically to avoid confusion with
the ordinal category ω, which some authors denote N.

62 H.B. Axelsen et al.

Definition 7 (Red entailment). Let Γ be a well-formed red context, and ϕ be
a well-formed red proposition. We define red entailment by Γ �R ϕ iff [[Γ]] ≤ [[ϕ]],
i.e. iff there exists a morphism between the objects [[Γ]] and [[ϕ]] in T⊗.

5 Metatheorems

With a semantics for both the blue and red fragments, we are ready to take on
the fundamental metatheorems of soundness and completeness. The hierarchical
structure of the proof calculi (and their semantics) gives a natural separation of
work, as the soundness and completeness of the red fragment depends directly,
via the recoloring rule, on the corresponding theorems for the blue fragment.

Theorem 4 (Soundness). If Γ �B ϕ then Γ �B ϕ; and if Γ �R ϕ then
Γ �R ϕ.

Both parts follow straightforwardly by induction; the only interesting case
is recoloring, which follows by Lemma 2 and soundness of the blue fragment.
The completeness theorems require a little more work; blue completeness relies
on the Lindenbaum-Tarski method (i.e., by taking the set of blue propositions
quotiented by blue provable equivalence, ΦB/��B , and showing that this is iso-
morphic to T), while red completeness uses the characterization of objects of T⊗
given by Theorem3 as an induction principle for objects of T⊗.

Theorem 5 (Completeness). If Γ �B ϕ then Γ �B ϕ; and if Γ �R ϕ then
Γ �R ϕ.

We are finally ready to tackle our previous obligation to show our proposi-
tional semantics equivalent to Toffoli’s Boolean ring semantics. The first step is
to show that Boolean rings are equivalent to Toffoli lattices:

Theorem 6 (Universality). A is a Toffoli lattice iff it is a Boolean ring.

Proof (Proof sketch). If A is a Toffoli lattice, we define the constants and oper-
ations of a ring by

0 = ⊥ 1 = � a · b = a ∧ b a ⊕ b = a � b

for all elements a and b of A. From this, it is straightforwardly shown that A
forms an abelian group under addition (with each a as its own additive inverse,
and 0 as unit), and a monoid under multiplication (with 1 as unit) which further
distributes over addition; thus it is a ring, and that it is Boolean follows directly
by the idempotence of meets.

In the other direction, suppose A is a Boolean ring; then it is also a Boolean
algebra [19], so it suffices to show that a Boolean algebra is also a Toffoli lattice.
But then we can construct relative equivalences by a � b = (a ∨ b) ∨ (b ∨ a)
for all elements a, b ∈ |A|; that A is then a Toffoli lattice follows by algebraic
manipulation. ��

Propositional Reasoning About Reversible Logic Circuits 63

We now extend this result to the full generality of entire reversible circuits.
Let the order of a reversible circuit denote its number of input (equivalently out-
put) lines; having the same order is thus a trivial requirement for two reversible
circuits to be strongly equivalent, as the functions they compute (denote this
function fC for a circuit C) will otherwise differ fundamentally by domain and
codomain. Further, we will use B = ({0, 1}, 0, 1,⊕, ·) to denote the Boolean
ring on the set {0, 1} with exclusive disjunction as addition, and conjunction
as multiplication, and Bn to be the direct product of B with itself n times.
Using Toffoli’s Boolean ring semantics (as presented in Sect. 2, Fig. 1a), we will
develop a semantic preorder on reversible circuits – but to do this, we need a
way to handle ancillae (lines of constant value) in a clean way. This is done by
the ancilla restriction on a circuit, defined as follows:

Definition 8. Let C be a reversible circuit of order n, and x ∈ |Bn|. We define
the ancilla restriction on x with respect to C to be x|C = (c1, c2, . . . , cn) where
each ci is given by

ci =
{

k if the ith input of C is an ancilla of value k
πi(x) otherwise

This allows the following preorder on the set of reversible logic circuits, and
in turn, the category induced by this preorder:

Lemma 3. The relation on reversible circuits defined by C ≤R D iff fC(x|C) ≤
fD(x|D) for all x ∈ |Bn| and circuits C,D of equal order n, where the order
relation · ≤ · denotes the usual (component-wise) ordering on Boolean vectors of
length n, is a preorder.

Definition 9. Let RC denote the category which has reversible circuits as
objects, and a single morphism between circuits C and D iff C ≤R D.

Note particularly from this definition that objects C and D of RC are iso-
morphic (i.e., C ≤R D and D ≤R C) precisely when they are strongly equivalent.
This allows us to show that all strong equivalences of reversible logic circuits are
contained in T⊗:

Theorem 7 (Embedding of RC). There exists a functor H : RC → T⊗
which constitutes an embedding of RC in T⊗, i.e., it is fully faithful; in particular
H(C) ∼= H(D) iff C ∼= D.

Proof. We define H : RC → T⊗ on objects by taking circuits to their annotation,
as given by the annotation algorithm (see Sect. 2 and the example in Fig. 2), and
on morphisms by taking C ≤ D to the morphism H(C) ≤ H(D): That this
morphism exists in T follows by induction on the order of C (equivalently D) by
Theorem 6, since the order on the outputs is an order on Boolean ring terms,
which are equivalent to Toffoli lattice terms via

a · b = a ∧ b a ⊕ b = a � b a ⊕ 1 = a � � = a � ⊥ = a

64 H.B. Axelsen et al.

which shows, by soundness, completeness and the denotation of the propo-
sitional semantics, the exact correspondence between Toffoli’s Boolean ring
semantics and our propositional semantics (see Sect. 2, Figs. 1a and 1b). That
H(C) ∼= H(D) iff C ∼= D (equivalently, that H is fully faithful) follows likewise
by induction on the order of C (equivalently D) using Theorem 6. ��

6 Applications

Above, we have shown that the logic of LRS� is sound and complete with respect
to a semantics that includes all strong equivalences of reversible logic circuits.
This property suggests, as an obvious first application, a general method for
proving such strong equivalences: Use the annotation algorithm of Sect. 2 to
extract propositional representations of each circuit, and then use LRS� to show
that their propositional representations are provably equivalent.

This approach can be applied directly in the optimization of reversible cir-
cuits. When used on very large circuits, the annotation algorithm may pro-
duce propositional representations that are infeasibly large to work with, how-
ever. Where the approach really shines is in the development and verification of
template-based reversible circuit rewriting systems (see, e.g., [1,20]). Template-
based rewriting works by identifying certain forms of sub-circuits, allowing these
to be substituted with equivalent ones.

•

•

Since such templates are typically quite modest in
size, one can often extract corresponding propositions
from templates with only a few steps of the annota-
tion algorithm. A concrete example of such a template-
based rewriting rule is Soeken and Thomsen’s rule R2,
shown on the right. Annotating these two circuits with
our algorithm, the rule states precisely the equivalences

¬x1 � x1 •− ¬x2 ��R ¬x1 � ¬¬x1 •− ¬x2 (1)

and
¬x1 � ¬x1 •− ¬x2 ��R ¬x1 � ¬x1 •− ¬x2 . (2)

which are both, indeed, provable. Note that (2) follows directly by red identity,
as the annotation the two circuits resulted in syntactically identical propositions.
One of the two derivations proving the (1) is shown in Fig. 5.

Using diagrammatic notation for such rewriting systems is both convenient
and intuitive to use for humans. Although this has provided real insights into
the rewriting behavior of reversible circuits, showing completeness (with respect
to reversible circuits) for such rewriting systems has proven difficult.

Because LRS� provides sound and complete proof calculi for reasoning about
reversible circuits, we can go the other way around and extract an equational
theory from this that is sound and complete with respect to reversible circuits.
Further, since the blue fragment of LRS� is sound and complete with respect to

Propositional Reasoning About Reversible Logic Circuits 65

Fig. 5. Derivation in LRS� for verifying the first direction of Soeken and Thomsen’s
rule R2.

Toffoli lattices, we can instead extract an equational theory for the blue fragment
from the definition of a Toffoli lattice, using the following lemma:

Lemma 4. In any Toffoli lattice, a ≤ b iff a ∧ b = ⊥.

This lemma allows us to straightforwardly recast the definition of a Toffoli
lattice in purely equational terms (although the result is not exactly elegant).
What this does give us, is a set of equations that must hold for all Toffoli lattices,
and which any other complete equational theory must therefore be equivalent to,
and the means to show such an equivalence by converting equalities to statements
about the underlying order structure and vice versa.

Figure 6 shows a more pleasing equational theory for the blue fragment, pre-
sented in the syntax of LRS� (the intrinsic properties of equality, i.e., reflexivity,
symmetry, transitivity, and congruences are not shown,) proven equivalent (and
therefore sound and complete) exactly in the way outlined above (by the power
of boring algebra). Deriving an equational theory for the red fragment is simpler,
as it is sound and complete with respect to the free monoidal part of T⊗, which
is already expressed in equational terms. As such, the equational theory for the
red fragment shown in Fig. 6 is sound and complete by definition, though congru-
ences applied in the red fragment are syntactically restricted by recolorability;
that is, we can only replace recolorable propositions by recolorable propositions.

The usefulness of such an equational theory is evident in that we can, e.g.,
now prove the soundness of the R2 rules directly by applying equation (B9)
in Fig. 6. Such equational theories can themselves also be used to develop new
rewriting systems for reversible circuits, in particular to suggest new templates.

66 H.B. Axelsen et al.

Fig. 6. Sound and complete equational theories for the two calculi. (Color figure online)

7 Conclusion and Future Work

In this article, we have presented a syntactic representation of reversible logic
circuits centered around the control interpretation of Toffoli’s reversible gate
set, and shown, via two proof calculi of natural deduction, that a variant of
classical propositional logic extended with ordered multiplicative conjunction is
sufficient to reason about these. We have developed an algebraic and categorical
semantics, shown that the proof calculi are sound and complete with respect to
these, and that this model subsumes the established notion of strong equivalence
of reversible logic circuits. Finally, we have shown how our work can be used to
prove strong equivalences of reversible logic circuits, to verify existing systems
of reversible logic circuit rewriting, and to develop new such rewriting systems.

The approach has been successful in enabling reasoning about reversible logic
circuits, but it is not quite on even footing with the template-based approaches
to reversible circuit rewriting, as these use a graphical circuit notation which,
by definition, asserts circuit reversibility on every rewriting step. Although our
approach faithfully models circuit semantics, it is not currently clear when look-
ing at an arbitrary proposition whether it corresponds to a reversible circuit
or not. On the other hand, by decoupling the propositions from the graphical
representations, the current logic may allow for much shorter rewritings than if
each step must yield representations which directly translate to circuits in this
way.

References

1. Arabzadeh, M., Saeedi, M., Zamani, M.S.: Rule-based optimization of reversible
circuits. In: Proceedings of the ASP-DAC 2010, pp. 849–854. IEEE (2010)

2. Bérut, A., Arakelyan, A., Petrosyan, A., Ciliberto, S., Dillenschneider, R., Lutz,
E.: Experimental verification of Landauer’s principle linking information and ther-
modynamics. Nature 483(7388), 187–189 (2012)

3. Buss, S.R.: Handbook of Proof Theory. Elsevier, Amsterdam (1998)
4. De Vos, A.: Reversible Computing. Wiley-VCH, Weinheim (2010)

Propositional Reasoning About Reversible Logic Circuits 67

5. De Vos, A., Burignat, S., Glück, R., Mogensen, T.Æ., Axelsen, H.B., Thomsen,
M.K., Rotenberg, E., Yokoyama, T.: Designing garbage-free reversible implementa-
tions of the integer cosine transform. ACM J. Emerg. Tech. Com. 11(2), 11:1–11:15
(2014)

6. Feynman, R.P.: Quantum mechanical computers. Found. Phys. 16(6), 507–531
(1986)

7. Jacobs, B.: Categorical Logic and Type Theory. Elsevier, Amsterdam (1999)
8. Jordan, S.P.: Strong equivalence of reversible circuits is coNP-complete. Quantum

Inf. Comput. 14(15–16), 1302–1307 (2014)
9. Joyal, A., Street, R.: The geometry of tensor calculus I. Adv. Math. 88(1), 55–112

(1991)
10. Joyal, A., Street, R.: Braided tensor categories. Adv. Math. 102(1), 20–78 (1993)
11. Kaarsgaard, R.: Towards a propositional logic for reversible logic circuits. In: Pro-

ceedings of the ESSLLI 2014 Student Session, pp. 33–41 (2014). http://www.kr.
tuwien.ac.at/drm/dehaan/stus2014/proceedings.pdf

12. Landauer, R.: Irreversibility and heat generation in the computing process. IBM
J. Res. Dev. 5(3), 261–269 (1961)

13. Leinster, T.: Higher Operads, Higher Categories. London Mathematical Society
Lecture Note Series, vol. 298. Cambridge University Press, Cambridge (2004)

14. Orlov, A.O., Lent, C.S., Thorpe, C.C., Boechler, G.P., Snider, G.L.: Experimental
test of Landauer’s principle at the sub-kbt level. Japan. J. Appl. Phys. 51, 06FE10
(2012)

15. Polakow, J.: Ordered linear logic and applications. Ph.D. thesis, CMU (2001)
16. Rendel, T., Ostermann, K.: Invertible syntax descriptions: unifying parsing and

pretty printing. ACM SIGPLAN Notices, vol. 45, No. 11, pp. 1–12 (2010)
17. Schellekens, M.P.: MOQA: unlocking the potential of compositional static average-

case analysis. J. Log. Algebr. Program. 79(1), 61–83 (2010)
18. Seely, R.A.G.: Linear logic, *-autonomous categories and cofree coalgebras. Con-

temp. Math. 92, 371–382 (1989)
19. Sikorski, R.: Boolean Algebras. Springer, Heidelberg (1969)
20. Soeken, M., Thomsen, M.K.: White dots do matter: rewriting reversible logic cir-

cuits. In: Dueck, G.W., Miller, D.M. (eds.) RC 2013. LNCS, vol. 7948, pp. 196–208.
Springer, Heidelberg (2013)

21. Thomsen, M.K., Glück, R., Axelsen, H.B.: Reversible arithmetic logic unit for
quantum arithmetic. J. Phys. A Math. Theor. 43(38), 382002 (2010)

22. Toffoli, T.: Reversible computing. In: de Bakker, J., van Leeuwen, J. (eds.)
Automata, Languages and Programming. LNCS, vol. 85, pp. 632–644. Springer,
Heidelberg (1980)

23. Wille, R., Drechsler, R.: Towards a Design Flow for Reversible Logic. Springer,
Heidelberg (2010)

http://www.kr.tuwien.ac.at/drm/dehaan/stus2014/proceedings.pdf
http://www.kr.tuwien.ac.at/drm/dehaan/stus2014/proceedings.pdf

Foundations of Mathematics: Reliability
and Clarity: The Explanatory Role

of Mathematical Induction

John T. Baldwin(B)

University of Illinois at Chicago, Chicago, USA
jbaldwin@uic.edu

Abstract. While studies in the philosophy of mathematics often empha-
size reliability over clarity, much study of the explanatory power of
proof errs in the other direction. We argue that Hanna’s distinction
between ‘formal’ and ‘acceptable’ proof misunderstands the role of proof
in Hilbert’s program. That program explicitly seeks the existence of a
justification; the notion of proof is not intended to represent the notion
of a ‘good’ proof. In particular, the studies reviewed here of mathemati-
cal induction miss the explanatory heart of such a proof; how to proceed
from suggestive example to universal rule. We discuss the role of alge-
bra in attaining the goal of generalizability and abstractness often taken
as keys to being explanatory. In examining several proofs of the closed
form for the sum of the first n natural numbers, we expose the hidden
inductive definitions in the ‘immediate arguments’ such as Gauss’s proof.
This connection with inductive definition leads to applications far beyond
verifying numerical identities. We discuss some objections, which we find
more basic than those in the literature, to Lange’s general argument that
proofs by mathematical induction are not explanatory. We conclude by
arguing that whether a proof is explanatory depends on a context of clear
hypothesis and understanding what is supposedly explained to who.

Lange [Lan09] describes a striking disagreement among philosophers concern-
ing the explanatory power of mathematical induction, ‘Some philosophers are
quite confident that these arguments are generally explanatory, even in the face
of other philosophers who appear equally confident of their intuition to the con-
trary. Very little in the way of argument is offered for either view.’ We argue that
the failure to see the explanatory nature of the usual inductive proofs is in fact
a misunderstanding of what it is that is explained. We isolate the explanatory
feature of specific inductive proofs and indicate why apparently simpler ‘proofs’
are incomplete.

The contrast raised by many philosophers, e.g., [Han90,Lan09,Man08,RK87]
between explanatory and non-explanatory proofs can be phrased as ‘A non-
explanatory proof merely shows the result is ‘true’ while an explanatory proof
provokes understanding of why it is ‘true’.’ I put scare quotes around ‘true’ as
in fact proofs do not show truth. They show that a result is a consequence of
the hypotheses. A major difficulty with this literature concerning induction is
c© Springer-Verlag Berlin Heidelberg 2016
J. Väänänen et al. (Eds.): WoLLIC 2016, LNCS 9803, pp. 68–82, 2016.
DOI: 10.1007/978-3-662-52921-8 5

Foundations of Mathematics: Reliability and Clarity 69

that much of the analysis ignores a crucial criterion that Hanna [Han90] makes
explicit (and then ignores), ‘the proof must proceed from specific and accepted
hypotheses’. In particular cases, making the implicit hypotheses explicit illumi-
nates what the proof is supposed to explain.

In Sect. 1 we observe that the traditional emphasis on the foundation of math-
ematics leads to a misunderstanding of proof as simply a matter of ‘reliable infer-
ence’ and misses explanatory motivations in mathematics. In Sect. 2, we show
how this distortion of the role of formal proof is reflected in a misapprehension
of the goals of even basic proofs involving mathematical induction. Section 3
underlines the symbiosis between inductive definition and inductive proof that
is implicit in many if not most proofs by induction. Complementing this dis-
cussion of how inductive proofs are explanatory, in Sect. 4 we expound some
fundamental objections to Lange’s assertion that inductive proofs are inherently
non-explanatory. We return in Sect. 5 to our underlying theme: analyzing proofs
solely as a way to verify truth obscures their explanatory nature. This tendency
is amplified by a misunderstanding of Hilbert’s proof theory; it aims to analyze
not proof, but provability.

We critique several attempts to give a general characterization of mathemat-
ical explanation by examining how they fare in studying mathematical practice.
We don’t attempt to produce a positive theory but obey the injunction that
concludes the Hafner and Mancosu article [HM05], ‘It is our hope that this kind
of testing of theories of mathematical explanation against mathematical practice
will pave the way for future studies in the same vein. This seems to us the most
promising approach for making progress in this treacherous area.’

I thank the referees for a number of helpful and incisive comments.

1 Reliability vrs Clarity

Much study of the foundations of mathematics focuses on the issue of finding
a ground for all of mathematics and on issues of ontology and reliability. But,
in fact, many of the 19th century foundational studies were concerned with
the clarification of concepts and the relations between them. In [Bal14,Bal15]
I expound the role of formal theories in clarifying notions and making mathe-
matical progress. Here we focus on the relation between clarity and reliability in
the context of mathematical induction and (generalized) inductive definition. As
Coffa describes below, many histories of foundational studies have emphasized
reliability over clarity. Perhaps in reaction, many discussions of mathematical
induction have sacrificed the reliability aspect in favor of an explanation of one
phenomena: why is this particular closed form of some expression hypothesized?
But this analysis ignores the phenomena that inductive proof is designed to
explain: the passage from example to universal. Regarding foundations, Coffa
reported the history,

[We consider] the sense and purpose of foundationalist or reductionist
projects such as the reduction of mathematics to arithmetic or arithmetic

70 J.T. Baldwin

to logic. It is widely thought that the principles inspiring such reconstruc-
tive efforts were basically a search for certainty. This is a serious error. It
is true, of course, that most of those engaging in these projects believed
in the possibility of achieving something in the neighborhood of Cartesian
certainty for principles of logic or arithmetic on which a priori knowledge
was to based. But it would be a gross misunderstanding to see in this
belief the basic aim of the enterprise. A no less important purpose was the
clarification of what was being said . . .
The search for rigor might be, and often was, a search for certainty, for an
unshakable “Grund”. But it was also a search for a clear account of the
basic notions of a discipline.1

We argue below that in the study of the explanatory power of mathematical
induction there are several issues to be considered. And some of them might
be dismissed as ‘mere reliability’. But we insist that explanation is a funda-
mental goal of mathematics. We focus on mathematical induction as there is a
substantial literature on its purported non-explanatory value.

Resnik and Kushner remark, ‘Mathematicians rarely describe themselves as
explaining’ (page 151 of [RK87]). As a mathematician, I can only explain such a
remark as a lack of exposure to mathematicians2. Perhaps the difficulty is that
the notions being explained are abstruse. I give from a popular source (wikipedia)
the first example that popped into my head.

In mathematics, monstrous moonshine, or moonshine theory, is a term
devised by John Conway and Simon P. Norton in 1979, used to describe
the unexpected connection between the monster group M and modular
functions, in particular, the j function. It is now known that lying behind
monstrous moonshine is a certain conformal field theory having the mon-
ster group as symmetries. The conjectures made by Conway and Norton
were proved by Richard Borcherds in 1992 using the no-ghost theorem from
string theory and the theory of vertex operator algebras and generalized
KacMoody algebras [Ano16].

Many why-questions in mathematics arise from exploring unexpected con-
nections across widely divergent areas. In this example, Conway and Norton
observed certain strange sequences of numbers (1,196884, 21493760, . . .) that
arose in finite group theory also arose in complex function theory. Physics and
functional analysis were involved in explaining this non-coincidence. One part
of the solution involved collaboration between two finite group theorists (Paul
Fong, Steve Smith) at University of Illinois in Chicago and our colleague A.O.L.
Atkin. As a pioneer in using the computer for number theoretic calculations3

and an expert in modular forms, Atkin instantly recognized these coefficients.
1 Page 26 of [Cof91].
2 Section 3 of [HM05] give several specific examples of mathematicians using ‘explain’

in various senses.
3 He and another U.I.C. mathematician, Neil Rickert, once held the record for the

largest pair of twin primes.

Foundations of Mathematics: Reliability and Clarity 71

The Langlands program is an even bigger example of an explanatory project
that crosses many fields to explain certain analogies.

Of course, such major projects as described in the last paragraph can not be
analyzed in a short paper or with my (lack of) expertise. In a series of vignettes,
‘How to explain number theory at a dinner party’, Harris ([Har15], page 51)
presents a more concrete example. His foil says ‘a number theorist sits at a desk
and answers questions about numbers all day’. He replies,

Actually, number theorists are not especially interested in answering ques-
tions about numbers. We really get excited when we notice that answers
seem to be coming out in a certain way, and then we try to explain why
that is. For example, the equation x414x2 + 121 = 0 – the question, what
number solves that equation? – has not one but four answers:

√
2 + 3i,√

2−3i, −√
2+3i, −√

2−3i. There’s a pattern: you can permute
√

2 with
−√

2 and 3i with −3i. What does it mean? What does it tell us about
solutions to other equation?
When our ideas about possible explanations are sufficiently clear, we set
ourselves the goal of finding the correct explanation and then justifying it.

2 The Explanatory Function of Mathematical Induction

Hanna [Han90], distinguishes between formal and acceptable proof. Although,
we discuss difficulties with her version of each notion in Sect. 5, this divide is
useful for understanding the situation.

1. Formal proof: proof as a theoretical concept in formal logic (or metalogic),
which may be thought of as the ideal which actual mathematical practice
only approximates.

2. Acceptable proof: proof as a normative concept that defines what is acceptable
to qualified mathematicians.

Although this distinction is irrelevant to much of her analysis, our fifth
proof below uses the notion of formal proof. Her argument rather depends on a
dichotomy between a proof that proves (which is an alias for acceptable) versus
a proof that explains. She writes (page 10 of [Han90]), ‘I prefer to use the term
explain only when the proof reveals and uses the mathematical ideas that moti-
vate it.’ A difficulty in her analysis is that while she defines ‘acceptable proof’ in
terms of ‘qualified mathematician’, she omits discussion of the ‘qualified’ mathe-
matician’s understanding of the hypotheses of the theorem – this understanding
crucially impacts the explanatory nature of the proof.

I take formal/acceptable to be the same distinction I make in [Bal13] between
Hilbert-Gödel-Tarski and Euclid-Hilbert proof. The first requires the definition of
a formal syntax and rules of inference and Tarski’s name is adjoined to consider
semantics. The second takes place in natural language. While there are spec-
ified definitions and axioms, the rules of inference may be implicit. With this
background we consider some examples.

72 J.T. Baldwin

Hanna’s examples are from [Ste78]; I address Steiner’s more sophisticated
approach to explanation later. Hanna writes4:

The following example illustrates the difference between a proof that
proves (acceptable) and proof that explains (explanatory):
Prove that the sum of the first n positive integers, S(n), is equal to n(n+1)

2
(page 10 of [Han90]).

There are two issues that have to be explained here.

1. Why do we choose the formula n(n+1)
2 ?

2. Why does our observation that this formula works on some examples extend
to all natural numbers?

Modern attempts to answer the second question date from Maurolycus in
1575 [Bus17], followed quickly by Pascal. But Maurolycus simply argues for a
few cases that the property extends from n to n+1. Cajori [Caj18] attributes the
explicit step of proving for each k, P (k) → P (k + 1) to Jakob Bernoulli in 1713.
Dedekind announces in his introduction (page 32 of [Ded63]) that a major result
of his essay on number is ‘a complete proof that the form of argument known as
complete induction (or the inference from n to n + 1) is really conclusive.’ The
modern formal version appears in Peano. Dedekind and Peano thus address an
even deeper why question, why does this ‘rule of complete induction’, gradually
clarified until the late 19th century, actually justify the passage from example
to universal.

We consider five alternative ‘proofs’ and see how they answer each of these
questions. We try to extract from the argument what the writer of the proof is
actually taking as the hypotheses.

Gauss 1. Hanna rates the standard proof by induction as acceptable but not
explanatory and the Gauss argument as both explanatory and acceptable. The
Gauss argument is the following.

1 + 2 + . . . n
n + (n-1) + . . . 1

n+1 + n+1 + . . . n+1

Now there are n addition problems that each add to n + 1 and each number
up to n occurs twice as a summand so the sum of the numbers up to n is n(n+1)

2 .
I argue below that by Hanna’s criteria the standard inductive proof is

explanatory of (2) but not (1) and is acceptable in terms of verifying truth.
While the hypotheses are not stated, when they are made clear, the argument
can clearly be carried out in arithmetic with induction.

And I say that ‘Gauss’s’ proof as given is explanatory of (1) but not (2). It is
not acceptable because the expression 1 + 2 . . . n is not defined (and is not easy
4 I added the parenthetical descriptions. And, I modified the question because as

originally phrased, the first question is not asked. But the explanations proffered by
Hanna all deal with it.

Foundations of Mathematics: Reliability and Clarity 73

to define). Remember, addition is a binary function. But 1 + 2 . . . + n is what is
variously called anadic, variadic addition or an example of plural quantification.
It is not part of basic mathematical notation because no arity is prescribed.
The function must be introduced by some form of inductive definition5. Such
functions are implemented in many (e.g. list processing) programming languages.

To make Gauss’ argument into a proof we have to clarify our estimate of
what the ‘qualified mathematician’ is assuming. Here is one approach6. Work in
informal set theory and for fixed n and k < n, define f(k) = (n + 1) − k. Then
for each k with 0 ≤ k ≤ n, k +f(k) = n+1. So the sum of the first n numbers is

(1 + f(1)) + (2 + f(2)) + . . . (n + f(n))
2

since the numerator of this expression contains each number up to n twice. Now
there are certainly n such k since the domain of f is n and by the (generalized)
distributive law the sum is n(n+1)

2 .
Note that the function f(n) is usually taken as a definition of Σn

k=1k. So we
see a way to fill the gap and produce an acceptable proof is to assume the gen-
eralized algebraic laws (i.e. distribution, associativity and commutativity over
arbitrary finite sums) AND that Σn

k=1k is well-defined. This is a hidden induc-
tion. But as Sally’s proof (below) shows, these additional assumptions represent
a ‘qualified mathematician’s hypotheses’. Of course the generalized algebraic
laws work as well for any ring (a proof by induction on the number of addends);
but the definition of Σn

k=1k does not. The ring might not be ordered, let alone
well-ordered.

Gauss 2. We now rephrase Gauss’s proof in an even more concrete form7. A
standard problem for introducing the problem of finding a closed form for Σn

i=1i
is the ‘handshake problem’. There are n + 1 people at a party and each shakes
hands with each other person. How many handshakes are there. One analysis
is, ‘Each of the n + 1 people shakes hands with n others so there are n(n +
1) handshakes. Whoops! I counted each handshake twice. So there are n(n+1)

2
handshakes’. But another way to count says the first person shakes hands with
n others, avoiding repetitions the second shakes hand with n − 1, the third with
n − 2. So the sum is

Σn
i=1(n − i) = Σn

i=1i.

Since both calculations give us the number of handshakes, the values are equal.
Here the two steps are actually quite separate. The calculation of the num-

ber of handshakes does not depend on induction. But then another method of

5 There are various logics for studying this topic [Lin14]; but they are not considered
in the papers under discussion.

6 In the paper Hanna draws on, Steiner [Ste78] refers to Quine’s set theory book
[Qui69].

7 While this statement is appealing to students, a more formal version with the same
proof is: How many edges are there in the complete symmetric graph on n vertices?.

74 J.T. Baldwin

calculation is introduced. The first calculation has no trace of induction8,
although it certainly relies on the connections between the natural numbers and
actual counting. The second certainly uses the inductive definition of the Σ nota-
tion. There is an apparent use of generalized associativity and commutativity,
but not distributivity.

The Standard Proof. We notice that 1 + 2 = 2(3)
2 and check this for a few more

small numbers. Now the mantra says, show (∀n)P (n) → P (n + 1). So one asks
what is n(n+1)

2 + (n + 1)? With a common denominator of 2, we have9

n(n + 1) + 2n + 2
2

=
n2 + 3n + 2

2
=

(n + 2)(n + 1)
2

.

But why is this explanatory of the formula holding for all n? This proof translates
the basic intuition; I can transform my calculation for 1 into a calculation for
2 into a calculation for 3 . . . into a single step by the power of algebra. That
is, the calculation with the variable n which can interpreted as any number. So
stepping through the numbers will establish the result for all natural numbers.
The procedure is not meaningless. The proof scheme is a distilled hint of how to
understand why the proposition is true for all n.

The choice of the particular formula n(n+1)
2 may remain a mystery; but

adding any of the many geometric pictures for motivating this step can com-
plete the explanation of the result.

The general aim of inductive proofs is to move from observing P (n) for
a few n to the statement ∀nP (n). The key contribution of the axiom/rule of
mathematical induction is to reduce the intuitive iterative calculation to a finite
statement ∀k[P (k) → P (k + 1). This step is amenable to ‘algebraic proof’.

Sally’s Proof: Systematic Generalization. Paul Sally’s sequence of proofs10, which
follow using both the generalized algebraic laws and the Σ notation, show the
generalizing power of algebraic methods. Consider the equation:

(n + 1)2 − 1 = Σn
k=1((k + 1)2 − k2). (1)

Notice that the right hand side telescopes. (The subtracted term in one sum-
mand is the positive term in the previous summand.) So the right hand side
8 This assertion of course depends on where I begin my arithmetic. There is no trace

of arithmetic, if my assumption is that (N,+,×) is a semi-ring (ring without addi-
tive inverse). But there is if I go back one step further and define multiplication
inductively from addition.

9 There is also a geometrical picture to understand the algebra in the numerator of
this calculation. Represent n(n + 1) by an n high by n + 1 wide rectangle. Then to
add 2(n + 1), place two 1 by n strips on top of the rectangle.

10 Paul Sally presented this argument at a University of Chicago class for high school
teachers on Aug. 3/4, 2012. Doubtless, the approach is old; the use of telescoping
series dates at least to the Bernoulli’s, Euler and Goldbach [BVP06]. Sally was not
only a distinguished researcher in p-adic analysis and representation theory but a
national leader in Mathematics Education.

Foundations of Mathematics: Reliability and Clarity 75

simplifies to the left and the equality is true. We can easily give a geometric
motivation for this formula. Write a square that is n + 1 units on a side as a
union 1×1 square in the lower left hand corner, then a 2×2 with the same lower
left corner, etc. Then note the difference between the successive small squares
gives a disjoint cover of the large square.

Note that the kth summand on the right side of Eq. 1 simplifies to 2k + 1 so
the right hand side en toto simplifies to n + 2Σn

k=1k. So we have

(n + 1)2 − 1 = n + 2Σn
k=1k

and a little algebra gives

Σn
k=1k =

n(n + 1)
2

.

But this approach yields more. The same telescoping argument shows

(n + 1)3 − 1 = Σn
k=1((k + 1)3 − k3).

Again we analyze the right hand side. Each summand is k3 + 3k2 + 3k + 1 − k3

which equals 3k2 + 3k + 1. So we have

(n + 1)3 − 1 = 3(Σn
k=1k

2 + Σn
k=1k) + n.

Using the formula for the sum of the first n positive integers and moving all but
the first term on the right to the left, 3(Σn

k=1k
2) equals n3 + 3n2 + 3n + 1 − 1 −

n − 3(n(n+1)
2). Now again a little, very basic, algebra gives

Σn
k=1k

2 =
n(n + 1)(2n + 1)

6
.

Let us emphasize what is explanatory about this proof. If we think of the
formulas for the first n squares, cubes, 4th powers etc. as a sequence of distinct
problems that require a new inspiration for the formulas for each larger power,
they are a great mystery. But this proof provides a unified strategy for attacking
all the problems. There isn’t (here) a geometric picture for the formulas after the
first couple of dimensions but we have (implicitly) a procedure for generating
each formula. The telescoping procedure can be visualized intuitively in exactly
the same way as the Gauss argument.

What are the hypotheses of this proof? The algebra of polynomials is assumed
(including generalized associativity and generalized distributivity which must be
established by a separate induction) and the whole argument is an induction on
the power of k in the sequence being summed.

Assertions of the non-explanatory nature of the standard inductive proof
seem to be based on the idea that the algebraic manipulations in going from
P (n) to P (n + 1) are inherently non-explanatory. The glory of algebra is that
one does not need (and possibly cannot) keep track of the meaning of each
term in a derivation; nevertheless, the variables have the same interpretation
at the end of the derivation as the beginning. The thought seems to be that

76 J.T. Baldwin

losing track of the explicit reference of each term means the argument is non-
explanatory but mere calculation. We have just seen the fallacy of this assertion
in Sally’s methods of generalization.

Steiner [Ste78] quotes Kreisel and Feferman as suggesting that the more
explanatory proof is the more general and/or abstract. He gives three more
specific versions of this assertion; I quote only the third.

(c) Of two proofs of the same theorem the more explanatory is the more
abstract (or general).
Kreisel explicitly adopts (c) – in a private communication –writing that
“familiar axiomatic analysis in terms of the greater generality of (the the-
orems occurring in) one proof than (in) the other” is ‘sufficient’ to distin-
guish between proofs’ explanatory value (page 136 of [Ste78]).

Steiner rejects this view arguing (page 144 of [Ste78]) ‘It is not, then, the
general proof which explains; it is the generalizable proof.’ This description fits
Sally’s proof well. Steiner refines this notions further and writes ‘an explana-
tory proof depends on a characterizing property of something mentioned in the
theorem: if we ‘deform’ the proof, substituting the characterizing property of a
related entity, we get a related theorem.’ Unfortunately this notion of charac-
terizing property is elusive as demonstrated by the examples in [HM05]. But in
this particular case, it seems we can identify the characterizing property as the
representation of (n + 1)2 − 1 as a telescoping series. The tool of telescoping
series is exploited.

The Generality of a Formal Proof. Recall the hypotheses (Gauss 1) of my first
explanation of writing a correct proof in naive set theory. Equally well it could
be thought of as a proof in second order arithmetic. The definition of n-adic
addition is in fact made by a recursive definition (in the technical sense). Both
that definition and the generalized algebraic laws can formalized in first order
Peano arithmetic. So, writing PA1 for first order Peano arithmetic, we have a
theorem:

PA1 � Σn
k=1k =

n(n + 1)
2

.

Now from the standpoint of Hanna this seems like a hair-splitting analysis
of the hypotheses. What it actually shows is that this formula holds not just for
the Natural Numbers but for any model of first order Peano arithmetic. It is a
vast generalization. Even more the same analysis applies to Sally’s argument.

We have presented five ‘proofs’ of the formula for the sum of the first n
numbers. We see that in order to assess the explanatory value of each we must
carefully stipulate the hypotheses. We see that one can avoid an actual induction,
if one assumes the generalized algebraic rules and the definition of the Σ symbol.
But this just hides the explanatory core of the solution.

3 Inductive Definition and Inductive Proof

A mathematical induction almost always is a response to an inductive definition.
The motivating definition is often hidden from view as in the case of the examples

Foundations of Mathematics: Reliability and Clarity 77

from arithmetic analyzed above, where the generalized algebraic sum and anadic
addition are often taken as just part of ‘general mathematical knowledge’. But
it is much more evident in proofs that involve algebraic constructions.

Generalized inductive definition11 is required to construct such objects as
the closure of a set to a subgroup or in a logic, the set of formulas in logic or
theorems of a theory.

Hafner and Mancosu [HM05] criticize the Resnik and Kushner [RK87] asser-
tion that Henkin’s proof of the completeness theorem is explanatory, asking
‘what the explanatory features of this proof are supposed to consist of’. Here is
an answer. The relevant form of the completeness theorem asserts, ‘every syntac-
tically consistent first order theory has a model.’ We sketch the Henkin proof12:
T has the witness property if for every formula φ(x), there is a witness constant
cφ such that

T � (∃x)φ(x) → φ(cφ).

Now the proof has two steps: (1) every syntactically consistent theory can be
extended to a complete theory with the witness property (2) every complete
syntactically consistent theory with the witness property has a model.

Both steps are explanatory. The extension of an arbitrary consistent T to one
satisfying the witnessing property depends precisely on the axioms and rules of
inference of the logic. Extending to a complete theory is often done by Zorn’s
lemma. If one finds this method unexplanatory, it can be done by an inductive
construction adding φα or ¬φα at stage α; the goal is to ensure that each sentence
is decided. To construct the model, consider the set of witnesses, M and show
that after modding out by the equivalence relation cEd if and only T � c = d, the
structure M ′ = M/E satisfies T . More precisely, show by induction on formulas
that for any formula ψ(c),

T � φ(c) if and only if M ′ |= φ(c).

Note that here the formulas and theorems of T arise by a generalized induc-
tive definition; so we must induct on the structure of the formulas to complete
the proof.

This induction shows exactly how the new structure arises from the syntac-
tic data; in contrast, Gödel reduces the first order case to propositional logic.
Further, Steiner’s deformation is realized in the many variants of this argument.
In particular, the first step of the proof will have minor variants depending
on which deductive system is chosen. But the second stage will be the same.
Moreover, completeness for many other logics (type theory, infinitary, modal,
2nd order, etc.), the omitting types theorem, and a long list of more technical

11 A set X is defined by generalized inductive definition if there is rule assigning to each
finite subset X0 of X some larger set X ′

0 (the closure of X0) and for each X0 ⊂ X,
X ′

0 ⊂ X. This notion is given a more inductive format if one starts with a set Y and
successively closes it to obtain X [Sho67].

12 We take the version form [Mar02] but similar accounts can be found in any modern
logic text.

78 J.T. Baldwin

results in model theory all derive from this method of model construction. A
later adaptation of the idea of constructing an actual algebraic object from the
syntactic description is applied in a proof of the Hilbert Nullstellensatz (page 89
of [Mar02]). Thus, here we can exhibit Steiner’s characterizing property as this
uniformly defined transfer from a collection of sentences in a formal language to
a mathematical structure.

4 Objections to Lange’s Argument that Proofs
by Mathematical Induction are not Explanatory

Lange [Lan09] presents an argument that proofs by induction are generally not
explanatory. I have already described how these are arguments are explanatory.
Here I try to identify some of the flaws in Lange’s analysis. I generally agree
with specific objections13 to his argument raised by various authors [Lan,Bak10,
Car16,Wys]. I now advance several further objections that I regard as more basic.

The most basic is that while his argument is against the explanatory ability of
a proof by induction, Lange reduces the discussion to whether the premises of the
argument explain the conclusion. Since it is a serious issue (e.g. [Han90,Ste78,
HM05]) whether one proof is more explanatory than another, this reduction
clearly misses a major problem.

I now sketch Lange’s argument. Noncontroversially, he notes that a proof by
mathematical induction proceeds by the following rule of inference14:

If P (1) and for each natural number k, P (k) → P (k+1) then for all k, P (k).
He then asserts, ‘The explanans would be (for some particular property P)

the fact that P (1) and that (for any natural number k) if P (k) then P (k + 1).’
He then proposes an alternative rule:
If P (5) and both (a) for each natural number k, P (k) → P (k + 1) and (b)

for each natural number k, P (k) → P (k − 1) then for all k, P (k).
Lange argues that not both of these rules can be explanatory. He writes ‘Rela-

tions of explanatory priority are asymmetric. Otherwise mathematical expla-
nation would be nothing like scientific explanation.’ What are the relations
between? We have argued that the explanatory object is a proof and such is
the title of his paper. But he concludes (where P is some property that may or
may not hold of a natural number), ‘It cannot be that P (1) helps to explain why
P (5) holds and that P (5) helps to explain why P (1) holds, on pain of mathe-
matical explanations running in a circle.’ This leap exacerbates the reduction of

13 Particularly relevant is the recognition by Wysocki [Wys] and Cariani [Car16] that
the basic thrust of up versus down induction breaks down for argument based on
generalized induction definition (such as induction of formulas or closing a subset of
a group G to a subgroup of G).

14 This ignores, of course, the many uses of mathematical induction to prove P (n) and
for each k ≥ n, P (k) → P (k + 1) then for all k ≥ n, P (k). His argument could be
complicated to handle this case as well as it does the one it explicitly addresses, but
he doesn’t even consider such situations.

Foundations of Mathematics: Reliability and Clarity 79

the argument to considering only ‘premises and consequence’ by conflating the
entire explanation with any component of it15.

Lange’s Objection is not About Induction. Lange’s argument applies more gen-
erally to show that for any domain A and a ∈ A, P (a) cannot be a partial
explanation for the assertion A |= (∀x)P (x). We will show several examples of
arguments of this form that contradict this assertion.

A standard mathematical technique is to show that all elements of some col-
lection16 Q satisfy P (x) by first showing an underlying fact that restricted to
Q, (∃x)P (x) ↔ (∀x)P (x). (In Lange’s case, Q is the set of natural numbers.)
Now to show that all elements satisfy P , we need only find a convenient a such
that P (a) holds. There could be another a′ almost as convenient and we could
conclude the result for still another a′′ that would be very hard to check. This
theme shows up in such proof paradigms as proving a function is well-defined,
showing that an equivalence relation is a congruence, and in many other situa-
tions that are more complicated than appropriate for discussion here. Perhaps
Lange would argue that such proofs are not explanatory. But they are direct
answers to, for example, ‘Why is this function well-defined?’

Here are two more specific examples. Let G be a group with a subgroup K.
Here Q is the set of cosets of K. Question: Does aK have an element of even
order? Underlying fact: If one element of a coset aK has an element of even order
then every element has even order. The key (easy) fact is that if a homomorphism
f of groups maps x to y, and y
= 1 then the order of x is divisible by the order of
y. So if the order of a is even so is the order of f(a) and any member of f−1(a).
Now to determine if aK has an element of even order, we can check the order of
any element of the coset (preferably one with low order).

Normal form arguments illustrate the same point. To take a high school exam-
ple, all quadratic equations can be expressed in each of three normal forms: (by
degree: ax2 +bx+c, factored form: a(x−r1)(x−r2), vertex form: a(x−h)2 +k).
Here Q is a collection of quadratic polynomials that are all equivalent by the
usual algebraic operations. Any of the infinitely many of the forms of the poly-
nomial have the same vertex and the same roots. Factored normal form makes
the roots evident; vertex normal form makes the vertex evident. Algebraic trans-
formations are used to put the polynomial in a convenient form for the problem
at hand. But one must compute the vertex or roots and the normal form makes
this easier. So the choice of one (indeed any) particular equivalent to the orig-
inal polynomial is partially explanatory of finding the roots or vertex of the
polynomial. Normal form arguments are, in fact, a clear example of explana-
tory argument. The ability to reduce to a normal form is the key point of the
explanation.

Tappenden (page 171 of [Tap05]) gives a slightly different example that illus-
trates the same point. The value of an integral over a plane area does not depend

15 Baker [Bak10] notes this objection but does not develop it.
16 If one were to develop this argument in first order logic, Q would be a formula.

However, in the spirit of the general discussion of induction we describe here informal
mathematical arguments.

80 J.T. Baldwin

on the choice of coordinates17; but the ease of evaluation does. So one might find
the evaluation by a particular choice of coordinates more explanatory than by
another. Thus, one specific case can be a partial explanation of another.

We noted that Lange’s argument did not really address inductive proof but
any argument for a univesral proposition. These examples demonstrate the fail-
ure of Lange’s contention that an argument for a universal statement (∀x)P (x)
cannot be explanatory if the arguments appeals to any instance of P . And thus
his claim that no proof by mathematical induction can be explanatory also fails.

5 Proof versus Provability

We began with Hanna’s distinction between formal and acceptable proof. Nei-
ther of these is an appropriate analysis of proof. The second, as she interprets it,
is ambiguous about what assumptions are intended. The first was never intended
to be such an analysis. Hilbert’s goal was to study the existence of a proof by
providing certain minimal characteristics. He deliberately ignored in this focus
on reliability such aspects of a ‘good’ proof as motivation, irredundancy, organi-
zation. While we hailed generalizability as a hallmark of an explanatory proof,
one must also note that a proof can be too general. In saying this, we bring out
still another aspect of ‘explanatory proof’; the quality of an explanation depends
on the intended audience18 The importance of audience is emphasized by this
description by Fields Medalist William Thurston of the reaction to his proof
of the ‘geometric Haken conjecture, a revolutionary result in low-dimensional
topology.

It became dramatically clear how much proofs depend on the audience. We
prove things in a social context and address them to a certain audience.
Parts of this proof I could communicate in two minutes to the topologists,
but the analysts would need an hour lecture before they would begin to
understand it. Similarly, there were some things that could be said in two
minutes to the analysts that would take an hour before the topologists
would begin to get it [Thu94].

None of these characteristics of ‘good proof’ are captured by ‘a proof is a
sequence of statements each of which is an axiom or deduced from prior state-
ments by one of clearly stated list of rules of inference’. As Burgess [Bur10] puts
it, ‘For formal provability to be a good model of informal provability it is not
necessary that formal proof should be a good model of informal proof.’

On the other hand, the proofs that contain only motivation for the inductive
step, miss the real difficulty. How can a finite process of proof justify a statement
about infinitely many objects? Thus, in constructing more explanatory proofs
17 Here, Q is the set of possible coordinatizations.
18 In fact, Hanna’s article in an educational journal reflects the common use of Gauss’

proof for future American teachers of middle school mathematics. The goal of the
activity is not understanding the step from example to universal but just some notion
of justification.

Foundations of Mathematics: Reliability and Clarity 81

above, we have included the both inductive definition and proof that is essential
for explaining this step but also a motivation (often geometric) for the induction
step. Such proofs both verify and explain.

After much of this paper was written, we found our view summarised in the
earlier work of Resnik and Kushner who, employing Van Fraassen’s notion of a
why-question, wrote,

nothing is an explanation simpliciter but only relative to the context-
dependent why-question(s) that it answers. . . . Whether or not a given
proof counts as an explanation depends on the why-question with which
it is approached (page 153 of [RK87]).

We return to our original theme of the interaction of reliability and clar-
ity. As Tappenden explores with rich examples and from several perspectives in
[Tap05], the notion of mathematical explanation needs to be treated in the gen-
eral context of the development of an area of mathematics. Our examples, even
while focusing on the proof of specific propositions, have demonstrated several
aspects of context dependence: the exact choice of hypotheses, what precisely is
to be explained, and to who.

The notion of good proof restores a proper balance between ‘reliability’ and
‘clarity’ that is lost by mistakenly identifying ‘provable’ with ‘a proof’.

References

[Ano16] Anon. Montrous moonshine. https://en.wikipedia.org/wiki/Monstrous
moonshine. Accessed Apr 2016

[Bak10] Baker, A.: Mathematical induction and explanation. Analysis 70, 681–689
(2010)

[Bal13] Baldwin, J.T.: Formalization, primitive concepts, and purity. Rev. Symb.
Log. 6, 87–128 (2013). http://homepages.math.uic.edu/ jbaldwin/pub/
purityandvocab10.pdf

[Bal14] Baldwin, J.T.: Completeness and categoricity (in power): formalization with-
out foundationalism. Bull. Symb. Log. 20, 39–79 (2014). http://homepages.
math.uic.edu/jbaldwin/pub/catcomnovbib2013.pdf

[Bal15] Baldwin, J.T.: Formalization Without Foundationalism; Model Theory and
the Philosophy of Mathematics Practice. Book manuscript available on
request (2015)

[Bur10] Burgess, J.P.: Putting structuralism in its place. Preprint (2010)
[Bus17] Bussey, W.H.: The origin of mathematical induction. Am. Math. Mon. 24,

199–207 (1917)
[BVP06] Bibiloni, L., Viader, P., Parad́ıs, J.: On a series of Goldbach and Euler. Bull.

AMS 113, 206–221 (2006)
[Caj18] Cajori, F.: Origin of the name “mathematical induction”. Am. Math. Mon.

25, 197–201 (1918). https://archive.org/stream/jstor-2972638/2972638
djvu.txt

[Car16] Cariani, F.: Mathematical induction and explanatory value in mathematics.
Preprint (2016)

https://en.wikipedia.org/wiki/Monstrous_moonshine
https://en.wikipedia.org/wiki/Monstrous_moonshine
http://homepages.math.uic.edu/jbaldwin/pub/purityandvocab10.pdf
http://homepages.math.uic.edu/jbaldwin/pub/purityandvocab10.pdf
http://homepages.math.uic.edu/jbaldwin/pub/catcomnovbib2013.pdf
http://homepages.math.uic.edu/jbaldwin/pub/catcomnovbib2013.pdf
https://archive.org/stream/jstor-2972638/2972638_djvu.txt
https://archive.org/stream/jstor-2972638/2972638_djvu.txt

82 J.T. Baldwin

[Cof91] Coffa, A.: The Semantic Traditin from Kant to Carnap: To the Vienna Sta-
tion. Cambridge University Press, Cambridge (1991)

[Ded63] Dedekind, R.: Essays on the Theory of Numbers. Dover, New York (1963).
As first published by Open Court Publications 1901: first German 1888th

[Han90] Hanna, G.: Some pedagogical aspects of proof. Interchange 21, 6–13 (1990)
[Har15] Harris, M.: Mathematics Without Apologies: Portrait of a Problematic Voca-

tion. Princeton University Press, Princeton (2015)
[HM05] Hafner, J., Mancosu, P.: The varieties of mathematical explanation. In:

Mancosu, P., Jørgensen, K.F., Pedersen, S. (eds.) Visualization, Explana-
tion, and Reasoning Styles in Mathematics. Synthese Library, vol. 327, pp.
215–250. Springer, Netherlands (2005)

[Lan] Lange, A.M.: Explanation by induction. Preprint
[Lan09] Lange, M.: Why proofs by mathematical induction are generally not explana-

tory. Analysis 69, 203–211 (2009)
[Lin14] Linnebo, Ø.: Plural quantification. In: The Stanford Encyclopedia of Philos-

ophy (Fall 2014th edn.) (2014). http://plato.stanford.edu/archives/fall2014/
entries/plural-quant/

[Man08] Mancosu, P.: Mathematical explanation: why it matters. In: Mancosu, P. (ed.)
The Philosophy of Mathematical Practice, pp. 134–150. Oxford University
Press, Oxford (2008)

[Mar02] Marker, D.: Model Theory: An Introduction. Graduate Texts in Mathematics,
vol. 217. Springer, New York (2002)

[Qui69] Quine, W.V.O.: Set Theory and Its Logic. Harvard, Cambridge (1969)
[RK87] Resnik, M., Kushner, D.: Explanation, independence, and realism in mathe-

matics. Ann. Math. Log. 38, 141–158 (1987)
[Sho67] Shoenfield, J.: Mathematical Logic. Addison-Wesley, Reading (1967)
[Ste78] Steiner, M.: Mathematical explanation. Philos. Stud. 34, 135–151 (1978)
[Tap05] Tappenden, J.: Proof style and understanding in mathematics I: visualization,

unification and axiom choice. In: Mancosu, P., Jørgensen, K.F., Pedersen,
S. (eds.) Visualization, Explanation, and Reasoning Styles in Mathematics.
Synthese Library, vol. 327, pp. 147–214. Springer, Netherlands (2005)

[Thu94] Thurston, W.P.: On proof and progress in mathematics. Bull. Am. Math.
Soc. 30, 161–177 (1994)

[Wys] Wysocki, T.: Mathematical induction, grounding, and causal explanation.
Presentation at APA meeting Chicago, March 2016

http://plato.stanford.edu/archives/fall2014/entries/plural-quant/
http://plato.stanford.edu/archives/fall2014/entries/plural-quant/

Justified Belief and the Topology of Evidence

Alexandru Baltag1, Nick Bezhanishvili1, Aybüke Özgün1,2(B),
and Sonja Smets1

1 University of Amsterdam, Amsterdam, The Netherlands
thealexandrubaltag@gmail.com, ozgunaybuke@gmail.com

{n.bezhanishvili,s.j.l.smets}@uva.nl
2 LORIA, CNRS - Université de Lorraine, Nancy, France

Abstract. We introduce a new topological semantics for evidence,
evidence-based justifications, belief and knowledge. This setting builds on
the evidence model framework of van Benthem and Pacuit, as well as our
own previous work on (a topological semantics for) Stalnaker’s doxastic-
epistemic axioms. We prove completeness, decidability and finite model
property for the associated logics, and we apply this setting to analyze
key issues in Epistemology: “no false lemma” Gettier examples, mislead-
ing defeaters, and undefeated justification versus undefeated belief.

1 Introduction

In this paper we propose a topological semantics for evidence-based belief, as well
as for a notion of “soft” (defeasible) knowledge, and explore their connections
with various notions of evidence possession. This work is largely based on looking
from a new perspective at the models for evidence and belief proposed by van
Benthem and Pacuit [21], and developed further in [20].

The basic pieces of evidence possessed by an agent are modeled as non-empty
sets of possible worlds. A combined evidence (or just “evidence”, for short) is
any non-empty intersection of finitely many pieces of evidence. This notion of
evidence is not necessarily factive1, since the pieces of evidence are possibly false
(and possibly inconsistent with each other). The family of (combined) evidence
sets forms a topological basis, that generates what we call the evidential topol-
ogy. This is the smallest topology in which all the basic pieces of evidence are
open, and it will play an important role in our setting. We study the operator of
“having (a piece of) evidence for a proposition P” proposed by van Benthem and
Pacuit, but we also investigate other interesting variants of this concept: “hav-
ing (combined) evidence for P”, “having a (piece of) factive evidence for P”
and “having (combined) factive evidence for P”. We show that the last notion
coincides with the interior operator in the evidential topology, thus matching

1 Factive evidence is true in the actual world. In Epistemology it is common to reserve
the term “evidence” for factive evidence. But we follow here the more liberal usage
of this term in [20], which agrees with the common usage in day to day life, e.g. when
talking about “uncertain evidence”, “fake evidence”, “misleading evidence” etc.

c© Springer-Verlag Berlin Heidelberg 2016
J. Väänänen et al. (Eds.): WoLLIC 2016, LNCS 9803, pp. 83–103, 2016.
DOI: 10.1007/978-3-662-52921-8 6

84 A. Baltag et al.

McKinsey and Tarski’s original topological semantics for modal logic [15].
We also show that the two factive variants of evidence-possession operators are
more expressive than the original (non-factive) one, being able (when interact-
ing with the global modality) to define the non-factive variants, as well as many
other doxastic/epistemic operators.

We propose a ‘coherentist’ semantics for justification and justified belief, that
is obtained by extending, generalizing and (to an extent) “streamlining” the
evidence-model framework for beliefs introduced in [21]. An argument for P
consists of one or more (combined) evidence sets supporting the same proposition
P (thus providing multiple evidential paths towards a common conclusion). A
justification for P is an argument for P that is consistent with every other
evidence. Our proposed definition of belief is equivalent to requiring that: P is
believed iff there is some (evidence-based) justification for P . According to this
setting, in order to believe P one needs to have an “undefeated” argument for
P : one that is not refuted by any available evidence. We show that our notion of
belief coincides with the one of van Benthem and Pacuit [21] for finite models,
but involves a different generalization of their notion in the infinite case. But, in
contrast to the later one, our semantics always ensures consistency of belief, even
when the available pieces of evidence are mutually inconsistent.2 Our proposal
is also very natural from a topological perspective: essentially, P is believed iff
P is true in “almost all” epistemically-possible worlds (where ‘almost all’ is
interpreted topologically: all except for a nowhere-dense set).

Moving on to ‘knowledge’, there are a number of different notions one may
consider. First, there is “absolutely certain” or “infallible” knowledge, akin to
Aumann’s concept of ‘partitional knowledge’ or van Benthem’s concept of ‘hard
information’. In our single-agent setting, this can be simply defined as the global
modality (quantifying universally over all epistemically-possible worlds). There
are propositions that are ‘known’ in this infallible way (-e.g. the ones known by
introspection or by logical proof), but very few: most facts in science or real-
life are unknown in this sense. Hence, it is more interesting to look at notions of
knowledge that are less-than-absolutely-certain: so-called ‘defeasible knowledge’.
The famous Gettier counterexamples [7] show that simply adding “factivity” to
belief will not do: true (justified) belief is extremely fragile (i.e. it can be too
easily lost), and it is consistent with having only wrong justifications for an
(accidentally) true conclusion.

Clark’s [5] influential “no false lemma” proposal is to require a correct justi-
fication: one that doesn’t use any falsehood. We formalize this notion by saying
that P is known if there is a factive (true) justification for P . Note though that
our proposal imposes a stronger requirement than Clark’s, since our concept
of justification requires consistence with all the available (combined) evidence.
In our terminology, Clark only requires a factive argument for P . So Clark’s
approach is ‘local’, assessing a knowledge claim based only on the truth of the

2 Another, purely technical advantage of our setting is that the resulting doxastic logic
has finite model property, in contrast to the one in [21].

Justified Belief and the Topology of Evidence 85

evidence pieces (and the correctness of the inferences) that are used to justify
it. Our proposal is coherentist, and thus ‘holistic’, assessing knowledge claims
by their coherence with all of the agent’s acceptance system: justifications need
to be checked against all the other arguments that can be constructed from the
agent’s current evidence.

Another approach to knowledge (also stronger than the no-false-lemma
requirement) was championed by Lehrer, Klein and others [11–14,17], under
the name of “Defeasibility Theory of Knowledge”. According to this view, P
is known (in the in-defeasible sense) only if there is a factive justification for
P that cannot be defeated by any further true evidence. This means that the
justification is consistent, not only with the currently available evidence, but
also with any potential (new) factive evidence that the agent might learn in the
future. This version of the theory has been criticized as being too strong: some
new evidence might be ‘misleading’ or ‘deceiving’ despite being true. A weaker
version of Defeasibility Theory requires that knowledge is undefeated only by
“non-misleading” evidence. In our setting, a proposition P is said to be a poten-
tially misleading evidence if it can indirectly generate false evidence (i.e. if by
adding P to the family of currently available pieces of evidence we obtain at
least one false combined evidence). Misleading propositions include all the false
ones, but they may also include some true ones. We show that our notion of
knowledge matches this weakened version of Defeasibility Theory (though not
the strong version).

Yet another path leading to our setting in this paper goes via our previous
work [1,2] on a topological semantics for the doxastic-epistemic axioms proposed
by Stalnaker [18]. These axioms were meant to capture a notion of fallible knowl-
edge, in close interaction with a notion of “strong belief” (defined as “subjective
certainty” or the “feeling of knowledge”). The main principle specific to this
system was that “believing implies believing that you know” (Bp → BKp),
which goes in direct contradiction to Negative Introspection for Knowledge.3

The topological semantics that we proposed for these concepts in [1,2] was overly
restrictive (being limited to the rather exotic class of “extremally disconnected”
topologies). In this paper, we show that these notions can be interpreted on
arbitrary topological spaces, without changing their logic. Indeed, our defini-
tions of belief and knowledge above can be seen as the natural generalizations
to arbitrary topologies of the notions in [1,2].

We apply our models to various Gettier-type examples, and completely
axiomatize the resulting logics, proving their decidability and finite model prop-
erty. Our hardest result refers to our richest logic (that can define all the modal
operators mentioned above). We end with a discussion of possible research lines
for future work.

3 Indeed, the logic of Stalnaker’s knowledge is not S5, but the modal logic S4.2.

86 A. Baltag et al.

2 Evidence, Belief and Knowledge in Topological Spaces

2.1 Topological Models for Evidence

Definition 1 (Evidence Models). (van Benthem and Pacuit)4 Given a count-
able set of propositional letters Prop, an evidence model for Prop is a tuple
M = (X,E0, V), where: X is a non-empty set of “states”; E0 ⊆ P(X) \ {∅} is a
family of non-empty sets called basic evidence sets (or pieces of evidence), with
X ∈ E0; and V : Prop → P(X) is a valuation function.

Given an evidence model M = (X,E0, V), a family F ⊆ E0 of pieces of
evidence is consistent if

⋂
F �= ∅, and inconsistent otherwise. Abody of evidence

is a family F ⊆ E0 s.t. every non-empty finite subfamily is consistent. We denote
by F the family of all bodies of evidence, and by Ffinite the family of all finite
ones. A body of evidence F supports a proposition P iff P is true in all worlds
satisfying the evidence in F (i.e.

⋂
F ⊆ P).

The strength order between bodies of evidence is given by inclusion: F ⊆ F ′

means that F ′ is at least as strong as F . Note that stronger bodies of evidence
support more propositions: if F ⊆ F ′ then every proposition supported by F is
also supported by F ′. A body of evidence is maximal (“strongest”) if it’s not
included in any other such body. We denote by Max⊆F = {F ∈ F : ∀F ′ ∈
F(F ⊆ F ′ ⇒ F = F ′)} the family of all maximal bodies of evidence. By Zorn’s
Lemma, every body of evidence can be strengthened to a maximal body of evi-
dence: ∀F ∈ F∃F ′ ∈ Max⊆F(F ⊆ F ′).

A combined evidence (or just “evidence”, for short) is any non-empty inter-
section of finitely many pieces of evidence. We denote by E := {⋂ F : F ∈
Ffinite s.t.

⋂
F �= ∅} the family of all (combined) evidence.5 A (combined) evi-

dence e ∈ E supports a proposition P ⊆ X if e ⊆ P . (In this case, we also say
that e is evidence for P .) Note that the natural strength order between com-
bined evidence sets goes the other way around (reverse inclusion): e ⊇ e′ means
that e′ is at least as strong as e.6

The intuition is that e ∈ E0 represent the basic pieces of “direct” evidence
(obtained say by observation or via testimony) that are possessed by the agent,
while the combined evidence e ∈ E represents indirect evidence that is obtained
by combining finitely many pieces of direct evidence. Not all of this evidence is
necessarily true though.

We say that some (basic or combined) evidence e ∈ E is factive evidence at
world x ∈ X whenever it is true at x (i.e. x ∈ e). A body of evidence F is factive
if all the pieces of evidence in F are factive (i.e. x ∈ ⋂

F).

4 The notion of evidence model in [21] is more general, covering cases in which evidence
depends on the actual world, but we stick with what they call ‘uniform’ models, since
this corresponds to restricting to agents who are “evidence-introspective”.

5 This is a difference in notation with the setting in [20,21], where E is used to denote
the family of basic evidence sets (denoted here by E0).

6 This is both to fit with the strength order on bodies of evidence (since F ⊆ F ′ implies⋂
F ⊇ ⋂F ′), and to ensure that stronger evidence supports more propositions: since,

if e ⊇ e′, then every proposition supported by e is supported by e′.

Justified Belief and the Topology of Evidence 87

The plausibility (pre)order �E associated to an evidence model is given by:

x �E y iff ∀e ∈ E0 (x ∈ e ⇒ y ∈ e) iff ∀e ∈ E (x ∈ e ⇒ y ∈ e).

Definition 2 (Topological Space). A topological space is a pair X = (X, τ),
where X is a non-empty set and τ is a topology on X, i.e. a family τ ⊆ P(X)
containing X and ∅, and closed under finite intersections and arbitrary unions.
Given a family E ⊆ P(X) of subsets of X, the topology generated by E is the
smallest topology τE on X such that E ⊆ τE . A set A ⊆ X is closed iff it
is the complement of an open set, i.e. it is of the form X \ U with U ∈ τ .
Let τ c = {X \ U |U ∈ τ} denote the family of all closed sets of X = (X, τ).
In any topological space X = (X, τ), one can define two important operators,
namely interior Int : P(X) → P(X) and closure Cl : P(X) → P(X), given by
IntP :=

⋃{U ∈ τ |U ⊆ P}, ClP :=
⋂{C ∈ τ c |P ⊆ C}. A set A ⊆ X is called

dense in X if ClA = X and it is called nowhere dense if IntClA = ∅. For a
topological space X = (X, τ), the specialization preorder �τ is given by: x �τ y
iff ∀U ∈ τ (x ∈ U ⇒ y ∈ U).

Special Case: Relational Spaces. A topological space is called Alexandroff
iff the topology is closed under arbitrary intersections. An Alexandroff topol-
ogy is fully captured by its specialization preorder: in this case, the interior
operator coincides with the Kripke modality for the specialization relation (i.e.
IntP = {x ∈ X | ∀y (x �τ y ⇒ y ∈ P)}). There is a canonical bijection
between Alexandroff topologies X = (X, τ) and preordered spaces7 (X,≤), map-
ping (X, τ) to (X,�τ); the inverse map takes (X,≤) into (X,Up(X)), where
Up(X) is the family of upward-closed sets8.

An Even More Special Case: (Grove/Lewis) Sphere Spaces. These are
topological spaces in which the opens are “nested”, i.e. for every U,U ′ ∈ τ , we
have either U ⊆ U ′ or U ′ ⊆ U . Sphere spaces are Alexandroff, and moreover
they correspond exactly to totally preordered spaces (i.e. sets X endowed with a
total preorder ≤).

Definition 3 (Topological Evidence Models). A topological evidence model
(“topo-e-model”, for short) is a structure M = (X,E0, τ, V), where (X,E0, V)
is an evidence model and τ = τE is the topology generated by the family of
combined evidence E (or equivalently, by the family of basic evidence sets E0)9,
which will be called the evidential topology. It is easy to see that the plausi-
bility order �E of M coincides with the specialization order of the associated
topology: �E = �τ .

Since any family E0 ⊆ P(X) generates a topology, topo-e-models are just
another presentation of (uniform) evidence models. We use this special termi-
nology to stress our focus on the topology, and to avoid ambiguities (since our
7 A preorder on X is a reflexive-transitive relation on X.
8 A subset A ⊆ X is said to be upward-closed wrt ≤ if ∀x, y ∈ X (x ∈ A ∧ x ≤ y ⇒

y ∈ A).
9 These families generate the same topology. We denote it by τE only because the

family E of combined evidence forms a basis of this topology.

88 A. Baltag et al.

definition of belief in topo-e-models will be different from the definition of belief
in evidence models in [21]).

A topo-e-model is said to be Alexandroff iff the underlying topology is
Alexandroff. So they can be understood as relational (plausibility) models, in
terms of a preorder ≤ (“plausibility relation”). A special case is the one of
Grove-Lewis (topological) evidence models: this is the case when the basic pieces
of evidence are nested (i.e. for all e, e′ ∈ E0 we have either e ⊆ e′ or e′ ⊆ e). It
is easy to see that in this case all the opens of the generated topology are also
nested, so the topology is that of a sphere space.

Proposition 1. Given a topo-e-model M = (X,E0, τ, V), the following are
equivalent:

1. M is Alexandroff;
2. The family E of (combined) evidence is closed under arbitrary non-empty

intersections (i.e. if F ⊆ E and
⋂

F �= ∅, then
⋂

F ∈ E);
3. Every consistent body of evidence is equivalent to a finite body of evidence

(i.e. ∀F ∈ F(
⋂

F �= ∅ ⇒ ∃F ′ ∈ Ffinite s. t.
⋂

F =
⋂

F ′)).

Arguments and Justifications. We can use this setting to formalize a “coher-
entist” view on justification. An argument for P is a disjunction U =

⋃
i∈I ei

of (some non-empty family of) (combined) evidences ei ∈ E that all support P
(i.e. ei ⊆ P for all i ∈ I). Thus, an argument may provide multiple evidential
paths ei to support a common conclusion P . Topologically, an argument for P
is the same as a non-empty open subset of P (U ∈ τE s.t. U ⊆ P). Also, the
interior IntP is the weakest (most general) argument for P .

A justification for P is an argument U for P that is consistent with every
(combined) evidence (i.e. U ∩ e �= ∅ for all e ∈ E, which in fact implies that
U ∩ U ′ �= ∅ for all U ′ ∈ τE \ {∅}). So justifications are arguments that are not
defeated by any available evidence. Topologically, we can see that a justification
for P is just an (everywhere) dense open subset of P (i.e. U ∈ τE s.t. U ⊆ P
and ClτE (U) = X). As for evidence, an argument or a justification for P is
said to be factive (or “correct”) if it is true in the actual world. The fact that
arguments are open in the generated topology encodes the principle that any
argument should be evidence-based : whenever an argument is correct, then it
is supported by some factive evidence. To anticipate further: in our setting,
justifications will form the basis of belief, while correct justifications will form
the basis of (defeasible) knowledge. But for now we’ll introduce a stronger form
of “knowledge”: the absolutely-certain and irrevocable kind.

Infallible Knowledge: Possessing Hard Information. We use ∀ for the so-
called global modality, which associates to every proposition P ⊆ X, some other
proposition ∀P , given by putting: (∀P) := X iff P = X, and (∀P) := ∅ otherwise.
In other words: (∀P) holds (at any state) iff P holds at all states. In this setting,
∀ is interpreted as “absolutely certain, infallible knowledge”, defined as truth in

Justified Belief and the Topology of Evidence 89

all the worlds that are consistent with the agent’s information.10This is not a
realistic concept of knowledge, but just a limit notion, encompassing all epistemic
possibilities.

Having Basic Evidence for a Proposition. van Benthem and Pacuit define,
for every proposition P ⊆ X, another proposition11 E0P given by putting:
E0P := X if ∃e ∈ E0 (e ⊆ P), and E0P := ∅ otherwise. Essentially, E0P means
that “the agent has basic evidence for P”, i.e. P is supported by some available
piece of evidence. One can also introduce a factive version of this proposition:
�0P , read as “the agent has factive basic evidence for P”, is given by putting

�0P := {x ∈ X : ∃e ∈ E0 (x ∈ e ⊆ P)}.

Having (Combined) Evidence for a Proposition. If in the above definitions
of E0P and �0P we replace basic pieces of evidence by combined evidence, we
obtain two other operators EP , meaning that “the agent has (combined) evidence
for P”, and �P , meaning that “the agent has factive (combined) evidence for
P”. More precisely:

EP := X if ∃e ∈ E (e ⊆ P), and EP := ∅ otherwise;

�P := {x ∈ X : ∃e ∈ E (x ∈ e ⊆ P)}.

Observation 1. Note that the agent has evidence for a proposition P iff she has
an argument for P . So EP can also be interpreted as “having an argument for
P”. Similarly, �P can be interpreted as “having a correct (i.e. factive) argument
for P”.

Observation 2. Note that the agent has factive evidence for P at x iff x is
in the interior of P . So our modality � coincides with the interior operator :
�P = IntP.

2.2 Belief

Belief à la van Benthem-Pacuit [21]. The notion of belief proposed by van
Benthem and Pacuit, which we will denote by Bel, is that P is believed iff every
maximal body of evidence supports P : BelP holds (at any state of X) iff we have⋂

F ⊆ P for every F ∈ Max⊆F . As already noticed in [21], this is equivalent
to treating evidence models as special cases of plausibility models [3,4,19], with
the plausibility relation given by �E (or equivalently, as Grove-Lewis “sphere
models” [9] where the spheres are the sets that are upward closed wrt �E), and
10 In a multi-agent model, some worlds might be consistent with one agent’s infor-

mation, while being ruled out by another agent’s information. So, in a multi-agent
setting, ∀i will only quantify over all the states in agent i’s current information cell
(according to a partition Πi of the state space reflecting agent i’s hard information).

11 They denote this by EP , but we use E0P for this notion, since we reserve the
notation EP for having combined evidence for P .

90 A. Baltag et al.

applying the standard definition (due to Grove) of belief as “truth in all the most
plausible worlds”.12 Grove’s definition works well when the plausibility relation
is well-founded (and also in the somewhat more general case given by the Grove-
Lewis Limit Assumption), but it yields inconsistent beliefs in the case that there
are no most plausible worlds. But note that in evidence models �E may be
non-wellfounded. Indeed, belief à la van Benthem-Pacuit can be inconsistent :

Example 1. Consider the evidence model M = (N, E0, V), where the state
space is the set N of natural numbers, V (p) = ∅, and the basic evidence family
E0 = {e ⊆ N : N \ e finite} consists of all co-finite sets. The only maximal body
of evidence in E0 is E0 itself. However,

⋂
E0 = ∅. So Bel⊥ holds in M.

This phenomenon only happens in (some cases of) infinite models, so it is not due
to the inherent mutual inconsistency of the available evidence. The “good” exam-
ples in [21] are the ones in which (possibly inconsistent) evidence is processed to
yield consistent beliefs. So it seems to us that the intended goal (only partially
fulfilled) in [21] was to ensure that the agents are able to form consistent beliefs
based on the available evidence. We think this to be a natural requirement for
idealized “rational” agents, and so we consider doxastic inconsistency to be “a
bug, not a feature”, of the van Benthem-Pacuit framework. Hence, we now pro-
pose a notion that agrees with the one in [21] in all the “good” cases, but also
produces in a natural way only consistent beliefs.

Our Notion of Belief. The intuition is that P is believed iff it is entailed by
all the “sufficiently strong” (combined) evidence. Formally, BP holds iff every
finite body of evidence can be strengthened to some finite body of evidence which
supports P :

BP holds (at any state) iff ∀F ∈ Ffinite∃F ′ ∈ Ffinite(F ⊆ F ′ ∧
⋂

F ′ ⊆ P).

Our notion of belief B coincides with Bel in the finite case, or, more generally,
in evidence models in which every maximal body of evidence is consistent. But,
unlike Bel, our notion of belief B is always consistent (i.e. B⊥ = B∅ = ∅), and
moreover it satisfies the axioms of the standard doxastic logic KD45. Another
nice feature is that our belief B is a purely topological notion, as can be seen
from the following:

Proposition 2. In every evidence model (X,E0, V), the following are equiva-
lent, for any proposition P ⊆ X:

1. BP holds (at any state);
2. every (combined) evidence can be strengthened to some evidence supporting

P (∀e ∈ E∃e′ ∈ E s.t e′ ⊆ e ∩ P);
12 Note that all the notions of belief we consider are global: they do not depend on the

state of the world, i.e. we have either BelP = X or BelP = ∅ (similar to the sets
∀P, E0P, EP). This expresses the assumption that belief is a purely internal notion,
thus transparent and hence absolutely introspective. This is standard in logic and
accepted by most philosophers.

Justified Belief and the Topology of Evidence 91

3. every argument (for anything) can be strengthened to an argument for P
(∀U ∈ τE \ {∅}∃U ′ ∈ τE \ {∅} s.t. U ′ ⊆ U ∩ P);

4. there is a justification for P : i.e. some argument for P which is consistent with
any available evidence (∃U ∈ τE s.t. U ⊆ P and U ∩ e �= ∅ for all e ∈ E);

5. P includes some dense open set;
6. IntP is dense in τE (i.e. Cl(IntP) = X), or equivalently X \ P is nowhere

dense;
7. ∀♦�P holds (at any state: i.e. ∀♦�P �= ∅, or equivalently ∀♦�P = X), where

♦P := ¬�¬P is the dual of the � operator.

Proposition 2 part (4) can be interpreted as saying that our notion of belief
B is the same as “justified belief”: a proposition P is believed iff the agent has a
justification for P . In this case, there exists a weakest (most general) justification
for P , namely IntP . Moreover, part (6) shows that our proposal is very natural
from a topological perspective: it is equivalent to saying that P is believed iff
the complement of P is nowhere dense. Since nowhere dense sets are one of the
topological concepts of “small” or “negligible sets”, this amounts to believing
propositions if they are true in “almost all” epistemically-possible worlds (where
‘almost all’ is interpreted topologically). Finally, part (7) tells us that belief is
definable in terms of the operators ∀ and �.

Our notion of belief can be viewed as a formalization of a “coherentist”
epistemology of belief. The requirement that a belief’s justification must be
open in the evidential topology simply means that the justification is ultimately
based on the available evidence; while the requirement that the justification is
dense (in the same topology) means that all the agent’s beliefs must be coherent
with all her evidence.13

Conditional Belief. For sets Q,Q′ ⊆ X, we say that Q′ is Q-consistent iff
Q ∩ Q′ �= ∅. A body of evidence F is Q-consistent iff

⋂
F ∩ Q �= ∅. We say

that P is believed given Q, and write BQP , iff every finite Q-consistent body
of evidence can be strengthened to some finite Q-consistent body of evidence
supporting Q → P (i.e. ¬Q ∪ P). Similarly to Proposition 2, BQP is equivalent
to any of the following: every Q-consistent evidence can be strengthened to some
Q-consistent evidence supporting Q → P ; every Q-consistent argument can be
strengthened to a Q-consistent argument for Q → P ; there is a Q-consistent
argument for Q → P which is consistent with any Q-consistent evidence; Q → P
includes some Q-consistent open set which is dense in Q; ∀(Q → ♦(Q ∧ �(Q →
P))) = X; etc.

2.3 Knowledge

We now define a “softer” notion of knowledge, that is closer to the common
usage of the word than “infallible” knowledge. Formally, we put KP := {x ∈
13 Lehrer uses the metaphor of a Subjective Justification Game [13]: rational beliefs

are based on justifications that survive a game between the Believer and an inner
Critic, who tries to defeat them using the Believer’s own “acceptance system”.

92 A. Baltag et al.

X : ∃U ∈ τ (x ∈ U ⊆ P ∧Cl(U) = X)}. So KP holds at x iff P includes a dense
open neighborhood of x; equivalently, iff x ∈ IntP and IntP is dense. Essentially,
this says that knowledge is “correctly justified belief”: KP holds at world x iff
there exists some justification U ∈ τ for P such that x ∈ U . In other words,
P is known iff there exists some correct (i.e. factive) argument for P that is
consistent with all the available evidence.

Note that K satisfies Stalnaker’s Strong Belief Principle BP = BKP : from
a subjective point of view, belief is indistinguishable from knowledge [18].14

Example 2. Consider the model X = ([0, 1], E0, V), where E0 = {(a, b)∩ [0, 1] :
a, b ∈ R, a < b} and V (p) = ∅. The generated topology τE is the standard
topology on [0, 1]. Let P = [0, 1] \ { 1

n : n ∈ N} be the proposition stating that
the actual state is not of the form 1

n , for any n ∈ N. Since the complement
¬P = { 1

n : n ∈ N} is nowhere dense, the agent believes P , and e.g. U =⋃
n≥1(

1
n+1 , 1

n) is a (dense, open) justification for P . This belief is true at world
0 ∈ P . But this true belief is not knowledge at 0: no justification for P is true
at 0, since P doesn’t include any open neighborhood of 0, so 0 �∈ IntP and hence
0 �∈ KP . (However, P is known at all the other worlds x ∈ P \ {0}, since
∀x ∈ P \ {0}∃ε > 0 s.t. x ∈ (x − ε, x + ε) ⊆ P , hence x ∈ IntP .)

1
20 11

4
1
8

1
3

1
5

1
6

1
7

Fig. 1. ([0, 1], τE)

This ‘soft’ type of knowledge is defeasible. In contrast, the usual assump-
tion in Logic is that knowledge acquisition is monotonic. As a result, logicians
typically assume that knowledge is “irrevocable”: once acquired, it cannot be
defeated by any further evidence. In our setting, the only irrevocable knowledge
is the infallible one, captured by the operator ∀. Clearly, K is not irrevocable.

Epistemologists have made various other proposals on how a realistic con-
cept of knowledge should be defined. A conception that is very close to (though
subtly different from) our notion is the one held by the proponents of the so-
called Defeasibility Theory of Knowledge, e.g. Lehrer and Paxson [14], Lehrer
[13], Klein [11,12]: “in-defeasible knowledge” cannot be defeated by any factive
evidence that might be gathered later (though it may be defeated by false “evi-
dence”). In its simplest version, this says that “an agent knows that P if and
only if P is true, she believes that P , and she continues to believe P if any true
information is received” (Stalnaker [18]). In our formalism, this would require

14 As we’ll see, K and B satisfy all the Stalnaker axioms for knowledge and belief
[1,2,16] and further generalizes our previous work on a topological interpretation of
Stalnaker’s doxastic-epistemic axioms, which was based on extremally disconnected
spaces.

Justified Belief and the Topology of Evidence 93

P to be believed conditional on every true “new evidence”: i.e. P is known in
world x iff BQP holds for every Q ⊆ X with x ∈ Q. This simple version is what
Rott calls “the Stability Theory of Knowledge” [17]. In contrast, the full-fledged
version of the Defeasibility Theory, as held by Lehrer and others, insists that,
in order to know P , not only the belief in P has to stay undefeated, but also
its justification (i.e. what we call here “an argument for P”). In other words,
there must exist an argument for P that is believed conditional on every true
evidence. Clearly, this implies that the belief in P is stable; but the converse is
not at all obvious. Indeed, Lehrer claims that the converse is false. The problem
is that, when confronted with various new pieces of evidence, the agent might
keep switching between different justifications (for believing P); thus, she may
keep believing in P conditional on any such new true evidence, without actually
having any “good” justification (i.e. one that remains itself undefeated by all
true evidence). To have ‘knowledge’, we thus need a stable justification.15

However, many authors attacked the above interpretation (of both the sta-
bility and the defeasibility theory) as being too strong : if we allow as poten-
tial defeaters all factive propositions (i.e. all sets of worlds P containing the
actual world), then there are intuitive examples showing that knowledge KP
can be defeated. Here is such an example, discussed by a leading proponent of
the defeasibility theory (Klein [12]). Loretta filled in her federal taxes, following
very carefully all the required procedures on the forms, doing all the calculations
and double checking everything. Based on this evidence, she correctly believes
that she owes $500, and she seems perfectly justified to believe this. So it seems
obvious that she knows this. But suppose now that, being aware of her own
fallibility, she asks her accountant to check her return. The accountant finds no
errors, and so he sends her his reply reading “Your return contains no errors”;
but he inadvertently leaves out the word “no”. If Loretta would learn the true
fact that the accountant’s letter actually reads “Your return contains errors”, she
would lose her belief that she owed $500! So it seems that there exist defeaters
that are true but “misleading”.

We can formalize this counterexample as follows.

Example 3. Consider the model M = (X,E0, V), where X = {x1, x2, x3,
x4, x5}, V (p) = ∅, E0 = {X,O1, O2}, O1 = {x1, x2, x3}, O2 = {x3, x4, x5}.
The resulting set of combined evidence is E = {X,O1, O2, {x3}}. Assume
the actual world is x1. Then O1 is known, since x1 ∈ Int(O1) = O1 and
Cl(O1) = X. Now consider the model M+O3 = (X,E+O3

0 , V) obtained by
adding the new evidence O3 = {x1, x5}. We have E+O3

0 = {X,O1, O2, O3},
so E+O3 = {X,O1, O2, O3, {x1}, {x3}, {x5}}. Note that the new evidence is true
(x1 ∈ O3). But O1 is not even believed in M+O3 anymore (since O1∩{x5} = ∅,
so O1 is no longer dense in τE+O3), thus O1 is no longer known after the true
evidence O3 was added!

15 Lehrer uses the metaphor of an ‘Ultra-Justification Game’ [13], according to which
‘knowledge’ is based on arguments that survive a game between the Believer and an
omniscient truth-telling Critic, who tries to defeat the argument by using both the
Believer’s current “justification system” and any new true evidence.

94 A. Baltag et al.

x1 x2 x3

x4

x5

O1

O2

=⇒O3

x1 x2 x3

x4

x5

O1

O2

O3

Fig. 2. From M to M+O3

Klein’s story corresponds to taking O1 to represent Loretta’s direct evidence
(based on careful calculations) that she owes $500, O2 to represent her prior
evidence (based on past experience) that the accountant doesn’t make mistakes
in his replies to her, and O3 the potential new evidence provided by the letter. In
conclusion, our notion of knowledge is incompatible with the above-mentioned
strong interpretations of both stability and defeasibility theory, thus confirming
the objections raised against them.

Klein’s solution is that one should exclude such ‘misleading’ defeaters, which
may “unfairly” defeat a good justification. But how can we distinguish them
from genuine defeaters? Klein’s diagnosis, in Foley’s more succinct formulation
[6], is that “a defeater is misleading if it justifies a falsehood in the process of
defeating the justification for the target belief”. In the example, the falsehood is
that the accountant had discovered errors in Loretta’s tax return. It seems that
the new evidence O3 (the existence of the letter as actually written) supports
this falsehood, but how? According to us, it is the combination O2 ∩ O3 of the
new (true) evidence O3 with the old (false) evidence O2 that supports the new
falsehood: the true fact (about the letter saying what it says) entails a falsehood
only if it is taken in conjunction with Loretta’s prior evidence (or blind trust)
that the accountant cannot make mistakes. So intuitively, misleading defeaters
are the ones which may lead to new false conclusions when combined with some
of the old evidence.

We proceed now to formalize this distinction. Given a topo-e-model M, a
proposition Q ⊆ X is misleading at x ∈ X wrt E if evidence-addition with Q
produces some false new evidence; i.e. if there is some e′ ∈ E+Q \ E s.t. x �∈ e′;
equivalently, there is some e ∈ E s.t. x �∈ (e ∩ Q) �∈ E ∪ {∅}. It is easy to see
that: old evidence in E is by definition non-misleading wrt E (i.e. if e ∈ E then
e is non-misleading wrt E), and new non-misleading evidence must be true (i.e.
if Q �∈ E is non-misleading at x then x ∈ Q).

We are now in the position to formulate precisely the “weakened” versions of
both stability and defeasibility theory that we are looking for. The Weak Stability
Theory will stipulate that P is known if it is undefeated by every non-misleading
proposition: i.e. BQP holds for every non-misleading Q ⊆ X. The Weak Defea-
sibility Theory will require that there exists some justification (argument) for P

Justified Belief and the Topology of Evidence 95

that is undefeated by every non-misleading proposition. Finally, there is a third
formulation, which one might call Epistemic Coherence theory, saying that P
is known iff there exists some justification (argument) for P which is consistent
with every non-misleading proposition.

The following counterexample shows that weak stability is (only a necessary,
but) not a sufficient condition for knowledge:

Example 4. Consider the model M = (X,E0, V), where X = {x0, x1, x2},
V (p) = ∅, E0 = {X,O1, O2}, O1 = {x1}, O2 = {x1, x2}. The resulting set
of combined evidence is E = E0. Assume the actual world is x0, and let P =
{x0, x1}. Then P is believed (since its interior IntP = {x1} is dense) but it is
not known (since x0 �∈ IntP = {x1}). However, we can show that P is believed
conditional on any non-misleading proposition. For this, note that the family of
non-misleading propositions (at x0) is E ∪ {P, {x0}} = {X,O1, O2, P, {x0}}. It
is easy to see that for each set Q in this family, we have BQP .

x2x1x0
O1

O2P

Fig. 3. M = (X, E0, V): The continuous ellipses represent the currently available pieces
of evidence, while the dashed ones represent the other non-misleading propositions.

One should stress that our counterexample agrees with the position taken
by most proponents of Defeasibility Theory: stability of (justified) belief is not
enough for knowledge. Intuitively, what happens in the above example is that,
although the agent continues to believe P given any non-misleading evidence, her
justification keeps changing: there is no uniform justification for P that works
for every non-misleading evidence Q.

The next result shows that our notion of knowledge exactly matches the
weakened version of Defeasibility Theory, as well as the Epistemic Coherence
formulation:

Proposition 3. Let M be a topo-e-model, and assume x ∈ X is the actual
world. The following are equivalent for all P ⊆ X:

1. P is known (x ∈ KP).
2. there is an argument for P that cannot be defeated by any non-misleading propo-

sition; i.e. ∃U ∈ τE \ {∅} s.t. U ⊆ P and BQU for all non-misleading Q ⊆ X.
3. there is an argument for P that is consistent with every non-misleading propo-

sition; i.e. ∃U ∈ τE \ {∅} s.t. U ⊆ P and U ∩ Q �= ∅ for all non-misleading
Q ⊆ X.

96 A. Baltag et al.

3 Logics for Evidence, Belief and Knowledge

In this section, we present formal languages for evidence, belief and knowledge,
and provide sound, complete and decidable proof systems for the resulting logics.

The topological language L is given by the following grammar

ϕ::=p | ¬ϕ | ϕ ∧ ϕ | Bϕ | Kϕ | ∀ϕ | Bϕϕ | �ϕ | Eϕ

where p ∈ Prop. We employ the usual abbreviations for propositional connectives
�, ⊥, ∨, →, ↔, and for the dual modalities 〈B〉, 〈K〉, 〈E〉 etc., except that some
of them have special abbreviations: ∃ϕ := 〈∀〉ϕ and ♦ϕ := 〈�〉ϕ.

Several fragments of L have special importance: LB is the fragment having
the belief B as the only modality; LK has only the knowledge operator K; LKB

has only operators K and B; L∀K has only operators ∀ and K; L∀� has only
operators ∀ and �.

We also consider an extension LE0�0 of L, called the evidence language: this
is obtained by extending L with two new operators E0 and �0. The expressivity
of LE0�0 goes beyond purely topological properties: the meaning of E0 and �0

does not depend only on the topology, but also on the basic evidence family
E0. Finally, we will consider one very important fragment of LE0�0 , namely the
language L∀��0 having only the operators ∀, � and �0. Its importance comes
from that L∀��0 is co-expressive with LE0�0 .

The semantics for these languages is obvious: given a topo-e-model M =
(X,E0, τ, V), we recursively extend the valuation map V to an interpretation
map ||ϕ|| for all formulas ϕ, by interpreting the Boolean connectives and the
modalities using the corresponding semantic operators: e.g. ||∀ϕ|| = ∀||ϕ||,
||�ϕ|| = �||ϕ|| etc.

Proposition 4. The following equivalences are valid in all topo-e-models:

1 . Bϕ ↔ 〈K〉Kϕ ↔ ∃Kϕ ↔ ∀♦�ϕ 4 . Kϕ ↔ �ϕ ∧ Bϕ ↔ �ϕ ∧ ∀♦�ϕ
2 . Eϕ ↔ ∃�ϕ 5 . Bθϕ ↔ ∀(θ → ♦(θ ∧ �(θ → ϕ)))
3 . E0ϕ ↔ ∃�0ϕ 6 . ∀ϕ ↔ B¬ϕ⊥

So, all the other modalities of LE0�0 can be defined in L∀��0 .

Theorem 1. The system KD45 (for the B operator) is sound and complete
for LB.

Theorem 2. The system S4.2 (for the K operator) is sound and complete
for LK .

Theorem 3. A sound and complete axiomatization for LKB is given by
Stalnaker’s system16 KB in [18], consisting of the following:

1. the S4 axioms and rules for Knowledge K

16 This shows that the semantics in this paper correctly generalizes the one in [1,2,16]
for the system KB.

Justified Belief and the Topology of Evidence 97

2. Consistency of Belief: Bφ → ¬B¬φ;
3. Knowledge implies Belief: Kφ → Bφ;
4. Strong Positive and Negative Introspection for Belief: Bφ → KBφ; ¬Bφ →

K¬Bφ;
5. the “Strong Belief” axiom: Bφ → BKφ.

Theorem 4 [8]. The following system is sound and complete for L∀�:

1. the S5 axioms and rules for ∀
2. the S4 axioms and rules for �
3. ∀ϕ → �ϕ

By Proposition 4, L∀� can define all the other operators of L. So a complete
system for L is obtained by adding the relevant axiom-definitions to the above
system.

Theorem 5. The following system is sound and complete for L∀K :

1 .the S5 axioms and rules for ∀ 3 . ∀ϕ → Kϕ
2 .the S4 axioms and rules for K 4 . ∃Kϕ → ∀〈K〉ϕ

Since belief is definable in L∀K , a complete system for the language with this
additional belief operator is obtained by adding the axiom-definition Bϕ ↔ ∃Kϕ
to the above system for L∀K .

Theorem 6 (Soundness, Completeness, Finite Model Property and
Decidability). The logic L∀��0 is completely axiomatizable and has the finite
model property, and hence it is decidable. A complete axiomatization is given
by the following system L∀��0 :

1. the S5 axioms and rules for ∀
2. the S4 axioms and rules for �
3. �0ϕ → �0�0ϕ
4. the Monotonicity Rule for �0: from ϕ → ψ, infer �0ϕ → �0ψ
5. ∀ϕ → �0ϕ
6. �0ϕ → �ϕ
7. the Pullout Axiom17: (�0ϕ ∧ ∀ψ) → �0(ϕ ∧ ∀ψ)

The proof of Theorem 6 is the most difficult result of the paper, and we
present it in full in the Appendix. The key difficulty of the proof consists in
guaranteeing that the natural topology for which � acts as interior operator is
exactly the topology generated by the neighborhood family associated to �0.
Though the main steps of the proof involve known methods (a canonical quasi-
model construction, a filtration argument, and then making multiple copies of
the worlds), addressing the above-mentioned difficulty requires an innovative use
of these methods, and a careful treatment of each of the steps. The proofs of the
other results are standard, and so are left for the extended version of this paper,
available at http://www.illc.uva.nl/Research/Publications/Reports/.
17 This axiom originates from [20], where it is stated as an equivalence rather than an

implication. But the converse is provable in our system.

http://www.illc.uva.nl/Research/Publications/Reports/

98 A. Baltag et al.

4 Further Developments and Future Work

The above-mentioned extended version contains an investigation of several types
of evidential dynamics (building on the work in [21]), as well as complete axiom-
atizations of the corresponding dynamic-epistemic logics.

One line of further inquiry involves adding to the semantic structure a larger
set E♦

0 ⊇ E0 of potential evidence, meant to encompass all the evidence that
might be learnt in the future. This would connect well with the topological pro-
gram in Inductive Epistemology [10], based on a learning-theoretic investigation
of convergence of beliefs to the truth in the limit, when the agent observes a
stream of incoming evidence.

We also plan to extend our framework to notions of group knowledge for a
group G. There are at least two different natural options for common knowledge:
the Aumann concept (the infinite conjunction of “everybody knows that every-
body knows etc”), and Lewis’ concept, based on shared evidence (the intersection⋂

a∈G Ea
0 of the evidence families Ea

0 of all agents a ∈ G). Similarly, there are
now two different models for a group’s epistemic potential : the standard concept
of distributed knowledge, versus the one obtained by sharing the evidence (i.e.
taking the union EG

0 =
⋃

a∈G Ea
0 of all the evidence families Ea

0).

Acknowledgments. We thank Johan van Benthem, Kevin Kelly, Thomas Icard and
Eric Pacuit for feedback and discussions on the topic of this paper. We also thank to the
anonymous referees of WoLLIC 2016 for their useful comments. A. Özgün’s work was
funded by the European Research Council grant EPS 313360. Sonja Smets’ research was
funded by the European Research Council under the European Community’s Seventh
Framework Programme (FP7/2007-2013)/ERC Grant agreement no. 283963.

A Appendix: Proof of Theorem 6

A quasi-model is a tuple M = (X,E0,≤, V), where: E0 ⊆ P(X) satisfies the
same constraints as a topo-e-model, V is a valuation, ≤ is a preorder s.t. every
e ∈ E0 is upward-closed wrt ≤. The semantics is the same as on topo-e-models,
except that � gets a Kripke semantics: ‖�φ‖ := {x ∈ X | ∀y ∈ X(x ≤ y ⇒ y ∈
‖φ‖)}.

A quasi-model M = (X,E0,≤, V) is called Alexandroff if the topology τE is
Alexandroff and ≤=�E is the specialization preorder. There is a natural bijec-
tion B between Alexandroff quasi-models and Alexandroff topo-e-models, given
by putting, for any Alexandroff quasi-model M = (X,E0,≤, V), B(M) :=
(X,E0, τE , V). Moreover, M and B(M) satisfy the same formulas of L∀��0

at the same points. So Alexandroff quasi-models are just another presentation
of Alexandroff models.

Proposition 5. Let M = (X,E0,≤, V) be a quasi-model. The following are
equivalent:

1. M is Alexandroff (hence, equivalent to an Alexandroff topo-e-model);

Justified Belief and the Topology of Evidence 99

2. τE coincides with the family of all upward-closed sets (with respect to ≤);
3. for every x ∈ X, ↑x is in τE.

Proof. (1 ⇒ 3) Suppose M is Alexandroff, i.e., τE is Alexandroff and ≤=�E .
Let x ∈ X. Then we have: ↑x = {y | x ≤ y} = {y | x �E y} = {y | ∀U ∈
τE(x ∈ U ⇒ y ∈ U)} =

⋂{U ∈ τE | x ∈ U}. Since τE is an Alexandroff space,
we have

⋂{U ∈ τE | x ∈ U} ∈ τE , and hence ↑x =
⋂{U ∈ τE | x ∈ U} ∈ τE .

(3 ⇒ 2) Let Up(X) be the set of all upward-closed subsets of X. It is easy
to see that τE ⊆ Up(X) (since τE is generated by E0 and every element
of E0 is upward-closed). Now let A ∈ Up(X). Since A is upward-closed, we
have A =

⋃{↑x | x ∈ A}. Then, by (3) (and τE being closed under arbitrary
unions), we obtain A ∈ τE .
(2 ⇒ 1) Suppose (2) and let A ⊆ τE . By (2), every U ∈ A is upward-closed;
hence,

⋂ A is upward-closed, so by (2)
⋂ A ∈ τE . This proves that τE is

Alexandroff. (2) also implies that ↑x is the least open neighbourhood of x in
τE , i.e., ↑x ⊆ U , for all U such that x ∈ U ∈ τE . Therefore, ≤⊆�E . For the
other direction, suppose x �E y. This implies, in particular, y ∈ ↑x (since
x ∈ ↑x ∈ τE), i.e., x ≤ y.

The proof of Theorem 6 goes through three steps: (1) strong completeness
for quasi-models; (2) finite quasi-model property; (3) every finite quasi-model
is modally equivalent to a finite Alexandroff quasi-model (hence, to a topo-e-
model).

Proposition 6 (STEP 1). L∀��0 is sound and strongly complete for quasi-
models.

Proof. Soundness is easy. Completeness goes via a canonical quasi-model:

Lemma 1 (Lindenbaum Lemma). Every consistent set of sentences in L∀��0

can be extended to a maximally consistent one.

Proof. Standard.

Let us now fix a consistent set of sentence Φ0. Our goal is to construct a
quasi-model for Φ0. By Lemma 1, there exists a maximally consistent theory T0

s. t, Φ0 ⊆ T0. For any two maximally consistent theories T and S, we put: T ∼ S
iff for all φ ∈ L∀��0 : ((∀φ) ∈ T ⇒ φ ∈ S); and T ≤ S iff for all φ ∈ L∀��0 :
((�φ) ∈ T ⇒ φ ∈ S).

Canonical Quasi-Model for T0. This is a structure M = (X,E0,≤, V), where:
X := {T : T maximally consistent theory with T ∼ T0}; E0 := {�̂0φ : φ ∈
L∀��0 with (∃�0φ) ∈ T0}, where we used notation θ̂ := {T ∈ X : θ ∈ T}; ≤ is
the restriction of the above preorder ≤ to X; and V (p) := p̂. In the following,
variables T, S, . . . range over X.

Lemma 2. M is a quasi-model.

Proof. Easy verification.

100 A. Baltag et al.

Lemma 3 (Existence Lemma for ∀). ∃̂ϕ �= ∅ iff ϕ̂ �= ∅.
Proof. Easy (along standard lines of the so-called Diamond Lemma for ∃).

Lemma 4 (Existence Lemma for �). T ∈ ♦̂ϕ iff (∃)S ∈ ϕ̂ s. t. T ≤ S.

Proof. Standard again.

Lemma 5 (Existence Lemma for �0). T ∈ �̂0ϕ iff (∃) e ∈ E0 s. t. T ∈ e ⊆ ϕ̂.

Proof. Left-to-right : Assume T ∈ �̂0ϕ, i.e. (�0ϕ) ∈ T . From T ∈ X and T ∼ T0

we get (∃�0ϕ) ∈ T0. Taking e := �̂0ϕ, we get e ∈ E0 and T ∈ e. To show that
e ⊆ ϕ̂, we use the theorem �0ϕ → ϕ, which implies that �̂0ϕ ⊆ ϕ̂, i.e. e ⊆ ϕ̂.

Right-to-Left : Let T ∈ X and e ∈ E0, s.t. T ∈ e ⊆ ϕ̂. Then e = �̂0θ for some
θ s.t. (∃�0θ) ∈ T0. So T ∈ e = �̂0θ ⊆ ϕ̂. We now prove the following:

Claim: The set Γ := {�0θ} ∪ {∀ψ : ∀ψ ∈ T} ∪ {¬ϕ} is inconsistent.

Proof of Claim: Suppose that Γ �� ⊥. By Lemma 1, there exists some S ∈ X
s. t. Γ ⊆ S. From (¬ϕ) ∈ S we get S �∈ ϕ̂ (by the consistency of S), and from
(�0θ) ∈ S we get S ∈ �̂0θ. So S ∈ �̂0θ \ ϕ̂, contradicting �̂0θ ⊆ ϕ̂.

Given the Claim, there exists a finite Γ0 ⊆ Γ with Γ0 � ⊥. By the theorem
(∀ψ1 ∧ . . . ∀ψn) ↔ ∀(ψ1 ∧ . . . ψn), we can assume that Γ0 = {�0θ,∀ψ,¬ϕ}, for
some ψ s. t. (∀ψ) ∈ T . From Γ0 � ⊥ we get the theorem (�0θ ∧ ∀ψ) → ϕ.
Using the Monotonicity Rule for �0, the formula �0(�0θ ∧ ∀ψ) → �0ϕ is also
a theorem. From the axiom �0θ → �0�0θ and the Pullout Axiom, we get the
theorem (�0θ ∧ ∀ψ) → �0ϕ. Since (�0θ) ∈ T and (∀ψ) ∈ T , it follows that
(�0ϕ) ∈ T , i.e. T ∈ �̂0ϕ, as desired.

Lemma 6 (TruthLemma).For every formula φ ∈ L∀��0 , we have: ‖φ‖M = φ̂.

Proof. Standard proof by induction on the complexity of φ.

Consequence: T0 |=M Φ0. This proves Step 1 (Proposition 6).

Theorem 7 (STEP 2). The logic L∀��0 has Strong Finite Quasi-Model
Property.

Proof of Theorem 7: Let φ0 be a consistent formula. By Step 1, take T0

a maximal consistent theory s.t. φ0 ∈ T0, and let M = (X,E0,≤, V) be the
canonical quasi-model for T0. We will use two facts about this model:

1. ‖ϕ‖M = ϕ̂, for all ϕ ∈ L∀��0 ,

2. E0 = {�̂0ϕ : (∃�0ϕ) ∈ T0} = {‖�0ϕ‖M : (∃�0ϕ) ∈ T0}.

Let Σ be a finite set such that: (1) φ0 ∈ Σ; (2) Σ is closed under subformulas;
(3) if (�0ϕ) ∈ Σ then (��0ϕ) ∈ Σ; (4) Σ is closed under single negations;
(5) (�0�) ∈ Σ. For x, y ∈ X, put: x ≡Σ y iff ∀ψ ∈ Σ(x ∈ ‖ψ‖M ⇐⇒ y ∈
‖ψ‖M), and denote by |x| := {y ∈ X : x ≡Σ y} the equivalence class of x

Justified Belief and the Topology of Evidence 101

modulo ≡Σ . Also, put Xf := {|x| : x ∈ X}, and more generally put ef :=
{|x| : x ∈ e} for every e ∈ E0.

We now define a “filtrated model” Mf = (Xf , Ef
0 ,≤f , V f), by taking: as set

of worlds the set Xf (of equivalence classes) defined above; as for the rest, we put:
|x| ≤f |y| iff for all (�ψ) ∈ Σ : (x ∈ ‖�ψ‖M ⇒ y ∈ ‖�ψ‖M); Ef

0 := {ef : e =
�̂0ψ = ‖�0ψ‖M ∈ E0 for some ψ s. t (�0ψ) ∈ Σ}; V f (p) := {|x| : x ∈ V (p)}.

Lemma 7. Mf is a finite quasi-model (of size bounded by a computable function
of φ0).

Proof. Xf is finite, since Σ is finite so there are only finitely many equivalence
classes modulo ≡Σ . In fact, the size is at most 2|Σ|. It’s obvious that ≤f is a
preorder, that Xf ∈ Ef

0 (since X = ‖�0�‖M and (�0�) ∈ Σ, so Xf ∈ Ef
0) and

that every ef ∈ Ef
0 is non-empty (since it comes from some non-empty e ∈ E0).

So we only have to prove that the evidence sets are upward–closed: for this, let
ef ∈ Ef

0 , with e = �̂0ψ ∈ E0, (�0ψ) ∈ Σ and let |x| ∈ ef and |y| ∈ Xf s.t.
|x| ≤f |y|. We need to show that |y| ∈ ef .

Since |x| ∈ ef , there exists some x′ ≡Σ x s.t. x′ ∈ �̂0ψ = ‖�0ψ‖M. From
(�0ψ) ∈ Σ and x′ ≡Σ x, we get x ∈ ‖�0ψ‖M. By the theorem �0ψ → ��0ψ,
we have x ∈ ‖��0ψ‖M. But (��0ψ) ∈ Σ (by the closure assumptions on
Σ), so |x| ≤f |y| gives us y ∈ ‖��0ψ‖M. By the T -axiom �φ → φ, we get
y ∈ ‖�0ψ‖M = �̂0ψ = e, hence |y| ∈ ef .

Lemma 8 (Filtration Lemma). For every formula φ ∈ Σ: ‖φ‖Mf = {|x| :
x ∈ ‖φ‖M}.
Proof. Proof by induction on φ ∈ Σ. The atomic case, inductive cases for propo-
sitional connectives and modalities ∀φ and �φ are treated as usual (-in the last
case using the filtration property of ≤f). We only prove here the inductive case
for the modality �0φ:

Left-to-right inclusion: Let |x| ∈ ‖�0φ‖Mf . This means that there exists
some ef ∈ Ef

0 s.t. |x| ∈ ef ⊆ ‖φ‖Mf . By the definition of Ef
0 , there exists some

ψ s.t.: (�0ψ) ∈ Σ and e = �̂0ψ = ‖�0ψ‖M ∈ E0. From |x| ∈ ef , it follows that
there is some x′ ≡Σ x s.t. x′ ∈ e = ‖�0ψ‖M, and since (�0ψ) ∈ Σ, we have
x ∈ ‖�0ψ‖M = e. It is easy to see that we also have e ⊆ ‖φ‖M. (Indeed, let
y ∈ e be any element of e; then |y| ∈ ef ⊆ ‖φ‖Mf , so |y| ∈ ‖φ‖Mf , and by the
induction hypothesis y ∈ ‖φ‖M.) So we have found an evidence set e ∈ E0 s.t.
x ∈ e ⊆ ‖φ‖M, i.e., shown that x ∈ ‖�0φ‖M.

Right-to-left inclusion: Let x ∈ ‖�0φ‖M, with (�0φ) ∈ Σ. It is easy to see
that (∃�0φ) ∈ x (by the theorem �0φ → ∃�0φ) and so also (∃�0φ) ∈ T0 (since
x ∈ X so x ∼ T0). This means that the set e := �̂0φ = ‖�0φ‖M ∈ E0 is an
evidence set in the canonical model, and since (�0φ) ∈ Σ, we conclude that
ef ∈ Ef

0 is an evidence set in the filtrated model. We obviously have x ∈ e, and
so |x| ∈ ef . By the (T) axiom, e = ‖�0φ‖M ⊆ ‖φ‖M, and hence ef ⊆ {|y| : y ∈
‖φ‖M} = ‖φ‖Mf (by the induction hypothesis). Thus, we have found ef ∈ Ef

0

s.t. |x| ∈ ef ⊆ ‖φ‖Mf , i.e., shown that |x| ∈ ‖�0φ‖Mf .

102 A. Baltag et al.

Theorem 8 (STEP 3). Every finite quasi-model is modally equivalent to a finite
Alexandroff quasi-model (and so to a topo-e-model).

Proof of Theorem 8: Let M = (X,E0,≤, V) be a finite quasi-model. We form
a new structure M̃ = (X̃, Ẽ0, ≤̃, Ṽ), by putting: X̃ := X×{0, 1}; Ṽ (p) := V (p)×
{0, 1}; (x, i)≤̃(y, j) iff: x ≤ y and i = j; Ẽ0 := {ei : e ∈ E0, i ∈ {0, 1}}∪{ey

i : y ∈
e ∈ E0, i ∈ {0, 1}}∪{X̃}, where we used notations ei := e×{i} = {(x, i) : x ∈ e}
and ey

i := ↑y × {i} ∪ e × {1 − i} = {(x, i) : y ≤ x} ∪ e1−i.

Lemma 9. M̃ is a (finite) quasi-model.

Proof. Easy verification.

Notation: For any set Ỹ ⊆ X̃, put ỸX := {y ∈ X : (y, i) ∈ Ỹ for some i ∈
{0, 1}} for the set consisting of first components of all members of Ỹ . It is easy
to see that we have: (Ỹ ∪ Z̃)X = ỸX ∪ Z̃X , and X̃X = X.

Lemma 10. If y ∈ e ∈ E0, i ∈ {0, 1} and ẽ ∈ {ei, e
y
i }, then we have:

1. ẽX = e;
2. ey

i ∩ ei = ↑(y, i), where ↑(y, i) = {x̃ ∈ X̃ : (y, i)≤̃x̃} = {(x, i) : y ≤ x}.
Proof

1. If ẽ = ei, then ẽX = (e × {i})X = e. If ẽ = ey
i , then ẽX = (↑y × {i})X ∪ (e ×

{1 − i})X = ↑y ∪ e = e (since e is upward-closed and y ∈ e, so ↑y ⊆ e).
2. ey

i ∩ei = (↑y × {i} ∪ e × {1 − i})∩(e × {i}) = (↑y∩e)×{i} = ↑y×{i} = ↑(y, i)
(since ↑y ⊆ e).

Lemma 11. M̃ is an Alexandroff quasi-model (and thus also a topo-e-model).

Proof. By Proposition 5, it is enough to show that, for every (y, i) ∈ X̃, the
upward-closed set ↑(y, i) is open in the topology τE generated by E0. But this
follows directly from part 2 of Lemma 10.

Lemma 12 (Modal-Equivalence Lemma). For all ϕ ∈ L∀��0 : ‖ϕ‖M̃ =
‖ϕ‖M × {0, 1}.
Proof. Induction on ϕ. The base case, and the inductive steps for Boolean con-
nectives and operators ∀ and �, are straightforward. We only prove the inductive
step for �0:

Left-to-Right Inclusion: Suppose that (x, i) ∈ ‖�0ϕ‖M̃. Then there exists some
ẽ ∈ Ẽ such that (x, i) ∈ ẽ ⊆ ‖ϕ‖M̃ = ‖ϕ‖M × {0, 1} (where we used the
induction hypothesis for ϕ at the last step). From this, we obtain that x ∈ ẽX ⊆
(‖ϕ‖M × {0, 1})X = ‖ϕ‖M. But by the construction of Ẽ, ẽ ∈ Ẽ means that
either ẽ = X̃ or there exist e ∈ E0, y ∈ e and j ∈ {0, 1} such that ẽ ∈ {ej , e

y
j }.

If the former is the case, we have x ∈ ẽX = X ⊆ ‖ϕ‖M. Since X ∈ E0, by
the semantics of �0, we obtain x ∈ ‖�0ϕ‖M. If the latter is the case, by part

Justified Belief and the Topology of Evidence 103

1 of Lemma 10, we have ẽX = e, so we conclude that x ∈ ẽX = e ⊆ ‖ϕ‖M.
Therefore, again by the semantics of �0, we have x ∈ ‖�0ϕ‖M.

Right-to-Left Inclusion: Suppose that x ∈ ‖�0ϕ‖M. Then there exists some
e ∈ E0 such that x ∈ e ⊆ ‖ϕ‖M. Take now the set ei = e × {i} ∈ Ẽ. Clearly,
we have (x, i) ∈ ei ⊆ ‖ϕ‖M × {i} ⊆ ‖ϕ‖M × {0, 1} = ‖ϕ‖M̃ (where we used the
induction hypothesis for ϕ at the last step), i.e. we have (x, i) ∈ ‖�0ϕ‖M̃.

Theorem 8 follows immediately from the above Lemma: the same formulas
are satisfied at x in M as at (x, i) in M̃. Theorem 6 is an immediate corollary
of Theorem 8.

References

1. Baltag, A., Bezhanishvili, N., Özgün, A., Smets, S.: The Topology of belief, belief
revision and defeasible knowledge. In: Grossi, D., Roy, O., Huang, H. (eds.) LORI.
LNCS, vol. 8196, pp. 27–40. Springer, Heidelberg (2013)

2. Baltag, A., Bezhanishvili, N.: Özgün, A., Smets, S.: The topological theory of belief
(2015). http://www.illc.uva.nl/Research/Publications/Reports/PP-2015-18.text.
pdf (Submitted)

3. Baltag, A., Smets, S.: Conditional doxastic models: a qualitative approach to
dynamic belief revision. In: Proceedings of WOLLIC, vol. 165, pp. 5–21 (2006)

4. Baltag, A., Smets, S.: A qualitative theory of dynamic interactive belief revision.
Texts Logic Games 3, 9–58 (2008)

5. Clark, M.: Knowledge and grounds: a comment on Mr. Gettier’s paper. Analysis
24, 46–48 (1963)

6. Foley, R.: When is True Belief Knowledge?. Princeton University Press, Princeton
(2012)

7. Gettier, E.: Is justified true belief knowledge? Analysis 23, 121–123 (1963)
8. Goranko, V., Passy, S.: Using the universal modality: gains and questions. J. Log.

Comput. 2, 5–30 (1992)
9. Grove, A.: Two modellings for theory change. J. Phil. Logic 17, 157–170 (1988)

10. Kelly, K.: The Logic of Reliable Inquiry. Oxford University Press, Oxford (1996)
11. Klein, P.: A proposed definition of propositional knowledge. J. Philos. 68, 471–482

(1971)
12. Klein, P.: Certainty, a Refutation of Scepticism. University of Minneapolis Press,

Minneapolis (1981)
13. Lehrer, K.: Theory of Knowledge. Routledge, London (1990)
14. Lehrer, K., Paxson, T.J.: Knowledge: undefeated justified true belief. J. Philos. 66,

225–237 (1969)
15. McKinsey, J.C.C., Tarski, A.: The algebra of topology. Ann. of Math. 2(45),

141–191 (1944)
16. Özgün, A.: Topological Models for Belief and Belief Revision. Master’s thesis, Uni-

versity of Amsterdam, Amsterdam, The Netherlands (2013)
17. Rott, H.: Stability, strength and sensitivity: converting belief into knowledge.

Erkenntnis 61, 469–493 (2004)
18. Stalnaker, R.: On logics of knowledge and belief. Phil. Studies 128, 169–199 (2006)
19. van Benthem, J.: Dynamic logic for belief revision. JANCL 17, 129–155 (2007)
20. van Benthem, J., Fernández-Duque, D., Pacuit, E.: Evidence and plausibility in

neighborhood structures. Ann. Pure Appl. Logic 165, 106–133 (2014)
21. van Benthem, J., Pacuit, E.: Dynamic logics of evidence-based beliefs. Studia Log-

ica 99(1), 61–92 (2011)

http://www.illc.uva.nl/Research/Publications/Reports/PP-2015-18.text.pdf
http://www.illc.uva.nl/Research/Publications/Reports/PP-2015-18.text.pdf

Semantic Acyclicity for Conjunctive Queries:
Approximations and Constraints

Pablo Barceló(B)

DCC, Center for Semantic Web Research, University of Chile, Santiago, Chile
pbarcelo@dcc.uchile.cl

Abstract. Evaluation of conjunctive queries (CQs) is NP-complete, but
becomes tractable for syntactically defined fragments. One of the oldest
and most studied such fragments is the class of acyclic CQs. Here we
look at the problem of semantic acyclicity, i.e., given a CQ q, is there an
acyclic CQ q′ that is equivalent to it? This notion is important in CQ
evaluation, as semantically acyclic CQs can be evaluated in polynomial
time. The notion of semantic acyclicity itself is decidable, with the same
complexity as the usual static analysis tasks for CQs, i.e., NP-complete.

Unfortunately, semantic acyclic is not general enough for practical
purposes, as only CQs whose core is acyclic belong to this class. In this
tutorial we present two approaches that have been developed to make the
notion more flexible and take better advantage of the ideas that underlie
it. These are computing approximations and making use of semantic
information in the form of constraints. For approximations, we look at
the case when q is not semantically acyclic and explain how to find and
evaluate those acyclic CQs q′ that are as “close” as possible to q in
terms of containment. As for constraints, they enrich semantic acyclicity
since they can be applied on a CQ q to produce an acyclic reformulation
of it. We present results that establish the boundary of decidability for
semantic acyclicity under usual database constraints such as tuple and
equality-generating dependencies, and show their applicability in query
evaluation.

1 Extended Abstract

Query optimization is a fundamental database task that amounts to transform-
ing a query into one that is arguably more efficient to evaluate. The database
theory community has developed several principled methods for optimization
of conjunctive queries (CQs), many of which are based on static-analysis tasks
such as containment [1]. In a nutshell, such methods compute a minimal equiv-
alent version of a CQ, where minimality refers to number of atoms. As argued
by Abiteboul, Hull, and Vianu [1], this provides a theoretical notion of “true
optimality” for the reformulation of a CQ, as opposed to practical considera-
tions based on heuristics. For each CQ q the minimal equivalent CQ is its core
q′ [15]. Although the static analysis tasks that support CQ minimization are
NP-complete [9], this is not a major problem for real-life applications, as the
input (the CQ) is small.
c© Springer-Verlag Berlin Heidelberg 2016
J. Väänänen et al. (Eds.): WoLLIC 2016, LNCS 9803, pp. 104–108, 2016.
DOI: 10.1007/978-3-662-52921-8 7

Semantic Acyclicity for Conjunctive Queries 105

An important shortcoming of the previous approach, however, is that there
is no theoretical guarantee that the minimized version of a CQ is in fact easier to
evaluate (recall that, in general, CQ evaluation is NP-complete [9]). We know,
on the other hand, quite a bit about classes of CQs which can be evaluated
efficiently. It is thus a natural problem to ask whether a CQ can be reformulated
as one in such tractable classes, and if so, what is the cost of computing such
reformulation. Following Abiteboul et al., this would provide us with a theoret-
ical guarantee of “true efficiency” for those reformulations. Here we concentrate
on one of the oldest and most studied tractability conditions for CQs; namely,
acyclicity. It is known that acyclic CQs can be evaluated in linear time [19].

More formally, we study the following problem (we write q ≡ q′ to denote
that q and q′ are equivalent, i.e., they have the same output over every database):

PROBLEM : Semantic Acyclicity

INPUT : A CQ q
QUESTION : Is there an acyclic CQ q′ s.t. q ≡ q′?

Basic properties of semantic acyclicity, such as the complexity of (1) checking
whether a CQ is semantically acyclic, and (2) evaluating semantically acyclic
CQs, are by now well-understood. In particular:

1. It is known that a CQ q is semantically acyclic iff its core q′ is acyclic (recall
that such q′ is the minimal equivalent CQ to q). It follows that checking
semantic acyclicity of CQs is NP-complete (see, e.g., [5,11]).

2. Regarding evaluation, semantically acyclic CQs can be evaluated efficiently
[10,11,14].

Item (1) tells us that if q is semantically acyclic, then the only reason why
q is not acyclic in the first hand is because it has not been minimized. There-
fore, semantic acyclicity is not really different from usual minimization, which
severely restricts its applicability in practical scenarios. Two approaches have
been developed in the literature to enrich this notion and take better advantage
of its underlying ideas. These are computing approximations and make use of
semantic information in the form of constraints, as we explain next.

1.1 Approximations

When a CQ q is not semantically acyclic, it might be convenient to compute
an acyclic approximation of it. This corresponds to an acyclic CQ q′ such that
(1) q′ never returns false answers with respect to q, and (2) q′ is as “close” as
possible to q among all acyclic CQs that satisfy q. In order to satisfy (1), we
need q′ to be contained in q (denoted q′ ⊆ q), which means that the result of
q′ is contained in that of q over every database. To formalize (2), the following
definition is often used in the literature [4,5]:

there is no acyclic CQ q′′ such that q′ ⊂ q′′ ⊆ q.

106 P. Barceló

That is, there is no acyclic CQ q′′ that is closer to q than q′ with respect to the
partial order defined by the containment relation ⊆.

We will present the following important properties of acyclic approximations
based on [4]:

– Approximations always exist: Every CQ q has an acyclic overapproximation.
Moreover, the set of all acyclic approximations of a CQ q can be computed in
exponential time.

– Evaluating approximations is fixed-parameter tractable: In particular, comput-
ing the results of all approximations of q over a database D can be done in
time |D| ·2O(|q|). When D is large, this constitutes an important improvement
over the general cost of CQ evaluation, which is |D|O(|q|).

We also present an exponential lower bound on the number of acyclic approx-
imations of CQs and establish DP-completeness of the problem of checking
whether q′ is an acyclic approximation of q.

1.2 Taking Advantage of Constraints

It is known that semantic information about the data, in the form of integrity
constraints, alleviates query optimization by reducing the space of possible refor-
mulations. Here we concentrate on the two most important classes of database
constraints; namely, tuple-generating dependencies (tgds) and equality-generating
dependencies (egds).

Earlier, we defined CQ equivalence over all databases. Adding constraints
yields a refined notion of CQ equivalence, which holds over those databases that
satisfy a given set of constraints only. But finding a minimal equivalent CQ in
this context is notoriously more difficult than before. This is because basic static
analysis tasks such as containment become undecidable when considered in full
generality. This motivated a long research program for finding larger “islands of
decidability” of such containment problem, based on syntactical restrictions on
constraints [2,6–8,16,17].

It is an easy observation that the presence of constraints enriches the notion
of semantic acyclicity. This is because constraints can be applied on CQs to
produce acyclic reformulations of them. We present basic properties of semantic
acyclicity in the presence of constraints based on recent results [3,13]. More in
particular, we study the following problems:

– Decidability: For which classes of tgds and egds is the problem of semantic
acyclicity decidable? In such cases, what is the computational complexity of
the problem?

– Evaluation: What is the computational cost of evaluating semantically acyclic
CQs under constraints?

Semantic Acyclicity Under tgds. We notice that having a decidable CQ con-
tainment problem is a necessary condition for semantic acyclicity to be decidable
under tgds. Surprisingly enough, it is not a sufficient condition. This means that,

Semantic Acyclicity for Conjunctive Queries 107

contrary to what one might expect, there are natural classes of tgds for which
CQ containment but not semantic acyclicity is decidable. In particular, this is
the case for the well-known class of full tgds (i.e., Datalog programs). In conclu-
sion, we cannot directly export techniques from CQ containment to deal with
semantic acyclicity.

In view of the previous result, we concentrate on classes of tgds that (a) have a
decidable CQ containment problem, and (b) do not contain the class of full tgds.
These restrictions are satisfied by several expressive languages considered in the
literature. Such languages can be classified into three main families depending
on the techniques used for studying their containment problem: (i) guarded tgds
[6], which contain inclusion and linear dependencies, (ii) non-recursive [12], and
(iii) sticky sets of tgds [7]. We show that for all of them semantic acyclicity is
decidable; more in particular, it is (a) 2EXPTIME-complete for guarded tgds
(and NP-complete for a fixed schema), and (b) in NEXPTIME for both non-
recursive and sticky sets of tgds (and again NP-complete if the schema is fixed).

Semantic Acyclicity Under egds. We show that semantic acyclicity under
the important class of egds defined by unary functional dependencies is decidable
(NP-complete). The latter has been independently established, and generalized
in a nontrivial way, in a recent paper by Figueira [13]. Decidability for general
egds remains open.

Evaluation. It is possible to show that for tgds for which semantic acyclicity
is decidable (guarded, non-recursive, sticky) there is a fixed-parameter tractable
algorithm for evaluating q on a database. No such algorithm is believed to exist
for CQ evaluation in general [18]; thus, semantically acyclic CQs under these
constraints behave better than the general case in terms of evaluation.

Recall, on the other hand, that in the absence of constraints one can do
better: Evaluating semantically acyclic CQs in such context is in polynomial
time. It is natural to ask if this also holds in the presence of constraints. We
show this to be the case for guarded tgds and functional dependencies. For the
other classes the problem remains to be investigated.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Boston (1995)

2. Baget, J.-F., Mugnier, M.-L., Rudolph, S., Thomazo, M.: Walking the complexity
lines for generalized guarded existential rules. In: IJCAI, pp. 712–717 (2011)

3. Barceló, P., Gottlob, G., Pieris, A.: Semantic acyclicity under constraints. In:
PODS (2016)

4. Barceló, P., Libkin, L., Romero, M.: Efficient approximations of conjunctive
queries. SIAM J. Comput. 43(3), 1085–1130 (2014)

5. Barceló, P., Romero, M., Vardi, M.Y.: Semantic acyclicity on graph databases. In:
PODS, pp. 237–248 (2013)

6. Cal̀ı, A., Gottlob, G., Kifer, M.: Taming the infinite chase: query answering under
expressive relational constraints. J. Artif. Intell. Res. 48, 115–174 (2013)

108 P. Barceló

7. Cal̀ı, A., Gottlob, G., Pieris, A.: Towards more expressive ontology languages: the
query answering problem. Artif. Intell. 193, 87–128 (2012)

8. Calvanese, D., De Giacomo, G., Lenzerini, M.: Conjunctive query containment and
answering under description logic constraints. ACM Trans. Comput. Log. 9(3),
22.1–22.31 (2008)

9. Chandra, A.K., Merlin, P.M.: newblock Optimal implementation of conjunctive
queries in relational data bases. In: STOC, pp. 77–90 (1977)

10. Chen, H., Dalmau, V.: Beyond hypertree width: Decomposition methods without
decompositions. In: CP, pp. 167–181 (2005)

11. Dalmau, V., Kolaitis, P.G., Vardi, M.Y.: Constraint satisfaction, bounded
treewidth, and finite-variable logics. In: CP, pp. 310–326 (2002)

12. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and
query answering. Theor. Comput. Sci. 336(1), 89–124 (2005)

13. Figueira, D.: Semantically acyclic conjunctive queries under functional dependen-
cies. In: LICS (2016)

14. Gottlob, G., Greco, G., Marnette, B.: HyperConsistency width for constraint
satisfaction: algorithms and complexity results. In: Lipshteyn, M., Levit, V.E.,
McConnell, R.M. (eds.) Graph Theory, Computational Intelligence and Thought.
LNCS, vol. 5420, pp. 87–99. Springer, Heidelberg (2009)

15. Hell, P., Nešetřil, J.: Graphs and Homomorphisms. Oxford University Press, Oxford
(2004)

16. Johnson, D.S., Klug, A.C.: Testing containment of conjunctive queries under func-
tional and inclusion dependencies. J. Comput. Syst. Sci. 28(1), 167–189 (1984)

17. Krötzsch, M., Rudolph, S.: Extending decidable existential rules by joining acyclic-
ity and guardedness. In: IJCAI, pp. 963–968 (2011)

18. Papadimitriou, C.H., Yannakakis, M.: On the complexity of database queries. J.
Comput. Syst. Sci. 58(3), 407–427 (1999)

19. Yannakakis, M.: Algorithms for acyclic database schemes. In: VLDB, pp. 82–94
(1981)

Expressivity of Many-Valued Modal Logics,
Coalgebraically

Marta B́ılková and Matěj Dostál(B)

Institute of Computer Science, The Czech Academy of Sciences,
Prague, Czech Republic

dostamat@math.feld.cvut.cz

Abstract. We apply methods developed to study coalgebraic logic to
investigate expressivity of many-valued modal logics which we consider as
coalgebraic languages interpreted over set-coalgebras with many-valued
valuations. The languages are based on many-valued predicate liftings.
We provide a characterization theorem for a language generated by a
set of such modalities to be expressive for bisimilarity: in addition to
the usual condition on the set of predicate liftings being separating,
we indicate a sufficient and sometimes also necessary condition on the
algebra of truth values which guarantees expressivity. Thus, adapting
results of Schröder [16] concerning expressivity of boolean coalgebraic
logics to many-valued setting, we generalize results of Metcalfe and Mart́ı
[13], concerning Hennessy-Milner property for many-valued modal logics
based on � and ♦.

1 Introduction

The abstract theory of coalgebras has recently become one of the most impor-
tant bridges connecting modal logic and computer science: from a logician’s
point of view it provides techniques and a new level of generality for studying
various modal logics, while from a computer-scientist’s point of view it provides
a general framework for designing expressive modal languages describing behav-
ior of abstract transition systems modeled as coalgebras. It is then natural to
ask what benefits a coalgebraic approach brings to study of many-valued modal
logics: from a logician’s point of view we can generalize logics of many-valued
Kripke-style relational semantics [2,13], where valuations and the accessibility
relation take values in a given algebra V , to the coalgebraic level, while from a
computer-scientist’s point of view we generalize coalgebraic logics to the many-
valued setting, allowing for a many-valued observable phenomena to be cap-
tured by modal languages with genuinely many-valued semantics. The notion

M. B́ılková—The work of the first author has been supported by the joint project of
Austrian Science Fund (FWF) I1897-N25 and Czech Science Foundation (GACR)
15-34650L.
M. Dostál—The work of the second author has been supported by the project No.
GA13-14654S of the Czech Science Foundation.

c© Springer-Verlag Berlin Heidelberg 2016
J. Väänänen et al. (Eds.): WoLLIC 2016, LNCS 9803, pp. 109–124, 2016.
DOI: 10.1007/978-3-662-52921-8 8

110 M. B́ılková and M. Dostál

of behavioral equivalence is central in studying coalgebras, and it can often be
captured by bisimilarity, a central notion in model theory of modal logics. In
particular, for coalgebras with a finitary type of behaviour, we are interested in
finitary modal languages being expressive for bisimilarity, i.e., logics satisfying
the Hennessy-Milner property.

We adopt the approach based on understanding modalities as predicate lift-
ings and apply it in a many-valued setting. Such languages for classical coal-
gebraic logics were developed and their expressivity investigated by Pattinson
in [14,15] and further by Schröder in [16]. In particular, a sufficient condition
on a set of predicate liftings, namely being separating, is given to ensure that
the resulting modal logic is expressive for behavioral equivalence, respectively
for bisimilarity, depending on the setting. We address the limitative results of
Metcalfe and Mart́ı [13] providing a sufficient and necessary condition on the
algebra of truth values V ensuring the Hennessy-Milner property for the V -
valued modal language with box and diamond over image-finite Kripke frames
with two-valued accessibility relation, where V is an MTL-chain. The condition
they provide says that we can distinguish truth values in V with propositional
formulas, so, in contrast to the boolean case, also expressivity of the purely
propositional part of the language matters. If we want to avoid including con-
stants for all truth values of V in the language, the condition rules out many
interesting fuzzy modal logics: for V being a complete BL-chain with finite uni-
verse or [0, 1], this yields expressivity if and only if V is a MV-chain or the
ordinal sum of two (hoop reducts of) MV-chains, leaving out most Gödel modal
logics.

We shall apply the approach of [16] to generalize the results of [13]. In par-
ticular, we also address logics of Kripke frames with many-valued accessibility
relation, probabilistic Kripke frames and extend the negative results on Gödel
logics. On a positive side, we provide a countable expressive language for Kripke
frames and any MTL chain as the algebra V of truth values.

2 Set Coalgebras as Models of Many-Valued Modal
Logics

We fix an endofunctor T : Set → Set. We say that T is standard if it preserves
inclusions and the equaliser 0 → 1 ⇒ 2. For such a standard T we define Tω :
Set → Set on objects as TωX =

⋃{TY | Y ⊆ X, Y finite}. We say that T is
finitary if T = Tω holds. For a standard finitary T and an element t ∈ TX we
define base of t as b(t) ⊆ X to be the smallest subset of X such that t ∈ T (b(t))
holds. We refer the reader to [10] for more details about bases of various functors
and properties of bases.

Expressivity of Many-Valued Modal Logics, Coalgebraically 111

Definition 1. Given an endofunctor T : Set → Set, a T-coalgebra is a mor-
phism c : X → TX in Set. Given two T -coalgebras c : X → TX and d : Y → TY ,
the morphism h : X → Y is a homomorphism of T -coalgebras if the diagram

X
h ��

c

��

Y

d

��
TX

Th
�� TY

commutes.

Example 1 (Functors and their respective coalgebras)

1. The covariant powerset functor P : Set → Set assigns to each set X the set
of its subsets PX; a mapping f : X → Y is sent to the direct image mapping
Pf : PX → PY , sending Z ⊆ X to Pf(Z) = f [Z] = {f(z) ∈ Y | z ∈ Z}.
The coalgebras for P are mappings c : X → PX, modeling Kripke frames by
assigning to each x ∈ X its set c(x) ⊆ X of successors. The finitary powerset
functor Pω assigns to each set X the set of its finite subsets PωX and acts
on morphisms as described above. The Pω coalgebras are image finite Kripke
frames.

2. Let V be any residuated lattice. The (covariant) functor PV : Set → Set
assigns to a set X the set PV (X) = [X,V] of all mappings from X to V . A
mapping f : X → Y is sent to a mapping [X,V] → [Y,V] which assigns to
s : X → V a map t : Y → V defined as t(y) =

∨
f(x)=y s(x). The coalgebras

for PV are maps c : X → [X,V] which model many-valued Kripke frames, i.e.,
frames for which the accessibility relation takes values from V . Whenever V
is distributive, which is the case in all our examples, the functor PV preserves
weak pullbacks. See Lemma 2.4.12 of [3]. The finitary functor PV

ω assigns to
a set X the set PV (X) = [X,V] of all mappings from X to V with finite
support, i.e. only finitely many non-zero values.

3. Given a set X, denote by DX the set of all probabilistic distributions on X:
that is, DX is the set of mappings d : X → [0, 1] such that Σx∈Xd(x) = 1.
Similarly to the functor above, the mapping Df : DX → DY assigns to a
distribution d : X → [0, 1] the distribution e : Y → [0, 1] for which e(y) =
Σf(x)=yd(x) holds. The coalgebras for the functor D correspond precisely
to probabilistic Kripke frames. Again, finitary version of the functor Dω is
defined to assign to a set X the set of probabilistic distributions on X with
finite support.

Propositional Part of the Logic: For simplicity of presentation and since all our
examples come mostly from fuzzy logics, we restrict ourselves to propositional
logics extending commutative Full Lambek substructural logic with weakening
FLew, whose semantics are commutative integral residuated lattices [4]. We also

112 M. B́ılková and M. Dostál

fix a commutative integral residuated lattice V , and a countable set of proposi-
tional variables At . The propositional language is then defined as follows1:

a := p | � | ⊥ | a ∧ b | a ∨ b | a → b | a & b,

with additional defined connectives ¬a = a → ⊥ and a ↔ b = (a → b)∧ (b → a).
Given a coalgebra c : X → TX and a valuation of atoms

‖.‖c : At → [X,V]

the semantics ‖∗(a1, . . . , an)‖c is computed inductively for each n-ary connective
∗, as

X

−−→‖a‖c �� V n
∗V �� V .

The semantics of the language can be seen as a local V -valued relation between
states and formulas given by

x �c a = ‖a‖c(x).

Definition 2. A relation B ⊆ X × Y is a T -bisimulation between c : X → TX
and d : Y → TY iff there is a coalgebra structure b on B which makes the
projections into coalgebra morphisms:

X

c

��

B

b

��

p0�� p1 �� Y

d

��
TX TB

Tp0

��
Tp1

�� TY

Equivalently (if T preserves weak pullbacks) B is a T -bisimulation if, using the
relation lifting of B by the functor T , i.e. the relation T (B) as follows:

B(x, y) implies T (B)(c(x), d(y)).

To unravel this definition (we refer to [10,11] for a general definition and prop-
erties of the lifting),

T (B)(c(x), d(y)) iff ∃z ∈ TB(c(x) = (Tp0)(z) & (Tp1)(z) = d(y)).

In this paper we use coalgebras as models of many-valued modal logics and
therefore also V -valued valuations will play a role in defining T -bisimilarity:
Two states x ∈ X and y ∈ Y in coalgebras c and d are T -bisimilar if there exists
a T -bisimulation B ⊆ X × Y such that B(x, y) holds, and moreover the atomic
harmony,

x′ �c p = y′ �d p,

holds for all atoms p ∈ At , and all x′By′2.
1 We would like to stress that we do not include constants for elements of V in the

language (cf. Examples 3 and 7).
2 This in fact says that B is a T × V At -bisimulation, where the second part of the

functor encodes the valuations.

Expressivity of Many-Valued Modal Logics, Coalgebraically 113

Remark 1. Using the notion of many-valued relation lifting, it is possible to
define a many-valued variant of the notion of bisimulation. However, it has been
shown in [1,3] that the two-valued notion of bisimilarity arising from many-
valued bisimulations coincides with the usual notion of bisimilarity.

Example 2 (T -bisimulations). A P -bisimulation between many-valued crisp
Kripke models [2,13] (P coalgebras with many-valued valuations) is a relation
B ⊆ X × Y satisfying: xBy implies

1. x �c p = y �d p for all atoms,
2. ∀x′ ∈ c(x) ∃y′(y′ ∈ d(y) & x′By′) and ∀y′ ∈ d(y) ∃x′(x′ ∈ c(x) & x′By′).

A PV -bisimulation between many-valued Kripke models [2,13] (PV coalgebras
with many-valued valuations) is a relation B ⊆ X × Y satisfying: xBy implies

1. x �c p = y �d p for all atoms,
2. c(x)(x′) ≤ ∨

y′:x′By′
d(y)(y′) and d(y)(y′) ≤ ∨

x′:x′By′
c(x)(x′).

A D-bisimulation between probabilistic Kripke frames is defined similarly, with
the sum in place of join.

3 Many Valued Predicate Liftings

We want to apply the existing theory of modal logics defined using predicate
liftings, and classifications of sets of predicate liftings, by [15,16] to study expres-
sivity of many-valued modal logics.

In the text and in the examples of Sect. 3 we assume T is finitary and that
T preserves weak pullbacks. The V -valued modal language for T -coalgebras will
be given via extending the propositional language defined in the previous section
by a set of modal operators, modalities, describing behaviour of T -coalgebras.
Modalities can arise semantically as an abstract way of lifting predicates on X
(maps in [X,V]) to predicates on TX (maps in [TX,V]). Following ideas of
[15,16] concerning two-valued predicates and their liftings, we define V -valued
n-ary predicate liftings to be maps:

♥̂X : [X,V n] → [TX,V],

natural in X. Let’s start with an easy observation that n-ary predicate liftings
are essentially the same things as the maps

♥ : TV n → V ,

which we will call the n-ary modalities. The two concepts are in the following
one-to-one correspondence:

♥̂X(Q) = ♥(TQ) : TX → V and ♥ = ♥̂V n(idV n).

114 M. B́ılková and M. Dostál

We can now extend the propositional language with a set of such modalities
(possibly all), stating that whenever a1, . . . , an are formulas and ♥ is an n-ary
modality, ♥(a1, . . . , an) is a formula. For a set Λ of modalities, we denote by
L (Λ) the resulting modal language.

On a coalgebra c : X → TX with valuations ‖ai‖c : X → V the formula
♥(a1, . . . , an) is interpreted as follows (cf. [5]):

X
c �� TX

T
−−→‖a‖�� T (V n)

♥ �� V

Example 3 (Boxes)

1. The boolean semantics of � : P2 → 2 is the map assigning 1 to ∅ and {1}, i.e.
the meet

∧
on the two-element boolean algebra. On a coalgebra c : X → PX,

�a is interpreted as follows:

X
c �� PX

P‖a‖ �� P (2)
∧

�� 2

for any x the result is 1 iff c(x) = ∅ or ∀y ∈ c(x) y � a.
2. Many-valued semantics of � : PV → V is also the meet, now computed in

V . On a coalgebra c : X → PX, �a is interpreted as follows:

X
c �� PX

P‖a‖ �� P (V)
∧

�� V

for any x the result is c(x) � �a =
∧

y∈c(x)

y � a (cf. [2,13]).

3. Many-valued semantics of � : [V ,V] → V is given by a mapping:

σ �→
∧

v∈V

(σ(v) → v).

On a coalgebra c : X → PV , �a is interpreted as follows:

X
c �� [X,V]

PV ‖a‖�� [V ,V] � �� V

for any x the result is c(x) � �a =
∧

y
(c(x)(y) → y � a) (cf. [2]).

Lemma 1 (Adequacy). The modal language L (Λ) for Λ a set of predicate
liftings (modalities) for T is invariant under bisimilarity.

Proof. Routine induction on the complexity of a modal formula, using the seman-
tics defined as above.

Expressivity of Many-Valued Modal Logics, Coalgebraically 115

3.1 Separating Sets of Predicate Liftings

To prove expressivity of a modal language resulting from a set of modalities ar
predicate liftings, we have in particular to ensure we have enough modalities to
distinguish, or to separate, different behaviours of coalgebras in question. Such
sets of modalities are called separating. Although we will see later that having a
separating set of modalities is in general not enough to prove expressivity, as also
the propositional language has to be expressive enough to handle the modali-
ties3, we separate this two issues and concentrate first on the modalities only.
What follows in this and the next subsection are mostly direct analogues of the-
orems in Schröder’s [16], generalizing from the case when V = 2. First notice
that predicate liftings have their transpose:

♥̂X : [X,V n] → [TX,V] �→ ♥̂�
X : TX → [[X,V n],V]

Definition 3. A set Λ of predicate liftings for a finitary functor T is called
separating iff

(♥̂�
X : TX → [[X,V n],V])n<ω,♥∈Λ

is jointly injective for all X. This means that for each t �= t′ in TX, there are
some n, σ : X → V n and n-ary ♥ ∈ Λ, such that (in V)

♥(Tσ)(t) �= ♥(Tσ)(t′).

Theorem 1. A finitary functor T admits a separating set of predicate liftings
iff the source

(Tf : TX → T (V n))n<ω,f :X→V n

is jointly injective for each X.

Proof. Assume a separating set of predicate liftings Λ is given, and t �= t′ in TX.
Then by the definition there are some n, σ : X → V n and ♥ ∈ Λ, such that
(in V) ♥(Tσ)(t) �= ♥(Tσ)(t′), but then clearly in T (V n) (Tσ)(t) �= (Tσ)(t′).
For the other direction, the condition implies that the set of all n-ary predicate
liftings is separating.

Notice that the theorem in particular holds if we rephrase it for sets of unary
predicate liftings, and restrict n in the condition to be always n = 1 (cf. Corol-
lary 18 of [16]). The (unrestricted) Theorem 1 has the following corollary [16]:

Corollary 1. Every finitary functor admits a separating set of predicate liftings.
Namely, the set of all n-ary liftings is separating.

Proof. By [16] [Corollary 38], this is true for V = 2. But we can define an
injective g : 2 → V by g(0) = 0 and g(1) = 1 and use it to obtain mappings f
required by Theorem 1, using the fact that T is standard and therefore preserves
injective maps.
3 In case that V = 2 separability is in fact sufficient for expressivity. The reason is that

the classical propositional logic is functionally complete and each boolean function
σ : 2n → 2 is definable by a formula with n variables (cf. Definition 4).

116 M. B́ılková and M. Dostál

This abstract theorem tells us that in principle we can always find a separating
set of modalities, but the set of all modalities with unrestricted arity is certainly
not what we want to consider in specific examples. Not only is the set of all
predicate liftings too big to handle, but it in particular contains some modalities
which can be seen as modal constants, naming elements in V . For example, if
T = Pω, we can define 〈v〉 : PωV → V as the map detecting v: 〈v〉(Y) = 1 iff
v ∈ Y and 0 otherwise. We would like in practice to restrict ourselves to some
specific subsets of predicate liftings and therefore we need to come up with a
sufficient condition for a subset of all predicate liftings being separating. We do
one such case-study in the next section.

3.2 Monadic Predicate Liftings

A natural restriction, sufficient for most of examples in this paper, is to consider
only unary predicate liftings. The following example illustrates that already
when V = 2 this is a real restriction, as not all finitary functors admit a sepa-
rating set of unary predicate liftings:

Example 4. V = 2, T = PωPω (the double covariant powerset functor4) does
not admit a separating set of unary predicate liftings. By Theorem1 restricted
to n = 1, given a finite set X and any f : X → 2,

(Tf){A ⊆ X | |A| ≤ 2} = (Tf)PωX.

However, we might restrict our attention to unary modalities in the present
paper, as for all our essential examples the functors admit a separating set of
unary predicate liftings:

Example 5. By Theorem 1 and a similar reasoning as in the proof of Corollary 1,
if a finitary T admits a set of unary predicate liftings for V = 2, it does so
for arbitrary V considered in this paper. In particular, Pω, PV

ω ,Dω admit a
separating set of unary predicate liftings for any V considered in this paper,
including the case Dω for V = [0, 1]�L.

The example above shows that the set of all unary predicate liftings for the
functors mentioned thereof is separating. To be able to recognize the separating
property for subsets of unary predicate liftings, we prove the following theorem
(cf. Theorem 20 of [16]):

Theorem 2. Assume a finitary T admits a separating set of unary predicate
liftings ΛT . Then for all Λ ⊆ ΛT TFAE:

1. Λ is separating, i.e. for each X and each t �= t′ in TX, there is an σ : X → V
and ♥ ∈ Λ, such that

♥(Tσ)(t) �= ♥(Tσ)(t′).

4 Not to be confused with the double contravariant powerset functor whose coalgebras
are neighbourhood frames.

Expressivity of Many-Valued Modal Logics, Coalgebraically 117

2. for each n, t �= t′ in TV n implies ∃f : V n → V ,♥ ∈ Λ such that

♥(Tf)(t) �= ♥(Tf)(t′).

Proof. For 1. → 2. simply consider X = V n. For the other direction assume
t �= t′ in TX. By assumption, T admits a separating set of unary predicate
liftings, and we can use Theorem1 for n = 1. Therefore there is an f : X → V
such that Tf(t) �= Tf(t′) in TV . Now, by (ii), there is an f ′ : V → V and ♥ ∈ Λ
such that ♥(Tf ′)(Tf)(t) �= ♥(Tf ′)(Tf)(t′). Thus f ′f : X → V witnesses (i).

Example 6. 1. for T = Pω and V = 2, {�} is a separating set, and {♦} is also
a separating set.

2. for T = Pω and any V , {♦} is a separating set5: consider t �= s in PωV n,
w.l.o.g. assume there is some −→v ∈ t different from each −→w ∈ s. Define f(−→v) =
1 and define f(−→w) = 0 for all −→w �= −→v (it would be enough if f(−→w) < 1).
Then ∨

f [t] >
∨

f [s].

Also {�} is separating, which can be proved using a similar argument.
3. for T = Dω and V = 2, the set {〈π〉 | π ∈ [0, 1]} with semantics

x � 〈π〉a iff
∑

y�a

c(x)(y) ≥ π,

is separating. The functor however does not admit a separating set of contin-
uous predicate liftings, i.e. an expressive normal modal logic (cf. Example 32
of [16]).

3.3 An Algebraic Condition

In the case of V = 2, i.e. the classical coalgebraic logic, the fact that a set of
predicate liftings Λ is separating is enough to prove that the resulting modal
language is expressive for bisimilarity. This is no longer the case for a general V :
also the propositional language given by V matters. As was shown by Metcalfe
and Mart́ı [13], already for T = Pω and �,♦ it is not always the case. Gen-
eralizing their approach, we isolate an abstract condition on the algebra V to
guarantee expressivity. Recall that a set Λ of unary modalities is separating iff

(♥̂�
X : TX → [[X,V],V])♥∈Λ

is jointly injective for all X, meaning that for each t �= t′ in TX, there is
σ : X → V and ♥ ∈ Λ, such that ♥(Tσ)(t) �= ♥(Tσ)(t′). To be able to prove
expressivity, we need such witnessing σ to be expressible as a predicate ‖a‖X

given by an actual formula in the propositional language of V . Now, in the con-
dition above, read X as V n (cf. how separating sets of PL are characterized in
Theorem 2). This in a way motivates the following definition:

5 cf. Examples 7 and 10. This does not entail expressivity.

118 M. B́ılková and M. Dostál

Definition 4 (The condition on V). We call a function f : V n → V express-
ible, if there is a term σ in n variables in the language of V , such that

σ[x1, . . . , xn/v1, . . . , vn] = f(v1, . . . , vn).

Λ is then called V -separating, if the collection of expressible functions separates
values in TV n, i.e., the following condition holds: t �= t′ in TV n implies there
exists f : V n → V expressible, and ♥ ∈ Λ such that

♥(Tf)(t) �= ♥(Tf)(t′).

Example 7. 1. for V = 2, each f : 2n → 2 is expressible in the boolean language
(simply because propositional logic is functionally complete). Thus the con-
dition is vacuous if we work over classical logic because any separating Λ is
2-separating.

2. for T = Pω, Λ = {�,♦} and V a complete MTL chain, the condition of Λ
being V -separating is equivalent to the one given by Metcalfe and Mart́ı in
[13] [Theorem 3.5] in terms of distinguishing formula property: assume t �= s
in PωV n, and assume w.l.o.g. that there is some −→v ∈ t different from each−→w ∈ s. Then, if by [13] there is a distinguishing formula σ with σ(−→v) < −→w
for each −→w ∈ s (or the same with >), the modality separating t and s is
� (♦ resp.). If on the other hand we know that Λ is V -separating, and −→v
different from each −→w ∈ s, we know there is a formula σ with

∧
σ(−→v) =

σ(−→v) �= ∧
σ[s] (or the same with

∨
). V is a chain, thus either σ(−→v) <

∧
σ[s]

or σ(−→v) >
∧

σ[s], in both cases σ is a distinguishing formula.
In particular, for T = Pω, Λ = {�,♦} and V an MV chain, including finite
MV chains and the standard algebra [0, 1]�L, or Gödel three-element chain
G3, box and diamond are V -separating by [13]. On the other hand, for Gödel
chain V = Gn with n ≥ 4, Λ = {�,♦} fails to be V -separating as shown
in [13].

3. If constants for all elements of V were included in the propositional language,
then we could express a similar function f to that used in Example 6 (ii):
observe that we can express the projections πi : V n → V by formulas, and
we can detect values using the ↔ connective, as u ↔ v = 1 iff u = v. Thus if
T = Pω, then {�,♦} is always V -separating , provided the constants are in
the language.

3.4 Expressivity

We can finally show that the modal language for T -coalgebras, generated by a
V -separating set of predicate liftings Λ, is expressive for bisimilarity:

Theorem 3 (Expressivity). Let T be finitary, w.p.p., and Λ a V -separating
set of predicate liftings. Then L (Λ) is expressive for bisimilarity.

Expressivity of Many-Valued Modal Logics, Coalgebraically 119

Proof. Fix coalgebras c : X → TX and d : Y → TY and respective valuations of
formulas. Let the modal equivalence ≡L (Λ) between states x and y of coalgebras
c and d be defined as

x ≡ y iff ∀a ∈ L (Λ)(x �c a = y �d a).

We prove that ≡L (Λ) is a T -bisimulation, in particular that

x ≡ y implies c(x) T≡ d(y).

Assume ¬(c(x) T≡ d(y)), we find a distinguishing formula witnessing x �≡ y.
Consider bases of c(x) and d(y) to be finite sets b(c(x)) = {x1 . . . xk} and

b(d(y)) = {y1 . . . yl} resp., and for each xi �≡ yj fix a distinguishing formula ai,j

with xi �c ai,j �= yj �d ai,j , thus we have up to kl distinguishing formulas,
including the possibility there are none. Put n be the number of the formulas
we obtained, we distinguish two cases:

n = 0: Consider the following two maps:

f = ‖�‖c : b(c(x)) → V and g = ‖�‖d : b(d(y)) → V .

Then f, g are constant maps with the value 1, and because the two bases were
pairwise indistinguishable, ≡ (more precisely, the corresponding restriction
of ≡ to bases of c(x) and d(y)) is the pullback of the two maps (it is in fact
the product of the two bases, but we do not need this fact here). T weakly
preserves pullbacks and therefore T≡ is a weak pullback of Tf and Tg.
Because ¬(c(x) T≡ d(y)) (and relation lifting commutes with restrictions,
see e.g. [10]), we know, using the weak pullback, that (Tf)c(x) �= (Tg)(d(y))
in TV . By the separation property, there is ♥ ∈ Λ and σ : V → V expressible
such that

♥(Tσ)(Tf)(c(x)) �= ♥(Tσ)(Tg)(d(y)).

Therefore the formula ♥(σ(�)) distinguishes x and y, which is not hard to
see.

n > 0: Denote by
−−→‖a‖c and

−−→‖a‖d the corresponding vectors of valuations of the
distinguishing formulas in c and d. Consider the following two maps:

f =
−−→‖a‖c : b(c(x)) → V n and g =

−→‖a‖d : b(d(y)) → V n.

Then it is not hard to see that ≡ (again, more precisely, the corresponding
restriction of ≡ to bases of c(x) and d(y)) is the pullback of the two maps. T
preserves pullbacks weakly and therefore T≡ is a weak pullback of Tf and
Tg. Because ¬(c(x) T≡ d(y)), we know that (Tf)c(x) �= (Tg)(d(y)) in TV n.
By the separation property, there is ♥ ∈ Λ and σ : V n → V expressible such
that

♥(Tσ)(Tf)(c(x)) �= ♥(Tσ)(Tg)(d(y)).

Therefore the formula ♥(σ(−→a)) distinguishes x and y.

120 M. B́ılková and M. Dostál

Corollary 2. The modal logic of Pω coalgebras based on a V -separating Λ is
expressive for bisimilarity. In particular, modal logic of {�,♦} for V being an
MV algebra, V = 2, or V = G3 is expressive. The condition on V in this case
is not only sufficient, but also necessary.

Proof. We show that for T = Pω, if Λ is not V -separating, then there are
indistinguishable but not bisimilar states of two Pω-coalgebras: assume for some
n there are t �= s in PωV n, |t| = k, |s| = l such that for each formula in n
variables σ : V n → V and each ♥ ∈ Λ we have

♥(Tσ)(t) = ♥(Tσ)(s).

Define X = {x0, . . . , xk} and Y = {y0, . . . , yk} with coalgebras c on X given by
c(x0) = {x1, . . . , xk} (and ∅ otherwise) and d on Y given by d(y0) = {y1, . . . , yk}
(and ∅ otherwise). Fix atoms p1, . . . , pn and define valuations

−→‖p‖ : X → V n

given by
−→‖p‖(x0) =

−→
0 and

−→‖p‖(xi) = ti. Similarly, valuations
−→‖p‖ : Y → V n

given by
−→‖p‖(y0) =

−→
0 and

−→‖p‖(yi) = si. Now x0 and y0 are not bisimilar by
s �= t, but are modally equivalent.

We apply the theory above to a few particular examples, namely we show
(i) there is an expressive language for Pω coalgebras and V being a Gödel chain
bigger then 3, it cannot however be based on unary modalities, (ii) the results
of [13] about expressivity of �Lukasziewicz’s logics with box and diamond extend
to the V -valued finitary powerset functor, and (iii) we present an expressive
language for Dω coalgebras based on a finite set of modalities and the standard
�Lukasziewicz algebra.

Example 8 (�Lukasziewicz logics). Let V be the standard �Lukasziewicz algebra,
i.e. the real interval [0, 1]�L, with a & b = max{0, a + b − 1} and a → b =
min{1, 1 − a + b} (and therefore ¬a = (a → 0) = 1 − a). Let T = PV

ω . Notice in
particular that a & 0 = 0 for each a, and that & distributes over ∨. Consider the
unary modality ♦ : [V ,V] → V given, for a t : V → V with finite support, by

♦t =
∨

u∈V

(t(u) & u).

We show that Λ = {♦} is V -separating: Assume t �= s in [V n,V] and assume
that their finite supports are subsets of {−→u1, . . . ,

−→uk}. Since s and t have finite sup-
port, they can also differ only on finitely many distinct points from {−→u1, . . . ,

−→uk}.
Assume w.l.o.g. that for some i, t(−→ui) > s(−→ui). Then we can “separate” −→ui from
each of the other −→uj with j �= i by a rational point −→v ∈ V n ∩ Qn, and define a
piece-wise linear function f : V n → V with rational coefficients so that f(−→ui) = 1
while for j �= i f(−→uj) = 0. By McNaughton theorem [12] there is a propositional
formula σ(−→p) with σ[−→p /−→u] = f(−→u) for all −→u ∈ V n. In particular, σ(−→ui) = 1
while for all j �= i we have σ(−→uj) = 0. Recall that on any −→u /∈ {u1, . . . , uk} both
s(−→u) = t(−→u) = 0 by the finite-support assumption. It is not hard to see that
then we have:

Expressivity of Many-Valued Modal Logics, Coalgebraically 121

∨

−→u ∈V n

(t(−→u) & σ(−→u)) >
∨

−→u ∈V n

(s(−→u) & σ(−→u)),

but by

♦(Tσ)t =
∨

w∈V

((
∨

−→u :σ(−→u)=w

t(−→u)) & w) =
∨

−→u ∈V n

(t(−→u) & σ(−→u)),

♦(Tσ)s =
∨

w∈V

((
∨

−→u :σ(−→u)=w

s(−→u)) & w) =
∨

−→u ∈V n

(s(−→u) & σ(−→u))

we obtain ♦(Tσ)t �= ♦(Tσ)s as required. A similar argument (and in fact a sim-
pler one based on distinguishing formulas) can be find also for finite �Lukasziewicz
chains. Therefore the modal logics of image finite many-valued Kripke frames
(PV

ω coalgebras) based on ♦ (or � or both) and V the standard or finite
�Lukasziewicz chain are expressive for bisimilarity.

Example 9 (Probabilistic �Lukasziewicz logics). We show that we can find a finite
expressive language for probabilistic Kripke frames, i.e. Dω coalgebras, based
on V = [0, 1]�L using a very similar idea as in the example above. Note that the
2-valued logic for the same coalgebras needs to contain infinitely many modalities
(cf. Example 6).

In [0, 1]�L, the following truncated sum is definable: a ⊕ b = ¬(¬a & ¬b) =
max{1, a + b}. Consider a unary modality ♦ : [V , [0, 1]] → V given, for a t :
V → [0, 1] with finite support, by6

♦(t) =
⊕

u∈V

(t(u) · u).

We show that Λ = {♦} is V -separating: Assume t �= s in [V n, [0, 1]] and assume
that their finite supports are subsets of {−→u1, . . . ,

−→uk}. By very similar reasoning
as in the above example we can construct a McNaughton function definable by
a formula σ(−→p) satisfying σ(−→ui) = 1 while for all j �= i we have σ(−→uj) = 0. Then
we obtain: ∑

−→u ∈V n

(t(−→u) · σ(−→u)) >
∑

−→u ∈V n

(s(−→u) · σ(−→u)),

but by

♦(Tσ)t =
⊕

w∈V

((
∑

−→u :σ(−→u)=w

t(−→u)) · w) =
∑

−→u ∈V n

(t(−→u) · σ(−→u)),

♦(Tσ)s =
⊕

w∈V

((
∑

−→u :σ(−→u)=w

s(−→u)) · w) =
∑

−→u ∈V n

(s(−→u) · σ(−→u))

6 Defined like this, using the multiplication of reals, the semantics of ♦ is not expressed
by a first-order formula of �Lukasziewicz logic.

122 M. B́ılková and M. Dostál

we obtain ♦(Tσ)t �= ♦(Tσ)s as required. Therefore the modal logic of image
finite probabilistic Kripke frames (Dω coalgebras) based on a single modality ♦
and the standard �Lukasziewicz algebra is expressive for bisimilarity. The modal-
ity ♦ is rather many-valued then probabilistic: a good way how to understand a
formula ♦a is not the probability of a, but rather the truth-value of an expression
“probably a”. (cf. with a two-layer modal logic proposed by Hájek [6].)

Example 10 (Monadic modal Gödel logics). Let us take Pω for the coalgebra
functor and V being a Gödel chain G4 with 4 elements, say 0 < u < v < 1. In
this case, & = ∧ and a → b = 1 if a ≤ b and a → b = b else, ⊥ = 0 and � = 1.
There is no V -separating set of unary modalities. Therefore in such a case by
Corollary 2, there is no monadic Gödel modal logic expressive for bisimilarity.
It suffices to find two different elements t, t′ ∈ PωV 2 such that for every binary
term σ in the language of V , σ[t] = σ[t′]. Indeed, let t = {(u, v), (u, 1), (1, v)}
and t′ = {(u, 1), (1, v)}. It is tedious but not hard to check that there is no binary
term σ such that Pσ would distinguish t and t′.

Moreover, this approach easily generalizes to the cases of Gödel chains with
more than 4 elements, and shows that for no such chain V admits a V -separating
set Λ of unary modalities. Let V be a Gödel chain with more than 4 elements.
This means that V contains a subchain G4 : 0 < u < v < 1, and by the definition
of the basic operations of V , the subchain G4 is a (residuated) sublattice of V .
Because of this we can take for t and t′ the same elements of PV 2 as above, and
no binary term σ distinguishes them.

In the following example we show how to exploit the abstract theory and obtain
an expressive modal logic for Pω coalgebras and any MTL chain, using a count-
able set of modalities of unbounded arities7:

Example 11 (An expressive polyadic modal logic for MTL chains). If we allow
for modalities to take unbounded arities, we can define an expressive logic for Pω

coalgebras and a general MTL chain V . We will find a (countable) separating
set Λ of modalities which is V -separating and does not rely on using constants
representing the truth values of V .

For an arbitrary natural number n, we need to distinguish any pair t, t′

of elements of PωV n by some n-ary modality ♥ ∈ Λ. The idea is to use the
lexicographical linear order on V n, and use modalities that pick from a finite
subset of V n the j-th projection of the i-th n-tuple in the set. More precisely,
we consider the lexicographic order on V n and define an auxiliary mapping
rn : PωV n → PωV n by setting rn(∅) = ∅, and sending a finite nonempty chain
(w.r.t. the lexicographic order) X ⊆ω V to the chain X ′ ⊆ X that has the least
element of X removed. By induction, we define 〈i | −〉n : PωV n → V n for each
i as follows. As a base case

〈1 | −〉n : PωV
n → V n is given by X �→

∧

lex

X,

7 It is straightforward to generalize Theorem 3 to the polyadic setting, and in this
particular example we will not need any expressible propositional formulas.

Expressivity of Many-Valued Modal Logics, Coalgebraically 123

where the meet is computed with respect to the lexicographic ordering (and the
empty set being mapped to to (1, . . . , 1)). The mapping 〈m + 1 | −〉n : PωV n →
V n is defined as the composite 〈m | −〉n · rn : PωV n → V n for each natural
m > 1. We can then define a modality 〈i | j〉n : PωV n → V as the composite
πj · 〈i | −〉n : PωV n → V , with πj being the j-th projection mapping. The
set Λ = {〈i | j〉n | n, i < ω, 1 ≤ j ≤ n} of modalities is countable and V -
separating: Consider two elements t �= t′ in PωV n and assume (without loss of
generality) there is an n-tuple −→v = (v1, . . . , vn) that belongs to t but not to t′.
Then −→v is the i-th least element in t for some i, according to the lexicographic
order. Since −→v /∈ t′, the i-th least element in t′ (say

−→
v′) differs from −→v on

some index j, i.e., vj �= v′
j . Then the modality 〈i | j〉n distinguishes t and t′, as

vj = 〈i | j〉n(t) �= 〈i | j〉n(t′) = v′
j . Here, we did not need to use any expressible

propositional formulas.

Concluding Remarks

We have shown how to adapt and use existing colgebraic methods to study many-
valued modal logics, namely their expressivity w.r.t. bisimilarity. The case-study
in the previous section outlines some generalisations of results obtained in [13].
One may pursuit the topic further by considering algebras other than those aris-
ing from fuzzy logics, and cover for example paraconsistent coalgebraic logics.
We have also restricted ourselves to study expressivity w.r.t. bisimilarity, and
not behavioral equivalence, which seems to be preferred in the context of coalge-
braic logic (e.g. for probabilistic coalgebras). Assuming the functor T preserves
weak pullbacks, the two notions of equivalence coincide. The assumption (which
we have used proving expressivity) however leaves out some natural examples of
functors: in particular some instances of PV where V is not distributive, or dou-
ble contravariant powerset functor or its many-valued variant, whose coalgebras
are neighbourhood frames or fuzzy neighbourhood frames. One way of extending
our approach further would be to study expressivity using the dual adjunction
approach, going back at least to [8,9], to define the modal logics in the spirit
of Proposition 3.6 of [11]. Expressivity then corresponds to certain injectivity
property, and following approach of [7] we may obtain an alternative, and in a
way more general, view at the phenomenon in the many-valued setting.

References

1. B́ılková, M., Dostál, M.: Many-valued relation lifting and Moss’ coalgebraic logic.
In: Heckel, R., Milius, S. (eds.) CALCO 2013. LNCS, vol. 8089, pp. 66–79. Springer,
Heidelberg (2013)

2. Bou, F., Esteva, F., Godo, L., Rodŕıguez, R.: On the minimum many-valued modal
logic over a finite residuated lattice. J. Log. Comput. 21(5), 739–790 (2011)

3. Dostál, M.: Many valued coalgebraic logic. Master thesis, Czech Technical Univer-
sity (2013)

4. Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic
Glimpse at Substructural Logics. Elsevier, Amsterdam (2007)

124 M. B́ılková and M. Dostál

5. Gumm, H.P., Zarrad, M.: Coalgebraic simulations and congruences. In: Bonsangue,
M.M. (ed.) CMCS 2014. LNCS, vol. 8446, pp. 118–134. Springer, Heidelberg (2014)

6. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dor-
drecht (1998)

7. Jacobs, B., Sokolova, A.: Exemplaric expressivity of modal logics. J. Log. Comput.
20, 1041–1068 (2010)

8. Kupke, C., Kurz, A., Pattinson, D.: Algebraic semantics for coalgebraic logics. In:
Coalgebraic Methods in Computer Science, ENTCS, vol. 106, pp. 219–241. Elsevier
(2004)

9. Kupke, C., Kurz, A., Venema, Y.: Stone coalgebras. Theoret. Comput. Sci. 327,
109–134 (2004)

10. Kupke, C., Kurz, A., Venema, Y.: Completeness for the coalgebraic cover modality.
Log. Methods Comput. Sci. 8(3), 1–76 (2012)

11. Kurz, A., Leal, R.: Modalities in the Stone age: a comparison of coalgebraic logics.
Theoret. Comput. Sci. 430, 88–116 (2012)

12. McNaughton, R.: A theorem about infinite-valued sentential logic. J. Symbolic
Log. 16, 1–13 (1951)

13. Metcalfe, G., Mart́ı, M.: A Hennessy-Milner property for many-valued modal logics.
Adv. Modal Log. 10, 407–420 (2014)

14. Pattinson, D.: Expressivity results in the modal logic of coalgebras (2001)
15. Pattinson, D.: Expressive logics for coalgebras via terminal sequence induction.

Notre Dame J. Formal Log. 45, 19–33 (2004)
16. Schröder, L.: Expressivity of coalgebraic modal logic: the limits and beyond. The-

oret. Comput. Sci. 390, 230–247 (2008)

Second-Order False-Belief Tasks:
Analysis and Formalization

Torben Braüner(B), Patrick Blackburn, and Irina Polyanskaya

Roskilde University, Roskilde, Denmark
{torben,patrickb,irinap}@ruc.dk

Abstract. We first give a coarse-grained modal-logical analysis of the
four best known second-order false-belief tasks. This preliminary analysis
shows that the four tasks share a common logical structure in which a
crucial role is played by a “principle of inertia” which says that an agent’s
belief is preserved over time unless the agent gets information to the
contrary. It also reveals informational symmetries (all four possibilities
inherent in the two dimensions of deception versus no-deception and
change-in-world versus change-in-belief-only are realized) and reveals a
rather puzzling feature common to all four tasks. We then take a closer
look at how the principle of inertia is used, which leads to a fine-grained
analysis in terms of perspective shifting. We formalize this analysis using
a natural deduction system for hybrid logic, and show that the proof
modelling the solution to the first-order Sally-Anne task is nested inside
the proof modelling the second-order solution.

1 Introduction

In this paper we use modal and hybrid logic to analyse four second-order false-
belief tasks. We begin with our running example, the second-order Sally-Anne
task (which was introduced in [3]):

A child is shown a scene with two doll protagonists, Sally and Anne, with
a basket and a box respectively. Sally first places a marble into her basket.
Then Sally leaves the scene, and in her absence, Anne moves the marble
and puts it in her box. However, although Anne does not realise
this, Sally is peeking through the keyhole and sees what Anne is
doing. Then Sally returns, and the child is asked: “Where does Anne
think that [Sally will] look for her marble?”

Experiments have shown that typically developing children above the age of six
usually handle second-order tasks correctly; see [12,13]. They answer that Anne
thinks that Sally will look in the basket, which is where Anne (falsely) believes
that Sally believes the marble to be. Younger children usually answer that Anne
thinks that Sally will look in the box: this is indeed where Sally knows the
marble to be, but Anne does not know that Sally knows this, and hence the
response is incorrect. In short, to pass the test, the experimental subject must
ascribe a false belief to Anne, thus ensuring that the answer can’t be explained
c© Springer-Verlag Berlin Heidelberg 2016
J. Väänänen et al. (Eds.): WoLLIC 2016, LNCS 9803, pp. 125–144, 2016.
DOI: 10.1007/978-3-662-52921-8 9

126 T. Braüner et al.

as the subject simply reporting what is true — it really is Anne’s belief that is
being reported. For children with Autism Spectrum Disorder (ASD), the shift to
correct responses tends to occur at a later age, if it happens at all.

If the bold font material is deleted, and [Sally will] is switched to ‘will Sally’,
our statement of the second-order Sally-Anne task becomes a statement of the
well known first-order Sally-Anne task (it was introduced in [2]):

A child is shown a scene with two doll protagonists, Sally and Anne, with
a basket and a box respectively. Sally first places a marble into her basket.
Then Sally leaves the scene, and in her absence, Anne moves the marble
and puts it in her box. Then Sally returns, and the child is asked: “Where
will Sally look for her marble?”

Extensive experimental work with first-order false-belief tasks has shown the
existence of a transition age, and it is lower than in the second-order case:
children above the age of four will usually say that Sally will look in the basket,
which is where Sally (falsely) believes the marble to be. But younger children
will usually say that Sally will look in the box: this is where the marble is, but
Sally does not know this, and hence the answer is incorrect. Once again, to pass
the test, the experimental subject must ascribe a false belief, this time to Sally.
This ensures that the subject’s answer can’t be explained as the subject simply
reporting what is true. For children with ASD, the shift to correct responses
usually occurs at a later age.

Handling first-order false-belief tasks correctly is viewed as a milestone in the
acquisition of Theory of Mind (ToM), the ability to ascribe mental states such as
beliefs to oneself and others, and some researchers account for ASD using what is
called the ToM deficit hypothesis (see [2]). A wide range of first-order false-belief
tasks have been devised, and over the past 30 years both correlational and train-
ing studies (involving both typically developing and children with ASD) have
yielded robust results across various countries and various task manipulations;
see, for example, the meta-analysis [21].

Second-order false-belief mastery, the topic of this paper, is also regarded
as a key step in the acquisition of ToM, but much less is known about it, and
many conclusions are tentative [12,13]. There are far fewer second-order tests
(the four we shall discuss pretty much cover the entire range) and they are less
varied in design than their first-order cousins.1 Moreover, there is no consensus
1 The three other task we consider are the bake-sale task, the ice-cream task, and the

puppy task; see Tables 4, 5 and 6 in the Appendix. The ice-cream task was the very
first second-order false-belief task to be used; it was introduced in 1985 by Wimmer
and Perner in [14]. The bake-sale task is a variant of the ice-cream task, and, as
is explained in [11], pages 323–324: “The stories were modeled after Wimmer and
Perner’s (1985) “ice cream truck story”. In contrast to their stories, we made sure
that the beliefs of the two main protagonists in the story did not overlap, both
at first-order and second-order level: each protagonist had his or her own distinct
belief which was different from that of the other protagonist, as well as from the
belief of the participants.” The puppy task was introduced in 1994 in [19], again as
a simplification of Wimmer and Perner’s ice-cream task.

Second-Order False-Belief Tasks: Analysis and Formalization 127

on the status of the shift from first-order to second-order competency. Some
researchers, starting with [19], have viewed it as a straightforward extension of
first-order mastery: acquisition of second-order mastery occurs when the child
has sufficiently strengthened his or her information processing capacities; follow-
ing Miller [12,13] we call this the complexity only position. Other researchers,
starting with [14], have argued that the transition marks a more fundamental
cognitive shift; following Miller, we call this the conceptual change position. In
this paper we argue for a version of the conceptual change position. Our argu-
ment is grounded in ideas from modal and hybrid logic, but the backdrop to
our discussion is our on-going training study on Danish speaking children with
ASD in which we investigate whether training in linguistic recursion can lead to
improvement in second-order false-belief competency.

We proceed as follows. In Sect. 2 we note earlier work on logical analysis of
false-belief tasks. In Sect. 3 we give a coarse-grained modal-logical analysis of the
four tasks and show that they share a common logical structure. A crucial role is
played by a “principle of inertia”, which says that an agent’s belief is preserved
over time, unless the agent gets information to the contrary. The coarse-grained
analysis also reveals informational symmetries: all four possibilities inherent in
the two binary dimensions of deception versus no-deception and change-in-world
versus change-in-belief-only are realized. Moreover, the analysis reveals a some-
what puzzling feature concerning first-order information shared by all four tasks.
In Sect. 4 we develop the coarse analysis into a fine-grained analysis by asking:
how exactly is the principle of inertia used? Whereas the coarse-grained analysis
simply uses the fact that Anne’s belief is preserved, the fine-grained analysis
builds on the observation that Anne thinks that Sally’s belief is preserved to
explain why; this is our stepping stone to the nested perspectival analyses that
we formalize in hybrid-logic. In Sect. 5 we present the relevant fragment of hybrid
logic, and formalize the first-order Sally-Anne task. In Sect. 6 we extend this to
a formalization of the second-order task; as we shall see, the proof modelling the
first-order solution is nested inside the proof modelling the second-order solution.
In Sect. 7 we conclude.

2 Logic and False-Belief Tasks

Frege and Husserl both tried to divorce logic and psychology, but post-1945 work
in cognitive science and artificial intelligence put logic-based models of cognitive
abilities back on the agenda, and the 2008 publication of Stenning and Van
Lambalgen [18] brought logic and psychology even closer. This pioneering work
considers a wide range of psychological tasks, including the first-order Sally-Anne
tasks, which it analyses using non-monotonic closed-world reasoning. Stenning
and Van Lambalgen make use of the principle of inertia, and draw a useful
distinction between belief formation and belief manipulation, which we will adopt
in our discussion below. The first-order Sally-Anne task has also been formalized
using an interactive theorem prover for a many-sorted first-order modal logic, an
approach which also makes use of the principle of inertia; see [1]. But we know of

128 T. Braüner et al.

few examples of logical modelling of second-order false-belief tasks: the clearest
is the Dynamic Epistemic Logic based analysis given in [4], though the use of
game theory in [20] to investigate performance in higher-order social reasoning,
for instance, is also relevant.

This paper builds on recent hybrid-logical work on false-beliefs [6–8]. The
distinguishing feature of the hybrid-logical approach is that perspective shift
is taken as fundamental. That is, it formalizes the local shifts of perspective
required by the experimental subject when reasoning about the agents in the
scenario (in our running example, Sally and Anne). The intuition is this: correctly
handling the first-order Sally-Anne task seems to involve taking the perspective
of Sally, and reasoning about what she believes. So to speak, you have to put
yourself in Sally’s shoes. As we shall argue below, correctly handling the second-
order Sally-Anne task seems to involve taking the perspective of another agent,
namely Anne, and reasoning about her perspective on Sally’s belief: you have to
put yourself in Anne’s shoes while she is putting herself in Sally’s shoes. In this
paper we turn these shoes into nested natural deduction proofs.

3 A Coarse-Grained Analysis

We now give a course-grained analysis of the four second-order tasks: we isolate
the belief-states involved, and informally describe the reasoning leading from
one belief-state to another. Three distinct times (t0, t1, and t2) are significant in
each story,2 and in Table 2 in the Appendix we have described the belief-states
at each of these times; the logical symbolism should be self-explanatory.

The reasoning pattern underlying all four tasks is clear.3 First, note that in
all four examples we make use of B¬ψ → ¬Bψ, the (contraposed form) of a
modal principle called D: if we believe ψ to be false then we don’t believe ψ.
But in all four cases the crucial ingredient is the application of a “principle of
inertia” saying that an agent’s belief is preserved over time unless the agent has
information to the contrary. For example, in the second-order Sally-Anne task,
it is initially the case that Anne believes that Sally thinks that the marble is in
the basket, formalized as BanneBsallybasket(t0). Initially it is also the case
that Sally thinks that the marble is in the basket, Bsallybasket(t0), but Sally’s
belief changes at the intermediate stage t1 since she sees through the keyhole the
marble being moved, so ¬Bsallybasket(t2). Anne, however, does not know that
Sally saw this, so Anne continues to believe that Sally thinks that the marble is
in the basket, hence BanneBsallybasket(t2), the correct answer to the task.

2 Some stories use more times than this: the bake-sale story, for example, makes use
of (at least) four. But the sequence t0, t1, and t2 constitutes the narrated time of
the story, and here it is pointless to distinguish the times when Sam and Maria learn
that there are no chocolate cookies for sale.

3 In this section we adopt the following convention: belief-states that are part of this
common pattern are typeset in bold (and displayed in blue in the online version),
other belief-states are typeset in normal font.

Second-Order False-Belief Tasks: Analysis and Formalization 129

This pattern underlies all four tasks: the correct answer is always a formula
of the form BxByφ whose truth is preserved from stage t0 to stage t2, and
subformula Byφ always becomes false at stage t1 — unbeknownst to agent x,
who ends up in t2 with a false belief about the belief of agent y. So to derive the
correct answer BxByφ(t2), the experimental subject must work out that agent
x does not know that something led to a changed belief for agent y.

Zero-Order, First-Order and Second-Order Information. Let’s dig a little
deeper for commonalities and differences. Table 3 in the Appendix summarizes
the potentially relevant information available in the tasks, not just the informa-
tion used in the coarse-grained analysis.

We start with the Sally-Anne task, where the formula BxByφ(t2) is instan-
tiated to BanneBsallybasket(t2). Note that in Table 3 we have focused solely
on the predicate occurring in the correct answer, namely basket , and ignored
the predicate box . That is, we assume that what matters is whether or not Sally
believes the marble has been moved from the basket, not where it has been
moved to. With this restriction, rows 1–5 in Table 3 summarize the potentially
relevant zero-order, first-order and second-order information in the Sally-Anne
task.

Similarly, rows 6–10 in Table 3 summarize the information in the bake-sale
task, where BxByφ(t2) is instantiated to BmariaBsamchocolate(t2). We
have again focussed on the predicate occurring in the correct answer, which
in this case is chocolate, so we are assuming that what matters is whether or not
chocolate cookies are for sale, not what else is. We have also restricted our atten-
tion to Maria and Sam, the agents involved in the correct answer, and ignored
Mom and the mailman, as their perspectives seem irrelevant.

In a similar fashion, rows 11–15 and 16–20 summarize the information avail-
able in the ice-cream and the puppy tasks. Here we also restrict attention to the
predicate φ and the agents x and y involved in the correct answer BxByφ(t2).
These restrictions enable us to compare the information in the various tasks in
a uniform way, which we will now do.4

Let’s start by comparing second-order information. First, note that in the
Sally-Anne case, there is an asymmetry in the agents’ second-order information
(see rows 4 and 5): from time t1 on, Sally believes that Anne believes that
the marble has been moved away from the basket, since Sally can see Anne
moving the marble. But Anne is not aware of this (Anne is deceived). On the
other hand, in the bake-sale case, the second-order information (rows 9 and 10) is
symmetric: at all three times Maria believes that Sam believes they sell chocolate
cookies, and Sam also believes that Maria believes they sell chocolate cookies

4 Note that rows 4,9,14,19 in Table 3 have the same form BxByφ(t0), BxBy¬φ(t1),
BxBy¬φ(t2) and are part of the common reasoning pattern leading to the correct
answer, hence they are typeset in bold (and blue in the online version). Similarly,
rows 2,7,12,17 have the same form Byφ(t0), By¬φ(t1), By¬φ(t2) and are part
of the common reasoning pattern, so they are also bold (and blue). That is, the
information in these rows is part of the experimental design, and is intended to
ensure that agent x ends up having a false belief about the belief of agent y.

130 T. Braüner et al.

Table 1. Two dimensions of information variation

Task Zero-order information Second-order information

Ice-cream Change-in-world Symmetry

Bake-sale Change-in-belief-only Symmetry

Sally-Anne Change-in-world Asymmetry (deception)

Puppy Change-in-belief-only Asymmetry (deception)

(so there is no deception).5 So second-order information in the bake-sale case
is symmetric whereas in the Sally-Anne case it is not. Similarly, the ice-cream
task is symmetric (rows 14 and 15), but the puppy task is not (rows 19 and 20)
(Table 3).

Next, let’s consider the zero-order information. In the Sally-Anne case we
have basket(t0), ¬basket(t1), and ¬basket(t2) (see row 1 of Table 3). So the for-
mula Byφ becomes false at t1 since both the world and the belief agent y has
about the world change. On the other hand, in bake-sale we have ¬chocolate(t0),
¬chocolate(t1), and ¬chocolate(t2) (see row 6). In this case, the falsification of
Byφ at t1 is not caused by a change in the world, but only by a change in the
belief agent y has about the world. We shall say that there is a change-in-the-
world in the Sally-Anne case, and a change-in-belief-only in the bake-sale case.
Similarly, there is a change-in-the-world in the ice-cream task (row 11), but a
change-in-belief-only in the puppy task (row 16).

Table 3 sums up the zero-order and the second-order informational differences
between the tasks. It shows that the bake-sale and (second-order) Sally-Anne
tasks are maximally different — they differ both at zero-order and second-order
levels — as are the ice-cream and the puppy stories.

Analyzing the first-order information reveals something curious. First,
observe that in all four tasks we have Bx¬φ(t2). So at the last stage t2 of each
story, agent x believes — indeed knows — that φ is false. For example, in the
Sally-Anne case, Anne knows that the marble is not in the basket (as she has
moved it), and in the bake-sale case, Maria knows that no chocolate cookies are
for sale. But in all four tasks we also have BxByφ(t2).

That is: in all four tasks there are false beliefs in two layers: there is the
outer layer where the experimental subject has to ascribe a false belief to agent
x, but there is also an inner layer where agent x ascribes a belief in a proposition
to agent y, but agent x knows that this proposition is false. To put it another
way: what we might call inner first-order deception is built into all four tasks.
Note that this is different from the overt second-order deception present in the
Sally-Anne and Puppy tasks: second-order deception plays a clear role in their
experimental designs. But this inner first-order deception does not seem to be

5 The distinction between tasks that do and do not involve deception is considered
important for first-order false beliefs, as deception in a story may signal the relevance
of detecting falsehood. But it has been little discussed for second-order tasks; see
[13], especially pages 48–49, for discussion and pointers to the literature.

Second-Order False-Belief Tasks: Analysis and Formalization 131

a part of the experimental design of the four second-order false belief tasks:
Bx¬φ(t2) is not used to derive the correct answers.6 Nonetheless, it seems hard
to devise second-order scenarios which don’t have inner first-order deception
built into them without the experimental design falling apart. But as far as we
are aware, the general presence of this kind of ‘deception’ is not something that
has been noted or discussed in the literature on second-order false-beliefs.

4 A Fine-Grained Analysis

We now make the coarse-grained analysis fine-grained by examining the role
of the principle of inertia in more detail. Consider how it is used in the first-
order Sally-Anne task. There the child (who we will call Peter) is asked: Where
will Sally look for her marble? The inertia principle is clearly involved in Peter’s
reasoning: he takes it for granted that it can be applied to Sally’s understanding.
Indeed, learning to take it for granted in such circumstances is part of what is
meant by acquiring first-order false-belief competence.

In the second-order case, Peter is asked: Where does Anne think Sally will
look for her marble? Now, this is a question about Anne, thus it might seem
that the key reasoning step for Peter is (once again) to take for granted that
inertia applies, this time to Anne’s understanding. After all, Anne never leaves
the room, so she is right in front of that marble all the time, so inertia seems
relevant. And as Peter observes, Anne does not “receive information to the
contrary” (because she does not see Sally peek) and so the inertia principle
applies and Anne’s belief about Sally’s belief will be preserved from t0 to t2.

But this analysis does not go deep enough. How does Peter “observe” that
Anne does not “receive information to the contrary”? He certainly observes
that Anne does not see Sally peek—but what links this observation with Anne’s
beliefs? There is a gap here. Peter cannot simply apply the principle of inertia
to Anne’s understanding; rather, he must understand that Anne is applying
inertia to Sally’s understanding. Anne reasons that Sally will preserve her belief
in the marble being in the basket, because Anne believes that Sally does not
see the marble being moved. This belief fills the missing gap—it builds a logical
“bridge” to Peter’s observation.

Summing up, in the fine-grained analysis the principle of inertia is applied
by Anne to Sally’s belief (and not by Peter to Anne’s belief). And this has
an interesting consequence. It means that Anne is playing the same role in the
second-order Sally-Anne task (namely, reasoning about Sally’s belief) that Peter
played in the first-order task. And this suggests a road to formalization: take a
proof that formalizes the first-order task (Peter’s reasoning about Sally) and view
it instead as formalizing Anne’s reasoning about Sally. Nest this proof (at the
appropriate place) inside a formalization of Peter’s reasoning about the second-
order task; this will fill in the missing details about Anne’s use of the inertia
6 Which is why this information is not typeset in bold (and why in the online version,

it is not in blue), and also why in Table 2 (the coarse-grained reasoning analysis) it
has been put in parentheses.

132 T. Braüner et al.

principle. This is the goal of the following two sections, where we will use natural
deduction in hybrid logic to formalize the perspectival reasoning involved.

5 Formalizing the First-Order Sally-Anne Task

First we define the syntax and semantics of the fragment of hybrid logic we
use for the formalization of the first-order Sally-Anne task, namely a version of
Seligman’s [17] Logic of Correct Description (LCD). We assume we are given a
set of propositional symbols (to be thought of as placeholders for information
that is seen, believed, deduced . . . , and so on) and a set of nominals (to be
thought of as names of the agents in the scenarios: Sally and Anne in our running
example). We assume these sets are disjoint. We use p, q, r, . . . , for ordinary
propositional symbols and s, a, b, c, . . . , for nominals.

Definition 1. Formulas of LCD are defined by the following grammar:

S ::= p | a | S ∧ S | S → S | ⊥ | @aS

Negation is defined by the convention that ¬φ is an abbreviation for φ → ⊥.

Definition 2. A model for LCD is a tuple (W, {Vw}w∈W) where:

1. W is a non-empty set; think of these as the agents in the scenario of interest.
2. For each w, Vw is a function that to each ordinary propositional symbol

assigns an element of {0, 1}.

Given a model M = (W, {Vw}w∈W), an assignment is a function g that to each
nominal assigns an element of W . The relation M, g, w |= φ, where g is an
assignment, w is an element of W , and φ is a formula, is defined as follows:

M, g, w |= p iff Vw(p) = 1
M, g, w |= a iff w = g(a)

M, g, w |= φ ∧ ψ iff M, g, w |= φ and M, g, w |= ψ
M, g, w |= φ → ψ iff M, g, w |= φ implies M, g, w |= ψ

M, g, w |= ⊥ iff falsum
M, g, w |= @aφ iff M, g, g(a) |= φ

Two remarks. First, nominals should be thought of as naming the unique
agent they are true at. For example, we shall use s as a nominal true at Sally; in
effect it is a ‘name’ or ‘constant’ that picks her out.7 But nominals are also used
to make modalities: if φ is an arbitrary formula and s is the nominal that names

7 There are some interesting possibilities here: we could make our formalization more
fine-grained by taking some nominals to stand for times, or go two-dimensional by
taking nominals to stand for person-time pairs. But here we stick with the simpler
setup just defined, as it has the same granularity as Stenning and Van Lambalgen’s
work on first-order false-belief tasks, cf. [18], pages 251–259.

Second-Order False-Belief Tasks: Analysis and Formalization 133

c φ
(@I)

@cφ

c @cφ
(@E)

φ

φ1 . . . φn

[φ1] . . . [φn][c]···
ψ

(Term)∗
ψ

[c]···
ψ

(Name)†
ψ

∗ φ1, . . . , φn and ψ are satisfaction statements, and there are no undischarged assump-
tions in the derivation of ψ besides the specified occurrences of φ1, . . . , φn and c.
† The nominal c does not occur in ψ or in any undischarged assumptions other than
the specified occurrences of c.

Fig. 1. Natural deduction rules for LCD

Sally, then a new formula @sφ can be built. The @s prefix is called a satisfaction
operator and the formula @sφ is called a satisfaction statement. Satisfaction
statements let us switch perspectives: if we evaluate the satisfaction statement
@sφ at any agent in a model, it will be true iff φ is true at Sally.

Second, note that we have not introduced any modalities apart from the sat-
isfaction operators. But this is not an oversight. In what follows the reader will
encounter expressions of the form @sSφ (that is, Sally sees φ) and @sBφ (that
is, Sally believes φ). But as far as the analysis of first-order false-belief tasks is
concerned, expressions containing the modalities S and B are not used in gen-
uinely modal reasoning. Indeed, expressions of the form Sφ and Bφ are essen-
tially complicated-looking propositional symbols: they are only used in simple
propositional reasoning and then fed (once) into a perspective-shifting natural-
deduction rule called Term. This will change (at least for the B operator) in the
following section when we formalize the second-order task.

This brings us to natural deduction system we shall use to analyse the first-
order Sally-Anne task.8 We use the system for LCD obtained by extending the
standard natural deduction system for classical propositional logic with the rules
in Fig. 1; the symbol c is an arbitrary nominal (that is, the name of an arbitrary
agent). This is a modified version of Seligman’s original natural deduction system
for LCD [17]; these rules here are from Chap. 4 of [5]. We omit the rules for the
boolean connectives: they are standard, and we prefer the more perspicuous proof
trees obtained by ‘compiling down’ the simple propositional reasoning involved
into additional rules (see the examples in the Appendix). In [5], this natural
deduction system is proved to be sound and complete:

8 Natural deduction was originally developed to model mathematical argumentation,
but there is now some experimental backing for the claim that it is a mechanism
underlying human deductive reasoning more generally; see [16]. One of the reasons
we chose hybrid logic for our analysis (rather than, say, a multi-agent doxastic logic)
was because of its well-behaved natural deduction systems; see [5].

134 T. Braüner et al.

Theorem 1. Let ψ be a formula and Γ a set of LCD wffs. The first statement
below implies the second statement (soundness) and vice versa (completeness).

1. The formula ψ is derivable from Γ in Seligman’s natural deduction system.
2. For any model M, any world w, and any assignment g, if, for any formula

θ ∈ Γ , it is the case that M, g, w |= θ, then M, g, w |= ψ.

Let’s take a closer look. The rules @I and @E in Fig. 1 are the introduction and
elimination rules for satisfaction operators. The @I rule says that if we have the
information c (so we are reasoning about the agent called c) and we also have the
information φ, then we can introduce the satisfaction operator @c and conclude
@cφ, which says that φ holds from c’s perspective. The @E rule says: suppose
that when reasoning about the agent named c, we also have the information that
@cφ. Then we can eliminate @c and conclude φ.

But it is the Term rule that is central to the formalization. This rule lets us
switch to another agent’s perspective using hypothetical reasoning: the bracketed
expressions [φ1] . . . [φn][c] in the statement of the rule are (discharged) assump-
tions. The key assumption is c, which can be glossed as: let’s switch perspective
and temporarily adopt c’s point of view.9 The remaining (discharged) assump-
tions [φ1] . . . [φn] in the rule’s statement are additional assumptions we may wish
to make about the information available from c’s perspective.10

The rule works as follows. Suppose that on the basis of assumptions
φ1 . . . φn, c we deduce ψ from c’s perspective. Then the Term rule tells us that
if φ1 . . . φn are available in the original perspective,11 then we can discharge the
assumption (which we do by bracketing them, thus obtaining [φ1] . . . [φn][c]) and
conclude ψ unconditionally in the original perspective.

The Term rule is a subtle and powerful rule.12 Indeed, as was first shown in
[6], the hybrid logical analysis of the first-order Sally-Anne task boils down to
a single application of Term. Recall that Peter is the child performing the task.
To answer the question (Where will Sally look for her marble?) Peter reasons as
follows. At the time t0, Sally believed the marble to be in the basket. She saw
no action to move it, so she still believed this at t1. When she returned at t2,
she still believed the marble to be in the basket (after all, she was out of the
room when Anne moved it at time t1). Peter concludes that Sally believes that
the marble is still in the basket.

9 Incidentally, when using the Term rule we make at least one assumption c, but we
can make several, and this is often necessary to drive the proof through.

10 The Name rule tells us that if we can prove the information φ by adopting some
arbitrary perspective c, then φ also holds from the original perspective. As we won’t
use this rule in our analysis, we refer to [5] for further discussion.

11 Indicated by the premisses φ1 . . . φn listed just above the horizontal line in the state-
ment of Term given in Fig. 1.

12 A subtlety worth emphasising is that (as is stated in Fig. 1) the assumptions
[φ1] . . . [φn] must all be satisfaction statements, otherwise the rule is not sound.
We refer the reader to [17] and Chap. 4 of [5] for further discussion.

Second-Order False-Belief Tasks: Analysis and Formalization 135

To formalize this we use the nominal s to name Sally, and the modal operators
S (sees that) and B (believes that). The predicate l(i, t) means that the marble
is at location i at time t. Predicate m(t) means that the marble is moved at time
t. We take time to be discrete, and use t + 1 as the successor of t. Using this
vocabulary we can express the four belief formation principles we need:13

(D) B¬φ → ¬Bφ
(P1) Sφ → Bφ
(P2) Bl(i, t) ∧ ¬Bm(t) → Bl(i, t + 1)
(P3) Bm(t) → Sm(t)

With the help of these principles, the perspectival reasoning involved in the
Sally-Anne task can be formalized as the derivation in Fig. 3 (in the Appen-
dix). We have already given Peter’s informal perspectival reasoning; the formal
proof mirrors it in full detail using a single application of Term in which the
assumptions of s model the shift to Sally’s perspective. The first two premises
@sSl(basket , t0) and @sS¬m(t0) taken together say that Sally at the earlier time
t0 saw that the marble was in the basket and that no action was taken to move
it. The third premise, @s¬Sm(t1), says that Sally did not see the marble being
moved at the time t1 (since she was absent). Note that when applying the belief
formation principles, we simply use them as rules.14

The bulk of the reasoning on the right-hand-side of the proof tree in Fig. 3
simply consists of a sequence of applications of belief formation principles until
the crucial formula @sBl(basket , t2) — Sally believes the ball is in the basket — is
deduced. What turns this into a formalisation of correct reasoning in the Sally-
Anne task is the way the sequencing of belief formation principles is perspec-
tivized. The right-hand-side sequencing occurs between the initial assumptions
of s (which perspectivizes it as Sally’s reasoning) and the final application of
Term which lets us conclude that the crucial formula is also true from Peter’s
point of view. In short, the analysis consists of Belief Formation + Perspectival
Reasoning correctly combined.

13 As we mentioned earlier, “belief formation” (and “belief manipulation”) is terminol-
ogy we have borrowed from [18], and we discuss them in more detail shortly. As for
the belief formations principles themselves, we have already met Principle (D) which
says if we believe that something is false, then we don’t believe it. Principle (P1)
states that a belief in φ may be formed as a result of seeing φ; this is principle (9.2)
in [18], page 251. Principle (P2) is (pretty clearly) a principle of inertia: a belief that
the predicate l is true is preserved from a time t to its successor t + 1, unless it is
believed that the marble moved at t. This is essentially Principle (9.11) from [18],
page 253, and axiom [A5] in [1], page 20. Principle (P3) encodes the information
that seeing the marble being moved is the only way a belief that the marble is being
moved can be acquired. Obviously this is not a general truth, but the point of the
formalization is simply to capture Peter’s reasoning in the Sally-Anne scenario.

14 As we remarked earlier, we do this to ‘compile down’ the simple propositional rea-
soning involved. Strictly speaking, deducing Bφ from Sφ requires us to apply the
propositional rule of modus ponens to Sφ → Bφ. Using the belief formation princi-
ples as additional natural deduction rules enables us to omit such steps and reduce
the size of the proof tree.

136 T. Braüner et al.

Analagous remarks are made by Stenning and Van Lambalgen about their
own analysis of first-order false-belief tasks; see [18], page 257. They note that
the bulk of the reasoning involves belief formation principles and their analy-
sis succeeds because it is carrying out using closed world reasoning; we might
summarise their approach as Belief Formation + Closed World Reasoning cor-
rectly combined. However they then go on to remark that what they call Belief
Manipulation rules (which codify how to reason from one belief state to another)
are unnecessary. Now, as far as first-order false-belief reasoning is concerned, we
agree completely. Indeed, until now we have provided no proof rules for manip-
ulating the belief operator B beyond the belief formation principles. And that
is because, for the first-order Sally-Anne task, we had no need of anything else.
But a belief manipulation rule will be needed if we are to extend our perspectival
analysis to the second-order Sally-Anne task.15 We turn to this task now.

6 Formalizing the Second-Order Sally-Anne Task

As we remarked at the end of Sect. 4, Anne plays the same role in the second-
order Sally-Anne task (namely, reasoning about Sally’s belief) that Peter played
in the first-order task. This suggests that we should take the proof we have just
given (formalizing Peter’s reasoning about Sally), view it as formalizing Anne’s
reasoning about Sally, and nest it (at the appropriate place) inside a formaliza-
tion of Peter’s reasoning about the second-order task. That is, we should add
another level of nesting to the perspectival analysis. To make this work we have
to introduce a recursive belief manipulation rule for B. We have chosen the rule
given in Fig. 2. We call it BM. It is a version of a rule from [9] that fits naturally
our tree-style natural deduction proofs.16

Bφ1 . . . Bφn

[φ1] . . . [φn]···
ψ

(BM)∗
Bψ

∗ There are no undischarged assumptions in the derivation of ψ except the specified
occurrences of φ1, . . . , φn.

Fig. 2. Belief manipulation rule for the B operator

15 Stenning and Van Lambalgen do not analyse second-order false-belief tasks.
16 So we are adding natural deduction machinery for the minimal modal logic K and

thus treating B as a full-fledged modal operator. In this paper we won’t discuss the
model-theoretic changes required — but we do believe that the fact that a semantic
enrichment is called for at this point adds weight to our argument that the transition
from first- to second-order reasoning involves conceptual change.

Second-Order False-Belief Tasks: Analysis and Formalization 137

And now to complete the formalization. We shall use the nominal a as a
name for Anne, read Dφ as φ is deducible, and make use of a natural deduction
formulation of the following belief formation principle:

(P0) Dφ → Bφ
This says that if we can deduce the information φ then we believe φ (this is
principle (9.4) in [18], page 251). With this machinery in place, the reasoning in
the second-order Sally-Anne task can be formalized by the proof tree in Fig. 4
in the Appendix. Note that the first-order proof in nested inside: the dots in the
upper-right corner of Fig. 4 indicate where.

The proof’s conclusion, @aB@sBl(basket , t2), says that Anne believes that
Sally believes that the marble is in the basket at the time t2, and this is indeed
the correct response to the second-order task. And Peter can prove this as follows.

The first two premises used in the application of Term with which the proof
concludes, @aS@sSl(basket , t0) and @aS@sS¬m(t0), say that at time t0, Anne
saw that Sally saw that the marble was in the basket and that no action was
taken to move it. The third premise used in the concluding application of the
Term rule, @aD@s¬Sm(t1), says that Anne deduced that Sally did not see the
marble being moved at the time t1, which is true.

But the essential step is the way the belief manipulation rule BM glues
together the two levels of perspectival reasoning. The embedded proof (which
reasons from Sally’s perspective) yields the conclusion @sBl(basket , t2), the cor-
rect response to the first-order task. But Peter can’t use this information directly:
he needs to know that Anne believes this. But the application of BM prefixes the
belief operator to form B@sBl(basket , t2), and the very next step of the proof
shows that this belief holds from Anne’s point of view. Thus the reasoning on
the right has now been incorporated back into Anne’s perspective, and so can
be fed into Term, and Peter has his answer.

7 Concluding Discussion

Second-order reasoning is more complex than first-order — the previous section
with its embedded proof and use of the BM rule showed this clearly.17 Nonethe-
less, our analysis also suggests that the transition to second-order competence
marks a more significant development than is suggested by the complexity only
position: the full reification of beliefs. Attainment of first-order false-belief com-
petence marks the stage at which the child becomes aware of the fact that beliefs
held by other agents can be false; second-order competence, on the other hand,
marks the stage where beliefs become objects in their own right that can be
manipulated. This shift is mirrored in our analysis: we jumped from a logic that

17 Indeed, our analysis allows us to tentatively indicate the shift in complexity. The
LCD fragment is np-complete. By adding BM we have moved to a pspace-hard
modal logic. So our analysis of the first-order Sally-Anne task is carried out in
computationally simpler logic than the second-order case (assuming p �= np).

138 T. Braüner et al.

permitted only Belief Formation + Perspectival Reasoning to one that allowed
unrestricted Belief Manipulation as well.

This is a significant advance. Beliefs are special objects: they are abstract,
invisible, and though ‘about’ the world, they may very well be false. Typically
developing children learn this first lesson around the age of four, but there is a
further lesson they must learn: that beliefs can be embedded one inside another
and freely manipulated. Something like the BM rule seems to be required to
capture this step. It is tempting to speculate that at this developmental stage
some sort of “recursion module” is adapted to handle these strange new objects,
but be that as it may, in typically developing children the reasoning architecture
is certainly enriched in an important way at around the age of six.18

Recursively stacked beliefs lie at the heart of this transition, which brings us
to our empirical work [15]. Our logical investigations were carried out as part
of an ongoing training study involving Danish speaking children with ASD. Our
empirical work is driven by the hypothesis that, in case of children with ASD,
improving linguistic recursion competency predicts belief manipulation mastery
required by second-order false-belief tasks. We are investigating whether children
with ASD use language as a “scaffolding” to support developing understanding
of other minds, an explanation advanced in the first-order case by [10].

Acknowledgements. We thank the referees for their valuable comments and ques-
tions. The authors acknowledge the funding received from the VELUX FOUNDATION
for the project Hybrid-Logical Proofs at Work in Cognitive Psychology (VELUX 33305).

Appendix

The Appendix contains the coarse-grained reasoning for the four tasks (Table 2),
the table listing their information content (Table 3), the texts of the bake-sale,
ice-cream and puppy tasks (Tables 4, 5 and 6 respectively) and the formalization
of the first-order and second-order Sally-Anne tasks (Figs. 3 and 4).

18 Our formalization does suggest a hypothesis which may be empirically testable.
Although we have talked of acquiring second-order competency, to acquire (some-
thing like) the BM rule is to acquire a fully recursive competency. That is, once the
child has acquired BM, there should be nothing more to learn, for the rule covers the
third, fourth, fifth, . . . , and all higher-order levels. That is, we suspect that false-
belief competency comes in two stages for typically developing children: first-order
competency (at around the age of four) and all the rest (at around the age of six).
But designing an experiment to test this is likely to be difficult. Apart from any-
thing else, higher levels of reasoning impose heavy cognitive loads very fast, and it
is unclear how such performance effects could be disentangled experimentally.

Second-Order False-Belief Tasks: Analysis and Formalization 139

Table 2. A coarse-grained analysis of second-order false-belief tasks in terms of belief-
states

140 T. Braüner et al.

Table 3. Zero-order, first-order and second-order information in the tasks

Table 4. The bake-sale task (quoted from [11], pictures and some questions omitted)

Second-Order False-Belief Tasks: Analysis and Formalization 141

Table 5. The ice-cream task (introduced in [14], quoted from [12], a question omitted)

Table 6. The puppy task (introduced in [19], quoted from [12], some questions omitted)

142 T. Braüner et al.

@
s
S

l(
ba
sk
et

,t
0
)

@
s
S

¬m
(t

0
)

@
s
¬S

m
(t

1
)

[s
]

[s
]
[@

s
S

l(
ba
sk
et

,t
0
)]

(@
E

)
S

l(
ba
sk
et

,t
0
)

(P
1
)

B
l(
ba
sk
et

,t
0
)

[s
]
[@

s
S

¬m
(t

0
)]

(@
E

)
S

¬m
(t

0
)

(P
1
)

B
¬m

(t
0
)

(D
)

¬B
m

(t
0
)

(P
2
)

B
l(
ba
sk
et

,t
1
)

[s
]
[@

s
¬S

m
(t

1
)]

(@
E

)
¬S

m
(t

1
)

(P
3
)

¬B
m

(t
1
)

(P
2
)

B
l(
ba
sk
et

,t
2
)

(@
I
)

@
s
B

l(
ba
sk
et

,t
2
)

(T
er
m

)
@

s
B

l(
ba
sk
et

,t
2
)

F
ig
.
3
.
F
o
rm

a
li
za

ti
o
n

o
f
th

e
ch

il
d
’s

co
rr

ec
t

re
sp

o
n
se

in
th

e
fi
rs

t-
o
rd

er
S
a
ll
y
-A

n
n
e

ta
sk

@
a
S

@
s
S

l (
ba
sk
et

,t
0
)
@

a
S

@
s
S

¬m
(t

0
)
@

a
D

@
s
¬S

m
(t

1
)

[a
][
@

a
S

@
s
S

l(
ba
sk
et

,t
0
)]

S
@

s
S

l(
ba
sk
et

,t
0
)

(P
1
)

B
@

s
S

l (
ba
sk
et

,t
0
)

[a
][
@

a
S

@
s
S

¬m
(t

0
)]

S
@

s
S

¬m
(t

0
)

(P
1
)

B
@

s
S

¬ m
(t

0
)

[a
][
@

a
D

@
s
¬S

m
(t

1
)]

D
@

s
¬S

m
(t

1
)

(P
0
)

B
@

s
¬ S

m
(t

1
)

[@
s
S

l(
ba
sk
et

,t
0
)]

[@
s
S

¬m
(t

0
)]

[@
s
¬S

m
(t

1
)]

· · ·
@

s
B

l(
ba
sk
et

,t
2
)

(B
M

)
B

@
s
B

l (
ba
sk
et

,t
2
)

[a
]

@
a
B

@
s
B

l(
ba
sk
et

,t
2
)

(T
er
m

)
@

a
B

@
s
B

l(
ba
sk
et

,t
2
)

T
h
e

v
er

ti
ca

l
d
o
ts

in
th

e
u
p
p
er

-r
ig

h
t

co
rn

er
re

p
re

se
n
t

th
e

d
er

iv
a
ti

o
n

in
F
ig

u
re

3
.

S
o

th
is

p
ro

o
f

co
n
ta

in
s

tw
o

a
p
p
li
ca

ti
o
n
s

o
f
T
er
m

:
th

e
co

n
cl

u
d
in

g
a
p
p
li
ca

ti
o
n
,
w

h
ic

h
is

sh
ow

n
,
a
n
d

th
e

o
n
e

in
si

d
e

th
e

ea
rl

ie
r

p
ro

o
f,

w
h
ic

h
is

n
o
t.

T
o

sa
v
e

sp
a
ce

,
w

e
h
av

e
o
m

it
te

d
n
a
m

es
o
f
th

e
in

tr
o
d
u
ct

io
n

a
n
d

el
im

in
a
ti

o
n

ru
le

s
fo

r
th

e
@

o
p
er

a
to

r.

F
ig
.
4
.
F
o
rm

a
li
za

ti
o
n

o
f
th

e
ch

il
d
’s

co
rr

ec
t

re
sp

o
n
se

in
th

e
se

co
n
d
-o

rd
er

S
a
ll
y
-A

n
n
e

ta
sk

Second-Order False-Belief Tasks: Analysis and Formalization 143

References

1. Arkoudas, K., Bringsjord, S.: Toward formalizing common-sense psychology: an
analysis of the false-belief task. In: Ho, T.-B., Zhou, Z.-H. (eds.) PRICAI 2008.
LNCS (LNAI), vol. 5351, pp. 17–29. Springer, Heidelberg (2008)

2. Baron-Cohen, S., Leslie, A.M., Frith, U.: Does the autistic child have a ‘theory of
mind’? Cognition 21(1), 37–46 (1985)

3. Baron-Cohen, S., O’Riordan, M., Stone, V., Jones, R., Plaisted, K.: Recognition
of faux pas by normally developing children and children with Asperger syndrome
or high-functioning autism. J. Autism Dev. Disord. 29(5), 407–418 (1999)

4. Bolander, T.: Seeing is believing: formalising false-belief tasks in dynamic epistemic
logic. In: Herzig, A., Lorini, E. (eds.) Proceedings of the European Conference on
Social Intelligence (ECSI-2014), pp. 87–107. Toulouse University, France, IRIT-
CNRS (2014)

5. Braüner, T.: Hybrid Logic and its Proof-Theory. Applied Logic Series, vol. 37.
Springer, Heidelberg (2011)

6. Braüner, T.: Hybrid-logical reasoning in the Smarties and Sally-Anne tasks. J.
Logic Lang. Inf. 23, 415–439 (2014)

7. Braüner, T.: Hybrid-logical reasoning in the Smarties and Sally-Anne tasks: what
goes wrong when incorrect responses are given? In: Proceedings of the 37th Annual
Meeting of the Cognitive Science Society, pp. 273–278. Cognitive Science Society,
Pasadena, California (2015)

8. Braüner, T., Blackburn, P., Polyanskaya, I.: Recursive belief manipulation and
second-order false-beliefs. In: Proceedings of the 38th Annual Meeting of the Cog-
nitive Science Society. Cognitive Science Society, Philadelphia, Pennsylvania, USA
(2016, to appear)

9. Fitting, M.: Modal proof theory. In: Blackburn, P., van Benthem, J., Wolter, F.
(eds.) Handbook of Modal Logic, pp. 85–138. Elsevier, New York (2007)

10. Hale, C., Tager-Flusberg, H.: The influence of language on theory of mind: a train-
ing study. Dev. Sci. 6, 346–359 (2003)

11. Hollebrandse, B., van Hout, A., Hendriks, P.: Children’s first and second-order
false-belief reasoning in a verbal and a low-verbal task. Synthese 191, 321–333
(2014)

12. Miller, S.: Children’s understanding of second-order mental states. Psychol. Bull.
135, 749–773 (2009)

13. Miller, S.: Theory of Mind: Beyond the Preschool Years. Psychology Press, New
York (2012)

14. Perner, J., Wimmer, H.: “John thinks that Mary thinks that..”: attribution of
second-order beliefs by 5-to 10-year-old children. J. Exp. Child Psychol. 39,
437–471 (1985)

15. Polyanskaya, I., Braüner, T., Blackburn, P.: Linguistic recursion and Autism Spec-
trum Disorder. Manuscript (2016)

16. Rips, L.: Logical approaches to human deductive reasoning. In: Adler, J., Rips, L.
(eds.) Reasoning: Studies of Human Inference and Its Foundations, pp. 187–205.
Cambridge University Press, Cambridge (2008)

17. Seligman, J.: The logic of correct description. In: de Rijke, M. (ed.) Advances in
Intensional Logic. Applied Logic Series, vol. 7, pp. 107–135. Kluwer, Dordrecht
(1997)

18. Stenning, K., van Lambalgen, M.: Human Reasoning and Cognitive Science. MIT
Press, Cambridge (2008)

144 T. Braüner et al.

19. Sullivan, K., Zaitchik, D., Tager-Flusberg, H.: Preschoolers can attribute second-
order beliefs. Dev. Psychol. 30, 395–402 (1994)

20. Szymanik, J., Meijering, B., Verbrugge, R.: Using intrinsic complexity of turn-
taking games to predict participants’ reaction times. In: Knauff, M., Pauen, M.,
Sebanz, N., Wachsmuth, I. (eds.) Proceedings of the 35th Annual Conference of
the Cognitive Science Society, pp. 1426–1432. Cognitive Science Society, Austin
(2013)

21. Wellman, H., Cross, D., Watson, J.: Meta-analysis of theory-of-mind development:
the truth about false-belief. Child Dev. 72, 655–684 (2001)

Categories: How I Learned to Stop Worrying
and Love Two Sorts

Willem Conradie1, Sabine Frittella2(B), Alessandra Palmigiano1,2, Michele Piazzai2,
Apostolos Tzimoulis2, and Nachoem M. Wijnberg3

1 Department of Pure and Applied Mathematics, University of Johannesburg,
Johannesburg, South Africa
wconradie@uj.ac.za

2 Faculty of Technology, Policy and Management, Delft University of Technology,
Delft, The Netherlands

{S.S.A.Frittella,A.Palmigiano,M.Piazzai,A.Tzimoulis-1}@tudelft.nl
3 Amsterdam Business School, University of Amsterdam,

Amsterdam, The Netherlands
n.m.wijnberg@uva.nl

Abstract. RS-frames were introduced by Gehrke as relational semantics for sub-
structural logics. They are two-sorted structures, based on RS-polarities with
additional relations used to interpret modalities. We propose an intuitive, epis-
temic interpretation of RS-frames for modal logic, in terms of categorization
systems and agents’ subjective interpretations of these systems. Categorization
systems are a key to any decision-making process and are widely studied in the
social and management sciences.

A set of objects together with a set of properties and an incidence relation con-
necting objects with their properties forms a polarity which can be ‘pruned’ into
an RS-polarity. Potential categories emerge as the Galois-stable sets of this polar-
ity, just like the concepts of Formal Concept Analysis. An agent’s beliefs about
objects and their properties (which might be partial) is modelled by a relation
which gives rise to a normal modal operator expressing the agent’s beliefs about
category membership. Fixed-points of the iterations of the belief modalities of all
agents are used to model categories constructed through social interaction.

Keywords: Lattice-based modal logic · RS-frames · Categorization theory ·
Epistemic logic · Formal concept analysis

1 Introduction

Relational semantic frameworks for logics algebraically captured by varieties of nor-
mal lattice expansions1 have been intensely investigated for more than three decades

1 A normal lattice expansion is a bounded lattice endowed with operations of finite arity, each
coordinate of which is either positive (i.e. order-preserving) or negative (i.e. order-reversing).
Moreover, these operations are either finitely join-preserving (resp. meet-reversing) in their
positive (resp. negative) coordinates, or are finitely meet-preserving (resp. join-reversing) in
their positive (resp. negative) coordinates.

c© Springer-Verlag Berlin Heidelberg 2016
J. Väänänen et al. (Eds.): WoLLIC 2016, LNCS 9803, pp. 145–164, 2016.
DOI: 10.1007/978-3-662-52921-8 10

146 W. Conradie et al.

[3,15,17,19,22,25,27,30,31,33,34,39,40]. However, none of these frameworks has
gained the same pre-eminence and success as Kripke semantics. Indeed, the extant pro-
posals are regarded as significantly less intuitive than Kripke structures, especially w.r.t.
their possibility to support the various established interpretations of modal operators
(e.g. epistemic, temporal, dynamic), and hence doubts have been raised as to the suit-
ability of these logics for applications. Various directions have been explored to try and
cope with these difficulties, such as: (a) attempts to provide a conceptual justification
to some of the distinctive features of these semantics (for instance, in [25], a concep-
tual motivation has been given for the ‘two-sortedness’ of the relational semantics for
substructural logics introduced in the same paper in terms of a duality between states
and information quanta); (b) recapturing the usual definition of the interpretation clause
of modal operators in a generalized context [27,28]; (c) improving the modularity of
mathematical theories such as correspondence theory, to facilitate the transfer of results
across different semantic settings. The latter direction has been implemented specifi-
cally for lattice-based logics in [6,9,10], and pursued more in general in [4,5,7,8,11–
14,21,26,37,38].

The contribution of the present paper pertains to direction (a): we propose catego-
rization theory in management science as a concrete frame of reference for understand-
ing the RS-semantics of lattice-based modal logic, and we argue that, when understood
in this light, a natural epistemic interpretation can be given to the modal operators,
which captures e.g. the factivity and positive introspection of knowledge.

Our starting point is the connection, mentioned also in [25], between RS-semantics
and Formal Concept Analysis (FCA) [24]. Namely, RS-frames for normal lattice-based
modal logics are based on polarities, that is, tuples (A, X,⊥) such that A and X are sets,
and ⊥⊆ A × X. In FCA, polarities can be understood as formal contexts, consisting of
objects (the elements of A) and properties (the elements of X) with the relation ⊥ indi-
cating which object satisfies which property. It is well known that any polarity induces
a Galois connection between the powersets of A and X, the stable sets of which form
a complete lattice, and in fact, any complete lattice is isomorphic to one arising from
some polarity. This representation theory for general lattices, due to Birkhoff, provides
the polarity-to-lattice direction of the duality developed in [25], and is also at the heart
of FCA. Indeed, the Galois-stable sets arising from formal contexts can be interpreted
as formal concepts. One of the most felicitous insights of FCA is that concepts are
endowed by construction with a double interpretation: an extensional one, specified by
the objects which are instances of the formal concept, and an intensional one, specified
by the properties shared by any object belonging to the concept.

The second key step is the arguably natural idea that categories and classification
systems, as studied in social sciences and management science, are a very concrete
setting of application of the insights of FCA.

Indeed, in social science and management science, categories are understood as
types of collective identities for broad classes e.g. of market products, organizations or
individuals. Categorization theory recognizes categories as a key aspect of any decision-
making process, in that they structure the space of options by defining the boundaries of
meaningful comparisons between the available alternatives [29,32,42]. Also, categories
function as cognitive sieves, filtering out those features which are redundant or less

Categories: How I Learned to Stop Worrying and Love Two Sorts 147

essential to the decision-making, thus contributing to minimize the agents’ cognitive
efforts. Examples of categories are musical genres, which are widely applied as tools
to compress and convey relevant information about a musical product to its potential
audience. Structuring information and decision-making along the faultlines of genres
is so established a practice in the creative industries that genres have become the main
way to structure competition as well as to create consumer group identity.

An aspect of categories which is very much highlighted in the categorization the-
ory literature is that they never occur in isolation; rather, they arise in the context of
categorization systems (e.g. taxonomies), which are typically organized in hierarchies
of super- (i.e. less specified) and sub- (i.e. more specified) categories. This observation
agrees with the FCA treatment, according to which concepts arise embedded in their
concept lattice.

One of the open challenges in the extant literature is how to reconcile the view on
categories which defines them in terms of the objects (e.g. products) belonging to that
category with another view which defines categories in terms of the features enjoyed by
its members. The intensional and extensional perspectives on concepts brought about
by FCA provide an elegant reconciliation of the two views on categories, which gives a
second clue that the FCA perspective on categorization theory can be fruitful.

In recent years, a substantial research stream in social and management science
explores the dynamic aspects of categorization [29,35]. For instance, category emer-
gence investigates how new categories are created, either ex nihilo or through the
recombination of existing ones, and how the interaction of relevant groups of agents,
such as the media or the reviewers, plays a role in this process. The aspect of social
interaction is essential to understand how categories arise and are put to use: although
they can be seen to arise from factual pieces of information about the world (e.g., the
products available in a given market and their features), a critical component of their
nature cannot be reduced to factual information. In other words, categories are social
artifacts, and reasoning about them requires a peculiar combination of factual truth,
individual perception and social interaction.

The main point of interest and the conceptual contribution of the present proposal
concerns precisely the formalization of the subjective and social aspects of this emer-
gence. Namely, we observe that the agents’ subjective perspective on products and
features can be naturally modelled by associating each agent with a binary relation
R ⊆ A × X on the database (A, X,⊥), which represents the subjective filters superim-
posed by each agent on the information of the database. That is, for every product a ∈ A
and every feature x ∈ X, we read aRx as ‘product a has feature x according to the
agent’. By general order-theoretic facts, these relations2 induce normal modal opera-
tors on the categorization system associated with the database. These modal operators
enrich the basic propositional logic of the categorization systems. In this enriched log-
ical language, it is easy to distinguish between ‘objective’ information (stored in the
database), encoded in the formulas of the modal-free fragment of the language, and the
agents’ subjective interpretation of the ‘objective’ information, encoded in formulas in
which modal operators occur. This language is expressive enough to encode agents’
beliefs/perceptions regarding other agents’ beliefs/perceptions, and so on. Again, this

2 Actually, those which are RS-compatible, cf. Definition 4.

148 W. Conradie et al.

makes it possible to define fixed points of these regressions, similarly to the way in
which common knowledge is defined in classical epistemic logic [20]. Intuitively, these
fixed points represent the stabilization of a process of social interaction; for instance,
the consensus reached by a group of agents regarding a given category. Clearly, mar-
ket dynamics are bound to create further destabilization, necessitating a new round of
interaction in order to establish a new equilibrium. Further directions will be to gener-
alize the framework of dynamic epistemic logic [2] to the setting outlined in the present
paper, and further develop the theory of lattice-based mu-calculus initiated in [6].

Structure of the Paper. In Sect. 2, we collect the necessary definitions and basic facts
about RS-semantics. In Sect. 3, we discuss how the mathematical environment intro-
duced in the previous section can be understood using categories and categorization
systems as the framework of reference. In particular, we show how normal modal oper-
ators on lattices can support an epistemic interpretation. In Sect. 4, we build on the
epistemic interpretation of the modal operators, and introduce a common knowledge-
type construction to account for a view of categories as the outcome of social interac-
tion. In Sect. 5 we collect our conclusions. More technical background is relegated to
Appendix A, while the proofs of some technical lemmas can be found in Appendix B.

2 Preliminaries

In this section we recall some preliminaries on perfect lattices, RS-polarities, general-
ized Kripke frames and formal concept analysis. We will assume familiarity with the
basics of lattice theory (see e.g. [16]).

2.1 Perfect Lattices

A bounded lattice L = (L,∧,∨, 0, 1) is complete if all subsets S ⊆ L have both a
supremum

∨
S and an infimum

∧
S . An element a in L is completely join-irreducible

if, for any S ⊆ L, a =
∨

S implies a ∈ S . Complete meet-irreducibility is defined order-
dually. The sets of completely join- and meet-irreducible elements of L are denoted by
J∞(L) and M∞(L), respectively.

A complete lattice L is called perfect if it is join-generated by its completely join-
irreducibles, and meet-generated by its completely meet-irreducibles. That is, L is per-
fect if for any u ∈ L, we have

∨{ j ∈ J∞(L) | j ≤ u} = u =
∧{m ∈ M∞(L) | u ≤ m}.

2.2 Polarities and Birkhoff’s Representation Theorem

Definition 1. A polarity is a triple P = (A, X,⊥) where A and X are sets, and⊥ ⊆ A×X
is a relation. For every polarity P, we define the functions (·)↑ (upper) and (·)↓ (lower)3
between the posets (P(A),⊆) and (P(X),⊆), as follows:

f or U ∈ P(A), letU↑ := {x ∈ X | ∀a(a ∈ U → a ⊥ x)},
f or V ∈ P(X), letV↓ := {a ∈ A | ∀x(x ∈ V → a ⊥ x)}.

3 In what follows, we abuse notation and write a↑ for {a}↑ and x↓ for {x}↓ for every a ∈ A and
x ∈ X.

Categories: How I Learned to Stop Worrying and Love Two Sorts 149

The maps (·)↑ and (·)↓ form a Galois connection between (P(A),⊆) and (P(X),⊆),
i.e. V ⊆ U↑ iff U ⊆ V↓ for all U ∈ P(A) and V ∈ P(X). Well-known consequences of
this fact are: the composition maps (·)↑↓ := (·)↓ ◦ (·)↑ and (·)↓↑ := (·)↑ ◦ (·)↓ are closure
operators on (P(A),⊆) and (P(X),⊆), respectively;4 The set of all Galois-stable subsets
of A (i.e. those U ∈ P(A) such that U↑↓ = U) forms a complete sub-semilattice of
(P(A),

⋂
), which we denote by P+;5 since it is complete, the semilattice P+ is in fact a

lattice, where meet is set-theoretic intersection and join is the closure of the set-theoretic
union. If fact, Birkhoff showed that every complete lattice is isomorphic to P+ for some
polarity P. This lattice can be identified with the lattice of concepts arising from P (this
terminology comes from Formal Concept Analysis), i.e. tuples (C,D) s.t. C ⊆ A, D ⊆ X
and D↓ = C and C↑ = D.6 Concepts (resp. Galois stable subsets of X and of A) can be
characterized as (members of) tuples (U↑↓,U↑) and (V↓,V↓↑) for any U ⊆ A and V ⊆ X.

Let us conclude the present subsection by introducing some notation and showing
some useful facts. Polarities (A, X,⊥) induce ‘specialization pre-orders’ on A and X
defined as follows: x ≤ y iff ∀a(a ⊥ x → a ⊥ y) for all x, y ∈ X, and a ≤ b iff
∀x(b ⊥ x → a ⊥ x) for all a, b ∈ A. Clearly, ≤ ◦ ⊥ ◦ ≤⊆⊥. For every b ∈ A and z ∈ X,
let z↑ := {x | z ≤ x}, and b↓ := {a | a ≤ b}. The proofs of the following lemma and
corollary can be found in Appendix B.

Lemma 1. z↑ and b↓ are Galois-stable for all b ∈ A and z ∈ X.
Corollary 1. z↓↑ = z↑ and b↑↓ = b↓ for all b ∈ A and z ∈ X.
Summing up, the concepts generated by each a ∈ A and x ∈ X are (a↓, a↑) and (x↓, x↑)
respectively.

2.3 RS-polarities and Dual Correspondence for Perfect Lattices

As mentioned early on, every complete lattice is isomorphic to P+ for some polarity P.
When specializing to distributive lattices and Boolean algebras, the well-known dual-
ities obtain between set-theoretic structures and perfect algebras. In particular, perfect
distributive lattices are dual to posets, and perfect (i.e. complete and atomic) Boolean
algebras are dual to sets. The question then arises: which polarities are dual to perfect
lattices? The answer was given by Gehrke in [25], where the so-called reduced and sep-
arated polarities, or RS-polarities, have been characterized as duals to perfect lattices,
by rephrasing in a model-theoretic way the duality for perfect lattices given in [18]. In
what follows, we will recall what it means for a polarity to be reduced and separated,
and briefly explain how these two properties guarantee the perfection of the dual lattice.
First, the route from perfect lattices to polarities is given by the following definition:

4 Recall that a closure operator on a poset (S ,≤) is a map f : S → S which is extensive
(∀a ∈ S [a ≤ f (a)]), monotone (∀a, b ∈ S [a ≤ b ⇒ f (a) ≤ f (b)]) and idempotent (∀a ∈
S [f (a) = f (f (a))]).

5 Likewise, The set of all Galois-stable subsets of X (i.e. those V ∈ P(X) such that V↓↑ = V)
forms a complete sub-semilattice of (P(X),

⋂
).

6 SometimesC and D are referred to as the extension and the intension of a concept, respectively.

150 W. Conradie et al.

Definition 2. For every perfect lattice L, the polarity associated with L is the triple
L+ := (J∞(L),M∞(L),⊥+) where⊥+ is the lattice order ≤L restricted to J∞(L)×M∞(L).

Definition 3 (cf. [25, Definitions 2.3 and 2.12]). A polarity P = (A, X,⊥) is:

1. separating if the following conditions are satisfied:
(s1) for all a, b ∈ A, if a � b then a↑ � b↑, and
(s2) for all x, y ∈ Y, if x � y then x↓ � y↓.

2. reduced if the following conditions are satisfied:
(r1) for every a ∈ A, some x ∈ X exists s.t. a is ≤-minimal in {b ∈ A | b �⊥ x}.
(r2) for every x ∈ X, some a ∈ A exists s.t. x is ≤-maximal in {y ∈ X | x �⊥ a}.

3. an RS-polarity7 if it is separating and reduced.

If P is separating, then, denoting S := {b | b ∈ A and b < a} = a↓\{a} for each a ∈ A,
notice that a↓ is completely join-irreducible in P+ iff

∨
b∈S b↓ � a↓ iff a↑ �

⋂
b∈S b↑,

i.e. some x ∈ X exists such that b ⊥ x for all b ∈ S and a �⊥ x, which is condition (r1).
Similarly, (r2) dually characterizes the condition that, for every x ∈ X, the subset x↑ is
completely meet-irreducible in P+, represented as a sub meet-semilattice of P(X).

Proposition 1 (cf. [25, Remark 2.13] and [18, Proposition 4.7, Corollary 4.9]). For
every perfect lattice L and RS-polarity P,

1. L+ is an RS-polarity and (L+)+ � L.
2. P+ is a perfect lattice and (P+)+ � P.

2.4 RS-frames and Models

In the present section, we report on the definition of a relational semantics, based on RS-
polarities, for an expansionL of the basic lattice language with a unary normal box-type
connective. We also give semantics for a further expansion of L with a unary normal
diamond-type connective �, and with two special sorts of variables i, j called nominals,
and m,n called co-nominals. This semantics is the outcome of a dual characterization
which is discussed in detail and in full generality in [9, Sect. 2], and is reported on in
the appendix for the part directly relevant to this paper. The most peculiar feature of this
semantics is that formulas are satisfied at a ∈ A and co-satisfied (refuted) at x ∈ X.

Definition 4. An RS-frame for L is a structure F = (P,R) where P = (A, X,⊥) is an
RS-polarity, and R ⊆ A × X such that the images and pre-images of singletons under R
are Galois-closed, i.e. for every x ∈ X and a ∈ A,

R−1[x]↑↓ ⊆ R−1[x] and R[a]↓↑ ⊆ R[a].

Relations R which satisfy this condition are called RS-compatible.

7 In [25], RS-polarities are referred to as RS-frames. Here we reserve the term RS-frame for RS-
polarities endowed with extra relations used to interpret the operations of the lattice expansion.

Categories: How I Learned to Stop Worrying and Love Two Sorts 151

The additional conditions on R are compatibility conditions guaranteeing that the fol-
lowing assignments respectively define the operations � and � associated with R on the
lattice P+: for every U ∈ P+,

�U :=
⋂
{R−1[x] | U ⊆ x↓} and �U :=

∨
{R[a] | a↑↓ ⊆ U}.

Definition 5. For every RS-frame F = (P,R), its complex algebra is the lattice expan-
sion F+ := (P+,�) where � is defined as above.

Lemma 2. ≤ ◦ R ◦ ≤ ⊆ R for every RS-frame F = (P,R).

An RS-model for L on F is a structureM = (F, v) such that F is an RS-frame for L and
v is a variable assignment mapping each p ∈ PROP to a pair (V1(p),V2(p)) of Galois-
stable sets in P(A) and P(X) respectively. In a model for the expanded language with
�, nominals and conominals, variable assignments also map nominals j to (j↑↓, j↑) for
some j in A and co-nominals m to (m↓,m↓↑) for some m in X.

The following table reports the recursive definition of the satisfaction and co-
satisfaction relations onM:

M, a � 0 never M, x � 0 always
M, a � 1 always M, x � 1 never
M, a � p iff a ∈ V1(p) M, x � p iff x ∈ V2(p)
M, a � i iff a ∈ V1(i) M, x � i iff x ∈ V2(i)
M, a � m iff a ∈ V1(m) M, x � m iff x ∈ V2(m)
M, a � φ ∧ ψ iff M, a � φ andM, a � ψ
M, x � φ ∧ ψ iff for all a ∈ A, ifM, a � φ ∧ ψ, then a ⊥ x
M, a � φ ∨ ψ iff for all x ∈ X, ifM, x � φ ∨ ψ, then a ⊥ x
M, x � φ ∨ ψ iff M, x � φ andM, x � ψ
M, a � �φ iff for all x ∈ X, ifM, x � φ, then aRx
M, x � �φ iff for all a ∈ A, ifM, a � �φ, then a ⊥ x
M, a � �φ iff for all x ∈ X, ifM, x � �φ, then a ⊥ x
M, x � �φ iff for all a ∈ A, ifM, a � φ, then aRx.

The following lemma is proven easily by simultaneous induction on φ and ψ using the
truth definitions above. The base cases for 0 and 1 use conditions (r1) and (r2) and those
for proposition letters, nominals and co-nominals follow from the way valuations are
defined.

Lemma 3. For all formulas φ and ψ it holds that

1. M, a � φ iff for all x ∈ X, ifM, x � φ then a ⊥ x, and
2. M, x � ψ iff for all a ∈ A, ifM, a � ψ then a ⊥ x.

An inequality φ ≤ ψ is true inM, denotedM � φ ≤ ψ, if for all a ∈ A and all x ∈ X, if
M, a � φ andM, x � ψ then a ⊥ x.

Remark 1. It follows from Lemma 3 that M � φ ≤ ψ iff for all a ∈ A, if M, a � φ then
M, a � ψ. It also follows that M � φ ≤ ψ iff for all x ∈ X, if M, x � ψ then M, x � φ.
We will find these equivalent characterizations of truth in a model useful when treating
examples.

152 W. Conradie et al.

2.5 Standard Translation on RS-frames

As in the Boolean case, each RS-model M for L can be seen as a first-order structure,
albeit two-sorted. Accordingly, we define correspondence languages as follows.

Let L1 be the two-sorted first-order language with equality built over the denumer-
able and disjoint sets of individual variables A and X, with binary relation symbol ⊥, R,
and two unary predicate symbols P1, P2 for each p ∈ PROP.8

We will further assume that L1 contains denumerably many individual variables
i, j, . . . corresponding to the nominals i, j, . . . ∈ NOM and n,m, . . . corresponding to the
co-nominals n,m ∈ CO-NOM. Let L0 be the sub-language which does not contain the
unary predicate symbols corresponding to the propositional variables. Let us now define
the standard translation of L+ into L1 recursively:9

STa(0) := a � a STx(0) := x = x
STa(1) := a = a STx(1) := x � x
STa(p) := P1(a) STx(p) := P2(x)
STa(j) := a ≤ j STx(j) := j ⊥ x
STa(m) := a ⊥ m STx(m) := m ≤ x
STa(φ ∨ ψ) := ∀x[STx(φ ∨ ψ)→ a ⊥ x] STx(φ ∨ ψ) := STx(φ) ∧ STx(ψ)
STa(φ ∧ ψ) := STa(φ) ∧ STa(ψ) STx(φ ∧ ψ) := ∀a[STa(φ ∧ ψ)→ a ⊥ x]
STa(�φ) := ∀x[STx(φ)→ aRx] STx(�φ) := ∀a[STa(�φ)→ a ⊥ x]
STa(�φ) := ∀x[STx(�φ)→ a ⊥ x] STx(�φ) := ∀a[STa(φ)→ aRx]

The following is a variant of [9, Lemma 2.5].

Lemma 4. For any L-modelM and any L+-inequality φ ≤ ψ, it holds thatM � φ ≤ ψ
iff M |= ∀a∀x[STa(φ) ∧ STx(ψ)→ a ⊥ x] iff M |= ∀a[STa(φ)→ STa(ψ)] iff
M |= ∀x[STx(ψ)→ STx(φ)].

2.6 Examples

So far we have seen that the environment of RS-frames provides a mathematically moti-
vated generalization of the correspondence theory which was key to the success of clas-
sical normal modal logic as a formal framework in multiple settings. The focus of this
paper is to try and understand whether and how this generalized environment can retain
some of the intuition which made Kripke semantics and modal logic so appealing. Let
us start with the inequality �0 ≤ 0, which corresponds on Kripke frames to the condi-
tion that every state has a successor.

�0 ≤ 0 iff ∀a[STa(�0)→ ∀x(STx(0)→ a ⊥ x)]
iff ∀a[∀y(y = y→ aRy)→ ∀x(x = x→ a ⊥ x)]
iff ∀a[∀y(aRy)→ ∀x(a ⊥ x)]
iff ∀a∃y(¬(aRy))

8 The intended interpretation links P1 and P2 in the way suggested by the definition of L-
valuations. Indeed, every p ∈ PROP is mapped to a pair (V1(p),V2(p)) of Galois-stable sets
as indicated in Subsect. 2.4. Accordingly, the interpretation of pairs (P1, P2) of predicate sym-
bols is restricted to such pairs of Galois-stable sets, and hence the interpretation of universal
second-order quantification is also restricted to range over such sets.

9 Recall that a ≤ j abbreviates ∀x(j ⊥ x→ a ⊥ x) and m ≤ x abbreviates ∀a(a ⊥ m→ a ⊥ x).

Categories: How I Learned to Stop Worrying and Love Two Sorts 153

To justify the last equivalence, notice that by definition, in RS-polarities no object a
verifies ∀x(a ⊥ x). Hence the condition in the penultimate line is true precisely when
the premise of the implication is false. This condition says that every state is not R-
related to some co-state; the condition on Kripke frames is recognizable modulo suitable
insertion of negations. Next, let us consider the inequality �p ≤ p, which corresponds
on Kripke frames to the condition that R is reflexive.

∀p(�p ≤ p) iff ∀m(�m ≤ m)
iff ∀a∀m[STa(�m)→ STa(m)]
iff ∀a∀m(aRm→ a ⊥ m),

since by definition, STa(m) = a ⊥ m, and STa(�m) = ∀y(m ≤ y → aRy) can
be rewritten as m↑ ⊆ R[a], which is equivalent to aRm, since R ◦ ≤ ⊆ R (cf.
Lemma 2). To recognize the connection with the usual reflexivity condition, observe
that ∀a∀m(aRm → a ⊥ m) is equivalent to R ⊆⊥, and the reflexivity of a relation
R ⊆ A × A can be written as Id ⊆ R, which is equivalent to Rc ⊆ Idc.

Clearly, �p ≤ p implies ��p ≤ �p. Let us consider the converse inequality, which
in the classical setting corresponds to transitivity:

∀p(�p ≤ ��p) iff ∀m(�m ≤ ��m)
iff ∀a∀m(STa(�m)→ STa(��m))
iff ∀a∀m(aRm→ R−1[m]↑ ⊆ R[a]),

where

STa(��m) = ∀y[STy(�m)→ aRy]
= ∀y[∀b(STb(�m)→ b ⊥ y)→ aRy]
= ∀y[∀b(bRm→ b ⊥ y)→ aRy] (∗∗)
= R−1[m]↑ ⊆ R[a].

While, again, with a bit of work it is possible to retrieve the transitivity condition in
this new interpretation, already with a relatively simple inequality such as �p ≤ ��p
this game is not really useful for the purpose of gaining a better intuitive understanding
of this semantics, since it requires jumping through too many hoops (the accessibility
relation on states is here encoded into a ‘non unaccessibility’ relation between states
and co-states), and quickly becomes awkward and unintuitive. In the next section, we
will argue that better results can be achieved by taking it as primitive, rather than as the
generalization of some other semantics.

3 Conceptualizing RS-semantics via Categorization Theory

In the present section, we propose a conceptualization of the notions introduced in the
previous section based on ideas from categorization theory in management science.
The starting point of this conceptualization is the very well known idea, core to Formal
Concept Analysis, that polarities (A, X,⊥) are abstract representations of databases, in
which A and X are sets of objects and properties respectively, and ⊥ encodes infor-
mation about whether a given object satisfies a given property. More specifically, we
propose to think of a given polarity P = (A, X,⊥) as a database such that A is the set of

154 W. Conradie et al.

all products in a given market at a certain moment (e.g. all models of cars, or models
of togas on sale in the Netherlands in a given year), and X all the relevant observable
features of these products. The specialization pre-order a ≤ b on objects (a has at least
all the features that b has) can then be read as ‘product a is at least as specified (i.e. rich
in features) as product b’ and the one on features x ≤ y (any product having x has also
y) as ‘feature y is more generic than feature x’. The RS-conditions on the database can
then be understood as follows:

(s1): Any two distinct products can be told apart by some feature;
(s2): For any two distinct features there is a product having one but not the other;
(r1): For any product a, if there are strictly more specified products than a in the market,

then they all share some feature x which a does not have;
(r2): For any feature x, if there are strictly more generic features than x, then some

product a exists which has all of them but not x.

The separation conditions (s1) and (s2) seem rather intuitive and do not require much
explanation; (r1) can be enforced by suitably adding ‘artificial’ features to the database,
and (r2) can be enforced by removing features from the database which are the exact
intersection of two or more generic features.10 Clearly, removing such features can
always be done without loss of descriptive power. We can always enforce the separation
and reduction conditions, since the finite polarities we consider are a subclass of the so-
called doubly founded polarities, for which this is always possible, see [23].

Arguably, the reformulation of the RS-conditions in terms of products and features
makes them easier to grasp.

Further, we propose to understand the lattice P+ as the collection of ‘candidate cate-
gories’. That is, each element of P+ is a set of products which is completely identified by
the set of features common to its elements. That is, any product with all these features is
a member of the ‘candidate category’. We refer to these categories as ‘candidate’ since
they are purely implicit in the database, and not necessarily the target of any social
construction. In particular, only a restricted subset of candidate categories will support
the interpretation of socially meaningful categories (which have labels such as western,
opera, bossa-nova, SUV, smart phone etc.). Labels of socially meaningful categories can
be assigned to ‘candidate categories’ in the usual way, namely, by means of an assign-
ment v which associates each atomic category label p ∈ PROP to a category viewed
both extensionally as V1(p) ⊆ X and intensionally as V2(p) ⊆ A.11 Notice the perfect
match between the encoding of the meaning of atomic propositions on Kripke models
and of atomic category labels on RS-models: the meaning of atomic proposition p is
given as the set of states at which p holds true; the meaning of atomic category label p
is given as the set of products which are the members of p, and the set of features which
describe p. In what follows, we will refer to the intension of a category (cf. Footnote 6)
as its description, and we say that a feature describes a category if it belongs to its
description.

10 For instance, consider the following features of a soft drink: x: = ‘with vitamin A’, y: = ‘with
vitamin C’, z: = ‘with vitamin A and C’. Clearly, a database with these features would violate
(r2). This can be remedied by removing z from the set X of the database.

11 Recall that for such an assignment, V1(p) = V2(p)↓ and V2(p) = V1(p)↑.

Categories: How I Learned to Stop Worrying and Love Two Sorts 155

Given such an assignment,12 the database is endowed with a structure of anL-model
M, in such a way that, for every formula (category label) φ ∈ L, any a ∈ A and x ∈ X,
the symbols M, a � φ and M, x � φ can be understood as ‘object a is a member of
category φ’, and ‘feature x describes category φ’. One immediately apparent advantage
of this conceptualization is that it provides an intuitive way to understand � from first
principles rather than as the negative counterpart of �.

The other advantage concerns the understanding of the connectives ∧ and ∨ in the
general lattice environment. The issue is that their standard interpretation as conjunction
and disjunction does not seem completely right, since distributivity seems hardwired in
the way we understand ‘and’ and ‘or’ in natural language. The satisfaction clauses for
∧ and ∨ formulas read:

M, a � φ ∧ ψ iff M, a � φ andM, a � ψ
M, x � φ ∧ ψ iff for all a ∈ A, ifM, a � φ ∧ ψ, then a ⊥ x
M, a � φ ∨ ψ iff for all x ∈ X, ifM, x � φ ∨ ψ, then a ⊥ x
M, x � φ ∨ ψ iff M, x � φ andM, x � ψ

These clauses say that the category φ ∧ ψ is the one whose members are members of
both categories φ and ψ; hence, these products will satisfy at least both the description
of φ and of ψ, and hence the description of φ ∧ ψ contains at least the union of these
descriptions. The category φ ∨ ψ is described by the intersection of the descriptions of
φ and of ψ. Hence, membership in φ ∨ ψ only requires products to satisfy this smaller
set of features, and typically includes much more than the union of the members of
the two categories. So for instance, bird ∨ cat would exclude reptiles, insects and fish,
but include vertebrate homeothermic species such as the platypus. This interpretation
of ∧ and ∨ makes it possible to understand intuitively why distributivity fails. Indeed,
a member of (phone ∨ smartphone) ∧ (kettle ∨ smartphone) is guaranteed to have all
the features in the description of phone (and in fact, kettle ∨ smartphone is so general
that can be assumed to not add any feature that phone does not have already). However,
this might be not enough for it to be a member of (phone∧kettle)∨smartphone, given
that the category phone ∧ kettle has no members (hence its description consists of all
features), and so the members of (phone ∧ kettle) ∨ smartphone must have at least all
the features in the description of smartphone.

Now that we have a working understanding of � and �, we can recognize the normal
box-type operator on P+ as the perspective of a single agent on categories. Accordingly,
M, a � �φ and M, x � �φ can be understood as ‘object a is a member of category φ
according to the agent’, and ‘feature x describes category φ according to the agent’. The
normality conditions �� = � and �(φ∧ψ) = �φ∧�ψ can be understood as rationality
requirements: that is, the agent correctly recognizes the ‘uninformative’ category � as
such, and her understanding/perception of the greatest common subcategory of any two
categories φ and ψ is the greatest common subcategory of the categories she understands
as φ and ψ.

On the side of the database, the agent is modelled as a relation R ⊆ A × X. Hence,
aRx intuitively reads ‘object a has feature x according to the agent’. Unsurprisingly, the
additional properties of R (cf. Lemma 2) can be also understood as rationality require-
ments: if aRx then aRy for every y ≥ x says that if the agent attributes feature x to
12 Empirically, there are many ways to generate such an assignment [36].

156 W. Conradie et al.

product a, then the agent will attribute to a also all the features which are ‘implied’ by
x. Likewise, if aRx then bRx for every b ≤ a says that if the agent attributes feature
x to product a, then the agent will attribute x also to all the products which are ‘more
specified’ than a.

Like in the classical case, two modal operators, � and �, are associated with the
same relation R. However, these operations are not dual to each other, in the sense of
e.g. � := ¬�¬, but are rather adjoints to each other, that is, for all u, v ∈ P+,

�u ≤ v iff u ≤ �v.
In fact, rather than encoding the dual perspective on the subjectivity of the agent that
� encodes, the operation � encodes the same perspective that � encodes, only geared
towards objects while � is geared towards features. Indeed, for every object j and every
feature m, denoting by j and m the categories respectively generated by j and m,

�j ≤ m iff jRm iff j ≤ �m.

Thus, the information jRm (‘the agent attributes feature m to object j’) is encoded on
the side of the categories both by saying that m describes the category �j (the one the
agent understands as the category generated by j), and by saying that j is a member of
the category �m (the one the agent understands as the category generated by m). As to
the defining clauses of the recursive definition of � and �, by definition, M, a � �φ is
the case iff for all features x, if M, x � φ, then aRx. That is, product a is recognized
by the agent as member of category φ iff the agent attributes to a all the features that
belong to the description of φ.

Moreover, by definition, M, x � �φ iff for all a ∈ A, if M, a � �φ, then a ⊥ x.
That is, feature x pertains to the description of category φ according to the agent iff x is
verified by each object a that the agent recognizes as a member of φ.

Two modal axioms commonly considered in epistemic logic are ‘reflexivity’ �p ≤ p
and ‘transitivity’ (�p ≤ ��p). The axiom �p ≤ p is interpreted epistemically as
the factivity of knowledge (‘if the agent knows that p then p is true’). The first-
order correspondent of the factivity axiom on RS-frames is ∀a∀x(aRx → a ⊥ x),
which indeed expresses a form of factivity, in that it requires that whenever the agent
attributes any feature x to any product a, then it is indeed the case that x is a feature
of a. The axiom �p ≤ ��p is interpreted epistemically as the positive introspection
of knowledge (‘if the agent knows that p, then the agent knows that she knows that
p’). The first-order correspondent of the positive introspection axiom on RS-frames is
∀a∀m(aRm → R−1[m]↑ ⊆ R[a]), expressing the condition that if an agent attributes
feature m to product a, then she will attribute to a all the features which are shared by
the products to which she attributes m. To understand the link between this condition
and positive introspection, consider the category �m, i.e. the category which the agent
understands as the one generated by a given feature m.13 This category can be identi-
fied with the tuple (R−1[m],R−1[m]↑). That is, the members of �m are the products to
which the agent attributes m (recall that R−1[m] is a Galois-stable set by Definition 4)
and the description of �m is the set of the features which the products in R−1[m] have

13 In fact, the same argument would hold more in general for any category �φ.

Categories: How I Learned to Stop Worrying and Love Two Sorts 157

in common. By definition, b ⊥ z for every b ∈ R−1[m] and z ∈ R−1[m]↑. The first-order
correspondent of �p ≤ ��p requires that bRz for such b and z. So, while factivity corre-
sponds to R ⊆⊥, positive introspection gives the reverse inclusion restricted to products
and features pertaining to ‘boxed categories’. That is, the agent must be aware of the
features of the products of the categories that she knows.

4 Categories as Social Constructs

In the present section, we introduce a formal account of the emergence of categories as
the outcome of a process of social interaction. We consider for the sake of simplicity
a setting of two agents. Accordingly, we consider the bi-modal logic L which is the
axiomatic extension of the basic normal LE-logic for two unary normal box-type modal
operators, 1 and 2, with the axioms ip ≤ p and ip ≤ iip for 1 ≤ i ≤ 2. Models for this
logic are structures (P,R1,R2, v) such that P = (X, A,⊥) is an RS-polarity, Ri ⊆ A × X
for 1 ≤ i ≤ 2, such that the following conditions hold:

1. ∀x(R−1
i [x]↑↓ ⊆ R−1

i [x]);
2. ∀a(Ri[a]↓↑ ⊆ Ri[a]);
3. Ri ⊆⊥;
4. ∀a∀x(aRix→ R−1

i [x]↑ ⊆ Ri[a]),

and v is an assignment which associates each p ∈ PROP to an element of P+ viewed
both extensionally as V1(p) ⊆ A and intensionally as V2(p) ⊆ X in such a way that
V1(p) = V2(p)↓ and V2(p) = V1(p)↑.

In this setting, a common knowledge-type construction can be performed which
yields an expansion, denoted LC , of the bi-modal LE-logic above with a normal box-
type operator C, the interpretation of which on P+, given the additional axioms, is given
as follows: for any u ∈ P+,

C(u) :=
∧

s∈S su,

where S is the set of all compound modalities of the forms (i j)n and i(ji)n, for 1 ≤ i �
j ≤ 2 and for some n ∈ N.

Lemma 5. C(u) ≤ u and C(u) ≤ C(C(u)) for any u ∈ P+.
Let RC ,Rs ⊆ A×X for any s ∈ S be defined as follows: aRsx iff a ≤ sx and aRCx iff a ≤
C(x). Clearly, RC =

⋂
s∈S Rs. In the standard setting of epistemic logic, the accessibility

relations associated with agents do not directly encode the agents’ knowledge but rather
their uncertainty. Hence, on the relational side, the relation associated with the common
knowledge operator is defined as the reflexive transitive closure of the union of the
relations associated with individual agents, which is typically much bigger than those
associated with individual agents. In the present setting, relations associated with agents
directly encode what agents positively know rather than their uncertainty. Consequently,
the common knowledge relation RC is the intersection of the relations Rs encoding the
finite iterations, which is typically much smaller.

As both C and every s ∈ S are compositions of normal box-operators, they are
themselves normal box-operators. Hence the relations RC and Rs they give rise to
are RS-compatible (cf. Definition 4). Thus, the correspondence reductions discussed
in Sect. 2.6 apply to C and RC , yielding:

158 W. Conradie et al.

Lemma 6. The relation RC defined above verifies the following conditions:

1. RC ⊆⊥;
2. ∀a∀x(aRCx→ R−1

C [x]↑ ⊆ RC[a]).

For any given category label φ, the category C(φ) =
∧{C(m) | φP+ ≤ m}. For this

reason, in what follows we restrict our attention to categories C(m) for some feature
m ∈ X. The members of C(m) are the products in the set R−1

C [m] = (
⋂

s∈S Rs)−1[m],
and the description of C(m) is R−1

C [m]↑ = ((
⋂

s∈S Rs)−1[m])↑. These can be understood
as the socially constructed categories, the membership and description of which are
socially agreed upon. Clearly, there are many less of them than candidate categories,
which agrees with our intuition.

5 Conclusion and Further Research

In this paper we have proposed an interpretation of RS-semantics in terms of agents’
reasoning about objects, their properties and the categories induced by the accompa-
nying relation. We have argued that this semantics is particularly well adapted to this
interpretation and, conversely, that through this interpretation one could gain an intu-
itive understanding of the semantics.

Our proposal has a distinctly epistemic character, but one which differs from stan-
dard epistemic logic in at least two respects: firstly, the relations used to interpret the
epistemic operators are intended to capture positive knowledge, rather than uncertainty;
secondly, these relations relate objects to features rather than possible worlds to one
another. We considered two classical principles of epistemic logic, namely factivity and
positive introspection. By applying the correspondence theory of [9] we computed the
relational properties corresponding to these principles, i.e. necessary and sufficient con-
ditions on an agent’s incidence relation between objects and properties for her knowl-
edge of categories to verify these epistemic principles. Various questions for further
investigation remain open here: what is the meaning of other classical epistemic prin-
ciples, like e.g. negative introspection, in this setting? Are there other principles that
should be included in a minimal logic of categorization? Of course, all of this depends
on the reasoning abilities and level of access to reality we wish to attribute to agents.
Moreover, most standard logical questions remain open: axiomatizations, proof sys-
tems, decidability, complexity, etc.

This paper is a first assay in using RS-semantics for reasoning about categoriza-
tion and, as such, remains quite general in its assumptions. To be of more immediate
practical relevance, the considerations here should be specialized to particular fields of
enquiry where categorization plays or could play a prominent role. Below we briefly
consider three such fields.

Natural Language Semantics. We have seen that the assignments of RS-models support
a notion of meaning that is different from the one in classical modal logic, but is recog-
nizably what the meaning of category labels should be: namely, a semantic category
specified as the set of its members and the set of features describing it. In natural lan-
guage semantics, linguistic utterances are assigned a meaning in the same spirit, which

Categories: How I Learned to Stop Worrying and Love Two Sorts 159

generalizes the truth-based semantics of sentences. More generally, categories or con-
cepts are fundamental to the construction of meaning in natural language, since each
noun is naturally associated with a category. Exploring systematic connections between
categories and natural language semantics is a promising direction for further research.

Knowledge Representation and Formal Ontologies. Categories are central to any form
of knowledge representation. Description logics [1] are one of the dominant paradigms
for logical reasoning in this context. Our formalism represents a different and possibly
complementary perspective on the formal ontologies, classification systems, and tax-
onomies studied there. In particular, the non-distributive nature of category formation
and the two-level separation between objects and features are foreign to the descrip-
tion logics paradigm. It is natural to ask to what degree the various expressive features
of description logic (like uniqueness quantification, qualified cardinality restrictions
etc.) could be accommodated in our framework, and future extensions will study this
question.

Categorization Theory in Management Science. As already indicated, this was one of
our main sources of inspiration for the proposals of the present paper. Our formalism
is a first step in the direction of a formal logical account of the real world phenom-
ena studied by categorization theorists. There are various considerations that make it an
attractive framework in which to study categorization and in which to formulate empir-
ically testable hypotheses. We mention two of these reasons: Firstly, it allows one to
study the effects of adding or removing objects with new properties and/or properties
already associated with other categories, thus allowing for a fine grained analysis of the
likely changes in a classification system resulting from innovations of different kinds.

Secondly, our approach gives us all potential categories “automatically”, while only
some of them are real, socially agreed upon categories for economic decision-makers.
It can therefore serve as a powerful instrument to better study and understand the causes
and consequences of the selection of real categories from the broader set of potential
ones. To start with, different real world domains could be compared with respect to the
ratios of real to potential categories present in them. One reasonable conjecture seems
to be that these ratios will depend a lot on competitive dynamics and the matureness of
categories, while also having an effect on them. One could the go on to study changes
over time in these ratios as well as the differences in ratios—and their changes—among
different audiences espousing different classifications.

Extensions and Variations. In closing, we mention two of the many possible extensions
of the present framework: category membership does not need to be absolute, as prod-
ucts can simultaneously have different grades of membership in different categories.
This calls for quantitative, possibly many-valued versions of our semantics. Also, the
categories in a given market do not need to be static, but can evolve and change over
time as new products with new features or new combinations of existing features enter
the market [41,42]. Dynamic versions of our formalism would be suitable to deal with
such continuously evolving categorization systems.

Acknowledgement. The research of the first author has been made possible by the National
Research Foundation of South Africa, Grant number 81309. The research of the second to fourth

160 W. Conradie et al.

author has been made possible by the NWO Vidi grant 016.138.314, by the NWO Aspasia grant
015.008.054, and by a Delft Technology Fellowship awarded in 2013.

A Relational Semantics via Dual Characterization

The dual correspondence between perfect lattices and RS-polarities serves as a base
to generalize the Kripkean semantics of modal logic to logics with possibly non-
distributive propositional base. Analogous to the dual correspondence between Kripke
frames and complete and atomic Boolean algebras with operators, one would want
a dual correspondence between perfect normal lattice expansions and RS-polarities
endowed with additional relations. In [9, Sect. 2], a method for computing the defin-
ition of the relations dually corresponding to normal modal operators was discussed
and illustrated for a certain modal signature consisting of unary and binary modal oper-
ators.

In this subsection we will report on this method, for an expansion L of the basic
lattice language with a unary box-modality, canonically interpreted on lattices endowed
with a completely meet-preserving operation. Moreover, we will derive, by means of a
dual characterization argument, its interpretation on expanded RS-polarities.

We take the connection between the satisfaction relation � in Kripke frames and the
interpretation of modal formulas in BAOs as our guideline: let F = (W,R) be a Kripke
frame. From the satisfaction relation �⊆ W × L between states of F and formulas, an
interpretation v : L → F+ into the complex algebra of F can be defined, which is an L-
homomorphism, and is obtained as the unique homomorphic extension of the equivalent
functional representation of the relation � as a map v : PROP → F+, defined as v(p) =
�−1[p]14. In this way, interpretations can be derived from satisfaction relations, so that
for any a ∈ J∞(F+) and any formula φ,

a � φ iff a ≤ v(φ), (1)

where, on the left-hand side, a ∈ J∞(F+) is identified with a state of F via the iso-
morphism F � (F+)+. Conversely, consider a perfect lattice with completely meet-
preserving operation C = (L,�), and a homomorphic assignment v : L → C, and
recall that the complete lattice L can be identified with the lattice P+ arising from
some RS-polarity P = (A, X,⊥). We want to define a suitable relation R = R� and
satisfaction relation �v satisfying the condition (1). The method we are going to illus-
trate hinges on the dual characterization of v as a pair of relations (�v,�v) such that
�v ⊆ J∞(L) × L � A × L and �v ⊆ M∞(L) × L � X × L. This dual characterization is
established by induction on formulas.

14 Notice that in order for this equivalent functional representation to be well defined, we need
to assume that the relation � is F+-compatible, i.e. that �−1[p] ∈ F+ for every p ∈ PROP.
In the Boolean case, every relation from W to LML is clearly F+-compatible, but already in
the distributive case this is not so: indeed �−1[p] needs to be an upward- or downward-closed
subset of F. This gives rise to the persistency condition, e.g. in the relational semantics of
intuitionistic logic.

Categories: How I Learned to Stop Worrying and Love Two Sorts 161

The base of the induction is clear: for every a ∈ J∞(P+) and every p ∈ PROP∪{0, 1},
we define

a �v p iff a ≤ v(p). (2)

Now let us turn to the inductive step for the box. Since v : L → P+ is a homomor-
phism, v(�φ) = �P

+

v(φ). Suppose that (1) holds for φ.
Since P+ is perfect, v(φ) =

∧{x ∈ M∞(L) | v(φ) ≤ x}. Thus,

a ≤ v(�φ) iff a ≤ �P+v(φ)
iff a ≤ �P+ ∧{x ∈ M∞(P+) | v(φ) ≤ x}
iff a ≤ ∧{�P+ x | x ∈ M∞(P+) and v(φ) ≤ x}
iff ∀x[(x ∈ M∞(L) & v(φ) ≤ x)→ a ≤ �P+ x]

Notice that, at the end of this chain of equivalence, we have equivalently reduced the
whole information on � to the information whether a ≤ �P+ x for each a and x. So this
can be taken as the definition of the relation R ⊆ A × X: we let aRx iff a ≤ �P+y.

To turn the last clause above into a satisfaction clause for �, we firstly replace
M∞(L) with X, which we identify via the isomorphism P � (P+)+. Secondly, we need
to recall the second relation �v between elements of X and formulas, obeying the fol-
lowing condition, which is to be defined by induction on the structure of the formulas
in such a way that the following condition holds, analogously to (1):

x � φ iff v(φ) ≤ x. (3)

These considerations produce the following satisfaction clause for �:

a �v �φ iff a ≤ v(�φ) iff ∀x[(x ∈ X & x � φ)→ aR�x]

The co-satisfaction relation � deserves some further comment: in the Boolean and dis-
tributive settings, � is completely determined by �, and is hence not mentioned explic-
itly there. Here, in the non-distributive setting, the relation needs to be defined along
with �. Equation (3) determines the base case:

y � v(p) iff v(p) ≤ y. (4)

Specializing the clause above to powerset algebras P(W), we would have y �V p
iff V(p) ≤ y iff V(p) ⊆ W/{x} for some x ∈ W iff {x} � V(p) iff x � V(p) iff x � p,
which shows that the relation � can be regarded as an upside-down description of the
satisfaction relation �, namely a co-satisfaction, or refutation.

The inductive step for the derivation of the co-satisfaction clause for � goes as
follows:

v(�φ) ≤ x iff
∨{a ∈ J∞(L) | a ≤ v(�φ)} ≤ x

iff ∀a[(a ∈ J∞(L) & a ≤ v(�φ))→ a ≤ x]
iff ∀a[(a ∈ A & a � �φ)→ a ⊥ x].

The last line follows from Eq. (1) for �φ, and the identification, via the isomorphism
P � (P+)+, of J∞(L) with A, and of the lattice order ≤ (restricted to J∞(L) × M∞(L))
with the incidence relation ⊥ of the polarity.

162 W. Conradie et al.

B Proofs of Technical Lemmas

Proof (Lemma 1). We only prove the part concerning z. Let x ∈ z↑↓↑, and let us show
that z ≤ x. That is, let us fix a such that a ⊥ z, and show that a ⊥ x. Since ⊥ ◦ ≤⊆⊥,
from a ⊥ z it follows that ∀y(z ≤ y → a ⊥ y), which means that a ∈ z↑↓. Since by
assumption x ∈ z↑↓↑, this implies that a ⊥ x, as required.

Proof (Corollary 1). Since z↑ is Galois-stable and contains z and, by definition, z↓↑ is
the smallest such set, z↓↑ ⊆ z↑. For the converse inclusion, let z ≤ y and a ⊥ z. As
⊥ ◦ ≤⊆ ⊥, this implies a ⊥ y, which shows that y ∈ z↓↑, as required.

Proof (Lemma 2). Assume that aRz and z ≤ y. To show that y ∈ R[a], by the second
compatibility condition, it is enough to show that y ∈ R[a]↓↑. That is, let us fix b ∈ R[a]↓
and show that b ⊥ y. From b ∈ R[a]↓ and aRz it follows that b ⊥ z. This and z ≤ y imply
that b ⊥ y, given that ⊥ ◦ ≤⊆ ⊥. The remaining part is proven similarly.

Proof (Lemma 5). Clearly, C(u) ≤ 1u ≤ u, which proves the first inequality.

C(C(u)) =
∧

s∈S sC(u) =
∧

s∈S s(
∧

t∈S tu) =
∧

s∈S
∧

t∈S stu ≥
∧

s′∈S s′u = C(u).

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The
Description Logic Handbook: Theory, Implementation, and Applications. Cambridge Uni-
versity Press, Cambridge (2003)

2. Baltag, A., Moss, L.S., Solecki, S.: The logic of public announcements, common knowledge,
and private suspicions. In: Proceedings of the 7th Conference on Theoretical Aspects of
Rationality and Knowledge, pp. 43–56. Morgan Kaufmann Publishers Inc. (1998)

3. Bimbó, K., Dunn, J.M., et al.: Four-valued logic. Notre Dame J. Form. Log. 42(3), 171–192
(2001)

4. Conradie, W., Craig, A.: Canonicity results for mu-calculi: an algorithmic approach. J. Log.
Comput. (2015). Forthcoming, preliminary version on arXiv:1408.6367 [math.LO]

5. Conradie, W., Palmigiano, A., Sourabh, S.: Algebraic modal correspondence: Sahlqvist and
beyond (Submitted)

6. Conradie, W., Craig, A., Palmigiano, A., Zhao, Z.: Constructive canonicity for lattice-based
fixed point logics. Submitted, preliminary version on arXiv:1603.06547 [math.LO]

7. Conradie, W., Fomatati, Y., Palmigiano, A., Sourabh, S.: Algorithmic correspondence for
intuitionistic modal mu-calculus. Theor. Comput. Sci. 564, 30–62 (2015)

8. Conradie, W., Ghilardi, S., Palmigiano, A.: Unified correspondence. In: Baltag, A., Smets, S.
(eds.) Johan van Benthem on Logic and Information Dynamics. Outstanding Contributions
to Logic, vol. 5, pp. 933–975. Springer, Switzerland (2014)

9. Conradie, W., Palmigiano, A.: Algorithmic correspondence and canonicity for non-
distributive logics. J. Log. Comput. forthcoming, preliminary version on arXiv:1603.08515
[math.LO]

10. Conradie, W., Palmigiano, A.: Constructive canonicity of inductive inequalities. Submitted,
preliminary version on arXiv:1603.08341 [math.LO]

11. Conradie, W., Palmigiano, A.: Algorithmic correspondence and canonicity for distributive
modal logic. Ann. Pure Appl. Log. 163(3), 338–376 (2012)

http://arxiv.org/abs/1408.6367
http://arxiv.org/abs/1603.06547
http://arxiv.org/abs/1603.08515
http://arxiv.org/abs/1603.08341

Categories: How I Learned to Stop Worrying and Love Two Sorts 163

12. Conradie, W., Palmigiano, A., Sourabh, S., Zhao, Z.: Canonicity and relativized canonic-
ity via pseudo-correspondence: an application of ALBA. Submitted, preliminary version on
arXiv:1511.04271 [cs.LO]

13. Conradie, W., Palmigiano, A., Zhao, Z.: Sahlqvist via translation. Submitted, preliminary
version on arXiv:1603.08220 [math.LO]

14. Conradie, W., Robinson, C.: On Sahlqvist theory for hybrid logic. J. Log. Comput.
exv045v1-exv045 (2015)

15. Crapo, H.: Unities and negation: on the representation of finite lattices. J. Pure Appl. Algebra
23(2), 109–135 (1982)

16. Davey, B.A., Priestley, H.A.: Lattices and Order. Cambridge Univerity Press, Cambridge
(2002)

17. Dunn, J.M.: Gaggle theory: an abstraction of Galois connections and residuation, with appli-
cations to negation, implication, and various logical operators. In: van Eijck, J. (ed.) Logics
in AI. LNCS, vol. 478, pp. 31–51. Springer, Heidelberg (1991)

18. Dunn, M.J., Gehrke, M., Palmigiano, A.: Canonical extensions and relational completeness
of some substructural logics. J. Symb. Log. 70(3), 713–740 (2005)

19. Düntsch, I., Orłowska, E., Radzikowska, A., Vakarelov, D.: Relational representation theo-
rems for some lattice-based structures. J. Relat. Methods Comput. Sci. 1, 132–160 (2004)

20. Fagin, R., Moses, Y., Vardi, M.Y., Halpern, J.Y.: Reasoning About Knowledge. MIT press,
Cambridge (2003)

21. Frittella, S., Palmigiano, A., Santocanale, L.: Dual characterizations for finite lattices via
correspondence theory for monotone modal logic. J. Log. Comput. (2016). Forthcoming,
preliminary version on arXiv:1408.1843 [math.LO]

22. Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic Glimpse at
Substructural Logics. Elsevier, Amsterdam (2007)

23. Ganter, B., Wille, R.: Applied lattice theory: formal concept analysis. In: Grätzer, G. (ed.) In
General Lattice Theory. Birkhäuser. Citeseer (1997)

24. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Hei-
delberg (1999)

25. Gehrke, M.: Generalized Kripke frames. Studia Logica 84(2), 241–275 (2006)
26. Greco, G., Ma, M., Palmigiano, A., Tzimoulis, A., Zhao, Z.: Unified correspondence as a

proof-theoretic tool. Forthcoming, preliminary version on arXiv:1603.08204 [math.LO]
27. Hartonas, T.: Modal and temporal extensions of non-distributive logics. Log. J. IGPL 24,

156–185 (2015)
28. Hartonas, T.: Order-dual relational semantics for non-distributive al logics: a general frame-

work (2015)
29. Hsu, G., Hannan, M.T., Pólos, L.: Typecasting, legitimation, and form emergence: a formal

theory. Sociol. Theor. 29(2), 97–123 (2011)
30. Järvinen, J., Orłowska, E.: Relational correspondences for lattices with operators. In: Mac-

Caull, W., Winter, M., Düntsch, I. (eds.) RelMiCS 2005. LNCS, vol. 3929, pp. 134–146.
Springer, Heidelberg (2006)

31. Kamide, N.: Kripke semantics for modal substructural logics. J. Log. Lang. Inf. 11(4), 453–
470 (2002)

32. Kuijken, B., Leenders, M.A.A.M., Wijnberg, N.M., Gemser, G.: The producer-consumer
classification gap and its effects on music festival success (2016) (Submitted)

33. Kurtonina, N.: Categorical inference and modal logic. J. Log. Lang. Inf. 7, 399–411 (1998)
34. Moshier, M.A., Jipsen, P.: Topological duality and lattice expansions, II: lattice expansions

with quasioperators. Algebra Universalis 71(3), 221–234 (2014)
35. Navis, C., Glynn, M.A.: How new market categories emerge: temporal dynamics of legiti-

macy, identity, and entrepreneurship in satellite radio, 1990–2005. Adm. Sci. Q. 55(3), 439–
471 (2010)

http://arxiv.org/abs/1511.04271
http://arxiv.org/abs/1603.08220
http://arxiv.org/abs/1408.1843
http://arxiv.org/abs/1603.08204

164 W. Conradie et al.

36. Paleo, I.O., Wijnberg, N.M.: Classification of popular music festivals: a typology of festivals
and an inquiry into their role in the construction of music genres. Int. J. Arts Manag. 8, 50–61
(2006)

37. Palmigiano, A., Sourabh, S., Zhao, Z.: Sahlqvist theory for impossible worlds. J. Log. Com-
put. Forthcoming, preliminary version on arXiv:1603.08202 [math.LO]

38. Palmigiano, A., Sourabh, S., Zhao, Z.: Jónsson-style canonicity for ALBA-inequalities. J.
Log. Comput. exv041v1-exv041 (2015)

39. Plošcica, M.: A natural representation of bounded lattices. Tatra Mt. Math. Publ. 5, 75–88
(1995)

40. Suzuki, T.: Canonicity results of substructural and lattice-based logics. Rev. Symb. Log. 4,
1–42 (2011)

41. Wijnberg, N.M.: Innovation and organization: value and competition in selection systems.
Organ. Stud. 25(8), 1413–1433 (2004)

42. Wijnberg, N.M.: Classification systems and selection systems: the risks of radical innovation
and category spanning. Scand. J. Manag. 27(3), 297–306 (2011)

http://arxiv.org/abs/1603.08202

A Logical Approach to Context-Specific
Independence

Jukka Corander1,2, Antti Hyttinen3, Juha Kontinen1(B), Johan Pensar4,
and Jouko Väänänen1,5

1 Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
{jukka.corander,juha.kontinen,jouko.vaananen}@helsinki.fi
2 Department of Biostatistics, University of Oslo, Oslo, Norway

3 HIIT, Department of Computer Science, University of Helsinki, Helsinki, Finland
antti.hyttinen@helsinki.fi

4 Department of Mathematics and Statistics,
Åbo Akademi University, Turku, Finland

jopensar@abo.fi
5 Institute for Logic, Language and Computation, University of Amsterdam,

Amsterdam, The Netherlands

Abstract. Bayesian networks constitute a qualitative representation
for conditional independence (CI) properties of a probability distribu-
tion. It is known that every CI statement implied by the topology of a
Bayesian network G is witnessed over G under a graph-theoretic criterion
called d-separation. Alternatively, all such implied CI statements have
been shown to be derivable using the so-called semi-graphoid axioms. In
this article we consider Labeled Directed Acyclic Graphs (LDAG) the
purpose of which is to graphically model situations exhibiting context-
specific independence (CSI). We define an analogue of dependence logic
suitable to express context-specific independence and study its basic
properties. We also consider the problem of finding inference rules for
deriving non-local CSI and CI statements that logically follow from the
structure of a LDAG but are not explicitly encoded by it.

1 Introduction

Dependence logic [24] adds the concept of dependence to first-order logic by
means of atomic formulas

=(x1, . . . , xn) (1)

the meaning of which is that the value of xn is functionally determined by the
values of the variables x1, . . . , xn−1. The area of dependence logic and its team
semantics have developed and expanded rapidly during the past few years. In
this article we are concerned with a variant of dependence logic called Inde-
pendence Logic [8] defined in terms of independence atoms x ⊥z y instead of
dependence atoms. The meaning of the atom x ⊥z y is that, when the value of z
fixed, knowing the value of x does not tell us anything new about the value of y.

c© Springer-Verlag Berlin Heidelberg 2016
J. Väänänen et al. (Eds.): WoLLIC 2016, LNCS 9803, pp. 165–182, 2016.
DOI: 10.1007/978-3-662-52921-8 11

166 J. Corander et al.

Independence atoms correspond to a widely studied class of database depen-
dencies called embedded multivalued dependencies. Furthermore, independence
atoms and the notion of statistical conditional independence X ⊥ Y |Z have
interesting connections as the former can be seen as a qualitative version of the
latter.

Bayesian networks [14] are a popular tool for modeling complex multivariate
systems. The basis of a Bayesian network is a directed acyclic graph (DAG)
in which the nodes represent random variables and the directed edges represent
direct dependencies between the variables. On the other hand, missing edges give
rise to statements of conditional independence (CI) which can be verified directly
from the graph using the graph-theoretic criterion called d-separation [21].

To increase the flexibility of the dependence structure associated with tradi-
tional Bayesian networks, [1] introduced and formalized the notion of context-
specific independence (CSI). More specifically, they showed how certain local
CSI statements are particularly convenient to include in the Bayesian network
framework. A local CSI statement basically corresponds to the influence of an
edge vanishing in a certain context. To generalize this idea, [22] introduced the
class of labeled directed acyclic graphs (LDAGs) which can capture local CSI
statements through labels assigned to the edges. Analogously to the d-separation
criterion, (a subset of) non-local CSI statements can be verified using a concept
called CSI-separation.

Conditional independence has also been given a qualitative characterization
in terms of logical axioms (see Sect. 4). The semi-graphoid axioms of conditional
independence are known to be sound for all distributions, and furthermore corre-
spond exactly to d-separation in the context of Bayesian networks [6,25]. In this
article we formulate a logic capable of formalizing CSI statements. For that end,
we define an analogue of dependence logic suitable to express context-specific
independence and study its basic properties. We also give a logical characteri-
zation for CSI-separation in LDAGs, and address the open problem of finding
a complete method of deriving non-local CSI and CI statements that logically
follow from the structure of a LDAG but are not explicitly encoded by it.

2 Preliminaries

2.1 Bayesian Networks

A Directed Acyclic Graph (DAG) G = (Δ,E) is specified by a set of nodes
Δ = {1, . . . , n} and a set of directed edges E where (i, j) ∈ E represents a
directed edge from node i to node j. The parents of a node j, denoted by Πj ,
is defined as all nodes from which there is a directed edge to node j, that is,
Πj = {i ∈ Δ | (i, j) ∈ E}. The descendants of a node i is all nodes which can
be reached from node i following the direction of the edges.

In a Bayesian network, the nodes of the graph represent random variables
XΔ = {X1, . . . , Xn}. As is typical in the graphical model literature, the terms
node and variable will occasionally be used interchangeably. We denote by PΔ

a probability distribution over the random variables XΔ. Each variable Xi is

A Logical Approach to Context-Specific Independence 167

assumed to take values in a finite discrete set of outcomes denoted by Xi. The
joint outcome space of a set of variables XS , where S ⊆ Δ, is defined as the
Cartesian product of the sets Xi for i ∈ S.

Definition 1 (Conditional independence (CI)). Let A, B, and S be subsets
of Δ. The variables XA are conditionally independent of XB given XS if

P (XA = eA|XB = eB ,XS = eS) = P (XA = eA|XS = eS),

for all (eA, eB , eS) ∈ XA × XB × XS for which P (XB = eB ,XS = eS) > 0. This
is denoted by XA ⊥ XB | XS.

A Bayesian network is specified by a pair (G,PΔ) where G = (Δ,E) is a
DAG and PΔ is a probability distribution satisfying the CI statements encoded
by G. The dependence structure of a DAG is characterized by the so-called local
directed Markov property [21], which states that each variable Xj is condition-
ally independent of its non-descendants given its parents XΠj

. Accordingly, the
joint probability distribution PΔ can be factorized as

P (X1 = e1,X1 = e2, . . . , Xn = en) =
n∏

j=1

P (Xj = ej |XΠj
= eΠj

), (2)

for any eΔ ∈ XΔ. The joint distribution PΔ can hence be thought of as being
constructed from node-wise conditional distributions.

The CI statements of a graph G determined by the local directed Markov
property are called local CIs and are denoted by Iloc(G). However, the set Iloc(G)
implies also other non-local CIs which can be verified using a graph-theoretic
criterion called d-separation.

Definition 2 (d-separation). Let G = (Δ,E) be a DAG and let A, B, and
S be disjoint subsets of Δ. The set A is d-separated from B by S if there is no
trail in G from a node in A to a node in B along which every node that delivers
an arrow (i.e., tail in either direction) is outside of S, and every node with
converging arrows (i.e., heads in both directions) either is or has a descendant
in S.

For a CI statement φ, we write Iloc(G) |= φ if all distributions PΔ that satisfy
Iloc(G) also satisfy φ, that is, φ is implied by Iloc(G). The following result is due
to [6,25].

Theorem 1 (Soundness and completeness of d-separation). Let G =
(Δ,E) be a DAG and PΔ a distribution satisfying every CI in Iloc(G). Let A,
B, and S be disjoint subsets of Δ. Then it holds that

– if A is d-separated from B by S in G, then PΔ satisfies XA ⊥ XB | XS.
– if Iloc(G) |= XA ⊥ XB | XS, then A is d-separated from B by S in G.

We will end this section with an example illustrating the use of d-separation.

168 J. Corander et al.

Fig. 1. DAG over five variables.

Example 1. Consider the DAG G in Fig. 1. Note first that Iloc(G) consists of
the following five CIs: X1 ⊥ {X2,X4}, X2 ⊥ X1, X3 ⊥ X4 | {X1,X2},
X4 ⊥ {X1,X3} | X2 and X5 ⊥ {X1,X2} | {X3,X4}, which must hold for
any distribution that factorizes according to G. In addition, we can further infer
that the non-local CI X1 ⊥ X4 | {X2,X3,X5} must hold in such a distribution
since node 1 is d-separated from node 4 by nodes {2, 3, 5}.

2.2 Context-Specific Independence

The class of Labeled Directed Acyclic Graphs (LDAGs) was recently introduced
in [22] as a generalization of DAGs. The purpose of the class of LDAGs is to
graphically model situations exhibiting context-specific independence [1], which
cannot be captured by CI-based models (see the survey [20]).

Definition 3 (Context-specific independence (CSI)). Let A, B, C, and S
be disjoint subsets of Δ. The variables XA are contextually independent of XB

given XC = eC and XS if

P (XA = eA|XB = eB ,XC = eC ,XS = eS) = P (XA = eA|XC = eC ,XS = eS),

for all (eA, eB , eS) ∈ XA × XB × XS for which P (XB = eB ,XC = eC ,XS =
eS) > 0. This is denoted by XA ⊥ XB | XC = eC ,XS.

Local CSI statements, which address only a variable Xj and its parents XΠj
,

can naturally be included in the Bayesian network framework. More specifically,
a CSI statement is defined as local with respect to a DAG if it is of the form

Xj ⊥ XB |XΠj\B = eΠj\B, (3)

where B ⊂ Πj . By Definition 3, this independence statement holds if and only
if

P (Xj = ej |XB = eB ,XΠj\B = eΠj\B) = P (Xj = ej |XΠj\B = eΠj\B),

A Logical Approach to Context-Specific Independence 169

for all (ej , eB) ∈ Xj × XB for which P (XB = eB ,XΠj\B = eΠj\B) > 0. In other
words, a local CSI renders a variable conditionally independent of some of its
parents given a certain context specified by the remaining parents. To capture
such restrictions in the model structure, [22] proposed adding labels to the edges
in the DAG.

Definition 4 (Labeled Directed Acyclic Graph (LDAG)). Let G =
(Δ,E) be a DAG over random variables XΔ and let L(i,j) = Πj \ {i}. A label
on an edge (i, j) is a subset of XL(i,j) , denoted by L(i,j), encoding a collection of
local CSI statements according to

Xj ⊥ Xi | XL(i,j) = eL(i,j) for all eL(i,j) ∈ LL(i,j) .

An LDAG GL = (Δ,E,LE) is a DAG G = (Δ,E) where the edges have been
assigned labels as specified by LE = {L(i,j)}(i,j)∈E.

{(0, 1)} {(1
, 1
)}

Fig. 2. LDAG over four binary variables.

Example 2. Consider the LDAG in Fig. 2 which represents the dependence struc-
ture over four binary variables with outcome space Xi = {0, 1}. Note that given
an ordering of the variables, the indices of the variables specifying a label need
not be explicitly stated. According to Definition 4, the labels encode the local
CSI statements

X1 ⊥ X2 | (X3,X4) = (0, 1) and X1 ⊥ X4 | (X2,X3) = (1, 1),

respectively. In other words, X1 is contextually independent of X2 given X3 = 0
and X4 = 1. Moreover, X1 is contextually independent of X4 given X2 = 1 and
X3 = 1.

One of the main motivations for including CSI in Bayesian networks was
to reduce the number of parameters needed to specify the model distribution.
The textbook way of defining the conditional probability distributions in (2) is
through so-called conditional probability tables (CPTs) which simply list the
conditional probabilities for each parent configuration. The number of parame-
ters needed to specify a CPT of a node grows exponentially with the number of

170 J. Corander et al.

parents of the node. However, a local CSI statement implies that several distinct
parent configurations induce the same conditional distribution which thereby
needs only be defined once.

Example 2 (continued). Let us continue with the previous example concerning
the LDAG in Fig. 2. A traditional CPT over variable X1 is seen in Table 1(a).
Notice that there are certain regularities in the table in form of identical dis-
tributions. These regularities correspond to the local CSI statements which are
encoded by the labels. Rather than defining identical distributions several times,
we can construct a reduced CPT as illustrated in Table 1(b). A star means that
the variable may take on any value, for example, (∗, 0, 1) = {(0, 0, 1), (1, 0, 1)}.
Ultimately, a reduced CPT represents a partition of the parent outcome space.
Each row represents a class in the partition such that the conditional distribution
is invariant for configurations belonging to the same class.

Table 1. (a) A traditional CPT and (b) A reduced CPT over variable X1 in Fig. 2.

X2 X3 X4 P (X1|XΠ1)

p1
p2
p3
p4
p5
p2
p6
p6

X2 X3 X4 P (X1|XΠ1)

p1
p2
p3
p4
p5
p6

As in [22], we restrict attention to so-called maximal and regular LDAGs.
Maximality states that it is not possible to add a configuration eL(i,j) to the
label L(i,j) without inducing an additional local CSI not encoded already by the
original labels. Moreover, regularity simply states that each of the labels L(i,j)

of an LDAG is a strict subset of XL(i,j) . Regularity and maximality together
imply that a label L(i,j) cannot induce that Xj ⊥ Xi | XL(i,j) = eL(i,j) for all
eL(i,j) ∈ XL(i,j) , which corresponds to the CI Xj ⊥ Xi | XL(i,j) .

Analogously to the case with DAGs, an important issue with LDAGs is the
derivation of non-local independence statements that logically follow from the
structure of the LDAG but are not explicitly encoded by it (by the labels or the
DAG-structure).

Definition 5. Let GL = (Δ,E,LE) be an LDAG. We denote by Iloc(GL) the
set of local CI statements Iloc(G), encoded by G = (Δ,E), together with the set
of local CSI statements encoded by the labels LE.

Already in [1] a method called CSI-separation, which is analogous to d-separation
for DAGs, was introduced for the purpose of verifying non-local CSI statements.

A Logical Approach to Context-Specific Independence 171

Before defining CSI-separation in terms of LDAGs, we need to define the notion
of satisfied label.

Definition 6. Let GL = (Δ,E,LE) be an LDAG, and XC = eC a context where
C ⊆ Δ. A label L(i,j) ⊆ LE is satisfied in the context XC = eC if L(i,j) ∩ C �= ∅
and

{eL(i,j)∩C × XL(i,j)\C} ⊆ L(i,j).

For an LDAG GL and a context XC = eC , we define G(eC) = (Δ,E \E′), where
E′ = {(i, j) ∈ E | L(i,j) is satisfied}. Note that G(eC) is the subgraph of G that
arises by removing edges whose labels are satisfied in the context XC = eC . We
are now ready to define CSI-separation [22].

Definition 7 (CSI-separation). Let GL = (Δ,E,LE) be an LDAG and let
A, B, C, S be disjoint subsets of Δ. The set XA is CSI-separated from XB by
XS in the context XC = eC in GL, if XA is d-separated from XB by XC∪S in
G(eC).

As stated by the following result (see Theorem 5.3 in [14]), CSI-separation
is a sound method for verifying non-local CSIs.

Theorem 2 (Soundness of CSI-separation). Let GL = (Δ,E,LE) be an
LDAG, let PΔ be a distribution satisfying Iloc(GL), and let A, B, C, S be disjoint
subsets of Δ. If XA is CSI-separated from XB by XS in the context XC = eC

in GL, then the distribution PΔ satisfies the CSI XA ⊥ XB | XC = eC ,XS.

However, unlike d-separation for DAG structures, CSI-separation is not a com-
plete method for discovering non-local independencies implied by an LDAG
structure. In fact, d-separation is not a complete method for discovering CI
statements in an LDAG. This is illustrated in the following example.

{(0, ∗)} {(∗
, 1
)}

Fig. 3. LDAG over four binary variables.

Example 3. Consider the LDAG in Fig. 3, where {(0, ∗)} again is a shorthand
for the set {(0, 0), (0, 1)}. Assume that PΔ is a joint distribution satisfying the
independencies encoded by the LDAG. As discussed in [22], the underlying DAG
structure does not allow us to infer the CI statement X2 ⊥ X4 | {X1,X3}
through the use of d-separation. Using CSI-separation, however, we can verify
that X2 ⊥ X4 | X1,X3 = 0 and X2 ⊥ X4 | X1,X3 = 1. Consequently, a
reasoning by cases argument allows one to conclude that X2 ⊥ X4 | {X1,X3}
holds in PΔ (see [22] for more details).

172 J. Corander et al.

The next theorem shows that the problem of deciding whether a CI statement
φ is implied by an LDAG structure GL is coNP-hard. It is worth noting that for
DAGs this problem can be solved in polynomial time. The proof of the theorem
can be found in the Appendix.

Theorem 3. The problem of deciding whether an (context specific) indepen-
dence is implied by an LDAG structure is coNP-hard.

2.3 Team Semantics and Independence Logic

The syntax of independence logic, FO(⊥c), extends the syntax of first-order logic
(FO), defined in terms of ∨, ∧, ¬, ∃ and ∀, by atomic independence formulas of
the form

x ⊥z y, (4)

where x, y, and z are tuples of variables. The set Fr(φ) of free variables of
φ ∈ FO(⊥c) is defined analogously to first-order logic stipulating that all variable
occurrences in independence atoms are free.

The semantics of independence logic is formulated using sets X of assign-
ments called teams.

Definition 8. Let A be a model with domain A, and {x1, . . . , xk} a finite set of
variables.

– A team X of A with domain Dom(X) = {x1, . . . , xk} is any set of assignments
from the variables {x1, . . . , xk} into the set A.

– If s is an assignment, x a variable, and a ∈ A, then s(a/x) denotes the
assignment (with domain Dom(s) ∪ {x}) that agrees with s everywhere except
that it maps x to a.

– For a function F : X → P(A) \ {∅}, we define the operations of Supplemen-
tation X(F/xn) and Duplication X(A/xn) as follows:

X(F/xn) = {s(F (s)/xn) : s ∈ X and a ∈ F (s)}
X(A/xn) = {s(a/xn) : s ∈ X and a ∈ A}.

We are now ready to define the semantics of independence logic. We restrict
attention to formulas in a negation normal form in which negation is allowed to
appear only in front of first-order atomic formulas. Below, atomic formulas and
their negations are called literals, and A |=s φ refers to satisfaction in first-order
logic.

Definition 9. Let A be a model and X a team of A. The satisfaction relation
A |=X φ is defined as follows:

– If φ is a first-order literal, then A |=X φ iff for all s ∈ X: A |=s φ.
– A |=X x ⊥z y iff for all s, s′ ∈ X such that s(z) = s′(z) there is s∗ ∈ X such

that s∗(xz) = s(xz), and s∗(y) = s′(y).
– A |=X ψ ∧ φ iff A |=X ψ and A |=X φ.

A Logical Approach to Context-Specific Independence 173

– A |=X ψ ∨ φ iff X = Y ∪ Z such that A |=Y ψ and A |=Z φ.
– A |=X ∃xnψ iff A |=X(F/xn) ψ for some F : X → P(A) \ {∅}.
– A |=X ∀xnψ iff A |=X(A/xn) ψ.

Above, we assume that the domain of X contains the variables free in φ. Finally,
a sentence φ is true in a model A (abbreviated A |= φ) if A |={∅} φ.

One of the most basic observations about team semantics is the so-called
flatness property of FO-formulas.

Theorem 4 ([24]). Let φ ∈ FO. Then for all A and X it holds that

A |=X φ ⇔ A |=s φ for all s ∈ X.

Another important property of all independence logic formulas is the following
locality property. For a team X and V ⊆ Dom(X), we define X � V := {s �
V | s ∈ X}.

Theorem 5 ([4]). Let φ be an FO(⊥c)-formula. Then for all A and X it holds
that

A |=X φ ⇔ A |=X�Fr(φ) φ.

Both dependence and independence logic are equi-expressive with existential
second-order logic and are hence both non-axiomatizable. On the other hand,
by restricting attention to syntactic fragments of these logics, complete axiom-
atization is possible [10,15].

There is an intimate connection between independence atoms of FO(⊥c) and
CI statements. Teams and independence atoms can be seen as qualitative ana-
logues of probability distributions and their CI statements (so-called relational
dependency models discussed, e.g., in [7]). This connection can be made explicit
as follows (see [3,7]). For a set of stochastic variables XA, A ⊆ Δ, we write xA

for a tuple (in any order) consisting of first-order variables xi for i ∈ A.

Proposition 1. Let PΔ be a distribution. Define a team X consisting of those
assignments s : {x1, ..., xn} → ∪1≤i≤nXi such that

X = {s | PΔ(X1 = s(x1), ...,Xn = s(xn)) > 0}.

Then if P satisfies a CI XA ⊥ XB |XC , then A |=X xA ⊥xC
xB, where A =

∪1≤i≤nXi.

Proof. Let s, s′ ∈ X be such that s(xC) = s′(xC). Now we must have PΔ(XA =
s(xA)|XC = s(xC)) > 0 and PΔ(XB = s′(xB)|XC = s(xC)) > 0. Denote these
non-negative probabilities by c1 and c2, respectively. Since XA ⊥ XB |XC holds,

PΔ(XA = s(xA),XB = s′(xB)|XC = s(xC)) = c1c2 > 0,

hence it follows that there exists s∗ ∈ X such that s∗(xA) = s(xA), s∗(xB) =
s′(xB), and s∗(xC) = s(xC) as wanted.

174 J. Corander et al.

3 A Logic for Expressing Context-Specific Independence

In this section we formulate a variant of independence logic that is suitable to
express CSI statements and study its properties.

Definition 10 (CSI-atom). A context-specific independence atom (CSI-atom)
is a formula of the form

x ⊥φ(v),u y,

where φ is an FO-formula. Satisfaction for CSI-atoms is defined as follows:
A |=X x ⊥u,φ(v) y iff for all s, s′ ∈ X such that s(uv) = s′(uv) and A |=s φ(v)
there is s∗ ∈ X such that s∗(xuv) = s(xuv), and s∗(y) = s′(y).

Definition 11. The extension of FO by CSI-atoms is denoted by FO(⊥CSI).

The following observations are straightforward to prove. First of all, the local-
ity property holds also for FO(⊥CSI).

Theorem 6. Let φ be an FO(⊥CSI)-formula. Then for all A and X it holds that

A |=X φ ⇔ A |=X�Fr(φ) φ.

The next lemma shows that CSI-atoms can be expressed as FO(⊥c)-formulas.

Lemma 1. Let φ ∈ FO, and let φd denote the dual of φ. Then the formula
x ⊥φ(v),u y is logically equivalent to the independence logic formula

φd ∨ (φ ∧ x ⊥uv y).

Proof. Let A be a structure and X a team such that

A |=X x ⊥φ(v),u y. (5)

Let Y1 = {s ∈ X | A |=s φ} and Y2 = {s ∈ X | A |=s φd}. Now since φ ∈ FO it
holds that X = Y1 ∪ Y2 and Y1 ∩ Y2 = ∅. Furthermore, by Theorem 4 it holds
that A |=Y2 φd, and A |=Y1 φ. In order to show A |=Y1 x ⊥uv y, let s, s′ ∈ Y1

such that s(uv) = s′(uv). Since s ∈ Y1, A |=s φ(v) holds and hence by (5) there
exists s∗ ∈ X such that s∗(xuv) = s(xuv), and s′(y) = s∗(y). Since s∗ ∈ Y1,
we get A |=Y1 x ⊥uv y, and

A |=X φd ∨ (φ ∧ x ⊥uv y).

The converse implication is proved analogously.

Lemma 1 implies that independence logic and FO(⊥CSI) are equi-expressive.

Theorem 7. FO(⊥CSI) ≡ FO(⊥c).

Analogously to CIs and independence atoms, CSI-atoms can be viewed as qual-
itative analogues of CSI statements.

A Logical Approach to Context-Specific Independence 175

Proposition 2. Let PΔ be a distribution. Define a team X consisting those
assignments s : {x1, ..., xn} → ∪1≤i≤nXi such that

X = {s | PΔ(X1 = s(x1), ...,Xn = s(xn)) > 0}.

If PΔ satisfies the CSI
XA ⊥ XB |XC = eC ,XS ,

then A |=X xA ⊥φ(xC),xS
xB, where A = ∪1≤i≤nXi and φ(xC) = ∧i∈C(xi = ei)

(ei appears as a constant symbol in φ(xC)).

Proof. Analogous to the proof of Proposition 1.

4 Axiomatic Characterization of CSI-separation

In this section we define a sound extension of the semi-graphoid axioms that cap-
ture CSI-separation in LDAGs. We begin be recalling the semi-graphoid axioms
[2,21] and their relation to d-separation in the context of Bayesian networks.

4.1 The Semi-graphoid Axioms and the Implication Problem of CI
Statements

In the following we assume without loss of generality that the natural ordering
of the nodes Δ of a DAG G agrees with the edge relation of G. Furthermore, we
redefine ILoc(G) as follows:

ILoc(G) = {Xi ⊥ {X1, ...,Xi−1} \ XΠi
|XΠi

: i ∈ Δ}. (6)

Note that {1, ..., i − 1} are non-descendants of the node i in G. The equivalence
of the above definition of ILoc(G) with the previous one follows by Theorem 8.

Definition 12 (Semi-graphoid axioms). The following axioms are called the
semi-graphoid axioms. Below X, Y , and Z denote sets of stochastic variables.
The union of X and Y is denoted by XY .

1. Triviality: X ⊥ ∅|Z,
2. Symmetry: X ⊥ Y |Z ⇒ Y ⊥ X|Z,
3. Decomposition: X ⊥ Y U |Z ⇒ X ⊥ Y |Z,
4. Weak Union: X ⊥ Y U |Z ⇒ X ⊥ Y |ZU
5. Contraction: X ⊥ Y |ZU and X ⊥ U |Z ⇒ X ⊥ Y U |Z.

The semi-graphoid axioms are known to be sound for all distributions. The
following theorem shows that these axioms correspond exactly to d-separation
in the context of Bayesian networks. For a finite set Σ ∪ {φ} of CIs, we write
Σ �sg φ with the meaning that φ can be derived from Σ using the semi-graphoid
axioms. In other words, there exists a finite sequence ψ1, ..., ψk such that ψk = φ,
and ψi ∈ Σ or ψi is obtained by applying one of the semi-graphoid axioms to ψl

and ψt for some l, t < i.

176 J. Corander et al.

Theorem 8. [6,25] Let G = (Δ,V) be a DAG, and let A, B, and C be disjoint
subsets of Δ. Then A is d-separated from B by C if and only if ILoc(G) �sg

XA ⊥ XB |XC .

Theorems 1 and 8 together imply the following result.

Theorem 9. [6,25] Let G = (Δ,V) be a DAG, and let A, B, and C be disjoint
subsets of Δ. Then ILoc(G) |= XA ⊥ XB |XC if and only if ILoc(G) �sg XA ⊥
XB |XC .

This result can be viewed as a complete axiomatization of a restricted version
of the implication problem of CI statements. The implication problem of CI
statements is defined as follows. Given a finite collection Σ∪{ϕ} of CI statements
as input, determine whether for all P ,

P |= Σ ⇒ P |= ϕ.

This problem is known not to be finitely axiomatizable [23]. Despite of this nega-
tive result, the semi-graphoid axioms are also relevant for the general implication
problem of conditional independence. For example, in [9] it was shown that the
axioms are complete for the implication problem of conditional independence
assuming Σ consists solely of so-called saturated CIs. Furthermore, in [19] the
semi-graphoid axioms and a certain other set of axioms are used to approximate
the CI implication problem.

Independence atoms correspond to so-called embedded multivalued depen-
dencies (EMVD) in database theory whose connections to CIs has been widely
studied [16–18,26]. In particular, the semi-graphoid axioms are sound also for
EMVDs and independence atoms. For a finite set Σ∪{φ} of independence atoms,
we write Σ |= φ with the meaning that for all finite A and X, if A |=X ψ for
all ψ ∈ Σ, then A |=X φ. For a set of CIs Σ, Σ∗ denotes the corresponding set
of independence atoms. The following result is an immediate consequence of the
results in [7].

Theorem 10. Let G be a DAG, and let A, B, and C be disjoint subsets of Δ.
Then the following are equivalent:

1. ILoc(G) |= XA ⊥ XB |XC ,
2. ILoc(G)∗ |= xA ⊥xC

xB,
3. ILoc(G) �sg XA ⊥ XB |XC .

Theorem 10 does not hold for the general implication problems of independence
atoms and CIs [23]. Furthermore, the implication problem of independence atoms
is know to be undecidable by the result of [13], whereas for CIs the decidabilty of
the problem is still open. It is worth noting that a version of Theorem 10 holds
for marginal CIs and independence atoms of the form x ⊥ y. Furthermore,
implication problem of marginal CIs has a complete axiomatization in terms of
axioms similar to the semi-graphoid axioms [5].

A Logical Approach to Context-Specific Independence 177

4.2 Axioms for Context Specific Independence

In this section we give an axiomatic characterization of CSI-separation in
LDAGs. For the derivation of CSI statements, we introduce the following rule
closely resembling the definition of CSI-separation. In order to apply the CSI-
rule below, an input LDAG GL as well as the outcome spaces Xi of the variables
Xi have to be fixed. The extra assumptions A(eC) allowed in the subderivation
of the CSI-rule:

A(ec) = {Xj ⊥ Xj1 , ...,Xjk |XΠj−{j1,...,jk} : j ∈ {1, ..., n}}
encode the information that the graph G(eC) arises from G by removing edges
(j1, j), ..., (jk, j), for j ∈ Δ.

Definition 13 (CSI-rule for context XC = ec).
[
Iloc(G) ∪ A(eC) �sg XA ⊥ XB |XC∪S

] ⇒ XA ⊥ XB |XC = eC ,XS

The idea of the CSI-rule is that the existence of the derivation on the left-hand
side (corresponding to d-separation in G(eC)) justifies the conclusion on the
right. The auxiliary assumptions A(eC) can only be used in the subderivation.

We will next show that the CSI-rule is sound and corresponds to CSI-
separation in LDAGs. For an LDAG GL, we write Iloc(GL) �sg+ φ with the
meaning that a CI (or CSI) statement φ can be derived from Iloc(GL) using the
semi-graphoid axioms and the CSI-rule.

Theorem 11. Let GL = (Δ,V,LE) be an LDAG, and let A, B, C, and S be
disjoint subsets of Δ. Then

Iloc(GL) �sg+ XA ⊥ XB |XC = ec,XS

if and only if XA is CSI-separated from XB by XS in the context XC = eC .

Proof. Recall our assumption that Iloc(G) (and Iloc(G(eC))) is encoded by a set
of CIs of the form (6). By Theorem 8 it suffices to show that the sets Iloc(G) ∪
A(eC) and Iloc(G(eC)) are equivalent with respect to deductions by the semi-
graphoid axioms.

Note first that Iloc(G)∪A(ec) �sg ψ, for all ψ ∈ Iloc(G(eC)). This holds since
Iloc(G(eC)) consists of CIs of the form

Xj ⊥ {X1, ...,Xj−1} \ XA|XA, (7)

where A = Πj−{j1, ..., jk}, and the CI in equation (7) can be derived by one appli-
cation of the contraction rule applied to the CIs Xj ⊥ Xj1 , ...,Xjk |XΠj−{j1,...,jk}
and Xj ⊥ {X1, ...,Xj−1} \ XΠj

|XΠj
.

Let us then show Iloc(G(eC)) �sg ψ for all ψ ∈ Lloc(G) ∪ A(ec). Assume
ψ is of the form Xj ⊥ Xj1 , ...,Xjk |XΠj−{j1,...,jk}. Then it can be derived by
one application of the decomposition rule applied to the corresponding CI in
(7). Analogously, if ψ is of the form Xj ⊥ {X1, ...,Xj−1} \ XΠj

|XΠj
, then one

application of weak union rule applied to (7) suffices.

178 J. Corander et al.

As discussed in Example 3, CSI-separation, and hence our axioms fail to
capture some non-local CIs implied by the structure of the LDAG. The following
RC-rule is obviously sound for LDAGs and it addresses the problem discussed
in Example 3.

Definition 14 (RC-rule).

XA ⊥ XB |XC = eC ,XS for all eC ∈ XC ⇒ XA ⊥ XB |XC∪S

It is worth noting that the size of the assumptions needed to apply the RC
rule grows exponentially in the number of variables XC . On the other hand, the
question whether a CI holds in an LDAG is in general coNP-hard (see Theorem 3)
hence the exponential blow-up might not be avoidable.

We conjecture that the following holds. Note that the implication (1) ⇒ (2)
holds by Theorem 11 and the obvious soundness of the RC-rule.

Conjecture 12. Let GL = (Δ,V,LE) be an LDAG, and let A, B, C, and S be
disjoint subsets of Δ. Then the following are equivalent:

1. A CSI XA ⊥ XB |XC = ec,XS (CI XA ⊥ XB |XC) can be derived from
Iloc(GL) using the semi-graphoid axioms and the CSI and RC rules,

2. Every distribution PΔ satisfying Iloc(GL) also satisfies XA ⊥ XB |XC =
ec,XS (XA ⊥ XB |XC).

In Example 3 we showed how two labels (or CSIs) within a local structure
together can imply a CI statement which cannot be inferred from the underlying
graph. In addition to this type of scenario, there can also arise situations where
a combination of labels from different local structures induces a non-local inde-
pendence statement that holds globally. This is possible when a variable (or set
of variables) specifies labels in several local structures.

Example 4. Consider the LDAG in Fig. 4. From an inspection using d-separation
on the underlying DAG, it appears that X2 �⊥ X4 since there is a seemingly open
trail between node 2 and node 4 via node 1. However, by combining several
independence statements we can conclude that X2 ⊥ X4 actually holds. First,
using CSI-separation it is straightforward to conclude that X2 ⊥ X4 | X3 = 0
and X2 ⊥ X4 | X3 = 1, which according to the RC-rule imply that X2 ⊥

{0} {1}

Fig. 4. LDAG over four binary variables.

A Logical Approach to Context-Specific Independence 179

X4 | X3. In addition, the local directed Markov property states that X2 ⊥ X3.
By combining the two CI statements we can conclude that X2 ⊥ {X3,X4}
(Contraction) and finally X2 ⊥ X4 (Decomposition). Interestingly, the graphs
in Figs. 3 and 4 actually represent the same dependence structures although the
underlying DAGs belong to different Markov equivalence classes (see [22] for
more details).

5 Conclusion

In this article we have discussed and studied logical analogues of conditional
independence and context-specific independence statements. We defined a novel
version FO(⊥CSI) of dependence logic suitable for formalizing qualitative ver-
sions of CSI statements, and also extended the well-known semi-graphoid axioms
to logically characterize CSI-separation in LDAGs. An important question left
open is whether our axioms are strong enough to characterize all independence
statements implied by an LDAG structure (see Conjecture 12). However, the
more complete set of implied independencies are already useful in various prob-
abilistic inference applications.

The logic FO(⊥CSI) defined in this article allows the formulation of various
generalized notions of independence one particular instance being CSI atoms.
Team semantics has already been successfully used to axiomatize dependencies
in the database theory framework [11,12]. It is an interesting open question to
formulate general axioms for the logic FO(⊥CSI). In particular, it is an interesting
task to identify subclasses of CSI-atoms for which the implication problem is
axiomatizable or decidable.

Acknowledgements. The third author was supported by grant 292767 of the Acad-
emy of Finland. The fourth author was supported by FDPSS via grant 141318 of the
Academy of Finland.

Appendix

Za

Yi−1

Zb Zc

Yi · · ·

· · ·· · ·

· · · Li

Fig. 5. LDAG for the proof of Theorem 3.

180 J. Corander et al.

Proof of Theorem 3. We apply the proof suggested by Koller et al. (p. 196) to
LDAG structures [14]. We will reduce a 3-SAT problem instance into deciding
whether a CI statement is implied by an LDAG structure.

Define the corresponding LDAG to the 3-SAT instance as follows (see Fig. 5).
Let binary nodes Z1, · · · , Zl correspond to variables in the 3-SAT instance. Let
Y0, Y1, · · · , Yk denote additional binary nodes of which Y1, · · · , Yk represent the
clauses of the 3-SAT instance. Let the parents of node Yi (i ≥ 1) be the node
Yi−1, and the Z-nodes appearing in the clause i, let us call them Za, Zb, Zc. The
labels on the edge Yi−1 → Yi consist of assignments to the nodes Za, Zb, Zc. Let
the label Li on the arc Yi−1 → Yi be exactly the set of assignments to Za, Zb, Zc

that do not satisfy the ith clause of the 3-SAT problem.
Consider different contexts ez over variables Z1, · · · , Zl. If ez does not sat-

isfy the 3-SAT instance, there is a clause i which is unsatisfied, and thus the
corresponding edge Yi−1 → Yi does not appear in G(ez). Thus, Y0 and Yk are
d-separated in G(ez) and according to Theorem 2: Y0 ⊥ Yk|Z1, . . . , Zl = ez.

If ez satisfies the 3-SAT instance, all clauses are satisfied and thus all edges
Yi−1 → Yi appear in G(ez). Thus, Y0 and Yk are not d-separated in G(ez). We
can define a parameterization for the LDAG under which there is a dependence.
Let Y0, Z1, . . . , Zl be distributed uniformly. Let Yi = Yi−1 if Za, Zb, Zc satisfy
the clause i and 0 otherwise. Now under a satisfying context ez: Yk = Yk−1 =
· · · = Y0 hence Y0 �⊥ Yk|Z1, . . . , Zk = ez. Thus, Y0 ⊥ Yk|Z1, . . . , Zk = ez cannot
follow from the LDAG structure.

If the 3-SAT problem is satisfiable there is a context ez such that Y0 ⊥
Yk|Z1, . . . , Zk = ez does not follow from the LDAG structure, hence Y0 ⊥
Yk|Z1, . . . , Zk does not follow from the structure either. If the 3-SAT problem
is unsatisfiable we have that for all contexts ez: Y0 ⊥ Yk|Z1, . . . , Zk = ez, from
which it directly follows that Y0 ⊥ Yk|Z1, . . . , Zk. Thus, the defined LDAG struc-
ture implies independence Y0 ⊥ Yk|Z1, . . . , Zk if and only if the 3-SAT problem
is unsatisfiable. If we could decide whether an independence is implied by an
LDAG in polynomial time, we could also solve 3-SAT in polynomial time.

References

1. Boutilier, C., Friedman, N., Goldszmidt, M., Koller, D.: Context-specific indepen-
dence in Bayesian networks. In: Proceedings of the Twelfth International Con-
ference on Uncertainty in Artificial Intelligence. UAI 1996, pp. 115–123. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA (1996). http://dl.acm.org/
citation.cfm?id=2074284.2074298

2. Dawid, A.P.: Conditional independence in statistical theory. J. Roy. Stat. Soc. Ser.
B (Methodological) 41(1), 1–31 (1979). doi:10.2307/2984718

3. Durand, A., Hannula, M., Kontinen, J., Meier, A., Virtema, J.: Approximation
and dependence via multiteam semantics. In: Gyssens, M., et al. (eds.) FoIKS
2016. LNCS, vol. 9616, pp. 271–291. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-30024-5 15

4. Galliani, P.: Inclusion and exclusion dependencies in team semantics - on some
logics of imperfect information. Ann. Pure Appl. Logic 163(1), 68–84 (2012)

http://dl.acm.org/citation.cfm?id=2074284.2074298
http://dl.acm.org/citation.cfm?id=2074284.2074298
http://dx.doi.org/10.2307/2984718
http://dx.doi.org/10.1007/978-3-319-30024-5_15
http://dx.doi.org/10.1007/978-3-319-30024-5_15

A Logical Approach to Context-Specific Independence 181

5. Geiger, D., Paz, A., Pearl, J.: Axioms and algorithms for inferences involving prob-
abilistic independence. Inf. Comput. 91(1), 128–141 (1991)

6. Geiger, D., Pearl, J.: On the logic of causal models. In: Proceedings of the Fourth
Annual Conference on Uncertainty in Artificial Intelligence. UAI 1988, pp. 3–14.
North-Holland Publishing Co., Amsterdam, The Netherlands (1990). http://dl.
acm.org/citation.cfm?id=647231.719429

7. Geiger, D., Verma, T., Pearl, J.: Identifying independence in Bayesian networks.
Networks 20(5), 507–534 (1990)

8. Grädel, E., Väänänen, J.A.: Dependence and independence. Stud. Logica 101(2),
399–410 (2013)

9. Gyssens, M., Niepert, M., Gucht, D.V.: On the completeness of the
semigraphoid axioms for deriving arbitrary from saturated conditional
independence statements. Inf. Process. Lett. 114(11), 628–633 (2014).
http://www.sciencedirect.com/science/article/pii/S0020019014001057

10. Hannula, M.: Axiomatizing first-order consequences in independence logic. Ann.
Pure Appl. Logic 166(1), 61–91 (2015). doi:10.1016/j.apal.2014.09.002

11. Hannula, M.: Reasoning about embedded dependencies using inclusion depen-
dencies. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR-
20 2015. LNCS, vol. 9450, pp. 16–30. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48899-7 2

12. Hannula, M., Kontinen, J.: A finite axiomatization of conditional independence
and inclusion dependencies. In: Beierle, C., Meghini, C. (eds.) FoIKS 2014. LNCS,
vol. 8367, pp. 211–229. Springer, Heidelberg (2014)

13. Herrmann, C.: On the undecidability of implications between embedded multival-
ued database dependencies. Inf. Comput. 122(2), 221–235 (1995)

14. Koller, D., Friedman, N.: Probabilistic graphical models: principles and techniques.
MIT Press, Cambridge (2009)

15. Kontinen, J., Väänänen, J.A.: Axiomatizing first-order consequences in dependence
logic. Ann. Pure Appl. Logic 164(11), 1101–1117 (2013)

16. Link, S.: Reasoning about saturated conditional independence under uncertainty:
axioms, algorithms, and levesque’s situations to the rescue. In: Proceedings of
AAAI. AAAI Press (2013)

17. Link, S.: Sound approximate reasoning about saturated conditional probabilistic
independence under controlled uncertainty. J. Appl. Logic 11(3), 309–327 (2013)

18. Link, S.: Frontiers for propositional reasoning about fragments of probabilistic con-
ditional independence and hierarchical database decompositions. Theor. Comput.
Sci. 603, 111–131 (2015)

19. Niepert, M., Gyssens, M., Sayrafi, B., Gucht, D.V.: On the conditional indepen-
dence implication problem: a lattice-theoretic approach. Artif. Intell. 202, 29–51
(2013). doi:10.1016/j.artint.2013.06.005

20. Nyman, H., Pensar, J., Corander, J.: Context-specific and local independence in
Markovian dependence structures. In: Dependence Logic: Theory and Applications.
Springer (To appear) (2016)

21. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Francisco (1988)

22. Pensar, J., Nyman, H.J., Koski, T., Corander, J.: Labeled directed acyclic graphs: a
generalization of context-specific independence in directed graphical models. Data
Min. Knowl. Discov. 29(2), 503–533 (2015). doi:10.1007/s10618-014-0355-0

http://dl.acm.org/citation.cfm?id=647231.719429
http://dl.acm.org/citation.cfm?id=647231.719429
http://www.sciencedirect.com/science/article/pii/S0020019014001057
http://dx.doi.org/10.1016/j.apal.2014.09.002
http://dx.doi.org/10.1007/978-3-662-48899-7_2
http://dx.doi.org/10.1007/978-3-662-48899-7_2
http://dx.doi.org/10.1016/j.artint.2013.06.005
http://dx.doi.org/10.1007/s10618-014-0355-0

182 J. Corander et al.

23. Studeny, M.: Conditional independence relations have no finite complete character-
ization. In: Kubik, S., Visek, J. (eds.) Transactions of the 11th Prague Conference.
Information Theory, Statistical Decision Functions and Random Processes, vol. B,
pp. 377–396. Kluwer, Dordrecht (1992)

24. Väänänen, J.: Dependence logic: A New Approach to Independence Friendly Logic,
London Mathematical Society Student Texts, vol. 70. Cambridge University Press,
Cambridge (2007)

25. Verma, T., Pearl, J.: Causal networks: semantics and expressiveness. In: Shachter,
R.D., Levitt, T.S., Kanal, L.N., Lemmer, J.F. (eds.) Proceedings of the Fourth
Annual Conference on Uncertainty in Artificial Intelligence, Minneapolis, MN,
USA, 10–12 July 1988. UAI 1988, pp. 69–78. North-Holland (1988)

26. Wong, S., Butz, C., Wu, D.: On the implication problem for probabilistic condi-
tional independency. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 30(6),
785–805 (2000)

Descriptive Complexity of Graph Spectra

Anuj Dawar1, Simone Severini2, and Octavio Zapata2(B)

1 University of Cambridge Computer Laboratory, Cambridge, UK
2 Department of Computer Science, University College London, London, UK

ocbzapata@gmail.com

Abstract. Two graphs are co-spectral if their respective adjacency
matrices have the same multi-set of eigenvalues. A graph is said to be
determined by its spectrum if all graphs that are co-spectral with it
are isomorphic to it. We consider these properties in relation to logi-
cal definability. We show that any pair of graphs that are elementarily
equivalent with respect to the three-variable counting first-order logic C3

are co-spectral, and this is not the case with C2, nor with any number
of variables if we exclude counting quantifiers. We also show that the
class of graphs that are determined by their spectra is definable in par-
tial fixed-point logic with counting. We relate these properties to other
algebraic and combinatorial problems.

Keywords: Descriptive complexity · Algebraic graph theory · Isomor-
phism approximations

1 Introduction

The spectrum of a graph G is the multi-set of eigenvalues of its adjacency matrix.
Even though it is defined in terms of the adjacency matrix of G, the spectrum
does not, in fact, depend on the order in which the vertices of G are listed.
In other words, isomorphic graphs have the same spectrum. The converse is
false: two graphs may have the same spectrum without being isomorphic. Say
that two graphs are co-spectral if they have the same spectrum. Our aim in
this paper is to study the relationship of this equivalence relation on graphs in
relation to a number of other approximations of isomorphism coming from logic,
combinatorics and algebra. We also investigate the definability of co-spectrality
and related notions in logic.

Specifically, we show that for any graph G, we can construct a formula φG

of first-order logic with counting, using only three variables (i.e. the logic C3)
so that H |= φG only if H is co-spectral with G. From this, it follows that
elementary equivalence in C3 refines co-spectrality, a result that also follows
from [1]. In contrast, we show that co-spectrality is incomparable with elemen-
tary equivalence in C2, or with elementary equivalence in Lk (first-order logic

We thank Aida Abiad, Chris Godsil, Robin Hirsch and David Roberson for fruitful
discussions. This work was supported by CONACyT, EPSRC and The Royal Society.

c© Springer-Verlag Berlin Heidelberg 2016
J. Väänänen et al. (Eds.): WoLLIC 2016, LNCS 9803, pp. 183–199, 2016.
DOI: 10.1007/978-3-662-52921-8 12

184 A. Dawar et al.

with k variables but without counting quantifiers) for any k. We show that on
strongly regular graphs, co-spectrality exactly co-incides with C3-equivalence.

For definability results, we show that co-spectrality of a pair of graphs is
definable in fpc, inflationary fixed-point logic with counting. We also consider
the property of a graph G to be determined by its spectrum, meaning that all
graphs co-spectral with G are isomorphic with G. We establish that this property
is definable in partial fixed-point logic with counting (pfpc).

In Sect. 2, we construct some basic first-order formulas that we use to prove
various results later, and we also review some well-known facts in the study of
graph spectra. In Sect. 3, we make explicit the connection between the spectrum
of a graph and the total number of closed walks on it. Then we discuss aspects
of the class of graphs that are uniquely determined by their spectra, and estab-
lish that co-spectrality on the class of all graphs is refined by C3-equivalence.
Also, we show a lower bound for the distinguishability of graph spectra in the
finite-variable logic. In Sect. 4, we give an overview of a combinatorial algorithm
(named after Weisfeiler and Leman) for distinguishing between non-isomorphic
graphs, and study the relationship with other algorithms of algebraic and com-
binatorial nature. Finally, in Sect. 5, we establish some results about the logical
definability of co-spectrality and of the property of being a graph determined by
its spectrum.

2 Preliminaries

Consider a first-order language L = {E}, where E is a binary relation symbol
interpreted as an irreflexive symmetric binary relation called adjacency. Then an
L-structure G = (VG, EG) is called a simple undirected graph. The domain VG

of G is called the vertex set and its elements are called vertices. The unordered
pairs of vertices in the interpretation EG of E are called edges. Formally, a graph
is an element of the elementary class axiomatised by the first-order L-sentence:
∀x∀y(¬E(x, x) ∧ (E(x, y) → E(y, x))).

The adjacency matrix of an n-vertex graph G with vertices v1, . . . , vn is
the n × n matrix AG with (AG)ij = 1 if vertex vi is adjacent to vertex vj ,
and (AG)ij = 0 otherwise. By definition, every adjacency matrix is real and
symmetric with diagonal elements all equal to zero. A permutation matrix P is
a binary matrix with a unique 1 in each row and column. Permutation matrices
are orthogonal matrices so the inverse P−1 of P is equal to its transpose PT .
Two graphs G and H are isomorphic if there is a bijection h from VG to VH that
preserves adjacency. The existence of such a map is denoted by G ∼= H. From
this definition it is not difficult to see that two graphs G and H are isomorphic
if, and only if, there exists a permutation matrix P such that AGP = PAH .

The characteristic polynomial of an n-vertex graph G is a polynomial in a
single variable λ defined as pG(λ) := det(λI −AG), where det(·) is the operation
of computing the determinant of the matrix inside the parentheses, and I is the
identity matrix of the same order as AG. The spectrum of G is the multi-set
sp(G) := {λ : pG(λ) = 0}, where each root of pG(λ) is considered according to

Descriptive Complexity of Graph Spectra 185

its multiplicity. If θ ∈ sp(G) then θI − AG is not invertible, and so there exists
a nonzero vector u such that AGu = θu. A vector like u is called an eigenvector
of G corresponding to θ. The elements in sp(G) are called the eigenvalues of G.
Two graphs are called co-spectral if they have the same spectrum.

The trace of a matrix is the sum of all its diagonal elements. By the definition
of matrix multiplication, for any two matrices A,B we have tr(AB) = tr(BA),
where tr(·) is the operation of computing the trace of the matrix inside the
parentheses. Therefore, if G and H are two isomorphic graphs then tr(AH) =
tr(PT AGP) = tr(AGPPT) = tr(AG) and so, tr(Ak

G) = tr(Ak
H) for any k ≥ 0.

By the spectral decomposition theorem, computing the trace of the k-th
powers of a real symmetric matrix A will give the sum of the k-th powers of the
eigenvalues of A. Assuming that A is an n × n matrix with (possibly repeated)
eigenvalues λ1, . . . , λn, the elementary symmetric polynomials ek in the eigen-
values are the sum of all distinct products of k distinct eigenvalues:

e0(λ1, . . . , λn) := 1; e1(λ1, . . . , λn) :=
∑n

i=1 λi;
ek(λ1, . . . , λn) :=

∑
1≤i1<···<ik≤n λi1 · · · λik for 1 ≤ k ≤ n.

This expressions are the coefficients of the characteristic polynomial of A modulo
a 1 or −1 factor. That is,

det(λI − A) =
n∏

i=1

(λ − λi)

= λn − e1(λ1, . . . , λn)λn−1 + · · · + (−1)nen(λ1, . . . , λn)

=
n∑

k=0

(−1)n+ken−k(λ1, . . . , λn)λk.

So if we know sk(λ1, . . . , λn) :=
∑n

i=1 λk
i for k = 1, . . . , n, then using New-

ton’s identities:

ek(λ1, . . . , λn) =
1
k

k∑

j=1

(−1)j−1ek−j(λ1, . . . , λn)sk(λ1, . . . , λn) for 1 ≤ k ≤ n,

we can obtain all the symmetric polynomials in the eigenvalues, and so we can
reconstruct the characteristic polynomial of A.

Proposition 1. For n-vertex graphs G and H, the following are equivalent:

(1) G and H are co-spectral;
(2) G and H have the same characteristic polynomial;
(3) tr(Ak

G) = tr(Ak
H) for 1 ≤ k ≤ n.

3 Spectra and Walks

Given a graph G, a walk of length l in G is a sequence (v0, v1, . . . , vl) of vertices
of G, such that consecutive vertices are adjacent in G. Formally, (v0, v1, . . . , vl)

186 A. Dawar et al.

is a walk of length l in G if, and only if, {vi−1, vi} ∈ EG for 1 ≤ i ≤ l. We say
that the walk (v0, v1, . . . , vl) starts at v0 and ends at vl. A walk of length l is
said to be closed (or l-closed, for short) if it starts and ends in the same vertex.

Since the ij-th entry of Al
G is precisely the number of walks of length l in

G starting at vi and ending at vj , by Proposition 1, we have that the spectrum
of G is completely determined if we know the total number of closed walks for
each length up to the number of vertices in G. Thus, two graphs G and H are
co-spectral if, and only if, the total number of l-closed walks in G is equal to the
total number of l-closed walks in H for all l ≥ 0.

For an example of co-spectral non-isomorphic graphs, let G = K4 ∪ K1 and
H = K1,4, where Kn is the complete n-vertex graph, Kn,m the complete (n+m)-
vertex bipartite graph, and “∪” denotes the disjoint union of two graphs. The
spectrum of both G and H is the multi-set {−2, 0, 0, 0, 2}. However, G contains
an isolated vertex while H is a connected graph.

3.1 Finite Variable Logics with Counting

For each positive integer k, let Ck denote the fragment of first-order logic in
which only k distinct variables can be used but we allow counting quantifiers:
so for each i ≥ 1 we have a quantifier ∃i whose semantics is defined so that
∃ixφ is true in a structure if there are at least i distinct elements that can be
substituted for x to make φ true. We use the abbreviation ∃=ixφ for the formula
∃ixφ ∧ ¬∃i+1xφ that asserts the existence of exactly i elements satisfying φ. We
write G ≡k

C H to denote that the graphs G and H are not distinguished by
any formula of Ck. Note that Ck-equivalence is the usual first-order elementary
equivalence relation restricted to formulas using at most k distinct variables and
possibly using counting quantifiers.

We show that for integers k, l, with k ≥ 0 and l ≥ 1, there is a formula
ψl

k(x, y) of C3 so that for any graph G and vertices v, u ∈ VG, G |= ψl
k[v, u] if,

and only if, there are exactly k walks of length l in G that start at v and end at
u. We define this formula by induction on l. Note that in the inductive definition,
we refer to a formula ψl

k(z, y). This is to be read as the formula ψl
k(x, y) with

all occurrences of x and z (free or bound) interchanged. In particular, the free
variables of ψl

k(x, y) are exactly x, y and those of ψl
k(z, y) are exactly z, y.

For l = 1, the formulas are defined as follows:

ψ1
0(x, y) := ¬E(x, y); ψ1

1(x, y) := E(x, y);

and ψ1
k(x, y) := false for k > 1.

For the inductive case, we first introduce some notation. Say that a collection
(i1, k1), . . . , (ir, kr) of pairs of integers, with ij ≥ 1 and kj ≥ 0 is an indexed
partition of k if the k1, . . . , kr are pairwise distinct and k =

∑r
j=1 ijkj . That is,

we partitioned k into
∑r

j=1 ij distinct parts, and there are exactly ij parts of
size kj where j = 1, . . . , r. Let K denote the set of all indexed partitions of k
and note that this is a finite set.

Descriptive Complexity of Graph Spectra 187

Now, assume we have defined the formulas ψl
k(x, y) for all values of k ≥ 0.

We proceed to define them for l + 1

ψl+1
0 (x, y) := ∀z(E(x, z) → ψl

0(z, y))

ψl+1
k (x, y) :=

∨

(i1,k1),...,(ir,kr)∈K

((r∧

j=1

∃=ijz (E(x, z)∧ψl
kj

(z, y)
)∧∃=dz E(x, z)

)
,

where d =
∑r

j=1 ij . Note that without allowing counting quantification it would
be necessary to use many more distinct variables to rewrite the last formula.

Given an n-vertex graph G, as noted before (Al
G)ij is equal to the number

of walks of length l in G from vertex vi to vertex vj , so (Al
G)ij = k if, and only

if, G |= ψl
k(vi, vj). Once again, let K denote the set of indexed partitions of k.

For each integer k ≥ 0 and l ≥ 0, we define the sentence

φl
k :=

∨

(i1,k1),...,(ir,kr)∈K

(r∧

j=1

∃=ijx∃y
(
x = y ∧ ψl

k(x, y)
))

.

Then we have G |= φl
k if, and only if, the total number of closed walks of length

l in G is exactly k. Hence G |= φl
k if, and only if, tr(Al

G) = k. Thus, we have
the following proposition.

Proposition 2. If G ≡3
C H then G and H are co-spectral.

Proof. Suppose G and H are two non-cospectral graphs. Then there is some l
such that tr(Al

G) �= tr(Al
H), i.e. the total number of closed walks of length l

in G is different from the total number of closed walks of length l in H (see
Proposition 1). If k is the total number of closed walks of length l in G, then
G |= φl

k and H �|= φl
k. Since φl

k is a sentence of C3, we conclude that G �≡3
C H.

For any graph G and l ≥ 1, there exists a positive integer kl such that
tr(Al

G) = kl. Since having the traces of powers of the adjacency matrix of G
up to the number of vertices is equivalent to having the spectrum of G, we can
define a sentence

φG :=
n∧

l=1

φl
kl

of C3 such that for any graph H, we have H |= φG if, and only if, sp(G) =
sp(H).

3.2 Graphs Determined by Their Spectra

We say that a graph G is determined by its spectrum (for short, DS) when for any
graph H, if sp(G) = sp(H) then G ∼= H. In words, a graph is determined by its
spectrum when it is the only graph up to isomorphism with a certain spectrum.
In Proposition 2 we saw that C3-equivalent graphs are necessarily co-spectral.
That is, if two graphs G and H are C3-equivalent then G and H must have the

188 A. Dawar et al.

same spectrum. It thus follows that being identified by C3 is weaker than being
determined by the spectrum, so there are more graphs identified by C3 than
graphs determined by their spectra.

Observation 1. On the class of all finite graphs, C3-equivalence refines co-
spectrality.

In general, determine whether a graph has the DS property (i.e., the equiva-
lence class induced by having the same spectrum coincides with its isomorphism
class) is an open problem in spectral graph theory (see, e.g. [22]). Given a graph
G and a positive integer k, we say that the logic Ck identifies G when for all
graphs H, if G ≡k

C H then G ∼= H. Let Ck
n be the class of all n-vertex graphs

that are identified by Ck. Since C2-equivalence corresponds to indistinguishabil-
ity by the 1-dimensional Weisfeiler-Lehman algorithm [16], from a classical result
of Babai, Erdős and Selkow [3], it follows that C2

n contains almost all n-vertex
graphs. Let DSn be the class of all DS n-vertex graphs.

The 1-dimensional Weisfeiler-Lehman algorithm (see Sect. 4) does not dis-
tinguish any pair of non-isomorphic regular graphs of the same degree with the
same number of vertices. Hence, if a regular graph is not determined up to iso-
morphism by its number of vertices and its degree, then it is not in C2

n. However,
there are regular graphs that are determined by their number of vertices and
their degree. For instance, the complete graph on n vertices, which gives an
example of a graph in DSn ∩ C2

n.
Let T be a tree on n vertices. By a well-known result from Schwenk [21], with

probability one there exists another tree T ′ such that T and T ′ are co-spectral
but not isomorphic. From a result of Immerman and Lander [16] we know that
all trees are identified by C2. Hence T is an example of a graph in C2

n and not
in DS. On the other hand, the disjoint union of two complete graphs with the
same number of vertices is a graph which is determined by its spectrum. That
is, 2Km is DS (see [22, Section 6.1]). For each m > 2 it is possible to construct
a connected regular graph G2m with the same number of vertices and the same
degree as 2Km. Hence G2m and 2Km are not distinguishable in C2 and clearly
not isomorphic. This shows that co-spectrality and elementary equivalence with
respect to the two-variable counting logic is incomparable.

From a result of Babai and Kučera [4], we know that a graph randomly
selected from the uniform distribution over the class of all unlabeled n-vertex
graphs (which has size equal to 2n(n−1)/2) is not identified by C2 with probability
equal to (o(1))n. Moreover, in [18] Kučera presented an efficient algorithm for
labelling the vertices of random regular graphs from which it follows that the
fraction of regular graphs which are not identified by C3 tends to 0 as the number
of vertices tends to infinity. Therefore, almost all regular n-vertex graphs are
in C3

n. Summarising, DSn and C2
n overlap and both are contained in C3

n.

3.3 Lower Bounds

Having established that C3-equivalence is a refinement of co-spectrality, we now
look at the relationship of the latter with equivalence in finite variable logics

Descriptive Complexity of Graph Spectra 189

without counting quantifiers. First of all, we note that some co-spectral graphs
can be distinguished by a formula using just two variables and no counting
quantifiers.

Proposition 3. There exists a pair of co-spectral graphs that can be distin-
guished in first-order logic with only two variables.

Proof.
Let us consider the following two-variable first-order sentence:

ψ := ∃x∀y ¬E(x, y).

For any graph G we have that G |= ψ if, and only if, there is an isolated
vertex in G. Hence K4 ∪ K1 |= ψ and K1,4 �|= ψ. Therefore, K4 ∪ K1 �≡2 K1,4.

Next, we show that counting quantifiers are essential to the argument from
the previous section in that co-spectrality is not subsumed by equivalence in any
finite-variable fragment of first-order logic in the absence of such quantifiers. Let
Lk denote the fragment of first-order logic in which each formula has at most k
distinct variables.

For each r, s ≥ 0, the extension axiom ηr,s is the first-order sentence

∀x1 . . . ∀xr+s

((∧

i�=j

xi �= xj

)

→ ∃y

(∧

i≤r

E(xi, y) ∧
∧

i>r

¬E(xi, y) ∧ xi �= y

))

.

A graph G satisfies the k-extension property if G |= ηr,s and r + s = k.
In [17] Kolaitis and Vardi proved that if the graphs G and H both satisfy the
k-extension property, then there is no formula of Lk that can distinguish them.
If this happens, we write G ≡k H. Fagin [11] proved that for each k ≥ 0,
almost all graphs satisfy the k-extension property. Hence almost all graphs are
not distinguished by any formula of Lk.

Let q be a prime power such that q ≡ 1 (mod 4). The Paley graph of order
q is the graph P (q) with vertex set GF(q), the finite field of order q, where two
vertices i and j are adjacent if there is a positive integer x such that x2 ≡ (i− j)
(mod q). Since q ≡ 1 (mod 4) if, and only if, x2 ≡ −1 (mod q) is solvable, we
have that −1 is a square in GF(q) and so, (j−i) is a square if and only if −(i−j)
is a square. Therefore, adjacency in a Paley graph is a symmetric relation and
so, P (q) is undirected. Blass et al. [6] proved that if q is greater than k224k, then
P (q) satisfies the k-extension property.

Now, let q = pr with p an odd prime, r a positive integer, and q ≡ 1 (mod
3). The cubic Paley graph P 3(q) is the graph whose vertices are elements of the
finite field GF(q), where two vertices i, j ∈ GF(q) are adjacent if and only if
their difference is a cubic residue, i.e. i is adjacent to j if, and only if, i − j = x3

for some x ∈ GF(q). Note that −1 is a cube in GF(q) because q ≡ 1 (mod 3) is
a prime power, so i is adjacent to j if, and only if, j is adjacent to i. In [2] it has
been proved that P 3(q) has the k-extension property whenever q ≥ k224k−2.

190 A. Dawar et al.

The degree of vertex v in a graph G is the number d(v) := |{{v, u} ∈ E :
u ∈ VG}| of vertices that are adjacent to v. A graph G is regular of degree d if
every vertex is adjacent to exactly d other vertices, i.e. d(v) = d for all v ∈ VG.
So, G is regular of degree d if, and only if, each row of its adjacency matrix
adds up to d. It can been shown that the Paley graph P (q) is regular of degree
(q − 1)/2 [13]. Moreover, it has been proved that the cubic Paley graph P 3(q) is
regular of degree (q − 1)/3 [10].

Lemma 1. Let G be a regular graph of degree d. Then d ∈ sp(G) and for each
θ ∈ sp(G), we have |θ| ≤ d. Here | · | is the operation of taking the absolute value.

Proof. Let us denote by 1 the all-ones vector. Then AG1 = d1. Therefore, d ∈
sp(G). Now, let s be such that |s| > d. Then, for each row i,

|Sii| >
∑

j �=i

|Sij |

where S = sI − AG. Therefore, the matrix S is strictly diagonally dominant,
and so det(sI − AG) �= 0. Hence s is not an eigenvalue of G.

Lemma 2. Let G and H be regular graphs of distinct degrees. Then G and H
do not have the same spectrum.

Proof. Suppose that G is regular of degree s and H is regular of degree t, with
s �= t. Then AG1 = s1 and AH1 = t1, where 1 is the all-ones vector. Therefore,
s is the greatest eigenvalue in the spectrum of G and t is the greatest eigenvalue
in the spectrum of H. Hence sp(G) �= sp(H).

Proposition 4. For each k ≥ 1, there exists a pair Gk,Hk of graphs which are
not co-spectral, such that Gk and Hk are not distinguished by any formula of Lk.

Proof. For any positive integer r we have that 13r ≡ 1 (mod 3) and 13r ≡ 1
(mod 4). For each k ≥ 1, let rk be the smallest integer greater than 2(k log(4) +
log(k))/ log(13), and let qk = 13rk . Hence qk > k224k. Now, let Gk = P (qk)
and Hk = P 3(qk). Then Gk and Hk both satisfy the k-extension property, and
so Gk ≡k Hk. Since the degree of Gk is (13rk − 1)/2 and the degree of Hk is
(13rk − 1)/3, by Lemma 1 we conclude that sp(Gk) �= sp(Hk).

So having the same spectrum is a property of graphs that does not follows
from any finite collection of extension axioms, or equivalently, from any first-
order sentence with asymptotic probability 1.

4 Isomorphism Approximations

4.1 WL Equivalence

The automorphism group Aut(G) of G acts naturally on the set V k
G of all k-tuples

of vertices of G, and the set of orbits of k-tuples under the action of Aut(G) form

Descriptive Complexity of Graph Spectra 191

a corresponding partition of V k
G . The k-dimensional Weisfeiler-Leman algorithm

is a combinatorial method that tries to approximate the partition induced by
the orbits of Aut(G) by labelling the k-tuples of vertices of G. For the sake of
completeness, here we give a brief overview of the algorithm.

The 1-dimensional Weisfeiler-Leman algorithm has the following steps: first,
label each vertex v ∈ VG by its degree d(v). The set N(v) := {u : {v, u} ∈ EG}
is called the neighborhood of v ∈ VG and so, the degree of v is just the number
of neighbours it has, i.e. d(v) = |N(v)|. In this way we have defined a partition
P0(G) of VG. The number of labels is equal to the number of different degrees.
Hence P0(G) is the degree sequence of G. Then, relabel each vertex v with
the multi-set of labels of its neighbours, so each label d(v) is substituted for
{d(v), {d(u) : u ∈ N(v)}}. Since these are multi-sets they might contain repeated
elements. We get then a partition P1(G) of VG which is either a refinement of
P0(G) or identical to P0(G). Inductively, the partition Pt(G) is obtained from
the partition Pt−1(G), by constructing for each vertex v a new multi-set that
includes the labels of its neighbours, as it is done in the previous step. The
algorithm halts as soon as the number of labels does not increase anymore. We
denote the resulting partition of VG by P 1

G.
Now we describe the algorithm for higher dimensions. Recall that we are

working in the first-order language of graphs L = {E}. Now, for each graph G
and each k-tuple v of vertices of G we define the (atomic) type of v in G as the
set tpk

G(v) of all atomic L-formulas φ(x) that are true in G when the variables
of x are substituted for vertices of v. More formally, for k > 1 we let

tpk
G(v) := {φ(x) : |x| ≤ k,G |= φ(v)}

where, |x| denotes the number of entries the tuple x have, and each φ(x) is either
xi = xj or E(xi, xj) for 1 ≤ i, j ≤ k. Essentially, the formulas of tpk

G(v) give us
the complete information about the structural relations that hold between the
vertices of v. If u ∈ VG and 1 ≤ i ≤ k, let vu

i denote the result of substituting u
in the i-th entry of v.

For each k > 1 the k-dimensional Weisfeiler-Leman algorithm proceeds as
follows: first, label the k-tuples of vertices with their types in G, so each k-
tuple v is labeled with �0(v) := tpk

G(v); this induces a partition P k
0 (G) of

the k-tuples of vertices of G. Inductively, refine the partition P k
i (G) of V k

G by
relabelling the k-tuples so that each label �i(v) is substituted for �i+1(v) :=
{�i(v), {�i(vu

1), . . . , �i(vu
k) : u ∈ VG}}. The algorithm continues refining the par-

tition of V k
G until it gets to a step t ≥ 1, where P k

t (G) = P k
t−1(G); then it halts.

We denote the resulting partition of V k
G by P k

G.
Notice that for any fixed k ≥ 1, the partition P k

G of k-subsets is obtained after
at most |VG|k steps. If the partitions P k

G and P k
H of graphs G and H are the same

multi-set of labels obtained by the k-dimensional Weisfeiler-Leman algorithm,
we say that G and H are k-WL equivalent. In [8], Cai, Fürer and Immerman
proved that two graphs G and H are Ck+1-equivalent if, and only if, G and H
are k-WL equivalent.

192 A. Dawar et al.

4.2 Symmetric Powers

The k-th symmetric power G{k} of a graph G is a graph where each vertex
represents a k-subset of vertices of G, and two k-subsets are adjacent if their
symmetric difference is an edge of G. Formally, the vertex set VG{k} of G{k} is
defined to be the set of all subsets of VG with exactly k elements, and for every
pair of k-subsets of vertices V = {v1, . . . , vk} and U = {u1, . . . , uk}, we have
{V,U} ∈ EG{k} if, and only if, (V � U) ∪ (U � V) ∈ EG. The symmetric powers
are related to a natural generalisation of the concept of a walk in a graph. A
k-walk of length l in G is a sequence (V0, V1, . . . , Vl) of k-subsets of vertices, such
that the symmetric difference of Vi−1 and Vi is an edge of G for 1 ≤ i ≤ l. A
k-walk is said to be closed if V0 = Vl. The connection with the symmetric powers
is that a k-walk in G corresponds to an ordinary walk in G{k}. Therefore, two
graphs have the same total number of closed k-walks of every length if, and
only if, their k-th symmetric powers are co-spectral. For each k ≥ 1, there exist
infinitely many pairs of non-isomorphic graphs G and H such that the k-th
symmetric powers G{k} and H{k} are co-spectral [5].

Alzaga et al. [1] have shown that given two graphs G and H, if G and H
are 2k-WL equivalent, then their k-th symmetric powers G{k} and H{k} are co-
spectral. This two facts combined allow us to deduce the following generalisation
of Proposition 2.

Proposition 5. Given graphs G and H and a positive integer k, if G ≡2k+1
C H

then G{k} and H{k} are co-spectral.

4.3 Cellular Algebras

Originally, Weisfeiler and Leman [19] presented their algorithm in terms of alge-
bras of complex matrices.Given two matrices A and B of the same order, their
Schur product A ◦ B is defined by (A ◦ B)ij := AijBij . For a complex matrix A,
let A∗ denote the adjoint (or conjugate-transpose) of A. A cellular algebra W is
an algebra of square complex matrices that contains the identity matrix I, the
all-ones matrix J , and is closed under adjoints and Schur multiplication. Thus,
every cellular algebra has a unique basis {A1, . . . , Am} of binary matrices which
is closed under adjoints and such that

∑
i Ai = J .

The smallest cellular algebra is the one generated by the span of I and J .
The cellular algebra of an n-vertex graph G is the smallest cellular algebra WG

that contains AG. Two cellular algebras W and W ′ are isomorphic if there is an
algebra isomorphism h : W → W ′, such that h(A ◦ B) = h(A) ◦ h(B), h(A)∗ =
h(A∗) and h(J) = J . It is interesting that given an isomorphism h : W → W ′

of cellular algebras, for all A ∈ W we have that A and h(A) are co-spectral (see
Lemma 3.4 in [12]). So the next result is immediate.

Proposition 6. Two graphs G and H are co-spectral if their corresponding cel-
lular algebras there exists an isomorphism of WG and WH that maps AG to
AH .

Descriptive Complexity of Graph Spectra 193

In general, the converse of Proposition 6 is not true. That is, there are
known pairs of co-spectral graphs whose corresponding cellular algebras are non-
isomorphic (see, e.g. [5]).

The elements of the standard basis of a cellular algebra correspond to the
“adjacency matrices” of a corresponding coherent configuration. Coherent config-
urations where introduced by Higman in [15] to study finite permutation groups.
Coherent configurations are stable under the 2-dimensional Weisfeiler-Leman
algorithm. Hence two graphs G and H are 2-WL equivalent if, and only if, their
corresponding cellular algebras there exists an isomorphism of WG and WH that
maps AG to AH .

Proposition 7. Given graphs G and H with cellular algebras WG and WH ,
G ≡3

C H if, and only if, there exists an isomorphism of WG and WH that maps
AG to AH .

4.4 Strongly Regular Graphs

A strongly regular graph srg(n, r, λ, μ) is a regular n-vertex graph of degree r such
that each pair of adjacent vertices has λ common neighbours, and each pair of
nonadjacent vertices has μ common neighbours. The numbers n, r, λ, μ are called
the parameters of srg(n, r, λ, μ). It can be shown that the spectrum of a strongly
regular graph is determined by its parameters [13]. The complement of a strongly
regular graph is strongly regular. Moreover, co-spectral strongly regular graphs
have co-spectral complements. That is, two strongly regular graphs having the
same parameters are co-spectral. Recall that J is the all-one matrix.

Lemma 3. If G is a strongly regular graph then {I,AG, (J − I −AG)} form the
basis for its corresponding cellular algebra WG.

Proof. By definition, WG has a unique basis A of binary matrices closed under
adjoints and so that ∑

A∈A
A = J.

Notice that I,AG and J−I−AG are binary matrices such that I∗ = I, A∗
G = AG

and (J − I − AG)∗ = J − I − AG. Furthermore,

I + AG + (J − I − AG) = J.

There are known pairs of non-isomorphic strongly regular graphs with
the same parameters (see, e.g. [7]). These graphs are not distinguished by
the 2-dimensional Weisfeiler-Leman algorithm since their corresponding cellu-
lar algebras are isomorphic. Thus, for strongly regular graphs the converse of
Proposition 6 holds.

Lemma 4. If G and H are two co-spectral strongly regular graphs, then their
corresponding cellular algebras are isomorphic.

194 A. Dawar et al.

Proof. In [12], Friedland has shown that two cellular algebras with standard
bases {A1, . . . , Am} and {B1, . . . , Bm} are isomorphic if, and only if, there is an
invertible matrix M such that MAiM

−1 = Bi for 1 ≤ i ≤ m.
The cellular algebras WG and WH of G and H have standard basis

{I,AG, (J − I − AG)} and {I,AH , (J − I − AH)}, respectively. Since G and
H are co-spectral, there exist an orthogonal matrix Q such that QAGQT = AH

and Q(J − I −AG)QT = (J − I −AH). As every orthogonal matrix is invertible,
we can conclude that there exists an isomorphism of WG and WH that maps AG

to AH .

Proposition 8. Given two strongly regular graphs G and H, the following state-
ments are equivalent:

1. G ≡3
C H;

2. G and H are co-spectral;
3. there exists an isomorphism of WG and WH that maps AG to AH .

Proof. Proposition 2 says that for all graphs (1) implies (2). From Proposition 7,
we have (1) if, and only if, (3). By Lemma 4, if (2) then (3).

5 Definability in Fixed Point Logic with Counting

In this section, we consider the definability of co-spectrality and the property DS
in fixed-point logics with counting. To be precise, we show that co-spectrality
is definable in inflationary fixed-point logic with counting (fpc) and the class of
graphs that are DS is definable in partial fixed-point logic with counting (pfpc). It
follows that both of these are also definable in the infinitary logic with counting,
with a bounded number of variables (see [9, Proposition 8.4.18]). Note that
it is known that fpc can express any polynomial-time decidable property of
ordered structures and similarly pfpc can express all polynomial-space decidable
properties of ordered structures. It is easy to show that co-spectrality is decidable
in polynomial time and DS is in PSpace. For the latter, note that DS can easily
be expressed by a Π2 formula of second-order logic and therefore the problem
is in the second-level of the polynomial hierarchy. However, in the absence of
a linear order fpc and pfpc are strictly weaker than the complexity classes P
and PSpace respectively. Indeed, there are problems in P that are not even
expressible in the infinitary logic with counting. Nonetheless, it is in this context
without order that we establish the definability results below.

We begin with a brief definition of the logics in question, to fix the notation
we use. For a more detailed definition, we refer the reader to [9,20].

fpc is an extension of inflationary fixed-point logic with the ability to express
the cardinality of definable sets. The logic has two sorts of first-order variables:
element variables, which range over elements of the structure on which a formula
is interpreted in the usual way, and number variables, which range over some
initial segment of the natural numbers. We usually write element variables with
lower-case Latin letters x, y, . . . and use lower-case Greek letters μ, η, . . . to

Descriptive Complexity of Graph Spectra 195

denote number variables. In addition, we have relational variables, each of which
has an arity m and an associated type from {elem,num}m. pfpc is similarly
obtained by allowing the partial fixed point operator in place of the inflationary
fixed-point operator.

For a fixed signature τ , the atomic formulas of fpc[τ] of pfpc[τ] are all
formulas of the form μ = η or μ ≤ η, where μ, η are number variables; s = t where
s, t are element variables or constant symbols from τ ; and R(t1, . . . , tm), where R
is a relation symbol (i.e. either a symbol from τ or a relational variable) of arity m
and each ti is a term of the appropriate type (either elem or num, as determined
by the type of R). The set fpc[τ] of fpc formulas over τ is built up from the
atomic formulas by applying an inflationary fixed-point operator [ifpR,xφ](t);
forming counting terms #xφ, where φ is a formula and x an element variable;
forming formulas of the kind s = t and s ≤ t where s, t are number variables
or counting terms; as well as the standard first-order operations of negation,
conjunction, disjunction, universal and existential quantification. Collectively,
we refer to element variables and constant symbols as element terms, and to
number variables and counting terms as number terms. The formulas of pfpc[τ]
are defined analogously, but we replace the fixed-point operator rule by the
partial fixed-point: [pfpR,xφ](t).

For the semantics, number terms take values in {0, . . . , n}, where n is the
size of the structure in which they are interpreted. The semantics of atomic
formulas, fixed-points and first-order operations are defined as usual (c.f., e.g.,
[9] for details), with comparison of number terms μ ≤ η interpreted by comparing
the corresponding integers in {0, . . . , n}. Finally, consider a counting term of the
form #xφ, where φ is a formula and x an element variable. Here the intended
semantics is that #xφ denotes the number (i.e. the element of {0, . . . , n}) of
elements that satisfy the formula φ.

Note that, since an inflationary fixed-point is easily expressed as a partial
fixed-point, every formula of fpc can also be expressed as a formula of pfpc.
In the construction of formulas of these logics below, we freely use arithmetic
expressions on number variables as the relations defined by such expressions can
easily be defined by formulas of fpc.

In Sect. 3 we constructed sentences φl
k of C3 which are satisfied in a graph G

if, and only if, the number of closed walks in G of length l is exactly k. Our first
aim is to construct a single formula of fpc that expresses this for all l and k.
Ideally, we would have the numbers as parameters to the formula but it should
be noted that, while the length l of walks we consider is bounded by the number
n of vertices of G, the number of closed walks of length l is not bounded by any
polynomial in n. Indeed, it can be as large as nn. Thus, we cannot represent the
value of k by a single number variable, or even a fixed-length tuple of number
variables. Instead, we represent k as a binary relation K on the number domain.
The order on the number domain induces a lexicographical order on pairs of
numbers, which is a way of encoding numbers in the range 0, . . . , n2. Let us
write [i, j] to denote the number coded by the pair (i, j). Then, a binary relation
K can be used to represent a number k up to 2n2

by its binary encoding. To

196 A. Dawar et al.

be precise, K contains all pairs (i, j) such that bit position [i, j] in the binary
encoding of k is 1. It is easy to define formulas of fpc to express arithmetic
operations on numbers represented in this way.

Thus, we aim to construct a single formula φ(λ, κ1, κ2) of fpc, with three
free number variables such that G |= φ[l, i, j] if, and only if, the number of
closed walks in G of length l is k and position [i, j] in the binary expansion of
k is 1. To do this, we first define a formula ψ(λ, κ1, κ2, x, y) with free number
variables λ, κ1 and κ2 and free element variables x and y that, when interpreted
in G defines the set of tuples (l, i, j, v, u) such that if there are exactly k walks of
length l starting at v and ending at u, then position [i, j] in the binary expansion
of k is 1. This can be defined by taking the inductive definition of ψl

k we gave in
Sect. 3 and making the induction part of the formula.

We set out the definition below.

ψ(λ, κ1, κ2, x, y) := ifpW,λ,κ1,κ2,x,y[λ = 1 ∧ κ1 = 0 ∧ κ2 = 1 ∧ E(x, y)∨
λ = λ′ + 1 ∧ sum(λ′, κ1, κ2, x, y)]

where W is a relation variable of type (num,num,num, elem, elem) and the for-
mula sum expresses that there is a 1 in the bit position encoded by (κ1, κ2) in
the binary expansion of k =

∑
z:E(x,z) kλ′,z,y, where kλ′,z,y denotes the number

coded by the binary relation {(i, j) : W (λ′, i, j, z, y)}. We will not write out the
formula sum in full. Rather we note that it is easy to define inductively the sum of
a set of numbers given in binary notation, by defining a sum and carry bit. In our
case, the set of numbers is given by a ternary relation of type (elem,num,num)
where fixing the first component to a particular value z yields a binary relation
coding a number. A similar application of induction to sum a set of numbers
then allows us to define the formula φ(λ, κ1, κ2) which expresses that the bit
position indexed by (κ1, κ2) is 1 in the binary expansion of k =

∑
x∈V kx where

kx denotes the number coded by {(i, j) : ψ[λ, i, j, x, x]}.
To define co-spectrality in fpc means that we can write a formula cospec in

a vocabulary with two binary relations E and E′ such that a structure (V,E,E′)
satisfies this formula if, and only if, the graphs (V,E) and (V,E′) are co-spectral.
Such a formula is now easily derived from φ. Let φ′ be the formula obtained from
φ by replacing all occurrences of E by E′, then we can define:

cospec := ∀λ, κ1, κ2 φ ⇔ φ′.

Now, in order to give a definition in pfpc of the class of graphs that are
DS, we need two variations of the formula cospec. First, let R be a relation
symbol of type (num,num). We write φ(R) for the formula obtained from φ
by replacing the symbol E with the relation variable R, and suitably replacing
number variables with element variables. So, φ(R, λ, κ1, κ2) defines, in the graph
defined by the relation R on the number domain, the number of closed walks of
length λ. We write cospecR for the formula

∀λ, κ1, κ2 φ(R) ⇔ φ,

Descriptive Complexity of Graph Spectra 197

which is a formula with a free relational variable R which, when interpreted in
a graph G asserts that the graph defined by R is co-spectral with G. Similarly,
we define the formula with two free second-order variables R and R′

cospecR,R′ := ∀λ, κ1, κ2 φ(R) ⇔ φ(R′).

Clearly, this is true of a pair of relations iff the graphs they define are co-spectral.
Furthermore, it is not difficult to define a formula isom(R,R′) of pfpc with

two free relation symbols of type (num,num) that asserts that the two graphs
defined by R and R′ are isomorphic. Indeed, the number domain is ordered and
any property in PSpace over an ordered domain is definable in pfpc, so such a
formula must exist. Given these, the property of a graph being DS is given by
the following formula with second-order quantifiers:

∀R(cospecR ⇒ ∀R′(cospecR,R′ ⇒ isom(R,R′))).

To convert this into a formula of pfpc, we note that second-order quantification
over the number domain can be expressed in pfpc. That is, if we have a formula
θ(R) of pfpc in which R is a free second-order variable of type (num,num), then
we can define a pfpc formula that is equivalent to ∀R θ. We do this by means
of an induction that loops through all binary relations on the number domain
in lexicographical order and stops if for one of them θ does not hold.

First, define the formula lex(μ, ν, μ′, ν′) to be the following formula which
defines the lexicographical ordering of pairs of numbers:

lex(μ, ν, μ′, ν′) := (μ < μ′) ∨ (μ = μ′ ∧ ν < ν′).

We use this to define a formula next(R,μ, ν) which, given a binary relation
R of type (num,num), defines the set of pairs (μ, ν) occurring in the relation
that is lexicographically immediately after R.

next(R,μ, ν) := R(μ, ν) ∧ ∃μ′ν′(lex(μ′, ν′, μ, ν) ∧ ¬R(μ′, ν′))∨
∨¬R(μ, ν) ∧ ∀μ′ν′(lex(μ′, ν′, μ, ν) ⇒ R(μ′, ν′)).

We now use this to simulate, in pfpc, second-order quantification over the
number domain. Let R̄ be a new relation variable of type (num,num,num) and
we define the following formula

∀α∀βpfpR̄,μ,ν,κ[(∀μνR̄(μ, ν, 0)) ∧ θ(R̄) ∧ κ = 0∨
∨¬θ(R̄) ∧ κ �= 0∨
∨θ(R̄) ∧ next(R̄, μ, ν) ∧ κ = 0](α, β, 0).

It can be checked that this formula is equivalent to ∀R θ.

6 Conclusion

Co-spectrality is an equivalence relation on graphs with many interesting facets.
While not every graph is determined upto isomorphism by its spectrum, it is

198 A. Dawar et al.

a long-standing conjecture (see [22]), still open, that almost all graphs are DS.
That is to say that the proportion of n-vertex graphs that are DS tends to 1
as n grows. We have established a number of results relating graph spectra to
definability in logic and it is instructive to put them in the perspective of this
open question. It is an easy consequence of the results in [17] that the proportion
of graphs that are determined up to isomorphism by their Lk theory tends to 0.
On the other hand, it is known that almost all graphs are determined by their
C2 theory (see [14]) and a fortiori by their C3 theory. We have established that
co-spectrality is incomparable with Lk-equivalence for any k; is incomparable
with C2 equivalence; and is subsumed by C3 equivalence. Thus, our results are
compatible with either answer to the open question of whether almost all graphs
are DS. It would be interesting to explore further whether logical definability
can cast light on this question.

References

1. Alzaga, A., Iglesias, R., Pignol, R.: Spectra of symmetric powers of graphs and the
Weisfeiler-Lehman refinements. J. Comb. Theory Ser. B 100(6), 671–682 (2010)

2. Ananchuen, W., Caccetta, L.: Cubic and quadruple paley graphs with the n-e. c.
property. Discrete Math. 306(22), 2954–2961 (2006)

3. Babai, L., Erdős, P., Selkow, S.M.: Random graph isomorphism. SIAM J. Comput.
9(3), 628–635 (1980)

4. Babai, L., Kučera, L.: Canonical labelling of graphs in linear average time. In: 20th
Annual Symposium on Foundations of Computer Science, 1979, pp. 39–46. IEEE
(1979)

5. Barghi, A.R., Ponomarenko, I.: Non-isomorphic graphs with cospectral symmetric
powers. Electron. J. Comb. 16(1), R120 (2009)

6. Blass, A., Exoo, G., Harary, F.: Paley graphs satisfy all first-order adjacency
axioms. J. Graph Theory 5(4), 435–439 (1981)

7. Brouwer, A.E., Van Lint, J.H.: Strongly regular graphs and partial geometries. In:
Enumeration and Design (Waterloo, Ont., 1982), pp. 85–122 (1984)

8. Cai, J., Fürer, M., Immerman, N.: An optimal lower bound on the number of
variables for graph identification. Combinatorica 12(4), 389–410 (1992)

9. Ebbinghaus, H.B., Flum, J.: Finite Model Theory, 2nd edn. Springer, Heidelberg
(1999)

10. Elsawy, A.N.: Paley graphs and their generalizations (2012). arXiv preprint.
arXiv:1203.1818

11. Fagin, R.: Probabilities on finite models. J. Symbolic Logic 41(01), 50–58 (1976)
12. Friedland, S.: Coherent algebras and the graph isomorphism problem. Discrete

Appl. Math. 25(1), 73–98 (1989)
13. Godsil, C., Royle, G.F.: Algebraic Graph Theory, vol. 207. Springer, New York

(2013)
14. Hella, L., Kolaitis, P.G., Luosto, K.: How to define a linear order on finite models.

Ann. Pure Appl. Logic 87(3), 241–267 (1997)
15. Higman, D.G.: Coherent configurations. Geom. Dedicata 4(1), 1–32 (1975)
16. Immerman, N., Lander, E.: Describing graphs: a first-order approach to graph

canonization. In: Selman, A.L. (ed.) Complexity Theory Retrospective, pp. 59–81.
Springer, New York (1990)

http://arxiv.org/abs/1203.1818

Descriptive Complexity of Graph Spectra 199

17. Kolaitis, P.G., Vardi, M.Y.: Infinitary logics and 0–1 laws. Inf. Comput. 98(2),
258–294 (1992)

18. Kučera, L.: Canonical labeling of regular graphs in linear average time. In: 28th
Annual Symposium on Foundations of Computer Science, pp. 271–279. IEEE
(1987)

19. Leman, A.A., Weisfeiler, B.: A reduction of a graph to a canonical form and an
algebra arising during this reduction. Nauchno-Technicheskaya Informatsiya 2(9),
12–16 (1968)

20. Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2004)
21. Schwenk, A.J.: Almost all trees are cospectral. In: New Directions in the Theory

of Graphs, pp. 275–307 (1973)
22. Van Dam, E.R., Haemers, W.H.: Which graphs are determined by their spectrum?

Linear Algebra Appl. 373, 241–272 (2003)

Causality in Bounded Petri Nets
is MSO Definable

Mateus de Oliveira Oliveira(B)

Institute of Mathematics, Czech Academy of Sciences,
Zitná 25, 115 67 Praha 1, Czech Republic

mateus.oliveira@math.cas.cz

Abstract. In this work we show that the causal behaviour of any
bounded Petri net is definable in monadic second order (MSO) logic.
Our proof relies in a definability vs recognizability result for DAGs whose
edges and vertices can be covered by a constant number of paths. Our
notion of recognizability is defined in terms of saturated slice automata,
a formalism for the specification of infinite families of graphs. We show
that a family G of k-coverable DAGs is recognizable by a saturated slice
automaton if and only if G is definable in monadic second order logic.
This result generalizes Büchi’s theorem from the context of strings, to
the context of k-coverable DAGs.

Keywords: Partial order behaviour of Petri nets · Monadic second
order logic · Recognizability · Definability

1 Introduction

Partial orders are a suitable formalism for the representation of causality on runs
of concurrent systems [14,15,19,22,26]. In the realm of Petri nets [24] partial
orders may be extracted from objects called Petri net processes [16]. Intuitively,
a Petri net process is a directed acyclic graph (DAG) whose vertex set is par-
titioned into conditions and events. While condition vertices are used to keep
track of each token ever created or consumed during a concurrent run, the event
vertices are used to keep track of which transitions created or consumed each
such token. In such a process π, an event v causally depends on the occurrence
of an event v′ if there is a path from v′ to v in π. The partial order induced on
the events of a process is called a causal order. The causal behavior of a Petri
net N is the set P(N) of all causal orders derived from processes of N .

The monadic second order logic of partial orders extends first-order logic by
allowing quantifications over sets of vertices and sets of edges. In a previous work,
we have shown that for any monadic second order sentence ϕ in the vocabulary
of partial orders, and for any bounded Petri net N , one can decide whether all
causal orders of N satisfy ϕ [12]. In this work, we show that MSO logic is indeed
powerful enough to represent the causal behaviour of any given bounded Petri
net (Theorem 4.1).
c© Springer-Verlag Berlin Heidelberg 2016
J. Väänänen et al. (Eds.): WoLLIC 2016, LNCS 9803, pp. 200–214, 2016.
DOI: 10.1007/978-3-662-52921-8 13

Causality in Bounded Petri Nets is MSO Definable 201

Recall that Büchi’s theorem states that a set L of finite strings is recognizable
by a finite automaton if and only if L is definable in monadic second order
logic [5]. Motivated by a conjecture of Courcelle [6], there has been a great
amount of interest in generalizing Büchi’s theorem to more general algebraic
structures1 [2,6,7,17,18,21]. Towards proving our main theorem, we will prove
a definability vs recognizability result for DAGs whose edges and vertices can
be covered by a constant number k of paths. We say that these DAGs are k-
coverable. Our notion of recognizability is defined in terms of saturated slice
automata, a formalism for the specification of infinite families of graphs. More
precisely, we show that a family G of k-coverable DAGs is recognizable by a
saturated slice automaton if and only if G is definable in monadic second order
logic (Theorem 4.5, Corollary 5.1). This result, which is of independent interest
from the partial order theory of Petri nets, may be regarded as a generalization
of Büchi’s theorem from the context of strings to the context of k-coverable
DAGs (note that a string can be naturally regarded as a 1-coverable DAG).

1.1 Petri Nets

A Petri net is a tuple N = (P, T,W,m0) where P is a set of places, T is a set of
transitions such that P ∩ T = ∅, W : (P × T) ∪ (T × P) → N is a function that
associates with each element (x, y) ∈ (P × T) ∪ (T × P) a weight W (x, y), and
m0 : P → N is a function that associates with each place p ∈ P a non-negative
integer m0(p).

A marking for N is any function of the form m : P → N. Intuitively, a
marking m assigns a number of tokens to each place of N . The marking m0 is
called the initial marking of N . If m is a marking and t is a transition in T , then
we say that t is enabled at m if m(p)−W (p, t) ≥ 0 for every place p ∈ P . If this
is the case, the firing of t yields the marking m′ which is obtained from m by
setting m′(p) = m(p)−W (p, t)+W (t, p) for each place p ∈ P . A firing sequence
for N is a mixed sequence of markings and transitions m0

t1−→ m1
t2−→ ...

tn−→ mn

such that for each i ∈ {1, ..., n}, ti is enabled at mi−1, and mi is obtained from
mi−1 by the firing of ti. We say that such a firing sequence is b-bounded if for
each i ∈ {0, ..., n} and each p ∈ P , mi(p) ≤ b. We say that N is b-bounded if
each of its firing sequences is b-bounded.

1.2 The Causal Semantics of Petri Nets

In this subsection we introduce the Goltz-Reisig partial order semantics for Petri
nets [16]. Within this semantics, partial orders are used to represent the causality
between events in concurrent runs of a Petri net. The information about the
causality between events is extracted from objects called Petri net processes,

1 Proposals of proofs of Courcelle’s conjecture for graphs of constant pathwidth and
constant treewidth have been provided in [20] and [23] respectively. Neverthe-
less, both proposed proofs contained substantial gaps, and Courcelle’s conjecture
is regarded to be open in both cases [8].

202 M. de Oliveira Oliveira

which encode the production and consumption of tokens along a concurrent run
of the Petri net in question. The definition of processes, in turn, is based on the
notion of occurrence net.

An occurrence net is a DAG O = (B ∪̇ V, F) where the vertex set B ∪̇ V
is partitioned into a set B, whose elements are called conditions, and a set V ,
whose elements are called events. The edge set F ⊆ (B×V)∪(V ×B) is restricted
in such a way that for every condition b ∈ B,

|{(b, v) | v ∈ V }| ≤ 1 and |{(v, b) | v ∈ V }| ≤ 1.

In other words, conditions in an occurrence net are unbranched. For each condi-
tion b ∈ B, we let InDegree(b) denote the number of edges having b as target. A
process of a Petri net N is an occurrence net whose conditions are labeled with
places of N , and events are labeled with transitions of N . Processes are intu-
itively used to describe the token game in a concurrent execution of the net. We
say that a vertex of a DAG is minimal if it has no in-neighbours, and maximal
if it has no out-neighbours.

Definition 1.1 (Process [16]). A process of a Petri net N = (P, T,W,m0)
is a labeled DAG π = (B∪̇V, F, ρ) where (B∪̇V, F) is an occurrence net and
ρ : (B ∪ V) → (P ∪ T) is a labeling function satisfying the following properties.

1. Places label conditions and transitions label events.

ρ(B) ⊆ P ρ(V) ⊆ T

2. All minimal and maximal vertices of π are conditions. Additionally, for every
p ∈ P ,

|{b : InDegree(b) = 0, ρ(b) = p}| = m0(p).

3. For every v ∈ V , and every p ∈ P ,

|{(b, v) ∈ F : ρ(b)=p}| = W (p, ρ(v)) and

|{(v, b) ∈ F : ρ(b)=p}| = W (ρ(v), p)

Item 1 says that the conditions of a process are labeled with places, while
the events are labeled with transitions. Item 2 expresses the intuition that each
minimal condition of π corresponds to a token in the initial marking of N . Thus
for each place p of N the process has m0(p) minimal conditions labeled with
the place p. Item 3, determines that the token game of a process corresponds to
the token game defined by the firing of transitions in the Petri net N . Thus if a
transition t consumes W (p, t) tokens from place p and produces W (t, p) tokens
at place p, then each event labeled with t must have W (p, t) in-neighbours that
are conditions labeled with p, and W (t, p) out-neighbours that are conditions
labeled with p (Fig. 1).

Let R ⊆ X × X be a binary relation over a set X. We denote by tc(R) the
transitive closure of R. If π = (B ∪ V, F, ρ) is a process then the causal order of

Causality in Bounded Petri Nets is MSO Definable 203

Fig. 1. A 4-bounded Petri net N . Places are denoted by circles, and transitions by
rectangles. Tokens are denoted by black dots. A process π of N . The Hasse diagram of
the partial order �π derived from π. The Hasse diagram of the extension �∗

π of �π.

π is the partial order �π = (V, tc(F)|V ×V , ρ|V) which is obtained by taking the
transitive closure of F and subsequently by restricting tc(F) to pairs of events
of V . In other words the causal order of a process π is the partial order induced
by π on its events.

If � = (V,<, l) is a partial order, then we let �∗ = (V ′, <′, l′) be the extension
of �, where V ′ = V ∪{vι, vε}, <′=< ∪({vι}×V)∪(V ×{vε})∪{(vι, vε)}, l′|V = l,
l′(vι) = ι and l′(vε) = ε. In other words, �′ is obtained from � by the addition
of an element vι that is smaller than all elements of �, and an element vε that
is greater than all elements of �. We denote by Pcau(N) the set of all extensions
of partial orders derived from processes of N .

Pcau(N) = {�∗
π|π is a process of N}

We say that Pcau(N) is the causal language of N . We observe that several
processes of N may correspond to the same partial order in Pcau(N).

2 Monadic Second Order Logic

In this section we will define two well known variants of monadic second order
logic (see for instance [8]). The first, MSOpo

1 will be used to reason about prop-
erties of partial orders. This logic extends first-order logic by allowing quantifi-
cations over sets of vertices. The second, MSOgr

2 will be used to reason about
properties of directed acyclic graphs. This logic extends first-order logic by allow-
ing quantifications over sets of vertices, and sets of edges.

We view a partial order � as a relational structure � = (V,<, l) where V
is a set of vertices, <⊂ V × V is an ordering relation, and l ⊆ V × T is a
vertex labeling relation where T is a finite set of symbols (which should be
regarded as the actions labeling transitions in a concurrent system). First-order
variables representing individual vertices will be taken from the set {x1, x2, ...}
while second order variables representing sets of vertices will be taken from
the set {X1,X2, ...}. The set of MSOpo

1 formulas is the smallest set of formulas
containing:

204 M. de Oliveira Oliveira

– the atomic formulas xi ∈ Xj , xi < xj , xi = xj , l(xi, a) for each i, j ∈ N with
i �= j and each a ∈ T ,

– the formulas ϕ ∧ ψ, ϕ ∨ ψ, ¬ϕ, ∃xi.ϕ(xi) and ∃Xi.ϕ(Xi), where ϕ and ψ are
MSOpo

1 formulas.

An MSOpo
1 sentence is an MSOpo

1 formula ϕ without free variables. If ϕ is
a sentence, and � = (V,<, l) a partial order, then we denote by � |= ϕ the fact
that � satisfies ϕ. We let P(ϕ) denote the set of all partial orders satisfying ϕ.

We will represent a general DAG G by a relational structure G = (V,E, s, t, l)
where V is a set of vertices, E a set of edges, s, t ⊆ E × V are respectively the
source and target relations, l ⊆ V × T is a vertex labeling relation, where T is
a finite set of symbols. If e is an edge in E and v is a vertex in V then s(e, v) is
true if v is the source of e and t(e, v) is true if v is the target of e. If v ∈ V and
a ∈ T then l(v, a) is true if v is labeled with a. First-order variables representing
individual vertices will be taken from the set {x1, x2, ...} and first-order variables
representing edges, from the set {y1, y2, ...}. Second order variables representing
sets of vertices will be taken from the set {X1,X2, ...} and second order variables
representing sets of edges, from the set {Y1, Y2, ...}. The set of MSOgr

2 formulas
is the smallest set of formulas containing:

– the atomic formulas xi ∈ Xj , yi ∈ Yj , s(yi, xj), t(yi, xj), l(xi, a) for each
i, j ∈ N and a ∈ T ,

– the formulas ϕ ∧ ψ, ϕ ∨ ψ, ¬ϕ, ∃xi.ϕ(xi) and ∃Xi.ϕ(Xi), ∃yi.ϕ(yi) and
∃Yi.ϕ(Yi), where ϕ and ψ are MSOgr

2 formulas.

An MSOgr
2 sentence is a formula ϕ without free variables. If ϕ is a sentence,

then we denote by G |= ϕ the fact that G satisfies ϕ.

3 Slice Automata

In this section we define slices and slice automata. Slice automata will be used to
provide a static representation of infinite families of DAGs and infinite families
of partial orders. We note that slices can be related to several formalisms such as,
multi-pointed graphs [13], co-span decompositions [4] and graph transformations
[1,3,13,25].

A slice S = (V,E, l, s, t, [I, C,O]) is a DAG where V = I ∪̇ C ∪̇ O is a set
of vertices partitioned into an in-frontier I, a center C and an out-frontier O; E
is a set of edges, s, t : E → V are functions that associate with each edge e ∈ E
a source vertex es and a target vertex et, and l : V → T ∪ N is a function that
labels the center vertices in C with elements of a finite set T , and the in- and
out-frontier vertices with positive integers in such a way that l(I) = {1, ..., |I|}
and l(O) = {1, ..., |O|}. We require that each frontier-vertex v in I ∪ O is the
endpoint of exactly one edge e ∈ E and that the edges are directed from the in-
frontier to the out frontier. More precisely, for each edge e ∈ E, we assume that
es ∈ I∪C and that et ∈ C∪O. For simplicity, we may omit the source and target
functions s and t when specifying a slice and write simply S = (V,E, l). We may

Causality in Bounded Petri Nets is MSO Definable 205

also speak of a slice S with frontiers (I,O) to indicate that the in-frontier of S
is I and that the out-frontier of S is O.

A slice S1 = (V1, E1, l1) with frontiers (I1, O1) can be glued to a slice S2 =
(V2, E2, l2) with frontiers (I2, O2) provided |O1| = |I2|. In this case the glueing
gives rise to the slice S1◦S2 = (V3, E3, l3) with frontiers (I1, O2) which is obtained
by taking the disjoint union of S1 and S2, and by fusing, for each i ∈ {1, ..., |O1|},
the unique edge e1 ∈ E1 for which l1(et

1) = i with the unique edge e2 ∈ E2 for
which l2(es

2) = i. Formally, the fusion of e1 with e2 is performed by creating a
new edge e12 with source es

12 = es
1 and target et

12 = et
2, and by deleting e1 and

e2. Thus in the glueing process the vertices in the glued frontiers disappear.
A unit slice is a slice with exactly one vertex in its center. A slice is initial

if it has empty in-frontier and final if it has empty out-frontier. The width of a
slice S with frontiers (I,O) is defined as w(S) = max{|I|, |O|}. If T is a finite
set of symbols, then we let

−→
Σ(k, T) be the set of all unit slices of width at most

k whose unique center vertex is labeled with an element of T . Observe that
the alphabet

−→
Σ(k, T) is finite and has asymptotically |T | · 2O(k log k) slices. A

sequence U = S1S2...Sn of unit slices is called a unit decomposition if Si can be
glued to Si+1 for each i ∈ {1, ..., n − 1}. In this case, we let

◦
U= S1 ◦S2 ◦ ... ◦Sn

be the DAG derived from U, which is obtained by gluing each two consecutive
slices in U. The width of U, denoted by w(U), is defined as the maximum width
of a slice occurring in U.

Definition 3.1 (Slice Automaton). Let T be a finite set of symbols and let
k ∈ N. A slice automaton over a slice alphabet

−→
Σ(k, T) is a finite automaton

A = (Q,R, q0, F) where Q is a set of states, q0 ∈ Q is an initial state, F ⊆ Q is
a set of final states, and R ⊆ Q × −→

Σ(k, T) × Q is a transition relation such that
for every q, q′, q′′ ∈ Q and every S ∈ −→

Σ(k, T):

1. if (q0,S, q) ∈ R then S is an initial slice,
2. if (q,S, q′) ∈ R and q′ ∈ F , then S is a final slice,
3. if (q,S, q′) ∈ R and (q′,S′, q′′) ∈ R, then S can be glued to S′.

Languages of a Slice Automaton. A slice automaton A can be used to
represent three types of languages. At a syntactic level, we have the slice language
L(A) which consists of the set of all unit decompositions accepted by A (Fig. 2).

L(A) = {S1S2...Sn | S1S2...Sn is accepted by A} (1)

At a semantic level, we have the graph language LG(A) which consists of all
DAGs represented by unit decompositions in L(A), and the partial order lan-
guage Lpo(A), which consists of all partial orders derived from DAGs in LG(A).
If H is a DAG, we let tc(H) denote the partial order which is obtained by taking
the transitive closure of H. Formally, the graph language, and the partial order
languages accepted by A are defined as

LG(A) = { ◦
U | U ∈ L(A)} Lpo(A) = {tc(

◦
U) | ◦

U∈ LG(A)}. (2)

206 M. de Oliveira Oliveira

Fig. 2. (i) A slice automaton A. (ii) A unit decomposition U accepted by A. (iii) The

DAG
◦
U obtained by glueing each two consecutive slices in U. (iv) A Petri Net N . One

can check that all DAGs accepted by A are Hasse diagrams of causal orders of N .

Saturation. Let H be a DAG whose vertices are labeled with elements from a
finite set T . Then we let ud(H,

−→
Σ(k, T)) denote the set of all unit decompositions

U in
−→
Σ(k, T)∗ for which

◦
U= H. We say that a slice automaton A over

−→
Σ(k, T)

is saturated if for every DAG H ∈ LG(A) we have that ud(H,
−→
Σ(k, T)) ⊆ L(A).

4 Main Result

Our main result states that the set of partial orders representing the causal
behaviour of any bounded Petri net can be defined via a monadic second order
sentence. This statement is formalized in the following theorem.

Theorem 4.1 (Main Theorem). Let N be a bounded Petri net with set of
transitions T . Let Pcau(N) be the set of causal orders of N . There exists a
monadic second order sentence ϕN in the vocabulary of T -labeled partial orders,
such that P(ϕN) = Pcau(N).

The remainder of this section is dedicated to the proof of Theorem 4.1. For
each k ∈ N, we say that a DAG H = (V,E) is k-coverable if there exists a
sequence of paths p1 = (V1, E1), p2 = (V2, E2), ..., pk = (Vk, Ek) in H such that

H = p1 ∪ p2 ∪ ... ∪ pk = (
k⋃

i=1

Vi,

k⋃

i=1

Ei).

Causality in Bounded Petri Nets is MSO Definable 207

The transitive reduction of a DAG G = (V,E, l) is the unique minimal
subgraph tr(G) of G with the same transitive closure as G. In other words
tc(tr(G)) = tc(G). We say that a DAG H is transitively reduced if H = tr(H).
If � is a partial order, then we may refer to tr(�) as the Hasse diagram of �. The
following lemma establishes an upper bound on the number of paths necessary
to cover the Hasse diagram of a causal order of a bounded Petri net.

Lemma 4.2. Let N be a b-bounded Petri net with n places, and let � be a causal
order of N . Then the Hasse diagram of �∗ can be covered by b · n paths.

We say that a slice automaton A is transitively reduced if every DAG in
LG(A) is transitively reduced. The following theorem establishes a connection
between saturated, transitively reduced slice automata, and the causal behaviour
of bounded Petri nets.

Theorem 4.3 (Bounded Petri Nets vs Slice Automata [9,10]). Let
N = (P, T) be a b-bounded Petri net. Then one can construct a saturated, tran-
sitively reduced slice automaton A(N) over

−→
Σ(b · |P |, T) such that Lpo(A(N)) =

Pcau(N).

We note that since A(N) is transitively reduced, its graph language
LG(A(N)) is the set of Hasse diagrams of partial orders in Lpo(A(N)). The
next lemma states that if a set of k-coverable DAGs is expressible in MSOgr

2

logic then the set of partial orders represented by these DAGs is expressible in
MSOpo

1 logic.

Lemma 4.4. Let k be a constant, and ϕ be an MSOgr
2 sentence defining a set

of k-coverable DAGs. Then there exists an MSOpo
1 sentence ϕ′ such that � |= ϕ′

if and only if there exists an DAG H such that H |= ϕ and tc(H) = �.

Proof. Any k-coverable DAG has treewidth at most k and maximum degree at
most 2k. It can be shown that if ϕ is an MSOgr

2 formula defining a set G of graphs
of constant treewidth and constant maximum degree, then G can be defined by
an MSOgr

1 formula ϕ1, i.e., an MSOgr
2 formula without edge-set quantifiers [8].

Now, using the fact that transitive closure is an MSOgr
1 transduction (See [8],

Example 1.32), such formula ϕ1 can be transformed into an MSOpo
1 formula ϕ′

such that � |= ϕ′ iff there exists an DAG H such that H |= ϕ1 and tc(H) = �. �

As we will argue in details in Sect. 4.4, the proof of Theorem 4.1 will follow
by combining Lemma 4.2, Theorem 4.3 and Lemma 4.4 with Theorem 4.5.

Theorem 4.5. Let G be a set of k-coverable DAGs. If there exists a saturated
slice automaton A over

−→
Σ(k, T) such that LG(A) = G, then there exists an

MSOgr
2 sentence ϕA such that G(ϕA) = G.

We will prove Theorem 4.5 in the next three subsections. The proof consists
of three parts. First we note that topological orders of k-coverable DAGs can be
defined in MSO logic. Subsequently, we will show that given a k-coverable DAG

208 M. de Oliveira Oliveira

G, and an ordering ω = (v1, ..., vn) of its vertices, one can define in MSOgr
2 logic

a unit decomposition S1S2...Sn of G such that for each i ∈ {1, ..., n}, vi is the
center vertex of Si. Finally, using such MSOgr

2 definable unit decompositions,
together with the fact that the automaton A is saturated, we will construct
a formula ϕA which is true on a DAG G if and only if G ∈ LG(A). We note
that this last part may be seen as a generalization of Büchi’s proof that string
languages recognizable by finite automata are MSO-definable.

4.1 MSO-Definable Topological Orderings

Let G be a class of DAGs and let ϕ(u, v,
−→
X,

−→
Z) be an MSOgr

2 -formula with free
vertex variables u and v, free vertex-set variables

−→
X = (X1, ...,Xr) and free

edge-set variables
−→
Z = (Z1, ..., Zs). We say that ϕ(u, v,

−→
X,

−→
Z) orders the class

G if for each graph G = (V,E, λ) in G, there exist an assignment to the variables−→
X and

−→
Z such that the following conditions are satisfied.

– Irreflexivity: ∀u,¬ϕ(u, u,
−→
X,

−→
Z).

– Transitivity: ∀u, v, w, ϕ(u, v,
−→
X,

−→
Z) ∧ ϕ(v, w,

−→
X,

−→
Z) → ϕ(u,w,

−→
X,

−→
Z).

– Asymmetry: ∀u, v, ϕ(u, v,
−→
X,

−→
Z) ⇒ ¬ϕ(v, u,

−→
X,

−→
Z).

– Totality: ∀u, v either ϕ(u, v,
−→
X,

−→
Z), ϕ(v, u,

−→
X,

−→
Z) or u = v.

– Compatibility: ∀u, v, E(u, v) → ϕ(u, v,
−→
X,

−→
Z).

Intuitively, for each graph G in G there is an assignment of the variables
−→
X

and
−→
Z such that the formula ϕ(u, v,

−→
X,

−→
Z) defines a topological ordering on the

vertices of G. Note that distinct assignments to the variables
−→
X,

−→
Z may cause

ϕ(u, v,
−→
X,

−→
Z) to define distinct topological orderings on the set of vertices of G.

Lemma 4.6. For each k ∈ N, there is an MSOgr
2 -formula ϕk(u, v,

−→
X,

−→
Z) which

orders the class of k-coverable DAGs.

4.2 Defining Unit Decompositions in MSO Logic

Let G = (V,E, λ) be a DAG, and let V1 and V2 be disjoint subsets of V . We
denote by E(V1, V2) the set of all edges with one endpoint in V1 and another
endpoint in V2. Let ω : V × V be a topological ordering of the vertices of G. We
let Sm(ω, v) = {v′ | ω(v′, v)} be the set of vertices that are strictly smaller than
v according to the ordering ω. Analogously, we let Gr(ω, v) = {v′ | ω(v, v′)} be
the set of vertices that are strictly greater than v according to ω. The width of
ω is defined as w(ω) = maxv |E(Sm(ω, v) ∪ {v},Gr(v))|. For each v ∈ V , define
the following set.

E(ω, v) = E(Sm(ω, v), {v}) ∪ E({v},Gr(ω, v)) ∪ E(Sm(ω, v),Gr(ω, v)).

Intuitively, E(ω, v) is the set of all edges incident with the vertex v, together
with all edges with source in Sm(ω, v) and target in Gr(ω, v). We note that if ω

Causality in Bounded Petri Nets is MSO Definable 209

has width k, then |E(ω, v)| ≤ 2k for each v ∈ V . We also note that if v is the
minimal element of ω, or the maximal element of ω, then E(ω, v) is simply the
set of edges incident with v, and in this case, |E(ω, v)| ≤ k.

Definition 4.7 (Well Coloring). Let G = (V,E, λ) be a DAG and ω ⊆ V ×V
be a topological ordering of G of width k. A well coloring of G with respect to
ω is a partition χ = (Y1, ..., Yr) of the edges of G such that for each v ∈ V , and
each l ∈ {1, ..., r}, |Yl ∩ E(ω, v)| ≤ 1.

In other words, each edge of G receives a unique color from {1, ..., r} and for
each v ∈ V , each two distinct edges in E(ω, v) have distinct colors. The following
proposition states that if ω is a topological ordering of G of width k, then G can
be well colored with 2k colors.

Proposition 4.8. Let G = (V,E, λ) be a DAG, and ω ⊆ V ×V be a topological
ordering of G of width k. Then there exists a well coloring χ = (Y1, ..., Y2k) of
G with respect to ω.

Proof. For each v ∈ V , let Ê(ω, v) = E(ω, v)∪⋃
v′∈Sm(ω,v) E(ω, v′). We say that

a partition χ = (Y1, ..., Y2k) of the set Ê(ω, v) is a well coloring of Ê(ω, v) with
respect to ω if for each v′ ∈ Sm(ω, v), and each l ∈ {1, ..., 2k}, |Yl ∩E(ω, v′)| ≤ 1.
We will show that for each v, one can construct a well coloring χv of Ê(ω, v)
with respect to ω. In particular, if v is the last element of the ordering ω, then
χ = χv is a well coloring of G with respect to ω. The proof is by induction on
the size of Sm(ω, v). In the base case, |Sm(ω, v)| = 0 and therefore |Ê(ω, v)| =
|E(ω, v)| ≤ k. We let χv = (Y 0

1 , ..., Y 0
2k) be any partition of E(ω, v) in which

each set Y 0
l has size at most 1. Now assume that |Sm(v)| = i and that χv =

(Y i
1 , ..., Y i

2k) is a well coloring of Ê(ω, v) with respect to ω. Let u be the vertex
of V with |Sm(u)| = i + 1. Let χu = (Y i+1

1 , ..., Y i+1
2k) be a partition of Ê(ω, u)

such that Y i
l ⊆ Y i+1

l and |E(ω, u) ∩ Y i+1
l | ≤ 1 for each l ∈ {1, ..., 2k}. Such a

partition χu exists since |E(ω, u)| ≤ 2k. Additionally, χu is by construction a
well coloring of Ê(ω, u) with respect to ω. �

We let WellColoring(
−→
X,

−→
Z , Y1, ..., Y2k) be an MSOgr

2 predicate with free
vertex-set variables

−→
X and free edge-set variables

−→
Z and Y1, ..., Y2k which is

true on a DAG G if and only if Y1, ..., Y2k is a well coloring of G with respect to
the topological ordering defined by the formula ϕk(u, v,

−→
X,

−→
Z) on the vertices

of G.
Our interest in well colorings stems from the fact that given a topological

ordering ω of width k of a DAG G = (V,E, λ), together with a well coloring
χ : E → {1, ..., 2k} of the vertices of G, one can implicitly define in MSOgr

2 logic
a unit decomposition U(ω, χ) of G of width k. To define such unit decomposition
it is enough to define each of its slices.

Definition 4.9. Let G = (V,E, λ) be a DAG, ω be a topological ordering of G
of width k, and χ : E → {1, ..., 2k} be a well coloring of the edges of G with
respect to ω. For each v ∈ V , we denote by S(v, ω, χ) = (Vv, Ev, λv, [Iv, Cv, Ov])
the unique unit slice in

−→
Σ(k, T) satisfying the following conditions.

210 M. de Oliveira Oliveira

1. The in-frontier Iv has α = |E(Sm(ω, v), {v} ∪ Gr(ω, v))| vertices. For each
i ∈ {1, ..., α}, let xI

i be the unique vertex of Iv with λv(xI
i) = i.

2. The out-frontier Ov has β = |E(Sm(ω, v) ∪ {v},Gr(ω, v))| vertices. For each
i ∈ {1, ..., β}, we let xO

i be the unique vertex of Ov with λv(xO
i) = i.

3. The center Cv has a unique vertex xC . Additionally, λv(xC) = λ(v).
4. There is a bijection β : Ev → E(ω, v) satisfying the following conditions.

(a) e ∈ Ev ∧ es = xC ⇒ β(e)s = v.
(b) e ∈ Ev ∧ et = xC ⇒ β(e)t = v.
(c) For each i, j ∈ [α] with i < j,

e1, e2 ∈ Ev ∧ es
1 = xI

i ∧ es
2 = xI

j ⇒ χ(e1) < χ(e2).

(d) For each i, j ∈ [β] with i < j,

e1, e2 ∈ Ev ∧ et
1 = xO

i ∧ et
2 = xO

j ⇒ χ(e1) < χ(e2).

Intuitively, the ordering ω determines which edges are present in the slice
S(v, ω, χ) while the coloring χ determines the numbering of the in-frontier
vertices and the numbering of the out-frontier vertices of S(v, ω, χ). Now let
V = {v1, ..., vn} be such that vi is the i-th vertex in the ordering ω. Then we
have that

U(ω, χ) = S(v1, ω, χ)S(v2, ω, χ)...S(vn, ω, χ)

is a unit decomposition of G of width k. We say that U(ω, χ) is the unit decom-
position of G induced by the pair (ω, χ).

For each slice S ∈ −→
Σ(k, T) we let Ŝ(v,

−→
X,

−→
Z , Y1, ..., Y2k) be a predicate which

is true on a DAG G if and only if S = S(v, ω, χ) where ω is the ordering defined
by ϕk(u, v,

−→
X,

−→
Z) on the vertices of G, and χ = (Y1, ..., Y2k) is a well coloring of

the edges of G with respect to ω. Clearly, the predicate Ŝ(v,
−→
X,

−→
Z , Y1, ..., Y2k)

can be defined in MSOgr
2 logic using Definition 4.9.

4.3 Generalizing Büchi’s Theorem

Finally, in this subsection we show that if A = (Q,R, q0, F) is a saturated slice
automaton over

−→
Σ(k, T) recognizing a set of k-coverable DAGs LG(A), then one

can define an MSOgr
2 sentence ϕA such that G(ϕA) = LG(A). We will need the

following proposition, which states that if H is a k-coverable DAG, then any
unit decomposition of H has width at most k.

Proposition 4.10. Let H be a k-coverable DAG. Then for each k′ ≥ k,

ud(H,
−→
Σ(k′, T)) = ud(H,

−→
Σ(k, T)).

Proof. Let H = p1 ∪ ... ∪ pk where pi are paths. Let U = S1S2...Sn be a unit
decomposition of H. Each path pi crosses each frontier of each slice in U at most
one time. Therefore, all k paths together cross each frontier of each slice in U
at most k times. �

Causality in Bounded Petri Nets is MSO Definable 211

Intuitively, given a k-coverable DAG H, the sentence ϕA guesses both a
topological ordering ω = (v1, v2, ..., vn) of the vertices of H, and a well coloring
χ of H with respect to ω. The ordering ω, and the well coloring χ uniquely
determine a unit decomposition

U(ω, χ) = S(v1, ω, χ)S(v2, ω, χ)...S(vn, ω, χ)

of H. Since H can be covered by k paths, Proposition 4.10 implies that any
unit decomposition of H has width at most k. In particular, U(ω, χ) has width
at most k. Since A is saturated over

−→
Σ(k, T), we have that the guessed unit

decomposition U(ω, χ) belongs to L(A).
Let Q = {q0, q1, ..., qn} be the set of states of A, where q0 is the initial state.

Our formula will encode an accepting run of the slice automaton A on the unit
decomposition U(ω, χ). More precisely, the set of vertices of H is partitioned
into |Q| subsets Xq0 ,Xq1 , ...,Xqn . The vertex vj belongs to the subset Xqi if and
only if A reaches state qi after reading the prefix

S(v1, ω, χ)S(v2, ω, χ)...S(vj , ω, χ)

of the unit decomposition U(ω, χ).
Below, we write ∃−→

X to denote ∃X1,X2, ...,Xr, ∃−→
Z to denote ∃Z1, ..., Zs, and

∃−→
Y to denote ∃Y1, ..., Y2k . Let Unique(x,Wq0 ,Wq1 , ...,Wqn) be a predicate that

is true if the vertex x belongs to exactly one of the vertex sets

Wq0 ,Wq1 , ...,Wqn .

Let First(u,
−→
X,

−→
Z) be a predicate that is true if u is the first vertex of the ordering

defined by ϕk(u, v,
−→
X,

−→
Z) Analogously, let Last(u,

−→
X,

−→
Z) be a predicate that is

true if u is the last vertex of the ordering defined by ϕk(u, v,
−→
X,

−→
Z). Finally, let

Suc(u, v,
−→
X,

−→
Z) be a predicate that states that u is an immediate predecessor of

v in the ordering ϕk(u, v,
−→
X,

−→
Z). Then the discussion above can be synthesized

by the following MSO formula which is true on a DAG H if and only if H is
accepted by A.

∃−→
X ∃−→

Z ∃−→
Y ∃Wq0 , Wq1 , ..., Wqn

WellColoring(
−→
X,

−→
Z ,

−→
Y) ∧

∀x Unique(x, Wq0 , Wq1 , ..., Wqn) ∧ [First(x,
−→
X,

−→
Z) ⇒ Wq0(x)] ∧

∀u ∀v
[

Suc(u, v,
−→
X,

−→
Z) ⇒ ∨

(qi,S,qj)∈R Wqi(u) ∧ Ŝ(u,
−→
X,

−→
Z ,

−→
Y) ∧ Wqj (v)

]
∧

∀u
[

Last(u,
−→
X,

−→
Z) ⇒ ∨

qj∈F, (qi,a,qj)∈R Wqi(u) ∧ Ŝ(u,
−→
X,

−→
Z ,

−→
Y)
]
.

212 M. de Oliveira Oliveira

4.4 Proof of Theorem4.1

Let N = (P, T) be b-bounded Petri Net. By Theorem4.3, one can construct
a saturated, transitively reduced slice automaton A(N) over the slice alphabet−→
Σ(b · |P |, T) such that Lpo(A(N)) = Pcau(N). Additionally, since A is transi-
tively reduced, a DAG H belongs to LG(A(N)) if and only if H is the Hasse
diagram of some partial order in Pcau(N). Now, by Theorem 4.5, we can con-
struct from A(N) an MSOgr

2 formula ϕA(N) such that H satisfies ϕA(N) if and
only if H ∈ LG(A(N)). As a last step, we use Lemma 4.4 to convert ϕA(N) into
an MSOpo

1 formula ϕN which is true on a partial order � if and only if there
exists a DAG H such that H |= ϕA(N) and tc(H) = �. In other words, � |= ϕN

if and only if � ∈ Lpo(A(N)) = Pcau(N). �

5 Conclusion and Open Problems

In this work we have shown that the causal behaviour of any bounded Petri net
N can be specified by an MSO logic sentence ϕN (Theorem 4.1). As a crucial step
towards the proof of Theorem4.1, we have shown that sets of k-coverable DAGs
recognizable by saturated slice automata are MSO-definable (Theorem 4.5). The
converse of Theorem 4.5, which states that MSO-definable sets of k-coverable
graphs are recognizable by saturated slice automata has been proved in [11].
Together, these two results yield the following corollary.

Corollary 5.1. A set G of k-coverable DAGs is definable in MSOgr
2 logic if and

only if G is recognizable by a saturated slice automaton.

Corollary 5.1 extends Büchi’s theorem from the context of strings to the
context of k-coverable DAGs (Note that a string may be regarded as a 1-coverable
DAG). An interesting open problem is to determine whether saturated slice
automata can be used to extend Büchi’s theorem to larger classes of graphs,
such as graphs of bounded cutwidth.

Acknowledgements. The author gratefully acknowledges financial support from the
European Research Council, ERC grant agreement 339691, within the context of the
project Feasibility, Logic and Randomness (FEALORA).

References

1. Bauderon, M., Courcelle, B.: Graph expressions and graph rewritings. Math. Syst.
Theor. 20(2–3), 83–127 (1987)

2. Bodlaender, H.L., Heggernes, P., Telle, J.A.: Recognizability equals definability for
graphs of bounded treewidth and bounded chordality. In: Proceedings of the 7th
European Conference on Combinatorics (EUROCOMB 2015) (2015)

3. Brandenburg, F.-J., Skodinis, K.: Finite graph automata for linear and boundary
graph languages. Theor. Comput. Sci. 332(1–3), 199–232 (2005)

Causality in Bounded Petri Nets is MSO Definable 213

4. Bruggink, H.S., König, B.: On the recognizability of arrow and graph languages.
In: Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS,
vol. 5214. Springer, Heidelberg (2008)

5. Büchi, J.R.: Weak second order arithmetic and finite automata. Z. Math. Logik
Grundl. Math. 6, 66–92 (1960)

6. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of
finite graphs. Inf. Comput. 85(1), 12–75 (1990)

7. Courcelle, B.: The monadic second-order logic of graphs V: on closing the gap
between definability and recognizability. Theor. Comput. Sci. 80(2), 153–202
(1991)

8. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic: A
Language-Theoretic Approach, vol. 138. Cambridge University Press, Cambridge
(2012)

9. de Oliveira Oliveira, M.: Hasse diagram generators and Petri nets. Fundamenta
Informaticae 105(3), 263–289 (2010)

10. de Oliveira Oliveira, M.: Canonizable partial order generators. In: Dediu, A.-H.,
Mart́ın-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 445–457. Springer,
Heidelberg (2012)

11. de Oliveira Oliveira, M.: Subgraphs satisfying MSO properties on z -topologically
orderable digraphs. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246,
pp. 123–136. Springer, Heidelberg (2013)

12. de Oliveira Oliveira, M.: MSO logic and the partial order semantics of
place/transition-nets. In: Leucker, M., Rueda, C., Valencia, F.D. (eds.) ICTAC
2015. LNCS, vol. 9399, pp. 368–387. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-25150-9 22

13. Engelfriet, J., Vereijken, J.J.: Context-free graph grammars and concatenation of
graphs. Acta Informatica 34(10), 773–803 (1997)

14. Gaifman, H., Pratt, V.R.: Partial order models of concurrency and the computation
of functions. In: LICS 1987, pp. 72–85 (1987)

15. Gischer, J.L.: The equational theory of pomsets. Theor. Comput. Sci. 61, 199–224
(1988)

16. Goltz, U., Reisig, W.: Processes of place/transition-nets. In: Dı́az, J. (ed.) ICALP
1983. LNCS, vol. 154, pp. 264–277. Springer, Heidelberg (1983)

17. Jaffke, L., Bodlaender, H.L.: Definability equals recognizability for k-outerplanar
graphs. In: Proceedings of the 10th International Symposium on Parameterized
and Exact Computation, (IPEC 2015). LIPIcs, vol. 43, pp. 175–186 (2015)

18. Jaffke, L., Bodlaender, H.L.: MSOL-definability equals recognizability for
Halin graphs and bounded degree k-outerplanar graphs (2015). Preprint
arXiv:1503.01604

19. Jagadeesan, L.J., Jagadeesan, R.: Causality and true concurrency: a data-flow
analysis of the pi-calculus. In: Alagar, V.S., Nivat, M. (eds.) AMAST 1995. LNCS,
vol. 936, pp. 277–291. Springer, Heidelberg (1995)

20. Kabanets, V.: Recognizability equals definability for partial k-paths. In: Degano,
P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256,
pp. 805–815. Springer, Heidelberg (1997)

21. Kaller, D.: Definability equals recognizability of partial 3-trees and k-connected
partial k-trees. Algorithmica 27(3–4), 348–381 (2000)

22. Langerak, R., Brinksma, E., Katoen, J.-P.: Causal ambiguity and partial orders
in event structures. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997.
LNCS, vol. 1243, pp. 317–331. Springer, Heidelberg (1997)

http://dx.doi.org/10.1007/978-3-319-25150-9_22
http://dx.doi.org/10.1007/978-3-319-25150-9_22
http://arxiv.org/abs/1503.01604

214 M. de Oliveira Oliveira

23. Lapoire, D.: Recognizability equals monadic second-order definability for sets of
graphs of bounded tree-width. In: Morvan, M., Meinel, C., Krob, D. (eds.) STACS
1998. LNCS, vol. 1373, pp. 618–628. Springer, Heidelberg (1998)

24. Petri, C.A.: Fundamentals of a theory of asynchronous information flow. In: Pro-
ceedings of IFIP Congress 62, Munchen, pp. 166–168 (1962)

25. Thomas, W.: Finite-state recognizability of graph properties. Theorie des Auto-
mates et Applications 172, 147–159 (1992)

26. Vogler, W. (ed.): Modular Construction and Partial Order Semantics of Petri Nets.
LNCS, vol. 625. Springer, Heidelberg (1992)

A Multi-type Calculus for Inquisitive Logic

Sabine Frittella1(B), Giuseppe Greco1, Alessandra Palmigiano1,2,
and Fan Yang1

1 Faculty of Technology, Policy and Management, Delft University of Technology,
Delft, The Netherlands

{S.S.A.Frittella,G.Greco,A.Palmigiano,F.Yang}@tudelft.nl
2 Department of Pure and Applied Mathematics, University of Johannesburg,

Johannesburg, South Africa

Abstract. In this paper, we define a multi-type calculus for inquisitive
logic, which is sound, complete and enjoys Belnap-style cut-elimination
and subformula property. Inquisitive logic is the logic of inquisitive
semantics, a semantic framework developed by Groenendijk, Roelofsen
and Ciardelli which captures both assertions and questions in natural
language. Inquisitive logic adopts the so-called support semantics (also
known as team semantics). The Hilbert-style presentation of inquisi-
tive logic is not closed under uniform substitution, and some axioms
are sound only for a certain subclass of formulas, called flat formulas.
This and other features make the quest for analytic calculi for this logic
not straightforward. We develop a certain algebraic and order-theoretic
analysis of the team semantics, which provides the guidelines for the
design of a multi-type environment accounting for two domains of inter-
pretation, for flat and for general formulas, as well as for their interaction.
This multi-type environment in its turn provides the semantic environ-
ment for the multi-type calculus for inquisitive logic we introduce in this
paper.

1 Introduction

Inquisitive logic is the logic of inquisitive semantics, a semantic framework, intro-
duced by Groenendijk, Roelofsen and Ciardelli in [5,13], that captures both
assertions and questions in natural language. In this framework, formulas express
proposals to enhance the common ground of a conversation. The inquisitive con-
tent of a formula is understood as an issue raised by a given utterance. A distin-
guishing feature of inquisitive logic is that formulas are evaluated on informa-
tion states, i.e., at sets of possible worlds, rather than at single possible worlds.
Inquisitive logic defines a relation of support between information states and
formulas, the intended understanding of which is that in uttering a sentence, a
speaker proposes to enhance the current common ground to one that supports
the sentence.

Closely related to inquisitive logic is dependence logic [22], which is an exten-
sion of classical logic that characterizes the notion of “dependence” between vari-
ables using the so-called team semantics, introduced by Hodges [14,15]. The team
c© Springer-Verlag Berlin Heidelberg 2016
J. Väänänen et al. (Eds.): WoLLIC 2016, LNCS 9803, pp. 215–233, 2016.
DOI: 10.1007/978-3-662-52921-8 14

216 S. Frittella et al.

semantics of dependence logic builds on the basis of the notion of team, which,
in the propositional logic context, is a set of assignments of atomic propositions
into the 2-element Boolean algebra. As is well known, each such assignment can
be identified with a set of atomic propositions. Therefore, information states pro-
viding the semantic framework for inquisitive logic can be identified with teams,
providing the semantic framework for dependence logic. In fact, this is more than
a peculiar coincidence: In [23], systematic connections were developed between
inquisitive logic and dependence logic on the basis of the identification between
information state semantics and team semantics, and it was shown that inquisi-
tive logic is essentially a variant of propositional dependence logic [24] with the
intuitionistic connectives introduced in [1]. It was further argued in [3,4] that
the entailment relation of questions is a type of dependency relation considered
in dependence logic.

Inquisitive logic was axiomatized in [5]. This axiomatization is not closed
under uniform substitution, which is one of the main hurdles for a standard
proof-theoretic treatment. No previous proposal for a sequent calculus for the
inquisitive logic of [5] exists. The only relevant work of the present contribution is
the labelled calculus defined in [21] for the logic of the inquisitive pair semantics
introduced in [12,18]. Inquisitive pair semantics is a predecessor of inquisitive
semantics and it does not give rise to the same logic as the inquisitive logic of
[5]. The calculus in [21] makes use of extra linguistic labels which import pair
inquisitive semantics into the calculus. This calculus is sound, complete and cut
free; however, since the interpretation of the sequents is ad hoc, only a semantic
proof of cut elimination is given, and this set-up is not easily transferable to the
inquisitive logic of [5].

Our contribution is a calculus designed on different principles than those
of [21], and for the current version of inquisitive logic, which is based on sup-
port semantics. We tackle the hurdle of the non schematicity of the Hilbert-style
presentation by designing the calculus for inquisitive logic in the style of a gener-
alization of Belnap’s display calculi, the so-called multi-type calculi. These calculi
have been introduced in [6,7], as a proposal to support a proof-theoretic seman-
tic account of Dynamic Logics [9]. One important aspect of multi-type calculi
is that various Belnap-style metatheorems have been given, which allow for a
smooth syntactic proof of cut elimination.

The multi-type environment we propose is motivated by an order-theoretic
analysis of the team semantics for inquisitive logic, according to which, certain
maps can be defined which make it possible for the different types to interact.
The non schematicity of the axioms is accounted for by assigning different types
to the restricted formulas and to the general formulas. Hence, closure under
arbitrary substitution holds within each type.

Structure of the Paper. In Sect. 2, needed preliminaries are collected on inquis-
itive logic. In Sect. 3, the order-theoretic analysis is given, which justifies
the introduction of an expanded multi-type language, into which the original

A Multi-type Calculus for Inquisitive Logic 217

language of inquisitive logic can be embedded. In Sect. 4, the multi-type calcu-
lus for (the multi-type version of) inquisitive logic is introduced. In Sect. 5, we
prove the soundness and completeness of the calculus, and we also show that the
calculus is powerful enough to capture the restricted type (i.e. the flat type)
proof-theoretically. In Sect. 6, we give a syntactic proof of cut elimination
Belnap-style.

2 Inquisitive Logic

In the present section, we briefly recall the basics of inquisitive logic and support
semantics (or team semantics). The reader is refer to [3,5] and also to [24] for
an expanded treatment.

Although the support semantics (or team semantics) is originally developed
for the extension of classical propositional logic with questions, for the sake of
a better compatibility with the exposition in the next sections, we will first
define support semantics (or team semantics) for classical propositional logic.
Let us fix a set V of propositional variables and denote its elements by p, q, r, . . .
possibly sub- or super-scripted. Well-formed formulas of classical propositional
logic (CPL), also called classical formulas, are given by the following grammar:

χ ::= p | 0 | χ ∧ χ | χ → χ.

A possible world (or a valuation) is a map v : V → 2, where 2 := {0, 1}. An
information state (also called a team) is a set of possible worlds.

Definition 1. The support relation of a classical formula χ on a state S,
denoted by S |= χ, is defined recursively as follows:

S |= p iff v(p) = 1 for all v ∈ S
S |= 0 iff S = ∅

S |= χ ∧ ξ iff S |= χ and S |= ξ
S |= χ → ξ iff for any S′ ⊆ S, if S′ |= χ, then S′ |= ξ

An easy inductive proof shows that classical formulas χ are flat (also called truth
conditional); that is, for every state S,

(Flatness Property) S |= χ iff {v} |= χ for all v ∈ S.

Well-formed formulas φ of inquisitive logic (InqL) are given by expanding the
language of CPL with the inquisitive disjunction ∨. Equivalently, these formulas
can be defined by the following recursion:

φ ::=χ | φ ∧ φ | φ → φ | φ ∨ φ.

218 S. Frittella et al.

As usual, we write ¬χ for χ → 0. This two-layered presentation is slightly
different but equivalent to the usual one. The reason why we are presenting it
this way will be clear at the end of the following section, when we introduce a
translation of InqL-formulas into a multi-type language.

Definition 2. The support relation of an InqL-formula φ on an information
state S, denoted by S |= φ, is defined analogously to the support relation of classi-
cal formulas relative to the fragment shared by the two languages, and moreover:

S |= φ ∨ ψ iff S |= φ or S |= ψ

We write φ |= ψ if, for any state S, if S |= φ then S |= ψ. If both φ |= ψ
and ψ |= φ, then we write φ ≡ ψ. An InqL-formula φ is valid, denoted by
|= φ, if S |= φ holds for all states S. The logic InqL is the set of all valid
InqL-formulas.

An easy inductive proof shows that InqL-formulas have the downward clo-
sure property and the empty state property:

(Downward Closure Property) If S |= φ and S′ ⊆ S, then S′ |= φ.
(Empty State Property) ∅ |= φ.

CPL extended with the dependence atoms =(p1, . . . , pn, q) is called proposi-
tional dependence logic (PD), which is an important variant of InqL. The logic
PD adopts also the support semantics (or the team semantics). It is proved in
[24] that PD has the same expressive power as InqL. In particular, a constancy
dependence atom =(p) is semantically equivalent to the formula p ∨ ¬p, which
expresses the polar question ‘whether p?’ (denoted ?p), and a dependence atom
=(p1, . . . , pn, q) with multiple arguments is semantically equivalent to the entail-
ment ?p1 ∧ · · · ∧?pn →?q of polar questions. For more details on this connection,
we refer the reader to [3,4].

Flat formulas will play an important role in this paper. Below we list some
of their properties.

Lemma 3 (see [3]). For all InqL-formulas φ and ψ,

(a) If ψ is flat, then φ → ψ is flat. In particular, ¬φ is always flat.
(b) The following are equivalent:

1. φ is flat.
2. φ ≡ φf , where φf is the classical formula obtained from φ by replacing

every occurrence of φ1 ∨ φ2 in φ by ¬φ1 → φ2.
3. φ ≡ ¬¬φ.

A Multi-type Calculus for Inquisitive Logic 219

Below we list some meta-logical properties of InqL; for the proof, see [5]. For
any set Γ ∪ {φ, ψ} of InqL-formulas:

(Deduction Theorem) Γ, φ |= ψ if and only if Γ |= φ → ψ.
(Disjunction Property) If |= φ ∨ ψ, then either |= φ or |= ψ.
(Compactness) If Γ |= φ, then there exists a finite subset Δ of Γ such that

Δ |= φ.

Theorem 4 (see [3,5]). The following Hilbert-style system of InqL is sound
and complete.

Axioms:
1. all substitution instances of axioms of intuitionistic propositional logic

IPL
2. (χ → (φ ∨ ψ)) → (χ → φ) ∨ (χ → ψ) whenever χ is a classical formula
3. ¬¬χ → χ whenever χ is a classical formula

Rule:
Modus Ponens:

φ → ψ ψ

ψ
(MP)

Note that the above system of InqL does not have the Substitution Rule:
φ

φ(ψ/p)
and the logic InqL is not closed under uniform substitution. In par-

ticular, axiom 3 in the above system is in general not valid for non-classical
formulas, as, for instance, ¬¬?p →?p is not valid.

Each classical formula χ is equivalent to a negated formula ¬¬χ
(Theorem 3(b)). Therefore axiom 2 in the above system can be viewed as a
variant of the KP axiom (¬p → (q ∨ r)) → (¬p → q) ∨ (¬p → r) of the Kreisel-
Putnam logic KP [16]. There is actually an interesting connection between InqL
and intermediate logics1. Let L¬ = {φ | φ¬ ∈ L} be the negative variant of
an intermediate logic L, where φ¬ is obtained from φ by replacing any occur-
rence of a propositional variable p with ¬p. It was proved in [5] that InqL
coincides with the negative variant of every intermediate logic that is between
Maksimova’s logic ND [17] and Medvedev’s logic ML [19], such as the Kreisel-
Putnam logic KP [16]. That is, L¬ = InqL for all L such that ND ⊆ L ⊆ ML,
and InqL = KP¬ = ND¬ = ML¬ in particular.

3 Order-Theoretic Analysis and Multi-type Inquisitive
Logic

In the present section, building on [1,20] and using standard facts pertaining to
discrete Stone and Birkhoff dualities, we give an alternative algebraic presenta-
tion of the team semantics (or support semantics). This presentation shows how
two natural types emerge from the team semantics, together with natural maps
connecting them. These maps will support the interpretation of additional multi-
type connectives which will be used to define a new, multi-type language into
1 Recall that L is an intermediate logic if IPL ⊆ L ⊆ CPL.

220 S. Frittella et al.

which we will translate the original language and axioms of inquisitive logic.
We will introduce a structural multi-type sequent calculus for the translated
axiomatization in Sect. 4.

3.1 Order-Theoretic Analysis

In what follows, let 2V denote the set of valuations on a fixed set V of propo-
sitional variables, and elements of 2V are denoted by u, v, . . . , possibly sub-
and super-scripted. Let B denote the (complete and atomic) Boolean algebra
(P(2V),∩,∪, (·)c, ∅, 2V). Elements of B (denoted by X,Y,Z, . . . , possibly sub-
and super-scripted) are teams (or information states). Consider the relational
structure F = (P(2V),⊆). By discrete Birkhoff-type duality, a perfect Heyting
algebra2 A := (P↓(B),∩,∪,⇒, ∅,P(2V)) with binary operator ⇒ arises as the
complex algebra of F . Elements of A are downward closed collections of teams,
and are denoted by the variables X,Y and Z, possibly sub- and super-scripted.
The operation ⇒ is defined as follows: for any Y and Z,

Y ⇒ Z := {X ∈ P(2V) | for all X ′, if X ′ ⊆ X and X ′ ∈ Y, then X ′ ∈ Z}.

Any team X can be associated with the downward-closed collection of teams
↓X := {Y | Y ⊆ X}. Conversely, any (downward-closed) collection of teams X
can be associated with the team fX :=

⋃X = {v | v ∈ X for some X ∈ X}.
Thirdly, for any team X, the collection of teams f∗X := {{v} | v ∈ X} ∪ {∅}
is downward closed. These assignments respectively induce the following three
natural maps between the perfect Boolean algebra B and the perfect Heying
algebra A with operator:

↓ : B → A f : A → B f∗ : B → A.

The maps f∗, ↓ and f turn out to be adjoints to one another, written f∗ � f � ↓
in order-theoretic notation, in the sense of the following lemma.

Lemma 5. For all X ∈ B and X ∈ A,

fX ⊆ X iff X ⊆ ↓X and f∗X ⊆ X iff X ⊆ fX. (1)

By general order-theoretic facts, from these adjunctions it follows that ↓, f
and f∗ are all order-preserving (monotone). Moreover, ↓ preserves all meets of
B (including the empty one, i.e. ↓1B = A), that is, ↓ commutes with arbitrary
intersections, f preserves all joins and all meets of A, that is, f commutes with
arbitrary unions and intersections, and f∗ preserves all joins of B, that is, f∗

commutes with arbitrary unions. Notice also that for all X ∈ A and X,Y ∈ B,

2 A Heyting algebra is perfect if it is complete, completely distributive and completely
join-generated by its completely join-prime elements. Equivalently, any perfect alge-
bra can be characterized up to isomorphism as the complex algebra of some partially
ordered set.

A Multi-type Calculus for Inquisitive Logic 221

X ⊆ ↓f(X) and X ⊆ Y implies f∗(X) ⊆ ↓Y. (2)

We will need the following lemma in proof of the soundness of the rule KP
of the calculus to be introduced in Sect. 4.

Lemma 6. For all X, Y,Z,

↓X ⇒ (Y ∪ Z) ⊆ (↓X ⇒ Y) ∪ (↓X ⇒ Z);

Proof. Assume that W ∈ ↓X ⇒ (Y ∪ Z) and W /∈ ↓X ⇒ Z. Then W ′ ⊆ X
and W ′ /∈ Z for some W ′ ⊆ W . Hence W /∈ Z. To show that W ∈ ↓X ⇒ Y, let
Z ⊆ W ∩ X. Then by assumption, either Z ∈ Y or Z ∈ Z. However, W /∈ Z
implies that Z /∈ Z, and hence Z ∈ Y, as required. ��

The following lemma collects relevant properties of ↓.

Lemma 7. For all X,Y ∈ B,

(a) ↓⊥B = {∅} and ↓B = A;
(b) ↓(

⋂
i∈I Xi) =

⋂
i∈I ↓Xi;

(c) ↓(Xc ∪ Y) = (↓X) ⇒ (↓Y).

Proof. (a) Immediate.

(b) ↓(
⋂

i∈I Xi) = {Z | Z ⊆ ⋂
i∈I Xi}

= {Z | Z ⊆ Xi for all i ∈ I}
= {Z | Z ∈ ↓Xi for all i ∈ I}
=

⋂
i∈I(↓Xi).

(c) (↓X) ⇒ (↓Y) = {Z | for any W, if W ⊆ Z and W ⊆ X then W ⊆ Y }
= {Z | if Z ⊆ X then Z ⊆ Y }
= {Z | Z ⊆ Xc ∪ Y }
= ↓(Xc ∪ Y).

��

3.2 Multi-type Inquisitive Logic

The existence of the maps ↓, f and f∗ motivates the introduction of the following
language, whose formulas are given, by simultaneous recursion, in two types:
Flat and General:

Flat � α ::= p | 0 | α � α | α � α General � A ::= ↓α | A ∧ A | A ∨ A | A → A

Let ∼α and α � β abbreviate α � 0 and ∼α � β respectively. Recall that
the canonical assignment ·̂ : V → B is defined as p �→ p̂ := {v | v(p) = 1}.
This assignment can be extended to Flat-formulas as usual via the below-defined
homomorphic extension [[·]]

B
: Flat → B, which can, in turn, be composed with

↓ : B → A so as to yield a second homomorphic extension [[·]]
A

: General → A,
defined as below:

222 S. Frittella et al.

[[p]]
B

= p̂ [[↓α]]
A

= ↓[[α]]
B

[[0]]
B

= ∅ [[A ∨ B]]
A

= [[A]]
A

∪ [[B]]
A

[[α � β]]
B

= [[α]]
B

∩ [[β]]
B

[[A ∧ B]]
A

= [[A]]
A

∩ [[B]]
A

[[α � β]]
B

= ([[α]]
B
)c ∪ [[β]]

B
[[A → B]]

A
= [[A]]

A
⇒ [[B]]

A
.

[[α � β]]
B

= [[α]]
B

∪ [[β]]
B

As an immediate consequence of the above definitions and Lemma 7, we obtain
the following lemma.

Lemma 8. For all Flat-formulas α and β,

[[↓p]]
A

= ↓p̂ [[↓(α � β)]]
A

= ↓[[α]]
B

∩ ↓[[β]]
B

[[↓0]]
A

= {∅} [[↓(α � β)]]
A

= ↓[[α]]
B

⇒ ↓[[β]]
B
.

Let us now define the multi-type counterpart of the notion of flatness:

Definition 9. A formula A ∈ General is flat if for every team X,

X |= A iff {v} |= A for every v ∈ X.

Lemma 10. The following are equivalent for any A ∈ General:

1. A is flat
2. [[A]]

A
= ↓f([[A]]

A
)

Proof. By definition, A is flat iff [[A]]
A

= {X | f∗(X) ⊆ [[A]]
A
}. Moreover, the

following chain of identities holds:

{X | f∗(X) ⊆ [[A]]
A
}

= {X | X ⊆ f([[A]]
A
)} (Lemma 5)

= ↓f([[A]]
A
),

which completes the proof. ��
We are now in a position to define the following translation of InqL-formulas

into formulas of the multi-type language introduced above. CPL-formulas χ and
ξ will be translated into Flat-formulas via τc, and InqL-formulas φ and ψ into
General-formulas via τi as follows:

τc(p) = p τi(χ) = ↓τc(χ)
τc(0) = 0 τi(φ ∨ ψ) = τi(φ) ∨ τi(ψ)

τc(χ ∧ ξ) = τc(χ) � τc(ξ) τi(φ ∧ ψ) = τi(φ) ∧ τi(ψ)
τc(χ → ξ) = τc(χ) � τc(ξ) τi(φ → ψ) = τi(φ) → τi(ψ)

The translation above justifies the introduction of the following Hilbert-style
presentation of the logic which is the natural multi-type counterpart of InqL:

A Multi-type Calculus for Inquisitive Logic 223

Axioms:
(A1) CPL axiom schemata for Flat-formulas
(A2) IPL axiom schemata for General-formulas
(A3) (↓α → (A ∨ B)) → (↓α → A) ∨ (↓α → B)
(A4) ¬¬↓α → ↓α

Rule: Modus Ponens for both Flat-formulas and General-formulas.

4 Structural Sequent Calculus for Multi-type Inquisitive
Logic

In the present section, we introduce the structural calculus for our multi-type
inquisitive logic.

– Structural and operational languages of type Flat and General:

Flat General

α ::= p | 0 | α � α | α � α A ::= ↓α | A ∧ A | A ∨ A | A → A

Γ ::=α | Φ | Γ , Γ | Γ � Γ | FX X ::= A | ⇓Γ | F∗Γ | X ;X | X > X

– Interpretation of structural Flat connectives as their operational (i.e. logical)
counterparts:3

Structural symbols Φ , �
Operational symbols (1) 0 � (�) (�→) �

– Interpretation of structural General connectives as their operational counter-
parts:

Structural symbols ; >

Operational symbols ∧ ∨ (�) →
– Interpretation of multi-type connectives

Structural symbols F∗ F ⇓
Operational symbols (f∗) (f) (f) ↓ ↓

3 We follow the notational conventions introduced in [10], according to which each
structural connective in the upper row of the synoptic tables is interpreted as the
logical connective(s) in the two slots below it in the lower row. Specifically, each of
its occurrences in antecedent (resp. succedent) position is interpreted as the logical
connective in the left-hand (resp. right-hand) slot. Hence, for instance, the structural
symbol � is interpreted as classical implication � when occurring in succedent
position and as classical disimplication �→ (i.e. α �→ β := ∼α � β) when occurring in
antecedent position.

224 S. Frittella et al.

– Structural rules common to both types
Γ � α (Σ � Δ)[α]pre

Cut
(Σ � Δ)[Γ/α]pre

Γ , Δ � Σ
Flat res

Δ � Γ � Σ

Γ � Δ
Φ

Φ , Γ � Δ

Γ � Δ
Φ

Γ � Φ , Δ

Γ � Δ
W

Γ , Σ � Δ
Γ � Δ

W
Γ � Δ , Z

Γ , Γ � Δ
C

Γ � Δ

Γ � Δ , Δ
C

Γ � Δ

Γ , Δ � Σ
E

Δ , Γ � Σ

Γ � Δ , Σ
E

Γ � Σ , Δ

Γ , (Δ , Σ) � Π
A

(Γ , Δ) , Σ � Π

Γ � (Δ , Σ) , Π
A

Γ � Δ , (Σ , Π)

(Γ � Δ) , Σ � Π
G

Γ � (Δ , Σ) � Π

Π � (Γ � Δ) , Σ
G

Π � Γ � (Δ , Σ)

X � A A � Y
Cut

X � Y

X ; Y � Z
Gen res

Y � X > Z

X � Y⇓Φ ⇓Φ ; X � Y

X � Y ⇓Φ
X � ⇓Φ ; Y

X � Y
W

X ; Z � Y
X � Y

W
X � Y ; Z

X ; X � Y
C

X � Y

X � Y ; Y
C

X � Y

X ; Y � Z
E

Y ; X � Z

X � Y ; Z
E

X � Z ; Y

X ; (Y ; Z) � W
A

(X ; Y) ; Z � W

X � (Y ; Z) ; W
A

X � Y ; (Z ; W)

(X > Y) ; Z � W
G

X > (Y ; Z) � W

W � (X > Y) ; Z
G

W � X > (Y ; Z)

– Structural rules specific to the Flat type

Id
p� p

Π� Γ � (Δ ,Σ)
CG

Π� (Γ � Δ) ,Σ

– Structural rules governing the interaction between the two types:

F∗Γ �Δ f adj
Γ � FΔ

FX � Γ d adj
X � ⇓Γ

⇓FX � Y
d-f elim

X � Y

Γ � Δ balF∗Γ � ⇓Δ
Γ � Δ d mon⇓Γ � ⇓Δ

X � Y f monFX � FY

X � ⇓(Γ � Δ)
d dis

X � ⇓Γ > ⇓Δ

FX ,FY � Z
f dis

F(X ;Y) � Z

X � ⇓Γ > (Y ;Z) X � ⇓Γ > (Y ;Z)
KP

X � (⇓Γ > Y) ; (⇓Γ > Z)

– Introduction rules for pure-type logical connectives:

0� Φ
Γ � Φ
Γ � 0

A� X B � Y
A ∨ B � X ;Y

Z � A ;B
Z � A ∨ B

α , β � Γ
α � β � Γ

Γ � α Δ� β

Γ ,Δ � α � β

A ;B � Z

A ∧ B � Z
X � A Y � B

X ;Y � A ∧ B

Γ � α β � Δ
α � β � Γ � Δ

Γ � α � β

Γ � α � β
X � A B � Y
A → B � X > Y

Z � A > B
Z � A → B

A Multi-type Calculus for Inquisitive Logic 225

– Introduction rules for ↓:
⇓α � X

↓α � X

X � ⇓α

X � ↓α

5 Properties of the Calculus

In the present section, we discuss the soundness and completeness of the calculus
introduced in Sect. 4, as well as its being able to capture flatness syntactically.

5.1 Soundness and Completeness

As is typical of structural calculi, in order to prove the soundness of the rules,
structural sequents will be translated into operational sequents of the appro-
priate type, and operational sequents will be interpreted according to their
type. Specifically, each atomic proposition p ∈ V is assigned to the team
[[p]] := {v ∈ 2V | v(p) = 1}.

In order to translate structures as operational terms, structural connectives
need to be translated as logical connectives. To this effect, structural connectives
are associated with one or more logical connectives, and any given occurrence
of a structural connective is translated as one or the other according to its
(antecedent or succedent) position, as indicated in the synoptic tables at the
beginning of Sect. 4. This procedure is completely standard, and is discussed in
detail in [7,9,10].

Sequents A � B (resp. α � β) will be interpreted as inequalities (actually
inclusions) [[A]]

A
≤ [[B]]

A
(resp. [[α]]

B
≤ [[β]]

B
) in A (resp. B); rules (ai � bi | i ∈

I)/c � d will be interpreted as implications of the form “if [[ai]] ≤ [[bi]] for every
i ∈ I, then [[c]] ≤ [[d]]”. Following this procedure, it is easy to see that:

– the soundness of (d mon) and (f mon) follows from the monotonicity of the
semantic operations ↓ and f respectively (cf. discussion after Lemma 5);

– the soundness of (d-f elim) and (bal) follows from the observations in (2);
– the soundness of (d adj) and (f adj) follows from Lemma5;
– the soundness of (f dis) follows from the fact that the semantic operation f

distributes over intersections;
– the soundness of (d dis) follows from Lemma 7 (c);
– the soundness of (KP) follows from Lemma 6.

The proof of the soundness of the remaining rules is well known and is omitted.
To prove the completeness of our multi-type calculus, it suffices to prove that

the calculus derives (the translation of) all theorems of the multi-type inquisitive
logic defined in Sect. 3.2, which reduces to showing that the calculus derives (the
translation of) all axioms of the multi-type inquisitive logic. Since our calculus
contains all of the usual rules for CPL with respect to Flat-formulas, and all of
the usual rules for IPL with respect to General-formulas, all CPL axioms for
Flat-formulas and all IPL axioms for General-formulas can be derived by the
standard derivations. We provide the derivations for axiom (A3) in Appendix II
and axiom (A4) in Appendix I.

226 S. Frittella et al.

5.2 Syntactic Flatness Captured by the Calculus

Lemma 10 provided a semantic identification of flat General-formulas as those
the extension of which is in the image of the semantic ↓. The following lemma
provides a similar identification with syntactic means.

Lemma 11. If a formula is of the following shape

A ::=↓α | A ∧ A | A → A,

then A �� ↓α for some α.

Proof. Base case: A = ↓α.
α � α

⇓α � ⇓α

↓α � ⇓α

↓α � ↓α

Inductive case 1: A = B ∧ C = ↓β ∧ ↓γ by induction hypothesis.

α � α
α , β � α

α � β � α

⇓(α � β) � ⇓α

⇓(α � β) � ↓α

β � β

α , β � β

α � β � β

⇓(α � β) � ⇓β

⇓(α � β) � ↓β

⇓(α � β) ;⇓(α � β) � ↓α ∧ ↓β
⇓(α � β) � ↓α ∧ ↓β
↓(α � β) � ↓α ∧ ↓β

α � α
⇓α � ⇓α

↓α � ⇓α
d adj

F↓α � α

β � β

⇓β � ⇓β

↓β � ⇓β
d adj

F↓β � β

F↓α ,F↓β � α � β
f dis

F(↓α ; ↓β) � α � β

↓α ; ↓β � ⇓(α � β)
↓α ; ↓β � ↓(α � β)

↓α ∧ ↓β � ↓(α � β)

Inductive case 2: A = B → C = ↓β → ↓γ by induction hypothesis.
α � α

⇓α � ⇓α

↓α � ⇓α
d adj

F↓α � α β � β

α � β � F↓α � β

⇓(α � β) � ⇓(F↓α � β)
↓(α � β) � ⇓(F↓α � β)

F↓(α � β) � F↓α � β

F↓α ,F↓(α � β) � β
f dis

F(↓α ; ↓(α � β)) � β
d adj↓α ; ↓(α � β) � ⇓β

↓α ; ↓(α � β) � ↓β

↓(α � β) � ↓α > ↓β

↓(α � β) � ↓α → ↓β

α � α
⇓α � ⇓α

⇓α � ↓α

β � β

⇓β � ⇓β

↓β � ⇓β

↓α → ↓β � ⇓α > ⇓β

↓α → ↓β � ⇓(α � β)
d adj

F(↓α → ↓β) � α � β

F(↓α → ↓β) � α � β
d adj↓α → ↓β � ⇓(α � β)

↓α → ↓β � ↓(α � β)

��

A Multi-type Calculus for Inquisitive Logic 227

6 Cut Elimination

In the present section, we prove that the calculus introduced in Sect. 4 enjoys cut
elimination and subformula property. Perhaps the most important feature of this
calculus is that its cut elimination does not need to be proved by brute-force, but
can rather be inferred from a Belnap-style cut elimination meta-theorem, proved
in [8], which holds for the so called proper multi-type calculi, the definition of
which is reported below.

6.1 Cut Elimination Meta-Theorem for Proper Multi-type Calculi

Theorem 12 (cf. [8, Theorem 4.1]). Every proper multi-type calculus enjoys cut
elimination and subformula property.

Proper multi-type calculi are those satisfying the following list of conditions:

C1: Preservation of operational terms. Each operational term occurring in a
premise of an inference rule inf is a subterm of some operational term in the
conclusion of inf.

C2: Shape-alikeness of parameters. Congruent parameters (i.e. non-active
terms in the application of a rule) are occurrences of the same structure.

C ′
2: Type-alikeness of parameters. Congruent parameters have exactly the

same type. This condition bans the possibility that a parameter changes type
along its history.

C3: Non-proliferation of parameters. Each parameter in an inference rule inf
is congruent to at most one constituent in the conclusion of inf.

C4: Position-alikeness of parameters. Congruent parameters are either all
precedent or all succedent parts of their respective sequents. In the case of calculi
enjoying the display property, precedent and succedent parts are defined in the
usual way (see [2]). Otherwise, these notions can still be defined by induction on
the shape of the structures, by relying on the polarity of each coordinate of the
structural connectives.

C ′
5: Quasi-display of principal constituents. If an operational term a is prin-

cipal in the conclusion sequent s of a derivation π, then a is in display, unless π
consists only of its conclusion sequent s (i.e. s is an axiom).

C ′′
5 : Display-invariance of axioms. If a is principal in an axiom s, then a can

be isolated by applying Display Postulates and the new sequent is still an axiom.

C ′
6: Closure under substitution for succedent parts within each type. Each rule

is closed under simultaneous substitution of arbitrary structures for congruent
operational terms occurring in succedent position, within each type.

C ′
7: Closure under substitution for precedent parts within each type. Each rule

is closed under simultaneous substitution of arbitrary structures for congruent
operational terms occurring in precedent position, within each type.

228 S. Frittella et al.

C ′
8: Eliminability of matching principal constituents. This condition requests

a standard Gentzen-style checking, which is now limited to the case in which both
cut formulas are principal, i.e. each of them has been introduced with the last
rule application of each corresponding subdeduction. In this case, analogously
to the proof Gentzen-style, condition C′

8 requires being able to transform the
given deduction into a deduction with the same conclusion in which either the
cut is eliminated altogether, or is transformed in one or more applications of
the cut rule, involving proper subterms of the original operational cut-term. In
addition to this, specific to the multi-type setting is the requirement that the
new application(s) of the cut rule be also type-uniform (cf. condition C′

10 below).

C ′′′
8 : Closure of axioms under surgicalcut. If (x � y)([a]pre, [a]suc), a � z[a]suc

and v[a]pre � a are axioms, then (x � y)([a]pre, [z/a]suc) and (x �
y)([v/a]pre, [a]suc) are again axioms.

C9: Type-uniformity of derivable sequents. Each derivable sequent is type-
uniform.4

C ′
10: Preservation of type-uniformity of cut rules. All cut rules preserve

type-uniformity.

6.2 Cut Elimination for the Structural Calculus for Multi-type
Inquisitive Logic

To show that the calculus defined in Sect. 4 enjoys cut elimination and subfor-
mula property, it is sufficent to show that it is a proper multi-type calculus,
i.e., that verifies every condition in the list above. All conditions except C′

8 are
readily satisfied by inspection on the rules of the calculus. In what follows we
verify C′

8.
Condition C′

8 requires to check the cut elimination when both cut formulas
are principal. Since principal formulas are always introduced in display, it is
sufficent to show that applications of standard (rather than surgical) cuts can
be either eliminated or replaced with (possibly surgical) cuts on formulas of
strictly lower complexity.

Constant:

... π1

Γ � Φ
Γ � 0 0� Φ

Γ � Φ �

... π1

Γ � Φ

Propositional variable:

p� p p � p

p� p � p� p

4 A sequent x � y is type-uniform if x and y are of the same type.

A Multi-type Calculus for Inquisitive Logic 229

Classical conjunction �:

... π1

Γ � α

... π2

Δ� β

Γ ,Δ � α � β

... π3

α , β � Λ
α � β � Λ

Γ ,Δ � Λ �

... π1

Γ � α

... π2

Δ� β

... π3

α , β � Λ
β � α > Λ

Δ� α > Λ
α ,Δ � Λ
Δ , α � Λ

α � Δ > Λ
Γ � Δ > Λ

Δ ,Γ � Λ
Γ ,Δ � Λ

The cases for �, ∧, ∨, → are standard and similar to the one above.

Downarrow ↓:

... π1

X � ⇓α

X � ↓α

... π2

⇓α � Y

↓α � Y

X � Y �

... π1

X � ⇓α

FX � α

... π2

⇓α � Y

⇓FX � Y

X � Y

7 Conclusion

The calculus introduced in the present paper is not a standard display calculus.
This is due to the fact that, according to the order-theoretic analysis we gave,
the axiom (A3) is not analytic inductive in the sense of [11]. Hence, it is not
possible to give a proper display calculus to the axiomatization of the multi-type
inquisitive logic introduced in Sect. 3.2. In order to encode the (A3) axiom by
means of a structural rule, we made the non standard choice of allowing the
structural counterpart of ↓ in antecedent position, notwithstanding the fact that
it is not a left adjoint. As a consequence, the display property does not hold for
the calculus introduced in the present paper. However, a generalization of the
Belnap-style cut elimination meta-theorem holds and applies to it.

Further directions of research will address the problem of extending this
calculus to propositional dependence logic.

Acknowledgements. This research has been made possible by the NWO Vidi grant
016.138.314, by the NWO Aspasia grant 015.008.054, and by a Delft Technology
Fellowship awarded in 2013.

230 S. Frittella et al.

Appendix I

The derivation of (A3) (↓α → (A ∨ B)) → (↓α → A) ∨ (↓α → B):

α � α
d mon⇓α � ⇓α

↓α � ⇓α
B � B C � C

B ∨ C � B ; C

↓α → (B ∨ C) � ⇓α > (B ; C)

α � α
d mon⇓α � ⇓α

↓α � ⇓α
B � B C � C

B ∨ C � B ; C

↓α → (B ∨ C) � ⇓α > (B ; C)
KP↓α → (B ∨ C) � (⇓α > B) ; (⇓α > C)

(⇓α > B) > ↓α → (B ∨ C) � ⇓α > C

⇓α ; ((⇓α > B) > ↓α → (B ∨ C)) � C

((⇓α > B) > ↓α → (B ∨ C)) ; ⇓α � C

⇓α � ((⇓α > B) > ↓α → (B ∨ C)) > C

↓α � ((⇓α > B) > ↓α → (B ∨ C)) > C

((⇓α > B) > ↓α → (B ∨ C)) ; ↓α � C

↓α ; ((⇓α > B) > ↓α → (B ∨ C)) � C

(⇓α > B) > ↓α → (B ∨ C) � ↓α > C

(⇓α > B) > ↓α → (B ∨ C) � ↓α → C

↓α → (B ∨ C) � (⇓α > B) ; ↓α → C

↓α → (B ∨ C) � ↓α → C ; (⇓α > B)

↓α → C > ↓α → (B ∨ C) � ⇓α > B

⇓α ; (↓α → C > ↓α → (B ∨ C)) � B

(↓α → C > ↓α → (B ∨ C)) ; ⇓α � B

⇓α � (↓α → C > ↓α → (B ∨ C)) > B

↓α � (↓α → C > ↓α → (B ∨ C)) > B

(↓α → C > ↓α → (B ∨ C)) ; ↓α � B

↓α ; (↓α → C > ↓α → (B ∨ C)) � B

↓α → C > ↓α → (B ∨ C) � ↓α > B

↓α → C > ↓α → (B ∨ C) � ↓α → B

↓α → (B ∨ C) � ↓α → C ; ↓α → B

↓α → (B ∨ C) � ↓α → B ; ↓α → C

↓α → (B ∨ C) � (↓α → B) ∨ (↓α → C)

A Multi-type Calculus for Inquisitive Logic 231

Appendix II

The derivation of (A4) ¬¬↓α → ↓α:

α � α
α � 0 , α

α ,Φ � 0 , α

Φ� α � (0 , α)
CG

Φ� (α � 0) , α

Φ� α , (α � 0)
α � Φ � α � 0

⇓(α � Φ) � ⇓(α � 0)
d dis⇓(α � Φ) � ⇓α > ⇓0

⇓α ;⇓(α � Φ) � ⇓0
⇓α ;⇓(α � Φ) � ↓0
⇓(α � Φ) ;⇓α � ↓0

⇓α � ⇓(α � Φ) > ↓0
↓α � ⇓(α � Φ) > ↓0

⇓(α � Φ) ; ↓α � ↓0
↓α ;⇓(α � Φ) � ↓0

⇓(α � Φ) � ↓α > ↓0
⇓(α � Φ) � ↓α → ↓0

def⇓(α � Φ) � ¬↓α

0� Φ d mon⇓0 � ⇓Φ
↓0 � ⇓Φ

¬↓α → ↓0 � ⇓(α � Φ) > ⇓Φ
def ¬¬↓α � ⇓(α � Φ) > ⇓Φ

d dis¬¬↓α � ⇓((α � Φ) � Φ)
d adj

F¬¬↓α � (α � Φ) � Φ
(α � Φ) ,F¬¬↓α � Φ

G
α � (Φ ,F¬¬↓α) � Φ

Φ ,F¬¬↓α � α ,Φ
F¬¬↓α � α ,Φ
F¬¬↓α � α

d adj¬¬↓α � ⇓α

¬¬↓α � ↓α

232 S. Frittella et al.

References

1. Abramsky, S., Väänänen, J.: From IF to BI. Synthese 167(2), 207–230 (2009)
2. Belnap, N.: Display logic. J. Philos. Logic 11, 375–417 (1982)
3. Ciardelli, I.: Questions in Logic. Ph.D. thesis, University of Amsterdam (2016)
4. Ciardelli, I.: Dependency as question entailment. In: Vollmer, H., Abramsky, S.,

Kontinen, J., Väänänen, J. (eds.) Dependence Logic: Theory and Application,
Progress in Computer Science and Applied Logic. Birkhauser (2016, to appear)

5. Ciardelli, I., Roelofsen, F.: Inquisitive logic. J. Philos. Logic 40(1), 55–94 (2011)
6. Frittella, S., Greco, G., Kurz, A., Palmigiano, A.: Multi-type display calculus for

propositional dynamic logic. J. Logic Comput. exu064v1-exu064 (2014). Special
Issue on Substructural Logic and Information Dynamics

7. Frittella, S., Greco, G., Kurz, A., Palmigiano, A., Sikimić, V.: A multi-type display
calculus for dynamic epistemic logic. J. Logic Comput. exu068v1-exu068 (2014).
Special Issue on Substructural Logic and Information Dynamics

8. Frittella, S., Greco, G., Kurz, A., Palmigiano, A., Sikimić, V.: Multi-type sequent
calculi. In: Zawidzki, M., Indrzejczak, A., Kaczmarek, J. (eds.) Trends in Logic
XIII, pp. 81–93. Lodź University Press, �Lódź (2014)

9. Frittella, S., Greco, G., Kurz, A., Palmigiano, A., Sikimić, V.: A proof-theoretic
semantic analysis of dynamic epistemic logic. J. Logic Comput. exu063v2-exu063
(2015). Special Issue on Substructural Logic and Information Dynamics

10. Greco, G., Kurz, A., Palmigiano, A.: Dynamic epistemic logic displayed. In: Huang,
H., Grossi, D., Roy, O. (eds.) LORI. LNCS, vol. 8196, pp. 135–148. Springer,
Heidelberg (2013)

11. Greco, G., Ma, M., Palmigiano, A., Tzimoulis, A., Zhao, Z.: Unified correspondence
as a proof-theoretic tool. J. Logic Comput. (forthcoming)

12. Groenendijk, J.: Inquisitive semantics: two possibilities for disjunction. In: Bosch,
P., Gabelaia, D., Lang, J. (eds.) TbiLLC 2007. LNCS, vol. 5422, pp. 80–94.
Springer, Heidelberg (2009)

13. Groenendijk, J., Roelofsen, F.: Inquisitive semantics and pragmatics. In: Larraz-
abal, J.M., Zubeldia, L. (eds.) Meaning, Content, and Argument: Proceedings of
the ILCLI International Workshop on Semantics, Pragmatics, and Rhetoric, pp.
41–72. University of the Basque Country Publication Service, May 2009

14. Hodges, W.: Compositional semantics for a language of imperfect information.
Logic J. IGPL 5, 539–563 (1997)

15. Hodges, W.: Some strange quantifiers. In: Mycielski, J., Rozenberg, A., Salomaa,
A. (eds.) Structures in Logic and Computer Science: A Selection of Essays in Honor
of A. Ehrenfeucht. LNCS, vol. 1261, pp. 51–65. Springer, Heidelberg (1997)

16. Kreisel, G., Putnam, H.: Eine Unableitbarkeitsbeweismethode für den intu-
itionistischen Aussagenkalkül. Archiv für Mathematische Logik und Grundlagen-
forschung 3, 74–78 (1957)

17. Maksimova, L.: On maximal intermediate logics with the disjunction property.
Stud. Logica 45(1), 69–75 (1986)

18. Mascarenhas, S.: Inquisitive semantics and logic. Master’s thesis, University of
Amsterdam (2009)

19. Medvedev, J.T.: Finite problems. Sov. Math. Dokl. 3(1), 227–230 (1962)
20. Roelofsen, F.: Algebraic foundations for the semantic treatment of inquisitive con-

tent. Synthese 190, 79–102 (2013)
21. Sano, K.: Sound and complete tree-sequent calculus for inquisitive logic. In: The

Sixteenth Workshop on Logic, Language, Information, and Computation (2009)

A Multi-type Calculus for Inquisitive Logic 233

22. Väänänen, J.: Dependence Logic: A New Approach to Independence Friendly
Logic. Cambridge University Press, Cambridge (2007)

23. Yang, F.: On Extensions and Variants of Dependence Logic. Ph.D. thesis, Univer-
sity of Helsinki (2014)

24. Yang, F., Väänänen, J.: Propositional logics of dependence. Ann. Pure Appl. Logic
167(7), 557–589 (2016)

A Model-Theoretic Characterization
of Constant-Depth Arithmetic Circuits

Anselm Haak and Heribert Vollmer(B)

Institut für Theoretische Informatik, Leibniz Universität Hannover,
Hannover, Germany

{haak,vollmer}@thi.uni-hannover.de

Abstract. We study the class #AC0 of functions computed by constant-
depth polynomial-size arithmetic circuits of unbounded fan-in addition
and multiplication gates. No model-theoretic characterization for arith-
metic circuit classes is known so far. Inspired by Immerman’s character-
ization of the Boolean class AC0, we remedy this situation and develop
such a characterization of #AC0. Our characterization can be interpreted
as follows: Functions in #AC0 are exactly those functions counting win-
ning strategies in first-order model checking games. A consequence of
our results is a new model-theoretic characterization of TC0, the class of
languages accepted by constant-depth polynomial-size majority circuits.

1 Introduction

Going back to questions posed by Heinrich Scholz and Günter Asser in the early
1960s, Ronald Fagin [6] laid the foundations for the areas of finite model theory
and descriptive complexity theory. He characterized the complexity class NP as
the class of those languages that can be defined in predicate logic by existential
second-order sentences: NP = ESO. His result is the cornerstone of a wealth of
further characterizations of complexity classes, cf. the monographs [5,11,12].

Fagin’s Theorem has found a nice generalization: Considering first-order for-
mulae with a free relational variable, instead of asking if there exists an assign-
ment to this variable that makes the formula true (ESO), we now ask to count
how many assignments there are. In this way, the class #P is characterized:
#P = #FO [13].

But also “lower” complexity classes, defined by families of Boolean circuits,
have been considered in a model-theoretical way. Most important for us is the
characterization of the class AC0, the class of languages accepted by families
of Boolean circuits of unbounded fan-in, polynomial size and constant depth,
by first-order formulae. This correspondence goes back to Immerman and his
co-authors [2,10], but was somewhat anticipated by [8]. Informally, this may be
written as AC0 = FO; and there are two ways to make this formally correct—
a non-uniform one: AC0 = FO[Arb], and a uniform one: FO-uniform AC0 =
FO[+,×] (for details, see below).

Supported by DFG grant VO 630/8-1.

c© Springer-Verlag Berlin Heidelberg 2016
J. Väänänen et al. (Eds.): WoLLIC 2016, LNCS 9803, pp. 234–248, 2016.
DOI: 10.1007/978-3-662-52921-8 15

A Model-Theoretic Characterization of Constant-Depth Arithmetic Circuits 235

In the same way as #P can be seen as the counting version of NP, there is
a counting version of AC0, namely #AC0, the class of those functions counting
accepting proof-trees of AC0-circuits. A proof-tree is a minimal sub-circuit of
the original circuit witnessing that it outputs 1. Equivalently, #AC0 can be
characterized as those functions computable by polynomial-size constant-depth
circuits with unbounded fan-in + and × gates (and Boolean inputs); for this
reason we also speak of arithmetic circuit classes.

For such arithmetic classes, no model-theoretic characterization is known so
far. Our rationale is as follows: A Boolean circuit accepts its input if it has at
least one proof-tree. An FO-formula (w.l.o.g. in prenex normal form) holds for a
given input if there are Skolem functions determining values for the existentially
quantified variables, depending on those variables quantified to the left. By estab-
lishing a one-one correspondence between proof-trees and Skolem functions, we
show that the class #AC0, defined by counting proof-trees, is equal to the class
of functions counting Skolem functions, or, alternatively, winning-strategies in
first-order model-checking games: AC0 = #Skolem-FO = #Win-FO. We prove
that this equality holds in the non-uniform as well as in the uniform setting.

It seems a natural next step to allow first-order formulae to “talk” about
winning strategies, i.e., allow access to #Win-FO-functions (like to an oracle).
We will prove that in doing so, we obtain a new model-theoretic characterization
of the circuit class TC0 of polynomial-size constant-depth MAJORITY circuits.

This paper is organized as follows: In the upcoming section, we will intro-
duce the relevant circuit classes and logics, and we state characterizations of
the former by the latter known from the literature. We will also recall arith-
metic circuit classes and define our logical counting classes #Skolem-FO and
#Win-FO. Section 3 proves our characterization of non-uniform #AC0, while
Sect. 4 proves our characterization of uniform #AC0. Section 5 presents our new
characterization of the circuit class TC0. Finally, Sect. 6 concludes with some
open questions.

Due to space restrictions, many proofs have to be omitted and will be given
in the full paper.

2 Circuit Classes, Counting Classes, and Logic

2.1 Non-uniform Circuit Classes

A relational vocabulary is a tuple σ = (Ra1
1 , . . . , Rak

k), where Ri are relation
symbols and ai their arities, 1 ≤ i ≤ k. We define first-order formulae over
σ as usual (see, e.g., [5,11]). First-order structures fix the set of elements (the
universe) as well as interpretations for the relation symbols in the vocabulary.
Semantics is defined as usual. For a structure A, |A| denotes its universe. We
only consider finite structures here, which means their universes are finite.

Since we want to talk about languages accepted by Boolean circuits, we will
use the vocabulary

τstring = (≤2, S1)

236 A. Haak and H. Vollmer

of binary strings. A binary string is represented as a structure over this vocab-
ulary as follows: Let w ∈ {0, 1}∗ with |w| = n. Then the structure representing
this string has universe {0, . . . , n−1}, ≤2 is interpreted as the ≤-relation on the
natural numbers and x ∈ S, iff the x’th bit of w is 1. The structure correspond-
ing to string w will be called Aw. Vice versa, structure Aw is simply encoded by
w itself: The bits define which elements are in the S-relation—the universe and
the order are implicit. This encoding can be generalized to binary encodings of
arbitrary σ-structures A. We will use the notation encσ(A) for such an encoding.

A Boolean circuit C is a directed acyclic graph (dag), whose nodes (also called
gates) are marked with either a Boolean function (in our case ∧ or ∨), a constant
(0 or 1), or a (possibly negated) query of a particular position of the input. Also,
one gate is marked as the output gate. On any input x, a circuit computes a
Boolean function fC by evaluating all gates according to what they are marked
with. The value of the output gate gives then the result of the computation of
C on x, i.e., fC(x).

A single circuit computes only a finite Boolean function. When we want
circuits to work on different input lengths, we have to consider families of circuits:
A family contains one circuit for any input length n ∈ N. Families of circuits
allow us to talk about languages being accepted by circuits: A circuit family
C = (Cn)n∈N is said to accept (or decide) the language L, if it computes its
characteristic function cL:

C|x|(x) = cL(x) for all x.

Since we will describe Boolean circuits by FO-formulae, we define the vocab-
ulary

τcirc = (E2, G1
∧, G1

∨, B1, r1),

the vocabulary of Boolean circuits. The relations are interpreted as follows:

– E(x, y): y is a child of x
– G∧(x): gate x is an and-gate
– G∨(x): gate x is an or-gate
– B(x): Gate x is a true leaf of the circuit
– r(x): x is the root of the circuit

The definition from [11] is more general because it allows negations to occur
arbitrary in a circuit. Here we only consider circuits in negation normal form,
i.e., negations are only applied to input bits. This restriction is customary for
arithmetic circuits like for the class #AC0 to be defined below.

The complexity classes in circuit complexity are classes of languages that can
be decided by circuit families with certain restrictions on their depth or size. The
depth here is the length of a longest path from any input gate to the output gate
of a circuit and the size is the number of non-input gates in a circuit. Depth and
size of a circuit family are defined as functions accordingly.

Definition 1. The class AC0 is the class of all languages decidable by Boolean
circuit families of constant depth and polynomial size.

A Model-Theoretic Characterization of Constant-Depth Arithmetic Circuits 237

In this definition we do not have any restrictions on the computability of the
function n �→ 〈Cn〉, i.e., the function computing (an encoding of) the circuit for
a given input length. This phenomenon is referred to as non-uniformity, and it
leads to undecidable problems in AC0. In first-order logic there is a class that
has a similar concept, the class FO[Arb], to be defined next.

For arbitrary vocabularies τ , we consider formulae over τstring∪τ and our input
structures will always be τstring-structures Aw for a string w ∈ {0, 1}∗. To eval-
uate a formula we additionally specify a (non-uniform) family I = (In)n∈N of
interpretations of the relation symbols in τ . For Aw and I as above we now eval-
uate Aw �I ϕ by using the universe of Aw and the interpretations from both Aw

and I|w|. The language defined by a formula ϕ and a family of interpretations I is

LI(ϕ) =def {w ∈ {0, 1}∗ | Aw �I ϕ}
This leads to the following definition of FO[Arb] (equivalent to the one given in
[14]):

Definition 2. A language L is in FO[Arb], if there are an arbitrary vocabulary τ ,
a first-order sentence ϕ over τstring ∪τ and a family I = (In)n∈N of interpretations
of the relation symbols in τ such that:

LI(ϕ) = L

It is known that the circuit complexity class AC0 and the model theoretic class
FO[Arb] are in fact the same:

Theorem 3 (see, e.g., [14]). AC0 = FO[Arb].

2.2 Uniform Circuit Classes

As already stated, non-uniform circuits are able to solve undecidable problems,
even when restricting size and depth of the circuits dramatically. Thus, the non-
uniformity somewhat obscures the real complexity of problems. There are different
notions of uniformity to deal with this problem: The computation of the circuit
C|x| from x must be possible within certain bounds, e.g. polynomial time, loga-
rithmic space, logarithmic time. Since we are dealing with FO-formulae, the type
of uniformity we will need is first-order uniformity, to be defined in this section.

In the logical languages, “uniformity” means we now remove the non-uniform
family of interpretations from the definition of FO[Arb], and replace it with two
special symbols for arithmetic, a 3-ary relation + (with the intended interpreta-
tion +(i, j, k) iff i+j = k) and a 3-ary relation × (with the intended interpretation
×(i, j, k) iff i · j = k).

Definition 4. A language L is in FO[+,×], if there is a first-order sentence ϕ over
τstring ∪ {+,×} such that

Aw �I ϕ ⇔ w ∈ L,

where I interprets + and × in the intended way.

238 A. Haak and H. Vollmer

In the circuit world, as mentioned, “uniformity” means we can access from
any given input structure Aw also the circuit C|w|. The way we achieve this is via
FO-interpretations.

In the following, for any vocabulary σ, STRUC[σ] denotes the set of all struc-
tures over σ.

Definition 5. Let σ, τ be vocabularies, τ = (Ra1
1 , . . . , Rar

r), and let k ∈ N. A
first-order interpretation (or FO-interpretation)

I : STRUC[σ] → STRUC[τ]

is given by a tuple of FO-formulae ϕ0, ϕ1, . . . , ϕr over the vocabulary σ. ϕ0 has
k free variables and ϕi has k · ai free variables for all i ≥ 1. For each structure
A ∈ STRUC[σ], these formulae define the structure

I(A) =
(|I(A)|, RI(A)

1 , . . . , RI(A)
r

) ∈ STRUC[τ],

where the universe is defined by ϕ0 and the relations are defined by ϕ1, . . . , ϕr in
the following way:

|I(A)| =
{〈b1, . . . , bk〉 ∣

∣ A � ϕ0(b1, . . . , bk)
}

and

R
I(A)
i =

{
(〈b11, . . . , bk

1〉, . . . , 〈b1ai
, . . . , bk

ai
〉) ∈ |I(A)|ai

∣
∣ A � ϕi(b11, . . . , b

k
ai

)
}

The name FO-interpretations was used, e.g., in [4]. Sometimes they are also
referred to as first-order queries, see, e.g., [11]. They are not to be confused with
interpretations of relation symbols as in Sect. 2.1. It is customary to use the same
symbol I in both cases.

Analogously, FO[+,×]-interpretations are interpretations given by tuples of
FO[+,×]-formulae.

Definition 6. A circuit family C = (Cn)n∈N is said to be FO[+,×]-uniform if
there is an FO[+,×]-interpretation

I : STRUC[τstring] → STRUC[τcirc]

mapping from an input word w given as a structure Aw over τstring to the circuit
C|w| given as a structure over the vocabulary τcirc.

Now we can define the FO-uniform version of AC0:

Definition 7. FO[+,×]-uniform AC0 is the class of all languages that can be
decided by FO[+,×]-uniform AC0 circuit families.

Thus, if C = (Cn)n∈N is an FO[+,×]-uniform circuit family, we can define from
any given input structure Aw also the circuit C|w| in a first-order way.

Interestingly, uniform AC0 coincides with FO with built-in arithmetic:

Theorem 8 (see, e.g., [11]). FO[+,×]-uniform AC0 = FO[+,×].

Alternatively, we can replace + and × in the above theorem by the binary
symbol BIT with the meaning BIT(i, j) iff the ith bit in the binary representation
of j is 1, see also [11].

A Model-Theoretic Characterization of Constant-Depth Arithmetic Circuits 239

2.3 Counting Classes

Building on the previous definitions we want to define next counting classes. The
objects counted on circuits are proof trees: A proof tree is a minimal subtree show-
ing that a circuit evaluates to true for a given input. For this, we first unfold the
given circuit into tree shape, and we further require that it is in negation normal
form. A proof tree then is a tree we get by choosing for any ∨-gate exactly one
child and for any ∧-gate all children, such that every leaf which we reach in this
way is a true literal.

Now, #AC0 is the class of functions that “count proof trees of AC0 circuits”:

Definition 9. (FO[+,×]-uniform) #AC0 is the class of all functions
f : {0, 1}∗ → N for which there is a (FO[+,×]-uniform) circuit family C =
(Cn)n∈N such that for any word x, f(x) equals the number of proof trees of C|x|(x).

It is the aim of this paper to give model-theoretic characterizations of these
classes. The only model-theoretic characterization of a counting class that we are
aware of is the following: In [13], a counting version of FO was defined, inspired by
Fagin’s characterization of NP: Functions in this class count assignments to free
relational variables in FO-formulas. However, it is known that #P = #FO, i.e.,
this counting version of FO coincides with the much higher counting class #P of
functions counting accepting paths of nondeterministic polynomial-time Turing
machines. It is known that #AC0

� #P. Thus, we need some weaker notion of
counting.

Suppose we are given a τstring-formula ϕ in prenex normal form,

ϕ � ∃y1∀z1∃y2∀z2 . . . ∃yk−1∀zk−1∃yk ψ(y, z)

for quantifier-free ψ. If we want to satisfy ϕ in a word model Aw, we have to find an
assignment for y1 such that for all z1 we have to find an assignment for y2 . . . such
that ψ with the chosen variables holds in Aw. Thus, the number of ways to satisfy
φ consists in the number of picking the suitable yi, depending on the universally
quantified variables to the left, such that ψ holds, in other words, the number of
Skolem functions for the existentially quantified variables.

Definition 10. A function g : {0, 1}∗ → N is in the class #Skolem-FO[Arb] if
there is a vocabulary τ , a sequence of interpretations I = (In)n∈N for τ and a
first-order sentence ϕ over τstring ∪ τ in prenex normal form

ϕ � ∃y1∀z1∃y2∀z2 . . . ∃yk−1∀zk−1∃yk ψ(y, z)

such that for all w ∈ {0, 1}∗, g(w) is equal to the number of tuples (f1, . . . , fk) of
functions such that

Aw �I ∀z1 . . . ∀zk−1 ψ(f1, f2(z1), . . . , fk(z1, . . . , zk−1), z1, . . . , zk−1)}

This means that #Skolem-FO[Arb] contains those functions that, for a fixed
FO-formula, map an input w to the number of Skolem functions on Aw.

240 A. Haak and H. Vollmer

A different view on this counting class is obtained by recalling the well-known
game-theoretic approach to first-order model checking: Model checking for FO-
formulae (in prenex normal form) can be characterized using a two player game:
The verifier wants to show that the formula evaluates to true, whereas the falsifier
wants to show that it does not. For each quantifier, one of the players chooses an
action: For an existential quantifier, the verifier chooses which element to take
(because he needs to prove that there is an element). For a universal quantifier,
the falsifier chooses which element to take (because he needs to prove that there is
a choice falsifying the formula following after the quantifier). When all quantifiers
have been addressed, it is checked whether the quantifier-free part of the formula is
true or false. If it is true, the verifier wins. Else, the falsifier wins. Now the formula
is fulfilled by a given model, iff there is a winning strategy (for the verifier).

Definition 11. A function f is in #Win-FO[Arb], if there are a vocabulary τ ,
a sequence of interpretations I = (In)n∈N for τ and a first-order sentence ϕ in
prenex normal form over τstring ∪ τ such that for all w ∈ {0, 1}∗, f(w) equals the
number of winning strategies for the verifier in the game for Aw �I ϕ.

The correspondence between Skolem functions and winning strategies has
been observed in far more general context, see, e.g., [7]. In our case, this means
that

#Skolem-FO[Arb] = #Win-FO[Arb].

Analogously we define the uniform version (where we only state using the
notion of the model checking games):

Definition 12. A function f is in #Win-FO[+,×], if there is a first-order sen-
tence ϕ in prenex normal form over τstring ∪ {+,×} such that for all w ∈ {0, 1}∗,
f(w) equals the number of winning strategies for the verifier in the game for
Aw �I ϕ, where I interprets + and × in the intended way.

We will use #Win(ϕ,A, I) (#Win(ϕ,A), resp.) to denote the number of win-
ning strategies for ϕ evaluated on the structure A and the interpretation I (the
structure A and the intended interpretation of + and ×, resp.).

In the previous two definitions we could again have replaced + and × by BIT.
In the main result of this paper, we will show that the thus defined logical

counting classes equal the previously defined counting classes for constant-depth
circuits.

3 AModel-Theoretic Characterization of #AC0

We first note that there is a sort of a closed formula for the number of winning
strategies of FO-formulae on given input structures:

Lemma 13. Let τ1, τ2 be vocabularies and I an interpretation of τ2. Let ϕ be an
FO-formula in prenex normal form over the vocabulary τ1 ∪ τ2 of the form

A Model-Theoretic Characterization of Constant-Depth Arithmetic Circuits 241

ϕ � Q1x1 . . . Qnxnψ,

where Qi ∈ {∃,∀}.
Let A be a τ1-structure and I a sequence of interpretations for τ2 . Then the number
of winning strategies of A �I ϕ is the following:

#Win(ϕ,A, I) = Δ1Δ2 · · · Δn([A �I ϕ(a1 . . . an)]),

where

Δi =

⎧
⎪⎨

⎪⎩

∑

ai∈|A|
, if Qi = ∃

∏

ai∈|A|
, if Qi = ∀

and [A �I ϕ(a1, . . . , an)] is interpreted as either 0 or 1 depending on its truth value.

In the uniform case, #Win(ϕ,A) is the special case of #Win(ϕ,A, I) where I
interprets + and × in the intended way.

Our main theorem can now be stated as follows:

Theorem 14. #AC0 = #Win-FO[Arb]

The rest of this section is devoted to a proof of this theorem.

Proof. ⊆: Let f be a function in #AC0 and C = (Cn)n∈N a AC0-circuit witnessing
this. Assume that all Cn are already trees and all leaves have the same depth (the
latter can be achieved easily by adding and-gates with only one input). Also, we
can assume that the circuit always uses and- and or-gates alternating beginning
with an and-gate in the root. This can be achieved by doubling the depth of the
circuit: For every layer of the old circuit we use an and-gate followed by an or-
gate. If the original gate in that layer was an and-gate, we just put an (one-input)
or-gate on top of every child and connect those or-gates to the and-gate. If the
original gate in that layer was an or-gate, we put an and-gate above it with the
or-gate as its only child.

Let w ∈ {0, 1}∗ be an input, r be the root of C|w| and k the depth of Cn for all
n. The value f(w) can be given as follows:

f(w) =
∏

y1 is a
child of r

∑

y2 is a
child of y1

· · · ©
yk is a

child of yk−1

{
1 , if yk is a true literal
0 , if yk is a false literal

,

where © =

{∏
, if k is odd,

∑
, if k is even.

We will now build an FO-sentence ϕ over τstring ∪ τcirc such that for any input
w ∈ {0, 1}∗, the number of winning strategies to verify Aw �C ϕ equals the num-
ber of proof trees of the circuit C|w| on input w. Note that the circuit family C as
a τcirc-structure can directly be used as the non-uniform family of interpretations

242 A. Haak and H. Vollmer

for the evaluation of ϕ. Since only one universe is used for evaluation and it is
determined by the input structure Aw, the gates in this τcirc-structure have to be
tuples of variables ranging over the universe of Aw. To simplify the presentation,
we assume in the following that we do not need tuples—a single element of the
universe already corresponds to a gate. The proof can be generalized to the case
where this assumption is dropped.

The sentence ϕ over τstring ∪ τcirc can be given as

ϕ :=∃y0∀y1∃y2 . . . Qkyk

r(y0) ∧
⎛

⎝

⎛

⎝

⎛

⎝
∧

1≤i≤k

E(yi, yi−1)

⎞

⎠ ∧ B(yk)

⎞

⎠

∨
∨

1≤i≤k,
i odd

⎛

⎝
∧

1≤j<i

(E(yj , yj−1)) ∧ ¬E(yi, yi−1) ∧
∧

i<j≤k

yj = r

⎞

⎠

⎞

⎠ ,

where Qk =

{
∃ , if k is odd,
∀ , if k is even.

We now need to show that the number of winning strategies for Aw �I ϕ is equal
to the number of proof trees of the circuit C|w| on input w. For this, let

ϕ(n)(y1, . . . , yn) := Qn+1yn+1 . . . Qkyk
⎛

⎝
∧

1≤i≤k

(
E(yi, yi−1)

) ∧ B(yk)

⎞

⎠ ∨

∨

n+1≤i≤k,
i odd

⎛

⎝
∧

1≤j<i

(
E(yj , yj−1)

) ∧ ¬E(yi, yi−1)∧

∧

i<j≤k

yj = r

⎞

⎠ ,

where Qn+1, . . . , Qk−1 are the quantifiers preceding Qk. Note that the start of the
index i on the big “or” changed compared to ϕ. Also, r is notation for the root of
the circuit, although we formally do not use constants. In the following we will use
the abbreviation

#w(ϕ) = #Win(ϕ,Aw, I).

We now show by induction that:

#w(ϕ) =
∏

y1 is a
child of r

∑

y2 is a
child of y1

. . . ©
yn is a

child of yn−1

#w(ϕ(n)[y0/r]).

Replacing y0 by r is only done for simplicity.

A Model-Theoretic Characterization of Constant-Depth Arithmetic Circuits 243

Induction basis (n = 0): The induction hypothesis here simply states

#w(ϕ) = #w(ϕ(0)[y0/r]),

which holds by definition.
Induction step (n → n+1): We can directly use the induction hypothesis here:

#w(ϕ) =
∏

y1 is a
child of r

∑

y2 is a
child of y1

. . . ©
yn is a

child of yn−1

#w(ϕ(n)[y0/r]),

so it remains to show that

#w(ϕ(n)[y0/r]) = ©
yn+1 is a
child of yn

#w(ϕ(n+1)[y0/r])

We distinguish two cases: Depending on whether n+1 is even or odd, the (n+1)-
st quantifier is either an existential or a universal quantifier. In the same way all
gates of that depth in the circuits from C are either or- or and-gates.

Case 1 : n+1 is odd, so the (n+1)-st quantifier is a universal quantifier. Thus,
from #w(ϕ(n)[y0/r]) we get a

∏
-operator, which is the same we get for an and-

gate in the corresponding circuit. We now need to check over which values of yn+1

the product runs:
The big conjunction may only be true if yn+1 is a child of yn.
The big disjunction may become true for values of yn+1 which are no children

of yn only if all variables quantified after yn+1 are set to r (the choice of r here is
arbitrary and was only made because r is the only constant in the circuit). Also,
the disjunct for i = n can only be made true if yn+1 is not a child of yn, so we can
drop it if yn+1 is a child of yn. Since for all values of yn+1 that are not children of
yn we fix all variables quantified afterwards, we get:

∏

yn+1∈|Aw|
#w(ϕ(n+1)[y0/r]) =

∏

yn+1∈|Aw|,
yn+1is a child of yn

#w(ϕ(n+1)[y0/r]) ·
∏

yn+1∈|Aw|,
yn+1is not a child of yn

1

=
∏

yn+1∈|Aw|,
yn+1is a child of yn

#w(ϕ(n+1)[y0/r]).

Thus, we get a product only over the children of yn and can drop the disjunct for
i = n from the formula for the next step.

Case 2 : n + 1 is even, so the (n + 1)-st quantifier is an existential quantifier.
Therefore, we get a

∑
-operator from #w(ϕ(n)[y0/r]), which is the same we get for

an or-gate in the corresponding circuit. We now need to check over which values
of yn+1 the sum runs:

The big conjunction can only be true if yn+1 is a child of yn.
The big disjunction can also only be true if yn+1 is a child of yn.
Thus, we directly get the sum

∑

yn+1∈|Aw|,
yn+1 is a child of yn

#w(ϕ(n+1)[y0/r]).

244 A. Haak and H. Vollmer

Here, ϕ(n+1) does not drop a disjunct. This concludes the induction.
For ϕ(k) = trueLiteral(yk), we get

#w(ϕ(k)) =

{
1 if Aw �I ϕ(k)

0 else
=

{
1 if yk is a true literal,
0 else.

⊇: Let f be a function in #Win-FO[Arb]. Let τ be a vocabulary and ϕ be
a formula over τ ∪ τstring together with the non-uniform family I = (In)n∈N of
interpretations of the relation symbols in τ a witness for f ∈ #Win-FO[Arb].
Let k be the length of the quantifier prefix of ϕ. We now sketch how to construct
a circuit family C = (Cn)n∈N that shows f ∈ #AC0. The gates of the circuit are
〈a1, . . . , ai〉 with 1 ≤ i ≤ k and aj ∈ |Aw| for all j. Each such gate has the meaning
that we set the first i quantified variables to the values a1, . . . , ai. Therefore, for
the i’th quantifier of ϕ and for any choice of a1, . . . , ai−1, 〈a1, . . . , ai−1〉 is an and-
gate if the quantifier was ∀ and an or-gate if the quantifier was ∃. Also, if i ≤ k we
add as children to each such gate 〈a1, . . . , ai−1, ai〉 for all ai ∈ |Aw|.

On the lowest layer, where values have been assigned to all quantified variables,
we add to every gate a circuit evaluating the quantifier-free part of ϕ for the choices
made on that specific path. This can be done with a DNF which in each disjunct
accesses the same variables. Thus, for any input there is exactly one proof tree
for each DNF, if that DNF is true (and none otherwise). The size of these DNFs
is constant, since they directly result from the quantifier-free part of ϕ. Handling
the non-uniform family of interpretations I does not lead to problems, because
for each fixed circuit Cn the input length and thus the specific interpretation In

is fixed and thus only a Boolean function depending on the input bits has to be
computed. The non-uniformity of the circuit family C is used to build the different
Cn depending on the different In.

NowbyLemma13 it is clear that countingproof trees on this circuit family leads
to the same function as counting winning strategies for the verifier for Aw �I ϕ. ��

4 The Uniform Case

Next we want to transfer this result to the uniform setting. In the direction from
right to left we will have to show that the constructed circuit is uniform, which is
straightforward. On the other hand, the following important point changes in the
direction from left to right: We have to actually replace queries to C|w| in the FO-
sentence by the corresponding FO-formulae we get from the FO-interpretation
which shows uniformness of C. Since we introduce new quantifiers by this, we have
to show how we can keep the counted value the same. That this is possible fol-
lows from the following lemma, proving that #Win-FO[+,×] is closed under FO-
reductions (exact definitions follow).

Lemma 15. Let ϕ be an FO[+,×]-formula over some vocabulary τ , and let
I : STRUC[σ] → STRUC[τ] be an FO[+,×]-interpretation. Then there is an
FO[+,×]-formula ϕ′ over σ such that for all A ∈ STRUC[σ],

#Win(ϕ′,A) = #Win(ϕ, I(A)).

A Model-Theoretic Characterization of Constant-Depth Arithmetic Circuits 245

As already mentioned, this lemma yields an interesting closure property as a
corollary, that is, closure under FO-reductions:

Definition 16. Let f, g : {0, 1}∗ → N. We say that f is (many-one) first-order
reducible to g, in symbols: f ≤fo g, if there are vocabularies σ, τ and an FO[+,×]
interpretation I : STRUC[σ] → STRUC[τ] such that for all A ∈ STRUC[σ]:

f(encσ(A)) = g(encτ (I(A))).

Corollary 17. On ordered structures with BIT, #Win-FO is closed under first-
order reductions, that is, if f, g are functions such that g ∈ #Win-FO and f ≤fo g,
then f ∈ #Win-FO.

Using Lemma 15 we can now establish the desired result in the FO-uniform
setting.

Theorem 18. FO[+,×]-uniform #AC0 = #Win-FO[+,×].

Proof (Sketch). ⊆: Let f ∈ FO-uniform #AC0 via the circuit family C = (Cn)n∈N

and the FO-interpretation I showing its uniformness. With the formula ϕ from the
proof of #AC0 ⊆ #Win-FO[Arb] this means we have for all w:

f(w) = number of proof trees of C|w| on input w

= #Win(ϕ,C|w|(w)),

where C|w|(w) is given as a τcirc-structure. From ϕ and I by Lemma 15 we get ϕ′

over vocabulary τstring such that for all Aw ∈ STRUC[τstring]:

#Win(ϕ′,Aw) = #Win(ϕ, I(Aw)
︸ ︷︷ ︸
C|w|(w)

)

= f(w)

⊇: We can prove this analogously to #AC0 ⊇ #Win-FO[Arb]. The only differ-
ence is that we need to show FO-uniformity of the circuit. Let f be a function in
#Win-FO with witness ϕ. We now need the formulae ϕuniverse, ϕG∧ , ϕG∨ , ϕE , ϕI

and ϕr defining the circuit. We do this by encoding gates in the circuit by suitable
k-tuples over {0, . . . , n}, where k can be chosen to be the number of quantifiers in
ϕ. The technical details will be given in the full paper. ��

5 AModel-Theoretic Characterization of TC0

We will now introduce the oracle class AC0#AC0

as well as FOCW[Arb], which
is a variant of FO with counting. From the known connections between TC0 and
#AC0 and from the new connection between #AC0 and #Win-FO[Arb] we will
then get a new model theoretic characterization for TC0, the class of all lan-
guages accepted by Boolean circuits of polynomial size and constant depth with
unbounded fan-in AND, OR, and MAJORITY gates, see [14]. First we want to
define the above classes:

246 A. Haak and H. Vollmer

Definition 19. AC0#AC0

is the complexity class containing all languages decid-
able by AC0-circuit families that may use gates computing bits of a fixed function
from #AC0. More precisely, for each circuit family we fix a f ∈ #AC0 and can
use gates that are labeled with #i. Such a gate computes the Boolean function

fi : {0, 1}∗ → {0, 1}
bin(x) �→ BIT(i, f(x))

The main result of this section will be a new characterization of the circuit
class TC0 using a certain two-sorted logic.

Definition 20. Given a vocabulary σ, a σ-structure for FOCW[Arb] is a struc-
ture of the form

〈{a0, . . . , an−1}, {0, . . . , n − 1}, (Ri)A,+,×,min,max〉,
where 〈{a0, . . . , an−1}, (Ri)A〉 ∈ STRUC[σ], + and × are the ternary relations
corresponding to addition and multiplication in N and min,max denote 0 and n−
1, respectively. We assume that the two universes are disjoint. Formulas can have
free variables of two sorts.

This logic extends the syntax of first order logic as follows:

– terms of the second sort: min, max
– formulae:

(1) if t1, t2, t3 are terms of the second sort, then the following are (atomic) for-
mulae: +(t1, t2, t3),×(t1, t2, t3)

(2) if ϕ(x, i) is a formula, then also ∃iϕ(x, i) (binding the second-sort
variable i)

(3) if Q is a quantifier prefix quantifying the first-sort variables x and the
second-sort variables i, ϕ(x, i) is a quantifier-free formula and j a tuple of
second-sort variables, then the following is a formula: #Qϕ(j)

The semantics is clear except for #Qϕ(j). Let A be an input structure and j0 an
assignment for j. Then

A � #Qϕ(j0) ⇐⇒def the val(j0)-th bit of #Win(Qϕ,A) is 1

Here, val(j0) denotes the numeric value of the vector j0 under an appropriate
encoding of the natural numbers as tuples of elements from the second sort.

The types (1) and (2) of formulae in our definition are the same as in
Definition 8.1 in [12, p. 142]. Additionally, our definition allows new formulae
#Qϕ(j). These allow us to talk about the number of winning strategies for sub-
formula ϕ. Note that these numbers can be exponentially large, hence poly-
nomially long in binary representation; therefore we can only talk about them
using some form of BIT predicate. Formulas of type (3) are exactly this: a BIT
predicate applied to a number of winning strategies.

Our logic FOCW[Arb] thus gives FO with access to number of winning strate-
gies, i.e., in FOCW[Arb] we can count in an exponential range. Libkin’s logic

A Model-Theoretic Characterization of Constant-Depth Arithmetic Circuits 247

FO(Cnt)All can count in the range of input positions, i.e., in a linear range. Never-
theless we will obtain the maybe somewhat surprising result that both logics are
equally expressive on finite structures: both correspond to the circuit class TC0.

Theorem 21. On ordered structures,

TC0 = FOCW[Arb] = AC0#AC0

.

Proof. A central ingredient of the proof is the known equality TC0 = PAC0 from
[1]. Here, PAC0 is defined to be the class of languages L for which there exist func-
tions f, h ∈ #AC0 such that for all x, x ∈ L iff f(x) > h(x).

The proof then consists of establishing the inclusions

TC0 ⊆ PAC0 ⊆ FOCW[Arb] ⊆ AC0#AC0

⊆ TC0,

and will be given in the full paper. ��
Remark 22. In the full paper we will show that this result also holds in the uni-
form world. A central ingredient in the proof is that division, and thus iterated
multiplication, can be done in uniform TC0 due to [9].

6 Conclusion

Arithmetic classes are of current focal interest in computational complexity,
but no model-theoretic characterization for any of these was known so far. We
addressed the maybe most basic arithmetic class #AC0 and gave such a charac-
terization, and, based on this, a new characterization of the (Boolean) class TC0.

This immediately leads to a number of open problems:

– We mentioned the logical characterization of #P in terms of counting assign-
ments to free relations. We here count assignments to free function variables.
Hence both characterizations are of a similar spirit. Can this be made more pre-
cise? Can our class #Win-FO be placed somewhere in the hierarchy of classes
from [13]?

– Can larger arithmetic classes be defined in similar ways? The next natural can-
didate might be #NC1 which corresponds to counting paths in so called non-
uniform finite automata [3]. Maybe this will lead to a descriptive complexity
characterization.

– Still the most important open problem in the area of circuit complexity is the
question if TC0 = NC1. While we cannot come up with a solution to this, it
would be interesting to reformulate the question in purely logical terms, maybe
making use of our (or some other) logical characterization of TC0.

Acknowledgements. We are grateful to Lauri Hella (Tampere) and Juha Kontinen
(Helsinki) for helpful discussion, leading in particular to Definition 20. We also thank
the anonymous referees for helpful comments.

248 A. Haak and H. Vollmer

References

1. Agrawal, M., Allender, E., Datta, S.: On TC0, AC0, and arithmetic circuits. J. Com-
put. Syst. Sci. 60(2), 395–421 (2000)

2. Barrington, D.A.M., Immerman, N., Straubing, H.: On uniformity within NC1. J.
Comput. Syst. Sci. 41, 274–306 (1990)

3. Caussinus, H., McKenzie, P., Thérien, D., Vollmer, H.: Nondeterministic NC1 com-
putation. J. Comput. Syst. Sci. 57, 200–212 (1998)

4. Dawar, A.: The nature and power of fixed-point logic with counting. ACM SIGLOG
News 2(1), 8–21 (2015)

5. Ebbinghaus, H., Flum, J., Thomas, W.: Mathematical Logic. Undergraduate Texts
in Mathematics. Springer, New York (1994)

6. Fagin, R.: Generalized first-order spectra and polynomial-time recognizable sets.
In: Karp, R.M. (ed.) Complexity of Computation, vol. 7, pp. 43–73. SIAM-AMS
Proceedings (1974)

7. Grädel, E.: Model-checking games for logics of imperfect information. Theoret.
Comput. Sci. 493, 2–14 (2013)

8. Gurevich, Y., Lewis, H.: A logic for constant-depth circuits. Inf. Control 61, 65–74
(1984)

9. Hesse, W.: Division is in uniform TC0. In: Orejas, F., Spirakis, P.G., Leeuwen, J.
(eds.) ICALP 2001. LNCS, vol. 2076, pp. 104–114. Springer, Heidelberg (2001)

10. Immerman, N.: Languages that capture complexity classes. SIAM J. Comput. 16,
760–778 (1987)

11. Immerman, N.: Descriptive Complexity. Graduate Texts in Computer Science.
Springer, New York (1999)

12. Libkin, L.: Elements of Finite Model Theory. Springer, New York (2012)
13. Saluja, S., Subrahmanyam, K.V., Thakur, M.N.: Descriptive complexity of #P func-

tions. J. Comput. Syst. Sci. 50(3), 493–505 (1995)
14. Vollmer, H.: Introduction to Circuit Complexity - A Uniform Approach. Texts in

Theoretical Computer Science. An EATCS Series. Springer, New York (1999)

True Concurrency of Deep Inference Proofs

Ozan Kahramanoğulları1,2

1 Department of Mathematics, University of Trento, Trento, Italy
2 The Micrososft Research - University of Trento Centre for Computational

and Systems Biology, Rovereto, Italy

Abstract. We give an event structures based true-concurrency charac-
terization of deep inference proofs. The method is general to all deep
inference systems that can be expressed as term rewriting systems. This
delivers three consequences in a spectrum from theoretical to practical:
the event structure characterization (i) provides a qualification of proof
identity akin to proof nets for multiplicative linear logic and to atomic
flows for classical logic; (ii) provides a concurrency theoretic interpre-
tation for applications in logic programming; (iii) reduces the length of
the proofs, and thereby extends the margin of proof search applications.

1 Introduction

Deep inference [4] proofs are sequences of inference rule instances, which are
essentially term rewrites of a rewriting system. The sequential construction of
deep inference derivations imposes a total order structure that is beneficial in
simplifying certain aspects of the proof theoretical analysis, for example, in an
inductive argument for proving cut-elimination. However, such a bureaucratic
view of derivations [6] also veils other aspects of proofs, and this has important
implications. For example, at the more theoretical end of the spectrum, the
causal dependence of the deduction components becomes hidden by the total
order structure, and as a result of this, the derivations that are identical in
terms of their deductive essence become presented as distinct syntactic objects.

To see this on an example, consider the following three proofs of the same
multiplicative linear logic formula. While the first two proofs are identical with
respect to their inference steps, they differ in the order of these steps, and thus
they are depicted as syntactically distinct objects. On the other hand, the third
proof is shorter, although it results in the same proof net [2] as the first two
proofs. Moreover, from a computational point of view, the sequentiality of some
of the rule instances in the first two proofs is redundant as the sequentiality
does not imply a causal dependence; for example, the instances of the rule ai↓
are causally independent from each other.

c© Springer-Verlag Berlin Heidelberg 2016
J. Väänänen et al. (Eds.): WoLLIC 2016, LNCS 9803, pp. 249–264, 2016.
DOI: 10.1007/978-3-662-52921-8 16

250 O. Kahramanoğulları

1
ai↓

[a � ā]
u2↓ ([a � ā] � 1)

ai↓
([a � ā] � [b � b̄])

s
[a � (ā � [b � b̄])]

1
ai↓

[a � ā]
u2↓ ([a � ā] � 1)

s
[a � (ā � 1)]

ai↓
[a � (ā � [b � b̄])]

1
ai↓

[a � ā]
u2↓ [a � (ā � 1)]

ai↓
[a � (ā � [b � b̄])]

In this respect, the lack of a formal mechanism that can identify the indepen-
dence and causality in the derivations poses a problem. This problem was pre-
viously addressed by generalizing the deep inference formalism syntactically to
partially capture some of the concurrency in derivations [6]. Here, we present an
alternative approach via a labelled event structure (LES) characterization that
provides a true-concurrency interpretation of deep inference derivations.

Event structures is a model of concurrency [14,16], where the concurrent
events are described with a partial order relation that formalizes their causal
dependency, and nondeterminism is captured by a conflict relation, which is
a symmetric irreflexive relation of events. In a proof search perspective, this
corresponds to inference rules that are applicable in the same state, but are in
conflict with each other in the sense that application of one of them instead of
the other results in a different state space ahead. Figure 1 depicts in the middle
the event structure for the example derivations above. There, the conflict-free
structure on the left characterizes the two proofs on the left as well as two others,
whereas the one on the right describes the single proof on the right and no other.

In the following, by relaxing the total order in deep inference derivations
at incremental steps and by generalizing the approach in [7], we associate each
formula an event structure, and show the correspondence between their conflict-
free sub-structures and deep inference derivations. For the presentation, we use
the multiplicative linear logic system MLS, which is the simplest meaningful
deep inference system. However, the methods should generalize to all the deep
inference systems that can be expressed as term rewriting systems.

Our results provide a qualification of identity of proofs with respect to event
structures, where all the derivations that only differ with respect to permuta-
tions of their inference rules are identified by a unique structure. Moreover, the
event structure interpretation of derivations makes it possible to consider appli-

Fig. 1. The labelled event structure LES[[[a � (ā � [b � b̄])]]]. The symbol # denotes
the conflict relation and the events are abbreviated by their actions. The conflict-free
structures on the left and right characterize the example derivations in the introduction.

True Concurrency of Deep Inference Proofs 251

cations in logic programming that can exploit the true-concurrent nature of the
derivations. This has also implications in proof search as a controlled use of con-
currency becomes instrumental in reducing the length of the proofs, and thereby
extends the margin of proof search applications.

2 Deep Inference

We use the term rewriting notation of deep inference systems modulo equa-
tional theories [10]. Other common representations for deep inference systems
and derivations can be trivially obtained from the term rewriting notation with-
out any loss of information.

Formulae (or structures) are defined in the usual way. For example, the mul-
tiplicative linear logic formulae P , Q, R, . . . are generated by

R ::= a | ā | 1 | ⊥ | [R � R] | (R � R),

where a stands for any atom; negation is defined on the atoms as a (non-identical)
involution ·̄, thus dual atom occurences, as a and ā, can appear in the formulae.
1 and ⊥ are the units one and bottom, which are special atoms. Different kind
of brackets are used to enhance readability, and they can be ignored.

Formulae are considered to be equivalent modulo a congruence relation.
Within the term rewriting setting, term rewriting rules are applied modulo this
relation. For multiplicative linear logic, we use the smallest congruence relation
induced by the equational system consisting of the equations for associativity and
commutativity for multiplicative disjunction and multiplicative conjunction.

Remark 1. We define negation only on atoms. This is not a limitation because
of De Morgan laws. In deep inference systems in the literature, often the congru-
ence relation includes equalities for the units of the logic. Here, we carry these
equalities to the inference system to make their role in deduction more explicit.

Example 1. With respect to the congruence relation on the formulae, we have
[(b̄ � (ā � c̄)) � [b � [a � c]]] ≈ [[b � ((ā � c̄) � b̄)] � [c � a]] and we can denote
both formulae with [(ā � b̄ � c̄) � a � b � c].

Inference rules are rewriting rules. We define system MLS for multiplicative
linear logic as the term rewiting system below, where r, t, u are generic terms
that can match any formula, and x is a special term that can only match atoms.

s : [(r � t) � u] → ([r � u] � t) u1↓ : [⊥ � r] → r

ai↓ : [x � x̄] → 1 u2↓ : (1 � r) → r

A rule instance of the form R
(ρ,μ,φ)→ T is defined by a rule ρ, a function μ

that uniquely indicates the position of the redex, and a function φ that assigns
a substitution σ. The rule instance is then given by an application of a rule ρ at
the redex uniquely identified by μ with a substitution σ such that σ provides a

252 O. Kahramanoğulları

matching for the redex subterm R′ of R with the left-hand side of the rule. That
is, with ρ : l → r and μ(R) = R′ and R′ = lσ, we get the contractum μ(T) = rσ.
We call the triple (ρ, μ, φ) an action. We denote actions with a, b, c, . . .

A derivation Δ is a formula or a finite chain of instances of rule instances.
The left-most structure in a derivation is the premise, and the right-most formula
is the conclusion. A derivation Δ whose premise is T , conclusion is R, and
inference rules are in S is written as R

Δ−→ T . A MLS proof Π is a derivation
whose premise is the unit 1. A derivation can also be written as the pair of the
conclusion and the sequence of actions of the derivations, e.g., (R, 〈a1; . . . ; ak〉).
Example 2. Consider the proof of the formula R = [a � (ā � [b � b̄])] below,
where we denote the redexes with shading.

[a � (ā � [b � b̄])] → [a � (ā � 1)] (ai↓, μ1, φ1), σ1 = {x �→ b}
→ [a � ā] (u2↓, μ2, φ2), σ2 = {r �→ ā}
→ 1 (ai↓, μ3, φ3), σ3 = {x �→ ā}

We then write this derivation as (R, 〈(ai↓, μ1, φ1); (u2↓, μ2, φ2); (ai↓, μ3, φ3)〉) .

Below, we associate to every formula a labelled event structure. Events corre-
spond to instances of inference rules. In a LES events are partially ordered and
there is a conflict relation amongst the events. The partial order relation provides
a representation of independence and causality between these events, which can
be, for example, due to resource production and consumption relationships, or
modifications of structures as it is the case below. The conflict relation here rep-
resents the nondeterminism in the system. Events that are not in conflict can
take place in a way, which respects the order determined by the partial order.
Labelled event structures that we formally define below thus provide a compu-
tational model for logical expressions and their derivations. This results in a
characterization of concurrency, given by the partial order and conflict relations
that deliver the independence and causality relationships in the inference steps.

Definition 1. A labelled event structure is a structure (E,≤,#,L, �) , where

(i) E is a set of events;
(ii) ≤ ⊆ E2 is a partial order such that for every e ∈ E the set {e′ ∈ E | e′ ≤ e }

is finite;
(iii) the conflict relation # ⊆ E2 is a symmetric and irreflexive relation such

that if e# e′ and e′ ≤ e′′ , then e# e′′, for every e, e′, e′′ ∈ E ;
(iv) L is a set of labels;
(v) � : E → L is a labeling function.

Example 3. Figure 1 depicts the LES for the formula [a � (ā � [b � b̄])].

True Concurrency of Deep Inference Proofs 253

3 Event Structures of Proofs

We associate to every formula an event structure that characterizes the inde-
pendence and causality of the rule instances. We first associate to each formula
a labelled transition system. We define labelled transition systems in the usual
way, and denote states with s and transitions with t. Given a transition sys-
tem, a path with length k is a sequence 〈t1; t2; . . . ; tk〉 of transitions such that
ti = si−1

a� si or equivalently ti = (si−1, si, a) for i = 1, 2, . . . and the initial
state sI = s0. We distinguish the transitions from rewrites with the notation �;
rewrites and derivations are denoted with → and −→.

Definition 2. Given a formula R and a set A of actions of system MLS as
defined above, TS[[R]] = (S, sI ,A,�) is the reachable transition system with the
set of states S such that (Δ,Δ′, a) ∈ � where Δ,Δ′ ∈ S iff

– sI = R ∈ S is the initial state;
– for some structure T , derivation Δ has the shape R

Δ−→ T ;
– for some structure Q, there exists T

a→ Q with a = (ρ, σ, μ) ∈ A;
– Δ′ is the derivation R

Δ−→ T
a→ Q .

We then write Δ
a� Δ′ .

For any formula R, TS[[R]] is acyclic, because transitions result in bigger
derivations. For a formula R, TS[[R]] overlaps with the state space of the deriva-
tions with R in the conclusion; each state of TS[[R]] is a reachable derivation.

As a first step towards observing the independence and the causality in the
derivations, we consider two derivations equivalent if they have the same premise
and conclusion. The following definition serves this purpose.

Definition 3. Let D be the set of derivations, and R and T be formulae. ≈ ⊂ D2

is the least equivalence relation such that Δ ≈ Δ′ iff we have that

R
Δ−→ T and R

Δ′
−→ T .

[Δ]≈ denotes the equivalence class of the derivation Δ under ≈. The set D/≈ ,
the set of equivalence classes of derivations under ≈ , is called the set of abstract
derivations. The elements of D/≈ are denoted by δ.

Example 4. Consider the two derivations Δ and Δ′ below with Δ ≈ Δ′.

Δ : [a � (ā � [b � b̄])]
ai↓→ [a � (ā � 1)] s→ ([a � ā] � 1)

Δ′ : [a � (ā � [b � b̄])] s→ ([a � ā] � [b � b̄])
ai↓→ ([a � ā] � 1)

Proposition 1. For any two states Δ and Δ′ of TS[[R]], if Δ ≈ Δ′ then for all
Δ

a� Δ′′ in TS[[R]], there exists a transition Δ′ a� Δ′′′ in TS[[R]] with Δ′′ ≈ Δ′′′ .

254 O. Kahramanoğulları

Proof. Because Δ′′ and Δ′′′ have the same premises, same inference rules can
be applied to the premises of these two derivations.

We now redefine transition systems that are associated with the formulae
such that they respect the equivalence of derivations induced by the relation ≈.

Definition 4. Given a formula R and a TS[[R]] = (S, sI ,A ,�), let TS≈[[R]] =
(S≈ , sI≈, A , �≈) be the transition system such that (i) sI≈ = R ; (ii) S≈ =
S/≈ ; (iii) [Δ]≈

a� [Δ′]≈ iff Δ
a� Δ′ where a ∈ A .

As a result of this definition, transition systems are not trees anymore, but
they are graphs. For the case of system MLS, because each inference rule results
in an incremental step in a terminating computation, the TS≈[[R]] graphs are
acyclic. However, TS≈[[R]] graphs can in general be cyclic, for example, if the
deductive system involves a cut rule or a contraction rule.

Definition 5. Let R be a formula and τ = 〈t1; . . . ; th〉 be a finite path in
TS≈[[R]]. τ is an abstract path yielding δh, if, for all 1 ≤ i ≤ h, ti = (δi−1, δi, ai).

The intuition behind abstract paths can be better understood from the point
of view of their transitions: given δ

a� δ′, we have that δ is the equivalence class
of derivations with a premise T and conclusion R, and we have T

a→ Q such
that δ′ is the equivalence class of derivations with a premise Q and conclusion
R. Because TS[[R]] is by definition reachable, TS≈[[R]] is also reachable.

Definition 6. Given a formula R and TS≈[[R]], let the relation ♦ ⊆ A 2×S 4
≈ be

such that (a, a′, δ, δ′, δ′′, δ′′′) ∈ ♦ iff (δ, δ′, a), (δ, δ′′, a′), (δ′, δ′′′, a′), and (δ′′, δ′′′, a)
are in TS≈[[R]]. We call ♦ the diamond relation of TS≈[[R]].

The diamond relation corresponds to the permutability of the inference rules
over each other in the standard deep inference notation, e.g., [15]. With this
definition, we do not distinguish anymore the derivations that differ only in the
permutations of their inference rules. Below, we thus propagate the diamond
relation to paths, and this way establish an equivalence relation on the paths.

Example 5. For an MLS derivation with formula R in the conclusion, let δ, δ′,
δ′′ and δ′′′ be equivalence classes of derivations such that we have the graph in
Fig. 2 with a = (ai↓, μ1, φ1) and a′ = (s, μ2, φ2). Then we have (a, a′, δ, δ′, δ′′, δ′′′),
where φ1 maps σ1 to {x �→ b}, and φ2 maps σ2 to {r �→ ā, t �→ 1, u �→ a} and
{r �→ ā, t �→ [b � b̄], u �→ a} on the left and on the right, respectively.

With the following definition we propagate the diamond relation from deriva-
tions to paths, and this way prepare the grounds for defining a transition system
whose states are paths rather than derivations.

Definition 7. Given TS≈[[R]] = (S≈, R,A ,→≈) and its diamond relation ♦,
the relation � is the least equivalence relation such that, for any two paths

τ1 = 〈 t ; (δ, δ′, a) ; (δ′, δ′′′, a′) ; t′〉 and τ2 = 〈t ; (δ, δ′′, a′) ; (δ′′, δ′′′, a) ; t′〉 ,

if (a, a′, δ, δ′, δ′′, δ′′′) ∈ ♦, then τ1 � τ2.

True Concurrency of Deep Inference Proofs 255

δ = [R −→ [a (ā [b b̄])]]≈
a a

δ = [R −→ [a (ā 1)]]≈ δ = [R −→ ([a ā] [b b̄])]≈
a a

δ = [R −→ ([a ā] 1)]≈

Fig. 2. The diamond relation of two paths induced by the formula [a � (ā � [b � b̄])]
in the transition system TS≈[[R]] of an MLS formula R.

Proposition 2. Given finite paths τ1 and τ2 in TS≈[[R]], if τ1 � τ2, then they
both yield the same state in TS≈[[R]].

The labelled event structure for a formula R is obtained from a transition
system defined on paths such that all paths reaching a certain state belong to
the same equivalence class induced by � . Below we define this transition system
based on the TS≈[[R]] and the equivalence relation � on its paths.

Definition 8. Given an MLS formula R and TS≈[[R]] = (S≈ , sI≈, A , →≈),
TS�[[R]] = (S� , sI�, A , →�) is the transition system such that

(i) S� = T /�, where T is the set of finite paths in TS≈[[R]] and � is the equiv-
alence relation on its paths induced by the diamond relation ♦ of TS≈[[R]].
Elements of S� are denoted by π ;

(ii) sI� = [◦]�;
(iii) [τ]�

a→� [τ ′]� iff τ ′ � 〈 τ ; (δ, δ′, a) 〉 where (δ, δ′, a) ∈ →≈.

Proposition 3. For every formula R, TS�[[R]] is reachable and acyclic.

Proof. TS�[[R]] is obtained from TS≈[[R]] which is reachable. Because each transi-
tion transforms an abstract path to a syntactically bigger abstract path, TS�[[R]]
is acyclic.

Example 6. The transition system TS� associated to the formula [a�(ā�[b�b̄])]
is depicted in Fig. 3.

A LES of a formula R is obtained from TS�[[R]] by extracting the transitions
denoting the same events. To obtain this information, we propagate the diamond
relation of the transition systems TS≈ to the transition systems TS�, that is,
from the equivalence classes of derivations to the equivalence classes of paths.

Definition 9. Given a formula R and the diamond relation ♦ of TS≈[[R]] , we
define ♦� ⊂ A 2 × S4

� for TS�[[R]] as the relation such that, for some abstract
paths τ, τ ′, τ ′′, τ ′′′, we have (a, a′, [τ]�, [τ ′]�, [τ ′′]�, [τ ′′′]�) ∈ ♦� iff

τ ′ � 〈 τ ; (δ, δ′, a) 〉 , τ ′′ � 〈 τ ; (δ, δ′′, a′) 〉 ,

τ ′′′ � 〈 τ ′ ; (δ′, δ′′′, a′) 〉 τ ′′′ � 〈 τ ′′ ; (δ′′, δ′′′, a) 〉
and (a, a′, δ, δ′, δ′′, δ′′′) ∈ ♦ for some states δ, δ′, δ′′ and δ′′′ of TS≈[[R]] .

256 O. Kahramanoğulları

Fig. 3. The transition system TS�[[[a � (ā � [b � b̄])]]] and the pathways that result
in seven distinct MLS proofs.

Definition 10. Given TS�[[R]] = (S�, R,A ,→�) and its diamond relation
♦� , the relation ∼ is the least equivalence relation on t, t′ ∈ →� such that

t ∼ t′ iff t = (π, π′, a) , t′ = (π′′, π′′′, a)

and there exists a′ ∈ A such that (a, a′, π, π′, π′′, π′′′) ∈ ♦� .

Intuitively, two transitions are in ∼ if they represent the same event.

Example 7. Let τ be an abstract path that leads to a derivation with the formula
[a � (ā � [b � b̄])] at the premise. Then we have

τ ′ � 〈 τ ; ([R −→ [a � (ā � [b � b̄])]]≈, [R−→ [a � (ā � 1)]]≈, (ai↓, μ2, φ2)) 〉 ,

τ ′′ � 〈τ ; ([R−→ [a � (ā � [b � b̄])]]≈, [R−→([a � ā] � [b � b̄])]≈, (s, μ1, φ1))〉,
τ ′′′ � 〈τ ′; ([R −→ [a � (ā � 1)]]≈, [R −→ ([a � ā] � 1)]≈, (s, μ1, φ1))〉,
τ ′′′ � 〈τ ′′; ([R −→ ([a � ā] � [b � b̄])]≈, [R −→ ([a � ā] � 1)]≈, (ai↓, μ2, φ2))〉.

We then have (a, a′, [τ]�, [τ ′]�, [τ ′′]�, [τ ′′′]�) ∈ ♦�. Then we have t ∼ t′ for

t = ([R −→ [a � (ā � [b � b̄])]]≈, [R −→ [a � (ā � 1)]]≈, (ai↓, μ2, φ2)), and

t′ = ([R −→ ([a � ā] � [b � b̄])]≈, [R −→ ([a � ā] � 1)]≈, (ai↓, μ2, φ2)) .

Definition 11. Given a formula R and TS�[[R]] = (S�, R,A , �), let LES[[R]] =
(E,≤,#,A , �) be the labelled event structure such that

(i) E = →� /∼ ;

(ii) ≤ is the reflexive closure of <, which is defined as follows: for all e, e′ ∈ E,
e < e′ iff e = [t]∼ and e′ = [t′]∼, and for every path τ in TS�[[R]] and for
every t′′′ ∈ →� such that 〈 τ ; t′′′ 〉 is a path and t′′′ ∼ t′, there exists t′′ ∼ t
such that τ = 〈 τ ′; t′′; τ ′′ 〉 for some τ ′, τ ′′ ;

True Concurrency of Deep Inference Proofs 257

(iii) [t]∼ # [t′]∼ iff for every path τ in TS�[[R]] and for every t′′, t′′′ ∈→� such
that t ∼ t′′ and t′ ∼ t′′′, if t′′ appears in τ , then t′′′ does not appear in τ ;

(iv) �([(π, π′, a)]∼) = a .

The partial order relation of a LES provides a representation of independence
and causality between different events. The events that are left unordered by ≤
are independent, thus their ordering in execution with respect to each other
does not affect the behavior of the system. In deep inference derivations, this
independence corresponds to the permutability of the instances of the inference
rules: the independent rule instances can be applied to a formula in any order as
their instances do not create a conflict for their mutual applicability. In contrast,
the events that are ordered by the relation ≤ follow a chain of causality, that
is, for an event e, all events e′ < e, the execution of e is impossible without the
prior execution of e′. For the deep inference proofs such a causal dependence is
a consequence of the structural relations that are modified by the instances of
the inference rules that make a rule instance necessary prior to another one.

The relation # is an irreflexive relation on events that expresses conflict-
ing situations in execution. If e# e′, then event e and e′ are competing for
resources, thus execution of e conflicts with the execution of e′, and vice versa,
which requires a choice of one over the other. In the deep inference proofs, this
corresponds to the different choices in the construction of derivations due to
multiple rule instances that can be applicable to a formula at each inference
step.

Example 8. The LES associated to the formula [a � (ā � [b � b̄])] is depicted in
Fig. 1, where we abbreviate events with their labels.

The notions of LES result in a concurrent model of all the possible derivations
of formula, which we characterize with the definitions below.

Definition 12. Given a LES (E,≤,#,A , �), for an event e ∈ E, �e� denotes
the set {e′ ∈ E | e′ < e } of causes of event e.

The causes of an event e is the set that collects those events that event e
requires in order to take place. In the deep inference derivations, the causes of
a rule instance at an inference step is the set of rule instances that modify the
formula in such a way that makes that rule instance possible. Configurations,
that we define below, collect such causally related events that are not in conflict,
while preserving the information on the independence of different causes.

Definition 13. Given a LES (E,≤,#, L, �), C ⊆ E is a configuration iff

(i) for all e ∈ C we have that � e � ⊂ C ;
(ii) for all e, e′ ∈ C , it is not the case that e# e′.

Definition 14. Given a LES (E,≤,#, L, �), and one of its configurations C , we
say that event e is enabled at C (denoted by C � e) if and only if

(i) e /∈ C ; (ii) �e� ⊆ C ; (iii) e′ # e implies e′ /∈ C .

258 O. Kahramanoğulları

Fig. 4. Four configurations obtained from the LES depicted in Fig. 1.

Example 9. Consider the LES in Fig. 1. Let us abbreviate the events with their
labels. We have that (ai↓, μ2, ψ2) ∈ �(u2↓, μ4, ψ4)�, and there exists a configura-
tion C = {(s, μ1, ψ1), (ai↓, μ2, ψ2)} such that C � (u2↓, μ4, ψ4).

Informally, an event e is enabled at a configuration C if it is not in C , all the
events on which it depends are in C and it does not conflict with any event in C .
Let us now define securings, which are serializations of events in configurations.

Definition 15. Given a LES (E,≤,#, L, �) and a finite sequence of events
S = 〈e1; . . . ; eh〉, S is a securing for C if and only if C = {e1, . . . , eh} is a
configuration and, for all 1 ≤ i ≤ h, {e1, . . . , ei−1} � ei .

Example 10. From the LES in Fig. 1, we can read nine derivations, which can be
read as the securings in LES[[[a�(ā� [b� b̄])]]], obtained from four configurations
in Fig. 4. The first two derivations do not result in a proof.

Δ1 = 〈(s, μ6, φ6); (ai↓, μ2, φ2)〉
Δ2 = 〈(ai↓, μ2, φ2); (s, μ6, φ6)〉
Δ3 = 〈(ai↓, μ2, φ2); (u2↓, μ5, φ5); (ai↓, μ3, φ3)〉
Δ4 = 〈(s, μ1, φ1); (ai↓, μ2, φ2); (ai↓, μ3, φ3); (u2↓, μ4, φ4)〉
Δ5 = 〈(s, μ1, φ1); (ai↓, μ2, φ2); (u2↓, μ4, φ4); (ai↓, μ3, φ3)〉
Δ6 = 〈(s, μ1, φ1); (ai↓, μ3, φ3); (u2↓, μ4, φ4); (ai↓, μ2, φ2)〉
Δ7 = 〈(s, μ1, φ1); (ai↓, μ3, φ3); (ai↓, μ2, φ2); (u2↓, μ4, φ4)〉
Δ8 = 〈(ai↓, μ2, φ2); (s, μ1, φ1); (u2↓, μ4, φ4); (ai↓, μ3, φ3)〉
Δ9 = 〈(ai↓, μ2, φ2); (s, μ1, φ1); (ai↓, μ3, φ3); (u2↓, μ4, φ4)〉

The following results are analogous to the results on search spaces of multiset
rewriting encodings in multiplicative exponential linear logic in deep inference
[8], following the discussions above with respect to the ideas presented in [3,
14,16]. They demonstrate, for any MLS formula R, the formal correspondence
between the transition systems TS[[R]] and the LES[[R]].

Theorem 1. Given a formula R, LES[[R]] = (E,≤,#,A , �) and a securing S in

LES[[R]], there is a path R
�(S)
� Δ in TS[[R]].

True Concurrency of Deep Inference Proofs 259

Theorem 2. Given a formula R and a path R
a1→ Δ1

a2→ · · · ah→ Δh in TS[[R]],
there is a securing S in LES[[R]] = (E,≤,#,A , �) such that �(S) = 〈a1; . . . ; ah〉.

For an exposure of the relationship between transition systems, labelled event
structures, and other models for concurrency, we refer the reader to [14,16].

4 From Deep Inference Derivations to Configurations

A configuration in a LES of a formula can be considered as a canonical represen-
tation of a set of derivations with the same premise and conclusion, which how-
ever differ in their orders of the rule instances due to permutations. Conversely,
inference rules in a derivation can be permuted to obtain other derivations that
have the same premise and conclusion. Below by exploiting this observation, we
introduce an algorithm for obtaining configurations from MLS derivations.

Definition 16. We denote labels that range over actions with letters a, b, c, . . .
Let Δ be an MLS derivation such that each subformula in Δ is labeled with the
special action ε as a subscript and each inference rule modifies these labels as
described below. The function ψ on Δ is defined as follows. If Δ is a formula

then ψ(Δ) = ∅. Otherwise, if Δ is of the form R
ρ→ R′ Δ′

−→ T and the instance
of the rule ρ with its action a is an instance of

– s with [(r � t)b � u]c → ([r � u]a � t)a then ψ(Δ) = {(b, a), (c, a)} ∪ ψ(Δ′);
– ai↓ with [x � x̄]b → 1a then ψ(Δ) = {(b, a)} ∪ ψ(Δ′);
– u1↓ with [⊥ � rb]c → rb then ψ(Δ) = {(b, a), (c, a)} ∪ ψ(Δ′);
– u2↓ with (1b � rc)d → rc then ψ(Δ) = {(d, a), (b, a)} ∪ ψ(Δ′).

Given a derivation Δ with a formula R in the conclusion, a constraint set of Δ
for R (CR,Δ) is given with ψ(Δ).

Function ψ extracts the production and consumption relationships between
rule instances, and this way provides a canonical representation of all derivations
that are different from the input derivation only with respect to rule permuta-
tions. This is because each action at each inference step modifies, annihilates or
produces a subformula that has been introduced by another. By keeping track
of these relationships as a representation of causality, we obtain a configuration.

Example 11. We label the derivation below according to Definition 16 and apply
function ψ. We obtain the set C = C4, which provides a canonical representation
of four derivations. Any of these four derivations delivers the same set C.

[a � (ā � [b � b̄]ε)ε]ε
→ ([a � ā]a � [b � b̄]ε)a , a = (s, μ1, φ1), C1 = {(ε, a)}
→ ([a � ā]a � 1b)a , b = (ai↓, μ2, φ2), C2 = C1 ∪ {(ε, b)}
→ [a � ā]a , c = (u2↓, μ3, φ3), C3 = C2 ∪ {(a, c), (b, c)}
→ 1d , d = (ai↓, μ3, φ3), C4 = C3 ∪ {(a, d)}

260 O. Kahramanoğulları

Remark 2. There can be cases in derivations due to identical subformulae with
different labels, which correspond to different configurations. For example, con-
sider the instance below, which can result in two different constraint sets due to
the choice of the redex of the ai↓ rule. This nondeterminism is due to the choice
of the redex of the rule instance at the inference step.

([a � ā]b � [a � ā]c)
↗
↘

(1a � [a � ā]a) ⇒ (b, a) ∈ C

([a � ā]b � 1a) ⇒ (c, a) ∈ C

Proposition 4. For any derivation Δ, ψ(Δ) terminates in linear time in the
number of atoms in Δ.

Proposition 5. Let R be a multiplicative linear logic formula with a derivation
Δ and CR,Δ be their constraint set. CR,Δ is irreflexive and antisymetric.

Proof. Follows from an inspection of the steps of function ψ in Definition 16:
none of the actions introduces a constraint of the form (x, x), and the inductive
steps of ψ introduce a new action as the second of a pair (x, y) at each step.

Definition 17. Let R be a multiplicative linear logic formula with a derivation
Δ and CR,Δ be the constraint set. The concurrent derivation of Δ for R, and
denoted with ConR,Δ, is the transitive reflexive closure of CR,Δ.

Remark 3. For any constraint set CR,Δ, ConR,Δ is a partial order.

Definition 18. A linearization Lin of a concurrent derivation ConR,Δ is a strict
total order of the actions of ConR,Δ such that ConR,Δ ⊆ Lin. Given a lineariza-
tion Lin of ConR,Δ, the derivation induced by Lin is the derivation with R in the
conclusion, constructed by applying the actions of Lin with respect to their order.

Theorem 3. For a derivation R
Δ−→ T in MLS, any derivation Δ′ induced

by a linearization Lin of ConR,Δ has the premise T . In other words, if Δ′ is a
derivation induced by a linearization Lin of ConR,Δ then it has the premise T .

Proof. Proof by induction on the length of Δ. If k = 0, then C = ∅, hence
Lin = ∅. Then the only linearization of ConR,Δ is R = T .

For the inductive case, let Δ be of the form R
Δk−→ T ′ ρ→ T . Let ψ(Δk) = Ck and

ConR,Δk
be the corresponding concurrent derivation. By induction hypothesis,

any derivation Δ′
k induced by a linearization Link of ConR,Δk

has the premise
T ′ and by applying ρ to T ′ we obtain T . Let Δ′

k be (R, 〈a1; . . . ; ak〉). For any
ρ ∈ MLS and its action a, we have that, for ai, aj ∈ {a1, . . . , ak}, C is given by

(a) either ψ(Δ) = {(ai, a), (aj , a)} ∪ Ck,

(b) or ψ(Δ) = {(ai, a)} ∪ Ck.

We proceed as in case (a) since the case (b) follows from (a). Let ConR,Δ be the
concurrent derivation obtained from C, that is, ConR,Δ is the reflexive transitive

True Concurrency of Deep Inference Proofs 261

Fig. 5. The transition system TS′
�(R) and LES′(R) obtained by using system MLSi

instead of system MLS, which prune the derivations that do not result in proofs.

closure of C. By induction hypothesis, for any linearization of ConR,Δk
, we have

that (R, 〈a1; . . . ; ak; a〉) is a derivation with T at the premise.
In any linearization Lin of ConR,Δ we have that either (ai, aj) or (aj , ai).

Let us assume the former (since otherwise we have an analogous case). Given
that (aj , a) ∈ C, the redex of a is not modified by any an ∈ {aj+1, . . . , ak},
which implies that for any derivation (R, 〈a1; . . . ; aj ; . . . ; ak〉) induced by a lin-
earization of ConR,Δk

, the linearizations induced by ConR,Δ are enumerated
by all the derivations where a is applied anywhere after aj . Because no action
an ∈ {aj+1, . . . , ak} modifies the redex of a, the derivation has the premise T .

Corollary 1. For any MLS formula R and derivation R
Δ−→ T , ConR,Δ is a

configuration in LES[[R]].

5 From Concurrent Derivations to Proof Search

Because of the exponential blow up in proof search that is a consequence of hard
complexity bounds [7,11], the margin of successful applications are determined
by the interplay between the breadth of the search space, nondeterminism and
length of proofs. In general, deep inference provides short proofs due to a more
immediate access to subformulae [1,9]. However, the greater nondeterminism
and resulting large breadth of search space hinders broad proof search appli-
cations that benefit from these short proofs. In [9], we have provided a formal
method that reduces nondeterminism in deep inference proof search, and this
way provides a more immediate access to shorter proofs. Below, we demonstrate
that this method together with the true-concurrency characterization above pro-
vides a means to simultaneously reduce nondeterminism and proof length. This
is because an untamed introduction of concurrency can result in an excessive
increase in the breadth of the search space. However, a formal mechanism such
as the following can provide control on search-space-breadth due to concurrency.

Definition 19. Given a formula R, atR is the set of the atoms in R.

262 O. Kahramanoğulları

Example 12. For R = [a� ā�b�(ā�⊥)�(a� b̄)], we have atR = {a, ā, b, b̄,⊥}.

Definition 20. [9] Consider the switch rule.

s : [(r � t) � u] → ([r � u] � t)

We say that an instance of switch is an instance of interaction switch (is) iff

(i) r and u are matched to formulae R and U such that atR ∩ atU �= ∅, that
is, R and U contain complementary atoms.

(ii) u is matched to formula that is a conjunction or an atom different from ⊥.
(iii) r is matched to formula that is a disjunction or an atom different from 1.

Definition 21. [9] System MLSi is the system obtained by replacing the switch
rule in system MLS with the interaction switch rule.

Example 13. Consider the formula R = [a � (ā � [b � b̄])] with the transition
system TS�[[R]] depicted in Fig. 3 and LES[[R]] depicted in Fig. 1. By using system
MLSi instead of system MLS we obtain TS′

�(R) and LES′(R) depicted in Fig. 5,
which prune the two MLS derivations that do not result in a proof.

Theorem 4. [9] Systems MLS and MLSi prove the same formulae, that is, sys-
tem MLSi is complete for multiplicative linear logic.

Example 14. In systems MLS and MLSi the shortest proof of [a � (ā � [a � ā])]
has length three as illustrated in Fig. 1. However, by resorting to the causally
independent true-concurrent characterization of derivations we can obtain proofs
of length two by composing rules in parallel as hinted in Fig. 5. Below we first
apply the composition of the causally independent rules s and ai↓, and then the
composition of the rules u2↓ and ai↓.

[a � (ā � [b � b̄])]
s|ai↓→ ([a � ā] � 1)

u2↓|ai↓→ 1

6 Discussion

The partial order representation of derivations provides a canonical represen-
tation of the derivations that differ only with respect to permutation of infer-
ence rules, but that are in essence identical. Such a characterization provides a
qualification of identity of proofs with respect to rule permutations, while dis-
tinguishing proofs that differ in the inference steps that they take. A similar
characterization is provided, for example, by proof nets for the case of multi-
plicative linear logic [2]. However, proof nets lack any information about the
deductive steps performed in the proof. In contrast, in our approach, proofs that
have identical proof nets can be distinguished with respect to their different con-
figurations that result from distinct inference strategies. This aspect, which is
illustrated in Fig. 4 and Example 10, is one of the contributions of this paper.
Such considerations are also addressed by atomic flows for classical logic [5,6].

True Concurrency of Deep Inference Proofs 263

The event structure characterization of derivations exploits the independence
and causality of rule instances such that the rule instances that are not causally
dependent become partially ordered. This partial order characterization relaxes
their total order representation in the standard deep inference syntax, which is
in fact recognized as a bureaucratic constraint rather than a logical requirement
[6]. As a result of the event structure characterization, our method reveals the
true-concurrent nature of derivations, which should find applications in logic pro-
gramming. Within the computation as proof search paradigm that uses deductive
systems as a framework for logic programming [12,13], such a true concurrent
interpretation of proof construction should broaden the potential applications.

As we have demonstrated in the previous section, the true-concurrency char-
acterization of the derivations provides a point of view of the rule instances that
exposes their independence in proof search. This in return provides a means for
concurrent application of inference rules in a way that reduces the length of
the proofs. Although uncontrolled use of concurrency can result in an excessive
increase in the breadth of search space, introducing control by means of other
orthogonal methods for reducing nondeterminism [9] should result in improve-
ment in proof search applications.

Topics of further investigation include carrying these methods to other logics
with deep inference systems within a more general framework, and their explo-
ration with respect to applications in logic programming and proof search.

References

1. Bruscoli, P., Guglielmi, A.: On the proof complexity of deep inference. ACM Trans.
Computat. Logic 2(14), 1–34 (2009)

2. Girard, J.-Y.: Linear logic: Its syntax and semantics. In: Girard, J.-Y., Lafont,
Y., Regnier, L. (eds.) Advances in Linear Logic (Proceedings of the Workshop on
Linear Logic, Cornell University), vol. 222. Cambridge University Press (1995)

3. Guglielmi, A.: Abstract Logic Programming in Linear Logic Independence and
Causality in a First Order Calculus. Ph.D. thesis, Universita di Pisa (1996)

4. Guglielmi, A.: A system of interaction and structure. ACM Trans. Comput. Logic
8(1), 1–64 (2007)

5. Guglielmi, A., Gundersen, T.: Normalisation control in deep inference via atomic
flows. Log. Methods Comput. Sci. 4(1:9), 1–36 (2008)

6. Guglielmi, A., Gundersen, T., Parigot, M.: A proof calculus which reduces syn-
tactic bureaucracy. In: Proceedings of the International Conference on Rewriting
Techniques and Applications 2010 (Edinburgh), pp. 135–150. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik 2010 LIPIcs (2010)

7. Kahramanoğulları, O.: SystemBV isNP-complete. Ann. PureAppl. Logic 152(1–3),
107–121 (2008)

8. Kahramanoğulları, O.: On linear logic planning and concurrency. Inform. Comput.
207(11), 1229–1258 (2009)

9. Kahramanoğulları, O.: Interaction and depth against nondeterminism in proof
search. Log. Methods Comput. Sci. 10(2:5), 1–49 (2014)

10. Kahramanoğulları, O.: Maude as a platform for designing and implementing deep
inference systems. In: Proceedings of the Eighth International Workshop on Rule-
Based Programming, RULE 2007. ENTCS, vol. 219, pp. 35–50. Elsevier (2008)

264 O. Kahramanoğulları

11. Kanovich, M.: The multiplicative fragment of linear logic is NP-complete. Technical
Report X-91-13, Institute for Language, Logic, and Information (1991)

12. Miller, D.: Forum: a multiple-conclusion specification logic. Theor. Comput. Sci.
165, 201–232 (1996)

13. Miller, D.: Overview of linear logic programming. In: Ehrhard, T., Girard, J.-Y.,
Ruet, P., Scott, P. (eds.) Linear Logic in Computer Science. London Mathematical
Society Lecture Note, vol. 316. Cambridge University Press, Cambridge (2004)

14. Sassone, V., Nielsen, M., Winskel, G.: Models for concurrency: towards a classifi-
cation. Theor. Comput. Sci. 170(1–2), 297–348 (1996)

15. Strassburger, L., Guglielmi, A.: A system of interaction and structure IV: The
exponentials anddecomposition. ACM Trans. Comp. Logic 12(4), 1–39 (2011)

16. Winskel, G., Nielsen, M.: Models for concurrency. In: Abramsky, S., Gabbay, D.M.,
Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, vol. 4, pp. 1–148.
Oxford University Press, Oxford (1995)

On the Complexity of the Equational Theory
of Residuated Boolean Algebras

Zhe Lin1(B) and Minghui Ma2

1 Institute of Logic and Cognition, Sun Yat-sen University, Guangzhou, China
pennyshaq@gmail.com

2 Institute for Logic and Intelligence, Southwest University, Chongqing, China
mmh.thu@gmail.com

Abstract. Residuated boolean algebras are introduced by Jonsson and
Tsinakis [10] as generalizations of relation algebras. Jispen [12] proved
that the equational theory of residuated boolean algebras with unit, and
that of many relative classes of algebras are decidable. Buszkowski [2]
showed the finite embeddability property for residuated boolean algebras,
which yields the decidability of the universal theory of residuated boolean
algebras. In this paper, we study the complexity of the equational theory
of residuated boolean algebras. The main result is that the equational
theory of residuated boolean algebras is PSPACE-complete.

1 Introduction

A residuated Boolean algebra, or r-algebra, is an algebra A = (A,∧,∨,′ ,�,⊥,
·, \, /) where (A,∧,∨,′ ,�,⊥) is a Boolean algebra, and ·, \ and / are binary
operators on A satisfying the following residuation property: for any a, b, c ∈ A,

a · b ≤ c iff b ≤ a\c iff a ≤ c/b

The operators \ and / are called right and left residuals of · respectively.
The left and right conjugates of · are binary operators on A defined by setting

a � c = (a\c′)′ and c � b = (c′/b)′.

The following conjugation property holds for any a, b, c ∈ A:

a · b ≤ c′ iff a � c ≤ b′ iff c � b ≤ a′

Equivalently, a r-algebra can also be defined as a Boolean algebra with a binary
operation · and its left and right conjugates. We prefer to choose \ and / as basic
operations.

A unital r-algebra, or ur-algebra, is a r-algebra A = (A,∧,∨,′ ,�,⊥, ·, \, /, 1)
enriched with a unit element 1 with respect to ·, i.e., an element 1 satisfying

The work of the first author is supported by Chinese national fund for social sciences
(grant No. 13&ZD186).

c© Springer-Verlag Berlin Heidelberg 2016
J. Väänänen et al. (Eds.): WoLLIC 2016, LNCS 9803, pp. 265–278, 2016.
DOI: 10.1007/978-3-662-52921-8 17

266 Z. Lin and M. Ma

the condition 1 · a = a · 1 = a for all a ∈ A. A residuated Boolean monoid, or
rm-algebra, is a ur-algebra in which · is associative. We always use boldface A for
an algebra, and plain A for its base set. Classes of algebras are denoted by a kind
of blackboard bold capital letters. The varieties of all r-algebras, all ur-algebras
and all rm-algebras are denoted by RBA, URA and RMA respectively.

Tarski [20] introduced relation algebras, and Maddux [17] introduced nonas-
sociative relation algebras by weakening the monoid in a relation algebra to a
groupoid with identity. The varieties of all relation algebras and all nonassocia-
tive relation algebras are denoted by RA and NA respectively. These algebras are
generalized to residuated Boolean algebras by Jónsson and Tsinakis [11]. Both
relation algebras and nonassociative relation algebras are characterized as spe-
cial r-algebras by some equations. Algebraic studies on r-algebras can be found
in literatures [8,9,12].

Let K be any class of algebras. The equational theory of K, denoted by Eq(K),
is the set of all equations of the form s = t that are valid in K. The universal
theory of K is the set of all first-order universal sentences that are valid in
K. Németi [18] proved that Eq(NA) is decidable. Jispen [12] proved that the
equational theories of the variety of all ur-algebras and some of its subvarieties
are decidable. Buszkowski [2] proved the finite embeddability property (FEP)
for r-algebras. If a class of algebras K has the FEP, then the universal theory
of K is decidable, provided that K is finitely axiomatizable. Then the universal
theory of r-algebras is decidable, and the same result is obtained by Kaminski
and Francez [13] using different methods. Kurucz, Nemeti, Sain and Simon [15]
proved that the equational theory of all Boolean algebras with an associative
operator is undecidable. It follows that Eq(RMA) is undecidable.

The aim of the present paper is to study the complexity of the decision prob-
lem of the equation validity in RBA. Our approach is to reduce the decidability of
Eq(RBA) to the decidability of a sequent calculus for RBA. A sequent calculus for
r-algebras, called Boolean nonassociative Lambek calculus (BFNL), was developed
by Buszkowski [2] and Kaminski and Francez [13]. It is an extension of non asso-
ciative Lambek calculus (NL) that was introduced by Lambek [16] as a calculus for
nonassociave residauted groupoids. BFNL is sound and complete with respect to
RBA, i.e., a sequent is derivable in BFNL if and only if it is valid in RBA. Thus the
decidability of Eq(RBA) is reduced to the decidability of the derivability in BFNL.
Consequently, the complexity of the decision problem of Eq(RBA) is equal to the
complexity of the decision problem of the derivability in BFNL.

In the following sections, we will analyze the complexity of the decision prob-
lem of BFNL. Our main result is that BFNL is PSPACE-complete. PSPACE-
hardness of BFNL is obtained by a polynomial reduction from the minimal
normal modal logic K, which is PSPACE-complete, to BFNL. That BFNL is
in PSPACE is shown by a polynomial reduction from BFNL to the minimal
bi-tense logic Kt

1,2. We show that Kt
1,2 is in PSACE by a polynomial reduction

from it to the minimal tense logic K.t which is PSPACE-complete. As a result,
Eq(RBA) is PSPACE-complete. Our result also yields that the equational theory
of residuated distributive lattice is in PSPACE.

On the Complexity of the Equational Theory 267

2 Boolean Nonassociative Lambek Calculus

We recall some basic notions for BFNL. The language of BFNL LBFNL(Prop)
is built from the set of propositional variables Prop by Lambek connectives
/, \, · and propositional connectives ∧,∨,⊥,� and ¬. The set of all LBFNL(Prop)-
formulae is defined inductively by the following rule:

A ::= p | ⊥ | � | (A · A) | (A/A) | (A\A) | (A ∧ A) | (A ∨ A) | ¬A

where p ∈ Prop. We write p, q, r etc. for propositional variables, and A,B,C etc.
for formulae. The set of all formula trees is defined inductively by the following
rule:

Γ ::= A | Γ ◦ Γ

where A is an LBFNL(Prop)-formula. Each formula tree Γ is associated with a
formula f(Γ) defined inductively by: f(A) = A and f(Γ ◦ Δ) = f(Γ) · f(Δ). A
context is a formula tree containing one occurrence of special atom − (a place
for substitution). If Γ [−] is a context, then Γ [Δ] denotes the substitution of Δ
for − in Γ . Sequents are of the form Γ ⇒ A where Γ is a formula tree and A is
a formula. A sequent is an expression of the form Γ ⇒ A where Γ is a formula
tree and A is a formula. The sequent system BFNL consists the following axioms
and rules:

(Id) A ⇒ A, (D) A ∧ (B ∨ C) ⇒ (A ∧ B) ∨ (A ∧ C),

(⊥) Γ [⊥] ⇒ A, (�) Γ ⇒ �,

(¬1) A ∧ ¬A ⇒ ⊥, (¬2) � ⇒ A ∨ ¬A,

(\L)
Δ ⇒ A Γ [B] ⇒ C

Γ [Δ ◦ (A\B)] ⇒ C
, (\R)

A ◦ Γ ⇒ B

Γ ⇒ A\B
,

(/L)
Γ [A] ⇒ C Δ ⇒ B

Γ [(A/B) ◦ Δ] ⇒ C
, (/R)

Γ ◦ B ⇒ A

Γ ⇒ A/B
,

(·L)
Γ [A ◦ B] ⇒ C

Γ [A · B] ⇒ C
, (·R)

Γ ⇒ A Δ ⇒ B

Γ ◦ Δ ⇒ A · B
, (Cut)

Δ ⇒ A; Γ [A] ⇒ B

Γ [Δ] ⇒ B
,

(∧L)
Γ [Ai] ⇒ B

Γ [A1 ∧ A2] ⇒ B
, (∧R)

Γ ⇒ A Γ ⇒ B

Γ ⇒ A ∧ B
,

(∨L)
Γ [A1] ⇒ B Γ [A2] ⇒ B

Γ [A1 ∨ A2] ⇒ B
, (∨R)

Γ ⇒ Ai

Γ ⇒ A1 ∨ A2
.

In (∧L) and (∨R), the subscript i equals 1 or 2.
By
BFNL Γ ⇒ A we mean that the sequent Γ ⇒ A is derivable in BFNL.

The notation A ⇔ B stands for A ⇒ B and B ⇒ A.

268 Z. Lin and M. Ma

Fact 1. The following sequents are derivable in BFNL:

(1) C · (A ∨ B) ⇔ (C · A) ∨ (C · B),
(2) (A ∨ B) · C ⇔ (A · C) ∨ (B · C),
(3) C · (A ∧ B) ⇒ (C · A) ∧ (C · B),
(4) (A ∧ B) · C ⇒ (A · C) ∧ (B · C),
(5) ¬A ∨ ¬B ⇔ ¬(A ∧ B),
(1) ¬(A ∨ B) ⇔ ¬A ∧ ¬B,
(7) ¬⊥ ⇔ � and ¬� ⇔ ⊥,
(8) A ∧ (B ∨ C) ⇔ (A ∧ B) ∨ (A ∧ C),
(9) A ∨ (B ∧ C) ⇔ (A ∨ B) ∧ (A ∨ C),

Fact 2. For any LBFNL(Prop)-formulae A and B,

(1) if
BFNL A ⇒ B, then
BFNL ¬B ⇒ ¬A,
(2)
BFNL A ⇒ B if and only if
BFNL � ⇒ ¬A ∨ B.

BFNL has Kripke semantics ([13]). A ternary frame is a pair (W,S) such that
W is a nonempty set and S is an arbitrary ternary relation on W . A ternary
model J = (W,S, σ) consists of a ternary frame (W,S) and a valuation function
σ : Prop → P(W) from Prop to the powerset of W . The satisfiability relation
J, w |= A between a ternary model J with a state w ∈ W and an LBFNL(Prop)-
formula A is recursively defined as below:

J, u |= p iff u ∈ σ(p).
J, u |= ⊥.
J, u |= �.
J, u |= A · B iff there are v, w ∈ W such that S(u, v, w), J, v |= A and
J, w |= B.
J, u |= A/B iff for all v, w ∈ W with S(w, u, v), if J, v |= B, then J, w |= A
J, u |= A\B iff for all v, w ∈ W with S(v, w, u), if J, w |= A, then J, v |= B.
J, u |= A ∧ B iff J, u |= A and J, u |= B,
J, u |= A ∨ B iff J, u |= A or J, u |= B.
J, u |= ¬A iff J, u |= A.

An LBFNL(Prop)-formula A is satisfiable if J, u |= A for some ternary model
J = (W,R, σ) and some u ∈ W . We say that A is true in J (notation: J |= A),
if J, u |= A for all u ∈ W . For any sequent Γ ⇒ A, we say that Γ ⇒ A is true
at a state u in a ternary model J (notation: J, u |= Γ ⇒ A), if J, u |= f(Γ)
implies J, u |= A. A sequent Γ ⇒ A is true in J (notation: J |= Γ ⇒ A), if
J, u |= Γ ⇒ A for all u ∈ W . By |=BFNL Γ ⇒ A we mean that Γ ⇒ A is true
in all ternary models.

The soundness and completeness of the Hilbert-style presentation PNL of
BFNL under Kripke semantics are settled in [13]. Let us recall this theorem.

Theorem 3. For any formula A,
PNL A if and only if |=PNL A.

On the Complexity of the Equational Theory 269

The relation between BFNL and PNL is as below: for any LBFNL(Prop)-formula
A, we have
PNL A if and only if
BFNL � ⇒ A. Consequently, by Fact 2 (2),
for any LBFNL(Prop)-formula A ⊃ B,
PNL A ⊃ B if and only if
BFNL A ⇒ B,
where ⊃ is the Boolean implication. Note that the Kripke semantics of BFNL
defined here is the same as PNL in [13]. Therefore we have the following theorem:

Theorem 4. For any sequent Γ ⇒ A,
BFNL Γ ⇒ A if and only if |=BFNL

Γ ⇒ A.

3 Modal and Tense Logics

The language of modal logic LM consists of a set of propositional variables Prop,
propositional connectives ⊥,⊃ and a unary modal operator ♦. The set of all
modal formulas is defined inductively by the following rule:

A ::= p | ⊥ | (A ⊃ A) | ♦A, where p ∈ Prop.

Define ¬A := A ⊃ ⊥. Other propositional connectives �,∧,∨ and ↔ are defined
as usual. The dual of ♦ is defined by �A := ¬♦¬A.

The language of tense logic Lt is an extension of LM by adding a unary
operator �↓. The set of all tense formulas is defined inductively by the following
rule:

A ::= p | ⊥ | (A ⊃ A) | ♦A | �↓A, p ∈ Prop.

Define ♦↓A := ¬�↓¬A.

Definition 1. The minimal modal system K consists of the following axiom
schemata and inference rules:

(1) All instances of classical propositional tautologies.
(2) �(A ⊃ B) ⊃ (�A ⊃ �B)
(3) MP: from A and A ⊃ B infer B.
(4) Nec�: from A infer �A.

By
K A we mean that the modal formula A is provable in K.

Definition 2. The minimal tense system K.t consists of the following axiom
schemata and inference rules:

(1) All instances of classical propositional tautologies.
(2) �(A ⊃ B) ⊃ (�A ⊃ �B).
(3) �↓(A ⊃ B) ⊃ (�↓A ⊃ �↓B).
(4) A ⊃ �♦↓A.
(5) A ⊃ �↓♦A.
(6) MP: from A and A ⊃ B infer B.
(7) Nec�: from A infer �A.
(8) Nec�↓: from A infer �↓A.

270 Z. Lin and M. Ma

By
K.t A we mean that the tense formula A is provable in K.t.

We give the following facts without proof that will be used to prove the
embedding result in Theorem 15.

Fact 5. The following hold in K.t:

(1) if
K.t A ⊃ B, then
K.t (C ⊃ A) ⊃ (C ⊃ B).
(2) if
K.t (A ∧ B) ⊃ C, then
K.t A ⊃ (B ⊃ C).
(3) if
K.t A ⊃ B and
K.t B ⊃ C, then
K.t A ⊃ C.
(4)
K.t (A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C)).
(5) if
K.t A ⊃ B, then
K.t �A ⊃ �B.
(6) if
K.t A ⊃ B, then
K.t �↓A ⊃ �↓B.
(7) if
K.t ♦A ⊃ B, then
K.t A ⊃ �↓B.
(8) if
K.t ♦↓A ⊃ B, then
K.t A ⊃ �B.

A binary frame is a pair F = (W,R) where W is a nonempty set of states,
and R is a binary relation over W . A binary model M = (W,R, σ) consists of a
binary frame (W,R) and a valuation σ : Prop → P(W). The satisfiability relation
M, w |= A between a model M with a state w ∈ W and a tense formula A is
defined as below:

M, w |= p iff w ∈ σ(p).
M, w |= ⊥.
M, w |= A ⊃ B iff M, w |= A or M, w |= B.
M, w |= ♦A iff there exists u ∈ W with R(w, u) and M, u |= A.
M, w |= �↓A iff for every u ∈ W , if R(u,w), then M, u |= A.

Then we have (i) M, w |= ♦↓A iff there exists u ∈ W with R(u,w) and M, u |=
A; and (ii) M, w |= �A iff for every u ∈ W , if R(w, u), then M, u |= A.
Note that the Kripke semantics for the modal language is given by the semantic
clauses for ♦ and �.

The notions of satisfiability and validity are defined as usual. By |=K.t A
(respectively |=K A) we mean that the tense formula A (respectively the modal
formula A) is valid in all binary frames. By the standard canonical model con-
struction, it is easy to show the soundness and completeness of K.t and K, i.e.,
(1) for any tense formula A,
K.t A if and only if |=K.t A; (2) for any modal
formula A,
K A if and only if |=K A.

The bi-tense language is defined like the tense language but with two pair
of tense operators ♦1, �↓

1 and ♦2, �↓
2 with their duals �1, ♦↓

1 and �2, ♦↓
2,

respectively. The minimal bi-tense system Kt
1,2 is defined exactly like the minimal

tense system K.t but the axiom schemata and inference rules are given for two
pairs of tense operators. By
Kt

1,2
A we mean that the bi-tense formula A is

provable in Kt
1,2.

A bi-tense frame is a triple F = (W,R1, R2) where W is a nonempty
set of states, and R1, R2 are binary relations over W . A bi-tense model
M = (W,R1, R2, σ) consists of a bi-tense frame (W,R1, R2) and a valuation
σ : Prop → ℘(W). The notions of satisfiability and validity are defined as usual.

On the Complexity of the Equational Theory 271

By |=Kt
1,2

A we mean that A is valid in all bi-tense frames. We also have the
soundness and completeness of the bi-tense system Kt

1,2, i.e., for every bi-tense
formula A,
Kt

1,2
A if and only if |=Kt

1,2
A (cf. [1]).

4 PSPACE-Hard Decision Problem of BFNL

We reduce the validity problem of K, which is PSPACE-complete, to the decision
problem of BFNL in P-time so that we prove the PSPACE-hardness of the
decision problem of BFNL. Now let us consider an embedding from modal logic
K into BFNL.

Definition 6. Let P ⊆ Prop and m ∈ P be a distinguished propositional variable.
Define a translation (mapping) (.)†: LK(P) → LBFNL(P ∪ {m}) recursively as
follows:

p† = p, ⊥† = ⊥,

(A ⊃ B)† = A† ⊃ B†, (♦A) = m · A†.

Let M = (W,R, σ) be a binary model. Define a ternary model JM = (W ′, R′, σ′)
from M as follows:

(1) if w ∈ W , then put two copies w1, w2 of w into W ′,
(2) if R(w, u), then R′(w1, w2, u1),
(3) wi ∈ σ′(p) iff w ∈ σ(p), for all p ∈ P and i ∈ {1, 2}; and σ′(m) = W ′.

For each state w in the original binary model, we make two copies w1 and
w2. Then define a ternary relation among these copies according to the original
binary relation.

Lemma 7. Suppose that M = (W,R, σ) is a binary model and JM =
(W ′, R′, σ′) is defined from M as in Definition 6. Then for any w ∈ W and
modal formula A, M, w |= A if and only if JM, w1 |= A†.

Proof. By induction on the complexity of A. The atomic and Boolean cases
are easy by the construction of JM and the induction hypothesis. For A = ♦B,
assume M, w |= ♦B. Then there exists u ∈ W such that R(w, u) and M, u |= B.
Since R(w, u), we get R′(w1, w2, u1). By the induction hypothesis, JM, u1 |= B†.
Hence JM, w1 |= m · B†. Conversely, assume JM, w1 |= m · B†. Then there
exist k, z ∈ W ′ such that R′(w1, k, z), JM, k |= m and JM, z |= B†. By the
construction k = w2 and z = u1 for some u ∈ W . By the induction hypothesis,
M, u |= B. By the construction of JM, we get R(w, u). Hence M, w |= ♦B. ��
Lemma 8. For any modal formula A, if
BFNL � ⇒ A†, then
K A.

Proof. Assume
K A. Then there is a binary model M such that M |= A. By
Lemma 7, JM |= A†. So JM |= � ⇒ A†. By Theorem 4, we get
BFNL � ⇒ A†.

��

272 Z. Lin and M. Ma

Lemma 9. For any modal formula A, if
K A, then
BFNL � ⇒ A†.

Proof. We proceed by induction on the length of proofs in K. It suffices to show
that all axioms and inference rules of K are admissible in BFNL with respect to
the translation †. Obviously the translations of all tautologies of classical propo-
sitional logic are provable in BFNL. Consider (�(A ⊃ B) ⊃ (�A ⊃ �B))† =
(m · (A† ∧ ¬B†)) ∨ (m · (¬A†)) ∨ (¬(m · (¬B†)). Since A† ∧ B† ⇒ B†, by Fact 2
(1) and 1 (5), one gets
BFNL ¬B† ⇒ (¬A† ∨ ¬B†). Hence by monotonicity of
·, one gets
BFNL m · (¬B†) ⇒ (m · (¬A† ∨ ¬B†)). Then by Fact 2 (2) one gets

BFNL � ⇒ ¬(m · (¬B†)) ∨ (m · (¬A† ∨ ¬B†)). Since
BFNL (A† ∨ ¬A†) ⇔ �,
one gets
BFNL (m · (¬A† ∨ ¬B†)) ⇔ m · ((A† ∨ ¬A†) ∧ (¬A† ∨ ¬B†)). By
Fact 1 (9) and monotonicity of ·, one gets
BFNL m · ((A† ∨ ¬A†) ∧ (¬A† ∨
¬B†)) ⇔ m · ((A† ∧ ¬B†) ∨ ¬A†). Again, by Fact 1 (1) one can prove that

BFNL m · ((A† ∧ ¬B†) ∨ ¬A†) ⇔ (m · (A† ∧ ¬B†)) ∨ ((m · (¬A†))). Hence one
gets
BFNL � ⇒ (m · (A† ∧ ¬B†)) ∨ (m · (¬A†)) ∨ (¬(m · (¬B†))).

Consider the rule (MP). Assume that
BFNL � ⇒ A† and
BFNL � ⇒ (A ⊃
B)†, which is equal to
BFNL � ⇒ ¬A† ∨ B†. We need to show
BFNL � ⇒ B†.
By (¬1), (⊥) and (Cut), one gets
BFNL A† ∧ ¬A† ⇒ B†. By (∧L), one gets

BFNL A† ∧ B† ⇒ B†. By (∨L), one gets
BFNL (A† ∧ ¬A†) ∨ (A† ∧ B†) ⇒ B†.
Then by (D) and (Cut), one gets
BFNL A† ∧ (¬A† ∨ B†) ⇒ B†. Clearly, by
assumptions and (∧R), one gets
BFNL � ⇒ A† ∧ (¬A† ∨ B†), which yields

BFNL � ⇒ B† by (Cut).

Finally we consider the rule (Nec). Assume
BFNL � ⇒ A†. We need to
show
BFNL � ⇒ ¬(m · (¬A†)). By Fact 2 (1) and the assumption, one gets

BFNL ¬(A†) ⇒ ⊥. By monotonicity, one gets
BFNL m · ¬(A†) ⇒ m · ⊥. Then
by (⊥), (·L) and (Cut), one gets
BFNL m · ¬(A†) ⇒ ⊥. Hence by Fact 2 (1),
one gets
BFNL � ⇒ ¬(m · (¬A†)). ��
Theorem 10. For any modal formula A,
K A if and only if
BFNL � ⇒ A†.

Proof. By Lemmas 8 and 9. ��
A normal modal logic is a set S of modal formulae such that all theorems of

K belongs to S and S is closed under MP, Nec and uniform substitution. The
PSPACE-hardness of the validity problems of some modal logics were settled
first by Lander [19]. Let us recall this theorem from [19].

Theorem 11 (Lander’s Theorem). If S is a normal modal logic such that
K ⊆ S ⊆ S4, then S has a PSPACE-hard satisfiability problem. Moreover, S has
PSPACE-hard validity problem.

Obviously the reduction (.)† is in polynomial time. By Lardner’s theorem
(Theorem 11), one gets the following result:

Theorem 12. BFNL is PSPACE-hard.

On the Complexity of the Equational Theory 273

5 BFNL is in PSPACE

Kurtonina [14] proved that the nonassociative Lambek calculus NL is faithfully
embedded into the minimal bi-tense system Kt

1,2, i.e., for any formulas A and B

in the language of NL,
NL A ⇒ B if and only if
Kt
1,2

A# ⊃ B#, where # is a
mapping from the language of NL to the bi-tense language. This result can be
extended to an embedding from BFNL into Kt

1,2.

Definition 3. The translation (.)# : LBFNL(Prop) → LKt
1,2

(Prop) is defined as
below:

p# = p, �# = �, ⊥# = ⊥,

(¬A)# = ¬A#, (A ∧ B)# = A# ∧ B#,

(A ∨ B)# = A# ∨ B#, (A · B)# = ♦1(♦1A
∧ ♦2B

#),

(A\B)# = �↓
2(♦1A

⊃ �↓
1B

#), (A/B)# = �↓
1(♦2B

⊃ �↓
1A

#).

Theorem 13. For any LBFNL-sequent Γ ⇒ D,
BFNL Γ ⇒ D if and only if

Kt

1,2
(f(Γ))# ⊃ D#.

Proof. We can confine ourselves to the relation
BFNL A ⇒ B, since every sequent
Γ ⇒ D is deductively equivalent inBFNL to f(Γ) ⇒ D. The left-to-right direction
is shown by induction on the proof of A ⇒ B in BFNL. Notice that it is easy to
show that the translations of axioms in BFNL are theorems in Kt

1,2. For instance,
consider (¬1) A ∧ ¬A ⇒ ⊥. Its translation (A# ∧ ¬A#) ⊃ ⊥ is a theorem of Kt

1,2.
Rules of BFNL are checked regularly. We demonstrate only one typical case. Let
us consider (\L). It suffices to show that the following rule is admissible under the
translation:

A ⇒ B C ⇒ D

A · (B\C) ⇒ D

Assume that
Kt
1,2

A# ⊃ B# and
Kt
1,2

C# ⊃ D#. It suffices to show that

Kt
1,2

♦1(♦1A
∧ ♦2�↓

2(♦1B
⊃ �↓

1C
#)) ⊃ D#. For any bi-tense model M =

(W,R1, R2, V) and u ∈ W , assume that M, u |= ♦1(♦1A
∧ ♦2�↓

2(♦1B
⊃

�↓
1C

#)). It suffices to showM, u |= D#. By assumptions,we haveM |= A# ⊃ B#

and M |= C# ⊃ D#. Again by the assumption, we get M, v |= ♦1A
∧

♦2�↓
2(♦1B

⊃ �↓
1C

#) for some v ∈ W such that R1(u, v). Then there exist w, z ∈
W such that R1(v, w), R2(v, z), M, w |= A# and M, z |= �↓

2(♦1B
⊃ �↓

1C
#).

Since M |= A# ⊃ B#, we get M, w |= B#. Hence M, v |= ♦1B
#. Then by

M, z |= �↓
2(♦1B

⊃ �↓
1C

#) and R2(v, z), we get M, v |= �↓
1C

#. Since R1(u, v),
we get M, u |= C#. By the assumption M |= C# ⊃ D#, we get M, u |= D#.
Hence we get
Kt

1,2
(A · (B\C))# ⇒ D#.

For the other direction, assume that
BFNL A ⇒ B. By completeness of
BFNL, there exists a ternary model M = (W,R, σ) and a state k ∈ W such
that M, k |= A but M, k |= B. Then we construct a bi-tense model M∗ =
(W ∗, R1, R2, σ

∗) from M satisfying the following conditions:

274 Z. Lin and M. Ma

– k ∈ W ∗.
– if R(u, v, w), then put a fresh state x and u, v, w into W ∗ such that R1(u, x),

R1(x, v) and R2(x,w).
– set for all u ∈ W ∩ W ∗ and p ∈ Prop, u ∈ σ∗(p) iff u ∈ σ(p).

We may show that for any u ∈ W ∩ W ∗ and LBFNL-formula A,

(�) M, u |= A iff M∗, u |= A#.

By induction on the length of A. The basic case is a direct consequence of the
definition of M∗. We demonstrate only one typical clause of the inductive step.
Let us consider the case A = B ·C. Then B ·C = ♦1(♦1B

#∧♦2C
#). Assume that

M, u |= B · C. Then there exist v, w ∈ W such that R(u, v, w), M, v |= B and
M, w |= C. By the induction hypothesis, M∗, v |= B# and M∗, w |= C#. By
the construction, there exists x ∈ W ∗ such that R1(u, x), R1(x, v) and R2(x,w).
Hence M∗, x |= ♦1B

∧ ♦2C
#. Hence M∗, u |= ♦1(♦1B

∧ ♦2C
#). Conversely,

assume that M∗, u |= ♦1(♦1B
∧ ♦2C

#). Then there exist x, v, w ∈ W ∗ such
that R1(u, x), R1(x, v), R2(x,w), and M∗, v |= B# and M∗, w |= C#. By the
construction, we get R(u, v, w). By the induction hypothesis, we get M, v |= B
and M, w |= C. Therefore, M, u |= B · C.

Finally, by (�), M∗, k |= A# but M∗, k |= B#. Hence A# ⊃ B# is refuted
in M∗. So
Kt

1,2
A# ⊃ B#. ��

It is easy to see that the reduction from BFNL to Kt
1,2 is in polynomial time.

Then by the fact that Kt
1,2 is in PSPACE (Theorem 16), we get the following

theorem:

Theorem 14. BFNL is in PSPACE.

Now we show that the validity problem for Kt
1,2 is in PSPACE. Our method

is to show that Kt
1,2 is embedded into K.t in polynomial time.

Definition 4. Let P ⊆ Prop and x ∈ P be a distinguished propositional variable.
Define a translation (.)∗ : LKt

12
(P) → LK.t(P ∪ {x}) recursively as follows:

p∗ = p, ⊥∗ = ⊥,

(♦1A)∗ = ¬x ∧ ♦(¬x ∧ A∗), (♦2A)∗ = ♦(x ∧ ♦A∗),

(�↓
1A)∗ = ¬x ⊃ �↓(¬x ⊃ A∗), (�↓

2A)∗ = �↓(x ⊃ �↓A∗),
(A ⊃ B)∗ = A∗ ⊃ B∗.

Then we have

(♦↓
1A)∗ = ¬x ∧ ♦↓(¬x ∧ A∗), (♦↓

2A)∗ = ♦↓(x ∧ ♦↓A∗),
(�1A)∗ = ¬x ⊃ �(¬x ⊃ A∗), (�2A)∗ = �(x ⊃ �A∗).

Theorem 15. For any bi-tense formula A,
Kt
1,2

A if and only if
K.t A∗.

On the Complexity of the Equational Theory 275

Proof. (i) By induction on the proof of A in Kt
1,2, we show that
Kt

1,2
A implies

K.t A∗. We show only that the translations of axioms and rules of Kt
1,2 hold

in K.t. The cases for propositional tautologies and (MP) are obvious. Let us
consider other cases.

Case 1. The translation of �1(A ⊃ B) ⊃ (�1A ⊃ �1B) is (¬x ⊃ �(¬x ⊃
(A∗ ⊃ B∗))) ⊃ ((¬x ⊃ �(¬x ⊃ A∗)) ⊃ (¬x ⊃ �(¬x ⊃ B∗))). First,
K.t (¬x ⊃
(A∗ ⊃ B∗)) ⊃ ((¬x ⊃ A∗) ⊃ (¬x ⊃ B∗)) by Fact 5 (4). Then
K.t �(¬x ⊃
(A∗ ⊃ B∗)) ⊃ (�(¬x ⊃ A∗) ⊃ �(¬x ⊃ B∗)) by Fact 5 (5) and distributivity of
� over implications. Then by Fact 5 (1) and (4), we get the required theorem
in K.t.

Case 2. The translation of �2(A ⊃ B) ⊃ (�2A ⊃ �2B) is �(x ⊃ �(A∗ ⊃
B∗)) ⊃ (�(x ⊃ �A∗) ⊃ �(x ⊃ �B∗)). Since
K.t �(A∗ ⊃ B∗) ⊃ (�A∗ ⊃ �B∗),
by Fact 5 (1), we get
K.t (x ⊃ �(A∗ ⊃ B∗)) ⊃ (x ⊃ (�A∗ ⊃ �B∗)). Since

K.t (x ⊃ (�A∗ ⊃ �B∗)) ⊃ ((x ⊃ �A∗) ⊃ (x ⊃ �B∗)), we obtain
K.t (x ⊃
�(A∗ ⊃ B∗)) ⊃ ((x ⊃ �A∗) ⊃ (x ⊃ �B∗)) by Fact 5 (3). Hence by Fact 5
(5), we get
K.t �(x ⊃ �(A∗ ⊃ B∗)) ⊃ �((x ⊃ �A∗) ⊃ (x ⊃ �B∗)). Since

K.t �((x ⊃ �A∗) ⊃ (x ⊃ �B∗)) ⊃ (�(x ⊃ �A∗) ⊃ �(x ⊃ �B∗)), by Fact 5
(3), we obtain
K.t �(x ⊃ �(A∗ ⊃ B∗)) ⊃ (�(x ⊃ �A∗) ⊃ �(x ⊃ �B∗)).

Case 3. For �↓
1(A ⊃ B) ⊃ (�↓

1A ⊃ �↓
1B), the proof is similar to Case 1.

Case 4. For �↓
2(A ⊃ B) ⊃ (�↓

2A ⊃ �↓
2B), the proof is similar to Case 2.

Case 5. The translation of A ⊃ �↓
2♦2A is A∗ ⊃ �↓(x ⊃ �↓♦(x∧♦A∗)). Since

K.t ♦(x∧♦A∗) ⊃ ♦(x∧♦A∗), by Fact 5 (7), we get (x∧♦A∗) ⊃ �↓♦(x∧♦A∗),
Then by Fact 5 (2), we obtain
K.t ♦A∗ ⊃ (x ⊃ �↓♦(x ∧ ♦A∗)). Finally by Fact
5 (7), we get
K.t A∗ ⊃ �↓(x ⊃ �↓♦(x ∧ ♦A∗)).

Case 6. For A ⊃ �2♦↓
2A, the proof is quite similar to Case 5.

Case 7. Let us consider the translation of A ⊃ �1♦↓
1A, which is A∗ ⊃ (¬x ⊃

�(¬x ⊃ (¬x ∧ ♦↓(¬x ∧ A∗)))). Since (¬x ∧ ♦↓(¬x ∧ A∗)) ⊃ (¬x ∧ ♦↓(¬x ∧ A∗))
is a propositional tautology,
K.t ♦↓(¬x ∧ A∗) ⊃ (¬x ⊃ (¬x ∧ ♦↓(¬x ∧ A∗)))
by Fact 5 (2). Hence by Fact 5 (8), one obtains
K.t (¬x ∧ A∗) ⊃ �(¬x ⊃
(¬x ∧ ♦↓(¬x ∧ A∗))). Finally by Fact 5 (2), one obtains
K.t A∗ ⊃ (¬x ⊃
�(¬x ⊃ (¬x ∧ ♦↓(¬x ∧ A∗)))).

Case 8. For the axiom A ⊃ �↓
1♦1A, the proof is quite similar to Case 7.

Case 9. For Nec�1, assume that
K.t A∗. Then by MP and propositional
tautology A∗ ⊃ (¬x ⊃ A∗), we get
K.t ¬x ⊃ A∗. By Nec�, we get
K.t �(¬x ⊃
A∗). Again, we obtain
K.t ¬x ⊃ �(¬x ⊃ A∗). The proofs for the cases of other
Nec-rules are quite similar.

(ii) For the other direction, assume that
Kt
1,2

A. Let M = (W,R1, R2, σ)
be a bi-tense model and k ∈ W such that M, k |= A. Let us construct a binary
model M′ = (W ′, R′, σ′) satisfying the following conditions:

– k ∈ W ′.
– if R1(u, v), then put u, v ∈ W ′ and let R′(u, v).
– if R2(u, v), then take a fresh state w ∈ W , put u, v, w into W ′ and let R′(u,w)

and R′(w, v).
– set for all u ∈ W ∩ W ′, u ∈ σ′(p) iff u ∈ σ(p), for each p ∈ P.
– set for all u ∈ W ′\W , u ∈ σ′(x).

276 Z. Lin and M. Ma

We show that for any u ∈ W ∩ W ′ and bi-tense formula C,

(�)M, u |= C iff M′, u |= C∗.

Now by induction on the length of C. The cases of propositional variables and
boolean connectives are easy. Let us consider other cases. In the following proofs
and later on we often employ the following obvious facts: (1) if u, v ∈ σ′(¬x)
and R′(u, v), then R1(u, v); (2) for any w, u, v ∈ W ′, if w ∈ W ′\W , R′(u,w) and
R′(w, v), then u, v ∈ W and R2(u, v).

Case 1. C = ♦1B. Assume that M, u |= ♦1B. Then R1(u, v) and M, v |= B
for some v ∈ W . By the induction hypothesis, we get M′, v |= B∗. Since u, v ∈
W ∩ W ′, we get M′, u |= ¬x and M′, v |= ¬x. Hence M′, v |= ¬x ∧ B∗. By
R1(u, v), we get R′(u, v). Then M′, u |= ¬x∧♦(¬x∧B∗), i.e., M′, u |= (♦1B)∗.
Conversely, assume that M′, u |= ¬x∧♦(¬x∧B∗). Then M′, u |= ¬x, and there
exists v ∈ W ′ such that R′(u, v) and M′, v |= ¬x and M′, v |= B∗. Then u, v ∈ W
and R1(u, v). By the induction hypothesis, M, v |= B. Then M, u |= ♦1B.

Case 2. C = �↓
1B. Assume that M′, u |= (�↓

1B)∗. By definition, we have
M′, u |= ¬x ∧ ♦↓(¬x ∧ ¬B∗). Hence M′, u |= ¬x, and there exists v ∈ W ′ such
that R′(v, u), M′, v |= ¬x and M′, v |= ¬B∗. Then u, v ∈ W and R1(v, u). By
the induction hypothesis, M, v |= ¬B. Thus M, u |= �↓

1B. Conversely, assume
that M, u |= �↓

1B. Then there exists v ∈ W such that R1(v, u) and M, v |= ¬B.
Since u, v ∈ W ∩ W ′, by the induction hypothesis and arguments for ¬, we
get M′, v |= ¬B∗. By the construction, R′(v, u), M′, u |= ¬x and M′, v |= ¬x.
Hence M′, u |= ¬x ∧ ♦↓(¬x ∧ ¬B∗). Hence M′, u |= ¬x ⊃ �↓(¬x ⊃ B∗), i.e.,
M′, u |= (�↓

1B)∗.
Case 3. C = ♦2B. Assume that M, u |= ♦2B. Then there exists v ∈ W such

that R2(u, v) and M, v |= B. By the induction hypothesis, M′, v |= B∗. By the
construction, there exists w ∈ W ′ \ W such that R′(u,w) and R′(w, v). Then
M′, w |= ♦B∗ and M′, w |= x. Hence M, u |= ♦(x∧♦B∗), i.e., M, u |= (♦2B)∗.
Conversely, assume that M′, u |= (♦2B)∗, i.e., M′, u |= ♦(x∧♦B∗). Then there
exist v, w ∈ W ′ such that R′(u,w), R′(w, v), M′, w |= x and M′, v |= B∗. So
w ∈ W ′\W . By the construction, we get u, v ∈ W ∩ W ′ and R2(u, v). By the
induction hypothesis, M, v |= B. Hence M, u |= ♦2B.

Case 4. C = �↓
2B. Assume that M′, u |= (�↓

2B)∗, i.e., M′, u |= ♦↓(x ∧
♦↓¬B∗). There exist w, v ∈ W ′ such that R′(v, w), R′(w, u), M′, w |= x and
M′, v |= ¬B∗. Then w ∈ W ′\W , v ∈ W ′ ∩ W and so by the construction,
we have R2(v, u). By the induction hypothesis, M, v |= ¬B. So M, u |= �↓

2B.
Conversely, assume that M, u |= �↓

2B. Then there exists v ∈ W such that
R2(v, u) and M, v |= B. By the construction, there exists w ∈ W ′ \ W such that
R′(v, w), R′(w, u) and M′, w |= x. By the induction hypothesis, M′, v |= B∗. So
M′, v |= ¬B∗ and M′, w |= x ∧ ♦↓¬B∗. Hence M′, u |= ♦↓(x ∧ ♦↓¬B∗). Hence
M′, u |= (�↓

2B)∗.
The completes the proof of (�). Since M, k |= A, by (�), we have M′, k |= A∗.

Therefore
K.t A∗. ��

On the Complexity of the Equational Theory 277

It is known that the validity problem of K.t is in PSPACE ([6,7]). Since Kt
1,2

is embedded into K.t in polynomial time, by Theorem 15 we get the following
result:

Theorem 16. Kt
1,2 is in PSPACE.

6 PSPACE-Completeness

Theorem 17. BFNL is PSPACE-complete.

Proof. By Theorem 12. ��
Since the complexity of the equational theory of r-algebras is equal to the

complexity of BFNL, we get the following theorem:

Theorem 18. Eq(RBA) is PSPACE-complete

One can also consider the complexity problem for the subclasses of r-algebras,
e.g. the variety of all residuated distributive lattices RDL. Since every residuated
distributive lattice can be expanded to a r-algebra (see [3]), the equational theory
of RDL is in PSPACE. The universal theory of RDL is known to be PSPACE-
hard (see [4]). This result can also be proved by reducing the decision problem of
the universal theory of RDL to the decision problem of the consequence relation
of the sequent calculus for RDL. However, this does not yield the PSPACE-
hardness of the equational theory of RDL. It would be an interesting question
to determine whether the equational theory of RDL is PSPACE-hard or not.

Acknowledgements. Thanks are given to Prof. Wojciech Buszkowski (Poland) and
anonymous reviewers for their helpful comments.

References

1. Burgess, J.P.: Basic tense logic. In: Handbook of Philosophical Logic. Synthese
Library, vol. 165, pp. 83–133. Springer, Netherlands (1984)

2. Buszkowski, W.: Interpolation and FEP for logics of residuated algebras. Logic J.
IGPL 19(3), 437–454 (2011)

3. Buszkowski, W.: Multi-sorted residuation. In: Casadio, C., Coecke, B., Moortgat,
M., Scott, P. (eds.) Categories and Types in Logic, Language, and Physics. LNCS,
vol. 8222, pp. 136–155. Springer, Heidelberg (2014)

4. Buszkowski, W.: Some syntactic interpretations in different systems of full Lambek
calculus. In: Ju, S., Liu, H., Ono, H. (eds.) Modality, Semantics and Interpretations,
pp. 23–48. Springer, Heidelberg (2015)

5. Collinson, M., Mcdonald, K., Pym, D.: A substructural logic for layered graphs. J.
Logic Comput. 24(4), 953–998 (2014)

6. Goré, R.: Tableau methods for modal and temporal logics. In: D’Agostino, M.,
Gabbay, D.M., Hähnle, R., Posegga, J. (eds.) Handbook of Tableau Methods, pp.
297–396. Kulwer Academic Publishers, Dordrecht (1999)

278 Z. Lin and M. Ma

7. Granko, K.: Temporal logics of computation. In: Proceeding of the 12th European
Summer School in Logic, Language and Information (2000)

8. Jipsen, P., Jónsson, B., Rafter, J.: Adjoining units to residuated Boolean algebras.
Algebra Universalis 34(1), 118–127 (1995)

9. Jónsson, B.: A survey of Boolean algebras with operators. In: Rosenberg, I.G.,
Sabidussi, G. (eds.) Algebras and Orders, pp. 239–286. Springer, The Netherlands
(1993)

10. Jónsson, B., Tsinakis, C.: Relation algebras as residuated Boolean algebras. Alge-
bra Universalis 30(4), 469–478 (1993)

11. Jónsson, B., Tsinakis, C.: Relation algebras as residuated Boolean algebras. Alge-
bra Universalis 30, 469–478 (1993)

12. Jipsen, P.: Computer aided investigations of relation algebras. Ph.D. Dissertation,
Vanderbilt University (1992)

13. Kaminski, M., Francez, N.: Relational semantics of the Lambek calculus extended
with classical propositional logic. Stud. Logica. 102(3), 479–497 (2014)

14. Kurtonina, N.: Frames and labels: a modal analysis of categorical inference. Ph.D.
thesis, Universiteit Utrecht (1994)

15. Kurucz, Á., Németi, I., Sain, I., Simon, A.: Undecidable varieties of semilattice-
ordered semigroups, of Boolean algebras with operators, and logics extending Lam-
bek calculus. Logic J. IGPL 1(1), 91–98 (1993)

16. Lambek, J.: On the calculus of syntactic types. In: Jakobson, R. (ed.) Structure
of Language and its Mathematical Aspects, pp. 168–178. American Mathematical
Society, Providence (1961)

17. Maddux, R.D.: Some varieties containing relation algebras. Trans. Am. Math.
Assoc. 272(2), 501–526 (1982)

18. Németi, I.: Decidability of relation algebras with weakened associativity. Proc.
Amer. Math. Soc. 100, 340–344 (1987)

19. Ladner, R.: The computational complexity of provability in systems of modal
propositional logic. SIAM J. Comput. 6(3), 467–480 (1977)

20. Tarski, A.: On the calculus of relations. J. Symbol. Logic 6, 73–89 (1941)

Semantic Equivalence of Graph Polynomials
Definable in Second Order Logic

Johann A. Makowsky1(B) and Elena V. Ravve2

1 Department of Computer Science,
Technion - Israel Institute of Technology, Haifa, Israel

janos@cs.technion.ac.il
2 Department of Software Engineering, ORT-Braude College, Karmiel, Israel

Abstract. We study semantic equivalence of multivariate graph poly-
nomials via their distinctive power introduced in (Makowsky, Ravve,
Blanchard 2014) under the name of d.p.-equivalence. There we studied
only univariate graph polynomials. In this paper we extend our study
to multivariate graph polynomials. We use the characterization from the
previous paper of d.p.-equivalence of two graph polynomials in terms of
computing their respective coefficients. To make our graph polynomials
combinatorially meaningful we require them to be definable in Second
Order Logic SOL. The location of zeros in the multivariate case is cap-
tured by various versions of halfplane properties, also known as stability
or Hurwitz stability. Our main application shows that every multivariate
SOL-definable graph polynomial P (G; X1, X2, ...Xk) is d.p.-equivalent to
a substitution instance of a stable (Hurwitz stable) SOL-definable graph
polynomial Q(G; Y, X1, X2, ...Xk). In other words, two d.p.-equivalent
SOL-definable multivariate graph polynomials can also have very differ-
ent behavior concerning their halfplane properties.

1 Introduction

A graph G = (V (G), E(G)) is given by the set of vertices V (G) and a symmetric
edge-relation E(G). We denote by n(G) the number of vertices, by m(G) the
number of edges, by k(G) the number of connected components of a graph G,
and by G the class of finite graphs.

Graph polynomials are graph invariants with values in a polynomial ring R,
usually Z[X] with X = (X1, . . . , X�). Let P (G;X) be a graph polynomial of the
form

P (G;X) =
d(G)∑

i1,...,i�=0

ci1,...,i�
(G)Xi1

1 · . . . · Xi�

�

where X = (X1, . . . , X�), d(G) is a graph parameter with non-negative integers
as its values, and

ci1,...,i�
(G) : i1, . . . , i� ≤ d(G)

are integer valued graph parameters.

J.A. Makowsky—Partially supported by a grant of Technion Research Authority.
Work done in part while the author was visiting the Simons Institute for the Theory
of Computing in Spring 2016.

c© Springer-Verlag Berlin Heidelberg 2016
J. Väänänen et al. (Eds.): WoLLIC 2016, LNCS 9803, pp. 279–296, 2016.
DOI: 10.1007/978-3-662-52921-8 18

280 J.A. Makowsky and E.V. Ravve

This paper is written for the logically minded and is a continuation of our
analysis of notions used in the literature on graph polynomials. In particular, we
were bothered by the question whether the location of the roots of univariate
graph polynomials is a combinatorially meaningful statement about its under-
lying graph. The notion of “combinatorially meaningful” is made precise by our
definition of a semantic (aka graph theoretic) property of graph polynomials. In
[40] we have given our analysis of this question for the graph theory audience.
Here we want to stress the logical and foundational aspects of this analysis, and
extend the results of [40] to multivariate graph polynomials.

In the first part of this paper we justify, from a foundational point of view, the
definitions we have introduced in [40]. This concerns the restrictions of graph
polynomials to graph polynomials definable in Second Order Logic SOL, the
various notions of equivalence of graph polynomials, the notions of syntactic
and semantic properties of graph polynomials. We also paraphrase the main
results of [40]. These results are all of the form:

(*) Let U be a subset of the complex numbers, such as the reals, an open
disk, the lower or upper halfplane, or the complement thereof. Given a uni-
variate SOL-definable graph polynomial P (G;X), there exists a semanti-
cally equivalent SOL-definable graph polynomial Q(G;X) with all its roots
in U .

They show, in a precise sense, that the location of the roots of a univariate
graph polynomial is not a semantic property. They are more of a normal form
property: Every univariate SOL-definable graph polynomial P (G;X) can be put
into a semantically equivalent form with prescribed location of its roots.

The proofs in [40] have two parts: Finding Q(G;X), and showing that this
Q(G;X) is SOL-definable. Finding Q(G;X) often uses some “dirty trick” from
analysis, whereas showing SOL-definability, only sketched in [40], needs more
efforts in the details.

In the second part of the paper we extend results of [40] to multivariate graph
polynomials P (G;X). We show that various versions of the“halfplane property”
in higher dimensions of multivariate graph polynomials are also not semantic
properties of the underlying graph in the sense of (*). This is interesting for two
reasons: First, these halfplane properties were studied in the recent literature
on graph polynomials, and, second, the proofs that the constructed Q(G;X) is
SOL-definable is much more complex. For space reasons we have to omit many
examples already discussed in [40]. However, in this paper we provide details
in proving SOL-definability for the more difficult case of multivariate graph
polynomials and the various halfplane properties.

1.1 Why SOL-Definability

There are too many graph polynomials in the way we defined them above.
We can impose more restrictions by imposing computability and definability
requirements.

Semantic Equivalence of Graph Polynomials Definable in Second Order Logic 281

P (G;X) is computable if both

(i) the coefficients of P (G;X) ∈ Z[X] are computable from G, and,
(ii) given a polynomial s(X) it is decidable whether there is a graph Gs such

that P (Gs;X) = s(X).

The second condition is needed to make Theorem 1 work.
Imposing complexity theoretic restrictions poses some serious problems, and

is studied in [36]. However, it is not the subject of this paper. We only briefly
discuss some problems involved in defining the complexity of graph polynomials
in the conclusions.

It is more natural to impose definability restrictions. In [3,20,31,34] the class
of graph polynomials definable in Second Order Logic, SOL, is studied, which
requires that d(G) and cı(G) = c(G; ı), ı = (i1, . . . , i�), are definable in SOL.
With very few exceptions, the graph polynomials studied in the literature are
SOL-definable1. For readers not familiar with SOL-definability have to refer the
reader to [35] or [31].

Requiring that the graph polynomials are SOL-definable also garantees that
their coefficients are the result of counting combinatorially meaningful SOL-
definable configurations in the underlying graph.

1.2 Why Study Graph Polynomials?

The first graph polynomial, the chromatic polynomial, was introduced in 1912
by G. Birkhoff to study the Four Color Conjecture, [6]. The emergence of the
Tutte polynomial can be seen as an attempt to generalize the chromatic polyno-
mial, cf. [7,18,50]. The characteristic polynomial and the matching polynomial
were introduced with applications from chemistry in mind, cf. [4,5,11,16,49].
Physicists study various partition functions in statistical mechanics, in percola-
tion theory and in the study of phase transitions, cf. [42]. It turns out that many
partition functions are incarnations of the Tutte polynomial. Another incarna-
tion of the Tutte polynomial is the Jones polynomial in Knot Theory, cf. [29]
and again [7]. The various incarnations of the Tutte polynomial have triggered
an interest in other graph polynomials. These graph polynomials are studied for
various reasons:

– Graph polynomials can be used to distinguish non-isomorphic graphs. A graph
polynomial is complete if it distinguishes all non-isomorphic graphs. The quest
for a complete graph polynomial which is also easy to compute failed so far
for two reasons. Either there were too many non-isomorphic graphs which
could not be distinguished, and/or the proposed graph polynomial was more
difficult to compute than just checking graph isomorphism.

1 Many are even definable in Monadic Second Order Logic MSOL, [35]. The excep-
tions are in [43]. The algorithmic advantages of MSOL-definability, [14] are of no
importance in this paper.

282 J.A. Makowsky and E.V. Ravve

– New graph polynomials may appear when we model behavior of physical,
chemical or biological systems. The arguments whether a graph polynomial
is interesting, depends on its success in predicting the behavior of the mod-
eled systems. Also the particular choice of the representation is dictated by
the modeling process. That the modeled process gives, in this case, rise to
a particular graph polynomial, is secondary, and the properties of the graph
polynomial reflect more properties of the physical or chemical process mod-
eled, than properties of the underlying graph.

– New graph polynomials are also studied as part of graph theory proper. Here
one is interested in the interrelationship between various graph parameters
without particular applications in mind. A graph polynomial is considered
interesting from a graph theoretic point of view, if many graph parameters
can be (easily) derived from it.

– Graph polynomials are sometimes studied as a way of generating families of
polynomials, irrespective of their graph theoretic meaning. H. Wilf, [56] e.g.,
asked the question how to characterize the polynomials which do occur as
instances of chromatic polynomials of graphs as a family of polynomials. We
have addressed this approach to graph polynomials in [39].

This paper deals only with the graph theoretic and logical aspects of graph
polynomials, discarding the graph isomorphisms problem and discarding the
modeling of systems describing phenomena in the natural sciences. It ultimately
asks the question: When is a newly introduced graph polynomial interesting from
a graph theoretic point of view and deserves to be studied, and what aspects are
more rewarding in this study than others. In particular we scrutinize the role of
the location of the roots of specific graph polynomials in terms of other graph
theoretic properties.

1.3 Outline of the Paper

In Sect. 2 we discuss the foundational aspects of comparing graph polynomials,
and introduce the notion of semantic properties of graph polynomials. In Sect. 3
we discuss properties of univariate graph polynomials related to the oocation
or multiplicity of their roots. In Sect. 4 we look at the multivariate version of
the location of roots, the various halfplane properties, also called stability prop-
erties, and prove that stability is also not a semantic property of multivariate
graph polynomials. In Sect. 5 we draw our conclusions and formulate several
open problems.

2 How to Compare Graph Polynomials?

Once the graph theorists started to study several graph polynomials, the need
of comparing them naturally arises.

For R ∈ {R,C,Z} we denote by GPR,m the set of graph polynomials in m
indeterminates with coefficients in R, and let X = (X1, . . . , Xm) be m indeter-
minates. Let P (G) = P (G;X) and Q(G) = Q(G;X) be two graph polynomials.

Semantic Equivalence of Graph Polynomials Definable in Second Order Logic 283

The following statements appear frequently with a recognizable meaning, but
without a general definition:

(i) Q(G) is a substitution instance of P (G).
(ii) Q and P are really the same, up to a prefactor. For example the various

versions of the Tutte polynomial are said to be the same up to a prefactor,
[48], and the same holds for the various versions of the matching polyno-
mial, [32].

(iii) Q is at least as expressive than P .
(iv) The coefficients of P (G) can be determined, or even computed, from the

coefficients of Q(G).

Usually these statements are understood to be uniform in the graphs G, but this
uniformity can take various forms. In [40] we have given these statements precise
meanings, and we have initiated the analysis of their relationship.

2.1 Equivalence of Graph Polynomials

A graph G is P -unique if for all graphs G′ the polynomial identity P (G;X) =
P (G′;X) implies that G is isomorphic to G′. As a graph invariant P (G;X) can
be used to check whether two graphs are not isomorphic. For P -unique graphs
G and G′ the polynomial P (G;X) can also be used to check whether they are
isomorphic. One usually compares graph polynomials by their distinctive power.

Definition 1. Let P ∈ GPR,m1
and Q ∈ GPR,m2

.

(i) Two graphs G1 and G2 are called similar if they have the same number of
vertices, edges and connected components.

(ii) A graph parameter or a graph polynomial is a similarity function if it is
invariant under graph similarity.

(iii) P is d.p.-reducible to Q, written as P (G;X) �d.p. Q(G;Y), if for every
two similar graphs G1 and G2 with Q(G1;X) = Q(G2;X) we also have
P (G1;Y) = P (G2;Y).

(iv) P (G;X) is prefactor reducible to Q(G;Y), written as P (G;X)
�prefactor Q(G;Y), if there are similarity functions f(G;X) and g1(G;X),
. . . , gm2(G;X) such that P (G;X) = f(G;X) · Q(G; g1(G;X), . . . , gm2

(G;X)).
(v) The graph polynomial P (G;X) is substitutions reducible to Q(G;Y), writ-

ten as P (G;X) �subst Q(G;Y), if f(G;X) is the constant function with
value 1.

(vi) Two graph polynomials P (G;X) and Q(G;Y) are d.p.-equivalen (prefactor
equivalent, substitution equivalent) if the relationship holds in both direc-
tions.

It follows that P (G;X) �subst Q(G;Y) implies P (G;X) �prefactor Q(G;Y),
and P (G;X) �prefactor Q(G;Y) implies P (G;X) �d.p. Q(G;Y), etc.

Comments for Logicians: Our notion of similarity is extracted from the liter-
ature on graph polynomials: It is implicitly used frequently both in claims that

284 J.A. Makowsky and E.V. Ravve

two polynomials are “really the same”, or “the same up to a prefactor”. From a
logical point of view one would rather define a more general notion: Let Σ be a
finite set of graph parameters. Two graphs G,H are Σ-similar if they have the
same values s(G) = s(H) for all s ∈ Σ. It is easy, but currently of little use,
to rewrite the definitions of various forms of equivalence of graph polynomials
using Σ-similarity rather than similarity as we defined it in this paper.

Theorem 1. Let P (G;X) ∈ GPR,m1
and Q(G,Y) ∈∈ GPR,m2

. The following
are equivalent:

(i) P is d.p.-reducible to Q.
(ii) There is a function

F : R[Y] → R[X]

such that for all graphs G we have

F (n(G),m(G), k(G), Q(G)) = P (G)

(iii) If, furthermore both P (G;X) and Q(G;Y) are computable. then F can be
made computable, too.

The equivalence of (i) and (ii) was proved in [40] and (iii) follows from the
definition of computability of graph polynomials. We note here that (ii) is useful
for proving d.p.-reducibility, whereas (i) is more useful to prove its negation.
Theorem 1 shows that our definition of d.p.-equivalence of graph polynomials is
mathematically equivalent to the definition proposed in [41].

Comments for Logicians: The notion of d.p.-equivalence (having the same dis-
tinguishing power) of graph polynomials evolved very slowly, mostly in implicit
arguments. Originally, a graph polynomial such as the chromatic or characteris-
tic polynomial had a unique definition which both determined its algebraic pre-
sentation and its semantic content. The need to spell out semantic equivalence
emerged when the various forms of the Tutte polynomial had to be compared.
As was to be expected, some of the presentations of the Tutte polynomial had
more convenient properties than others, and some of the properties of one form
got completely lost when passing to another semantically equivalent form. Two
d.p.-equivalent polynomials carry the same combinatorial information about the
underlying graph, independently of their presentation as polynomials. This sit-
uation is analogous to the situation in Linear Algebra: Similar matrices repre-
sent the same linear operator under two different bases. The choice of a suitable
basis, however, may be useful for numeric evaluations. Here d.p.-equivalent graph
polynomials represent the same combinatorial information under two different
polynomial representations. The choice of a particular polynomial representa-
tion P (G;X) may carry more numeric information about a particular graph
parameter p(G) determined by P (G;X).

Semantic Equivalence of Graph Polynomials Definable in Second Order Logic 285

2.2 Syntactic vs Semantic Properties of Graph Polynomials

An n-ary property of graph polynomials Φ, aka a GP-property, is a subset of
GPn

R,m. Φ is a semantic property if it is closed under d.p.-equivalence. Semantic
properties are independent of the particular presentation of its members. Con-
sequently, we call a property Φ, which does depend on the presentation of its
members, a syntactic (aka algebraic) property. Let us make this definition clearer
via examples:

Example 2. (i) The GP-property which says that for every graph G the poly-
nomial P (G,X) is P -unique, is a semantic property.

(ii) The unary GP-properties of univariate graph polynomials that for each
graph G the polynomials P (G;X) is monic2, or that its coefficients are
unimodal3, is not a semantic GP-property, because, by applying Theorem1,
multiplying each coefficient by a fixed integer gives a d.p.-equivalent graph
polynomial.

(iii) The GP-property that the multiplicity of a certain value a as a root of
P (G;X) coincides with the value of a graph parameter p(G) with values
in N, is not a semantic property. For example, the multiplicity of 0 as a
root of the Laplacian polynomial is the number of connected components
k(G) of G, [11, Chap. 1.3.7]. However, stating that for two graphs G1, G2

with P (G1;X) = P (G2;X) we also have p(G1) = p(G2), is a semantic
property.

(iv) Similarly, proving that the leading coefficient of P (G;X) equals the number
of vertices of G is not a semantic property, for the same reason. However,
proving that two graphs G1, G2 with P (G1;X) = P (G2;X) have the same
number of vertices is semantically meaningful.

(v) In similar vain, the classical result of [21], that the characteristic polyno-
mial of a forest equals the (acyclic) matching polynomial of the same forest,
is a syntactic coincidence, or reflects a clever choice in the definition of
the acyclic matching polynomial, but it is not a semantic GP-property. The
semantic GP-property of this result says that if we restrict our graphs to
forests, then the characteristic and the matching polynomials (in all its ver-
sions) have the same distinctive power on trees of the same size. We discuss
this and similar examples further in [40].

Comments for Logicians: To prove a semantic GP-property it is sometimes
easier to prove a stronger non-semantic version. From the above examples, (iii),
(iv) and (v) are illustrative cases for this.

3 Roots of Graph Polynomials

The literature on graph polynomials mostly got its inspiration from the suc-
cesses in studying the chromatic polynomial and its many generalizations and
2 A univariate polynomial is monic if the leading coefficient equals 1.
3 A sequence of numbers ai : i ≤ m is unimodal if there is k ≤ m such that ai ≤ aj

for i < j < k and ai ≥ aj for k ≤ i < j ≤ m.

286 J.A. Makowsky and E.V. Ravve

the characteristic polynomial of graphs. In both cases the roots of graph poly-
nomials are given much attention and are meaningful when these polynomials
model physical reality.

A complex number z ∈ C is a root of a univariate graph polynomial P (G;X)
if there is a graph G such that P (G; z) = 0. It is customary to study the location
of the roots of univariate graph polynomials. Prominent examples, besides the
chromatic polynomial, the matching polynomial and the characteristic polyno-
mial and its Laplacian version, are the independence polynomial, the domination
polynomial and the vertex cover polynomial.

For a fixed univariate graph polynomial P (G;X) typical statements about
roots are:

(i) For every G the roots of P (G;X) are real. This is the univariate version of
stability or Hurwitz stability for real polynomials. It is true for the charac-
teristic and the matching polynomial, [16,32]. Similarly, for every claw-free
graph G the roots of the independence polynomial are real, [33]. Inciden-
tally, by a classical theorem of I. Newton, if all the roots of a polynomial
with positive coefficients are real, then its coefficients are unimodal.

(ii) Assuming that all roots of P (G;X) are real, the (second) largest root has an
interesting combinatorial interpretation. This is true for the characteristic
polynomial where the second largest eigenvalue is related to the Cheeger
constant, [1,11, Chap. 4].

(iii) The multiplicity of a certain value a as a root of P (G;X) has an interesting
interpretation. For example, the multiplicity of 0 as a root of the Laplacian
polynomial is the number of connected components of G, [11, Chap. 1.3.7].

(iv) For every G all real roots of P (G;X) are positive (negative) or the only real
root is 0. The real roots are positive in the case of the chromatic polynomial
and the clique polynomial, and negative for the independence polynomial,
[12,17,22,26,27].

(v) For every G the roots of P (G;X) are contained in a disk of radius ρ(d(G)),
where d(G) is the maximal degree of the vertices of G. This is true for the
characteristic polynomial and its Laplacian version, [11, Chap. 3]. This is
also the case for the chromatic polynomial, [17,46], but the proof of this is
far from trivial.

(vi) For every G the roots of P (G;X) are contained in a disk of constant radius.
This is the case for the edge-cover polynomial, [15]. For the unit disk this
is the univariate version of Schur-stability.

(vii) The roots of P (G;X) are dense in the complex plane. This is again true
for the chromatic polynomial, the dominating polynomial and the indepen-
dence polynomial, [12,17,27,47].

In [40] we showed that the precise location of roots of univariate SOL-
definable graph polynomials is not a graph theoretic (semantic) property of
graphs. In the next section we investigate whether stability, the multivariate
analog the location of zeros, of multivariate SOL-definable graph polynomials is
a semantic property.

Semantic Equivalence of Graph Polynomials Definable in Second Order Logic 287

4 Stable Graph Polynomials

Multivariate analogs of location of zeros of polynomials are the various halfplane
properties aka stability properties.

4.1 Why are Stable Multivariate Polynomials Interesting?

A multivariate polynomial is stable4 if the imaginary part of its zeros is negative,
and it is Hurwitz-stable if the real part of its zeros is negative. Analogously, it is
Schur-stable if all its roots are in the open unit ball. Recently, stable and Hurwitz-
stable polynomials have attracted the attention of combinatorial research. In [13]
the study of graph and matroid invariants and their various stability properties
was initiated. The more recent paper [25] does the same for knot and link invari-
ants. Due mainly to the recent work of J. Borcea and P. Brändén [8], see also
[53], a very successful multivariate generalization of stability of polynomials has
been developed. To quote from the abstract of [52]:

Problems in many different areas of mathematics reduce to questions about
the zeros of complex univariate and multivariate polynomials. Recently,
several significant and seemingly unrelated results relevant to theoretical
computer science have benefited from taking this route: they rely on show-
ing, at some level, that a certain univariate or multivariate polynomial has
no zeros in a region. This is achieved by inductively constructing the rele-
vant polynomial via a sequence of operations which preserve the property
of not having roots in the required region.

Further on, [52] gives the following applications of stable polynomials to theo-
retical computer science: A new proof of the van der Waerden conjecture about
the permanent of doubly stochastic matrices, [23]; various applications to the
traveling salesman problem, [44,51]; applications to the Lee-Yang theorem in
statistical physics that shows the lack of phase transition in the Ising model,
[45], and more. [9] discuss various sampling problems and show, among other
things, that the generating polynomial of spanning trees of a graph is stable, see
also [2].

4 In engineering and stability theory, a square matrix A is called stable matrix (or
sometimes Hurwitz matrix) if every eigenvalue of A has strictly negative real part.
These matrices were first studied in the landmark paper [28] in 1895. The Hurwitz
stability matrix plays a crucial part in control theory. A system is stable if its control
matrix is a Hurwitz matrix. The negative real components of the eigenvalues of the
matrix represent negative feedback. Similarly, a system is inherently unstable if any
of the eigenvalues have positive real components, representing positive feedback. In
the engineering literature, one also considers Schur-stable univariate polynomials,
which are polynomials such that all their roots are in the open unit disk, see for
example [55].

288 J.A. Makowsky and E.V. Ravve

4.2 Stable Polynomials

Let m,n ∈ N be indices. Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Ym) be n + m
indeterminates and f(X,Y) ∈ C[X,Y]. Let Hu = {a ∈ C : �(a) > 0} and
Hr = {a ∈ C : �(a) > 0} be the upper, respectively right half-plane of C.

Definitions 3. (i) f is homogeneous if all its monomials have the same degree.
(ii) f is multiaffine if each indeterminate occurs at most to the first power in f .
(iii) f ∈ C[X,Y] is stable if f ≡ 0 or, whenever a ∈ Hn+m

u , then f(a) 	= 0. If
additionally f(X) ∈ R[X,Y], it is real stable.

(iv) f is Hurwitz-stable if f ≡ 0 or, whenever a ∈ Hn+m
r , then f(a) 	= 0.

(v) f is stable with respect to X if for every b ∈ Hm either f(X,b) ≡ 0 or
whenever a ∈ Hn

u then f(a,b) 	= 0.
(vi) Let K be class of finite graphs. A graph polynomial P (G;X) is stable on K

if for every graph G ∈ K the polynomial P (G;X) ∈ C[X] is stable.

Remark 1. If f(X,Y) is stable, it is stable with respect to X, but not conversely.

Example 4. (i) Univariate polynomials are stable iff they have only real roots.
(ii) The characteristic polynomial Pcc and its Laplacian version PL are stable

because they have only real roots.
(iii) Let Tree(G;X) =

∑
T⊆E(G)

∏
e∈T Xe, be the tree polynomial, where T

ranges over all trees of G = (V (G), E(G)). Tree(G;X) is Hurwitz-
stable, [13].

(iv) Let G = (V (G), E(G)) be a graph and let XE = (Xe : e ∈ E(G)) be
commutative indeterminates. Let S be a family of subsets of E(G), i.e., S ⊂
℘(E(G)) and let PS(G;XE) =

∑
A∈S

∏
e∈A Xe. If S is the family of trees

of E(G) then PS(G;XE) is a multivariate version of the tree polynomial,
which is also Hurwitz-stable, cf. [48, Theorem 6.2].

(v) In [13, Question 1.3] it is asked for which S is the polynomial PS(G;XE)
Hurwitz-stable. Actually they ask the corresponding question for matroids

M = (E(M), S(M)).

(vi) In [25, Sect. 16] the stability of multivariate knot polynomials is studied.

4.3 Sufficient Conditions for Stability

The characteristic polynomial of a symmetric real matrix is stable. Stable poly-
nomials are often determinant like in the following sense:

Theorem 5 (Criteria for Stability). Let X = (X1, . . . , Xm) be indetermi-
nates, and X be the diagonal matrix of n indeterminates with (X)i,i = Xi.

(i) [8, Proposition 2.4] For i ∈ [m] let each Ai be a positive semi-definite
Hermitian (n × n)-matrix and let B be Hermitian. Then

f(X) = det(X1A1 + . . . + XmAm + B) ∈ R[X]

is stable.

Semantic Equivalence of Graph Polynomials Definable in Second Order Logic 289

(ii) [24, Theorem2.2] For m = 2 and f(X1,X2) ∈ R[X1,X2] we have f(X1,X2)
is stable iff there are Hermitian matrices A1, A2, B with A1, A2 positive
semi-definite such that

f(X1,X2) = det(X1A1 + X2A2 + B).

(iii) [10, after Theorem4.2] If A is a Hermitian (m × m) matrix then the poly-
nomials det(X + A) and det(I + A · X) are real stable.

Theorem 6 (Criteria for Hurwitz-stability)

(i) [54] If f(X) ∈ R[X] is a real homogeneous then f(X) is stable iff f(X) is
Hurwitz stable.

(ii) [13, Theorem8.1] Let A be a complex (r × m)-matrix, A∗ be its Hermitian
conjugate, then the polynomial in m-indeterminates

Q(X) = det(AXA∗)

is multiaffine, homogeneous and Hurwitz-stable.
(iii) [10, after Theorem4.2] If B is a skew-Hermitian (n×n) matrix then det(X+

B) and det(I + B · X) are Hurwitz stable.
(iv) [13, Theorem10.2] Let A be a real (r×m)-matrix with non-negative entries.

Then the polynomial in m-indeterminates

Q(X) = per(AX) =
∑

S⊆[m],|S|=r

per(A |S)
∏

i∈S

Xi

is Hurwitz-stable.

4.4 Making Graph Polynomials Stable

We first consider graph polynomials with a fixed number of indeterminates m.
Let P (G;X) be a graph polynomial with integer coefficients and with SOL-

definition
P (G;X) =

∑

φ

∏

ψ1

X1 · . . . ·
∏

ψm

Xm,

with coefficients (ci1,...,im
: ij ≤ d(G), j ∈ [m])

P (G;X) =
∑

i1,...,im

ci1,...,im
Xi1

1 Xi2
2 . . . Xim

m ∈ N[X],

such that in each indeterminate the degree of P (G,X) is less than d(G). We put
M(G) = d(G)m which serves as a bound on the number of relevant coefficients,
some of which can be 0.

Theorem 7. There is a stable graph polynomial Qs(G;Y,X) with integer coef-
ficients such that

290 J.A. Makowsky and E.V. Ravve

(i) the coefficients of Qs(G) can be computed uniformly5 in polynomial time
from the coefficients of P (G);

(ii) there is a0 ∈ N such that Qs(G; a0,X) is d.p.-equivalent to P (G;X);
(iii) Qs(G;Y,X) is SOL-definable and its SOL-definition can be computed uni-

formly in polynomial time from φ, ψ1, . . . , ψm.

Theorem 8. If additionally, P (G;X) has only non-negative coefficients, there
is a Hurwitz-stable graph polynomial Qh(G;Y,X) with non-negative integer coef-
ficients and one more indeterminate Y such that

(i) The coefficients of Qh(G) can be computed uniformly in polynomial time
from the coefficients of P (G);

(ii) there is a ∈ N
M−n such that Qh(G;a,X) is d.p.-equivalent to P (G;X);

(iii) Qh(G;Y,X) is SOL-definable and its SOL-definition can be computed uni-
formly in polynomial time from φ, ψ1, . . . , ψm.

In [13,48] the authors also consider graph polynomials where the number of
indeterminates depends on the graph G = (V (G), E(G)), as in Example 4(iv).
We will not give the most general definition here, but restrict ourselves to the
case the indeterminates Xe are labeled by the edges E(G) of G. We put m(G)
to be the cardinality of E(G).

Let S(G;X) be a multiaffine graph polynomial with non-negative integer
coefficients and with SOL-definition

S(G;X) =
∑

φ(A)

∏

ψ1(A,e)

Xe · . . . ·
∏

ψm(A,e)

Xe,

and coefficients (ci1,...,im
: ij ∈ {0, 1}, j ∈ [m(G)])

S(G;X) =
∑

i1,...,im

ci1,...,im
Xi1

1 Xi2
2 . . . X

im(G)
m ∈ N[X],

such that in each indeterminate the degree of S(G,X) is less than d(G). We put
M(G) = 2m(G) which serves as a bound on the number of relevant coefficients,
some of which can be 0. Let XG = (Xe : e ∈ E(G)).

Theorem 9. There are graph polynomials T s(G;XG) and Th(G;XG) with non-
negative integer coefficients such that

(i) T s(G;XG) is stable and Th(G;XG) is Hurwitz-stable;
(ii) Both the coefficients of T s(G) and of Th(G) can be computed uniformly in

polynomial time from the coefficients of S(G);
(iii) Both T s(G;XG) and Th(G;XG) are d.p.-equivalent to S(G;XG);
(iv) Both T s(G;XG) and Th(G;XG) are SOL-definable and its SOL-definition

can be computed uniformly in polynomial time from φ, ψ1, . . . , ψm.

5 There is a polynomial time computable function F : Z[X] → Z[Y,X] such that for
all graphs G we have F (P (G;X)) = Qs(G; Y,X).

Semantic Equivalence of Graph Polynomials Definable in Second Order Logic 291

4.5 Proofs

Proof of Theorem 7. We use Theorem 5(i). Let α : N
m → N which maps

(i1, . . . im) ∈ N
m into its position in the lexicographic order of Nm. We relabel

the coefficients of P (G;X) such that di = ci1,...,im
with α(i1, . . . , im) = i, i ∈ [M]

and M = d(G)m.
We put B to be the (M × M) diagonal matrix with Bi,i = di · Yi and

A1 = A2 = . . . = Am to be the (M × M) identity matrix. The identity matrix
is both Hermitian and positive semi-definite. Furthermore, B |Y =a= B(a) being
a diagonal matrix, is Hermitian for every a ∈ C. Hence,

Qs
a(G; a,X) = det(B(a) +

M∑

i=1

Xi · Ai) =
M∏

i=1

(di +
M∑

i=1

Xi)

is stable for every a ∈ C.
We have to verify (i)–(iii).
(i) All the matrices can be computed in polynomial time in Z[Y,X].
(ii) We use Theorem 1: Qs �d.p P follows from (i). We have to show that

there is a0 ∈ N with P �d.p Qs
a0

. The function α can be easily inverted. To
recover the coefficients of P (G) from the coefficients of Qs(G), we note that

M∑

i=0

di(G) · Y i

is the coefficient of (
∑m

�=1 X�)M−1 of Qs(G;Y,X). This can be computed in
polynomial time from the coefficients of Qs. To find a0 we let a0 ∈ N be bigger
than 1 + 2 · |di(G)|, as di(G) could be negative. Now

∑M
i=0 di(G) · ai

0 can be
viewed is natural number written in base a0, and the digits di(G) can be uniquely
determined.

(iii) To prove that Qs(G;Y,X) is SOL-definable we need a few lemmas from
[19,30,31].

The first lemma is part of the definition of SOL-definability.

Lemma 1. Finite sums and products of SOL-definable polynomials are SOL-
definable.

Lemma 2. Let G< = (V (G), E(G), < (G)) be a graph with an ordering < (G)
on the vertices. Let Q(G;X) be a graph polynomial with non-negative integer
coefficients and with SOL-definition

Q(G;X) =
∑

A⊆V r:φ(A)

∏

v1∈A:ψ1(A,v1)

X1 · . . . ·
∏

vm∈A:ψ1(A,vm)

Xm

with coefficients (ci1,...,im
: ij ≤ d(G), j ∈ [m])

Q(G;X) =
∑

i1,...,im

ci1,...,im
Xi1

1 Xi2
2 . . . Xim

m ∈ N[X].

292 J.A. Makowsky and E.V. Ravve

such that in each indeterminate the degree of P (G,X) is less than d(G). Let
s(G) be such that |V (G)|s(G) ≥ d(G) and extend the ordering < (G) to the
lexicographic ordering of |V (G)|s(G). For v ∈ V (G)s(G) we define Init(G;v) to
be the set of predecessors of v in this lexicographic ordering.

The coefficients ci1,...,im
of Q(G;X) are SOL-definable by

c(v1, . . . ,vm) =
∑

A⊆V r

1

where A ranges over all subsets satisfying φ(A) and for each 	 ∈ [m] the set
Init(G;v�) is of the same size as i� and as

{w� ∈ V r : (V (G), E(G), < (G), A,w�) |= φ(A) ∧ ψ(A,w�)}
Proof. We only have to note that the equicardinality requirement is expressible
in SOL.

Lemma 3. The polynomial

Qs
a(G; a,X) =

M∏

i=1

(di +
M∑

i=1

Xi) =
∏

v1,...,vm

(

c(v1, . . . ,vm) +
M∑

i=1

Xi

)

is SOL-definable.

Proof of Theorem 8. Now all the coefficients of P (G;X) are non-negative. We
want to use Theorem 6(i) together with Theorem5(i). We repeat the proof of
Theorem 7 with the following changes: Let D be the diagonal (M × M)-matrix
of the coefficients, and Y a new indeterminate. Instead of B(a) we use D·Y where
Y is now a scalar. D is now a diagonal matrix with non-negative coefficients, so
it is positive semi-definite. We put

Q(G;Y,X) = det(D · Y +
∑

i∈[m]

Ai · Xi).

The resulting polynomial Q(G;Y,X) is homogeneous and has integer coefficients.
So we can apply Theorem 6(i) together with Theorem5(i) to make to see that
Q(G;Y,X) is both stable and Hurwitz stable. In particular, for each a ∈ N

Q(G; a,X) is Hurwitz stable. To see that Q(G;Y,X) is SOL-definable we again
use a ∈ N large enough as in the proof of Theorem8.

Proof of Theorem 9. The proof is the same as the proof of Theorem 8, where
the number of indeterminates equals the number m(G) =| E(G) |.

5 Conclusion

5.1 Interpretation of Our Results

In [38,40] we initiated the study of semantic equivalence of univariate graph
polynomials without focusing on definability or complexity. We showed there
that the location of the roots are not a semantic property.

Semantic Equivalence of Graph Polynomials Definable in Second Order Logic 293

In this paper we have extended these studies to multivariate graph polyno-
mials. We have also extended our framework threefold:

(i) We have imposed computability restriction on our framework. To have a
workable framework it does not suffice that the coefficients of a graph poly-
nomial have to be computable from the graph, but that one needs to require
that the inverse problem be decidable as well. This additional requirement
was not used in [36], where we were more concerned with complexity issues
of evaluating graph polynomials.

(ii) We have restricted our discussion to SOL-definable graph polynomials. This
means that the d.p.-equivalent polynomial with stability properties has to
be SOL-definable as well. In the univariate cases discussed in [38,40] the
additional definability requirement is not too difficult to be established. In
the multivariate case, this is considerably more complicated.

(iii) We have studied stability and Hurwitz-stability (aka the half-plane prop-
erty) of multivariate graph polynomials. We have chosen this topic, because
various graph polynomials arising from modeling natural phenomena turn
out to be stable or Hurwitz-stable. Our study shows that these stability
properties do not really reflect properties of the underlying graphs proper,
but are the result of extraneous requirements arising from the particular
modeling process of the natural phenomena in question.

Our work shows that to justify the study of the location of the zeroes of a
graph polynomial, the particular choice of the coefficients of the graph polyno-
mial has to be taken into account. If the only purpose of the graph polynomial
is to encode purely graph theoretic properties, the location of its zeroes is irrel-
evant.

Acknowledgment. The authors would like to thank Petter Brändén for guiding us
to the literature of stable polynomials, and Jason Brown and four anonymous readers
of an earlier version of this paper for valuable comments. Thanks also to Jingcheng
Lin for pointing out the references [2,9]. We want to acknowledge that some of the
definitions and examples were taken verbatim from our [40]. D.p-equivalence was first
characterized in [37].

References

1. Alon, N., Milman, V.: λ 1, isoperimetric inequalities for graphs, and superconcen-
trators. J. Comb. Theory Ser. B 38(1), 73–88 (1985)

2. Anari, N., Gharan, S.O., Rezaei, A.: Monte carlo markov chains for sampling
strongly rayleigh distributions and determinantal point processes (2016). arXiv
preprint arXiv:1602.05242

3. Averbouch, I., Godlin, B., Makowsky, J.A.: An extension of the bivariate chromatic
polynomial. Eur. J. Comb. 31(1), 1–17 (2010)

4. Balaban, A.T.: Solved and unsolved problems in chemical graph theory. quo vadis,
graph theory? Ann. Discrete Math. 35, 109–126 (1993)

http://arxiv.org/abs/1602.05242

294 J.A. Makowsky and E.V. Ravve

5. Balaban, A.T.: Chemical graphs: looking back and glimpsing ahead. J. Chem. Inf.
Comput. Sci. 35, 339–350 (1995)

6. Birkhoff, G.D.: A determinant formula for the number of ways of coloring a map.
Ann. Math. 14, 42–46 (1912)

7. Bollobás, B.: Modern Graph Theory. Springer, New York (1998)
8. Borcea, J., Brändén, P., et al.: Applications of stable polynomials to mixed deter-

minants: johnson’s conjectures, unimodality, and symmetrized fischer products.
Duke Math. J. 143(2), 205–223 (2008)

9. Borcea, J., Brändén, P., Liggett, T.: Negative dependence and the geometry of
polynomials. J. Am. Math. Soc. 22(2), 521–567 (2009)

10. Brändén, P.: Polynomials with the half-plane property and matroid theory. Adv.
Math. 216(1), 302–320 (2007)

11. Brouwer, A.E., Haemers, W.H.: Spectra of Graphs. Universitext. Springer, New
York (2012)

12. Brown, J.I., Hickman, C.A., Nowakowski, R.J.: On the location of roots of inde-
pendence polynomials. J. Algebraic Comb. 19(3), 273–282 (2004)

13. Choe, Y.B., Oxley, J.G., Sokal, A.D., Wagner, D.G.: Homogeneous multivariate
polynomials with the half-plane property. Adv. Appl. Math. 32(1), 88–187 (2004)

14. Courcelle, B., Makowsky, J.A., Rotics, U.: On the fixed parameter complexity
of graph enumeration problems definable in monadic second order logic. Discrete
Appl. Math. 108(1–2), 23–52 (2001)

15. Csikvári, P., Oboudi, M.R.: On the roots of edge cover polynomials of graphs. Eur.
J. Comb. 32(8), 1407–1416 (2011)

16. Cvetković, D.M., Doob, M., Sachs, H.: Spectra of Graphs, 3rd edn. Johann Ambro-
sius Barth, Heidelberg (1995)

17. Dong, F.M., Koh, K.M., Teo, K.L., Polynomials, C.: Chromaticity of Graphs.
World Scientific, Singapore (2005)

18. Ellis-Monaghan, J.A., Merino, C.: Graph polynomials and their applications i: the
tutte polynomial. In: Dehmer, M. (ed.) Structural Analysis of Complex Networks,
pp. 219–255. Springer, Heidelberg (2011)

19. Fischer, E., Kotek, T., Makowsky, J.A.: Application of logic to combinatorial
sequences and their recurrence relations. In: Grohe, M., Makowsky, J.A. (eds.)
Model Theoretic Methods in Finite Combinatorics (Contemporary Mathematics),
vol. 558, pp. 1–42. American Mathematical Society, Providence (2011)

20. Godlin, B., Katz, E., Makowsky, J.A.: Graph polynomials: from recursive defini-
tions to subset expansion formulas. J. Log. Comput. 22(2), 237–265 (2012)

21. Godsil, C.D., Gutman, I.: On the theory of the matching polynomial. J. Graph
Theory 5, 137–144 (1981)

22. Goldwurm, M., Santini, M.: Clique polynomials have a unique root of smallest
modulus. Inf. Process. Lett. 75(3), 127–132 (2000)

23. Gurvits, L.: Hyperbolic polynomials approach to van der waerden/schrijver-valiant
like conjectures: sharper bounds, simpler proofs and algorithmic applications. In:
Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of Com-
puting, pp. 417–426. ACM (2006)

24. Helton, J.W., Vinnikov, V.: Linear matrix inequality representation of sets. Com-
mun. Pure Appl. Math. 60(5), 654–674 (2007)

25. Hirasawa, M., Murasugi, K.: Various stabilities of the alexander polynomials of
knots and links (2013). arXiv preprint arXiv:1307.1578

26. Hoede, C., Li, X.: Clique polynomials and independent set polynomials of graphs.
Discrete Math. 125, 219–228 (1994)

http://arxiv.org/abs/1307.1578

Semantic Equivalence of Graph Polynomials Definable in Second Order Logic 295

27. Hoshino, R.: Independence polynomials of circulant graphs. Ph.D. thesis, Dalhousie
University, Halifax, Nova Scotia (2007)

28. Hurwitz, A.: Ueber die bedingungen, unter welchen eine gleichung nur wurzeln mit
negativen reellen theilen besitzt. Math. Ann. 46(2), 273–284 (1895)

29. Jaeger, F.: Tutte polynomials and link polynomials. Proc. Am. Math. Soc. 103,
647–654 (1988)

30. Kotek, T.: Definability of combinatorial functions: Ph.D. thesis, Technion - Israel
Institute of Technology, Haifa, Israel, March 2012

31. Kotek, T., Makowsky, J.A., Zilber, B.: On counting generalized colorings. In:
Grohe, M., Makowsky, J.A. (eds.) Model Theoretic Methods in Finite Combina-
torics (Contemporary Mathematics), vol. 558, pp. 207–242. American Mathemat-
ical Society, Providence (2011)

32. Lovász, L., Plummer, M.D., Theory, M.: Matching Theory, Annals of Discrete
Mathematics, vol. 29. North Holland Publishing, North Holland (1986)

33. Seymour, P., Chudnovsky, M.: The roots of the independence polynomial of a
clawfree graph. J. Comb. Theory Ser. B 97(3), 350–357 (2007)

34. Makowsky, J.A.: Algorithmic uses of the Feferman-Vaught theorem. Ann. Pure
Appl. Log. 126(1–3), 159–213 (2004)

35. Makowsky, J.A.: From a zoo to a zoology: towards a general theory of graph poly-
nomials. Theory Comput. Syst. 43, 542–562 (2008)

36. Makowsky, J.A., Kotek, T., Ravve, E.V.: A computational framework for the study
of partition functions and graph polynomials. In: Proceedings of the 12th Asian
Logic Conference 2011, pp. 210–230. World Scientific (2013)

37. Makowsky, J.A., Ravve, E.V.: Logical methods in combinatorics, Lecture 11.
Course given in 2009 under the number 236605, Advanced Topics, Lecture Notes.
http://www.cs.technion.ac.il/janos/

38. Makowsky, J.A., Ravve, E.V.: On the location of roots of graph polynomials. Elec-
tron. Notes Discrete Math. 43, 201–206 (2013)

39. Makowsky, J.A., Ravve, E.V.: On sequences of polynomials arising from graph
invariants, preprint (2016)

40. Makowsky, J.A., Ravve, E.V., Blanchard, N.K.: On the location of roots of graph
polynomials. Eur. J. Comb. 41, 1–19 (2014)

41. Merino, C., Noble, S.D.: The equivalence of two graph polynomials and a symmetric
function. Comb. Probab. Comput. 18(4), 601–615 (2009)

42. Nešetřil, J., Winkler, P. (eds.): Graphs, Morphisms and Statistical Physics.
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol.
63. AMS, New York (2004)

43. Noble, S.D., Welsh, D.J.A.: A weighted graph polynomial from chromatic invari-
ants of knots. Ann. Inst. Fourier Grenoble 49, 1057–1087 (1999)

44. Pemantle, R.: Hyperbolicity and stable polynomials in combinatorics and proba-
bility (2012). arXiv preprint arXiv:1210.3231

45. Sinclair, A., Srivastava, P.: Lee-Yang theorems and the complexity of computing
averages. In: Proceedings of the forty-fifth annual ACM symposium on Theory of
computing, pp. 625–634. ACM (2013)

46. Sokal, A.D.: Bounds on the complex zeros of (di)chromatic polynomials and potts-
model partition functions. Comb. Prob. Comput. 10(1), 41–77 (2001)

47. Sokal, A.D.: Chromatic roots are dense in the whole complex plane. Comb. Prob.
Comput. 13(2), 221–261 (2004)

48. Sokal, A.D.: The multivariate Tutte polynomial (alias Potts model) for graphs
and matroids. In: Survey in Combinatorics, 2005. London Mathematical Society
Lecture Notes, vol. 327, pp. 173–226 (2005)

http://www.cs.technion.ac.il/janos/
http://arxiv.org/abs/1210.3231

296 J.A. Makowsky and E.V. Ravve

49. Trinajstić, N.: Chemical Graph Theory, 2nd edn. CRC Press, Boca Raton (1992)
50. Tutte, W.T.: A contribution to the theory of chromatic polynomials. Can. J. Math.

6, 80–91 (1954)
51. Vishnoi, N.K.: A permanent approach to the traveling salesman problem. In: 2012

IEEE 53rd Annual Symposium on Foundations of Computer Science (FOCS),
pp. 76–80. IEEE (2012)

52. Vishnoi, N.K.: Zeros of polynomials and their applications to theory: a primer,
Preprint. Microsoft Research, Bangalore (2013)

53. Wagner, D.G.: Multivariate stable polynomials: theory and applications. Bull. Am.
Math. Soc. 48(1), 53–84 (2011)

54. Wagner, D.G., Wei, Y.: A criterion for the half-plane property. Discrete Math.
309(6), 1385–1390 (2009)

55. Wang, K., Michel, A.N., Liu, D.: Necessary and sufficient conditions for the hur-
witz and schur stability of interval matrices. IEEE Trans. Autom. Control 39(6),
1251–1255 (1994)

56. Wilf, H.S.: Which polynomials are chromatic. In: Proceedings of Colloquium
Combinatorial Theory, Rome (1973)

Sheaves of Metric Structures

Maicol A. Ochoa1 and Andrés Villaveces2(B)

1 Department of Chemistry, 261A Cret Wing, University of Pennsylvania,
231 S. 34 Street, Philadelphia, PA 19104, USA

maicol@sas.upenn.edu
2 Departamento de Matemáticas, Universidad Nacional de Colombia,

Bogotá 111321, Colombia
avillavecesn@unal.edu.co

Abstract. We introduce sheaves of metric structures and develop their
basic model theory. The metric sheaves defined here provide a way to
construct new metric models on sheaves (a strong generalization of the
ultraproduct construction), with the additional property of having the
theory of the resulting model controlled by the topology of a given space.
More specifically, a metric sheaf A is defined on a topological space X
such that each fiber is a metric model. A new model, the generic met-
ric model, is obtained as the quotient space of the sheaf through an
appropriate filter of open sets. Semantics in the generic model is com-
pletely controlled and understood by the forcing rules in the sheaf and
Theorem 3. This work extends early constructions due to Comer [5] and
Macintyre [12] and later developments due to Caicedo [3], to the context
of continuous logic. We illustrate these concepts by studying the metric
sheaf of the continuous cyclic flow on tori.

1 Introduction

Sheaves have played an interesting, albeit under-developed, role in model the-
ory (see Macintyre [13] for an interesting discussion of this issue). They are
both supports for cohomology constructions and systems of variable structures
themselves. Their limits (also called “generic models”) are both generalizations
of ultraproducts and of models obtained via model theoretic forcing. Limits of
sheaves of structures are in many ways the optimal combination of geometrical
(topological) control of limiting processes (supports of cohomology theories) and
more general topos theoretic approaches.

The logic of sheaves of structures has had a rather non-linear progres-
sion. It harks back, in implicit format, to the work of Grothendieck [9] in his
“Kansas Paper” of 1958. Explicit developments of the internal logic on topoi,
and of the connections between model theoretic forcing and various logics on
sheaves were successively developed during the decade of 1970 by Carson [4],

A. Villaveces—The second author was partially supported by Colciencias (Depar-
tamento Administrativo de Ciencia, Tecnoloǵıa e Innovación) for the research pre-
sented here.

c© Springer-Verlag Berlin Heidelberg 2016
J. Väänänen et al. (Eds.): WoLLIC 2016, LNCS 9803, pp. 297–315, 2016.
DOI: 10.1007/978-3-662-52921-8 19

298 M.A. Ochoa and A. Villaveces

Comer [5], Ellerman [6], Macintyre [12] and others. Specifically, Ellerman
extracted a version of a “ultrastalk” theorem linking truth on a generic fiber
with model theoretic forcing over open sets and Macintyre studied various model
completions of theories of rings by means of specific constructions of sheaves of
rings. In his 1995 paper, Caicedo [3] introduced a more general way to construct
sheaves of models by generalizing the previous constructions to sheaves of first
order structures over arbitrary topological spaces.

Our work is partially motivated by Caicedo’s results [3]. For the sake of
completeness, we will now briefly review a few crucial aspects of Caicedo’s work.
Given two topological spaces X and E, a sheaf over X is defined as the pair
(E, p) where p : E → X is a local homeomorphism. For each x ∈ X, the fiber
Ex = p−1(x) is the universe of a first order structure in a language L. A section
σ is a continuous function defined from an open set U ⊂ X in E such that σ ◦ p
is the identity map in U . As a consequence of these definitions, the image set
Im(σ) is an open set in E, and sections are in one-to-one correspondance with
their image sets. Thus the satisfaction relation on each fiber can be extended
transversally along the sheaf, i.e. from fiber to fiber, by defining a forcing relation
that describes a semantics in the same language L and where the variables can
be interpreted in the family of sections. Another important property of this
construction is that whenever a statement is forced in a fiber Ex, one can always
find a neighborhood U of x, such that for every y ∈ U the same statement is
forced in Ey. In addition a new L-structure (the generic model) is obtained as a
quotient space and the satisfaction relation is determined by the forcing relation
defined in the sheaf.

Sheaves of first order structures are generalizations of the previous construc-
tions (and versions of a “Generic Model Theorem”) due to Ellerman and Mac-
intyre, in which Caicedo distilled a substratum of the logic of topoi that has
several direct applications to classical Model Theory. While other constructions
made extensive use of the theory of topoi, Caicedo’s presentation is substan-
tially simpler, as it does not make explicit use of elements of category theory. As
sketched above, every model-theoretical concept in these sheaves can be under-
stood by means of the topological properties of the sheaf and an appropriate
forcing relation. Both the fibers and the structures of sections are endowed in
a natural way with classical structures, but Caicedo’s construction provides the
most natural way of dealing with model theoretic forcing, and ends up linking
forcing over points and open sets of the topological space with classical truth on
the “generic” structure.

Further research in this areawasundertakenbyCaicedo [2], Forero [8],Montoya
[14] and the second author of this article (sheaf-models of Set Theory and gen-
eralizing classical forcing over partially ordered sets to forcing over arbitrary
topological spaces in constructing generic models - see [16]).

In this paper we present a construction that takes these ideas to the realm
of continuous logic. In brief, we construct sheaves of metric structures as under-
stood and studied in the model theory developed by Ben Yaacov et al. [1]. We
believe that this work can lead to further progress in the interactions between
Model Theory and Geometry, can also contribute to the model-theoretic study

Sheaves of Metric Structures 299

of dynamical systems and, in particular, the study of classical and quantum
mechanical systems.

A contrasting approach to metric sheaves and their logic appears in [11].
There the author focuses on the continuous model theory analysis of reduced
products and then derives a semantics for sheaves. The emphasis is placed on
the analysis of the semantics obtained directly in the products, rather than on
forcing or generic models as here.

For the sake of completeness, we briefly describe a few elements of continuous
logic (following [1]).

Logical connectives in metric structures are continuous functions from [0, 1]n

to [0, 1] and the supremum and infimum play the role of quantifiers. Semantics
differs from that in classical structures by the fact that the satisfaction relation is
defined on L-conditions rather than on L-formulas, where L is a metric signature.
If φ(x) and ψ(y) are L-formulas, expressions of the form φ(x) ≤ ψ(y), φ(x) <
ψ(y), φ(x) ≥ ψ(y), φ(x) > ψ(y) are L-conditions. In addition, if φ and ψ are
sentences then we say that the condition is closed.

The set F = {0, 1, x/2, −̇}, where 0 and 1 are taken as constant functions,
x/2 is the function taking half of its input and −̇ is the truncated subtraction,
is uniformly dense in the set of all connectives [1]. We may therefore restrict the
set of connectives that we use in building formulas to the set F . These constitute
the set of F-restricted formulas.

In Sect. 2 we define the sheaf of metric structures, introduce pointwise and local
forcing on sections and show how to define a metric space in some families of sec-
tions. In Sect. 3 we show how to construct the metric generic model from a metric
sheaf. We also show how the semantics of the generic model can be understood by
the forcing relation and the topological properties of the base space of the sheaf.
Finally, we illustrate some of our results by means of a simple example.

2 The Metric Sheaf and Forcing

Consider a topological space X. A sheafspace over X is a pair (E, p), where E
is a topological space and p is a local homeomorphism from E into X. A section
σ is a function from an open set U of X to E such that p ◦ σ = IdU . We say
that the section is global if U = X. Sections are determined by their images, as
p is their common continuous inverse function. Besides, images of sections form
a basis for the topology of E. We will refer indistinctly to the image set of a
section and the function itself.

In what follows we assume that a metric language L is given and we omit
the prefix L when talking about L-formulas, L-conditions and others.

Definition 1 (Sheaf of metric structures). Let X be a topological space. A
sheaf of metric structures (or, for short, a “metric sheaf”) A over X consists of:

1. A sheafspace (E, p) over X.
2. For all x in X we associate a metric structure

(Ax, d) =
(
Ex, {R

(ni)
i }x, {f

(mj)
j }x, {ck}x,ΔRi,x

,Δfi,x
, d, [0, 1]

)
,

where Ex is the fiber p−1(x) over x, and the following conditions hold:

300 M.A. Ochoa and A. Villaveces

(a) (Ex, dx) is a complete, bounded metric space of diameter 1.
(b) For all i, RA

i =
⋃

x∈X RAx
i is a continuous function according to the

topology of
⋃

x∈X E
nj
x .

(c) For all j, the function fA
j =

⋃
x fAx

j :
⋃

x E
mj
x → ⋃

x Ex is a continuous
function according to the topology of

⋃
x∈X E

mj
x .

(d) For all k, the function cAk : X → E, given by cAk (x) = cAx

k , is a continuous
global section.

(e) We define the premetric function dA by dA =
⋃

x∈X dx :
⋃

x∈X E2
x →

[0, 1], where dA is a continuous function according to the topology of⋃
x∈X E2

x.
(f) For all i, ΔA

Ri
= infx∈X(ΔAx

Ri
) with the condition that infx∈X ΔAx

Ri
(ε) > 0

for all ε > 0.
(g) For all j, ΔA

fj
= infx∈X(ΔAx

fi
) with the condition that infx∈X ΔAx

fi
(ε) > 0

for all ε > 0.
(h) The closed interval [0, 1] is a second sort and is provided with the usual

metric.

The space
⋃

x En
x has as open sets the image of sections given by 〈σ1, . . . , σn〉 =

σ1 × · · · × σn ∩ ⋃
x En

x . These are the sections of a sheaf over X with local home-
omorphism p∗ defined by p∗〈σ1(x), . . . , σn(x)〉 = x. We drop the symbol ∗ from
our notation when talking about this local homeomorphism but it must be clear
that this local homeomorphism differs from the function p used in the definition
of the topological sheaf.

The induced function dA is not necessarily a metric nor a pseudometric.
Thus, we cannot expect the sheaf just defined to be a metric structure, in the
sense of continuous logic. Indeed, we want to build the local semantics on the
sheaf so that for a given sentence φ, if φ is true at some x ∈ X, then we can
find a neighborhood U of x such that for every y in U , φ is also true. In order to
accomplish this task, first note that semantics in continuous logic is not defined
on formulas but on conditions. Since the truth of the condition “φ < ε” for ε
small can be thought as a good approximation to the notion of φ being true in a
first order model, one may choose this as the condition to be forced in our metric
sheaf. Therefore, for a given real number ε ∈ (0, 1), we consider conditions of the
form φ < ε and φ > ε. Our first result comes from investigating to what extent
the truth in a fiber “spreads” onto the sheaf.

Lemma 1 (Truth continuity in restricted cases).

– Let ε be a real number, x ∈ X, φ an L-formula composed only of the logical
metric connectives and perhaps the quantifier inf. If Ax |= φ(σ(x)) < ε, then
there exists an open neighborhood U of x, such that for every y in U , Ay |=
φ(σ(y)) < ε.

– Let ε be a real number, x ∈ X, φ an L-formula composed only of the logical
metric connectives and perhaps the quantifier sup. If Ax |= φ(σ(x)) > ε,
then there exists an open neighborhood U of x, such that for every y in U ,
Ay |= φ(σ(y)) > ε.

Sheaves of Metric Structures 301

Proof. In atomic cases, use the fact that dA and RA are continuous with respect
to the topology defined by sections. For logical connectives this is a simple con-
sequence of the fact that every connective is a continuous function. Thus, a
formula φ(x1, ..., x2) constructed inductively only from connectives and atomic
formulas is a composition of continuous functions and therefore continuous. If
Ax |= φ(σ1(x), . . . , σn(x)) < ε, then p

(〈σ1, . . . , σ2〉 ∩ φ−1[0, ε)
)

is an open set in
X satisfying the condition that for all y in it Ay |= φ(σ1(y), . . . , σn(y)) < ε.

In particular, the above lemma is true for F-restricted sentences. We may
consider a different proof by induction using density. This alternative approach
provides a better setting to define the point-forcing relation on conditions.

Definition 2 (Point Forcing). Given a metric sheaf A over a topological
space X, we define the relation �x on the set of all conditions of the form φ < ε
and φ > ε (where φ is an L-statement, ε is an arbitrary real number in (0, 1)
and x ∈ X). Furthermore, where in our definition φ = φ(v1, · · · , vn) has free
variables, the forcing at x will depend on specifying local sections σ1, · · · , σn of
the sheaf defined on open sets around the point x. Where necessary (for atomic
formulas and the quantifier stage) we will indicate this.

Our definition is by induction on the complexity of L-statements, and given
for every ε ∈ (0, 1) simultaneously.

Atomic formulas

– A �x d(σ1, σ2) < ε ⇐⇒ dx(σ1(x), σ2(x)) < ε
– A �x R(σ1, . . . , σn) < ε ⇐⇒ RAx(σ1(x), . . . , σn(x)) < ε
– similar to the previous two, but with > instead of <

Logical connectives

– A �x max(φ, ψ) < ε ⇐⇒ A �x φ < ε and A �x ψ < ε
– A �x max(φ, ψ) > ε ⇐⇒ A �x φ > ε or A �x ψ > ε
– A �x min(φ, ψ) < ε ⇐⇒ A �x φ < ε or A �x ψ < ε
– A �x min(φ, ψ) > ε ⇐⇒ A �x φ > ε and A �x ψ > ε
– A �x 1−̇φ < ε ⇐⇒ A �x φ > 1 − ε
– A �x 1−̇φ > ε ⇐⇒ A �x φ < 1 − ε
– A �x φ−̇ψ < ε ⇐⇒ Ax |= ψ = 1 or Ax |= ψ = r for some r ∈ (0, 1) and one

of the following holds:
(i) A �x φ < r
ii) A �x φ < r and A �x φ > r

(iii) A �x φ > r and A �x φ < r + δ for some δ ∈ (0, ε).
– A �x φ−̇ψ > ε ⇐⇒ A �x φ > r + ε with r such that Ax |= ψ = r

Quantifiers

– A �x infσ φ(σ) < ε ⇐⇒ There exists a section μ such that A �x φ(μ) < ε.
– A �x infσ φ(σ) > ε ⇐⇒ There exist an open set U x and a real number

δx > 0 such that for every y ∈ U and every section μ defined on y, A �y

φ(μ) > ε + δx

302 M.A. Ochoa and A. Villaveces

– A �x supσ φ(σ) < ε ⇐⇒ There exist an open set U x and a real number δx

such that for every y ∈ U and every section μ defined on y A �y φ(μ) < ε−δx.
– A �x supσ φ(σ) > ε ⇐⇒ There exists a section μ defined on x such that

A �x φ(μ) > ε

The above definition and the previous lemma lead to the equivalence between
A �x infσ(1−̇φ) > 1−̇ε and A �x supσ φ < ε. More importantly, we can state
the truth continuity lemma for the forcing relation on sections as follows.

Lemma 2. Let φ(σ) be an F−restricted formula. Then

1. A �x φ(σ) < ε iff there exists U open neighborhood of x in X such that
A �y φ(σ) < ε for all y ∈ U .

2. A �x φ(σ) > ε iff there exists U open neighborhood of x in X such that
A �y φ(σ) > ε for all y ∈ U .

We can also define the point-forcing relation for non-strict inequalities by

– A �x φ ≤ ε iff A �x φ > ε and
– A �x φ ≥ ε iff A �x φ < ε,

for F−restricted formulas. This definition allows us to show the following propo-
sition.

Proposition 1. Let 0 < ε′ < ε be real numbers. Then

1. If A �x φ(σ) ≤ ε′ then A �x φ(σ) < ε.
2. If A �x φ(σ) ≥ ε then A �x φ(σ) > ε′.

Proof. By induction on the complexity of formulas.

The fact that sections may have different domains brings additional difficul-
ties to the problem of defining a metric function with the triangle inequality
holding for an arbitrary triple. However, we do not need to consider the whole
set of sections of a sheaf but only those whose domain is in a filter of open sets
(as will be evident in the construction of the “Metric Generic Model” below).
One may consider a construction of such a metric by defining the ultraproduct
and the ultralimit for an ultrafilter of open sets. However, the ultralimit may
not be unique since E is not always a compact set in the topology defined by the
set of sections. In fact, it would only be compact if each fiber was finite. Besides,
it may not be the case that the ultraproduct is complete. Thus, we proceed in
a different way by observing that a pseudometric can be defined for the set of
sections with domain in a given filter.

Lemma 3. Let F be a filter of open sets. For all sections σ and μ with domain
in F, let the family Fσμ = {U ∩ dom(σ) ∩ dom(μ)|U ∈ F}. Then the function

ρF(σ, μ) = inf
U∈Fσμ

sup
x∈U

dx(σ(x), μ(x))

is a pseudometric in the set of sections σ such that dom(σ) ∈ F.

Sheaves of Metric Structures 303

Proof. We prove the triangle inequality. Let σ1, σ2 and σ3 be sections with
domains in F, and let V be the intersection of their domains. Then it is true
that

sup
x∈V

dx(σ1(x), σ2(x)) ≤ sup
x∈V

dx(σ1(x), σ3(x)) + sup
x∈V

dx(σ3(x), σ2(x)),

and since supx∈A f(x) ≤ supx∈B f(x) whenever A ⊂ B, we have

inf
W∈Fσ1σ2

sup
x∈W

dx(σ1(x), σ2(x)) ≤

≤ inf
W∈F

(

sup
x∈W

dx(σ1(x), σ3(x)) + sup
x∈W

dx(σ3(x), σ2(x))
)

.

Given ε > 0, there exist W ′ and W ′′ such that

sup
x∈W ′

dx(σ1(x), σ3(x)) < inf
W∈Fσ1,σ3

sup
x∈W

dx(σ1(x), σ3(x)) + ε/2

sup
x∈W ′′

dx(σ3(x), σ2(x)) < inf
W∈Fσ2,σ3

sup
x∈W

dx(σ3(x), σ2(x)) + ε/2. (1)

Therefore,

sup
x∈W ′∩W ′′

dx(σ1(x), σ3(x)) + sup
x∈W ′∩W ′′

dx(σ3(x), σ2(x)) <

inf
W∈Fσ1σ2

sup
x∈W

dx(σ1(x), σ3(x)) + inf
W∈Fσ2σ3

sup
x∈W

dx(σ3(x), σ2(x)) + ε. (2)

Since W ′ ∩ W ′′ is in F and ε was chosen arbitrarily, the triangle inequality
holds for ρF(σ, μ).

In the following, whenever we talk about a filter F in X we will be considering
a filter of open sets. For any pair of sections σ, μ with domains in a filter, we
define σ ∼F μ if and only if ρF(σ, μ) = 0. This is an equivalence relation, and
the quotient space is therefore a metric space under dF([σ], [μ]) = ρF(σ, μ). The
quotient space provided with the metric dF is the metric space associated with the
filter F. If F is principal and the topology of the base space X is given by a metric,
then the associated metric space of that filter is complete. In fact completeness
is a trivial consequence of the fact that sections are continuous and bounded in
the case of a σ-complete filter (if X is a metric space). However, principal filters
are not interesting from the semantic point of view and σ-completeness might
not hold for filters or even ultrafilters of open sets. The good news is that we
can still guarantee completeness in certain kinds of ultrafilters.

Theorem 1. Let A be a sheaf of metric structures defined over a regular topo-
logical space X. Let F be an ultrafilter of regular open sets. Then, the induced
metric structure in the quotient space A[F] is complete under the induced metric.

In order to prove this theorem we need to state a few lemmas.

Lemma 4. Let A and B be two regular open sets. If A\B �= ∅ then int(A\B) �= ∅.

304 M.A. Ochoa and A. Villaveces

Proof. If x ∈ A \ B and int(A \ B) = ∅, then x ∈ B and A ⊂ B. Therefore
A ⊂ int(B) = B which is in contradiction to the initial hypothesis.

Lemma 5. Let F be a filter and {σn} be a Cauchy sequence of sections according
to the pseudometric ρF with all of them defined in an open set U in F. Then

1. There exists a limit function μ∞ not necessarily continuous defined on U such
that limn→∞ ρF(σn, μ∞) = 0.

2. If X is a regular topological space and int(ran(μ∞)) �= ∅, there exists an open
set V ⊂ U , such that μ∞ � V is continuous.

Proof. 1. This follows from the fact that {σn(x)} is a Cauchy sequence in the
complete metric space (Ex, dx). Then let μ∞(x) = limn→∞ σn(x) for each
x ∈ U .

2. Consider the set of points e in μ∞ such that there exists a section η defined
in some open neighborhood U of x, with η(x) = e and η ⊂ σ∞. Let V be the
projection set in X of that set of points e. This is an open subset of U and
μ∞ � V is a section.

We can now prove Theorem 1.

Proof. Let {[σm]|m ∈ ω} be a Cauchy sequence in the associated metric space of
an ultrafilter of regular open sets F. If the limit exists, it is unique and the same
for every subsequence. Thus, we define the subsequence {[μk]|k ∈ ω} by making
[μk] equal to [σm] for the minimum m such that for all n ≥ m, dF([σm], [σn]) <
k−1. Since dF([μk], [μk+1]) < k−1, for every pair (k, k + 1), there exists an open
set Uk ∈ F, such that

sup
x∈Uk

dx(μk(x), μk+1(x)) < k−1.

Let W1 = U1, Wm = ∩m
i=1Uk and define a function μ∞ on W1 as follows.

– If x ∈ Wk \ Wk+1 for some k, let μ∞(x) = μk(x).
– Otherwise, if x ∈ Wk for all k, we can take μ∞(x) = limk→∞ μk(x).

The function μ∞ might not be a section but, based on the above construction,
one can find a suitable restriction σ∞ that is indeed a section but defined on a
smaller domain. We show this by analyzing different cases.

1. If W1 = Wk for all k,
⋂

k Wk = W1 then for all x in W1, σ∞(x) =
limk→∞ μk(x).
(a) Suppose int(μ∞) = ∅. Let B̃1 = W1. For every x in B̃1 choose a section

ηx, such that ηx(x) = μ∞(x); by the continuity of dA in the sheaf of
structures, the set B̃k = p(〈ηx, μk〉 ∩ (dA)−1[0, k−1)) for k ≥ 2 is an open
neighborhood of x. Consider

⋂
k∈ω B̃k. It is clear that this set is not empty

and that int(
⋂

k∈ω B̃k) = ∅, as we assumed that int(μ∞) = ∅. Since the
base space is regular, there exists a local basis on x consisting of regular
open sets. We can define a family {Bk} of open regular sets so that

Sheaves of Metric Structures 305

– B1 := B̃1

– Bk ⊂ B̃k

– Bk+1 ⊂ Bk

– x ∈ Bk

Let C1 := B1 = W1. For all k ≥ 1, define Ck+1 ⊂ Ck ∩ Bk+1 with the
condition that Ck+1 is a regular open set and let Vk ⊂ Ck \Ck+1 be some
regular open set such that

V k ∩ Ck \ Ck+1 \ int(Ck \ Ck+1) = ∅, (3)

(if Ck+1 � Ck, this is possible by Lemma 4; if Ck+1 = Ck let Vk = ∅) - i.e.,
the closure of Vk does not contain any point in the boundary of Ck \Ck+1

(Use Lemma 4 and the fact that X is regular). Then
⋂

k∈ω Ck ⊃ {x}. Now,
if necessary, we renumber the family Vk so that all the empty choices of Vk

are removed from this listing. Let Γ = Γodd :=
⋃∞

k=1 V2k−1 and observe
that this is an open regular set:

Γ =
⋃

k∈ω

V2k−1 =
⋃

k∈ω

V2k−1

int
(
Γ
)

= int
(⋃

k∈ω

V2k−1

)
=
⋃

k∈ω

int(V2k−1) = Γ. (4)

For the first equality observe that if z ∈ ⋃
k∈ω V2k−1 then z ∈ V 2l−1

for only one l since Vn ∩ Vm = ∅ for m �= n. In the second line, if
z ∈ int

(⋃
k∈ω V2k−1

)
, then every open set containing z is a subset of

⋃
k∈ω V2k−1 and again since Vn ∩ Vm = ∅ for m �= n, there exists at least

an open neighborhood that is a proper subset of a unique V2l−1.
If Γ is an element of F, then we can define the section σ∞ in the open
regular set Γ by σ∞ � V2k−1 := μ2k−1 � V2k−1. This is a limit section of
the original Cauchy sequence.
Now, consider the family G of all Γ s that can be defined as above for
the same element x in W1 and for the same family {Ck}. This family
includes the alternative choice Γeven :=

⋃∞
k=1 V2k. G is partially ordered

by inclusion. Consider a chain {Γi} in G. Observe that
⋃

i Γi is an upper
bound for this and that

⋃
i Γi is regular, since

⋃

i

Γi ⊂
⋃

i

int
(
C2i−1 \ C2i

)

C2i−1 \ C2i ∩ C2i+1 \ C2i+2 = ∅ (5)

Thus, by Zorn Lemma there is a maximal element Γmax. This intersects
every element in the ultrafilter and therefore is an element of the same.
Otherwise we would be able to construct Γ̃max � Γmax. Suppose that
there exists A ∈ F such that Γmax ∩ A = ∅, then we could repeat the
above arguments taking an element x′ in W ′

1 := A∩W1 = A∩C1, finding
Γ ′ ⊂ W ′

1 with Γ ′ ∩ Γmax = ∅. Take Γ̃max = Γ ′ ∪ Γmax.

306 M.A. Ochoa and A. Villaveces

(b) If int(μ∞) �= ∅, then U = p(int(μ∞)) is an open subset of W1. Observe
that W1\U is an open set that contains all possible points of discontinuity
of μ∞. If some regular open set V ⊂ U is an element of the ultrafilter,
then μ∞ � V is a limit section. If that is not the case, V = int(X\U) is in
the ultrafilter and V ∩W1 is an open regular set where μ∞ is discontinuous
at every point. Proceed as in case 1a.

2. If there exists N such that for all m > N WN = Wm, we rephrase the
arguments used in 1a, this time defining σ∞ in a subset of WN . Also, if⋂

k∈ω Wk is open and nonempty, we follow the same arguments as in 1b.
3. If for all k Wk+1 �= Wk and int(

⋂
k∈ω Wk) �= ∅, let W ′

1 = int(
⋂

k∈ω Wk) and
use the same line of argument as in cases 1a and 1b.

4. If int(
⋂

k∈ω Wk) = ∅, for all k such that Wk \ Wk+1 �= ∅ define σ∞ on some
open regular set V k ⊂ int(Wk \ Wk+1) so that σ∞ � Vk = μk � Vk. Then, σ∞
is defined in

⋃
k∈ω Vk, and repeat the line of argument used in case 1a.

Note that for all μk

– If σ∞(x) = μk+n(x), then dx(σ∞(x), μk(x)) < k−1 for x in the common
domain.

– If σ∞(x) = limn∈ω μn(x), then there exists N such that for m > N
dx(σ∞(x), μm(x)) < k−1 and taking m > k, by the triangle inequality
dx(σ∞(x), μk(x)) < 2k−1.

This shows that

sup
x∈Wk∩⋃Vn

dx(σ∞(x), μk(x)) < 2(k − 1)−1 (6)

and then σ∞ is a limit section. Finally, check that p ◦ σ∞ = Iddom(σ∞).

Before studying the semantics of the quotient space of a generic filter, we
define the relation �U of local forcing in an open set U for a sheaf of metric
structures. The definition is intended to make the following statements about
local and point forcing valid

A �U φ(σ) < ε ⇐⇒ ∀x ∈ U A �x φ(σ) < δ and
A �U φ(σ) > δ ⇐⇒ ∀x ∈ U A �x φ(σ) > ε, (7)

for some δ < ε. This is possible as a consequence of the truth continuity lemma.

Definition 3 (Local forcing for Metric Structures). Let A be a Sheaf of
metric structures defined in X, ε a positive real number, U an open set in X, and
σ1, . . . , σn sections defined in U . If φ is an F- restricted formula the relations
A �U φ(σ) < ε and A �U φ(σ) > ε are defined by the following statements

Atomic formulas

– A �U d(σ1, σ2) < ε ⇐⇒ supx∈U dx(σ1(x), σ2(x)) < ε
– A �U R(σ1, . . . , σn) < ε ⇐⇒ supx∈U RAx(σ1(x), . . . , σn(x)) < ε
– Similar to the previous two, with > instead of < and sup replaced by inf

Sheaves of Metric Structures 307

Logical connectives

– A �U max(φ, ψ) < ε ⇐⇒ A �V φ < ε and A �W ψ < ε
– A �U max(φ, ψ) > ε ⇐⇒ There exist open sets V and W such that V ∪W =

U and A �V φ > ε and A �W ψ > ε
– A �U min(φ, ψ) < ε ⇐⇒ There exist open sets V and W such that V ∪W = U

and A �V φ < ε and A �W ψ < ε
– A �U min(φ, ψ) < ε ⇐⇒ A �U φ < ε and A �U ψ < ε
– A �U 1−̇ψ < ε ⇐⇒ A �U ψ > 1−̇ε
– A �U 1−̇ψ > ε ⇐⇒ A �U ψ < 1−̇ε
– A �U φ−̇ψ < ε ⇐⇒ One of the following holds

(i) There exists r ∈ (0, 1) such that A �U φ < r and A �U ψ > r
(ii) For all r ∈ (0, 1), A �U φ < r if and only if A �U ψ < r
(iii) A �U φ < ε
(iv) There exists r, q ∈ (0, 1) such that

A �U φ > r and A �U ψ < r
A �U φ < q + ε and A �U ψ > q
and for all δ < ε and A �U φ > δ

– A �U φ−̇ψ > ε ⇐⇒ There exists q > 0 such that A �U ψ < q and
A � φ > q + ε

Quantifiers

– A �U infσ φ(σ) < ε ⇐⇒ there exist an open covering {Ui} of U and a family
of section μi each one defined in Ui such that A �Ui

φ(μi) < ε for all i
– A �U infσ φ(σ) > ε ⇐⇒ there exist ε′ such that 0 < ε < ε′ and an open

covering {Ui} of U such that for every section μi defined in Ui A �Ui
φ(μi) >

ε′

– A �U supσ φ(σ) < ε ⇐⇒ there exist ε′ such that 0 < ε′ < ε and an open
covering {Ui} of U such that for every section μi defined in Ui A �Ui

φ(μi) <
ε′

– A �U supσ φ(σ) > ε ⇐⇒ there exist an open covering {Ui} of U and a family
of section μi each one defined in Ui such that A �Ui

φ(μi) > ε for all i

Observe that the definition of local forcing leads to the equivalences

A �U inf
σ

(1−̇φ(σ)) > 1−̇ε ⇐⇒ A �U sup
σ

φ(σ) < ε,

A �U inf
σ

(φ(σ)) < ε ⇐⇒ A �U sup
σ

(1−̇φ(σ)) > 1−̇ε. (8)

The fact that we can obtain a similar statement to the Maximum Principle
of [3] is even more important.

Theorem 2 (The Maximum Principle for Metric structures). If A �U

infσ φ(σ) < ε then there exists a section μ defined in an open set W dense in U
such that A �U φ(μ) < ε′, for some ε′ < ε.

308 M.A. Ochoa and A. Villaveces

Proof. That A �U infσ φ(σ) < ε is equivalent to the existence of an open covering
{Ui} and a family of sections {μi} such that A �Ui

φ(μi) < ε′ for some ε′ < ε.
The family of sections S = {μ| dom(μ) ⊂ U and A �dom(μ) φ(μ) < ε′} is
nonempty and is partially ordered by inclusion. Consider the maximal element
μ∗ of a chain of sections in S. Then dom(μ∗) is dense in U and A �dom(μ∗)
φ(μ∗) < ε′.

3 The Metric Generic Model and its theory

In certain cases, the quotient space of the metric sheaf can be the universe of
a metric structure in the same language as each of the fibers. We examine in
this section one such case: sheaves of metric structures over regular topological
spaces, and a generic for a filter of regular open sets. We do not claim that this
is the optimal situation - however, we provide a proof of a version of a Generic
Model Theorem for these Metric Generic models.

Definition 4 (Metric Generic Model). Let A = (X, p,E) be a sheaf of met-
ric structures defined on a regular topological space X and F an ultrafilter of
regular open sets in the topology of X. We define the Metric Generic Model A[F]
by

A[F] = {[σ]/∼F
|dom(σ) ∈ F}, (9)

provided with the metric dF defined above (see Lemma 3 and subsequent discus-
sion), and with

–
fA[F]([σ1]/∼F

, . . . , [σn]/∼F
) = [fA(σ1, . . . , σn)]/∼F

(10)

with modulus of uniform continuity Δ
A[F]
f = infx∈X ΔAx

f .
–

RA[F]([σ1]/∼F
, . . . , [σn]/∼F

) = inf
U∈Fσ1...σn

sup
x∈U

Rx(σ1(x), . . . , σn(x)) (11)

with modulus of uniform continuity Δ
A[F]
R = infx∈X ΔAx

R .
–

cA[F] = [c]/∼F
(12)

Observe that the properties of dF and the fact that RA is continuous ensure
that the Metric Generic Model is well defined as a metric structure. Special
attention should be paid to the uniform continuity of RA[F]. We prove this next:

Proof. It is enough to show this for an unary relation. First, suppose
dF([σ], [μ]) < infx∈X ΔAx

R (ε), then

inf
U∈Fσμ

sup
x∈U

dx(σ(x), μ(x)) < inf
x∈X

ΔAx

R (ε) (13)

Sheaves of Metric Structures 309

which implies that there exists V ∈ Fσμ such that

sup
x∈V

dx(σ(x), μ(x)) < inf
x∈X

ΔAx

R (ε),

and by the uniform continuity of each RAx ,

sup
x∈V

|R(σ(x)) − R(μ(x))| ≤ ε

We now state that
∣
∣
∣
∣ inf
U∈Fσ

sup
x∈U

R(σ(x)) − inf
U∈Fμ

sup
x∈U

R(σ(x))
∣
∣
∣
∣ ≤ sup

x∈V
|R(σ(x)) − R(μ(x))| .

First consider RA[F]([σ]/∼F) ≥ RA[F]([μ]/∼F),

|RA[F]([σ]/∼F) − RA[F]([μ]/∼F)| = RA[F]([σ]/∼F) − RA[F]([μ]/∼F)

≤ sup
x∈V

R(σ(x)) − RA[F]([μ]/∼F).

Now, for all δ > 0 there exists W ∈ Fμ such that

sup
x∈W

R(μ(x)) < inf
U∈Fμ

sup
x∈U

R(μ(x)) + δ

and indeed the same is true for V ′ = V ∩ W ∈ Fσμ. Therefore

|RA[F]([σ]/∼F) − RA[F]([μ]/∼F)| ≤ sup
x∈V ′

R(σ(x)) − sup
x∈V ′

R(μ(x)) + δ,

where we have substituted V by V ′ in the first term since V ′ ⊂ V , and we can
apply the same arguments to it. Also, since δ is arbitrary

|RA[F]([σ]/∼F) − RA[F]([μ]/∼F)| ≤ sup
x∈V ′

R(σ(x)) − sup
x∈V ′

R(μ(x))

≤ sup
x∈V ′

(R(σ(x)) − R(μ(x)))

≤
∣
∣
∣
∣ sup
x∈V ′

(R(σ(x)) − R(μ(x)))
∣
∣
∣
∣

≤ sup
x∈V ′

|R(σ(x)) − R(μ(x))| ≤ ε (14)

In the case of RA[F]([σ]/∼F) ≤ RA[F]([μ]/∼F) similar arguments hold.

It is worth mentioning that part of the “generality” of the so called generic
model is lost. This is indeed true and it is a consequence of the additional
conditions that we have imposed on the topology of the base space (regularity)
and on the ultrafilter to obtain a Cauchy complete metric space.

We can now present the Generic Model Theorem (GMT) for metric struc-
tures. This provides a nice way to describe the theory of the metric generic model
by means of the forcing relation and topological properties of the sheaf of metric
structures.

310 M.A. Ochoa and A. Villaveces

Theorem 3 (Metric Generic Model Theorem). Let F be an ultrafilter of
regular open sets on a regular topological space X and A a sheaf of metric struc-
tures on X. Then

–
A[F] |= φ([σ]/∼F) < ε ⇐⇒ ∃U ∈ F such that A �U φ(σ) < ε (15)

–
A[F] |= φ([σ]/∼F) > ε ⇐⇒ ∃U ∈ F such that A �U φ(σ) > ε (16)

Proof. Atomic formulas:

– A[F] |= dF([σ1]/∼F, [σ2]/∼F) < ε iff infU∈Fσ1σ2
supx∈U dx(σ1(x), σ2(x)) < ε.

This is equivalent to saying that there exists U ∈ Fσ1σ2 such that

sup
x∈U

dx(σ1(x), σ2(x)) < ε.

Further, by definition, that it is equivalent to A �U d(σ1, σ2) < ε.
– For A[F] |= R([σ1]/∼F, . . . , [σn]/∼F) the same arguments as before apply.
– A[F] |= dF([σ1]/∼F, [σ2]/∼F) > ε iff infU∈Fσ1σ2

supx∈U dx(σ1(x), σ2(x)) > ε.
• (⇒) Let infU∈Fσ1σ2

supx∈U dx(σ1(x), σ2(x)) = r and ε′ = (r + ε)/2. Then,
the set V = p(〈σ1, σ2〉 ∩ dA −1(ε′, 1]) is nonempty and intersects every open
set in F. If V /∈ F, consider X \ V . That set is not an element of F since
dom(σ1)∩dom(σ2)∩X\V would also be in F with dx(σ1(x), σ2(x)) ≤ ε′ for
all x in it. Therefore int(V)∩dom(σ1)∩dom(σ2) ∈ F and for every element
in this set dx(σ1(x), σ2(x)) ≥ ε′, which implies that there exists U ′ ∈ F such
that infx∈U ′ dx(σ1(x), σ2(x)) ≥ ε′ > ε.

• (⇐) If A �V d(σ1, σ2) > ε for some V ∈ Fσ1σ2 , then V intersects any open
set in the generic filter and for any element in V , dx(σ1(x), σ2(x)) ≥ r where
r = infx∈V dx(σ1(x), σ2(x)). Thus, for all U ∈ F,

sup
x∈U

dx(σ1(x), σ2(x)) ≥ r

and therefore
inf

U∈Fσ1σ2

sup
x∈U

dx(σ1(x), σ2(x)) ≥ r > ε.

– Statements similar to those claimed above show the case of

A[F] |= R([σ1]/∼F, . . . , [σn]/∼F) > ε.

Logical connectives:

– For the connectives 1−̇, min and max, the result follows by a simple induction
in each case. We only include the proof for one of these connectives.

A[F] |= min (φ([σ1]/∼F), ψ([σ2]/∼F)) < ε

⇐⇒ A[F] |= φ([σ1]/∼F) < ε or A[F] |= ψ([σ2]/∼F) (17)

⇐⇒ ∃U1 ∈ F A �U1 φ(σ1) < ε or ∃U2 ∈ F A �U2 ψ(σ2) < ε

⇐⇒ ∃U ∈ F such that A �U min(φ(σ1), ψ(σ2)) < ε. (18)

Sheaves of Metric Structures 311

– The step A[F] |= φ([σ1]/∼F)−̇ψ([σ2]/∼F) < ε needs a rather lengthy case by
case analysis. The cases are
• A[F] |= φ([σ1]/∼F) < ψ([σ2]/∼F),
• A[F] � φ([σ1]/∼F) < ψ([σ2]/∼F) and A[F] � φ([σ1]/∼F) > ψ([σ2]/∼F),
• A[F] |= φ([σ1]/∼F) < ε,
• A � φ([σ1]/∼F) < ε, A |= φ([σ1]/∼F) > ψ([σ2]/∼F) and A |= φ([σ1]/∼F) <

ψ([σ2]/∼F) + ε
The proofs here are verifications of each case.

Quantifiers:

–

A[F] |= inf
[σi]/∼F

φ([σi]/∼F) < ε

⇐⇒ ∃[σ1]/∼F such that A[F] |= φ([σ1]/∼F) < ε

⇐⇒ ∃U1 ∈ F ∃σ1 such that A �U1 φ(σ1) < ε

⇒ ∃U ∈ F such that A �U inf
σ

φ(σ) < ε (19)

For the other direction suppose that there exists U ∈ F such that A �U

infσ φ(σ) < ε. Then the family Iε = {U ∈ F|A �U infσ φ(σ) < ε} is nonempty
and can be partially ordered by the binary relation ≺ defined by: U ≺ V if and
only if U ⊃ V . Consider the maximal element U ′ of a chain defined in Iε. Then
there exists a covering {Vi} of U ′ all whose elements are basic open sets of the
above class, and a family of sections {μi}, such that A �Vi

φ(μi) < ε. If any
Vi ∈ F then Vi = U ′. Otherwise it will contradict the maximality of U ′. Also,
if int(X \ Vi) ∈ F then A �int(X\Vi)∩U′ infσ φ(σ) < ε in contradiction to the
maximality of U ′. We conclude that there exists μ such that A �U ′ φ(μ) < ε.

–

A[F] |= sup
[σi]/∼F

φ([σi]/∼F) < ε

⇐⇒ ∀[σi]/∼F A[F] |= φ([σi]/∼F) < ε

⇐⇒ ∀σi∃Ui ∈ F such that A �Ui
φ(σi) < ε (20)

(⇒) We prove this by contradiction. Suppose there exists V in F such that
for some σi A �V φ(σi) ≥ ε, then V ∩ Ui is also in F and in this set φ(σi) < ε
and φ(σi) ≥ ε are forced simultaneously.
(⇐) Suppose that there exists U ∈ F such that A �U supσ φ(σ) < ε. Then the
family Sε = {U ∈ F|A �U supσ φ(σ) < ε} is nonempty. The proof follows by
similar arguments to those used in the case of inf [σi]/∼F

φ([σi]/∼F) < ε above.

We now stress that the Metric Generic Model Theorem (GMT) has distinct
but strong connections with the Classical Theorem (see [3,8]). In the case of the
Metric GMT, we can observe similarities in the forcing definitions if we consider
the parallelism between the minimum function and the disjunction, the maxi-
mum function and the conjunction, the infimum and the existential quantifier.

312 M.A. Ochoa and A. Villaveces

On the other hand, differences are evident if we compare the supremum with
the universal quantifier. The reason for this is that in this case the sentence
1−̇(1−̇φ), which is our analog for the double negation in continuous logic, is
equivalent to the sentence φ. Note that the point and local forcing definitions
are consistent with this fact - i.e.,

A �U 1−̇(1−̇φ) < ε ⇐⇒ A �U φ < ε,

A �U 1−̇(1−̇φ) > ε ⇐⇒ A �U φ > ε. (21)

As another consequence, the metric version of the GMT does not require an
analog definition to the Gödel translation.

We close this section by introducing a simple example that illustrates some
of the elements just described. We study the metric sheaf for the continuous
cyclic flow in a torus.

Let X = S1, E = S1 × S1 and p = π1, be the projection function onto the
first component. Then, we have Eq = S1. Given a set of local coordinates xi in
Si and a smooth vector field V on E, such that

V = V1
∂

∂x1
+ V2

∂

∂x2

V1(p) �= 0 ∀p ∈ S1, (22)

we can take as the set of sections the family of integrable curves of V . The
open sets of the sheaf can be described as local streams through E. Complex
multiplication in every fiber is continuously extended to a function between
integral curves. Every section can be extended to a global section.

Let us study the metric generic model of this sheaf. Note that X is a topo-
logical regular space and that it admits an ultrafilter F of regular open sets.
First, observe that A[F] is a proper subset of the set of local integrable curves.
In fact, every element in A[F] can be described as the equivalence class of a
global section in E: For any element [σ] ∈ A[F], U = dom(σ) ∈ F, and there
exists a global integral curve μ in E such that ρF(σ, μ) = 0. This result leads
to the conclusion that every ultrafilter of open sets in S1 generates the same
universe for A[F]. Observe that every fiber can be made into a metric structure
with a metric given by the length of the shortest path joining two points. This,
of course, is a Cauchy complete and bounded metric space. Dividing the dis-
tance function by π, we may redefine this to make d(x, y) ≤ 1, for x and y in S1.
Therefore, this manifold is also a metric sheaf. In addition, observe that complex
multiplication in S1 extends to the sheaf as a uniformly continuous function in
the set of sections. For any element [σ] ∈ A[F], let U = dom(σ) ∈ F and μ be
the global integral curve that extends σ. Thus, for arbitrary ε > 0

A �U dA(σ, μ) < ε (23)

and as a consequence
A[F] |= dA[F]([σ], [μ]) = 0.

Sheaves of Metric Structures 313

In addition, the metric generic model satisfies the condition that multiplication
between sections is left continuous. Let η and μ be sections whose domain is an
element of the ultrafilter. For any ε < 1/2, if

A �dom(η)∩dom(μ) d(η, μ) < ε

then for any other section σ defined in an element of F, it is true that in V =
dom(η) ∩ dom(μ) ∩ dom(σ)

A �V d(ησ, μσ) < ε (24)

and also
A �V 1−̇ max(d(η, μ), 1−̇d(ησ, μσ)) < ε. (25)

By the metric GMT, we can conclude that

A[F] |= 1−̇ max(dA[F]([η], [μ]), 1−̇d([η][σ], [μ][σ])) < ε

and since σ, η and μ were chosen arbitrarily.

A[F] |= sup
σ

sup
η

sup
μ

[
1−̇ max(dA[F]([η], [μ]), 1−̇d([η][σ], [μ][σ]))

]
< ε.

Right continuity, left invariance and right invariance of this metric can be
expressed in the same fashion.

4 Perspectives

Our setting, main theorem, and constructions open up various new lines of
research, both within model theory itself and applications.

4.1 Model Theory

The Model Theoretic analysis of the new objects constructed here (the metric
generic model in Sect. 3 and the sheaf of metric structures itself) has so far been
analyzed from a model theoretic perspective only up to the consequences of the
Generic Model Theorem (this is also true of the work done in the case of sheaves
with discrete First Order fibers). This reflects the current situation with the
model theory of sheaves in general.

Additionally, extensions of this work to topological structures (fibers support-
ing themselves topological spaces, built in the framework of Flum and Ziegler [7])
have been explored; they yield similar results. Further lines of research (sheaves
with fibers that are more general than metric or different from topologic in the
style of Flum and Ziegler - for instance, fibers that are measure algebras, etc.) are
yet to be explored. They will probably require a more purely category-theoretic
perspective.

Finally, the connections to the Model Theory of Metric Abstract Elementary
Classes (see [10,17]) and in particular to topological dynamical perspectives on

314 M.A. Ochoa and A. Villaveces

typespaces, are a burgeoning field. Work of Abramsky, Mansfield and Soares [15]
has opened the line of cohomology attached to non-locality in quantum mechan-
ics. The cohomology is built on a version of sheaves different from ours. Metric
sheaves provide further contexts for the study of these phenomena, as evidenced
by the works cited in this paragraph (forthcoming work).

4.2 Applications

Besides our example, metric sheaves are natural places for applications to fur-
ther dynamical systems obtained as sheaves of metric structures, where the
dynamics is provided by the behavior of sections, naturally carefully chosen.
More specifically, we expect that our results will be useful for various construc-
tions of sheaves over topological spaces naturally associated to actions of com-
pact groups over certain varieties - among other variations. In forthcoming work
with Padilla, the second author has worked on generic cohomology for sheaves
of discrete structures possibly endowed with an group action coherent with the
sheaves. In future work, we hope to merge that new line of research with our
own metric sheaves. Additionally, the first author is currently working in setting
up applications to classical mechanics and possibly quantization. Other possible
applications include Zilber’s Structural Approximation (see [18]).

References

1. Ben Yaacov, I., Berenstein, A., Henson, C.W., Usvyatsov, A.: Model theory of
metric structures. In: Chatzidakis, Z., Macpherson, D., Pillay, A., Wilkie, A. (eds.)
Model Theory with Applications to Algebra and Analysis. Lecture Notes Series of
the London Mathematical Society, vol. 2. Cambridge University Press, Cambridge
(2008)

2. Caicedo, X.: Conectivos sobre espacios topológicos. Rev. Acad. Colomb. Cienc.
21(81), 521–534 (1997)

3. Caicedo, X.: Lógica de los haces de estructuras. Rev. Acad. Colomb. Cienc. 19(74),
569–586 (1995)

4. Carson, A.B.: The model-completion of theory of commutative regular rings. J.
Algebra 27, 136–146 (1973)

5. Comer, S.: Elementary properties of structures of sections. Bol. Soc. Mat. Mexi-
cana. 19, 78–85 (1974)

6. Ellerman, D.: Sheaves of structures and generalized ultraproducts. Ann. Math.
Logic 7, 163–195 (1974)

7. Flum, J., Ziegler, M.: Topological Model Theory. Springer, New York (1980)
8. Forero, A.: Una demostración alternativa del teorema de ultraĺımites. Revista

Colombiana de Matemáticas 43(2), 165–174 (2009)
9. Grothendieck, A.: A general theory of fibre spaces with structure sheaf. Technical

report, University of Kansas (1958)
10. Hirvonen, Å., Hyttinen, T.: Categoricity in homogeneous complete metric spaces.

Arch. Math. Logic 48, 269–322 (2009)
11. Lopes, V.C.: Reduced products and sheaves of metric structures. Math. Log. Quart.

59(3), 219–229 (2013)

Sheaves of Metric Structures 315

12. Macintyre, A.: Model-completeness for sheaves of structures. Fund. Math. 81, 73–
89 (1973)

13. Macintyre, A.: Nonstandard analysis and cohomology. In: Nonstandard Methods
and Applications in Mathematics. Lecture Notes in Logic, vol. 25. Association for
Symbolic Logic (2006)

14. Montoya, A.: Contribuciones a la teoŕıa de modelos de haces. Lecturas Matemáticas
28(1), 5–37 (2007)

15. Soares, R., Abramsky, S., Mansfield, S.: The cohomology of non-locality and con-
textuality. In: 8th International Workshop on QPL. EPTCS, vol. 95(74) (2012)

16. Villaveces, A.: Modelos fibrados y modelos haces para la teoŕıa de conjuntos. Mas-
ter’s thesis, Universidad de los Andes (1991)

17. Villaveces, A., Zambrano, P.: Around independence and domination in metric
abstract elementary classes: assuming uniqueness of limit models. Math. Logic
Q. 60(3), 211–227 (2014)

18. Zilber, B.: Non-commutative Zariski geometries and their classical limit. Confl.
Math. 2, 265–291 (2010)

A Curry–Howard View of Basic
Justification Logic

Konstantinos Pouliasis(B)

Graduate Center, CUNY, New York, USA
kpouliasis@gradcenter.cuny.edu

Abstract. In this paper we suggest reading a constructive necessity of a
formula (�A) as internalizing a notion of constructive truth of A (a proof
within a deductive system I) and validity of A (a proof under an inter-
pretation �A�J within some system J). An example of such a relation is
provided by the simply typed lambda calculus (as I) and its implementa-
tion in SK combinators (as J). We utilize justification logic to axiomatize
the notion of validity-under-interpretation and, hence, treat a “semanti-
cal” notion in a purely proof-theoretic manner. We present the system in
Gentzen-style natural deduction formulation and provide reduction and
expansion rules for the � connective. Finally, we add proof-terms and
proof-term equalities to obtain a corresponding calculus (Jcalc−) that
can be viewed as an extension of the Curry–Howard isomorphism with
justifications. We provide standard metatheoretic results and suggest a
programming language interpretation in languages with foreign function
interfaces (FFI s).

1 Introduction: Necessity and Constructive Semantics

In his seminal “Explicit Provability and Constructive Semantics” [1]
Artemov developed a constructive, proof-theoretic semantics for Brouwer-
Heyting-Kolmogorov proofs [15] in what turned out to be the first development of a
family of logics that we now call justification logic. The general idea, upon which
we build our calculus, is that semantics of a deductive system I can be viewed in
a solely proof-theoretic manner as mappings of proof constructs of I into another
proof system J (which we call justifications). As an example one could think I
being Heyting arithmetic and J some “stronger” system (e.g. a classical axioma-
tization of Peano arithmetic, a classical or intuitionistic set theory etc.). What’s
more, such a semantic relation can be treated logically giving rise to a modality of
explicit necessity. Different sorts of necessity (K, D, S4, S5) have been offered an
explicit counterpart under the umbrella of justification logic. Some of them have
been studied within a Curry–Howard setting [2]. Our paper focuses on K modality
and should be viewed as the counterpart of [4] with justifications as we explain in
Sect. 5.

c© Springer-Verlag Berlin Heidelberg 2016
J. Väänänen et al. (Eds.): WoLLIC 2016, LNCS 9803, pp. 316–337, 2016.
DOI: 10.1007/978-3-662-52921-8 20

A Curry–Howard View of Basic Justification Logic 317

1.1 Deductive Systems, Validity and Necessity

Following a framework championed by Lambek [10,11], let us assume two deduc-
tive systems I (with propositional universe UI , a possibly non-empty signature
of axioms ΣI and an entailment relation ΣI ;Γ �I A) and J (resp. with UJ , ΣJ

and ΣJ ;Δ �J φ). We will be using Latin letters for the formulae of I and Greek
letters for the formulae of J . We will be omitting the Σ signatures when they
are not relevant.

For the entailment relations of the two systems we require the following
elementary principles:

1. Reflexivity. In both relations Γ and Δ are multisets of formulas (contexts)
that enjoy reflexivity:

A ∈ Γ =⇒ Γ �I A

φ ∈ Δ =⇒ Δ �J φ

2. Compositionality. Both relations are closed under deduction composition:

Γ �I A and Γ
′
, A �I B =⇒ Γ, Γ

′ �I B

Δ �J φ and Δ
′
, φ �J ψ =⇒ Δ,Δ

′ �J ψ

3. Top. Both systems have a distinguished top formula � for which under any
Γ , Δ:

Γ �I �I and Δ �J �J

Now we can define:

Definition 1. Given a deductive system I, an interpretation for I, noted by
�•�J , is a pair (J, �•�) of a deductive system J together with a (functional) map-
ping �•� : UI → UJ on propositions of I into propositions of J extended to
multisets of formulae of UI with the following properties:

1. Top preservation. ��I� = �J

2. Structural interpretation of contexts. For Γ contexts of the form A1, . . . , An:

�Γ � = �A1�, . . . , �An�

(trivially empty contexts map to empty contexts. As in [10] they can be treated
as the � element).

Definition 2. Given a deductive system I and an interpretation �•�J for I we
define a corresponding validation of a deduction ΣI ;Γ �I A as a deduction
ΣJ ;Δ �J φ in J such that �A� = φ and Δ = �Γ �. We will be writing �ΣI ;Γ �I

A�J to denote such a validation.

Definition 3. Given a deductive system I, we say that an interpretation �•�J

is logically complete when for all purely logical deductions D (i.e. deductions that
make no use of ΣI) in I there exists a corresponding (purely logical) validation
�D� in J . i.e.

∀D. D : Γ �I A =⇒ ∃�D� : �Γ � A�J

318 K. Pouliasis

Note, that we require existence but not uniqueness. Nevertheless, if we treat
deductive systems in a proof irrelevant manner as preorders the above defin-
ition gives uniqueness vacuously. In a more refined approach where I and J
are viewed as categories of proofs the above “logical completeness” translates
to the requirement that if the set of (purely logical) arrows HomI(Γ,A) is non
empty then HomJ(�Γ �, �A�J) cannot be empty (i.e. that �•�J can be extended
to a functor). We leave a complete categorical semantics of our logic for future
work but we expect a generalization of the endofunctorial interpretations of K
modality appearing in [4,9].

Examples of triplets (I, J , �•�J) of logical systems that fall under the defi-
nition above are: any intuitionistic system mapped to a classical one under the
embedding �A ⊃ B� = ¬̃A∨̃B where ¬̃ and ∨̃ are classical connectives, the
opposite direction under double negation translation, an intuitionistic system
mapped to another intuitionistic system (i.e. a mapping of atomic formulas of
I to atomic formulas of J extended naturally to the intuitionistic connectives
or, simply, the identity mapping) etc. A vacuous validation (when �•�J maps
everything to �) gives another example.

We will focus on the case where I (the propositional part of our logic) is based
on the implicative fragment of intuitionistic logic and show how justification logic
provides for an axiomatization of such logically complete interpretations �•�J of
implicative intuitionistic logic. In what follows we provide a natural deduction
for an intuitionistic system I (truth), an axiomatization/specification of �•�J

(treated abstractly as a function symbol on types) and a treatment of basic
necessity that relates the two deductions by internalizing a notion of “double
truth” (proof in I and existence of corresponding validation in J).

2 Judgments of Jcalc−

We aim for a reading of necessity that internalizes a notion of “double proof”
in two deductive systems. Motivated by the discussion and definitions in the
previous section we will treat the notion of interpretation abstractly – as a
function symbol on types – and axiomatize in accordance. Schematically we
want:

�A true := A true & A valid = A true in I & �A� true in J

We will be dropping indexes I, J since they can be inferred by the different
kinds of assumption contexts. In addition, we omit signatures Σ since they do
not offer anything from a logical perspective.

Logical entailment for the proposed � connective can be summarized easily
given our previous discussion. Given a deduction D : A � B and the existence of
validation �D� : �A� � �B� then given �A (i.e. a proof of a � A and a validation
� �A�) we obtain a double proof of B (and hence, �B) by compositionality of the
underlying systems. Using standard, proof tree notation with labeled assump-
tions we formulate our rule of the connective in natural deduction:

A Curry–Howard View of Basic Justification Logic 319

We can, easily, generalize to �ed contexts (of the form �A1, . . . ,�Ai) of
arbitrary length:

We read as “Introducing �B after eliminating �A1 . . . �Ai crossing out
(vectors of) labels x, s”. Interestingly, the same rule eliminates boxes and intro-
duces new ones. This is not surprising for K modality (it is a left-right rule as
we will see Sect. 2.4. See also discussion in [4,5]). We will be referring to this
rule as “� Intro–After–Elim” or, simply �IE , from now on.

Note that we define the � connective negatively, yet (pure) introduction
rules for the � connective are derivable. Such are instances of the previous
Intro–After–Elim rule when Γ ′ is empty which conforms exactly with the idea
of necessity internalizing double theoremhood.

� B � �B�

�B
I�B

In the next section, we provide the whole calculus in natural deduction for-
mat. As expected we will extend the implicational fragment of intuitionistic logic
with

– Judgments about validity (justification logic).
– Judgments that relate truth and validity (modal judgments).

2.1 Natural Deduction for Jcalc−

Following type theory conventions, we first provide rules underlying type con-
struction, then rules for well-formedness of (labeled) assumption contexts and
rules introducing and eliminating connectives. The rules below should be obvious
except for small caveat. On the one hand, the type universe of UI and the proof
trees of I are inductively defined as usual; on the other hand, the host theory J
(its corresponding universe, connectives and proof trees) is “black boxed”. What
we actually axiomatize are the properties that all (logic preserving) interpreta-
tions of I should conform to, independently of the specifics of the host theory.
Validity judgments should thus be read as specifications of provability (existence
of proofs) of any candidate J .

We use Prop0 to denote the type universe of I and �Prop0� to denote its
image under an interpretation, Prop1 denotes modal (“boxed”) types and Prop

320 K. Pouliasis

the union of Prop0,Prop1. We write Pk with k ranging in some subset of natural
numbers to denote atomic propositions in I.

For labeled contexts of assumptions we require standard wellformedness con-
ditions (i.e. uniqueness of labels). We use letters xi, or simply x, for labels of
contexts with assumptions in Prop0, x′

i or simply x′ for contexts with assump-
tions in Prop1 and si, or simply s, for �Prop0� contexts. We use ◦ for the empty
context of Prop0 and Prop1 and † for the empty context of �Prop0�. We abuse
notation and write x : A ∈ Γ (or, similarly, s : �A� ∈ Δ) to denote that the label
x is assigned type A in Γ ; or Γ ∈ Prop0 (resp. Γ ∈ Prop1, Δ ∈ �Prop0�) to denote
that Γ is a wellformed context with co–domain of elements in Prop0 (resp. in
Prop1, �Prop0�). For Γ ∈ Prop0 we define �Γ � as the lifting of the context Γ
through the �•� symbol (with appropriate renaming of variables – e.g. xi � si).
For the vacuous case when Γ is empty we require �◦� = † to be well formed.

In the following entry we define proof trees (in turnstile representation) of the
intuitionistic source theory I. For all following rules we assume Γ,A,B ∈ Prop0:

For the calculus of interpretation (validity) we demand context reflexivity,
compositionality and logical completeness with respect to intuitionistic impli-
cation. Logical completeness is specified axiomatically, since the host theory is
“black boxed”. Following justification logic, we use an axiomatic characterization
of combinatory logic (for ⊃) together with the requirement that the interpreta-
tion preserves modus ponens:

A Curry–Howard View of Basic Justification Logic 321

Finally, we have judgments in the �ed universe (Prop1). These are context
reflection, the � Intro-After-Elim rule, and the rules for intuitionistic implica-
tion between �ed types1.

(Pure) �I as Derivable Rule. We stress here that � can be introduced
positively with the previous rule with Γ

′
= ◦. The first premise reduces to a

simple requirement that Γ ∈ Prop1.

◦ � A † � �A�

Γ � �A
I�A

A Simple Derivation. We show here that the K axiom of modal logic is a
theorem (omitting some obvious steps). In the following

Γ := x′
1 : �(A ⊃ B), x′

2 : �A, Γ ′ = x1 : A ⊃ B, x2 : A, �Γ ′� = s1 : �A ⊃ B�, s2 : �A�

2.2 Logical Completeness, Admissibility of Necessitation
and Completeness with Respect to Hilbert Axiomatization

Here we give a Hilbert axiomatization of the ⊃ fragment of intuitionistic K logic
in order to compare it with our system. Here �H captures the textbook (metathe-
oretic) notion of “deduction from assumptions” in a Hilbert style axiomatization.
We assume the restriction of the system to formulas up to modal degree 1.

1 The implication and elimination rules in Prop1 actually coincide with the ones in
Prop0 since we are focusing on the case where I is intuitionistic. This need not
necessarily be the case as we have explained. Intuitionistic implication among �
types should be read as “double proof of A implies double proof of B” and would still
be defined even if we did not observe any kind of implication in I. Similarly, one could
provide intuitionistic conjunction or disjunction between � types independently of
I and, vice versa, one could add connectives in I that are not observed between �ed
types.

322 K. Pouliasis

It is easy to verify that axioms 1, 2 are derived theorems of Jcalc− in Prop0.
The rule Modus Ponens is also admissible trivially, whereas axiom K was shown
to be a theorem in the previous Sect. 2.1. The rule of Necessitation is not obvi-
ously admissible though. In our reading of necessity the admissibility of this rule
is directly related to the requirement of “logical completeness of the interpreta-
tion” i.e. preservation of logical theoremhood. In general, adding more connec-
tives in I would require additional specifications for the host theory to obtain
necessitation.

The steps of the proof are given in the Appendix, but this is essentially
the “lifting lemma” in justification logic [1]. The proof fully depends on the
provability requirements imposed in the �Prop0� fragment.

Lemma 1 (�Lifting Lemma). In Jcalc−, for every Γ,A ∈ Prop0 if Γ � A
then �Γ � � �A� and, hence, �Γ � �A.

We get admissibility of necessitation as a lemma for Γ empty:

Lemma 2 (Admissibility of Necessitation). For A ∈ Prop0, if ◦ � A then
◦ � �A.

As a result:

Theorem 1 (Completeness). Jcalc− is complete with respect to the Hilbert
style formulation of degree-1 intuitionistic K modal logic.

2.3 Harmony: Local Soundness and Local Completeness

Before we move on to show (Global) Soundness we provide evidence for the so
called “local soundness” and “local completeness” of the � connective following
Gentzen’s dictum. The local soundness and completeness for the ⊃ connective is
given elsewhere (e.g. [14]) and in Gentzen’s original [6]. Gentzen’s program can
be described with the following two slogans:

a. Elim is left-inverse to Intro
b. Intro is right-inverse to Elim

Applied to the � connective, the first principle says that introducing a �A (resp.
many �A1, . . . ,�Ai) only to eliminate it (resp. them) directly is redundant. In
other words, the elimination rule cannot give you more data than what were
inserted in the introduction rule(s) (“elimination rules are not too strong”). We
show here the “Elim-After-Singleton-Intro” sub-case. The exact same principle
applies in the “Elim-after-Intro” of multiple �s shown in the Appendix A.3.

A Curry–Howard View of Basic Justification Logic 323

Dually, the second principle says eliminating a �A , should give enough
information to directly reintroduce it (“elimination rules are not too weak”).
This is an expansion principle.

2.4 (Global) Soundness

Soundness is shown by proof theoretic techniques. Standardly, we add the bottom
type (⊥) to Jcalc− together with its elimination rule and show that the system is
consistent (� ⊥) by devising a sequent calculus and showing admissibility of cut.
We only present the calculus here and collect the theorems towards consistency
in the Appendix.

In the following we use Γ ⇒ A (where Γ,A ∈ Prop0 ∪ Prop1) to denote
sequents modulo Γ permutations where Γ is a multiset of Prop (no labels) and
Δ ⇒ �A� for sequents corresponding to �judgments� of the calculus modulo Δ
permutations (with Δ (unlabeled) multiset of �Prop0�). The multiset/modulo
permutation approach is instructed by standard structural properties. All prop-
erties are stated formally and proved in the Appendix.

The �Γ � ⇒ �A� relation is defined directly from �:

Standardly, we extend the system with the Cut rule and we obtain the
extended system Γ ⇒+ A := Γ ⇒ A + Cut. We show Completeness of ⇒+

with respect to Natural Deduction and Admissibility of Cut that leads to the
consistency result

324 K. Pouliasis

Theorem 2 (Consistency of Jcalc−). �⊥

3 The Computational Side of Jcalc−

In this section we add proof terms to represent natural deduction constructions.
The meaning of these terms emerges naturally from Gentzen’s principles that
give reduction (computational β-rules) and expansion (i.e. extensionality η-rules)
equalities for the each construct. We focus on the new constructs of the calculus
that emerge from the judgmental interpretation of the � connective as explained
in Sect. 2.

There will be no computational (reduction) rules on provability terms. This
conforms with our reading of these terms as references to proof constructs of an
abstracted theory J that can be realized differently for a concrete J .

3.1 Proof Term Assignment

The following rules and their correspondence with natural deduction constructs
Sect. 2.1 should be obvious to the reader familiar with the simply typed λ-
calculus and basic justification logic. We do not repeat here the corresponding
β, η equality rules since they are standard.

For judgments of �Prop0�, we assume a countable set of constant names and
demand that every combinatorial axiom of intuitionistic logic has a witness under
the interpretation �•�. This is what justification logicians call “axiomatically
appropriate constant specification”. As usual we demand reflection of contexts
in J and preservation of modus ponens – closedness under some notion of appli-
cation (which we denote as ∗).

A Curry–Howard View of Basic Justification Logic 325

If J is a proof calculus and �•�J is an interpretation such that the specifica-
tions above are realized, then J can witness intuitionistic provability. This can
be shown by the proof relevant version of the lifting lemma that states:

Lemma 3 (�•�Lifting Lemma). Given Γ,A ∈ Prop0 s.t. and a term M s.t.
Γ � M : A then there exists J s.t �Γ � � J : �A�.

Proof Term Assignment and Gentzen Equalities for � Judgments.
Before we proceed, we will give a small primer of let-bindings as used in modern
programming languages to provide for some intuition on how such terms work.
Let us assume a rudimentary programming language that supports some basic
types, say integers (int), as well as pairs of such types. Moreover, let us define
a datatype Point as a pair of int i.e. as (int, int) In a language with let-bindings
one can define a simple function that takes a Point and “shifts” it by adding 1
to each of its x and y coordinates as follows:

de f s h i f t (p : Point) =
l e t (x , y) be p
in
(x+1,y+1)

If we call this function on the point (2,3), then the computation
let (x,y) be (2,3) in (x+1,y+1) is invoked. This expression reduces following
the let reduction rule (i.e. pattern matching and substitution) to (2+1,3+1); and
as a result we obtain the value (3,4). As we will see, let bindings – with appro-
priate typing restrictions for our system – are used in the assignment of proof
terms for the �IE rule. Moreover, the reduction principle for such terms (β-rule)
– obtained following Gentzen’s equalities for the � connective – is exactly the
one that we just informally described.

We can now move forward with the proof term assignment for the �IE rule.
We show first the sub-cases for Γ ′ empty (pure �I) and Γ ′ singleton and explain
the computational significance utilizing Gentzen’s principles appropriated for the
� connective. We are directly translating proof tree equalities from Sect. 2.3 to
proof term equalities. We generalize for arbitrary Γ ′ in the following subsection.
We have, respectively, the following instances:

Gentzen’s Equalities for (� Terms). Gentzen’s reduction and expansion
principles give computational meaning (dynamics) and an extensionality princi-
ple for linking terms. We omit naming the empty contexts for economy.

326 K. Pouliasis

Where the expressions M ′[M/x] and J′[J/s] denote capture avoiding substi-
tution, reflecting proof compositionality of the two calculi.

Following the expansion principle we obtain:

Γ � M : �A =⇒E

That gives an η-equality as follows:

M : �A =η let (x&s be M) in (x&s) : �A

The η equality demands that every M : �A should be reducible to a form
M ′&J′.

Proof Term Assignment for the � Rule (Generically). After understand-
ing the computational meaning of let expressions in the �IE rule we can now
give proof term assignment for the rule in the general case(i.e. for Γ ′ of arbitrary
length). We define a helper syntactic construct –let∗ . . . in– as syntactic sugar
for iterative let bindings based on the structure of contexts. The let∗ macro takes
four arguments: a context Γ ∈ Prop0, a context Δ ∈ �Prop1�, a possibly empty
([]) list of terms Ns := N1, . . . , Ni - all three of the same length - and a term M .
It is defined as follows for the empty and non-empty cases:

let∗ (◦; †; []) in M := M
let∗ (x1 : A1, . . . , xi : Ai ; s1 : φ1, . . . , si : φi; N1, . . . , Ni) in M :=
let {(x1&s1) be N1, . . . , (xi&si) be Ni} in M

Using this syntactic definition the rule �IE rule can be written compactly:

It is obvious that all previously mentioned cases are captured with this for-
mulation. The rule of β-equality can be given for multi-let bindings directly

A Curry–Howard View of Basic Justification Logic 327

from Gentzen’s reduction principle Sect. 2.3 generalized for the multiple intro
case shown in the AppendixA.3.

let{(x1&s1) be (M1&J1), . . . , (xi&si) be (Mi&Ji)} in (M&J) =β

M [M1/x1, . . . , Mi/xi]&J[J1/s1, . . . , Ji/si]

3.2 Strong Normalization and Small-Step Semantics

In the Appendix A.4 we provide a proof of normalization for natural deduc-
tion (via cut elimination). This is “essentially” a strong normalization result for
the proof term system also. In general we have shown the congruence obtained
from =βη rules gives a consistent equational system. Nevertheless, we leave this for
an extended version of this paper. Instead, we sketch briefly a weaker result: nor-
malization under a deterministic,“call-by-value” reduction strategy for β-rules.
This gives an idea of how the system computes and we can use it in the applica-
tions in the next section. As usual we characterize a subset of the closed terms as
values and we provide rules for the reduction of the non-value closed terms. Note
that for the constants of validity and their applicative closure we do not observe
reduction properties but treat them as values – again conforming with the idea of
J (and its reduction principles) being “black boxed”.

Using the reducibility candidates proof method [7]) we show:
Theorem 3 (Termination Under Small Step Reduction). With →∗ being
the reflexive transitive closure of →: for every closed term M and A ∈ Prop if
� M : A then there exists N value s.t. � N : A and M →∗ N .

4 A Programming Language View: Dynamic Linking
and Separate Compilation

Our type system can be related to programming language design when consid-
ering Foreign Function Interfaces. This is a typical scenario in which a language

328 K. Pouliasis

I interfaces another language J which is essentially “black boxed”. For example,
OCaml code might call C code to perform certain computations. In such cases
I is a client and J is a host that provides implementations for an interface uti-
lized by the client. Through software development, often the implementations
of such an interface might change (i.e. a new version of the host language, or
more dramatically, a complete switch of host language). We want a language
design that satisfies two interconnected properties. First, separate compilation
i.e. when implementations change we do not have to recompile client code and,
yet, secondly, dynamic linking we want the client code to be linked dynamically
to its new “meaning”.

We will assume that both languages are functional and based on the lambda
calculus. I.e. our interpretation function should have the property �A ⊃ B�J=
�A�J�⊃�J�B�J where �⊃�J is the implication type constructor in J . The specifics
of the host J and the concrete implementations are unknown to I but during
the linker construction we assume that both languages share some basic types
for otherwise typed “communication” of the two languages would be impossible.
Simplifying, we consider that the only shared type is (int), i.e. the linker con-
struction assumes n̄ : �int� for every integer n : int. Let us now assume source
code in I that is interfacing a simple data structure, say an integer stack, with
the following signature Σ:

us ing type i n t s t a c k
empty : in t s tack , push : i n t −> i n t s t a c k −> i n t s tack ,
pop : i n t s t a c k −> i n t

And let us consider a simple program in I that is using the signature say,

pop(push (1+1) empty):int

This program involves two kinds of computations: a redex (1 + 1) that can be
reduced using the internal semantics of the language 1+1 �I 2 and the signature
calls pop (push 2 empty) that are to be performed externally in whichever host
language implements them. We treat dynamic linkers as “term re-writers” that
map a computation to its meaning(s) based on different implementations. In the
following we consider Σ to be the signature of the interface. Here are the steps
towards the linker construction.

1. Reduce the source code based on the operational semantics of I until it doesn’t
have a redex:

Σ; •� pop(push (1+ 1) Empty) � pop(push 2 Empty) : int

2. Contextualize the use of the signature at the final term in step 1:

Σ; x1 : intstack, x2 : int → intstack → intstack, x3 : intstack → int � x3(x2 2 x1) : int

3. Rewrite the previous judgment assuming (abstract) implementations for the corre-
sponding missing elements using the “known” specification for the shared elements.

s1 : �instack�, s2 : �int → intstack → intstack�, s3 : �intstack → int� � s3 ∗ (s2 ∗ 2̄ ∗ s1) : �int�

A Curry–Howard View of Basic Justification Logic 329

4. Combine the two previous judgments using the �IE rule.

Σ; x
′
1 : �intstack, x

′
2 : �(int → intstack → intstack), x

′
3 : �(intstack → int) �

let{x1&s1 be x
′
1, x2&s2 be x

′
2, x3&s3 be x

′
3} in (x3(x2 2 x1) & s3 ∗ (s2 ∗ 2̄ ∗ s1)) : �int

5. Using λ-abstraction three times we obtain the dynamic linker:

Σ; ◦ �
linker = λx′

1. λx′
2.λx′

3.

let{x1&s1 be x
′
1, x2&s2 be x

′
2, x3&s3 be x

′
3} in(x3(x2 2 x1) & s3 ∗ (s2 ∗ 2̄ ∗ s1))

: �(instack) → �(int → intstack → intstack) → �(intstack → int) → �int

Let us see how it can be used in the presence of different implementations:

1. Suppose the developer responsible for the implementation of the interface is
providing an array based implementation for the stack in some language J
i.e. we get references to typechecked code fragments of J as follows2:

create() : intarray, add array : intJ →J intarray →J intarray

pop array : intarray →J int

2. A unification algorithm check is performed to verify the conformance of the
implementations to the signature taking into account fixed type sharing equal-
ities (�int� = intJ). In our case it produces:

�→� = →J, �intstack� = intarray

3. We thus obtain typechecked links using the �I rule. For example:

Σ; ◦ � push : int → intstack → intstack • � add array : �int → intstack → intstack�

Σ; ◦ � push & add array : �(int → intstack → intstack)

And analogously:

Σ; ◦ � pop & pop array : �(intstack → int) Σ; ◦ � empty &create() : �intstack

4. Finally we can compute the next step in the computation for the expression
applying the linker to the obtained pairings:

Σ; •� (linker (empty & create()) (push & add array) (pop & pop array)) : �int

which reduces to:

Σ; • �let{(x1&s1) be (empty &create()), (x2&s2) be (push & add array), (x3&s3) be (pop & pop array)}
in (x3(x2 2 x1) & s3 ∗ (s2 ∗ 2̄ ∗ s1)) : �int

The last expression reduces to (β-reduction for let):

Σ; • � pop(push 2 empty) & pop array ∗ (add array ∗ 2̄ ∗ empty) : �int

2 We have changed the return type of pop to avoid products. This is just for economy
and products can easily be handled.

330 K. Pouliasis

giving exactly the next step of the computation for the source expression.
The good news is that the linker computes correctly the next step given
any conforming set of implementations. It is easy to see that given a list
implementation the very same process would produce a different computation
step:

Σ; • � pop(push 2 empty) & pop list ∗ (Cons ∗ 2̄ ∗ []) : �int

We conclude with some remarks that:

– The construction gives a mechanism of abstractions that works not only over
different implementations in the same language but even for implementations
in different (applicative) languages.

– We assumed in the example that the two languages are based on the lambda
calculus and implement a curried, higher-order function space. It is easy to
see that such host satisfies the requirements for the �•� (with CS , CK being
the S,K combinators in λ form and ∗ translating to λ application).

– Often, the host language of a foreign call is not a language that satisfies such
specifications. This situation occurs when we have bindings from a functional
language to a lower level language3. Such cases can be captured by adding con-
junction (and pairs), tuning the specifications of J accordingly and loosening
the assumption that �•� is total on types.

– Introduction of modal types is clearly relative to the �•� function on types. It
would be interesting to consider examples where �•� is realized by non-trivial
mappings such as �A ⊃ B� =!A � B from the embedding on intuitionistic
logic to intuitionistic linear logic [8]. That will showcase an example of modal-
ity that works when lifting to a completely different logic or, correspondingly,
to an essentially different computational model.

– Finally, it should be clear from the operational semantics and this example
that we did not demand any equalities (or, reduction rules) for the proofs in
J , but mere existence of specific terms. This is in accordance to justification
logic. Analogously, we did not observe computation in the host language but
only the construction of the linkers as program transformers. We were careful,
to say that our calculus corresponds to the dynamic linking part of separate
compilation. This, of course, does not tell the whole story of program execution
in such cases. Foreign function calls, return the control to the client after the
result gets calculated in the external language. For example, the execution of
the program pop (push 2 empty) + 2 should “escape” the client to compute
the stack calls and then return for the last addition. Our modality is concerned
only with passing the control from the client to the host dynamically and,
as such, is a K (non-factive) modality. Capturing the continuation of the
computation and the return of the control back to the source would require a
factive modality and a notion of “reverse” of the mapping �•�. We would like
to explore such an extension in future work.

3 In this setting the type signature of push would be: int × intstack → instack.

A Curry–Howard View of Basic Justification Logic 331

5 Related and Future Work

Directly related work with our calculus, in the same fashion that justification
logic and LP [1] are related to modal logic, is [4]. The work in [4] provides a
calculus for explicit assignments (substitutions) which is actually a sub-case of
Jcalc− with �•� identity. This sub-case captures dynamic linking where the host
language is the very same one; such need appears in languages with module
mechanisms (i.e. implementation hiding and separate compilation within the
very same language). In general, the judgmental approach to modality is heavily
influenced by [12]. In a sense, our treatment of validity-as-explicit-provability
also generalizes the approach there without having to commit to a “factive”
modality. Finally, important results on programming paradigms related to justi-
fication logic have been obtained in [2,3]. Immediate future developments would
be to interpret modal formulas of higher degree under the same principles. This
corresponds to dynamic linking in two or more steps (i.e., when the host becomes
itself a client of another interface that is implemented dynamically in a third level
and, so on). Some preliminary results towards this direction have been developed
in [13].

A Appendix

A.1 Theorems

Theorem 4 (Deduction Theorem for Validity Judgments). Given any
Γ,A,B ∈ Prop0 then Γ, x : A � B =⇒ �Γ � � �A ⊃ B�.

Proof. The proof proceeds by induction on the derivations Γ,A,B ∈ Prop0. Note
that the axiomatization of �Prop0� derives the sequents:Δ � �A ⊃ A� for any
Δ ∈ �Prop0� (as in combinatory logic the I combinator is derived from SK).
This handles the reflection case. The rest of the cases are treated exactly as in
the proof of completeness of combinatorial axiomatization with respect to the
natural deduction in intuitionistic logic. Note that this theorem cannot be proven
without the logical specification Ax1, Ax2. I.e. it is exactly the requirements of
the logical specification that ensure that all interpretations should be complete
with respect to intuitionistic implication.

Lemma 4 (�•�Lifting Lemma). Given Γ,A ∈ Prop0 then Γ � A =⇒ �Γ � �
�A�.

Proof. The proof goes by induction on the derivations trivially for all the
cases(⊃E0 is treated using the App rule that internalizes Modus ponens). For
the ⊃I0 the previous theorem has to be used.

Lemma 1 (�Lifting Lemma). In Jcalc−, for every Γ,A ∈ Prop0 if Γ � A
then �Γ � � �A� and, hence, �Γ � �A.

332 K. Pouliasis

Proof. Assuming a derivation D :: Γ � A from Lemma 4 there exists correspond-
ing validity derivation E :: �Γ � � �A�. Using the two as premises in the �IE with
Γ := �Γ we obtain �Γ � �A.

From the previous we get:

Lemma 2 (Admissibility of Necessitation). For A ∈ Prop0, if ◦ � A then
◦ � �A.

Theorem 5 (Collapse � Lemma). If �Γ � �A for Γ,A ∈ Prop0 then Γ � A.

Theorem 6 (Weakening). For the N.D. system of Jcalc−, with Γ, Γ ′ ∈ Prop0.

1. If Γ � A then Γ, Γ ′ � A.
2. If �Γ � �A then �Γ,�Γ ′ � �A.

Proof. By induction on derivations for the first item. For the second item, given
�Γ � �A by the collapse lemma we get Γ � A which by the previous item gives
Γ, Γ ′ � A. Using the lifting lemma we get �Γ, Γ ′

� � �A�. Using the last two items
we and the � rule gives the result.

Theorem 7 (Contraction). For the N.D. system of Jcalc, with Γ, x : A,B ∈
Prop0

1. If Γ, x : A, x′ : A,Γ ′ � B then Γ, x : A,Γ ′ � B.
2. If �Γ, x : �A, x′ : �A,�Γ ′ � �B then �Γ, x : �A,�Γ ′ � �B

Proof. Similarly with previous theorem.

Theorem 8 (Permutation). For the N.D. system of Jcalc, with Γ ∈ Prop0

and πΓ the collection of permutations of Γ .

1. If Γ � A and Γ ′ ∈ πΓ then Γ ′ � A.
2. If �Γ � �A then π�Γ � �A.

Proof. As in the previous item.

Theorem 9 (Substitution Principle). The following hold for both kinds of
judgments:

1. If Γ, x : A � M : B and Γ � N : A then Γ � M [N/x] : B
2. If �Γ �, s : �A� � J : �B� and �Γ � � J

′
: �B� then �Γ � � J[J

′
/s]�B�

All previous theorems can actually be stated for proof terms too. We should
discuss the following:

Theorem 10 (Deduction Theorem/Emulation of λ abstraction). If Γ,
A ∈ Prop0 and Γ, x : A � M : B then there exists J s.t. �Γ � � J : �A ⊃ B�.

Lemma 5 (�•�Lifting Lemma for terms). If Γ,A ∈ Prop0 and Γ � M : A
then there exists J s.t. �Γ � � J : �A�.

In both theorems the existence of this J, J′ is algorithmic following the induction
proof.

A Curry–Howard View of Basic Justification Logic 333

A.2 Linking on the Function Space

The above mentioned algorithms permit for translating λ abstractions to poly-
nomials of S,K combinators which is a standard result in the literature. We do
not give the details here but the translation is syntax driven as it can be seen
by the inductive nature of the proofs.

Henceforth, we can generalize the construction in Sect. 4 so that it permits for
dynamic linking of functions of the client (with missing implementations) such
as λn : int.push n empty dynamically given that the host actually implements a
higher-order function space (that is it implements the combinators S,K in, say,
own lambda calculus λJ). Given implementations of push impl, empty impl the
linker produces an application expression consisting of push impl, empty impl,
S and K. The execution of the target expression will happen in the host after
dereferencing push impl, empty impl (dynamic part) and the combinators S,K
(constant part) as, say, lambdas (e.g. K = λJx.λJy.x).

A.3 Gentzen’s Reduction Principle for �(General)

A.4 Notes on the Cut Elimination Proof and Normalization
of Natural Deduction

Standardly, we add the bottom type and elimination rule in the natural deduc-
tion and show that in Jcalc + ⊥: �⊥. The addition goes as follows:

⊥ ∈ Prop0
Bot

Γ � ⊥ A ∈ Prop

Γ � A
E⊥

Our proof strategy follows directly [16]. We construct an intercalation calculus
[17] corresponding to the Prop fragment with the following two judgments:

334 K. Pouliasis

A ⇑ for “Proposition A has normal deduction”.
A↓ for “Proposition A is extracted from hypothesis”.

This calculus is, essentially, restricting the natural deduction to canonical deriva-
tions. The �judgments� are not annotated and are directly ported from the nat-
ural deduction since we observe consistency in Prop. The construction is identical
to [16] (Chap. 3) for the Hypotheses,Coercion,⊃,⊥ cases, we add the � case.

Where Γ ↓ � �Γ ′ abbreviates ∀Ai ∈ Γ ′. Γ ↓ � �Ai ↓. We prove simultaneously
by induction:

Theorem 11 (Soundness of Normal Deductions). The following hold:

1. If Γ ↓ �− A ⇑ then Γ � A, and
2. If Γ ↓ �− A ↓ then Γ � A.

Proof. Simultaneously by induction on derivations.

It is easy to see that this restricted proof system �
−⊥ ⇑. It is hard to show its

completeness to the non-restricted natural deduction (� +⊥E of Jcalc) directly.
For that reason we add a rule to make it complete (�+) preserving soundness
and get a system of Annotated Deductions. We show the correspondence of the
restricted system (�−) to a cut-free sequent calculus (JSeq), the correspondence
of the extended system (�+) to Jseq + Cut and show cut elimination.4

To obtain completeness we add the rule:

Γ ↓ � A ⇑
Γ ↓ � A ↓ ⇑↓

We define �+:= �− with ⇑↓Rule. We show:

Theorem 12 (Soundness of Annotated Deductions). The following hold:

1. If Γ ↓ �+ A ⇑ then Γ � A, and
2. If Γ ↓ �+ A ↓ then Γ � A.

Proof. As previous item.
4 In reality, the sequent calculus formulation is built exactly upon intuitions on the
intercalation calculus. We refer the reader to the references.

A Curry–Howard View of Basic Justification Logic 335

Theorem 13 (Completeness of Annotated Deductions). The following
hold:

1. If Γ � A then Γ ↓�+ A ⇑, and
2. If Γ � A then Γ ↓�+ A ↓.
Proof. By induction over the structure of the Γ � A derivation.

Next we move with devising a sequent calculus formulation corresponding to
normal proofs Γ ↓ �− A ⇑. The calculus that is given in the main body of this
theorem. We repeat it here for completeness.

We want to show correspondence of the sequent calculus w.r.t normal proofs
(�−). Two lemmas are required to show soundness.

Lemma 6 (Substitution principle for extractions). The following hold:

1. If Γ ↓
1 , x : A↓, Γ ↓

2 �− B ⇑ and
Γ ↓
1 �− A ⇑ then Γ ↓

1 , Γ ↓
2 �− B ⇑

2. If Γ ↓
1 , x : A↓, Γ ↓

2 �− B ↓ and Γ ↓
1 �− A ↓ then Γ ↓

1 , Γ ↓
2 �− B ⇑

Proof. Simultaneously by induction on the derivations A ↓ and A ⇑.

And making use of the previous we can show, with (� A defined previously):

Lemma 7 (Collapse principle for normal deductions). The following
hold:

1. If Γ ↓,�− A ⇑ then � Γ ↓ �−� A ⇑ and,
2. If Γ ↓ �− A ↓ then � Γ ↓ �−� A ↓
Using the previous lemmas and by induction we can show:

Theorem 14 (Soundness of the Sequent Calculus). If Γ ⇒ B then
Γ ↓ �− B ⇑.
Theorem 15 (Soundness of the Sequent Calculus with Cut). If Γ ⇒+ B
then Γ ↓ �+ B ⇑.

336 K. Pouliasis

Next we define the Γ ⇒+ A as Γ ⇒ A plus the rule:

Γ ⇒+ A Γ,A ⇒+ B

Γ ⇒+ B
Cut

Proof. As before. The cut rule case is handled by the ⇑↓ and substitution for
extractions principle showcasing that the correspondence of the cut rule to the
coercion from normal to extraction derivations.

Standard structural properties (Weakening, Contraction) to show completeness.
We do not show these here but they hold.

Theorem 16 (Completeness of the Sequent Calculus). The following
hold:

1. If Γ ↓ �− B ⇑ then Γ ⇒ B and,
2. If Γ ↓ �− A ↓ and Γ,A ⇒ B then Γ ⇒ B

Proof. Simultaneously by induction on the given derivations making use of the
structural properties.
Similarly we show for the extended systems.

Theorem 17 (Completeness of the Sequent Calculus with Cut). The
following hold:

1. If Γ ↓ �+ B ⇑ then Γ ⇒+ B and,
2. If Γ ↓ �+ A ↓ and Γ,A ⇒+ B then Γ ⇒+ B.

Proof. As before. The extra case is handled by the Cut rule.

After establishing the correspondence of �− with ⇒ and of �+ with ⇒+ we
move on with:

Theorem 18 (Admissibility of Cut). If Γ ⇒ A and Γ,A ⇒ B then Γ ⇒ B.

The proof is by triple induction on the structure of the formula, and the given
derivations and we leave it for a technical report. This gives easily:

Theorem 19 (Cut Elimination). If Γ ⇒+ A then Γ ⇒ A.

Which in turn gives us:

Theorem 20 (Normalization for Natural Deduction). If Γ � A then
Γ ↓ �− A ⇑
Proof. From assumption Γ � A which by Theorem 13 gives Γ �+ A ⇑. By
Theorem 17 and Cut Elimination we obtain Γ ⇒ A which by Theorem 14
completes the proof.

As a result we obtain:

Theorem 2 (Consistency of Jcalc−). �⊥
Proof. By contradiction, assume � ⊥ then ⇒ ⊥ which is not possible.

A Curry–Howard View of Basic Justification Logic 337

References

1. Artemov, S.: Explicit provability and constructive semantics. Bull. Symbolic Logic
7(1), 1–36 (2001)

2. Artemov, S., Bonelli, E.: The intensional lambda calculus. In: Artemov, S., Nerode,
A. (eds.) LFCS 2007. LNCS, vol. 4514, pp. 12–25. Springer, Heidelberg (2007)

3. Bavera, F., Bonelli, E.: Justification logic and audited computation. J. Logic
Comput., p. exv037 (2015)

4. Bellin, G., de Paiva, V.C., Ritter, E.: Extended curry-howard correspondence for
a basic constructive modal logic (2001). (preprint; presented at M4M–2, ILLC,
UvAmsterdam)

5. Bierman, G.M., de Paiva, V.C.V.: On an intuitionistic modal logic. Stud. Logica
65(3), 383–416 (2000)

6. Gentzen, G.: Untersuchungen über das logische schließen I. Math. Z. 39(1),
176–210 (1935)

7. Girard, J.Y., Taylor, P., Lafont, Y.: Proofs and Types. Cambridge University Press,
New York (1989). ISBN 0-521-37181-3

8. Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50(1), 1–101 (1987)
9. Kavvos, A.: System k: a simple modal λ-calculus. arXiv preprint arXiv:1602.04860

(2016)
10. Lambek, J.: Deductive systems and categories. Theory Comput. Syst. 2(4),

287–318 (1968)
11. Lambek, J.: Deductive systems and categories II. standard constructions and

closed categories. In: Category Theory, Homology Theory and Their Applications I,
pp. 76–122. Springer, New York (1969)

12. Pfenning, F., Davies, R.: A judgmental reconstruction of modal logic. Math. Struct.
Comput. Sci. 11(04), 511–540 (2001). ISSN 0960–1295

13. Pouliasis, K., Primiero, G.: J-calc: a typed lambda calculus for intuitionis-
tic justification logic. Electron. Notes Theor. Comput. Sci. 300, 71–87 (2014).
ISSN 1571–0661

14. Prawitz, D.: Natural Deduction: A Proof-Theoretical study. Almquist & Wiksell,
Stockholm (1965)

15. Troelstra, A.S., Van Dalen, D.: Constructivism in Mathematics: An Introduction.
North-Holland, Amsterdam (1988)

16. Pfenning, F.: Automated theorem proving (2004). http://www.cs.cmu.edu/∼fp/
courses/atp/handouts/atp.pdf

17. Sieg, W., Byrnes, J.: Normal natural deduction proofs (in classical logic). Stud.
Logica 60(1), 67–106 (1998)

http://arxiv.org/abs/1602.04860
http://www.cs.cmu.edu/~fp/courses/atp/handouts/atp.pdf
http://www.cs.cmu.edu/~fp/courses/atp/handouts/atp.pdf

On the Formalization of Some Results
of Context-Free Language Theory

Marcus Vińıcius Midena Ramos1,2(B), Ruy J.G.B. de Queiroz2,
Nelma Moreira3, and José Carlos Bacelar Almeida4,5

1 Universidade Federal do Vale do São Francisco, Juazeiro, Bahia, Brazil
marcus.ramos@univasf.edu.br,mvmr@cin.ufpe.br

2 Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
ruy@cin.ufpe.br

3 Universidade do Porto, Porto, Portugal
nam@dcc.fc.up.pt

4 Universidade do Minho, Braga, Portugal
jba@di.uminho.pt

5 HASLab-INESC TEC, Porto, Portugal

Abstract. This work describes a formalization effort, using the Coq
proof assistant, of fundamental results related to the classical theory of
context-free grammars and languages. These include closure properties
(union, concatenation and Kleene star), grammar simplification (elim-
ination of useless symbols, inaccessible symbols, empty rules and unit
rules), the existence of a Chomsky Normal Form for context-free gram-
mars and the Pumping Lemma for context-free languages. The result is
an important set of libraries covering the main results of context-free
language theory, with more than 500 lemmas and theorems fully proved
and checked. This is probably the most comprehensive formalization of
the classical context-free language theory in the Coq proof assistant done
to the present date, and includes the important result that is the formal-
ization of the Pumping Lemma for context-free languages.

Keywords: Context-free language theory · Language closure ·
Grammar simplification · Chomsky Normal Form · Pumping Lemma ·
Formalization · Coq

1 Introduction

This work is about the mathematical formalization of an important subset of
the context-free language theory, including some of its most important results
such as the Chomsky Normal Form and the Pumping Lemma.

The formalization has been done in the Coq proof assistant. This represents a
novel approach towards formal language theory, specially context-free language
theory, as virtually all textbooks, general literature and classes on the subject
rely on an informal (traditional) mathematical approach. The objective of this
work, thus, is to elevate the status of this theory to new levels in accordance
c© Springer-Verlag Berlin Heidelberg 2016
J. Väänänen et al. (Eds.): WoLLIC 2016, LNCS 9803, pp. 338–357, 2016.
DOI: 10.1007/978-3-662-52921-8 21

On the Formalization of Some Results of Context-Free Language Theory 339

with the state-of-the-art in mathematical accuracy, which is accomplished with
the use of interactive proof assistants.

The choice of using Coq comes from its maturity, its widespread use and
the possibility of extracting certified code from proofs. HOL4 and Agda have
also been used in the formalization of context-free language theory (see Sect. 7),
however they do not comply to at least one of these criteria.

The formalization is discussed in Sects. 2 (method used in most of the formal-
ization), 3 (closure properties), 4 (grammar simplification), 5 (CNF - Chomsky
Normal Form) and 6 (Pumping Lemma). The main definitions used in the for-
malization are presented in Appendix A. The library on binary trees and their
relation to CNF derivations is briefly discussed in AppendixB.

Formal language and automata theory formalization is not a completely new
area of research. In Sect. 7, a summary of these accomplishments is presented.
Most of the formalization effort on general formal language theory up to date
has been dedicated to the regular language theory, and not so much to context-
free language theory. Thus, this constitutes the motivation for the present work.
Final conclusions are presented in Sect. 8.

In order to follow this paper, the reader is required to have basic knowledge of
Coq and context-free language theory. The recommended starting point for Coq
is the book by Bertot and Castéran [1]. Background on context-free language
theory can be found in [2] or [3], among others. A more detailed and complete
discussion of the results of this work can be found in [4]. The source files of the
formalization are available for download from [5].

2 Method

Except for the Pumping Lemma, the present formalization is essentially about
context-free grammar manipulation, that is, about the definition of a new gram-
mar from a previous one (or two), such that it satisfies some very specific prop-
erties. This is exactly the case when we define new grammars that generate the
union, concatenation, closure (Kleene star) of given input grammar(s). Also,
when we create new grammars that exclude empty rules, unit rules, useless sym-
bols and inaccessible symbols from the original ones. Finally, it is also the case
when we construct a new grammar that preserves the language of the original
grammar and still observes the Chomsky Normal Form.

In the general case, the mapping of grammar g1 = (V1, Σ, P1, S1) into gram-
mar g2 = (V2, Σ, P2, S2) requires the definition of a new set of non-terminal
symbols N2, a new set of rules P2 and a new start symbol S2. Similarly, the
mapping of grammar g1 = (V1, Σ, P1, S1) and grammar g2 = (V2, Σ, P2, S2) into
grammar g3 = (V3, Σ, P3, S3) requires the definition of a new set of non-terminal
symbols N3, a new set of rules P3 and a new start symbol S3.

For all cases of grammar manipulation, we consider that the original and
final sets of terminal symbols are the same. Also, we have devised the following
common approach to constructing the desired grammars:

340 M.V.M. Ramos et al.

1. Depending on the case, inductively define the type of the new non-terminal
symbols; this will be important, for example, when we want to guarantee that
the start symbol of the grammar does not appear in the right-hand side of
any rule or when we have to construct new non-terminals from the existing
ones; the new type may use some (or all) symbols of the previous type (via
mapping), and also add new symbols;

2. Inductively define the rules of the new grammar, in a way that it allows the
construction of the proofs that the resulting grammar has the required prop-
erties; these new rules will likely make use of the new non-terminal symbols
described above; the new definition may exclude some of the original rules,
keep others (via mapping) and still add new ones;

3. Define the new grammar by using the new type of non-terminal symbols and
the new rules; define the new start symbol (which might be a new symbol or
an existing one) and build a proof of the finiteness of the set of rules for this
new grammar;

4. State and prove all the lemmas and theorems that will assert that the newly
defined grammar has the desired properties;

5. Consolidate the results within the same scope and finally with the previously
obtained results.

In the following sections, this approach will be explored with further detail
for each main result. The definitions of AppendixA are used throughout.

3 Closure Properties

The basic operations of union, concatenation and closure for context-free gram-
mars are described in a rather straightforward way. These operations provide new
context-free grammars that generate, respectively, the union, concatenation and
the Kleene star closure of the language(s) generated by the input grammar(s)1.

For the union, given two arbitrary context-free grammars g1 and g2, we want
to construct g3 such that L(g3) = L(g1)∪L(g2) (that is, the language generated
by g3 is the union of the languages generated by g1 and g2).

The classical informal proof constructs g3 = (V3, Σ, P3, S3) from g1 and g2
such that N3 = N1∪N2∪{S3} and P3 = P1∪P2∪{S3 → S1, S3 → S2}. With the
appropriate definitions for the new set of non-terminal symbols, the new set of
rules and the new start symbol, we are able to construct a new grammar g uni
such that g3 = g uni g1 g2.

For the concatenation, given two arbitrary context-free grammars g1 and g2,
we want to construct g3 such that L(g3) = L(g1) · L(g2) (that is, the language
generated by g3 is the concatenation of the languages generated by g1 and g2).

The classical informal proof constructs g3 = (V3, Σ, P3, S3) from g1 and g2
such that N3 = N1 ∪ N2 ∪ {S3} and P3 = P1 ∪ P2 ∪ {S3 → S1S2}. With the
appropriate definitions for the new set of non-terminal symbols, the new set of
1 The results of this section are available in libraries union.v, concatenation.v and
closure.v.

On the Formalization of Some Results of Context-Free Language Theory 341

rules and the new start symbol, we are able to construct a new grammar g cat
such that g3 = g cat g1 g2.

For the Kleene star, given an arbitrary context-free grammar g1, we want
to construct g2 such that L(g2) = (L(g1))∗ (that is, the language generated by
g2 is the reflexive and transitive concatenation (Kleene star) of the language
generated by g1).

The classical informal proof constructs g2 = (V2, Σ, P2, S2) from g1 such that
N2 = N1 ∪ N2 ∪ {S2} and P2 = P1 ∪ P2 ∪ {S2 → S2S1, S2 → S1}. With the
appropriate definitions for the new set of non-terminal symbols, the new set of
rules and the new start symbol, we are able to construct a new grammar g uni
such that g2 = g clo g1.

Although simple in their structure, it must be proved that the definitions
g uni, g cat and g clo always produce the correct result. In other words, these
definitions must be “certified”, which is one of the main goals of formalization.
In order to accomplish this, we must first state the theorems that capture the
expected semantics of these definitions. Finally, we have to derive proofs of the
correctness of these theorems.

This can be done with a pair of theorems for each grammar definition: the first
relates the output to the inputs, and the other one does the converse, providing
assumptions about the inputs once an output is generated. This is necessary in
order to guarantee that the definitions do only what one would expect, and no
more.

For union, we prove (considering that g3 is the union of g1 and g2 and S3, S1

and S2 are, respectively, the start symbols of g3, g1 and g2): ∀g1, g2, s1, s2, (S1

⇒∗
g1 s1 → S3 ⇒∗

g3 s1) ∧ (S2 ⇒∗
g2 s2 → S3 ⇒∗

g3 s2). For the converse of union
we prove: ∀s3, (S3 ⇒∗

g3 s3) → (S1 ⇒∗
g1 s3) ∨ (S2 ⇒∗

g2 s3). Together, the two
theorems represent the semantics of the context-free grammar union operation.

For concatenation, we prove (considering that g3 is the concatenation of g1
and g2 and S3, S1 and S2 are, respectively, the start symbols of g3, g1 and g2):
∀g1, g2, s1, s2, (S1 ⇒∗

g1 s1)∧ (S2 ⇒∗
g2 s2) → (S3 ⇒∗

g3 s1 · s2). For the converse of
concatenation, we prove: ∀g3, s3, (S3 ⇒∗

g3 s3) → ∃s1, s2, (S1 ⇒∗
g1 s1) ∧ (S2 ⇒∗

g2
s2) ∧ (s3 = s1 · s2).

For closure, we prove (considering that g2 is the Kleene star of g1 and S2

and S1 are, respectively, the start symbols of g2 and g1): ∀g1, s1, s2, (S2 ⇒∗
g2

ε) ∧ ((S2 ⇒∗
g2 s2) ∧ (S1 ⇒∗

g1 s1) → S2 ⇒∗
g2 s2 · s1). Finally: ∀s2, (S2 ⇒∗

g2 s2) →
(s2 = ε) ∨ (∃ s1, s′

2 | (s2 = s′
2 · s1) ∧ (S2 ⇒∗

g2 s′
2) ∧ (S1 ⇒∗

g1 s1)).
In all three cases, the correctness proofs are straightforward and follow closely

the informal proofs available in most textbooks. The formalization consists of
a set of short and readable lemmas, except for the details related to mappings
involving sentential forms. Since every grammar is defined with a different set
of non-terminal symbols (i.e. uses a different type for these symbols), sentential
forms from one grammar have to “mapped” to sentential forms of another gram-
mar in order to be usable and not break the typing rules of Coq. This required a
lot of effort in order to provide and use the correct mapping functions, and also

342 M.V.M. Ramos et al.

to cope with it during proof construction. This is something that we don’t see
in informal proofs, and is definitely a burden when doing the formalization.

The completeness proofs, on the other hand, resulted in single lemmas with
reasonably long scripts (∼280 lines) in each case. Intermediate lemmas were not
easily identifiable as in the correctness cases and, besides the initial induction of
predicate derives, the long list of various types of case analysis increased the
complexity of the scripts, which are thus more difficult to read.

It should be added that the closure operations considered here can be
explained in a very intuitive way (either with grammars or automata), and
for this reason many textbooks don’t even bother going into the details with
mathematical reasoning. Because of this, our formalization was a nice exercise
in revealing how simple and intuitive proofs can grow in complexity with many
details not considered before.

4 Simplification

The definition of a context-free grammar, and also the operations specified in
the previous section, allow for the inclusion of symbols and rules that may not
contribute to the language being generated. Besides that, context-free grammars
may also contain rules that can be substituted by equivalent smaller and simpler
ones. Unit rules, for example, do not expand sentential forms (instead, they
just rename the symbols in them) and empty rules can cause them to contract.
Although the appropriate use of these features can be important for human
communication in some situations, this is not the general case, since it leads to
grammars that have more symbols and rules than necessary, making difficult its
comprehension and manipulation. Thus, simplification is an important operation
on context-free grammars.

Let G be a context-free grammar, L(G) the language generated by this gram-
mar and ε the empty string. Different authors use different terminology when
presenting simplification results for context-free grammars. In what follows, we
adopt the terminology and definitions of [2].

Context-free grammar simplification comprises the manipulation of rules and
symbols, as described below:

1. An empty rule r ∈ P is a rule whose right-hand side β is empty (e.g. X → ε).
We prove that for all G there exists G′ such that L(G) = L(G′) and G′ has
no empty rules, except for a single rule S → ε if ε ∈ L(G); in this case, S
(the initial symbol of G′) does not appear on the right-hand side of any rule
of G′;

2. A unit rule r ∈ P is a rule whose right-hand side β contains a single non-
terminal symbol (e.g. X → Y). We prove that for all G there exists G′ such
that L(G) = L(G′) and G′ has no unit rules;

3. A symbol s ∈ V is useful ([2], p. 116) if it is possible to derive a string of ter-
minal symbols from it using the rules of the grammar. Otherwise, s is called
an useless symbol. A useful symbol s is one such that s ⇒∗ ω, with ω ∈ Σ∗.

On the Formalization of Some Results of Context-Free Language Theory 343

Naturally, this definition concerns mainly non-terminals, as terminals are triv-
ially useful. We prove that for all G such that L(G)
= ∅, there exists G′ such
that L(G) = L(G′) and G′ has no useless symbols;

4. A symbol s ∈ V is accessible ([2], p. 119) if it is part of at least one string
generated from the root symbol of the grammar. Otherwise, it is called an
inaccessible symbol. An accessible symbol s is one such that S ⇒∗ αsβ, with
α, β ∈ V ∗. We prove that for all G there exists G′ such that L(G) = L(G′)
and G′ has no inaccessible symbols.

Finally, we prove a unification result: that for all G, if G is non-empty, then
there exists G′ such that L(G) = L(G′) and G′ has no empty rules (except
for one, if G generates the empty string), no unit rules, no useless symbols, no
inaccessible symbols and the start symbol of G′ does not appear on the right-
hand side of any other rule of G′.2

In all these four cases and the five grammars that are discussed next (namely
g emp, g emp’, g unit, g use and g acc), the proof of rules finite is based
on the proof of the corresponding predicate for the argument grammar. Thus,
all new grammars satisfy the cfg specification and are finite as well.

Result (1) is achieved in two steps. In the first step, we map grammar g1
into an equivalent grammar g2 (except for the empty string), which is free of
empty rules and whose start symbol does not appear on the right-hand side of
any rule. This is done by eliminating empty rules and substituting rules that
have nullable symbols in the right-hand side by a set of equivalent rules. Next,
we use g2 to map g1 into g3 which is fully equivalent to g1 (including the empty
string if this is the case).

Observe that resulting grammar (g emp g or g2) does not generate the empty
string, even if g (or g1) does so. The second step, thus, consists of constructing
g3 such that it generates all the strings of g2 plus the empty string if g1 does so.
This is done by conditionally adding a rule that maps the start symbol to the
empty string.

We define g emp’ g (or g3) such that g emp’ g generates the empty string if
g generates the empty string. This is done by stating that every rule from g emp
g is also a rule of g emp’ g and also by adding a new rule that allow g emp’ g
to generate the empty string directly if necessary.

The proof of the correctness of the previous definitions is achieved through
the following Coq theorem:

Theorem g_emp’_correct: ∀ g: cfg non_terminal terminal,
g_equiv (g_emp’ g) g ∧ (produces_empty g → has_one_empty_rule (g_emp’ g)) ∧
(∼ produces_empty g → has_no_empty_rules (g_emp’ g)) ∧
start_symbol_not_in_rhs (g_emp’ g).

New predicates are used in this statement: produces empty, for a grammar
that produces the empty string, has one empty rule, to describe a grammar
that has a single empty rule among its set of rules (one whose left-hand side
2 The results of this section are available in libraries emptyrules.v, unitrules.v,
useless.v, inaccessible.v and simplification.v.

344 M.V.M. Ramos et al.

is the initial symbol), has no empty rules for a grammar that has no empty
rules at all and start symbol not in rhs to state that the start symbol does
not appear in the right-hand side of any rule of the argument grammar.

The proof of g emp’ correct is reduced to the proof of the equivalence
of grammars g and g emp g. The most complex part of this formalization, by
far, is to prove this equivalence, as expressed by lemmas derives g g emp and
derives g emp g. These lemmas state, respectively, that every sentential form
of g (except for the empty string) is also generated by g emp and that every sen-
tential form of g emp is also generated by g. While the second case was relatively
straightforward, the first proved much more difficult. This happens because the
application of a rule of g can cause a non-terminal symbol to be eliminated from
the sentential form (if it is an empty rule), and for this reason we have to intro-
duce a new structure and do many case analysis in the sentential form of g in
order to determine the corresponding new rule of g emp g that has to be used in
the derivation. We believe that the root of this difficulty was the desire to follow
strictly the informal proof of [2] (Theorem 5.1.5), which depends on an intuitive
lemma (Lemma 3.1.5), however not easily formalizable. Probably for this reason,
the solution constructed in our formalization is definitely not easy or readable,
and this motivates the continued search for a simpler and more elegant one.

Result (2) is achieved in only one step. We first define the relation unit
such that, for any two non-terminal symbols X and Y , unit X Y is true when
X ⇒+ Y ([2], p. 114). This means that Y can be derived from X by the use of
one or more unit rules.

The mapping of grammar g1 into an equivalent grammar g2 such that g2 is
free of unit rules consists basically of keeping all non-unit rules of g1 and creating
new rules that reproduce the effect of the unit rules that were left behind. No
new non-terminal symbols are necessary. The correctness of g unit comes from
the following theorem:

Theorem g_unit_correct: ∀ g: cfg non_terminal terminal,
g_equiv (g_unit g) g ∧ has_no_unit_rules (g_unit g).

The predicate has no unit rules states that the argument grammar has no
unit rules at all.

We find important similarities in the proofs of grammar equivalence for the
elimination of empty rules (lemma g emp’ correct) and the elimination of unit
rules (lemma g unit correct). In both cases, going backwards (from the new
to the original grammar) was relatively straightforward and required no special
machinery. On the other hand, going forward (from the original to the new
grammar) proved much more complex and required new definitions, functions
and lemmas in order to complete the corresponding proofs.

The proof that every sentence generated by the original grammar is also
generated by the transformed grammar (without unit rules) requires the intro-
duction of the derives3 predicate specially for this purpose. Because this defi-
nition represents the derivation of sentences directly from a non-terminal sym-
bol, it is possible to abstract over the use of unit rules. Since derives3 is a

On the Formalization of Some Results of Context-Free Language Theory 345

mutual inductive definition, we had to create a specialized induction principle
(derives3 ind 2) and use it explicitly, which resulted in more complex proofs.

Result (3) is obtained in a single and simple step, which consists of inspecting
all rules of grammar g1 and eliminating the ones that contain useless symbols in
either the left or right-hand side. The other rules are kept in the new grammar
g2. Thus, P2 ⊆ P1. No new non-terminals are required.

The g use definition, of course, can only be used if the language generated
by the original grammar is not empty, that is, if the start symbol of the original
grammar is useful. If it were useless then it would be impossible to assign a root
to the grammar and the language would be empty. The correctness of the use-
less symbol elimination operation is certified by proving theorem g use correct,
which states that every context-free grammar whose start symbol is useful gener-
ates a language that can also be generated by an equivalent context-free grammar
whose symbols are all useful.

Theorem g_use_correct: ∀ g: cfg non_terminal terminal,
non_empty g → g_equiv (g_use g) g ∧ has_no_useless_symbols (g_use g).

The predicates non empty, and has no useless symbols used above assert,
respectively, that grammar g generates a language that contains at least one
string (which in turn may or may not be empty) and the grammar has no useless
symbols at all.

Result (4) is similar to the previous case: the rules of the original grammar
g1 are kept in the new grammar g2 as long as their left-hand consist of accessible
non-terminal symbols (by definition, if the left-hand side is accessible then all
the symbols in the right-hand side of the same rule are also accessible). If this
is not the case, then the rules are left behind. Thus, P2 ⊆ P1.

The correctness of the inaccessible symbol elimination operation is certified
by proving theorem g acc correct, which states that every context-free gram-
mar generates a language that can also be generated by an equivalent context-
free grammar whose symbols are all accessible.

Theorem g_acc_correct: ∀ g: cfg non_terminal terminal,
g_equiv (g_acc g) g ∧ has_no_inaccessible_symbols (g_acc g).

In a way similar to has no useless symbols, the absence of inaccessible
symbols in a grammar is expressed by predicate has no inaccessible symbols
used above.

The proof of g acc correct is also natural when compared to the arguments
of the informal proof. It has only 384 lines on Coq script and, despite the simi-
larities between it and the proof of g use correct, it is still ∼40% shorter than
that. This is partially due to a difference in the definitions of g use rules and
g acc rules: in the first case, in order to be eligible as a rule of g use, a rule
of g must provably consist only of useful symbols in both the left and right-
hand sides; in the second, it is enough to prove that only the left-hand side is
accessible (the rest is consequence of the definition). Since we have a few uses
of the constructors of these definitions, the simpler definition of g acc rules
resulted in simpler and shorter proofs. As a matter of fact, it should be possible

346 M.V.M. Ramos et al.

to do something similar to the definition of g use rules, since the left-hand
side of a rule is automatically useful once all the symbols in the right-hand side
are proved useful (a consequence of the definition). This will be considered in a
future review of the formalization.

So far we have only considered each simplification strategy independently of
the others. If one wants to obtain a new grammar that is simultaneously free of
empty and unit rules, and of useless and inaccessible symbols, it is not enough to
consider the previous independent results: it is necessary to establish a suitable
order to apply these simplifications, in order to guarantee that the final result
satisfies all desired conditions. Then, it is necessary to prove that the claims do
hold.

For the order, we should start with (i) the elimination of empty rules, followed
by (ii) the elimination of unit rules. The reason for this is that (i) might introduce
new unit rules in the grammar, and (ii) will surely not introduce empty rules,
as long as the original grammar is free of them (except for S → ε, in which case
S, the initial symbol of the grammar, must not appear on the right-hand side of
any rule). Then, elimination of useless and inaccessible symbols (in either order)
is the right thing to do, since they only remove rules from the original grammar
(which is specially important because they do not introduce new empty or unit
rules). The formalization of this result is captured in the following theorem:

Theorem g_simpl_ex_v1: ∀ g: cfg non_terminal terminal, non_empty g →
∃ g’: cfg (non_terminal’ non_terminal) terminal, g_equiv g’ g ∧
has_no_inaccessible_symbols g’ ∧ has_no_useless_symbols g’ ∧

(produces_empty g → has_one_empty_rule g’) ∧
(∼ produces_empty g → has_no_empty_rules g’) ∧
has_no_unit_rules g’ ∧ start_symbol_not_in_rhs g’.

The proof of g simpl ex v1 demands auxiliary lemmas to prove that the
characteristics of the initial transformations are preserved by the following ones.
For example, that all of the unit rules elimination, useless symbol elimination
and inaccessible symbol elimination operations preserve the characteristics of
the empty rules elimination operation.

5 Chomsky Normal Form

The Chomsky Normal Form (CNF) theorem, proposed and proved by Chomsky
in [6], asserts that ∀ G = (V,Σ, P, S), ∃ G′ = (V ′, Σ, P ′, S′) | L(G) = L(G′) ∧
∀ (α →G′ β) ∈ P ′, (β ∈ Σ) ∨ (β ∈ N · N).

That is, every context-free grammar can be converted to an equivalent one
whose rules have only one terminal symbol or two non-terminal symbols in the
right-hand side. Naturally, this is valid only if G does not generate the empty
string. If this is the case, then the grammar that has this format, plus a single rule
S′ →G ε, is also considered to be in the Chomsky Normal Form, and generates
the original language, including the empty string. It can also be assured that in
either case the start symbol of G′ does not appear on the right-hand side of any
rule of G′.

On the Formalization of Some Results of Context-Free Language Theory 347

The existence of a CNF can be used for a variety of purposes, including to
prove that there is an algorithm to decide whether an arbitrary context-free
language accepts an arbitrary string, and to test if a language is not context-
free (using the Pumping Lemma for context-free languages, which can be proved
with the help of CNF grammars).

The idea of mapping G into G′ consists of creating a finite number of new
non-terminal symbols and new rules, in the following way:

1. For every terminal symbol σ that appears in the right-hand side of a rule
r = α →G β1 · σ · β2 of G, create a new non-terminal symbol [σ], a new rule
[σ] →G′ σ and substitute σ for [σ] in r;

2. For every rule r = α →G N1N2 · · · Nk of G, where Ni are all non-terminals,
create a new set of non-terminals and a new set of rules such that α →G′

N1[N2 · · · Nk], [N2 · · · Nk] →G′ N2[N3 · · · Nk], · · · , [Nk−2Nk−1Nk] →G′ Nk−2

[Nk−1Nk], [Nk−1Nk] →G′ Nk−1Nk.

Case (1) substitutes all terminal symbols of the grammar for newly created
non-terminal symbols. Case (2) splits rules that have three or more non-terminal
symbols on the right-hand side by a set of rules that have only two non-terminal
symbols in the right-and side. Both changes preserve the language of the original
grammar.

It is clear from above that the original grammar must be free of empty and
unit rules in order to be converted to a CNF equivalent. Also, it is desirable that
the original grammar contains no useless and no inaccessible symbols, besides
assuring that the start symbol does not appear on the right-hand side of any rule.
Thus, it will be required that the original grammar be first simplified according
to the results of Sect. 4.

Given the original grammar g1, we construct two new grammars g2 and g3.
The first generates the same set of sentences of g1, except for the empty string,
and the second includes the empty string:

1. Construct g2 such that L(g2) = L(g1) − ε;
2. Construct g3 (using g2) such that L(g3) = L(g2) ∪ {ε}.

Then, either g2 or g3 will be used to prove the existence of a CNF grammar
equivalent to g1.

For step 1, the construction of g2 (that is, g cnf g) is more complex, as
we need to substitute terminals for new non-terminals, introduce new rules for
these non-terminals and also split the rules with three or more symbols on the
right-hand side.

Next, we prove that g2 is equivalent to g (or g1). It should be noted, however,
that the set of rules defined above do not generate the empty string. If this is
the case, then we construct g3 (that is, g cnf’) with a new empty rule.

348 M.V.M. Ramos et al.

The statement of the CNF theorem can then be presented as:3

Theorem g_cnf_ex: ∀ g: cfg non_terminal terminal,
(produces_empty g ∨ ∼ produces_empty g) ∧
(produces_non_empty g ∨ ∼ produces_non_empty g) →
∃ g’: cfg (non_terminal’ (emptyrules.non_terminal’ non_terminal) terminal)
terminal, g_equiv g’ g ∧ (is_cnf g’ ∨ is_cnf_with_empty_rule g’) ∧
start_symbol_not_in_rhs g’.

The new predicates used above assert, respectively, that the argument gram-
mar (i) produces at least one non-empty string (produces non empty), (ii) is
in the Chomsky Normal Form (is cnf) and (iii) is in the Chomsky Normal
Form and has a single empty rule with the start symbol in the left-hand side
(is cnf with empty rule).

It should be observed that the statement of g cnf ex is not entirely con-
structive, as we require, for any context-free grammar g, a proof that either g
produces the empty string or g does not produce the empty string, and also that
g produces a non-empty string or g does not produce a non-empty string. Since
we have not yet included a proof of the decidability of these predicates in our
formalization (something that we plan to do in the future), the statement of the
lemma has to require such proofs explicitly. They are demanded, respectively,
by the elimination of empty rules and elimination of useless symbols phases of
grammar simplification.

The formalization of this section required a lot of insights not directly avail-
able from the informal proofs, the most important being the definition of the
predicate g cnf rules (for the rules of the g cnf grammar). In a first attempt,
this inductive definition resulted with 14 constructors. Although correct, it was
refined many times until it was simplified to only 4 after the definition of the
type of the new non-terminals was adjusted properly, with a single construc-
tor. This effort resulted in elegant definitions which allowed the simplification
of the corresponding proofs, thus leading to a natural and readable formaliza-
tion. In particular, the strategy used in the proof of lemma derives g cnf g
(which states that every sentence produced by g cnf g is also produced by g)
is a very simple and elegant one, which uses the information already available
in the definition of g cnf rules.

6 Pumping Lemma

The Pumping Lemma is a property that is verified for all context-free languages
(CFLs) and was stated and proved for the first time by Bar-Hillel, Perles and
Shamir in 1961 ([7]). It does not characterize the CFLs, however, since it is
also verified by some languages that are not context-free. It states that, for
every context-free language and for every sentence of such a language that has
a certain minimum length, it is possible to obtain an infinite number of new
sentences that must also belong to the language. This minimum length depends
only on the language defined. In other words (let L be defined over alphabet

3 The results of this section are available in library chomsky.v.

On the Formalization of Some Results of Context-Free Language Theory 349

Σ): ∀ L, (cfl L) → ∃ n | ∀ α, (α ∈ L) ∧ (|α| ≥ n) → ∃ u, v, w, x, y ∈ Σ∗ | (α =
uvwxy) ∧ (|vx| ≥ 1) ∧ (|vwx| ≤ n) ∧ ∀ i, uviwxiy ∈ L.

The Pumping Lemma is stated in Coq as follows:4, 5, 6, 7

Lemma pumping_lemma: ∀ l: lang terminal,
(contains_empty l ∨ ∼ contains_empty l) ∧
(contains_non_empty l ∨ ∼ contains_non_empty l) → cfl l →
∃ n: nat, ∀ s: sentence, l s → length s ≥ n →
∃ u v w x y: sentence, s = u ++v ++w ++x ++y ∧
length (v ++x) ≥ 1 ∧ length (u ++y) ≥ 1 ∧ length (v ++w ++x) ≤ n ∧
∀ i: nat, l (u ++(iter v i) ++w ++(iter x i) ++y).

A typical use of the Pumping Lemma is to show that a certain language is
not context-free by using the contrapositive of the statement of the lemma. The
proof proceeds by assuming that the language is context-free, and this leads to
a contradiction from which one concludes that the language in question can not
be context-free.

The Pumping Lemma derives from the fact that the number of non-terminal
symbols in any context-free grammar G that generates L is finite. There are
different strategies that can be used to prove that the lemma can be derived from
this fact. We searched through 13 proofs published in different textbooks and
articles by different authors, and concluded that in 6 cases ([2,7–11]) the strategy
uses CNF grammars and binary trees for representing derivations. Other 5 cases
([12–16]) present tree-based proofs that however do not require the grammar to
be in CNF. Finally, Harrison ([17]) proves the Pumping Lemma as a corollary
to the more general Ogden’s Lemma and Amarilli and Jeanmougin ([18]) use a
strategy with pushdown automata instead of context-free grammars.

The difference between the proofs that use binary trees and those that use
general trees is that the former uses n = 2k (where k is the number of non-
terminal symbols the grammar) and the latter uses n = mk (where m is the
length of the longest right-hand side among all rules of the grammar and k is
the number of non-terminal symbols in the grammar). In both cases, the idea is
the same: to show that sufficiently long sentences have parse trees for which a
maximal path contains at least two instances of the same non-terminal symbol.

Since 11 out of 13 proofs considered use grammars and generic trees and,
of these, 6 use CNF grammars and binary trees (including the authors of the
original proof), this strategy was considered as the choice for the present work.
Besides that, binary trees can be easily represented in Coq as simple inductive
types, where generic trees require mutually inductive types, which increases the
complexity of related proofs. Thus, for all these reasons we have adopted the
proof strategy that uses CNF grammars and binary trees in what follows.
4 This statement contains the extra clause length (u ++ y) >= 1, corresponding to

|uy| ≥ 1, which is normally not mentioned in textbooks.
5 Predicates contains empty and contains non empty are indeed decidable and thus it

would not be necessary to explicitly state that they satisfy the Law of the Excluded
Middle. However, this property has not been addressed in the formalization yet,
which justifies the statement of the lemma as it is.

6 Application iter l i on a list l and a natural i yields list li.
7 The results of this section are available in library pumping.v.

350 M.V.M. Ramos et al.

The classical proof considers that G is in the Chomsky Normal Form, which
means that derivation trees have the simpler form of binary trees. Then, if the
sentence has a certain minimum length, the frontier of the derivation tree should
have two or more instances of the same non-terminal symbol in some path that
starts in the root of this tree. Finally, the context-free character of G guarantees
that the subtrees related to these duplicated non-terminal symbols can be cut
and pasted in such a way that an infinite number of new derivation trees are
obtained, each of which is related to a new sentence of the language. The formal
proof presented here is based in the informal proof available in [3].

The proof of the Pumping Lemma starts by finding a grammar G that gen-
erates the input language L (this is a direct consequence of the predicate cfl,
which states that the language is context-free). Next, we obtain a CNF grammar
G′ that is equivalent to G, using previous results. Then, G is substituted for G′

and the value for n is defined as 2k, where k is the length of the list of non-
terminals of G′ (which in turn is obtained from the predicate rules finite).
An arbitrary sentence α of L(G′) that satisfies the required minimum length n
is considered. Lemma derives g cnf equiv btree is then applied in order to
obtain a btree t that represents the derivation of α in G′. Naturally we have to
ensure that α
= ε, which is true since by assumption |α| ≥ 2k.

The next step is to obtain a path (a sequence of non-terminal symbols ended
by a terminal symbol) that has maximum length, that is, whose length is equal
to the height of t plus 1. This is accomplished by means of the definition bpath
and the lemma btree ex bpath. The length of this path (which is ≥ k + 2)
allows one to infer that it must contain at least one non-terminal symbol that
appears at least twice in it. This result comes from the application of the lemma
pigeon which represents a list version of the well-known pigeonhole principle:

Lemma pigeon: ∀ A: Type, ∀ x y: list A, (∀ e: A, In e x → In e y) →
length x = length y + 1→ ∃ d: A, ∃ x1 x2 x3: list A, x = x1 ++[d] ++x2 ++[d] ++x3.

This lemma (and other auxiliary lemmas) is included in library pigeon.v, and
its proof requires the use of classical reasoning (and thus library Classical Prop
of the Coq Standard Library). This is necessary in order to have a decidable
equality on the type of the non-terminals of the grammar, and this is the only
place in the whole formalization where this is required. Nevertheless, we plan to
pursue in the future a constructive version of this proof.

Since a path is not unique in a tree, it is necessary to use some other repre-
sentation that can describe this path uniquely, which is done by the predicate
bcode and the lemma bpath ex bcode. A bcode is a sequence of boolean values
that tell how to navigate in a btree. Lemma bpath ex bcode asserts that every
path in a btree can be assigned a bcode.

Once the path has been identified with a repeated non-terminal symbol, and
a corresponding bcode has been assigned to it, lemma bcode split is applied
twice in order to obtain the two subtrees t1 and t2 that are associated respectively
to the first and second repeated non-terminals of t.

From this information it is then possible to extract most of the results needed
to prove the goal, except for the pumping condition. This is obtained by an

On the Formalization of Some Results of Context-Free Language Theory 351

auxiliary lemma pumping aux, which takes as hypothesis the fact that a tree
t1 (with frontier vwx) has a subtree t2 (with frontier w), both with the same
roots, and asserts the existence of an infinite number of new trees obtained by
repeated substitution of t2 by t1 or simply t1 by t2, with respectively frontiers
viwxi, i ≥ 1 and w, or simply viwxi, i ≥ 0.

The proof continues by showing that each of these new trees can be combined
with tree t obtained before, thus representing strings uviwxiy, i ≥ 0 as necessary.
Finally, we prove that each of these trees is related to a derivation in G′, which
is accomplished by lemma btree equiv produces g cnf.

The formalization of the Pumping Lemma is quite readable and easily mod-
ifiable to an alternative version that uses a smaller value of n (as in the original
proof contained in [7]). It builds nicely on top of the previous results on grammar
normalization, which in turn is a consequence of grammar simplification. It is
however long (pumping lemma has 436 lines of Coq script) and the key insights
for its formalization were (i) the construction of the library trees.v, specially the
lemmas that relate binary trees to CNF grammars; (ii) the identification and
isolation of lemma pumping aux, to show the pumping of subtrees in a binary
tree and (iii) the proof of lemma pigeon. None of these aspects are clear from
the informal proof, they showed up only while working in the formalization.

7 Related Work

Context-free language theory formalization is a relatively new area of research,
when compared with the formalization of regular languages theory, with some
results already obtained with the Coq, HOL4 and Agda proof assistants.

The pioneer work in context-free language theory formalization is probably
the work by Filliâtre and Courant ([19]), which led to incomplete results (along
with some important results in regular language theory) and includes closure
properties (e.g. union), the partial equivalence between pushdown automata and
context-free grammars and parts of a certified parser generator. No paper or
documentation on this part of their work has been published however.

Most of the extensive effort started in 2010 and has been devoted to the
certification and validation of parser generators. Examples of this are the works
of Koprowski and Binsztok (using Coq, [20]), Ridge (using HOL4, [21]), Jour-
dan, Pottier and Leroy (using Coq, [22]) and, more recently, Firsov and Uustalu
(in Agda, [23]). These works assure that the recognizer fully matches the lan-
guage generated by the corresponding context-free grammar, and are important
contributions in the construction of certified compilers.

On the more theoretical side, on which the present work should be consid-
ered, Norrish and Barthwal published on general context-free language theory
formalization using the HOL4 proof assistant ([24–26]), including the existence
of Chomsky and Greibach normal forms for grammars, the equivalence of push-
down automata and context-free grammars and closure properties. These results
are from the PhD thesis of Barthwal ([27]), which includes also a proof of the
Pumping Lemma for context-free languages. Thus, Barthwal extends our work

352 M.V.M. Ramos et al.

with pushdown automata and Greibach Normal Form results, and for this rea-
son it is the most complete formalization of context-free language theory up to
date, in any proof assistant. Recently, Firsov and Uustalu proved the existence
of a Chomsky Normal Form grammar for every general context-free grammar,
using the Agda proof assistant ([28]). For a discussion of the similarities and
differences of our work and those of Barthwal and Firsov, please refer to [4].

A special case of the Pumping Lemma for context-free languages, namely the
Pumping Lemma for regular languages, is included in the comprehensive work
of Doczkal, Kaiser and Smolka on the formalization of regular languages ([29]).

8 Conclusions

This is probably the most comprehensive formalization of the classical context-
free language theory done to the present date in the Coq proof assistant, and
includes the important result that is the second ever formalization of the Pump-
ing Lemma for context-free languages (the first in the Coq proof assistant). It
is also the first ever proof of the alternative statement of the Pumping Lemma
that uses a smaller value of n (for more details, see [4,7]).

The whole formalization consists of 23,984 lines of Coq script spread in 18
libraries (each library corresponds to a different file), not including the example
files. The libraries contain 533 lemmas and theorems, 99 constructors, 63 defin-
itions (not including fixpoints), 40 inductive definitions and 20 fixpoints among
1,067 declared names.

The present work represents a relevant achievement in the areas of formal
language theory and mathematical formalization. As explained before, there is
no record that the author is aware of, of a project with a similar scope in the
Coq proof assistant covering the formalization of context-free language theory.
The results published so far are restricted to parser certification and theoretical
results in proof assistants other than Coq. This is not the case, however, for
regular language theory, and in a certain sense the present work can be considered
as an initiative that complements and extends that work with the objective of
offering a complete framework for reasoning with the two most popular and
important language classes from the practical point of view. It is also relevant
from the mathematical perspective, since there is a clear trend towards increased
and widespread usage of interactive proof assistants and the construction of
libraries for fundamental theories.

Plans for future development include the definition of new devices (e.g.
pushdown automata) and results (e.g. equivalence of pushdown automata
and context-free grammars), code extraction and general enhancements of the
libraries, with migration of parts of development into SSReflect (to take advan-
tage, for example, of finite type results).

On the Formalization of Some Results of Context-Free Language Theory 353

A Definitions

We present next the main definitions used in the formalization.8 Context-free
grammars are represented in Coq very closely to the usual algebraic defini-
tion. Let G = (V,Σ, P, S) be a context-free grammar. The sets N = V \Σ
and Σ are represented as types (usually denoted by names such as, for example,
non terminal and terminal), separately from G. The idea is that these sets are
represented by inductive type definitions whose constructors are its inhabitants.
Thus, the number of constructors in an inductive type corresponds exactly to
the number of (non-terminal or terminal) symbols in a grammar.

Once these types have been defined, we can create abbreviations for senten-
tial forms (sf), sentences (sentence) and lists of non-terminals (nlist). The
first corresponds to the list of the disjoint union of the types non-terminal
and terminal, while the other two correspond to simple lists of, respectively,
non-terminal and terminal symbols.

The record representation cfg has been used for G. The definition states that
cfg is a new type and contains three components. The first component is the
start symbol of the grammar (a non-terminal symbol) and the second is rules,
that represents the rules of the grammar. Rules are propositions (represented in
Coq by Prop) that take as arguments a non-terminal symbol and a (possibly
empty) list of non-terminal and terminal symbols (corresponding, respectively,
to the left and right-hand side of a rule). Grammars are parametrized by types
non terminal and terminal.

Record cfg (non_terminal terminal : Type): Type:= {
start_symbol: non_terminal;
rules: non_terminal → sf → Prop;
rules_finite:

∃ n: nat,
∃ ntl: nlist,
∃ tl: tlist,
rules_finite_def start_symbol rules n ntl tl }.

The predicate rules finite def assures that the set of rules of the grammar
is finite by proving that the length of right-hand side of every rule is equal or
less than a given value, and also that both left and right-hand side of the rules
are built from finite sets of, respectively, non-terminal and terminal symbols
(represented here by lists). This represents an overhead in the definition of a
grammar, but it is necessary in order to allow for the definition of non terminal
and terminal as generic types in Coq.

Since generic types might have an infinite number of elements, one must make
sure that this is not the case when defining the non terminal and terminal
sets. Also, even if these types contain a finite number of inhabitants (construc-
tors), it is also necessary to prove that the set of rules is finite. All of these is
captured by predicate rules finite def. Thus, for every cfg defined directly

8 The results of this appendix are available in libraries cfg.v and cfl.v.

354 M.V.M. Ramos et al.

of constructed from previous grammars, it will be necessary to prove that the
predicate rules finite def holds.

The other fundamental concept used in this formalization is the idea of
derivation: a grammar g derives a string s2 from a string s1 if there exists
a series of rules in g that, when applied to s1, eventually results in s2. A direct
derivation (i.e. the application of a single rule) is represented by s1 ⇒ s2, and
the reflexive and transitive closure of this relation (i.e. the application of zero or
more rules) is represented by s1 ⇒∗ s2. An inductive predicate definition of this
concept in Coq (derives) uses two constructors:

Inductive derives

(non_terminal terminal : Type)
(g : cfg non_terminal terminal)
: sf → sf → Prop :=
| derives_refl :

∀ s : sf,
derives g s s

| derives_step :
∀ (s1 s2 s3 : sf)
∀ (left : non_terminal)
∀ (right : sf),
derives g s1 (s2 ++inl left :: s3) →
rules g left right → derives g s1 (s2 ++right ++s3)

The constructors of this definition (derives refl and derives step) are the
axioms of our theory. Constructor derives refl asserts that every sentential
form s can be derived from s itself. Constructor derives step states that if a
sentential form that contains the left-hand side of a rule is derived by a grammar,
then the grammar derives the sentential form with the left-hand side replaced
by the right-hand side of the same rule. This case corresponds to the application
of a rule in a direct derivation step.

A grammar generates a string if this string can be derived from its start
symbol. Finally, a grammar produces a sentence if it can be derived from its
start symbol.

Two grammars g1 (with start symbol S1) and g2 (with start symbol S2)
are equivalent (denoted g1 ≡ g2) if they generate the same language, that is,
∀s, (S1 ⇒∗

g1 s) ↔ (S2 ⇒∗
g2 s). This is represented in our formalization in Coq by

the predicate g equiv.
With these and other definitions (see [4]), it is possible to prove various

lemmas about grammars and derivations, and also operations on grammars, all
of which are useful when proving the main theorems of this work.

Library cfg.v contains 4,393 lines of Coq script (∼18.3% of the total) and
105 lemmas and theorems (∼19.7% of the total).

B Generic Binary Trees Library

In order to support the formalization of the Pumping Lemma in Sect. 6, an
extensive library of definitions and lemmas on binary trees and their relation

On the Formalization of Some Results of Context-Free Language Theory 355

to CNF grammars has been developed.9 This library is based in the definition
of a binary tree (btree) whose internal nodes are non-terminal symbols and
leaves are terminal symbols. The type btree is defined with the objective of
representing derivation trees for strings generated by context-free grammars in
the Chomsky Normal Form:

Inductive btree (non_terminal terminal: Type): Type:=
| bnode_1: non_terminal → terminal → btree

| bnode_2: non_terminal → btree → btree → btree.

The constructors of btree relate to the two possible forms that the rules
of a CNF grammar can assume (namely with one terminal symbol or two non-
terminal symbols in the right-hand side). Naturally, the inhabitants of the type
btree can only represent the derivation of non-empty strings.

Next, we have to relate binary trees to CNF grammars. This is done with the
predicate btree cnf, used to assert that a binary tree bt represents a derivation
in CNF grammar g. Now we can show that binary trees and derivations in
CNF grammars are equivalent. This is accomplished by two lemmas, one for
each direction of the equivalence. Lemma derives g cnf equiv btree asserts
that for every derivation in a CNF grammar exists a binary tree that represents
this derivation. It is general enough in order to accept that the input grammar
might either be a CNF grammar, or a CNF grammar with an empty rule. If
this is the case, then we have to ensure that the derived sentence is not empty.
Lemma btree equiv derives g cnf proves that every binary tree that satisfies
btree cnf corresponds to a derivation in the same (CNF) grammar.

Among other useful lemmas, the following one is of fundamental importance
in the proof of the Pumping Lemma, as it relates the length of the frontier of a
binary tree to its height:

Lemma length_bfrontier_ge:
∀ t: btree,
∀ i: nat,
length (bfrontier t) ≥ 2 ˆ (i − 1) →
bheight t ≥ i.

The notion of subtree is also important, and is defined inductively as follows
(note that a tree is not, in this definition, a subtree of itself):

Inductive subtree (t: btree): btree → Prop:=
| sub_br: ∀ tl tr: btree, ∀ n: non_terminal,

t = bnode_2 n tl tr → subtree t tr

| sub_bl: ∀ tl tr: btree, ∀ n: non_terminal,
t = bnode_2 n tl tr → subtree t tl

| sub_ir: ∀ tl tr t’: btree, ∀ n: non_terminal,
subtree tr t’ → t = bnode_2 n tl tr → subtree t t’

| sub_il: ∀ tl tr t’: btree, ∀ n: non_terminal,
subtree tl t’ → t = bnode_2 n tl tr → subtree t t’.

9 The results of this appendix are available in library trees.v.

356 M.V.M. Ramos et al.

The following lemmas, related to subtrees, among many others, are also fun-
damental in the proof of the Pumping Lemma:

Lemma subtree_trans:
∀ t1 t2 t3: btree,
subtree t1 t2 → subtree t2 t3 → subtree t1 t3.

Lemma subtree_includes:
∀ t1 t2: btree,
subtree t1 t2 → ∃ l r : sentence,
bfrontier t1 = l ++bfrontier t2 ++r ∧ (l
= [] ∨ r
= []).

Library trees.v has 4,539 lines of Coq script (∼18.9% of the total) and 84
lemmas (∼15.7% of the total)).

References

1. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
Springer, Heidelberg (2004)

2. Sudkamp, T.A.: Languages and Machines, 3rd edn. Addison-Wesley, Redwood City
(2006)

3. Ramos, M.V.M., Neto, J.J., Vega, I.S.: Linguagens Formais: Teoria Modelagem e
Implementação. Bookman, Brisbane (2009)

4. Ramos, M.V.M.: Formalization of Context-Free Language Theory. Ph.D. thesis,
Centro de Informática-UFPE (2016). www.univasf.edu.br/∼marcus.ramos/tese.
pdf. Accessed 5 May 2016

5. Ramos, M.V.M.: Source files of [4] (2016). https://github.com/mvmramos/v1.
Accessed 3 May 2016

6. Chomsky, A.N.: On certain formal properties of grammar. Inf. Control 2, 137–167
(1959)

7. Bar-Hillel, Y.: Language and Information: Selected Essays on Their Theory and
Application. Addison-Wesley Series in Logic. Addison-Wesley Publishing Co.,
Redwood City (1964)

8. Hopcroft, J.E., Ullman, J.D.: Formal Languages and Their Relation to Automata.
Addison-Wesley Longman Publishing Co., Inc., Boston (1969)

9. Davis, M.D., Sigal, R., Weyuker, E.J.: Computability, Complexity, and Languages:
Fundamentals of Theoretical Computer Science, 2nd edn. Academic Press Profes-
sional Inc., San Diego (1994)

10. Kozen, D.C.: Automata and Computability. Springer, Heidelberg (1997)
11. Hopcroft, J.E., Motwani, R., Rotwani, Ullman, J.D.: Introduction to Automata

Theory, Languages and Computability, 2nd edn. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston (2000)

12. Ginsburg, S.: The Mathematical Theory of Context-Free Languages. McGraw-Hill
Inc., New York (1966)

13. Denning, P.J., Dennis, J.B., Qualitz, J.E.: Machines, Languages and Computation.
Prentice-Hall, Upper Saddle River (1978)

14. Brookshear, J.G.: Theory of Computation: Formal Languages, Automata, and
Complexity. Benjamin-Cummings Publishing Co., Inc., Redwood City (1989)

15. Lewis, H.R., Papadimitriou, C.H.: Elements of the Theory of Computation, 2nd
edn. Prentice Hall PTR, Upper Saddle River (1998)

www.univasf.edu.br/~marcus.ramos/tese.pdf
www.univasf.edu.br/~marcus.ramos/tese.pdf
https://github.com/mvmramos/v1

On the Formalization of Some Results of Context-Free Language Theory 357

16. Sipser, M.: Introduction to the Theory of Computation, 2nd edn. International
Thomson Publishing, Toronto (2005)

17. Harrison, M.A.: Introduction to Formal Language Theory, 1st edn. Addison-Wesley
Longman Publishing Co., Inc., Boston (1978)

18. Amarilli, A., Jeanmougin, M.: A proof of the pumping lemma for context-free
languages through pushdown automata. CoRR abs/1207.2819 (2012)

19. INRIA: Coq users’ contributions (2015). http://www.lix.polytechnique.fr/coq/
pylons/contribs/index. Accessed 26 Oct 2015

20. Koprowski, A., Binsztok, H.: TRX: a formally verified parser interpreter. In:
Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 345–365. Springer,
Heidelberg (2010). http://dx.doi.org/10.1007/978-3-642-11957-6 19. Accessed 26
Oct 2015

21. Ridge, T.: Simple, functional, sound and complete parsing for all context-free gram-
mars. In: Jouannaud, J.-P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 103–
118. Springer, Heidelberg (2011)

22. Jourdan, J.-H., Pottier, F., Leroy, X.: Validating LR(1) parsers. In: Seidl, H. (ed.)
Programming Languages and Systems. LNCS, vol. 7211, pp. 397–416. Springer,
Heidelberg (2012)

23. Firsov, D., Uustalu, T.: Certified CYK parsing of context-free languages. J. Log.
Algebraic Methods Program. 83(56), 459–468 (2014). The 24th Nordic Workshop
on Programming Theory (NWPT 2012)

24. Barthwal, A., Norrish, M.: A formalisation of the normal forms of context-free
grammars in HOL4. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247,
pp. 95–109. Springer, Heidelberg (2010)

25. Barthwal, A., Norrish, M.: Mechanisation of PDA and grammar equivalence for
context-free languages. In: Dawar, A., de Queiroz, R. (eds.) WoLLIC 2010. LNCS,
vol. 6188, pp. 125–135. Springer, Heidelberg (2010)

26. Barthwal, A., Norrish, M.: A mechanisation of some context-free language theory
in HOL4. J. Comput. Syst. Sci. 80(2), 346–362 (2014). WoLLIC 2010 Special Issue,
Dawar, A., de Queiroz, R. (eds.)

27. Barthwal, A.: A formalisation of the theory of context-free languages in higher
order logic. Ph.D. thesis, The Australian National Universityd (2010). https://di
gitalcollections.anu.edu.au/bitstream/1885/16399/1/Barthwal%20Thesis%202010.
pdf. Accessed 27 Nov 2015

28. Firsov, D., Uustalu, T.: Certified normalization of context-free grammars. In: Pro-
ceedings of the 2015 Conference on Certified Programs and Proofs. CPP 2015, pp.
167–174. ACM, New York (2015)

29. Doczkal, C., Kaiser, J.-O., Smolka, G.: A constructive theory of regular languages
in Coq. In: Gonthier, G., Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307, pp. 82–97.
Springer, Heidelberg (2013)

http://www.lix.polytechnique.fr/coq/pylons/contribs/index
http://www.lix.polytechnique.fr/coq/pylons/contribs/index
http://dx.doi.org/10.1007/978-3-642-11957-6_19
https://digitalcollections.anu.edu.au/bitstream/1885/16399/1/Barthwal%20Thesis%202010.pdf
https://digitalcollections.anu.edu.au/bitstream/1885/16399/1/Barthwal%20Thesis%202010.pdf
https://digitalcollections.anu.edu.au/bitstream/1885/16399/1/Barthwal%20Thesis%202010.pdf

The Semantics of Corrections

Deniz Rudin(B), Karl DeVries, Karen Duek, Kelsey Kraus,
and Adrian Brasoveanu

University of California, Santa Cruz, USA
rudin@ucsc.edu

1 Introduction

Consider the sentences in (1):

(1) a. Andrew, uh, sorry , [Anders]F ate a taco. (full correction)

b. Anders made, uh, sorry , [ate]F a taco. (elliptical correction)

c. Anders made, uh, sorry , he [ate]F a taco. (anaphoric correction)

In each sentence, the speaker makes a mistake, signals that they’ve made a
mistake (uh, sorry), and finally corrects their mistake.1

We will refer to the underlined material as the anchor (a.k.a. reparandum;
see Shriberg 1994), the italicized material as the trigger (a.k.a. editing term),
all subsequent material as the correction (a.k.a. alteration + continuation),
and the anchor-correction pair as the (error) correction structure. We
will abstain from explicitly annotating subsequent examples.

‘Repair’/‘revision’ cases comparable to the above have been given significant
attention in psychology (e.g. Levelt 1983), psycholinguistics (e.g. Clark and Tree
2002; Ferreira et al. 2004), conversation analysis (e.g. Schegloff et al. 1977) and
computational linguistics (e.g. Heeman and Allen 1999; Hough and Purver 2012)
but these phenomena have not been given much attention in generative linguistics,
with the recent exception of Ginzburg et al. (2014), who analyze error corrections
as a special type of clarification requests (Purver 2004).

Ginzburg et al. (2014) analyze corrections within an incremental dialogue
understanding framework, and seek to unify them with other forms of disfluency.
We will pursue a distinct line of investigation focusing specifically on correction
structures from a grammatical perspective, though what we unearth will be of
interest to theories of incremental interpretation. We will be particularly con-
cerned with interactions between correction structures and: (i) contrastive focus,
building on Segmented Discourse Representation Theory (SDRT) and related
approaches; see van Leusen (1994, 2004), Asher and Gillies (2003), Asher and
Lascarides (2009), (ii) propositional anaphora, and (iii) anaphora to quantifica-
tional dependencies.

1 We expect that many of the generalizations we propose about self-corrections will
extend to cross-speaker corrections, but we will not be discussing such data here.

c© Springer-Verlag Berlin Heidelberg 2016
J. Väänänen et al. (Eds.): WoLLIC 2016, LNCS 9803, pp. 358–374, 2016.
DOI: 10.1007/978-3-662-52921-8 22

The Semantics of Corrections 359

In Sect. 2, we begin by considering (and casting doubt on) the intuitive analy-
sis that error correction structures are a form of revision that creates a single
proposition out of (parts of) the anchor and correction. We then look at the
data in closer detail in Sect. 3 and argue that the anchor and correction are
parsed as separate clauses, based on facts involving contrastive focus, telescop-
ing, and propositional anaphora. Section 4 follows up with a brief proposal for a
formal semantics and formal pragmatics of corrections. The final Sect. 5 provides
a summary and outlines potential directions for future work.

2 The Snip & Glue Approach

Previous analyses (notably Asher and Gillies 2003; Asher and Lascarides 2009;
Ferreira et al. 2004; Heeman and Allen 1999; Ginzburg et al. 2014; van Leusen
1994, 2004), though couched in very different frameworks, all pursue versions
of a ‘snip & glue’ approach: the interpretation of correction structures proceeds
by removing mistaken material and replacing it with corrected material – the
mistaken portion of the anchor is deleted (snip) and the correction is attached
to what remains of the anchor (glue). The result of the interpretational process
is a single meaning assigned to a single sentence.

We have three empirical arguments that any snip & glue treatment of cor-
rections (on its own) is inadequate: (i) error correction structures are a kind of
contrastive structure (see van Leusen 1994, 2004; Asher and Gillies 2003; Asher
and Lascarides 2009 for similar observations); (ii) anaphora in error correction
structures behaves like anaphora between sentences; and finally (iii) proposi-
tional anaphora to either half of the correction structure is possible. In the next
section, we elaborate on each of these claims in turn.

3 The Empirical Ground

In this section, we overview the main empirical features of correction structures
and indicate to what extent previous analyses account for these features.

3.1 Three Types of Corrections

We consider three types of corrections. First, we look at elliptical corrections:
these are error correction structures in which the correction is missing otherwise
obligatory syntactic material.

(2) Elliptical corrections:
a. Anders made, uh, sorry, [ate]F a taco.
b. Anders made a taco, uh, sorry, [ate]F .
c. Anders made a taco, uh, sorry, [a chalupa]F .
d. Andrew made a taco, uh, sorry, [Anders]F .

360 D. Rudin et al.

2These structures are the only kind examined at length by previous theorists.
It is probably partly for this reason that snip & glue approaches to correction
structures seem to be intuitively satisfying.

The second type is what we call full corrections – error correction structures
in which the correction does not rely on the anchor for its interpretation.

(3) Full Corrections

a. Andrew, uh, sorry, [Anders]F ate a taco.
b. Andrew ate, uh, sorry, [Anders]F ate a taco.
c. Andrew ate a taco. Uh, sorry, [Anders]F ate a taco.

These structures are less obviously addressed by the snip & glue approach, but
an intuitive approach might be to simply discard the anchor entirely.

The final type of corrections we consider is anaphoric corrections: the cor-
rection contains pronominal elements that rely on material from the anchor for
their interpretation. These are the least studied type of corrections, and the most
important for the account we will propose in this paper.

(4) Anaphoric corrections

a. Anders made, uh, sorry, he [ate]F a taco.
b. Anders made a taco, uh, sorry, he [ate]F it.
c. Anders made a taco, uh, sorry, he [ate]F one.
d. Anders made a taco, uh, sorry, [ate]F it.
e. Anders made a taco, uh, sorry, [ate]F one.
f. Every boy made, uh, sorry, he [ate]F a taco.
g. Every boy made some tacos, uh, sorry, they [ate]F them.

These structures are problematic for snip & glue approaches: the anaphoric
dependencies suggest that anchor and correction are not interpretationally
merged, and the interpretation of the anchor (although incorrect) is not dis-
carded.

We argue that all three types of corrections deserve a unified account, and
that snip & glue approaches on their own cannot provide such an account.

2 Note that a corresponding correction structure where the correction is a bare noun
is infelicitous:
(1) # Anders made a taco, uh, sorry, [chalupa]F .

This appears to be an idiosyncratic property of singular count nouns, as the following
felicitous examples demonstrate:
(2) a. Anders made some tacos, uh, sorry, [chalupas]F .

b. Anders drank some water, uh, sorry, [soda]F .

The Semantics of Corrections 361

3.2 Corrections and Contrast

An important fact about corrections is that they must contain at least one focus-
marked element. As the examples in (5) show, focus placement goes on the locus
of correction. Furthermore, if there are multiple correction loci, the correction
structure needs to have multiple foci, as shown in (6).

(5) a. Andrew, uh, sorry, [Anders]F ate a taco.
b. ? Andrew, uh, sorry, Anders ate a [taco]F .

(6) a. Anders made a taco, uh, sorry, [ate]F a [chalupa]F .
b. ? Anders made a taco, uh, sorry, [ate]F a chalupa.
c. ? Anders made a taco, uh, sorry, ate a [chalupa]F .

All of these foci are contrastive: focus placement in the correction must corre-
spond to the location of mistakes in the anchor, because those are the only places
where the anchor and correction differ.3 We assume Rooth’s (1992) definition of
contrast:

(7) Contrasting Phrases (Rooth 1992):
Construe a phrase α as contrasting with a phrase β iff [[β]]o ∈ [[α]]f.

For any phrase α, [[α]]o is the ordinary semantic value of α, and [[α]]f is the
‘focus-semantic value’ of α, or the set of all ordinary semantic values derivable
from α via replacement of focus-marked elements in α with elements of the same
semantic type.4 For details on the notions of contrast and focus being assumed
here, see Rooth (1992).

In order for the anchor and correction to be viewed as contrastive in the
Roothian sense, each needs to have an independently calculable semantic value.
A snip & glue account where the result is one semantic value built by combining
the correction with cannibalized parts from the anchor will need to do something
fairly complex to account for the focus facts.5

3 Asher and Gillies (2003), Asher and Lascarides (2009), van Leusen (1994, 2004)
already notice that the focus/background partition of the correction should be
matched in the anchor. They ultimately propose a version of the snip & glue app-
roach involving non-monotonic logics for Common Ground (CG) update.

4 Contrastive focus can be applied to elements that differ only in terms of pronun-
ciation (see Artstein 2004 for details), and, as expected if corrections are indeed
contrast structures, such elements participate in correction structures as well:

(1) Anders ate a tomahto, uh, sorry, a to[may]F to.
5 For example, the SDRT approach in Asher and Gillies (2003) has multiple layers of

representation and multiple logics associated with these layers. Focus/background
information is represented in a ‘lower’ layer and CG update is performed in a
‘higher’-level logic that non-monotonically reasons over and integrates the lower-
level representations.

362 D. Rudin et al.

3.3 Corrections and Telescoping

The subtype of anaphoric corrections that we call telescoping corrections
(see (4f)) are particularly relevant for understanding the semantics of corrections.
The term telescoping refers to cross-sentential dependencies between singular
pronouns and quantifiers. The set of quantifiers that participate in telescoping
is quite small (examples from/based on Roberts 1987):

(8) a. {Every, Each} boy walked to the stage. He shook the President’s
hand and returned to his seat.

b. * {No, Most, Half of the, Twenty} boys walked to the stage. He
shook the President’s hand and returned to his seat.

6In contrast, the set of quantifiers that can be picked up cross-sententially by a
plural pronoun is larger (see (4g) for a parallel correction structure):

(9) a. {Every,Each} boy walked to the stage. They shook the Presi-
dent’s hand and returned to their seats.

b. {Most,Halfofthe, Twenty} boys walked to the stage. They
shook the President’s hand and returned to their seats.

c. * No boy(s) walked to the stage. They shook the President’s hand
and returned to their seats.

Strikingly, we see the exact same restrictions applying to relations between quan-
tifiers and pronouns in error correction structures7:

(10) a. {Every,Each} boy made, uh, sorry, he [ate]F three tacos.
b. * {No,Most,Halfofthe, Twenty} boys made, uh, sorry, he [ate]F

three tacos.

(11) a. {Every,Each} boy made, uh, sorry, they [ate]F some tacos.
b. {Most,Halfofthe, Twenty} boys made, uh, sorry, they [ate]F

some tacos.
c. * No boy(s) made, uh, sorry, they [ate]F some tacos.

8These parallels in singular/plural anaphora behavior indicate that anaphora
between anchors and corrections behaves like anaphora between separate sen-
tences, not like within-sentence binding. Importantly, the telescoping facts are
unexpected for snip & glue accounts, which merge anchor and correction into a
single sentence.
6 Generally a plural pronoun strategy is preferred to the telescoping strategy, but

telescoping is at least marginally grammatical. We’ve found in our own experimental
work (not reported here) that the same is true for telescoping in corrections.

7 We were first made aware of examples of this kind by Milward and Cooper (1994),
though those authors do not note their theoretical significance.

8 Cases like this are better with polarity reversal:

(1) No boy made, uh, sorry, they [did]F make some tacos.

The Semantics of Corrections 363

3.4 Corrections and Propositional Anaphora

Error correction structures allow propositional anaphora with that to either the
interpretation of the anchor or the interpretation of the correction:

(12) a. A: Anders ate fifty, uh, sorry, he ate [five]F tacos.
B: That would’ve been crazy!

b. A: Anders ate fifty, uh, sorry, he ate [five]F tacos.
B: That’s much easier to believe!

It is unclear how this would be explained from the perspective of a snip & glue
account, in which the anchor is never assigned a full interpretation. SDRT-style
accounts, for example, could capture this because they countenance two repre-
sentational layers, one of which contains two discourse representation structures
for the anchor and the trigger – assuming propositional anaphora resolution hap-
pens at the ‘right’ point and takes advantage of the ‘right’ representational layer.
However, we believe that all these empirical characteristics of error correction
structures can be accounted for in a simpler way, outlined in (14) below.

4 Proposal

In Sect. 3.2, we argued that error correction structures are contrastive structures.
We discussed the contrastive nature of corrections in Roothian terms: we need
to identify a suitable part of the anchor that can provide the antecedent for
the focus anaphora contributed by the correction; this is closely related (but
not identical) to the SDRT proposal that the focus-background partitions of the
correction and anchor should match (van Leusen 1994, 2004; Asher and Gillies
2003; Asher and Lascarides 2009).

It is easy to see how a contrast relation can be established between the
correction and the anchor if both of them are complete—as in (13a). However,
establishing the contrast relation is trickier if the anchor or the correction or
both are incomplete—as in (13b).

(13) a. Anders ate a taco. Uh, sorry, Anders ate a [chalupa]F .
b. Anders ate, uh, sorry, [made]F a taco.

Given the need to establish a contrast rhetorical relation, we hypothesize the
following semantics for corrections:

(14) a. Contrast-Driven Theory of Correction Interpretation
(Broad Strokes):
Fill in missing material in the anchor and correction in whatever
way will result in the ordinary semantic value of the anchor being a
member of the focus semantic value of the correction.

b. Contrast-Driven Theory of Correction Interpretation
(Thinner Strokes):
Formalization in Compositional DRT (CDRT; Muskens 1996) – see
Sect. 4.1 below.

364 D. Rudin et al.

We also propose the following additional semantic/pragmatic component associ-
ated with the interpretation of error correction structures (closely following the
proposal in Ginzburg et al. 2014):

(15) The Discourse Effect of Error Correction Structures:
Upon calculation of the relation of contrast between the correction and
the anchor:
- the speaker’s commitment to the anchor is canceled

- the speaker’s commitment to the correction is asserted

- the only commitment placed on the table (in the sense Farkas and
Bruce 2010) as a Common Ground (CG) update proposal is the one
contributed by the correction

In order to interface with standard models of the formal pragmatics of CG update
that treat propositions as sets of worlds (see e.g. Stalnaker 1978), our formal-
ization presented in Sect. 4.1 is couched in a possible-world-based compositional
semantics.

4.1 Formalization in CDRT

In this section, we put forth a basic formalization of our proposal for the seman-
tics of error correction structures in (14) above. We build on CDRT and add:

– discourse referents (drefs) for propositions
– logical forms of the kind needed for focus semantics (or parasitic scope)

Our system has the following basic types: e (entities), t (truth values), s
(variable assignments) and w (possible worlds). For simplicity, and to explic-
itly indicate that the compositional aspects of the system largely follow classic
Montagovian semantics, we introduce the following abbreviations:

(16) Type abbreviations:
a. e := se; ‘individuals’ are drefs for individuals, basically individual

concepts
b. s := s(wt); intensionality: sentences are interpreted relative to the

current assignment and the current proposition/set of worlds that
are live candidates for the actual world

c. t := s(st); the interpretation of a sentence is a DRS, i.e., a binary
relation between an input and an output assignment – see also DPL
formulas, Groenendijk and Stokhof (1991)

A discourse referent (dref) for individuals ue is of type e := se. That is, a dref
for individuals is basically an individual concept: it denotes an individual (type
e) relative to a context of interpretation/variable assignment (type s). Similarly,
a dref for propositions ps is of type s := s(wt). A propositional dref denotes a
set of worlds (type wt) relative to a variable assignment.

The Semantics of Corrections 365

Given that we intensionalize our logic with plural propositional drefs rather
than singular possible-world drefs, we have to decide how to interpret lexical
intensional relations:

(17) Lexical relations. When an intensional n-ary static lexical relation R
of type w(e(e(. . . t))) is interpreted relative to a propositional dref ps, it
is interpreted distributively relative to the worlds in p:
Rp(u1, . . . , un) := λis. ∀ww ∈ pi (R(w)(u1i) . . . (uni))

With lexical relations in place, we can introduce basic discourse representation
structures (DRSs).

(18) Basic DRSs.
a. We abbreviate introducing drefs ν1, . . . , νn as: [ν1, . . . , νn]
b. We abbreviate a DRS that contains only conditions C1, . . . , Cn as:

[C1, . . . , Cn]
c. Dynamic conjunction is symbolized as ‘;’; for two DRSs D,D′ of type

t, we have that:
D;D′ := λis.λjs. ∃ks(Dik ∧ D′kj), where ‘∧’ is classical static con-
junction

d. A DRS [ν1, . . . , νn| C1, . . . , Cn] introducing some drefs and contribut-
ing some conditions is just the abbreviation of the dynamic conjunc-
tion [ν1, . . . , νn]; [C1, . . . , Cn].

A simple error correction structure like (19) is interpreted as in (20):

366 D. Rudin et al.

In (20c), we assume a Lewis-style typing with the ‘intensionalization’ type s being
innermost (closest to the type of sentences t). We also assume Montagovian type
lifts for proper names, which are of type (e(st))(st), e.g.,

Anders � λPe(st).λps. [u2| u2 = anders]; P (u2)(p)

Variables are subscripted with their types. We assume complex types associate
to the right and we usually omit parentheses indicating association to the right,
e.g., instead of e(st) and (e(st))(st), we usually write est and (est)st.

As (20a) shows, the trigger contributes the crucial operator relating the cor-
rection to the anchor.9 This operator takes three arguments:

– the correction Aα (the type α is underspecified and is dictated by the correc-
tion itself)—this is Anders in our case;

– the mistaken part of the anchor A′
α that must have the same type as the

correction—this is Andrew in our case;
– the remaining part of the anchor Bα(st) that can be predicated of both A and

A′—this is a type-lifted version of left in our case; this type lifting happens
systematically as a consequence of (i) the mistake Andrew scoping out of the
anchor and (ii) the trigger+correction uh, sorry, Anders taking (parasitic)
scope immediately under the scoped-out mistake.

The logical form (LF) in (20) is the result of establishing anchor-correction
contrast. That is, the trigger + correction constituent (uh sorry, Anders in this
case) adjoins at a point that divides the anchor in two parts: (i) one part of the
anchor is the mistake (Andrew in our case), and enters in a contrastive relation
with the correction (that is, the ordinary semantic value of the mistake is a
member of the focus semantic value of the correction); (ii) the second part of
the anchor (left, or a type-lifted version thereof, in this case) can be predicated
of both the mistake and the correction. That is, LFs for correction structures
are derived via the following informal algorithm:

(21) Correction LF generation algorithm (first pass):
I. Adjoin the trigger (the correction operator) to the correction.

II. Adjoin the anchor to the resulting structure.

III. Identify that portion of the anchor that is a member of the focus
semantic value of the correction, and move it to an adjoining position,
leaving in place a variable and lambda-abstractor of the appropriate
type.

9 We’ve represented the trigger uh, sorry as a lexical item contributing the crucial
operator relating the correction to the anchor. This is a convenient notational choice
that indicates no deep assumption of our theory; we assume that the correction oper-
ator is available independently of the way a speaker indicates that they’re making a
correction, which may in principle be non-verbal.

The Semantics of Corrections 367

10 In this case, the correction is [Anders]F , and the portion of the anchor
that is a member of the focus semantic value of [Anders]F is Andrew. Therefore,
Andrew is scoped over the correction structure, leaving a lambda abstractor over
a variable of type (est)st.

Once the correction operator in (20a) takes its arguments, it introduces two
propositional drefs p1 and p2 for the anchor and the correction respectively, and
requires only the p2 dref to be added to the CG.

In the simple example in (20), the partition of the anchor induced by the
adjunction site of the trigger + correction constituent is fairly directly related to
the SDRT idea that the partitioning of the anchor matches the focus-background
partition of the correction. In general, however, our account does not require the
focus-background of the correction and of the anchor to match. We simply require
the trigger+correction adjunction site to partition the anchor in such a way that
one part of it (the mistake) contrasts with the correction, and the remaining part
can be predicated of both correction and mistake. The difference between our pro-
posal and the SDRT focus/background matching proposal becomes clear when
we consider multiple correction loci, which are associated with multiple foci. For
example, according to our proposal, the LF of (6a) above would partition the
anchor into the mistake made a taco and the remaining part of the anchor Anders.
And we would require the ordinary value of the entire mistake made a taco to be
a member of the focus value of the entire correction [ate]F a [chalupa]F .11

In sum, error correction structures show that the clause-like semantic values
of both the anchor and the correction become part of the interpretation context
but in different ways: only the correction ends up being added to the CG, but the
interpretation of the anchor is crucial for establishing anchor-correction contrast
and also for providing suitable antecedents for anaphora in the anchor (see the
anaphoric corrections discussed in Sect. 3.1).

In order for our proposal to generalize across all types of correction structures,
the algorithm in (21) must be made somewhat more complex. The most complex
cases are corrections in which the anchor is missing syntactically obligatory mate-
rial, as in the elliptical correction in (2a). In (2a), the verb made in the anchor is
missing its direct object. Because of this, we need to derive an LF for it like the

10 This step of the algorithm enforces the contrast generalization from Sect. 3.2. Note,
however, that it does not rule out superfluous focus placement, as in the following
infelicitous example:

(1) # Anders made a taco, uh, sorry, [ate]F a [taco]F .

In this case, the VP of the anchor is indeed a member of the focus semantic value
of the correction, as taco is (trivially) of the same semantic category as itself. This
problem could be solved by adding a constraint against triviality to the generation
of focus alternatives, ruling out focus alternatives that include the ordinary semantic
values of focus-marked elements.

11 As we already indicated in Footnote 10, we assume that the multiple foci in the cor-
rection induce a suitable focus semantic value for the entire correction: assuming that
‘contrastive’ focus semantic values do not include ordinary values, we require that
when multiple foci are present, any alternative that contains the ordinary value of
any of the foci should be excluded from the focus value.

368 D. Rudin et al.

one in (23a), where that missing direct object slot is filled in with a variable Q, and
the direct object of the correction, a taco, moves up to take scope over the entire
anchor-correction structure so that it can bind both direct object variables. This
type of LF is familiar from Right Node Raising constructions (e.g., Jane likes and
Bill hates this kind of sea salt caramels), and the intonational contour associated
with correction structures like (2a) seems to be very similar to such Right Node
Raising constructions. To derive LFs like (23a), we need to make two additions to
the informal LF generation algorithm above:

(22) Correction LF generation algorithm (final pass):

I. Adjoin the trigger (the correction operator) to the correction.

II. Adjoin the anchor to the resulting structure.

III. Insert a variable of the appropriate type to fill in missing syntactically
obligatory structure.

IV. Identify that portion of the anchor that is a member of the focus
semantic value of the correction, and move it to an adjoining position,
leaving in place a variable and lambda-abstractor of the appropriate
type.

V. Identify that portion of the correction that corresponds to an
unbound variable in the anchor, and move it to an adjoining position
so that it can take scope over that variable.

The Semantics of Corrections 369

Anaphoric corrections like (4a) are analyzed as shown in (24a). To maintain the
general format for the correction operator contributed by uh, sorry, we assume
the covert insertion of a node denoting the identity function id(st)(st) over objects
of type st. This is for convenience only, we could also generalize the interpretation
of the correction operator in a suitable way.

We present an alternative formulation of the interpretation of corrections
couched in Categorial Grammar in AppendixA.

4.2 Telescoping Corrections

In this section we show how our account generalizes to telescoping error correc-
tion structures like (4f), or their plural counterparts (4g). We build on Dynamic
Plural Logic (DPlL) (van den Berg 1996; Nouwen 2003) and Plural Composi-
tional DRT (PCDRT) (Brasoveanu 2007), which recasts DPlL in classical type
logic and incorporates discourse reference to possible worlds. DPlL/PCDRT
enables us to treat updates with universal quantifiers in much the same way
as updates with proper names or indefinites, so our CDRT account of anaphoric
corrections like (4a)/(4b) can be straightforwardly generalized to (4f) and (4g).

The main difference between CDRT and DPlL/PCDRT is that updates are
binary relations over sets of assignments of type (st)((st)t), rather than binary
relations over single assignments of type s(st). Our type t therefore becomes

370 D. Rudin et al.

t := (st)((st)t). Since we work with sets of assignments, our ‘intensionalization’
type can simply be s := sw, i.e., the type of drefs for possible worlds. The reason
is that given a set of assignments Ist and a dref psw, we retrieve a set of worlds
(i.e., a proposition) as shown in (25). Introducing new drefs relative to a set of
assignments (26) is just the cumulative-style generalization of introducing drefs
relative to single assignments. Lexical relations are still interpreted distributively
(27), but relative to a set of assignments rather than a propositional dref. Sim-
ilarly, dynamic conjunction is still interpreted as relation composition (28). To
handle quantifiers, we introduce a maximization operator Mu(D) that extracts
the set of entities that satisfies the update D and stores it in dref u (29).

(25) pswIst = {pi : is ∈ I} (pI is the image of I under function p)

(26) [ν1, . . . , νn] := λIst.λJst. ∀is ∈ I∃js ∈ J(i[ν1, . . . , νn]j) ∧ ∀js ∈ J∃is ∈
I(i[ν1, . . . , νn]j)

(27) Rp(u1, . . . , un) := λIst. I �= ∅ ∧ ∀is ∈ I (R(pi)(u1i) . . . (uni))

(28) D;D′ := λIst.λJs. ∃Ks(DIK ∧ D′KJ)

(29) Mu(D) := λIst.λJst. ([u];D)IJ ∧ ¬∃Kst(([u];D)IK ∧ uJ � uK)

Universal quantification contributes a maximization operator over the restrictor,
and the nuclear scope further elaborates on the maximal restrictor-satisfying
dref (30). Singular or plural anaphora in subsequent sentences can pick up the
maximal dref introduced by the universal every, in much the same way that
the nuclear scope of an every quantification can pick up that dref and further
elaborate on it. To properly distinguish between singular anaphora (telescoping)
and plural anaphora, we need to extend the system with a notion of distributivity
and a notion of discourse plurality/singularity. But the basic system outlined
here is enough to show that we can now capture telescoping corrections in the
same way we capture regular anaphoric corrections, as shown in (31) (cf. (24)).12

(30) everyu � λPest.λP ′
est.λps. Mu(P (u)(p)); P ′(u)(p)

(31) Everyu1 boy made, uh sorry, heu1 / theyu1 ate a taco. �
[p1, p2];Mu1([boyp1(u1)]); [p′

1, u2| p′
1 � p1,tacop′

1
(u2),makep′

1
(u1, u2)];

[u2| p2 � p1,tacop2(u2), eatp2(u1, u2)]; CG += p2

5 Conclusion

We have argued that in error correction structures, the anchor and the correction
are given separate interpretations, in opposition to standard accounts in which
12 To derive the correct truth conditions, we need to introduce an additional proposi-

tional dref and suitable subset relations between propositional drefs to capture the
fact that anaphora from the correction to a quantifier in the anchor builds on part
of the content contributed by the anchor. The subset relations p′

1 � p1 and p2 � p1

need to preserve the full dependency structure associated with the worlds in p1. That
is, for any p1-world that we retain in the subsets p′

1 or p2, we need to retain the full
range of u1-entities associated with that world.

The Semantics of Corrections 371

the output of an error correction structure is a single unified interpretation for
the entire structure. On the basis of focus placement facts we have argued that
error correction structures are a species of contrast structure. On the basis of
telescoping facts, we have argued that the anchor and correction are treated
as separate sentences. And finally on the basis of propositional anaphora facts,
we have argued that the interpretation of the anchor is still accessible after the
correction has been completed. In light of these facts, we conclude that snip &
glue accounts of error correction are inadequate on their own.

One way to think about the present account of error corrections relative to
the SDRT one or the one in Ginzburg et al. (2014) is that it tries to see how far
we can get in a relatively unstructured version of dynamic semantics in which (i)
we have only Dynamic Predicate Logic (DPL) + propositional drefs (+the tech
needed for subclausal compositionality) and (ii) we assume a monotonic version
of incremental interpretation (no non-monotonic glue logic). An important point
that emerges is that simply adding propositional drefs and incorporating a sep-
arate CG update that involves only some of these propositional drefs is enough
to capture the basic interpretation of corrections. This enables us to incorpo-
rate telescoping corrections fairly easily because the basic DPL system can be
generalized to a dynamic plural logic.

We will close by mentioning two broad follow-up questions. First, what is the
fine-grained structure of elliptical corrections? Must corrections be constituents?
What is the relation between error correction structures, fragment answers and
better-studied forms of ellipsis, like gapping, stripping and sluicing? It is, to the
best of our knowledge, a novel observation that error correction structures involve
syntax/semantics ‘in the silence’ as Merchant (2001) puts it. Studying error
correction structures as a new addition to the typology of elliptical constructions
could significantly increase our understanding of the nature of structured silences
in natural language.

Second, what new types of psycholinguistic evidence can correction struc-
tures provide about the fine details of incremental processing? How do listeners
recognize that they’re hearing an error correction structure? What is the time
course of correction interpretation and how does this vary between the three
different types of corrections we studied? Are there processing costs associated
with ‘filling in’ missing material? Finally, what happens when the target of the
correction is ambiguous, e.g., John recognized Mary, uh, sorry, Bill (where Bill
could correct either John or Mary)? What factors affect disambiguation for one
resolution or another, e.g., identifying John or Mary as the target of correction
in the example we just mentioned?

Acknowledgments. We want to thank Pranav Anand, Donka Farkas, Andreas
Walker, Paul Willis, Erik Zyman and the audiences at the UCSC S-Circle (October
2015), CUSP (Stanford, November 2015), the UCSC SPLAP Workshop (February 2016),
CoCoLab (Stanford, March 2016) and three WoLLIC reviewers for discussion and com-
ments on this work. The usual disclaimers apply.

372 D. Rudin et al.

A Categorial Grammar Formulation

Here we present an alternative syntactic account of error correction structures in
categorical grammar that preserves our semantic account. For reasons of space
we suppress non-propositional drefs, and work through non-quantified cases only.
For full sentence corrections, the correction denotes a binary relation between
sentences that updates the common ground only with the proposition associated
with the correction:

John left

S : leave(j)

uh, sorry

(S\S)/S : λA.λA′.[p1, p2|A′(p1), A(p2)] ; CG+= p2

John arrived

S : arrive(j)

S\S : λA′.[p1, p2|A′(p1), arrivep2 (j)] ; CG+= p2

S: [p1, p2|leavep1 (j), arrivep2 (j)] ; CG+= p2

To handle partial corrections we generalize the type of the correction structure
to denote a relation between verb phrases. The correction essentially builds a
conjunction in which only the conjunct associated with the correction is added
to the common ground.

left

NP\S : leave

uh sorry

((NP\S)\(NP\S))/(NP\S) :
λA.λA′.λx.[p1, p2|A′(x)(p1), A(x)(p2)] ; CG+= p2

arrived

NP\S : arrive

(NP\S)\(NP\S) : λA′.λx.[p1, p2|A′(x)(p1), arrivep2 (x)] ; CG+= p2

NP\S : λx.[p1, p2|leavep1 (x), arrivep2 (x)] ; CG+= p2

The correction then takes the subject as its final argument resulting in the
desired update:

John

NP : j

left uh sorry arrived

NP\S : λx.[p1, p2|leavep1 (x), arrivep2 (x)] ; CG+= p2

S : [p1, p2|leavep1 (j), arrivep2 (j)] ; CG+= p2

We also need to handle error correction structures which contain material
between the correction and the constituent that needs to be replaced. This mate-
rial needs to be made available both to the anchor and the correction. We utilize
a pair forming operator ◦ that creates pairs of semantic values:

X : α Y : β

X ◦ Y : 〈α, β〉
We now analyze error correction structures with intervening material in terms
of pair formation. The correction, taking a verb to its right as its first argument,
expects a verb-object pair to its left. It then feeds the object to both verbs:

met

(NP\S)/NP : meet

Bill

NP : b

((NP\S)/NP) ◦ NP : 〈meet, b〉

uh sorry saw

(((NP\S)/NP) ◦ NP)\(NP\S) :
λA′.λx.[p1, p2|A′(1)(A′(2))(x)(p1), seep2 (A′(2))(x)] ; CG+= p2

NP\S : λx.[p1, p2|meetp1 (b)(x), seep2 (b)(x)] ; CG+= p2

The correction then takes the subject as its final argument, and generates the
desired update:

John

NP : j

met Bill uh sorry saw

NP\S : λx.[p1, p2|meetp1 (b)(x), seep2 (b)(x)] ; CG+= p2

S : [p1, p2|meetp1 (b)(j), seep2 (b)(j)] ; CG+= p2

The Semantics of Corrections 373

This account avoids movement of the intervening material at the cost of intro-
ducing a pair-forming operator. This operator allows us to store the semantic
value associated with the object so that it can be used to saturate the verb in
both the anchor and the correction.

References

Artstein, R.: Focus below the word level. Nat. Lang. Semant. 12, 1–22 (2004)
Asher, N., Lascarides, A.: Agreement, disputes and commitments in dialogue. J.

Semant. 26, 109–158 (2009)
Asher, N., Gillies, A.: Common ground, corrections, and coordination. Argumentation

17, 481–512 (2003)
van den Berg, M.: The dynamics of nominal anaphora. Dissertation, University of

Amsterdam, Amsterdam (1996)
Brasoveanu, A.: Structured nominal and modal reference. Dissertation, Rutgers Uni-

versity (2007)
Clark, H.H., Tree, J.E.F.: Using uh and um in spontaneous speaking. Cognition 84(1),

73–111 (2002). doi:10.1016/S0010-0277(02)00017-3
Farkas, D.F., Bruce, K.B.: On reacting to assertions and polar questions. J. Semant.

27, 81–118 (2010)
Ferreira, F., Lau, E., Bailey, K.: Disfluencies, language comprehension, and tree adjoin-

ing grammars. Cogn. Sci. 28, 721–749 (2004)
Ginzburg, J., Fernández, R., David, S.: Disfluencies as intra-utterance dialogue moves.

Semant. Pragmat. 7, 64 (2014)
Groenendijk, J., Stokhof, M.: Dynamic predicate logic. Linguist. Philos. 14(1), 39–100

(1991)
Heeman, P., Allen, J.: Speech repairs, intonational phrases and discourse markers:

modeling speaker’ utterances in spoken dialogue. Comput. Linguist. 25(4), 527–571
(1999)

Hough, J., Purver, M.: Processing self-repairs in an incremental type-theoretic dialogue
system. In: Proceedings of the 16th SemDial Workshop on the Semantics and Prag-
matics of Dialogue (SeineDial), Paris, pp. 136–144 (2012). http://www.eecs.qmul.
ac.uk/∼mpurver/papers/hough-purver12semdial.pdf

van Leusen, N.: The interpretation of corrections. In: Bosch, P., van der Sandt, R. (eds.)
Proceedings of the Conference on Focus and Natural Language Processing, vol. 3,
pp. 1–13. IBM Working paper 7, TR-80.94-007. IBM Deutschland GmhB (1994)

van Leusen, N.: Compatibility in context: a diagnosis of correction. J. Semant. 21,
415–441 (2004)

Levelt, W.: Monitoring and self-repair in speech. Cognition 14, 41–104 (1983)
Merchant, J.: Sluicing, Islands, and the Theory of Ellipsis. Oxford University Press,

Oxford (2001)
Milward, D., Cooper, R.: Applications, theory, and relationship to dynamic seman-

tics. In: The 15th International Conference on Computational Linguistics (COLING
1994), pp. 748–754. COLING 1994 Organizing Comm., Kyoto Japan (1994)

Muskens, R.: Combining Montague semantics and discourse representation. Linguist.
Philos. 19(2), 143–186 (1996)

Nouwen, R.: Dynamic aspects of quantification. Dissertation, UIL-OTS, Utrecht Uni-
versity (2003)

http://dx.doi.org/10.1016/S0010-0277(02)00017-3
http://www.eecs.qmul.ac.uk/~mpurver/papers/hough-purver12semdial.pdf
http://www.eecs.qmul.ac.uk/~mpurver/papers/hough-purver12semdial.pdf

374 D. Rudin et al.

Purver, M.: The theory and use of clarification requests in dialogue. Dissertation, King’s
College, University of London (2004). http://www.dcs.qmul.ac.uk/mpurver/papers/
purver04thesis.pdf

Roberts, C.: Modal subordination, anaphora, and distributivity. Dissertation, Univer-
sity of Massachusetts Amherst (1987)

Rooth, M.: A theory of focus interpretation. Nat. Lang. Semant. 1, 75–116 (1992)
Schegloff, E., Jefferson, G., Sacks, H.: The preference for self-correction in the organi-

zation of repair in conversation. Language 53(2), 361–382 (1977)
Shriberg, E.: Preliminaries to a theory of speech disfluencies. Dissertation, University

of California at Berkeley (1994)
Stalnaker, R.: Assertion. Syntax Semant. 9, 315–332 (1978)

http://www.dcs.qmul.ac.uk/mpurver/papers/purver04thesis.pdf
http://www.dcs.qmul.ac.uk/mpurver/papers/purver04thesis.pdf

The Expressive Power of k-ary Exclusion Logic

Raine Rönnholm(B)

University of Tampere, 33014 Tampere, Finland
raine.ronnholm@uta.fi

Abstract. In this paper we study the expressive power of k-ary exclu-
sion logic, EXC[k], that is obtained by extending first order logic with
k-ary exclusion atoms. It is known that without arity bounds exclusion
logic is equivalent with dependence logic. From the translations between
them we see that the expressive power of EXC[k] lies in between k-ary
and (k+1)-ary dependence logics. We will show that, at least in the case
of unary exclusion logic, the both of these inclusions are proper.

In a recent work by the author it was shown that k-ary inclusion-
exclusion logic is equivalent with k-ary existential second order logic,
ESO[k]. We will show that, on the level of sentences, it is possible to
simulate inclusion atoms with exclusion atoms, and this way express
ESO[k]-sentences by using only k-ary exclusion atoms. For this transla-
tion we also need to introduce a novel method for “unifying” the values of
certain variables in a team. As a consequence, EXC[k] captures ESO[k]
on the level of sentences, and thus we get a strict arity hierarchy for
exclusion logic. It also follows that k-ary inclusion logic is strictly weaker
than EXC[k].

1 Introduction

Exclusion logic is an extension of first order logic with team semantics. In team
semantics the truth of formulas is interpreted by using sets of assignments which
are called teams. This approach was introduced by Hodges [13] to define compo-
sitional semantics for the IF-logic by Hintikka and Sandu [11]. The truth for the
IF-logic was originally defined by using semantic games of imperfect informa-
tion [12], and in thus teams can be seen as parallel positions in a semantic game.
Teams can also be seen as databases [19], and thus the study of logics with team
semantics has natural connections with the study of database dependencies.

For first order logic team semantics is just a generalization of Tarski semantics
and has the same expressive power. But if we extend first order logic with new
atomic formulas we get higher expressive power and can define more complex
properties of teams. The first new atoms for this framework were dependence
atoms introduced by Väänänen [19]. In dependence logic the semantics for these
atoms are defined by functional dependencies of the values of variables in a team.
Several new atoms have been presented for this framework with the motivation
from simple database dependencies – such as independence atoms by Grädel and
Väänänen [8] and inclusion and exclusion atoms by Galliani [5]. Lately there

c© Springer-Verlag Berlin Heidelberg 2016
J. Väänänen et al. (Eds.): WoLLIC 2016, LNCS 9803, pp. 375–391, 2016.
DOI: 10.1007/978-3-662-52921-8 23

376 R. Rönnholm

has been research on these atoms with an attempt to formalize the dependency
phenomena in different fields of science, such as database theory [15], belief
presentation [4] and quantum mechanics [14].

If we extend first order logic with inclusion/exclusion atoms we obtain
inclusion and exclusion logics. The team semantics for these atoms are very
simple: Suppose that t1, t2 are k-tuples of terms and X is a team. The k-ary
inclusion atom t1 ⊆ t2 says that the values of t1 are included in the values of t2
in the team X. The k-ary exclusion atom t1 | t2 dually says that t1 and t2 get
distinct values in X, i.e. for all assignments s, s′ ∈ X we have s(t1) �= s′(t2).

Galliani [5] has shown that without arity bounds exclusion logic is equivalent
with dependence logic. Thus, on the level of sentences, it captures existential
second order logic, ESO [19]. Inclusion logic is not comparable with dependence
logic in general [5], but captures positive greatest fixed point logic on the level
of sentences, as shown by Galliani and Hella [7]. Hence exclusion logic captures
NP and inclusion logic captures PTIME over finite structures with linear order.

In order to understand the nature of these atoms, there has been research on
the bounded arity fragments of the corresponding logics. Durand and Kontinen
[3] have shown that, on the level of sentences, k-ary dependence logic captures the
fragment of ESO in which at most (k−1)-ary functions can be quantified1. From
this it follows that dependence logic has a strict arity hierarchy over sentences,
since the arity hierarchy of ESO (over arbitrary vocabulary) is known to be
strict, as shown by Ajtai [1]. These earlier results, however, do not tell much
about the expressive power of k-ary exclusion logic, EXC[k], since the existing
translation from it to dependence logic does not respect the arities of atoms.

There has not been much research on exclusion logic after Galliani proved its
equivalence with dependence logic. In this paper we will show that the relation-
ship between these two logics becomes nontrivial when we consider their bounded
arity fragments. This also leads to results on the relation between inclusion and
exclusion logics, which is interesting because they can be seen as duals to each
other, as we have argued in [17].

By inspecting Galliani’s translations [5] between exclusion and dependence
logics more closely, we observe that EXC[k] is stronger than k-ary dependence
logic but weaker than (k + 1)-ary dependence logic. Thus it is natural to ask
whether the expressive power of EXC[k] is strictly in between k-ary and (k +1)-
ary dependence logics. We will show that this holds at least when k = 1.

In an earlier work by the author [17] it was shown that both INC[k]- and
EXC[k]-formulas could be translated into k-ary ESO, ESO[k], which gives us
an upper bound for the expressive power of EXC[k]. In [17] it was also shown
that conversely ESO[k]-formulas with at most k-ary free relation variables can be
expressed in k-ary inclusion-exclusion logic, INEX[k], and consequently INEX[k]
captures ESO[k] on the level of sentences.

Since exclusion logic is closed downwards, unlike inclusion-exclusion logic, we
know that EXC[k] is strictly weaker than INEX[k]. However, in certain cases we
can simulate the use of inclusion atoms with exclusion atoms: Suppose that x, w,

1 See [6,9] for similar arity hierarchy results on independence and inclusion logics.

The Expressive Power of k-ary Exclusion Logic 377

wc are variables such that the sets values of w and wc in X are complements of
each other. Now we have M�X x ⊆ w iff M�X x | wc. This can be generalized
for k-ary atoms if the values of k-tuples w and w c are complementary.

We will use the observation above to modify our translation (in [17]) from
ESO[k] to INEX[k]. If we only consider sentences of exclusion logic, we can
quantify the needed complementary values, and then replace inclusion atoms in
the translation with the corresponding exclusion atoms. The remaining problem
is that in our translation we also needed a new connective called term value
preserving disjunction [17] to avoid the loss of information on the values of
certain variables when evaluating disjunctions. This operator can be defined by
using both inclusion and exclusion atoms [17], but it is undefinable in exclusion
logic since it is not closed downwards.

In [17] we introduced new operators called inclusion and exclusion quanti-
fiers and defined them in inclusion-exclusion logic. Furthermore, we showed that
universal inclusion quantifier (∀x ⊆ t) could be defined also in exclusion logic.
We will then consider the use of this quantifier in somewhat trivial looking form
(∀x ⊆ x). This operator turns out to be useful as it “unifies” the values of vari-
ables in a team. We will use it to define new operators called unifier, unified
existential quantifier and unifying disjunction.

This unifying disjunction will give us an alternative method to avoid the loss
of information in the translation from ESO[k]. This completes our translation,
and proves the equivalence between EXC[k] and ESO[k] on the level of sentences.
Hence we also get a strict arity hierarchy for exclusion logic since the arity
hierarchy for ESO is known to be strict. We also get the interesting consequence
that k-ary inclusion logic is strictly weaker than EXC[k] on the level of sentences.

See the extended version of this paper [18] for more details and examples.
Certain proofs, that have been omitted here, are also presented in [18].

2 Preliminaries

2.1 Syntax and Team Semantics for First Order Logic

A vocabulary L is a set of relation symbols R, function symbols f and constant
symbols c. The set of L-terms, TL, is defined in the standard way. The set of
variables occurring in a tuple t of L-terms is denoted by Vr(t).

Definition 1. FOL-formulas are defined as follows:

ϕ ::= t1 = t2 | ¬t1= t2 | R t | ¬R t | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | ∃xϕ | ∀xϕ

FOL-formulas of the form t1= t2, ¬t1= t2, R t and ¬R t are called literals.

Let ϕ ∈ FOL. We denote the set of subformulas of ϕ by Sf(ϕ), the set of variables
occurring in ϕ by Vr(ϕ) and the set of free variables of ϕ by Fr(ϕ).

An L-model M = (M, I), where the universe M is any nonempty set and
the interpretation I is a function whose domain is the vocabulary L. The inter-
pretation I maps constant symbols to elements in M , k-ary relation symbols to

378 R. Rönnholm

k-ary relations in M and k-ary function symbols to functions Mk → M . For all
k ∈ L we write kM := I(k). An assignment s for M is a function that is defined
in some set of variables, dom(s), and ranges over M . A team X for M is any set
of assignments for M with a common domain, denoted by dom(X).

Let s be an assignment and a be any element in M . The assignment s[a/x] is
defined in dom(s) ∪ {x}, and it maps the variable x to a and all other variables
as s. If x := x1 . . . xk is a tuple of variables and a := (a1, . . . , ak) ∈ Mk, we write
s[a/x] := s[a1/x1, . . . , ak/xk]. For a team X, a set A ⊆ Mk and for a function
F : X → P(Mk)\{∅} we use the following notations:

{
X[A/x] :=

{
s[a/x] | s ∈ X, a ∈ A

}

X[F/x] :=
{
s[a/x] | s ∈ X, a ∈ F(s)

}
.

Let M be an L-model, s an assignment and t an L-term s.t. Vr(t) ⊆ dom(s).
The interpretation of t with respect to M and s, is denoted simply by s(t). For
a team X and a tuple t := t1 . . . tk of L-terms we write

s(t) := (s(t1), . . . , s(tk)) and X(t) := {s(t) | s ∈ X}.

If A ⊆ M , we write A := M\A. We are now ready to define team semantics for
first order logic.

Definition 2. Let M be a model, ϕ ∈ FOL and X a team s.t. Fr(ϕ) ⊆ dom(X).
We define the truth of ϕ in the model M and the team X, M�X ϕ, as:

– M�X t1= t2 iff s(t1) = s(t2) for all s ∈ X.
– M�X ¬t1= t2 iff s(t1) �= s(t2) for all s ∈ X.
– M�X R t iff X(t) ⊆ RM.
– M�X ¬R t iff X(t) ⊆ RM.
– M�X ψ ∧ θ iff M�X ψ and M�X θ.
– M�X ψ ∨ θ iff there are Y, Y ′ ⊆ X s.t. Y ∪ Y ′ = X, M�Y ψ and M�Y ′ θ.
– M�X ∃ xψ iff there exists F : X → P(M)\{∅} s.t. M�X[F/x] ψ.
– M�X ∀ xψ iff M�X[M/x] ψ.

Remark 1. The semantics for existential quantifier above allows to select several
witnesses for x. In FO it is equivalent to pick only a single witness, and thus the
truth condition can be written in an equivalent form (so-called strict semantics):
M�X ∃ xψ iff there is F : X → M s.t. M�X[F/x] ψ, where X[F/x] is the team
{x[F (s)/x] | s ∈ X}. Since this truth condition is equivalent also for exclusion
logic [5], we will use it in the proofs for exclusion logic to simplify them.

For ϕ ∈ FOL and tuple x := x1 . . . xk we write: ∃x ϕ := ∃ x1 . . . ∃ xkϕ and
∀x ϕ := ∀ x1 . . . ∀ xkϕ. It is easy to show that

– M�X ∃x ϕ iff there exists F : X → P(Mk)\{∅} s.t. M�X[F/x] ϕ.
– M�X ∀x ϕ iff M�X[Mk/x] ϕ.

In strict semantics the first condition turns into the form: M�X ∃x ϕ iff there
exists F : X → Mk s.t. M�X[F/x] ϕ, where X[F/x] :=

{
s[F(s)/x] | s ∈ X

}
.

The Expressive Power of k-ary Exclusion Logic 379

First order logic with team semantics has so-called flatness-property:

Proposition 1 ([19], Flatness). Let X be a team and ϕ ∈ FOL. The following
equivalence holds: M�X ϕ iff M�{s} ϕ for all s ∈ X.

We use notations �T
s and �T for truth in a model with standard Tarski semantics.

Team semantics can be seen just as a generalization of Tarski semantics:

Proposition 2 ([19]). The following equivalences hold:

M�T
s ϕ iff M�{s} ϕ for all FOL -formulas ϕ and assignments s.

M�T ϕ iff M�{∅} ϕ for allFOL -sentences ϕ.

Note that, by flatness, M�X ϕ if and only if M�T
s ϕ for all s ∈ X. By Propo-

sition 2 it is natural to write M� ϕ, when we mean that M�{∅} ϕ. Note that
M�∅ ϕ holds trivially for all FOL-formulas ϕ by Definition 2. In general we say
that any logic L with team semantics has the empty team property if M�∅ ϕ
holds for all L-formulas ϕ. We define two more important properties for any
logic L with team semantics.

Definition 3. Let L be any logic with team semantics. We say that

– L is local, if the truth of formulas is determined only by the values of their
free variables in a team, i.e. we have: M�X ϕ iff M�X�Fr(ϕ) ϕ.

– L is closed downwards if we have: If M�X ϕ and Y ⊆ X, then M�Y ϕ.

By flatness it is easy to see that FO is local and closed downwards.

2.2 Inclusion and Exclusion Logics

Inclusion logic (INC) and exclusion logic (EXC) are obtained by adding inclusion
and exclusion atoms, respectively, to first order logic with team semantics:

Definition 4. If t1, t2 are k-tuples of L-terms, t1 ⊆ t2 is a k-ary inclusion
atom. INCL-formulas are formed like FOL-formulas by allowing the use of (non-
negated) inclusion atoms like literals. Let M be a model and X a team s.t.
Vr(t1t2) ⊆ dom(X). We define the truth of t1 ⊆ t2 in M and X as:

M�X t1 ⊆ t2 iff for all s ∈ X there exists s′ ∈ X s.t. s(t1) = s′(t2).

Equivalently we have M�X t1 ⊆ t2 iff X(t1) ⊆ X(t2).
If t1, t2 are k-tuples of L-terms, t1 | t2 is a k-ary exclusion atom. EXCL-

formulas are formed as FOL-formulas, but (non-negated) exclusion atoms may
be used as literals are used in FO. Let M be a model and X a team s.t. Vr(t1t2) ⊆
dom(X). We define the truth of t1 | t2 in M and X as:

M�X t1 | t2 iff for all s, s′ ∈ X : s(t1) �= s′(t2).

Equivalently we have M�X t1 | t2 iff X(t1) ∩ X(t2) = ∅ (iff X(t1) ⊆ X(t2)).

380 R. Rönnholm

Inclusion-exclusion logic (INEX) is defined simply by combining inclusion
and exclusion logics. If ϕ ∈ EXCL contains at most k-ary exclusion atoms, we
say that ϕ is a formula of k-ary exclusion logic, EXC[k]. k-ary inclusion logic
(INC[k]) and k-ary inclusion-exclusion logic (INEX[k]) are defined analogously.

The following properties have all been shown by Galliani [5]: EXC, INC
and INEX are all local and satisfy empty team property. EXC is also closed
downwards, unlike INC which is closed under unions. If we would use strict
semantics for existential quantifier in INC, it would not be local. This is one of
the reasons why the semantics given in Definition 2 is usually considered more
natural.

3 Expressing Useful Operators for Exclusion Logic

3.1 k-ary Dependence Atoms and Intuitionistic Disjunction

Let us review the semantics for dependence atoms of dependence logic [19]. Let
t1 . . . tk be L-terms. The k-ary dependence atom =(t1 . . . tk−1, tk) has the fol-
lowing truth condition: M�X =(t1 . . . tk−1, tk) if and only if we have:

for all s, s′ ∈ X for which s(t1 . . . tk−1) = s′(t1 . . . tk−1) also s(tk) = s′(tk),

for all L-models M and teams X for which Vr(t1 . . . tk) ⊆ dom(X). This truth
condition can be read as “the value of tk is (functionally) dependent on the
values of t1, . . . , tk−1”. By using Galliani’s translation between dependence logic
and exclusion logic, we can express k-ary dependence atoms in EXC[k]:

Proposition 3 ([5]). Let t = t1 . . . tk be a tuple of L-terms. The k-ary depen-
dence atom =(t1 . . . tk−1, tk) is equivalent with the EXCL[k]-formula ϕ:

ϕ := ∀x (x = tk ∨ t1 . . . tk−1x | t), wherex is a fresh variable.

In particular, we can express constancy atom2 =(t) in EXC[k] for any k ≥ 1.
The semantics of intuitionistic disjunction � is obtained by lifting the Tarski

semantics of classical disjunction from single assignments to teams. That is,
M�X ϕ � ψ iff M�X ϕ or M�X ψ. Galliani [4] has shown that this opera-
tor can be expressed by using constancy atoms. Hence we can define it as an
abbreviation in EXC[k] for any k ≥ 1.

3.2 Universal Inclusion Quantifier and the Unification of Values

In [17] we have considered inclusion and exclusion dependencies from a new
perspective by introducing inclusion and exclusion quantifiers. Let x be a k-tuple
of variables, t a k-tuple of L-terms and ϕ ∈ INEXL. We review the semantics
for universal inclusion and exclusion quantifiers (∀x ⊆ t) and (∀x | t):

M�X(∀x ⊆ t)ϕ iff M�X[A/x] ϕ, where A = X(t).

M�X(∀x | t)ϕ iff M�X[A/x] ϕ, where A = X(t).

2 =(t) is true in a nonempty team X iff t has a constant value in X, i.e. |X(t)| = 1.

The Expressive Power of k-ary Exclusion Logic 381

To define these quantifiers as abbreviations in INEX we needed to use both k-ary
inclusion and exclusion atoms. However, we can alternatively define quantifier
(∀x ⊆e t) as an abbreviation by using only k-ary exclusion atoms (see [17]).
This quantifier has the same truth condition as (∀x ⊆ t) above, when ϕ is a
formula of exclusion logic.

Hence the universal inclusion quantifier for k-tuples of variables can be
defined for both INEX[k] and EXC[k], although these definitions have to be
given differently. From now on we will always use the plain notation (∀x ⊆ t)
and assume it be defined in the right way depending on whether we use it with
INEX or EXC.

When defining quantifier (∀x ⊆ t), we allowed the variables in the tuple x
to occur in Vr(t). In particular, we accept the quantifiers of the form (∀x ⊆ x).
Quantifiers of this form may seem trivial, but they turn out to be rather useful
operators. Let us analyze their truth condition:

M�X(∀x ⊆ x)ϕ iff M�X′ ϕ, where X ′ = X[X(x)/x].

Note that the team X ′ is not necessarily the same team as X, although we have
dom(X ′) = dom(X) and even X ′(x) = X(x). Consider the following example.

Example 1. Let X ={s1, s2} where s1(v1)=a, s2(v1) = b and a �= b. Now

X[X(v1)/v1] = X[{a, b}/v1] = {s1[a/v1], s1[b/v1], s2[a/v1], s2[b/v1]}
= {s1, s2, s1[b/v1], s2[a/v1]} �= X.

We say that the quantifier (∀x ⊆ x) unifies the values of the tuple x in a team.
After executing this operation for a team X, each s ∈ X � (dom(X)\ Vr(x))
“carries” the information on the whole relation X(x). This also makes the values
of the tuple x independent of all the other variables in dom(X). To simplify our
notation we introduce the following operator.

Definition 5. Let x1, . . . ,xn be tuples of variables that are not necessarily of
the same length. The unifier of the values of x1, . . . ,xn is defined as:

U(x1, . . . ,xn)ϕ := (∀x1 ⊆ x1) . . . (∀xn ⊆ xn)ϕ.

Note that if the longest of the tuples x i is a k-tuple, then this operator can be
defined in EXC[k] (and in INEX[k]). If we require the variables in the tuples
x 1, . . . ,xn to be disjoint (i.e. no variable occurs in more than one tuple), their
order does not matter, and we obtain the following truth condition for the unifier:

M�X U(x 1, . . . ,xn)ϕ iff M�X[X(x1)/x1,...,X(xn)/xn] ϕ,

We have U(x 1, . . . ,xn)ϕ ≡ U(x 1) . . .U(xn)ϕ, but one should note that usually
U(x 1. . .xn)ϕ �≡ U(x 1, . . . ,xn)ϕ. To see this, consider X s.t. v1, v2 ∈ dom(X)
and let X1 := X[X(v1v2)/v1v2] and X2 := X[X(v1)/v1,X(v2)/v2]. Now we have
X1(v1v2) = X(v1v2) but X2(v1v2) = X(v1) × X(v2). It is easy to see that X1

and X2 are identical only if X(v1v2) = X(v1) × X(v2).

382 R. Rönnholm

Remark 2. It holds that U(v1v2, v2v3)ϕ ≡ U(v1, v2, v3)ϕ ≡ U(v2v3, v1v2)ϕ.
We can generalize this property of the unification to show that the order of the
unified tuples is irrelevant, even if they are not disjoint. We omit the proofs for
these claims, since we only use the unifier for disjoint tuples in this paper.

This new operator can be used in combination with other logical operators to
form new useful tools for the framework of team semantics. We will introduce
here two such operators. The definitions are given more generally for INEX, but
they can be defined in the same way for EXC as well.

Definition 6. Let x be a k-tuple of variables and ϕ ∈ INEXL. Unified existential
quantifier ∃U is defined as: ∃U xϕ := ∃x U(x)ϕ.

Proposition 4 (See [18] for a Proof). Let x be a k-tuple and ϕ ∈ INEXL.
Now M�X ∃U xϕ iff there exists a nonempty set A ⊆ Mk s.t. M�X[A/x] ϕ.

If we use this quantifier in EXC (or any other downwards closed logic), the follow-
ing equivalence holds: M�X ∃U x ϕ iff there exists a ∈ Mk s.t. M�X[{a}/x] ϕ.
For single variables this truth condition is equivalent with the semantics of the
quantifier ∃1 that was introduced in [16].

Definition 7. Let ϕ,ψ ∈ INEXL and let x1, . . . ,xn be k-tuples of disjoint vari-
ables. Unifying disjunction for tuples x1, . . . ,xn is defined as:

ϕ ∨U

x1,...,xn

ψ := ∃ y1 ∃ y2 U(x1, . . . ,xn)
(
(y1=y2 ∧ ϕ) ∨ (y1 �=y2 ∧ ψ)

)
,

where y1, y2 are fresh variables.

Proposition 5 (See [18] for a Proof). Let ϕ,ψ be INEXL-formulas and let
x1, . . . ,xn be k-tuples of disjoint variables. Now for all L-models M with at least
two elements we have

M�X ϕ ∨ U

x1,...,xn

ψ iff there exist Y, Y ′ ⊆ X s.t. Y ∪ Y ′ = X,

M�Y [X(x1)/x1,...,X(xn)/xn] ϕ and M�Y ′[X(x1)/x1,...,X(xn)/xn] ψ.

This operator will play a very important role in the next section.

4 The Expressive Power of EXC[k]

4.1 Relationship Between EXC and Dependence Logic

Galliani [5] has shown that, without arity bounds, EXC is equivalent with depen-
dence logic. However, if we consider the bounded arity fragments, this relation-
ship becomes nontrivial. We first review Galliani’s translation from exclusion
logic to dependence logic (the translation is slightly simplified here).

The Expressive Power of k-ary Exclusion Logic 383

Proposition 6 ([5]). Let t1, t2 be k-tuples of L-terms. The k-ary exclusion atom
t1 | t2 is logically equivalent with the depencende logic formula ϕ:

ϕ := ∀y∃w1∃ w2

(
=(w1)∧ =(y, w2) ∧ ((w1=w2 ∧ y �=t1) ∨ (w1 �=w2 ∧ y �=t2))

)
,

where y is a k-tuple of fresh variables and w1, w2 are fresh variables.

If we inspect Galliani’s translations more closely, we obtain the following:

Corollary 1. The expressive power of EXC[k] is in between k-ary dependence
logic and (k + 1)-ary dependence logic on the level of formulas.

Proof. By using translation in Proposition 3 we can express k-ary dependence
atoms with k-ary exclusion atoms. And by using translation in Proposition 6 we
can express k-ary exclusion atoms with (k + 1)-ary dependence atoms.

By this result it is natural to ask whether these inclusions are proper, or does
EXC[k + 1] collapse to some fragment of dependence logic. Let us inspect the
special case k = 1 with the following example.

Example 2 (Compare with a Similar Example for INEX in [17]). Let G = (V,E)
be an undirected graph. Now we have

(a) G is disconnected if and only if

G � ∀ z ∃x1 ∃x2

(
(x1=z ∨ x2=z) ∧ x1 |x2 ∧ (∀ y1 ⊆ x1)(∀ y2 ⊆ x2)¬Ey1y2

)
.

(b) G is k-colorable if and only if

G � γ≤k � ∀ z ∃ x1 . . . ∃ xk

(∨

i≤k

xi =z ∧
∧

i�=j

xi |xj

∧
∧

i≤k

(∀ y1 ⊆ xi)(∀ y2 ⊆ xi)¬Ey1y2

)
,

where γ≤k := ∃x1 . . . ∃xk ∀ y
(∨

i≤k

y = xi

)
.

Corollary 2. The expressive power of EXC[1] is properly in between 1-ary and
2-ary dependence logics, on the level of both sentences and formulas.

Proof. By Corollary 1, the expressive power of EXC[1] is in between 1-ary and
2-ary dependence logics. By Galliani [5], 1-ary dependence logic is not stronger
than FO on the level of sentences. However, by Example 2, there are sentences of
EXC[1] that cannot be expressed in FO. Thus EXC[1] is strictly stronger than
1-ary dependence logic on the level of sentences.

On the other hand, there are properties that are definable 2-ary dependence
logic, but which cannot be expressed in existential monadic second order logic,
EMSO, such as infinity of a model and even cardinality [19]. But since INEX[1]
is equivalent with EMSO on the level of sentences [17], EXC[1] must be strictly
weaker than 2-ary dependence logic on the level of sentences.

384 R. Rönnholm

4.2 Capturing the Arity Fragments of ESO with EXC

In this subsection we will compare the expressive power of EXC with existential
second order logic, ESO. We denote the k-ary fragment of ESO (where at most
k-ary relation symbols can be quantified) by ESO[k]. We will formulate a trans-
lation from ESO[k] to EXC[k] on the level of sentences by using the idea from
the following observation: Suppose that X is a team and x , w , w c are tuples
variables s.t. X(w c) = X(w). Now we have: M�X x ⊆ w iff M�X x | w c.

In our translation from ESO[k] to INEX[k] [17] the quantified k-ary relation
symbols Pi of a ESOL-formula were simply replaced with k-tuples w i of quanti-
fied first order variables. Then the formulas of the form Pit were replaced with
the inclusion atoms t ⊆ w i and the formulas of the form ¬Pit with the exclu-
sion atoms t |w i. To eliminate inclusion atoms from this translation we also
need to quantify a tuple w c

i of variables for each Pi and set a requirement that
w c

i must be given complementary values to w i. This requirement is possible to
set in exclusion logic if we are restricted to sentences. Then we simply replace
inclusion atoms t ⊆ w i with the corresponding exclusion atoms t |w c

i .
We also need to consider the quantification of the empty set and the full

relation Mk as special cases. This is because tuples w i and also their “com-
plements” w c

i must always be given a nonempty set of values. For this we use
special “label variables” w◦

i and w•
i for each relation symbol Pi. We first quantify

some constant value for a variable u and then we can give this value for w◦
i to

“announce” the quantification of the empty set or analogously we can give it
for w•

i to announce the quantification of the full relation. In order to give these
label values, there must be at least two elements in the model. For handling the
special case of single element models we will use the following easy lemma:

Lemma 1. Let ϕ be ESOL-sentence. Now there exists a FOL-sentence χ, such
that we have M� ϕ iff M� χ, for all L-models M = (M, I) for which |M | = 1.

The remaining problem is that in the translation from ESO to INEX we also
needed a new connective called term value preserving disjunction [17] to avoid
the loss of information on the values of variables w i when evaluating disjunctions.
This time we can use unifying disjunction instead to avoid the loss of information
on the values of both the tuples w i and the tuples w c

i . We are now ready to
formulate our main theorem.

Theorem 1. For every ESOL[k]-sentence Φ there exists an EXCL[k]-sentence
ϕ such that

M� ϕ iff M� Φ.

Proof. Since Φ is an ESOL[k]-sentence, there exists a FOL-sentence δ and rela-
tion symbols P1, . . . , Pn so that Φ = ∃P1 . . . ∃Pnδ. Without losing generality,
we may assume that P1, . . . , Pn are all k-ary. Let w1, . . . ,wn and w c

1, . . . ,w
c
n

be k-tuples of variables and w◦
1 , . . . , w

◦
n, w•

1 , . . . , w
•
n and u be variables such that

all of these variables are distinct and do not occur in the formula δ.

The Expressive Power of k-ary Exclusion Logic 385

Let ψ ∈ Sf(δ). The formula ψ′ is defined recursively:

ψ′ = ψ if ψ is a literal andPi does not occur in ψ for any i ≤ n

(Pit)′ = (t |w c
i ∨ w•

i =u) ∧ w◦
i �=u for all i ∈ {1, . . . , n}

(¬Pit)′ = (t |w i ∨ w◦
i =u) ∧ w•

i �=u for all i ∈ {1, . . . , n}
(ψ ∧ θ)′ = ψ′∧ θ′

(ψ ∨ θ)′ = ψ′ � U θ′, where � U := ∨ U

w1,...,wn,wc
1,...,wc

n

(∃ xψ)′ = ∃xψ′, (∀ xψ)′ = ∀xψ′.

Let χ be a FOL-sentence determined by the Lemma 1 for the sentence Φ and
let z be a k-tuple of fresh variables. Let γ=1 be a shorthand for the sentence
∀ z1 ∀ z2 (z1 = z2). Now we can define the sentence ϕ in the following way:

ϕ := (γ=1 ∧ χ) � ∃u ∃w◦
1 . . . ∃w◦

n ∃w•
1 . . . ∃w•

n

∀ z ∃w1 . . . ∃wn ∃w c
1 . . . ∃w c

n

(∧

i≤n

(z = w i ∨ z = w c
i) ∧ δ′).

Clearly ϕ is an EXCL[k]-sentence.
We write V ∗ := Vr(uw◦

1 . . . w◦
nw•

1 . . . w•
nw1 . . .wnw

c
1 . . .w c

n).

Before proving the claim of this theorem, we prove the following two lemmas:

Lemma 2. Let M be an L-model with at least two elements. Let μ ∈ Sf(δ) and
let X a team for which V ∗ ⊆ dom(X) and the following assumptions hold:

{
X(wi) ∪ X(wc

i) = Mk for each i ≤ n.

The values of w◦
i , w•

i (i ≤ n) and u are constants in X.

Let M′ := M[A/P] (= M[A1/P1, . . . , An/Pn]), where

Ai =

⎧
⎨

⎩

∅ if X(w◦
i) = X(u) and X(w•

i) �= X(u)
Mk if X(w•

i) = X(u) and X(w◦
i) �= X(u)

X(wi) else.

Now the following implication holds: If M�X μ′, then M′ �X μ.

We prove this claim by structural induction on μ:

– If μ is a literal and Pi does not occur in μ for any i ≤ n, then the claim holds
trivially since μ′ = μ.

– Let μ = Pjt for some j ≤ n.
Suppose that M�X(Pjt)′, i.e. M�X(t |w c

j ∨ w•
j =u) ∧ w◦

j �=u. Because the
values of u, w◦

j are constants in X and M�X w◦
j �=u, we have X(w◦

j) �= X(u).
If X(w•

j) = X(u), then Aj = Mk and thus trivially M′ �X Pjt .
Suppose then that X(w•

j) �= X(u) whence Aj = X(w j). Because the values
of u, w•

j are constants in X and M�X(t | w c
j ∨ w•

j = u), it must hold that
M�X t | w c

j . Now X(t) ∩ X(w c
j) = ∅ and X(w j) ∪ X(w c

j) = Mk. Thus
X(t) ⊆ X(w c

j) ⊆ X(w j) = Aj and therefore M′ �X Pjt .

386 R. Rönnholm

– Let μ = ¬Pjt for some j ≤ n.
Suppose first that M�X(¬Pjt)′, i.e. M�X(t |w j ∨w◦

j =u)∧w•
j �=u. Because

the values of u, w•
j are constants and M�X w•

j �=u, we have X(w•
j) �= X(u).

If X(w◦
j) = X(u), then Aj = ∅ and thus trivially M′ �X ¬Pjt .

Suppose then that X(w◦
i) �= X(u) whence Aj = X(w j). Because the values

of u, w◦
j are constants in X and M�X t |w j ∨ w◦

j =u, we have M�X t |w j .
Now X(t) ⊆ X(w j) = Aj and thus M′ �X ¬Pjt .

– The case μ = ψ ∧ θ is straightforward to prove.
– Let μ = ψ ∨ θ.

Suppose that M�X(ψ ∨ θ)′, i.e. M�X ψ′ � U θ′. By Proposition 5 there exist
Y1, Y2 ⊆ X s.t. Y1 ∪ Y2 = X, M�Y ∗

1
ψ′ and M�Y ∗

2
θ′, where

{
Y ∗
1 := Y1[X(w1)/w1, . . . , X(wn)/wn,X(w c

1)/w
c
1, . . . , X(w c

n)/w c
n]

Y ∗
2 := Y2[X(w1)/w1, . . . , X(wn)/wn,X(w c

1)/w
c
1, . . . , X(w c

n)/w c
n].

Now the sets of values for w i and w c
i are the same in Y ∗

1 and Y ∗
2 as in X.

Because the values of u and w◦
i , w•

i are constants in X they have (the same)
constant values in Y ∗

1 and Y ∗
2 . Hence, by the induction hypothesis, we have

M′ �Y ∗
1

ψ and M′ �Y ∗
2

θ. Since none of the variables in V ∗ occurs in ψ ∨ θ, by
locality M′ �Y1 ψ and M′ �Y2 θ. Therefore M′ �X ψ ∨ θ.

– The cases μ = ∃xψ and μ = ∀xψ are straightforward to prove.
(Note here that, since x /∈ V ∗, the assumptions of Lemma 2 hold in the
resulting team also after the quantification of x.)

Lemma 3. Let M be an L-model with at least two elements. Let μ ∈ Sf(δ)
and X be a team such that dom(X) = Fr(μ). Assume that A1, . . . , An ⊆ Mk,
M′ := M[A/P] and a, b ∈ M s.t. a �= b. Let

X ′ := X
[{a}/u,B◦

1/w◦
1 , . . . , B

◦
n/w◦

n, B•
1/w•

1 , . . . , B
•
n/w•

n,

B1/w1, . . . , Bn/wn, Bc
1/w

c
1, . . . , B

c
n/wc

n

]
,

where

⎧
⎪⎨

⎪⎩

B◦
i = {a}, B•

i = {b} and Bi = Bc
i = M if Ai = ∅

B◦
i = {b}, B•

i = {a} and Bi = Bc
i = M if Ai = Mk

B◦
i = {b}, B•

i = {b}, Bi = Ai and Bc
i = Ai else.

Now the following implication holds: If M′ �X μ, then M�X′ μ′.

We prove this claim by structural induction on μ. Note that if X = ∅, then also
X ′ = ∅ and thus the claim holds by empty team property. Hence we may assume
that X �= ∅.

– If μ is a literal and Pi does not occur in μ for any i ≤ n, then the claim holds
by locality since μ′ = μ.

– Let μ = Pjt for some j ≤ n.
Suppose first that M′ �X Pjt , i.e. X(t) ⊆ PM′

j = Aj . Since X �= ∅, also
X(t) �= ∅ and thus Aj �= ∅. Hence X ′(w◦

j) = {b}, and thus M�X′ w◦
i �= u

The Expressive Power of k-ary Exclusion Logic 387

since X ′(u) = {a}. If Aj = Mk, then X ′(w•
i) = {a} and thus M�X′ w•

j = u,
whence M�X′(t |w c

i ∨ w•
i =u) ∧ w◦

i �=u, i.e. M�X′(Pjt)′.
Suppose then that Aj �= Mk. Now we have X ′(w c

j) = Aj , i.e. X ′(wc
j) = Aj ,

and thus X ′(t) = X(t) ⊆ Aj = X ′(w c
j). Hence M�X′ t | w c

j and therefore
M�X′(t |w c

i ∨ w•
i =u) ∧ w◦

i �=u, i.e. M�X′(Pjt)′.
– Let μ = ¬Pjt for some j ≤ n.

Suppose that M′ �X ¬Pjt , i.e. X(t) ⊆ PM′
j = Aj . Since X �= ∅, X(t) �= ∅

and thus Aj �= ∅, i.e. Aj �= Mk. Hence X ′(w•
j) = {b}, and thus M�X′ w•

i �=u
since X ′(u) = {a}. If Aj = ∅, then X ′(w◦

i) = {a} and thus M�X′ w◦
j = u,

whence M�X′(t |w i ∨ w◦
i =u) ∧ w•

i �=u, i.e. M�X′(¬Pjt)′.
Suppose then that we have Aj �= ∅. Then X ′(w j) = Aj and thus it holds
that X ′(t)=X(t) ⊆ Aj =X ′(wj). Hence we have M�X′ t |w j and therefore
M�X′(t |w i ∨ w◦

i =u) ∧ w•
i �=u, i.e. M�X′(¬Pjt)′.

– The case μ = ψ ∧ θ is straightforward to prove.
– Let μ = ψ ∨ θ.

Suppose that M′ �X ψ∨θ, i.e. there exist Y1, Y2 ⊆ X s.t. Y1∪Y2 = X, M′ �Y1 ψ
and M′ �Y2 θ. Let Y ′

1 , Y
′
2 be the teams obtained by extending the teams Y1, Y2

as X ′ is obtained by extending X. Then, by the induction hypothesis, we have
M�Y ′

1
ψ′ and M�Y ′

2
θ′. Now the following holds:

{
Y ′
1 = Y ′

1 [X(w1)/w1, . . . , X(wn)/wn,X(w c
1)/w

c
1, . . . , X(w c

n)/w c
n]

Y ′
2 = Y ′

2 [X(w1)/w1, . . . , X(wn)/wn,X(w c
1)/w

c
1, . . . , X(w c

n)/w c
n].

Note that also Y ′
1 , Y

′
2 ⊆ X ′ and Y ′

1 ∪ Y ′
2 = X ′. Thus by Proposition 5

M�X′ ψ′ � U θ′, i.e. M�X′(ψ ∨ θ)′.
– Let μ = ∃xψ (the case μ = ∀ xψ is proven similarly).

Suppose that M′ �X ∃xψ, i.e. there exists F : X → M s.t. M′ �X[F/x] ψ. Let
F ′ : X ′ → M such that s �→ F (s � Fr(μ)) for each s ∈ X ′. Note that F ′ is well
defined since dom(X) = Fr(μ) by the assumption.
Let (X[F/x])′ be a team that is obtained by extending the team X[F/x]
analogously as X ′ is obtained by extending X. Now by induction hypoth-
esis we have M�(X[F/x])′ ψ′. By the definition of F ′ it is easy to see that
(X[F/x])′ = X ′[F ′/x] and thus M�X′[F ′/x] ψ

′. Hence we have M�X′ ∃ xψ′,
i.e. M�X′(∃ xψ)′.

We are ready prove: M� ϕ iff M� Φ. Suppose first M� ϕ, i.e. M� γ=1 ∧ χ or

M� ∃ u ∃ w◦
1 . . . ∃ w◦

n ∃ w•
1 . . . ∃ w•

n

∀ z ∃w1 . . . ∃wn ∃w c
1 . . . ∃w c

n

(∧

i≤n

(z = w i ∨ z = w c
i) ∧ δ′). ()

If M� γ=1∧χ, the claim holds by Lemma 1. Suppose then(), whence by the
(strict) semantics of existential quantifier there are a, b1 . . . bn, b′

1, . . . , b
′
n ∈M s.t.

M�X1 ∀ z ∃w1 . . . ∃wn ∃w c
1 . . . ∃w c

n

(∧

i≤n

(z = w i ∨ z = w c
i) ∧ δ′),

388 R. Rönnholm

where X1 := {∅[a/u, b1/w◦
1 , . . . , bn/w◦

n, b′
1/w•

1 , . . . , b
′
n/w•

n]}. Note that since X1

consists only of a single assignment, the values of u, w◦
i and w•

i (i ≤ n) are triv-
ially constants in the team X1. Let X2 := X1[Mk/z]. Now there exist functions
Fi : X2[F1/w1, . . . ,Fi−1/w i−1] → Mk such that

M�X3 ∃w c
1 . . . ∃w c

n

(∧

i≤n

(z = w i ∨ z = w c
i) ∧ δ′),

where X3 := X2[F1/w1, . . . ,Fn/wn].
Hence there exist functions F ′

i : X3[F ′
1/w

c
1, . . . ,F ′

i−1/w
c
i−1] → Mk such

that M�X4

∧
i≤n(z = w i ∨ z = w c

i) ∧ δ′, where X4 := X3[F ′
1/w

c
1, . . . ,F ′

n/w c
n].

Since X4(z) = Mk and M�X4

∧
i≤n(z = w i ∨ z = w c

i), it is easy to see that
X(w i)∪X(w c

i) = Mk for each i ≤ n. Now all the assumptions of Lemma 2 hold
for the team X4. Let M′ := M[A/P], where

Ai =

⎧
⎨

⎩

∅ if X4(w◦
i) = X4(u) and X4(w•

i) �= X4(u)
Mk if X4(w•

i) = X4(u) and X4(w◦
i) �= X4(u)

X4(w i) else.

Since M�X4 δ′, by Lemma 2 we have M′ �X4 δ. By locality M′ � δ, and therefore
M� Φ.

Suppose then that M� Φ. If |M | = 1, then by Lemma 1 we have M� γ=1∧χ
and thus M� ϕ. Hence we may assume that |M | ≥ 2, whence there exist a, b ∈ M
s.t. a �= b. Since M� Φ, there exist A1, . . . , An ⊆ Mk s.t. M[A/P]� δ. Let

X ′ := {∅}[{a}/u, B◦
1/w◦

1 , . . . , B
◦
n/w◦

n, B•
1/w•

1 , . . . , B
•
n/w•

n,

B1/w1, . . . , Bn/wn, Bc
1/w

c
1, . . . , B

c
n/w c

n

]
,

where B◦
i , B•

i , Bi, B
c
i (i ≤ n) are defined as in the assumptions of Lemma 3. Since

M[A/P]� δ, by Lemma 3 we have M�X′ δ′. Let

F : {∅} →M2n+1, ∅ �→ ab1 . . . bnb′
1 . . . b′

n,

where

{
bi = a if Ai = ∅
bi = b else

and

{
b′
i = a if Ai = Mk

b′
i = b else.

Let X1 := {∅}[F/uw◦
1 . . . w◦

nw•
1 . . . w•

n] and let X2 := X1[Mk/z]. We fix some
bi ∈ Ai for each i ≤ n for which Ai �= ∅ and define the functions

Fi : X2[F1/w1, . . . ,Fi−1/w i−1] → Mk,

{
s �→ s(z) if s(z) ∈ Ai or Ai = ∅
s �→ bi else.

Let X3 := X2[F1/w1, . . . ,Fn/wn]. We fix some b ′
i ∈ Ai for each i ≤ n for which

Ai �= Mk and define

F ′
i : X3[F ′

1/w
c
1, . . . ,F ′

i−1/w
c
i−1] → Mk,

{
s �→ s(z) if s(z) ∈ Ai or Ai = Mk

s �→ b ′
i else.

The Expressive Power of k-ary Exclusion Logic 389

Let X4 := X3[F ′
1/w

c
1, . . . ,F ′

n/w c
n]. By the definitions of the functions Fi,F ′

i it
is easy to see that M�X4

∧
i≤n(z = w i ∨ z = w c

i). Also, clearly for each s ∈ X4

and i ≤ n it holds that s(w◦
i) ∈ B◦

i , s(w•
i) ∈ B•

i , s(w i) ∈ Bi and s(w c
i) ∈ Bc

i .
By the definitions of the choice functions for the variables in V ∗ we have:

X4[X4(w1)/w1, . . . , X4(wn)/wn,X4(w1)/w c
1, . . . , X4(wn)/w c

n] = X ′[Mk/z].

Hence X4 ⊆ X ′[Mk/z]. Since M�X′ δ′, by locality M�X′[Mk/z] δ
′. Since EXC is

closed downwards, we have M�X4 δ′. Hence M�X4

∧
i≤n(z = w i ∨z = w c

i)∧δ′

and furthermore M� ϕ.

Corollary 3. On the level of sentences EXC[k] ≡ ESO[k].

Proof. In [17] we presented a translation from EXC[k] to ESO[k]. By Theorem 1,
on the level of sentences, there is also a translation from ESO[k] to EXC[k].

4.3 Relationship Between INC[k] and EXC[k]

Since by [17] INEX[k] captures ESO[k], by Corollary 3 we can deduce that
INEX[k] ≡ EXC[k] on the level of sentences. Hence on the level of sentences
k-ary inclusion atoms do not increase the expressive power of EXC[k].

By Dawar [2], 3-colorability of a graph cannot be expressed in fixed point
logic. Since by [7] INC is equivalent with positive greatest fixed point logic, this
property is not expressible in INC. However, since it can be expressed in EXC[1]
(Example 2), INC[k] is strictly weaker than EXC[k] on the level of sentences.

This consequence is somewhat surprising since inclusion and exclusion atoms
can be seen as duals of each other [17]. As a matter of fact, exclusion atoms can
also be simulated with inclusion atoms in an analogous way as we simulated
inclusion atoms with exclusion atoms. To see this, suppose that X is a team and
x , w , w c are tuples variables s.t. X(w c) = X(w). Now we have: M�X x |w iff
M�X x ⊆ w c (compare with our observation in the beginning of Sect. 4.2).

By this observation, it would be natural to assume that ESOL[k]-sentences
could be expressed with INC[k]-sentences similarly as we did with EXC[k]-
sentences. But this is impossible as we deduced above. The problem is that
in INC there is no way to “force” the tuples w and w c to be quantified in such
a way that their values would be complements of each other. However, there is
a possibility this could be done in inclusion logic with strict semantics, since
Hannula and Kontinen [10] have shown that this logic is equivalent with ESO.
We will study this question in a future work.

5 Conclusion

In this paper we analyzed the expressive power of k-ary exclusion atoms.
We first observed that the expressive power of EXC[k] is between k-ary and
(k +1)-ary dependence logics, and that when k = 1, these inclusions are proper.
By simulating the use of inclusion atoms with exclusion atoms and by using the

390 R. Rönnholm

complementary values, we were able to translate ESO[k]-sentences into EXC[k].
By combining this with our earlier translation we managed to capture the k-ary
fragment of ESO by using only k-ary exclusion atoms, which resolves the expres-
sive power of EXC[k] on the level of sentences. However, on the level of formulas
our results are not yet conclusive.

As mentioned in the introduction, by [3], on the level of sentences k-ary
dependence logic captures the fragment of ESO where (k − 1)-ary functions can
be quantified. Thus 1-ary dependence logic is not more expressive than FO, but
2-ary dependence logic is strictly stronger than EMSO – which can be captured
with EXC[1]. Also, the question whether EXC[k] is properly in between k- and
(k + 1)-ary dependence logic for all k ≥ 2, amounts to showing whether k-ary
relational fragment of ESO is properly between (k − 1)-ary and k-ary functional
fragments of ESO for any k ≥ 2. To our best knowledge this is still an open
problem, even though, by the result of Ajtai [1], both relational and functional
fragments of ESO have a strict arity hierarchy (over arbitrary vocabulary).

In order to formulate the translation in our main theorem, we needed use a
new operator to called unifier which is expressible in exclusion logic. This is a
very simple but interesting operator for the framework of team semantics by its
own right, and its properties deserve to be studied further – either independently
or by adding it to some other logics with team semantics.

References

1. Ajtai, M.: Σ1
1 -formulae on finite structures. Ann. Pure Appl. Logic 724(1), 1–48

(1983)
2. Dawar, A.: A restricted second order logic for finite structures. Inf. Comput.

143(2), 154–174 (1998)
3. Durand, A., Kontinen, J.: Hierarchies in dependence logic. ACM Trans. Comput.

Log. 13(4), 31 (2012)
4. Galliani, P.: The Dynamics of Imperfect Information. Institute for Logic Language

and Computation, Amsterdam (2012)
5. Galliani, P.: Inclusion and exclusion dependencies in team semantics - on some

logics of imperfect information. Ann. Pure Appl. Logic 163(1), 68–84 (2012)
6. Galliani, P., Hannula, M., Kontinen, J.: Hierarchies in independence logic. In: CSL

2013, pp. 263–280 (2013)
7. Galliani, P., Hella, L.: Inclusion logic and fixed point logic. In: CSL 2013, pp.

281–295 (2013)
8. Grädel, E., Väänänen, J.A.: Dependence and independence. Studia Logica 101(2),

399–410 (2013)
9. Hannula, M.: Hierarchies in inclusion logic with lax semantics. In: Banerjee, M.,

Krishna, S.N. (eds.) ICLA. LNCS, vol. 8923, pp. 100–118. Springer, Heidelberg
(2015)

10. Hannula, M., Kontinen, J.: Hierarchies in independence and inclusion logic with
strict semantics. J. Log. Comput. 25(3), 879–897 (2015)

11. Hintikka, J., Sandu, G.: Informational independence as a semantical phenomenon
VIII. In: Fenstad, J.E. (ed.) Logic, Methodology and Philosophy of Science, pp.
571–589. Elsevier, Amsterdam (1989)

The Expressive Power of k-ary Exclusion Logic 391

12. Hintikka, J., Sandu, G.: Game-theoretical semantics. In: van Benthem, J., ter
Meulen, A. (eds.) Handbook of Logic and Language, pp. 361–410. Elsevier,
Amsterdam (1997)

13. Hodges, W.: Compositional semantics for a language of imperfect information. Log.
J. IGPL 5(4), 539–563 (1997)

14. Hyttinen, T., Paolini, G., Väänänen, J.: Quantum team logic and Bell’s inequali-
ties. Rev. Symb. Log. 8, 722–742 (2015)

15. Kontinen, J., Link, S., Väänänen, J.: Independence in database relations. In:
Libkin, L., Kohlenbach, U., de Queiroz, R. (eds.) WoLLIC 2013. LNCS, vol. 8071,
pp. 179–193. Springer, Heidelberg (2013)

16. Kontinen, J., Väänänen, J.A.: On definability in dependence logic. J. Log. Lang.
Inf. 18(3), 317–332 (2009)

17. Rönnholm, R.: Capturing k-ary inclusion-exclusion logic with k-ary existential sec-
ond order logic (2015). arXiv:1502.05632 [math.LO]

18. Rönnholm, R.: The expressive power of k-ary exclusion logic (2016).
arXiv:1605.01686 [math.LO]

19. Väänänen, J.A.: Dependence logic - a new approach to independence friendly logic.
London Mathematical Society Student Texts, vol. 70. Cambridge University Press
(2007)

http://arxiv.org/abs/1502.05632
http://arxiv.org/abs/1605.01686

Characterizing Relative Frame Definability
in Team Semantics via the Universal Modality

Katsuhiko Sano1 and Jonni Virtema2,3(B)

1 Japan Advanced Institute of Science and Technology, Nomi, Japan
katsuhiko.sano@gmail.com

2 University of Helsinki, Helsinki, Finland
jonni.virtema@gmail.com

3 Leibniz Universität Hannover, Hanover, Germany

Abstract. Let ML(�u+) denote the fragment of modal logic extended
with the universal modality in which the universal modality occurs only
positively. We characterise the relative definability of ML(�u+) relative
to finite transitive frames in the spirit of the well-known Goldblatt–
Thomason theorem. We show that a class F of finite transitive frames
is definable in ML(�u+) relative to finite transitive frames if and only
if F is closed under taking generated subframes and bounded morphic
images. In addition, we study modal definability in team-based logics. We
study (extended) modal dependence logic, (extended) modal inclusion
logic, and modal team logic. With respect to global model definability we
obtain a trichotomy and with respect to frame definability a dichotomy.
As a corollary we obtain relative Goldblatt–Thomason -style theorems
for each of the logics listed above.

1 Introduction

Team semantics was introduced by Hodges [15] in the context of the so-called
independence-friendly logic of Hintikka and Sandu [14]. The fundamental idea
behind team semantics is crisp. The idea is to shift from single assignments to
sets of assignments as the satisfying elements of formulas. Väänänen [19] adopted
team semantics as the core notion for his dependence logic. The syntax of first-
order dependence logic extends the syntax of first-order logic by novel atomic
formulas called dependence atoms. The intuitive meaning of the dependence
atom =(x1, . . . , xn, y) is that inside a team the value of y is functionally deter-
mined by the values of x1, . . . , xn. After the introduction of dependence logic in
2007 the study of related logics with team semantics has boomed. One of the
most important developments in the area of team semantics was the introduc-
tion of independence logic [10] in which dependence atoms of dependence logic

The work of the first author was partially supported by JSPS KAKENHI Grant-
in-Aid for Young Scientists (B) Grant Number 15K21025 and JSPS Core-to-Core
Program (A. Advanced Research Networks). The work of the second author was
supported by grant 292767 of the Academy of Finland, and by Jenny and Antti
Wihuri Foundation.

c© Springer-Verlag Berlin Heidelberg 2016
J. Väänänen et al. (Eds.): WoLLIC 2016, LNCS 9803, pp. 392–409, 2016.
DOI: 10.1007/978-3-662-52921-8 24

Characterizing Relative Frame Definability in Team Semantics 393

are replaced by independence atoms. Soon after, Galliani [5] showed that inde-
pendence atoms can be further analysed, and alternatively expressed, in terms
of inclusion and exclusion atoms.

Concurrently a vibrant research on modal and propositional logics with team
semantics has emerged. In the context of modal logic, any subset of the domain
of a Kripke model is called a team. In modal team semantics, formulas are eval-
uated with respect to team-pointed Kripke models. The study of modal depen-
dence logic was initiated by Väänänen [20] in 2008. Shortly after, extended modal
dependence logic (EMDL) was introduced by Ebbing et al. [4] and modal inde-
pendence logic by Kontinen et al. [16]. The focus of the research has been in the
computational complexity and expressive power. Hella et al. [11] established that
exactly the properties of teams that have the so-called empty team property, are
downward closed and closed under the so-called team k-bisimulation, for some
finite k, are definable in EMDL. Kontinen et al. [17] have shown that exactly
the properties of teams that are closed under the team k-bisimulation are defin-
able in the so-called modal team logic, whereas Hella and Stumf established [12]
that the so-called extended modal inclusion logic is characterised by the empty
team property, union closure, and closure under team k-bisimulation. See the
survey [3] for a detailed exposition on the expressive power and computational
complexity of related logics.

The study of frame definability in the team semantics context was initiated
by Sano and Virtema [18]. Let ML(�u +) denote the syntactic fragment of modal
logic with universal modality in which the universal modality occurs only posi-
tively. Sano and Virtema established a surprising connection between ML(�u +)
and particular team-based modal logics and gave a Goldblatt–Thomason -style
theorem for the logics in question. They showed that with respect to frame defin-
ability ML(�u +), MDL and EMDL coincide. Moreover, they established that
an elementary class of Kripke frames is definable in ML(�u +) (and thus in MDL
and EMDL) if and only if it is closed under taking generated subframes and
bounded morphic images, and reflects ultrafilter extensions and finitely gener-
ated subframes.

Since most familiar modal logics enjoy the finite model property, one may
wonder if we can restrict our attention to classes of finite frames for character-
izing modal definability. For basic modal logic this was done in [1]. It is imme-
diate to see that the reflection of ultrafilter extensions should be redundant
under such restriction because ultrafilter extensions of finite frames are just
those frames themselves. Interestingly, a modally undefinable property some-
times becomes definable within a suitable class of finite frames. A first-order
condition of irreflexivity (for any w, wRw fails) of the accessibility relation is
known to be undefinable by a set of modal formulas, since the condition violates
the closure of a modally definable class under surjective bounded morphisms
(consider a bounded morphism sending a frame of two symmetric points to a
frame of a single reflexive point). It is, however, also known that irreflexivity
becomes definable within the class of finite transitive frames by the Loeb axiom

394 K. Sano and J. Virtema

�(�p → p) → �p. Such phenomena motivate us to study relative definability
also in the context of team-based modal logics.

In this paper, we provide Goldblatt–Thomason -style theorem for the relative
definability of ML(�u +) relative to finite transitive frames in the spirit of [1] with
the help of Jankov-Fine formulas (cf. [2, Theorem 3.21]). We show that a class
F of finite transitive frames is definable in ML(�u +) relative to finite transitive
frames if and only if F is closed under taking generated subframes and bounded
morphic images. In addition, we study modal definability in team-based logics.
We study (extended) modal dependence logic, (extended) modal inclusion logic,
and modal team logic. We obtain strict hierarchies with respect to both global
model definability and frame definability.

2 Modal Logic with Universal Modality

In this section, we introduce modal logic with universal modality and give some
basic definitions and results concerning frame definability. In team-based logics
it is customary to define the syntax in negation normal form, that is to assume
that negations occur only in front of proposition symbols. This is due to the
fact that the team semantics negation, that corresponds to the negation used
in Kripke semantics, is not the contradictory negation of team semantics. Since
in this article we consider extensions of modal logic in the framework of team
semantics, we define the syntax of modal logic also in negation normal form.

Let Φ be a set of atomic propositions. The set of formulas for modal logic
ML(Φ) is generated by the following grammar

ϕ ::= p | ¬p | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | ♦ϕ | �ϕ, where p ∈ Φ.

The syntax of modal logic with universal modality ML(�u)(Φ) is obtained by
extending the syntax of ML(Φ) by the grammar rules

ϕ ::= �u ϕ | ♦u ϕ.

The syntax of modal logic with positive universal modality ML(�u +)(Φ) is
obtained by extending the syntax of ML(Φ) by the grammar rule ϕ ::= �u ϕ. As
usual, if the underlying set Φ of atomic propositions is clear from the context,
we drop “(Φ)” and just write ML, ML(�u), etc. We also use the shorthands ¬ϕ,
ϕ → ψ, and ϕ ↔ ψ. By ¬ϕ we denote the formula that can be obtained from
¬ϕ by pushing all negations to the atomic level, and by ϕ → ψ and ϕ ↔ ψ, we
denote ¬ϕ ∨ ψ and (ϕ → ψ) ∧ (ψ → ϕ), respectively.

A (Kripke) frame is a pair F = (W,R) where W , called the domain of F, is a
non-empty set and R ⊆ W ×W is a binary relation on W . By Fall, we denote the
class of all frames. We use |F| to denote the domain of the frame F. A (Kripke)
Φ-model is a tuple M = (W,R, V), where (W,R) is a frame and V : Φ → P(W)
is a valuation of the proposition symbols. By Mall(Φ), we denote the class of all
Φ-models. The semantics of modal logic, i.e., the satisfaction relation M, w � ϕ,

Characterizing Relative Frame Definability in Team Semantics 395

is defined via pointed Φ-models as usual. For the universal modality �u and its
dual ♦u , we define

M, w � �u ϕ ⇔ M, v � ϕ, for every v ∈ W,

M, w � ♦u ϕ ⇔ M, v � ϕ, for some v ∈ W.

A formula set Γ is valid in a model M = (W,R, V) (notation: M � Γ), if
M, w � ϕ holds for every w ∈ W and every ϕ ∈ Γ . When Γ is a singleton { ϕ },
we simply write M � ϕ.

Below we assume only that the logics L(Φ) and L′(Φ) are such that the global
satisfaction relation for Kripke models (i.e., M � ϕ) is defined. A set Γ of L(Φ)-
formulas is valid in a frame F (written: F � Γ) if (F, V) � ϕ for every valuation
V : Φ → P(W) and every ϕ ∈ Γ . A set Γ of L(Φ)-formulas is valid in a class F of
frames (written: F � Γ) if F � Γ for every F ∈ F. Given a set Γ of L(Φ)-formulas,
FR(Γ) := {F ∈ Fall |F � Γ } and Mod(Γ) := {M ∈ Mall(Φ) |M � Γ }. We say
that Γ defines the class F of frames and the class C of models, if F = FR(Γ)
and C = Mod(Γ), respectively. When Γ is a singleton { ϕ }, we simply say that
ϕ defines the class F (or C). A class F of frames (models) is L(Φ)-definable if
there exists a set Γ of L(Φ)-formulas such that FR(Γ) = F (Mod(Γ) = F).

It was shown in [18] that with respect to frame definability, we have that
ML < ML(�u +) < ML(�u). Moreover the frame definability of each of the
mentioned logics have been characterised with respect to first-order definable
frame classes. For the characterisations the notions of disjoint unions, generated
subframes, bounded morphisms, and ultrafilter extensions are required. Defini-
tions for these constructions can be found, e.g., in [2], and in AppendixB.

The following results were proved for ML by Goldblatt and Thomason [7],
for ML(�u +) by Sano and Virtema [18], and for ML(�u) by Goranko and Passy
[9]. A frame class F reflects finitely generated subframes whenever it is the case
for all frames F that, if every finitely generated subframe of F is in F, then F ∈ F.

Theorem 1 (Goldblatt–Thomason theorems for ML, ML(�u +) and
ML(�u)). (i) An elementary frame class is ML-definable if and only if it
is closed under taking bounded morphic images, generated subframes, disjoint
unions and reflects ultrafilter extensions.
(ii) An elementary frame class is ML(�u +)-definable if and only if it is closed
under taking generated subframes and bounded morphic images, and reflects
ultrafilter extensions and finitely generated subframes.
(iii) An elementary frame class is ML(�u)-definable if and only if it is closed
under taking bounded morphic images and reflects ultrafilter extensions.

3 Finite Goldblatt-Thomason-Style Theorem for Relative
Modal Definability with Positive Universal Modality

Given a class G of frames, we say that a set of formulas defines a class F of
frames within G if, for all frames F ∈ G, the equivalence: F � ϕ ⇔ F ∈ F holds.
A frame F = (W,R) is called finite whenever W is a finite set and transitive

396 K. Sano and J. Virtema

whenever R is a transitive relation. In what follows, let Ffintra be the class of all
finite transitive frames and Ffin the class of all finite frames.

With the help of frame constructions such as bounded morphic images, dis-
joint unions, generated subframes, we first review the existing characterisations
of relative ML- and ML(�u)-definability within the class of finite transitive
frames. We then give a novel characterisation of relative ML(�u +)-definability
again within the class of finite transitive frames.

Theorem 2 (Finite Goldblatt–Thomason Theorems for ML [1] and
ML(�u) [6]).

1. A class of finite transitive frames is ML-definable within the class Ffintra of
all finite transitive frames if and only if it is closed under taking bounded
morphic images, generated subframes, and disjoint unions.

2. A class of finite frames is ML(�u)-definable within the class Ffin of all finite
frames if and only if it is closed under taking bounded morphic images.

In order to show the corresponding characterisation of relative definability
in ML(�u +), a variant of the Jankov-Fine formula is defined.

Definition 1. Let F = (W,R) be a finite transitive frame. Put W :=
{ w0, . . . , wn }. Associate a new proposition variable pwi

with each wi and define
�+ϕ := �ϕ ∧ ϕ. The Jankov-Fine formula ϕF,wi

at wi is defined as the con-
junction of all the following formulas:

1. pwi

2. �(pw0 ∨ · · · ∨ pwn
).

3.
∧ {

�+(pwi
→ ¬pwj

) |wi 	= wj

}
.

4.
∧ {

�+(pwi
→ ♦pwj

) | (wi, wj) ∈ R
}
.

5.
∧ {

�+(pwi
→ ¬♦pwj

) | (wi, wj) /∈ R
}
.

The Jankov-Fine formula ϕF is defined as
∨

w∈W �u ¬ϕF,w.

We note that the Jankov-Fine formula ϕF,wi
at wi is an ML-formula and

thus the Jankov-Fine formula ϕF is an ML(�u +)-formula.

Lemma 1 (For a proof, see AppendixA). Let F = (W,R) be a finite tran-
sitive frame. For any transitive frame G, the following are equivalent:

(i) the Jankov-Fine formula ϕF is not valid in G,
(ii) there is a finite set Y ⊆ |G| such that F is a bounded morphic image of GY ,

where GY is the subframe of G generated by Y .

Theorem 3. For every class F of finite transitive frames, the following are
equivalent:

(i) F is ML(�u +)-definable within Ffintra.
(ii) F is closed under taking generated subframes and bounded morphic images.

Characterizing Relative Frame Definability in Team Semantics 397

Proof. The direction from (i) to (ii) is easy to establish, so we focus on the
converse direction. Assume (ii). Define Log(F) =

{
ϕ ∈ ML(�u +) |F � ϕ

}
. We

show that Log(F) defines F within Ffintra. Fix any finite and transitive frame
F ∈ Ffintra. In what follows, we show the following equivalence:

F ∈ F ⇐⇒ F � Log(F).

The left-to-right direction is immediate, so we concentrate on the converse direc-
tion. Assume F � Log(F). Since F is finite and transitive, let us take the Jankov-
Fine formula ϕF. Since ϕF is not valid in F, ϕF /∈ Log(F). Thus there is a
transitive frame G ∈ F (recall that F is a class of transitive frames) such that
ϕF is not valid in G. By Lemma 1, there is a finite set Y ⊆ |G| such that F is
a bounded morphic image of GY . Since G ∈ F, GY ∈ F by F’s closure under
generated subframes. It follows from F’s closure under bounded morphic images
that F ∈ F, as desired. �

4 Modal Logics with Team Semantics

In this section we define the team-based modal logics that are relevant for this
paper. We survey basic properties and known result concerning expressive power.

4.1 Basic Notions of Team Semantics

A subset T of the domain of a Kripke model M is called a team of M. Before we
define the so-called team semantics for ML, let us first introduce some notation
that makes defining the semantics simpler.

Definition 2. Let M = (W,R, V) be a model and T and S teams of M. Define

R[T] := {w ∈ W | ∃v ∈ T (vRw)} and R−1[T] := {w ∈ W | ∃v ∈ T (wRv)}.
For teams T and S of M, we write T [R]S if S ⊆ R[T] and T ⊆ R−1[S].

Thus, T [R]S holds if and only if for every w ∈ T there exists some v ∈ S such
that wRv, and for every v ∈ S there exists some w ∈ T such that wRv. The
team semantics for ML is defined as follows. We use the symbol “|=” for team
semantics instead of the symbol “�” which was used for Kripke semantics.

Definition 3. Let M be a Kripke model and T a team of M. The satisfaction
relation M, T |= ϕ for ML(Φ) is defined as follows.

M, T |= p ⇔ w ∈ V (p) for every w ∈ T .
M, T |= ¬p ⇔ w 	∈ V (p) for every w ∈ T .

M, T |= (ϕ ∧ ψ) ⇔ M, T |= ϕ and M, T |= ψ.

M, T |= (ϕ ∨ ψ) ⇔ M, T1 |= ϕ and M, T2 |= ψ for some T1 and T2

such that T1 ∪ T2 = T .

M, T |= ♦ϕ ⇔ M, T ′ |= ϕ for some T ′ such that T [R]T ′.
M, T |= �ϕ ⇔ M, T ′ |= ϕ, where T ′ = R[T].

398 K. Sano and J. Virtema

A set Γ of formulas is valid in a model M = (W,R, V) (in team semantics),
in symbols M |= Γ , if M, T |= ϕ holds for every team T of M and every
ϕ ∈ Γ . Likewise, we say that Γ is valid in a Kripke frame F and write F |= Γ , if
(F, V) |= Γ hold for every valuation V . When Γ is a singleton { ϕ }, we simply
write M |= ϕ and F |= ϕ.

The formulas of ML have the following flatness property.

Proposition 1 (Flatness). Let M be a Kripke model and T be a team of M.
Then, for every formula ϕ of ML(Φ)

M, T |= ϕ ⇔ ∀w ∈ T : M, w � ϕ.

From flatness if follows that for every model M, frame F, and formula ϕ of ML,
M � ϕ iff M |= ϕ and F � ϕ iff F |= ϕ.

Recall from Sect. 2 what it means that a set of modal formulas defines a class
of frames and models. All the related definitions can be adapted for logics with
team semantics by simply substituting � by |=.

Definition 4. We write L ≤M L′ if every L-definable class of models is also
L′-definable. We write L =M L′ if both L ≤M L′ and L′ ≤M L hold and write
L <M L′ if L ≤M L′ but L′ 	≤M L.

Definition 5. We write L ≤F L′ if every L-definable class of frames is also
L′-definable. We write L =F L′ if both L ≤F L′ and L′ ≤F L hold and write
L <F L′ if L ≤F L′ but L′ 	≤F L.

The most important closure properties in the study of team-based logics are
downward closure, union closure, and the concept of team bisimulation.

Definition 6. Let L be some team-based modal logic, M a Kripke model, and
T, S teams of M. We say that a formula ϕ ∈ L is

1. downward closed if M, T |= ϕ, whenever M, S |= ϕ and T ⊆ S.
2. union closed if M, T ∪ S |= ϕ, whenever M, T |= ϕ and M, S |= ϕ.

A logic L is called downward closed (union closed) if every formula ϕ ∈ L is
downward closed (union closed). We say that L has the empty team property, if
M, ∅ |= ϕ holds for every model M and every formula ϕ ∈ L.

Team bisimulation and its finite approximation team k-bisimulation can be
defined via the corresponding concepts of ordinary modal logic. In the definition
below, we denote by � and � k the notions of bisimulation and k-bisimulation
of ordinary modal logic (see, e.g., [2]), respectively.

Definition 7. Let M, T and M′, T ′ be team pointed Kripke models. We say that
M, T and M′, T ′ are team bisimilar, and write M, T [�] M′, T ′ if

1. for every w ∈ T there exist some w′ ∈ T ′ such that M, w � M′, w′, and
2. for every w′ ∈ T ′ there exist some w ∈ T such that M, w � M′, w′.

The team k-bisimulation relation [� k] is defined analogously with � replaced
by � k.

Characterizing Relative Frame Definability in Team Semantics 399

4.2 Extensions of Modal Logic via Connectives

We first introduce two expressive extensions of modal logic: an extension by
the so-called intuitionistic disjunction and an extension by the so-called contra-
dictory negation. These two logics are of great interest, since with respect to
expressive power the logics subsume all most studied team-based modal logics,
in particular all of those defined in Sect. 4.3.

Modal logic with intuitionistic disjunction ML(�)(Φ) is obtained by extend-
ing the syntax of ML(Φ) by the grammar rule ϕ ::= (ϕ� ϕ) with the following
semantics:

M, T |= (ϕ � ψ) ⇔ M, T |= ϕ or M, T |= ψ.

Modal team logic MT L(Φ) is obtained by extending the syntax of ML(Φ) by
the contradictory negation, i.e., the grammar rule ϕ ::= ∼ϕ with the following
semantics:

M, T |= ∼ϕ ⇔ M, T 	 |= ϕ.

The following theorem for ML(�) was proven by Hella et al. [11] and for MT L
by Kontinen et al. [17].

Theorem 4. A class C of team pointed Kripke models is definable by a single
formula of

1. ML(�) iff C is downward closed, closed under team k-bisimulation, for some
k ∈ N, and admits the empty team property.

2. MT L iff C is closed under team k-bisimulation, for some k ∈ N.

4.3 Extensions of Modal Logic with Atomic Dependency Notions

The syntax of modal dependence logic MDL(Φ) and extended modal dependence
logic EMDL(Φ) is obtained by extending the syntax of ML(Φ) by the following
grammar rule for each n ∈ ω:

ϕ ::= dep(ϕ1, . . . , ϕn, ψ) , where ϕ1, . . . , ϕn, ψ ∈ ML(Φ).

In the additional grammar rules above for MDL, we require that ϕ1, . . . , ϕn, ψ
are proposition symbols in Φ. The intuitive meaning of the (modal) dependence
atom dep(ϕ1, . . . , ϕn, ψ) is that the truth value of the formula ψ is completely
determined by the truth values of ϕ1, . . . , ϕn. The formal definition is given
below:

M, T |= dep(ϕ1, . . . , ϕn, ψ) ⇔ ∀w, v ∈ T :
∧

1≤i≤n

(M, {w} |= ϕi ⇔ M, {v} |= ϕi)

implies (M, {w} |= ψ ⇔ M, {v} |= ψ).

The syntax of modal inclusion logic MINC(Φ) and extended modal inclusion
logic EMINC(Φ) is obtained by extending the syntax of ML(Φ) by the following
grammar rule for each n ∈ ω:

ϕ ::= ϕ1, . . . , ϕn ⊆ ψ1, . . . , ψn, where ϕ1, ψ1, . . . , ϕn, ψn ∈ ML(Φ).

400 K. Sano and J. Virtema

In the additional grammar rules above for MINC, we require that the formulas
ϕ1, ψ1, . . . , ϕn, ψn are proposition symbols in Φ. The meaning of the (modal)
inclusion atom ϕ1, . . . , ϕn ⊆ ψ1, . . . , ψn is that the truth values that occur in
a given team for the tuple ϕ1, . . . , ϕn occur also as truth values for the tuple
ψ1, . . . ψn. The formal definition is given below:

M, T |=ϕ1, . . . , ϕn ⊆ ψ1, . . . , ψn

⇔ ∀w ∈ T∃v ∈ T :
∧

1≤i≤n

(M, {w} |= ϕi ⇔ M, {v} |= ψi).

With respect to expressive power the following are known, see e.g., [3,12]:

ML < MDL < EMDL = ML(�) < MT L
ML < MINC < EMINC < MT L.

The fact that MINC < EMINC holds is known but no published proof is
known by the authors. The proof is an easy exercise, see AppendixC.

Proposition 2 (Closure properties). The logics weaker or equal to ML(�)
with respect to expressive power are downward closed. The logics weaker or equal
to EMINC with respect to expressive power are union closed.

Note that the MT L is neither downward nor union closed. The modal depth
of ϕ, denoted by md(ϕ), is defined in the obvious way (for basic modal logic,
see e.g., [2]); intuitionistic disjunction and contradictory negation are handled in
the same manner as Boolean connectives. For dependence atoms and inclusion
atoms, we define that

md(dep(ϕ1, . . . , ϕn, ψ)) = max{md(ϕ1) , . . . ,md(ϕn) ,md(ψ)},

md(ϕ1, . . . , ϕn ⊆ ψ1, . . . , ψn) = max{md(ϕ1) ,md(ψ1) , . . . ,md(ϕn) ,md(ψn)}.

If L is a logic and k ∈ N, we write M, T ≡L
k M′, T ′, if M, T and M′, T ′ agree on

all L-formulas ϕ with md(ϕ) ≤ k.

Theorem 5 [17]. Let L be a team-based logic that is weaker or equal to MT L
with respect to expressive power. Then M, T [� k] M′, T ′ ⇒ M, T ≡L

k M′, T ′.

5 Modal Definability in Team Semantics

The expressive power of the most studied team-based modal logics is quite well
understood. See Table 1 for the known characterisations. However the related
topics of definability with respect to models and with respect to frames has
received less attention. In [18] a Goldbaltt-Thomason -style characterisation is
given for modal dependence logic. Moreover it was shown that with respect to
frame definability MDL and EMDL coincide. In this section we study defin-
ability of MINC and MT L, see Tables 2 and 3 for a summary of known results
together with the results of this sections on definability.

Characterizing Relative Frame Definability in Team Semantics 401

Table 1. Characterisation of expressive powers of different team-based logics. E.g., a
class C of team pointed Kripke models is definable by a single EMDL-formula if and
only if M, ∅ ∈ C, for every M, C is closed under the so-called team k-bisimulation, for
some finite k, and C is downward closed.

Logic Closure properties References

empty team downward union

team property k-bisimulation closure closure

ML × × × × [13]

ML(�) × × × [11, Corollary 3.6]

EMDL × × × [11, Corollary 4.5]

EMINC × × × [12, Theorem 3.10]

MT L × [17, Theorem 3.4]

Table 2. Characterisation of frame definability of different modal logics with respect
to first-order definable frame classes. E.g., an elementary class F of Kripke frames
is definable in EMDL if and only if F is closed under taking generated subframes
and bounded morphic images, and reflects ultrafilter extensions and finitely generated
subframes.

Logic Closure under Reflects References

disjoint bounded morphic generated ultrafilter finitely generated

unions images subframes extensions subframes

ML × × × × × a [7]

MINC Theorem8

EMINC Theorem8

ML(�u+) [18, Theorem3]

ML(�) [18, Corollary 1]

MDL × × × × [18, Corollary 1]

EMDL [18, Corollary 1]

MT L Theorem11

ML(�u) × × [9, Corollary 3.9]
a If a class of frames is closed under disjoint unions and bounded morphic images
then it reflects finitely generated subframes.

Table 3. Hierarchy of definability of different modal logics with team semantics.

Model definability {ML,MINC, EMINC} <M MDL <M {EMDL,ML(�),MT L}
Frame definability {ML,MINC, EMINC} <F {MDL, EMDL,ML(�),MT L}

5.1 Hintikka Formulas and Types

It is well known that for any finite set of proposition symbols Φ, any finite k ∈ N,
and any pointed Φ-model (K,w), there exists a modal formula of modal depth k
that characterises (K,w) completely up to k-equivalence (i.e. equivalence up to

402 K. Sano and J. Virtema

modal depth k). These Hintikka formulas (or characteristic formulas) are defined
as follows (see e.g. [8]):

Definition 8. Assume that Φ is a finite set of proposition symbols. Let k ∈ N

and let (M, w) be a pointed Φ-model. The k-th Hintikka formula χk
M,w of (M, w)

is defined recursively as follows:

– χ0
M,w :=

∧{p | p ∈ Φ,w ∈ V (p)} ∧ ∧{¬p | p ∈ Φ,w 	∈ V (p)}.
– χk+1

M,w := χk
M,w ∧ ∧

v∈R[w] ♦χk
M,v ∧ �

∨
v∈R[w] χ

k
M,v.

It is easy to see that md
(
χk
M,w

)
= k, and M, w |= χk

M,w for every pointed
Φ-model (M, w). By a straightforward inductive argument, it can be shown that,
for each finite Φ and k, there are only finitely many non-equivalent k-th Hin-
tikka formulas. Thus χk

M,w is essentially finite (the possibly infinite conjunction∧
v∈R[w] and disjunction

∨
v∈R[w] can be replaced by finite ones while preserving

equivalence).

Proposition 3 (see, e.g., [8]). Let Φ be a finite set of proposition symbols,
k ∈ N, and (M, w) and (M′, w′) pointed Φ-models. Then

M, w ≡ML
k M′, w′ ⇐⇒ M′, w′ |= χk

M,w.

Definition 9. Let M be a Kripke Φ-model and C a class of Kripke Φ-models.
We define that

tpΦ
k (M) :={χk

M,w | w is a point of M},

tpΦ
k (M, T) :={χk

M,w | w ∈ T},

tpΦ
k (C) :={tpΦ

k (M) | M ∈ C}.

Proposition 4. Let L be any team-based logic weaker than or equal to MT L
w.r.t. expressive power. Then tpΦ

k (M, T) = tpΦ
k (M′, T ′) ⇒ M, T ≡L

k M′, T ′.

Proof. Assume that tpΦ
k (M, T) = tpΦ

k (M′, T ′). By Proposition 3 and the defi-
nition of team bisimulation, it follows that M, T [� k] M′, T ′. The claim now
follows by Theorem 5. �

5.2 Global Modal & Frame Definability in MINC and ML
Coincide

Lemma 2. Let Φ be a finite set of proposition symbols, ϕ ∈ EMINC(Φ), and
k = md(ϕ). Then M ∈ Mod(ϕ) iff tpΦ

k (M) ⊆ ⋃{tpΦ
k (M′) | M′ ∈ Mod(ϕ)}.

Proof. The direction from left to right is trivial. Assume then that

tpΦ
k (M) ⊆

⋃
{tpΦ

k (M′) | M′ ∈ Mod(ϕ)} (1)

holds, and let T be an arbitrary team of M. It suffices to establish that M, T |=
ϕ. From (1) it follows that there exists some n ∈ N, models Mi ∈ Mod(ϕ), teams
Si of Mi and Ti of M, i ≤ n, such that

T1 ∪ · · · ∪ Tn = T and tpΦ
k (Mi, Si) = tpΦ

k (M, Ti), for each i ≤ n.

Characterizing Relative Frame Definability in Team Semantics 403

Note that such finite n exists, since tpΦ
k (M) is essentially finite. Since each Mi ∈

Mod(ϕ), it follows that Mi, Si |= ϕ, for i ≤ n. Thus from Proposition 4 and the
fact that tpΦ

k (Mi, Si) = tpΦ
k (M, Ti), for i ≤ n, it follows that M, Ti |= ϕ, for

i ≤ n. Now, by union closure (Proposition 2), we conclude that M, T |= ϕ. �
Theorem 6. A class C of Kripke models is definable by a single EMINC-
formula if and only if the class if definable by a single ML-formula.

Proof. The if direction is trivial. For the other direction, let C be a class of
Kripke models that is definable by a single EMINC formula and let ϕ be an
EMINC(Φ)-formula that defines C. Without lose of generality, we may assume
that Φ is finite. Let k denote the modal depth of ϕ. We will show that the ML(Φ)
formula

ϕ∗ :=
∨

{χk
M,w | M ∈ Mod(ϕ), w ∈ M}

defines C. Since over a finite set of proposition symbols there exists only finitely
many essentially different k-Hintikka-formulas, ϕ∗ is essentially a finite ML(Φ) -
formula. By assumption C = Mod(ϕ). Thus by Lemma 2

M ∈ C iff tpΦ
k (M) ⊆

⋃
{tpΦ

k (M′) | M′ ∈ Mod(ϕ)}. (2)

Observe that by flatness (Proposition 1)

M, T |= ϕ∗ iff tpΦ
k (M, T) ⊆

⋃
{tpΦ

k (M′) | M′ ∈ Mod(ϕ)},

and thus it follows that

M |= ϕ∗ iff tpΦ
k (M) ⊆

⋃
{tpΦ

k (M′) | M′ ∈ Mod(ϕ)}. (3)

From (2) and (3) the claim follows. �
The following theorems directly follow.

Theorem 7. EMINC =M ML.

Theorem 8. EMINC =F ML.

Proof. Clearly any ML-definable class of Kripke frames is also definable in
EMINC. The converse follows directly from Theorem 6.

Let F be a Kripke frame, ϕ an EMINC-formula and ϕ∗ the related ML-
formula given by Theorem6 such that Mod(ϕ) = Mod(ϕ∗). Now, by definition,
F |= ϕ if and only if (F, V) |= ϕ for every valuation V . Since Mod(ϕ) = Mod(ϕ∗),
this holds if and only if (F, V) |= ϕ∗ for every valuation V , which by defini-
tion holds if and only if F |= ϕ∗. Now let F be some EMINC-definable class
of Kripke frames and let Γ be a set of EMINC-formulas that defines F. Define
Γ ∗ := {ϕ∗ | ϕ ∈ Γ}. Clearly Γ ∗ is a set of ML-formulas that defines F. �

404 K. Sano and J. Virtema

5.3 Global Modal & Frame Definability in MT L & ML(�)
Coincide

Lemma 3. Let ϕ be and MT L-formula and k = md(ϕ). Then

M ∈ Mod(ϕ) iff tpΦ
k (M) ⊆ Γ ∈ tpΦ

k

(
Mod(ϕ)

)
, for some Γ.

Proof. The direction from left to right is trivial. Assume then that tpΦ
k (M) ⊆

Γ ∈ tpΦ
k

(
Mod(ϕ)

)
holds for some Γ . Thus there exists a Kripke model M′ such

that M′ ∈ Mod(ϕ) and tpΦ
k (M′) = Γ . For the sake of a contradiction, assume

that M 	∈ Mod(ϕ). Thus there exists a team T of M such that M, T 	 |= ϕ.
Since tpΦ

k (M) ⊆ tpΦ
k (M′) it follows that there exists a team T ′ of M′ such that

tpΦ
k (M, T) = tpΦ

k (M′, T ′). Thus by Proposition 4, we conclude that M′, T ′ 	 |= ϕ.
This is a contradiction and thus M ∈ Mod(ϕ) holds. �
Theorem 9. A class C of Kripke models is definable in MT L by a single for-
mula if and only if it is definable in ML(�) by a single formula.

Proof. The fact that every class of Kripke models that is definable by a single
ML(�)-formula is also definable by a single MT L-formula follows directly by
Theorem 4.

Let C be an arbitrary single formula MT L-definable class of Kripke models
and let ϕ be an MT L-formula that defines C. Let k denote the modal depth of
ϕ. We will show that the ML(�)-formula

ϕ∗ := �
Γ∈tpΦ

k (C)

(∨
Γ

)

defines C. Note that since tpΦ
k (C) is a family of sets of k-Hintikka formulas the

outer disjunction is essentially finite. Likewise, since each Γ is a collection of
k-Hintikka formulas, it follows by flatness (remember that Hintikka formulas
are ML-formulas) that the inner disjunctions are essentially finite. Thus ϕ∗ is
essentially a finite ML(�)-formula.

Assume first that M ∈ C. By definition tpΦ
k (M) ∈ tpΦ

k (C). Clearly, for each
team T of M, it holds that M, T |= ∨

tpΦ
k (M), and thus that M, T |= ϕ∗.

Therefore M |= ϕ∗. Assume then that M |= ϕ∗. Thus M,W |= ϕ∗, where W
is the domain of M. Therefore there exists a set Γ ∈ tpΦ

k (C) such that M,W |=∨
Γ . Thus tpΦ

k (M) = tpΦ
k (M,W) ⊆ Γ . Recall that C = Mod(ϕ). Now since

Γ ∈ tpΦ
k (C) = tpΦ

k

(
Mod(ϕ)

)
, it follows from Lemma 3 that M ∈ Mod(ϕ) = C. �

The following theorems directly follow.

Theorem 10. MT L =M ML(�).

Theorem 11. MT L =F ML(�).

Proof. The fact that every ML(�) definable class of Kripke frames is also defin-
able in MT L follows directly by Theorem 4.

Characterizing Relative Frame Definability in Team Semantics 405

Let F be an arbitrary MT L-definable class of Kripke frames and let Γ a set
of MT L-formulas that defines F. By Theorem 9, for each ϕ ∈ MT L there exists
a formula ϕ∗ ∈ ML(�) such that Mod(ϕ∗) = Mod(ϕ). Recall that ϕ defines
the class Mod(ϕ) of Kripke models. Now clearly F |= ϕ iff (F, V) ∈ Mod(ϕ) for
every valuation V iff (F, V) ∈ Mod(ϕ∗) for every valuation V iff F |= ϕ∗. Define
Γ := {ϕ∗ | ϕ ∈ Γ}. Clearly for each frame F it holds that F |= Γ iff F |= Γ ∗. �

It was established in [18] that ML <F MDL =F EMDL =F ML(�).
When combined with Theorems 8 and 11 the following hierarchy is obtained.

Theorem 12. {ML, MINC, EMINC} <F {MDL, EMDL, ML(�), MT L}.

It is an easy exercise to show that ML <M MDL and MDL <M EMDL,
see Appendix C. Moreover it follows from the work of Hella et al. [11] that
EMDL = ML(�). Thus by Theorems 7 and 10 we obtain the following tri-
chotomy.

Theorem 13

{ML,MINC, EMINC} <M MDL <M {EMDL,ML(�),MT L}.

6 Conclusion

In this paper, we studied relative frame definability of a fragment of modal logic
with universal modality in which the universal modality occurs only positively.
Moreover we studied definability of particular modal logics with team seman-
tics. We showed that a class F of finite transitive frames is definable in ML(�u +)
relative to finite transitive frames if and only if F is closed under taking gen-
erated subframes and bounded morphic images. In addition, we established the
following trichotomy with respect to model definability

{ML,MINC, EMINC} <M MDL <M {EMDL,ML(�),MT L}

and the following dichotomy with respect to frame definability

{ML,MINC, EMINC} <F {MDL, EMDL,ML(�),MT L}.

Since it is known that MDL =F ML(�u +), we obtained as a corollary relative
Goldblatt–Thomason -style theorems for each of the logics listed above.

Note that our results imply that the model (frame) definability of every logic
between EMDL (MDL) and MT L coincides. In particular, we obtain results
concerning modal independence logic MIL and extended modal independence
logic EMIL, since with respect to expressive power MDL ≤ MIL ≤ MT L
and EMDL ≤ EMIL ≤ MT L.

406 K. Sano and J. Virtema

We conclude with some open questions:

1. Where does MIL lie with respect to modal definability?
2. Is there some natural fragment of ML(�u +) that coincided with MDL or

MIL with respect to model definability?
3. Can we use the notion of local bounded morphism (cf. [1]) to drop the require-

ment of transitivity from Theorem3.
4. Can we characterize model definability of team-based logics in terms of seman-

tic constructions?

A Proof of Lemma 1

Lemma 1. Let F = (W,R) be a finite transitive frame. For any transitive frame
G, the following are equivalent:

(i) the Jankov-Fine formula ϕF is not valid in G,
(ii) there is a finite set Y ⊆ |G| such that F is a bounded morphic image of GY ,

where GY is the subframe of G generated by Y .

Proof. The direction from (ii) to (i) is immediate from the fact that ϕF is not
valid in F under the natural valuation sending pwi

to { wi } (Note: validity of
ML(�u +)-formulas is closed under taking under bounded morphic images and
generated subframes, see [18]). So, we focus on the converse direction.

Assume (i). It follows from G 	� ϕF that (G, V) 	� ϕF, for some assignment V .
Thus, for each i ≤ n, there exists a point vi of G such that (G, V), vi � ϕF,wi

. Put
Y := { vi | 0 ≤ i ≤ n }, let GY denote the subframe of G generated by Y , and let
U be the reduction of V into the frame GY . Since satisfaction of ML-formulas
is closed under taking generated submodels (see, e.g., [2, Proposition 2.6]), it
follows that (GY , U), vi � ϕF,wi

, for each i ≤ n. Let us put GY = (GY , S).
The first clause of the Jankov-Fine formula ϕF,wi

implies that, for each i ≤ n,
U(pwi

) 	= ∅. By the second and the third clause, we obtain
⋃

w∈W U(pw) = GY

and U(pwi
) ∩ U(pwj

) = ∅ for any distinct indices i and j. This enables us to
define a surjective mapping f : GY → W . Define f(v) := wi if v ∈ U(pwi

).
Clearly f is a well defined surjection.

In what follows, we show that f is a bounded morphism. The condition
(Forth) is established as follows. Assume that xSy and let i, j be such that f(x) =
wi and f(y) = wj . Thus x ∈ U(pwi

) and y ∈ U(pwj
). Since GY is Y -generated, x

is reachable from some vk ∈ Y . Suppose for a contradiction that wiRwj fails in F.
Then �+(pwi

→ ¬♦pwj
) is a conjunct in the Jankov-Fine formula ϕF,wk

. Recall
that (GY , U), vk � ϕF,wk

. It now follows from (GY , U), vk � �+(pwi
→ ¬♦pwj

)
that xSy fails. A contradiction. Therefore, wiRwj holds in F.
The condition (Back) is shown as follows. Assume that f(x)Rwj and let i be such
that f(x) = wi. From the definition of f , it follows that x ∈ U(pwi

). Since GY

is Y -generated, x is reachable from some vk ∈ Y . Since wiRwj , we have that
�+(pwi

→ ♦pwj
) is a conjunct in the Jankov-Fine formula ϕF,wk

. Recall again
that (GY , U), vk � ϕF,wk

. It follows from (GY , U), vk � �+(pwi
→ ♦pwj

) and
x ∈ U(pwi

) that there is some y such that f(y) = wj and xSy holds, as desired. �

Characterizing Relative Frame Definability in Team Semantics 407

B Frame Constructions

Definition 10 (Disjoint Unions). Let {Fi | i ∈ I } be a pairwise disjoint fam-
ily of frames, where Fi = (Wi, Ri). The disjoint union

⊎
i∈I Fi = (W,R) of

{Fi | i ∈ I } is defined by W =
⋃

i∈I Wi and R =
⋃

i∈I Ri.

Definition 11 (Generated Subframes). Given any two frames F = (W,R)
and F = (W ′, R′), F′ is a generated subframe of F if (i) W ′ ⊆ W , (ii) R′ =
R ∩ (W ′)2, (iii) w′Rv′ implies v′ ∈ W ′, for every w′ ∈ W ′. We say that F′ is
the generated subframe of F by X ⊆ |F| (notation: FX) if F′ is the smallest
generated subframe of F whose domain contains X. F′ is a finitely generated
subframe of F if there is a finite set X ⊆ |F| such that F′ is FX .

A frame class F reflects finitely generated subframes whenever it is the case for
all frames F that, if every finitely generated subframe of F is in F, then F ∈ F.

Definition 12 (Bounded Morphism). Given any two frames F = (W,R) and
F′ = (W ′, R′), a function f : W → W ′ is a bounded morphism if it satisfies the
following two conditions:

(Forth) If wRv, then f(w)R′f(v).
(Back) If f(w)R′v′, then wRv and f(v) = v′ for some v ∈ W .

If f is surjective, we say that F′ is a bounded morphic image of F.

Definition 13 (Ultrafilter Extensions). Let F = (W,R) be a Kripke frame,
and Uf(W) denote the set of all ultrafilters on W . Define the binary relation
Rue on the set Uf(W) as follows: URueU ′ iff X ∈ U ′ implies mR(X) ∈ U , for
every X ⊆ W , where mR(X) := { w ∈ W |wRw′forsomew′ ∈ X }. The frame
ueF = (Uf(W), Rue) is called the ultrafilter extension of F.

A frame class F reflects ultrafilter extensions if ueF ∈ F implies F ∈ F for
every frame F.

C Separations in Definability

Proposition 5. With respect to expressive power MINC < EMINC.

Proof. For ϕ ∈ MINC({p}), let ϕ∗ denote the ML({p})-formula obtained from
ϕ by substituting each inclusion atom in ϕ by the formula (p ∨ ¬p). Since p ⊆ p
is essentially the only inclusion atom in MINC({p}), it is easy to see that, for
every ϕ ∈ MINC({p}), ϕ and ϕ∗ are equivalent.

Let M = (W,R, V) be a Kripke {p}-model such that W = {1, 2, 3},
R={(1,2)}, and V (p) = {1, 2, 3}. We claim that there does not exists a MINC-
formula that is equivalent with p ⊆ ♦p. For the sake of a contradiction, assume
that ψ ∈ MINC is such a formula. Clearly M, {1, 3} |= p ⊆ ♦p and thus,
by assumption, M, {1, 3} |= ψ. By our observation above, M, {1, 3} |= ψ∗

follows. Now since ψ∗ is an ML-formula, it follows by Proposition 1 that
M, {3} |= ψ∗. Thus M, {3} |= ψ and therefore M, {3} |= p ⊆ ♦p. However
clearly M, {3} 	 |= p ⊆ ♦p, a contradiction.

408 K. Sano and J. Virtema

Proposition 6. ML <M MDL.

Proof. Let Mi = (Wi, Ri, Vi), i ≤ 2, be Φ-models such that W0 = {1, 2}, W1 =
{1}, W2 = {2}, R0 = R1 = R2 = ∅, and, for each p ∈ Φ, V0(p) = V1(p) = {1},
and V2(p) = ∅. It is easy to conclude by flatness of ML that

M0 ∈ Mod(ϕ) iff M1,M2 ∈ Mod(ϕ)

holds for every ϕ ∈ ML. Thus

M0 ∈ Mod(Γ) iff M1,M2 ∈ Mod(Γ)

holds for every Γ ⊆ ML. However M1,M2 ∈ Mod(dep(p)) but M0 	∈
Mod(dep(p)). Thus we conclude that Mod(dep(p)) is not definable in ML.

Proposition 7. MDL <M EMDL.

Proof. Let Mi = (Wi, Ri, Vi), i ≤ 2, be Φ-models such that W0 = {1, 2}, W1 =
{1}, W2 = {2}, R0 = {(1, 1)}, R1 = {(1, 1)}, R2 = ∅, and, for each p ∈ Φ,
V0(p) = {1, 2}, V1(p) = {1}, and V2(p) = {2}. It is easy to conclude (see [4,
Theorem 1] for details) that

M0 ∈ Mod(ϕ) iff M1,M2 ∈ Mod(ϕ)

holds for every ϕ ∈ MDL. Thus

M0 ∈ Mod(Γ) iff M1,M2 ∈ Mod(Γ)

holds for every Γ ⊆ MDL. However M1,M2 ∈ Mod(dep(♦p)) but M0 	∈
Mod(dep(♦p)). Thus we conclude that Mod(dep(♦p)) is not definable in MDL.

References

1. van Benthem, J.: Notes on modal definability. Notre Dame J. Formal Log. 30(1),
20–35 (1988)

2. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press,
New York (2001)

3. Durand, A., Kontinen, J., Vollmer, H.: Expressivity and Complexity of Dependence
Logic. Springer (2016) (In Press)

4. Ebbing, J., Hella, L., Meier, A., Müller, J.-S., Virtema, J., Vollmer, H.: Extended
modal dependence logic EMDL. In: Libkin, L., Kohlenbach, U., de Queiroz, R.
(eds.) WoLLIC 2013. LNCS, vol. 8071, pp. 126–137. Springer, Heidelberg (2013)

5. Galliani, P.: Inclusion and exclusion dependencies in team semantics - on some
logics of imperfect information. Ann. Pure Appl. Log. 163(1), 68–84 (2012)

6. Gargov, G., Goranko, V.: Modal logic with names. J. Philos. Log. 22, 607–636
(1993)

7. Goldblatt, R.I., Thomason, S.K.: Axiomatic classes in propositional modal logic.
In: Crossley, J.N. (ed.) Algebra and Logic, pp. 163–73. Springer, Heidelberg (1975)

Characterizing Relative Frame Definability in Team Semantics 409

8. Goranko, V., Otto, M.: Model theory of modal logic. In: Blackburn, P., Van Ben-
them, J., Wolter, F. (eds.) Handbook of Modal Logic. Studies in Logic and Practical
Reasoning, vol. 3, pp. 249–329. Elsevier, Amsterdam (2007)

9. Goranko, V., Passy, S.: Using the universal modality: gains and questions. J. Log.
Comput. 2(1), 5–30 (1992)

10. Grädel, E., Väänänen, J.: Dependence and independence. Stud. Logica 101(2),
399–410 (2013)

11. Hella, L., Luosto, K., Sano, K., Virtema, J.: The expressive power of modal depen-
dence logic. In: AiML 2014 (2014)

12. Hella, L., Stumpf, J.: The expressive power of modal logic with inclusion atoms.
In: GandALF 2015 (2015)

13. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J.
ACM 32(1), 137–161 (1985)

14. Hintikka, J., Sandu, G.: Informational independence as a semantical phenomenon.
In: Fenstad, J.E., et al. (eds.) Logic, methodology and philosophy of science, VIII
(Moscow, 1987). Studies in Logic and the Foundations of Mathematics, vol. 126,
pp. 571–589. North-Holland, Amsterdam (1989)

15. Hodges, W.: Some strange quantifiers. In: Mycielski, J., Rozenberg, G., Salomaa,
A. (eds.) Structures in Logic and Computer Science. LNCS, vol. 1261, pp. 51–65.
Springer, Heidelberg (1997)

16. Kontinen, J., Müller, J.-S., Schnoor, H., Vollmer, H.: Modal independence logic.
In: AiML 2014 (2014)

17. Kontinen, J., Müller, J.-S., Schnoor, H., Vollmer, H.: A van Benthem theorem for
modal team semantics. In: 24th EACSL Annual Conference on Computer Science
Logic (2015)

18. Sano, K., Virtema, J.: Characterizing frame definability in team semantics via
the universal modality. In: de Paiva, V., de Queiroz, R., Moss, L.S., Leivant,
D., de Oliveira, A. (eds.) WoLLIC 2015. LNCS, vol. 9160, pp. 140–155. Springer,
Heidelberg (2015)

19. Väänänen, J.: Dependence Logic - A New Approach to Independence Friendly
Logic. London Mathematical Society student texts, vol. 70. Cambridge University
Press, New York (2007)

20. Väänänen, J.: Modal dependence logic. In: Apt, K.R., van Rooij, R. (eds.) New
Perspectives on Games and Interaction. Texts in Logic and Games, vol. 4, pp.
237–254. Amsterdam University Press, Amsterdam (2008)

Negation and Partial Axiomatizations of
Dependence and Independence Logic Revisited

Fan Yang(B)

Delft University of Technology, Delft, The Netherlands
fan.yang.c@gmail.com

Abstract. In this paper, we axiomatize the negatable consequences in
dependence and independence logic by extending the natural deduc-
tion systems of the logics given in [10,20]. We give a characterization
for negatable formulas in independence logic and negatable sentences in
dependence logic, and identify an interesting class of formulas that are
negatable in independence logic. Dependence and independence atoms,
first-order formulas belong to this class.

1 Introduction

Negation and partial axiomatizations of dependence and independence logic have
been studied in the literature. In this paper, we take a new look at these topics.

Dependence logic was introduced by Väänänen [23] as a development of
Henkin quantifier [11] and independence-friendly logic [12]. Recently, Grädel and
Väänänen [9] defined a variant of dependence logic, called independence logic.
The two logics add to first-order logic new types of atomic formulas =(�x, y) and
�x ⊥�z �y, called dependence atom and independence atom, to explicitly specify the
dependence and independence relations between variables. Intuitively, =(�x, y)
states that “the value of y is completely determined by the values of the vari-
ables in the tuple �x ”, and �x ⊥�z �y states that “given the values of the variables
�z, the values of �x and the values of �y are completely independent of each other”.
These properties cannot be meaningfully manifested in single assignments of the
variables. Therefore unlike in the case of the usual Tarskian semantics, formu-
las of dependence and independence logic are evaluated on sets of assignments
(called teams) instead. This semantics is called team semantics and was intro-
duced by Hodges [13,14].

Dependence and independence logic are known to have the same expressive
power as existential second-order logic Σ1

1 (see [5,18]). This fact has two negative
consequences: The logics are not closed under classical negation and are not
axiomatizable. The aim of this paper is to shed some new light on these problems.

Regarding the first problem, “negation”, which is usually a desirable con-
nective for a logic, turns out to be a tricky connective in the context of
team semantics. The negation that dependence and independence logic inherit
from first-order logic (denoted by ¬) is a type of “syntactic negation”, in the

c© Springer-Verlag Berlin Heidelberg 2016
J. Väänänen et al. (Eds.): WoLLIC 2016, LNCS 9803, pp. 410–431, 2016.
DOI: 10.1007/978-3-662-52921-8 25

Negation and Partial Axiomatizations of Dependence and Independence 411

sense that in order to compute the meaning of the formula ¬φ, the nega-
tion ¬ has to be brought to the very front of atomic formulas by apply-
ing De Morgen’s laws and the double negation law. It was proved that this
negation ¬ is actually not a semantic operator [19], meaning that φ and ψ
are semantically equivalent does not necessarily imply that ¬φ and ¬ψ are
semantically equivalent. The classical (contradictory) negation (denoted by ∼
in the literature), on the other hand, is a semantic operator. Since the Σ1

1

fragment of second-order logic is not closed under classical negation, neither
dependence nor independence logic is closed under classical negation. Depen-
dence logic extended with the classical negation ∼ is called team logic in the
literature, and it has the same expressive power as full second-order logic
(see [17,23]).

Since every formula of dependence and independence logic is satisfied on the
empty team, the classical contradictory negation ∼ φ of any formula will not
be satisfied on the empty team, implying that ∼ φ cannot possibly be definable
in dependence or independence logic for any single formula φ. This technical
subtlety makes the classical contradictory negation ∼ less interesting. In this
paper, we will, instead, consider the weak classical negation, denoted by ∼̇, which
behaves exactly as the classical negation except that on the empty team ∼̇ φ is
always satisfied. We will give a characterization for negatable formulas in inde-
pendence logic and negatable sentences in dependence logic by generalizing an
argument in [23]. We also identify an interesting class of formulas that are negat-
able in independence logic. First-order formulas, dependence and independence
atoms belong to this class. Formulas of this class are closely related to the depen-
dency notions considered in [6] and the generalized dependence atoms studied
in [16,21].

As for the axiomatization problem, since Σ1
1 is not axiomatizable, dependence

and independence logic cannot possibly be axiomatized in full. Nevertheless,
[10,20] defined natural deduction systems for the logics such that the equivalence

Γ |= φ ⇐⇒ Γ � φ (1)

holds if Γ is a set of sentences of dependence or independence logic and φ is a
first-order sentence. It was left open whether these partial axiomatizations can
be generalized such that the above equivalence (1) holds if Γ is a set of formulas
(that possibly contain free variables) and φ is a (possibly open) first-order for-
mula. Kontinen [15] gave such a generalization by expanding the signature with
an extra relation symbol so as to interpret the teams associated with the free
variables. In this paper, we will generalize the partial axiomatization results in
[10,20] via a different approach, an approach that makes use of the weak classical
negation. We will define extensions of the systems given in [10,20] such that the
equivalence (1) holds if Γ is a set of formulas and φ is a formula that is negatable
in the logics.

412 F. Yang

2 Preliminaries

Let us start by recalling the syntax and semantics (i.e. team semantics) of depen-
dence and independence logic.

Although team semantics is intended for extensions of first-order logic
obtained by adding dependence or independence atoms, for the sake of compari-
son we will now introduce the team semantics for first-order logic too. First-order
atomic formulas α for a given signature L are defined as usual. Well-formed for-
mulas of first-order logic, also called first-order formulas, (in negation normal
form) are defined by the following grammar:

φ ::=α | ¬α | ⊥ | φ ∧ φ | φ ∨ φ | ∃xφ | ∀xφ

Formulas will be evaluated on the usual first-order models over an appropriate
signature L. We will use the same notation M for both a model and its domain.
Let R be a fresh k-ary relation symbol and RM a k-ary relation on M . We write
L(R) for the expanded signature and (M,RM) denotes the L(R)-expansion of
M in which the relation symbol R is interpreted as RM . We write φ(R) to
emphasize that the relation symbol R occurs in the formula φ.

Definition 2.1. Let M be a model and V a set of first-order variables. A team
X of M over V is a set of assignments of M over V, i.e., a set of functions
s : V → M . The set V is called the domain of X, denoted by dom(X).

There is one and only one assignment of M over the empty domain, namely
the empty assignment ∅. The singleton of the empty assignment {∅} is a team
of M , and the empty set ∅ is a team of M over any domain.

Let s be an assignment of M over V and a ∈ M . We write s(a/x) for the
assignment of M over V ∪ {x} defined as s(a/x)(x) = a and s(a/x)(y) = s(y)
for all y ∈ V \ {x}. For any set N ⊆ M and any function F : X → ℘(M) \ {∅},
define

X(N/x) = {s(a/x) : a ∈ N, s ∈ X} and X[F/x] = {s(a/x) : s ∈ X and a ∈ F (s)}

We write �x for a sequence x1, . . . , xn of variables and the length n will always be
clear from the context or does not matter; similarly for a sequence �F of functions
and a sequence �s of assignments. A team X(M/x1) . . . (M/xn) will sometimes
be abbreviated as X(M/�x), and X[F1/x1] . . . [Fn/xn] as X[F1/x1, . . . , Fn/xn] or
X[�F/�x].

We now define the team semantics for first-order formulas. Note that our
version of the team semantics for disjunction and existential quantifier is known
as the lax semantics in the literature.

Definition 2.2. Define inductively the notion of a first-order formula φ being
satisfied on a model M and a team X, denoted by M |=X φ, as follows:

Negation and Partial Axiomatizations of Dependence and Independence 413

– M |=X α with α a first-order atomic formula iff for all s ∈ X, M |=s α in the
usual sense

– M |=X ¬α with α a first-order atomic formula iff for all s ∈ X, M |=s ¬α in
the usual sense

– M |=X ⊥ iff X = ∅
– M |=X φ ∧ ψ iff M |=X φ and M |=X ψ
– M |=X φ ∨ ψ iff there exist Y,Z ⊆ X with X = Y ∪ Z such that M |=Y φ and

M |=Z ψ
– M |=X ∃xφ iff M |=X[F/x] φ for some function F : X → ℘(M) \ {∅}
– M |=X ∀xφ iff M |=X(M/x) φ

A routine inductive proof shows that first-order formulas have the downward
closure property and the union closure property:

(Downward Closure Property). M |=X φ and Y ⊆ X imply M |=Y φ
(Union Closure Property). M |=Xi

φ for all i ∈ I implies M |=⋃
i∈I Xi

φ

which combined are equivalent to the flatness property:

(Flatness Property). M |=X φ ⇐⇒ M |={s} φ for all s ∈ X

It follows easily from the flatness property that the team semantics for first-
order formulas coincides with the usual single-assignment semantics in the sense
that

M |={s} φ ⇐⇒ M |=s φ (2)

holds for any model M , any assignment s and any first-order formula φ. If φ
is a first-order formula, then the string ¬φ, called the syntactic negation of φ,
can be viewed as a first-order formula in negation normal form obtained in the
usual way (i.e. by applying De Morgan’s laws, the double negation law, etc.),
and we write φ → ψ for the formula ¬φ∨ψ. Since first-order formulas satisfy the
Law of Excluded Middle φ ∨ ¬φ under the usual single-assignment semantics,
Expression (2) implies that M |={s} φ ∨ ¬φ always holds, which, together with
the flatness property, implies that M |=X φ ∨ ¬φ holds for all teams X and all
models M , namely, the Law of Excluded Middle holds for first-order formulas
also in the sense of team semantics.

We now turn to dependence and independence logic. Well-formed formulas
of independence logic (I) are defined by the following grammar:

φ ::= α | ¬α | ⊥ | x1 . . . xn ⊥z1...zk y1 . . . ym | =(x1, . . . , xn, y) | x1 . . . xn ⊆ y1 . . . yn |
φ ∧ φ | φ ∨ φ | ∃xφ | ∀xφ

where α ranges over first-order atomic formulas. The formulas =(�x, y), �x ⊥�z �y
and �x ⊆ �y are called dependence atom, independence atom and inclusion atom,
respectively. We refer to any of these atoms as atoms of dependence and inde-
pendence. For the convenience of our argument in the paper, the independence
logic as defined has a richer syntax than the standard one in the literature, which

414 F. Yang

has the same syntax as first-order logic extended with independence atoms only.
The other atoms are definable in the standard independence logic; for a proof
see e.g., [4]. Dependence logic (D), which is a fragment of I, is defined as first-
order logic extended with dependence atoms, and first-order logic extended with
inclusion atoms is called inclusion logic. In this paper we will only concentrate
on dependence logic and independence logic.

The set Fv(φ) of free variables of a formula φ of I is defined as usual and we
also have the new cases for dependence and independence atoms:

– Fv(x1 . . . xn ⊥z1...zk
y1 . . . ym) = {x1, . . . , xn, y1, . . . , ym, z1, . . . , zk}

– Fv(=(x1, . . . , xn, y)) = {x1, . . . , xn, y}
– Fv(x1, . . . , xn ⊆ y1, . . . , yn) = {x1, . . . , xn, y1, . . . , yn}
We write φ(�x) to indicate that the free variables occurring in φ are among �x. A
formula φ is called a sentence if it has no free variable.

Definition 2.3. Define inductively the notion of a formula φ of I being satisfied
on a model M and a team X, denoted by M |=X φ. All the cases are identical
to those defined in Definition 2.2 and additionally:

– M |=X �x ⊥�z �y iff for all s, s′ ∈ X, s(�z) = s′(�z) implies that there exists
s′′ ∈ X such that

s′′(�z) = s(�z) = s′(�z), s′′(�x) = s(�x) and s′′(�y) = s′(�y).

– M |=X =(�x, y) iff for all s, s′ ∈ X, s(�x) = s′(�x) implies s(y) = s′(y).
– M |=X �x ⊆ �y iff for all s ∈ X, there exists s′ ∈ X such that s′(�y) = s(�x).

We write �x ⊥ �y for �x ⊥〈〉 �y, and note that the semantic clause for �x ⊥ �y reduces
to

– M |=X �x ⊥ �y iff for all s, s′ ∈ X, there exist s′′ ∈ X such that

s′′(�x) = s(�x) and s′′(�y) = s′(�y).

A sentence φ is said to be true in M , written M |= φ, if M |={∅} φ. We write
Γ |= ψ if for any model M and any team X, M |=X φ for all φ ∈ Γ implies
M |=X ψ. We also write φ |= ψ for {φ} |= ψ. If φ |= ψ and ψ |= φ, then we
write φ ≡ ψ.

We leave it for the reader to verify that formulas of dependence logic have the
downward closure property and formulas of independence logic have the empty
team property and the locality property:

(Empty Team Property). M |=∅ φ
(Locality Property). If {s � Fv(φ) | s ∈ X} = {s � Fv(φ) | s ∈ Y }1, then

M |=X φ ⇐⇒ M |=Y φ.

1 For an assignment s : V → M and a set V ′ ⊆ V of variables, we write s � V ′ for the
restriction of s to the domain V ′.

Negation and Partial Axiomatizations of Dependence and Independence 415

Recall that the existential second-order logic (Σ1
1) consists of those formulas

that are equivalent to some formulas of the form ∃R1 . . . ∃Rkφ, where φ is a first-
order formula. An L(R)-sentence φ(R) of Σ1

1 is said to be downward monotone
with respect to R if (M,Q) |= φ(R) and Q′ ⊆ Q imply (M,Q′) |= φ(R). It
is known that φ(R) is downward monotone with respect to R if and only if R
occurs in φ(R) only negatively (see e.g., [18]). A team X of M over {x1, . . . , xn}
induces an n-ary relation

rel(X) := {(s(x1), . . . , s(xn)) | s ∈ X}
on M ; conversely, an n-ary relation R on M induces a team

XR := {{(x1, a1), . . . , (xn, an)} | (a1, . . . , an) ∈ R}.

Theorem 2.4 (see [5,18,23])

(i) Every L-sentence φ of D or I is equivalent to an L-sentence τφ of Σ1
1 , i.e.,

M |= φ ⇐⇒ M |= τφ

holds for any model M ; and conversely, every L-sentence of Σ1
1 is equivalent

to an L-sentence ρ(ψ) of D or I.
(ii) For every L-formula φ of I, there is an L(R)-sentence τφ(R) of Σ1

1 such
that for all models M and all teams X,

M |=X φ ⇐⇒ (M, rel(X)) |= τφ(R).

If, in particular, φ is a formula of D, then the relation symbol R occurs in
the sentence τφ(R) only negatively.

(iii) For every L(R)-sentence ψ(R) of Σ1
1 that is downward monotone with

respect to R, there is an L-formula ρ(ψ) of D such that for all models M
and all teams X,

M |=X ρ(ψ) ⇐⇒ (M, rel(X)) |= ψ(R) ∨ ∀�x¬R�x. (3)

(iv) For every L(R)-sentence ψ(R) of Σ1
1 , there is an L-formula ρ(ψ) of I such

that (3) holds for all models M and all teams X.

In the sequel, we will use the notations τφ and τφ(R) to denote the (up to
semantic equivalence) unique formulas obtained in the above theorem and refer
to them as the Σ1

1 -translations of the formulas φ of D or I.

3 First-Order Formulas and Negatable Formulas

Formulas of dependence and independence logic can be translated into Σ1
1

(Theorem 2.4). Therefore in the environment of team semantics a first-order
formula φ has two identities: It can be viewed either as a formula of D or I
that is to be evaluated on teams, or as a usual formula of first-order logic that

416 F. Yang

is to be evaluated on single assignments and is possibly (equivalent to) the Σ1
1 -

translation τψ of some formula ψ of D or I. With the latter reading of a first-order
formula φ, for all models M and all assignments s, M |=s ¬φ iff M �|=s φ holds.
In this sense, the formula ¬φ can be interpreted as the “classical (contradictory)
negation” of φ. However, on the team semantics side, unless the team X is a
singleton, M �|=X φ is in general not equivalent to M |=X ¬φ. To express the
contradictory negation in the team semantics setting, let us define the classical
negation ∼ and the weak classical negation ∼̇ as follows:

– M |=X∼ φ iff M �|=X φ
– M |=X ∼̇φ iff either M �|=X φ or X = ∅
Since formulas of dependence and independence logic have the empty team prop-
erty, the classical negation ∼ φ of any formula φ is not definable in the logics
and we are therefore not interested in the classical negation ∼ in this paper. On
the other hand, the weak classical negation ∼̇φ can be definable in the logics for
some formulas φ. We say that a formula φ is negatable in I (or D) if there is a
formula ψ of I (or D) such that ∼̇φ ≡ ψ. If a formula φ of I is negatable in I,
we also say that φ is a negatable formula in I or the formula φ of I is negatable;
similarly for D.

For any first-order sentence φ, we have M �|={∅} φ iff M |={∅} ¬φ by the
Law of Excluded Middle. Thus ∼̇ φ ≡ ¬φ, meaning that first-order sentences are
negatable both in D and in I. Next, we prove that negatable formulas in D are,
actually, all flat.

Fact 3.1 If a formula φ of D is negatable in D, then it is upward closed (i.e.
M |=X φ and ∅ �= X ⊆ Y imply M |=Y φ), and thus flat.

Proof. Suppose φ is a formula of D that is not upward closed. Then, there exist
a model M and two teams X �= ∅ and Y ⊇ X such that M |=X φ and M �|=Y φ.
But this means that ∼̇φ is not downward closed and thus not definable in D.

We will see in the sequel that the above fact does not apply to independence
logic. Also note that sentences are always upward closed (since to evaluate a
sentence it is sufficient to consider the nonempty team {∅} only). Thus, the
other direction of the above fact, if true, would imply that all sentences of D are
negatable. But this is not the case, as we will see in the following characterization
theorem for negatable sentences in D and negatable formulas in I.

Theorem 3.2

(i) An L-formula φ of I is negatable in I if and only if its Σ1
1 -translation τφ(R)

is equivalent to a first-order sentence.
(ii) An L-sentence φ of D is negatable in D if and only if its Σ1

1 -translation τφ

is equivalent to a first-order sentence.

Negation and Partial Axiomatizations of Dependence and Independence 417

The above theorem states that negatable formulas in I are exactly those
formulas that have first-order translations, and negatable sentences in D are
exactly those sentences that have first-order translations. Therefore the problem
of determining whether a formula of I or a sentence of D is negatable reduces to
the problem of determining whether a Σ1

1 -sentence (τφ) is equivalent to a first-
order formula, or whether the second-order quantifiers in a Σ1

1 -sentence can be
eliminated. This problem is known to be undecidable (this follows from e.g., [3]).

We devote the remainder of this section to the proof of Theorem 3.2. The
item (ii) actually follows implicitly from the results in [23], and the item (i) can
be proved by essentially the argument of Theorem 6.7 in [23]. To proceed, let us
first direct our attention to the Σ1

1 counterpart of dependence and independence
logic and prove a general theorem for Σ1

1 . The proof below is inspired by Theorem
6.7 in [23].

Theorem 3.3

(i) Let φ(R) be an L(R)-formula of Σ1
1 such that (M, ∅) |= φ(R) for any L-

model M . The formula ¬φ∨∀�x¬R�x belongs to Σ1
1 if and only if φ is equivalent

to a first-order formula.
(ii) Let φ be an L-formula of Σ1

1 . The L-formula ¬φ belongs to Σ1
1 if and only

if φ is equivalent to a first-order formula.

Proof. (i) It suffices to prove the direction “=⇒”. Suppose both φ and ¬φ ∨
∀�x¬R�x belong to Σ1

1 . We may assume without loss of generality that φ ≡
∃S1 . . . ∃Skψ and (¬φ ∨ ∀�x¬R�x) ≡ ∃T1 . . . ∃Tmχ for some first-order formulas
ψ and χ, and the relation variables S1, . . . , Sk, T1, . . . , Tm are pairwise distinct.
Assume also that φ(R) and ∃S1 . . . ∃Skψ are L1(R)-formulas, and ¬φ(R)∨∀�x¬R�x
and ∃T1 . . . ∃Tmχ are L2(R)-formulas.

Claim 1: ψ |= ¬χ ∨ ∀�x¬R�x.

Proof of Claim 1. Put L = L1 ∪ L2 ∪ {R,S1, . . . , Sk, T1, . . . , Tm}. For any L-
model M such that M |= ψ, we have M |= ∃S1 . . . ∃Skψ. If RM = ∅, then M |=
∀�x¬R�x, thereby M |= ¬χ ∨ ∀�x¬R�x. If RM �= ∅, then we have M |= ¬∀�x¬R�x.
By the assumption, we also have M |= φ. Thus, we derive

M |= ¬¬φ ∧ ¬∀�x¬R�x =⇒ M |= ¬(¬φ ∨ ∀�x¬R�x) =⇒ M |= ¬∃T1 . . . ∃Tmχ

=⇒ M |= ∀T1 . . . ∀Tm¬χ =⇒ M |= ¬χ

=⇒ M |= ¬χ ∨ ∀�x¬R�x

as required.
Now, by Craig’s Interpolation Theorem of first-order logic, there exists a

first-order L1(R) ∩ L2(R)-formula θ such that ψ |= θ and θ |= ¬χ ∨ ∀�x¬R�x.

Claim 2: φ ≡ θ.

Proof of Claim 2. For any L1(R)-model M , if M |= φ, then (M,SM
1 , . . . , SM

k) |=
ψ for some relations SM

1 , . . . , SM
k on M . Hence, M |= θ.

418 F. Yang

Conversely, for any L1(R)-model M such that M � |= φ, we have RM �= ∅ and
M |= ¬φ∨∀�x¬R�x. The latter implies (M,TM

1 , . . . , TM
m) |= χ for some relations

TM
1 , . . . , TM

m on M . It then follows that (M,TM
1 , . . . , TM

m) � |= ¬χ ∨ ∀�x¬R�x.
Hence, M � |= θ.

(ii) The nontrivial direction “=⇒” follows from a similar and simplified argu-
ment. Instead of proving Claim 1 as above, one proves ψ |= ¬χ. ��

Now, we are ready to give the proof of Theorem 3.2.

Proof (of Theorem 3.2). (i) Let φ be an L-formula of I. By Theorem 2.4(ii)
there exists an L(R)-sentence τφ(R) of Σ1

1 such that for any model M and any
team X,

M |=X ∼̇φ ⇐⇒ M �|=X φ or X = ∅ ⇐⇒ (M, rel(X)) |= ¬τφ(R) ∨ ∀�x¬R�x.
(4)

Now, to prove the direction “⇐=”, assume that τφ(R) is equivalent to a
first-order sentence. Then, the sentence ¬τφ(R) is also equivalent to a first-order
sentence, and thus by Theorem 2.4(iv) there exists a formula ρ(¬τφ) of I such
that for all L-models M and all teams X,

M |=X ρ(¬τφ) ⇐⇒ (M, rel(X)) |= ¬τφ(R) ∨ ∀�x¬R�x.

It then follows from (4) that ρ(¬τφ) ≡ ∼̇ φ.
Finally, to prove the direction “=⇒”, assume that ∼̇ φ ≡ ψ for some formula

ψ of I. By Theorem 2.4(ii) there exists an L(R)-sentence τψ(R) of Σ1
1 such that

for all models M and all teams X,

M |=X ψ ⇐⇒ (M, rel(X)) |= τψ(R).

By (4), τψ(R) ≡ ¬τφ(R) ∨ ∀�x¬R�x and thereby the formula ¬τφ(R) ∨ ∀�x¬R�x
belongs to Σ1

1 . For any model M , since M |=∅ φ, we have (M, ∅) |= τφ(R).
Then, by Theorem 3.3(i), we conclude that τφ(R) is equivalent to a first-order
formula.

(ii) This item is proved by a similar argument that makes use of Theorem
2.4(i) and Theorem 3.3(ii). ��

4 Axiomatizing Negatable Consequences in Dependence
and Independence Logic

Dependence and independence logic are not axiomatizable, meaning that the
consequence relation Γ |= φ cannot be effectively axiomatized. Nevertheless,
if we restrict Γ ∪ {φ} to a set of sentences and φ to a first-order sentence, the
consequence relation Γ |= φ is axiomatizable and explicit axiomatizations for
D and I are given in [10,20]. Throughout this section, let L denote one of the
logics of D and I, and �L denote the syntactic consequence relation associated
with the deduction system of L defined in [20] or in [10].

Negation and Partial Axiomatizations of Dependence and Independence 419

Theorem 4.1 (see [10,20]). Let Γ be a set of sentences of L, and φ a first-order
formula. We have Γ |= φ ⇐⇒ Γ �L φ. In particular, Γ |= ⊥ ⇐⇒ Γ �L ⊥.

Kontinen [15] generalized the above axiomatization result to cover also the
case when Γ ∪ {φ} is a set of formulas (that possibly contain free variables)
by adding a new relation symbol to interpret the teams. In this section, we
will generalize Theorem 4.1 without expanding the signature to cover the case
when Γ ∪ {φ} is a set of formulas (that possibly contain free variables) and φ is
negatable.

We first prove that under certain constraint the (possibly open) formula ψ
in the entailment Δ,ψ |= θ can be turned into a sentence without affecting the
entailment relation.

Lemma 4.2. Let Δ∪{χ, θ} be a set of formulas of L. Let Fv(χ) = {x1, . . . , xn}
and Fv(Δ) =

⋃
δ∈Δ Fv(δ). Suppose that Fv(χ)∩Fv(Δ) = ∅ and Fv(χ)∩Fv(θ) =

∅. We have Δ,χ |= θ ⇐⇒ Δ,∃x1 . . . ∃xnχ |= θ.

Proof. “=⇒”: Suppose Δ,χ |= θ. If M |=X δ for all δ ∈ Δ and M |=X ∃�xχ,
then M |=X[�F/�x] χ for some appropriate sequence of functions �F . Since Fv(χ) ∩
Fv(Δ) = ∅, we derive M |=X[�F/�x] δ for all δ ∈ Δ by the locality property. Thus,
by the assumption, we conclude that M |=X[�F/�x] θ, which implies M |=X θ since
Fv(χ) ∩ Fv(θ) = ∅.

“⇐=”: Suppose Δ,∃x̄χ |= θ, and suppose M |=X δ for all δ ∈ Δ and M |=X

χ. Then, we have M |=X ∃�xχ, which implies M |=X θ by the assumption. ��
To understand why Theorem 4.1 can be generalized, let us consider a set

Γ ∪ {φ} of formulas of L. Since Σ1
1 admits the Compactness Theorem, we may

assume that Γ is a finite set. Clearly, Γ |= φ is equivalent to Γ, ∼̇ φ |= ⊥,
and further to ∃�x(

∧
Γ ∧ ∼̇ φ) |= ⊥ by Lemma 4.2, where Fv(

∧
Γ ∧ ∼̇ φ) =

{x1, . . . , xn}. Adding appropriate rules to the deduction system to guarantee
the equivalence of ∃�x(

∧
Γ ∧ ∼̇φ) � ⊥ and Γ � φ, the Completeness Theorem

can be restated as ∃�x(
∧

Γ ∧ ∼̇φ) �� ⊥ =⇒ ∃�x(
∧

Γ ∧ ∼̇φ) � |= ⊥. Now, assuming
that ∃�x(

∧
Γ ∧∼̇φ) is deductively consistent, the problem reduces to the problem

of constructing a model for the sentence ∃�x(
∧

Γ ∧ ∼̇φ). If ∼̇φ is definable in
L, then the problem further reduces to the problem of constructing a model for
the Σ1

1 sentence τ∃�x(
∧

Γ∧∼̇ φ), which can in principle be done in first-order logic.
This argument shows that via the trick of weak classical negation Theorem 4.1
can, in principle, be generalized. Note that if Γ is a set of sentences and φ is a
first-order sentence, then ¬φ ≡ ∼̇φ and the foregoing argument reduces to the
argument given in [20].

Let us now make this idea precise. Given the Completeness Theorems in
[10,20], it suffices to extend the natural deduction systems of [10,20] by adding
the two rules below to ensure the equivalence of Γ � φ and ∃�x(

∧
Γ ∧ ∼̇ φ) � ⊥,

where ∼̇ φ denotes the formula of L that is equivalent to the weak negation of φ.

420 F. Yang

RULES

Weak classical negation transition Weak classical negation elimination

D1

ψ

[∃�x(ψ ∧ ∼̇ φ)]
D2

⊥
(∗) ∼̇ Tr

φ

D1

∃�x(ψ ∧ ∼̇φ)

[ψ]
D2

φ
(∗) ∼̇ E

⊥

(∗) where the variables x1, . . . , xn do not occur freely in any formula in the
undischarged assumptions in the derivation D2

Let �∗
L denote the syntactic consequence relation associated with the system

of L extended with the rules ∼̇ Tr and ∼̇ E. We now prove the Soundness and
Completeness Theorem for this extended system.

Theorem 4.3. Let Γ ∪{φ} be a set of formulas of L such that φ is negatable in
L. We have Γ |= φ ⇐⇒ Γ �∗

L φ.

Proof. “⇐=”: The Soundness of the system follows from Lemma 4.2; see
Appendix I for the detailed proof.

“=⇒”: Since L is compact, without loss of generality we may assume that Γ
is finite. By Lemma 4.2 and the Completeness Theorem of L (Theorem 4.1), we
derive

Γ |= φ ⇐⇒ ∃x̄(
∧

Γ ∧ ∼̇φ) |= ⊥ ⇐⇒ ∃x̄(
∧

Γ ∧ ∼̇φ) �L ⊥ ⇐⇒ Γ �∗
L φ

by applying the rules ∼̇ Tr and ∼̇ E. ��
A key issue in the application of the extended system is the issue of computing

the weak negation of formulas in L, or, as the first step, deciding which formulas
are negatable in L. As we already remarked, even if we have established in
Theorem 3.2 a characterization for negatable formulas, the latter problem is
undecidable. Nevertheless, it is possible to identify some interesting classes of
negatable formulas. This is what we will pursue in the next section. Let us
proceed now to prove that first-order formulas are negatable in I. This will show
that for independence logic Theorem 4.3 is indeed a generalization of Theorem
4.1 and also [15].

Given a first-order formula φ, consider its syntactic negation ¬φ. By the
flatness property and the Law of Excluded Middle, we have

M |=X ¬φ ⇐⇒ M �|={s} φ for all s ∈ X (5)

for all models M and all nonempty teams X. This also shows that ¬φ is in
general not equivalent to ∼̇ φ, not even for atomic first-order formulas. Moreover,
that the Σ1

1 -translation τφ(R) of a first-order formula φ is equivalent to a first-
order sentence is not a trivial consequence of Theorem 2.4 either, because, for
instance, the translation of a first-order disjunction φ ∨ ψ, as given in [23], is
τφ∨ψ(R) = ∃S∃S′(τφ(S) ∧ τψ(S′) ∧ ∀�x(R�x → (S�x ∨ S′�x))).

Negation and Partial Axiomatizations of Dependence and Independence 421

Proposition 4.4. If φ is a first-order formula, then ∼̇ φ(�x) ≡ ∃�w(�w ⊆ �x ∧
¬φ(�w)). In particular, first-order formulas are negatable in I.

Proof. For all models M and all teams X, since φ is flat,

M |=X ∼̇ φ ⇐⇒ X = ∅ or M �|=X φ ⇐⇒ X = ∅ or ∃s ∈ X(M �|={s} φ(�x)).

By the empty team property of independence logic, it suffices to show that

∃s ∈ X(M �|={s} φ(�x)) ⇐⇒ M |=X ∃�w(�w ⊆ �x ∧ ¬φ(�w)).

for all models M and all nonempty teams X.
“=⇒”: Assume M �|={s} φ(�x) for some s ∈ X and �x = x1 . . . xn. For each

1 ≤ i ≤ n, inductively define a constant function Fi as follows:

– F1 : X → ℘(M) \ {∅} is defined as F1(t) = {s(x1)};
– Fi : X[F1/w1, . . . , Fi−1/wi−1] → ℘(M) \ {∅} is defined as Fi(t) = {s(xi)}.

Consider the team X[�F/�w] (see Fig. 1 in Appendix II for an example of such a
team). Clearly, M |=X[�F/�w] �w ⊆ �x. On the other hand, for any t ∈ X[�F/�w],
since t(�w) = s(�x) and M �|={s} φ(�x), we obtain M �|={t} φ(�w) by the locality
property. Hence, M |=X[�F/�w] ¬φ(�w) by (5).

“⇐=”: Conversely, suppose M |=X ∃�w(�w ⊆ �x ∧ ¬φ(�w)). Then there are
appropriate functions Fi for each 1 ≤ i ≤ n such that M |=X[�F/�w] �w ⊆ �x

and M |=X[�F/�w] ¬φ(�w). By (5), the latter implies that M �|={t} φ(�w) for some

t ∈ X[�F/�w]. By the former, there exists s′ ∈ X[�F/�w] such that s′(�x) = t(�w).
This means, by the definition of X[�F/�w], that there exists s ∈ X such that
s(�x) = s′(�x) = t(�w). Hence, M �|={s} φ(�x) by the locality property. ��

We remarked that the Σ1
1 -translation of a disjunction φ ∨ ψ of two negat-

able formulas φ and ψ is not itself a first-order formula. In the literature there
is another disjunction

�

, defined as follows, under which the set of negatable
formulas is closed:

– M |=X φ

�

ψ iff M |=X φ or M |=X ψ

In the presence of the downward closure property this disjunction is called intu-
itionistic disjunction, and in the environment of I we shall call it Boolean dis-
junction. The disjunction is uniformly definable in D or I since

φ

�

ψ ≡ ∃w∃u(=(w) ∧ =(u) ∧ ((w = u) ∨ φ) ∧ ((w �= u) ∨ ψ)),

and clearly ∼̇(φ ∧ ψ) ≡ ∼̇φ

� ∼̇ψ and ∼̇(φ

�

ψ) ≡ ∼̇φ ∧ ∼̇ψ.
Without going into detail we remark that the extended system can be applied

to give a new formal proof of Arrow’s Impossibility Theorem [2] in social choice
theory. In [22] the theorem is formulated as an entailment ΓArrow |= φdictator in
independence logic, where ΓArrow is a set of formulas expressing the conditions in
Arrow’s Impossibility Theorem and φdictator is a formula expressing the existence
of a dictator. The formula φdictator is of the form

� n
i=1φi, where φi is a first-order

formula expressing that voter i is a dictator (among n voters). By what we just
obtained, the formula φdictator is negatable in I and the Completeness Theorem
guarantees that ΓArrow �∗

I φdictator is derivable in our extended system.

422 F. Yang

5 A Hierarchy of Negatable Atoms

In this section, we define an interesting class of formulas that are negatable in I.
This class will be presented in the form of an alternating hierarchy of atoms that
are definable in I. These atoms are closely related to the dependency notions
considered in [6], and the generalized dependence atoms studied in [16,21]. We
will demonstrate that all first-order formulas, dependence atoms, independence
atoms and inclusion atoms belong to this class. It then follows from the com-
pleteness result we obtained in the previous section that consequences of these
types in I are derivable in the extended system.

Let us start by defining the notion of abstract relation. A k-ary relation R is
a class of pairs (M,RM) that is closed under taking isomorphic images, where M
ranges over first-order models and RM ⊆Mk. For instance, the familiar equality =
is a binary relation defined by the class

{(M,=M) | M is a first-order model}, where =M := {(a, a) | a ∈ M}.

Every first-order formula φ(x1, . . . , xk) with k free variables is associated with a
k-ary relation

φφφ := {(M,φφφM) | M is a first-order model},

where φφφM := {(s(x1), . . . , s(xk)) | M |=s φ}. A k-ary relation R is said to be
(first-order) definable if there exists a (first-order) formula φR(w1, . . . , wk) such
that for all models M and all assignments s,

s(�w) ∈ RM ⇐⇒ M |=s φR(�w).

Clearly, the first-order formula w = u defines the equality relation, and every
first-order formula φ defines its associated relation φφφ.

If R is a k-ary relation, then we write R for the complement of R that is
defined by letting R

M
= Mk \ RM for all models M . Clearly, if a first-order

formula φ defines R, then its negation ¬φ defines R.
If �s = 〈s1, . . . , sk〉, then we write �s(�x) for 〈s1(�x), . . . , sk(�x)〉. For every

sequence k = 〈k1, . . . , kn〉 of natural numbers and every (k1 + · · · + kn)m-
ary relation R, we introduce two new atomic formulas ΣR

n,k(x1, . . . , xm) and
ΠR

n,k(x1, . . . , xm) with the semantics defined as follows:

– M |=∅ ΣR
n,k(�x) and M |=∅ ΠR

n,k(�x).
– If n is odd, then define for any model M and any nonempty team X

• M |=X ΣR
n,k(�x) iff there exist s11, . . . , s1k1 ∈ X such that for

all s21, . . . , s2k2 ∈ X, . . . there exist sn1, . . . , snkn
∈ X such that

(�s1(�x), . . . , �sn(�x)) ∈ RM ;
• M |=X ΠR

n,k(�x) iff for all s11, . . . , s1k1 ∈ X, there exist s21, . . . , s2k2 ∈ X
such that . . . for all sn1, . . . , snkn

∈ X, it holds that (�s1(�x), . . . , �sn(�x)) ∈
RM .

– Similarly if n is even.

Negation and Partial Axiomatizations of Dependence and Independence 423

Fact 5.1. ∼̇ ΣR
n,k(�x) ≡ ΠR

n,k(�x) and ∼̇ΠR
n,k(�x) ≡ ΣR

n,k(�x).

Let us now give some examples of the ΣR
n,k and ΠR

n,k atoms.

Example 5.2

(a) The dependence atom =(x1, . . . , xk, y) is a Π
depk

1,〈2〉 (x1, . . . , xk, y) atom, where
depk is a 2(k + 1)-ary relation defined as

(a1, . . . , ak, b, a′
1, . . . , a

′
k, b′) ∈ (depk)

M iff [(a1, . . . , ak) = (a′
1, . . . , a

′
k) =⇒ b = b′].

The first-order formula
(
(w1 = w′

1) ∧ · · · ∧ (wk = w′
k)

) → (u = u′) defines
depk.

(b) The independence atom x1, . . . , xk ⊥z1,...,zn
y1, . . . , ym is a

Π
indk,m,n

2,〈2,1〉 (x1, . . . , xk, y1, . . . , ym, z1, . . . , zn)

atom, where indk,m,n is a (first-order definable) (2+1)(k+m+n)-ary relation
defined as (�a,�b,�c, �a′, �b′, �c′, �a′′, �b′′, �c′′) ∈ (indk,m,n)M iff

(cn, . . . , cn) =(c′
1, . . . , c

′
n) = (c′′

1 , . . . , c′′
n)

=⇒[(a′′
1 , . . . , a′′

k) = (a1, . . . , ak) and (b′′
1 , . . . , b′′

m) = (b′
1, . . . , b

′
m)].

(c) The inclusion atom x1, . . . , xk ⊆ y1, . . . , yk is a
Π inck

2,〈1,1〉(x1, . . . , xk, y1, . . . , yk) atom, where inck is a (first-order definable)
(1 + 1)2k-ary relation defined as

(a1, . . . , ak, b1, . . . , bk, a′
1, . . . , a

′
k, b′

1, . . . , b
′
k)∈(inck)

M iff (a1, . . . , ak)=(b′
1, . . . , b

′
k).

(d) Every first-order formula φ(x1, . . . , xk) is a Πφφφ
1,〈1〉(x1, . . . , xk) atom, where

φφφ is a (first-order definable) 1 · k-ary relation defined as

(a1, . . . , ak) ∈ φφφM iff M |=s�a
φ where s�a(xi) = ai for all i.

In what follows, let k = 〈k1, . . . , kn〉 be an arbitrary sequence of natural num-
bers, �x = 〈x1, . . . , xm〉 an arbitrary sequence of variables, and R an arbitrary
(k1+· · ·+kn)m-ary relation. Suppose R is definable by a formula φR(−→w1, . . . ,

−→wn),
where −→wi = 〈wi,1, . . . ,wi,ki〉 and wi,j = 〈wi,j,1, . . . , wi,j,m〉. The ΣR

n,k(�x) and
ΠR

n,k(�x) atoms can be translated into second-order logic in the same manner
as in Theorem 2.4. For instance, if n is even, let S be a fresh m-ary relation
symbol and let τΣR

n,k(�x)
(S) :=

∃−→w1

(
S(w1,1) ∧ · · · ∧ S(w1,k1) ∧ ∀−→w2

(
S(w2,1) ∧ · · · ∧ S(w2,k2) → ∃−→w3 · · ·

· · · ∃−→wn

(
S(wn,1) ∧ · · · ∧ S(wn,kn) ∧ φR(

−→w1, . . . ,
−→wn)
)

· · ·
))

︸ ︷︷ ︸
n

.

424 F. Yang

Then, we have M |=X ΣR
n,k(�x) ⇐⇒ (M, rel(X)) |= τΣR

n,k(�x)
(S) for any model

M and any team X. If φR(−→w1, . . . ,
−→wn) is a first-order formula, i.e., if R is first-

order definable, then τΣR
n,k(�x)

(S) is a first-order sentence. This shows, by Theorem
3.2(i), that ΣR

n,k(�x) and ΠR
n,k(�x) atoms are negatable in I as long as R is first-

order definable.
Yet, in order to apply the rules of the extended deduction system defined

in Sect. 4 to derive the ΣR
n,k(�x) and ΠR

n,k(�x) consequences in I, one needs to
compute the formulas that are equivalent to the weak classical negations of the
ΣR

n,k(�x) and ΠR
n,k(�x) atoms in the original language of I. This can be done by

applying Fact 5.1 and going through the Σ1
1 -translation (i.e. applying Theorem

2.4(ii) and (iv)). However, as the Σ1
1 -translation creates a number of dummy

symbols (see [5,23]), such an algorithm is inefficient. In the remainder of this
section, we will give a direct definition of the atoms ΣR

n,k(�x) and ΠR
n,k(�x) in the

original language of I.
For each 1 ≤ i ≤ n, define

– inc(wi,1, . . . ,wi,ki ; �x) :=
ki∧

j=1

(wi,j ⊆ �x)

– pro(−→w1, . . . ,
−−→wi−1; �x;wi,1, . . . ,wi,ki) :=

⎛

⎝
ki∧

j=1

(�x ⊆ wi,j)

⎞

⎠ ∧
⎛

⎝
ki∧

j=1

(〈wi,j′ | j′ �= j〉 ⊥ wi,j)

⎞

⎠ ∧ (−→w1 . . . −−→wi−1 ⊥ wi,1 . . .wi,ki)

and inductively define formulas σi and πi as follows:

– σ1[�x;φR(−→w1, . . . ,
−→wn)] := ∃−→wn

(
inc(wn,1, . . . ,wn,kn ; �x) ∧ φR(−→w1, . . . ,

−→wn)
)

– π1[�x;φR(−→w1, . . . ,
−→wn)] := ∃−→wn

(
pro(−→w1, . . . ,

−−−→wn−1; �x;wn,1, . . . ,wn,kn)

∧ φR(−→w1, . . . ,
−→wn)

)

– σi+1[�x;φR(−→w1, . . . ,
−→wn)] := ∃−−→wn−i

(
inc(wn−i,1, . . . ,wn−i,kn−i ; �x)

∧πi[�x;φR(−→w1, . . . ,
−→wn)]

)

– πi+1[�x;φR(−→w1, . . . ,
−→wn)] := ∃−−→wn−i

(
pro(−→w1, . . . ,

−−−−→wn−i−1; �x;wn−i,1, . . . ,wn−i,kn−i)

∧σi[�x;φR(−→w1, . . . ,
−→wn)]

)
2

Theorem 5.3. Let R and φR be as above. Then

– ΣR
n,k(x1, . . . , xm) ≡ σn[�x;φR(−→w1, . . . ,

−→wn)]
– ΠR

n,k(x1, . . . , xm) ≡ πn[�x;φR(−→w1, . . . ,
−→wn)]

2 If i + 1 = n, then −→w1 . . . −−−−→wn−i−1 denotes the empty sequence 〈〉 and we stipulate
〈〉⊥ �y := .

Negation and Partial Axiomatizations of Dependence and Independence 425

Proof. We only give the detailed proof for ΣR
n,k(x1, . . . , xm) when n is odd. The

other case and the other equivalence can be proved analogously.
Our proof makes use of Lemma A in Appendix III. First, note that

σn[�x;φR(
−→w1, . . . ,

−→wn)] := ∃−→w1

(
inc(w1,1, . . . ,w1,k1 ; �x)∧

∃−→w2

(
pro(−→w1; �x;w2,1, . . . ,w2,k2) ∧ · · · · · · ∧

∃−→wn

(
inc(wn,1, . . . ,wn,kn ; �x) ∧ φR(

−→w1, . . . ,
−→wn)
)

· · ·
))

︸ ︷︷ ︸
n

Suppose M |=X ΣR
n,k(�x) for some model M and some nonempty team X.

Then

(∃−→s1 ∈ Xk1)(∀−→s2 ∈ Xk2) · · · · · · (∃−→sn ∈ Xkn)(−→s1(�x), . . . ,−→sn(�x)) ∈ RM . (6)

Let Γ1 = 〈γ1,1, . . . , γ1,k1〉 be a sequence of constant choice functions γ1,j : X →
X defined as γ1,j(t) = s1,j . Let

−−→
F1,1, . . . ,

−−−→
F1,k1 be the group of simulating func-

tions for Γ1[X] � �x on w1,1, . . . ,w1,k1 and Y1 its associated team defined as
in Lemma A(i) in Appendix III. Then, M |=Y1 inc(w1,1, . . . ,w1,k1 ; �x). It then
remains to show that M |=Y1 πn−1[�x;φR(−→w1, . . . ,

−→wn)].
Let �F2,1, . . . , �F2,k2 be the group of duplicating functions for Y1 � �x on

w2,1, . . . ,w2,k2 , and Y2 its associated team defined as in Lemma A(ii) in
Appendix III. Then, M |=Y2 pro(−→w1; �x;w2,1, . . . ,w2,k2).

It remains to show that M |=Y2 σn−2[�x;φR(−→w1, . . . ,
−→wn)]. By Lemma A(ii),

for each t ∈ Y2, there exists −→st,2 = (st
2,1, . . . , s

t
2,k2

) ∈ Xk2 satisfying

st
2,1(�x) = t(w2,1), . . . , st

2,k2
(�x) = t(w2,k2).

Hence, by (6), there exists −→st,3 = (st
3,1, . . . , s

t
3,k3

) ∈ Xk3 such that

(∀−→s4 ∈ Xk4) · · · · · · (∃−→sn ∈ Xkn)(−→s1(�x),−→st,2(�x),−→st,3(�x),−→s4(�x) . . . ,−→sn(�x)) ∈ RM .

Let Γ3 = 〈γ3,1, . . . , γ3,k3〉 be a sequence of choice functions γ3,j : Y2 → Y2

defined as γ3,j(t) = st
3,j . Let

−−→
F3,1, . . . ,

−−−→
F3,k3 be the group of simulating functions

for Γ3[Y2] � �x on w3,1, . . . ,w3,k3 , and Y3 its associated team defined as in Lemma
A(i) in Appendix III. Then, M |=Y3 inc(w3,1, . . . ,w3,k3 ; �x) and it remains to show
that M |=Y3 πn−3[�x;φR(−→w1, . . . ,

−→wn)].
Repeat the argument n times. In the last step we have Yn and Γn defined

and M |=Yn
inc(wn,1, . . . ,wn,kn ; �x) by Lemma A(i). It then only remains to show

that M |=Yn
φR(−→w1, . . . ,

−→wn). Since φR is flat, it suffices to show that M |={t} φR

holds for all t ∈ Yn. By the definition of Yn and Lemma A(i)(ii), we have

(−→s1(�x),−→st,2(�x),−→st,3(�x),−→st,4(�x) . . . ,−→st,n(�x)) ∈ RM

and t(−→w1) = −→s1(�x), t(−→w2) = −→st,2(�x), . . . , t(−→wn) = −→st,n(�x).

Thus, M |={t} φR(−→w1, . . . ,
−→wn), as the first-order formula φR defines R.

426 F. Yang

Conversely, suppose M |=X σn[�x;φR(−→w1, . . . ,
−→wn)] for some model M

and some nonempty team X. Let Y be a team generated by the formula
σn[�x;φR(−→w1, . . . ,

−→wn)] from X such that M |=Y φR(−→w1, . . . ,
−→wn).

Pick any t ∈ Y . Since M |=Y inc(w1,1, . . . ,w1,k1 ; �x), there exist
s1,1, . . . , s1,k1 ∈ X such that

s1,1(�x) = t(w1,1), . . . , s1,k1(�x) = t(w1,k1).

Let s2,1, . . . , s2,k2 ∈ X be arbitrary. Since M |=Y pro(−→w1; �x;w2,1, . . . ,w2,k2), it is
not hard to see that there exist t2 ∈ Y such that

t2(−→w1) = t(−→w1) = −→s1(�x) and s2,1(�x) = t2(w2,1), . . . , s2,k2(�x) = t2(w2,k2).

Repeat the argument n times to find in the same manner the corresponding
assignments −→s3 ∈ Xk3 ,−→s5 ∈ Xk5 , . . . ,−→sn ∈ Xkn and the corresponding assign-
ments t4, t6, . . . , tn−1 ∈ Y for arbitrary −→s4 ∈ Xk4 ,−→s6 ∈ Xk6 , . . . ,−−→sn−1 ∈ Xkn−1 .
In the last step we have

tn−1(−→w1) = −→s1(�x), . . . , tn−1(−−−→wn−1) = −−→sn−1(�x)

and there exist sn,1, . . . , sn,kn
∈ X such that

sn,1(�x) = tn−1(wn,1), . . . , sn,kn
(�x) = tn−1(wn,kn

).

Since M |=Y φR(−→w1, . . . ,
−→wn), we have M |={tn−1} φR(−→w1, . . . ,

−→wn) by the down-
ward closure property. Since the first-order formula φR defines R, we conclude

(tn−1(−→w1), . . . , tn−1(−→wn)) ∈ RM yielding (−→s1(�x), . . . ,−→sn(�x)) ∈ RM .

��

6 Concluding Remarks

In this paper, we have extended the natural deduction systems of dependence
and independence logic defined in [10,20] and obtained complete axiomatizations
of the negatable consequences in these logics. We also gave a characterization
of negatable formulas in I and negatable sentences in D. Determining whether
a formula of I or D is negatable is an undecidable problem. Nevertheless, we
identified an interesting class of negatable formulas. Formulas in this class are
presented as ΣR

n,k and ΠR
n,k atoms. First-order formulas, dependence and inde-

pendence atoms belong to this class. Since the set of negatable formulas is closed
under the Boolean connectives ∧ and , Boolean combinations of ΣR

n,k and ΠR
n,k

atoms are also negatable.
An interesting corollary of the paper is that Armstrong’s Axioms [1]

that characterize dependence atoms and the Geiger-Paz-Pearl axioms [8] that

Negation and Partial Axiomatizations of Dependence and Independence 427

characterize independence atoms can be derived in our extended system of I.
We leave the derivations of these axioms for future work.

The results of this paper can be generalized in two directions. The first direc-
tion is to identify other negatable formulas than those in the set of the Boolean
combinations of atoms from our hierarchy. The other direction is to analyze the
ΣR

n,k and ΠR
n,k atoms in more detail. As we saw in Example 5.2, first-order for-

mulas and the atoms of dependence and independence situate only on the Π1

or Π2 level. Identifying interesting properties that situate on higher levels of the
hierarchy and studying the logics that the higher level atoms induce would be an
interesting topic for future research. For example, it is easy to verify that ΠR

1,k

atoms (including first-order formulas and dependence atoms) are closed down-
ward, and ΣR

1,k atoms are closed upward. First-order logic extended with upward
closed atoms is shown in [7] to be equivalent to first-order logic. Adding other
such atoms to first-order logic results in many new logics that are expressively
less than Σ1

1 or independence logic and possibly stronger than first-order logic.
These logics are potentially interesting, because, for instance, by the argument
of this paper, the negatable consequences in these logics can in principle be
axiomatized.

Acknowledgements. The author is in debt to Eric Pacuit for the discussions on
formalizing Arrow’s Theorem in independence logic, which in the end led to the results
of this paper unexpectedly. The author would also like to thank Juha Kontinen and
Jouko Väänänen for stimulating discussions concerning the technical details of the
paper.

Appendix I

Proof (of the direction “⇐=” of Theorem 4.3). It suffices to show by induction
that Γ |= φ holds for each derivation D in the extended system with the con-
clusion φ and the hypotheses in Γ . We only give the proof for the induction
step when the rule ∼̇Tr is applied. The case when the rule ∼̇E is applied can be
proved similarly, and all the other cases follow from the arguments in [20] and
in [10].

Assume that D2 is a derivation for Δ,∃�x(ψ∧∼̇ φ) �∗
L ⊥ and D1 is a derivation

for Π �∗
L ψ, where Fv(Δ) ∩ {x1, . . . , xn} = ∅. We show that Δ,Π |= φ. By the

induction hypothesis, we have Δ,∃�x(ψ∧∼̇ φ) |= ⊥ and Π |= ψ. From the former
and Lemma 4.2 we obtain Δ,ψ ∧ ∼̇φ |= ⊥, which is equivalent to Δ,ψ |= φ.
Since Π |= ψ, we conclude Δ,Π |= φ, as desired. ��

428 F. Yang

Appendix II

Fig. 1. (a) A team X. (b) A team X[F/�w]

Fig. 2. (a) A team X (b) A team X[�F1/
−→w1] (c) A team X[�F1/

−→w1, �F2/
−→w2]

Fig. 3. (a) A team X (b) A team X[�F1/
−→w1] (c) A team X[�F1/

−→w1, �F2/
−→w2]

Negation and Partial Axiomatizations of Dependence and Independence 429

Appendix III

Lemma A. Let X be a nonempty team of a model M with x1, . . . , xm ∈
dom(X).

(i) Let γ : X → X be a choice function. Define inductively functions
F1, . . . , Fm to simulate assignments in γ[X] restricted to �x on a sequence
�w = 〈w1, . . . , wm〉 of new variables as follows:
–Define the function F1 : X → ℘(M) \ {∅} as F1(t) = {γ(t)(x1)}.
– For each 2 ≤ i ≤ m, define the function Fi : X[F1/w1, . . . , Fi−1/wi−1] →

℘(M) \ {∅} as Fi(t) = {γ(t)(xi)}.
We call �F = 〈F1, . . . , Fm〉 the sequence of simulating functions for γ[X] � �x

on �w. Let Y = X[�F/�w] (see Fig. 1 in Appendix II for an example of such a
team with a constant choice function γ(t) = s for all t ∈ X, or Fig. 2(b) for
another example with an obvious choice function). Then, t(�w) = γ(t)(�x) for
all t ∈ Y and M |=Y inc(�w; �x).
For a sequence Γ = 〈γ1, . . . , γk〉 of choice functions γi : X → X,
– let �F1 be the sequence of simulating functions for γ1[X] � �x on −→w1,

– and for each 2 ≤ i ≤ k, let �Fi be the sequence of simulating functions for
γi[X[

−→
F1/

−→w1, . . . ,
−−→
Fi−1/

−−→wi−1]] � �x on −→wi.
We call �F1, . . . , �Fk the group of simulating functions for Γ [X] � �x on
−→w1, . . . ,

−→wk, and the team Y = X[�F1/
−→w1, . . . , �Fk/−→wk] its associated team

(see Fig. 2 in Appendix II for examples of such teams). Then, M |=Y

inc(−→w1, . . . ,
−→wk; �x).

(ii) Define inductively functions F1, . . . , Fm to duplicate assignments in X
restricted to �x on a sequence �w = 〈w1, . . . , wm〉 of new variables as follows:
– Define the function F1 : X → ℘(M) \ {∅} as F1(t) = {s(x1) | s ∈ X}.
– For each 2 ≤ i ≤ m, define the function Fi : X[F1/w1, . . . , Fi−1/wi−1] →

℘(M) \ {∅} as

Fi(t) = {s(xi) | s ∈ X and s � {x1, . . . , xi−1} = t � {w1, . . . , wi−1}}.

We call �F = 〈F1, . . . , Fm〉 the sequence of duplicating functions for X � �x

on �w. (see Fig. 3(b) in Appendix II for an example of a team X[�F/�w]).
For a team X,
– let �F1 be the sequence of duplicating functions for X � �x on −→w1,

– and for each i = 2, . . . , k, let �Fi be the sequence of duplicating functions
for X[

−→
F1/

−→w1, . . . ,
−−→
Fi−1/

−−→wi−1] � �x on −→wi.
We call �F1, . . . , �Fk the group of duplicating functions for X � �x on−→w1, . . . ,

−→wk. and the team Y = X[�F1/
−→w1, . . . , �Fk/−→wk] its associated team

(see Fig. 3 in Appendix II for examples of such teams). Then, M |=Y

pro(�y; �x;−→w1, . . . ,
−→wk) for any sequence �y of variables in dom(X) that has no

variable in common with �x and −→w1, . . . ,
−→wk, and for any t ∈ Y , there exist

s1, . . . , sk ∈ X such that s1(�x) = t(−→w1), . . . , sk(�x) = t(−→wk).

430 F. Yang

Proof. We only give the detailed proof for M |=Y pro(�y; �x;−→w1, . . . ,
−→wk) in the

item (ii), i.e.,

M |=Y

k∧

i=1

(�x ⊆ −→wi) ∧
(

k∧

i=1

(〈−→wj | j �= i〉 ⊥ −→wi)

)

∧ (�y ⊥ −→w1 . . . −→wk) (7)

To show that Y satisfies the first conjunct of the formula in (7), it suffices to
show that M |=Yi

�x ⊆ −→wi for each 1 ≤ i ≤ k and Yi = X[�F1/
−→w1, . . . , �Fi/

−→wi].
For any t ∈ Yi, by the definition of Yi = Yi−1[�Fi/

−→wi], there exists s ∈ X such
that s(�x) = t(�x), and

t′ = s ∪ {(wi,1, s(x1)), . . . , (wi,m, s(xm))} ∈ Yi−1[Fi,1/wi,1, . . . , Fi,m/wi,m]

Thus, t′(−→wi) = s(�x) = t(�x), as required.
To prove that Y satisfies the second and the third conjuncts of

the formula in (7), we prove a more general property that M |=Y−→wi1 . . . −→wia
⊥ −→wj1 . . . −→wjb

v1 . . . vc holds for any disjoint subsequences −→wi1 . . . −→wia

and −→wj1 . . . −→wjb
of −→w1 . . . −→wk and any variables v1 . . . vc ∈ dom(X). Assume that

{−→wi1 . . . −→wia
,−→wj1 . . . −→wjb

} = {−→wl1 . . . −→wld} with l1 < · · · < ld.
Let s, s′ ∈ Y be arbitrary. We need to find an s′′ ∈ Y

such that s′′(−→wi1 . . . −→wia
) = s(−→wi1 . . . −→wia

) and s′′(−→wj1 . . . −→wjb
v1 . . . vc) =

s′(−→wj1 . . . −→wjb
v1 . . . vc). Let f be a function satisfying

f(−→wlξ) =

{
s(−→wlξ) if lξ ∈ {i1, . . . , ia}
s′(−→wlξ) if lξ ∈ {j1, . . . , jb}

There exists s1 ∈ X such that s1(�x) = f(−→wl1). Put Yl1−1 =
X[

−→
F1/

−→w1, . . . ,
−−−→
Fl1−1/

−−−→wl1−1] and t = s′ � dom(Yl1−1). By the construction,

tl1 = t ∪ {(wl1,1, s1(x1)), . . . , (wl1,m, s1(xm))} ∈ Yl1−1[
−→
Fl1/

−→wl1] = Yl1 .

Thus
tl1(

−→wl1) = s1(�x) = f(−→wl1) and tl1(�v) = t(�v) = s′(�v).

Repeat the same argument for f(−→wl2), . . . , f(−→wld), we can find tld ∈ Yld such that

tld(
−→wi1 . . . −→wia) = s(−→wi1 . . . −→wia) and tld(

−→wj1 . . . −→wjbv1 . . . vc) = s′(−→wj1 . . . −→wjbv1 . . . vc).

Finally, by the construction of Y , there exists s′′ ∈ Y such that s′′ � dom(Yld) =
tld . Hence, s′′ is the desired assignment. ��

References

1. Armstrong, W.W.: Dependency structures of data base relationships. In: IFIP
Congress, pp. 580–583 (1974)

2. Arrow, K.J.: Social Choice and Individual Values. Yale University Press, New
Haven (1951)

Negation and Partial Axiomatizations of Dependence and Independence 431

3. Chagrova, L.A.: An undecidable problem in correspondence theory. J. Symbol.
Logic 56, 1261–1272 (1991)

4. Galliani, P.: The dynamics of imperfect information. Ph.D. thesis, University of
Amsterdam (2012)

5. Galliani, P.: Inclusion and exclusion in team semantics: on some logics of imperfect
information. Ann. Pure Appl. Logic 163(1), 68–84 (2012)

6. Galliani, P.: On strongly first-order dependencies (2014). CoRR abs/1403.3698
7. Galliani, P.: Upwards closed dependencies in team semantics. J. Inf. Comput.

24(C), 124–135 (2015)
8. Geiger, D., Paz, A., Pearl, J.: Axioms and algorithms for inferences involving prob-

abilistic independence. Inf. Comput. 91(1), 128–141 (1991)
9. Grädel, E., Väänänen, J.: Dependence and independence. Stud. Logica. 101(2),

399–410 (2013)
10. Hannula, M.: Axiomatizing first-order consequences in independence logic. Ann.

Pure Appl. Logic 166(1), 61–91 (2015)
11. Henkin, L.: Some remarks on infinitely long formulas. In: Infinitistic Methods, Pro-

ceedings Symposium Foundations of Mathematics, Warsaw, pp. 167–183. Perga-
mon (1961)

12. Hintikka, J.: The Principles of Mathematics Revisited. Cambridge University Press,
Cambridge (1998)

13. Hodges, W.: Compositional semantics for a language of imperfect information.
Logic J. IGPL 5, 539–563 (1997)

14. Hodges, W.: Some strange quantifiers. In: Mycielski, J., Rozenberg, G., Salomaa,
A. (eds.) Structures in Logic and Computer Science. LNCS, vol. 1261, pp. 51–65.
Springer, Heidelberg (1997)

15. Kontinen, J.: On natural deduction in dependence logic. In: Villaveces, A., Roman
Kossak, J.K., Hirvonen, Å. (eds.) Logic Without Borders,: Essays on Set Theory,
Model Theory, Philosophical Logic and Philosophy of Mathematics, pp. 297–304.
De Gruyter (2015)

16. Kontinen, J., Müller, J., Schnoor, H., Vollmer, H.: Modal independence logic. In:
Advances in Modal Logic, vol. 10, pp. 353–372. College Publications (2014)

17. Kontinen, J., Nurmi, V.: Team logic and second-order logic. Fundamenta Infor-
maticae 106, 259–272 (2011)

18. Kontinen, J., Väänänen, J.: On definability in dependence logic. J. Logic Lang.
Inf. 18(3), 317–332 (2009). (Erratum: The Same Journal 20(1), 133–134 (2011))

19. Kontinen, J., Väänänen, J.: A remark on negation in dependence logic. Notre Dame
J. Formal Logic 52(1), 55–65 (2011)

20. Kontinen, J., Väänänen, J.: Axiomatizing first-order consequences in dependence
logic. Ann. Pure Appl. Logic 164, 11 (2013)

21. Kuusisto, A.: A double team semantics for generalized quantifiers. J. Logic Lang.
Inform. 24(2), 149–191 (2015)

22. Pacuit, E., Yang, F.: Dependence and independence in social choice: arrow’s theo-
rem. In: Abramsky, H.V.S., Kontinen, J., Väänänen, J. (eds.) Dependence Logic:
Theory and Application. Progress in Computer Science and Applied Logic, pp.
227–251. Birkhauser (2016)

23. Väänänen, J.: Dependence Logic: A New Approach to Independence Friendly
Logic. Cambridge University Press, Cambridge (2007)

Anaphors and Quantifiers

R. Zuber(B)

CNRS, Laboratoire de Linguistique Formelle, Paris, France
Richard.Zuber@linguist.univ-paris-diderot.fr

Abstract. Various properties of functions denoted by anaphors and
anaphoric determiners are studied in this paper. These properties indi-
cate similarities (conservativity, intersectivity) and differences (predicate
invariance, anaphoric conservativity, anaphoric intersectivity) between
anaphoric functions and quantifiers and show that anaphors essentially
extend the expressive power of natural languages.

1 Introduction

Anaphors belong to expressions which can play the role of verbal arguments
like (ordinary) noun phrases (NPs) and whose referential meaning depends on
the meaning of other expressions called antecedents of anaphors. The class of
anaphors we will consider is represented by reflexives and reciprocals. They can-
not occur in the subject position of sentences. The case we will consider is when
they occur on the direct object position and the subject NPs of sentences in
which they occur are their antecedents.

A typical example of a reflexive is the (anaphoric) pronoun like himself and a
typical example of a reciprocal is the reciprocal pronoun each other. Other exam-
ples of reflexives and reciprocals are given by complex expressions containing
himself or each other. Such complex examples can in particular be Boolean com-
pounds of anaphoric pronouns with anaphoric or non-anaphoric noun phrases.
For instance himself but not most students is such a reflexive and each other and
ten philosophers is such a reciprocal.

Finally, there are also complex reflexives and reciprocals which are not
Boolean compounds. Recall that a large class NPs is obtained by the appli-
cation of a determiner to a common noun (CN). Thus from determiners like
all...but ten, most but not all, at least two and the common noun logician(s)
one can obtain the complex NPs like all logicians but ten, most, but not all
logicians, at least two logicians. Interestingly, there is also a class of complex
reflexives and reciprocals which have a similar structure. Thus we have reflexive
(anaphoric) determiners (RefDets) like for instance every... except herself and
most,..., including Socrates and himself and reciprocal determiners (RecDets)
like no... except each other, most..., including each other which can apply to a
CN and give complex reflexives and reciprocals like no teacher, except herself or
every logician except each other (as in Dan and Leo admire every logician excpt
each other).

c© Springer-Verlag Berlin Heidelberg 2016
J. Väänänen et al. (Eds.): WoLLIC 2016, LNCS 9803, pp. 432–445, 2016.
DOI: 10.1007/978-3-662-52921-8 26

Anaphors and Quantifiers 433

We will assume that reflexives and reciprocals belong to the class of anaphoric
NPs (ANPs). RefDets and RecDets, which can form ANPs when applied to CNs,
belong to the class of anaphoric determiners (ADets). ANPs themselves belong
to the class of generalised NPs (GNPs) that is expressions which can play the
role of nominal arguments of transitive verbs.

A general form of sentences in which ANPs, RefDets and RecDets occur is
given in (1), where TV P is a transitive verb phrase which denotes a binary
relation and ANP can be of the form RefDet(CN) or RecDet(CN):

(1) NP TV P ANP

I will be interested in logical properties of functions denoted reflexive and
reciprocal ANPs, by RefDets and by RecDets. These functions, will be called
anaphoric functions. The properties we will discuss indicate formal similarities
and differences between quantifiers denotes by NPs and anaphoric functions
denoted by ANPs. In the same way we will indicate formal differences between
quantifiers denoted by “ordinary” determiners (those forming “ordinary” NPs
with a CN) and anaphoric functions denoted by ADets

To see informally one logical difference between an ANP and an ordinary NP
consider the following examples:

(2) a. Leo and Lea hug each other.
b. Bill and Sue hug each other.

(3) Leo, Lea, Bill and Sue hug each other.

Clearly (2a) in conjunction with (2b) does not entail (3). However, if we replace
each other by an ordinary NP, the entailment holds. Some differences of logical
nature, at informal level, between reflexives and ordinary NPs on object position
are given in Keenan 2007 and Zuber 2010a.

Anaphors are often discussed in a more general setting: anaphoric interpre-
tation is associated with an “ordinary” pronoun when its antecedent occurs in
another sentence or another clause than the one in which the pronoun occurs.
In particular medieval scholars discussed anaphoric use of pronouns in the so
called donkey sentences as recalled and introduced into modern discussion by
Geach (1968, p. 117). I will not discuss here this possibility of the anaphoric use
of pronouns (for historical remarks concerning this problem see Egli 2000).

Geach (1968, p, 132 f) also indicates various logical peculiarities of the pro-
noun himself and Keenan (2007) makes some of them precise, taking into account
the fact that himself can be a syntactic part of more complex reflexives. Logical
properties of each other have been often discussed (Dalrymple et al. 1998, Peters
and Westerst̊ahl 2006, Sabato and Winter 2012, a.o.) but only in its syntactically
simple form. As far as I know, ADets have not been subject to logical analysis
and RecDets probably have not been even distinguished.

In the next section we recall some basic notions from the generalised quan-
tifier theory and, more importantly, we show how they can be extended so that

434 R. Zuber

they apply to anaphoric functions. In Sect. 3, after providing some simple exam-
ples of anaphoric functions, we indicate a series of properties specific to anaphoric
functions. Section 4 deals with a specific class of type 〈2〉 quantifiers (that is sets
of binary relations) and indicates some conditions for their representability with
the help of anaphoric functions.

Since, technically, results presented in this paper are simple, proofs are omit-
ted in most cases.

2 Formal Preliminaries

We will consider binary relations and functions over a universe E, assumed to
be finite throughout this paper. D(R) denotes the domain of R. The relation I
is the identity relation: I = {〈x, y〉 : x = y}. If R is a binary relation and X a
set then R/X = R ∩ (X ×X). The binary relation RS is the greatest symmetric
relation included in R, that is RS = R ∩ R−1 and RS− = RS ∩ I ′. If R is an
irreflexive symmetric relation (i.e. R ∩ R−1 ∩ I = ∅) then Π(R) is the least
fine partition of R such that every of its blocks is of the form (A × A) ∩ I ′.
A partition is 1. trivial iff it contains only one block. Observe that if R is an
irreflexive symmetric relation and Π(R) is not trivial than every block of Π(R)
contains at least two elements.

If a function takes only a binary relation as argument, its type is noted
〈2 : τ〉, where τ is the type of the output; if a function takes a set and a
binary relation as arguments, its type is noted 〈1, 2 : τ〉. If τ = 1 then the
output of the function is a set of individuals and thus its type is 〈2 : 1〉 or
〈1, 2 : 1〉. The function SELF , denoted by the reflexive himself and defined as
SELF (R) = {x : 〈x, x〉 ∈ R}, is of type 〈2 : 1〉 and the function denoted by the
anaphoric determiner every...but himself is of type 〈1, 2 : 1〉. We will consider
here also the case when τ corresponds to a set of type 〈1〉 quantifiers and thus
τ equals, in Montagovian notation, 〈〈〈e, t〉t〉t〉. The type of such functions will
be noted either 〈2 : 〈1〉〉 - functions from binary relations to sets of type 〈1〉
quantifiers or 〈1, 2 : 〈1〉〉 - functions from sets and binary relations to sets of
type 〈1〉 quantifiers.

Basic type 〈1〉 quantifiers are functions from sets to truth-values. In this case
they are denotations of subject NPs. However, NPs can also occur in the direct
object position and in this case their denotations do not take sets (denotations
of VPs) as arguments but denotations of TVPs (relations) as arguments. To
account for this eventuality the domain of application of basic type 〈1〉 quantifiers
is extended in the way that it contains in addition the set of binary relations.
When a quantifier Q acts as a “direct object” we get its accusative case extension
Qacc (Keenan and Westerstahl 1997):

Definition 1. For each type 〈1〉 quantifier Q, QaccR = {a : Q(aR) = 1}, where
aR = {y : 〈a, y〉 ∈ R}.

A type 〈1〉 quantifier Q is positive, Q ∈ POS, iff ∅ /∈ Q; Q is natural iff either
Q ∈ POS and E ∈ Q or Q /∈ POS and E /∈ Q; Q is plural, Q ∈ PL, iff if X ∈ Q
then |X| ≥ 2. QA is the atomic quantifier true of just A.

Anaphors and Quantifiers 435

A special class of type 〈1〉 quantifiers is formed by individuals: Ia is an indi-
vidual (generated by a ∈ E) iff Ia = {X : a ∈ X}. They are denotations of
proper names. More generally, Ft(A), the (principal) filter generated by the set.
A, is defined as Ft(A) = {X : X ⊆ E ∧ A ⊆ X}. NPs of the form Every CN
denote principal filters generated by the denotation of CN. Meets of two principal
filters are principal filters: Ft(A) ∩ Ft(B) = Ft(A ∪ B).

We will use also the property of living on (cf. Barwise and Cooper 1981).
The basic type 〈1〉 quantifier lives on a set A (where A ⊆ E) iff for all X ⊆ E,
Q(X) = Q(X ∩A). Q weakly lives on A iff if X ∈ Q then X ∩A ∈ Q. We extend
the notion of living on to the type 〈2 : 1〉 functions. Thus a type 〈2 : 1〉 function
F lives on the relation S iff F (R) = F (R ∩ S) for any binary relation R. It is
easy to see that Q lives on A iff Qacc lives on E × A.

If E is finite then there is always a smallest set on which a quantifier Q lives.
If A is a set on which Q lives we will write Li(Q,A) and the smallest set on
which Q lives will be noted SLi(Q). A related notion is the notion of a witness
set of the quantifier Q, relative to the set A on which Q lives:

Definition 2. W ∈ WtQ(A) iff W ∈ Q ∧ W ⊆ A ∧ Li(Q,A).

Observe that any principal filter lives on the set by which it is generated,
and, moreover, this set is its witness set. Atomic quantifiers live on the universe
E only and weakly live on their unique elements.

“Ordinary” determiners denote functions from sets to type 〈1〉 quantifiers.
They are thus type 〈1, 1〉 quantifiers.

Accusative extensions of type 〈1〉 quantifiers are specific type 〈2 : 1〉 func-
tions. They satisfy the invariance condition called accusative extension condition
EC (Keenan and Westerstahl 1997):

Definition 3. A type 〈2 : 1〉 function F satisfies EC iff for R and S binary
relations, and a, b ∈ E, if aR = bS then a ∈ F (R) iff b ∈ F (S).

Observe that if F satisfies EC then for all X ⊆ E either F (E × X) = ∅
or F (E × X) = E. Given that SELF (E × A) = A the function SELF does
not satisfy EC. The function SELF satisfies the following weaker predicate
invariance condition PI (Keenan 2007):

Definition 4. A type 〈2 : 1〉 function F is predicate invariant (PI) iff for R
and S binary relations, and a ∈ E, if aR = aS then a ∈ F (R) iff a ∈ F (S).

This condition is also satisfied for instance by the function ONLY -SELF
defined as follows: ONLY -SELF (R) = {x : xR = {x}}. Given that ONLY -
SELF (E × {a}) = {a}, the function ONLY -SELF does not satisfy EC.

The following proposition indicates another way to define PI:

Proposition 1. A type 〈2 : 1〉 function F is predicate invariant iff for any
x ∈ E and any binary relation R, x ∈ F (R) iff x ∈ F ({x} × xR).

436 R. Zuber

We will use the following property of PI functions:

Proposition 2. Functions satisfying PI form an atomic Boolean algebra. Its
atoms are functions ha,A, (for a ∈ E and A ⊆ E),defined as follows: ha,A(R) =
{a} if aR = A and = ∅ otherwise.

The conditions EC and PI concern type 〈2 : 1〉 functions, considered here as
being denoted by full ANPs. We also need a similar definition for type 〈1, 2 : 1〉
functions denoted by RefDets. Thus:

Definition 5. A type 〈1, 2 : 1〉 function F satisfies D1EC iff for R and S
binary relations, X ⊆ E and a, b ∈ E, if aR ∩ X = bS ∩ X then a ∈ F (X,R) iff
b ∈ F (X,S).

Observe that if F (X,R) satisfies D1EC then for all X,A ⊆ E either
F (X,E×A) = ∅ or F (X,E×A) = E. Denotations of ordinary determiners occur-
ring in NPs which take direct object position satisfy D1EC. More precisely, if D
is a type 〈1, 1〉 conservative quantifier, then the function F (X,R) = D(X)acc(R)
satisfies D1EC: in this case F (X,R) = {y : D(X)(yR ∩ X) = 1} and
F (X,S) = {y : D(X)(yS ∩ X) = 1}. So if aR ∩ X = bS ∩ X then a ∈ F (X,R)
iff b ∈ F (X,S).

Functions denoted by properly anaphoric determiners (ones which form
ANPs denoting functions satisfying PI but failing EC) do not satisfy D1EC.
For instance the function F (X,R) = {y : X ∩ yR = {y}} denoted by the
anaphoric determiner no... except himself/herself does not satisfy D1EC. To see
this observe that for A = {a} and X such that a ∈ X one has F (X,E×A) = {a}
and thus F (X,E × X) �= ∅ and F (X,E × X) �= E.

Type 〈1, 2 : 1〉 functions denoted by anaphoric determiners do not satisfy
D1EC. They satisfy the following weaker condition (Zuber 2010b):

Definition 6. A type 〈1, 2 : 1〉 function F satisfies D1PI (predicate invariance
for unary determiners) iff for R and S binary relations X ⊆ E, and x ∈ E, if
xR ∩ X = xS ∩ X then x ∈ F (X,R) iff x ∈ F (X,S).

The following proposition indicates an equivalent way to define D1PI :

Proposition 3. A type 〈1, 2 : 1〉 function F satisfies D1PI iff for any x ∈ E,
X ⊆ E, any binary relation R one has x ∈ F (X,R) iff x ∈ F (X, ({x}×X)∩R)

The above invariance principles concern type 〈2 : 1〉 and type 〈1, 2 : 1〉
functions. We need to present similar “higher order” invariance principles for
type 〈2 : 〈1〉〉 and type 〈1, 2 : 〈1〉〉 functions that is functions having as output a
set of type 〈1〉 quantifiers. This is necessary because, as we will see, some type
〈1, 2 : 〈1〉〉 functions are denotations of RecDets.

One can distinguish various kinds of type 〈2 : 〈1〉〉 and type 〈1, 2 : 〈1〉〉
functions. Observe first that any type 〈2 : 1〉 function whose output is denoted
by a VP can be lifted to a type 〈2 : 〈1〉〉 function. The accusative extension of a
type 〈1〉 quantifier Q can be lifted to type 〈2 : 〈1〉〉 function in the way indicated
in (4). Such functions will be called accusative lifts. More generally, if F is a
type 〈2 : 1〉 function, its lift FL, a type 〈2 : 〈1〉〉 function, is defined in (5):

Anaphors and Quantifiers 437

(4) QL
acc(R) = {Z : Z(Qacc(R)) = 1}.

(5) FL(R) = {Z : Z(F (R)) = 1}.

The variable Z above runs over the set of type 〈1〉 quantifiers.
For type 〈2 : 〈1〉〉 functions which are lifts of type 〈2 : 1〉 functions we have:

Proposition 4. If a type 〈2 : 〈1〉〉 function F is a lift of a type 〈2 : 1〉 function
then for any type 〈1〉 quantifiers Q1 and Q2 and any binary relation R, if Q1 ∈
F (R) and Q2 ∈ F (R) then (Q1 ∧ Q2) ∈ F (R)

For type 〈2 : 〈1〉〉 functions which are accusative lifts we have:

Proposition 5. Let F be a type 〈2 : 〈1〉〉 function which is an accusative lift.
Then for any A,B ⊆ E, any binary relation R, Ft(A) ∈ F (R) and Ft(B) ∈
F (R) iff Ft(A ∪ B) ∈ F (R).

Accusative lifts satisfy the following higher order extension condition HEC
(Zuber 2014):

Definition 7. A type 〈2 : 〈1〉〉 function F satisfies HEC (higher order extension
condition) iff for any natural type 〈1〉 quantifiers Q1 and Q2 with the same
polarity, any A,B ⊆ E, any binary relations R,S, if Li(Q1, A), Li(Q2, B) and
∀a∈A∀b∈B(aR = bS) then Q1 ∈ F (R) iff Q2 ∈ F (S).

Functions satisfying HEC have the following property::

Proposition 6. Let F satisfies HEC and let R = E × C, for C ⊆ E arbitrary.
Then for any X ⊆ E either Ft(X) ∈ F (R) or for any X, Ft(X) /∈ F (R)

Thus a function satisfying HEC condition and whose argument is the cross-
product relation of the form E × A, has in its output either all principal filters
or no principal filter. We will see that the function denoted by the ANP each
other does not satisfy HEC.

It follows from Proposition 6 that lifts of genuine predicate invariant functions
do not satisfy HEC. They satisfy the following weaker condition (Zuber 2014):

Definition 8. A type 〈2 : 〈1〉〉 function F satisfies HPI (higher order predicate
invariance) iff for type 〈1〉 quantifier Q, any A ⊆ E, any binary relations R,S,
if Li(Q,A) and ∀a∈A(aR = aS) then Q ∈ F (R) iff Q ∈ F (S).

An equivalent way to define HPI is given in Proposition 7:

Proposition 7. Function F satisfies HPI iff if Li(Q,A) then Q ∈ F (R) iff
Q ∈ F ((A × E) ∩ R)

The above definitions of HEC and of HPI easily extend to type 〈1, 2 : 〈1〉〉
functions, which are, as we will see, denotations of RecDets:

438 R. Zuber

Definition 9. A type 〈1, 2 : 〈1〉〉 function F satisfies D1HEC (higher order
extension condition for unary dets) iff for any natural type 〈1〉 quantifiers Q1

and Q2 with the same polarity, any A,B ⊆ E, any binary relations R,S, if
Li(Q1, A), Li(Q2, B) and ∀a∈A∀b∈B(aR ∩ X = bS ∩ X) then Q1 ∈ F (X,R) iff
Q2 ∈ F (X,S).

Definition 10. A type 〈1, 2 : 〈1〉〉 function F satisfies D1HPI (higher order
predicate invariance for unary dets) iff for any type 〈1〉 quantifier Q, any A ⊆
E, any binary relations R,S, if Li(Q,A) and ∀a∈A(aR ∩ X = aS ∩ X) then
Q ∈ F (X,R) iff Q ∈ F (X,S).

The condition D1HPI can also be characterised as in:

Proposition 8. F (X,R) satisfies D1HPI iff if Q lives on A then Q ∈ F (X,R)
iff Q ∈ F (X, (A × X) ∩ R)

The second series of properties of functions we will discuss concerns conser-
vativity. Recall first the constraint of conservativity for type 〈1, 1〉 quantifiers:

Definition 11. F ∈ CONS iff F (X,Y) = F (X,X ∩ Y) for any X,Y ⊆ E

Conservative quantifiers have two important sub-classes: intersective and co-
intersective quantifiers (Keenan 1993): a type 〈1, 1〉 quantifier F is intersective
(resp. co-intersective) iff F (X1, Y1) = F (X2, Y2) whenever X1 ∩ Y1 = X2 ∩ Y2

(resp. X1 ∩ Y ′
1 = X2 ∩ Y ′

2).
All the above properties of quantifiers can be generalised so that they apply

to type 〈1, 2 : 1〉 and type 〈1, 2 : 〈1〉〉 functions (Zuber 2010a):

Definition 12. A function F of type 〈1, 2 : τ〉 is conservative iff F (X,R) =
F (X, (E × X) ∩ R)

For instance the function F (X,R) = MOST (X)acc(R) is conservative (where
MOST (X)(Y) = 1 iff |X ∩ Y | > |X ∩ Y ′). In fact the type 〈1, 2 : 1〉 function
F (X,R) = D(X)acc(R) and the type 〈1, 2 : 〈1〉〉 function F (X,R) = D(X)Lacc(R)
are conservative iff D is a conservative type 〈1, 1〉 quantifier.

Definition 13. A type 〈1, 2 : τ〉 function is intersective iff F (X1, R1) =
F (X2, R2) whenever (E × X1) ∩ R1 = (E × X2) ∩ R2.

Definition 14. A type 〈1, 2 : τ〉 function is co-intersective iff F (X1, R1) =
F (X2, R2) whenever (E × X1) ∩ R′

1 = (E × X2) ∩ R′
2.

As in the case of type 〈1, 1〉 quantifiers it is possible to give other, equivalent,
definitions of intersectivity and co-intersectivity for type 〈1, 2 : τ〉 functions:

Proposition 9. F is intersective iff F (X,R) = F (E, (E × X) ∩ R).

Proposition 10. F is co-intersective iff F (X,R) = F (E, (E × X ′) ∪ R).

Anaphors and Quantifiers 439

One can show that the type 〈1, 2 : 1〉 function F (X,R) = D(X)acc(R) and
the type 〈1, 2 : 〈1〉〉 function F (X,R) = D(X)Lacc(R) are intersective (resp.
co-intersective) if D is an intersective (resp. co-intersective) type 〈1, 1〉 quantifier.

One can notice that intersective and co-intersective functions are conserva-
tive. Interestingly for functions satisfying D1PI or D1HPI we have:

Proposition 11. Any function satisfying D1PI or D1HPI is conservative

Since the above definitions do not depend on the type τ , they apply to type
〈1, 2 : 1〉 and type 〈1.2 : 〈1〉〉 functions.

3 Properties of Anaphoric Functions

The properties discussed in the preceding section characterise anaphoric func-
tions “negatively”. Since any function satisfying, say, AC also satisfies PI we
can distinguish a class of “genuine” functions satisfying PI as those which sat-
isfy PI but do not satisfy AC. We have seen that this is the case for SELF
and ONLY -SELF . To see that this is also the case with anaphoric functions of
other types we need some examples of such functions.

For simplicity we will consider that reciprocals give rise only to full (logical)
reciprocity. Thus we exclude the readings of each other as found for instance in
follow each other. (cf. Dalrymple et al. 1998).

Let us recall briefly types of functions we are interested in. Reflexives denotes
functions of type 〈2 : 1〉 (like SELF or ONLY -SELF) because they form VPs
when applied to a TVP. RefDets denote functions of type 〈1, 2 : 1〉 because they
form reflexives by applying to CNs. Reciprocals and RecDets differ in many
respects from reflexives and RefDets respectively. Both these classes also differ
from ordinary determiners and ordinary NPs. Thus, given Proposition 4 and
examples in (2) and (3), functions denoted by reciprocals are not lifts of type
〈2 : 1〉 functions and the conjunction and is not understood pointwise. Hence, to
avoid the type mismatch and get the right interpretations we will consider that
reciprocals each other denotes a type 〈2 : 〈1〉〉 function (because they apply to
TVPs and give a lifted VP) and RecDets denote type 〈1, 2 : 〈1〉〉 functions.

A class of anaphoric type 〈1, 2 : 1〉 functions is given by the schema in (6):

(6) F (X,R) = D(X)INCL−SELF (R) = {y : y ∈ X ∧ 〈y, y〉 ∈ R ∧ y ∈
D(X)acc(R)}, where D is a monotone on the second argument type 〈1, 1〉
quantifier.

Replacing in (6) D by MOST or TEN we obtain the anaphoric function denoted
by the RefDets like most,..., including himself or ten,..., including himself.

Two other anaphoric type 〈1, 2 : 1〉 functions are given in (7) and (8):

(7) FNO(X,R) = {x : X ∩ xR = {x}}
(8) FEV ERY −BUT−{L}(X,R) = {x : X ∩ xR′ = {x,L}}

440 R. Zuber

The RefDet no...except himself denotes the function in (7) and the RefDet
every... except Leo and himself, denotes the function in (8).

To define the type 〈2 : 〈1〉〉 function EA denoted by the reciprocal each other
we use the partition Π(RS−). Our definition is the definition “be cases” which
depend on whether the partition Π(RS−) is trivial or non-trivial. Thus

(9) (i) EA(R) = {Q : Q ∈ PL ∧ ¬2(E) ⊆ Q} if RS− = ∅

(ii) EA(R) = {Q : Q ∈ PL ∧ QD(B) ⊆ Q}, if Π(RS−) is trivial with B as
its only block

(iii) EA(R) = {Q : Q ∈ PL ∧ ∃B(B ∈ Π(RS−) ∧ Q(D(B) = 1} ∪ {Q : Q ∈
PL ∧ ∃B(B ∈ Π(RS−) ∧ Q = ¬QD(B)} if Π(RS−) is non-trivial.

In a similar way we can obtain type 〈1, 2 : 〈1〉〉 anaphoric functions. In (10) we
have the function denoted by the reciprocal determiner no...except each other :

(10) (i) NOBUT−EA(X,R) = {Q : Q ∈ PL ∧ ¬TWO(E) ⊆ Q} if RS− = ∅

(ii) NOBUT−EA(X,R) = {Q : Q ∈ PL ∧ D(B) × D′(B) ∩ R = ∅ ∧ QD(B ⊆
Q} if Π(RS−/X) is trivial with B as its only block.

(iii) F (X,R) = {Q : Q ∈ PL∧∃B(B ∈ Π(RS/X))∃W (W ∈ WtQ(SLi(Q)∧
(W ×W)∩I ′) = B∧D(B)×D′(B)∩R = ∅} if Π(RS−/X) is non-trivial.

To obtain the function EV ERYBUT−EA denoted by every... except each other
one can use the fact that, roughly, EV ERY is related to NO by the negation
of the second argument: EV ERY (X,Y) = NO(X,Y ′). Thus we have:

(11) EV ERYBUT−EA(X,R) = NOBUT−EA(X,R′)

The functions described above are anaphoric in the sense that they satisfy
predicate invariance conditions PI, HPI, D1PI or D1HPI and do not satisfy
stronger conditions EC, HEC, D1EC or D1HEC. we have already seen this
for SELF and ONLY -SELF . This is easy to see for functions in (6), (7) and
(8) because their values for R = E ×A may differ from E and ∅. Similarly, using
Proposition 6 and Definition 8 we show that the function EA in (9) is anaphoric
(because for R = E × A the partition Π(RS−) is trivial).

To show that functions denoted by RecDets do not satisfy D1HEC we can
use Proposition 12, analogous to Proposition 6:

Proposition 12. Let F satisfies D1HEC and let R = E×C, for C ⊆ E. Then
for any A ⊆ E either Ft(A) ∈ F (X,R) or for any X, Ft(A) /∈ F (X,R)

Using Propositions 12 and 8 one can show that functions in (10) and (11) are
anaphoric.

Examples of RefDets discussed above suggest that functions they denote sat-
isfy a constraint stronger than conservativity. Observe that anaphoric functions
given in (6), (7) and (8) all have the property given in (12):

(12) F (X,R) ⊆ X.

Anaphors and Quantifiers 441

Interestingly, the anaphoric condition D1PI and the condition given in
(12) entail a specific version of conservativity, anaphoric conservativity (a-
conservativity), proper to anaphoric determiners. It is defined as follows:

Definition 15. A type 〈1, 2 : τ〉 function F is a-conservative iff F (X,R) =
F (X, (X × X) ∩ R).

The following proposition makes clearer what a-conservativity is:

Proposition 13. A type 〈1, 2 : τ〉 function F is a-conservative iff for any X ⊆
E and any binary relations R1 and R2 if (X × X) ∩ R1 = (X × X) ∩ R2 then
F (X,R1) = F (X,R2).

Any a-conservative function is conservative. Ordinary determiners in the
object position in general do not denote a-conservativce functions: if D is a
(conservative) type 〈1, 1〉 quantifier, then the type 〈1, 2 : 1〉 function F (R,X) =
D(X)acc(R) is not a-conservative. For instance if D = ALL and R = E ×A then
F (X,R) = ALL(X)acc(E × A) = E if X ⊆ A but in this case F (X, (X × X) ∩
R) = ALL(X)acc((X × X) ∩ (E × A) = X. Thus F (X,R) �= F (X, (X × X) ∩ R)
which means that F (X,R) = ALL(X)acc(R) is not a-conservative (though it is
conservative).

Concerning RefDets and a-conservativity we have:

Proposition 14. A type 〈1, 2 : 1〉 function F satisfying D1PI such that
F (X,R) ⊆ X is a-conservative.

Thus the functions denoted by RefDets are a-conservative.
When one looks at type 〈1, 2 : 〈1〉〉 functions F (X,R), denotations of non-

possessive RecDets, one observes that they have the property given in (13):

(13) If Q ∈ F (X,R), then Q weakly lives on X.

For functions denoted by RecDets satisfying the condition in (13) we have:

Proposition 15. Any type 〈1, 2 : 〈1〉〉 conservative functions satisfying D1HPI
and the condition in (13) is a-conservative.

Thus functions denoted by ADets are a-conservative..
More can be said with respect to the class of functions denoted by anaphoric

determiners formed from no or every. Since they are related either to “ordinary”
intersective determiners (like no... except Leo) or to “ordinary” co-intersective
determiners (like every... except Lea) they are provably either intersective or co-
intersective (in the sense of definitions D13 and D14 respectively). The function
in (10) is intersective and the function in (11) is co-intersective.

In addition, given that the functions we consider satisfy predicate invariance
and condition like (12) or (13), they have a stronger property than just inter-
sectivity or co-intersectivity: they are a-intersective or a-co-intersective in the
following sense:

442 R. Zuber

Definition 16. A type 〈1, 2 : τ〉 function F is a-intersective iff F (X1, R1) =
F (X2, R2) whenever (X1 × X1) ∩ R1 = (X2 × X2) ∩ R2

Definition 17. A type 〈1, 2 : τ〉 function F is a-co-intersective iff F (X1, R1) =
F (X2, R2) whenever (X1 × X1) ∩ R′

1 = (X2 × X2) ∩ R′
2

The following proposition gives another characterisation of the a-
intersectivity and a-co-intersectivity:

Proposition 16. A type 〈1, 2 : τ〉 function F is a-intersective iff F (X,R) =
F (E, (X × X) ∩ R)

Proposition 17. A type 〈1, 2 : τ〉 function F is a-co-intersective iff F (X,R) =
F (E, ((X × X)′) ∪ R)

Functions which are a-intersective or a-co-intersective are a-conservative. The
function in (7) and in (10) is a-intersective and the function in (8) and in (11)
is a-cointersective.

The property of conservativity is related to the property of living on. Let F
be a type 〈1, 2 : τ〉 function and let FA be a type 〈2 : τ〉 function defined as
FA(R) = F (A,R). Then, clearly, if F is a-conservative, FA lives on S = A × A.
The question one can ask now is whether all anaphoric type 〈2 : τ〉 functions live
on a (non-trivial) relation. For instance the function SELF lives on the relation
I and the function EA lives on the relation I ′. One can observe, however, that
the anaphoric type 〈2 : 1〉 function F (R) = D(R) does not live on any non-trivial
relation. This observation indicates that “linguistically natural” anaphoric type
〈2 : τ〉 functions (the function F (R) = D(R) is not “linguistically natural”)
should be additionally characterised by the property of living on (a relation).

4 Predicate Invariant Reducibility

A set of binary relations is a type 〈2〉 quantifier. Among them one can distinguish
the following sub-class (cf. Keenan 1992):

Definition 18. A type 〈2〉 quantifier F is Fregean, or Frege reducible, iff there
exist two type 〈1〉 quantifiers Q and Q1 such that F (R) = Q1(Qacc(R)).

A type 〈2〉 quantifier is non-Fregean iff it is not Frege reducible.
Various tests showing that a type 〈2〉 quantifier is Fregean have been estab-

lished and various type 〈2〉 quantifiers have been shown to be non-Fregean
(Keenan 1992, van Eijck 2005) with their help. In these tests essential role play
cross-product binary relations, that is binary relations of the form A × B. Thus
Keenan 1992 proved the following theorem which can be used to show that some
functions are not Fregean (see also van Eijck 2005):

Proposition 18. (Keenan) If F1 and F2 are Fregean (type 〈2〉) quantifiers then
F1 = F2 iff for all A,B ⊆ E it holds that F1(A × B) = F2(A × B)

Anaphors and Quantifiers 443

To illustrate Proposition 18 we indicate a class of examples of non-Fregean
quantifiers corresponding to the functions of the form Q(h) for Q = Ft(C) and
h = SELF . First, we have (Zuber 2012):

Proposition 19. Let Q = Ft(C) for some C ⊆ E, |C| ≥ 2. Then:
(i) Q(SELF (X × Y)) = Q(Qacc(X × Y), for any X,Y ⊆ E
(ii) Q(SELF ((C ×C)∩ I)) �= Q(Qacc((C ×C)∩ I)), where I = {〈x, x〉 : x ∈ E}

Given that (C × C) ∩ I is not a cross-product relation, it follows from
Proposition 19 that the quantifier Ft(C)(SELF), for |C| ≥ 2 is not Freagean.

We will now generalise the notion of Frege irreducible quantifiers by consid-
ering the possibility of representing a type 〈2〉 quantifier by the composition of a
type 〈1〉 quantifier with a specific predicate invariant function, by analogy with
Frege reducible quantifiers which are compositions of a type 〈1〉 quantifier with
the accusative extension of a type 〈1〉 quantifier.

When one looks at the predicate invariant functions discussed above, one
observes that they are usually positive or negative that is their value on the
empty relation is the empty set. or the whole universe E. For that reason we
will consider in what follows only natural predicate invariant functions, that
is predicate invariant functions h such that h(∅ × ∅) = ∅ or h(∅ × ∅) = E.
Consequently we have the following definition:

Definition 19. A type 〈2〉 quantifier F is PI-reducible (predicate invariant
reducible) iff there exists a type 〈1〉 quantifier Q and a natural predicate invariant
function h such that F (R) = Q(h(R)).

We will say that the function F is induced by Q and h specifying the Q is the
first inducer of F and h its second inducer and write F = Q(h).

Observe that any PI-reducible function F can be represented in a standard
way as Q(h), where h is positive. The reason is that Q(h) = Q¬(h′) and either h
or h′ is positive. Since any accusative extension of a type 〈1〉 positive quantifier
is a positive invariant function, any Frege reducible quantifier is PI-reducible.
Thus PI-reducibility is a generalisation of Frege reducibility.

In order to give a sufficient and necessary condition for a type 〈2〉 quantifier
to be PI-reducible we need the following definition:

Definition 20. A positive predicate invariant function refines a type 〈2〉 quan-
tifier F iff for any binary relations R and S if h(R) = h(S) then F (R) = F (S).

We can prove now the following sufficient and necessary condition:

Proposition 20. A type 〈2〉 quantifier F is PI-reducible iff there exists a pos-
itive predicate invariant function h which refines F .

Proof. (i) If F is PI-reducible then F = Q(h) for some type 〈1〉 quantifier Q
and a positive predicate invariant function h. It is easy to see that h refines F .
(ii) Suppose now that there is a positive predicate invariant function h which
refines F . Define a type 〈1〉 quantifier Qh by Qh(P) = 1 iff ∃SF (S) = 1 ∧
h(S) = P . Then Qhh(R) = 1 iff ∃SF (S) = 1 ∧ h(S) = h(R) iff F (R) = 1. Thus
F = Qh(h) which means that F is PI-reducible. ��

444 R. Zuber

To illustrate Proposition 20 consider the type 〈2〉 quantifier Fa, a ∈ E, defined
as Fa(R) = 1 iff aR = {a}. One can see that the function h(R) = {x : xR = {x}
refines Fa. Thus Fa is PI-reducible. Moreover, we have Fa = Ia(h).

Proposition 20 allows us also to prove:

Proposition 21. Let FR be an atomic type 〈2〉 quantifier (that is FR is true of
just R). Then FR is PI-reducible.

Proof. We have to show that there exists a predicate invariant function hR which
refines FR. We associate with the relation R two positive PI functions h+

R and
h−
R defined by unions of their atoms (cf. Proposition 2). Thus h+

R =
⋃

hx,xR for
all x ∈ D(R) and h−

R =
⋃

hx,Y for all x /∈ D(R) and all Y ⊆ E, Y �= ∅. Let
hR = h+

R ∪ h−
R. One can check that hR(R) = D(R) and for S a binary relation

if hR(S) = D(R) then S = R. This entails that hR refines FR and thus FR is
PI-reducible. ��

In fact the above proof shows how to construct the sequence Q(h) equivalent
to FR: given that hR(R) = D(R) we have FR = QD(R)(hR), for any atomic type
〈2〉 quantifier FR, where QD(R) is the atomic type 〈1〉 quantifier whose the only
member is the set D(R).

Recall (Keenan 1992) that an atomic type 〈2〉 quantifier FR is Frege reducible
iff R = E × A for some A ⊆ E. Thus, according to Proposition 21 the atomic
quantifier FA×B , for A �= E, is PI-reducible though it is not Frege reducible.

As an illustration of Proposition 21 consider (14):

(14) Leo admires only himself and nobody else admires anybody else.

The first conjunct of (14) says that a certain object l is in a certain relation with
itself only and the second conjunct says that no other object is in this relation.
The result is that the type 〈2〉 quantifier FR expressed by (14) is atomic true just
of the relation R = {〈l, l〉}. So given Proposition 21 the quantifier FR induced
in (14), which is not Frege reducible, is PI-reducible (for|E| ≥ 2).

5 Conclusive Remarks

Functions denoted by anaphors, more specifically by reflexives, reciprocals, and
determiners forming them, have been discussed and compared with quantifiers.
All these functions necessarily take a binary relation as an argument since, infor-
mally, anaphoric relations relate direct objects of transitive sentences to their
subjects. Formally, such functions resemble quantifiers because they are, like
quantifiers, conservative or have the property of living on. However, they are
different from quantifiers because they do not satisfy the extension condition
satisfied by quantifiers but only a weaker property of predicate invariance. More-
over, they display properties specific to anaphoric functions like a-conservativity
(or even stronger properties of a-intersectivity and a-co-intersectivity) or the
property of living on a relation which can also be related to their anaphoricity.

Anaphors and Quantifiers 445

Informally, these properties can be considered as being inherited from the prop-
erties of their parts because, for instance, anaphoric determiners are composed
of, on the one hand, quantifiers and of “simple” anaphors, on the other hand.

The results presented in this paper show that though the existence of
anaphors and anaphoric determiners extends the expressive power of NLs
because the anaphoric functions they denote lie outside the class of classically
defined generalised quantifiers, these functions resemble quantifiers in certain
important ways.

References

Barwise, J., Cooper, R.: Generalised quantifiers and natural language. Linguist. Philos.
4, 159–219 (1981)

Dalrymple, M., et al.: Reciprocal expressions and the concept of reciprocity. Linguist.
Philos. 21, 151–210 (1998)

Egli, U.: Anaphora from Athens to Amsterdam. In: von Heusinger, K., Egli, U. (eds.)
Reference and Anaphoric Relations, pp. 17–29. Kluwer, Dordrecht (2000)

van Eijck, J.: Normal forms for characteristic functions. J. Logic Comput. 15(2), 85–98
(2005)

Geach, P.T.: Reference and Generality. Cornell University Press, Ithaca (1968)
Keenan, E.L.: Beyond the Frege boundary. Linguist. Philos. 15, 199–221 (1992)
Keenan, E.L.: On the denotations of anaphors. Res. Lang. Comput. 5–1, 5–17 (2007)
Keenan, E.L., Westerst̊ahl, D.: Generalized quantifiers in linguistics and logic. In: van

Benthem, J., ter Meulen, A. (eds.) Handbook of Logic and Language, pp. 837–893.
Elsevier, Amsterdam (1997)

Peters, S., Westerst̊ahl, D.: Quantifiers in Language and Logic. Oxford University Press,
Oxford (2006)

Sabato, S., Winter, Y.: Relational domains and the interpretation of reciprocals. Lin-
guist. Philos. 35, 191–241 (2012)

Zuber, R.: Generalising conservativity. In: Dawar, A., de Queiroz, R. (eds.) WoLLIC
2010. LNCS(LNAI), vol. 6188, pp. 247–258. Springer, Heidelberg (2010a)

Zuber, R.: Semantic constraints on anaphoric determiners. Res. Lang. Comput. 8,
255–271 (2010b)

Zuber, R.: Reflexives and non-Fregean quantifiers. In: Graf, T., et al. (eds.) Theories
of Everything: in Honor of Ed Keenan, UCLA Working Papers in Linguistics 17, pp.
439–445 (2012)

Zuber, R.: Generalising predicate and argument invariance. In: Asher, N., Soloviev, S.
(eds.) LACL 2014. LNCS, vol. 8535, pp. 163–176. Springer, Heidelberg (2014)

Author Index

Accattoli, Beniamino 1
Aguilera, Juan P. 22, 36
Almeida, José Carlos Bacelar 338
Axelsen, Holger Bock 52

Baaz, Matthias 36
Baldwin, John T. 68
Baltag, Alexandru 83
Barceló, Pablo 104
Bezhanishvili, Nick 83
Bílková, Marta 109
Blackburn, Patrick 125
Brasoveanu, Adrian 358
Braüner, Torben 125

Conradie, Willem 145
Corander, Jukka 165

Dawar, Anuj 183
de Oliveira Oliveira, Mateus 200
de Queiroz, Ruy J.G.B. 338
DeVries, Karl 358
Dostál, Matěj 109
Duek, Karen 358

Frittella, Sabine 145, 215

Glück, Robert 52
Greco, Giuseppe 215

Haak, Anselm 234
Hyttinen, Antti 165

Kaarsgaard, Robin 52
Kahramanoğulları, Ozan 249
Kontinen, Juha 165
Kraus, Kelsey 358

Lin, Zhe 265

Ma, Minghui 265
Makowsky, Johann A. 279
Moreira, Nelma 338

Ochoa, Maicol A. 297
Özgün, Aybüke 83

Palmigiano, Alessandra 145, 215
Pensar, Johan 165
Piazzai, Michele 145
Polyanskaya, Irina 125
Pouliasis, Konstantinos 316

Ramos, Marcus Vinícius Midena 338
Ravve, Elena V. 279
Rönnholm, Raine 375
Rudin, Deniz 358

Sano, Katsuhiko 392
Severini, Simone 183
Smets, Sonja 83

Tzimoulis, Apostolos 145

Väänänen, Jouko 165
Villaveces, Andrés 297
Virtema, Jonni 392
Vollmer, Heribert 234

Wijnberg, Nachoem M. 145

Yang, Fan 215, 410

Zapata, Octavio 183
Zuber, R. 432

	Preface
	Organization
	Tutorial/Abstracts
	Ultrafilters in Dynamics and Ramsey Theory
	When is {{\bf P}}_{{{\bf \mathfrak{A}}}} = {{\bf NP}}_{{{\bf
	Proof Systems for the Logics for Social Behaviour
	Sahlqvist Correspondence via Duality and Its Applications
	Informational Cascades: A Test for Rationality?
	Belief Dynamics in a Social Context
	Generalized Amalgamation Classes and Limit Models: Implicit Logics
	Contents
	The Useful MAM, a Reasonable Implementation of the Strong -Calculus
	1 Introduction
	2 lambda-Calculus and Leftmost-Outermost Evaluation
	3 Preliminaries on Abstract Machines
	4 The Checking Abstract Machine
	5 The Useful Milner Abstract Machine
	5.1 Qualitative Analysis
	5.2 Quantitative Analysis

	References

	Compactness in Infinitary Gödel Logics
	1 Introduction
	2 Gödel Logics
	2.1 Models Coherent with an Enumeration
	2.2 Ultraproducts

	3 Compactness Theorems
	3.1 Weak Compactness
	3.2 Strong Compactness

	4 An Alternative Proof
	References

	Cut Elimination for Gödel Logic with an Operator Adding a Constant
	1 Introduction
	2 Preliminaries
	3 The Calculi RG- and RG
	3.1 An Extension

	4 Cut Elimination
	5 Conclusion
	References

	A Classical Propositional Logic for Reasoning About Reversible Logic Circuits
	1 Introduction
	2 Circuits as Propositions
	3 Proof Calculi
	4 Semantics
	5 Metatheorems
	6 Applications
	7 Conclusion and Future Work
	References

	Foundations of Mathematics: Reliability and Clarity: The Explanatory Role of Mathematical Induction
	1 Reliability vrs Clarity
	2 The Explanatory Function of Mathematical Induction
	3 Inductive Definition and Inductive Proof
	4 Objections to Lange's Argument that Proofs by Mathematical Induction are not Explanatory
	5 Proof versus Provability
	References

	Justified Belief and the Topology of Evidence
	1 Introduction
	2 Evidence, Belief and Knowledge in Topological Spaces
	2.1 Topological Models for Evidence
	2.2 Belief
	2.3 Knowledge

	3 Logics for Evidence, Belief and Knowledge
	4 Further Developments and Future Work
	A Appendix: Proof of Theorem 6
	References

	Semantic Acyclicity for Conjunctive Queries: Approximations and Constraints
	1 Extended Abstract
	1.1 Approximations
	1.2 Taking Advantage of Constraints

	References

	Expressivity of Many-Valued Modal Logics, Coalgebraically
	1 Introduction
	2 Set Coalgebras as Models of Many-Valued Modal Logics
	3 Many Valued Predicate Liftings
	3.1 Separating Sets of Predicate Liftings
	3.2 Monadic Predicate Liftings
	3.3 An Algebraic Condition
	3.4 Expressivity

	References

	Second-Order False-Belief Tasks: Analysis and Formalization
	1 Introduction
	2 Logic and False-Belief Tasks
	3 A Coarse-Grained Analysis
	4 A Fine-Grained Analysis
	5 Formalizing the First-Order Sally-Anne Task
	6 Formalizing the Second-Order Sally-Anne Task
	7 Concluding Discussion
	References

	Categories: How I Learned to Stop Worrying and Love Two Sorts
	1 Introduction
	2 Preliminaries
	2.1 Perfect Lattices
	2.2 Polarities and Birkhoff's Representation Theorem
	2.3 RS-polarities and Dual Correspondence for Perfect Lattices
	2.4 RS-frames and Models
	2.5 Standard Translation on RS-frames
	2.6 Examples

	3 Conceptualizing RS-semantics via Categorization Theory
	4 Categories as Social Constructs
	5 Conclusion and Further Research
	A Relational Semantics via Dual Characterization
	B Proofs of Technical Lemmas
	References

	A Logical Approach to Context-Specific Independence
	1 Introduction
	2 Preliminaries
	2.1 Bayesian Networks
	2.2 Context-Specific Independence
	2.3 Team Semantics and Independence Logic

	3 A Logic for Expressing Context-Specific Independence
	4 Axiomatic Characterization of CSI-separation
	4.1 The Semi-graphoid Axioms and the Implication Problem of CI Statements
	4.2 Axioms for Context Specific Independence

	5 Conclusion
	References

	Descriptive Complexity of Graph Spectra
	1 Introduction
	2 Preliminaries
	3 Spectra and Walks
	3.1 Finite Variable Logics with Counting
	3.2 Graphs Determined by Their Spectra
	3.3 Lower Bounds

	4 Isomorphism Approximations
	4.1 WL Equivalence
	4.2 Symmetric Powers
	4.3 Cellular Algebras
	4.4 Strongly Regular Graphs

	5 Definability in Fixed Point Logic with Counting
	6 Conclusion
	References

	Causality in Bounded Petri Nets is MSO Definable
	1 Introduction
	1.1 Petri Nets
	1.2 The Causal Semantics of Petri Nets

	2 Monadic Second Order Logic
	3 Slice Automata
	4 Main Result
	4.1 MSO-Definable Topological Orderings
	4.2 Defining Unit Decompositions in MSO Logic
	4.3 Generalizing Büchi's Theorem
	4.4 Proof of Theorem4.1

	5 Conclusion and Open Problems
	References

	A Multi-type Calculus for Inquisitive Logic
	1 Introduction
	2 Inquisitive Logic
	3 Order-Theoretic Analysis and Multi-type Inquisitive Logic
	3.1 Order-Theoretic Analysis
	3.2 Multi-type Inquisitive Logic

	4 Structural Sequent Calculus for Multi-type Inquisitive Logic
	5 Properties of the Calculus
	5.1 Soundness and Completeness
	5.2 Syntactic Flatness Captured by the Calculus

	6 Cut Elimination
	6.1 Cut Elimination Meta-Theorem for Proper Multi-type Calculi
	6.2 Cut Elimination for the Structural Calculus for Multi-type Inquisitive Logic

	7 Conclusion
	References

	A Model-Theoretic Characterization of Constant-Depth Arithmetic Circuits
	1 Introduction
	2 Circuit Classes, Counting Classes, and Logic
	2.1 Non-uniform Circuit Classes
	2.2 Uniform Circuit Classes
	2.3 Counting Classes

	3 A Model-Theoretic Characterization of #AC0
	4 The Uniform Case
	5 A Model-Theoretic Characterization of TC0
	6 Conclusion
	References

	True Concurrency of Deep Inference Proofs
	1 Introduction
	2 Deep Inference
	3 Event Structures of Proofs
	4 From Deep Inference Derivations to Configurations
	5 From Concurrent Derivations to Proof Search
	6 Discussion
	References

	On the Complexity of the Equational Theory of Residuated Boolean Algebras
	1 Introduction
	2 Boolean Nonassociative Lambek Calculus
	3 Modal and Tense Logics
	4 PSPACE-Hard Decision Problem of BFNL
	5 BFNL is in PSPACE
	6 PSPACE-Completeness
	References

	Semantic Equivalence of Graph Polynomials Definable in Second Order Logic
	1 Introduction
	1.1 Why SOL-Definability
	1.2 Why Study Graph Polynomials?
	1.3 Outline of the Paper

	2 How to Compare Graph Polynomials?
	2.1 Equivalence of Graph Polynomials
	2.2 Syntactic vs Semantic Properties of Graph Polynomials

	3 Roots of Graph Polynomials
	4 Stable Graph Polynomials
	4.1 Why are Stable Multivariate Polynomials Interesting?
	4.2 Stable Polynomials
	4.3 Sufficient Conditions for Stability
	4.4 Making Graph Polynomials Stable
	4.5 Proofs

	5 Conclusion
	5.1 Interpretation of Our Results

	References

	Sheaves of Metric Structures
	1 Introduction
	2 Metric sheaf and forcing
	3 Metric Generic Model Theorem
	4 Perspectives
	4.1 Model Theory
	4.2 Applications

	References

	A Curry--Howard View of Basic Justification Logic
	1 Introduction: Necessity and Constructive Semantics
	1.1 Deductive Systems, Validity and Necessity

	2 Judgments of Jcalc-
	2.1 Natural Deduction for Jcalc-
	2.2 Logical Completeness, Admissibility of Necessitation and Completeness with Respect to Hilbert Axiomatization
	2.3 Harmony: Local Soundness and Local Completeness
	2.4 (Global) Soundness

	3 The Computational Side of Jcalc-
	3.1 Proof Term Assignment
	3.2 Strong Normalization and Small-Step Semantics

	4 A Programming Language View: Dynamic Linking and Separate Compilation
	5 Related and Future Work
	A Appendix
	A.1 Theorems
	A.2 Linking on the Function Space
	A.3 Gentzen's Reduction Principle for (General)
	A.4 Notes on the Cut Elimination Proof and Normalization of Natural Deduction

	References

	On the Formalization of Some Results of Context-Free Language Theory
	1 Introduction
	2 Method
	3 Closure Properties
	4 Simplification
	5 Chomsky Normal Form
	6 Pumping Lemma
	7 Related Work
	8 Conclusions
	A Definitions
	B Generic Binary Trees Library
	References

	The Semantics of Corrections
	1 Introduction
	2 The Snip & Glue Approach
	3 The Empirical Ground
	3.1 Three Types of Corrections
	3.2 Corrections and Contrast
	3.3 Corrections and Telescoping
	3.4 Corrections and Propositional Anaphora

	4 Proposal
	4.1 Formalization in CDRT
	4.2 Telescoping Corrections

	5 Conclusion
	A Categorial Grammar Formulation
	References

	The Expressive Power of k-ary Exclusion Logic
	1 Introduction
	2 Preliminaries
	2.1 Syntax and Team Semantics for First Order Logic
	2.2 Inclusion and Exclusion Logics

	3 Expressing Useful Operators for Exclusion Logic
	3.1 k-ary Dependence Atoms and Intuitionistic Disjunction
	3.2 Universal Inclusion Quantifier and the Unification of Values

	4 The Expressive Power of EXC[k]
	4.1 Relationship Between EXC and Dependence Logic
	4.2 Capturing the Arity Fragments of ESO with EXC
	4.3 Relationship Between INC[k] and EXC[k]

	5 Conclusion
	References

	Characterizing Relative Frame Definability in Team Semantics via the Universal Modality
	1 Introduction
	2 Modal Logic with Universal Modality
	3 Finite Goldblatt-Thomason-Style Theorem for Relative Modal Definability with Positive Universal Modality
	4 Modal Logics with Team Semantics
	4.1 Basic Notions of Team Semantics
	4.2 Extensions of Modal Logic via Connectives
	4.3 Extensions of Modal Logic with Atomic Dependency Notions

	5 Modal Definability in Team Semantics
	5.1 Hintikka Formulas and Types
	5.2 Global Modal & Frame Definability in MINC and ML Coincide
	Global Modal & Frame Definability in MT L & ML(�)

	6 Conclusion
	A Proof of Lemma 1
	B Frame Constructions
	C Separations in Definability
	References

	Negation and Partial Axiomatizations of Dependence and Independence Logic Revisited
	1 Introduction
	2 Preliminaries
	3 First-Order Formulas and Negatable Formulas
	4 Axiomatizing Negatable Consequences in Dependence and Independence Logic
	5 A Hierarchy of Negatable Atoms
	6 Concluding Remarks
	References

	Anaphors and Quantifiers
	1 Introduction
	2 Formal Preliminaries
	3 Properties of Anaphoric Functions
	4 Predicate Invariant Reducibility
	5 Conclusive Remarks
	References

	Author Index

