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Preface

This volume contains a selection of the papers presented at LOPSTR 2015, the 25th
International Symposium on Logic-Based Program Synthesis and Transformation held
during July 13–15, 2015, at the University of Siena, Italy. It was co-located with PPDP
2015, the 17th International ACM SIGPLAN Symposium on Principles and Practice of
Declarative Programming.

Previous LOPSTR symposia were held in Canterbury (2014), Madrid (2013 and
2002), Leuven (2012 and 1997), Odense (2011), Hagenberg (2010), Coimbra (2009),
Valencia (2008), Lyngby (2007), Venice (2006 and 1999), London (2005 and 2000),
Verona (2004), Uppsala (2003), Paphos (2001), Manchester (1998, 1992, and 1991),
Stockholm (1996), Arnhem (1995), Pisa (1994), and Louvain-la-Neuve (1993). More
information about the symposium can be found at: http://alpha.diism.unisi.it/lopstr15/.

The aim of the LOPSTR series is to stimulate and promote international research
and collaboration on logic-based program development. LOPSTR is open to contri-
butions in all aspects of logic-based program development, all stages of the software
life cycle, and issues of both programming-in-the-small and programming-in-the-large.
LOPSTR traditionally solicits contributions, in any language paradigm, in the areas of
synthesis, specification, transformation, analysis and verification, specialization, testing
and certification, composition, program/model manipulation, optimization, transfor-
mational techniques in SE, inversion, applications, and tools. LOPSTR has a reputation
for being a lively, friendly forum for presenting and discussing work in progress.
Formal proceedings are produced only after the symposium so that authors can
incorporate this feedback in the published papers.

In response to the call for papers, 30 contributions were submitted from 17 different
countries. The Program Committee accepted six full papers for immediate inclusion in
the formal proceedings, and 14 full papers plus one short paper presented at the
symposium were accepted after a revision and another round of reviewing. Each
submission was reviewed by at least three Program Committee members or external
reviewers. In addition to the 21 contributed papers, this volume includes the abstract
of the talks by two outstanding invited speakers: Patrick Cousot (Courant Institute of
Mathematical Sciences, New York University, USA), whose talk was shared with
PPDP, and Gilles Barthe (IMDEA Software Institute, Madrid, Spain). This volume also
includes the full paper by a third outstanding invited speaker: Dale Miller (Inria and
LIX/Ecole Polytechnique, Palaiseau, France), whose talk was shared with PPDP.

We want to thank the Program Committee members, who worked diligently to
produce high-quality reviews for the submitted papers, as well as all the external
reviewers involved in the paper selection. We are very grateful to the LOPSTR 2015
local organizers for the great job they did in managing the symposium. Many thanks
also to Elvira Albert, the Program Committee chair of PPDP, with whom we often
interacted to coordinate the two events. We would also like to thank Andrei Voronkov
for his excellent EasyChair system that automates many of the tasks involved in

http://alpha.diism.unisi.it/lopstr15/


chairing a conference. Special thanks go to all the authors who submitted and presented
their papers at LOPSTR 2015, without whom the symposium would have not been
possible. We also thank the Dipartimento di Ingegneria dell’Informazione e Scienze
Matematiche, the Italian Chapter of the European Association for Computer Science,
and the Association for Logic Programming for their cooperation and support in
the organization of the symposium.

October 2015 Moreno Falaschi
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Verification by Abstract Interpretation,
Soundness and Abstract Induction

Patrick Cousot

Courant Institute of Mathematical Sciences, New York University, USA
pcousot@cims.nyu.edu

Abstract. Automatic program verification tools have to cope with programming
language and machine semantics, undecidability, and mathematical induction,
and so are all complex and imperfect. The ins and outs of automatic program
verification will be discussed in light of the theory and practice of abstract
interpretation [1–3].

References
1. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of

programs by construction of approximations of fixed points. In: Graham, R.M., Harrison, M.
A., Sethi, R. (eds.) POPL 1977, pp. 238–252. ACM (1977)

2. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: Aho, A.V.,
Zilles, S.N., Rosen, B.K. (eds) POPL 1997, pp. 269–282. ACM (1979)

3. Cousot, P., Cousot, R.: Abstract interpretation: past, present and future. In: Henzinger, T.A.,
Miller, D. (eds) Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer
Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), CSL-LICS 14, pp. 2:1–2:10, Vienna, Austria, 14–18 July 2014.
ACM

An extended version appears in the proceedings of the 17th International Symposium on Principles
and Practice of Declarative Programming (PPDP 2015), July 14–16 2015, Siena, Italy. ACM Press.



Towards Verified Cryptographic
Implementations

Gilles Barthe

IMDEA Software Institute, Madrid, Spain
gjbarthe@gmail.com

Abstract. Building secure cryptographic software is difficult. I will discuss
some language-based methods for analyzing and improving the security of
implementations against cache attacks, differential power attacks, and fault
attacks.

Keywords: Description logic • Programming paradigm • Smart environments

It is notoriously difficult to build secure cryptographic software. On the one hand,
security goals for cryptographic constructions are often mathematically elaborate, as
they quantify over the probability that an adversary with bounded computational
resources can win a security experiment. On the other hand, mathematical proofs of
security are carried in an ideal model that elides many attack vectors, and thus cannot
guarantee that deployed software is secure. Indeed, there are two main classes of
attacks that are generally not considered by mainstream provable security: side-channel
attacks and fault attacks.

Side-channel attacks exploit signals emitted by a program’s execution to recover
information about the confidential data it manipulates, and are surprisingly effective to
recover key material and other secrets almost instantaneously from cryptographic
implementations. Over the last twenty years, there has been a continuous stream of
devastating side-channel attacks, using execution time, power consumption, or cache
usage.

Fault attacks are attacks in which an adversary with physical access to a crypto-
graphic device, say a smartcard, tampers with the execution of an algorithm to retrieve
secret material. Since the seminal Bellcore attack on modular exponentiation, there has
been extensive work to discover new fault attacks against cryptographic schemes and
develop countermeasures against such attacks.

In this talk, I will present some language-based methods (type systems and program
logics) used for analyzing the security of implementations against cache attacks, dif-
ferential power attacks, and fault attacks. I will also report on implementations and
applications of our methods both to produce secure implementations and to discover
attacks in existing implementations.



Proof Checking and Logic Programming

Dale Miller

Inria and LIX/École Polytechnique
dale.miller@inria.fr

Abstract. In a world where trusting software systems is increasingly important,
formal methods and formal proof can help provide trustable foundations.
Proof checking can help to reduce the size of the trusted base since we do not
need to trust an entire theorem prover if we can check the proofs they produce
by a trusted (and smaller) checker. Many approaches to building proof checkers
require embedding within them a full programming language. In most many
modern proof checkers and theorem provers, that programming language is a
functional programming language, often a variant of ML. In fact, parts of ML
(e.g., strong typing, abstract datatypes, and higher-order programming) were
designed to make ML into a trustworthy “meta-language” for checking proofs.
While there is considerable overlap in the foundations of logic programming and
proof checking (both benefit from unification, backtracking search, efficient term
structures, etc), the discipline of logic programming has, in fact, played a minor
role in the history of proof checking. I will argue that logic programming can
have a major role in the future of this important topic.
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Proof Checking and Logic Programming

Dale Miller(B)

Inria and LIX/École Polytechnique, Palaiseau, France
dale.miller@inria.fr

Abstract. In a world where trusting software systems is increasingly
important, formal methods and formal proof can help provide trustable
foundations. Proof checking can help to reduce the size of the trusted base
since we do not need to trust an entire theorem prover if we can check the
proofs they produce by a trusted (and smaller) checker. Many approaches
to building proof checkers require embedding within them a full pro-
gramming language. In most many modern proof checkers and theorem
provers, that programming language is a functional programming lan-
guage, often a variant of ML. In fact, parts of ML (e.g., strong typ-
ing, abstract datatypes, and higher-order programming) were designed
to make ML into a trustworthy “meta-language” for checking proofs.
While there is considerable overlap in the foundations of logic program-
ming and proof checking (both benefit from unification, backtracking
search, efficient term structures, etc.), the discipline of logic program-
ming has, in fact, played a minor role in the history of proof checking.
I will argue that logic programming can have a major role in the future
of this important topic.

1 Introduction

There are a number of theorem provers used by academics and industry and the
kinds of formalisms that they take on are becoming increasingly complex and
important. For example, computer systems such as Coq, HOL/Lite, and Isabelle
have been used to help formally prove the four color theorem [18], the Kepler
conjecture [20], and the correctness of a compiler [26] and a micro kernel [24].
For theorem provers to be part of our approach to trusting formalized math-
ematics and software systems, such provers must be trusted as well. However,
trusting modern theorem provers is proving difficult since over time they become
increasingly more complex: they evolve to allow for stronger inference rules and
for the integration of specialized proving technology. Furthermore, one might
not wish to require that theorem provers are formally trusted since anything
that is formally validated has stopped evolving and is not generally subject to
innovation and improvements.

1.1 Validate Proofs, Not Provers

One method for addressing the correctness of theorem provers is to move from
formally validating an entire theorem prover to simply validating individual
c© Springer International Publishing Switzerland 2015
M. Falaschi (Ed.): LOPSTR 2015, LNCS 9527, pp. 3–17, 2015.
DOI: 10.1007/978-3-319-27436-2 1



4 D. Miller

proofs that are emitted by provers. With such a move, we need to trust the
proof checker instead of the entire theorem prover: presumably a checker is much
simpler and does not need to evolve frequently. Some provers, like Coq, separate
the activity of theorem proving from proof checking by providing its own kernel
which checks all proposed proofs. There are, however, several reasons why it is
desirable to move the proof checking operation to be outside a theorem prover.

– One of the philosophically motivated aspects of proofs must surely be their
ability to communicate across time and space the reason to trust that a for-
mula is indeed true [30]. Moving proof checkers outside a prover emphasizes
that proofs are meant to be communicated, at least from prover to checker.

– When the kernel is part of a prover, there is a great tendency for the kernel to
provide exactly what the prover needs: such a communication would evolve to
just involve two entities (the kernel and prover) instead of the many possible
other actors which might also want to check, trust, and use a proof.

– Finally, when the checker is formally separated from the prover, the structure
of emitted proofs and the semantics of the kernel would become independent of
the technology of the prover. Anyone could, therefore, reimplement the kernel
and check the emitted proofs. Having several kernels by several different teams
of implementers provides a well recognized path to having increased trust in
software.

An example of an architecture for moving proof checking outside of theorem
provers is currently being explored and implemented within the Dedukti system
[11]. Dedukti is based the λΠ-modulo formal framework of Cousineau and Dowek
[9] which mixes two well-known and powerful frameworks, one for hypothetical
reasoning (via the dependently typed λ-calculus known as LF [21] and λΠ) and
one for functional programming style computations (via confluent rewriting).
The Dedukti project has recently developed software that allows several existing
theorem provers—e.g., Coq, HOL, Matita—to output proofs into a format that
Dedukti can check independently from those provers [2].

1.2 Proof Checking Vs Proof Reconstruction

What is typically called proof checking generally contains elements of proof recon-
struction: that is, the process of checking whether or not a given document is
a proof might require computing some details that are not present explicitly in
the document. For example, even for rather low-level and detailed notions of
proof, it is seldom the case that one would expect to have every detail present
within a formal proof object. For example, in order to check that the assumptions
(p ⊃ p ⊃ q) ⊃ (p ⊃ q) and (p ⊃ p ⊃ q) and the rule of modus ponens, written
schematically as “from A and A ⊃ B, conclude B”, infers p ⊃ q, it is not likely
that one needs to provide in the proof itself the explicit ordering of assumption
and the binding of schematic variables [A �→ (p ⊃ p ⊃ q), B �→ (p ⊃ q)]. Such an
ordering and binding can easily be computed, leaving less to store in the proof
document.
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Existing theorem provers often contain much more significant notions of proof
reconstruction. For example, the Boyer-Moore theorem prover attempts to fill in
significant gaps between lemmas using various proof procedures parametrized by
the collection of previously proved lemmas [5]. If the proof procedure is not able
to fill in a gap in a sequence of lemmas, the user must design some additional
lemmas to split up that gap into more manageable parts. Other theorem provers,
particularly those based on the LCF framework [19], allow functional programs
(usually in a variant of ML) to be executed in order to compute ways to complete
the gaps between lemmas (or between hypotheses and goal). In other systems, an
interactive theorem prover might call a completely automated prover in order to
complete a step of inference: for example, Isabelle can call the Vampire theorem
prover to close a gap in a user’s proof attempt [28].

1.3 The Community of Logic Programming

Oddly enough, the community that has invested a great deal of energy into
providing effective implementations of logic—namely, the logic programming
community—has not traditionally been involved with proof checking. There are
at least three likely reasons for this mismatch between that community and those
interested in theorem proving and proof checking.

Efficiency Versus Soundness. In proof checking, logical soundness is everything :
there is no reason to be doing proof checking if one is not confident that the
underlying logic engine is logically sound. The logic programming community
has often emphasized efficiency instead of logical soundness: for example, many
Prolog systems have not supported the occurs-check in unification since that
was seen as a feature only needed for toy examples [34, Sect. 3.3]. Experience
with automated theorem proving shows, however, that soundness of inference
critically depends on the presence of occurs-check in unification. Of course, a
programming language like Prolog can still be used to implement proof checkers
even when unification is unsound since any programming language can be used
to build, in principle, any programming task. One would suspect, however, that
logic programming languages should have a much more immediate and trans-
parent ways to support the effective implementation of logic.

Lack of Logical Expressiveness. Another aspect of most logic programming lan-
guages is that they do not have direct support for quantified formulas and the
concomitant operations of substitution into and unification of expressions con-
taining bindings. While individual Prolog clauses are interpreted as universally
quantified, such quantification is implicit. Furthermore, no direct and logical sup-
port for bindings is available within Prolog even though the interplay between
formula-level bindings (quantifiers) and term-level bindings (λ-abstractions) has
been well understood since Church’s Simple Theory of Types [8]. Thus, while
Prolog provides many logical principles that could be used to implement proof
checkers, that support does not extend to much of logic itself.
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Lack of Abstractions. There is still at least one other reason that logic program-
ming can be a poor match with proof checking: most Prolog systems do not
support rich forms of abstractions, such as abstract datatypes and procedural
(higher-order) abstraction. Each of these features were explicitly introduced into
the first design and implementation of the functional programming language
ML since they were seen as important for building the LCF proof system [19].
Abstract datatypes help provide guarantees that, for example, there are only
certain ways to build objects of type thm (the type for theorems): once thm is
established, it is made into an abstract datatype and the design of ML’s type sys-
tem enforces that theorems can only arise from the originally provided construc-
tors and functions. Similarly, higher-order programming in ML was introduced
to allow for certain “kernel” operations (the tacticals) to have their trusted code
separated from the “clients” code (the tactics).

The lack of expressiveness and abstraction can be addressed within logic pro-
gramming if one is willing to move beyond first-order Horn clauses for fragments
of higher-order, intuitionistic logic [29]. In fact, λProlog [12,31,33] and Twelf
[35] are two logic programming languages that treat bindings in expressions and
proofs directly as part of their logical foundations. Furthermore, λProlog also
exploits features of its underlying logic to provide logically sound notions of
modules and abstract datatypes as well as higher-order programming (such as
is found in most functional programming languages).

Where should we begin in looking for connections between the logic program-
ming paradigm and proof checking? Remarkably, one has to look no further than
the recent literature of proof theory (see references in Sect. 3) to find a frame-
work where relations and not functions dominate, where bounded backtracking
search has obvious and immediate applications, and where formula-level and
term-level abstractions occur naturally together. In addition, the topic of proof
theory presents a mathematically and not a technologically notion of proof.

2 Proof Theory as a Framework

If a modern theorem prover outputs a proof as a (persistent) document, that
proof document is usually based on specific technology built into the prover. On
some other occasions, provers output documents meant for tracing and debug-
ging. It is the exceptional theorem prover that outputs a document that is
intended to outlast the (version of the) prover itself.1 Given the existence of the
mathematical literature on proof theory initiated by Frege and Gentzen, proofs-
as-documents can be as eternal as Peano numerals: 0, s(0), s(s(0)), s(s(s(0))),
etc.

Once proofs are liberated from the technology that produces them, then
they can be checked by independently constructed checking programs which can
be written by anyone keen to develop their own trusted base of code instead
of adopting someone else’s code. Once checked, such proofs can be placed in
1 Some specialized theorem provers related to SAT solving have adopted standards of

outputting their proof evidence (see, for example, [36]).
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libraries that survive changes in theorem proving and proof checking technolo-
gies. Thus, proofs can be used to communicate trust between different provers
and across changes in technology. In order to reach such a status in the shar-
ing and trusting of proofs, we probably need to design a framework based on a
mathematically well defined and sophisticated notion of proof. Examining the
literature on proof theory, however, reveals a number of formally defined proof
structures. In the earliest days, Frege and Hilbert proposed rather simple, linear
proof structures; Gentzen introduced both the sequent calculus as well as nat-
ural deduction; later, resolution refutations and tableaux proof systems were also
introduce, in part, to support automation of theorem proving. Still more struc-
tures can be found that can be accepted as proofs, such as proof nets, matings,
deep inference, and winning strategies.

In this paper, I will outline a multi-year effort that proposes to use the
sequent calculus as the assembly language of proof and to describe how to compile
many other higher-level notions of proof into that assembly language. The formal
devices for making such definition of proof languages will be based on the notion
of focused proofs for first-order classical and intuitionistic logics. We illustrate
such a proof system in the next section.

3 Focused Versions of Sequent Calculi

The sequent calculus of Gentzen provides an appealing form of formal proof
structure since they can be used to describe proofs in both classical, intuitionistic,
and linear logics. They also support propositional, first-order, and higher-order
logics and do so in a modular and clear fashion. The cut-elimination theorem
[15] also reveals that this notion of proof supports sophisticated manipulations
(such as substitution and composition of proofs). On the other hand, the proofs
in the sequent calculus can be chaotic: if a proof of a given sequent exists,
many trivial and not-so-trivial variations of that proof also exists. All these
variants work to hide structure. Relying on the small inference steps that are
part of Gentzen’s presentation of the sequent calculus not only makes finding
sequent calculus proofs difficult, it also makes communicating them challenging.
Consider the following example (taken from [4]). Attempting to prove the sequent
Γ � ∃x∃y[(p x y) ∨ ((q x y) ∨ (r x y))], where Γ contains, say, a hundred
formulas. The search for a (cut-free) proof of this sequent can confront the need
to choose from among a hundred-and-one introduction rules. If we choose the
right-side introduction rule, we will then be left with, again, a hundred-and-one
introduction rules to apply to the premise. Thus, reducing this sequent to, say,
Γ � (q t s) requires picking one path of choices in a space of 1014 choices.

One of the first attempts to use sequent calculus in computer science needed
to develop a normal form of sequent proof that discarded a great deal of those
variants. The uniform proofs of [29,32]—with its notion of alternating phases
of goal-reduction and backchaining—was used to provide a general framework
for defining proof search in logic programming. With the advent of linear logic
[16], that two phase structure was extended to all of linear logic using Andreoli’s
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focused proof system [1] and the notion of polarity [1,17]. Soon afterwards, vari-
ous focused proof systems for intuitionistic logic [6,13,22,23] and classical logic
[10,17,25] appeared. The LJF and LKF frameworks of [27] can be seen as offering
a general framework and generalization to these various classical and intuition-
istic focused proof systems.

We limit our attention here to first-order classical logic. A similar develop-
ment holds for intuitionistic logic as well.

Polarizing Connectives. The emphasis on focused proofs is an emphasis on
proof structure and not provability. For example, consider the following different
ways to write the introduction rules for disjunction and conjunction in a one-
sided sequent system.

� Γ,B1 � Γ,B2

� Γ,B1 ∧ B2

� Γ1, B1 � Γ2, B2

� Γ1, Γ2, B1 ∧ B2

� Γ,B1, B2

� Γ,B1 ∨ B2

� Γ,Bi

� Γ,B1 ∨ B2
i ∈ {1, 2}

Given that the structural rules of weakening and contractions are available
in classical logic, the first pair of rules and the second pair of rules are inter-
admissible inference rules: any sequent provable with one element of the pair is
provable also with the second member of the pair. Notice also that the first mem-
ber of each pair is invertible while the second member is not invertible. People
presenting proof systems for classical logic or who are implementing such systems
generally pick one member from each pair and that choice is usually the invert-
ible rule. Given our interest here in proof structures (an not just provability), our
eventual focused proof system will contain all four of these introduction rules.
They will be distinguished from each other by having them introduce different
polarized versions of disjunction and conjunction.

� Γ,B1 � Γ,B2

� Γ,B1 ∧− B2

� Γ1, B1 � Γ2, B2

� Γ1, Γ2, B1 ∧+ B2

� Γ,B1, B2

� Γ,B1 ∨− B2

� Γ,Bi

� Γ,B1 ∨+ B2

i ∈ {1, 2}

The introduction rules for the negative polarized connectives (∧− and ∨−)
are invertible while the introduction rules for the positive polarized connectives
(∧+ and ∨+) are not invertible. The units for these connectives are also polarized
similarly: t−, t+, f−, and f+, and these have the following introduction rules.

� Γ, t− � t+
� Γ

� Γ, f−

(There is no introduction rule for the positive false f+).
Some connectives have fixed polarity: universal quantification is negative and

its de Morgan dual, existential quantification, is positive. Atoms can be either
positive or negative: this choice can be made in an arbitrary but fixed fashion.
The negated atom ¬A has the opposite polarity to A. A formula has positive
or negative polarity depending only on its top-level logical connective (if it has
one) or on the polarity as a literal.
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Grouping Don’t-Care and Don’t-Know Non-determinism. If several
invertible rules can be applied to yield a given sequent then those rules can
be applied in any order and, in fact, in all possible orderings to yield a proof. In
order to factor away such don’t-care non-determinism, we introduce the notion of
the ⇑ phase in focused proof construction display the invertible rules as follows:

� Θ ⇑ t−, Γ
� Θ ⇑ A,Γ � Θ ⇑ B,Γ

� Θ ⇑ A ∧− B,Γ

� Θ ⇑ Γ

� Θ ⇑ f−, Γ
� Θ ⇑ A,B, Γ

� Θ ⇑ A ∨− B,Γ

� Θ ⇑ [y/x]B,Γ

� Θ ⇑ ∀x.B, Γ
† � Θ,C ⇑ Γ

� Θ ⇑ C,Γ
store

Here, sequents are of the form � Θ ⇑ Γ , where Θ is a schematic variable ranging
over multisets of formulas and Γ is a schematic variable ranging over lists of
formulas. A list is used here instead of a multiset as a way to reduce the don’t-
care non-determinism: we only need to consider introduction rules on the first
formulas of that list. In the ∀-introduction rule, the † proviso is the usual one: the
variable y is not free in the lower sequent. In the store rule, C is a positive formula
or negative literal: this rule is responsible for recognizing that the first formula
in the right-hand context cannot be introduced by an invertible inference. In
general, the context Θ contains only positive formulas and negative literals.

Another phase contains sequents of the form � Θ ⇓ B where Θ is as before
and B is a formula. The introduction rules associated to this phase are written
as follows.

� Θ ⇓ t+
� Θ ⇓ B1 � Θ ⇓ B2

� Θ ⇓ B1 ∧+ B2

� Θ ⇓ Bi i ∈ {1, 2}
� Θ ⇓ B1 ∨+ B2

� Θ ⇓ [t/x]B
� Θ ⇓ ∃x.B

Structural and Identity Rules. The following two “structural” rules are
needed to move between these two phases.

� ¬Pa, Θ ⇓ Pa
init

� Θ ⇑ B � Θ ⇑ ¬B

� Θ ⇑ · cut

� Θ ⇑ N

� Θ ⇓ N
release

� P,Θ ⇓ P

� P,Θ ⇑ · decide

Here, P is a positive formula; N a negative formula; Pa a positive literal; C a
positive formula or negative literal; and ¬B is the negation normal form of the
negation of B.

Synthetic Inference Rules. One of the purposes of introducing a focused
proof system is to make the following identification: the phases introduce new,
synthetic inference rules. Gentzen’s introduction and structural rules form the
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assembly instructions of proof and the synthetic inference rules form the higher-
level notions of proof. For example, assume that Θ contains the formula a ∧+

b ∧+ ¬c and that we have a derivation that Decides on this formula.

� Θ ⇓ a
Init � Θ ⇓ b

Init

� Θ,¬c ⇑ ·
� Θ ⇑ ¬c

Store

� Θ ⇓ ¬c
Release

� Θ ⇓ a ∧+ b ∧+ ¬c
∧+

� Θ ⇑ · Decide

This derivation is possible if and only if Θ is of the form ¬a,¬b,Θ′. Thus, the
“macro-rule” is � ¬a,¬b,¬c,Θ′ ⇑ ·

� ¬a,¬b,Θ′ ⇑ ·

Soundness and Completeness of Focusing. The formulas used in LKare
unpolarized while those in LKF are polarized. In order to state soundness and
completeness of focusing, we must introduce the notion of polarizing a formula.
Given the unpolarized formula B, let B̂ be one of the exponentially many for-
mulas that result by placing + or − on the occurrences of ∨ and ∧ as well as
attributing polarization to the atoms in B. (The quantifiers have fixed polarities:
∀ is negative and ∃ is positive.) The soundness theorem for LKF is immediate:
Assume that � · ⇑ B̂ has an LKF proof. We can recover an LKproof by simply
replacing the ⇑ and ⇓ with commas, deleting some repetitions of sequents, and
dropping the + and − annotations on the propositional connectives. Conversely,
completeness (which is proved in [27]) states that if B is a first-order theorem
and B̂ is any polarization of B then � · ⇑ B̂ is provable in LKF. A consequence
of soundness and completeness implies that if any polarization of B is provable
in LKF then every polarization is provable in LKF. Clearly, polarization is not
relevant to provability but is relevant to the structure of proofs.

4 Foundational Proof Certificates

The two phases in LKF are strikingly different. The invertible ⇑ phase can be
built from the bottom up as a purely deterministic computation: one just applies
the inference rules in a straightforward fashion. On the other hand, the ⇓ phase
is not straightforward since some of the inference rules need information that
is lacking from the conclusion: in particular, the ∃ introduction rule requires a
substitution term and the ∨+ introduction rule requires an indicator of whether
to select the left or right disjunct. If this information is lacking, then the con-
struction of the proof can be seen as a non-deterministic computation, where
choices and substitution terms are guessed.

It is now easy to see that the focused proof system in Sect. 3 provides a
communication protocol between an entity that possesses some evidence that a
formula is a theorem and a low-level tool attempting to build a sequent calculus
proof from the bottom-up of that proposed theorem.
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Ξ � Θ ⇑ t−, Γ

Ξ1 � Θ ⇑ A, Γ Ξ2 � Θ ⇑ B, Γ ∧c(Ξ, Ξ1, Ξ2)

Ξ � Θ ⇑ A ∧− B, Γ

Ξ ′ � Θ ⇑ Γ fc(Ξ, Ξ ′)

Ξ � Θ ⇑ f−, Γ

Ξ ′ � Θ ⇑ A, B, Γ ∨c(Ξ, Ξ ′)

Ξ � Θ ⇑ A ∨− B, Γ

Ξ ′ � Θ ⇑ [y/x]B, Γ ∀c(Ξ, Ξ ′)
Ξ � Θ ⇑ ∀x.B, Γ

†
truee(Ξ)

Ξ � Θ ⇓ t+
Ξ1 � Θ ⇓ B1 Ξ2 � Θ ⇓ B2 ∧e(Ξ, Ξ1, Ξ2)

Ξ � Θ ⇓ B1 ∧+ B2

Ξ ′ � Θ ⇓ Bi i ∈ {1, 2} ∨e(Ξ, Ξ ′, i)

Ξ � Θ ⇓ B1 ∨+ B2

Ξ ′ � Θ ⇓ [t/x]B ∃e(Ξ, Ξ ′, t)
Ξ � Θ ⇓ ∃x.B

Ξ1 � Θ ⇑ B Ξ2 � Θ ⇑ ¬B cute(Ξ, Ξ1, Ξ2, B)

Ξ � Θ ⇑ · cut

Ξ ′ � Θ ⇑ N releasee(Ξ, Ξ ′)
Ξ � Θ ⇓ N

release
inite(Ξ, l) 〈l,¬Pa〉 ∈ Θ

Ξ � Θ ⇓ Pa
init

Ξ ′ � Θ ⇓ P decidee(Ξ, Ξ ′, l) 〈l,P 〉 ∈ Θ positive(P )

Ξ � Θ ⇑ · decide

Ξ ′ � Θ, 〈l,C〉 ⇑ Γ storec(Ξ, Ξ ′, l)
Ξ � Θ ⇑ C, Γ

store

Fig. 1. The augmented LKF proof system LKF a (Color figure online).

One way to implement such a protocol would be to instrument the focused
proof system LKF with certain augmentations as shown in Fig. 1. The augmen-
tation is accomplished in three simple steps: (i) a proof certificate term, denoted
by the syntactic variable Ξ is added to every sequent; (ii) every inference rule
of LKF is given an additional premise using either an expert predicate or a clerk
predicate; and (iii) the multiset of formulas to the left of the arrows ⇑ and ⇓ is
replaced with a multiset of pairs of an index and a formula. (Viewing this figure
in color shows the augmentations in blue.) Clearly, the LKF proof system can
be recovered from LKF a by removing all occurrences of the syntactic variable
Ξ and by removing all premises with a subscripted e or c as well as replacing all
occurrences of tuples such as 〈l, B〉 with just B.

Notice that the extra premise added to invertible rules are called clerks:
in such inference rules, only simple computations are done and, in general, no
information in a certificate term needs to be consumed. On the other hand, the
extra premise added to non-invertible rules are called experts: these predicates
are responsible for examining certificates and, possibly, extracting information
from them. We also allow for experts to invoke non-determinism: that is, they
can guess additional information (such as substitution terms).

Depending on exactly how one defines and uses certificate terms, indexes,
and the clerk and expert predicates (e.g., ∧c(·, ·, ·), ∃e(·, ·, ·), etc.), the LKF a

inference rules can be directed to build widely varying proof structures. Collect-
ing together such definitions yields what we call an FPC, that is, a foundational
proof certificate definition. We shall present an example shortly.



12 D. Miller

5 Proof Checking as Logic Programming

It is possible to see the inference rules in Fig. 1 as describing a logic program:
in particular, Fig. 2 contains part of a λProlog specification for several of those
rules. The first five lines of Fig. 2 declare the types, constants, and predicates
used to encode first-order polarized (LKF) formulas; the next seven lines declare
the types and predicates of clerks and expert predicates; the next three lines
provide the type declaration of the predicates that form the core of the proof
checking kernel; and the remaining lines contain six clauses that are a direct
specification of six inference rules from Fig. 1: specifically of the inference rules
for introducing ∧−, ∀, and ∃B, and the rules for store, decide, and initial. All
the remaining augmented inference rules can be specified in a similar fashion.

We have used λProlog here instead of Prolog for the following two major
reasons.

Bindings in Formulas and Proofs. λProlog encodes bindings in formulas (quanti-
fiers) and in proofs (eigenvariables) directly and implements them into its unifica-
tion and substitution mechanisms. Achieving a Prolog implementation is possible
but would require implementing such binding structures and associated logical
operations, all rather difficult things to get right.

Context Management and its Dynamics During Proof Search. Focused and aug-
mented sequents contain a context denoted by the Θ: this is intended to be a
multiset of pairs of indexes and formulas. This multiset only needs to support
the following operations: add a pair to the multiset (the store rule) and select
a formula (nondeterministically) from the multiset by providing an index (the
decide and initial rules). Notice that we do not need to know how many members
there are in Θ nor anything about possible orderings between pairs. Note also
that no functional dependency is assumed to hold between indexes and formula:
that is, many formulas may be associated to the same index within a given Θ
context. For all these reasons, the hypothetical context on λProlog serves as
an interesting and direct implementation of this aspect of these inference rules.
(See, for example, the fourth clause in Fig. 2.)

By forging such a direct link between a proof checking kernel and a logic
program, that kernel has access to backtracking search and unification, which
means that it can be used to support proof reconstruction: if a proof certificate
does not contain all the details necessary to complete a (sequent calculus) proof,
then it should be possible to allow backtracking and unification to discover some
of them.

The full process of defining and checking a certain format of proof evidence
can now be done as follows.

1. Pick some discipline to polarize a given classical logic formula into a polarized
(LKF) formula.

2. Provide the signature (term constructors) for certificate (terms of type cert)
and indexes (terms of type index). Any term structure possible in λProlog
are allowed for these structures.
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kind form , i type.

type nand , por form -> form -> form.

type all , some (i -> form) -> form.

type complem form -> form -> o.

type pos_or_lit form -> o.

kind cert , index type.

type andC cert -> cert -> cert -> o.

type allC cert -> (i -> cert) -> o.

type storeC cert -> cert -> index -> o.

type initE cert -> index -> o.

type someE cert -> cert -> i -> o.

type decideE cert -> cert -> index -> o.

type uparrow cert -> list form -> o.

type downarrow cert -> form -> o.

type store index -> form -> o.

uparrow Cert ((nand A B):: Gamma) :- andC Cert Cert1 Cert2 ,

uparrow Cert1 (A::Gamma), uparrow Cert2 (B::Gamma).

uparrow Cert ((all B):: Gamma) :- allC Cert Cert ’,

pi x\ uparrow (Cert ’ x) ((B x):: Gamma).

downarrow Cert (some B) :- someE Cert Cert ’ T,

downarrow Cert ’ (B T).

uparrow Cert (C::Gamma) :- pos_or_lit C,

storeC Cert Cert ’ Idx , store Idx C => uparrow Cert Gamma.

uparrow Cert nil :- decideE Cert Cert ’ Index , store Index B,

downarrow Cert ’ B.

downarrow Cert B :- initE Cert Idx , store Idx C, complem B C.

Fig. 2. A λProlog implementation of part of Fig. 1 (Color figure online)

3. Provide logic program specifications of the clerk and expert relations.
4. Prove the goal uparrow Cert (B::nil) where B is the polarized form of the

proposed theorem and Cert is the supplied certificate term (proof evidence).

6 Non-determinism in Proof Checking

In general, clerk predicates are intended to be functional: in the case of the
conjunctive-clerk, this means that for every Ξ there exists at most one Ξ1 and
at most one Ξ2 such that ∧c(ΞΞ1Ξ2) is provable.

One could insist that this is also the case with experts. For example, if the ∃
expert predicate is functional then for every Ξ for which ∃e(Ξ,Ξ ′, t) is provable,
the continuation certificate Ξ ′ and the substitution term t are uniquely deter-
mined. This can be achieved if, for example, the certificate simply stores this
substitution term inside itself. While such proof certificates are clearly possible
to design and check, one might want some flexibility in the design of certificates:
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for example, storing all substitution instances might require certificates to be
huge. If such substitution terms could be inferred from context using, say, the
unification mechanism of logic programming, then the size of a proof certificate
might be much smaller. Thus, allowing the proof checker to also reconstruct
details of a proof allows proof certificates to be possibly much smaller in size.

For a specific example of the trade-off between proof size and proof checking,
consider the following example (taken from [7]). It is possible to convert some
decision procedures into proof certificates. For example, consider the procedure
for determining whether or not a given propositional formula is a tautology:
first compute the conjunctive normal form of the formula and then check that
all the resulting clauses contain complementary literals. It is an easy matter
to define a proof certificate encapsulating this procedure. Following the four
steps mentioned above, we choose to polarize the connectives in a propositional
classical formula using the negative (invertible) connectives. We then arrive at
the following code (which specifies the result of the second and third steps).

type lit index.

type cnf cert.

andC cnf cnf cnf & initE cnf lit.

orC cnf cnf & decideE cnf cnf lit.

falseC cnf cnf & storeC cnf cnf lit.

releaseE cnf cnf.

Here, there is exactly one proof certificate—just the token cnf. Similarly,
there is just one index—the token lit—which is used to index all stored for-
mulas. Note that the only formulas stored in this way are (both positive and
negative) literals. Thus, the association between indexes and formulas is not
functional and, as a result, the decide rule will be asked to chose some formula
with index lit for which a complement is found. Such a step works perfectly in
a logic programming setting where the decide rule (on index lit) is immediately
followed by the initial rule (on index lit): thus the decide rule will generate pos-
itive literals and the initial rule will test those against available negative literals.
Notice that if we required the indexing mechanism as well as the decide and ini-
tial experts to be functional, we would need to insert into the certificate a great
deal of indexing information: since there can be exponentially many clauses in
the conjunctive normal form of a propositional formula, such certificates would
be huge, in contrast to the description of the cnf certificate that is described
here.

7 Conclusion

Proof checking has been part of the history and development of high-level lan-
guages, starting, in particular, with the LCF system and the ML meta-language
for it [19]. I have argued here that proof checking can be closely linked to logic
programming. Such a close linkage should benefit both communities. There are,
however, some challenges ahead for such a close relationship to actually occur.
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One such challenge is that implementers and designers of logic programming
languages have often favored efficiency and expressiveness over logical sound-
ness: witness the presence of unification without the occurs-check, negation-as-
failure, assert/retract, etc. Proof checking is a setting where logical soundness
is paramount. While soundness can be delivered using unsound, quasi-logical
processing, the logic programming community should certainly be able to deliver
much more interesting and ambitious approaches to the implementation of logi-
cal deduction.

A second such challenge would be to have powerful techniques for reasoning
about logic programming specifications. It is possible to view provability from
Horn clauses as a simple inductive definition (a feature that a number of theorem
provers support), but more direct support seems desirable since provability has
more properties than just any inductive definition. In the case of logic program-
ming with hypothetical reasoning and with bindings, as with λProlog, the simple
inductive style approach is problematic. Fortunately, initial steps to address this
challenge have been made in the design and implementation of the Abella theo-
rem prover [3,14] which is capable of reasoning directly with specifications like
those found in λProlog. Thus, it should be possible to develop formal proofs of
correctness for λProlog based proof checkers using Abella and related tools.
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Abstract. Co-logic programming is an extension of the conventional
logic programming language, by allowing each predicate to be annotated
as either inductive or coinductive. To define its procedural semantics as
well as an alternating fixpoint semantics, the stratification restriction, a
condition on predicate dependency in programs, has been imposed on co-
logic programs (co-LPs). In this paper, we first consider dual programs
in co-logic programming: Given a program P , its dual program P ∗ is a
program such that it defines the “complement” of P , i.e., for any ground
atom p(t), it computes its negation ¬p(t). When we consider co-LPs
with negation, we show that the stratification restriction becomes too
restrictive in general, and that the Horn μ-calculus by Charatonik et al.
can be used as an extension of co-logic programming for handling “non-
stratified” co-LPs. We then consider some applications of non-stratified
co-LPs to Answer Set Programming (ASP) and the well-founded seman-
tics (WFS). In particular, we give new iterated fixpoint characterizations
of answer sets as well as the WFS via dual programs. We also discuss
some applications of non-stratified co-LPs to program transformation
such as partial deduction, and a proof procedure for the WFS.

1 Introduction

Co-logic programming, proposed by Gupta et al. [11] and Simon et al. [26,27], is
an extension of logic programming, where each predicate in definite programs is
annotated as either inductive or coinductive. To define its semantics, the strat-
ification restriction, a condition on predicate dependency in co-logic programs
(co-LPs), is assumed, and the declarative semantics by an alternating fixpoint
semantics has been given: the least fixpoints for inductive predicates and the
greatest fixpoints for coinductive predicates. A top-down procedural semantics,
co-SLD resolution, has also been proposed, and recent SWI Prolog [28] has added
support for coinduction.

As a result, co-logic programming provides a powerful computational frame-
work, where many interesting applications such as modelling ω-automata [8],
model checking [6], non-monotonic reasoning and SAT solvers can be easily
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expressed and computed (see, e.g., [12]). Recently, there has been reported some
work [16,17] on applying co-LP techniques to Answer Set Programming using
dual programs.

In this paper, we first consider dual programs in co-logic programming: Given
a program P , its dual program P ∗ defines the “complement” of P , i.e., for any
ground atom p(t), SEM (P ) |= ¬p(t) iff SEM (P ∗) |= not p(t), where not p is
a new predicate symbol and SEM (P ) is a semantics of P . The notion of dual
programs has been studied in the literature; among others, Sato and Tamaki
[22] has introduced a technique for program transformation called the negation
technique. It has also been utilized in partial evaluation (or partial deduction),
program transformation, implementation of proof procedures (see, e.g., [1,4,20,
21,24]).

Considering dual programs of co-LPs with negation requires us to handle
“non-stratified” co-LPs, and we show that the Horn μ-calculus by Charatonik
et al. [5] can be used as an extension of co-logic programming. We then consider
some applications of non-stratified co-LPs to Answer Set Programming (ASP)
[10] and the well-founded semantics (WFS). In particular, we give new iterated
fixpoint characterizations of answer sets as well as the WFS through dual pro-
grams. To the best of our knowledge, this is the first result of giving fixpoint
characterizations of answer sets/WFS using dual programs. Some applications
of non-stratified co-LPs to program transformation such as partial deduction,
and a proof procedure for the WFS are also discussed.

The organization of this paper is as follows. In Sect. 2, we summarise some
preliminary definitions on co-LPs and dual programs. In Sect. 3, we explain non-
stratified co-logic programs and the Horn μ-calculus. In Sect. 4, we consider
non-stratified co-LPs in the well-founded semantics. Finally, we discuss about
the related work and give a summary of this work in Sect. 5.1

Throughout this paper, we assume that the reader is familiar with the basic
concepts of logic programming, which are found in [3,15].

2 Preliminaries

In this section, we first recall some basic definitions and notations concerning co-
logic programs (co-LPs). The details and more examples are found in [11,26,27].
Then, we also explain some preliminaries on deriving dual programs by negation
elimination.

A co-logic program (co-LP) is a definite program, where predicate symbols are
annotated as either inductive or coinductive. There is one restriction on co-LP,
referred to as the stratification restriction: Inductive and coinductive predicates
are not allowed to be mutually recursive. An example which violates the stratifi-
cation restriction is {p ← q; q ← p}, where p is inductive, while q is coinductive.

When a co-LP P satisfies the stratification restriction, it is possible to decom-
pose the set P of all predicates in P into a collection (called a stratification) of
1 Due to space constraints, we omit most proofs and some details, which will appear

in the full paper.
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mutually disjoint sets P0, . . . ,Pr (0 ≤ r), called strata, so that, for every clause
p(x̃0) ← p1(x̃1), . . . , pn(x̃n) in P , we have that σ(p) ≥ σ(pi) if p and pi have
the same inductive/coinductive annotations, and σ(p) > σ(pi) otherwise, where
σ(q) = i, if the predicate symbol q belongs to Pi. σ is called a stratification
function.

The following is an example of co-LPs due to Simon et al. [26], which shows
that co-logic programming can handle infinite terms such as infinite lists or trees
like f(f(. . . )) as well as finite ones.

Example 1 [26]. Suppose that predicates member and drop are annotated as
inductive, while predicate comember is annotated as coinductive.

member(H, [H| ]) ←
member(H, [ |T ]) ← member(H,T )

drop(H, [H|T ], T ) ←
drop(H, [ |T ], T1) ← drop(H,T, T1)

comember(X,L) ← drop(X,L,L1), comember(X,L1)

The definition of member is a conventional one; its meaning is defined in terms
of the least fixpoint, since it is an inductive predicate. So, the prefix ending in
the desired element H must be finite. The same applies to predicate drop.

On the other hand, predicate comember is coinductive, whose meaning is
defined in terms of the greatest fixpoint. Therefore, it is true if and only if the
desired element X occurs an infinite number of times in the list L. Hence it is
false when the element does not occur in the list or when the element only occurs
a finite number of times in the list.

For example, the query X = 1, L = [0, 1|L], comember(X,L) is true, while
the query X = 1, L = [0, 1, 0, 1], comember(X,L) is false. Note that L = [0, 1|L]
represents an infinite list L consisting of 0 s and 1 s. ��

A meta-interpreter for co-logic programming has been developed and
available [14], and recent SWI-Prolog (version 6.5.1) has also offered a mod-
ule for supporting coinduction.2

The declarative semantics of a co-logic program is a stratified interleaving
of the least fixpoint semantics and the greatest fixpoint semantics. To handle
infinite terms, we consider the complete (or infinitary) Herbrand base [13,15],
denoted by HB∗

P , where P is a program.3

Let P be a co-logic program with a stratification P0, . . . ,Pr (0 ≤ r). Let
Πi (0 ≤ i ≤ r) be the set of clauses whose head predicates are in Pi. Then,
P = Π0 ·∪ . . . ·∪Πr. Let Π (resp., S) be a set of clauses (resp., ground atoms).
Similarly to the “immediate consequence operator” TP in the literature, our
operator TΠ,S assigns to every set I of ground atoms a new set TΠ,S(I) of
ground atoms as

2 http://www.swi-prolog.org/pldoc/doc/swi/library/coinduction.pl.
3 In the following sections, we will restrict ourselves to propositional programs for

the ease of exposition, thus the “standard” Herbrand base HBP will suffice. In
this section, however, we explain some of the general basics of co-LPs for readers
unfamiliar with them.

http://www.swi-prolog.org/pldoc/doc/swi/library/coinduction.pl
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TΠ,S(I) = {A ∈ HB∗
Π | there is a ground instance of some clause in Π

A ← B1, · · · , Bn, n ≥ 0, such that, for every 1 ≤ i ≤ n,

either Bi ∈ I or Bi ∈ S}.

In the above, the atoms in S are treated as facts. S is intended to be a set
of atoms whose predicate symbols are in lower strata than those in the current
stratum Π. We consider TΠ,S to be the operator defined on the set of all subsets
of HB∗

Π , ordered by standard inclusion. Then, TΠ,S admits a least and a greatest
fixpoint denoted by lfp(TΠ,S) and gfp(TΠ,S), respectively.

Finally, the model M(P ) of a co-logic program P = Π0 ·∪ . . . ·∪Πr is defined
inductively as follows: Let M(Π−1) = ∅. For k ≥ 0, M(Πk) = lfp(TΠk,Mk−1) if
Pi is inductive; gfp(TΠk,Mk−1) if Pi is coinductive, where Mk−1 is the model of
lower strata than Πk, i.e., Mk−1 = ∪k−1

i=−1M(Πi).
Then, the model of P is M(P ) = ∪r

i=0M(Πi), the union of all models M(Πi).

Example 2. Let P0 = {p ← q; q ← q; r ← r} be a set of clauses. In the
traditional logic programming, the meaning of P0 is given in terms of the least
fixpoint semantics, lfp(TP0) = ∅.

In co-logic programming, on the other hand, assume that p and r are induc-
tive predicates, while q is a coinductive predicate. Then, since P0 satisfies the
stratification restriction, its meaning is defined in co-logic programming, i.e.,
M(P0) = {p, q}. ��

Dual Programs in Co-Logic Programming. Our approach to handling
negation in (co-)LPs is based on negation elimination (NE for short), a familiar
program transformation technique [22], tailored to co-logic programs [24]. Given
a (co-)LP P , the NE transformation derives from P a set P ∗ of definite clauses,
called the dual program of P , by replacing negative literals ¬p(t̃) by not p(t̃),
where not p is a newly introduced predicate symbol.

In the following, we explain NE for a program P such that a clause in P
might contain negative literals in its body for later use, and we assume that P
is a propositional program for the ease of exposition, although it is applicable to
programs without existential variables.4 NE consists of the following two steps:

(step 1) for each clause in P , we replace each occurrence ¬p of negative literals
(if any) by not p, where not p is a new predicate not appearing elsewhere;
(step 2) for each predicate p, let comp(p) be its completed definition in P . We
then derive the definition of not p from comp(p) as follows:

(i) [Definition Derivation] Suppose that comp(p) is of the form p ↔ B1 ∨ · · · ∨
Bn. Then, negating both sides of comp(p), and replacing every negative
occurrence ¬p by not p, we obtain not p ↔ ¬(B1 ∨ · · · ∨ Bn).
Next, transforming the right-hand side in the above to a disjunctive form,

4 A variable in a clause is existential if it appears in the body of the clause, but not
in the head.



On Dual Programs in Co-Logic Programming 25

using De Morgan’s laws, replacing each occurrence of ¬¬q by q, and each
occurrence of ¬q by not q, we obtain the completed definition of not p, i.e.,
not p ↔ NB1 ∨ · · · ∨ NBn′ , where each NB i is a conjunction of positive
literals. Finally, we transform comp(not p) to a set of clauses: {not p ←
NB1; . . . ;not p ← NBn′}.

(ii) [Annotation Inversion] Annotate the derived predicate not p as “coinduc-
tive” (resp. “inductive”) if the annotation of the original predicate p is induc-
tive (resp. coinductive).

Let P be a (definite) co-LP with the stratification restriction σ, and P ∗ be the
set of all clauses obtained by applying the above NE transformation. We define
the stratification function σ∗ for P ∗ as follows: σ∗(p) = σ(p) for all predicates
defined in P , and σ∗(not p) = σ(p)+1 for all predicates not p newly introduced
in NE. Then, we can show that P ∗ satisfies the stratification restriction w.r.t. σ∗.

Proposition 1. Correctness of Negation Elimination [24]
Let P be a definite co-logic program. If every clause in P has no existential
variable, then the procedure of negation elimination gives a complementary co-
logic program P ∗, i.e., for any ground term t̃,

M(P ) |= ¬p(t̃) iff M(P ∗) |= not p(t̃).

Example 3 (Continued from Example 2). Consider again P0 = {p ← q; q ←
q; r ← r} in Example 2. Then, its dual program P ∗ = P0 ∪ {not p ←
not q; not q ← not q; not r ← not r}.

Recall that p and r are inductive predicates, while q is a coinductive predi-
cate. Therefore, not p and not r are coinductive, while not q is inductive. Thus,
M(P ∗) = {p, q,not r}. We note that M(P ) |= ¬r and M(P ∗) |= not r. ��
In the following, we restrict ourselves to propositional programs, where the con-
dition of NE (Proposition 1) is always satisfied. When a program has existen-
tial variables, NE will be still applicable if a certain condition [22] is satisfied.
Another way is to use grounding by lparse in smodels [19], which allows us to
deal with more general classes of programs such as range-restricted programs.
Moreover, our applications of dual programs here include AS and abduction,
where it is often the case that datalog programs are considered.

3 Non-stratified Co-Logic Programs and Horn µ-calculus

Proposition 1 deals with definite co-logic programs, thus satisfying the stratifi-
cation restriction. However, the stratification restriction becomes too restrictive,
when we consider dual programs of (co-)LPs with negation. In this section, we
show that the Horn μ-calculus by Charatonik et al. [5] can be used as a frame-
work for handling “non-stratified” co-LPs.
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3.1 Dual Programs of Non-Stratified Programs

The notion of dual programs has been studied in logic programming; we have
already explained the program transformation technique, called the negation
technique, by Sato and Tamaki [22] in Sect. 2. Aravindan and Dung [4] have
then proposed partial evaluation (or partial deduction) of logic programs in the
well-founded semantics (WFS) using dual programs. Dual programs have also
been used for implementing proof procedures; Abdual by Alferes et al. [1] and
its successors such as Tabdual [20,21] are abductive reasoning systems for the
WFS. Marple and Gupta [16] have proposed a proof procedure for answer set
programs using their dual programs.

In particular, Aravindan and Dung [4] have shown the following result on par-
tial deduction in the WFS, which is given in the case of propositional programs
for the sake of simplicity.

Proposition 2 (Aravindan and Dung). Partial Deduction in the WFS [4]
Let P be a program whose well-founded model is complete5 and P ∗−ai a negative
partial deduction of P obtained by replacing selected negative literals ¬p by
not p and adding new definitions for not p. Then, for every goal G : ← A which
contains no not p predicate, WFS (P ) |= A iff WFS (P ∗−ai) |= A. ��
In the above, when applied to propositional programs, a negative partial deduc-
tion of P , denoted by P ∗−ai, is the same as the dual program P ∗ explained in
Sect. 2, except that annotation inversion is not employed. However, the above
proposition is not always correct as the following example shows. Given a pro-
gram P , we denote by WFS (P ) = 〈T ;F 〉, where T (resp., F ) is the set of atoms
true (resp., false) in the WFS of P . The truth value of the remaining atoms in
U = HP \ (T ∪ F ) is undefined, where HP is the Herbrand base of P .

Example 4. Consider the following program P = {p ← ¬q; q ← q}. Since
P is a stratified program, P has a unique answer set, i.e., the perfect model,
PERF (P ) = {p}, which coincides with WFS (P ) = 〈{p}; {q}〉 and thus it is
complete.

Consider the negative partial deduction P ∗−ai = {p ← not q; not p ←
q; not q ← not q; q ← q}, where all the atoms are annotated as inductive.

Then, WFS (P ∗−ai) = 〈∅; {p, q,not p,not q}〉. In particular, p is thus false.
On the other hand, the dual program P ∗ is the same set of clauses as P ∗−ai

with different predicate annotations: not p and not q are coinductive, while p
and q are inductive. P ∗ satisfies the stratification restriction. Then, M(P ∗) =
{p,not q}; this means that P ∗ with its co-LP semantics M(P ∗), exactly captures
the semantics of P in the WFS. ��
When we consider conventional general (i.e., non-stratified) programs, all pred-
icates are supposed to be annotated as inductive. Then, the resulting dual
programs do not satisfy the stratification restriction in general. For example,
5 Well-founded model of a program P is complete when it classifies all the elements

of the Herbrand base as ‘true’ or ‘false’.
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let P = {p ← ¬q; q ← ¬p}. Then, its dual program P ∗ = {p ← not q; q ←
not p; not p ← q; not q ← p}, which does not satisfy the stratification
restriction.

3.2 Horn µ-Calculus and Its Fixpoint Semantics

Charatonik et al. [5] have proposed the Horn μ-calculus; it is an extension of
logic programs by allowing nesting of least and greatest fixpoints, in terms of a
priority of each predicate for specifying whether its semantics has to be computed
as a least or a greatest fixpoint. They have given to the Horn μ-programs the
semantics based on ground proof trees as well as the nested fixpoints semantics.

A Horn μ-program (P,Ω) is a set of definite clauses in which every predicate
symbol p in P is associated with a non-negative number Ω(p), called the priority
of p.

Charatonik et al. [5] give an iterated fixpoint characterization of the seman-
tics [[(P,Ω)]] of a program P , which we will use in the following.

First we recall the familiar TP operator of logic programming (see [15]); for
any set A of ground atoms, we define TP (A) in the standard manner. Next,
for all sets A and B of ground atoms, and non-negative priority k, we define
A[k := B] to be the set of ground atoms such that p ∈ A[k := B] if either the
priority of p is different from k and p ∈ A or the priority of p equals k and p ∈ B.
We now define the operator T k

P such that T k
P (A) = A[k := TP (A)]; The operator

T k
P is thus analogous to TP except that T k

P only updates predicates of priority k.
Then, for each value of k, we take fixpoints of the operators T k

P . To do that, for
any integer k we define F k

P (A) as follows. First, for negative integer k, we define
F k

P (A) = A.

F k
P (A) =

{
νB.T k

P (F k−1
P (A[k := B])) if k is even,

μB.T k
P (F k−1

P (A[k := B])) if k is odd,

Then, [[(P,Ω)]] = Fn
P (∅), where n = max(Ω(P )), i.e., n is the maximal pri-

ority of any predicate in P .
It is easy to show that the Horn μ-calculus is an extension of co-logic pro-

gramming. In fact, let P be a co-LP with a stratification σ. Then, we call a
priority function Ω consistent with σ, if it satisfies the following: (i) σ(p) ≤ σ(q)
iff Ω(p) ≥ Ω(q) for any predicates p and q, i.e., a predicate in lower stratum
has a higher priority, and (ii) Ω(p) is even (odd) if p is a coinductive (inductive)
predicate, respectively. Then, we have the following:

Proposition 3. Let P be a co-logic program with a stratification function σ.
Then, M(P ) = Fn

P (∅) with priority Ω, where Ω is consistent with σ, and n =
max Ω(p) for any predicate p in P . ��
Example 5. Consider again P0 = {p ← q; q ← q; r ← r} in Example 2, where
p and r are inductive predicates, while q is a coinductive predicate. Then, its
stratification function σ is defined as: σ(q) = 0, σ(p) = σ(r) = 1.
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Consider a priority Ω consistent with σ such that Ω(p) = Ω(r) = 1, Ω(q) = 2.
Then, we have that [[(P0, Ω)]] = F 2

P0
(∅) = {p, q} = M(P0). ��

On the other hand, the Horn μ-calculus is more general than stratified co-LP.

Example 6 (Adapted and Simplified from [5]). Let P0 = {p ← p; p ← q; q ← p}
be a set of clauses, where p is an inductive predicate, while q is a coinductive
predicate. Since P0 does not satisfy the stratification restriction, its meaning is
not given in co-logic programming.

In the Horn μ-calculus, however, the semantics of P0 can be determined in
terms of priorities assigned to the predicates. Suppose, for example, that the
coinductive predicate q has a higher priority than the inductive predicate p. We
thus define: Ω(p) = 1 and Ω(q) = 2. Then, [[(P0, Ω)]] = {p, q}. ��

The framework for unfold/fold transformation of co-logic programs is
proposed in [23], where a program is assumed to satisfy the stratification restric-
tion. We note that unfolding does not preserve the meaning of a Horn μ-program
in general, as the following example shows.

Example 7. Let P0 = {p ← q; q ← p} be a set of clauses, where Ω(p) = 1
(i.e., p is an inductive predicate), while Ω(q) = 2 (i.e., q is a coinductive predi-
cate). Then, [[(P0, Ω)]] = {p, q}. Note that P0 does not satisfy the stratification
restriction.

P0 : p ← q
q ← p

unfolding−−−−−−→ P1 : p ← p
q ← p

P0 : p ← q
q ← p

unfolding−−−−−−→ P2 : p ← q
q ← q

In the above, the atoms in bold letters are the ones on which unfolding is
applied. Then, M(P1) = ∅, while M(P2) = {p, q}. Therefore, when P0 does not
satisfy the stratification restriction, a simple application of unfolding will yield
programs with different meanings. ��

We will consider unfolding in the Horn μ-calculus in the following section.

Answer Set Programs and Horn μ-programs. We are now in a position
to give the relationship between answer sets and Horn μ-programs. Let M be a
set of atoms and M∗ a set of atoms including ones of the form not p for some
atom p. In the following, we denote by M ≡ M∗ if, for any ground atom p,
p ∈ M iff p ∈ M∗, and p �∈ M iff not p ∈ M∗.

Example 8. Consider again the following program P = {p ← ¬q; q ← ¬p} and
its dual program P ∗ = {p ← not q; q ← not p; not p ← q; not q ← p}. P is a
non-stratified program, and it has two answer sets M1 = {p} and M2 = {q}.

On the other hand, P ∗ does not satisfy the stratification restriction. First,
we consider a Horn μ-program (P ∗, Ω1), where we define the priority Ω1 as
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Ω1(not q) = 2 and Ω1(not p) = 0, while Ω1(p) = Ω1(q) = 1. Then, [[(P,Ω1)]] =
{p,not q}, thus M1 ≡ [[(P,Ω1)]].

On the other hand, we consider a Horn μ-program (P ∗, Ω2) in a symmet-
ric fashion; we define the priority Ω2 as Ω2(not p) = 2 and Ω2(not q) = 0,
while Ω2(p) = Ω2(q) = 1 as before. Then, [[(P,Ω2)]] = {q,not p}, thus
M2 ≡ [[(P,Ω2)]]. ��

In general, we can show the following relationship between the answer sets
of P and the fixpoints of F 2

P ∗(∅).

Proposition 4. AS is a fixpoint of a dual program
Let P be a logic program and AS(P ) the set of its answer sets. If M ∈ AS(P ),
then there exists a priority Ω such that M ≡ F 2

P ∗(∅).
In particular, when P is a stratified program, PERF (P ) ≡ F 2

P ∗(∅) = M(P ∗),
where priority Ω is defined to be consistent with the stratification function
of P . ��
Example 4 is a special case of the above proposition.

Unfolding Dual Programs. Next, we consider unfolding of dual programs.

Example 9. Consider again the dual program P ∗ in Example 8 and recall that
the priority Ω1 is defined as Ω1(not q) = 2 and Ω1(not p) = 0, while Ω1(p) =
Ω1(q) = 1. Then, [[(P,Ω1)]] = {p,not q}. We consider the following two cases of
applying unfolding to P ∗, where the atoms in bold letters are the ones on which
unfolding are applied.

(i)

P ∗ : p ← not q
q ← not p
not p ← q
not q ← p

unfolding−−−−−−→ P ∗
1 : p ← not q

q ← q
not p ← q
not q ← p

Then, [[(P ∗
1 , Ω1)]] = {p,not q}, thus unfolding preserves the semantics. We

note that, in the unfolded clause, Ω1(q) ≥ Ω1(not p).
(ii)

P ∗ : p ← not q
q ← not p
not p ← q
not q ← p

unfolding−−−−−−→ P ∗
2 : p ← p

q ← not p
not p ← q
not q ← p

Then, [[(P ∗
2 , Ω1)]] = ∅, thus unfolding does not preserve the semantics. We

note that, in the unfolded clause, Ω1(p) < Ω1(not q). ��
The following proposition explains the above applications of unfolding.
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Proposition 5. Unfolding of Horn μ-programs
Let (P,Ω) be a Horn μ-program and P ′ a program derived by applying unfolding
to P . Let p ← q1, . . . , qn (n > 1) be the unfolded clause in P and qi (1 ≤ i ≤ n)
the atom upon which unfolding is applied. If Ω(p) ≥ Ω(qi), then the semantics
of (P,Ω) is preserved, i.e., [[(P,Ω)]] = [[(P ′, Ω)]]. ��
Aravindan and Dung [4] also studied unfolding of dual programs in the well-
founded semantics, where unfolding is defined as usual, i.e., no condition is
imposed on applying unfolding. In contrast, unfolding in our framework requires
the above-mentioned condition for its application, since each atom in a Horn
μ-program is assigned its priority and the semantics (P,Ω) is defined based on
the priorities of atoms.

4 Dual Programs in the Well-Founded Semantics

Finally, we consider a fixpoint characterization of the well-founded semantics
(WFS) via dual programs, which is based on the Horn μ-calculus.

Proposition 6. Fixpoint Characterization of the WFS
Let P be a logic program and v the truth valuation in the well-founded semantics
WFS (P ). Let P ∗ be its dual program and Ω be a priority defined as Ω(p) = 1
(resp., Ω(not p) = 2) for any predicate p in P . Then, we have

– v(p) = t iff p ∈ F 2
P ∗(∅) and not p �∈ F 2

P ∗(∅),
– v(p) = f iff not p ∈ F 2

P ∗(∅) and p �∈ F 2
P ∗(∅), and

– v(p) = u iff p ∈ F 2
P ∗(∅) and not p ∈ F 2

P ∗(∅). ��
Example 10. Consider the following non-stratified program P = {p ← q; q ←
¬p}, and its dual program P ∗ = {p ← q; q ← not p; not p ← not q; not q ←
p}. Then, WFS (P ) = 〈∅; ∅〉, i.e., the truth value of every atom in P is undefined:
v(a) = u for a ∈ {p, q}.

On the other hand, we consider a Horn μ-program (P ∗, Ω), where we define
the priority Ω as Ω(not a) = 2 and Ω(a) = 1 for a ∈ {p, q}. Then, [[(P,Ω)]] =
{p, q,not p,not q}. ��

A Proof Procedure of Dual Programs in the WFS. From Proposition 6,
we will propose a simple proof procedure, which is based on the notion of P -
derivation of the Horn μ-calculus [5].

The semantics of a Horn μ-program is given in terms of ground derivations
[5]. Given a logic program P , r is called a P -derivation if for each node n in r,
labeled by some ground atom h, there exists a ground instance h ← b1, . . . , bm

(m ≥ 0) of a clause in P , and n has m children nodes, each of which is labeled
by bi (0 ≤ i ≤ m). When m = 0, the node n has no children nodes and is a
success node. If there are no such clauses in P , then n has no children nodes and
is a failure node. When the root node of r is labeled by p, r is a P -derivation of
p (or p has a P -derivation r).
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Given a P -derivation r, let w be an infinite sequence w0w1w2 . . . of nodes in
r such that wi+1 is a child of wi. Such a sequence w is called an infinite path. For
an infinite path π in a P -derivation, we denote by Inf (π) the set of all priorities
occurring infinitely often on the path π. We say that a path w in r is accepting
if the largest element of Inf (π) is even. A P -derivation r is accepting if every
infinite path in r is accepting and every finite path ends with a success node.
A P -derivation r is not accepting if there exists either an infinite path in r which
is not accepting or a finite path ending with a failure node.

From the equivalence of the procedural semantics and the iterated fixpoint
semantics of the Horn μ-calculus [5], we have the following characterization of
procedural semantics of a dual program P ∗ in the WFS.

– v(p) = t iff p (resp. not p) has an (resp. no) accepting P ∗-derivation,
– v(p) = f iff not p (resp. p) has an (resp. no) accepting P ∗-derivation, and
– v(p) = u iff both p and not p have accepting P ∗-derivations.

P ∗:

p ← q

q ← not p

not p ← not q

not q ← p

w0 : p

|
w1 : q

|
w2 : not p

|
w3 : not q

|
w4 : p

|...

Fig. 1. The P ∗-Derivation of p (Example 10)

Since we consider here propositional dual programs in the WFS, we can have
a simple procedure for detecting whether v(p) = u for a ground atom p. To do
that, we will make the notion of (non)-acceptance more detailed.

Given a P ∗-derivation r of an atom p0, suppose that there is an infinite path
π = w0w1w2 . . . in r. We denote the label of node wi (i ≥ 0) by wi.l. Since dual
programs are propositional, there exist some node wn (n ≥ 0) and k ≥ 0 such
that wn and wn+k+1 have the same label, i.e., wn.l = wn+k+1.l. Then, π is of
the form: w0w1 . . . (wn . . . wn+k)ω.

Definition 1. Let r be a P ∗-derivation. Then,

– r is called successful if every finite path in r ends with a success node and for
every infinite path π in r, Ω(wi.l) = 2 for all i (n ≤ i ≤ n + k).
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– r is called failed if there exists either a finite path in r ending with a failure
node or an infinite path π in r such that Ω(wi.l) = 1 for all i (n ≤ i ≤ n+ k).

– r is called undefined if it is neither successful nor failed. In this case, r has an
infinite path π such that Ω(wn.l) �= Ω(wm.l) for some m (n ≤ m ≤ n + k). ��

Example 11. Figure 1 shows a P ∗-derivation of p in Example 10. Recall that
v(p) = u. p has a single P ∗-derivation r; it consists of a single infinite path
π = (w0 . . . w3)ω, where Ω(w0.l) = Ω(p) = 1 and Ω(w2.l) = Ω(not p) = 2. The
priorities of labels in the infinite loop are thus alternating. ��
Proposition 7. Procedural Semantics of Dual Programs in the WFS
Let P be a logic program and v the truth valuation in the well-founded semantics
WFS (P ). Let P ∗ be its dual program and Ω be a priority defined as Ω(p) = 1
(resp., Ω(not p) = 2) for any predicate p in P . Then, we have

– v(p) = t iff p has a successful P ∗-derivation,
– v(p) = f iff all of P ∗-derivations of p are failed, and
– v(p) = u iff all of P ∗-derivations of p are neither successful nor failed. ��

We note some implementation issues on the above procedural semantics.
Abdual [1] has some problems in handling loops involving negative atoms,
referred to as “negative loops over negation” (NLoN ) [20]. In Example 10, for
example, goals ← p and ← not p succeed unexpectedly in Abdual. In Tabd-
ual [20], such problems have been remedied by introducing some mechanisms for
dealing with NLoN. However, its implementation for handling NLoN is depen-
dent on the XSB built-in predicates such as tnot/1 and call tv/2 (see Fig. 2
(below)) together with an auxiliary predicate over/1, which would make it dif-
ficult to perform program analysis and its possible optimization.

On the other hand, Proposition 7 will give a simple proof procedure for
the WFS. For example, predicate solve/1 in DRA interpreter [14] (see Fig. 2
(above)) has an argument which maintains information about the current path
of ancestors (stack). Using this mechanism, it would be simple to check whether
a path currently stored on the stack is successful, failed or undefined, since it is
enough to examine the labels of atoms in the stack.

5 Related Work and Concluding Remarks

The notion of dual programs has been proposed and utilized in various fields
in logic programming. Techniques using dual programs have been proposed for
performing partial evaluation (or partial deduction), program transformation
and implementation of reasoning systems and proof procedures (see, for exam-
ple, [1,4,16–18,20–22,24]). In this paper we have extended to non-stratified
(co-)LPs negation elimination with the operation of annotation inversion, which
was proposed for definite co-LPs [24].

The main contributions of this paper are the following. (i) We have shown
that the Horn μ-calculus can be utilized as a framework for handling non-
stratified co-LPs. In fact, the Horn μ-calculus is an extension of co-logic pro-
gramming (Proposition 3). Gupta et al. [12] have also proposed an extension
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% solve/1 in DRA interpreter

solve( + sequence of goals, + stack, + coinductive hypotheses, + level):

%% Solve the sequence of goals, maintaining information about the current chain

%% of tabled ancestors (stack) and the chain of coinductive ancestors
%% (coinductive hypotheses). The level is the level of recursion, and is used

%% only for tracing.

% Tbdual Implementation of Ex. 10

% the predicate over(G)/1 is defined as over(G) :- tnot(G).

1. :- table q_ab/1, over/1, not_p/1, p_st/3.

2. q_ab(E) :- tnot p_ab([]), not_p_ab([],E).

3. not_p_ab(I,O) :- call_tv(tnot over(not_p(I)), V),

(V=undefined, O=I, undefined;

inspect(p_st(I,O,[]))).

4. not_p(I) :- p_st(I,O,[]).

5. ... (omitted)

Fig. 2. Predicate solve/1 in DRA interpreter [14] (above) and implementation in
Tabdual (below)

of co-LPs to handle non-stratified co-LPs. To do that, they have introduced
strong/weak inductive annotations, which play a similar role of priorities in the
Horn μ-calculus. However, they have not discussed the relationship of their exten-
sion with the Horn μ-calculus, and its declarative semantics is not known either.
(ii) We have given new iterated fixpoint characterizations of answer sets as well
as the WFS for propositional programs via dual programs. A lot of work has
been done on the fixpoint semantics for logic programming (see, e.g., an excel-
lent survey in [9]). Denecker et al. [7], for example, have proposed a fixpoint
theory as a uniform framework of major semantics of general logic programs.
In contrast, our approach has focused on the use of dual programs, and to the
best of our knowledge, this is the first result of giving fixpoint characterizations
of answer sets/WFS through dual programs. In [25], the relationship between
co-LP and the Horn μ-calculus has been studied from the procedural point of
view. (iii) Finally, we have proposed an unfolding rule for Horn μ-programs
(Proposition 5) and a procedural semantics of dual programs in the WFS (Propo-
sition 7). The unfolding rule in this paper is more general than that for co-LPs
[23] in that the latter is applicable only when the stratification restriction of a
given program is satisfied. Furthermore, the proof procedure for the WFS in this
paper is much simpler than that in [25] in that the latter requires checking a
well-founded ordering among ground atoms, while such checking is replaced here
by simply examining whether priorities of labels are alternating or not.

In this paper, we have restricted ourselves to propositional programs. This
would be reasonable, since co-logic programming has some computational
difficulty [2]. This restriction is due to the condition of NE (Proposition 1),
i.e., no existential variables in every clause in a given co-LP. One direction for
future work is thus to extend the current framework to handle a more general
class of co-LPs. Some approaches have already been mentioned in the end of
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Sect. 2. Another approach will be to allow arbitrary first order logic formulas in
the body of a clause, as in the work by Denecker et al. [7].

We have proposed the proof procedure for the WFS, and compared it with
Abdual and Tabdual (Fig. 2). It will be interesting to extend proof procedure
to allow abducibles for performing abduction. We also have a plan to implement
our proof procedure for the WFS in Proposition 7.

Acknowledgement. The author would like to thank anonymous reviewers for their
constructive and useful comments on the previous version of the paper. The idea of
using co-LP techniques for a proof procedure for the WFS in Sect. 4 came from the
discussions with Gopal Gupta at LOPSTR’13 in Madrid.
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Abstract. A pattern t, i.e., a term possibly with variables, denotes the
set (language) �t� of all its ground instances. In an untyped setting, sym-
bolic operations on finite sets of patterns can represent Boolean oper-
ations on languages. But for the more expressive patterns needed in
declarative languages supporting rich type disciplines such as subtype
polymorphism untyped pattern operations and algorithms break down.
We show how they can be properly defined by means of a signature trans-
formation Σ �→ Σ# that enriches the types of Σ. We also show that this
transformation allows a systematic reduction of the first-order logic prop-
erties of an initial order-sorted algebra supporting subtype-polymorphic
functions to equivalent properties of an initial many-sorted (i.e., simply
typed) algebra. This yields a new, simple proof of the known decidability
of the first-order theory of an initial order-sorted algebra.

Keywords: Pattern operations · Initial decidability ·Order-Sorted logic

1 Introduction

Term patterns are used everywhere in functional and logic programming: to
define predicates and functions, to perform automated deduction tasks like rewrit-
ing, matching, unification, resolution, and Knuth-Bendix completion, and also as
a symbolic notation to describe languages as sets of term instances, and language
operations by corresponding symbolic operations on the term patterns defin-
ing them. Such pattern operations, first systematically studied by Lassez and
Marriott in [12] and further studied in, e.g., [6,11,18,19] have many applications
to, e.g., machine learning, negation in logic programming, sufficient complete-
ness of function definitions, inductive theorem proving, and automated model
building.

For greater expressiveness many declarative languages support rich type disci-
plines. This holds true for both higher-order functional languages and rule-based
languages. For example, OBJ [10], CafeOBJ [7], and Maude [1] all support types,
subtypes, subtype polymorphism, and–through their parameterized types—
polymorphic and dependent types. Obviously, all the above-mentioned applica-
tions of pattern operations are also needed for these languages. What is not at all
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obvious—and to the best of our knowledge does not seem to have been investigated
so far—is whether the algorithms defining the Boolean algebra of pattern opera-
tions for the untyped case in, e.g., [6,11,12,18,19] extend in a straightforward way
to the more expressive patterns now available in these richer type disciplines. The
example below clearly shows that they do not.

The graph on the left describes an order-sorted signature [9] with two types,
A and B, and a subtype inclusion A < B depicted by the vertical bar. f is subtype
polymorphic, with two typings: f : A → A, and f : B → B. We have constants
a, b of respective types A, B. A pattern t, i.e., a term possibly with variables,
denotes the set (language) �t� = {tσ | σ ground} of all its ground instances. The
symbolic pattern difference t− t′ denotes the language �t− t′� = �t�− �t′�. In the
untyped case, it is well-known [12] that when t and t′ are linear patterns (have
no repeated variables), the symbolic difference t − t′ always denotes a language
expressible as �u1�∪. . .∪�uk�, for {u1, . . . , uk} a finite set of patterns. If this were
to hold in the order-sorted case, it should hold, in particular, for �x:B − y:A�,
with x:B, y:A variables of sorts A,B. Adopting the convention f0(x) = x, we
have, �y:A� = {fn(a) | n ≥ 0}, and �x:B� = �y:A� ∪ {fn(b) | n ≥ 0}. Therefore,
�x:B − y:A� = {fn(b) | n ≥ 0}. But there is no finite set of patterns {u1, . . . , uk}
such that �u1�∪ . . .∪ �uk� = {fn(b) | n ≥ 0}. Indeed, the only possible choice for
a ui is ui = b. All other choices: ui = a, ui = x′:B, ui = y′:A, ui = fn+1(x′:B),
or ui = fn+1(y′:A), n ≥ 0, are impossible.

Is all lost? Not if we make our signature more expressive: the graph on the
right adds a new subtype B# < B, lowers the typing of b to B#, and adds
the typing f : B# → B#. Now �z : B#� = {fn(b) | n ≥ 0}, and we can
symbolically compute the difference x :B − y :A = z :B#. This example shows
that the problem is insoluble as formulated, but it can be solved by a signature
transformation extending the original signature Σ. In Sect. 3 we formally define
such a transformation Σ �→ Σ# that enriches a finite order-sorted signature Σ
with additional sorts like the sort B# above. This is a key step for obtaining a
Boolean algebra of order-sorted patterns in Sect. 5.

But the Σ �→ Σ# transformation has other far-reaching consequences. Since
it is well-known that pattern operations are intimately connected with first-order
logic formulas and with negation elimination in such formulas [6,11,18,19], we
should first of all ask what light can the Σ �→ Σ# transformation shed on the
validity of formulas in initial order-sorted algebras. As we show in Sect. 4, it
sheds a lot of light: it makes the validity of a first-order formula in an initial
order-sorted algebra equivalent to the validity of an associated formula in an
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associated many-sorted initial algebra. Since the first-order theory of a many-
sorted initial algebra is well-known to be decidable [2,13,14], this proves the
decidability of the first-order theory of an initial order-sorted algebra. This result
goes back to [3,4], but the proof obtained through the Σ �→ Σ# transformation is
considerably simpler. Furthermore, it provides a new, general transfer principle
to reduce certain order-sorted algebra problems to many-sorted algebra ones.

We put this transfer principle to work for order-sorted pattern operations in
Sect. 5, where we show that they can be reduced to operations on many-sorted
Σ#-patterns. Furthermore, we develop an intrinsically order-sorted algorithm
for pattern operations based on the signature Σ ∪ Σ# that enjoys important
advantages. As reported in Sect. 6, we have implemented this algebra of order-
sorted pattern operations in Maude using reflection. Due to lack of space, proofs
and some additional details are omitted. They can be found in [15].

2 Preliminaries on Order-Sorted Algebra

The following material is adapted from [16], which generalizes [9]. It summarizes
the basic notions of order-sorted algebra needed in the rest of the paper. It
assumes the notions of many-sorted signature and many-sorted algebra, e.g., [5].

Definition 1. An order-sorted signature is a triple Σ = (S,≤, Σ) with (S,≤)
a poset and (S,Σ) a many-sorted signature.

Ŝ = S/≡≤, called the set of connected components of (S,≤), is the quotient of
S under the equivalence relation ≡≤ = (≤ ∪ ≥)+. The order ≤ and equivalence
≡≤ are extended to sequences of the same length in the usual way, e.g., s′

1 . . . s′
n ≤

s1 . . . sn iff s′
i ≤ si, 1 ≤ i ≤ n.

Σ is called sensible (resp. monotonic) if for any two operators f : w → s, f :
w′ → s′ ∈ Σ, with w and w′ of same length, we have w ≡≤ w′ ⇒ s ≡≤ s′.
(resp. w ≥ w′ ⇒ s ≥ s′). Note that a many-sorted signature Σ is the special
case in which the poset (S,≤) is discrete, i.e., s ≤ s′ iff s = s′.

For connected components [s1], . . . , [sn], [s] ∈ Ŝ

f
[s1]...[sn]
[s] = {f : s′

1 . . . s′
n → s′ ∈ Σ | s′

i ∈ [si] 1 ≤ i ≤ n, s′ ∈ [s]}

is the family of “subsort polymorphic” operators f for those components. �
We will assume throughout that each connected component [s] ∈ Ŝ contains a
top element 
[s] ∈ [s] such that for each s′ ∈ [s], 
[s] ≥ s′.

Definition 2. For Σ = (S,≤, Σ) an OS signature, A is an order-sorted Σ-
algebra iff:

– A is a many-sorted (S,Σ)-algebra A,
– whenever s ≤ s′, then we have As ⊆ As′ , and
– whenever f : w → s, f : w′ → s′ ∈ f

[s1]...[sn]
[s] and a ∈ Aw ∩ Aw′

, then we have
Af :w→s(a) = Af :w′→s′(a), where As1...sn = As1 × . . . × Asn

.
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An order-sorted Σ -homomorphism h : A → B is a many-sorted (S,Σ)-homom-
orphism such that whenever [s] = [s′] and a ∈ As ∩ As′ , then we have hs(a) =
hs′(a). h is injective, resp. surjective, resp. bijective, iff for each s ∈ S hs is
injective, resp. surjective, resp. bijective. We call h an isomorphism if there is
another order-sorted Σ-homomorphism g : B → A such that for each s ∈ S,
hs ◦ gs = 1Bs

, and gs ◦ hs = 1As
, with 1As

, 1Bs
the identity functions on As, Bs.

If each [s] ∈ Ŝ has a top element 
[s], one can show that f is an isomorphism
iff f is bijective. Order-sorted Σ-algebras and homomorphisms define a category
OSAlgΣ. �
Theorem 1. [16] The category OSAlgΣ has an initial algebra. Furthermore, if
Σ is sensible, then the term algebra TΣ with:

– if a : ε → s then a ∈ TΣ,s, (ε denotes the empty string),
– if t ∈ TΣ,s and s ≤ s′ then t ∈ TΣ,s′ ,
– if f : s1 . . . sn → s and ti ∈ TΣ,si

1 ≤ i ≤ n, then f(t1, . . . , tn) ∈ TΣ,s,

is initial, i.e., there is a unique Σ-homomorphism to each Σ-algebra.

Say Σ has non-empty sorts iff for each s ∈ S, TΣ,s �= ∅. To ensure �t� �= ∅ for
any term t we will assume throughout that Σ has non-empty sorts.

An S-sorted set X = {Xs}s∈S of variables, satisfies s �= s′ ⇒ Xs ∩ Xs′ = ∅,
and the variables in X are always assumed disjoint from all constants in Σ. The
Σ-term algebra with variables in X, TΣ(X), is the initial algebra for the signature
Σ(X) obtained by adding to Σ the variables in X as extra constants. Since a
Σ(X)-algebra is just a pair (A,α), with A a Σ-algebra, and α an interpretation
of the constants in X, i.e., an S-sorted function α ∈ [X→A], the Σ(X)-initiality
of TΣ(X) can be expressed as the following corollary of Theorem 1:

Theorem 2. (Freeness Theorem). If Σ is sensible, for each A ∈ OSAlgΣ and
α ∈ [X→A], there exists a unique Σ-homomorphim, α : TΣ(X) −→ A extending
α, i.e., such that for each s ∈ S and x ∈ Xs we have xαs = αs(x).

The first-order language of equational Σ-formulas is defined in the usual way:
its atoms are Σ-equations t = t′, where t, t′ ∈ TΣ(X)�[s] for some [s] ∈ Ŝ
and each Xs is assumed countably infinite. The set Form(Σ) of equational Σ-
formulas is then inductively built from atoms by: conjunction (∧), disjunction
(∨) negation (¬), and universal (∀x:s) and existential (∃x:s) quantification with
sorted variables x:s ∈ Xs for some s ∈ S. The literal ¬(t = t′) is denoted t �= t′.

The satisfaction relation between Σ-algebras and formulas is defined in the
usual way: given a Σ-algebra A, a formula ϕ ∈ Form(Σ), and an assignment
α ∈ [Y →A], with Y = fvars(ϕ) the free variables of ϕ, we define the satis-
faction relation A,α |= ϕ inductively as usual: for atoms, A,α |= t = t′ iff
tα = t′α; for Boolean connectives it is the corresponding Boolean combination
of the satisfaction relations for subformulas; and for quantifiers: A,α |= (∀x:s) ϕ
(resp. A,α |= (∃x:s) ϕ) holds iff for all a ∈ As (resp. some a ∈ As) we have
A,α�{(x:s, a)} |= ϕ, where the assignment α�{(x:s, a)} extends α by mapping
x:s to a. Finally, A |= ϕ holds iff A,α |= ϕ holds for each α ∈ [Y →A], where
Y = fvars(ϕ). We say that ϕ is valid (or true) in A iff A |= ϕ.
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Definition 3. A signature morphism H : Σ → Σ′ (called a view in Maude
[1]) is a monotonic function H : (S,≤) → (S′,≤′) of the underlying posets
of sorts, together with a mapping H sending each f : s1 . . . sn → s in Σ to
a term H(f) ∈ TΣ′({x1 : H(s1), . . . , xn : H(sn)})H(s). H defines a well-typed
translation of the syntax of Σ into that of Σ′. It inductively maps each Σ-
term t to a Σ′-term H(t) by mapping x : s to x : H(s), and H(f(t1, . . . , tn))
to H(f){x1 : H(s1) �→ H(t1), . . . , xn : H(sn) �→ H(tn)}, where {x1 : H(s1) �→
H(t1), . . . , xn : H(sn) �→ H(tn)} denotes the obvious substitution. H extends
naturally to a translation of equational formulas H : Form(Σ) → Form(Σ′) by
mapping atoms according to H, respecting Boolean connectives, and mapping
each quantifier ∀x:s (resp. ∃x:s) to ∀x:H(s) (resp. ∃x:H(s)).

A signature inclusion, denoted Σ ↪→ Σ′, is a signature morphism that is a
poset inclusion (S,≤) ↪→ (S′,≤′) on sorts and maps each f : s1 . . . sn → s to
itself: more precisely, to the term f(x1:s1, . . . , xn:sn). �
A signature morphism H : Σ → Σ′ induces a functor in the opposite direc-
tion |H : OSAlgΣ′ → OSAlgΣ , where for each B ∈ OSAlgΣ′ , the algebra
B |H∈ OSAlgΣ , called its H-reduct, is defined using H as follows: (i) for each
s ∈ S, (B |H)s = BH(s); and (ii) for each f : s1 . . . sn → s in Σ, (B |H)f is the
function λ(x1 ∈ BH(s1), . . . , xn ∈ BH(sn)). H(f) : BH(s1)× . . .×BH(sn) → BH(s)

defined by the term H(f) in the Σ′-algebra B.
In Goguen and Burstall’s sense, the key point about order-sorted signature

morphisms is that they make order-sorted logic an institution [8], so that truth
is preserved along translations. That is, for any B ∈ OSAlgΣ′ and any sentence
(i.e., fvars(ϕ) = ∅) ϕ ∈ Form(Σ) we have the equivalence:

(†) B |= H(ϕ) ⇔ B |H |= ϕ.

This equivalence can be checked in several ways. For example, one can use the
embedding of order-sorted logic in membership equational logic, itself embedded
in many-sorted first-order logic, as detailed in [16]. This reduces the issue to the
same well-known equivalence for many-sorted first-order logic.

An important requirement on a sensible and monotonic signature is regularity
[9]. It requires for each f ∈ Σ and u ∈ S∗ that, if the set {ws ∈ S∗ | f : w → s ∈
Σ ∧ w ≥ u} is non-empty, then it has a smallest element. Regularity (or just
preregularity [1]) ensures that each Σ-term t ∈ TΣ(X) has a least sort, denoted
lsΣ(t), with t ∈ TΣ(X)lsΣ(t). This makes order-sorted automated deduction tasks
like term rewriting or unification much easier: the matching of a term t to a
variable x:s will succeed iff lsΣ(t) ≤ s. Without regularity, or preregularity, a
costly determination of all possible sorts of t is needed.

3 The Σ �→ Σ# Signature Transformation

We define a signature transformation Σ �→ Σ# that will give us the key to
study validity of equational formulas in initial order-sorted algebras in Sect. 4
and pattern operations in Sect. 5. Σ is a regular order-sorted finite signature
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with poset of sorts (S,≤). As first remarked by H. Comon-Lundh in [3], an
order-sorted signature Σ is just a Σu-tree automaton, with Σu the unsorted
version of Σ, set of states S, and transitions rules: (i) f(s1, . . . , sn) → s for each
f : s1 . . . sn → s in Σ, and (ii) ε-rules s → s′ for each s < s′ in (S,≤). TΣ,s is
the language accepted by the accepting state s. This means that the problem of
whether TΣ,s = ∅, or whether any Boolean combination of sets TΣ,s1 , . . . , TΣ,sn

is
empty, are problems decidable by an emptiness check on a regular tree language.

To construct Σ# we must first define its set S# of sorts. Call s ∈ S atomic iff
s is a minimal element in the poset (S,≤). The key idea is to add to S new atomic
sorts s# characterizing all terms whose least sort is exactly s, where s is non-
atomic. But we want s# to be non-empty. Let ↓ s = {s′ ∈ S | s′ < s}, and glbs(s)
the maximal elements of ↓ s. Call s ∈ S redundant iff TΣ,s−⋃

s′∈glbs(s) TΣ,s′ = ∅.
We only add s# to S# if s is non-atomic and irredundant. Since non-emptiness
is decidable, we can effectively construct S# as the set containing all atomic
sorts in S and all new sorts s# with s ∈ S non-atomic and irredundant.

We want a many-sorted signature Σ# on sorts S# such that: (i) for s an
atomic sort in Σ, we have TΣ#,s = TΣ,s, (ii) for each s# ∈ S# we have TΣ#,s# =
TΣ,s − ⋃

s′∈glbs(s) TΣ,s′ ; and (iii) if s, s′ ∈ S# and s �= s′, then TΣ#,s ∩ TΣ#,s′ =
∅. Thus, we will be able to represent each sort s ∈ S as a disjoint union of
sorts in S#. That is, define the function atoms : S → P(S#) inductively as
follows: atoms(s) = if s is atomic then {s} else if s is irredundant then {s#}∪
atoms(s1) ∪ . . . atoms(sn) else atoms(s1) ∪ . . . atoms(sn) fi fi, where glbs(s) =
{s1, . . . , sn}. It then follows from (i)–(iii) above that for any s ∈ S we will have:

TΣ,s =
⊎

s′∈atoms(s)

TΣ#,s′

This is what we want. We still have to define Σ#. For this, it is useful to decom-
pose Σ as a “telescope” Σ0 ⊂ Σ1 ⊂ . . . Σk−1 ⊂ Σ. We assume that each constant
a : ε → s in Σ has a single declaration of the specified sort s. To simplify the
Σ# construction we also assume, without real loss of generality, that Σ can
have “subsort overloading” but does not have any “ad-hoc overloading;” that
is, if (f : s1 . . . sm → s), (f : s′

1 . . . s′
m → s′) ∈ Σ then [si] = [s′

i] 1 ≤ i ≤ m,
and [s] = [s′]. Recall the notation f

[s1]...[sm]
[s] for the set of all subsort-overloaded

operators f for these components. Given (f : s1 . . . sm → s) ∈ f
[s1]...[sm]
[s] define:

(f : s1 . . . sm → s)↓= {(f : s′
1 . . . s′

m → s′) ∈ f
[s1]...[sm]

[s] | s′
1 . . . s′

ms′ < s1 . . . sms}.

as its set of strictly smaller typings. Define: Σ0 = {(f : s1 . . . sm → s) ∈ Σ |
(f : s1 . . . sm → s) ↓= ∅}, and, inductively, Σn+1 = {(f : s1 . . . sm → s) ∈
Σ | (f : s1 . . . sm → s) ↓⊆ Σn}. Because of the finiteness of Σ, we get a
fixpoint Σk = Σk+1 = Σ, giving us the above-mentioned telescope. Note that
regularity of Σn, n ≥ 0, follows easily by construction from the regularity of Σ.
Furthermore, for any t ∈ TΣn

(X) we have lsΣn
(t) = lsΣ(t). For example, for Σ

a signature with sorts Nat and Nat (non-zero naturals) with 0, s (successor),
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and with + subsort overloaded for sorts Nat and NzNat , its telescope reaches
the fixpoint for Σ1 = Σ, as shown below:

We will define a telescope Σ#
0 ⊆ Σ#

1 ⊆ . . . Σ#
k−1 ⊆ Σ# that closely mirrors

that of Σ. First of all, note that the map atoms : S → P(S#) naturally extends
to a map on strings, atoms : S∗ → P((S#)∗) by defining: atoms(ε) = {ε}, and
atoms(sw) = {s′w′ | s′ ∈ atoms(s) ∧ w′ ∈ atoms(w)}. Note also that the map-
ping (f : s1 . . . sm → s) �→ s1 . . . sm defines a function arity : Σ → S∗. Define
Σ#

0 = {(f : w → s•) | (f : s1 . . . sm → s) ∈ Σ0, w ∈ atoms(s1 . . . sm)}, where s•

= if s atomic then s else s# fi. Then define Σ#
n+1 inductively as follows: Σ#

n+1 =
Σ#

n ∪ {(f : w → s#) | (f : s1 . . . sm → s) ∈ Σn+1 − Σn, s irredundant , w ∈
atoms(s1 . . . sm) − {arity(f : w′ → s′) | (f : w′ → s′) ∈ Σ#

n }}. If Σk = Σ,
we define Σ#

k = Σ# and obtain a telescope Σ#
0 ⊆ Σ#

1 ⊆ . . . Σ#
k−1 ⊆ Σ# as

claimed. For example, for the above-mentioned signature Σ with 0, s, and +
subsort overloaded for sorts Nat and NzNat , the telescope for its associated Σ#

reaches its fixpoint for Σ#
1 = Σ# as shown in the figure below:

The main properties of the Σ �→ Σ# transformation are as follows:

Theorem 3. Let Σ satisfy the above assumptions. Then:

1. Σ# is sensible
2. for s, s′ ∈ S#, s �= s′ ⇒ TΣ#,s ∩ TΣ#,s′ = ∅
3. for each s ∈ S, TΣ,s =

⊎
s′∈atoms(s) TΣ#,s′

4. t ∈ TΣ ∧ lsΣ(t) = s ⇔ t ∈ TΣ# ∧ lsΣ#(t) = s•.

3.1 Variations on the Σ# Theme

Several signatures closely related to Σ and Σ# are also very useful. The most
obvious is their union Σ ∪ Σ#, with set of operators the set-theoretic union
Σ ∪Σ# and poset of sorts (S ∪S#, (≤ ∪ <#)∗), with ≤ the order in (S,≤), and
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<#= {(s#, s) | s nonatomic and irredundant}. Σ ∪ Σ# is even more intuitive
than Σ#, because it refines Σ into a richer semantics-preserving signature by
just adding to it the new atoms s#, so that now the least sort of any ground term
t will always be an atomic sort. This means that we have sharpened the typing
of any such t as much as possible, which is the reason for the Σ# notation.
For example, for Σ the signature discussed in the Introduction, with subsort
inclusion A < B, constants a of sort A, b of sort B, and subsort-overloaded
unary operator f , Σ ∪ Σ# is the signature depicted on the right of the figure in
the Introduction.

Note that we have subsignature inclusions J : Σ ↪→ Σ ∪ Σ# and J ′ : Σ# ↪→
Σ ∪ Σ#. Furthermore, Σ ∪ Σ# enjoys very good properties, which make it an
initial-semantics-preserving enrichment of both Σ and Σ#:

Lemma 1. Σ ∪ Σ# is regular, TΣ∪Σ# |J = TΣ, and TΣ∪Σ# |J ′ = TΣ# .

Two other useful signatures are Σ#
� and Σ#

c . Σ#
� is an order-sorted signature

with operations those in Σ# and with sorts S�∪S#, where S� = {
[s] | [s] ∈ Ŝ}
is the set of top sorts of each connected component in (S,≤). Its order is defined
as the identity relation on S# ∪ S�, plus the subsort inclusions s′ ≤ 
[s] for
each s′ ∈ atoms(
[s]). We have a subsignature inclusion K : Σ#

� ↪→ Σ ∪ Σ#.
Reasoning as in Lemma 1 it is easy to show that TΣ∪Σ# |K = TΣ#

�
.

Σ#
c is a many-sorted version of Σ#

� . Its set of sorts is S�∪S#, but now s ≤ s′

iff s = s′. The operations of Σ#
c are those of Σ# plus the coercion operators

{c : s′ → 
[s] | [s] ∈ Ŝ, s′ ∈ atoms(
[s]) − {
[s]}}, which mimic the subsort
inclusions s′ < 
[s] in Σ#

� . We then have a signature morphism H : Σ#
c → Σ#

�
that is the identity on sorts and on the operators in Σ# and maps each coercion
c : s′ → 
[s] to the term x1:s′.

For example, for the above-mentioned signature Σ with 0, s, and + subsort
overloaded for sorts Nat and NzNat , the signatures Σ#

� and Σ#
c are as follows:

The following diagram summarizes this section:

(‡) Σ
J
↪→ Σ ∪ Σ# K←↩ Σ#

�
H← Σ#

c
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4 Equational Formulas in Initial Order-Sorted Algebras

The main goal of this section is to reduce the validity of equational first-order
formulas in an initial order-sorted algebra to the validity of semantically equiva-
lent formulas in an initial many-sorted algebra. The main idea of this reduction
is to exploit diagram (‡) at the end of Sect. 3.1, which begins with an order-
sorted signature Σ and ends with a many-sorted signature Σ#

c . Like Alice in
Wonderland’s Cheshire cat’s smile, all order-sorted features vanish in the pas-
sage from Σ to Σ#

c . This reduction seems useful for at least two reasons:

1. Its provides a new, very simple proof of the decidability of first-order formu-
las in initial order-sorted algebras. A non-trivial proof of such a decidability
result goes back to [3,4], but it requires quite complex formulas and formula
transformations involving sort constraints based on quite general sort expres-
sions, whose semantics is defined using tree automata.

2. The reduction-based proof given here provides a useful new transfer principle,
by which problems with a perhaps unclear solution at the order-sorted level
can be reduced to problems having a clear solution at the many-sorted level.
For example, as further explained in Sect. 5, the puzzling anomaly about pat-
tern operations in initial order-sorted algebras discussed in the Introduction
has a systematic solution thanks to this transfer principle.

The main idea of the reduction is to assign to each first-order sentence ϕ in
the language of a finite and regular order-sorted signature Σ a corresponding
sentence ϕ#

c in the language of the many-sorted signature Σ#
c , and then prove

that we have an equivalence TΣ |= ϕ ⇔ TΣ#
c

|= ϕ#
c . To obtain such an

equivalence we make our way from TΣ and ϕ to TΣ#
c

and ϕ#
c by moving from

left to right along the diagram (‡). Since some of the steps in this sequence of
signature morphisms are easy consequences of the equivalence (†) at the end of
Sect. 2, we can quickly get such easy equivalences out of the way. Indeed, since J
is a subsignature inclusion, it is the identity on formulas, and since by Lemma 1
we have the equality TΣ∪Σ# |J = TΣ , (†) applied to J gives us the equivalence
TΣ |= ϕ ⇔ TΣ∪Σ# |= ϕ. On the leftmost side, (†) gives us the equivalence
TΣ#

�
|= H(ϕ#

c ) ⇔ TΣ#
�

|H |= ϕ#
c . The interesting twist, however, in that the

unique Σ#
c -homomorphism h : TΣ#

c
→ TΣ#

�
|H from the initial Σ#

c -algebra TΣ#
c

is obviously the identity on the sorts S# and maps each term c(t) ∈ TΣ#
c ,�[s]

to

the term t ∈ TΣ#
� ,�[s]

. That is, h is bijective, and therefore a Σ#
c -isomorphism

h : TΣ#
c

∼= TΣ#
�

|H , which gives us the equivalence TΣ#
�

|H |= ϕ#
c ⇔ TΣ#

c
|= ϕ#

c .
Therefore, stringing these last two equivalences together, we get the equivalence
TΣ#

�
|= H(ϕ#

c ) ⇔ TΣ#
c

|= ϕ#
c . We will then be done proving our desired

equivalence TΣ |= ϕ ⇔ TΣ#
c

|= ϕ#
c if we can define a mapping ϕ �→ ϕ# such

that H(ϕ#
c ) = ϕ# and we show an equivalence TΣ∪Σ# |= ϕ ⇔ TΣ#

�
|= ϕ#.

What makes the mapping ϕ �→ ϕ# not entirely obvious is that Σ#
� has

considerably fewer sorts than the plentiful Σ ∪ Σ#. In particular, we have to
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find a way to express equations and quantifiers involving variables with sorts
of Σ ∪ Σ# not present in Σ#

� in the poorer language of Σ#
� . The key idea for

this is to observe that every ground Σ ∪ Σ#-term has an atomic least sort in
S#, and that, by Theorem 3–(3) and Lemma 1, we have the equality TΣ∪Σ#,s =⊎

s′∈atoms(s) TΣ#,s′ . Therefore, abbreviating t ∈ TΣ∪Σ#,s to t : s, we have, t :

s ⇔ ∨
s′∈atoms(s) t : s′, which is a property expressible in the language of Σ#

� .
Here is now the detailed mapping ϕ �→ ϕ# using these ideas. Without loss of
generality we may assume ϕ in prenex form, that is, ϕ = Qϕ0, with Q a sequence
of quantifiers and ϕ0 quantifier-free. The mapping ϕ �→ ϕ# decomposes into a
mapping ϕ0 �→ ϕ#

0 for the quantifier-free part and a mapping for the quantifiers.
We first need some notation. x:s abbreviates a sequence of variables x1 :

s1, . . . , xn:sn. We can always decompose the free variables of ϕ0 as fvars(ϕ0) =
x:s, y:p, with x:s variables having non-atomic sorts, and y:p variables having
atomic sorts. Also, if x:s = x1 :s1, . . . , xn :sn, then x:s� denotes the variables
x:s� = x1 :
[s1], . . . , xn :
[sn]. In the same spirit, x:s = t abbreviates the con-
junction of equations x1:s1 = t1 ∧ . . . ∧ xn:sn = tn, and {x:s = t} abbreviates
the substitution {x1 :s1 �→ t1, . . . , xn :sn �→ tn}. Given variables x:s with sorts
in S, let Spec(x:s, S#), called the set of S#-specializations of x:s, be the set
Spec(x:s, S#) = {x:s = z:q | |x:s| = |z:q| ∧ qi ∈ atoms(si), 1 ≤ i ≤ |x:s|}, where
|x:s| denotes the length of the sequence of variables x:s. To avoid variable cap-
ture we will always assume that the variables z:q are fresh variables, different for
each (x:s = z:q) ∈ Spec(x:s, S#) and not appearing anywhere else. Viewed as a
substitution {x:s = z:q}, each specialization x:s = z:q is just a variable mapping
lowering the sort si of each xi to a sort qi ∈ atoms(si) for zi. We can now define
the mapping ϕ0 �→ ϕ#

0 —where fvars(ϕ0) = x:s, y:p, with x:s variables having
non-atomic sorts, and y:p variables having atomic sorts—as follows:

ϕ#
0 =

∨
(x:s=z:q)∈Spec(x:s,S#)

(∃z:q) (x:s� = z:q ∧ (ϕ0{x:s = z:q})).

Note that fvars(ϕ#
0 ) = x:s�, y:p. For example, for the above-mentioned signature

Σ with 0, s, and + subsort overloaded for sorts Nat and NzNat , if ϕ is x + y =
y + x, with x, y : Nat , then, assuming x1, y1 : NzNat , and x2, y2 : Nat#, ϕ# is:

(∃x1, y1) x = x1 ∧ y = y1 ∧ x1 + y1 = y1 + x1 ∨
(∃x2, y2) x = x2 ∧ y = y2 ∧ x2 + y2 = y2 + x2 ∨
(∃x1, y2) x = x1 ∧ y = y2 ∧ x1 + y2 = y2 + x1 ∨
(∃x2, y1) x = x2 ∧ y = y1 ∧ x2 + y1 = y1 + x2.

The semantic equivalence between ϕ0 and ϕ#
0 can then be expressed as

follows:

Lemma 2. For ϕ0 as above, α ∈ [x:s�, y:p→TΣ#
�

] satisfies TΣ#
�

, α |= ϕ#
0 iff

there exists β ∈ [x:s, y:p→TΣ ] such that α = β ◦ {x:s� = x:s} and TΣ , β |= ϕ0.

Since ϕ = Qϕ0, to define ϕ# we still need to deal with the quantifiers Q. This is
done inductively for each individual quantifier as follows. If s ∈ S ∩ (S# ∪ S�),
then ((∀x:s) ϕ)# = (∀x:s) ϕ#, and ((∃x:s) ϕ)# = (∃x:s) ϕ#. Otherwise, let
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atoms(s) = {q1, . . . , qk}, then, ((∀x:s) ϕ)# = (∀x:
[s]) (((∃z:q)
∨k

i=1 x:
[s] = zi:
qi) ⇒ ϕ#), and ((∃x:s) ϕ)# = (∃x:
[s], z:q) (

∨k
i=1 x:
[s] = zi:qi) ∧ ϕ#).

The key syntactic invariant maintained by this translation is of course that if
fvars(ϕ) = x:s, y:p, then fvars(ϕ#) = x:s�, y:p. And the key semantic invariant
is that for each α ∈ [x:s�, y:p→TΣ#

�
] we have TΣ#

�
, α |= ϕ# iff there exists

β ∈ [x:s, y:p→TΣ ] such that α = β ◦ {x:s� = x:s} and TΣ , β |= ϕ. For quantifier-
free formulas this has already been proved in Lemma 2. That this remains true
after each quantification step is easy to check and left to the reader: indeed,
the above treatment of quantifiers is analogous to how in set theory we restrict
quantifiers ranging over all sets to quantifiers ranging over a given set A by
defining (∀x ∈ A) ϕ = (∀x) (x ∈ A ⇒ ϕ), and (∃x ∈ A) ϕ = (∃x) (x ∈ A ∧ ϕ).
Our treatment is not just analogous, but in fact a special case: we have just
captured x ∈ TΣ,s by the formula (∃z:q)

∨k
i=1 x = zi : qi. Therefore, for any

sentence ϕ (i.e., fvars(ϕ) = ∅) we get TΣ |= ϕ ⇔ TΣ#
�

|= ϕ#.
To close all the proof steps along the Cheshire cat’s sequence (‡) we need

to define the formula ϕ#
c such that H(ϕ#

c ) = ϕ#. We can get ϕ#
c from ϕ# as

follows. Since Σ#
� and Σ#

c have the same sorts, the variables and quantifiers
in ϕ# and ϕ#

c stay the same. We just replace each equation u = v appearing
somewhere in ϕ# by the equation c(u) = c(v) at the same position in ϕ#

c , unless:
(i) 
[s] is atomic (then u = v is left unchanged), or (ii) 
[s] is non-atomic and
either u or v are variables of sort 
[s], which are then left unchanged. This gives
us the desired semantic equivalence TΣ |= ϕ ⇔ TΣ#

c
|= ϕ#

c .
Since both the technical report version [14] of Maher’s paper [13], and the

disunification paper by Comon and Lescanne [2] prove that the first-order theory
of a many-sorted initial algebra TΩ is decidable—i.e., that there is an algorithm
to decide for any formula φ whether TΩ |= φ holds or not—we then get as a
corollary of the above equivalence the following theorem,1 already known since
[3,4], but now obtained in a different way and with a considerably simpler proof:

Theorem 4. Let Σ be a finite and regular order-sorted signature. For any first-
order formula ϕ ∈ Form(Σ) the validity problem TΣ |= ϕ is decidable. �

5 Pattern Operations in Initial Order-Sorted Algebras

Given an order-sorted signature Σ, by a Σ-pattern we just mean a term t ∈
TΣ(X), where we assume Xs countably infinite for each sort s ∈ S. We call t
a pattern to emphasize that t is a symbolic description of a language, namely
the set �t� = {tσ | σ ∈ [X→TΣ ]} of its ground instances. Similarly, a finite set
of patterns {t1, . . . , tn} is a symbolic description of the language �t1, . . . , tn� =
�t1� ∪ . . . ∪ �tn�. A language need not be a set of strings. Since strings are just a

1 Theorem 4 holds for Σ finite and regular because any such Σ can be transformed into
a semantically equivalent signature with no ad-hoc overloading (by symbol renaming)
and with each connected component having a top sort (added when missing).
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special case of trees, it can be a tree language, that is, a subset L ⊆ TΣ for some
Σ. Therefore, P(TΣ) is the set of all Σ-tree languages, and we have a function

� � : Pfin(TΣ(X)) −→ P(TΣ) : {t1, . . . , tn} �→ �t1, . . . , tn�

sending each finite set of patterns to its associated language. Call a language
L ⊆ TΣ a pattern language iff L = �t1, . . . , tn� for some finite set of patterns
{t1, . . . , tn}. The most obvious question is that of representability : which lan-
guages L ⊆ TΣ are pattern languages, i.e., can be symbolically represented by
some {t1, . . . , tn}? Pattern languages are closed under finite unions by construc-
tion. Are they closed under finite intersections? Obviously yes, since, by distrib-
utivity we can reduce the problem to the intersection of two patterns �u� ∩ �v�,
and we have �u�∩ �v� = �uσ1�∪ . . .∪ �uσn�, where {σ1, . . . , σn} = DUnif Σ(u, v),
the set of most general disjoint order-sorted unifiers of u and v in Σ [17]; that
is, before unifying u and v, we rename v if necessary to make its variables dis-
joint from those of u. Are TΣ and ∅ pattern languages? Yes: ∅ = �∅�, and
TΣ = �x1 : 
[s1], . . . , xk : 
[sk]�, where Ŝ = {[s1], . . . , [sk]}. So, the ony miss-
ing Boolean operation is complement. But since complement and difference are
expressible in terms of each other: A = 
 − A, and A − B = A ∩ B, we can
rephrase the question thus: are pattern languages closed under differences? In
general they are not. For example, for Σ unsorted and having a constant a and
a binary f , the language �f(x, y)� − �f(z, z)� is not a pattern language (see
Proposition 4.5 in [12]). However, in the unsorted case (see Corollary in pg. 314,
[12]) �t1, . . . , tn�−�t′1, . . . , t

′
m� is a pattern language when the ti and the t′j are lin-

ear terms—have no repeated variables—and more general cases than just sets of
linear patterns also yield differences that are pattern languages [6,11,12,18,19].

Since all other Boolean operations are already taken care of, all we need is
a way of symbolically defining the difference {t1, . . . , tn} − {t′1, . . . , t′m} of two
finite sets of order-sorted patterns whenever this represents a pattern language.
As illustrated by the example in the Introduction, if we insist on remaining in the
given signature Σ this cannot be done, even for sets of linear patterns. However,
we can use the Σ �→ Σ# transformation and the transfer principle from order-
sorted problems to many-sorted ones discussed in Sect. 4 to obtain a solution
based on the following two simple observations:

1. As sets (not as algebras) we have TΣ = TΣ# .
2. For any order-sorted pattern t ∈ TΣ(X) we have the language equality �t� =⋃

(x:s=z:q)∈Spec(x:s,S#)�t{x : s = z : q}�, where x : s = fvars(t).

where both (1) and (2) are simple corollaries of Theorem 3. This then yields a
straightforward way of representing a difference of finite sets of order-sorted
Σ-patterns {t1, . . . , tn} − {t′1, . . . , t′m} as a difference of finite sets of many-
sorted Σ#-patterns: we just replace each ti (resp t′j) by the finite set of many-
sorted Σ#-patterns {ti{x : s = z : q} | (x : s = z : q) ∈ Spec(x : s, S#)}, where
x : s = fvars(ti). For the example in the Introduction, this method transforms
the order-sorted symbolic difference {x:B}−{y:A} into the many-sorted symbolic
difference: {x:A, z:B#} − {y:A}.
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Since—with the possible exception of the treatment of finite sorts (see below),
which warrants an extension of the unsorted algorithms—the unsorted algo-
rithms for computing the symbolic difference of two sets of patterns have a
straightforward generalization to the many-sorted case, we can just use the above
reduction to the many-sorted case and many-sorted versions of the difference
algorithms in [6,12,18,19] to solve the problem of computing when possible the
symbolic difference of order-sorted patterns {t1, . . . , tn}−{t′1, . . . , t′m} as a finite
set of (many-sorted) patterns.

But is this the best we can do? There can be some practical limitations, both
in performance and at the representational level. For order-sorted signatures
with rich type structures a set atoms(s) may have a considerable number of
sorts in S#, so that the sets {ti{x : s = z : q} | (x : s = z : q) ∈ Spec(x : s, S#)}
for each ti (resp. t′i) can become quite big, affecting performance. It also means
that the representation of the solutions to symbolic difference problems, besides
being possibly quite big, may also be more verbose than necessary. For example,
in the signature of the Introduction, we can compute the order-sorted symbolic
difference {x:B} − {b} = {f(y:B), a}, which is shorter and more intuitive than
the equivalent many-sorted representation {x:B} − {b} = {f(z:B#), f(z′:A), a}.

We present below an attractive alternative, namely, an order-sorted algorithm
for computing symbolic differences {t1, . . . , tn} − {t′1, . . . , t′m} in the extended
order-sorted signature Σ ∪ Σ# that does not require any transformation of the
original problem and can significantly overcome the above limitations by yielding
simpler and shorter representations and better performance (see [15]).

Let us describe this algorithm. First of all, thanks to the Boolean equation
(A∪B)−C = (A−C)∪(B−C), we can decompose {t1, . . . , tn}−{t′1, . . . , t′m} as a
union {t1}−{t′1, . . . , t′m}∪. . .∪{tn}−{t′1, . . . , t′m}. Second, thanks to the Boolean
equation A−B = A− (A∩B) we can reduce {t}−{t1, . . . , tn} to the equivalent
symbolic expression {t} − {tσ | σ ∈ DUnif Σ(t, t1) ∪ . . . ∪ DUnif Σ(t, tn)}. Thus,
all our symbolic difference problems can be reduced to unions of problems of
the form {t} − {tσ1, . . . , tσn} with σ1, . . . , σn substitutions instantiating t. Our
algorithm gives priority to the easier and frequently occurring cases, using the
order-sorted extension of the more general algorithm of Lassez and Marriott [12]
only when the simpler algorithms cannot be applied. We also exploit the fact
that a sort s may be finite—i.e., TΣ∪Σ#,s is a finite set—plus the decidability
of sort finiteness to increase the successful difference cases. Specifically:

1. If t, tσ1, . . . , tσn are all linear terms, we apply the inference rules below.
2. Otherwise, when σ1, . . . , σn are all linear, i.e., σi(x), σi(y) are linear terms

not sharing any variables when x �= y, we reduce to case (1) (see [15]).
3. Otherwise, if σi is non-linear and y:s occurs more than once either in σi(x) or

in σi(x), σi(z), x �= z, with s finite, TΣ∪Σ#,s = {u1, . . . , uk}, then we replace
the problem {t} − {tσ1, . . . , tσn} by the problem {t} − {tσ1, . . . , tσi{y �→
u1}, . . . , tσi{y �→ uk}, . . . , tσn} and check again the new problem.

4. Outside cases (1)–(3) above, we invoke the order-sorted version of the
algorithm in [12], which is more efficient than those in [6,18,19] and gives a
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full answer to difference problems {t}−{t1, . . . , tn}, whereas those in [6,18,19]
give a full answer to arbitrary Boolean combinations (see [15]).

In case all terms t, tσ1, . . . , tσn are linear, the following rewrite rules are applied:

1. {t} − {tσ1, . . . , tσn} → ({t} − {tσ1}) ∩ . . . ∩ ({t} − {tσn})
2. {t} − ∅ → {t}
3. {f(t1, . . . , tn)} − {f(t1σ, . . . , tnσ)} →

{f(t1, . . . , u, . . . , tn) | u ∈ ({ti} − {tiσ}), 1 ≤ i ≤ n},
where fvars(u) are fresh variables.

4. {x:s} − {y:s′} → {z1:q1, . . . , zk:qk},
where {q1, . . . , qk} = atoms(s) − atoms(s′)

5. {x:s} − {f(t1, . . . , tn)} →
{z:q} ∪ ⋃{{xp:p} − {f(t1, . . . , tn){ρ} | ρ ∈ Spec(Y, S#),
p = lsΣ#(f(t1, . . . , tn){ρ})} | p ∈ atoms(s) ∩ atoms(f(t1, . . . , tn))}
if s �∈ S#,
where Y = fvars(f(t1, . . . , tn)), z:q = z1:q1, . . . , zk:qk, {q1, . . . , qk} =
atoms(s) − atoms(f(t1, . . . , tn)), and
atoms(f(t1, . . . , tn)) = {lsΣ#(f(t1, . . . , tn){ρ}) | ρ ∈ Spec(Y, S#)}.

6. {x:s} − {f(t1, . . . , tn)} →
{u | u ∈ Pat(s) − {f(x:s)}} ∪ {f(x:s)} − {f(t1, . . . , tn)}
if s = lsΣ#(f(t1, . . . , tn)) ∈ S#,
where x:s = x1:s1, . . . , xn:sn, si = lsΣ#(ti), and
Pat(s) = {g(x1:s1, . . . , xn:sn) | g : s1 . . . sn → s ∈ Σ#}.

The correctness of these rules and of the algorithm is proved in [15].
What advantages do we gain from this algorithm? Quite substantial ones to

reason effectively about languages. Let LTΣ(X) ⊆ TΣ(X) denote the set of linear
terms in TΣ(X). Note that if u ∈ LTΣ(X) then �u� is a regular tree language.
This follows from order-sorted signatures being tree automata, plus the regu-
lar expression fact that if L1, . . . , Ln are regular languages, then f(L1, . . . , Ln)
is a regular language. Also, Pfin(LTΣ∪Σ#(X)) is closed under symbolic: (i)
unions; (ii) intersections, because disjoint unifiers of linear terms are linear;
and (iii) differences, since rules (1)–(6) preserve linearity of terms. Furthermore,
given {t1, . . . , tn}, {t′1, . . . , t

′
m} ∈ Pfin(LTΣ∪Σ#(X)) we can use pattern differ-

ences to decide whether �{t1, . . . , tn}� = �{t′1, . . . , t
′
m}�. Indeed, �{t1, . . . , tn}� =

�{t′1, . . . , t
′
m}� ⇔ {t1, . . . , tn} ≡ {t′1, . . . , t′m}, where the relation ≡ is defined

by the equivalence: {t1, . . . , tn} ≡ {t′1, . . . , t′m} ⇔ {t1, . . . , tn} − {t′1, . . . , t′m} =
∅ ∧ {t′1, . . . , t′m}−{t1, . . . , tn} = ∅. By the homomorphism theorem for Boolean
algebras, this means that � � defines an injective homomorphism of Boolean
algebras

� � : Pfin(LTΣ∪Σ#(X))/≡ → P(TΣ).

This is as good as it gets, since Pfin(LTΣ∪Σ#(X))/≡ is a computable Boolean
algebra, where all operations become effective. This offers an attractive, simpler
alternative to tree automata to effectively compute Boolean operations on linear
pattern languages in a symbolic way.
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6 Implementation and Experiments

The algorithms described in this paper are highly reflective. That is, they are
parametric on signatures Σ and perform meta-level operations on signatures
and Σ-terms, such as order-sorted unification, matching, sort comparisons, and
so on, to ultimately compute pattern operations. Fortunately, many of these
auxiliary meta-level operations are available, or can be easily programmed, in
the Maude language through its reflective features using its META-LEVEL module
[1]. In META-LEVEL, a signature Σ is meta-represented as a term Σ of sort Module,
and a Σ-term t is meta-represented as a so-called meta-term t of sort Term.

Since: (i) Maude syntax at the meta-level essentially mirrors the syntax at the
object level; and (ii) inference rules such as above rules (1)–(6) can be directly
expressed as rewrite rules operating on meta-terms, the representational distance
between the theoretical description of the algorithm in Sect. 5 and its actual
meta-level implementation in Maude is relatively short.

We have implemented in Maude the signature transformation Σ �→ Σ#

described in Sect. 3. The implementation essentially coincides with the tele-
scoping procedure described therein. The procedure takes a reflected signature
Σ as an argument and proceeds by non-deterministically selecting an opera-
tor f in Σ which has not been processed and whose strictly smaller typings
have all been processed. Using the signature transformation procedure we have
also implemented the order-sorted pattern operation algorithms described in
Sect. 5. The overall algorithm takes as arguments a reflected signature Σ and
a symbolic Boolean expression composed of meta-terms t representing Σ-term
patterns using a mixfix syntax where U represents union, & represents inter-
section, and - represents difference. A set of Boolean equations first reduces
each Boolean symbolic pattern expression to a normal form (essentially push-
ing conjunctions/differences down the expression tree). A normal form is then
solved using an algorithm that, with some additional optimizations and small
variations, deals with each symbolic difference problem according to the steps
described in Sect. 5: the problem is first classified according to cases (1)–(4),
iterating over the finite-sort transformation of case (3) if needed. Then, either
the simpler algorithm for case (1) (essentially rules (1)–(6)), or its case (2) exten-
sion (see [15]), or the more general order-sorted extension of the Lassez-Marriott
algorithm [12] are invoked. Finally, symbolic union and intersection operations
are performed to obtain either: (i) a finite set of patterns if the algorithm com-
puted a pattern language, or (ii) a Boolean expression containing some symbolic
differences that do not denote pattern languages otherwise.

A user interface has also been constructed in Maude which allows the user
to directly enter pattern expressions and theories using the Full Maude [1] syn-
tax, obviating the need to first convert to the slightly more complex meta-term
syntax. The user interface is implemented as an extension of Full Maude using
Maude’s LOOP-MODE module [1].

We give below a few examples of how the tool is used. The tool provides to
the user two primary commands: solve-pattern and ms-solve-pattern which
are used to solve pattern intersections and differences in an order-sorted (resp.
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many-sorted) way. After loading the tool, we can input theories we wish to rea-
son about. An example theory and queries are shown below:
(fmod DIAMOND is

sorts A B C D .
subsorts A < B C < D .
op a : -> A .
op b : -> B .
op c : -> C .
op d : -> D .
op f : A A -> A .
op f : B B -> B .
op f : C C -> C .
op f : D D -> D .

endfm)

(solve-pattern {a} U {b} .)
{a} U {b}

(solve-pattern {f(X:A,Y:B)} &
{f(W:B,Z:A)} .)

{f(A1:A,A2:A)}

(solve-pattern {f(X:C,b)} -
{f(Y:B,Z:D)} .)

{f(C1:C#,b)}

Note that both theory declarations and commands are enclosed in parenthe-
ses () and that commands are ended with a period before the closing paren-
thesis (.). Also note that, thanks to Maude’s mixfix syntax capabilities, pattern
syntax at the tool interface level is almost identical to that used internally by
the library. The syntax for variables is the usual name:sort notation, so that
X:B is a variable named X which has sort B. The ms-solve-pattern command
(not shown above), first reduces the pattern to all of its many-sorted instances
and solves each of them using the many-sorted pattern algorithm. The tool and
examples can be downloaded online (see: http://maude.cs.illinois.edu/w/index.
php?title=Maude Tools:Order-sorted Term Patterns).

Additionally, we conducted experiments comparing our order-sorted pattern
operations algorithm to its many-sorted reduction. To ground our discussion,
we work in a module COMPLEX-RAT adapted from [9] that defines the complex
numbers. We also fix a term set T by randomly selecting operators to generate
terms upto depth 2. Then, given (t1, t2) ∈ T 2, we generate the pattern opera-
tion �t1� − �t2�, which we compute by both our order-sorted algorithm and the
many-sorted reduction. Our experiments show that, on average, the many-sorted
reduction requires about a 1,000 times as many rewrites as the order-sorted algo-
rithm, with the median being 55 times as many rewrites. While not a proof, this
presents a strong case that for (non-toy) examples, the order-sorted algorithm
is more expressive (no input encoding, shorter output) and performant than
its many-sorted cousin. For more details on our experiments, the library source
code, and proofs related to the tool implementation see [15].

7 Related Work and Conclusions

On pattern operations the most closely related work is [6,11,12,18,19] and ref-
erences there. On equational formulas in initial algebras the most closely related
work is [2–4,13,14] and references there. The relationships to work in both these
areas have been discussed in detail in previous sections (see also [15]).

To conclude, we have shown that the untyped algorithms break down when
performing the order-sorted pattern operations needed in current declarative

http://maude.cs.illinois.edu/w/index.php?title=Maude_Tools:Order-sorted_Term_Patterns
http://maude.cs.illinois.edu/w/index.php?title=Maude_Tools:Order-sorted_Term_Patterns
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languages, and shown that such operations can be defined using a signature
transformation Σ �→ Σ#. We have also shown that this transformation yields
new insights and a new, quite simple proof of the known decidability of the
first-order theory of an initial order-sorted algebra. The Introduction mentioned
many applications of pattern operations. We illustrate a sufficient completeness
one in [15], but plan to work on many others and to further advance the current
implementation to make it part of the Maude formal tool environment.
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Abstract. The implementation of functional logic languages by means
of graph rewriting requires a special handling of collapsing rules. Recent
advances about the notion of a needed step in some constructor systems
offer a new approach to this problem. We present two results: a trans-
formation of a certain class of constructor-based rewrite systems that
eliminates collapsing rules, and a rewrite-like relation that takes advan-
tage of the absence of collapsing rules. We formally state and prove the
correctness of these results. When used together, these results simplify
without any loss of efficiency an implementation of graph rewriting and
consequently of functional logic computations.

1 Introduction

Functional logic programming [6,18,19] integrates the best features of the
functional and the logic paradigms. For instance, demand-driven evaluation,
higher-order functions, and polymorphic typing from functional programming
are combined with logic variables, constraint solving, and non-deterministic
search from logic programming. Narrowing makes this combination seamless and
enables encoding problems into programs in a style elegant, understandable, and
easier to reason about [5].

Graph rewriting [9,25,27] is an approach to the implementation of functional
and functional logic computations. The objects of a computation are term graphs,
also referred to as expressions, i.e., singly rooted, acyclic graphs. For any graph t,
N (t) is the set of nodes of t. A graph’s node q has two attributes: a label, L(q), and
a sequence of successors, S(q). The label and the successors abstract respectively
a symbol of the signature of a rewrite system and the arguments to which the
symbol’s occurrence is applied in an expression. An implementation represents
a node as a dynamic linked data structure holding a label and a sequence of
pointers to other nodes. For technical convenience, graphs that differ only for a
renaming of nodes are considered equal [15,25].

A graph rewriting system, or program, is a set of rules, where a rule is a graph
with two roots abstracting the left- and right-hand sides of the rule, respectively.
Rules are left linear [12, Definition 1.4.1], i.e., the left-hand side is a tree. A
consequence is that a variable occurs at most once in a left-hand side. A step
of a computation of a host graph consists of three phases: (1) matching a rule

c© Springer International Publishing Switzerland 2015
M. Falaschi (Ed.): LOPSTR 2015, LNCS 9527, pp. 57–72, 2015.
DOI: 10.1007/978-3-319-27436-2 4



58 S. Antoy and A. Jost

left-hand side to a subgraph called the redex, (2) constructing the corresponding
right-hand side called the redex’s contractum, and (3) replacing the redex with
its contractum. The signature from which the labels of the nodes are drawn is
partitioned into constructors and operations. The left-hand side of a rule is a
pattern, i.e., a graph rooted (by a node labeled) by an operation and every other
node is labeled by either a variable or a constructor. A constructor form, or
value, is a graph whose nodes are all labeled by constructors. A head constructor
form is a graph rooted by a constructor.

Finding redexes in a graph according to some program is typically an expen-
sive activity. However, this is not our case. For the inductively sequential graph
rewriting systems (recalled below), a sound, complete and optimal strategy that
finds redexes very efficiently is presented in [14,15]. We consider a slightly more
general class [3], that allows a well-behaved form of overlapping. The exact same
strategy is applicable to our graphs with the only difference that some redexes
have more than one contractum. In this case, in the spirit of functional logic
programming, the contractum is chosen non-deterministically.

For example, the following rules, in Curry’s syntax, define the function that
computes the length of a list, where “[ ]” represents the empty list and (x : xs)
the list with head x and tail xs:

length [] = 0
length (x:xs) = 1 + length xs

(1)

A finite list is denoted [x1, . . . xn], where xi, for any appropriate i, is an element
of the list. The expression t = length [3, 4], which is a redex, is pictorially repre-
sented in Fig. 1. Conceptually, a rewrite step of t first constructs the contractum
of t, u = 1 + length [4], which is also shown in Fig. 1, and then redirects to u
any reference to t (none occurs in the figure) because “t has become u.” The
redirection portion of a step [17] is a focus of our work.

Executing steps as described above would be naive and impractical. In fact,
t can be a subexpression of a larger expression, called the context of t. The
context of t may contain several references to t, i.e., the root of t is a successor
of some nodes of its context. All these references should be tracked down and

Fig. 1. Graph representation of the expression length [3, 4] (left) and its contractum
1+ length [4] (right). An outer box represents a node. Inside an outer box/node there is
the label and a possibly null sequence of boxes representing references to the successors.
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changed. This activity is potentially very expensive since a step is no longer a
local operation, rather the entire context of t must be traversed. Our work deals
with this specific aspect.

In this section, we recalled only the key concepts of graph rewriting needed
to understand the problem and present our solution. Some familiarity with this
framework is desirable. In Sect. 2 we recall two popular implementation tech-
niques for graph rewriting. Since finding redexes in a host graph is easy and
efficient in our framework, we focus only on the low-level details of nodes and
pointers manipulation. In Sect. 3 we define the class of programs that we consider
and recall recent results about properties of needed redexes in the class. These
results are at the core of our technique. In Sect. 4 we define a program trans-
formation that simplifies some aspects of executing those programs by graph
rewriting. We state and prove our first correctness claim. In Sect. 5 we define
a relation on graphs, called ripping, that produces results similar to rewriting,
but is simpler to implement and more efficient to execute. We state and prove
our second correctness claim. In Sect. 6 we statically quantify some effects of our
technique on the performance of computations. In Sect. 7 we discuss a practical
adaptation of our technique to evaluating expressions containing free variables.
In Sect. 8 we discuss related work and offer our conclusion.

2 Implementation Techniques

For the sake of efficiency, implementations of graph rewriting are usually “in-
place.” This means that in a step when the redex is replaced by its contractum,
the context of the redex is re-used as the context of the contractum. This in-
place rewriting still requires redirecting the pointers of the context pointing to
the root of the redex. To avoid the cost of this operation, as discussed in the
previous section, implementations of graph rewriting adopt special techniques.

The first technique is based on indirection pointers [23, Sect. 8.1]. Every
node of an expression has an indirection pointer and is accessed only through
this indirection pointer. The replacement of a redex t with its contractum u
only needs redirecting to u the indirection pointer of t. Any reference within
the context of t to the indirection pointer of t is unaffected. A step is a local
operation using this technique, i.e., it does not require traversing the context of
t. However, extra memory is allocated for every node of an expression and extra
machine cycles are spent for every access to a node.

The second technique is based on destructive updates. In a step, the label
and sequence of successors in the root of the redex are overwritten by the cor-
responding items that would be in the root of the contractum. We call such a
step a rip step (re-labeling in place) and the technique, which we formalize in
Sect. 5, ripping.

Ripping has several advantages over using indirection pointers—and one
drawback. Among the advantages, references to the root of the redex do not
need to be redirected to the root of the contractum; no indirection node is used;
no node is allocated for the root of the contractum; and the root of the redex is
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reused rather than garbage collected. The drawback is that ripping may produce
unintended results when a collapsing rule is applied. A collapsing rule is a rule
whose right-hand side is a variable, which is called the collapsing variable. We
show the problem on an example. Consider the following expression:

t = (id x, id x) where x = 0 ? 1 (2)

where id is the identity function:

id x = x (3)

and “?” denotes the choice operation defined by the rules:

x ? y = x
x ? y = y

(4)

Contrary to popular functional programming languages, there is no textual order
among the rules. Thus, the expression t ?u, for any subexpressions t and u, non-
deterministically rewrites to t or to u.

The meaning of the where clause in (2) is to introduce potentially shared
nodes, where “shared” means having multiple predecessors. In the example, x is
indeed shared.

Fig. 2. The expression on the left-hand side has two values, (0, 0) and (1, 1). The
expression on the right-hand side has 4 values, all possible pairs of zeros and ones.

The graph on the left-hand side of Fig. 2 pictorially shows t defined in pro-
gram (2). This graph has two values, (0, 0) and (1, 1), resulting from each alter-
native of the choice. The graph on the right-hand side is obtained by a rip step
of the redex in the first component of the pair. This graph has four values, all the
pairs of zeros and ones. Two of these values, (0, 1) and (1, 0), are not intended.
In a functional, hence deterministic setting, a graph has at most one value, thus,
unintended values are not produced. However, the problem of duplicating por-
tions of a computation still occurs and affects the efficiency of a computation
rather than its input/output relation.

The problem we just showed is corrected by using a forward node. A forward
node is a low-level device similar to an indirection pointer, but it is created
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only by steps applying collapsing rules, as opposed to systematically for every
node, and explicitly to avoid the duplication of subexpressions. A program that
manipulates graphs, e.g., for printing or evaluating them, must be aware of the
possibility of encountering forward nodes and must be able to deal with them.
During a computation, there is the danger of creating chains of forward nodes and
the opportunity of compacting these chains to avoid the possibility of traversing
them over and over.

In this paper, we propose a variation of the second technique, discussed in
the previous page, based on destructive updates. Our variation does not require
forward nodes. In short, we replace the collapsing rules of a program with non-
collapsing rules in a way that does not change the “interesting” computations of
the program. The motivation of our work is an implementation with destructive
updates. Thus, we also formalize this implementation and discuss its correctness.

3 Detour on Need

Our overall approach to deal with collapsing rules is not to have any in a program.
For example, consider the usual operation that concatenates two lists:

append [] ys = ys
append (x:xs) ys = x : append xs ys

(5)

The first rule is collapsing and ys is its collapsing variable. We recall that a
shallow constructor expression is an expression of the form c(x1, . . . cn), where c
is a constructor symbol of arity n and xi is a fresh variable for every appropriate i.
If we instantiate the collapsing variable with every shallow constructor expression
of the variable’s type, we obtain:

append [] [] = []
append [] (x:xs) = (x:xs)
append (x:xs) ys = x : append xs ys

(6)

where there are no collapsing rules. Programs (5) and (6) are similar. Given two
lists, t1 and t2, if the expression append t1 t2 has a value according to (5), then
it has the same value according to (6) and vice versa.

However, if append t1 t2 has no value according to (5) there is a difference.
Consider the following non-terminating nullary operation:

loop = loop (7)

The expression append [] loop is a redex according to (5), but it is not and it
will never become a redex according to (6). In this section, we show that this
difference is irrelevant for the execution of a program.

Our programs are modeled by a class of rewrite systems called overlapping
inductively sequential [3]. Inductive sequentiality means that operations are defined
by cases resembling those of a proof by structural induction. The rules of each oper-
ation can be organized in a hierarchical structure, called a definitional tree [2],
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that guides the evaluation strategy. Overlapping, in conjunction with the inductive
sequentiality, means that if a redex is reduced by distinct rules, these rules have the
same left-hand side. The epitome of an overlapping inductively sequential function
is the choice operation defined in (4).

Every reducible expression t in the overlapping inductively sequential systems
has a redex which is reduced by every computation of t to a value, a result that
extends to a non-orthogonal class of systems the seminal result of [21]. A strategy
that reduces only these redexes is optimal modulo non-deterministic choices [3].

A novel notion of need, more appropriate for constructor-based systems, was
recently proposed in [7]. This notion depends only on the rules’ left-hand side in a
way that makes it applicable to the class of the overlapping inductively sequential
systems that we just described.

Definition 1. [7] Let t and u be operation-rooted expressions with u subexpres-
sion of t, we say that u is needed for t iff in any derivation of t to a head
constructor form, u is derived to a head constructor form.

Observe that u needs neither be a redex nor be a proper subexpression. In fact,
u may be irreducible and t is a needed subexpression of itself. We abuse the word
“needed” because our notion generalizes the definition of needed redex [21] as fol-
lows. The contrapositive formulation is Definition 1 more expressively captures
this concept of need: t cannot be derived to a head constructor form, unless u is
derived to a head constructor form.

The following statement establishes the connection between the classic for-
mulation of need [21] and our formulation.

Lemma 1. [7] Let R be an overlapping inductively sequential system. If u is
both a needed (in the sense of [21]) subexpression of t and a redex, then u is a
needed (in the sense of our Definition 1) redex of t, i.e., it is reduced to a head
constructor form in any derivation of t to a head constructor form.

From now on, “need” and “needed” will refer to the concept defined in Defini-
tion 1. The following immediate consequence of the above lemma is at the core
of our technique.

Corollary 1. Let R be an overlapping inductively sequential system. If t is a
redex according to R needed for some context C[], u is the contractum of t, and
u is (still) operation-rooted, then u is needed for C[] as well.

This result justifies our claim that programs (5) and (6) are equivalent in prac-
tice. Let t = append [] u be a needed expression, where u is an operation-rooted
subexpression. Program (6) attempts to evaluate u for matching a rule of append
to t. Program (5) does not. However, since t is a needed redex, u is its contractum,
and u is operation-rooted, by Corollary 1, u is needed as well. Thus, program
(5) will eventually attempt to evaluate u to a head constructor form as program
(6). In other words, u is equally needed and evaluated by both programs.
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4 Transformation

We define below a transformation that takes a rewrite system possibly containing
collapsing rules and produces an equivalent rewrite system without collapsing
rules. The precise meaning of the equivalence of input and output systems of the
transformation is formalized by Theorem 1.

Definition 2. Let R be a constructor-based rewrite system. The collapse-free
variant of R, denoted Ru, is defined as follows: for each rule R of R, if R is
not collapsing, then R is in Ru. Otherwise, for every constructor symbol c of
the signature of R, Rc is in Ru, where Rc is the instance of R obtained by
instantiating the collapsing variable of R to a shallow constructor expression
rooted by c. No other rule is in Ru.

Of course, in a typed system only well-typed instantiations of the collapsing
variable are considered. For example, program (6) is the collapse-free variant of
program (5).

Collapsing rules in which the collapsing variable is polymorphic give raise to a
potentially large number of instantiations. In modern computers with gigabytes
of core memory, the amount of memory for holding these instantiations should
hardly be a problem. A rule in these instantiations is selected according to the
root symbol of the rule left-hand side argument. This is an efficient operation
executed in constant time, i.e., independently of the number of rules. A technique
in which the instantiations of collapsing rules are not explicitly generated in the
executable code, is discussed later.

Observe that for any program R, R and its collapse-free variant Ru have the
same signature. A sound, complete, and optimal strategy exists [3] for overlap-
ping inductively sequential term rewriting systems. The same strategy is applica-
ble to overlapping inductively sequential graph rewriting systems. Eventually,
we would like to replace a program with its collapse-free variant. Thus, we are
pleased to discover that the same strategy exists for the replacement program.

Lemma 2. Let R be an overlapping inductively sequential system. Then, the
collapse-free variant of R, Ru, is an overlapping inductively sequential system.

Proof. We prove that every operation of Ru has a definitional tree, hence Ru

is inductively sequential. The signatures of R and Ru are the same. If f is an
operation of Ru, then it is an operation of R. Since R is inductively sequential,
f has a definitional tree, say T . If f has a collapsing rule l → r, there is a leaf
node L of T whose pattern π is equal to l modulo a renaming of nodes and
variables. Let x be the collapsing variable of l → r. We replace this leaf node
of T with a branch node B that has the same pattern π, and x as the inductive
variables. The children of B are leaves whose rules are all and only the rules of
f instantiating l → r in Tu according to Definition 2. Hence f has a definitional
tree in Ru. ��
The following result precisely states the equivalence between a program R and
its collapse-free variant Ru. The values of an expression e in Ru are all and only
the values of e in R.
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Theorem 1. Let R be an overlapping inductively sequential system and Ru its
collapse-free variant. For all expressions t and s over the signature of R (and
Ru), with s head constructor form, t

∗→ s in R iff t
∗→ s in Ru.

Proof. The “if” direction is immediate. If t → t′ in Ru, then t → t′ in R, since
every rule of Ru is an instance of a rule of R. Hence, any computation in Ru is
also a computation in R. The “only if” direction is proved by strong induction
on the number of collapsing rules applied in A = t

∗→ s in R. The base case
is immediate, since every non-collapsing rule of R, by construction, is a rule of
Ru. For the induction case, consider the first step of A, say a, that applies a
collapsing rule. We consider whether the match of the collapsing variable in step
a is a head constructor form. Case true: the computation in Ru can make the
same step and the claim holds by the induction hypothesis. Case false: let w be
the match. Corollary 1 proves that w is needed, hence A must derive it to a head
constructor form w′. We can re-arrange the steps of A [3, Lemma 20] (as in the
Parallel Moves Lemma) so that the derivation of w into w′ occurs before step a
of A. By the induction hypothesis, w → w′ in Ru. After re-arranging the steps
of A, the residual of step a satisfies case true, and the claim holds. ��
The previous result easily extends from head constructor forms to constructor
forms.

Corollary 2. Let R be an overlapping inductively sequential system and Ru its
collapse-free variant. For all expressions t and s over the signature of R (and
Ru), with s constructor form, t

∗→ s in R iff t
∗→ s in Ru.

Proof. By induction on the length of a derivation using Theorem 1. ��
Curry is a candidate for the application of our results, but some programs that
could benefit from our technique cannot be entirely or directly modeled by
rewrite systems because of the presence of built-in types. Program (2) makes
this point. The collapse-free variant of (2) should contain an instance of the rule
of id for every integer.

A solution to this problem is to avoid the explicit instantiation of collapsing
rules, and instead to compile them slightly differently from non-collapsing rules.
When a collapsing rule R is going to be applied to a redex, the match of the
collapsing variable is checked. If the match, say t, is rooted by a constructor
c, the application proceeds as if R were instantiated by mapping the collapsing
variable to a shallow constructor expression rooted by c. Otherwise, t is evaluated
in an attempt to obtain a head constructor form t′. If t′ is obtained, the rule
application proceeds again as described above. Otherwise, it must be that either
the evaluation of t does not terminate or terminates in an operation-rooted
expression. The latter is a failure of the entire computation, since t is needed.
The same outcome, whether non-termination or failure, would be obtained by
any implementation, since t must be evaluated to a head constructor form.

Evaluating an expression to obtain a head constructor form is an activity
provided by many implementations. Hence, a major task for the adoption of
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our technique is already available in these implementations. For example, the
Pakcs implementation [20] of Curry, which maps Curry source code to Prolog
source code, defines a predicate, hnf, exactly for this task. The same is true for
the Basic Scheme [8], which defines an abstract function, H, for this task and
implements it in OCaml.

Some compilers of Curry, e.g. Pakcs [20], use a similar approach to encode
polymorphic functions, such as Boolean and constrained equalities. These func-
tions are applicable to instances of every algebraically defined and built-in typed.
They could be defined by one rule for every constructor or value. Instead, the
availability of a test for head constructor form and a procedure that evaluates
an expression to head constructor form avoid the proliferation of rules.

5 Ripping

The proof of correctness of the previous section to some extent completes our
work. Given a program R possibly containing collapsing rules, we transform
it into a program Ru without collapsing rules. This allows us to compile Ru

according to any desired scheme without concerns for collapsing rules. We are
guaranteed that the values computed by Ru are all and only those computed
by R and that they are obtainable with the same strategy and in the same
number of steps. Furthermore, the proof of Theorem1 implicitly shows that a
computation to constructor form has the same length in the two systems.

Of course, there is the expectation that the scheme adopted to compile Ru

is correct. The motivation of our work is to compile Ru for ripping. We are
not aware of any proof of its correctness and, indeed, we have not even found a
statement of it. In this section we address this issue.

We recall that given two graphs t and s, a (graph) homomorphism [15,26] of
t into s is a mapping σ : N (t) → N (s) that preserves roots and for nodes not
labeled by a variable, labels and successors, i.e.,

1. σ(Root(t)) = Root(s)
2. L(σ(q)) = L(q), for every node q ∈ N (t) with L(q) ∈ Σ;
3. S(σ(q))i = σ(S(q)i), for every node q ∈ N (t) and appropriate index i.

Let t be a graph, l → r a rewrite rule, q a node of t and σ : l → t|q a homomor-
phism, i.e., q is the root of a redex of t. We call ripping, denoted the binary
relation on graphs defined as follows: Let p be the root of σ(r). t′ = t + σ(r)
except at node q for which, in t′, L(q) = L(p) and S(q) = S(p). In other words,
the label and successors of q, in t′, are replaced by those of p. This update makes
the need of pointer redirection, which occurs during the replacement phase of a
rewrite step, unnecessary.

Ripping produces results different from rewriting. Consider again program
(2). During the evaluation of t, the rule of id is applied to the first component
of the pair. Since the rule is collapsing, the argument is evaluated to a head
constructor form. The result is non-deterministic, thus let us suppose that 0
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Fig. 3. The second graph is obtained from the first graph with a rip step, the technique
formalized in this paper. The third graph is obtained from the first graph with a rewrite
step.

is produced (if 1 were produced, the reasoning would be identical). The entire
expression at this point is pictorially represented in the left-hand side of Fig. 3.

The second graph of Fig. 3 shows the result of a rip step where the redex is the
first component of the pair. The result is a graph with two nodes labeled by zero.
We remark that no new node is created by this step, rather the root of the redex
has been re-labeled with the label of the root of the contractum. The third graph
is obtained by applying the same rewrite step to the first graph. We introduce
the following concept to precisely characterize the significant differences between
these graphs.

Definition 3. Given two graphs t and s, t is an adequate representation of s
iff there exists a homomorphism σ of t into s such that, for all distinct nodes p
and q of t, if σ(p) = σ(q), then the label of p (and hence of q) is a constructor
symbol. We call such homomorphism an adequate homomorphism.

For example, the second graph of Fig. 3 is an adequate representation of the
third graph.

Fig. 4. Commutative diagram for adequate representation (vertical arrows).

Observe that the match of the left-hand side of a rule to a redex is an ade-
quate homomorphism since rules are left linear and that the composition of
adequate homomorphisms is an adequate homomorphism. The diagram in Fig. 4
pictorially represents Lemma 3, where the vertical arrows stand for adequate
homomorphisms.

Lemma 3. Let R be an overlapping inductively sequential system and Ru its
collapse-free variant. Let t and s be graphs over the signature of R with t an
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adequate representation of s. Then, in Ru (a rip step) for some t′ iff
s → s′ in Ru (a rewrite step) for some s′, where t′ is an adequate representation
of s′.

Proof. Preliminarily, observe that the set of nodes of t labeled by an operation
is in a bijection with the set of nodes of s labeled by an operation. Furthermore,
if a graph g is an adequate representation of a graph h, and l is the left-hand
side of a rewrite rule, then l matches g iff l matches h. Thus, for every step of t
there is corresponding step of s, with the same rule, and vice versa.

Assuming we apply the same rule at corresponding nodes of t and s, we
constructively prove the existence of an adequate homomorphism of t′ into s′.
Let’s partition the nodes of t′ into 3 classes: (1) the root of the redex, (2) the
remaining nodes of t′ that are also in t, and (3) the nodes created by the step,
which originate from the nodes of the rule’s right-hand side which are not labeled
by a variable. A node in class (2) is also in t, thus it is mapped to make the
diagram of Fig. 4 commutative. A node in class (3) is also in s, thus it is mapped
to make the diagram of Fig. 4 commutative. The node, say q, in class (1) is
mapped from a node in t, that is mapped to the root of the redex in s. Let
p the root of the contractum of this redex. Thus, map q to p. This define a
homomorphism which is adequate. ��
The following result shows that ripping and rewriting compute the same values
of an expression modulo an adequate representation.

Theorem 2. Let R be an overlapping inductively sequential system and Ru its
collapse-free variant. Let t and s be graphs over the signature of R with s a
constructor form. If s is a value of t by rewriting in Ru, then there exists an s′

that is a value of t by ripping in Ru and s′ is an adequate representation of s.
If s′ is a value of t by ripping in Ru, then there exists an s that is a value of t
by rewriting t in Ru and s′ is an adequate representation of s.

Proof. By induction on the length of a derivation. ��
The combination of Theorems 1 and 2 shows that the evaluation of an expression
by graph rewriting can also be obtained by ripping, in-place rewriting with re-
labeling, which appears simpler and more efficient than other alternatives. This
technique is simpler and faster when the rule being applied is not a collapsing
rule. Our work shows that this is possible for every system in the class that we
consider.

A computation in Ru executed by rewriting has a corresponding computation
executed by ripping. We regard these two computation as the same. For every
step of one computation, there is a step of the other computation that applies
the same rule at a node that we regard as the same because in the hosting graphs
there is a bijection between the nodes labeled by operations. The results of the
two computations, that have nodes labeled by constructors only, may not be
isomorphic graphs. However, they are equal both when printed as (tree) terms,
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because they are bisimilar [11], and when printed in fully collapsed form1 [10,26],
because one is an adequate representation of the other.

6 Performance

The major contribution of our work is not a speedup of computations or a
reduction of both static and dynamic memory consumption, though they all do
occur in some degree, but a simplification of the compiler architecture—forward
nodes, and the machinery to handle them, can be entirely eliminated at nearly
no cost.

Fig. 5. The evaluation of append [1] [2] produces a list containing a forward node
represented by the large black dot in the above diagram.

We begin our discussion with an example. Consider a program that concate-
nates some lists and computes the length of the result. For concreteness, we
choose very simple lists, i.e., the program computes length (append [1, 2]). The
rules of length and append were given in (1) and (5) respectively. The value of
append [1, 2], say L, computed without the use of our technique is shown in
Fig. 5. The large black dot represents the forward node created when the first
rule of (5) is applied. The same value computed with our technique, is equal to L
except that the forward node is absent. List L may never be entirely present in
memory because operation length consumes portions of L as soon as operation
append constructs portions of L due to the lazy evaluation strategy, but the
order of evaluation does not affect our reasoning.

The execution time of each program is too short to be reliably measured with
ordinary tools. As far as memory consumption is concerned, our technique saves
the allocation and the traversal of the forward node. There is a similar program
that instead of constructing a list of two elements separated by a single forward
node it constructs a similar list with an arbitrarily long chain of forward nodes.
Computing the length of this list takes an arbitrarily long time. More relevant
is that the implementation of length must be prepared to encounter forward
nodes. Hence, extra instructions are executed to check for their presence. When
a forward node is encountered, extra instructions are executed to reach the node
that the forward node points to. Thus, the object code of length is longer, is more
complicated, takes longer to execute, and allocates extra dynamic memory.
1 The word “collapse” is overloaded in graph parlance. In this context, its refers to a

relation on graphs defined in the cited reference.
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For the reasons discussed above, we do not measure execution times to assess
the performance of our technique. The average speed up of our technique and the
savings in memory consumption depend on the programs used for a benchmark
and for many programs these differences are too small to benchmark. As we
already pointed out, our contributions are the formalization of our technique
and a simplification of the compiler architecture. Our goal is to show that this
simplification does not incur execution time or memory consumption penalties,
rather the opposite. Below we precisely summarize the effects of our technique
on these parameters.

1. Without our technique, every time a collapsing rule is applied, a forward node
is allocated and initialized. By contrast, our technique executes the same step
with an instantiated rule. Therefore, the node corresponding to the collapsing
variable is pattern matched and the content of the root of the redex is re-
assigned.

2. Without our technique, every time a node is pattern matched, a test must
be performed to check whether the node is a forward node. In the affirmative
case, the node pointed to by the forward node must be fetched and pattern
matched again. The fetched node could be a forward node again. By contrast,
our technique avoids the test, and never has to fetch a second node.

7 Narrowing

Functional logic programs compute with unknown information which is abstracted
by logic (also called free) unbound variables. A free variable is bound during a
computation if and when without the binding the computation could not con-
tinue. The combination of binding some variables and making a rewrite step is
called narrowing. Narrowing supports a simple and elegant programming style [5]
unique to the functional logic paradigm.

For a contrived example, consider again the rule of (5) and the expression
t = append v [], where v is an unbound free variable. No rule can be applied to t.
To compute the value of t, v is bound to either [] or (x : xs), non-deterministically,
where x and xs are fresh unbound free variables. For example, if v is bound to
[], the value of t is []. By contrast, consider the expression s = append [] v, where
v is again an unbound free variable. In this case, s is rewritten to v, where v
is unaffected by the step. Variable v might be bound later depending on the
context in which it occurs.

During the execution of a program, we store the bindings of free variables in
an array called the bind-table. A variable is internally represented as an index in
the bind-table array. The k-th entry in the array, holds the binding, if any, of the
variable represented by k. A conventional value marks unbound variables. Any
node standing for a variable is labeled by the same distinguished symbol, which
we denote “free”. In addition, in a node standing for a variable v, we store the
index of v in the bind-table.

Regarding the integration of free variables with our technique, the only rele-
vant question is what happens when, during the application of a collapsing rule,
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the collapsing variable is bound to a free variable. The answers is that we sim-
ply treat the free variable as if it were a head constructor form. I.e., the step
replaces the content of the root of the redex with the content of the root of the
replacement, in this case the node representing the free variable.

Graph rewriting stipulates that, for each variable v, in any expression there
is at most one node labeled by v [15,25]. Our approach violates this stipulation,
but only in appearance. The index k of a node with label free is immutable.
The binding, if any, indexed by k is in the bind-table. Thus, there is invariably
one and only one binding of any variable regardless of the number of nodes
standing for that variable. The claims leading to the correctness of our technique,
Theorem 2, carry over to narrowing with no significant changes. We only need
a minimal extension to the notion of adequate representation. Referring to the
notation of Definition 3, if σ(p) = σ(q), then the label of p (and hence of q) is
either a constructor symbol or free, and when the label is free, the indexes in p
and q are the same.

8 Discussion and Related Work

Graph rewriting is a viable mean for the implementation of functional and func-
tional logic languages that has lead to the discovery and development of optimal
strategies [4]. Transformations of rewrite systems for compilation purposes are
described in [16,22]. The specialization of rules through the instantiations of col-
lapsing variables is typical of partial evaluation [1]. Our goal differs from those
of the above techniques. Our transformation is specialized in that its only pur-
pose is to eliminate collapsing rules. Its merit is in the property that, for the
class of systems that we consider, which is perfectly suited for functional logic
programming, every computation to a value in a system with collapsing rules
can be executed, with the same effort, in a system without collapsing rules.
An implementation of rewriting without collapsing rules is easier to code and
faster to execute. We have not found any work close enough to ours for a direct
comparison.

Literature on the implementation of graph rewriting abounds. With respect
to our work, papers fall into either of two groups, graph reduction machines
[13,24], or some specialized aspects of rewriting [23]. Our implementation of
ripping as rewriting is theoretical in that we do not address data structures,
register allocation, bit use for tags, and similar. Its merit is to make the pointer
redirection phase of a rewrite step effortless in a concrete implementation. We
have not found any description of this technique or claim of its correctness.

Acknowledgments. This material is based upon work partially supported by the
National Science Foundation under Grant No. CCF-1317249. Michael Hanus provided
valuable comments on a preliminary version of this paper.
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Abstract. Although functional as well as logic languages use equality to
discriminate between logically different cases, the operational meaning
of equality is different in such languages. Functional languages reduce
equational expressions to their Boolean values, True or False, logic lan-
guages use unification to check the validity only and fail otherwise. Con-
sequently, the language Curry, which amalgamates functional and logic
programming features, offers two kinds of equational expressions so that
the programmer has to distinguish between these uses. We show that this
distinction can be avoided by providing an analysis and transformation
method that automatically selects the appropriate operation. Without
this distinction in source programs, the language design can be simplified
and the execution of programs can be optimized. As a consequence, we
show that one kind of equational expressions is sufficient and unification
is nothing else than an optimization of Boolean equality.

1 Motivation

Functional as well as logic programming languages are based on the common
idea to specify computational problems in a high-level and descriptive man-
ner. However, the computational entities and, thus, the programming styles are
different. This can be seen in a prominent feature of such languages: the dis-
crimination between logically different cases of a given problem. Functional (as
well as imperative) languages use Boolean equations for this purpose, i.e., an
equational expression is reduced to either True or False and, depending on the
computed result, a different computation path is selected. A typical example is
the factorial function where the base case is distinguished from the recursive
case by comparing the argument with 0:1

fac n = if n==0 then 1

else n * fac (n-1)

On the other hand, logic languages, like Prolog, use separate rules for differ-
ent cases where (equational) constraints restrict the applicability of the rules.
For instance, the following Prolog program defines the concatenation relation

This material is based in part upon work supported by the National Science Foun-
dation under Grant No. 1317249.

1 We use the syntax of Haskell [24] for functional programs.
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between three lists (where we do not use patterns in left-hand sides to make the
equational constraints explicit):
append(X,Y,Z) :- X=[], Y=Z.

append(X,Y,Z) :- X=[E|T], Z=[E|U], append(T,Y,U).

The equality symbol “=” used in this program is different from the Boolean
equality “==” above. For instance, in the first rule it is not intended to evaluate
X=[] to True or False, but this equality must hold to proceed with this rule,
i.e., it is a constraint for subsequent evaluation steps. As a consequence, it is
not necessary to fully evaluate equational expressions but one can continue a
computation even with partial knowledge, as long as the constraint is ensured
to hold. For instance, if we want to ensure that a list L ends with the element 0,
we can write
append(_,[0],L)

which is solvable even if the values of the list elements are not known. Thus, if
L=[A,B,C] is a list of three variables, then the literal above is solved by binding
C to 0 but leaving all other list elements unspecified. Operationally, this is done
by unification [27] instead of evaluation to Boolean values.

Functional logic languages attempt to combine the most important features
of functional and logic programming in a single language (see [5,18] for recent
surveys). In particular, the functional logic language Curry [21] extends Haskell
by common features of logic programming, i.e., non-determinism, free variables,
and equational constraints. Due to its roots in functional and logic program-
ming, Curry provides two kinds of equalities: Boolean equality (“==”) as in
functional programming and equational constraints (“=:=”) as in logic program-
ming. The motivation for this decision is to support nested case distinctions,
like in functional programming, as well as rule-oriented programming with par-
tial information, like in logic programming. Although one might argue that it
is always possible to guess values for unknowns, so that one kind of equality
is sufficient, an important insight of logic programming is that unification can
restrict the search space by binding variables instead of guessing values [27]. For
instance, if X and Y are Boolean variables, the equational constraint “X=Y” can
be solved by simply binding X to Y instead of enumerating appropriate values
for X and Y.

Although the distinction between these two kinds of equalities is present in
Curry from its early design [15], it also causes some complications. A program-
mer might not always easily understand which equality should be chosen in a
particular situation. Moreover, the distinction between solving and evaluating
equalities is also present in the type system, i.e., “==” has the result type Bool
whereas “=:=” has the result type Success (indicating the type of constraints).
As a consequence, various standard (combinator) functions on Booleans need
also be duplicated for the type Success.

In order to improve this situation, we argue in this paper that one kind of
equality, namely Boolean equality, is sufficient for the programmer. This will be
justified by an automatic method to transform Boolean equalities into constraint
equalities, if it is appropriate. Hence, we automatically obtain the nice features
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of unification, i.e., reduction of the search space. For this purpose, we present
a program analysis and transformation method that automatically selects the
appropriate kind of equality. This leads to a simpler language design without
sacrificing program efficiency.

2 Functional Logic Programming and Curry

We briefly review those elements of functional logic languages and Curry which
are necessary to understand the contents of this paper. More details can be found
in recent surveys on functional logic programming [5,18] and in the language
report [21].

Curry is a declarative multi-paradigm language combining in a seamless way
features from functional, logic, and concurrent programming (concurrency is
irrelevant as our work goes, hence it is ignored in this paper). The syntax of
Curry is close to Haskell [24], i.e., type variables and names of defined operations
usually start with lowercase letters and the names of type and data constructors
start with an uppercase letter. α → β denotes the type of all functions mapping
elements of type α into elements of type β (where β can also be a functional
type, i.e., functional types are “curried”), and the application of an operation
f to an argument e is denoted by juxtaposition (“f e”). In addition to Haskell,
Curry allows free (logic) variables in conditions and right-hand sides of rules and
expressions evaluated by an interpreter.

A Curry program consists in the definition of functions or operations and the
data types on which the functions operate. Functions are defined by (conditional)
equations and are evaluated lazily. Function calls with free variables are evalu-
ated by a possibly non-deterministic instantiation of demanded arguments which
corresponds to narrowing [25,28]. Curry narrows with possibly non-most-general
unifiers to ensure the optimality of computations [4].

Example 1. We present the above features in a program chosen for its simplicity
and brevity, rather than its power. The program defines the data type of Boolean
values and polymorphic lists and operations to concatenate two lists and compute
the last element of a list:2

data Bool = True | False

data List a = [] | a : List a

(++) : : [a] → [a] → [a]

[] ++ ys = ys

(x:xs) ++ ys = x : (xs ++ ys)

last : : [a] → a

last xs | _ ++ [x] =:= xs = x

The data type declarations define True and False as Boolean values and
[] (empty list) and : (non-empty list) as the constructors for polymorphic lists
2 Note that Curry requires the explicit declaration of free variables, as x in the rule of
last, to ensure checkable redundancy, but we omit them in this paper for the sake
of simplicity.
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(a is a type variable ranging over all types and the type “List a” is written
as [a] for conformity with Haskell). The (optional) type declaration (“::”) of
the operation “++” specifies that “++” takes two lists as input and produces an
output list, where all list elements are of the same (unspecified) type. Since “++”
can be called with free variables in arguments, the equation “ ++ [x] =:= xs”
in the condition of last is solved by instantiating the anonymous free variable
to the list xs without the last argument, i.e., the only solution to this equation
satisfies that x is the last element of xs.

The (optional) condition of a program rule is typically a conjunction of con-
straints. Each Curry system provides at least equational constraints of the form
e1 =:= e2 which are satisfiable if both sides e1 and e2 are reducible to unifiable
data terms.

In order to use equations to discriminate between different cases, as in the
definition of the factorial function fac shown in Sect. 1, Curry also offers a
Boolean equality operator “==” which evaluates to True if both arguments can
be evaluated to identical data terms, and to False if the arguments evaluate to
different data terms. Conceptually, “==” can be considered as defined by rules
comparing constructors of the same type, i.e., by the following rules (“&&” is the
Boolean conjunction):
True == True = True [] == [] = True

False == False = True (x:xs) == (y:ys) = x==y && xs==ys

True == False = False [] == (y:ys) = False

False == True = False (x:xs) == [] = False

As already discussed in [6], the presence of the types Success and Bool together
with two equality operators, rooted in the history of Curry, might cause con-
fusions and should be avoided in order to obtain a simpler definition of Curry.
Hence, [6] proposes to omit the type Success and the operator “=:=” from
the definition of Curry, and we follow this proposal in our paper. Note that
one can also solve equations by narrowing with the above rules. For instance,
[x,x]==[True,y] is solved by instantiating x and y to True while evaluat-
ing “==”. However, solving equations by narrowing with “==” rules has also a
drawback compared to logic programming. If there is an equation between two
variables, narrowing enumerates all values for these variables whereas unification
(deterministically!) binds one variable to the other. Hence, the expression “xs
== ys && xs++ys == [True]” has an infinite search space with solely False
results.

This was the motivation for the inclusion of the operator “=:=” in Curry.
Conceptually, it can be considered as defined by “positive” rules:
True =:= True = True [] =:= [] = True

False =:= False = True (x:xs) =:= (y:ys) = x=:=y && xs=:=ys

Thus, “=:=” yields True for identical data terms or fails.3 Operationally, these
rules are not applied by narrowing but combined with the unification principle
3 Note that we omit the type Success, as proposed in [6]. Hence, equational con-

straints as well as rule conditions are of type Bool rather than Success, in contrast
to the current definition of Curry [21].
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[27], i.e., if one argument is a free variable, it is bound to the evaluated data
term of the other side (if the variable is not contained in this term, see [21] for
details). Therefore, the expression “xs =:= ys” evaluates to True by binding
xs to ys and the expression “xs =:= ys && xs++ys =:= [True]” has a finite
search space without any result.

It would be desirable to automatically replace occurrences of “==” by “=:=”
whenever it can be done without losing solutions (see the next section). This
would free the programmer from having to select the “right” equality and sim-
plify the language: programmers always use “==” so that the operator “=:=” is
just an optimization of “==”. This is the motivation for our current work.

Since Curry with all its syntactic sugar (we have only presented a small
fragment of it) is a quite rich source language, a simpler intermediate represen-
tation of Curry programs has been shown to be useful to describe the operational
semantics [1], compile programs [10,19], or implement analyzers [20] and similar
tools. Programs of this intermediate language, called FlatCurry, contain a single
rule for each function where the pattern matching strategy is represented by
case expressions. The basic structure of FlatCurry is defined as follows (where
xi denotes variables, f defined functions, C constructors, and ok a sequence of
objects o1 . . . ok):

P :: = D1 . . . Dm (program)
D :: = f xn = e (function definition)
p :: = C xn (flat pattern)
e :: = x (variable)

| C en (constructor application)
| f en (function application)
| case e0 of {pk → ek} (case distinction)
| e1 ? e2 (non-deterministic choice)

A program P (we omit data type declarations) consists of a sequence of func-
tion definitions D with pairwise different variables in the left-hand sides. The
right-hand sides are expressions e composed by variables, constructor and func-
tion calls, case expressions, and disjunctions. A case expression4 has the form
case e of {C1 xn1 → e1, . . . , Ck xnk

→ ek}, where e is an expression, C1, . . . , Ck

are different constructors of the type of e, and e1, . . . , ek are expressions. The
pattern variables xni

are local variables which occur only in the corresponding
subexpression ei.

By fixing a strategy to match arguments, one can translate Curry programs
into FlatCurry programs. The higher-order constructs of Curry are translated
into FlatCurry by defunctionalization [26]. Thus, lambda abstractions are trans-
formed into top-level functions and there is a predefined operation apply to apply
an expression of functional type to an argument (see [18,29] for more details).

4 Since we do not discuss residuation and concurrent computations, we also omit the
difference between rigid and flexible case expressions [18].
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Conditional rules are not present in FlatCurry since, as shown in [3], they can
be transformed into unconditional ones by introducing a “conditional” operator
cond defined by
cond True x = x

For instance, the rule defining last as shown above can be transformed into
last xs = cond (_++[x] =:= xs) x

The evaluation strategy of Curry is by-need. Hence, the second argument of cond
is evaluated only if the first argument is True.

3 Transforming Equalities

In this section we discuss an automatic method to replace occurrences of Boolean
equalities of the form e1==e2 by an equational constraint e1=:=e2. Obviously,
such a replacement is not always correct. For instance, consider the following
contrived example:
isEmpty xs = if xs==[] then True else False

If we evaluate the expression “isEmpty xs”, where xs is a free variable, we
obtain the following two results (e.g., with the Curry system KiCS2 [10]):
{xs = []} True

{xs = (_x1:_x2)} False

These two results are computed by narrowing the equation xs==[] w.r.t. the
rules defining “==” shown in the previous section. However, if we replace the
Boolean equality by an equational constraint, as in
isEmpty’ xs = if xs=:=[] then True else False

and evaluate the expression “isEmpty’ xs”, then we obtain only the single
result
{xs = []} True

since the constraint “xs=:=[]” can only be satisfied, i.e., delivers the value True
only.

Thus, in order to avoid losing solutions, a Boolean equation e1==e2 can be
replaced by the equational constraint e1=:=e2 if it is ensured that only the value
True is required as the result of this equation. In general, this depends on the
context of the equation. Fortunately, there are many situations in functional
logic programs where this requirement can be deduced. For instance, consider
the following definition of last:
last xs | xs == _++[x] = x

As discussed above, this rule is transformed into the unconditional rule
last xs = cond (xs == _++[x]) x

Since the definition of cond requires that the first argument must have the value
True in order to evaluate a cond expression, the condition can be replaced by
an equational constraint:
last’ xs = cond (xs =:= _++[x]) x
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Hence, if we evaluate last’ [x,42], where x is a free variable, we obtain the
single result
{x = _x1} 42

On the other hand, we obtain infinitely many answers for the expression last
[x,42] (where in each answer x is bound to a different integer value). Similarly,
we can replace the occurrences of “==” by “=:=” in the rule
f xs ys | xs == _++[x] && ys == _++[x]++_ = x

However, in the rule
g xs ys | xs == _++[x] && not (ys == _++[x]++_) = x

only the first occurrence of “==” can be replaced by “=:=”, since the second
occurrence is required to be evaluated to False in order to apply the rule.5

These examples show that a careful analysis of the kind of values required for
a successful evaluation is necessary in order to perform our proposed transforma-
tion. Note that such an analysis is different from a strictness analysis in purely
functional programming [23]. A strictness analysis provide information about
the necessary demand of computation in order to compute any value, whereas
we need information about possible values in order to compute other values. For
instance, in order to transform the definition of f above, it is necessary to know
that both arguments of the conjunction operator “&&” need to be True in order
to obtain the overall value True. For this purpose, we define in the next section
an appropriate analysis for “required” values.

4 Analysis of Required Values

Our goal is to develop a program analysis to infer which kind of values are
required at some position in a program in order to compute a result, i.e., some
value. To obtain a manageable analysis, we consider only top-level constructors
in the analysis so that a value is some constructor-rooted expression. In principle,
this could be extended to any depth bound k (as used in the abstract diagnosis
of functional programs [2] or in the abstraction of term rewriting systems [8,9]),
but in practice only a depth k = 1 (i.e., top-level constructors) is useful due
to the quickly growing size of the abstract domain for k > 1. For instance, for
lists we distinguish the values [] (empty list) and “:” (non-empty lists) and for
Booleans we distinguish the values True and False.

Following the framework of abstract interpretation [13], we define for each
type τ an abstract domain τα, i.e., a set of abstract values, as follows. If Cτ =
{C1, . . . , Ck} denotes the set of all constructors of type τ , then τα = 2Cτ ∪{Any},
i.e., an abstract value of τα is either a subset of the constructors of type τ or
the specific constant Any denoting any expression. For instance, the abstract
domain for Boolean values is
Boolα = { ∅, {True}, {False}, {True,False}, Any }

5 The latter equality could also be improved if disequality constraints [7,22] are avail-
able in the target language, but since this is not the case for standard implementa-
tions of Curry, we do not consider them in this paper.
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Abstract values are ordered by: for all τ1 and τ2, τ1 � Any , and τ1 � τ2 if
τ1 ⊆ τ2 and both are not Any . Thus, the least upper bound of two abstract
values τ1 �= Any �= τ2 is their set union, i.e., τ1 � τ2 = τ1 ∪ τ2.

The meaning of an abstract value a, i.e., the concretization �a� of a, is the
set of all expressions, if a = Any , or, if a �= Any , the set of all values rooted
by some constructor of a (where root(e) denotes the symbol at the root of the
expression e): �a� = {e | root(e) ∈ a}. We call two abstract values a, a′ ∈ τα

compatible if �a� ∩ �a′� �= ∅, i.e., if they have some element in common.
As discussed above, we are interested to deduce required argument values

from required result values. For instance, if True is the required value of a
conjunction e1 && e2, then True is also the required value of both e1 and e2. We
denote this property by (&&) ::α {True},{True}→{True}.

We can read this type as: in order to compute the result True, the argument
values are required to be True. Or: unless both arguments are evaluated to True,
the result cannot be True.

Definition 1. A typing f ::α a1, . . . , an → a of a function f is correct if, for
all e = f e1 . . . en, the following implication holds: if e evaluates to some value
(constructor-rooted term) t ∈ �a�, then, for i = 1, . . . , n, ei evaluates to some
t′i ∈ �ai�.

The above notion of correctness establishes a condition on the values of the
arguments of a function application to produce a certain value as the result
of the application. For each function f of (concrete) type τ1, . . . , τn → τ , the
typing f ::α Any , . . . ,Any → Cτ (with appropriate numbers of arguments) is
correct since any expression is an element of �Any�. Clearly, defined functions
can have more than one correct typing. For instance, the negation operator not
has the types

not ::α {True} → {False}
not ::α {False} → {True}

and the conjunction operator (&&) has the types
(&&) ::α {True},{True} → {True}
(&&) ::α Any,Any → {False}

These abstract types can be used as follows. If the condition of a program rule
has the form e1 && e2, the value True is required as the result of this conjunction.
By the first type of “&&”, we can deduce that True is also required as the result
of both expressions e1 and e2, otherwise the conjunction cannot be evaluated to
True. However, if a condition has the form not (e1 && e2), we cannot deduce
a single value required for e1 or e2 (by the second type of “&&”), since this
condition yields True if e1 has the value False or if e1 has the value True and
e2 has the value False. Note that

(&&) ::α {False},Any →{False}
is not a correct typing: True �∈ �{False}� but True && False ∈ �{False}�. This
is intended: we cannot deduce from the required result value False that the first
argument is required to be False.
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In order to define well-typed programs, we assume a type environment F
(for a given program) which contains for each n-ary function symbol f occurring
in the program at least one element of the form f ::α a1, . . . , an → a. Since we
want to know required values of arguments in order to compute some value of an
expression, our type analysis also returns a variable type environment E contain-
ing variable types x ::α a for variables x occurring in the expression. The least
upper bound E1�E2 of two variable type environments E1 and E2 is the element-
wise least upper bound of the associated types (where absent type information
is interpreted as Any), e.g., {x ::α {True}, y ::α {True}} � {x ::α {False}} =
{x ::α {True, False}, y ::α Any}. Observe that y ::α Any is in the upper bound
because the second environment places no restrictions on y. Similarly, E1 
 E2

denotes the greatest lower bound of E1 and E2.

Fig. 1. Abstract typing rules for FlatCurry expressions

The (abstract) typing rules are shown in Fig. 1. The notation F � e ::α a |
E should be read as: “if e is evaluated to some value of type a w.r.t. type
environment F , then E are the required values of variables occurring in e.”
Rule Var requires the type of a variable as the type of the expression. Rule
Con does not put requirements on variables since the term is already a value.
Rule Fun requires well-typed arguments and an appropriate function typing to
apply a function, but joins only the requirements of arguments where a value
is required, since other arguments might not be evaluated. Rule Or requires
that both alternatives of a choice expression must have the same type where the
variable type environments are unified from both alternatives. Finally, rule Case
requires that the constructors of the patterns in the various branches must be
contained in the type of the discriminating expression. However, branches with
a type that is not compatible with the overall result type are ignored. By this
refinement, we can obtain more precise information about required arguments.
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Definition 2. A program P is well typed w.r.t. a type environment F for P
if, for each rule f x1 . . . xn = e ∈ P and each f ::α a1, . . . , an → a ∈ F , F �
e ::α a | E is derivable by the rules in Fig. 1, for some variable type environment
E, and, for i = 1, . . . , n, a′

i ⊆ ai if xi ::
α a′

i ∈ E, otherwise ai = Any, i.e., the
deduced required value is more specific or does not occur.

We show the usage of this type system by a few examples that are relevant for
the application intended with this paper. In these examples, we write T and F
for the abstract types {True} and {False}, respectively. The first example is
the operator cond introduced in Sect. 2 to transform conditional equations. In
FlatCurry, this operator is defined by the rule
cond x y = case x of { True → y }

This rule is well-typed w.r.t. cond ::α T,Any → Any so that we can deduce
that the first argument is required to be True in order to compute any value.
Note that this rule is also well typed w.r.t. cond ::α Any ,Any → Any , but this
typing provides less precise information about required arguments.

The second example is the negation operator not defined by
not x = case x of { True → False

; False → True }

It is easy to check that not ::α T → F is a well-typing of not since the following
derivation is valid w.r.t. F = {not ::α T → F}:

F � x ::α T | {x ::α T} V ar
F � False ::α F | ∅

Con
F � True ::α T | ∅

Con

F � case x of {True → False; False → True} ::α F | {x ::α T} Case

Note that the second case branch is ignored in the application of the Case rule
since its result type T is not compatible with the overall result type F. Similarly,
the following types (among others) can be derived to be well typed:

not ::α F → T
not ::α {False, True} → Any

Finally, we consider the conjunction operator (&&) defined by
x && y = case x of { True → y

; False → False }

(&&) ::α T, T → T is a well-typing since the following derivation holds for the
type environment F = {(&&) ::α T, T → T}:

F � x ::α T | {x ::α T} V ar
F � y ::α T | {y ::α T} V ar

F � False ::α F | ∅
Con

F � case x of {True → y; False → False} ::α T | {x ::α T, y ::α T} Case

The correctness of our type analysis can be stated by the following theorem:

Theorem 1. If a program P is well typed w.r.t. a type environment F for P ,
then each f ::α a1, . . . , an → a ∈ F is correct.

We have seen in various examples that there does not exist a meaningful most
general type for each function. Although we could type each function f by
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f ::α Any , . . . ,Any → Any , this type does not provide any useful information
about required arguments. Thus, the inference of types is more complex than in
classical type inference systems [14].

Instead, we use the idea to compute types by a fixpoint analysis [12]. The
analysis is started with no information about each function (e.g., f ::α Any , . . . ,
Any → Any) and uses the rules in Fig. 1 to compute values for required argu-
ments. If the analysis computes some more precise information about the result
of a function, i.e., a result type like {C}, then the analysis is started again with
all constructors (of the corresponding concrete data type): if C1, . . . , Ck are all
constructors of the data type to which C belongs, we restart the analysis with
the environment containing f ::α Any , . . . ,Any → {Ci} (for i = 1, . . . , k). In this
way we obtain more meaningful results without testing all constructors from the
beginning, which seems a good compromise between efficiency and precision of
the analysis.

5 Implementation

The analysis of required values is a prerequisite to implement the transformation
of equalities as discussed in Sect. 3. To implement the analysis, we used the
Curry analysis system CASS [20]. CASS is a generic program analysis system
which provides an infrastructure to implement new bottom-up analyses. CASS
requires only the definition of the abstract domain and the abstract operations
to compute the abstract values for each function based on given abstract values
for the operations on which the operation to be analyzed depend. Then the
reading, parsing, and analysis of modules in their import order and the fixpoint
computations are managed by CASS.

The results of the analysis are used to transform Boolean equations as follows.
For each function f , we apply the rules in Fig. 1 in order to compute the required
values at an occurrence of an expression of the form e1==e2 in the right-hand side
of the rule of f . If the abstract type is always {True}, we replace this expression
by e1=:=e2. This is justified by the fact that the result False is never required
when this function must be evaluated.

Hence, our implementation automatically transforms the occurrences of “==”
shown in Sect. 3. Since this transformation is performed on FlatCurry programs,
it can be easily integrated into the compilation chain for Curry programs. In
fact, the transformation is fully integrated into the current releases of the Curry
systems PAKCS [19] and KiCS2 [10].

In order to evaluate the usefulness of our transformation, we tested it on
some benchmarks. As discussed in Sect. 2, our transformation can reduce infinite
search spaces into finite ones. For instance, the expression
cond (xs == ys && xs++ys == [True]) True

has an infinite search space, whereas the transformed expression
cond (xs =:= ys && xs++ys =:= [True]) True

has a finite search space. Even in the case of finite search spaces, replacing
Boolean equations by equational constraints often has a good impact on the run
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Expression == =:=

last 10 0.01 0.00
last 15 0.41 0.00
last 20 13.12 0.00
fromPeano (half (toPeano 10000)) 31.09 12.98
grep 0.54 0.37
simplify 22.41 16.68
varInExp 0.95 0.42

Fig. 2. Benchmarks: comparing Boolean equations and equational constraints

time since non-deterministic search is transformed to deterministic bindings, as
demonstrated by some benchmarks.

We used the Curry implementation KiCS2 [10] for the benchmarks. KiCS2
evaluates the Boolean equality operator by narrowing with the “==” rules shown
in Sect. 2 and the equational constraints by managing variable bindings [11].
The benchmarks were executed on a Linux machine (Debian 8.0) with an Intel
Core i7-4790 (3.60Ghz) processor and 8GiB of memory. KiCS2 (Version 0.4.0)
has been used with the Glasgow Haskell Compiler (GHC 7.6.3, option -O2) as
its backend. The timings were performed with the time command measuring the
execution time to compute all solutions (in seconds) of a compiled executable
for each benchmark as a mean of three runs. The programs used for the bench-
marks are last n (compute the last element of a list containing n − 1 variables
and True at the end), half (compute the half of a Peano number using logic
variables), grep (string matching based on a non-deterministic specification of
regular expressions [5]), simplify (simplify a symbolic arithmetic expression),
and varInExp (non-deterministically return a variable occuring in a symbolic
arithmetic expression). Figure 2 shows the execution times to evaluate some
expressions without (==) or with (=:=) our transformation. As expected, the
creation and traversal of a large search space introduced by “==” is much slower
than manipulating variable bindings by “=:=”.

6 Practical Evaluation

In this section we discuss some practical experiences we made with our trans-
formation tool.

As mentioned above, the transformation tool is integrated into the compila-
tion chain of the recent releases of the Curry systems PAKCS [19] and KiCS2
[10]. The configuration files of these systems allow the user to set the following
usage modes: “off” (do not apply this transformation), “full” (analyze programs
as described in Sect. 4 and perform the transformation described in Sect. 5),
or “fast” (which is the default: use pre-computed analysis information of stan-
dard operations from the prelude to perform the transformation described in
Sect. 5). The advantage of the “fast” mode is that it is a reasonable compromise
between effectiveness and efficiency. In this mode, the transformation described
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Program #lines full fast =:= (orig.) == (transf.)

CHR 474 2.65 0.76 11 11
CurryStringClassifier 194 0.82 0.25 21 21
HTML 1316 6.04 2.14 13 13
Parser 49 0.22 0.02 6 6
SetFunctions 90 0.40 0.07 28 28

AddTypes 117 1.46 0.20 4 4
Curry2JS 633 2.85 0.85 6 6

maxtree 17 0.18 0.01 3 3
queens 12 0.19 0.01 5 2

Fig. 3. Benchmarks: transforming Boolean equations into equational constraints

in Sect. 5 does not perform the fixpoint analysis of Sect. 4, but it simply uses the
pre-computed abstract types for the most relevant Boolean functions defined in
the prelude, like (&&) (conjunction), (||) (disjunction), not (negation), and the
conditional operator cond. The transformation itself can be efficiently performed
by considering only functions that contain occurrences of “==”. Thus, even large
modules are transformed without any perceivable slowdown in the compilation
chain.

Although the “fast” mode uses only the results of a few Boolean operations
defined in the standard prelude, it is sufficient in practice, as our tests indi-
cate. For these tests, we replaced in various existing Curry programs all equa-
tional constraints by Boolean equalities and checked how many of these Boolean
equalities are replaced by equational constraints with our transformation tool.
The results are shown in Fig. 3. The first group of Curry programs are stan-
dard libraries distributed with KiCS2, where HTML is the largest one (supporting
programming of dynamic web pages [16]). The next two programs (AddTypes,
Curry2JS) are tools contained in the KiCS2 distribution to add type signatures
to top-level operations and compiling Curry programs into JavaScript programs
(which is used to implement type-safe dynamic web pages [17]), respectively. The
last two programs are small examples demonstrating typical functional logic pro-
gramming techniques.

The first three result columns show the number of lines of code and the
transformation times in the “full” and “fast” mode (in seconds, where the same
machine as for the benchmarks in the previous section has been used). These
numbers clearly indicate the advantage of the “fast” mode. Moreover, there was
no difference in the transformation results between these modes. These results
are summarized in the last two columns: they show the number of equational con-
straints (“=:=”) occurring in the original programs6 and the number of Boolean
equalities (“==”) that have been transformed back into equational constraints by

6 A logic programmer might wonder about the low number of equational constraints
even in larger functional logic programs. This is mainly due to the fact that func-
tional logic programming supports nested expressions (where Prolog programmers
have to use auxiliary variables and unification to connect the result from an inner
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our transformation tool. The numbers in these columns show that our tool was
able to transform almost all of them into constraints. The rare cases where this
was not possible (queens) are operations that return constraints to be solved
instead of using them in a condition of a program rule. For instance, consider
an operation that returns True if its three arguments are pairwise equal:
equ3 x y z = x==y && y==z

Obviously, our transformation cannot replace the Boolean equalities by equa-
tional constraints since this may cause a loss of solutions. For instance, for
Boolean values, the expression “not (equ3 x y z)” evaluates to True by bind-
ing x to True and y to False (among other solutions). Such solutions would be
lost if we replace “==” by “=:=”. However, if it is intended that the operation
equ3 should only be used for “positive” evaluations, one can easily redefine it by
equ3 x y z | x==y && y==z = True

With this definition, our transformation tool is able to replace both occurrences
of “==” by “=:=”.

7 Conclusions

We have presented an automatic method to replace Boolean equalities by equa-
tional constraints in functional logic programs. This can be done only if it is
ensured that True is required as the result of a Boolean equality, which is
the case, e.g., in conditions of rules. To this aim, we developed an analysis for
required values. This analysis can be seen as a non-standard type inference where
abstract types represent sets of required values. The results of this analysis are
then used to drive the actual program transformation.

Our transformation method has the following advantages over the current
design of functional logic languages like Curry:

1. The source language becomes simpler. Since equational constraints are con-
sidered as an optimization of Boolean equality, the existing type Success
can be omitted (as proposed in [6]). This has the consequence that quite
similar operations, like inequalities between values ((<=)), do not need to be
duplicated for the type of Boolean and constraints, as it is currently the case.

2. It is not necessary to consider the subtle differences between the type Bool
and Success and the operators “==” and “=:=”. A programmer uses “==” only
(where the operator “=:=” must still be provided for the transformation target
and in exceptional cases where a programmer wants to write efficient code
independent of a program transformation). This also simplifies the teaching
of declarative multi-paradigm languages [15].

3. Equational constraints can be considered as an optimized implementation of
Boolean equalities. Hence, from a declarative point of view, one has to deal
with Boolean equalities only, which are easy to define by standard rewrite
rules as shown in Sect. 2.

computation to an outer one). Moreover, predicates delivering multiple results can
also be expressed as non-deterministic functions.
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If the target system also supports disequality constraints, as proposed in early
functional logic languages [7,22], one could exploit them in an extension of our
transformation tool. For instance, if an expression e1==e2 requires always False
as its result, one could replace it by e1=/=e2, where the operator “=/=” represents
a disequality constraint. This might be more efficient than guessing values by
narrowing with the standard “==” rules but requires a specific implementation
of a solver for “=/=”.
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Abstract. We propose a new type-theoretic approach to SLD-resolution
and Horn-clause logic programming. It views Horn formulas as types, and
derivations for a given query as a construction of the inhabitant (a proof-
term) for the type given by the query. We propose a method of program
transformation that allows to transform logic programs in such a way
that proof evidence is computed alongside SLD-derivations. We discuss
two applications of this approach: in recently proposed productivity the-
ory of structural resolution, and in type class inference.

Keywords: Logic programming · Typed lambda calculus · Realizability
transformation · Reduction systems · Structural resolution

1 Introduction

Logic Programming (LP) is a programming paradigm based on first-order Horn
formulas. Informally, given a logic program Φ and a query A, LP provides a
mechanism for automatically inferring whether or not Φ � A holds, i.e., whether
or not Φ logically entails A. The inference mechanism is based on the SLD-
resolution, which uses the resolution rule together with first-order unification.

Example 1. Consider the following logic program Φ, consisting of Horn formulas
labelled by κ1, κ2, κ3, defining connectivity for a graph with three nodes:

κ1 : ∀x.∀y.∀z.Connect(x, y),Connect(y, z) ⇒ Connect(x, z)
κ2 : ⇒ Connect(Node1,Node2)
κ3 : ⇒ Connect(Node2,Node3)

In the above program, Connect is a predicate, and Node1 – Node3 are constants.
SLD-derivation for the query Connect(x, y) can be represented as the following
reduction:

Φ � {Connect(x, y)} �κ1,[x/x1,y/z1]

{Connect(x, y1),Connect(y1, y)} �κ2,[Node1/x,Node2/y1,Node1/x1,y/z1]

{Connect(Node2, y)} �κ3,[Node3/y,Node1/x,Node2/y1,Node1/x1,Node3/z1] ∅
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The first reduction �κ1,[x/x1,y/z1] unifies the query Connect(x, y) with the head
of the rule κ1 (which is Connect(x1, z1) after renaming) with the substitution
[x/x1, y/z1] (x1 is replaced by x and z1 is replaced by y). So the query is resolved
with κ1, producing the next queries: Connect(x, y1), Connect(y1, y). Note that
the substitution in the subscript of � is a state that will be updated alongside
the derivation.

Viewing a program as a collection of Horn clauses, the above derivation first
assumed that Connect(x, y) is false, and then deduced a contradiction (an empty
goal) from the assumption. As every SLD-derivation is essentially a proof by
contradiction, traditionally the exact content of such proofs plays little role in
determining entailment. However, it is desirable to have methods which capture
the proof-theoretic content of SLD-derivations. For example, one may wish to
reason in a proof-relevant way, and compute not just Φ � A, but Φ � p : A,
where p is the proof-witness for the query A and the program Φ. LP and its
dialects are used as part of type inference engines underlying functional [6,11]
and dependently typed [4] languages. These applications require proof-relevant
automated reasoning.

In type class inference (e.g. Haskell), a type class can be seen as an atomic
formula and an instance declaration – as a Horn formula. The instance resolution
process in type class inference can then be seen as an SLD-derivation, with one
additional requirement: this SLD-derivation must compute the evidence for the
type class (or construct a dictionary). For example, the following declaration
specifies a way to construct equality class instances for datatypes List and Char:

κ1 : ∀x.Eq(x) ⇒ Eq(List(x))
κ2 : ⇒ Eq(Char)

Here List is a function symbol, Char is a constant and x is a variable; κ1, κ2 will
be used as primitives for the evidence construction. When we make a comparison
of two lists of characters, such as (eq [′a′] [′b′]), the compiler will insert the
evidence d of the type Eq(List(Char)) in (eq d [′a′] [′b′]). The construction of
this evidence can be viewed as resolving the query Eq(List(Char)), which is
witnessed by applying Horn formulas κ1 and κ2. Thus, (κ1 κ2) is the evidence
we want for d.

In order to specify the proof-theoretic meaning of derivations, we introduce a
type-theoretic approach to recover the notion of proof in LP. It has been noticed
by Girard [3], that the resolution rule A∨B ¬B∨D

A∨D can be expressed by means
of the cut rule in intuitionistic sequent calculus: A⇒B B⇒D

A⇒D . Although the
resolution rule is classically equivalent to the cut rule, the cut rule is better suited
for performing computation while preserving constructive content. In Sect. 2 we
present a type system reflecting this intuition: if p1 is the proof of A ⇒ B and
p2 is the proof of B ⇒ D, then λx.p2 (p1 x) is the proof of A ⇒ D. Thus, proof
can be recorded alongside with each cut rule.

We prove that SLD-resolution is sound with respect to the type system
(Sect. 2). We give a formulation of SLD-resolution in the form of a reduction
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rule, called LP-Unif. The soundness result shows that, given a logic program Φ
and a query A, if A can be LP-Unif reduced to the empty goal with a substitution
γ as an answer, then a proof term can be constructed for γA.

In Sect. 3, we introduce a technique called realizability transformation, that,
given a program Φ, produces a program F (Φ) in which one extra argument is
added to every predicate, in order to record the proof-evidence in derivations.
The proof evidence is computed by applying substitution to variables held by
this additional argument in the course of running SLD-resolution. Let us revisit
the List example. Its transformed version will look as follows:

κ1 : ∀x.∀u1.Eq(x, u1) ⇒ Eq(List(x), fκ1(u1))
κ2 : ⇒ Eq(Char, cκ2)

The query Eq(List(Char)) of the original program becomes Eq(List(Char), u)
after the transformation, where u is a variable. The derivation reaches the empty
goal and outputs the substitution [fκ1(cκ2)/u], which corresponds to the proof
term (κ1 κ2) for the query Eq(List(Char)).

Realizability transformation bears resemblance to Kleene’s [7] method under
the same name. We show that realizability transformation preserves the proof-
theoretic meaning of the original program and the computational behaviour of
LP-Unif reductions. With the help of the transformation, we prove completeness
of LP-Unif with repect to the type system.

Together, Sects. 2 and 3 introduce a method of constructing proof evidence in
the process of LP derivations. Recently, a variant of resolution for Horn Clauses,
called structural resolution (S-resolution) has been introduced [5]. S-resolution
represents derivations by SLD-resolution as a combination of derivations by
term-matching and by substitution. We explain this idea in detail in Sect. 4.
The main reason for separating out two components of SLD-resolution in such a
way is to make use of structural properties of term-matching that have already
been exploited in functional programming and term-rewriting. In particular, S-
resolution allowed to define a theory of universal productivity for LP that resem-
bles a similar theory in functional programming [2]: given a potentially infinite
derivation by S-resolution, termination of term-matching derivations that com-
prise it determines productivity of the derivation (or in other words, observability
of finite fragments of the infinite computation).

We conjecture that the combination of the two ideas – the theory of produc-
tivity introduced by S-resolution and the proof-witness construction introduced
in this paper bear promise for future development of resolution-based methods.
This is why, in Sect. 4 we give a full formal study of how these two methods can
be formally combined. We show how S-resolution can be represented by means
of LP-Struct reductions, combining term-matching reductions and unification.
We extend the type-theoretic semantics to S-Resolution. We define conditions
which guarantee equivalence of S-Resolution and SLD-resolution, one of which
happens to be exactly the property of productivity. We use the realizability
transformation as a method for guaranteeing productivity of programs.
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Finally, in Sect. 5 we conclude and explain how the combination of S-
Resolution and the type-theoretic approach of this paper could be used in non-
terminating cases of type class inference. Detailed proofs for lemmas and theorems
in this paper may be found in the extended version1.

2 A Type System for LP: Horn-Formulas as Types

We first formulate a type system to model LP. We show that LP-Unif is sound
with respect to the type system.

Definition 1. Term t ::= x | f(t1, ..., tn)
Atomic Formula A,B,C,D ::= P (t1, ..., tn)
(Horn) Formula F ::= [∀x].A1, ..., An ⇒ A
Proof Term p, e ::= κ | a | λa.e | e e′

Axioms/LP Programs Φ ::= · | κ : F,Φ

Functions of arity zero are called term constants, FV(t) returns all free term
variables of t. We use A to denote A1, ..., An, when the number n is unimportant.
If n is zero for A ⇒ B, then we write ⇒ B. Note that B is an atomic formula,
but ⇒ B is a formula, we distinguish the notion of atomic formulas from (Horn)
formulas. The formula A1, ..., An ⇒ B can be informally read as “the conjunction
of Ai implies B”. We write ∀x.F for quantifying over all the free term variables in
F ; [∀x]. F denotes F or ∀x.F . LP program B ⇐ A are represented as ∀x.A ⇒ B
and query is an atomic formula. Proof terms are lambda terms, where κ denotes
a proof term constant and a denotes a proof term variable. We write A �→σ A′

(resp. A ∼γ A′) to mean A is matchable (resp. unifiable) to A′ with substitution
σ (resp. γ), i.e. σA ≡ A′ (resp. γA ≡ γA′).

The following is a new formulation of a type system intended to provide a
type theoretic interpretation for LP.

Definition 2 (Horn-Formulas-as-Types System for LP).

e : F
e : ∀x.F

gen
e1 : A ⇒ D e2 : B, D ⇒ C

λa.λb.(e2 b) (e1 a) : A, B ⇒ C
cut

e : ∀x.F

e : [t/x]F
inst

(κ : ∀x.F ) ∈ Φ

κ : ∀x.F
axiom

Note that the notion of type is identified with Horn formulas (atomic intuition-
istic sequent), not atomic formulas. The usual sequent turnstile � is internalized
as intuitionistic implication ⇒. The rule for first order quantification ∀ is placed
outside of the sequent. The cut rule is the only rule that produces new proof
terms. In the cut rule, λa.t denotes λa1....λan.t and t b denotes (...(t b1)...bn).
The size of a is the same as A and the size of b is the same as B, and a, b are
not free in e1, e2.

1 Extended version is available at both authors’ homepages.
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Our formulation is given in the style of typed lambda calculus and sequent
calculus, the intention for this formulation is to model LP type-theoretically. It
has been observed that the cut rule and proper axioms in intuitionistic sequent
calculus can emulate LP [3](§13.4). Here we add a proof term annotation and
make use of explicit quantifiers. Our formulation uses Curry-style in the sense
that for the gen and inst rule, we do not modify the structure of the proof
terms. Curry-style formulation allows us to focus on the proof terms generated
by applying the cut rule.

Below is a formulation of SLD-derivation as a reduction system [9].

Definition 3 (LP-Unif Reduction). Given axioms Φ. We define a reduction
relation on the multiset of atomic formulas:
Φ � {A1, ..., Ai, ..., An} �κ,γ·γ′ {γA1, ..., γB1, ..., γBm, ..., γAn} for any substitu-
tion γ′, if there exists κ : ∀x.B1, ..., Bn ⇒ C ∈ Φ such that C ∼γ Ai.

The second subscript in the reduction is intended as a state, it will be updated
along with reductions. We assume implicit renaming of all quantified variables
each time the above rule is applied. We write � when we leave the underlining
state implicit. We use �∗ to denote the reflexive and transitive closure of �.
Notation �∗

γ is used when the final state along the reduction path is γ.
Given a program Φ and a set of queries {B1, . . . , Bn}, LP-Unif uses only

unification reduction to reduce {B1, . . . , Bn}:

Definition 4 (LP-Unif). Given a logic program Φ, LP-Unif is given by an
abstract reduction system (Φ,�).

Lemma 1. If Φ � {A1, ..., An} �∗
γ ∅, then there exist proofs e1 : ∀x. ⇒

γA1, ..., en : ∀x. ⇒ γAn, given axioms Φ.

Proof. By induction on the length of the reduction.
Base Case. Suppose the length is one, namely, Φ � {A} �κ,γ ∅. It implies that
there exists (κ : ∀x. ⇒ C) ∈ Φ, such that C ∼γ A. So we have κ : ⇒ γC by the
inst rule. Thus κ : ⇒ γA by γC ≡ γA. Hence κ : ∀x. ⇒ γA by the gen rule.

Step Case. Suppose Φ � {A1, ..., Ai, ..., An} �κ,γ {γA1, ..., γB1, ..., γBm, ...,
γAn} �∗

γ′ ∅, where κ : ∀x.B1, ..., Bm ⇒ C and C ∼γ Ai. By inductive hypoth-
esis(IH), we know that there exist proofs e1 : ∀x. ⇒ γ′γA1, ..., p1 : ∀x. ⇒
γ′γB1, ..., pm : ∀x. ⇒ γ′γBm, ..., en : ∀x. ⇒ γ′γAn. We can use inst rule to
instantiate the quantifiers of κ using γ′ · γ, so we have κ : γ′γB1, ..., γ

′γBm ⇒
γ′γC. Since γ′γAi ≡ γ′γC, we can construct a proof ei = κ p1 ... pm with
ei : ⇒ γ′γAi, by applying the cut rule m times. By gen, we have ei : ∀x. ⇒ γ′γAi.
The substitution generated by the unification is idempotent, and γ′ is accumu-
lated from γ, i.e. γ′ = γ′′ · γ for some γ′′, so γ′γAj ≡ γ′′γγAj ≡ γ′′γAj ≡ γ′Aj

for any j. Thus we have ej : ∀x. ⇒ γ′Aj for any j.

Theorem 1 (Soundness of LP-Unif). If Φ � {A} �∗
γ ∅ , then there exists

a proof e : ∀x. ⇒ γA given axioms Φ.



96 P. Fu and E. Komendantskaya

For example, by the soundness theorem above, the derivation in Example 1 yields
the proof (λb.(κ1 b) κ3) κ2 for the formula ⇒ Connect(node1,node3).

Naturally, we would want to prove the following completeness theorem: If
e : ∀x. ⇒ A, then Φ � {A} �∗

γ ∅ for some γ. It is tempting to prove this
theorem by induction on the derivation of e : ∀x. ⇒ A. However, it becomes
quite involved. We will discuss a simpler way to prove this theorem at the end
of the next section, where we take advantage of the realizability transformation.

3 Realizability Transformation

We define realizability transformation in this section. Realizability [7](Sect. 82)
is a technique that uses a number representing the proof of a number-theoretic
formula. The transformation described here is similar in the sense that we use a
first order term to represent the proof of a formula. More specifically, we use a
first order term as an extra argument for a formula to represent a proof of that
formula. Before we define the transformation, we first state several basic results
about the type system in Definition 2.

Theorem 2 (Strong Normalization). Let beta-reduction on proof terms be
the congruence closure of the following relation: (λa.p)p′ →β [p′/a]p. If e : F ,
then e is strongly normalizable with respect to beta-reduction on proof terms.

The proof of strong normalization (SN) is an adaptation of Tait-Girard’s
reducibility proof. Since the first order quantification does not impact the proof
term, the proof is very similar to the SN proof of simply typed lambda calculus.

Lemma 2. If e : [∀x.]A ⇒ B given axioms Φ, then either e is a proof term
constant or it is normalizable to the form λa.n, where n is first order normal
proof term.

Theorem 3. If e : [∀x.] ⇒ B, then e is normalizable to a first order proof term.

Lemma 2 and Theorem 3 show that we can use first order terms to represent
normalized proof terms; and thus pave the way to realizability transformation.

Definition 5 (Representing First Order Proof Terms). Let φ be a map-
ping from proof term variables to first order terms. We define a representation
function �·�φ from first order normal proof terms to first order terms.
– �a�φ = φ(a).
– �κ p1...pn�φ = fκ(�p1�φ, ..., �pn�φ), where fκ is a function symbol.

Definition 6. Let A ≡ P (t1, ..., tn) be an atomic formula, we write A[t′], where
(
⋃

i FV(ti)) ∩ FV(t′) = ∅, to abbreviate a new atomic formula P (t1, ..., tn, t′).

Definition 7 (Realizability Transformation). We define a transformation
F on a formula and its normalized proof term:
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– F (κ : ∀x.A1, ..., Am ⇒ B) = κ : ∀x.∀y.A1[y1], ..., Am[ym] ⇒
B[fκ(y1, ..., ym)], where y1, ..., ym are all fresh and distinct.

– F (λa.n : [∀x].A1, ..., Am ⇒ B) = λa.n : [∀x.∀y].A1[y1], ..., Am[ym] ⇒
B[�n�[y/a]], where y1, ..., ym are all fresh and distinct.

The realizability transformation systematically associates a proof to each pred-
icate, so that the proof can be recorded alongside with reductions.

Example 2. The following logic program is the result of applying realizability
transformation on the program in Example 1.

κ1 : ∀x.∀y.∀u1.∀u2.Connect(x, y, u1), Connect(y, z, u2) ⇒ Connect(x, z, fκ1(u1, u2))

κ2 : ⇒ Connect(node1, node2, cκ2)

κ3 : ⇒ Connect(node2, node3, cκ3)

Before the realizability transformation, we have the following judgement:

λb.(κ1 b) κ2 : Connect(node2, z) ⇒ Connect(node1, z)

We can apply the transformation, we get:

λb.(κ1 b) κ2 : Connect(node2, z, u1) ⇒ Connect(node1, z, �(κ1 b) κ2�[u1/b])

which is the same as

λb.(κ1 b) κ2 : Connect(node2, z, u1) ⇒ Connect(node1, z, fκ1(u1, cκ2))

Observe that the transformed formula:
Connect(node2, z, u1) ⇒ Connect(node1, z, fκ1(u1, cκ2)) is provable by
λb.(κ1 b) κ2 using the transformed program.

Let F (Φ) mean applying the realizability transformation to every axiom in Φ.
We write (F (Φ),�), to mean given axioms F (Φ), use LP-Unif to reduce a given
query. Note that for query A in (Φ,�), it becomes query A[t] for some t such
that FV(A) ∩ FV(t) = ∅ in (F (Φ),�).

The following theorem shows that realizability transformation does not
change the proof-theoretic meaning of a program. This is important because
it means we can apply different resolution strategies to resolve the query on the
transformed program without worrying about the change of meaning. Later we
will see that the behavior of LP-Struct is different for the original program and
the transformed program.

Theorem 4. Given axioms Φ, if e : [∀x].A ⇒ B holds with e in normal form,
then F (e : [∀x].A ⇒ B) holds for axioms F (Φ).

The other direction for the theorem above is not true if we ignore the transfor-
mation F , namely, if e : ∀x. ⇒ A[t] for axioms Φ, it may not be the case that
e : ∀x. ⇒ A, since the axioms Φ may not be set up in a way such that t is a
representation of proof e. The following theorem shows that the extra argument
is used to record the term representation of the corresponding proof.
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Theorem 5. Suppose F (Φ) � {A[y]} �∗
γ ∅. We have p : ∀x. ⇒ γA[γy] for

F (Φ), where p is in normal form and �p�∅ = γy.

Now we are able to show that realizability transformation will not change the
unification reduction behaviour.

Lemma 3. Φ � {A1, ..., An} �∗ ∅ iff F (Φ) � {A1[y1], ..., An[yn]} �∗ ∅.
Proof. For each direction, by induction on the length of the reduction. Each
proof will be similar to the proof of Lemma1.

Theorem 6. Φ � {A} �∗ ∅ iff F (Φ) � {A[y]} �∗ ∅.
Example 3. Consider the logic program after realizability transformation in
Example 2. Realizability transformation does not change the behaviour of LP-
Unif, we still have the following successful unification reduction path for query
Connect(x, y, u):

F (Φ) � {Connect(x, y, u)} �κ1,[x/x1,y/z1,fκ1 (u3,u4)/u]

{Connect(x, y1, u3), Connect(y1, y, u4)}
�κ2,[cκ2/u3,node1/x,node2/y1,node1/x1,b/z1,fκ1 (cκ2 ,u4)/u]

{Connect(node2, y, u4)}
�κ3,[cκ3/u4,cκ2/u3,node3/y,node1/x,node2/y1,node1/x1,node3/z1,fκ1 (cκ2 ,cκ3 )/u] ∅

Now let us come back to the completeness theorem. The following lemma
shows that completeness result holds for the transformed program.

Lemma 4. For F (Φ), if n : ⇒ A[�n�∅] where n is in normal form, then F (Φ) �
{A[�n�∅]} �∗ ∅.
Proof. By induction on the structure of n.

– Base Case: n = κ. In this case, �n�∅ = fκ, κ : ∀x. ⇒ A′[fκ] ∈ F (Φ)
and γ(A′[fκ]) ≡ A[fκ] for some substitution γ. Thus A′[fκ] ∼γ A[fκ], which
implies F (Φ) � {A[fκ]} �κ,γ ∅.

– Step Case: n = κ n1 n2 ... nm. In this case, �n�∅ = fκ(�n1�∅, ..., �nm�∅), κ :
∀xy. C1[y1], ..., Cm[ym] ⇒ B[fκ(y1, ..., ym)] ∈ F (Φ). To obtain n : ⇒ A[�n�∅],
we have to use κ : ∀x. C1[�n1�∅], ..., Cm[�nm�∅] ⇒ B[fκ(�n1�∅, ..., �nm�∅)]
with γ(B[fκ(�n1�∅, ..., �nm�∅)]) ≡ A[�n�∅]. By the inst rule, we have κ :
γC1[�n1�∅], ..., γCm[�nm�∅] ⇒ γB[fκ(�n1�∅, ..., �nm�∅)]. Furthermore, it has
to be the case that n1 : ⇒ γC1[�n1�∅], ..., nm : ⇒ γCm[�nm�∅]. Thus we
have F (Φ) � {A[�n�∅]} �κ,γ {γC1[�n1�∅], ..., γCm[�nm�∅]}. By IH, we have
F (Φ) � {γC1[�n1�∅]} �∗

γ1
∅. So F (Φ) � {A[�n�∅]} �κ,γ · �∗

γ1{γ1γC2[�n2�∅], ..., γ1γCm[�nm�∅]. Again, we have n2 : ⇒ γ1γC2[�n2�∅], ..., nm :
⇒ γ1γCm[�nm�∅]. By applying IH repeatedly, we obtain F (Φ) �
{A[�n�∅]} �∗ ∅.

Lemma 5. For F (Φ), if F (Φ) � {A1[t1], ..., An[tn]} �∗ ∅ with FV(ti) = ∅ for
all i, then Φ � {A1, ..., An} �∗ ∅.
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Proof. By induction on the length of �∗.

– Base Case: F (Φ) � {A[fκ]} �∗ ∅. We have κ : ⇒ A′ ∈ Φ such that A′ ∼γ A.
Thus Φ � {A} �κ ∅.

– Step Case: F (Φ) � {A1[t1], ..., Ai[ti], ..., An[tn]} �κ,γ

{γA1[t1], ..., γB1[t′1], ..., γBl[t′l], ..., γAn[tn]} �∗ ∅ with ti ≡ fκ(t′1, ..., t
′
l) and

κ : B1, ..., Bl ⇒ C ∈ Φ where C ∼γ Ai. So by IH, we have Φ �
{A1, ..., An} �κ,γ {γA1, ..., γB1, ..., γBl, ..., γAn} �∗ ∅.

Now we are ready to prove the completeness result.

Theorem 7 (Completeness). If n : [∀x]. ⇒ A, where n is in normal form,
then Φ � {A} �∗

γ ∅.
Proof. By Theorem 4, we have n : [∀x]. ⇒ A[�n�∅] holds in F (Φ). By Lemma 4,
we have F (Φ) � {A[�n�∅]} �∗ ∅. By Lemma 5, we have Φ � {A} �∗

γ ∅.

The completeness result relies on realizability transformation to record the proof
steps for a query, so the LP-Unif reduction can just follow the proof steps to
reduce the query to the empty set. Together with Theorem 1, this proof system
gives new semantics for derivations in LP.

4 Structual Resolution

S-resolution [5] is a newly proposed alternative to SLD-resolution that allows a
systematic separation of derivations into term-matching and unification steps.
A logic program is called productive if the term-matching reduction is termi-
nating for any query. For productive programs with coinductive meaning, finite
term-rewriting reductions can be seen as measures of observation in an infinite
derivation. The ability to handle corecursion in a productive way is an attractive
computational feature of S-resolution.

Example 4. The following program defines the predicate Stream:

κ1 : ∀x.∀y.Stream(y) ⇒ Stream(Cons(x, y))

It will result in infinite LP-Unif reduction:

Φ � {Stream(Cons(x, y))} �κ1,[x/x1,y/y1] {Stream(y)} �κ1,[Cons(x2,y2)/y]

{Stream(y2)} �κ1,[Cons(x3,y3)/y2] . . .

But it will yield finite term-matching reduction since Stream(y) can not be
matched by the head of κ1 (Stream(Cons(x, y))):

Φ � {Stream(Cons(x, y))} →κ1 {Stream(y)} →
In general, term-matching reductions are not complete relative to LP-Unif

reductions, but we can combine them with substitutional steps to complete
derivations. This is exactly the idea behind S-resolution.
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Example 5. The following program defines bits and lists of bits:

κ1 : ⇒ Bit(0)
κ2 : ⇒ Bit(1)

κ3 : ⇒ BList(Nil)
κ4 : ∀x.∀y.BList(y),Bit(x) ⇒ BList(Cons(x, y))

LP-Unif would give a complete reduction:

Φ � {BList(Cons(x, y))} �κ4,[x/x1,y/y1] {Bit(x),BList(y)} �κ1,[0/x,0/x1,y/y1]

{BList(y)} �κ3,[Nil/y,0/x,0/x1,Nil/y1] ∅
But term-matching reduction will not be able to compute an answer in this case.

Φ � {BList(Cons(x, y))} →κ4 {Bit(x),BList(y)} →
This is why, S-resolution combines term-matching reductions with additional
substitutional steps, in order to compute the same answer:

Φ � {BList(Cons(x, y))} →κ4 {Bit(x), BList(y)} ↪→κ1,[0/x] {Bit(0), BList(y)} →κ1,[0/x]

{BList(y)} ↪→κ3,[0/x,Nil/y] {BList(Nil)} →κ3,[0/x,Nil/y] ∅
Completing derivation for Stream in the same way will result in an infinite

derivation, in which every term-matching reduction is finite.
In this section, we embed S-resolution into the type theoretic framework we

have developed in the previous sections. We first define S-derivations in terms
of LP-Struct reductions, in the uniform style with LP-Unif reductions, thereby
also defining LP-TM reductions, which resemble reductions in term-rewriting
systems [10]. We then prove that LP-Unif and LP-Struct are operationally equiv-
alent subject to two conditions: productivity and non-overlapping. Finally, we
show how realizability transformation can be used to guarantee productivity of
logic programs in the setting of S-resolution.

4.1 S-Resolution in the Type-Theoretic Setting

Definition 8. – Term-matching(LP-TM) reduction:
Φ � {A1, ..., Ai, ..., An} →κ,γ′ {A1, ..., σB1, ..., σBm, ..., An} for any substitu-
tion γ′, if there exists κ : ∀x.B1, ..., Bn ⇒ C ∈ Φ such that C �→σ Ai.

– Substitutional reduction:
Φ � {A1, ..., Ai, ..., An} ↪→κ,γ·γ′ {γA1, ..., γAi, ..., γAn} for any substitution
γ′, if there exists κ : ∀x.B1, ..., Bn ⇒ C ∈ Φ such that C ∼γ Ai.

The second subscript of term-matching reduction is used to store the substitu-
tions obtained by unification, it is only used when we combine term-matching
reductions with substitutional reductions. The second subscript in the substitu-
tional reduction is intended as a state, it will be updated along with reductions.

Given a program Φ and a set of queries {B1, . . . , Bn}, LP-TM uses only
term-matching reduction to reduce {B1, . . . , Bn}:
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Definition 9 (LP-TM). Given a logic program Φ, LP-TM is given by an
abstract reduction system (Φ,→).

LP-TM is also sound w.r.t. the type system of Definition 2, which implies that
we can obtain a proof for each successful query.

Theorem 8 (Soundness of LP-TM). If Φ � {A} →∗ ∅ , then there exists a
proof e : ∀x. ⇒ A given axioms Φ.

Comparing Theorems 1 and 8, we see that for LP-TM, there is no need to accu-
mulate substitutions, and the resulting formula is proven as stated. This differ-
ence is due to the use of term-matching instead of unification for the reduction.
The following example shows that the LP-TM is incomplete with respect to the
type system.

Example 6. Consider the following program Φ.

κ1 : ⇒ Q(C)
κ2 : ∀x.∀y.Q(x) ⇒ P (y)

For query P (C), we have Φ � {P (C)} →κ2 {Q(x)} →. However, there exist a
proof (κ2 κ1) : ⇒ P (C), by instantiating x, y to C in κ2.

We use →μ to denote a reduction path to a →-normal form. If the →-normal
form does not exist, then →μ denotes an infinite reduction path. We write ↪→1

to denote at most one step of ↪→.
We can now formally define S-Resolution within our formal framework. Given

a program Φ and a set of queries {B1, . . . , Bn}, LP-Struct first uses term-
matching reduction to reduce {B1, . . . , Bn} to a normal form, then performs
one step substitutional reduction, and then repeats this process.

Definition 10 (Structural Resolution (LP-Struct)). Given a logic program
Φ, LP-Struct is given by an abstract reduction system (Φ,→μ · ↪→1).

If a finite term-matching reduction path does not exist, then →μ · ↪→1 denotes
an infinite path. When we write Φ � {A}(→μ · ↪→1)∗{C}, it means a nontrivial
finite path will be of the shape Φ � {A} →μ · ↪→ ·...· →μ · ↪→ · →μ {C}.

Now let us see the execution trace of Stream using LP-Struct:

Φ � {Stream(Cons(x, y))} →κ1 {Stream(y)} ↪→κ1,[Cons(x2,y2)/y]

{Stream(Cons(x2, y2))} →κ1,[Cons(x2,y2)/y]

{Stream(y2)} ↪→κ1,[Cons(x3,y3)/y2,Cons(x2,Cons(x3,y3))/y]

{Stream(Cons(x3, y3))} →κ1,[Cons(x3,y3)/y2,Cons(x2,Cons(x3,y3))/y] {Stream(y3)} . . .

Note that the overall reduction is infinite, but each LP-TM reduction is finite.
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4.2 LP-Struct and LP-Unif

The next question one may ask is how LP-Struct compares to LP-Unif. They
are not equivalent. Consider the program and the finite LP-Unif derivation of
Example 1. LP-Unif has a finite successful derivation for the query Connect(x, y),
but we have the following non-terminating reduction by LP-Struct:

Φ � {Connect(x, y)} →κ1 {Connect(x, y1),Connect(y1, y)}
→κ1 {Connect(x, y2),Connect(y2, y1),Connect(y1, y)} →κ1 ...

The diverging behavior above is due to the divergence of LP-TM reduction.
Therefore, the program of Example 1 is not productive in the sense of [5,8].

Definition 11 (Productivity). We say a program Φ is productive iff every
→-reduction is finite.

Perhaps LP-Unif and LP-Struct are operationally equivalent for all productive
programs? The following example shows this is not the case.

Example 7.

κ1 : ⇒ P (C)
κ2 : ∀x.Q(x) ⇒ P (x)

Here C is a constant. The program is →-terminating. However, for query P (x),
we have Φ � {P (x)} �κ1,[C/x] ∅ with LP-Unif, but Φ � {P (x)} →κ2 {Q(x)} ↪→
for LP-Struct.

Thus, productivity is insufficient for establishing the relation between LP-Struct
and LP-Unif. In Example 7, the problem is caused by the overlapping heads P (C)
and P (x). Motivated by the notion of non-overlapping rules in term rewriting
systems ([1,10]), we introduce the following definition.

Definition 12 (Non-overlapping Condition). Axioms Φ are non-
overlapping if for any two formulas ∀x.B ⇒ C,∀x.D ⇒ E ∈ Φ, there are no
substitution σ, δ such that σC ≡ δE.

Theorem 9. Suppose Φ is non-overlapping. Φ � {A1, ..., An} �∗
γ {C1, ..., Cm}

with {C1, ..., Cm} in �-normal form iff Φ � {A1, ..., An}(→μ · ↪→1)∗
γ{C1, ..., Cm}

with {C1, ..., Cm} in →μ · ↪→1-normal form.

The theorem above still requires the termination of the � to establish equiva-
lence LP-Unif and LP-Struct. We can weaken this requirement by only requiring
termination of the →-reduction, i.e. by requiring productivity.

Theorem 10 (Equivalence of LP-Struct and LP-Unif). Suppose Φ is non-
overlapping and productive.

1. If Φ � {A1, ..., An} � {B1, ..., Bm}, then Φ � {A1, ..., An}(→μ · ↪→1

)∗{C1, ..., Cl} and Φ � {B1, ..., Bm} →∗ {C1, ..., Cl}.
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2. If Φ � {A1, ..., An}(→μ · ↪→1)∗{B1, ..., Bm}, then Φ � {A1, ..., An} �∗

{B1, ..., Bm}.
Note that the above theorem does not rely on termination of LP-Unif reductions
and therefore establishes equivalence of LP-Unif and LP-Struct even for coinduc-
tive programs like Stream of Example 4, as long as they are productive and non-
overlapping. This effect of productivity has not been described in previous work.

4.3 Realizability Transformation and LP-Struct

Even when programs are overlapping and unproductive (as e.g. the program of
Example 1), we would still like to obtain a meaningful execution behaviour for
LP-Struct, especially if LP-Unif allows successful derivations for the programs.
Luckily, we already have a method to achieve that, it is the realizability trans-
formation defined in Sect. 3:

Proposition 1. For any program Φ, F (Φ) is productive and non-overlapping.

Proof. First, we need to show →-reduction is strongly normalizing in (F (Φ),→).
By Definition 7, we can establish a decreasing measurement(from right to left,
using the strict subterm relation) for each rule in F (Φ), since the last argument
in the head of each rule is strictly larger than the ones in the body. Then, non-
overlapping property is due to the fact that all the heads of the rules in F (Φ)
will be guarded by the unique function symbol in Definition 7.

Corollary 1. F (Φ) � {A1, ..., An}(→μ · ↪→1)∗{B1, ..., Bm} iff F (Φ) �
{A1, ..., An} �∗ {B1, ..., Bm}.
Proof. By Theorems 1 and 10.

Example 8. For the program in Example 2, the query Connect(x, y, u) can be
reduced by LP-Struct successfully:

F (Φ) � {Connect(x, y, u)} ↪→κ1,[x/x1,y/z1,fκ1 (u3,u4)/u]

{Connect(x, y, fκ1(u3, u4))} →κ1 {Connect(x, y1, u3), Connect(y1, y, u4)}
↪→κ2,[cκ2/u3,node1/x,node2/y1,node1/x1,b/z1,fκ1 (cκ2 ,u4)/u]

{Connect(node1, node2, cκ2), Connect(node2, y, u4)} →κ2 {Connect(node2, y, u4)}
↪→κ3,[cκ3/u4,cκ2/u3,node3/y,node1/x,node2/y1,node1/x1,node3/z1,fκ1 (cκ2 ,cκ3 )/u]

{Connect(node2, node3, cκ3)} →κ3 ∅

Note that the answer for u is fκ1(cκ2 , cκ3), which is the first order term repre-
sentation of the proof of ⇒ Connect(node1,node3).

Realizability transformation uses the extra argument as decreasing measure-
ment in the program to achieve termination of →-reduction. At the same time
this extra argument makes the program non-overlapping. Realizability transfor-
mation does not modify the proof-theoretic meaning and the execution behaviour
of LP-Unif. The next example shows that not every transformation technique
for obtaining structurally decreasing LP-TM reductions has such properties:
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Example 9. Consider the following program:

κ1 : ⇒ P (Int)
κ2 : ∀x.P (x), P (List(x)) ⇒ P (List(x))

It is a folklore method to add a structurally decreasing argument as a measure-
ment to ensure finiteness of →μ.

κ1 : ⇒ P (Int, 0)
κ2 : ∀x.∀y.P (x, y), P (List(x), y) ⇒ P (List(x), s(y))

We denote the above program as Φ′. Indeed with the measurement we add,
the term-matching reduction in Φ′ will be finite. But the reduction for query
P (List(Int), z) using unification will fail:

Φ′ � {P (List(Int), z)} �κ2,[Int/x,s(y1)/z]

{P (Int, y1), P (List(Int), y1)} �κ2,[0/y1,Int/x,s(0)/z] {P (List(Int), 0)} �

However, the query P (List(Int)) on the original program using unification reduc-
tion will diverge. Divergence and failure are operationally different. Thus adding
arbitrary measurement may modify the execution behaviour of a program (and
hence the meaning of the program). In contrast, by Theorems 4–6, realizability
transformation does not modify the execution behaviour of unification reduction.

Example 10. Consider the following non-productive and non-overlapping pro-
gram and its version after the realizability transformation:

Original program :κ : ∀x.P (x) ⇒ P (x)
After transformation :κ : ∀x.∀u.P (x, u) ⇒ P (x, fκ(u))

Both LP-Struct and LP-Unif will diverge for the queries P (x), P (x, y) in both
original and transformed versions. LP-Struct reduction diverges for different rea-
sons in the two cases, one is due to divergence of →-reduction:
Φ � {P (x)} → {P (x)} → {P (x)}...
The another is due to ↪→-reduction:
Φ � {P (x, y)} ↪→ {P (x, fk(u))} → {P (x, u)} ↪→ {P (x, fk(u′))} → {P (x, u′)}...

Note that a single step of LP-Unif reduction for the original program corre-
sponds to infinite steps of term-matching reduction in LP-Struct. For the trans-
formed version, a single step of LP-Unif reduction corresponds to finite steps of
LP-Struct reduction, which is exactly the correspondence we were looking for.
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5 Conclusions and Future Work

We proposed a type system that gives a proof theoretic interpretation for LP:
Horn formulas correspond to the notion of type, and a successful query yields a
first order proof term. The type system also provided us with a precise tool to
show that realizability transformation preserves both proof-theoretic meaning of
the program and the operational behaviour of LP-Unif.

We formulated S-resolution as LP-Struct reduction, which can be seen as a
reduction strategy that combines term-matching reduction with substitutional
reduction. This formulation allowed us to study the operational relation between
LP-Struct and LP-Unif. The operational equivalence of LP-Struct and LP-Unif
is by no means obvious. Previous work ([5,8]) only gives soundness and complete-
ness of LP-Struct with respect to the Herbrand models. We identified that pro-
ductivity and non-overlapping are essential for showing their operational equiv-
alence.

Realizability transformation proposed here ensures that the resulting pro-
grams are productive and non-overlapping. It preserves the proof-theoretic mean-
ing of the program, in a formally defined sense of Theorems 4–6. It is general,
applies to any logic program, and can be easily mechanised. Finally, it allows to
automatically record the proof content in the course of reductions, as Theorem5
establishes, which helps to prove completeness of LP-Unif (Theorem 7).

With the proof system for LP-reductions we proposed, we are planning to
further investigate the interaction of LP-TM/Unif/Struct with typed functional
languages. We expect to find a tight connection between our work and the type
class inference, cf. [6,11].

In the context of type class inference [6,11], the infinite term-matching behav-
iour seems pervasive. The example below specifies a possible equality instance
declaration for nested datatype such as
data Bush a = Nil | Con a (Bush (Bush a)):

κ1 : Eq(x),Eq(Bush(Bush(x))) ⇒ Eq(Bush(x))
κ2 : ⇒ Eq(Char)

Here Bush is a function symbol, Char is a constant and x is variable. Consider
the query Eq(Bush(Char)), both LP-Unif and LP-Struct will generate an infinite
reduction path by repeatedly applying κ1. Using the realizability transformation,
we can obtain a well-behaved (productive) program:

κ1 : Eq(x, y1),Eq(Bush(Bush(x)), y2) ⇒ Eq(Bush(x), fκ1(y1, y2))
κ2 :⇒ Eq(Char, cκ2)

The substitution for u in the query Eq(Bush(Char), u) will be an infinite term.
But we need a finite representation for such infinite term to construct a dic-
tionary. Such coinductive dictionary construction is the subject of our further
investigations. We would also like to investigate generalizing the type-theoretic
approach from Horn formulas to implicational intuitionistic formulas, the type
system in this case will correspond to a version of simply type lambda calculus.
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Abstract. We define a general typed language to deal with the notion
of event in the context of access control systems. We distinguish between
generic events, which represent the kind of actions that can occur in a
system, and specific events, which represent actual occurrences of those
kinds of actions. A relation is given associating specific to generic events,
as well as a method for obtaining intervals from a history of events. We
describe applications in access control systems with obligations.

Keywords: Event · Event type · Access control · Obligation · Rewriting

1 Introduction

The notion of event, as a particular action or happening taking place in a system,
is a pervasive notion in today’s computing (and real life) systems. Events can take
up many forms, from messages exchanged over a network, to actions performed
by users of the system, to occurrences of physical phenomena such as a disk error
or a fire alarm.

In the context of access control policies, there are many situations when
granting or denying access to certain resources depends on the occurrence of
particular events. For example, in a hospital environment, an access control pol-
icy may specify that any doctor in the ward should have access to a patient p’s
medical records, if patient p suffers a cardiac arrest. Several access control mod-
els have been designed to deal with policies defined in terms of events (see, for
example, [3,8]). From the semantic point of view, the notions of action and event
were extensively studied by Davidson [10]. Representation of events inspired by
Davidson’s work and adapted from Kowalski and Sergot’s work on the event cal-
culus [17] have been used in literature [1,5]. In particular, in [1], events were used
to define an abstract metamodel for access control and obligations. Obligations
differ from permissions in the sense that, although permissions can be issued
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but not used, an obligation usually is associated with some mandatory action,
which must be performed at a time defined by some temporal constraints or by
the occurrence of events. Therefore, effectively dealing with events is a key issue
when reasoning about systems with obligations. The model described in [1] is an
extension of Barker’s category-based metamodel for access control [4] (CBAC):
a notion of event adapted from [17] is used to describe a set of core axioms for
defining obligations in an abstract way, without making any specific assumptions
on the components of the system. In fact, two notions of events are defined in [1]:
generic and specific. Generic events are used to represent the kind of events that
can occur in a particular system, and specific events correspond to particular
occurrences of events in a run of the system. The axiomatisation of the notion
of obligation given in [1] relies on an event typing relation (associating specific
events with generic events), and an event interval relation, which defines a link
between an event that triggers a specific behaviour, and the event that termi-
nates it. For example, the event associated to a fire alarm going off may start
an emergency interval, which will be closed by the event associated to a call to
the fire department.

In this paper we provide a general term-based language for events, and for-
mally define the notions of event typing and event interval, to deal with event
classification in a uniform way. Events are presented as typed-terms, built from a
user-defined signature, that is, a particular set of typed function symbols that are
specific to the system modelled. For each system we also define how to compute
the events that close intervals initiated by previous events, based on a system
specific function on generic events. This function allows us to extract intervals
from a particular history (which is a sequence of events that have occurred in a
system). Both event classification and interval computation have applications in
access control and obligation management systems.

To summarise, the main contributions of the paper are the following:

– A general typed-language for events, and a typing relation associating specific
and generic events;

– A general method for extracting event-intervals from a history;
– An implementation of this general method in Prolog together with methods for

dealing with obligations, and an application of these methods in the context
of obligation policies.

Overview: In Sect. 2, we recall some basic notions on term rewriting as well
as the CBAC metamodel. In Sect. 3 we introduce a typed term language for
representing events, and in Sect. 4 we recall the notion of event history and define
an algorithm to extract event intervals from a history. Section 5 presents details of
an implementation in Prolog of the relation between specific and generic events,
the computation of intervals from history, as well as how this can be used in
the obligation model. In Sect. 6 we discuss related work and finally, in Sect. 7,
conclusions are drawn and further work is suggested.
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2 Preliminaries

In this section we recall some basic notions and notations for term rewriting and
access control policies involving obligations (see [1,2] for more details).

Term Rewriting. Term rewriting systems can be seen as programming or spec-
ification languages, or as formulae manipulating systems. We recall briefly the
definition of first-order terms and term rewriting systems [2].

A signature F is a finite set of function symbols together with their (fixed)
arity, where constants a are function symbols of arity zero. X denotes a denu-
merable set of variables X1,X2 . . . , and T (F ,X ) denotes the set of terms built
up from F and X . Terms are identified with finite labeled trees. Positions are
strings of positive integers. The subterm of t at position p is denoted by t|p and
the result of replacing t|p with u at position p in t is denoted by t[u]p. V(t)
denotes the set of variables occurring in t. A term is ground (closed) if V(t) = ∅.
Substitutions are written θ = {t1/X1, . . . , tn/Xn} where ti is assumed to be
different from the variable Xi and dom(θ) = {X1, . . . , Xn}. We use Greek letters
for substitutions and postfix notation for their application.

Given a signature F , a term rewrite system on F is a set of rewrite rules
R = {li → ri}i∈I , where li, ri ∈ T (F ,X ), li �∈ X , and V(ri) ⊆ V(li). A term t
rewrites to a term u at position p with the rule l → r and the substitution σ,
written t →l→r,σ

p u, or simply t →R u, if t|p = lσ and u = t[rσ]p. Such a term t
is called reducible. Irreducible terms are said to be in normal form. We denote
by →+

R (resp. →∗
R) the transitive (resp. transitive and reflexive) closure of →R.

The subindex R will be omitted when it is clear from the context.

Access Control and Obligations. The Category-Based Access Control (CBAC)
metamodel [4] is an abstract framework for the definition of access control poli-
cies, which can be instantiated to derive well-known access control models, such
as Role-Based Access Control [11], Bell-La Padula’s model [6], and dynamic
models [3,8]. The latter permit the definition of access control policies where
users’ rights depend on their actions, or more generally, on events that hap-
pened in the system. In this paper, we present an event language and show how
it can be applied in access control and obligation models. More precisely, we
consider the extension of the CBAC metamodel that incorporates obligations,
which in the following will be referred to as CBACO [1].

The CBAC metamodel is defined using a basic set of primitive, abstract
notions: principals (which are the users of the system), resources (which are the
objects that should be protected) and actions (which are the operations that
users can perform on resources). These entities can be grouped into categories
(in access control models we mostly consider categories of users). A category is
a class of entities that share some property. Classic types of groupings used in
access control, like a role, a security clearance, a discrete measure of trust, etc.,
are particular instances of the more general notion of category. Permissions, that
is, pairs of action and resource, are assigned to categories of users rather than to
individual users. Categories can be defined on the basis of e.g., user attributes,
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geographical constraints, resource attributes. In this way, permissions change in
a dynamic and autonomous way (e.g., when a registered user has a birthday),
unlike, e.g., role-based access control models, which require the intervention of
a security administrator. Then, the axiomatic specification of the model allows
us to derive, at any point, the rights of a principal by computing the principal’s
category and checking the permissions associated to it. In this way, an access
request can be evaluated to decide whether it should be granted or denied. In
CBACO, in addition to the basic notion of permissions available in CBAC, there
are also two abstract notions of obligations, defined as follows.

Definition 1 (Obligation). A generic obligation is a tuple (a, r, ge1, ge2),
where a is an action, r a resource, and ge1, ge2 two event types (ge1 triggers
the obligation, and ge2 ends it). If there is no starting event (resp., no ending
event) we write (a, r,⊥, ge) (resp., (a, r, ge,⊥)), meaning that the action on the
resource must be performed at any point before an event of type ge (resp. at any
point after an event of type ge).

Example 1. Assume that in an organisation, the members of the security team
must call the fire-department if a fire alarm is activated, and this must be done
before they de-activate the alarm. This obligation could be represented by the
tuple (call, firedept, alarmON, alarmOFF ).

Definition 2 (Duty). A duty is a tuple (p, a, r, e1, e2, h), where p is a principal,
a an action, r a resource, e1, e2 are two events and h is an event history that
includes an interval opened by e1 and closed by e2. We replace e1 (resp. e2) with
⊥ if there is no starting (resp. closing) event.

Unlike access control models, which do not need to check whether the autho-
rised actions are performed or not by the principals, obligation models need to
include mechanisms to check whether duties were discharged or not. Specifically,
obligation models distinguish four possible states for duties: invalid (when the
duty is issued after the completion point); fulfilled (when carried out within the
associated interval); violated (when not carried out within the associated inter-
val, although issued with a valid interval) and pending (when has not yet been
carried, but the interval is still valid). We refer the reader to [1] for the axiomatic
and operational semantics of obligation policies in CBACO.

3 Events as Typed Terms

In this section we present a typed term language to represent events. We consider
events as particular actions or happenings occurring at a particular time. Types
are used to restrict the terms that correspond to events in our language.

In this section, and in the rest of the paper, we will present examples con-
sidering a hospital scenario, where several types of events can occur: patients
can be triaged, admitted, receive consultation, be discharged, submitted to
exams/procedures, etc. Sporadically there can also occur events such as fire
alarms that can lead to the hospital evacuation, etc.
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3.1 Types and Terms

Let b range over a finite set B of base types, and l over a finite set L of labels.
The set B will always contain the types Tm and Ev, which are the types for time
and event expressions respectively.

Definition 3 (Type). The set T of types is built from B:

τ ∈ T :: = b | {l1 : τ1, . . . , ln : τn} | τ1 → τ2

Record types, of the form {l1 : τ1, . . . , ln : τn}, represent structures labelled with
l1, . . . , ln, with types τ1, . . . , τn respectively.

We consider a (system specific) function type : F → T, which assigns a
type to each function symbol in F . If f is a function symbol with arity n, then
type(f) = τ1 → · · · → τn → τ , for some τ1, . . . , τn, τ ∈ T.

Because terms in our language can contain free variable occurrences, type
declarations for variables must be taken into consideration when typing expres-
sions. As usual, an environment env, is a set of declarations of the form X : τ
where all the variables X are distinct.

We now present our language to model events. We consider event expressions
as terms that can be built from other event expressions, atomic actions or sets
of attributes (represented as labelled structures).

Definition 4 (Event Specification). Consider X ∈ X , τ ∈ T and f ∈ F ,
then values and specifications are defined in the following way:

ν :: = Xτ | f(ν1, . . . , νn), n ≥ 0
spec :: = {l1 = ν1, . . . , ln = νn}, n > 0

The value Xτ represents a term variable of type τ . An atomic value a is a partic-
ular case of a value of the form f(ν1, . . . , νn) where n = 0. The event specification
{l1 = ν1, . . . , ln = νn} represents the structure with labels l1, . . . , ln and values
ν1, . . . , νn respectively.

Definition 5 (Generic and Specific Events). A generic event, denoted by
ge(Xτ1

1 , . . . , Xτn
n ) ∈ GE, is defined by an equation of the form:

ge(Xτ1
1 , . . . , Xτn

n ) = {spec1, . . . , specm}C

where the variables Xτ1
1 , . . . , Xτn

n occur in the right-hand side of the equation.
The expression {spec1, . . . , specm}C represents the compound generic event,
formed from the generic event specifications spec1, . . . , specm. If m = 1, then
just write ge(Xτ1

1 , . . . , Xτn
n ) = spec. Compound events represent sets of events

that can occur separately in the history, but should be identified as a single event
occurrence.

Specific events, denoted by e ∈ E, are defined in the following way, where
spec∅ denotes ground event specifications (see Definition 4):

e :: = {spec∅

1 , . . . , spec∅

n }C

As before, we write {spec∅}C as spec∅.
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Example 2. We describe the action of a doctor P1 reading the medical record of
a patient P2, by the generic event gen read(PD

1 , PP
2 ), where D and P represent

the types for doctor and patient, respectively:

gen read(PD
1 , PP

2 ) = {act = read , doc = PD
1 , obj = rec(PP

2 )}

We state that an order to evacuate the neurology ward was issued by Chief
Jones, with the specific event:

{act = evacuate, ward = neurology, principal = chief jones}

The compound event gen pregnD represents the events that must occur, before
a doctor can make a pregnancy diagnosis.

gen pregnD(XP) = { {act = lab test, pat = XP},
{act = ultrasound, obj = abdomen, pat = XP} }C

3.2 Typing Rules

We now assign types to values and event specifications, to ensure that we only
deal will well-typed entities (wrt. the type signature specific to each system). We
use record types to type labelled structures, with an implicit notion of subtyping
(inspired by Ohori’s system with polymorphic record types [20]). For the moment
we only consider (implicit) subtyping between record types, but this can later
be extended to general event types.

Definition 6 (Typing Rules for Values, Specifications and Events).
A typing judgement is a declaration of the form env � ν : τ , env � spec : τ ,
or env � ge(Xτ1

1 , . . . , Xτn
n ) : Ev. We say that ν (resp. spec) has type τ given env,

and write env � ν : τ (resp. env � spec : τ), if the judgement can be derived using
the following axioms and rules:

env � Xτ : τ, if X : τ ∈ env

type(f) = τ1 → · · · → τn → τ env � ν1 : τ1 · · · env � νn : τn
(n ≥ 0)

env � f(ν1, . . . , νn) : τ

env � ν1 : τ1 · · · env � νn+k : τn+k

env � {l1 = ν1, . . . , ln = νn} ∪ Γ : {l1 : τ1, . . . , ln : τn}

where, Γ = {ln+1 = νn+1, . . . , ln+k = νn+k}.
Given the rules above, a generic event expression ge(Xτ1

1 , . . . , Xτn
n ) is well-

typed given env, if env � ge(Xτ1
1 , . . . , Xτn

n ) : Ev can be derived from:

ge(Xτ1
1 , . . . , Xτn

n ) = {spec1, . . . , specm}C env � speci : σi (i = 1, . . . ,m)

env � ge(Xτ1
1 , . . . , Xτn

n ) : Ev
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Given the condition on variables in Definition 5, if env � ge(Xτ1
1 , . . . , Xτn

n ) : Ev
then env contains declarations X1 : τ1, . . . , Xn : τn.

Example 3. Using the fact that type(read) = A, type(dr . paul)= D, type(john) =
P, and type(rec) = P → R, we obtain

env � {act = read , doc = PD
1 , obj = rec(PP

2 )} : {act : A, doc : D, obj : R}
and, for env = {P1 : D, P2 : P}, env � gen read(PD

1 , PP
2 ) : Ev using the defini-

tion of gen read given in Example 2.

Because we have an implicit subtyping rule for typing records, types are not
unique. The event specification in the previous example, spec = {act = read ,
doc = PD

1 , obj = rec(PP
2 )}, can also be typed with {act : A, obj : R} and

{obj : R}. In fact any non-empty subset of {act : A, doc : D, obj : R} is a valid
type for spec. In this paper we are doing type-checking (and not type-inference),
therefore we do not focus on most general types for specifications. But this could
be achieved by using the notion of kinds of records as it is done in [20].

We now define an instance relation, associating ground values (denoted ν∅)
to values and specific event specifications to generic event specifications, under
a substitution.

Definition 7 (Instantiation). We define the relation �θ ν∅:: ν
(resp. �θ spec∅:: spec), where θ is a substitution, in the following way:

� ν∅ : τ

�{ν∅/X} ν∅::Xτ

�θ1 ν∅

1 :: ν1 · · · �θn
ν∅

n :: νn
(n ≥ 0)�θ1∪···∪θn

f(ν∅

1 , . . . , ν∅

n ):: f(ν1, . . . , νn)

�θ1 ν∅

1 :: ν1 · · · �θn
ν∅

n :: νn

�θ1∪···∪θn
{l1 = ν∅

1 , . . . , ln = ν∅

n } ∪ Γ :: {l1 = ν1, . . . , ln = νn}
where, Γ = {ln+1 = ν∅

n+1, . . . , ln+k = ν∅

n+k}. Whenever we write θ1 ∪ · · · ∪ θn,
we assume that θ1, . . . , θn are compatible substitutions, in the sense that they do
not assign different values to the same variable.

Definition 8 (Event Instance). The relation �θ e :: ge(
−→
X ), extends the previ-

ous definition to event expressions in the following way:

ge(
−→
X ) = {spec1, . . . , specn}C �θ1 spec∅

1 :: spec1 · · · �θn
spec∅

n :: specn

�θ1∪···∪θn
{spec∅

1 , . . . , spec∅

n }C :: ge(
−→
X )

Example 4. Recall gen read(PD
1 , PP

2 ), from Example 2. For the substitution θ =
{dr . paul/P1, john/P2}, we can derive

�θ {act = read , doc = dr . paul , obj = rec(john)} :: gen read(PD
1 , PP

2 ).

Proposition 1. If env � ν : τ (resp. env � spec : τ) and �θ ν∅ :: ν (resp. �θ

spec∅:: spec), then:



114 S. Alves et al.

1. θ = {ν∅

1 /X1, . . . , ν
∅

n /Xn}, where {X1, . . . , Xn} = V(ν) (resp. V(spec)) and
� ν∅

i : τi where Xi : τi ∈ env.
2. � ν∅ : τ (resp. � spec∅ : τ).

The instantiation relation defined in this section is syntactic (replacing vari-
ables by terms). Depending on the application and the kind of data used to
define events, instantiation may require some computation; we call it a semantic
instantiation in the latter case. Formally, semantic instantiation is defined in the
context of an equational theory. Although we leave a complete study on different
equational theories and its appropriateness for future work, in the next section
we will deal with semantic instantiation for time expressions.

4 Event History and Intervals

In this section we will define the notions of event history and intervals in history,
which are determined by events. We also show how the instance relation defined
in the previous section can be used to extract intervals from a history of events
that match two given generic events. A history of events corresponds to a specific
sequence of events that occur in a particular time frame. To deal with time frames
we need a language that appropriately deals with time.

4.1 Time Expressions and Time Constraints

In this subsection we define a language for expressions representing time and use
this to encode the approach for dealing with events in [1], in this setting.

Definition 9 (Time Expressions and Constraints). Let c range over a set
S, partially ordered by ≤ and closed under +. We define the set of time expres-
sions and time constraints denoted t ∈ T and tc ∈ T C respectively, in the
following way:

t :: = c | XTm | t + c tc :: = t | t+ | t+c

Time constraints can be seen as intervals [t1, t2], where t1 = t2, if the time
constraint is a time expression; t2 = ∞, if the time constraint is of the form t+1 ;
and t2 = t1 + c, if the time constraint is of the form t+c

1 .

Note that a constant time expression represents a specific instant in time, which
can be particular to each modelled system. In a time expression of the form t+c,
c can be seen as a duration. In the rest of the paper we will take S to be N, but
other constants can be considered (that is, we consider time constants as clock
ticks from a fixed point in time).

Definition 10 Let σ = {c1/X1, . . . , cn/Xn} be a substitution. We define �·�σ
for time expressions and time constraints, as follows:

�c�σ = c �t+�σ = [�t�σ, ∞] �t + c�σ = �t�σ + �c�σ
�X�σ = σ(X) �t+c�σ = [�t�σ, �t�σ + �c�σ]

If V(t1) ∪ V(t2) ⊆ dom(σ), then t1 �σ t2 iff �t1�σ ≤ �t2�σ. If t1, t2 are both
ground we simply write t1 � t2 instead of t1 �∅ t2.
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Another Representation for Events. Events in [1] are represented by finite
sets of arity-2 facts, containing at least two necessary facts, happens(e, t) and
act(e, a), where e is the identifier of the specific event, and t the time of its
happening. Generic events are defined similarly, but can contain variables (as is
the case in this paper), and in particular they always contain a variable (E) to
be instantiated with the identifier of a specific event. A specific event e is an
instance of a generic event ge, if there is a substitution σ such that geσ ⊆ e. For
example the events

e1 = {happens(e1, 12.25), act(e1, activate), obj(e1, alarm), subj(e1, john)}
e2 = {happens(e2, 12.45), act(e2, deactivate), obj(e2, alarm), subj(e2, tom)}

are instances, with respective substitutions σ1 = {e1/E, 12.25/T} and σ2 =
{e2/E, 12.25/T, tom/X}, of the generic events

alarmON = {happens(E, T ), act(E, activate), obj(E, alarm)}
alarmOFF= {happens(E, T + 20), act(E, deactivate), obj(e, alarm), subj(E,X)}
This is an example where the instantiation relation requires some computation
(the instantiation of T + 20 with the substitution 12.25/T will produce 12.45 in
σ2). Note that the function in Definition 10 defines a semantic instantiation for
time expressions and time constraints.

The encoding of this event representation is straightforward. Given a par-
ticular event, a record spec is created containing an entry fact = exp for each
fact fact(e, exp), except for happens(e, t). The identifier e can, depending on
necessity, either be omitted or be included as a particular entry id = e. Finally,
the event will be represented by a pair (spec, t), where t is a time expression
(this notion will be formalised in the next section). The encoding of the events
above is:

({act = activate, obj = alarm, subj = john}, 12.25)
({act = deactivate, obj = alarm, subj = tom}, 12.45)
(alarmON = {act = activate, obj = alarm}, T )
(alarmOFF(X) = {act = deactivate, obj = alarm, subj = X)}, T )

4.2 History of Events

We will now consider a history of events and define how one can relate events in
a history to define appropriate intervals.

Definition 11 (History). An event history h ∈ H is a sequence of distinct spe-
cific events in time of the form [E1 = (e1, t1), . . . , En = (en, tn)], where t1, . . . , tn
are ground and such that for i < j, ti � tj. A subsequence of h is called an event
interval and it is represented as I = (Ei, Ej), where Ei, Ej are respectively the
first and the last event in the interval. We say that Ei opens the interval and Ej

closes it. We use the constant ⊥ to represent untimed events as a pair (e,⊥).
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Example 5 (History).

h = [ ({act = enterHosp, patient = john}, 900),
({act = consult , patient = john, doc = dr . paul}, 1100),
({act = request , doc = dr . paul , patient = john, proc = x -ray}, 1110),
({act = perform, patient = john, doc = dr . mary , proc = x -ray}, 1125),
({act = read , doc = dr . paul , ward = neurology , obj = rec(john)}, 1300)

To compute intervals we will define a function that describes how events are
linked to subsequent events in history. Because we want to consider different
scenarios we will also consider different strategies to select intervals. A strategy
is a function strat : 2I → 2I , which will be used to select elements from a
set I of pairs of timed events (intervals). Examples of strategies can be select-
first, select-last, select-all, etc. We will use S to represent the set of available
strategies.

Definition 12. A closing function cl : GE × T C → 2GE×T ×S , is a mapping
associating to a pair (ge, tc), a set of triples of the form (ge′, t′, strat), which are
the generic events in time that are closed by the generic event ge provided that
some constraints on t′ and tc are satisfied, and selected by the function strat. In
the rest of the paper we will assume a select-first strategy, and omit strategies
from function cl.

Example 6. In our hospital scenario, consider:

– cl(exitHosp(P,W ), T+)) = {(triage(P ), T ), (inWard(P,W ), T )}
– cl(releaseCR(W ), T+20)) = {(codeRED(W ), T )}
For instance cl(releaseCR(W ), T+20)) = {(codeRED(W ), T )} indicates that the
specific event releaseCR(neurology) can close the event codeRED(neurology),
provided that the former occurs at most 20 instants after the latter.

Closed and open intervals are key notions when dealing with obligations, as
they allow us to determine the status of an obligation at a given point. In the
next section we will use the notions of closed and open intervals (Definitions 13
and 14 below) in the context of the CBACO metamodel.

Definition 13. Let h ∈ H, (ge, tc) ∈ GE × T C and (ge′, t) ∈ GE × T , then
closed(ge′, ge, h) is the set of event intervals of the form ((ei, ti), (ej , tj)) such
that, for some compatible substitutions θi, θj and a substitution on time variables
σ, one has: (ge′, t) ∈ cl((ge, tc)); �θi

ei :: ge′ and �θj
ej :: ge; ti = �t�σ and

tj ∈ �tc�σ. Then the function interval(e1, e2, h) is true if, for some compatible
substitutions θ1 and θ2: �θ1 e1 :: ge1, �θ2 e2 :: ge2 and (e1, e2) ∈ closed(ge1, ge2, h),
and false otherwise.

Definition 14. Let h ∈ H, (ge, tc) ∈ GE × T C and (ge′, t) ∈ GE × T , then
open(ge′, ge, h) is the set of event intervals of the form ((ei, ti),⊥) such that, for
some substitution θi and a substitution on time variables σ, one has: (ge′, t) ∈
cl((ge, tc)); �θi

ei :: ge′; ti = �t�σ, but there is not an event (ej , tj), with ti � tj,
such that �θj

ej :: ge, for a substitution θj compatible with θi and tj ∈ �tc�σ.
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In the defininions above, we do not distinguish between single and compound
events, and assume that compound events appear in history. A more detailed
and realistic treatment of coumpound events in history is left for future work.

5 A Prolog Implementation

In this section we describe a prototype implementation of the previous definitions
in Prolog. Because Prolog programs are expressed in terms of relations, repre-
sented as facts and rules, Prolog is an ideal language to implement the notions
defined in this paper. Backtracking, unification and logical variables are also use-
ful features for our implementation (although in this prototype implementation
we treat substitutions explicitly, a more efficient implementation can make use
of Prolog’s logic variables and unification to implicitly propagate substitutions
and deal with compatibility of substitutions).

5.1 Defining Events, Event Typing and Intervals

For a particular system, the language of events is determined by the set of
functors F , its associated types given by function type, and the equations defining
generic events, which can be represented as Prolog facts. For example, we can
consider the following typed constants and functors for our hospital scenario:

type(neurology,ward).

type(dr_paul,doctor).

type(rec,arrow([patient],resource)).

ge(exitHosp,[var(P1,patient)], rec([lab(action,discharge),

lab(patient,var(P1,patient)),

lab(doc,var(P2,doctor))])).

cl((ge(exitHosp,[var(P,doctor),var(W,ward)]),plus(var(T,time))),

[(ge(triage,[var(P,doctor)]),var(T,time)),

(ge(inWard,[var(P,doctor),var(W,ward)]),var(T,time))]).

cl((ge(releaseCR,[var(W,ward)]),plus(var(T,time))),

[(ge(codeRED,[var(W,ward)]),var(T,time))]).

Below we present the predicate ty(Theta, E, GE) implementing the relation
�θ e::ge from Definition 8.

ty([],A,A):- atomic(A).

ty([(X,Value)],Value,var(X,Type)):- typed([],Value,Type).

ty(Theta,fun(Name,CValues),fun(Name,Values)):- zip(CValues,Values,L),

tyList(Theta,L).

ty(Theta,lab(Name,CValue),lab(Name,Value)):- ty(Theta,CValue,Value).

ty(Theta,rec(CL),rec(L)):- permut(CL,PCL),

zip(CL,L,LRec),

tyList(Theta,LRec).

ty(Theta,CSpec,ge(Name,Lvar)):- ge(Name,Lvar,Spec), ty(Theta,CSpec,Spec).

ty(Theta,comp(CSpec),ge(Name,Vars)):- ge(Name,Vars,comp(LSpec)),

permut(CSpec,PCSpec),
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zip(PCSpec,LSpec,Specs),

ty(Theta,Specs).

tyList([],[]).

tyList(Theta,[(CValue,Value)|L]):- ty(Theta1,CValue,Value),

tyList(Theta2,L),

compatible(Theta1,Theta2,Theta).

Where the predicate typed(Env, Value, Type) implements the typing relation
env � ν : τ from Definition 6. The predicate compatible(Theta1, Theta2, Theta)
verifies if the two substitutions Theta1 and Theta2 are compatible, eliminating
duplicated declarations. The predicate zip(L1, L2, L3), succeeds if in the list of
pairs L3, each pair contains elements of lists L1 and L2 occurring at the same
position (similar to the Haskell zip function). The predicate permut(L1,L2)
succeeds if L2 is a permutation of L1.

The functions closed(ge′, ge, h) and open(ge′, ge, h) from Definition 13 can
be computed using the predicates cinterval(GE1,GE2,H,(E1,E2,Sigma)) and
ointerval(GE1,GE2,H,(E1,E2,Sigma)), respectively:

cinterval((ge(N1,V1),TC),(ge(N2,V2),T),H,((Ei,Ti),(Ej,Tj),Sigma)):-

cl((ge(N1,V1),TC),LGEs), member((ge(N2,V2),T),LGEs),

pick((Ei,Ti),H,RH), ty(Theta,Ei,ge(N2,Vs2)),

pick((Ej,Tj),RH,_), ty(Theta,Ej,ge(N1,Vs2)),

tsem(T,Sigma,Ti), tsem(TC,Sigma,Int), belongs(Tj,Int).

ointerval((ge(N1,V1),TC),(ge(N2,V2),T),H,((Ei,Ti),bot,Sigma)):-

cl((ge(N1,V1),TC),LGEs), member((ge(N2,V2),T),LGEs),

pick((Ei,Ti),H,RH), tsem(T,Sigma,Ti),ty(Theta,Ei,ge(N2,Vs2)),

not cinterval((ge(N1,V1),TC),(ge(N2,V2),T),H,((Ei,Ti),(_,_),Sigma)).

closed(GE1,GE2,H,L):- findall(E,cinterval(GE1,GE2,H,E),L).

open(GE1,GE2,H,L):- findall(E,ointerval(GE1,GE2,H,E),L).

The predicate tsem(T, Sigma, Ti) implements the semantic for time expres-
sions and time constraints. The predicate pick will pick an event from the history
and return the rest of the history after that event.

5.2 Application: Obligation Models

In this section, we consider the rewrite-based semantics of CBACO [1], where
the status of an obligation (a, r, ge1, ge2) (see Definition 1) for principal p in a
given history h is computed using the following rewrite rule:

eval-obligation(p, a, r, ge1, ge2, h) → if opar(p, a, r, ge1, ge2) then
append(chk-cl∗(closed(ge1, ge2, h), p, a, r), chk-op∗(open(ge1, ge2, h), p, a, r))

else [not-applicable]

Here the function opar, specific to the system being modelled, is such that
opar(p, a, r, ge1, ge2) holds if principal p has the generic obligation (a, r, ge1, ge2);
append is a standard function that concatenates two lists; closed computes the
sublists of h that start and finish with events e1, e2, which are respectively
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instances of ge1, ge2 (in this case e2 closes the interval for this obligation). Sim-
ilarly open returns the subhistories of h that start with an event e1 (instance of
ge1) and for which there is no instance of ge2 in h that closes the interval for
this obligation. The function chk-cl with inputs h′, p, a, r checks whether in the
subhistory h′ there is an event where the principal p has performed the action a
on the resource r, returning a result fulfilled if that is the case, and violated other-
wise. The function chk-op with inputs h′, p, a, r checks whether in the subhistory
h′ there is an event where the principal p has performed the action a on the
resource r, returning a result fulfilled if that is the case, and pending otherwise.
The functions chk-cl∗ and chk-op∗ do the same but for each element of a list of
subhistories, returning a list of results. Using the functions and relations defined
in the previous sections, we can evaluate obligations according to the above
specification. First, we give an alternative, equivalent specification for the eval-
uation of obligations, which is closer to the logic-programming implementation
discussed in the previous subsection. Assuming that ty is the function that imple-
ments the instance relation �θ on events (that is, ty(e) = {(ge, θ) | �θ e :: ge}),
the status of an obligation can be computed using the following rule, where the
extra variables in the right hand side are existentially quantified.

status(p, a, r, ge1, ge2, h) → if opar(p, a, r, ge1, ge2)
then if ((e1, t1), (e2, t2)) ∈ closed(ge1, ge2, h)

and (e, t) ∈ h and (ge, θ) ∈ ty(e) and
ge θ = {principal = p, action = a, resource = r} then

if t1 ≺ t ≺ t2 then fulfilled else violated
elseif ((e1, t1),⊥) ∈ open(ge1, ge2, h)

and (e, t) ∈ h and (ge, θ) ∈ ty(e) and
ge θ = {principal = p, action = a, resource = r} and
t1 ≺ t then fulfilled else pending

else not-applicable

We are assuming that h contains all the events occurring in the system up to
the moment where we wish to check the status of the obligation.

We now give the Prolog implementation for the rule that computes the sta-
tus of an obligation. To deal with obligations we need Prolog facts/predicates to
represent relations in CBACO. In particular, in order to implement assignment of
obligations to principals, we have a predicate opar(P,A,R,GE1,GE2). We assume
the existence of a generic event ge(par,[var(P,pl),var(A,act),var(R,res)])
with specification rec([lab(principal,var(P,pl)),lab(action,var(A,act)),
lab(resource,var(R,res))]), where pl,act,res are the types for principal,
actions and resources, respectively.

status(P,A,R,ge(N1,V1),ge(N2,V2),H,notapplicable):-

not opar(P,A,R,GE1,GE2),!.

status(P,A,R,ge(N1,V1),ge(N2,V2),H,S):- opar(P,A,R,GE1,GE2),

closed(GE1,GE2,H,CI), member((E1,E2),CI), event(P,A,R,H,(E,T)),

chktime(T,T1,T2,S).

status(P,A,R,ge(N1,V1),ge(N2,V2),H,fulfilled):- opar(P,A,R,GE1,GE2),

open(GE1,GE2,H,CI), member((E1,bot),CI), event(P,A,R,H,(E,T)),!,
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tsem(T1,Theta,Time1) tsem(T,Theta,Time), Time>=Time1.

status(P,A,R,ge(N1,V1),ge(N2,V2),H,pending):- opar(P,A,R,GE1,GE2),

open(GE1,GE2,H,CI), member((E1,bot),CI).

event(P,A,R,H,(E,T)):- member((E,T),H),

ty(Theta,E,ge(par,[var(P1,pl),var(A1,act),var(R1,res)])),

member((P1,P),Theta), member((A1,A),Theta), member((R1,R),Theta).

checktime(Time,Time1,Time2,fulfilled):- tsem(Time1,Theta,T1),

tsem(Time2,Theta,T2),

tsem(Time,Theta,T), T>=T1,T2>=T.

checktime(Time,Time1,Time2,invalid):- tsem(Time1,Theta,T1),

tsem(Time2,Theta,T2),

tsem(Time,Theta,T), (T1>=T;T>=T2).

The rewrite-based specification of duties (see Definition 2) in CBACO [1]
relies on auxiliary functions interval, and type, which are also specific to the sys-
tem being modelled: interval(e1, e2, h) checks whether the event history includes
an interval opened by e1 and closed by e2, and type(e, h) computes the generic
event ge, of which e occurring in h is an instance (and that, in the rule below,
is assumed to be unique).

duty(p, a, r, e1, e2, h) → opar(p, a, r, type(e1, h), type(e2, h)) and interval(e1, e2, h)

In [1] interval and type are assumed to be defined for each specific system, to
respectively implement the relations event interval and event typing. In this
paper we give general definitions/implementations of these relations. The imple-
mentation of a checker for duties in Prolog is straightforward, using the predicate
defined above to compute intervals, which takes into account the type relation
between events.

duty(P,A,R,E1,E2,H):- opar(P,A,R,GE1,GE2), cinterval(GE1,GE2,H,(E1,E2,_)).

6 Related Work

The notion of event has been treated in various settings in the literature, such
as logic-based frameworks, algebraic approaches and query languages, amongst
others. In the context of access control, Barker et al. [5] have proposed a repre-
sentation for events as sets of binary predicates, partially motivated by David-
son’s view of events as action occurrences [10]. In this formalism, event descrip-
tions are given as finite sets of ground 2-place facts (atoms) that describe an
event, uniquely identified by ei, i ∈ N, and which includes three necessary facts:
happens(ei, tj), act(ei, al) and agent(ei, un), and n non-necessary facts. This was
later used in [1] to model obligations in the CBAC metamodel, but considering
only two necessary facts happens and act. This representation is claimed to be
more flexible than a term-based representation with a fixed set of attributes.
In our language, we do not fix necessary facts, although one can define them
as part of the set of typed-functors. Furthermore, event specifications are given
as records which may contain extra fields, so these sets of predicates can be
easily encoded in our language. A less flexible representation was used in [8],
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in the context of distributed event-based access control. In this work, events are
ground terms of the form event(ei, u, a, t) where event is a data constructor of
arity four, ei(i ∈ N) denotes unique event identifiers, u identifies a user, a is an
action associated to the event, and t is the time when the event happened. When
it is sufficient to know the chronological order of events, then the history can be
ordered as to provide that information and the time parameter may be omitted.

The Obligation Specification Language (OSL) defined in [13], presents a lan-
guage for events to monitor and reason about data usage requirements. The
notions of obligational formulas/obligations defined in this paper are closely
related to the notions of generic/concrete obligations in [1]. Therefore data usage
as specified in [13] can be encoded within the CBACO metamodel. The notion
of events presented in [13] is also similar to ours in some aspects, but where
logical expressions are used to deal with intervals. The paper also presents a
relation refinesEv, defining an instance relation between events. This relation
is based on a subset relation on labels, as the instance relation in [1]. In our
setting this instance relation between events is defined for parameterised generic
events (i.e. containing variables), by the implicit subtyping on records but more
generally using variable instantiation.

Still in the context of access control systems, Bertino et al. [7] proposed the
Temporal Role-Based Access Control Model (TRBAC), using events to activate
and deactivate roles. This was later used in [22,23], to deal with security analysis
in the presence of static temporal role hierarchies in RBAC. The time models
used in these works also depend on the notion of time interval, but they use
a simpler notion of interval that can easily be encoded in our language. The
activation and de-activation of roles, as well as dealing with the so-called safety
problem (i.e., administrative actions that can lead to a policy in which a user
can acquire permissions that can compromise the security of the system), is not
the purpose of events in our work. Nevertheless, this can achieved, through the
assignment of users to categories in CBAC policies, based on some property
depending on a temporal constraint.

An important notion in the above formalisms, and in the language described
in this paper, is the notion of interval, which provides means to reason about
assignment of status in [5] and status of obligations in [1]. Intervals as sequences
that are initiated and terminated by events, and during which certain facts hold,
are also a key aspect in the event calculus [17,18]. The initial motivation of the
event calculus was to deal with database updating, but it has been applied in
a variety of settings [9,12,15,16]. Like in the event calculus, we also consider
intervals as being initiated and closed by events, however we do not reason (in
general) about facts that hold at a certain point.

Time intervals and time constraints have also been used to appropriately
deal with obligations in access control models [1,14,19,21]. In most of these
models time intervals are not defined by events, but as fixed points in time,
which are easily represented in our language. Time constraints in [19] consider
sequences of time intervals, to enforce systematic repetition of obligations. We do
not consider this type of constraints, as repetition of obligations can be enforced
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through the definition of the categories for obligations, but our representation
of time constraints could easily be adapted to consider sequences of intervals.

7 Conclusions

We have defined a language to represent events as typed-terms, built from a
user-defined signature, to formally deal with the notions of event typing and
event intervals in a uniform way, in the context of the CBACO metamodel. In a
given system, intervals can be automatically extracted from a history of events
by means of a relation that determines how events are closed in the system.
This approach allows us to adequately define general functions to implement
event typing and to compute event intervals, without having to know the exact
type of events that we are dealing with. As future work we would like to extend
this formalism to deal with notions such as conflicting events, and automatically
generated events. Furthermore, we believe that a type-system for events could be
useful in identifying patterns of events in history, which could lead to interesting
applications in the context of event processing. We believe that the notions of
intervals defined here could be useful in other contexts. In particular, it could be
used to infer intervals where a particular status is valid, which can be applied in
status-based access control models.
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Abstract. This paper presents an application of the theory of sorting
networks to facilitate the synthesis of optimized general-purpose sort-
ing libraries. Standard sorting libraries are often based on combinations
of the classic Quicksort algorithm with insertion sort applied as base
case for small, fixed, numbers of inputs. Unrolling the code for the base
case by ignoring loop conditions eliminates branching, resulting in code
equivalent to a sorting network. This enables further program transfor-
mations based on sorting network optimizations, and eventually the syn-
thesis of code from sorting networks. We show that, if considering the
number of comparisons and swaps, the theory predicts no real advan-
tage of this approach. However, significant speed-ups are obtained when
taking advantage of instruction level parallelism and non-branching con-
ditional assignment instructions, both of which are common in modern
CPU architectures. We provide empirical evidence that using code syn-
thesized from efficient sorting networks as the base case for Quicksort
libraries results in significant real-world speed-ups.

1 Introduction

General-purpose sorting algorithms are based on comparing, and possibly
exchanging, pairs of inputs. If the order of these comparisons is predetermined
by the number of inputs to sort and does not depend on their concrete values,
then the algorithm is said to be data-oblivious. Such algorithms are well suited
for e.g. parallel sorting or secure multi-party computations.

Sorting functions in state-of-the-art programming language libraries (such
as the GNU C Library) are typically based on a variant of Quicksort, where
the base cases of the recursion apply insertion sort: once the subsequence to
sort considered by Quicksort falls under a certain length M , it is sorted using
insertion sort. The reasons for using such base cases is that, both theoretically
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and empirically, insertion sort is faster than Quicksort for sorting small numbers
of elements. Typical values of M are 4 (e.g. in the GNU C library) or 8.

Generalizing this construction, we can take any sorting algorithm based on
the divide-and-conquer approach (e.g. Quicksort, merge sort), and use another
sorting method once the number of elements to sort in one partition does not
exceed a pre-defined limit M . The guiding idea here is that, by supplying opti-
mized code for sorting up to M inputs, the overall performance of the sorting
algorithm can be improved. One obvious way to supply optimized code for sort-
ing up to M inputs is to provide a unique optimized implementation of sorting
m elements, for each m ≤ M .

This approach leads directly to the following problem: For a given fixed num-
ber M , how can we obtain an efficient way to sort M elements on a modern
CPU? Similar questions have been asked since the 1950s, though obviously with
a different notion of what constitutes a modern CPU.

Sorting networks are a classical model of comparison-based sorting that pro-
vides a framework for addressing such questions. In a sorting network, n inputs
are fed into n channels, connected pairwise by comparators. Each comparator
compares the two inputs from its two channels, and outputs them sorted back
to the same two channels. Consecutive comparators can be viewed as a “parallel
layer” if no two touch the same channel. Sorting networks are data-oblivious
algorithms, as the sequence of comparisons performed is independent of the
actual input. For this reason, they are typically viewed as hardware-oriented
algorithms, where data-obliviousness is a requirement and a fixed number of
inputs is given.

In this paper, we examine how the theory of sorting networks can improve
the performance of general-purpose software sorting algorithms. We show that
replacing the insertion sort base case of a Quicksort implementation as found in
standard C libraries by optimized code synthesized from logical descriptions of
sorting networks leads to significant improvements in execution times.

The idea of using sorting networks to guide the synthesis of optimized code for
base cases of sorting algorithms may seem rather obvious, and, indeed, has been
pursued earlier. A straightforward attempt, described in [10], has not resulted in
significant improvements, though. In this paper we show that this is not unex-
pected, providing theoretical and empirical insight into the reasons for these
rather discouraging results. In a nutshell, we provide an average case analysis of
the complexity w.r.t. measures such as number of comparisons and number of
swaps. From the complexity point of view, code synthesized from sorting net-
works can be expected to perform slightly worse than unrolled insertion sort. For-
tunately, for small numbers (asymptotic) complexity arguments are not always
a good predictor of real-world performance.

The approach taken in [7] matches the advantages of sorting networks with
the vectorization instruction sets available in some modern CPU architectures.
The authors obtain significant speedups by implementing parallel comparators
as vector operations, but they require a complex heuristic algorithm to generate
sequences of bit shuffling code that needs to be executed between comparators.
Their approach is also not fully general, as they target a particular architecture.
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In this paper, we combine the best of both these attempts by providing a
straightforward implementation of sorting networks that still takes advantage of
the features of modern CPU architectures, while keeping generality. We obtain
speedups comparable to [7], but our requirements to the instruction set are sat-
isfied by virtually all modern CPUs, including those without vector operations.
The success of our approach is based on two observations.

– Sorting networks are data-oblivious and the order of comparisons is fully deter-
mined at compile time, i.e., they are free of any control-flow branching. Com-
parators can also be implemented without branching, and on modern CPU
architectures even efficiently so.

– Sorting networks are inherently parallel, i.e., comparators at the same level
can be performed in parallel. Conveniently, this maps directly to implicit
instruction level parallelism (ILP) common in modern CPU architectures.
This feature allows parallel execution of several instructions on a single thread
of a single core, as long as they are working on disjoint sets of registers.

Avoiding branching and exploiting ILP are tasks also performed through
program transformations by the optimization stages of modern C compilers,
e.g., by unrolling loops and reordering instructions to minimize data-dependence
between neighbouring instructions. They are though both restricted by the data-
dependencies of the algorithms being compiled and, consequently, of only limited
use for data-dependent sorting algorithms, like insertion sort.

Throughout this paper, for empirical evaluations we run all code on an Intel
Core i7, measuring runtime in CPU cycles using the time stamp counter register
using the RDTSC instruction. As a compiler for all benchmarks, we used LLVM
6.1.0 with clang-602.0.49 as frontend on Max OS X 10.10.2. We also tried GCC
4.8.2 on Ubuntu with Linux kernel 3.13.0-36, yielding comparable results.

The remainder of the paper is organized as follows. Section 2 provides back-
ground information and formal definitions for both sorting algorithms and hard-
ware features. In Sect. 3, we theoretically compare Quicksort and the best known
sorting networks w.r.t. numbers of comparisons and swaps. We aggressively
unroll insertion sort until we obtain a sorting network in Sect. 4, and in Sect. 5 we
show how to implement individual comparators efficiently. We empirically eval-
uate our contribution as a base case of Quicksort in Sect. 6, before concluding
and giving an outlook on future work in Sect. 7.

2 Background

2.1 Quicksort with Insertion Sort for Base Case

For decades, Quicksort has been used in practice, due to its efficiency in the
average case. Since its first publication by Hoare [8], several modifications were
suggested to improve it further. Examples are the clever choice of the pivot, or
the use of a different sorting algorithm, e.g., insertion sort, for small subprob-
lem sizes. Most such suggestions have in common that the empirically observed
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Fig. 1. Comparison of different sorting algorithms for small numbers of inputs.

efficiency can be explained on theoretical grounds by analyzing the expected
number of comparisons, swaps, and partitioning stages (see [13] for details).

Figure 1 presents a comparison of the common spectrum of data-dependent
sorting algorithms for small numbers of inputs, depicting the number of inputs
(x-axis) together with the number of cycles required to sort them (y-axis),
averaged over 100 million random executions. The upper curve in the figure is
obtained from the standard Quicksort implementation in the C library (which is
at some disadvantage, as it requires a general compare function as an argument).
The remaining curves are derived from applying standard sorting algorithms, as
detailed by Sedgewick [14]; the code was taken directly from the book’s web
page, http://algs4.cs.princeton.edu/home/. Insertion sort is the clear winner.

2.2 Sorting Networks

A comparator network on n channels is a finite sequence C = c1, . . . , ck of
comparators, where each comparator c� is a pair (i�, j�) with 1 ≤ i� < j� ≤ n. The
size of C is the number k of comparators it contains. Given an input x ∈ Dn,
where D is any totally ordered domain, the output of C on x is the sequence
C(x) = xn, where x� is defined inductively as follows: x0 = x, and x� is obtained
from x�−1 by swapping the elements in positions i� and j�, in case xi�

< xj�
.

C is a sorting network if C(x) is sorted for all C ∈ Dn. It is well known (see
e.g. [9]) that this property is independent of the concrete domain D.

Comparators may act in parallel. A comparator network C has depth d if C is
the concatenation of L1, . . . , Ld, where each Li is a layer : a comparator network
with the property that no two of its comparators act on a common channel.

Figure 2 depicts a sorting network on 5 channels in the graphical notation
we will use throughout this paper. Comparators are depicted as vertical lines,
and layers are separated by a dashed line. The numbers illustrate how the input
10101 ∈ {0, 1}5 propagates through the network. This network has 6 layers and
9 comparators.

http://algs4.cs.princeton.edu/home/


Applying Sorting Networks to Synthesize Optimized Sorting Libraries 131

1

0

1

0

1

1

0

1

1

0

1

0

1

1

0

1

1

0

1

0

1

1

0

1

0

1

1

0

1

0

1

1

1

0

0

Fig. 2. A sorting network on 5 channels operating on the input 10101.

There are two main notions of optimality of sorting networks in common use:
size optimality, where one minimizes the number of comparators used in the
network; and depth optimality, where one minimizes the number of execution
steps, taking into account that some comparators can be executed in parallel.

Given n inputs, finding the minimal size sn and depth tn of a sorting net-
work is an extremely hard problem that has seen significant progress in recent
years. The table below details the best currently known bounds. The values for
n ≤ 8 are already listed in [9]; the values of t9 and t10 were proven exact by
Parberry [11], those of t11–t16 by Bundala and Závodný [1], and t17 was recently
computed by Ehlers and Müller [5] using results from [3,4]. Finally, the values
of s9 and s10 were first given in [2].

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

sn 0 1 3 5 9 12 16 19 25 29 35 39 45 51 56 60 73

33 37 41 45 49 53 58

tn 0 1 3 3 5 5 6 6 7 7 8 8 9 9 9 9 10

Oblivious versions of classic sorting algorithms can also be implemented as
sorting networks, as described in [9]. Figure 3(a) shows an oblivious version of
insertion-sort. The vertical dashed lines highlight the 4 iterations of “insertion”
required to sort 5 elements. Figure 3(b) shows the same network, with compara-
tors arranged in parallel layers. Bubble-sort can also be implemented as a sorting
network as illustrated in Fig. 3(c), where the vertical dashed lines illustrate the 4
iterations of the classic bubble-sort algorithm. When ordered according to layers,
this network becomes identical to the one in Fig. 3(b).

)c()b()a(

Fig. 3. Sorting networks for insertion sort (a) and bubble-sort (c) on 5 inputs, dashed
lines separating iterations. When parallelized, both networks become the same (b).
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2.3 Modern CPU Architectures

Modern CPU architectures allow multiple instructions to be performed in par-
allel on a single thread. This ability is called instruction-level parallelism (ILP),
and is built on three modern micro-architectural techniques1:

– superscalar instruction pipelines, i.e., pipelines with the ability to hold and
execute multiple instructions at the same time

– dynamic out-of-order execution, i.e., dynamic reordering of instructions
respecting data dependencies

– redundant execution units, i.e., multiple Arithmetic Logic Units per core

Together, these features allow execution of instructions in an order that mini-
mizes data dependencies, so that multiple redundant execution units can be used
at the same time. This is often termed implicit ILP, in contrast to the explicit
ILP found in vector operations.

Example 1. Consider the C expression (x+y)*(z+u). Assume the variables x, y,
z, and u are loaded in registers eax, ebx, ecx, and edx. Then the evaluation of the
above expression is compiled to three machine instructions: ADD eax,ebx; ADD
ecx,edx; MUL eax,ecx, with the result in ecx. Here, the first two instructions
are data-independent and can be executed in parallel, while the last one depends
on the results of those, and is executed in another CPU cycle.

Conditional branching instructions are the most expensive instructions on
pipelined CPUs, as they require flushing and refilling the pipeline. In order to
minimize their cost, modern CPU architectures employ dynamic branch predic-
tion. By keeping the pipeline filled with the instructions of the predicted branch,
the cost of branching is severely alleviated. Unfortunately, branch prediction can-
not be perfect, and when the wrong branch is predicted, the pipeline needs to
be flushed and refilled – an operation taking many CPU cycles.

In order to avoid branching instructions for “small” decisions, e.g., decid-
ing whether to assign a value or not, modern CPU architectures also feature
conditional instructions. Depending on flags set by e.g. a comparison, either an
assignment of a value of a register will be performed, or the instruction will be
ignored. In both cases, the pipeline is filled with the subsequent instructions, and
the cost of the operation is smaller than a possible branch prediction failure.

Example 2. Consider the C statement if (x == 42) x = 23; with variable x
loaded in eax. Without conditional move instructions, this is compiled to
code with a conditional branching instruction, i.e. CMP eax,42; JNZ after;
MOV eax, 23, where after is the address of the instruction following the MOV
instruction. Alternatively, using conditional instructions, we obtain CMP eax,
42; CMOVZ eax, 23. This code not only saves one machine code instruction,
but most importantly avoids the huge performance impact of a mispredicted
branch.
1 For details on these features of modern microarchitectures see e.g. [6,15].
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Table 1. Average number of comparisons and swaps when executing optimal sorting
networks with at most M = 14 inputs.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14

comparisons 0 1 3 5 9 12 16 19 25 29 35 39 45 51

swaps 0.0 0.5 1.5 2.7 4.8 6.6 8.6 10.6 13.0 11.1 19.4 22.4 20.0 26.5

3 Quicksort with Sorting Networks for Base Case

The general theme of this paper is to derive, from sorting networks, optimized
code to sort small numbers of inputs, and then to apply this code as the base
case in a Quicksort algorithm. In this section, we compare precise average case
results for the number of comparisons and swaps performed by a classic Quicksort
algorithm and by a modification that uses sorting networks on subproblems of
size at most 14. We choose 14 for this analysis, as it is the largest value n for
which we could conveniently measure the number of comparisons and swaps
for all n! permutations. We used the best-known (w.r.t. size) sorting networks
(optimal for up to 10 inputs) in order to obtain the most favorable comparison
numbers for sorting networks. To this end, we assume the algorithm to act on
random permutations of size n, each being the input with equal probability.

Let Cn (resp. Sn) denote the expected number of comparisons (resp. swaps)
performed by classic Quicksort on (random) inputs of size n. Let furthermore Ĉn

and Ŝn denote the corresponding quantities for Quicksort using sorting networks
for inputs smaller than 15. It is standard to set up recurrence relations for those
quantities which typically obey a pattern such as:

Tn(a, b) =

{
a · n + b + 1

n

∑
1≤j≤n Tj−1(a, b) + Tn−j(a, b) if n > M ,

g(n) otherwise.

Here, a and b have to be chosen properly to reflect the parameter’s (compar-
isons, swaps) behavior, M determines the maximum subproblem size for which
a different algorithm (insertion sort, sorting networks) is used, and g accounts
for the costs of that algorithm. In order to analyze classic Quicksort as proposed
by Hoare, we have to choose a = 1, b = −1 (resp. a = 1

6 , b = 2
3 ) for compar-

isons (resp. swaps), together with M = 0 and g(0) = 0. For the analysis of our
proposed modification using sorting networks for subproblems of small sizes, we
set M = 14 together with the values for g as given in Table 1. Using standard
algebraic manipulations, it is possible to solve this recurrence explicitly to obtain
a formula for Tn(a, b) in terms of n, M , a and b. Defining tn = a · n + b and
∇tn = tn − tn−1, one finds (see [12] for details) that, for n > M ,

Tn(a, b) = 2(n + 1)
∑

M+2≤k≤n

∇tk
k + 1

+
n + 1
M + 2

(tM+1 + TM+1(a, b)) − tn .
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Computing the closed form expressions for
∑

M+2≤k≤n
∇tk

k+1 for the different
choices of tn, we finally get

Cn = 2n ln(n + 1) − 2.84557n + o(n) Sn =
1
3
n ln(n + 1) + 0.359072n + o(n)

Ĉn = 2n ln(n + 1) − 2.44869n + o(n) Ŝn =
1
3
n ln(n + 1) + 0.524887n + o(n)

We see that, when increasing n, both parameters get worse by our modification
of classic Quicksort. Even for small n and optimal size sorting networks, there
is no advantage w.r.t. the numbers of comparisons or swaps. In conclusion, we
cannot hope to get a faster sorting algorithm simply by switching to sorting
networks for small subproblems – at least not on grounds of our theoretical
investigations. And, by transitivity, replacing insertion sort by sorting networks
in the base case should result in an even worse behavior w.r.t. both parameters.

4 Unrolling the Base Case

In this section, we show how to unroll an implementation of insertion sort, step
by step, until we finally obtain code equivalent to a sorting network. We take
the basic insertion sort code from Sedgewick [14], and, for illustration, assume
that the fixed number of inputs is n = 5. We experimented also with optimized
variants (e.g. making use of sentinels to avoid the j>0 check), but did not find
any of them to be faster for small inputs given a modern C compiler.

#define SWAP(x,y) {int tmp = a[x]; a[x] = a[y]; a[y] = tmp;}

static inline void sort5(int *a, int n) {

n=5

for (int i = 1; i < n; i++)

for (int j = i; j > 0 && a[j] < a[j-1]; j--)

SWAP(j-1, j)

}

Applying partial evaluation and (outer) loop unrolling results in:

static inline void sort5_unrolled(int *a) {

for (int j = 1; j > 0 && a[j] < a[j-1]; j--)

SWAP(j-1, j)

for (int j = 2; j > 0 && a[j] < a[j-1]; j--)

SWAP(j-1, j)

for (int j = 3; j > 0 && a[j] < a[j-1]; j--)

SWAP(j-1, j)

for (int j = 4; j > 0 && a[j] < a[j-1]; j--)

SWAP(j-1, j)

}

The condition in the inner loop is data-dependent, hence no sound and complete
program transformation can be applied to unroll them. To address this, we move
the data-dependent part of the loop condition to the statement in the body of
the loop, while always iterating the variable j down to 1.
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static inline void sort5_oblivious(int *a) {

for (int j = 1; j > 0; j--)

if (a[j] < a[j-1]) SWAP(j-1, j)

for (int j = 2; j > 0; j--)

if (a[j] < a[j-1]) SWAP(j-1, j)

for (int j = 3; j > 0; j--)

if (a[j] < a[j-1]) SWAP(j-1, j)

for (int j = 4; j > 0; j--)

if (a[j] < a[j-1]) SWAP(j-1, j)

}

Now we can now apply (inner) loop unrolling and obtain:

static inline void sort5_oblivous_unrolled (int *a) {

if (a[1] < a[0]) SWAP(0, 1)

if (a[2] < a[1]) SWAP(1, 2)

if (a[1] < a[0]) SWAP(0, 1)

if (a[3] < a[2]) SWAP(2, 3)

if (a[2] < a[1]) SWAP(1, 2)

if (a[1] < a[0]) SWAP(0, 1)

if (a[4] < a[3]) SWAP(3, 4)

if (a[3] < a[2]) SWAP(2, 3)

if (a[2] < a[1]) SWAP(1, 2)

if (a[1] < a[0]) SWAP(0, 1)

}

All the statements in the body of sort5 oblivous unrolled are now conditional
swaps. For readability, we move the condition into the macro. COMPs on the same
line indicate that they originate from the same iteration of insertion sort:

#define COMP(x,y) { if (a[y] < a[x]) SWAP(x,y) }

static inline void sort5_fig3a(int *a) {

COMP(0, 1)

COMP(1, 2) COMP(0, 1)

COMP(2, 3) COMP(1, 2) COMP(0, 1)

COMP(3, 4) COMP(2, 3) COMP(1, 2) COMP(0, 1)

}

This sequence is equivalent to the sorting network in Fig. 3(a). Thus, we can
apply the reordering of comparators that resulted in Fig. 3(b) to obtain the
following implementation, where we reduce the number of layers to 7 (here,
COMPs on the same line indicate a layer in the sorting network):

static inline void sort5_fig3b(int *a) {

COMP(0, 1)

COMP(1, 2)

COMP(0, 1) COMP(2, 3)

COMP(1, 2) COMP(3, 4)

COMP(0, 1) COMP(2, 3)

COMP(1, 2)

COMP(0, 1)

}
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Fig. 4. Comparison of insertion sort with (unrolled) comparator based code for small
numbers of inputs.

Figure 4 presents a comparison of a standard insertion sort (code from [14])
with the several optimized versions, depicting the number of inputs (x-axis)
together with the number of cycles required to sort them (y-axis), averaged over
100 million random executions. The curve labeled “insertion sort” portrays the
same data as the corresponding curve in Fig. 1. The curve labeled “unrolled
insertion sort” corresponds to the unrolled version of insertion sort (in the style
of function sort5 unrolled). The other three curves correspond to code derived
from different types of sorting networks: the “insertion sorting network” from
Fig. 3(a) and function sort5 fig3a; the “compressed insertion sorting network”
from Fig. 3(b) and function sort5 fig3b; and the “optimal sorting network”,
corresponding to the use of a best (smallest) known sorting network.

From the figure, it is clear that standard sorting network optimizations such
as reordering of independent comparators [9] give a slight performance boost.
But there is another clear message: even going beyond standard program trans-
formations by breaking data-dependence and obtaining a sequence of condi-
tional swaps (i.e., a sorting network), we do not manage to make any significant
improvements of the performance of sorting implementations for small numbers
of inputs. Furthermore, even when using size-optimal sorting networks, we obtain
no real benefit over compiler-optimized insertion sort. This is in line with the
theoretical results on average case complexity discussed in the previous section.

5 Implementing Sorting Networks Efficiently

The results in the previous two sections explained the rather discouraging results
obtained by a naive attempt to use sorting networks as the base case of a
divide-and-conquer sorting algorithm: they are simply not faster than e.g. inser-
tion sort – at least when implemented naively. In this section we show how to
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exploit two main properties of sorting networks, together with features of mod-
ern CPU architectures, and obtain speed-ups of a factor higher than 3 compared
to unrolled insertion sort.

We first observe that, as sorting networks are data-oblivious, the order of
comparisons is fully determined at compile time, i.e., their implementation is
free of any control-flow branching. Unfortunately, the naive implementation of
each comparator involves branching to decide whether to perform a swap. The
path taken depends entirely on the specific inputs to be sorted, and as such
branch prediction necessarily does not perform very well.

Luckily, we can also implement comparators without branching. To this end,
we use a conditional assignment (defined by the macro COND below), which can be
compiled to the conditional move (CMOV) instruction available on modern CPU
architectures. This approach proved to be very fruitful. For illustration, from the
optimal-size sorting network for 5 inputs portrayed in Fig. 2, we synthesize the
following C function sort5 best, where each row in the code corresponds to a
layer in the sorting network:

#define COND(c,x,y) { x = (c) ? y : x; }

#define COMP(x,y) { int ax = a[x]; COND(a[y]<ax,a[x],a[y]); \

COND(a[y]<ax,a[y],ax ); }

static inline void sort5_best(int *a) {

COMP(0, 1) COMP(3, 4)

COMP(2, 4)

COMP(2, 3) COMP(1, 4)

COMP(0, 3)

COMP(0, 2) COMP(1, 3)

COMP(1, 2)

}

The comparator macro that compares and conditionally swaps the values at
indices x and y works as follows:

1. Keep a copy of the value at index x.
2. Compare (once) the value at index y with the stored value from x.
3. If the value was greater, copy the value at index y to index x. Otherwise, do

nothing.
4. If the value was greater, write the old copied value from x to index y. Other-

wise, do nothing.

Correctness follows directly by case analysis. If the value at index y was not
greater than the value at index x, the two conditional assignments do not change
anything, and all we did was an unnecessary copy of the valued at index x. If the
value at index y was greater than the value at index y, we essentially perform a
classic swap using ax as the temporary variable.

Given a sufficient optimization level (-O2 and above), the above code is com-
piled by the LLVM (or GNU) C compiler to use two conditional move (CMOV)
instructions, resulting in a totally branching free code for sort5 best. As can
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be expected, the other two instructions are a move (MOV) and a compare (CMP)
instruction. In other words, each comparator is implemented by exactly four
non-branching machine code instructions.

Alternatively, we could implement the comparator applying the folklore idea
of swapping values using XORs to eliminate one conditional assignment:2

#define COND(c,x,y) { x = (c) ? y : x; }

#define COMP(x,y) { int ax = a[x]; COND(a[y]<ax,a[x],a[y]); \

a[y] ^= ax ^ a[x]; }

This alternative comparator performs a conditional swap as follows:

1. Keep a copy of the value at index x.
2. If the value at index y is greater than the value at index x, copy the value at

index y to index x.
3. Bitwise XOR the value at index y with the copied old and the new value at

index x.

Step 3 works because, if the condition holds, then ax and the value at index x
cancel out, leaving the value at y unchanged, while otherwise the value at y and
ax cancel out, effectively assigning the original value from index x to index y.

We also implemented this variant, and observed that it compiles down to five
instructions (MOV, CMP, CMOV, and two XORs). We benchmarked the two variants
and observed that they are indistinguishable in practice, with differences well
within the margin of measurement error. Thus, we decided to continue with this
second version, as the XOR instructions are more “basic” and can therefore be
expected to behave better w.r.t. e.g. instruction level parallelism.

A third approach would be to define branching-free minimum and maximum
operations,3 and use them to assign the minimum to the upper channel and
the maximum to the lower channel of the comparator. We tested this approach,
but found that it did not compile to branching-free code. Even if it did, the
number of instructions involved would be rather large, eliminating any chance
of competing with the two previous variants.

The reader might wonder whether a different SWAP macro could similarly
speed up the working of standard insertion sort. The answer is a clear no, as the
standard swapping operation is implemented by only three operations. Tricks
like using XORs only increase the number of instructions to execute, while not
reducing branching in the code. We implemented and benchmarked several alter-
native SWAP macros, finding only detrimental effects on measured performance.

Figure 5 compares three sorting algorithms for small numbers of inputs: (1)
the unrolled insertion sort (also plotted in Fig. 4); (2) code derived from a standard
insertion sorting network (also plotted in Fig. 4); (3) the same insertion sorting net-
work but with a non-branching version of the COMP macro. We compare the num-
ber of branches encountered and mispredicted (averaged over 100 million random
executions). From the figure it is clear that the number of branches encountered

2 See https://graphics.stanford.edu/∼seander/bithacks.html#SwappingValuesXOR.
3 See https://graphics.stanford.edu/∼seander/bithacks.html#IntegerMinOrMax.

https://graphics.stanford.edu/~{}seander/bithacks.html#SwappingValuesXOR
https://graphics.stanford.edu/~{}seander/bithacks.html#IntegerMinOrMax
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Fig. 5. Comparing the number of branches, encountered and mispredicted, in optimized
sorting algorithms for small numbers of inputs.

(and mispredicted) is larger for both unrolled insertion sort and a naive implemen-
tation of sorting networks. In contrast, the branching-free implementation exhibits
a nearly constant level of branches encountered and mispredicted. These branches
actually originate from the surrounding test code (filling an array with random
numbers, computing random numbers, and checking that the result is actually
sorted).

Our second observation is that sorting networks are inherently parallel, i.e.,
comparators at the same level can be performed simultaneously. This parallelism
can be mapped directly to instruction level parallelism (ILP). The ability to
make use of ILP has further performance potential. In order to demonstrate
this potential, we constructed artificial test cases with varying levels of data
dependency. Given a natural number m, we construct a comparator network of
size 1000 consisting of subsequences of m parallel comparators. We would expect
that, as m grows, we would see more use of ILP.

In Fig. 6, the values for m are represented on the x-axis, while the y-axis (as
usual) indicates the averaged number of CPU cycles. Indeed, we see significant
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Fig. 7. Comparison of sorting networks for small numbers of inputs: non-branching
sorting networks are fastest.

performance gains when going from m = 1 to m = 2 and m = 3. From this value
onwards, performance stays unchanged. This is the result of each comparator
being compiled to 5 assembler instructions when using optimization level -O3.
Then we obtain slightly under 2 CPU cycles per comparator.

Combining the gains from ILP with the absence of branching, we obtain
large speed-ups for small inputs when comparing to both insertion sort and
naive implementations of sorting networks. In Fig. 7, we show the magnitude of
the improvements obtained. Once again we plot the number of inputs on the
x-axis against the number of cycles required to sort then on the y-axis, averaged
over 100 million random executions. We consider the unrolled insertion sort, the
three sorting networks from Fig. 4 (insertion sorting network, compressed inser-
tion sorting network, and optimal sorting network), and these same three sorting
networks using non-branching comparators (non-branching insertion sorting net-
work, non-branching compressed insertion sorting network, and non-branching
optimal sorting network). The figure shows that using the best known (optimal)
sorting networks in their non-branching forms results in a speed-up by a factor
of more than 3.

6 Quicksort with Sorting Network Base Case

We now demonstrate that optimizing the code in the base case of a Quicksort
algorithm translates to real-world savings when applying the sorting function. To
this end, we use as base cases (1) the (empirically) best variant of insertion sort
unrolled by applying program transformations to the algorithm from [14], and
(2) the fastest non-branching code derived from optimal (size) sorting networks.

In Fig. 8 we depict the results of sorting lists of 10,000 elements. The y-axis
measures the number of cycles (averaged over one million random runs), and the
x-axis specifies the limit at which Quicksort reverts to a base case. For example,
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the value 8 indicates that the algorithm uses a base case whenever it is required
to sort a sequence of length at most 8 elements. The value 2 corresponds to the
case where the base case has no impact. To quantify the impact of the choice of
base case, we compare to the case for value 2 (on the x-axis). For insertion sort we
see a 2–12 % reduction in runtime depending on the limit, and for non-branching
sorting networks we achieve instead 7–23 % reduction in runtime.

7 Conclusion

In this paper, we showed, both theoretically and empirically, that using code
derived naively from sorting networks is not advantageous to sort small numbers
of inputs, compared to the use of standard data-dependent sorting algorithms
like insertion sort. Furthermore, we showed that program transformations are of
only limited utility for improving insertion sort on small numbers of inputs.

By contrast, we showed how to synthesize simple yet efficient implementa-
tions of sorting networks, and gave insight into the microarchitectural features
that enable this implementation. We demonstrated that we do obtain significant
speed-ups compared to naive implementations such as [10]. A further empiri-
cal comparison between our implementation and the one described in [7] (not
detailed in this paper) shows similar performance and scaling behavior. However,
our approach allows the exploitation of instruction-level parallelism without the
need for a complex instruction set-specific algorithm, as required by [7]. We also
provided further evidence that efficient sorting networks are useful as a base case
in divide-and-conquer sorting algorithms such as, e.g., Quicksort.

Our results also show that using different sorting networks has measurable
impact on the efficiency of the synthesized C code. While previous research on
finding optimal sorting networks has focused on optimal depth or optimal size,
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in the future we plan to identify criteria that will lead to optimal performance
in this context. What are the parameters that determine real-world efficiency of
the synthesized code, and how can we find sorting networks that optimize these
parameters? We also plan to explore other target architectures, such as GPUs,
and to benchmark our approach as base case for other sorting algorithms, such
as merge sort.
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Abstract. Among other objectives, rewriting programs serves as a use-
ful technique to improve numerical accuracy. However, this optimization
is not intuitive and this is why we switch to automatic transformation
techniques. We are interested in the optimization of numerical programs
relying on the IEEE754 floating-point arithmetic. In this article, our main
contribution is to study the impact of optimizing the numerical accu-
racy of programs on the time required by numerical iterative methods
to converge. To emphasize the usefulness of our tool, we make it opti-
mize several examples of numerical methods such as Jacobi’s method,
Newton-Raphson’s method, etc. We show that significant speedups are
obtained in terms of number of iterations, time and flops.

Keywords: Program transformation · Floating-point numbers ·
IEEE754 Standard · Numerical analysis · Convergence acceleration

1 Introduction

A few decades ago, program transformation techniques have been successfully
applied to specialize programs by partial evaluation [16]. For example, the perfor-
mances of Knuth-Morris-Pratt’s algorithm were reached by specialized versions
of the naive, quadratic, pattern matching algorithm [4]. Other killer applica-
tions of partial evaluation were ranging from ray-tracing [16] to communication
protocol optimization [22]. In this context, partial evaluation was used to opti-
mize the execution time of programs. Our current work seeks another grail,
namely the optimization of the numerical accuracy of computations carried out
in the IEEE754 floating-point arithmetic [2,23]. As for partial evaluation, we
perform source to source transformations guided by partial information on the
data used at run-time [14]. In our case, we need ranges for the input variables
of the programs, obtained by abstract interpretation of their codes [5]. In for-
mer articles, we have shown how our techniques make it possible to improve
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the accuracy of various algorithms coming from control theory or from numer-
ical analysis [8,9,15]. In this article, we study the effect of our transformation
on the convergence of well-known iterative numerical methods such as Newton-
Raphson’s or Jacobi’s method [17]. We show that more accurate implementations
obtained by automatic program transformation converge much faster than the
original ones. In other words, less iterations are needed to reach a result with a
given accuracy. As a consequence, improving the accuracy significantly improves
the performances of this class of programs, bringing us back to the concerns of
partial evaluation.

In former work we have shown how to optimize automatically intra-procedural
programs [8]. To optimize programs, we use static analysis by abstract
interpretation [5,11] to over-approximate the roundoff errors as well as a set of
rewriting rules for the transformation itself, applied to programs that are writ-
ten in SSA Form [7]. We have experimented our tool to improve the numerical
accuracy of small control command programs (e.g. PID and lead-lag controllers)
and numerical procedures (trapeze rule and Runge-Kutta methods [8]). We have
also demonstrated the efficiency of our tool to optimize slightly larger codes like
a rocket trajectory simulation code of about O(100) lines of code [9].

Our main contribution in this article is to show that our technique improves
the execution time of programs by increasing their numerical accuracy. By opti-
mizing programs to be more accurate, we accelerate their convergence speed.
In order to demonstrate the impact of the accuracy on the convergence time,
we have chosen a set of four representative iterative methods which are Jacobi’s
and Newton-Raphson’s method, a method to compute the largest Eigenvalue and
Gram-Schmidt’s method. Significant speedups are obtained in terms of number
of iterations, time and total number of floating-point operations (flops).

In Sect. 2, we discuss how we compute the error on the numerical accuracy
as well as the basic techniques used to rewrite programs. In Sect. 3, we detail
the programs that we want to optimize. We give the programs before and after
optimization together with experimental results. We conclude in Sect. 4.

2 Program Transformation for Numerical Accuracy

In this section, we first introduce the method that we use to compute the errors
on the numerical accuracy. In Sects. 2.2 and 2.3, we also recall the transformation
techniques used to optimize the numerical accuracy of expressions and programs
and which are detailed in [8,15]. All the material introduced in this section is
used in the tool that we use to optimize the programs of Sect. 3.

2.1 Floating-Point Arithmetic and Error Bound Computation

The floating-point arithmetic is defined by the IEEE754 Standard [2,23]. Floating-
point numbers are used to encode real numbers. However, because they are a finite
representation of their mathematical cousins, roundoff errors arise during compu-
tations. A floating-point number x is defined by

x ≈ sx · (x0.x1 . . . xp−1) · bex = sx · mx · bex (1)
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where sx ∈ {−1, 1} is the sign, mx = x0x1 . . . xp−1 is the mantissa with digits 0 ≤
xi < b, 0 ≤ i ≤ p−1, p is the precision and ex is the exponent, emin ≤ ex ≤ emax.
The IEEE754 Standard specifies several formats for the floating-point numbers
by providing specific values for p, b, emin and emax. It also defines some rounding
modes, towards +∞, −∞, 0 and to the nearest. Our transformation technique,
introduced in Sects. 2.2 and 2.3, is independent of the selected rounding mode
and, in this article, we assume that all the floating-point computations are done
by using the rounding mode to the nearest. Let us write ↑+∞, ↑−∞, ↑0 and
↑∼ the rounding functions, the IEEE754 Standard defines the semantics of the
elementary operations by:

x �r y =↑r (x ∗ y) (2)

where �r ∈ {+,−,×,÷} is computed by using the rounding mode r and ∗ ∈
{+,−,×,÷} denotes an exact operation. Because of the roundoff errors, the
results of the computations are not exact. For example, let us consider two
functions f and g which are mathematically equivalent. We have f(x) = x2 −
2.0 × x + 1.0 and g(x) = (x − 1.0) × (x − 1.0). If we compute f(0.999) we
get 1.00000000002875566e−6 and if we compute g of the same value, we obtain
1.00000000000000186e−6. On small computations, we have obtained already
different results.

We present now the computation of errors on the numerical accuracy of
arithmetic expressions [19]. These errors are stored in an abstract value [5] using
a pair of intervals. The first interval contains the range of the floating-point
values of the program, and the second one contains the range of the errors
obtained by subtracting the floating-point values from the exact ones. In the
abstract value denoted by (x�, μ�) ∈ E�, we have x� the interval corresponding
to the range of the values and μ� the interval of errors on x�. This value x�

abstracts a set of concrete values {(x, μ) : x ∈ x� and μ ∈ μ�} by intervals in a
component-wise way. We introduce now the semantics of arithmetic expressions
on E�. We approximate an interval x� with real bounds by an interval based
on floating-point bounds, denoted by ↑�

∼ (x�). Here bounds are rounded to the
nearest (see Eq. (3)).

↑�
∼ [(x, x)] = [↑∼ (x), ↑∼ (x)]. (3)

In the other direction, we have the function ↓�
∼ that abstracts the concrete

function ↓∼. It computes the exact value of the error ↓∼ (x) = x− ↑∼ (x). Every
error associated to x ∈ [x, x] is included in ↓�

∼ [(x, x)]. We have

↓�
∼ [(x, x)] = [−y, y] with y =

1

2
ulp
(
max(|x|, |x|)). (4)

Formally, the unit in the last place, denoted by ulp(x), consists of the weight of
the least significant digit of the floating-point number x. Equations (5) and (6)
give the semantics of the addition and multiplication over E�. If we sum two
floating-point numbers, we may add the errors generated by the operands to the
error produced by the roundoff of the result. When multiplying two floating-point
numbers, the semantics is given by the development of (x�

1 + μ�
1) × (x�

2 + μ�
2).
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This semantics is used to select the most accurate expression, in the sense that
it minimizes μ� during the transformation of expressions introduced in the next
section. To analyze statically a full program, we use a standard abstract inter-
pretation of commands [5,19] with the abstract domain E� of values. Note that
dynamical analyses have also been proposed recently [3].

2 a

+

b +(a,a,b)

c

+

c b c

a a

+

+

Fig. 1. APEG for the expression e =
(
(a + a) + c

)× c.

2.2 Transformation of Expressions

To introduce the transformation of arithmetic expressions, we consider variables
id ∈ V with V a finite set, constants cst ∈ F with F the set of floating-point
numbers and the operators +, −, × and ÷. The syntax is

Expr � e:: = id | cst | e + e | e − e | e × e | e ÷ e. (7)

Here, we briefly present former work [15,20,25] to semantically transform [6]
arithmetic expressions using Abstract Program Expression Graph (APEG). This
data structure remains in polynomial size while dealing with an exponential
number of equivalent expressions [21]. An APEG is defined inductively as follows:
(1) A value v or a variable x is an APEG, (2) An expression p1 ∗p2 is an APEG,
where p1 and p2 are APEGs and ∗ is a binary operator, (3) A box ∗(p1, . . . , pn)
is an APEG, where ∗ is a commutative and associative operator and the pi,
1 ≤ i ≤ n, are APEGs and (4) A non-empty set {p1, . . . , pn}, called equivalence
class, of APEGs is an APEG where pi, 1 ≤ i ≤ n, is not a set of APEGs itself.

An example of APEG is given in Fig. 1. When an equivalence class (denoted
by a dotted ellipse in Fig. 1) contains many APEGs p1, . . . , pn then one of the pi

1 ≤ i ≤ n may be selected in order to build an expression. A box ∗(p1, . . . , pn)
represents any parsing of the expression p1 ∗ . . . ∗ pn. From an implementa-
tion point of view, when several equivalent expressions share a common sub-
expression, the latter is represented only once in the APEG. Then APEGs pro-
vide a compact representation of a set of equivalent expressions and make it
possible to represent in an unique structure many equivalent expressions of very
different shapes. For readability reasons, in Fig. 1, the leafs corresponding to the
variables a, b and c are duplicated while, it practice, they are defined only once in
the structure. The set A(p) of expressions contained inside an APEG p is defined
inductively as follows: (1) If p is a value v or a variable x then A(p) = {v} or
A(p) = {x}, (2) If p is an expression p1∗p2 then A(p) =

⋃
e1∈A(p1), e2∈A(p2)

e1∗e2,
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(3) If p is a box ∗(p1, . . . , pn) then A(p) contains all the parsings of e1 ∗ . . . ∗ en

for all e1 ∈ A(p1), . . . , en ∈ A(pn) and (4) If p is an equivalence class {p1, . . . , pn}
then A(p) =

⋃
1≤i≤n A(pi).

For instance, the APEG p of Fig. 1 represents all the following expressions:

A(p) =

⎧⎪⎪⎨
⎪⎪⎩

(
(a + a) + b

) × c,
(
(a + b) + a

) × c,
(
(b + a) + a

) × c,(
(2 × a) + b

) × c, c × (
(a + a) + b

)
, c × (

(a + b) + a
)
,

c × (
(b + a) + a

)
, c × (

(2 × a) + b
)
, (a + a) × c + b × c,

(2 × a) × c + b × c, b × c + (a + a) × c, b × c + (2 × a) × c

⎫⎪⎪⎬
⎪⎪⎭ (8)

p1 p2

+ p3

p1 p2

+ p3

p1 p3

+

p2 p3

p1 p2

p3  ( p1,p2,p3 )

 ( p1 n,p'1 m )

 ( p'1 m ) ( p1 n )

Fig. 2. Some rules for APEG construction by pattern matching.

In their article on EPEGs, R. Tate et al. use rewriting rules to extend the
structure up to saturation [24,25]. In our context, such rules would consist of
performing some pattern matching in an existing APEG p and then adding
new nodes in p, once a pattern has been recognized. For example, the rules
corresponding to distributivity and box construction are given in Fig. 2. An
alternative technique for APEG construction is to use dedicated algorithms.
Such algorithms, working in polynomial time, have been proposed in [15].

2.3 Transformation of Commands

In this section, we focus on the transformation of commands which is done using
a set of rewriting rules. Our language is made of assignments, conditionals, loops
and sequences of commands. The syntax is

Com 	 c:: = id = e | c1 ; c2 | ifΦ e then c1 else c2 | whileΦ e do c | nop. (9)

The transformation relies on several hypotheses. First of all, programs are
assumed to be in static single assignment form (SSA form) [7]. The principle
of this intermediary representation is that every variable may be assigned only
once in the source code and must be initialized before its use. To understand this
intermediary representation, let us consider the example of Fig. 3. In the orig-
inal program, x is assigned several times. In the program in SSA form, a new
variable x1, x2, etc. is used for each assignment and at the junction of control
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Fig. 3. Original program (left) and its SSA Form (right).

paths (in conditionals or loops), a Φ-node Φ(x1, x2, x3) indicates that we assign
to x1 the value of x2 or x3 depending on where we are coming from.
The second hypothesis is that we optimize a reference variable defined by the
user. Our transformation is defined by rules using states 〈c, δ, C, ν, β〉 where:

– c is a command, as defined in Eq. (9),
– δ is an environment δ : V → Expr which maps variables to expressions.

Intuitively, this environment records the expressions assigned to variables in
order to inline them later on in larger expressions,

– C ∈ Ctx is a single hole context [12]. It records the program enclosing the
current expression to be transformed,

– ν ∈ V denotes the reference variable that we aim at optimizing,
– β ⊆ V is a list of assigned variables that should not be removed from the code.

Initially, β = {ν}, i.e., the target variable ν must not be removed.

The environment δ is used to discard assignments from programs and to re-insert
the expressions when the variables are read, in order to build larger expressions.

Let us consider first assignments. If (i) the variable v of some assignment
v = e does not exist in the domain of δ and (ii) v �∈ β and (iii) v �= ν then we
memorize e in δ and we remove the assignment from the program. Otherwise,
if one of the conditions (i), (ii) or (iii) is not satisfied then we rewrite this
assignment by inlining the variables saved in δ in the concerned expression.
Note that, when transforming programs by inlining expressions in variables, we
get larger formulas. The basic idea, in our implementation, when dealing with
too large expressions, is to create intermediary variables and to assign to them
the sub-expressions obtained by slicing the global expression at a given level
of the syntactic tree. The last step consists of re-inserting these intermediary
variables into the main program.

For example, let us consider the program below in which three variables x, y
and z are assigned. We assume that z is the variable that we aim at optimizing
and a = 0.1, b = 0.01, c = 0.001 and d = 0.0001 are constants.

〈x = a + b ; y = c + d ; z = x + y , δ, [], ν = z, [z]〉
−→ 〈nop ; y = c + d ; z = x + y, δ′ = δ[x �→ a + b], [], ν = z, [z]〉
−→ 〈nop ; nop ; z = x + y, δ′′ = δ′[y �→ c + d], [], ν = z, [z]〉
−→ 〈nop ; nop ; z = ((d + c) + b) + a, δ′′, [], ν = z, [z]〉

(10)

In Eq. (10), the environment δ and the context C are initially empty and the
list β contains the reference variable z. We remove the variable x and memorize
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it in δ. So, the line corresponding to the variable discarded is replaced by nop
and the new environment is δ = [x �→ a + b]. We then repeat the same process
on the variable y. For the last step, we may not remove z because it is the
reference variable. Instead, we substitute, in z, x and y by their values in δ and
we transform the expression using the technique described in Sect. 2.2.

Our tool also transforms conditionals. If a certain condition is always true or
false, then we keep only the right branch, otherwise, we transform both branches
of the conditional. When it is necessary, we re-inject variables that have been
discarded from the main program. Let us take another example to explain how
we transform conditionals.

x1 = 0; ifΦ(y3,y1,y2) x1 > 1 then y1 = x1 + 2; else y2 = x1 − 1; ν = y3. (11)

First of all, x1 is stored in δ. Then, we transform recursively the new program

ifΦ(y3,y1,y2) x1 > 1 then y1 = x1 + 2; else y2 = x1 − 1; ν = y3. (12)

This program is semantically incorrect since the test is undefined. So we re-inject
the statement x1 = 0 in the program and add x1 to the list β in order to avoid
an infinite loop in the transformation.

For a sequence c1; c2, the first command c1 is transformed into c′
1 in the

current environment δ, C, ν and β and a new context C ′ is built which inserts
c′
1 inside C. Then c2 is transformed into c′

2 using the context C[c′
1; []], the formal

environments δ′ and the list β′ resulting from the transformation of c1. Finally,
the state 〈c′

1 ; c′
2, δ

′′, β′′〉 is returned.
Other transformations have been defined for while loops. A first rule makes

it possible to transform the body of the loop assuming that the variables of
the condition have not been stored in δ. In this case, the body is optimized in
the context C[whileΦ e do []] where C is the context of the loop. A second rule
builds the list V = V ar(e) ∪ V ar(Φ) where V ar(Φ) is the list of variables read
and written in the Φ nodes of the loop. The set V is used to achieve two tasks:
firstly, it is used to build a new command c′ corresponding to the sequence of
assignments that must be re-inserted. Secondly, the variables of V are removed
from the domain of δ and added to β. The resulting command is obtained by
transforming c′;whileΦ e do c with δ′ and β ∪ V .

3 Case Studies

In this section, we consider four iterative programs performing numerical compu-
tations: Jacobi’s Method, Newton-Raphson’s Method, an Iterated Power Method
used to compute the largest eigenvalue of a matrix and an iterative orthogonal-
ization algorithm more stable than Gram-Schmidt Method. We demonstrate the
efficiency of our techniques in accelerating the convergence of these algorithms
by measuring the number of iterations before and after rewriting. We present
speedups in terms of execution time and number of floating-point operations
needed to achieve the computation.



150 N. Damouche et al.

We have implemented the original and optimized numerical iterative meth-
ods in the C programming language, compiled with GCC 4.2.1, and made them
run on an Intel Core i5 with 4 Go memory in IEEE754 single precision in order
to emphasize the effect of the finite precision. Programs are compiled with the
default optimization level −O2. We have tried other levels of optimization with-
out observing significant changes in our results.

3.1 Linear Systems of Equations

We start with a first case study concerning Jacobi’s method [17] which consists
of an iterative computation that solves linear systems of the form Ax = b. From
this equation, we build a sequence of vectors (x(0), x(1), ... , x(k), x(k+1), ...) that
converges towards the solution x(k) of the system of linear equations.

To build the algorithm corresponding to this method, we decompose the
initial matrix A into three matrices. The first one D contains the diagonal terms
aii of the matrix. The second U contains the terms of the matrix which are above
the main diagonal of A (aij with j > i) and the last one L contains the remaining
terms of A, i.e., the terms that are below the main diagonal (aij with j < i).

So, after transforming the matrix A, we have the following equation to solve
Dx = b − (L + U)x.

To compute x(k+1), we use:

x
(k+1)
i =

bi −
n∑

j=1,j �=i

aijx
(k)
j

aii
where x(k) is known. (13)

The method iterates until |x(k+1)
i − xi| < ε for the desired xi, 1 ≤ i ≤ n.

A sufficient condition for the stability of Jacobi’s method is that

|aii| >

n∑
j=1,j �=i

|aij |. (14)

Let us now examine how we can improve the convergence of Jacobi’s method
on the example given in Eq. (15). This system is stable with respect to the
sufficient condition of Eq. (14) but it is close to be unstable in the sense that

∀i, 1 ≤ i ≤ 4, |aii| ≈
j=4∑

j=1,j �=i

|aij |.⎛
⎜⎜⎝

0.62 0.1 0.2 −0.3
0.3 0.602 −0.1 0.2
0.2 −0.3 0.6006 0.1

−0.1 0.2 0.3 0.601

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

x1

x2

x3

x4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1.0/2.0
1.0/3.0
1.0/4.0
1.0/5.0

⎞
⎟⎟⎠ . (15)

We describe this system using the notations of Eq. (13). To solve Eq. (15) by
Jacobi’s method, we use the algorithm presented in Fig. 4. This program is trans-
formed with our tool by using the set of transformation rules described in Sect. 3.
Note that, in the version of this program given to our tool, we have unfolded the
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body of the while loop twice. This makes it possible to rewrite more drastically
the code by mixing the computations of both iterations. In this example, with-
out unfolding, we win very few iterations and, obviously, if we unfold the body
of the loop more than twice, our tool improves even more the accuracy at the
price of a longer code. Note that in the examples of the next sections, we do not
perform such an unfolding because our tool already optimizes significantly the
original codes (results would be even better with unfolding).

eps = 10e-16; a11 = 0.61; a22 = 0.602; a33 = 0.6006; a44 = 0.601;
b1 = 0.5; b2 = 1.0/3.0; b3 = 0.25; b4 = 1.0/5.0;
while (e > eps) {

x_n1 = (b1/a11) - (0.1/a11) * x2 - (0.2/a11) * x3 + (0.3/a11) * x4;
x_n2 = (b2/a22) - (0.3/a22) * x1 + (0.1/a22) * x3 - (0.2/a22) * x4;
x_n3 = (b3/a33) - (0.2/a33) * x1 + (0.3/a33) * x2 - (0.1/a33) * x4;
x_n4 = (b4/a44) + (0.1/a44) * x1 - (0.2/a44) * x2 - (0.3/a44) * x3;
e = x_n1 - x1; x1 = x_n1; x2 = x_n2; x3 = x_n3; x4 = x_n4; }

Fig. 4. Listing of the initial program of Jacobi’s method.

The program corresponding to Jacobi’s method after optimization is shown
in Fig. 5. Note that this code is rather not intuitive and could very difficultly
be written by hand. Concerning the accuracy of the variables, our tool states
that the percentage of the optimization computed by the abstract semantics of
Sect. 2 is up to 44.5%. This means that the bound on the numerical error of the
computed values of xi, 1 ≤ i ≤ 4 at any iteration is reduced by 44.5%.

In Fig. 6, one can see the difference between the original and the transformed
programs in term of the number of iterations needed to compute x1, x2, x3 and
x4. Roughly speaking, about 15% less iterations are needed with the optimized
code. Obviously, the fact that the body of the loop is unfolded twice, in the opti-
mized code is taken into account in the computation of the number of iterations
needed to converge.

eps = 10e-16 ;
while (e > eps) {

TMP_1 = (0.553709856035437 - (x1 * 0.498338870431894)) ;
TMP_2 = (0.166112956810631 * x3) ;
TMP_6 = (0.333000333000333 * x1) ;
x_n1 = (((0.819672131147541 - (0.163934426229508 * ((TMP_1 + TMP_2) - (0.332225913621263

* x4)))) - (0.327868852459016 * (((0.416250416250416 - TMP_6) + (0.4995004995005 * x2))
- (0.166500166500167 * x4)))) + (0.491803278688525 * (((0.332778702163062
+ (0.166389351081531 * x1)) - (0.332778702163062 * x2)) - (0.499168053244592 * x3)))) ;

x_n2 = (((0.553709856035437 - (0.498338870431894 * x_n1)) + (0.166112956810631
* (((0.416250416250416 - TMP_6) + (0.4995004995005 * x2)) - (0.166500166500167 * x4))))
- (0.332225913621263 * (((0.332778702163062 + (0.166389351081531 * x1))
- (0.332778702163062 * x2)) - (0.499168053244592 * x3)))) ;

x_n3 = (((0.416250416250416 - (0.333000333000333 * x_n1)) + (0.4995004995005 * x_n2))
- (0.166500166500167 * (((0.332778702163062 + (0.166389351081531 * x1))
- (0.332778702163062 * x2)) - (0.499168053244592 * x3)))) ;

x_n4 = (((0.332778702163062 + (0.166389351081531 * x_n1)) - (0.332778702163062 * x_n2))
- (0.499168053244592 * x_n3)) ;

e = (x_n4 - x4) ; x1 = x_n1 ; x2 = x_n2 ; x3 = x_n3 ; x4 = x_n4 ; }

Fig. 5. Listing of the optimized program of Jacobi’s method.
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xi Initial Num of iteration Iterations Num after optimization Difference Percentage

x1 1891 1628 263 14.0
x2 2068 1702 366 17.3
x3 2019 1702 317 15.7
x4 1953 1628 325 16.7

Fig. 6. Number of iterations of Jacobi’s method before and after optimization to com-
pute xi, 1 ≤ i ≤ 4.

3.2 Zero Finding

Newton-Raphson’s Method [17] is a numerical method used to compute the
successive approximations of the zeros of a real-valued function. In order to
understand how this method works, let us start with the derivative f ′(x) of the
function f which may be used to find the slope, and thus the equation of the
tangent to the curve at a specified point. The method starts in an interval, for
the equation f(x) = 0, in which there exists only one solution, the root a.

eps = 0.0005 ; e = 1.0 ; x = 0.0 ;
while (e > eps){

f = (x*x*x*x*x) - (10.0*x*x*x*x) + (40.0*x*x*x) - (80.0*x*x) + (80.0*x) - (32.0) ;
ff = (5.0*x*x*x*x) - (40.0*x*x*x) + (120.0*x*x) - (160.0*x) + (80.0) ;
x_n = x - (f / ff) ;
e = (x - x_n) ; x = x_n ;
if (e < 0.0) { e = (e * (-1.0)) ; } else { e = (e * 1.0) ; } ; }

Fig. 7. Listing of the initial Newton-Raphson’s program.

We choose a value u0 close enough to a and then we build a sequence (un)n∈N

where un+1 is obtained from un, as the abscissa of the meet point of the x-axis
and the tangent at point (un, f(un)) to the function f . The final formula is given
in Eq. (16). Note that the computation stops when |un−1 − un| < ε.

un+1 = un − f(un)
f ′(un)

. (16)

In general, Newton-Raphson’s converges very quickly (quadratic convergence)
but it may be slower if the computation of f or f ′ is inaccurate. For our case
study, we have chosen functions which are difficult to evaluate in the IEEE754
floating-point arithmetic. Let us consider the function f(x) = (x − 2)5. The
developed formula of f and its derivative f ′ are:

f(x) = x5 − 10x4 + 40x3 − 80x2 + 80x − 32, (17)

f ′(x) = 5x4 − 40x3 + 120x2 − 160x + 80. (18)

It is well-known from floating-point arithmetic experts that evaluating the
developed form of a polynomial close to a multiple root may be quite
inaccurate [18]. Consequently, this example presents some numerical difficulties
for Newton-Raphson’s method which converges slowly in this case.
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eps = 0.0005 ; e = 1.0 ; x = 0.0 ; x_n = 1.0 ;
while (e > eps){

TMP_1 = (((((x * x) * x) * x) * x) - ((((10.0 * x) * x) * x) * x)) ;
TMP_2 = ((x * x) * (40.0 * x)) ;
TMP_3 = (80.0 * x) ;
TMP_5 = (((5.0 * x) * x) * (x * x)) ;
TMP_6 = ((x * x) * (40.0 * x)) ;
TMP_7 = (120.0 * x) ;
x_n = (x - (((((TMP_1 + TMP_2) - (TMP_3 * x)) + TMP_3) - 32.0)

/ ((((TMP_5 - TMP_6) + (TMP_7 * x)) - (160.0 * x)) + 80.0))) ;
e = (x - x_n) ; x = x_n ;
if (e < 0.0) { e = (e * (-1.0)) ; } else { e = (e * 1.0) ; } ; }

Fig. 8. Listing of the optimized Newton-Raphson’s program.
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Fig. 9. Number of iterations of the Newton-Raphson’s Method before and after opti-
mization for initial values ranging from 0 to 3 (30 runs with a step of 0.1).

The algorithm corresponding to Eq. (16) is given in Fig. 7. We recognize the
computation of f(x) and its derivative f ′(x) called ff . When optimizing this
program with our tool, we get the program of Fig. 8. The accuracy of the xi’s is
improved up to 1.53% following the semantics of Sect. 2.

The results given in Fig. 9 show how much our tool optimizes the number
of iterations needed to converge. Obviously, this number of iterations needed
to converge to the solution with a given precision depends on the initial value
x0. We have experimented several initial values. We make x0 go from 0 to 3
with a step of 0.1. The 30 results are presented in Fig. 9. Due to the numerical
inaccuracies, the number of iterations ranges from 10 to 1200, approximatively.
It is always close to 10 with the transformed program.

3.3 Eigenvalue Computation

The Iterated Power Method is a method used to compute the largest eigenvalue
of a matrix and the related eigenvector [10]. We start by fixing an arbitrary initial
vector x(0) containing a single non-zero element. Next, we build an intermediary
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vector y(1) such that Ax(0) = y(1). Then, we build x(1) by re-normalizing y(1) so
that the selected component is again equal to 1. This process is repeated up to
convergence. Optionally, we may change the reference vector if it converges to 0.
Note that the renormalization factor converges to the largest eigenvalue and
x converges to the related eigenvector, under the conditions that the largest
eigenvalue is unique and that all eigenvectors are independent. The convergence
speed is proportional to the ratio between the two largest eigenvalues (in absolute
value). For our experiments, let us take a square matrix A of dimension 4 with
the eigenvector (0.0 0.0 0.0 1.0)T given on the Eq. (15):

A =

⎛
⎜⎜⎝

d 0.01 0.01 0.01
0.01 d 0.01 0.01
0.01 0.01 d 0.01
0.01 0.01 0.01 d

⎞
⎟⎟⎠ with d ∈ [175.0, 200.0]. (19)

By applying the Iterated Power Method, the first intermediary vector is

Ax0 = y1, Ay1
/y1

4 = y2, Ay2
/y2

4 = y3, . . . (20)

To re-normalize this intermediary vector, we divide it by the last value d, manner
to have y

(1)
4 equal to 1.0. The new vector is: (0.01/d 0.01/d 0.01/d 1.0)T .

We keep iterating with the new intermediary vector. We have: We repeat the
former operation on this new intermediary vector in order to re-normalize it.
By repeating this process several times, the series converges to the eigenvector
(1.0 1.0 1.0 1.0)T .

eps = 0.0005 ; d = 175.0 ; v1 = 0.0 ; v2 = 0.0 ; v3 = 0.0 ; v4 = 1.0 ; a41 = 0.01 ; a44 = d ;
a11 = d ; a12 = 0.01 ; a13 = 0.01 ; a14 = 0.01 ; a21 = 0.01 ; a22 = d ; a42 = 0.01 ; e = 1.0 ;
a23 = 0.01 ; a24 = 0.01 ; a31 = 0.01 ; a32 = 0.01 ; a33 = d ; a34 = 0.01 ; a43 = 0.01 ;
while (e > eps) {

vx = a11 * v1 + a12 * v2 + a13 * v3 + a14 * v4 ;
vy = a21 * v1 + a22 * v2 + a23 * v3 + a24 * v4 ;
vz = a31 * v1 + a32 * v2 + a33 * v3 + a34 * v4 ;
vw = a41 * v1 + a42 * v2 + a43 * v3 + a44 * v4 ;
v1 = vx / vw ; v2 = vy / vw ; v3 = vz / vw ; v4 = 1.0 ; e = 1.0 - v1;
if (v1 < 1.0) { e = 1.0 - v1 ;} else { e = v1 - 1.0 ;} }

Fig. 10. Listing of the Initial iterated power method.

Our tool has improved the error bounds computed by the semantics of
Sect. 2.1 of up to 25.76%. The optimized code is given in Fig. 11.

When running this program, we observe significant improved results. In other
words, the transformed implementation succeeds to reduce the numbers of iter-
ations needed to converge and accelerates the convergence speed of the iterative
power method. The experimental results are summarized in Fig. 12.

3.4 Iterative Gram-Schmidt Method

The Gram-Schmidt method is used to orthogonalize a set of non-zero vectors
in a Euclidean or Hermitian space Rn. This method takes as input a linear
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eps = 0.0005 ; d = 175.0 ; v1 = 0.0 ; v2 = 0.0 ; v3 = 0.0 ; v4 = 1.0 ; e = 1.0 ;
while (e > eps) {

vx = ((((0.01 * v4) + (0.01 * v2)) + (0.01 * v3)) + (d * v1)) ;
vy = ((((0.01 * v1) + (0.01 * v4)) + (0.01 * v3)) + (d * v2)) ;
vz = ((((0.01 * v4) + (0.01 * v2)) + (0.01 * v1)) + (d * v3)) ;
vw = ((((0.01 * v2) + (0.01 * v1)) + (0.01 * v3)) + (d * v4)) ;
v1 = (vx / vw) ; v2 = (vy / vw) ; v3 = (vz / vw) ; v4 = 1.0 ; e = (1.0 - v1) ;
if (v1 < 1.0) { e = 1.0 - v1 ;} else { e = v1 - 1.0 ;} }

Fig. 11. Listing of the optimized iterated power method.
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Fig. 12. Difference between numbers of iterations of initial and optimized Iterated
Power Method (tests done for d ∈ [175, 200] with a step of 1).

independent set of vectors Q = {q1, q2, . . . , qj}. The output is the orthogonal
set of vectors Q’ = {q’1, q’2, . . . , q’j}, with 1 ≤ j ≤ n [1,10,13]. The process
followed by Gram-Schmidt method starts by defining the projection:

projq’(q) =
〈q,q’〉
〈q’,q’〉q’. (21)

In Eq. (21), 〈q,q’〉 is the dot product of the vectors q and q’. It means that
the vector q is projected orthogonally onto the line spanned by the vector q’.
The normalized vectors are ej = q’j

||q’j || where ||q’j || consists of the norm of the
vector q’j . Explicitly, Gram-Schmidt process can be written as:

q’1 = q1,

q’2 = q2 − projq’1(q2),
...

q’j = qj −
j−1∑
j=1

projq’j (qj).
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In general, Gram-Schmidt method is numerically stable and it is not nec-
essary to use an iterative algorithm. However, important numerical errors may
arise when the vectors become more and more linearly dependent. In this case
iterative algorithms yield better results, as for example the algorithm of Fig. 13
which repeats the orthogonalization step until the ratio ||q’j ||2

||qj ||2 becomes large
enough [13]. First, it starts by computing the orthogonal projection of
span

({q1,q2,q3}
)
. Then, it substracts this projection from the original vec-

tor and then normalizes the result to obtain q3, i.e., span
({q1,q2,q3})

=
span

({x1,x2,x3}
)

and q3 is orthogonal to q1, q2. We assume that rjj > 0.
To understand how this algorithm works, let us take for example a set of

vectors in R3 that we aim at orthogonalizing.

Qn =

⎧⎨
⎩q1 =

⎛
⎝1/7n

0
0

⎞
⎠ ,q2 =

⎛
⎝ 0

1/25n
0

⎞
⎠ ,q3 =

⎛
⎝1/2592

1/2601
1/2583

⎞
⎠

⎫⎬
⎭ . (22)

For our experiments, we have chosen the values of n ranging from 1 to 10.

Q11 = 1.0 / 7n ; Q12 = 0.0 ; Q13 = 0.0 ; Q21 = 0.0 ; Q22 = 1.0 / 25n ; Q23 = 0.0 ;
Q31 = 1.0 / 2592.0 ; Q32 = 1.0 / 2601.0 ; Q33 = 1.0 / 2583.0 ; eps = 0.000005 ;
qj1 = Q31; qj2 = Q32; qj3 = Q33; r1 = 0.0; r2 = 0.0; r3 = 0.0; e = 10.0 ;
r = qj1 * qj1 + qj2 * qj2 + qj3 * qj3 ; rold = sqrt(r) ;
while( e > eps) {

h1 = Q11 * qj1 + Q21 * qj2 + Q31 * qj3 ;
h2 = Q12 * qj1 + Q22 * qj2 + Q32 * qj3 ;
h3 = Q13 * qj1 + Q23 * qj2 + Q33 * qj3 ;
qj1 = qj1 - (Q11 * h1 + Q12 * h2 + Q13 * h3) ;
qj2 = qj2 - (Q21 * h1 + Q22 * h2 + Q23 * h3) ;
qj3 = qj3 - (Q31 * h1 + Q32 * h2 + Q33 * h3) ;
r1 = r1 + h1 ; r2 = r2 + h2 ; r3 = r3 + h3 ;
r = qj1 * qj1 + qj2 * qj2 + qj3 * qj3 ;
rjj = sqrt(r);
e = 1.0 - (rjj / rold) ;
if (e < 0.0) { e = -e ; };
rold = rjj ; }

Fig. 13. Listing of the initial iterative Gram-Schmidt program.

In Fig. 14, we give the transformed iterative Gram-Schmidt algorithm gen-
erated by our tool. By applying our techniques to the iterative Gram-Schmidt
algorithm presented previously in Fig. 13, we show in Fig. 15 that the trans-
formed algorithm converges faster than the initial one by up to 14.5%.

3.5 Performance Analysis

We have shown in the former sections that we optimize the number of itera-
tions of our four iterative numerical algorithms. In this section, we provide com-
plementary benchmarks concerning speedups and the number of floating-point
operations. Our objective is to check that the gains in the number of iterations
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Q11 = 1.0 / 7n ; Q12 = 0.0 ; Q13 = 0.0 ; Q21 = 0.0 ; Q22 = 1.0 / 25n ; Q23 = 0.0 ;
Q31 = 1.0 / 2592.0 ; Q32 = 1.0 / 2601.0 ; Q33 = 1.0 / 2583.0 ; eps = 0.000005 ;
qj1 = Q31; qj2 = Q32; qj3 = Q33; r1 = 0.0; r2 = 0.0; r3 = 0.0; e = 10.0 ;
r = qj1 * qj1 + qj2 * qj2 + qj3 * qj3 ; rold = sqrt(r) ;
while ( e > eps) {

TMP_6 = (qj1 * qj3) ;
TMP_14 = (qj2 * qj3) ;
qj1 = (qj1 - ((0.14285714285 *(((qj1 * qj3)) + (0.14285714285 * qj1))));
qj2 = (qj2 - ((0.04 * (((0.0 * qj1) + (qj2 * qj3)) + (0.04 * qj2))))) ;
qj3 = (qj3 - (((qj2 * ((TMP_14) + (0.04 * qj2))) + (qj3 + (qj3 * qj3))))

+ (qj1 * (((qj1 * qj3)) + (0.14285714285 * qj1))))) ;
r1 = (r1 + ((TMP_6) + (0.14285714285 * qj1))) ;
r2 = (r2 + ((TMP_14) + (0.04 * qj2))) ;
r3 = (r3 + ((qj3 * qj3))) ;
r = qj1 * qj1 + qj2 * qj2 + qj3 * qj3 ;
rjj = sqrt(r);
e = 1.0 - (rjj / rold) ;
if (e < 0.0) { e = -e ; };
rold = rjj ; }

Fig. 14. Listing of the optimized iterative Gram-Schmidt program.
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Fig. 15. Iterations number of initial and optimized iterative Gram-Schmidt Method
for the family (Qn)n of vectors, 1 ≤ n ≤ 10.

are not annealed by overheads in the execution time of a single iteration or by
other side effects for example due to the compiler.

We have chosen to observe the speedups of x4 for Jacobi’s method, and x0 = 3
for Newton-Raphson’s method. We have taken d = 200 for the iterated power
method and q11 = 1

63 and q22 = 1
225 for iterative Gram-Schmidt method.

If we focus on measuring the execution time of the four programs before
and after optimization, we observe that the percentage of improvement is rather
important. If we take for example Jacobi’s method, we remark that we reduce its
execution time by 74.5%. We give in Fig. 16 the speedups results obtained for the
four methods. These results are very interesting to emphasize the usefulness of
our tool and its ability to improve accuracy and execution time simultaneously.
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Original Code Optimized Code Percentage Mean
Execution Time in s Execution Time in s Improvement on n Runs

Jacobi 1.49 · 10−4 0.38 · 10−4 74.5% 104

Newton 1.34 · 10−3 0.02 · 10−3 98.4% 104

Eigenvalue 4.50 · 10−2 3.07 · 10−2 31.6% 103

Gram-Schmidt 1.99 · 10−1 1.70 · 10−1 14.5% 102

Fig. 16. Execution time measurements of programs of Sect. 3.

� of ± per it � of ± per it Total � of ± Total � of ± opt Percentage of
Method Original Code Optimized Code Original Code Optimized Code Improvement

Jacobi 13 15 25389 24420 3.81
Newton-Raphson 11 11 3465 132 96.19

Eigenvalue 15 15 694080 685995 1.16
Gram-Schmidt 21 19 791364 715996 9.52

� of × per it � of × per it Total � of × Total � of × opt Percentage of
Method Original Code Optimized Code Original Code Optimized Code Improvement

Jacobi 28 14 54684 22792 58.32
Newton-Raphson 27 26 8505 312 96.33

Eigenvalue 19 19 879168 868927 1.16
Gram-Schmidt 22 20 712316 647560 9.09

Fig. 17. Floating-point operations needed by programs of Sect. 3 to converge.

We have also counted the number of floating-point operations (flops) in the
original and optimized codes. The numbers are given in Fig. 17. For each method,
we count the number of additions and subtractions as well as the number of
products and divisions for a single iteration and for the total number of iterations
required in each case to converge. These results are coherent with the observed
execution times.

4 Conclusion

This article focuses on the impact of automatic transformation of programs in
order to improve their numerical accuracy on the convergence time of numerical
iterative algorithms. Our experiments show the usefulness of our approach on the
time required by numerical iterative methods to converge. We have experimented
several representative numerical iterative methods by giving them to our tool
and we have shown that the transformed programs converge more quickly than
the original ones without loss of accuracy. We have extended this study with
complementary results concerning the execution time and the total number of
floating-point operations.

What remains to be done is to have a more complete tool implementing other
programming language patterns like functions and pointers. In addition, it would
be interesting to extend the current work with a case study concerning a real size
numerical application. The study described in [9] is a first step in this direction.
Another future work would consist in studying the impact of accuracy optimiza-
tion on the convergence time of distributed numerical algorithms like the ones
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used usually for high performance computing. In addition, still about distributed
systems, an important issue concerns the reproducibility of the results: different
runs of the same application yield different results due to the variations in the
order of evaluation of the mathematical expression. We would like to study how
our technique could improve reproducibility.
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Methods for Industrial Critical Systems. LNCS, vol. 9128, pp. 31–46. Springer,
Heidelberg (2015)

9. Damouche, N., Martel, M., Chapoutot, A.: Optimizing the accuracy of a rocket
trajectory simulation by program transformation. In: Computing Frontiers, pp.
40:1–40:2. ACM (2015)

10. Golub, G.H., van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins Uni-
versity Press, Baltimore (1996)

11. Goubault, E., Putot, S.: Static analysis of finite precision computations. In: Jhala,
R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 232–247. Springer,
Heidelberg (2011)

12. Hankin, E.: Lambda Calculi A Guide For Computer Scientists. Clarendon Press,
Oxford (1994)

13. Hernandez, V., Roman, J.E., Tomas, A., Vidal, V.: Orthogonalization routine in
SLEPc Technical Report STR-1. In: Polytechnic University of Valencia. STR1
(2007)

14. Hunt, S., Sands, D.: Binding time analysis: a new perspective. In: PEPM 1991, pp.
154–165 (1991)

15. Ioualalen, A., Martel, M.: A new abstract domain for the representation of mathe-
matically equivalent expressions. In: Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS,
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Abstract. The Timed Concurrent Constraint Language (tccp) is a time
extension of the concurrent constraint paradigm of Saraswat. tccp was
defined to model reactive systems, where infinite behaviors arise natu-
rally. In previous works, a semantic framework and abstract diagnosis
method for the language has been defined.

On the basis of that semantic framework, this paper proposes an
abstract semantics that, together with a widening operator, is suitable for
the definition of different analyses for tccp programs. The abstract seman-
tics is correct and can be represented as a finite graph where each node
represents a hypothetical computational step of the program containing
approximated information for the variables. The widening operator allows
us to guarantee the convergence of the abstract fixpoint computation.

Keywords: Concurrent constraint paradigm · Abstract analysis

1 Introduction

The Concurrent Constraint Paradigm (ccp, [10]) is a simple, logic model which
is different from other (concurrent) programming paradigms mainly due to the
notion of store-as-constraint that replaces the classical store-as-valuation model.
It is based on an underlying constraint system that handles constraints on vari-
ables and deals with partial information. Within this family, [6] introduced the
Timed Concurrent Constraint Language (tccp) by adding to the original ccp
model the notion of time and the ability to capture the absence of information.
With these features, one can specify behaviors typical of reactive systems such
as timeouts or preemption actions.
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It is well-known that modeling and analyzing concurrent systems by hand can
be an extremely hard task. Thus, the development of automatic formal methods
is essential. The particular characteristics of ccp languages make such task even
harder, since we have to deal with technical issues due to the infinite computa-
tions (natural to reactive systems), use of negative information (particular for
ccp languages) and non-determinism.

One well established technique to develop semantic-based program analysis
is abstract interpretation [5], which relies on the definition of a specific approx-
imated abstract semantics that captures the information needed to perform the
analysis. Typically, one defines an over-approximation of the concrete semantics
that includes all possible traces of the system, possibly introducing inexistent
ones. This allows one to develop (correct) analysis of universal properties. It does
not allow to analyze existential properties, for instance to verify that there exists
a suspension trace. In our proposal, we follow such approach starting from the
concrete semantics for tccp defined in [4]. This semantics addresses (with the
minimal amount of information) all thorniest difficulties of tccp (i.e., infinite
computations, use of negative information and non-determinism). To the best
of our knowledge, this is the only bottom-up and condensed semantics which is
fully abstract w.r.t. the full tccp language. Therefore, such semantics is partic-
ularly well-suited as the base to apply abstract interpretation techniques, which
take great advantage from a bottom-up and condensed definition. The fully-
abstract denotational semantics of [6] captures just finite computations and has
a top-down definition thus it is not well-suited for our purposes.

We define a framework of over-approximated abstract semantics parametric
w.r.t. an abstract constraint system. This allows us to recycle the work done for
developing abstract domains for logic programs (such as groundness analysis).
More interestingly, we can also make new analyses for reactive systems such as
non-suspension analysis and universal (safety and liveness) properties. Since we
need to preserve the notion of time—to be able to express properties of interest
like safety or time-depending properties—the abstract semantics domains are
not Noetherian (even if we use finite abstract constraint systems). Thus, in
order to have an effective approach we use the widening approach of [2,5] to
ensure finiteness of the analysis. Applicability of our approach is illustrated by
showing different analyses over our guiding example, a lift/passenger system.
More specifically, we show how properties such as the lift direction and floor are
consistently updated or the lift/passenger never suspends can be analyzed.

2 The tccp language

The tccp language [6] is particularly suitable to specify both reactive and time
critical systems. As the other languages of the ccp paradigm [10], it is parametric
w.r.t. a cylindric constraint system which handles the data information of the
program in terms of constraints. The computation progresses as the concurrent
and asynchronous activity of several agents that can accumulate information in a
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store, or query information from it. A cylindric constraint system1 is an algebraic
structure C = 〈C,�,⊗,⊕, false, true,Var ,∃〉 composed of a set of constraints C
such that (C, �) is a complete algebraic lattice where ⊗ is the lub operator, ⊕
is the glb operator and false and true are respectively the greatest and the least
element of C; Var is a denumerable set of variables and ∃ existentially quantifies
variables over constraints. The entailment � is the inverse of �.

Given a cylindric constraint system C and a set of process symbols Π, the
syntax of agents is given by the grammar A ::= skip | tell(c) | A ‖ A | ∃x A |∑n

i=1 ask(ci) → A | now c then A else A | p(�x) where c, c1, . . . , cn are finite
constraints in C; p/m ∈ Π, and �x denotes a generic tuple of m variables. A tccp
program is an object of the form D.A, where A is an agent, called initial agent,
and D is a set of process declarations of the form p(�x):−A (for some agent A).
The notion of time is introduced by defining a discrete and global clock.

The operational semantics of tccp, defined in [6], is formally described by a
transition system T = (Conf ,−→). Informally, the tell(c) agent adds the con-
straint c to the store in the next time instant and then stops. The choice agent∑n

i=1ask(ci) → Ai consults the store and non-deterministically executes (at the
following time instant) one of the agents Ai whose corresponding guard ci is
entailed by the current store; otherwise, if no guard is entailed by the store, the
agent suspends. The conditional agent now c then A else B behaves in the current
time instant like A (resp. B) if c is (resp. is not) entailed by the store. A ‖ B
models the parallel composition of A and B in terms of maximal parallelism.
The agent ∃xA makes variable x local to A. To this end, it uses the ∃ operator
of the constraint system. Finally, the agent p(�x) takes from D a declaration of
the form p(�x):−A and then executes A at the following time instant.

Example 1. The following code shows a possible tccp implementation of a simple
lift/passenger system. We assume that the lift is located at a building with
N +1 floors numbered as 0, 1, · · · , N . The lift process uses variables CF and Dir
to store the current floor where the lift is placed and the movement direction
(up/down), respectively. At each time instant, the lift moves, if possible, to
the following floor, according to the current movement direction. When the lift
reaches floors 0 or N , then it changes the movement direction. Process pssngr
models the behavior of a client that wants to take the lift to go from origin floor
O to destination floor D. This process makes use of variable St to store its state:
wait , when it is waiting for the lift, in, when it is inside the lift and out , when the
passenger has arrived at the destination floor. We use a simple constraint system
composed of the atoms {up, down, in, out ,wait} and with arithmetic operations
over the numbers {0, . . . , N}. Due to the monotonicity of the store, streams
(written in a list-fashion way) are used to model imperative-style variables [6].

main(N ,O ,D) : − ∃CF ,Dir ,St
(
lift(N,CF ,Dir) ‖ pssngr(CF , O, D, St) ‖

tell(CF = [0 | ]) ‖ tell(Dir = [up | ]) ‖ tell(St = [wait | ])
)

lift(N ,CF ,Dir) : − ∃CF l,Dir l, F
(
now(Dir = [up | ] ∧ CF = [N | ])

1 See [6,10] for more details on cylindric constraint systems, where traditionally, the
glb ⊕ is not explicitly defined.
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then (tell (Dir = [up | Dir l]) ‖ tell (Dir l = [down | ]) ‖ lift(N ,CF ,Dir l))

else now (Dir = [up | ]) then (tell(CF = [F | CF l]) ‖
ask(true) → (tell(CF l = [F + 1 | ]) ‖ lift(N ,CF l ,Dir)))

else now (Dir = [down | ] ∧ CF = [0 | ])

then (tell(Dir = [down | Dir l]) ‖ tell(Dir l = [up | ]) ‖ lift(N ,CF ,Dir l))

else (tell(CF = [F | CF l]) ‖
ask(true) → (tell(CF l = [F − 1 | ]) ‖ lift(N ,CF l ,Dir)))

)

pssngr(CF ,O ,D ,St) : − ∃St ′ (

ask(CF = [D | ] ∧ St = [in| ]) → (tell(St = [in | St′]) ‖ tell(St ′ = [out | ]))

+ ask(CF = [O | ] ∧ St = [wait | ]) → (tell(St = [wait |St′]) ‖ tell(St ′ = [in | ]) ‖
tell(CF = [ | CF ′]) ‖ pssngr(CF ′,O ,D ,St ′))

+ ask((CF �= [O | ] ∧ CF �= [D | ]) ∨ (CF = [D | ] ∧ St �= [in| ])

∨ (CF = [O | ] ∧ St �= [wait | ])) → (tell(CF = [ | CF ′]) ‖ pssngr(CF ′,O ,D ,St ′))
)

2.1 The Concrete Denotational Semantics

In this section, we briefly recall the concrete denotational domain and seman-
tics of [4], which is fully-abstract (correct and complete) w.r.t. the small-step
operational behavior of tccp. The denotational semantics of a tccp program [4]
consists of a set of conditional (timed) traces that represent, in a compact way,
all the possible behaviors that the program can manifest when fed with an input
(initial store). Conditional traces can be seen as hypothetical computations in
which, for each time instant, we have a condition representing the information
that the global store has to satisfy in order to proceed to the next time instant.

Briefly, a conditional trace is a (possibly infinite) sequence t1 · · · tn · · · of
conditional states, which can be of three forms:

conditional store: a pair η � c, where η is a condition and c ∈ C a store;
stuttering: the construct stutt(C), with C ⊆ C \ {true};
end of a process: the construct �.

Intuitively, the conditional store η � c means that, provided condition η is
satisfied by the current store, the computation proceeds so that in the following
time instant, the store is c. A condition η is a pair η = (η+, η−) where η+ ∈ C
and η− ∈ ℘(C) are called positive and negative condition, respectively. The
positive/negative condition represents information that a given store must/must
not entail, thus they have to be consistent in the sense that ∀c− ∈ η− η+

� c−.
The stuttering construct models the suspension of the computation when none
of the guards in a non-deterministic agent is satisfied. C is the set of guards in
the non-deterministic agent.
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Fig. 1. Graph representation of the semantics of the lift process.

Conditional traces are monotone (i.e., for each ti = ηi � ci and tj = ηj � cj

such that j ≥ i, cj � ci) and consistent (i.e., each store in a trace does not entail
the negative conditions of the following conditional state). � is the set of all
maximal conditional traces, i.e., infinite traces or finite traces ending with �.
With C � C ′ ⇐⇒ ∀c ∈ C.∃c′ ∈ C ′. c � c′ we order � as:

(η+
1 , η−

1 ) � c · r1 � (η+
2 , η−

2 ) � c · r2 ⇐⇒ η+
1 � η+

2 ∧ η−
2 � η−

1 ∧ r1 � r2

stutt(η−
1 ) · r1 � stutt(η−

2 ) · r2 ⇐⇒ η−
2 � η−

1 ∧ r1 � r2

Intuitively, a trace r is smaller than another trace r′ iff the conditions of r
are more (or equally) restrictive than those of r′. We denote the domain of
maximal conditional trace sets as C. (C, �,

⊔
,
�

, �, ⊥) is a complete lattice,
where M1 � M2 ⇔ ∀r1 ∈ M1 ∃r2 ∈ M2. r1 � r2.

The concrete denotational semantics is based on a semantics evaluation func-
tion A�A�I which, given an agent A and an interpretation I , builds the condi-
tional traces associated to A (defined in [4]). The interpretation I is a function
which associates to each process symbol a set of maximal conditional traces
“modulo variance”.

Definition 1 (Interpretations). Let PC := {p(�x) | �x are distinct variables and
p is a process symbol }. An interpretation is a function I : PC → C modulo
variance2. The semantic domain I is the set of all interpretations ordered by the
pointwise extension of �.

The semantics for a set of process declarationsD is the fixpointF �D� := lfp(D�D�)
of the continuous operator D�D�I (p(�x)) :=

⊔
p(�x):−A∈D A�A�I . Proof of full abs-

traction w.r.t. the operational behavior of tccp is given in [4].

Example 2 (Semantics of our guiding example). Consider the lift process defined
in Example 1. We show in Fig. 1 its concrete semantics. Each branch of the tree
corresponds to one of the branches of the nested now agents. The first branch
2 Two functions I, J : PC → C are variants, denoted by I ∼= J , if for each π ∈ PC

there exists a variable renaming ρ such that (I(π))ρ = J(πρ).
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(left-to-right order) represents the case in which the direction of the lift is up
and the current floor is the last one (N). The second branch is taken when the
direction is up but the current floor is not N (see the negative condition). In
that case, the current floor changes from F to F +1. The third branch represents
the case when the direction of the lift is down and the current floor is 0, thus
the direction is changed to up by adding the constraint Dir ′ = [up | ]. Finally,
the fourth branch is taken when all the guards are not entailed (see the negative
condition, composed by all the guards of the nested now agents). In that case,
the lift moves to the lower floor F−1. In all the aforementioned cases, a recursive
call is invoked appropriately. These calls are represented in Fig. 1 by the triangles
labeled with the interpretation of the process lift .

3 The (finite) Abstract Semantics for tccp

In this section, we define our over-approximated abstract semantics for tccp.
Our abstract semantics is parametric w.r.t. an approximation of the underlying
constraint system.

The problem of abstracting constraint systems in the ccp paradigm was stud-
ied in [7,11], where abstraction meant loss of completeness but not of correct-
ness. However, for the tccp case, due to the strong synchronization of parallel
processes, over-approximation of stores could lead to lose correctness [1].

In our semantic domain, constraints are used in three components: in the
positive part of the condition, in the negative part and in the store. Since
these three components represent different information of a trace, we need to
approximate them differently. Similarly to [1,3], we use both an over- and an
under-approximation of the constraint system. The intuitive idea is that we
approximate positive information (positive condition and store) with the over-
approximation, whereas we approximate negative information with the under-
approximation. This allows us to guarantee that we do not loose concrete behav-
iors when we abstract the semantics, i.e., it is ensured completeness of the
abstract semantics. The over-approximating function τ+ : C → Ĉ abstracts the
constraint system C into an abstract one Ĉ = 〈Ĉ, �̂, ⊗̂, ⊕̂, ˆfalse, ˆtrue,Var , ∃̂〉
where ˆtrue and ˆfalse are the smallest and the greatest abstract constraint,
respectively. We often use the inverse relation �̂ of �̂. The under-approximating
function τ− : ℘(C) → Č abstracts the constraint system into another abstract
constraint system Č = 〈Č, �̌, ⊗̌, ⊕̌, ˇfalse, ˇtrue,Var , ∃̌〉. We have two “external”
operations ×̂ : C × Ĉ → Ĉ and ×̌ : C × Č → Č that update an abstract constraint
with a concrete constraint (coming from the program).

Over and under-abstract constraints must satisfy the following properties.

c ×̂ τ+(a) = τ+(c ⊗ a) c ×̌ τ−(C) = τ−({c} ∪ C)

τ+(a ⊗ b) = τ+(a) ⊗̂ τ+(b) τ−(C ∪ C ′) = τ−(C) ⊕̌ τ−(C ′)

a � b =⇒ τ+(a) �̂ τ+(b) τ−({a}) �̌ τ−(C) =⇒ ∃c ∈ C. a � c

τ+(∃x a) = ∃̂x τ+(a) τ−({∃x c | c ∈ C}) = ∃̌x τ−(C)
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Moreover, they must be consistent, which means that the “bridge” relation �̃ ∈
Ĉ × Č must hold: ∀c ∈ C. a �� c =⇒ τ+(a) ��̃ τ−(C).

Example 3 (Sign abstraction). Given the standard constraint system with
inequalities over integer numbers, we abstract it to the abstract constraint system
that contains only information about the sign of the system variables. We define
the “positive” abstract constraint system as Ŝ := 〈S,⇐,∧,∨, false, true,Var ,∃〉
where S is the set of finite conjunctions of {posx,negx, zerox | x ∈ Var} ∪
{false, true}.

The abstract approximation τ+ is defined by cases as follows:

τ+(true) = true τ+(x ≤ a) =

{
negx if a ≤ 0

true if a > 0
τ+(x ≥ a) =

{
posx if a ≥ 0

true if a < 0

τ+(false) = false τ+(x = a) =

⎧
⎪⎨

⎪⎩

posx if a > 0

negx if a < 0

zerox if a = 0

Dually, we define Š := 〈S,⇒,∨,∧, true, false,Var ,∃〉, the “negative” abstract co-
nstraint system. The τ− function is defined as τ−(C) :=

∧
c∈C τ ′(c), where

τ ′(true) = true τ ′(x ≤ a) =

{
negx if a ≤ 0
false if a > 0

τ ′(x ≥ a) =

{
posx if a ≥ 0
false if a < 0

τ ′(false) = false τ ′(x = a) =

⎧⎪⎨
⎪⎩

posx if a > 0
negx if a < 0
zerox if a = 0

The abstract denotational model A is formed by abstract conditional traces,
which are conditional traces where conditions and stores are formed by approx-
imated constraints. An abstract conditional trace is said to be valid when all its
abstract conditions are consistent. An abstract condition (c+, c−) is not consis-
tent when τ+(c+) �̃ τ−(c−).

It is worth noting that (A, �,
⊔

,
�

, A, ⊥) is a complete lattice.

3.1 The Abstract Semantics

Now we are ready to define our abstraction approach which works in two steps:
the first one abstracts information, and the second one folds suspending traces.
Formally, concrete and abstract domains are related by the following functions:

(C, �) −−−→−→←−−−−−
αC

γC
(A, �) −−−−−−→−→←−−−−−−−

fold

unfold
(A, �).

The abstraction function αC applies τ+ to each positive condition and store
and τ− to each negative condition occurring in the considered trace. αC is para-
metric to the abstraction of the constraint system. The adjoint of αC is the
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concretization function γC that, given a set of abstract traces, produces all the
concrete traces that can be approximated with it. For example, given a trace of
the form r = stutt{X > 5} · (X > 6, {Y < 0}) � X > 9 the sign abstraction
results in the abstract trace αC(r) = stutt({posX}) · (posX , {negY }) � posX .

The second step of our abstract scheme, the fold abstraction, just collapses
together all the consecutive identical stutt(C) states. For example, consider r =
stutt({posX}) · stutt({posX}) · stutt({posX}), then fold(r) = stutt({posX}). The
adjoint of this abstraction function is the concretization unfold which expands
each state stutt(C) into a sequence of repetitions of stutt(C) of arbitrary length.
Note that this second step does not guarantee termination of analysis since in
tccp infinite behaviors are not only due to stuttering computations.

Lemma 1. (αC , γC), (fold , unfold) and their composition α = αC ◦ fold and
γ = unfold ◦ γC are Galois Insertions.

Proof (Sketch). It is easy to see that both α and γ are monotonic functions, for
all M ∈ C, (γ ◦ α)(M) � M , and α ◦ γ is the identity for A. ��
The Galois insertion defined before can be naturally lifted to the domain of
interpretations. We denote as I := [PC → A] the abstract counterpart of I.

The abstract semantics for a tccp program is based on the evaluation function
for tccp agents defined below. In order to improve readability, we have lighten
the definition by omitting some technical details. However, we still need some
auxiliary operators and properties, intuitively described below. Their formal def-
initions are similar to those in [4].

Given a trace r and a constraint c, r↓c denotes the propagation of c in the
positive conditions occurring in r. The hiding operator ∃̄ : Var ×A → A hides
the information regarding a given variable in a trace. It uses ∃̂ and ∃̌ to hide
the information in the positive and in the negative conditions and stores. The
‖̄ operator composes two traces by consistently merging their conditions and
stores. A trace r is said to be self -sufficient if the first condition is (true, ∅) and
each store satisfies the successive condition. Moreover, r is x -self -sufficient if
∃̄Var\{x} r is self-sufficient. In other words, for self-sufficient conditional traces,
no additional information (from other agents) is needed in order to complete the
computation.

Definition 2 (Abstract Semantics Evaluation Function for Agents).
Given a tccp agent A and an (abstract) interpretation Iα ∈ IA, we define the
semantics evaluation Aα�A�Iα ∈ A by structural induction as follows.

Aα�skip�Iα := {�} (3.1)

Aα�tell(c)�Iα := {( ˆtrue, ˇfalse) � τ+(c) · �} (3.2)

Aα�A ‖ B�Iα :=
⊔{

rA ‖̄ rB | rA ∈ Aα�A�Iα , rB ∈ Aα�B�Iα

}
(3.3)

Aα�∃xA�Iα :=
⊔{ ∃̄x r | r ∈ Aα�A�Iα , r is x-self-sufficient

}
(3.4)



Abstract Analysis of Universal Properties for tccp 171

Aα�p(�x)�Iα := {( ˆtrue, ˇfalse) � ˆtrue · r|r ∈ Iα(p(�x)) (3.5)

Aα�

n∑
i=1

ask(ci) → Ai�Iα := M � {stutt(τ−({c1, . . . , cn})) · r|r ∈ M} �{
stutt(τ−({c1, . . . , cn}))

} (3.6)

where M =
⊔{(τ+(ci), ˇfalse) � ˆtrue · (r↓τ+(ci))|1 ≤ i ≤ n, r ∈ Aα�Ai�Iα

}
Aα�now c then A else B�Iα :=

{(τ+(c), ˇfalse) � ˆtrue · � | � ∈ A�A�Iα}  (3.7a)
⊔

{(c ×̂ η̂, η̌) � d̂ · (r↓τ+(c)) | (η̂, η̌) � d̂ · r ∈ Aα�A�Iα , c ×̂ η̂ �̃ η̌}  (3.7b)
⊔

{(τ+(c), η̌) � ˆtrue · r↓τ+(c)) | stutt(η̌) · r ∈ Aα�A�Iα , c �̃ η̌}  (3.7c)
⊔

{( ˆtrue, τ−({c})) � ˆtrue · � | � ∈ Aα�B�Iα}  (3.7d)
⊔

{(η̂, {c} ×̌ η̌) � d̂ · r | (η̂, η̌) � d̂ · r ∈ Aα�B�Iα , η̂ �̂ τ−({c})}  (3.7e)
⊔

{( ˆtrue, {c} ×̌ η̌) � ˆtrue · r | stutt(η̌) · r ∈ Aα�B�Iα} (3.7f)

Note that all the operations regarding the positive part of conditions and the
stores are abstracted with the τ+ abstraction, whereas all the definitions for the
negative condition use the τ− abstraction.

We explain in more detail some significant cases. The semantics of the tell (c)
agent (3.1) has a trace with two conditional states: the first one with condition
( ˆtrue, ˇfalse), which is the less demanding condition since c must be added to
the store in any case (in the next time instant). Next, the computation termi-
nates with the end-of-process symbol �. The parallel, hiding and process call
cases are defined like in the concrete semantics. The semantics for the non-
deterministic choice (3.6) collects, for each guard ci, a conditional trace of the
form (τ+(ci), ˇfalse) � ˆtrue · (r↓τ+(ci)). This trace requires that τ+(ci) has to
be satisfied by the current store. Then, the constraint τ+(ci) is propagated to
the conditions in trace r (the continuation of the computation, which belongs
to the semantics of Ai). Furthermore, we collect the stuttering traces, which
correspond to the case when the computation suspends. These traces are of the
form stutt (τ−({c1, . . . , cn})) · r where r is one of the traces above.

The semantics for a set of process declarations D is the fixpoint Fα�D� := lfp
(Dα�D�) of the continuous operator Dα�D�Iα(p(�x)) :=

⊔
p(�x):−A∈D Aα�A�Iα . It

can be shown that Aα and Dα are, the optimal abstractions of A and D, i.e.,
Aα�A� = α◦A�A� ◦γ and Dα�D� = α◦D�D� ◦γ. Hence, abstract interpretation
theory ensures that Fα�D� is the best correct approximation of F �D�.

3.2 From Infinite to Finite Semantics

Since the domain of abstract conditional traces is not Noetherian (i.e., it admits
infinite increasing chains), the abstract least fixpoint does not necessarily con-
verge in finite time. Our solution is to use a widening operator [2,5] that ensures
the convergence of the abstract fixpoint in a finite number of steps.
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In the following, we use a representation of sets of abstract conditional traces
in terms of conditional graphs. These graphs are enriched with the information
about the process calls, which is necessary to identify the part of the graph cor-
responding to each iteration of Dα�D� at the moment of applying the widening
operator.

Definition 3. A conditional graph G is a triple (Init ,Nodes,Edges) where

– Init is the set of initial nodes, each one labeled with a (unique) process symbol,
denoted by init(G)

– Nodes is a set of nodes, each one containing a conditional step, and
– Edges is a set of edges between nodes that can be of two kinds: either simple

edges n → n′, or edges of the form n
ρ
=⇒
p

n′ representing a call to process p

with variable renaming ρ. Edges represent the passage of one time unit.

G denotes the set of all conditional graphs. Moreover, n �→ denotes a node n
that has no outgoing edges.

We define the function paths : G → A which, given a conditional graph,
returns the set of all paths of the graph. When an arc of the form

ρ
=⇒
p

is traversed,

a variant with fresh variables in the co-domain of the renaming ρ is applied to the
nodes that follow in the path and the information of the store is propagated to
the positive conditions, similarly to what happens when a call is done. The order
relation over graphs ≤ is defined as G1 ≤ G2 ⇐⇒ paths (G1) � paths (G2).
We denote as (G, ≤,

∨
,
∧

, G, ⊥G) the complete lattice where
∨

is the least
upper bound operator that joins a set of graphs by combining all the sequences
that have a prefix in common in the same path,

∧
is the greatest lower bound

operator that returns the common parts of a set of graphs and ⊥G is the graph
composed only of an empty initial node.

The semantics of a tccp process p(�x) can be seen as a conditional graph G
with the initial node labeled with p and such that paths(G) = Fα�D�(p(�x)). The
graph for the process p(�x) is built by linking the initial node of p to the nodes
corresponding to the first conditional states of the semantics of an agent A such
that p(�x) : −A ∈ D. The rest of the graph is built following the denotational
semantics of Definition 2: each conditional state becomes a node in the graph
and it is connected to the following one by a simple edge. When a call to a

process q(�y) is found and the declaration q(�z) : −A′ is in D, an arrow
[�z/�y]
===⇒

q
is

added, thus linking the current node to the graph labeled with q by using the
variable renaming [�z/�y].

Now we are ready to define our widening operator. Widening operators pro-
vide a simple solution to the convergence problem by over-approximating infinite
increasing chains in a finite number of steps. A widening operator [2,5] on the
lattice (L, ≤) is a partial function � : L × L → L satisfying: (covering) for all
x, y ∈ L such that x ≤ y, x� y exists and y ≤ x� y; and (termination) for
each increasing chain x0 ≤ x1 ≤ . . . the increasing chain defined as y0 = x0 and
yi+1 = yi � xi+1 is not strictly increasing.
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We propose a widening operator3 � that looks for repeated patterns in con-
secutive iterations of Dα�D� and converges, in a finite number of steps, in a
conditional graph that represents an over-approximation of the abstract fixpoint
Fα. In the sequel, we abuse in notation and write t

ρ2=⇒
p

t′1 → · · · → t′n to denote

the set of the edges occurring in this path, i.e., {t ρ2=⇒
p

t′1, t
′
1 → t′2 . . . , t′n−1 → t′n}.

Definition 4 (Graph Widening). Let G1, G2 ∈ G such that G1 ≤ G2. The
graph widening of G1 w.r.t. G2 is defined as G1 � G2 := G1 ∨ (I,N,E) where I :=
init(G2), N is the set of nodes that occur in the set of edges E, and

E :=
⋃ {

t
ρ2=⇒
p

t1 | it exists a subpath in G2 of the form t
ρ2=⇒
p

t′
1 . . . t′

n �→ s.t. an edge

=⇒ labeled with p does not occur in t′
1 . . . t′

n and it exists a subpath

in G1 of the form
ρ1=⇒
p

t1 . . . tn
ρ′
1=⇒
p
, s.t. an edge =⇒ labeled with p

does not occur in t1 . . . tn and ∀1 ≤ i ≤ n ρ1(ti) = ρ2(t
′
i)
}

∪⋃ {
t

ρ2=⇒
p

t′1 → · · · → t′n | it exists a subpath in G2 on the form t
ρ2=⇒
p

t′
1 . . . t′

n �→

s.t. in t′
1 . . . t′

n it does not occur an edge =⇒ labeled with p and it does

not exist a a subpath in G1 of the form
ρ1=⇒
p

t1 . . . tn
ρ′
1=⇒
p

, s.t. in t1 . . . tn it

does not occur an edge =⇒ labeled with p and ∀1 ≤ i ≤ n ρ1(ti) = ρ2(t
′
i)
}

At each iteration, the widening checks if a suffix r of a path b in the graph of a
process p (which corresponds to the trace produced at the last iteration of p) has
already appeared in a previous iteration of p (modulo variables renaming). In
this case, it adds an edge, labeled with the necessary variable renaming ρ2, from
the node t precedent to the pattern r to the first node of the equivalent pattern
found in the previous widening iteration (first case of Definition 4). Otherwise, if
no equivalent (modulo variable renaming) pattern is found, the path b is added
to the graph (second case of Definition 4).

Lemma 2. If the underlying abstract Cylindric Constraint Systems are finite,
then the operator � is a widening operator on G.

Proof. (Sketch). The covering property is a consequence of the fact that the
branches of G2 that are not included by the widening are already present in G1

modulo variable renaming; that is the reason why a direct edge is added from
the last node before the repetition to the equivalent branch detected in G1.

Termination of the widening is a consequence of the properties of the abstract
constraint systems and of the finiteness of the program syntax. By definition,
just a finite number of conditional steps can be computed, thus iteration’s length
is finite. Furthermore, when a repeated pattern is detected, that (possibly cyclic)
branch is not further expandable. ��
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Fig. 2. The graph widening behavior.

Fig. 3. Graph representation of the abstract semantics of the lift process.

Figure 2 shows a graphical representation of the graph widening behavior.
To improve readability, in the figure we assume that all process calls involve the
same process, thus we just include the renaming for variables in the edges.

Given a tccp set of declaration D, we can guarantee ([2]) that the chain

I0 = ⊥ Ii+1 =

{
Ii if Dα�D�Ii

� Ii

Ii � (Ii � Dα�D�Ii
) otherwise

converges to a graph which is a correct approximation of the abstract semantics
in a finite number of steps. That graph contains an initial node for each process
declaration such that the subgraph reachable from the initial node represents
the corresponding process and subgraphs are linked by edges with renamings.

Example 4. Fig. 3 shows the conditional graph corresponding to the abstract
semantics of the lift process. We abstract streams of the concrete Constraint
System by posing a depth limit for streams, i.e., we keep the first k values
of a stream, and then we have the top of the domain. All other constraints are
abstracted to themselves. The resulting abstract Constraint System is thus finite.

Due to the application of the widening operator it can be noted how the
recursive calls (represented as triangles in Fig. 1) are replaced in Fig. 3 with the
(set of) arcs pointing to the possible continuations of the computation.
3 In defining our widening operator, we follow the approach of [2] instead of [5].
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4 Abstract Analysis with an Over-Approximation

The abstract semantics we have proposed so far is an over-approximation of
the concrete semantics. Thus, it allows us to check universal properties, i.e.,
properties that must be satisfied by all the possible behaviors of the system.
For instance, it is possible to analyze some temporal properties such as safety
(i.e., something bad never happens) or liveness (i.e., something good eventually
happens) or to check if a program never suspends.

In order to check whether some invariant property is satisfied by our pro-
gram, it is necessary to check if every node of the graph respects this property.
The properties that can be checked strongly depend on the abstraction of the
constraint system. If we want to guarantee that a given abstract constraint c
never holds in a computation, we need to check that for every node, either its
negative condition contains a store that satisfies c or the positive condition η̂ is
in contradiction with c (i.e., η̂ ⊗̂ c = ˆfalse). This assures that, for every possible
input, c is never produced in the computation.

Similarly, in order to check if an abstract constraint c is always entailed by
the current store it is sufficient to check if for each conditional step of the form
(η̂, η̌) � d occurring in the graph, the positive condition merged with the store
entails c (i.e., η̂ ⊗̂ d �̂ c). This ensures that for every possible initial constraint
d, c is entailed by the store.

Example 5. We may be interested in proving several invariant properties on the
lift process in Example 1. For instance, we can try to verify that “the current
floor stream CF never gets a negative number”. To this end, we check all the
conditions in the graph in Fig. 3, and since we find (at least) a node that does
not contradict that CF is negative (see the first node of the right branch), we
conclude that it cannot be assured that the lift process respects this safety
property. As a matter of fact, provided we start the computation with an initial
state where CF is initialized to a negative number, then the last else branch of
the program can be taken, and CF would keep negative in the subsequent trace.

Consider now the invariant property “each time the direction of the lift is
updated, also its floor is updated”. In this case, it can be noticed that all the
conditional steps in Fig. 3 satisfy this property, since whenever the positive con-
dition in the step merged with the store entails that Dir has a value, then it is
also entailed that CF is instantiated.

Verifying liveness properties is harder since it involves analyzing unknown length
sequences of steps. For instance, given a process p(�x), assume that we want to
check that “every time an abstract constraint c holds, then it exists a future
state where another abstract constraint d holds”.

Given the conditional graph for p(�x), this property would hold if for each
node labeled with a conditional step whose positive condition and store entails c
then all paths starting from such node contain a conditional step whose positive
condition and store entails d.
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Example 6. Observe that lift process in Example 1 satisfies the property “every
time the current floor is 0 and the direction is down, the direction will be up
eventually”. In fact, the first node of the third branch from the left in Fig. 3 is the
sole step that contains in its positive condition CF = [0 | ] and Dir = [down| ].
Furthermore, for each possible path from this node we find a conditional step
where Dir = [up | ] appears in the positive condition or in the store.

Other interesting liveness property that can be analyzed on the lift process is
“whenever the current floor is 0 it exists a future state when this value changes”,
i.e., we do not stay indefinitely in floor 0.

Since the number of nodes in the graph is finite, the aforementioned analysis
terminates in a finite number of steps.

Let us now analyze non-suspension. Non-suspension analysis consists in assur-
ing that no execution of a tccp program suspends. In conditional graphs, in order
to check whether p(�x) never suspends, it is sufficient to check that there is no
node N in G labeled with a stutt construct with an outgoing arc pointing to N
itself. Inversely, if the graph contains a stuttering node, we can not guarantee
suspension, due to over-approximation of the semantics.

Example 7. Consider the semantics of the lift process in Fig. 3. It is worth noting
that the graph does not contain any node labeled with stutt. Therefore, we can
assure that the lift process never suspends.

5 Related Work

To the best of our knowledge, this is the first attempt to propose an abstract
interpretation framework for a concurrent constraint language adhering to the
characteristics of tccp (negative information, non-determinism and infinite behav-
iors). In [8], a framework for dataflow analysis of tcc and utcc programs is pre-
sented. The two main differences between these two languages and tccp are the
notion of time (tcc and utcc use dedicated timing constructs) and determinism
(vs. non-determinism of tccp). Moreover, in the case studies, [8] uses a depth(k)
abstraction to ensure convergence, which consists in a non-selective cut at some
point in time. In [9], it was defined a model checking algorithm for tccp which
allowed us to verify timed-depending properties. Their algorithm was based on
the exploration of a graph representation of the program behavior which resem-
bles the graph representation of the semantics defined in this paper. Thus we
could as well employ our graph representation to perform (an efficient) model
checking. Note however that the abstract semantics that we propose now is not
limited to the verification of temporal properties.

Finally, [1] proposes an abstract semantic framework for tccp that, differently
from our approach, was based on source-to-source transformations. The two
approaches are completely different: [1] aimed at using the concrete semantics
to execute the transformed (abstract) program. This could be done thanks to a
non-trivial transformation of the program (an analysis on the structure of the
program was necessary as a preprocess of the transformation). Our approach
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aims at defining an abstract semantics that, thanks to the characteristics of the
concrete denotational semantics, is guaranteed to be correct and we argue that
is precise enough to allow the definition of interesting analyses.

6 Conclusions and Future Work

We have proposed an abstract semantics that, together with a widening operator,
is suitable for the definition of different analyses for full tccp programs. This is
a difficult task because of the presence of infinite computations, use of negative
information and non-determinism. However, it is essential since these are the
features that make tccp well-suited to model reactive systems.

The abstract semantics is an over-approximation, which makes possible to
define analysis tools for universal properties. To the best of our knowledge, this is
the first proposal that defines an analysis which adaptively ensures termination
depending on the program (by means of widening). This should give better
results than the non-selective approaches.

This is a first step towards our final goal of defining a rich abstract semantic
framework for the analysis of tccp programs. We plan to implement the abstract
semantics so that we can produce some experimental results. We will need also
to implement and develop suitable and useful abstractions for the constraint
system, corresponding to the analyses to be performed. We are also interested
in defining an under-approximated semantics for tccp. Under-approximations
produce correct semantics, which means that not all the behaviors are captured,
but no spurious behaviors are included. These kind of abstractions allow one to
analyze existential properties, for instance that there exists a suspension trace.
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Abstract. We propose a polynomial static analysis for Brane Calculi [6],
based on Abstract Interpretation [8] techniques. The analysis provides
a description of the possible hierarchical structure of membranes and
of the processes possibly associated to each membrane, together with
global occurrence counting information. Our analysis can be applied in
the biological setting to investigate systems in which the information on
the number of membranes occurring in the system plays a crucial role.

1 Introduction

One of the challenges of systems biology is to understand the complex behaviour
of biological systems and networks that interact in diverse ways. There is a large
amount of data concerning single components and functions. The main difficulty
is establishing their relationships and inferring the overall emerging behaviour
of a system. Consider, for instance, the crucial problem of identifying biological
pathways and reconstructing their inter-connections

Computational frameworks and in silico investigation have been recently
exploited to support in vitro or in vivo experiments. Often, these frameworks
come with the drawback of high computational cost, due to the expensive inspec-
tion of the models that capture dynamic behaviour. Static analysis provides tech-
niques able to reduce the computational cost, at the price of loosing precision.
In particular, they provide safe over-approximations of the dynamic behaviour:
all the events that the analysis predicts may happen, while all the non predicted
events will never happen.

In this paper we propose a static analysis for Brane Calculi [6], based on
Abstract Interpretation (AI) [8] techniques. Brane calculi have been introduced to
more closely model the behaviour of membrane-enclosed compartments. There-
fore, these calculi are useful for modelling and reasoning about a large class of
biological systems. Our analysis is based on the idea of enriching the standard
information on control flow analysis (as the one in [2]) with global occurrence
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counting information. More specifically, we compute an abstract state describ-
ing the possible structure of all the derivatives of the analysed system. The
abstract state provides information on the possible membrane hierarchy and on
the processes that may be associated to each membrane, together with their
multiplicity. The global occurrence counting information refers to the number of
occurrences of membranes and processes, independently of their location. The
analysis can be efficiently computed in polynomial time, thanks to the properties
of the abstract semantics.

Our analysis can be applied to investigate systems in which the information
on the number of membranes in the system plays a crucial role in biological
terms. One could, for instance, be interested in distinguishing between the case
of one healthy cell that can let many molecules pass through the cell membrane,
and the case in which an ill cell can let at most one molecule to pass. We illus-
trate our analysis by considering examples of communication via mobile vesicles.
A mobile vesicle containing the substance to be transmitted springs from a mem-
brane Source and eventually fuses with a membrane Target releasing its content
X inside of it. We consider two different variants of this kind of communica-
tion by expanding the encoding proposed in [28], where there are two target
membranes Target1 and Target2. In the first version, the membrane Source
can communicate X either to Target1 or Target2, while in the second one, one
instance of X is communicated to Target1 and the other one to Target2. Then,
we show that our analysis faithfully predicts that X cannot be simultaneously
present in both membranes in the first case, while it may occur in both in the
second case, thanks to the occurrence counting information.

Related Work. Static analysis techniques have been applied to many biologically-
oriented calculi (see, e.g. the survey in [17]). In particular, Control Flow Analy-
sis (CFA) has been applied to Beta-binders [26] in [1], to Brane Calculi [2],
and to BioAmbients [27] in [21,23–25]; while Abstract Interpretation to
BioAmbients [14–16], and to Brane Calculi [3,4]. Many of these works are inspired
by the application of static analysis techniques [10,18,20] to Mobile Ambients
(MA) [7], from which, many bio-inspired calculi derive.

Part of the above mentioned static analyses [1,2,21,23] abstract, with
different precision, the behaviour of the investigated system by providing an
approximate description of structure of all derivatives. As a consequence, these
approaches can be applied to establish invariant properties showing that certain
events will not happen in any derivatives of the analysed system. These tech-
niques have polynomial complexity but they provide a less precise description of
the possible topological structure of derivatives given that they do not maintain
any information on occurrence counting. The richer contextual CFA in [24], and
the causality-oriented AI-based analysis in [3,4] improve the prediction accuracy,
but, still, they are not able to observe the multiplicity.

Instead, in [15], the authors present a counting analysis for BioAmbients
that is able to express that an ambient can reside in alternative locations.
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This analysis has exponential complexity and provides accurate information
about the number of occurrences of ambients, by counting the local number
inside any ambient rather than their global number.

There are several static analysis frameworks that include occurrence counting
information applied to MA and to π-calculus [19]. In [20,22] analyses for MA are
introduced that are rather expensive from a computational point of view. The
authors propose in [20] an exponential analysis for counting the global number of
occurrences of ambients. The approach based on CFA substantially differs from
our analysis, which is computed by calculating an abstract semantics. At the
expense of a higher complexity, the shape analysis in [22] uses context-dependent
counts for inferring a more accurate description of the internal structure of an
ambient, by taking care of the local multiplicity of ambients.

In [9,11,12] the author proposes a framework based on AI, applied to the
π-calculus that, differently from the previous proposals, is non-uniform, i.e. the
analysis can distinguish among recursive instances of agents. In this approach,
the occurrence number of instances of agents is approximated by using a rela-
tional abstraction. The analysis is quite precise and efficient: its complexity is
polynomial. For instance, the analysis described in [11] has a worst time cost of
n4, where n is the number of processes in the initial configuration. This app-
roach is adequate to capture mutual exclusion and other security properties of
complex mobile systems, formalised in π-calculus. In [10] the author proposes
an adaptation of these techniques to MA, with a focus on security properties
such as non-interference or confinement. In [13], the author proposes polynomial
and precise analyses for MA and BioAmbients, based on both global and local
counting. Specifically, the global analysis is the same as the one proposed in [11]
for the π-calculus. This approach can handle mass preservation like invariants,
which are ubiquitous in biological systems. In particular, it is able to preserve
precision when dealing with continuations of replicated prefixes.

The static analyses proposed in [14,16,25] rely on a different approach since
that they compute an abstract transition system to approximate the system
behaviour, by still exploiting occurrence counting information. These techniques
obviously provide useful information to verify temporal properties but at the
price of a high complexity.

Structure of the Paper. In Sect. 2, we recall the semantics of Brane calculi. In
Sect. 3, we introduce our running examples, based on hypothetical scenarios of
communication via mobile vesicles in the style of [28]. In Sect. 4, we present the
analysis and in Sect. 5 we apply it to our examples. Conclusions are drawn in
Sect. 6.

For lack of space, we present the formal definitions only for the fragment
of the calculus that includes the Phago/Exo/Pino (PEP) and Bud interactions.
This fragment is sufficiently expressive to formalise our running examples. It is
worth pointing out that our analysis can be easily extended to the full calculus.
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2 An Overview on Brane Calculus

The Brane Calculi [6] are a family of calculi based on a set of primitives inspired
by biological membrane interactions. As already mentioned, we focus here on
the fragment of the calculus that includes the Phago/Exo/Pino (PEP) and Bud
interactions.

The Phago/Exo/Pino(PEP) actions represent the biological processes of
endocytosis and exocytosis. The first indicates the process of incorporating exter-
nal material into a cell, by engulfing it with the cell membrane, while the second
one indicates the reverse process. Endocytosys is rendered by two more basic
operations: phagocytosis (phago), which consists in engulfing just one exter-
nal membrane, and pinocytosis (pino), which consists in engulfing zero external
membranes. Exocytosis is instead denoted by (exo). We further use the action
(bud) to model the membrane splitting process that consists in the splitting off
exactly one internal membrane. It is worth mentioning that the bud action can
be encoded with a sequence of PEP actions [6]. However, from the analysis point
of view it is more convenient to use the bud action as primitive.

We introduce the syntax and the semantics for the calculus, considering a
labelled version of the calculus. As usual in static analysis, labels are exploited
to support the analysis (presented in Sect. 4) and do not affect the dynamic
semantics of the calculus.

A membrane system consists of nested membranes, where each membrane has
associated a membrane process. The syntax of the labelled calculus is described
in Table 1, where n is taken from a countable set N of names, and where we
write P ∈ Sys for systems, σ ∈ Proc for membrane processes, and a ∈ Act for
actions. Each membrane is annotated with a membrane label Γ ∈ L̂abM and
each action is annotated with a process label λ ∈ LabP .

We therefore need two distinct sets of labels. We have the set of process labels
LabP , ranged over by α, β, γ . . .. Moreover, given a set of basic membrane labels
LabM, we have the associated set of membrane labels L̂abM, ranged over by
Δ,Γ, Ψ . . . . The set L̂abM is inductively defined as follows: (i) LabM ⊆ L̂abM;
(ii) if Γ,Δ ∈ L̂abM and λ, μ ∈ LabP , then phago(Γ,Δ, λ, μ), pino(Δ,λ) and
bud(Γ,Δ, λ, μ) ∈ L̂abM.

The system σ�P �Γ describes a membrane, decorated by label Γ 1 that con-
tains the system P and that performs the membrane process σ, describing its
interaction capabilities. The construct aλ.σ defines a sequential process that exe-
cutes an action a, decorated by label λ, and then behaves as the process σ. We
adopt standard syntactical abbreviations: aλ stands for aλ.0, �P �Γ stands for
0�P �Γ , and σ��Γ is a shorthand for σ���Γ .

The semantics of the calculus is given by the reduction rules in Table 1,
modulo the structural congruence rules, here omitted because standard (see [6]).
The labelled transition relation is l−→, where P

l−→ Q denotes that the system P

1 For brevity, from now on, we will usually write membrane Γ , instead of membrane
labelled by Γ .
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Table 1. Syntax and reduction rules for (labelled) Brane.

evolves into the system Q performing a reaction described by the transition label
l ∈ LabT . The set of transition labels LabT (ranged over by l1, l2 . . . ) is defined
as follows:

LabT = {pinol(Δ, λ), phagol(Γ, δ, λ, μ), exol(Γ, Δ, λ, μ), budl(Γ, Δ, λ, μ) | Γ, Δ ∈ ̂LabM, λ, μ ∈ LabP}

Besides the standard reduction rule for congruence (Struct), and the contex-
tual rules to propagate reductions across parallel composition (Par) and mem-
brane nesting (Brane), there are the axioms specific of the membrane actions.

Rule (Phago) models the inclusion of an external membrane, labelled by Δ,
inside a membrane, labelled by Γ . The two membranes Δ and Γ exercise the
actions phagoλ

n and phago
μ
n(ρ), respectively. Once engulfed, the membrane Δ is

enclosed inside a new membrane with label phago(Δ,Γ, λ, μ), which has associ-
ated the process ρ. The corresponding transition label is phagol(Δ,Γ, λ, μ). Rule
(Exo) models the expulsion of the membrane Δ, outside the external membrane
Γ , triggered by the actions exoλ

n and exoμ
n, respectively. The corresponding tran-

sition label is exol(Δ,Γ, λ, μ). In the rule (Pino), the membrane Δ, creates a
new empty membrane, labelled by pino(Δ,λ), inside itself. The action pinoλ(ρ)
is equipped with a process ρ that will be associated to the new membrane.
The corresponding transition label is pinol(Δ,λ). Finally, in the rule (Bud),
the membrane Γ expels the child membrane Δ, performing the actions bud

μ
n(ρ)

and budλ
n, respectively. The membrane Δ is wrapped inside a new membrane

with label bud(Δ,Γ, λ, μ) and has associated the process ρ. The corresponding
transition label is budl(Δ,Γ, λ, μ).

The semantics of a system is defined as a Labelled Transition System (LTS).
Given P ∈ Sys, we use LTS(P ) = (X,

l−→, P )2 to denote the LTS obtained from

2 Here, X ⊆ Sys stands for the set of systems that are reachable from system P .
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the initial system P by applying the rules and axioms in Table 1. Moreover,
to ensure the correctness of our analysis, we assume that the system P is well
labelled, i.e. that the process labels occurring in P are all distinct. The analysis
is not correct in general for every labelling of the initial systems.

Remark 1. It is worth briefly discussing the role of labels in our calculus. Process
and membrane labels will be exploited in the analysis to maintain the infor-
mation on the topological structure of systems. To decorate the new mem-
branes introduced by reactions of the calculus, we adopt composite membrane
labels that record the labels of the membrane and of the actions that inter-
act. This labelling technique may introduce arbitrarily nested membrane labels
(e.g. bud(Δ, pino(Γ, δ), λ, μ)) and even an infinite number of membrane labels.

Furthermore, we decorate the reduction steps with transition labels giving
information on the labels of the actions and on the membranes involved in the
interaction. This information will be exploited in the analysis to establish a
correspondence between reduction steps and abstract transitions.

3 Communication via Mobile Vesicles

To illustrate our analysis, we consider hypothetical scenarios of communication
via mobile vesicles. A mobile vesicle containing the substance to be transmitted
springs from a membrane Source and eventually fuses with a membrane Tar-
get releasing its content inside of it. In eucaryotic cells, a large variety of pro-
teins is targeted to its final destination via mobile transport vesicles, i.e. small
membrane-enclosed sacs separated from the cytosol by a lipid bilayer. Proteins
can be contained in the vesicles (i.e. secretory proteins) or embedded in their
membrane (i.e. transmembrane proteins). Through vesicular trafficking, proteins
follow routes involving intracellular locations (e.g. endoplasmic reticulum, Golgi
apparatus or lysosomes) as well as the plasma membrane, in the case of endo- and
exocytosis. Since vesicular transport is essential in the organisation of eukaryotic
cells, understanding the mechanisms that control vesicle budding and fusion is
an active research topic in cell biology.

Roughly speaking, we are focussing on modelling the communication (through
a vesicle) of a molecule X embedded in a Source membrane to specified Target
compartments. More specifically we consider the encoding in Brane calculi pre-
sented in [28], where communication based upon the natural budding of mobile
vesicle in a cell was modelled as follows. A vesicle containing (embedded in
its membrane) a molecule that needs to be shuttled between two compartments,
buds from a membrane Source. Then, it is engulfed by another compartment (the
Target membrane) through phagocytosis (creating a coat membrane containing
the vesicle) and, finally, the coat of the mobile vesicle is decomposed within the
membrane Target, releasing the transported molecule in it. Here, we introduce
a more general situation, by introducing two substantially different scenarios of
communication via mobile vesicles. In both cases Source can communicate the
molecule X, via a mobile vesicle, to different membranes Target1 and Target2.
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In the first version, the membrane Source can communicate the molecule X
either to Target1 or to Target2, while in the second one, one instance of mole-
cule X is communicated to membrane Target1 and the other one to Target2.
Both the previous systems can be rendered along the lines of [28].

Example 1. To model the first scenario, we slightly extend the original model
in [28]. In this case we have two vesicles and two target membranes, and each
vesicle can be phagocytosed by one of the target membranes. Note that, in
the biological setting, this particular kind of non-deterministic behaviour is of
great interest because it may arise, e.g. in the extracellular environment of cells,
where extracellular vesicles, which are small vesicles released by donor cells, can
be taken up by any recipient target cell. This transport mechanism plays an
important role in cell-to-cell communication.

The encoding of this scenario is reported in the upper part of Table 2, where
the processes σS , σtargeti , τX and τ ′

i (with i = 1, 2) stand for membranes
processes (not specified as not relevant at this level of abstraction), and where
we decorate actions and membranes with basic membrane labels in LabM3. The
molecule X to be transmitted is enclosed inside a membrane labelled by Γ .
Such membrane triggers the communication process, exercising the action budγ

n

and leading to the gemmation of one of the two vesicles that will transport the
molecule into one of the two targets.

Table 2. First scenario: Encoding (upper part) and evolution of the first vesicle
(lower part).

For simplicity, we only illustrate the dynamic evolution of the first vesicle
in the lower part of Table 2, where we underline the prefixes involved in each

3 We also assume the system S to be well labelled.
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transition. The membrane Γ buds from the membrane source thus creating the
first vesicle. Then the vesicle fuses with the corresponding membrane target1,
by means of actions phagoμ1

n1
and exoν1

n1
. Note that the membrane created by the

bud reaction is decorated with the label Π1, while the one created by the phago
reaction with the label Π11. Furthermore, the bud, phago and exo reactions are
decorated with the transition labels l1, l11 and l12, respectively. The dynamic
evolution of the second vesicle is analogous.

It should be clear that in this case the molecule X cannot be simultaneously
present in membranes target1 and target2: either the molecule is transmitted to
the first target or, alternatively, it is transmitted to the second one.

Example 2. To model the second scenario, we again extend the original model
in [28]. In this case there are two membranes Source, each containing the molecule
X that has to be transmitted. One instance of substance X is communicated
via a mobile vesicle to membrane Target1 while the other one membrane is
communicated via a mobile vesicle to membrane Target2. Also this case may
arise in the biological setting, when different types of vesicles are simultaneously
present, and each type of cell can selectively interact only with the correct target
membrane, i.e. each kind of cargo is transported to the specific programmed
location via membrane fusion. This scenario may occur in intracellular vesicles in
eukaryotic cells, where membrane-enveloped vesicles travel in between organelles
in the cytoplasm.

The encoding of this second scenario is reported in Table 3, using process
and membrane labels similar to the ones introduced in Table 2. Each mem-
brane Source can communicate its molecule X to the corresponding Target.
The dynamic evolution is similar to the previous one and it is not reported.

In this case, differently from the previous one, the molecules X will eventually
end up in both membranes target1 and target2: one occurrence in target1 and
the other one in target2.

Table 3. Second scenario: encoding.

4 The Abstraction

The analysis computes a description of the possible structure of all the derivatives
of the system under investigation. Following the AI approach, the analysis result
is calculated by collecting all reachable abstract states representing approximate
information on the evolution of the system. More specifically, abstract states pro-
vide information on the possible hierarchical structure of membranes, and on the
processes that may be associated to each membrane, together with information
about the possible number of occurrences of membrane and process labels. We
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prove that the analysis is a safe over-approximation of the concrete behaviour.
Furthermore, we show that the properties of the abstract semantics help us in
computing our analysis in polynomial time (see Theorem 1).

Abstract Membrane Labels. To guarantee that the analysis can be computed in a
finite number of steps, we need an abstraction of membrane labels. In the abstract
setting, the basic membrane labels are defined as Lab◦

M = LabM ∪ {@}, where
the special symbol @ represents the outermost membrane. Then, we derive the
corresponding set of abstract membrane labels L̂ab

◦
M, ranged over by Γ ◦, Δ◦, ...,

defined as the least set s.t.: (i) Lab◦
M ⊆ L̂ab

◦
M; and (ii) if Γ ◦,Δ◦ ∈ L̂ab

◦
M and

λ, μ ∈ LabP then (Γ ◦,Δ◦, λ, μ) and (Γ ◦, λ) ∈ L̂ab
◦
M.

Note that in the previously introduced abstraction of membrane labels, arbi-
trarily nested membrane labels can still arise (e.g. (Γ ◦, (Δ◦, Θ◦, ν, π), λ, μ)). As a
consequence, we introduce further approximations to guarantee that the abstract
membrane labels generated in the analysis are finite. We then consider the set
of abstract membrane labels parametric w.r.t. the level of nesting depth d ∈ N

+

defined as:

L̂ab
d
M = {Δ◦|Δ◦ ∈ L̂ab

◦
M and depth(Δ◦) ≤ d} ∪ {(�, �, λ, μ), (�, λ) | λ, μ ∈ LabP}

where depth(Δ◦) gives the maximal number of nesting parenthesis levels occur-
ring in Δ◦. Intuitively, all the abstract membrane labels with depth greater than
d are approximated with the following new special membrane labels: (�,�, λ, μ)
and (�, λ).

This is formalised by introducing an abstraction function that maps a mem-
brane label into an abstract membrane label with respect to a given parameter d.

Definition 1. Let d ∈ N
+ and Δ ∈ L̂abM. The abstract version of Δ, denoted

by Δ• ∈ L̂ab
d

M
4, is inductively defined as follows,

1. Δ ∈ LabM ⇒ Δ• = Δ;

2. Δ = #(Γ, Ψ, λ, μ) with # ∈ {bud, phago} ⇒ Δ• =

{

(Γ •, Ψ•, λ, μ) if depth((Γ •, Ψ•, λ, μ)) ≤ d

(�, �, λ, μ) otherwise

3. Δ = #(Γ, λ) with # ∈ {pino} ⇒ Δ• =

{

(Γ •, λ) if depth((Γ •, λ)) ≤ d

(�, λ) otherwise

By summarising, Δ◦ denotes a generic abstract membrane label, while Δ• exactly
denotes the abstract membrane label that is the abstract version of the mem-
brane label Δ.

Abstract States. An abstract state reports information on the parent-child rela-
tion between membranes and a description of the processes possibly associated
to each membrane. Furthermore, it reports information about the possible num-
ber of occurrences of membrane and process labels. The occurrence counting
information approximates the global number of membrane and process labels
that may appear in any system.
4 For simplicity, we omit the explicit indication of the parameter d (assume fixed once

for all).
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To describe the structure of systems, we adopt an abstract representation,
formally represented by a set of pairs, i.e. by a relation, that, for any abstract
membrane label Δ◦, gives: (i) the abstract membrane labels that may be child
membranes of Δ◦; and (ii) the sequential processes that may be associated to
membrane Δ◦.

Definition 2 (Abstract Representation). An abstract representation R◦ is
a relation R◦ ⊆ L̂ab

d

M × (L̂ab
d

M ∪ SProc), where SProc = {aλ.σ | aλ.σ ∈ Proc}
denotes the subset of sequential processes. We use R◦ to denote the set of abstract
representations.

Given R◦, if the pair (Δ◦, Γ ◦) ∈ R◦, then the abstract membrane Γ ◦ may be
a child membrane of the membrane Δ◦. Similarly, if the pair (Δ◦, aλ.σ) ∈ R◦,
then the sequential process aλ.σ may be associated with membrane Δ◦.

To describe occurrence counting information, we adopt the set Mul ={1, ω}
where each x ∈ Mul denotes a multiplicity with the expected interpretation:
1 indicates at most one occurrence, while ω indicates any number of occurrences.
The set of multiplicities Mul comes equipped with the standard order 1 ≤ ω and
with the binary addition operator +◦, that, for any x1, x2 ∈ Mul, gives ω as a
result.

Definition 3 (Occurrence Counting). An occurrence counting function is a
partial function O◦ : L̂ab

d

M ∪ LabP → Mul. We use O◦ for the set of occurrence
counting functions.

By using a standard notation, an occurrence counting function O◦ can be alter-
natively represented by a set of pairs: {(�, x) | � ∈ dom(O◦) ∧ O◦(�) = x}.

We rely on some auxiliary operators on occurrence counting functions. First,
we introduce the substitution operator O◦[x/�] that, applied to the occurrence
counting function O◦, returns the function where the multiplicity of � ∈ L̂ab

d

M ∪
LabP is replaced by x ∈ Mul.

Moreover, we define an operator ∪+ that computes the addition of two func-
tions O◦

1 , O
◦
2 ∈ O◦, the occurrence counting function O◦

1 ∪+ O◦
2 is defined as

follows, where � ∈ L̂ab
d

M ∪ LabP ,

O◦
1 ∪+ O◦

2(�) =

⎧⎨
⎩

O◦
1(�)+

◦O◦◦
2(�) if � ∈ dom(O◦

1) ∩ dom(O◦
2)

O◦
1(�) if � ∈ dom(O◦

1), � �∈ dom(O◦
2)

O◦
2(�) if � ∈ dom(O◦

2), � �∈ dom(O◦
1)

We now have all the ingredients to define abstract states.

Definition 4 (Abstract State). An abstract state is a pair S◦ = (R◦, O◦),
where R◦ ∈ R◦ is an abstract representation and O◦ ∈ O◦ is an occurrence
counting function. We use S◦ for the set of abstract states.

In standard AI style, the abstract states come equipped with an approximation
order (denoted by �◦) that allows us to compare two approximations in terms
of precision.
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Definition 5 (Approximation Orders).

– Given O◦
1 , O

◦
2 ∈ O◦, we say that O◦

1�OO◦
2 iff for each � ∈ L̂ab

d

M ∪ LabP such
that � ∈ dom(O1), we have O1(�) = x1 and O2(�) = x2 with x1 ≤ x2.

– Given S◦
1 , S◦

2 ∈ S◦, we say that S◦
1�◦S◦

2 iff S◦
1 = (R◦

1, O
◦
1) and S◦

2 = (R◦
2, O

◦
2),

R◦
1 ⊆ R◦

2 and O◦
1�OO◦

2.

Given the previous orders, the corresponding least upper bounds (l.u.b.), O

over occurrence counting functions and ◦ over abstract states, are defined as
expected.

To formally relate systems and abstract states, we introduce a translation
function t◦ that maps systems into abstract states. The function t◦ : L̂ab

d

M ×
Sys → S◦, presented in Table 4, returns an abstract state, describing the sys-
tem, with respect to an abstract membrane that represents the enclosing mem-
brane. The definition relies, in turn, on a corresponding translation function for
processes t◦ : L̂ab

d

M × Proc → S◦5.

Table 4. Translation function for systems and processes.

Based on the above defined translation function, it is immediate to derive
a corresponding abstraction function that, given a system, returns the abstract
state that is its best approximation. Intuitively, the best approximation is the
most precise (with respect to the order �◦) abstract state that safely represents
the information contained in the system.

Definition 6 (Abstraction Function). We define αSys : Sys → S◦ such that,
given P ∈ Sys, αSys(P ) = (R◦, O◦ ∪+ {(@, 1)}), where t◦(@, P ) = (R◦, O◦).

The best approximation of a system is obtained by applying the translation func-
tion t◦ w.r.t. the abstract membrane label @ representing the outermost mem-
brane. Note that the previously introduced notions can be used to express the
fundamental notion of safe approximation between abstract states and systems:
an abstract state S◦ safely approximates a system P if and only if αSys(P )�◦S◦.
Moreover, the abstraction function is exploited to compute the initial abstract
state in the abstract semantics.
5 For simplicity, we use t◦ for both abstract systems and processes.
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Table 5. The abstract state αSys(S) = S◦
0 = (R◦

0, O
◦
0), where i = 1, 2.

Example 3. Let us consider the system S introduced in Example 1 (see Table 2).
Assuming the parameter for the depth of abstract membrane labels d = 3, the
best approximation of S is given by the abstract state αSys(S) = S◦

0 = (R◦
0, O

◦
0),

illustrated in Table 5. For convenience, both the abstract representation R◦
0 and

the occurrence counting function O◦
0 are described by means of tables, on the

left and on the right, respectively.
The table on the left contains one row for each abstract membrane label

Δ◦ in the domain of R◦
0. For each Δ◦ the corresponding row reports in the

second column, the set of abstract membrane labels that may be children of Δ◦,
and in the third column the set of sequential processes that may be associated
to membrane Δ◦. More formally, children(Δ◦) = {Θ◦ | (Δ◦, Θ◦) ∈ R◦

0 } and
processes(Δ◦) = {σ | (Δ◦, σ) ∈ R◦

0}. Hence, the third line can be read as the
membrane source may include the membrane Γ , and it may have associated the
processes bud

λ1
n (V esicle1) and bud

λ2
n (V esicle2).

The table on the right reports the multiplicities for each abstract membrane
and process label in the domain of O◦

0 . For instance, the membrane labels skin
and source have multiplicity 1, while the process labels λi and δi (with i = 1, 2)
come with multiplicity ω. The corresponding prefixes occur indeed under the
scope of a replication (see the rules in Table 4).

Abstract Transitions. The abstract semantics is given in terms of the abstract
transition relation l◦−→◦ among abstract states, where l◦ ∈ Lab◦

T is the abstract
transition label describing the reaction. The abstract transitions are obtained by
introducing inference rules for abstract states that model the abstract counter-
part of the membrane interactions possible in the concrete system.

The set of abstract transition labels Lab◦
T
6 (ranged over by l◦1, l

◦
2, . . . ) is

defined as in the concrete case, by replacing membrane labels with abstract
membrane labels. Thus, we have:

Lab◦
T = {pinol(Δ◦, λ), budl(Γ

◦, Δ◦, λ, μ), exol(Γ
◦, Δ◦, λ, μ), phagol(Γ

◦, Δ◦, λ, μ) |
Γ ◦, Δ◦ ∈ L̂ab

d
M, λ, μ ∈ LabP}

Due to the lack of space, we comment here only on the abstract inference
rule, given in Table 6, corresponding to the (Bud) interaction. The abstract infer-
ence rules (Phago◦), (Exo◦), (Pino◦) in Table 7, corresponding to (Phago),
6 For simplicity, we omit the explicit indication of the parameter d when is clear from

the context.
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(Exo), (Pino) reactions can be derived in similar way from their concrete
versions.

Rule (Bud◦) uses an auxiliary operator co to modify an occurrence counting
function O◦ according to a given multiplicity x.

co(O◦, x) =
{

O◦[ω/�]	∈dom(O◦) if x = ω
O◦ otherwise

Rule (Bud◦) simulates the concrete (Bud) rule, by modelling the gemmation
of a membrane Δ◦ from another membrane Γ ◦ that may synchronise on actions
bud

μ
n(ρ) and budλ

n. This requires that: (i) the abstract membrane Δ◦ is reported
as a possible child of the membrane Γ ◦ (i.e. (Γ ◦,Δ◦) ∈ R◦); (ii) according to
the abstract representation R◦, the actions cobud and bud may be associated to
membranes Γ ◦ and Δ◦, respectively. Furthermore, it must be the case that the
multiplicities of the process labels μ and λ associated to the actions are defined.

The abstract transition label l◦ is derived, as in the concrete case, by com-
bining the labels of the membranes and of the actions involved. The resulting
abstract state is obtained by enriching the abstract state (R◦, O◦) with infor-
mation reporting the effects of the possible movement of the membrane Δ◦ out
from the membrane Γ ◦. This requires to update both the abstract representation
and the occurrence counting function. Note that the membrane introduced by
the bud reaction is described by the abstract membrane label Π◦, obtained by
approximating the membrane (Δ◦, Γ ◦, λ, μ) according to its depth.

The abstract representation is extended by introducing the abstract mem-
brane Π◦ as a possible child of the membrane Φ◦ (in turn, parent of Γ ◦), and
Δ◦ as a possible child of membrane Π◦. Moreover, we have to introduce infor-
mation on the membrane processes that may be associated to membranes Γ ◦,
Δ◦ and Π◦. In the case of membrane Π◦, this requires to add R◦

2 obtained by
applying the translation function to process ρ related to cobud. Similarly, in the
case of the membranes Γ ◦ and Δ◦ the related abstract representations R◦

3 and
R◦

4 are obtained by applying the continuations of the two coactions (σ and τ),
respectively.

Finally, the occurrence counting function is updated by adding one occur-
rence of membrane Π◦ introduced by the bud reaction and the occurrence count-
ing functions O◦

2, O◦
3, and O◦

4, obtained by the translations the process ρ
and of the continuations of the coactions. Note that co operator allows us to
propagate the ω multiplicity, in the case of the continuations of prefixes under
replication.

The Analysis. The analysis of a system P provides an abstract state describ-
ing the possible topological structure of all the derivatives of P together with
occurrence counting information on membrane and process labels. We aim at
calculating such abstract state by collecting all the abstract states that can be
reached from the initial one αSys(P ), by applying the abstract inference rules.

Nevertheless, the application of the abstract inference rules without a strat-
egy would lead us to have a correct, but very coarse approximation, especially
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Table 6. Abstract inference rule for (Bud).

as far as the counting information is concerned. The reason is that, in principle,
any enabled reaction would be applied several times. As a consequence, infi-
nite copies of the corresponding membranes and processes are introduced, even
though there are cases in which this behaviour cannot occur in the dynamic
evolution of the system. Our strategy for overcoming this problem consists in
exploiting occurrence counting information to determine which abstract tran-
sitions apply to an abstract state. This allows us to more faithfully model the
concrete behaviour and therefore to gain precision in our analysis.

Table 7. Abstract inference rules for (Phago), (Exo), and (Pino).
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We start by analysing the information given by abstract transition labels,
and by distinguishing: (i) the abstract transitions that require updating the
occurrence counting information more than once, from (ii) those that require
to do it just once. Intuitively, the former model concrete transitions that may
occur more than once in a concrete derivation, while the latter model concrete
transitions that occur at most once.

To this aim, we need to define the multiplicity of abstract transition labels
in a given abstract state, computed by the function mul : S◦ × Lab◦T → Mul
defined as follows:

mul((R◦, O◦), l◦) =

⎧

⎨

⎩

ω if l◦ = pinol(Δ
◦, λ) ∧ O◦(λ) = ω,

ω if l◦ = al(Γ
◦, Θ◦, λ, μ), al ∈ {budl, exol, phagol} ∧ O◦(λ) = O◦(μ) = ω,

1 otherwise

Note that the multiplicity assigned to an abstract transition label entirely depends
on the multiplicity of labels associated to the actions that participate in the reac-
tion. For any kind of reaction if all the involved actions have multiplicity ω, then
also the associated abstract transition label has multiplicity ω. In this case indeed
the reaction may be applied more than once in the corresponding concrete deriva-
tions. On the contrary, if at least one of the actions involved in the reaction has
multiplicity 1, then the corresponding reaction may be executed no more than once
in any derivation of the concrete system.

The multiplicity of transition labels is indeed exploited to compute the abstract
semantics, where abstract states are enriched with information on the involved
abstract transitions labels. More precisely, we have configurations in the form T ◦�

S◦, where S◦ ∈ S◦ is an abstract state and T ◦ ⊆ Lab◦
T is a set of abstract tran-

sition labels representing the reactions that have been already exercised. We use
C◦ to denote the set of configurations.

To describe the evolution of configurations we introduce two meta-inference
rules that encode our strategy for the application of abstract rules. These rules
allow us to define the evolution of a configuration T ◦�(R◦

1, O
◦
1) into another con-

figuration, whenever there exists an abstract reaction (R◦
1, O

◦
1)

l◦−→◦
(R◦

2, O
◦
2). The choice of the meta-inference rule depends on the multiplicity of

the abstract transition label l◦ associated to the reaction, i.e. mul((R◦
1, O

◦
1), l

◦).

(R◦
1, O

◦
1)

l◦−→◦ (R◦
2, O

◦
2) ∧ (l◦ �∈ T ◦ ∨ (l◦ ∈ T ◦ ∧ mul((R◦

1, O
◦
1), l

◦) = ω)

T ◦ � (R◦
1, O

◦
1)

l◦−→� T ◦ ∪ {l◦} � (R◦
2, O

◦
2)

(1)

(R◦
1, O

◦
1)

l◦−→◦ (R◦
2, O

◦
2) ∧ (l◦ ∈ T ◦ ∧ mul((R◦

1, O
◦
1), l

◦) = 1)

T ◦ � (R◦
1, O

◦
1)

l◦−→� T ◦ � (R◦
2, O

◦
1)

(2)

We can apply the first rule (1), provided that either the reaction l◦ has never
been applied before (l◦ �∈ T ◦) or its multiplicity is ω. Thus, either the reac-
tion associated to l◦ can be applied only once and it has not been realised or
it can be realised any number of times. In both cases, the resulting configu-
ration is obtained by recording that the reaction l◦ has now been performed,
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and by updating both the abstract representation and the occurrence counting
information.

We can apply the second rule (2), if the reaction related to l◦ has multiplic-
ity 1 and has already been applied (l◦ ∈ T ◦). In this case, it may indicate that
the concrete reaction approximated by l◦ can be performed in another context,
different from the one considered before. This requires updating the abstract
representation reporting the effects of the move, while the occurrence counting
information does not have to be modified since it already reports the correct
multiplicities of the membrane and process labels involved in the move.

Example 4. To illustrate the application of meta-inference rule (1) let us consider
the abstract state αSys(S) = S◦

0 = (R◦
0, O

◦
0) of Example 3 (see Table 5) describing

the best approximation of the system S, presented in Example 1. Note that we can
apply the abstract rule (Bud◦) to αSys(S), because its premises are fulfilled: (i)
(skin, source), (source, Γ ) ∈ R◦

0 and (ii) (Γ, budγ
n), (source, bud

λ1
n (V esicle1)) ∈

R◦
0. Furthermore, O◦

0(λ1) and O◦
0(γ) are defined. As a consequence, we have

αSys(S)
l◦1−→◦ S◦

1 , where l◦1 = budl(Γ, source, γ, λ1) and the state S◦
1 = (R◦

1, O
◦
1) is

the one depicted in Table 8. Hence, considering the configuration ∅�αSys(S) = S◦
0 ,

we can apply meta-inference rule (1), since l◦1 �∈ ∅, obtaining ∅ � αSys(S)
l◦1−→�

{l◦1} � S◦
1 . Note that, since O◦

0(γ) = 1 (while O◦
0(λ1) = ω) we have that

mul((R◦
0, O

◦
0), l

◦
1) = 1.

The analysis of a system P provides an abstract state that is obtained by collect-
ing (taking the l.u.b.) all the abstract states that can be reached from the initial
configuration ∅ � αSys(P ), by applying the meta-inference rules (1) and (2).

Definition 7 (The Analysis). We define a function A◦ : Sys → S◦ such that
for P ∈ Sys we have A◦(P ) = ◦

{S◦|T ◦�S◦∈X◦
P }S

◦, where X◦
P = lfp(F◦({∅ �

αSys(P )}))7 and the function F◦ : ℘(C◦) → ℘(C◦) defined as F◦(X◦
1 ) = X◦

1 ∪
{C◦

2 | C◦
1

l◦−→� C◦
2 , C◦

1 ∈ X◦
1}.

Despite the fact that the analysis involves a fixed point over a power domain,
which seems to admit exponentially long increasing paths, the analysis can be

Table 8. The abstract state S◦
1 = (R◦

1, O
◦
1), where i = 1, 2.

7 where lfp is the least fixed point.
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computed in polynomial time. For its computation there is no need to deal with
power sets: crafting a single maximal path is enough to compute the fixed point,
which is a singleton set. This allows us to obtain a polynomial bound. It can
be shown indeed that the analysis can be effectively computed by building a
single maximal path starting from the initial configuration and ending into a
final configuration, i.e. a configuration that cannot further evolve according to
the meta-inference rules (1) and (2).

This property relies on the following result.

Theorem 1. Let P ∈ Sys be well labelled and let C◦
1 , C◦

2 ∈ C◦ be two configu-
rations such that C◦

1 , C◦
2 ∈ lfp(F◦({∅ � αSys(P )})), as defined in Definition 7. If

C◦
1 and C◦

2 are final configurations then C◦
1 = C◦

2 .

The previous property allows us to calculate the analysis of a system without
computing all the configurations that can be reached from the initial one. Indeed,
A◦(P ) can be computed by building a single path

T ◦
0 � S◦

0 , T ◦
1 � S◦

1 , . . . , T ◦
m � S◦

m

where (i) T ◦
0 = ∅, S◦

0 = αSys(P ); (ii) T ◦
m � S◦

m is a final configuration; and,
(iii) for each i ∈ [1,m] the corresponding configuration is obtained by applying
the meta-inference rules (1) and (2) to the previous configuration T ◦

i−1 � S◦
i−1.

Note that this path is an ascending chain since, for each i ∈ [0,m − 1], either
T ◦

i ⊂ T ◦
i+1 and S◦

i �◦S◦
i+1 or T ◦

i ⊆ T ◦
i+1 and S◦

i �◦S◦
i+1. Hence, we have that the

analysis of system P precisely coincides with the final state, i.e. A◦(P ) = S◦
m.

The above reasoning guarantees that the analysis can be computed in poly-
nomial time, observing that the number of abstract membranes and transition
labels arising in the computation of the analysis is polynomial, when fixing the
maximum depth d to a constant value.

Finally, we present the main theorem that shows that the analysis of a system
safely approximates its concrete behaviour, described by the concrete LTS. This
means that each derivative P ′ of P is over-approximated by the abstract state
calculated by the analysis of P .

Theorem 2 (Safety). Let P ∈ Sys be a well labelled system and let LTS(P ) =
(X,

l−→, P ). We have that
( ◦

P ′∈X αSys(P ′)
)�◦A◦(P ).

5 Our Analysis at Work

We now apply our analysis to the systems presented in Sect. 3 (assuming again
d = 3 analogously as in Sect. 4). We illustrate in more the details the analysis of
the system S of Example 1, whose first steps have been introduced in Example 3
and 4. Since the analysis of the system S′ described in Example 2 is similarly
obtained, we only comment its results.

Example 5. The analysis of the system S shown in Table 2 of Example 1 is com-
puted starting from the initial configuration ∅�αSys(S), where αSys(S) = S◦

0 =
(R◦

0, O
◦
0) is the abstract state of Table 5 (commented in Example 3).
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Table 9. The abstract state S◦ = (R◦, O◦), where i = 1, 2.

The final configuration is given by {l◦1, l◦11, l◦12, l◦2, l◦21, l◦22} � S◦, where
S◦ = (R◦, O◦) is the abstract state in Table 9, and the abstract transition labels
for i = 1, 2 are:

l◦i = budl(Γ, source, γ, λi), l
◦
i1 = phagol(Π

◦
i, targeti, δi, μi), l

◦
i2 = exol(Π

◦
i, Π

◦
i1, νi, βi).

Here, the abstract transition labels l◦1, l◦11 and l◦12 are the abstract versions
of the transition labels l11 and l12 in Table 2. They represent the (bud), (phago)
and (exo) reactions performed by the first vesicle, respectively. Analogously,
the abstract transition labels l◦2, l◦21 and l◦22 represent the labels introduced
by the similar evolution of the second vesicle. Note that in this case all the
abstract transition labels have multiplicity 1, and consequently only the meta-
inference rule (2) can be applied to the final configuration. As a consequence, at
this point, no matter which reaction is applied, the final configuration cannot
further evolve, and, in particular, the information counting information cannot
be updated anymore.

Hence, we can conclude that A◦(S) = S◦ = (R◦, O◦). For clarity, the mem-
brane hierarchy described by abstract representation R◦ is shown in the tree in
Fig. 1, where the nodes represent the abstract membrane labels and the edges
represent the parent-child relation. It is worth noting that the information pro-
vided by R◦ predicts that the membrane Γ , which encloses the molecule X,
may end up in membrane target1, as well as in membrane target2. However, the
occurrence counting information expressed by O◦ guarantees that the membrane
Γ will never reside at the same time inside the membranes target1 and target2.
To point this out the two alternative inclusions of membrane Γ inside the mem-
branes target1 and target2 the lines are displayed with dotted edges (blue in the
pdf) in Fig. 1. Note that without applying the meta-inference rules (1) and (2),
and by repeatedly updating the occurrence counting information, while apply-
ing abstract inference rules, we would obtain that O◦(Γ ) = ω, thus losing the
information necessary to determine the alternative presence of membrane Γ in
the two target membranes.

Example 6. The analysis of the system S′ described in Table 3 of Example 2 is
given be the abstract state S′◦ = (R′◦, O′◦) illustrated in Table 10. The analysis
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@

skin

Π◦
1

Γ

X

source

Γ

XX

target1 target2

Π◦
11 Γ

Π◦
1

X

Π◦
21 Γ

Π◦
2

X

Π◦
2

Γ

X

Fig. 1. The membrane hierarchy tree described by R◦.

result is obtained as in Example 5 starting from the corresponding initial con-
figuration. Note that the abstract representation R′◦ roughly describes the same
information reported in Example 5, while the occurrence counting information
O′◦ makes a difference. Given that the multiplicity of membrane Γ is in this
case ω, the analysis reveals that Γ may be enclosed at the same time inside
membranes target1 and target2

8.
We can then conclude that our analysis, thanks to the occurrence counting

information, allows us to observe that the two biological systems introduced
in Sect. 3 exhibit a different dynamical behaviour. In both cases, the analysis
predicts that molecule X may end up both in target1 and in target2, but only
in the first scenario the two inclusions are alternative.

Note that, in general, information on the possible presence/absence of a com-
ponent in a membrane could also be exploited when developing a biological
model, to detect errors in the model specification.

Table 10. The abstract state S′◦ = (R′◦, O′◦), where i, j = 1, 2 and i �= j.

8 Note that giving the two membrane sources the same label does not influence the
result.
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6 Conclusions

We presented an analysis based on Abstract Interpretation techniques for approx-
imating the behaviour of biological systems described in Brane Calculi [6].
The analysis consists in two components. The first component, which over-
approximates the possible membrane hierarchy, is obtained by adapting static
analysis techniques used for process algebras handling biological compartments
(see e.g. [1–4,21]). The less standard occurrence counting component of the
analysis is used to predict whether some component may occur at most once
in any system reachable from the initial one. The two components influence
each other. In particular, the prediction on the possible membrane hierarchy is
refined with global occurrence counting information, thus allowing us to increase
the precision with respect to the previous static approaches for Brane Calculi [2–
4]. Note that the analyses providing occurrence counting information proposed
for BioAmbients [14–16,25], the sibling bio-inspired calculus, cannot be straight-
forwardly adapted to Brane Calculi. A careful labelling technique for membranes
is required indeed because of bitonality, i.e. the fact that brane interactions pos-
sibly introduce new membranes, in order not to mix what is inside a membrane
with what is outside (entities can be shuttled inside or outside, only if wrapped
by another membrane).

To validate the applicability of our analysis in the biological setting, we
applied it to two minimal examples of communication via mobile vesicles that
exhibit different dynamical behaviours with respect to the presence of a molecule
X inside two target membranes: simultaneous in the second case, but not in the
first one. Despite its simplicity, without the occurrence counting, the analysis
failed to detect differences between the two cases, thus not predicting that, in
the first case, X cannot be simultaneously present in the two target membranes,
while in the second case, it may occur in both.

As future work, we would like to improve the accuracy of our approach. In
particular, we would like to better analyse the systems that contain different
instances of the same membrane or of the same process, and to better handle
replication. One possible direction would be to refine our analysis by providing
local occurrence counting information in the style of [15,16]. In this way, we
could apply our approach to more complex biological case studies, such as the
one modelled in [5], for investigating the relationships occurring among events.
Note that the formalisation of the LDL Cholesterol Degradation pathway in
Brane Calculi presented in [5] requires a version of the calculus with recursive
definitions in place of replication. Recursive definitions have been shown useful
to provide a more intuitive modelling of real systems with an infinite behaviour.
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Abstract. In this article, we propose a static information-flow analysis
for multi-threaded programs with shared memory communication and
synchronization via locks. In contrast to many prior analyses, our analy-
sis does not only prevent information leaks due to synchronization, but
can also benefit from synchronization for its precision. Our analysis is a
novel combination of type systems and a reachability analysis based on
dynamic pushdown networks. The security type system supports flow-
sensitive tracking of security levels for shared variables in the analysis of
one thread by exploiting assumptions about variable accesses by other
threads. The reachability analysis based on dynamic pushdown networks
verifies that these assumptions are sound using the result of an automatic
guarantee inference. The combined analysis is the first automatic sta-
tic analysis that supports flow-sensitive tracking of security levels while
being sound with respect to termination-sensitive noninterference.

Keywords: Information-flow security · Concurrency · Static analysis

1 Introduction

Before giving a multi-threaded program access to sensitive information, one
might want to know whether the program keeps this information secret. Static
information-flow analyses are a solution for checking whether a program keeps
sensitive information secret before running the program.

Information-flow security for sequential programs received a lot of attention
in research and mature solutions exist, e.g. [2,5,7,12]. Analyzing information-
flow security for concurrent programs is conceptually more difficult. In particular,
analyses for sequential programs are not sufficient for analyzing concurrent pro-
grams [17], because further information leaks can occur. Consider, for instance,
the program o1:=s1; s1:=s2; s2:=o1; o1:=0, which swaps the values stored in
s1 and s2 via the variable o1. Assume the values of s1 and s2 shall be kept
c© Springer International Publishing Switzerland 2015
M. Falaschi (Ed.): LOPSTR 2015, LNCS 9527, pp. 201–217, 2015.
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Fig. 1. Work flow of the proposed analysis

secret from an attacker who can only observe the variable o1 after the program
run. While the program does not leak the values of s1 and s2 if run in isolation,
it might leak the value of s1 to the attacker if the program o2:=o1; o1:=o2
is run concurrently. Synchronization adds further complexity to this problem,
because it can introduce additional information leaks [14].

For verifying that multi-threaded programs have secure information flow, sev-
eral security type systems were proposed and proven sound wrt. noninterference-
like security properties (e.g., [16,17]). While some of this work addresses the
danger of information leakage via synchronization (e.g., [14,19,20]), the poten-
tial positive effects of synchronization primitives for information-flow security
have been neglected for some time. However, programmers use synchronization
frequently to limit the possible interferences between threads. In particular, syn-
chronization can be employed to prevent information leakage.

Mantel, Sands, and Sudbrock propose a framework for verifying information-
flow security in a modular fashion such that the positive effects of synchroniza-
tion can be exploited [10]. They present a flow-sensitive security type system
that is suitable for rely-guarantee-style reasoning about information-flow security
based on code annotations that capture a programmer’s intentions and expecta-
tions by so called modes. A mode is either an assumption about a given thread’s
environment that the programmer expects to hold when the thread reaches some
program point, or it is a guarantee that the programmer intends to provide to
the thread’s environment. In [10], the security type system is proven sound under
the precondition that all assumptions made by a thread are justified by corre-
sponding guarantees of other threads and that all such guarantees are, indeed,
provided. In [3], this approach is adapted to a hybrid information-flow analysis,
where monitors enforce the soundness of rely-guarantee-style reasoning by forc-
ing threads to provide all guarantees that are needed to justify the assumptions
made by other threads.

In this article, we propose a particular combination of security type systems
with dynamic pushdown networks [9] (brief: DPNs). The purpose of this com-
bination is to obtain a solution for rely-guarantee-style reasoning where DPNs
are used to effectively check that all assumptions are justified. In addition, we
present an inference that soundly computes the guarantees that are provided
at each program point. That is, our solution statically ensures that modes are
used soundly and our soundness result is unconditional, unlike in [10] where a
sound use of modes is assumed. In contrast to [3], we present a solution for a
static analysis, i.e. one only needs to verify the information flow security of a
program once and no run-time overhead is imposed on the program. Another
novelty of this article in comparison to [3,10] is that our security type system
covers dynamic thread creation as well as lock-based synchronization.
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Figure 1 illustrates how the different modules of our analysis interact. The
guarantee inference takes a program annotated with assumptions as input and
adds guarantee annotations. This program is input to the assumption verifier
and the security type system. A program is then accepted as secure if and only
if it is accepted by the assumption verifier as well as the security type system.

Overall, our analysis is the first completely automated, static information-
flow analysis that soundly enforces termination-sensitive noninterference while
permitting flow-sensitive tracking of security levels for shared variables.

2 Basic Notions and Notation

2.1 Model of Computation

We consider multi-threaded programs whose threads synchronize by locks and
communicate via shared memory. We focus on interleaving concurrency (i.e., one
thread performs a step at a time), non-deterministic scheduling (i.e., each thread
could be chosen to perform a step next), and non-re-entrant locks (i.e., a lock can
only be acquired if no thread, including the acquiring thread, holds this lock). To
capture the behavior of multi-threaded programs, we use two transition systems:
a local labeled transition system to capture the behavior of individual threads
and a global transition system to capture the behavior of multiple threads.

We assume as given a finite set of locks Lck and define the set of all memory
configurations by Mem = Var → Val , where Var is a finite set of variables and
Val is a set of values. We leave Var and Val both under-specified.

We refer to the states and labels of local, labeled transition systems as local
configurations and events, respectively. Formally, a local transition system is a
triple (LCnf ,Eve,−→) where LCnf and Eve are sets and −→⊆ LCnf×Eve×LCnf .
We define the set of local configurations by LCnf = CCnf ×Mem, where CCnf is
a set of control configurations that we leave under-specified for now. An event is
a term that captures the non-local effects of a thread’s computation. We define
the set of all events by Eve = {ε,↗ccnf , l ,¬l | ccnf ∈ CCnf , l ∈ Lck}. We
use the events ↗ccnf , l , and ¬l to capture the creation of a new thread with
initial control configuration ccnf , the acquisition of lock l , and the release of l ,
respectively. The term ε signals that no non-local effect occurs. We assume that
termination is captured by a predicate trm on control configurations.

A global transition system is a pair (GCnf ,�), where GCnf is a set of
global configurations and �⊆ GCnf × GCnf . We define GCnf by GCnf =
CCnf + × Mem, i.e., a global configuration is a pair of a non-empty list of
local control configurations and a memory configuration. A global configuration
〈[ccnf 1, . . . , ccnf n],mem〉 models a snapshot of a computation with n threads
where the ith thread’s state is captured by (ccnf i,mem) for 1 ≤ i ≤ n. We say
that a list of control configurations [ccnf 1, . . . , ccnf n] has terminated (denoted
trm([ccnf 1, . . . , ccnf n])) iff trm(ccnf i) holds for all i ∈ {1, . . . , n}.

We assume the control configuration of a thread to capture which locks are
held by this thread. To retrieve the set of acquired locks, we use a function
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locks : CCnf → 2Lck and inductively lift it to a function locks : CCnf ∗ → 2Lck

by locks([]) = ∅ and locks(
−−→
ccnf ++[ccnf ]) = locks(

−−→
ccnf )∪ locks(ccnf ). In a global

configuration 〈[ccnf 1, . . . , ccnf n],mem〉, locks(ccnf i) is the set of locks acquired
by the ith thread and Lck \ locks([ccnf 1, . . . , ccnf n]) is the set of available locks.

We say that a local transition system (LCnf ,Eve,−→) handles locks properly
iff (1) (ccnf ,mem) l−→ (ccnf ′,mem ′) implies locks(ccnf ′) = locks(ccnf ) ∪̇ {l},1

(2) (ccnf ,mem) ¬l−→ (ccnf ′,mem ′) implies locks(ccnf ) = locks(ccnf ′) ∪̇ {l}, (3)
(ccnf ,mem) α−→ (ccnf ′,mem ′) and α /∈ {l ,¬l | l ∈ Lck} imply locks(ccnf ′) =
locks(ccnf ), and (4) (ccnf ,mem) ↗ccnf ∗−−−−→(ccnf ′,mem ′) implies locks(ccnf ∗) = ∅.

Let (LCnf ,Eve,−→) be a local transition system that handles locks properly.
The global transition relation �⊆ GCnf ×GCnf induced by this local transition
system is the smallest relation that satisfies the following conditions:

1. If (ccnf i,mem) l−→ (ccnf ′
i,mem ′) and l /∈ locks(

−−→
ccnf 1++

−−→
ccnf 2)

then
〈−−→ccnf 1++[ccnf i]++

−−→
ccnf 2,mem〉 � 〈−−→ccnf 1++[ccnf ′

i]++
−−→
ccnf 2,mem ′〉.

2. If (ccnf i,mem) ↗ccnf−−−→ (ccnf ′
i,mem ′)

then
〈−−→ccnf 1++[ccnf i]++

−−→
ccnf 2,mem〉 � 〈−−→ccnf 1++[ccnf , ccnf ′

i]++
−−→
ccnf 2,mem ′〉.

3. If (ccnf i,mem) α−→(ccnf ′
i,mem ′) and α /∈{↗ccnf , l | ccnf ∈CCnf , l ∈Lck}

then
〈−−→ccnf 1++[ccnf i]++

−−→
ccnf 2,mem〉 � 〈−−→ccnf 1++[ccnf ′

i]++
−−→
ccnf 2,mem ′〉.

The first item above captures the acquisition of a lock by the thread at position
i = 1 + �(

−−→
ccnf 1). Since the local transition system handles locks properly, a lock

can only be acquired if no thread – including thread i – holds this lock. The
second item captures the creation of a thread by the ith thread. Due to the
proper handling of locks, newly created threads hold no locks. Finally, the third
item handles all other steps of the ith thread, including the release of a lock.

We inductively define a family of relations (�k)k∈N by gcnf �0 gcnf and
if gcnf �k gcnf ′ and gcnf ′ � gcnf ′′ then gcnf �k+1 gcnf ′′. The transitive,
reflexive closure of � is defined by gcnf �∗ gcnf ′ iff ∃k ∈ N. gcnf �k gcnf ′. If
gcnf �∗ gcnf ′ then gcnf ′ is reachable from gcnf . We define the set of all global
configurations reachable from gcnf by gReach(gcnf ) = {gcnf ′ | gcnf �∗ gcnf ′}.

In Sect. 2.5, we define a local transition system (LCnf ,Eve,−→) for a simple
programming language and capture multi-threaded computations by the global
transition system (GCnf ,�), where � is induced by (LCnf ,Eve,−→).

2.2 Attacker Model and Definition of Security

We focus on confidentiality in this article. More concretely, we assume that
certain variables store secrets, and we only classify a program as secure if it does
1 We use ∪̇ to denote the disjoint union of two sets, e.g., locks(ccnf ′) = locks(ccnf )∪̇{l}

is equivalent to locks(ccnf ′) = (locks(ccnf ) ∪ {l}) ∧ l /∈ locks(ccnf ).
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not reveal information about these secrets when it is run. We consider attackers
that might be able to observe the values of all other variables both, before and
after a program run. We refer to variables that initially store secrets as high
and to variables that might be observable to the attacker as low.

We define a set of security levels by Lev = {low,high} and use a function
lev : Var → Lev to associate a security level with each variable. For the attacker,
two memory configurations are indistinguishable if they agree on the values of
all low variables. We say that mem,mem ′ ∈ Mem are low-equal (denoted by
mem =lev

low mem ′) iff ∀x ∈ Var . (lev(x ) = low =⇒ mem(x ) = mem ′(x )) holds.

Definition 1. A control configuration ccnf is secure for lev : Var → Lev iff

∀mem1,mem ′
1,mem2 ∈ Mem.∀−−→

ccnf 1 ∈ CCnf +.

〈[ccnf ],mem1〉 �∗ 〈−−→ccnf 1,mem ′
1〉 ∧ trm(

−−→
ccnf 1) ∧ mem1 =lev

low mem2

=⇒ ∃mem ′
2 ∈ Mem.∃−−→

ccnf 2 ∈ CCnf +.

〈[ccnf ],mem2〉 �∗ 〈−−→ccnf 2,mem ′
2〉 ∧ trm(

−−→
ccnf 2) ∧ mem ′

1 =lev
low mem ′

2

Our security definition captures possibilistic, termination-sensitive noninterfer-
ence for a two-level security policy [15]. That is, if a program satisfies our security
definition then the initial values of high variables do not influence the possibility
of a low attacker’s observations. In particular, programs that leak information
via their termination behavior [4] do not satisfy Definition 1.

2.3 Dynamic Pushdown Networks

We briefly recall the result on analysis of dynamic pushdown networks (DPNs)
from [9] exploited in the assumption verifier and describe the connection to
our model of computation. A DPN consists of multiple instances of indepen-
dent pushdown systems running in parallel. Additional instances can be created
dynamically. Synchronisation is supported in the form of locks. Using finite data
abstraction, DPNs can thus model concurrent programs with recursive proce-
dures, dynamic thread creation, and synchronization with locks.

Formally, a DPN is a tuple (P , Γ,A,Δ) where P is a finite set of control states,
Γ is a finite set of stack symbols, A is a finite set of actions, and Δ ⊆ PΓ ×
A × PΓ ∗ is a finite set of transitions. An action from {↗p,γ | p ∈ P , γ ∈ Γ} ⊆ A
indicates creation of a new pushdown instance with a control state p and stack
symbol γ, and an action from {l ,¬l | l ∈ Lck} ⊆ A indicates acquisition and
release of a lock l . The set of acquired locks can be retrieved from a control
state with the function locks : P → 2Lck . The set of acquired locks in a control
state must be consistent with transitions, i.e. for all (pγ, a, p′w′) ∈ Δ we have
locks(p′) = {l} ∪̇ locks(p) if a = l , locks(p) = {l} ∪̇ locks(p′) if a = ¬l and
locks(p) = locks(p′) otherwise; in addition locks(p′′) = ∅ if a =↗p′′,γ′′ . Note
that there is no re-entrant use of locks.

Configurations of a DPN are lists of pushdown instances represented as
words from DCnf = (PΓ ∗)+. Let locks(p1w1 . . . pnwn) =

⋃
i∈{1,...,n} locks(pi).
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A step of the semantics of the DPN rewrites the control state and topmost
stack-symbol of one pushdown instance according to a transition rule, if allowed
by the state of locks. On thread creation, a new pushdown instance is added
to the left of the current instance in the configuration. Formally, the transition
relation � is the smallest relation such that s pγw s ′ � s s ′′ p′w′w s ′ holds for
all s, s ′ ∈ DCnf , w ∈ Γ ∗, (pγ, a, p′w′) ∈ Δ provided l /∈ locks(spγws ′) if a = l
and s ′′ = p′′γ′′ if a =↗p′′,γ′′ and s ′′ = ε otherwise.

We say that a thread uses locks in a well-nested fashion if it releases all locks
in opposite order of their acquisition. Given a DPN whose threads use locks in
a well-nested fashion and a regular set B ⊆ (P ∪ Γ )∗, we can check effectively,
whether a configuration in B is reachable from initial configuration s0 or not,
i.e., whether ∃s ∈ B : s0 �∗ s (see [9]).

In order to analyze a program from an initial configuration 〈[ccnf ],mem〉,
we consider a DPN Mccnf = (Pccnf , Γccnf ,Accnf ,Δccnf ) with Pccnf ⊆ CCnf ,
ccnf ∈ Pccnf and Γccnf = {#} that satisfies the following condition: if ccnf ′ ∈
Pccnf and (ccnf ′,mem) α−→ (ccnf ′′,mem ′) then ccnf ′′ ∈ Pccnf , α′ ∈ Accnf and
(ccnf ′#, α′, ccnf ′′#) ∈ Δccnf , where α′ = α for α /∈ {↗ccnf | ccnf ∈ CCnf },
and ccnf ′′′ ∈ Pccnf and α′ =↗ccnf ′′′,# for α =↗ccnf ′′′ . Elements of Pccnf

abstract local configurations in the sense that they do not carry information
about memory configurations. Correspondingly, the transitions in Δccnf abstract
steps in the local semantics. However, labelling and hence synchronisation and
thread creation is preserved. We reuse the function locks defined for control
configurations.

The DPN Mccnf can be used to approximate reachability of configurations
starting from 〈[ccnf ],mem〉 respecting synchronisation via locks and thread cre-
ation, since 〈[ccnf ],mem〉 �∗ 〈[ccnf 1, . . . , ccnf n],mem ′〉 implies that ccnf # �∗

ccnf 1# . . . ccnf n#. Hence, an unreachable configuration in the DPN translates
to an unreachable configuration in the program. Since we abstract from the
shared global memory, the converse direction does not hold in general.

The above approach is fitted to non-recursive programs but can easily be
extended to recursive programs by using a larger stack alphabet.

2.4 Control Configurations and Modes

We specialize control configurations to triples of the form (c, lkst ,mdst), where
c is a command, lkst is a lock state, and mdst is a mode state. In the control
configuration of a thread, the command specifies how the thread’s computation
will continue, the lock state specifies which locks the thread currently holds, and
the mode state specifies the thread’s current assumptions about its environment
as well as the guarantees that the thread currently provides to its environment.

We use Com, LkSt , and MdSt to denote the set of all commands, the set
of all lock states, and the set of all mode states, respectively, i.e., CCnf =
Com × LkSt × MdSt . We leave Com under-specified and define LkSt and MdSt
below. In Sect. 2.5, we specialize Com for the syntax of a concrete programming
language and formalize the language’s semantics by a local transition system.
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Formally, a lock state is a set of locks, i.e., LkSt = 2Lck . In a control config-
uration (c, lkst ,mdst) of a thread, the lock state lkst specifies which locks this
thread holds. Hence, we define the function locks by locks((c, lkst ,mdst)) = lkst .

We define mode states to be functions from modes to sets of variables, i.e.,
MdSt = Md → 2Var , where Md = {A-NR,A-NW,G-NR,G-NW} is the set of
modes. The modes A-NR (for no-read assumption) and A-NW (for no-write
assumption) represent assumptions, while the modes G-NR (for no-read guaran-
tee) and G-NW (for no-write guarantee) represent guarantees. If x ∈ mdst(A-NW)
then it is assumed that the thread’s environment does not write x . Similarly,
if y ∈ mdst(A-NR) then it is assumed that the thread’s environment does
not read the variable y . If x ∈ mdst(G-NW) and y ∈ mdst(G-NR), then the
thread guarantees to not write x and to not read y , respectively. We say a mode
statemdstis consistent with a mode statemdst ′ iff mdst(A-NW) ⊆ mdst ′(G-NW)
and mdst(A-NR) ⊆ mdst ′(G-NR), i.e., if all assumptions made by mdst are
matched by corresponding guarantees of mdst ′.

We say that a local configuration ((c, lkst ,mdst),mem) provides its no-write
guarantees iff for all x ∈ mdst(G-NW) and (ccnf ′,mem ′) ∈ LCnf the implication

((c, lkst ,mdst),mem) α−→ (ccnf ′,mem ′) =⇒ mem ′(x ) = mem(x ) (1)

holds. Moreover, we say ((c, lkst ,mdst),mem) provides its no-read guarantees iff
for all y ∈ mdst(G-NR), v ∈ Val , and (ccnf ′,mem ′) ∈ LCnf the implication

((c, lkst ,mdst),mem) α−→ (ccnf ′,mem ′) (2)

=⇒ ((c, lkst ,mdst),mem[y �→ v ]) α−→ (ccnf ′,mem ′)
∨ ((c, lkst ,mdst),mem[y �→ v ]) α−→ (ccnf ′,mem ′[y �→ v ])

holds. The two disjuncts on the right hand side of the implication cover the case
where the variable y is written and not written, respectively, in the step. Finally,
we say that a local configuration provides its guarantees if it provides both, its
no-write guarantees and its no-read guarantees.

We say that a global configuration 〈[ccnf 1, . . . , ccnf n],mem〉 with ccnf i =
(ci, lkst i,mdst i) for each i ∈ {1, . . . , n} justifies its assumptions iff mdstj is
consistent with mdstk for all j, k ∈ {1, . . . , n}, j �= k. Intuitively, this means that
if one thread makes an assumption about a variable then all other threads must
provide the corresponding guarantee.

Modes and mode states were introduced in [10] as a basis for rely-guarantee-
style reasoning about information-flow security. The approach enables one to
verify the security of multi-threaded programs in a modular fashion, based on
security guarantees for each individual thread. More concretely, one statically
verifies that steps of each thread only cause flows of information that comply with
a given security policy. Rely-guarantee-style reasoning frees one from having to
reason about arbitrary environments, one only needs to consider environments
that satisfy the thread’s current assumptions. Such rely-guarantee-style reason-
ing is sound if at each step of a computation the assumptions of all threads are
justified and the guarantees of all threads are provided.
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Definition 2. A global configuration gcnf ensures a locally sound use of modes
iff for each gcnf ′ ∈ gReach(gcnf ), where gcnf ′ = 〈[ccnf ′

1, . . . , ccnf ′
n],mem ′〉, and

each i ∈ {1, . . . , n}, the local configuration (ccnf ′
i,mem ′) provides its guarantees.

A global configuration gcnf ensures a globally sound use of modes iff each
gcnf ′ ∈ gReach(gcnf ) justifies its assumptions.

A global configuration gcnf ensures a sound use of modes iff gcnf ensures
both, a locally sound use of modes and a globally sound use of modes.

Our semantics of modes is similar to the one in [3,10]. One original extension
of rely-guarantee-style reasoning about information-flow security in this article
is that we cover dynamic thread creation and synchronization with locks, which
are two language features not supported by this prior work.

2.5 A Concrete Programming Language with Modes

We define an example programming language with annotations for acquiring
and releasing modes. The set of annotations is Ann = {acq(md , x ), rel(md , x ) |
md ∈ Md ∧ x ⊆ Var}. An annotation acq(md , x ) acquires the mode md for all
variables in x , and an annotation rel(md , x ) releases the mode md for all vari-
ables in x . To capture this formally, we define the function updMds : MdSt ×
Ann → MdSt by updMds(mdst , acq(md , x )) = mdst [md �→ mdst(md) ∪ x ] and
updMds(mdst , rel(md , x )) = mdst [md �→ mdst(md) \ x ], and lift it to lists
of annotations by updMds(mdst , []) = mdst and updMds(mdst , [a]++−→a ) =
updMds(updMds(mdst , a),−→a ).

We define the special mode state mdst⊥ by mdst⊥(A-NR) = mdst⊥(A-NW) =
∅ and mdst⊥(G-NR) = mdst⊥(G-NW) = Var . It is minimal in the sense that it
imposes no constraints on assumptions and guarantees of its environment.

We assume as given a set Exp of expressions, a function eval : Exp ×Mem →
Val that returns the value to which an expression evaluates in a given memory,
and a function vars : Exp → 2Var that returns the set of all variables that appear
syntactically in an expression.

The set Comp of syntactically correct programs is defined by the grammar:

� := ε | @−→a
cp := skip | x :=e | if e then cp else cp fi | while e do cp od | cp; cp

| spawn(cp) | lock(l)�; cp;unlock(l) � | cp�
where −→a ∈ Ann∗, x ∈ Var , e ∈ Exp, and l ∈ Lck . The syntax ensures a
well-nested use of locks. The set Com of commands is defined by the grammar:

c := stop | lock(l) � | unlock(l) � | c; c | cp

We define that trm((c, lkst ,mdst)) holds iff c = stop. That is, the symbol stop
indicates that the computation of a thread has terminated.

The local transition system for our programming language is defined by the
calculus in Fig. 2. For the rules sk, as, sq1, sq2, ift, iff, wht, and whf, sp, the
lock state as well as the mode state is irrelevant for the premises and both remain
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sk
(skip, lkst ,mdst ,mem)

ε−→ (stop, lkst ,mdst ,mem)

as
eval(e,mem) = v mem ′ = mem[x �→ v ]

(x :=e, lkst ,mdst ,mem)
ε−→ (stop, lkst ,mdst ,mem ′)

sq1
(c1, lkst ,mdst ,mem)

α−→ (c′
1, lkst

′,mdst ′,mem ′) c′
1 �= stop

(c1; c2, lkst ,mdst ,mem)
α−→ (c′

1; c2, lkst
′,mdst ′,mem ′)

sq2
(c1, lkst ,mdst ,mem)

α−→ (stop, lkst ′,mdst ′,mem ′)

(c1; c2, lkst ,mdst ,mem)
α−→ (c2, lkst

′,mdst ′,mem ′)

sp
(spawn(c), lkst ,mdst ,mem)

↗(c,∅,mdst⊥)−−−−−−−−→ (stop, lkst ,mdst ,mem)

ift
eval(e,mem) = true

(if e then c else c′ fi, lkst ,mdst ,mem)
ε−→ (c, lkst ,mdst ,mem)

iff
eval(e,mem) = false

(if e then c else c′ fi, lkst ,mdst ,mem)
ε−→ (c′, lkst ,mdst ,mem)

wht
eval(e,mem) = true

(while e do c od, lkst ,mdst ,mem)
ε−→ (c;while e do c od, lkst ,mdst ,mem)

whf
eval(e,mem) = false

(while e do c od, lkst ,mdst ,mem)
ε−→ (stop, lkst ,mdst ,mem)

lk
lkst ∪̇ {l} = lkst ′

(lock(l), lkst ,mdst ,mem)
l−→ (stop, lkst ′,mdst ,mem)

ulk
lkst = lkst ′ ∪̇ {l}

(unlock(l), lkst ,mdst ,mem)
¬l−→ (stop, lkst ′,mdst ,mem)

an1
(c, lkst ,mdst ,mem)

α−→ (stop, lkst ′,mdst ′,mem ′) mdst ′′ = updMds(mdst ′, −→a )

(c@−→a , lkst ,mdst ,mem)
α−→ (stop, lkst ′,mdst ′′,mem ′)

an2
(c, lkst ,mdst ,mem)

α−→ (c′, lkst ′,mdst ′,mem ′) c′ �= stop

(c@−→a , lkst ,mdst ,mem)
α−→ (c′@−→a , lkst ′,mdst ′,mem ′)

Fig. 2. Semantics of the programming language

unchanged. The rules lk and ulk realize acquiring and releasing a lock, respec-
tively. The rule an1 updates the mode state according to an annotation if the
annotated command is reduced to stop. The rule an2 preserves the annotation
if the command is not reduced to stop.

Given a program cp, we say that cp is secure for lev iff (cp, ∅,mdst⊥) is secure
for lev , that cp ensures a locally sound use of modes iff 〈[(cp, ∅,mdst⊥)],mem〉
ensures a locally sound use of modes for all mem ∈ Mem, that cp ensures a
globally sound use of modes iff 〈[(cp, ∅,mdst⊥)],mem〉 ensures a globally sound
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use of modes for all mem ∈ Mem, and that cp ensures a sound use of modes iff
〈[(cp, ∅,mdst⊥)],mem〉 ensures a sound use of modes for all mem ∈ Mem.

3 A DPN-based Analysis for Sound Assumptions

We propose a two-step approach for ensuring a globally sound use of modes for
a given program cp. First, we construct a DPN that simulates cp in the sense of
Sect. 2.3. Second, we build an automaton that accepts all DPN configurations
that contain a pair of inconsistent mode states. By the connection between DPN
and program executions, cp uses modes globally sound, if no such configuration
is reachable in the DPN from a particular initial configuration. The techniques
from [9] then enable us to determine whether this is the case.

We construct a DPN Mccnf for the control configuration ccnf =(cp, ∅,mdst⊥)
as follows: Starting with ccnf , we collect all reachable control configurations,
actions, and transitions using the rules from Fig. 2, ignoring the memory config-
urations. The resulting sets Pccnf , Accnf and Δccnf of control states, actions, and
transitions satisfy all requirements from Sect. 2.3. Due to the syntax of programs
locks are used well-nested in the DPN Mccnf and mode states are preserved in
its configurations.

For the second step, we first introduce a function that checks the mutual
consistency of two mode states and returns a summary mode state.

Definition 3. Let MdSt� = MdSt ∪{�}. The function ⊕ : MdSt� ×MdSt� →
MdSt� is defined by mdst ⊕ mdst ′ = mdst ′′ where
– mdst ′′(md) = mdst(md) ∪ mdst ′(md) for md ∈ {A-NR,A-NW} and

mdst ′′(md) = mdst(md) ∩ mdst ′(md) for md ∈ {G-NR,G-NW}
if mdst �= �, mdst ′ �= �, mdst is consistent with mdst ′, and

mdst ′ is consistent with mdst.
– mdst ′′ = � otherwise.

If the two parameter mode states are mutually consistent, the function ⊕ returns
a regular mode state that imposes the same constraints on concurrent threads
as the combination of the original mode states. That is, it makes all assumptions
that at least one of the mode states makes and provides only those guarantees
that both mode states provide. If one of the parameter mode states makes an
assumption that the other mode state does not match with a corresponding
guarantee, the function returns the special symbol �.

We are now ready to define the automaton that characterizes DPN configu-
rations containing inconsistent mode states using the function ⊕.

Definition 4. For a DPN Mccnf = (Pccnf , Γccnf ,Accnf ,Δccnf ) as described
above, we define Accnf = (MdSt�,Pccnf ∪ Γccnf , δ,mdst⊥, {�}) as the conflict
automaton, where δ = {(q, (c, lkst ,mdst), q⊕mdst) | q ∈ MdSt�, (c, lkst ,mdst) ∈
Pccnf }∪{(q,#, q) | q ∈ MdSt�}. We denote the language accepted by the automa-
ton by L(Accnf ).
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isk
−→a = anno(x , ∅, x r, xw)

x 	 ∅, ∅{skip}x r, xw : skip@−→a ias
−→a = anno(vars(e) ∪ x , {x}, x r, xw)

x 	 vars(e), {x}{x :=e}x r, xw : x :=e@−→a

ilo
−→a = anno(x , ∅, x r, xw)

x 	∅, ∅{lock(l)}x r, xw : lock(l)@−→a iul
−→a = anno(x , ∅, x r, xw)

x 	∅, ∅{unlock(l)}x r, xw : unlock(l)@−→a

iif
x ∪ vars(e) 	 ∅, ∅{skip; ci}x r, xw : c′

i for all i ∈ {1, 2}
x 	 vars(e), ∅{if e then c1 else c2 fi}x r, xw : if e then c′

1 else c′
2 fi

iwh
x ∪ vars(e) 	 ∅, ∅{skip; c}vars(e), ∅ : c′ −→a = anno(x ∪ vars(e), ∅, x r, xw)

x 	 vars(e), ∅{while e do c od}x r, xw : while e do c′ od@−→a

isq

x 	 x ′
r, x

′
w{c1}x ′′

r , x ′′
w : c′

1

x ′ 	 x ′′
r , x ′′

w{c2}x r, xw : c′
2

x 	 x ′
r, x

′
w{c1; c2}x r, xw : c′

1; c
′
2

ian

−→a ′ = −→a �A
x 	 x ′

r, x
′
w{c}x r, xw : c′

x 	 x ′
r, x

′
w{c@−→a }x r, xw : c′@−→a ′

isp
∅ 	 ∅, ∅{skip; c}∅, ∅ : c′ −→a = anno(x , ∅, x r, xw)

x 	 ∅, ∅{spawn(c)}x r, xw : spawn(c′)@−→a
with anno(x1, x2, x3, x4)=[acq(G-NR, x1), acq(G-NW, x2), rel(G-NR, x3), rel(G-NW, x4)]

Fig. 3. Inference of guarantee annotations

The states of the automaton record the summary mode state of the partial
configuration already read. Thus the initial state is the minimal mode state and
transitions accepting a control state add the mode state of the process to the
summary using the ⊕ operation. Since we are interested in the configurations
with inconsistent mode states, � is the only accepting state.

DPN-reachability and globally sound use of modes are connected as follows:

Theorem 1. Let ccnf = (cp, ∅,mdst⊥). If L(Accnf ) is not reachable from ccnf #
in DPN Mccnf , then cp ensures a globally sound use of modes.

4 An Inference for Sound Guarantees

We propose an inference to automatically annotate a command with guarantees.
Recall that the initial mode state provides all guarantees, and that mode states
are updated based on annotations after the annotated command terminates.
With this in mind, the intuition of our inference is that a command requests the
release of guarantees that it cannot provide from the preceding command and
vouches to re-acquire said guarantees. Hence, the inference propagates sets of
variables which may be read or written by a command backwards.

A judgment x � x ′
r, x

′
w{c}x r, xw : c′ with x , x r, x ′

r, xw, x ′
w ⊆ Var and c, c′ ∈

Com of the inference is derivable with the rules in Fig. 3. The set x comprises
variables for which a conditional requests that a no-read guarantee shall be re-
acquired in the body of the conditional. The sets x ′

r and x ′
w comprise variables

for which c does not provide a no-read and no-write guarantee, respectively.
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The sets x r and xw comprise variables for which a release of the respective
guarantees is requested. The resulting command c′ is annotated with guarantees.

All rules, except iif and ian, annotate a command to re-acquire guarantees
that this command cannot provide before releasing requested guarantees. The
rule iif requests that its branches re-acquire and release all guarantees. The
rule ian removes existing guarantee annotations to avoid conflicts with inferred
guarantees using a projection to assumption annotations The projection �A is
defined by [] �A= [], ([a]++−→a ) �A= [a]++(−→a �A) if a ∈ {acq(md , x ), rel(md , x ) |
md ∈ {A-NR,A-NW} ∧ x ⊆ Var} and ([a]++−→a ) �A= −→a �A otherwise.

Theorem 2. If ∅ � ∅, ∅{skip; c′
p}∅, ∅ : cp is derivable, then cp ensures a locally

sound use of modes.

Note that some rules add skip commands. These additional commands do not
influence which final memories are reachable. We do this as a lightweight measure
to support pre-annotations without further complicating our formalism.

5 A Type System for Information-Flow Security

We extend the security type system from [10,18]. To this end, we define a total,
reflexive order � on Lev such that low � high. To support flow-sensitive track-
ing of security levels for shared variables, we use partial level assignments, i.e.
partial functions from Var ⇀ Lev . For a given level assignment lev and a given
partial level assignment Λ, a lookup Λlev 〈x 〉 is defined by Λlev 〈x 〉 = Λ(x ) if
x ∈ pre(Λ) and Λlev 〈x 〉 = lev(x ) otherwise. Moreover, the partial type environ-
ment Λ′ = Λ ⊕lev a is defined by Λ′(x ) = Λlev 〈x 〉 for all x ∈ pre(Λ′) and

pre(Λ′) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

pre(Λ) ∪ {x | x ∈ x ∧ lev(x ) = low} if a = acq(A-NR, x )
pre(Λ) ∪ {x | x ∈ x ∧ lev(x ) = high} if a = acq(A-NW, x )
pre(Λ) \ {x | x ∈ x ∧ lev(x ) = low} if a = rel(A-NR, x )
pre(Λ) \ {x | x ∈ x ∧ lev(x ) = high} if a = rel(A-NW, x )
pre(Λ) otherwise.

For low-variables, acquiring a no-read assumption enables floating of security
levels. This allows tracking when a low-variable possibly stores sensitive infor-
mation. For high-variables, acquiring a no-write assumption enables floating of
security levels. This allows tracking when a high-variable definitely stores pub-
lic information. Releasing the respective assumptions disables floating of secu-
rity levels again. We lift the definition of ⊕lev to lists of annotations as follows
Λ ⊕lev [] = Λ and Λ ⊕lev ([a]++−→a ) = (Λ ⊕lev a) ⊕lev

−→a .
The type system in Fig. 4 allows to derive judgements of the form �lev Λ{c}Λ′ :

c′. If such a judgment is derivable and lev and Λ together approximate where
secrets are stored initially, then lev and Λ′ approximate where secrets are stored
after running c, provided concurrent threads behave according to the assump-
tions. The command c′ is a low-slice of c, i.e. an abstraction of c in which sub-
commands that do not contribute to the behaviour observable via low-variables



Using Dynamic Pushdown Networks to Automate 213

tex 	lev,Λ e :
⊔

x∈vars(e) Λlev 〈x 〉 tah
lev(x ) = high x /∈ pre(Λ)

	lev Λ{x :=e}Λ : skip

tsk 	lev Λ{skip}Λ : skip
tal

	lev,Λ e : low lev(x ) = low x /∈ pre(Λ)

	lev Λ{x :=e}Λ : x :=e

tlo 	lev Λ{lock(l)}Λ : lock(l)
tfl

	lev,Λ e : low x ∈ pre(Λ)

	lev Λ{x :=e}Λ[x �→ low] : x :=e

tul 	lev Λ{unlock(l)}Λ : unlock(l)
tfh

x ∈ pre(Λ)

	lev Λ{x :=e}Λ[x �→ high] : skip

twl
Λ � Λ′ Λ′′ � Λ′ 	lev,Λ′ e : low 	lev Λ′{c}Λ′′ : c′

	lev Λ{while e do c od}Λ′ : while e do c′ od

til
	lev,Λ e : low 	lev Λ{c1}Λ′′ : c′

1 	lev Λ{c2}Λ′′′ : c′
2 Λ′ = Λ′′  Λ′′′

	lev Λ{if e then c1 else c2 fi}Λ′ : if e then c′
1 else c′

2 fi

tih
	lev Λ{c1}Λ′′ : c′

1 	lev Λ{c2}Λ′′′ : c′
2 c′

1 = c′
2 Λ′ = Λ′′  Λ′′′

	lev Λ{if e then c1 else c2 fi}Λ′ : skip; c′
1

tsq

	lev Λ{c}Λ′′ : c′′

	lev Λ′′{c′}Λ′ : c′′′

	lev Λ{c; c′}Λ′ : c′′; c′′′ tan

	lev Λ{c}Λ′ : c′ Λ′′ = (Λ′ ⊕lev
−→a )

∀x .Λ′
lev 〈x 〉 � Λ′′

lev 〈x 〉 −→a ′ = −→a �A-NR,A-NW

	lev Λ{c@−→a }Λ′′ : c′@−→a ′

tsp
	lev c : c′

	lev Λ{spawn(c)}Λ : spawn(c′)
tth

	lev Λ{c}Λ : c′ pre(Λ) = ∅
	lev c : c′

with Λ � Λ′ iff pre(Λ) = pre(Λ′) and Λ(x ) � Λ′(x ) for all x ∈ pre(Λ)

Fig. 4. Security type system

are replaced by skip. The rule tth with judgment �lev c : c′ ensures that lev
alone approximates where secrets are stored. If no such judgment is derivable for
a command c, then a secret might influence a low-variable in c.

The rule tan enables and disables flow-sensitivity for particular variables by
updating the pre-image of the partial level assignment, and ensures that a secret
written into a variable x with lev(x ) = low must be overwritten before disabling
flow-sensitivity for x . The rules tfl and tfh track the floating security level of a
variable x by updating the level of x in the partial level assignment. The rule tih
permits branching on secrets. To avoid implicit information leaks due to such
branchings, tih requires that the low-slices of both branches are syntactically
identical. The rules tah, tfh, and tih perform the low-slicing.

Theorem 3. If cp ensures a sound use of modes and �lev cp : c′ is derivable,
then cp is secure for lev.

Theorems 1, 2, and 3 establish the soundness result for our combined analysis:



214 H. Mantel et al.

Corollary 1. If ∅ � ∅, ∅{skip; c′
p}∅, ∅ : cp, and �lev cp : c′ are derivable and

L(Accnf ) is not reachable from ccnf # in DPN Mccnf for ccnf = (cp, ∅,mdst⊥),
then cp is secure for lev.

6 Applying the Analysis

We illustrate how our type system gains precision from assumptions, while the
DPN-based analysis ensures soundness of the combined analysis with the exam-
ple program c1 = spawn(o2:=o1; o1:=o2); o1:=s1; s1:=s2; s2:=o1; o1:=0 and
level assignment lev with lev(o1) = lev(o2) = low and lev(s1) = lev(s2) =
high. The program c1 may leak the value of s1 to an observer of o1 due to
concurrent execution of both threads.

Our security type system indeed rejects c1, because no typing rule is applica-
ble for o1:=s1: The rule tah cannot be applied due to lev(o1) �= high, the
rule tal cannot be applied due to lev(s1) �= low, and the rules tfl as well
as tfh cannot be applied due to o1 /∈ pre(Λ) (as the pre-image of the partial
level assignment is initially empty and there are no annotations in the program).
Using the assumption A-NR to enable flow-sensitivity for variable o1, o1:=s1
can be typed using tfh. To this end the program c1 can be annotated as follows:

spawn(o2 :=o1 ; o1 :=o2 )@[acq(A-NR, {o1})];
o1 :=s1 ; s1 :=s2 ; s2 :=o1 ; o1 :=0@[rel(A-NR, {o1})]

However the program still contains the leak and the analysis detects this. The
guarantee inference transforms the command o2:=o1; o1:=o2 of the spawned
thread with the rules isp, isq, isk, and ias into the following command:

skip@[acq(G-NR, ∅), acq(G-NW, ∅), rel(G-NR, {o1}), rel(G-NW, {o2})];
o2 :=o1@[acq(G-NR, {o1}), acq(G-NW, {o2}), rel(G-NR, {o2}), rel(G-NW, {o1})];
o1 :=o2@[acq(G-NR, {o2}), acq(G-NW, {o1}), rel(G-NR, ∅), rel(G-NW, ∅)].

The annotation rel(G-NR, {o1}) in the first line makes explicit that the thread
cannot provide the guarantee to not read o1 during its next step, i.e. during the
step of o2:=o1 in the second line. By spawning the new thread and executing
its annotated first skip step, we reach a configuration with two threads. We
have o1 /∈ mdst2(G-NR) for the mode state of the spawned thread due to the
annotation rel(G-NR, {o1}). Furthermore, we have o1∈ mdst1(A-NR) for the
mode state of the original thread due to the annotation acq(A-NR, {o1}). Hence
we have a reachable configuration that does not justify its assumptions. The
corresponding DPN configuration preserves the mode states and is thus accepted
by our conflict automaton that accepts DPN configurations with inconsistent
mode states. Since the DPN over-approximates reachablitiy of the semantics, the
reachability analysis from [9] detects that this DPN configuration is reachable,
i.e. it detects a possible violation of globally sound use of modes and, hence, the
program is rejected.

Adding synchronization via locks to ensure mutual exclusion of the regions
accessing variable o1 finally makes the program secure and no configuration with
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inconsistent mode states is reachable in the semantics anymore. Since the DPN
models locking precisely, the DPN analysis also no longer detects reachability of
any violation of globally sound use of modes. The following version of c1 with
additional synchronization has no leak and is accepted by our analysis:

c2= spawn(lock(l); o2 :=o1 ; o1 :=o2 ;unlock(l)); lock(l)@[acq(A-NR, {o1})];
o1 :=s1 ; s1 :=s2 ; s2 :=o1 ; o1 :=0;unlock(l)@[rel(A-NR, {o1})]

Theorem 4. Let lev be a domain assignment with lev(o1) = lev(o2) = low and
lev(s1) = lev(s2) = high. Then there are c′

2, c
′′
2 such that ∅ � ∅, ∅{skip; c2}∅, ∅ :

c′
2 and �lev c′

2 : c′′
2 are derivable, and L(Accnf ) is not reachable from ccnf # in

DPN Mccnf for ccnf = (c′
2, ∅,mdst⊥). Hence, c′

2 is secure for lev.

7 Related Work

Andrews and Reitman [1] were the first to propose a static information-flow
analysis based on flow rules, yet without a soundness proof wrt. a semantic
security property. In [17], Smith and Volpano proposed the first security type
system with a soundness proof against termination-sensitive noninterference.

The focus for most security type systems with support for synchronization,
e.g. [14,19,20], has been preventing information leaks via synchronization. To the
best of our knowledge, only the analyses in [10,11,18] can exploit synchroniza-
tion for their precision. In [11], barrier synchonization allows combining different
proof techniques in an analysis. In [10], Mantel, Sands, and Sudbrock introduced
the rely-guarantee-style reasoning and the first flow-sensitive security type sys-
tem for concurrent programs. The relationship of this article to [10] has already
been clarified in the introduction.

Beyond security type systems, model-checking, e.g. in [8,13], as well as pro-
gram dependence graphs, e.g. in [6], have been used to verify information-flow
security for concurrent programs. These techniques promise very precise results,
but are not necessarily compositional. A compositional analysis reduces the con-
ceptual complexity of the verification, opens up the possibility to re-use analysis
results of components, and, thus, can contribute to the scalability of an analy-
sis. Our type system and our guarantee inference are compositional, meaning
they can be applied to individual threads. Only our DPN-based analysis, which
verifies the assumptions exploited by the type system for the actual program
composed of multiple threads, is a whole-program analysis.

8 Conclusion

We automated a modular information-flow analysis for multi-threaded programs
with a novel combination of a security type system and a reachability analysis
based on DPNs. The combined analysis is sound wrt. termination-sensitive non-
interference. The security type system supports flow-sensitive tracking of secu-
rity levels for shared variables in the analysis of a given thread by exploiting
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assumptions about accesses to said variables by other threads. Using a concep-
tual example, we illustrated how the modules of our analysis interact and how
synchronization with locks can contribute to the precision of our analysis.

Lifting the analysis to a realistic language with recursive procedure calls and
dynamically allocated data structures is an open task for future work. Finally,
we would like to implement our analysis and evaluate it in practice.
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Abstract. We present a technique for checking the validity of Java
assertions using an arbitrary automated test-case generator. Our frame-
work transforms the program by introducing code that detects whether
the assertion conditions are met by every direct and indirect method call
within a certain depth level. Then, any automated test-case generator
can be used to look for input examples that falsify the conditions. We
show by means of experimental results the effectiveness of our proposal.

Keywords: Assertions · Conditions · Test-cases · Java · Test-case gen-
eration

1 Introduction

Using assertions is a common programming practice, and especially in the case
of what is known as ‘programming by contract’ [5], where they can be used e.g.
to formulate pre- and postconditions of methods as well as invariants of loops.
Assertions in Java [6] are used for finding errors in an implementation at runtime
during the test phase of the development cycle. If the condition in an assert
statement is evaluated to false during program execution, an AssertionException
is thrown.

The goal of our work is to use automated test-case generators for detecting
assertion violations. Observe that, in contrast to model checking, automated
test-case generators are not complete and thus our proposal may miss possible
assertion violations, but as our experiments show it works quite well in practice
and is helpful as a first approach during program development before using
model checking. The overhead of an automated test-case generator is smaller
than for full model checking, since data and/or control coverage criteria known
from testing are used as a heuristic to reduce the search space. However, finding
an input for a method m() that falsifies some assertion in the body of m() is
not enough. For instance, in the case of preconditions it is important to observe
whether the methods calling m() ensure that the call arguments satisfy the
precondition.Thus, we extend the proposal to indirect calls of these methods
(up to a fixed level of indirection), allowing checking the assertions in the context
of the whole program.
c© Springer International Publishing Switzerland 2015
M. Falaschi (Ed.): LOPSTR 2015, LNCS 9527, pp. 221–226, 2015.
DOI: 10.1007/978-3-319-27436-2 13
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1 public c lass Sqrt {
2 stat ic double eps = 0 .00001 ;
3

4 public double sq r t (double r ){
5 double a , a1 = r + eps ;
6 do { a = a1 ;
7 a1 = a+r /a / 2 . 0 ; //erroneous !
8 a s s e r t a==1.0 | |
9 ( a1>1.0 ? a1 < a

10 : a1 > a ) ;}
11 while (Math . abs ( a − a1 ) >= eps ) ;
12 return a1 ;
13 }}
14 public c lass Ci r c l e {
15 double area ;
16

17 Ci r c l e (double area ) { this . area = area ; }
18

19 public double getRadius ( ) {
20 a s s e r t area>=0;
21 return Sqrt . s q r t ( area /Math . PI ) ; }}

a1 = a+r/a/2.0

a1 = r+eps

a=a1

abs(a−a1)>=eps?
y

n

return a1

Fig. 1. Java method sqrt, corresponding control-flow graph, and class Circle.

In order to fulfill these goals we propose a technique based on a source-
to-source transformation that converts the assertions into if statements and
changes the return type of methods to represent the path of calls leading to
an assertion violation as well as the normal results of the original program.
Converting the assertions into a program control-flow statement is very useful
for white-box, path-oriented test-case generators, which determine the program
paths leading to some selected statement and then generate input data to tra-
verse such a path (see [2] for a recent survey on the different types of test-case
generators). Thus, our transformation allows this kind of generators to include
the assertion conditions into the sets of paths to be covered.

2 Assertions and Automated Test-Case Generation

Java assertions ensure at runtime (if executed with the right option) that the
program state fulfills certain restrictions. Figure 1 shows our running example.
The radius of a circle is computed based on an erroneous implementation of the
sqrt method (a1 = a+r/a/2.0; should be a1 = (a+r/a)/2.0;).

Our idea is to use a test-case generator to detect possible violations of the
occurring assertions. A test-case generator is typically based on some heuristic
which reduces its search space dramatically. Often it tries to achieve a high
coverage of the control and/or data flow.

EvoSuite [4] generates test cases also for code with assert conditions. How-
ever, its search-based approach does not always generate test cases exposing
assertion violations. In particular, it has difficulties with indirect calls such as
the assertion in Sqrt.sqrt after a call from Circle.getRadius. A reason is
that EvoSuite does not model the call stack. Thus, the test cases generated by
EvoSuite for Circle.getRadius only expose one of the two possible violations,
namely the one related to a negative area.
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public abstract class MayBe<T> {

public stat ic c lass Value<T> extends MayBe<T> { // . . .
public stat ic c lass CondError<T> extends MayBe<T> { // . . .

// did the method return a normal value (no v i o l a t i on )?
abstract public boolean i sVa lue ( ) ;

// value returned by the method .
abstract public T getValue ( ) ;

// No condi t ion v i o l a t i on detec ted . Return the same value
// as be fore the instrumentation .
public stat ic <K> MayBe<K> createValue (K value ) {

return new Value<K>(value ) ; }

// an asse r t condi t ion i s not v e r i f i e d
public stat ic <T> MayBe<T> generateError ( S t r ing method ,

int po s i t i o n ) {
return new CondError<T>(new Cal l (method , p o s i t i o n ) ) ; }

// method c a l l s another method whose precondi t ion or
// postcondi t ion i s not s a t i s f i e d .
public stat ic <T, S> MayBe<T> propagateError ( S t r ing method ,

int pos i t i on , MayBe<S> e r r o r ){
return new CondError<T>(new Cal l (method , p o s i t i o n ) ,

( CondError<S>) e r r o r ) ; }
}

Fig. 2. Class MayBe<T>: new result type for instrumented methods.

There are other test-data generators such as JPet [1] that do not consider
assert statements and thus cannot generate test cases for them. In the sequel,
we present a program transformation that allows both EvoSuite and JPet to
detect both possible assertion violations.

3 Program Transformation

The idea of the program transformation is to instrument the code in order to
obtain special output values that represent possible violations of assertion con-
ditions. Then, an automatic test-case generator is employed to obtain the inputs
that produce these special values. In our case the instrumented methods employ
the class MayBe<T> of Fig. 2. The overall idea is that a method returning a value
of type T in the original code returns a value of type MayBe<T> in the instru-
mented code. MayBe<T> is in fact an abstract class with two subclasses, Value<T>
and CondError<T>. Value<T> represents a value with the same type as in the
original code, and it is used via the method MayBe.createValue whenever no
assertion violation has been found. If an assertion condition is not satisfied, a
CondError value is returned. There are two possibilities:

– The assertion is in the same method. Suppose it is the i-th assertion in the
body of the method following the textual order. In this case, the method
returns MayBe.generateError(name,i); with name the method name. The
purpose of the method generateError is to create a new CondError object.
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public c lass Sqrt {

stat ic double eps = 0 .000001 ;

public stat ic MayBe<Double> sqrtCopy (double r ){
double a , a1 = 1 . 0 ;
a = a1 ;
a1 = a+r /a / 2 . 0 ;
double aux = Math . abs (a−a1 ) ;
while ( aux >= eps ) ;{

a = a1 ;
a1 = a+r /a / 2 . 0 ;
i f ( ! ( a==1.0 | | ( a1>1.0 ? a1<a : a1>a ) ) )

return MayBe . generateError ( ” sq r t ” , 2 ) ;
aux = Math . abs (a−a1 ) ; }

return MayBe . createValue ( a1 ) ;
} }

public c lass Ci r c l e {
double area ;
C i r c l e (double area ) { this . area = area ;}

public MayBe<Double> getRadius ( ) {
i f ( ! ( area>=0))

return MayBe . generateError ( ” getRadius ” , 1 ) ;
MayBe<Double> r = Sqrt . sqrtCopy ( area /Math . PI ) ;
i f ( ! r . i sVa lue ( ) )

return MayBe . propagateError ( ” getRadius ” , 2 , r ) ;
return r ;

} }

Fig. 3. Transformed running example.

Observe that the constructor of CondError receives as parameter a Call
object. This object represents the point where a condition is not verified, and
it is defined by the parameters already mentioned: the name of the method,
and the position i.

– The method detects that an assertion violation has occurred indirectly
through the i-th method call in its body. Then, the method needs to
extend the path and propagate the error. This is done using a call
propagateError(name,i,error), where error is the value to propagate. The
corresponding constructor of class CondError adds the new call to the path.

Figure 3 shows the transformed running example. The methods not related
(in)directly to assertions, e.g. the constructor of Circle, remain unchanged. Due
to the lack of space, we omit the treatment of inheritance here. It can be found
in [3].

4 Experiments

We have evaluated a few examples with different test-case generators with and
without our program transformation. We have also developed a prototype that
performs this transformation automatically. It can be found at https://github.
com/wwu-ucm/assert-transformer, whereas the aforementioned examples can be
found at https://github.com/wwu-ucm/examples.

https://github.com/wwu-ucm/assert-transformer
https://github.com/wwu-ucm/assert-transformer
https://github.com/wwu-ucm/examples
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Table 1. Detecting assertion violations.

EvoSuite JPet

Method Total P PT P PT

Circle.getRadius 2 1 2 0 2

BloodDonor.canGiveBlood 2 0 2 0 2

TestTree.insertAndFind 2 0 2 0 2

Kruskal 1 1 1 0 1

Numeric.foo 2 1 2 0 2

TestLibrary.test* 5 0 5 0 5

MergeSort.TestMergeSort 2 0 1 0 1

java.util.logging.* 5 0 2 - -

Table 2. Control and data-flow coverage in percent.

Binary tree Blood donor Kruskal Library MergeSort Numeric StdDev Circle

P PT P PT P PT P PT P PT P PT P PT P PT

EvoSuite 90 95 83 91 95 100 63 92 82 82 76 82 71 71 80 100

JPet – 89 – 99 – 49 – 20 – 87 – 82 – 74 – 100

We have used two test-case generators, JPet and EvoSuite, for exposing pos-
sible assertion violations. As can be seen in Table 1, almost all possible assertion
violations could be detected. Moreover, our program transformation typically
improves the detection rate, since it makes the control flow more explicit than
the usual assertion-violation exceptions. Column Total displays the number of
possible assertion violations. Column P shows the number of detected asser-
tion violations using the test-case generator and the original program, while
column PT displays the number of detected assertion violations after applying
the transformation. Notice that JPet cannot find any assertion violation without
our transformation, since it does not support assertions. For large examples such
as the JDK logging package (6500 LOC), the configuration of JPet is tedious.
As a consequence, this example has not been processed by this tool.

Our program transformation typically requires only a few seconds and even
for larger programs such as the JDK 6 logging package the transformation fin-
ishes in 18.2 s. The runtime of our analysis depends on the employed test-case
generator and the considered example. It can range from a few seconds to several
minutes (Table 2).

5 Conclusions

We have presented an approach to use test-case generators for exposing possible
assertion violations in Java programs. Our approach is a compromise between
the usual detection of assertion violations at runtime and the use of a full model
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checker. Since test-case generators are guided by heuristics such as control- and
data-flow coverage, they have to consider a much smaller search space than a
model checker and can hence deliver results much more quickly.

Additionally, we have developed a program transformation which replaces
assertions by computations which explicitly propagate violation information
through an ordinary computation involving nested method calls. In case of a vio-
lation, our transformation makes the control flow more explicit than the usual
assertion-violation exceptions. This helps the test-case generators to reach a
higher coverage of the code and enables more assertion violations to be exposed
and detected. Additionally, the transformation allows to use test-case generators
such as JPet which do not support assertions.

We have presented some experimental results demonstrating that our app-
roach helps indeed to expose assertion violations and that our program trans-
formation improves the detection rate.
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Abstract. As part of a platform for computer-assisted verification, we
present an intermediate representation of programs that is both language
independent and appropriate for the generation of verification conditions.
We show how many imperative and functional languages can be trans-
lated to this generic intermediate representation, and how the generated
conditions reflect the axiomatic semantics of the original program. At
this representation level, loop invariants and preconditions of recursive
functions belonging to the original program are represented by assertions
placed at certain edges of a directed graph.

The paper defines the generic representation, sketches the transforma-
tion algorithms, and describes how the places where the invariants should
be placed are computed. Assuming that, either manually or assisted
by the platform, the invariants have been settled, it is shown how the
verification conditions are generated. A running example illustrates the
process.

Keywords: Verification platforms · Intermediate representation · Ver-
ification conditions · Program transformation

1 Introduction

In the last few years, verification platforms are becoming more and more popular
[1,10,15]. Their success is in part due to the increasing power of the underly-
ing proving machinery, the SMT solvers [7,8]. In these platforms, the user is
responsible for giving the source program, its specification in the form of a pre-
condition and a postcondition, and the invariant assertion of each loop. The
platform gives support for analysing and proving termination, for generating
the verification conditions (VC), and for automatically proving them, whenever
this is possible.

A possible drawback is that the source language is usually fixed by the plat-
form and it consists of a restricted subset of a real-life one. For instance, Dafny
supports object-oriented programming but not inheritance. WhyML does not
support object orientation, nor even has a heap.

Work partially supported by the Spanish MINECO project CAVI-ART (TIN2013-
44742-C4-3-R), Madrid regional project N-GREENS Software-CM (S2013/ICE-
2731) and UCM grant GR3/14-910502.
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The purpose of our platform CAVI-ART1 is a bit more ambitious. On the one
hand, it addresses real-life languages and will support most of, or ideally all, their
complexities and subtleties. Additionally, it will cover both imperative, possibly
object-oriented ones, such as C, C++ and Java, and functional ones such as
Erlang, SML and Haskell. On the other hand, the platform will assist the user
in discovering the loop invariant assertions, or equivalently, the preconditions
of the recursive functions. The remaining platform assistance will be similar to
that of the other platforms. In fact, we plan to reuse the infrastructure of Why3
to interface different SMTs and proof assistants, by expressing our VCs in the
Why3 assertion language.

In Fig. 1 we show a picture of the whole project. A key aspect of it is design-
ing an intermediate representation (IR) of programs to which source programs,
written in a variety of languages, can be transformed. Once programs have under-
gone this transformation, the remaining activities —invariant synthesis, termi-
nation analysis, VC generation, VC proving— can be performed in a language-
independent way. This transformation yields an abstraction of the control and
data flow of the program that relies on a set of language-dependent primitive
functions, which are defined via axioms and can be reused among different lan-
guages. Moreover, some of them are already present in Why3’s standard library
of theories, which includes definitions of integers, lists, arrays, real numbers, etc.
and their associated functions.

The platform is under construction. We have completed the design, the IR,
and a front-end for Java. Our current work mainly focuses on invariant synthesis.
In this paper we describe such a generic IR, and show how VCs can be generated
from it, guaranteeing that should all the VCs be discharged by the provers, then
the original program satisfies all assertions. A key step in mapping imperative
programs to the IR is transforming iteration to recursion, so that both are dealt
with uniformly. A second step is to detect where invariant assertions would be
needed in the resulting IR. Once these assertions have been provided, either by
the user or by the platform itself, the VC generation is done automatically.

The plan of the paper is as follows: in Sect. 2 we describe the transformation
of several imperative features such as primitive and structured types, classes, and
the heap to a common framework. Then we explain how to abstract the control
by generating a Control Flow Graph (CFG). In Sect. 3, we briefly remind how
functional languages are compiled to a small core representation, which usually
is a slight extension of the λ-calculus. In Sect. 4, we present and justify our
IR, and give an axiomatic semantics to it by means of weakest preconditions.
Section 5 describes the algorithm transforming the CFG to the IR, and detects
the locations of the invariants. Section 6 explains the VC extraction algorithm.
Finally, Sect. 7 draws some conclusions and reviews the related work.

1 CAVI-ART stands for Computer Assisted ValIdation by Analysis, tRansformation
and Testing.
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Fig. 1. CAVI-ART project overview

2 Imperative Languages

The computation model of imperative languages is given by the execution of
a sequence of statements that change the state of the program. Among the
diversity of the features provided by modern imperative languages (such as
Java, Javascript, Python, etc.) there are two which are shared by most of them:
destructive assignment and explicit management of control flow. However, lan-
guages differ in the kind of basic values that can be assigned to a variable, and the
choice of control flow constructions (loops, exceptions, method calls, delegates,
etc.) In the following, we shall abstract their common parts in order to deter-
mine the constructions needed by the IR. We also identify the language-specific
components, so that the IR will be parametric on them.

Example 1. As a running example, let us consider in this paper the following
Java implementation of the insertion sort algorithm:

1 public void insertionSort(int[] v) {
2 for (int i = 0; i < v.length; i++) {
3 int e = v[i];
4 int j = i - 1;
5 while ((j >= 0) && (v[j] > e)) {
6 v[j+1] = v[j];
7 j = j - 1;
8 }
9 v[j+1] = e;

10 }
11 }

Basic Values. For each language we identify its set of basic values. We classify
them into different categories, which will subsequently be mapped to theory
types of the underlying proof system.
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For a given language, we consider a set of value categories {β1, . . . , βn}, each
one is a pair 〈Bβ ,≡β〉, where Bβ is the set of values contained within the category
β, and ≡β is an equivalence relation on these values. This relation is necessary
for performing case distinction on the values at the IR level. For every language,
we assume the existence of a category βBool with the set BBool = {true, false}
and the usual equivalence relation.

For instance, we use in Java the set of types given by the semantics of Jinja
[14]: booleans, integers, pointers, null reference and unit type. We also include
the category of floating point numbers and arrays, since some solvers (e.g. Z3
[7]) provide direct support for them.

Built-in Operators and Functions. This is another language-dependent compo-
nent. We encode them in the IR as functions whose behaviour is defined by a set
of axioms. Therefore, for each programming language we define the set of prim-
itive functions and axioms. Both can be specified in terms of already existing
theories.

In the case of the translation from Java into the IR, several primitive func-
tions are based on their counterparts defined in the Why3 Standard Library.
For instance, we associate the category βint of integer values with the int type
defined within Why3’s Int theory. The integer-based operators (such as <=,
==, +, etc.) are mapped into its corresponding counterparts in this theory. An
analogous association is made with booleans and real numbers. Arrays are also
translated into the type array defined within the Array theory of Why3, defined
as follows:
1 type array ’a model { length : int; mutable elts : map int ’a }
2 invariant { 0 <= self.length }

The definition of the built-in operations on arrays is more involved, since
a simple access to an array may result in a NullPointerException or an
ArrayIndexOutOfBoundsException. We consider two different policies:

• Safe Array Access Assumption. The built-in function sel-array has a
precondition asserting that the array is not null and that the index lies within
the bounds. If this holds, then the selection yields a valid result.

{H(p) = Array a ∧ 0 ≤ i < a.length} sel-array(H, p, i) {res = get a i}

In this specification the H denotes a heap, p a heap location, and get denotes
the actual array access function defined in the Why3 library. In a similar way
we define mod-array, which yields the heap resulting from modifying an array
in a given position.

• Array Access with Exceptions. We extend the specification of sel-array
by considering the possibility that the array access may throw an exception.
However, since exception handling is considered as a language-dependent fea-
ture, exceptions should not be part of the IR. Exception management is han-
dled with a special type which is similar to the Either type of Haskell:
1 data opt_result = Ok value | Exception loc
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blk ::= stm1; . . . ; stmn; jump { instruction BB }
| return x { exit BB, x is a variable }

stm ::= x = e { assignment (single variable) }
| (x1, . . . , xn) = e { assignment (several variables) }

jump ::= case x of c1 → n1 . . . cm → nm { conditional jump (n1, . . . , nm ∈ N) }
| goto n { unconditional jump (n ∈ N) }

e ::= a { atom }
| f(a1, . . . , an) { function application }

a ::= c { literal }
| x { variable }

Fig. 2. Structure of CFG blocks.

In this definition value denotes a union type for basic values, and loc is the
type of heap locations. Both definitions are language-dependent.

The first policy is simpler, and it works if the prover can establish the validity
of all array accesses contained within the method. If it cannot, the correctness
of the method is not proved. With the second policy the postconditions of the
method can be more precise and assert facts regarding exceptions (for instance,
the reasons of an exception being thrown), but makes the resulting IR code
more complicated. For the sake of simplicity, we consider the first policy in our
running example.

Heap Management. The presence of a mutable memory heap plays an essential
role in imperative programs. As a consequence of its physical representation
in the memory, virtually all languages consider a heap H as a mapping from
locations to values. The language-dependent element here is the kinds of values
represented in the heap. In Java we follow the approach of [14] (extended with
array values) and define the set of heap values as follows:
1 data heap_value = Array (array value)
2 | Object string (map (string , string) value)

where an object instance contains a class name and a map from pairs (p, c) to
pointers. In these pairs p denotes the name of an attribute and c the name of
the class to which the attribute belongs.

In order to specify heap modifications we follow the same approach as in the
previous section; they are managed as language-dependent built-in functions,
each one with a formal specification via pre- and post-conditions. Therefore
every heap-related operation subject to axiomatization, such as method calls,
dynamic dispatch, etc. can be used in the IR. Since we avoid the existence of
a mutable state, the operations modifying the heap are pure, in the sense that
they yield another heap with the corresponding changes.

Control Flow. In order to handle this feature in a language independent way, the
source program is transformed into a control-flow graph representation (CFG) [2].
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In this graph each node is a basic block (BB) containing a sequence of program
instructions without jumps between them (except calls to other functions or
methods).

The information inside a BB is defined by the grammar given in Fig. 2. A BB
can be an exit block (return) or contain a sequence of basic statements followed
by a jump instruction. Statements are assignments whose right-hand side can
be a literal, variable or a function application. In the latter case, only atomic
arguments are allowed. This requires a flattening transformation on the original
program and the addition of new assignments. Jump instructions refer to other
BBs in the CFG, each of which is identified by a natural number. Thus, a CFG
is a set of numbered BBs {(n1, blk1), . . . , (nr, blkr)}. We can attach to each CFG
an assertion which must be satisfied by every execution of the function being
analysed. This is useful for specifying loop invariants.

Example 2. The transformation of our insertion sort example into a CFG yields
the result shown in Fig. 3, where array accesses and basic operations have been
replaced by flattened function calls. A new variable H is introduced to denote
explicitly the heap.

[1] : i = 0
goto [2]

[2] : x1 = len(v)
b = <(i, x1)
case b of

true → [3]
false → [7]

[3] : e = sel-array(H, v, i)
j = -(i, 1)
goto [4]

[4] : b1 = >=(j, 0)
x2 = sel-array(H, v, j)
b2 = >(x2, e)
b3 = &&(b1, b2)
case b3 of

true → [5]
false → [6]

[5] : x3 = sel-array(H, v, j)
x4 = +(j, 1)
H = mod-array(H, v, x4, x3)
j = -(j, 1)
goto [4]

[6] : x5 = +(j, 1)
H = mod-array(H, v, x5, e)
i = +(i, 1)
goto [2]

[7] : return H

Fig. 3. CFG blocks of the insertionSort algorithm.

Our next step is translating the CFG of the input program into a set of mutu-
ally recursive functions, from which the verification conditions will be extracted.
In order to obtain a set of functions, we dispose of destructive assignment by
transforming our program into Static Single Assignment form (SSA) [3]. After
this, each program variable is assigned exactly once, and subsequent assignments
are done to different versions of the variable, each one having a different name.
In our case, the SSA transformation is applied locally to each BB. Instead of
having φ functions in confluence nodes (as usual in SSA), the transformation
performs a liveness analysis at the beginning of each node. Let LV i be the set
of live variables at node i (before applying SSA transformation). After applying
the local transformation to each node, we have to compute, for every node j
pointing to i, a substitution θj,i that maps each variable x ∈ LV i to the last
version of that variable occurring in j.
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Example 3. The liveness analysis on the CFG of Example 2 produces:

LV 1 = {v,H}
LV 2 = {v, i,H}

LV 3 = {v, i,H}
LV 4 = {v, i, j, e,H}

LV 5 = {v, i, j, e,H}
LV 6 = {v, i, j, e,H}

LV 7 = {H}

The translation of each BB into SSA leads to the CFG represented in Fig. 4,
in which the left-hand sides H and j of the BB [5] have been replaced by H1

and j1, respectively. The corresponding mapping from [5] to [4] would be θ5,4 =
[v �→ v, i �→ i, j �→ j1, e �→ e,H �→ H1].

After this transformation, we translate each BB i of the CFG into a recur-
sive function receiving as arguments the variables in LV i. Its definition is the
sequence of BB statements, and the jump branches are calls to the adjacent BBs
by using the respective substitutions. This will be shown in Sect. 5.

3 Functional Languages

Functional languages are radically different to imperative ones, as they provide
neither destructive variable assignment, nor control flow management. There is
no notion of state, as it is the case in the imperative paradigm. Their main fea-
tures are pattern matching for function definition arguments, higher-order func-
tions, recursive definitions for data types and functions, and lambda abstractions.

[1] i = 0

[2]
x1 = len(v)
b = <(i, x1)
case b

[3]
e = sel-array(H, v, i)
j = -(i, 1)

[4]

b1 = >=(j, 0)
x2 = sel-array(H, v, j)
b2 = >(x2, e)
b3 = &&(b1, b2)
case b3

[5]

x3 = sel-array(H, v, j)
x4 = +(j, 1)
H1 = mod-array(H, v, x4, x3)
j1 = -(j, 1)

[6]
x5 = +(j, 1)
H1 = mod-array(H, v, x5, e)
i1 = +(i, 1)

[7] return H

true

false

false

true

Fig. 4. Representation of the CFG/SSA of the insertion sort algorithm
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In addition, some of them are polymorphic and strongly typed, and provide a
type inference algorithm (Haskell, ML). A few of them are lazy (Haskell).

From a theoretical point of view, functional languages emerge from the λ-
calculus, which in fact can be seen as a minimalistic core language for all of them.
But from a practical point of view, the core for real functional languages usually
includes constructor application, let-expressions for local definitions, recursive
letrec-expressions, and case-expressions, a normalized form of pattern match-
ing. This is the case of the enriched lambda-expressions used in [16], and also in
the core languages of the Glasgow Haskell Compiler [18], ML [17] and Erlang [4].

Sometimes it may be useful to enrich the core syntax in order to facilitate the
compiler code generation, or to reduce it in order to simplify formal reasoning.
For example, λ-abstractions can be removed from the core with the well-known
lambda lifting transformation [16], which transforms λ-abstractions into ordinary
(named) functions. Also, the applicative notation can be flattened in order to
avoid complex nesting of expressions. Moreover, nested pattern matching can be
compiled in such a way [16], that it is converted in a sequence of nested case-
expressions, each one with flat and mutually exclusive patterns, and covering all
datatype constructors.

4 The Intermediate Representacion

From the precedent sections, it is clear that a minimal (core) functional language
can serve both to represent imperative programs which have undergone an SSA
transformation and functional programs which have been previously desugared.
The minimal common elements of this core language are the followings:

• Sequential let expressions, which also represent imperative SSA assignments.
• Recursive letrec expressions, needed to define mutually recursive functions.
• λ-abstractions and applications, needed to define and apply functions.
• case expressions, which can serve both to mimic imperative switch state-

ments and to express functional pattern matching.

In addition to this, imperative languages need support for structured data types
such as arrays and records, and functional languages need support for algebraic
data types, polymorphism, and higher-order. Taking all this into account, we
have defined an intermediate representation (IR) that gives support to most of
the features one can find in imperative and functional languages. In Fig. 5 we
show the abstract syntax of our IR.

We justify some of the decisions leading to this IR. Firstly, the arguments
of applications and case discriminants are restricted to be atoms. This facili-
tates the renaming of predicate arguments when propagating assertions, and also
makes the definition of weakest preconditions for the case construction simpler.
We make note that an if construction is not needed as it is a particular instance
of case. Secondly, function definitions are confined to be in a letfun expression,
and they are by default mutually recursive. A letfun can be considered as syn-
tactic sugar for a functional letrec expression in which each variable is bound
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mota-->-a
tnatsnoc--c
elbairav--x|

noisserpxecimota-->-ea
mota--a

noitacilppanoitcnuf/rotarepoevitimirp--na...1af|
noitacilpparotcurtsnoc--na...1aC|

noisserpxederutcurts-->-e
noisserpxecimota--ea

| let p = ae in e -- sequential let
| letfun fd1 ... fdn in e -- function definition block
| case a of alt1 ... altn -- algebraic type or primitive type case

[ -> e] -- optional default clause
evitanretlaesac-->-tla

C x1 ... xr -> e -- algebraic type alternative
c -> e -- primitive type alternative

nrettap-->-p
nrettapelbairav--x

nrettapelput--)nx,...,1x(|
fd -> f x1 ... xn = e -- function definition. The name f is global

Fig. 5. Abstract syntax of the CAVI-ART Intermediate Representation

to a lambda abstraction. Thirdly, expressions are in the so-called A-normal form
[11]. In particular, this implies that in let bindings, applications occur as stand
alone expressions. Finally, case patterns are flat and they exclude each other,
so that only one alternative is possible. If a case does not include an alternative
for each constructor, it necessarily has a default clause. The purpose of all these
restrictions is again to facilitate the definition of weakest preconditions and the
generation of verification conditions.

The IR is strongly typed and the type system is polymorphic in a Hindley-
Milner style, similar to that of the logical language Why3 [9] in which the
assertions are expressed. This type system supports both polymorphic func-
tional languages such as SML and Haskell, untyped functional languages such as
Erlang, monomorphic imperative languages such as C, and polymorphic imper-
ative languages such as C++ or Java.

Arrays and records are not built-in data types of the IR, but they can be
defined in a language-specific way as explained in Sect. 2 for arrays, and similarly
for records. Algebraic data types (ADT) can be defined in the IR, and pattern
matching is supported by case expressions. All these types (i.e. arrays, records
and ADTs), and their primitive operators, are directly supported by the SMTs
underlying the CAVI-ART platform. They contain a rich set of axioms allowing
to reason about the formulas using them.

Other features which are present in a particular language but not in others,
can be mapped to the IR by the front-end of each particular language, either by
introducing new primitive types and operators, supported by their corresponding
theories, or by representing them in the IR built-in types. An example of this
is the mapping of the OO-language heap into an array variable that is passed
around as an additional argument of methods, as it has been illustrated in our
running example.
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The definition of the axiomatic semantics of the IR, given as weakest precon-
ditions, is as follows:

wp(let x = e1 in e2, R) def= Dom(e1) ∧ (x = e1) → wp(e2, R)
wp(case a of . . . C x1 · · · xn → e . . . , R) def= (a = C x1 · · · xn) → wp(e,R)

∧ the remaining alternatives
wp(case a of true → e1; false → e2, R) def= (a → wp(e1, R)) ∧ (¬a → wp(e2, R))

For many primitive applications (e.g. e ≡ x + y), Dom(e) is assumed to be
true. But some others are partial functions and require a precondition. Func-
tion definitions are assumed to be annotated with their respective precondi-
tion and postcondition. Let f x1 · · · xn = e be the definition of a function f ,
and let respectively Q(x1, . . . , xn) and R(x1, . . . , xn, res) be its precondition and
postcondition, where res stands for f ’s result. Then, in an application such as
f(a1, . . . , an), it must be proved that Q(a1, . . . , an) holds before reaching this
call, and it can be assumed that R(a1, . . . , an, res) holds when f returns.

In principle, we do not need to define an operational semantics for the IR,
since its aim is not to be executed, but rather to be used for verification. When
we define wp(e,R) def= Q for an expression e with free variables x, and predicates
Q(x) and R(x, v), we mean as usual that the set of all the initial states for the
variables x guaranteeing that the value v to which e is evaluated satisfies R(x, v)
is exactly that specified by Q(x). This logical definition is supposed to capture
the semantics of e independently of the details of its evaluation. In this way, it
is not important whether the evaluation mechanism is imperative or functional,
whether there is, or is not, internal sharing during e’s evaluation, or even whether
the evaluation order is lazy or eager.

5 Determining the Invariant Locations

In order to set the invariant conditions in the appropriate places, the CFG must
be structured according to its strongly connected components (SCC) and sub-
components. Formally, the Connected Components Structure (CCS) of a graph
G is a list of components, where each one is either a single node, or a pair with
an entry point and a list of components:

CCS :: = [COMP ]
COMP :: = node | (entry node,CCS)

This structure is built up by computing the maximal SCCs of a graph, then the
SCCs inside these components, and so on. The resulting structure contains all
the nodes of the graph grouped according to the loops of the original program.
For any pair (entry node, ccs) in the structure, the subgraph of G corresponding
to the nodes of ccs is a connected one, and entry node is the only entry point to
this subgraph. Moreover, for any component c of a CCS, except for the outermost
one, there is a component c′ in the immediate prior level which contains some
node connected to the entry node of c.
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1

2

3

4 5

6

7

Fig. 6. CCS for the CFG of Fig. 4

Example 4. Considering the CFG of Fig. 4, and disregarding for simplicity the
node contents, the CCS is [1, (2, [3, (4, [5]), 6]), 7], which is represented in Fig. 6.
We get the external components: 1, 7, and the node set [2, 3, 4, 5, 6], which has 2
as entry point, and then another internal component with the nodes [4, 5], which
has 4 as entry point. The invariants should be placed before the entry points 2
and 4, which correspond to the entry points of the loops of Example 1.

1 cfg to ccs(G):
2 if G is a single node then
3 return [G]
4 else
5 In ← entry point(G)
6 G′ ← G − {In}
7 Comps ← strongly connected components(G′)
8 [C1, . . . , Cn] ← sort(Comps)
9 for all Ci in [C1, . . . , Cn] do

10 Gi ← subraph of G with the nodes of Ci

11 CCSi ← cfg to ccs(Gi)
12 end for
13 return (In,[CCS1, . . . , CCSn])
14 end if

Fig. 7. Algorithm computing the CCS of a graph

The function cfg to ccs(G) of Fig. 7 computes the CCS of a given control
flow graph G. It decomposes the graph into connected subgraphs in successive
recursive calls, until it reaches the base case of a single node (line 2). Otherwise,
it searches for the entry point of the graph (line 5) which is guaranteed to exists
since the graph is a CFG. Then, it considers the subgraph G′ (line 6) obtained by
removing the entry point and its edges, and computes their strongly connected
components (see [5]) of this subgraph (line 7). These components are then sorted
by the function sort (line 8) as follows:
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• Collapse each strongly connected component into a single node;
• Compute a topological sort of the resulting graph in a list (this sorting is

always possible as cycles have been collapsed in the previous step);
• Uncollapse the strongly connected components;

Then for each list component (line 9), the algorithm obtains the corresponding
subgraph (line 10) and the corresponding CCS for them (line 11). Finally, it
returns the list of components, together with their entry point (line 13).

6 Generating the Verification Conditions

The verification of a complex program is usually done in a modular way, proce-
dure by procedure. Indeed, this is the whole purpose of defining pre-post asser-
tions for every user procedure: to make it possible the verification of each one
independently of the others. We concentrate then in the activities associated to
generating the VCs for a single user procedure. By this we mean a user unit,
together with its pre-post assertions, disregarding whether it comes from an
imperative or a functional input language.

After the transformation of Sect. 5, invariant assertions are placed as precon-
ditions of some IR nodes. The CAVI-ART platform will help the user in this task,
either by synthesizing parts of the invariants, or by completing the incomplete
ones given by the user. The description of this part of the project is beyond the
purpose of this paper. In what follows, we assume that the invariants have been
placed by someone in the locations computed by the algorithm of Sect. 5.

Summarizing the result of the transformations described in Sects. 2 and 3,
given a procedure we get an IR consisting of:

1. A function definition for every basic block (BB).
2. Each BB consists of a sequence of let expressions, ended in a jump. Each let

binding is either an atom, or an application. A jump is simple, or it is a case
with a simple jump at each of its branches. A simple jump to the exit node
consists of a tuple expression returning the relevant variables. Otherwise, it
is a call to another BB, passing the relevant variables as arguments.

3. The postcondition assertion, annotated in every arc to the exit node.
4. The precondition assertion, annotated in the only arc leaving the entry node.
5. An invariant assertion as precondition of the entry node of every CCS.

The IR may have a hierarchical structure reflecting the decomposition of an
imperative CFG into its constituent CCSs. In this section, we look at it as a flat
set of BBs recursively calling to each other, or as a control flow graph consisting
of a set of nodes and a set of directed arcs between them.

Example 5. In Fig. 8 we show the flattened version of the IR corresponding to
the CFG/SSA of the example of Fig. 4. In that IR, the locations of assertions I1
and I2 —i.e. the preconditions of f2 and f4— are indicated, and they correspond
to the invariants. The precondition Q and the postconditon R are also indicated.
For this example, a typical postcondition R will assert that the output vector
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is sorted and that it is a permutation of the original one. A typical invariant I1
of the for loop will assert also the second property, and that sortedness holds
up to the element in position i − 1. Invariant I2 is a bit more involved.

{Q(v,H)}
insertionSort v H =
letfun

f1 v H = let i = 0 in f2 v i H
{I1(v, i,H)}
f2 v i H = let x1 = len(v) in

let b = <(i, x1) in
case b of true → f3 v i H

false → H
f3 v i H = let e = sel-array(H, v, i) in

let j = -(i, 1) in f4 v i j e H
{I2(v, i, j, e,H)}
f4 v i j e H = let b1 = >=(j, 0) in

let x2 = sel-array(H, v, j) in
let b2 = >(x2, e) in
let b3 = &&(b1, b2) in
case b3 of true → f5 v i j e H

false → f6 v i j e H

f5 v i j e H = let x3 = sel-array(H, v, j) in
let x4 = +(j, 1) in
let H1 = mod-array(H, v, x4, x3) in
let j1 = -(j, 1) in f4 v i j1 e H1

f6 v i j e H = let x5 = +(j, 1) in
let H1 = mod-array(H, v, x5, e) in
let i1 = +(i, 1) in f2 v i1 H1

in f1 v H
{R(v,H, res)}

Fig. 8. IR of the insertion sort algorithm

The VC generation has two phases: (1) Assertion propagation, and (2) VC
extraction.

Assertion Propagation. Let us start with a simple case, a BB having a simple
jump at its end, and the rest of the BB consisting of a let sequence in which
each bound expression is a primitive operator application, i.e. it has the form:

let x1 = e1 in . . . let xn = en in {Q} f a

where each ei represents a primitive application. Moreover, we know the assertion
Q that must hold in the output arc, i.e. the precondition Q(y) of function f .
Then, the precondition Q1 propagated to the beginning of this BB, assuming
that Dom(ei) = true for all i, is simply:

Q1 ≡ (x1 = e1) → · · · → (xn = en) → Q(a)

Let us assume now that the i-th bound expression of the BB is a call g a′
to an external function g for which we know its precondition Qg(y), and its
postcondition Rg(y, res). Then, the propagation is split into two parts:

Q1 ≡ (x1 = e1) → · · · → (xi−1 = ei−1) → Qg(a′)
R1 ≡ (xi = res) → (xi+1 = ei+1) → · · · → (xn = en) → Q(a)

The following VC is also generated: (x1 = e1) → · · · → (xi−1 = ei−1) →
Rg(a′, res) → R1. We proceed in a similar when more than one external call is
present in the BB.
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If the BB ends in a jump such as case a of true → {Q1} . . . false → {Q2} . . .,
where we know the assertions Q1 and Q2 holding at each output jump, the asser-
tion propagated just before the case is: (a → Q1) ∧ (¬a → Q2). The rest of the
backwards propagation through the BB is as above.

Finally, if the BB ends in a jump such as case a of . . . Ci x1 · · · xn → {Qi} . . .,
where we know the assertion Qi holding at each output jump, the asssertion prop-
agated just before the case is:

(a = Ci x1 · · · xn → Qi) ∧ . . . a similar conjunction for each remaining branch

If a default clause is present, the branch assertion Q at this jump is known, and
there are k prior branches, the conjunction for this clause is a bit more complex:

(a 
= C1 x11 · · · x1n1) ∧ · · · ∧ (a 
= Ck xk1 · · · x1nk
) → Q

VC Extraction. After the propagation phase, we get an assertion propagated
just before every BB body, and also some VCs coming from the calls to external
procedures. The remaining VCs belong to one of the two following cases:

1. The user procedure precondition QP must be stronger than or equal to the
assertion Q propagated to the single arc leaving the entry node, i.e. the veri-
fication condition QP → Q is generated.

2. If the BB precondition is an invariant I, then this invariant must be stronger
than or equal to the assertion Q propagated just before the BB body, i.e. the
verification condition I → Q is generated for each invariant I.

Example 6. For the example of Fig. 8, the following VCs are generated:

1. Q(v,H) → (i = 0) → I1(v, i,H)
2. I1(v, i,H) → (x1 = len(v)) → (b = i < x1) → ¬b → R(v,H,H)
3. I1(v, i,H) → (x1 = len(v)) → (b = i < x1) → b →

(H(v) = Array a ∧ 0 ≤ i < a.length)
4. I1(v, i,H) → (x1 = len(v)) → (b = i < x1) → b → (e = get a i) →

(j = i − 1) → I2(v, i, j, e,H)
5. I2(v, i, j, e,H) → (b1 = j ≥ 0) → (H(v) = Array a ∧ 0 ≤ j + 1 < a.length)
6. I2(v, i, j, e,H) → (b1 = j ≥ 0) → (x2 = get a j) → (b2 = x2 > e) →

(b3 = b1 && b2) → b3 → (x3 = get a j) → (x4 = j + 1) →
(a1 = set a x4 x3) → (H1 = set H v a1)) → (j1 = j − 1) → I2(v, i, j1, e,H1)

7. I2(v, i, j, e,H) → (b1 = j ≥ 0) → (H(v) = Array a ∧ 0 ≤ j + 1 < a.length)
8. I2(v, i, j, e,H) → (b1 = j ≥ 0) → (x2 = get a j) → (b2 = x2 > e) →

(b3 = b1 && b2) → ¬b3 → (x5 = j + 1) → (a1 = set a x5 e) →
(H1 = set H v a1)) → (i1 = i + 1) → I1(v, i1,H1)

When Q, I1, I2 and R are replaced by actual predicates, the resulting VCs could
be automatically discharged by a platform such as Why3. Its gallery of verified
programs (see http://why3.lri.fr/.), includes an insertion sort algorithm with
VCs very similar to ours which are easily discharged.

http://why3.lri.fr/
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7 Conclusions and Related Work

Many other intermediate representations of programs have been defined with
different purposes. Restricting us to IRs for verification platforms, it has become
popular the so-called IVLs (Intermediate Verification Languages). An example
of these is Boogie2, used in Dafny [15]. Its semantics is given in terms of sets
of traces, and it is very much tied to imperative languages. Its type system is
more powerful than Hindley-Milner polymorphism, and this feature has shown
to be very convenient for modeling the OO-languages heap. But it is not clear
how functional languages could be mapped to it. The Why3 platform [10] offers
WhyML as IR. In fact, this is a high level language, a kind of Standard ML with
state and loops, but it has been used as IR for verifying C and Java programs.
Due to its lack of support, some features of these languages, notably the heap,
has been modeled in an awkward way.

A third related IR is LLVM2. Its purpose is to serve as IR for both impera-
tive and functional languages in order to promote portability of these languages
to different machines, interoperability between different paradigms, and to take
profit of common static analyses targeted towards runtime performance. At first,
we considered LLVM as IR for out platform, but we did not like the way in which
functional languages can be translated into it. For instance, the case distinction
provided by our case is closer to the pattern matching translation of Haskell
(based on data types) and can be subsequently translated into a Why3 theory
in a straightforward way. In the LLVM, however, we would need to perform a
case distinction (switch) on the tag of the constructor and then assign the vari-
ables bound by each pattern in each branch. In addition, the LLVM provides
a considerable amount of low level operations, whereas our purpose was quite
the opposite: provide a reduced set of language dependent primitive functions
whose behaviour will be specified in a language dependent theory. This allows
us to express their properties in a way that is closer to the source language.
The same applies to array indexing, which is built in the LLVM IR via the
getelementptr/extractvalue instructions, whereas in our approach is another
language dependent primitive whose behaviour may vary between different lan-
guages, especially when indexing beyond the array bounds.

A last related formalism is that of Constrained Horn Clauses (CHC) [12,13].
They have been successfully used to express properties that a program must
satisfy, such as termination or functional correctness. There are sophisticated
algorithms which may decide, whenever this is possible, whether a CHC set is
satisfiable or not, and hence whether the desired property holds. In this sense,
CHC can be seen as a machinery complementary to that of SMT solvers, in
order to automatically verify properties. It is more questionable whether CHC
can play the role of our IR. In [6] it is shown how to encode the semantics of
a subset of C into CHC programs, and how to transform a C program into a
semantically equivalent CHC one by specializing the semantics with respect to

2 LLVM stands for Low Level Virtual Machine. See http://llvm.org/.

http://llvm.org/
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the C source. For our purposes, however, this kind of representation is too low
level and introduces many details which obscure the generation of verification
conditions based on assertions and weakest preconditions.

Our IR supports most features of imperative and functional languages, includ-
ing all varieties of control statements, exceptions, recursion, object orientation,
heap modeling, arrays, algebraic data types, pattern matching, polymorphism,
and higher-order. Moreover, the VCs we generate are very much adapted to
what current SMTs expect. For the moment, we do not support concurrency
and reflection in the sense of languages such as Java.
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Abstract. The traditional stepwise refinement based program deriva-
tion methodologies are primarily top-down. Strictly following the top-
down program derivation approach may require backtracking resulting
in rework. Moreover, the top down approach does not directly help in sug-
gesting the next course of action in case of a failed derivation attempt. In
this work we seamlessly incorporate a bottom up assumption propagation
technique into a primarily top down derivation methodology. We present
new tactics for back-propagating the assumptions made during the top-
down phase. These tactics help in reducing the guesswork during the
derivations. We have implemented these tactics in a program derivation
system. With the help of simple examples, we show how this approach
is useful for avoiding backtracking thereby simplifying the derivations.

Keywords: Calculational style · Program derivation

1 Introduction

In the calculational style of programming [10,13,14], programs are systemati-
cally derived from their formal specifications in a top-down manner. At each
step, a derivation rule is applied to a partially derived program at hand, finally
resulting in the fully derived program. Although systematic, this approach can
still be considered as informal. The refinement calculus [1,15] formalizes this
top-down derivation approach. It provides a set of formally verified refinement
rules (transformations).

At an intermediate stage in a top down derivation, users have to select an
appropriate refinement rule by analyzing the structure of the specification under
consideration. However it is not always possible to come up with the right choice
on the first attempt. Users often need to backtrack and try out different rules.
The failed attempts, however, often provide added insight which help, to some
extent, in deciding the future course of action. In the words of Morgan [15]:
“excursions like the above ... are not fruitless...we have discovered that we need
the extra conjunct in the precondition, and so we simply place it in the invari-
ant and try again.” Although the failed attempts are not fruitless and provide
the required insight, the trying again results in rework. The derived program
fragments (and the discharged proof obligations) need to be recalculated (redis-
charged) during the next attempt. The failed attempts also break the flow of the
c© Springer International Publishing Switzerland 2015
M. Falaschi (Ed.): LOPSTR 2015, LNCS 9527, pp. 244–258, 2015.
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derivations and make them difficult to organize. Moreover, the learnings from the
failed attempt are not directly applicable; some guesswork is needed in deciding
the future course of action.

The non-linear and lengthy derivations are the major hindrance in wide-
spread adoption of the calculational derivation methodology. In our earlier work
[6], we developed a system called CAPS1 (Calculational Assistant for Program-
ming from the Specifications). The CAPS system provides, among other features,
support for backtracking and branching by maintaining the complete deriva-
tion tree. Although these features helps in managing the non-linear derivations
(along with the failed attempts), the problem of rework still remains. Users have
to repeat most of the steps carried out during the failed attempt with slight
modifications. In the manual derivations (e.g. as in [14]), users do not actually
backtrack and redo the complete derivations; they just figure out the impact
of the modifications and add relevant program fragments to maintain the cor-
rectness. However, without proper formalization and tool support, this approach
remains error prone.

Tools supporting the refinement based formal program derivation
(Cocktail [12], Refine [16], Refinement Calculator [4] and PRT [5]) mostly follow
the top-down methodology. Not much emphasis has been given on avoiding the
unnecessary backtrackings. The refinement strategies cataloged by these tools
help to some extent in avoiding the common pitfalls. However, a general frame-
work for allowing the users to assume predicates and then propagating these
predicates to appropriate location is missing.

In this work, we have seamlessly incorporated the bottom-up techniques into
a top-down derivation methodology in order to avoid the unnecessary back-
trackings and the associated rework. We present derivation tactics for captur-
ing the assumptions made during the top-down phase and subsequently back-
propagating these assumptions to appropriate program locations. We have imple-
mented this approach in the CAPS system. With the help of small examples, we
explain how this approach avoids unnecessary backtracking, reduces guesswork,
and results in simpler derivations in the CAPS system.

2 Motivating Example

In this section, we present a sketch of the calculational derivation for a sim-
ple program performed in a top-down manner. We discuss how the top-down
approach is insufficient to capture the natural flow of the derivation and results
in additional guesswork and rework. Consider the following programming task
(adapted from exercise 4.3.4 in [14]. The informal derivation of this problem also
appears in [6]).

Let f [0..N) be an array of booleans where N is a natural number. Derive a
program for the computation of a boolean variable r such that r is true iff all the
true values in the array come before all the alse values.
1 CAPS is available at http://www.cse.iitb.ac.in/∼damani/CAPS.

http://www.cse.iitb.ac.in/~damani/CAPS
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con N : int{N ≥ 0};var f : array [0..N) of bool;var r : bool;
S

R :
{

r ≡
(

∃p : 0 ≤ p ≤ N :
(

(∀i : 0 ≤ i < p : f [i])
∧ (∀i : p ≤ i < N : ¬f [i])

))}

var n : int;
S⎧⎨
⎩

(
r ≡

(
∃p : 0 ≤ p ≤ n :

(
(∀i : 0 ≤ i < p : f [i])

∧ (∀i : p ≤ i < n : ¬f [i])

)))
∧ n = N ∧ 0 ≤ n ≤ N

⎫⎬
⎭

r, n := true, 0;
{Inv : P0 ∧ P1}
while n �= N →

S0 : r, n := r′, n + 1
end

r′ ≡ (r ∧ ¬f [n]) ∨ (∀i : 0 ≤ i < n + 1 : f [i])

r, n, s := true, 0, true;
{Inv : P0 ∧ P1 ∧ P2}
while n �= N →

S1

end

r′ ≡ (r ∧ ¬f [n] ∨ s)

r, n, s := true, 0, true
{Inv : P0 ∧ P1 ∧ P2}
while n �= N →

s := s ∧ f [n]
r, n := (r ∧ ¬f [n]) ∨ s, n + 1

end

wp.(r, n := r′, n + 1)(P0)

r′ ≡
(

∃p : 0 ≤ p ≤ n + 1 :
(

(∀i : 0 ≤ i < p : f [i])
∧ (∀i : p ≤ i < n + 1 : ¬f [i])

))

≡ { Split off p = n + 1; 0 ≤ n + 1 }

≡ {Definition of P0 and assignment }

A

B

G

H

I

Replace N by n and add bounds on n.

Calculate r′

Take conjuncts P0 and P1 as invariant

Step into Proof obligation for the invariance of P0

C

D

E

F

Strengthen Inv
with P2

Derivation of expn for s

Fig. 1. Sketch of the top-down derivation of the motivating example. P0 :
(r ≡ (∃p : 0 ≤ p ≤ n : ((∀i : 0 ≤ i < p : f [i]) ∧ (∀i : p ≤ i < n : ¬f [i])))) P1 : 0 ≤ n ≤
N ; P2 : s ≡ (∀i : 0 ≤ i < n : f [i])

Figure 1 depicts the derivation process for this program. We start the deriva-
tion by providing the formal specification (node A) of the program. We then
apply the Replace Constant by a Variable [14] heuristic to replace the constant
N with a fresh variable n as shown in node B. We follow the general guideline of
adding bounds on the introduced variable n by adding a conjunct P1 : 0 ≤ n ≤ N
to the postcondition. Although this conjunct looks redundant due to existence
of the stronger predicate n = N , it is used later and becomes part of the loop
invariant. We then apply the Take Conjuncts as Invariants heuristics to select
conjuncts P0 and P1 as invariants and negation of the remaining conjunct n = N
as the guard of the while loop. To ensure termination, we choose to increment
variable n by 1 and envision an assignment r, n := r′, n + 1 , where r′ is a
metavariable. The partially derived program at this stage is shown in node C.
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To calculate the metavariable r′, we now step into the proof obligation for the
invariance of P0 and try to manipulate the formula with the aim of finding a
program expression for r′. After several formula transformations, we arrive at a
formula (r′ ≡ (r ∧ ¬f [n]) ∨ (∀i : 0 ≤ i < n + 1 : f [i])) shown in node F.

At this point, we realize that we can not represent r′ in terms of the exist-
ing program variables. After analyzing the derivation, we speculate that if we
introduce a fresh variable (say s) and maintain P2 : s ≡ (∀i : 0 ≤ i < n : f [i]) as
an additional loop invariant then we would be able to express r′ in terms of the
program variables.

We backtrack to program C, introduce a fresh variable s, and envision a While
program with the strengthened invariant. For the derivation of the program S1,
we follow the same process as that of S0. The steps from node G to node H
correspond to the calculation of r′. These steps are similar to the calculation
of r′ in the failed attempt (node E to node F ). However, this time, we are
able to instantiate r′ with the help of the newly introduced invariant P2. After
calculation of r′, we proceed further for the derivation of assignment for the
variable s. The program can be improved further by strengthening the guard to
ensure early termination.

Note that we did not select s ≡ (∀i : 0 ≤ i < n+ 1 : f [i]) as an invariant
even though the formula is required at node F . This comes from the observation
that it would not be possible to establish the invariant at the start of the loop.
Since n is initially 0, assignment s := f [0] would be needed to establish the
invariant. However, f [0] is undefined when N = 0. Instead we added P2 as an
invariant. Selection of this formula needs foresight that the occurrences of n are
textually substituted by n + 1 during the derivation (step D-E ), so we will get
the formula we want at node F , if we strengthen the invariant with P2.

As we saw in this example, some ingenuity is required to figure out the next
course of action after a failed derivation attempt. We need to decide the location
from where to branch and what new things to try. The backtracking results
in rework and breaks the linear flow of the derivation making the derivation
complex.

3 Mixing Top-Down and Bottom-Up Approaches

In this section, we first describe the derivation methodology adopted in CAPS
and then present our approach for incorporating the bottom-up reasoning in a
primarily top-down approach.

3.1 Derivation Methodology

For representing a program fragment and its specification, we use an exten-
sion of the Guarded Command Language (GCL) [9] called AnnotatedProgram.
It is obtained by augmenting each program construct in the GCL with its pre-
condition and postcondition. It is different from the Hoare triple in a sense
that, in addition to the program, every subprogram is also annotated with the
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pre- and post-conditions. We also introduce a new program construct UnkProg
to represent an unsynthesized program fragment. Annotated program with a
precondition α, a postcondition β, and body S is represented as {α} S {β}. We
use the formulas in sorted first-order predicate logic for expressing the precondi-
tion and the postcondition of the programs. We adopt the Eindhoven notation
[2] for representing the quantified formulas.

Users start a derivation by providing a formal specification of a program and
then incrementally transform it into a fully synthesized annotated program by
applying predefined transformation rules called Derivation Tactics. The com-
plete derivation history is recorded in the form of a Derivation Tree. The system
provides various features like structured derivations, stepping into subcompo-
nents, and backtracking. The system automates most of the mundane tasks and
employs the automated theorem provers Alt-Ergo [7], CVC3 [3], SPASS [17] and
Z3 [8] for discharging proof obligations. The Why3 tool [11] is used to interface
with these theorem provers.

Nature of the Transformation Rules. In the stepwise refinement based
approaches [1,15], a formal specification is incrementally transformed into a
concrete program. A specification (pre- and post-conditions) is treated as an
abstract program (called a specification statement). At any intermediate stage
during the derivation, a program might contain specification statements as well
as executable constructs. The traditional refinement rules are transformations
that convert a specification statement into another program which may in turn
contain specifications statements and the concrete constructs. In the conven-
tional approach, once a specification statement is transformed into a concrete
construct, its pre- and post-conditions are not carried forward.

In contrast to the conventional approach, we maintain the specifications of
all the subprogram (concrete as well as unsynthesized). This allows us to provide
rules which transform any correct program (not just a specification statement)
into another correct program. These rules try to reuse the already derived pro-
gram fragments and utilize the already discharged proof obligations to ensure
correctness.

Program and Formula Modes. The CAPS system provides tactics for trans-
forming partially derived programs as well as the proof obligation formulas.
These two modes are referred as the Program Mode and the Formula Mode
respectively. Users can envision missing program fragments in terms of metavari-
ables which are then derived by manipulating the proof obligation formulas. The
StepIntoPO (Step Into Proof Obligation) tactic is used to transition from pro-
grams to corresponding proof obligation formulas. On applying the tactic to an
annotated program containing metavariables, a new formula node representing
the proof obligations (verification conditions) is created in the derivation tree.
This formula is then incrementally transformed to a form, from which it is easier
to instantiate the metavariables. After successfully discharging the proof oblig-
ation and instantiating all the metavariables, a tactic called StepOut is applied
to get an annotated program with all the metavariables replaced by the corre-
sponding instantiations.
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3.2 Incorporating the Bottom-Up Approach

In order to incorporate the bottom-up approach in the primarily top-down
methodology, we need a way to accumulate assumptions made during the deriva-
tion and then to propagate these assumptions upstream. After propagating the
assumptions to appropriate location in the derived program, user can introduce
appropriate program constructs to establish the assumptions.

The bottom-up phase has three main steps.

– Assume: To derive an annotated program {α} UnkProg(1) {β}, we envision
an assignment containing metavariables and step into the proof obligation for
the program. We then try to simplify the formula with the objective of guessing
the expressions for the metavariables. However, to do so, imagine that we need
to assume θ. Instead of backtracking, we just accumulate the assumption and
proceed further to derive a program S. In the derived annotated program
(Fig. 2), assume(θ) establishes the assumed predicate θ while preserving α.
For brevity, we abbreviate the statement assume(θ) as A(θ).

– Propagate: We may not want to materialize the program to establish θ at
the current program location. We then propagate the assumption upstream
to an appropriate program location. Depending on the program constructs
through which the assumption is propagated, the assumed predicate at the
new upstream location might be different from the one being propagated.

– Realize: Materialize the assume statement by converting it to an unknown
program fragment which can be derived subsequently from its specification.

{α}
{α}

A(θ)
{α ∧ θ}

S
{β}

{β}

Fig. 2. Result of assuming pre-
condition θ in the derivation of
{α} UnkProg(1) {β}

{α}
x := E

{β}
A(θ)

{β ∧ θ}

{α}
A(wp(x := E, θ))

{α ∧ wp(x := E, θ)}
x := E

{β ∧ θ}

Fig. 3. AssignmentUp tactic.

4 Propagating and Establishing Assumptions

The propagation step mentioned in the previous section is an important step in
the bottom up phase. We have developed transformation rules for propagating
the assumptions upstream through various program constructs. Some of these
rules also establish the assumptions after propagating them. The transformation
rules transform an annotated program (source program) into another annotated
program (target program) with the same specification (i.e. with the same precon-
dition and postcondition). The transformation rules are verified for correctness:
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{α}
UnkProg1

{β}
A(θ)

{β ∧ θ}

{α}
A(θ)

{α ∧ θ}
UnkProg2

{β ∧ θ}

{α}
UnkProg1

{β}
A(θ)

{β ∧ θ}

{α}
UnkProg2

{β ∧ θ}

(a) UnkProgUp tactic (b) UnkProgEst tactic

Fig. 4. UnkProgtactics

if the source program is correct, then the transformed program is also correct. To
prove correctness of a rule, we prove the validity of the formula PO(S) ⇒ PO(T )
where PO(S) and PO(T ) are the proof obligations of the source program S and
target program T respectively. The transformation rules are implemented in the
CAPS system as tactics. Some of the tactics have associated applicability condi-
tions (also called as proviso). A tactic can be applied only when the associated
proviso is discharged successfully.

4.1 Atomic Constructs

Atomic constructs are the program constructs that do not have subprograms. In
this section, we present some rules for the Assignment and UnkProg constructs.

{α}
{ϕ1}S1{ψ1}

:
{ϕn}Sn{ψn}

{β}
A(θ)

{β ∧ θ}

{α}
{ϕ1}S1{ψ1}

:
{ϕn}Sn{ψn}
{β}A(θ){β ∧ θ}

{β ∧ θ}

Fig. 5. CompositionIn tactic

{α}
{ϕ}A(θ){ϕ ∧ θ}
{ϕ ∧ θ}S1{ψ1}

. . .
{β}

{α}
A(θ)

{α ∧ θ}
{ϕ ∧ θ}S1{ψ1}

. . .
{β}

Fig. 6. CompositionOut tactic
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Assignment. Figure 3 shows the AssignmentUp tactic for propagating an
assumption upwards through an assignment.

UnkProg. Figure 4(a) shows the UnkProgUp tactic which propagates an assump-
tion upward through an unknown program fragment (UnkProg1). Note that
pre- and post-conditions of UnkProg2 are strengthened with θ. Here, we are
demanding that UnkProg2 should preserve θ. User may prefer to establish θ
instead of propagating. The UnkProgEst tactic (Fig. 4(b)) can be used for this
purpose.

We have not presented the rules for the simple constructs like skip and
assume, since the propagation rules for these constructs are simple.

4.2 Composition

Figure 5 shows a Composition program which is composed of another Compo-
sition and an assume( θ) statement. The CompositionIn tactic can be used to
propagate the assumption θ inside the Composition construct. The assumption
can then be propagated upwards through the subprograms of the composition
(Sn to S1) using appropriate rules. The CompositionOut tactic (Fig. 6) propa-
gates the assume statement before the composition statement.

The CAPS system supports nested composition constructs (Composition con-
structed out of other compositions). Although a nested composition can be col-
lapsed to form a single composition, this construct is useful when we want to
apply a tactic to a subcomposition.

Figure 7 shows the CompoToIf tactic which establishes the assumption θ by
introducing an if program in which the assumed predicate θ appears as the
guard of the program. Another guarded command is added to handle the other
case. This tactic has a proviso that θ is a valid program expression. This tactic
allows users to delay the decision about the type of the program constructs. For
example, users may envision an assignment, which can be turned later into an
if program if required.

{α}
{ϕ}A(θ){ϕ ∧ θ}
{ϕ ∧ θ}S{ψ}

{β}

{α}
if
| θ → {ϕ ∧ θ}S{ψ}
| ¬θ → {ϕ ∧ ¬θ}UnkProg{ψ}
end

{β}

Fig. 7. CompoToIf tactic: Transforms a composition to an if program.
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{α}
if
| G1 → {ϕ1}S1{ψ1}
:
| Gi → {ϕi}Si{ψi}
:
| Gn → {ϕn}Sn{ψn}
end

{β}
A(θ)

{β ∧ θ}

{α}
if
| G1 → {ϕ1}S1{ψ1}A(θ){ψ1 ∧ θ}
:
| Gi → {ϕi}Si{ψi}A(θ){ψi ∧ θ}
:
| Gn → {ϕn}Sn{ψn}A(θ){ψn ∧ θ}
end

{β ∧ θ}

Fig. 8. IfIn tactic.

4.3 If

Figure 8 shows the IfIn tactic. An assume statement that appears after the if con-
struct in the source program is pushed inside the if construct in the target pro-
gram. In the target program, θ is assumed at the end of every guarded command.

Figure 9 shows the IfOut tactic. In the source program, θ is assumed before
the subprogram Si, whereas in the target program, θ∗ is assumed before the if
program. Note that θ∗ (which is defined as (Gi ⇒ θ)) is weaker than θ. As a result
of assuming θ∗ before the if construct, we also strengthen the precondition of the
other guarded commands. This strengthening of the precondition is beneficial
for the unsynthesized program fragments as it may make the task of derivation
simpler.

Instead of propagating the assumption, it can be established by strength-
ening the guard. This can be achieved by applying the IfGrd tactic (Fig. 10).
An additional guarded command needs to be added to the if program to pre-
serve correctness. This tactic does not propagate the assumption; instead it
establishes it.

{α}
if
| G1 → {ϕ1}S1{ψ1}
:
| Gi → {ϕi}A(θ){ϕi ∧ θ}Si{ψi}
:
| Gn → {ϕn}Sn{ψn}
end

{β}

{α}
A(θ∗)
{α ∧ θ∗}

if
| G1 → {ϕ1 ∧ θ∗}S1{ψ1}
:
| Gi → {ϕi ∧ θ}Si{ψi}
:
| Gn → {ϕn ∧ θ∗}Sn{ψn}
end

{β}

Fig. 9. IfOut tactic. (θ� � Gi ⇒ θ)
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{α}
if
| G1 −→ {ϕ1}S1{ψ1}
:
| Gi −→ {ϕi}A(θ){ϕi ∧ θ}Si{ψi}
:
| Gn −→ {ϕn}Sn{ψn}
end
{β}

{α}
if
| G1 −→ {ϕ1}S1{ψ1}
:
| Gi ∧ θ −→ {ϕi ∧ θ}Si{ψi}
:
| Gn −→ {ϕn}Sn{ψn}
| Gi ∧ ¬θ −→ {α ∧ Gi ∧ ¬θ}UnkProg{β}
end
{β}

Fig. 10. IfGrd tactic

4.4 While

The assumption propagation tactics involving the While construct are more
complex than those for the other constructs since strengthening an invariant
strengthens the precondition as well as the postcondition of the loop body.

WhileIn Tactic. Figure 11 shows the WhileIn tactic. The source program has
an assumption after the while loop. In order to propagate the assumption θ
upward, we strengthen the invariant of the while loop with ¬G ⇒ θ. This is
the weakest formula that will assert θ after the while loop. We add an assume
statement after the loop body to maintain the invariant and another assume
statement before the loop to establish the invariant at the entry of the loop.

WhileStrInv Tactic. Figure 12 shows the WhileStrInv tactic. In the source
program, the predicate θ is assumed at the start of the loop body. To make θ
valid at the start of the loop body S, we strengthen the invariant with (G ⇒ θ).
An assume statement A(G ⇒ θ) is added after the loop body to ensure that
invariant is preserved. Another assume statement is added before the while loop
to establish the invariant at the entry of the loop.

WhilePostStrInv Tactic. Figure 13 shows the WhilePostStrInv tactic. There
are two steps in this tactic. In the first step, postcondition of the program S is
strengthened with θ∗ which is the strongest postcondition of θ with respect to
S. In the second step, the invariant of the while loop is strengthened with θ∗.
An unknown program fragment is added before S to establish θ. An assume
statement is added before the while program to establish θ∗ at the entry of
the loop.

Strongest postconditions involve existential quantifiers. We have implemented
heuristics for eliminating the quantifiers to simplify the formulas. In this tac-
tic, we have defined θ∗ to be the sp(S, θ). However, any formula θw weaker
than the strongest postcondition will also work as long as the program {ϕ ∧ θw}
UnkProg{ϕ ∧ θ} can be derived.
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{α}
while {Inv : ω}

G →
{ϕ}

S
{ψ}

end
{β}

A(θ)
{β ∧ θ}

{α}
A(¬G ⇒ θ)

{α ∧ (¬G ⇒ θ)}
while {Inv : ω ∧ (¬G ⇒ θ)}

G →
{ϕ}

S
{ψ}

A(¬G ⇒ θ)
{ψ ∧ (¬G ⇒ θ)}

end
{β ∧ θ}

Fig. 11. WhileIn tactic: strengthens the invariant with ¬G ⇒ θ

{α}
while {Inv : ω}

G →
{ϕ}

A(θ)
{ϕ ∧ θ}

S
{ψ}

end
{β}

{α}
A(G ⇒ θ)

{α ∧ (G ⇒ θ)}
while {Inv : ω ∧ (G ⇒ θ)}

G →
{ϕ ∧ θ}

S
{ψ}

A(G ⇒ θ)
{ψ ∧ (G ⇒ θ)}

end
{β}

Fig. 12. WhileStrInv tactic: strengthens the invariant with G ⇒ θ

{α}
while {Inv : ω}

G →
{ϕ}

A(θ)
{ϕ ∧ θ}

S
{φ}

end
{β}

{α}
while {Inv : ω}

G →
{ϕ}

A(θ)
{ϕ ∧ θ}

S
{φ ∧ θ∗}

end
{β}

{α}
A(θ∗)

{α ∧ θ∗}
while {Inv : ω ∧ θ∗)}

G →
{ϕ ∧ θ∗}

UnkProg
{ϕ ∧ θ}

S
{φ ∧ θ∗}

end
{β}

Fig. 13. WhilePostStrInv tactic: strengthens the loop invariant with θ∗ where θ∗ �
sp(S, θ)
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4.5 Down-propagating the Assumed Predicates

As we move the assumptions upstream, they become available to various down-
stream constructs. For example, in the IfOut tactic the assumption θ in the ith

guarded command is moved upwards before the if construct. As a result of this,
the propagated assumption θ∗ percolates down to the other guarded commands.
The predicates can be further propagated downwards using the StrengthenPost
tactic.

5 Derivation Examples

5.1 Evaluating Polynomials

A typical derivation involves interleaved instances of up-propagation of the
assume statements and down-propagation of the assumed predicates. To demon-
strate this, we present some of the steps from the derivation of a program for
evaluating a polynomial whose coefficients are stored in an array (also called
Horner’s rule). The program is specified as follows.

con A[0..N) array of int {N ≥ 0};
con x : int;var r : int;

S{
R : r =

(∑
i : 0 ≤ i < N : c[i] ∗ xi

)}
We skip the initial tactic applications and directly jump to the program

shown in Fig. 14(a). The user has already assumed predicate P2 : y = xn dur-
ing the calculation of r′ (not shown). We next apply the WhileStrInv tactic to
stengthen the invariant with P2 to arrive at program shown in the figure (b).
We then propagate the assume statement upwards through n := n + 1 to arrive
at the program shown in figure (c). We would like to synthesize the assumption
here but the precondition is not sufficient. Next, we strengthen the postcondition
of the assignment statement for r to arrive at program shown in the figure (d).
The assumption P2(n := n+1) can now be easily established as y := y ∗x. Note
that alternative solutions are also possible.

With the combinations of steps involving up-propagation of the assume state-
ments and down-propagation of the predicates, we can propagate the missing
fragments to an appropriate location and then synthesize them.

5.2 Back to the Motivating Example

Next, we derive the motivating example from Sect. 2 using our approach. We
start from formula F in Fig. 1. At this point, we are not able to express the
formula tt(n+1) (where tt(n) � (∀i : 0 ≤ i < n : f [i])) as a program expression.
Instead of backtracking, we introduce a fresh variable s and assume the formula
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s ≡ tt(n + 1) and proceed further with the calculation.

· · ·
r′ ≡ (r ∧ ¬f [n]) ∨ (∀i : 0 ≤ i < n + 1 : f [i])

≡ { Introduce variable s and assume s ≡ (∀i : 0 ≤ i < n + 1 : f [i])}
r′ ≡ (r ∧ ¬f [n]) ∨ s

≡ {Step out from formula mode}
After stepping out from the formula mode, we arrive at the while loop where
the body of the loop contains the assume statement.

{P0 ∧ P1}
while {Inv : P0 ∧ P1}

n �= N →
{P0 ∧ P1 ∧ n �= N}

assume(s ≡ tt(n + 1))
{P0 ∧ P1 ∧ n �= N ∧ s ≡ tt(n + 1)}

r, n := (r ∧ ¬f [n]) ∨ s, n + 1
{P0 ∧ P1}

end
{R}

We can establish the assumption at the current location however that would be
expensive since we would need to traverse the array inside the loop. We can apply
the WhileStrInv tactic or the WhilePostStrInv tactic. Applying the WhileStrInv
would add n �= N ⇒ s ≡ tt(n + 1) as an invariant. With this invariant the
initialization problem discussed in Sect. 2 does not arise and this choice results
in a different solution. Here, we apply the WhilePostStrInv tactic which adds
s ≡ tt(n) as an invariant. By applying this tactic, we arrive at the following
program.

{P0 ∧ P1}
assume(s ≡ tt(n))

{P0 ∧ P1 ∧ s ≡ tt(n)}
while {Inv : P0 ∧ P1 ∧ s ≡ tt(n)}

n �= N →
{P0 ∧ P1 ∧ n �= N ∧ s ≡ tt(n)}

UnkProg
{P0 ∧ P1 ∧ n �= N ∧ s ≡ tt(n + 1)}

r, n := (r ∧ ¬f [n]) ∨ s, n + 1
{P0 ∧ P1 ∧ s ≡ tt(n)}

end
{R}

We can now proceed further with the derivation of the UnkProg fragment and
the initialization assume statement as usual.

Using the bottom-up assumption propagation technique, we could maintain
the natural flow of the derivation. This derivation reduces the guesswork and
avoids unnecessary branching.
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while {Inv : P}
n �= N →

{P}
assume(P2);
{P ∧ P2}
r := r + c[n] ∗ y;
{P (n := n + 1)}
n := n + 1
{P}

end {R}

while {Inv : P ∧ P2}
n �= N →

{P ∧ P2}
r := r + c[n] ∗ y;
{P (n := n + 1)}
n := n + 1
{P}
assume(P2)
{P ∧ P2}

end {R}

while {Inv : P ∧ P2}
n �= N →

{P ∧ P2}
r := r + c[n] ∗ y;
{P (n := n + 1)}
assume(P2(n := n + 1)){

P (n := n + 1)
∧P2(n := n + 1)

}
n := n + 1
{P ∧ P2}

end {R}

while {Inv : P ∧ P2}
n �= N →

{P ∧ P2}
r := r + c[n] ∗ y;
{P (n := n + 1) ∧ P2}
assume(P2(n := n + 1)){

P (n := n + 1)
∧P2(n := n + 1)

}
n := n + 1
{P ∧ P2}

end {R}

Add P2 to invariant

Propagate assume up Strengthen post of r asgn

(a) (b)

(c) (d)

P : r =
∑

i : 0 ≤ i < n : c[i] ∗ xi
) ∧ 0 ≤ n ≤ N

P2 : y = xn

Fig. 14. Some steps in the derivation of a program for the Horner’s rule. Invariant
initializations at the entry of the loop are not shown.

6 Conclusion

We have developed tactics (rules) for up-propagating the information assumed
during the top down phase. These tactics have been implemented in the CAPS
system. With the help of simple examples we have demonstrated that the seam-
less integration of the bottom-up and top-down techniques help in reducing the
unnecessary backtrackings and associated rework. The methodology also helps
in reducing the guesswork involved in the derivations by allowing the user to
delay decisions.
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sultancy Services (TCS) Research Fellowship and a grant from the Ministry of Human
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Abstract. Algorithmic debugging is a semi-automatic debugging tech-
nique that is present in practically all mature programming languages. In
this paper we claim that the state of the practice in algorithmic debug-
ging is a step forward compared to the state of the theory. In partic-
ular, we argue that novel techniques for algorithmic debugging cannot
be supported by the standard internal data structures used in this tech-
nique, and a generalization of the standard definitions and algorithms is
needed. We identify two specific problems of the standard formulation
and implementations of algorithmic debugging, and we propose a refor-
mulation to solve both problems. The reformulation has been done in a
paradigm-independent manner to make it useful and reusable in different
programming languages.

1 Introduction

One of the most important debugging techniques is Algorithmic Debugging (AD)
[27]. This technique has experienced a significant advance in the last decade. Con-
cretely, new techniques have been proposed to improve performance [9,15], to
improve scalability [11], to improve interaction with the user [6], and to improve
GUIs [12,13]. The maturity of these techniques has eventually led to the integra-
tion of algorithmic debuggers into sophisticated programming environments. Two
interesting cases are [11,12], which combine AD with the standard debugging per-
spective of Eclipse [1]. The main advantage of AD is its high level of abstraction.
It is even possible to debug a program without looking at the source code.

Example 1. Let us assume the existence of a buggy Java code composed of three
methods: int add(int x, int y) sums its two arguments, boolean isEven
(int x) returns true if its only argument is even, or false otherwise; and, int
sumNumbers(int[] array, String eo) takes an array of integers and sums the
elements that are even or odd depending on the value of the second argument.
Therefore, with the following method invocation:

int [ ] array = { 1 , 2 , 3 } ;
int sum = sumNumbers ( array , ”odd” ) ;

the result should be 4. Nevertheless, due to a bug in the code, the result is 3.
Thanks to AD, with only this information (without knowing anything about

the source code) we can identify the buggy method. For instance, if we debug

c© Springer International Publishing Switzerland 2015
M. Falaschi (Ed.): LOPSTR 2015, LNCS 9527, pp. 261–276, 2015.
DOI: 10.1007/978-3-319-27436-2 16
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this program with the Hybrid Debugger for Java (HDJ),1 we obtain the following
debugging session (questions are generated by HDJ, and answers are provided
by the user):

Starting Debugging Session:

(1) sumNumbers({1,2,3},"odd")=3? No

(2) isEven(2)=true? Yes

(3) isEven(3)=false? Yes

(4) add(0,3)=3? Yes

Bug found in method "sumNumbers" with the call "sumNumbers({1,2,3},"odd")".
Hence, an AD session is just a dialogue where the debugger asks questions and
the user answers them. The Java code associated with this debugging session is
depicted in Fig. 1.

Fig. 1. Java program to sum the even or odd numbers of an array

What the debugger internally does is to generate a data structure that repre-
sents the execution of the program. This data structure, often called Execution
Tree (ET), is depicted in Fig. 2. The ET has a node for each method invocation.2

Each node normally contains a reference to the method that is being executed,
the value of its arguments, the old and new values of the variables that may
be changed within the execution, and its returned value. The debugger just tra-
verses the ET asking the user about the validity of the nodes (i.e., nodes are
marked as correct or wrong) until a buggy node is found. A node is buggy when
it is wrong, and all of its children (if any) are correct.

The main properties of AD are the following:

Theorem 1 (Correctness of AD [23]). Given an ET with a buggy node n,
the method associated with n contains a bug.

Theorem 2 (Completeness of AD [27]). Given an ET with a bug symptom
(i.e., the root is wrong), provided that all the questions generated by the debugger
are correctly answered, then, a bug will eventually be found.
1 http://www.dsic.upv.es/∼jsilva/HDJ/.
2 In the ET, nodes represent computations. Hence, depending on the underlying par-

adigm, they can represent methods, functions, procedures, clauses, etc. Our dis-
cussions in this paper can be applied to both the imperative and the declarative
paradigms, but, for the sake of concreteness, we will focuss the discussion on the
imperative paradigm and our examples on Java.

http://www.dsic.upv.es/~jsilva/HDJ/
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Fig. 2. ET generated for the program in Fig. 1

1.1 Contributions of This Work

In this work, we propose a new redefinition of AD in such a way that: (i)
It is paradigm- and language-independent, and thus it is reusable by other
researchers. (ii) It is a conservative generalization of the traditional formula-
tion of AD, in such a way that many previous AD techniques are a particular
case of this new formulation. (iii) It is formulated in a way that definitions of the
data structures, properties, strategies, and algorithms are specified separately,
so that they can be reused and/or concretized in a particular case. (iv) It states
that the output of an algorithmic debugger should contain dynamic information
(i.e., it should not include non-executed code). And, (v) it allows the debugger
to ask questions about a code inside a method (and not only about the whole
method).

2 Some Problems Identified in Current
Algorithmic Debuggers

We have been actively working in the area of AD for the last 10 years. This
paper somehow summarizes and criticizes our own work to make a step forward.
We claim that almost all current algorithmic debuggers—at least all that we
know, including the most extended, which we compared in [7], and including our
own implementations—have fundamental problems that were somehow inherited
from the original formulation of AD [27].

In particular, we claim that the original formulation of AD, and most of
the later definitions and implementations are obsolete with respect to the last
advances on the practical side of AD. For instance, two important problems
of the standard definitions of AD are the granularity and the static nature
of the found errors (AD reports a whole routine as buggy). We can illustrate
these problems observing again the debugging session of Example 1: The whole
method sumNumbers is pointed out as buggy. This is very imprecise specially
if sumNumbers were a method with a lot of code. However, AD researchers and
developers are used to this behavior, and they would argue that this is the normal
output of any algorithmic debugger. However, from an engineering perspective,
this is quite surprising because the analysis performed by the debugger is by
definition dynamic (in fact, the whole program is actually executed). Hence, the
debugger should know that line 11 of Fig. 1 is never executed, and thus it should
not be reported as buggy. This leads us to our first proposition: The informa-
tion reported by an algorithmic debugger should be dynamic instead of static.
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That is, the output of the algorithmic debugger should be the part of the method
that has been actually executed to produce the bug, instead of the whole method.

We think that this problem comes from the first implementations of AD and
it has been inherited in latter theoretical and practical developments. In fact, if
we execute this program with the debuggers: Buddha [26], DDT [4], Freja [21],
Hat-Delta (and its predecessor Hat-Detect) [8], B.i.O. [3], Mercury’s Algorithmic
Debugger [19], Münster Curry Debugger [18], Nude [20], DDJ [13], and HDJ
[11], they all would output the whole sumNumbers as buggy together with a
counterexample that produces the bug (the found buggy node). Unfortunately,
none of these debuggers make further use of the counterexample. An option
would be that the debuggers use dynamic program slicing (to be precise, dynamic
chopping) [30] to minimize the code shown as buggy.

Traditionally, AD reports a whole method as buggy. To reduce the granularity
of the reported errors, new techniques have appeared (see, e.g., [5,16]) that allow
for debugging inside a method. Unfortunately, the standard definition of ET is
not prepared for that. In fact, some of the recent transformations defined for
AD do not fit in the traditional definition of the data structures used in this
discipline. For instance, the Tree Balancing technique presented in [15], or the
zooming technique presented in [5] cannot be represented with standard AD
data structures such as the Evaluation Dependence Tree [24].

This lack of a common theoretical framework with standard data structures
that are powerful enough as to represent recent developments makes researchers
to reinvent the wheel once and again. In particular, we have observed that
researchers (including ourselves) have produced local and partial formalizations
to define their debuggers for a particular language and/or implementation (see,
e.g., [6,15,16]). These theoretical developments are hardly reusable in other lan-
guages, and thus, they only serve as a formal description of their system, or as
a means to prove results.

3 Related Work

Algorithmic debugging has been applied to all mature languages. All current
implementations use a sort of ET to represent computations. Even in those lazy
implementations of AD where the execution of the front-end and the back-end
is interleaved (see, e.g., [22]), the construction of the ET is needed before the
program can be debugged. Along the years each paradigm has adopted a well-
defined and studied data structure to represent the ET.

3.1 A Little Bit of History

Algorithmic debugging started in the seminal work by Shapiro with the notion of
contradiction backtracking using “crucial experiments” within Popper’s philo-
sophical dictum of conjectures and refutations [28]. Hence, the first notion of
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ET appeared in the context of the logic paradigm. Shapiro used refutation trees
as ETs. Later implementations of AD in the logic paradigm such as NU-Prolog
[2,31] also used refutation trees.

In the context of the functional paradigm, the data structure used was pro-
posed by Henrik Nilsson and Jan Sparud: The Evaluation Dependence Tree
(EDT). They first proposed this data structure as a record of the execution [24],
and then, as an appropriate ET for AD [25]. The EDT is particularly useful to
represent lazy computations by hiding non-computed terms. In fact, the own
EDT can be computed lazily as in [22]. The most successful implementations of
AD for the functional paradigm are based on the EDT. Notable cases are the
Freja [21], Hat-Delta [8], and Buddha [26] debuggers.

In multi-paradigm languages such as Mercury, TOY, or Curry, the ET is
also represented with either a proof tree or an EDT. Examples of debuggers for
these languages are the Mercury Debugger [19], the Münster Curry Debugger
[18], DDT [4], and B.i.O [3].

In the imperative paradigm, a redefinition of the EDT was used. It has been
often called Execution Tree [10,13], but, conceptually, it is equivalent to the
EDT, and it can be seen as a dynamic version of the Call Graph where every
single call generates a different node in the graph, and thus no cycles are possible
(i.e., it is a tree).

3.2 Modern Implementations

All the debuggers mentioned in the previous sections are somehow “standard”
in the sense that they are based on the standard definition of the ET (either the
refutation trees or the EDT). However, in the last 5 years, there has been a new
trend in AD tools: Researchers have implemented new techniques that go beyond
the standard definition of the ET. Contrarily to the previously described tools,
modern algorithmic debuggers are not standalone tools. They are plugins that
can be integrated as part of an IDE. Examples of these debuggers are JHyde [12]
and HDJ [11], being both of them part of Eclipse. Precisely because they are
integrated into a development environment, they have direct access to dynamic
information—they can even manipulate the JVM at runtime—that can be used
to enhance the debugging sessions. In particular, the following techniques go
beyond the standard ET: (i) Tree compression hides nodes of the ET (it breaks
the standard parent-child relation in the ET). (ii) Tree balancing introduces
new artificial nodes in the ET (it breaks the standard definition of ET node).
(iii) Loop expansion and (iv) ET zooming decompose ET nodes (they break the
standard definition of ET node). We are not aware of any definition of ET able
to represent the previous four techniques.

4 Paradigm-Independent Redefinition of Algorithmic
Debugging

Some of our last developments for AD cannot be formalized with the stan-
dard AD formulation. In a few cases, we just skipped the formalization of our
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technique and provided an implementation. In other cases we wanted to prove
some properties, and thus we formalized (for one specific language, e.g., Java)
the part of the system affected by those properties. Other developments were
done for other paradigms, e.g., the functional paradigm, and we also formalized
a different part of the system with different data structures. We have observed
the same behavior in other researchers, and clearly, this is due to the lack of a
standard solution.

We want to provide a definition of AD that is paradigm-independent (i.e.,
it can be used by either imperative- or declarative- languages). From the best
of our knowledge, there does not exist such a formal definition of AD. Hence,
in this section we formulate AD in an abstract way. The main generalization of
our new formulation is to consider that ET nodes are not necessarily routines as
in previous definitions (see, e.g., [24]). Contrarily, we allow ET nodes to contain
any piece of code. This permits AD to report any code as buggy, and not only
routines, thus potentially reducing the granularity of the reported errors to single
expressions.

In the following, we will only call Execution Tree to our new definition, and we
will call Routine Tree (RT) to the traditional definition (that we also formalize
in the next sections). Because our new definition is a conservative generalization,
the RT is a particular case of the ET as it can be observed in the UML model
of Fig. 3.

Fig. 3. UML model representing the structure of the execution tree

Observe that an execution node can be specialized depending on the piece
of code it represents. In particular, we specialize three kinds of execution nodes
named Routine Node, Projection Node, and Collapse Node. They correspond to
definitions that already exist in the literature (see [10,15]), but other kinds of
nodes could appear in the future.

4.1 The Execution Tree

In this section we introduce some notation and formalize the notion of Execution
Tree used in the rest of the paper. We want to keep the discussion and definitions
in this section paradigm-independent. Hence, we consider programs as state
transition systems.
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Definition 1 (Program). A program P = {W, I,R,C} consists of:

– W : A set of states.
– I: A set of starting states, such that I ⊆ W .
– R: A transition relation, such that R ⊆ W × W .
– C: A source code, composed of a set of statements.

Definition 2 (Computation). A computation is a maximal sequence of states
s1, s2, . . . such that:

– s1 is a starting state, i.e., s1 ∈ I.
– (si, si+1) ∈ R for all i ≥ 1 (and i ≤ n−1, if the sequence is of the finite length

n).

A finite segment si, si+1, . . . , sj where 1 ≤ i < j ≤ n is called a subcomputation.

In the source code of a program, we consider statements3 as the basic execution
unit. Therefore, in the following, the source code of a program P is a set of state-
ments st1, st2, . . . , stn that produces the computation s0, s1, . . . , sm for a given
starting state s0. We cannot provide a specific model of computation if we want
to be paradigm-independent, thus we do not define the relation between state-
ments and the transition relation R. This is possible (and convenient) thanks to
the abstract nature of algorithmic debugging. In particular, algorithmic debug-
ging only needs an initial state, a code, and a final state to identify bugs. No
matter how the code makes the transition from the initial state to the final state.
The user will decide whether this transition is correct or not.

Because the considered execution unit is the statement, it is possible to iden-
tify a bug in a single statement. This contrasts with traditional algorithmic
debugging where routines are the execution units, and thus a whole routine is
always reported as buggy.

We also use the notion of code fragment of a program P , which refers to any
subset of statements in the source code C of P that produces a subcomputation
si, . . . , sj with 0 ≤ i < j ≤ m. Code fragments often represent functions or
loops in a program, but they can also represent blocks, single statements, or
even function calls together with the whole called function.

Intuitively, not all the statements in a given code c that produces a computa-
tion C are actually executed. Some parts of the code are not needed to produce
the computation (e.g., because they are dead code, because some condition does
not hold, etc.). The projection of c modulo C is a subset of c where the unneeded
code in c to produce C has been removed. Projections are often computed with
dynamic slicing [30].

Definition 3 (Code Projection). Given a code fragment c and a computation
Cc = s0, . . . , sn produced by c from a given initial state s0, a projection of c
modulo Cc is a code fragment that contains the minimum subset of c needed to
produce the computation Cc.
3 Note the careful use of the word “statement” to refer to either imperative instruc-

tions, declarative expressions, etc.
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We assume that each state in W is composed of pairs variable-value. The initial
and final states, si and sj , describe the effects of a given code fragment c. All
three together form a code behavior.

Definition 4 (Code Behavior). Given a code fragment c and a computation
Cc = s0, . . . , sn produced by c from a given initial state s0, the code behavior of
Cc is a triple (s0,PCc

(c), sn), where PCc
(c) is the projection of c modulo Cc.

Code behavior corresponds to the questions asked by the debugger. These ques-
tions are along the lines of Should the code c with the initial state s0 produce
the final state sn?, or Code c produced sn from s0, is that correct? Many pre-
vious definitions of AD (see, e.g., [5,22]) define the code behavior as the triple
(s0, c, sn), which corresponds to the execution of a routine c, and usually the
debugger only needs to show the call to c instead of showing both the call to c
and the own routine c. Definition 4, however, introduces two important novelties:

– It allows c to be any code fragment, and not only a routine.
– It substitutes c by a projection of c modulo Cc, thus the code associated

with a code behavior only contains the code actually needed to produce that
behavior.

This dynamic notion is much more precise than the usual static notion that
considers (the complete code of) a routine.

Definition 5 (Intended Model). Given a program P = {W, I,R,C}, an
intended model M for P is a set of tuples (si,P(c), sj) where si, sj ∈ W and
P(c) is a projection of a code fragment c ⊆ C.

Each tuple of the form (si,P(c), sj) specifies that the execution of code P(c) from
state si leads to state sj . Intuitively, an intended model of a program contains
the set of code behaviors that are correct with respect to what the programmer
had in mind when he programmed these codes. It is used as a reference point
against which one can compare computations to determine whether they are
correct or wrong.
We are now in a position to define the nodes of an execution tree.

Definition 6 (Execution Node). Let P = {W, I,R,C} be a program. Let Cc

be a computation produced by a code fragment c ⊆ C. Let M be an intended
model for P . The execution node induced by Cc is a pair (B, S) where:

1. B is the code behavior of Cc, and
2. S is the state of the node, which can be either:

– undefined, or

– the correctness of B with respect to M:
{

correct if B ∈ M
wrong if B �∈ M

Observe that an execution node contains (inside B) the source code PCc
(c)

responsible of the computation it represents. Hence, if this node is eventually
declared as buggy, its associated code is uniquely identified. This definition of
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execution node is general enough as to represent previous nodes that are used
in different techniques. For instance, if the code of the node is a function, it can
be represented as a routine node. Similarly, projection nodes and collapse nodes,
introduced in [15], are special nodes that agglutinate the code of several other
nodes. Clearly, they are also particular cases of our general definition.

In order to properly define execution trees, we need to define first a relation
between execution nodes that specifies the parent-child relation.

Definition 7 (Execution Nodes Dependency). Let N be a set of execution
nodes. Given an execution node nc ∈ N induced by a computation Cc, and an
execution node nc′ ∈ N induced by a subcomputation Cc′ of Cc, we say that nc

directly depends on nc′ (expressed as nc
N→ nc′) if and only if there does not exist

an execution node nc′′ ∈ N induced by subcomputation Cc′′ of Cc, such that Cc′

is a subcomputation of Cc′′ .

Observe that this dependency relation is intransitive, which is needed to define
the parent-child relation in a tree. Hence, provided that we have three execution
nodes, n1, n2, n3, if n1

N→ n2
N→ n3 then n1 �N→ n3.

Example 2 Given the following program:
CODE:
x++; y++; x=x+y ;

and the initial state (x=1,y=2) we can generate the following execution nodes
(among others):
ET NODES:

( i n i t i a l s t a t e ) code ( end s t a t e )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

node 1 : ( x=1,y=2) x++; y++; x=x+y ; (x=5,y=3)
node 2 : ( x=1,y=2) x++; y++; (x=2,y=3)
node 3 : ( x=2,y=3) x=x+y ; (x=5,y=3)
node 4 : ( x=2,y=2) y++; (x=2,y=3)

with N={node 1, node 2, node 3, node 4}
we have node1 N→ node 2 N→ node 4 and node 1 N→ node 3

Finally, we define an execution tree. It essentially represents the execution of
a code in a structured way where each node represents a sub-execution of its
parent. Formally,

Definition 8 (Execution Tree). Let Cc be a computation produced by a code
fragment c. An Execution Tree (ET) of Cc is a tree T = (N,E) where:

– ∀n ∈ N , n is the execution node induced by a subcomputation of Cc,
– The root of the ET is the execution node induced by Cc,
– ∀(n1, n2) ∈ E . n1

N→ n2.

This definition is a generalization of the usual call tree (CT), which in turn
comes from the refutation trees initially defined for AD in [27,28]. One important
difference between them is that, given a computation Cc produced by a code
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fragment c, the CT associated with Cc is unique because it is only formed of
routine nodes. In contrast, there exist different valid ETs associated with Cc due
to the flexibility introduced by the execution nodes (i.e., with routine nodes only
one set N is possible, while with execution nodes different sets N are possible).
This flexibility of having several possible valid ETs to represent one computation
is interesting because it leaves room for transforming the ET and still being an
ET. Contrarily, the CT cannot be transformed because it would not be a CT
anymore.

Once the ET is built, the debugger traverses the ET asking the oracle about
the correctness of the information stored in each node. Using the answers, the
debugger identifies a buggy node that is associated with a buggy code of the
program. We can now formally define the notion of buggy node.

Definition 9 (Buggy Node). Let T = (N,E) be an execution tree. A buggy
node of T is an execution node n = (B,S) ∈ N where:

(i) S = wrong, and
(ii) ∀n′ = (B′,S ′) ∈ N , (n, n′) ∈ E. S ′ = correct.

Moreover, we say that a buggy node n is traceable if and only if:
(iii) ∀n′ = (B′,S ′) ∈ N , (n′, n) ∈ E∗. S ′ = wrong.

We use E∗ to refer to the symmetric and transitive closure of E. This is the usual
definition of buggy node (see, e.g., [23]): a wrong node with all its children cor-
rect. We also introduce the notion of traceable. Roughly, traceable buggy nodes
are those buggy nodes that may be directly responsible of the wrong behavior of
the program (their effects are visible in the root of the tree). This property makes
them debuggable by all AD strategies that are variants of Top-Down (see [29]).

Lemma 1 (Buggy Code). Let T be an ET with a buggy node ((s, d, s′),S)
whose children are ((s1, d1, s′

1),S1), ((s2, d2, s′
2),S2) . . . ((sn, dn, s′

n),Sn). Then,
d \ ⋃

1≤i≤n

di contains a bug.

Note that we use (s, d, s′) meaning (s,PCc
(c), s′) for some c, and \ is the set

difference operator.

Proof (Buggy Code). Trivial adaptation from the proof by Lloyd [17] for Prolog.

Lemma 1 illustrates what (buggy) code should be shown to the user. When a
buggy node is detected, the (buggy) code shown to the user is the code of the
buggy node minus the code of its children.

4.2 Routine Tree

In this section we formalize the notion of RT used in most AD literature as a
particular case of the ET. We call routine tree to this specialization of the ET to
make explicit its multi-paradigm nature, because routines can refer to functions,
procedures, methods, predicates, etc. We first define a routine node, which is a
specialization of an execution node.
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Definition 10 (Routine Node). A routine node is an execution node
((s0,PCc

(c), sn),S) where code fragment c only contains:

– a routine call r, together with
– all the code of the routines directly or indirectly called from r.

Therefore, in a routine node, s0 and sn are, respectively, the states just before
and after the execution of the called routine. Almost all implementations reduce
c to the routine call, and they skip the code of the own routine.

Definition 11 (Routine Tree). A routine tree is an execution tree where all
nodes are routine nodes.

4.3 Search Strategies for AD

Once the ET is built, AD uses a search strategy to select one node. During
many years, the main goal of most AD researchers has been the definition of
better strategies to reduce the search space after every answer, and to reduce
the complexity of the questions. A survey of search strategies for AD can be
found in [29]. In our formalization, a search strategy is just a function that
analyzes the ET and returns an execution node (either the next node to ask, or
a buggy node).

Definition 12 (Strategy). A search strategy is a function whose input is an
execution tree T = (N,E) and whose output is an execution node n = (B,S) ∈ N
such that:

1. S = undefined, or
2. n is a buggy node.

4.4 AD Transformations

Some of the last research developments in AD have focussed on the definition of
transformations of the ET. The goal of these transformations is to improve the
structure of the ET before the debugging session starts, so that search strategies
become more efficient. Some of these transformations cannot be applied to a
routine tree. For this reason, we include this section to classify the kinds of
transformations that have been defined so far, and establish a hierarchy so that
future transformations can be also classified in.

There exist three essential elements in the front-end of an algorithmic debug-
ger. The modification of any of them can lead to a different final output of the
front-end (i.e., a different ET). Therefore, we classify the transformations in
three different levels:

– Transformations of the source code: Transformations of the source code such
as inlining are used to reduce the size of the ET by hiding routines. Contrar-
ily, transformations such as loops to recursion [14] are used to augment the
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size of the ET to reduce the granularity of the reported buggy code (a loop
instead of a routine). In general, users should not be aware of the internal
transformations applied by the debugger, thus the code fragment shown to
the user should be the original code.

– Transformations of the execution: Transforming the way in which the source
code is executed can change the generated ET. One example is changing eager
evaluation by lazy evaluation. Another example is passing arguments by value
instead of passing them by reference. We are not aware of any implementation
that includes this kind of transformations.

– Transformations of the ET : Transforming the ET can significantly reduce the
number of questions generated. In general, the ET is transformed with the aim
of making search strategies to behave as a dichotomic search. Hence, they try
to produce balanced ETs [15], or also deep trees that can be cut in the middle.
Other transformations such as Tree compression [9] try to avoid the repetition
of questions about the same routine, or try to improve the understandability
of questions. This is the case of the Node simplification transformation, which
reduces all terms to normal form [6].

Fig. 4. AD transformations hierarchy

In Fig. 4 we classify four AD transformations already available in the state
of the art. Two of them, tree balancing and loop expansion produce ETs that
are not routine trees.

4.5 An AD Scheme

Finally, we describe Algorithm 1, a general schema of an algorithmic debugger
that includes all phases, from the generation of the ET to the reported bug.
This algorithm gives an idea of how and when, the ET, the transformations, the
oracle, and the search strategies participate in the whole debugging process.
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Algorithm 1. Main algorithm of an Algorithmic Debugger
Input: A program P and its input i.
Output: A buggy code c in P , or ⊥ if no bug is detected in P .
Initializations: A = ∅ // Set of answers provided by the oracle

begin
1) T = getExecutionTree(P, i)
2) n = debugTree(T )
3) return getCode(n, T )

end

function debugTree(T = (N,E))
begin
1) while (∃(B′,S′) ∈ N,S′ = undef ∨ wrong)
2) (B,S) = selectNode(T ) // Strategy
3) if (S = wrong) then
4) return (B,S)
5) answer = askOracle(B)
6) A = A ∪ (B, answer)
7) updateStates(A, N)
8) T = executionTreeTransformations(T )
9) return ⊥

end

function getExecutionTree(P, i)
begin
1) P ′ = sourceCodeTransformations(P )
2) EP ′ = executeProgram(P ′, i)
3) E′

P ′ = executionTransformations(EP ′ )
4) T = generateExecutionTree(E′

P ′ )
5) T ′ = executionTreeTransformations(T )
6) return T ′

end

function getCode(n, T = (N,E))
begin
1) if (n = ((s0, d, sn),S)) then
2) return d \ ⋃

(n,((s′
0,di,s

′
n),S′))∈E

di

3) return ⊥
end

The main function performs the two phases of AD (Lines 1-2) and then
returns a buggy code of the program (Line 3). In the first phase (getExecution-
Tree function) the ET is created performing all possible transformations in the
source code (Line 1), in the execution (Line 3) and in the ET (Line 5). Once the
ET is created, the second phase (debugTree function) starts. During this phase,
the debugger traverses the ET selecting nodes with a search strategy (Line 2).
The selectNode function is an implementation of one of the search strategies in
the literature. There has been a lot of research for more than a decade concern-
ing which should be the node to ask. A survey can be found in [29]. No matter
what strategy is used, selectNode returns a node to ask (the state of the node
is undefined), or a buggy node (the state of the node is wrong (Line 3)). Once
a node has been selected, the debugger asks the oracle about its correctness
(Line 5). The oracle provides the intended interpretation to the algorithm. With
the answer of the oracle, the debugger updates the state of the nodes of the
ET (Lines 5-7). Note that the answer of the oracle can affect the state of sev-
eral nodes. This effectively changes the information of the ET, and thus, at this
moment, a new ET transformation could be used to optimize the ET (Line 8).
Then, the process is repeated selecting more nodes. When the strategy finds
a buggy node (Lines 3-4) or it cannot select more nodes (Line 1) the second
phase finishes and the debugger returns (see getCode function) the buggy code
associated with the found buggy node (see Lemma 1), or it returns a message
indicating that there does not exist a bug (it is indicated with ⊥ in Line 3),
respectively. The last case happens, e.g., when all nodes are reported as correct .

5 Conclusion

In this paper we report about some of the problems identified in the current
state of the art of AD. One of the problems identified is that much of the recent
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work in the area does not fit into the standard notions and definitions of AD. In
particular, we claim that practically all current definitions of the ET are obsolete
with respect to the new proposed techniques.

To solve this situation we propose a generalization of AD able to represent all
existent AD transformations. We make this abstraction considering theoretical
developments done for a particular language or technique that are generalized,
but also considering novel implementations of AD that include techniques that
have not been formalized.

The main objectives of this work are two: First, putting together different
ideas that have appeared in many works of AD. Putting these ideas together pro-
vides a wide perspective that allows us to make a step forward in the abstraction
and generalization of the theoretical side of AD. In addition, it allows for classi-
fications and taxonomies to help understanding the state of the art. Second, our
new formulation of AD tries to save time. Many researchers have defined once
and again similar concepts used in different languages and tools. We provide a
paradigm-independent definition that is general enough to represent all current
techniques, and it can be easily instantiated to any particular language.

Our plan for the immediate future work is to extend the model to also con-
sider concurrency. Our ETs can represent concurrency, but Algorithm 1 com-
pletely ignores it. We want to study how concurrency should be represented,
asked about, answered, and presented to the user when a bug is found. We will
initially implement a debugger for concurrent programs. Then, we will try to
generalize the model.
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Abstract. Concolic execution, a combination of concrete and symbolic
execution, has become increasingly popular in recent approaches to model
checking and test case generation. In general, an interpreter of the lan-
guage is augmented in order to also deal with symbolic values. In this
paper, in contrast, we present an alternative approach that is based on
a program instrumentation. Basically, the execution of the instrumented
program in a standard environment produces a sequence of events that
can be used to reconstruct the associated symbolic execution.

1 Introduction

Software testing is one of the most widely used approaches for program valida-
tion. In this context, symbolic execution [8] was introduced as an alternative to
random testing—which usually achieves a poor code coverage—or the complex
and time-consuming design of test-cases by the programmer or software tester.
In symbolic execution, one replaces the input data by symbolic values. Then, at
each branching point of the execution, all feasible paths are explored and the
associated contraints on symbolic values are stored. Symbolic states thus include
a so called path condition with the constraints stored so far. Test cases are finally
produced by solving the constraints in the leaves of the symbolic execution tree,
which is typically incomplete since the number of states is often infinite.

Unfortunately, both the huge search space and the complexity of the con-
straints make test case generation based on symbolic execution difficult to scale.
For instance, as soon as the path condition cannot be proved satisfiable, the
execution of this branch is terminated in order to ensure soundness, giving rise
to a poor coverage in many cases.

Concolic execution [4,11] is a recent proposal that combines concrete and
symbolic execution, and overcomes some of the drawbacks of previous approaches.
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Essentially, concolic execution takes a program and some (initially random) con-
crete input data, and performs both a concrete and a symbolic execution that
mimics the steps of the concrete execution. In this context, symbolic execution
is simpler since we know the execution path that must be followed (the same
of the concrete execution). Moreover, if the path condition becomes too com-
plex and the constraint solver cannot prove its satisfiability, we can still push
some concrete data from the concrete execution, thus simplifying it and often
allowing the symbolic execution to continue. This technique forms the basis of
some model checking and test-case generation tools (see, e.g., SAGE [5] and Java
Pathfinder [10]). Test cases produced with this technique usually achieve a bet-
ter code coverage than previous approaches based solely on symbolic execution.
Moreover, it scales up better to complex or large programs.

Despite its popularity in the imperative and object-oriented programming
paradigms, we can only find a few preliminary approaches to concolic execution
in the context of functional and logic programming. To the best of our knowl-
edge, the first approach for a high-level declarative programming language is
[13], which presented a concolic execution scheme for logic programs, which was
only aimed at a simple form of statement coverage. This approach was later
extended and improved in [9]. In the context of functional programming, [12]
introduced a formalization of both concrete and symbolic execution for a simple
subset of the functional and concurrent language Erlang [1], but the concolic
execution procedure was barely sketched. More recently, [3] presented the design
and implementation of a concolic testing tool for a complete functional subset of
Erlang (i.e., the concurrency features are not considered in the paper). The tool,
called CutEr, is publicly available from https://github.com/aggelgian/cuter.

However, the essential component of all these approaches is an interpreter
augmented to also deal with symbolic values. In contrast, in this paper, we con-
sider whether concolic execution can be performed by program instrumentation.
We answer positively this question by introducing an stepwise approach based
on flattening the initial program so that the return value of every expression is
a pattern, and then instrumenting the resulting program so that its execution
outputs a stream of events which suffice to reconstruct the associated symbolic
execution. The main advantage w.r.t. the traditional approach to concolic exe-
cution is that the instrumented program can be run in any environment, even
non-standard ones. For instance, one could run the instrumented program in
a model checking environment like Concuerror [6] so that its execution would
produce the sequences of events for all relevant interleavings, which might be
useful for combining concolic testing and model checking.

The paper is organized as follows. Section 2 presents the considered language.
Then, in Sect. 3, we present the instrumented semantics that outputs a sequence
of events for each concrete execution. Section 4 introduces a program instru-
mentation that produces the same sequence of events but using the standard
semantics. Section 5 presents a Prolog procedure for reconstructing the associ-
ated symbolic execution from the sequence of events. Finally, Sect. 6 concludes
and points out some directions for further research.

https://github.com/aggelgian/cuter
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pgm ::= a/n = fun (X1, . . . , Xn) → e. | pgm pgm

Exp � e ::= a | X | [ ] | [e1|e2] | {e1, . . . , en} | apply e0 (e1, . . . , en)
| case e of clauses end | let p = e1 in e2 | do e1 e2

clauses ::= p1 → e1; . . . ; pn → en

Pat � p ::= [p1|p2] | [ ] | {p1, . . . , pn} | a | X

Value � v ::= [v1|v2] | [ ] | {v1, . . . , vn} | a

Fig. 1. Core erlang syntax

2 The Language

In this section, we introduce the language considered in this paper. Our language
is inspired in the concurrent functional language Erlang [1], which has a number
of distinguishing features, like dynamic typing, concurrency via asynchronous
message passing or hot code loading, that make it especially appropriate for dis-
tributed, fault-tolerant, soft real-time applications. Erlang’s popularity is grow-
ing today due to the demand for concurrent services. But this popularity will
also demand the development of powerful testing and verification techniques,
thus the opportunity of our research.

Despite the fact that we plan to deal with full Erlang in the future, in this
paper we only consider a functional subset of Core Erlang [2], an intermediate
language used internally by the compiler.

The basic objects of the language are variables (denoted by X,Y, . . . ∈ Var),
atoms (denoted by a, b, . . . ) and constructors (which are fixed in Erlang to lists,
tuples and atoms); defined functions are named using atoms too (we will use,
e.g., f/n, g/m,. . . ). The syntax for Core Erlang programs and expressions obeys
the rules shown in Fig. 1. Programs are sequences of function definitions. Each
function f/n is defined by a rule fun (X1, . . . , Xn) → e. where X1, . . . , Xn are
distinct variables and the body of the function, e, can be an atom, a process
identifier, a variable, a list, a tuple, a function application, a case distinction,
a let expression or a do construct (i.e., do e1 e2 evaluates sequentially e1 and,
then, e2, so the value of e1 is lost). Patterns are made of lists, tuples, atoms, and
variables. Values are similar to patterns but cannot contain variables.

Example 1. Consider the Erlang function (left) and its translation to Core Erlang
(right) shown in Fig. 2, where some minor simplifications have been applied.
Observe that Erlang’s sequence operator “,” is translated to a do operator when
no value should be passed (using pattern matching) to the next elements in the
sequence, and to a let expression otherwise. Note also that, despite the fact that
this is not required by the syntax, some function applications are flattened in
order to avoid nested applications. For this purpose, some additional let expres-
sions are introduced. Moreover, additional default alternatives are added to each
case expression in order to catch pattern matching errors, so it is common to
have overlapping patterns in the clauses of a case construct.
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f(X, Y ) → g(X),
case h(X) of

a → A = h(Y ),
g(A);

b → g(h([ ]))
end.

f/2 = fun (X, Y ) → do apply g/1 (X),
case apply h/1 (X) of

a → let Z = apply h/1 (Y )
in apply g/1 (Z);

b → let V = apply h/1 ([ ])
in apply g/1 (V );

W → fail
end.

Fig. 2. Erlang function and its translation to Core Erlang

pgm ::= a/n = fun (X1, . . . , Xn) → let X = e in X. | pgm pgm

Exp � e ::= a | X | [ ] | [p1|p2] | {p1, . . . , pn} | let p = e1 in e2 | do e1 e2
| let p = apply p0 (p1, . . . , pn) in e | let p1 = case p2 of clauses end in e

clauses ::= p1 → e1; . . . ; pn → en

Pat � p ::= [p1|p2] | [ ] | {p1, . . . , pn} | a | X

Value � v ::= [v1|v2] | [ ] | {v1, . . . , vn} | a

Fig. 3. Flat language syntax

As we will see later, for our instrumentation to be correct, we require some addi-
tional constraints on the syntax of programs. Basically, we require the following:

– both the name and the arguments of a function application must be patterns,
– the return value of a function must be a pattern,
– the argument of a case expression must be a pattern, and
– both function applications and case expressions can only occur in the right-

hand side of a let expression.

The new constraints are needed in order to keep track of the intermediate values
returned by expressions. These values are stored in a pattern, which can then
be used by other expressions or returned as the result of a function application.

The restricted syntax is shown in Fig. 3. In the following, we call the programs
fulfilling this syntax flat programs. In practice, one can transform (purely func-
tional) Core Erlang programs to our flat syntax using a simple pre-processing
transformation. Furthermore, in the flat language we also require the bound vari-
ables in the body of the functions to have unique, fresh names. This is not strictly
necessary, but it simplifies the presentation by avoiding the use of context scopes
associated to every let expression, etc. (as in [7], where the last binding of a vari-
able in the environment should be considered to ensure that the right scope is
used). We denote with on a sequence of objects o1, . . . , on. Var(e) denotes the
set of variables appearing in an expression e, and we say that e is ground if
Var(e) = ∅.

In the following, we use the function bv to gather the bound variables of an
expression:
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Definition 1 (Bound Variables, bv). Let e be an expression. The function
bv(e) returns the set of bound variables of e as follows:

bv(e) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{ } if e ∈ Pat

Var(p) ∪ bv(e′) if e ≡ let p = apply p0 (p1, . . . , pn) in e′

Var(p0) ∪ . . . ∪ Var(pn) if e ≡ let p0 = case p of pn → en end in e′

∪ bv(e1) ∪ . . . ∪ bv(e′)

Var(p) ∪ bv(e1) ∪ bv(e2) if e ≡ let p = e1 in e2

bv(e1) ∪ bv(e2) if e ≡ do e1 e2

where, in the fourth case, we assume that e1 is neither an application nor a case
expression (i.e., it is a pattern or another let expression).

3 Instrumented Semantics

In this section, we present an instrumented semantics for flat programs that
produces a sequence of events that will suffice to reconstruct the associated
symbolic execution. Essentially, we need to keep track of function calls, returns,
let bindings and case selections.

First, let us note that the produced events will not show the actual run time
values of the program variables, since they will not help us to reconstruct the
associated symbolic execution. Rather, the events always include the static vari-
able names. Therefore, in order to avoid variable name clashes, we will consider
that variable names are local to every event. As a consequence, the two first
elements of all events are params and vars denoting the list of parameters and
the list of bound variables in the current function, respectively. These elements
will be matched with the current values in the symbolic execution built so far in
order to set the right environment for the operation represented by the event.
See Sect. 5 for more details.

We consider the following events, which will suffice to reconstruct the sym-
bolic execution:

– The first event, call(params,vars,p, [p1, . . . , pn]), is associated to a function
application let p = apply p0 (p1, . . . , pn) in e. Here, [p1, . . . , pn] are the argu-
ments of the function call, and p will be used to store the return value of the
function call.

– The second event is exit(params,vars,p), where p is the pattern used to store
the return value of the function body. We will produce an exit event at the
end of every function.

– The next event is bind(params, vars, p, p′), which binds the pattern p from
a generic let expression (i.e., a let expression whose argument is neither an
application nor a case expression) to the return value p′ of that expression
(see function ret below).

– Finally, for each expression of the form

let p = case p0 of p1 → e1; . . . ; pn → en end in e
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we have two associated events. The first one is

case(params, vars, i, p0, pi, [(1, p0, p1), . . . , (n, p0, pn)])

Here, we store the position of the selected branch, i, the case argument p0,
the selected pattern pi, as well a list with all case branches, which will become
useful for producing alternative input data in the context of concolic testing.
The second event is exitcase(params,vars,p, p′), where p′ is the return value of
the selected branch (see below).

Before presenting the instrumented semantics, we need the following auxiliary
function that identifies the return value of an expression:

Definition 2 (Return Value, ret). Let e be an expression. We let ret(e) denote
the return value of e as follows:

ret(e) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e if e ∈ Pat
ret(e′) if e ≡ let p = apply p0 (p1, . . . , pn) in e′

ret(e′) if e ≡ let p0 = case p of pn → en end in e′

ret(e2) if e ≡ let p = e1 in e2
ret(e2) if e ≡ do e1 e2

where, in the fourth case, we assume that e1 is neither an application nor a case
expression (i.e., it is a pattern or another let expression).

Note that function ret is not well defined for arbitrary programs, e.g., ret(let p =
e in apply e0 (e1, . . . , en)) is undefined. Extending the definition to cover this case
would not help too since returning an expression which is not a pattern—like
apply e0 (e1, . . . , en)—would not be useful to reconstruct the symbolic execution
(where the program is not available, only the sequence of events). This is why
we transform the original programs to the flat form. In this case, it is immediate
to see from the syntax in Fig. 3 that ret would always return a pattern for all
program expressions.

The instrumented semantics for flat programs is formalized in Fig. 4 follow-
ing the style of a natural (big-step) semantics [7]. Observe that we do not need
closures (as it is common in the natural semantics) since we do not allow fun
expressions in the body of a function in this paper. Here, we use an environ-
ment θ—i.e., a mapping from variables to patterns—because we need to know
the static values of the variables for the instrumentation (e.g., we use the case
argument that appears statically in the program, rather than the instantiated
run time value). The main novelty is that, for the instrumentation, we also need
to keep track of the function where an expression occurs. For this purpose, we
also introduce a simple context π that stores this information, i.e., for a given
function fun (X1, . . . , Xn) → e we store a tuple 〈[X1, . . . , Xn], [bv(e)]〉. The envi-
ronment is only updated in function applications, where [bv(e)] denotes a list
with the variables returned by bv(e).

Let us briefly explain the rules of the semantics. Statements have the form
π, θ 	 e ⇓τ p, where π is the aforementioned context, θ is a substitution (the
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π, θ � p ⇓ε pθ

〈vs, ps〉, θ � p0 ⇓ε f/m . . . 〈vs, ps〉, θ � pm ⇓ε p′
m

〈[Ym], [bv(e2)]〉, θ ∪ σ � e2 ⇓τ1 p′ 〈vs, ps〉, θ ∪ σ′ � e ⇓τ2 p′′

〈vs, ps〉, θ � let p = apply p0 (pm) in e ⇓call(vs,ps,p,[pm])+τ1+exit([Ym],[bv(e2)],p
′′
2 )+τ2

p′′

if f/m = fun (Ym) → e2 ∈ pgm, ret(e2) = p′′
2 ,

match(Ym, p′
m) = σ, match(p, p′) = σ′

〈vs, ps〉, θ � p0 ⇓ε p′
0 〈vs, ps〉, θ ∪ σ � ei ⇓τ1 p′

i 〈vs, ps〉, θ ∪ σ′ � e ⇓τ2 p′

〈vs, ps〉, θ � let p = case p0 of clauses end in e ⇓case(vs,ps,i,p0,pi,alts)+τ1+exitcase(vs,ps,p,p′
i)+τ2 p′

if clauses = p1 → e1; . . . ; pm → em, cmatch(p′
0, clauses) = (i, pi, σ),

alts = [(1, p0, p1), . . . , (m, p0, pm)], ret(ei) = p′
i, match(p, p′

i) = σ′

π, θ � e1 ⇓τ1 p′
1 π, θ ∪ σ � e2 ⇓τ2 p

π, θ � let p1 = e1 in e2 ⇓τ1+bind(vs,ps,p1,ret(e1))+τ2 p
if match(p1, p

′
1) = σ

π, θ � e1 ⇓τ1 p1 π, θ � e2 ⇓τ2 p2

π, θ � do e1 e2 ⇓τ1+τ2 p2

Fig. 4. Flat language instrumented semantics

environment), e is an expression, τ is a sequence of events, and p is a pattern—
the value of e.

The first rule deals with patterns (including variables, atoms, tuples and
lists). Here, the evaluation just proceeds by applying the current environment
θ to the pattern p to bind its variables (if any), which is denoted by pθ. The
associated sequence of events is ε denoting an empty sequence.

The next rule deals with function applications. In this case, the context is nec-
essary for setting the first and second parameters of call and exit events. Note that
since we only consider flat programs, both the function name and the arguments
are patterns; thus, their evaluation amounts to binding their variables using the
current environment, which explains why the associated sequences of events are ε.
Note also that, when recursively evaluating the body of the function, we update
the context with the information of the function called. The bound variables are
collected using the function bv; and, as mentioned before, in the flat language we
assume that they all have different, fresh names. Observe that the subcomputa-
tion for evaluating the body of the function called is preceded by the call event and
followed by an exit event. Here, we use the auxiliary function match to compute
the matching substitution (if any) between two patterns, i.e., match(p1, p2) = σ if
Dom(σ) ⊆ Var(p1) and p1σ = p2, and fail otherwise. In this rule, match(Ym, p′

m)
just returns the substitution {Y1 �→ p′

1, . . . , Ym �→ p′
m}. The update of an environ-

ment θ using σ is denoted by θ ∪ σ. Formally, θ ∪ σ = δ such that Xδ = σ(X) if
X ∈ Dom(σ) and Xδ = Xθ otherwise (i.e., σ has higher priority than θ). Observe
that we use the evaluated patterns p′

1, . . . , p
′
m to update the environment, but the

original, static patterns p1, . . . , pm in the call event.
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The next rule is used to evaluate case expressions. Here, we produce case
and exitcase events that also include the parameter variables of the function and
the bound variables. For selecting the matching branch of the case expression,
we use the auxiliary function cmatch that is defined as follows: cmatch(p, p1 →
e1; . . . ; pn → en) = (i, pi, σ) if match(p, pi) = σ for some i ∈ {1, . . . , n} and
match(p, pj) = fail for all j < i. Informally speaking, cmatch selects the first
matching branch of the case expression, which follows the usual semantics of
Erlang. As in the previous rule, note that we use p′

0 in cmatch but the original,
static pattern p0 in the case event.

The following rule is used to evaluate let expressions. It produces a single
bind event which includes, as usual, the parameter variables of the function and
the bound variables. Finally, the last rule deals with do expressions. Here, we
proceed as expected and return the concatenation of the sequences of events
produced when evaluating the subexpressions.

In the following, without loss of generality, we assume that the entry point
to the program is always the distinguished function main/n.

Definition 3 (Instrumented Execution). Given a flat program pgm and an
initial expression, apply main/n (p1, . . . , pn), with main/n = fun (X1, . . . , Xn) →
e ∈ pgm, its evaluation is denoted by 〈[Xn], [bv(e)]〉, θ 	 e ⇓τ v, where θ =
{X1 �→ p1, . . . , Xn �→ pn} is a substitution, v is the computed value and τ +
exit([Xn], [bv(e)], ret(e)) is the associated sequence of events.

Example 2. Let us consider the flat program shown in Fig. 5. An example com-
putation for apply main/1 ([a]) with the instrumented semantics is shown in
Fig. 6. Therefore, the associated sequence of events1 is the following:

call([X], [W ],W, [X,X])
case([X,Y ], [W1,H, T,W2], 2,X, [H|T ], [(1,X, [ ]), (2,X, [H|T ])])
call([X,Y ], [W1,H, T,W2],W2, [T, Y ])
case([X,Y ], [W1,H, T,W2], 1,X, [ ], [(1,X, [ ]), (2,X, [H|T ])])
exitcase([X,Y ], [W1,H, T,W2],W1, Y )
exit([X,Y ], [W1,H, T,W2],W1)
exitcase([X,Y ], [W1,H, T,W2],W1, [H|W2])
exit([X,Y ], [W1,H, T,W2],W1)
exit([X], [W ],W )

Let us remind that variable names are local to each event. Also, observe that
the events do not need to store the names of the invoked functions since we are
only interested in the sequence of pattern matching operations, as we will see in
Sect. 5.

Note that the semantics is a conservative extension of the standard semantics
in the sense that the generation of events does not affect the evaluation, i.e., if we
1 Note that the flat program is not syntactically correct according to Fig. 3 since the

right-hand side of the functions do not have the form let X = e in X with e a pattern,
a let binding or a do expression. Here, we keep this simpler formulation for clarity,
and it also simplifies the sequence of events by avoiding some redundant bind events.
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main/1 = fun (X) → let W = apply app/2 (X, X) in W

app/2 = fun (X, Y ) → let W1 = case X of
[ ] → Y
[H|T ] → let W2 = apply app/2 (T, Y ) in [H|W2]

end
in W1

Fig. 5. Example flat program

remove the context information and the events labeling the arrows, we are back
to the standard semantics of an eager functional language essentially equivalent
to that in [7].

We will show a method for constructing the associated symbolic execution
(as well as its potential alternatives) in Sect. 5.

4 Program Instrumentation

In this section, we present a program transformation that instruments a program
so that its standard execution will return the same sequence of events produced
with the original program and the instrumented semantics of Fig. 4.

For this purpose, we introduce the predefined function out, which outputs
its first argument (e.g., to a given file or to the standard output) and returns
its second argument. This function is implemented as a function call (i.e., not
as a function application) so that there is no conflict when performing the
instrumentation.

Definition 4 (Program Instrumentation). Let pgm be a flat program. We
instrument pgm by replacing each function definition:

f/k = fun (X1, . . . , Xk) → let X = e in X

with a new function definition of the form

f/k = fun (X1, . . . , Xk) → [[let X = e in out(“exit(vs, bs,X)”,X)]]vs,ps
F

where vs = [Xk], ps = [bv(e)], F is a flag to determine if an exitcase event should
be produced when a pattern is reached (see below), and the auxiliary function [[ ]]
is shown in Fig. 7.

Let us briefly explain the rules of the instrumentation. First, we add an exit
event at the end of each function. An additional bind event is also required when
the expression e is neither a function application nor an case expression in order
to explicitly bind X to the return expression of e (for function applications and
case expressions this is already done in the exit and exitcase events, respectively).
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π2, θ4 � Y ⇓ε [a] π2, θ5 � W1 ⇓ε [a]

π2, θ4 � let W1 = case . . . ⇓τ1 [a] π2, θ6 � [H|W2] ⇓ε [a, a]

π2, θ3 � let W2 = apply . . . ⇓τ2 [a, a] π2, θ7 � W1 ⇓ε [a, a]

π2, θ2 � let W1 = case . . . ⇓τ3 [a, a] π1, θ8 � W ⇓ε [a, a]

π1, θ1 � let W = apply app/2 (X, X) in W ⇓τ4 [a, a]

with

π1 = 〈[X], [W ]〉 and π2 = 〈[X, Y ], [W1, W2H, T ]〉
θ1 = {X 
→ [a]} θ2 = {X 
→ [a], Y 
→ [a]}
θ3 = {X 
→ [a], Y 
→ [a], H 
→ a, T 
→ [ ]} θ4 = {X 
→ [ ], Y 
→ [a]}
θ5 = {X 
→ [ ], Y 
→ [a], W1 
→ [a]} θ6 = {X 
→ [a], Y 
→ [a], H 
→ a, T 
→ [ ], W2 
→ [a]}
θ7 = {X 
→ [a], Y 
→ [a], W1 
→ [a, a]} θ8 = {X 
→ [a], W 
→ [a, a]}

τ1 = case([X, Y ], [W1, W2], 1, X, [ ], [(1, X, [ ]), (2, X, [H|T ])])
+exitcase([X, Y ], [W1, W2], W1, Y )

τ2 = call([X, Y ], [W1, W2], W2, [T, Y ]) + τ1 + exit([X, Y ], [W1, W2], W1)

τ3 = case([X, Y ], [W1, W2], 2, X, [H|T ], [(1, X, [ ]), (2, X, [H|T ])]) + τ2
+exitcase([X, Y ], [W1, W2], W1, [H|W2])

τ4 = call([X], [W ], W, [X, X]) + τ3 + exit([X, Y ], [W1, W2], W1)

Fig. 6. Example computation with the instrumented semantics

[[e]]vs,ps
F = e if e ∈ Pat

[[e]]vs,ps
T(p) = out(“exitcase(vs, ps, p, e)”, e) if e ∈ Pat

[[let p = apply p0 (pn) in e]]vs,ps
b = let p = out(“call(vs, ps, p, [p1, . . . , pn])”,

apply p/0 (p1, . . . , pn) )
in [[e]]vs,ps

b

[[let p = case p0 of = let p = case p0 of
p1 → e1; p1 → out(“case(vs, ps, 1, p0, p1, alts)”,

[[e1]]
vs,ps
T(p) )

. . . . . .
pn → en pn → out(“case(vs, ps, n, p0, pn, alts)”,

[[en]]vs,ps
T(p) )

end end
in e]]vs,ps

b in [[e]]vs,ps
b

[[let p = e1 in e2]]
vs,ps
b = let p = [[e1]]

vs,ps
F in out(“bind(vs, ps, p, ret(e1))”,

[[e2]]
vs,ps
b )

[[do e1 e2]]
vs,ps
b = do [[e1]]

vs,ps
F [[e2]]

vs,ps
b

[[e]]vs,ps
b = e otherwise

where alts = [(p0, 1, p1), . . . , (p0, n, pn)]

Fig. 7. Program instrumentation
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Then, we also add call and case events in each occurrence of a function appli-
cation and a case expression, respectively. Finding the value returned by a case
expression is a bit more subtle. For this purpose, we introduce a flag that is
propagated through the different cases so that only when the expression is the
last expression in a case branch (a pattern) we produce an exitcase event. For let
expressions, we produce a bind event and continue evaluating both the expression
in the right-hand side of the binding and the result. Finally, the default case—the
last equation in Fig. 7—is only used to ignore the call to the predefined function
out/2.

Example 3. Consider again the flat program of Example 2. The instrumented
program is shown in Fig. 8.

main/2 = fun (X) → let W = out(“call([X], [W ], W, [X, X])”,
apply app/2 (X, X))

in out(“exit([X], [W ], W )”,W )

app/2 = fun (X, Y ) →
let W1 = case X of

[ ] → out(“case([X, Y ], [W1, W2, H, T ], 1, X, [ ], alts)”,
out(“exitcase([X, Y ], [W1, W2, H, T ], W1, Y )”,Y ))

[H|T ] → out(“case([X, Y ], [W1, W2, H, T ], 2, X, [H|T ], alts)”,
let W2 = out(“call([X, Y ], [W1, W2, H, T ], W2, [T, Y ])”,

apply app/2 (T, Y )))
in out(“exitcase([X, Y ], [W1, W2, H, T ], W1, [H|W2])”,

[H|W2])
in out(“exit([X, Y ], [W1, W2, H, T ], W1)”,W1)

where alts = [(1, X, []), (2, X, [H|T ])].

Fig. 8. Instrumented program

It can easily be shown that the instrumented program produces the same
sequence of events of Example 2, e.g., by executing the program in the standard
environment of Erlang (together with an appropriate definition of out/2).

The correctness of the program instrumentation is stated in the next result:

Theorem 1. Let pgm be a flat program and pgmI its instrumented version
according to Definition 4. Given an initial expression, apply main/n (p1, . . . , pn),
its execution using pgm and the instrumented semantics (according to
Definition 3) produces the same sequence of events as its execution using pgmI

and the standard semantics.

Proof. We prove that for all program expressions, e, we have that 〈vs, ps〉, θ 	
e ⇓τ p implies θ 	 [[e]]vs,ps

F ⇓ p with the standard semantics2 and, moreover,
2 Here, we consider that the standard semantics is that of Fig. 4 without the events

labeling the transitions.
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it outputs the same sequence of events τ . The claim of the theorem is an easy
consequence of this property. We prove the claim by induction on the depth k
of the proof tree with the instrumented semantics.

Since the base case k = 0 is trivial (the rule to evaluate a pattern is the same
in both cases), we now consider the inductive case k > 0. We distinguish the
following cases depending on the applied rule from the semantics of Fig. 4:

– The first rule of the semantics is not applicable since the depth of the proof
is k > 0.

– If the applied rule is the second one (to evaluate a function call), then the
considered transition has the form

〈vs, ps〉, θ 	 let p = apply p0 (pm) in e ⇓τ p′′

with τ = call(vs, ps, p, [pm])+τ1+exit([Ym], [bv(e2)], p′′
2)+τ2. The instrumented

expression is thus
[[let p = apply p0 (pm) in e]]vs,ps

b

Following the rules of Fig. 7, this is transformed to

let p = out(“call(vs, ps, p, [pm])”, apply p0 (pm)) in [[e]]vs,ps
b

such that the execution of this instrumented code will first output the event
call(vs, ps, p, [pm]) similarly to the instrumented semantics. By the induction
hypothesis, the evaluation of p0, . . . , pm and e with the instrumented seman-
tics produces the same values and outputs the same events than with their
instrumented versions with the standard semantics. Let us now consider that
p0 evaluates to function f/m, whose definition is as follows: f/m = fun Ym →
let X = e in X. In the instrumented program, the same function has the form

f/m = fun (X1, . . . , Xm) → [[let X = e in out(“exit(vs, bs,X)”,X)]]vs′,ps′

F

vs′ = [Ym] and ps′ = [bv(e)]. By the induction hypothesis, we know that the
sequence of events for let X = e in X in the instrumented semantics, is the
same as that of [[ let X = e in X]]vs′,ps′

F , therefore the claim follows.
– If the applied rule is the second one (to evaluate a function call), then the

considered transition has the form

〈vs, ps〉, θ 	 let p = case p0 of clauses end in e ⇓τ p′
0

with clauses = pl → el and

τ = case(vs, ps, i, p0, pi, alts) + τ1 + exitcase(vs, ps, p, p′
i) + τ2

The instrumented expression is thus

[[let p = case p0 of clauses end in e]]vs,ps
b

which is transformed to

let p = case p0 of clauses ′ end in [[e]]vs,ps
b
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with clauses′ = out(“case(vs, ps, l, p0, pl, alts)′′, [[el]]
vs,ps
T(p) ). By the induction

hypothesis, we have that 〈vs, ps〉, θ ∪ σ 	 ei ⇓τ1 p′
i implies [[ei]]

vs,ps
F ⇓ p′

i out-
puts the sequence of events τ1. Therefore, [[ei]]

vs,ps
T(p) ⇓ p′

i outputs and additional
event exitcase, and the claim follows by induction.

– Proving the claim for the two remaining rules is straightforward by the induc-
tion hypothesis.

A prototype implementation of the program instrumentation can be found at
http://kaz.dsic.upv.es/instrument.html. Here, one can introduce a (restricted)
Erlang program that is first transformed to the flat syntax and, then, instru-
mented (several input examples are provided). Moreover, it is also possible to
run the instrumented program and obtain the corresponding sequence of events.

5 Concolic Execution

The relevance of the computed sequences of events is that one can easily recon-
struct a symbolic execution that mimics the steps of the concrete execution that
produced the sequence of events, as well as to produce alternative bindings for
the initial variables so that a different execution path will be followed.

Let us first formalize the reconstruction of the symbolic execution from a
sequence of events using the Prolog program shown in Fig. 9. As mentioned
before, we should ensure that the elements of τ are renamed apart. In our imple-
mentation, the sequence of events is written to a file, that is then consulted
as a sequence of facts and, thus, their variables are always renamed apart. For
simplicity, we do not show these low level details in Fig. 9 but just assume the
events in τ have been renamed apart.

sym(τ,Res,Vars) ← eval(τ, [(Res,Vars,BVars)]).

eval([ ], [ ]).

eval([call(Vars,BVars,NRes,NVars)|Tau], [(Res,Vars,BVars)|Env]) ←
eval(Tau, [(NRes,NVars,NBVars), (Res,Vars)|Env]).

eval([case(Vars,BVars, N, Arg,Pat , Alts)|Tau], [(Res,Vars,BVars)|Env]) ←
Arg = Pat , eval(Tau, [(Res,Vars,BVars)|Env]).

eval([exitcase(Vars,BVars, Arg,Pat)|Tau], [(Res,Vars,BVars)|Env]) ←
Arg = Pat , eval(Tau, [(Res,Vars,BVars)|Env]).

eval([bind(Vars,BVars, Pat1, Pat2)|R], [(Res,Vars,BVars)|Env]) ←
Pat1 = Pat2, eval(R, [(Res,Vars,BVars)|Env]).

eval([exit(Vars,BVars,Pat)|Tau], [(Res,Vars,BVars)|Env]) ←
Res = Pat , eval(Tau, Env).

Fig. 9. Prolog procedure for symbolic execution

Let us briefly explain the rules of the procedure. The first clause just calls eval
and initializes an stack of function environments with (Res, Vars, BVars), where

http://kaz.dsic.upv.es/instrument.html
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Res is the result of the evaluation, Vars are the variables of the main function,
and BVars are the bounded variables of the main function. When calling sym,
all these three variables are unbound.

The first rule of eval/2 just finishes the computation when there are no events
to be processed.

The next rule deals with call events and just pushes a new environment
(NRes,NVars,NBVars) into the stack of environments. Observe that the names
of variables Vars and BVars occurs twice in the head of the clause—as arguments
of the event and as in the current environment—which makes them unify and
thus set the right values for them in the current symbolic execution. This is done
in all the clauses.

The next rule deals with case events and it main purpose is to unify Arg and
Pat, which represent the case argument and the selected pattern, respectively.

The next rule takes an exitcase event and proceeds similarly to the previous
one by matching Arg and Pat, now denoting the pattern of a let expression and
the result of the evaluation of a case branch.

The next rule deals with a bind event in the obvious way by unifying the
given patterns Pat1 and Pat2.

Finally, the last rule matches Res in the current environment (used to store
the output of the current function call) with the pattern Pat and, moreover,
pops the environment (Res, Vars, BVars) from the stack of environments.

For example, given the sequence of events of Example 2 and the initial call
sym(τ ,Res,Vars), the above program returns:

Res = [X ,X ], Vars = [X ]

which obviously produces less instantiated values than the concrete execution
(where we had Res = [a,a], Vars= [a]).

For concolic testing, though, one is not interested in computing the sym-
bolic execution associated to the concrete execution, but in alternative symbolic
executions so that the produced data will give rise to different concrete execu-
tions. Luckily, it is easy to extend the previous procedure in order to compute
alternative symbolic executions by just replacing the clause for case events as
follows:

eval([case(Vars,BVars, N,Arg,Pat , Alts)|Tau], [(Res ,Vars,BVars)|Env])
← member((M,Arg′,Pat ′), Alts),

N �= M, Arg′ = Pat ′,
eval(Tau, [(Res ,Vars,BVars)|Env]).

By using the call member((M,Arg′,Pat ′), Alts), this rule nondeterministically
chooses all the alternative selections in case expressions, thus producing alter-
native bindings for the initial call. For instance, for the sequence of events of
Example 2, we get three (nondeterministic) answers:

Vars = [ ] ; Vars = [X ] ; Vars = [X ,Y |R]
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An implementation of the concolic testing tool has been undertaken. The first
stage, flattening and instrumenting the source program has been implemented
in Erlang itself, and can be tested at http://kaz.dsic.upv.es/instrument.html. In
contrast, the concolic testing algorithm is being implemented in Prolog, since
the facilities of this language—unification and nondeterminism—make it very
appropriate for dealing with symbolic executions.

6 Discussion

In this paper, we have introduced a transformational approach to concolic execu-
tion that is based on flattening and instrumenting the source program—a simple
first order, eager functional language—. The execution of the instrumented pro-
gram gives rise to a stream of events that can then be easily processed in order
to compute the variable bindings of the associated symbolic executions, as well
as possible alternatives. To the best of our knowledge, our paper proposes the
first approach to concolic execution by program instrumentation in the con-
text of functional (or logic) programming. In contrast to using an interpreter-
based design, in our approach the instrumented program can be run in any
environment, even non-standard ones, which opens the door, for instance, to
run the instrumented program in a model checking environment like Concuerror
[6] so that its execution would produce the sequences of events for all relevant
interleavings.

As a future work, we plan to extend our approach in order to cover a larger
subset of Erlang as well as to design a fully automatic procedure for concolic
testing (currently, one should manually run the instrumented program and the
Prolog procedure for generating alternative bindings). Here, we expect that our
transformational approach will be useful to cope with concurrent programs, as
mentioned above.

Acknowledgements. We thank the anonymous reviewers and the participants of
LOPSTR 2015 for their useful comments to improve this paper.
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Abstract. In this paper we propose an approach to the analysis of
formal language semantics. In our analysis we target memory policies,
namely, whether the formal specification under consideration follows a
particular standard when defining how the language constructs work
with the memory. More specifically, we consider Maude specifications of
formal programming language semantics and we investigate these spec-
ifications at the meta-level in order to identify the memory elements
(e.g., variables and values) and how the language syntactic constructs
employ the memory and its elements. The current work is motivated by
previous work on generic slicing in Maude, in the pursuit of making our
generic slicing as general as possible. In this way, we integrate the current
technique into an existing implementation of a generic semantics-based
program slicer.
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policies

1 Introduction

Static program analysis provides functional and non-functional guarantees with
respect to the program behavior. These guarantees, e.g., invariants, are automat-
ically computed from predefined approximations of the concrete program exe-
cutions. Examples on standard invariants include pointer behavior in sequential
code, data races in concurrent code, or bounds of execution time/memory usage.

Rewriting logic provides support to define formal and executable language
semantics. A key aspect in a language definition is the memory model—the
set of all semantic entities that are required to describe the storage compo-
nent of a program execution. Let us consider how memory is organized for two
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languages defined in rewriting logic—an imperative language with functions and
input/output support and an assembly language generated from it. For example,
the formal definition of the imperative language would require a global memory
for (global) program variables, local environment (for locals), call stack for func-
tions, and input/output buffers. A program execution is a sequence of rewrite
steps that access one or more of these storages. In a similar fashion, the formal
definition of an assembly language relies on a main memory represented as an
array of memory cells, each cell stores one value, and a set of (general purpose
or specialized) registers for everything else.

Our goal is to design generic program analysis tools based on a meta-level
analysis of the programming language semantic definition. This would allow a
certain degree of parameterization of the program analysis such that changes
in the formal language semantics should not result in the need of adapting the
corresponding analyzer, since the analyzer automatically incorporates the mod-
ifications. This approach builds on the formal executable language semantics
given as a rewriting logic theory [7,19] and on the program to be analyzed. The
generic design for program analysis tools based on language semantics comes in
two steps. The first step is a meta-analysis of the formal language semantics.
The second step is a data dependency analysis of the program. The meta-level
analysis is a fixpoint computation of the set of basic language constructs of
interest, e.g., side-effect constructs, which is then used to extract safe program
slices based on a required criterion. This methodology is instantiated in [3,26]
on the classical WHILE language augmented with a side-effect assignment and
read/write statements and, respectively, on the WhileF language—an extension
of WHILE to allow functions and scope declaration for variables.

An example program in WhileF is in Fig. 1 (left). Note however that both
intra- and inter-procedural program slicing methods are based on a less generic
assumption: the general memory update operation—the assignment statements—
has a fixed destination: its left-hand side. This is not necessarily generic as, for
example, the family of the assembly languages uses explicit memory operations
(load/store) and arithmetic/logic operations (which update registers), with flex-
ible destination placement in the language syntax. For example:

– in MIPS assembly language, in Fig. 1 (middle), the load instruction lw has a
direction right (source) to left (destination), while the store instruction sw has
a reverse direction. Moreover, mult multiplies the values in the two registers
and writes the result in a special multiplication register.

– in x86 assembly language generated by gas (Fig. 1, right top), which is the
GNU assembler and the default back-end of the standard gcc compiler, an
instruction like movl 16(%esp), %eax copies into the register %eax the value
found at the address referred by the register %esp shifted left by 16, as in
Fig. 1 (right top). The update is from left (source) to right (destination).

– in x86 assembly language, in Fig. 1 (right bottom), an instruction like mov
eax, DWORD PTR [esp+28] copies into the register eax a word-length from
the address found in the register esp shifted to the right with the offset 28.
The update is from right (source) to left (destination).
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... ...
lw $2, 24($fp) movl 16(%esp), %eax

read i ; read j ; lw $3, 16($fp) addl %eax, 24(%esp)
s := 0 ; p := 1 ; addu $2, $2, $3 movl 28(%esp), %eax
while not (i == 0) do sw $2, 24($fp) imull 16(%esp), %eax

write (i - j) ; lw $2, 28($fp) ...
s := s + i ; lw $3, 16($fp) ----------------------------
p := p * i ; mult $2, $3 ...
read i ; mflo $2 mov eax, DWORD PTR [esp+16]

sw $2, 28($fp) add DWORD PTR [esp+24], eax
... mov eax, DWORD PTR [esp+28]

imul eax, DWORD PTR [esp+16]
...

Fig. 1. WhileF program (left) with snapshots of assembly code MIPS IV (middle),
x86 - AT&T (right - top) and x86 - Intel (right - bottom)

The direction of the memory update is an example of what we call a mem-
ory policy, meaning the way the language constructs make use of the semantic
entities that define the memory model in the formal semantics. Moreover, when
we infer the direction of the memory update operation we actually address (in
a uniform way) a wide range of low-level languages.

In this paper we propose a refinement of a previously introduced technique
in [3,26], where we described a generic intra- and inter-procedural slicing method,
respectively. In [26] we focused on inferring the language constructs that produce
side-effects from the semantics specification, i.e., language constructs inducing
memory updates. In the current work, we infer memory policies, i.e., formal
semantics properties about how the language constructs use the memory model
defined by the semantics. We particularise the memory policy to detecting the
direction of the data flow in the memory updates. Namely, given a side-effect
construct c in the considered language, we infer which are the sources and which
is the destination of the data flow detected in c. For example, in an assignment
x := y + z our memory policy detects that y and z are the sources while x is
the destination. For inferring this memory policy the meta-analysis tracks down
how each element in the construct c is used at the memory level (either read or
write) and then we trickle up this information back in the components of c.

Paper Outline. This paper is organized as follows: Sect. 2 covers related work;
Sect. 3 introduces rewriting logic and Maude as well as our view on memory
polices from the rewriting-logic perspective; Sect. 4 details the algorithm of infer-
ring memory policies; Sect. 5 describes the prototype tool. We conclude in Sect. 6.

2 Related Work

Our goal is to design and implement generic formal semantics-based tools for
program analysis in a rewriting logic environment, with focus on memory models.
Hence, we relate our approach to static program analysis and rewriting logic.
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Static program analysis is a compile-time process for automatically extracting
run-time semantic information (i.e., invariants) from programs. Abstract inter-
pretation [8], which systematically derives sound approximations of the concrete
semantics, and type systems [22], which define correct programs with respect to
typing information, are two of the most used techniques for program analysis.

Program analysis based on abstract interpretation uses abstract domains and
abstract semantics. The latter is an abstract re-implementation of (some of) the
language operations as well as an abstract memory. From the point of view
of the abstract representation of the program memory, the abstract semantics
can capture a wide range of properties: functional properties, e.g., pointer and
alias analyses [15,23], data race detection [12] on shared memory programs,
stack safety [24], automated checks for coding standards [29], or non-functional
properties, e.g., computation of safe upper bounds for heap size [1] and stack
size [4]. In comparison with these approaches, we propose to infer, via meta-
analysis of the formal language semantics, certain information (which we call
policies) about the abstract memory system.

Having a formal executable semantics with precise memory models allows
verification of both sequential and concurrent code. For example, the encoding
of the x86 assembly language semantics in HOL proof assistant [28] allows rea-
soning about memory consistency in threaded applications while the encoding
of the memory model of C language in Coq [18] is suitable for pointer arithmetic
reasoning. In general, theorem proving either interactive or automated provides
the necessary infrastructure to allow meta-level reasoning for programming lan-
guage semantics, in a similar fashion with our proposal. These approaches are
complemented by the rewriting logic semantics project [21], which focuses on
how to define formal semantics of programming languages in rewriting logic
and how to construct program analysis tools directly over these semantics. The
memory component of a language definition in rewriting logic and its applica-
bility in program analysis is presented in [11,14]. The memory model of [14] is
exemplified on a simple imperative language with functions. Also, they define
pluggable program analyses by reusing parts of the concrete language semantics.
For example, the rewriting logic specification of the Java Memory Model [11] is
used for model checking Java programs. Our approach accommodates the con-
cept of pluggable program analysis via meta-level manipulation of the program
semantics, as given for program slicing in [3].

The term-slicing aspect of our proposed program slicing technique is rooted
into the notions of descendant/ancestor and origin tracking [5,16,17]. Origin
tracking, introduced in [17] is a refinement of the descendant/ancestor relation-
ship as it follows the symbols of an expression to their causes in an earlier
expression in a rewrite sequence. The origin tracking in first-order term rewrit-
ing systems [16] is intrinsic to slicing due to its strategy of reasoning on every
reduction from a term to its normal form. The term-slicing uses an extended con-
cept of origin tracking, w.r.t. the aforementioned approaches, because it tracks
changes in conditional rewriting rules, as defined in Maude, with a particular
emphasis on how to slice through rule conditions. In fact, the proposed notion of
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term-slicing determines variable dependencies in rules and equations in Maude
specifications where the variables are subterms of a certain sort.

In rewriting logic there are several approaches for analysis tools, not necessar-
ily for programs. For example, debugging [2], testing [25], and slicing [2,3,13,26].
The program slicing technique in [13] executes the term representation of a pro-
gram with the formal semantics and extracts dynamic slices. In comparison, our
approach does not execute the formal semantics; the term slicing is based on a
meta-level analysis of the semantics. In terms of genericity [13], requires transla-
tion steps from a given language semantics into an intermediate language (which
is the base for program slicing), whereas our approach works directly on the
semantics, as it is defined. The slicing technique in [2] works on generic Maude
execution traces. In comparison, we propose a static approach built around a
formal semantics and with an emphasis on computing slices for programs and
not for execution traces. The work in [25] presents an approach to generate test
cases similar to the one presented here in the sense that both use the semantics of
programming languages formally specified to extract specific information. How-
ever, in [25] the narrowing technique is used on the semantic rules to instantiate
the state of the variables in the given program. Matching logic [27] is a program
verification technique based on executing a program with a rewriting-based for-
mal semantics, by proving the necessary program invariants. In comparison, our
approach is complementary to matching logic as it attempts to compute invari-
ants from the semantics and afterwards, to apply them in program reasoning
(e.g., program slicing). Moreover, our approach uses the meta-level capabilities
of rewriting logic, which to the best of our knowledge are not available in the
matching logic framework.

The technique in the current paper follows our previous work on language-
independent program slicing in rewriting logic environment [3]. Actually, the
implementation of the current work improves the genericity aspect of the slicing
tool developed in [3], since we infer policies about memory updates applied to
imperative and assembly languages. The program slicing over the formal seman-
tics S of the language L follows the same two steps as in [3]: (1) an initial meta-
analysis of S followed by (2) a program analysis conducted over the programs in
L using term slicing.

3 Preliminaries

We present in this section the basic ideas about Maude and memory policies.

3.1 Memory Policies

A formal language semantics consists of the set of all semantic entities that
are required to fully specify all possible behaviors of any correct program, i.e.,
with respect to the semantics definition. Part of the language semantic enti-
ties describe the memory system. Examples of such semantic entities are heaps,
stacks (e.g., call stack, loop stack), environments, register file, etc. Then,
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the language constructs interact, directly or indirectly, with the memory sys-
tem. Our aim is to infer information about this interaction in an automated
way.

We achieve our declared goal of designing generic program analysis tools by
employing a meta-level analysis of the formal language semantics. Such a meta-
analysis extracts semantics level properties, e.g., the sets of language constructs
that may induce side-effects or may result into context-updates. From a memory
system point of view, these properties are inferred from the semantics specifica-
tion by following how the language constructs operate on the memory system.
We call this kind of properties memory policies. For example, in the case of an
imperative language semantics as WhileF, i.e., with functions and input-output
capabilities, one memory policy could be named as “direction property”. This
would involve inferring that in the assignment statements the right-hand side is
the source and the left-hand side is the destination.

A more formal view on inferring memory policies would require reasoning at
the level of sorting relationships of the semantic entities present in the language
semantics specification (starting with a given set of memory-related sorts). For
assembly languages in Fig. 1, MIPS considers left to right direction for store
and right to left for load instructions while the two x86 styles use the same
style for both direction, although it is from left to right for one architecture and
from right to left in the other. Consequently, if we are to extend our tool for
dealing with a larger class of programming languages, we need to incorporate
this particular memory policy inference, which automatically deduces from the
semantics specification, for the side-effect constructs, what is the direction of
the data flow in each such construct. Note that this direction is crucial for the
accuracy of the slicing result, as we need to incorporate in the slicing set only the
changing points of certain variables, i.e., where those variables are destination.

3.2 Semantics in Maude

Maude modules are executable rewriting logic specifications. Rewriting logic [20]
is a logic of change very suitable for the specification of concurrent systems and
it is parameterized by an underlying equational logic, for which Maude uses
membership equational logic (MEL) [6], which, in addition to equations, allows
one to state membership axioms characterizing the elements of a sort. Rewriting
logic extends MEL by adding rewrite rules.

Maude functional modules [7, Chap. 4], introduced with syntax fmod ...
endfm, are executable membership equational specifications that allow the def-
inition of sorts (by means of keyword sort(s)); subsort relations between sorts
(subsort); operators (op) for building values of these sorts, giving the sorts of
their arguments and result, and which may have attributes such as being asso-
ciative (assoc) or commutative (comm), for example; memberships (mb) asserting
that a term has a sort; and equations (eq) identifying terms. Both memberships
and equations can be conditional (introduced by the keyword cmb and ceq,
respectively). Maude system modules [7, Chap. 6], introduced with syntax mod
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... endm, are executable rewrite theories. A system module can contain all the
declarations of a functional module and, in addition, declarations for rules (rl)
and conditional rules (crl).

Maude has been widely used for specifying the semantics of several languages,
such as Java [10] or C [9]. The key idea for specifying semantics is, first, to define
the signature by means of declaring sorts and their respective constructors (oper-
ators). We illustrate this methodology by presenting a simple assembly language
that we will use throughout the rest of the paper. This language uses registers
to keep intermediate values and defines standard functions, such as addition and
subtraction, over them, and also has a memory where values are stored for later
sessions. The specification of this language requires a sort identifying a regis-
ter (RegId), for the value stored in a register (Register), and for the set of
such values (Registers). Note the use of the keyword subsort indicating that
Register is a particular case of Registers:

sorts RegId Register Registers . subsort Register < Registers .

We define now values for these sorts as follows: RegId are built with the
constructor reg, which receives a natural number; a Register is just a pair of
a RegId and an integer (underscores are just placeholders); finally, we can have
either the empty Registers (mtReg) or the juxtaposition of elements, which is
commutative and associative and has mtReg as identity:

op reg : Nat -> RegId [ctor] .

op <_,_> : RegId Int -> Register [ctor] .

op mtReg : -> Registers [ctor] .

op __ : Registers Registers -> Registers [ctor assoc comm id: mtReg] .

We can also define functions on these sorts. We specify the function [ ] for
looking-up a value in the registers (note that it returns 0 if it is not initialized)
and update for updating the memory:

op _[_] : Registers RegId -> Int .

eq [lu1] : (< R, I > RS) [R] = I .

eq [lu2] : RS [R] = 0 [owise] .

op update : RegId Int Registers -> Registers .

eq [upd_int1] : update(R, I, < R, I’ > RS) = < R, I > RS .

eq [upd_int2] : update(R, I, RS) = < R, I > RS [owise] .

The sort for the long-term memory, Memory, is defined in a similar way. It
is also worth presenting the syntax for instructions and the whole system that
will be used when defining the semantics. Instructions have sort Ins and their
syntax depends on the specific instructions. For example, the instruction for
adding two registers and storing the result in a third one is defined below. We
will infer later the direction of this instruction, that is, we identify which one
is “the third register.” Finally, the complete system has sort System and puts
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together a list of instructions (Instructions), the state of the registers (sort
Registers), the state of the memory (Memory), and the program counter (of a
predefined sort Nat):

op add_,_,_ : RegId RegId RegId -> Ins [ctor] .

op [_|_|_|_] : Instructions Registers Memory Nat -> System [ctor] .

Once the signature is established, the semantics are defined by means of
rewrite rules. Rewrite rules mimic the behavior specified by the inference rules
in the formal semantics by executing the premises in the conditions and the
conclusion in the body of the rule. The rule labeled [add] below defines the
expected behavior of the add instruction: retrieves the values stored in the second
and the third register parametrizing the instruction, adds them, and stores the
thus obtained value in the first register:

crl [add] : [IIL | RS | M | PC] => [IIL | RS’ | M | PC + 1]

if (add RI, RI’, RI’’) := getIns(IIL, PC) /\

I := RS [RI’] /\

I’ := RS [RI’’] /\

RS’ := update(RI, I + I’, RS) .

Note that we use matching conditions (:=) to indicate that the pattern in the
lefthand side matches the term in the righthand side, once it has been reduced by
means of equations. This condition binds the free variables (that is, the variables
that did not appear in the lefthand side of the rule or in previous matching
conditions) to the appropriate values.

4 Inferring Memory Policies

We describe next the refinement that extends our previous work on discovering
side-effect constructs in a programming language starting with the semantics
specification of the considered language [26]. There, we show a generic intrapro-
cedural slicing process where the generic aspect is given by the inference of what
we call side-effect language constructs, i.e., the instructions that determine mem-
ory changes. To achieve this, we construct a so called hyper-tree, whose nodes are
sets of rewrite rules and edges are dependencies between these rules. As such, we
are able to infer which constructs are going to possibly produce memory updates
by following the paths in the hyper-tree from the root to the leaves. We can see
our current work as a trickle-up in this hyper-tree. Namely, at the leaves level we
extract information regarding the source-destination relation of memory updates
and we propagate this relation up in the hyper-tree at the level of the language
constructs. Note that the method in [26] produces an over-approximation of the
side-effect constructs, which we now refine not in terms of cutting out elements
from the resulting set, but by enriching the information contained in this set
with data-flow direction.

Hence, we present in this section the ideas underlying our framework, illus-
trating them on the Maude semantics of an assembly language. The results are
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equally applicable to other rewriting-based semantics, like the one for WhileF
language that we describe in [3]. Next, we elaborate on the semantics of the
assembly language and how to infer memory policies like the “direction of a
memory update” for programming language constructs.

We assume that the sorts for the memory (Registers and Memory in the
example in Sect. 3) are provided by the user, while the rest of information is
inferred by the system. It is important to state that these inferences work under
a natural assumption: memory sorts are composed by tuples mapping program
variables into values, possibly via addresses.

4.1 Maude Slicing

In order to narrow down the source of the changes, we first apply term-slicing
to the equations and rules in the semantics. Slicing for Maude specifications
(named in this paper term-slicing to differentiate it from the standard program
slicing component present in our work) is already used for improving the results
from Maude model checker [2]. We use here a simpler approximation of term-
slicing that traces back the source of a given set of variables by adding to this
set the variables involved in their generation. This approximation is a syntactic
procedure for computing dependencies in a single rule/equation by taking into
account that variables can be bound in the lefthand side of matching conditions
(:=) and in the righthand side of rewrite conditions (=>). Hence, starting from
an initial set of variables of interest V, we traverse the conditions following a
bottom-up strategy and, when a variable v ∈ V is bound by these conditions
we add all the variables in the “opposite” side (hence in the righthand side
of matching conditions and the lefthand side of rewrite conditions) to V. For
example, let us assume we have a rule as follows

crl f(X, Y, Z) => g(h(B, A3), Z)

if X >= 3 /\

A1 := aux1(X, Y) /\

B := other_fun(X, Y, Z) /\

aux2(Y) => A2 /\

A3 := aux3(A1, A2) .

and we want to trace back A3, since it modifies the memory. In the rule above, the
condition A3 := aux3(A1, A2) indicates that the value in A3, the variable in the
term-slicing set, depends on the value of both A1 and A2 used in function aux3, so
they are both included in the term-slicing set. The previous condition, aux2(Y)
=> A2, indicates that A2 depends on Y, and hence it is included in the slicing set.
Note however that the condition B := other fun(X, Y, Z) does not produce
any change in the term-slicing set because Y is only used and not changed by this
condition, hence B is not included in the term-slicing set. The condition A1 :=
aux1(X, Y) adds X (and Y) into the term-slicing set. Finally, the first condition,
X >= 3, has no effect because it is not a matching or rewriting condition. From
this analysis we find that A3 depends on Y and X from the lefthand side of the
rule; similarly, we can decide the dependencies of any term.
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Data: A specification and the sorts for the memory M.
Result: Set of sorts for values V.
V = ∅;
foreach constructor c(s0, . . . , sn, v) of sort S, n ≥ 0, S ∈ M do

foreach function f : ar → v do // Explicit inference
if S ∈ ar then V = V ∪ {v};

end
foreach rule l → r if cond do // Implicit inference

vm = varsOfSortMemory(r,M);
vs = slicing(l, cond , vm);
V = V ∪ getVarsInConstructor(vs, c);

end

end
Algorithm 1. Algorithm for inferring the sort for the values

4.2 Inferring the Sorts for the Values in the Memory

We now emphasize on the settings characterizing the memory part in the class of
language semantics specifications that we consider. As previously mentioned, we
assume that the memory component of the specification is connecting the pro-
gram variables to their current values, either directly as in a simplified memory
model, or via a chain of “addresses” as in a more accurate representation of the
machine. Note that by “values” we understand those terms building the mem-
ory that are used by the semantics to modify the state, while by “addresses” we
understand those terms used to access the values. We now show how to obtain
the sorts for the values stored in the memory given by the, e.g., Registers sort
in the considered language specification.

We present the algorithm for inferring these sorts in Algorithm1. We traverse
the constructors for the sorts specifying the memory and check all the possible
outcomes for them. The first inner loop deals with explicit access to the memory:
functions that receive the memory and return one of the sorts used in the con-
structor.1 This case is illustrated by the function look-up ( [ ]) in Sect. 3. The
look-up function is defined by the equations [lu1] and [lu2] and it extracts a
term of sort Int, which is used to build a Register, which is, in turn, a subsort
of the sort of a specific part of the memory, i.e., Registers. Since this function is
used in the semantics of the language, we infer that Int is the sort of a possible
value.

We can also find implicit access to the memory: patterns in the lefthand side
of rules or in matching/rewrite conditions can be used to retrieve values from
the memory, as illustrated in the second inner loop of Algorithm1. In this case,
we trace back the variables modifying the memory and keep only those obtained
1 We have placed the sort v as the last sort in the arity to ease the presentation, but

it is not required.
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Data: A specification, the sorts for the memory M, and the sorts standing for
values V.

Result: Set of functions F modifying the memory annotated with the variables
responsible for the modifications.

F = ∅;
foreach function f : s0, . . . , sn → s, s ∈ M,∃i.si ∈ V do // Explicit inference

F = F ∪ {fsi}
end
foreach rule l → r if cond do // Implicit inference

vm = varsOfSortMemory(r,M);
vs = slicing(l, cond , vm);
vv = varsOfSortValue(vm,V);
if vv �= ∅ then F = F ∪ {fvv};

end
Algorithm 2. Algorithm for inferring the functions modifying the memory

from the memory. For example, assume we modify the rule [add] from Sect. 3
to avoid the look-up function, obtaining [addv2].2

crl [addv2] : [IIL | RS | M | PC] => [IIL | RS’’ | M | PC + 1]

if (add RI, RI’, RI’’) := getIns(IIL, PC) /\

< RI’, I > < RI’’, I’ > RS’ := RS /\

RS’’ := update(RI, I + I’, RS) .

In this case, we know that it is possible for the memory to be modified (we
have a new variable RS’’ for a memory sort), so we consider the term-slicing set
to initially contain only this variable. We then trace back its related variables
using the technique described in Sect. 4.1, obtaining RI, I, I’, RS, IIL, and PC.
We can now filter the obtained term-slicing set and retain only the values in the
memory (in this case both I and I’), which have the sort Int that we previously
inferred. Note that it is possible to use a matching with unrequited information
to make the method above to include some sorts that are not proper values.
However, this is not a threat for soundness, because our technique computes
over-approximations, so adding a sort that is not memory related will just worsen
the granularity of the slice computed later.

4.3 Inferring the Functions Modifying the Memory

At this step we look for the functions that introduce new values into the mem-
ory. As presented in Algorithm 2, in this case we can also find both explicit
and implicit access to the memory. Note that the algorithm returns the set of
functions annotated with the variables responsible for the effects. The explicit
case, shown in the first loop, is easy to detect: we just traverse the operators
2 We would need extra rules to take care of non-initialized registers, but this is not

relevant for the technique.
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looking for those creating/modifying the memory (i.e., the memory appears in
the coarity). We then trace the source of this modifications by using the slicing
technique in Sect. 4.1 to annotate those arguments responsible for the changes
and having one of the sorts annotated in the previous step. For instance, the
function update from Sect. 3 modifies the memory by introducing the element
of sort Int received as the second parameter.

Note that since update is found to modify the memory, then also the [addv2]
rule modifies the memory since it uses update to match the memory variable
RS’’. This connection between the rules and functions that modify the memory
is already presented in our previous work [26]. There we describe the construc-
tion of a hyper-tree containing in its nodes rules from the language semantics
specification while its arcs are given by relations as the one mentioned above. For
instance, [addv2] is a parent of [upd int1] and [upd int2] in the hyper-tree
because it uses the update function which is described by the two [upd ] rules.

The implicit modifications to the memory, shown in the second loop of
Algorithm 2, occur when a rewrite rule modifies the memory directly, i.e., with-
out using any auxiliary function. In this case, we must slice again the rule using
the updated memory criteria and keep those variables that have the sort obtained
in the previous step. We illustrate this with a third version of the [add] rule
from Sect. 3, called [addv3].3

crl [addv3] : [IIL | RS | M | PC] => [IIL | RS’’ | M | PC + 1]

if (add RI, RI’, RI’’) := getIns(IIL, PC) /\

< RI, I > < RI’, I’ > < RI’’, I’’ > RS’ := RS /\

RS’’ := < RI, I’ + I’’ > < RI’, I’ > < RI’’, I’’ > RS’ .

In this case, the last matching condition updates the memory onsite by using
the values I’ and I’’. Consequently, I’ and I’’ are annotated as side-effect
sources, i.e., sources of changes in the memory.

4.4 Inferring the Data-Flow Information

By using the results obtained in the previous steps, we have enough informa-
tion to infer the data-flow relation that is of interest here, i.e., the source-
destination relation in the language constructs producing side-effects. As shown
in Algorithm 3, we take for each rewrite rule the variables modifying the mem-
ory (obtained from either explicit or implicit change) and apply enriched slicing
to them. This enriched slicing takes into account the assumption stated at the
beginning of the section: the memory is composed of cells (tuples) connecting the
program variables (or registers in the case of assembly languages) with their val-
ues. Hence, when facing a matching condition involving the memory we extend
the slicing set to all the elements in the tuple in order to make sure we consider
all the “addresses” connecting the program variables with their values. Finally,
we need to recognize the instruction being executed. This term is the one that
3 Note that we would need another rule to deal with the case where RI is not initialized,

but this does not change the inference.
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Data: A specification and the functions modifying the memory F .
Result: Data-flow information D.
D = ∅;
foreach rule rl ≡ l → r if cond do

vs = getVarsFromAnnotations(rl ,F);
vss = slicing(rl , vs);
ins = getInstruction(rl, vss);
active = getVars(ins) ∩ vss;
passive = getVars(ins) \ vss;
D = D ∪ {ins : active �→ passive}

end
Algorithm 3. Algorithm for inferring the data-flow information

fulfills the following properties: (i) must be (or depend on) a subterm that con-
tains the complete state, including the memory and any other sort required by
the semantics and (ii) contains all the variables from the slicing set not related
with the memory. The variables appearing in this term and in the slicing set
are responsible for the modifications we are tracing in the memory. Note that
many rules can specify the behavior of the same instruction. In this case, we put
together all the possible sources of change.

For example, this method infers for the rule [add] from Sect. 3, that:

1. The term being executed is add RI, RI’, RI’’, since it is not related to the
memory and contains RI’ and RI’’, which in turn generate I and I’ from
the slicing set.

2. The variables RI’ and RI’’, which appear in both the term and the slicing
set, modify the rest of the variables (RI). Hence, this instruction works from
right to left.

The same result is easily obtained for addv2 and addv3. Moreover, note that
the same approach can be easily followed to analyze the direction of a standard
assignment instruction in any imperative language.

5 Prototype

The ideas presented in the previous sections have been used to extend the slicing
tool in [3]. It allows us to apply our generic slicing framework to semantics of
imperative languages, like the WhileF language in [3], to languages with mixed
data-flow policies, like the assembly language presented in this paper, or to
“eccentric” semantics, such as, languages with a left to right assignment state-
ment. The source code of the tool, examples, and more explanations are available
at http://maude.sip.ucm.es/slicing/.

The tool is started by loading in a Maude session the slicing.maude file
available at the webpage. This starts an input/output loop where other Maude
modules can be introduced and analyzed. We introduce the semantics for the
language, e.g., the assembly language partially presented throughout the paper.

http://maude.sip.ucm.es/slicing/
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One of the tool’s features is to infer the data flow information for the basic
language constructs. For example, add presented in more detail in Sect. 4 has a
right to left direction, i.e., add R1, R2, R3 stores R2 + R3 in R1; the direction
of the load instruction is from left to right, i.e., load R1, R2 loads in R2 the
data stored in the memory cell indicated by R1; while for the store instruction
the tool infers a data flow direction from right to left, i.e., str R1, R2 stores in
the register indicated by R1 the value in the cell indicated by R2.

Because we have at hand an executable semantics, we can use the assembly
language semantics to execute the program pow, which computes xy (assuming x
and y are stored in the memory cells 0 and 1, respectively) and stores the result
in the cell 2:

op pow : -> InsList .

eq pow = load R1, R1 *** Load M[0] in R1 (left to right)

addi R2, R2, 1 *** Add 1 and save it in R2

load R2, R2 *** Load M[1] in R2

addi R4, R4, 1 *** Add 1 and save it in R4

’loop beq R2, R3, ’out *** Jump to out when R2 and R3 are equal

mul R4, R4, R1 *** Store in R4 the result of R4 * R1

*** (function from right to left)

subi R2, R2, 1 *** Update the counter

jmp ’loop *** Jump to loop

’out addi R5, R5, 2 *** Add 2 and save it in R5

str R5, R4 *** Store the value of R4 in M[R5]

*** (function from right to left)

break . *** end

The execution of the program needs the user’s input of initial state, e.g., the
function testPow introduces 3 and 5 in the memory cells 0 and 1, respectively:

op testPow : -> System .

eq testPow = [ pow | mtReg | [0, 3] [1, 5] | 0 ] .

Furthermore, in order to obtain the slicing results, the user introduces the
sorts corresponding to the memory with the command:

Maude> (set side-effect sorts Memory Registers .)

Memory Registers selected as side effect sorts.

Once these sorts are set, we can start the slicing process by indicating the
program to slice, e.g., testPow, and the initial slicing set, e.g., the singleton set
containing R5 the variable storing the final result of pow:

Maude> (slice testPow wrt R5 .)

Note that the initial state of the program is not used by the slicer, which
performs static analysis in the true sense, i.e., without using any information
from the current state of the program. The program’s state is there just to
exemplify the executing capabilities of the programming language semantics used
in our tool. Now, for slicing, the tool analyzes the list of instructions of the
program, given in pow, and returns:
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– The rules producing side effects, obtained by using the sorts for values and
checking which rules modify them:

The rules causing side effects are: add addi and load mul muli

str sub subi

– The data-flow information for each rule producing side-effects. It is interesting
to see the difference between load and store, as discussed above:

The inferred data-flow information is:

- For function add RI:RegId,RI’:RegId,RI’’:RegId :

Variable(s) RI:RegId are modified by RI’:RegId RI’’:RegId

- For function load RI:RegId,RI’:RegId :

Variable(s) RI’:RegId are modified by RI:RegId

- For function str RI:RegId,RI’:RegId :

Variable(s) RI:RegId are modified by RI’:RegId ...

– The final slicing set. In this case, the value stored in the position R5 is updated
with the contents of R4, which was in turn updated with the contents in R1.
Hence, these registers compose the final slicing set:

The variables obtained by the slicing process are: R5 R4 R1

It is important to remember that the tool works for any programming lan-
guage whose semantics has been defined in Maude. Hence, we can use the WhileF
language from [3] to further test the semantics. Briefly, WhileF is an imperative
language with functions and input-output capabilities. Henceforth, the algorithm
that infers memory policy information on the WhileF semantics works with the
sorts of the underlying memory model: a state sort ST mapping variables to
values (the global memory), a sort ESt for the program environment (the local
memory), and a sort for the read/write buffer RWBUF. Hence, we can introduce
the code from Fig. 1(left) in WhileF as follows:

op whileExample : -> Com .

eq whileExample = Read i ; Read j ; s := 0 ; p := 1 ;

While Not Equal(i, 0) Do

Write (i -. j) ; s := s +. i ; p := p *. i ; Read i .

Our tool will traverse the semantics, find the sort of values, and show that the
assignment works from left to right. Moreover, it also indicates that the variable
related to p is just i, used in the multiplication:

Maude> (slice whileExample wrt p .)

The inferred data-flow information is:

- For function X:Var := e:Exp :

Variable(s) X:Var are modified by e:Exp

The variables obtained by the slicing process are: p i
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6 Concluding Remarks and Future Work

In this paper we used formal language semantics to infer a certain type of mem-
ory policy, i.e., data-flow information for language constructs which produce
memory updates. This inference has allowed us to improve on the genericity of
our slicing technique [3] and to make another step towards a complete design
of a automatized semantics-based slicing tool. Moreover, this addition to the
slicing tool allowed testing the tool on other class of programming language
specifications such as the assembly languages.

We are currently investigating the automatic inference of other slicing pre-
requisites for interprocedural methods such as the automatic deduction of func-
tion call/returns and the inference of their parameter passing patterns. These
improvements would further automatize our generic slicing tool as the language
designer would roughly need only to define the semantics of the programming
language, to give the input program, and the slicing criterion, then our generic
slicer will generate all the necessary information for slicing. From a language per-
spective, we aim to extend the language, for example with pointers and hence,
to be able to accommodate more complex memory policies, based on a more
refined memory model. Note that the addition of pointers to our framework will
allow us to use arrays as well. Finally, our aim is to introduce concurrency in
the framework, so we can cover and test out proposed methodology on a larger
and significant class of programming languages.

Acknowledgments. We thank the anonymous reviewers for their valuable comments
and suggestions, which greatly improved the quality of the paper.
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Abstract. The increasing availability of smart objects demands for flex-
ible mechanisms to orchestrate different types of these objects to smart
environments. As smart objects are typically not aware of each other,
an orchestrating platform has to manage common resources, to harmo-
nize the individual behavior of the acting objects, and to combine their
activities to an intelligent team work. This paper presents a correspond-
ing framework to implement such an orchestrating platform. It provides
a concurrent programming language representing states in Description
Logics and state transitions as logical updates enabling deductive sup-
port to infer non-explicitly represented knowledge. It uses temporal logic
to suspend execution of a process for a particular evolution of the global
state that is specified by a LTL formula. Since a process can fork into
subprocesses this provides a mechanism for runtime verification by split-
ting a process into a subprocess executing some critical program and
another parallel subprocess monitoring the first one by waiting for the
desired evolution of states specified in its LTL formula.

Keywords: Description logic · Programming paradigm · Smart
environments

1 Introduction

Smart homes typically comprise various individual components acting almost
autonomously. Control systems equipped with sensors and actuators are the
classical paradigm to realize such components. Sensors capture more and more
data of their environment. Originally used to monitor a device’s internal states,
their purpose have been diversified (e.g. measuring the health status of a human)
reaching the vision of context-aware computing [11]. Actuators operate on these
data and actively interfere with the environment. Improving the reasoning capa-
bilities and allowing for connectivity between different systems results in the
notion of smart objects behaving autonomously and in an intelligent way in
their environment. Typically, these systems are based on different notions of
abstractions depending on their application area which results in incompati-
ble middleware infrastructures impeding a universal interoperability on a higher
abstraction level [11]. An intelligent media equipment, for instance, runs inde-
pendently of an intelligent management for indoor climate or for ambient light.
c© Springer International Publishing Switzerland 2015
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While an intelligent wheelchair is able to navigate autonomously in a flat using
its location sensors, two of them may block each other in a narrow passage
because both are not even aware of each other.

To combine smart objects to an intelligent overall system, such objects would
have to anticipate and prospectively react to the development in their environ-
ment as well as to negotiate and collaborate with other smart objects on common
goals. However, such an approach would require that smart objects are aware
of each other, their needs and their abilities, which rules out the use of already
existing solutions or commercial of the shelf (COTS). Smart homes typically
comprise a variety of different tasks that range from rather primitive ones, like
detecting motions or remotely control lights, to more sophisticated ones, like to
recognize gestures or autonomously drive robotic vehicles. Realizing intelligent
behavior in such environments is a major task as it has to go all the way up
from protocols to communicate on a low signal level to sophisticated services
recognizing, mediating, and planing high level activities.

We propose to use a logic-based programming environment that allows one
to easily orchestrate the various processes and smart objects. This environment
maintains a consistent view on the overall system, monitors changes in the envi-
ronment and coordinates the actions of the individual activities. We developed
a corresponding programming language SHIP implemented in the SHIP-tool to
support the development of programs orchestrating and monitoring heteroge-
neous processes. The SHIP-tool provides an implementation, simulation, and
execution environment for ambient intelligent processes. Thus, it implements an
inter-application adaptation to provide thorough task support by coordinating
the execution of a distributed application across a set of heterogeneous processes
and smart objects. While [2] presented real world ambient intelligence processes
developed in the SHIP-tool and [1] described the methodology to model real
world states in ontologies in order to allow for an efficient treatment of state
changes, this paper defines the programming language and its semantics.

2 Running Example

In this section we introduce a simple running example to illustrate our logic
formalism for modeling states (Sect. 3.1) of the real world and also the primitives
of the programming language (Sect. 5).

We consider a smart building environment where, among controllable lights,
doors, elevators etc., autonomously driving electric wheelchairs operate. The
wheelchairs are requested by inhabitants that need a lift to another room or
the delivering of some items. Wheelchairs operate along an internal route graph.
Vertices denote locations in the environment and edges connect adjacent loca-
tions. A wheelchair, requested to drive to a target position, will compute its own
path based on this route graph. To orchestrate several wheelchairs operating
in an environment, a wheelchair has to communicate its computed route before
starting the journey and each reached location during the journey to an orches-
trating platform. In-between two locations the wheelchair can deviate from the
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straight line. Wheelchairs can enter or leave the scope of the platform: e.g. they
are switched off for maintenance like recharging the batteries or a person can
leave the environment sitting in a wheelchair.

This setting allows for a broad range of assistance processes, such as exe-
cuting transportation requests, scheduling conflict-free rides of the wheelchairs,
assisting individual wheelchairs during their rides by opening doors and turn-
ing on lights as needed, supervising the wheelchairs to detect misbehaviors and
reacting on it, and many more. As our running example we consider an assistance
process represented by (WhChAssist), which interfaces with the real wheelchairs
and the scheduler organizing the conflict-free rides, and a monitoring process
(MonitorWhChRoute) detecting and reacting on deviations from assigned routes.
Moreover, we will illustrate a process (WhChSupervision) reacting on wheel-
chairs coming and going as well as managing assistance and supervision.

3 Specification and Representation of States

In our programming environment, states are represented in Description Logics
(DL). As usual in DL, a state comprises a TBox T and a RBox R (terminological
box) describing the properties of the real world as an abstract specification and
an ABox A (assertional box) stating the properties of concrete individuals of the
specified concepts. All together, they form an ontology O = 〈T,R,A〉.

The states are modeled as ontologies based on the description logic SROIQ [8],
which supports role composition (R), transitive roles (S), inverse roles (I), qual-
ified number restrictions (Q) and nominals concepts build from individuals (O).
While full-fledged SROIQ can be used for queries, only its SRIQ fragment is
used to define the ontology. For SROIQ, concepts are formed from the prede-
fined atomic concepts top T, bottom F and arbitrary concept names different
from T and F, as well as complex concept expressions formed accordingly by
union � and intersection � of concepts, and role-based existential ∃r . C, uni-
versal ∀r . C, and number restrictions {>, =, <}r . C, where r is either a role
name or the inverse of a role name r−1.

The properties of the concepts are declared by concept inclusion axioms
C � D or by concept definition C = D. Disjointness of concepts is declared by
Disjoint. A role r : D ×R is declared by indicating its domain D and range R.
Similar to concepts, subroles can be declared by limited complex role inclusion
axioms r0 · . . . · rn � r where ri ∈ R and ‘·’ denotes role composition. SHIP
supports the standard role properties Sym, Asym, Trans, Ref, Irref, Fun, and
FunInv. Furthermore, role names can be defined as the composition of roles
r = r0 · . . . · rn or as the reflexive, transitive closure of another role r = r0*. This
is not expressible in description logic and it is translated to r0 � r, Trans(r),
Ref(r) when translated to DL. However, it is important as a meta-property to
ensure that nothing else than the transitive closure of r0 is in r. r is functional
iff ∀(a1, b1), (a2, b2) ∈ r.a1 = a2 =⇒ b1 = b2. A role name r directly depends
on a role name r′ if r′ syntactically occurs in the definition r = R of r. A role
name r depends on a role name r′, if r directly depends on r′ or there exists
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a role name r′′ which depends on r′ and r directly depends on r′. We denote
the dependency relation between role names by >r. Furthermore, we require the
induced dependency relation on concept and role names to be irreflexive (i.e. we
consider acyclic TBoxes and RBoxes modulo the transitivity of roles).

In addition we provide abbreviations to ease the definition of ontologies in
a style inspired by abstract datatypes. For instance, Routes being sequences of
Positions can be defined in the following way

Route ::= EmptyRoute | NonEmptyRoute(route_next:Position,route_rest:Route)

being internally expanded to

Route = EmptyRoute� NonEmptyRoute

Disjoint(EmptyRoute, NonEmptyRoute)

NonEmptyRoute

� (∃route_next . Position)

� (∃route_rest . Route)

route_next:NonEmptyRoute × Position

Fun(route_next)

route_rest:NonEmptyRoute × Route

Fun(route_rest)

3.1 Representation of States

We interpret the construction of complex concepts similar to specifications of abs-
tract datatypes. An existential quantification as in IDObject� ∃at.AbstPosition
specifies a mandatory attribute “at” of “type” AbstPosition in instances of the
abstract datatype IDObject. Intersection of concepts combines the attributes of
the sub-datatypes while union of concepts resembles the notion of variants (cf. [1]
for details). Similar to an initialization of all records in new instances of a datatype
we want to enforce a constructive definition of each individual of a complex con-
cept in an ABox. For instance, having an individual d for the concept IDObject
above, d must have a position and we demand that we can always deduce the actual
position of d from the ABox. Furthermore, since we allow for disjunction of con-
cepts D � E� F we also want to know for each individual in D whether it belongs
to E or F or both. That means that for any individual d of a (complex) concept the
ABox always provides the full information about the composition and settings
of the individual. In other words, the ABox provides the individuals necessary to
name the values of the various attributes and there is no need to invent new values
by introducing Skolem functions.

The same rigor of constructiveness is applied to the specification of roles.
SHIP allows for the definition of composed roles, e.g. by defining r = r1 · r2.
Knowing that two individuals a, b are in a role r there must be some individual
c such that (a, c) : r1 and (c, b) : r2 holds. We demand that also this witness is
specified explicitly, i.e. the ABox contains some individual c and the necessary
relations between c and the individuals a and b.

An ontology is constructive if it fulfills the described constructiveness
properties and refer to [1] for details.
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3.2 ABox-Queries

Having an ontological state representation we can query a state for facts derivable
from the ontology. Concept queries are built from the standard atomic concepts
as before but also allow for nominal concepts formed from sets of individuals as
additional atomic concepts; hence we are in the SROIQ fragment. The primitive
queries are ABox-queries possibly containing variables for individuals and in
addition !i to query whether the individual i exists in the ontology.

4 Updates

4.1 ABox Update

An update is a pair (α, δ), where α is a consistent set of primitive ABox-assertions
to be added and δ primitive ABox-assertions to be removed. To guarantee the
constructiveness of updates we enforce that they are specified in a non-redundant
form by ABox-assertions exclusively over primitive concepts and roles (cf. [1] for
details). For a given ontology O = 〈T,R,A〉 and consistent primitive update
(α, δ) the new ABox is determined from the old ABox by

1. If (i : C) ∈ α and (i : D) ∈ A and C and D are disjoint concepts, then (i : D)
is removed;

2. If ((a, b) : r) ∈ α, ((a, c) : r) ∈ A and r is functional, then (a, c) : r is
removed.

Finally, all assertions from δ are removed. Formally, the result upd(α, δ) of an
update is defined by

A′ := α ∪ (A \ (δ ∪ {(i : D) ∈ A | (i : C) ∈ α, C and D are disjoint}
∪ {((a, c) : r) ∈ A | ((a, b) : r) ∈ α, r is functional})

The resulting ontology 〈T,R,A′〉 may well be inconsistent, for instance if number
restrictions are violated. If so, the update is refused and we stick to the previous
ontology O. If an action triggered the update, the action fails in the process
semantics. If the environment triggered the update, respective repair processes
must have been specified to synchronize the SHIP-tool and the environment. If
the ontology is consistent, it is not necessarily constructive. To this end we use a
procedure to check if the resulting ontology 〈T,R,A′〉 is constructive. If not, the
SHIP-tool can provide information about missing itemization of the ABox. This
can be used to statically analyse the effects of actions of the defined processes
whether they only contain primitive ABox-assertions and if they are complete
enough to preserve constructiveness of the ontology.

Actions (pre, eff) represent updates initiated in processes. An action is
applicable on an ontology O if all its preconditions are satisfied in O. In this
case, O is updated to a new ontology O′ by applying the effects of the action,
including conditional effects which conditions hold in O. If O′ is inconsistent,
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then the action fails and we keep O as the current ontology. Otherwise the action
succeeds and O′ is the new current ontology. If the preconditions are not sat-
isfied, the action stutters, i.e., waits until it gets applicable. skip is the action
which is always applicable and does not modify the ontology.

Using free variables in the effects, new individuals can be added to O, where
a fresh name is created at run-time. By annotating a variable with the keyword
delete, individuals can be removed from the ontology.

In our running example, there are actions for wheelchairs that are new in the
ontology, for instance because the real wheelchair entered the building or was
turned on again. For those we need to distinguish if they are under supervision or
not and do so by having disjoint concepts Supervised and Unsupervised in the
ontology. When a wheelchair gets active again, a new individual w is introduced
into the ontology belonging to the concepts WheelChair and Unsupervised.
This is caused by the real world (sensors) sending the following update when
detecting a new wheelchair: ({w:WheelChair, w:Unsupervised}, ∅) As soon as
a supervision process is started for this wheelchair, we have to bookmark this
by calling an action from inside the program. In the SHIP-language actions are
parameterized over the name of the individuals. To toggle the supervision status
using conditional effects, we define the action for bookmarking as follows:

action toggleSupervisionStatus (w) {

pre = w:WheelChair

if (w:Unsupervised) w:Supervised

if (w:Supervised) w:Unsupervised }

4.2 Monitor Progression

Monitors constitute predictions on the development of the actual state in the
future. They are specified as LTL formulas over ABox-queries (Sect. 3.2), existen-
tial/universal quantification over individuals and the classical temporal modali-
ties F (eventually), G (generally), and U (until). Note that X (next) is not included
because it is inappropriate for parallel, but interleaved processes.

In our running example we need to monitor the real world to detect when
we need to compute a new overall schedule of the rides of all currently operating
wheelchairs. This is the case when a currently non-driving wheelchair wants
to drive or a currently driving wheelchair gets new driving instructions after
having completed its current ride. In SHIP we can express this by the following
LTL-formula

ϕ =

⎛
⎜⎝ (∃w:WhChWithEmptyRoute . F(w:WhChNonEmptyRoute))

or (∃w:WhChWithNonEmptyRoute .

F(w:WhChEmptyRoute and F(w:WhChNonEmptyRoute)))

⎞
⎟⎠

Thus, a monitor formula φ for a state σ makes demands to the state σ and
predicts conditions on its follow-up states. Since the monitor formula represents
the conditions on the development of states relative to the actual state, it has to
be modified once the system advances to the next state. Each successful ABox-
update results in an update of all active monitors. Since a monitor formula
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predicts the development of the global state in time, the formula changes in
each state transition. The progression Π(φ, σ) (cf. [6]) of a formula propagates
its demands to the next state: it checks the demands for the actual state σ and
returns a formula specifying the demands for the successor state σ′ of σ and the
corresponding follow-up states of σ′.

Π(φ, σ) = True [False, resp.] if φ is free of temporal modalities ∧ σ |= φ [σ �|= φ, resp.]

Π(φ1 and φ2, σ) = Π(φ1, σ) and Π(φ2, σ)

Π(Gφ, σ) = Π(φ, σ) and Gφ

Π(φ1 or φ2, σ) = Π(φ1, σ) or Π(φ2, σ)

Π(Fφ, σ) = Π(φ, σ) or Fφ

Π(∀/∃x : C. φ, σ) = Π(φ[x ← c1], σ) and/or . . . and/or Π(φ[x ← cn], σ)

if{c1 . . . cn} = {c | σ |= c : C}
Π(φ1 U φ2, σ) = Π(φ2, σ) or (Π(φ1, σ) and φ1 U φ2)

For sake of readability, we omitted Boolean simplification rules to simplify the
result of Π, but assume, for instance, that Π returns True instead of True or F(φ).

Suppose there are two wheelchairs r1 and r2 in an initial state σ0 of our run-
ning example. The first has an empty route while the second has a
non-empty route. Initializing ϕ in σ0 we obtain

ϕ0 = Π(ϕ, σ0) = F(r1:WhChNonEmptyRoute) or

F(r2:WhChEmptyRoute and F(r2:WhChNonEmptyRoute)))

Suppose, the situation is updated to a state σ1 where r2 has now an empty route,
then the progression of ϕ0 is

ϕ1 = Π(ϕ0, σ1) = F(r1:WhChNonEmptyRoute) or F(r2:WhChNonEmptyRoute)))

For any further update where r1 and r2 keep an empty route, the progression
leaves the formula invariant. For instance, as soon as r1 gets a non-empty route
in some σn the progression results in

ϕn = Π(ϕ1, σn) = True

indicating that the observed trace of world models σ0, . . . , σn satisfied the
LTL-formula ϕ.

5 Programming

Programs are constructed on top of actions (representing ABox-updates) and
monitor activations (observing the environment) with the help of the process
combinators described in Table 1. The last two rows describe syntactic sugar
defined in terms of the upper process combinator primitives.

action, proc and monitor allow for the definition of macros for updates,
program fragments and monitor formulas. The formal as well as the actual para-
meters range over individuals such that the execution of a call (of an action, a
proc or a monitor) in a program c will simply substitute this call in c by the
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Table 1. Process combinators

body of the macro in which the formal parameters have been substituted by the
corresponding actual parameters of the call.

We illustrate the process languages with sample processes from our running
examples before providing a precise small-step semantics in the next section.

The main process responsible to initiate a supervision for each new wheelchair
is encoded in the procedure WhChSupervision:

proc WhChSupervision () {

some w:(WheelChair � Unsupervised) =>SuperviseWhCh(w) 〈‖〉 WhChSupervision}

It is a parameter-free recursive procedure waiting until we can derive from the
actual ontology there is an unsupervised wheelchair. It then starts the super-
vision process for it (SuperviseWhCh) and in parallel (non-strict) recursively
calls itself. The non-strict parallel process combinator ensures that a failure of
the supervision process does not cause an abortion of the main process and
vice-versa.
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The supervision process SuperviseWhCh is defined as follows:

proc SuperviseWhCh(w) {

toggleSupervisionStatus(w);

WhChAssist(w) |〉〈| MonitorWhChRoute(w) |〉〈| init G(!w) }

First, it invokes the action toggleSupervisionStatus (cf. Sect. 4.1) mark-
ing the wheelchair as supervised. Then it invokes three processes in parallel
with the parallel strict process combinator ensuring that all process fail if one
of them does. The first process WhChAssist mediates between the wheelchair
and the route scheduler only allowing the wheelchair to drive on those segments
of the route that the scheduler has already cleared for it. The second process
MonitorWhChRoute monitors if the wheelchair behaves as assumed and follows
the travelling directives. The third process is a guard process checking that the
wheelchair is still active, i.e. has no failure (e.g., break down, no power) or does
not leave the building. In this case the individual representing the wheelchair
is removed from the ontology and the global invariant postulating the existence
of the individual (G(!w)) fails. In this case the monitor fails with an exception.
Because of the semantics of strict parallel operators this will cause the interrup-
tion of both other processes and finally the stop of the whole supervision process
of this wheelchair. However, the main WhChSupervision is not interrupted due
to the non-strict parallel operator used there.

The procedure MonitorWhChRoute oversees the wheelchairs behavior and acts
as a kind of run-time verifier which reacts on failures:

proc MonitorWhChRoute (w) {

some w:WhChNonEmptyRoute and (w,n):nextposition and (w,f):routefinalpos

=> try { init MonitorWhChTransition(w) }

catch {

switch

case not(!w) => skip

case !w =>

requestWhChTo(w,n);

try { (MonitorWhChRoute (w) |〉〈| init G(not (w,n):at))}

catch { skip };

requestWheelChTo(w,f) };

MonitorWhChRoute (w) }

Initially it waits for a wheelchair receiving a non-empty route. Then, it initial-
izes an LTL-formula checking that the wheelchair reports only from designated
positions of its specified route.

monitor MonitorWhChTransition (w) {

∃currentpos:(∃inv(at) . { w }) .

∃nextpos:(∃inv(nextposition).{w}) . (w,currentpos):at U (w,nextpos):at}

Here we select the current position and the next position of the wheelchair by
querying the ontology and initalize the monitoring checking that the wheelchair
still reported to be at the starting position until it reaches the next position.

The process MonitorWhChRoute observes this behavior. If it could be observed
successfully, it recurses invoking the observation for the next segment provided
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that the route is still not empty. If the postulated behavior has been violated,
i.e. the successive formula progression of the formula results in False, a fail-
ure is raised, which is catched by the surrounding try-catch and the catch
process-block is invoked to react on it.

If the wheelchair is still there, we issue an explicit request to send the wheel-
chair back on track. This is monitored by a recursive call of the monitoring
process accompanied (strictly) by the invariant that the wheelchair is not back
on track. The effect of the invariant is to interrupt the monitoring process as soon
as the wheelchair is back on track. After that a new request is issued sending
the wheelchair to its original destination and the monitoring is resumed.

5.1 Small-Step Semantics

We now provide a small-step semantics for this programming language on top
of ABoxes. We interpret programs as terms representing their abstract syntax
trees. For the sake of readability, we write these terms using the concrete syntax.

The execution of a program c with respect to a state σ (represented by an
ABox) is a sequence (c, σ) = (c1, σ1) → . . . → (cn, σn) of pairs (ci, σi) with σi

being the actual state in step i and ci the continuation of c still to be done in
state i. In general, each ci represents the continuation of a bundle of interleaved
processes arising from forking existing processes with the help of |〉〈| and 〈‖〉
combinators. We deal with this concurrency using an interleaving semantics.
Hence, given a continuation ci there are in general various positions in ci where
we can continue the computation. These evaluation positions are defined with
the help of term access functions. As usual, 〈〉 denotes the identity, i.e. t|〈〉 = t
while π · i selects the i-th argument of the term accessed by π, i.e. t|π·i = ti if
t|π = f(t1 . . . tn). Analogously, t[π ← t′] denotes the term emerging from t by
replacing the subterm t|π by t′.

Given a continuation c, the set of evaluable positions of c is defined as the
smallest set eval(c) satisfying the following conditions:

〈〉 ∈ eval(c)

π · 1 ∈ eval(c) if π ∈ eval(c) ∧ ∃p, q.(c|π = p; q ∨ c|π = try p catch q),

π · 1, π · 2 ∈ eval(c) if π ∈ eval(c) ∧ ∃p, q.(c|π = p |〉〈| q ∨ c|π = p 〈‖〉 q)

We assume that each continuation c is in some normal form obtained by applying
the following set of simplification rules exhaustively before each computation step
(� denotes the empty program while ⊥ refers to a failure of execution):

�; p ⇒ p, ⊥; p ⇒ ⊥, try � catch p ⇒ �, try ⊥ catch p ⇒ p,

�∗ ⇒ �, ⊥∗ ⇒ �, � |〉〈| � ⇒ �, ⊥ |〉〈| p ⇒ ⊥, p |〉〈| ⊥ ⇒ ⊥,

� 〈‖〉 � ⇒ �, � 〈‖〉 ⊥ ⇒ �, ⊥ 〈‖〉 � ⇒ �, ⊥ 〈‖〉 ⊥ ⇒ ⊥

These rewriting rules reflect the propagation of � and ⊥ inside continuations.
E.g. the failure of the execution of the first element p in a sequence p, q results
also in a failure of the entire sequence. An iteration p∗ returns always �. |〉〈| and
〈‖〉 denote a fork of a process in subprocesses. While |〉〈| binds both subprocesses
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as the failure of one subprocess causes the failure (termination) of the other, 〈‖〉
executes both subprocesses independently.

Obviously, the set of these simplification rules is noetherian and locally con-
fluent and thus guarantees the existence of a normal form c ↓ for all programs c.
Additionally, we apply p∗ ⇒ try p; p ∗ catch � if p∗ occurs at an evaluable
position. Notice that applying this rule in an evaluable position, the resulting
position of p∗ in try p; p ∗ catch � is never an evaluable one which prevents us
from infinite rewriting. Additionally, we open up macro definitions for calls to
action, proc and monitor in evaluable positions, as already mentioned above.

In the following, we present the evaluation rules of the small-step semantics.
We start with the rules (A1 – A3) for applying an action (pre, eff), which
allow us to update the actual state by eff provided that pre holds. Notice that
the precondition pre of an action establishes a proof obligation in Description
Logic. We use a DL-reasoner like Pellet [13] to find a deducible instance ρ(pre)
or to refute the precondition. The execution of an action (i.e. the corresponding
process) stutters if its precondition can be neither proved nor refuted.

(σ, (pre, eff)) → (σ′, �) if ∃ρ. σ |= ρ(pre) ∧ upd(σ, ρ(eff)) = σ′ (A1)
(σ, (pre, eff)) → (σ, ⊥) if ∃ρ. σ |= ρ(pre) ∧ upd(σ, ρ(eff)) = ⊥ (A2)
(σ, (pre, eff)) → (σ, ⊥) if ∀ρ. σ ∪ ρ(pre) |= ⊥ (A3)

The next rules (S1 – S4) define the non-trivial cases for conditions (switch)
and process forking ( |〉〈| , 〈‖〉 ). Similar to action rules, the evaluation of switch
stutters if no case of its cases is applicable and no default operation is specified.

(σ, switch c1=> p1 . . . cn=> pn => p) → (σ, ρ(pj))

if ∃j ≤ n.∃ρ. σ |= ρ(cj) ∧ ∀i < j. ∀ρ. σ �|= ρ(ci) (S1)
(σ, switch c1=> p1 . . . cn=> pn => p) → (σ, p)

if ∀i ≤ n.σ �|= ci (S2)
(σ, foralls c => p) → (σ, ρ1(p) |〉〈| . . . |〉〈| ρn(p))

if {ρ1, . . . ρn} = {ρ | σ |= ρ(c)} (S3)
(σ, forall c => p) → (σ, ρ1(p) 〈‖〉 . . . 〈‖〉 ρn(p))

if {ρ1, . . . ρn} = {ρ | σ |= ρ(c)} (S4)

Rules (M1 – M3) are concerned with starting and finishing an LTL-monitor.

(σ, < init ψ>) → (σ, �) if Π(ψ, σ) = True (M1)
(σ, < init ψ>) → (σ, ⊥) if Π(ψ, σ) = False (M2)
(σ, < init ψ>) → (σ, < active ψ>) else. (M3)

In general a monitor formula denotes conditions to the actual state and its suc-
cessor states. If the actual state σ fails to satisfy the corresponding conditions
for σ already, the activation of the monitor fails. If the monitor only formulates
conditions on σ and these conditions are satisfied, then the monitor stops suc-
cessfully returning �. Otherwise the monitor is activated to observe the future
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development of states. Next, we define ‘tick’ that updates all active monitors in
the continuation. Monitors are only active if they occur at evaluation positions.

tick(σ, <active ψ>) = � [⊥] if Π(ψ, σ) = True [False] and

tick(σ, <active ψ>) = <active Π(ψ, σ)> else,

tick(σ, p; q) = tick(σ, p); q and tick(σ, try p catch q) = try tick(σ, p) catch q,

tick(σ, p |〉〈| q) = tick(σ, p) |〉〈| tick(σ, q) and tick(σ, p 〈‖〉 q) = tick(σ, p) 〈‖〉 tick(σ, q)

Summing up, we define an execution step in SHIP as follows: Let π a position
in a program c in normal form. A rule R ∈ {A1 − A3,M1 − M3, S1 − S4}
is applicable to a pair (σ, c) at position π iff π is an evaluable position and
there is some (σ′, c′) such that (σ, c|π) → (σ′, c′|π) is an instance of R and
c′ = c[π ← c′|π].

The result of the rule application is the pair (σ′, tick(σ′, c′) ↓) if R = (A1)
and (σ, c′ ↓) otherwise.

We illustrate the small-step semantics in our simple scenario. We assume an
initial situation, in which no wheelchair is active. Starting the supervision process
WhChSupervision, the small-step semantics expands the process body and then
stops with the following expression as there is no unsupervised
wheelchair around:

some w:(WheelChair � Unsupervised) => SuperviseWhCh(w) 〈‖〉 WhChSupervision

I.e., the process stutters and any update from the real world that does not
introduce an unsupervised wheelchair leaves it as it is. Assume a wheelchair
r1 gets active, e.g. because it has finished charging its batteries: it triggers
the following update to the ontology from the real world ({r1:WheelChair,
r1:Unsupervised, (r1, Charger):at},∅). Now, the query w:(WheelChair �
Unsupervised) has an instance r1 and the expression reduces first to

SuperviseWhCh(r1) 〈‖〉 WhChSupervision

and further by expansion of the macro bodies we obtain

{ toggleSupervisionStatus(r1);

WhChAssist(r1) |〉〈| MonitorWhChRoute(r1) |〉〈| init G(!r1) }

〈‖〉 {some w:(WheelChair� Unsupervised)=>SuperviseWhCh(w)〈‖〉 WhChSupervision}
Next the action toggleSupervisionStatus is applied which applies the update
({r1:Supervised}, {r1:Unsupervised})) to the ontology. The expression is eval-
uated further by expanding the macro definitions of WhChAssist and MonitorWh-
ChRoute and activating the monitor init G(!r1). For sake of readability we
focus on the evaluation of the second one and ignore for now the expansion and
further evaluation of WhChAssist.

{ WhChAssist(r1) |〉〈|
{ some r1:WhChNonEmptyRoute and (r1,n):nextposition

and (r1,f):routefinalpos

=> try { init MonitorWhChTransition(r1) }

catch {
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switch

case not(!r1) => skip

case !r1 => requestWhChTo(r1,n);

(MonitorWhChRoute (r1) |〉〈| init G(not (r1,n):at));

requestWhChTo(r1,f) };

MonitorWhChRoute (w) }

|〉〈| active G(!r1) }

〈‖〉 {some w:(WheelChair� Unsupervised)=>SuperviseWhCh(w)〈‖〉 WhChSupervision}
At this stage the system stutters until r1 gets a non-empty route. Suppose, a sec-
ond wheelchair gets active, then the lower part activates another instance anal-
ogously to the upper part. Assume, r1 gets a non-empty route to the Kitchen
with first target position p1, the expression evaluates further to

{ WhChAssist(r1) |〉〈|
{ try { active (r1,Charger):at U ((r1,p1):at) }

catch {

switch

case not(!w) => skip

case !w => requestWhChTo(w,n);

(MonitorWhChRoute (w) |〉〈| init G(not (w,n):at));

requestWhChTo(w,f) };

MonitorWhChRoute (w) }

|〉〈| active G(!r1) }

〈‖〉 {some w:(WheelChair� Unsupervised)=>SuperviseWhCh(w)〈‖〉 WhChSupervision}
Next assume that the wheelchair gets offline due to some mechanical prob-
lem, which triggers the update (∅, {delete(r1)}). It entails the deletion of
r1:WheelChair, r1:Supervised, and (r1,Charger):at. The formula progres-
sion of active (r1,Charger):at U ((r1,p1):at) reduces to ⊥, which further
reduces the try-expression to the catch part:

switch

case not(!r1) => skip

case !r1 => requestWhChTo(r1,p1);

(MonitorWhChRoute (r1) |〉〈| init G(not (r1,p1):at));

requestWhChTo(r1,Kitchen)

Here the first case of the switch-expression evaluates to True causing the exe-
cution of skip and reducing that whole expression to MonitorWhChRoute (r1),
which gets expanded but stops then on some r1:WhChNonEmptyRoute and
(r1,n):nextposition and (r1,f):routefinalpos => .... Furthermore the
formula progression for the active monitor active G(!r1) is executed which
reduces it to False. This in turn makes the monitoring fail as well as all strictly
parallel process, which yields the new process expression

some w:(WheelChair � Unsupervised) => SuperviseWhCh(w) 〈‖〉 WhChSupervision

6 Improvements

The language, described so far, provides only updates for the specification of
actions. However, in practice some types of updates cannot be stated in a
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declarative manner, but need to be computed. For instance, consider our run-
ning example. If a wheelchair is ordered to a specific location, the route must be
computed depending on the route graph resided in the ontology. However, routes
and their computation can be more efficiently represented as abstract datatypes
(e.g. formalizing the “closest” neighbor of a location is impossible in DL). In
Sect. 3 we already emphasized the similarities between constructive ontologies
and abstract datatypes. We utilize this similarity to relate parts of the ontology
to serializations of datatype instances in a programming language. An example
are the declarations of freely generated datatypes using constructors. For basic
datatypes like sets, lists or maps this can be done uniformly.

These datatypes in programming languages like ML, Haskell or Scala can be
automatically serialized into an ontological representation and vice versa. For
serialization, the (pointer) structure of a datatype instance can be represented
by introducing individuals in the ontology.

For instance, a route in a route graph is a list of positions. The computation
of the route takes the current route of a wheelchair as argument, its current
position, the target position and the route graph and returns a new route for
the wheelchair. To mimic the rewriting of the wheelchair’s route to the new route,
the subtree of the old route must be replaced by the subtree for the new route.
Technically, this can be handled by reusing the same individual at the root of
the tree (i.e., keeping the pointer), deleting all individuals in the subtree of the
old route and inserting fresh individuals to represent the new subtree. As SHIP
is implemented in Scala, we implemented the described connection between the
ontological world and Scala datatypes. We extended the action declarations to
accommodate the (Scala-)computation of updates as illustrated by

action computePlan = {

pre = r:PlanRequest, (r,w):planrequest_wheelchair,

(r,src):planrequest_source, (r,trg):planrequest_target

(w,oldroute):wheelchair_route, g:RouteGraph

exec = RouteComputation.computeRoute(oldroute,src,trg,r,w,g)}

where the Scala-function computeRoute is used to update the value of oldroute
according to the new requirements.
Evaluation. We evaluated the performance of the approach in practice on the
described example. The ontology has 89 concepts, 50 roles, 198 TBox/RBox
axioms. The ABox has in average 207 individuals and 665 axioms. The ontol-
ogy updates take in average of 0.37 s (min 0.02 s, max 0.69 s), which is accept-
able. Still reaction times of the processes appear sometimes slow, because often
there are independent actions in parallel processes that are execute in sequence
although they could be executed simultaneously. This is an aspect where a static
analysis could help to combine multiple small actions into one large update step.

7 Related Work and Conclusion

We presented a logic-based language to program smart environments featuring
the ability to reason about actual states (using DL-reasoner) and also to smartly
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interleave active (performing updates) and passive (monitoring the environment)
phases in a process. Execution monitoring has a long tradition in robotics (cf.
[7,12] to detect discrepancies between expected and observed developments. In
[5] LTL was used to restrict search in forward-chaining planning. As new states
are generated they are incrementally checked against the goal formulated as an
LTL formula, which is updated in each step with the help of formula progres-
sion. Since then, various approaches combining planning with LTL-monitoring
have been proposed (e.g. [3,6,9]). Also logic programming languages have a long
tradition, GOLOG [10] being one of the first. In [14] the explicit representation
of the environment in a logic allows for the assessment of complex situations and
an adaptive behavior. [4] introduces an action formalism on description logics.
However to our knowledge, our approach is unique as it combines both features
in a programming language controlling real environments: The SHIP-Tool [2],
which is a prototypical implementation of an interpreter for the presented pro-
gramming language, has been successfully tested by implementing intelligent
assistance processes for the Bremen Ambient Assisted Living Lab [2].
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Abstract. Proofs by induction are often incompatible with functions in
tail-recursive form as the accumulator changes in the course of unfold-
ing the definitions. Context-moving and context-splitting (Giesl, 2000)
for functional programs transform tail-recursive programs into non tail-
recursive ones which are more suitable for proofs by induction and thus
for verification. In this paper, we formulate context-moving and context-
splitting transformations in the framework of term rewriting systems,
and prove their correctness with respect to both eager evaluation seman-
tics and initial algebra semantics under some conditions on the programs
to be transformed. The conditions for the correctness with respect to ini-
tial algebra semantics can be checked by automated methods for induc-
tive theorem proving developed in the field of term rewriting systems.

Keywords: Tail-recursion · Program transformation · Term rewriting
system · Inductive theorem proving

1 Introduction

Proofs by induction are fundamental in software verification and thus dealt with
by many automated theorem provers. An inductive theorem of a term rewriting
system (TRS for short) is an equation valid in the initial algebra of the TRS.
Inductive theorems correspond to the equations that can be shown by induction
on the data structures, and various automated methods have been investigated
for proving inductive validity of TRSs [1–3,7,9,10].

Recursive definition is a fundamental tool in various areas. A recursive defi-
nition of a function in which the body of the definition is a recursive call of the
function itself (with different arguments, typically) is called tail-recursive. When
evaluating a function call, if the function definition is given in a tail-recursive
form, the environment of the function call does not need to be kept to deal with
further computations that manipulate the results of its recursive calls. Thus,
programs in which function definitions are given in tail-recursive forms are com-
piled into codes removing extra overheads in function calls. Thus, tail-recursive
programs attain both efficiency and readability. However, proofs by induction are
often incompatible with tail-recursive definitions, as can be seen in the following
example.
c© Springer International Publishing Switzerland 2015
M. Falaschi (Ed.): LOPSTR 2015, LNCS 9527, pp. 331–345, 2015.
DOI: 10.1007/978-3-319-27436-2 20
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Example 1 (tail-recursion and proofs by induction). Let us consider the following
rewrite rules in tail-recursive form computing the addition of natural numbers:

R =
{

Add(0, y) → y, Add(S(x), y) → Add(x, S(y))
}

Let us consider proving Add(x, 0) .= x by induction on x. In the induction step
where x = S(x′), one needs to show the equation Add(x′, S(0)) .= S(x′) obtained
by unfolding the equation. However, one cannot apply the induction hypothesis
Add(x′, 0) .= x′ to this equation, since the second argument is different.

As the second argument y in the rewrite rules in Example 1, a tail-recursive
definition usually contains a variable called an accumulator which keeps inter-
mediate results of the computation and is passed to the return value at the final
recursive call. By unfolding the definition, the value of the accumulator changes
step by step in the course of the computation; in proofs by induction, this change
of the value makes the application of the induction hypothesis impossible. In this
way, proofs by induction are often incompatible with tail-recursive definitions.
Most methods for proving inductive theorems of TRSs containing tail-recursive
rules (tail-recursive TRSs) suffer a similar difficulty.

On the other hand, “simple” recursive definitions do not suffer such a prob-
lem. For example, a “simple” version of the TRS for addition would be the
following usual definition.

Example 2 (simple recursion and proofs by induction). Let R′ be the following
TRS.

R′ =
{

Add(0, y) → y, Add(S(x), y) → S(Add(x, y))
}

Now let us prove the same equation Add(x, 0) .= x of Example 1 using R′.
The base step is trivial, and in the induction step, one obtains an equation
S(Add(x′, 0)) .= S(x′) by unfolding the definition. This time, one can apply the
induction hypothesis Add(x′, 0) .= x′, and thus the proof succeeds.

The TRS R′ of Example 2 can be obtained from the TRS R of Example 1
by transforming the rhs of the second rule from Add(x, S(y)) to S(Add(x, y)),
i.e., transforming the rhs of the rewrite rule in such a way that the context
S(�) around the accumulator y is moved outside of the recursive call Add(x, y).
Generalizing such a transformation, J. Giesl [4] proposed context-moving and
context-splitting transformations for a particular form of functional programs
with eager evaluation. These transformations, under some conditions, transform
tail-recursive programs into equivalent “simple” recursive programs more suit-
able for theorem proving employing proofs by induction.

In a previous paper [8], we formulated context-moving and context-splitting
transformations for TRSs, and showed their correctness in the case where input
TRSs are orthogonal. We also proposed an approach for inductive theorem prov-
ing which combines these transformations with rewriting induction [7]. It was
demonstrated by experiments that the approach is effective for proving inductive
theorems of tail-recursive TRSs, compared to other systems based on rewriting
induction [3,9,10] (the system of [9] is equipped with lemma generation tech-
niques in [2,11,12]).
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In the present paper, we focus on the correctness of the context-moving and
context-splitting transformations as formulated in [8] but where input TRSs are
more general than orthogonal. To clarify the difference to the approach in [4],
we also show the correctness of the context-moving transformation where input
and output TRSs are evaluated by a deterministic eager strategy and thus can
be seen as a faithful representation of the functional programs discussed in [4].

The sufficient condition of the context-moving transformation for TRSs with
eager evaluation is identical to that of [4]. The condition is based on whether two
terms are evaluated to the same value by the input TRS (cf. Definition 2). How-
ever, this notion does not necessarily coincide with equality in the initial algebra
of the TRS, and so is not an inductive theorem in the traditional sense. Hence,
the condition cannot in general be verified by automated methods for proving
inductive theorems as developed in the field of TRSs. This is an obstacle to
implementing our approach to proving inductive theorems of tail-recursive TRSs.

On the other hand, the sufficient conditions of the context-moving and
context-splitting transformations in the present paper are precisely equality in
the initial algebra, and so can be checked by an inductive theorem prover. More-
over, as consequences of the correctness under the conditions, it turns out that
the context-moving and context-splitting transformations preserve equality in
the initial algebra, and the terms in each equivalence class have the same normal
form with respect to rewriting by the TRSs before and after the transformations.

The contributions of the paper are summarized as follows:

– We present proofs of the correctness of the context-moving transformation
for TRSs with respect to both eager evaluation semantics and initial algebra
semantics. Moreover, we provide an example to illustrate the usefulness of our
result in comparison to [4] (i.e., a transformation for a TRS where the initial
algebra semantics differs from the eager evaluation semantics).

– We report on an implementation and experiments of the context-moving and
context-splitting transformations for TRSs including non-orthogonal cases.
This is novel since [4] does not report on any implementation or experiments.

– Proving the correctness with respect to eager evaluation semantics has not
been treated in [8], and our proof of it differs from the one of [4]; we simply
use induction on the length of the evaluation while the proof of [4] depends
on induction on an unusual ordering (denoted �f in [4]).

– In our proof of the correctness with respect to initial algebra semantics, we
do not assume the uniqueness of normal forms nor orthogonality in output
TRSs, in contrast to the proofs of the correctness in [4,8]. In the proof for the
context-splitting transformation, we introduce a new translation ()• between
the terms of input and output TRSs besides the translation ()◦ which is the
same as one used in [4].

The rest of the paper is organized as follows. Section 2 contains preliminar-
ies. We formulate the context-moving transformation for TRSs and study its
correctness in Sect. 3. We briefly discuss the context-splitting transformation for
TRSs in Sect. 4. We report on an implementation and experiments in Sect. 5.
Section 6 concludes with suggestions for further work.
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To save space we omit some of the details in proofs, but a long version of the
paper is available at http://www.nue.riec.tohoku.ac.jp/user/kentaro/.

2 Preliminaries

In this section, we fix notations and notions used in the paper.
The set of terms over function symbols F and variables V is denoted by

T (F ,V). The set of variables (function symbols) occurring in a term t is denoted
by V(t) (resp. F(t)). We abbreviate a sequence of terms t1, t2, . . . , tn as t̄; we
define V(t̄) =

⋃n
i=1 V(ti) and F(t̄) =

⋃n
i=1 F(ti). A term t is ground if V(t) = ∅;

the set of ground terms is denoted by T (F). The root symbol of a term t is
denoted by root(t). A context is a term containing precisely one occurrence of
each special constant �1, . . . ,�n (holes) for some n. A context C is denoted by
C[ ] if n = 1. If C is a context with n holes then the term obtained by replacing
each �i (1 ≤ i ≤ n) in C with ti is denoted by C[t1, t2, . . . , tn]. A substitution is
a function θ : V → T (F ,V) (we omit the usual condition of substitutions that
they have a finite domain to ease the notation). A substitution θ is ground if
θ : V → T (F); throughout the paper, θg , θ

′
g , etc. denote ground substitutions.

A rewrite rule l → r satisfies l /∈ V and V(l) ⊇ V(r). We assume that
variables in rewrite rules are renamed when necessary. A term rewriting system
(TRS, for short) is a finite set of rewrite rules. We call l → r an R-rule if
l → r ∈ R. The set of defined function symbols of a TRS R is given by D =
{root(l) | l → r ∈ R} and the set of constructor symbols is C = F \ D. Terms
in T (C,V) are constructor terms; terms in T (C) are ground constructor terms.
A TRS R is a constructor TRS if for any rewrite rule f(l1, . . . , ln) → r ∈ R,
each li (1 ≤ i ≤ n) is a constructor term. A ground constructor substitution is
a substitution θ : V → T (C); throughout the paper, θgc , θ

′
gc , etc. denote ground

constructor substitutions.
In this paper, we work with unsorted TRSs for simplicity, but we elaborate

lemmas and definitions so that they can be easily adapted to those in the setting
of (monomorphic) many-sorted TRSs.

3 Context-Moving Transformation for TRSs

In this section, we formulate the context-moving transformation for TRSs and
prove the correctness of the transformation for some classes of TRSs. In the
context-moving transformation for functional programs in [4], the context occur-
ring around the accumulator variable is moved outside of the recursive calls in
each rule. The context-moving transformation for TRSs follows the same idea.

Definition 1 (Context-Moving Transformation for TRSs). A context-
moving transformation from TRS R to TRS R′ is given as:

R = RA ∪ RB ∪ RC where RA = {f(l̄i, z) → f(r̄i, Ci[z]) | 1 ≤ i ≤ m}
RB = {f(l̄j , z) → Cj [z] | m + 1 ≤ j ≤ n}
RC = {lk → rk | n + 1 ≤ k ≤ p}

R′ = R′
A ∪ RB ∪ RC where R′

A = {f(l̄i, z) → Ci[f(r̄i, z)] | 1 ≤ i ≤ m}

http://www.nue.riec.tohoku.ac.jp/user/kentaro/
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Here, RA, R′
A consist of m recursive f -rules, RB consists of (n−m) non-recursive

f -rules, and RC consists of (p − n) other (non f -)rules. The function symbol f
is the target of the transformation, the contexts C1[ ], . . . , Cn[ ] are the mov-
ing contexts, and the variable z is the accumulator. Furthermore, it is required
that the target f and the accumulator z do not appear anywhere else except the
places explicitly indicated, i.e., (i) f /∈ (

⋃m
i=1 F(l̄i, r̄i, Ci))∪ (

⋃n
j=m+1 F(l̄j , Cj))∪

(
⋃p

k=n+1 F(lk, rk)) and (ii) z /∈ (
⋃m

i=1 V(l̄i, r̄i, Ci)) ∪ (
⋃n

j=m+1 V(l̄j , Cj)).

Henceforth, we will focus on a context-moving transformation from R to R′,
and unless otherwise stated, f, z,RA, Ci, l̄i, . . . are supposed to be those specified
in the definition above.

Example 3 (context-moving transformation). Let R be the following TRS for
multiplication.

R =
{

(a) Mult(S(x), y, z) → Mult(x, y,Add(y, z)), (b) Mult(0, y, z) → z
(c) Add(S(x), y) → S(Add(x, y)), (d) Add(0, y) → y

}

We apply the context-moving transformation with Mult as the target and z
as the accumulator. The rewrite rules of R are partitioned into RA = {(a)},
RB = {(b)} and Rc = {(c), (d)}, and there are two moving contexts, namely
C1 = Add(y,�) and C2 = �. Thus, by definition, we obtain

R′
A =

{
Mult(S(x), y, z) → Add(y,Mult(x, y, z))

}
Therefore, the following TRS R′ is obtained.

R′ =
{

Mult(S(x), y, z) → Add(y,Mult(x, y, z)), Mult(0, y, z) → z
Add(S(x), y) → S(Add(x, y)), Add(0, y) → y

}

The rest of this section is devoted to the discussion on the correctness of the
context-moving transformation.

3.1 Correctness of the Context-Moving Transformation with
Respect to Eager Evaluation Semantics

First we discuss the correctness with respect to eager evaluation semantics as
considered in [4]. We assume in this subsection that R is a constructor TRS.

An eager rewrite relation e→R is a binary relation on T (F) given by s
e→R t

iff s = C[lθgc ] and t = C[rθgc ] for some l → r ∈ R, a context C[ ] and a
ground constructor substitution θgc . Further, we assume some specific rewrite
strategy (e.g. leftmost(-innermost) with rule priority) so that each rewrite step is
deterministic. A rewrite step by the deterministic strategy (the eager evaluation
strategy) is denoted by s

ev→R t. The reflexive transitive closure of ev→R is denoted
by ev→∗

R. A ground term t is said to be defined in R if there exists v ∈ T (C) such
that t

ev→∗
R v; in that case, |t|evR denotes the length of the reduction sequence

from t to v. We use s
ev≡R t to mean that for any v ∈ T (C), s

ev→∗
R v if and only

if t
ev→∗

R v. Note that
ev≡R is an equivalence relation and if s

ev→∗
R t then s

ev≡R t.
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The following are basic properties of an eager evaluation strategy, which are
freely used in the rest of this subsection.

Lemma 1. 1. If s
ev≡R t then C[s]

ev≡R C[t].
2. If C[s] is defined in R and s

ev→R t then |C[s]|evR = |C[t]|evR + 1.
3. If C[t] is defined in R then so is t, and moreover |C[t]|evR ≥ |t|evR .

Proof. By induction on C[ ]. ��
Lemma 2. For any l → r ∈ R and ground substitution θg such that θg(x) is
defined in R for any x ∈ V(l), lθg

ev≡R rθg .

Proof. If lθg or rθg is defined in R, then lθg
ev≡R lθgc

ev≡R rθgc
ev≡R rθg for some

θgc . ��
We require a property concerning the moving contexts C1[ ], . . . , Cn[ ] to guaran-
tee the correctness of the context-moving transformation. This property is given
in a similar way to [4] and is formulated as below.

Definition 2 (Commutativity Law of Moving Contexts). Let C1[ ], . . . ,
Cn[ ] be the moving contexts of an instance of the context-moving transforma-
tion. The commutativity law of moving contexts refers to the following condition:

∀i(1 ≤ i ≤ m).∀j(1 ≤ j ≤ n).∀θgc .Ci[Cj [z]]θgc
ev≡R Cj [Ci[z]]θgc (CCOMev)

Here, we assume that each variable in moving contexts Ci[ ], Cj [ ] is renamed so
that their variables do not overlap. By Lemma1, it is seen that the condition
(CCOMev) is equivalent to the one with θg instead of θgc .

Example 4 (commutativity law of moving contexts). The moving contexts of the
transformation in Example 3 are C1 = Add(y,�) and C2 = � (with m = 1 and
n = 2). As C2 is a trivial context, the commutativity law of moving contexts is
∀θgc .Add(x,Add(y, z))θgc

ev≡R Add(y,Add(x, z))θgc .

Definition 3 (R ev⇒f
cm R′). We write R

ev⇒f
cm R′ if R′ is obtained from a con-

structor TRS R by the context-moving transformation such that f is the target
and the condition (CCOMev) holds.

The commutativity law of moving contexts is essential for guaranteeing the sim-
ulation of rewrite sequences from ground terms to ground constructor terms on
R by R′ and vice versa. The key property to the simulation is the following
context-moving lemma.

Lemma 3 (Context-Moving Lemma). Suppose R
ev⇒f

cm R′. Let 1 ≤ i ≤ m,
and let θgc be a ground constructor substitution and t̄, u be ground terms.

1. If Ciθgc [f(t̄, u)] ev→∗
R v ∈ T (C) then f(t̄, Ciθgc [u]) ev→∗

R v.
2. If f(t̄, Ciθgc [u]) ev→∗

R′ v ∈ T (C) then Ciθgc [f(t̄, u)] ev→∗
R′ v.
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Proof. 1. If Ciθgc [f(t̄, u)] ev→∗
R v ∈ T (C) then f(t̄, u) is defined in R. The claim

is proved by induction on |f(t̄, u)|evR .
2. By induction on |f(t̄, Ciθgc [u])|evR′ . ��

We are now ready to prove the correctness of the context-moving transformation
with respect to eager evaluation semantics.

Theorem 1 (Correctness of Context-Moving Transformation). Let R

be a constructor TRS. Suppose R
ev⇒f

cm R′. For any ground term s and ground
constructor term v, s

ev→∗
R v if and only if s

ev→∗
R′ v.

Proof. By induction on the length of the evaluation, using Lemma3. ��
Remark 1. The proof of the “only if”-part of Theorem1 given in [4] is based on
the converse of Lemma 3(1). For those proofs, induction on an unusual ordering
�f is used. In contrast, our proof is based on Lemma 3(2), and it suffices to use
induction on the length of the evaluation.

3.2 Correctness of the Context-Moving Transformation
with Respect to Initial Algebra Semantics

The correctness theorem in the previous subsection depends on the condition
(CCOMev), which involves a notion of evaluation and does not necessarily corre-
spond to equality in the initial algebra. In this subsection, we show the correct-
ness of the context-moving transformation based on a condition that precisely
corresponds to equality in the initial algebra.

First we introduce some standard definitions in term rewriting. A rewrite
relation →R is a binary relation on T (F ,V) given by s →R t iff s = C[lθ]
and t = C[rθ] for some l → r ∈ R, a context C[ ] and a substitution θ. The
reflexive transitive closure of →R is denoted by ∗→R. If a unique normal form of
t exists, then the normal form of t is denoted by t↓R. For each substitution θ,
the substitution θ↓R is defined by θ↓R(x) = (θ(x))↓R, provided that (θ(x))↓R is
defined for any x ∈ V. We use θg\f to denote a ground substitution such that f
does not appear in its range. A TRS R is sufficiently complete if ∀s ∈ T (F).∃v ∈
T (C). s ∗→R v holds [6]; R is ground confluent if ∗←R ◦ ∗→R ⊆ ∗→R ◦ ∗←R on
T (F). We assume in this subsection that R is a sufficiently complete and ground
confluent TRS.1

Now we introduce a property on the moving contexts C1[ ], . . . , Cn[ ] to guar-
antee the correctness with respect to semantics considered in this subsection.

Definition 4 (Commutativity Law of Moving Contexts). Let C1[ ], . . . ,
Cn[ ] be the moving contexts of an instance of the context-moving transforma-
tion. The commutativity law of moving contexts refers to the following condition:

∀i(1 ≤ i ≤ m).∀j(1 ≤ j ≤ n).∀θg .Ci[Cj [z]]θg↓R = Cj [Ci[z]]θg↓R (CCOM)

1 In the case of many-sorted TRSs, we assume sufficient completeness only for the sort
of return values of the target f of the context-moving transformation, meaning that
any ground term of that sort can be rewritten to a constructor term. Cf. Example 6.
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Here, we assume that each variable in moving contexts Ci[ ], Cj [ ] is renamed so
that their variables do not overlap.

In contrast to the condition (CCOMev) in Definition 2, the above condition
(CCOM) precisely corresponds to equations that are valid in the initial alge-
bra of the input TRS R, i.e. inductive theorems of R, and so may be checked by
an inductive theorem prover. (For an actual implementation, see Sect. 5.)

Definition 5 (R ⇒f
cm R′). We write R ⇒f

cm R′ if R′ is obtained from a suffi-
ciently complete and ground confluent TRS R by the context-moving transfor-
mation such that f is the target and the condition (CCOM) holds.

The condition (CCOM) is essential for guaranteeing the simulation of rewrite
sequences from ground terms to ground constructor terms on R by R′. We first
show the simulation of rewrite sequences of the form f(x̄, z)θg\f

∗→R v (Lemma 4)
and then generalize it to an arbitrary case (Lemma 5).

Lemma 4. Suppose R ⇒f
cm R′. For any ground substitution θg\f and ground

constructor term v, if f(x̄, z)θg\f

∗→R v then f(x̄, z)θg\f

∗→R′ v.

Proof. Suppose f(x̄, z)θg\f

∗→R v. By the form of the rewrite rules in R, we know
that any rewrite sequence α of R from f(x̄, z)θg\f to v has the following form:

α : f(x̄, z)θg\f = f(l̄i1θ1, u1) →RA
f(r̄i1θ1, Ci1θ1[u1])

∗→RC
f(l̄i2θ2, u2) →RA

f(r̄i2θ2, Ci2θ1[u2])
...

∗→RC
f(l̄inθn, un) →RB

Cinθn[un] ∗→RC
v

Here θ1, . . . , θn are ground substitutions such that f does not appear in their
ranges. Note that rewrite rules of RA, RB applicable to any term f(t̄, u) (at root
position) are completely specified by t̄ regardless of u. Hence, in the rewrite
sequence α, the applications of RA, RB-rules are not affected even if one post-
pones the applications of RC-rules to ui’s. Thus, one can obtain the next rewrite
sequence β from α, by distinguishing the applications of RC-rules to the last
argument of f and those to the rest, and postponing the former:

β : f(x̄, z)θg\f = f(l̄i1θ1, u1) →RA
f(r̄i1θ1, Ci1θ1[u1])

∗→RC
f(l̄i2θ2, Ci1θ1[u1]) →RA

f(r̄i2θ2, Ci2θ2[Ci1θ1[u1]])
...

∗→RC
f(l̄inθn, Cin−1θn−1[· · · Ci1θ1[u1] · · · ])

→RB
Cinθn[Cin−1θn−1[· · · Ci1θ1[u1] · · · ]] ∗→RC

v

Next we construct a rewrite sequence γ of R′ from β (of R). It is easy to
observe in the definition of context-moving transformation that for any i and θ,
f(l̄i, z)θ →RA

f(r̄i, Ci[z])θ implies f(l̄i, z)θ →R′
A

Ci[f(r̄i, z)]θ. Thus, by moving
out the contexts Cijθj [ ] in each RA-step, we obtain the corresponding R′

A-step.
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Then the next rewrite sequence γ is obtained from β.

γ : f(x̄, z)θg\f = f(l̄i1θ1, u1) →R′
A

Ci1θ1[f(r̄i1θ1, u1)]
∗→RC

Ci1θ1[f(l̄i2θ2, u1)] →R′
A

Ci1θ1[Ci2θ2[f(r̄i2θ2, u1)]]
...

∗→RC
Ci1θ1[· · · Cin−1θn−1[f(l̄inθn, u1)] · · · ]

→RB
Ci1θ1[· · · Cin−1θn−1[Cinθn[u1]] · · · ]

Since R is ground confluent, so is RC . Thus, by the condition (CCOM) and
f /∈ F(Ci1θ1[· · · Cin−1θn−1[Cinθn[u1]] · · · ]), it follows

v = Cinθn[Cin−1θn−1[· · · Ci1θ1[u1] · · · ]]↓RC

= Ci1θ1[· · · Cin−1θn−1[Cinθn[u1]] · · · ]↓RC

Hence, we obtain f(x̄, z)θg\f

∗→R′ Ci1θ1[· · · Cin−1θn−1[Cinθn[u1]] · · · ] ∗→RC
v. ��

Lemma 5. Suppose R ⇒f
cm R′. For any ground term s and ground constructor

term v, if s
∗→R v then s

∗→R′ v.

Proof. By induction on the number of occurrences of f in s, using Lemma 4. ��
In contrast to the proof in the previous subsection, a key ingredient of the proof of
the correctness here is preservation of two properties of R: sufficient completeness
and ground confluence. The former is a direct consequence of Lemma 5.

Lemma 6. Suppose R ⇒f
cm R′. Then R′ is sufficiently complete.

Proof. It follows by Lemma 5 from the sufficient completeness of R. ��
To show preservation of ground confluence, we need the simulation of rewrite
sequences from ground terms to ground constructor terms on R′ by R, that is,
the converse of Lemma 5. To this end, we first prove the following lemma, where
we use again the forms of rewrite rules in R and R′ and the condition (CCOM).

Lemma 7. Suppose R ⇒f
cm R′. For any ground terms s, s′ and ground con-

structor term v, if s
∗→R v and s →R′ s′ then s′ ∗→R v.

Proof. If s →RB∪RC
s′, then s →R s′ by RB ∪ RC ⊆ R, and hence the claim

follows immediately by the ground confluence of R. It remains to prove the case
s →R′

A
s′. Then one has s = C[f(l̄i1θ1, u)] and s′ = C[Ci1θ1[f(r̄i1θ1, u)]], and

thus, s = C[f(l̄i1θ1, u)] →RA
C[f(r̄i1θ1, Ci1θ1[u])]. Furthermore, since s

∗→R v, it
follows from the ground confluence of R that C[f(r̄i1θ1, Ci1θ1[u])] ∗→R v. Thus,
s = C[f(l̄i1θ1, u)] →RA

C[f(r̄i1θ1, Ci1θ1[u])] ∗→R v. Now, as in the proof of
Lemma 4, this rewrite sequence looks like:

α : s = C[f(l̄i1θ1, u)] →RA
C[f(r̄i1θ1, Ci1θ1[u])]

∗→RC
C[f(l̄i2θ2, Ci1θ1[u])] →RA

C[f(r̄i2θ2, Ci2θ2[Ci1θ1[u]])]
...

∗→RC
C[f(l̄inθn, Cin−1θn−1[· · · Ci1θ1[u] · · · ])]

→RB
C[Cinθn[Cin−1θn−1[· · · Ci1θ1[u] · · · ]]] ∗→R v
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Consider the next rewrite sequence β obtained from α by replacing the first
RA-step with an R′

A-step:

β : s = C[f(l̄i1θ1, u)] →R′
A

C[Ci1θ1[f(r̄i1θ1, u)]]
∗→RC

C[Ci1θ1[f(l̄i2θ2, u)]] →RA
C[Ci1θ1[f(r̄i2θ2, Ci2θ2[u])]]

∗→RC
C[Ci1θ1[f(l̄i3θ3, Ci2θ2[u])]] →RA

C[Ci1θ1[f(r̄i3θ3, Ci3θ3[Ci2θ2[u]])]]
...

∗→RC
C[Ci1θ1[f(l̄inθn, Cin−1θn−1[· · · Ci2θ2[u] · · · ])]]

→RB
C[Ci1θ1[Cinθn[Cin−1θn−1[· · · Ci2θ2[u] · · · ]]]]

Then, by the condition (CCOM) and ground confluence of R, we have

v = C[Cinθn[Cin−1θn−1[· · · Ci1θ1[u] · · · ]]]↓R

= C[Ci1θ1[Cinθn[Cin−1θn−1[· · · Ci2θ2[u] · · · ]]]]↓R

Since s′ = C[Ci1θ1[f(r̄i1θ1, u)]] ∗→R C[Ci1θ1[Cinθn[Cin−1θn−1[· · · Ci2θ2[u] · · · ]]]]
(in β), we conclude s′ ∗→R v. ��
The rewrite step s →R′ s′ in the above lemma can be generalized to s

∗→R′ s′.

Lemma 8. Suppose R ⇒f
cm R′. For any ground terms s, s′ and ground con-

structor term v, if s
∗→R v and s

∗→R′ s′ then s′ ∗→R v.

Now we can prove the converse of Lemma 5.

Lemma 9. Suppose R ⇒f
cm R′. For any ground term s and ground constructor

term v, if s
∗→R′ v then s

∗→R v.

Proof. By sufficient completeness of R, there exists a ground constructor term
v′ such that s

∗→R v′. By Lemma 8, we have v
∗→R v′, and thus v = v′ as v is a

constructor term. Hence, s
∗→R v. ��

Now we arrive at the preservation of ground confluence.

Lemma 10. Suppose R ⇒f
cm R′. Then R′ is ground confluent.

Proof. Let t be a ground term and suppose that t
∗→R′ t1 and t

∗→R′ t2. Since
R′ is sufficiently complete by Lemma 6, there exist ground constructor terms
v1, v2 such that t1

∗→R′ v1 and t2
∗→R′ v2. By Lemma 9, we have t

∗→R v1 and
t

∗→R v2. Then by ground confluence of R, we obtain v1 = v2. Hence R′ is ground
confluent. ��
We are now ready to show the main theorem of this subsection, which implies
that the context-moving transformation preserves equality in the initial algebra
and the terms in each equivalence class have the same normal form by R and R′.

Theorem 2 (Correctness of Context-Moving Transformation). Let R be
a sufficiently complete and ground confluent TRS. Suppose R ⇒f

cm R′. Then for
any ground term s, s↓R = s↓R′ .
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Proof. By sufficient completeness and ground confluence of R and R′, s↓R and
s↓R′ are unique constructor ground terms. By Lemma5, we have s

∗→R′ s↓R.
Thus, s↓R = s↓R′ . ��
Example 5 (context-moving transformation for non-orthogonal system). Let R
be the following non-orthogonal TRS for a list calculation.

R =

⎧⎪⎪⎨
⎪⎪⎩

(a) Minlist(Cons(x, xs), z) → Minlist(xs,Min(x, z))
(b) Minlist(Nil , z) → z
(c) Min(S(x), S(y)) → S(Min(x, y))
(d) Min(0, y) → 0, (e) Min(x, 0) → 0

⎫⎪⎪⎬
⎪⎪⎭

where we assume that it is many-sorted with sorts Nat and NatList in an appro-
priate way. We apply the context-moving transformation with Minlist as the
target and z as the accumulator. We have RC = {(c), (d), (e)} and there are two
moving contexts, namely C1 = Min(x,�) and C2 = �. Then we have

∀θg .Min(x,Min(y, z))θg↓R = Min(y,Min(x, z))θg↓R

and thus, R ⇒Minlist
cm R′, where

R′ = {Minlist(Cons(x, xs), z) → Min(x,Minlist(xs, z))} ∪ {(b)–(e)}
Example 6. In this example, we use a many-sorted TRS R with sorts Nat and
NatStream, where “:” of sort Nat × NatStream → NatStream is the only con-
structor symbol for terms of sort NatStream.

R =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(a) Sum(S(x), α, z) → Sum(x,Tl(α),Add(Hd(α), z))
(b) Sum(0, α, z) → z
(c) Hd(x : α) → x, (d) Tl(x : α) → α
(e) Inc → 0 : Succ(Inc), (f) Succ(x : α) → S(x) : Succ(α)
(g) Add(S(x), y) → S(Add(x, y)), (h) Add(0, y) → y

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Here we have sufficient completeness for sort Nat , which is the sort of return
values of the target Sum. Then, all the arguments for the correctness of the
context-moving transformation follows for terms of sort Nat .2 We have RC =
{(c)–(h)} and there are two moving contexts, namely C1 = Add(Hd(α),�) and
C2 = �. Then we have

∀θg .Add(Hd(α),Add(Hd(β), z))θg↓R = Add(Hd(β),Add(Hd(α), z))θg↓R

Thus, we obtain R ⇒Sum
cm R′, where

R′ = {Sum(S(x), α, z) → Add(Hd(α),Sum(x,Tl(α), z))} ∪ {(b)–(h)}
Note here that, for terms of sort Nat , normal forms may not be reached by the
eager evaluation strategy because of the rule for Inc.
2 For terms of sort NatStream, we do not seek the correctness of the context-moving

transformation in the style of Theorem 2.
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4 Context-Splitting Transformation for TRSs

In this section, we formulate the context-splitting transformation for TRSs and
prove the correctness of the transformation. In the context-splitting transforma-
tion for functional programs in [4], the context occurring around the accumulator
variable is required to be split into a “common” part and an “own” part, where
the “common” part needs to be common to all f -rules. Then, in each rule, the
context is moved outside of the recursive calls, moving its own part and remov-
ing the accumulator. Furthermore, the target f is replaced with a new function
symbol f ′, obtained by removing the accumulator argument of f . The context-
splitting transformation for TRSs follows the same idea.

Definition 6 (Context-Splitting Transformation for TRSs). The context-
splitting transformation from TRS R to TRS R′ is given as:

R = RA ∪ RB ∪ RC where RA = {f(l̄i, z) → f(q̄i, Ci[z]) | 1 ≤ i ≤ m}
RB = {f(l̄j , z) → Cj [z] | m + 1 ≤ j ≤ n}
RC = {lk → rk | n + 1 ≤ k ≤ p}

For each i (1 ≤ i ≤ n), it is required that either Ci[ ] = C[ri,�] or Ci[ ] = �.

R′ = R′
A ∪ R′

B ∪ RC where R′
A = {f ′(l̄i) → C ′

i[f
′(q̄i)] | 1 ≤ i ≤ m}

R′
B = {f ′(l̄j) → r′

j | m + 1 ≤ j ≤ n}
Here, for each i (1 ≤ i ≤ m) and j (m + 1 ≤ j ≤ n), the context C ′

i[ ] and the
term r′

j are given like this:

C ′
i[ ] =

{
C[�, ri] if Ci[ ] = C[ri,�]
� if Ci[ ] = � r′

j =
{

rj if Cj [ ] = C[rj ,�]
e if Cj [ ] = �

The function symbol f is the target of the transformation, the variable z is the
accumulator, the context C is the common context, and the term e is the unit.
Here, the common context C should be a ground context such that f /∈ F(C)
and the unit e should be a ground constructor term. Furthermore, it is required
that the target f and the accumulator z do not appear anywhere else except the
places explicitly indicated.

Example 7 (context-splitting transformation). Let R be the following TRS for
list concatenation. Here we assume that it is many-sorted in an appropriate way.

R =
{

(a) Cat(LCons(x, xs), z) → Cat(xs,App(z, x)), (b) Cat(LNil , z) → z
(c) App(Cons(x, xs), y) → Cons(x,App(xs, y)), (d) App(Nil , y) → y

}

We apply the context-splitting transformation with Cat as the target and z as
the accumulator. The TRS R is partitioned like this: RA = {(a)}, RB = {(b)}
and RC = {(c), (d)}. We remark that the common context is C = App(�2,�1)
and we have C1[ ] = App(�, x) and C2[ ] = �. The unit is e = Nil . We construct
R′

A, R′
B from RA, RB as follows:

R′
A =

{
Cat ′(LCons(x, xs)) → App(x,Cat ′(xs))

}
R′

B =
{

Cat ′(LNil) → Nil
}

Thus, we obtain R′ = R′
A ∪ R′

B ∪ {(c), (d)}.
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4.1 Correctness of the Context-Splitting Transformation
with Respect to Initial Algebra Semantics

In the context-moving transformation, the commutativity laws of moving con-
texts played an important role. In the context-splitting transformation, we require
two conditions instead: “associativity law of common context” and “unit law of
common context”; they are defined again following [4] but in the forms that
correspond to equality in the initial algebra as (CCOM) in Definition 4.

Definition 7 (Associativity Law of Common Context). Let C be the com-
mon context of an instance of the context-splitting transformation. The asso-
ciativity law of common context for the transformation refers to the following
condition:

∀θg .C[C[x, y], z]θg↓R = C[x,C[y, z]]θg↓R (CASSOC)

Definition 8 (Unit Law of Common Context). Let C be the common con-
text and e be the unit of an instance of the context-splitting transformation.
The unit law of common context for the transformation refers to the following
condition:

∀θg .C[x, e]θg↓R = C[e, x]θg↓R = θg(x) (CUNIT)

Definition 9 (R ⇒f
cs R′).We write R ⇒f

cs R′ if R′ is obtained from a sufficiently
complete and ground confluent TRS R by the context-splitting transformation
such that f is the target and the conditions (CASSOC) and (CUNIT) hold.

Definition 10 (Translations ()◦, ()•). Let C be the common context and e be
the unit of an instance of the context-splitting transformation. We recursively
define the term t◦ ∈ T (F ′,V) for each term t ∈ T (F ,V) and the term t• ∈
T (F ,V) for each term t ∈ T (F ′,V) as follows:

t◦ =

⎧⎨
⎩

C[f ′(t̄◦), u◦] if t = f(t̄, u)
g(t̄◦) if t = g(t̄), g �= f
t if t ∈ V

t• =

⎧⎨
⎩

f(t̄•, e) if t = f ′(t̄)
g(t̄•) if t = g(t̄), g �= f ′

t if t ∈ V
Here, for each sequence t̄ = t1, . . . , tn, we let t̄� = t�1, . . . , t

�
n for � ∈ {◦, •}.

We first show two kinds of simulation of rewrite sequences from ground terms
to ground constructor terms on R by R′.

Lemma 11. Suppose R ⇒f
cs R′. For any ground term s and ground constructor

term v, (i) if s
∗→R v then s◦ ∗→R′ v and (ii) if s• ∗→R v then s

∗→R′ v.

Using Lemma 11, we can show the correctness of the context-splitting transfor-
mation. As in the case of the context-moving transformation, a key ingredient
of the proof is preservation of sufficient completeness and ground confluence.

Lemma 12. Suppose R ⇒f
cs R′. Then R′ is sufficiently complete.

Lemma 13. Suppose R ⇒f
cs R′. Then R′ is ground confluent.

Theorem 3 (Correctness of Context-Splitting Transformation). Let R
be a sufficiently complete and ground confluent TRS. Suppose R ⇒f

cs R′. Then
for any ground term s, s↓R = s◦↓R′ .



344 K. Sato et al.

5 Automating the Context-Moving and Context-Splitting
Transformations

In this section, we report on an implementation and experiments of the context-
moving and context-splitting transformations for TRSs presented in this paper.
A key feature of our implementation is to employ inductive theorem proving to
verify the commutative law of moving contexts, etc. to guarantee the correctness
of the transformations.

An equation s
.= t is an inductive theorem of a TRS R (R |=ind s

.= t) if
sθg

∗↔R tθg for any ground substitution θg . It is known that these equations
coincide with the equations that are valid in the initial algebra of R. The next
lemma follows immediately from the definition.

Lemma 14. Let R be a sufficiently complete and ground confluent TRS. Then
R |=ind s

.= t iff for any ground substitution θg , sθg↓R = tθg↓R.

Thus, the commutative law of moving contexts and the associative and unit
laws of common context, in the forms of (CCOM) in Definition 4, (CASSOC)
in Definition 7 and (CUNIT) in Definition 8, are guaranteed if one succeeds in
proving the following conditions (C), (A) and (U), respectively.

(C) ∀i(1 ≤ i ≤ m)∀j(1 ≤ j ≤ n).R |=ind Ci[Cj [z]] .= Cj [Ci[z]]
(A) R |=ind C[C[x, y], z] .= C[x,C[y, z]]
(U) R |=ind C[x, e] .= x, R |=ind C[e, x] .= x

Here, C1, . . . , Cm are the moving contexts, C is the common context, and e is
the unit of the transformation.

We have implemented a TRS transformation procedure with the context-
moving and context-splitting transformations using Standard ML of New Jersey.
We employed rewriting induction [7] for proving conditions (C), (A) and (U).
Since one generally needs to deal with non-orientable equations for proving the
condition (C), we have used rewriting induction for non-orientable equations [1].

We have tested context-moving transformations, context-splitting transfor-
mations, and their combinations. Among 21 examples, the context-moving trans-
formations succeeded at 15 examples and the context-splitting transformations
succeeded at 10 examples. There are 6 examples which succeeded in both of the
transformations. Failure of 3 examples in context-moving transformations and
4 in context-splitting transformations are due to failure of rewriting induction.

All details of the experiments are available on the webpage http://www.nue.
riec.tohoku.ac.jp/tools/experiments/lopstr15/.

6 Conclusion

We have presented proofs of the correctness of context-moving and context-
splitting transformations for TRSs. First we gave a proof of the correctness of
the context-moving transformation with respect to eager evaluation semantics as

http://www.nue.riec.tohoku.ac.jp/tools/experiments/lopstr15/
http://www.nue.riec.tohoku.ac.jp/tools/experiments/lopstr15/
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considered in [4]. Then we gave proofs of the correctness of the context-moving
and context-splitting transformations with respect to initial algebra semantics,
where the conditions of the transformations precisely correspond to equality in
the initial algebra and so can be checked by an inductive theorem prover.

The context-moving transformation for TRSs with eager evaluation as well as
the transformations in [4] allows input programs where a term may not be evalu-
ated to a ground constructor term either because it is not terminating under the
evaluation strategy or because evaluation gets stuck at a non-constructor term.
To deal with such programs in general (i.e., to prove their properties and to check
the conditions for the correctness of the transformations), one needs methods
for induction proofs with partial functions as studied in [5]. Also, the correctness
of the transformations for programs with other evaluation strategies, e.g. lazy
evaluation, is to be investigated. These problems and their implementation are
left as future work.
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Abstract. It is well recognized that a single, arbitrarily efficient solver
can be significantly outperformed by a portfolio solver exploiting a com-
bination of possibly slower on-average different solvers. Despite the suc-
cess of portfolio solvers within the context of solving competitions, they
are rarely used in practice. In this paper we give an overview of the
main limitations that hinder the practical adoption and development
of portfolio solvers within the Constraint Programming (CP) paradigm,
discussing also possible ways to overcome them and potential extensions
outside the CP field.

1 Introduction

Solving combinatorial search problems is hard, and there exist nowadays plenty
of techniques and constraint solvers for performing this task. It has become clear
that different solvers are better when solving different problem instances, even
within the same problem class. It has also been shown that a single, arbitrarily
efficient solver can be significantly outperformed by using a portfolio of possibly
on-average slower solvers.

Algorithm portfolios [25] can be seen as instances of the more general Algo-
rithm Selection problem [57] where, as reported in [42], the algorithm selection
is performed case-by-case for each problem to solve. Within the context of con-
straint solving, a portfolio approach enables to combine a number m > 1 of
different constituent solvers s1, . . . , sm in order to create a globally better con-
straint solver, dubbed a portfolio solver. When a new, unseen problem p comes,
the portfolio solver tries to predict the best constituent solver(s) si1 , . . . , sik
(with 1 ≤ ij ≤ m for j = 1, . . . , k) for solving p and then runs them on p. Prop-
erly selecting and scheduling the solvers is a crucial step for the performance of
a portfolio solver, and it is usually performed by exploiting Machine Learning
techniques based on features extracted from the problem p to solve.

We can safely say that portfolio approaches have proven to be particularly
effective within the context of solving challenges. For instance, the SAT port-
folio solvers 3S [38] and CSHC [46] won gold medals in the SAT Competition
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2011 and 2013 respectively. SATZilla [72] won the SAT Challenge 2012. CPHy-
dra [54] was the winner of the International Constraint Solver Competition 2008.
The ASP portfolio solver claspfolio [17] was gold medalist in different tracks of
the ASP Competition 2009 and 2011. ArvandHerd [70] and IBaCoP [14] won
some tracks in the Planning Competition 2014, where 29 out of 67 solvers were
portfolio-based. Surprisingly enough, despite the remarkable results achieved in
such challenges, portfolio solvers have been in general poorly adopted in the real
word. So, a question naturally arises: why portfolio approaches are scarcely used
outside the walls of solving competitions?

In this paper we tackle this problem by focusing in particular on portfolio
approaches within the Constraint Programming (CP) paradigm, where the goal
is to model and solve Constraint Satisfaction Problems (CSPs) as well as the
more general Constraint Optimisation Problems (COPs). From this perspective
the state of the art of CP portfolio solvers is still a raw fruit if compared, e.g.,
to the SAT field where a number of effective portfolio approaches have been
developed and tested. As an example, the first and the only portfolio solver that
won a MiniZinc Challenge [67] —the only still active competition for evaluating
CP solvers— has been sunny-cp [6] in 2015. There are certainly a number of
difficulties because of which many users prefer to take refuge in a more classical
“single-solver” approach, rather than relying on portfolio solvers. However, we
believe that in a not negligible number of cases a proper combination of differ-
ent solvers might significantly improve the solving process. Our goal is therefore
trying to reduce the obstacles that hinder the practical adoption and develop-
ment of portfolio approaches. Among the various issues, we identified four main
challenges for the future of CP portfolio solvers:

– prediction model (Sect. 2): what are the scientific and engineering issues that
arise when building or using the prediction model responsible for the solver
selection;

– optimisation problem (Sect. 3): how to apply the portfolio theory to COPs,
being the state of the art in this field still in an embryonic stage;

– parallelisation (Sect. 4): how to exploit different processing units, possibly
running in parallel more than one constituent solver;

– utilisation (Sect. 5): how to facilitate the practical use of portfolio solvers for
solving generic CP problems.

In the rest of the paper we will explain in more detail these issues, by dis-
cussing possible ways to overcome them and providing also proposals for future
directions, such as for example the extension of portfolio solving outside the CP
field.

2 Prediction Model

With the term “prediction model” we refer to the set of data, knowledge and
algorithms required to predict and run the best solver(s) for solving a new CP
problem. In this section we focus in particular on three key components of the
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Fig. 1. Basic components of the prediction model.

prediction model: the dataset of problems used to make (and test) the predic-
tions, the features used to characterize each problem, and the algorithms used
to perform the solver selection (Fig. 1).

The basic framework of a prediction model is summarized in Fig. 2. When a
new, unseen problem p needs to be solved, the feature vector FV = (F1, . . . , Fd)
of p is firstly computed. Broadly speaking, FV is a collection of d ≥ 0 numeri-
cal attributes that characterize the problem p (e.g., statistics over the problem
structure). Then, a subset si1 , . . . , sik of 1 ≤ ij ≤ m solvers of the portfolio
{s1, . . . , sm} is selected and executed according to FV and to a dataset of already
known problems on which the portfolio solver is trained. Note that, although the
solver selection is usually performed by means of Machine Learning algorithms,
the use of Machine Learning is not strictly necessary. For example, we could
define a purely static prediction model that for every instance p always runs a
schedule of solvers which is pre-computed a priori, regardless of p. In this case
no prediction is needed.

The prediction should be transparent for the end user, i.e., the user should
run the portfolio solver on p just like a regular, individual solver without worrying
about the underlying structure of the model.

2.1 Dataset

The performance of a portfolio solver is strongly dependent on the choice of the
set of problem instances used to perform the solver selection. The difficulties of
choosing a suitable dataset are well recognized [57]. If we restrict ourselves to the
CP field, the first issue is the lack of a standard language. Differently from SAT,
ASP, and Planning, no standard format exists for specifying a CP problem. This
problem affects individual CP solvers and, a fortiori, represents a major obstacle
for defining and comparing portfolio solvers. Lately the CP community seems
to converge on MiniZinc language [52] but, despite more than 8000 MiniZinc
instances are publicly available, the standardisation process looks far from over.
Other formats like XCSP [59] and Essence [20] are still in use, and ad hoc solver-
specific languages are widely adopted. Even the natural language is used for the
problem specification (e.g., see the well-known CSPLib library [23]).
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Clearly we propose to converge to a common language, whether it be MiniZ-
inc or any other. This should foster the definition of compilers/interpreters for
switching from the standard language to the preferred target language (e.g.,
in [2] we introduced the xcsp2mzn compiler for converting an XCSP model to
MiniZinc).

Assuming to have a standard language, even having standard datasets of
problems is a desirable goal. This can be useful not only for making better
predictions, but also for a fair performance comparison of different solvers. The
Algorithm Selection Library [13] is currently addressing this task by collecting
and standardizing datasets coming from different algorithm selection scenarios.
A good starting point for the creation of CP standard benchmarks might consist
in using the instances of the MiniZinc Challenge, but also other choices might be
equally justifiable (e.g., using the more extensive benchmarks of the International
Constraint Solver Competition 2008/2009).

Having a too large dataset may also be counterproductive: including without
criteria all the available instances is a poor choice, since it may create noise and
hinder the predictions accuracy. A reasonable approach to construct a dataset
consists in grouping the problems by their nature, difficulty, and origin and
add few representatives per group into the dataset. Since such a classification
may require a considerable human effort, a promising direction for future works
concerns the automation of the dataset construction. For instance, in [31] a
dataset of SAT problems is automatically generated by means of a clustering
algorithm.

2.2 Features

The concept of feature is crucial for algorithm selection. Features are instance-
specific attributes that characterize a given problem. Early as 1976, Rice stated
that “The determination of the best (or even good) features is one of the most
important, yet nebulous, aspects of the algorithm selection problem” [57]. Fea-
tures can be categorized in static and dynamic [42]. In the context of CP solving,
static features are computed off-line by parsing the input problem (e.g., statis-
tics over the variables and the constraints of the problem). Dynamic features
are instead collected by retrieving information at runtime (e.g., the number of
propagation performed or nodes explored in the search tree).

A weakness of dynamic features regards the limited portability. Running a
solver for short runs makes the features dependent on the architecture on which
the solver is executed. This may distort the predictions, which may change when
performed by different machines on the same problem.

From a problem specification it is possible to collect hundreds of features
(see for instance [2,9,19,36]) but, as for the dataset construction, care should be
taken for avoiding to retrieve redundant and noisy knowledge. As also shown in
[19,44] usually a very small subset of features is really needed.

There is an extensive literature concerning the problem of feature selec-
tion [27], i.e., the problem of selecting the most significant features for a pre-
diction model. Indeed, a common issue for many portfolio approaches consists
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in using features that do not properly characterize a given problem. Feature
selection can be a very costly task that might result in negligible gains—or even
deterioration—of performance when not properly performed. The selection pro-
cedure can be safely performed off-line, but turns out to be almost infeasible
when the behaviour of the portfolio solver can not be simulated. For instance, in
a COP setting the side effects of bounds communication are not predictable in
advance [7] and thus can not be safely simulated. In these cases it is desirable to
use a selection algorithm the more robust as possible w.r.t. redundant features.

The cost of feature extraction plays an important role. The time needed to
compute the features should be minimized, since every second of feature com-
putation is a second taken from the portfolio solver execution. For instance,
extracting features based on constraint graphs can be very time and space con-
suming. Beyond the “classic” scientific challenges relating to the feature iden-
tification and selection—which are typical of the Machine Learning field—as a
future challenge we also propose to not overlook more practical problems like the
computational tractability and the usability of features. In this respect we devel-
oped the feature extractor mzn2feat-1.0 [51], that improves a previous version
of mzn2feat [2] with the aim of being more portable, light-weight, flexible, and
independent from the particular machine on which it is run. To the best of our
knowledge, this is the only publicly available tool able to extract features from
a generic MiniZinc model: of course, we welcome every other analogous tool for
retrieving and selecting new, significant features.

2.3 Solver Selection

Selecting the best solver to run on a given problem is a critical issue, clearly
related to the available dataset and the features considered for each problem of
the dataset. In this context, classification techniques appear to be more robust
than regression ones for the runtime prediction (e.g., see [48,55,71]). A common
drawback of portfolio approaches is that typically a prediction model is built by
first running each solver of the portfolio on every instance of the dataset. This
task typically requires weeks of computations, and it is not very flexible and
portable. For example, having a new (version of a) solver means re-running such
solver on all the problems. Moreover, the runtime information computed during
the training phase on a given machine may be no longer significant when the
portfolio solver is run on another machine. An interesting direction to follow is
shown in [65], where the prediction model is built by using only short runs of
the constituent solvers on the training instances.

Another issue concerns the explicit construction of a prediction model. As
pointed out also in [61], portfolio solvers usually require a complex off-line train-
ing phase for selecting the solver(s) to run. For example, SATzilla [71] uses
a weighted Random Forest machine learning approach while CHSC [46] clus-
ters the instances of the training set. Despite the proven effectiveness of these
approaches, we think that a major challenge is to lighten as much as possi-
ble the training phase. In [3,54,61] the authors show that also “training-less”
approaches can be competitive w.r.t. those that build an explicit prediction
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model. Another interesting direction to consider when building a prediction
model is to use alternatives to the supervised learning approach. Techniques
such as self-training and co-training already used for example for QBF [56] and
ASP [47] may simplify the construction of the prediction model.

Of course, even the time needed for the on-line selection of the solvers to run
must be considered. For example, a prediction model with a negligible building
cost might be totally useless if selecting the solver(s) to run for a new instance
takes an unreasonable amount of time. Also having a huge dataset may involve
a time dilation in the solvers selection process. For instance, the time required
by using an approach based on k-Nearest Neighbour [18] classification depends
on the size of the dataset since it requires the scan of the whole dataset.

Note that being able to reduce the effort of building the prediction model
allows one to quickly adapt the prediction to new unseen problems or to exploit
new available solvers. This is of particular importance since real life applications
usually focus on solving a specific class of problems that may be not fully known
in advance. Moreover, as the results of the Learning track of the Planning Com-
petition 2014 [37] show, learning from new incoming instances may dramatically
increase the performance.

3 Optimisation Problems

Optimisation problems are of great interest in many real life applications where
we are interested in finding an optimal (or good enough) solution. If CSP port-
folio solvers can draw inspiration from SAT approaches—possibly through an
encoding into SAT—in a straightforward way, when dealing with COPs the
matter becomes more complicated. Unlike CSPs, here the dichotomy solved/not
solved is no longer suitable since a COP solver can provide sub-optimal solutions
without finding the optimal one (or proving its optimality).

The first issue here is the lack of a universally accepted metric for measuring
the performance of a COP solver, and therefore for building COP prediction
models. Since for hard combinatorial problems it is often very difficult to com-
plete the search in reasonable time, it is clear that the solution quality must be
taken into account. What is less clear is how to do it. There are plenty of metrics,
used in well known solving competitions, for evaluating the performance of COP
solvers. In [49,62] the solvers are ranked by using a lexicographic order over the
solution quality, the number of the solved instances, and the solving time. The
purse score described in [12] was used in the SAT Competition 2005, while a
metric exploiting results aggregation and pair-wise comparisons between solvers
is proposed in [22]. The MiniZinc Challenge uses instead a Borda count voting
system: problems are treated like voters who rank the solvers. This approach is
surely reasonable, but in our opinion has a disadvantage: it could overestimate
small time differences in case of easy instances, as well as underrate big time
differences in case of medium and hard instances. In [5,7] we proposed and eval-
uated alternative metrics that take into account both the solution quality (i.e.,
the score metric) and the anytime performance of the solvers (i.e., the area
metric) without relying on cross-comparisons between the solvers.
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The possibility of producing sub-optimal solutions is a key factor worth inves-
tigating. We argue that collaborative strategies can be successfully adopted by
COP portfolio solvers. Indeed, some solvers quickly find good sub-optimal solu-
tions but fail to improve later, while others are slower but in the end find better
solutions. In this setting a solver can exploit the objective function bounds found
by another solver to reduce its search space, as done for instance in [7]. As an
example, consider the behaviours of the solvers s1 and s2 in Fig. 2 within a time-
out of T = 1000 s. The best value v∗ = 10 is found by s2 after 900 s, but it
takes 800 s to find its first solution (v = 45). Meanwhile, s1 finds a better value
(v = 40) after just 10 s and even better values in just 100 s. So, the question is:
what happens if we “inject” the upper bound 40 from s1 to s2? Considering that
starting from v = 45 the solver s2 is able to find v∗ in 100 s (from 800 to 900),
hopefully starting from any better (or equal) value v′ ≤ 45 the time needed by
s2 to find v∗ is no more than 100 s. From a graphical point of view, this means
in some way to “shift” the curve of s2 towards the left from t = 800 to 10, by
exploiting the fact that after 10 s s1 can suggest to s2 the upper bound v = 40.
The cooperation between s1 and s2 would thereby reduce by Δt = 790 s the time
needed to find v∗, and moreover would allow to exploit the remaining Δt s for
finding better solutions or even proving the optimality of v∗. However, note that
this virtual behaviour may not occur: it may be that s2 calculates important
information in the first 800 s required to find the solution v∗ = 10, and therefore
the injection of v = 40 could be useless (if not harmful).

The decision of switching between the solvers can be made statically, as done
in [7], but also dynamically at run time. It may be counterproductive to stop a
solver if it is actively producing new solutions while it is likely that it will not
produce solutions if no solutions are produced so far. Of course, the behaviour of
a solver depends on its nature and on the problem to be solved. We believe that

Fig. 2. Example of bound communication from s1 to s2.
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Table 1. Solvers outcomes on a bin-packing instance.

CPX FD LazyFD MIP par-folio obj-folio

Best Value Found No Value No Value 10 10 10 10

Optimisation Time [ s] Timeout Timeout Timeout 182.59 341.49 16.71

interesting patterns can emerge by studying the problems and the solvers in a
more “qualitative” way rather than performing only “quantitative” observations.
From a practical point of view, monitoring the sub-optimal solutions found by
the running solvers might be the starting point for the definition of more dynamic
portfolios, where decisions are made during the search instead of relying on costly
prediction models. We are currently examining this approach, that we consider
promising especially in parallel settings.

Making tons of experiments on a large amount of data is certainly signifi-
cant from a statistical point of view, but somehow hinders the understanding
of what we are experimenting. Indeed, as mentioned in [42], often we observe
and evaluate the performance of different algorithms without being able to give
a full explanation for such performance. Hopefully, looking at the COP solvers
behaviour more in depth could give us some explanation and hints on how to
better combine the different solvers.

4 Parallelisation

Having a finite portfolio, its parallelisation would seem a trivial issue: you only
need to run in parallel all the solvers. Unfortunately, often the number of the
constituent solvers exceeds the number of available cores. Furthermore, even
assuming to have fewer solvers than cores, it is likely that—due to synchroni-
sation and memory contention issues—running in parallel all the solvers on the
same multicore machine is actually different from running the same solvers on
different machines [60].

In the SAT field parallel portfolios have been extensively studied. Usually,
different configurations of the same solver are run simultaneously by enabling
the sharing of learned clause between solvers [10,28,58]. Conversely, the paral-
lelisation of CP solvers does not appear currently so fruitful. For example, in
the MiniZinc Challenges 2014/15 the possibility of multiprocessing did not lead
in general to remarkable performance gains despite the availability of 8 logical
cores: the overall best single solver was the single-threaded solver Chuffed [15].
Except for some preliminary investigations done for the CPHydra and Number-
jack solvers [29,73] we are not aware of parallel CP portfolio solvers. This issue
gives rise to interesting research perspectives. Specifically, parallelisation seems
to be highly promising when applied to optimisation problems.

Let us consider as an example an instance of the Bin Packing problem taken
from the minizinc-1.6 benchmarks1 when solved by using a portfolio of the
1 The model file is 2DPacking.mzn while the data file is Class7 40 3.dzn.
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solvers coming with the G12 MiniZinc distribution (viz., CPX, FD, LazyFD,
and MIP) on a quadcore architecture within a timeout of 500 s. Table 1 shows
the results achieved by the single solvers against two portfolio solvers: par-folio
that just runs all the solvers in parallel and obj-folio that runs all the solver
in parallel, restarting the solvers with the new bound of the objective function
every time a better solution is found. The best solver of the portfolio is MIP,
which is able to complete the search in 182.59 s. LazyFD finds in few seconds
the optimal value 10, but never proves its optimality. FD and CPX instead do
not find any solution. par-folio is remarkably worse than MIP (it takes almost
twice the time to prove the optimality) witnessing that in practice running all the
solvers in parallel does not mimic the sequential execution of the single solvers.
obj-folio instead significantly outperforms the best solver: it quickly proves
the optimality because in this case MIP is restarted by exploiting the value 10
found by LazyFD after few seconds.

Another interesting point concerns the solvers scheduling when the portfolio
size m exceeds the number n of available cores. In the above example m =
n = 4, but what if n < m? Is it better to select k < n solvers for reducing
the processor load, or to choose k = n solvers to be run on all the available
cores, or even scheduling k > n solvers by properly splitting the solving time
window? Furthermore, is it better to use a static approach, where the solvers to
run are decided in advance, or a dynamic one, where solvers are selected on-line
according to the instance to be solved?

A major challenge is also predicting if, and when, restarting a solver is ben-
eficial. Particular care must be taken in restarting a solver with new objective
bounds, since interrupting the solver search means to lose the knowledge gained
during the computation. This may be harmful for solvers that accumulate infor-
mation during the search, e.g., lazy clause generation solvers [53].

Techniques like nogood learning and lazy clause generation have proven to
be very effective, and in a parallel setting can gain additional benefits. Unfortu-
nately, only few CP solvers use nogoods and there is no standard API to retrieve
this knowledge. A standard protocol for extracting and sharing nogoods is hence
desirable, since often the portfolio solver views its constituent solvers as “black-
boxes” on which it has a very limited control. However, even without the control
over the constituent solvers, it is possible to work directly on the problem to be
solved. For instance, one can adopt work splitting techniques for dividing the
original problem into a number of sub-problems, each of which assigned to a
different solver.

5 Utilisation

As pointed out also in [61], a key reason for the lack of common adoption of
portfolio solvers is their poor usability. The effort required to set up a portfolio
solver is typically much higher than the cost of installing its constituent solvers.
Building the prediction model is a hard work, partially justifiable by the fact
that this process is performed off-line.
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We believe that a major challenge for CP portfolio solvers relies in simplifying
their installation and use, and that the best way to overcome this problem is
to encourage the dissemination of (possibly open-source) portfolio solvers to be
downloaded, installed, and used just like a regular individual solver.

For easing the everyday use, the installation of a portfolio solver should
not be a nightmare. Wrapping all the software needed in a minimal virtual
machine might be an idea: in this way the user just need to start the virtual
machine and run the portfolio solver, instead of dealing with the installation of
all the necessary components. Furthermore, following the current trend of cloud
computing, it would be interesting to develop an “online” portfolio solver as a
service to be installed and run in a public or private cloud. Some preliminary
works for testing portfolios on the cloud have already been done [24,43] and, as
underlined in [40], this solution may have some advantages. The solving process
is transparent for the end-user, which only needs the API for communicating
with the server. Moreover, the internals of the portfolio solver can be studied and
maintained directly in the cloud, by taking advantage of the emerging capabilities
of cloud computing. An “immutable service” approach [21,50] would enable to
use the cloud resources to concurrently solve the incoming problems and update
the prediction models.

The diffusion of CP portfolio solvers could have positive implications also for
the individual solvers. Aside from the “image return” for a solver belonging to
a successful portfolio, there are also technical aspects. For example, we realized
that a lot of solvers we tested have some bugs (e.g., only considering the MiniZinc
Challenge 2014 there have been 24 wrong answers given by 5 different solvers).
Portfolio solvers can be used for checking the reliability of a solver, by comparing
its answer on a given problem against the answers given by each other solver
of the portfolio. We believe that a portfolio solver should take into account the
unreliability of its constituent solvers. Getting rid of a buggy solver may be too
penalizing since it is often the case that the most promising solvers to include
in a portfolio are the experimental ones, usually maintained by few people and
not extensively tested. Where it is not possible to fix the bug, the verification
a posteriori of the solution is preferable: the constituent solvers of the portfolio
can be used for double-checking the solution. Unfortunately, the verification of
a solution is sometimes computationally infeasible, especially when it comes to
prove the unsatisfiability or the optimality. An alternative idea might be to
encode the reliability in the prediction model, e.g., by associating to each solver
a trust level.

5.1 SUNNY and sunny-cp

In order to facilitate and encourage the practical usage of CP portfolio solvers
we developed sunny-cp [4], a parallel portfolio solver built on top of the SUNNY
algorithm [3] able to solve generic CP problems encoded in MiniZinc language.

SUNNY is a lazy portfolio approach which exploits instances similarity to
guess the best solver(s) to use. For a given problem instance p, SUNNY uses a
k-Nearest Neighbours (k-NN) algorithm to select from a training set of known
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instances the subset N(p, k) of the k problems closer to p. According to the
N(p, k) instances, SUNNY relies on three heuristics: hsel, for selecting the most
promising solvers to run; hall, for allocating to each solver a certain runtime (the
more a solver is promising, the more time is allocated); and hsch, for scheduling
the sequential execution of the solvers according to their presumed speed. These
heuristics depend on the application domain. For example, for CSPs hsel selects
the smallest sub-portfolio S ⊆ Π that solves the most instances in N(p, k), by
using the solving time for breaking ties. hall allocates to each si ∈ S a time
ti proportional to the instances that S can solve in N(p, k), while hsch sorts
the solvers by increasing solving time in N(p, k). For COPs the approach is
analogous, but different performance metrics are used [5].

The first version of sunny-cp was sequential [6] and relied on eight solvers,
viz. Chuffed, CPX, G12/CBC, G12/FD, G12/LazyFD, G12/Gurobi, Gecode,
and MinisatID.2 Then, we significantly improved it by adding more solvers
(viz. Choco, iZplus, HaifaCSP, and OR-Tools) to its portfolio and especially
by allowing their simultaneous execution and cooperation on multiple cores.
This allowed sunny-cp to win the gold medal in the open category of MiniZinc
Challenge 2015.

6 Related Work

The interest in algorithm selection and configuration is quite general and grow-
ing. It is outside the scope of the current paper to give a global overview of the
plethora of portfolio approaches tried in the literature. For more comprehensive
surveys, we refer the interested reader to [36,42,64].

As said earlier, portfolio solvers have proven their effectiveness in many inter-
national solving competitions. The SAT portfolio solvers 3S [38] and CSHC [46]
won gold medals in SAT Competition 2011 and 2013 respectively. SATZilla [72]
won the SAT Challenge 2012, CPHydra [54] the Constraint Solver Competition
2008, the ASP portfolio solver claspfolio [17] was gold medallist in different tracks
of the ASP Competition 2009 and 2011, ArvandHerd [70] and IBaCoP [14] won
some tracks in the Planning Competition 2014.

Apart from CPHydra and SUNNY, there are only few other approaches that
can deal with CSPs. In [8,9] Machine Learning techniques are used to enhance
the performances of a single CSP solver by dynamically adapting its search
heuristics. These works lists an extensive set of features to train and improve
the heuristics model through Support Vector Machines. Proteus [33] is a recent
CSP portfolio approach that does not rely purely on CSP solvers, but may
decide to encode a CSP problem instance into SAT, by selecting an appropriate
encoding and a corresponding SAT solver.

Regarding optimisation problems, we can say that COP portfolios are mostly
developed just for some specific optimisation problems like Knapsack, Most
Probable Explanation, Set Partitioning, Travel Salesman Problem [26,36,69].

2 sunny-cp attended the MiniZinc Challenge 2014 with respectable results (4th out
of 18). It has also been awarded with an honourable mention by the challenge
organizers.
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The only COP solver we are aware of is presented in [7] using an adaptation of
the SUNNY algorithm. An empirical evaluation of different portfolio approaches
applied to COPs was performed in [5].

Surprisingly enough, only a few portfolio solvers are parallel and even fewer
are the dynamic ones selecting on-line the solvers to run. We are aware of only
two dynamic and parallel portfolio solvers that attended a solving competition,
namely p3S [45] (in the SAT Challenge 2012) and IBaCoP2 [14] (in the Planning
Competition 2014). Apart from a preliminary investigation about CPHydra par-
allelisation [73], the only parallel and dynamic CP portfolio solver able to deal
with also COPs is sunny-cp [4]. The parallelisation of portfolio solvers is a hot
topic which is drawing some attention in the community. For instance, paral-
lel extensions of well-known sequential portfolio approaches are studied in [32],
while in [30] ASP techniques are used for computing a static schedule of solvers
which can even be executed in parallel.

Finally, a number of tools are being developed in order to improve portfo-
lio solvers usability. snappy [61] is a simple and training-less algorithm portfolio
which relies on a nearest neighbours prediction mechanism. LLAMA (Leveraging
Learning to Automatically Manage Algorithm) [41] is instead a framework that
facilitates the exploration of different portfolio techniques on any problem domain,
by supporting the most common solver selectors and possibly combining them.

7 Conclusions and Extensions

Portfolio approaches have been extensively studied, and successfully used in
solving competitions. In this paper we discussed the main challenges that, in our
view, need to be tackled for spreading the use of portfolio approaches in Con-
straint Programming. We identified in particular four main aspects: the predic-
tion model used for the solver selection, the treatment of optimisation problems,
the parallelisation of execution, and the actual usability of CP portfolio solvers.

We already performed some preliminary investigations, and we are currently
working on the implementation of some ideas we proposed. In particular, we are
working to further improve the sunny-cp solver.

Clearly, portfolio solvers are not a panacea and there are contexts in which
their use is unnecessary. For instance, when a given solver of the portfolio
strongly dominates all the others it might be preferable switching to other related
techniques such as Algorithm Configuration [34,35,39] for properly tuning the
parameters of the dominant solver. Scenarios like this are not uncommon in real
life applications, where the focus is on solving a specific problem (or class of
problems) rather than different problems disparate in their nature.

Having more and better datasets and solvers is of course welcome for our
purposes. We would like to encourage the CP community to submit new problems
and solvers to international solving competitions like the MiniZinc Challenge.
To advance the state of the art and bridge the current gaps, it would be nice to
have a number of CP portfolio entrants (maybe running in a dedicated track).
This somehow would go against the—surprising in our opinion—direction taken
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in the SAT competition 2014, where only portfolio approaches consisting of at
most two core algorithms were allowed.

We conclude the paper by discussing some possible extensions of the portfo-
lio approach beyond the CP paradigm. As mentioned, Algorithm Portfolios can
be viewed as particular instances of the Algorithm Selection framework where
we are interested in predicting case-by-case the best algorithm (not necessarily
a constraint solver) for any new, unseen problem to be solved. The generality of
this framework allows its instantiation to different paradigms such as Boolean
Satisfiability (SAT), Answer-Set Programming (ASP), Quantified Boolean For-
mula (QBF), or even for solving different instances of the same problem, e.g.,
the Container Pre-marshalling Problem [13].

A natural, yet unexplored, target for portfolio solvers is certainly the Con-
straint Logic Programming (CLP) field. On the one hand, from a CLP specifi-
cation is possible to derive a CP problem to be solved by CP portfolio solvers
like for instance what done in [16]. On the other hand, a CLP solver can provide
interfaces for dealing with different CP problem specifications (e.g., the Zinc
library of SICStus Prolog [63] that allows to solve both FlatZinc and MiniZinc
models) and therefore be embedded into a portfolio solver.

The portfolio framework also enables to consider program transformation
techniques that may speed up the solving process. A possible approach consists
in splitting the input problem into different, maybe overlapping sub-problems
and to assign the sub-problems to the different constituent solvers. This might be
advantageous especially when solvers are running simultaneously. Furthermore,
the input model can even be enriched by adding redundant constraints (e.g.,
bounds, nogoods or other clauses learned by a solver during the search) for
narrowing the search space. We remark that program transformation techniques
are not uncommon in constraint solving and in particular there exists a lot
of work proposing different techniques for encoding a CP problem into a SAT
problem [1,11,33,66,68]. In this setting, portfolio approaches can be used for
predicting whether and how to compile a CP model into SAT.
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Abstract. Constraint Handling Rules (CHR) has expanded its applica-
tion range over the past few years to include different algorithms rather
than only constraint solvers. Animation of algorithms has been used
over the past few decades to aid the understanding of programming lan-
guages and how they are processed. In this work, we present a generic
form of animating CHR programs using source-to-source transformation.
The transformation converts CHR programs into their equivalent CHR
programs enhanced with animation features, in an automated manner.

Keywords: Constraint Handling Rules · Animation · Source-to-source
transformation · XPCE

1 Introduction

Over the past years, Constraint Handling Rules (CHR), a high-level constraint-
based language [10], has been used with a wide range of fields. CHR was initially
introduced for writing constraint solvers. It has developed into a general purpose
language due to its rule-based declarative nature.

Generally, the human brain is capable of imagining scenarios shown through
images in motion, better than being presented only with written text or static
pictures. The animation tool presented in [15] depended on creating and display-
ing a well-animated and easy-to-follow representation of an algorithm in order to
aid one’s understanding of its functionality. The reason is that a static drawing
or a typed piece of code is not sufficient to describe its behaviour.

Due to the advantages of visualizing algorithms [13], various attempts have
been made to visualize CHR programs. In [3,4], new approaches for visualiz-
ing the execution of CHR programs were presented. The visualization, how-
ever, focused on showing which rules are being executed. [17,18] presented the
first approach towards a generic CHR program animation tool. The tool used
source-to-source transformation to interface the CHR programs with another
tool offering visual objects. The idea presented was to allow users to specify the
interesting constraints/rules of a program. Such constraints were thus associated
with visual objects. On removing/adding the constraints, the visual objects are
changed thus animating the program. The platform presented in [17,18] used
an external visualization tool for producing the animations. Specifically, Jawaa
[14] was used for proof of concept. Jawaa is a visualization tool that offers dif-
ferent types of visual objects in addition to some actions to move objects and
c© Springer International Publishing Switzerland 2015
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change their graphical characteristics. The problem, however, was that without
the available actions, provided by Jawaa, it would have not been possible to
have such animated visualizations. The users in that case would only see visual
objects being added and removed. This would thus provide no animation of the
changes happening to the objects such as a translation from one position to
another. In addition, the actions available to the user depend on the tool being
used. Thus if another visualization tool with different actions was used, the user
might miss on some needed animations.

The new tool is thus a standalone Prolog-based platform. It is able to pro-
vide users with any needed action without using or depending on an external
visualization tool. This isolates the platform from any changes in such external
tools. The platform only uses CHR rules to add new animation actions into a
normal CHR program. The platform solely depends on Prolog. This is due to
the fact that CHR is, eventually, converted to Prolog for execution. Animation
was also done using a Prolog graphical toolkit (XPCE). Conceptually, each con-
straint is represented by a graphical object with certain characteristics which is
drawn onto the visualized environment. The animation takes place as a result of
detecting a change in one or more of the object’s characteristics, removing the
object from the visualization, and adding it back again as a new object with a
new set of characteristics. This implies that each time an object’s characteristic
(such as its position) is changed, the change is simulated in a step-by-step man-
ner. The new CHR programs are thus able to automatically detect changes in
the characteristics of an “interesting constraint”. As a result, a graphical tool
providing only basic objects (such as XPCE) can be instructed by the new pro-
gram to produce an animation of the change such as moving an object from one
position to another. Figure 3a shows how the tool was used to animate a sorting
algorithm. The tool is available from http://met.guc.edu.eg/chr/chrinaction.

The paper is organized as follows: Sect. 2 presents previous related work and
the contribution of this work accordingly. Sects. 3 and 4 introduce the needed
background information. Section 5 introduces the needed steps for the source-
to-source transformation of the input files. In Sect. 6, the CHR animation is
discussed. Section 7 shows an example of how the transformed file works. We
finalize with conclusions and directions of future work.

2 Related Work

Over the years, there has been a lot of work into visualizing and animating algo-
rithms. For logic programming, however, the focus was on the program regard-
less of the implemented algorithm. In some of the systems such as the system
presented in [16], logic programs were represented using a variation of cyclic
AND/OR graphs representing the structure of the program. Dynamic graphs
showed steps of the solution. A set of binding dependency graphs were also
used to show how the values of the variables were generated. In [8], Augmented
AND/OR trees (AORTA) were used as a means for a tracing and debugging
facility. Another set of tools [19,20] focused on visualizing the search space and
its changes over the course of execution.

http://met.guc.edu.eg/chr/chrinaction
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Unlike the previous systems, the focus in our system is to animate the exe-
cution of different types of algorithms. There were various attempts to provide
animations of algorithms in general. [5] provides a 30-minute video showing the
animation of different sorting algorithms. The platform presented in [12] pro-
vides animations of different types of algorithms such as sorting, tree and graph
algorithms instead of only sorting algorithms. However, both systems lacked gen-
erality. They only had built in animation facilities for well-known algorithms.

The system presented in this work aims at providing a general animation for
the execution of CHR programs. The system was first introduced in [17]. Similar
to BALSA [6] and Zeus [7], the notion of interesting events was used. The main
difference is the different type of interesting events offered in the new system.
It is also simpler to use. Unlike Balsa and Zeus no algorithm animators are
required to write the views and specify how animation should work. However,
one of the main drawbacks of the system presented in [17] is that the animation
was outsourced to an external tool. This was done to have a generic animation
platform depending on the basic graphical objects provided by animation tools
such as Jawaa. As a consequence, the animation depends on the external tool.
Thus any change of the tool could affect the needed animations. That is why
the work presented in this paper aims at having the animation detected and
handled automatically by the CHR program. In addition, a Prolog graphical
toolkit (XPCE) was used as a proof of concept. The tool originally only provided
a set of basic graphical objects (circle, rectangle, . . . etc.

3 Constraint Handling Rules

As previously mentioned, CHR [9,10] is a rule-based language. A CHR program
contains a sequence of “simpagation” rules. The rules act upon constraints in the
store until they are solved. There are two types of constraints in a program: user-
defined/CHR constraints and built-in constraints handled by the host language.
The general format of a simpagation rule is:

optional rule name @ HK \ HR ⇔ G | B.

The head constraints (HK ,HR) contain a conjunction of CHR constraints.
A conjunction is represented by a comma. The guard (G) contains built-in con-
straints only. The body (B) could contain CHR and built-in constraints. The
rule is executed if the constraint store contains constraints matching the head
constraints and if the guard (G) is satisfied. Once the rule is executed, the head
constraints HK are kept in the store while HR are removed from the store. In
the case where HK is empty, the rule is a simplification rule of the form:

optional rule name @ HR ⇔ G | B.

On the other hand, if HR is empty, the rule is a propagation rule of the form:

optional rule name @ HK ⇒ G | B.
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Furthermore, the body of the rule (B) is executed. This results in having the body
constraints (if any) thrown into the constraint store in their order of appearance.

In order to provide a better understanding for how CHR works, the following
CHR program is introduced:

Listing 3.1. Sorting constraints in a descending manner.

so r t ingRu l e @ element ( I1 ,V1) , element ( I2 ,V2) <=> I1<I2 ,
V1<V2 | element ( I2 ,V1) , element ( I1 ,V2) .

The program sorts element/2 constraints in descending order through the
simplification rule sortingRule. The arguments of a constraint element(I,V)
are respectively as follows: I represents the index of the element within the order
and V corresponds to its value. For every two element/2 constraints where the
guard is satisfied, their indices are swapped. The guard states that the first
constraint is at an index before the second constraint’s index, but the value of
the first constraint is smaller than the second one.

When querying the program with the following: element(1,30),
element(2,100) and element(3,50) respectively, the execution will proceed
as follows:

1. element(1,30), element(2,100) get matched to the rule sortingRule.
They are removed from the constraint store and the following constraints
are thrown into the constraint store respectively:
(a) element(2,30) which gets matched to sortingRule again along with

element(3,50). Similarly, they are removed from the constraint store,
and the following constraints are thrown respectively: element(3,30)
and element(2,50) which do not match to any rule.

(b) element(1,100) is then thrown into the constraint store.
2. The execution stops since there are no more constraints that can be matched

to the sortingRule. Eventually, we are left with the following constraints:
element(1,100), element(2,50) and element(3,30).

4 XPCE

XPCE1 is a platform portable tool-kit used for developing GUIs where the plat-
forms covered are UNIX/X11 and Windows (Windows-NT/2000/XP/Vista).

Assuming one’s familiarity with Prolog syntax, the simplest way to introduce
XPCE is through the four predicates it adds to Prolog introduced in [1,21]. The
following are the three most important ones that have been used throughout the
implementation of this work:

1 An introduction to XPCE can be found in [2].
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– new(?Ref, +Class(...Arg...)): Creates an object Ref as an instance of
a class Class using the given argument(s) Arg, which is a set of arguments
containing the characteristics of the instance created. The reference Ref can
either be a Prolog variable or an XPCE object reference displayed as @ref
where the name after the “@” can be any name.

– send(+Ref, +Method(...Arg...)): Similar to new/2, send/2 invokes the
method Method with arguments Arg on the already existing object Ref.

– free(+Ref): destructs the referenced object Ref. As a result, it disappears
from the visual environment.

Note that the above XPCE predicates have extended implementations which
allow taking more arguments as input [1] (as can be seen in Listing 3.8).

5 Source-to-Source Transformation

In order to have a CHR program augmented with animation features, a source-to-
source transformation is used as presented in Fig. 1. The transformation process
feeds the input CHR program (P ) to a parser. Next, the parser outputs a query
(Q) to be introduced to the implemented CHR transformer (T ) which in turn
formulates the output transformed CHR program (PT ). The output of the parser
is similar to the relational normal form presented in [11]. This form represents
the different constituents of the original CHR program using special constraints.
Initially, the user marks which constraints are to be animated. Each of these con-
straints are referred to as CA. For each CA, the user chooses a graphical object
to represent it. This implementation supports the following graphical objects:
circle, box, ellipse, line, text and image. For each object, a set of appropri-
ate characteristics can be manipulated such as x-coordinate, y-coordinate, size,
color, etc. The user is then prompted to specify the values of such characteristics
through a GUI as presented in [17].

For any CA constraint, it is augmented with an extra argument that repre-
sents a unique ID. Each ID maps to a specific object/constraint. In order to
provide a correct animation and avoid manual edits to the original program, the
user is prompted to mark any desired relations between a CA head constraint
and a corresponding CA body constraint in a rule. A relation indicates that the

Fig. 1. Generic transformation process.
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body constraint is an update of the head constraint. Such piece of information is
important to detect the change (if any) of the object corresponding to such a CA

constraint. The detection of change will be further explained through Sect. 6. The
two constraints involved in a relation have to be the same CA constraint; same
name and arity. For the sorting example in Listing 3.1, we use the implemented
tool to mark the relationships desired for this program as shown in Fig. 2. For
this program, we would like to see the translation of a certain element. Thus, we
would like to link the head constraint element(I1,V1) with the body constraint
element(I2,V1) to indicate that V1’s position moved from I1 to I2 (provided
that the user annotated an element/2 constraint’s index to correspond to the
graphical object’s x-position). This is done through assigning the same ID to
both constraints. Similarly, the head constraint element(I2,V2) is linked with
the body constraint element(I1,V2). In general, after all rules have been pre-
sented for the user to mark any desired relations, any CA constraint not involved
in a relation is assigned a unique ID.

Afterwards, the original CHR program is parsed to produce a set/data-
base of CHR constraints carrying information about the original CHR program.

(a) Marking the relation for the first element. The
drop-down list shows all possible body constraints
for a relation.

(b) The rule is updated according to the previous
relation marked. The drop-down list is also updated
accordingly.

Fig. 2. Screen-shots of the tool showing the user’s input for marking relationships
between head-body constraints for the sorting program.
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The database also contains constraints carrying information about the charac-
teristics of each CA constraint (as per the user’s input). Subsequently, the query
(Q) includes all of the constraints within the database, constraints that would
trigger rules in the transformer (T ) to formulate the (transformed) rules of PT

as well as constraints that initiate and describe the animation environment.
In general, the transformed CHR program is structured as follows:

1. CHR rules responsible for linking CA constraints to their corresponding
graphical objects

2. Transformed rules of the original CHR program P to accommodate the
extended graphical features of the transformed program PT . The transfor-
mation of the rules follows the formalized form presented in Sect. 6.

3. A set of animation rules that constitutes the implemented CHR anima-
tion library. This library provides different animation features regarding the
type/shape of objects to be visualized as well as different animation actions to
be performed for an object. The rules of the implemented library are generic
and are augmented to the end of any PT to perform the animation actions.

6 Animation Using CHR

In order to activate the animation feature for any CHR program, the query
is augmented with start/0. The predicate start/0 is used to create a window
where the animation would be presented. It is also responsible for throwing three
important constraints that aid the animation process.

– priority/2 is responsible for simulating a graphical queue which controls and
maintains correct order of animation execution. In other words, it ensures that
a currently running animation is not interrupted by any introduction of a new
CA constraint. For a constraint priority(PrA,PrD), the last executed action
throughout the animation is of priority PrD. Whereas the next available posi-
tion in the queue for an action to be executed is PrA. Initially, it is introduced
as priority(1,0).

– order/1, initialized as order(0), is used as a counter for the characteristics of
objects generated. This helps keeping track of the order of the characteristics
of a certain object as per their appearance. For an object, given two instances
of the same characteristic, we are able to determine which is the old or new
one based on the order (or time) it appeared in.

As previously mentioned, every CA constraint appearing in the constraint
store or in a rule is augmented with an extra argument that acts as its identifier.
This is done to ensure the distinction between different constraint objects to
be animated. For example, given that an element(I,V) constraint is a CA, it
should be updated and used as follows: element(N,I,V) where N is a unique
identifier corresponding to the corresponding graphical object of the constraint
element. Hence, for the upcoming sections of this paper, a CA constraint refers
to the updated format with the augmented argument.

The following sections present an overview of the implemented approach.
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6.1 Linking CA Constraints to Graphical Objects

A constraint obj(N,Type,Ch) in the constraint store represents the initial dec-
laration of a CA constraint, with identifier N , according to the graphical part of
the program. The argument Type is the graphical object type (circle, box, . . .,
etc.) specified through the user’s input for the corresponding constraint CA. Ch
is a list of the object’s characteristics (width, height, . . ., etc.) also provided by
the user.

Given an obj(N,Type,Ch) constraint, further extraction of the graphical
information of N is necessary to create its corresponding graphical object. This
is performed through the execution of the rule genericAnimRule shown in
Listing 3.2. The following constraints are produced by the rule.

– maxChange/2 determines the maximum number of characteristics that can be
modified for a certain object. The number of modifications depend on the
object type and is specified through the fact max/2. max(Type,X) is true iff
the number of changes possible for the object of type Type is X. For example,
max(box,5) means that an object of type box, has 5 possible characteristics
to be updated. The transformed CHR program (PT ) is augmented with a
predefined set of max/2 facts covering all object types.

– a constraint obj2/2 which carries the set of characteristics of an object. For
obj2(N,Ch), Ch is a list of characteristics of the object N.

– object/3 which introduces the corresponding graphical object of the CA con-
straint. object(N1,Type1,St), is the constraint responsible for adding the
object N1 of object graphical type Type1 to the queue for animation. St rep-
resents the status of the object; kept, removed or unknown. In general, a kept
status indicates that the CA constraint has appeared as an HK constraint.
Conversely, a removed status indicates that the CA constraint has appeared
as an HR constraint. For the case of a newly introduced object, its status is
unknown.

Listing 3.2. Generic animation rule augmented at the beginning of PT

genericAnimRule @ obj (N1 , Type1 , [H |T] )==>max(Type1 ,MN1) |
maxChange(N1 ,MN1) , obj2 (N1 , [H |T] ) , ob j e c t (N1 , Type1 , unknown) .

Whenever a CA constraint appears in the constraint store, we would like to
create its equivalent graphical object. The characteristics of the graphical object
depends on the user’s input. Hence, we introduce two rules to PT for each CA

constraint:

1. Rule CA2:
CA2 @ CA(N, ..) ⇒ X0, ...,Xi, obj(N,T,Ch). (1)

where i ≥ 0.
The propagation rule CA2 is matched for each newly introduced constraint
CA that does not have an already existing object in the graphical environ-
ment. The obj/3 constraint corresponds to the initial declaration of such a
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constraint in the graphical environment of PT . X0, ...,Xi is a set of constraints
which the user can specify about the desired animated objects. For the sorting
example, if we would like the I argument in an element(N,I,V) constraint
to determine the x-position of its corresponding object in the graphical envi-
ronment, then we could add it as a constraint on the object. Accordingly, the
x-position characteristic in the list Ch would carry the value I rather than a
fixed value. In other words, we create a dynamic relation between the ani-
mated object and its related constraint through mapping variables of the CA

constraint to control values of the characteristics of the object.
2. Rule CA1:

CA1@CA(N, ..)\checkAnimation(N) ⇔ X0, ...,Xi, obj2(N,Ch). (2)

where i ≥ 0.

The existence of a checkAnimation(N) constraint in the constraint store
denotes that a relation between two CA constraints has been detected. In
other words, it indicates the detection of two constraints of the same CA,
carrying the same ID (N). The checkAnimation/1 constraint triggers the
rule CA1 for a CA constraint. The rule throws a constraint obj/2 with the
characteristics of the new object. obj/2 in turn triggers the set of rules for
extracting the characteristics of the object as presented in Subsect. 6.3. The
extracted characteristics are used to further draw the object as well as detect
any change that could occur for the object through the execution of the
program.

6.2 Transforming the Rules of the Original Program P

In order to accommodate for the link between the constraints of the program P
and the graphical abilities of the transformation, the rules of P are transformed
accordingly. An initial transformation is required to serve the augmentation of
the extra argument for every CA constraint corresponding to its identifier as
previously mentioned. We will refer to a constraint CA in the head of the rule
as HA. A constraint CA that is found in the body of a rule carrying the same
identifier as a HA will be referred to as BA and is called a “successor”.

Further transformation of the rules is only applied to the rules where a con-
straint HA appears. For every HA constraint at position i-1 with identifier N ,
the constraint obj/3 is concatenated to the head of the rule at position i and
referred to as Oi. This is done to force the graphical object to act the same as
its corresponding constraint. A constraint object(N,Type,St) is added to the
body of the rule with the same identifier as its corresponding HA with the same
N, where Type refers to the graphical object type of N. The third argument of
object/3 is set to be kept or removed. This depends on whether the HA is
a kept constraint HA

K or a removed constraint HA
R . In this case the status of

the object is said to be known. object/3 is later used to add the object N to a
graphical queue to initiate a dynamic animation sequence for N (if detected) as
will be further explained through Subsect. 6.3.
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Next, we follow the object/3 constraint with another one. The new con-
straint added depends on whether there is a successor constraint BA to the HA

constraint or not.

– If the HA has a successor, the constraint checkAnimation/1 is added. It has
one argument carrying the same identifier of the constraint HA. This con-
straint is responsible for triggering a set of rules to perform the dynamic ani-
mation. The pair of object/3 and checkAnimation/1 constraints are referred
to as OS. For every BA in position k+1, OS is added at position k. An exam-
ple of such rule transformation can be seen through Listing 3.7.

– If a constraint HA with identifier N does not have a successor, the constraint
noSuccessor(N) is added. This constraint triggers a set of rules that corre-
spond to deciding the final state of an animated object. For each HA without
a successor, the pair of constraints object/3 and noSuccessor/1 are added
to the beginning of the body and are referred to as ON .

Below is the formalized form of thr transformed simpagation rule shown in
Eq. 3. The case where a successor is found is presented in Eq. 4 and accordingly
OS is augmented. Whereas Eq. 5 shows the case with no successor detected where
ON can be observed. Without loss of generality, we will assume that the head
and body constraints that are associated with the animation come before the
rest. However, in the reality, the head and body constraints can have any order
and the transformer will keep the constraints in the corresponding positions.

– Simpagation:

HA
K1

, ...,HA
Kn

,HKn+1 , ...,HKm
\HR1

A, ...,HA
Rl
,HRl+1 , ...,HRo

⇔ G | BA
1 , ..., B

A
i , Bi+1, ..., Bj .

(3)

– Simpagation (with successor):

HA
K1 , OK1 , ..., H

A
Kn

, OKn , HKn+1 , ..., HKm\HR1
A, OR1 ..., H

A
Rl
, ORl , HRl+1 , ..., HRo

⇔ G | OS1, B
A
1 , ..., OSi, B

A
i , Bi+1, ..., Bj .

(4)

– Simpagation (without a successor):

HA
K1 , OK1 , ..., H

A
Kn

, OKn , HKn+1 , ..., HKm\HR1
A, OR1 ..., H

A
Rl
, ORl , HRl+1 , ..., HRo

⇔ G | ON1, ..., ONheads, B
A
1 , ..., BA

i , Bi+1, ..., Bj .

(5)

where i, j, k, l,m, n, o ≥ 1, i = n + l and heads = n + l.
For the no successor case as shown in Eq. 5, note that the BA constraints appear-
ing are not successors to any of the head constraints HA.
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6.3 Implemented CHR Animation Library

The CHR animation library implemented is generic and does not depend on the
user input. It provides different functions to enable the graphical animation of
the program, given the link provided through the rules CA1 and CA2 for every
CA, genericAnimRule, as well as the transformed rules of the program P .

– Extraction of an Object’s Characteristics:
This is done through the constraint obj2(N,Ch) which triggers the set of
rules responsible for extracting the characteristics of an object N from the
list Ch. As a result, a pair of constraints for each characteristic char of the
list Ch is introduced to the constraint store: charC(N,X,O) and char(N,X),
where X is the value of the characteristic, and O is the order in which the
characteristic of the object N appeared in. The constraint order/1 previously
introduced is responsible for feeding in the value of the argument O. For
example for the characteristic xpos(x-position of an object), the two new
constraints introduced to the constraint store: xPosC(N, X,O) and xPos(N,X).

– Giving Priority to an Object:
In order to provide a correctly ordered graphical representation without inter-
ruptions of newly introduced constraints to the constraint store, a virtual
queue form is implemented through the animation library. Whenever a CA

constraint requires dynamic animation, it is added to the queue which oper-
ates in a first come first serve manner. Adding an object to the queue and
giving it the current highest priority, ensures that the animation of the object
would be performed before allowing any entry of a constraint, resulting from
an application of a rule from the transformed program rules, to the store.
Without such a feature, it is possible to have a constraint that is irrelevant to
the current animation introduced to the store whilst executing the animation
sequence of an object. This would cause the newly introduced constraint to
be active and thus could possibly match and cause the execution of further
rules. As a result, the animation could be interrupted by another animation
sequence, which eventually would not map to the execution sequence of the
original program. Thus, the transformation would lose the credibility of map-
ping the program execution to the graphical environment.

The queue is managed through the constraint priority/2 previously
introduced. The values of the arguments of this constraint are updated appro-
priately whenever a CA constraint is queued for animation (update the first
argument) or animation of a certain CA has been performed successfully
(update the second argument).

The target is to produce a corresponding obj(ID,N,Type,St,Pr) con-
straint for a CA constraint N of object type Type and status St. The obj/5
constraint is responsible for triggering a set of rules that creates and controls
a graphical object whose identifier is ID and position in the queue is Pr. This
constraint is thrown into the constraint store as a result of triggering the
appropriate rule from Listing 3.3.
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Listing 3.3. Adding an object to the graphical queue

givingPrKept @ ob j e c t (N, Type , kept ) , p r i o r i t y (Pr ,D) <=> var
( ID) | PrN i s Pr +1, p r i o r i t y (PrN ,D) , checkUnknown (N) ,
obj ( ID ,N, Type , kept , Pr ) , kept ( ID) .

givingPrRemoved @ ob j e c t (N, Type , removed ) , p r i o r i t y (Pr ,D)
<=> var ( ID) | PrN i s Pr +1, p r i o r i t y (PrN ,D) ,
checkUnknown (N) , obj ( ID ,N, Type , removed , Pr ) .

givingPrUnknown @ ob j e c t (N, Type , unknown) <=> var ( ID) | obj
( ID ,N, Type , unknown) .

An object/3 constraint in the store, whose status is known, denotes that
a BA constraint has been detected to be a successor to a constraint HA

(refer to Subsect. 6.2). Thus, is it to be added to the queue to ensure final-
izing the animation of the object N without having any interruptions that
could be caused by external rule executions. The functionality of each of the
two rules givingPrKept and givingPrRemoved is to update the status of the
object N from unknown to be known (kept or removed). This is done through
checkUnknown(N) constraint which triggers a set of rules that removes any
previous definitions of N as an unknown object. Afterwards, a new constraint
obj/5 is thrown to the store to represent the object with the updated
status St.

On the other hand, an object of unknown status denotes that it is still new
and no animation is detected yet. Thus, there is no need to include it in the
queue as it is only required to draw the object onto the graphical environ-
ment without further animation. Hence, executing the rule givingPrUnknown
results in throwing an obj(ID,N,Type,St) constraint into the store which
carries the same first four arguments as obj/5.

– Drawing an Object:
Given a obj/5, or obj/4 for an object with unknown status, a set of rules
are provided and are responsible for the direct communication between CHR
and XPCE in order to draw an object. The rules require the existence of the
set of constraints corresponding to the characteristics of the object (a set of
char/2 constraints). For example, for the object shape circle, the below
rules in Listing 3.4 are provided. For an object whose status is known, the
corresponding rule is not executed unless it is the turn of the object in the
queue which is ensured through the guard of the rule given the priority/2
constraint. The correct turn of an object is ensured by checking that the Pr
value of the object is the next one following the last executed turn PrD. Fur-
thermore, after executing an action for the object, the queue’s PrD argument
is updated accordingly.
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Listing 3.4. CHR animation library rules responsible for communicating drawing
commands to XPCE - circle shape.

drawRCircle @ xPos (N,X) , yPos (N,Y) , c o l o r (N, Color ) , r ad iu s (N, Radius )
\ obj ( ID ,N, c i r c l e , removed , Pr ) , p r i o r i t y (PrA ,PrD) <=> NPr i s PrD
+1 , Pr = NPr , var ( ID) | PrN i s PrA +1, draw (ID , c i r c l e , [ X,Y,
Color , Radius ] ) , time1 , f reeObj ( ID) , obj ( ID ,N, c i r c l e , removed ,PrA)
, p r i o r i t y (PrN , Pr ) .

drawKCircle @ xPos (N,X) , yPos (N,Y) , c o l o r (N, Color ) , r ad iu s (N, Radius ) ,
obj ( ID ,N, c i r c l e , kept , Pr ) \ p r i o r i t y (PrA ,PrD) <=> NPr i s PrD +1

, Pr = NPr , var ( ID) | PrN i s PrA +1, draw (ID , c i r c l e , [ X,Y, Color ,
Radius ] ) , time1 , obj ( ID ,N, c i r c l e , kept , PrA) , p r i o r i t y (PrN , Pr ) .

drawUCircle @ obj ( ID ,N, c i r c l e , unknown) , xPos (N,X) , yPos (N,Y) , c o l o r (
N, Color ) , r ad iu s (N, Radius )==> var ( ID) | draw (ID , c i r c l e , [ X,Y, Color
, Radius ] ) , time1 .

Regardless of the object’s status, execution of any of the above three rules
triggers the predicate draw/3. In general, a predicate draw(Id,Type,ChList)
is responsible for sending XPCE commands to the graphical window to create
a new graphical object of shape Type with characteristics values represented
in the list ChList. The draw/3 predicate responsible for drawing a circle
object is shown in Listing 3.5. A time1/0 constraint, as observed in the rules
of Listing 3.4, is responsible for causing a small delay after drawing an object
onto the graphical environment to allow us to view the animation.

In general, for an object shape Shape, the CHR animation library provides
the three rules drawRShape,drawKShape and drawUShape similar to the ones
in Listing 3.4 where the appropriate characteristics constraints are used to
draw the object. Furthermore, a draw/3 predicate is provided for each shape.

Listing 3.5. CHR animation library: Predicate for drawing a circle object using
XPCE commands

draw ( Id , c i r c l e , [ X,Y, Color , Radius ] ) :−
send (@p, d i sp lay , new( Id , c i r c l e ( Radius ) ) , po int (X,Y) ) ,
updateFi l lC ( Id , c i r c l e , Color ) ,
send (@p, f l u s h ) .

– Detecting Change in an Object:
Whenever a successor is detected for a CA constraint whose identifier is N,
its characteristics are extracted through the execution of rule CA1 (refer to
Subsect. 6.1) and the series of rule executions caused by the generated obj2/2
constraint. Given that there would already exist a set of constraints corre-
sponding to the original object’s characteristics, this results in the existence
of two sets of characteristics constraints for the constraint N; old and new
ones (successor characteristics). In order to animate such change, the object
undergoes multiple successive checks to detect the change that occurred. For
an object’s characteristic char, the following steps take place:
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1. Compare old(X1) and new (X2) values of char which is done through
the third argument of the constraint charC/3. Equation 6 shows the
abstracted rule detect for detecting a change for a characteristic char.

detect @ charC(N,X2, O2) \ charC(N,X1, O1),maxChange(N,M) ⇔
O1 < O2|M2 isM − 1, animate(N, char,X1,X2),maxChange(N,M2).

(6)

The animate constraint is responsible for triggering animation rules to
animate the change of N from X1 to X2 with respect to the characteristic
char. Furthermore, the second argument for the maxChange/2 constraint
is decremented by one to denote that a characteristic has been examined
for change.

2. Detecting the kind of change whether increasing, decreasing or null.
3. Remove any old char-related constraints.
4. Animate the change between the old value and the new one. This is

done through successive drawing and removal of the graphical object
with intermediate changes to simulate the dynamic animation effect.
An abstract rule animateChar is presented below and is responsible for
updating intermediate values for a characteristic char of an object N.
The constraint getNext computes the intermediate value XN from X1
towards X2.

animateChar @ animate(N, char,X1,X2), obj(Id,N, Type, St, Pr),
char(N,X1), priority(PrA, PrD) ⇔ NPr isPrD + 1, P r = NPr

|PrN isPrA + 1, getNextV alue(X1,X2,XN), char(N,XN),
obj(Id2, N, Type, St, PrA), priority(PrN,Pr),

animate(N, char,XN,X2).
(7)

The rule execution stops as soon as it is detected that the current char
value reached the new target value. This is detected through the stopping
(abstracted) rule finalizeChar whenever the values of the characteristic
char in the animate constraint reach the same value.

finalizeChar @ obj(Id,N, Type, St, Pr), animate(N, char,X,X),
priority(PrA, PrD) ⇔ NPr isPrD + 1, P r = NPr|PrN isPrA + 1,

obj(Id2, N, Type, St, PrA), priority(PrN,Pr).
(8)

The above four steps are repeated for every char of the constraint N until
all changes have been applied (if any). This is detected through the second
argument of maxChange/2 reaching zero, denoting that there are no more
characteristics for N to be inspected for change. Finally, the object is removed
from the queue and depending on the status St of it, it is removed from or kept
in the graphical environment. The abstracted rule changeDone shown in Eq. 9
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is responsible for such a process. Also, the store is cleared from any unnec-
essary constraints associated with the object N. For the successor constraint,
maxChange/2 is then reset/refilled to hold the number of characteristics avail-
able for N’s object. This step is necessary to allow future animation detection
for N.

changeDone @ obj(ID,N, Type, St, Pr),maxChange(N, 0),
priority(PrA, PrD) ⇔ NPr isPrD + 1, P r = NPr| priority(PrA, Pr).

(9)

7 Animation Example: Sorting

This section presents the execution of the previously presented sorting example
in Sect. 3 given the same query provided, as well a applying the transformation
presented in Sect. 6.

Initially, we mark element/2 constraint to be a CA. Thus the two cus-
tomized rules in Listing 3.6 are added to the output program sortingT where it is
observed that element/2 is transformed into element/3 to accommodate the ID
argument.

Listing 3.6. Customized animation rule augmented to sortingT

element1 @ element (N, I ,V)\checkAnimation (N) <=> IN i s I ∗50 , obj2 (N, [
he ight (V) , xPos ( IN) , yPos (300) , width (20) , c o l o r ( blue ) ] ) .

e lement2 @ element (N, I ,V)==>IN i s I ∗50 , obj (N , box , [ he ight (V) , xPos ( IN) ,
yPos (300) , width (20) , c o l o r ( blue ) ] ) .

Here, we chose that each element(N,I,V) constraint is to be visualized as a
box, its x-coordinate is determined according to the constraint’s second argument
I and the height is determined through its third argument V. The y-coordinate
has a constant value of 300, the width is equal to 20 and the color of the box is
blue.

As a second step to the transformation, the original rule of the program pre-
sented in Listing 3.1 is transformed according to the formalized transformation
presented in Sect. 6. The transformation of the rule shown in Listing 3.7 also
depends on the user’s input regarding any head-body relations.

Listing 3.7. Sorting example rule transformed

so r t ingRu l e @ element (N1 , I1 ,V1) , obj (N1 , TypeN1 , ) , e lement (N2 ,
I2 ,V2) , obj (N2 , TypeN2 , )<=>I1<I2 ,V1<V2 | ob j e c t (N1 , TypeN1 ,
removed ) , checkAnimation (N1) , element (N1 , I2 ,V1) , ob j e c t (N2 ,
TypeN2 , removed ) , checkAnimation (N2) , element (N2 , I1 ,V2) .

Finally, the query is also transformed as follows: element(a,1,30), element
(b,2,100) and element(c,3,50), where unique values are augmented onto
every CA constraint to act as identifiers.
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1. Introduction of a Constraint CA

Initially, element(a,1,30) is thrown into the constraint store which triggers
the rule element2. As a result, the constraint obj(a,box,[height(30),xPos
(50),yPos(300),width(20), color(blue)] is thrown into the constraint
store.

2. Extraction of Object Characteristics
Next, genericAnimRule is triggered by the obj/3 constraint and throws
the corresponding obj2/2 constraint which in turn extracts the character-
istics of element a and produce the following constraints: height(a,30),
heightC(a,30,0),xPos(a,50),xPosC(a,50,1),yPos(a,300), yPosC(a,
300,2), width(a,20), widthC(a,20,3), color(a,blue), colorC
(a,blue,4). Also generi cAnimRule throws the constraint object(a,box,
unknown) into the store.

3. Creation of a New (Unknown) Object:
The object/3 constraint accordingly triggers the rule givingPrUnknown and
generates the constraint obj(ID,a,box,unknown) where ID is a non-bound
variable. Given the obj/4 constraint as well as the set of characteristic con-
straints of element a, the rule drawUBox is executed which in turn triggers
the corresponding draw/3 predicate for drawing a box shape. Both rules are
shown in Listing 3.8.

Listing 3.8. Creating an object of type box with an unknown status and drawing
it with XPCE commands

drawUBox @ obj ( ID ,N, box , unknown) , xPos (N,X) , yPos (N,Y) ,
c o l o r (N, Color ) , width (N, Width ) , he ight (N, Height ) ==>
var ( ID) | draw (ID , box , [ X,Y, Color , Width , Height ] ) , time1 .

draw ( Id , box , [ X,Y, Color , Width , Height ] ) :−
send (@p, d i sp lay , new( Id , box (Width , Height ) ) , po int (X,Y) ) ,
updateFi l lC ( Id , box , Color ) ,
send (@p, f l u s h ) .

The same process is executed for element(b,2,100) until the box object
corresponding to element b is drawn as well. Figure 3a shows the graphical
window with both elements in the constraint store drawn.

4. Checking for Applicable CHR Rules:
Given that there are two element/3 constraints in the store that can satisfy
the guard of the rule sortingRule, the rule can be applied. As a result, the
constraint object(a,box,removed) is thrown into the constraint store which
replaces the previous obj/4 constraint for element a with an unknown status
with the constraint obj(ID,a,box,unknown,Pr) where Pr is the currently
available turn in the queue. Such replacement is done through applying the
rule givingPrRemoved shown in Listing 3.3.

5. Inspecting Change in an Object:
Next, checkAnimation(a) constraint is thrown into the store through the
rule sortingRule, which triggers the rule element1 (refer to Listing 3.6) as
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soon as the new element(a,2,30) is thrown into the store as well. As a result,
an obj2/2 constraint is generated carrying the new characteristics of element
a. The following set of characteristic constraints are generated accordingly:
height(a,30),heightC(a,30,10),xPos(a,100),xPosC(a,100,11),yPos
(a,300),yPosC(a,300,12),width(a,20),widthC(a,20,13),color(a,
blue), colorC(a,blue,14). Thus, the change of characteristics for element
a is detected according to the process previously explained through Sect. 6.
As a result, we observe the graphical object corresponding to element a
moving to its new position as shown in Fig. 3b and c.

Furthermore, the same process takes place for element b until it reaches
its target position.

(a) element a and b in-
troduction

(b) Translation of element
a

(c) element a reaching
target

Fig. 3. Screen-shots of the step-by-step animation of the sorting example (edited with
guiding axes).

Next, element c is introduced into the store and the graphical environment
and further checks for applicable rules are applied. The animation stops when-
ever the program execution stops. For the full execution of the transformed pro-
gram using the query examined above, please refer to this Youtube video link:
https://youtu.be/fXjwg5XLr0w. In general, the above five steps formulate the
path of a CA constraint when it enters the constraint store.

8 Conclusion and Future Work

In conclusion, this paper presented a generic transformation that can be applied
to a CHR program. The transformation augments the program with actions.
Various animation actions are supported such as translating, resizing and chang-
ing colors of constraint objects. The transformation was applied to different
CHR programs including a simple chemical reactions program as shown in
http://youtu.be/LcTlLiOsuKk. The advantage of this approach is that it does

https://youtu.be/fXjwg5XLr0w
https://youtu.be/fXjwg5XLr0w
http://youtu.be/LcTlLiOsuKk


382 A. Ismail et al.

not depend on a visualization tool with embedded animated actions. It is able
to infer and apply the actions automatically from the program. The tool can be
used for educational purposes to provide a better visual experience for students.

For future work, a tool will be used to enable the user to define new objects
and actions to be supported. Furthermore, grouping of several objects to repre-
sent a single constraint will be investigated. The different types of annotations
supported in [17] will be also included. Different visualization tools other than
XPCE should also be tested. Also, the tool will be enhanced with debugging fea-
tures that could enable the user to optimize his program. The aim, for now, was
generality rather than efficiency. The focus was to be able to encode animations
using CHR only without having to use the possibly efficient ready animation
tools that could change or die over time. However, efficiency of the tool is part
of the future work.
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